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List of Figures 

2.1 Diagram of layered surface modified spheres in scaffold, red spheres depict amine modified 

surface, purple spheres depict hexane modified surface and gold spheres depict alllyl alcohol 

modified spheres. 

3.1 The two phase injectable scaffold.  Red spheres carry the chemical modification and the 

amorphous shapes represent the adhesive component 

3.2 Water contact angle of modified PLGA to measure changes in surface energy. Modified 

spheres were compacted  into cakes (n=10). Starred bars indicate level of significance as 

determined by ANOVA and Tukey statistical tests * represent the level of significance (* 

p=<0.05, ***p=<0.01) 

 

3.3 Water contact angle of modified PLGA to measure changes in surface energy. Modified 

spheres were compacted  into cakes (n=10). Starred bars indicate level of significance as 

determined by ANOVA and Tukey statistical tests * represent the level of significance (* 

p=<0.05, ***p=<0.01) 

 

3.4 X-ray photoelectron spectroscopy (XPS) Spheres were treated with the plasma  polymer 

deposition system and spectra of the modified spheres and an untreated control were taken 

(n=6).  The labelled spectra are typical examples of the spectra taken and refer to the 

following modifications (a)Hexane, (b) allyl amine, (c) allyl alcohol, (d) acrylic acid, and (e) 

Unmodified spheres and show the presence of chemistry specific bonds (outlined on spectra). 
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3.6 LDH assay analysis of cell number on modified scaffolds.  Scaffolds were seeded with MSC for 14 and 

28 days, and an LDH assay was conducted on the modified and untreated scaffolds after maceration at 

these timepoints 

3.7 :Histological analysis of allyl amine-treated scaffolds. Scaffolds were cultured with MSCs for 

28 days, histologically processed and stained with  (a) Von Kossa for mineralization, (b) 

Alizarin red for mineralization, (c) Van Geison for collagen, (d)H and E for cellular 

morphology and density and (e)Alcian blue for gylosaminoglycan 

3.8 Histological analysis of hexane-treated scaffolds. Scaffolds were cultured with MSCs for 28 

days, histologically processed and  stained with  (a) Von Kossa for mineralization, (b) 

Alizarin red for mineralization, (c) Van Geison for collagen, (d)H and E for cellular 

morphology and density and (e)Alcian blue for gylosaminoglycan3.9 Histological 

analysis of acrylic acid-treated scaffolds. Scaffolds were cultured with MSCs for 28 days, 

histologically processed and  stained with  (a) Von Kossa for mineralization, (b) Alizarin red 

for mineralization, (c) Van Geison for collagen, (d)H and E for cellular morphology and 

density and (e)Alcian blue for gylosaminoglycan 

3.10 : Histological analysis of allyl alcohol-treated scaffolds. Scaffolds were cultured with 

MSCs for 28 days, histologically processed and  stained with  (a) Von Kossa for 

mineralization, (b) Alizarin red for mineralization, (c) Van Geison for collagen, (d)H 

and E for cellular morphology and density and (e)Alcian blue for gylosaminoglycan 

3.11 Histological analysis of untreated scaffolds. Scaffolds were cultured with 

MSCs for 28 days, histologically processed and  stained with  (a) Von Kossa for 

mineralization, (b) Alizarin red for mineralization, (c) Van Geison for collagen, (d)H 

and E for cellular morphology and density and (e)Alcian blue for 

gylosaminoglycan3.12Images from dual and triple scaffold modifications. Allyl 

amine and allyl alcohol modified spheres were compacted in two layers of the same 
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scaffold (dual modification) and allyl amine, hexane and allyl alcohol were 

compacted into three layers of the same scaffold (triple modification).  The scaffolds 

were processed and stained using alizian red and alcian blue. (a)Alcian blue stain of 

triple modification scaffold, (b) Alizian red of triple modification scaffold, (c) Alcian 

blue of dual modification, (d) Alizarin red of dual modification, (e) Alizarin red stain 

of single allyl amine modified scaffold, (f) Alcian blue stain of single allyl amine 

modified scaffold, (g) Alizarin red of single allyl alcohol modified scaffold, and (h) 
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4.1.1  AFM micrograph of untreated borosilicate glass. 12mm diameter glass coverslips were 

cleaned as stated in protocol.  AFM images taken from 5 areas per sample, representative 

image shown 

4.1.2 AFM image of borosilicate glass treated with CL3.  12mm diameter glass coverslips were 

cleaned as stated in protocol, and modified using oxygen plasma, then the CL3 silane.  AFM 

images taken from 5 areas per sample, representative image shown 

4.1.3 AFM micrograph or borosilicate glass treated with CL4. 12mm diameter glass coverslips 

were cleaned as stated in protocol, and modified using oxygen plasma, then the CL4 silane.  

AFM images taken from 5 areas per sample, representative image shown4.1.4  AFM 

micrograph of borosilicate glass treated with CL6.  12mm diameter glass coverslips were 

cleaned as stated in protocol, and modified using oxygen plasma, then the CL6 silane.  AFM 

images taken from 5 areas per sample, representative image shown 
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4.1.5  AFM micrograph of borosilicate glass treated with CL7.  12mm diameter glass coverslips 

were cleaned as stated in protocol, and modified using oxygen plasma, then the CL7 silane.  

AFM images taken from 5 areas per sample, representative image shown 

 

4.1.6  AFM micrograph of borosilicate glass treated with CL11.  12mm diameter glass coverslips 

were cleaned as stated in protocol, and modified using oxygen plasma, then the CL11 silane.  

AFM images taken from 5 areas per sample, representative image shown 

 

4.2 Amine concentration determined by ninhydrin assay.Ninhydrin assay conducted to determine 

the concentration of amine groups on the surfaces.  Stars indicate statistically significant 

difference from other modifications (p<0.05) 

4.3 Advancing water contact angle of modified glass surfaces. Water contact angle was measured 

to determine changes in surface energy between the modifications  *p<0.05 

4.44Mineral deposition study, Images show surfaces exposed to differing concentrations of 

PBS for 7 days, then stained using von Kossa’s stain for mineralisation, positive 

staining (brown) shown on CL11. 

 

4.5 X-ray analysis of elemental composition of Silane treated glass in 25% PBS. Silane modified 

glasses were exposed to PBS for 7 days and then analysed using Xray analysis..  *p<0.05. 

4.6 X-ray analysis of elemental composition of Silane treated glass in 50% PBS. Silane modified 

glasses were exposed to PBS for 7 days and then analysed using Xray analysis..  *p<0.05. 
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4.7 X-ray analysis of elemental composition of Silane treated glass in 100% PBS. Silane 

modified glasses were exposed to PBS for 7 days and then analysed using Xray analysis.  

*p<0.05. 

4.8 : Concentration of phosphorous on silane modified surfaces.  Surfaces were exposed to 

varying concentrations of PBS for 7 days.  *=p<0.05.  C is an untreated glass control. 

. 

4.9 Mesenchymal stem cells on modified glass after 7 days 

4.10 SEM images of human mesenchymal stem cells cultured on the modified glass for 7 days  

4.11 SEM images of human mesenchymal stem cells cultured on the modified glass for 14 days 

SEM images of human mesenchymal stem cells cultured on the modified glass for 7 days 

4.12 SEM images of human mesenchymal stem cells cultured on the modified glass for 28 days 

4.14 Expression of osteopontin by human mesenchymal stem cells on modified glass 

4.15 Expression of collagen I by human mesenchymal stem cells on modified glass 

4.16 Expression of CBFAI by human mesenchymal stem cells on modified glass 

4.17 Expression of osteonectin by human mesenchymal stem cells on modified glass 

4.18 Expression of osteocalcin by human mesenchymal stem cells on modified glass 

419 Expression of sclerostin by human mesenchymal stem cells on modified glass 

4.20 Immunostaining of MSCs cultured on modified glass at 7 days.   MSC were cultured  on  

silane modified glass for 7 days and stained with Stro-1, DAPI and Oregeon green.  Blue 

staining shows nuclei, green staining shows actin filaments and red staining shows presence 

of stro-1 (a)untreated control, (b) CL3 (c) CL4, (d) CL6, (e) CL7 and (f) CL114.21

 Immunostaining of MSCs cultured on modified glass at 7 days.   MSC were cultured  
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on  silane modified glass for 7 days and stained with collagen I, DAPI and Oregeon green.  

Blue staining shows nuclei, green staining shows actin filaments and red staining shows 

presence of collagen I (a)untreated control, (b) CL3 (c) CL4, (d) CL6, (e) CL7 and (f)  

4.22 Immunostaining of MSCs cultured on modified glass at 7 days.   MSC were cultured  on  

silane modified glass for 7 days and stained with osteocalcin, DAPI and Oregeon green.  Blue 

staining shows nuclei, green staining shows actin filaments and red staining shows presence 

of osteocalcin (a)untreated control, (b) CL3 (c) CL4, (d) CL6, (e) CL7 and (f) CL11 

4.23 Osteoblast-like cells cultured on silane modified glass for 7 days.  Osteoblast like cells were 

cultured on the silane modified glass (and an untreated control) for 7 days, then stained with 

Von Kossa’s stain for mineralisation (a) untreated glass control, (b) CL3, (c) CL4, (d) CL6, 

(e) CL7 and (f) CL114.24 , Osteoblast-like cells cultured on silane modified glass for 

14 days.  Osteoblast like cells were cultured on the silane modified glass (and an untreated 

control) for 14 days, then stained with Von Kossa’s stain for mineralisation (a) untreated glass 

control, (b) CL3, (c) CL4, (d) CL6, (e) CL7 and (f) CL114.25 25 Osteoblast-like cells 

cultured on silane modified glass for 28 days.  Osteoblast like cells were cultured on the 

silane modified glass (and an untreated control) for 28 days, then stained with Von Kossa’s 

stain for mineralisation (a) untreated glass control, (b) CL3, (c) CL4, (d) CL6, (e) CL7 and (f) 

CL11 

4.26 Quantity of nodules formed on the modified surfaces. The nodules were  counted using a light 

microscope. (N=16) Seris 1,2 and 3 correspond to 7, 14 and 28 days, results show avage and 

error bars show standards deviation from the mean 

4.27 Size of nodules on the modified surfaces  Nodules on surfaces treated with CL3 and CL4 

were measured after after 7,14 and 28 days results show avage and error bars show standards 

deviation from the mean 
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4.28 SEM micrographs of Osteoblast-like cells cultured on silane modified glass after 7 days 

incubation. Osteoblast –like cells were isolated from human trabecular bone and seeded onto 

the silane modified surfaces. (a) untreated glass, (b) CL3, (c) CL4, (d) CL6 , (e) CL7 and (f) 

CL11. White arrows indicate nodules, green arrow indicates production of ECM on CL11 and 

red arrow shows very rounded cells on CL6 modification  

4.29 SEM micrographs of Osteoblast-like cells cultured on silane modified glass after 14 days 

incubation. Osteoblast –like cells were isolated from human trabecular bone and seeded onto 

the silane modified surfaces. (a) untreated glass, (b) CL3, (c) CL4, (d) CL6 , (e) CL7 and (f) 

CL11. White arrows indicate nodules, green arrow indicates production of ECM on CL11 and 

red arrow shows very rounded cells on CL6 modification 4.30 , SEM micrographs of 

Osteoblast-like cells cultured on silane modified glass after 28days incubation. Osteoblast –

like cells were isolated from human trabecular bone and seeded onto the silane modified 

surfaces. (a) untreated glass, (b) CL3, (c) CL4, (d) CL6 , (e) CL7 and (f) CL11. White arrows 

indicate nodules, green arrow indicates production of ECM on CL11 and red arrow shows 

very rounded cells on CL6 modification 

4.31 SEM micrographs of Osteoblast-like cells cultured on silane modified glass after 7 days 

incubation. Osteoblast –like cells were isolated from human trabecular bone and seeded onto 

the silane modified surfaces Image taken from surface of nodule formed at 7 days incubation 

on CL3.  White arrows highlight the fiberous nature of the matrix, and green arrows show 

areas of smooth mineralisation 

4.32 SEM micrographs of Osteoblast-like cells cultured on silane modified glass after 7 days 

incubation. Osteoblast –like cells were isolated from human trabecular bone and seeded onto 

the silane modified surfaces. High magnification image of cells after 7 days incubation on 

CL11.  Highlighting the output of matrix by the cells, while cells remain in monolayer 
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4.33 Expression of osteopontin in human osteoblast like cells after 7, 14 and 28 day incubation 

with silane modified glass.  Osteoblast like cells were isolated from human trabecular bone 

and processed for rtPCR.  Expression of osteopontin was measured and normalised to 

expression of -Actin and unmodified scaffold.  Data shown is average expression and 

standard deviation from mean. *=p<0.10, **=p<0.05, ***=p=<0.01 

4.34 Expression of osteocalcin in human osteoblast like cells after 7, 14 and 28 day incubation 

with silane modified glass.  Osteoblast like cells were isolated from human trabecular bone 

and processed for rtPCR.  Expression of osteopontin was measured and normalised to 

expression of -Actin and unmodified scaffold.  Data shown is average expression and 

standard deviation from mean.  *=p<0.10, **=p<0.05, ***=p=<0.01 

4.35 Expression of osteonectin in human osteoblast like cells after 7, 14 and 28 day incubation 

with silane modified glass.  Osteoblast like cells were isolated from human trabecular bone 

and processed for rtPCR.  Expression of osteopontin was measured and normalised to 

expression of -Actin and unmodified scaffold.  Data shown is average expression and 

standard deviation from mean.  *=p<0.10, **=p<0.05, ***=p=<0.01 

4.36 Expression of collagen I in human osteoblast like cells after 7, 14 and 28 day incubation with 

silane modified glass.  Osteoblast like cells were isolated from human trabecular bone and 

processed for rtPCR.  Expression of osteopontin was measured and normalised to expression 

of -Actin and unmodified scaffold.  Data shown is average expression and standard 

deviation from mean.  *=p<0.10, **=p<0.05, ***=p=<0.01 

4.37 Expression of CBFA1 in human osteoblast like cells after 7, 14 and 28 day incubation with 

silane modified glass.  Osteoblast like cells were isolated from human trabecular bone and 

processed for rtPCR.  Expression of osteopontin was measured and normalised to expression 

of -Actin and unmodified scaffold.  Data shown is average expression and standard 

deviation from mean.  *=p<0.10, **=p<0.05, ***=p=<0.01 
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4.38 Expression of sclerostin in human osteoblast like cells after 7, 14 and 28 day incubation with 

silane modified glass.  Osteoblast like cells were isolated from human trabecular bone and 

processed for rtPCR.  Expression of osteopontin was measured and normalised to expression 

of -Actin and unmodified scaffold.  Data shown is average expression and standard 

deviation from mean.  *=p<0.10, **=p<0.05, ***=p=<0.01 

5.1 Maximum feature height of silane modified surfaces. Measured using AFM.  5 areas were 

measured on each sample (n=3) Error bars indicate the standard deviation and * indicates 

statistical significance (p<0.05) 

5.2 AFM micrograph of untreated PLGA film. 12mm diameter glass coverslips were cleaned as 

stated in protocol and spin coated with PLGA.  AFM images taken from 5 areas per sample, 

representative image shown 

 

5.3 AFM micrograph of CL3 treated PLGA film. 12mm diameter glass coverslips were cleaned 

as stated in protocol and spin coated with PLGA, then modified with CL3.  AFM images 

taken from 5 areas per sample, representative image shown. 

5.4 AFM micrograph of CL4 treated PLGA film. 12mm diameter glass coverslips were cleaned 

as stated in protocol and spin coated with PLGA, then modified with CL4.  AFM images 

taken from 5 areas per sample, representative image shown. 

5.5 AFM micrograph of CL6 treated PLGA film. 12mm diameter glass coverslips were cleaned 

as stated in protocol and spin coated with PLGA, then modified with CL6.  AFM images 

taken from 5 areas per sample, representative image shown. 

5.6 AFM micrograph of CL7 treated PLGA film. 12mm diameter glass coverslips were cleaned 

as stated in protocol and spin coated with PLGA, then modified with CL7.  AFM images 

taken from 5 areas per sample, representative image shown 
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5.7 AFM micrograph of CL11 treated PLGA film. 12mm diameter glass coverslips were cleaned 

as stated in protocol and spin coated with PLGA, then modified with CL11.  AFM images 

taken from 5 areas per sample, representative image shown 

5.8 . Ninhydrin assay of amine concentration on the modified PLGA surfaces.  Concentration of 

amine on surfaces was measured by ninhydrin assay. Results show averages and error bars 

show standard deviation from mean *=p<0.05, 

5.9 Dynamic water contact angle The average advancing angle across the mid point of the surface 

was measured (n=6)  Stars indicate degree of difference between untreated control and CL3 

and 4 and CL6 and 7 and CL11. Error bars indicate standard deviation. *=p<0.10, **=p<0.05, 

***=p=<0.01 

5.10 Correlation between dynamic water contact angle and number of carbon atoms in 

hydrocarbon chain of silane molecule.  Results were plotted as a correlation and R
2
 value 

showed a significant correlation 

5.11 SEM of modified PLGA films.  Films were  modified with (a) Untreated PLGA(b),CL3 

(c),CL4 (d),CL6 (e) CL7and (f) CL11.  White arrows indicate macroscopic topographical 

structures on CL11 

5.12 hMSC on modified PLGA films. Films were modified with the following 

modifiections;(a)untreated PLGA (b) CL3 (c) CL4, (d) CL6, (e) CL7, and (f) CL11. After 7 

days incubation with hMSC they were fixed and stained with Von Kossa stain for 

mineralization. (f) White arrows show positive mineralization staining on CL11 modification. 

 

5.13 hMSC on modified PLGA films. Films were modified with the following 

modifiections;(a)untreated PLGA (b) CL3 (c) CL4, (d) CL6, (e) CL7, and (f) CL11. After 14 
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days incubation with hMSC they were fixed and stained with Von Kossa stain for 

mineralization. (f) Shows positive mineralization staining on CL11 modification 

5.14 hMSC on modified PLGA films. Films were modified with the following 

modifiections;(a)untreated PLGA (b) CL3 (c) CL4, (d) CL6, (e) CL7, and (f) CL11. After 28 

days incubation with hMSC they were fixed and stained with Von Kossa stain for 

mineralization. (f) Shows positive mineralization staining on CL11 modification 

5.15 Mean concentration of amine groups on treated PLGA spheres.  The concentration of amine 

groups was measured by nynhydrin assay. Error bars show standard deviation from the mean 

(n=4).  Star indicates statistically significant reduction in coverage when compared to CL3, 

CL6 and CL11 (p=<0.05) 

5.16 hMSC on modified PLGA scaffolds.  Scaffolds were  modified with with (a) CL3 (b) CL4, 

(c) CL6, (d) CL7, (e) CL11 and (f) untreated PLGA and cultured for 28 days. After 

incubation the samples were processed, sectioned and stained with H and E.5.17 hMSC on 

modified PLGA scaffolds.  Scaffolds were  modified with with (a) CL3 (b) CL4, (c) CL6, (d) 

CL7, (e) CL11 and (f) untreated PLGA and cultured for 28 days. After incubation the samples 

were processed, sectioned and stained with Von Kossa’s stain for mineralisation. 

5.18 hMSC on modified PLGA scaffolds.  Scaffolds were  modified with with (a) CL3 (b) CL4, 

(c) CL6, (d) CL7, (e) CL11 and (f) untreated PLGA and cultured for 28 days. After 

incubation the samples were processed, sectioned and stained with Alizarin red for 

mineralisation. 

5.19 hMSC on modified PLGA scaffolds.  Scaffolds were  modified with with (a) CL3 (b) CL4, 

(c) CL6, (d) CL7, (e) CL11 and (f) untreated PLGA and cultured for 28 days. After 

incubation the samples were processed, sectioned and stained with  Alcian blue stain for 

Glycosaminoglycan (GAG)5.20 hMSC on modified PLGA scaffolds.  Scaffolds were  

modified with with (a) CL3 (b) CL4, (c) CL6, (d) CL7, (e) CL11 and (f) untreated PLGA and 
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cultured for 28 days. After incubation the samples were processed, sectioned and stained 

with. Van Giesons stain for collagen 

5.21 LDH assay for cell number.  hMSC were seeded into silane modified scaffolds and cultured 

for 7, 14 and 28 days.  Error bars indicate standard deviation from mean. *shows a statically 

significant difference (p<0.05), than the same modification at 7 days. 
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Abstract 

Non-union fractures are defined as fractures that do not heal after 6 months of 

conventional treatment.  They usually require multiple surgical treatments, autologous bone 

grafts or treatments with growth factors or Bone morphogenetic proteins (BMPs).  There is a 

clinical need for a material which can be used to replace autologous bone transplantation in 

the treatment non-union fractures that negates the problems associated with autologous grafts.   

This thesis aims to consider and develop a coating that can be used on a readily 

available polymer biomaterial to induce a response from mesenchymal stem cells, which are 

found in abundance at fracture sites, and facilitate repair by their differentiation into 

osteogenic cells.  The use of a synthetic chemical coating rather than a growth factor or 

peptide aims to cause similar effects at a greatly reduced cost 

Plasma application techniques were used initially to screen potential terminal groups 

on a 3D system.  Amine groups were found to be osteogenic (which was confirmed by 

positive Von Kossa and Alizarin red staining), and hydroxyl groups were found to be 

chondrocytic (which was confirmed by positive Van Geison and Alcian blue staining).  The 

osteogenic effect of the amine group was investigated further, but in the form of silane 

SAMs, which were more easily definable.  The presentation of the terminal group was 

investigated using varying carbon chain length, to see if this had an effect on osteogenicity)  

This was explored using both MSC and primary osteoblast-like cell models on glass initially, 

then on PLGA films and finally a 3D PLGA system. 

  The results of this showed positive expression of osteogenic markers for the MSC 

and osteoblast-like cells when on glass and PLGA films.  There was an expression of  the 

osteogenic marker osteocalcin and a positive mineralisation stain (Von Kossa) at 7 days.  

This effect however was not transferred to a 3D platform as further optimisation will be 

required to achieve this goal-an essential progression on the way to the development of an 

injectable 3D system suitable for clinical application. 
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Chapter 1:Introduction, Literature Review and 

Hypothesis 

 

1.1 The Principles of Regenerative Medicine 

 The primary purpose of regenerative medicine is to provide strategies to replace tissue 

when injury, disease or congenital defect causes it to be missing
1
.  This is becoming more and 

more important.  Therapies that enable people to retain their healthy bodies beyond what is 

experienced today, in this changing economic climate with an aging population, will become 

more relevant. 

The natural response to injury, depending on the location, is to fill the space created 

by degraded tissue with scar/fibrous tissue.  This often has insufficient mechanical and 

functional properties to provide the full functionality of the tissue lost and can lead to severe 

complications.  The core principle of regenerative medicine is to guide the healing process 

using a range of signals to improve the quality of the repair, achieving more natural tissue 

faster, hence providing improved functionality more quickly.  This principle in its broadest 

sense can be applied to any aspect of regenerative medicine, but for the purposes of this 

thesis, the issues surrounding skeletal regeneration will be the main focus.   

1.2 Bone Fracture 

 Most uncomplicated bone fractures will heal after 3-4 months of conventional 

treatment. There is a little variation depending on the site of the fracture, but as a general rule, 

this is considered to be correct.  Clinicians will use X-rays to determine the normal 

physiological anatomy of the bone has been restored.  There are also a few physiological tests 

that are carried out to determine if a fracture has healed sufficiently and these are the absence 
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of pain with movement, and ability to bear weight.  When the normal pathway of treatment is 

not effective, the fracture is defined as being non-union
2
. 

1.3 Non Union Bone Fracture 

A non-union bone fracture is defined as a bone injury that fails to heal after six 

months - when conventional treatments have been applied, or a fracture that has shown no 

progression of healing for 3 months
2
.  There is some debate about this figure as some delayed 

unions can occur after the 6 month period has passed, particularly if there have been 

complications such as infection in the site, but as a general rule, the 6 month period is the 

guideline most clinicians use
2
.  The repercussions of non-union bone fractures for the patient 

can be impaired function and skeletal deformity.  It is expensive to treat, and often causes the 

patient to have numerous surgical procedures
3
.  The root cause of why some patients 

experience this failure to heal is not well documented, however there are some indications in 

the literature that the initial cellular response is considerably different in patients suffering 

from non-union fractures
4
. 

Webber defined two types of non-union fracture, depending on the viability of the 

fragments of bone present.  The first classification is called the hyper-vascular or 

hypertrophic non-union.  In this presentation of the non-union fracture, the bone ends are still 

biologically active and have a functioning blood supply.  A light callus forms because there is 

slight movement in the joint around the fracture site, which is not detectable until the patient 

is in surgery, but the callus prevents the fracture ends from joining.  It is a well-established 

fact that the bone ends need to be totally immobilised to fully join, and even slight motion 

can be responsible for non-union fracture.  Hyper-vascular non-union fractures have been 

defined as taking three different presentations.  The first presentation is the “elephant foot” 

morphology, which is named because the ends of the bone are covered with a highly vascular 
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callus that broadens at the fracture site.  The reason for this presentation varies, but can be 

linked to poor fixation, the join being too mobile, or due to premature loading of weight, 

which can lead to peudoarthrosis.  The second presentation contains less callus and is named, 

“horses foot” which is less hypertrophic.  This presentation is more common if the fixation of 

the bone has been slightly unstable and is more likely to spontaneously join, as the callus 

forms and stabilises the fracture.  The third presentation is oligotrophic, and contains no 

callus and is referred to as a lax non-union fracture
2
. 

The second classification is avascular non-union bone fracture.  In this class the bone 

fractures are avascular or atrophic and not able to form callus.  These are the more 

problematic fractures as they show no changes over long periods of time, and require 

sustained surgical intervention as immobilisation will not allow the bone ends to heal as they 

are no longer vital.  Avascular non-union is defined by one of four presentations.  The torsion 

wedge non-union is defined as a fragment of non-viable bone which has fused onto one of the 

viable ends.  The comminuted non-union occurs if the fragments are necrotic.  Defect non-

unions occur if a piece of the bone has been lost, during an accident, or because of infection.  

In these cases the ends can still be viable but the distance between them is too large to bridge, 

and because of this the ends become atrophic.  Lastly there are the atrophic non-unions, 

which usually start out as one of the other classifications and are the end point of the non-

union
2
. 

If left untreated the medullary canals become blocked, and the bone ends become 

joined by fibrous tissue.  Pseudoarthrosis can form, which takes either a stiff or lax form. 

Treatments for this condition vary from compression
5
 and distraction, to dissection and the 

grafting of new autologous bone
6
.  This is a long and complicated process, and there is a 

significant clinical need for a system that can be used to treat it without the need for the use 
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of autologous tissue.  One possible solution is the application of a material to support stem 

cell growth and differentiation.  Increasing and enhancing the healing process between the 

non-union ends of the bone, with an aim to regenerate functional and calcified bone in the 

void rather than fibrous tissue that can lead to pseudoarthrosis.  

 

1.4 Normal Bone Healing Pathway 

The sequence of events after a bone fracture has occurred starts with the formation of 

a haematoma. Injury incurred to the vascular system causes the clotting cascade to be 

stimulated and haematoma formation.  The haematoma contains large volumes of platelets 

and releases cellular signals.  Inflammation is initiated with an increase in localised blood 

flow and permeability of the blood vessels.  There is a migration of leukocytes to the injury 

site stimulates more cytokines to be released, recruiting mesenchymal stem cells (MSC) to 

the site of injury.  MSC proliferate and differentiate into osteoblast-like cells and there is 

increased angiogenisis.  Ossification then occurs, where the osteoblasts start to lay down a 

collagen network, which then ossifies to form a callus capable of bridging the gap between 

bone ends.  At this point the callus is named lamellar bone.  The last phase is remodelling 

which is orchestrated by osteoclasts and results in the woven bone formation, which has 

better mechanical properties than lamellar bone
7
. 

 There are four major populations of cells responsible for the regeneration of bone:  

 Osteoblasts, which have a regenerative role, and originate from MSC and are the main 

producers of the extracellular matrix that comprises bone.   
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 Osteoclasts, which are the enzyme producing cells that can dissolve collagens and are 

the key to bone remodelling, originate from the haemopoteitic stem cell fraction of 

bone marrow. 

 Osteocytes, which are differentiated osteoblasts, and have a less productive and more 

regulatory role. 

 Bone lining cells, which are osteocytes which are not embedded in the bone matrix, 

line the bone surface, remaining inactive until they are stimulated to change
8
. 

During fracture healing the role of MSC is vitally important.  They are the essential 

player in the bone regeneration process, and it has been shown that the bone morphogenetic 

proteins (BMPs) play key roles in mesenchymal stem cell recruitment in vivo
9
.  There is also 

some evidence to suggest that stromal cell derived factor -1 (SDF-1) plays a role in regulating 

the recruitment of MSC to the site where they are required
9
. 

1.5 The Formation of a Cartilaginous Callus 

 The formation of a cartilaginous callus is the result of initial stem cell differentiation, 

which later will be mineralised and remodelled.  This cartilaginous callus is the blueprint for 

the formation of bone, and provides many of the raw materials required.  The ossification of 

the callus occurs at the bone ends before it bridges into the central portion of the callus.  This 

causes the initial stabilisation phase. 

On a molecular level, it is at this point collagen I and II are produced in abundance, 

and the transforming growth factor beta (TGF- peptides are involved in endochondral 

ossification.  The BMPs are also involved in the ossification process
10

.  The vascularisation 

of the site is a necessity if the callus is to lead to full bone repair.  There is a fine balance 

required to instigate the required angiogenesis, alongside the removal of cartilaginous tissue 
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to make way for it.  Vascular endothelial growth factor (VEGF) plays a principle role in the 

angiogenesis of the fracture site. 

After angiogenesis has occurred the cartilaginous callus should be resorbed and 

replaced by a bony callus which has greater mechanical properties.  The number of cells in 

the bone fracture site increases as they are switched into a proliferative state, allowing more 

extracellular matrix to be produced.  The Wnt family of molecules is likely to be key 

facilitators in this in the differentiation of MSCs to osteoblasts, which is required for this step 

in fracture healing to occur.  Chondrocytes from the callus proliferate quickly during this 

phase of the healing process and can become hypertrophic which can lead to the extracellular 

matrix becoming calcified.  When this occurs there is a cascade of inflammatory cytokines 

including macrophage-colony stimulating factor (M-CSF), receptor activator of nulear factor 

kappa B ligand (RANKL) osteoprotegrin (OPG) and tissue necrosis factor alpha (TNFa).  

This cascade allows the recruitment of more osteoblasts and osteoclasts which promotes 

chondrocyte apoptosis.  Calcium accumulates in the mitochondria of the chondrocytes in this 

hypoxic environment.  Calcium is transported though the cytoplasm and is deposited in the 

extracellular matrix (ECM), where they can precipitate with phosphate and start the 

mineralisation process.  These initial deposits nucleate and form apatite crystals, which are 

carried to the nucleation point in microvesicles
11

, forming the hard callus.  As the calcified 

cartilage is mineralised it becomes woven bone
9
.  The growth factors that are responsible for 

this phase of osteoblastic activity have been studied extensively and it has been determined 

that there is a balance required of several growth factors including transforming growth 

factors (TGF-B1, TGF-B2 and TGF-B), vitamin D and fibroblast growth factor (FGF-2) 

which are key players in maintaining osteoblast function and establishing a mineralisation 

pathway. None of these factors in isolation can cause mineralisation from osteoblasts
12

. 
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The next phase is the remodelling of the woven bone so that it can become lamellar 

bone with a medullary cavity.  Again, the inflammatory cytokines interleukin 1(IL-1) and 

tumour necrosis factor alpha (TNF alpha) have a role to play in the second reabsorption 

phase.  The BMPs also have roles to play in this phase, especially bone morphogenetic 

protein 2 (BMP-2).  During this phase it is the role of osteoclasts to reabsorb the woven bone, 

and the job of the osteoblasts to extrude correctly structured lamellar bone.  This is a process 

which can take years to be fully achieved, and requires specific environmental conditions, 

creating an inductive electrical polarity, by the correct amount of pressure being loaded onto 

the micro-crystalline environment. 

 

1.6 The in vivo Osteogenic Differentiation Pathway of Mesenchymal Stem Cells 

 Bone formation is a complex morphological process that results in complete 

differentiation of MSCs, at a temporally correct point within a constantly fluxing system, and 

at the correct location. 

Multiple local and systemic factors play a role in this differentiation.  The local 

factors that instigate and maintain osteogenic differentiation of MSCs include transforming 

growth factor beta (TGF-B), core binding factor alpha-1 (CBFA-1), alkaline phosphtase 

(ALP), collagen I, osteopontin (OP), osteonectin (ON), bone sialoprotein (BSP), apoptosis 

mediating surface antigen (Fas), the interleukins (IL), and the apoptosis regulating Bd-2-

associated X protein (BAX).  These local factors however do not work in isolation and there 

are also some systemic factors that stimulate the osteogenic response, including parathyroid 

hormone, vitamin D, leptin, calcitonin, somatotropin, thyroxine, estrogens, androgens and 

glucocorticoids.  All of these factors play their part in the mesenchymal response in vivo, and 
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help to support the pathway of the MSC, to pre-osteoblast, to mature osteoblast and all the 

mineralisation phases, and ultimately to apoptosis or maturation into osteocyte morphology
13

. 

 To highlight just a few of these factors in a little more detail, the role of CBFA-1 is 

vital to the osteogenic process, and is considered a key marker of osteogenesis.  It is a 

member of the runt-related transcription factor (RUNX) family of transcription factors, and 

has demonstrated an important regulatory role where it stimulates the up-regulation of 

osteoblast genes such as osteocalcin.  It could be described as the corner pin of the osteogenic 

response and this is one reason why this marker is used so frequently as a marker of 

osteogenesis
14

,
15

.  Caution should be taken however when using CBFA-1 as a marker of the 

osteogenic differentiation of MSCs, as it is a transcription factor, and will only be present in 

the early phases of differentiation, for short periods of time, so it is not a marker that could be 

used alone, but would add weight to a panel of markers for osteogenesis. 

Osteonectin is expressed in pre-osserous cells, as well as osteoblasts and is one of the 

first indicators of osteogenic differentiation. However is is not specific to osteogenic 

differentiation as it can also be expressed by cells undergoing a chondrogenic lineage 

differentiation
16

.  Osteopontin is expressed during the mineralisation process, and is only 

present when mineralisation is occurring.  It has been shown to be present in cells found 

adjacent to mineralised matrix
16

.  Osteocalcin is a marker of bone metabolism, and has been 

used extensively as a marker of new bone formation
17

.  It could be described as a bone-

specific protein which consists of a sequence 49 amino acids
18

.  Osteocalcin is only secreted 

by osteoblasts that have been in contact with an established mineralised matrix and so is a 

very specific marker of functioning cells. 

 The TGF super-family contains all the BMPs and are involved in many 

regenerative and developmental processes, not just bone regeneration.  BMP 2 is specific to 



 
 
 

 Page 9 
 
 

 

bone regeneration, as is BMP 7
10

.  TGF-beta itself has been shown to increase bone 

formation in vitro, by allowing osteoblasts to expand in culture more readily, but seems to 

retard the mineralisation effect
12

. 

 

1.7 Current Therapy for Bone Loss in Non Union Fracture  

Autologous bone grafts are the gold standard for the treatment of non- union bone 

fractures.  There are many reasons why autologous bone grafts are the treatment of choice.  

The bone harvested can be classified as osteoinductive, as it contains viable MSCs and 

osteoblasts in addition to the molecules that are necessary to induce undifferentiated cells 

along an osteogenic lineage, such as BMPs and members of the TGF  super family.  It can 

also be classified as osteoconductive, because its structure (particularly if it is cancellous 

bone), will allow the in-growth of cells from the adjacent bone ends of the fracture site.  All 

the factors required to achieve a repair are present, because the bone taken from a donor site 

in the patient’s body is ideally suited for the purpose of filling a non-union fracture void
19

.  

The type of bone harvested does influence the success and the mechanical stability of the 

repair.  Cancellous bone, as described above has lots of properties that influence and bring 

about a good repair, but initially it has no mechanical strength, and it takes approximately 12 

months for the repair to be as mechanically sound as normal bone.  Conversely, cortical bone 

has  better mechanical properties but because of its dense structure, is less effective at 

delivering the appropriate factors to the site
19

.  But, removing bone from another area of the 

patient’s body to use in the fracture site is not always possible, depending on the size of the 

defect, can cause further complications. 
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Donor site morbidity is a serious problem, and the use of the fibula as a harvesting 

site can lead to pain, muscle weakness, nerve damage, infection, stress fractures and joint 

instability.  It is thought that up to 57.7% of patients experience some of these 

complications
20

.  Short term complications such as muscle weakness, do improve over a short 

period of time, but pain can last in excess of 12 months in some patients
20

. The quality of the 

autologous bone graft also reduces with the age of the patient
21

. 

Bone marrow aspirates are used to treat non-union fractures in some instances, where 

relatively large quantities of bone marrow are used and where stem cells are added back into 

the site.  There are several problems associated with this technique, one being that there is no 

means of keeping the cells in the intended location if no scaffold is used.  The quantity of 

bone marrow required to do this procedure could cause other complications
20

. 

Allografts are the next option for treatment after the other possibilities have been 

explored.  Allografts use de-cellularized bone from human cadavers or live donors.  They are 

less effective than autografts as the processing used to make them safe to use in other 

patients, strip them of many of the factors that make the graft osteoinductive, and mean that 

only their osteoconductive properties remain, loosing many of the osteogenic properties
20

.  

Complications from using donor tissue like this include transmission of viruses, including 

very rarely human immunodeficiency virus (HIV).  Bacterial infection is also more likely, 

with some reports suggesting that these rates are as high as 12.8%, but this is variable in the 

literature
20

,
21

. 

The use of bone morphogenetic proteins (BMPs) as a therapy greatly increases the 

healing potential of non-union fractures
22

, as an overview of the studies conducted into the 

use of BMPs states that success rate in patients who were treated for pseudoarthrosis was 

around 75%.  This still does not quite meet the 84% success rate of autologous bone, but was 
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seen to be a good substitute
21

,
22

.  Initially it was thought that BMP2 was completely safe for 

human use, as initial studies undertaken in 2002 showed no complications arising from its use 

for bone regeneration.  This, however, was not the case and initial studies have been 

discredited.  Later studies, when rhBMP2 was in general use in several countries, found that 

there were severe complications, including overgrowth of bone, osteoclast stimulation and 

activity leading to graft failure, local wound problems, including inflammation, neurological 

complications and carcinogenic properties
23

.  Treatment using BMP 7 seems to be showing 

some promise to date
24

. 

There are incidences where a synthetic bone regeneration system, which has 

osteoinductive, osteoconductive and osteogenic potential and is close to the gold standard of 

autologous bone, would be clinically-relevant and aid the recovery of patients with severe 

and often life-threatening injury.  The direction of the work undertaken in this thesis is 

influenced heavily by this aim. 

1.8 Synthetic Bone Grafts 

Of the synthetic bone grafts, the ceramic-based materials are the most commonly 

used.  Hydroxyapatite and -tricalcium phosphate are the most common of this subset.  There 

are a few advantages to these materials over allogeneic bone, as there is no risk of virus 

transmittance, and they have a very long shelf life.  They are osteoconductive but not 

osteoinductive when used in their unmodified states
21

.  To fully integrate they are reliant on 

bone in-growth, and need to be stable under physiological conditions to last long enough for 

this to occur.  One disadvantage of hydroxyapatite is that there is no reabsorption by 

osteoclasts, unlike allografts, which are eventually reabsorbed.  Conversely, the material will 

be in situ long enough to be integrated by the in-growth of bone if the porous structure of the 

scaffold is sufficient. 



 
 
 

 Page 12 
 
 

 

 

1.9 The Ideal Bone Biomaterial 

The ideal bone biomaterial would have all of the properties of an autologous graft.  It 

would have the capability to be osteoconductive, osteoinductive and osteogenic.  It would be 

osteoconductive to allow full integration with the host skeletal tissue, it would be 

osteoinductive to the cells that migrate into the material from the host, but ideally it would 

also be osteogenic as it could be used as a carrier or delivery system for the patient’s own 

therapeutic MSC.  The material would have mechanical properties similar to the tissue it 

intends to replace and, ideally if used in conjunction with cells, be degradable at the same rate 

as cells can mineralise the scaffold.  If this was incorporated into an easy to use injectable 

system that could bridge gaps of any shape or size it would be both clinically useful, and 

remove the requirement for autologous bone harvesting, thus improving the health of the 

patient. 

During this work, we have taken an injectable polymer system which already has 

osteoconductive properties, and mechanical strength similar to trabecular bone, and changed 

its surface chemistry to boost its osteoinductive properties, while testing its osteogenic 

potential using an in vitro MSC model. 

 

1.10 Mesenchymal Stem Cells (MSCs) 

It has already been stated that MSCs play a crucial role in the normal healing pathway 

of bone fracture injuries.  Undifferentiated stem cells migrate to the area where they are 

required and are stimulated by BMPs and regulatory cytokines to proliferate and differentiate 

into chondrocytes and osteoblasts, allowing osteogenic regeneration to occur
25

.  Much of the 
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current bone regeneration research has concentrated on using BMPs in their various forms to 

stimulate this natural healing response
26

.  Mimicking and enhancing this response should lead 

to a successful therapy.  This is one of the reasons why adult MSCs are ideal candidates for 

autologous bone regeneration. 

  There are multiple sources of MSCs within the body
27

.  Most tissues contain their 

own source of cells, but their potency and their niche varies between tissues.  It is the current 

opinion that a stem cell isolated from adipose tissue will not be capable of achieving the same 

fate as a stem cell derived from blood.  While there may be a small degree of overlap, there is 

a fundamental difference in their differentiation capability.  Bone marrow derived MSCs are 

considered to be more potent than stem cells derived from other adult tissues
25

.  There are 

two populations of stem cells found in the bone marrow, these are MSCs and hematopoietic 

stem cells.  Hematopoietic stem cells have a very specific niche where they produce blood 

cells and osteoclasts.  Hematopoietic stem cells are unlikely to be used as a cell for bone 

regeneration which is regulated by the osteoblastic lineage.  However, bone marrow derived 

MSCs are likely to be very useful for this task. 

It is currently considered that bone marrow derived mesenchymal stem cells (BM-

MSCs) are pluripotent, rather than multipotent
28

 as they can, and have been stimulated to 

differentiate into cells that derive from each of the germ layersfor example they can be 

pushed down osteogenic and chondrogenic 
29

 pathways from the mesoderm, neurons which 

originate from the ectoderm 
30

, and pancreatic cells and hepatocytes from the endoderm
31,28

. 

BM-MSCs are ideal for any osteogenic lineage induction as this cell type plays a role 

in the healing response of bone in vivo.  It is well documented that this cell type has the 

potential to be used in bone regeneration therapies, under the correct conditions
32

,
33

.  These 

cells are donor specific, ideally cells can be taken from bone marrow aspirates and cultured to 
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increase cell number until enough of the patients own cells are available to perform a 

regeneration procedure.  Another advantage is the isolation techniques are relatively simple, 

and exploit the cells inherent ability to adhere to plastic when cultured.  The bone marrow 

aspirate, usually taken from the iliac crest, is first subjected to sorting of nucleated cells from 

other material via a density gradient.  Then the nucleated cells are cultured for 24 hours in an 

appropriate media, and all non-adherent material is removed
34

. 

The lack of standardization in the initial isolation, characterisation of the cell 

population, and culture methodology can be problematic.  There is variation between 

techniques used to isolate and culture MSCs, and these subtle variations could be responsible 

for some of the conflicting results seen in some studies.  It is for this reason it is often 

unreliable to compare results obtained from different research groups, and it could explain 

some of the discrepancies seen
35

.  Therefore there is a need for standardization of isolation 

protocols, characterization of resultant cell populations and expansion techniques. 

There is patient variability in these cells and often the age and general health of the 

patient can affect how these cells proliferate in vitro.  Any work undertaken with primary 

MSCs should consider donor variation
36

.  There was considerable donor variation 

demonstrated by Zhukareva et al
36

, when MSC response to pro-inflammatory cytokines was 

measured using a panel of markers.  This study exemplifies how the patients’ cells will 

behave differently when exposed to exogenous stimuli.  This however, does not detract from 

the positive aspects of adult human MSCs, but must be considered when any research 

involving these cells is undertaken in respect of  the number of repeats necessary to validate a 

given response
36

. 

One of the most remarkable advantages of using MSCs relates to their immunological 

profile and how they can be classed as non-immunogenic.  They are essentially 
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immunologically privileged because they express major histocompatibility complex I (MHC 

I) but not major histocompatibility complex II (MHC II).  They do not express the cluster of 

differentiation antigens (CD antigens) CD40, CD80 or CD86 which stimulate an immune 

response.  These cells will evade the immune system of the host, and there is some evidence 

to suggest that the MSCs can suppress T cell proliferation
37

. 

1.11 The Identification and Profile of Mesenchymal Stem Cells 

The definition of the BM-MSC has been problematic.  The answer to that issue is not 

simple, because the defining feature of a stem cell is that it has the potential to change into 

any number of other cells, all of which will present markers the BM-MSC may also present.  

A panel of positive and negative markers is therefore the way they are defined, and should be 

defined periodically throughout the lifespan of the culture.  This brings together a profile of 

the cell that a potential BM-MSC has to meet.  Positive markers of BM-MSCs include CD73, 

CD90, CD105.  BM-MSCs should also be CD34, CD45, CD14 or CD11b, CD79 or CD19 

and HLA-DR negative.  The minimum number of cells expressing CD73, CD105 and CD90 

in a population should be 95%.  The maximum number of cells expressing the negative 

markers should be 2%
38

.  If this profile is used universally by researches it may go some way 

towards creating a standardized profile by which MSCs are defined and creating a cohesive 

methodology. 

There is also a physical requirement that needs to be met, when defining BM-MSCs, 

which is their ability to adhere to plastic in culture.  If they do not adhere to plastic they are 

not MSCs. The cells also need to have at least a multipotent differential potential.  They must 

be capable of differentiation into osteoblasts, chondrocytes and adipocytes as a minimum 

requirement, under the appropriate stimuli.  Histological stains can be used as evidence of 

this; osteoblasts can be stained by Von Kossa for calcification or Alizarin Red for 
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mineralization, chondrocytes using Alcian blue for glycos-amino-glycan (GAG) and 

adipocytes can be stained with Oil red O for lipids
38

. 

Another problem that researchers face when using BM-MSCs is that of senescence.  

Embryonic stem cells (ESC) go through many passages, and remain phenotypically correct, 

where  BM-MSCs will only passage a relatively small number of times before they lose their 

stem markers and become senescent.  This creates problems when it is necessary to achieve 

the large cell numbers required for cell therapies
39

.  Senescence is thought to occur due to 

shortening of telomere length during cell division, and as this is also a phenomenon observed 

during the natural ageing process, it also suggests that stem cells from older patients will be 

more prone to senescence
40

.  It is necessary to use MSCs before they get to the point of 

senescence.  It is important before undertaking any experiment with cultured mesenchymal 

stem cells that they are tested to express the panel of stem cell markers mentioned previously, 

as senescence halts their expression
40

.  The characterisation of MSC populations will ensure 

the cells used in any experiment or therapy are a homogeneous population most likely to 

behave in a predictable way, being more predisposed to differentiate. 

 

1.12 Differentiation of Mesenchymal Stem Cells 

The aim of differentiating MSCs is to create terminally differentiated cells that have 

applications for treating disease or injury. The ultimate goal is to be able to put MSCs into the 

body, either on a scaffold or on their own. They get their cues from the physical and chemical 

properties of the scaffold, either prior to implantation or after.  Alternatively, the scaffold can 

create a host response that cues the differentiation required.   
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There is evidence to suggest that MSCs have been differentiated into many different 

cells and tissues.  Adipogenic differentiation of MSCs would potentially be very useful for 

producing a filler material for reconstructive surgery 
41

.  Chondrogenic differentiation is 

leading to the growth of new cartilage that would represent a significant advance for the 

treatment of sports injuries 
42

.  Osteogenic differentiation could help surgeons repair non-

union bone fractures
43

 and the production of nervous tissue through neural differentiation 

would help many people who are paralysed with spinal injuries
30

.  Differentiation of MSCs 

into pancreatic islet cells may be an avenue to explore for type 1 diabetes mellitus
31

.  The 

underlying fundamental science of the cell differentiation pathways is not yet fully 

understood.  It is possible to promote differentiation in vitro using a wide range of stimuli 

using many different physical factors, exogenous growth factors supplied via culture media, 

or the interactions of cells with a surface. 

 

 

1.13 Cell Delivery Systems for Bone Regeneration 

Stem cell therapies undoubtedly have a lot of potential in regenerative medicine.  

Seeding MSCs at the area where the regeneration is required to occur, is more problematic 

than first anticipated.  A quantitative study of the delivery of MSCs into a rat model by two 

intravascular routes (the coronary artery and directly into the myocardium) demonstrated this 

particularly well.  The cells injected were labelled and it was shown that none of the cells 

injected into the coronary artery were found in the myocardial tissue, and only 15% of the 

cells injected directly into the myocardium were found to have been retained.  This example 

highlights the extent to which stem cells will migrate if introduced by the vascular system, as 
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the cells were found in the spleen, liver and lungs of the rat model
44

.  The small retention rate 

highlights the necessity of a delivery system that will retain the appropriate number of cells in 

the designated area of application. 

 As stated above, a major obstacle in the development of a stem cell-based therapy is 

the delivery of the cells to the required location.  A delivery system is needed that fulfils the 

requirements of being both conducive to MSC proliferation and differentiation but also 

degradable at a rate that allows tissue regeneration to occur, and has the correct mechanical 

properties to substitute bone whilst regeneration occurs.  There are a few studies (outlined 

below) that are working towards some of these properties.   

Some injectable hydrogels show promise for the stimulation and delivery of bioactive 

compounds to a site of injury, but struggle to match up to the mechanical properties required 

for bone replacement, particularly if the replacement has to bear weight
45

.  Injectable systems 

that would bear weight such as foamed injectable hydroxyapatite scaffolds, require exact 

timing of the injection to retain their pore structure which is vitally important for the 

osteoconductivity of the material, and the application of this in surgery would be 

impractical
46

.  Some studies have tried to combine the two techniques, using a hydrogel to 

encapsulate umbilical cord stem cells prior to incorporation into a calcium phosphate paste
47

.  

While this study has showed some positive results, there is still the question of how this 

technique could be used in a clinical setting.  Putting aside the issues regarding using 

umbilical cord stem cells and the risks of viral transmission that come into play when using 

donor cells, the encapsulation process requires specialised equipment to achieve the size of 

spheres required to maintain the mechanical strength required for bone applications.  Several 

other studies have used hydrogels in various forms
48

,
49

,
50

 but some of these studies were very 

preliminary, and will require further investigation before they would be used in a clinical 
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setting.  Detection of ectopic bone formation has proven to be a good model for proof of 

principle systems, in terms of observing how the materials will react in the in vivo 

environment.  Some of the calcium phosphate/hydrogel biphasic injectable systems have 

showed very promising results under these experimental conditions
51

.  But there is some way 

to go, before these systems have the correct load bearing mechanical strength for applications 

in real non-union bone fracture environments.  It seems a simple yet effective system that 

meets all the requirements is, as yet, unavailable.  Hydrogel and calcium phosphate injectable 

systems may not be appropriate bone regeneration biomaterials and novel degradable 

polymers could be good candidates for the next phase of research into injectable bone 

regeneration systems. 

1.14 Polymers as Cell Delivery Systems 

Polymers can be designed to have properties which are desirable for tissue 

engineering processes.  Elasticity, strength, and the ability to degrade at a controlled rate are 

just a few of the possibilities that make them very versatile and applicable for the generation 

of new tissues.  The molecular structure of a polymer includes repeating units, which form 

long chains that can have cross linkages.  The presence or absence of these cross linkages are 

responsible for many of the physical properties of polymers that provide their versatility for 

regenerative medicines purposes.  The poly(α-hydroxyacids) are particularly useful for the 

purposes of tissue engineering, this group includes poly(lactic acid) (PLA), poly(glycolic 

acid)(PGA), poly (lactic-co-glycolic acid) (PLGA) and poly(carpolactone) (PCL).  These 

polymers have been used extensively in the tissue engineering field 
52

,
53

.   

The physical properties of polymers are temperature dependant, and polymers can 

change state at certain temperatures.  When a polymer is in a liquid, or melt, state it has 

enough thermal energy to allow long free chains of molecules to move around randomly.  
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During this phase the polymer is elastic and flexible.  When cooled a polymer passes through 

its glass transition temperature (Tg), which varies between polymers and occurs when the 

long free chain molecules cease to move and the polymer will then become hard and stiff, 

like glass.  This explains why some polymers are flexible or stiff, the temperature the 

individual polymer is used at, whether below or above its Tg value, determines its physical 

properties.  In applications for regenerative medicine the temperature that the polymer will be 

used at is 37 
o
C.  Therefore the physical properties of the polymer must be appropriate for its 

intended end use at 37 
o
C, if it is required to be flexible, for example, in the case of a blood 

vessel, the polymer must be in its melt phase.  If the purpose it bone regeneration, it is more 

likely that the polymer must be more rigid, and should be used below its Tg value
54

.  

Although 37 
o
C is the temperature at which the polymer will function, it should also be stated 

that initially the material will cause an inflammatory response, which will increase the 

localised temperature to a small degree and it must be capable of withstanding some 

temperature tolerance without changing its structural integrity
55

. 

The aliphatic polyesters PGA and poly-L-lactide (PLLA), are used heavily in tissue 

engineering and regenerative medicine applications.  The copolymer of these two polymers 

(PLGA) has shown to be particularly versatile in this area of research because its degradation 

products are glycolic acid and lactic acid, which are easily metabolised
56

.  PLGA is seen to be 

biocompatible, as it has been used with many different cell types, including MSC
52

.  PLGA in 

its bulk form has got some limitations due to its hydrophobic nature and the released 

metabolic products can cause an acidic environment
56

,
57

.  Its capacity for variable 

degradation rate however is a benefit, which has led to further work being conducted to try to 

make use of this polymer in the tissue engineering and regenerative medicine field.  
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PLGA is a good candidate for an injectable system, as it can be used in a Tg phase 

that is conducive to bone regeneration
58

.  The degradation profile of PLGA it has been 

exploited when used in conjunction with calcium phosphate scaffolds to allow the 

degradation of the osteoinductive calcium phosphate structure
59

.  This work is starting to 

show some promise as the PLGA improves the osteoconductivity of the injectable calcium 

phosphate by degrading and leaving a pourous structure behind.  This technique has been 

employed in other studies
60

, and the resulting biomaterial has been shown to have load 

bearing qualities after 8 weeks of implantation.  To make a fully degradable system is the 

ultimate goal, and using PLGA alone may be a way to execute this.  The bulk qualities of 

PLGA have many advantages.  A material that can degrade in a controllable manner has 

mechanical properties which are desirable for the purpose of bone tissue engineering and 

which can be manufactures to form spheres or particles that are injectable has many benefits 

for this application.  In its standard form, the surface properties are not as desirable as the 

bulk qualities (i.e, it controllable degradation rate).  Several studies have been conducted to 

test the effects of making the surface of PLGA more biocompatible and less hydrophobic, 

ranging from bulk coatings of gelatin
61

, to the addition of peptides and surface chemistries
62

 

in order to support cell growth
62

, proliferation and differentiation, and so create a material 

that is osteoinductive in addition to being osteoconductive
63,57

.  There are many appealing 

surface modification methods that have attempted improve the biocompatibility of PLGA, 

outlined below. 

 

 

1.15 Surface Modifications 
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 Modifying the surface of a currently available and approved material is a method of 

retaining the desirable bulk qualities of an established biomaterial while enhancing the 

surface properties.  As discussed earlier, the use of whole proteins and peptides is a stage 

along a route to discovering the factors that influence the differentiation of stem cells.  

Breaking the idea down to basic interactions, the next logical progression of the idea that 

stem cell fate can be influenced by ECM is to look at the basic chemical composition of the 

ECM and to investigate if it can be copied to some extent by the addition of synthetic 

chemicals onto a biomaterial surface.  This technique is a relatively inexpensive way of 

broadening the applications in which approved biomaterials can be used, which reverses the 

significant downside of applying very expensive and complicated to produce peptides to the 

biomaterials surface.   

In the case of stem cell interactions it is desirable to induce a differentiation response 

from the cells via interactions with applied chemical groups on the surface of the 

material
62

,
64

,
65

,
66

.   

1.16 Modifications for Cellular Interactions to Mimic the Extracellular Matrix (ECM). 

 The main aim of modifying a surface is to make it more conducive for regenerative 

medicine/tissue engineering purposes.  The ideal scenario is to mimic the extracellular 

matrix.  The extracellular matrix is the overall term for the extruded proteinacious matrix that 

is produced by cells to provide a scaffold with the architecture required for a particular tissue.  

Many different cells are responsible for the different extracellular matrix profiles of different 

tissues, for example, chondrocytes are responsible for the ECM in cartilage which is rich in 

glycos-amino-glycans (GAG) and specific to that tissue, and bone matrix is excreted by 

osteoblasts and consists of the proteins collagen I, osteocalcin, osteonectin and osteopontin to 

give just a few examples
11

.  The function of the extracellular matrix varies between tissues, 
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but it always acts as a structural material for the tissue it constitutes.  However it is not 

merely a structural protein network, the some of the effects of the ECM are much more 

subtle.  ECM also influences the cells that are recruited to its location by inducing 

undifferentiated cells such as MSC, along a particular lineage.  Cells use the signals given to 

them by the structure of the ECM to reorder their cytoskeleton and take on different 

morphologies, which ultimately leads to different phenotypes
67

.  There is currently some 

debate as to whether it is the surface topography that influences cell fate, or the surface 

chemistry
62

.  Both these factors likely influence cell-matrix interactions.  Both topography 

and surface chemistry of ECM have been taken forward as approaches to create smart 

materials that can influence cell fate, essentially mimicking the ECM, in either its physical or 

chemical properties. 

 Initial studies in this area demonstrated the concentration of specific proteins, (i.e. 

fibronectin and laminin) and their subsequent concentrations on a 3D collagen scaffold could 

influence embryonic stem cells to differentiate into specific lineages (smooth muscle and 

cardiac cells)
68

.  This bulk coating of protein however could be refined, so that specific active 

pieces of the proteins could be used to influence stem cell fate in a very targeted and accurate 

way.   

1.17 Peptide Modifications 

Peptides are the next step along this surface chemistry driven pathway, allowing 

biomaterials to mimic natural ECM, avoiding some of the risk factors of using whole proteins 

from either xenological or human sources.  This work has enabled researchers to establish the 

origins of important signals in the differentiation pathway of stem cells.  This is being 

conducted using  several novel screening methods, including the expression of peptides in a 



 
 
 

 Page 24 
 
 

 

bacterial model where the bacterium are transfected with a plasmid containing the coding for 

different peptides, which are then expressed in the bacteria
69

. 

 Peptides that are engineered synthetically are very useful as a research tool as they 

simulate the ECM in a controllable manner.  It is possible to distinguish the differing roles of 

the various molecules in ECM by engineering the individual peptides and testing them in 

isolation
70

.  Isolating the peptides was an important step towards determining the individual 

capacity of the peptides and the peptides which were relevant for the osteogenic lineage.  

More established RGD and BMP were determined to be very relevant for the osteogenic 

lineage.  During one study peptide amphiphiles were functionalised with RGD and DGEA 

which were seen to be osteoinductive in their properties
71

.  Both of the peptides showed an 

increase in osteoinductivity when cultured with media containing growth factors, whilst RGD 

showed a degree of phenotypic change when cultured in the absence of growth factors.  This 

demonstrated very clearly the RGD has osteoinductive qualities that may be used to 

functionalise biomaterial surfaces
71

. 

 The osteoinductive properties of the RGD peptide are difficult to deny. The only 

foreseeable problems (which are considerable) with the use of peptides on a large scale is 

cost and availability.  It is very expensive and time consuming to produce peptides, and if 

they were to be used commercially would be required in large volumes.  The expense of 

using peptides is their limiting factor, and for this reason, identifying active molecules to bind 

material surfaces is progressing as the analytical techniques have improved.  Isolating the 

chemical groups active from within the peptide, and applying them to biomaterial surfaces is 

a new strategy within the field.  This is more cost effective than using peptides, and is starting 

to yield similar results, in vitro. 
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1.18 Chemical Modification 

  There are many methods of modifying a polymer surface
72

. A polymer surface 

usually needs to be functionalised before the application of an active chemical group.  There 

are several ways to do this depending on the outcome that is required.  To achieve maximum 

functionalization, a polyfunctional agent can be grafted to the surface of the polymer.  This 

allows the more functional units to be available and effectively increases the functional units 

per given unit of surface area compared to that of using a single function molecule.  

However, there can be problems with steric hindrance when functional groups are tightly 

packed together on a surface.  One way to overcome this difficulty is to use a spacer 

molecule, which allows movement and often acts as a protective layer to keep the active 

chemical group away from hydrophobic surfaces, which can denature some bioactive 

compounds
73

.  The chain length of these spacer molecules is variable, and finding an 

optimum chain length for a particular chemical group is important and could be a reason for 

the conflicting results reported in the literature where surface modifications appear to have 

the same chemical terminal group but induce different differentiation pathways in stem 

cells
74

.
 

By using combinations of functional groups arranged in different ways it is possible 

to mimic the natural ECM in various tissues.  The chemical groups that are of particular 

interest for skeletal regeneration are -NH2, CH3, -OH and –COOH as all these groups are 

found on bone ECM. 
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1.19 Amine Groups 

Amine groups have been shown to play an active role in the immobilisation of 

proteins, because of their positive charge and  it is thought that the amine groups have the 

capacity to attract and interact with proteins on the surface of a biomaterial
75

.  However there 

have been some variable results reported in terms of the effects observed on MSCs exposed 

to these modifications, in some cases have been directly contradictory.  Amine rich surfaces 

have been reported to be osteogenic,
62

 chondrogenic
65

 and non-differentiating
75

.  Clearly the 

reaction of the cells to the terminal groups is only part of the differentiation and presentation 

of the modification is likely to also play a role.  Interestingly, there have been differences 

seen when the same chemical is deposited onto a biomaterials surface in different ways (e.g. 

APTES). APTES was deposited using a Plasma technique
76

 showed no significant increase in 

osteogenic response with a pre-osteoblastic cell line compared to a control untreated 

substrate, where-as APTES applied using a wet chemical technique caused an osteogenic 

effect from MSCs
62

.  This contradictory data merits further investigation, as it appears that 

amine groups if presented in the correct way could have powerful osteogenic properties.  It is 

essential to isolate the parameters that affect the presentation of the amine and determine 

which of the many possible modification techniques will have the most clinical relevance. 

Clearly there is need for clarification of the surface modifications at a molecular level.  

Clarification may come from varying presentation of the terminal groups to achieve an 

optimised and reproducible response from the cells. 

1.20 Methyl Groups 

 The addition of methyl groups to a surface has also shown mixed results.  There is 

evidence to show that this is due to several different factors.  The addition of methyl groups 
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to a surface has been shown in some studies to cause a chondrogenic response in MSC
65

, 

whilst others have shown that specific hydrocarbon chain lengths can maintain the MSC 

phenotype
74

.  The different results seen when the chain length is varied could offer some 

explanation for the variance in the results seen in the literature from studies where the 

presentation of the chemical group has not been considered to be a factor. 

1.21 Hydroxyl Groups 

 Hydroxyl groups have been used quite extensively in biomaterials applications and 

have been shown to induce and maintain chondrogenic in chondrogenic phenotype 
77

.  

However they have also demonstrated that they have the ability to form apatite surfaces when 

in contact with calcium rich solutions
78

, which would indicate that the surface chemistry 

would induce an osteogenic response.  So again there seems to be more factors involved in 

the differentiation of the cells than purely the terminal group, and it may be that again it is the 

presentation of the end group that is the key to its effect on cell populations. 

1.22 Carboxyl Groups 

 Carboxyl groups have also demonstrated varying results in the literature.  There is 

some evidence to suggest that carboxyl groups can cause an osteogenic response from 

mesenchymal stem cells
65

, whilst other studies show that there is a chondrogenic response
62

.  

These conflicting results require further investigation. 

 

1.23 Plasma Modification Techniques 

The use of plasma to introduce different surface chemistries to a substrate is widely 

reported. 
66

,
79

,
80

.  Plasma is considered to be the fourth state of matter and can be produced 
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when gases are excited into high energy states with either an electron source such as a hot 

filament, micro-waves or radio- waves.  When plasma is in this state ions and molecules of 

various different can be deposited onto a surface.  One advantage to this technique is that it 

can be used on 3D shapes, as it does not require a line of sight.  This is particularly useful for 

complex tissue engineering scaffolds.  An example of this which has been used clinically is 

the coating of calcium ions onto a titanium bone implant to increase bone adhesion
79

. 

Plasma deposition has several other advantages when used to coat a 3D object, which 

is likely to be a considerable advantage when applying surface chemistries to biomaterials 

suitable for bone regeneration.  It can graft surface discrete chemistries onto polymers 

without the need for prior functionalization, even when using polymers.   

The main disadvantage to using plasma coating is that there is no way to control the 

order of the deposition.  It is completely random and there is no way of controlling the 

distance between the surface chemistries.  In addition it can be very difficult to quantify the 

concentration of the groups deposited.  This is problematic as the characterisation of the 

surfaces is vitally important when it comes to transferring the optimal concentration onto 

different substrates.  Defining the concentration of a chemistry on a surface is much simpler 

if you are using a wet chemical technique, where a known concentration can be measured at 

the start of the coating reaction and at the end of the coating reaction, allowing quantification 

of the deposited chemical.  

1.24 Silane Modification Techniques 

 Surfaces can be modified using a silanisation technique.  It has successfully been 

used on an array of polymer substrates to introduce –CH3, -NH2, -OH and –COOHgroups
62

. 
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Silanisation of a polymer first requires it to be functionalised, usually via the addition 

of oxygen groups to the surface.  This is usually done using an oxygen plasma technique.  

When the oxygen groups have been attached to the surface of the polymer, a silane group can 

bond.  Silanes are remarkable molecules for several reasons.  There have a reactive silane 

body, a hydrocarbon chain and an end group.  The chain length can be varied as can the end 

group, while the silane group remains able to bind free oxygen molecules on a surface.  It is 

also a non toxic molecule that is suitable for cellular interaction. 

The most useful feature of silane molecules however is their ability to form self-

assembled monolayers (SAMs)
81

,
82

.  The formation of silane SAMs includes a step which 

involves an irreversible covalent which makes them particularly stable
81

.  They do however, 

need surface oxygen or –OH groups on the substrate with which to form hydrolytic bonds, so 

the layer can be bonded to the substrate at anchor points.  The packing density is controlled 

ultimately by the formation of a siloxane network 
81

 so there is more control of this parameter 

using silane modification compared to a plasma coating method.  This may be useful for 

determining the optimum concentration of a given surface modification.   

 

1.25 The Characterisation of Surface Modifications 

It is particularly difficult to define the specific concentration of some surface 

chemistries on a modified surface.  Most techniques used to characterise a surface 

characterise one particular parameter a modification has brought about.  No one technique 

fully characterises all of the properties of a surface so it is always necessary to use a panel of 

techniques to comprehensively characterize a surface.  
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1.26 Water Contact Angle 

Water contact angle (WCA) is generally the first technique that is performed to 

determine the likely surface energy of a modified surface, and is has the advantage of being 

relatively simple and quick to perform.  Surface energy can predict the wettability of a 

surface (hydrophilic or hydrophobic) which can be a direct predictor of its ability to interact 

with cells.  The use of WCA  is a long established
83

,
84

 indication of surface energy and a core 

test for the assessment of a biomaterial and is often the first test done to evaluate the 

suitability of a surface for further research.
85

,
86

. 

 

1.27 Scanning Electron Microscopy(SEM) 

SEM is used to examine surface topography.  An electron beam passes across a 

surface and bounces secondary electrons from the surface into a detector.  From the energy 

patterns of these secondary electrons, an image on a surface is displayed in incredible detail 

in gray-scale.  Until recently, this technique was reserved for conductive samples as any 

charge that built up on the surface as a result of the electron beam distorted the image.  

However the field has advanced sufficiently to provide instruments capable of imaging at low 

accelerating voltages, which do not require the samples to be fully conductive.  This is 

combined with sputter coating, which ionises metal to form plasma which allows a very thin 

(10-20nm) coating of metal to be deposited on the samples surface.  Thus the technique is 

suitable for the examination of polymer surfaces and macrotopographical features 
87

.  One 

drawback is that there is some loss of resolution when imaging at very high magnification.  It 

is not possible to image nanoscale surface features on polymers where it would be entirely 

possible to observe these features on a very conductive sample such as a metal. 
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1.28 AFM (Atomic Force Microscopy) 

To determine the topography of a polymeric surface at the nanoscale it generally 

requires use of an atomic force microscope (AFM).
88

,
89

,
90

.  AFM uses a canter-lever to tap 

the surface and its attenuation determines the nanotopography of the surface.  It has several 

advantages compared to SEM.  It does not have to be conducted under a vacuum so it is not 

necessary to dry samples if they are wet, and it does not require the sample to be conductive.  

However, this technique is unsuitable for large areas as it is very time consuming.  An area of 

500nm
2
 can take several minutes to scan, so the technique is useful only on a nanoscale.  

Using this technique in conjunction with SEM builds up a comprehensive picture of  the 

macro and nano topography of a surface
91

.  Some drawbacks of using this technique include 

the aberration of some surface characteristics because of the tip.  It is impossible to visualise 

overhanging features and spherical features will appear cone-like as the tip can not reach 

under them.  

 

1.29 XPS (X-ray Photoelectron Spectroscopy) 

The microscopy techniques discussed above are useful for defining the topography of 

the surfaces but do not reveal any differences in the chemical composition of the 

modification.  One way to achieve a limited amount of information about the composition is 

to use X-ray photoelectron spectroscopy (XPS).  This uses the element-specific pattern of 

photons and X-rays that are released when a surface is hit with an electron beam at a specific 

energy level
84

,
92

. This gives the specific elemental composition of the surface, but is limited 

to any element higher on the periodic table than helium.  Hydrogen and helium cannot be 
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measured using this technique because the as the diameter of the orbital is too small to 

facilitate the catch probability.  This is a well established technique and is used routinely to 

determine the chemical composition of a biomaterials surface.
93

,
94

,
95

. 

 

1.30 Specific Chemical Assays - Ninhydrin 

To determine a specific concentration of a particular terminal group, it is sometimes 

possible to use a specific chemical test such as Ninhydrin.  Ninhydrin is a molecule which 

will react with free amine groups, to give a colorimetric change.  This colour change can be 

quantified to determine changes in the amine concentration of a solution.  It is possible then, 

to measure the depletion of an amine in a coating solution to determine quantity of amine 

deposited onto a surface.   

Cellular interactions can only be accredited to surface modifications if they have been 

extensively characterised. 

 

1.31 Topography vs Chemistry 

The ability of surface topography to affect the fate of MSCs has been 

comprehensively researched in recent years.  The size of surface features seems to be a factor 

in the stimulation of MSC differentiation.  It has been shown in several publications that the 

grain size of titanium is particularly influential in the resulting stem cell neiche.  Particle sizes 

smaller than 50nm appear to retain stem cell phenotype even in the presence of exogeneous 

stimulation from additional growth factors in the media.  Conversely grain sizes larger than 

200nm showed an increase in osteogenic markers, but only when stimulated to do so by 
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osteoinductive growth factors.  In these examples it is not the chemistry of the surface that is 

responsible for this phenotypic change, as the surface chemistry is the same, it just 

differences in topography
96

.  In another study, sub-nanoscale titanium surfaces could not 

sustain or increase differentiation from mouse MSC, but nanoscale surfaces did influence this 

significantly
97

.  It appears that topography of titanium substrates in the range of 2-4nm causes 

osteogenic differentiation of human MSCs. 

 When the topographical stimulus is not sufficient to stimulate the cells to produce 

their own growth factors, topography to influence stem cell fate if the correct osteogenic 

stimulus is supplied in the media
62

. 

By increasing the stimulus, a nanotopography has been used to stimulate an 

osteogenic response from MSCs and osteo-progentitor cells, in the absence of differentiating 

media, using disordered nanolithography techniques up to 21 days
98

. 

To date there has been little research to determine what the effect of different 

chemistries on surface topography at a nano scale.  It has often been shown that the chemistry 

enriched surfaces do not show any macro-topographical changes, but it is likely that 

significant changes do occur at a nano-topographical level.  It may be that it is a combination 

of surface topography and chemistry that allows the powerful effects to be seen and it may 

here in this area of combining chemistry and topography will have the greatest results.  It is at 

this point that it is worth mentioning that most of the research done in this area is conducted 

on a film or relatively flat substrate such as glass or gold add 
62

,
82

.  Transferring the surface 

chemistries onto 3D substrates may not result in the same cell response, and this must be 

considered when taking a surface chemistry onto the 3D system. 
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1.31 2D to 3D 

Base level cell reactions are assessed using the 2D substrates to observe how cells 

react to surface chemistries in the absence of other factors that inevitably require optimisation 

when cell culture is stepped up to 3D, such as the transportation of nutrient through a porous 

scaffold, oxygen gradient and the cell seeding density required to populate the scaffold.  It is 

also important to determine if the modifications will produce a similar effect on a 3D 

substrate.  The clinical applications for these chemistries would be in 3D systems, so it is 

important to demonstrate that it is possible and apply the fundamental theories to a usable 

clinical product. 

1.32 Cell Responses in 3D Cultures 

 The 3D culture models that have been reported using osteoblasts suggest that they can 

be successfully cultured this way.  In fact there have been reports that osteoblasts require no 

further exogenous growth factors to retain their phenotype when put into a 3D culture 

environment, although the cells were grown in sheets then bunched together in a spheroid 

like configuration
99

. 

In addition, 3D culture it is a well established chondrogenic differentiation tool.  

Pellet cultures allow cells to grow within a defined oxygen gradient.  Any of the cells in the 

central portion of the cell pellet will experience a hypoxic environment which may be 

responsible for differentiation growth factors to be released.  

1.33 The Ideal Bone Regeneration System 

To summarise, an ideal bone regeneration system would be a degradable polymer, 

which could support active surface chemistries and could be used either as a carrier for the 

patients’ own stem cells, or to stimulate the influx of MSCs and osteoblasts in vivo.  The 
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material would have sufficient mechanical properties to withstand the forces inflicted upon it 

and mimic ECM to produce a response of sufficient power to allow the differentiation and 

mineralisation of the scaffold, at the same rate at which it degrades, in the absence of any 

cytotoxic degradation products.  A porous, injectable PLGA system with an osteoinductive 

surface chemistry could meet all these demands and it is the development and optimisation of 

these surface chemistries on which this research will focus. 

1.34 Hypothesis 

Hypothesis 1 

 Surface chemistry can affect the phenotypical response of mesenchymal stem cells, 

when applied to a 3D polymeric bone regeneration system. 

Hypothesis 2 

 The presentation of amine functional groups can have an effect of the cell response 

seen, when on a flat glass surface. 

Hypothesis 3 

The optimised amine modifications can be transferred to a polymeric surface, and a 

3D injectable bone regeneration system, to give a unified cellular response. 
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Chapter 2: Materials and Methods 

2.1 Methods for Chapter 3.  PLGA scaffold construction and analysis 

2.1.1 Manufacture of Materials:  The two component injectable system. 

The manufacture and plasma modification of the injectable system was conducted and 

supplied by Dr. Lloyd Hamilton, University of Nottingham.  The basis of the injectable 

scaffold is a two part system; the PLGA sphere, which was the carrier component on which 

the modifications were made, and the adhesive component which was also PLGA but 

modified to change its glass transition temperature (Tg) temperature, which facilitated its 

adhesive properties. 

2.1.2 Manufacture of PLGA sphere  

 1.2g of 85:15 PLGA (Lakeshore Biomaterials, UK) was dissolved in 6mL 

dichloromethane (Sigma, UK).  This solution was pipetted drop by drop into a stirring 

solution of poly (vinyl alcohol) (PVA) 0.3% 
w
/v mw 23,000 (Sigma, UK).  The solution was 

stirred constantly in a fume hood for 48 hours, spheres were recovered by filtration, and 

washed with distilled water and dried at room temperature under vacuum. 

2.1.3 PLGA adhesive 

The adhesive particles (component II) were manufactured by melt blending up to 15 

wt% PEG (Mw 400) and PLGA and recovered as thin films.  Polymer films were placed in 
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liquid nitrogen then ground and sieved into size fractions. The scaffold was composed of 

particles 100-300µm in diameter. 

2.1.4 Material Modification of PLGA spheres 

Plasma polymerisation was conducted on the PLGA spheres (method outlined in 

2.1.2), in a custom built enclosed T-shaped borosilicate chamber system.(Lloyd Hamilton, 

University of Nottingham). Plasma was initiated via two external copper band electrodes 

secured to the borosilicate vessel and connected to a 13.56 MHz radio frequency power 

source (Coxial Power Ltd, UK).  The power was adjusted to <1W and all substrates were 

exposed to an oxygen plasma (20W, 300mTorr) for 3 minutes.  The thickness of the 

deposition process was monitored with a quartz crystal microbalance located within the 

reactor and coated to a thickness of 100 nm.  The reactive monomers (allyl amine, hexane, 

acrylic acid and allyl alcohol) were deposited at 20W and 300mTorr. 

 

Material characterisation: 

2.1.5  Water contact angle measurement 

 The water contact angle is measured to determine the surface energy of a material, 

and when compared to other materials and controls is indicative of changes is surface energy, 

and in turn changes in surface properties and chemistry. 

Water contact angle was measured using the PLGA spheres, compressed into cakes to 

enable the measurements to be taken.  A total of 10 repeats were conducted, and the resulting 

means were analysed using ANNOVA to determine any statistical significance between the 
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values.  Water contact angle measures the surface energy, and from this its 

hydrophobicity/hydrophlicity can be measured. 

 

2.1.6 SEM of materials 

SEM was conducted to determine what macro-topographical changes had occurred on the 

modified materials. 

Dry films, glass or spheres were mounted onto aluminium SEM stubs (Agar scientific UK) 

using double sided carbon sticky tabs (Agar Scientific, UK).  The samples were coated with 

20nm of chromium using an EMTECH 575X sputter coater (Emtech, UK).  The samples 

were then observed in a LEO 1550 FESEM (Zeiss, UK) using the secondary electron detector 

at 5kV accelerating voltage.   

 

2.1.7 X-ray Photoelectron Spectroscopy (XPS)  

XPS was conducted by Dr. Lloyd Hammilton, University of Nottingham.  XPS is used to 

measure the elemental composition of a surface.  XPS analysis was conducted with a Kratos 

Axis Ultra instrument equipped with a monochromated Al Kα X-ray source (1486.6 eV) at 15 

mA emission current and 10 kV anode potential.  The instrument was operated at fixed 

transmission mode and the take- off angle of 90° for the photoelectron analyser. All scans 

were charge-corrected to C 1s at 285eV.  Data analysis was carried out with Casa XPS using 

the manufacturer’s empirical sensitivity factors to quantify the elemental composition (in 

atomic %) from the spectra.  The modified polymer spheres were fixed to a glass slide using 

double sided adhesive tape.  The XPS spectra were taken from the surface of the spheres. 
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2.1.8.  Culture of Mesenchymal stem cells (MSC) 

Primary human MSC purchased from Lonza (UK), were defrosted rapidly in a 37
o
C 

water bath.  The vial was decanted into a T25 (Falcon, SLS UK) flask containing 5mL of 

HMSC culture media with 5% foetal calf serum (both Lonza UK).  After 12 hours, the media 

was removed and replaced, to remove any traces of cryo-preservative that remained from the 

initial suspension solution.  The cells were cultured until confluent, which typically was 1-2 

days, and then passaged into a T75 culture flask (Falcon, SLS UK).  The passaging process 

was as follows; all media was aspirated from the flask containing the MSC, and discarded.  

The adherent cells were washed with Dulbecco’s PBS solution (Sigma, UK), for 1 minute 

and then aspirated off.  Three mL of 10 % trypsin solution (Sigma UK) in Dulbecco’s PBS 

(Sigma UK) were added and then incubated at 37
o
C for 3-5 minutes, carefully noting the 

moment when the MSCs start to detach from the flask.  Immediately 3mL of culture media 

containing serum was added to the flask to stop the enzymatic reaction.  The cell suspension 

was then removed from the culture flask, and placed into a 15mL centrifuge tube (Falcon, 

SLS UK).  The cell suspension was then centrifuged at 1500rpm for 5 minutes, to create a 

cell pellet.  The supernatant was removed, and the pellet re-suspended in 1mL of fresh media 

containing 5% serum.  The cells were seeded into a new T75 flask containing 10 mL of 

serum containing media.  This flask was incubated at 37
o
C with 5% CO2 until confluent, with 

5mL of old media removed and 5mL of new media added every 3-4 days.   

When confluent, the media was removed, cells were washed with PBS for 1 minute, 

trypsinised using 5mL of trypsin (following the protocol above) and the reaction was stopped 

using 5 mL of serum containing media.  The cells were pelleted (as described above) and re-

suspended in 1.2 mL of media.  0.4mL of the cell suspension was then added to each of 3 T75 

culture flasks containing 10 mL of media.  These flasks were incubated at 37
o
C with 5% CO2 
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until confluent (as above).  This process was repeated another 2 times, until passage 5 was 

reached, at which point the cells were used in the experiments outlined below. 

2.1.9.  Mesenchymal stem cell culture with 3D scaffolds. 

 MSCs were cultured in contact with modified PLGA spheres to determine the cellular 

response to the different surface chemistries.  The PLGA system used consisted of two 

components, the PLGA sphere which act as a carrier for the surface chemistries (as 

introduced in chapter 3), and a PLGA adhesive which is temperature sensitive and cures at 

37
o
C binding the spheres.  For this in vitro study the injectable system was cured into 

cylindrical scaffolds using a modified syringe.  During the development of this technology 

the mechanical properties were examined and the ratio of adhesive to spheres was optimised 

for its suitability for bone regeneration.  This optimised ratio was used in this work. 

Modified beads (component 1) were mixed with the adhesive component (component 

2) in a ratio of 1:3.  They were sterilized by exposure to UV ozone for 10 seconds, and 

shaken. This was repeated three times, to ensure even exposure of beads to sterilizing 

environment. 

A modified 1mL syringe was used to mould the scaffolds.  The calibrations on the 

barrel of the syringe were used to measure the volume of the scaffold.  The pr-mixed and 

optimised bead/adhesive mixture was packed into the syringe to a volume of 60l.  A 

previously optimised cell number of 0.5x10
6
 hMSCs was seeded onto the scaffold in a 100l 

of serum free MSC media (Lonza, UK).  The syringe mould was then incubated at 37
o 

C in 

5% CO2 for 30 minutes to cure.  The cured scaffold was then ejected from its mould into a 6 

well tissue culture plate and covered with 10 mL of basal MSC culture media with serum 
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(Lonza UK) placed on a shaker plate at 65rpm, and cultured at 37
o 

C in 5% CO2 for 7, 14 and 

28 days.  Fresh media was added every 3 days. 

2.1.10.  Sample preparation for LDH Assay 

LDH is an intracellular membrane bound marker which is released during cell lysis.  

The quantity of LDH that is released is consistent enough to aproximate the number of cells 

present using a serial dilution of cell lysates.  A serial dilution of cells was made to create a 

standard curve of cells for the assay.  Released LDH can be measured and related back to the 

standard curve of cells, to ascertain number on the scaffolds.  The following concentrations of 

cells were prepared in 1mL of serum-free basal media (Lonza, UK); 0, 1x10
5
, 2.5x10

5
, 5x10

5 

and 1.2x10
6
.  These tubes were then frozen at -80

o
C until required for assay.  Prior to assay 

samples were subjected to repeated freeze/thaw cycles to ensure complete release of LDH 

from all cells.  All experiments were repeated 4 times. 

At the 14 and 28 day time points, scaffolds were removed from their well and placed 

into a new 12 well tissue culture plate with 1 mL of serum free MSC media (Lonza, UK). As 

serum contains LDH, it should not be used with this assay.  The scaffold was crushed, and 

placed in a -80
o
C freezer.  Samples were then subjected to the same freeze/thaw cycle 

described above to ensure complete release of LDH from all adhered cells throughout the 

scaffold.  

 

2.1.11 LDH Assay  

  12mL of assay solution was added to 1 bottle of substrate mix (Promega, UK).  50l 

of each of the test samples was added to a 96 well plate (SLS, UK). Each sample was run in 

triplicate.  A standard curve was created using the positive LDH control in the kit (Promega, 
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UK).  The following dilutions of units of LDH per mL were made; 6.6x10
-4

, 3.3x10
-4

, 

1.65x10
-4

, 8.3325x10
-5

.  These dilutions were made in PBS with 1% bovine serum albumin 

(BSA) (both Sigma, UK).50 l of each of the dilutions were added to the empty wells on the 

96 well plate. 50l of standard cell solutions were added to empty wells.  50l of assay buffer 

was added to all wells.  After 30 minutes incubation in dark, 50l of stop solution were added 

to the well plate.  Each plate was measured on a plate reader at 492nm wavelength 

immediately.  4 separate repeats were conducted and data was analysed using standard 

deviations and ANNOVA to determine the variance of means and any statistical significance 

between the modifications. 

 

 

2.1.12.  Histology  

 The histological investigation of the 3D scaffolds was undertaken to examine the 

penetration of cells into the scaffold, and to ascertain if any of the cells had differentiated. 

2.1.13.  Fixation 

Samples were removed from culture at 7, 14 and 28 day time points.  They were fixed 

with a 2.5% solution of glutaraldehyde (Sigma, UK) for 48 hours, and dehydrated by 2 hour 

submersions in 70, 90 and 100% ethanol solutions.  

2.1.14.  Embedding of Samples in Glycolmethacrylate (GMA) Resin 

Samples were embedded using Technovit 8100 (TAAB, UK) glycolmethacrylate 

(GMA) based resin.  100mL of base glycomethacrylate solution was mixed with 1 sachet of 

hardener 1.  To 90mL of this solution 3mL of hardener 2 was added.  Samples were then 
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placed into moulds and covered with the embedding solution and put in a vacuum on ice for 

20 minutes.  Samples were then removed from the vacuum oven, mineral oil was placed on 

top of the embedding solution, and then they were placed at -55
o
C for 4 days, 4

o
C for 6 hours 

prior to ejection from moulds. 

2.1.15.  Sectioning 

Seven m thick sections were taken from the resin blocks using a Polycut sledge 

microtome (Leica UK).  These sections were floated in a water bath at room temperature and 

captured on a glass microscope slide pre-coated with aminopropyltriethyoxysilane (APTES) 

(Sigma UK). 

2.1.16.  Haematoxylin and Eosin stain  

 Haematoxylin and Eosin (H&E) stains the cell nucleus (blue) and cytoplasm (pink).  

This stain is useful for determining the extent of cellular infiltration throughout the scaffold. 

Sections were taken through decreasing concentrations of ethanol (100%, 90% and 

70%) for 2 minutes each then put into distilled water for 2 minutes.  Sections were then 

stained with Harris’s haematoxylin (Sigma, UK) for 5 minutes, washed in running alkali tap 

water for 5 minutes, differentiated using acid alcohol (100mL ethanol with 1mL of 1M 

hydrochloric acid (Sigma, UK)) for 2 seconds, washed with distilled water and stained with 

1% Eosin (Sigma, UK) for 3 minutes.  Sections were washed for 2 minutes in distilled water, 

followed by dehydration through increasing concentrations of ethanol (70%, 90% and 100%) 

for 2 minutes each, cleared in xylene (BDH, UK) for 2 minutes then mounted with glass 

coverslips in DPX (BDH, UK). 
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2.1.17.  Van Gieson stain 

 Van  iesons’ stain for collagen will show any of the multiple types of collagen that is 

produced by the cells in the scaffold.  It does not differentiate between the different types of 

collagen and is a generic collagen stain.  This is useful as an investigative stain to show the 

production of collagen by the differentiated stem cells, as the cells have to go down either an 

osteogenic or chondrogenic pathway to produce collagen. 

Sections were taken through decreasing concentrations of ethanol (100%, 90% and 

70%) for 2 minutes each then put into distilled water for 2 minutes.  Sections were stained for 

30 minutes with Weigerts’ haematoxilyn (Sigma UK), then washed in running alkali tap 

water for 5 minutes.  Samples were differentiated using 1% acid alcohol (100mL ethanol with 

1mL of 1M hydrochloric acid (Sigma, UK)) for 2 seconds, and washed well with distilled 

water.  Van Giesons stain (100mL of saturated picric acid solution) (Sigma, UK) was added 

to 5mL of 1% acid fuchsin solution (Sigma, UK). This solution was used to stain the sections 

for 5 minutes.  Samples were blotted with filter paper and dehydrated through increasing 

concentrations of ethanol (70%, 90% and 100%) for 2 minutes each and cleared in xylene for 

2 minutes followed by mounting with glass coverslips in DPX (BDH, UK). 
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2.1.18.  Von Kossa stain 

 Von Kossa’s stain for mineralisation is a standard test for osteogenic mineralisation.  

It only stains mineralised tissues and is a key indicator in the osteogenic differentiation 

pathway of MSCs. 

Sections were hydrated using 3 submersions in distilled water for 2 minutes each, then 

covered with 2% silver nitrate solution (Sigma UK) and placed under a UV lamp for 1 hour.  

Samples were washed with distilled water and put in a 2.5% sodium thiosulphate solution 

(Sigma UK) for 3 minutes.  Samples were washed with distilled water and counterstained 

using Harris’s haematoxylin (Sigma UK) for 5 minutes, washed in running tap water for 5 

minutes and differentiated in 1% acid alcohol for 2 seconds before being washed in distilled 

water. Samples were dehydrated through increasing concentrations of ethanol (70%, 90% and 

100%) for 2 minutes each and cleared in xylene (BDH, UK) for 2 minutes prior to mounting 

with a glass coverslip in DPX (BDH, UK). 

2.1.19.  Alcian Blue stain 

 Alcian blue stains for glycosaminoglycan (GAG).  GAG is a key marker for 

chondrogenic differentiation, there are many types of GAG, but Alcian blue is a generic stain 

for all  A ’s, which are key proteoglycans in the chondrogenic differentiation pathway.  

Sections were taken through decreasing concentrations of ethanol (100%, 90% and 

70%) for 2 minutes each then put into distilled water for 2 minutes.  Sections were stained for 

30 minutes with alcian blue solution (1g of alcian blue 8GX (Sigma UK) dissolved in 3% 

glacial acetic acid (Sigma UK)).  Samples were washed in running alkali tap water for 2 

minutes then counterstained with nuclear fast red stain (Sigma UK) for 5 minutes and washed 

for 1 minute in running alkali tap water.  Samples were then dehydrated through increasing 
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concentrations of ethanol (70%, 90% and 100%) for 2 minutes each and cleared in xylene for 

2 minutes then mounted with glass coverslips in DPX (BDH, UK). 

2.1.20.  Alizarin Red stain 

 Alizarin red is a key histological stain for mineralised tissue, and an important marker 

for osteogenesis. 

Samples were taken through decreasing concentrations of ethanol (100%, 90% and 

70%) for 2 minutes each then put into distilled water for 2 minutes.  2% aqueous solution of 

Alizarin red (Sigma, UK) adjusted to pH to 4.1-4.3 with 10% ammonium hydroxide was 

applied to the sections for 5 minutes.  Sections were blotted with filter paper.  Samples were 

dehydrated through submersion for 2 minutes in increasing concentrations of ethanol (70%, 

90% and 100%) and cleared by submersion in xylene for 2 minutes.  Sections were then 

mounted with glass coverslips in DPX (BDH, UK). 

2.1.21.  Cryo SEM examination of cellular samples 

Samples were removed from culture, washed with PBS and fixed in an aqueous 

solution of 2.5 % Glutaraldehyde (Sigma, UK) for 15 minutes.  Samples were stored at 4
o
C in 

Dulbecco’s PBS (Sigma, UK). 

Samples were prepared further immediately before examination by snap freezing in 

liquid nitrogen slush (BOC, UK) under vacuum using a Gatan Alto preparation station 

(Gatan, UK).  Samples were transferred under vacuum to a Gatan Alto 2500 (Gatan UK) cryo 

transfer system which had been cooled to -190
o
C with liquid nitrogen.  The sample was 

sublimated by increasing the temperature of the chamber to -95
o
C and held at that 

temperature for 15 minutes.  The sample was then sputter coated with platinum, to a 

thickness of 20 nm and transferred under vacuum to the Gatan cold stage, which was chilled 
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to -190
o
C with cooled nitrogen gas. The samples were examined using a LEO-1550 Field 

emission scanning electron microscope secondary electron detector at 5kV(Carl Zeiss SMT 

Ltd, UK).  

 

2.1.22.  MSCs on 3D scaffold prepared with multiple layers of modification 

Beads modified with different chemistries were assembled to determine if a different 

response was observed when the chemistries varied across the scaffold.  This aim would have 

implications in osteochondral regeneration, where a banded/zoned response would be 

necessary. 

 

 

 

Figure 2.1: Diagram of layered surface modified spheres in scaffold, red spheres 

depict amine modified surface, purple spheres depict hexane modified surface 

and gold spheres depict allyl alcohol modified spheres. 
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The individual modifications were mixed with adhesive in 1:3 ratio.  The total volume 

of the scaffolds was 120l.  The scaffold layers were prepared in the modified syringe 

(discussed earlier in this chapter) as described in the table below: 

Scaffold Number Total scaffold 120l 

1 40l Allyl amine 40l Hexane 40l Allyl alcohol 

2 60l Allyl amine 60l Allyl alcohol 

3 120l Allyl amine 

4 120l Allyl alcohol 

5 120l Hexane 

6 120l Unmodified Control 

 

  

The individual modifications were packed into the modified syringes to the specified 

volumes, and then the scaffolds were seeded with 1x10
6
 MSCs in 100l of serum free media 

(both Lonza, UK) for 60 minutes at 37
o
C.  The scaffolds were then ejected from the syringes 

into a 6 well plate, filled with MSC media with 5% serum (Lonza, UK).  The samples were 

cultured on a rocker plate for 7, 14 and 28 days, with 2 mL media added every 3 days.  The 

samples were then fixed with glutaraldehyde and processed using the histological processing 

technique described above. 

  

Table 2.1: Diagram showing quantities and layer format of modified spheres 

incorporated into scaffold 
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2.2.  Methods for preparation and analysis of silane modified borsilicate 

glass  

2.2.1.  Preparation and modification of borsilicate glass. 

 Glass was used as a substrate for the modifications in the initial investigation of the 

response of MSCs and and primary human osteoblast-like cells cultured with silanes. 

Glass was cleaned using a 0.5M solution of sodium hydroxide (Sigma, UK) for 30 

minutes in a ultrasonic bath, the samples were then washed in 3 changes of distilled water, 

and placed in 1M nitric acid for 30 minutes in an ultrasonic bath.  Samples were then washed 

with 3 changes of distilled water and dried in a 50
o
C oven.  Clean coverslips were then 

modified using the silanes in table 2.2 in 0.1M solutions for 30 minutes.  Samples were then 

washed with isopropyl alcohol for 5 minutes and then washed with distilled water. 

 

2.2.2.  Atomic Force Microscopy(AFM) 

 The modified coverslips (both Glass and PLGA-coated) were attached to glass 

microscope slides using double sided adhesive tape.  The samples were examined using an 

AFM microscope (operated by Mark Murphey at Liverpool John Moores University).  3 

samples of each modification were examined and 4 areas on each of the samples were 

scanned in tapping mode on 500nm scan area.  The maximum feature height was measured, 

and averaged (using Argile light software).  The results were analysed using ANOVA. 

2.2.4.  Ninhydrin on films and glass 

The concentration of the –NH2 groups on the silane modified surfaces were measured 

using a ninhydrin assay.  0.35g of ninhydrin (Fluka, UK) was dissolved in 100mL of ethanol.  
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1mL of this solution was placed on each of the samples and incubated for 5 minutes at 90
o
C.  

The solution was removed from the coverslips and diluted 1:3 with ethanol.  Light 

absorbance were measured spectroscopically at 600nm.  A standard curve of each of the 

above listed silanes concentrations was measured and plotted and the resulting equation from 

each curve was used to apply to the unknown concentrations (see appendix for standard 

curves/equations).  The coverslips were photographed showing a colour change on the 

surface of the substrate, to qualitatively asses the distribution of the NH2 groups across the 

surface. 

2.2.5 Water contact angle (WCA) measurements 

Double sided materials were used for this technique, as the WCA were measured 

using a Camtel DCA machine (Camtel LTD, UK) which takes the reading from both sides of 

the material inserted into the water.  These measurements were repeated 6 times for each 

modification.  The results were analysed using ANOVA to see if there was any significant 

difference between the surfaces. 

2.2.6.  Material modification and PBS interaction  

 Silane modified glass discs were placed into a 24 well plate, in addition to an 

untreated glass control.  The sample tests were conducted as follows: 

Concentration of minerals in 

PBS solution 

CL3 CL4 CL6 CL7 CL11 Untreated 

control 

H20 x x x x x x 

34.25mM sodium chloride, 

0.675mM potassium chloride, 

2.5mM phosphate 

x x x x x x 

68.5mM sodium chloride, 

1.35mM potassium chloride, 

5mM phosphate 

x x x x x x 

137mM sodium chloride, 

2.7mM potassium chloride, 

x x x x x x 
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10mM phosphate 

  

One PBS tablet (Sigma, UK) was dissolved in 200mLs of distilled water.  The 

following dilutions of PBS were made using distilled water; 0%, 25% 50% and 100%.  

The plate was incubated at 37
o
C for 7 days.  The samples were removed from the and 

left to dry at room temperature for 24 hours.  The samples were then examined using X-ray 

analysis and stained by Von Kossa stain for mineralisation. 

 

2.2.7.  Von Kossa stain as 2.1.18 

2.2.8.  X-ray analysis of glass and films 

 Elemental analysis of the surfaces was undertaken to determine if the coverslips taken 

from PBS solutions had mineralised.  Baseline data of the dry film was also measured to 

ensure that there was no background mineralisation occurring and that the minerals present 

were as a direct result of chemical interaction when the surfaces were exposed to PBS. 

The coverslips that were exposed to PBS and water were removed from the PBS 

solution and allowed to air dry for 24 hours.  

Dry modified films and glass coverslips were coated with carbon using a carbon 

coater (EMTECH, UK).  X-ray microanalysis was performed using a Leo 1550 SEM (Zeiss, 

UK) with an INCA system (Oxford Instruments).  Points of analysis were imaged at 5 

locations on the film.  From each of these fields 10 spectra were generated at random.  The 

resulting data were analyzed using ANOVA, to determine any statistically significant 

difference between the elements on the surfaces.  

Table 2.2.  Matrix of experiments conducted using varying concentrations of PBS 
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2.2.9.  Culture of Mesenchymal stem cells (MSC) as in 2.1.8 

 

2.2.10.  Application of Mesenchymal stem cell to modified Glass 

Passage 5 MSCs were allowed to reach confluence, trypsined as described in section 2.1.8 

and pelleted.  The individual pellets from each flask were re-suspended in 1mL of media each 

and pooled into one centrifuge tube.  These cells were then pelleted again, and re-suspended 

in 5mL of mesenchymal stem cell media (Lonza, UK) media.  200l of the cell suspension 

were removed and the cell number was counted using a haemocytometer (AGAR, UK) on an 

inverted light microscope (Zeiss Ltd, Germany).  Cells found in 5 areas were counted and 

averaged, this number corresponding with the cell number x10
4
 per mL of cell suspension.  A 

total cell number (in the 5mL cell suspension) was determined, and the cells were re-

suspended to make the seeding density 5x10
5
 cells in 100l media. 

 The pre-prepared materials were sterilised using 10 sec exposure to ultra violet (UV) 

light with ozone on both sides, and placed into a sterile 24 well tissue culture plate (SLS, 

UK).  A 100l aliquot of the cell suspension was then pipetted onto each material, and 

incubated at 37
o
C for 30 minutes.  Two mL of media was then added to each well.  Samples 

were then cultured for 7, 14 and 28 days at 37
o
C and 5% CO2. 

2.2.11.  Von Kossa staining of Coverslips 

Media was removed from wells and coverslips were washed using a 10% Dulbecco’s PBS 

solution.  PBS was removed and the cells on the coverslips were fixed using a 2% 

formaldehyde 4% sucrose solution (Sigma UK) for 15 minutes.  Fixative was then removed 
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and samples were washed with PBS.  After 3 submersions in distilled water the protocol 

outlined in section 2.1.18 was followed. 

2.2.12.  SEM 

The modified glass coverslips with primary human Mesenchymal stem cells were 

removed from culture, washed with PBS and fixed using 2.5% glutaraldehyde solution, for 15 

minutes.  The samples were then washed with PBS, and submerged in 70% ethanol for 15 

minutes, then 90% ethanol for 15 minutes followed by two changes of 100% ethanol for 15 

minutes.  The samples were then dried using a critical point dryer (Prion, UK).  Dry samples 

were then affixed to aluminium SEM stubs (Agar Scientific, UK) using double sided carbon 

sticky tabs (Agar Scientific, UK).  The samples were then coated with 20nm of chromium 

using a sputter coater (EMTECH, UK).  The coated samples were observed under a Leo 1550 

FESEM (Zeiss, UK).   

2.2.13.  Preparation of RNA using Trizol (Sigma, UK) 

Scaffolds or coverslips were removed from media at the appropriate time points, and 

placed into clean 24 well tissue culture plates (SLS Ltd, UK).  Samples were washed using 

sterile Dulbecco’s PBS (Sigma, UK) to remove any non-adherent cells.  Scaffolds were 

crushed manually and 500l of Trizol (Sigma, UK) added to each well and incubated at room 

temperature for 5 minutes.  Trizol reagent (Sigma, UK) then removed from the scaffolds and 

placed into DNA/RNA-free micro-centrifuge tube (SLS, UK) and frozen until required at -80 

o
C, at which point they were defrosted at room temperature. 

100l of chloroform (BDH, UK) was added to defrosted samples and vortexed.  Samples 

were spun at 18,000g for 5 minutes.  The upper layer of each preparation was then removed 

and placed into a new tube.  300l of isopropanol (Sigma, UK) was then added, and 
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centrifuged at 18,000g for 15 minutes.  The supernatant was removed, without disturbing the 

RNA pellet.  500l of 100% ethanol was added, and sample spun for 5 minutes at 18,000g.  

The supernatant was removed and replaced with 200l of 70% ethanol and spun for 2 

minutes at 18,000g.  The supernatant was removed and pellet was re-suspended 10l of 

DNA/RNA-free ultra pure water. (Sigma, UK)  Generic DNA contamination was eliminated 

using commercially available DNAse kits (Invitrogen UK).   

8l of RNA sample was inserted into a DNA/RNA free micro-centrifuge tube (SLS, 

UK).  1l of 10X DNase reaction buffer and 1l DNase I Amp grade was added (Invitrogen, 

UK).  Tubes were incubated at room temperature for 15 minutes and the DNase I was 

inactivated by the addition of 1l of 25mM EDTA solution (Invitrogen, UK) before heating 

to 65
o
C for 10 minutes. 

First strand cDNA was synthesised using kit (Invitrogen, UK) 10l of DNase treated 

RNA was added to a DNA/RNA micro-centrifuge tube.  1l of oligo(dT), 1l of 10mM 

dNTP mix and 1l of sterile distilled water was added per reaction.  Samples were heated to 

65
o
C for 5 minutes, then incubated on ice for 1 minute. 4l of 5X first strand buffer, 1l of 

0.1M DTT, 1l of RNaseOUT, and 1l SuperScript III RT was added to each tube, mixed 

and incubated at 50
o
C for 1 hour.  The reaction was inactived by heating to 70

o
C for 15 

minutes.  The resulting cDNA was used as a template for rt-PCR. 

2.2.14 rt-PCR  

qrt-PCR was conducted using primers for osteopontin, osteocalcin, osteonectin, 

collagen I, collagen II, and CBFA-1, with all results normalised against the housekeeping 

gene -Actin.  20l of forward and 20l of reverse primers were mixed with 160l of 

DNA/RNA-free water.  The following reagents were added in triplicate to the wells of a rt-
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PCR 96 well plate (BIO-RAD, UK): 2l cDNA template, 7.5l SyBR green (BIO-RAD, 

UK), 4.5l DNA/RNA-free water, and 1l diluted primer (as above).  rt-PCR was conducted 

using i-cycler (BIO-RAD,UK), using optimum temperatures for each primer (table 2.4). 

Target Accession 

 number 

Primer bases Temp in 
o
C 

B-Actin NM001101 GGACCTGACTGACTACCTCGCC

ATCTCTTGCTCGAAG 

53.9 

Collagen I NM000088 GCCACTCCAGGTCCTCAGCCAC

AGCACCAGCAACAC 

54.5 

Osteocalcin NM000711 AGCGAGGTAGTGAAGAGACGAA

AGCCGATGTGGTCAG 

55.2 

Osteopontin NM000582 GCGAGGAGTTGAATGGTGCTTG

TGGCTGTGGGTTTC 

53.9 

Osteonectin BC008011 GCTGGATGATGAGAACAACACA

AGAAGTGGCAGGAAGAG 

53.4 

Collagen II NM001844 GAGCAGCAAGAGCAAGGAGAA

GTGGACAGCAGGCGTAGGAAG 

54.3 

CBFA I AH005498 GGCAGTTCCCAAGCATTTCGCA

GGTAGGTGTGGTGTG 

54.5 

Sclerostin  CTGGTTAAGAAAGTTGGATAAG 

AAGGTTACACAGCAAGTTAG 

 

53.8 

 

 

 

All samples were run for 40 cycles using pre-programmed settings on i-cycler.  The threshold 

cycle (Ct) (the cycle at which the instrument detects the amplification generated fluorescence 

above the background fluorescence) was measured in triplicate in each case and averaged.  

The experiment was repeated 6 times.  The results were shown as the ct,
1
 and were 

normalised to the housekeeping gene, -actin. 

2.2.15.  Immunostaining for Confocal Microscopy 

 Cells on the silane-modified glass and PLGA were fixed using a 2% formaldehyde 

(Sigma, UK) and 4% sucrose (Sigma, UK) fixative.  The samples were washed in PBS.  The 

Table 2.4.  Primer bases for the corresponding gene of interest, and temperature 

at which reaction takes place. 
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samples were blocked/permabolised using a solution of 1% BSA PBS with 0.1% triton X100 

(Sigma, UK) with 10% normal horse serum (Vector, UK) added, for 45 minutes at 37
o
C.  The 

samples were then washed using 1% BSA PBS. 

The samples were stained using antibodies for osteocalcin (BD biosciences, UK), 

CBFA1(BD biosciences, UK),  collagen I and II(Abcam, UK) and stro-1(Abcam, UK).  The 

antibodies were diluted as below: 

Antibody Dilution in 1% BSA PBS 

Osteocalcin  1/500 

CBFA 1 1/500 

Stro-1 1/500 

Collagen I 1/1000 

Collagen II 1/500 

 

  

100l of primary antibody were added to the samples, and incubated at 4
o
C for 16 hours. 

Collagen I and II antibodies were added to the same sample to create a dual stain, the 

remaining antibodies were used as single stains.  The samples were washed using 1% BSA 

PBS.  The secondary antibodies (all from Life Technologies, UK) were added as below. 

Primary antibody Secondary antibody 

Osteocalcin Rhodamine 

CBFA-1 Texas red goat anti rat 

Stro-1 Alexa fluor 633 goat anti mouse 

Collagen I  594 HTC Chicken anti rabbit 

Collagen II 488 HTC anti mouse IgG 2a 

 

 100l of each the secondary antibodies were added to the samples and incubated at 

37
o
C in the dark for 1 hour.  Samples were then washed using PBS, and the osteocalcin, 

CBFA1 and Stro-1 samples stained using Oregon green (Life technologies, UK) to detect 

Table 2.5.  List of primary antibodies and the dilutions at which they were used for the 

antibody staining 

Table 2.6.  Table of primary antibodies with the corresponding secondary antibody. 
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actin cytoskeleton.  The samples were then washed with PBS and examined using a confocal 

microscope (Zeiss, UK) after being mounted using Vecta shield with Dapi (Vector UK). 

 

2.2.16.  Isolation of primary human osteoblast-like cells 

 The extent to which the surfaces can could induce MSC along an  osteogenic 

differentiation pathway was investigated at key temporal points.  MSCs are a good model for 

the initial cell response to surfaces, and the primary human osteoblast-like cells are a good 

model for later stage events in the osteogenic pathway.  

Human bone fragments taken from osteo-arthritis surgery were washed with a 

solution of PBS with streptomycin and penicillin (Sigma, UK).  The bone was then cut into 1-

2mm diameter pieces, and 6-8 of the bone pieces were placed in a 9cm diameter disposable 

Petri dish with 10mL of DMEM culture media enriched with foetal bovine serum (Sigma, 

UK).  5mL of media was removed and replaced every 2 weeks.  Cultures were left until cells 

migrated from the bone and populated the culture dish and reached confluence which was 6-8 

weeks. 

2.2.17.  Primary human osteoblast like cells on silane modified glass  

The silane modified glass coverslips were inserted into a 24 well tissue culture plastic 

plate. Primary human osteoblasts-like cells were washed with PBS then covered with 2 mL of 

Trypsin EDTA (Sigma, UK).  The cells were incubated at 37
o
C, and observed 

microscopically to check the progression of the trypsin digestion, when the cells started to lift 

off the plastic Petri dish 2mL of media was added to stop the reaction.  5x10
-4   

primary 

human osteoblasts were suspended in 100l of DMEM media (Sigma, UK) and seeded onto 

the glass surfaces and incubated at 37
o
C for 1 hour.  After the hour incubation 2mL of 
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DMEM media (Sigma, UK) was added to each well.  These samples were cultured for 7, 14 

and 28 days. 

2.2.18.  Primary human osteoblasts-like cells on silane modified PLGA films 

The silane modified PLGA films were inserted into a 24 well tissue culture plastic 

plate.  Then treated as protocol 2.2.17. 

 

2.2.19.  Von Kossa staining of human osteoblast samples 

 As in section 2.1.18 

 

2.2.20.  SEM of primary human osteoblast samples. 

As in 2.2.12 

2.2.21.  Nodule count and measurement 

Nodule size was measured using the SEM.  All nodules on each sample were 

measured across their widest diameter, using the micometer application on the annotation bar 

of the SEM.  Every nodule was measured and the mean was noted, to provide the mean 

nodule size for each sample. 

The numbers of nodules on each sample was counted using a light microscope (Zeiss, 

Germany) at low magnification so whole sample could be enumerated. 

2.2.22.  rt-PCR of osteoblast like cells  

 As in section 2.2.13 
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2.3.  Preparation and silane modification of PLGA films and spheres  

2.3.2.  PLGA (85:15mw) film production and modification 

 PLGA films were produced as an initial investigation into the viability of PLGA as a 

substrate for silane modification. 

Clean 12mm glass cover-slips were coated with chromium using an Emtech  575x 

sputter coater (Emtech, UK), to provide a surface for the PLGA film to form hydrogen bonds 

with.  100 l of 10 % 85:15 PLGA (Sigma, UK) in chloroform was spin-coated onto the 

chromium coated cover slips using a WS-400B-6NPP/LITE spin coater (Laurell 

Technologies Corporation, UK). Oxygen plasma was used to functionalize the polymer using 

a plasma coater (Emtech, UK), at the previously optimised settings of 30kW for 2 minutes 

(see appendix).  

The PLGA films were then modified with the following silanes: 

Modification abbreviation Silane used for modification 

CL3 (3-Aminopropyl)triethoxysilane (Sigma) 

CL4 4-(triethoxyslyl)butan-1-amine (fluorochem) 

CL6 3-(2-Aminoethylamino) 

propyldimethoxymethylsilane (Sigma) 

CL7 N-(6-Aminohexyl)amnomethyltriethoxysilane 

(fluorochem) 

CL11 11-Aminoundecyltriethoxysilane (fluorochem) 

 

The silanes were diluted to 0.1M solutions with isopropyl alcohol.  The PLGA films 

were then covered with these solutions for 30 minutes at room temperature.  The solutions 

were then washed using isopropyl alcohol, and distilled water.  Samples were left to dry at 

room temperature for 24 hours, followed by vacuum oven at room temperature for 24 hours. 

Table 2.8 Index of silanes used for modifications 
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2.3.3.  AFM microscopy 

 The modified coverslips (both Glass and PLGA coated) were stuck to a glass 

microscope slide using double sided adhesive tape.  The samples were examined using an 

AFM microscope (operated by Dr. Mark Murphey at Liverpool John Moores University).  3 

samples of each modification were examined and 4 areas on each of the samples were 

scanned in tapping mode on 500nm scan area.  The maximum feature height was measured, 

and their mean noted (using Argile light software).  The results were analysed using 

ANOVA. 

2.3.4.  Ninhydrin on films and glass 

The assay was conducted as in section 2.2.4 

 

 

2.3.5.  Preparation of Double Sided Materials for WCA 

Double sided materials were required for this technique as the water contact angle is 

measured when the material is dipped into water.  If the different sides were composed of 

different materials (ie, glass and polymer) the results would be unreliable. 

Materials were prepared by coating glass coverslips with 20nm of chromium using an 

EMTECH 575X sputter coater (EMTECH, UK).  This was repeated on both sides of 

coverslip.  1g of 85:15 PLGA was dissolved in 10 mL of Chloroform (Sigma, UK).  The 

PLGA solution was spin coated onto the chromium coated glass using a WS-400B-

6NPP/LITE spin coater (Laurell Technologies Corporation, UK), and dried overnight at room 

temperature before being inserted into a vacuum oven for 48 hour.  The process was then 
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repeated for the other side of the coverslip.  The materials were then modified with the 

silanes mentioned above in table 2.8, on both sides. 

 

 

2.3.6.  WCA measurements 

Conducted as in section 2.25 

2.3.7.  SEM of modified films  

 Conducted as in section 2.1.6 

2.3.8.  Application of Mesenchymal stem cell to modified PLGA films. 

Conducted as in section 2.2.10. 

2.3.9.  Von Kossa staining of Coverslips 

Conducted as in section 2.18 

 

 

2.3.10.  Sphere Manufacture for Silane Modifications 

85:15 PLGA (Sigma, UK) spheres were constructed using polyvinylalcohol (PVA) solution.  

1g of PLGA was dissolved in 10 mL of tetrachloromethane added to a solution of 30 mL 

PVA (Sigma, UK) in a drop by drop method and stirred continuously for 72 hours until all 

solvent has evaporated.  Spheres were then filtered and sieved so that only the particles 
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measuring 100-300m were used.  The spheres were then dried at room temperature for 48 

hours. 

 

 

2.3.11.  Silane modification of spheres 

PLGA spheres were oxygen plasma treated for 2 minutes at 30Kw, then submerged in 

10 mLs of 0.1M silane in isopropyl alcohol on a rocker plate for 20 minutes (see appendix for 

optimisation data).  The resultant solution was then filtered using a polypropylene funnel and 

flask (SLS, UK) to avoid silane retention by surface attachment to the glass flask.  The beads 

were washed with 10mLs of isopropyl alcohol.  The solution collected was then analysed 

using the ninhydrin technique to determine the amount of amine groups transferred to the 

spheres in this process (2.3.12).  The spheres were then dried in a vacuum oven for 24 hours, 

and stored under vacuum until used. 

2.3.12.  Ninhydrin assay of modified spheres 

The concentration of the –NH2 groups on the silane modified spheres were measured 

using the ninhydrin assay.  As it was difficult to measure accurately the concentration of –

NH2 tethered to the spheres directly, an indirect method was used.  The concentration of the 

silane coating solution was known (1M) and the concentration of the coating solution was 

measured after the coating of the spheres took place, to determine the concentration of silane 

that remained on the spheres.  A standard curve of each of the silanes concentrations was 

measured and plotted and the resulting equation from each curve was used to apply to the 

unknown concentrations (see appendix for standard curves/equations).  Assay was then 

conducted as in section 2.2.4. 
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2.3.13.  SEM of PLGA spheres 

The modified spheres were mounted onto aluminium SEM stubs (Agar, UK) using double 

sided carbon stickers (Agar UK).  The spheres were then coated with 40nm of chromium to 

illuminate charge, and observed under the SEM (Zeiss, UK) to determine if there were any 

macro-topographical differences between the modifications. 

2.3.14.  MSC on PLGA system 

Silane modified Spheres were incorporated into the 3D injectable system described in 

section 2.1. 

 

 

   

2.3.15.  Histology  

 The histological investigation of the 3D scaffolds was undertaken to examine the 

penetration of cells into the scaffold, and to ascertain the degree of cell differentiation. 

 

2.3.16.  Fixation 

Samples were removed from culture at 7, 14 and 28 day time points.  They were fixed 

with a 2.5% solution of glutaraldehyde (Sigma, UK) for 48 hours, and dehydrated by 

successive 2 hour submersions in 70, 90 and 100% ethanol solutions respectively.  
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2.3.17.  Embedding of Samples in Glycomethacrylate Resin 

Samples were embedded using Technovit 8100 (TAAB, UK).  100mL of base 

glycomethacrylate solution were mixed with 1 sachet of hardener 1.  To 90mL of this 

solution 3mL of hardener 2 was added.  Samples were then placed into moulds and covered 

with the embedding solution and placed in a vacuum on ice for 20 minutes.  Samples were 

then removed from the vacuum oven, mineral oil was placed on top of the embedding 

solution, and then they were then placed at -55
o
C for 4 days and 4

o
C for 6 hours prior to 

ejection from the moulds. 

 

2.3.18.  Sectioning 

As in section 2.1.15 

2.3.19.  H and E stain  

 As in section 2.1.16 

2.3.20.  Van Geison stain 

 As in section 2.2.17 

2.3.21.  Von Kossa stain 

 As in section 2.1.18 

2.3.22.  Alcian Blue stain 
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 As in section 2.1.19 

2.3.24.  Alizarin Red stain 

 As in section 2.1.20 

2.3.25.  Sample preparation for LDH Assay 

As in section 2.1.10 

2.3.26.  LDH Assay  

  As in section 2.1.11 

1. Benedetto, A., Abete, M.C., Squadrone, S. Towards a quantitative application of real-time 

PCR technique for fish DNA detection in feedstuffs Food Chemistry 126 1436–1442(2011)   
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Chapter 3: Results: Plasma Polymer Deposition 

Modifications to Injectable PLGA System 

 

3.1 Introduction 

 The injectable PLGA system was modified with four different surface modifications.  

These modifications include allylamine, allylalcohol, hexane and acrylic acid.  The active 

terminal groups that are deposited on the surfaces treated with these plasmas are listed in the 

table below: 

Chemical modification Terminal group deposited 

Allyl amine -NH2 

Allyl Alcohol -OH 

Hexane -CH3 

Acrylic Acid -COOH 

 

  

All of the above chemical modifications have been selected because they are terminal 

groups found in the extracellular matrix, and are thought to play a role in the osteogenic and 

chondrogenic differentiation pathways
1
.  The chemical groups have been shown to be the 

active regions on many osteogenic peptides, which have been used extensively in the past as 

an attempt to mimic the ECM, and have shown positive results
2,3

.  There are several reasons 

why the use of peptides to mimic ECM are limited, the most striking reason being the 

prohibitive expense of producing peptides on a large scale
4
, so applications for medical 

devices are limited.  The use of stable chemistries as an instigator of MSC differentiation 

could improve the efficiency of the injectable system by applying and refining the knowledge 

Table 3.1, Chemical modification. Themost abundant chemical group deposited from specific 

chemical modification.  
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gained from all of the studies involving peptides
5,6,

 and larger proteins intended to mimic 

some aspects of the ECM.  

 Applying these surface chemistries to an injectable system is novel, and this chapter 

of results aims to screen the four surface chemistries and asses their ability to cause the 

differentiation of MSCs in this in vitro model, which uses cured pieces of the injectable 

system, comprising of two components as demonstrated in figure 3.1. 

 

 

The red spheres are the components that carry the surface modifications and the blue 

amorphous shapes are the PEG-treated PLGA adhesive component, which cures at 37
o
C.  

The two components are mixed together in a modified syringe and the powders are seeded 

with MSCs whilst compacted into the syringe.  The system cures as the MSCs are adhering 

prior to the scaffold being ejected from the modified syringe mould.  The scaffolds are 

cultured in 6 well plates on a rocker plate to allow the flow of nutrients throughout the porous 

scaffold.  

The materials were characterised using water contact angle, SEM and XPS prior to 

the incorporation of the material into the in vitro model.  This in vitro system was analysed 

Figure 3.1, The two phase injectable scaffold.  Red spheres carry the chemical 

modification and the amorphous shapes represent the adhesive component. 
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using electron microscopy and LDH assay to determine cell number, histological staining 

techniques and analysis to determine the expression of differentiation markers throughout the 

scaffolds. 
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3.2 Water contact angle of modified materials. 

The water contact angle of the polymers changed after modification of the polymer.  

The allyl amine modified PLGA showed a statistically significant difference in water contact 

angle, (using ANOVA and Tukey statistical tests) when compared to an untreated control 

(p=<0.05) (figure 3.2).  The allyl amine modification introduced a more hydrophilic surface 

than the control.  The hexane showed some statistical significance and introduces a 

significantly more hydrophobic surface.  The acrylic acid showed a significantly more 

hydrophilic surface, than the untreated control and the other modifications.  The allyl alcohol 

modification also demonstrated a significant difference, showing the modification to be more 

hydrophilic than the control.  All these data are advancing angles only, and demonstrate that 

different surface energy and charge has been created on these surfaces.  The advancing angle 

is more significant than the retreating angle because it is this initial contact that is relevant to 

cellular contact with the biomaterial. 
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Figure 3.2 Water contact angle of modified PLGA to measure changes in surface energy. 

Modified spheres were compacted  into cakes (n=10). Starred bars indicate level of significance as 

determined by ANOVA and Tukey statistical tests * represent the level of significance (* p=<0.05, 

***p=<0.01) 
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3.3 SEM of modified spheres 

The SEM images of the treated spheres show no macro-topographical changes after 

the surface modifications have been applied when compared to the untreated spheres.  The 

spheres all appeared to be smooth and largely undamaged following modification.  The 

diameter of the spheres ranged from 30m up to 300m.  
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SEM of modified spheres 

 

  

a b 

c d 

e 

Figure 3.3.  SEM images of the plasma treated spheres. Spheres were treated with 

the plasma  polymer deposition system and images were taken of the spheres using a 

secondary electron detector 5kV accelerating voltage. The labelled images refer to the 

following modifications (a) Allyl amine, (b) Allyl alcohol, (c) Hexane, (d) Acrylic 

acid, and (e) untreated PLGA. 



 
 
 

 Page 81 
 
 

 

3.4 X-ray Photoelectron spectroscopy (XPS) 

Six separate batches of modified spheres were analyzed using X-ray photoelectron 

spectroscopy (XPS) to determine the elemental composition of the modified surfaces (n=6). 

The summary table highlights the average and standard deviations of the repeats (table 3.2).  

These XPS data demonstrated the increased concentration of carbon on the hexane modified 

surfaces (84.2% weight ±1.0).  As it is hypothesized that the hexane modified surface would 

be enriched with methyl groups, this confirms the success of the modification.  The XPS 

spectra for the allyl amine modification showed the presence of nitrogen on the 

surface(10.1% weight ±1.0).  This was indicative of the presence of amine groups, again 

demonstrating the successful transfer of surface chemistries to the substrate.  The increase in 

the surface oxygen seen on the acrylic acid modification (21.3% weight ±1.2) is indicative of 

the transfer of carboxyl groups.  The allyl alcohol modification did not show any major 

changes detectable by XPS from the control, but this is likely to be explained by the 

limitations of the XPS technique as hydrogen is undetectable by XPS, and it is likely that it 

would be hydroxyl groups deposited on the allyl alcohol surface.  
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Figure 3.4. X-ray photoelectron spectroscopy (XPS) Spheres were treated with 

the plasma  polymer deposition system and spectra of the modified spheres and an 

untreated control were taken (n=6).  The labelled spectra are typical examples of 

the spectra taken and refer to the following modifications (a)Hexane, (b) allyl 

amine, (c) allyl alcohol, (d) acrylic acid, and (e) Unmodified spheres and show the 

presence of chemistry specific bonds (outlined on spectra). 
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Modifications Carbon Nitrogen Oxygen 

Untreated 78.9 ±1.9  21.1±1.9 

Allylamine 62.7±4.2 10.1±1.0 23.5±4.0 

Hexane 84.2±1.0  15.8±1.0 

Acrylic acid 55.7±1.5  43.0±0.6 

Allylalcohol 77.4±1.2  21.3±1.2 
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3.5 Cryo SEM of MSCs on plasma treated 3D scaffolds 

The cryo SEM images (Figure 3.5) show the morphology of the MSCs when cultured 

on the surfaces for 14 days.  The allylamine-modified scaffold lead to the cells presenting a 

flattened morphology, showing good infiltration into the scaffold and the presence of ECM.  

The allyl alcohol-modified scaffold had cells presenting a very rounded morphology.  The 

untreated and hexane-treated scaffold had cells presenting classical stem cell morphologies. 

This investigation demonstrated that the morphology of the cells on the different 

modified scaffolds was not the same, and that there was a significant quantity of ECM found 

on the allyl amine-modified scaffold.   
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 Figure 3.5:Cryo SEM images of Mesenchymal stem cell seeded onto the modified 

injectable system.  (a) Hexane, (b) Allyl alcohol, (c) Acrylic acid,(d)Allyl amine, 

and(e) Untreated scaffold. 

a b 

c d 
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3.6 LDH assay to detect cell number on 3D scaffold 

 

 

 

 

 The LDH assay was conducted to determine cell number.  The data shown 

were the mean and standard deviation of 4 repeats.  They demonstrated an initial increase in 

cell number over a 14 day period (initial seeding density was 0.5 x10
6
), then proliferation 

between 14 and 28 days in the control, hexane and acrylic acid scaffolds but a plateau 

between 14 and 28 days for the allyl alcohol and allyl amine scaffolds.  There was a 
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Figure 3.6, LDH assay analysis of cell number on modified scaffolds.  Scaffolds were seeded with 

MSC for 14 and 28 days, and an LDH assay was conducted on the modified and untreated scaffolds 

after maceration at these timepoints.  (N=4)  * Indicates a statistically significant  difference of p=<0.05 
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statistically significant difference between the cells at 14 days on the hexane and the allyl 

alcohol scaffolds (p=0.05). 

 These results support the Cryo SEM (figure 3.5) examination because the 

plateau of the cell number could be indicative of stem cell differentiation.  As this plateau 

was observed only on the allyl alcohol and allyl amine scaffolds, it is likely that stem cell 

differentiation was limited to these two scaffolds.  
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3.7 Histological analysis of Plasma treated scaffolds 
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Table 3.3,Summary of Histological staining at 7 days MSC were cultured on 

scaffolds for 7 days and then processed and analysed using the histological 

stains mentioned above.  Microns refer to location of section when taken from 

scaffold.+ = positive staining, -= negative staining 

 

Table 3.4. ,Summary of Histological staining at 14 days MSC were cultured 

on scaffolds for 7 days and then processed and analysed using the histological 

stains mentioned above.  Microns refer to location of section when taken from 

scaffold.+ = positive staining, -= negative staining  
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Table 3.5 ,Summary of Histological staining at 28 days MSC were cultured 

on scaffolds for 7 days and then processed and analysed using the histological 

stains mentioned above.  Microns refer to location of section when taken from 

scaffold.+ = positive staining, -= negative staining  
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 The histological examination of the scaffolds was repeated 3 times.  The samples 

containing MSCs were sectioned at 7m and sections were stained at 200m intervals 

throughout the scaffold to determine if there was a homogeneous response throughout the 

scaffold.  The images presented are of the 28 day samples (experimental details 2.1.12-20). 

  The histological examination of the scaffolds (figures 3.7-3.11) reveal strong 

infiltration of cells throughout most of the scaffolds (as demonstrated by the H and E staining 

in figures 3.7d, 3.8d, 3.9d, 3.10d) and less observable infiltration in acrylic acid (figure 3.7e).  

The cells acted consistently throughout the scaffolds, with the notable production of GAG on 

the allyl alcohol scaffold at every measured physical point (ascertained by the positive alcian 

blue staining throughout, figure 3.10e) from 14 days onwards.  The allyl alcohol scaffold also 

showed positive Van Giesons stain (figure 3.10c) for collagen from day 7, but no positive 

staining for alizian red or Von Kossa which would denote calcification or a more generalized 

mineralization. 

 Conversely, the allyl amine-treated scaffold showed positive alizian red (figure 3.7b) 

and Von Kossa(figure 3.7a) at 28 days but not before, and no alcian blue staining.  There was 

however positive Van Gieson (figure 3.7c) staining at all time points. 

The hexane and acrylic acid treated scaffolds both showed positive staining for the 

Van Gieson staining (figure 3.9c), but no positive staining for GAG (figure 3.9e) or 

mineralization(figure 3.9 a and b).  The untreated control also showed a positive Van Geisons 

stain but no other positive staining for the other differentiation markers (figure 3.11 a-e). 
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Figure 3.7:Histological analysis of allyl amine-treated scaffolds. Scaffolds were cultured with MSCs 

for 28 days, histologically processed and stained with  (a) Von Kossa for mineralization, (b) Alizarin red 

for mineralization, (c) Van Geison for collagen, (d)H and E for cellular morphology and density and 

(e)Alcian blue for gylosaminoglycan.Blue arrows indicate areas of mineralisation and black arrow 

indicates area of dense cell population 

a b 

c d 
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Figure X: Allyl alcohol treated cultured with mesenchymal stem cells for 

 

 

 

Figure 3.8: Histological analysis of hexane-treated scaffolds. Scaffolds were cultured with MSCs for 

28 days, histologically processed and  stained with  (a) Von Kossa for mineralization, (b) Alizarin red 

for mineralization, (c) Van Geison for collagen, (d)H and E for cellular morphology and density and 

(e)Alcian blue for gylosaminoglycan.Black arrow indicated dense population of cells but no other 

staining present to show any differentiation 

a b 

c d 
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Figure 3.9: Histological analysis of acrylic acid-treated scaffolds. Scaffolds were cultured with 

MSCs for 28 days, histologically processed and  stained with  (a) Von Kossa for mineralization, (b) 

Alizarin red for mineralization, (c) Van Geison for collagen, (d)H and E for cellular morphology and 

density and (e)Alcian blue for gylosaminoglycan. 

a b 

c d 
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Figure 3.10: Histological analysis of allyl alcohol-treated scaffolds. Scaffolds were cultured with 

MSCs for 28 days, histologically processed and  stained with  (a) Von Kossa for mineralization, (b) 

Alizarin red for mineralization, (c) Van Geison for collagen, (d)H and E for cellular morphology 

and density and (e)Alcian blue for gylosaminoglycan (GAG).  White arrow indicated positive GAG 

staining 

a b 

c d 
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Figure 3.11 Histological analysis of untreated scaffolds. Scaffolds were cultured with MSCs for 28 

days, histologically processed and  stained with  (a) Von Kossa for mineralization, (b) Alizarin red 

for mineralization, (c) Van Geison for collagen, (d)H and E for cellular morphology and density and 

(e)Alcian blue for gylosaminoglycan.Blue arrows indicate areas of cells stained with eosin.   
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3.8 Histological analysis of Dual and triple modifications.   

 Triple 

Modification 

Dual 

Modification 

Hexane Allyl Amine Allyl Alcohol Untreated 

Control 

Alizian red Banded + area Mixed 
response 

- + - - 

Alcian Blue Banded + area Mixed 

response 

- - + - 

 

  

 

 

The scaffold carrying three modifications showed positive staining for Alcian blue, in 

an isolated area at one end of the scaffold while simultaneously showing positive Alizian red 

staining at the opposite end of the scaffold.  The central portion of the scaffold showed 

positive mineralization staining but in a fine honeycomb type presentation, with the 3 distinct 

areas in defined bands.  The dual modification did not show banded separation like the 

triple modification, and there was a mixed cellular response.  The single modifications 

showed positive Alcian blue staining on the allyl alcohol scaffold, positive Alizian red and 

Von Kossa staining on the allyl amine scaffold, and positive van Gieson staining on all of the 

scaffolds. 

  

Table 3.6: Histological analysis of dual and triple modifications.  Allyl amine and 

allyl alcohol modified spheres were compacted in two layers of the same scaffold (dual 

modification) and allyl amine, hexane and allyl alcohol were compacted into three 

layers of the same scaffold (triple modification).  The scaffolds were processed and 

stained using alizian red and alcian blue. + indicates positive staining found, -indicates 

no staining.  



 
 
 

 Page 97 
 
 

 

 

  

 

 

 

 

Figure 3.12 Images from dual and triple scaffold modifications. Allyl amine and allyl alcohol modified 

spheres were compacted in two layers of the same scaffold (dual modification) and allyl amine, hexane and allyl 
alcohol were compacted into three layers of the same scaffold (triple modification).  The scaffolds were processed 

and stained using alizian red and alcian blue. (a)Alcian blue stain of triple modification scaffold, (b) Alizian red of 

triple modification scaffold, (c) Alcian blue of dual modification, (d) Alizarin red of dual modification, (e) 
Alizarin red stain of single allyl amine modified scaffold, (f) Alcian blue stain of single allyl amine modified 

scaffold, (g) Alizarin red of single allyl alcohol modified scaffold, and (h) Alcian blue single modification allyl 

alcohol scaffold 

a b 

c d 

e f 

g h 
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3.9 Discussion of Plasma modifications 

 The material characterization data demonstrated that the transfer of the chemistries to the 

surfaces was successful, as a change in surface energy was clearly demonstrated by the water contact 

angle measurements (figure 3.2).  This alone testifies that the surfaces have changed, but the XPS data 

(figure 3.4 and table 3.2) confirms the change in the surfaces chemical composition. Together, with 

the SEM images which show no macro-topographical changes to the surfaces (figure 3.3), the 

evidence supports the hypothesis that the chemistries have been introduced in such a manner that they 

have been responsible for the phenotypical changes in the human MSCs.  

The true evidence of differentiation is in the direct staining of the products of the cells and 

this is supported by the histological analysis conducted (tables 3.3-3.5, and figures 3.7-3.11).  The 

presence of a collagen matrix was confirmed by consistent Van Gieson staining through the scaffold 

(figures 3.7-3.11).  Van Gieson stains collagen but does not differentiate between the different types 

of collagen.  Further histological examination of the scaffolds revealed an osteogenic response 

throughout the amine treated scaffold (figure 3.7), where positive Von Kossa staining was 

concentrated in nodules and seen in every sample point throughout the scaffold.  The Von Kossa stain 

targets calcified ECM using silver nitrate to react to the phosphate which accompanies calcium in 

mineralized matrix in an acidic environment
7
, and as mineralization of the ECM is one of the key 

markers of osteogenic differentiation it is often seen as a definitive test.  It does not however indicate 

that there is bone formation, and caution should be taken before making this statement, as the staining 

does not indicate the calcium to phosphate ratio, which is crucial when determining the mineral 

formation of bone.
7  

The alizarin red stain, which also stains mineralized matrix, was consistent with 

the Von Kossa stain (figure 3.7), showing patches of mineralized matrix in nodules thoughout the 

amine-modified scaffold. 
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The LDH assay (figure 3.6)demonstrated that all the modifications support cell expansion, but 

there is a plateau of cell numbers on the amine modification between 14 and 28 days.  There are a few 

possible explanations for this result, there is evidence as explained above that the cells are starting to 

differentiate by 28 days, and this could indicate that the cells present in the scaffold are starting to 

enter a differentiation phase, and are in a non-proliferating state. 

Another possible explanation is the transfer of nutrients within the scaffold becomes slower as 

the pores become blocked with cells and ECM, causing either some cell death or that the cells have 

become non-proliferative.  There is the possibility that both of these processes are occurring to some 

extent.  There is evidence in the histology at day 28 that the amine modification induces an osteogenic 

response from the cells, but there is also evidence that some of the pores are starting to fill with 

cellular material, a phenomena that is demonstrated further by the H and E staining (figure 3.7).  It 

may be that the flattened morphology of the cells on this scaffold (demonstrated by the cryo SEM) 

(figure 3.5) leads to a reduction in the nutrient flow through the scaffold.  This suggests that a 

bioreactor may be necessary; to increase cell number at 28 days and also increased osteogenic 

differentiation. 

  The histological examination of the scaffolds showed that the hydroxyl modification was the 

only modification to support chondrogenic differentiation, as there were patches of positive Alcian 

blue staining within the serial sections.  Alcian blue stains GAGs which are markers of 

chondrogenesis (figure 3.10).  The positive Alcian blue staining was supported by the cryo SEM 

visualization of cellular morphology (figure 3.5).  The cells on the scaffold appeared to be a rounded 

which is entirely consistent with chondrocytic behavior in vitro.
8
  The Van Gieson stain was 

consistent throughout the scaffold, highlighting the collagen, which was present throughout the 

scaffold.  Combined with the Alcian blue stain, and the absence of any Von Kossa or Alizian red 

staining, the data indicates material-induced chondrogenic differentiation associated with the hydroxyl 

modification. 
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There was no evidence of differentiation on the hexane modification (figure 3.8), consistent 

with published data, showing that this surface chemistry is a useful tool in the maintenance of stem 

cell phenotype, as the LDH assay demonstrated that the MSCs do proliferate on this modification, the 

cell number increasing between 14 and 28 days.
1, 9

  There is a statistically significant difference 

between the hexane-modified scaffolds and the allyl alcohol-modified scaffolds at 14 days.  This 

shows that the cells do not proliferate as quickly on the –CH3 surfaces as on the allyl-alcohol surfaces.  

The hexane surface, as stated previously, seems to maintain stem cell phenotype, and it may be that 

the reduced cell number means that the cells are unable to create enough signaling growth factors to 

permit differentiation in these circumstances, at the correct time point. Conversely, the allyl alcohol-

modified surface is conducive to enough cells binding in the initial period to create sufficient growth 

factors to differentiate when enough time has elapsed.  This phenomenon may be investigated further 

by analyzing the intergrin binding molecule concentrations. 

The evidence discussed above directly supports the hypothesis that the surface chemistry 

influences the lineage of MSCs when deposited on a 3D substrate (in this case an injectable PLGA 

bone regeneration system).  

 

 

3.10 Dual and triple modifications 

The data obtained from the modifications in single cultures was an invaluable insight into 

what could be possible from these modifications.  The possibility of osteochondral defect treatment is 

something that would have wide reaching impact in regenerative medicine.The data suggest that 

controlling the surface chemistry of a scaffold can influence the fate of the cells migrating onto it, and 

fitting that into a wider context,potentially this could give rise to an injectable system consistent with 

the goals set out in the introduction.  It could theoretically be used on many different types of 

material, and may not just be limited to the single effects seen.  There are several specific areas in the 
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muscleroskeletal system which could benefit from a material which could increase the rate and quality 

of the repair, but are not homogeneous in their origin.  The junctions between tissues, where they 

meet are often areas that do not heal well, but are multilayered so that a “one si e fits all” approach 

would be wholly inappropriate. 

The example of the osteochondral junction is an area that has had much investigation and 

little success in terms of repair, and could be greatly advanced by a smart material approach.  

Differing modifications spanning in bands across the same scaffold may well be a way to influence 

cells to form different populations, localizing the cell signaling and restricting it to certain areas 

within a scaffold.  This could have wide reaching applications as an approach, and merited further 

investigation within this thesis.   

The results from the single modification study, reported earlier, showed that the allyl amine 

modified scaffold lead to an osteogenic effect.  The hydroxyl groups provided by the allyl alcohol 

modification were highlighted as a chemical modification that could achieve a chondrogenic effect, 

and during this dual and triple modification study, the modifications were put together in one scaffold 

to ascertain if it was possible to achieve the differentiation of MSCs into two different populations 

within opposite ends the same scaffold.  To carry this idea further the hexane modification was 

utilized as a buffer in the central portion of the scaffold, as this modification deposited methyl groups 

which had previously been thought to retain MSC phenotype.
10

 

As the identification of the phenotypic changes in these samples were localized, it was 

inappropriate to do any techniques that would homogenize the sample (such as rtPCR) so the option 

for identification purposes on these samples was restricted to the histological examination of 

scaffolds, which proved to be an ideal technique to examine the markers of differentiation within the 

scaffolds.  The results showed that the dual scaffold with allyl amine and allyl alcohol modifications 

with no hexane layer showed no separation in the layers, and a mixed response from the MSCs (figure 

3.12).  There were no defined layers of staining when the Alcian blue and alizarin red stains were 

used.  However, when the scaffold contained a layer of methyl rich hexane modification, there were 
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clearly defined bands of positive Alcian blue and alizarin red staining (figure 3.12).  The area in-

between the allyl alcohol and the allyl amine groups showed a positive alizarin red staining, which 

showed a honeycomb type structure, which could have been indicative of the early stages of 

mineralization within the methyl-rich layer.  When comparing the scaffold to the natural 

osteochondral junction, the calcified cartilage layer is the layer that occurs between the bone and 

cartilage.  The migration of calcification through the methyl-rich layer in the scaffold could be 

occurring because the signals between the two separate populations on stem cells have produced a 

gradient conducive to the production of a calcified cartilage layer. 

While this is a very interesting result in terms of what is possible from a scaffold, and the 

parameters of localized surface chemistries, the plasma modifications are limited in their application, 

as it is difficult to achieve information about the concentration of the chemistries, and so difficult to 

characterize the surface enough to apply these modifications in a clinical setting.  To actually transfer 

these findings to a clinically applicable model, the chemistry of the surfaces would have to be 

considerably more defined, and for this reason the pursuit of a chemical modification that can be 

easily measured and applied is still a priority.  Wet chemical techniques are easier to monitor for 

consistency than using plasma, as the volume and concentration of the coating solution can be 

monitored accurately, where plasma is very difficult to monitor with any degree of accuracy. 
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Chapter 4: Silane Modifications on Glass Substrate 

Introduction 

The aim of this chapter and chapter five is to use different application techniques to 

modify the surface chemistry of PLGA, and translate the baseline 2D effects into a 3D 

system, to enhance the differentiation of MSCs within a 3D platform. 

The ultimate aim of the following result chapters is to enhance the efficiency of an 

injectable osteogenic regeneration system.  For this reason the focus has been on molecules 

that have been seen in previous work to instigate an osteogenic response from MSCs.  The 

literature, while supporting the osteogenic nature of the molecules used, does show that there 

is some conflict in the results reported by different studies
1,2

.  It is therefore necessary to 

determine and optimise the material variables that induce osteogenesis. 

  By highlighting a core set of chemical groups (CH3, COOH, NH2 and OH) which 

were applied to a 3D system by a plasma polymer deposition technique, then focusing on one 

group (NH2), which showed the most successful results for the purposes of osteogenic 

differentiation, we are refining the variables that will ultimately allow the application of the 

surface chemistries.  Using the –NH2 terminal group with a different application technique 

that allows greater control of the presentation of the terminal group allows us to explore 

variation in chain length.  The potential of presenting the amine terminal group in a different 

way, will lead on from the initial plasma treated data and will attempt to elucidate the 

mechanism of the response seen, thereby enhancing the consistency of the response. 

 Initially, the starting point of this work studied a polymer plasma deposition system 

that was able to deposit chemical groups onto a surface in a random fashion.  It was possible 
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with this technique to confirm the presence of different surface chemistries, but very difficult 

to determine the concentration of those terminal groups on the surface other than varying 

times of exposure, and power levels which were really dictated by what the underlying 

substrate could withstand before damage was incurred.  The main positive feature about this 

technique was the application of this plasma could be performed on a 3D substrate, but it was 

impossible to define the exact concentration of the amine groups on the surface.  Because of 

this, it would be very difficult to apply these chemistries to a bone regenerating material with 

the level of consistency required for the production of medical devices.  For this purpose they 

need to be applied in a quantifiable and defined way, which can be measured in situ as the 

surface is being modified. 

Silanes have been shown to be very versatile in this area
3
, and because the preparation 

technique is by wet chemistry rather than an ionized gas technique, there is more potential for 

developing an assay to measure the deposition of chemical groups onto the surface during the 

manufacturing process.  The technique that has been developed in this thesis is novel, using 

ninhydrin.  The use of ninhydrin to detect free amine is well established.
4
,
5
.  Ninhydrin 

solution binds to available amine sites and instigates a colour change, from yellow to dark 

purple, which is measurable spectroscopically.  The novelty in this application is to provide 

both qualitative and quantitative information from the same sample.  It was possible, at the 

endpoint of the manufacturing process, to react all the amine in the defined coating solution 

with ninhydrin to determine what concentration of the coating solution had been deposited 

onto the surface.  The amine on the surface was also stained purple (the qualitative 

confirmation of the deposition of the surface chemistries), but the concentration of the amines 

deposited was calculated by a simple deduction method: 

SC=OC-PCC 
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 Where the surface concentration (SC) is equal to the original concentration of the 

coating solution (OC) minus the post coating concentration of the coating solution (PCC).  

All these concentrations were determined by creating a standard curve of the specific amine 

linked silanes reacted with a ninhydrin solution and measured spectroscopically at 590nM.  

See appendix for details of standard curves, the derived equation and r
2
 values which support 

the validity of the assay. 

 The ability to obtain an absolute concentration on these samples, on 2D films or 3D 

spheres is a clear step forward in the characterization of the materials, which is not possible 

with the plasma polymer deposition technique.  This is one clear reason why this technique, 

providing all other things are equal, would be a superior technique to the plasma 

modification.  Another reason why this technique could be considered to be superior to 

plasma is the simplicity of the equipment required to coat the samples.  As this is a wet 

chemical technique, it is a simple technique to perform requiring less specialized equipment 

to conduct.  This would be a consideration if this technique was ever to be scaled up, and as a 

wet chemical technique, would have the potential to coat a whole porous scaffold (depending 

on the interconnectivity of the pores). 

 While the plasma modifications can provide a good screening method for applying 

chemistries to a surface and very good proof of principle techniques, a technique that is more 

defined, simpler to manufacture, reproduce and monitor would be required if this was to go 

any further, and the silane modifications could meet the parameters required for that to occur. 

 In this chapter a range of different silanes with the same terminal groups were used to 

modify a glass substrate.  This initial investigation was conducted to determine if there was 

any discernable difference between the modifications on a flat easily defined environment 

(i.e. glass), prior to the modification of a more complex degradable polymer which would 
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bring more variables into the experimentation.  The following investigation determines by 

what degree the length of the hydrocarbon chain presenting the terminal group affects the 

efficiency by which the silane coats the surface, surface topography and osteogenicity.  

MSCs and primary osteoblast-like cells were used to determine the osteogenicity of the 

surfaces. 

 

4.1 Surface characterization of silane modified 

glassusing AFM microscopy: 

 AFM Microscopy of the silane modified glass revealed differences in the maximum feature 

height of the surfaces.  The features of CL3 and CL4 (fig 4.1.2  and 4.1.3) were similar and showed a 

significant difference to untreated glass, they displayed a rough microstructure, which was quite 

uniform.  CL6 and CL7(fig 4.1.4 and 4.1.5) displayed a roughness with defined clumping of features, 

less uniform surface with less of the micro-structure roughness seen in CL3 and CL4.  CL11 (fig 

4.1.6) showed a macro-topographical landscape with similar micro-structural topographical roughness 

to CL3 and CL4.     
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Figure 4.1.1 AFM micrograph of untreated borosilicate glass. 12mm diameter glass 

coverslips were cleaned as stated in protocol.  AFM images taken from 5 areas per sample, 

representative image shown 

Figure 4.1.2 AFM image of borosilicate glass treated with 

CL3.  12mm diameter glass coverslips were cleaned as stated in 

protocol, and modified using oxygen plasma, then the CL3 silane.  

AFM images taken from 5 areas per sample, representative image 

shown 
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Figure 4.1.3 AFM micrograph or borosilicate glass treated with CL4. 

12mm diameter glass coverslips were cleaned as stated in protocol, and 

modified using oxygen plasma, then the CL4 silane.  AFM images taken 

from 5 areas per sample, representative image shown 

Figure 4.1.4 AFM micrograph of borosilicate glass treated with 

CL6.  12mm diameter glass coverslips were cleaned as stated in 

protocol, and modified using oxygen plasma, then the CL6 silane.  

AFM images taken from 5 areas per sample, representative image 

shown 
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Figure 4.1.5 borosilicate glass treated with CL7.  12mm diameter glass 

coverslips were cleaned as stated in protocol, and modified using oxygen 

plasma, then the CL7 silane.  AFM images taken from 5 areas per sample, 

representative image shown 

Figure 4.1.6 borosilicate glass treated with CL11.  12mm diameter glass 

coverslips were cleaned as stated in protocol, and modified using 

oxygen plasma, then the CL7 silane.  AFM images taken from 5 areas 

per sample, representative image shown 
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4.2 Ninhydrin assay of silane modified borosilicate glass: 

 

 

 

Ninhydrin assay demonstrated that there was no statistical difference between the 

concentration of the amine groups on CL3, CL4, CL6 or CL11, but there was a significant 

difference between these modifications and CL7 which was significantly lower than the other 

modifications.  (As defined by ANOVA to a 95% confidence interval) 
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Figure 4.2 Amine concentration determined by ninhydrin assay.Ninhydrin assay 

conducted to determine the concentration of amine groups on the surfaces.  Stars 

indicate statistically significant difference from other modifications (p<0.05) 
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4.3 Dynamic water contact angle of silane modified 

borosilicate glass (advancing angle): 

 

 

 

Water contact angle of the modified glass showed that there was a statistical 

difference between the control and the CL3, 4, 7 and 11, but there was no statistically 

significant difference between the control and CL6.  There was no statistically significant 

difference between CL3, 4 and 11, but there was a difference between these modifications 

and CL6 and 7. (As defined by ANOVA to a 95% confidence interval) 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

Control CL3 CL4 CL6 CL7 CL11

W
at

e
r 

co
n

ta
ct

 a
n

gl
e

 (
o
) 

* 

Figure 4.3: Advancing water contact angle of modified glass surfaces. Water 

contact angle was measured to determine changes in surface energy between the 

modifications  *p<0.05,  
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4.4 Interaction of silane modified surfaces with phosphate 

buffered saline solutions. 

 

The biomimetic characteristics of the silane modified surfaces were investigated, due to some 

reported interactions between calcium carbonate and phosphate solutions and certain self-assembled 

monolayer interactions. 
6
  The results indicated there was some biomimetic properties demonstrated 

by the surface treated with CL11 when it was left in contact with a phosphate buffered saline solution 

for 7 days.  Von Kossa stain was performed as an initial qualitative test to determine if there was any 

mineralisation on the surface.  This was evident so further more detailed investigation was warranted.  

X-ray microanalysis of the surfaces was conducted. 

Time point 7 day 14 day 28 day 

Concentration 

of PBS (%) 

0 25 50 100 0 25 50 100 0 25 50 100 

CL3 - - - - - - - - - - - - 

CL4 - - - - - - - - - - - - 

CL6 - - - - - - - - - - - - 

CL7 - - - - - - - - - - - - 

CL11 - + + + - + + + - + + + 

Untreated - - - - - - - - - - - - 

Table 4.1:  PBS interactions with modified glass. + indicated positive Von Kossa 

staining for mineralisation 
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Figure  4.4  Mineral deposition study, Images show surfaces exposed to differing concentrations of PBS for 7 days, then stained using von Kossa’s stain for mineralisation, positive 

staining (brown) shown on CL11. 
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X-ray microanalysis of surfaces after PBS exposure for 7 

days. 

The mineral deposition study demonstrated that the CL11 surface is capable of 

attracting deposits of phosphorous from PBS solutions, where as the other surfaces do not.  

The concentration of the PBS in the solution is not relevant at the concentrations tested as the 

phosphorous deposited did not vary significantly.  There was a significant difference between 

the untreated control and all three PBS concentrations at 7 days on the CL11 surface. 

There is also a significantly increased concentration of carbon on the CL11 treated 

surface when compared to the other treated surfaces.  This is likely to be theincreased 

hydrocarbon chain length of CL11.  The differences between the other carbon levels are not 

detectable with this technique. 

The probability of finding phosphorous on the CL11 modification when exposed to 

any concentration of PBS is very high.  This was calculated using the total number of spectra 

taken, divided by the number of positive spectra found on the samples(table 4.2).  50 spectra 

from each sample were used, taken from randomly selected areas, and 3 repeats were 

conducted. This way of interpreting the data shows the incidence of the presence of the 

phosphorous which is more meaningful than just using the averages of the spectra, when only 

a few spectra are positive for the element on the CL6 and CL7 modifications.   

When both analysis techniques are taken into account the presence of phosphorus on 

CL11 is shown to be significantly more concentrated than the other modifications, but also, 

and perhaps more meaningful, its presence is significantly more frequent. 
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Figure 4.9: X-ray analysis of elemental composition of Silane treated glass exposed to  

water for 7 days 

Figure 4.5: X-ray analysis of elemental composition of Silane treated glass in 25% 

PBS. Silane modified glasses were exposed to PBS for 7 days and then analysed using 

Xray analysis..  *p<0.05. 

 

Figure 4.6: X-ray analysis of elemental composition of Silane treated glass in 50% 

PBS. Silane modified glasses were exposed to PBS for 7 days and then analysed using 

Xray analysis..  *p<0.05. 

* 

* 
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Surface modification 

Water 25% PBS 50% PBS 100% PBS

Figure 4.7: X-ray analysis of elemental composition of Silane treated glass in 

100% PBS. Silane modified glasses were exposed to PBS for 7 days and then 

analysed using Xray analysis.  *p<0.05. 

Figure 4.8: Concentration of phosphorous on silane modified surfaces.  Surfaces 

were exposed to varying concentrations of PBS for 7 days.  *=p<0.05.  C is an untreated 

glass control. 
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Insidence of Phosphorous on surfaces: 

  C CL3 CL4 CL6 CL7 CL11 

Water 0 0 0 0 0 0 

25% 
PBS 0 0 0 0 0 0.43 

50% 
PBS 0 0 0 0 0.05 1 

100% 
PBS 0 0 0 0.45 0 0.9 

  Table 4.2: Probability of phosphorous occurring on the surfaces.  

Probability of phosphorous occurring on the glass surfaces after 7 days 

exposure to PBS was calculated  0 = no probability and 1= high probability. 
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The Von Kossa staining of the control untreated glass cultured with MSCs showed no 

positive staining at 7, 14 or 28 days.  The CL3, 4, 6, 7 all showed a small amount of 

mineralisation, but the CL11 showed an extensive degree of mineralisation at 7 days which 

was sustained through to 28 days..    

4.6 Human mesenchymal stem cell interactions with 

silane modified glass after 7, 14 and 28 days 

incubation, stained with Von Kossa’s stain for 

mineralisation. 
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Figure 4.9:  MSC on modified glass after 7 days incubation MSCs on modified glass after 7 days 

incubation and stained with Von Kossas stain for mineralisation, (a) unmodified glass, (b) CL3, (c) 

CL4, (d) CL6. (e) CL7 and (f) CL11. Blue arrow indicates strong mineralisation of surface 

a b 

c d 

e f 
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4.7: SEM investigation of Human mesenchymal stem cell 

interactions with silane modified glass after 7, 14 and 28 

days incubation. 

The SEM examination of  the hMSCs on the silane modified glass revealed that CL3 

and 4 demonstrated very flat cellular morphology, that formed a monolayer from 7 days that 

was maintained until 28 days. 

CL6 had many rounded cells, that appeared to reducein number by 28 days.  CL7 

showed a monolayer formation by 7 days that was maintained throughout the 28 days period. 

CL11 showed a monolayer formation at 7 days that was starting to produce a dense 

matrix by 14 days.  By 28 days the cells were completely covered by this dense matrix that 

appeared to have a pitted texture when examined at high magnification.  
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Figure 4.10: SEM images of human MSCs cultured on modified glass for 7 days.  MSC were cultured 

on the modified glasses for 7 days, fixed with glutaraldehyde, critical point dried, and coated with 

chromium.  Representative images were then taken using a field emission scanning electron microscope.  

(a) CL3, (b) CL4, (c) CL6, (d) CL7, (e) CL11* and (f) untreated control*Shown at higher magnification to highlight 

ECM detail.  

a b 

c d 

e f 
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Figure 4.11: SEM images of human MSCs cultured on modified glass for 14 days.  MSC were cultured 

on the modified glasses for 14 days, fixed with glutaraldehyde, critical point dried, and coated with 

chromium.  Representative images were then taken using a field emission scanning electron microscope.  (a) 

CL3, (b) CL4, (c) CL6, (d) CL7, (e) CL11 and (f) untreated control.  All images shown at varying 

magnifications to highlight details. 

 

a b 

c d 

e f 
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Figure 4.12: SEM images of human MSCs cultured on the modified glass for 28 days.  MSC 

were cultured on the modified glasses for 28 days, fixed with glutaraldehyde, critical point 

dried, and coated with chromium.  Representative images were then taken using a field 

emission scanning electron microscope.  (a) CL3, (b) CL4, (c) CL6, (d) CL7, (e) CL11 and (f) 

untreated control 

 

a b 

c d 

e f 
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4.8: Real time Polymerase Chain Reaction (rt PCR) 

investigation into human mesenchymal stem cell 

interactions with silane modified glass after 7, 14 and 28 

days incubation. 

MSC scultured on CL3 modified glass demonstrated a minor upregulation of 

ostepontin at 7 days but no other significant upregulations.   

MSCs cultured on CL4 showed upregulation of osteopontin at 7, 14 and 28 days 

along with an up-regulation of osteonectin at 7 days and expression of CBFA 1 at 14 and 28 

days.   

CL7 showed an upregulation of osteopontin, collagen 1, osteonectin at 7 days and 

sclerostin at 14 days.  The MSCs exposed toCL11 showed  upregulation of osteopontin, 

collagen I, Osteonectin and osteocalcin at 7 days and sclerostin and osteocalcin at 14 days, 

with osteocalcin being upregulated to a lesser degree at 28 days.  
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Expression of osteopontin in hMSC after 7, 14 and 28 days incubation with 
modification 
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Expression of collagen I in hMSC after 7, 14 and 28 days incubation with the 
modifcations 
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* 

Figure 4.14: Expression of osteopontin by human MSCs on modified glass at 7, 14 

and 28 days.  Scaffolds were processed for rt-PCR, and   N=6 and data normalised to b-

actin housekeeping gene.  Data was analysed using the ct method of analysis 

Figure 4.15: Expression of collagen I by human MSCs on modified glass at 7, 14 

and 28 days.  Scaffolds were processed for rt-PCR, and   N=6 and data normalised to 

b-actin housekeeping gene.  Data was analysed using the ct method of analysis 
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Expression of CBFA 1 in hMSC after 7, 14 and 28 days incubation with the 
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Figure 4.16Expression of CBFA 1 by human MSCs on modified glass at 7, 14 and 

28 days.  Scaffolds were processed for rt-PCR, and   N=6 and data normalised to b-

actin housekeeping gene.  Data was analysed using the ct method of analysis 

Figure 4.17: Expression of osteonectin by human MSCs on modified glass at 7, 14 

and 28 days.  Scaffolds were processed for rt-PCR, and   N=6 and data normalised to 

b-actin housekeeping gene.  Data was analysed using the ct method of analysis 
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Expression of osteocalcin in hMSC after 7, 14 and 28 days incubation with 
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Figure 4.19: : Expression of sclerostin by human MSCs on modified glass at 7, 

14 and 28 days.  Scaffolds were processed for rt-PCR, and   N=6 and data 

normalised to b-actin housekeeping gene.  Data was analysed using the ct 

method of analysis 

 

Figure 4.18: Expression of osteocalcin by human MSCs on modified glass at 7, 14 

and 28 days.  Scaffolds were processed for rt-PCR, and   N=6 and data normalised to 

b-actin housekeeping gene.  Data was analysed using the ct method of analysis 
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The MSC marker Stro-1 showed that the mesenchymal stem cells on the control 

untreated sample were still demonstrating a MSC phenotype after 28 days.  This combined 

with no expression of CBFA 1 and Osteocalcin confirms that the MSCs have not 

spontaneously differentiated.   

 CL3 demonstratedpositive collagen I and Stro-1 staining at 7 days, combined with 

negative CBFA1 and Osteocalcin.  By 14 days the CBFA 1 and Osteocalcin were mildly 

positive. 

 CL4 showed positive Collagen I staining at 7 days, no Stro-1 staining, and no CBFA 

1 or osteocalcin staining until 28 days. 

 CL6 only showed positive collagen staining throughout the 28 day period. 

 CL7 started to show positive CBFA 1 and Osteocalcin by 28 days but nothing at the 

earlier time points. 

 CL11 demonstrated a thick matrix that stained for osteocalcin and collagen I by 7 

days, showing an extensive and thick pitted matrix by 14 days with was maintained through 

to 28 days. 

  

4.9: Confocal microscopy investigation into human 

mesenchymal stem cell interactions with silane 

modified glass after 7, 14 and 28 days incubation. 
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Figure 4.20: Immunostaining of MSCs cultured on modified glass at 7 days.   MSC were 

cultured  on  silane modified glass for 7 days and stained with Stro-1, DAPI and Oregeon green.  

Blue staining shows nuclei, green staining shows actin filaments and red staining shows presence of 

stro-1 (a)untreated control, (b) CL3 (c) CL4, (d) CL6, (e) CL7 and (f) CL11 

a b 

c d 

e f 
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Figure 4.21: Immunostaining of MSCs cultured on modified glass at 7 days.   MSC were 

cultured  on  silane modified glass for 7 days and stained with collagen I, DAPI and Oregeon 

green.  Blue staining shows nuclei, green staining shows actin filaments and red staining 

shows presence of collagen I (a)untreated control, (b) CL3 (c) CL4, (d) CL6, (e) CL7 and (f) 

CL11I 

a b 

c d 

e f 
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Figure 4.22: Immunostaining of MSCs cultured on modified glass at 7 days.   MSC were 

cultured  on  silane modified glass for 7 days and stained with osteocalcin, DAPI and Oregeon 

green.  Blue staining shows nuclei, green staining shows actin filaments and red staining shows 

presence of osteocalcin (a)untreated control, (b) CL3 (c) CL4, (d) CL6, (e) CL7 and (f) CL11 

a b 

c d 

e f 
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The Von Kossa stain on the osteoblasts cultured on the silane modified surfaces 

revealed several effects of note.  There was a response seen on the CL3 and CL4 treated 

surfaces which lead to the formation of mineralised nodules by 7 days.  This response was 

maintained throughout the culture period of 28 days and restricted to the CL3 and CL4 

modifications.  A statistically insignificant number of nodules was seen on the other 

modifications which supported cell expansion throughout the culture period but with no 

observed change in phenotype during this time. 

 

  

4.10: The interaction of primary human osteoblast-

like cells with silane modified glass for 7, 14 and 28 

days, stained with Von Kossa’s stain for 

mineralisation 
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Figure 4.23 Osteoblast-like cells cultured on silane modified glass for 7 days.  Osteoblast like 

cells were cultured on the silane modified glass (and an untreated control) for 7 days, then stained 

with Von Kossa’s stain for mineralisation (a) untreated glass control, (b) CL3, (c) CL4, (d) CL6, (e) 

CL7 and (f) CL11. 

a b 

c d 

e f 
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Figure 4.24, Osteoblast-like cells cultured on silane modified glass for 14 

days.  Osteoblast like cells were cultured on the silane modified glass (and an 

untreated control) for 14 days, then stained with Von Kossa’s stain for 

mineralisation (a) untreated glass control, (b) CL3, (c) CL4, (d) CL6, (e) CL7 

and (f) CL11.. 

 

a b 

c d 

e f 
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Figure 4.25 Osteoblast-like cells cultured on silane modified glass for 28 days.  Osteoblast 

like cells were cultured on the silane modified glass (and an untreated control) for 28 days, 

then stained with Von Kossa’s stain for mineralisation (a) untreated glass control, (b) CL3, (c) 

CL4, (d) CL6, (e) CL7 and (f) CL11. 

 

a b 

c d 

e f 
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4.11:  Investigation of the number of nodules formed by 

primary human osteoblast like cells after 7, 14 and 28 days 

incubation with silane modified glass 

The number of nodules were counted visually, and the resulting data displayed in figure4.26.  

The nodule number is significantly reduced at 28 days on both CL3 and CL4, when compared 

to 14 day figures for the same modification analysed by Ttest, the results showed significant 

differences to the 95% confidence interval.  There is a significant increase between CL4 at 7 

days and CL4 at 14 days (to a 95% confidence interval), whereas there is a plateau between 7 

and 14 days on CL3.  
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Figure 4.26: Quantity of nodules formed on the modified surfaces. The 

nodules were  counted using a light microscope. (N=16) Seris 1,2 and 3 

correspond to 7, 14 and 28 days, results show avage and error bars show 

standards deviation from the mean 
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4.12:  Investigation of the size of nodules formed by 

primary human osteoblast-like cells after 7, 14 and 28 

days incubation with silane modified glass. 

 

 

 The size of the nodules also changed significantly (to a 95% confidence interval as 

determined by T test) between 14 and 28 days (figure 4.27).  These results could indicate that 

the size of the nodule could reach a critical mass before being released by the surface, and 

that this occurs between 14 and 28 days. 
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Figure 4.27: Size of nodules on the modified surfaces  Nodules on surfaces 

treated with CL3 and CL4 were measured after after 7,14 and 28 days results 

show avage and error bars show standards deviation from the mean. 
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4.13:  SEM investigation of primary human osteoblast like 

cells after 7, 14 and 28 days incubation with silane 

modified glass 

The SEM images above clearly demonstrate the nodule formation.  The nodules on 

CL3 and CL4 appear to be covered in extracellular matrix, which appears to mature as the 

incubation time progresses.  The higher magnification image (figure 4.31) shows a more 

detailed image of the extracellular matrix produced with what appears to be smoother 

mineralised areas.  This mineralisation is also demonstrated by the positive von Kossa 

staining from early in the culture period. (figure 4.23) 

The extracellular matrix is also produced in abundance on the CL11 surface, but in 

the absence of nodule formation to any significant degree (figure 4.32). 
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 Figure 4.28, SEM micrographs of Osteoblast-like cells cultured on silane 

modified glass after 7 days incubation. Osteoblast –like cells were isolated from 

human trabecular bone and seeded onto the silane modified surfaces. (a) untreated 

glass, (b) CL3, (c) CL4, (d) CL6 , (e) CL7 and (f) CL11. White arrows indicate 

nodules, green arrow indicates production of ECM on CL11 and red arrow shows 

very rounded cells on CL6 modification 

a b 

c d 

e 
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Figure 4.29, SEM micrographs of Osteoblast-like cells cultured on silane 

modified glass after 14 days incubation. Osteoblast –like cells were isolated from 

human trabecular bone and seeded onto the silane modified surfaces. (a) untreated 

glass, (b) CL3, (c) CL4, (d) CL6 , (e) CL7 and (f) CL11. White arrows indicate 

nodules, green arrow indicates production of ECM  

 

a b 

c d 

e f 



 

 Page 142 
 

  

 

 

 

Figure 4.30 SEM micrographs of Osteoblast-like cells cultured on silane modified 

glass after 28 days incubation. Osteoblast –like cells were isolated from human 

trabecular bone and seeded onto the silane modified surfaces. (a) untreated glass, (b) 

CL3, (c) CL4, (d) CL6 , (e) CL7 and (f) CL11. White arrows indicate nodules,  

a b 

c d 

e f 
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Figure 4.31:  SEM micrographs of Osteoblast-like cells cultured on silane 

modified glass after 7 days incubation. Osteoblast –like cells were isolated from 

human trabecular bone and seeded onto the silane modified surfaces Image taken from 

surface of nodule formed at 7 days incubation on CL3.  White arrows highlight the 

fiberous nature of the matrix, and green arrows show areas of smooth mineralisation 
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Figure 4.32: SEM micrographs of Osteoblast-like cells cultured on silane 

modified glass after 7 days incubation. Osteoblast –like cells were isolated from 

human trabecular bone and seeded onto the silane modified surfaces. High 

magnification image of cells after 7 days incubation on CL11.  Highlighting the 

output of matrix by the cells, while cells remain in monolayer. 
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4.14:  Real time Polymerase Chain Reaction (rtPCR) 

investigation of primary human osteoblast like cells after 

7, 14 and 28 days incubation with silane modified glass. 

There is a significant upregulation of sclerositin in the osteoblasts exposed to the CL3 

and CL4 modifications after 14 and 28 days.  The expression is less after 28 days and peaks 

at 14 day.  Osteopontin is expressed in cells exposed to CL7 at 14 days but not after.  

Osteocalcin was expressed in early time points forcells exposed to  CL3, CL4 , CL6 and CL7 

and was expressed later at 28 days for CL11.There was no significant expression of Collagen 

I by these cells, and there was no significant expression of CBFA1, but this may be expected 

as it is an early differentiation marker and a transcription factor with is usually only 

expressed during early in a cells differentiation.  Sclerostin, a maker of the osteocytic 

pathway is switched on in the cells exposed to CL3 and CL4-modified glass, which correlates 

with the samples having significant nodule formation.  
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Figure 4.33, Expression of osteopontin in human osteoblast like cells 

after 7, 14 and 28 day incubation with silane modified glass.  Osteoblast 

like cells were isolated from human trabecular bone and processed for rtPCR.  

Expression of osteopontin was measured and normalised to expression of -

Actin and unmodified scaffold.  Data shown is average expression and 

standard deviation from mean. *=p<0.10, **=p<0.05, ***=p=<0.01 

Figure 4.34, Expression of osteocalcin in human osteoblast like cells after 7, 

14 and 28 day incubation with silane modified glass.  Osteoblast like cells 

were isolated from human trabecular bone and processed for rtPCR.  Expression 

of osteopontin was measured and normalised to expression of -Actin and 

unmodified scaffold.  Data shown is average expression and standard deviation 

from mean.  *=p<0.10, **=p<0.05, ***=p=<0.01 

*** 
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Expression of osteonectin in osteoblast like cells after 7, 14 and 28 days 
incubation with the modifcations 

 

7 14 28

* 

Figure 4.35, Expression of osteonectin in human osteoblast like cells after 7, 14 

and 28 day incubation with silane modified glass.  Osteoblast like cells were 

isolated from human trabecular bone and processed for rtPCR.  Expression of 

osteopontin was measured and normalised to expression of -Actin and unmodified 

scaffold.  Data shown is average expression and standard deviation from mean.  

*=p<0.10, **=p<0.05, ***=p=<0.01 

 

Figure 4.37, Expresion of CBFA1 in 

human osteoblast like cells after 7, 14 

and 28 day incubation with silane 

modified glass.  Osteoblast like cells 

were isolated from human trabecular 

bone and processed for rtPCR.  

Expression of osteopontin was 

measured and normalised to expression 

of -Actin and unmodified scaffold.  

Data shown is average expression and 

standard deviation from mean.  

*=p<0.10, **=p<0.05, ***=p=<0.01 
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 Expression of collagen I in osteoblast like cells after 7, 14 and 28 days 
incubation with the modifcations 

7 14 28
* 

Figure 4.36, Expression of collagen I in human osteoblast like cells after 7, 14 and 

28 day incubation with silane modified glass.  Osteoblast like cells were isolated 

from human trabecular bone and processed for rtPCR.  Expression of osteopontin was 

measured and normalised to expression of -Actin and unmodified scaffold.  Data 

shown is average expression and standard deviation from mean.  *=p<0.10, 

**=p<0.05, ***=p=<0.01
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4.15:Discussion of silane modifications on glass. 

To determine if the hypothesis that presentation of a key terminal group was an important 

factor in influencing osteogenicity, baseline data was produced on a model substrate, in this case 

glass.  To examine the potential of chemical modifications the response was measured using both 

human MSCs and primary human osteoblast-like cells.  These cells make a suitable model to examine 

the initial phase of osteogenic differentiation as discussed in the literature review and described in 

detail in several studies
3, 1, 7,8,9, 10.

  The osteoblast model represents a more mature environment, further 

along the differentiation pathway
11

,
12

.
13

. 

The various chemistries influence the surface properties of glass when applied.  The material 

properties of the surfaces were changed significantly when the silanes were applied.  When the 
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Expression of Sclerostin in osteoblast like cells after 7, 14 and 28 days 
incubation with the modifcations 

7 14 28

* 

* 

Figure 4.38, , Expression of sclerostin in human osteoblast like cells after 7, 14 

and 28 day incubation with silane modified glass.  Osteoblast like cells were 

isolated from human trabecular bone and processed for rtPCR.  Expression of 

osteopontin was measured and normalised to expression of -Actin and unmodified 

scaffold.  Data shown is average expression and standard deviation from mean.  

*=p<0.10, **=p<0.05, ***=p=<0.01 
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variance of mean was examined using ANOVA (p=≥0.05) CL3, CL4 and CL11 showed a 

significantly different water contact angle when compared to the control, and to CL6 and CL7.  CL6 

and CL7 did not differ significantly from the control (figure 4.3). 

The ninhydrin assay for amine concentration (figure 4.2) demonstrated that its concentration 

on CL7 was significantly less than any of the other modifications when analysed using ANOVA 

(p=≥0.05).  This indicates that it may be the concentration of amine that is responsible for the change 

seen in the water contact angle. 

The difference seen on CL7 could be due to the amine chains clumping and not forming a 

complete self-assembled monolayer(SAM), which is less stable, and less likely to withstand the 

vigorous washing procedure.
14

 

The AFM images of the CL7 modification (figure 4.1.1-4.1.6)show the formation of clumps 

of matter which formrelatively (from a nanotopography standpoint) large ridges.  This pattern was 

also seen on the CL6 surface, but the concentration of the amine on CL6 was significantly higher than 

CL7.  The inconsistency of the results would be explained by a multiple layer clumping effect, where 

the silanes do not form full SAMs, and where some of the clumps are washed away by the vigorous 

washing procedure but some remain in situ, the clumps that remain in situ on CL6, would easily 

explain the raised concentration on the CL6, as equally the removal of the clumps via washing could 

explain the reduced concentration seen on CL7.  The SEM images on the modified glass showed no 

differences on the modified glass, which highlights that this topographical phenomenon is seen only at 

the nanoscale.  

The AFM highlights the differences in nanotopography, and maximum feature height of the 

surfaces (figure 4.1.7).  There is a statistically significant difference in the maximum feature height 

between the modified surfaces.  This could give some indication of the thickness of the silane 

coatings.  While the scale of the AFM images are unlikely to indicate directly that there is a difference 

between the silanes on an atomic scale, the marked difference in the maximum feature height of the 
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silanes does indicate that the longer chain silanes produce a thicker coating than the shorter chain 

lengths.  

Taken together the three characterization techniques (AFM, Ninhydrin and WCA) 

demonstrates clearly that the range of silanes used in this study successfully altered the glass 

substrate.  They created different surface topographies when examined on the nanoscale, in addition 

to the change in surface chemistry.  There was an increased concentration of amine groups after 

modification. Amine groups have been demonstrated in previous studies to show osteogenic 

capacity.
6,15

  There has been a large amount of research focused around the influence of surface 

nanotopography on stem cells and it has been demonstrated that there is an optimum surface 

topography for osteogenic differentiation.
16

  The key points from the studies that were successful in 

creating an osteogenic topography were that they created a surface that had an optimal surface 

roughness, but only when it was not ordered.  The experiment that highlighted this particularly well 

used a titanium surface with mechanically punched pits.  The pits were osteogenic when punched in 

an irregular grid formation, but showed no osteogenic potential when they were in a regular grid 

formation If this topography could be achieved successfully, and consistently using a silane coating, it 

would be a step forward in the area of bone regeneration.  

Mineral deposition on silane treated glass 

 The mineralization process is one of the key progressions of the bone regeneration process.  

The development of biomimetic surfaces attempts to fulfill this important step in the regeneration 

process by chemical interactions where a material can self-mineralize.  The ability of some SAMs to 

cause the nucleation of minerals on surfaces offers a route to accelerate the osteogenic process, and 

cause early mineralisation
6
.  This phenomenon was described by Towoefe et al where the SAM in 

question, while not produced from the same chemical used in this study, demonstrated an extended 

carbohydrate chain similar in length to the long chain amines used in this work. To demonstrate the 

ability of the surfaces produced for this study to self-mineralize, the surfaces were exposed to 

different concentrations of PBS for 7 days.  The resulting surfaces were then examined using a Von 
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Kossa stain for mineralization (figure 4.4), and X-ray microanalysis (figures 4.5-4.8) to show the 

elemental composition of the surfaces.  After 7 days the CL11 modification showed positive 

mineralization of the surfaces, demonstrated by positive Von Kossa staining at 7 days, and the 

abundant presence of phosphate detected with X ray analysis (figures 4.5-4.8).  The presence of 

phosphate in hydrogel has previously been shown to induce an osteogenic response
17

 so the ability of 

the surface of CL11 to attract and bind phosphorous could be indicative of this type of event.  The 

probability of the surface modification on CL11 being the cause of the phosphate detected using X-

ray microanalysis was calculated in table 4.2, which suggested that the collelation was statistically 

significant(p≥0.95)  None of the other chain lengths showed this effect. 

Mesenchymal stem cell response to silane modified glass 

 The cellular response to the silane-modified glass was examined using rtPCR to determine the 

expression of genes at defined time points (figures 4.14-4.19).  The cells were examined for the 

expression of several markers of stem cell differentiation that are key to the osteogenic pathway.  

CBFA1 was the first gene to be examined, as it is considered to be the corner pin of the osteogenic 

differentiation process
18,19

.
  
It is only present in the early phases of differentiation and for a relatively 

short period of time
19

.  There was no positive expression of CBFA1 on CL3, CL7 or CL11 at any of 

the time points tested, but there was up regulation on CL4 and 6 at 28 days.  There was an expression 

of osteonectin which is a key protein in the osteogenesis process 
,20, 21,22  

at 7 days by the cells on CL4, 

CL6 CL7 and CL11, the most prominent response seen with CL7 and CL11 which were statistically 

significant when analysed by ANOVA (p≤0.05).  There was a statistically significant difference in the 

expression of osteopontin, which also plays a role in osteogenesis 
20

, on CL7 and CL11 at 7 days, and 

osteocalcin (a vital mineralization protein)
23,24,

was expressed at 7 and 14 days on CL11, which was 

greatly reduced at 28 days.  Sclerostin, a marker of embedded osteocytes and so a clear indicator of 

osteogenic maturity
,25,26,27

 was expressed by CL11 at 14 days.  Taken together, these results suggest 

that osteogenic markers are present consistently on the CL11 sample.  The absence of CBFA1 on 

CL11 may be due to the initial time point (7 days) being too late to pick up an initial burst of 

expression following initial contact.  It is a gene that may only be expressed for a short period of time. 
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The expression of osteonectin, osteopontin and osteocalcin all indicate that the cells are capable of 

producing these proteins, which are heavily linked to osteoblastic activity.  The results show that the 

expression of these genes drops out after 7-14 days, and there is then a positive expression of the 

osteocyte marker sclerostin on CL11 at 14 days.  This shows that the cells on CL11 have the capacity 

to differentiate into osteocytes, which is the next phase of osteogenic differentiation after the cells 

have passed through the osteoblast phase.  For the cells to achieve this status, they must become 

embedded in a thick ECM, composed of osteocalcin, and collagen amongst other proteins.
25,26

 

 Examining the cells using SEM to determine their morphology and matrix production was 

performed to provide more evidence of differentiation.(Figures 4.10-4.13). The 7 day time point 

revealed that CL3, CL4 and CL7 all had very flat adhered cells.  Cells were very rounded in 

morphology on CL6 but flat and adhered and producing many proteinacious extrusions on CL11.  By 

14 days the cell numbers on CL6 were reduced, CL3 and CL4 and CL7 were all demonstrating a very 

flat monolayer of cells, and CL11 was showing a dense formation of matrix over a monolayer of very 

flat adhered cells.  By 28 days, there were even fewer cells on CL6, but CL3, CL4 and CL7 were 

demonstrating flat cells with some protein production.  The CL11 sample was covered in a dense 

matrix that seemed to be becoming pitted in its appearance, with the cells that were completely 

obscured by ECM.  This is verified by the PCR data, showing the upregulation of matrix genes on 

CL11, and then the expression of sclerostin which could only be produced if the cells were embedded 

in a thick ECM, which completely encased the cells. 

 The presence of the ECM was confirmed by the SEM images of the samples. Identification of 

the presence of osteogenic markers by confocal microscopy confirms the composition of the ECM 

which was produced by the cells.  One of the many advantages of confocal microscopy is that cells 

and proteins can be stained fluorescently when in multiple layers.  3D matrix can be scanned in layers 

and an image of the whole sample can be produced, rather than the SEM which is restricted to just the 

top.   
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Confocal microscopy was also used to detect a marker of MSC plasticity, Stro-1 (figures 

4.20-4.22).  This marker is a way of identifying undifferentiated cells, and its absence in these 

samples only occurs if the cells have already begun differentiation
28

,
29

.  If Stro-1 is absent and other 

positive markers of osteogenic differentiation such as CBFA1 and Osteocalcin are present, then it is 

likely that the cells are committed to an osteogenic fate. 

The MSCs on the untreated control expressed Stro-1 at 7, 14 and 28 days.  This, in 

conjunction with the absence of any of the osteogenic markers, confirms that the MSCs have not 

spontaneously differentiated.  The confocal staining of the modified glass showed that Stro 1 was 

expressed at 7 days, but not at 14 days and there was positive staining for Osteocalcin and CBFA1.   

CL4 modified samples showed positive collagen 1 staining at 7 days but not Stro-1, although no 

differentiation markers were expressed until 28 days.  CL6 showed positive Collagen I staining 

throughout the 28 day period, but was not positive for any of the osteogenic markers.  CL7 showed 

some positive CBFA1 staining at 28 days, but nothing before that time point, so this could not be 

described as a truly osteogenic response.  The most interesting result, however, came from the CL11 

surface.  The CL11 sample showed matrix by 7 days which was positive for osteocalcin and collagen, 

and by 14 days was showing a thick, pitted morphology.  This response was maintained through to the 

28 day time point, and is a good osteogenic response from the cells. 

The Von Kossa stain for mineralization was used to determine the extent of mineralization in 

the samples.  This process is well established and has been used in many studies to determine the 

extent of mineralisation
11

,
22

.  It should however not be used as a definitive test for the production of 

bone, and if possible there should be other confirmatory tests if there is a positive result.
30

 The 

samples showed some positive staining on all of the modifications, however it was more marked on 

the CL11 sample.  The control untreated glass showed no positive staining. 

The results all support the hypothesis that CL11-modified surfaces modification is a powerful 

stimulant to MSCs, and is able to induce an osteogenic response from them in the absence of any 

exogenous growth factors.  There are a few different possibilities that could explain the root cause of 
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that osteogenic differentiation.  This surface has several osteogenic properties, including topography 

which possesses the parameters that induce an osteogenic response, as confirmed by AFM 

microscopy including the correct size of feature, which appears to have a very powerful effect on stem 

cells.
31,16,32,33

 

The abundant availability of CL11 amine groups, which as discussed in the introduction is 

inductive of osteogenesis
3
.  The ability of the CL11 surface to harness phosphorous

6
, in a biomimetic 

way may well be contributing to the availability of minerals to the cells.  It could be that in their 

productive osteoblastic state the cells require greater quantities of the minerals that are available more 

readily on the CL11 surfaces.   

It may be that the ability of CL11 surfaces to procure minerals and make them available 

accelerates the process of osteogenic differentiation and eventually allows the it to progress to the 

next phase, osteocytic differentiation.  This is demonstrated quite clearly by the expression of 

sclerostin at 14 days, with thick matrix production, and it could be that the pits formed in this matrix 

is the start of rudimentary re-modeling.  For future work, it would be very interesting to study the 

MMPs as markers of re-modeling and to extend the study further in time, to 2 months.   

Primary human osteoblastlike-cells on silane modified glass 

 The primary human osteoblast-like cell model used represents an advanced stage in the 

osteogenic pathway.  Examining how these cells interact with the modified surfaces are an attempt to 

demonste how mature cells will react to the surface modifications, giving an impression of what the 

longer term effects may be.  There was an interesting response observed at the first time point, Von 

Kossa staining (figures 4.23-4.25) showed mineralized nodules formation on the CL3 and CL4 

surfaces.  This reaction was not seen on the other surfaces, where the cells remained in monolayer 

throughout the 28 day period.  The nodule formation on CL3 and CL4 could be explained by the 

progression of the osteogenic differentiation of the cells.  Primary human osteoblasts have been 

shown to form nodules
12

 when in 3D culture on bioactive glass, but only in the presence of exogenous 

growth factors.  This stimulus in this incidence could have come purely from the material.   
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 The formation of nodules on the CL3 and CL4 surfaces was confirmed by SEM, and Von 

Kossa stain.  As the cells used in this model were already capable of producing ECM, all of the 

samples including the untreated glass control stained positive for mineralization (Von Kossa) at 7 

days, however the cells on the untreated control were less densely mineralized by 28 days than the 

silane treated samples.  The cells on CL6, CL7 and CL11 all retained the ability to produce matrix 

which became mineralized.   

 The SEM of surfaces with osteoblasts revealed that there was an extensive production of 

ECM on the CL3 and CL4 samples when the cells were clumped together in the nodule (figure 4.28-

4.32).  The ECM appears to mature throughout the 28 day period and goes from an obvious fibrous 

formation of proteins at 7 days to a more dense, mineral-covered matrix at 14 days and by 28 days the 

cells appeared to be embedded in this matrix. 

 The size of the nodules (figure 4.27) was shown to increase over a 14 day period and then 

significantly decrease.  This occurrence when combined with the statistically significant drop in total 

number of nodules (figure 4.26) at 28 days could be indicative of the nodules reaching a critical size 

and then detaching from the surface.  This would warrant further investigation as a material that could 

product and then release these boney nodules might have interesting applications for filling bone 

defects. 

 The PCR figures (4.33-4.38) of these samples revealed an interesting response.  All data were 

normalized to the untreated glass control so the expression shown was above the baseline of normal 

osteoblast activity on glass.  The osteogenic markers are only above the baseline activity at 7 days and 

not statistically significant after this time point.  Interestingly on CL3 and CL4 the expression of 

sclerostin was notable at 14 and 28 days.  As this is a marker specifically for osteocytic activity, this 

along with the reduction of normal osteoblastic markers after 7 days is indicative of the further 

differentiation of the cells along the osteogenic pathway.  All the results are consistent with this 

hypothesis. 
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 Interestingly CL11 does not seem to have the same powerfully osteogenic effect on the 

osteoblasts as it does on human MSCs.  CL11 does however, seem to maintain the osteoblasts and 

allows them to form a mineralized matrix; the cells were shown by SEM to produce large quantities of 

ECM.  The Von Kossa staining shows that mineralization is occurring, on this sample, but there are 

no nodules present.  It has been documented earlier that the CL11-modified glass surfaces have the 

ability to attract phosphorous (see PBS interaction figure 4.4, and hMSC data figures 4.5-4.8).  In this 

experiment, because the cells are mature osteoblasts, they are covered in minerals such as 

phosphorous and calcium.  It could be that the cells are “captured” by the surface, and that the 

minerals on the surface of the cells are used to adhere the cell to the surface in an irreversible way.  

This would explain why the CL11 samples are not forming nodules, as the cells are unable to migrate.  

CL6 and CL7 have not shown any significant osteogenic potential in any of the tests, and were not 

shown to produce any significant matrix.  The cells on CL6 were very rounded until between 7 and 14 

days at which point they started to form a monolayer.  This delayed adhesion could be responsible for 

the lack of osteogenic markers seen from this modification. 

 The differences observed between the chain lengths and their osteogenic effects could be 

attributed to several things.  The procurement of minerals by CL11, the topography that is induced at 

the nanoscale and the mimicry of the ECM by the chemical modification could be key factors in these 

results. 

 The results indicate that CL11 could be a powerful inducer of osteogenic differentiation, and 

would accelerate the differentiation of MSCs, in the absence of exogenous growth factors.  In 

osteoblasts, while CL11 maintains the production of matrix, it does not allow the already mature cells 

to continue down the osteogenic pathway to the osteocytic phenotype, but if the initial interaction 

with the surface is at the MSC stage, differentiation can be induced right along the osteoblastic 

lineage to osteocytic fate.  This could be explained by the hypothesis mentioned earlier where the 

mineralized surfaces of the cells can be chemically bound to the CL11 surface.  To define this with a 

time line of events, it appears that mineralization of the surface happens initially and quite rapidly 
6
, 

before the cells adhere to the mineralized surface.  If the cells have minerals on the surface (as in the 
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osteoblast-like cell model) this time line initially is disrupted and the cells captured in the initial 

mineralization phase, hindering migration (and their ability to form nodules). To extend this study 

further, this hypothesis could be tested by looking at the movement of the cells across the surface.  

Time lapse imagery of the cells over a 7 day period may answer this question, but ideally an intergrin 

binding profile could be examined in more detail to determine the factors in play at the initial 

adherence. 

 In the instance of the CL3 and CL4 nodule formation, it is likely that it is the amine rich 

surfaces and the topography that instigates the formation of nodules.  The surfaces do not have the 

same self-mineralizing properties and so the phenomenon can’t be related directly to mineral 

deposition on the surfaces.  It is either the topography or chemistry which instigates this process, not 

the presence of phosphorous alone. 

1. Phillips, J.E., Petrie, T. A, Creighton, F.P. & García, A.J. Human mesenchymal stem 

cell differentiation on self-assembled monolayers presenting different surface 

chemistries. Acta biomaterialia 6, 12-20 (2010). 

2. Curran, J.M., Pu, F., Chen, R. & Hunt, J. A. The use of dynamic surface chemistries to 

control msc isolation and function. Biomaterials 32, 4753-60 (2011). 

3. Curran, J.M., Chen, R. & Hunt, J. A. Controlling the phenotype and function of 

mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. 

Biomaterials 26, 7057-67 (2005). 

4. Rahman, N. & Kashif, M. Application of ninhydrin to spectrophotometric 

determination of famotidine in drug formulations. Il Farmaco 58, 1045-1050 (2003). 

5. Rahman, N. & Azmi, S.N. Spectrophotometric method for the determination of 

amlodipine besylate with ninhydrin in drug formulations. Farmaco 56, 731-5 (2001). 

6. Toworfe, G.K., Bhattacharyya, S., Composto, R.J., Adams, C.S. & Shapiro, I.M. 

Effect of functional end groups of silane self-assembled monolayer surfaces on apatite 

formation , fibronectin adsorption and osteoblast cell function. 26-36 (2009) 7.

 Guo, L. Kawazoe,N.,& Hoshiba,T. Osteogenic differentiation of human mesenchymal 

stem cells on chargeable polymer-modified surfaces. Journal of biomedical materials 

research. Part A 87, 903-12 (2008). 

8. Hoshiba, T., Kawazoe, N., Tateishi, T. & Chen, G. Development of stepwise 

osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell 

functions. The Journal of biological chemistry 284, 31164-73 (2009). 



 

 Page 158 
 

9. Kundu, B. & Kundu, S.C. Osteogenesis of human stem cells in silk biomaterial for 

regenerative therapy. Progress in Polymer Science 35, 1116-1127 (2010). 

10. Chen, Y., Shao, J.-Z., Xiang, L.-X., Dong, X.-J. & Zhang, G.-R. Mesenchymal stem 

cells: a promising candidate in regenerative medicine. The international journal of 

biochemistry & cell biology 40, 815-20 (2008). 

11. Ferrera, D. Poggi, S ., Biassoni, C., & Dickson, G.R. Three-dimensional Cultures of 

Normal Human Osteoblasts: Proliferation and Differentiation Potential In Vitro and 

Upon Ectopic Implantation in Nude Mice. 30, 718-725 (2002). 

12. Gough, J.E., Jones, J.R. & Hench, L.L. Nodule formation and mineralisation of human 

primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 25, 

2039-2046 (2004). 

13. Gough, J.E., Notingher, I. & Hench, L.L. Osteoblast attachment and mineralized 

nodule formation on rough and smooth 45S5 bioactive glass monoliths. Journal of 

biomedical materials research. Part A 68, 640-50 (2004). 

14. Schwartz, D.K. Mechanisms and kinetics of self-assembled monolayer formation. 

Annual review of physical chemistry 52, 107-137 (2001). 

15. Curran, J.M., Chen, R. & Hunt, J. A The guidance of human mesenchymal stem cell 

differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 

27, 4783-93 (2006). 

16. McNamara, L.E. RJ McMurray, MJP Biggs,& Dalby.M. Nanotopographical control of 

stem cell differentiation. Journal of tissue engineering 2010, 120623 (2010). 

17. Dadsetan, M. Giuliani,M.,& Wanivenhaus,F. Incorporation of phosphate group 

modulates bone cell attachment and differentiation on oligo(polyethylene glycol) 

fumarate hydrogel. Acta biomaterialia 8, 1430-9 (2012). 

18. Makita, N. Suzuki,M., Asami,S., Takahata,R.,& Kohzaki,D.. Two of four alternatively 

spliced isoforms of RUNX2 control osteocalcin gene expression in human osteoblast 

cells. Gene 413, 8-17 (2008). 

19. Huang, L., Teng, X.Y., Cheng, Y.Y., Lee, K.M. & Kumta, S.M. Expression of 

preosteoblast markers and Cbfa-1 and Osterix gene transcripts in stromal tumour cells 

of giant cell tumour of bone. Bone 34, 393-401 (2004). 

20. Nakase, T., Takaoka,K., Hirakawa, K.,&  Hirota, S. Alterations in the expression of 

osteonectin, osteopontin and osteocalcin mRNAs during the development of skeletal 

tissues in vivo. Bone and mineral 26, 109-22 (1994). 

21. Koblinski, J.E., Wu, M., Demeler, B., Jacob, K. & Kleinman, H.K. Matrix cell 

adhesion activation by non-adhesion proteins. Journal of cell science 118, 2965-74 

(2005). 



 

 Page 159 
 

22. Mathews, S., Bhonde, R., Kumar, P. & Totey, S. Extracellular matrix protein mediated 

regulation of the osteoblast differentiation of bone marrow derived human 

mesenchymal stem cells. Differentiation 1-8 (2012). 

 23. Theyse, L.F.H., Mol, J. A, Voorhout, G., Terlou, M. & Hazewinkel, H. A W. The 

efficacy of the bone markers osteocalcin and the carboxyterminal cross-linked 

telopeptide of type-I collagen in evaluating osteogenesis in a canine crural lengthening 

model. Veterinary journal 171, 525-31 (2006). 

24. Harwood, P.J. ( ii ) An update on fracture healing and non-union. Orthopaedics and 

Trauma 24, 9-23 (2010). 

25. Bragdon, B. Moseychuk,O. Saldanha,S.,& King,D.. Bone morphogenetic proteins: a 

critical review. Cellular signalling 23, 609-20 (2011). 

26. Bohner, M., Galea, L. & Doebelin, N. Calcium phosphate bone graft substitutes: 

Failures and hopes Journal of the European Ceramic Society. 32, 2663-2671 (2012). 

27. Loots, G.G. Kneissel,M., Keller,H., Baptist,& M. Sclerostin in Van Buchem disease 

Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van 

Buchem disease. Genome 15: 928-935  (2005). 

28. Kassem, M. Mesenchymal Stem Cells: Biological Characteristics and Potential 

Clinical Applications. Cloning and Stem Cells 6, 369-374 (2004). 

29. Dominici, M. Le Blanc,K. Mueller,I.,& Slaper-Cortenbach,I .Minimal criteria for 

defining multipotent mesenchymal stromal cells. The International Society for Cellular 

Therapy position statement. Cytotherapy 8, 315-7 (2006). 

30. Bonewald, L.F. Harris, S.E.,  Rosser, J.,& Dallas, M.R. von Kossa staining alone is not 

sufficient to confirm that mineralization in vitro represents bone formation. Calcified 

tissue international 72, 537-47 (2003). 

31. Wilkinson, A. Meek R.M.D. Biomimetic microtopography to enhance osteogenesis in 

vitro. Acta biomaterialia7, 2919-25 (2011). 

32. Sjöström,T., Dalby, M.J. Hart,A., Tare,R., Oreffo,R.O.C.,& Su.B. Fabrication of 

pillar-like titania nanostructures on titanium and their interactions with human skeletal 

stem cells. Acta biomaterialia 5, 1433-41 (2009). 

33. Dalby, M.J., McCloy, D., Robertson, M., Wilkinson, C.D.W. & Oreffo, R.O.C. 

Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 

27, 1306-15 (2006).  

 

  



 

 Page 160 
 

Chapter 5: Mesenchymal Stem Cell Response to Silane 

Modification of PLGA Films and Injectable 3D System 

 Transferring the silane-coating technology from a flat glass surface onto a 2D 

polymer surface is an important step for the successful translation of surface modifications to 

a clinical setting.  Ultimately, the goal is to achieve the same the optimised behaviour 

established on the glass surfaces on a PLGA sphere, and thin in the 3D system described in 

the plasma modification chapter.  While this is our objective, it is by no means a certain 

proposition, as the surface energy of PLGA is very different to that of glass and this step 

requires more investigation before it can be taken to the 3D platform.  Therefore initial tests 

will be conducted on flat PLGA films.  There is a precedent applying the chemistries in a 2D 

system before attempting any 3D modifications, and most successful studies take this route of 

investigation.
1
 

 This chapter will detail the translation of modifications onto PLGA films, steps taken 

to optimise the deposition of chemical groups and the associated cell responses.  This will be 

done using an in vitro MSC model.  Once the parameters are defined and explored, the 

surface modifications will be applied to PLGA spheres and incorporated into the 3D system. 

 PLGA has different material properties to glass and is technically challenging to 

process, so for this reason some techniques used on the glass surfaces in chapter 4, are 

unsuitable for the samples generated in this chapter.  It is not possible, for example to use 

SEM on the cells on the PLGA film, as the film becomes too disrupted in the process 

required to process the cells, therefore different techniques are sometimes deployed.  The 

base line data seen in the silane-modified glass chapter, demonstrated significantly modified 
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cell responses when. The challenge now is to see if the modifications are applicable to the 

very different PLGA surfaces. 
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5.1: AFM microscopy of flat PLGA films 

 

 

 

 

The maximum feature height was calculated using the maximum peak on 50 nm area at 5 

separate areas on a sample.  This was repeated 3 times.  The data was analysed using 

ANOVA to determine significant differences in the variance of mean (p=<0.95).  CL11 had a 

significantly greater maximum peak height than all the other modifications, indicating that 

the coverage of the silanes was significantly increased on CL11, and implying that the 

topography of CL11 is significantly different. 

The examination of the PLGA films with AFM showed a topographical difference between 

the different modifications.  CL3 and CL4 had a similar morphology of surface features to 

each other, being a similar height, and pattern.  There was a well dispersed and relatively 
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Figure 5.1: Maximum feature height of silane modified surfaces. Measured using 

AFM.  5 areas were measured on each sample (n=3) Error bars indicate the standard 

deviation and * indicates statistical significance (p<0.05) 
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uniform nanotopography that appeared to stay uniform in its coverage across the entirety of 

the samples.  CL6 and CL7 demonstrated a more clumped macrotopography, where the 

coverage was less uniform and more nodular in its presentation.  CL11 was interesting 

because it combined the two morphologies, showing a macrotopography that was covered in 

a nanotopography similar to that of  seen in the CL3 and CL4 modifications.  
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Figure 5.2: AFM micrograph of untreated PLGA film. 12mm diameter 

glass coverslips were cleaned as stated in protocol and spin coated with 

PLGA.  AFM images taken from 5 areas per sample, representative image 

shown 

 

Figure 5.3: AFM micrograph of CL3 treated PLGA film. 12mm diameter 

glass coverslips were cleaned as stated in protocol and spin coated with PLGA, 

then modified with CL3.  AFM images taken from 5 areas per sample, 

representative image shown. 
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Figure 5.4: AFM micrograph of CL4 treated PLGA film. 12mm diameter glass 

coverslips were cleaned as stated in protocol and spin coated with PLGA, then 

modified with CL4.  AFM images taken from 5 areas per sample, representative image 

shown. 

Figure 5.5: AFM micrograph of CL6 treated PLGA film. 12mm diameter glass 

coverslips were cleaned as stated in protocol and spin coated with PLGA, then modified 

with CL6.  AFM images taken from 5 areas per sample, representative image shown. 
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Figure 5.6: AFM micrograph of CL7 treated PLGA film. 12mm diameter glass 

coverslips were cleaned as stated in protocol and spin coated with PLGA, then 

modified with CL7.  AFM images taken from 5 areas per sample, representative image 

shown. 

 

Figure 5.7: AFM micrograph of CL11 treated PLGA film. 12mm diameter glass 

coverslips were cleaned as stated in protocol and spin coated with PLGA, then modified 

with CL11.  AFM images taken from 5 areas per sample, representative image shown. 
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5.2: Ninhydrin Assay of flat PLGA films 

 

 

 

 

The concentration of amine on the surfaces was measured using the ninhydrin assay.  CL11 

demonstrated a significantly higher concentration of amines when compared to the other 

modifications (p=>0.05).  CL3, CL4, C6 and CL7 showed no statistically significant 

differences in the variance of their means.  
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5.3: Dynamic Water Contact Angle of flat PLGA films 

The advancing angle of the dynamic water contact angle was used as a representation 

of the actual surface energy that cells are exposed to when they are seeded on a surface.  This 

is more relevant to the experiment than the receding angle, which is not shown in this chart. 

The statistical analysis showed that there were significant differences between all of 

the modifications and the control (the stars indicate degree of difference) and significant 

differences between CL3 and CL6, and CL6 and CL11 (p=>0.05). 

There is an inverse linear correlation between the chain length/number of carbon 

atoms in the chain of the silane molecule and the advancing water contact angle (r
2
=0.9645) 

which is above the 95% confidence interval and so statistically significant.    
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The advancing angle of the dynamic water contact angle was used as a  
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Figure 5.9:  Dynamic water contact angle The average advancing angle across the mid point 

of the surface was measured (n=6)  Stars indicate degree of difference between untreated 

control and CL3 and 4 and CL6 and 7 and CL11. Error bars indicate standard deviation. 
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Figure 5.10: Correlation between dynamic water contact angle and number of carbon 

atoms in hydrocarbon chain of silane molecule.  Results were plotted as a correlation and 

R
2
 value showed a significant correlation. 
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5.4: SEM microscopy of flat PLGA films 

The SEM images of the PLGA films show a lack of features on the macroscale, apart 

from on the CL11 sample, which shows a disordered cracked structure on part of the sample.   

  

a b 
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Figure 5.11: SEM of modified PLGA films.  Films were  modified with (a) Untreated 

PLGA(b),CL3 (c),CL4 (d),CL6 (e) CL7and (f) CL11.  White arrows indicate macroscopic 

topographical structures on CL11 
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5.5: Light microscopy of flat PLGA films seeded with Mesenchymal stem 

cells and stained with Von Kossa’s stain for mineralisation. 

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: hMSC on modified PLGA films. Films were modified with the following 

modifiections;(a)untreated PLGA (b) CL3 (c) CL4, (d) CL6, (e) CL7, and (f) CL11. After 7 days 

incubation with hMSC they were fixed and stained with Von Kossa stain for mineralization. (f) 

White arrows show positive mineralization staining on CL11 modification. 
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The modified PLGA films were seeded with MSC and cultured for 7, 14 and 28 days.  

They were then stained using Von Kossa’s stain for mineralisation.  Positive staining 

occurred after 7 days on the CL11 treated surface.  The images in fig. 5.12 depict the 

widespread mineralisation by brown staining.  Dark blue/purple staining shows the cell nuclei 

present.  The cells were shown to be in monolayer formation by 7 days on CL3, CL4 and the 

untreated sample, but were more disrupted on the CL6 and CL7 treated surface.  CL11 

showed that there were a good coverage of cells (which appeared to have formed a good 

monolayer) under a mineralised topography.  In areas where there was no mineralisation 

staining there was still a full coverage of cells.  
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Figure 5.13 hMSC on modified PLGA films. Films were modified with the following 

modifiections;(a)untreated PLGA (b) CL3 (c) CL4, (d) CL6, (e) CL7, and (f) CL11. After 14 days 

incubation with hMSC they were fixed and stained with Von Kossa stain for mineralization. (f) 

Shows positive mineralization staining on CL11 modification. 
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The 14 day incubation time point revealed that there was a reduced number of cells on 

CL3, CL4, CL6 , CL7, and CL11 but there was still a mineralised response from CL11, and a 

good coverage of cells on this surface.  The untreated control had a full monolayer at 14 days 

incubation. 
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Figure 5.14: hMSC on modified PLGA films. Films were modified with the following 

modifiections;(a)untreated PLGA (b) CL3 (c) CL4, (d) CL6, (e) CL7, and (f) CL11. After 28 

days incubation with hMSC they were fixed and stained with Von Kossa stain for 

mineralization. (f) Shows positive mineralization staining on CL11 modification. 
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After 28 days, there were cells still present on all the surfaces, and they appeared to 

have remained at the same percentage coverage as 14 days, with no further decrease in cell 

number.  The most notable change was on CL11, which demonstrated a dense coverage of 

mineralisation, which stained dark brown with Von Kossa’s stain for mineralisation..  The 

layer appeared to have formed pits, which could be the beginning of the remodelling process.   
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5.6:  Ninhydrin assay to determine the concentration of amine groups 

deposited onto spheres during silanisation. 

 

 

 

T 

 

The concentration of amine groups on the surfaces of the spheres was measured using 

the ninhydrin assay developed in this thesis. Four separate repeats were tested at the point of 

application of the silanes to the surfaces.  The concentrations of the amines were variable, 

and considerably higher than on the flat PLGA surface (p=<0.05).  
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Figure 5.15: Mean concentration of amine groups on treated PLGA spheres.  The 

concentration of amine groups was measured by nynhydrin assay. Error bars show 

standard deviation from the mean (n=4).  Star indicates statistically significant 
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5.7: Histological examination of silane-treated spheres incorporated into 

the PLGA system. 

 

 

 

The histological analysis of the scaffolds revealed the presence of cells throughout the 

scaffolds at 7, 14 and 28 days, but the cells had not proliferated greatly and there was no positive 

staining from any of the differentiation marker stains (Von Kossa, Alizarin red, Van Gieson, and 

Alcian blue).  There was no evidence of collagen production (Van Gieson), and no evidence of any 

mineralization (Von Kossa, Alizarin red).  Very few cells were evident on the control untreated 

scaffold after 28 days and these results correlate with the LDH assay results showing a lack of cells 

after 28 days on this scaffold. 
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H & E + + + + 
+ 

+ + + + + + + + + + + + + 

Van 

Geison  

- - - - 
- 

- - - - - - - - - - - - - 

Alcian 

Blue  

- - - - - - - - - - - - - - - - - - 

Alizian 

Red 

- - - - - - - - - - - - - - - - - - 

Von 

Kossa 

- - - - - - - - - - - - - - - - - - 

Table 5.1:  Summary of histological staining 3D scaffolds were cultured with MSCs and 

incubated for 7, 14 and 28 days.  Scaffolds were then processed for histological analysis and 

sectioned. + = presence of positive staining, - = no staining. 
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Figure 5.16: hMSC on modified PLGA scaffolds.  Scaffolds were  modified with with (a) CL3 (b) 

CL4, (c) CL6, (d) CL7, (e) CL11 and (f) untreated PLGA and cultured for 28 days. After incubation 

the samples were processed, sectioned and stained with H and E.  Blue arrows show presence of cells 

stained by eosin 
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Figure 5.17 hMSC on modified PLGA scaffolds.  Scaffolds were  modified with with (a) CL3 

(b) CL4, (c) CL6, (d) CL7, (e) CL11 and (f) untreated PLGA and cultured for 28 days. After 

incubation the samples were processed, sectioned and stained with Von Kossa’s stain for 

mineralisation.No positive staining found. 
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Figure 5.18 hMSC on modified PLGA scaffolds.  Scaffolds were  modified with 

with (a) CL3 (b) CL4, (c) CL6, (d) CL7, (e) CL11 and (f) untreated PLGA and 

cultured for 28 days. After incubation the samples were processed, sectioned and 

stained with Alizarin red for mineralisation. No positive staining found. 

 

a b 

c 
d 

e 
f 



 

 Page 183 
 

 

 

  

 

 

 

Figure 5.19 hMSC on modified PLGA scaffolds.  Scaffolds were  modified with with (a) CL3 (b) 

CL4, (c) CL6, (d) CL7, (e) CL11 and (f) untreated PLGA and cultured for 28 days. After incubation 

the samples were processed, sectioned and stained with  Alcian blue stain for Glycosaminoglycan 

(GAG), no positive staining found. 
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Figure 5.20 hMSC on modified PLGA scaffolds.  Scaffolds were  modified with with (a) 

CL3 (b) CL4, (c) CL6, (d) CL7, (e) CL11 and (f) untreated PLGA and cultured for 28 days. 

After incubation the samples were processed, sectioned and stained with. Van Giesons stain 

for collagen. No significant positive staining found 
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There was evidence of cells on the scaffolds, confirmed by the H and E staining and 

the LDH assay, but no differentiation was detected by the other histological staining 

procedures. As the cells were seeded with 1 million cells initially, there is no evidence of 

proliferation beyond this point on the scaffolds, when you take into account the standard 

deviations.  There is no statistically significant increase in cell number over time with the 

exception of CL4 which showed a statistically significant difference in cell number after 28 

days than the initial 7 day count (p=<0.05).  There was evidence of cells after 28 days, but 

there was no evidence of stem cell differentiation within any of the scaffolds, as 

demonstrated by the histological staining undertaken previously.  The control untreated 
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Figure 5.21 LDH assay for cell number.  hMSC were seeded into silane 

modified scaffolds and cultured for 7, 14 and 28 days.  Error bars indicate 

standard deviation from mean. *shows a statically significant difference 

(p<0.05), than the same modification at 7 days. 
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scaffold showed a statistically significant drop in cell number between 14 and 28 days.  This 

was not seen on any of the treated samples. 
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5.9: Discussion of the transfer of silane modifications onto PLGA films and 

spheres and the subsequent cellular responses. 

 The transfer of the surface chemistries to flat PLGA films was successful, and instigated an 

interesting response in terms of the dynamic water contact angle.  The water contact angle had an 

inverse relationship to the chain length of the modification (figure 5.9).  This is an unusual result, 

because when the molecule is considered the longer chain molecule will introduce more CH2 groups 

to the surface, which in turn should theoretically increase surface hydrophobicity.  This was not 

observed.  This could be because the substrate, PLGA, is already very hydrophobic, the addition of 

silane groups with hydrophilic end groups (-NH2) leading to an increase in hydrophillicity despite the 

hydrophobic chain molecules.  The hydrophobic chains only act as a spacer physically keeping the 

hydrophilic NH2 groups away from the very hydrophobic substrate, creating a layer which would be 

in contact with cells, that is hydrophilic, and conducive to cell growth. 

 The Atomic force microscopy (AFM) investigation (Figure 5.2-5.7) of the surfaces was quite 

revealing, the images showing quite variable coverage from the different modifications on the PLGA 

films.  The maximum peak height exemplifies the hypothesis that the CL11 modification is 

considerably different from the other modifications.  The CL11 modification appears to have two 

layers of microstructure, that being the macro-topography and also the nano-topography.  It is likely 

that it is the unique combination of the two, combined with the surface energy demonstrated by the 

advancing dynamic water contact angle that seems to create the active surface demonstrated in this 

thesis. 

 The application of the silanes to 3D polymer system was unsuccessful in this instance from 

the standpoint of cell response.  There was no evidence of differentiation on any of the modifications 

when examined using histological techniques.  There was evidence of cells on the system but they 
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were not producing matrix.  The stains used would have identified the key proteins necessary for 

differentiation throughout the scaffold and they were all negative. 

 One possible reason for this is that the concentration of the silanes on the surface of the 

spheres was not the same as the concentration on the films which were successful (in the instance of 

CL11).  It is likely that it would be possible to optimize the techniques further by taking a close look 

at the coating methods in more detail.  The coating technique involves a flow of silane to stop the 

spheres from clumping, and the wash steps can’t be as vigorous as that on a film or glass surface.  

This leads to the concentration of silanes being significantly higher (10 fold) on the spheres than 

films.  It is likely that the coating technique and washing procedures would need to be heavily 

modified to allow the sufficient coating and washing of the spheres while avoiding the clumping that 

is detrimental to the materials effectiveness.  Further work would involve the examination and 

identification of a suitable solvent that could wash the system appropriately without causing damage 

to the PLGA, or leave any cytotoxic residues, as demonstrated in pharmaceutical release studies that 

the role of the solvent used to make the spheres, and also modify them, may play more of a role than 

merely dissolving the polymers and then evaporating
2
. Further optimization of this may be a crucial 

next step in this work. 

 Another possible reason why the application of the surface chemistries onto a 3D system did 

not cause stem cell differentiation could be that the modification protocol caused the chemical groups 

to be too closely packed together, creating steric hindrance, and not allowing the surface chemistry to 

be accessible by large protein molecules involved in  stem cell differentiation 
3
,
4
.  Obtaining a similar 

concentration of the surface groups will be key to the success of further work in this area, that 

combined with the development of suitable techniques to investigate the surface chemistry and 

topography on spherical samples, to allow better optimization of the technique. 

 Full exploration and optimization of the reactions involved in the coating of PLGA spheres 

and the investigation of the subsequent effects on cell interactions would be an ideal progression for 

this work, and is likely to lead to the creation of the biomimetic 3D system which would be applicable 



 

 Page 189 
 

for the purposes of bone regeneration and would be a good step forward in the clinical treatment on 

non-union bone fracture, and may lead to further applications in osteochondral repair.  To obtain this 

goal, much more work on the transfer of the chemistries to the 3D system will have to be conducted. 
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Chapter 6: Discussion of Results and Further Work 

 There is significant evidence in the review of current work (chapter 1) to show a clear, 

unequivocal need for bone regeneration system that could be applied in non-union fracture 

that occurs in circumstances such as trauma and bone cancer surgery.  Autologous bone 

transplantation is the first line treatment for non-union bone fracture and has success, 

depending on the type of bone harvested, with cancellous bone containing numerous 

osteogenic factors but without much mechanical strength, and cortical bone having good 

mechanical strength but fewer easily available factors
1,2

.  The use of autologous bone as a 

treatment has many obstacles.  Only limited donor sites are suitable for an autologous bone 

graft and this is a limitation that increases with the age of the patient.
2
  Donor site morbidity 

is also a very serious problem, with pain lasting in some cases for longer than the repair takes 

to heal
3
.  Minor complications from this procedure included superficial infections and 

hematomas. More serious complications included herniation through large bone graft donor 

sites, vascular injuries, serious infections, neurological injuries, and further fractures.
4
 

 The other current treatments for non-union fractures include several specialised 

surgical techniques, such as compression plating and supracondylar femoral nailing
5
, and 

many surgeons use techniques like this to treat non-unions.  There are problems associated 

with invasive surgeries such as soft tissue stripping and damage, localised infection and nerve 

damage.  Compression plating has a 1 in 10 incidence of nerve damage when used in non-

union humeral shaft fractures
5
 and for this reason the supracondylar nailing can be seen as a 

better option, this is often true, but also has its drawbacks, and its success is dependent on the 

stability of the fit between the nail and the internal cavity, as instability will cause further 

complications.
5
  These surgical techniques are only suitable for certain non-union fractures, 

and not when large pieces of bone are required. 
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 Allografts, another relatively common treatment, are usually human cadaver bones, 

that are processed to remove any of the osteogenic cells, and leave an osteoconductive 

scaffold for the patient own cells to infiltrate and colonise.  The problems associated with 

using this type of material is the risk of infection and immunogenicity/patient rejection.  

Generally the donor bone is cleaned and stripped of any of the cellular/osteogenic 

components, and is screened for infectious diseases such as HIV, but there is always a small 

risk with this sort of tissue.  The cleaning of the allograft denatures not only any potential 

hazardous viruses, but also the factors that would be useful to the in-growth of native cells, so 

in these cases it is likely that exogenous growth factor would be necessary. 

 Alternative material solutions are available, and currently used.  Ceramic scaffolds 

containing BMPs are used to treat non union fractures and there has been success with these 

materials, is one study the use of BMP-7 was shown to cause healing in non-union fractures 

after 4 months, where previous surgical techniques including grafts had failed, with a success 

rate of 92% (of 28 patients).
6
  While this is very impressive, the cases may not reflect the 

general population of non-union fractures. 

 Non-union bone fracture has a very serious impact on the patient, and with up to 10% 

of all fractures becoming non-union
4
 (this figure depends upon the location of the fracture, 

but will rise to 50% of all open tibia fractures) it is also a considerable economic problem. In 

the US it is estimated that the treatment of non-union fractures was around 14.6 billion US 

dollars per annum
4
.  There is a very great need for a more cost effective solution than 

autologous transplant or the use of BMP treated material grafts.  Both of these treatments cost 

in the region of £15,000 per patient, if the non-union fracture is in the long bones
7
.  This is 

prohibitively expensive and would not be an option in developing countries.  Cheaper 

treatments would be a real possibility if a biomaterial with an osteo-inductive surface 
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chemistry was developed, particularly if the active surface was composed of a synthetic 

chemical rather than a peptide or growth factor. 

If this treatment had the advantage of being injectable, like the one outlined in this 

thesis, it would not only be cheaper to produce than peptide treated materials and other 

alternatives, but it would also be less invasive for the patient, and ultimately require less 

hours of surgery (which is the major cost associated with a non-union fracture, with the more 

complicated non-unions requiring several separate surgical procedures).   

 There are many benefits to a regenerative technique using PLGA that possesses an 

osteogenic surface, which include the controllable degradation rate
8
, and the conducive 

osteogenic environment it provides to stem cell and osteoblast-like cells.  This technique 

would bypass the majority of the negative, problematic side effects observed in the 

autologous bone graft.  It would, as an advanced active material method, be capable of 

containing a powerful biological stimulus, that instigates the migration of the patients own 

stem cells, providing an in situ tissue engineering solution. 

 A scaffold that creates an environment which causes recruitment of native bone 

marrow-derived MSCs and which could also stimulate them following their infiltration in 

vivo, may be an achievable goal. The work conducted in this thesis demonstrated potential in 

this field.  The individual results have been discussed in isolation in previous chapters but 

their significance will now be discussed when considering the context of the complete study. 

 The initial experimentation was undertaken using a range of surface chemistries on a 

3D PLGA system (chapter 3).  It was important to characterise these surfaces sufficiently to 

ascertain that they had been deposited on the surfaces.  While there were limitations to the 

characterisation of the surfaces, the techniques employed assessed a full spectrum of the 

surfaces properties.  XPS (figure 3.4) identified the presence of chemical elements and 
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energies associated with the species deposited, and SEM identified the surfaces were 

undamaged by the plasma chemical deposition process (figure 3.3).  It was important at this 

stage to identify that the different surface chemistries were not inducing topographical 

changes that were vastly different from each other.  This was to determine that it was in fact 

the chemistry that was responsible for the response seen.  The water contact angle was 

measured to show any changes in surface energy.  At this point the nanotopography was not 

taken into consideration as the measurement of the surfaces nanotopography is technically 

very challenging when the substrate is polymer spheres. 

  This analysis all confirmed that the surfaces had been modified in such a way that 

the surface chemistry had altered, while the macrotopography had remained similar to that of 

the untreated control.  

Markers of differentiation were highlighted in the direct staining of the cells and their 

ECM via the histological analysis (tables 3.3-3.5, and figures 3.7-3.11).  Consistent Van 

Gieson staining through the scaffold (figures 3.7-3.11) stained collagen, but does not 

differentiate between the different types of collagen.  Further histological examination of the 

scaffolds revealed an osteogenic response throughout the amine treated scaffold (figure 3.7), 

where Von Kossa staining was concentrated in nodules and seen in every sample point 

throughout the scaffold.  The Von Kossa reagent stains calcified ECM using silver nitrate to 

react to the phosphate which accompanies calcium in mineralized matrix in an acidic 

environment
9
, and as mineralization of the ECM is one of the key markers of osteogenic 

differentiation it is often seen as a definitive test.  It does not however indicate that there is 

bone formation, and caution should be taken before making this statement, as the staining 

does not indicate the calcium to phosphate ratio, which is crucial when determining the 

mineral formation of bone.
9  

The alizarin red stain, which also stains mineralized matrix, was 
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consistent with the Von Kossa stain (figure 3.7), showing areas of mineralized matrix in 

nodules throughout the amine-modified scaffold. 

The LDH assay (figure 3.6) demonstrated that all the modifications support cell 

expansion, but there is a plateau of cell numbers on the amine modification between 14 and 

28 days.  There are a number of possible explanations for this result: there is evidence as 

explained above that the cells are starting to differentiate by 28 days, and this could indicate 

that the cells present in the scaffold are starting to enter a differentiation phase, and are in a 

non-proliferating state.  

Alternatively, another explanation is that the transfer of nutrients within the scaffold 

slows as the pores become blocked with cells and ECM, causing either some cell death or 

that the cells have become non-proliferative.  Both of these processes could be occurring.  

There is evidence in the histology at day 28 that the amine modification induces an 

osteogenic response from the cells, but there is also evidence that some of the pores are 

starting to fill with cellular material, a phenomenon that is demonstrated further by the H and 

E staining (figure 3.7).  It may be that the flattened morphology of the cells on this scaffold 

(demonstrated by the cryo SEM) (figure 3.5) leads to a reduction in the nutrient flow through 

the scaffold.  This suggests that a bioreactor may be necessary, to increase cell number at 28 

days and also increased osteogenic differentiation. 

The histological examination of the scaffolds showed that the hydroxyl modification 

was the only modification to support chondrogenic differentiation, as there were patches of 

positive Alcian blue staining within the serial sections.  Alcian blue stains GAGs which are 

markers of chondrogenesis (figure 3.10).  The positive Alcian blue staining was supported by 

the cryo SEM visualization of cellular morphology (figure 3.5).  The cells on the scaffold 

appeared to be a rounded which is entirely consistent with chondrocytic behavior in vitro.
10
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The Van Gieson stain was consistent throughout the scaffold, highlighting the collagen, 

which was present throughout the scaffold.  Combined with the Alcian blue stain, and the 

absence of any Von Kossa or Alizian red staining, the data indicates material-induced 

chondrogenic differentiation associated with the hydroxyl modification. 

There was no evidence of differentiation on the hexane modification (figure 3.8), 

consistent with published data, showing that this surface chemistry is a useful tool in the 

maintenance of stem cell phenotype, as the LDH assay demonstrated that the MSCs do 

proliferate on this modification, the cell number increasing between 14 and 28 days.
11, 10

  

There is a statistically significant difference between the hexane-modified scaffolds and the 

allyl alcohol-modified scaffolds at 14 days.  This shows that the cells do not proliferate as 

quickly on the –CH3 surfaces as on the allyl-alcohol surfaces.  The hexane surface, as stated 

previously, seems to maintain stem cell phenotype, and it may be that the reduced cell 

number means that the cells are unable to create enough signaling growth factors to permit 

differentiation in these circumstances, at the correct time point. Conversely, the allyl alcohol-

modified surface is conducive to enough cells binding in the initial period to create sufficient 

growth factors to differentiate when enough time has elapsed.  This phenomenon may be 

investigated further by analyzing the intergrin binding molecule concentrations. 

To summarise: when the MSCs were introduced to the 3D system, there was several 

positive effects seen, including a positive osteogenic response in the allyl amine treated 

scaffold and a positive chondrocytic effect seen in the allyl alcohol treated scaffolds.  These 

results fuelled the further investigation of the surface chemistries and lead to the initial 

osteochondral investigation, using a single scaffold to differentiate two separate populations 

of stem cells within one scaffold.  These initial positive results had further potential that will 

be discussed later in this chapter, and as stand-alone results they were very promising, but the 
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investigation of this work took the positive effect seen in the osteogenic amine modification 

and pursued it in a more definable way. 

 The osteogenic effect seen using amine was reported in other studies that showed both 

amine promoting an osteogenic effect and the opposite, where the amine groups did not 

support osteogenesis
11

,
12

.  This lead to the assumption that more factors were involved other 

than just the presence of an amine terminal group, and that the presentation of this terminal 

group could be an important factor.  The area merited a closer look, and due to the inflexible 

nature of the plasma coating with regards to the presentation of the moiety, a logical 

progression was to investigate a modification that could be altered subtly to change 

presentation, and so suitable amine terminated silanes were investigated, which had varying 

chain length. 

To determine if the presentation of a key terminal group was an important factor in 

influencing osteogenicity, baseline data was produced on a model substrate (in this case 

glass).  To examine the potential of chemical modifications the response was measured using 

both human MSCs and primary human osteoblast-like cells.  These cells make a suitable 

model to examine the initial phase of osteogenic differentiation as discussed in the literature 

review and described in detail in several studies
11,12, 13,14,15, 16.

 The osteoblast model represents 

a more mature environment, further along the differentiation pathway
17

,
18

.
19

. 

The chemistries influence the surface properties of glass when applied.  The material 

properties of the surfaces were changed significantly when the silanes were applied.  When 

the variance of mean was examined using ANOVA (p=≥0.05) CL3, CL4 and CL11 showed a 

significantly different water contact angle when compared to the control, and to CL6 and 

CL7.  CL6 and CL7 did not differ significantly from the control (figure 4.3). 



 

 Page 197 
 

The ninhydrin assay for amine concentration (figure 4.2) demonstrated that its 

concentration on CL7 was significantly less than any of the other modifications when 

analysed using ANOVA (p=≥0.05).  This indicates that it may be the concentration of amine 

that is responsible for the change seen in the water contact angle. 

The difference seen on CL7 could be due to the amine chains clumping and not 

forming a complete self-assembled monolayer (SAM), which is less stable, and less likely to 

withstand the vigorous washing procedure.
20

 

The AFM images of the CL7 modification (figure 4.1.1-4.1.6) demonstrate the 

formation of clumps of matter which form relatively (from a nanotopographical standpoint) 

large ridges.  This pattern was also seen on the CL6 surface, but the concentration of the 

amine on CL6 was significantly higher than CL7.  The inconsistency of the results would be 

explained by a multiple layer clumping effect, where the silanes do not form full SAMs, and 

where some of the clumps are washed away by the vigorous washing procedure but some 

remain in situ, the clumps that remain in situ on CL6, would easily explain the raised 

concentration on the CL6, as equally the removal of the clumps via washing could explain the 

reduced concentration seen on CL7.  The SEM images on the modified glass showed no 

differences on the modified glass, which highlights that this topographical phenomenon is 

seen only at the nanoscale. 

The AFM highlights the differences in nanotopography, and maximum feature height 

of the surfaces (figure 4.1.7).  There is a statistically significant difference in the maximum 

feature height between the modified surfaces.  This could give some indication of the 

thickness of the silane coatings.  The marked difference in the maximum feature height of the 

silanes does indicate that the longer chain silanes produce a thicker coating than the shorter 

chain lengths.   
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Taken together the three characterization techniques (AFM, Ninhydrin and WCA) 

demonstrate that the range of silanes used in this study successfully altered the glass 

substrate. They created different surface topographies when examined on the nanoscale, in 

addition to the change in surface chemistry.  There was an increased concentration of amine 

groups after modification. Amine groups have been demonstrated in previous studies to show 

osteogenic capacity.
21,22

  Surface nanotopography on stem cells has been extensively 

researched and it has been demonstrated that there is an optimum surface topography for 

osteogenic differentiation.
23

  The key points from the studies that were successful in creating 

an osteogenic topography were that they created a surface that had an optimal surface 

roughness, but only when it was not ordered.  The experiment that highlighted this 

particularly well used a titanium surface with mechanically punched pits.  The pits were 

osteogenic when punched in an irregular grid formation, but showed no osteogenic potential 

when they were in a regular grid formation
24

.  If this topography could be achieved 

successfully, and consistently using a silane coating, it would be a step forward in the area of 

bone regeneration.  

The material coating in this study showed another potentially osteoinductive property 

that was investigated using an experiment to observe the mineralization potential of the 

surfaces in the absence of any osteogenic cells. 

 Mineralization is a key progression of the bone regeneration process. The 

development of biomimetic surfaces attempts to fulfill this important step in the regeneration 

process by chemical interactions where a material can self-mineralize.  The ability of some 

SAMs to cause the nucleation of minerals on surfaces offers a route to accelerate the 

osteogenic process, and cause early mineralisation
21

.  This phenomenon was described by 

Towoefe et al where the SAM in question, while not produced from the same chemical used 

in this study, demonstrated an extended carbohydrate chain similar in length to the long chain 
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amines used in this work. To demonstrate the ability of the surfaces produced for this study to 

self-mineralize, the surfaces were exposed to different concentrations of PBS for 7 days.  The 

resulting surfaces were then examined using a Von Kossa stain for mineralization (figure 

4.4), and X-ray microanalysis (figures 4.5-4.8) to show the elemental composition of the 

surfaces.  After 7 days the CL11 modification showed positive mineralization of the surfaces, 

demonstrated by positive Von Kossa staining at 7 days, and the abundant presence of 

phosphate detected with X ray analysis (figures 4.5-4.8).  The presence of phosphate in 

hydrogel has previously been shown to induce an osteogenic response
25

 so the ability of the 

surface of CL11 to attract and bind phosphorous could be indicative of this type of event.  

The probability of the surface modification on CL11 being the cause of the phosphate 

detected using X-ray microanalysis was calculated in table 4.2, which suggested that the 

correlation was statistically significant(p≥0.95)  None of the other chain lengths showed this 

effect. 

 The next phase of the investigation was to use an MSC model to investigate how 

these cells interact with the silanes, on a model surface, in this instance, glass. 

 The cellular response to the silane-modified glass was examined using rtPCR to 

determine the expression of genes at defined time points (figures 4.14-4.19).  The cells were 

examined for the expression of several markers of stem cell differentiation that are key to the 

osteogenic pathway.  CBFA1 was the first gene to be examined, as it is considered to be the 

corner pin of the osteogenic differentiation process
26,27, 

.  It is only present in the early phases 

of differentiation and for a relatively short period of time.
27

  There was no positive expression 

of CBFA1 on CL3, CL7 or CL11 at any of the time points tested, but there was up regulation 

on CL4 and 6 at 28 days.  There was an expression of osteonectin which is a key protein in 

the osteogenesis process 
,28, 29,30

at 7 days by the cells on CL4, CL6 CL7 and CL11, the most 

prominent response seen with CL7 and CL11 which were statistically significant when 
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analysed by ANOVA (p≤0.05).  There was a statistically significant difference in the 

expression of osteopontin, which also plays a role in osteogenesis
28

, on CL7 and CL11 at 7 

days, and osteocalcin (a vital mineralization protein)
31,32,

was expressed at 7 and 14 days on 

CL11, which was greatly reduced at 28 days.  Sclerostin, a marker of embedded osteocytes 

and so a clear indicator of osteogenic maturity
,33,34,35

 was expressed by CL11 at 14 days.  

Taken together, these results suggest that osteogenic markers are present consistently on the 

CL11 sample.  The absence of CBFA1 on CL11 may be due to the initial time point (7 days) 

being too late to pick up an initial burst of expression following initial contact.
36

  It is a gene 

that may only be expressed for a short period of time.  The expression of osteonectin, 

osteopontin and osteocalcin all indicate that the cells are capable of producing these proteins, 

which are heavily linked to osteoblastic activity.  The results show that the expression of 

these genes drops out after 7-14 days, and there is then a positive expression of the osteocyte 

marker sclerostin on CL11 at 14 days.  This shows that the cells on CL11 have the capacity to 

differentiate into osteocytes, which is the next phase of osteogenic differentiation after the 

cells have passed through the osteoblast phase.  For the cells to achieve this status, they must 

become embedded in a thick ECM, composed of osteocalcin, and collagen amongst other 

proteins.
33,34

 

 Examining the cells using SEM to determine their morphology and matrix production 

was performed to provide more evidence of differentiation(Figures 4.10-4.13).  The 7 day 

time point revealed that CL3, CL4 and CL7 all had very flat adhered cells.  Cells were very 

rounded in morphology on CL6 but flat and adhered and producing many proteinacious 

extrusions on CL11.  By 14 days the cell numbers on CL6 were reduced, CL3 and CL4 and 

CL7 were all demonstrating a very flat monolayer of cells, and CL11 was showing a dense 

formation of matrix over a monolayer of very flat adhered cells.  By 28 days, there were even 

fewer cells on CL6, but CL3, CL4 and CL7 were demonstrating flat cells with some protein 
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production.  The CL11 sample was covered in a dense matrix that seemed to be becoming 

pitted in its appearance, with the cells that were completely obscured by ECM.  This is 

verified by the PCR data, showing the up-regulation of matrix genes on CL11, and then the 

expression of sclerostin which could only be produced if the cells were embedded in a thick 

ECM, which completely encased the cells.
35

 

 The presence of the ECM was confirmed by the SEM images of the samples. 

Identification of the presence of osteogenic markers by confocal microscopy confirms the 

composition of the ECM which was produced by the cells.  One of the many advantages of 

confocal microscopy is that cells and proteins can be stained fluorescently when in multiple 

layers.  3D matrix can be scanned in layers and an image of the whole sample can be 

produced, rather than the SEM which is restricted to just the top. 

Confocal microscopy was also used to detect a marker of MSC plasticity, Stro-

1(figures 4.20-4.22).  This marker is a way of identifying undifferentiated cells, and its 

absence in these samples only occurs if the cells have already begun differentiation
37

,
38

.  If 

Stro-1 is absent and other positive markers of osteogenic differentiation such as CBFA1 and 

Osteocalcin are present, then it is likely that the cells are committed to an osteogenic fate. 

The MSCs on the untreated control expressed Stro-1 at 7, 14 and 28 days.  This, in 

conjunction with the absence of any of the osteogenic markers, confirms that the MSCs have 

not spontaneously differentiated.  The confocal staining of the modified glass showed that 

Stro 1 was expressed at 7 days, but not at 14 days and there was positive staining for 

Osteocalcin and CBFA1.  CL4 modified samples showed positive collagen 1 staining at 7 

days but not Stro-1, although no differentiation markers were expressed until 28 days.  CL6 

showed positive Collagen I staining throughout the 28 day period, but was not positive for 

any of the osteogenic markers.  CL7 showed some positive CBFA1 staining at 28 days, but 
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nothing before that time point, so this could not be described as a truly osteogenic response.  

The most interesting result, however, came from the CL11 surface.  The CL11 sample 

showed matrix by 7 days which was positive for osteocalcin and collagen, and by 14 days 

was showing a thick, pitted morphology.  This response was maintained through to the 28 

day time point, and is a good osteogenic response from the cells.   

The Von Kossa stain for mineralization was used to determine the extent of 

mineralization in the samples.  This process is well established and has been used in many 

studies to determine the extent of mineralisation
17

,
30

.  It should however not be used as a 

definitive test for the production of bone, and if possible there should be other confirmatory 

tests if there is a positive result.
9
  The samples showed some positive staining on all of the 

modifications, however is was more marked on the CL11 sample.  The control untreated 

glass showed no positive staining. 

The results all support the hypothesis that CL11-modified surfaces modification is a 

powerful stimulant to MSCs, and is able to induce an osteogenic response from them in the 

absence of any exogenous growth factors.  There are a few different possibilities that could 

explain the root cause of that osteogenic differentiation.  This surface has several osteogenic 

properties, including topography which possesses the parameters that induce an osteogenic 

response, as confirmed by AFM microscopy including the correct size of feature, which 

appears to have a very powerful effect on stem cells.
39,23,40,41

 

The abundant availability of CL11 amine groups, which as discussed in the 

introduction is inductive of osteogenesis
11

.  The ability of the CL11 surface to harness 

phosphorous
21

, in a biomimetic way may well be contributing to the availability of minerals 

to the cells.  It could be that in their productive osteoblastic state the cells require greater 

quantities of the minerals that are available more readily on the CL11 surfaces.   
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It may be that the ability of CL11 surfaces to procure minerals and make them 

available accelerates the process of osteogenic differentiation and eventually allows the it to 

progress to the next phase, osteocytic differentiation.  This is demonstrated quite clearly by 

the expression of sclerostin at 14 days, with thick matrix production, and it could be that the 

pits formed in this matrix is the start of rudimentary re-modeling.  For future work, it would 

be very interesting to study the MMPs as markers of re-modeling and to extend the study 

further in time, to 2 months.  

After the investigation using MSC, another model was used with shows a response 

from a more mature cell, and gives an insight into the later phases of the osteogenic pathway.  

A primary human osteoblast-like cell model was used.  Examining how these cells interact 

with the modified surfaces are an attempt  to demonste how mature cells will react to the 

surface modifications, giving an impression of what the longer term effects may be.  There 

was an interesting response observed at the first time point, Von Kossa staining (figures 4.23-

4.25) showed mineralized nodules formation on the CL3 and CL4 surfaces.  This reaction 

was not seen on the other surfaces, where the cells remained in monolayer throughout the 28 

day period.  The nodule formation on CL3 and CL4 could be explained by the progression of 

the osteogenic differentiation of the cells.  Primary human osteoblasts have been shown to 

form nodules
18

 when in 3D culture on bioactive glass, but only in the presence of exogenous 

growth factors.  This stimulus in this incidence could have come purely from the material.   

 The formation of nodules on the CL3 and CL4 surfaces was confirmed by SEM, and 

Von Kossa stain.  As the cells used in this model were already capable of producing ECM, all 

of the samples including the untreated glass control stained positive for mineralization (Von 

Kossa) at 7 days, however the cells on the untreated control were less densely mineralized by 

28 days than the silane treated samples.  The cells on CL6, CL7 and CL11 all retained the 

ability to produce matrix which became mineralized.   
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 The SEM of surfaces with osteoblasts revealed that there was an extensive production 

ofECM on the CL3 and CL4 samples when the cells were clumped together in the nodule 

(figure 4.28-4.32).  The ECM appears to mature throughout the 28 day period and goes from 

an obvious fibrous formation of proteins at 7 days to a dense mineral-covered matrix at 14 

days and by 28 days the cells appeared to be embedded in this matrix. 

 The size of the nodules (figure 4.27) was shown to increase over a 14 day period and 

then significantly decrease.  This occurrence when combined with the statistically significant 

drop in total number of nodules (figure 4.26) at 28 days could be indicative of the nodules 

reaching a critical size and then detaching from the surface.  This would warrant further 

investigation as a material that could product and then release these boney nodules might 

have interesting applications for filling bone defects. 

 The PCR figures (4.33-4.38) of these samples revealed an interesting response.  All 

data were normalized to the untreated glass control so the expression shown was above the 

baseline of normal osteoblast activity on glass.  The osteogenic markers are only above the 

baseline activity at 7 days and not statistically significant after this time point.  Interestingly 

on CL3 and CL4 the expression of sclerostin was notable at 14 and 28 days.  As this is a 

marker specifically for osteocytic activity, this along with the reduction of normal 

osteoblastic markers after 7 days is indicative of the further differentiation of the cells along 

the osteogenic pathway.  All the results are consistent with this hypothesis. 

 CL11 does not have the same powerfully osteogenic effect on the osteoblasts as it 

does on human MSCs.  CL11 does however, seem to maintain the osteoblasts and allows 

them to form a mineralized matrix; the cells were shown by SEM to produce large quantities 

of ECM.  The Von Kossa staining shows that mineralization is occurring, on this sample, but 

there are no nodules present.  It has been documented earlier that the CL11-modified glass 
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surfaces have the ability to attract phosphorous (see PBS interaction figure 4.4, and hMSC 

data figures 4.5-4.8).  In this experiment, because the cells are closer down the differentiation 

pathway to mature osteoblasts, they are covered in minerals such as phosphorous and 

calcium.  It could be that the cells are “captured” by the surface, and that the minerals on the 

surface of the cells are used to adhere the cell to the surface in an irreversible way.  This 

would explain why the CL11 samples are not forming nodules, as the cells are unable to 

migrate.  CL6 and CL7 have not shown any significant osteogenic potential in any of the 

tests, and were not shown to produce any significant matrix.  The cells on CL6 were very 

rounded until between 7 and 14 days at which point they started to form a monolayer.  This 

delayed adhesion could be responsible for the lack of osteogenic markers seen from this 

modification. 

 The differences observed between the chain lengths and their osteogenic effects could 

be attributed to several things.  The procurement of minerals by CL11, the topography that is 

induced at the nanoscale and the mimicry of the ECM by the chemical modification could be 

key factors in these results. 

 The results indicate that CL11 could be a powerful inducer of osteogenic 

differentiation, and would accelerate the differentiation of MSCs, in the absence of 

exogenous growth factors.  In osteoblasts, while CL11 maintains the production of matrix, it 

does not allow the already mature cells to continue down the osteogenic pathway to the 

osteocytic phenotype, but if the initial interaction with the surface is at the MSC stage, 

differentiation can be induced right along the osteoblastic lineage to osteocytic fate.  This 

could be explained by the hypothesis  mentioned earlier where the mineralized surfaces of the 

cells can be chemically bound to the CL11 surface. To define this with a time line of events, 

it appears that mineralization of the surface happens initially and quite rapidly 
21

, before the 

cells adhere to the mineralized surface.  If the cells have minerals on the surface (as in the 
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osteoblast-like cell model) this time line initially is disrupted and the cells captured in the 

initial mineralization phase, hindering migration (and their ability to form nodules).  To 

extend this study further, this hypothesis could be tested by looking at the movement of the 

cells across the surface.  Time lapse imagery of the cells over a 7 day period may answer this 

question, but ideally an intergrin binding profile could be examined in more detail to 

determine the factors in play at the initial adherence. 

 In the instance of the CL3 and CL4 nodule formation, it is likely that it is the amine 

rich surfaces and the topography that instigates the formation of nodules.  The surfaces do not 

have the same self-mineralizing properties and so the phenomenon can not be related directly 

to mineral deposition on the surfaces.  It is either the topography or chemistry which 

instigates this process, not the presence of phosphorous alone. 

 To summarise, because it was necessary to characterise these surfaces in a more 

accurate way, it  was likely that the silanes examined would show only very small 

differences, the work was undertaken using a model substrate  (in this case glass in chapter 

4).  The base line data was discussed in detail in chapter 4, but the over-reaching hypothesis 

of this work was that the presentation of the chemistry was of similar importance to the 

terminal group.  It was demonstrated that the presentation of the amine terminal groups 

influenced nanotopography, this was demonstrated very clearly with the use of a AFM 

(figures 4.1.1-4.1.6).  The data collected by the AFM brought the possibility that the surfaces 

nanotopography was a very important factor in the induction of osteogenicity from 

mesenchymal stem cells, and that while the chemistry does have an effect (as demonstrated 

by the plasma modifications) the topography can indeed have a very strong effect.
40

 

 Other work done around the silane and SAM methods of surface modification pointed 

towards another factor that was becoming apparent.  The self-mineralising properties of the 
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silane with the longest chain length was evident in the more in depth surface analysis, and the 

experimental work involving exposing the surfaces to a Phosphate buffered saline (PBS) 

solution
21

.  This self-mineralising effect could be responsible for some of the phenotypical 

changes in the cells exposed to these surfaces, and could be responsible for the nucleation of 

minerals that stimulate osteogenic events. 

 The wet chemical technique for the application of silanes had advantages over the 

plasma modification.  Whilst the main reason for choosing the chemistries was the alterable 

nature of the way they present their terminal group, the concentration of amine could also be 

measured more accurately using a ninhydrin solution which was a technique developed in 

this thesis.  Ninhydrin is a long established detector of free amine groups, but the use of it to 

detect tethered amine groups is a novel application of it. 

 The main focus of this thesis was the PLGA bone regeneration system, and for all the 

baseline data to progress the surface chemistries had to be conducted on PLGA before it was 

to be useful in the bone regeneration system.  The decision was made to make incremental 

steps when doing this.  The first step was the modification of flat films.  

 The transfer of the surface chemistries to flat PLGA films was successful, and 

instigated an interesting response in terms of the dynamic water contact angle.  The water 

contact angle had an inverse relationship to the chain length of the modification (figure 5.9).  

This is an unusual result, because when the molecule is considered the longer chain molecule 

will introduce more CH2 groups to the surface, which in turn should theoretically increase 

surface hydrophobicity.  This was not observed.  This could be because the substrate, PLGA, 

is already very hydrophobic, the addition of silane groups with hydrophilic end groups (-

NH2) leading to an increase in hydrophillicity despite the hydrophobic chain molecules.  The 

hydrophobic chains only act as a spacer physically keeping the hydrophilic NH2 groups away 
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from the very hydrophobic substrate, creating a layer which would be in contact with cells, 

that is hydrophilic, and conducive to cell growth. 

 The AFM investigation (Figure 5.2-5.7) of the surfaces showed variable coverage 

from the different modifications on the PLGA films.  The maximum peak height exemplifies 

the hypothesis that the CL11 modification is considerably different from the other 

modifications.  The CL11 modification appears to have two layers of microstructure, that 

being the macrotopography and also the nanotopography.  It is likely that it is the unique 

combination of the two, combined with the surface energy demonstrated by the advancing 

dynamic water contact angle that seems to create the active surface demonstrated in this 

thesis. 

 The application of the silanes to 3D polymer system was unsuccessful in this instance 

from the standpoint of cell response.  There was no evidence of differentiation on any of the 

modifications when examined using histological techniques.  There was evidence of cells on 

the system but they were not producing matrix.  The stains used would have identified the 

key proteins necessary for differentiation throughout the scaffold and they were all negative. 

 One possible reason for this is that the concentration of the silanes on the surface of 

the spheres was not the same as the concentration on the films which were successful (in the 

instance of CL11).  It is likely that it would be possible to optimize the techniques further by 

taking a close look at the coating methods in more detail.  The coating technique involves a 

flow of silane to stop the spheres from clumping, and the wash steps can not be as vigorous 

as that on a film or glass surface.  This leads to the concentration of silanes being 

significantly higher (10 fold) on the spheres than films.  It is likely that the coating technique 

and washing procedures would need to be heavily modified to allow the sufficient coating 
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and washing of the spheres while avoiding the clumping that is detrimental to the materials 

effectiveness. 

 Another possible reason why the application of the surface chemistries onto a 3D 

system did not cause stem cell differentiation could be that the modification protocol caused 

the chemical groups to be too closely packed together, creating steric hindrance, and not 

allowing the surface chemistry to be accessible by large protein molecules involved in stem 

cell differentiation 
42

,
43

.  Obtaining a similar concentration of the surface groups will be key 

to the success of further work in this area that, combined with the development of suitable 

techniques, investigate the surface chemistry and topography on spherical samples to allow 

better optimization of the technique. 

   The transfer of these chemistries into a 3D sphere will require further optimisation to 

determine if it is possible to obtain the concentration that is conducive to osteogenesis onto 

the surface of a sphere, and if the geometry of the surface of the spheres within this size range 

is conducive to the SAM formation.  If the concentration is too high there is a possibility of 

steric hindrance, and if it is too low, there may be an imperfect siloxane layer which would 

make the sample less stable.There are studies to suggest that the surface roughness effects the 

formation of the SAM layer, and that the thickness of the layer is proportionate to the 

roughness of a surface, so the surface roughness of the underlying sphere could be 

investigated, to determine if the spheres roughness could be a factor in causing an elevation 

in the concentration of amines
44

.  If this were to be the situation, steps could be taken to try to 

reduce the surface roughness of the polymer.  Other studies have demonstrated that for 3D 

coating of porous scaffolds, a dynamic coating environment it likely to be required, whereas 

on a 2D surface the static coating environment was sufficient
45

.  Further work would also 

involve the examination and identification of a suitable solvent that could wash the system 
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appropriately without causing damage to the PLGA, or leave any cytotoxic residues, as 

demonstrated in pharmaceutical release studies that the role of the solvent used to make the 

spheres, and also modify them, may play more of a role than merely dissolving the polymers 

and then evaporating
46

.  Further optimization of this may be a crucial next step in this work. 

 The potential of these surface chemistries is however highlighted in chapter 4, when 

we were able to obtain a very powerful response from both MSC, and primary osteoblast-like 

cells.  The surfaces can push cells down an osteogenic lineage and promote the rapid 

mineralisation at early time points.  This is a significant advance when considering this is the 

use of a synthetic chemical, and not a growth factor or a peptide.  The steps we have taken 

give a good foundation for further work, and while more optimisation is necessary to take this 

technology further, the first steps have been made. 

 This injectable system could also be used as a carrier for the patient’s own MSCs.  It 

is the product of long debate as to if using the patient’s MSCs is a genuine practical option 

when treating non-union bone fracture as it is a problematic area in itself, many culture 

methods would have to be refined before this became a viable option
47,48

, and it may be that 

the source of cells and the number of cells required for a sizable repair would be too many to 

cultivate in a timely manner for a patient treatment.  This would also be very expensive, and 

would not offer the benefits like cost effectiveness, long term stability of an off the shelf 

product that could be used universally.  

The plasma results (Chapter 3) gave an insight into the further potential of surface 

chemistry on 3D systems, and the next steps that could be taken.  There are two potential 

pathways this work may take in the future, if it were to be revisited.  One would be to channel 

energies into defining the characterisation of the surfaces and finding new more accurate 

techniques to do so, and the other would be to experiment with the potential of putting 
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various other modifications onto the surfaces with plasma, to see if there would be more 

extensive wider reaching applications in other areas of regenerative medicine, focusing on 

soft tissues more. 

In its present state the more accurate characterisation of the surfaces involved would 

need to be investigated before the applications of chemistries using plasma would be a 

clinically relevant technique.  The unpredictable nature of plasma modification is where the 

technique falls down, and until the surface chemistry concentration is definable with this 

technique it will be a theoretical exercise.  There are some spectroscopy techniques that may 

clear this picture up in the future.In particular, destructive techniques such as time of flight 

mass spectroscopy may be able to define the surface concentrations to the level that would be 

required.  

To assess fully the potential of the materials osteogenic capability, it will be necessary 

to conduct some animal model work.  There are several relevant animal experiments that 

could be conducted.  Initially a subcutaneous rodent model 
49

,
50

 could be conducted to 

investigate the ability of stem cells delivered with the material to differentiate.  This would 

require a full histological analysis using markers mentioned earlier in this thesis to determine 

the level of differentiation.  This would be a good first line in vivo experiment, and could be 

used to investigate some of the biocompatibility (ie, the inflammatory response) and the 

cellular migration throughout the scaffold.  If the correct techniques are deployed it will be 

possible to differentiate between host cells migrating into the scaffold and the implanted 

cells.  The use of fluorescent trackers 
51

,
52

 or chromosomal differences are used increasingly 

more commonly to do this type of work. 
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The next logical step would be the investigation of critical bone defect models
53

, but 

as the amine rich allyl amine modification was the only result to show sufficient osteogenic 

potential, it is likely that only this modification should be pursued for this application. 

The potential of using several well defined chemical modifications together in a 

scaffold to direct cells down different lineages would have impact in the wider field of 

regenerative medicine, and would potentially be useful for any of the junctions in tissue 

where one tissue becomes another, the most striking potential being within the osteochondral 

junction, on which some preliminary work was done in chapter 3. There have been several 

studies conducted that used biomaterials to tackle this problem, 
54

, 
55

,
56

, but most of this work 

used biphasic materials, with different degradation rates.  The benefit of using this injectable 

system is it is only the surface chemistry which is different across the body of the 

biomaterial, the underlying scaffold is the same material, and so would degrade at the same 

rate.  There is far more work to conduct on this, and taking the dual and triple modifications 

from an in vitro model to an in vivo model would be a good step forward with this.  There is 

a massive potential for this work to take place, and a knee model could show some of the 

potential that the in vitro work pointed towards.  If a delivery system could be designed that 

would allow the application of a multi-layered scaffold delivery, initially in the absence of 

cells but perhaps later moving towards a stem cell delivery model, a great deal of information 

could be gained from the application of this scaffold into an osteochondral defect. 

Initially it would be important to gain a response from the materials in the absence of 

any additional cells, to see what sort of native migration is demonstrated.  The material 

should be injected into an osteochondral defect that penetrates the medual cavity, so that the 

infiltration of stem cells and osteoblast like cells into the scaffold can be measured.  The 

subsequent dissection and histological examination of the knee would be likely to reveal the 

extent of regeneration from the native cells and demonstrate the osteoconductive nature of the 
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material.  Ideally this would be sufficient and make the treatment meet the requirements 

outlined earlier.  

The next experiment would see the incorporation of pre-cultured cells into the 

material prior to the injection into the aforementioned cavity.  This would be a more 

complicated procedure that would require timing and precision in the growth of enough cells 

to transplant.  This set of experiments would go some way to show how the materials would 

behave in vivo and give some insights into how this material might behave and degrade over 

time, depending on how long the experiment is conducted. 

The potential of the silane modifications has not been reached within this work 

(chapter 5), as further optimisation is required to successfully apply the silanes to a 3D 

system.  The successful application and characterisation of these surface chemistries to glass 

and a flat film (Chapter 4 and 5) was an insight into the possibilities that will be accessible 

with this technology in the future.  The chain length (and therefore the presentation of the 

terminal group) has proved to be very important on the expression of markers from 

mesenchymal stem cells and mature primary bone cells (Chapter 4).  The preference of the 

cells to the different chain lengths, with mesenchymal stem cells taking stimulus from the 

longer CL11 chain length and the mature osteoblasts gaining stimulus to differentiate from 

osteoblasts to osteocytes on the shorter chain lengths warrants further investigation. 

This delicate and subtle dynamic demonstrated numerous times throughout the thesis 

is changed significantly when applied to a 3D sphere (Chapter 5).  There are many areas 

where this application needs to be optimised.  The physical environment in which the self-

assembled monolayer of the silane forms needs to be optimised, to achieve a full layer on a 

spherical substrate.  It is likely that this will need to occur in a dynamic environment, which 
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adds a further level of complication. The flat surface is coated in a static application, which 

has proven to be much simpler
57

. 

To transfer the chemistry successfully, the precise environment will need to be 

optimised.  Work on this was started, and first attempts were shown to be unsuccessful in 

terms of differentiation stem cells (chapter 5), but the characterisation techniques are now in 

place, and further work into optimising the dose of amine groups transferred to the PLGA 

spheres would be possible now, as the ninhydrin test would be suitable to measure the 

quantity of amines bound to the surface of the spheres accurately and  the next step towards 

optimisation would be to try to obtain the same concentration of amine groups using similar 

chain lengths on the 3D system that is successful of the flat films (Chapter 4 and 5). 

The first step in this process would be to optimise the amount of oxygen groups that 

are successfully transferred to the PLGA spheres.  After that the concentration of silanes and 

the precise flow/dynamic incubation required to achieve controllable coverage would be 

optimised.  Clear characterisation of the surfaces would be essential at this point, and then the 

spheres could go into the complex dynamic culture with cells. 

Further work could also be done on the potential of the surfaces to harness osteogenic 

minerals, some of which are found on the surfaces of osteogenic cells.  CL11 showed a 

potential for phosphate deposition, which creates a biomimetic surface, and could potentially 

be used to increase mineralisation in the absence of cells
21

.  This could have applications in 

regenerative medicine where mineralisation is necessary, even in the absence of a cellular 

component.  If the material can start the mineralisation process before the infiltration of cells, 

this is likely to accelerate the healing process by way of giving the cellular component less 

work to do, or giving the native cells a more powerful osteogenic signal, to which they can 

respond. 
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The mineralisation capacity of these materials could be explored for the applications 

of other mineralised tissues, calcified cartilage, and dental treatments are just a few of the 

further reaching applications that become apparent.  Coatings of dental fillings or where there 

has been loss of mineralisation due to tooth decay could be an interesting application, and a 

more detailed investigation into this application could take place. 

There may also be applications of this work for cell selection, if indeed the minerals 

are present on the cell surfaces of differentiated cells, it may be a way to separate the cells 

with osteogenic potential from a fraction of bone marrow, or speed of which the osteoblast 

like cells can migrate from a bone chip into a coated petri dish.  Currently osteoblast like cells 

are isolated using standard plastic petri dishes, and the isolation process takes several weeks 

of culture to isolate a few million cells.  It would be an advantage to speed up the isolation 

process as this would also be an indication of the potential osteoconductive nature of these 

modifications. 

The work with the primary human osteoblast like cells showed several areas for 

potential further research (Chapter 4).  The CL3 and CL4 modifications showed an ability to 

stimulate the cells into forming nodules, which appeared, after staining and SEM 

investigation, to be mineralised.  When they reached a critical size the nodules appeared to 

detach from the material, and further investigation into the viability of these nodules should 

be investigated.  I would suggest a full histological investigation into the nodules, that are 

released from the surfaces to check the viability of the centre of the nodules and if any 

mineralisation occurs sub surface. 

While this was an unexpected result from this work, it certainly has some potential for 

growth.  A surface that could produce nodules of bone, that are viable, would certainly have 

applications in transplantation, perhaps not as part of the injectable system but delivered on 
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their own without a carrier.  It could be hypothesised that mineralised nodules of bone would 

have a greater chance of remaining in the area they are required to be in than previous 

attempts to transplant either mature osteogenic cells or stem cells. 

However, if the nodules could be seeded across the area of non-union fracture they 

may increase the capacity to heal, and would be osteoinductive and osteogenic, and there 

would be a potential for the application of the nodules as part of aosteoconductive scaffold, 

with a mineralising silane coating (like CL11 has demonstrated).  This combination of pre-

treated osteoblast and/osteocyte like cells along with a mineralising silane environment may 

harmonise quite well.  If the cells are already being pushed in to an osteocytic state and the 

silane induces a mineralisation process then cells may start to go down a regulatory pathway 

and help maintain the osteogenic response long term.  This is an area for further development 

and looking at applying the silanes to an osteoconductive porous scaffold such as a classical 

ceramic or metallic material would be an interesting avenue of investigation. 

This thesis has identified a few potential pathways of research, and shows that the 

coatings/modifications developed need not be limited to the constraints of an injectable bone 

regeneration system.  The wider potential of chemical modifications has also become 

apparent
11

.  The potential seen in some of the surface modifications to repress the 

differentiation of mesenchymal stem cells or osteoblasts (chapter 4) is also interesting and 

should be pursued, as the spontaneous differentiation of mesenchymal stem cells in tissue 

culture is one of the potential pitfalls in stem cell cultures, which is an area that needs far 

more research before cellular medicine is a true reality
37

.  If a simple synthetic chemical 

modification, (that controls surface energy and deposits its own topography), can achieve the 

maintenance of the stem cell phenotype for longer periods of time (particularly for adult stem 

cells that do lose some of the ability to differentiate after multiple passages in culture), the 
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vast cell numbers that are necessary for even the smallest transplant will become a more 

realistic goal. 

If materials have the potential to stimulate differentiation in a reproducible and 

relatively inexpensive way, there will be no need for the expensive and potentially 

compromising xenological components of tissue culture media, such as growth factors.  If the 

growth factors are produced by the cultured cells themselves, there will be less risk of 

interspecies incompatibility and it will be a step towards the widespread clinical use of stem 

cells. 

There would also potentially be a way to produce growth factors that does not require 

animals or animal products, so it could potentially have a commercial benefit, if it were 

possible to isolate the growth factors from the culture media where they are released.  This is 

just a possibility, but highlights the potential of these surfaces to the greater scientific 

community, and not just for the applications of regenerative medicine or stem cell biology.  

To carry this out however would require significant investment and a thorough and expensive 

investigation into the metablomic potential of the cells on these surfaces. 

As stated above there are numerous opportunities for further research that have been 

opened up from this initial investigation, and they are certainly not restricted to the field of 

injectable systems, bone regeneration, stem cell research or even regenerative medicine, but 

could have a more wider reaching cell culture and dental applications, give us an insight into 

cell cycles and material chemistry, that has not been demonstrated previously.  

In conclusion, this work has developed into a novel study that could develop further 

into wider reaching research that has clinical applications for osteochondral tissue repair and 

bone regeneration.  The advancement in osteochondral repair could impact the treatment of 

osteochondral disease, such as osteoarthritis.  The bone regeneration however was the main 
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focus of this thesis, and it is the osteogenicity of amine-rich modifications that has become 

apparent.  By exploring the presentation of the amine groups, it has become apparent that the 

small differences in chain length influence surface nanotopography, and that this in itself can 

be a driving factor of osteogenicity.  Some of the conflicting reports about surface chemistry 

could be due to changes made on the nanoscale that perhaps were not highlighted by the 

surface characterisation conducted
12

,
11

.  The terminal group is an important factor that 

influences the osteogenic potential of a surface, however the presentation of the terminal 

group, and the nanotopography that brings about, may also be key factors. 
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Chapter 7: Conclusions 

7.1  Conclusions for Plasma modifications on PLGA system 

The transfer of surface chemistries using the novel plasma polymer deposition technique 

was successful. 

1) Plasma modifications influence the mesenchymal stem cell fate; hydroxyl 

modifications push mesenchymal stem cells down a chondrocytic pathway and the 

amine modifications send mesenchymal stem cells down an osteogenic pathway, the 

methyl modifications seem to deter any differentiation, while the carboxyl groups also 

so no significant differentiation. 

2) Mesenchymal stem cells are influenced by the surface chemistries even in the 

presence of conflicting signals, and two separate populations of cells can be created 

by differing surface modifications alone. 

 

7.2  Conclusions silane modifications on glass 

1) The silane modifications were transferred successfully using a wet chemical technique 

onto glass  

2) The nanotopography of the materials revealed significant differences between the 

longest and shortest chain lengths. 

3) The water contact angle showed significant differences. 

4) The longer chain lengths increased the expression of osteogenic markers from the 

mesenchymal stem cells. 
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5) The shorter chain lengths allowed the formation of calcified nodules by primary 

human osteoblasts, pushing osteoblasts further down the osteogenic lineage towards 

embedded osteocytes. 

 

7.3 Conclusions for silanes on PLGA films 

1) The surface modification induces a nanotopography on PLGA film that is detectable 

by AFM microscopy 

2) The concentration of amine is higher on the CL11 than the other modifications 

(p=<0.95) demonstrating the efficiency of this modification. 

3) The dynamic water contact angle measurements showed a significant difference 

between some of the modifications, this highlighted a correlation between the chain 

length and the dynamic water contact angle. 

4) Human mesenchymal stem cells showed evidence of significant differentiation when 

incubated on CL11 modified PLGA surface. 

7.4 Conclusions for silanes on PLGA injectable system 

1) The amine group concentration on the spheres was significantly higher than the 

concentration of amine groups on the flat PLGA surfaces.  This is likely to be 

responsible for the absence of differentiation seen in the scaffolds. 

2) There was no significant differentiation seen on any of the scaffolds, but the further 

optimisation of this technique will lead to this. 
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Appendix 1 Ninhydrin assay standard curves 
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Appendix 1:Standard curves for individual silanes.  Standard curves used to calculate unknown 

concentrations of silanes,  showing linear regression lines, calculations and r values for each of the 

silanes used. (a) CL3, (b)CL4, (c) CL6, (d) CL7, and (e)CL11. 
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Appendix 2 LDH assay standard curves 
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Appendix 2: LDH assay standard curve.  Optical density plotted against a known number of 

cells. 


