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Abstract 
Idiosyncratic drug hypersensitivity remains a major challenge as it causes high morbidity and 
mortality. This is complicated by the multiple risk factors implicated and the inability to predict 
these reactions during the early stages of drug development. Thus, this study attempted to 
delineate the molecular pathomechanism(s) involved in sulfamethoxazole (SMX) 
hypersensitivity.  
The reactive metabolite, nitroso-SMX (SMX.NO) generated through the hepatic bioactivation of 
SMX has long been hypothesised as a major trigger of these reactions. SMX hypersensitivity has 
been used as a paradigm to study the role of drug metabolism in the activation of T-cells as the 
synthetic nitroso metabolite is available for functional studies. Metabolism of SMX in hepatic 
tissue has been extensively studied. CYP2C9 and Myeloperoxidase (MPO) are implicated in the 
formation of SMX.NO. However, it is unclear whether the SMX.NO generated in the liver 
migrates to the skin; the primary target in SMX hypersensitivity. It is possible that localised SMX 
metabolism by immune cells resident in the skin are implicated in the observed reactions. ELISA 
data revealed SMX metabolism in EBV-transformed B-cells used as antigen presenting cells 
(APCs). SMX-metabolism was significantly inhibited by methimazole. Furthermore, Western 
blotting and RT-PCR analyses suggested the presence of low concentrations of MPO in EBV-
transformed B-cells. Interestingly, RT-PCR revealed mRNA expression of flavine containing 
monooxygenases (FMO1-5), TPO and LPO but the protein levels of these enzymes were not 
detected in immune cells. Subsequent experiments involved the generation and LC-MS/MS 
characterization of SMX.NO-modified MPO adducts. Although SMX.NO formed both the 
sulphinamide and N-hydroxysulfinamide adducts, drug specific T-cell clones failed to proliferate 
in response to drug-modified peptides. 
Since SMX.NO binds to multiple cellular proteins, it is assumed that peptides derived from the 
modified protein interact with a number of diverse HLA molecules to activate T-cells. However, 
the HLA molecules that interact with SMX.NO-modified peptides have not been defined. This 
study therefore examined the HLA molecules that present SMX.NO (derived peptides) to T-cells. 
T-cell clones (TCCs) were generated from 5 hypersensitive patients with cystic fibrosis. Fast 
growing TCCs from 2 SMX hypersensitive patients were used for HLA restriction studies. Drug-
specific proliferative response, cytokine secretion and cytolytic markers were measured using 
[3H]-thymidine incorporation and ELIspot assays. Anti-human class I and class II (DR, DP, and 
DQ) antibodies were used to determine HLA restriction of drug-specific T-cell activation. APCs 
expressing similar or different HLAs were used to define the alleles involved in the presentation 
of SMX.NO-derived antigens to T-cells. A total of 1578 clones were tested for SMX.NO reactivity. 
Seventy-seven CD4+ clones were activated to proliferate and secrete IFN-ϒ, IL-5, IL-13 and 
granzyme-B by SMX.NO. Only one TCC was CD8+No cross reactivity with SMX was observed. The 
SMX.NO-specific response of clones was blocked with antibodies against MHC class II and HLA-
DQ. Clones from 2 patients (Patient 1: HLA-DQB1*05:01:01G/ DQB1*06:03:01G; Patient 2: HLA-
DQB1*02:01:01G/DQB1*02:01:01G) were used to define the DQ alleles involved in the 
presentation of SMX.NO derived antigens. SMX.NO-specific responses were detected with 
heterologous APCs expressing HLA-DQB1*05:01 (patient 1) and HLA-DQB1*02:01 (patient 2), 
but not other HLA-DQB1 alleles. 
Activation of PD-1 on T-cells is thought to inhibit antigen-specific T-cell priming and regulate T-
cell differentiation. Thus, this study sought to measure the drug-specific activation of naïve T-
cells after perturbation of PD-L1/PD-1 binding and investigate whether PD-1 signalling 
influences the differentiation of T-cells. Naive T-cells were co-cultured with monocyte-derived 
dendritic cells in the presence of SMX.NO for a period of 8 days (±PD-1/2 block) and T-cell 
priming investigated using readouts for proliferation and cytokine secretion. Priming of naïve T-
cells against SMX.NO was found to be more effective when PD-L1 signalling was blocked. Drug-
specific TCCs generated through priming and from hypersensitive patients were found to 
secrete IFN-γ, IL-5 and IL-13. More detailed analysis revealed two different cytokine signatures. 
Clones secreted either FasL/IL-22 or granzyme B. The FasL/IL22 secreting clones expressed the 
skin homing receptors CCR4, CCR10 and CLA and migrated in response to CCL17/CCL27.  PD-1 
was stably expressed at different levels on clones; however, PD-1 expression did not correlate 
with the strength of the antigen-specific proliferative response or the secretion of 
cytokines/cytolytic molecules.  
In conclusion, this study used a variety of in vitro assays to investigate the multiple factors 
involved in the pathomechanism of SMX hypersensitivity. A clear understanding of mechanisms 
of drug hypersensitivity will provide insights that aid drug design and reduce the frequency of 
such reactions.  
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1.1 Adverse drug reactions (ADRs)  

The use of drugs for prophylaxis, diagnosis, management and treatment of 

diseases is sometimes accompanied by ADRs, with 6-7% of all hospital 

admissions attributed to ADRs (Einarson 1993; Classen et al. 1997; Gomes and 

Demoly 2005). ADRs greatly impact the healthcare system and are a leading 

cause of mortality (Lazarou et al. 1998; Pirmohamed et al. 1998; Bharadwaj et 

al. 2012).They negatively affect the duration of hospital admissions and the cost 

of treatment (Bates et al. 1997; Classen et al. 1997); thus, ADRs are a major 

concern for the patients, health care providers and the pharmaceutical industry. 

Many drugs have either been withdrawn or their use restricted in the past due 

to ADRs (table 1.1). Scientists in both the industry and the academia have 

invested time and resources to understand the molecular mechanism of ADRs.  

Pharmacovigilance is the aspect of clinical practice charged with the monitoring 

of ADRs.  The manifestations and severity of ADRs are dependent on a number 

of susceptibility factors including gender, age, genetic predisposition, disease 

state and the chemical properties of the drug involved. Clinical presentation of 

ADRs are heterogeneous and may include skin rash, urticaria, itching, fixed dose 

eruptions, angioedema, Stevens-Johnson syndrome (SJS) and toxic epidermal 

necrolysis (TEN) (Sharma and Sethuraman 1996; Sharma et al. 2001). The skin 

is the most affected organ following the activation of the relatively latent 

immune system by drugs (Arndt and Jick 1976; Hunziker et al. 1997).  
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Table1.1–Safety outcomes of various drugs due to adverse reactions (adapted 

from Talbot, J. et al., Stephen’s detection and evaluation of adverse drug 

reactions, 2012). 

 

1.1.1 Definition of adverse drug reactions 

The World Health Organization (WHO) has defined an ADR as a response to a 

drug that is noxious, unintended or undesired, occurring at doses normally used 

for the prophylaxis, diagnosis or treatment of disease (1969). The WHO 
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definition of ADRs excludes reactions to pharmaceutical excipients and herbal 

medications. Edwards and Anderson in 2000 criticised the WHO definition. 

They stated that ADRs can occur at doses other than those described by the 

WHO definition. They also argued that the word ‘noxious’ excludes ADRs that 

may be inconvenient but not harmful. They therefore defined ADR as “an 

appreciably harmful or unpleasant reaction, resulting from an intervention 

related to the use of a medicinal product which predicts hazard for future 

administration and warrants prevention, specific treatment, alteration of the 

dosage regimen or withdrawal of the product” (Edwards and Aronson 2000).  

1.1.2 Classification of adverse drug reactions 

ADRs can be broadly classified into dose-dependent (type A) and idiosyncratic 

(type B) reactions (1969; Ahmed et al. 1988; Edwards and Aronson 2000; Riedl 

and Casillas 2003).  

Type A reactions are consistent with the extended pharmacology of the 

‘culprit’ drug and occur at a higher frequency than type B reactions (Einarson 

1993). These reactions include toxic effects of drugs such as digoxin and 

serotonin. Drug overdose, impaired metabolism and compromised excretion are 

predisposing factors to type A reactions.  

 Type B reactions are less common, dose-independent, unpredictable and often 

dependent on individual susceptibility factors. Approximately 10%-15% of all 

adverse drug reactions are type B reactions (Jick 1984; Kocak et al. 2006). Many 

type B reactions involve activation of the host adaptive immune system and are 

therefore often referred to as allergic or hypersensitivity reactions. They 
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involve different components of the adaptive immune response including IgE 

antibodies, drug-specific T-cells and immune complexes (Anderson and 

Adkinson 1987; deShazo and Kemp 1997; Demoly and Bousquet 2001). The 

major differences between the two types of ADRs are summarised in table 1.2 

below.  

Table 1.2- Characteristics of type A and type B adverse drug reactions 

 

More recently, strong HLA associations have been linked with certain drug 

hypersensitivity reactions, thus making them more predictable (Pavlos et al. 

2012). Abacavir (Mallal et al. 2002), allopurinol (Hung et al. 2005), 

carbamazepine (Chung et al. 2004; McCormack et al. 2011) and flucloxacillin 

(Daly et al. 2009) are among the growing list of drugs with strong HLA-

associations (table 1.3).  
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Table 1.3- Examples of HLA-associated drug hypersensitivity reactions 

 

1.1.3 Epidemiology of adverse drug reactions 

Type A and B reactions present with complications in drug therapy that may 

require dose reduction and or withdrawal of the offending medication (Jick 

1984).  In the United States, it is estimated that 100,000 hospital admissions 

annually relate directly to drug exposure (Lazarou et al. 1998). In Sweden, ADRs 

are the 7th  most common cause of death (Lavergne et al. 2008). An NHS survey in 

2004 revealed that 6.5% of 19,000 hospitalised patients, in two UK hospitals, was 

as a result of ADRs (Hughes et al. 2004). The significant variability that exists 

between different ADR epidemiology data may be due to differences in ethnicity, 

advances in health care, medical practices and study design (Raschetti et al. 1999; 

Fattinger et al. 2000; Senst et al. 2001; Dormann et al. 2004; Davies et al. 2009) 

Risk factors of adverse drug reactions (other than HLA) include: gender; females 

showing a higher predisposition (Schopf et al. 1991; Barranco and Lopez-Serrano 
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1998; Beukelman and Mirenda 2005; Sharma et al. 2008) and viral infections; 

most especially HIV (Bayard et al. 1992; Khambaty and Hsu 2010),  and herpes 

simplex virus (Descamps et al. 2001; Shiohara et al. 2006). The 

pathophysiological state of the disease and polypharmacy also serve as risk 

factors to certain ADRs (Lang et al. 1991; Petri and Allbritton 1992; Harb and 

Jacobson 1993; Atkin and Shenfield 1995; Pirmohamed and Park 2001). 

Furthermore, the patient and the dose of drug administered are important 

susceptibility factors (Leach and Roy 1986; van der Ven et al. 1991).  

Riedl and Casillas (2003) argued that the chemical properties and molecular 

weight of a drug constitute the most important risk factor of ADRs (Riedl and 

Casillas 2003). Drugs with large molecular weight and complex structures like 

human proteins are more prone to immunological reactions. On the other hand, 

drugs with low molecular weights (<1000 Daltons) may only become 

immunogenic by forming antigenic adducts with macromolecules like proteins 

(Pirmohamed et al. 2002; Holt and Ju 2006; Uetrecht 2007), discussed in greater 

detail later.  

Genetic polymorphisms in drug metabolism enzymes result from mutations in 

the genes that encode certain enzymes. These mutations may lead to increased, 

decreased or a total lack of enzyme activity resulting in differential toxicity 

observed in certain individuals (Meyer and Zanger 1997; Nebert 1997; Tanaka 

1999). Polymorphisms in the NAT1 and NAT2 genes that encode for N-

acetyltransferase has clinical implications in the metabolism of drugs like 

caffeine, isoniazid, nitrazepam and sulfonamides (Summerscales and Josephy 

2004). Different degrees of toxicity have reported in slow acetylators of dapsone 
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and procainamide while fast acetylators present with unreliable clinical 

outcomes with isoniazid (Shenfield 2004). Furthermore, CYP2C9, CYP2C19 and 

CYP2D6 are highly polymorphic Cytochrome P450 enzymes, involved in either 

therapeutic failures or adverse drug reactions (Meyer and Zanger 1997; Bozina et 

al. 2009; Johansson and Ingelman-Sundberg 2011). It is important to state that 

genetic polymorphism of drug metabolism enzymes and immune reactions have 

been studied extensively and there is no correlation. Figure 1.1 summarises the 

major risk factors that predispose a patient to ADRs. 

 

Figure 1.1- Schematic representation of the risk factors involved in ADRs 

 

1.1.4 Clinical and economic impact of adverse drug reactions  

ADRs are common causes of hospital admissions worldwide significantly, 

straining the healthcare system and resulting in many deaths (Bergman and 

Wiholm 1981; Hallas et al. 1990; Leape et al. 1991; Suh et al. 2000; Patel et al. 
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2007; Brvar et al. 2009). In the UK, extended hospital admission resulting from 

ADRs is estimated to be eight days and accounts for approximately 4% of the 

total capacity of hospital beds, costing the NHS about £466m (Pirmohamed et al. 

2004). Common causes of “inadvertent” ADRs include missed doses, illegible 

orders, wrong techniques, duplicate therapy, drug-drug interactions, 

preparation error, equipment failure and inadequate monitoring (Leape et al. 

1991; Evans et al. 1994; Lesar et al. 1997).  

1.1.5 Definition of drug hypersensitivity reactions  

Drug hypersensitivity reactions are defined as ADRs with an immunological 

aetiology to an otherwise safe and effective therapeutic agent, administered at 

recommended doses. They are widespread and pose a serious public health 

challenge. Recent advances in the field of drug hypersensitivity research have 

enhanced our understanding of the complex pathophysiology of drug 

hypersensitivity reactions. They are immune-mediated reactions presenting 

with mild to severe symptoms including skin rash, anaphylaxis and serum 

sickness. SJS and TEN are among the very severe skin manifestations of drug 

hypersensitivity reactions (Pohl et al. 1988; Gomes and Demoly 2005).  

1.1.6 Time course of drug hypersensitivity reactions  

The time course for the appearance of clinical symptoms of hypersensitivity 

reactions is important in their diagnosis, but also in the treatment of these 

reactions. Many drug hypersensitivity reactions present as delayed-type 

reactions and require between one day to a few weeks for clinical 

manifestations to appear (Hausmann et al. 2010). Activation of T-cells has been 

reported as a key feature of drug hypersensitivity reactions (Naisbitt et al. 2003; 
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Wu et al. 2006; Castrejon et al. 2010). Molecular changes that accompany 

antigen-specific T-cell activation include T-cell commitment (0-30 minutes post 

exposure to antigen) and T-cell proliferation (1-2 days post antigen activation) 

(Stepp et al. 2000; Posadas et al. 2002). Terminal functional differentiation 

involving the production of cytotoxic molecules like perforin and granzyme-B 

occurs 5-7 days post antigen stimulation (Ullman et al. 1990; Ortiz et al. 1997). 

Drug-induced liver injury (DILI) is a low incidence, but serious complication of a 

number of drugs including lapatinib, lumiracoxib and ximelagatran (see table 

1.1). The mean onset of action of DILI with flucloxacillin and co-amoxiclav is 

110 days (Andrade et al. 2006). Although HLA association suggests an immune-

mediated mechanism, the reason for this time course is unknown.  

1.1.7 Classifications of hypersensitivity reactions 

Gell and Coombs (1963) classified hypersensitivity reactions and other 

immune-mediated reactions into four major categories. The classification is 

based on the time to clinical symptoms, and mechanistic features of the 

reactions. The four groups include: type I, type II, type III and type IV reactions 

(table 1.4). 

Type I reactions are mostly IgE-mediated reactions and result from cross-

linkage of receptors on mast cells and basophils leading to an immediate release 

of histamine and leukotrienes. Clinical manifestations include 

bronchoconstriction, urticaria, eczema, conjunctivitis and anaphylaxis.  

Type II reactions are also known as cytotoxic reactions and are mediated by IgG 

or IgM antibodies, which bind to cells followed by binding of complement 

proteins and cell rupture. This mechanism is responsible for the clinical 
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manifestations of haemolytic anaemia, granulocytopenia and 

thrombocytopenia.   

Type III reactions are either IgG or IgM mediated reactions occurring in the 

presence of an excess concentration of an antigen in the circulation. Examples of 

type III reactions include serum sickness, systemic lupus erythematosus, 

rheumatoid arthritis and vasculitis. 

 Type IV reactions are T-cell mediated and mostly delayed-type 

hypersensitivity reactions. This mechanism is involved in the pathogenesis of a 

number of autoimmune and infectious diseases such as tuberculosis, leprosy, 

blastomycosis, histoplasmosis, toxoplasmosis, and leishmaniasis. Stevens-

Johnson syndrome and toxic epidermal necrolysis are examples of type IV 

reactions. Table 1.4 compares the four types of hypersensitivity reactions 

classified according to Gell and Coombs. 
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Table 1.4- Comparison of the different mechanisms of hypersensitivity reactions 

 

The majority of drug-induced hypersensitivity reactions are delayed type IV 

reactions and can be further sub-divided into four classes (IV a, b ,c and d); with 

monocyte, eosinophil, cytotoxic T-lymphocyte and neutrophil involvement in 

the respective classes (Depta et al. 2004). Table 1.5 illustrates the main features 

of the various sub-types of class IV hypersensitivity reaction. 

 

Table 1.5- Characteristics of type IV hypersensitivity reaction 
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1.1.8 Diagnosis of drug hypersensitivity reactions 

Skin tests are the only tests used in routine clinical diagnosis of ADRs. The 

guidelines for carrying out skin tests in the diagnosis of drug-induced cutaneous 

reactions have been reported by a number of studies (Barbaud et al. 2001; 

Brockow et al. 2002; Aberer et al. 2003). Traditional skin tests such as the prick, 

patch and intracutaneous tests are disadvantaged by their low sensitivity 

(sometimes false-negative) and their invasive nature (Barbaud et al. 1998; 

Barbaud et al. 2001; Strauss et al. 2001; Torres et al. 2003; Romano et al. 2004). 

Challenge tests are sometimes useful to confirm inconclusive results from prick 

and patch tests. This may result in the reactivation of severe symptoms and 

fatality, hence must be carried out under close medical observation. In severe 

reactions, challenge tests are discouraged (Aberer et al. 2003; Han et al. 2012). 

The diagnosis of drug-induced delayed-type T-cell mediated hypersensitivity 

reactions is important in order to characterise clinical symptoms of these 

reactions and establish the drug (s) responsible for such reactions. Drug-

specific T-lymphocytes have been isolated from blister fluid, skin tissues and 

peripheral blood of hypersensitive patients and may remain detectable years 

after the drug was administered (Hari et al. 2001; Naisbitt et al. 2005; Beeler et 

al. 2006). 

In vitro techniques provide safer alternatives to the often invasive skin tests in 

the diagnosis of drug-hypersensitivity reactions and offer a better 

understanding of the molecular mechanism of these reactions. The sensitivity of 

most in-vitro tests is less than 100%; hence accurate patient history is an 

important complementary data for accurate diagnosis. These tests include  
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 Lymphocyte transformation test (LTT) 

 Enzyme-linked immunospot (ELISPOT) assay 

 Others (Flow cytometry, intracellular cytokine staining, multiplex assays 

and T-cell cloning) 

Importantly, these tests are currently not used in routine clinical care due to a 

number of reasons: (1) these assays rely on the availability of freshly isolated 

peripheral blood mononuclear cells and/or a cryopreservation facility, if assays 

are to be conducted on a later date. (2) A researcher must be trained in cell 

isolation, sterile technique and cell culture methods. (3) Incorporation of the 

drug into the assay in an appropriate form is technically demanding.  

1.1.8.1 Lymphocyte transformation test (LTT) 
LTT is also referred to as lymphocyte stimulation test or lymphocyte 

proliferation test and is the most utilised in vitro assay for the diagnosis of 

penicillin allergy (Nyfeler and Pichler 1997; Luque et al. 2001; Pichler and Tilch 

2004). It measures the proliferation of memory T-lymphocytes to a particular 

drug to which a patient has been exposed and provides an insight into the 

pathomechanism of these reactions (Nyfeler and Pichler 1997).  

The LTT can be utilised for both delayed-type and immediate hypersensitivity 

reactions (Luque et al. 2001). It has a high specificity with various drugs 

including the β-lactams (amoxicillin, flucloxacillin, and piperacillin), 

sulfamethoxazole (SMX), lidocaine, celecoxib, lamotrigine, ciprofloxacin, 

carbamazepine, mepivacaine and p-phenylenediamine. The sensitivity of LTT is 

dependent on the chemical properties of the drug involved (Gerber and Pichler 

2004; Pichler and Tilch 2004; Romano et al. 2004).  
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The assay is performed using peripheral blood mononuclear cells (PBMCs) 

isolated from sensitised patients over a density gradient. Proliferative response 

can be evaluated using [3H]-thymidine incorporation during DNA synthesis. 

Lymphocyte proliferation is expressed as stimulation index (SI), which is the 

ratio of antigenic proliferation against proliferation in the presence of cell 

culture medium. A stimulation index of ≥ 2 is considered as a positive response. 

LTT data for immunosuppressive drugs e.g corticosteroids, known to interfere 

with lymphocyte proliferation should be interpreted relative to both the 

positive and the negative controls (Pichler and Tilch 2004). Finally, regardless 

of the advantages of the LTT as a non-invasive assay, the use of radioactive 

isotopes and long duration of the assay (6 days) are obvious disadvantages in 

terms of clinical applications. 

1.1.8.2 Enzyme-linked immunospot (ELISPOT) assay 
ELISPOT assay is a quick, highly sensitive and precise technique applied in the 

detection and characterization of low frequency drug-specific cytokine-

secreting T-lymphocytes (Czerkinsky et al. 1988; Jenkins et al. 2013; Monshi et 

al. 2013). This type of assays provides an insight into the biological function of 

the T-lymphocytes that mediate drug hypersensitivity reactions. Activated T-

lymphocytes can secrete an array of pro-inflammatory (Th1) cytokines (IFN-

gamma, TNF-α, IL-2, IL-6 IL-12 and IL-13) and anti-inflammatory (Th2) 

cytokines (IL-4, IL-5, IL-10 and TGF-β) as well as other effector molecules like 

granzyme, perforin and Fas ligand (Romagnani 1992; Aberer et al. 2003; 

Lehmann and Zhang 2012).  

IFN-ϒ is an important cytokine implicated in a number of delayed-type drug 

hypersensitivity reactions; therefore, the number of circulating drug-specific 
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IFN-ϒ secreting T-lymphocytes has been quantified as a diagnostic measure of 

drug-induced hypersensitivity reactions (Pichler 2003; Teraki and Shiohara 

2003; Yoshimura et al. 2004; Naisbitt et al. 2005; Rozieres et al. 2009). Besides 

serving as a marker for cytotoxicity, raised levels of IFN-ϒ is known to 

upregulate MHC class II molecules on the surface of keratinocytes resulting in 

an enhanced antigen presentation to CD4+ T-lymphocytes (Yawalkar et al. 2000; 

Beeler and Pichler 2006). A sensitivity of 90% has been reported using IFN-ϒ 

specific ELISPOT in the detection of penicillin-specific T-lymphocytes in patients 

with maculopapular exanthema (Rozieres et al. 2009).  

1.1.8.3 Flow cytometry  
Flow cytometry is a vital technique used in the identification of multiple 

phenotypic cell surface parameters. Cell surface markers of T-cell activation on 

peripheral blood can be used to detect antigen-specific T-cell populations and 

subsequently in the diagnosis of an antigen-specific T-cell response and 

hypersensitivity (Hari et al. 2001). For example, the upregulation of CD69 on 

CD4+ T-cells in response to antigenic stimulation has previously been used in 

the detection of phenytoin-specific T-lymphocytes (Lochmatter et al. 2008). 

Other cell surface markers of T-cell activation include CD25, CD40L, CD71 and 

HLA-DR (Beeler and Pichler 2006). The upregulation of these cell surface 

markers is drug-specific and does not occur in non-sensitized individuals.  

Flow cytometry can also be used to evaluate proliferative response following 

stimulation of memory T-lymphocytes. Antigen-specific T-lymphocytes are first 

stained with the fluorescent dye, carbooxyfluorescin diacetate succinimidyl 

ester (CFSE), which interacts with the amino group of intracellular proteins. The 

intensity of CFSE is reduced by half following each cell division resulting from 
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drug stimulation. Hence, the dividing population of drug-specific T-lymphocytes 

can be evaluated.  

1.1.8.4 Intracellular cytokine staining (ICS) 
ICS is a flow cytometry-based assay that evaluates the intracellular cytokine 

secretion by activated cells. The nature of an immune response following an 

antigen stimulation is thought to be defined by a fine balance between Th1, IFN-

ϒ secreting cells and Th2, IL-4 secreting cells (Del Prete et al. 1993; Kroemer et 

al. 1993). Both subsets of T-cell have no distinguishing cell surface markers 

hence, ICS for both cytokines using fluorescent antibodies followed by flow 

cytometry can serve as a diagnostic tool to evaluate their involvement in drug-

induced reactions. ICS can detect multiple cytokines secreted by a sub-set of 

lymphocytes following antigen stimulation. 

1.1.8.5 Multiplex (Luminex) assays 
Like the ELISPOT assay, the multiplex assay quantifies cytokines secreted 

following T-lymphocyte stimulation by drugs or metabolites (Beeler and Pichler 

2006; Chen et al. 2009; Elsheikh et al. 2011). This assay utilises beads with 

known spectral characteristics that are bound to particular capture antibodies 

in order to detect and quantify cytokines secreted by defined cell populations.  

1.1.8.6 T-cell cloning 
In a limited number of individuals, it is difficult to detect drug-specific T-

lymphocytes using the previously described assays. Hence, T-cell cloning 

provides a valuable alternative. T-lymphocyte cloning can be performed 

according to the well-established method of ‘limiting dilution’ (Staszewski 

1984). T-cell clones can then be characterised in terms of phenotypic marker or 

proliferation and cytokine secretion following drug-stimulation. T-cell cloning is 
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an important technique used to evaluate the pathomechanism of drug 

hypersensitivity reactions. 

1.1.9 Cutaneous drug reactions 

 Drug-induced hypersensitivity reactions target multiple organs within the 

human body including lungs, heart, liver, kidneys and skin. However, the skin is 

the most commonly affected organ and accounts for 2-3% of adverse drug 

reactions in hospitalised patients (Bigby et al. 1986; Hunziker et al. 1997; 

Crowson et al. 2003). The large surface area, dense network of dendritic cells 

(DCs) and vast network of blood vessels make the skin more susceptible to 

pathogenic T-cell reactions compared with other organs (Keller et al. 2005; 

Clark et al. 2006).  

Cutaneous reactions to medications vary in appearance and severity. SJS and 

TEN are the most severe forms, with higher mortality rates compared to 

maculopapular exanthema (MPE), acute generalised exanthematous pustulosis 

(AGEP), and drug rash/reaction with eosinophilia and systemic symptoms 

(DRESS). Other cutaneous manifestations of drug hypersensitivity reactions 

include urticaria, fixed drug eruptions, photosensitive reactions and erythema 

exudativum multiforme (Bigby et al. 1986; Hunziker et al. 1997; Crowson et al. 

2003). 

The clinical manifestations of the different cutaneous adverse drug reactions 

differ in terms of cytokines secreted by activated T-lymphocytes. While CD4+ T-

lymphocytes cells play an important role in drug induced MPE and AGEP, CD8+  

lymphocytes are involved in SJS and TEN (Nassif et al. 2004). A large number of 
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drugs belonging to different pharmacological classes cause cutaneous reactions 

(table 1.6). 

Table 1.6- Drugs commonly associated with cutaneous hypersensitivity 

reactions 

 

 

The following sections summarise the clinical manifestations and causes of the 

different forms of drug-induced skin reactions.  

1.1.9.1 Maculopapular exanthema (MPE). 
MPE is the most common cutaneous manifestation of the beta-lactam, SMX, 

quinolone, NSAID, anticonvulsants and allopurinol hypersensitivity. However, 

there are several other causes of MPE including HIV, EBV, and CMV, which 

complicate diagnosis (Fernandez et al. 2009). MPE accounts for between 31-

95% of all drug-induced skin reactions (Apaydin et al. 2000; Bigby 2001). The 

onset of MPE is between 8-11 days following drug administration and continues 
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for up to 2 days after discontinuation of the offending drug (Valeyrie-Allanore et 

al. 2007).  

Clinical manifestations of MPE include faint, pink or red macules that further 

develop into maculopapular rash, moderate to severe itching and fever. Drug-

specific cytotoxic CD4+ T-lymphocytes are the predominant effector cells that 

mediate MPE (Hertl and Merk 1995; Blanca et al. 2000; Yawalkar et al. 2000; 

Pichler et al. 2002; Bronnimann and Yawalkar 2005; Yawalkar 2005). Secretory 

molecules including INF-ϒ, perforin, granzyme-B and IL-5 play an important 

role in the pathophysiology of MPE (Schnyder et al. 1998; Posadas et al. 2000; 

Yawalkar et al. 2000; Posadas et al. 2002). Chemokines like CCL11/eotaxin, 

CCL5/RANTES, and CCL27/CTACKS also mediate MPE (Yawalkar et al. 2000; 

Tapia et al. 2004). Generally, supportive treatments for mild MPE include 

withdrawal of the offending drug and application of emollients to affected areas. 

For more severe MPE reaction, short courses of systemic anti-histamines and 

topical corticosteroids are administered.  

1.1.9.2 Acute generalised exanthematous pustulosis (AGEP) 
AGEP is an uncommon cutaneous reaction first described in 1980 by Beylot and 

his colleagues (Beylot et al. 1980). It is also referred to as pustular drug 

eruption or toxic pustuloderma and is mediated by IL-8 secreting T-

lymphocytes. Antibiotics including aminopenicillins, macrolides, clindamycin 

and sulfonamides are the major drugs implicated in AGEP (Schmid et al. 2002; 

Sidoroff et al. 2007). The incidence of AGEP is between 1-5 per million per year 

(Sidoroff et al. 2001; Leclair et al. 2009). The onset of AGEP is about five days 

following the administration of the causative drug, with clinical symptoms 

persisting for 1-2 weeks after discontinuation of drug therapy (Zlotnik and 
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Yoshie 2000). AGEP is characterised by numerous small primary, non-follicular 

sterile pustules, leukocytosis, eosinophilia and large areas of edematous 

erythema (Roujeau et al. 1991; Roujeau 2000; Britschgi et al. 2001). Skin 

detachment similar to that seen in SJS and TEN has also been reported (Roujeau 

2000; Peermohamed and Haber 2011). In the absence of appropriate clinical 

intervention, the mortality from AGEP is about 5 percent (Roujeau 2005).  

1.1.9.3 Drug Reaction with Eosinophilia and Systemic 

Symptoms (DRESS) 
DRESS is also referred to as drug hypersensitivity syndrome and is 

characterized by high fever, morbilliform skin rash, malaise, lymphadenopathy 

and damage to multiple internal organs (kidneys, liver, lungs, and/or heart). 

The liver is the organ most commonly involved, often resulting in fulminant 

hepatitis (Amante et al. 2009). The pathophysiology of DRESS involves the 

recruitment of eosinophils, mediated through IL-5 secreted by activated T-

lymphocytes (Choquet-Kastylevsky et al. 1998). The reactivation of human 

herpes virus 6 and 7 (HHV-6 and HHV-7) plays a critical role in DRESS 

(Descamps et al. 1997; Kano et al. 2004). Certain clinical manifestations of 

DRESS are linked to a systemic immune response against reactivation of HHV-6, 

HHV-7, Epstein-Barr virus and cytomegalovirus, prompted by the causative 

drug (Picard et al. 2010). Picard and his colleagues reported viral reactivation in 

76% of patient with DRESS following administration of carbamazepine, 

allopurinol, or SMX. Interestingly, they reported that approximately 50% of the 

CD8+ T-lymphocytes involved responded to a number of EBV epitopes. Although 

systemic manifestations of DRESS are CD8+ T-lymphocyte-mediated, often 

targeting herpes viruses; the role of the drug and viral specific T-cells in the 
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disease pathogenesis is yet to be defined. These reactions are delayed and T-cell 

mediated with onset between 2-8 weeks after administration of the offending 

drug(s) (Peyriere et al. 2006). DRESS has an estimated mortality of 8%.  

Allopurinol, carbamazepine, phenobarbital, phenytoin, lamotrigine and the 

sulfonamides antibiotics are common drugs associated with DRESS. Aromatic 

anticonvulsants are the most common class of drugs implicated in DRESS 

(Gaedigk et al. 1994; Edwards et al. 1999; Bohan et al. 2007). Aromatic 

hydroxylation results in the formation of arene oxide (toxic reactive 

intermediates) normally transformed to nontoxic metabolites by microsomal 

epoxide hydroxylase or glutathione transferase. Other arene oxide 

detoxification pathways involve conversion to nontoxic phenol derivatives 

(Shear and Spielberg 1988; Gogtay et al. 2005). Failure to detoxify arene oxide 

results in covalent modification of macromolecules that form the antigenic 

determinants responsible for T-cell mediated hypersensitivity reactions (Gennis 

et al. 1991; Gaedigk et al. 1994; Krauss 2006).  

The diagnosis of DRESS relies on the clinical presentation of a combination of 

symptoms, namely high fever, skin rash and organ involvement accompanied by 

eosinophilia. Accurate diagnosis of the offending drug also relies on a carefully 

documented history of drug intake, and may be complicated by the varied time 

to onset (2-8 weeks) after drug exposure. Immediate withdrawal of drug(s) and 

supportive symptomatic care are the first line of treatment for DRESS. 

Antihistamines, systemic steroids and immunoglobulin therapy are used to 

treat more severe cases.  
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1.1.9.4 Stevens Johnson syndrome (SJS) and toxic epidermal 

necrolysis (TEN) 
The incidence of SJS is 6 cases in a million people per year and 2 cases per 

million in a year for TEN (Roujeau and Stern 1994; Rzany et al. 1996). Hence, 

both conditions are extremely rare. Nevertheless, SJS and TEN are life-

threatening skin conditions accompanied by keratinocyte cell death and 

exfoliation of the epidermis (Roujeau and Stern 1994; Yang et al. 2007; 

Mockenhaupt 2011). TEN has been described as a more severe form of SJS.  

The degree of separation of the epidermis from the dermis is the major clinical 

diagnostic feature for SJS and TEN (Roujeau and Stern 1994; Ward et al. 2010). 

Skin detachment of 10% or less is consistent with SJS, 10-30% in SJS-TEN and 

greater than 30% in TEN (Roujeau 1994; Sharma and Sethuraman 1996; 

Mockenhaupt 2009). Classes of drug that cause SJS/TEN include antibiotics (co-

trimoxazole, penicillins, cephalosporins), antifungal (imidazole), antiviral 

(nevirapine) and non-steroidal anti-inflammatory drugs (naproxen, ibuprofen), 

anti-convulsants (carbamazepine, phenytoin, phenobarbital, valporic acid and 

lamotrigine) and allopurinol (Roujeau 1994; Rzany et al. 1996; Halevy et al. 

2008; Sharma et al. 2008; Khambaty and Hsu 2010; Ward et al. 2010). These 

conditions are accompanied by general malaise, fever and multi-organ 

involvement (Greenberger 2006; Feldmeyer et al. 2010; Harr and French 2010; 

Harr and French 2010). 

The pathogenesis of SJS/TEN is still poorly understood despite the high 

mortality rate of between 10-50% (Gomes and Demoly 2005). Cytotoxic T-

lymphocytes and natural killer T-lymphocytes have been implicated in SJS and 

TEN, causing marked keratinocyte apoptosis (Paul et al. 1996; Ko et al. 2011; 
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Wang et al. 2013). Recent research into the pathomechanism suggests that 

cytotoxic T-lymphocytes are activated by offending drugs presented on 

keratinocytes in an MHC class I restricted manner (Gao and Jakobsen 2000; Wei 

et al. 2012). 

Activated cytotoxic T-lymphocytes secrete cytotoxic proteins, cytokines and 

chemokines that mediate the clinical outcomes of drug induced SJS/TEN (Yang 

et al. 2007; Ko et al. 2011). The pathogenesis of SJS/TEN involves two major 

pathways of cell death, the Fas ligand pathway and perforin/granzyme-B 

pathway (Viard et al. 1998; Nassif et al. 2002; Posadas et al. 2002; Abe et al. 

2003; French 2006; Khalili and Bahna 2006; Czarnobilska et al. 2007; Torres et 

al. 2009). Furthermore, Chung et al (2008) have demonstrated the presence of 

T-lymphocytes and NK cells in the blister fluids from patients with SJS/TEN. 

Blister fluids contained 2-4 fold higher expression of granulysin when 

compared with perforin, Fas ligand and granzyme-B (Chung et al. 2008).  

The expression of several HLA molecules has been associated with the 

development of SJS/TEN (Chen et al. 2011; Sanchez-Giron et al. 2011; Somkrua 

et al. 2011). Importantly, these HLA associations (discussed in greater detail 

later in the thesis) are often drug-specific and often restricted to certain ethnic 

groups.   

Although no standard treatment exists for SJS/TEN, the use of intravenous 

immunoglobulin therapy (Viard et al. 1998; Teo et al. 2009) and corticosteroids 

(Fromowitz et al. 2007) have been reported to show clinical benefit. 

Paradoxically, a detailed review of 156 patients who received high dose 

intravenous immunoglobulin suggested no obvious efficacy (Faye and Roujeau 
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2005). Furthermore, a novel peptide therapy targeting CD8 surface receptors 

with DNA aptamer conjugated with granulysin siRNA was effective in 

decreasing immune responses by cytotoxic lymphocytes and the disease 

pathogenesis (Wang et al. 2013).  

1.2 Immune system 

The ability to recognise and respond to antigens is the fundamental basis of the 

immune system. An immune response is defined as a reaction to any component 

of a microbe or macromolecule. The first documented reference of immunology 

dates back to 430 BC during the plague of Athens (Retief and Cilliers 1998). 

Louis Pasteur and Robert Koch were among the early contributors to the field of 

immunology (Plotkin 2005; Stanisic et al. 2010). Louis Pasteur’s discovery that 

the immune system could be modulated by attenuated microbes or microbial 

products remains the fundamental principle of vaccination. On the other hand, 

Robert Koch proposed that acquisition of immunity to malaria required 

constant exposure to the plasmodium parasite over a number of years.  

The most important physiological function of the immune system is protection 

from microbial and viral infections and foreign molecules. Protection against 

foreign organisms is mediated in the early stages by the innate immune system 

and further complemented by the adaptive immune system. Gene 

recombination ensures that large diversities of T-cell receptors are expressed to 

encounter unlimited antigenic epitopes (Market and Papavasiliou 2003). 

 The bone marrow and thymus are the origin of all immune cells found in the 

blood, spleen and lymphatic tissues, and are responsible for immune 
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surveillance. The different sub-sets of T-lymphocytes and their involvement in 

cell-mediated immunity will be discussed in detail.  

While the innate immune system is non-specific, responding to a broad class of 

foreign stimuli (proteins, carbohydrates, nucleic acids and microbial structures) 

secondary to tissue damage and/or microbial infections, the adaptive immune 

system is specific and dependent on secreted antibodies, phagocytes and 

cytotoxic T-lymphocytes for immune protection. The following sections 

summarise the role of the innate and adaptive immune system in the 

maintenance of tissue homeostasis.  

1.2.1 Innate Immunity  

The innate immune system consists of physiochemical barriers (epithelial 

layer), chemical mediators (defensin), lysosomes and phospholipids. 

Inflammatory mediators, cytokines, coagulation cascades and the complement 

system make up the humoral barrier while the cellular components include 

phagocytes (neutrophils, macrophages dendritic cells), eosinophils and natural 

killer cells. The innate immune system blocks the access of micro-organisms 

and destroys or limits their proliferation within the tissues they invade.  

Recognition of pathogen-associated molecular patterns (PAMPs) represents one 

of the major important molecular mechanisms of the innate immune response 

(Janeway 1989; Janeway 2000). These receptors are fixed in the genome, non-

clonal and are called pathogen recognition receptors (PRRs). PRRs can be either 

soluble or cell-associated and expressed on innate immune cells like dendritic 

cells, macrophages and neutrophils (Kumar et al. 2009; Kawai and Akira 2010; 

Takeuchi and Akira 2010). The interaction between soluble PRRs and PAMPs 



Chapter 1 

27 
 

may result in the direct attack of a microorganism by soluble PRR molecules, 

enhanced phagocytosis of PRR-bond PAMPs and lysis of microorganisms. On the 

other hand, interaction of PAMPs with cell-associated PRRs results in the 

phagocytosis of PAMP-associated microorganisms and activation of intracellular 

signalling pathways that release inflammatory mediators.  

Tissue damage and non-physiological death (necrosis) produce certain 

molecules referred to as danger-associated molecular patterns (DAMPs) 

capable of activating the immune system (Bianchi 2007; Kono and Rock 2008).  

1.2.1.1 Cellular component of the innate immune system 
The cells of the innate immune system provide the second level of 

immunological defence to infections, after the physical barrier provided by the 

skin. The responses of innate immune cells are immediate and directed towards 

eliminating infectious agents as well as stimulating the adaptive immune 

system. These cells include neutrophils, eosinophils, basophils, mast cells, 

macrophages, monocytes, natural killer cells and dendritic cells. The details of 

the innate immune cells are summarised below.  

 Natural killer (NK) cells are CD56+ lymphocytes that lack antigen-specific cell 

surface receptors but produce cytokines that are vital to pathogen and tumour 

immunity. NK cells mature in the bone marrow, lymph node, spleen, tonsils and 

thymus and migrate to the blood, spleen, liver and lungs (Yokoyama et al. 2004; 

Di Santo 2006; Iannello et al. 2008). They make up one-third of all cells 

originating from the common lymphoid progenitors that generate B- and T- 

lymphocytes.  
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NK cell killing is mediated by perforin and granzyme pathways. Activated NK 

cells secrete IFN-ϒ which enhances the microbicidal activities of macrophages 

and also stimulates IL-12 production known to polarise Th1 lymphocytes. 

Although target recognition and cytokine stimulation are the two major 

mechanisms of NK activity, MHC I specific inhibitory receptors on NK cells play 

an important role in immune response (Herberman et al. 1975; Kiessling et al. 

1975; Yokoyama et al. 2004; Di Santo 2006; Terunuma et al. 2008). Following 

receptor activation, NK cells produce cytokines like IFN-ϒ, TNF-α and 

granulocyte-macrophage colony stimulating factor (GM-CSF) which facilitate 

the destruction of infected cells (Anegon et al. 1988; Arase et al. 1996; Smith et 

al. 2002). 

Granulocytes or polymorphonuclear leukocytes are a sub-class of leukocytes 

that contain toxic chemicals capable of digesting microorganisms by 

phagocytosis. Examples include neutrophils, eosinophils and basophils. 

Neutrophils make up about 70% of leukocytes found in blood and are involved 

in phagocytosis. They are granulocytes that contain acidic lysosomes, lactoferrin 

and myeloperoxidase. Neutrophil migration to infected tissues is mediated by 

IL-8 (Huber et al. 1991; Smart and Casale 1994; Shen et al. 2006). Upon entry 

into infected tissues, neutrophils engulf and destroy microorganisms. 

Eosinophils are granulocytes that secrete IL-2, IFN-ϒ, IL-4, IL-5 and IL-10. They 

contain toxic cationic granules essential for the destruction of pathogenic 

parasites. Eosinophil recruitment to sites of inflammation is mediated by IL-5 

and eotaxin. Basophils are the least common of the granulocytes and are made 

up of granules containing pro- inflammatory mediators such as histamine, IL-4 
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and leukotrienes. They resemble tissue mast cells in terms of histamine- and 

IgE-mediated responses.  

Macrophages are antigen presenting cells (APCs) derived from blood 

monocytes and are responsible for the phagocytosis of cellular debris and 

pathogens in both the innate and adaptive immune response. Macrophages 

make up about 10-15% of the total cell number in some areas of the body and  

express CD14, CD40, CD11b, CD64 and CD68 (Khazen et al. 2005). They possess 

an array of PRRs and endosomes that enable them to engulf and kill 

microorganisms. Endotoxin and IFN-ϒ can activate macrophages to phagocytose 

and destroy microorganisms. Reactive oxygen species, nitric oxide and 

lysosomal enzymes are critical components of microbial killing by macrophages. 

When activated, macrophages present antigens to helper T-lymphocytes 

resulting in the secretion of pro-inflammatory cytokines. The extrahepatic 

oxidation of certain drugs by myeloperoxidase (MPO) has been reported to 

occur in neutrophils and macrophages (Uetrecht 1989; Uetrecht 1992).  

Dendritic cells (DCs) are also known as professional APCs. They migrate to the 

tissues where they reside and continuously survey their environment for 

infections and tissue damage. The DCs that are resident in skin are referred to 

as Langerhans’ cells. Like macrophages, DCs possess PRRs and Toll-like 

receptors for immune surveillance.  

Antigen presentation by DCs involves internalization of protein antigens, which 

are processed into smaller fragments and presented on the major 

histocompatibility complex (MHC) for recognition by T-lymphocytes. Immature 

DCs express low-level of MHC class II and costimulatory molecules (CD80 and 
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CD86), they are less mobile and have high phagocytic capacity (Spaggiari et al. 

2009). DC maturation is also enhanced by signals from bacterial components 

and PAMPs such as lipopolysaccharide (LPS), and is associated with the release 

of DAMPs such as HMGB1, heat shock proteins and uric acid (Shi et al. 2003). 

Immature DCs are mostly found in epidermal tissues where contact with 

antigens is most likely.  

Following interaction with an antigen, immature DCs migrate to regional lymph 

nodes where they prime naive T-lymphocytes resulting in a population of 

memory T cells (Jacob and Baltimore 1999; Banchereau et al. 2003). Direct 

activation of DCs by haptens and metal ions takes place through the activation 

of MAP kinase- and NF-κB-dependent pathways (Martin et al. 2006). Unlike 

mature DCs, antigen presentation by immature or partially mature DCs is 

known to result in an expansion of regulatory T-lymphocytes and subsequent 

immune tolerance (Gallucci and Matzinger 2001).  

T-lymphocyte activation by DCs is based on two signals, namely; an antigenic 

signal and an accessory or co-stimulatory signal which is antigen non-specific 

(Gimmi et al. 1991; Jenkins et al. 1991). The immunostimulatory function of DCs 

is enhanced by cytokines like IL-4 and GM-CSF. Finally, DCs possess the capacity 

to locally metabolise certain drugs. They have been reported to express a 

number of drug metabolism enzymes such as myeloperoxidase (Sanderson et al. 

2007). Localised generation of drug reactive metabolites in organs like the skin 

may be responsible for their high susceptibility to ADRs  
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1.2.2 Adaptive immune system 

The adaptive immune system is also referred to as acquired or specific immune 

system. The main function of the adaptive immune system is to destroy 

invading pathogens and their toxic products (Lamond 2002). Complex cellular 

and molecular interactions exist between the innate and adaptive immune 

system (Cooper et al. 2004; Raulet 2004); with the innate immune system 

capable of activating the adaptive immune responses. Immunological memory 

of the adaptive immune system ensures that a much faster response is obtained 

upon contact with a previously encountered antigen (Pancer and Cooper 2006; 

Tokoyoda et al. 2010; Zielinski et al. 2011).  

1.2.2.1 Cellular component of the adaptive immune system 
The immune system consists of a conglomerate of cells and molecules tasked 

with antigen recognition and elimination. This section summarises the different 

cells of the adaptive immune system, their origin, differentiation, activation 

pathway(s) and functions. Lymphocytes are the major cellular component of the 

adaptive immune response. They mediate both cellular and humoral immunity 

(Miller and Osoba 1967; Herzenberg 2000). They originate from hematopoietic 

stem cells found in the bone marrow. These cells proceed through distinct 

differentiation pathways to maturation in either the thymus or the bursa cavity 

(Engel and Murre 2002; Greenbaum and Zhuang 2002; Schebesta et al. 2002). 

Based on the mechanism of antigen recognition and immune function, 

lymphocytes can be broadly classified as B-lymphocytes and T-lymphocytes. 

Activated T-lymphocytes differentiate into cytokine-secreting effector cells 

while activated B-lymphocytes differentiate into antibody-secreting plasma 
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cells. The subclasses and immune function of lymphocytes are discussed in 

more detail in the following sections. 

1.2.2.1.1 T-lymphocytes 
T-lymphocytes function mainly to generate a specific response against ‘non-self’ 

antigens presented on APCs (Zinkerna.Rm and Doherty 1974). They are broadly 

classified into two functionally distinct groups, helper T-lymphocytes (CD4+) 

and cytotoxic T-lymphocytes (CD8+). Although some cytotoxic T-lymphocytes 

are dependent on CD4+ lymphocytes  for the development of efficient memory, 

majority of them respond independently of CD4+ T-cells (Kast et al. 1986; Nash 

et al. 1987; Ahmed et al. 1988; Husmann and Bevan 1988; Liu and Mullbacher 

1989; Bennett et al. 1997).  

T helper (Th) lymphocytes are involved in a number of vital processes 

including B-lymphocyte antibody class switching and activation of cytotoxic T-

lymphocytes, phagocytes and macrophages (Behrens et al. 2004). IL-2 and IL-4 

regulated by STAT 4 (signal transducer) and STAT 6 (activator of transcription 

4), respectively, play vital roles in the differentiation of T helper lymphocytes 

(Le Gros et al. 1990; Swain et al. 1990; Hsieh et al. 1992; Seder et al. 1992).  

All T-lymphocytes express cell surface receptors called T-cell receptors (TCRs) 

that recognise peptide antigens presented on host proteins encoded by genes in 

the MHC. The interaction of TCR with MHC-peptide complexes result in clonal 

expansion and subsequent programmed differentiation of helper T-lymphocytes 

which gives rise to a highly polarised immune response in the event of an 

infection (Abbas et al. 1996; Ho and Glimcher 2002).  
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The two main functional classes of T helper lymphocyte are Th1 and Th2 

(Mosmann et al. 1986). IL-12, IL-23 and IL-27 are essential cytokines involved 

in polarizing T-helper cells towards a Th1 phenotype. Th1 cells secrete pro-

inflammatory cytokines such as IFN-ϒ, TNF-α, IL-2, IL-6 and IL-12 involved in 

immune response against bacterial and viral infections. Th2 cells secrete anti-

inflammatory cytokines like IL-4, IL-5, IL-10, IL-13 and TGF-β (Murphy and 

Reiner 2002). IL-4 is a vital cytokine for the polarisation of T-lymphocytes 

towards Th2 phenotype. Furthermore, IL-4, IL-5 and IL-13 support B-

lymphocyte proliferation, class switching and differentiation to effector cells. In 

summary, the differentiation of αβ+ CD4+ is regulated by T-cell receptor 

engagement. A number of cytokines and costimulatory signals as illustrated in 

figure 1.2. 

More recently, two new T-lymphocyte populations, Th17 and Th22 

characterized by IL-17 and IL-22 production, have been defined (Harrington et 

al. 2005; Eyerich et al. 2009). Both cytokines are involved in immune-mediated 

cutaneous reactions such as atopic dermatitis, allergic contact dermatitis and 

psoriasis (Eyerich et al. 2010; Cavani et al. 2012). IL-17 possesses strong pro-

inflammatory activity, especially in the presence of INF-ϒ. This results in T-

cell-keratinocyte adhesion and T-cell-mediated cytotoxicity. On the other hand 

IL-22 plays a critical protective role, inducing keratinocyte proliferation and 

migration (Eyerich et al. 2009; Eyerich et al. 2010). 
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Figure 1.2-Schematic of T-cell development from naïve CD4+ T-cell. Plasticity of T-cell 
polarisation showing transcription factors involved. Tbet (T-box transcription factor), STAT 
(signal transducer and activator of transcription), GAT-3 (Anti-GABA Transporter-3), PU-
1(macrophage transcription factor), RORϒt (retinoic acid receptor-related orphan nuclear 
receptor gamma), BCL6 (B-cell lymphoma 6), FoxP3 (forkhead box P3), TH (T helper), FH 
(follicular helper T cells), TREGS (Regulatory T-cells) 

 

Cytotoxic T-lymphocytes are involved in target cell destruction via a number 

of effector molecules resulting in necrotic cell death (Barry and Bleackley 2002). 

Perforin, FAS (CD95), granzyme-B and granulysin are the main death pathways 

for T-lymphocyte toxicity (Henkart 1985; Ostergaard et al. 1987; Helgason et al. 

1992; Rouvier et al. 1993; Barry and Bleackley 2002; Chung et al. 2008). Upon 

antigen stimulation, cytotoxic T-lymphocytes secrete perforin which forms 

pores on the membrane of target cells. Perforin released from the granules of 

cytotoxic T-lymphocytes binds to granzymes and proteoglycans, forming a 

complex on the target cell membrane followed by enhanced entry of granzymes 

(usually A and B) and subsequent cytotoxicity. Furthermore, cytotoxic T-

lymphocytes express the trimeric membrane protein, Fas ligand, which binds to 

http://en.wikipedia.org/wiki/Fork_head_domain
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Fas receptors found on target cells resulting in the activation of caspase-8 and 

subsequent cytotoxicity. Like perforin, granulysin is secreted from granules of 

cytotoxic T-lymphocytes following antigenic stimulation. Granulysin disrupts 

lipids in the cell membrane by activating lipid-degrading enzymes resulting in 

cell death (Vaccaro et al. 1997; Ernst et al. 2000; Kaspar et al. 2001).  

Regulatory T-lymphocytes (Tregs) are a heterogeneous group of 

Foxp3+CD25+CD4+ lymphocytes that act to supress the immune system after an 

immune response. There are two distinct categories of regulatory T-

lymphocytes namely, natural Tregs and inducible Treg. Tregs suppress the 

response of T-lymphocytes either through the secretion of immunosuppressive 

cytokines (IL-10, TGF-β) or via a CTLA-4 dependent pathway (Wing et al. 2008; 

Sakaguchi et al. 2009). Tregs constitute only a small fraction of CD4+ T-cells and 

express a diverse repertoire of αβTCR compared with conventional CD4+ T-

cells (Pacholczyk and Kern 2008). However, similarities exist in the usage of 

TCR variable region segments Vβ in both humans and mice (Kasow et al. 2004; 

Fujishima et al. 2005). 

1.2.2.1.2 B-lymphocytes 
B-lymphocytes (CD19+) are the only immune cells capable of antibody 

production following antigen recognition, thus conferring humoral immunity. B-

lymphocytes express specialized cell surface proteins referred to as 

immunoglobulins which interact with antigens. This results in proliferation and 

differentiation into plasma and memory B-lymphocytes. Antibodies produced 

by plasma cells can neutralize viral material, fix complement and enhance 

phagocytosis through antigen opsonisation. Memory B-lymphocytes express 

high affinity IgA or IgG molecules and persist in the systemic circulation in a 
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resting stage but respond rapidly on re-encounter with specific antigen. Drug-

specific IgE antibodies mediate immediate hypersensitivity reactions caused by 

the β-lactam antibiotics (Torres et al. 2003). IgG is the major antibody isotype 

found in blood and extracellular fluid and plays an important role in the control 

infection by binding to different pathogens. They have been detected in patients 

with delayed drug hypersensitivity reactions (Kiefel et al. 1987; Clarke et al. 

1991) however, the role of IgG in the disease pathogenesis is still not clear.  

1.3 Mechanisms of drug specific T- lymphocyte activation 

Differentiating between the terms hapten, antigen and immunogen is important 

in order to delineate the molecular mechanism and immunological basis of 

drug-specific T-lymphocyte activation (Naisbitt et al. 2001; Uetrecht and 

Naisbitt 2013). A hapten can be defined as any low molecular weight compound 

capable of covalent and irreversible modification of macromolecules like 

proteins. A molecule that binds with high affinity to immunological receptors is 

referred to as an antigen. Finally, an immunogen is a substance that triggers an 

immune response.  

Although DCs are the most prominent APCs, B-lymphocytes and macrophages 

are also involved in antigen presentation. T-lymphocytes inspect antigens 

presented on MHC-peptide complexes on APCs using their membrane borne 

TCRs.  

The activation of naïve T-lymphocyte is dependent on at least two out of three 

signals from an APC namely, signals 1, 2 and 3. Signal 1 is derived from the 

interaction between the TCR with an MHC-peptide complex. Complete 

activation of a T-lymphocyte requires a co-stimulatory signal (signal 2). Co-

http://en.wikipedia.org/wiki/Extracellular_fluid
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stimulation is regulated by a complex wave of receptor/ligand interaction. For 

example, the cell surface expression of CD80 and CD86 (CD28 ligands) on APCs 

is controlled via trans-endocytosis by cytotoxic T lymphocyte antigen 4 

(CTLA4). Although CD28 was  the first co-stimulatory molecules to be identified 

on T-cells, newer molecules involved in co-stimulation have been identified and 

characterised (Chen and Flies 2013). These molecules are important for T-cell 

activation but also in T-cell differentiation, survival and effector function. A 

third signal (signal 3) derived from cytokines secreted by APCs drives CD4+ T 

helper cell and CD8+ lymphocyte differentiation into effector cells. Signal 3 

determines the nature of an immune response as it conveys critical information 

on pathogen and infected tissues to T-lymphocytes.  

A number of structural and functional similarities exist between MHC class I 

molecule and MHC class II molecules, but they differ markedly in the origin and 

nature of the peptide they present to different subsets of T-lymphocytes 

(Berzofsky 1988; Deng et al. 2010). MHC class I molecules are expressed on the 

surface of all nucleated cells and display peptides derived from intracellular 

proteins to CD8+ T-lymphocytes. This is referred to as cytosolic or endogenous 

processing (Neefjes et al. 2011). On the other hand, MHC class II molecules are 

stably expressed on the surface of APCs but are up-regulated in other human 

cells following inflammation or activation. MHC class II presents peptides 

derived from extracellular proteins (endocytic or exogenous processing) to 

CD4+ lymphocytes (Romieu-Mourez et al. 2007; Vyas et al. 2008; Neefjes et al. 

2011). MHC class I molecules are sub-divided into HLA-A, -B and C while the 

different sub-classes of MHC class II molecules are HLA-DP,-DQ and -DR which 

are differentially expressed on B-lymphocytes, activated monocytes, EBV-
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transformed B-cell lines, Kupffer cells, Langerhan cells and dendritic cells 

(Radka et al. 1986; Alcaide-Loridan et al. 1999). 

Exceptions to the classical MHC restricted presentation of peptides exist. 

Peptides derived from extracellular proteins are presented on MHC class I 

molecules by a specialized subset of dendritic cells through adaptations in their 

endocytic and phagocytic pathways. This is referred to as cross presentation 

and vital for the induction of CD8+ T-lymphocyte responses by extracellular 

antigens (Jung et al. 2002; Joffre et al. 2012). Furthermore, peptides derived 

from cytosolic proteins have been shown to be presented on MHC class II 

molecules through autophagy (Crotzer and Blum 2010; Munz 2012).  

Cytosolic proteins undergo proteasomal degradation to form peptide fragments 

which are translocated to the endoplasmic reticulum (ER) by the Transporter 

associated with antigen presentation (TAP). TAP binds to freshly synthesised 

MHC class I molecules and then conveyed through the Golgi apparatus to the 

cell membrane for CD8+  T-lymphocyte recognition (Neefjes et al. 2011). 

Extracellular proteins engulfed through phagocytosis are digested by 

proteasomal enzymes contained in lysosomes. Processed peptides are 

subsequently presented on MHC class II molecules for CD4+ lymphocyte 

recognition. Figure 1.3 illustrates cytosolic and extracellular antigen processing. 
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Figure 1.3- Antigen processing and presentation. Extracellular antigens are taken up by 
phagocytosis and processed by enzymes in the endosome. MHC class II molecules are 
transported from the endoplasmic reticulum and Golgi in vesicles to the phagolysosome where 
peptide loading occurs. The MHC bound peptide is then transported to the cell surface where 
the antigen is displayed to T-lymphocytes. Intracellular antigens degraded in the proteasome 
are transported to the endoplasmic reticulum by the transporter of antigen processing (TAP) 
and bind to MHC class I molecules. The MHC-bound peptide is then trafficked to the Golgi where 
it is loaded into a vesicle and transported to the cell surface for antigen display. 

 

Peptides are known to interact within certain groves on MHC molecules through 

non-covalent but sequence dependent interaction, mainly hydrogen bonds and 

Van der Waals forces (Jensen 2007). Specific amino acid residues known as 

anchor residues facilitate the peptide-MHC interaction. MHC class I 

accommodates only peptides of between 8-9 amino acid subunits. This is 

because of non-covalent interactions between both ends of the peptide binding 

groove and free N and C termini of peptide (Matsumura et al. 1992). The amino 

acid residue at position 5 is critical for the TCR/peptide interaction (Speir et al. 

2001; Rudolph and Wilson 2002). On the other hand, MHC class II interacts with 

peptide lengths between 12-25 amino acid subunits, with less dependence on 
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specific amino acid residues for TCR and MHC-peptide complex  interaction 

(Rammensee 1995). The antigen binding grove of MHC class II molecules are 

open at both ends; hence the interaction with longer peptides when compared 

to the binding grove of MHC class I molecules (Jensen 2007; Neefjes and Ovaa 

2013).  

The outcome of the MHC-peptide complex interaction with the TCR is a complex 

chain of downstream signalling events leading to T-lymphocyte proliferation, 

differentiation, and secretion of cytokines and cytotoxic molecules. This 

interaction between APCs and T-lymphocytes occurs through several pairs of 

accessory molecules (CD4 or CD8 coreceptors) resulting in aggregation of TCRs 

on the membrane surface and subsequent activation of T-lymphocytes 

(Choudhuri et al. 2005). The signalling cascade that precedes T-lymphocyte 

activation begins with the phosphorylation of tyrosine proteins by the Src 

kinases and Lck (Nel 2002). Phosphorylation of TCRs by Lck creates a binding 

site for the recruitment of another protein tyrosine kinase (PTK) called ZAP-70 

(zeta chain associated protein of 70kDa) (Smith-Garvin et al. 2009). ZAP-70 

then phosphorylates two critical adaptor proteins namely LAT (linker for 

activation of T-lymphocytes) and SLP76 (SH2-domain containing leukocyte 

protein of 76kDa), triggering the release of Ca2+ and diacylglycerol (DAG) and 

subsequent activation of T-lymphocytes. Several concepts have been put 

forward to explain how drugs activate T-lymphocytes. The details of these 

concepts are discussed in the following sections.  
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1.3.1. Hapten hypothesis 

The basis of the hapten hypothesis dates back to early research carried out by 

Landsteiner and Jacobs in 1935. For decades, this was the only explanation for 

the immunogenicity that resulted from small molecules. They investigated the 

mechanism by which small chemical molecules activated T-lymphocytes 

(Landsteiner and Jacobs 1935). Their work involved sensitising guinea pigs to 

the low molecular weight, chemically reactive compound, 

dinitrochlorobenezene (DNCB). The authors reported that the primary response 

observed with DNCB was due to the modification of nucleophilic residues on 

proteins and associated with their chemical reactivity in vitro (Landsteiner and 

Jacobs 1935; Landsteiner and Jacobs 1936). They therefore hypothesised that 

the mechanism of sensitization may involve protein haptenation by DNCB.  

A more recent study used DNCB as a model chemical to investigate the 

metabolic fate of dinitrophenyl hapten conjugated albumin (Kitteringham et al. 

1985). The authors reported the clearance of DNP-modified albumin depended 

on the extent of haptenation. Furthermore, the role of DNCB responsive T-cells 

have been isolated from hypersensitive individuals and shown to be implicated 

in the pathomechanism of this reaction (Pickard et al. 2007).  

Therefore, low molecular weight compounds such as drugs and their 

metabolites might also act as haptens and are capable of activating an immune 

response when bound covalently to proteins (Landsteiner and Jacobs 1935; 

Speirs 1971; Park et al. 1987; Chipinda et al. 2011). Prohaptens are inert drugs 

that become chemically reactive following metabolism (Brander et al. 1995; 

Naisbitt et al. 2001; Pichler 2003). Selective binding to lysine or cysteine amino 
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acid residues have been reported with piperacillin and SMX respectively 

(Padovan et al. 1996; Naisbitt et al. 2001; Callan et al. 2009; El-Ghaiesh et al. 

2012; Monshi et al. 2013). The interaction between nucleophilic sites on 

proteins and electrophilic sites on small chemical molecules represents the 

basis of the hapten hypothesis (Divkovic et al. 2005; Chipinda et al. 2010). 

Figure 1.4 is a schematic representation of the Hapten hypothesis. Chemically 

reactive molecules become immunogenic by either binding to extracellular 

proteins that are engulfed by APCs, processed and presented to T-cells or direct 

modification of MHC-peptides (figure 1.4).  

Nakayama and his colleagues demonstrated a correlation between the ability of 

a drug to generate reactive drug metabolites and idiosyncratic drug reactions 

(Nakayama et al. 2009). Paradoxically, Ximelagatran, a drug developed as a 

replacement for the anticoagulant warfarin presented with high risks of 

idiosyncratic drug reactions without generating reactive metabolites (Hirsh et 

al. 2007; Uetrecht 2008).  

Glutathione is highly concentrated in the liver but differentially expressed in 

almost all human cells (Perquin et al. 2000; Coles et al. 2001). It represents the 

major anti-oxidant pathway critical in the body’s detoxification process of drugs 

and xenobiotics. In the presence of high concentrations of reactive metabolite, 

the glutathione detoxification pathway is overwhelmed resulting in: (a) protein 

haptenation and subsequent stimulation of the adaptive immune system and (b) 

activation of the innate immune system following stimulation of stress-related 

signalling pathways (Uetrecht and Naisbitt 2013). 
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Figure 1.4 Hapten hypothesis. Parent drugs or their reactive metabolites covalently modify 
macromolecules like proteins. (A) Drug-modified proteins are engulfed and then processed by 
antigen presenting cells and presented in an MHC restricted fashion to T-lymphocytes. (B) 
Parent drugs or reactive metabolites directly modify the MHC–peptide complex and are 
presented to T-cells.  

 

1.3.2. Pharmacological interaction of drugs with immune 

receptors (PI concept) 

The discovery that some drug-specific T-lymphocytes could be activated  by 

chemically inert drugs in a metabolism- and processing-independent, but MHC- 

restricted  pattern, is the basis for the p-i concept (Schnyder et al. 1997; Horton 

et al. 1998; Zanni et al. 1998; Pichler 2002). Examples of drugs known to 

activate T-lymphocytes via a p-i mechanism include carbamazepine (Naisbitt et 

al. 2003; Wu et al. 2006), lidocaine (Naisbitt et al. 2003), lamotrigine (Naisbitt et 

al. 2003), mepivacaine (Zanni et al. 1999), norfloxacin (Schmid et al. 2006; 

Schmid et al. 2006), and SMX (Schnyder et al. 1997; Depta et al. 2004). This 

observed pattern of T-lymphocyte activation is inconsistent with the hapten 

hypothesis, where proteins are covalently modified by chemically reactive 

molecules (figure 1.4). This is largely because T-cells are activated rapidly 

(within seconds), a time incompatible with a processing dependent pathway 
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(Schnyder et al. 1997; Zanni et al. 1998; Schnyder et al. 2000). The critical 

question yet to be addressed is which of these entities (parent drug or reactive 

metabolites) activate T-cells during a hypersensitivity reaction and which the 

cross reactive antigen is.  

There are three main pieces of experimental evidence to support a p-i 

mechanism of T-lymphocyte activation. (1) Glutaraldehyde-fixed APCs 

incapable of antigen processing have been shown to induce T-lymphocyte 

proliferation in response to carbamazepine (Wu et al. 2006), SMX (Schnyder et 

al. 1997), lamotrigine (Naisbitt et al. 2003), ciprofloxacin (Schmid et al. 2006), 

moxifloxacin (Schmid et al. 2006), and norfloxacin (Schmid et al. 2006). (2) The 

release of intracellular Ca2+ in response to drug stimulation and TCR down 

regulation are cellular processes that occur rapidly, excluding any possibility of 

antigen processing (Zanni et al. 1998; Depta et al. 2004). (3) Pulse-chase 

experiments with ‘culprit drug’ suggest a non-covalent interaction of drug with 

the MHC-peptide complex and TCR as a brief washing with medium abolished T-

lymphocyte proliferation (Schnyder et al. 1997; Schnyder et al. 2000). In 

conclusion, these data provides strong evidence to suggest that drugs activate 

T-cells directly in a mechanism different from the hapten/pro-hapten 

hypothesis. Figure 1.5 illustrates the antigen recognition by drug-specific T-

lymphocytes according to the p-i mechanism. 

Importantly, SMX hypersensitivity is the only example where systemic reactive 

metabolites are available for functional studies to compare the hapten and the 

P-i mechanisms of T-cell activation. Interestingly, 100% of T-cells isolated from 

blood and skin of SMX-hypersensitive patients are activated by both SMX and 

SMX metabolites (Schnyder et al. 2000; Burkhart et al. 2001; Nassif et al. 2002; 
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Castrejon et al. 2010). This suggests that a combination of the hapten and the Pi 

mechanisms are important in pathophysiological mechanism of SMX 

hypersensitivity. 

 

 

Figure 1.5 T-lymphocyte recognition of drug antigen by pharmacological interaction with 
immune receptors. Drug or their reactive metabolites bind non-covalently to either TCR or 
MHC-peptide complex or both to. Dash line represents non-covalent interactions. 

 

1.3.3 Altered self-peptide repertoire model 

The pathogenesis of certain drug hypersensitivity reactions have been strongly 

linked to particular human leukocyte alleles, HLA (Mallal et al. 2002; Chessman 

et al. 2008; Mallal et al. 2008; Bharadwaj et al. 2012; Yun et al. 2012). HLAs are 

highly heterogeneous proteins encoded within the MHC gene, located on 

chromosome 6. They initiate immune reactions through the presentation of 

peptides to TCR (McCluskey and Peh 1999; Illing et al. 2012; Pavlos et al. 2012). 

Figure 1.6 illustrates the altered peptide repertoire hypothesis.  

Abacavir hypersensitivity syndrome is strongly associated with HLA-B*57:01 

and has been used to describe the altered self-peptide repertoire hypothesis 

(Mallal et al. 2002; Martin et al. 2004; Mallal et al. 2008). It proposes that drug 
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molecules occupying particular sites in the antigen-binding cleft cause an 

alteration in the repertoire of self-peptides that interact with HLA-B*57:01 and 

are subsequently presented to TCRs  (Chessman et al. 2008; Bharadwaj et al. 

2012).  

 Abacavir interacts in a specific but non-covalent manner with the F anchor 

pocket of HLA-B*57:01, changing the configuration of the antigen-binding cleft 

(Illing et al. 2012; Norcross et al. 2012; Ostrov et al. 2012). The altered 

repertoire of self-peptides displayed on the surface of APCs is thought to 

activate abacavir specific cytotoxic CD8+ T-lymphocytes; the cells responsible 

for the clinical manifestation of abacavir hypersensitivity syndrome (AHS).  

Pre-prescription screening of patients for the risk allele, HLA-B*57:01 has 

become a recommended guideline before initiating abacavir therapy in HIV 

patients (Hughes et al. 2004; Rodriguez-Novoa et al. 2007). On the other hand, 

the low positive predictive value (PPV) between HLA-B*57:01 allele and 

flucloxacillin, which is associated with flucloxacillin-induced liver injury,  

eliminates any need for pre-prescription screening before commencing 

flucloxacillin therapy (Yun et al. 2012).  

Stevens-Johnson syndrome and toxic epidermal necrolysis are serious 

cutaneous clinical manifestations of the anticonvulsant carbamazepine. 

Reactions in the Han Chinese are strongly associated with HLA-B15:02 and has 

been hypothesised that drug binding to the HLA molecule alters peptide binding 

similar to abacavir. However, this is still to be proven (Chung et al. 2004; Hung 

et al. 2006). Finally, severe cutaneous adverse reactions reported following the 

administration of the antigout drug, allopurinol, are associated with HLA-

B*58:01 in Han Chinese and in Europeans (Hung et al. 2005; Lonjou et al. 2008). 
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Drug-specific T-cells in patients with allopurinol hypersensitivity have recently 

been shown to be preferentially activated with oxipurinol, the principal 

metabolite (Yun et al. 2013; Yun et al. 2014), but the nature of the drug 

interaction with immunological receptors is yet to be defined.  

 

 
Figure 1.6-Altered peptide repertoire model.  (A) Normal interaction of peptide A with HLA 
molecule and subsequent interaction with TCR. (B) The presence of a drug molecule alters the 
repertoire of HLA ligand (peptide B) presented to TCR resulting in hypersensitivity drug 
reactions. 

 

1.3.4 Danger hypothesis 

The danger model was proposed by Matzinger in 1994 and states that in the 

presence of danger signals from cell damage, the immune system is activated, 

but tolerance is induced in its absence (Matzinger 1994; Schwartz 1997; 

Anderson and Matzinger 2000; Pirmohamed et al. 2002; Schwartz 2003). Thus, 

danger signals complement the primary antigenic signal in propagating an 

immune response (Mueller et al. 1989; Seguin and Uetrecht 2003). According to 

Curtsinger and his colleagues, three signals are vital to bring about a complete 

immune response; at least two signals are required for immune activation. 

(Curtsinger et al. 1999). The interaction between the MHC-peptide complex and 
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the TCR generates signal 1 (Danese et al. 2004). The interaction between the 

various costimulatory molecules on APCs (CD40, CD80 and CD86) and T-

lymphocytes (CD28, CD40L) delivers signal 2. Pro-inflammatory cytokines like 

interferon gamma, interleukin-2 and tumour necrosis factor alpha up-regulate 

co-stimulatory molecules on antigen presenting cells. A wave of co-

stimulatory/inhibitory receptors expressed by T-cells and APCs have been 

extensively reviewed (Chen and Flies 2013).  Signal 2 is essential for T-

lymphocyte clonal expansion, cytokine secretion and effector functions. CD28 

molecules expressed on the surface of T-lymphocytes interact with CD80 and 

CD86 on the surface of APCs to promote T-lymphocyte proliferation, 

differentiation and survival (Hancock et al. 1996; Van Gool et al. 1996). Signal 2 

is modulated through exogenous PAMPs (eg. LPS, peptidoglycan, viral RNA) and 

endogenous DAMPs released from damaged/dead cells (eg. heat shock proteins, 

HMGB1) as illustrated in figure 1.7.  

Nitroso-SMX, abacavir and amoxicillin have been reported to provide danger 

signals for immune activation (Rodriguez-Pena et al. 2006; Martin et al. 2007; 

Sanderson et al. 2007). However, danger signals may result from chemicals 

exposure, physical trauma and /or infections. The role of viruses (human 

herpesvirus 6, human immunodeficiency virus and Epstein barr virus) in drug-

induced hypersensitivity syndrome has been extensively researched and 

sometimes complicates diagnosis (Descamps et al. 1997; Descamps et al. 2003; 

Phillips and Mallal 2007).  
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Finally, Signal 3 is derived mainly from polarising cytokines that result in either 

Th1,  Th2, Th17 or Th22 immune response (Pirmohamed et al. 2002). 

Chemically reactive drug metabolites have been reported to serve as an antigen 

(signal 1) but also induce cell damage resulting in the generation of signal 2 and 

3 required for an immune response (Park et al. 2001; Li and Uetrecht 2010).  

 

Figure 1.7-T-cell activation. Schematic representation of antigenic signal, danger signal and 
co-stimulatory signals critical for T-cell activation. 
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1.4 Xenobiotic and drug metabolism 

The terms xenobiotic metabolism and drug metabolism are often used 

interchangeably. Drug metabolism is defined as the biomedical modification of 

xenobiotics by specialised enzyme systems. The term “drug metabolism” was 

coined in the 1950s to replace drug detoxification as not all drugs are toxic and 

not all metabolites are less toxic or non-toxic (Ala, 2005). Generally, the level of 

exposure of drugs to human tissue is controlled by a combination of metabolic, 

biliary and renal clearance. Highly lipophilic, less water soluble drugs are 

converted into more soluble metabolites which are easily excreted. 

Drug metabolism plays an important role in the initiation and propagation of 

drug hypersensitivity through the generation of neoantigens that are recognised 

by the cellular and humoral immune systems (Lavergne et al. 2008). Although 

the majority of drug biotransformation occurs in the liver, there is 

overwhelming evidence to suggest that localised drug metabolism by immune 

cells is critical for cutaneous adverse drug reactions (Ju and Uetrecht 1999; 

Baron et al. 2001; Saeki et al. 2002; Oesch et al. 2007). In the absence of 

underlying pathologies or risk factors such as age, disease status, and enzyme 

induction, a fine balance occurs between bioactivation and bioinactivation 

pathways (Pirmohamed et al. 1998).  

While most parent drugs administered form stable metabolites which are 

excreted safely, a number of drugs exert direct toxicity on cells and tissues 

(figure 1.8). In most cases, reactive metabolites generated from drugs 

administered at therapeutic doses are quickly saturated by cellular glutathione 

detoxification pathways but a few exceptions have been documented 
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(Pirmohamed et al. 1996). Drug overdose can result in glutathione depletion 

and saturation of the cellular detoxification pathways. High levels of reactive 

metabolites are formed resulting in irreversible covalent protein modification, 

with serious and sometimes fatal pathologic outcomes (Nelson 1990; Bray 

1993). Glutathione depletion also occurs in certain disease states (HIV, Cystic 

fibrosis), and in alcoholic patients leading to an increase in cellular levels of 

reactive metabolites (Staal et al. 1992; Roum et al. 1993; Leach et al. 1998). 

These patients are particularly susceptible to the development of drug 

hypersensitivity. Interestingly, the pharmaceutical industry has devoted 

significant resources to delineate whether reactive metabolites are formed and 

the role of reactive metabolites in drug toxicity and hypersensitivity reactions 

(Baillie et al. 2002). Despite this, our understanding of the relationship between 

drug exposure, metabolite formation and the development of serious ADRs is 

far from complete.  

 

Figure 1.8-Typical metabolism pathway of most drugs in humans (adapted from Park et al., 
Chem Biol Interact. 192(1-2):30-6, 2011). 

http://www.ncbi.nlm.nih.gov/pubmed/20846520
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1.4.1 Drug metabolism enzymes 

Drug metabolism enzyme expression and substrate specificity are critical 

factors in selective tissue toxicity associated with drug exposure. Over 95% of 

drug metabolism occurs in the liver. However, extra-hepatic tissues also express 

different active drug metabolism enzymes (Kapitulnik and Strobel 1999; 

Pirmohamed et al. 2004; Swanson 2004; Uetrecht and Naisbitt 2013). Immune 

cells such as polymorphonuclear leukocytes have been reported to express low 

levels of cytochrome P450 enzyme and high levels of myeloperoxidase 

(Uetrecht et al. 1988; Maggs et al. 1995).  

Drug metabolism enzymes are broadly classified as microsomal and non-

microsomal. Microsomal enzymes are found in the smooth endoplasmic 

reticulum of the liver, lungs, kidneys and intestinal mucosa. They catalyse a vast 

number of drug biotransformation reactions. Microsomal enzymes can be 

induced by a number of drugs like alcohol, rifampicin, phenytoin, 

carbamazepine, phenobarbitone and many others (Yaffe et al. 1966; Callaghan 

et al. 1977; Miguet et al. 1977; Mapelli et al. 1983). Examples of microsomal 

enzymes include the Cytochrome P450 super family (CYP450s), flavine 

containing mono-oxygenases (FMOs), epoxide hydrolase (EHs) and uridine 

diphospho-glucuronosyltransferase (UGT). Non microsomal enzymes on the 

other hand are present in the cytoplasm and mitochondria of cells as well as in 

the plasma. They are non-specific, non-inducible and catalyse fewer oxidative, 

reductive and hydrolytic reactions. They are involved in a number of 

conjugation reactions (glucouronidation being an exception). Examples of non-

microsomal enzymes include amidases and esterases. Drug metabolising 
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enzymes especially Cytochrome P450’s have been functionally characterised in 

almost every tissue type in the human body.  

1.4.1.1 Cytochrome P450 super family  
The Cytochrome P450 superfamily of enzymes are membrane-bound 

hemoproteins found in the smooth endoplasmic reticulum and are abundant in 

the liver and other extrahepatic tissues (Pirmohamed et al. 1996). They can also 

be found in the inner membrane of the mitochondria and account for about 75% 

of drug metabolism within the human body (Guengerich 2008; Berka et al. 

2011). About 60 members of the CYP family have been characterized but only 

10 members contribute significantly to biosynthetic pathways (hormones and 

structural components) and drug metabolism. Oxidation is the most common 

metabolic reaction catalysed by the CYP P450 family of enzymes. Cytochrome 

P450-mediated drug metabolism presents practical applications in many 

aspects of drug design and development but also in drug therapy (Werck-

Reichhart and Feyereisen 2000). Variations in certain human P450 genes like 

CYP2D6 have profound implications in the metabolism of antipsychotics and 

antidepressants (Rau et al. 2004; Ingelman-Sundberg 2005). These enzymes are 

structurally similar and have a common general biochemical mechanism of 

action which is highly dependent on electron transfer from redox partners 

(NADPH).  

The nomenclature of the different CYPs is based on the amino acid sequence 

similarity of various gene products and is undertaken by a special nomenclature 

committee as represented in figure 1.9. CYP1 (1A &1B), CYP2 (2A, 2B, 2C, 2D & 

2E) and CYP3 (3A) constitute the major CYP family with eight sub-families all 

together that account for the metabolic elimination of most drugs and 
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xenobiotics in humans (Rendic and DiCarlo 1997; Guengerich 2003; Williams et 

al. 2004). About 90% of drugs administered are metabolised by CYP1A2, 

CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 (Slaughter and Edwards 

1995; Wilkinson 2005). CYP3A4 is the most abundant member in human liver 

and responsible for the biotransformation of many classes of drug (Warrington 

et al. 2000; Anzenbacher and Anzenbacherova 2001). Each sub-family consists 

of only one member except CYP2C which has three members. Figure 1.10 shows 

the members of the Cytochrome P450 super family. The cytochrome P450 

family of enzymes are involved in the metabolism of a structurally diverse 

group of drugs as displayed in table 1.7.  

The induction or inhibition of CYP450 enzymes can cause alterations in the 

normal pharmacokinetics of a given drug and may result in life-threatening 

ADRs. Drug-drug interactions are sometimes complex and are implicated in 

about 20% of all ADRs (Levy et al. 1980).   
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Figure 1.9–General nomenclature of the Cytochrome P450 superfamily of enzymes. 

 

 

Figure 1.10-Family members of the Cytochrome P450 super family involved in drug 
metabolism (Adapted from Nassar, A.F., et al, drug metabolism hand book, 2009). 
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Table 1.7- Cytochrome P450 enzymes and their selective substrate (Adapted 

from Nassar, A.F. et al., drug metabolism handbook, 2009) 

 

1.4.1.2 Flavine-containing monooxygenases (FMOs) 
FMOs are microsomal phase I drug metabolism enzymes involved in the 

NADPH-dependent biotransformation (N-and S-oxidation reactions) of a 

number of drugs. They are also capable of generating a number of reactive 

intermediates (Pritsos et al. 1985; Cashman 1995). FMOs and the CYPs enzymes 

are co-localized in the endoplasmic reticulum. The five functionally active FMOs 

characterized in humans include: FMO1, FMO2, FMO3, FMO4, and FMO5. Table 

1.8 summarises expression and substrate selectivity of the FMOs. FMOs have 
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been implicated in hepatotoxicity resulting from N-acetylation and sulfoxidation 

of ketoconazole and thioureas respectively (Rodriguez and Miranda 2000; 

Rodriguez and Buckholz 2003; Henderson et al. 2004). FMO1 and FMO3 are 

involved in the metabolism of SMX and dapsone in normal human epidermal 

keratinocytes (NHEKs) and KG-1 (dendritic-like) cells respectively (Vyas et al. 

2006; Roychowdhury et al. 2007). Both enzymes are also involved in the N-

oxygenation of tamoxifen and other tertiary amines (Krueger et al. 2006). 

Table 1.8 - Expression and substrate specificity of the major flavin-containing 

monooxygenase (FMOs) 

 

1.4.1.3 Peroxidases 
Peroxidases represent an important class of heme-containing enzymes. They 

are expressed in high levels in polymorphonuclear granulocytes (PMN) and are 

involved in the bioactivation a large number of drugs in humans. They catalyse a 

number of reactions known to generate reactive drug metabolites resulting in 

agranulocytosis (Fischer et al. 1991; Besser et al. 2009). Myeloperoxidase 

(MPO), eosinophil peroxidase (EPO), and lactoperoxidase (LPO) are common 

examples of peroxidases involved in drug metabolism (Tafazoli and O'Brien 
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2005). Other peroxidases include uterine peroxidase, salivary peroxidase, 

thyroid peroxidase and prostaglandin H1/2 synthases (O'Brien 2000).  

MPO is the most abundant and best characterised of the peroxidase family of 

enzymes. It is a lysosomal peroxidase primarily expressed in PMN; however, 

expression has also been noted in the liver, monocytes, macrophages, dendritic 

cells and mast cells (Pirmohamed et al. 1995; Green et al. 2004; Mannargudi et 

al. 2009; Kiorpelidou et al. 2012). MPO is involved in the metabolism of a wide 

range of drugs including: ticlopidine, clozapine, procainamide, clozapine, 

dapsone, chlorpromazine, lamotrigine, sulfonamides, 3-hydroxy carbamazepine, 

4-hydroxy phenytoin, vesnarinone and 7-hydroxy fluperlapine (Liu and 

Uetrecht 2000; O'Brien 2000; Tafazoli and O'Brien 2005; Lu and Uetrecht 

2007).  

Upon neutrophil activation, MPO is released into phagocytic vacuoles alongside 

hydrogen peroxide, generated by the activity of NADPH oxidase and superoxide 

dismutase. Hydrogen peroxide combines with chloride ions in the MPO 

mediated synthesis of hypochlorous acid. Hypochlorous acid is known to 

directly oxidise many drugs but also cause direct tissue damage (Klebanoff 

1999). The catalytic activity of MPO is summarized in the reaction cycle 

presented in figure 1.11. Compound I and compound II (active forms of the 

enzyme) are involved in the oxidation of a wide range of endogenous substrates 

and xenobiotic molecules (Tafazoli and O'Brien 2005; Winterbourn et al. 2006).  
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Figure 1.11 Redox transformations of myeloperoxidase. MP3+, native MPO; AH, peroxidase 
substrate; A*, peroxidase substrate radical. 

1.5 Drug Metabolism Pathways 

R.T. Williams in 1947 was the first to describe and classify the pathways of drug 

metabolism into two groups, Phase I and Phase II reactions (Neuberger and 

Smith 1983). These reactions are catalysed by extrahepatic microsomal 

enzymes, hepatic microsomal enzymes, and hepatic non-microsomal enzymes 

(Kapitulnik and Strobel 1999).  

1.5.1 Phase I drug metabolism reactions (functionalization)  

Addition of reactive and more polar groups (functionalization) to substrates is a 

unique characteristic of Phase I metabolism enzyme. These functional groups 

include hydroxyl (-OH), amino (-NH2), carboxyl (-COOH), and sulfhydryl (-SH) 

group. These groups are often the targets for phase II reactions. Oxidation of 

chemical moieties is the most important outcome of phase I metabolism; 

hydroxylation, reduction and hydrolysis occur to a lesser extent (Vonmoltke et 

al. 1994; Nemeroff et al. 1996; Stachulski and Lennard 2000). Paracetamol, 

phenothiazine and steroids are common examples of drugs that undergo phase I 
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metabolism. Sufficiently polar metabolites resulting from Phase I reactions are 

readily excreted after undergoing conjugation reaction with endogenous 

substrates. The resulting conjugates are highly polar and water soluble. Finally, 

Phase I metabolism enzymes especially members of the cytochrome P450 super 

family generate chemically reactive metabolites implicated in a number of 

idiosyncratic hypersensitivity drug reactions (Park et al. 1992; Pirmohamed et 

al. 1994; Pirmohamed et al. 1996).  

1.5.2 Phase II drug metabolism reactions (Conjugation 

reactions) 

A number of functional groups are introduced during Phase I biotransformation. 

These groups enhance the rate of Phase II conjugation. Phase II reactions 

consist of conjugation, methylation and acetylation reactions. In most cases, 

Phase I functionalization reactions normally precede conjugation reactions but 

a number of exceptions exist where parent drugs undergo direct conjugation, 

for example acetylation of sulfonamides (Someya et al. 1992; Kassahun et al. 

1997).  

Activated drug metabolites form conjugates with endogenous molecules such as 

glycine, glucuronic acid, glutathione, and sulfate to produce highly polar and 

less toxic adducts which are easily excreted from the body. Phase II reactions 

are catalysed by a range of substrate specific transferases. Glutathione S-

transferases have been widely researched and are the most important enzymes 

involved in the detoxification of chemically reactive intermediates (Jakoby and 

Ziegler 1990; Liston et al. 2001; Homolya et al. 2003).  



Chapter 1 

61 
 

1.6 Reactive drug metabolites 

Although drug metabolism serves as a major detoxification pathway which 

protects cells and tissues from the harmful effect of drugs, generation of drug 

reactive metabolites remain a major problem. Many drugs associated with a 

high incidence of idiosyncratic ADRs form reactive drug metabolites (see table 

1.9) and bind covalently to cellular macromolecules (Spielberg et al. 1981; 

Shear et al. 1986; Liu et al. 1995; Ruscoe et al. 1995; Park et al. 2001; Stepan et 

al. 2011).  

 

Table 1.9-Drug and reactive metabolites implicated in adverse drug reactions 

(adapted from Walgren et al., Crit. Rev. Toxicol., 35, 325-361 (2005) 

 

Common reactive drug metabolites associated with hypersensitivity drug 

reactions include: nitroso-SMX implicated in SMX hypersensitivity reactions 

(Cribb and Spielberg 1990), Glycinexylidide and monoethyl glycinexylidide are 

linked with lidocaine hypersensitivity reactions (Tam et al. 1990). Furthermore, 
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carbamazepine hypersensitivity is associated with its arene oxide and quinone 

metabolites (Pearce et al. 2002; Pearce et al. 2005) while N-chloro, N-oxide and 

arene oxides are implicated in lamotrigine reactions (Maggs et al. 2000; Lu and 

Uetrecht 2007).  

In 2009, Stepan et al examined the physiochemical properties of the top 200 

drugs in United States (Stepan et al. 2011). The authors reported that 78-86% of 

these drugs possessed structural alerts. Moreover, ADRs resulting from 62-69% 

of the drugs with structural alerts were due to reactive metabolites. Hence, a 

better understanding of the role of reactive metabolites in drug-induced 

idiosyncratic hypersensitivity is required.  

1.7 Sulfamethoxazole antigenicity and immunogenicity 

The molecular mechanisms involved in drug-induced immune responses are 

complex and not yet fully understood (Uetrecht 2007; Uetrecht and Naisbitt 

2013). SMX is a drug used with trimethoprim as a combination therapy in a 5:1 

ratio (co-trimoxazole) against Pneumocystis carinii in patients with HIV and in 

cystic fibrosis patients for the treatment of respiratory infections (Pirmohamed 

et al. 1998; Lavergne et al. 2010; Elsheikh et al. 2011). The mechanism of SMX 

action involves the competitive inhibition of dihydrofolate reductase which 

catalyses the formation of folic acid, a substrate essential for bacterial DNA 

synthesis (Hong et al. 1995; Kalkut 1998). High dose co-trimoxazole for 

prophylaxis or treatment of infections is associated with a high incidence of 

cutaneous reactions in patients with HIV and in those suffering from cystic 

fibrosis (van der Ven et al. 1991; Lavergne et al. 2010; Elsheikh et al. 2011). The 

incidence of ADRs following SMX administration in these patients is 30% 

compared with 1-3% in the general population.  
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Low levels of glutathione (30-60% less) and hyper-reactivity of the immune 

system have been implicated in the increased prevalence of hypersensitivity 

reactions to SMX in these patients groups (Buhl et al. 1989; Roederer et al. 

1991). However, the disease itself may be the primary factor; increasing risk 

through the provision of enhanced co-stimulatory signalling.  

SMX in the absence of metabolism is chemically inert and cannot interact 

covalently with macromolecules. Hepatic metabolism of SMX by cytochrome 

P450 enzyme generates a hydroxylamine metabolite. SMX hydroxylamine is not 

protein reactive and is excreted unchanged in human urine. Auto oxidation of 

SMX hydroxylamine however generates nitroso-SMX metabolites which 

modifies cysteine residues on proteins to form various antigenic epitopes for 

drug specific T-lymphocytes (Park et al. 1987; van der Ven et al. 1994; Naisbitt 

et al. 1996). Put together, a combination of factors related to the patient, SMX 

and the pathophysiology of the disease (HIV or cystic fibrosis) are critical to the 

clinical manifestations of SMX-hypersensitivity reactions. Therefore, 

experiments designed to study the molecular mechanisms and the 

immunological basis of drug hypersensitivity reactions should be all inclusive.  
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1.8 Aims and objectives of thesis 

The aim of this thesis was to investigate various possible chemical, genetic and 

immunological factors that may either cause or influence SMX-hypersensitivity 

reactions. To delineate the antigenic determinants of SMX-hypersensitivity in 

patients with cystic fibrosis, we performed a battery of immunochemical, mass 

spectrometric, biological and functional experiments, using blood samples from 

HLA-typed human donors. 

The specific aims of the thesis include: 

 Investigation of the molecular mechanism of SMX.NO specific T-

lymphocyte activation 

 Evaluation of enzyme expression profiles in various immune cells 

 Determination of HLA-restricted recognition of SMX.NO by drug-specific 

T-lymphocytes and the extent of alloreactivity 

 Investigation of the antigenicity/immunogenicity of SMX.NO-modified 

MPO-derived peptides 

 Utilization of an in vitro T-lymphocyte priming assay to define the drug 

antigen(s) that activate naïve T-cells 

 To investigate the role of PD-1/PD-L1 signalling in drug-specific T-cell 

responses 
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Chapter 2: Characterization of enzyme expression and 

sulfamethoxazole metabolism in immune cells 
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2.1 Introduction 

The causes of ADRs in humans are numerous and may be related to the 

chemical properties of the drug(s) involved, the genetic factors of the patient 

and the pathophysiology of the disease being treated. Phase I drug metabolism 

involves oxidation, reduction and hydrolysis. The outcome of Phase I 

metabolism is the addition of a functional groups which facilitates Phase II 

conjugation. Drug metabolism (Phase I and Phase II) facilitates the elimination 

of both parent drugs and their metabolites; however reactive metaolites are 

sometimes generated. The formation of reactive metabolites is often implicated 

in idiosyncratic ADRs (Shah et al. 1982; Park et al. 1992; Pirmohamed et al. 

1994). The relationship between drug metabolism and idiosyncratic ADRs has 

been well studied (Schaffner 1975; Lennard 1993; Schnyder et al. 1997; Griem 

et al. 1998; Naisbitt et al. 2003; Onder et al. 2011).  

Normally, a balance exists between drug bioactivation and detoxification 

systems, however, in certain pathologies like CF and HIV/AIDS, alterations of 

the redox status results in raised concentrations of reactive metabolites and an 

increased number of ADRs (Pirmohamed et al. 2000; Burkhart et al. 2001; 

Elsheikh et al. 2011). Figure 2.1 illustrates the role of drug metabolism in ADRs 

and a list of reactive metabolites thought to be involved in cell damage. The rate 

of drug clearance from the body is a vital determinant of an individual’s drug 

plasma concentration as well as susceptibility to adverse reactions. This is 

important for drugs with narrow therapeutic windows like lithium, digoxin and 

phenytoin. The three major factors affecting drug metabolism have been 

identified as: (1) Genetic factors (e.g thiopurine methyltransferase, N-

acetyltransferase and UDP-glucuronosyltransferase polymorphisms). (2) 
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Environmental factors (e.g cigarettes, alcohol and oral contraceptives). (3) 

Physiological factors (age, disease states, and gender). 

Although the liver is the major organ involved in drug metabolism, the skin is 

the main target organ affected in ADRs. The stability of reactive metabolites in 

general circulation from the organs where they are generated (liver) to distal 

organs like the skin has been questioned (Reilly et al. 2000; Irving and Elfarra 

2012). Therefore, localised generation of reactive metabolites at specific sites 

like the skin could be the trigger for the pronounced clinical involvement of the 

skin in such ADRs.  

Cutaneous adverse reactions are the major clinical manifestations of 

sulfamethoxazole hypersensitivity reactions (Carr et al. 1993; Carr et al. 1994) 

and are thought to be immune mediated involving drug-specific T-lymphocytes 

(Schnyder et al. 1997; Schnyder et al. 2000; Burkhart et al. 2001; Burkhart et al. 

2002).  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

68 
 

Figure 2.1-Schematic representation of drug metabolism pathways and some examples of 
chemically reactive metabolites involved in ADRs. 

 

SMX largely undergoes N-acetylation in the liver to generate non-toxic 

metabolites which are safely eliminated (Cribb et al. 1993; Uetrecht and Naisbitt 

2013). A small amount of SMX is converted by CYP2C9 and myeloperoxidase to 

SMX hydroxylamine (SMX.NHOH) (van der Ven et al. 1994; Cribb et al. 1995). 

SMX.NHOH is stable, enters the systemic circulation and can be excreted 

unchanged in the urine (Cribb and Spielberg 1992; van der Ven et al. 1994; Gill 

et al. 1996). SMX.NHOH is not protein-reactive but readily undergoes auto-

oxidation to form the highly protein-reactive nitroso-sulphamethoxazole, 

SMX.NO (Cribb et al. 1991; Naisbitt et al. 1996; Naisbitt et al. 2001; Naisbitt et al. 

2002; Summan and Cribb 2002). SMX.NO reacts with SMX.NHOH to form azo 

and azoxy dimers (Naisbitt et al. 1996). Both dimers are incapable of activating 

T-lymphocytes. Further oxidation of SMX.NO generates nitro SMX (Naisbitt et al. 

2002). SMX.NO-modified proteins (intracellular or extracellular) are then, 

degraded into peptide fragments and presented in an MHC class II restricted 

manner to CD4+ T-lymphocytes (Manchanda et al. 2002; Elsheikh et al. 2011).  
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The possibility of SMX.NHOH being transported as a non-reactive intermediate 

and only oxidised under condition of stress such as HIV/AIDS and cystic fibrosis 

has been reviewed elsewhere (Uetrecht and Naisbitt 2013). SMX.NO stimulates 

both the innate and the adaptive immune systems through the activation of 

dendritic cells and T-lymphocytes, respectively via protein haptenation 

(Sanderson et al. 2007).  

The DCs that are resident in the skin (Langerhans’ cells) are often in a quiescent 

state and continuously sample the environment for foreign organisms. The 

major phenotypic difference between Langerhans’s cells and blood derived DCs 

is the expression of cutaneous leucocyte antigen (CLA) in the former (Yasaka et 

al. 1996). CLA expression directs the homing precursor DCs in the blood 

destined to become Langerhans cells to the skin. Migratory Langerhans’ cells 

have up-regulated MHC II, CD40 and DC86 in a similar manner as mature blood- 

derived dendritic cells (Rajkovic et al. 2011). 

Independent groups have suggested that reactive metabolites are generated 

locally at specific target tissues such as the skin by keratinocytes (Reilly et al. 

2000; Vyas et al. 2006; Vyas et al. 2006). SMX.NO reduction by ascorbate and 

glutathione protects cell systems from high levels of reactive metabolites and 

subsequent hypersensitivity reactions (Cribb et al. 1995; Kurian et al. 2004). 

The hepatic metabolism profile of SMX is illustrated in figure 2.2 below. 
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Figure 2.2-Schematic representation of SMX metabolism 

 

2.2 Aims 

The molecular mechanism of T-lymphocyte activation by SMX and SMX.NO has 

been researched extensively. While the hepatic metabolism of SMX has been 

well characterised, it is still not clear whether the reactive metabolite (SMX.NO) 

generated within the liver circulates to the skin where it causes cutaneous 

reactions, or whether localised cutaneous generation of protein reactive 

metabolites are responsible for these reactions in the skin. We hypothesised 

that SMX metabolism by immune cells may be crucial for the drug-induced 

cutaneous reactions Therefore, the aims of this chapter were: 

 To determine enzyme expression in immune cells 

 To investigate SMX metabolism in immune cells 

 To analyse the role of SMX immune cell metabolism in the activation of 

T-cells 
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2.3 Methods 

2.3.1 Chemicals and reagents 

Foetal bovine serum (FBS) and MPO activity assay kit was purchased from 

Invitrogen (Paisley, UK). SMX, anti-rabbit IgG peroxidase secondary antibody, 

monoclonal anti-β-Actin antibody, DMSO, Tween-20, skimmed dry milk, alkaline 

phosphatase-conjugated anti-rabbit antibody produced in mouse, alkaline 

phosphatase substrate, phytohemagglutinin (PHA), HL60 cells (neutrophil- 

derived cell line), Coomassie Blue G-250, methimazole, ascorbic acid, 

ammonium formate, and bovine serum albumin (BSA) were purchased from 

Sigma-Aldrich (Gillingham, Dorset, UK). Bradford reagent was obtained from 

BIO-RAD (Hempstead, UK). Nitroso-SMX (C10H9N3O4S) was purchased from 

Dalton chemical laboratories Inc. (Toronto, Canada). Anti-SMX antibody 

produced in rabbit was developed by Panigen (Blanchard Ville, USA). Tritiated 

[3H]-methyl thymidine was purchased from Moravek (California, USA). High 

capacity protein binding micro titre plates were purchased from Falcon, BD 

Bioscience (Oxford, UK). Microplate reader (MRX) was manufactured by 

Dynatech Laboratories Inc., Chantilly, VA, USA). RNeasy mini kit and RNase-free 

DNase kit were bought from Qiagen (Crawley, UK). TaqMan primers, PCR 

reagents, reverse transcription reagents were purchased from Applied 

Biosystems, Warrington, UK. Reducing Laemmli sample buffer was purchased 

from Bio-Rad (Hertfordshire, United Kingdom). Chemiluminescent substrate 

was bought from Thermo Scientific (Northumberland, United Kingdom). 

Nitrocellulose membrane was purchased from GE Healthcare Life Sciences 

(Buckinghamshire, United Kingdom). RNeasy Mini kit and RT2-First Strand kit 

were bought from (QIAGEN Ltd. Crawley, U.K.). HPLC grade methanol, analytical 



Chapter 2 

72 
 

grade acetonitrile and HPLC grade distilled water were obtained from Fisher 

Scientific (Loughborough, UK). Interferon-γ ELISpot kits including antibodies 

and substrate solution were purchased from Mabtech (Stockholm, Sweden). 

ELISpot plates were bought from Millipore Corporation (Millipore, Watford, 

UK). 

2.3.2 Cell culture medium 

Culture medium for T-lymphocytes comprised of RPMI 1640 supplemented 

with 10% human AB serum, HEPES (25 mM), penicillin (1000 U/ml), 

streptomycin (0.1 mg/ml), L-glutamine (2 mM) and transferrin (25 µg/ml). 

EBV-transformed B-cells were maintained in medium comprised of RPMI 1640 

supplemented with 10% foetal bovine serum, HEPES (25 mM), penicillin (1000 

U/ml), streptomycin (0.1 mg/ml) and L-glutamine (2 mM). 

Dendritic cells were cultured in medium containing RPMI-1640, penicillin (100 

µg/ml), streptomycin (100 U/ml), transferrin (25 µg/ml), 10% human AB 

serum, HEPES buffer (25 mM), and L-glutamine (2 mM); supplemented with 

GM-CSF (800 U/mL) and IL-4 (800 U/mL). 

HL60 cell line was maintained in HL60 medium composed of RPMI-1640 

supplemented with 10% foetal bovine serum and L-glutamine (2 mM). 

2.3.3 Isolation of peripheral blood mononuclear cells (PBMCs) 

and generation of drug specific T-cell clones 

Blood (50 mL) was collected from 3 subjects for generation of EBV-transformed 

B-cells. Approval for the study was obtained from the Liverpool local research 

ethics committee and informed written consent was obtained from patients. 

PBMCs were isolated from blood collected in heparinised vacutainer tubes. 
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Blood (25 mL) was carefully layered on top of lymphoprep (25 ml) and spun in 

a centrifuge (2000 r.p.m, 25 mins, and 25°C). The buffy coat layer containing the 

PBMCs was carefully collected using a Pasteur pipette. PBMCs were washed 

twice in Hanks balanced salt solution (HBSS) to remove any remaining 

lymphoprep and the pellet was resuspended in 10 ml HBSS.  

An aliquot of PBMC suspension (10 µL) was added to an equal volume of trypan 

blue (0.2 % w/v) and the cells were counted using a Neubauer haemacytometer 

(Sigma-Aldrich) under a Leica DME microscope (Leica Microsystems, Milton 

Keynes). Cell viability was evaluated by trypan blue exclusion of viable cells. The 

percentage viability was estimated as follows: percentage viability = viable 

cells ÷ total cells × 100. Percentage viability was ≥95% for all the PBMC 

isolations carried out. PBMCs were again spun down and resuspended in foetal 

bovine serum containing 10% DMSO at a density of 107 cells/ml  for 24 hours in 

a Mr Frosty at -80 ˚C and then frozen at -150˚C for long term storage. Figure 2.3 

illustrates the steps involved in PBMC isolation.  

PBMCs (1×106/well; 0.5 ml) from hypersensitive patients were cultured with 

either SMX (1 mM and 2 mM) or SMX.NO (25 μM and 50 µM). On days 5 and 9, 

culture medium was supplemented with IL-2 (200IU/ml) to expand the number 

of antigen specific T-cells prior to cloning on day 14. Autologous Epstein-Barr 

virus (EBV)-transformed B-cell lines were used as antigen presenting cells in 

assays with clones. 

Antigen-specificity was assessed by culturing irradiated EBV-transformed B-

cells (1×104 cells/well) and either SMX (2 mM) or SMX.NO (50 µM) with T-cell 

clones (5×104 cells/well; 200 μl) for 48 hours. Proliferation was measured by 
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the addition of [3H] thymidine followed by scintillation counting. Clones with a 

stimulation index of greater than 2 were expanded by repetitive stimulation 

with irradiated allogeneic PBMCs (5×105 cells/well) and PHA (5 µg/ml) in IL-2 

containing medium. Five SMX.NO responsive TCCs generated from 1 SMX 

hypersensitive patient were used to define the role metabolism in SMX 

hypersensitivity. The phenotype and specificities of the other drug specific TCCs 

generated from 4 other hypersensitive patients are discussed in chapters 3 and 

6.  

 

 

Figure 2.3–Schematic representation of PBMC isolation from whole blood.  

 

2.3.4 Generation of dendritic cells (DCs) 

CD14+ monocytes were isolated from PBMCs using magnetic beads and columns 

according to the manufacturer’s instructions (Miltenyi Biotech; Bisley, UK) and 

then cultured in dendritic cell culture medium for 7-8 days to encourage 
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differentiation to DCs. The expression of CD14, CD40, CD86 and MHC II were 

determined using flow cytometry.  

2.3.5 Generation of Epstein-Barr virus transformed B-cells 

PBMCs were transformed into B-cell lines using supernatant from the virus-

producing cell line B9.58. PBMCs (5×106) were resuspended in supernatant 

from B9.58 cell (5 ml) pre-filtered with a 0.45 µm syringe filter. Cyclosporin A 

(CSA, 1 ug/ml) was added in order to inhibit the proliferation of T-lymphocytes 

and PBMCs were incubated overnight at a temperature of 37°C under an 

atmosphere of 95% O2/5% CO2. Cells were then washed and resuspended in 

APC medium supplemented with CSA (1 µg/ml) and cultured in a 24-well plate. 

Fresh APC culture medium was added twice a week to maintain the cells. CSA 

was omitted from the culture medium after two weeks to enhance the 

proliferation of the B-cells. Cells were transferred to a tissue culture flask when 

confluent and maintained with fresh APC culture medium twice a week. 

2.3.6 Antigen presenting cell fixation and antigen pulsing assays 

The role of intracellular SMX metabolism by immune cells in the activation of T-

lymphocytes was investigated using APC fixation.  Autologous EBV-transformed 

B-cells (2×106 cells/ml) were washed twice in HBSS to exclude FBS and 

resuspended in HBSS (1 ml). Glutaraldehyde (25%, 1 µL) was then added and 

the cells were gently mixed for 30 seconds. Glycine (1ml of 1 M) was quickly 

added and cells were mixed for a further 45 seconds. Cells were washed three 

times to remove glutaraldehyde and were then resuspended in T-lymphocyte 

culture medium. T-cell clones (5×104) were co-cultured with glutaraldehyde-

fixed EBV-transformed B-cells (1×104 cells, 50 µL) in the presence or absence of 
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SMX. In other experiments, antigen-presenting cells (APCs) pulsed with SMX for 

16 hours and washed extensively with HBSS to exclude free SMX were co-

incubated with SMX.NO-specific T-cell clones in a 96-well U-bottom microplate 

for 48 hours under an atmosphere of 95% O2/5% CO2 at 37˚C. [3H]-thymidine 

was added for the final 16 hours of incubation and T-lymphocyte proliferation 

was evaluated using scintillation counting. Soluble SMX.NO was used as a 

positive control. 

2.3.7 Cell lysis and protein quantification  

EBV-transformed B-cells, dendritic cells or HL60 cell lines (2×106 cells/ml) 

were cultured with either SMX (0.5 -2 mM) or SMX.NO (5-50 uM) in a 24 well 

culture plate at 37°C under an atmosphere of 95% O2/5% CO2 for 16 hours. The 

cells were washed three times with HBSS (by centrifugation at 1500 rpm for 5 

minutes) to remove non-covalently bound drugs. Cell pellets were re-suspended 

in 200 µL RIPA buffer (50mM Tris pH 7.5, 150mM NaCl, 2.5mM EDTA, 10% 

(w/v) Glycerol, 1% (w/v) Triton X-100, 1mM Na3VO4, 10 μg/ml aprotinin, 10 

μg/ml leupeptin, 1mM PMSF, 0.1% (w/v) SDS, and 0.5% (w/v) Na 

deoxycholate) and placed on ice for 30 minutes to lyse. Cells were given three 

bursts of sonication while maintaining them on ice. The cell suspensions were 

then spun down at 14,000 × g for 10 minutes at 4°C. Supernatants were then 

collected and protein concentration determined using the well-established 

Bradford assay (Bradford 1976). Protein lysates were then standardised to 250 

µg/ml. A standard calibration curve was prepared using BSA (0-2000 µg/ml). 

Briefly, 10 µL of either standard or test samples were plated unto a 96-well flat-

bottom microplate in duplicates. Bradford reagent (200 µL) was added to all the 

wells. The plate was protected from light and the absorbance was read at 570 
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nm using a microplate reader (Dynex Technologies, Billinghurst, West Sussex). 

The protein concentration of each sample was determined using the standard 

curve generated from BSA. 

2.3.8 Enzyme-linked immunosorbent assay (ELISA) to measure 

SMX-derived adducts formed in immune cells 

Cell lysates (100 µL, 250 µg/ml) were plated in duplicate onto a high capacity 

protein-binding microtitre 96-well ELISA plates and incubated for 16 hours at 

4°C. Wells were washed (5 times) with phosphate-buffered saline (PBS recipe) 

containing 0.001% Tween-20. Wells were incubated in 2.5% skimmed milk 

prepared using PBS-Tween for 1 hour to block non-specific antibody binding 

sites. Wells were then washed 5 times with PBS-Tween and incubated in 100 µL 

anti-SMX antibody (1:2000) overnight at 4°C. Anti-SMX antibody was generated 

according to previously reported methods (Gruchalla and Sullivan 1991; 

Lavergne et al. 2006). After overnight incubation, wells were washed 5 times 

and then incubated in 100 µL alkaline phosphatase-conjugated anti-rabbit IgG 

(1:1000) for 2 hours. This was followed by 5 washes and 30 minutes incubation 

in alkaline phosphatase substrate (100 µL/well). Spectrophotometric 

absorbance was determined using a Microplate reader (MRX) at an optical 

density (OD) of 405 nm. Readouts from ELISA were calculated using the 

formula: Absorbance of Sample (Δ OD) = Sample OD – Vehicle OD. Figure 2.4 

is a schematic representation of an indirect ELISA to detect SMX/SMX.NO-

modified protein. 
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Figure 2.4-Schematic representation of an indirect ELISA to detect SMX/SMX.NO-modified 
protein using an anti-SMX specific primary antibody and an enzyme conjugated secondary 
antibody. 

 

2.3.9 Coomassie Blue staining 

Protein lysates (10 µl/lane) were separated using a 12% SDS-PAGE gel (300 V, 

60 mA, 1 hour)  and the gel was fixed in 7% glacial acetic acid in methanol (40% 

v/v). It was then placed in Coomassie Blue G-250 (0.1%w/v) prepared in 20% 

methanol and agitated in staining suspension. After 1 hour, the gel was de-

stained using 10% acetic acid in methanol (25% v/v) for 1 minute with gentle 

agitation. The gel was then rinsed with 25% methanol and de-stained in fresh 

25% methanol for up to 24 hours. Bands of interest were excised followed by 

in-gel tryptic digestion and proteomic analysis. Briefly, bands excised from 

Coomassie Blue-stained gels were de-stained by adding 100 μl 50% ACN/50mM 

ammonium bicarbonate and incubating for 15mins at room temperature with 

occasional agitation. The supernatants were discarded and the gel bands were 

dried in a SpeedVac (15-20mins). They were rehydrated in 100 µL 10 mM 



Chapter 2 

79 
 

dithiothreitol/50 mM ammonium bicarbonate and incubated at 56oC for 1 hour. 

The supernatants were removed and the bands were incubated in 55 mM 

iodoacetamide/50 mM ammonium bicarbonate (25 µL) for a further 45 minutes 

in the dark. The gel pieces were washed with ammonium bicarbonate for 10 

minutes before being dried once more in a SpeedVac. They were then 

rehydrated in 100 µL 10 ng/µL trypsin/50 mM ammonium bicarbonate and 

incubated overnight at 37oC. In order to extract the peptides from the gel pieces, 

they were incubated in a sonicator bath in 30 µL 60% acetonitrile/1% 

trifluoroacetic acid for 5 mins. After brief centrifugation, the supernatants were 

collected. This step was repeated once more, and then the supernatants were 

pooled and dried in a SpeedVac. The peptides were resuspended in 10 µL 0.1% 

formic acid, and 0.5 µL was spotted onto a MALDI target plate or 5 µL was 

analysed by LC-MS. 

2.3.10 Western blotting 

Protein lysates (10 µL/lane) were prepared in RIPA buffer. Lysates were treated 

with reducing Laemmli buffer and then separated by electrophoresis on a 12% 

SDS-PAGE gel (300 V, 60 mA, 1 hour). Separated proteins were then transferred 

from the gel onto a nitrocellulose membrane (300 V, 250 mA, and 1 hour). 

Membranes were then blocked in 2.5 % (w/v) skimmed milk prepared in TST 

buffer (150 mM NaCl, 50mM Tris-HCl, pH 7.6 0.05% Tween-20). 

Immunodetection of SMX−protein adducts was performed by incubating the 

blot with anti-SMX rabbit antiserum (1:2000) in phosphate buffer overnight at 4 

°C. Unbound antibody was removed by washing with PBS-Tween, and the 

membrane was incubated with peroxidase-conjugated anti-rabbit IgG antibody 

(1:10,000 in TST buffer) for 2 hours at room temperature. The membrane was 



Chapter 2 

80 
 

finally developed using an enhanced chemiluminescent substrate. Figure 2.5 

illustrates a schematic representation of the Western blotting protocol utilised. 

 

 

Figure 2.5-Schematic representation of the Western blotting used to detect SMX/SMX.NO-
modified protein adducts using an anti-SMX specific primary antibody, an enzyme conjugated 
secondary antibody and enhanced chemiluminescent substrate. 

 

2.3.11 Real time polymerase chain reaction (RT-PCR) 

Total RNA was extracted from EBV-transformed B-cells (5×106), HL60 cell line 

(5×106) and dendritic cells (5×106) with the RNeasy Mini kit. Using a Nano Drop 

spectrophotometer (Thermo Scientific, Surrey, U.K.), the concentrations of RNA 

in the samples were measured. RNAs from various samples were then reverse 

transcribed to cDNA using the RT2-First Strand kit. RNA (1 μL) was incubated 

with 2 μL of genomic DNA elimination reagents at 42°C for 5 mins. A reverse 

transcription cocktail (10 μL) was added to equal volume of genomic DNA 

elimination mixture and incubated at 42°C for 15 minutes. The reaction was 

brought to an end by raising the temperature to 95°C for 5 minutes. RNase-free 
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water (91 μL) was added to the resulting cDNA (20 μL) and then centrifuged to 

ensure a homogenous mixture. Experimental cocktail (1350 μL of Mastermix, 

102 μL of cDNA, and 1248 μL of water) was prepared and 25 μL/ well was 

added to a PCR array plate and tightly sealed with a transparent microplate 

sealer. A two-step thermal cycling was performed using an ABI 7000 thermal 

cycler (Applied Biosystems, Foster City, USA); 1 cycle at 95°C for 10 minutes 

followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 min. SYBR green 

was detected and recorded for each well. Relative quantification was achieved 

by determining the cycle at which the fluorescence reached a threshold value 

(Ct). 

2.3.12 Proteomic analysis of drug metabolism enzyme in 

immune cells 

Proteins were extracted from a pooled sample of EBV-transformed B-cells 

cultured and expanded in T-175 flasks (Thermo Scientific (Northumberland, 

United Kingdom) by three cycles of sonication in triethylammonium 

bicarbonate (0.5 M)/ SDS (0.1%). One cycle of freeze–thawing at −80 °C and a 

further round of sonication completed the cell lysis. The cell suspension was 

centrifuged at 14 000 × g and 4 °C for 10 minutes. Protein supernatants were 

collected and the protein concentration was determined by Bradford assay 

(Bradford 1976). Protein was reduced by incubation with dithiothreitol (10 

mM) for 15 mins at room temperature followed by alkylation with 

iodoacetamide (55 mM) for 15 mins. Proteins were digested overnight with 

trypsin at 37 °C, and the tryptic peptides were fractionated by strong cation 

exchange chromatography using a previously described method (Jenkins et al. 

2009). A gradient from 0 to 0.5 M KCl in KH2PO4 (10 mM)/ ACN (25%), pH 3, 
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was applied at a flow rate of 1 ml/minute for 20 minutes and 2 mL fractions 

were collected. The fractions were evaporated to dryness in a SpeedVac 

(Eppendorf Ltd., Cambridge, U.K.) reconstituted in trifluoroacetic acid 0.1% 

(v/v) and desalted using a macroporous C18 High-Recovery reversed phase 

column measuring 4.6 mm × 50 mm (Agilent Technologies) installed on a Vision 

workstation (AB Sciex). Desalted samples were dried once more and were 

reconstituted in 20 µL of 0.1% formic acid just prior to LC-MS/MS analysis. 

Samples were injected  into a Triple TOF 5600 mass spectrometer (AB Sciex) by 

automated in-line reversed phase liquid chromatography, using an Eksigent 

NanoUltra cHiPLC System mounted with microfluidic trap and analytical 

column (15 cm ×75 μm) packed with ChromXP C18-CL 3 μm. A NanoSpray III 

source was fitted with a 10 μm inner diameter PicoTip emitter (New Objective, 

Woburn, MA). Samples loaded onto the trap were washed with acetonitrile 

(2%)/formic acid (0.1%) for 10 minutes at 2 μL/min before switching in-line 

with the analytical column. A gradient of 2–50% ACN/0.1% formic acid over 90 

mins was applied to the column at a flow rate of 300 nL/min. Spectra were 

acquired automatically in positive-ion mode using information-dependent 

acquisition powered by Analyst TF 1.5.1 software, across mass ranges of 400–

1600 amu in MS and 100–1400 amu in MS/MS. Up to 25 MS/MS spectra were 

acquired per cycle (approx. 10 Hz) using a threshold of 100 counts per second, 

with dynamic exclusion for 12 s and rolling collision energy. Database searching 

was performed using Protein Pilot software version 4 (AB Sciex), with the 

confidence set to 10% to enable searching of the reversed decoy database. 

Carboxamidomethyl modification of cysteine residues and biological 

modifications were allowed. Data were searched against the latest version of the 
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SwissProt database, and only proteins falling within a 1% global false discovery 

rate were included in the results. 

2.3.13 HPLC determination of SMX metabolites in immune cells 

EBV-transformed B-cells, HL60s and DCs were incubated with SMX (2 mM) for 

16 hours at 37C under an atmosphere of 95% O2/5% CO2. Reactions were 

terminated after 16 hours with the addition of an equal volume of ACN and 

protein was precipitated at -20C overnight. After centrifugation (2200 rpm, 10 

mins) of samples, supernatants were loaded onto Sep-Pak C-18 solid phase 

extraction cartridges (Waters Ltd, Herts, U.K.). Cartridges were then washed 

with 3 ml of distilled water and metabolites were eluted with 3 ml MeOH. The 

MeOH fractions were evaporated to dryness under a steady stream of N2 at 

room temperature. Samples were then reconstituted in MeOH: dH20 (50:50, 

250l: 250l). Aliquots (50μl) of the reconstituted samples were injected onto 

HPLC. 

Sample suspensions were resolved on a Gemini NX 5-μm C-18 column (250 x 

4.60mm; Phenomenex, Macclesfield, Cheshire, U.K.) with ACN as the eluent 

(10% for 5 mins, increasing to 15% between 5 and 10 mins, and up to 50% 

between 20 and 40 mins) in ammonium formate (10 mM; pH 4.8). Eluents were 

delivered with a Dionex Summit HPLC System at a flow rate of 1ml/min through 

a UVD170S UV detector set at 254 nm (Dionex). Data was processed by 

Chromeleon software (Dionex). Using Chromeleon software, the percentage 

turnover and percentage metabolite formation was calculated from the area 

under the curve (AUC) from each trace. Authentic standards for SMX, 

SMX.NHOH, and SMX were used to identify metabolites. 
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2.3.14 ELISpot Assay 

ELISpot plates were coated with 100 µL/well of interferon gamma capture 

antibody (15 µg/ml) and incubated overnight at 4C. Wells were washed five 

times with sterile PBS and then blocked with 200 µL of T-lymphocyte culture 

medium for 30 minutes at room temperature. Drug specific T-cell clones (5×104, 

50 µL) were added to wells alongside autologous irradiated EBV-transformed B-

cells (1×104, 50µL). Cells were cultured in the presence or absence of SMX.NO 

(50 µM, 100 µL) and plates incubated at 37˚C under an atmosphere of 95% 

O2/5% CO2 48 hours. Cells were discarded after 48 hours and wells washed five 

times with 200 µL PBS. Biotin-labelled detection antibody was diluted to 1 

µg/ml in PBS containing 0.5% FBS and 100 µL added to the wells. The plate was 

incubated at room temperature for 2 hours at room temperature. After 2 hours, 

wells were washed five times with PBS. Streptavidin-ALP diluted PBS 

containing 0.5% FBS (1:1000) was added to wells and incubated for 1 hour at 

room temperature. Wells were then washed five times with PBS (200 µL), and 

BCIP/NBT substrate (100 µL/well) was added for 15 minutes at room 

temperature in the dark. Wells were inspected for the development of spots and 

then washed under slow running tap water. A schematic of the ELISpot assay is 

represented on figure 2.6. Wells were then left to air dry and spots visualised 

and counted using an AID ELISpot reader (Cadama Medical, Stourbridge, UK). 
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Figure 2.6– Schematic representation of the ELISpot assay to detect cytokine secretion. 

 

2.3.15 Myeloperoxidase activity assay 

A peroxidation activity assay showing MPO activity in HL60, DCs and EBV- 

transformed B cell lines was performed. Clarified cell lysate samples (50 µL) 

and 50 µL standard MPO (0-200 ng/mL) were plated into a 96-well microplate 

in duplicate. An equal volume of 2X Amplex Ultra Red reagentTM working 

solution was added to all samples and standards. The microplate was then 

incubated at room temperature for 30 minutes and protected from light. The 

reaction was stopped with 10 µL/well of peroxidase inhibitor (10X). The 

fluorescence intensity of each sample was then measured using an excitation 

wavelength of 530 nm and an emission wavelength of 590 nm. Background 

fluorescence intensity of zero MPO was subtracted from all the experimental 

samples and standards. The MPO concentration was then determined using the 

standard curve. 
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2.3.16 Statistical analysis 

Mean values and standard deviations were calculated, and statistical analysis 

was performed using paired T tests (Sigma plot 12 software). 
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2.4 Results 

2.4.1 Evidence of SMX metabolism and enzyme expression in 

immune cells 

DCs generated from CD14+ monocytes expressed low levels of CD14 but high 

levels of costimulatory molecules like CD40, CD86 and MHC II (figure 2.7A). 

Metabolism of SMX by various immune cells was investigated using an 

immunochemical assay (ELISA). Differential metabolism of SMX was observed 

in various immune cells. The HL60 cells showed an approximately 3 fold 

increase in SMX.NO-modified protein when compared with either EBV-

transformed B-cells or dendritic cells (figure 2.7B). Furthermore, the levels of 

drug-protein adduct formation increased with an increase in the concentrations 

of either SMX.NO or SMX during the incubation (figure 2.7C and D). 

 

Figure 2.7 Sulfamethoxazole metabolism in immune cells. (A) Expression of co-stimulatory 
molecules on DCs. Grey histograms with blue boundaries represent unstained cells while red 
lines represent the co-stimulatory molecule expressed. (B) EBV-transformed B-cells, dendritic 
cells or HL60 cells (2×106/mL) were incubated with SMX (2 mM) for 16 hours at 37°C under an 
atmosphere of 95% O2/5% CO2. Cells were then harvested and lysed in RIPA buffer. ELISA was 
performed on protein lysates to determine levels of SMX.NO-modified protein. (C and D) EBV-
transformed B-cells (2×106/mL) were incubated in either SMX.NO (5-50 µM) or SMX (0.5-3 mM) 
for 16 hours. Cells were then harvested, lysed and ELISA performed to determine levels of 
SMX.NO-modified adducts. 
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Figure 2.8 (A) Time-dependent SMX-protein adduction. EBV-transformed B-cells 
(2×106/mL) from three subjects were incubated in SMX (2 mM) for 1 hour, 4 hours and 16 
hours under an atmosphere of 95% O2/5% CO2. Cells were harvested at the specified time 
points, lysed and protein concentration determined using the Bradford assay. ELISA was 
performed to determine the levels of SMX.NO-protein adduction. (B). Methimazole inhibition. 
EBV-transformed B-cells (2×106/mL) from 8 individuals were pre-incubated with methimazole 
(1 mM) for 30 minutes followed by a 16 hour incubation with SMX (2mM). Cells were harvested, 
lysed and ELISA performed to determine the extent of SMX.NO-protein haptenation. 

 

SMX metabolism by EBV-transformed B-cells was time-dependent with an 

optimum metabolism time found to be 16 hours (P = 0.0002) as shown in figure 

2.8A. However, there was a significant difference in SMX-Protein adduct 

formation when EBV-transformed B-cell lines were pre-incubated in 

methimazole for 30 minutes before incubation with SMX for 16 hours (figure 

2.8B) 
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Figure 2.9 (A) SMX metabolism and enzyme inhibition in EBV-transformed B-cells. 
SMX.NO-specific T-cell clones (5×104 cells, 50 µL) were co-incubated with EBV-transformed B-
cells (1×104 cells, 50 µL) in the presence and absence of soluble SMX.NO (50 µM, 100 µL) for 48 
hours under an atmosphere of 95% O2/5% CO2. In other conditions, EBV-transformed B-cells 
were pulsed with SMX (2mM) for 16 hours, washed three times to remove unbound SMX and co-
cultured with SMX.NO-specific T-cells for 48 hours. Furthermore, EBV-transformed B-cells that 
were either fixed with glutaraldehyde (25%) or pre-treated with methimazole (1 mM) for 30 
minutes were incubated with SMX (2 mM) for 16 hours. EBVs were washed to remove unbound 
SMX and then co-cultured with SMX.NO-specific T-cells for 48 hours. T-cell proliferation was 
determined by [3H]-thymidine incorporation. Data represent mean of duplicate wells. (B) 
Interferon-gamma ELISpot was performed with the same cell number and drug concentrations 
as stated in the proliferation assay (n= 3). Cells were incubated for 48 hours and spots 
developed according to the manufacturer’s instructions. 

 
EBV-transformed B-cells pulsed with SMX (2 mM) for 16 hours induced 

lymphocyte proliferation and interferon-gamma secretion consistent with 

antigen processing. APC either fixed with glutaraldehyde (25%) or pre-treated 

with methimazole (1 mM) before 16 hour incubation with SMX (2 mM) failed to 

induce either T-lymphocyte proliferation or  interferon-gamma secretion 

(figure 2.9). 

2.4.2 HPLC determination of SMX metabolism by antigen 

presenting cells 

To further investigate SMX metabolism in APCs, a HPLC method was set up to 

track SMX metabolites in EBV-transformed B-cells. Cell supernatant and whole 
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cell lysates were processed and analysed using HPLC. Metabolites consistent 

with SMX metabolism could not be determined using HPLC method. 

 

Figure 2.10 HPLC chromatogram showing for SMX.NOH, SMX and SMX.NO standards. Each 
standard (2 µM, 50 μL) was introduced into a HPLC tube and mixed thoroughly. The resulting 
mixture was then resolved using HPLC to determine retention times for each standard. 

 

The retention times for SMX.NOH, SMX and SMX.NO were determined to be 

12.8, 14.6 and 24.6 minutes respectively (figure 2.10). A peak with retention 

time of 31.1 minutes was suggestive of a dimerization product of SMX.NOH and 

SMX.NO as previously reported (Naisbitt et al. 2002). Furthermore, the ability of 

EBV-transformed B-cells, dendritic cells and HL60s to metabolise SMX was 

investigated. Both supernatants and whole cell lysates were analysed for SMX 

metabolites. Ascorbate (1 mM) was added to the culture medium to prevent 

auto-oxidation of SMX.NOH and thereby enhance its detection. SMX metabolites 

were not detected using HPLC method (figure 2.11). 
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Figure 2.11 UV absorption spectrum to detect SMX metabolites in immune cells. EBV-
transformed B-cells, DCs, orHL60s (2×106 ) were incubated in SMX (2 mM) for 16 hours and 
samples prepared for HPLC analysis as earlier described. 

 

2.4.3 Proteomic analysis of drug metabolism enzyme in 

immune cells 

Expressions of flavine-containing monooxygenases-1 and -3 by keratinocytes 

(Janmohamed et al. 2001; Vyas et al. 2006; Vyas et al. 2006; Sanderson et al. 

2007) have been reported. However, there was no evidence of MPO expression 

in this cell type. Thus, we investigated SMX metabolism enzymes in other 

relevant immune cells (EBV-transformed B-cells). DCs have also been shown to 

express metabolic activity and metabolism of SMX has been demonstrated 

through the detection of covalently bound protein adducts (Sanderson et al. 

2007). The purpose of these studies were to focus on metabolism and covalent 

binding in APC, not keratinocytes as these cells are directly involved in the 

priming of naïve T-cells in tissue draining lymph nodes.  
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Western blotting data suggested a differential expression of myeloperoxidase in 

EBV-transformed B-cells, dendritic cells and HL60 cells (figure 2.12A). FMO3 

and thyroid peroxidase (TPO) were not detected (figure 2.12 B and C). Real time 

PCR was then used to verify the presence of messenger RNAs for MPO in 

immune cells (figure 2.13C). Messenger RNA for MPO was differentially 

expressed, HL60s > DCs > EBVs (figure 2.13C). Furthermore, mRNAs for FMO4, 

FMO5 and LPO were differentially expressed in all the immune cells (figure 2.13 

A and B). MPO activity in the different immune cells was investigated using a 

peroxidation assay (figure 2.14A). Activity was detected in all cells with the 

following order of reactivity HL60 > DC > EBV. This was consistent with MPO 

protein expressions in the various cell types (figure 2.13C). Furthermore, the 

presence of hydrogen peroxide is important for MPO activity as ELISA data 

suggested SMX metabolism was significantly increased in the presence of 

hydrogen peroxide (p = 0.006; n = 3), see figure 2.14B. 
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Figure 2.12 Western blotting for enzyme expression of SMX metabolism enzymes in 
immune cells. (A) MPO expression in immune cells. Cells (2×106/ml) were harvested and lysed 
according to method described earlier. Lysates were separated using 12% SDS-PAGE gel and 
blot probed for myeloperoxidase expression using an anti-MPO antibody (1:1000). β-Actin 
expression was used as the endogenous control. (B) FMO3 expression in EBV-transformed B-
cell line and HL60 cell line using an anti-FMO3 antibody (1:1000), 10 µL recombinant FMO3 
(250 µg/ml) as positive control. (C) Blot was probed for TPO using an anti-TPO antibody 
(1:1000) and using 10 µL recombinant TPO (250 µg/ml) as positive control. 

 

 

 

 

Figure 2.13 RT-PCR determination of mRNA for various FMOs and peroxidases expressed 
in HL60s, dendritic cells and EBV-transformed B-cells. (A)RNA extracts from HL60, 
dendritic cells and EBV-transformed B-cell lines were subjected to RT-PCR using specific 
primers for FMO1-5, LPO, TPO and β-actin (endogenous control). Relative mRNA levels were 
normalised to the corresponding β-actin mRNA expression. (B) RT-PCR for FMO2 and FMO3 
expression in HL60, dendritic cells and EBV-transformed B cell line normalised to β-actin. (C) 
RT-PCR for MPO mRNA expression in HL60, dendritic cells and EBV- transformed B-cells. 
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Figure 2.14 Peroxidation activity assay showing MPO concentration in HL60, DCs and 
EBV- transformed B-cell lines. (A) Clarified cell lysate samples (50 µL) and standard MPO (50 
µL) were plated into a 96-well Microplate in duplicate. Equal volume of 2X Amplex Ultra Red 
reagents TM working solution was added to all samples and standard MPO and wells developed 
according to manufacturer’s instructions. (B) Confirmation of in vitro SMX metabolism using 
ELISA. SMX (2 mM) was incubated with MPO (100 µg/mL) with or without hydrogen peroxide 
(10 µM) for 1 hours. ELISA was then performed to determine level of SMX-protein adduct. 

 

To further investigate MPO expression in immune cells LC-MS/MS analyses 

were employed. First, pure recombinant MPO was digested, processed and 

analysed by mass spectrometry. The protein was reduced with dithiothreitol 

(DTT) and alkylated with iodoacetamide prior to tryptic digestion. LC-MS/MS 

analysis was employed further to determine the expression of MPO in EBV-

transformed B-cells using HL60s as a positive control.  

Figure 2.15A illustrates the amino acid sequence of human MPO showing both 

heavy and light chains. The amino acid sequence of human MPO showing the 

various sites of natural modification is represented in figure 2.15B; notable is 

the presence of cysteine sulphenic acid modification on Cys316. The MS/MS 

spectrum of the peptide containing Cys316 is represented on figure 2.16. LC-

MRM MS/MS analysis of recombinant MPO was performed to establish methods 

for determining the presence of MPO-derived peptides in EBV-transformed B-

cells and HL60s.  

Since MPO heavy and light chains would dissociate on SDS-PAGE gels, a series of 

bands were excised from Coomassie-Blue stained gels to ensure both chains 

were represented in MS data. Briefly, Coomassie-Blue staining of previously 

separated protein lysates obtained from HL60s, DCs or EBVs revealed multiple 

bands representing a variety of proteins with different molecular weights 
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(figure 2.17).  Bands representing proteins migrating between 36 KDa and 90 

KDa were excised and an in-gel tryptic digest performed to determine the 

presence of peptides consistent with MPO expression. The MPO sequence 

coverage for HL60 and EBVs were found to be 39.6% and 1.4% respectively 

(figure 2.18). The multiple reaction monitoring (MRM) of MPO peptides in HL60 

cell lines and EBV-transformed B-cell line is illustrated in figure 2.19. 
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Figure 2.15 LC-MS/MS analysis of MPO. (A) Amino acid sequence of human recombinant 
myeloperoxidase showing MPO light chain and MPO heavy chain with sequence coverage of 
71.4%. (B) Amino acid sequence of human MPO showing key features, positions, sites and 
amino acid modifications.   

 

 

 

Figure 2.16 LC-MS/MS sequence analysis of MPO-derived peptide (315SCPACPGSNITIR327). 
MPO was reduced with dithiothreitol (DTT) and alkylated with iodoacetamide prior to tryptic 
digestion before LC-MS/MS analysis. 
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Figure 2.17 Coomassie Blue stain of proteins. Cells from HL60, DCs and EBV-transformed B-
cells were lysed and separated by 12% SDS-PAGE followed by Coomassie blue staining to 
visualise proteins. Bands of interest were then excised followed by in-gel tryptic digest and LC-
MS/MS analysis. 

 

Figure 2.18 MPO detection in immune cells. HL60 and EBV-transformed B-cell proteins were 
electrophoresed on SDS-PAGE gels and a series of bands were excised corresponding to the 
approximate molecular weight of MPO. The proteins therein were digested with trypsin, 
extracted from the gel and analysed by LC-MS/MS or LC-MRM-MS/MS on a QTRAP5500 mass 
spectrometer. HL60 cells and EBV-transformed B-cell line showed peptides identified at > 95% 
(green) and > 90% (yellow) confidence limits respectively. 
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Figure 2.19 LC-MRM MS/MS analysis of MPO peptides in HL60 cells and EBVs using MRM for 

two distinct MPO peptides (IANVFTNAFR and QNQIAVDEIR). 

 

Even with the MRM MS data obtained (figure 2.19) the evidence for the 

presence of MPO in EBV-transformed B-cells was very weak and probably 

would not stand on its own as sufficient to confirm the expression of the protein 

in these cells. A complete analysis of the whole cell lysates from EBVs using the 

TT5600 in discovery mode as illustrated in figure 2.20 revealed 2658 proteins 

but no evidence of MPO (figure 2.21). Of the identified proteins, 1090 exhibited 

catalytic activity and 80 were oxido-reductases. In contrast with the RNA data, 
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MPO, LPO, TPO and FMOs were not expressed at sufficient levels for MS 

detection. 

 

Figure 2.20 Schematic representation of steps involved LC-MRM and LC-MS/MS analysis of 

protein lysates. Cell lysis was performed and protein reduced, alkylated and digested and cation 

exchange performed on samples. Samples were then analysed using LC-MRM-MS and LC-

MS/MS. 
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Figure 2.21 An analysis of the proteins using PANTHER (Protein Analysis Through 

Evolutionary Relationships, www.pantherdb.org) revealed a range of molecular functions and 

protein classes. 2658 proteins were identified using the TT5600 in discovery mode. 
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2.5 Discussion 

The liver is the main organ for drug metabolism. Hepatic metabolism of SMX has 

been well characterized by a number of research groups (Cribb and Spielberg 

1990; Cribb et al. 1993; Cribb et al. 1995; Sanderson et al. 2007). Normally, 

reactive metabolites generated in the liver are readily detoxified with the 

exception of certain pathologic conditions like HIV, neurodegenerative 

disorders, cancers and cystic fibrosis (Pirmohamed and Park 2001; 

Pirmohamed et al. 2002; Townsend et al. 2003). This is partly due to the high 

concentration of glutathione and glutathione transferase enzymes in the liver 

(Neil 1980; Coles et al. 2001; Wu et al. 2004).  

The stability of reactive metabolites within the systemic circulation has been a 

subject of debate (Vyas et al. 2006; Vyas et al. 2006; Roychowdhury et al. 2007). 

CYP2C9 and MPO are critical human hepatic enzymes involved in SMX 

metabolism to its hydroxylamine metabolite, SMX.NOH (van der Ven et al. 1994; 

Cribb et al. 1995; Gill et al. 1996; Mitra et al. 1996; Pirmohamed and Park 2001; 

Park et al. 2005; Sanderson et al. 2007; Kagaya et al. 2012). SMX.NOH 

spontaneously reacts with readily available molecular oxygen to form SMX.NO 

(Cribb et al. 1991; Naisbitt et al. 1996). Due to its high reactivity and low 

stability, SMX.NO generally reacts with SMX.NOH to form a dimer (azo or axoxy 

dimers) or with proteins to generate antigenic epitopes for T cell receptor 

recognition (Cribb et al. 1991; Naisbitt et al. 1996; Manchanda et al. 2002; 

Naisbitt et al. 2002).  

Chemically reactive drug metabolites have been implicated in a number of 

idiosyncratic drug reactions and the skin is the major target organ and immune 
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cells have been implicated (Park et al. 1998; Roychowdhury and Svensson 

2005). Cutaneous reactions to SMX may present as mild skin rash to more 

complex, severe and sometimes life threatening reactions like SJS and TEN (van 

der Ven et al. 1991; Gruchalla et al. 1998; Mistry et al. 2009; Harr and French 

2010; Taqi et al. 2012). Although the skin is highly vascularised and possess a 

wide surface, its drug metabolism capability is limited (Pannatier et al. 1978; 

Mukhtar and Bickers 1981; Baron and Merk 2001; Svensson 2009; Sharma and 

Uetrecht 2013). Cutaneous expressions of FMO1, FMO3 (Janmohamed et al. 

2001; Vyas et al. 2006) and sulfotransferase (Windmill et al. 1998; Higashi et al. 

2004) have been characterized in the human skin however, this is not the case 

with the cytochrome P450 superfamily (Sharma and Uetrecht 2013). 

Furthermore, high levels of MPO have been reported in dendritic cells (Pickl et 

al. 1996; Satthaporn and Eremin 2001; Sanderson et al. 2007) and HL60 cells 

(Meier et al. 1991; Hachiya et al. 2000; Kim et al. 2010).  

In order to determine the role of localised metabolism in SMX hypersensitivity 

reactions, using immune cells we investigated the enzyme expression and 

activity ex vivo. The metabolism capacity of these APCs utilised in functional T-

lymphocyte experiments was assessed using a battery of immunochemical 

assays (ELISA, Western blotting). The optimum time for SMX metabolism in 

EBV-transformed B-cells as detected by ELISA was determined to be 16 hours. 

There was a correlation between SMX-protein adduct formation observed when 

HL60 cells, dendritic cells or EBV-transformed B-cell lines were incubated with 

SMX for 16 hours and the levels of MPO expression as demonstrated by RT-PCR 

and Western blotting data. RT-PCR was used to investigate the relative 

expression of messenger RNAs for MPO and other drug metabolism enzymes 
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(FMO 1-5 and TPO) that may be involved in SMX metabolism. MPO protein 

expression was highest in HL60 cells followed by dendritic cells and EBV-

transformed B-cells.  

Peroxidation assay revealed differential MPO activity in HL60 cells > DCs > EBV-

transformed B-cells. This is consistent with data from both mRNA expression 

and protein expression studies in the respective cell types. MPO requires the 

presence of hydrogen peroxide for its enzymatic activity (Iwamoto et al. 1987; 

Pulli et al. 2013). Correspondingly, SMX.NO binding to purified MPO was found 

to be statistically higher in the presence of hydrogen peroxide. Although EBV-

transformed B-cells expressed mRNA for FMO2 and FMO3, the protein for both 

enzymes was not detected using Western blotting. It is possible that protein 

translation does not take places or protein is degraded shortly after translation. 

The expression of FMO1 and FMO3 has been reported for keratinocytes 

(Janmohamed et al. 2001; Vyas et al. 2006). The authors demonstrated that 

FMO3 was essential for SMX metabolism in keratinocytes. In humans, FMO2 is 

involved in N-oxidation of some primary alkylamines but the FMO2 gene also 

encodes for a truncated version of the enzyme that is devoid of catalytic activity 

(Dolphin et al. 1998). Hence, it is unlikely that the SMX metabolism observed in 

EBV-transformed B-cells was a result of FMO3.  

SMX.NO-specific T-cell clones were generated and used to delineate the role of 

APC metabolism in T-lymphocyte activation. These TCCs were not activated 

with SMX, the parent drug (chapter 3). APCs pulsed with SMX for 16 hours were 

found to stimulate SMX.NO-specific TCCs, suggesting that SMX metabolism 

occurs in APCs in sufficient quantities to generate T-cell antigens. Furthermore, 
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glutaraldehyde fixation of APCs and methimazole inhibition of enzymatic 

activity in APCs significantly decreased T-lymphocyte proliferation when both 

APCs and SMX.NO-specific T-lymphocytes were incubated with SMX for 48 

hours. Methimazole is a non-selective inhibitor of the peroxidases reported to 

inhibit SMX metabolism.  

Tracking SMX metabolites in APC using HPLC method was unsuccessful. The 

inability to detect SMX metabolites in immune cells may be due the intrinsically 

reactive nature of SMX.NO resulting in spontaneous protein haptenation 

(Naisbitt et al. 1996; Cheng et al. 2008). These data emphasis that 

immunochemical detection of SMX adducts is more sensitive than direct 

analysis of SMX metabolism. In order to aid the identification of MPO in cell 

lysates, mass spectrometric analysis of recombinant human MPO was 

performed. MPO consists of 745 amino acid residues with 17 cysteine residues. 

SMX.NO has previously been shown to bind and covalently modify cysteine 

residues in human serum albumin (Cheng et al. 2008; Callan et al. 2009; 

Lavergne et al. 2009). Cys316 is present in vivo as the sulfenic acid whereas 

Cys319 forms an interchain disulphide. These cysteine residues are likely to 

play critical roles in SMX-MPO adduct formation. The details of SMX.NO-MPO 

modification will be discussed in chapter 6. HL60 and EBV-transformed whole 

cell proteins were electrophoresed on SDS-PAGE gels and a series of bands were 

excised corresponding to the approximate molecular weight of MPO. The 

proteins therein were digested with trypsin, extracted from the gel and 

analysed by LC-MS/MS or LC-MRM-MS/MS on a QTRAP5500 mass 

spectrometer. Analysis in multiple reaction monitoring (MRM) mode affords a 
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10-100X increase in sensitivity over conventional LC-MS on the same 

instrument.  

Two peptides were chosen to design the MRM transitions. Transitions were 

comprised of two masses as a uniquely identifying pair of ions for each of the 

target peptides. The first mass was the mass/charge (m/z) ratio of the parent 

peptide. For IANVFTNAFR, the m/z of the doubly charged parent ion was 576.6. 

This parent ion mass was then paired with the dominant fragment ion masses of 

608, 755, 854 and 968. Thus the four transitions for detection of IANVFTNAFR 

were 576.6/608, 576.6/755, 576.6/854 and 576.6/968. Each time the mass 

spectrometer detected a parent ion m/z of 576.6 in combination with a 

fragment ion mass of 608, 755, 854 or 968, a full-spectrum MS/MS was 

triggered to confirm the identity of the peptide. At the same time, the extracted 

ion counts (XIC) for the combined transitions provided a measure of the level of 

that peptide in the sample.  

Even with MRM MS, the evidence for the presence of MPO in EBV-transformed 

cells was very weak and probably would not stand on its own as sufficient to 

confirm the expression of MPO in EBV-transformed B-cells. Therefore, another 

approach was attempted. The cells were lysed and the resulting protein 

mixtures were reduced, alkylated and digested with trypsin. The highly complex 

mixture of peptides was then simplified by pre-fractionation using strong cation 

exchange chromatography, with the eluted peptides being collected as series of 

fractions. The fractions were analysed individually by LC-MRM-MS on the 

QTRAP as before, and also by discovery LC-MS/MS on a high speed/high 

resolution mass spectrometer (Triple TOF 5600).  
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This combined approach would provide the highest probability of detecting 

MPO in EBV-transformed cells. MPO was not detected on the QTRAP even when 

using MRM. The number of proteins identified using the TT5600 in discovery 

mode was 2658. An analysis of the proteins using PANTHER (Protein Analysis 

Through Evolutionary Relationships, www.pantherdb.org) revealed a range of 

molecular functions and protein classes that might reasonably be expected to 

include MPO, for example catalytic activity and oxidoreductase. However, MPO 

was not identified in this analysis. Thus, the mass spectrometric evidence for 

MPO in EBV-transformed-cells was equivocal. This means that its level of 

expression was simply too low to be detected using some of the most sensitive 

analytical instrumentation available. In conclusion, despite the lack of 

conclusive MS evidence for the presence of MPO in EBV-transformed B-cells, 

other evidence (RT-PCR and Western blotting) suggested low levels of MPO 

expression in EBV-transformed B-cell is involved in generating antigenic 

determinants that activate T-cells. 
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Chapter 3: HLA-restricted activation of nitroso-

sulphamethoxazole-specific CD4 positive T-

lymphocytes 
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3.1 Introduction 

A number of drug hypersensitivity reactions are associated with the expression 

of the cell surface glycoproteins called human leucocyte antigens, HLAs (Mallal 

et al. 2002; Chen et al. 2011). HLAs play a critical role in immunity and disease 

and represent the loci of genes that encode for the major histocompatibility 

complex (MHC) in humans. The high degree of polymorphism in the HLA allele 

is critical for immune surveillance as each variant of a particular HLA molecule 

interacts with different peptides. Hence HLAs are essential in both immune 

mediated drug hypersensitivity reactions and induction of self-tolerance (Yun et 

al. 2012).  A number of HLA alleles provide protection against a variety of 

diseases (Temajo and Howard 2009; Han et al. 2012), while others serve as risk 

or predisposing factors for autoimmune diseases including drug 

hypersensitivity (Mallal et al. 2002; Caillat-Zucman 2009; Kim et al. 2010; Chen 

et al. 2011). The MHC region on chromosome 6 has been extensively researched 

and reported to contain about 100 genes that regulate immune function and 

encode cell surface antigen presenting molecules (Beck et al. 1999; Mungall et 

al. 2003; Boulanger and Shatz 2004; Torres et al. 2012).  

Based on molecular structure and function, the MHC complex is broadly 

classified into two major classes, MHC I and MHC II; both consisting of α- and β-

domains (molecules are membrane-bond heterodimers). MHC I complexes 

result from a non-covalent interaction between a heavy polypeptide chain (44 

kDa) and a light β2-microglobulin (12 kDa) and are expressed on all nucleated 

cells. On the other hand, MHC II is composed of glycoproteins which consist of α 

and β polypeptide molecules weighing 34 kDa and 29 kDa, respectively.  The α1 

and α2 domains of MHC I and MHC II interact with both ends of a β-plate sheet to 
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form the peptide binding cleft (groove). The peptide-binding groove of MHC I 

accommodates peptides of between 8 and 11 amino acid residues and shows 

restriction at both ends (Speir et al. 2001).  

In humans, the three sub-classes of MHC I gene includes HLA-A, HLA-B and 

HLA-C while the three variants of MHC II genes are HLA-DQ, HLA-DP and HLA-

DR. The peptide binding groove of MHC II is open at both ends and capable of 

accommodating longer peptides, 12-25 amino acid residues (Rammensee 

1995).  

HLAs are often referred to as antigen display molecules and they are involved in 

T-lymphocyte activation. T-lymphocytes are only able to recognise antigens that 

are bound to MHC molecules. MHC molecules interact with short peptide 

fragments generated from intracellular (MHC I) or from extracellular (MHC II) 

proteins and present these antigens to CD8+ and CD4+ T-lymphocytes, 

respectively. Peptides associated with specific HLA molecules migrate to the cell 

surface for antigen presentation resulting in the secretion of multiple cytokines 

and cytotoxic molecules that mediate hypersensitivity reactions.  

HLA nomenclature is controlled by the WHO Nomenclature Committee for 

Factors of the HLA System as illustrated in figure 3.1 below. Each HLA allele has 

a particular number comprising 4 sets of digits separated by colons.  
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Figure 3.1- Schematic illustration of the nomenclature of an HLA allele. 

The molecular mechanisms involved in HLA-associated hypersensitivity 

reactions are complex and often dependent on a unique interaction between the 

drug molecule and the HLA allele implicated. The association between abacavir 

hypersensitivity syndrome and HLA-B*57:01 was first reported in 2002 

(Hetherington et al. 2002; Mallal et al. 2002). The exact molecular mechanism of 

abacavir and HLA-B*57:01 interaction only became clear about a decade later 

(Chessman et al. 2008; Adam et al. 2012; Illing et al. 2012; Norcross et al. 2012; 

Ostrov et al. 2012). The so called ‘‘altered self-peptide repertoire model’’ is a 

relatively new concept that explains the fundamental basis of abacavir 

hypersensitivity syndrome. The interaction between abacavir and the F-pocket 

of the MHC binding grove of HLA-B*57:01 alters the repertoires of self-peptides 

that bind to HLA-B*57:01 and are eventually presented to TCRs resulting in an 

immune response (Adam et al. 2012). Asp 114 and Ser 116 are specific amino 

acid residues known to facilitate the interaction between abacavir and the F-

pocket of the MHC binding grove (Chessman et al. 2008). Pre-prescription 

screening of susceptible patients has been shown to significantly reduce the 
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occurrence of abacavir hypersensitivity and this illustrates the concept of 

personalised medicine (Hughes et al. 2004; Zucman et al. 2007; Mallal et al. 

2008; Bharadwaj et al. 2010; Chen et al. 2011).  

HLA-B*15:02 is associated with carbamazepine-induced SJS/TEN in both the 

Han Chinese and the Thai populations (Chung et al. 2004; Alfirevic et al. 2006; 

Hung et al. 2006; Lonjou et al. 2006; Locharernkul et al. 2008). Carbamazepine 

interacts directly with HLA-B*15:02 or an embedded HLA-B*15:02 binding 

peptide to activate T-cells in these patients (Wei et al. 2012). Interestingly, HLA-

B*15:02 is only associated with carbamazepine-induced SJS/TEN but not with 

maculopapular exanthema or drug reactions with systemic symptoms, DRESS 

(Hung et al. 2006). In Caucasian and Japanese populations, HLA-A*31:01 is the 

susceptible allele implicated in carbamazepine-induced hypersensitivity 

reaction (McCormack et al. 2011; Ozeki et al. 2011). The drug specific CD8+ T-

cell response in certain HLA-A*31:01 positive patients has been shown to be 

HLA-A*31:01 restricted (Lichtenfels et al. 2014). However, CD4+ T-cells have 

been isolated from the same patient and the drug is presented in the context of 

various HLA class II molecules.  

A strong association between flucloxacillin-induced hepatic injury and HLA-

B*57:01 was first described in 2009 (Daly et al. 2009). Regardless of this strong 

association, only 1 in 1000 individuals expressing the HLA-B*57:01 allele 

develops drug-induced liver injury (DILI). Unlike abacavir, flucloxacillin does 

not alter the repertoire of self-peptides binding to HLA-B*57:01 but covalently 

modifies endogenous protein which is processed and presented as antigenic 

determinants in the context of MHC molecules to drug specific T-cells (Norcross 
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et al. 2012; Monshi et al. 2013). Many other HLA-drug hypersensitivity/DILI 

associations have been described (see table 3.1); however, for the most part, the 

HLA-restriction of drug specific TCCs response has not been studied.    

Table 3.1- Examples of HLA associated drug hypersensitivity reactions  
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Very weak HLA-associations involving HLA-A29, -B12 and -DR7 alleles and 

SMX-induced cutaneous hypersensitivity reactions were previously 

documented in Caucasians (Roujeau et al. 1986), however, more recent work 

suggests there is no HLA-association with SMX-hypersensitivity (Pirmohamed 

2006). Two distinct pathways of SMX recognition by drug responsive T-

lymphocytes have been characterised. The first pathway is a metabolism–

independent, non-covalent interaction between SMX and HLA molecules 

(Schnyder et al. 2000). The second pathway involves metabolism of SMX to a  

protein-reactive metabolite, nitroso-sulfamethoxazole which binds to cysteine 

residues on proteins to generate antigenic epitopes for T-lymphocytes 

(Schnyder et al. 2000; Farrell et al. 2003; Castrejon et al. 2010; Elsheikh et al. 

2010).  

3.2 Aims 

It is assumed that the extensive modification of multiple proteins will generate 

peptide antigen for almost if not all HLA molecules; however, the extent of HLA 

restriction for SMX.NO-responsive T-cells is not known. We hypothesised that 

HLA allele may play an important role in the activation of SMX.NO-specific CD4+ 

TCCs. The specific aims of this chapter were  

 To generate SMX.NO responsive TCCs from SMX-hypersensitive patients 

with cystic fibrosis (CF). 

 To define HLA molecules that present haptenic determinants to SMX.NO 

specific TCCs. 

 To determine the extent of alloreactivity.  

 To analyse TCR Vβ expression on SMX-NO responsive TCCs. 
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3.3 Methods 

3.3.1 Chemicals and reagents 

 CD4-APC, CD8-PE, anti-human HLA-ABC-PE and FITC mouse anti-human HLA-

DR, DP and DQ monoclonal antibodies were purchased from BD Biosciences, 

Oxford, UK. TCR Vβ repertoire kit was purchased from Beckman (Marseille, 

France). Interferon-γ, interleukin-13, interleukin-5, granzyme-B and perforin 

ELISpot kits including antibodies and substrate solution were purchased from 

Mabtech (Stockholm, Sweden). DNA extraction kits were purchased from 

Promega (Madison, USA). Purified NA/LE mouse anti-human HLA-ABC, HLA-DR, 

-DP, -DQ monoclonal antibodies were purchased from BD Bioscience (Oxford, 

UK). Mouse anti-human HLA-DP monoclonal antibody was obtained from AbD 

SeroTec (Kidlington, UK). Pico Green DNA assay kit was bought from Invitrogen 

(Paisley, UK). 

3.3.2 Cell culture medium 

Culture medium for T-cell comprised of RPMI 1640 supplemented with 10% 

human AB serum, 25 mM HEPES, 1000U/ml penicillin, 0.1 mg/ml streptomycin, 

and 2 mM L-glutamine and 25 µg/ml transferrin from Sigma-Aldrich (Dorset, 

UK). The culture media for DCs and EBV-transformed B-cells have been 

described in section 2.3.2.  

3.3.3 Isolation of PBMCs  

Venous blood (50 ml) was collected from four SMX-hypersensitive patients for 

cloning. Clinical features of the ADRs are described in table 3.2. Approval for the 

study was acquired from the Liverpool Local Research Ethics Committee and 

informed written consent was obtained. Peripheral blood mononuclear cells 
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(PBMCs) were isolated from patients’ blood as previously described in section 

2.3.3.  

3.3.4 Lymphocyte transformation test (LTT) 

LTT was performed on PBMCs isolated from SMX-hypersensitive patients using 

an established protocol (Nyfeler and Pichler 1997). Briefly, PBMCs (1.5×105 

cells, 100 µL) were cultured with either 100 µL SMX (0.25-2 mM) or SMX.NO 

(10-80 µM) in triplicate wells in a 96-well U-bottom plate and incubated at 37°C 

under an atmosphere of 95% O2/5% CO2 for 5 days. Tetanus toxin (5 μg/ml) 

and culture medium were used as positive and negative controls, respectively. 

[3H]-thymidine (0.5 µCi/well) was added for the final 16 hours of incubation 

and lymphocyte proliferation was assessed as counts per minute (c.p.m) using 

liquid scintillation counter (Wallac microbeta trilux, PerkinElmer, Cambridge, 

UK). Proliferative responses were calculated as stimulation index (SI) = cpm in 

drug treated cultures/cpm in medium control. An SI ≥2 was considered a 

positive response.  

3.3.5 Generation of drug-specific T-cell clones 

For the separation of SMX and SMX.NO-specific T-cell clones (TCCs), PBMCs 

(1x106/ml) from hypersensitive patients were cultured with either SMX (2 mM) 

or SMX.NO (25 μM). On days 5 and 9, culture medium was supplemented with 

IL-2 (200 IU/ml) to expand the number of antigen-specific T-cells prior to 

cloning on day 14. Autologous Epstein-Barr virus (EBV)-transformed B-cell 

lines were used as antigen presenting cells in assays involving TCCs. 

Antigen-specificity was assessed by culturing irradiated EBV-transformed B-

cells (1x104/well) and SMX or SMX.NO with clones (5x104/well; 200 μl) for 48 
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hours. Proliferation was measured by the addition of [3H]-thymidine followed 

by scintillation counting. Clones with a stimulation index of greater than 2 were 

expanded by repetitive stimulation with irradiated allogeneic PBMCs 

(5x105/well), IL-2 (5 µg/ml) and PHA (10 µg/ml). Dose-dependent proliferative 

responses to SMX.NO (5-50 μM) and SMX (0.25-2 mM) and the profile of 

secreted cytokines (IFN-γ, IL-5, IL-13 and granzyme-B ELISpot) were then 

measured.  

 

Table 3.2- Clinical details of SMX-hypersensitive patients and the origin, 

phenotype and specificity of the T-cell clones 

 

3.3.6 Generation of EBV-transformed B-cells 

PBMCs were transformed into B-cell lines using supernatant from the virus-

producing cell line B9.58; Epstein-Barr virus (EBV) as previously described in 

section 2.3.5.  
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3.3.7 DNA extraction, quantification and HLA genotyping 

PBMCs (5×106 cells) were resuspended in HBSS (200 µL) and added to aliquots 

of proteinase K (PK) solution dispensed into 1.5 ml microcentrifuge tubes. Cell 

lysis buffer (200 µL) was then added to each tube, followed by vortexing for 10 

seconds. Tubes were incubated at 56°C for 10 minutes. 250 µL of binding buffer 

was added to each tube and vortexed for 10 seconds. Next, the content of each 

tube was transferred to a ReliaPrep binding column placed in an empty 

collection tube. Tubes were then centrifuged at 13,000 g for 1 minute in a bench 

top centrifuge making sure that the lysate had completely passed through the 

column. The flowthroughs were discarded and binding columns placed in fresh 

collection tubes. Column wash solution (500 µL) was added to each column and 

centrifuged at 13,000 g for 3 minutes and the flowthrough discarded. After 

washing, nuclease-free water (50 µL) was added to the column. Subsequently, 

the columns were centrifuged for 1 minute at 13,000 g to elute DNA (25-30% 

yield).  

DNA concentration was quantified using the PicoGreen method. Briefly, 1×TE 

buffer was prepared according to manufacturer’s instruction. Dilutions for a 

standard curve were generated using a DNA standard (1 ng/ml-1000 ng/ml). 

DNA standard (100 µL) was pipetted in duplicate into a 96-well plate. For 

samples measuring < 200 ng/µL on the nanodrop, a 1:10 dilution was 

performed while those measuring > 200 ng/µL were diluted 1:100. Samples 

(100 µL) were plated out in duplicate. PicoGreen working reagent was added to 

both standard DNA wells and wells containing samples under reduced light 

conditions. The plate was incubated for 5 minutes in the dark at room 

temperature. Sample fluorescence was then measured using a Beckman Coulter 
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DTX880 Microplate reader. DNA concentrations were then determined using a 

standard template for the PicoGreen assay. DNA samples (200 ng/µL) were then 

sent to Histogenetics (New York, USA) for high-resolution HLA sequence-based 

genotyping.  

3.3.8 Flow cytometry 

T-lymphocytes were stained using fluorescent antibodies (see below) and cells 

acquired using a FACS Canto II (BD Biosciences). Data was analyzed by Cyflogic 

(http://www.cyflogic.com/). A minimum of 50,000 lymphocytes were acquired 

using forward scatter and side scatter characteristics. 

3.3.8.1 T-cell phenotyping 
TCCs were examined for CD4 and CD8 cell surface expression. Cells were 

acquired using flow cytometry as described above. Briefly, T-cell suspensions 

(100 µL) were stained with CD4-APC (3 µL) and CD8-PE (3 µL) antibodies and 

incubated at 4°C for 20 minutes in the dark. Cells were then washed and 

resuspended in 200 µL of FACS buffer before analysis for CD4 and CD8 cell 

surface expression. 

3.3.8.2 Determination of MHC I and II expression on T-cell 

clones 
MHC I and MHC II expressions on some SMX.NO-specific TCCs were measured 

using flow cytometry. T-cell suspensions (100 µL) from various TCCs were 

stained with MHC I-PE and MHC II-FITC (3 µL each) antibodies and incubated at 

4°C for 20 minutes in the dark. Cells were then washed and resuspended in 200 

µL of FACS buffer before analysis.  

http://www.cyflogic.com/
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3.3.9 Dose-response and cross reactivity assay 

SMX.NO specific TCCs (5×104 cells, 50 μL) were co-cultured with irradiated 

autologous EBV-transformed B-cells (1×104 cells, 50 μL) in the presence of 

either SMX (1-2 mM) or SMX.NO (5-50 µM) in duplicate in a 96-well U-bottom 

plate. Plates were incubated under an atmosphere of 95% O2/5% CO2 for 48 

hours. [3H]-thymidine (0.5 μCi) was added for the final 16 hours of the 

incubation and T-lymphocyte proliferation evaluated using scintillation 

counting. 

3.3.10 ELISpot assay 

ELISpot plates were coated with 100 µL/well of interferon gamma capture 

antibody (15 µg/ml) and incubated overnight at 4C. Wells were washed five 

times with sterile PBS and then blocked with 200 µL of T-lymphocyte culture 

medium for 30 minutes at room temperature. Drug specific TCCs (5×104, 50 µL) 

were added to wells along with autologous irradiated EBV-transformed B-cells 

(1×104, 50µL). In other experiments, IFN-ϒ secretion from PBMCs (0.5-1.0×105) 

isolated from SMX-hypersensitive patients was analysed.  

Cells were cultured in the presence or absence of SMX.NO (50 µM, 100 µL) and 

plates incubated at 37˚C under an atmosphere of 95% O2/5% CO2 48 hours. 

Cells were discarded after 48 hours and wells washed five times with 200 µL 

PBS. Biotin-labelled detection antibody was diluted to 1 µg/ml in PBS 

containing 0.5% FBS and 100 µL added to the wells.  Plates were incubated at 

room temperature for 2 hours at room temperature. Wells were then washed 

five times with PBS. 100 µL/well streptavidin-ALP diluted in PBS containing 

0.5% FBS (1:1000) was added to wells and incubated for 1 hour at room 
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temperature. Wells were washed five times with PBS (200 µL) and BCIP/NBT 

substrate (100 µL/well) was added for 15 minutes at room temperature in the 

dark. Wells were inspected for the development of spots and then washed 

under slow running tap water. Wells were then left to air dry and spots 

visualised and counted using an AID ELISpot reader (Cadama Medical, 

Stourbridge, UK). 

3.3.11 MHC restriction assay 

Anti-human HLA-A, -B, -C (MHC I), and anti-human HLA-DP, -DQ, -DR (MHC II) 

antibodies (5 µg/mL) were used to determine whether SMX.NO presentation to 

drug- specific TCCs was MHC class I/II restricted. Autologous EBV-transformed 

B-cell lines (1×104, 50 µL) were pre-incubated with either MHC I or MHC II 

blocking anti-bodies (5 μg/ml) at 37°C under an atmosphere of 95% O2/5% CO2 

for 30 minutes. The APCs were then co-cultured with SMX.NO specific TCCs 

(5×104, 50 µL) with or without SMX.NO (50 µM) for 48 hours. [3H]-thymidine 

(0.5 μCi) was added for the final 16 hours of incubation and T-cell proliferation 

evaluated using scintillation counting. Cytokine secretion profiles (IFN-ϒ, IL-5, 

IL-13and granzyme-B) were also determined following MHC I and MHC II block 

using ELISpot analysis. Similar MHC restriction assay was also performed for 

the subclasses of MHC II (HLA-DP, -DQ and –DR).   

3.3.12 T-cell receptor Vβ expression  

Ten tubes (1-10) were required for TCR Vβ typing of individual clones. T-cell 

suspensions (50 µL) were pipetted into each tube. Anti-CD3 antibody (3µL) was 

introduced into tubes 2-10. TCR Vβ antibodies (5 µL) labelled A-H were then 

introduced into tubes 3-10 containing TCCs + anti CD3 antibody. Each TCR Vβ 
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antibody cocktail was used to investigate three TCRs, twenty-four in total. Tube 

1 had no antibody and was used to gate the T-lymphocyte population during 

flow cytometry. Tubes were incubated at room temperature for 20 minutes. 

Unbound antibodies were washed with FACS buffer (1 ml), 1500 rpm for 5 

minutes at room temperature. Finally, TCCs were resuspended in FACS buffer 

(200 µL) and samples analysed.  

3.3.13 APC mismatch assay (T-cell proliferation and ELISpot) 

SMX.NO-specific T-cell clones (5×104 cells) generated from two SMX-

hypersensitive patients were co-cultured with either autologous or 

heterologous EBV-transformed B-cells (1×104 cells) with or without SMX.NO 

(50 µM) in a 96-well U-bottom plate. The selection of heterologous APCs was 

based on the expression of either HLA-DQB1*05:01:01G/ DQB1*06:03:01G or 

DQB1*02:01:01G/DQB1*02:01:01G expressed by patient 1 and patient 2 (see 

table 3.3; page 129). Plates were incubated at 37°C, 5% CO2 for 48 hours. [3H]-

thymidine (0.5 μCi) added for the final 16 hours of incubation and T-cell 

proliferation evaluated using scintillation counting. Cytokine secretion profile 

(IFN-ϒ, IL-5, IL-13 and granzyme-B) was also determined using ELISpot 

analysis.  

3.3.14 Statistical analysis 

Mean values and standard deviations were calculated, and statistical analysis 

was performed using paired T tests (Sigma plot 12 software). 
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3.4 Results 

3.4.1 Lymphocyte transformation test and IFN-ϒ secretion 

Lymphocytes from SMX-hypersensitive patients with CF were stimulated in 

vitro with graded concentrations of SMX (0.25-2 mM) and SMX.NO (10-80 µM). 

Lymphocytes from patients 1 and 2 proliferated weakly in response to SMX. The 

LTT result to SMX in patients 3 and 4 were negative (SI <2). Lymphocytes from 

2 out of the 4 patients proliferated in response to SMX.NO (figure 3.2 A). IFN-ϒ 

secretion by PBMCs in response to graded concentrations of either SMX or 

SMX.NO was either weak or non-existent for all the patients (figure 3.2 B).  
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Figure 3.2- LTT and IFN-ϒ secretion by PBMCs. (A) PBMCs (1.5×104 cells, 100 µL) were 
incubated with graded concentrations of either SMX (0.25-2 mM) or SMX.NO (10-80 µM) in 96-
well U-bottom plates. Plates were incubated 37°C under an atmosphere of 95% O2/5% CO2 for 5 
days. [3H]-thymidine (0.5 μCi) was added for the final 16 hours of incubation and T-cell 
proliferation evaluated using scintillation counting. (B) The ELISpot plate was pre-coated with 
human IFN-ϒ antibody according to manufacturer’s instruction and incubated overnight at 4°C. 
PBMCs (0.5×106) were incubated with either SMX (0.5-2 mM) or SMX.NO (20-80 µM) using 
culture medium as negative control. Plates were then incubated at 37°C under an atmosphere of 
95% O2/5% CO2 for 48 hours. The ELISpot plate was developed according to manufacturer’s 
instruction. Wells were then left to air dry and spots visualised and counted using an AID 
ELISpot reader.     
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3.4.2 T- Lymphocyte proliferation, cross reactivity and cytokine 

secretion profile 

The antigen specificity of TCCs was determined following serial dilution using 

proliferation and cytokine secretion as readouts. Clones were generated from 

PBMCs isolated from four SMX-hypersensitive patients. The average 

proliferative responses are shown in figure 3.3. A total of 944 clones were 

tested. Thirty-nine CD4+ clones were SMX.NO responsive, while only one CD8+ 

clone was activated with SMX (figure 3.4). No cross reactivity was observed 

with SMX for SMX.NO-specific-TCCs. Similarly, the single SMX-responsive TCC 

showed no cross-reactivity with SMX.NO (table 3.2 and figure 3.4). Drug-specific 

TCCs secreted IFN-ϒ, granzyme-B, IL-5 and IL-13 in response to either SMX (2 

mM) or SMX.NO (50 µM) as shown in figure 3.5.  
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Figure 3.3- T-cell proliferation in response to SMX.NO. T-cell clones (5×104 cells, 50 µL) 
were co-incubated with irradiated autologous EBV-transformed B-cells (1x104 cells, 50 µL) and 
SMX.NO (50 µM) in a 96-well U-bottom microplate using T-lymphocyte culture medium as 
negative control. The plates were incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 
48 hours. [3H]-thymidine (0.5 μCi) was added for the final 16 hours of incubation and T-cell 
proliferation evaluated using scintillation counting.  
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Figure 3.4- T-cell proliferation and cross reactivity. T-cell clones (5×104 cells, 50 µL) were 
co-incubated with irradiated autologous EBV-transformed B-cells (1x104 cells, 50 µL) in the 
presence of either SMX or SMX.NO in a 96-well U-bottom microplate using T-lymphocyte culture 
medium as negative control. The plates were incubated at 37°C under an atmosphere of 95% 
O2/5% CO2 for 48 hours. [3H]-thymidine (0.5 μCi) was added for the final 16 hours of incubation 
and T-cell proliferation evaluated using scintillation counting. Result shows 8 representative 
drug-specific TCCs.  
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Figure 3.5-Cytokine secretion profiles. (A) Cytokine secretion by eight representative drug-
specific TCCs. ELISpot plates were pre-coated with human IFN-ϒ, IL-5, IL-13 and granzyme-B 
antibodies according to manufacturer’s instruction and incubated overnight at 4°C. T-cell clones 
(5×104, 50 µL) were co-incubated with irradiated autologous EBV-transformed B-cells (1×104, 
50 µL) and SMX.NO (50 µM) using culture medium as negative control. The plates were 
incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. The ELISpot plates 
were developed according to manufacturer’s instruction. Wells were then left to air dry and 
spots visualised and counted using an AID ELISpot reader. (B) Variations in cytokine secretion 
profile of SMX.NO-specific TCCs generated from Patient 1 and Patient 2.    
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3.4.3 T-cell CD phenotyping 

All the SMX.NO responsive TCCs generated from Patient 1 expressed CD4 cell 

surface protein. However, the one SMX-responsive TCCs was CD8+. All the 

clones generated from Patient 2 were SMX.NO responsive and expressed the 

CD4 cell surface protein (figure 3.6).  

 

Figure 3.6 T-cell phenotyping for CD4 and CD8 cell surface expression on drug-specific 
TCCs generated from two SMX-hypersensitive patients. TCC suspension (50 µL) was 
incubated with both CD4-APC and CD8-PE antibodies for 20 minutes at 4°C. Cells were washed 
and signals acquired by flow cytometry.  
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3.4.4 HLA-genotyping 

RNA (200 ng/ml) extracted from PBMCs of SMX-hypersensitive patients and 

SMX-naïve volunteers were genotyped by Histogenetics (USA) at five loci. The 

choice of the loci to be typed was based on the frequency of their reported 

involvement in drug hypersensitivity reactions. Three MHC I and two MHC II 

loci were typed for every patient and volunteer sample (table 3.3). 
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Table 3.3- HLA genotype for six SMX- hypersensitive patients (01, 02, 03, 05, 

06, and 07) and eight SMX-naïve volunteers (04, 08, 09, 10, 11, 12, 13, and 14). 

SMX.NO-specific TCCs used for HLA-restriction studies were generated from 

patient 01 and patient 02. 
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3.4.5 MHC-restricted SMX-NO recognition 

Anti-human MHC I and MHC II blocking antibodies were used to determine 

MHC-restricted T-lymphocyte activation in proliferation and ELISpot assays. 

Proliferation of TCCs was significantly decreased in the presence of an MHC II 

blocking antibody (P < 0.0001; figure 3.7). Furthermore, MHC II blockade 

resulted in an appreciable decrease in the secretion of both Th1 and Th2 

cytokines alongside the cytotoxic molecule; granzyme-B (figures 3.8 and 3.9). In 

contrast, MHC class I blockade had very little effect. Since most of the clones 

generated were CD4+ and MHC II restricted, we further investigated the 

involvement of the different sub-classes of MHC II in SMX.NO recognition by 

drug-specific T-lymphocytes. Autologous EBV-transformed B-cells were pre-

incubated with anti-HLA-DP, DQ or DR antibodies for 30 minutes and then co-

cultured with SMX.NO responsive TCCs. The majority (86%) of the SMX.NO-

specific TCCs were HLA-DQ restricted (P ≤0.005) while 14% showed HLA-DR 

restriction. HLA-DQ blockade resulted in a significant decrease in T-lymphocyte 

proliferation and a modest decrease in IFN-ϒ, IL-5, IL-13 and granzyme-B in 

most of the TCCs (figures 3.10 and 3.11).  
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Figure 3.7-MHC blocking proliferation assay. Autologous EBV-transformed B-cells (1×104 
cells) were pre-incubated with either MHC I or MHC II blocking antibodies (5 µg/mL)  for 30 
minutes at 37°C under an atmosphere of 95% O2/5% CO2, then co-cultured with SMX.NO-
specific TCCs in the presence or absence of SMX.NO (50 µM) in a 96-well microplate. The plate 
was then incubated for 48 hours. [3H]-thymidine (0.5 μCi)  was added to each well for the final 
16 hours of incubation and T-cell proliferation evaluated using scintillation counting.  

 

 

 Figure 3.8-MHC blocking cytokine assay. Cytokine secretion profile of representative T-cell 
clone in the presence of medium control, MHC I, MHC II or a combination of both MHC I and 
MHC II antibodies  (5 µg/mL), (A-D). ELISpot plates were coated with human IFN-ϒ, IL-5, IL-13 
and Granzyme B coating antibodies and incubated at 4°C overnight. Irradiated autologous EBV-
transformed B-cells (1×104, 50 µL) were pre-incubated with either MHC I, MHC II, or both 
blocking antibodies for 30 minutes at 37°C under an atmosphere of 95% O2/5% CO2, then co-
cultured with SMX.NO-specific T-cell clones (5×104, 50 µL) in the presence or absence of 
SMX.NO (50 µM) in a U-bottom 96-well plate. The plates were incubated at 37°C, 5% CO2 under 
an atmosphere of 95% O2/5% CO2 for 48 hours. Plates were developed according to 
manufacturer’s instructions and spots visualised using an AID ELISpot reader. Data is 
representative of three SMX-NO-specific TCCs tested.  
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Figure 3.9-Graphs showing spot counts (cytokine secreting cells) representing various 
conditions of treatment presented in figure 3.8. 

  

 

Figure 3.10-HLA-DP, -DQ and –DR restricted SMX.NO presentation to TCCs. Irradiated 
autologous EBV-transformed B-cells (1×104 cells, 50 µL) were pre-incubated with anti-HLA-DP, 
-DQ or –DR blocking antibodies (5 µg/mL) for 30 minutes. APCs were then co-incubated with 
drug-specific TCCs (5×104 cells, 50 µL) in the presence or absence of SMX.NO (50 µM) in a 96-
well U-bottom microplate using culture medium as negative control. The plate was incubated at 
37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. [3H]-thymidine (0. 5μCi) was added 
to each well for the final 16 hours of incubation and T-lymphocyte proliferation evaluated using 
scintillation counting. Bar chart illustrates data from 8 and 5 SMX.NO-specific TCCs from 
patients 1 and 2 respectively. 
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Figure 3.11- HLA-DP, -DQ and –DR restricted SMX.NO presentation to TCCs. ELISpot plates 
were coated with human IFN-ϒ, IL-5, IL-13 and Granzyme-B coating antibodies overnight at 4°C. 
Irradiated autologous EBV-transformed B-cells (1×104 cells) were pre-incubated with culture 
medium (control), anti-HLA-DP, -DQ or –DR blocking antibodies (5 µg/mL), A-D, for 30 minutes 
at 37°C under an atmosphere of 95% O2/5% CO2 and then co-cultured with SMX.NO-specific 
TCCs (1×104) in the presence or absence of SMX.NO (50 µM) using a U-bottom 96-well plate. 
Plates were then incubated for 48 hours. Plates were then developed according to 
manufacturer’s instructions and spots visualised using an AID ELISpot reader.  

  

3.4.6 APC mismatch assay 

APC mismatch experiments involved incubation of SMX.NO-specific TCCs with 

either autologous or heterologous APC to verify the role of specific HLA alleles 

in T-cell activation. Fast growing SMX.NO-specific TCCs generated from Patient 

1 and Patient 2 were used for the APC mismatch assay. Heterologous APCs 

utilised for this experiment were generated from PBMCs of SMX-naïve 

volunteers (see table 3.3). All APCs used were EBV-transformed B-cells. TCCs 

were assessed based on their proliferative capacity and cytokine secretion 

profile in the presence of either autologous or various heterologous APCs 

(figure 3.12 - 3.15). SMX.NO-specific TCCs from either Patient 1 or Patient 2 

proliferated when SMX.NO was presented on volunteer or patient APC 
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expressing similar HLA-DQB1 genotype (HLA-DRB1*05:01:01 for Patient 1 and 

HLA-DQB1*02:01:01 for patient 2) as the autologous EBV-transformed B-cells 

from the patient in question (table 3.4 and 3.5). A similar trend was observed 

with cytokine secretion profile in the presence of APCs expressing similar HLA-

DQB1 genotype as the patient. The choice of HLA-DQB1 gene was based on the 

HLA- DQ restricted recognition of SMX.NO observed in the majority of SMX.NO-

specific TCCs (figures 3.10 and 3.11). Table 3.4 and 3.5 summarise the 

similarities in the HLA-DQB1 gene (red highlights) expressed by autologous 

APCs (01 and 02) and heterologous APCs (others). Interestingly, Patient 1 and 

all volunteers expressing the HLA-DQB1*05:01:01 allele also expressed HLA-

DRB1*01:01:01 while Patient 2 and 50% volunteers expressing the HLA-

DQB1*02:01:01 allele also expressed HLA- DRB1*07:01:01 allele.  
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Figure 3.12-APC mismatch proliferation assay of a representative TCC from Patient 1. 
Irradiated autologous or heterologous EBV-transformed B-cells (1×104 cells, 50 µL) were co-
cultured with drug-specific TCCs (5×104 cells, 50 µL) in the presence or absence of SMX.NO (50 
µM) in a 96-well U-bottom microplate using culture medium as negative control. The plate was 
incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. [3H]-thymidine (0.5 
μCi) was added to each well for the final 16 hours of incubation and T-lymphocyte proliferation 
evaluated using scintillation counting. Table 3.4 (above) shows HLA genotype from naïve 
volunteers  
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Figure 3.13-APC mismatch ELISpot assay of a representative SMX.NO-specific TCC from 
Patient 1. (A) ELISpot plates were coated with human IFN-ϒ, IL-5, IL-13 and Granzyme-B 
coating antibodies overnight at 4°C. Irradiated autologous or heterologous EBV-transformed B-
cells (1×104 cells, 50 µL) were co-cultured with SMX.NO-specific T-cell clones (5×104 cells, 50 
µL) with or without SMX.NO (50 µM, 100 µL) using a U-bottom 96-well microplate. The plate 
was incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. ELISpot plate was 
then developed according to manufacturer’s instructions and spots visualised using an AID 
ELISpot reader. (B) Bar charts representing spot counts in ELISpot images shown above. 
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Figure 3.14-APC mismatch proliferation assay of a representative SMX.NO specific TCC 
from Patient 2. Irradiated autologous or heterologous EBV-transformed B-cells (1×104 cells, 50 
µL) were co-cultured with drug-specific T-cell clones (5×104 cells, 50 µL) in the presence or 
absence of SMX.NO (50 µM) in a 96-well U-bottom microplate using culture medium as negative 
control. The plate was incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. 
[3H]-thymidine (0.5 μCi) was added to each well for the final 16 hours of incubation and T-
lymphocyte proliferation evaluated using scintillation counting.  
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` 

Figure 3.15-APC mismatch ELISpot assay of a representative SMX.NO-specific TCC from 
Patient 2. (A) ELISpot plates were coated with human IFN-ϒ, IL-5, IL-13 and Granzyme-B 
coating antibodies overnight at 4°C. Irradiated autologous or heterologous EBV-transformed B-
cell line (1×104 cells, 50 µL) were co-cultured with SMX.NO-specific T-cell clones (5×104 cells, 50 
µL) with or without SMX.NO (50 µM, 100 µL) using a U-bottom 96-well microplate. The plate 
was incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. ELISpot plate was 
then developed according to manufacturer’s instructions and spots visualised using an AID 
ELISpot reader. (B) Bar charts representing spot counts in ELISpot images shown above. 
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3.4.7 Self-presentation of antigen by SMX.NO responsive T-cell 

clone 

Forty-nine SMX.NO specific TCCs were generated. Thymidine proliferation and 

IFN-ϒ data revealed that one of the TCCs was stimulated with SMX.NO in the 

absence of APCs (figure 3.16A and B). Evaluation of MHC I and MHC II 

expression on TCCs revealed uniform expressions of both MHC I and MHC II 

protein on all of the three SMX.NO-specific TCCs examined (one self-presenting 

TCC and two non-self-presenting TCCs; figure 3.16 C and D). MHC II expressed 

on Clone 1 is most likely responsible for the activation with SMX.NO in the 

absence of APC; however, it is theoretically possible that SMX.NO stimulates 

TCCs directly through the TCR. All three clones analysed were CD4+ TCCs (figure 

3.6).  
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Figure 3.16 Activation of SMX.NO responsive TCC in the absence of APC. (A) Thymidine 
proliferation assay for three SMX.NO-specific CD4+ TCCs. SMX.NO-specific T-cell clones (5×10 4 
cells, 50 µL) were co-cultured with or without irradiated autologous EBV-transformed B-cells 
(1×104 cells, 50 µL) in the presence or absence of SMX.NO (50 µM, 100 µL) in a 96-well U-
bottom microplate using culture medium as negative control. The plate was incubated at 37°C 
under an atmosphere of 95% O2/5% CO2 for 48 hours. [3H]-thymidine (0.5 μCi) was added for 
the final 16 hours of incubation and T-cell proliferation evaluated using scintillation counting. 
(B). Interferon gamma ELISpot. SMX.NO-specific T-cell clones (5×104) and EBV-transformed B-
cells (1×104) were co-cultured in a similar manner as stated in the proliferation assay above in 
an ELISpot plate pre-coated with IFN-gamma capture antibody. The plate was incubated at 37°C 
under an atmosphere of 95% O2/5% CO2 for 48 hours and then developed according to 
manufacturer’s instructions and spots visualised using an AID ELISpot reader (C). MHC I and 
MHC II phenotyping on three SMX.NO specific TCCs. TCC suspension (50 µL) was incubated with 
both MHC I-PE and MHC II-FITC antibodies for 20 minutes at 4°C. Cells were washed with FACS 
buffer (1ml) and resuspended in FACS buffer (200 µL). MHC I and MHC II expressions were 
investigated by flow cytometry and data analyzed by Cyflogic. Grey shades represent baseline 
auto-florescence while blue lines represent either MHC I or MHC II expression. (D). Bar charts 
showing relative MHC I and MHC II expression on the three SMX.NO-specific TCCs.     
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3.4.8 T-cell Vβ receptor analysis  

Examination of T-cell receptor expression on sixteen SMX.NO-specific TCCs 

clones generated from Patient 1 (P1) and Patient 2 (P2) revealed a distribution 

of TCR expression across five Vᵦ subclasses. TCCs generated from Patient 1 

expressed five different Vᵦ repertoires (Vᵦ2, Vᵦ3, Vᵦ7.1, Vᵦ13.1 and Vᵦ14; figure 

3.17). In contrast, 100% of clones generated from Patient 2 (P2) expressed the 

Vᵦ2 TCR. Taken together, the percentage of Vᵦ T-cell receptor usage observed in 

the 16 SMX.NO-specific TCCs were Vᵦ2 (69%), Vᵦ7.1 (13%), Vᵦ13.1 (6%), Vᵦ3 

(6%) and Vᵦ14 (6%) (Figure 3.18 B).  

 

Figure 3.17- TCR Vβ analysis. T-cell suspensions (100 µL) were incubated with various TCR Vβ 
antibodies and TCR Vβ usage determined using flow cytometry and data analyzed by Cyflogic.  
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Figure 3.18- (A) Graphical representation of TCR Vβ usage of SMX.NO-specific TCCs generated 

from 2 SMX-hypersensitive patients (P1 and P2). (B). Percentage TCR Vβ expression of 16 

SMX.NO-specific TCCs.  
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3.5 Discussion 

Drug hypersensitivity reactions can be serious, fatal and places an enormous 

burden on the health care delivery system (Lazarou et al. 1998; Pirmohamed et 

al. 2004; Davies et al. 2009).  A number of studies have focused on the role of 

the HLA allele in drug-induced  hypersensitivity reactions (Chung et al. 2004; 

Mallal et al. 2008; Daly et al. 2009; Illing et al. 2012; Yun et al. 2012) in order to 

delineate the complex structural interactions between the drug molecule, the  

MHC-peptide complex and the T-cell receptor. Off-target drug reactions 

resulting from many small molecules involve a specific interaction with HLA 

molecules (covalent or labile) followed by T-cell stimulation. Other risk factors 

associated with hypersensitivity drug reactions include: the chemical properties 

of the drug (Guglielmi et al. 2006), viral infections such as HIV and  herpes 

viruses (Coopman et al. 1993; Shiohara et al. 2006), gender (Schmid et al. 2006; 

Thong and Tan 2011), genetic predisposition other than HLA (Kim et al. 2010) 

and T-cell  receptor repertoire (Ko et al. 2011).  

Originally, SMX recognition by TCR was explained mainly by the hapten model; 

however, Schnyder and his colleagues later described a MHC-restricted but 

metabolism- and processing-independent pathway of drug-specific T-cell 

activation (Schnyder et al. 2000). Their findings revealed a non-covalent, low-

affinity interaction between SMX and MHC-peptide complexes on APCs. They 

reported that while the majority of TCCs generated from hypersensitive 

patients were SMX-specific, a small percentage responded to SMX.NO and were 

cross-reactive. Although, they concluded that the same TCR can recognise SMX-

derived antigens either covalently or non-covalently bound to the MHC-peptide, 

the molecular mechanisms involved in such dual activations are unclear.  
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In contrast, 98% of the TCCs generated from four SMX-hypersensitive patients 

in this study were SMX.NO-specific and showed no cross-reactivity with SMX. 

This is consistent with the dogma that SMX becomes immunogenic only after 

oxidative metabolism that generates the protein reactive metabolite, SMX.NO 

(Park et al. 1998). Only 1/40 of the drug-specific TCCs was SMX-responsive but 

showed no cross-reactivity with SMX.NO, suggesting a direct activation of SMX-

specific TCCs as described above.  

The MHC restriction pattern of SMX-responsive TCCs has been reported 

previously (von Greyerz et al. 2001). Most of the SMX-specific clones displayed 

MHC allele unrestricted drug recognition. In contrast, the MHC restriction 

pattern of SMX.NO has not been studied. Therefore, this chapter investigated the 

role of HLA-DQB1 restriction in SMX.NO recognition by drug-specific TCCs.    

The SMX.NO-specific TCCs expressed the CD4 cell surface protein. TCR 

activation of the TCCs resulted in the secretion of IFN-ϒ, IL-5, IL-13, granzyme-B 

and Fas ligand. The involvement of cytotoxic CD4+ T-cells in drug-induced 

cutaneous reactions has been reported elsewhere (Schnyder et al. 1998; Hari et 

al. 2001). MHC restriction experiments revealed that all the CD4+ TCCs were 

MHC II restricted. A significant decrease in T-cell proliferation and cytokine 

secretion was also observed when autologous APCs were pre-incubated with an 

HLA-DQ blocking antibody before a 48 hour co-culture with SMX.NO-responsive 

T-cell clones. Based on the HLA-DQ restriction of drug-specific TCCs from 

patient 1 and patient 2, EBV-transformed B-cells generated from PBMCs 

isolated from SMX-naïve donors expressing matched/partly matched or 
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unmatched HLA-DQB1 molecules and used as APCs in [3H]-proliferation and 

ELISpot cytokine experiments (APC mismatch experiments).  

Interestingly, APCs generated from volunteers expressing the same HLA-DQB1 

genotype as either patient 1 or patient 2 presented SMX.NO to drug-specific 

TCCs and triggered significant T-cell proliferation and cytokine secretion 

comparable to autologous APCs. APCs from volunteers expressing dissimilar 

HLA-DQB1 genotype failed to present SMX.NO to drug specific T-cell clones. 

These data strongly suggest an HLA-DQB1*05:01:01 restricted SMX.NO 

presentation to TCCs generated from patient 1 and HLA-DQB1*02:01:01 for 

TCCs generated from patient 2. These data imply that restriction would differ 

depending on the HLA-DQB*1 gene expressed by individual patients. 

Remarkably, Patient 1 and all volunteers expressing the HLA-DQB1*05:01:01 

allele also expressed HLA-DRB1*01:01:01 while Patient 2 and 50% volunteers 

expressing the HLA-DQB1*02:01:01 allele also expressed HLA-DRB1*07:01:01 

allele. This suggests the involvement of a haplotype in the observed HLA-

restricted SMX.NO presentation of SMX.NO to drug-specific T-lymphocytes. 

Similar findings have been  reported elsewhere for HLA-DRB1 and HLA-DQB1 

alleles involved in narcolepsy and Type 1 diabetes (Temajo and Howard 2009; 

Han et al. 2012). Han et al reported that although the deficiency of hypocretin in 

narcolepsy patients of Japanese, Korean and Caucasian origins was associated 

with DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype, it is the expression of 

DQB1*06:02 not DRB1*15:01 that is associated with narcolepsy (Han et al. 

2012). Hence, in the absence of HLA-DQB1*06:02, individuals that expressed 

HLA-DRB1*15:01 were not susceptible to narcolepsy.   
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The vast majority of SMX.NO-responsive TCCs were activated only in the 

presence of professional APCs. However, one clone was activated with SMX.NO 

in both the presence and absence of APCs. The clinical and mechanistic 

implications of such ‘self-presentation’ have not been clearly defined and 

remain a subject of speculation. FACS analysis revealed a uniform expression of 

MHC I and MHC II molecules regardless of whether the TCC ‘self-presented’ the 

antigen or not. Hence, the mechanism of T-cell activation through ‘self-

presentation’ may involve an irreversible binding of SMX.NO to embedded 

peptides in TCC MHC II or a direct TCR modification.   

Put together, the APC mismatch data suggested an HLA-restricted SMX.NO 

presentation, thus contrasting data presented elsewhere that suggests no strict 

HLA restriction for SMX recognition by T-cells was found (Zanni et al. 1999; von 

Greyerz et al. 2001). The differences reported may be due to the molecular basis 

of antigen presentation to SMX- and SMX metabolite-specific T-cells and also 

differences in the TCR repertoire expressed by TCCs utilised for such HLA-

restriction experiments. The role of specific TCR repertoires in certain immune-

mediated drug reactions remains unclear due to the large number of T-cell 

receptor repertoires that exists (Ko et al. 2011). Experiments involving 

transfection of selected TCRs into hybridoma cells that do not express human 

MHCs has underscored the involvement of specific TCRs in the interaction with 

drug molecules (Depta et al. 2004; Schmid et al. 2006). The authors concluded 

that TCRs are a major determinant of T-cell reactivity to SMX and other 

structurally related drugs.  
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Thus, we also investigated the distribution of TCR repertoire on 16 SMX.NO-

responsive TCCs generated from 2 subjects. SMX.NO-specific TCCs expressed 5 

different TCRVᵦ repertoires (Vᵦ2, Vᵦ3, Vᵦ7.1, Vᵦ13.1 and Vᵦ14) with majority of 

the clones analysed expressing Vᵦ2 (69%). T-cell clones expressing Vᵦ2 have 

been extensively characterised. They are implicated in a number of immune 

related diseases and cutaneous allergic reactions (Reantragoon et al. 2012; 

Watkins and Pichler 2013). In silico docking studies suggests that the CDR2 and 

CDR3 regions of SMX-responsive clones expressing TCRVᵦ2 are critical for SMX 

interaction (Watkins and Pichler 2013). Importantly, if we assume that the 

nitroso group of SMX.NO binds irreversibly to the cysteine residue of HLA-DQ 

binding peptides. Therefore, the pharmacophore that interacts with the TCR 

will be very similar to the parent compound. Hence, it is possible that SMX.NO 

modified HLA-restricted peptides dock with TCR in a similar fashion to that 

described with SMX. Collectively, the restricted but variable distribution of 

TCRVβ repertoire among SMX.NO-specific TCCs suggests that the HLA molecule 

and TCR repertoire are important determinants in the pathogenesis of drug-

induced hypersensitivity reactions. Further research into delineating the 

molecular mechanisms of HLA-associated drug-induced hypersensitivity 

reactions will be important in the design of safer therapeutic agents.  
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Chapter 4: Activation of naïve and memory T-cells by 

sulphamethoxazole and nitroso-sulphamethoxazole 
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4.1 Introduction  

 ADRs are a major concern when drugs are used for the prevention and 

treatment of diseases. Although most ADRs are an extension of the normal 

pharmacology of the ‘culprit drug’, a minority of them are idiosyncratic. These 

reactions are difficult to predict during the research and development of new 

chemical entities/drugs. This is made even more difficult because some of these 

reactions are linked with particular HLAs, sometimes expressed by specific 

populations (Lonjou et al. 2008; Kim et al. 2010; McCormack et al. 2011; Han et 

al. 2012). The role of specific HLAs in drug hypersensitivity reactions cannot be 

overemphasised and has been discussed extensively in chapter 3.  

T-cells are a critical component in the clinical presentation of hypersensitivity 

reactions (Schnyder et al. 1998; Naisbitt et al. 2007; Hausmann et al. 2010; 

Adam et al. 2011). The specificity of an immune-mediated drug reaction is 

dependent on two major components, namely: drug molecule and the peptides 

displayed by specific HLA molecules. T-cells recognise drugs that bind to the 

peptide-MHC complex. This binding may involve the formation of an 

irreversible covalent bond between the drug molecule and the MHC or 

embedded peptides (Landsteiner and Jacobs 1935; Weltzien et al. 1996). 

 Chemically inert drugs also bind to MHC peptide complexes in a reversible, 

non-covalent manner (Engler et al. 2004). SMX is chemically inert and only 

acquires protein reactivity after enzyme-induced biotransformation (Cribb and 

Spielberg 1992; Naisbitt et al. 1999). The processing and the presentation of 

SMX-protein adduct and drug-specific T-cell activation has been discussed 

extensively in chapter 1. T-cells that are responsive to SMX and SMX.NO have 
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been isolated from blood and skin of hypersensitive patients (Schnyder et al. 

2000; Naisbitt et al. 2002; Nassif et al. 2002). The initial analysis of 222 drug-

specific TCCs generated from various SMX-hypersensitive patients revealed that 

approximately 97% were SMX responsive and showed no cross-reactivity with 

SMX.NO (Schnyder et al. 2000). In a similar study by Castrejon et al (2004), drug 

specific TCCs generated from 3 SMX-hypersensitive patients were evaluated for 

antigen specificity. They generated and tested a total of 480 TCCs and reported 

that 44% of the TCCs responded to SMX.NO, 14% were SMX-responsive while 

43% were cross reactive TCCs (Castrejon et al. 2010). Interestingly, only 1/40 

drug-specific TCCs generated from four SMX-hypersensitive patients was SMX-

specific and showed no cross-reactivity to SMX.NO (see chapter 3).  

Although the full clinical implications of the mode of SMX presentation to drug-

specific T-cells have not been fully explored, the ultimate outcome is T-cell 

activation and tissue damage. Engler et al (2004), reported that SMX.NO 

stimulated PBMCs from 9/10 drug naïve donors.  In contrast, SMX stimulation 

was detected in only 3/10 donors (Engler et al. 2004). Importantly, the authors 

did not isolate naïve and memory T-cells; thus, the origin of drug specific T-cells 

are unknown. The threshold of antigen specific T-cell activation for memory T-

cells is considerably lower than that required to activate naïve T-cells (Viola and 

Lanzavecchia 1996; Engler et al. 2004). Hence, it is possible that primary 

immune response may be due to SMX.NO, while SMX activates pre-existing 

peptide-specific T-cells.  

 A number of in-vitro experiments have been developed for the diagnosis and 

subsequent prevention or treatment of potential ADRs. The DC-T-cell priming 
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assay developed by Faulkner et al., 2012 is one such assay (Faulkner et al. 

2012). It involves priming of naïve T-cells to a specific drug antigen presented 

by autologous dendritic cells. The primed T-cells are subsequently restimulated 

against test drugs using a second batch of DCs. The assay was developed using 

SMX.NO as a model drug antigen; however, experiments with the parent 

compound have thus far not been performed.  

The aim of this chapter was to prime naïve T-cells to SMX and SMX.NO with a 

view to understanding the molecular mechanism of naïve T-cell activation by 

drugs as well as their protein reactive metabolites. 

4.2 Aim 

The molecular mechanism of SMX-hypersensitivity has been studied in detail; 

however, our understanding is still far from complete. A number of questions 

still remain unanswered. These include: (1) what conditions drive the 

specificity of T-cells to either the parent drug (SMX) or its reactive metabolite 

(SMX.NO). (2) What is the origin of SMX/SMX.NO specific TCCs and (3) why do 

some SMX-specific TCCs show cross reactivity with SMX.NO and others do not 

cross-react? We hypothesised that different T-cell populations are differentially 

primed by either SMX or SMX.NO. 

The aims of this chapter therefore were: 

 To perform DC-priming of naive T-cells with both SMX and SMX-NO. 

 To generate drug-specific TCCs from primed T-cells and to characterise 

T-cell cross reactivity.  
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4.3 Methods 

4.3.1 Isolation of PMBCs and separation of subsets of T-cells 

Venous blood (120 ml) from 4 SMX-naïve volunteers was collected and PBMCs 

isolated as previously described in section 3.3.3. Approval for the study was 

acquired from the Liverpool local research ethics committee and informed 

written consent was obtained from the blood donors. CD14+ monocytes and 

different T-cell populations were separated using magnetic beads and columns 

according to the manufacturer’s instructions (Miltenyi Biotech; Bisley, UK). 

CD14+ cells were positively selected from total PBMC. For isolation of naive and 

memory T-cells, pan negative T-cell separation was performed using an anti-T-

cell antibody cocktail. CD3+ cells were then subjected to positive selection for 

Treg (CD25+) and memory cells (CD45RO+). Cells were frozen and stored at -

150°C prior to use. 

4.3.2 Lymphocyte transformation test (LTT) 

LTT was performed on isolated PBMCs to assess lymphocyte proliferation 

following SMX or SMX.NO stimulation using protocol described in section 3.3.4.   

4.3.3 T-cell priming assay 

CD14+ cells were cultured in medium (RPMI-1640, 100 µg/ml penicillin, 100 

U/ml streptomycin, 25 µg/ml transferrin, 10% human AB serum, 25 mM HEPES 

buffer, and 2 mM L-glutamine) supplemented with GM-CSF (800 U/mL) and IL-

4 (800 U/mL) under an atmosphere of 95% O2/5% CO2  for 7 days to generate 

dendritic cells. On the penultimate day, TNF-α (25 ng/mL) and LPS (1 µg/mL) 

were added as maturation factors. Mature dendritic cells were plated (0.8×105 

cells per well) and co-cultured with naïve or memory CD3+ T-cells (2.5×106 cells 

per well; 48 well plate) in the presence of either SMX (2mM) or SMX.NO (50 µM) 
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for 8 days.  Figure 4.1 shows the microscopic images of immature dendritic cells, 

mature dendritic cells and co-culture of CD45RA naïve T-cells and mature 

dendritic cells (25:1). Matured DCs develop branched projections (dendrites) 

know to enhance antigen presentstion.  

Primed T-cells (1×105; 200μl) were harvested and re-stimulated with 

autologous dendritic cells (4×103) in the presence of either SMX (2 mM) or 

SMX.NO (50 μM) and assessed for cytokine secretion as well as proliferation. 

After 48 hours, [3H]-thymidine (0.5 µCi/well) was added to the proliferation 

plate. Incorporated radioactivity was counted after a further 16 hour incubation 

using a MicroBeta TriLux 1450 LSC β-counter (Perkin Elmer, Cambridge, UK). 

ELISpot was used, according to the manufacturer’s instructions (Mabtech, 

Nacka Strand, Sweden) to visualize IFN-γ secretion. 

 

 

Figure 4.1-Microscopic images of immune cells in culture. (A). Immature dendritic cells 
cultured from CD14+ cells in DC culture medium at day 6. (B). Mature dendritic cells following 
treatment of immature DCs with TNF (25 ng/ml) and LPS (1 ug/ml). (C). Co-culture of naïve T-
cells and dendritic cells (25:1) 

 

4.3.4 Extended priming of naïve T-cells 

The extended priming assay was performed using similar conditions as 

reported in section 4.3.3 but the duration of priming was extended from 8 days 

to 10 weeks and both naïve and memory T-cell populations were primed. T-cell 
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cultures were restimulated with autologous PBMCs (1.5x106 cells/mL), PHA (10 

µg/mL) and IL-2 (5 µg/mL) every 14 days to maintain growth and survival. T-

cell culture was assessed using [3H]-thymidine proliferation and IFN-ϒ secretion 

in the presence of either SMX or SMX.NO every 2 weeks for a total of 10 weeks. 

4.3.5 T-cell cloning 

T-cell cloning was performed from SMX and SMX.NO primed naïve or memory 

T-cells using the same protocol described in section 3.3.5.  

4.3.6 Flow cytometry 

TCCs were accessed for CD4 and CD8 cell surface molecules according to the 

protocol described in section 3.3.8.1.  

4.3.7 T-cell proliferation and characterization of cytokine 

secretion profile 

Drug specific T-cell clones were characterised using [3H]-thymidine 

incorporation and ELISpot assays for IFN-ϒ, IL-5, IL-13 and granzyme-B as 

previously described in sections 3.3.9 and 3.3.10.  

4.3.8 MHC restriction of SMX.NO recognition 

MHC-restricted SMX.NO recognition by SMX.NO-specific TCCs was investigated 

according to the method described in section 3.3.11. 

4.3.9 T-cell receptor Vβ analyses of SMX.NO-specific TCCs 

The TCR Vβ usage of SMX.NO-specific TCCs was determined using the method 

described in section 3.3.12.   

4.3.10 Statistical analysis 

Mean values and standard deviations were calculated, and statistical analysis 

was performed using paired T tests (Sigma plot 12 software) 
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4.4 Results 

4.4.1. Lymphocyte transformation test (LTT) 

PBMCs isolated from the 4 SMX-naïve volunteers did not proliferate to graded 

concentrations of either SMX (0.5-2 mM) or SMX.NO (12.5-50 μM), see figure 

4.2. 

 

Figure 4.2-LTT assay for 4 SMX-naïve volunteers (Donor 1-4). PBMCs (1.5×104 cells, 100 
µL) were incubated with graded concentrations of SMX (0.5-2 mM), left panel or SMX.NO (12.5-
50 µM), right panel in 96-well U-bottom well plates. Tetanus toxoid was used as a positive 
control. Plates were incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 5 days. [3H]-
thymidine (0.5 μCi/well) was added for the final 16 hours of incubation and T-cell proliferation 
evaluated using scintillation counting. 
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4.4.2 Characterization of DC-primed naïve T-cells 

SMX or SMX.NO primed naïve T-cells were co-cultured with fresh autologous 

monocyte derived dendritic cells (Mo-DC) in a 25:1 ratio in the presence of 

either SMX (2mM) or SMX.NO (50 µM) for 48 hours. T-cell proliferation and 

IFN-ϒ secretion were assessed using [3H]-thymidine proliferation and ELISpot 

assays. SMX.NO priming of naïve T-cells was observed in all 4 donors (figure 4.4 

and 4.5). This is consistent with cumulative data within the group showing 

successful priming of naïve T-cells from 24 SMX-naïve donors to SMX.NO using 

readouts for 3H-proliferation (16/24), IFN-ϒ secretion(24/24) and IL-13 

secretion (22/24)(figure 4.3). Naïve T-cells from donor 4 were successfully 

primed to SMX in one experiment however; this result could not be replicated in 

two other repeat experiments (figure 4.4).  
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Figure 4.3 DC-priming of naïve T-cells to SMX.NO. (A) Naïve T-cells were co-cultured with 
Mo-DC in a 25:1 ratio in the presence of SMX.NO (50 µM) for 8 days in a 48 well plate. T-cells 
(1×105) were harvested and cultured with fresh Mo-DCs (4×103) in the presence of SMX.NO (50 
μM) and plates incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. 3H-
thymidine (0.5 µCi/well) was added to each well in the final 16 hours of culture and T-cell 
proliferation was determined using scintillation counting.  (B and C) ELISpot plates were coated 
with human either IFN-ϒ or IL-3 antibody according to manufacturer’s instruction and 
incubated overnight at 4°C. Drug-primed naïve T-cells (0.5×106) were co-cultured with Mo-DCs 
(4×103), with either SMX (2 mM) or SMX.NO (50 µM) using culture medium as negative control. 
Plates were then incubated at 37°C for 48 hours. The ELISpot plate was developed according to 
manufacturer’s instruction. Wells were then left to air dry and spots visualised and counted 
using an AID ELISpot reader.  
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Figure 4.4-Antigen-specific T-cell responses determined by 3H-thymidine proliferation 
and IFN-ϒ ELISpot assays. (A) Naïve T-cells were co-cultured with Mo-DC in a 25:1 ratio in the 
presence of either SMX (2 mM) or SMX.NO (50 µM) for 8 days in a 48 well plate. T-cells (1×105) 
were co-cultured with fresh Mo-DCs (4×103) in the presence of either SMX (2 mM) or SMX.NO 
(50 μM) and plates incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. 3H-
thymidine (0.5 µCi/well) was added to each well in the final 16 hours of culture. T-cell 
proliferation was determined using scintillation counting.  (B). ELISpot plates were coated with 
human IFN-ϒ antibody according to manufacturer’s instruction and incubated overnight at 4°C. 
Drug-primed naïve T-cells (0.5×106) were co-cultured with either Mo-DCs (4×103) with either 
SMX (2 mM) or SMX.NO (50 µM) using culture medium as negative control. Plates were then 
incubated at 37°C for 48 hours. The ELISpot plate was developed according to manufacturer’s 
instruction. Wells were then left to air dry and spots visualised and counted using an AID 
ELISpot reader. Blue bars represent SMX-primed naïve T-cells while red bars represent 
SMX.NO-primed naïve T-cells.  
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Figure 4.5-Proliferation and IFN-ϒ secretion profile of SMX/SMX.NO-primed naïve T-cells 
from four SMX-naïve donors. (A) Naïve T-cells were co-cultured with Mo-DC in a 25:1 ratio in 
the presence of SMX (2 mM) or SMX.NO (50 µM) for 8 days in 96-well U-bottom plates. T-cells 
(1×105) were harvested and cultured with fresh Mo-DCs (4×103) with either SMX (2 mM) or 
SMX.NO (50 μM) and plates incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 
hours. 3H-thymidine (0.5 µCi/well) was added to each well in the final 16 hours of culture. T-cell 
proliferation was evaluated using scintillation counting. (B) ELISpot plates were coated with 
human IFN-ϒ antibody according to manufacturer’s instruction and incubated overnight at 4°C. 
SMX-primed naïve T-cells (0.5×106) were co-cultured with either Mo-DCs (4×103) in the 
presence of either SMX (2 mM) or SMX.NO (50 µM) using culture medium as negative control. 
Plates were then incubated at 37°C for 48 hours. The ELISpot plate was developed according to 
manufacturer’s instruction. Wells were then left to air dry and spots visualised and counted 
using an AID ELISpot reader  

 

4.4.3 Effect of extended exposure to SMX on naïve T-cell 

priming. 

Naïve T-cells primed with either SMX or SMX.NO was maintained in culture for a 

total period of 10 weeks. 3H-thymidine proliferation and IFN-ϒ ELISpot assays 

were used to evaluate T-cell activation every 2 weeks. Prolonged exposure of 

naïve T-cells to either SMX or SMX.NO did not enhance the priming of naïve T-

cells to SMX (figure 4.6).  
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Figure 4.6-T-cell proliferation and IFN-ϒ secretion after extended priming of naïve T-cells 
to either SMX or SMX.NO. (A). Naïve T-cells were co-cultured with Mo-DC in a 25:1 ratio in the 
presence of either SMX (2 mM) or SMX.NO (50 µM) for 10 weeks in a 48 well plate. Every 2 
weeks, T-cells (1×105) were co-cultured with fresh Mo-DCs (4×103) in the presence of either 
SMX (2 mM) or SMX.NO (50 μM) and plates incubated at 37°C under an atmosphere of 95% 
O2/5% CO2 for 48 hours. 3H-thymidine (0.5 µCi/well) was added to each well in the final 16 
hours of culture. T-cell proliferation was determined using scintillation counting. Blue bars 
represent SMX-primed naïve T-cells while red bars represent SMX.NO-primed naïve T-cells. (B). 
ELISpot plates were coated with human IFN-ϒ antibody according to manufacturer’s instruction 
and incubated overnight at 4°C. Drug-primed naïve T-cells (0.5×106) were co-cultured with 
either Mo-DCs (4×103) with either SMX (2 mM) or SMX.NO (50 µM) using culture medium as 
negative control. Plates were then incubated at 37°C for 48 hours. The ELISpot plate was 
developed according to manufacturer’s instruction. Wells were then left to air dry and spots 
visualised and counted using an AID ELISpot reader.  

 

4.4.4 Characterization of drug-specific TCCs generated from DC-

primed naïve T-cells 

A total of 168 T-cell clones were generated and tested from SMX- and SMX.NO-

primed naïve T-cells (1 volunteer). Ten of the TCCs tested were SMX.NO 

responsive but showed no cross reactivity with SMX (figure 4.7). Furthermore 

we investigated the effect of extended SMX/SMX.NO priming of either naïve T-

cells and memory T-cells. Interestingly, preliminary data suggests that naïve T-

cells were primed to SMX.NO while memory T-cells were primed to SMX (figure 

4.8). All SMX.NO responsive TCCs generated from the 8 day priming assay 

expressed the CD4 cell surface marker (figures 4.9). 
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Figure 4.7-Proliferation and cross reactivity of SMX.NO-specific TCCs. T-cell clones (5×104 
cells, 50 µL) were co-incubated with irradiated autologous EBV-transformed B-cells (1x104 
cells, 50 µL) in the presence of either SMX (2 mM) or SMX.NO (50 µM) in a 96-well U-bottom 
microplate using T-lymphocyte culture medium as negative control. The plates were incubated 
at 37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. [3H]-thymidine (0.5 μCi/mL) was 
added for the final 16 hours of incubation and T-cell proliferation evaluated using scintillation 
counting. Result shows 10 SMX.NO-specific TCCs generated from drug-primed naïve T-cells.  
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Figure 4.8 Antigen specificity of TCCs generated from either naïve or memory T-cell 
populations. Naïve and memory T-cell populations were primed with either SMX or SMX.NO for 
10 weeks. TCCs were then generated from primed T-cells according to the method described. 
3H-thymidine incorporation assay was used to assess antigen specificity.  

 

 

Figure 4.9-CD4 and CD8 phenotyping. TCC suspensions (50 µL) were incubated with both 
CD4-PE and CD8-APC antibodies for 20 minutes at 4°C. Cells were washed and signals acquired 
by flow cytometry and analysed using cyflogic. 
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TCCs generated from naïve T-cells primed for 8 days secreted significant 

amounts of IFN-ϒ, IL-5, IL-13 and granzyme-B in response to SMX.NO 

stimulation (figure 4.10A).  MHC restriction using anti-HLA class I/II antibodies 

revealed an HLA-DP-restricted SMX.NO presentation to drug-specific TCCs 

(figure 4.9B). SMX.NO-specific TCCs expressed two different repertoires of 

TCRVᵦ namely, Vᵦ2 (86%) and Vᵦ13.1 (14%) as illustrated in figure 4.10C and D. 

Further experiments are ongoing to characterise TCCs generated from extended 

priming of naïve and memory T-cell populations.  

 

 

 

 

 

  

 

 



Chapter 4 

165 
 

 

Figure 4.10-Characterization of SMX.NO-specific TCCs. (A) Cytokine secretion profiles of 8 
representative drug-specific TCCs. ELISpot plates were pre-coated with human IFN-ϒ, IL-5, IL-
13 and granzyme-B antibodies according to manufacturer’s instruction and incubated overnight 
at 4°C. T-cell clones (5×104, 50 µL) were co-incubated with irradiated autologous EBV-
transformed B-cells (1×104, 50 µL) and SMX.NO (50 µM) using culture medium as negative 
control. The plates were incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 
hours. The ELISpot plates were developed according to manufacturer’s instruction. Wells were 
then left to air dry and spots visualised and counted using an AID ELISpot reader. (B) HLA-DP, -
DQ and –DR restricted SMX.NO presentation to TCCs. Irradiated autologous EBV-
transformed B-cells (1×104 cells, 50 µL) were pre-incubated with anti-HLA-DP, -DQ or –DR 
blocking antibodies (5 µg/mL) for 30 minutes at 37°C. APCs were then co-incubated with drug-
specific TCCs (5×104 cells, 50 µL) in the presence or absence of SMX.NO (50 µM) in a 96-well U-
bottom microplate using culture medium as negative control. The plate was incubated at 37°C 
for 48 hours. [3H]-thymidine (0.5 μCi) was added to each well for the final 16 hours of 
incubation and T-lymphocyte proliferation evaluated using scintillation counting. (C and D) 
Graphical representation of TCR Vβ usage in SMX.NO-specific TCCs and the percentage TCR Vβ 
expression of 7 representative SMX.NO-specific TCCs. 
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4.5 Discussion 

Idiosyncratic drug hypersensitivity reactions are problematic because they can 

result in serious morbidity and mortality. These reactions are also difficult to 

predict during the pre-clinical stages of drug development. Idiosyncratic drug 

hypersensitivity reactions only become evident during the wide spread clinical 

use of the ‘culprit drug’. They occur in a small percentage of the population and 

are thought to be associated with a combination of environmental, genetic, 

chemical properties of the drug involved and pathophysiological factors, hence 

their unpredictable nature. This is made even more complicated because the 

combination of risk factors for drug hypersensitivity reactions may differ 

depending on the ‘offending drug’ (Knowles et al. 2002; Macy 2004). Presently, 

it is difficult to predict what drug molecules will cause serious hypersensitivity 

reactions and in which patients. Therefore, an in-depth understanding of the 

pathomechanism of these reactions will likely increase their predictability; 

hence the need for in-vitro and in-vivo assays that can predict the immunogenic 

potential of a new drug.  

At the moment, very few animal models of drug hypersensitivity reactions exist 

(Weiss et al. 1978; Stein et al. 1980; Nierkens and Pieters 2005; Uetrecht 2005). 

The limitation of developing an animal model for every new drug is in the 

number of animals that will be required for such studies but also in aligning the 

pathomechanism of drug hypersensitivity reactions in animal models to that in 

humans (Uetrecht 2005). Furthermore, the increasing association of many 

idiosyncratic drug hypersensitivity reactions with HLAs complicates the 

prospects for ideal animal models of drug hypersensitivity reactions. Hence, in-

vitro models based on relevant human cells are the most likely to generate 
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mechanistic data that enhance our understanding of chemical and 

immunological mechanisms.  

Although many drug hypersensitivity reactions can be attributed to protein-

reactive drug metabolites (Uetrecht 1999; Uetrecht 2005), some inert drugs are 

also implicated (Zanni et al. 1997; Schnyder et al. 2000; Elsheikh et al. 2010). 

The in-vitro priming assay developed by Faulkner et al., (2012) explored the 

possibility of predicting the immunostimulatory capability of drug naïve donor 

to a given drug (Faulkner et al. 2012). The authors reported that naïve T-cells 

isolated from 5 SMX-naïve volunteers were successfully primed to the reactive 

metabolite, SMX.NO. In this study, we attempted to replicate these data by 

priming naïve T-cells isolated from 4 donors to SMX.NO. Moreover, we explored 

whether the parent drug (SMX) could activate naïve T-cells.  

The LTT was negative for both SMX and SMX.NO in all the donors used for this 

study. This suggested they do not have SMX or SMX.NO-specific T-cells 

circulating in their peripheral blood. The priming assay involves the initial in-

vitro co-culture of naïve T-cells and dendritic cells with either SMX or SMX.NO 

for 8 days followed by stimulation of the T-cells and assessment of antigen 

specificity using readouts for T-cell proliferation and IFN-ϒ secretion. Naïve T-

cells were successfully primed to SMX.NO in all 4 drug-naïve donors. 

Interestingly, initial experiments suggested that naïve T-cells isolated from 

donor 4 was primed to SMX (n =1). Although no data exist at the moment, we 

speculate that genetic factors, most likely donor HLA is responsible for the 

selective SMX-priming of naïve T-cells observed in donor 4. 
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To confirm priming of naïve T-cells to either SMX or SMX.NO, drug-specific TCCs 

were generated from DC-primed naïve T-cells (8 days priming). Interestingly, all 

the clones generated were SMX.NO responsive and expressed the CD4 cell 

surface molecule. This is consistent with TCCs generated from PBMCs isolated 

from SMX-hypersensitive patients (chapter 3). Furthermore, MHC restriction 

assay revealed an HLA-DP restricted SMX.NO recognition by drug-specific TCCs. 

This contrasts the HLA-DQ restricted SMX.NO recognition observed for SMX.NO-

specific TCCs generated from hypersensitive patients (chapter 3). Paradoxically, 

the majority of the SMX.NO-specific TCCs generated from either SMX-

hypersensitive patients or SMX-naïve donor expressed the TCR Vᵦ2, 69% and 

86%, respectively (see chapter 3). It is possible that the pathophysiological state 

of patients may impact on HLA restriction observed in SMX-hypersensitive 

patients. Healthy volunteer cohorts provide an excellent experimental resource 

for research into the pathomechanism of drug hypersensitivity but data 

generated must be interpreted with caution.  

To investigate whether the duration of naïve T-cell priming has any effect on the 

threshold of T-cell activation, we performed an extended priming assay. This 

involved an increase in the initial co-culture period of naïve T-cells, DCs and 

either SMX or SMX.NO from 8 days to 10 weeks. 3H-thymidine proliferation and 

IFN-ϒ data suggested that an extend duration of naïve T-cell priming to either 

SMX or SMX.NO did not lower the threshold of activation for SMX-primed naïve 

T-cells. Furthermore, in this study, all 10 drug-specific T-cell clones generated 

after the DC-priming of naïve T-cells isolated from 1 SMX-naïve donor were 

SMX.NO responsive and showed no cross-reactivity with SMX. The variable 
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distribution of drug-specific TCRs suggests that factors other than the chemical 

properties of either SMX or its nitroso metabolite may be important 

determinants of specificity. Although SMX and SMX.NO have similar chemical 

structures, the reason behind why most naïve T-cells from SMX-naïve 

volunteers are activated by SMX.NO and a few by SMX remains enigmatic. The 

high degree of protein reactivity may be responsible but this is not sufficient to 

explain why some SMX.NO-specific T-cells show cross-reactivity with SMX.            

Very recent data generated within the lab suggests that TCCs generated from 

naïve T-cell populations were SMX.NO-responsive while those generated from 

the memory T-cell population were SMX-specific. Further experiments 

including cross reactivity, MHC restriction, CD4/CD8 phenotyping, cytokine 

profiling are ongoing to delineate the molecular mechanisms involved in this 

observed selective priming of different T-cell subsets to either SMX or SMX.NO. 
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Chapter 5: Negative regulation by PD-L1 during drug-

specific priming of IL-22 secreting T-cells and the 

influence of PD-1 on effector T-cell  
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5.1 Introduction 

Immunological drug reactions represent a major clinical problem because of 

their severity and unpredictable nature. In recent years, genome-wide 

association studies have identified specific HLA alleles as important 

susceptibility factors for certain reactions (Phillips et al. 2011; Daly 2012). Drug 

antigen-specific CD4+ and/or CD8+ T-cell responses are detectable in 

blood/tissue of patients presenting with mild and severe forms of skin injury 

(Nassif et al. 2002; Castrejon et al. 2010) and liver injury (Monshi et al. 2013), 

and are therefore believed to participate in the disease pathogenesis.  

For a limited number of drugs, the drug-derived antigen has been shown to 

interact specifically with the protein encoded by the HLA risk allele to activate 

T-cells (Monshi et al. 2013; Yun et al. 2014). However, one must emphasize that 

(1) strong HLA associations have not been identified for most forms of drug 

hypersensitivity and (2) the majority of individuals who carry known HLA risk 

alleles do not develop clinically relevant immunological reactions when exposed 

to a culprit drug (Daly et al. 2009). Thus, there is a need to characterize the 

immunological parameters that are superimposed on HLA-restricted T-cell 

activation to determine why particular individuals develop drug 

hypersensitivity. Infections, especially reactivation of the herpes virus family 

have been put forward as an additional risk factor (Descamps et al. 2001; Picard 

et al. 2010). Virus infection alone however does not fully explain the 

unpredictable nature of drug hypersensitivity.  

Thus, this chapter focuses on the model drug hapten nitroso-sulfamethoxazole 

(SMX.NO) to investigate whether the programmed death (PD) pathway 

regulates the drug-specific priming of naïve T-cells. SMX.NO has been shown 
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previously to activate CD4+ and CD8+ T-cells isolated from patients presenting 

with sulfamethoxazole induced cutaneous injury (Schnyder et al. 2000; Engler 

et al. 2004; Castrejon et al. 2010; Faulkner et al. 2012).  

PD-1 (CD279) is an immune inhibitory receptor which belongs to the CD28 

superfamily of immune regulators (Freeman et al. 2006; Sharpe et al. 2007). 

The CD28 superfamily of proteins control the fine balance between immune 

response and immune tolerance (Chen 2004; Greenwald et al. 2005; Okazaki 

and Honjo 2006). PD-1 is expressed on activated T-cells and known to modulate 

an inhibitory pathway which maintains peripheral tolerance (Nishimura et al. 

1998; Chemnitz et al. 2004; Fife et al. 2009). The critical inhibitory role of PD-1 

has been demonstrated in the development of several forms of autoimmune 

disease through the use of PD-1-/- mice (Nishimura et al. 1998; Okazaki and 

Honjo 2006). A number of studies have reported PD-1 expression on DCs and 

macrophages (Huang et al. 2009; Yao et al. 2009). Expression of PD-1 occurs 

during thymic expansion and is activated through antigen receptor signalling 

and cytokine activity (Francisco et al. 2010). 

 Activation of the PD-1 receptor, which is transiently expressed on activated T-

cells leads to clustering between T-cell receptors and the phosphatase SHP2, 

and dephosphorylation of T-cell receptor signalling (Duraiswamy et al. 2011). 

As such, PD-1 signalling represents an effective mechanism to suppress antigen-

specific T-cell responses upon continuous antigen stimulation (Sharpe and 

Freeman 2002; Chen 2004; Okazaki and Honjo 2006). PD-1 has two ligands; PD-

L1 (CD274) and PD-L2 (CD273) (Freeman et al. 2000; Latchman et al. 2001; 

Keir et al. 2008). PD-1/PD-L interactions inhibit T-cell proliferation and 

cytokine secretion (Freeman et al. 2000; Latchman et al. 2001). Cytolytic 
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function and T-cell survival are also significantly impaired (Keir et al. 2008; 

Riley 2009). PD-1 ligation interferes with T-cell proliferation, cytokine 

secretion, cytolytic function and survival by either directly inhibiting CD28 

induced activation signals or indirectly by obstructing IL-2 secretion (Riley 

2009; Francisco et al. 2010). Figure 5.1 illustrates the different proteins 

important in the PD-1 signalling pathway. PD-1 is a type I membrane protein 

consisting of 288 amino acid residues (Riley 2009). The protein is made up of an 

extracellular domain and an intracellular tail, both connected by a 

transmembrane. The intracellular tail consists of two phosphorylation sites, 

each located in an immunoreceptor tyrosine-based inhibitory motif and an 

immunoreceptor tyrosine-based switch motif (Ishida et al. 1992; Blank and 

Mackensen 2007). PD-1 ligation with its ligands is thought to block Akt 

phosphorylation by inhibiting the CD28-mediated activation of PI3k (upstream 

of Akt). The immunoreceptor tyrosine-based inhibitory motif is responsible for 

the PD-1 inhibition of the PI3K/Akt pathway. Furthermore, PD-1 signalling 

inhibits the CD28 mediated stimulation of PI3K and Akt by engaging SHP2 

(Parry et al. 2005; Yokosuka et al. 2012). SHP2 also inhibits the phosphorylation 

of ZAP70 (figure 5.1).  
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Figure 5.1–PD-1 signalling pathway. Schematic representation of T-cell interaction with 

antigen presenting cell showing PD-1, PD-L1, PD-L2 and other proteins involved in the PD-1 

signalling pathway. PD-1: programmed cell death 1, PD-L: programmed death ligand, MHC: 

major histocompatibility complex, TCR: T-cell receptor, SHP2: Src homology 2 domain-

containing tyrosine phosphatase 2, ITIM: immunoreceptor tyrosine-based inhibition motif, ZAP 

70: Zeta-chain-associated protein kinase 70, PKC: Protein kinase C, PI3K: Phosphatidylinositide 

3-kinases, Akt: Serine threonine kinase.  

  

 PD-L2 has a greater binding affinity for PD-1 compared to PD-L1 as B7-1 is a 

supplementary receptor for PD-L1 (Butte et al. 2007). While PD-L1 is expressed 

on a variety of immune cells, PD-L2 expression is limited to dendritic cells, 

bone-marrow-derived mast-cells and activated macrophages (Ishida et al. 2002; 

Yamazaki et al. 2002; Yokosuka et al. 2012). PD-L1 has a higher expression in 

humans than PD-L2 but its ability to inhibit IL-2 secretion and effector cytokine 

production overlap (Keir et al. 2006). Regulatory T-cells have been reported to 

express both PD-1 and PD-L1 (Keir et al. 2007). The co-expression of PD-L1 and 
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PD-L2 on mast-cells and recent findings showing that mast-cells are involved in 

regulatory T-cell dependent peripheral tolerance has generated more interest in 

the PD-1-PD-L pathway (Lu et al. 2006; Nakae et al. 2006; Keir et al. 2007).  

Although PD-1 has been classified as a marker of cell exhaustion, (Dyavar Shetty 

et al. 2012; Zinselmeyer et al. 2013) recent studies from independent 

laboratories describe an alternative perspective (Dong et al. 1999; Tseng et al. 

2001). Blockade of PD-1-PD-L signalling has been reported to restore function 

of exhausted T-cells (Barber et al. 2006; Boni et al. 2007; Radziewicz et al. 

2007). 

Therapeutic potential of blocking the PD-1/PD-L1 pathway has been reported in 

cancer therapy where high expression of PD-L1 is consistent with poor 

prognosis (Brahmer et al. 2010; Duraiswamy et al. 2011; Topalian et al. 2012). 

Tumour cells utilise this inhibitory pathway to elude clearance by the host’s 

immune system (Dong et al. 2002; Thompson et al. 2007). Duraiswamy et al. 

showed that most PD-1high human CD8+ T-cells are effector memory cells rather 

than exhausted cells (Duraiswamy et al. 2011). Zelinskyy et al showed that 

although virus-specific CD8+ T-cells upregulate PD-1 expression during acute 

infection, the majority of PD-1high cells were highly cytotoxic and controlled 

virus replication (Barber et al. 2006; Zelinskyy et al. 2011).  

Finally, Reiley et al. showed that PD-1high CD4+ T-cells were highly proliferative 

and appeared to maintain effector T-cell responses during chronic infection 

(Reiley et al. 2010). Consequently, in the present study T-cell clones were 

generated from SMX-hypersensitive patient PBMCs and healthy drug naïve 

donors following in vitro priming to characterize the cytokine signatures(s) of 
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SMX.NO-specific T-cells and study whether PD-1 expression/signalling governs 

the differentiation of T-cells into effector/helper subsets. Antigen-specific T-cell 

responses were measured using readouts for proliferation, cytokine secretion 

and cell phenotype. Antigen-specific responses from in vitro primed T-cell 

clones and clones from hypersensitive patients were measured and correlated 

with PD-1 expression. We therefore hypothesised that co-inhibitory pathways 

may play a crucial role in naïve T-cell priming to drug antigens.  

5.2 Aims 

The aim of this chapter was: 

 To investigate the role of PD-1/PD-L1 signalling in the activation and 

differentiation of drug specific effector T-cells 

5.3 Clinical details of patients 

Clinical details of sulfamethoxazole hypersensitive patients, origin, phenotype 

and specificity of the T-cell clones are represented in table 5.1 below. 

Table 5.1-Clinical details of the hypersensitive patients, origin, phenotype and 

specificity of the T-cell clones 
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5.4 Methods 

5.4.1 Chemicals and reagents 

Human AB serum was acquired from Innovative Research (Michigan, USA). 

Foetal bovine serum (FBS) was bought from Invitrogen, Paisley, UK. Interferon-

γ, interleukin-13, interleukin-5, granzyme B and perforin ELISpot kits including 

antibodies and substrate solution were purchased from Mabtech (Stockholm, 

Sweden). The Fas ligand ELISpot kit was obtained from Abcam (Cambridge, UK). 

CD4-APC and CD8-PE antibodies were purchased from BD Biosciences, Oxford, 

UK. Recombinant human interleukin-2 (rhIL-2) was bought from Peprotech, 

London, UK. Multisort bead separation kits were bought from Miltenyi Biotec, 

Surrey, UK. Sulfamethoxazole was obtained from Sigma-Aldrich (Gillingham, 

Dorset, UK). Human interleukin-22 (rhIL-22) was obtained from MABTECH 

(Nacka strand, Sweden). Lymphoprep (Axis-shield, Dundee), Tritiated [3H]-

methyl thymidine was purchased from Moravek (California, USA). Anti-human 

CCR4 and anti-human CCR10 chemokines were obtained from R&D systems 

(Minneapolis, USA). Transwell plates were purchased from Corning 

Incorporated (Corning, USA). DMSO was supplied by Sigma-Aldrich (Dorset, 

UK). Purified anti-human CD273 (B7-DC, PD-L2) and purified anti-human CD 

274 (B7-H1, PD-L1) were purchased from Biolegend (Cambridge, UK). 

Recombinant human CCL17 and CCL27 were obtained from R&D systems 

(Minneapolis, USA). Human interleukin-4 and recombinant human GM-CSF 

were supplied by Peprotech (London, UK).  
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5.4.2 Isolation of lymphocytes from patients and volunteers 

blood 

Blood (120 ml) was collected from drug naive donors for lymphocyte isolation 

and subsequent T-cell priming. Blood (50 mL) was also collected from 5 SMX-

hypersensitive patients for cloning.  Table 5.1 describes the clinical features of 

the adverse reactions for each patient. Approval for the study was acquired 

from the Liverpool local research ethics committee and informed written 

consent was obtained. PBMCs were isolated according to method previously 

described in section 2.3.3. 

5.4.3 Cell separation  

PBMCs were isolated by density gradient separation as described in section 

3.3.3.  CD14+ monocytes and different T-cell populations were separated using 

magnetic beads and columns according to the manufacturer’s instructions 

(Miltenyi Biotech; Bisley, UK). CD14+ cells were positively selected from the 

total PBMC population. For isolation of naïve and memory T-cells, pan negative 

T-cell separation was performed using an anti-T-cell antibody cocktail. CD3+ 

cells were then subjected to positive selection for Treg (CD25+) and memory cells 

(CD45RO+). Cells were frozen and stored at -150°C prior to use. 

5.4.4 T cell priming assay 

CD14+ cells were cultured in medium (RPMI-1640, 100 µg/ml penicillin, 100 

U/ml streptomycin, 25 µg/ml transferrin, 10% human AB serum, 25 mM HEPES 

buffer, and 2 mM L-glutamine) supplemented with GM-CSF and IL-4 under an 

atmosphere of 95% O2/5% CO2  for 7 days to generate dendritic cells. On the 

penultimate day, 25 ng/ml TNFα and 1 µg/ml LPS were added as maturation 
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factors. Dendritic cell phenotype (CD40, CD80, CD86, PD-L2 and MHC class II) 

was characterised by flow cytometry. 

Mature dendritic cells were plated (0.8×105 cells per well) and cultured with 

naive CD3+ T-cells (2.5 x 106 cells per well; 24 well plated total volume 1.5 ml) 

and SMX.NO (50 µM) for 8 days.  Anti-PD-L1 and/or PD-L2 antibodies (10 

µg/ml) were added to certain wells. Where indicated, TGF-β (5ng/ml), IL-1β (10 

ng/ml) and IL-23 (20 ng/ml) or TNFα (50ng/ml) and IL-6 (20 ng/ml) were 

added to the cultures to induce the differentiation of Th17 and Th22 cells, 

respectively.  

Primed T-cells (1×105; 200μl) were harvested and re-stimulated with 

autologous dendritic cells (4×103) and SMX.NO (5-50 μM) and assessed for 

cytokine secretion as well as proliferation. After 48 hours, [3H]-thymidine (0.5 

µCi/well) was added to the proliferation plate. Incorporated radioactivity was 

counted after a further 16 hours incubation using a MicroBeta TriLux 1450 LSC 

β-counter (Perkin Elmer, Cambridge, UK). Proliferation was also assessed using 

CSFE-labelled cells according to our recently published protocol (Faulkner et al. 

2012). ELISpot analysis was used, according to the manufacturer’s instructions 

(Mabtech, Nacka Strand, Sweden) to visualize secreted cytokines (IFN-γ, IL-13, 

granzyme-B, IL-17 and IL-22). Cell phenotype during priming and following 

restimulation was assessed by staining with CD3-APC, CD4-APC, CD8-PE, 

CD45RA-FITC, CD45RO-PerCP-Cy5.6 and/or PD-1-PE (CD279) antibodies. 

5.4.5 T cell cloning 

Primed T-cells were cloned directly by serial dilution and repetitive mitogen-

driven expansion using previously described methods (Zanni et al. 1997). 
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5.4.5.1 Generation of drug-specific T-cell clones and 

characterization of cytokine secretion profiles  
Drug-specific T-cell clones were generated from PBMCs isolated from 

hypersensitive patients and one SMX-naïve volunteer according to the method 

described in section 3.3.5. Dose-dependent proliferative responses (± PD-L1 

block; SMX.NO [5-50 μM]) and the profile of secreted cytokines (IFN-γ, IL-5, IL-

13, granzyme-B, FasL, perforin, IL-17 and IL-22 ELISpot) were then measured. 

Cell phenotyping was performed by flow cytometry using CD4-FITC, CD8-PE 

and PD-1-PE, CCR4-PE, CCR10-PE and CLA-FITC antibodies. 

Twenty-four well transwell chambers with 5-μm pores were used to measure 

chemotaxis. T-cells (0.1×105; n=4 clones) were placed in the upper chambers. 

CCL17/CCL27 (ligand for CCR4 and CCR10 respectively) was placed in the 

lower wells and the cells were incubated for 0.5-24 hours. Cells migrating to the 

lower chamber were counted using a hemocytometer. 

5.5.5.2 Generation of autologous antigen presenting cells 
EBV-transformed B-cells used as antigen presenting cells in all the experiments 

involving drug-specific TCCs were generated according to the method described 

in section 2.3.5.  

5.5.5.3 Flow cytometry  
Cells were acquired using a FACS Canto II (BD Biosciences) and data analyzed 

by Cyflogic. For CFSE analysis, a minimum of 50,000 lymphocytes were acquired 

using forward scatter/side scatter characteristics. 
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5.5 Statistical analysis 

Mean values and standard deviations were calculated, and statistical analysis 

was performed using paired T-test (Sigma plot 12 software). 
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5.6 Results 

5.6.1 PD-L1 block enhances the priming of naïve T-cells against 

drug derived antigens 

For in vitro priming, naïve CD3+ T-cells from healthy donors were co-cultured 

with autologous dendritic cells in the presence of SMX.NO (± PD-L1/PD-L2 

block). Upon re-stimulation, dose-dependent antigen-specific proliferation was 

clearly detectable (figure 5.2A). Inclusion of PD-L1 blockade markedly enhanced 

the proliferative response (P<0.05; at each SMX.NO concentration). PD-L2 block 

however gave proliferative responses comparable to those without PD-ligand 

block (figure 5.2A). Blockade of PD-L1 and PD-L2 together produced enhanced 

proliferation compared to medium alone (P<0.05), but less so than for PD-L1 

block. This data was unexpected and maybe due to incompatibilities in 

combining two different monoclonal antibodies or technical artefact of this 

experiment. This observation warrants further investigation. Additional 

SMX.NO priming experiments were performed using IFN-γ and granzyme-B 

secretion as readouts. IFN-γ (figure 5.2B) and granzyme-B (figure 5.2C) were 

released from SMX.NO primed cells following restimulation and the response 

was enhanced when the anti-PD-L1 antibody was included in the co-culture.  
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Figure 5.2-SMX.NO-specific priming of naïve T-cells with and without PD-L1/PD-L2 block. 
(A) Antigen-specific T-cell responses to SMX.NO measured by [3H]-thymidine incorporation. 
Naïve CD3+ T-cells were co-cultured with SMX.NO and dendritic cells at a ratio of 25:1 in the 
presence or absence of PD-L1/PD-L2 block for 8 days. The cultures were plated and 
restimulated with fresh dendritic cells and SMX.NO in 96-well U-bottom plates in a final volume 
of 200 μl. Cells were cultured for 3 days and [3H]- thymidine (0.5 μCi) was added for the final 16 
hours incubation. The data show mean SD of triplicate wells. (B, C) Antigen-specific T-cell 
responses measured by IFN-γ and granzyme-B ELISpot, culture conditions were the same as 
above. Cells were incubated for 48 hours and spots developed according to the manufacturer’s 
instructions. (D) Antigen-specific T-cell responses measured by CFSE content. T-cells were 
labelled with CFSE prior to incubation for 72 hours. Cells were analysed by flow cytometry (a 
minimum of 50,000 cells were counted).  
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Analysis of CFSE staining by flow cytometry allows a more in depth analysis of 

proliferation by distinguishing between CD4+ and CD8+ T-cell populations 

(figure 5.2D). SMX.NO stimulated the activation of naïve CD4+ and CD8+ T-cells 

in a concentration-dependent fashion; similar to the [3H]-thymidine data, 25-50 

μM SMX.NO were the optimal stimulatory drug concentrations. Interestingly, 

PD-L1 block did not increase the number of CD3+, CD4+ or CD8+ cells that were 

stimulated to divide in the presence of SMX.NO (figure 5.3A).  

5.6.2 PD-1 expression is enhanced on drug-primed dividing T-

cells  

CFSE staining was used to measure PD-1 on dividing and non-dividing T-cells. In 

initial experiments, PD-1 expression was found to be significantly upregulated 

on dividing CD3+, CD4+ and CD8+ cells 48 hours after SMX.NO restimulation 

(figure 5.3A). In subsequent experiments, PD-1 expression was measured 

during SMX.NO priming and for 72 hours after restimulation. PD-1 was not 

detectable on naïve CD4+ and CD8+ cells. After priming, a small population of 

PD-1 positive cells was seen on day 7, both in the presence and absence of PD-

L1 block. After restimulation with SMX.NO (day 9), PD-1 expression was rapidly 

upregulated on 20-40% of CD4+ and CD8+ cells in a transient fashion (figure 

5.3B; columns 1 and 3). PD-1 reverted back to pre-restimulation levels within 

48-72 hours. In the presence of PD-L1 block, the increase in PD-1 expression 

was sustained (figure 5.3B; columns 2 and 4). Greater than 35% of CD4+ cells 

stained positive for PD-1 72 hours after restimulation. 
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Figure 5.3-PD-1 expressions on CD3+, CD4+ and CD8+ T-cells. (A) PD-1 expression on 
dividing and non-dividing cells. Naïve CD3+ cells were co-cultured with SMX.NO and dendritic 
cells at a ratio of 25:1 in the presence or absence SMX.NO for 8 days. The cultures were labelled 
with CFSE and restimulated with fresh dendritic cells and SMX.NO for 3 days. Cells were labelled 
with an anti-PD-1 antibody and analysed by flow cytometry. A minimum of 50000 cells were 
acquired using FSC/SSC characteristics and CD3+, CD4+ or CD8+ cells were gated for analysis. (B) 
Naïve CD3+ cells were labelled with CFSE and co-cultured with SMX.NO and dendritic cells in the 
presence and absence of PD-L1 block for 8 days. The cultures were plated and restimulated with 
fresh dendritic cells and SMX.NO in 96-well U-bottom microplates in a final volume of 200 μl. An 
aliquot of cells were taken throughout the culture period and PD-1 expression measured by flow 
cytometry. A minimum of 50000 cells were acquired using FSC/SSC characteristics and CD4+ or 
CD8+ cells were gated for analysis.  
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5.6.3 Drug-primed T-cells secrete IL-22, but not IL-17  

Cutaneous reactions to drugs have been classified previously according to the 

phenotype and function of antigen-specific T-cells. The discovery of new T-cell 

subsets (e.g., Th17, Th22 cells) may render this classification somewhat 

obsolete; however, it should be noted that, a role for IL-17 and IL-22 in drug-

specific reactions has yet to be defined. To explore whether drug-responsive T-

cells produce IL-17 and/or IL-22, detailed cytokine signatures were studied 

following SMX.NO priming under different polarizing conditions.  

In initial priming experiments, naïve CD3+ T-cells were cultured with dendritic 

cells and SMX.NO in the absence of polarizing cytokines. These cells were then 

harvested, restimulated with SMX.NO and assayed for IFN-γ, IL-13, IL-17 and IL-

22 secretion. SMX.NO-specific secretion of IFN-γ, IL-13 and IL-22 was observed. 

However, IL-17 release was not detected (Figure 5.4).  
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Figure 5.4-IL-22 secretion by T-cells exposed to SMX.NO. Naïve CD3+ T-cells were co-
cultured with SMX.NO and dendritic cells for 8 days. The cultures were plated and restimulated 
with fresh dendritic cells and SMX.NO. Antigen-specific T-cell responses were measured by IFN-
γ, IL-13, IL-17 and IL-22 ELIspot. Figure shows representative data from 1 out of 3 experiments.  

 

5.6.4 Generation of T-cell clones and characterization of 

cytokine secretion profiles  

To characterize the functionality of drug-responsive T-cells and the way in 

which PD-1 signalling influences effector T-cell responses, SMX.NO specific T-

cell clones isolated following in vitro priming and from hypersensitive patient 

PBMCs were studied.  

Two hundred and eighty three CD4+ T-cell clones were generated following 

SMX.NO priming of naïve cells. Nineteen were found to proliferate in the 

presence of SMX.NO (no drug, 1551±410cpm; SMX.NO, 4880±913cpm). The 

number of clones generated from hypersensitive patients, their CD phenotype 

and the SMX.NO-specific proliferative response are summarized in Table 5.1. 
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Proliferation of representative patients and volunteer TCCs is illustrated in 

figure 5.5. CD4 and CD8 characterization was performed to determine the cell 

surface phenotype of drug specific TCCs. All the SMX.NO-specific T-cell clones 

were found to be CD4+ (figure 5.6).  

 

Figure 5.5-Antigen-specific T-cell proliferation. SMX.NO-specific T-cell clones generated 
from five SMX-hypersensitive patients and one volunteer (5×104 cells, 50 µL ) was co-incubated 
with autologous EBV-transformed B-cell line (1×104) in the presence and absence of SMX.NO 
(50 uM) and incubated at 37°C under an atmosphere of 95% O2/5% CO2 for 48 hours. T-cell 
proliferation was determined by [3H]-thymidine incorporation. Data represent mean of 
duplicate wells.   
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Figure 5.6-CD4+/CD8+ phenotyping of 10 selected SMX.NO specific T-cell clones. T cell 
clones were labelled with anti-CD4+ and anti-CD8+ antibodies and analysed by flow cytometry 
using a FACS Canto II. A minimum of 50,000 lymphocytes were acquired using FCS/SSC 
characteristics.  

 

SMX.NO-responsive clones generated from the SMX-naïve volunteer secreted 

large quantities of IFN-γ, IL-5 and IL-13 following activation (Figures 5.8). 

Approximately 50% of clones also secreted IL-22. The detection of IL-22 

secreting clones was not dependent on priming under Th22 polarizing 

conditions as clones were not maintained in the presence of Th22 polarizing 

cytokines. No IL-17 secreting SMX.NO-specific TCCs were detected.  

Clones from hypersensitive patients were found to proliferate and secrete IFN-

γ, IL-5 and IL-13 following SMX.NO stimulation. Analogous to the in vitro 

priming studies, around 50% of clones also secreted IL-22. IL-17 secretion was 

only detected with 1 clone (Figures 5.7 and 5.8).  
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Figure 5.7-Cytokine secretion by SMX.NO responsive CD4+ clones. Cytokine profile of 
representative SMX.NO-specific IL-22high- and IL-22 low-secreting clones generated from drug-
naïve donor after in vitro priming and hypersensitive patients.   

 

Figure 5.8-Cytokine secretion by SMX.NO-responsive CD4+ clones. Analysis of SMX.NO-

specific cytokine and cytolytic molecule secretion from seventeen CD4+ clones by ELISpot. T-cell 

clones (5×104 cells, 50 µL) were co-incubated with autologous EBV-transformed B-cell line 

(1×104 cells, 50 µL) in the presence and absence of SMX.NO (50 uM) for 48 hours and spots 

developed according to the manufacturer’s instructions.  
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5.6.5 Skin homing receptor expression and migration of IL-22 

secreting T-cell clones 

Seventeen SMX.NO-specific clones with a strong growth pattern were selected 

to explore in detail the profile of secreted cytokines and cytolytic molecules. As 

described above, all clones secreted IFN-γ, IL-5 and IL-13 when stimulated with 

SMX.NO. IL-22 production was detected from approximately 50% of the clones. 

Interestingly, the clones were also found to secrete either FasL or granzyme B, 

but not perforin (figure 5.8). The IL-22high clones belonged exclusively to the 

FasL producing subset (figure 5.9). A panel of six clones was then selected (2 

FasLhigh IL-22highgranzyme Blow; 1 FasLhigh IL-22lowgranzyme Blow; 3 FasLlow IL-

22lowgranzyme Bhigh) to explore which clones expressed CCR4, CCR10 and CLA 

and hence have the ability to migrate towards skin. All FasLhighIL-22high clones 

expressed high levels of CCR4, CCR10 and CLA (figure 5.9) and migrated in the 

presence of CCL17 and CCL27 (figure 5.10). 
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Figure 5.9-Proliferation, cytokine secretion profile and skin homing receptor expression 
of T-cell clones. (A) Six selected SMX.NO specific T-cell clones (5x104) were co-incubated with 
autologous EBV-transformed B-cell lines (1 x 104) with or without SMX.NO (50uM) under an 
atmosphere of 95% O2/5% CO2 for 48 hours. T-cell proliferation was determined by [3H]-
thymidine incorporation. Data represent mean of duplicate wells. (B) Cytokine and cytotoxic 
molecules secretion profile (IFN-ϒ, IL-22, granzyme-B and Fas ligand) for six selected SMX.NO-
responsive CD4+ clones was analysed by ELISpot assay. T-cells were incubated for 48 hours and 
spots developed according to the manufacturer’s instructions. (C) Flow cytometric analysis of 
CCR4, CCR10 and CLA expression on SMX.NO responsive clones. Three FasL and/or IL-22 
secreting and three granzyme-B secreting clones were selected for the analysis. A minimum of 
50,000 lymphocytes were acquired using FCS/SSC characteristics.  
 

 
Figure 5.10-Chemotaxis of FasL/IL-22 and granzyme-B secreting clones promoted by 
CCL17 or CCL27. SMX.NO-specific T-cell clones (104) were placed in the top chamber of a 
transwell and the chemokines in the bottom. The number of cells migrating across the transwell 
was measured using a haemocytometer after 0.5-24 hours.   
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5.6.6 PD-1 expression on SMX specific TCCs and PD-L1/2 

expression on antigen presenting cells 

Although PD-1 is most commonly described as a marker of T-cell exhaustion, it 

has also been reported that PD-1high cells are highly cytotoxic and/or 

proliferative (Riley 2009; Zelinskyy et al. 2011). Thus, our SMX.NO-specific 

clones were used to (1) measure PD-1 expression on individual clones, (2) 

explore the relationship between PD-1 expression and effector function and (3) 

analyse whether PD-L1 block alters the levels or profile of cytokines secreted 

following antigen stimulation.  

Flow cytometric analysis of PD-1 on 40 clones revealed a 4 fold difference in 

expression (figure 5.11A). PD-1 was stably expressed on the surface of clones 

over a period of 10days ± SMX.NO stimulation (figure 5.11B). PD-1 expression 

did not correlate with the strength of the drug-specific proliferative response or 

secretion of IFN-γ, IL-5, IL-13, IL-17, IL-22, perforin, granzyme B or FasL (r2 less 

than 0.4 for all parameters tested, r2 = 0.5 for IFN-γ) as shown in figure 5.12. 

The 17 clones depicted in figure 5.8 were used for the comparisons.  

A number of studies have reported a differential expression of PD-L1 and PD-L2 

on various immune cells. We therefore examined the levels of both proteins on 

dendritic cells and EBV-transformed B-cells. PD-L1 and PD-L2 expression on 

dendritic cells was 5 fold higher than EBV-transformed B-cells (figure 5.13).  
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Figure 5.11-PD-1 expression on SMX.NO specific CD4+ T-cell clones.  (A) PD-1 expression on 

SMX.NO-specific CD4+ clones. Cells were labelled with an anti-PD-1 antibody and analysed by 

flow cytometry. A minimum of 50,000 cells were acquired using FSC/SSC characteristics. (B) 

PD-1 expression on dividing and non-dividing CD4+ clones. Clones were cultured with or 

without SMX.NO and PD-1 expression was measured for 10 days.   
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Figure 5.12–(A) Correlation of PD-1 with T-cell proliferation (B). PD-1 expression on SMX.NO 

responsive T-cell clones was plotted against IFN-γ, IL-5, IL-13, IL-17, and IL-22, perforin, 

granzyme B or FasL. PD-1 was represented as mean fluorescence of 50,000 SMX.NO-specific T-

cell clones. 
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Figure 5.13–PD-L1/PD-L2 expression on APCs. Differential expression of PD-L1 and PD-L2 

on EBV transformed B-cells and dendritic cells using anti-PD-L1/PD-L2 antibodies by flow 

cytometry. PD-L2 was represented as mean fluorescence of 50,000 SMX.NO specific T-cell 

clones. Grey shades represent baseline auto-florescence while blue lines represent either PDL-1 

or PDL-2 expression on EBVs and DCs. 

  

5.6.7 Role of PD-1 block on effector T-cell response 

PD-L1 block had no effect on the proliferation of TCCs stimulated with SMX.NO 

(figure 5.14A). In contrast, PD-L1 block resulted in a modest increase in IFN-γ, 

IL-13 and granzyme-B secretion (figure 5.14B and C). Blocking the PD-1/PD-L2 

signalling pathway had no effect on either T cell proliferation or interferon 

gamma secretion following SMX.NO stimulation (figure 5.15).  
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Figure 5.14–(A) Proliferative responses and (B) cytokine secretion from SMX.NO-specific T-cell 

clones with and without PD-L1 block. Ten CD4+ clones were cultured with SMX.NO in the 

presence or absence of PD-L1 block for 3 days. Responses were measured by [3H]-thymidine 

incorporation and ELISpot. (C) ELISpot images show differences in cytokine secretion from two 

representative clones ± PD-L1 block. 
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Figure 5.15-Proliferative responses and IFN-ϒ secretion from SMX.NO-specific clones with and 

without PD-L2 block. Eight CD4+ clones were cultured with SMX.NO (50 µM) in the presence or 

absence of PD-L2 block for 48 hours ((A and B). T-cell activation was measured by [3H]-

thymidine incorporation and IFN-ϒ ELISpot. (C) ELISpot images show no significant differences 

in INF-ϒ secretion for eight representative clones ± PD-L2 block. 
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5.7 Discussion 

In the present study we have focused on regulation of drug antigen-specific T-

cell priming through the PD-1/PD-L1 pathway, the way in which PD-1 signalling 

influences effector T-cell responses and the functionality of drug-responsive 

clones generated through in vitro priming or those isolated from hypersensitive 

patient PBMCs. The inhibitory function of PD-1 relies on the presence of an 

immunoreceptor tyrosine-based switch motif. On activation, the switch 

becomes phosphorylated and subsequently recruits the protein tyrosine 

phosphatase SHP-2. This causes the inhibition of downstream pathways 

through the dephosphorylation of proteins such as CD3 and ZAP70 (Okazaki 

and Honjo 2006; Riley 2009; Zelinskyy et al. 2011) preventing further T-cell 

stimulation.  

To assess the effect of PD-ligand blockade and in particular whether this could 

be used as an immunogenic boost to enhance drug-specific stimulation of naïve 

T-cells we utilized an in vitro T-cell priming assay and the model drug hapten 

SMX.NO. In agreement with our previous study, an eight day culture period was 

sufficient to activate naïve CD3+ T-cells and SMX.NO-specific responses were 

readily detectable following antigen recall using readouts for proliferation and 

IFN-γ or granzyme-B secretion. CFSE staining revealed that naïve CD4+ and 

CD8+ T-cells were activated during priming. The dividing cells were CD45RO+, 

indicating a change in phenotype from naïve to memory. PD-1 expression was 

induced on dividing T-cells during priming and following antigen recall. An 

increase in the magnitude of the drug-specific proliferative response and levels 

of IFN-γ/granzyme-B secretion was seen when naïve T-cells were exposed to 

PD-L1-block.  In contrast, PD-L2 block had no effect on the activation of naïve T-
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cells. It is not clear why PD-L2 block did not enhance the priming of naïve T-

cells against SMX.NO. One potential explanation is that B7.1 (CD80), a CD28 co-

stimulatory ligand, is known to interact with PD-L1, but not PD-L2 (Butte et al. 

2007), this however requires further investigation. 

Interestingly, PD-L1 block did not increase the number of SMX.NO-specific T-

cells generated during priming. Hence, PD-1/PD-L1 signalling decreases the 

strength of the antigen-specific proliferative response and cytokine release, but 

does not regulate the number of T-cells primed against drug-derived antigens. 

These data are in agreement with previous studies showing that PD-L1 block 

results in a reversal of T-cell anergy and enhanced T-cell responses against 

peptide antigens (Chikuma et al. 2003).  

Whether PD-1 signalling regulates the activation of antigen-specific memory T-

cell responses has yet to be fully defined. Previous studies show that PD-1high 

cells can be highly cytotoxic and that PD-1 expression might be a marker of 

effector memory function, which seems counterintuitive (Duraiswamy et al. 

2011; Zelinskyy et al. 2011). Thus, using SMX.NO-responsive clones generated 

from healthy donors through priming and from hypersensitive patients, we 

assessed whether PD-1 expression correlated with the strength of the antigen-

specific proliferative response and/or secretion of cytokines/cytolytic 

molecules. Furthermore, PD-L1/2 blocking antibodies were used to assess 

whether PD-1 signalling regulates the activation of antigen-specific memory T-

cells. Detailed analysis of 40 clones revealed (1) a four-fold variation in PD-1 

expression on T-cells, (2) PD-1 was stably expressed for up to 10 days after 

antigen stimulation, and (3) there was no correlation between PD-1 expression 

and the magnitude of the drug-specific proliferative response or secretion of 
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cytokines. Nevertheless, subtle increases in IFN-γ, IL-13 and granzyme-B 

secretion were observed when clones were stimulated with SMX.NO in the 

presence of PD-L1 block. PD-L2 block had no significant effect on either the 

drug-specific proliferation of TCCs or IFN-ϒ secretion profile. 

Immunological drug reactions cause a variety of different skin conditions that 

can be characterized in terms of the phenotype and function of antigen-specific 

T-cells. Histological analysis of inflamed skin from patients with maculopapular 

eruptions, which accounts for the majority of SMX reactions, reveals the 

presence of cytotoxic CD4+ T-cells that secrete granzyme-B. Furthermore, drug-

specific T-cells isolated from patient blood are mainly CD4+ and secrete a mixed 

panel of Th1/Th2 cytokines including IFN-γ, IL-5 and IL-13 (Pichler et al. 2002; 

Pichler 2003; Elsheikh et al. 2011). However, the discovery of new T-cell 

populations (e.g., Th9, Th17, and Th22) renders this classification somewhat 

obsolete. For this reason, we characterized the functionality of SMX.NO-specific 

T-cells generated through in vitro priming and from SMX-hypersensitive 

patients. Following antigen recall, the SMX.NO primed T-cells from healthy 

donors were found to secrete IFN-γ, IL-13 and IL-22, but IL-17 secretion was 

not detected. CD4+ clones isolated from the priming assay also secreted IFN-γ, 

IL-5 and IL-13, but no IL-17. IL-22 secretion was detected from approximately 

50% of the clones. A similar pattern of cytokine secretion was seen with CD4+ 

clones (IFN-γhigh IL-5high IL-13high IL-22low and IFN-γhigh IL-5high IL-13high IL-

22high) isolated from SMX-hypersensitive patients. IL-22 is a cytokine that 

modulates tissue responses as expression of the IL-22R1 receptor is restricted 

to non-haematopoietic cells. In skin, the IL-22 receptor is expressed at high 

levels on keratinocytes and IL-22 has been found to enhance keratinocyte 
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proliferation and inhibit terminal differentiation (Boniface et al. 2005). 

Furthermore, IL-22 has been shown to mediate inflammatory responses in 

patients with psoriasis and IL-22 secreting cells have been identified in patients 

with allergic contact dermatitis (Eyerich et al. 2010; Akdis et al. 2012; Cavani et 

al. 2012). Our data is, however, the first to show production of IL-22 alongside 

IFN-γ by antigen-specific T-cells from drug-hypersensitive patients.  

Given the heterogeneous secretion of IL-22 by individual clones, the release of 

cytolytic molecules (perforin, granzyme-B and FasL) and expression of skin-

homing chemokine receptors were also measured using ELISpot and flow 

cytometry, respectively. These studies identified two subsets of drug-specific 

TCCs classified according to the production of either granzyme B or FasL. 

Importantly, the IL-22 secreting clones produced FasL following antigen 

stimulation. They expressed high levels of the skin homing receptors CCR4, 

CCR10 and CLA and migrated towards CCL17 and CCL27, indicating that the 

receptor expression was functionally relevant. Collectively, these studies 

identify two pathways of killing by drug-specific TCCs. The FasL and IL-22 

secreting clones may be crucial mediators of the immunological reaction as they 

are programmed to migrate towards skin. 

Cytotoxic T-lymphocyte antigen-4 (CTLA-4) is another negative regulator of 

effector T- cell function that has been extensively researched (Walunas et al. 

1994; Pentcheva-Hoang et al. 2009; Yokosuka et al. 2012). CTLA-4 binds to its 

ligands; B7-1 (CD80) and B7-2 (CD85) to inhibit early T-cell activation by 

preventing IL-2 synthesis, cell cycle development and T-cell receptor signalling 

(Luhder et al. 2000; Chikuma et al. 2003; Fife et al. 2009). The negative 
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inhibition by CTLA-4 has been documented to be significantly lower than that 

induced by PD-1 interaction with its ligands (Parry et al. 2005). Hence, 

ongoing/future work will examine the role of CTLA-4 signalling in the activation 

of SMX/SMX.NO-specific T-cells.  

In conclusion, our study found that PD-L1/PD-1 signalling negatively regulates 

the priming of drug antigen-specific T-cells that secrete a heterogeneous 

pattern of cytokines. Thus, differential PD-L1/PD-1 expression and activity 

might represent one factor that impacts upon the immune response of human 

exposed to allergenic drugs. 
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6.1 Introduction 

Sulphonamides are implicated in a number of cutaneous idiosyncratic adverse 

drug reactions (Naisbitt 2004; Nassif et al. 2004; Kocak et al. 2006; Kouklakis et 

al. 2007). SMX is used in combination with trimethoprim in a 5:1 ratio for the 

treatment of a number of opportunistic infections in HIV patients (Absar et al. 

1994; Sibanda et al. 2011) and respiratory tract infections in patients with 

cystic fibrosis (Hutabarat et al. 1994; Lavergne et al. 2010; Elsheikh et al. 2011). 

The use of SMX in these patient populations is associated with ADRs in 10-30% 

of individuals (Pirmohamed and Park 2001; Farrell et al. 2003; Elsheikh et al. 

2011). Altered metabolism profiles of SMX and a hyper-reactive immune system 

in these patients have been put forward as potential reasons for the 

susceptibility to hypersensitivity to SMX (Carr et al. 1993; Farrell et al. 2003; 

Lavergne et al. 2006; Elsheikh et al. 2011). Furthermore, trimethoprim 

undergoes metabolic activation in humans and therefore might also be 

responsible for some adverse drug reactions in patients taking SMX-

trimethoprim combinations (van Haandel et al. 2014). 

Hepatic oxidative metabolism of SMX by CYP2C8 and CYP2C9 (Cribb et al. 1995; 

Wen et al. 2002; Sanderson et al. 2007) and oxidation by myeloperoxidase 

(MPO) (Cribb et al. 1990) have been extensively characterised and are 

discussed in chapters 1 and 2. The oxidation of SMX by MPO unlike the 

oxidation of SMX by P45O cannot be described as a hepatic biotransformation 

because MPO is not known to be expressed in hepatocytes (Amanzada et al. 

2011). Furthermore, the MPO that is reportedly expressed in human Kupffer cells is 

not known to contribute to the oxidation of SMX in either normal or damaged liver 

(Brown et al. 2001). Interestingly, Lai WG et al. claimed that 7-
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hydroxyfluperlapine, a pre-reactive metabolite of fluperlapine, but not 

fluperlapine itself, is oxidized by human MPO and covalently modifies the 

protein in vitro(Lai et al. 2000). In acutely injured human liver, MPO was only 

detected in freshly recruited neutrophil granulocytes (Amanzada et al. 2011).  

Therefore the oxidation of SMX by constitutive and/or acquired MPO in liver is 

theoretically possible but remains hypothetical.  

MPO-expressing cells that have been utilised in drug metabolism studies include 

activated neutrophils and monocytes (Daugherty et al. 1994). MPO is also 

expressed by human Kupffer cells (Brown et al. 2001), the predominant 

resident macrophages of the liver, and by circulating neutrophils and 

neutrophils that infiltrate injured tissue.  

Hydroxylation of SMX at the N4 position generates SMX hydroxylamine, 

SMX.NHOH  (Cribb et al. 1995). Auto oxidation of SMX.NHOH results in the 

formation of nitroso-SMX, SMX.NO (Cribb et al. 1991). SMX.NO is highly reactive 

and undergoes further reactions to form nitro-SMX and azoxy and azo dimers 

(Naisbitt et al. 2002). Oxidation of azo compounds produces the azoxy 

derivatives while dimer formation results from condensation. SMX.NO also 

undergoes reduction in the presence of excess glutathione or ascorbate to form 

SMX.NHOH (Lavergne et al. 2006). Immunoblotting and RT-PCR data for 

enzyme expression in immune cells suggests the expression of low levels of 

myeloperoxidase in EBV-transformed B-cells used as APCs (chapter 2).  

Schnyder et al. (2000) employed the SMX pulsing experiments to investigate the 

metabolic ability of APCs. This assay involves incubating APCs with either SMX 

or SMX.NO (control) for 2-8 h followed by extensive washes to remove unbound 

drug and 3H-thymidine proliferation assay in the presence of drug-specific T-
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cells (Schnyder et al. 2000). The authors reported that APCs pulsed with 

SMX.NO resulted in the modification of APC protein and induced T-cell 

proliferation. However, SMX-pulsed APCs did not induce T-cell proliferation. In 

contrast, Elsheikh et al. (2010) reported activation of drug-specific T-cells when 

APCs were pulsed with SMX for 16 h. Hence, APCs have the ability to metabolise 

SMX to its protein reactive metabolite (SMX.NO). The details of intracellular 

protein processing and presentation have been extensively discussed in chapter 

1.  

Most proteins possess important structural, signalling and/or enzymatic 

activities. Post-translational modifications of proteins or the absence of such 

modifications in some situations have been implicated in a number of diseases 

(Gong et al. 2005; Li et al. 2010). Important post-translational modifications 

essential for cell signalling and enzymatic activity include: phosphorylation 

(Hunter 1995), acetylation (Farazi et al. 2001), methylation (Wood and 

Shilatifard 2004), glycosylation (Spiro 2002)  and sulphation (Hemmerich et al. 

2004). Modifications of proteins and peptides have been used to enhance 

desired therapeutic effects of some biological products like insulin 

(Torosantucci et al. 2011; Yang et al. 2011). In contrast, protein modifications 

by drugs or their reactive metabolites are thought to be a critical step in a 

number of adverse drug reactions (Naisbitt et al. 1996; Evans et al. 2004; Park 

et al. 2005; Walgren et al. 2005; Sanderson et al. 2007; Cheng et al. 2008). 

Multiple modification sites (13 lysine residues) on human serum albumin by β-

lactam antibiotics result in several antigenic epitopes and have been extensively 
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characterised (Jenkins et al. 2009; Meng et al. 2011; Whitaker et al. 2011; El-

Ghaiesh et al. 2012; Jenkins et al. 2013).  

Upon oxidative metabolism of SMX, SMX.NO is capable of intracellular protein 

modification (Cribb et al. 1996; Naisbitt et al. 1996; Naisbitt et al. 1999; Reilly et 

al. 2000; Naisbitt et al. 2001; Naisbitt et al. 2002; Callan et al. 2009; Lavergne et 

al. 2009; Castrejon et al. 2010; Elsheikh et al. 2010). In vivo haptenation of 

serum protein in both SMX hypersensitive patients and drug naïve volunteers 

has been reported (Meekins et al. 1994; Gruchalla et al. 1998). Callan et al. 

(2009) characterised the modification of human GSH S-transferase π (GSTP), 

human serum albumin (HSA) and DS3 (a synthetic oligopeptide incorporating 

all of the standard amino acid residues of proteins) by SMX.NO. Mass 

spectrometry analysis of the resulting adducts revealed formation of a 

sulphinamide conjugate with DS3 and GSTP, representing a 267-amu mass 

addition. Modification of GSTP occurred on the reactive cysteine at position 47, 

with mass additions of 267, 283 and 299 consistent with sulphinamide, N-

hydroxysulphinamide, and N-hydroxysulphonamide adducts, respectively, as 

illustrated in figure 6.1. Interestingly, the HSA modification reported was on 

Cys34, generating just the N-hydroxysulphinamide adduct.  

The biological consequences of these modifications have not been fully defined 

using either an in vitro or in vivo system. The anatomical/cellular site of protein 

modification by small molecules is an important determinant of the nature of 

the immune response that follows (Weltzien et al. 1996). Proteomic analysis of 

both natural post-translational protein modifications and protein modifications 

by drugs and/or their reactive metabolites is possible using LC-MS/MS (Mann 
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and Jensen 2003; Jenkins et al. 2009; El-Ghaiesh et al. 2012; Jenkins et al. 2013; 

Monshi et al. 2013) and is important in understanding the molecular basis of 

immune activation by drug-modified proteins.  

 

Figure 6.1 Schematic representation of the metabolism and protein haptenation of SMX. 
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6.2 Aims 

Protein haptenation by the SMX.NO reactive metabolite is a determinant in 

SMX-induced hypersensitivity reactions. Notably, active MPO is present in the 

skin of patients with drug-induced toxic epidermal necrolysis (Paquet et al. 

2010) and a range of immune cells including dendritic cells and B-lymphocytes 

(Sanderson et al. 2007). Given the intrinsic reactivity of SMX.NO, we 

hypothesised that modification of cysteine residues would occur in close 

proximity to the site of metabolite formation. MPO exists as a tetramer (2 long 

chains + 2 short chains). The protein consists of 15 cysteine residues (figure 

6.2), made up of four free cysteine residues in each of the dimer subunits 

(Cys316 in a reduced state). Hence, the objective of this study was to investigate 

SMX.NO/MPO adduction in an in vitro system. The specific aims were 

 To characterize the SMX.NO-modified MPO adduct 

 To determine the immunogenicity of SMX.NO-modified MPO adduct 

 

Figure 6.2 Three-dimensional structure of MPO (green ribbon) showing cysteine residues (red 

spheres).  
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6.3 Methods 

6.3.1 Chemicals and reagents 

Human MPO full-length protein was purchased from Abcam (Cambridge, UK). 

MPO-derived peptides [MPO1 (307ADCIPFFRSCPACPG321), MPO2 

(307ADAIPFFRSAPAAPG321) and MPO3 (307ADAIPFFRSCPAAPG321)] were 

synthesised by Invitrogen (Paisley, UK). MPO1 has a sequence that occurs in 

native MPO; it contained an MHC-II binding sequence within MPO, determined 

using the immune epitope database (IEDB). MPO2 and 3 were substitution 

derivatives. All 3 peptides were prepared with a purity >95% as determined by 

the manufacturer using HPLC. SMX.NHOH  was synthesised according to 

previously published methods (Naisbitt et al. 1996). SMX and peroxidase-

conjugated anti-rabbit IgG secondary antibody were obtained from Sigma-

Aldrich (Gillingham, Dorset, UK). SMX.NO (C10H9N3O4S) was purchased from 

Dalton Chemical Laboratories Inc. (Toronto, Canada). Anti-SMX antibody was 

developed by Panigen (Blanchardville, WI, USA). Acetonitrile and methanol 

were obtained from Fisher Scientific (Leicestershire, UK). Laemmli buffer was 

bought from Bio-Rad (Hemel Hempstead, Hertfordshire, United Kingdom). 

Chemiluminescent substrate was purchased from Thermo Scientific 

(Cramlington, Northumberland, United Kingdom). Amicon Ultra-0.5 mL 

centrifugal filter units were bought from Merck Millipore Ltd (Carrigtwohill, 

Ireland).  

6.3.2 Isolation of PBMCs and generation of drug-specific T-cell 

clones 

PBMCs were isolated and SMX.NO-specific T-cell clones were generated 

according to methods described in section 2.3.3.  
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6.3.3 Generation of EBV-transformed B cells 

The EBV-transformed cell line used as APCs was generated as described in 

section 2.3.5. 

6.3.4 Western blotting 

Myeloperoxidase (1.5 mg/mL) was incubated in 0.1 M phosphate buffer, pH 7.4, 

with either SMX (2 mM) or SMX.NO (50 µM) in the presence or absence of 

hydrogen peroxide (10 µM) or with SMX.NO (50 µM) for between 0-1 hour at 

37°C, under an atmosphere of 95% O2/5% CO2. A 1:5 molar ratio of MPO: 

SMX.NO provided optimum binding conditions. MPO incubated in phosphate 

buffer was utilised as negative control. Samples were processed after 0-60 min 

for Western blotting. Samples (10 μL) were boiled in reducing Laemmli buffer 

(2.5 μL) for 10 min and their protein component separated on a 12% SDS-PAGE 

gel (300 V, 60 mA, and 1 hour) then transferred onto a nitrocellulose membrane 

(300 V, 250 mA and 1 hour). Non-specific antibody binding sites were blocked 

using 2.5% reconstituted skimmed milk for 1 hour at room temperature. The 

blocking was followed by immunoblotting for protein adducts using anti-SMX 

rabbit antiserum (1:2000 dilutions) overnight at 4°C. PBS-Tween washes were 

performed at 5-min intervals for a total of 20 min to remove unbound antibody. 

The nitrocellulose membrane was then incubated with peroxidase-conjugated 

anti-rabbit IgG antibody (1:5000 dilutions) for 1h at room temperature. The 

membrane was then developed using chemiluminescent substrate according to 

the manufacturers’ instructions. 

6.3.5 Coomassie Blue staining 

Coomassie Blue staining of proteins on gels was performed as described in 

section 2.3.9. 
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6.3.6 In-gel digests 

Bands excised from Coomassie Blue-stained gels were de-stained by adding 100 

μL 50% ACN/50 mM ammonium hydrogencarbonate and incubating for 15 min 

at room temperature with occasional agitation. The supernatants were 

discarded and the gel bands were dried in a SpeedVac vacuum evaporator (15-

20 min). They were rehydrated in 10 mM dithiothreitol/50 mM ammonium 

hydrogencarbonate (100 µL) and incubated at 56oC for 1 hour. The 

supernatants were removed and the bands were incubated in 25 µL of a 55 mM 

iodoacetamide/50 mM ammonium hydrogencarbonate solution for a further 45 

min in the dark. The gel pieces were washed with ammonium 

hydrogencarbonate for 10 min before being dried once more in a SpeedVac. 

They were then rehydrated in 10 ng/µL trypsin/50 mM ammonium 

hydrogencarbonate buffer (100 µL) and incubated overnight at 37oC. In order to 

extract peptides from the gel pieces, they were incubated in a sonicator using 30 

µL 60% acetonitrile/1% trifluoroacetic acid for 5 min. After brief centrifugation, 

the supernatants were collected. This step was repeated once, and then the 

supernatants were pooled and dried in a SpeedVac. The peptides were 

resuspended in 0.1% formic acid (10 µL) and 0.5 µL was spotted onto a MALDI 

target plate or 5 µL was analysed by LC-MS. 

6.3.7 In-silico determination of MPO-binding HLA epitopes 

using the immune epitope database (IEDB screening)  

The MPO peptide sequences with the highest probability of associating with 

MHC II (HLA-DQ) were determined in silico using IEDB screening of the MPO 

amino acid sequence. The IEDB is an internet resource that contains data on 

antibody and T-cell epitopes for humans, non-human primates, rodents and 
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other animal species (http://www.iedb.org/). This database contains a variety of 

resources important for B- and T-cell epitope predictions (Zhang et al. 2008; 

Kim et al. 2012). Using the MHC II prediction tool on the IEDB, various peptide 

sequences showing high binding affinities with the HLA-DQ molecule were 

identified. Our analysis focused on HLA-DQ as previous studies showed HLA-DQ 

restricted drug presentation using SMX.NO-specific TCCs generated from SMX-

hypersensitive patients (chapter 3). Peptides with median inhibitory 

concentrations (IC50s) of <50 nM were classified as high affinity binders while 

those with IC50S of <500 nM were classified as intermediate affinity binders. 

Peptides containing cysteine residues that have free SH groups in the native 

protein, which therefore might be modified by SMX.NO, were considered for 

selection. Of particular interest were MPO-derived peptides with cysteine 

residues at position 309, 316 and 319.  

Enhanced SMX.NO haptenation was hypothesized for peptides containing 

cysteine residues with free SH groups from the long polypeptide chain of MPO 

(Zeng and Fenna 1992). The long chain of MPO has five intra-chain disulphide 

bridges and one inter-chain bridge end at Cys153. Evidently, Cys298, Cys309, 

Cys316, Cys319 have free SH groups.  

Since all the SMX.NO-specific TCCs were CD4+ cells, a 15 amino acid peptide, 

MPO1 (307ADCIPFFRSCPACPG321), with an IC50s of 145 nM, was selected and 

synthesized along with two similar peptides. All three peptides showed a degree 

of homology but differed in amino acid residues at positions 309, 316 and 319. 

LC-MS/MS characterization of SMX.NO-modified peptides was followed by 

purification. T-cell functional proliferation assays were performed to determine 

the immunogenicity of SMX.NO-modified MPO peptides. The modified forms of 

http://www.iedb.org/
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MPO1 were MPO2 (ADAIPFFRSAPAAPG) and MPO3 (ADAIPFFRSCPAAPG). 

While MPO2 had alanine substitutions for the cysteine residues at positions 

309, 316 and 319, MPO3 had two alanine substitutions at positions 309 and 

319.  

6.3.8 Generation and purification of SMX.NO-modified MPO 

peptides 

MPO1, MPO2 or MPO3 (1 mg/mL, 100 µL) were incubated with SMX.NO (50 µM, 

20 µL) in a 1:5 molar ratio for 1 hour at 37C, under an atmosphere of 95% 

O2/5% CO2. Removal of unbound SMX.NO and purification of the resulting 

peptide adduct were carried out using off-line reversed phase (RP) 

chromatography (described in section 6.3.9). 

6.3.9 Reversed phase (RP) HPLC  

MPO/MPO derived peptide was incubated with SMX.NO (1:5) at 37C under an 

atmosphere of 95% O2/5% CO2. The whole incubation was made up to a volume 

of 500 µL with 0.1% trifluoroacetic acid (TFA); at low pH (~2) as peptides and 

proteins bind more efficiently to the reversed phase matrix. The sample was 

then injected onto a Prodigy 150 × 4.6 mm column with 5 µm particle size 

(Phenomenex) and eluted using a gradient from 95% solvent A (5% 

acetonitrile/0.1% TFA)/5% solvent B (95% acetonitrile/0.1% TFA) to 50% 

solvent B in 40 min at a flow rate of 1 mL/min. Fractions of 1 mL were collected 

and dried in a SpeedVac (Eppendorf) prior to LC-MS analysis. 

6.3.10 Generation and purification of SMX.NO-modified 

recombinant MPO  

Recombinant MPO full-length protein (1.5 mg/mL, 100 μL) was incubated with 

SMX.NO (50 mM, 20 µL) in a 1:5 molar ratio for 1 hour at 37C, under an 
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atmosphere of 95% O2 /5% CO2. Removal of unbound SMX.NO and the 

purification of resulting adducts were carried out using either RP 

chromatography or ultrafiltration with Amicon Ultra-0.5 mL centrifugal filter 

units. The later method was used to enhance the recovery of SMX.NO-modified 

MPO.  

For confirmation of the haptenation before protein purification using reversed 

phase chromatography, an aliquot of the modified protein was run on a SDS-

PAGE gel as described above, Coomassie Blue staining performed, and the band 

was cut out and digested with trypsin. The peptides were extracted, and they 

were fractionated on the off-line reversed phase column prior to spotting on 

nitrocellulose and Western blotting to confirm drug-protein modification. In all, 

30 fractions were collected between 11-40 min and Western blotting was 

performed using an anti-SMX antibody to identify fractions containing SMX.NO-

modified MPO-derived peptides. In addition, adducts were purified and 

concentrated using the ultra-filtration technique.  

After 1 hour of incubation, the mixture of MPO and SMX.NO was transferred to 

the Amicon Ultra-0.5 mL centrifugal filter unit and washed with either PBS or 

PBS containing an excess of GSH.  In all, five washes (W1-W5) were carried out 

using either PBS or PBS containing GSH (1 mM). Washes were performed at 4°C 

and 14,000g for 30 min. After the fifth wash, a Bradford assay was used to 

quantify the amount of SMX.NO-modified MPO generated as previously 

described in section 2.3.7. 
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6.3.11 LC-MS/MS analysis of SMX.NO-modified MPO 

peptide/recombinant MPO protein 

SMX.NO-modified MPO adducts and the synthetic peptide adducts generated as 

described above were analysed using LC-MS/MS. In each case, the degree of 

SMX.NO/MPO or SMX.NO/MPO peptide haptenation was determined. Details of 

the LC-MS/MS analysis are described in section 2.3.12.    

6.3.12 LC-tandem mass spectrometric analysis of residual 

SMX.NO and its degradation products 

6.3.12.1 Sample processing 
To confirm the removal of residual SMX.NO from preparations of SMX.NO-

modified MPO, filtrates of SMX.NO-modified MPO protein were analysed.  

Authentic standards of SMX, SMX.NHOH and SMX.NO were first analysed. SMX 

was dissolved in water-methanol (75:25, v/v; 500 µg/mL) and the resulting 

solution was diluted with methanol as required. SMX.NHOH dissolved in DMSO 

was diluted with methanol (1:25, v/v; 500 μg/mL). SMX.NO dissolved in DMSO 

(13.1 mg/mL) was diluted with ACN (LC-MS grade; 500 µg/mL), and the 

resulting solution was diluted serially with ACN for immediate analysis. 

Aliquots of these solutions (1.0 L for chromatographic assessments; 10 L for 

estimation of the sensitivity of SMX.NO detection), the MPO ultrafiltration 

washes (10 L) and the supernatants of MPO solutions that had been 

deproteinized with ACN immediately before the analyses (10 L) were injected 

onto the HPLC column without further treatment.  

6.3.12.2 Analyses of ultrafiltration washes and deproteinized 

solutions 
Aliquots of the standard solutions, ultrafiltration washes and deproteinized 

solutions were chromatographed at room temperature on an Agilent 5-m 
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Zorbax Eclipse XDB-C8 column (150 mm  4.6 mm; Agilent Technologies, Santa 

Clara, CA, USA) by gradient elution with acetonitrile in 0.05% formic acid. The 

column was protected with an Agilent Zorbax C18 Reliance cartridge guard-

column.  

Eluent was delivered by a PerkinElmer series 200 HPLC system (pump and 

autosampler; PerkinElmer, Norwalk, CT, USA). The eluent flow rate was 1.0 

mL/min. The column was connected to the Turbo V electrospray source of an 

API 4000 Qtrap hybrid quadrupole mass spectrometer (AB Sciex, Warrington, 

UK) via a Valco flow-splitting T-piece. The split flow of eluate was approx. 150 

µL/min. Synthetic compounds and experimental analytes were eluted with the 

following gradient of acetonitrile (LC-MS grade; Fisher Scientific) in 0.05% 

(v/v) formic acid: 15%60% over 20 min, 60% for 1.0 min, 60%15% over 

0.1 min, 15% for 4.9 min.  

 

Table 6.1.Typical retention times (Rt) of the analytes  

 

The operating parameters of the mass spectrometer for full scanning operation: 

source temperature, 450oC; ionspray (electrospray capillary) voltage, 4,500 V; 

scanning, m/z 100-1,000 in 5 s (other relevant parameters, as for MRM 
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operation). MRM operation:  source temperature, 450oC; ionspray (electrospray 

capillary) voltage, 4,500 V; desolvation potential (DP), 100 V; entrance potential 

(EP), 10 V; CAD gas setting, 5; collision energy (CE), 41 eV; collision exit 

potential, 3 V; channel dwell time, 150 ms; curtain gas setting, 15; spray gas 

(Gas-1) setting, 50; heater gas (Gas-2) setting, 50. The instrument was set up in 

positive-ion mode. MRM transitions were derived from individual LC-MS 

analyses of standard compounds, and were not optimized.  The GSH-containing 

washes and the PBS washes analysed separately were sampled in reverse order, 

i.e. starting with W5, to avoid/minimize sample contamination by ‘carry over’.  

6.3.13 T-cell proliferation assay 

Thymidine proliferation assay was used to determine the immunogenicity of 

SMX.NO-modified MPO/MPO derived peptides. SMX.NO-specific T-cell clones (5 

× 104 cells, 50 µL) generated from SMX-hypersensitive patients (chapter 3) 

were co-cultured with irradiated autologous EBV-transformed B-cells (1 × 104 

cells) in the presence of either unmodified or SMX.NO-modified MPO (170 

µg/ml, 100 µL). SMX.NO (50 µM, 100µL) was used as positive control. The 

proliferation assay was set up in duplicate in a 96-well U-bottom plate. Plates 

were incubated for 48 h, [3H]-thymidine (0.5 μCi) added for the final 16 h of 

incubation and T-cell proliferation evaluated using a scintillation counter. T-cell 

proliferation was calculated as the mean of duplicate wells. A parallel 

proliferation assay was conducted to determine the minimum stimulatory 

concentration of SMX.NO (0.5 – 100 µM). Furthermore, T-cell responses from 

the filtrate after PBS washes (W1-W5) were measured. 
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6.3.14 Cation exchange chromatography 

SMX.NO-modified synthetic MPO peptides were subjected to ion exchange 

chromatography using a Polysulfoethyl A strong cation-exchange column (200 × 

4.6 mm, 5 µm, 300 Å; Poly LC, Columbia, MD). The samples were diluted to 4 mL 

in 10 mM KH2PO4/25% acetonitrile (solvent A), pH 3, prior to loading onto the 

column. Peptides were eluted using a gradient from 0-15% solvent B (1 M KCl in 

10 mM KH2PO4/25% acetonitrile, pH 3) in 45 min and 15-50% solvent B  in 15 

min at a flow rate of 1 mL/min, and 2 mL fractions were collected. The fractions 

were evaporated to dryness in a SpeedVac, and they were desalted using a 

macroporous C18 High-Recovery reversed phase column (4.6 × 50 mm, Agilent 

Technologies, Santa Clara, CA, USA) installed on a Vision workstation (AB Sciex) 

before being dried once more. The peptides were resuspended in 0.1% formic 

acid (10 µL) just prior to LC-MS/MS analysis.  
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6.4 Results 

Initial experiments involved the characterization of adducts generated from 

synthetic MPO peptides and SMX.NO followed by the determination of the 

immunogenicity of SMX.NO-modified peptides. In subsequent experiments, 

recombinant MPO was modified with SMX.NO with the aim of increasing the 

recovery of the SMX.NO-modified hapten carrier.  

6.4.1 Evidence of SMX.NO/MPO peptide and SMX.NO/MPO 

protein adduction  

SMX.NO modification of either MPO-derived peptides or recombinant full-length 

MPO was determined using both Western blotting and LC-MS/MS analysis.  

6.4.1.1 Western blot analysis of SMX.NO/MPO haptenation 
The limit of MPO detection using Western blotting was determined to be 0.1 

mg/ml (figure 6.3A). MPO/SMX.NO haptenation was weakly detected at 1:1 

molar ratio. A higher degree of protein modification was observed with 

increased molar ratios (1:5 and 1:10), as illustrated in figure 6.3 B and C. 

Furthermore, binding of SMX to MPO was dependent on the concentration of 

SMX, and hydrogen peroxide was critical for the conversion of SMX to SMX.NO 

(figure 6.3D). Finally, the formation of SMX.NO/protein adduct was time-

dependent, with optimum MPO haptenation occurring at between 30-60 min 

(figure 6.3E). A time point of 1 hour was used for subsequent MPO haptenation.  
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Figure 6.3 Western blot analyses of SMX.NO/MPO adduct. (A) Limit of detection for 

recombinant MPO protein. Dilutions of MPO (0.1-5.0 mg/ml) were processed, and separated on 

a 12% SDS-PAGE gel before Western blotting for MPO using an anti-MPO antibody. (B) 

Coomassie Blue staining of MPO used as loading control for Western blotting of SMX.NO/MPO 

adducts. (C) MPO was incubated with SMX.NO (1:1, 1:5 and 1:10 molar ratio) for 1 hour at 37oC. 

Samples were then processed, and separated using a 12% SDS-PAGE gel before Western 

blotting with an anti-SMX rabbit antibody. (D) MPO (1.5 mg/ml) was incubated with or without 

SMX.NO (50 µM) or with various concentrations of SMX (0.05-2 mM) in the presence of 

hydrogen peroxide (10 µM) for 1 hour at 37oC. Samples were then processed, and separated 

using a 12% SDS-PAGE gel before Western blotting with an anti-SMX rabbit antibody. (E) MPO 

(1.5 mg/ml) was incubated with SMX.NO (50 µM) in a 1:5 molar ratio for 0-60 min. Samples 

were processed, and separated on a 12% SDS-PAGE gel before Western blotting with an anti-

SMX rabbit antibody  

 

6.4.1.2 LC-MS/MS analysis of SMX.NO-modified MPO-derived 

peptide  
The characteristics of the MPO-derived peptides synthesised by Invitrogen are 

given in table 6.2 below. MPO2 and MPO3 showed 80.0% and 96.3% homology 

respectively when compared with MPO1. SMX.NO haptenation was observed in 

various degrees on MPO1 and MPO3 but not MPO2 (no cysteine residue). 
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Table 6.2-Chemical properties of MPO-derived peptides: red letters in the 

peptide sequences indicate alanine substitutions in the synthesis of MPO2 and 

MPO3.  

 

LC-MS/MS analyses of off-line reversed phase HPLC fractions collected at 34, 35 

and 36 min are illustrated in figure 6.4. The LC-MS/MS characterization of 

SMX.NO-modified MPO1 indicates the presence of the N-hydroxysulphinamide 

residue on Cys309 and the formation of an inter-chain disulphide bond (figure 

6.5). The panels on the left contain extracted ion chromatograms (XIC) that 

revealed the formation of both intra- and inter-peptide disulphide bonds.  

Native MPO, which is a tetramer (see figure 6.2), has both types of disulphide 

bridge: each half molecule has one inter-chain bridge and six intra-chain bridges 

(Zeng and Fenna 1992). It is very difficult to determine from the MS/MS spectra 

the exact position of the disulphides, but the presence of at least three separate 

chromatographic peaks suggested that multiple disulphide bonds had formed. 

Similarly, a peptide modified with the N-hydroxysulphinamide residue (283 

amu) plus an intra-peptide disulphide was detected (middle panels), but the 

presence of multiple chromatographic peaks suggested the positions of these 

modifications varied. The panels on the right are zoom-in presentations of the 
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middle panels to show the multiple chromatographic peaks. Subsequent 

attempts to interpret the signals are shown in figure 6.7. 

Figure 6.4 Cation exchange traces. Off-line reversed phase purification of SMX.NO-modified 

MPO1 peptide. Samples eluting at 34, 35 and 36 min were collected for analysis.  
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Figure 6.5 Mass spectrometric characterization of SMX.NO-modified MPO1 peptide. 

Spectrum 1 and Spectrum 2 appear to be the same peptide, most likely rotational isomers. 

Spectrum 3 revealed a loss of 2 amu from the drug adducts (internal disulphide bridge between 

two cysteine residues resulted in loss of 2×hydrogen atoms). Spectra 1-4 represent reversed 

phase fractions collected at 34, 35 and 36 min.   
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Because of the complexity of the analysis due to disulphide bond formation in 

peptide MPO1, an additional peptide was synthesised in which two of the 

cysteine residues (Cys309, Cys319) had been substituted with alanine residues 

(MPO3). The analysis of SMX.NO/MPO3 haptenation is illustrated in figure 6.6 

and figure 6.7. MPO3 was modified with nitroso-SMX, fractionated by off-line 

RP-HPLC and the fractions were assessed by MALDI-MS. This assessment 

identified peptide fractions which were taken forward for full LC-MS/MS 

analysis. Reversed phase fractions were collected at 27, 28, 29 and 30 min. 
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Figure 6.6 MALDI-MS analysis of SMX.NO-modified MPO3 fractionated by off-line RP-HPLC. The 

fractions were collected after 27 min and 28 min (upper and lower panels respectively). Mass of 

unmodified peptide = 1519.80, mass of dipeptide = 3037.66.  
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Figure 6.7 MALDI-MS analysis of SMX.NO-modified MPO3 fractionated by off-line RP-HPLC. The 

fractions were collected after 29 min and 30 min (upper and lower panels respectively). 

Calibrated masses were determined as follows: unmodified peptide = 1519, N-

hydroxysulphinamide-modified peptide = 1802.88, partial dipeptide = 2696.16.   
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Figure 6.8 Representative MS3 spectra and mass chromatograms of characteristic fragment ions 

from SMX.NO-modified MPO3 peptides following reversed phase HPLC for samples collected 

after 29 min and 30 min. (A) Characteristic internal fragment ions consistent with formation of 

a disulphide (B) Weak characteristic internal fragment ions suggestive of sulphinamide adduct 

(267 amu residue) formation. (C) Convincing internal fragment ion to confirm the presence of 

N-hydroxysulphinamide adduct (m/z = 2+ 901.8, 3+ 601.6)  

 

Spectra of SMX.NO-modified MPO3 showed the formation of a dipeptide which 

complicated the analysis of fragment ions (figure 6.8A). Although the spectrum 

was weak, there was evidence of a sulphinamide adduct (figure 6.8B) and for an 

N-hydroxysulphinamide adduct (figures 6.7 and 6.8C). No peptide with the N-

hydroxysulphonamide adduct was detected.  

Since off-line RP-HPLC failed to separate modified from unmodified peptide, a 

different off-line fractionation was tried, namely cation exchange 

chromatography (CEX). Again, cation exchange chromatography failed to 

separate modified from unmodified MPO3, but at least the dipeptide eluted 
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much later in the chromatographic run (figure 6.9). Cation exchange 

chromatography also revealed the presence of many variants of the MPO3 

peptide formed by amino acid deletions, additions, substitutions and chemical 

modification during synthesis, further complicating the interpretation of 

spectra generated (figure 6.10).  

 

Figure 6.9 Cation exchange chromatography aimed to purify MPO3/SMX.NO adducts 

for fractions collected between 37-38, 39-40 and 55-56 min. The 283-amu residue is an 

N-hydroxysulphinamide adduct.  
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Figure 6.10 Variations of MPO3 peptide formed by amino acid deletions, additions, 

substitutions and chemical modification during synthesis.   

 

The concentration of the semi-purified modified peptide was estimated using 

the unmodified peptide to generate a standard curve. A dilution series of the 

MPO3 peptide was analysed by LC-MRM-MS in a QTRAP 5500. Briefly, the 

peptide was diluted in HSA in order to prevent loss through adhesion to plastic 

vials and tubes. Aliquots of 1 µL of the diluted peptide were delivered into a 

QTRAP 5500 hybrid quadrupole-linear ion trap mass spectrometer (AB Sciex) 

by automated in-line liquid chromatography (U3000 HPLC System, 5 mm C18 

nano-precolumn and 75 µm ×15 cm C18 PepMap column [Dionex, California, 

USA]) via a 10 µm inner diameter PicoTip (New Objective, Massachusetts, USA). 

A gradient from 2% ACN/0.1% FA (v/v) to 50% ACN/0.1% FA (v/v) in 60 min 

was applied at a flow rate of 300 nL/min. The ionspray potential was set to 

2,200-3,500 V, the nebuliser gas to 19 and the interface heater to 150oC. 

MRM transitions were acquired at unit resolution in both the Q1 and Q3 

quadrupoles to maximize specificity, they were optimised for collision energy 

and collision cell exit potential, and dwell time was 50 ms. MRM survey scans 

were used to trigger enhanced product ion MS/MS scans of drug-modified 
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peptides, with Q1 set to unit resolution, dynamic fill selected and dynamic 

exclusion for 20 s. The MRM transitions were designed using the m/z values of 

the unmodified and modified MPO3 peptide in combination with the dominant 

fragment ion masses observed for each (see table 6.3). 

Table 6.3- MRM transition values for the calibration of MPO3 adduct.   

 

A standard curve of ion count versus femtomoles of peptide loaded on the 

column was generated (figure 6.11), and the concentration of the modified 

peptide was determined by adjusting the MRM transitions to account for the 

presence of adduct with the mass of 283 amu (N-hydroxysulphinamide). Only 

1.912 µg of SMX.NO-modified MPO3 was recovered and utilised in biological 

assay.  
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Figure 6.11 Quantification of unmodified and SMX.NO-modified MPO3 peptide using 

calibration curve of MPO in a tryptic digest of HSA.  

 

Although SMX.NO-modified MPO3 failed to stimulate T-cell proliferation (figure 

6.12), it was not clear at this point if the non-responsiveness of SMX.NO-specific 

cells was a direct result of the low concentration of drug-modified MPO3 adduct 

incubated in the proliferation assay  or a lack of recognition of the antigenic 

epitope by the drug-specific TCCs. A number of studies have used peptide 

concentrations between 50-100 μg/mL. Furthermore, experiments where 

MPO3 (2 mg/ml) was incubated with SMX.NO (5-50 µM) for 1 hour followed by 

addition of excess of GSH (1 mM) for 30 min to reduce free SMX.NO failed to 

activate drug-specific TCCs (figure 6.12). Hence, the decision was made to 

modify the full-length recombinant MPO.    
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Figure 6.12 T-cell proliferative responses to SMX.NO-modified MPO3 peptide. 

SMX.NO-specific T-cell clones (5×104 cells, 50 µL) generated from an SMX hypersensitive patient 

were co-cultured with autologous APCs (1×104 cells) with either unmodified or SMX.NO-

modified MPO3 peptide (0.03-0.3 µM) in a 96-well U-bottom plate. In other experiments, MPO3 

(5-50 µM) was incubated with SMX.NO (50 µM) for 1 hour.  After 1 hour, GSH (1 mM) was used 

to neutralize free SMX.NO. SMX.NO (50 µM) and culture medium were used as positive and 

negative controls, respectively. The plate was incubated at 37°C, under an atmosphere of 

95%O2/5% CO2 for 48 h. [3H]-thymidine (0.5 μCi) was added for the final 16 h of incubation and 

T-cell proliferation evaluated using scintillation counter.  

 

6.4.1.3 LC-MS/MS analysis of SMX.NO-modified MPO 
Subsequent experiments involved the attempted LC-MS/MS analysis of 

SMX.NO/MPO haptenation. The recombinant MPO protein that had been 

incubated with SMX.NO was analysed on a 12% SDS-PAGE gel to eliminate any 

free SMX.NO from the analysis of drug-protein adducts prior to tryptic digestion. 

MPO was incubated with SMX.NO for 1 hour at 1:10 molar ratio followed by gel 

electrophoresis, Coomassie Blue staining and in-gel tryptic digestion. LC-MS/MS 

analysis achieved 81% sequence coverage but no modification of MPO by 

SMX.NO was detected. Unsuccessful MS/MS searches for SMX.NO-modified MPO 
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included sulphinamide, N-hydroxysulphinamide, and N-hydroxysulphonamide 

adducts. Conversely, Western blot analyses of the SMX.NO/MPO adduct 

suggested MPO modification as illustrated in figure 6.13.  

 

 

Figure 6.13 Schematic of steps and outcomes of SMX.NO/MPO adduct detection using LC-

MS/MS and Western blotting techniques. 

 

Since no SMX.NO-modified peptides were detected when the entire protein 

digest was analysed by LC-MS, the mixture of peptides was subjected to off-line 

reversed phase chromatography in order to enhance the sensitivity of MS 

detection and to simplify the data analysis (figure 6.14A). However, it still was 

not possible to identify modified peptides. Each fraction collected from the off-

line reversed phase column was spotted onto a sheet of nitrocellulose and 

probed with anti-SMX antibody to determine which fraction(s) contained drug-

modified peptides (figure 6.14B). The positive fractions were then exhaustively 



Chapter 6 

237 
 

analysed by LC-MS/MS and the data submitted to re-scripted protein analysis 

software (ProteinPilot 4, AB Sciex) in order to detect modification. 

  

Figure 6.14 (A) Off-line reversed phase fractionation of SMX.NO-modified MPO-derived tryptic 

peptides. Fractions corresponding to prominent peaks detected at 280 nm were collected and 

analysed using LC-MS/MS. (B) Fractions were collected between 11-40 min, spotted on 

nitrocellulose membrane, followed by Western blot analysis for SMX.NO-modified MPO adducts.   

 

Two SMX.NO-modified tryptic peptides were detected, but neither contained 

the Cys316 modification observed in the MPO3/SMX.NO adduct. N-

hydroxysulphinamide adducts (with modifications on Cys309 and Cys398) were 

observed (figure 6.15). Cys316 contained a sulphenic acid modification, which, 

it was hypothesized, would enhance SMX.NO haptenation (see figure 6.1). A 

number of reactive metabolites can generate protein-sulphenic acid 

intermediates resulting in both functional and toxic cellular outcomes 
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(Kettenhofen and Wood 2010). However, it is possible that the extensive 

glycosylation of Asn323 by N-acetyl-glucosamine sterically blocks access to 

Cys316 by nitroso-SMX, preventing modification (figure 6.16). The patterns of 

the modifications of MPO, MPO1 and MPO3 by SMX.NO are quite complicated as 

illustrated on table 6.4.  

 

Figure 6.15 Representative MS3 spectra of characteristic fragment ions from N-

hydroxysulphinamide adduct. Two modifications by SMX.NO of MPO-derived tryptic peptides 

occurred on Cys309 and Cys398.  
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Figure 6.16 LC-MS/MS analysis of recombinant human myeloperoxidase with N-acetyl 

glucosamine residue on Asn323 (m/z = 2+ 818.4).   

 

Table 6.4 Modification patterns of MPO and MPO peptides by SMX.NO. 

 

6.4.1.4 Purification of SMX.NO-modified MPO adducts using 

ultrafiltration  
Amicon Ultra-0.5 mL centrifugal filter units were used to remove residual 

SMX.NO from preparations of modified MPO. Samples of protein on the column 

were washed 5 times (14,000 g, 4°C, 30 min) with either PBS or PBS containing 

excess GSH (1 mM). Excess GSH has been previously reported to reduce SMX.NO 

(Cribb et al. 1991).  

LC-MS/MS analysis of all the washes and the supernatant obtained after the 

solution of the washed MPO was deproteinized were performed to exclude the 

presence of residual SMX.NO in the SMX.NO-modified MPO adduct. Standards of 

SMX, SMX.NHOH, SMX.NO, and the azoxy dimer that is invariably found in 
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synthetic preparations of SMX.NO, were resolved satisfactorily on a C8 column 

with a gradient of ACN in formic acid (0.05%, v/v) as in figure 6.17. Multiple 

reaction monitoring (MRM) transitions for the subsequent analyses were 

derived from individual LC-MS analyses. Table 6.5 records mass spectrometric 

parameters for the MRM detection of SMX and derivatives. 

Table 6.5 -Mass spectrometric parameters for the multiple reaction monitoring 

(MRM) detection of SMX and derivatives.  
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Figure 6.17 LC-MS and LC/MS/MS analysis of SMX.NHOH, SMX, SMX.NO and SMX azoxy 

standards illustrating their respective retention time following resolution using a C8 column 

with a gradient of ACN in formic acid (0.05%, v/v). 

 

SMX.NO was dissolved in DMSO and serially diluted with ACN, and dilutions 

were analysed immediately by unoptimized MRM. The lower limit of SMX.NO 

detection was estimated to be 0.5 µg/ml (≡ 1.9 μM). SMX.NO was not detected 

at 0.25 µg/ml using this LC-MS/MS method (figure 6.18B). The ultrafiltration 

PBS washes (PB W1-W5) of MPO that had been incubated with SMX.NO were 

analysed by LC-MS/MS immediately after they were thawed from -20°C. W1 and 

W2 contained very high concentrations of SMX.NO (figure 6.19). Successive PBS 

washes contained lower concentrations of the nitroso (figure 6.20 and figure 

6.21). W5 did not contain SMX.NO that could be identified with confidence; 

certainly the concentration was below 1.9 μM. SMX was detected in W1, W2 and 

W3. SMX.NHOH was only found in W2 and W3 washes. The azoxy was clearly 
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present in all of the washes up to and including W5. LC-MS/MS analysis of 

supernatant of the control MPO solution (protein not incubated with SMX.NO), 

consisting of PBS or PBS containing GSH, suggested no trace of SMX.NO 

(appendix ii). The control solutions of MPO were deproteinized with ACN (5 μl + 

95 μl ACN). The supernatants were analyzed immediately. No signal 

corresponding to SMX.NO was detected in either supernatant. Furthermore, 

analyses of supernatants of solutions of SMX.NO-modified MPO adduct after 

either PBS or PBS+GSH washes (5th wash) suggested no trace of SMX-NO (figure 

6.23).  
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Figure 6.18 Limits of SMX.NO detection using LC-MS/MS. (A) Distinctive peak corresponding to 

SMX.NO was obtained at 0.5 µg/mL but not at 0.25 µg/mL (B).  
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Figure 6.19 LC-MS/MS analysis of first and second washes (PB W1 and PB W2) of SMX.NO-

modified MPO. 
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Figure 6.20 LC-MS/MS analysis of 3rd and 4th washes (PB W3 and PB W4) of SMX.NO-modified 

MPO. 



Chapter 6 

246 
 

 

Figure 6.21 LC-MS/MS analysis of 5th wash (PB W5) of SMX.NO-modified MPO with no 

convincing evidence of SMX.NO signal. 

 

The phosphate buffer+GSH washes (PB+GSH W1-W5) of filtered MPO that had 

been incubated with SMX.NO were analysed by LC-MS/MS immediately after 

they were thawed from -20°C. These GSH-containing washes and the PBS 

washes analysed separately were sampled in reverse order, i.e. starting with 

W5, to avoid/minimize sample contamination by ‘carry over’. The first wash 

clearly contained a high concentration of SMX.NO and also contained 

SMX.NHOH. The second wash, oddly, did not contain any of the analytes. No 

explanation for this observation is evident. The 2nd PBS wash contained 

abundant amounts of SMX.NO and azoxy (figure 6.19), and even the 3rd PBS 

wash contained an appreciable quantity of SMX.NO. The 3rd and 4th PBS+GSH 
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washes contained substantial amounts of hydroxylamine but no nitroso was 

detected (figure 6.27, appendix IV). Apparently the remaining SMX.NO 

associated with the filtered MPO underwent quantitative reduction to 

SMX.NHOH by GSH between the first and third washes (Cribb et al. 1991); and 

the SMX.NHOH was eluted by the third and fourth washes. The fifth PBS+GSH 

wash contained no more than a trace of SMX.NHOH and no detectable SMX.NO 

(figure 6.22). The azoxy dimer was the only confidently identifiable compound 

in this wash.  

Following successful modification with SMX.NO and characterization of the MPO 

adduct, quantification of the nitroso-protein adduct was performed using 

Bradford assay. The recovery of unmodified and SMX.NO-modified MPO was 

74% and 77% respectively.  
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Figure 6.22 Comparative LC-MS/MS analysis of filtrate from PBS and PBS+GSH washes for the 

4th and 5th washes. A trace of SMX.NO was detectable in the 4th PB wash but absent in the 5th PBS 

wash. SMX.NO was totally absent from both washes.  
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Figure 6.23 LC-MS/MS analyses of supernatants of solutions of unmodified MPO after 5 times 

PBS or PBS+GSH. The MRM chromatograms suggest an absence SMX.NO from both protein 

samples. The solutions of the washed MPO were deproteinated with ACN (5 µL + 75 μL ACN)  
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6.4.2 Determination of immunogenicity of SMX.NO-modified 

MPO  

The immunogenicity of SMX.NO-modified MPO adducts was determined using a 

48-hour proliferation assay. Also, the T-lymphocyte response to fractions (100 

µL) of ultrafiltrate was investigated using the same TCCs. Data obtained 

suggested that the SMX.NO-modified MPO adduct did not induce a T-cell 

response (figure 6.24A). The SMX.NO concentration in the fraction obtained 

from the first PBS wash was estimated by LC-MS/MS using peak height of 

SMX.NO standard. Ultrafiltrate from the first wash contained 1,400 µM SMX.NO 

and induced cytotoxicity (Figure 6.24B and D). According to Naisbitt et al. 

(1999), human lymphocytes are sensitive to the cytotoxic effects of SMX.NO 

when the nitroso-SMX concentration is 1,000 µM. Approximately 46.8±2.8% of 

T-lymphocytes were unable to exclude trypan blue after a 1 hour  incubation 

(Naisbitt et al. 1999). T-lymphocyte proliferation following incubation with 

ultrafiltrates from the 2nd and the 3rd PBS washes was consistent with the 

presence of soluble SMX.NO, approximately 170 µM and 19 µM, respectively. 

Hence, filtrates from washes 2 and 3 activated TCCs while other washes did not. 

Also, TCCs were activated with SMX.NO and not the modified peptide (figure 

6.24B). Furthermore, the SMX.NO concentration-response relationship of drug-

specific TCCs suggested a significant T-lymphocyte proliferation between 5-10 

µM (figure 6.24C).  
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Figures 6.24 (A) [3H]-thymidine proliferation assay to determine immunogenicity of SMX.NO-

modified MPO adduct. SMX.NO-specific T-cell clones (5×104 cells, 50 µL) were co-cultured with 

irradiated autologous EBV-transformed B-cells (1×104 cells, 50 µL) in the presence of either 

unmodified MPO or SMX.NO-modified MPO (0.17 mg/mL, 100 µL). SMX.NO (50 µM, 100 µL) and 

culture medium (100 µL) were used as positive and negative controls, respectively. The assay 

was performed in a 96-well U-bottom microplate. The plate was incubated at 37°C, under an 

atmosphere of 95%O2/ 5% CO2, for 48 h. [3H]-thymidine (0.5 μCi) was added for the final 16 h of 

incubation and T-cell proliferation evaluated using scintillation counter. (B) SMX.NO- specific T-

lymphocyte proliferation in response to fractions of PBS washes of modified MPO (W1-W5). 

Cells were co-cultured with antigens as described above. (C) Estimation of the minimum 

concentration of SMX.NO to induce drug-specific T-lymphocyte proliferation. (D) Calculated 

(based on dilution) and instrumentally estimated (LC-MS/MS) residual SMX.NO concentrations 

after each PBS wash.  
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6.5 Discussion 

Biotransformation is a critical aspect of the pharmacology and the elimination 

of most drugs. Certain chemically inert drugs undergo biotransformation to 

generate highly protein-reactive intermediates capable of ‘provoking’ the 

immune system and resulting in adverse drug reactions, usually with cutaneous 

manifestations (Roychowdhury and Svensson 2005). Although the liver is the 

major organ involved in drug metabolism, the stability of these metabolites in 

extracellular transit or in the systemic circulation is questionable (Uetrecht 

1992; Reilly et al. 2000). Therefore, extra-hepatic metabolism involved in 

localised generation of protein reactive intermediates might be more relevant 

for the activation of immune cells (Uetrecht 1992; Vyas et al. 2006; 

Roychowdhury et al. 2007; Sharma and Uetrecht 2013). In this respect, 

myeloperoxidase might be important in the metabolism of SMX (see chapters 1 

and 2). The protein reactive SMX.NO is thought to be responsible for the high 

incidence of immune-mediated hypersensitivity to SMX (Vilar et al. 2003). 

Although SMX.NO adduction of HSA has been well defined in vitro and cysteine-

34 shown to be the amino acid modified (Callan et al. 2009), SMX.NO’s ability to 

modify other cysteine-containing proteins has not been researched.  

According to Lavergne et al. (2008), anti-neutrophil cytoplasmic antibodies are 

associated with vasculitis in humans. Furthermore, sulphonamide induced 

hypersensitivity reaction presents with clinical signs suggestive of vasculitis 

(Lavergne et al. 2008). The authors also reported a significantly higher level 

(50%) of anti-MPO antibodies in sulphonamide-hypersensitive dogs than in 

sulphonamide tolerant dogs. Collectively, their data suggest that SMX-modified 

MPO is involved in the drug-specific humoral response. Thus, the studies 
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described in this chapter investigated the in vitro SMX.NO modification of 

recombinant myeloperoxidase and MPO-derived peptides, and assessed the 

immunogenicity of SMX.NO-modified MPO and MPO-derived peptides. SMX.NO 

haptenation of recombinant MPO generated the N-hydroxysulphinamide adduct 

(Figure 6.1) on Cys309 and Cys398 but not on Cys316 or Cys319. The tertiary 

structure of a protein will determine the pre-reaction (non-covalent) binding of 

a small molecule electrophile, which will influence the ultimate site(s) of 

covalent adduction (Skipper 1996). Furthermore, the reactivity 

(nucleophilicity/pKa) of amino acid side chains can be influenced considerably 

by the protein’s conformational structure (Skipper 1996; Jenkins et al. 2009). 

The pre-reaction binding can have a decisive influence on which moderately or 

highly reactive side chains are adducted by a particular electrophilic compound 

or metabolite (Fry et al. 1998). Modifying the full-length recombinant MPO 

provided experimental quantities of SMX.NO-modified tryptic peptides.  

SMX.NO-modified MPO was purified using ultrafiltration. Washes were 

performed with either plain PBS or PBS containing GSH. LC-MS/MS was used to 

confirm the removal of free SMX.NO. However, an assessment of T-cell 

proliferation revealed that SMX.NO-modified MPO failed to activate drug-

specific TCCs. Western blotting indicated that SMX.NO bound irreversibly to 

MPO. LC-MS/MS analyses revealed marked differences between the 

modifications of MPO-derived synthetic peptides MPO1 and MPO3 and the full-

length recombinant MPO. The reaction of SMX.NO with MPO1 yielded N-

hydroxysulphinamide adducts on Cys309 and 319 (mass increment of 283 

amu). Incubation of SMX.NO with MPO3 generated a peptide with two SMX.NO-

derived modifications, namely a sulphinamide (mass increment of 267 amu) 
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and an N-hydroxysulphinamide adduct on Cys316. Because a sulphinamide 

adduct is formed by the reaction of a nitroso with a thiol (Callan et al. 2009), 

this observation demonstrates that at least the side chain of Cys316, if only in 

MPO3, can persist fractionally in the unoxidized state in vitro. All of the other 

haptenated MPO cysteines were detected as N-hydroxysulphinamide adducts, 

and therefore by implication were formed from sulphenic acid derivatives 

(Figure 6.1).  

Although SMX.NO readily modified the primary synthetic peptide, MPO1 

(307ADCIPFFRSCPACPG321), the formation of both intra- and inter-chain 

disulphide bonds was a major analytical limitation, and affected the degree of 

modification and the chromatographic peptide purification adversely. The mass 

spectra generated from these cysteine-bridged peptides were difficult to 

interpret precisely. Due to the presence of multiple proline residues, the peptide 

tended to fragment internally rather than giving readily interpretable b- and y-

ion series (Bleiholder et al. 2011). Alanine substitution of all the cysteine 

residues present in MPO1, which produced MPO2, was expected to abolish 

SMX.NO modification. LC/MS/MS analysis of the peptide recovered from 

incubations of MPO2 and SMX.NO showed there was no MPO2 haptenation. This 

result proves the critical role cysteine residues play in SMX.NO-protein 

haptenation (Callan et al. 2009). MPO3 (one cysteine residue) haptenated with 

SMX.NO generated spectra that were much easier to interpret than those 

generated from haptenated MPO1 (three cysteine residues). 

 An attempt was made to both remove unbound SMX.NO and purify the 

modified peptide (MPO1) by off-line reversed phase (RP) chromatography. To 
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circumvent the formation of disulphide bonds in MPO1 and enhance SMX.NO 

modification, another MPO-derived (MPO3) peptide was synthesised. MPO3 

(307ADAIPFFRSCPAAPG321) had just one cysteine residue, at position 316.  

Interestingly, analyses of the MPO1 adducts revealed two SMX.NO-modified 

peptides, with 283 mass additions on Cys309 and Cys319, but MPO1 was not 

detected as a sulphenic acid derivative, which is the putative precursor of an N-

hydroxysulphinamide adduct (Figure 6.1).  

Glycosylation of the Asn323 in MPO might hinder access of SMX.NO to Cys316 

(see figure 6.16). MPO1 (307ADCIPFFRSCPACPG321) is a product of chemical 

synthesis and does not contain any glycosylated amino acid. Steric hindrance of 

the reaction of a small molecule electrophile with an amino acid side chain is 

not a plausible limitation to interaction in the case of short peptides; which 

cannot assume the complex tertiary structures that set up multi-point 

interactions between small molecules and proteins (Skipper 1996; Fry et al. 

1998). 

Half of human MPO consists of two polypeptides of 108 and 466 amino acid 

residues, respectively, including six potential sites of asparagine-linked 

glycosylation, namely Asn139 (Liu et al. 2005), Asn323 (Ramachandran et al. 

2006; Van Antwerpen et al. 2010), Asn355 (Chen et al. 2009; Van Antwerpen et 

al. 2010), Asn391 (Baron et al. 2001; Van Antwerpen et al. 2010), Asn483 (Liu 

et al. 2005; Chen et al. 2009; Van Antwerpen et al. 2010), and Asn729 (Van 

Antwerpen et al. 2010). All the potential sites for asparagine-linked 

glycosylation reside in the larger polypeptide (Johnson et al. 1987; Morishita et 
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al. 1987). Cys309 is evidently accessible to nitroso-SMX and is the cysteine 

residue modified by SMX.NO in MPO1.  

Alternatively, the oxidation and disulphide status of the cysteine residues in 

recombinant MPO may not be the same as those in the native protein (Zeng and 

Fenna 1992), leading to alternative favoured sites of modification. Redox states 

and disulphide bridging status of recombinant proteins may differ from those of 

native proteins, with possible biological and functional implications (Monie et 

al. 2005). Furthermore, arylnitroso-protein cysteinyl adducts can be unstable 

(Liu et al. 2008); hence, a SMX.NO-Cys316 adduct might have degraded during 

processing of protein and/or peptides for LC-MS/MS analysis. In particular, 

enzymatic digestion of a modified protein containing an arylnitroso-derived 

sulphinamide adduct can, in some cases, cause complete hydrolysis of the 

adduct, producing an essentially stable cysteinyl sulphinic acid (Wang et al. 

2005; Liu et al. 2008).  

Although purification of SMX.NO-modified MPO3 was carried out using reversed 

phase HPLC and cation exchange chromatography to exclude residual SMX.NO, a 

low adduct recovery (1.9 µg/60 µL) was observed. Concentrations of MPO3 

adducts used in the proliferation assay ranged from 0.03-0.3 µM. To circumvent 

the low concentration of recovered SMX.NO-modified MPO3, full-length 

recombinant MPO was incubated with SMX.NO. Purification and concentration 

of the resulting adduct was performed using an ultrafiltration technique 

involving either PBS or PBS+GSH washes to remove free SMX-NO. Analyses of 

PBS+GSH washes are presented in appendix iii-v. A comparison of the 4th and 5th 

‘PBS’ and ‘PBS+GSH’ washes suggested the ‘PBS+GSH’ wash method was more 
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effective at removing SMX.NO from filtered MPO that had been incubated with 

SMX.NO (figure 6.22). The reduction of SMX.NO to hydroxylamine observed 

during the PBS+GSH washes is consistent with previously published data (Cribb 

et al. 1991; Burkhart et al. 2001; Sanderson et al. 2007). With the unequivocal 

elution of SMX.NO from MPO adduct in the 5th PBS and 5th PBS+GSH washes, 

further LS-MS/MS analysis on the washed MPO adduct was performed to 

confirm the removal of SMX.NO. A single solution of the MPO that had been 

washed five times with either PBS or PBS containing GSH, after incubation with 

nitroso, was deproteinized with ACN (5 μL + 95 μL ACN or 75 μL ACN, 

respectively). The supernatants were analyzed immediately. No signal 

corresponding to SMX.NO was detected in either supernatant (figure 6.23). No 

azoxy was detected in either supernatant. The azoxy dimer is incapable of 

stimulating T-cells (Naisbitt et al. 2002). Allowing for the 15–fold dilution of the 

PBS+GSH solution of washed MPO, which was required for deproteinization and 

sample recovery, any residual SMX.NO in this solution would have been 

detected if its concentration had been ≥ 30 µM (≡ 1.9 µM in the deproteinized 

supernatants). This was estimated from LC-MS/MS analysis of authentic 

SMX.NO.  

Despite successful protein modification, characterisation, purification and 

definition of the chemistry involved in the haptenation of MPO by SMX.NO, T-

lymphocyte proliferation data to determine immunogenicity was negative. The 

chemistry and immunogenicity of MPO haptenated by SMX in the presence of 

hydrogen peroxide was not explored due to time constraint. It will be 

interesting to compare MPO modifications by either SMX or SMX-NO. Hence, 

further experiments would be required to define the functional significance of 
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the observed in vitro MPO modification. Finally, future work would investigate 

such modifications in vivo and their involvement in the pathophysiology of SMX 

hypersensitivity reactions. 
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Chapter 7: Final discussion 

Adverse drug reactions are common and can occur with some drugs. The 

clinical symptoms of ADRs are drug dependent and range from mild reactions 

like nausea to severe (sometimes life-threatening) side effects like anaphylaxis. 

ADRs have impact on patients, clinicians and the pharmaceutical industry. Drug 

hypersensitivity limits therapeutic options for treating diseases but also results 

in high morbidity and can sometimes be fatal. In the United Kingdom, the 

financial burden of ADRs to the NHS was estimated to be over £466 million 

annually (Pirmohamed et al. 2004). It takes an average of 10 years to develop a 

new drug and costs approximately $866 million (Adams and Brantner 2006). 

Therefore, the cost of withdrawing a molecular entity due to serious ADRs is 

enormous; hence, the need to predict these reactions at the early stages of 

research and development.  

Although about 80% of hospital admissions resulting from ADRs are linked to 

type A reactions, most of the mortalities occur from type B hypersensitivity 

reactions (Routledge et al. 2004). The rise in the number of drug 

hypersensitivity reactions linked to HLA suggests that these reactions are 

immune-mediated. Recent advances characterizing the nature of the drug-

specific immune response in susceptible patients’ means that the disease 

pathogenesis is now better understood and hopefully with further research may 

eventually be managed (Torres et al. 2003; Nassif et al. 2004; Beeler et al. 2006; 

Blanca et al. 2009).  

SMX is used in combination with trimethoprim to treat opportunistic infections 

in HIV/AIDS patients but also in the management of recurrent respiratory tract 
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infections in patients with CF. The main clinical symptom of SMX 

hypersensitivity is skin rashes of varying severity (Schnyder et al. 2000). These 

reactions are thought to be mediated by SMX (antigen)-specific T-lymphocytes 

(Maurihellweg et al. 1995; Schnyder et al. 1998). Although the high frequency of 

SMX-hypersensitivity in susceptible patient populations has been long 

established (Bayard et al. 1992; Pirmohamed and Park 2001; Naisbitt 2004), the 

reasons for the increased number of reactions has not been defined. The 

majority of SMX undergo N-acetylation, a reaction catalysed by N-

acetyltransferases enzymes, to form nontoxic metabolites that are safely 

excreted (Cribb et al. 1993; Schnyder et al. 2000). Hepatic oxidation of SMX by 

CYP2C9 and MPO generates SMX.NHOH, which is further oxidized to form the 

protein-reactive metabolite, SMX.NO, which is implicated in SMX 

hypersensitivity (Park et al. 1987; Cribb et al. 1990; Cribb and Spielberg 1992; 

van der Ven et al. 1994; Vyas et al. 2006). In the absence of an underlying 

disease, it is thought that all the reactive metabolites generated in the liver will 

be detoxified by glutathione conjugation. Therefore, it is unlikely that the small 

amounts of SMX.NO that escapes this detoxification pathway will migrate to the 

skin, modify protein and generate adducts that are ultimately processed by 

antigen presenting cells to liberate peptide antigens that activate T-cells. Hence, 

we propose an alternative hypothesis; specifically, immune cells that reside in 

the skin generate SMX.NO locally. Covalent modification of skin protein will 

subsequently generate neoantigens that drive SMX induced cutaneous 

reactions.  

SMX represents an ideal drug for the study of hypersensitivity because its 

metabolism has been defined and patient samples are available for functional 
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studies. Furthermore, stable and reactive metabolites have been synthesised 

and available for research (Naisbitt et al. 1996). Finally, SMX-specific, SMX.NO-

specific and cross-reactive TCCs have been generated to study immunological 

and pathophysiological mechanisms of SMX hypersensitivity (Schnyder et al. 

1997; Schnyder et al. 2000; Elsheikh et al. 2011).  

The aim of this research project was to characterize the metabolic and 

immunological factors that are responsible for SMX hypersensitivity. A total of 

1336 TCCs were generated and tested for drug specificity. TCCs were generated 

from 5 SMX-hypersensitive patients and 1 SMX-naïve volunteer. Sixty-eight TCC 

were SMX.NO-specific and expressed the CD4 cell surface protein. Only 1 TCC 

responded to SMX, and expressed the CD8 cell surface protein. No cross-

reactivity observed with the SMX.NO-specific TCCs. Drug-specific TCCs secreted 

TH1 and TH2 cytokines but also cytotoxic molecules like granzyme-B, perforin 

and Fas ligand. In another study, most of the TCCs generated from SMX-

hypersensitive patient with cystic fibrosis were SMX.NO-specific and showed 

cross reactivity with SMX (Elsheikh et al. 2010). The differences observed in the 

specificity of TCCs generated may be due to the patients involved. 

 The following aspects were examined (1) the expression and functionality of 

MPO in immune cells and the immunogenicity of SMX.NO-modified MPO-

derived peptides; (2) the involvement of specific HLA molecules in the 

presentation of SMX.NO-derived antigens to drug-specific TCCs; (3) the role of 

co-inhibitory receptor-ligand interactions (especially the PD-1/PD-L signalling 

pathway) in regulating the priming of naïve T-cells to SMX.NO; (4) the 
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cytokines/cytolytic molecules secreted by antigen-specific TCC; and (5) the 

priming of naïve and memory T-cells to SMX and SMX.NO.   

To determine whether immune cells resident in the skin are capable of SMX 

metabolism and therefore generating SMX.NO-modified peptides that drive 

cutaneous reactions, we investigated the enzyme expression profile and the 

SMX metabolism in EBV-transformed B-cells, DCs and HL60 cells. EBV-

transformed B-cells were used as they are the cell type most frequently used as 

antigen presenting cells in TCC assays. DCs are professional antigen presenting 

cells utilised in the T-cell priming assay discussed in detail (chapters 4 and 5). 

HL60 cells are a neutrophil cell lines used as a positive control as they have 

previously been shown to express high levels of MPO (Hope et al. 2000; Wagner 

et al. 2001). Using an anti-drug antibody in an ELISA experiment, SMX.NO-

protein adducts was detected in DCs, HL60s and EBV-transformed B-cells. This 

suggested that each cell type was metabolically active and able to metabolise 

SMX to its protein-reactive metabolite, SMX-NO. Western bolting analysis 

revealed low MPO expression in EBV-transformed B-cells, when compared with 

DCs and HL60 cells, consistent with the ELISA data. Mass spectrometry was 

then used to identify MPO in the different immune cells. MPO was clearly 

detectable in HL60 cells; however, it was difficult to obtain conclusive data in 

EBV-transformed B-cells. Despite this, RT-PCR confirmed mRNA for MPO in 

EBV-transformed B-cells.  

A significantly higher level (50%) of anti-MPO antibodies has been reported in 

sulphonamide-hypersensitive dogs than in sulphonamide tolerant dogs thus 

suggesting SMX-modified MPO is involved in the drug-specific humoral 
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response (Lavergne et al. 2008). Hence, the immunogenicity of SMX.NO-

modified MPO-derived peptides was investigated. SMX.NO-modified MPO 

adducts were successfully generated in-vitro and characterised using LC-MS/MS 

analysis (chapter 6). Modification of the full length recombinant MPO revealed 

the formation of N-hydroxysulfinamide adduct on Cys309 and 398. However, 

LC-MS/MS analyses of SMX.NO-modified MPO peptides were complicated by 

different levels of intra-and inter-peptide disulphide bond formation. Three 

HLA-DQ binding peptides, the HLA molecule involved in the activation of 

SMX.NO-responsive T-cells (see below), based on the structure of MPO and 

incorporating Cys309 were then synthesized for functional studies. MPO1 

(307ADCIPFFRSCPACPG321) was a native peptide containing Cys309 and a 2 

extra Cys residues at positions 316 and 319. MPO3 (307ADAIPFFRSCPAAPG321) 

was essentially the same as MPO1 with Cys 309 replaced with an alanine group. 

In MPO2 all 3 Cys residues were replaced with alanine; hence, this peptide was 

to serve as a negative control. Mass spectrometric analysis of SMX.NO modified 

MPO1 and MPO3 revealed that the drug metabolite bound to the Cys groups in a 

number of ways. The N-hydroxysulfinamide moiety (283 amu) was detected on 

Cys309 in MPO1 while the sulphinamide and N-hydroxysulfinamide were 

detected in MPO3 at the same position. No modification was observed on Cys 

316. Both intra-and inter-disulphide bonds were detected in MPO1 and MPO3, 

and complicated the interpretations of spectra obtained.  As expected, SMX.NO 

modification of MPO2 (307ADAIPFFRSAPAAPG321) was not observed. Despite 

convincing data showing MPO modification for MPO1, MPO3 and recombinant 

full length MPO, SMX.NO-specific TCCs failed to proliferate in response to MPO 

adducts. It is unclear at this point whether the modifications observed with 
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MPO are irrelevant to the pathophysiology of SMX-induced cutaneous reactions. 

Further experiments are required to characterise MPO modification following 

incubation with SMX in the presence of hydrogen peroxide as a co-factor. Our 

studies focused on analysis of binding after the direct addition of SMX.NO.  If the 

resulting modifications differed in terms of chemical structure or sites of 

modification, it then would be important to study T-cell immunogenicity. Our 

assays were also limited by two additional factors. First, the extensive 

extraction procedures that were performed to ensure that soluble SMX.NO was 

removed from MPO prior to analysis of T-cell responses severely restricted the 

quantity of adduct that could be added to the culture conditions. If the 

experiments were to be repeated, higher amounts of native protein should be 

used.  Secondly, the T-cell clones used to detected responses to SMX.NO MPO 

adducts were generated thought the culture of PBMC with soluble SMX.NO. If 

these initial PBMC cultures contained the MPO adduct we may have been 

successful in detecting clones that were responsive towards the adduct, but not 

SMX.NO itself. 

A customized PubMed database search of the terms “HLA’’ and “drug 

hypersensitivity” from 1994-2004 (http://www.ncbi.nlm.nih.gov/pubmed) 

revealed 137 results. A total of 579 results were obtained when the date is 

extended, 1994-2014. Most of the search results within the last decade describe 

new HLAs implicated in drug hypersensitivity and the successful application of 

these findings in clinics (Hetherington et al. 2002; Alfirevic et al. 2006; Kaniwa 

et al. 2008; Mallal et al. 2008; Daly et al. 2009; Bharadwaj et al. 2010; Kim et al. 

2010; Chen et al. 2011; McCormack et al. 2011; Spraggs et al. 2011; Daly 2012; 

Han et al. 2012). However, the preferential drug presentation by the risk HLA 
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allele has only been defined and characterized for a limited number of drugs 

(abacavir, flucloxacillin, carbamazepine, allopurinol) (Chessman et al. 2008; 

Chen et al. 2011; Yun et al. 2012; Monshi et al. 2013; Lichtenfels et al. 2014; Yun 

et al. 2014). For many other forms of drug hypersensitivity HLA risk alleles have 

not been identified; however, it is still likely that the T-cell responses will be 

HLA-restricted in individual patients.  

SMX hypersensitivity represents an ideal form of reaction that falls under this 

category. Independent studies from Liverpool, UK (Pirmohamed 2006; Alfirevic 

and Pirmohamed 2010) and France (Roujeau et al. 1986) have failed to detect 

HLA associations. Therefore, we examined the role of HLA molecules in the 

presentation of SMX.NO to drug specific-CD4+ TCCs. Through antibody blocking 

experiments, the majority of TCCs generated from the SMX hypersensitive 

patients showed HLA-DQ-restricted SMX-NO-specific activation (chapter 3). 

APCs generated from SMX-naïve volunteers expressing a similar HLA-DQB1 

allele as the patients’ presented SMX.NO to drug-specific TCCs. Therefore, we 

propose that HLA-DQB1 plays a vital role in SMX.NO recognition by drug 

specific TCCs. Interestingly, the HLA-DQB1 allele involved in SMX.NO 

presentation differed in the individual subjects (figure 7.1). In contrast to HLA-

DR and -DP, a range of amino acid residues with a diverse set of chemical 

specificities have been shown to interact with HLA-DQ molecules at key anchor 

positions. This has led to the suggestion that the whole peptide backbone 

contributes to MHC binding interactions. Somewhat surprisingly, approximately 

25% of the peptide repertoire for an individual DQ molecule will overlap with 

other common DQ molecules. Based on these observations, we tested whether 

DQB1*05:01-restricted clones from patient 1 were also activated with SMX-NO 
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bound antigen presenting cells expressing DQB1*02:01. Interestingly, antigen 

presenting cells expressing DQB1*02:01 presented SMX.NO-derived antigen to 

TCCs generated from patient expressing DQB1*05:01. The cross-presentation 

may be because the different alleles expressed by both patients belong to the 

same serotype, DQ 2.5 (Sollid et al. 1989). These findings warrant further 

investigation in a larger patient cohort.  

 

 

Figure 7.1-Schematic showing experiments performed and the observed HLA-DQ restriction in 

SMX.NO-specific CD4+TCCs from SMX hypersensitive patients.  

 

Although the antigenic signal presented on MHC molecules to T-cell receptors is 

vital for T-cell signalling, the overall outcome of a T-cell response is dependent 

on the activity of co-stimulatory and co-inhibitory receptors (Chen and Flies 

2013; Liechtenstein et al. 2013). It is still not fully understood how the 

repertoire of co-signalling molecules downstream of the T-cell receptor regulate 

drug antigen-specific T-cell responses. Thus, this study investigated the 



Chapter 7 

267 
 

negative regulation by PD-L1 during drug-specific priming of IL-22 secreting T-

cells and the influence of PD-1 on effector T-cells (chapter 5). The interaction of 

PD-1 expressed on surface of T-cells with its ligands (PD-L1/2) present on the 

surface of APCs result in cell cycle inhibition, inhibition of effector function, 

tolerance, exhaustion and apoptosis (Francisco et al. 2009; Wherry 2011; 

Fourcade et al. 2012; Chen and Flies 2013). T-cell priming involves the 

conversion of naïve T-cells from a dormant to an activated state regulated 

primarily by CD28 signalling (Shahinian et al. 1993). We investigated the effect 

of a PD-L1 blocking antibody on SMX.NO priming of naïve T-cells and the role of 

the PD-1/PD-L signalling on the effector response of SMX.NO specific TCCs. 

Using readouts for T-cell proliferation and cytokine secretion (IFN-ϒ and 

granzyme-B), we demonstrated enhanced priming of naïve T-cells from healthy 

donors to SMX.NO following blockade of PD-1/PD-L signalling (Gibson et al. 

2014). Interestingly, blockade of this pathway had no effect on the proliferation 

of SMX.NO-specific CD4+ TCCs although a modest increase in IFN-ϒ and 

granzyme-B was observed. 

Priming of naive CD4+ and CD8+ T-cells against SMX.NO was found to be more 

effective when PD-L1 signalling was blocked. Upon restimulation, drug primed 

naïve T-cells proliferated more vigorously and secreted increased levels of IFN-

γ, IL-13, and IL-22 but not IL-17. Although naive T-cells expressed low levels of 

PD-1, a transient increase in PD-1 expression was observed during drug-specific 

T cell priming. Drug-specific responses from in vitro primed TCCs from 

hypersensitive patients did not correlate with PD-1 expression. These findings 

suggest that the activation of naïve T-cells in vivo is regulated by numerous 
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cellular processes other than the drug antigen. Recently, targeted PD-1/PD-L1 

therapies against many forms of cancers including melanomas have been 

reported to reactivate the immune system to fight cancer (Hong et al. 2014; Lu 

et al. 2014). Although no data exist at the moment, these therapies may 

deregulate drug-specific T-cells and increase the incidence of hypersensitivity 

to co-administered drug (s).    

In terms of research applications, the DC-priming assay is currently being 

developed to explore T-cell responses to a variety of drug antigens, to explore 

HLA restriction and to determine the matrix of co-stimulatory/co-inhibitory 

receptor ligand interactions that regulate drug-specific T-cell priming. 

Currently, the assay cannot be used as a predictive drug allergy test during the 

pre-clinical stages of drug development; however, it might be useful in 

exploring whether second line drugs will be associated with similar 

immunological liabilities.   

Most of the TCCs generated were CD4+ and secreted IFN-γ, IL-5, IL-13, IL-22, 

granzyme-B and Fas ligand in response to drug stimulation. These findings 

suggest that CD4+ cells may be implicated in the cutaneous phenotype of SMX 

hypersensitivity in these patients. Cytotoxic CD4+ cells have previously been 

reported in a number of studies (Appay 2004; Hildemann et al. 2013). A more 

detailed analysis revealed two distinct cytokine profiles. TCCs secreted either 

FasL/IL-22 or granzyme B. The FasL/IL-22-secreting clones expressed the skin-

homing receptors CCR4, CCR10, and CLA and migrated in response to 

CCL17/CCL27. IL-22 has previously been implicated in cutaneous skin reactions 

(Fujita et al. 2009; Miyagaki et al. 2011). We are currently isolating drug-specific 
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and bystander T-cells from inflamed skin of drug hypersensitive patients to 

characterize the role of different T-cell populations in the disease pathogenesis.  

Although drug-specific T-cells have been extensively characterized in SMX 

hypersensitivity, it is still unclear why certain clones are SMX-responsive, while 

others are SMX.NO-responsive. Furthermore, the reason why some TCCs are 

cross reactive, responding to both SMX and SMX.NO via different mechanisms 

remains a subject of speculation. To investigate the molecular mechanisms that 

influence T-cell specificity to either SMX or SMX.NO, DC-priming of naïve and 

memory T-cell populations (from healthy donors) was performed followed by 

generation of drug-specific TCCs (chapter 4). A total of 240 TCCs were 

generated and evaluated for drug-specificity. Preliminary data suggests that 

while naïve T-cell population were primed to SMX.NO (n =9), memory T-cells 

were readily primed to SMX. On the other hand, drug-specific TCCs generated 

from PBMCs (pool of memory and naïve T-cells) were mostly SMX.NO specific. 

Experiments are ongoing to delineate the factors responsible for the observed 

selective priming of different populations of T-cells to either SMX or SMX.NO. 

Put together, drug hypersensitivity is complex and influenced by a plethora of 

factors. Although different models have concentrated on a given aspect, only a 

holistic approach encompassing all the different aspects of research can provide 

a complete molecular template for understanding the pathogenesis of drug 

hypersensitivity. Continued research will translate into (1) the clinic through 

the development of tests that aid patient diagnosis and (2) Pharma through 

better drug design and synthesis.  

 



Appendices 

270 
 

Appendix 

Appendix i 

Figure 6.25 Limits of SMX.NO detection using LC-MS/MS. Distinctive peak corresponding to 

SMX.NO was obtained at 5 µg/mL (upper panel) and 1.25 µg/mL (lower panel).    
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Appendix ii 

 

Figure 6.26 LC-MS/MS analysis for SMX.NO signal in control solution of MPO that had not been 

incubated with SMX.NO. As expected, no peak corresponding to SMX.NO was detected.  
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Appendix iii 

 

Figure 6.27 LC-MS/MS analysis of 1st and 2nd PBS+GSH washes (PBS +GSH W1 and W2) of 

SMX.NO-modified MPO adducts. 
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Appendix IV 

 
 

 
 
Figure 6.28 LC-MS/MS analysis of 3rd and 4th PBS+GSH washes (PBS +GSH W3 and W4) of 

SMX.NO-modified MPO adducts. 
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Appendix v 
 
 

 
 
Figure 6.29 LC-MS/MS analysis of 5th PBS+GSH wash (top panel) and LC-MS/MS analysis of 

lowest detectable concentration of SMX.NO (lower panel). 
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