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Abstract 

In the last decade there has been increased interest in the study of molecular motors. Motor 

proteins in particular have gained a large following due to their high efficiency of force 

generation and the ability to incorporate the motors into linear device designs. Much of the 

recent research centres on using these protein systems to transport cargo around the surface 

of a device. 

The studies carried out in this thesis aim to investigate the use of molecular motors in lab-

on-a-chip devices. Two distinct motor protein systems are used to show the viability of 

utilising these nanoscale machines as a highly specific and controllable method of 

transporting molecules around the surface of a lab-on-a-chip device. Improved reaction 

kinetics and increased detection sensitivity are just two advantages that could be achieved if 

a motor protein system could be incorporated and appropriately controlled within a device 

such as an immunoassay or microarray technologies.  

The first study focuses on the motor protein system Kinesin. This highly processive motor is 

able to propel microtubules across a surface and has shown promise as an in vitro nanoscale 

transport system. A novel device design is presented where the motility of microtubules is 

controlled using the combination of a structured surface and a thermoresponsive polymer. 

Both topographic confinement of the motility and the creation of localised ‘gates’ are used 

to show a method for the control and guidance of microtubules. 

Two further studies use the actin myosin motor protein system. Both concentrate on the 

manipulation of actin filaments, gliding on immobilised myosin, by DC electrical fields. 

Motor protein is adsorbed onto several surface chemistries with varying protein adsorption 

properties. A range of electrical fields are applied to the motility assay and the performance 

is analysed in terms of the directionality and any changes in the average velocity of 

filaments on each surface. This enables us to attribute surface properties to particular 

motility characteristics and hypothesise as to the nature of protein adsorption. The same 

electrical motility device is used with an alternative method to allow a more detailed study 

of the effect of surface chemistry on the motility function and the response of the motility 

after exposure to an electrical field. The movement of actin filaments on myosin motors is 

accelerated by a DC electrical field. Upon termination of the field the motility is allowed to 

return to pre-field function and this section of the procedure is analysed together with the 

data from the previous study to draw conclusions on the protein adsorption properties of 

each surface. Both chapters are used to draw conclusions on the response of the motor 

protein system when it is adsorbed on different surface chemistries. 

The investigations carried out in this thesis are used to show both novel ways of controlling 

motor protein motility and also to highlight aspects of design that need to be taken into 

consideration when incorporating motor proteins into lab-on-a-chip devices. The electrical 

motility device in particular has proved to be a dynamic and inexpensive tool in 

investigating motor protein motility. 
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Glossary of Terms 

 

Actin – Monomer units of actin filaments  

Amphiphilic – comprising of both hydrophilic and lipophilic constituents 

Anhydrous – The absence of water as a constituent 

Assay – An investigative laboratory procedure used in biology to investigate the existence of 

a target analyte 

ATP – Adenosine triphosphate, a nucleotide and the energy source for motor proteins 

Coiled coil – A structure comprising of two coiled structures, such as helices, coiled around 

each other 

Denature – The loss of the quaternary structure of a protein usually coupled with a loss of 

the proteins function 

Dynein – Motor protein involved in a number of biological functions including the transport 

of cellular cargo 

F-actin – Filamentous actin, the cystoskeletal filament on which myosin moves 

HMM – Heavy meromyosin, a large fragment of the motor protein myosin II containing the 

sites for both actin binding and ATP hydrolysis 

Hydrophilic – ‘Water loving’, a constituent that favours attachment to water  

Hydrophobic – A constituent the disfavours attachment to water 

Hydrous - Containing water as a constituent 

Incubation – In laboratory procedures this is a set amount of time in which a species is 

applied to an experiment or device  

In vivo - Study of biological species within their usual environment 

In vitro – Study of biological species outside of their usual environment 

Kinesin – Motor protein involved in a number of biological functions including the transport 

of cellular cargo 

Microtubules – Filament structure created by polymerisation of tubulin monomers. The 

cystoskeletal filament on which kinesin moves 

Motility – Movement initiated by the consumption of energy. In the case of protein motors 

this is the movement exhibited due to the hydrolysis of ATP 



vii 

 

Motor protein – Force generating proteins that convert chemical energy into movement 

Myosin – Motor protein involved in a number of biological functions including muscle 

contraction 

NC - Nitrocellulose 

PBMA – Poly (butyl methacrylate) 

Poly (N-isopropylacrylamide) (PNIPAM) – A thermoresponsive polymer which expels 

water molecules from its structure between 33
o
C and 35

o
C 

PMMA – Poly (methyl methacrylate)  

PtBMA – Poly (t-butyl methacrylate) 

QCM – Quartz crystal microbalance, an instrument that measures mass per unit area by 

measuring the frequency change in a quartz crystal resonator 

TECS - Triethylchlorosilane 

TMCS - Trimethylchlorosilane 

Tubulin – Monomer units of microtubule filaments 
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1.1 Introduction  

This thesis explores several methods with which to control the motility function of two 

motor protein systems, microtubule-kinesin and actin-myosin. In addition to investigating 

the general viability of motor proteins in lab-on-a-chip technologies, the experiments using 

the actin-myosin system yielded important information regarding the adsorption properties 

of the motor proteins on several different surface chemistries.  The thesis is split in two 

parts, the first dealing with the microtubule-kinesin system while second part deals with the 

actin-myosin system.  

The theory of the molecular motor protein systems used throughout this thesis will be 

discussed in chapter 2. Along with the cyclic reaction that the motor proteins use to convert 

chemical energy into mechanic work, previous work carried out on the two proteins will be 

outlined together with an explanation of the potential applications of motor proteins. Chapter 

3 will outline the materials and methods for the investigations that follow in the remaining 

sections of this thesis. An explanation of the fabrication techniques used and the individual 

device set-ups for the gliding assays will be detailed. 

The first investigation in chapter 4 utilises the motility of microtubules gliding over kinesin 

coated surfaces. A design combining topographical confinement and a thermoresponsive 

polymer is used to control the movement and positioning of microtubules. Channels are 

created on the surface of the gliding assay in which microtubules are guided towards ‘gates’ 

created at specific areas on the chip. Via localised heating, these areas allow the motility of 

microtubules to be controlled through the thermoresponsive polymer PNIPAM. This chapter 

will be used to show an example of a novel method for controlling the movement of 

cytoskeleton.  

Chapter 5 focuses on the actin-myosin system. A device has been designed with which to 

guide the motility of actin filaments using DC electrical fields. This has then been used to 
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investigate several surface chemistries for the immobilisation of myosin. Several surfaces 

were chosen with a variety of properties and the movement of the actin filaments while in 

the presence of an electrical field was recorded and tracked. By careful analysis of the 

velocity and directionality of the motility on each surface, conclusions have been drawn as 

to the effect of hydrophobicity and rigidity on the protein adsorption properties of the 

surface chemistries used. Detailed explanation is given of the orientation of the motors and 

the impact this would have on the resulting motility in order to more appropriately asses the 

motility function exhibited on the surface chemistries shown in this study. 

In order to further elucidate the adsorption mechanisms of three surface chemistries an 

alternative procedure was used in chapter 6 with respect to the electrical motility device. 

Actin filaments were accelerated by a DC electrical field. Upon termination of the field the 

motility function was allowed to ‘relax’ back to function seen pre exposure to a field. The 

response of the motility to the field is analysed in terms of the average velocity of filaments 

and the time taken for the motility to return to normal function. By comparing the different 

surface chemistries, along with the results from chapter 5, conclusions are put forward as to 

the protein adsorption properties of the polymers used.  

In addition to this ‘deceleration’ study, the effect of blocking actin on the motility function is 

investigated, again using the electrical motility device to probe the response of the motor 

protein on several different surface chemistries. Discussed in both chapters 5 and 6, the 

effect of ‘crowding’ on the motility function is examined by this study. In addition, the 

effect of inactive motor heads is investigated. 
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Chapter II: Theory. Molecular 

Motors and their Engineering 

Potential 

 

 

 

 

 

This chapter will provide an insight into protein motors. Concentrating on myosin II and 

kinesin 1, a brief discussion of their role in vivo and the processes that allows them to 

convert chemical energy into mechanical work will be described. Furthermore the tools used 

to study the proteins and the potential for their use in lab-on-a-chip devices will be examined 

in context of the studies that are to follow in chapters 4 – 6 of this thesis. The aims of the 

two individual studies on the myosin and kinesin systems are presented at the end of this 

chapter.  
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2.1 Motor proteins 

Molecular motor protein is a term used to describe a wide range of proteins found in all 

eukaryotic cells. They are force generating enzymes that hydrolyse nucleotides, converting 

chemical energy into mechanical work. The discovery of the myosin crossbridge by Huxley 

in 1957 gave insight into the mechanism of muscle contraction.
1
 Since this initial finding 

many more protein motors have been discovered. Their roles, including transport of cellular 

cargo, phagocesis, the beating of bacterial flagella as well as the aforementioned muscle 

contraction, have been widely studied.
1, 2

 The three major types of protein motors, myosin, 

kinesin and dyneins, span many roles utilising two distinctive systems. Myosin uses actin 

filaments, a globular protein that polymerises into long filaments, to attach to the head 

domain of the motor, in muscle it is the sliding of myosin bundles against actin filaments 

that creates contraction. Kinesin and dyneins, however, utilise microtubules as the 

framework of attachment to the working head domains of the motors. Tubulin, another 

globular protein, exists as a dimer of subunits that have similar atomic structure. Tubulin, 

like actin, also polymerises to form long filaments though these are much larger in diameter 

than actin filaments. In both systems the motors move along the cytoskeletal scaffold in a 

step wise motion as a result of the reaction with the nucleotide adenosine triphosphate 

(ATP). 
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Figure.2.1. The structures of three different types of motor protein, myosin, kinesin and dynein. All 

contain one or more head domains (the large yellow globules on the diagram above) responsible for 

attachment to actin and hydrolysis of ATP. a, myosin II, b, kinesin and c, dynein.
3
 

The structures of these proteins generally take the form of a tail or structure attached to one 

or more working head domains (see Figure 2.1). It is these that attach to their respective 

filament scaffolds. A conformational change within the motor protein as a consequence of 

ATP hydrolysis results in the movement attributed to these proteins. The function of many 

motor proteins are still unknown and the mechanism of force generation through ATP 

hydrolysis is still not fully understood, even for the most studied of the motor proteins, 

myosin.
1, 2

 Each of the three categories of motor proteins are split into multiple sub 

categories and families; there are 14 families of kinesin alone. In addition to the different 

cytoskeleton used by the protein, their function can also be differentiated by the method of 

movement and in some case the direction of movement along a given filament. Dyneins, for 

example, are a motor protein found to move in the opposite direction along the microtubule 
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than kinesin. Within the myosin family there are those that walk both from the positive end 

to the negative end of the filament and vice versa. 

The following sections will discuss the conventional kinesin and Myosin II systems that are 

used throughout this thesis. 

2.2 Kinesin – microtubule system 

Kinesin is an important motor protein which shares many similarities to myosin. Both utilise 

the nucleotide ATP as a means of converting chemical energy into mechanical work, but in 

the case of kinesin, it is the cytoskeleton filaments called microtubules that it uses as tracks 

for transporting cargo. 
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Figure.2.2. The diagram shows all of the kinesin superfamilies expressed in humans and mice.
4 

Kinesin comes in a wide variety of forms, split into several different classes with each class 

containing a number of families (see Figure 2.2). Each different type of kinesin holds 
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slightly different variations of structure and role. Some have as many as three head domains, 

some only one. There are 45 different genomes corresponding to kinesin in both humans and 

mice.
2
 The sheer number of variations of the same protein shows the importance and wide 

variety of roles this motor protein has to play in cells. 

2.2.1 Kinesin protein 

 

Figure.2.3. The diagram shows the basic structure of the conventional kinesin motor protein. The 

globular head domains responsible for the hydrolysis of ATP and binding to microtubules are 

connected to the tail domain via a coiled coil. The entire motor spans around 80 nm. 

Conventional kinesin, kinesin-1, as used in this study, has a number of structural similarities 

to myosin II described in section 2.3. The protein consists of two heavy chains located in the 

head domain of the motor (see Figure 2.3). These contain the binding sites for microtubules 

and also the sites responsible for the catalysation of ATP. There are also two light chains 

contained within the proteins structure which connects to the fan like C-terminus via a coiled 

coil alpha helix. The entire structure is rod like in nature spanning approximately 80 nm. The 

C-terminus is responsible for attaching the motor to its cargo e.g. vesicles.
2
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While both myosin II and conventional kinesin have similar properties, both have slightly 

varied applications of their movement. Kinesin is a high duty ratio motor protein and is 

highly processive, spending a large amount of time attached to the microtubule. This 

explains the main role of kinesin in the transport of intracellular cargo as the motor can 

travel great distances without dissociating from the microtubule scaffold.
2
 This type of 

movement favours singular motors transporting cargo from one area to another as opposed 

to the highly cooperative nature of myosin II. 

Kinesin not only uses microtubules as a scaffold for movement but also as a means of 

direction. Within the families of kinesin there are those which will move to the positive end 

of the microtubules and those which work in the opposite direction. The conventional 

kinesin used in this study will move from the minus end towards the positive end of the 

filament (see section 2.2.2 for full description of microtubules). Like in the actin myosin 

system this is an extremely important characteristic of the movement of these motors as it is 

key in creating a highly directive cellular transport network where different proteins, even 

within the same motor protein family, perform highly specific roles. 

2.2.2 Microtubules 

The structure of microtubules is more complex than that of actin. This cytoskeletal filament 

is used by a number of motor proteins, including kinesin, as a scaffold for their individual 

roles. The units that polymerise to form the microtubules exist as a dimer of globular 

proteins, α-tubulin and β-tubulin. The resulting structure of the microtubule is also much 

larger than actin filaments, polymerising as long as 50 µm with a diameter of 25 nm.
1, 5
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Figure.2.4. Scheme showing the structure of microtubules. A, an electron micrograph of microtubules. 

B, the protein structures of the two monomer units that polymerise to create a microtubule, α-tubulin 

and β-tubulin. C, diagram shows how the two monomers form the microtubule with the yellow box 

defining the protofilament on which the motor walks.
6, 7

 

The dimers of tubulin first form a protofilament, polymerising head to tail as a very stable 

structure. The protofilaments then form a sheet which eventually closes to form the hollow 

tube structure of the microtubule. The asymmetry of the dimers, coupled with the head to tail 

binding of these and parallel binding of the resulting protofilaments, is the reason behind the 
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polarity of the microtubule structure. The number of protofilaments that bind together before 

the final closing of the tube can vary. The microtubule pictured in Figure 2.4 C is made of 

13 protofilaments. In this structure there is a slight offset of ~0.92 nm between the dimers 

which after 13 protofilaments accounts for 3 monomer units and so forms a 3-start helical 

structure with each protofilament running parallel to one another.
5
 As with actin the two 

ends of the microtubule grow at different speeds with the positive growing faster than the 

negative end. While most cellular microtubules have this structure there are others that form 

by closing at different numbers of associated protofilaments. There are for example, 12, 14 

and 15 protofilament microtubules that have been characterised.
8, 9

 These form the tube by 

making a slight twist in the structure in order to allow the dimers to bind. The structure 

resulting from these slight pitches are called supertwists. 

The large structure of the microtubule is very strong due to the symmetry of the helices. 

Even in microtubules with supertwists, where the helices are not symmetric, the difference 

in α-tubulin and β-tubulin are so small that the different binding points of these structures 

does not disrupt the strength of the entire structure. In fact the size of the microtubule itself 

means that it is less susceptible to structural weakness due to defects when compared to 

actin. As a result, microtubules can form large rigid structures, spanning large distances 

within a cell. 

2.3 Myosin – actin system 

Myosin is a collective name for a family of force generating protein motors which uses actin 

filaments as tracks and ATP as fuel to move. The discovery of the myosin crossbridge and 

its function in muscle contraction sparked new research into these naturally occurring 

nanomachines.
10

 There are many classes of myosin, each denoted by a roman numeral, and 

in each class there are multiple sub-categories each with its own specific role (Figure 2.5). 
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Figure.2.5. An unrooted phylogenetic tree of the myosin superfamily.
11
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There are over forty different myosin genes in humans alone spanning twelve different 

classes. Previous studies have found single cells with as many as 12 different classes of 

myosin. The sheer number of different variations of the same motor protein shows the huge 

range of roles it has to play in eukaryotic cells.
12

  

2.3.1 Myosin protein 

Myosin is made up of one or two heavy chains and one or more light chains. The heavy 

chains consist of several motor domains. The N-terminal domain or ‘head domain’ contains 

the binding sites for both ATP and F-actin. In rabbit muscle myosin II as used in this study, 

the two head domains are connected to a neck domains consisting of multiple light chain 

binding regions which are repeats of approximately 23-30 residues.
1, 13

 It is this neck region, 

and more specifically the angle at which it holds the head domains to the tail of the motor, 

that is responsible for force generation. The C-terminal tail region, which takes the form of a 

coiled coil, is responsible for anchoring the motor to a specific position or cargo. Myosin II 

finds its role in muscle contraction. In vivo the protein forms bundles with using the tail 

regions as anchoring points. These are lined in parallel to bundles of actin filaments. It is the 

sliding of these two structures, upon reaction with ATP, that results in muscle contraction.
14, 

15
 

The duty ratio a motor protein is a term used to describe the time spent attach to actin in the 

‘strong bound’ state (see section 2.5 for a description of the various binding states of myosin 

to actin). High duty ratio motor are described as being processive, each can travel a great 

distance without being released from the filaments, and their roles are mainly found in the 

transport of cargo around cells.
1
 Myosin II is a low duty ratio motor meaning it spends a 

short amount of time bound to the filaments.
16

 A key step in the ATP cycle of Myosin is the 
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dissociation of the motor from the filament. This characteristic, where the motor spends less 

time bound to the filaments, is deemed advantageous when multiple motors are working 

together, as is the case in muscles tissue. 

Myosin uses actin filaments as tracks and can move from one end to another. The speed of 

this movement ranges from 100 nm/s to 60000 nm/s with myosin II having an average speed 

of 8000 nm/s in vitro.
1
 Some move from the positive to the negative end of the filament and 

some visa versa. This is an important specificity as each carries a separate role, e.g. one 

motor may take cargo from the centre of a cell to the cell wall and a separate motor that 

works in the opposite direction would take cargo from the cell wall to the centre. In muscle 

contraction, as with myosin II, it is important that the motors work in collaboration and so 

must all move from a single end to the other; in the case of the myosin II in this study, from 

positive to negative. 

 

Figure.2.6. The structure of a head and neck domain of myosin II which makes up the S1 fragment of 

HMM. The head domain contains the heavy chains responsible for both actin binding and ATP 

catalysis. The neck, comprising of light chains, holds the head domain at the specific angle needed for 

force generation upon the conformal changes which happens as ATP is hydrolysed.
13
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When treated with the enzyme trypsin fragmentation occurs at the centre of the tail of 

myosin to give heavy meromyosin (HMM) and light meromyosin (LMM).
17

 The structure of 

HMM is made up of three sub regions split over two sub fragments. The head domains, 

situated in the S1 fragment (see Figure 2.6), are the actin binding sections of the motor. It is 

also in this region that the hydrolysis of ATP takes place. 

The second sub region, situated again in the S1 sub fragment, is the neck domain. The neck 

links the actin binding head domains to the S2 region, acting as a lever arm for the 

transduction of force. The neck domain is then connected to the final major section of the 

HMM, a short tail. The link between the two is what creates the angle needed for the step 

wise motion of the motor as the conformal change occurs upon hydrolysis of ATP at the 

head. The tail section of myosin is made up of a coiled coil structure that aids in the holding 

of the two heads together. In muscle it is this part of the structure that bundles with other 

myosin molecules to create the thick filament. LMM consists of the remaining section of 

tail. It is a coiled coil structure with no binding sites for either ATP or actin. 

2.3.2 Actin 

Actin is the cytoskeletal filament used in the myosin system. A single filament is made up of 

globule actin monomers (Figure 2.7 B) that polymerise to form a two stranded, right handed 

helical structure.
1
 A full repeat of this structure is 72 nm in length with a filament diameter 

of ~6 nm.
18

 Polymerisation of the actin filament occurs much faster at one end. This is due to 

the asymmetrical structure of the actin monomers, leading to a polar filament.
19, 20

 The 

positive end of the filament grows much faster and it is this highly ordered polymerisation 

mechanism that in vivo, along with specific nucleation sites, aids in creating the highly 

specific structures needed for muscle tissue. 
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Figure.2.7. Structure of F-actin. A, electron microscopy image of actin filaments. B, protein structure 

of a monomer unit of actin showing the deep cleft in which ATP is bound. C, Image showing how the 

monomer unit polymerise to form the helical structure of the filament. Scale bar indicates 100 nm.
21, 22

 

Each of the 72 nm period of the actin structure contains 26 sub units which accounts for 2.77 

nm per sub unit.
23

 There is a significant level of contact between each of the monomer units, 

as is required to polymerise into the long structures seen in vivo. The polarity of these 

filaments not only affects the speed of polymerisation at each end but also the direction in 

which a particular myosin motor moves along the scaffold. Actin filaments polymerised in 

vitro can reach many micrometers in length. Shown in Figure 2.7 A is an electron 

microscopy image of individual actin filaments. The helical structure that can be seen in this 

image is presented in Figure 2.7 C where the monomer sub units polymerise together to 

create the right handed helix upon which the myosin walks. The strength and straightness of 
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these filaments is due to the helical structure. The surface of the actin filament is 

asymmetrical, as is shown in Figure 2.7 C where the plus end seems barbed and the negative 

end forms an arrow. This characteristic is key in coordinating the direction of movement of 

the motor protein. 

2.4 The ATPase cycle 

The ATPase cycle itself has been a source of wide study, with the kinetics of each protein 

and the rate limiting steps of each cycle varying slightly. For a number of motor proteins it is 

still not fully understood. In this cyclic reaction ATP is hydrolysed to adenosine diphosphate 

(ADP) and a phosphate group is released. The reaction is in equilibrium and in vivo moves 

strongly to the right. 

                                                    ATP  ADP + Pi                                                     Eq 1. 

In the actin myosin system the hydrolysis of ATP is catalysed by the binding of actin. In turn 

the release of the myosin motor from the actin filament is catalysed by the binding of ATP. 

ATP activity of myosin in the absence of actin is dramatically reduced.
24, 25

 This correlation 

between ATP activity and actin binding is shared with kinesin in that the ATP activity in the 

absence of microtubules is much reduced. There are key differences in the two ATPase 

cycles, the two head domains of myosin work independently while the head domains of 

kinesin work in coordination with each other, hence kinesin being highly processive and 

myosin II having a low duty ratio. As such each of the ATPase cyclic reactions, the 

mechanical forces and step sizes for both kinesin and myosin will be discussed below. 

2.4.1 Kinesin ATPase cycle, step sizes and forces 

Unlike the myosin, kinesin is highly processive, meaning at each stage of the cyclic reaction 

with ATP there is one head domain attached to the filament. The movement of kinesin along 
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a microtubule is best viewed as a hand over hand action and due to this characteristic the 

ATPase cycle of kinesin must be studied in terms of both motor heads. Similarly to myosin 

the ATPase cycle reaction kinetics of kinesin are linked with the association and dissociation 

of the microtubule. In the absence of microtubules the rate of product release is extremely 

slow and is the rate limiting step of the entire process. The rate is as low as 0.01 s
-1

 per head 

at high concentration of ATP.
1
 

 

Figure.2.8. Scheme showing the ATPase cycle of the conventional kinesin motor. The motor is 

processive with a hand over hand movement along the filament. The attachment to the filaments 

occurs with the dissociation of ADP. ATP then binds and hydrolyses while the other head domain 

binds to the filament. The head domain will dissociate with the microtubule upon release of the 

phosphate. ɸ represents an unoccupied site ready for the nucleotide (ATP) to bind. 

The increase in the ATPase rate in the presence of microtubules is around 5000 fold at  ~50 

s
-1

 per head. This is due to a number of factors, not just the increase rate of ADP release, the 

rate limiting step of the cycle. As well as product release, the rate of hydrolysis of ATP is 

also increased when the motor is attached to a microtubule. As shown in Figure 2.8 the 
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motor first attaches to the microtubules via one head with the release of ADP from the head 

domain. The other head domain cannot attach to the microtubule until the bound head 

associates with ATP.
26-28

 ATP binding of the first head domain attached to the filament 

initiates a conformal change in the protein and produces the movement. The second head can 

now bind to the microtubule and release ADP while hydrolysis occurs at the first head 

domain. The binding of the second head accelerates the release of the first. This is the key 

difference of the kinesin ATPase cycle to that of myosin. The chemical binding of ATP 

accelerates the mechanical step of the second head binding to the microtubules, this in turn 

catalyses the release of ADP from the first second head. The release of ADP, a chemical 

step, then catalyses another mechanical step with detachment of the first head domain from 

the microtubule. Within one second conventional kinesin and take one hundred steps along a 

microtubule without dissociating from the filament.
29

 

2.4.2 Myosin ATPase cycle, step sizes and forces 

In the absence of actin the ATPase cycle of myosin is slow, roughly 0.1 s
-1

.
1, 24

 The rate 

limiting step of this cycle is the release of phosphate meaning that the main species is with 

the motor, ADP and phosphate bound together. The difference in ATP activity in the 

presence of filaments is substantial with actin increasing the rate of ADP release around 200 

fold to ~25 s
-1

.
1, 25

 As this is a cyclic reaction with several steps in equilibrium (see Figure 

2.9) there is no formal start point, however for simplicity the following explanation will use 

the state of myosin bound only ATP in the prepowerstroke state as the starting point. The 

powerstroke step of the cycle is where the conformal change in structure to the protein due 

to ATP hydrolysis creates the stepping movement required for force generation. For ease of 

explanation the following acronyms will be used, M = motor, T = ATP, D = ADP, P = Pi, A 

= actin and so for example MDP represents the motor bound to both a molecule of ADP and 

the phosphate. Myosin II is a low duty ratio motor, as opposed to processive motors where 
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when one head domain is not bound to the filament the other must be. As this is not the case 

we need only look at the cycle in terms of one myosin head as they work independently. 

 

Figure.2.9. Schematic shows the ATPase cycle for a single head of myosin. The motor goes through a 

number of strongly and weakly bound states. This is due to the difference in affinity that myosin has 

for actin filaments as it cycles through the hydrolysis of ATP.
30

 

After binding with T, hydrolysis of the nucleotide takes places giving the next step of the 

cycle as MDP where all products are bound to the motor. After this has taken place the 

motor will bind to actin giving AMDP which leads to phosphate release. Upon this 



22 

 

phosphate release the motor begins the powerstroke phase of the cycle and is now the strong 

bound state with D and actin. This strong bound state is coupled with the lever arm swing of 

the motor which is the force generating step. The motor remains strongly bound to actin 

while D is released to leave AM. It is only when the motor binds to another molecule of 

ATP that the affinity for actin drops and the motor eventually dissociates from the filament 

entirely to start the prepowerstroke phase again. 

The force generation occurs due to a conformational change within the protein and the angle 

at which the head domain is attached to the neck of the motor. Studies have shown that there 

is a cleft in the head of the motor that closes upon phosphate release when the motor binds to 

actin.
31, 32

 The step size of each powerstroke is around 5 nm meaning that an entire ATPase 

cycle with two headed myosin II will result in a step size in the range of 10 nm with the 

cycle taking just a few milliseconds.
1, 24

 The forces applied to the filament during the 

powerstroke have been measured by using bead assays (see section 2.6) and the maximum 

force exerted by a myosin motor is ≥10 pN.
24, 30, 33

 

2.5 The in vitro motility assay 

The in vitro motility assay (IVMA) is a key instrument in the elucidation of the motility 

function of motor proteins as it is not yet possible to assign attributes by amino acid 

comparison alone. The discovery of kinesin was a direct result of the creation of this 

technique.
34-36

 The initial breakthrough was the visualisation of myosin coated beads moving 

on actin filaments in the cytoplasm of the alga Nitella.
37

 Following on from this came the 

first fully in vitro bead assay which consisted of myosin coated beads moving on actin 

filaments spread over a microscope slide.
38

 Advances in microscopy meant it was possible to 

view single fluorescently labelled filaments and microtubules, and later even single 

fluorescently labelled motors.
39-43

 The study of protein motors and their mechanisms of force 

generation have been greatly advanced by these techniques and the speed of movement and 
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forces projected in vitro are in agreement with the action in the cell.
1, 38, 40, 44, 45

 Many of these 

forces have been measured by utilising optical traps. For instance the force with which 

myosin holds on to a filaments along with its step size and level of proccesivity have all 

been measured via this method.
33

 

 

Figure.2.10. The two geometries of the in vitro motility assay. A, the bead assay takes the form of a 

glass or plastic bead coating with motor protein. Filaments attached to flat surface allow the 

visualisation the bead as it moves. B, the gliding assay is a reversal of the bead assay. The motor 

protein is immobilised across a planar surface and fluorescently labelled filaments allowed to attach 

and their movement recorded via fluorescence microscopy.
2
 

The IVMA exists in two major forms, shown in Figure 2.10. The gliding assay consists of a 

flow cell in which one surface is coated with purified motor protein. Fluorescently labelled 

filaments are then allowed to attach to the motors and their movement is observed via 

fluorescence microscopy. The bead assay, or stepping assay, is the reverse of this. Filaments 

are spread across a planar surface and the movement of motor coated beads is visualised. 

This can be seen as being close to the in vivo transport of cellular cargo where the bead 

would represent the payload that the motor protein transports. Throughout this thesis, both 

with kinesin and myosin, the gliding assay will be utilised. 

In both gliding assay the filaments are viewed via fluorescence microscopy. To allow this 

visualisation the actin filaments are labelled with rhodamine phalloidin which is a high 
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affinity F-actin probe conjugated to the red-orange fluorescent dye tetramethylrhodamine. 

This phalloidin is highly selective to actin binding, water soluble and isolated from the 

deadly Amanita phalloides mushroom.
46

 In the kinesin gliding assay the microtubules are 

polymerized from rhodamine-labeled porcine brain tubulin where a mixture of 1:3 labelled 

with unlabelled units was used. The labelled units have been modified to contain covalently 

attached rhodamine at 1-2 dyes per heterodimer. The rhodamine is a red-orange fluorescent 

dye emitting at around 580 – 600 nm. 

2.6 Future prospects of molecular motors 

The creation and implementation of the IVMA’s outlined in section 2.6 show two separate 

outcomes for molecular motors and motor proteins. On the one hand they have created 

powerful tools with which to study these proteins and further elucidate their complex 

workings. On the other hand the IVMA can be viewed as an initial proof of concept for the 

ability to extract these nanomachines and retain their function within an environment 

entirely different to that which they have evolved to exist. Once these developments had 

been made it was a small step to envisage the potential applications of these specialised 

proteins in a variety of purposes mainly concerning the movement of objects around a 

surface. Many technological advances have taken inspiration from nature and so it is not 

surprising that many are optimistic about the future uses of motor proteins in lab-on-chip 

devices. Our rapidly increasing understanding of the in vivo function of motor proteins only 

adds to the number of potential applications that are suggested. The huge range of motor 

proteins in existence and the specificity of each to its particular role in cells shows us that 

while the number of applications may be large, the implementation of these nanomachines 

will need to be highly specialised in order for any system created to work close to the 

efficiency seen in vivo. This efficiency of force generation is perhaps the most attractive 

property of molecular motors. The kinesin motor can take 100 steps along a microtubule in 

one second, 8 nm steps at a time, and can pull against a force of 6 pN. The motor takes one 
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step for each molecule of ATP it hydrolyses at an energy efficiency of around 50 %, which 

is remarkable when compared that to a modern combustion engine found in the average car 

which has an energy efficiency of up to 40 %.
47-49

 Other motor proteins such as the rotary 

motor F1-ATPase has had a reported efficiency of between 80 % and 100 %.
50

 The size and 

structure of purified motor proteins also lends itself for use in parallel nanotechnological 

applications. Alongside the ease of purification, thanks to developments in this sector, and 

their low cost, it would seem that these motor systems could be very powerful tools. 

Many of the applications envisioned begin by looking at the role of the particular motor 

protein being studied. For example, the main role of kinesin is to transport cellular cargo, 

and it does this by using microtubule tracks. However, after the implementation of the 

gliding assay many have come to the conclusion that this system could be used for molecular 

transport within a device but instead utilising the microtubules as ‘shuttles’ that could carry 

species from one area of a chip to another.
51-55

 The same can also be said of the actin-myosin 

system where the transport of cargo could be carried out via decorated actin filaments and, 

due to the speed advantage over kinesin, could be a fast delivery system.
56-58

 The movement 

of these filaments over a surface coated in motors is a theme that can be used for a large 

variety of device designs. As well as transport of cargo this dynamic translocation has shown 

promise in both self assembly and molecular sorting with the majority of the device designs 

being angled at miniaturised analytical systems such as diagnostic, drug discovery and 

biosensing systems.
47, 48, 59-64

 

Utilising molecular proteins in lab-on-a-chip devices, no matter what the desired system is, 

does not come without several issues and limitations such as the following: 

 Purification of the protein while retaining functionality 

 Occurrence of non-functioning motors on a given surface 

 Motor proteins must be kept in a hydrous environment at all times 
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 Cystoskeletal filaments must be successfully polymerised and stabilised along with 

the appropriate fluorescent labelling if they are to be visualise by fluorescence 

microscopy 

 Flow cell design must allow for rapid replacement of solutions for each step of the 

motility assay 

 Blocking species such as BSA must be used to reduce the chance of denaturing the 

motor protein through unwanted surface interactions 

 Each device may require a specialised motility assay procedure to ensure that a 

healthy motor protein layer exists on the surface of the device 

 Must control temperature, salt concentrations and pH of assay solutions 

 Firstly the purification of the protein must be done in such a way that allows the retention of 

the active sites of the motor, the head domains, while also leaving the tail domains largely 

undamaged for successful adsorption to the surface of a gliding assay.
17, 29, 65, 66

 A second 

issue of utilising motor proteins is presence of non-functioning motors attached to a surface 

of a gliding assay. This population of motors needs to be kept to an absolute minimum if a 

device of high quality and reproducibility is to be created. Any device that utilises motor 

proteins need also be a ‘wet device’ so the motor are kept in a hydrous environment 

throughout. From purification to surface adsorption, every step of the motility assay is done 

in aqueous solution. While studies have shown that an entire assay can be frozen, stored and 

motility re-initiated, if the assay dries at any point the motility is permanently terminated.
67, 

68
 Apart from the purification of the protein it is also essential that the filaments are 

polymerised successfully, be they actin or microtubules. In the case of microtubules this 

becomes particularly important if one is trying to create microtubules that contain the 

standard 13 protofilaments that are all horizontal to each other, as explained in section 2.2.2. 

Production of microtubules with other numbers of protofilaments will lead to the 
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microtubule encountering a slight spin as it is propelled across the surface, which may 

impact on its ability to transport cargo. There are steps that need to be taken to ensure the 

stability of the filaments, it is common for the microtubule stabilising drug taxol to be 

included in the process to ensure that there is little depolymerisation.
1, 2, 69

 Actin filaments 

are polymerised using phalloidin (see section 2.3.2) which aids in the polymerisation and 

helps to stabilise the resulting ph-actin.
1, 2, 65, 70

 IVMA’s provide a good tool to check if the 

individual components of the assay are performing correctly; however, the motility assay 

itself can be problematic. The gliding assay must be sealed on at least two sides in order for 

the solutions to be kept within the flow cell. The cell design must also allow for the rapid 

replacement of the different solutions required during the process. For example, in the actin-

myosin motility assay a solution of given motor protein concentration is allowed to incubate 

in the flow cell for a set amount of time in an attempt to create repeatable protein layers on 

multiple devices. If the device design does not allow for rapid ‘flushing’ of the flow cell, 

there is likely to be disparity between incubation times. It is important that blocking species 

be used in the flow cell, such as BSA or casein, as these help prevent the denaturing of the 

motor protein and unwanted binding of the cytoskeleton to the surface of the gliding assay. 

For assays that contain fluorescently labelled filaments, an anti-bleaching system must be 

used as this prevents free radical creation, which will not only cause the filaments to bleach 

but also destroy the motility. Finally the motility assay solutions need to be tuned, in terms 

of concentration and incubation time, for each device design to ensure that the appropriate 

concentration of protein, both motor and blocking, are present on the surface. This will 

become much more complicated as the device designs increase in their complexities, 

especially if combined with micro/nano fluidics. As a side note to protein, ATP and salt 

concentrations, another physical component that must be controlled within the device is 

temperature. There is a direct correlation between temperature and the velocity of 

filaments.
71, 72

 High temperature will also denature the proteins within the assay. 
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While all of these limitations of the motor protein system need to be taken into account, the 

need for appropriate control of the motility on a given surface is of paramount importance. 

Without this the movement of cytoskeleton on the surface of a gliding assay is highly 

random. Currently there is no way of placing the motors on a surface in an ordered manner, 

meaning that when the protein is adsorbed to the surface the orientation of the motor and its 

direction of propulsion is disordered. This means that alternative means of guiding or 

directing the movement of filaments is required and can be achieved in a number of different 

ways. This is an area of research that is being extensively studied by a number of groups and 

is the main focus of this thesis.
48, 73

 

2.7 Methods for control and analysis of kinesin and myosin systems 

There are a number of obvious methods to control the movement of filaments in a gliding 

assay, many of which have been shown, and like the issue of the choice of motors, all have 

their advantages and disadvantages.
64, 69, 74-84

 The method of control can be attempted in a 

variety of ways. This can include guidance of the filaments via structures on a surface or 

chemical patterning of a surface in the hope of provided regions of preferential protein 

binding leaving other areas free of motors. In the following sections several key methods for 

the control of motility will be discussed. 

2.7.1 Topographical confinement 

The first and perhaps the most obvious is the topographical confinement of the motility 

(Figure 2.11 A and B). By patterning the surface of the gliding assay with structures or 

channels that prohibit the movement of the filaments to certain areas of the surface, it is 

possible to confine the motility to set regions. 
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Figure.2.11. A, topographical confinement of motor protein motility. Microfabrication of surfaces 

creates trenches or channels in which the floors are functionalised with motors. The walls of these 

channels prevent the filaments from moving outside of the structure. B, kinesin motility is confined 

within the microfabricated structure of a glass substrate. The walls of the channels are designed in 

such a way to prohibit the microtubules from ‘climbing’ out of the structure.
84 

Success has been shown in creating devices where actin filaments or microtubules are placed 

within channels where either only the floor of the channel is functionalised with the motor 

protein, or the walls of the channel are designed in such a way to prevent the filaments from 

‘climbing’ out of the structure.
78, 84-87

 These two methods of topographical confinement 

approach the same issue in alternative manners, how to keep the filament within the set 

boundaries of the channel. If one is to coat the entire surface, including channels, with motor 

protein, it is vital that a barrier is put in place to stop the filaments from simply attaching and 

climbing out of the channel via the motors immobilised on the sides of the structure. One 

method which has been used to great effect is to create a channel of which the cross section 

resembles an upside down Ω.
88

 With this method, as the filaments climb the wall of the 

channel they reach a roof that is of sufficient distance to the bottom surface of the channel to 

allow motor attachment to the filament. Thus preventing the cytoskeleton from leaving the 

structure. Alternatively, the second method requires that only the floor of the channel is able 

to immobilise the motor protein.
84, 85

 With no motor protein attached to the walls of the 

channels there it is impossible for the filament to climb out and is therefore restricted to 
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wherever the channel flows. Topographical confinement has been used as a proof of concept 

in devices that could be used to collect and aggregate filaments, and potentially the cargo 

they could carry.
59, 82

 By specifically designing the flow of the channels it is possible to 

direct the filaments to specific areas. One example of this is the inclusion of ‘rectifiers’ 

where filaments moving in the wrong direction along a channel are taken out, moved around 

a specially designed loop, and then returned to the original channel now moving in the 

correct direction.
82

 This solves an important issue with the topographical control of motor 

protein motility, that of directionality. While it is obvious that the movement of the filaments 

can be confined within a structure, the direction of these filaments is still independent of the 

structure, i.e. the filaments may move either up or down the channel. The directionality of 

the filaments within these structures are therefore still defined in one dimension by 

Brownian motion and, probably more importantly, the lateral positioning of the motor. Due 

to the method of immobilisation of the protein this positioning is very random, meaning 

without significant alterations to the channel design, the direction of filament movement is 

still relatively random. Although these rectifiers and ‘roundabouts’ (Figure 2.11 B) seem to 

solve this issue they also add significant surface area and complexity to the overall device 

design, especially if the surface of the gliding assay is large ( >100 µm
2
) and requires 

multiple rectifier structures to keep the filament moving in the correct direction. 

2.7.2 Chemical confinement  

A second method of controlling the movement of filaments across the gliding assay is the 

use of chemical tracks, which preferentially bind the protein thus creating a highway of 

motors (Figure 2.12 A and B). Like topographical control, many have used this method with 

a high degree of success not only to create tracks but also to alter the overall motility 

function seen on the surface in terms of velocity, directionality and ‘quality’ of motility.
75, 77, 

79, 81, 89-92
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Figure.2.12. A, Chemical patterning of a surface can create areas where the motor protein will 

preferentially adsorb. B, E-beam patterning of a poly[(tert-butyl-methacrylate)-co-(methyl 

methacrylate)](PMMA) coated substrate gives rise to a change in hydrophobicity of the exposed 

areas. The coloured tracks show the movement of filaments in  hydrophobic areas of the surface 

where the motility of actin filaments is being confined due to the preferential binding of the protein to 

these regions.
77

 

Due to the processive nature of kinesin, and its ability to attach to a variety of chemical 

surfaces these studies into altering the motility function mainly concentrate on the myosin 

system. This is down to the fact that only a small number of kinesin motors are required on 

the surface for motility to takes place as the filament is constantly held by the motor during 

motility. Myosin, however, works via a cooperative mechanism in which the motor spends 

very little time attached to the filament, and so requires a number of motors on the surface 

working in cooperation, but not necessarily in tandem, for filament translocation.
1, 2, 49, 73

 

This means that the motility function seen on the gliding assays of actin myosin can be 

readily altered by small changes in the concentration of motor proteins and the orientation of 

motor proteins.
91

 The subject of motor protein adsorption to different surface chemistries is 

one that is of high interest within the field and one that will be covered in chapters 5 and 6 of 

this thesis. The disadvantages of this method for confinement are obvious. Similar to 

topographical confinement there is no way of directing the filaments, they are free to move 

up or down any given track. On top of this, chemical tracks have a limit to the amount of 
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confinement they can create. It has been reported that filaments need to be moving within a 

certain angle of the edges of the tracks. If the filament approaches at an angle of incidence 

greater than ~20
o
 it will tend to come off the track and float into the assay solution.

77, 93
 This 

is obviously a serious weakness of chemical confinement unless one can tune these to be so 

narrow that an angle of incidence that would lead to filament loss is impossible once the 

filament has begun moving along the track. This issue, however, means that it would be 

impossible to build small rectifiers, seen in some examples of topographical confinement. 

This is due to being unable to make the filaments make sharp turns on chemical tracks as the 

filament is more likely to dissociate from the motors as there is no obstacle stopping it from 

doing this.
82, 84

 Altering the surface chemistry alone may not be an accurate method of 

confinement, but it does open up options for tuning the motility function either over an 

entire surface or just in set regions.
81, 85, 92, 94

 

2.7.3 Guidance by electrical fields 

The polarity of both microtubules and actin filaments opens up the possibility of directing 

and guiding the motility using electrical fields (Figure 2.13). This has been shown in both 

myosin and kinesin systems and also in the absence of motor proteins.
59, 76, 81, 95-97
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Figure .2.13. Electrical guidance of filaments in a gliding assay. A, In the absence of an electrical 

field the directionality of the filaments movement will be dominated by Brownian motion and the 

lateral orientation of the protein motors. B, The yellow arrow shows the direction of the field with the 

point representing the position of the positive electrode. In this instance the polarity of the filaments 

will result in an overall propensity for the leading, negatively charged, head of the filament to move 

towards the positive electrode. C, Image shows the tracks of individual actin filaments with arrows 

showing their direction of movement. D, The image shows the directing of actin filament movement 

by an electrical field. The white arrow represents the direction of the field and general direction of 

filament motion. The images shown in C and D are produce from work in this thesis. 

The distinct advantage that this method has over both chemical and topographic confinement 

is the ability to control the direction of filament movement. Most designs utilise a set-up 

where the flow cell incorporates an electrophoritic cell, where the negatively charged, 

leading tips, of the filaments can be guided towards the positive electrode. The electrode set-

up can either be included within the flow cell, or incorporated outside the flow cell within a 

container containing an ionic solution.
59, 76, 98

 It has been shown that reasonably low 



34 

 

electrical fields can influence the motility and in combination with topographic confinement, 

it can even be used to measure the lateral forces exhibited by the motor.
76

 A drawback of this 

method is the creation of gas and species e.g. radicals, at the electrodes that are harmful to 

the motor proteins. Lab-on-chip designs utilising this method of control will need to 

circumvent this issue if there is to be no damage done to the protein layer. This may be 

achieved by either having the electrodes far away from any surface area containing motor 

protein, although the large potentials required could present a safety risk, or by the careful 

placement of electrodes inside the structures on the gliding assay.
76, 81, 98

 A design may be 

implemented that only requires the electrical field to be activated for a fraction of a second, 

for example at a junction between channels.
59

 This would rapidly decrease the chance of 

destroying the proteins in that area. 

These separate methods of motility control can, and in some cases have, been used in 

conjunction with each other to create a highly specific guidance system where filaments are 

directed, collected or sorted to predefined positions in a gliding assay.
85

 Other novel control 

methods have also been successfully demonstrated to affect the motility of both actin and 

microtubules.
49, 99

 Microtubules have been decorated with cargo that has shown to control 

the speed of microtubule motility.
62, 100

 Thermoresponsive polymers which block the 

attachment of the cytoskeleton to the motor have been shown to create gates and motility 

prohibiting areas.
80, 83

 Many of these control method have been implemented in functional 

devices for, sensing, sorting and cargo transport.
62, 64, 100, 101

 In the following chapters of this 

thesis two separate systems, microtubules kinesin and actin myosin motility, are utilised in 

two separate devices that implement several of the control methods for the confinement and 

guidance of motor protein motility. 
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Chapter III: Materials and 

Methods 

 

 

 

 

 

 

The following chapter contains the materials and methods used in the studies contained 

within this thesis. The fabrication technique used to structure the surface of a gliding assay 

will be detailed along with the procedure for both the myosin and kinesin motility assays. 

Also included are the methods used to functionalise the surface of the electrical motility 

assay for the study of motor protein adsorption on a variety of polymers and silanes. 
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All chemical were bought from Sigma Aldrich and all water used was Millipore 18.2 

MΩ·cm unless stated. 

3.1 Kinesin motility with thermoresponsive PINPAM gate 

The thermoresponsive polymer PNIPAM was used as a means to inhibit the motility of 

microtubules at specific regions on a surface via localised heating. In these experiments a 

specialised gliding assay was created to incorporate a structured surface along with heat 

control ‘gates’ at junctions of the ablated channels. The motility gating device was created in 

collaboration with Dresden University and is a continuation of previous work achieved using 

PNIPAM to control kinesin motility.
1
 The device takes the form of a kinesin gliding assay 

on which a set of electrodes are fabricated on the surface of the flow cell. A glass slide with 

a 200 nm thick gold surface, purchased from Ssens, Enschede, The Netherlands, with a 

chromium adhesion layer, was patterned to create a series of channels and a ‘gate’ area 

where via localised heating the structure of the thermoresponsive polymer in that region of 

the chip could be controlled.  

3.1.1 Laser ablation  

The patterning of the PNIPAM chips was performed by laser ablation, QuikLase-50ST from 

ESI/NewWave Research, of the gold layer. Laser ablation of the gold layer of the chip takes 

place due to a sharp temperature rise as the photons in the laser beam are absorbed as the 

laser is applied in short pulses in a predefined pattern resulting in vaporisation of the metal.
2, 

3
 The laser beam, with a spot size of around 2 x 10 µm

2
 was pulsed at 10 Hz and moved 

across the surface at no more than 10 µm/s. Multiple passes were made to ensure complete 

ablation of the gold layer.  
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Figure.3.1 The scheme shows the laser ablation method for patterning the gold surface of the gliding 

assay. The ablation is performed through the back of the sample; a PDMS frame containing water is 

sealed to the gold and captures any debris created during ablation. 

There was a significant amount of debris left on the surface after direct ablation of the gold, 

and upon application of the motility assay, this was found to obstruct the motility function in 

key areas of the design. Therefore a slightly altered ablation technique was designed. A 

water cell was created using frames cast from PDMS (Figure 3.1). The chips were mounted 

so that the ablation would take place through the glass back of the chips and any debris 

created during the patterning would be captured by the water cell, unable to be deposited 

onto the surface. 

200 nm Gold 

on glass 

PDMS 

frame 

Glass 

coverslip 
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Figure.3.2 Two confocal images of channels ablated into a 200 nm gold surface. After ablation both 

were rinsed with ethanol and water before imaging. A, 4 µm wide channel ablated without the use of 

the flow cell detailed in Figure 3.1, extensive debris is visible around the ablated area. B, Channel 

ablated with the use of the water cell, shows a dramatic decrease in the amount of ablation debris left 

on the surface. 

This ablation technique solved the issue of debris remaining on the surface after patterning 

(see Figure 3.2) and further samples showed that motility was unhindered on all areas of the 

final design. 

3.1.2 PDMS preparation 

Sylgard 184 Polydimethylsiloxane (PDMS), Dow corning corporation, is a silicone 

elastomer. It is supplied as a two part kit containing a base and curing agent that are mixed 

in a 10:1 mass ratio. When combined the two make a transparent viscous liquid that can be 

poured into a desired mold. Once the PDMS has been applied to the mold it is put under 

vacuum to remove the liquid of any gas bubbles formed in the reaction between base and 

curing agent, and also to aid in making a seal between the liquid and mold. When 
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completely degassed the PDMS is cured for 8 h at 65 
o
C to allow completion of the cross 

linking of the polymer chains.  

To make the frames for the laser ablation method used to pattern the PNIPAM chips, a thin 

layer, approximately 2 mm, of PDMS was poured into a large petri dish. Once cured, frames 

measuring 18 x 12 mm
2
 were cut.  

3.1.3 Surface Functionalisation  

The method for grafting PNIPAM onto surfaces was adapted from Ionov et al.
1
 200 nm thick 

gold-on-glass chips (20x14x1 mm
3
, Ssens, Enschede, The Netherlands) were cleaned with 

Piranha solution (3:1 concentrated H2SO4 and H2O2; danger, extremely corrosive and 

explosive when mixed with organic solvents!). The clean substrates were then spin-coated 

(ramped at 500 rpm/s to 2000 rpm for 30 s) with a 0.01 % Poly(glycidyl methacrylate), 

(PGMA, Mn = 65000 g mol
-1

, Polymersource Inc., Dorval, (Montreal), Canada) solution in 

chloroform. The PGMA was annealed at 130 °C for 20 min in a vacuum oven. After 

annealing, the substrates were placed in chloroform (70 °C) in order to remove unbound 

PGMA. After the deposition of the PGMA, the topographical structure and the electrodes 

were fabricated by laser microablation of the chip surface. Poly(N-isopropylacrylamide) 

(PNIPAM, Mn = 45000 g/mol, Polymersource Inc., Dorval (Montreal), Canada) was 

dissolved in chloroform (1% solution). The surface of the substrates was then completely 

covered with a droplet of the PNIPAM solution. After the chloroform evaporated, the 

substrates were placed in the vacuum oven at 160 °C for 60 min to anneal the PNIPAM. 

Unbound PNIPAM was removed by washing the substrates in hot chloroform (70 °C).  

3.1.4 Motility Assay 

Microtubules were polymerised from rhodamine-labeled porcine brain tubulin in BRB80 (80 

mM PIPES, adjusted to pH 6.9 with KOH, 1 mM EGTA, 1 mM MgCl2) with 5 mM MgCl2, 
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1 mM GTP, 5 % DMSO at 37 °C for 30 min. The microtubules were stabilised and diluted 

200-fold in BRB80 containing 10 μM taxol. Flow cells for motility experiments were 

assembled with the structured chips, two strips of parafilm across the surface and closed 

with a glass cover slip (Figure 3.3). The chips were then mounted onto a microscope stage 

that could be temperature-controlled using a Peltier element 
1
.  

 

Figure.3.3 A, Scheme showing the layout of motility flow over the patterned surface making up the 

gliding assay. White areas show where the gold has been ablated away to leave 200 nm deep channel. 

B, There is a small area of gold between the channels where joule heating will occur.  

A casein containing solution (BRB80 with 0.5 mg ml
-1

 casein) was perfused into the flow 

cell and allowed to adsorb for 5 min. This solution was exchanged for a kinesin solution 

(BRB80 with 10 μg ml
-1

 Kinesin-1, full length, from Drosophila melanogaster, expressed in 

bacteria
4
; 0.2 mg/ml casein, 1 mM ATP, 10 mM dithiothreitol), which was allowed to adsorb 

for 5 min. Finally, a microtubule containing solution (motility solution: BRB80 with 10 mM 

taxol, microtubules (equivalent of 32 nM tubulin), 1 mM ATP, 40 mM D-glucose, 55 μg ml
-

1
 glucose oxidase, 11 mg ml

-1
 catalase, 10 mM dithiothreitol) was inserted and imaging was 

started. The imaging was performed using an Axiovert 200M inverted optical microscope 

(Zeiss) equipped with a back-illuminated CCD camera (MicroMax 512 BFT, Roper 

Scientific) in conjunction with a Metamorph imaging system (Universal Imaging Corp.). 
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3.2 Electrical motility device for the study of actin myosin motility on polymer and 

silane surfaces  

The electrical motility device was used in the studies detailed in chapters 5 and 6 to examine 

filament guidance by electrical fields. By examining the effect of the field on motility on 

different surfaces the device has also been used to probe the protein adsorption properties of 

a number of polymers and silanes. The device set up described in the following section was 

used for the studies achieved in both chapters 5 and 6 of this thesis. An IVMA was modified 

using a large coverslip sealed at two sides with chambers attached at the open ends of the 

flow cell that allowed the application of electrodes. The electrodes were designed in a way 

that the distance between was defined by the size of the cover slip, 50 mm. Before 

assembling the flow cell the surface of the gliding assay was functionalised with the surface 

chemistries to be tested. 

3.2.1 Surface functionalisation 

The following polymers and silanes were used as surfaces with which to immobilise HMM 

to the surface of the electrical motility gliding assay, Nitrocellulose (NC), poly(methyl 

methacrylate) (PMMA), poly(tertbutyl methacrylate) (PtBMA), poly(butyl methacrylate) 

(PBMA), trimethylchlorosilane (TMCS) and Triehtlychlorosilane (TECS). Large coverslips 

measuring 50 x 22 mm
2
 were functionalised prior to assembling the electrical motility flow 

cell. Solutions for spin coating the polymers were prepared as follows: NC 1% (w/v) in amyl 

acetate; PMMA (average Mw=120000) 2% (w/v) in PGMEA; PtBMA (average Mw=170000) 

2% (w/v) in PGMEA;  PBMA (average Mw=180000; Polysciences Europe) 1% (w/v) in 

toluene. The silane solutions when prepared as follows, TMCS 5 % in chloroform and TECS 

5% in chloroform.  For polymer functionalisation, glass cover slips were washed in ethanol 

and dried under a nitrogen flow before they were spin coated with the polymer solutions at 
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3600 rpm for 2 minutes (Figure 3.4). The cover slips were subsequently baked at 85
o
C for 3 

hours.  

 

Figure.3.4 Schematic shows the process for spin coating. This was used to functionalise glass with 

NC, PMMA, PtBMA and PBMA. A, deposition of solution containing desired polymer. B, polymer is 

spread across surface as the sample is accelerated and spun at a given rpm. C, Sample is baked to 

allow evaporation of any residual solvent and to aid in adhesion to the glass. 

 For TMCS and TECS functionalisation, glass cover slips were soaked in dry acetone, 

followed by methanol and chloroform for 5 minutes then each soaked in a solution 

containing 5 % TMCS or TECS in dry chloroform for 5 minutes.  After silanisation the 

cover slips were washed in dry chloroform, dried under a nitrogen flow and baked at 85 
o
C 

for 3 h. Figure 3.5 shows the reaction mechanism of the silanisation of the glass substrate.  
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Figure.3.5 Schematic shows the functionalisation of glass with silanes TECS and TMCS. A silicon 

oxide bond is made at the surface with the release of hydrogen chloride. 

All the surfaces chosen throughout this thesis have been previously shown to support myosin 

motility or are materials that are viable for use in lab-on-chip devices for protein 

adsorption.
5-8

 A brief description of each surface chemistry and key characteristics follows. 

PMMA is a homopolymer commonly used as a positive or negative photoresist for electron 

beam microscopy. The polymer has a glass temperature of 105 
o
C and low water absorption 

properties of around 0.2 – 0.4 % in standard room conditions.
9
 The spin coating procedure 

used is expected to produce a flat, featureless surface.
10

 PMMA is slightly hydrophobic with 

a measured contact angle of around 60 
o
. It has been used in previous studies for the 

immobilisation of myosin and has shown to adsorb the protein while retaining the motor 

function.
7, 11, 12

 It has also been used in lab-on-chip designs for the confinement of myosin 

motility.
11
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Figure.3.6. Structures of polymers used to functionalise the surface of the gliding assay. A, Methyl 

methacrylate polymers. B, Nitrocellulose. 

NC (see Figure 3.6 B) is the nitrated form of cellulose, an important polymer found in the 

cell wall of plants. It is extremely flammable, so much so that it has found uses as a solid 

rocket fuel, flash paper and is responsible for a number cinema fires in the early 20
th
 century 

due to its use in film stock.
13, 14

 It has been used in a number of biological applications due to 

its protein and antibody binding characteristics.
15, 16

 NC has long been used in actin myosin 

gliding assays and is regarded as the control surface in motility experiments.
17-20

 The 

surfaces produced in the studies presented here are relatively hydrophobic (contact angle 

~70
o
). Contact angle measurements were achieved with nanopure water (5 µL) at room 

temperature (23-25
o
C) in air using a Krüss drop shape analysis system DSA 10 Mk2. Higher 

contact angles show surfaces with higher hydrophobicity as the water droplet forms a 

structure closer to a bead on the surface. NC will readily absorb water into its structure. The 

spin coating and baking procedure used here will create a flat uniform surface. However, 

upon application of the assay solutions during the gliding assay the surface is likely to 

absorb water and become gel-like in nature. 

Methacrylate polymers are widely used in scientific research (see Figure 3.6 A). PtBMA is 

used as a resist in semiconductor microlithography and although not extensively used in 

motility assays the surface has shown along with other resist polymers to readily adsorb 
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HMM.
11, 21

 The PtBMA surfaces used here were very hydrophobic (contacts angles of 79 – 

82 
o
) and much like PMMA, are flat and rigid with very little water absorption. 

PBMA, though not widely used as a platform for actin myosin motility, has shown to 

support the protein with various degrees of success.
8, 22

 The surfaces created here were 

slightly hydrophilic (contact angle around 58 
o
 – 60 

o
). Much like NC the polymer has the 

propensity to absorb water into its structure leading to a gel-like surface when used in the 

gliding assay. Its use in this study is primarily down to its hydrophilicity and water 

absorption properties as a direct comparison to the more hydrophobic, but still gel like, 

structure that NC provides when utilised in the gliding assay. 

Widely used in organic reaction as a means to protect functional groups during a reaction, 

silanes TECS and TMCS are used as coatings for glass and silcon surfaces and TMCS has 

also been applied in various microfabrication procedures as a resist.
23-25

 Stable in the absence 

of water TMCS and TECS will form a self assembled monolayer on glass following reaction 

with the OH groups present at the surface. As such the resulting TMCS surfaces created in 

this study are expected to be flat, hydrophobic (contact angles of between 75
o
 – 80

o
) and 

rigid with little water absorption. The TECS surfaces used here were again expected to form 

flat rigid surfaces with low water absorption, however, TECS creates highly hydrophilic 

surfaces with contact angles between 30
o
 – 35

o
. Silanes have been shown to support actin 

myosin motility and more recent studies have shown preferable motility characteristics in 

terms of average filament velocity on TMCS over more traditional gliding assay surface 

chemistries such as NC. 
6, 26, 27

 

3.2.2 Electrical motility device 

The electrical motility cell (EMC) is an extension of the standard in vitro motility flow cell. 

After surface functionalisation a large cover slip with dimensions of 50 x 22 mm
2
, is sealed 
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on two sides to a microscope slide. Two pipette tips are then sealed at the centre of both 

open sections of the flow cell. These house the electrodes as well as the final assay solution 

which is applied before the electrodes are inserted (see Figure 3.7).  

 

Figure.3.7. The pipette tips sealed at each end provide chambers that are first filled with the final 

assay solution of the motility assay and then electrodes are inserted. 

The distance between the electrodes allows an oil immersion lens to be inserted between 

them in order to observe the motility in the centre of the flow cell. This is an important 

element of the design as in this section of the flow cell the field lines will be parallel 

allowing linear control of the filaments. This, coupled with the design of the electrode 

chambers, keeps any species harmful to the protein motors, e.g. gas bubbles and radicals, far 

from the area of analysis.  

3.2.3 Motility assay 

Apart from filling of the electrode reservoirs and the insertion of electrodes, the motility 

assays performed with the electrical motility device follows the same procedure as a 

standard in vitro motility assay. Each assay solution is perfused through the flow cell and 

allowed to incubate for a specific amount of time. The final solution containing the ATP is 

applied to both the flow cell and the electrode reservoirs.  
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Solutions for motility experiments 

 Assay solution; 1 mM MgATP, 10 mM DTT, 25 mM KCl and LISS with anti-bleach 

mixture containing 3 mg/ml
-1

 glucose, 20 units/ml glucose oxidase, 870 units/ml catalase 

and ATP regenerating system containing 2.5 mM creatine phosphate and 56 units/ml 

creatine kinase.  Blocking solution; 1 mg ml
-1

 bovine serum albumin (BSA) in LISS buffer.  

Labelled actin; 10 µl of rhodamine phallodin  labelled actin filaments (rhodamine phalloidin 

was purchased from Invitrogen and actin was labelled according to manufacturers protocol), 

990 µl of L65.  Blocking actin; 14 µl of unlabelled actin filaments, 986 µl of L65. 

Motility assay procedure 

60 µl of heavy meromyosin (HMM; 120 µg/ml in L65) was applied to a flow cell containing 

the functionalised cover slip and incubated for 2 minutes.  At the end of this time, un-reacted 

binding sites on the cover slip were blocked by applying 60 µl of blocking solution to the 

flow cell.  Following incubation for 30 seconds, the blocking solution in the flow cell was 

replaced with 60 µl of blocking actin in order to block non-functioning HMM heads.   After 

1 minute incubation, excess blocking actin was removed by flushing the flow cell with 60 µl 

of L65 and then 60 µl of labelled actin was applied for 30 seconds.    At the end of this time 

excess labelled actin was removed by flushing the flow cell with 60 µl of L65 and 60 µl of 

assay solution was applied.  The electrode chambers were filled with assay solution and the 

electrodes inserted. For each surface filament guiding was imaged at fields strengths 2 KVm
-

1
 – 8 KVm

-1
 with an epifluorescence microscope  (Zeiss Axio Imager.M1 ) fitted with an 

Andor iXon+ EMCCD camera at room temperature (23 - 35 
o
C). 

Image acquisition and analysis 

Videos were taken at a frame rate of 10 frames s
-1

. Analysis of the videos was achieved in 

the open source image processing program imageJ and the filament movement tracked using 



54 

 

the plugin MtrackJ. Each experiment was repeated 3 times with an average of 10 filaments 

tracked per sample. 

The electrical motility device was used in two separate studies utilising slightly different 

methodologies. In the first application, chapter 5, the device was used to guide the filaments 

across the surface and the average motility function, in terms of velocity and directionality, 

was recorded. The second motility study, chapter 6, was performed in two parts. The first 

section of the study performed in chapter 6 used the same electrical motility device but was 

performed and recorded slightly differently. In this experiment the movement actin filaments 

were recorded over a period of 30 seconds. After an initial period the filament were 

subjected to an electrical field to ‘accelerate’ the filaments across the protein surface. This 

was then terminated and the period after termination of the field analysed. A second study 

into the effect of blocking actin was performed in exactly the same fashion as the previous 

electrical motility study in chapter 5. The average motility function of guided actin filaments 

was measured on assays that did not contain blocking actin.  

Where experiments were performed without the inclusion of blocking actin the assay 

procedure was performed as follows. 60 µl of heavy meromyosin (HMM; 120 µg/ml in L65) 

was applied to a flow cell containing the functionalised cover slip and incubated for 2 

minutes.  At the end of this time, 60 µl L65 was flowed through the cell. Following 

incubation for 30 seconds, the blocking solution in the flow cell was replaced with 60 µl of 

L65. This allowed the exclusion of blocking actin from the procedure without affecting the 

flushing of the flow cell. After 1 minute incubation, the L65 was then flushed from the flow 

cell with 2 x 60 µl of assay solution and then 60 µl of labelled actin was applied for 30 

seconds. At the end of this time excess labelled actin was removed by flushing the flow cell 

with 60 µl of L65 and 60 µl of assay solution was applied to both the flow cell and the 

electrode chambers. 
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Chapter IV: Guidance and 

Control of Kinesin Motility Using 

a Thermoresponsive Polymer 

 

 

 

 

 

This chapter will focus on presenting a novel approach to the guidance and control of 

kinesin motility. A device design is presented that utilises topographic confinement and a 

thermoresponsive polymer to guide microtubules. A gliding assay containing a patterned 

surface is used to show how the movement of microtubules can be achieved. Specially 

created ‘Gates’ are positioned on the device where by localised heating using a 

thermoresponsive polymer in that region, motility is blocked. 
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4.1 Introduction 

The following chapter will illustrate a novel approach to utilising motor proteins in lab-on-

chip technologies. As stated in the introductory chapters, the main engineering goal for 

incorporating molecular motors into a device is control over the filament or microtubule 

movement. In this chapter a novel chip design is created so that the motility of microtubules 

can be topographically guided in predefined channels and a thermoresponsive polymer is 

used to create ‘gates’ at specific areas of these channels. Localised heating allows the 

selective inhibition of microtubule motility.  

The kinesin microtubule system utilised in this device was chosen due to the surface binding 

nature of the protein. After the laser ablation of the Poly(glycidyl methacrylate) (PGMA) 

coated gold (see methods section 3.1.1) it is not possible to specifically functionalise the 

‘floors’ of the channels in which the motility is to operate. Kinesin will attach to a variety of 

surface chemistries including glass.
1-6

 As such there is no need for further functionalisation 

of the channels.  
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4.2 Application of the thermoresponsive polymer PNIPAM into a novel device for the 

control of microtubule motility 

Kinesin is a robust motor protein which uses the energy generated by hydrolysing the 

nucleotide ATP to propel microtubules. In vivo the protein powers important processes such 

as cell division and vesicle transport. The movement of the microtubule is performed by the 

motor in a highly processive manner meaning, in the case of a gliding assay, that the protein 

can move the microtubule many steps before dissociating.
6-8

 Alongside the previously stated 

surface binding characteristics of kinesin, this is a highly beneficial feature of the system and 

aids in the design of the gating device outlined in this chapter. It means that where the 

thermoresponsive polymer acts upon the motility will be highly specific as both the motor 

and the microtubule is in constant contact at each step in the ATPase cycle. This is important 

as in the final design of the device there are two defined areas where the motor protein 

attachment results in different densities of kinesin, where it is attached to glass and to 

PNIPAM coated regions on the chip. This characteristic of the kinesin system ensures that 

motility would be evident on both surface chemistries. 

4.2.1 Previous kinesin motility applications  

These benefits of the kinesin system have lead to it being implemented in a number of novel 

motility assays, all aimed at controlling the motility for a specific function. Perhaps the most 

common, and arguably the easiest to implement, methods of control has been the 

topographical guidance and isolation of kinesin motility.
9-14

 In these examples the movement 

of the microtubules is confined in such a way that trajectories can only run in two directions, 

either up or down a channel. This has been shown in a number of studies to provide a simple 

route to confining motility to certain areas of a surface and also collecting the 

microtubules.
10, 14

 As with all methods of guidance this technique has its limits, in this case 

being the directionality of the motility. Some studies have shown successful implementation 
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of ‘rectifiers’ into the motility channels. These collect microtubules that are moving in an 

undesired direction and return them to the channel flowing the correct way.
15

 These, 

however, must be placed at specific regions of the chips and in many cases would involved 

more than one rectifier, rapidly increasing the complexity of the device. 

The kinesin system has also shown some promise of being directed by the application of an 

electrical field.
10, 16, 17

 Due to the negative charge held on the microtubules both 

electrophoresis and dielectrophoresis have been used to guide and ‘dock’ the motility. 
18

 

Other implementations of the kinesin system going beyond guidance, have seen the addition 

of cargoes to the microtubules and the use of these cargoes with surface bound entities to 

analyse the motility.
13, 19-21

 In particular one study has used quantum dots attached to the 

filament to analyse the motility via 3D-nanometer tracking.
22

  

The work in this chapter was done in collaboration with B CUBE - Center for Molecular 

Bioengineering, Technische Universität Germany and follows on from previous work 

performed there.  

The thermoresponsive polymer PNIPAM was shown in a recent paper to provide a novel 

method for highly specific switching of kinesin motility.
23

 In the initial implementation of 

the polymer, a globally heated PNIPAM coated surface was used to inhibit the attachment of 

microtubules to the motor protein. This inhibiting effect occurs at a specific temperature that 

is within the working temperature of kinesin and so does not risk the denaturing and 

therefore loss of function of the motor. Another paper has shown the successful 

implementation of this polymer switch to dynamically guide motility at a planer junction.
24

 

In the device presented here the PNIPAM switch is implemented into a chip design to 

provide a traffic-light type system with the addition of static topographical structures with 

which to guide the microtubules.  
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4.2.2 Response of motility to PNIPAM coating on globally heated surface 

Poly(N-isopropylacrylamide) (PNIPAM) is a thermoresponsive polymer whose structure 

changes from a hydrated and extended state to one that is dehydrated and collapsed upon 

transition of the Lower Critical Solution Temperature (LCST) (see Figure 4.1). The polymer 

can be attached to specific regions of a surface via poly (glycidyl methacrylate) (PGMA). 

This creates a polymer surface with tuneable ‘thickness’. It is this function that is utilised in 

the following device designs to remotely inhibit the motility by changing the temperature of 

the surface. The structural change of PNIPAM occurs at  the LCST which is between 33
 o
C 

and 35 
o
C. This is within the operating temperature of kinesin in terms of avoiding any 

unwanted denaturing of the protein.  
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Figure.4.1. The image shows the operation of the PNIPAM at its functioning temperature. a, scheme 

shows how at the LCST (33 – 35
o
C) the polymer will collapse into its dehydrated state allowing the 

attachment of microtubules to the motors. Below this temperature the polymer extends, blocking any 

interactions between the motors and microtubules. b, resulting images from the globally heated 

sample.
23

 

Work achieved to find the appropriate grafting density of the polymer in order to 

successfully inhibit the motility at temperatures below 33 – 35 
o
C can be found in Ionov et al 

2006.
23
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4.3 Kinesin motility with functioning PNIPAM gate 

The next section of this chapter focuses on the implementation of the PNIPAM into a chip 

design where the switching can be localised in a controlled manner. This will be presented in 

two generations of samples where a thermoresponsive gate is designed on a surface to create 

traffic light type junctions. 

4.3.1 Combinatorial gating 

The design of the first generation samples consisted of a number of planar gold electrodes on 

a surface with varying gate areas between. By applying a potential over the gold bridge the 

temperature at specific junctions can be controlled due to the increased resistance at the gate 

regions.  
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Figure.4.6. The structure of the gold electrodes on the surface of the device. The grey areas denote 

areas of 200 nm thick gold. The blue lines show where the connections are made in order to apply a 

potential over the device. The red circle highlights an area where increased resistance will result in an 

increase in temperature. 

The structure of the gold electrodes is shown in Figure 4.6, where a 200 nm thick gold layer 

has been ablated using a laser mill to create the regions where high resistivity will occur. 

After the ablation, the entire chip is coated in a ‘planarisation layer’ by spin coating a 4% 

w/v PMMA solution over the sample. 
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Figure.4.7. Meshed model of gold thermoelectrodes, the planarization layer and bottom glass 

substrates are not shown. A, The structure of the gold electrodes showing the current desnity across 

the gold. B, The heat distribution across the gold in the plane of the electrodes. C, The heat 

distribution in the plane of the electrodes with the addition of the PMMA planarisation layer. Figure 

courtesy of Dr Harm van Zalinge. 

Simulations were performed to show the temperature behaviour of the device (Figure 4.7). 

In the simulation a constant temperature of 300 K was set at the gold pads in between the 

gate areas (the areas of high resistance where PNIPAM switching is to be localised). A 

potential of 35 mV is passed through the electrodes. The results suggest that upon 
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application of this voltage the maximum temperature of the electrodes and top PMMA layer 

rises to 43 °C.  

Variations in the thickness of the glass substrate and the planarisation layer mean that the 

applied potential will be slightly different in order to obtain the required temperature 

differentiation. The results show that the magnitude of current density is higher in the 

regions of gold microelectrodes as represented in Figure 4.7 A. Therefore, it is expected that 

the gold gate regions (red circle Figure 4.6) will have a temperature higher than remaining 

surface of the gold layer and it is here that PNIPAM switching will occur. 

 

Figure.4.8. The graph outlines the relationship between the current applied to the device and the 

velocity of the kinesin motility. 

The samples were integrated into an in vitro motility assay in the aqueous environment. The 

current dependent heating of the device was shown to directly influence the sliding velocity 

of microtubules (Figure 4.8) as seen in the previous experiments in section 4.2.2.  The heat 
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generated by an Ohmic resistor is given by Q=V
2
R

-1
t. The best quadratic polynomial fit is 

indicated in Figure 4.9, where the offset is equal to the room temperature. 

 

Figure.4.9. The graphs shows how the temperature increases as the bias potential is increased. The 

fitted curve shows a quadratic increase with bias potential increase. 

Better localisation of the heating was obtained by connecting a single row of electrodes. The 

temperature dependence of the sliding velocity of microtubules was measured at two 

junctions, 1) on the row that is heated and 2) a junction on a row that is unheated, is shown 

in Figure 4.10.  
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Figure.4.10. A, Confocal image of the gold structure used for local heating. A current was passed 

through the gold and measured at positions marked with circles labeled (1) and (2). B, Microtubule 

velocity at positions (1) and (2) the temperature corresponding to these temperatures is indicated. The 

temperature at position 1 was also measured before the experiment (dashed line) and directly after 

turning off the current (rightmost circle). Figure courtesy of Dr Harm van Zalinge. 

 

The results showed a clear temperature difference between locations 1 and 2; however, 

localisation of the temperature was poor. The inability of this chip design to generate 

µlocalised heat means that the switching capability of PNIPAM will not only be achieved at 

‘gate’ regions of the chip but also at undesired areas. The high thermal conductivity of the 

sample, exacerbated by the planarization layer covering the gold electrodes means that this 

design cannot be used to create functioning PNIPAM gates. Further simulation did suggest 

that cooling the back of the sample via a Peltier element would help in localising the heating.  
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4.3.2 Gating Device 

In the second generation of the device a redesign of the gate area of the chip was created to 

improve the localisation of the heating which had been an issue in the previously used 

designs in combination with a Peltier element. Added to the design were topographical 

features which direct the microtubules towards the gate (Figure 4.11). The areas in which the 

motility is to function is in the channels patterned into the surface of the gold (1- 10 µm 

wide), as opposed to the first generation samples where the motility was functioning directly 

on top of the gold electrodes. Junctions where created by leaving small areas of gold 

(between 1-100 µm long) periodically along the channels. It is these areas that, due to 

increased resistance, will generate heat as a current is passed through the gold layer. 

 

 

Figure.4.11. The schematic shows the operation of the PNIPAM ‘gate’ A, The PNIPAM at the ‘gate’ 

area remains unheated and therefore in its extended state. At this temperature the microtubules that 

come into contact with the ‘gate’ will detach into solution. B, A potential is applied to the ‘gate’ in 

order to heat the PNIPAM within the operating window where the molecule collapses but not so far as 

to cause damage to the protein layer. Microtubules will be able to pass freely over the PNIPAM.   

A thin layer of PGMA was spin coated onto the 200 nm gold surface of the samples. The 

samples were then patterned by laser ablation of the gold to leave glass floored channels in 

which to isolate the motility. The areas of gold left after patterning allowed the attachment 
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of PNIPAM via the spin coated PGMA. The design of the electrodes shown in (see materials 

and method figure 3.3) allowed the collection of motility (white areas of the diagram) and 

left the remaining areas of the chip free for electrodes to be attached and a current passed 

through the gold. 

Initially the motility was performed on patterned samples prior to annealing with PNIPAM 

(Figure 4.12). This was done to study the motility function both in the channel and the area 

surrounding the ‘gates’. The results highlighted issues with the debris left around the ablated 

areas of the gold. Microtubules are seen over the entire chip, however, at the edges of the 

areas where patterning has taken place the amount of debris left by the ablation was 

sufficient to hinder the motility. It was found that various washing techniques did not 

improve the surface of the channels and that there was still sufficient debris left by the 

ablation to hinder the motility. 
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Figure.4.12. The image shows kinesin motility on a PGMA coated sample. The white arrows show 

the position of the channels. The white circle shows the position of the ~10 µm  ‘gate’. Motility was 

present on unpatented areas of the chip. Clearly shown, however, is the inhibiting nature of the debris 

left after patterning at the edges of the channels and around the gate. 

In the first generation samples a PMMA planarisation layer was spin coated on top of the 

ablated gold and this will have helped in avoiding the issues with ablation debris inhibiting 

smooth sliding. However, due to the issues caused by the planarisation layer discussed in 

section 4.3.1 an alternative ablation technique was created to negate the issue (see chapter 3 

section 3.1.1). The patterning was performed in a specially made water cell. It was found 

that ablating the gold through the rear of the chip helped create more clearly defined channel 

walls. The water cell meant that debris created by the ablation of the gold fell into solution 

rather than being deposited onto the surface. Images taken after the new ablation technique 

confirmed the absence of debris at the edges of the channels (Figure 4.13).  
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Firgure.4.13. The AFM images shows an example of the channels created by the water cell laser 

ablation technique. The areas around the channel are free of debris and so will not hinder smooth 

gliding motility. 

Samples were made by first spin coating the PGMA and then applying the new ablation 

technique. The PNIPAM was subsequently annealed to the samples as per the grafting 

protocol set out in section 4.2 using a grafting density of ~6 mg/m
2
 which was shown to 

exhibit the appropriate level of control over the motility. To test the PNIPAM layer and the 

switching ability of the polymer close to the channels and gate areas of the samples the chips 

were first placed on a Peltier element so that the temperature of the entire surface could be 

controlled (Figure.4.14.). 
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Figure.4.14. The time integrated images show the motility performed on PNIPAM coated patterned 

samples while the surface temperature is controlled via a Peltier element. A, The sample is held at 

approximately 27 
o
C, the PNIPAM in its extended state does not allow interaction between 

microtubules and kinesin to occur. B, The surface temperature is held at approximately 35 
o
C. At this 

temperature the PNIPAM collapses as its structure is dehydrated. This allows the microtubules to 

attach to the motors on the surface and so motility is clearly visible (Whites lines in image B show the 

movement of filaments due to motor attachment).  

The results showed that the new ablation technique had cleared the areas around the 

channels and gates and that motility functioned uniformly on all areas of the sample. The 

annealing of PNIPAM to the PGMA coated surface of the gold was also unaffected by the 

laser ablation. In Figure 4.14 the switching ability of the PNIPAM is clearly evident in all 

areas, with the exception of the channels where polymer is not present. The halos seen in 

Figure 4.14 A are a result of microtubules moving due to Brownian motion and are unable to 

attach to the kinesin. Figure 4.14 B shows the time integrated movement of microtubules 

across the surface (white lines) as the surface is heated allowing motor attachment. Both 

Figures show that the PNIPAM coating was functioning as expected and inhibiting motility 

when the surface temperature was below 33-35 
o
C. 

A B 
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To test the local heating ability of the gate areas, the samples were placed on a Peltier 

element that was held at a temperature of 23 
o
C to limit heat exchange to undesired regions 

of the chip. A potential was applied to the gold layer (0.3 V at 52 mA) which resulted in 

15.6 mW of heat being generated at the gate. 

 

Figure.4.15. Key Frames from a video taken of filament movement. A, Image show the topographical 

confinement of a motile microtubule. B, The microtubule comes into contact with the heating ‘gate’ 

region of the chip where the PNIPAM is in its collapsed state, which allows the continuation of 

motility. C, The filament reaches the edge of the heated area of the chip, the PNIPAM in this area is 

in its extended state and so the attachment of microtubule to the motor heads is inhibited and hence 

the microtubule begins to detach from the surface. 

In Figure 4.15 the potential is applied to the gold gate from top to bottom in the images 

shown. Highlighted in green and with a red circle is the path taken by a single microtubule. 

The microtubule can be seen gliding unhindered inside the channel. Image B shows that the 

heated PNIPAM gate allows the interaction between motor microtubule to occur. Important 

to note are the areas either side of the channel where microtubules can be seen slightly out of 

focus. These are microtubules present in solution, due to the extended state of PNIPAM in 

these areas of the chip they are unable to attach to the kinesin. The slight movement, shown 

by the blurring of their outlines is due to Brownian motion. In the final image (C) the 

microtubule can be seen to make a turn while moving in the locally heated area. Clearly 

shown here is the boundary of the heated area. As the microtubule continues to move away 
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from the gate the front of the filament reaches an area of the chip where PNIPAM is in its 

extended state as so begins to drift into solution as it can no longer attach to other motors. In 

figure 4.15C this can be seen by the blurring of a portion of the filament as its movement 

begins to be defined by Brownian motion rather than the kinesin motors. While this 

highlights the functioning of the gate it also shows that, due to the thermal conductivity of 

the materials used, the area of localised heating is still relatively large (approximately 

diameter of 40 – 50 µm). This meant that instead of moving from one channel across the 

gate and back into the other, the microtubules can make turns and move onto other areas of 

the chip which in turn resulted in the dissociation of the filaments into solution as they 

reached the extended PNIPAM chains.  

4.4 Conclusions 

This chapter has shown the use of the thermoresponsive polymer PNIPAM in selectively 

switching kinesin motility. The polymer has been confined to areas on a chip and via the 

localised heating of these areas a functioning gate has been created. The function of the 

polymer at these gate regions was seen to perform just as reliably as in the original samples 

where the entire surface of the samples was temperature controlled. There are two remaining 

issues of the design that in future iterations will have to be addressed. Firstly the gold is 

extremely conductive. This creates issues with the localisation of the heating. Perhaps 

another material can be used that while still allowing heating via a current potential, is less 

susceptible to transfer the heat generated to the surrounding area. Another factor to consider 

is the height of the PNIPAM gate structures. If these could be lowered in height this may 

help in transferring the microtubules from one channel to the other as opposed to the current 

situation where they turn to other areas of the chip. If for example the gate were 100 nm 

high, this would provide a channel across the gate with walls of 100 nm which should be 

sufficient to guide the motility. The best way to perform this may be a threefold ablation 
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procedure. In the first step the channels would be ablated as stated in the final section of this 

chapter. At this stage laser pulses of much reduced power and utilising a specifically shaped 

aperture could then be applied to the top of the gate areas of the chip. This would ablate 

some but not all of the gold and could reduce the height of the metal in these areas.  

The results of this study have shown that PNIPAM can be used as a method of gating 

microtubule motility at specific junctions on a patterned gliding assay. One possible design 

that could utilise these gates is a structured surface that contains roundabouts where the 

PNIPAM gates are contained at specific areas at the edge of the circle. This would mean that 

while the PNIPAM was in its extended state the microtubules would continue to move 

around the channel until they reached a gate that had been heated. The lowered PNIPAM in 

these sections would then allow the microtubules to pass out of the structure.  

The studies performed in this chapter has lead to a publication in Biomedical Microdevices: 

Control and gating of kinesin-microtubule motility on electrically heated thermo-chips 

L.C. Ramsey, V. Schroeder, H. van Zalinge, M. Berndt, T. Korten, S. Diez, D.V. Nicolau 

Biomedical Microdevices, DOI: 10.1007/s10544-014-9848-2 (2014) 
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Chapter V: Manipulation of Actin 

Myosin Motility with DC Fields 

and Study of Protein Adsorption 

 

 

 

 

The study within this chapter focuses on the actin myosin motor protein system. DC 

electrical fields are used to guide the negative charge filaments across the surface of a 

gliding assay. Several surface chemistries are used within the electrical motility device to 

immobilise the motor protein. The motility function exhibited during application of an 

electrical field is analysed in terms of velocity and directing ability. This is then used to 

derive the protein adsorption properties of the surface chemistries used. 
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5.1 Introduction 

The aims of this chapter are twofold. Initially the ability to guide actin myosin motility by 

uniform electrical fields will be presented to evaluate this as a viable method of directional 

control. This experimental procedure will then be used to probe into the HMM adsorbing 

properties of six surfaces. The study will concentrate on how surface rigidity and the 

hydrophobicity and charge held by each of the surfaces impacts the adsorption of HMM. By 

comparing the motility function observed when a range of fields are applied to the motility 

assays it will be possible to draw conclusions on the adsorption mechanism of HMM and the 

cause of any loss in the function of the motor protein. The study of motor proteins in novel 

in vitro environments is important in further elucidating the complex nature of these systems 

and to explore ways in which their properties may be exploited. This study is also important 

as an insight into the viability of such a guidance technique if the system was to be used in 

any future bionanodevices. 

The actin myosin system is important as it is ubiquitous in eukaryotic cells providing a 

platform for a great many biological functions and has been the subject of many studies into 

its biological and chemical functions. Since the development of the in vitro motility assay 

the study of the system in an array of environments has become widespread.
1
 The lure of 

exploiting such an efficient nanomachine has seen a large number of studies using a variety 

of different engineering solutions with which to utilize the system.
2-5

  

It is not hard to imagine the potential for such a system to be used as means to transport 

chemical or biological cargo around a lab-on-chip device, or as a switch or signal activator 

in a sensing device. 
6, 7

 The principle guidance of actin filaments by uniform electrical fields 

has been achieved in previous work by other research groups, namely Riveline et al.
8
 This 

work follows on to provide a practical analysis of the effect that different surface chemistries 

has on the motility function. In particular the investigation focuses on the different 
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characteristics that the motility function displays when the protein is immobilised on a 

variety of surfaces and what can in turn be inferred about the mechanism of this 

immobilisation. The six surfaces investigated in this study were, Nitrocellulose (NC), 

poly(methyl methacrylate) (PMMA), poly(tertbutyl methacrylate) (PtBMA), poly(butyl 

methacrylate) (PBMA), trimethylchlorosilane (TMCS) and triehtlychlorosilane (TECS). 
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5.2 Actin myosin motility  

In order to study the effects of an electrical field on the motility function, initial experiments 

are required to provide a base line of what is classed as ‘normal’ motility characteristics. 

Experiments were run on nitrocellulose (NC) as this has been the typical surface chemistry 

used for running in vitro motility assays.
9, 10

  

NC is a highly flammable polymer used in a wide range of applications. Since the 1980’s it 

has been used as a protein membrane due to its ability to bind protein while allowing the 

immobilised protein to retain its function.
11

 Although extensively used the precise 

mechanism of binding is still unknown although it is thought to be a combination of 

hydrogen bonding and electrostatic and hydrophobic interactions.
11, 12

 The NC surfaces 

produced from this procedure give contact angle measurements between 65
 o
 – 70

o
. 

The movement of 20 - 30 filaments were tracked as this accounted for all the fully motile 

filaments in the field of view (see Figure 5.1). The tracking was obtained for a 5 second 

period of the experiment which relates to 50 frames. This was deemed enough to make 

statistically valid assessment of the velocity and directionality of the filaments. The average 

velocity of filaments along with data obtained of the angle of trajectory was used to analyse 

the typical motility function the actin myosin system displays in a standard NC in vitro 

motility assay under the environmental conditions that the electrical motility experiments are 

to be performed in. 
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Figure.5.1. Images show actin myosin motility on NC coated surface. Left, Integrated pixel intensity 

image of the motility over 5 s, white lines show the movement of individual actin filaments. Right, 

tracking overlaid on the final frame of a 5 s video stream with arrows denoting the direction of 

movement. Notice that the direction of filament movement is random when in the absence of a 

directing element such as an electrical field. Both images obtained via fluorescence microscopy. 

The ambient room temperature (~24 
o
C) was recorded at all times to ensure that this did not 

deviate significantly during the course of the experiments.  
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Figure.5.2. Graphs showing motility function on NC. A, Plot shows a frequency count of the velocity 

of 30 filaments each making a total of 50 individual movements. B, The radial plot shows a frequency 

count of the angle of trajectory of 30 filaments, 0-360 representing the 360
o
 of movement. 
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The initial experiments showed that the motility function was within previously reported 

ranges with respect to the velocity and the general direction of travel.
10, 13, 14

 Filaments 

moved in a random fashion with the angle of trajectory being dependent largely upon 

Brownian motion and presumably the way in which the motors, available to interact with the 

actin, are positioned (see Figure 5.2).
15

  

Table.5.1. Descriptive statistics of actin myosin motility on NC. Data represents the tracking of 30 

filaments 

 

Velocity 

(µm/s) 

Change  in angle 

of trajectory (
o
) 

Average 4.1 16.4 

Maximum value 8.1 168.7 

Minimum Value 0.7 0.0 

Standard deviation 1.2 14.8 

Median 4.2 12.7 

 

5.3 The effects of electrical guidance of actin on nitrocellulose immobilised HMM 

After the base line experiments were achieved on nitrocellulose, the same surface was used 

and an electrical field was applied in order to study the guidance effects of this external force 

and the general changes in the motility function as fields of increasing strengths were 

applied. 

The length dependent charge on the actin filaments gives rise to the ability to guide the 

motility via electrical fields.
8, 16, 17

 In the electrical motility experiment the motility assays 

were performed in an adapted flow cell that allowed the application of a uniform field across 

the surface. The field range of 0 – 8 kV/m was chosen as previous experiments by this group 

and other groups showed this to be the optimum range of operation for guiding actin myosin 

motility.
8, 17
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5.3.1 Electrically guided motility on nitrocellulose 

In order to remove filament length as a variable in this study a strict tracking protocol was 

followed. It was important that the filaments chosen for tracking were done so by 

characteristics other than purely being the most visible in the field of view, these most likely 

being the larger filaments. A procedure was therefore created so that the filaments would be 

chosen due to their motility function. Firstly, only filaments that were ‘fully motile’ for the 

entire 50 frames of the video were tracked, i.e. filaments that did not stop, or start moving, 

part way through the video. Note here that filaments that displayed hindered motility were 

still included in the data as this was an important characteristic in this study. As previously 

mentioned 20-30 filaments were tracked for each sample which in the field of view (80 x 80 

µm
2
) accounted for all the fully motile filaments on the sample. Therefore velocity and 

directionality data are largely independent of the length as average filament length for all 

samples was ~1.3 µm (see Figure 5.3). 
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Figure.5.3. The graph shows the relationship between the filament length and average velocity on NC 

when a 6000 V/m field is applied. Data shows the average velocity of 22 filaments of varying lengths. 

Upon application of an electrical field to the motility assay a change is seen in two aspects of 

the motility function. Firstly an increase in the velocity of the actin filaments and secondly 

the general direction of travel of actin filaments changes towards the positive electrode.  
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Figure.5.4. Plot shows the increase in the average velocity of actin filaments as the electric field 

increases on nitrocellulose. Error bars show the standard deviation of velocity. Each data point 

represents the tracks of 30 filaments over 3 samples. 

As seen in the graph (Figure 5.4) there is an almost two fold increase in the average velocity 

at 8 kV/m compared to that seen in the absence of a field. It can also be observed that the 

increase in velocity is accelerated between 4.5 – 5 kV/m. A Theory for this sudden increase 

is that the pulling force of the field overcomes a specific obstacle to filament movement such 

as inactive HMM on the surface.  
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Figure.5.5. Radial plot shows a frequency count of the angle of trajectory on nitrocellulose. 0 – 360 

represent the angle of frame by frame movement of the actin filaments with 0 showing the position of 

the positive electrode. The graph represents the movement of 30 filaments tracked over 3 samples at 

each of the fields tested. 

As the field is increased the percentage of filaments moving against the field dramatically 

reduces until; at 8 kV/m there are no recorded movements that strayed more than 90
o
 from 

the direction of the positive electrode (0
o
). In the middle range between 4 – 6 kV/m 

filaments were seen travelling against the direction of the field but most of these eventually 

made U-turns (Figure 5.6). At 5 kV/m filaments moving against the field displayed an 

average velocity 87% of those moving in line with the field.   
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Figure.5.6. Fluorescence microscopy image shows the tracks made by a filament when a U-turn is 

observed during the application of a 6 kV/m electrical field on nitrocellulose. Arrow head shows 

direction of movement. Scale bar equals 5 µm. Tracking achieved in program ImageJ. 

The percentage of motile filaments increased along with the field. From 0 – 8 kV/m the 

percentage of motile filaments more than doubled from 27.9 % to 66.9 % respectively. The 

largest increase was seen at 6 - 8 kV/m from 34.3 % to 66.9 %. This characteristic was 

mirrored in the velocity data where a rapid increase in the average velocity of filaments is 

seen between 5 and 8 kV/m. 

Table.5.2 Descriptive statistics of the motility function on NC. Standard deviation is given in 

brackets, Data represents the tracking of 30 filaments.   

Electrical 

field 

(kV/m) 

Percentage of 

motile filaments 

(%) 

Percentage of filaments moving 

within 40
o
 of the positive 

electrode (%) 

Average 

velocity 

(µm/s) 

0 27.9 15.8 4.1(1.2) 

4 30.6 35.5 5.0(1.3) 

6 34.3 47.8 6.3(1.6) 

8 66.9 74.9 7.6(1.4) 
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 It is important to note that upon termination of the field the motility function returns to that 

of a sample that has not been exposed to a field (see also chapter 6). 

5.4 The effect of surface rigidity on the motility function while under the influence of an 

electrical field 

The surface rigidity was investigated as a potential source of any changes seen in the 

characteristic behaviour when the actin filaments are guided by a range of fields. For this 

investigation two surfaces, nitrocellulose and TMCS, were chosen due to their similarities, 

in terms of hydrophobicity, and the large differences in surface rigidity. The gel like 

structure of nitrocellulose, that forms due to uptake of water, provides this study with a 

direct comparison to the highly planar and rigid surface structure of TMCS. 

5.4.1 Motility function of electrically guided actin filaments on TMCS 

Silanes are extensively used in the chemical industry as precursors to a number of chemical 

processes and also as a resist in some microfabrication procedures.
18, 19

 TMCS is reactive 

towards neucleophiles, the chlorine atom is replaced and it is this reaction which allows 

attachment to the glass slides (see chapter 3 section 3.2.1). It is important to keep the 

reaction between the silane and glass surface anhydrous in order to prevent the silane from 

preferentially reacting with water. 

The samples produced with TMCS exhibited the least hindered gliding motility of all the 

surfaces tested. TMCS has previously been studied as a substrate for actin myosin assays 

and shows generally good motility function.
4, 20-23

 The samples prepared were hydrophobic 

with contact angles measuring between 75 – 80
o
. 
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Figure.5.7. Plot shows the increase in the average velocity of actin filaments as the electric field 

increases on TMCS. Error bars show the standard deviation of velocity. Each data point represents the 

tracks of 30 filaments over 3 samples. 

The motility function on these samples was of a high quality in terms of uninterrupted 

filament movement. TMCS exhibited a high percentage of motile filaments, above 80 % at 8 

kV/m. As seen in Figure 5.7 the velocity increases with increasing field strength and there is 

a proportionally large increase in the mid range, here between 4.5 – 5 kV/m. After this there 

is a rapid increase in the average velocity. The motility on TMCS also exhibited a much 

larger increase in velocity from 0 to 8 kV/m (~ 6 µm/s) compared with the increase seen on 

NC. 
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Figure.5.8. Radial plot shows a frequency count of the angle of trajectory on TMCS. 0 – 360 represent 

the angle of frame by frame movement of the actin filaments with 0 showing the position of the 

positive electrode. The graph represents the movement of 30 filaments tracked over 3 samples at each 

of the fields tested. 

Following on from the velocity data, directionality on TMCS was also very strong with 

filament trajectories being affected in the lower field range. At 8 kV/m there were no 

filaments observed that move against the direction of the field; even at fields as low as         

4 kV/m filaments that move against the field quickly made U-turns. At 8 kV/m over 60 % of 

the filaments were moving within 40
o
 of the positive electrode. 

Table.5.3. Descriptive statistics of the motility function on TMCS. Standard deviation is given in 

brackets. Data represents the tracking of 30 filaments over 3 samples. 

Electrical 

field 

(kV/m) 

Percentage of 

motile filaments 

(%) 

Percentage of filaments moving 

within 40
o
 of the positive 

electrode (%) 

Average 

velocity 

(µm/s) 

0 31.1 16.2 4.5(1.0) 

4 38.7 59.6 5.9(1.2) 

6 44.4 63.9 8.2(1.3) 

8 80.5 66.1 10.7(1.6) 
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5.4.2 Effects of surface rigidity on electrically guided motility on TMCS and nitrocellulose 

The difference in the rigidity of these two surfaces lies in the ability of each to absorb water 

into their structure. NC will absorb water into the polymers structure upon application of the 

assay solutions creating a gel like layer for the protein to adsorb on. Conversely TMCS is a 

hard flat surface. Functionalisation of the surface with TMCS creates a largely uniform layer 

absent of large polymer chains for water molecules to infiltrate. Though the rigidity of these 

two surfaces will be largely similar in their dry state, the application the assay solutions 

rapidly changes the characteristics of the two due to the swelling of NC. This is illustrated in 

Figure 5.9 where upon protein adsorption the definition between the HMM layer and the 

polymer, in the case of NC, becomes blurred due to polymer swelling.
24

 It is important to 

note, however, that upon protein adsorption and addition of ATP, QCM experiments have 

shown the resulting rigidity, of both surface and protein layer, on both TMCS and NC to be  

similar.
24

 

 

Figure.5.9. Schematic shows the stepwise process of the motility assay and the evolution of the two 

surface chemistries TMCS and NC. Note here that upon addition of the final assay solution containing 

ATP, motility will begin and as a result this movement the protein layer itself becomes less compact. 
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The protein layer itself will also become less compact as the ATP is added to the system and 

the motors begin to move. Conversely on TMCS the hard surface does not swell and upon 

the addition of ATP the difference in density make the definition between the surface and 

protein layer much more obvious.  

 

 

Figure.5.10. Due to the possibility of uneven swelling of the polymer surface, in the case of 

nitrocellulose there is opportunity for the polymer chains to interact with regions of the bound HMM. 

One example is shown here where the head region of the HMM could interact with the swelled 

polymer layer potentially hindering motility. 

Figure 5.10 outlines one particular scenario where the polymer rigidity could have an effect 

on the motor protein function. In the case of NC the swelling of the surface is unlikely to be 

even. The gel-like behaviour of the polymer when hydrated means that there could be 

potential for protein interactions with the surface after the initial immobilisation. 

The visually observed quality of motility behaviour on both NC and TMCS was very 

similar. Both surfaces produced gliding assays that exhibited unhindered motility with a high 
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percentage of motile filaments. The velocity data obtained on the samples coated with 

TMCS showed a larger increase from 0 – 8 kV/m when compared to NC. Given the similar 

hydrophobicity of the two surfaces it is therefore assumed that the gel like nature of NC may 

slightly impair the smooth gliding of filaments. However, as will be shown in the later 

sections of this chapter, the effect on motility function due to the surface rigidity seems to be 

minor in comparison to the effects of hydrophobicity on the adsorption of HMM.  

 

Figure.5.11. The average velocity of actins filaments on TMCS and NC vs. electrical field strength. 

Each data point presented shows the tracks of 30 filaments over 3 samples. 

As shown in Figure 5.11 both have very similar velocities when not under the influence of a 

field. It is only when a substantial field is applied that the two surface start to show a 

differences in the motility function. TMCS seems to show slightly less hindered motility 

than NC as shown by the larger increase in velocity from 0 to 8 kV/m. This may be due to 

the previously described interactions between the polymer surface and the protein motors 

and the undefined nature of the polymer-protein layer described in Figure 5.9. Another 
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aspect to consider is the height of the HMM when immobilised on NC and TMCS. The NC 

layer is unlikely to swell in a uniform way and as such the heights of the attached HMM will 

differ slightly as the protein is adsorbed to the polymer, which may affect the resulting 

motility due to straining filament attachment. This would not be the case on TMCS as it is 

considered to create a largely flat surface and so the heights of fully active HMM should all 

be comparable. 
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Figure.5.12. Graphs show the angle of trajectory of actin filaments on NC and TMCS. 0 degrees 

represents the position of the positive electrode. A, No field applied , B, 4000 V/m,  C, 6000 V/m and 

D, 8000 V/m. Each graph represent to movement of 30 filaments over 3 samples. 

C 

D 
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Figure 5.12 again looks very similar with both displaying characteristics at the final 8 kV/m 

field. Though NC seems to have a larger number of filaments moving within 40
o
 of the 

positive electrode at 8 kV/m (~70%), at field strengths lower than this TMCS displays a 

higher level of guidance. This again could be attributed to the gel-like nature of NC making 

the polymer slightly more erratic in its behaviour than the highly planar TMCS. It is clear, 

however, that by looking at both sets of data and taking into account the comparable motility 

function observed during the experiment that both surfaces perform to a high degree with 

very little hindrance to motility. This may be due to the large surface area afforded to a 

swelled polymer such as NC. Any interactions between the bound HMM and the swelled 

polymer that would otherwise negatively impact the motility function may be negated by the 

density of HMM that is available due to the increased surface area of the swelled NC. 

Therefore while the rigidity of the surface chemistry used to immobilise the HMM will have 

some influence as to retaining the function of the protein, other surfaces properties effecting 

protein adsorption such as hydrophobicity need to be examined. The next section of this 

chapter will concentrate on this in relation to the adsorption mechanism of the protein. 

5.5 The effect of surface hydrophobicity on actin myosin motility while under the 

influence of an electrical field 

Surface hydrophobicity and charge have been discussed in many studies to be the most 

important factors not only in the attachment of a protein to a surface but also the effect on 

the protein structure (the potential to denature) and as a result its functioning.
25-32

 Section 

5.4.2 outlined the effect that surface rigidity plays on the retention of unhindered motility, 

here the focus is on the remaining major aspects of HMM attachment. In 5.5 the motility 

function exhibited on a range of surfaces will be analysed in terms of their hydrophobicity 

and the overall charge held on each of the surfaces. This will be followed by an evaluation 
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of the HMM structure with the aim of correlating the displayed motility function with a 

number of geometries available to the HMM on a given surface. 

5.5.1 Comparison of motility behaviour on silanes TMCS and TECS 

Although TMCS and TECS are structurally similar, the carbon chains only differ by one, the 

chemical properties of the resulting surfaces are very different (Figure 5.13). TECS was the 

most hydrophilic of the surfaces tested in this study. Contact angle measurements gave 

readings between 32 – 35
o
. Upon incubation with the assay solutions HMM was attaching to 

the surface as can be concluded from the presence of actin filaments, which are attached to 

the HMM.  

 

Figure.5.13. Schematic shows the structures of TECS and TMCS when attached to a glass surface. 

Although the difference in carbon chain is only by one, the result is a dramatic change in 

hydrophobicity and HMM immobilisation properties. 

Motility on TECS without an electrical field was present but extremely sporadic and 

untrackable. Upon application of a field (2 kV/m) the filaments seen attached to the surface 

were quickly stripped off. Further samples were prepared with the final assay solution 

containing ATP replaced with the L65 wash solution (see chapter 3 section 3.2.4). These 

samples on average exhibited the same number of filaments present on the surface as the 

ATP containing assays. Upon application of 2 kV/m filaments were again stripped from the 
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surface. Both ATP containing and non ATP containing assays were then tested at lower 

fields (1 kV/m, 0.5kV/m and 0.25kV/m) all of which stripped the filaments from the surface. 

These experiments showed that there was an absence of attachment points, HMM molecules 

with heads available for attachment to the filaments, which not only support fully functional 

motility, but also anchor the filaments to the surface. TECS was deemed to have such poor 

HMM binding characteristics that no further study was achieved with this surface chemistry. 

This could be due to a propensity for the HMM to denature upon immobilisation owing to 

the hydrophilicity of TECS or perhaps an all round low density of HMM present. Another 

possibility is that the HMM is binding to the surface at the head domain leaving no active 

HMM for the filaments to bind to. 

5.5.2 Motility function on methacrylate polymers, poly (methyl methacrylate) (PMMA), 

poly (tert-butyl methacrylate)(PtBMA) and poly (butyl methacrylate)(PBMA) 

The backbones of these polymers are identical but the difference in the carbon chain in each 

of the polymers significantly changes the hydrophobicity of the resulting surfaces produced 

in this study. Together with the previous two surface chemistries tested, TMCS and 

nitrocellulose, conclusions can be drawn as to the main contributing factors in HMM 

binding and the reason the motility function differs on each substrate. The motility exhibited 

in terms of velocity and the tendency of the filaments to move towards the positive electrode 

on each surface will be analysed. This will be used to assess the HMM adsorption properties 

of surfaces based on their hydrophobicity. 
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5.5.2.1 Poly (methyl methacrylate) (PMMA) 

PMMA is a polymer that is widely used in the medical sector due to its compatibility with 

human tissue and in photolithography as a high resolution mask. It exists as a strongly cross 

linked duroplastic polymer with high aging stability and relatively good chemical resistance. 

Although not extensively used as such, PMMA has been used to immobilise HMM and is an 

important material in lab-on-chip device technologies.
30, 33-36

  

 

Figure.5.14. Plot shows the increase in the average velocity of actin filaments as the electric field 

increases on PMMA. Error bars show the standard deviation of velocity. Each data point represents 

shows the tracks of 30 filaments over 3 samples. 
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The PMMA surfaces have contact angles between 60
o
 – 63

o
 showing reasonable wettability.  

As seen in Figure 5.14 the velocity increases with the applied field and an increase in 

velocity can be observed in the mid range (5.5 - 6 kV/m) followed by a rapid increase. From 

0 to 8 kV/m there was increase in the average velocity of 39%, a large portion of this comes 

from the jump at 5.5 kV/m. 

 

Figure.5.15. Radial plot shows a frequency count of the angle of trajectory on PMMA. 0 – 360 

represent the angle of frame by frame movement of the actin filaments with 0 showing the position of 

the positive electrode. The graph shows the movement of 30 filaments over 3 samples for each of the 

fields tested. 

Directionality was generally poor on these samples, although at 8 kV/m all filaments moving 

against the field made a U-turn. From 0 to 8 kV/m the percentage of motile filament 

increased from 39.5 to 60.3 %. 
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Table.5.4. Descriptive statistics of the motility function on PMMA. Standard deviation is given in 

brackets. Data represents the tracking of 30 filaments over 3 samples. 

Electrical 

field 

(kV/m) 

Percentage of 

motile filaments 

(%) 

Percentage of filaments moving 

within 40o of the positive electrode 

(%) 

Average 

velocity 

(µm/s) 

0 39.5 16.8 8.0(1.6) 

4 42.1 47.1 8.6(1.6) 

6 46.3 48.5 10.4(2.0) 

8 60.3 64.2 11.0(1.9) 
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5.5.2.2. Poly (tert-butyl methacrylate)(PtBMA) 

PtBMA is used in microfabrication technologies as a positive photoresist, and lithographical 

resists in general have had an increase in interest for creating addressable protein surfaces 

over the recent years.
37, 38

 PtBMA is highly hydrophobic; samples produced contact angles 

between 79
o
 - 81

o
. Although no extensively used in motility assays, the surface has been 

used to attach HMM and shown reasonable motility function.
39

  

 

Figure.5.16. Plot shows the increase in the average velocity of actin filaments as the electric field 

increases on PtBMA. Error bars show the standard deviation of velocity. Each data point represents 

the tracks of 30 filaments over 3 samples. 

As seen in Figure 5.16 there is a sudden increase in the average velocity of filament 

movement this time between 4.5 and 5 kV/m with a rapid rise following. 
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Figure.5.17. Radial plot shows a frequency count of the angle of trajectory on PtBMA. 0 – 360 

represent the angle of frame by frame movement of the actin filaments with 0 showing the position of 

the positive electrode. Data presented shows the tracks of 30 filaments over 3 samples for each of the 

fields tested. 

Directionality on PtBMA was poor. Both PtBMA and PBMA (see section 5.5.2.3) had 

comparable characteristics in terms of motility function. Even at the highest field strength 

tested the percentage of filaments moving within 40
o
 of the positive electrode was below 

40%, comparatively lower than that of NC (over 60 %). 

Table.5.5. Descriptive statistics of the motility function on PtBMA. Standard deviation is given in 

brackets. Data represents the tracking of 30 filaments over 3 samples. 

Electrical 

field 

(kV/m) 

Percentage of 

motile filaments 

(%) 

Percentage of filaments moving 

within 40o of the positive 

electrode (%) 

Average 

velocity 

(µm/s) 

0 31.0 14.6 7.1(1.4) 

4 31.9 39.9 7.9(1.7) 

6 33.8 58.6 9.1(1.6) 

8 51.6 60.7 9.9(1.7) 
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5.5.2.3. Poly (butyl methacrylate)(PBMA) 

PBMA was used in this study due to the similarities in structure with both PtBMA and 

PMMA. It is not generally used as a substrate for protein immobilisation although it has 

been shown previously to support actin myosin motility.
30

  Its inclusion here is one of 

scientific interest due to its structural similarities to PtBMA and contrasting chemical 

properties. Due to the long carbon chains PBMA has the ability to uptake more water in its 

structure than the other two methacrylate polymers used in this study and the surfaces 

produced with this polymer are thought to be much more like the NC surfaces in that they 

will turn gel-like and less rigid upon application of the assay solutions. 

 

Figure.5.18. Plot shows the increase in the average velocity of actin filaments as the electric field 

increases on PBMA. Error bars show the standard deviation of velocity. Each data point represents 

the tracks of 30 filaments over 3 samples. 

The motility function on PBMA was by far the most erratic of all the surface chemistries in 

this study. While Figure 5.18  suggests that the data follows on with what has been seen with 
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the previous surfaces, with a proportionally large increase in velocity between 4.5 and 5 

kV/m, there is also much more irregularity to the motility function. The velocity increase on 

PBMA from 0 to 8 kV/m was also the smallest of all the surfaces studied. 

 

Figure.5.19. Radial plot shows a frequency count of the angle of trajectory on PBMA. 0 – 360 

represent the angle of frame by frame movement of the actin filaments with 0 showing the position of 

the positive electrode. The data presented shows the movement of 30 filaments over 3 samples for 

each of the fields tested. 

Following on from what was seen in the velocity data, the directionality of the motility on 

PBMA was irregular. Even at higher field strengths filaments were seen, if only briefly, to 

move against the field. It is important to note that no surface defects were visible on any of 

the samples produced and the contact angle measurements were also consistent. With this in 

mind it would seem that the erratic movement of the filaments on this surface is caused by 

the adsorption mechanism of the HMM on the different surfaces. 
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Table.5.6. Descriptive statistics of the motility function on PBMA. Standard deviation is given in 

brackets. Data represents the tracking of 30 filaments over 3 samples. 

Electrical 

field 

(kV/m) 

Percentage of 

motile filaments 

(%) 

Percentage of filaments moving 

within 40o of the positive 

electrode (%) 

Average 

velocity 

(µm/s) 

0 22.1 28 3.7(1.0) 

4 25.0 41.5 4.5(1.0) 

6 27.1 64.5 5.5(1.1) 

8 42.0 65.3 5.9(1.3) 

 

5.5.3 Discussion on the effects of hydrophobicity and the protein adsorption properties of 

NC, TMCS, TECS, PMMA, PtBMA and PBMA 

The adsorption of proteins to surfaces is an extremely complex and important area of study, 

and one that is still not yet fully understood. The mechanisms of immobilisation and the 

exact forces at work in the attachment of a protein to a given surface chemistry can have 

huge implications to the activity of the protein. Lab-on-chip technologies that wish to utilise 

immobilized proteins in their designs must first elucidate this relationship if highly specific 

devices are to be implemented.  

5.5.3.1 Protein surface interactions 

22 amino acids of varying hydrophobicity are the building blocks from which proteins are 

made.
40

 The resulting complex structures contain heterogeneous hydrophobic and charge 

domains. Their three dimensional structure is a result of intramolecular forces and the 

interaction of the molecule with its environment. Any change to this structure can 

substantially change the functioning of the protein.
25, 26, 28

 This can result in attachment sites 

being blocked or even almost complete denaturing of the protein.
25, 26

 The importance of 

studying the interactions of proteins and surfaces is vast and has many implications in a 

range of industries including food and medical sciences.
26

 It is thought that the enrichment 

of proteinacious material at soil particles played an essential role in the creation of life.
28

 The 
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amphiphilic character of proteins also determines their functioning at biological membranes 

and the adsorption of proteins may affect microbial life in a variety of habitats.  

In medical and technical applications the interactions between proteins and surfaces is 

important as they can lead to both desired and undesired consequences. For example the 

adherence of biological cells, such as bacteria, to protein layers is an issue for the food 

industry.
28

 Proteins are also extensively used in pharmaceuticals and cosmetics as stabilisers 

in colloidal dispersions. More recently, the development of protein arrays for high 

throughput testing of antibodies is reliant upon better understanding of protein-surface 

interactions. These technologies have not seen the advancement that DNA microarrays have 

due to the sheer diversity of proteins.
41

 

This fragile nature of the protein structure in terms of retaining its function upon absorption 

is a key issue if they are to be implemented in lab-on-chip technologies. Proteins have 

multiple attachment sites and will react differently depending not only on the surface chosen 

for immobilisation, but also on the conditions at the point of immobilisation. Changes in pH 

and ionic activity can affect the electrostatic interactions between protein and surface. 

Though these interactions tend to be weaker and more reversible than the hydrophobic 

interactions, they are also thought to be important first line forces that may affect the overall 

protein orientation on the surface.
25

 The much stronger hydrogen bonding and hydrophobic 

interactions are the key interactions in terms of changes in the protein structure. It is these 

interactions that will most likely be the cause of any partial denaturing of protein at 

attachment sites.
25, 26

 It is therefore important to know how a chosen protein will interact 

with a surface in order to keep the desired functionality. HMM is a prime example, where in 

order to keep full functioning of the molecular motor, immobilisation must occur at a certain 

region of the molecule so that the attachment and propulsion of actin filaments is kept intact. 

As previously stated, the exact mechanism of protein adsorption is still debated. In addition 
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to fluorescence microscopy there are many techniques that have been used to evaluate motor 

protein surfaces. Quartz crystal microbalance (QCM) has been used to measure the density 

of motor protein layers and also to distinguish individual steps in an in vitro motility assay.
21, 

32, 42
 This is done by measuring minute differences in the resonant frequency of a quartz 

crystal on which the protein is immobilised. Total internal reflection fluorescence 

microscopy (TIRF) has also been used to study the extent of motor protein layers and their 

catalytic activity using fluorescent analogues of ATP.
31, 32, 42

 Each of these methods has 

given further insight into the geometry of attachment to a variety of surfaces and also the 

activity of the immobilised HMM. However it is here that it must be noted, that although 

much knowledge has been gained in the area, no definitive explanation of the adsorption 

mechanism has been given. It is therefore important to continue to study this mechanism in 

new and novel ways such as the method used in this study. Only by using alternative 

techniques such as the electrical motility assay will we step closer to a clear understanding 

of the relationship between HMM immobilisation, surface chemistry and motor function. An 

important stepping stone in the realisation of lab-on-chip technologies utilising molecular 

motors. 

5.5.3.2 Attachment of HMM to surfaces 

The HMM motor has three main regions, head, neck and tail, each of which carries different 

charges and properties in terms of hydrophobicity.
9, 40, 43

 As stated previously, the incubation 

step of immobilising the HMM on the surface of the in vitro motility assay is highly random  

with no specific positioning in terms of the orientation of the HMM on the surface. When 

the solution containing HMM is applied the motor protein is simply allowed to diffuse 

through the solution with a percentage of the total concentration attaching to the surface. In 

reality the HMM molecules will attach to most surfaces the solution comes in contact with 

including the plastic of the pipette and the glass ‘ceiling’ of the flow cell, though to what 
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degree will depend on the surface properties. 
22, 30-32, 42, 44-46

 This means that as opposed to the 

highly ordered fashion in which the myosin system works in vivo, the motility function 

exhibited on a standard NC coated motility assay is highly irregular. This is due to a number 

of reasons. One of which is the lateral positioning of the HMM. Firstly, assume that all the 

HMM has been positioned on a given surface with both head domains available to propel an 

actin filament. The direction that each motor propels a filament, without outside influence, 

will be decided by the direction in which the HMM is facing, and the force of Brownian 

motion applied to the filament. In this sense it would be attractive if one could position 

HMM molecules in an ordered fashion to create a track on which filaments could be 

propelled in a highly directed way similar to the arrangement in vivo. This particular issue is 

solved in this study by the application of an external field to exert an additional force on the 

filaments to negate the directing effect of this HMM positioning and Brownian motion.  

 Another reason as to why the motility on a standard NC coated assay is random is the 

attachment of the HMM to the surface in terms of the region of the motor that binds with the 

surface. In order for the attachment of HMM to a surface to result in a motor that is fully 

active the protein must be immobilised by the tail region, at the C-terminus. It is only in this 

conformation that both motor heads are available to attach and propel the actin filament. 



114 

 

 

Figure.5.20. An illustration of four different conformations of HMM on a surface. The image at the 

center show a molecule of HMM and the associated charges. A, This is HMM attached to the surface 

in its fully active state with both head regions available to attach and propel an actin filament. B, In 

this state the HMM molecule is attached via the head region. In this example the head regions are 

unavailable for attachment to a filament and the tail region will protrude a significant distance above 

the surface. C, The motor is immobilised on the surface via one of the head regions. This would leave 

one head available for attachment. D, in this case the HMM is bound to the surface via the neck 

region. 

In Figure 5.20 there is a representation of four conformations of HMM attached to a surface 

that are thought to be available to the protein. The charges held by the different regions of 

the HMM will impact on the mechanism of immobilisation as well as the hydrophobic 

nature of the different regions. One might assume that a surface that carries a negative 

charge is more likely to have attachment of the protein via the head and neck regions leaving 

the HMM unable to function properly. Conversely one would expect the propensity for the 

protein to attach via the tail region on a surface carrying a positive charge. Electrostatic 

A B 

C D 
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interactions, however, are often reversible and are affected by any changes in pH and ionic 

activity. 

The adsorption of proteins involves multiple forces, with surface charge being one 

contributing factor in a wider mechanism which can have profound effects on the protein 

structure upon adsorption. The fact is that one cannot rely upon electrostatic interactions 

alone as a clear indication of the mechanism of protein binding. 

5.5.3.3 Analysis of surfaces  

In order to study the immobilisation of HMM and the protein activity, six surfaces with a 

range of hydrophobicities and surface charges were used to support the motility. NC, 

PtBMA, PBMA, PMMA, TMCS and TECS surfaces were used in motility assays that had a 

range of electrical fields applied to them. In this way it is possible to study the differences in 

the motility function on all six surfaces while an external force is applied to the filament. 

The result was a map of motility function due to surface chemistry. 

NC has been used extensively as a surface to study motor proteins. It is relativity 

hydrophobic and carries an overall positive charge. It has been shown in numerous motility 

studies to exhibit fully functioning myosin motors.
10, 13, 30, 31, 44, 47

. TMCS has been used 

extensively as a substrate for actin myosin motility assay studies. As a hydrophobic surface 

with low surface charge, HMM binding characteristics have been previously reported which 

show the density of fully functioning motors to be high.
22

 See Chapter 3 for details on 

surface chemistry. The following discussions will be based upon how these surface 

characteristics affect the motility function and in turn what this tells us about the HMM 

adsorption. 

An important characteristic in the velocity data, mentioned briefly in previous research of 

electrically guided motility, is the increase in the average velocity of actin filaments in the 
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mid range (4.5 - 6 kV/m).
8
 The positioning of this increase on the graph is particularly 

interesting as it seems to support the hypothesis of tail hindered motility where the sudden 

increase signifies the overcoming of restrictive forces acting against motility. In the case of 

PMMA this jump occurs in a slightly higher range than NC, TMCS and PtBMA. One might 

assume that this alone would indicate a higher proportion of head attached HMM and thus a 

higher force is needed to be applied to the filaments in order to overcome the hindrance to 

motility. In the case of NC, TMCS and PtBMA the increase seems to be in the same region. 

Giving the impression of at least similar attachment geometries offered to the HMM. 

PBMA, however, shows no such relationship. On this surface the immobilisation of HMM 

on the surface is so unfavourable for free gliding motility that the velocity graph only shows 

a small effect of an increasing field. The motility on these samples was highly erratic, 

presumably due to head attachment of HMM. There is also the possibility in this case for the 

formation of a second protein layer due to the protruding heads, further hindering motility 

(Figure 5.22 C). 

 

 



117 

 

 

Figure.5.21. Plots of Average velocity vs. field for all five surfaces tested with the scales adjusted to 

highlight the motility function seen as a result of surface chemistry. Note the characteristic increase in 

velocity seen in all the plots at around 4.5 – 5.5 kV/m. Each experiment was repeated 3 times with an 

average of 10 filaments tracked on each sample. 

The overall increase in velocity also gives insight to the density of fully active motors on 

each surface. NC and TMCS exhibit the largest increase, at 3.5 and 6.2 µms
-1

, respectively. 

This would point towards a large proportion of the HMM immobilised on these surfaces 

being available to attach and propel actin filaments. Conversely PBMA shows an increase of 

only 2.2 µms
-1

. This indicates that the availability of active motors on this surface is low and 

also that the attachment geometry of HMM to the surface is actually further hindering 

motility. This hindrance could be caused either by inactive motor heads or protruding tails of 

head bound motors. 
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Figure.5.22. This scheme shows examples of three situations where the orientation of HMM on a 

surface effects the overall motility function. A, In this case the HMM is immobilised via the tail for 

unhindered motility. B, The motility in this case is hindered by a proportion of HMM that cannot aid 

in the propelling of the filaments and adds a restrictive force against filament movement. C, This 

represents a surface where the HMM is bound to the surface in orientations that would prove very 

restrictive to motility. 

A 

B 

C 
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In Figure 5.22 a scheme is shown to highlight the possible hindrances to motility due to 

different HMM orientations. A surface that has good HMM adsorption properties will 

immobilise the motor at its tail region (Figure 5.22 A). This leaves both head regions 

available for interaction with the actin filaments. This orientation also ensures that any 

partial denaturing of the protein due to adsorption does not occur at the function regions of 

the motor i.e. the head or neck domains.  

When adsorption of the protein occurs at the head region of the motor it eliminates the 

function of the protein. This is due to the inability of a filament to attach, but immobilisation 

at the head region may also involve partial denaturing of the actin binding sites. There is 

evidence to show that HMM bound in this state can actually protrude above the surface of 

tail bound HMM.
42

 This is shown in Figure 5.22 B where the protruding tails of head bound 

HMM impacts on the motility function. Resistive forces due to the obstruction of filaments 

would impact the movement of actin on the motor protein layer. The negatively charged tail 

region may also act unfavourable with the negatively charge filaments and obstruct the 

interaction of the actin with surrounding HMM.  

On surfaces where adsorption occurs at unfavourable sites i.e. head, neck or a combination 

of the two, there is evidence to suggest the possibility of multiple protein layers forming.
21, 

32, 42
 Figure 5.22 C shows how this might work and the hindrance it would place on motility.  

There is a possible arrangement where only one head could attach to the actin filament, as 

shown in Figure 5.20 C. Propulsion of actin filaments can be achieved by a single head of 

HMM, however, this is at a reduced step size and force, around 6 nm and 0.7 pN 

respectively, compared to around 10 nm and 3.4 pN of a motor with two functioning heads.
48

 

It is therefore obvious that in this situation unhindered translocation of actin would still be 

inhibited by attachment to motors where only one head can supply force. There is room for 

argument that in this orientation, filament attachment would be unlikely. Assuming that the 
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other head region is adsorbed to the surface, due to the height of any surrounding HMM 

bound at either the head, with the tail protruding above the level of fully active HMM,
42

 or at 

the tail with both heads active, actin filaments are unlikely to manoeuvre close enough to 

interact with the single headed HMM. In either situation, HMM bound via a single head 

region with one head still active would not effectively contribute to gliding due to either the 

inability to interact with the filaments or reduced force and step size upon attachment. 

Another contribution to the overall motility function, though arguably minor, is ATP 

insensitive HMM i.e. HMM that is able to bind but not propel actin. These are motors that 

are either tail bound, but ATP insensitive, or bound in an orientation that has lead to the 

partial denaturing of the protein but still able to bind to actin. In the first instance, the ratio 

of ATP insensitive HMM in the HMM solution before incubation with the sample surface 

has to be low. An inactive motor head can hold a filament with a force of around 9.2 pN.
49

 

Given that an active motor will propel with a combined force of around 3.4 pN, the ratio of 

active to inactive must be in a state where there are very few inactive motor heads otherwise 

motility to any observable degree would not occur.
50

 Since motility of varying degrees has 

occurred on all the samples tested we can assume the protein solution used in this study had 

a low ratio of ATP insensitive HMM prior to immobilisation. Secondly, any HMM that 

becomes insensitive to ATP upon immobilisation, has probably done so due to protein-

surface interactions at the neck or head regions as it is these that contain the catalytic site for 

the hydrolysation of ATP. This in turn means that this portion of HMM molecules are likely 

to be bound to the surface at a lower height then that of fully functioning tail bound HMM, 

~38  nm.
40, 42

 It is therefore unlikely that actin filaments will manoeuvre close enough to 

these motors to interact with the actin binding sites.  
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Table.5.7. Percentage of motile filaments and the percentage of filaments moving within 40
o
 of the 

positive electrode at fields 4, 6 and 8 kV/m. Surfaces are ordered by hydrophobicity, PMMA being 

the most hydrophilic, PBMA the least. Data represents the tracking of 30 filaments over 3 samples for 

each surface. 

 
Field 

 
4000 V/m 6000 V/m 8000 V/m 

 

Filaments 
moving 

within 40o 
of positive 
electrode 

(%) 

motile 
filaments 

(%) 

Filaments 
moving 

within 40o 
of positive 
electrode 

(%) 

motile 
filaments 

(%) 

Filaments 
moving 

within 40o 
of positive 
electrode 

(%) 

motile 
filaments 

(%) 

PMMA 47.1 42.1 48.6 46.3 64.3 60.3 

NC 35.5 30.6 47.8 34.3 74.9 66.9 

TMCS 59.6 38.7 63.9 44.4 66 80.5 

PtBMA 40 31.9 58.7 33.8 60.7 51.6 

PBMA 41.4 25 64.6 27.1 65.3 42 
 

The directionality data is harder to interpret. In table 5.7 there is clearly a strong relationship 

between the velocity data presented previously and the percentage of motile filaments at 

each field. Direct comparisons can be made on each surface in relation to these two data sets 

and the possible mechanism of adsorption of HMM. The directionality data, however, seems 

a little more complex. While there is a relationship showing an increased tendency for 

filaments to move towards the positive electrode with increasing field, there are instances in 

the data that seem at first not to follow the previous assumptions made with respect to the 

HMM adsorption mechanism on these surfaces. The issue here is that the velocity data, and 

the qualitative visual observation of the motility, can be explained relatively simply in terms 

of fully functional motility, or varying degrees of motility function, due to the orientation of 

HMM. That is to say a surface that presents visibly smooth gliding and velocity data 

suggests a high percentage of active HMM along with a high percentage of motile filaments, 

e.g. TMCS, would point to a surface with the propensity to adsorb myosin motors at the tail 
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region. Conversely a surface that displays erratic motility with a poor ratio of motile 

filaments and velocity data suggesting a lower density of active HMM, e.g. PBMA, indicates 

HMM immobilisation at regions of the motor that does not support unhindered gliding i.e. 

head and neck region, or a combination of the two. How strongly the motility is directed 

towards the positive electrode seems to be a combination of two aspects for the adsorption 

characteristics of each surface. Both surfaces with fully a functioning HMM layer, and 

surfaces with a partially functioning HMM layer, have characteristics that would aid in the 

directing of filaments.  

 

Figure.5.23. The Figure shows the directing influence of active HMM and obstacles on two types of 

surfaces. The grey dots represent active motors while the red crosses show areas where obstructions 

occur due to HMM bound in unfavourable orientations for actin motility. The center arrow represents 

the direction of the electrical field. A, HMM is adsorbed in a favourable orientation for the attachment 

and propulsion of actin. The relatively close confinement of the motors in this example means that the 

field has less time between the motor attachments to influence the direction of the filament. B, the 

density of active HMM is lower and therefore the time between motor attachments is greater. This 

means the head of the filament is greatly influenced by the force of the electrical field. However, due 

to the protein binding nature of such a surface, extended HMM tails and potential dual protein layers 

will cause obstructions around which the filaments must navigate. 
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First consider a fully functional HMM layer with no obstacles to motility (Figure 5.23 A). In 

this instance the filament movement is at least partially dictated by the direction in which the 

HMM is facing. Now consider the converse surface type, where HMM is adsorbed in an 

orientation that hinders the attachment of actin filaments the HMM and the propulsion of 

said filaments (Figure 5.23 B). In this case the field will have to overcome the Brownian 

motion. However, on this surface there are fewer active HMM molecules that can influence 

the direction of the filament via their lateral positioning. This means the time spent where 

the head of the filament is unattached to a motor, and therefore more heavily influenced by 

the electrical field, is longer. This type of behaviour can be observed in the directionality 

data. Compare the percentage of filaments moving within 40
o
 of the positive electrode at 6 

and 8 kV/m on PBMA and TMCS in table 5.7 PBMA has previously exhibited adsorption 

properties that hinder motility function. TMCS, however, has shown a high density of active 

HMM through analysis of the velocity data and the percentage of motile filaments. Despite 

this both show comparable statistics with respect to the directionality of the actin filaments.  

This is an important result as it highlights the impact of the lateral positioning of HMM on 

directionality. The directing ability of this positioning seems to be much greater than 

previously thought, as most sources highlight Brownian motion to be the chief factor in the 

trajectories of unguided actin myosin motility.
15

 This, however, should not come as much of 

a surprise as in vivo the very nature of molecular motor function is highly ordered. 

Depending on the motor and cystoskeletal filament involved there is a predefined 

mechanism where the motor will move from a given end of a filament to the opposite.
9, 40, 43

 

In the actin myosin system the motor will move towards the positive end. This means that 

when the negatively charged end of the actin filament, which is being directed by the 

electrical field, interacts with an immobilised HMM, the motor itself has a predominant role 

in determining the direction of movement.  
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From the above analysis it is possible to draw conclusion on the adsorption properties of the 

six surfaces in this study due to the motility function observed during the electrical motility 

experiment. The data also shows evidence of the complex nature of protein binding as there 

is more to the immobilisation characteristics of each surface than just hydrophobicity. The 

surface charges and relative hydrophobicity of NC and TMCS seem to favour the 

immobilisation of HMM at the tail region of the motor. These two surfaces showed visibly 

smoother gliding than the others tested and the data presented point to the presence of a high 

density of active HMM. The hydrophilic nature of TECS meant that protein binding on this 

surface was extremely poor. The experiments performed on this surface point to a limited 

amount of active HMM available for interaction with actin filaments. It would be interesting 

to follow up with experiments on this surface to see if this characteristic is down to protein 

orientation or general lack of bound protein. PBMA and PtBMA exhibited HMM binding 

characteristics that severely hindered motility. These can be explained by the preference for 

the surfaces to bind the protein at the head or neck region. The results from PMMA showed 

that hydrophobicity is not the only participant in protein binding. This slightly hydrophilic 

surface, a chemical property said to repel protein adsorption,
25, 26, 28

 actually showed 

reasonable motility function. It is thought that the electrostatic interactions with PMMA as 

the HMM approaches, which are likely to be the initial interactions,
25, 28, 40, 41

 help to keep the 

protein function upon adsorption.  

As a side note it is also important to mention Bovine Serum Albumin (BSA), if not just to 

discount it from this chapter’s conclusions. BSA is a protein most commonly purified from 

the blood of cattle protein and used in the actin myosin motility assay to block surface sites 

that do not hold HMM after the initial incubation with the solution containing the motor 

protein (See chapter 3 section 3.2.4). BSA is used extensively as a blocking agent to prevent 

the attachment of protein and enzymes to the walls of reaction vessels.
51, 52

 A surface 

functionalised with BSA will exhibit increased hydrophilicity; as a result BSA can also be 
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used to aid in the filling of micro fluidic systems.
51, 53, 54

 BSA will adsorb to an extensive 

range of surfaces and in the concentration used in this study will occupy all the available 

sites left after HMM incubation.
25, 55, 56

 As a result, the adsorption of BSA and any 

differences there may be in its protein adsorption mechanism on the surfaces in this study, 

are not thought to affect the motility function seen. The conclusions in this chapter are based 

purely upon the interaction between the surface and HMM.  

 

5.6 Conclusions 

Presented in this chapter is a detailed analysis of the HMM immobilisation characteristics on 

six surfaces, NC, TMCS, TECS, PtBMA, PBMA and PMMA. The motility function 

exhibited by each when used in an electrical motility assay can be explained based upon the 

orientation of the molecule motors adsorbed on the surface. Studies such as this one are 

important stepping stones in the development of lab-on-chip technologies utilising molecular 

motors. It also helps in building a better interpretation of the surface interactions with HMM 

and which characteristics are preferable, not only for the unhindered motility of actin but 

also for directing motility using electrical fields. The results presented in this chapter point 

to substrates that hold low surface charge and are in the range of hydrophobicities that is 

occupied by NC and TMCS, will favour attachment of HMM at the tail region. The 

directionality data has shown that a surface with preferential HMM binding characteristic 

does not necessarily preferentially contribute to the directing of the filaments. In order to 

have maximum directionality while minimizing restrictive components of the protein layer 

one should not only consider the ratio of fully functional HMM : inactive or inhibiting 

HMM be considered, but also the density of HMM itself. 
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In terms of the viability of utilising electrical guidance within a device to control the motility 

there are several issues with long term exposure of DC electrical fields on the motor protein 

system. In the electrical motility device used in this study, the issue of heat and species 

created at the electrodes that would disrupt the protein have been negated by the spacing of 

the electrodes and the chambers used to contain them. If this was to be used within a device 

specifically to guide the filaments it may be preferable to have the electrodes contained 

within structures on the surface of the gliding assay so that the field only need be applied for 

a short amount of time for the desired effect. For example, if the electrodes were contained 

within a Y junction of a channel so the filaments could be steered to one direction or another 

the field need only be applied when a filament comes within a certain distance of the 

junction. This would mean the field would be applied for a fraction of the time it has been in 

this study and the likelihood of damaging the protein system would be reduced. The 

directionality results in this study have shown that guidance of filaments does occur at 

relatively low field strengths which again will reduce the possibility of damaging the protein 

if used within a lab-on-chip device. 
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Chapter VI: Deceleration Study 

of Electrically Stimulated Actin 

Filaments 

 

 

 

 

 

Where in the previous chapter the focus was on the effect of an electrical field on the steady 

state in this chapter the aim is to look at the dynamics when applying the electrical field. The 

results are used in conjunction with the discussion in chapter 5 to further elucidate the 

protein adsorption properties of three surface chemistries. Coupled with the electrical 

motility experiments is a study on the impact of ‘blocking actin’ on the motility function 

when an electrical field is applied to the gliding assay. 
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6.1 Introduction 

In the previous chapter the actin myosin motility on six different surface chemistries was 

analysed. The guidance of active filaments by an electrical field was presented and an 

investigation into the difference in motility function vs. field strength. This was analysed as 

an average of the motility function seen over the course of the experiment. A correlation 

between the differences in this relationship and the surface characteristics upon which the 

HMM had been immobilised was discussed. In order to further the hypothesis made, that the 

orientation of HMM bound to a surface can be directly correlated to motility function and 

that certain surface chemistries have a preference for immobilisation in a certain motor 

orientation, supplementary investigations are required.  

Results shown in the previous chapter, as well as a multitude of previous studies, show that 

the electrostatic interaction between the motor protein and the surface is part of a much more 

complicated mechanism.
1-3

 It was sugested that the binding of myosin at the tail region, the 

region preferred for retaining full functionality, was much more prolific on surfaces that 

exhibited low overall surface charge density along with relatively high hydrophobicity. This 

hypothesis was reached by comparing the different motility characteristics exhibited while 

the system was influenced by an external force, an electrical field. By comparing the 

velocity and directionality data accumulated while directing the actin filaments in a field, the 

influencing factors in terms of motor orientation were discussed. It was found that the 

relationship of smooth gliding motility was due to the number of fully active motors 

available on the surface coupled with the obstructing force that certain motor orientations 

have on smooth gliding motility. The influencing nature of several HMM orientations was 

discussed and there appears to be a preference for specific HMM binding orientation due to 

certain surface characteristics.  
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In this chapter a method will be formulated to further test the hypothesis made. The actin 

motility on three different surface chemistries is analysed as a field is applied and then 

terminated in order to observe the response in terms of filament velocity.  

In this chapter the motility function will be studied as a function of time while the motility is 

accelerated by the electrical field and then allowed to decay back to the motility function 

seen before being exposed to the field. The relationship between the maximum velocities 

reached in the time frame of electrical field exposure and the time taken for the motility to 

decay back to the initial function, in terms of velocity, will be analysed. In addition to this 

‘deceleration study’, the influence of the blocking actin in the experimental procedure used 

in both chapter 5 and 6 was investigated. The electrical motility experiment detailed in 

chapter 5 was repeated at significant electrical field strengths using the three surfaces chosen 

for this chapter, PMMA, NC and TMCS.  

The procedure was altered so that each experiment was repeated with and without the use of 

blocking actin, the unlabelled actin filaments used to block ATP inactive HMM. This was 

done in order to gain an insight into the number of ATP inactive motors on a particular 

surface chemistry and also to investigate the hypothesis detailed in chapter 5 that stated that 

the additional crowding caused by these unlabelled filaments contributes to the motility 

characteristics seen on each surface and aided in the indication of whether the surface had 

preferable binding characteristics or not. Both procedures will be used to shed further light 

on the HMM binding properties of the three surface chemistries chosen for this study and the 

influence that HMM orientation has on smooth gliding motility. 
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6.2 Investigation of post field motility function  

In the following experiments the same electrical motility set-up is used as described in 

chapter 3. PMMA, TMCS and NC were used to immobilise the motor protein in the 

electrical motility cell. These three surfaces were selected due to the chemical properties in 

order to study the adsorption properties of each and how this affects the motility function. 

NC and TMCS are similar in hydrophobicity but have vastly different water absorption and 

surface rigidity. TMCS and PMMA have similar water absorption properties and both will 

form a flat rigid surface. They do, however, differ greatly in the hydrophobicity of the 

resulting surface. All three have slightly different charge densities and it was for this 

combination of varying properties that they were chosen. 

6.2.1 Outline for the ‘deceleration’ study 

In the following study the electrical motility device has been utilised to analyse the 

movement of actin filaments. Unlike the procedure used in chapter 5 the main aim of this 

study was to see the behaviour of the motility before, during and after the application of an 

electrical field. The motility in each gliding assay is recorded for a total of 30 seconds. After 

an initial period of 5 seconds a field is applied to the sample as in the previous electrical 

motility procedure for a total of 5 seconds. After this time the field is terminated and the 

video capture of the motility continues for a further 20 seconds. This 5 second ‘acceleration’ 

phase was chosen as it would give enough data points so that after averaging statistically 

sound results were obtained. Within this time frame the motility will be unable to reach its 

absolute maximum velocity in the presence of a field, which ensures that each acceleration 

and deceleration phase was treated identically for all the surfaces tested. The motility 

function was tracked as a function of time. Each frame of capture corresponds to 0.1 seconds 

and in each frame the velocity of 10 filaments is averaged. The phase post field, in which the 

filaments are slowly returning to an average velocity seen pre-exposure, was analysed. This 
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was used in order to correlate the time taken for the filaments to decelerate against the 

different surface chemistries used and the possible motor orientations causing this 

behaviour. 

6.2.2 Motility on nitrocellulose 

As with the previous chapter an initial study was carried out on NC to provide a ‘base level’ 

for the motility function in this investigation. This is particularly important for the analysis 

of the deceleration time due to the need to develop a clear understanding of what defines 

‘normal motility function’ in terms of velocity and directionality. Once the motility is 

exposed to a field, the values of average velocity and directionality from these controls will 

be compared with the pre-exposed test samples so as to properly evaluate the deceleration. 

 

Figure.6.1. The graph shows a frequency count of the angle of trajectory as a percentage of actin 

filament movements on NC. 0 degrees represents the position of the positive electrode. The data 

presented represents 20 filaments movement on 2 samples. 
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As seen in the previous experiments on NC, the motility in the absence of a field proceeds in 

a random fashion in terms of the angle of trajectory (see Figure 6.1). This is evident on all of 

the surfaces, until the application of a field there is no preference for filaments to travel in 

any specific direction. This highlights the random nature of the HMM adsorption on the 

surface of the gliding assay as there is no alignment of the motors. This shows that the 

orientation of fully active motors, i.e. tail bound motors, is a dominating factor in directing 

the movement of the filament along with Brownian motion.  

 

Figure.6.2. The graph shows a frequency count of the velocity of actin filaments movements gliding 

on NC coated motility assay. The data represents 20 filaments movements over 2 samples. 

In addition to the angle of trajectory the average velocity of filaments was within the range 

of previous experiments and also matched up with previously reported statistics of actin 

myosin motility when using NC as a surface coating (~2 – 10 µm/s) (see Figure 6.2).
4-7
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Figure.6.3. The graph shows a frame by frame average of the velocity of actin filament movements 

when gliding on an NC coated motility assay. The data represents an average of 20 filaments 

movements over 2 samples. 

In this chapter the average filament velocity will be analysed as a function of time, during 

the course of electrical field application and termination, to evaluate the behaviour of the 

motility when the field is no longer active after the initial acceleration of the filaments due to 

the force exerted by the field. It is therefore important to see what the behaviour of the actin 

filaments is on NC as a function of time in the absence of a field. In Figure 6.3 the velocity 

of 20 actin filaments per frame (accounting for 0.1 seconds per frame) were analysed for 5 

seconds. The average velocity fluctuates around 4.6 µm/s with the average variation being 

approximately 0.4 µm/s. This gives a good example of how the frame-by-frame analysis will 

be achieved. During the ‘deceleration’ study each surface will be recorded for 5 seconds 

prior to the application of a field. It is the motility function in terms of the velocity in this 
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period that will be the value used to decide when the motility has returned to ‘normal’ after 

the field has been terminated.  

6.2.3  Nitrocellulose deceleration study 

It also holds similar surface properties with TMCS in terms of hydrophobicity and charge. 

TMCS, however, is a much more rigid surface with NC allowing more water uptake. The 

reasoning therefore behind the inclusion of both these surfaces is to evaluate the effect that 

surface rigidity, and to a small effect surface topography, has on the motility function.  

 

Figure.6.4. The graphs show the average velocity of filament movement during the course of the 

experiment on nitrocellulose when a field of 4 kV/m, 6 kV/m and 8 kV/m is applied. Labels on graph 

show when the field is applied and when zero field is present. Each experiment was repeated 3 times 

with 10 filaments tracked on each sample. 

As seen in as seen in Figure 6.4, the results show a rapid acceleration of the actin filaments 

once the field is applied to the sample. Upon termination of the field the average velocity 
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decreases to return to that of ‘normal’ motility function. The time taken for the motility to 

return to the function seen before the application of a field is of significant interest as this 

gives further insight as to the motor protein arrangement on a given surface chemistry. As 

the field increases so does the maximum velocity reached during exposure. This in turn 

results in an increase in the time taken for accelerated actin filaments to return to their pre-

exposed velocities. Different orientation of HMM on the surface will contribute to this decay 

time, with active HMM facilitating smooth gliding and so extending the period of 

deceleration. Conversely the obstruction of motility via extended HMM tails or the 

contribution of ATP insensitive or partially active HMM (the state at which one head is still 

available for filament interaction) will decrease this decay time. 

This is evidenced in Figure 6.4. The area of the peak increases as a higher field is used to 

accelerate the actin filaments showing the increase in velocity and the greater decay time. 

Also, as seen in the previous chapter, the maximum velocity reached during the application 

of the field increase with increasing field strength. 

Table.6.1. Table shows significant statistics on the behaviour of the actin filaments during the 

deceleration study on NC. Standard deviation for the average velocities is presented in brackets.
(1) 

Data represents the tracking of 30 filaments over 3 samples. 

 

4 kV/m 6 kV/m 8 kV/m 

Average velocity before exposure to field (µm/s) 6.3 (0.1) 7.5 (0.1) 7.9 (0.1) 

Average velocity reached during exposure (µm/s) 6.8 (0.2) 8.1 (0.2) 9.4 (0.7) 

Average velocity in final 5 seconds of capture (µm/s) 6.3 (0.3) 7.4 (0.3) 8.1 (0.4) 

Time taken to return to pre-exposure range (within 

standard deviation of initial velocity)(s) 4.0 7.5 9.5 
(1)

 Errors discussed in section 6.2.6 

6.2.4 TMCS deceleration study 

As detailed above the inclusion of TMCS is useful in this study as a direct parallel to NC as 

both have similarities in hydrophobicity and charge but differ in their structural composition. 
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In the previous chapter and indeed in many actin myosin studies, TMCS has shown to 

perform well as a substrate for HMM immobilisation while retaining motor function.
8
 This 

substrate will therefore be used in this study to highlight how the motility reacts to the 

experimental conditions when using a high performance surface.  

 

Figure.6.5. The graphs show the average velocity of filament movement during the course of the 

experiment on TMCS when a field of 4 kV/m, 6 kV/m and 8 kV/m is applied. Labels on graph show 

when the field is applied and when zero field is present. Each experiment was repeated 3 times with 

10 filaments tracked on each sample, data shown is a average of these. 

The initial velocity observed on TMCS at 4 kV/m (Figure 6.5) higher (~8 µm/s) than those 

seen on other samples. This result highlights the wide range of function that can be exhibited 

on any two samples. Referring back to chapter 5 we can see a relatively high velocity 

exhibited on PMMA when no field is applied (~8 µm/s), yet the surface clearly exhibits 

poorer motility characteristics then both NC and TMCS. It is important therefore that the 
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values of velocity themselves are not taken as the absolute measure of the performance of a 

given surface chemistry. This is perhaps the best argument in terms of validating the studies 

in both chapters 5 and 6, where it is the response of the motility function to external forces 

that is analysed. As seen on NC, the area of the peak signifies the acceleration of the actin 

filaments as the field is applied and upon termination a gradual return to velocities seen pre-

exposure. The widths of the peaks after the point of termination indicate that the deceleration 

of the filaments is slow on TMCS at 4, 6 and 8 kV/m, see Table 6.2 for values. This type of 

behaviour implies that the motility of the actin filaments is unhindered on this surface, which 

further supports the hypothesis that this surface preferentially supports tail immobilised 

HMM and therefore unhindered smooth gliding motility. The density of active HMM motors 

on the surface would seem to positively contribute to the movement of the actin even after 

the external force is no longer applied.  

Table.6.2. Table shows significant statistics on the behaviour of the actin filaments during the 

deceleration study on TMCS. Standard deviation for the average velocities are presented in 

brackets.
(1)

 Data represents the tracking of 30 filaments over 3 samples. 

 

4 kV/m 6 kV/m 8 kV/m 

Average velocity before exposure to field(µm/s) 8.0 (0.2) 8.2 (0.1) 7.9 (0.1) 

Average velocity reached during exposure (µm/s) 8.6 (0.2) 8.8 (0.4) 9.4 (0.8) 

Average velocity in final 5 seconds of capture (µm/s) 8.1 (0.4) 8.3 (0.4) 8.1 (0.5) 

Time taken to return to pre-exposure range (within 

standard deviation of initial velocity)(s) 3.6 9.5 11.1 
(1)

 Errors discussed in section 6.2.6 

6.2.5 PMMA deceleration study 

PMMA is a rigid substrate comparable in these terms to TMCS. Like TMCS the water 

absorption of PMMA will be minimal and the topography of the surface is expected to be 

flat and largely featureless. The hydrophobicity and charge characteristics of this surface, 
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however, are much different to both NC and TMCS. PMMA is relatively hydrophilic in 

comparison to the two previous surfaces.  

 

Figure.6.6. The graphs show the average velocity of filament movement during the course of the 

experiment on PMMA when a field of 4 kV/m, 6 kV/m and 8 kV/m is applied. Labels on graph show 

when the field is applied and when zero field is present. Each experiment was repeated 3 times with 

10 filaments tracked on each sample, data shown is a average of these. 

In line with the previous two surfaces the application of a field results in a quick acceleration 

of the filaments. Once the field is terminated the filaments on the PMMA samples quickly 

returned to an average velocity of movement seen before the field had been applied. This 

relationship was present at all three field strengths and indicates that there is a significant 

amount of hindrance to motility on these samples. The average velocity increase during the 

acceleration phase was also much less than has been observed in the other two samples. 

Interestingly, as can be seen in Table 6.3 and later in Figure 6.13, the time taken for the 
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filaments to return to ‘normal’ velocity does not follow the same relationship as the previous 

two surfaces. Where the increase in field strength on both NC and TMCS had resulted in an 

increase in this ‘deceleration’ time, in the case of PMMA at both 6 kV/m and 8 kV/m 

display similar deceleration phases, with the stronger field taken slightly less time to return 

to ‘normal’ function. This again would indicate that there is a high level of hindrance to 

smooth gliding motility on PMMA.  

Table.6.3. Table shows significant statistics on the behaviour of the actin filaments during the 

deceleration study on PMMA. Standard deviation for the average velocities are presented in 

brackets.
(1)

 Data represents the tracking of 30 filaments over 3 samples. 

 

4 kV/m 6 kV/m 8 kV/m 

Average velocity before exposure to field (µm/s) 5.3 (0.2) 4.6 (0.1) 4.6 (0.1) 

Average velocity reached during exposure (µm/s) 6.0 (0.2) 5.8 (0.3) 6.3 (0.4) 

Average velocity in final 5 seconds of capture (µm/s) 5.3 (0.3)  4.7(0.3) 4.8 (0.3) 

Time taken to return to pre-exposure range (within 

standard deviation of intial velocity) (s) 3.0 4.5 4.0 
(1)

 Errors discussed in section 6.2.6 

6.2.6 Discussion of errors in deceleration study 

The data presented in the graphs of the deceleration study (Figures 6.4-6) show a more 

sporadic motility function after application of a field. This is highlighted by the increase of 

standard deviation from the initial average velocity, pre exposure to an electrical field, to the 

standard deviation of average velocity in the final 5 seconds of capture; this is shown in 

Tables 6.1-3. A possible cause for this behaviour is the use of blocking actin within the 

deceleration study. The gliding assay procedure includes the use of unlabelled filaments to 

block off inactive HMM. These unlabelled filaments, however, will still be affected by the 

field. Once the blocking actin is applied, a solution containing ATP is applied to the cell to 

allow these filaments to move around the surface with the intention of blocking off any 
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inactive HMM that the unlabelled filaments come in contact with. Once this assay solution is 

flushed from the system, labelled actin is applied and these are then less likely to come into 

contact with inactive HMM as it is presumed that the vast majority of these will be attached 

to unlabelled filaments. This is true for a conventional gliding assay experiments, however, 

in the deceleration study all the filaments, both labelled and unlabelled, are influenced by the 

field. This creates an issue. Prior to the application of the field the system is set up to 

facilitate smooth gliding motility, hence low standard deviation exhibited. Once a field is 

applied this system of blocked inactive HMM is essentially broken. Supplied with a 

sufficient force, filaments attached to inactive HMM may become motile once more leaving 

the inactive motor head available for binding. This will obviously create barriers to the 

unhindered gliding of the labelled filaments as the inactive HMM is essentially no longer 

blocked. The resulting motility function seen after the termination of the electrical field is 

therefore more sporadic, as not only are there a higher density of free inactive HMM present 

than there was at the beginning, there is also now a larger number of moving filaments 

present as the unlabelled filaments that were dislodged by the field which are now motile. If 

the video capture were to go beyond the 30 seconds used in this study it is thought that there 

would be a general ‘relaxation’ of the system were this sporadic motility may return to that 

seen pre exposure to the field. 

6.3 The effect of blocking actin on the motility of actin filaments in the presence of an 

electrical field 

In addition to the deceleration study, the experimental procedure detailed in chapter 5 was 

repeated for the three surfaces used in this chapter (NC, PMMA, TMCS) at electrical field 

strengths of 0, 4, 6 and 8 kV/m. At each field the motility assays were performed with and 

without the use of blocking actin. The use of blocking actin in the motility assay procedure 

is specifically designed to block inactive myosin heads, specifically motor domains that have 
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retained the ability to attach to actin but not to propel the filaments. These motor heads 

would inhibit motility in the gliding assay. Repeating the procedure for these surfaces to 

investigate the significance of the blocking actin allows the elucidation of several motility 

properties caused by the different protein adsorption characteristics of the surfaces used. 

Firstly it will give an insight into the density of inactive heads on a given surface. The effect 

of crowding, or number of obstacles to motility, can also be investigated by this study. 

Overcrowding will be exhibited in two forms. The additional filaments present on the 

surface when blocking actin is used, even when moving, will result in a larger potential of 

filament collisions. Blocking filament trapped by inactive heads will also create in inhibiting 

effect particularly when blocking actin is used on a surface that has a high density of 

inactive motor heads. Finally this study will allow the assessment of whether or not blocking 

actin is required in gliding assays utilising these surface chemistries and the changes in 

motility function when it is excluding. 

6.3.1 The influence of blocking actin on NC motility function 

As seen in Figure 6.7 the same relationship found between velocity and field strength, 

shown in chapter 5, is present. As the field strength increases, so does the average velocity 

of filaments in both the motility assays that contain blocking actin and the assay performed 

in the absence of the unlabelled actin filaments at an average of around 3 µm/s. 
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Figure.6.7. The graph shows the velocity of actin filaments when exposed to an electrical field on NC. 

Each line represents assays done with the inclusion of blocking actin (squares) and when the motility 

assay was run in the absence of blocking actin (triangles). Each data point is an average of 25 

filaments movement over 3 samples. 

The motility assays that were performed without the addition of blocking actin resulted in 

those filaments that were fully motile displaying consistently higher velocity than samples 

where blocking actin was present. The difference in the velocity of the two samples types 

remains relatively consistent through all of the fields tested, around 1.5 – 2 µm/s. This 

supports the hypothesis that the additional filaments present an obstacle to motility 

(presented in chapter 5 and discussed in section 6.2.8 of this chapter). The inclusion of 

blocking actin is specifically designed to block any ATP inactive HMM. As can be seen in 

Table 6.4 the percentage of motile filaments is larger on the samples treated with blocking 

actin. This clearly shows that, when used, the blocking actin is doing its required job of 

blocking the sites that are occupied by ATP inactive HMM. Where the samples are without 
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blocking actin the labelled filaments are exposed to a higher proportion of HMM that will 

attach to the filaments but are unable to propel them. 

Table.6.4. Statistics on the percentage of actin filaments for the samples with and without blocking 

actin on NC at the tested electrical field strengths. Data represents the tracking of 25 filaments over 3 

samples. 

 

Percentage of motile filaments 

Field (kV/m) 0 4 6 8 

NC  87.5 86.5 89 84.9 

NC No block 69.6 75.7 79.5 84.4 

 

The relationship between the field strength and the percentage of motile filaments continues 

here as previously seen in Table 5.7 in chapter 5. Interestingly, upon exposure to the 8 kV/m 

field the percentage of motile filaments on both samples is comparable. This could be an 

indication of the upper percentile of motile filaments that one could hope to achieve on NC 

since both the blocking of ATP inactive HMM (in the blocked sample) and the reduction of 

crowding (in the non blocked samples) results in very similar ratios of motile and non motile 

filaments. 
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Figure.6.8. The graphs show the angle of trajectory of filaments when an electrical field is applied to 

an assay made with a NC surface. The white bars show the samples that include blocking actin while 

the grey bars are samples run without blocking actin. 0 degrees represents the position of the positive 

electrode. Each graph represents the tracking of 25 filaments over 3 samples. 
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Figure 6.8 shows the difference in the guidance of the actin filaments across the fields when 

the samples were tested with and without blocking actin. The general trend is for a slight 

increase in the proportion of actin filament movements towards the positive electrode on 

samples that did not have blocking actin applied to them. This is due to the reduction in total 

filaments present on the surface, both fully motile and non-motile. The result is an overall 

reduction in possible collisions a motile filament experiences which would divert the 

filament off its course. The difference between the blocked and unblocked samples is 

relatively minor indicating that the motile filaments are still being obstructed by obstacles 

other than unlabelled filaments. As discussed in chapter 5 these could include HMM tails, 

other filaments, either moving or stationary, and any dual protein layers formed when the 

motors are adsorbed to the surface. Another factor that will impact upon filament trajectory 

and potentially move them off course is the planar placement of active HMM. While the 

reasonably flexible HMM tails will allow room for movement, the direction in which the 

motor is facing will to some extent dictate the direction of propulsion. 

6.3.2 The influence of blocking actin on TMCS motility function 

Motility assays run in the absence of blocking actin showed an average velocity that was 

slightly above that of samples that had blocking actin applied in the assay procedure, 

consistently around 0.5 µm/s. The TMCS samples displayed very similar characteristics that 

were seen in previous experiments, albeit with a higher velocity seen in the absence of an 

electrical field. The difference between the blocked and unblocked samples are, however, 

very small, indicating that the number of ATP inactive HMM present on the surface is very 

low. In the case of the unblocked samples, it is evident that there are few inactive motors 

that hinder the motility and conversely, in the samples where the blocking actin has been 

added to the assay, crowding is minimal as the initial filaments added are not trapped on 

inactive motors and thus do not hinder the movement of fully motile filaments. 
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Figure.6.9. The graph shows the velocity of actin filaments when exposed to an electrical field on 

TMCS. Each line represents assays done with the inclusion of blocking actin (squares) and when the 

motility assay was run in the absence of blocking actin (triangles). Each data point is an average of 25 

filaments movement over 3 samples. 

As Table 6.5 shows, the percentage of motile filaments on both sets of samples are 

comparably high at all fields. This indicates that the density of ATP inactive HMM on 

TMCS is very low. At 8 kV/m TMCS displays a very high percentage of motile filaments on 

both sets of samples. As seen in the previous chapter, the percentage of motile filaments 

increases with the increasing strength of the electrical field. 
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Figure.6.10. The graphs show the angle of trajectory of filaments when an electrical field is applied to 

an assay made with a TMCS surface. The white bars show the samples that inclusive of blocking actin 

while the grey bars are samples run without blocking actin. 0 degrees represents the position of the 

positive electrode. Each graph represents the tracking of 25 filaments over 3 samples. 
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As show in Figure 6.10 the difference in the angle of trajectory of filaments between 

samples that had blocking actin present and those that didn’t is marginal and no clear 

relationship can be seen between them on TMCS. This would indicate that in both cases the 

movement of filaments is comparable and shows a very low density of motors that are 

required to be blocked. The fact that both sets of samples perform in much the same way 

points towards a protein layer that has retained much of its function upon adsorption and that 

there are few obstacles that would divert the filaments off track. Interestingly, the increased 

number of filaments on the blocked samples does not seem to have had much of an effect in 

causing crowding and filament – filament collisions that would divert movement away from 

the direction of the field. This again would point to a high density of fully active HMM, if 

both sets of filaments, unlabelled and labelled, are fully motile, then the collisions that occur 

are less likely to take the filament off course as both populations will be moving with the 

field. 

Table.6.5. The  percentage of actin filaments for the samples with and without blocking actin on 

TMCS at the tested electrical field strengths. Data represents the tracking of 25 filaments over 3 

samples. 

 

Percentage of motile filaments 

Field (V/m) 0 4000 6000 8000 

TMCS 78.8 87.9 93.1 92.6 

TMCS No block 80.7 85.5 85.2 90.1 

 

6.3.3 The influence of blocking actin on PMMA motility function 

Although the velocity of the filaments on these samples is much higher than that seen in the 

previous experiment in chapter 5, the proportional increase in velocity from 0 – 8 kV/m is 

almost identical. This again highlights the value of the electrical motility device in testing 

the protein binding mechanism on different surface chemistries. Previous studies have 
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presented statistics to show the motility characteristics observed on a single set of samples 

on multiple surface chemistries.
9
 However, as can be evidenced by the large amount of 

papers that have studied myosin on various different surfaces, the velocities on any one 

surface chemistry can be slightly different from sample to sample.
10-13

 Imagine for a moment 

that this study had only taken the characteristics from motility without the effect of a field. 

In the previous chapter the average velocity of filaments in the absence of a field for PMMA 

was around 8 µm/s where as TMCS showed an average filament velocity of around 4.5 µm/s 

at 0 V/m. Taking this statistic alone one might be inclined to think that the PMMA is 

outperforming the TMCS in terms of protein binding characteristics that favour retaining full 

motor protein function. However, if we add an external force into the equation, in this 

instance an electrical field, we can now analyse how the protein layer reacts to this force by 

studying the effect on filament motion. The statistics then start to give a very different 

picture to the binding characteristics of the different surface chemistries, one that would not 

have been possible to come to without significantly increasing the number of samples, 

experiments and data collected in the absence of this variable. 
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Figure.6.11. The graph shows the velocity of actin filaments when exposed to an electrical field on 

PMMA. Each line represents assays done with the inclusion of blocking actin (squares) and when the 

motility assay was run in the absence of blocking actin (triangles). Each data point is an average of 25 

filaments movement over 3 samples. 

Table 6.6 shows that there is a modest density of ATP inactive HMM bound to the surface. 

This is shown in the samples that were performed in the absence of blocking actin, as even 

at 8 kV/m, the percentage of motile filaments is below 80%, which is below that of the other 

surfaces. The small increase in the percentage of motile filaments, in the case of the assays 

not treated with blocking actin, would suggest that there is still a significant enough density 

of inactive motors anchoring the filaments to the surface that even a high field, large force, 

cannot dislodge them.  
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Figure.6.12. The graphs show the angle of trajectory of filaments when an electrical field is applied to 

an assay made with a PMMA surface. The white bars show the samples that inclusive of blocking 

actin while the grey bars are samples run without blocking actin. 0 degrees represents the position of 

the positive electrode. Each graph represents the tracking of 25 filaments over 3 samples. 
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Both sets of samples, both blocked and unblocked, have similar directionality characteristics 

presented in Figure 6.12 showing the angle of trajectory of filament movements. A slight 

difference is seen, with an increase in the percentage of filament movements towards to the 

positive electrode evident on the non-blocked samples compared with the blocked samples 

at the same fields. Couple this relationship with the low increase in velocity seen from 0 – 8 

kV/m and the speed at which the filaments returned back to their original velocity in the 

‘deceleration’ study, the protein layer on PMMA seems to have a large number of HMM 

bound to the surface that are unable to propel the filaments. These could be a number of 

orientations that either trap filaments, as is the case with ATP inactive HMM, or simply 

block the path of a filament which could result in either diversion or termination of 

movement. 

As the field was increased to 8 kV/m on the samples that had been treated with blocking 

actin, the percentage of motile filaments is relatively high (not all that far from TMCS). This 

would indicate that while there is a large portion of ATP inactive HMM bound to the 

surface, these are being blocked by the unlabelled actin filaments. Once this has been 

achieved the obstacle of the extra bound non motile filaments hinder the motility function 

less than the presence of unblocked ATP inactive HMM. In this case the motile filaments 

only deal with the crowding caused by the extra filaments on the surface, which at 8 kV/m 

would seem to have been overcome by the force of the field. Therefore it seems that 

filaments that are trapped or lodged by overcrowding of the protein layer become dislodged 

much more easily than those trapped at inactive motor sites. 
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Table.6.6. The percentage of actin filaments for the samples with and without blocking actin on 

PMMA at the tested electrical field strengths. Data represents the tracking of 25 filaments over 3 

samples. 

 

Percentage of motile filaments 

Field (V/m) 0 4000 6000 8000 

PMMA 85.5 88.7 86.8 88.8 

PMMA No block 72.9 72.2 78.8 79.6 

 

6.4 Investigation of protein adsorption and resulting motility function 

Figure 6.13 shows the relationship between the three surfaces in terms of the time taken for 

the filaments to decay from the velocity reached during exposure to a field to the velocity 

exhibited before the field was applied. At 4000 V/m all three surfaces were comparable but 

as the strength of the field was increased the difference in the deceleration of filaments is 

dramatic. This is seen as a clear indication of the degree of hindrance there is to motility on 

each surface and in turn gives an insight into the functionality of the protein layer that is 

present on each of the surfaces. At both 6 and 8 kV/m the motility on TMCS is slower to 

return to its original state than the other two surfaces, exhibiting a surface that has HMM 

motors adsorbed to the surface in an orientation that retains much of the function of the 

protein. What can also be learned from this data is that TMCS has minimal obstacles to 

motility. This points to a low density of head bound HMM along with a protein layer which 

remains relatively clear of trapped filaments, allowing the free movement of the actin 

filaments across the bound motors.   
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Figure.6.13. The graph shows the average time taken for the velocity of the actin filaments to 

decrease from the maximum velocity exhibited during exposure to the field, to within the standard 

deviation of the average velocity of pre-exposed motility on each sample. Each data point is an 

average of 3 samples representing a total of 30 filaments movement each. 

In the case of both NC and PMMA, much less time is required for the filaments to slow 

down to the initial velocity once the field had been terminated. For NC the difference in this 

time at 6 and 8 kV/m is around 2 seconds. The variation in these two surfaces has been 

echoed in all of the assessments made of the protein layer using the electrical motility 

device. While NC has been used extensively as a viable surface for in vitro motility assays 

there is evidence that the motor protein binding of this surface chemistry is by no means 

perfect. The results are consistent with a surface that has a number of motors bound to the 

surface that are unable to facilitate motility. With an increase of the density of non 

propelling motors also comes an increase in the potential for crowding and in turn hindrance 

of motility caused by the trapping of filaments and the accumulation of obstacles to the path 
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of a given filament. However, it must be pointed out that while the difference is significant 

the surface does produce high quality motility with low density of non-motile filaments in 

comparison to other surfaces used here and elsewhere. Figure 6.14 shows that while the 

averaged velocity of filaments during exposure is lower than that seen on TMCS, it still 

exceeds that of PMMA and shows a smooth increase as the field strength rises. 

The motility characteristics exhibited on PMMA indicate a protein layer bound to the 

surface that while able to support motility also contributes significant hindrance to the 

translocation of filaments. The rapid decrease in velocity upon termination of the field is a 

clear indication of not only a lower density of fully active HMM, but also evidence that there 

are orientations of motor proteins bound that actively hinder motility. This can also be seen 

in Figure 6.14 where the average velocity reached during application of the field is low 

when compared to the other two and does not follow the same trend as seen on NC and 

TMCS. These are thought to be head bound HMM and potentially dual protein layers 

forming due to further motors interacting with this head bound HMM (see Figure 6.15 C). 

This may occur due to the different charges held at the head and tail of the HMM along with 

the amphiphilic nature of the protein. While tail bound HMM would have a positively 

charged head region available for interaction with actin filaments the head bound HMM 

would result in tails protruding above this layer. The negatively charged tail region may well 

interact with other incoming HMM or surrounding HMM in such a fashion that either 

creates the opportunity to bind further HMM to a position already occupied by a motor 

protein, i.e. a dual protein layer, or perhaps interfere with the functioning of surrounding tail 

bound HMM.  
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Figure.6.14. The graph shows the mean velocity exhibited while the motility is under the influence of 

the field. Note here the relatively small increase in velocity on TMCS when compared with the 

previous results. This is thought to be due to the average velocity at 4000 V/m already being at the 

upper limits of the maximum velocity that actin-myosin motility will exhibit in an in vitro motility 

assay.
4, 7, 14

 Each data point is an average of 3 samples representing a total of 30 filaments movement 

each.
 

The angle of trajectory of a filament can be altered in a number of different ways, as 

highlighted by the results shown in the blocking actin study. Brownian motion will impact to 

some extent on the path of the head of the filament before the attachment to the next 

available motor. This becomes a less important factor as the field strength increases and the 

guidance of the head to the next available motor becomes dominated by the force applied by 

the field. Any obstacles in the path of the filament will be another important factor in 

determining its direction. A filament may be propelled against an obstacle such as a trapped 
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filament and forced to one side or another. As discussed, these can be caused by a variety of 

reasons, including motor tails (of head bound motors), other filaments and dual protein 

layers. All of these will cause a filament that comes in contact with them to either, divert its 

path, dissociate into solution (where attachment to further motors is made impossible), or 

become trapped, terminating the filament movement altogether. The direction in which the 

motor is facing will also affect the path taken by a filament. The impact of this particular 

factor is highlighted when comparing the difference in angular trajectory of filaments on 

samples that were unblocked to samples inclusive of the unlabelled blocking actin. Even in 

the unblocked case where there are a dramatically reduced number of filaments present and 

therefore a significant drop in potential obstacles that a filament could come in contact with, 

the angular trajectories are comparable even at the highest field strength tested, across all 

three surfaces. This highlights two things; A, the orientation of active HMM is more 

important in influencing the motility function than simply the presence of ATP inactive 

HMM, in terms of velocity and trajectory, and that B, the direction in which the HMM is 

facing is a highly significant factor when considering the path of a filament even at high 

field strengths.  
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Figure.6.15. The scheme shows examples where different orientations of HMM can influence the rate 

at which accelerated filaments slow down after the electrical field is terminated. Inset to the right are 

idealised graphs showing the rate at which the velocity of filaments decreases due to the varying 

degrees of hindrance to motility. t = 0 represents the point at which the electrical field is terminated. 

A, This represents a surface with mostly tail bound motors that will facilitate smooth gliding. B, 

Surface which has some HMM bound in states such a head domain attachment will result in a 

decrease deceleration period due to the additional hindrances. C, Surfaces that have a preference to 

binding the motor at the positions that do not facilitate motility will significantly affect smooth 

gliding. After the termination of the field the filaments are expected to decrease in velocity sharply. 

A 

B 

C 
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The results from the blocking actin study  showed the significance of the blocking actin and 

the density of inactive HMM present on each surface. Gliding assays that were performed in 

the absence of blocking actin consistently produce motility with higher velocity than those 

experiments performed with the inclusion of blocking actin in the assay. This not only gives 

an indication of the density of ATP inactive HMM that is bound to each surface, but also 

shows the effect of crowding that occurs due to the additional filaments that are present on 

the protein layer when blocking actin is present. The number of ATP inactive HMM on the 

three surfaces in this study is low. This is evidenced by the high percentage of motile 

filaments (see Table 6.7) and also by the visually observed ‘quality’ of the motility seen on 

all the samples. Each sample tested showed varying degrees of fully functioning motility 

even at low field strengths.  

Table.6.7. The percentage of motile filament on both sets of samples for all the surfaces at the fields 

tested. Data represents the tracking of 25 filaments over 3 samples for each surface. 

 

Percentage of motile filaments (%) 

field 0 4000 6000 8000 

NC  87.5 86.5 89 84.9 

NC No block 69.6 75.7 79.49 84.4 

PMMA 85.5 88.7 86.8 88.8 

PMMA No block 72.9 72.2 78.8 79.6 

TMCS 78.8 87.9 93.1 92.6 

TMCS No block 80.7 85.5 85.2 90.1 

 

There is a clear relationship between the percentage of motile filaments when comparing the 

samples with blocking actin and the samples without. As can be seen in Table 6.7 a higher 

number of non-motile filaments was seen on samples where the blocking actin had not been 

applied to the assay. This is simply due to the fact that the labelled actin, on these samples, is 

more likely to encounter HMM that would bind to the filaments but is unable to propel the 

filaments. Interestingly there was a difference in this relationship between the surfaces; 
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TMCS clearly displays a higher percentage of motile filaments indicating a very low density 

of ATP inactive HMM. Conversely PMMA samples that were not blocked by unlabelled 

actin displayed motility characteristics that indicate a higher density of ATP inactive HMM 

with NC filling the mid range in this study. Important to note is that ATP inactive HMM is 

perhaps not the only factor in the equation that exacerbates the effect of crowding. That is to 

say that the blocking actin could also be interacting with other orientations of bound HMM 

which in turn is producing the motility function seen. For examples, in the previous chapter 

head bound HMM was hypothesised to be creating a barrier to unhindered motility. There 

may also be a situations, on surfaces that bind a high density of head bound HMM, where 

filaments are getting trapped in the areas where the tails of these head bound HMM are 

extending above the active HMM layer (see Figure 6.15). Therefore the relationship between 

the three surfaces tested, the inclusion or exclusion of blocking actin and the resulting 

velocity of motility is most probably a combination of the density of ATP inactive HMM on 

the surface and the density of head bound HMM on the surface. Both these types of HMM 

would hinder motility to varying degree. What is clear is that a surface which has a high 

density of fully functioning protein will display motility characteristics of unhindered 

motility as there is less chance of a filament experiencing slow down or complete 

termination of its movement due to either crowding, other filaments or HMM tails, or ATP 

inactive HMM.  
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Figure.6.16. The graph shows the velocity of actin filaments on all three surfaces when an electrical 

field is applied to the motility assays. Each sample was tested with (squares) and without (triangles) 

the addition of blocking actin in the preliminary steps of the in vitro motility assay procedure. On 

each surface the addition of blocking actin to the procedure resulted in slower motility throughout all 

of the fields tested. The separation between the velocities on each individual surface is of particular 

interest as it indicates the number of sites that blocking actin will occupy when in use, and so cause 

crowding (a hindering of motility), and therefore the binding characteristics of each surface. Each data 

point is an average of 2 samples representing a total of 20 filaments movement each. 

What is particularly interesting is the consistent difference in velocity between the blocked 

samples and non blocked samples on each of the surfaces. On TMCS the difference in 

velocity between these samples is very small (~0.5 µm/s), indicating a protein layer that has 

retained much of its function upon adsorption. PMMA however, has a consistent velocity 

difference of around 2.5 µm/s, which would suggest an adsorbed protein layer that has a 

high number of motors bound in states that are unable to facilitate the movement of 
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filaments. NC exhibits a difference of 1.5 µm/s, which indicates that the surface binds a 

higher number of fully functioning HMM than exists on PMMA, but that there is still a 

significant density of motors present that cannot facilitate motility. 

Another visually observed phenomenon was the clarity of images produced when the assay 

was run in the absence of blocking actin. This is thought to be due to crowding of filaments 

on the protein layer. When blocking actin is included in the assay there is a large percentage 

of unlabelled filaments that will not encounter a site at which its movement would be 

terminated, an ATP inactive HMM or an area of high density non functional HMM. This 

means that on these samples there will be a higher number of moving filaments on the 

protein layer. With an increase of moving objects there is an increase of obstacles for all 

filaments present. When filaments collide with each other they can do a number of things. If 

travelling at the same height they are likely to either ‘bounce’ off each other and be diverted 

on to separate roots, or become trapped. Another situation may also occur due to the 

unevenness in height of the protein layer. A surface made up of entirely fully functional 

HMM would not be uniform in height due to the slight non uniformity in the height of the 

surface the protein is bound to, but also due to slight variances in the motor proteins 

themselves due to the purification procedure of the protein when extracting it from the rabbit 

muscle (average height of head domain of an active HMM is around 38 nm).
2
 This means 

that moving filaments may be travelling at slightly different heights. Baring in mind that f-

actin is only ~10 nm in thickness a filament colliding with another that is perhaps bound to a 

HMM that is ever so slightly below that of the current track of the incoming filament may 

have the ability of moving over the lower filament while still retaining motility.
4
 Both these 

types of interactions increase the possibility of filaments moving in and out of the focal 

plane during the course of an experiment, and the number of these interactions increases 

when a higher number of filaments, labelled or unlabelled, is present. This would explain 

why the images taken from samples that did not have blocking actin included in the assay 



167 

 

gave clearer images than those samples that had the unlabelled actin present and therefore a 

higher number of total filaments moving on the protein layer. This phenomenon is also seen 

to an extent when comparing images between surfaces. TMCS and PMMA, expected to 

create the flattest, most rigid surfaces in the study, did show marginally clearer images than 

NC. This is presumably again down to the slight height difference of the HMM bound to the 

more gel-like NC and so increasing the potential of filaments dropping out of the focal 

plane. 

The increase in velocity from 0 to 8 kV/m was in agreement with those seen on the same 

surfaces in the experiments achieved in chapter 5, on both the unblocked and blocked 

samples. An increase of 4 – 5 µm/s on TMCS, 2.5 – 3 µm/s on NC and 2.5 µm/s on PMMA 

are very similar to those exhibited on samples in the previous chapter and this evidence 

highlights the value of the electrical motility study. By using an external tester, in this case a 

force applied by an electrical field, many of the problems caused by the statistical analysis of 

standard gliding assays of motility on surfaces can be overcome. When comparing the 

statistical data obtained from previous studies of myosin behaviour on different surfaces 

there is a level of discrepancy in the agreed performance of surfaces between papers. For 

example in some research papers PMMA is shown to produce reasonably high levels of 

functioning motility, a conclusion that is reached by the observed velocity of filaments 

moving on the surface.
9
 In some cases it is stated that the PMMA surfaces outperforms NC. 

However, there are papers that show results that contradict these conclusions.
15

 Couple this 

with the evidence shown by other groups using analytical techniques, such as QCM and total 

internal reflection fluorescence (TIRF), in particular a paper that probes the density and 

height of myosin layers on electronegative surfaces, and it becomes clear that there is 

significant value to a highly adaptive study such as the two shown in chapters 5 and 6 of this 

thesis.
2, 16
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This study is far from exhaustive and leaves room for further study of surface chemistries 

that allow the immobilisation of myosin. What is also important to point out at this stage is 

the nature of the discussion in these final two chapters. The analysis of each surface has been 

based around finding the ‘best’ possible surface for actin myosin motility i.e. which surface 

adsorbs a protein layer that retains its function and allows unhindered motility. However, 

when thinking about the potential uses of molecular motors in lab-on-chip technologies there 

may be some desire to have a surface that adsorbs a protein layer that slightly or even 

completely hinders motility. Indeed there may be device designs where varying degrees of 

motility are required across the chip and therefore there is the possibility to use multiple 

surface chemistries, each having different motility function. 

6.5 Conclusion 

The electrical motility device detailed in the last two chapters of this thesis has been used in 

three distinct ways for the characterisation of the adsorption properties of a number of 

surface chemistries. In previous papers where groups have outlined the behaviour of myosin 

motility on surfaces many have concentrated on the ATP inactive motors bound to the 

surface as being the primary factor in the resulting movement of filaments across the protein 

layer.
11, 17

 Some hypothesise that certain surfaces may result in a higher density of these 

motor heads that bind to actin but do not facilitate filament motion. One only needs to look 

at the motility procedure used in this study, with the inclusion of blocking actin, as an 

indication of how important these motor heads are perceived to be, as this is a standard 

procedure used in a great many studies that utilise gliding assays. During the course of the 

last two chapters it has been suggested, and supported by a number of papers, that while 

certain surface properties may result in varying densities of ATP inactive HMM, this factor 

alone cannot explain the different motility function seen when using different surfaces in the 

in vitro motility assay.
2, 8, 18-20

 The results from this chapter when comparing the motility 
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function of assays run without the inclusion of blocking actin highlights that while each 

surface may have slightly different densities of this particular type of bound HMM, the 

difference in these densities is very small pointing to other factors that are affecting motility 

function. Results from the ‘deceleration’ study carried out in this chapter, coupled with the 

blocking actin experiment backs the hypothesis that the orientation of the motors bound to 

the surface has the largest impact on the motility function. In particular, the density of head 

bound HMM seems to be an important factor in the movement of filaments across the 

protein layer. As detailed in a previous paper the HMM tails when bound to a surface via the 

head will extend beyond the heads of surrounding fully functional motors.
2
 Other orientation 

of motors, such as motors bound by the tail and head, presumably unable to even interact 

with the actin, and any potential dual protein layers created by HMM interacting with 

already bound motors, will also affect the translocation of the filaments. However, what was 

made evident by the ‘deceleration’ study was the importance of obstacles and crowding of 

the protein layer in retaining full and unhindered motility. In chapter 5 TMCS exhibited 

motility characteristics that point to a protein layer that was retained all of the motors 

function. This would suggest a high density of HMM bound to the surface that can fully 

facilitate filament movement i.e. motors bound to the surface by the tail. In the 

‘deceleration’ study this surface showed the slowest decay back to initial velocity of the 

three surfaces. Couple this with the results from the blocking actin study; TMCS seems to 

have HMM binding characteristics that favour supporting tail bound HMM producing a 

protein layer that retains much of its function. In turn we can learn from this that the 

resistance caused by these motors in response to the electrical field is relatively small. As the 

field is terminated in these experiments the velocity slowly decays back to its initial velocity, 

akin to a wooden board slowing down after being pushed over rollers. In the case of the 

other two surfaces we can see that an increase in bound HMM in orientations that hindered 

motility, such as extending tails, results in an increase in the resistance to the force applied 
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by the electrical field and so the decay from the maximum reached velocity back to the 

initial exhibited velocity is much quicker. Picture the same wooden board being pushed over 

the same set of rollers, but this time some of the rollers are broken and there are obstacles in 

the path of the board resulting in a much quicker deceleration.  

What has been shown in the last two chapters of this thesis is a novel method of analysing 

the response of myosin motility to varying strengths of electrical fields. The electrical 

motility set-up has been used to compare the response of this system when different surface 

chemistries have been used to immobilise the motor protein. This opens up the potential to 

use this experimental procedure to not only test a variety of surface chemistries for myosin 

immobilisation but also the possibility to analyse the response of other motor proteins. As 

the interest increases for the use of motor proteins in various lab-on-chip devices the detailed 

analysis of each protein and its adsorption to any particular surface chemistry will be key in 

creating devices with the high level of reproducibility, efficiency and functionality that is 

required of lab-on-chip technologies. 
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Concluding Thoughts 

The studies presented in this thesis have been used to outline several ways in which two 

protein motor systems could be incorporated in to a lab-on-a-chip device. The main aim of 

this thesis has been in pointing out many of the practical aspects that require attention when 

designing a bionanodevice that utilises these proteins. A novel design has been put forward 

for the control of microtubules and the electrical motility device, used to guide actin 

filaments, has been used to investigate the protein adsorption of HMM on several surface 

chemistries in an environment that closely resembles that of a lab-on-a-chip device utilising 

this method of motility control. 

The kinesin study focused almost entirely on the device design, and specifically the design 

of the gate areas of the chip. In order to create a patterned surface that would effectively 

control the movement of the microtubules several designs were implemented. In the final 

design, topographical confinement of the motility was used to guide the microtubules 

towards the gate areas. The gates were created by leaving small area of gold, coated in a 

thermoresponsive polymer, between two channels. By passing an electrical current through 

the surface of the gliding assay these small areas of gold could be locally heated, thus 

creating specific areas of control. The results showed that the gliding of microtubules was 

sufficiently confined within the channels and that they provided good guidance of the 

filaments towards the gate areas. Localised heating of the gates was much improved in the 

final device. The area where the thermoresponsive polymer was affected by the increase in 

temperature was approximately 40 µm in diameter. This was evidenced by the unhindered 

gliding of microtubule motility within this region while the gate was heated. The device 

showed a reasonable level of control of the motility, however, due to the design of the 

polymer gate, microtubules that were affected by the gate dissociated into solution. This is 

an issue if the motility of the affected filament was desired to be reactivated after the turning 
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off the gate. Alternative designs could be presented whereby the thermoresponsive polymer 

works within a closed channel, thus preventing the microtubules from dissociated with the 

motor protein but still inhibiting its movement while the gate is active. 

The studies presented in chapters 5 and 6 used the motor protein system myosin II and a 

separate method of control to those implemented in chapter 4. In chapter 5 electrical fields 

of various strengths were used to guide the actin filaments across the surface of a gliding 

assay. The motility function in terms of velocity of filaments and the directing ability of the 

field when HMM was adsorbed on several surface chemistries was analysed. By studying 

the effect of the field across all of the surfaces a discussion was put forward as to the protein 

adsorption properties of the surfaces used. The discussion focused on the orientation of the 

protein motor on the surface, backed by previous studies, and how this would affect the 

activity of the HMM.  

Chapter 6 implemented the electrical motility device in an alternative experiment procedure 

to analyse three surface chemistries for their protein adsorption properties. Filaments were 

exposed to an electrical field for a given time frame and the response of the motility to the 

termination of the field was analysed. Coupled with this deceleration study, an investigation 

into the effect of ‘blocking actin’ to motility function while in the presence of an electrical 

field was achieved. Together with the results from the deceleration study and chapter 5 a 

detailed discussion on the orientation of motors on a surface and how these affect motility 

function was presented. The separate effects of rigidity and hydrophobicity were looked at 

and conclusions draw as to the protein adsorption properties of the surfaces used.  

The result of these two chapters was to find that the rigid, flat, hydrophobic surface of 

TMCS provided a substrate that exhibited smooth gliding, unhindered motility, seeming to 

show a preference for protein adsorption at the tail of the motor. Of particular importance 

seems to be the hydrophobicity of the surface used to immobilise the protein. A window of 
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relatively high hydrophobicity (contacts angles of between 70-80
o
) exhibited smooth gliding 

filament movement. Outside of this window the movement of the actin appeared 

significantly hindered. Surface rigidity also showed to slightly affect the motility function 

with, perhaps unsurprisingly, flat rigid surfaces out performing those with a more gel like 

structure. That is not to say that TMCS provided ‘The best’ surface. In fact the ability to 

slightly hinder the motility of actin filaments on a surface may be of some use in some 

device designs. The studies performed with the electrical motility device showed how the 

performance of the HMM could be tuned by using different surface chemistries. This could 

be utilised within a device to create areas of varying degrees of motility function.  

Finally the electrical motility device itself showed to be a powerful tool in analysing the 

motility function of the actin myosin system to different surface chemistries. It has provided 

a cheap and accessible method of investigating the adsorption of HMM to solid surfaces. 

The studies achieved with this gliding assay are far from exhaustive and a great many more 

surface chemistries could easily be analysed in this way. 

Further study could easily be achieved with the electrical motility device in several areas. As 

previously mentioned, additional surfaces could be studied for the adsorption of HMM. In 

addition to this there are several key areas of the experiment that could be investigated. In 

chapter 6 the deceleration of filaments was studied, however, one could also look at the 

acceleration phase of this experiment to try and draw further conclusions as to the effect of 

HMM orientation on the motility function seen on different surface chemistries. Another line 

of study for electrically guided motility could be to try and implement this method of control 

in a lab-on-chip device. This would require investigation into the miniaturisation of the 

electrode configuration. 

The design of the PNIPAM gate in chapter 4 could also be an area of further study. 

Additional designs could be investigated in which the gate is used in designs closer to that of 
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the ‘rectifies’ and ‘roundabouts’ discussed in chapter 2 of this thesis. This could allow the 

creation of selective collection of filaments within a confined area of a device.  
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