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Abstract 
 

T-cell mediated hypersensitivity reactions (HSRs) to carbamazepine (CBZ), a 
commonly used anti-epileptic drug, occur only in a small proportion of patients, 
but can often be severe in nature. As the underlying pathomechanisms are not 
fully understood, it has proven difficult to predict who may be at risk of 
developing CBZ-induced HSRs. Recently, specific human leukocyte antigen 
(HLA) alleles have been identified as susceptibility factors for CBZ 
hypersensitivity in diverse populations, indicating that HLA molecules may be 
functionally involved in CBZ-induced T-cell activation. HLA-A*31:01 represents 
the latest example and has been implicated in CBZ-induced HSRs in Caucasian 
patients. Thus, the aim of this work was to explore the molecular interactions of 
CBZ with HLA-A*31:01 and drug-specific T-cells. 

The HLA restriction pattern of CBZ-reactive T-cells from a patient expressing 
HLA-A*31:01 was investigated. It was shown that CD8+ T-cells were activated in 
a HLA-A*31:01 dependent way. Further, HLA-DRB1*04:04 was found to be 
responsible for the stimulation of CD4+ T-cells, suggesting a common HLA 
haplotype may be involved in mediating T-cell responses to CBZ in Europeans. 

Next, in vitro priming of drug-naïve T-cells from HLA-A*31:01+ healthy 
volunteers against CBZ was attempted. Weak responses to CBZ could be 
detected in some but not all volunteers, indicating factors additional to HLA-
A*31:01 are required to induce a primary stimulation of T-cells to CBZ. Besides, 
the removal of T-regulatory cells and use of dendritic cells as antigen-
presenting cells seemed to generally improve priming conditions. 

In order to investigate whether CBZ affected the peptide-binding specificity of 
HLA-A*31:01, in silico and in vitro analysis were performed. In silico modelling 
provided a possible binding site for CBZ within the HLA peptide-binding cleft. A 
peptide elution study provided a preliminary indication that binding of CBZ to 
HLA-A*31:01 may alter the peptide repertoire presented by the allele, which 
could potentially result in T-cell activation. 

Most recently, it has been suggested that the T-cell receptor (TCR) may 
represent an additional predisposing factor for CBZ-induced HSRs. Accordingly, 
a protocol for the analysis of the TCR Vβ repertoire of drug-reactive T-cells by 
flow cytometry as well as CDR3 spectratyping was set up using T-cells from 
healthy donors primed against the model antigen SMX-NO. Both methods 
showed that antigen stimulation resulted in skewing of common TCR Vβ 
subtypes among the donors. Combined, the optimised methods will allow 
assessment of whether specific TCR clonotypes may be implicated in HLA-
A*31:01 associated HSRs to CBZ. 

In summary, the data presented in this thesis provide initial evidence that CBZ 
is able to interact directly, through a non-covalent binding mechanism, with 
HLA-A*31:01 causing T-cell activation. However, it cannot be excluded that the 
stimulation of T-cells in vivo requires the formation of a hapten complex. 
Further work is needed to define other factors that are involved in predisposing 
an individual to CBZ hypersensitivity. 

 



1 
 

Chapter I 

General Introduction 

 

Contents 
1.1 Introduction ................................................................................................................... 3 

1.2 Adverse Drug Reactions ............................................................................................ 3 

1.2.1 Definitions .............................................................................................................. 3 

1.2.2 Incidence ................................................................................................................. 4 

1.2.3 Classification ......................................................................................................... 4 

1.3 The Immune System ................................................................................................... 7 

1.3.1 Innate immunity .................................................................................................. 7 

1.3.2 Adaptive immunity ............................................................................................. 8 

1.3.3 Antigen processing and presentation .......................................................... 9 

1.4 The Major Histocompatibility Complex ............................................................. 13 

1.4.1 Genetic organisation ........................................................................................ 14 

1.4.2 Polymorphisms .................................................................................................. 15 

1.4.3 Nomenclature ..................................................................................................... 16 

1.4.4 Structure and function .................................................................................... 17 

1.4.5 HLA associated diseases ................................................................................. 19 

1.5 The T-cell Receptor ................................................................................................... 21 

1.5.1 Structure and function .................................................................................... 21 

1.5.2 Generation of the TCR repertoire ................................................................ 22 

1.5.3 T-cell receptor signalling ................................................................................ 25 

1.6 Drug Hypersensitivity Reactions ......................................................................... 27 



  Chapter 1 

2 
 

1.6.1 Classification ....................................................................................................... 27 

1.6.2 Clinical phenotypes .......................................................................................... 29 

1.6.3 Mechanistic hypotheses .................................................................................. 32 

1.6.4 Risk factors .......................................................................................................... 37 

1.6.5 HLA associated drug hypersensitivity reactions ................................... 41 

1.7 Carbamazepine ........................................................................................................... 44 

1.7.1 Indication .............................................................................................................. 44 

1.7.2 Mechanism of action ........................................................................................ 44 

1.7.3 Pharmacokinetics and Metabolism ............................................................ 44 

1.8 Carbamazepine-induced Hypersensitivity ....................................................... 47 

1.8.1 Pharmacogenetics ............................................................................................. 47 

1.8.2 Functional studies ............................................................................................. 48 

1.9 Sulfamethoxazole ....................................................................................................... 50 

1.10 Aims ................................................................................................................................. 51 

 

  



  Chapter 1 

3 
 

1.1 Introduction 

 

Hypersensitivity reactions (HSRs) to drugs occur only in a few susceptible 

patients but can often be severe in nature. Specific human leukocyte antigen 

(HLA) alleles have recently been identified as risk factors in some forms of 

drug-induced hypersensitivity. It is known that drug-specific T-cells are 

involved in many of these reactions. However, the contribution of HLA to the 

development of drug-specific T-cell responses has not been fully understood. 

 

 

1.2 Adverse Drug Reactions 

 

1.2.1 Definitions 

Besides producing a therapeutic effect, any drug that is administered to a 

patient can cause adverse reactions. The World Health Organisation (WHO) has 

defined an adverse drug reaction (ADR) as “a response to a drug which is 

noxious and unintended, and which occurs at doses normally used in man for 

the prophylaxis, diagnosis, or therapy of disease, or for the modification of 

physiological function” (WHO 1972). Another commonly used definition for 

ADRs was proposed by Edwards and Aronson: “An appreciably harmful or 

unpleasant reaction, resulting from an intervention related to the use of a 

medicinal product, which predicts hazard from future administration and 

warrants prevention or specific treatment, or alteration of the dosage regimen, 

or withdrawal of the product” (Edwards, I. R. and Aronson 2000). This clearly 

separates ADRs from adverse events, which comprehend any harmful event 

that happens to a patient during drug therapy but does not have to be caused by 

the drug itself. 

Adverse drug reactions are a major burden to health care systems and 

considerably increase patients’ morbidity and mortality. They also present a 

significant problem for drug development in the pharmaceutical industry, as 
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potentially effective drugs might have to be withdrawn from the market due to 

unforeseen ADRs arising during the post-marketing period (Lasser et al. 2002). 

 

1.2.2 Incidence 

A study by Pirmohamed et al. (2004) investigated the percentage of hospital 

admissions attributed to ADRs in two UK hospitals and found this to be as high 

as 6.5%. ADRs led to death in 0.15% of all patients admitted to hospital during 

the monitoring period and the costs of ADR treatment were estimated to 

amount to approximately £466m per year for the UK National Health Service 

(NHS). ADRs leading to hospital admission were seen more often in elderly 

patients and were more prevalent in women (Pirmohamed et al. 2004). This is 

in line with a meta-analysis performed by Lazarou and colleagues, which 

estimated the incidence of ADRs in the United States was 6.7% of all patients 

hospitalized and a rate of fatal ADRs of up to 0.32% of all patients admitted to 

hospital (Lazarou et al. 1998). A more recent study by Miguel et al. (2012) 

stated ADRs could occur in up to 16% of hospitalized patients, but significant 

heterogeneity between the studies analysed hampered the authors in drawing 

firm conclusions. The true proportion of ADRs within a population will most 

likely remain unknown until the definition of ADRs has been standardised as 

well as the methods used for ADR monitoring (Miguel et al. 2012). Determining 

the incidence of ADRs in outpatients is even more difficult as there are only 

limited reporting systems in place and most ADRs therefore remain undetected. 

 

1.2.3 Classification 

ADRs can be classified according to their severity, time to reaction, or 

localisation. But most frequently ADR are classified by their pharmacological 

characteristics. 

Initially, ADRs were grouped into either type A or type B reactions based on the 

classification proposed by Rawlins and Thompson (Rawlins 1981). 
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Type A reactions, also known as augmented reactions, can be predicted from 

the known pharmacological action of the drug. They often represent an 

exaggerated effect of the drug and are generally dose-dependent. The majority 

of ADRs are type A reactions. 

Type B reactions, referred to as bizarre or idiosyncratic reactions, are not 

related to the known pharmacology of the drug and are usually not directly 

dose-dependent. Type B reactions are rare, but often more severe in nature 

than type A reactions. Reactions of this type occur only in susceptible patients 

and the predisposing risk factors are mostly still unknown. 

In order to allow a more distinguished classification of the different types of 

ADRs, more types were introduced accordingly (Edwards, I. R. and Aronson 

2000). An overview of the types of ADR proposed in the literature is given in 

Table 1.1. 

A more comprehensive system to classify ADRs has been introduced by 

Aronson and Ferner (2003) which takes into consideration the dose 

relatedness, timing and patient susceptibility (DoTS) of an adverse reaction. It 

has been proposed that the three-dimensional DoTS classification could 

improve the monitoring and treatment of ADRs and assist drug development 

and regulation (Aronson and Ferner 2003). 

 

The focus of this thesis will be on type B reactions, particularly hypersensitivity 

reactions, which are covered later in the chapter. Initially, I will give an 

overview of the immune system and its principal cellular and molecular 

components. 
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Table 1.1: Classification of adverse drug reactions (adapted from (Park et al. 

1998; Edwards, I. R. and Aronson 2000). 

Type of reaction Mechanism Example 

A 

(augmented) 

Predictable from the known 

pharmacology of the drug; 

dose-dependent effect 

Haemorrhage with 

anticoagulants 

B 

(bizarre or 

idiosyncratic) 

Not predictable from 

pharmacological action of 

the drug; no direct dose 

relationship 

Penicillin 

hypersensitivity 

C 

(chemical or 

chronic) 

Related to the chemical 

structure or a metabolite of 

the drug 

Paracetamol 

hepatotoxicity 

D 

(delayed) 

Develop years after drug 

therapy 

Secondary tumour after 

chemotherapy 

E 

(end of treatment) 

Appear after drug 

withdrawal, especially when 

stopped abruptly 

Withdrawal syndrome 

after opiate therapy 

F 

(failure) 

Often caused by drug 

interactions 

Reduced level of oral 

contraceptive during 

antibiotic therapy 
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1.3 The Immune System 

 

The immune system developed alongside human evolution to protect the 

human body against disease. The mechanisms involve elimination of existing 

pathogens and protection against new infections. One important aspect in this 

process is the differentiation between “foreign” and “self” molecules. 

The immune system can be divided into two main components: the innate and 

the adaptive immune systems. 

 

1.3.1 Innate immunity 

The innate immune system is thought to be the initial form of protection against 

pathogenic structures in humans, and it also exists in a lower form in all animals 

and some plants (Murphy et al. 2008). Its components are functional straight 

after birth and always present within the body to clear away infectious 

pathogens. Activation of innate responses occurs rapidly, as the recognition of 

pathogenic molecules is non-specific, and no immunological memory is formed. 

The main purpose of innate immunity is the prevention of an infection or to 

reduce its spreading. 

Epithelial membranes are considered a first barrier displaying a physical and 

chemical impediment to entering pathogens. If infectious agents circumvent 

these barriers, phagocytic cells, i.e. macrophages, monocytes and neutrophils, 

come into effect. These cells can recognise pathogen-specific molecules not 

expressed on human cells, e.g. mannose; and this results in the uptake and 

subsequent digestion of pathogens. The most important phagocytic cells are 

dendritic cells (DCs), which constantly ingest extracellular antigens. When 

immature DCs encounter pathogens they are activated and turn into so called 

antigen-presenting cells (APCs)(Delves and Roitt 2000). APCs are important for 

the initiation of the adaptive immune response, and DCs therefore form a 

crucial link between the innate and adaptive immunity. 
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Other cellular components of innate immunity include cells releasing 

inflammatory mediators, such as mast cells, basophils and eosinophils, and 

Natural Killer (NK) cells (Delves and Roitt 2000). NK cells recognise abnormal 

cells, such as those infected by viruses or malignant cells, and kill these through 

induction of apoptosis. 

Protein components of the innate immune response include cytokines and 

acute-phase proteins. These cause local inflammation at the site of infection 

which attracts phagocytic cells and also recruits cells of the adaptive immune 

system (Murphy et al. 2008). The complement system, a group of soluble 

plasma proteins, works as an additional pathway in the early and unspecific 

removal of infections. Complement can envelop infectious agents and these 

complexes are recognised by phagocytes and eliminated (Murphy et al. 2008). 

 

1.3.2 Adaptive immunity 

The adaptive immune system recognises pathogens in an antigen specific 

manner through the use of specialised receptors (Murphy et al. 2008). Key 

components of adaptive immunity are B- and T-lymphocytes, which carry 

specific receptors on their surface each recognising different antigenic 

structures. Binding of antigens to these receptors results in lymphocyte 

activation. 

B-cells encounter native antigens via their B-cell receptors, which are 

membrane-bound antibody molecules. Following antigen recognition, B-cells 

differentiate into plasma cells and start to secrete soluble antibodies. The 

secreted antibodies are specific for the encountered antigen and antibody-

labelled antigens are taken up by phagocytic cells and destroyed. This is known 

as the humoral immune response. 

T-cells are unable to recognise antigens directly but require the help of APCs. 

APCs can cleave antigens through proteolysis into short peptide fragments, also 

known as epitopes, and present these on human leukocyte antigen (HLA) 

molecules on their surface. T-cells recognise antigenic epitopes through T-cell 
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receptors (TCRs) expressed on their surface. After an interaction between APC, 

epitope and TCR takes place, T-cells differentiate into effector T-lymphocytes. 

This pathway is called the cell-mediated immune response. 

An important feature of the adaptive immune response is the generation of an 

immunological memory population. After an infection has been successfully 

eliminated, most activated B- and T-cells die. However, a few B- and T-cells with 

high affinity to their specific antigens are transformed into memory cells. Upon 

re-exposure to a pathogen, these cells can be rapidly activated allowing a faster 

and more effective immune response (Murphy et al. 2008). 

 

1.3.3 Antigen processing and presentation 

The main role of APCs is the uptake and processing of antigens at the site of 

infection followed by the migration of the cells to draining lymph nodes, where 

they display antigenic peptides to T-cells. The most specialised APCs are DCs, 

but to a lesser extent macrophages and B-cells can also function as APCs. 

Antigenic peptides generated within APCs generally originate from two 

different sources, extracellular or intracellular proteins. The process of antigen 

degradation into peptide fragments is called antigen processing and is depicted 

in Figure 1.1. 

Antigenic proteins formed in the cell cytosol get digested by the proteasome. 

The resulting peptide fractions are transferred into the endoplasmic reticulum 

(ER) by the transporter associated with antigen processing (TAP). In the ER, 

peptides get loaded onto newly synthesized HLA class I molecules by the 

peptide loading complex (PLC). The stable complexes of peptide and HLA I 

molecules are released from the ER and travel through the Golgi apparatus to 

the cell surface (Blum et al. 2013). 

 

 



 

 
 

1
0

 

Figure 1.1: Antigen processing 

pathways(adapted from (Blum et al. 

2013)): 

Cytosolic antigens are degraded by the 

proteasome. The peptides are 

transported into the ER by TAP where 

they bind to HLA class I molecules. 

Extracellular antigens are internalised 

by endocytosis. In late endosomes, 

antigens are lysed into peptides and 

loaded onto HLA class II molecules. The 

resulting peptide-HLA complexes are 

transported to the cell surface for 

presentation to T-lymphocytes. 

(CLIP= Class II-associated invariant 

chain peptide; ER= Endoplasmic 

reticulum; PLC= Peptide-loading 

complex; TAP= Transporter associated 

with antigen processing) 
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Extracellular antigens are taken up by phagocytic cells and captured in 

endosomes. Over time the endosomes become increasingly acidic which induces 

proteases to lyse the contained proteins into peptide fragments. These late 

endosomes fuse with vesicles containing HLA class II molecules, and the 

peptides are loaded onto HLA II proteins (Blum et al. 2013). The resulting 

peptide-HLA complexes are then transported to the cell surface. HLA class II 

molecules are formed in the ER and combined with an invariant chain. The 

invariant chain protects the HLA binding grove and guides the HLA class II 

molecules to endosomes. The proteolytic conditions in the endosomes degrade 

the invariant chain until only the short peptide CLIP, class II-associated 

invariant chain peptide, is left. CLIP is removed by HLA-DM, which enables 

binding of antigenic peptides to HLA class II molecules (Blum et al. 2013). 

The display of peptide-HLA complexes on the surface of APCs is known as 

antigen presentation, and they are recognised by the corresponding TCRs on T-

cells. 

T-lymphocytes can be grouped into two subtypes according to their cluster of 

differentiation (CD) markers, CD4 and CD8. These cell-surface proteins are able 

to specifically recognise HLA molecules and assist in stabilising peptide-HLA 

complexes; they are therefore also termed co-receptors (Murphy et al. 2008). T-

cells expressing the CD4 co-receptor will only interact with HLA class II 

complexes. CD8+ T-cells will only recognize peptides presented on HLA class I 

molecules (Murphy et al. 2008). Interactions occurring between APCs and T-

cells during antigen presentation and recognition are illustrated in Figure 1.2. 

When a TCR engages an antigenic peptide, it forms contact with both the HLA 

molecule and the peptide. However, for T-lymphocytes to become fully 

activated additional co-stimulatory signals are needed. This includes the 

interaction between the co-receptors CD28 on T-cells, CD80/CD86 on APCs and 

the secretion of co-stimulatory cytokines (Murphy et al. 2008). Once T-cells are 

successfully activated they turn into effector T-cells. 

 



  Chapter 1 

12 
 

 

Figure 1.2: Interactions between APC and T-cell during antigen recognition (adapted 

from Janeway’s Immunobiology (Murphy et al. 2008)). 

 

There are three main types of effector T-lymphocytes: cytotoxic T-cells, helper 

T-cells and regulatory T-cells (Murphy et al. 2008). Cytotoxic T-cells are able to 

directly kill infected cells through the secretion of cytolytic molecules, which 

induce apoptosis in the target cells. Helper T-cells (Th cells) aid the activation of 

other immune cells through the release of cytokines. Depending on the 

cytokines secreted, they can be further divided into Th1, Th2 and Th17 cells. 

Th1 cells release mainly interferon (IFN) γ and tumour necrosis factor (TNF) α 

which promote macrophage activity. Th2 cells enhance the activation of B-cells 

by release of interleukin (IL) 4, IL-5 and IL-13. Th17 cells assist in neutrophil 

recruitment through secretion of IL-17 and IL-6. Regulatory T-cells help control 

immune responses through the release of inhibitory cytokines, such as IL-10 

and transforming growth factor (TGF) β, which suppress T-cell activation and 

thereby limit immune responses. The effector T-cell subtypes and their 

phenotypic characteristics are summarised in Table 1.2. 
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Table 1.2: Effector T-cell subsets and their secreted effector molecules (taken 

from Janeway’s Immunobiology (Murphy et al. 2008)). 

 

 

 

 

1.4 Major Histocompatibility Complex 

 

The major histocompatibility complex (MHC) was first discovered in mice by 

Peter Gorer (Gorer 1936); he identified antigenic molecules in the blood of the 

animals to be responsible for the rejection of transplanted tumours. In the 

1950s, Jean Dausset was able to prove that a similar antigenic system is 

expressed on the cell surface of human leukocytes (Dausset 1958). The gene 

products of the human MHC are therefore also referred to as human leukocyte 

antigens. Initially, HLA molecules were studied because of their clinical 

relevance in transplant medicine (Chinen and Buckley 2010). But their main 

biological role in the human immune system is the presentation of pathogen-

derived peptide antigens to T-lymphocytes. 

In the last decades extensive research of the MHC determined this genetic 

region to be the most polymorphic in the human genome; and its genetic 

variation has been shown to contribute to various diseases, especially 

autoimmune disorders (Trowsdale 2011). 
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1.4.1 Genetic organisation 

In humans, the MHC is located on the short arm of chromosome 6 (6p21). 

Through the joint efforts of the MHC sequencing consortium, it was one of the 

first genomic regions to be fully sequenced. It spans a region of 3.6 megabase 

pairs (Mb) containing 224 gene loci of which about 60% are thought to be 

expressed and about 40% proposed to be implicated in immunity (The MHC 

sequencing consortium 1999). 

The MHC can be divided into three major regions: MHC class I at the telomeric 

end, MHC class III, and MHC class II at the centromere. MHC class I genes encode 

the heavy chain of the glycoproteins HLA-A, -B and –C, also known as classical 

HLA class I molecules. These molecules present peptide antigens to CD8+ T-

cells. The non-classical HLA molecules (HLA-E, -F and –G) and the MHC class I 

chain like (MIC) proteins complete this gene cluster. The MHC class II cluster 

contains the genes coding for the α- and β-chain of the classical HLA-DR, -DQ 

and -DP heterodimer proteins, which present antigens to CD4+ T-cells. Also 

encoded in this region are the non-classical HLA class II molecules, HLA-DM and 

-DO, which assist in antigen loading of HLA class II molecules. The genes 

encoding TAP and tapasin, proteins important for loading of HLA class I 

molecules, are also located in this cluster. Genes of the MHC class III region 

cover proteins of the complement system, heat shock proteins (HSP), and many 

cytokines (e.g. TNF-α). A schematic gene map of the three MHC gene clusters is 

shown in Figure 1.3. 

 

 

Figure 1.3: Gene organisation of the classical major histocompatibility complex 

(adapted from (Klein and Sato 2000)). 
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Further research in the field and advances in sequencing techniques have 

shown that genes related to the MHC extend beyond the region originally 

defined as MHC and the term extended MHC was coined, which covers about 7.6 

Mb and comprises around 421 gene loci (Horton et al. 2004). 

 

1.4.2 Polymorphisms 

HLA genes are highly polymorphic with the HLA-B locus being the most 

polymorphic gene in the human genome (Vandiedonck and Knight 2009). It is 

believed that HLA polymorphisms evolved as a result of a constant evolutionary 

pressure to fight infections and protect the human body against diverse 

pathogens. Single nucleotide polymorphisms (SNPs) are the most common form 

of genetic variation found in HLA genes (Vandiedonck and Knight 2009). For 

HLA class I alleles, the majority of SNPs are located in exon two and three of the 

genes, forming the antigen-binding groove. Similarly, most SNPs in HLA class II 

alleles are found in the second exon. The only exception is the HLA-DRA locus, 

which shows no functional polymorphisms in the peptide-binding region. Many 

SNPs in the MHC region are non-synonymous leading to changes in the amino 

acid sequence of the peptide-binding groove. This in turn increases the 

likelihood of pathogenic antigens being recognised and eliminated 

(Vandiedonck and Knight 2009). Until today, more than 9,000 HLA alleles have 

been discovered and the numbers are growing continually. A complete list can 

be found on the IMGT/HLA database (www.ebi.ac.uk/ipd/imgt/hla) (Robinson 

et al. 2013). 

A high degree of linkage disequilibrium (LD) is seen across the entire MHC 

region and HLA alleles are generally inherited in haplotype blocks. The 

frequency of HLA haplotypes are highly variable between different ethnic 

populations; and this has partly been attributed to differences in pathogen 

exposure in different geographic environments (Choo 2007). 
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1.4.3 Nomenclature 

The numerous HLA polymorphisms and resulting high number of HLA 

molecules called for a systematic nomenclature. 

Initially, HLA typing was only possible at the serological level using 

alloantibodies directed against HLA expressed on the cell surface (McCluskey et 

al. 2003). The HLA alleles defined through this process were numbered, but in a 

non-systematic way. When molecular DNA-based typing methods became 

available, the number of detectable HLA alleles grew exponentially. At the same 

time, different genotyping methods used different nomenclature systems for the 

HLA alleles detected. A standardised nomenclature was established through the 

work of the International Histocompatibility Working Group (IHW) (Gourraud 

et al. 2007), and this system is used today. The nomenclature is maintained and 

regularly updated by the WHO HLA Nomenclature Committee for Factors of the 

HLA system (Marsh et al. 2010). 

The naming of individual HLA alleles follows a general structure: the name of 

the gene locus, e.g. HLA-A, is succeeded by an asterisk, and a number identifying 

the gene variant. An example is given in Figure 1.4. 

The numbering system used to determine each HLA variant consists of up to 

four fields, and each field is separated by a colon. The first two digits identify 

the type, which in most cases corresponds to the serological phenotype. The 

next numeric field signifies the subtype representing the DNA genotype. These 

numbers are assigned in sequential order to allow newly discovered alleles to 

be integrated at any time. The third and fourth set of numbers can be included 

to describe synonymous mutations and mutations in non-coding regions 

respectively. Optional letters may be added at the end to indicate the expression 

status of the allele: 

 N =“null” allele (not expressed at the cell surface) 

 L =allele is expressed at low levels 

 S = “soluble” allele (protein is secreted) 

 C = allele is only expressed in the cytosol 

 A = “aberrant” allele (doubts to whether the allele is expressed) 
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 Q =expression of the allele is “questionable” (mutation known to affect 

expression levels) 

 

 

Figure 1.4: Nomenclature of HLA alleles. 

 

Regular meetings are held to collect information on confirmed new HLA alleles, 

and any errors or corrections needed concerning already published sequences. 

The reports are published on a monthly basis in the journals Tissue Antigens, 

Human Immunology and the International Journal of Immunogenetics. 

 

1.4.4 Structure and function 

Although HLA class I and class II alleles play a similar role in the immune 

system, their structures are quite different. 

HLA class I proteins consist of a heavy α chain encoded by the HLA class I genes 

and a non-covalently bound β2-microglobulin (β2m) chain (see Figure 1.5). 

Human β2m is encoded by a gene located on chromosome 15 and its protein 

product is invariant. The glycosylated α chain is built up of five domains: the 

peptide-binding region (α1 and α2), an immunoglobulin-like constant domain 

(α3), a transmembrane region and a cytoplasmic tail (Klein and Sato 2000). The 

α1 and α2 domains create a distinct structure forming the peptide-binding 

groove. It comprises a platform of eight antiparallel β strands and two walls of 

antiparallel α-helices. The two α-helices assemble closely, which allows only 
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short peptide fragments between seven to fifteen amino acids to be bound 

(Klein and Sato 2000). The α3 domain assembles with β2m to form a structure 

resembling the constant region of immunoglobulins. 

HLA class I molecules are expressed on almost all nucleated cells and antigens 

presented in the peptide-binding groove are recognised by the TCR of CD8+ T-

lymphocytes. 

 

 

Figure 1.5: Schematic structure of HLA class I and class II molecules (adapted from 

(Klein and Sato 2000)). 

 

The HLA class II genes encode the α- and β-chain of HLA class II proteins. The 

two polypeptide chains form heterodimers through non-covalent binding and 

consist of four domains each (Klein and Sato 2000). The α1 and β1 domain form 

the peptide-binding region. The α2 domain together with the β2 domain makes 

up the immunoglobulin-like region. Both chains are anchored in the cell 

membrane through a short transmembrane domain and a cytoplasmic tail. A 

schematic structure is depicted in Figure 1.5. Due to the heterodimer structure, 

the peptide-binding groove of HLA class II molecules is open, and longer 

peptides of up to twenty-five amino acid length can be presented (Rammensee, 

Hans-Georg 1995). 
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In contrast to HLA class I, HLA class II molecules are normally only expressed 

on antigen-presenting cells. However, when T-cells become activated, this can 

induce the expression of class II molecules on their cell surface. The secretion of 

IFN-γ can also lead to expression of HLA class II on other cells (Murphy et al. 

2008). Peptides presented by HLA class II molecules are usually recognised by 

the TCR of CD4+ T-cells. 

 

1.4.5 HLA associated diseases 

Due to their key function in initiating T-cell mediated immune responses, many 

HLA alleles have been linked to autoimmunity, infectious diseases and cancer 

(Trowsdale 2011). In most cases it is not yet known how the HLA protein 

contributes to the development of the disease. It is generally difficult to prove 

whether the reported genes are causal variants or merely an effect of extensive 

LD across the MHC (Trowsdale 2011). This is further complicated by the fact 

that most diseases are multifactorial, involving both environmental and genetic 

factors. A summary of diseases associated with specific HLA alleles or 

haplotypes are presented in Table 1.3. 

Furthermore, some forms of drug-induced hypersensitivity reactions have been 

linked to specific HLA class I and class II alleles. These will be discussed 

separately in sections 1.6.4 and 1.6.5 of this chapter. 
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Table 1.3: Examples of HLA-associated diseases reported in the literature. 

Disease HLA association(s) Reference 

Infectious diseases 

HIV 
B*27, B*57→ improved HIV control; 
B*35→ lack of HIV control 

(Kaslow et al. 1996); 

(Carrington et al. 
1999) 

Malaria 
B*35, DRB1*13:02-DQB1*05:01 
→ reduced malaria risk 

(Hill et al. 1991) 

Hepatitis C 
C*04→ virus persistence; 
DRB1*11:01-DQB1*03:01 
→ spontaneous virus clearance 

(Thio et al. 2002); 

(Hong et al. 2005) 

Cancer 

Cervical 
carcinoma 

DRB1*15:01-DQB1*06:02 (risk alleles 
in Hispanics); 
B*07 (risk allele in Chinese) 

(Apple et al. 1994); 

(Qiu et al. 2011) 

Hodgkin’s 
lymphoma 

HLA-DPB1*03:01 (risk allele in 
Caucasians) 

(Oza et al. 1994) 

Autoimmune diseases 

Ankylosing 
spondylitis 

B27 
(Brewerton et al. 
1973) 

Celiac disease 
DQ2 (DQA1*05-DQB1*02) and DQ8 
(DQA*03-DQB1*03:02) haplotypes 

(Megiorni and Pizzuti 
2012) 

Multiple 
sclerosis 

DRB5*01:01-DRB1*15:01-
DQA1*01:02-DQB1*06:02 haplotype 

(Fogdell et al. 1995) 

Narcolepsy 
DRB1*15:01-DQA1*01:02- DQB1*06:02 
haplotype 

(Mignot et al. 2001) 

Rheumatoid 
arthritis 

DRB1*04 and DRB1*01 subtypes 
(Wordsworth et al. 
1989) 

Systemic lupus 
erythematosus 

DRB1*15:01-DQB1*06:02 haplotype, 
DRB1*03:01-DQB1*02:01 haplotype 

(Graham et al. 2007) 

Type 1 
diabetes 

DRB1*03:01-DQA1*05:01-
DQB1*02:01 (“DR3” haplotype), 
DRB1*04-DQA1*03:01-DQB1*03:02 
(“DR4” haplotype) → strongly 
predisposing; B*3906→ risk allele, 
DRB1*15:01-DQA1*01:02-
DQB1*06:02 (“DR2” haplotype) 
→ highly protective 

(Erlich et al. 2008); 

(Noble et al. 2010) 
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1.5 T-cell Receptor 

 

The T-cell receptor (TCR) is a highly variable polypeptide on the cell surface of 

T-lymphocytes which specifically recognises antigenic peptides in complex with 

an MHC molecule. As each TCR is restricted to recognise only a few structurally 

similar antigens, a broad TCR repertoire is needed to guarantee recognition of 

any invading pathogen. After binding of the TCR to a specific peptide-MHC 

(pMHC) complex, intracellular signalling cascades are induced which lead to T-

cell proliferation and activation of their effector functions. 

 

1.5.1 Structure and function 

The TCR protein is composed of two polypeptide chains, either α and β, or γ and 

δ, which form disulphide-linked heterodimers. The vast majority of T-cells 

express α:β heterodimers, whereas only a minority are γ:δ T-cells. Only little is 

known so far about the functions and antigen-binding mode of γ:δ TCRs. It has 

been suggested that γ:δ TCRs specialise on infections caused by parasites and 

mycobacteria (Rudolph et al. 2006). They are able to especially recognise small 

non-peptide antigens that contain phosphate (Rudolph et al. 2006). Although 

structurally similar to α:β TCRs, it appears that γ:δ TCRs are not restricted by 

classical MHC class I or class II molecules. For reasons of simplification this 

chapter will focus on α:β TCRs. 

The general molecular structure of TCRs resembles the antigen-binding 

fragment of immunoglobulins and is illustrated in Figure 1.6. Each TCR chain 

consists of four domains: an N-terminal variable region, a constant region 

followed by a short cysteine-containing stalk segment which forms the 

interchain bond, a hydrophobic transmembrane region and a cytoplasmic tail 

(Rudolph et al. 2006). The variable (V) region forms three loops which are 

known as the complementarity determining regions (CDRs). The CDR regions of 

the α- and β-chain together form the TCR binding site and are responsible for 

antigen recognition. The CDR1 and CDR2 regions each contact the side chains of 

the MHC binding groove, while the CDR3 loops interact with the peptide ligand 



  Chapter 1 

22 
 

and therefore determine the TCR specificity (Garcia and Adams 2005). The 

constant (C) region associates with the CD3 co-receptors, and this complex 

transmits any signal generated at the antigen-recognition site into the cell, 

leading to the activation of downstream signalling pathways. The crystal 

structures solved to date demonstrate that the docking mode of TCRs with a 

pMHC complex is largely preserved. The TCR heterodimer binds diagonally to 

the long side of the pMHC complex (Morris and Allen 2012). The Vα domain is 

hereby located above the N-terminal peptide half and the Vβ domain comes to 

lie above the C-terminus of the peptide (Gras et al. 2008). 

 

 

Figure 1.6: Schematic structure of the T-cell receptor (adapted from Janeway’s 

Immunobiology (Murphy et al. 2008)). 

 

1.5.2 Generation of the TCR repertoire 

The variety of antigens that can be recognised by the TCR repertoire is 

determined by the V region, especially the CDR3 loops. As it would not be 

possible to encode all receptor chains present in an individual at full length in 

the genome, a complex genetic mechanism for generating the TCR repertoire 

evolved. This mechanism is termed gene rearrangement. 
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The TCR genes are divided into a multitude of interchangeable gene segments 

and spread over a large DNA section. The human TCR α genes are located on 

chromosome 14 and comprise 43 variable (Vα), 58 junctional (Jα) gene 

segments and a single Cα gene. The human TCR β genes are located on 

chromosome 7 and consist of 42 variable (Vβ), 2 diversity (Dβ) and 12 

junctional (Jβ) gene segments, as well as two Cβ genes (Gras et al. 2008). The V, 

D and J gene segments are randomly rearranged by events of somatic 

recombination to form a complete TCR-V region. The TCR-V region is then 

spliced together with a particular C region and together they shape a TCR α- or 

β-chain (Murphy et al. 2008). The two chains are then paired to form an α:β 

heterodimer expressed on the cell surface. The genetic processes involved in 

the formation of T-cell receptors are illustrated in Figure 1.7. 

The CDR3 loops, as the site of antigen recognition, are shaped by the D and J 

segments of the α- and β-chains. The variation in the CDR3 region is formed 

through juxtaposition of the different V, D and J segments after somatic 

recombination (Turner et al. 2006). And the TCR repertoire is further 

diversified through the addition of non-template encoded nucleotides at the 

junctions of V, D and J segments. 

The range of TCRs generated through the above described mechanism 

represents the TCR repertoire of immature T-cells. Selection processes in the 

thymus guarantee that only T-cells expressing TCRs which are able to interact 

with self-MHC molecules but are not autoreactive undergo maturation (Delves 

and Roitt 2000). During positive selection, early T-lymphocytes, expressing 

both co-receptors CD4 and CD8, get to screen self-peptides presented on self-

MHC molecules. Those T-cells able to engage a self-pMHC complex are rescued 

from programmed cell death and mature into single-positive CD4+ or CD8+ T-

cells. To avoid autoimmune reactions, T-cells interacting too strongly with self-

peptides get deleted through induction of apoptosis. This process is known as 

negative selection. Through this process the TCR repertoire is shaped to 

encompass receptors that recognise foreign antigens in a self-MHC restricted 

manner. At the same time, T-cells that could induce autoimmune reactions are 

removed (Turner et al. 2006). 



 

 
 

2
4

 

 

Figure 1.7: Gene rearrangement and assembly of T-cell receptors (taken from Janeway’s Immunobiology (Murphy et al. 2008)). 
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1.5.3 T-cell receptor signalling 

T-cell receptors do not have the ability to activate intrinsic signalling cascades 

on their own. In order to gain full functionality, the TCR associates with CD3 

receptors to what is known as the TCR complex. CD3 proteins consist of γ, δ and 

ε chains forming heterodimers or ζ:ζ homodimers. In the TCR complex, the TCR 

α-chain associates with a CD3ζ homodimer and a CD3δ:CD3ε heterodimer, 

whereas the TCR β-chain is thought to interact with a CD3γ:CD3ε heterodimer 

(Murphy et al. 2008). The complex is maintained through hydrophobic 

interactions between the receptor chains. In addition to enabling intracellular 

signalling, the CD3 proteins assist in transporting the TCR to the cell membrane 

and stabilise the TCR at the cell surface. The CD3 receptors have an 

immunoglobulin-like extracellular domain, with the exception of the CD3ζ 

homodimer, and a cytosolic domain containing immunoreceptor tyrosine-based 

activation motifs (ITAMs). ITAMs are the elements responsible for transforming 

extracellular signals received from the TCR into intracellular signalling events. 

Signalling cascades within T-cells are activated by phosphorylation of the 

ITAMs following TCR engagement. The pathways involved in TCR signalling are 

summarised in Figure 1.8. 

Phosphorylated ITAMs at the CD3ζ chain recruit ZAP-70 (Zeta-chain-associated 

protein kinase 70), which in turn gets phosphorylated by Lck (lymphocyte-

specific protein tyrosine kinase). Phosphorylated ZAP-70 can then activate 

adaptor proteins, such as the linker for the activation of T-cells (LAT) (Gorentla 

and Zhong 2012). Phosphorylated LAT leads to the recruitment of 

phospholipase C-γ (PLC-γ). Activation of PLC-γ enables hydrolysis of PIP2 

(phosphatidylinositol-4,5-bisphospahte) into two second messenger molecules, 

diacylglycerol (DAG) and inositol triphosphate (IP3). 

IP3 triggers an increase in intracellular Ca2+ levels, and this leads to the 

activation of the transcription factor NFAT (nuclear factor of activated T-cells). 

NFAT translocates to the nucleus and induces gene transcription leading to cell 

proliferation and differentiation. 
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DAG can activate the transcription factor NFϰB (nuclear factor kappa-light-

chain-enhancer of activated B cells), and at the same time induce the Ras-MAP 

kinase pathway, both causing transcription of target genes related to T-cell 

proliferation and effector function. 

 

 

Figure 1.8: Summary of the intracellular TCR signalling pathways (adapted from 

(Morris and Allen 2012)). 

Recognition of an antigen by the TCR leads to phosphorylation of the TCR complex and 

activation of downstream signalling cascades. These involve Ca2+ influx, activation of Ras-MAP 

kinase pathway and recruitment of transcription factors like NFϰB. The activated transcription 

factors induce T-cell development and effector functions. 

(Lck= Lymphocyte-specific protein tyrosine kinase; ZAP-70= Zeta-chain-associated protein 

kinase 70; LAT= Linker for the activation of T-cells; PLC= Phospholipase C; PIP2= 

Phosphatidylinositol-4,5-bisphospahte; IP3= Inositol triphosphate; DAG= Diacylglycerol; NFAT= 

Nuclear factor of activated T-cells; NFϰB= Nuclear factor kappa-light-chain-enhancer of 

activated B cells; MAP kinase= mitogen-activated protein kinase)   
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1.6 Drug Hypersensitivity Reactions 

 

Hypersensitivity reactions (HSRs) to drugs are a form of idiosyncratic adverse 

drug reaction (iADR) that involves one or more immunological mechanisms 

(Pichler 2003). In most cases, however, the exact process through which a drug 

causes an immune response is not known. These reactions are also commonly 

referred to as drug allergy. 

Drug-induced HSRs are thought to make up about one third of all ADRs (Gomes 

and Demoly 2005). But the exact percentage is hard to determine as there are 

currently no epidemiological studies focusing on HSRs. Also, definitions of 

iADRs and HSRs are not clear cut and are often used interchangeably (Uetrecht 

2007). 

Hypersensitivity reactions can manifest themselves in a diverse range of 

diseases, affecting almost any organ of the human body. The most commonly 

affected organ is the skin, followed by the liver and haematological system 

(Uetrecht and Naisbitt 2013). Some HSRs are limited to one organ, but often 

drug allergies show multi-organ involvement. Antibiotics and anticonvulsants 

are drugs known to cause hypersensitivity reactions most frequently. 

Clinical characteristics of most HSRs include a delayed onset of disease 

symptoms, ranging from days to several weeks or even months after the start of 

drug therapy (Uetrecht 2007). Upon rechallenge symptoms usually appear 

more quickly. Both factors strengthen the assumption of an underlying 

immune-mediated mechanism. Also, the risk of developing drug-induced HSRs 

does not seem to be correlated with the therapeutic dose of the drug received, 

but in general are rarely seen at doses below 10mg per day (Uetrecht 2007). 

 

1.6.1 Classification 

HSRs are generally classified into four subtypes following the system described 

by Gell and Coombs. This classification system has proven useful in clinical 

practice to relate the clinical symptoms to the fundamental immune response 



  Chapter 1 

28 
 

(Pichler 2003). However, many drugs are able to elicit several forms of 

hypersensitivity, suggesting different immune mechanisms can be activated by 

a single drug (Park et al. 1998). 

Type I reactions, also known as immediate-type hypersensitivity, are caused by 

the formation of immunoglobulin (Ig) E against drug hapten complexes leading 

to mast cell activation. Type-I reactions depend on covalent binding of a drug 

hapten to an endogenous protein and recognition of the antigenic structure by 

the humoral immune system. A typical example is anaphylaxis as a form of 

penicillin hypersensitivity. 

Type II hypersensitivity is a result of a drug binding to the surface of mainly 

blood cells (e.g. erythrocytes or platelets), and subsequent generation of anti-

drug IgG antibodies which cause cellular lysis. Haemolytic anaemia caused by 

cephalosporins falls into this subgroup. 

Type III reactions are mediated though excess formation of immune complexes 

of soluble drug antigen and IgG antibodies. Serum sickness is a classic example 

of this type of reaction. 

Type IV hypersensitivity reactions are also referred to as delayed-type 

hypersensitivity and are mediated by antigen-specific T-cells. Effector T-cells 

involved in delayed-type HSRs have been shown to be rather heterogeneous. 

Type IV reactions have therefore been divided further into Type IVa- IVd 

reactions (Posadas and Pichler 2007). Table 1.4 summarizes the different 

effector T-cells of Type IV reactions and their functions. Most delayed-type 

hypersensitivity reactions show an overlap in effector T-cells and the resulting 

inflammatory response.  

Delayed-type hypersensitivity reactions will be the focus of the following 

chapters and this thesis. 
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Table 1.4: Characteristics of Type IV hypersensitivity reactions (adapted from 

(Posadas and Pichler 2007)). 

 Type IV a Type IV b Type IV c Type IV d 

T-cell type 
Th1-type 
reaction 

Th2-type 
reaction 

Cytotoxic T-
cells 

T-cells 

Secreted 
cytokines 

IFN-γ, 
TNF-α 

IL-4, IL-13, 
IL-5 

Perforin, 
granzyme B, 

FasL 
IL-8 

Effector 
mechanism 

Macrophage 
activation; 

Stimulation of 
proinflammatory 

responses 

B-cell 
production; 
macrophage 
deactivation; 
eosinophilic 

inflammation 

Killing of 
tissue cells 

(keratinocytes, 
hepatocytes) 

Neutrophilic 
inflammation 

Clinical 
phenotype 

Eczema 
Maculopapular 

exanthema 
(MPE) 

Bullous 
exanthema 
(SJS, TEN), 

MPE 

Pustular 
exanthema 
(e.g. AGEP) 

 

 

1.6.2 Clinical phenotypes 

The most frequent delayed-type HSRs are cutaneous manifestations, some of 

which include systemic organ involvement. The different syndromes each bear 

distinct clinical and histopathological characteristics (Hausmann et al. 2010). 

 

Maculopapular rash 

Maculopapular exanthema (MPE) is the most common form of delayed HSRs, 

making up over 90% of all drug-induced skin rashes. Among the drugs most 

commonly causing MPE are β-lactam antibiotics, sulfamethoxazole, quinolones, 

antiepileptic drugs and diuretics (Hausmann et al. 2010). Symptoms typically 

arise one to two weeks after start of drug treatment and often resolve 

spontaneously despite continuation of drug therapy (Uetrecht and Naisbitt 

2013). 

CD4+ cytotoxic T-cells have been found to be the dominant cell type in these 

reactions, present in both the dermis and blood of patients. The CD4+ T-cells can 
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kill activated keratinocytes through the release of perforin and granzyme B 

(Pichler 2003). Apoptosis of keratinocytes might be less severe due to the 

limited expression of HLA class II on normal skin cells. Cytokines released by 

the drug-specific CD4+ T-cells include type 1 as well as type 2 cytokines 

(Hausmann et al. 2010). 

 

Hypersensitivity syndrome 

Hypersensitivity syndrome (HSS) was initially associated with aromatic 

anticonvulsants, but it is also with other drugs, such as allopurinol, 

sulfonamides, and anti-retrovirals, including nevirapine and abacavir (Uetrecht 

and Naisbitt 2013). Other terms used to describe this phenotype are drug-

induced hypersensitivity syndrome (DIHS) or drug reaction with eosinophilia 

and systemic symptoms (DRESS) (Pirmohamed et al. 2011). Clinical symptoms 

usually occur two to six weeks after commencement of drug therapy and 

comprise rash, fever and internal organ involvement, such as hepatitis, 

nephritis, carditis, pneumonitis and lymphadenopathy (Uetrecht and Naisbitt 

2013). Hematologic abnormalities are common, with eosinophilia seen most 

frequently. It should be noted that the symptoms can persist for several weeks 

or even reoccur despite drug withdrawal (Hausmann et al. 2010). Mortality has 

been estimated to be around 10% and is most often due to liver failure. 

In patients with HSS, a high number of activated T-cells, secreting large 

amounts of IFN-γ and IL-5, can be detected in the circulation (Hausmann et al. 

2010). It has also been shown that many patients experience a reactivation of 

herpes viruses during HSS, but the implication of this association has not yet 

been clarified (Descamps et al. 2001; Picard et al. 2010). 

 

Acute Generalized Exanthematous Pustulosis 

Acute generalized exanthematous pustulosis (AGEP) is a rare disease estimated 

to occur in approximately 1: 100,000 patients with a mortality rate of 2-4% 

(Hausmann et al. 2010). The typical symptoms include a non-infectious pustular 

skin rash, fever and leucocytosis (Pichler 2003). The time to onset is a relatively 
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short period of three to five days after treatment (Hausmann et al. 2010). The 

pustules are infiltrated by neutrophilic granulocytes and activated CD4+ and 

CD8+ T-cells (Pichler 2003). Antibiotics are the causative drugs in most cases of 

AGEP (Uetrecht and Naisbitt 2013). 

 

Stevens-Johnson syndrome and Toxic Epidermal Necrolysis 

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are the 

most severe types of delayed-type HSRs with an estimated incidence of 1: 

100,000 and 1:1,000,000 patients, respectively (Hausmann et al. 2010). The 

syndromes are considered to be variants of the same disease and are classified 

by the extent of skin detachment. SJS involves less than 10%, TEN more than 

30%, and SJS/TEN overlap 10- 30% of skin detachment. Both conditions are 

associated with high mortality rates of about 10% and 30%, respectively 

(Hausmann et al. 2010). The reactions usually occur after two weeks of 

treatment with the first signs being a sudden onset of fever and malaise. This is 

followed by a quickly spreading, painful rash and the development of blisters 

(Uetrecht and Naisbitt 2013). Mucous membranes of the mouth, eyes, genitals 

and intestine can also be affected. 

Immunohistology shows widespread apoptosis of keratinocytes which is 

mediated by CD8+ T-cells secreting cytolytic molecules, such as Fas Ligand 

(FasL) and granulysin (Nassif et al. 2004; Chung and Hung 2010). 

 

Drug-induced liver injury 

The liver is the most frequently involved extra-cutaneous organ in drug-

induced HSRs, either in combination with other organs or as an isolated 

syndrome in form of drug-induced liver injury (DILI) (Zhang, X. et al. 2011a). 

Most drugs that cause DILI can be metabolised in the liver to reactive 

metabolites, which are thought to induce liver injury. The mechanisms through 

which DILI is caused are largely unknown, but for many drugs there is evidence 

that the immune system is involved (Zhang, X. et al. 2011a). In general, 
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symptoms occur with a delay of one to three months after the start of 

treatment. Anti-drug antibodies or autoantibodies have been detected in 

several cases of DILI, but their function in the pathogenesis of liver injury has 

not yet been elucidated. Liver histology frequently shows infiltration of 

lymphocytes and eosinophils, similar to viral hepatitis. Recently, strong HLA 

associations have been found with several drugs causing DILI, the prime 

example being flucloxacillin-induced liver injury and HLA-B*57:01 (Daly et al. 

2009). 

 

1.6.3 Mechanistic hypotheses 

The involvement of T-cells in delayed-type HSRs was clearly demonstrated by 

the successful isolation of drug-specific T-cells from blood and tissue cells of 

patients suffering from a diverse range of drug-induced HSRs (Mauri-Hellweg et 

al. 1995; Hashizume et al. 2002; Naisbitt et al. 2003b). This strengthened the 

presumption of an underlying T-cell mediated pathomechanism. Due to the 

heterogeneity of the clinical syndromes of HSRs and the lack of adequate animal 

models, studies trying to unravel the mechanisms behind drug-induced T-cell 

activation focused on in vitro analysis of drug-specific T-cells isolated from 

hypersensitive patients. Several hypotheses have been put forward to explain 

how drugs might stimulate an immune response. 

 

Hapten hypothesis 

Initial models were built on the hapten hypothesis, first introduced by 

Landsteiner and Jacobs in 1935. It is based on the fact that drugs of low 

molecular weight as such are not immunogenic, but have to covalently bind to 

endogenous proteins in order to elicit an immune response (Landsteiner and 

Jacobs 1935). Such chemically reactive molecules are referred to as haptens. 

Haptenization of different proteins can lead to the formation of diverse 

immunogenic structures resulting in a broad range of immune responses (Adam 

et al. 2011). Modification of soluble or cell-bound proteins can lead to the 

formation of anti-drug antibodies. On the other hand, haptenized proteins can 
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be taken up by antigen-presenting cells (APCs), processed into drug-modified 

peptides and presented on HLA molecules to naïve T-cells (Adam et al. 2011). A 

classic example are penicillins, which are known to irreversibly bind to lysine 

residues on serum albumin (Uetrecht and Naisbitt 2013), and both anti-

penicillin antibodies and T-cells specific to penicillin-conjugates can be detected 

in hypersensitive patients. The hapten hypothesis is illustrated in Figure 1.9. 

 

 

Figure 1.9: Hapten hypothesis (adapted from (Uetrecht 2007)). 

The drug or its reactive metabolite binds to an endogenous protein. APCs take up the modified 

protein, process it and display drug-modified peptides in complex with HLA to T-cells. 
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Drugs that are chemically inert may become reactive through metabolism, and 

lead to metabolites acting as haptens. In this case the parent drug is referred to 

as a pro-hapten. Bioactivation predominantly takes place in the liver through 

cytochrome P450 (CYP) enzymes, but it can also occur in the skin, albeit at a 

lower rate (Posadas and Pichler 2007). If not eliminated from the body, reactive 

metabolites can cause direct cellular damage, activating the innate immune 

system, and at the same time form protein adducts that are able to elicit an 

adaptive immune response (Uetrecht and Naisbitt 2013). Sulfamethoxazole 

(SMX) is a typical example of a pro-hapten. SMX is metabolised to a 

hydroxylamine intermediate which can be spontaneously oxidized to nitroso-

SMX. The nitroso metabolite is highly reactive and able to modify cysteine 

residues of various proteins (Uetrecht and Naisbitt 2013). 

 

Danger hypothesis 

The danger hypothesis takes into account that activation of T-cells only occurs if 

at least two signals are present. Signal one represents the interaction between 

TCR and peptide-HLA complex. Signal two refers to the expression of 

costimulatory molecules on APCs interacting with CD28 receptors on T-cells 

(see Figure 1.2). Polly Matzinger proposed that T-cell mediated immune 

responses are initiated by so called danger signals rather than recognition of 

non-self epitopes (Matzinger 1994). These “danger signals” are released upon 

cellular damage leading to the activation of APCs and upregulation of 

costimulatory molecules on the cell surface. In case of HSRs, reactive drugs or 

metabolites could induce cellular stress causing the release of danger signals, 

and at the same time function as antigenic stimuli (Pirmohamed et al. 2002). 

Depending on the affected tissue, this could determine the localisation and 

nature of the hypersensitivity reaction seen in vivo (Uetrecht 2007). Figure 1.10 

represents a schematic model of the danger hypothesis. 
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Figure 1.10: Danger hypothesis (adapted from (Uetrecht 2007)). 

Danger signals are produced by stressed cells, which activate APCs and lead to the up-

regulation of costimulatory molecules. This signal, in addition to the interaction between HLA 

and TCR, is required for the initiation of a T-cell response. The absence of this signal results in 

tolerance. 

 

The danger hypothesis may explain why some chemically reactive drugs or 

metabolites do not cause hypersensitivity, as these might not cause cellular 

damage (Uetrecht 2007). Other factors such as viral infections could also trigger 

the release of danger signals and thereby increase the risk of HSRs, as seen for 

some drugs. On the other hand, not every drug known to cause cell damage is 

associated with hypersensitivity (Pirmohamed et al. 2002). 
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Pharmacological interaction of drugs with immune receptors (p-i concept) 

Based on the observation that T-cell clones generated from SMX hypersensitive 

patients could be stimulated by SMX in the absence of metabolism, Pichler 

developed the so called p-i concept (Pichler 2002). According to this hypothesis, 

drugs that are chemically inert can activate T-cells through direct interaction 

with either the TCR or HLA molecule given that a sufficient binding affinity is 

generated (Adam et al. 2011). The interaction is reversible and seems to be 

independent of a specific peptide ligand present in the HLA binding groove. This 

resembles the binding of superantigens to HLA-TCR complexes (Uetrecht 2007). 

T-cells stimulated by drugs through the p-i mechanism are thought to derive 

from previously primed effector cells and memory T-cells (Adam et al. 2011). In 

comparison to naïve T-cells, these cells have a lower activation threshold and 

therefore may not require co-stimulatory signals from APCs (Adam et al. 2011). 

Drugs reported to stimulate T-cell clones in vitro via a p-i mechanism include 

lamotrigine, lidocaine and carbamazepine (Zanni et al. 1999; Naisbitt et al. 

2003b; Wu et al. 2007). The p-i concept is illustrated in Figure 1.11 A. 

 

Altered peptide hypothesis 

A novel mechanism of drug-induced T-cell activation has been proposed 

recently for HSRs displaying strong associations with specific HLA alleles. 

Several independent research groups were able to show that abacavir can bind 

non-covalently to specific residues within the HLA binding groove of HLA-

B*57:01 which leads to changes in the peptide repertoire presented by the HLA 

allele. The novel self-peptides displayed by HLA-B*57:01 could subsequently 

trigger T-cell activation (Illing et al. 2012; Norcross et al. 2012; Ostrov et al. 

2012). This new concept became known as the altered peptide repertoire 

model and is depicted in Figure 1.11 B. 

 



  Chapter 1 

37 
 

 

 

Figure 1.11: Schematic representation of the p-i concept (A) and altered peptide 

model (B) (adapted from (Bharadwaj et al. 2012)) 

The p-i concept states that a drug (in green) can bind directly to either HLA or TCR molecule 

and is not dependent on the presence of a specific peptide (in purple) in the HLA binding-

groove. In the altered peptide model, a drug (green shape) binds to the empty HLA molecule 

changing its physicochemical properties and allowing novel self-peptides (purple shape) to be 

presented to T-cells. 

 

1.6.4 Risk factors 

Hypersensitivity reactions are known to be multi-factorial diseases, involving 

both environmental and genetic risk factors. 

Genetic factors have been hypothesised to play a role in predisposing 

individuals to HSRs for a long time. Family case studies describing similar 

reactions to a drug given to members of the same family have provided some 

early evidence (Pirmohamed 2006). In the past, most genetic studies focused on 

two main aspects, genes involved in drug metabolism and immune-related 

genes, especially the MHC region due to its essential functions in the immune 

system. 

To date, genetic polymorphisms in drug metabolising enzymes were found to 

contribute only a minor relative risk to HSRs and most studies proved negative 

(Uetrecht 2007). One example is hydralazine-induced systemic lupus 

erythematosus which occurs more frequently in patients who are slow 
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acetylators due to a deficiency in the N-acetyl-transferase 2 enzyme (Naisbitt et 

al. 2003c). 

Early studies looking into polymorphisms of MHC genes turned out negative, 

and this was mainly a result of small sample sizes, ill-defined clinical 

phenotypes and insensitive serotyping methods (Pirmohamed 2006). This 

changed when high-resolution HLA genotyping became available, and several 

strong associations between specific HLA alleles and certain drug 

hypersensitivity phenotypes have already been identified. Recent genome-wide 

association studies (GWAS) have added further evidence for the involvement of 

HLA alleles in drug hypersensitivity. An overview of drug-induced HSRs known 

to be associated with specific HLA alleles is presented in Table 1.5. Three 

examples of HLA-associated HSRs are described in more detail below. 

Environmental factors predisposing individuals to HSRs include viral infections. 

For example patients suffering from Epstein-Barr virus-induced infectious 

mononucleosis and treated with amoxicillin have a strongly increased risk of 

developing skin rash (Pirmohamed 2006). Another example is the increased 

frequency of hypersensitivity to SMX among HIV patients, which increases from 

3% in HIV-negative to 30% in HIV-positive patients (Pirmohamed 2006). 

Other risk factors predisposing individuals are related to the treatment 

regimen. For instance intermittent or repeated drug administration has been 

shown to increase the frequency of HSRs (Gomes and Demoly 2005). Also, 

parenteral administration of a drug appears to be more immunogenic than oral 

administration of the same drug (Gomes and Demoly 2005). Host-related 

factors, such as age, sex and weight, have been found to be risk factors in a few 

forms of HSRs. Women for instance have an increased risk of developing 

halothane-induced hepatitis or clozapine-induced agranulocytosis compared to 

men (Uetrecht 2007). 
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Table 1.5: Summary of well-characterised HLA-associated drug hypersensitivity reactions. 

Drug  
(Indication) 

HLA allele Syndrome Odds ratio Reference 

Abacavir 
(Antiretroviral) 

B*57:01 HSS 23.4; 117 (Hetherington et al. 2002; 
Mallal et al. 2002) 

Allopurinol 
(Gout) 

B*58:01 SJS/TEN, HSS 580.3; 96.6 (Hung et al. 2005b; Somkrua 
et al. 2011) 

Carbamazepine 
(Antiepileptic) 

B*15:02 (Han Chinese) 
 
A*31:01 (Caucasian, Japanese) 

SJS/TEN 
 
MPE, HSS, SJS/TEN 

2504 
 
12.1; 9.5 

(Chung et al. 2004) 
 
(McCormack et al. 2011; Ozeki 
et al. 2011) 

Co-amoxiclav 
(Antibiotic) 

A*02:01-B*07:02- 
DRB1*15:01-DQB1*06:02, 
A*02:01-B*18:01 (Spanish) 

DILI 13.0 
 
6.4 

(Lucena et al. 2011) 

Dapsone 
(Antibiotic) 

B*13:01 HSS 20.5 (Zhang, F. R. et al. 2013) 

Efavirenz 
(Antiretroviral) 

DRB1*01 (French) Skin rash (p= 0.004) (Vitezica et al. 2008) 

Flucloxacillin 
(Antibiotic) 

B*57:01 DILI 80.6 (Daly et al. 2009) 

Lamotrigine 
(Antiepileptic) 

B*15:02 (Han Chinese) 
 
A*30:01, B*13:02 (Han Chinese) 
 

SJS/TEN 
 
MPE 

5.1 
 
(p= 0.013) 

(Hung et al. 2010) 
 
(Li, Li-Juan et al. 2013) 

DILI= Drug-induced liver injury; HSS= Hypersensitivity syndrome; MPE= Maculopapular exanthema; NSAID= Non-steroidal anti-inflammatory drug; SJS= Stevens-

Johnson syndrome; TEN= Toxic epidermal necrolysis 
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Table 1.5 (continued): Summary of well-characterised HLA-associated drug hypersensitivity reactions. 

Drug 
(Indication) 

HLA allele Syndrome Odds ratio Reference 

Lapatinib 
(Breast cancer) 

DRB1*07:01-DQA1*02:01-DQB1*02:02 DILI 2.2 (Spraggs et al. 2011) 

Lumiracoxib 
(NSAID) 

DRB1*15:01-DQB1*06:02-
DRB5*01:01-DQA1*0102 

DILI 5.0 (Singer et al. 2010) 

Methazolamide 
(Glaucoma) 

B*59:01, C*02:01 (Korean) SJS/TEN 249.8 and 
22.1 

(Kim et al. 2010) 

Nevirapine 
(Antiretroviral) 

DRB1*01:01 
 
B*58:01, DRB1*01:02 (South Africans) 
 
C*04:01 (Malawian) 
 
C*8-B*14 (Sardinians) 
C*8 (Japanese) 
DRB1*01 (French) 
C*4-B*35:05 (Thai) 
C*4-DRB1*15 (Han Chinese) 

Hepatitis with rash 
 
Hepatotoxicity 
 
SJS/TEN 
 
Cutaneous reactions 
 

4.8 
 
(p= 0.03) 
 
17.5 
 
(p= 0.004) 
(p= 0.03) 
(p= 0.004) 
18.9 
3.6 

(Martin et al. 2005) 
 
(Phillips, E. et al. 2013) 
 
(Carr et al. 2013) 
 
(Littera et al. 2006; Gatanaga et 
al. 2007; Vitezica et al. 2008; 
Chantarangsu et al. 2009; Gao et 
al. 2012) 

Phenytoin 
(Antiepileptic) 

B*15:02 (Thai and Han Chinese) SJS/TEN (p= 0.005); 
5.1 

(Locharernkul et al. 2008; Hung 
et al. 2010) 

Ticlopidine 
(Antiplatelet) 

A*33:03 (Japanese) DILI 13.0 (Hirata et al. 2008) 

Ximelagatran 
(Anticoagulant) 

DRB1*07-DQA1*02 DILI 4.4 (Kindmark et al. 2008) 

DILI= Drug-induced liver injury; SJS= Stevens-Johnson syndrome; TEN= Toxic epidermal necrolysis 
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1.6.5 HLA associated drug hypersensitivity reactions 

The growing number of HLA associations with various drug hypersensitivity 

reactions implies that a causal relationship between the HLA molecules and 

hypersensitivity might exist (Wei, C. Y. et al. 2012b). However, the underlying 

mechanism for most HLA-associated reactions has not been resolved yet. This is 

further complicated by the fact that the majority of HLA associations are 

phenotype specific and the association can vary between populations of 

different ethnicity (Wei, C. Y. et al. 2012b). 

Three examples of HLA-associated hypersensitivity reactions will be discussed 

here in more detail: abacavir hypersensitivity and HLA-B*57:01, flucloxacillin-

induced liver injury and HLA-B*57:01, and allopurinol and HLA-B*58:01. 

 

Abacavir and HLA-B*57:01 

Abacavir (ABC) is an antiretroviral drug used to treat human immunodeficiency 

virus (HIV) infections. ABC can cause hypersensitivity syndrome in 5-8% of 

patients, with symptoms of fever, gastrointestinal manifestations and internal 

organ involvement (Pavlos et al. 2012). In up to 70% of hypersensitive patients 

a mild to moderate skin rash can develop. In 2002, two independent research 

groups reported a strong association between HLA-B*57:01 and ABC 

hypersensitivity (Hetherington et al. 2002; Mallal et al. 2002). Subsequent 

clinical trials showed that 100% of patch-test positive patients carried HLA-

B*57:01 and demonstrated a 100% negative-predictive value of HLA-B*57:01 

for ABC hypersensitivity (Pavlos et al. 2012). CD8+ T-cells have been found in 

the skin of ABC hypersensitive patients (Phillips, E. J. et al. 2002) and drug-

specific T-cell responses could be induced in patients as well as ABC-naïve, 

HLA-B*57:01+ healthy donors (Chessman et al. 2008). T-cell responses were 

restricted by HLA-B*57:01 and closely related HLA allotypes were unable to 

elicit a response (Chessman et al. 2008). Most recently, three individual studies 

showed that ABC can bind non-covalently within the F-pocket of HLA-B*57:01 

and thereby change the properties of the peptide-binding cleft, allowing an 
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altered set of self-peptides to be presented by HLA-B*57:01 (Illing et al. 2012; 

Norcross et al. 2012; Ostrov et al. 2012). 

It is important to note that 45% of HLA-B*57:01 positive patients are able to 

tolerate ABC, indicating additional factors are required for the development of a 

reaction (Pavlos et al. 2012). However, screening for HLA-B*57:01 prior to ABC 

therapy has been recommended by both the US Food and Drug Administration 

(FDA) and European Medicines Agency (EMA). Pharmacogenetic testing has 

strongly reduced the incidence of ABC hypersensitivity and has proven to be 

cost effective (Phillips, E. and Mallal 2009). 

 

Flucloxacillin and HLA-B*57:01 

Flucloxacillin is a β-lactam antibiotic used in the treatment of staphylococcal 

infections. The drug is associated with a risk of cholestatic hepatitis occurring in 

about 8 out of 100,000 patients (Russmann et al. 2005). A GWAS has recently 

identified HLA-B*57:01 as a risk factor for flucloxacillin-induced liver injury 

(Daly et al. 2009). The HLA allele was present in 85% of patients compared to 

5% of the general population. The detection of drug-specific T-cells in patients 

together with the HLA association suggests an underlying immune-mediated 

mechanism. Recently, two separate groups of researchers were able to generate 

drug-specific T-cells from HLA-B*57:01 positive patients and healthy 

volunteers. In the study by Monshi et al., drug-responsive CD8+ T-cell clones 

were shown to secrete cytolytic molecules upon flucloxacillin stimulation. The 

clones were shown to express chemokine receptors linked to the migration of 

immune cells to the liver (Monshi et al. 2013). T-cell activation was observed in 

the presence of APCs expressing HLA-B*57:01 or the closely related HLA-

B*58:01 allele (Monshi et al. 2013). Wuillemin et al. reported that HLA-

B*57:01+ T-cells were able to recognise flucloxacillin as a hapten complex, but 

the majority of T-cells were stimulated via a direct interaction as explained by 

the p-i concept (Wuillemin et al. 2013). In contrast to abacavir, no changes in 

the peptide repertoire of a HLA-B*57:01 expressing cell lines were seen 

following flucloxacillin treatment (Norcross et al. 2012). 
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It remains unclear why HLA-B*57:01 is only associated with flucloxacillin-

induced liver injury. The molecular pathomechanism through which 

flucloxacillin is able to specifically kill liver cells has yet to be resolved. 

 

Allopurinol and HLA-B*58:01 

Allopurinol is used for the prevention of gout and hyperuricemia, and is 

associated with the occurrence of HSS and SJS/TEN syndromes. The first study 

linking HLA-B*58:01 with allopurinol-induced serious cutaneous reactions was 

conducted in Han Chinese patients, showing that HLA-B*58:01 was present in 

100% of patients and only 15% of tolerant controls (Hung et al. 2005b). This 

has meanwhile been replicated in several Asian populations, including 

Japanese, Thai and Koreans (Pavlos et al. 2012). In Caucasians the association 

between HLA-B*58:01 and allopurinol hypersensitivity was found to be lower 

but still present with about 50% of patients carrying the risk allele (Lonjou et al. 

2008). This might be due to the lower allele frequency of HLA-B*58:01 in 

Caucasians compared to Asians (Pavlos et al. 2012). The mechanism through 

which this HLA allele might contribute to the development of allopurinol HSRs 

remains to be elucidated. Additional risk factors have been found to influence 

the occurrence of allopurinol hypersensitivity, namely renal failure and 

administered daily dose (Yun et al. 2012). Yun et al. hypothesized that both 

factors could lead to the accumulation of allopurinol, or its metabolite 

oxypurinol, which may be presented by HLA-B*58:01 to drug-specific T-cells; 

and if the TCR avidity is high enough this might result in T-cell activation (Yun 

et al. 2012). 
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1.7 Carbamazepine 

 

1.7.1 Indication 

Carbamazepine (CBZ) is an anticonvulsant which is primarily used in the 

treatment of epilepsy for the prevention of partial and secondarily generalized 

tonic-clonic seizures (Engel and Pedley 2008). It was first introduced to the 

market in the 1960s, and has since then become one of the most often 

prescribed drugs in neurologic disorders due to its proven clinical efficacy, 

inexpensiveness and wide availability (Engel and Pedley 2008). CBZ is also 

effectively used in the treatment of neuropathic pain syndromes, such as 

trigeminal neuralgia and diabetic neuropathy (Spina and Perugi 2004). In 2004, 

CBZ was approved as mood stabilizer for the treatment of manic and mixed 

episodes of bipolar disorders (Ettinger and Argoff 2007). Its efficacy is 

comparable to lithium and many patients intolerant to lithium can be 

successfully treated with CBZ (Grunze 2010). 

 

1.7.2 Mechanism of action 

The mechanism of action is still not completely understood. CBZ is known to 

block voltage-dependent sodium channels in the neuronal membrane 

promoting their inactivation; and this leads to reduced firing of high-frequency 

action potentials and stabilisation of hyperexcited neurones (Rogawski and 

Loscher 2004). The inhibitory effect is voltage- and use-dependent, so that only 

hyperreactive nerves are affected. The reduced firing of action potentials is 

followed by a reduced amount of neurotransmitters being released into the 

synaptic cleft (Rogawski and Loscher 2004). 

 

1.7.3 Pharmacokinetics and Metabolism 

Carbamazepine is slowly absorbed from the gastrointestinal tract and has a 

bioavailability of about 80 to 90%. The drug is quickly distributed to various 

organs and readily transported across the blood-brain barrier (Wyllie et al. 
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2006). CBZ is metabolized extensively and almost entirely in the human liver, 

involving steps of oxidation, hydroxylation and conjugation. Only about 5% of 

the parent drug is excreted unchanged in the urine (Thorn et al. 2011), 

alongside more than 30 different metabolites (Lertratanangkoon and Horning 

1982). The main metabolic pathways are shown in Figure 1.12. 

CBZ is oxidized by cytochrome P-450 (CYP) enzymes, mainly CYP3A4 and to 

some extent CYP2C8 and CYP3A5, to CBZ-10,11-epoxide (Thorn et al. 2011). 

The epoxide is further hydrolysed by microsomal epoxide hydrolase 1 (EPHX1) 

to CBZ-10,11-trans-diol, which can be excreted in the urine directly or as a 

conjugate after glucuronidation (Maggs et al. 1997). The epoxide-diol pathway 

is the major route of metabolism. Minor metabolites include hydroxylation at 

variable sides of the aromatic rings, presumably via arene oxide intermediates. 

These reactions are catalysed by various CYP enzymes, including CYP 3A4, 

CYP2B6, CYP2E1, CYP2A6 and CYP1A2 (Pearce et al. 2002). Subsequent 

metabolism leads to the formation of reactive quinone structures. These can be 

conjugated with glucuronic acid and excreted into the urine (Lu and Uetrecht 

2008). 

CBZ can enhance the transcription of several metabolising enzymes, including 

autoinduction of CYP3A4 and CYP2B6 (Thorn et al. 2011). This can cause 

various forms of drug interactions, for example decreased plasma 

concentrations of concomitantly administered anticonvulsants. This process is 

known to appear about 2 to 6 weeks after treatment initiation and requires 

dose adjustment (Wyllie et al. 2006). 
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Figure 1.12: Metabolic pathways of carbamazepine bioactivation and detoxification 

(adapted from (Pearce et al. 2002; Lu and Uetrecht 2008; Pearce et al. 2008)). 

Structures in brackets were deduced from products. 
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1.8 Carbamazepine-induced Hypersensitivity 

 

Carbamazepine is usually well tolerated but it can cause cutaneous ADRs in up 

to 10% of patients treated with the drug (Marson et al. 2007). Most commonly, 

a mild erythematous skin rash develops several days after treatment initiation, 

which can resolve spontaneously without further intervention. More severe 

reactions include hypersensitivity syndrome (HSS) which usually occurs within 

the first eight weeks of CBZ therapy and is associated with rash, fever, 

eosinophilia and internal organ involvement, mostly hepatitis (Knowles et al. 

1999). CBZ-induced HSS occurs at an estimated frequency of 4 in 10,000 

exposures (Gogtay et al. 2005). Cases of SJS and TEN have also been reported 

but are rare in Caucasians, with an estimated prevalence of 1: 5,000 patients 

(Yip, V. et al. 2013). In contrast, CBZ-induced SJS is known to occur at an 

approximately ten-fold higher frequency in Han Chinese (Hung et al. 2005a). 

 

1.8.1 Pharmacogenetics 

Predisposition to CBZ hypersensitivity has long been thought to have a genetic 

basis. This was supported by case reports of hypersensitivity reactions in 

members of the same family, as well as monozygotic twins (Edwards, S. G. et al. 

1999). Since chemically reactive metabolites of CBZ, such as arene oxides, were 

suspected to cause direct cellular toxicity and potentially stimulate the immune 

system, early investigations concentrated on genetic defects in detoxification 

mechanisms (Knowles et al. 1999). However, studies on polymorphisms in 

genes of metabolising enzymes, such as microsomal epoxide hydroxylase 

(Green et al. 1995), failed to find any significant association. Autoantibodies 

directed against CYP isoenzymes have been detected in some patients, 

suggesting CBZ or a metabolite may form adducts with CYP enzymes leading to 

the formation of neoantigens (Leeder et al. 1992). However, whether these 

antibodies are immunogenic has not yet been demonstrated. 
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A major advancement was the discovery that specific HLA alleles are strongly 

associated with defined clinical phenotypes of CBZ hypersensitivity. In 2004, 

Chung et al. reported that HLA-B*15:02 was found to be present in 100% of Han 

Chinese patients suffering from CBZ-induced SJS/TEN, compared to 3% of CBZ-

tolerant controls (Chung et al. 2004). This association has been replicated in 

several populations of Southeast Asian ancestry, including Thai, Malaysians and 

Indians (Locharernkul et al. 2008; Mehta et al. 2009; Then et al. 2011). 

However, HLA-B*15:02 is not associated with CBZ hypersensitivity in Caucasian 

populations (Alfirevic et al. 2006; Lonjou et al. 2006) or Japanese (Kaniwa et al. 

2008). This is possibly due to the low frequency of HLA-B*15:02 in Europeans 

and Japanese (both < 1%; reported on www.allelefrequencies.net) compared to 

Chinese populations (up to 35%; see www.allelefrequencies.net). Genetic 

testing for HLA-B*15:02 prior to start of CBZ therapy has therefore been 

recommended by the FDA in patients of Asian descent only (Ferrell and McLeod 

2008). 

More recently, two independent GWAS have identified an association between 

HLA-A*31:01 and all phenotypes of CBZ hypersensitivity in Japanese (Ozeki et 

al. 2011) and in Caucasians (McCormack et al. 2011), with a prevalence of 60% 

and 26% respectively. The HLA-A*31:01 allele had previously been reported in 

association with CBZ-induced MPE in Han Chinese (Hung et al. 2006). 

 

1.8.2 Functional studies 

The clinical features of CBZ hypersensitivity suggest an immune-mediated 

aetiology, and the presence of drug-specific T-cells in hypersensitive patients 

supports this assumption (Mauri-Hellweg et al. 1995; Wu et al. 2007). The 

strong associations with specific HLA alleles indicate a direct role for HLA in the 

presentation of CBZ and subsequent initiation of a T-cell mediated immune 

response. 

In vitro studies using CBZ-specific T-cell clones have shown that T-cells are 

stimulated by CBZ in the absence of drug metabolism and antigen processing 

(Wu et al. 2006; Wu et al. 2007). These observations suggest that T-cell 
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activation occurs through direct interaction between the drug, HLA and/ or 

TCR, as proposed in the p-i concept. Peptide elution studies using HLA-B*15:02-

transfected cell lines cultured in the presence of the drug were unable to 

detected any CBZ-modified peptides (Yang et al. 2007). A study by Wei et al. 

demonstrated that CBZ binds directly to the binding groove of HLA-B*15:02 and 

subsequently presented to cytotoxic T-cells (Wei, C. Y. et al. 2012a). However, 

CBZ-specific T-cell activation was only possible if endogenous peptides were 

present to stabilize the HLA complex. Moreover, in silico modelling showed that 

CBZ preferably bound in the B-pocket of HLA-B*15:02 (Wei, C. Y. et al. 2012a). 

In a recent study by Illing et al. (2012), CBZ was found to bind non-covalently to 

HLA-B*15:02 and induce a modest shift in the peptide repertoire to slightly 

more hydrophobic peptides. These findings suggest that the altered peptide 

hypothesis might be implicated in the pathogenesis of CBZ hypersensitivity. 

Nonetheless, it is important to note that many patients who are carriers of CBZ-

associated risk alleles are able to tolerate the drug. This indicates that 

additional factors are important in predisposing individuals to develop 

hypersensitivity. Recently, Ko et al. (2011) reported that CBZ-responsive CD8+ 

T-cells isolated from HLA-B*15:02+ individuals used a common restricted TCR 

repertoire. The predominant TCR clonotypes could be detected in both blister 

fluid cells and unstimulated peripheral blood mononuclear cells (PBMCs) of 

patients suffering from SJS. The oligoclonal T-cells can also be found in HLA-

B*15:02+ healthy donors, and when stimulated with CBZ in vitro this results in 

a robust immune response to the drug (Ko et al. 2011). This study indicates that 

the expression of both the correct TCR and the predisposing HLA molecule are 

essential in eliciting hypersensitivity reactions to CBZ. 
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1.9 Sulfamethoxazole 

 

Sulfamethoxazole (SMX) is an antibiotic agent used in combination with 

trimethoprim to treat various infections. SMX is known to cause cutaneous 

HSRs in approximately 3-8% of patients (Castrejon et al. 2010). Clinical 

manifestations range from immediate-type reactions, such as anaphylaxis, to 

delayed-type reactions, including mild exanthematous rash and blistering skin 

reactions like SJS and TEN. Many studies investigating the mechanisms behind 

drug hypersensitivity have used SMX as a model drug (Pirmohamed et al. 2002; 

Engler et al. 2004), mainly because of its well characterised metabolic 

pathways. 

SMX is metabolised by N-acetyltransferases in the liver and the nontoxic 

products are quickly excreted. A fraction of the drug can be converted to a 

hydroxylamine intermediate (SMX-NHOH) via CYP 2C9 (Cribb, A. E. et al. 1995). 

The hydroxylamine is rather stable, but spontaneous oxidation can lead to the 

formation of a highly reactive nitroso metabolite (SMX-NO) (Cribb, Alastair E. 

and Spielberg 1992). SMX-NO is known to modify cysteine residues on multiple 

proteins (Naisbitt et al. 2002; Callan et al. 2009). 

SMX-NO has been shown to be highly immunogenic, stimulating the innate 

immune system by activating dendritic cells (Sanderson et al. 2007) and 

inducing an adaptive immune response through generation of drug-modified 

peptides (Castrejon et al. 2010). In animal models, treatment with SMX-NO 

stimulates the activation of T-cells, which specifically recognise SMX-NO-

modified peptides in a TCR dependent, MHC restricted manner (Naisbitt et al. 

2002; Farrell et al. 2003). However, SMX itself is unable to stimulate these T-

cells. Studies of T-cell clones (TCCs) generated from hypersensitive patients 

show a slightly more complex picture. Most TCCs are activated by SXM-NO and 

the response is dependent on covalent binding and antigen processing 

(Castrejon et al. 2010). At the same time it has been reported that TCCs can also 

recognise SMX directly, independent of covalent binding and without the need 
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for antigen processing (Schnyder et al. 1997). Whether SMX represents the 

original immunogen in these cases remains unclear. 

In vitro studies on T-cells isolated from drug-naïve individuals demonstrated 

that SMX-NO can elicit a T-cell response in nearly 100% of cases (Engler et al. 

2004). Recently, it has been shown that SMX-NO priming induces a phenotypic 

change of naïve T-cells to a memory T-cell population (Faulkner et al. 2012). 

 

 

1.10 Aims 

 

There is substantial evidence that hypersensitivity reactions to carbamazepine 

are mediated by the adaptive immune system and drug-specific T-cells have 

been identified as key players in the pathogenesis of these reactions (Mauri-

Hellweg et al. 1995; Leeder 1998; Roujeau 2006). The isolation of CBZ-reactive 

T-cells from patients and in vitro stimulation of the cells with CBZ has made it 

possible to study their phenotype and effector functions in detail (Naisbitt et al. 

2003a; Wu et al. 2006), as discussed earlier in this chapter. However, the 

molecular mechanisms through which CBZ causes T-cell activation still remain 

largely unknown. 

The numerous associations between specific HLA alleles and drug-induced 

HSRs imply that HLA alleles may have a functional role in mediating T-cell 

responses to drugs. A mechanistic basis for some HLA-associated drug 

hypersensitivity reactions, such as abacavir and HLA-B*57:01 (Chessman et al. 

2008) or carbamazepine and HLA-B*15:02 (Wei, C. Y. et al. 2012a), is beginning 

to be uncovered. At the same time, in vitro studies investigating the interaction 

between HLA-B*15:02 and CBZ-specific T-cells have demonstrated that specific 

T-cell receptors may present additional susceptibility factors in the 

development of CBZ-induced HSRs (Ko and Chen 2012). 
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HLA-A*31:01 represents the first HLA allele associated with CBZ-induced HSRs 

in Caucasian patients (McCormack et al. 2011), indicating CBZ may selectively 

bind to HLA-A*31:01 and trigger T-cell activation in this population. However, 

studies investigating whether any direct interactions between CBZ, HLA-

A*31:01 and drug-responsive T-cells occur have not yet been performed. Thus, I 

wanted to explore whether HLA-A*31:01 is functionally involved in mediating 

carbamazepine hypersensitivity in patients of European ancestry. 

The aims of this thesis were therefore to: 

1) Determine the pattern of HLA restriction of drug-specific T-cells isolated 

from a HLA-A*31:01 positive, carbamazepine hypersensitive patient. 

 

2) Generate a primary immune response to carbamazepine in vitro using T-

cells from HLA-A*31:01 positive, drug-naïve individuals. 

 

3) Characterise the peptide-binding specificity of HLA-A*31:01 in 

comparison to HLA-B*15:02 using in silico and in vitro approaches. 

 

4) Establish a method for T-cell receptor spectratyping using the model 

drug antigen nitroso sulfamethoxazole as a first step. At a later stage, this 

method will then be used to study the T-cell receptor usage in 

carbamazepine hypersensitivity. 
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2.1 Introduction 

 

Carbamazepine (CBZ) is known to cause hypersensitivity reactions of varying 

severity in a small proportion of patients treated with the drug. The reactions 

are thought to have an underlying immune-mediated aetiology, and drug-

reactive T-lymphocytes of CD4 and CD8 phenotype have been isolated from 

patients’ blood and skin (Mauri-Hellweg et al. 1995; Leyva et al. 2000). Genetic 

factors predisposing individuals to CBZ hypersensitivity have long been 

postulated to be important, and recent genetic studies revealed strong 

associations with specific human leukocyte antigen (HLA) alleles. 

HLA-B*15:02, the first CBZ-associated HLA allele reported, was detected in 

almost all cases of CBZ-induced Stevens-Johnson syndrome (SJS) in patients of 

Han Chinese or Southeast Asian ancestry (Chung et al. 2004; Tassaneeyakul et 

al. 2010; Chang et al. 2011; Zhang, Y. et al. 2011b). Its functional role in 

development of CBZ-induced SJS has been well characterised. T-cell responses 

in these patients are predominantly mediated by cytotoxic CD8+ T-cells (Nassif 

et al. 2004), which are restricted by HLA-B*15:02 (Wei, C. Y. et al. 2012a). The 

drug-specific effector T-cells have been shown to mediate cytotoxicity through 

the use of shared restricted T-cell receptors (TCRs) (Ko and Chen 2012). 

HLA-A*31:01 represents the latest example, and two independent genome-wide 

association studies (GWAS) have found it to be associated with all clinical 

phenotypes of CBZ hypersensitivity in Caucasian and Japanese populations 

(McCormack et al. 2011; Ozeki et al. 2011). A study by Niihara et al. (2012) 

aimed to determine whether lymphocyte activation was correlated to HLA-A31 

status by comparing lymphocyte responses in HLA-A31 positive to A31 negative 

CBZ hypersensitive patients, but no significant difference was detected (Niihara 

et al. 2012). However, functional studies investigating whether T-cell responses 

to CBZ are dependent on the drug interacting specifically with HLA-A*31:01 

have not been performed.  

The main aim of the work presented in this chapter was to characterise in detail 

the HLA restriction of CBZ-reactive T-cell clones (TCCs) generated from a CBZ 
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hypersensitive patient carrying HLA-A*31:01. I focused on the CD8+ as well as 

CD4+ T-cell populations, as both lymphocyte types have been shown to be 

involved in CBZ hypersensitivity (Wu et al. 2007). In contrast to SJS, CD4+ T-cell 

have been shown to be the prevalent cell type in mild maculopapular rashes 

and are also involved in the elicitation of DRESS (see chapter 1.6.2). Thus, it was 

of interest to explore whether CBZ-specific TCCs of both CD4 and CD8 

phenotypes were activated in a HLA restricted manner. 

 

 

2.2 Materials & Methods 

 

2.2.1 Patient Characteristics 

The carbamazepine hypersensitive patient was recruited retrospectively at the 

Royal Liverpool University Hospital. The study was approved by the local ethics 

committee and informed consent obtained from the patient. The patient was a 

74-year old female who had suffered a hypersensitivity reaction to 

carbamazepine 22 years ago. She had developed a hypersensitivity syndrome to 

CBZ six days after treatment initiation and the clinical details are summarised in 

Table 2.1. Previously performed HLA genotyping had shown that the patient 

was a carrier of HLA-A*31:01. 

 

2.2.2 Chemicals 

Carbamazepine (Sigma-Aldrich, UK) was prepared as stock solution (10mg/ml) 

in T-cell medium containing 10% dimethyl sulfoxide (DMSO; Sigma, UK). The 

stock solutions was made up fresh and diluted to the appropriate concentration 

directly before use. Tetanus toxoid was obtained from the Statens Serum 

Institut in Denmark. All other reagents were purchased from Sigma-Aldrich, UK, 

unless stated otherwise. 
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Table 2.1: Clinical data of the CBZ hypersensitive patient. 

Gender Female 

Age (years) 74 

Type of reaction 
Generalized maculopapular rash 

with fever, eosinophilia and 
lymphocytosis 

Time to reaction (days) 6 

Time since reaction 
(years) 

22 

Rechallenge No 

HLA genotype 

A*11:01/31:01 
B*27:05/40:01 
C*01:02/03:04 

DRB1*03:01/04:04 
DQB1*02:01/03:02 

 

 

2.2.3 Cell culture medium 

T-cell culture medium consisted of RPMI 1640 medium supplemented with 

10% pooled human AB serum (Innovative Research, USA), 25mM HEPES buffer, 

2mM L-glutamine, 100μg/ml streptomycin, 100U/ml penicillin and 25μg/ml 

transferrin. To maintain T-cells in long-term culture, the medium was 

supplemented with 200U/ml IL-2 (Preprotech, UK). 

B-cell medium comprised of RPMI 1640 medium supplemented with 10% foetal 

bovine serum (FBS; Invitrogen, UK), 25mM HEPES buffer, 100μg/ml 

streptomycin and 100U/ml penicillin. 

 

2.2.4 Lymphocyte isolation 

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood of 

the patient by density gradient centrifugation. The blood was carefully layered 

on an equal volume of Lymphoprep (Axis-Shield, UK) and spun down at 

2000rpm for 25min. The layer of PBMCs was extracted with a Pasteur pipette 
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and washed twice in Hanks balanced salt solution (HBSS) to remove any 

remaining Lymphoprep. Isolated lymphocytes were resuspended in T-cell 

culture medium. 

 

2.2.5 Generation of antigen-presenting cell lines 

Epstein-Barr virus (EBV) transformed B-lymphoblastoid cell lines (B-LCLs) 

were used as antigen-presenting cells. B-LCLs were generated by 

transformation of PBMCs with supernatant (SN) from the EBV-producing B95-8 

cell line (Neitzel 1986). PBMCs (5x 106) were incubated overnight with 5ml of 

filtered (0.45μm syringe filter) EBV-containing B95-8 SN at 37°C. Cyclosporine 

A (CSA) was added at 1μg/ml to inhibit T-cell proliferation. On the next day, 

cells were spun down (1500rpm, 5min), resuspended in B-cell medium 

supplemented with 1μg/ml CSA and plated into a 24-well plate (2.5- 10x 105 

cells; 2ml). Medium was exchanged twice weekly. CSA treatment was stopped 

after 2-3 weeks and cells transferred to tissue culture flasks. 

 

2.2.6 Lymphocyte transformation test 

The lymphocyte transformation test (LTT) represents an in vitro method to 

determine whether drug-specific lymphocytes are present in the blood of 

hypersensitive patients (Pichler and Tilch 2004). 

Isolated PBMCs (1.5x 105; 100ul) were cultured with CBZ (1-100μg/ml; 100ul) 

in a 96-well U bottom plate in triplicate for six days. Tetanus toxoid (TT; 

1μg/ml) was used as positive control. [3H]-thymidine (Moravek, USA) was 

added for the final 16 hours of incubation. Cells were harvested and 

proliferation determined by [3H]-thymidine incorporation using a MicroBeta 

TriLux β-counter (Perkin Elmer, USA). Proliferative responses were expressed 

as stimulation index (SI) using the following formula: SI= cpm of drug-treated 

cultures/ cpm of control. An SI value above 2 was considered a positive 

response (Nyfeler and Pichler 1997). 
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2.2.7 T-cell enrichment culture 

Drug-specific T-cells were enriched by stimulating lymphocytes with CBZ 

repeatedly over four weeks as described previously (Naisbitt et al. 2003a). 

PBMCs (5x 106, 1ml) were cultured with CBZ (25μg/ml) in a 24-well plate for 7 

days. IL-2 containing T-cell medium was added on day 3. On day 7, cells were 

restimulated with autologous irradiated PBMCs (1x 106) and CBZ (25μg/ml). 

Three cycles of restimulation were performed, and wells were split when 

necessary to support proliferation. 

 

2.2.8 51Cr-release cytotoxicity assay 

The cytotoxic activity of T-cell enriched PBMC cultures was assessed in vitro in a 

51Cr-release assay using previously established methods (Brunner et al. 1968; 

Dunkley et al. 1974). 

Autologous B-LCLs (1.5x 106) were incubated with 51Chromium (50μCi; 

PerkinElmer, UK) for 1 hour and then washed three times to remove any free 

51Cr. Radioactive labelled B-LCLs (2.5x 103) were mixed with PBMCs (1- 10x 

104) and incubated for 4 hours at 37°C in the presence and absence of CBZ (10- 

50μg/ml). T-cell mediated killing of B-LCLs was determined by the amount of 

51Cr released into the supernatant and measured by liquid scintillation 

counting. The specific lysis was calculated using the following formula: 

(cpm CBZ treatment – cpm spontaneous release)/(cpm maximum release – cpm 

spontaneous release) x 100. 

 

2.2.9 Generation of drug-specific T-cell clones 

Initially, PBMCs (1x 106, 1ml) were cultured in T-cell medium containing 

25μg/ml CBZ for 14 days in a 48-well plate at 37°C. On day 6 and day 9, IL-2 

supplemented medium was added to the cultures. On day 14, T-cells were 

cloned by serial dilution using established methodology (Naisbitt et al. 2003a). 

Cells were seeded into 96-well U bottom plates at concentrations of 0.5, 1.0 and 

3.0 cells per well. Allogeneic irradiated PBMCs (5x 105), phytohemagglutinin 
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(PHA, 5ug/ml) and IL-2 (200U/ml) were added to stimulate T-cell growth. If 

necessary a further restimulation cycle was performed after two weeks. Well-

growing clones were expanded in new plates and split when necessary. Drug 

specificity of TCCs was assessed by T-cell proliferation assay. 

 

 

Figure 2.1: T-cell cloning procedure. 

PBMCs were cultured for 14 days with drug, then serial diluted at cell densities of 3, 1 and 0.5 

cells per well. T-cell clones were restimulated with allogeneic irradiated APCs after another 14 

days if necessary. Well-growing clones were picked into new plates and expanded. Drug-

specificity was tested by proliferation assay 2 weeks later. 

 

Drug-specific clones were restimulated every 2-3 weeks as described above in 

order to maintain T-cell proliferation. 

In subsequent cloning experiments, T-cell bulks were separated into CD4+ and 

CD8+ T-cells prior to serial dilution using magnetic cell sorting beads (Miltenyi 

Biotech, UK). T-cells were incubated with CD8 Multisort microbeads and 

separated over a magnetic column. The flow through contained the unlabelled 

CD4+ T-cells. After removal of the column from the magnetic field, CD8+ T-cells 

were flushed out using a plunger. 
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2.2.10 T-cell proliferation assay 

The T-cell proliferation assay was used to determine the drug-specificity and 

functionality of the T-cell clones. T-cells (5x 104) were incubated with 

autologous, irradiated B-LCLs (1x 104) and CBZ (10- 50μg/ml) in a 96-well U 

bottom plate. After 48 hours, [3H]-thymidine (0.5μCi) was added and 

proliferation measured by scintillation counting 16 hours later as described in 

2.2.6. TCCs with an SI above 2 were considered to be drug-specific. 

To test for HLA restriction the protocol was modified in two different ways. 

First, autologous B-LCLs were incubated with human anti-HLA blocking 

antibodies (anti-MHC I, anti-MHC II, anti-HLA DR, anti-HLA DQ - all BD 

Bioscience, UK; anti-HLA DP and anti-HLA A30/A31 - Abcam, UK) before being 

added to the proliferation assay. 

Second, T-cell clones were cultured with CBZ in the presence of allogeneic APCs 

expressing HLA alleles of interest. PBMCs of HLA-typed healthy volunteers were 

used to generate allogeneic B-LCLs via the method described in 2.2.5. The 

healthy volunteers were all part of the HLA-typed cell archive established at the 

University (Alfirevic et al. 2012) and their respective HLA genotypes are shown 

in Table 2.2. In another experimental set-up, HLA-DRB1*04:04-transfected T2-

cell lines (kindly donated by the laboratory of Prof. James McCluskey, University 

of Melbourne, Australia) were used as APCs. Wild type T2 cells are a B-

lymphoblast cell line that only expresses HLA-A2 but no HLA class II alleles. 

 

2.2.11 CD phenotyping 

CD phenotype of clones was determined by flow cytometry. TCCs were stained 

with phosphatidylethanolamine (PE) labelled anti-CD4 and fluorescein 

isothiocyanate (FITC) labelled anti-CD8 antibodies for 20min at 4°C. Clones 

were washed and resuspended in HBSS containing 1% FBS and 0.02% sodium 

azide. Fluorescence was measured on a BD FACS Canto II flow cytometer 

recording a minimum of 10,000 events, and data analysed using Cyflogic 

software (CyFlo Ltd., Finland).   
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Table 2.2: HLA genotypes of healthy volunteers selected for this study. 

ID HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1 

HV2 02:01/31:01 15:01/44:02 03:03/05:01 01:01/08:01 05:01/06:02 

HV4 03:01/11:01 27:05/47:01 02:02/06:02 03:01/04:04 02:01/03:02 

HV5 02:01/31:01 15:05/40:06 03:03/15:02 04:04/14:04 03:02/05:03 

HV6 02:01/24:02 08:01/15:07 03:03/07:01 03:01/04:04 02:01/03:02 

HV7 24:02/31:01 14:02/40:01 02:02/03:04 01:02/04:04 03:02/05:01 

HV8 02:01/03:01 07:02/44:02 07:04/07:02 03:01/04:04 02:01/03:02 

HV13 24:02/31:01 55:01/56:01 01:02/03:03 04:01/12:01 03:02/03:01 

HV16 01:01/02:01 44:02/57:01 05:01/06:02 01:01/04:04 03:03/05:01 

HV17 02:01/03:01 07:02/57:01 06:02/07:02 15:01/07:01 03:03/06:02 

HV20 29:02/31:01 07:02/15:01 03:03/07:02 13:01/14:01 05:03/06:03 

HV23 02:02/31:01 27:05/51:01 02:02/15:02 16:01/13:01 05:02/06:03 

HV24 11:01/31:01 40:01/51:01 03:04/15:02 04:04/04:08 03:02/03:01 

HV28 02:01/33:01 14:02/52:01 08:02/15:02 01:02/04:04 03:02/05:01 

HV29 02:01/25:01 07:02/18:01 07:02/12:03 15:01/13:01 06:02/06:03 

HV34 01:01/26:01 08:01/35:01 04:01/07:01 01:03/03:01 02:01/05:01 

HV36 01:01/02:01 08:01/44:04 07:01/16:01 03:01/11:01 02:01/03:01 

HV38 01:01/26:01 40:01/57:01 03:04/06:02 01:01/13:01 05:01/06:03 
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2.2.12 Enzyme-linked immunospot assay 

Cytokine secretion was determined by enzyme-linked immunospot (ELISpot) 

assay according to the manufacturer’s protocol. IFN-γ, IL-13, granzyme B and 

perforin kits were purchased from Mabtech, Sweden; and FasL kit was obtained 

from Abcam, UK. 

MultiscreenHTS filter plates (Millipore, UK) were coated with cytokine-specific 

capture antibody and incubated overnight at 4°C. Wells were washed the next 

day with sterile HBSS and blocked with T-cell medium for 30min (for FasL 

assay blocking was performed for 2 hours using 2% skimmed milk). T-cells (5x 

104, 50μl) together with autologous irradiated B-LCLs (1x 104, 50μl) and CBZ 

(25 and 50μg/ml, 100μl) were added to the wells and incubated for 48 hours at 

37°C. The plate was emptied and then washed five times with phosphate 

buffered saline (PBS) (for FasL assay 0.1% Tween-20 was added to PBS). Biotin-

labelled detection antibody was added to the wells and incubated for 2 hours at 

room temperature (RT). After another washing step, streptavidin-alkaline 

phosphatase was added and incubated for one hour at RT. Spots were 

developed by addition of BCIP/NBT substrate until distinct spots were visible. 

An outline of the protocol is depicted in Figure 2.2. Colour development was 

stopped by washing under tap water. When plates had dried completely, spots 

were counted on the AID ELISpot reader. 

 

2.2.13 Statistical analysis 

Statistical analysis was performed using Mann-Whitney U test to compare T-cell 

responses of independent samples and Wilcoxon test for paired samples. 

Kruskal-Wallis H test was used for the assessment of multiple groups. Non-

parametric tests were used due to small sample size which prevented a clear 

assessment whether the data follows the normal distribution. A p-value < 0.05 

was considered significant. 
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Figure 2.2: Schematic illustration of the ELISpot assay. 

 

 

2.3 Results 

 

2.3.1 In vitro response of PBMCs to carbamazepine 

In order to confirm that a sensitisation of T-cells to CBZ had taken place earlier, 

and reactive T-cells were still present in the patient’s circulation, the 

lymphocyte transformation test (LTT) was performed. Isolated PBMCs from the 

patient proliferated strongly in the presence of the drug, with a maximal 

stimulation index of 15.9 recorded at a concentration of 50μg/ml CBZ (Figure 

2.3). 
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Figure 2.3: Lymphocyte transformation test. 

PBMCs were incubated with CBZ (1-100μg/ml) in triplicate for 6 days, and [3H]-thymidine 

added in the final 16 hours of the experiment. Proliferation was determined by scintillation 

counting. A stimulation index above 2 (dashed line) was considered a positive response. (TT= 

tetanus toxoid) 

 

Drug-specific lymphocytes were enriched by weekly stimulation of PBMCs with 

CBZ over four weeks’ time. A subsequently performed IFN-γ ELISpot assay 

showed that CBZ was able to stimulate an increase in IFN-γ secretion in the 

PBMC culture (Figure 2.4), indicating a successful expansion of drug-specific T-

cells. 

 

Figure 2.4: CBZ-specific secretion of IFN-γ after T-cell enrichment culture. 

T-cell enriched PBMCs were 

incubated with CBZ and 

autologous B-LCLs. Cytokine 

secretion of drug-specific T-

cells was visualised in an 

IFN-γ ELISpot assay 

following the 

manufacturer’s protocol. 

(SFC= spot-forming cell)  
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The T-cell enriched PBMCs showed weak cytotoxic activity against autologous 

B-LCLs (Figure 2.5). T-cell mediated killing of 51Cr labelled B-LCL was induced 

at CBZ concentrations above 25μg/ml and at an effector: target cell ratio of 

40:1. 

 

 

Figure 2.5: Cytotoxic activity of T-cell enriched PBMCs after three cycles of 

restimulation. 

T-cell enriched PBMCs were incubated with CBZ (10- 50μg/ml) and 51Cr loaded B-LCLs at the 

indicated effector: target cell ratios for 4 hours. Specific lysis was calculated as (cpm CBZ 

treatment – cpm spontaneous release)/(cpm maximum release – cpm spontaneous release) x 

100. 

 

2.3.2 Characterisation of carbamazepine-specific T-cell clones 

T-cell clones were generated by the serial dilution method as described above. 

In total, three rounds of T-cell cloning were carried out producing 947 clones. 

The third cloning attempt was performed after a magnetic cell separation of the 

CBZ-stimulated T-cell bulks into CD4+ and CD8+ T-cell populations. Only cloning 

of the CD8+ population was performed in order to increase the number of 

available CD8+ TCCs for further characterisation. Reactivity of the clones to CBZ 

was tested by 48-hour proliferation assay. Sixty-seven TCCs displayed robust 

proliferative responses to CBZ (control: 5,525.8 ± 18,928cpm; CBZ 25μg/ml: 

34,418.8 ± 43,632.5cpm) and were therefore classified as drug-specific (Table 
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2.3). Drug-specific clones were phenotyped for CD expression by flow 

cytometry and almost equal numbers of CD4+, CD8+ and CD4+CD8+ TCCs were 

detected (35%, 41% and 24% respectively; Table 2.3). 

 

Table 2.3: Specificity and phenotype of drug-specific T-cell clones. 

 
Clones 
tested 

(n) 

Specific 

clones 

(n) 

Proliferation (cpm) CD phenotype (%) 

control 
CBZ 

(25μg/ml) 
CD4+ CD8+ 

CD4+ 

CD8+ 

to
ta

l 

947 67 
5,525.8 

±18,928.0 
34,418.8 

±43,632.5 
35 41 24 

1 35 10 
8,020.2 

±12,132.7 
50,582.9 

±66,184.1 
100 0 0 

2 600 26 
7,348.5 

±29,381.1 
39,783.7 

±49,183.2 
38 62 0 

3 312 31 
3,175.7 

±1,800.2 
24,721.7 

±23,604.5 
-ǂ 40 60 

Proliferation data presented as mean cpm ± SD. 
ǂ
) only CD8+ T-cell population was cloned. 

 

T-cell clones proliferated to CBZ in a dose-dependent manner irrespective of 

their CD phenotype (Figure 2.6). However, proliferative responses were 

strongest in the CD4+ population reaching a maximum of approximately 

60,000cpm (25ug/ml CBZ; Figure 2.6 A) compared to about 20,000cpm for 

CD8+ and CD4+CD8+ TCCs (Figure 2.6 B+C). This is in line with previous studies 

which have found CD8+ TCCs to proliferate weakly upon CBZ stimulation 

compared to CD4+ clones but instead show strong cytotoxic responses (Wu et 

al. 2007). Eleven well-growing CD4+, five CD8+, and ten CD4+CD8+ clones were 

selected for more detailed analyses. 
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Figure 2.6: CBZ-dependent proliferation of drug-specific CD4+ (A), CD8+ (B), and 

CD4+CD8+ (C) T-cell clones. 

T-cell clones were incubated with autologous irradiated B-LCLs and carbamazepine at indicated 

concentrations for 48 hours. Proliferation was determined by [3H]-thymidine uptake. Data 

represents mean cpm ± SEM of n clones. Statistical analysis was performed using Kruskal-Wallis 

H test for comparison of multiple doses (***p< 0.001). 
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To assess the functionality of the different phenotypic clones, the secretion of 

cytokines and cytolytic molecules was determined by the ELISpot technique 

(Figure 2.7). CD4+ TCCs secreted significant amounts of type 1 and type 2 

cytokines, i.e. IFN-γ (p= 0.02) and IL-13 (p= 0.02) respectively, suggesting a 

mixed Th1/Th2 type effector population (Figure 2.7 A). CD4+ clones displayed 

cytotoxic effector function by secretion of FasL (p= 0.02), and some clones also 

exhibited cytotoxicity through the release of granzyme B and perforin. CD8+ T-

cell responses were associated with strong secretion of IFN-γ (p= 0.02), and 

high levels of cytotoxicity through the release of granzyme B, perforin and FasL 

(p=0.05, 0.01, and 0.004 respectively; Figure 2.6 B). The effector phenotype of 

CD4+CD8+ TCCs resembled the CD8+ population. CD4+CD8+ TCCs secreted high 

levels of IFN-γ (p= 0.004), and only a few clones secreted low amounts of IL-13. 

Cytotoxic activity was demonstrated by high levels of FasL and perforin 

secretion (p= 0.006 and 0.005 respectively; Figure 2.6 C). Granzyme B secretion 

did not increase significantly because of high background levels. 
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Figure 2.7: Secretion of 

cytokines and cytolytic 

molecules from CD4+ (A), CD8+ 

(B), and CD4+CD8+ (C) TCCs 

after CBZ stimulation using 

ELISpot assay. 

Well images show cytokine profile 

of a representative TCC for each 

phenotype. Graphs represent 

mean SFC per well ± SEM of n 

clones. Statistical analysis was 

performed by comparing SFC 

between drug treated and 

untreated wells using Mann-

Whitney U test (*p< 0.05, **p< 

0.01). 

(SFC= spot forming cells; n.p. = 

not performed) 
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2.3.3 HLA restriction of carbamazepine-specific T-cell clones 

For the detailed investigation whether recognition of CBZ by drug-specific TCCs 

was HLA restricted further analysis concentrated on the CD4+ and CD8+ clones. 

In a first step restriction by MHC class I and class II was tested. T-cell clones 

were stimulated with CBZ in the presence of autologous B-LCLs which had been 

pre-treated with human anti-MHC antibodies to inhibit presentation of the drug 

by MHC molecules expressed on the cell surface. CD4+ T-cell responses to CBZ 

were clearly MHC class II restricted, as addition of anti-MHC II antibody, but not 

anti-MHC I, inhibited proliferation (Figure 2.8 A). The response of CD8+ clones 

was restricted by MHC class I (Figure 2.8 B). However, as the CD8+ clones could 

be stimulated by CBZ in the absence of B-LCLs, an effect known as self-

presentation, the results were not as pronounced as for CD4+ clones. When MHC 

blocking antibodies were added to both B-LCLs and TCCs, minor proliferative 

responses could still be detected. 

The fine-specificity of the HLA class II restriction observed in CD4+ clones was 

determined using blocking antibodies against HLA-DR, -DQ and ,-DP 

respectively. CBZ-induced proliferation of CD4+ TCCs could be suppressed by 

antibodies against HLA-DR and –DP (Figure 2.9). With a few exceptions, 

blocking of HLA-DQ had a minor effect on T-cell proliferation of CD4+ clones. 

As there are currently no commercial antibodies available to test for HLA-A, -B, 

and-C restriction, a blocking antibody specific for HLA-A30/A31 was used 

instead to test recognition of CBZ by CD8+ clones. Proliferation of CBZ-specific 

CD8+ clones was suppressed in the presence of anti-HLA-A30/A31 antibody (p= 

0.003, Figure 2.10). These results suggest a HLA-A31 restriction, since the 

patient was a carrier of HLA-A*31:01, but not A*30 (see Table 2.1). However, 

proliferative responses could not be abrogated completely, which was partially 

due to strong self-presentation of CD8+ TCCs (see Appendix F1) and required a 

suboptimal CBZ concentration to be used in the assay. Also, proliferation of 

some CD8+ TCCs was inhibited more strongly by blocking antibodies against 

MHC class I, suggesting that other factors may also be involved in the 

presentation of CBZ. 



 

 
 

7
2

 

Figure 2.8: MHC 

restriction of CBZ-specific 

CD4+ (A) and CD8+ (B) 

TCCs. 

Autologous irradiated B-LCLs 

were incubated with 

antibodies against MHC class I 

and class II respectively. Pre-

treated B-LCLs were then 

added to TCCs and CBZ in a 

48 hour proliferation assay. 

Results are given as mean 

cpm of duplicate cultures. 
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Figure 2.9: Restriction of CD4+ clones by HLA class II subtypes. 

TCCs were cultured with CBZ and autologous irradiated B-LCLs which had been pre-incubated 

with blocking antibodies against HLA-DR, -DQ, and –DP respectively. Proliferation assay was 

used as read-out. Data represent mean cpm ± SEM of triplicate cultures. Statistical analysis was 

performed comparing cultures without antibody to those treated with HLA blocking antibody 

(*p< 0.05, **p< 0.01, ns=not significant). 
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Figure 2.10: Recognition of CBZ by CD8+ clones in the presence of HLA-A30/A31 

blocking antibody. 

Autologous irradiated B-LCLs were treated with antibodies against either MHC class I or HLA-

A30/A31. TCCs were incubated with B-LCLs and CBZ, which was added at a suboptimal 

concentration of 12μg/ml to avoid self-presentation. Proliferation was determined by [3H]-

thymidine incorporation. Results are presented as mean cpm ± SEM of n clones. Statistical 

analysis was performed using Wilcoxon test for the comparison of paired samples (*p< 0.05). 
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As a next step, allogeneic HLA-matched B-LCLs were used to further assess the 

role of HLA-A*31:01 on the activation of CD8+ TCCs by CBZ. B-LCLs were 

generated from PBMCs of HLA-typed healthy volunteers which are part of an in-

house cell bank specifically set up to investigate HLA-associated ADRs (Alfirevic 

et al. 2012). Healthy volunteers expressing either HLA-A*31:01 or control HLA-

A alleles, which are common in Caucasians and not reported in association with 

CBZ hypersensitivity (HLA-A*01:01, -A*02:01, or -A*03:01), were selected for 

the generation of B-cell lines. The complete HLA genotypes of the different B-

LCLs are shown in Table 2.2. 

CD8+ clones were strongly activated by CBZ in the presence of autologous B-

LCLs and allogeneic HLA-A*31:01+ B-LCLs (Figure 2.11). CBZ-specific responses 

in cultures containing B-LCLs expressing other HLA-A alleles were generally 

weaker, and in some cases below the threshold of self-presentation which were 

therefore considered to be negative.  

Interestingly, when some CD4+ clones were incubated with allogeneic HLA-

A*31:01+ B-LCLs, these clones also started to proliferate upon CBZ stimulation 

(data not shown). Since CD4+ TCCs had previously been shown to be HLA class 

II restricted, the complete HLA haplotype of the antigen-presenting cell lines 

was taken into consideration and analysed for any overlap in HLA class II. The 

HLA-DRB1*04:04 allele was found to be present in all HLA-A*31:01+ B-cell lines 

which induced CD4+ T-cell proliferation. This corresponded with the HLA class 

II restriction data showing preferential HLA-DR restriction. After consulting 

Allele Frequency Net Database (www.allelefrequencies.net, (Gonzalez-Galarza 

et al. 2011)), HLA-DRB1*04:04 was confirmed to be part of a common haplotype 

with HLA-A*31:01 in Caucasians. 
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Figure 2.11: Reactivity of CD8+ TCCs to CBZ presented on allogeneic HLA-matched B-LCLs. 

T-cells were incubated with CBZ (12μg/ml) and partially HLA-matched B-LCLs, and proliferation was determined in a 48-hour proliferation assay. To assess the 

strength of self-presentation, T-cells were also cultured in the absence of B-LCLs (white bars). Proliferation above counts of self-presentation (dashed line) was 

considered a positive response. Results are shown as mean cpm of duplicate cultures. 
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In order to investigate whether CBZ-specific CD4+ T-cell responses were HLA-

DRB1*04:04-restricted, studies using partially HLA-matched B-LCLs were 

performed. CD4+ clones were incubated with CBZ and allogeneic B-LCLs 

expressing either HLA-A*31:01, or HLA-DRB1*04:04, or both alleles. Antigen-

presenting cells negative for both alleles were used as controls. 

CBZ-specific CD4+ clones were stimulated to proliferate in the presence of B-

LCLs expressing HLA-A*31:01 and HLA-DRB1*04:04, but also HLA-

DRB1*04:04+ B-LCLs lacking HLA-A*31:01 (Figure 2.12). No CBZ-induced T-cell 

proliferation was seen in cultures containing B-LCLs expressing only HLA-

A*31:01 or in the HLA-A*31:01 negative and DRB1*04:04 negative controls. 

However, some antigen-presenting cell lines serving as controls were able to 

stimulate a non-specific proliferative response in CD4+ clones, which was 

independent of CBZ as it could also be detected in drug-free cultures. The 

antigenic stimulus causing these responses is currently unknown. 

HLA-DRB1*04:04 restriction of CD4+ clones could be further validated through 

the use of B-cell lines which had been specifically transfected with HLA-

DRB1*04:04 (Figure 2.13). CD4+ clones proliferated vigorously when stimulated 

with CBZ in the presence of HLA-DRB1*04:04-transfected T2-cells. However, T-

cell activation was only seen in cultures containing antigen-presenting cells that 

also expressed HLA-DM (Figure 2.13), indicating that the CLIP peptide prevents 

CBZ from binding to HLA-DR and being presented to T-cells. 
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Figure 2.12: CBZ-specific activation of CD4+ T-cell clones with allogeneic HLA-matched B-LCLs. 

T-cells were incubated with CBZ (25μg/ml) and partially HLA-matched B-LCLs. Proliferation was measured by [3H]-thymidine incorporation. Results are shown as 

mean cpm of duplicate cultures. (A+ = positive for HLA-A*31:01, DRB1+ = positive for HLA-DRB1*04:04) 
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Figure 2.13: CBZ-specific proliferation of CD4+ clones in the presence of HLA-

DRB1*04:04 transfected B-cells. 

T-cells were incubated with CBZ and HLA-DRB1*04:04 transfected T2 cell lines. Proliferation 

was determined by [3H]-thymidine uptake. Data represent mean cpm ± SEM of n clones. 

Statistical analysis was performed using Mann-Whitney U test (**p< 0.01, ns= not significant). 

 

 

2.4 Discussion 

 

In this chapter, carbamazepine-specific T-cells were isolated from a CBZ 

hypersensitive patient expressing HLA-A*31:01 and subsequently used to 

explore whether drug-specific T-cells displayed HLA restriction and if HLA-

A*31:01 was functionally involved in T-cell activation. 

A positive lymphocyte transformation test with a maximal SI of 15.9 confirmed 

a hypersensitivity reaction to carbamazepine in vitro and that drug-specific T-

cells were still present in the patient’s blood even many years after resolution of 

clinical symptoms. Isolated T-lymphocytes displayed effector functions when 
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stimulated with CBZ, which was demonstrated by drug-induced IFN-γ secretion 

and killing of autologous B-LCLs. 

Drug-specific T-cell clones were generated using established in vitro cloning 

methods. However, it has previously been shown that this leads to the preferred 

expansion of CD4+ clones, i.e. approximately 90% of TCCs express the CD4 co-

receptor (Naisbitt et al. 2003a; Wu et al. 2007). The reasons are not entirely 

clear, but might be explained in part by the reduced proliferation capacity of 

CD8+ T-cells resulting in decreased T-cell expansion rate (Wu et al. 2007). A 

revised cloning protocol, including magnetic cell separation of the different T-

cell phenotypes prior to serial dilution, was therefore used in order to increase 

the number of CD8+ clones available for functional studies. As a result, almost 

equal numbers of CBZ-specific CD4+ and CD8+ clones (35% and 41% 

respectively) were obtained. The clones displayed a concentration-dependent 

proliferation profile and cytotoxic effector functions. Similar to previous studies 

(Wu et al. 2007), CD4+ T-cells proliferated vigorously when stimulated with CBZ 

but showed limited cytotoxicity, whereas CD8+ T-cell activation was 

characterised by high levels of cytotoxic molecules and low proliferation rates. 

Stimulation of CBZ-specific CD4+ and CD8+ T-cells was restricted by MHC class II 

and MHC class I respectively. However, the results for CD8+ clones were 

partially obscured by self-presentation. Drug presentation between T-cells 

without the need for APCs has been reported previously (von Greyerz et al. 

2001), but the origin and function of self-presenting T-cells has not yet been 

resolved. Attempts to overcome self-presentation by blocking MHC on both T-

cells and B-LCLs were only marginally successful (data not shown), which might 

be due to up-regulation of MHC following T-cell activation (Van Den Elsen et al. 

2004). 

HLA restriction experiments using an antibody directed against HLA-A30/A31 

demonstrated for the first time that drug-specific CD8+ T-cells isolated from an 

HLA-A*31:01 positive individual respond to CBZ in a HLA-A31 restricted 

manner in vitro. For some clones blocking of MHC class I seemed to inhibit 

proliferation more effectively. This might be due to a higher binding affinity of 
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the antibody or alternatively indicate that additional factors might facilitate 

presentation of CBZ to CD8+ T-cells. 

Studies with HLA-matched B-LCLs support a functional role of HLA-A*31:01 in 

activating CBZ-specific CD8+ clones. CBZ-induced proliferation of CD8+ clones 

was strongest when HLA-A*3101+ B-LCLs were present. However, to a lesser 

extend T-cell activation was also seen with B-LCLs expressing other HLA-A 

alleles, which again suggests CBZ might not be exclusively recognized in the 

context of HLA-A*31:01. 

Responses of CD4+ clones were restricted mainly by HLA-DR and –DP. Blocking 

of HLA-DQ affected CD4+ T-cell proliferation to a minor extent and was only 

observed in a few clones. Previous studies had shown that the majority of drug-

specific CD4+ TCCs respond to CBZ in a HLA-DR restricted manner, despite a 

few clones which had been restricted by HLA-DQ (Naisbitt et al. 2003a). 

However, no restriction by HLA-DP had been observed. The function of HLA-DP 

in autoimmune disorders has been far less studied than that of other HLA class 

II subtypes and HLA-DP is mostly omitted from HLA genotyping. This could 

explain why hardly any HLA-DP associations, beryllium hypersensitivity 

representing a rare exception (Dai et al. 2013), have been detected to date. Due 

to this knowledge gap, further experiments concentrated on investigating the 

role of HLA-DR in CD4+ T-cell activation. However, it cannot be excluded that 

HLA-DP might be involved in CBZ presentation to CD4+ T-cells. 

Knowing that the patient is a carrier of HLA-DRB1*04:04 and that this allele 

forms a common haplotype with HLA-A*31:01 in Caucasians, HLA mismatch 

studies were performed with APCs expressing HLA-DRB1*04:04 and/or HLA-

A*31:01 or control DRB1 alleles. 

CD4+ clones recognized CBZ presented by HLA-A*31:01+ DRB1*04:04+ B-LCLs, 

but also with B-LCLs expressing only HLA-DRB1*04:04 suggesting a functional 

role for HLA-DRB1*04:04. It is important to note that some B-LCLs induced 

non-specific proliferation of CD4+ clones, which was observed in the absence of 

drug stimulation. This might be due to cross-reactivity of the drug-specific TCCs. 

As the generation of B-LCLs involves transformation with Epstein-Barr virus, 
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viral peptides may be produced by B-LCLs and presented in the context of MHC. 

If the TCR expressed on drug-specific T-cells is able to cross-recognise the viral 

peptides, this may lead to T-cell activation. This has been observed previously 

in some DRESS patients with reactions to drugs including carbamazepine, 

sulfamethoxazole and allopurinol (Picard et al. 2010). Another explanation 

might be that some clones display HLA alloreactivity, i.e. clones recognise 

allogeneic HLA molecules as antigenic structures and become activated. This 

has been reported in cases of Graft-versus-host disease where virus-specific 

lymphocytes could be isolated from patients showing cross reactivity against 

allogeneic HLA molecules (Amir et al. 2010). Virus specificity and HLA 

alloreactivity were mediated by the same TCR. 

HLA-DRB1*04:04 restricted recognition of CBZ by CD4+ clones was further 

substantiated when HLA-transfected T2 cell lines were used as APCs. T2 

wildtype cells lack HLA class II expression and only display HLA-A2 on their cell 

surface. In the presence of HLA-DRB1*04:04 transfected T2 cells, CD4+ clones 

proliferated strongly when stimulated with CBZ. This finding strengthens the 

assumption that HLA-DRB1*04:04 may be functionally relevant in CBZ-specific 

CD4+ T-cell responses. Interestingly, T-cell proliferation was only observed if 

HLA-DM was expressed at the same time. As HLA-DM is responsible for the 

removal of the class II invariant chain peptide (CLIP) prior to antigen loading of 

HLA class II molecules, binding of CBZ to HLA-DRB1*04:04 seems to be 

hindered in the presence of CLIP. This might be due to insufficient binding 

affinity between CBZ and CLIP preventing the formation of a stable drug-

peptide-MHC complex. Alternatively, CBZ may only bind to an empty HLA 

binding groove, thereby inducing a change to the peptide repertoire, which in 

turn causes T-cell activation. Further studies are needed in order to fully 

understand the implication of this observation. 

In conclusion, CBZ-specific CD4+ and CD8+ T-cell clones could be generated from 

isolated PBMCs of a HLA-A*31:01 positive hypersensitive patient. A HLA-

A*31:01-dependent activation of CD8+ clones could be demonstrated for the 

first time, implying a functional relevance of the genetic association. 

Additionally, a HLA class II allele, i.e. HLA-DRB1*04:04, was shown to be 
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functionally involved in CD4+ T-cell activation. Genetic data from genome-wide 

association studies and next-generation sequencing studies have shown that 

HLA-DRB1*04:04 was more prevalent in hypersensitive patients than in 

controls, but this does not reach statistical significance (unpublished data). The 

strong linkage disequilibrium between HLA-A*31:01 and DRB1*04:04 suggests a 

common haplotype may contribute to the multi-clonal response seen in 

Caucasian carbamazepine hypersensitive patients. The significance of the 

results presented in this chapter is strongly limited by the fact that the data is 

based on only one patient. Therefore further studies involving a larger patient 

cohort are needed in order to confirm the observations described here. 
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3.1 Introduction 

 

An array of in vitro assays have been developed to assist in the diagnosis of 

drug-induced hypersensitivity reactions (HSRs), alongside in vivo provocation 

and skin patch tests. In vitro tests are a safe alternative for patients by avoiding 

resensitisation or exacerbation of the reaction (Porebski et al. 2011). 

Additionally, in vitro assays allow testing of several drugs in parallel, which may 

help identify the causative drug and assess potential cross-reactivity to 

alternative medication. Furthermore, the assays can be used to gain further 

insight into the pathomechanisms implicated in the development of HSRs 

(Porebski et al. 2011). 

The lymphocyte transformation test (LTT) represents the most common in vitro 

test in the diagnosis of HSRs (Nyfeler and Pichler 1997). It measures the 

proliferative response of T-cells isolated from peripheral blood of patients upon 

stimulation with a specific drug in vitro. The LTT shows high specificity (85-

100%) in detecting the causative drug, but its sensitivity varies depending on 

the drug and clinical phenotype (Nyfeler and Pichler 1997). In severe forms of 

HSRs, such as Stevens-Johnson syndrome and toxic epidermal necrolysis, the 

LTT often fails to show a positive response (Kano et al. 2007; Tang et al. 2012). 

A more sensitive method to detect drug-specific T-cells in vitro involves the 

measurement of drug-induced cytokine release using enzyme-linked 

immunoassays, such as ELISA or ELISpot (Porebski et al. 2011). In a study by 

Rozieres and colleagues, increased secretion of IFN-γ could be detected in T-

cells isolated from amoxicillin-hypersensitive patients, but not in control 

patients (Rozieres et al. 2009). The analysis of IL-5 levels in combination with 

IFN-γ, IL-13 or IL-2, following stimulation of T-cells with drug in vitro, has been 

proposed a valuable diagnostic tool in HSRs diagnosis, as the release of these 

cytokines seems to be independent of the class of drug and clinical phenotype 

(Lochmatter et al. 2009). Furthermore, up-regulation of cell surface markers, 

e.g. CD69, has been demonstrated to be a suitable method for the detection of 

drug-specific T-cells in vitro (Beeler et al. 2008). 
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However, all of the above described methods assess the reactivity of drug-

specific memory T-cells which have been originally primed in vivo. In order to 

study immune responses to drugs using naive T-cells from healthy volunteers, a 

different approach is required. Naïve T-cells have to be primed in vitro with the 

aim of generating a memory T-cell population expressing a similar phenotype to 

T-cells primed in vivo. 

Two different strategies have been used in order to induce a primary immune 

response in cells from healthy volunteers. Engler and co-workers were able to 

induce a primary T-cell response to sulfamethoxazole (SMX) and its reactive 

nitroso metabolite SMX-NO by stimulating peripheral blood mononuclear cells 

(PBMCs) repeatedly over five weeks with the drug in the presence of autologous 

antigen-presenting cells (APCs) (Engler et al. 2004). This approach has been 

successfully translated to prime PBMCs from HLA-B*57:01+ and HLA-B*15:02+ 

drug-naïve volunteers to abacavir (ABC) and carbamazepine (CBZ) respectively 

(Chessman et al. 2008; Ko et al. 2011). The second in vitro priming method 

involves culturing of purified naïve T-cells with dendritic cells as professional 

APCs and the drug antigen of interest. This system has been well established for 

priming naïve T-cells against chemicals contact sensitizers (Dietz et al. 2010). 

Recently, a similar assay has been developed to induce drug-specific responses 

in naïve T-cells from healthy volunteers (Faulkner et al. 2012). The method was 

shown to be successful in generating a primary immune response against the 

model allergen SMX-NO, and its application for other drugs associated with 

HSRs is currently under investigation (Faulkner et al. 2012; Monshi et al. 2013). 

Given that HSRs generally occur at low frequency and are unpredictable in 

nature, prospective studies in humans are not feasible. At the same time, valid 

animal models are lacking, as drug-induced HSRs are also idiosyncratic in 

animals and mechanisms seem to differ for different drugs as well as between 

species (Uetrecht 2007). Moreover, the discovery that some reactions only 

develop in individuals expressing specific HLA alleles, e.g. ABC causing 

hypersensitivity exclusively in HLA-B*57:01+ patients, has highlighted the need 

to refine existing models to study HSRs in vitro. This has resulted in a growing 

interest to use genetically characterised immune cells from drug-naïve healthy 
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donors for functional studies attempting to characterise the mechanisms 

involved in HSRs, and predict the potential of a drug to cause an immune 

response (Alfirevic et al. 2012). 

In this chapter, the above described in vitro priming methods were used to 

explore the possibility of inducing a primary immune response to 

carbamazepine in HLA-A*31:01+ healthy volunteers. HLA-A*31:01 is the first 

allele which has been shown to be strongly associated with CBZ-induced HSRs 

in Caucasian populations (McCormack et al. 2011). Generally, the frequency of 

HLA-A*31:01 in Europeans is relatively low, ranging between 2-6% (derived 

from www.allelefrequencies.net). However, the presence of HLA-A*31:01 in 

patients treated with CBZ increases the risk to develop CBZ-induced HSRs from 

5% to 26 %, indicating it could be a clinically relevant marker for the prediction 

of CBZ-induced HSRs in Europeans (McCormack et al. 2011). The local cell bank 

of HLA-typed lymphocytes from 400 healthy volunteers (Alfirevic et al. 2012) 

was used as resource to test the propensity of CBZ to induce drug-specific T-cell 

activation in non-sensitised HLA-A*31:01+ individuals. 

 

 

3.2 Methods 

 

3.2.1 Volunteer characteristics 

PBMCs from eight HLA-A*31:01+ healthy volunteers, five HLA-A*31:01- donors, 

and three HLA-B*15:02+ donors were used in this study. The samples were part 

of our HLA-typed cell archive from 385 healthy individuals, comprising 23 HLA-

A*31:01+ and 7 HLA-B*15:02+ donors in all (Alfirevic et al. 2012). 

The healthy volunteers had been recruited from the North West of England 

between August 2009 and April 2010, and each volunteer initially donated 

100ml blood. DNA was isolated from 10ml blood to determine the HLA 

genotype of each individual, whereas the remaining 90ml of blood was used to 

isolate PBMCs for functional in vitro studies. The isolated PBMCs (96x 106 cells 
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± 40x 106 per donor) were stored at -150°C until needed. Individual donors 

were approached for a second blood donation by the responsible study nurse, if 

more cells were required. The healthy volunteers could withdraw their consent 

from participating in the study at any time. 

The complete HLA-genotypes of the 16 samples included in this study are 

shown in Table 3.1. 

 

Table 3.1: HLA-genotypes of healthy volunteer samples included in this study. 

ID HLA-A HLA-B HLA-C HLA-DRB HLA-DQB 

HV3 03:01/31:01 07:02/07:02 07:02/07:02 15:01/08:01 04:02/06:02 

HV5 02:01/31:01 15:05/40:06 03:03/15:02 04:04/14:04 03:02/05:03 

HV9 01:01/31:01 08:01/39:01 07:01/12:03 16:01/03:01 02:01/05:02 

HV11 31:01/66:01 27:05/40:01 02:02/03:04 01:01/04:01 03:02/05:01 

HV13 24:02/31:01 55:01/56:01 01:02/03:03 04:01/12:01 03:02/03:01 

HV14 24:02/33:03 15:02/44:03 07:01/08:01 07:01/12:02 02:01/03:01 

HV15 31:01/33:03 40:01/50:01 03:04/06:02 03:01/04:04 02:01/03:02 

HV19 02:01/02:01 40:01/50:01 03:04/06:02 15:01/07:01 02:01/06:02 

HV20 29:02/31:01 07:02/15:01 03:03/07:02 13:01/14:01 05:03/06:03 

HV21 01:01/31:01 07:02/37:01 06:02/07:02 15:01/15:01 06:02/06:02 

HV22 01:06/29:02 27:05/44:03 02:02/16:01 04:01/07:01 02:01/03:02 

HV25 11:01/11:01 15:02/15:25 04:03/08:01 11:06/12:02 03:01/03:01 

HV26 01:01/25:01 07:02/40:01 03:04/07:02 01:01/15:01 05:01/06:02 

HV31 02:01/24:02 40:01/40:02 03:03/07:02 15:01/14:05 05:03/06:02 

HV35 11:01/24:02 15:02/15:02 08:01/08:01 15:01/12:02 03:01/06:01 

HV39 01:01/24:02 08:01/44:02 05:01/07:01 11:01/04:04 03:02/03:01 

 

 

3.2.2 Chemicals 

Carbamazepine (Sigma-Aldrich, UK) was prepared as stock solution (10μg/ml) 

in T-cell medium comprising 10% DMSO (Sigma-Aldrich, UK). The stock 

solution was made up fresh before each experiment and diluted to the 

appropriate concentration immediately before use. Unless stated otherwise, all 

other reagents were purchased from Sigma-Aldrich. 
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Chemical analogues of carbamazepine, namely 2-monohalo and 2,8-dihalo 

derivatives (Figure 3.1), were synthesized by the Department of Chemistry 

(Elliott et al. 2012). 

 

 

Figure 3.1: Structures of halogenated derivatives of carbamazepine 

 

3.2.3 Cell culture media 

T-cell and B-cell lines were cultured in their respective cell culture medium as 

described previously in chapter 2.2.3. T-cell medium was used to culture 

monocyte-derived dendritic cells. 

For the work performed in the Department of Microbiology & Immunology, 

University of Melbourne, RF10 medium was used to culture both the T- and B-

cell lines. RF10 medium consisted of RPMI 1640 medium (Gibco, USA) 

supplemented with 10% FBS (Bovogen Biologicals, Australia), 7.5mM HEPES 

(MP Biomedicals, Australia), 2mM L-glutamine (MP Biomedicals, Australia), 

150μg/ml streptomycin, 150U/ml benzylpenicillin (CSL, Australia), 150μM non-

essential amino acids (Gibco, USA), and 76μM β-mercaptoethanol. 
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3.2.4 Lymphocyte transformation test 

The lymphocyte transformation test was performed as described earlier in 

chapter 2.2.6 in order to confirm that the healthy donors had not been 

previously sensitised to CBZ. 

 

3.2.5 4-week induction culture 

Lymphocytes were repeatedly stimulated with CBZ in vitro over four weeks to 

induce a primary immune response to the drug using previously described 

methodology (Engler et al. 2004). 

Freshly thawed PBMCs (5x 106, 2ml) from each volunteer were cultured in T-

cell medium containing 25μg/ml CBZ in a 24-well plate. On day 3, fresh medium 

supplemented with IL-2 (200U/ml; Preprotech, UK) was added to the cultures. 

On day 7, lymphocytes were restimulated with CBZ (25μg/ml) in the presence 

of autologous, irradiated PBMCs (1x 106) as feeder cells. Restimulation was 

repeated every week, and wells were split when necessary to sustain 

proliferation of T-cell lines. 

 

3.2.6 In vitro T-cell priming assay 

An alternative in vitro method to stimulate primary responses to drugs in naïve 

T-cells from healthy individuals was recently developed within the Department 

(Faulkner et al. 2012); and the procedure outlined below was carried out by Dr. 

Lee Faulkner. 

 

Isolation of PBMCs and magnetic cell separation 

PBMCs were isolated from 100ml fresh whole blood of the selected healthy 

donors using the density gradient centrifugation method as described 

previously in chapter 2.2.4. Monocytes were isolated by magnetic cell 

separation using CD14 microbeads (Miltenyi Biotec, UK). T-cells were isolated 

from non-CD14 cells by negative selection using the Pan T isolation kit II 
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(Miltenyi Biotec, UK). Next, regulatory T-cells were removed using CD25 

microbeads (Miltenyi Biotec, UK). The remaining T-cells were further separated 

into naïve and memory populations using CD45RO microbeads (Miltenyi Biotec, 

UK). Magnetic cell separation was carried out according to the manufacturer’s 

instructions. The phenotype and purity of the isolated cells was assessed by 

flow cytometry using CD14-FITC, CD3-APC, CD25-PE, CD45RA-FITC, CD45RO-

Cy5, CD4-FITC, CD8-PE antibodies (all BD Bioscience, UK; except CD25-PE, 

Miltenyi Biotec, UK). The purity of the separated cell populations exceeded 

95%. All cells were frozen down and stored at -150°C until needed. 

Generation of monocyte-derived dendritic cells 

CD14+ monocytes (6 x106, 6ml) were differentiated into dendritic cells (DCs) for 

7-8 days in 6-well plates using T-cell medium containing granulocyte-

macrophage colony-stimulating factor (GM-CSF; 800U/ml; Preprotech, UK) and 

IL-4 (800U/ml; Preprotech, UK). Fresh medium (3ml) supplemented with GM-

CSF and IL-4 was added every 2 days. 

T-cell and monocyte-derived DC co-culture 

Freshly thawed naïve T-cells (2 x106, 1ml) were cultured with immature 

monocyte-derived DCs (8 x105, 500μl) and CBZ (100μg/ml, 500μl) in a 24-well 

plate for 7-8 days. 

 

3.2.7 Generation of antigen-presenting cell lines 

EBV-transformed B-lymphoblastoid cell lines (B-LCL) were used as antigen-

presenting cells (APCs) for read-outs following 4-week induction cultures. B-

LCLs were generated for each of the healthy volunteers used in this study as 

described previously in chapter 2.2.5. 

PHA blasts were used as APCs in the intracellular cytokine staining (ICS) assay, 

which was performed at the Department of Microbiology & Immunology, 

University of Melbourne. PHA blasts were generated by culturing PBMCs (2 

x106) from the selected volunteers with phytohemagglutinin (PHA; 20μg/ml) in 

a 24-well plate for 7 days. On day 3, fresh IL-2 supplemented medium was 
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added to the cultures. On day 7, PHA blasts were washed and expanded into 

tissue culture flasks. Proliferation was maintained by adding fresh IL-2 

containing medium every 2-3 days. 

 

3.2.8 T-cell proliferation assay 

CBZ-specific proliferation of T-lymphocytes was assessed by [3H]-thymidine 

incorporation, which has been described in detail in chapter 2.2.10. 

 

3.2.9 Enzyme-linked immunospot assay 

CBZ-induced secretion of cytokines was determined by enzyme-linked 

immunospot (ELISpot) assay using the same protocol as described in chapter 

2.2.12. 

 

3.2.10 Intracellular cytokine staining (ICS) assay 

T-cells (2 x105) were incubated with PHA blasts (1 x105) and CBZ (25μg/ml) in 

a 96-well U-bottom plate (final volume 200μl). Anti-CD3/anti-CD28 monoclonal 

antibodies and phorbol 12-myristate 13-acetate (PMA)/ ionomycin were used 

as positive controls. After 2 hours, Brefeldin A (10μl/ml) was added to the 

cultures to prevent cytokine secretion, and incubation was continued overnight. 

The next day, cells were spun down and the supernatant removed. The cells 

were surface stained (30min on ice) with fluorescent-conjugated antibodies 

CD3-PerCP (BD Pharmingen, USA), CD4-APC-Cy7 (Biolegend, USA), and CD8-

FITC (BD Pharmingen, USA) in the dark for 30min on ice. This was followed by a 

brief washing step with PBS (120μl). Next, cells were fixed for 30min using 1% 

para-formaldehyde (ProSciTech, Australia), and then washed with PBS. In the 

last step, cells were permeabilised using 0.3% saponin and intracellular 

cytokines were stained using fluorescent-labelled antibodies, including TNFα-

PE-Cy7 (BD Pharmingen, USA), IFNγ-Pacific Blue (Biolegend, USA), granzyme B-

Alexa Fluor 700 (BD Pharmingen, USA), and IL4-APC (eBioscience, USA) (see 
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Appendix T1 for more details). Samples were run on a BD FACS LSRII flow 

cytometer and data analysed using FlowJo software (Tree Star Inc., USA). 

 

3.2.11 T-cell cloning 

T-cell lines derived from the 4-week induction cultures or T-cell priming assays 

were used to generate drug-specific T-cell clones. The protocol for T-cell cloning 

has been described in detail in chapter 2.2.9. 

 

3.2.12 Statistical analysis 

One-way ANOVA was performed on the proliferation data. ELISpot data were 

analysed by Student’s t-test, applying Bonferroni correction for multiple testing 

if necessary. ICS were therefore analysed using the non-parametric Mann-

Whitney U test, as low sample numbers prevented an assessment for normal 

distribution. 

 

 

3.3 Results 

 

3.3.1 In vitro stimulation of PBMCs 

PBMCs from HLA-A*31:01 positive and A*31:01 negative healthy volunteers 

were tested in a lymphocyte transformation test to exclude the possibility of 

prior sensitisation to CBZ. Proliferative responses to CBZ were negative in all 

healthy volunteers tested (Figure 3.2). In contrast, lymphocytes from HLA-

A*31:01+ volunteers proliferated markedly when stimulated with tetanus 

toxoid (TT), with SI values ranging between 4 and 22. However, responses to TT 

were negative in all HLA-A*31:01- volunteers. 
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Figure 3.2: Lymphocyte transformation test of PBMCs from HLA-A*31:01+ (A-C) and 

A*31:01- (D-F) healthy donors. 

PBMCs were cultured for 6 days in presence of CBZ (25μg/ml), and [3H]-thymidine was added 

for the final 16h of the assay. Proliferation was determined by scintillation counting. A 

stimulation index of >2 (dashed line) was considered a positive response. 
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Additionally, an IFN-γ ELISpot assay was carried out to confirm the results from 

the LTT, which is considered a less sensitive assay and might fail to detect weak 

responses. CBZ did not induce IFN-γ secretion in lymphocytes from any 

volunteer, whereas PHA lead to a robust release of IFN-γ in all donors tested 

(Figure 3.3). The consistent response to PHA indicated that the cells isolated 

from the volunteers were still functional, and suggested that the missing 

response to TT in the LTT of some volunteers might be due to incomplete 

vaccination. 

Figure 3.3: IFN-γ secretion of PBMCs from 

healthy volunteers stimulated with CBZ or PHA 

(positive control). Representative assay from 

HLA-A*31:01+ (A) and HLA-A*31:01- (B) 

volunteer cells are shown. 

PBMCs (1x 106) were incubated with CBZ (25μg/ml) 

for 2 days, and spots developed according to the 

manufacturer’s protocol. 

 

 

 

3.3.2 4-week induction cultures 

Following the protocol by Engler and colleagues (Engler et al. 2004), PBMCs 

from three non-sensitised individuals expressing HLA-A*31:01 (HV9, HV11, and 

HV15) were repeatedly stimulated with CBZ over four weeks with the aim of 

eliciting a primary immune response to the drug. In parallel, T-cell cultures 

from three HLA-A*31:01- (HV19, HV22, and HV31) and two HLA-B*15:02+ 

(HV25 and HV35) healthy donors were set up to be used as negative and 

positive controls respectively. 

After 5 weeks, reactivity of T-lymphocytes to CBZ was tested by proliferation 

assay (Figure 3.4) and IFN-γ ELISpot (Figure 3.5) in order to assess whether 

sensitisation to CBZ had been induced. 



  Chapter 3 

97 
 

A weak but significant increase in proliferation to different concentrations of 

CBZ was only observed in T-cells from volunteer HV15 (Figure 3.4 C). The 

statistically significant decrease in proliferation of T-cells from volunteer HV9, 

seen at the highest concentration of CBZ used in this assay, was attributed to 

the cytotoxic effect the drug is known to cause at doses of 100μg/ml CBZ and 

above (Figure 3.4 B). In contrast, there was no CBZ-induced proliferation in T-

cells from any HLA-A*31:01- volunteer, but stimulation with PHA activated T-

cells significantly (Figure 3.4 D). Furthermore, CBZ was unable to induce a 

proliferative response in T-cells from HLA-B*15:02+ volunteers (Figure 3.4 E). 

However, the majority of CBZ-reactive T-lymphocytes in HLA-B*15:02+ 

individuals have previously been shown to be CD8+ T-cells (Ko et al. 2011), 

which might not be detected in the proliferation assay due to their low 

proliferation rate. 
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Figure 3.4: CBZ-specific proliferation of T-cells isolated from healthy volunteers 

following 4-week induction culture. (A-C) T-cell responses from HLA-A*31:01+ 

volunteer cultures; (D+E) results of representative T-cell cultures from a HLA-A*31:01- 

and HLA-B*15:02+ volunteer respectively. 

T-cells were incubated with CBZ (10- 100μg/ml) in the presence of autologous irradiated B-

LCLs for 48h, and proliferation was determined by [3H]-thymidine incorporation. Data 

represent mean cpm ± SEM of triplicate cultures. Statistical analysis was performed using one-

way ANOVA (indicated as line above graph) with Tukey post-hoc test (noted in brackets) (*p< 

0.05, **p< 0.01, ***p< 0.001). 
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The release of IFN-γ, measured by ELISpot assay, was used as a second read-out 

to detect CBZ-specific T-cell activation (Figure 3.5). HLA-A*31:01+ T-cell 

cultures secreted high levels of IFN-γ at baseline, thus, no drug-induced increase 

in cytokine secretion could be observed (Figure 3.5 A). In contrast, no IFN-γ 

release was seen in T-cells isolated from HLA-A*31:01- donors, neither before 

nor after stimulation with CBZ (Figure 3.5 B). However, stimulation of T-cells 

from HLA-B*15:02+ volunteers with CBZ led to a two-fold increase in IFN-γ 

secretion (Figure 3.5 C). 

 

 

Figure 3.5: CBZ-induced IFN-γ secretion of T-cells from HLA-A*31:01+ (A),  HLA-

A*31:01- (B) and HLA-B*15:02+ (C) donors after 4-week induction culture. 

T-cells (5x 105) were incubated with CBZ (25μg/ml) and autologous irradiated B-LCLs (1x 105) 

for 2 days, and spots visualised following the manufacturer’s instructions. Number of spot-

forming cells is presented in the lower right corner of each image. 

 

Successful priming of drug-naïve T-cells from healthy donors against ABC had 

been reported previously. After a 14-day priming period of PBMCs from healthy 

donors with ABC, Chessman and co-workers were able to detect a drug-induced 

increase in IFN-γ and TNF-α levels in CD8+ T-cells by ICS (Chessman et al. 

2008). Thus, in a second attempt to sensitise drug-naïve T-cells isolated from 

HLA-A*31:01+ volunteers, the ICS assay was used as alternative detection 

method to identify CBZ-reactive T-cells following the 4-week induction culture. 

Similar to the studies by Chessman et al., CBZ-primed T-cells from three healthy 

donors (HV3, HV5, and HV20) were stained for IFN-γ and TNF-α after a four 

week restimulation period. No increase in IFN-γ producing T-cells was 
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observed for any of the HLA-A*31:01+ healthy volunteers tested. One volunteer, 

i.e. HV3, showed a marked increase in TNF-α producing CD4+ T-cells (from 12 % 

to 19% of total CD4+ T-cells) when stimulated with CBZ (Figure 3.6 A); 

however, this was not statistically significant. 

As mentioned previously, IL-5 and cytotoxic molecules, such as granzyme B, had 

been reported to be robust markers for the in vitro detection of drug-specific T-

cells from hypersensitive patients. Thus, in vitro primed volunteer T-cell 

cultures were subjected to a second ICS assay which covered additional 

cytokines, including granzyme B, IL-4 and IL-5. No expansion of T-cells 

expressing IL-4 or IL-5 could be detected in any of the volunteers tested. 

However, a strong increase in granzyme B producing CD8+ T-cells (from 28% to 

75% of total CD8+ T-cells) was observed for one of the healthy volunteer, i.e. 

HV5, following CBZ stimulation (Figure 3.6 B). Due to the high standard 

deviation, the increase was not statistically significant. Increased expression of 

granzyme B was also seen in the CD4+ T-cell population of this volunteer, 

although to a lesser extent.  

 

3.3.3 DC-T-cell co-cultures 

An alternative strategy to prime drug-naïve T-cells in vitro has been developed 

recently using monocyte-derived DCs (Faulkner et al. 2012). As attempts to 

generate CBZ-specific T-cells from healthy volunteers using the 4-week 

induction protocol were largely unsuccessful, we decided to apply this novel 

experimental system instead. 

Naïve T-cells from two HLA-A*31:01+ healthy donors (HV3 and HV13) were 

cultured with autologous monocyte-derived DCs and CBZ for 8 days, and 

subsequently proliferation and cytokine secretion was assessed by [3H]-

thymidine uptake and ELISpot method respectively. Likewise, priming of naïve 

T-cells isolated from a HLA-B*15:02+ healthy volunteer (HV14) was performed. 
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Figure 3.6: Cytokine expression of T-cells from two HLA-A*31:01+ volunteers (A+B) 

upon CBZ stimulation (after 4-week induction culture). 

T-cells were stimulated with CBZ (25μg/ml) and autologous, irradiated B-LCLs overnight: 

brefeldin A was added after 2h to inhibit cytokine release. Cells were permeabilised the next 

day and stained for intracellular cytokines as well as surface markers CD4 and CD8. Graphs 

represent mean ± SEM of duplicate cultures. Statistical analysis was performed using Mann-

Whitney U-test. 

 

  



  Chapter 3 

102 
 

 

Figure 3.7: CBZ-specific proliferation and cytokine secretion of T-cells from HLA-

A*31:01+ volunteers (A+B) and a HLA-B*15:02+ volunteer (C) after DC T-cell co-

culture. 

Purified, naïve T-cells were cultured with CBZ and autologous monocyte-derived DCs for 8 days. 

T-cells (1x 105) were restimulated with CBZ (6- 100μg/ml) in the presence of autologous 

monocyte-derived DCs (4x 103). Proliferation was determined by [3H]-thymidine uptake, with 

graphs showing mean cpm ± SEM of triplicate cultures. Cytokine release was measured by 

ELISpot assay, and data are given as mean SFC ± SEM of duplicate cultures. For proliferation 

data, statistical analysis was performed using one-way ANOVA (with Tukey post-hoc test; **p< 

0.01, ***p< 0.001). Student’s t-test was used to analyse ELISpot results (*p< 0.03). (SFC= spot-

forming cells) 
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A weak but significant proliferative response to CBZ could be detected in one of 

the HLA-A*31:01+ donors (Figure 3.7 A), whereas T-cells from the second HLA-

A*31:01+ donor did not show a significant increase in proliferation when 

stimulated with CBZ (Figure 3.7 B). Conversely, CBZ stimulated a strong and 

highly significant response of T-cells isolated from the HLA-B*15:02+ volunteer 

(Figure 3.7 C). Moreover, proliferation levels of T-cells in the absence of CBZ 

differed greatly between HLA-A*31:01+ and HLA-B*15:02+ donors, showing a 

two- to four-fold increase in background proliferation rates of T-cells from HLA-

A*31:01+ volunteers compared to the HLA-B*15:02+ donor. 

Release of cytokines, including INF-γ, IL-13 and granzyme B, was the second 

endpoint examined. CBZ was able to stimulate a weak significant increase in 

IFN-γ secretion of T-cells from all three volunteers (Figure 3.7 A-C). However, 

baseline levels of INF-γ released by T-cells expressing HLA-A*31:01 was 

increased two-to three-fold compared to T-cells expressing HLA-B*15:02. No 

significant increase in IL-13 or granzyme B secretion was observed for any of 

the volunteers. 

 

3.3.4 T-cell cloning 

T-cells from two HLA-A*31:01+ volunteers (HV5 and HV15) and two HLA-

B*15:02+ donors (HV14 and HV35), all of which had shown a CBZ-specific 

response in one of the above described read-outs following in vitro priming, 

were cloned by serial dilution in order to confirm a primary immune response 

to CBZ had been induced. Furthermore, T-cell cloning would allow a more 

detailed analysis of the phenotypic and functional characteristics of in vitro 

sensitised T-cells. Two individuals lacking the CBZ-associated HLA risk alleles 

(HV31 and HV39), and one HLA-A*31:01+ donor (HV20) with a negative 

response in the ICS after T-cell priming, served as controls. The cloning results 

for all seven volunteers are summarised in Table 3.2. 
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Table 3.2: Specificity and phenotype of CBZ-specific T-cell clones generated 

from healthy volunteers. 

Volunteer 
ID 

Clones 
tested (n) 

Specific 
clones (n) 
[mean SI] 

Dose-response 
(cpm) 

CBZ 0        25μg/ml 

CD phenotype 
(%) 

CD4       CD8 

HLA-A*31:01+ 

HV5 91 
7 

[2.7] 
8,170 

±6,161 
20,415 

±13,539 
n.d. n.d. 

HV15 64 
3 

[2.2] 
333 

±262 
760 

±508 
n.d. n.d. 

HV20 360 
16 

[8.4] 
5,135 

±6,359 
22,788 

±17,479 
50 30 

HLA-B*15:02+ 

HV14 312 
4 

[2.2] 
747 

±287 
1,696 
±722 

n.d. n.d. 

HV35 240 
44 

[9.2] 
4,488 

±5,077 
18,695 

±14,280 
14 67 

Controls (A*31:01- B*15:02-) 

HV31 96 
5 

[4.4] 
n.s. n.s. n.d. n.d. 

HV39 336 
4 

[2.5] 
n.s. n.s. n.d. n.d. 

n.d. = not determined; n.s. = not specific 

 

Only a few CBZ-specific clones, with very low SI values, could be generated from 

HLA-A*31:01+ volunteers HV5 and HV15 (Table 3.2). For donor HV15, the low 

proliferation counts (< 1000cpm) in presence and absence of CBZ indicated that 

identified drug-specific clones represented false positive results. The seven 

clones generated from volunteer HV5 lost their specificity within about one 

month, precluding any detailed analysis. In contrast, sixteen CBZ-reactive clones 

could be generated from volunteer HV20, of which 50% were CD4+ clones and 

30% expressed CD8 (Table 3.2). The remaining 20% of T-cell clones comprised 

CD4+ as well as CD8+ T-cells, and therefore resembled T-cell lines rather than 

clones. Upon CBZ stimulation, the clones displayed a drug concentration-

dependent proliferation profile and secreted significant amounts of IFN-γ 

(Figure 3.8 A). These results were rather surprising, given that earlier attempts 

to prime T-cells from this volunteer in vitro had been unsuccessful. 
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Disparate numbers of drug-specific clones were also detected among the HLA-

B*15:02+ volunteers. Forty-four CBZ-responsive clones could be generated from 

donor HV35 (Table 3.2). Phenotyping for CD expression revealed two-thirds of 

the clones were CD8+ and one-third CD4+. T-cell clones (TCC) proliferated to 

CBZ in a dose-dependent manner, and high levels of IFN-γ secretion were 

detected in presence of the drug (Figure 3.8 B). From the second HLA-B*15:02+ 

volunteer, i.e. HV31, only four TCC could be generated, all of which displayed 

very weak proliferation counts and SI values (Table 3.2). Within a few weeks 

these clones no longer responded to CBZ stimulation. 

 

 

Figure 3.8: CBZ-specific proliferation and IFN-γ secretion of TCC from a HLA-A*31:01+ 

(A) and a HLA-B*15:02+ volunteer (B). 

TCC were incubated with CBZ (7- 70μg/ml) and autologous irradiated B-LCLs for 48 hours. 

Proliferation was determined by [3H]-thymidine incorporation; and data are shown as mean 

cpm ± SEM of n clones. IFN-γ secretion was measured by ELISpot assay, and graphs represent 

mean SFC ± SEM of n clones. Statistical analysis was performed using one-way ANOVA with 

Tukey post-hoc test (proliferation) and Student’s t-test (ELISpot) (*p< 0.05, **p< 0.01, ***p< 

0.001). 
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From the volunteers selected as controls, nine clones were initially considered 

to be drug-specific from the calculated SI values (Table 3.2). However, when the 

proliferation assay was repeated two weeks later all nine clones failed to show 

a drug-specific response. 

Although it would have been interesting to examine the HLA restriction profile 

of the CBZ-specific clones generated from the HLA-B*15:02+ volunteer (HV35), 

in a similar way as reported in the study by Wei and colleagues (Wei, C. Y. et al. 

2012a), this was not possible due to the underrepresentation of cells expressing 

relevant HLA-B alleles in our HLA-typed cell archive, which would have been 

needed to generate HLA-matched APCs. Instead, structural aspects of CBZ 

presentation to the T-cell clones was explored using a series of halogenated CBZ 

derivatives recently synthesized by the Department of Chemistry. It had been 

shown that halogenation at the aromatic ring inhibited or reduced (2-fluoro 

CBZ) hydroxylation, and thus formation of reactive arene oxide intermediates in 

vitro (Elliott et al. 2012), indicating that the halogenated CBZ analogues are 

metabolically inert while largely retaining the same chemical properties as CBZ. 

Increasing evidence suggests that the parent drug CBZ can function as antigen 

causing T-cell activation, requiring neither metabolism nor formation of 

haptenated peptides (Wu et al. 2006; Yang et al. 2007; Wei, C. Y. et al. 2012a). 

The use of halogenated analogues therefore served as an alternative strategy to 

explore whether CBZ-reactive T-cells can be activated by the drug without the 

need for metabolism. 

When the clones from the HLA-B*15:02+ volunteer were stimulated with the 

halogenated derivatives, different patterns of cross-reactivity could be 

observed. Although the maximal response was lower with the derivatives, 

significant proliferative responses could be detected for almost all CBZ 

analogues (Fig. 3.9). All six clones were activated by at least 3 of the analogues. 

However, only two clones could be stimulated with 2,8-dibromo CBZ, which is 

likely due to steric effects preventing adequate binding of the drug to the HLA-

peptide complex. 
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Figure 3.9: Activation of CBZ-primed T-cell clones from a HLA-B*15:02+ drug-naive 

individual with halogenated derivatives of CBZ. 

TCC were incubated with CBZ or CBZ analogues (300μM) and autologous B-LCLs for 48 hours. 

Proliferation was measured by addition for [3H]-thymidine and subsequent scintillation 

counting. Data are presented as mean cpm ± SEM of n clones. One-way ANOVA with Tukey post-

hoc test was used to compare responses in the presence and absence of drug (ns= not 

significant, *p< 0.05, ***p< 0.001). (2-Br CBZ was not available for this study) 

 

 

3.4 Discussion 

 

In vitro priming of T-cells from healthy volunteers represents a promising new 

tool to study the pathomechanisms implicated in drug-induced HSRs and 

predict the risk of a drug to cause hypersensitivity. Several methods to 

stimulate a primary T-cell immune response from non-sensitised individuals 

have been developed recently using the well-characterised drug antigens SMX 

and SMX-NO. Furthermore, successful priming of T-cells from drug-naïve 

individuals expressing HLA-B*57:01 and B*15:02 has been accomplished with 

ABC and CBZ respectively (Chessman et al. 2008; Ko et al. 2011). 
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In this study, we attempted to elicit a primary immune response to CBZ in 

healthy individuals expressing HLA-A*31:01 using the same methods. In 

addition, priming of T-cells from HLA-B*15:02+ healthy donors was performed 

in order to compare T-cell responses to those observed in HLA-A*31:01+ 

volunteers. 

The first attempt to prime T-cells from HLA-A*31:01+ volunteers involved 

repeated stimulation of lymphocytes with CBZ over four weeks. Three different 

endpoints- T-cell proliferation, IFN-γ secretion, and production of intracellular 

cytokines- were investigated in order to detect drug-specific responses. In 

contrast to the findings for ABC (Chessman et al. 2008), in vitro stimulation of 

drug-naïve T-cells with CBZ did not result in a primary immune response in all 

volunteers expressing HLA-A*31:01. 

In the proliferation assay, only one out of three volunteers showed a weak to 

moderate response to CBZ. However, measuring proliferative responses may 

not be sensitive enough if priming occurred predominantly in CD8+ T-cells, 

which would be expected in context of HLA class I alleles and has been shown to 

be the case for in vitro primed T-cells from HLA-B*15:02+ donors (Ko et al. 

2011). Furthermore, the strength of the detectable T-cell response is limited by 

the low frequency of antigen-specific precursor T-cells within the PBMC 

cultures (Esser et al. 2014). When the more sensitive ELISpot assay was utilised 

as a read-out, no CBZ-induced increase in IFN-γ secretion could be detected for 

any of the HLA-A*31:01+ volunteers. This may be partially due to the high 

background levels of IFN-γ released in the absence of drug, indicating the 

presence of pre-activated T-cells. Similar observations have been reported 

previously (Engler et al. 2004), and it has been suggested that the addition of 

high amounts of IL-2 during the 4-week induction cultures may be responsible 

for the strong, but non-specific T-cell stimulation. Conversely, no increased 

baseline levels of IFN-γ were observed in T-cells from HLA-B*15:02+ donors, 

and stimulation with CBZ led to a clear increase in IFN-γ release. This suggests 

that other, currently unknown factors, must be involved in causing non-specific 

T-cell activation in HLA-A*31:01+ volunteers. Finally, analysis of intracellular 

cytokine production did not reveal a CBZ-specific increase of cytokines in T-
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cells from all three HLA-A*31:01+ volunteers. Instead, two HLA-A*31:01+ 

individuals showed increased TNF-α and granzyme B expression in CBZ-

stimulated T-cells respectively. Whether the weak T-cell responses seen in 

some of the HLA-A*31:01+ individuals represent true positive results cannot be 

determined at this stage. A repetition of the assays would be required to 

confirm that a primary T-cell stimulation to CBZ can be induced in these 

volunteers. 

In a second approach to sensitise naïve T-cells to CBZ, the in vitro T-cell priming 

assay recently developed by Faulkner and colleagues was applied (Faulkner et 

al. 2012). Highly purified naïve T-cells from HLA-A*31:01+ volunteers were 

cultured with CBZ in the presence of autologous DCs for one week. It was 

anticipated that the removal of regulatory T-cells (Treg) and the use of 

monocyte-derived DCs as highly specialised antigen-presenting cells would 

improve in vitro priming conditions, leading to the induction of more robust 

CBZ-specific T-cell responses. For one of the HLA-A*31:01+ volunteers, a weak 

but significant CBZ-specific T-cell response could be detected in both the 

proliferation assay as well as the IFN-γ ELISpot. However, T-cells from the 

second HLA-A*31:01+ volunteer only responded in the IFN- γ ELISpot. At the 

same time, baseline levels of proliferation and IFN-γ secretion were found to be 

strongly increased in both samples, indicating the presence of pre-activated T-

cells. As observed previously, this was not the case for T-cells from the HLA-

B*15:02+ donor. Here, stimulation with CBZ led to an increased release of IFN-γ 

and a strong proliferative response, which was highly significant. From the 

preliminary data presented here, it appears that the DC-T-cell priming method 

may be more efficient in inducing a primary T-cell stimulation. However, a 

larger number of volunteers should be tested before a firm conclusion is drawn. 

Because the two preceding in vitro priming methods produced conflicting 

results depending on the detection method used to determine primary T-cell 

stimulation, generation of CBZ-specific T-cell clones was attempted. T-cell 

cloning was performed from three HLA-A*31:01+ volunteers in total, of which 

two had earlier displayed a positive response. Varying numbers of clones were 

isolated from the three HLA-A*31:01+ donors, and most clones were not found 
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to be CBZ-specific. Moreover, CBZ-reactive clones from the formerly negative 

HLA-A*31:01+ volunteer showed the strongest responses, whereas CBZ-

responsive clones from the formerly positive volunteers quickly lost specificity. 

A similar situation was observed when T-cell cloning from two HLA-B*15:02+ 

volunteers was performed. Although both samples had previously responded in 

the priming assay, only minimal numbers of CBZ-specific clones could be 

isolated from one of the volunteers, and after a short culture period, they 

became unresponsive to CBZ treatment. T-cell clones from the second HLA-

B*15:02+ volunteer, in contrast, displayed strong and stable proliferative 

responses. These clones were used in a substudy examining the influence of 

CBZ metabolism on T-cell activation. Halogenated derivatives of CBZ, which 

have been shown to be resistant to metabolism in vitro, could clearly stimulate 

CBZ-responsive clones to proliferate, suggesting T-cell activation was mediated 

by the parent drug in a metabolism-independent process. However, whether 

the primary stimulation of drug-naïve T-cells from the HLA-B*15:02+ healthy 

volunteer to CBZ was induced by the parent drug, a reactive metabolite, or a 

drug protein adduct, remains to be demonstrated. 

Overall, T-cell responses to CBZ varied greatly among the HLA-A*31:01+ 

individuals tested in this study, clearly indicating that factors additional to HLA-

A*31:01 are needed in order to induce a primary immune response to CBZ. This 

is not surprising given that the positive predictive value of HLA-A*31:01 in 

Caucasians was determined to be 43% (Yip, V. L. et al. 2012), i.e. 57% of 

individuals carrying the allele do not develop hypersensitivity when treated 

with CBZ. 

In context of HLA-B*15:02, Ko et al. reported that primary stimulation of T-cells 

from HLA-B*15:02+ healthy donors to CBZ could only be achieved if T-cells 

expressing a specific TCR were present. In absence of the specific T-cell 

clonotypes no CBZ-specific response could be detected (Ko et al. 2011). 

Whether specific TCR clonotypes may be required for eliciting CBZ-specific 

responses in HLA-A*31:01+ individuals has not been investigated yet. 
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Other factors that have been reported to affect in vitro priming efficiency 

include inadequate antigen presentation, lack of co-stimulatory cytokines, and 

the presence of Treg suppressing an immune response (Jedema et al. 2011). The 

removal of Treg prior to the DC-based priming assay may explain why primary 

T-cell stimulation might have been slightly more successful in this part of the 

study. With regards to the cytokine milieu, addition of IL-7 has been proposed 

to specifically stimulate the growth of naïve T-cells without inducing 

background proliferation, and may substitute IL-2 treatment (Fry and Mackall 

2005). However, one of the most critical factors for the successful stimulation of 

primary T-cell responses to drugs relates to the presentation of drug antigen. 

For many drugs causing hypersensitivity, including CBZ, the exact antigenic 

structure has not yet been identified. Thus, we cannot be sure that sufficient 

amounts of drug antigen are present during the in vitro priming process. 

Further studies examining the mechanisms of drug antigen formation are 

therefore needed in order to advance our understanding of how drug-specific 

immune responses develop. 

Taken together, there are many variables which may affect the process to 

stimulate primary T-cell responses to drugs in vitro. Identifying these variables 

and subsequent adaptation of current priming protocols to control for them 

should lead to enhanced in vitro T-cell stimulation and give more robust 

responses. 
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4.1 Introduction 

 

Carbamazepine (CBZ) is known to cause a variety of hypersensitivity reactions 

(HSRs), most commonly affecting the skin, ranging from mild maculopapular 

rashes to severe reactions, such as Stevens-Johnson syndrome (SJS) and toxic 

epidermal necrolysis (TEN) (Zaccara et al. 2007). Two distinct HLA class I 

alleles, i.e. HLA-B*15:02 and HLA-A*31:01, have recently been found to be 

associated with an increased risk for the development of CBZ hypersensitivity. 

However, the two alleles have been linked to different clinical phenotypes of 

CBZ hypersensitivity and also act as predisposing factors for different ethnic 

groups (Yip, V. L. et al. 2012). HLA-B*15:02 is strongly associated with CBZ-

induced SJS and TEN in Southeast Asian populations (Chung et al. 2004; 

Locharernkul et al. 2008; Mehta et al. 2009; Chang et al. 2011), whereas HLA-

A*31:01 occurs at increased frequency in Japanese, Korean and Caucasian 

patients across all phenotypes of CBZ hypersensitivity (Kim et al. 2011; 

McCormack et al. 2011; Ozeki et al. 2011). 

Drug-specific T-cells isolated from hypersensitive patients have been shown to 

respond to CBZ in vitro, and presentation of CBZ to drug-specific T-cells was 

demonstrated to be MHC-dependent, but did not require intracellular 

metabolism or antigen processing (Wu et al. 2007). These observations support 

the p-i concept, proposing that a direct non-covalent binding of the drug to HLA 

or T-cell receptor (TCR) can cause T-cell activation and ultimately result in 

development of HSRs. However, the molecular mechanism through which CBZ 

activates T-cells and more specifically how the drug interacts with HLA alleles 

to stimulate T-cells remains largely unknown. 

A fundamental step in the activation of antigen-specific T-cells is the recognition 

of a peptide-MHC complex (pMHC) by the corresponding TCR. This interaction 

can be described as one of the crucial events in adaptive immune responses, 

taking place in two highly selective steps (Lundegaard et al. 2010). First, the 

antigenic structure has to bind to the HLA molecule. Second, pMHC has to be 

recognised by the TCR of T-cells. 
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Individual HLA molecules can only bind a restricted range of epitopes, which is 

mainly defined by the physicochemical properties of the amino acids forming 

the HLA binding groove. The amino acid sequence of peptides which are able to 

bind to a specific HLA allele create the so-called peptide binding motif of the 

HLA allele (Gowthaman and Agrewala 2009). 

Traditionally, MHC peptide elution studies were used to define the binding 

motif of individual HLA alleles (Gowthaman and Agrewala 2009). In order to 

store and analyse the vast amount of data generated during these experiments, 

several bioinformatic tools have been developed over the past years. Advances 

in bioinformatics and increased availability of computational models have 

enabled the study of immunological processes in silico. This gave rise to the field 

of computational immunology or immunoinformatics (Petrovsky and Brusic 

2002; Tomar and De 2010); and it is now possible to predict HLA binding 

specificities and identify new epitopes using computational methods. 

Immunoinformatic resources comprise immunological databases, sequence 

alignment tools, epitope prediction algorithms, structural modelling and 3D 

simulations, as well as various mathematical models (Yan 2010). The methods 

are aimed at reducing time-consuming and expensive experimental procedures, 

thereby assisting in testing research hypotheses and guiding experimental 

research processes (Yan 2010). Immunoinformatic analyses are usually 

conducted in a systematic way starting at the DNA level comparing genetic 

sequence information, followed by correlating the genetic structure to the 

functional core, and finally using three-dimensional modelling to depict any 

structure-function relationship (Yan 2010). Experimental assays can then be 

used to test the structure-function associations and prove in silico findings. 

In this chapter the individual binding characteristics of HLA-A*31:01 and HLA–

B*15:02 were explored using publicly accessible bioinformatic tools. A 

systematic in silico analysis was conducted to investigate whether any 

similarities exist between HLA-A*31:01 and –B*15:02 with regards to their 

structure and/ or epitope binding specificity, which might provide a basis for 

their respective association with CBZ-induced HSRs. 
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Moreover, it has recently been proposed that CBZ might be able to stimulate T-

cell responses in a similar way to abacavir, binding directly to the susceptible 

HLA allele and thereby altering the peptide repertoire (Illing et al. 2012). 

For HLA-B*15:02, initial experimental evidence seems to support this 

mechanistic hypothesis (Illing et al. 2012). However, studies investigating the 

influence of CBZ on the peptide repertoire of HLA-A*31:01 have not yet been 

performed. Therefore, a conventional MHC peptide elution study using a HLA-

A*31:01-transfected C1R cell line was carried out, aiming to establish whether 

the standard peptide binding motif of HLA-A*31:01 can be modified by CBZ 

treatment. 

 

 

4.2 Methods 

 

HLA in silico analysis was conducted in collaboration with Dr. Andrew Jones and 

Dr. Faviel Gonzalez Galarza from the Institute of Integrative Biology, University 

of Liverpool. 

 

4.2.1 HLA sequence alignment 

Amino acid sequence alignment was performed using CLUSTAL W2 (available 

at http://www.ebi.ac.uk/Tools/msa/clustalw2/) to determine differences and 

similarities between selected alleles. Sequences were extracted in FASTA file 

format from dbMHC database (see Table 4.1) and entered into CLUSTAL W2 for 

analysis. 

 

4.2.2 Peptide binding motifs 

Peptide binding motifs published for HLA-A*31:01 and -B*15:02 were obtained 

from MHC Motif Viewer and SYFPEITHI databases (Table 4.1). 
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Motifs were compared manually by eye to determine the preferred amino acids 

at each position of nonamer peptide ligands. 

 

4.2.3 3D modelling 

The three-dimensional model structures of HLA-A*31:01 and HLA-B*15:02 

were generated using MODELLER 9.9 software (Sali and Blundell 1993), and 

structures of HLA-A*11:01 (PDB ID 1Q94) and HLA-B*15:01 (PBD ID 1XR8) 

published on the RCSB Protein Data Bank (PDB) were used as templates 

respectively. The selected HLA template structures both represented the closest 

matching alleles for which a crystal structure was available on the Protein Data 

Bank. After screening Immune Epitope Database (IEDB) and SYFPEITHI 

database (Table 4.1), a common epitope reported to bind to both HLA-A*31:01 

and HLA-B*15:02 was modelled into the HLA binding groove. 

Theoretical 3D structures of HLA-A*31:01 and HLA-B*15:02 were sent to 

RAMPAGE (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php) for 

validation of the three-dimensional spacing of amino acids by Ramachandran 

plot. Valid 3D structures were visualised in PyMol (DeLano 2002). 
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Table 4.1: Bioinformatic resources and databases used in this study 

Name Description URL Reference 

IMGT/HLA Database on HLA 

sequences and 

analysis tools 

http://www.ebi.ac.uk/ipd

/imgt/hla/ 

(Robinson et al. 
2013) 

dbMHC Database 

comprising DNA 

and clinical data 

related to MHC 

http://www.ncbi.nlm.nih.

gov/projects/gv/mhc/ 
(Wheeler et al. 
2004) 

CLUSTAL 

W 2.0 

Program for 

multiple sequence 

alignments of 

nucleotide or amino 

acid sequences 

http://www.ebi.ac.uk/To

ols/msa/clustalw2/ 

(Larkin et al. 
2007) 

IEDB Database on B- and 

T-cell epitopes, 

including search 

interface 

http://www.iedb.org/ (Peters et al. 

2005) 

SYFPEITHI Database of MHC 

ligands and peptide 

binding motifs 

http://www.syfpeithi.de/ (Rammensee, H. 

et al. 1999) 

MHC Motif 

Viewer 

Repository of MHC 

binding motifs 

http://www.cbs.dtu.dk/bi

otools/MHCMotifViewer/

Home.html 

(Rapin et al. 

2008) 

RSCB 

Protein 

Data Bank 

Archive of crystal 

structures of 

biological 

macromolecules 

http://www.rcsb.org/pdb

/home/home.do 

(Berman et al. 
2000) 

RAMPAGE Program assessing 

Ramachandran 

plots of protein 

structures 

http://mordred.bioc.cam.

ac.uk/~rapper/rampage.p

hp 

(Lovell et al. 

2003) 
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The methods outlined below have been described previously (Illing et al. 2012) 

and the work was carried out in the laboratories of Prof. James McCluskey, 

Department of Microbiology& Immunology, University of Melbourne, Australia 

and Prof. Anthony Purcell, Department of Biochemistry, Monash University, 

Melbourne, Australia. 

 

4.2.4 Transfection of C1R cell lines 

This part of the work was performed by Patricia Illing, Department of 

Microbiology& Immunology, University of Melbourne, Australia. 

C1R cells were transfected with either HLA-A*31:01 or one of two control 

alleles, HLA-A*03:01 or HLA-A*31:04 (cDNA clones for each were purchased 

from GenScript, USA), using a murine stem cell virus-based retroviral 

expression system (Szymczak et al. 2004; Holst et al. 2006). The B-lymphoblast 

cell line C1R is considered a HLA-A,B negative mutant cell line which only 

expresses HLA-C*04 and low amounts of HLA-B*35 on its surface (Zemmour et 

al. 1992). 

 Briefly, cDNA constructs were ligated into the MSCV-IRES-GFP retroviral 

expression vector (pMIG; Clonotech laboratories, USA) and transformed into 

E.coli. Vectors containing the correct insert were introduced into 293T HEK 

cells by retroviral transduction for replication. C1R cell lines were subsequently 

transfected with viral vectors produced by 293T cells. Successfully transfected 

C1R cell lines were screened for surface HLA expression by flow cytometry 

followed by single cell sorting of highly HLA expressing cells. 

 

4.2.5 C1R cultures 

HLA-transfected C1R cell lines were cultured in 100ml RF10 medium (see 

chapter 3.2.3) in T175 flasks at 37°C. C1R cell lines were grown in duplicate 

cultures, one left untreated and one treated with 25μg/ml CBZ, until a cell 

density of approximately 1x108 cells/culture was reached. The culture medium 

was changed every 2-3 days to maintain proliferation. C1R cells were harvested 
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by centrifugation (2400rpm, 15min, 4°C), washed twice in cold PBS, then 

pelleted in 50ml falcon tubes at 5-10x107 cells and frozen immediately on dry 

ice. Cell pellets were stored at -80°C until needed. 

In a second experimental set-up, HLA-A*31:01 transfected C1R cells were 

grown to high density in T175 flasks in presence and absence of CBZ. Cultures 

were then transferred into 2L roller bottles and cultured at 37°C under constant 

rolling. 300ml RF10 medium (+/- 25μg/ml CBZ) was added every 2-3 days until 

1-1.2L of dense cell cultures were obtained. Cells were harvested as described 

above and frozen at 5-10x108 cells. 

During the culture period, HLA surface expression was monitored regularly 

using flow cytometry. 

 

4.2.6 Preparation of w6/32 cross-linked Protein A resin 

W6/32 hybridoma cells (Barnstable et al. 1978) were cultured in 800ml RF3 

(RF10 with only 3% FBS) medium in roller bottles at 37°C under constant 

rolling. When cell density was considered high enough, a 500ml cell suspension 

was spun down (2400rpm, 20min, 4°C) and supernatant was filtered through 

Nalgene® Rapid Flow 0.2μm aPES vacuum filter (Thermo Scientific, USA). 

The subsequent steps were carried out by Rochelle Ayala. 

W6/32 anti-MHC I antibody was purified by Affinity Chromatography Profina 

Purification System (Bio-Rad, Australia). The antibody was eluted into PBS 

according to the manufacturer’s protocol. 

2ml Protein A Sepharose Fast Flow (PAS; Amersham, GE Healthcare, UK) was 

applied to a Poly-Prep Chromatography column (Bio-Rad, Australia), washed 

with PBS and resuspended in PBS supplemented with 20mg purified w6/32 

antibody. PAS mix was incubated at 4°C for 30min slowly rotating end over end. 

The mixture was poured into a Poly-Prep Chromatography column and the 

flow-through passed over the column a second time. W6/32 bound resin was 

washed with filtered 50mM H3BO3, 50mM KCl (Ajax Finechem, Australia), 4mM 
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NaOH pH 8.0 (ChemSupply, Australia). Resin was equilibrated in 0.2M 

Triethanolamine pH 8.2 (Ajax Finechem, Australia). W6/32 was cross-linked to 

PAS by incubation in 40mM Dimethylpimelimidate (DMP; Sigma-Aldrich, USA) 

in 0.2M Triethanolamine pH 8.2. Cross-linking reaction was terminated using 

ice-cold 0.2M Tris pH 8.0, and any un-cross-linked w6/32 was removed with 

0.1M citric acid (Ajax Finechem, Australia). Resin was equilibrated into PBS and 

stored at 4°C for max. 1 week until used. Directly before use the w6/32 affinity 

column was run into wash buffer 1 (see Table 4.2). 

 

4.2.7 Elution and Purification of MHC bound peptides 

Frozen C1R pellets were ground in a Retsch Mixer Mill MM 400 (Retsch, 

Germany) under cryogenic conditions and resuspended in 20ml lysis buffer 

containing 0.5% IGEPAL (Sigma-Aldrich, USA), 50mM Tris pH 8.0, 150mM NaCl 

(Merck-Millipore, Germany) and protease inhibitors (Complete Protease 

Inhibitor Cocktail Tablet; Roche Molecular Biochemicals, Switzerland). Cell 

lysates were incubated for 45min at 4°C rotating slowly end over end. Lysates 

of 1x108 cells were spun down at 13,000rpm for 20min. For 1x109 cell pellets, 

lysates were cleared by ultracentrifugation at 45,000rpm. Any remaining 

particles were removed by passing the lysates through a Pre-Prep 

Chromatography column containing only PAS, which was pre-washed with 

wash buffer 4 and equilibrated into wash buffer 1 prior to use. Lysates were 

then passed through 1ml of w6/32 resin in a Pre-Prep Chromatography column 

(prepared as described above) to capture MHC class I bound peptides. Any 

unspecific bound material was removed by washing with 20ml of wash buffers 

1-4 sequentially (see Table 4.2). Peptide-MHC complexes were eluted off the 

column using 4ml of 10% acetic acid. Peptides were separated from the protein 

components (MHC class I heavy chain and β2m) using a 4.6mm internal 

diameter x 50mm long monolithic reversed-phase (RP) C18 High Performance 

Liquid Chromatography (HPLC) column (Chromolith Speed Rod, Merck-

Millipore, Germany) on an ÄKTAmicro™ HPLC system (GE Healthcare, UK) 

operated by UNICORNTM software (GE Healthcare, UK). The mobile phase 

consisted of 0.1% trifluoroacetic acid (TFA, Thermo Scientific, USA) [buffer A] 
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and 80% acetonitrile (Fisher Scientific, USA)/ 0.1% TFA [buffer B]. The column 

was pre-equilibrated into 2% buffer B (98 % buffer A) at a flow rate of 

1ml/min, and then loaded with the eluted peptide/protein mix via a 5ml 

injection loop. The separation of peptides from the protein components was 

facilitated by an increasing gradient of buffer B. Explicitly, after re-equilibration 

of the column into 2% buffer B, the concentration of buffer B increased linearly 

to 40% over 4ml, to 45% over the subsequent 4ml (to resolve peptides), then to 

100% over the next 2ml. The flow rate was maintained at 1ml/min throughout 

and UV absorbance of eluted material was monitored at 215nm. Fractions of 

500μl volume expected to contain peptides were collected in 1.7ml Protein 

LoBind Eppendorf tubes. 

 

Table 4.2: Composition of wash buffers for peptide elutions. 

Wash buffer components 

1 

0.005% IGEPAL, 50mM Tris pH 8.0, 150mM NaCl, 5mM EDTA, 

100uM PMSF, 1μg/ml Pepstatin A 

in MilliQ H2O 

2 50mM Tris pH 8.0, 150mM NaCl in MilliQ H2O 

3 50mM Tris pH 8.0, 450mM NaCl in MilliQ H2O 

4 50mM Tris pH 8.0 in MilliQ H2O 

 

 

4.2.8 Peptide identification by mass spectrometry 

This part of the work was undertaken by Patricia Illing at the Department of 

Biochemistry, Monash University, Australia. 

Peptide containing fractions were concentrated using a speed vacuum 

concentration system (LABCONCO, USA) and loaded onto a microfluidic trap 

column packed with ChromXP C18-CL 3μm particles (300Å nominal pore size; 

AB SCIEX, USA), pre-equilibrated in 0.1% formic acid (AnalaR, Australia), 5% 

acetonitrile at 5μl/min using an Eksigent NanoUltra cHiPLC system (AB SCIEX, 
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USA). An analytical (15 cm x 75 μm ChromXP C18-CL 3) microfluidic column 

(AB SCIEX, USA) was switched in line and peptides separated using a linear 

gradient of 0-64% acetonitrile over 55min at a flow rate of 300nl/min. 

Separated peptides were analysed using an AB SCIEX 5600 TripleTOF mass 

spectrometer equipped with a Nanospray III ion source and accumulating up to 

20 MS/MS spectra per second. Acquired data was analysed with Protein PilotTM 

software version 4.5 (AB SCIEX, USA) searching against the human proteome, 

and identified peptides subjected to strict bioinformatic criteria assigning 

confidence values to each peptide. A false discovery rate was calculated by use 

of a decoy database. 

 

4.2.9 Generation of peptide binding motifs 

The peptide binding motif of HLA-A*31:01 was generated through analysis of 

the mass spectrometry data using excel analysis files designed by Patricia Illing 

and Nathan Croft at the Department of Biochemistry, Monash University, 

Australia.  

The distribution of peptides of specific length was calculated, as well as the 

frequency with which amino acids appeared at a specific position within the 

peptides. 
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4.3 Results 

 

4.3.1 In silico modelling 

 

HLA sequence alignment 

Initially, amino acid (AA) signatures of HLA-A*31:01 and HLA-B*15:02 were 

compared to members of the respective serotype and supertype family. The 

alignment was performed for the AA sequence of the α1 and α2 domain (exon 

two and three) forming the binding cleft of HLA class I molecules. AA changes 

highlighted by the programme CLUSTAL W2 were extracted and residues 

located in the binding pockets A- F of HLA class I molecules, previously 

described by Saper and colleagues (Saper et al. 1991), were analysed further. 

When HLA-A*31:01 was compared to members of the HLA A31 serotype, as 

defined by the WHO and listed on the IMGT/HLA database, no AA residue was 

found to occur exclusively in HLA-A*31:01 (Table 4.3). Unique AA residues 

could be observed in isolated alleles of the A31 serotype but not in HLA-

A*31:01. In total, only 12 out of 182 residues differed between A31 serotype 

members, eight of which were located in binding pockets (Table 4.3). 

 

 



 

 
 

1
2

4
 

Table 4.3: Summary of HLA A31 serotype sequence alignment. 

Residue 
(Pocket) 
Physicochem 

66 
(A/B) 
s 

73 
(C) 
n 

77 
(F) 
s 

80 
(F) 
n 

81 
(F) 
n 

97 
(C/E) 
n 

114 
(D/E) 
s 

167 
(A) 
n 

A*31:02 K I D T L M Q W 
A*31:12 N I D T L K Q W 
A*31:01 N I D T L M Q W 
A*31:04 N I D T L I R W 
A*31:05 N I D T L M Q G 
A*31:10 N T N I A M Q W 
Physicochemical properties of amino acid residues: s= strong similarity; n= not conserved 

 

Table 4.4: Summary of HLA A03 supertype sequence alignment. 

Residue 
(Pocket) 
Physicochem 

9 
(B/C) 
n 

63 
(A/B) 
s 

70 
(B/C) 
s 

73 
(C) 
n 

97 
(C/E) 
n 

114 
(D/E) 
s 

152 
(E) 
n 

156 
(D/E) 
n 

163 
(A) 
n 

171 
(A) 
s 

A*33:01 T N H I M Q V L T H 
A*33:03 T N H I M Q V L T Y 
A*31:01 T E H I M Q V L T Y 
A*74:01 F E H T M Q V L T Y 
A*66:01 Y N Q T R Q E W R Y 
A*68:01 Y N Q T M R V W T Y 
A*03:01 F E Q T I R E L T Y 
A*11:01 Y E Q T I R A Q R Y 
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A second sequence alignment was performed on the HLA A03 supertype family 

as defined in the paper by Sidney et al. (2008). HLA supertypes represent 

groups of HLA molecules which show an overlap in peptide specificity and 

therefore display similar peptide binding motifs (Sidney et al. 2008). As 

expected the variation in AA sequences was broader for the HLA A03 supertype 

than the A31 serotype. Sequences varied in 22 of the 182 residues forming the 

binding cleft, with ten AAs located in HLA class I binding pockets. AA changes 

were detected in all binding pockets apart from the F-pocket, which was found 

to be fully conserved across the A03 supertype. But no AA residue was specific 

to HLA-A*31:01 (Table 4.4). 

In parallel, HLA-B*15:02 was analysed in comparison to HLA alleles of the HLA 

B75 serotype and B62 supertype respectively (Table 4.5 and 4.6). Six residues 

were found to vary among the alleles of the HLA B75 serotype, and five of the 

residues were positioned in binding pockets. No alterations were observed in 

the A and C pockets. The only variable residue of the F pocket, residue 95, 

fluctuated between leucine and isoleucine (Table 4.5). Most altered residues 

were defined by two different amino acids, with the exception of residue 67 

which was characterised by a different amino acid for nearly every allele. 

However, none of the AA residues were solely expressed by HLA-B*15:02 (Table 

4.5). For the HLA B62 supertype, AA sequences differed in 25 residues in total. 

Sixteen residues were determined to be part of the binding pockets A to F 

(Table 4.6). Most variations affected only a single HLA allele but not HLA-

B*15:02. Limited sequence variations which affected HLA-B*15:02 alongside 

HLA-B*15:13 were observed for residues 63 (Glu63Asn) and 113 (His113Tyr). 

However, the different amino acids in both positions were determined to be of 

strong similarity regarding their physicochemical properties. 
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Table 4.5: Summary of HLA B75 serotype sequence alignment. 

Residue 
(Pocket) 
Physicochem 

67 
(B) 
n 

95 
(F) 
s 

113 
(D) 
s 

152 
(E) 
n 

156 
(D/E) 
n 

B*15:02 S I Y E L 
B*15:21 C I Y E L 
B*15:31 S L Y V L 
B*15:08 F L H E W 
B*15:11 Y L H E W 
 

 

Table 4.6: Summary of HLA B62 supertype sequence alignment. 

Residue 
(Pocket) 
Physicochem 

63 
(A/B) 
s 

66 
(A/B) 
n 

67 
(B) 
n 

70 
(B/C) 
n 

74 
(C) 
n 

77 
(F) 
w 

80 
(F) 
n 

81 
(F) 
n 

95 
(F) 
n 

97 
(C/E) 
n 

113 
(D) 
s 

114 
(D/E) 
s 

116 
(F) 
n 

156 
(D/E) 
n 

167 
(A) 
n 

171 
(A) 
s 

B*15:01 E I S T Y S N L L R H D S W W Y 
B*46:01 E K Y R D S N L L R H D S W W Y 
B*15:12 E I S T Y S N L L R H D S W G Y 
B*15:02 N I S T Y S N L I R Y D S L W Y 
B*15:13 N I S T Y N I A I R Y D S L W Y 
B*52:01 E I S T Y N I A W T H N Y L W H 
Physicochemical properties of amino acid residues: s= strong similarity; w= weak similarity; n= not conserved 
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Next, an alignment of HLA-A*31:01 and B*15:02 was performed, including 

A*03:01 and B*46:01 as control alleles (Table 4.7). HLA-A*03:01 and HLA-

B*46:01 were selected as control alleles due to their high frequency in 

Caucasian and Asian populations respectively, and therefore assumed not to be 

a risk factor for CBZ hypersensitivity. Additionally, both control alleles are part 

of the respective HLA supertype. Especially modifications in the B- and F-pocket 

were considered to be of interest, as these pockets are known to interact with 

anchor residues P2 and PΩ of binding peptide epitopes (Sidney et al. 2008). 

Furthermore, the F-pocket of the HLA-B*57:01 allele had previously been shown 

to be the major binding site for abacavir, an antiretroviral drug known to cause 

hypersensitivity syndrome in patients carrying HLA-B*57:01 (Chessman et al. 

2008; Illing et al. 2012). 

The AA sequences of the four alleles varied in 37 residues, of which 13 were 

located in binding pockets (Table 4.7). Although the alignment shows the 

highest variety between AA sequences in comparison to afore described 

alignments, almost 80% of the AA residues of the α1 and α2 domains were fully 

conserved. Three residues of the F pocket (77, 80, 116) were found to be 

modified, clearly separating the HLA-A alleles from HLA-B (Table 4.7). In the B 

pocket, alterations in five residues (9, 63, 66, 67, 70) were observed; and the 

physicochemical properties of two of these residues (63, 70) were 

characterised as strongly similar across the four alleles. However, none of the 

13 altered amino acids were the same for HLA-A*31:01 and B*15:02. 
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Table 4.7: Differences in amino acid sequence between HLA-A*31:01 and HLA-B*15:02 and two control alleles. 

Residue 
(Pocket) 
Physicochem 

9 
(B) 
n 

63 
(B/A) 
s 

66 
(B) 
n 

67 
(B) 
n 

70 
(B) 
s 

73 
(C) 
n 

74 
(C) 
n 

77 
(F) 
w 

80 
(F) 
w 

97 
(C/E) 
n 

114 
(D/E) 
n 

116 
(F) 
w 

152 
(E) 
n 

A*03:01 F E N V Q T D D T I R D E 
A*31:01 T E N V H I D D T M Q D V 
B*15:02 Y N I S N T Y S N R D S E 
B*46:01 Y E K Y R T D S N R D S E 
Physicochemical properties of amino acid residues: s= strong similarity; w= weak similarity; n= not conserved 
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Peptide binding motifs 

Following the analysis of the AA sequence characteristics of HLA-A*31:01 and 

B*15:02, the nature of binding peptide epitopes was examined. 

First, published binding motifs of the two HLA alleles were obtained from the 

MHC Motif viewer website (Figure 4.1). The most outstanding feature for both 

HLA-A*31:01 and B*15:02 is the very dominant P9 anchor residue indicating 

that the binding specificity of both alleles is strongly determined by the C-

terminal residue of nonamer peptides. The binding contribution of this AA 

residue is far more prominent in HLA-A*31:01 and B*15:02 than in common, 

classical HLA class I alleles, e.g. HLA-A*02:01 and HLA-B*08:01 (Figure 4.1). 

Furthermore, the C-terminal binding site of HLA-A*31:01 shows a strong 

preference for peptides with a basic arginine residue, whereas HLA-B*15:02 

prefers neutral to hydrophobic amino acids at the P9 position. Generally, the 

main anchor residues of HLA class I binding peptides are the positions P2 and 

P9, but this is not the case for HLA-A*31:01 or B*15:02. When comparing the 

binding motifs of the two alleles to motifs of classic HLA class I alleles, such as 

HLA-A*02:01, the P2 residue does not seem to act as an anchor residue for 

either HLA-A*31:01 or B*15:02 (Figure 4.1). Nor does any other peptide residue 

appear to function as a substitute for the missing anchor residue. 

These observations are largely consistent with the data available from the 

SYFPEITHI database (Table 4.8). However, the peptide binding motif of HLA-

B*15:02 published on SYFPEITHI displays position P2 as anchor residue. For 

HLA-A*31:01, peptide positions P2, P3 and P6 are classified as auxiliary anchor 

residues. When the preferred amino acids in positions P1 to P9 were compared 

between HLA-A*31:01 and B*15:02, a considerable overlap could be detected in 

position P2, P3 and P4 (Table 4.8). Nonetheless, HLA-A*31:01 seemed to 

accommodate a wider range of amino acids in its’ binding pockets which 

suggests that HLA-A*31:01 exhibits weaker binding specificity in preferred 

amino acids with the exception of anchor position P9. 
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Figure 4.1: Peptide 

binding motifs of HLA-

A*31:01, HLA-B*15:02 and 

two control HLA alleles. 

Logo-plots were extracted 

from the MHC Motif 

Viewer (Rapin et al. 

2008). 

Binding motifs are plotted 

for nonamer peptides. 

Amino acids with a positive 

binding effect are mapped 

on the positive y-axis; 

negative amino acids with a 

negative binding effect are 

shown on the negative y-

axis. The height of each 

amino acid represents the 

relative contribution to the 

binding specificity. 

The pie chart represents the 

reliability index (upper 

number) for the binding 

motif, which is determined 

by Pearson correlation 

calculating the pseudo 

sequence distance (lower 

number) to the nearest 

neighbouring allele with a 

well-characterised binding 

specificity. 
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Table 4.8: Comparison of HLA-A*31:01 and HLA-B*15:02 peptide binding 

motifs derived from SYFPEITHI database (Rammensee, H. et al. 1999). 

P= position of amino acid in nonamer; A= HLA-A*31:01; B= HLA-B*15:02 

 

3D structural modelling 

As no crystal structures for either HLA-A*31:01 nor HLA-B*15:02 were available 

on the RSCB Protein Data Bank, three-dimensional model structures were 

generated in silico using MODELLER 9.9 software. The structures of HLA-

A*11:01 (Li, Lenong and Bouvier 2004) and HLA-B*15:01 (Roder et al. 2006) 

were determined to be the closest neighbouring alleles for which a crystal 

structure had been deposited on PBD, and thus were used as template 

structures. HLA-A*31:01 differs in 18 AA residues from HLA-A*11:01, with eight 

amino acids (9, 70, 73, 97, 114, 152, 156, 163) located in binding pockets. Five 

amino acid residues vary between HLA-B*15:02 and HLA-B*15:01, of which four 

amino acids (63, 95, 113, 156) form parts of binding pockets. 

The 3D models of HLA-A*31:01 and HLA-B*15:02 comprised each of the HLA 

alleles in complex with the Escherichia coli peptide KLAEIFQPF, as HLA 

molecules without embedded peptide are considered to be unstable and might 

show a different three-dimensional architecture. KLAEIFQPF had been 

identified as a common binder of both HLA-A*31:01 and B*15:02, after 

comparing published peptide epitopes for each of the HLA alleles on IEDB and 

SYFPEITHI database. Peptide epitopes were cross-matched for common peptide 
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binders between HLA-A*31:01 and B*15:02 which were not present in the 

previously selected control alleles, i.e. HLA-A*03:01 and HLA-B*46:01. 

Spatial arrangement of amino acids in the generated 3D structures was 

validated by Ramachandran plot via RAMPAGE (see Appendix F2). Both models 

satisfied the evaluation criteria of the Ramachandran analysis (Table 4.9). In 

each model only 1 amino acid was considered as an outlier, however, in both 

cases the amino acid in question did not fall in the HLA binding region and was 

therefore considered to be unimportant. 

 

Table 4.9: RAMPAGE results for 3D models of HLA-A*31:01 and HLA–B*15:02. 

Ramachandran plot 
Evaluation 

HLA-A*31:01 HLA-B*15:02 

Residues in favoured 
region (98% expected) 

730 (97.9%) 371 (98.1%) 

Residues in allowed 
region (2% expected) 

7 (1.9%) 6 (1.6%) 

Residues in outlier 
region 

1 (0.3%) 1 (0.3) 

 

To assess the structural characteristics of the peptide binding cleft of HLA-

A*31:01 and B*15:02, the 3D models were visualised in PyMol and the binding 

cleft of each allele was selected for display. Further analysis concentrated on the 

spatial conformation of altered amino acids between template and model 

structures which were located in HLA class I binding pockets. 

The binding cleft of HLA-A*31:01 displayed modifications in eight amino acids 

in comparison to HLA-A*11:01 (Figure 4.2). When the AA sequence of HLA-

A*03:01 was taken into consideration as additional control allele, only four AA 

residues remained specific to HLA-A*31:01. The modified residues Gln70His, 

Thr73Ile, Ile97Met and Arg114Gln displayed an altered spatial conformation 

which could affect peptide binding, and thus might demarcate the binding 

specificity of HLA-A*31:01 (Figure 4.2). The altered residues were located 

across binding pockets B to E (70-B/C, 73-C, 97-C/E, 114-D/E). 
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The three-dimensional model of HLA-B*15:02 showed changes in only four 

binding pocket residues when compared to HLA-B*15:01 (Figure 4.3). The 

altered amino acids Glu63Asn, Leu95Ile, His113Tyr and Trp156Leu were 

located in binding pockets A/B, F, D and D/E respectively. Importantly, the 

sequences of HLA-B*15:01 and B*46:01 are identical in these four positions. In 

conjunction with a change in physiochemical properties, the structural 

conformation of AA residues 63 and 113 might mark the binding specificity of 

HLA-B*15:02 (Figure 4.3). 
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Figure 4.2: Binding cleft of HLA-

A*31:01 in comparison to HLA-

A*11:01. 

The graphics represent the three-

dimensional ribbon structure of the 

HLA binding cleft (grey). Altered 

amino acid residues which are 

located in binding pockets are 

highlighted as stick structures. 

The red sticks depict amino acids 

which are characteristic to HLA-

A*31:01 when residues were 

compared to sequences of HLA-

A*11:01 and A*03:01. The blue 

sticks illustrate amino acids which 

vary across all three HLA-A alleles. 
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Figure 4.3: HLA-B*15:02 

binding cleft in relation to 

HLA-B*15:01. 

The HLA binding cleft (grey) is 

depicted in ribbon configuration 

and modified amino acids 

located in binding pockets are 

highlighted as stick structures. 

Red amino acids are unique to 

HLA-B*15:02 in comparison to 

amino acid sequences of HLA-

B*15:01 and B*46:01. 
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4.3.2 Peptide elution studies 

In order to characterise the peptide binding motif of HLA-A*31:01 in vitro and to 

test whether CBZ is able to modify the HLA-A*31:01 peptide repertoire, the B-

lymphoblastoid cell line C1R was transfected with HLA-A*31:01 or a control 

HLA-A allele, i.e. HLA-A*03:01 or HLA-A*31:04. C1R cells are considered to lack 

HLA class I expression, except for HLA-C*04 and minor amounts of HLA-B*35, 

and are a widely used tool for functional studies of individual HLA class I alleles 

(Zemmour et al. 1992). HLA-A*03:01 and HLA-A*31:04 were selected as control 

alleles, on the grounds that HLA-A*03:01 was absent in CBZ hypersensitive 

patients in our GWAS (McCormack et al. 2011) and HLA-A*31:04 shows a high 

similarity to HLA-A*31:01 with only two changes in AA sequence. 

HLA-transfected C1R cells were cultured in the presence and absence of CBZ, 

and HLA-bound peptides isolated by affinity chromatography using the anti-

HLA class I specific antibody w6/32. The purified peptide-HLA complexes were 

eluted with acetic acid, which also facilitates dissociation of peptide and HLA, 

and separated by RP-HPLC. When the chromatograms of CBZ-treated cultures 

were compared to untreated cultures, no peak signifying the accumulation of 

CBZ could be detected in the UV trace (Figure 4.4). The peptide-containing 

fractions were subsequently analysed by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). 

Unmodified CBZ could be clearly detected in all drug-treated samples (Figure 

4.5). However, CBZ levels were no higher for HLA-A*31:01 than for the control 

alleles, suggesting binding of CBZ to HLA-A alleles was non-specific (data not 

shown). No CBZ metabolites could be observed in the MS spectra of the peptide 

fractions. 

Next, the peptide repertoire presented by HLA-A*31:01 in the presence and 

absence of CBZ was assessed in more detail. 
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Figure 4.4: Chromatograms of RP-HPLC separation of material eluted from HLA-A*31:01-transfected C1R cells in the absence (A) and presence (B) 

of CBZ. 

Eluted peptides from HLA-A*31:01 were separated from β2m and HLA heavy chain by RP-HPLC. The blue line shows the UV traces of the eluted material, and the 

green line represents the buffer gradient. The red box indicates the retention time interval containing CBZ.  
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Figure 4.5: Detection of CBZ by LC-MS/MS. 

CBZ-containing fractions were analysed by LC-MS/MS and CBZ was detected in all drug-treated 

cultures, as exemplified by this spectrum (predicted mass MH+= 237.1022 Da). 

 

 

 

Figure 4.6: Length distribution of peptides eluted from HLA-A*31:01-transfected C1R 

cells in absence and presence of CBZ. 
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A total of 3329 and 2667 peptides were identified from the untreated and CBZ-

treated HLA-A*31:01-transfected C1R cultures respectively. After removal of 

peptides specific for HLA-C*04 and HLA-B*35 using an in-house built decoy 

database, only 693 and 605 peptides remained that were determined to be 

presented by HLA-A*31:01 in the absence and presence of CBZ respectively. 

In a first step, the distribution of peptide lengths was evaluated, as depicted in 

Figure 4.6. Most peptides were eight to eleven amino acids long, with nonamers 

being most abundant. Overall, there was no change in peptide length 

distribution between drug-treated and untreated cell lines (Figure 4.6). 

Next, the binding motif of nonamer peptides was generated by calculating the 

relative frequency of each amino acid at each residue of the peptide. The 

resulting HLA-A*31:01 binding motif displayed a dominant arginine residue at 

position P9, which was the only obvious anchor residue (Table 4.10 A). This is 

characteristic for HLA-A*31:01 and concordant with previously published 

motifs (see Figure 4.1). Furthermore, treatment of HLA-A*31:01 transfectants 

with CBZ did not seem to induce any substantial changes in preferred AA 

residues within the HLA-A*31:01 peptide binding motif (Table 4.10 B). 

This was examined in more detail by extracting the nonamer peptides unique to 

the untreated or CBZ-treated C1R cultures (99 and 91 peptides respectively), 

and comparing the AA frequencies at positions P1 to P9 (Table 4.11). AA 

frequencies were classified as increased or decreased if a difference of more 

than five percentage points was observed. In general, only minor differences 

were detected. In the presence of CBZ, hydrophobicity decreased marginally at 

positions P2, P3, P5 and P9, whereas it increased slightly at P6. Furthermore, a 

small shift in preferred amino acids at P7 and P8 towards charged residues 

could be observed (Table 4.11). 
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Table 4.10: Peptide binding motif of HLA-A*31:01 in absence (A) and presence 

(B) of CBZ. 

 

A) HLA-A*31:01 - untreated 

9mers 
(n=220) 

P1 P2 P3 P4 P5 P6 P7 P8 P9 

Dominant 
(≥40%) 

                R 

Strong 
(≥20%) 

  F 
  

D           L 

Moderate 
(≥10%) 

R 
F 

Y 
P 

L 
  

E 
D 

I 
  

L 
  

V L 
  

F 
  

Increased 
(≥5%) 

V 
I 
K 
A 
S 
L 
T 

L 
V 
T 

F 
I 

G 
L 
S 
V 
P 

V 
L 
R 
T 
F 
K 
A 

F 
E 
V 
D 
S 
A 
I 
P 

I 
T 
A 
R 
F 
E 
S 

S 
F 
E 
Y 
N 
K 
P 
G 

 

 

B) HLA-A*31:01 - CBZ treated 

9mers 
(n=212) 

P1 P2 P3 P4 P5 P6 P7 P8 P9 

Dominant 
(≥40%) 

                R 

Strong 
(≥20%) 

  F 
  

D           L 

Moderate 
(≥10%) 

R 
F 

Y 
  

L 
  

E 
D 

  
  

L 
V 

V 
T 

L 
  

F 
  

Increased 
(≥5%) 

K 
I 
L 
V 
M 
S 
T 

P 
V 
L 
T 

N L 
P 
S 
G 
V 
T 

I 
F 
V 
S 
A 
L 
R 
T 
K 
P 

F 
E 
I 
R 
P 
D 
G 

R 
E 
F 
I 
H 
S 

E 
F 
S 
Y 
T 
K 
N 
P 

M 
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Table 4.11: CBZ-induced shift in preferred amino acid residues of nonamer 

peptides specific for HLA-A*31:01. 

AA 
Frequency 

P1 P2 P3 P4 P5 P6 P7 P8 P9 

Increased ↑ 
(>5PPT, 
<10PPT) 

M 
L 

Y   S V E 
R 

E  

Decreased ↓ 
(>5PPT, 
<10PPT) 

V F 
P 

F  I S V 
A 

G 
S 

L 

PPT= percentage points 

 

At the same time, however, it became apparent the binding motifs still 

contained considerable amounts of HLA-C*04 specific peptides. This was most 

evident in the anchor residues P2 and P9 which showed a strong preference for 

amino acids Phe and Leu/Phe respectively; and was further supported by the 

strong Asp residue in position P3 (Table 4.10). These amino acid residues are 

typical for peptides presented by HLA-C*04 in wild-type C1R cells 

(Schittenhelm et al. 2014). 

As a consequence, the peptide sets were screened again manually and all 

peptides exhibiting a classic HLA-C*04 motif were removed. This resulted in a 

decrease of HLA-A*31:01 specific nonamer peptides to 140 and 133 peptides 

for untreated and CBZ-treated C1R cells respectively, of which 55 and 58 

peptides were unique to each of the data sets. These peptide numbers were 

determined to be too low to generate a reliable binding motif and prevented 

any further analysis at this point. 
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4.4 Discussion 

 

In the first part of this chapter, in silico analyses were performed in order to 

explore whether the two distinct HLA class I alleles associated with CBZ 

hypersensitivity, i.e. HLA-A*31:01 and HLA-B*15:02, bear any similarities in 

their structure or binding specificity which might explain their individual 

correlation with CBZ-induced hypersensitivity. 

When comparing the sequences of HLA-B75 serotype alleles, which comprises 

HLA-B*15:02, no relevant changes in amino acids forming the A-, C- and F-

pockets could be observed. Alignment of the alleles forming the HLA-B62 

supertype indicated that alterations in amino acid residues 63, 113 and 156, 

which are located in the B- and D-pocket, distinguish HLA-B*15:02 to some 

extent from the other HLA-B alleles. Analysis of the 3D structure of HLA-

B*15:02 implied that residues 63N and 113Y could delineate the binding 

specificity of HLA-B*15:02 from other HLA-B alleles, and therefore CBZ may be 

interacting primarily with these residues. 

A recent study by Wei and colleagues confirmed most of the in silico findings 

described above (Wei, C. Y. et al. 2012a). They demonstrated that CBZ was able 

to bind directly to HLA-B*15:02 interacting with amino acid residues 63N, 95I 

and 156L within the HLA binding groove (Wei, C. Y. et al. 2012a). Computational 

docking of CBZ to HLA-B*15:02 showed that the energetically most favoured 

binding positions of CBZ were all predicted to be located in the B-pocket near 

residue 62R (Wei, C. Y. et al. 2012a). 

Amino acid sequence alignment of HLA-A*31:01 to other HLA-A31 serotype 

alleles did not reveal any AA residue or binding pocket which might permit 

specific binding of CBZ to HLA-A*31:01. When the sequence of HLA-A*31:01 was 

compared to members of the HLA-A03 supertype, no differences were observed 

in amino acids of the F-pocket, making it unlikely to be a preferred binding site 

for CBZ. The 3D model structure revealed that the binding specificity of HLA-

A*31:01 might be characterised by AA residues 70Q, 73T, 97I and 114R. If the 

findings on HLA-B*15:02 are taken into consideration, these observations 
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suggest that binding of CBZ to HLA-A*31:01 might occur in close proximity to 

these residues. However, in contrast to HLA-B*15:02, no in vitro studies 

investigating the binding mode of CBZ to HLA-A*31:01 have been published yet. 

Further studies are therefore needed in order to verify the hypothesis 

presented here. This would involve the application of computational docking 

programmes, as well as in vitro assays using antigen-presenting cells expressing 

HLA-A*31:01 and closely related HLA-A alleles to define the exact binding site 

of CBZ. 

Direct comparison of the HLA-A*31:01 sequence to HLA-B*15:02 showed no 

overlap in AA residues in addition to those which also exist in the control alleles 

HLA-A*03:01 and B*46:01. Comparable observations have been reported 

recently in a study by Niihara et al., leading them to the conclusion that the two 

HLA alleles show no similarities in presentation of antigens (Niihara et al. 

2012). However, the data presented in this chapter show that the 

physicochemical properties of AA residues 63 and 70, both located in the B-

pocket, can be considered to be strongly alike, suggesting some indirect 

structural similarities between the two alleles may exist. As a result, CBZ may 

bind at slightly different locations within the HLA binding groove based on the 

unique amino acid microenvironment of the individual HLA alleles. 

 

Previous in vitro studies established that CBZ binding to HLA occurred directly 

in the absence of metabolism and antigen processing, suggesting CBZ-specific T-

cells are activated through a p-i like mechanism (Wu et al. 2007; Wei, C. Y. et al. 

2012a). This was further supported by a peptide elution study of HLA-B*15:02-

transfected cell lines which failed to detect any CBZ-modified peptides (Yang et 

al. 2007). The altered peptide repertoire model, recently published in the 

context of abacavir hypersensitivity (Illing et al. 2012; Norcross et al. 2012; 

Ostrov et al. 2012), could provide an alternative mechanism explaining the 

HLA-restricted activation of T-cells by CBZ. The second part of this chapter 

therefore focused on the peptide repertoire presented by HLA-A*31:01. A 

classic peptide elution study was carried out in order to determine whether CBZ 
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treatment leads to changes in peptides presented by HLA-A*31:01 and 

subsequently might induce T-cell activation. 

Free CBZ was detected by mass spectrometry in peptide fractions originating 

from drug-treated HLA-A*31:01-transfected C1R cells, suggesting CBZ bound 

non-covalently to pMHC, and dissociated after treatment with acetic acid prior 

to HPLC purification. However, CBZ was not found to be enriched in HLA-

A*31:01 transfectants compared to C1R cells transfected with control HLA-A 

alleles, i.e. HLA-A*03:01 and A*31:04, indicating that CBZ does not bind 

preferentially to HLA-A*31:01. This is in stark contrast to the findings published 

for abacavir and HLA-B*57:01, and CBZ and HLA-B*15:02 (Illing et al. 2012). 

Furthermore, no additional peaks or ions with mass shift indicating metabolites 

of CBZ could be detected in the mass spectra. However, the in vitro system used 

in this study may not mirror the in vivo situation, as lymphocytes only show 

limited metabolic activity (Raucy et al. 1999). 

As expected, the length of peptides recovered from HLA-A*31:01 transfectants 

were typical of peptides presented by HLA class I alleles (Rammensee, Hans-

Georg 1995; Burrows et al. 2006). As for abacavir and HLA-B*57:01, the 

distribution of peptide lengths was not affected by CBZ treatment (Illing et al. 

2012). Sequencing of eluted peptides from HLA-A*31:01 in the presence and 

absence of CBZ using mass spectrometry allowed the generation of HLA-

A*31:01 specific binding motifs. The binding motif of untreated HLA-A*31:01 

generally agreed with previously published motifs on MHC motif viewer (Rapin 

et al. 2008) and SYFPEITHI database (Rammensee, H. et al. 1999), showing only 

one anchor residue at position P9 with a dominant preference for arginine. Only 

minor shifts in AA preferences across nonamer peptides could be observed 

after CBZ treatment. However, it needs to be noted that both peptide motifs 

were clouded by remnant HLA-C*04 specific peptides. This was deduced from 

the occurrence of amino acids Phe, Pro and Leu/Phe as strong residues at 

positions P2, P3 and P9 respectively, which is typical for HLA-C*04 peptides in 

C1R cells (Schittenhelm et al. 2014). Contamination of the binding motif of HLA-

A*31:01 by HLA-C*04 peptides could be explained in parts by loss of HLA-

A*31:01 expression on C1R cells. Regular monitoring of HLA surface expression 
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of HLA-transfected C1R cell lines showed a clear decrease in HLA-A*31:01 

expression over time (data not shown). Overall, this effect results in a relative 

reduction of HLA-A*31:01 specific peptides and a corresponding increase in 

HLA-C*04 specific peptides with regards to total peptide numbers presented on 

C1R cells. As a consequence, in order to ascertain whether CBZ is able to induce 

a change in peptides presented by HLA-A*31:01, this study would need to be 

repeated using a new HLA-transfected cell line, showing a higher, more stable 

expression of HLA-A*31:01. 

In conclusion, the structural binding specificity of HLA-B*15:02 and HLA-

A*31:01 was analysed in silico, and potential binding sites for CBZ derived 

through consolidated AA sequence comparison and three-dimensional 

structure modelling. The research findings published by Wei et al. have 

provided evidence supporting the in silico data presented for HLA-B*15:02 in 

this study, and at the same time substantiate the in silico observations 

presented for HLA-A*31:01. However, defined in vitro studies are warranted to 

confirm the binding position of CBZ within the HLA-A*31:01 binding groove. 

The peptide elution study performed on HLA-A*31:01-transfected cell lines 

provided some very preliminary evidence that CBZ may be able to alter the 

peptide repertoire presented by HLA-A*31:01. MS analysis revealed the 

presence of unmodified CBZ, which adds to the existing evidence that CBZ may 

induce drug-specific T-cell responses through a non-covalent binding 

mechanism to HLA. At this stage, however, it cannot be excluded that in vivo a 

hapten mechanism might be important in the development of CBZ-induced 

HSRs. 
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5.1 Introduction 

 

It has been well-established that T-lymphocytes play a central role in delayed-

type drug-induced hypersensitivity reactions (HSRs). The pathomechanisms 

involved in HSRs are thought to include the presentation of a drug antigen in 

context of HLA to T-cells and their respective T-cell receptor (TCR). The drug 

may either bind covalently to a peptide presented on a HLA molecule, as defined 

by the hapten hypothesis (Landsteiner and Jacobs 1935), or directly interact 

with either the HLA or TCR molecule through a non-covalent interaction, as 

proposed by the p-i concept (Pichler 2002). Ultimately, recognition of a drug 

antigen by a specific TCR, particularly its complementarity-determining region 

3 (CDR3), results in T-cell activation and clonal expansion of effector T-cells. In 

recent years, specific HLA alleles have been found to be associated with certain 

drug-induced HSRs (see chapter 1.6.4), and in some cases their function in drug 

antigen presentation is beginning to be uncovered (Chessman et al. 2008; Illing 

et al. 2012; Norcross et al. 2012; Ostrov et al. 2012; Wei, C. Y. et al. 2012a; 

Monshi et al. 2013). However, the impact of the TCR in the pathogenesis of HSRs 

remains largely unknown. 

In several autoimmune and infectious disease settings, such as multiple 

sclerosis, psoriasis, influenza A or HIV (Pantaleo et al. 1994; Lehner et al. 1995; 

Musette et al. 1996; Hwang et al. 2003), analysis of the TCR repertoire has 

shown that specific TCR subtypes are responsible for antigen recognition and 

initiation of an immune response. This suggests that the presence or absence of 

specific TCRs may influence the magnitude of an immune response to a specific 

antigen. 

With regards to drug hypersensitivity, only a few studies have investigated 

whether drug-specific T-cells show predominant expression of specific TCRs. 

Generally, heterogeneous TCR Vβ profiles have been observed among individual 

patients hypersensitive to a specific drug, and only a few commonly used TCR 

Vβ subtypes could be detected (Cederbrant et al. 2000; Hashizume et al. 2002). 

Most recently, Ko and colleagues investigated the TCR usage in Han Chinese 
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patients carrying the risk allele HLA-B*15:02 and suffering from 

carbamazepine-induced Stevens-Johnson syndrome (SJS) (Ko et al. 2011). They 

were able to show that only patients expressing a specific TCR Vβ in 

combination with the risk allele HLA-B*15:02 developed CBZ-induced SJS, 

providing initial evidence that specific TCRs may function as an additional risk 

factor in drug-induced HSRs (Ko et al. 2011). This finding may also explain why 

some patients carrying the HLA risk allele do not develop hypersensitivity. 

Whether specific TCR Vβs may play a pathogenic role in other populations and 

other phenotypes of CBZ hypersensitivity remains to be established. 

Several methods have been developed over the last few years to measure the 

TCR diversity of T-cell populations. A panel of fluorescent-labelled monoclonal 

antibodies targeting the variable (V) region of the TCR β-chain can be used to 

examine TCR protein expression levels. This method follows a standard flow 

cytometry staining protocol, can be easily implemented, and delivers rapid 

results. A more refined technique is the CDR3 spectratyping method, also 

known as the immunoscope approach, first described by Pannetier et al. (1995). 

This method determines the lengths of the CDR3 region of the different TCRs 

used by antigen-specific T-cells by polymerase chain reaction (PCR) and 

subsequently separates the PCR products by electrophoresis (Pannetier et al. 

1995). With this approach, T-cell responses to a specific antigen can be 

classified into polyclonal, oligoclonal, or monoclonal, depending on the CDR3 

length profile. More detailed profiles of the T-cell repertoire implicated in an 

antigen-specific immune response can be acquired by sequencing of the CDR3 

region; and this can be performed on polyclonal T-cell populations as well as on 

a single-cell level (Turner et al. 2006). Analysis of the TCR repertoire is often 

limited to testing TCR Vβ expression for two main reasons. First, the majority of 

T-cells (≥90%) are known to express α:β TCRs (Davis and Bjorkman 1988). 

Second, a single α:β T-cell can display up to two TCRs which consist of either 

one of two α-chains but the same β-chain (Padovan et al. 1993). 

Until now, the T-cell receptor repertoire and its potential influence on the 

susceptibility of an individual to develop a drug-specific immune response have 

largely been ignored. With the findings by Ko et al (2011), however, it has 
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become evident that further research into TCR diversity in context of drug-

induced HSRs is needed in order to fully understand the mechanisms leading to 

drug-specific T-cell activation. This may also assist in determining more 

accurately who may be at risk of developing a reaction when administered a 

drug. In the case of flucloxacillin, for example, it has been demonstrated that 

drug-protein conjugates are present in the plasma of all patients treated with 

the antibiotic (Jenkins et al. 2009), but only a small subset of patients develop 

hypersensitivity. One reason for this could be that particular TCR subtypes 

which are able to recognize the drug antigen need to be present in an individual 

in order to develop flucloxacillin hypersensitivity. 

The main aim of this chapter was to establish a protocol for CDR3 spectratyping 

allowing us to characterise the TCR Vβ repertoire of different drug-specific T-

cell populations. For the work presented in this study, naïve T-cells from 

healthy donors were primed to nitroso sulfamethoxazole (SMX-NO), a 

commonly used model drug antigen. The TCR Vβ usage of SMX-NO specific T-

cells was then analysed and compared to the TCR diversity of naïve T-cells. 

Protein and mRNA expression levels of 24 TCR Vβ subtypes were assessed 

using flow cytometry and CDR3 spectratyping respectively. 

 

 

5.2 Methods 

 

5.2.1 Healthy volunteers 

100ml blood was taken from six randomly selected healthy volunteers after 

informed consent was obtained. The study protocol was approved by the 

University of Liverpool research ethics committee. Peripheral blood 

mononuclear cells (PBMCs) were isolated by density gradient centrifugation as 

described in chapter 2.2.4. 
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5.2.2 Chemicals 

Nitroso sulfamethoxazole (SMX-NO; Dalton Pharma Services, Canada) was 

prepared as stock solution (50mM) in DMSO (Sigma-Aldrich, UK), and diluted in 

T-cell medium to a concentration of 200μM before use. All other reagents were 

purchased from Sigma-Aldrich, if not stated otherwise. 

 

5.2.3 Cell culture media 

T-cells and monocyte-derived dendritic cells (DCs) were cultured in T-cell 

medium as specified in chapter 2.2.3. For the culture of naïve T-cells, the culture 

medium was prepared without penicillin and streptomycin. 

 

5.2.4 In vitro T-cell priming assay 

The individual steps of the in vitro T-cell priming assay, including magnetic cell 

separation, generation of monocyte-derived DCs and DC-T-cell co-cultures, 

were carried out by Dr. Lee Faulkner according to the protocol described in 

detail in chapter 3.2.6. For this study, SMX-NO (50μM) was used as the drug 

antigen. 

2x 106 freshly isolated naïve T-cells from each volunteer were frozen down in 

RNAlater (stored at -80°C) to be used for TCR Vβ CDR3 spectratyping analysis. 

After the in vitro T-cell priming culture, T-cells were restimulated with fresh 

monocyte-derived DCs (DC:T-cell ratio 1:25) and SMX-NO (50μM) in a 24-well 

plate for three days. Memory T-cells were then isolated by magnetic cell 

separation using CD45RO microbeads (Miltenyi Biotech, UK), and 2x 106 

CD45RO+ T-cells were immediately frozen down in RNAlater for CDR3 

spectratyping analysis. The remaining memory T-cells were used for TCR Vβ 

FACS analysis. 
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5.2.5 Detection of SMX-NO specific T-cell responses 

After the week-long DC-T-cell co-culture, SMX-NO specificity of primed T-cells 

was assessed by a proliferation assay. 

T-cells (1x 105) were incubated with monocyte-derived DCs (4x 103) and SMX-

NO (1.5- 25μM) in triplicate for three days in a 96-well U bottom plate. 

Phytohemagglutinin (PHA; 20μg/ml) was used as a positive control. [3H]-

thymidine (0.5μCI/well) was added for the final 16h of the culture period. Cells 

were harvested and proliferation was determined by scintillation counting 

using a MicroBeta TriLux β-counter (Perkin-Elmer, USA). 

 

5.2.6 T-cell receptor Vβ analysis by flow cytometry 

This part of the study was performed by Dr. Lee Faulkner. 

TCR Vβ protein expression was determined using the IOTest Beta Mark TCR Vβ 

repertoire kit (Immunotech, Beckman Coulter, UK). Aliquots of T-cells (50μl) 

were stained with 24 different fluorescence-conjugated TCR Vβ antibodies (as 

mixtures of 8 x 3 antibodies, 4μl each) for 20min in the dark at RT. At the same 

time, cells were stained with an APC-conjugated anti-CD3 monoclonal antibody 

(BD Bioscience, UK) to enable gating on T-cells during FACS analysis. T-cells 

were washed with PBS (500μl), spun down (1500rpm, 5min), and resuspended 

in HBSS containing 10% FBS (300μl). The samples were run on a BD FACS 

Canto II flow cytometer recording a minimum of 50,000 events, and data was 

analysed using Cyflogic software (CyFlo Ltd., Finland). 

 

5.2.7 RNA Extraction and Reverse Transcription 

Total RNA was extracted from naïve and SMX-NO primed memory T-cells 

(2x106) using the RNeasy mini kit (Qiagen, UK), following the manufacturer’s 

protocol. After the RNA was eluted from the spin column using RNase-free 

water (30μl), the eluate was passed over the column a second time in order to 

increase the RNA concentration. Total RNA was quantified using the NanoDrop 
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N-8000 spectrophotometer (Thermo Scientific, UK), and RNA integrity assessed 

using the Agilent Bioanalyser (Agilent, UK). 

Total RNA (0.4μg) was reverse transcribed to cDNA using the iScript cDNA 

synthesis kit (Bio-Rad, UK), as recommended by the manufacturer. 

 

5.2.8 T-cell receptor Vβ CDR3 spectratyping 

As described previously by Pannetier and colleagues, analysis of the CDR3 sizes 

within the 24 TCR Vβ chains was performed in a two-step polymerase chain 

reaction (PCR) (Pannetier et al. 1998). The primers are listed in Appendix T2. 

CDR3 spectratyping was performed in the laboratory of Prof. Stefan Martin, 

Department of Dermatology, University Medical Centre Freiburg, Germany. 

PCR amplification of cDNA 

For each sample, aliquots of cDNA (20ng) were amplified with 1 of 24 Vβ 

forward primers (10μM; metabion, Germany) and a Cβ reverse primer (10μM; 

metabion, Germany) on the thermal cycler Bio-Rad iCycler (Bio-Rad, Germany) 

using the HotStartTaq Master Mix kit (Qiagen, Germany). The final reaction mix 

contained 12.5μl master mix, 1.3μl Vβ forward primer, 1.3μl reverse primer, 1μl 

cDNA and 8.9μl RNase-free water. The thermal cycling conditions were as 

follows: heat activation of Taq polymerase at 95°C for 5min, followed by 40 

cycles of denaturation at 95°C for 45s, annealing at 60°C for 45s, extension at 

72°C for 1min, and a final extension step at 72°C for 10min. 

Run-off PCR 

PCR products from the first PCR were submitted to three cycles of an elongation 

run-off reaction with a FAM-labelled Cβ primer (10μM; metabion, Germany). 

The final reaction mix contained 0.1μl run-off primer, 0.1μl Pfu polymerase 

(Promega, Germany), 1μl dNTPs (30μM; Promega, Germany), 1μl 10x Pfu buffer 

(Promega, Germany), 1μl PCR product, and 6.8μl RNase-free water. The PCR 

was performed on the thermal cycler Bio-Rad iCycler (Bio-Rad, Germany) under 

the following conditions: 94°C for 2min, 5 cycles of 94°C for 25s, 60°C for 45s, 

and 72°C for 45s, followed by a final elongation step of 72°C for 10min. 
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CDR3 spectratyping by GeneScan 

Run-off PCR product (2μl) was added to a mix of Hi-Di formamide (10μl; 

Applied Biosystems, Germany) and 500 LIZ size standard (1μl; Applied 

Biosystems, Germany) in a Thermo-Fast 96 PCR Detection plate (Applied 

Biosystems, Germany). The plate was sealed with a 96-well Plate Septa (Applied 

Biosystems, Germany) and the samples denaturated at 94°C for 2min. CDR3 size 

was determined on the ABI PRISM 3300 Genetic Analyzer, and data analysed 

using GeneMapper 4.0 software (Applied Biosystems, USA). 

 

5.2.9 Statistical analysis 

Proliferative responses of SMX-NO primed T-cell lines were analysed by 

Student’s test using Bonferroni correction for multiple testing. A P-value of < 

0.02 was considered significant. 

 

 

5.3 Results 

 

5.3.1 SMX-NO specific T-cell responses 

Purified naïve T-cells from six healthy donors were cultured with 50 μM SMX-

NO in the presence of autologous monocyte-derived DCs for eight days. 

Following the priming period, T-cells were restimulated with monocyte-derived 

DCs and SMX-NO for 3 days, and proliferative responses to SMX-NO were 

assessed by [3H]-thymidine uptake. 

In five out of six healthy volunteers, SMX-NO was able to induce significant 

proliferation of T-cells (Figure 5.1). Maximal responses were observed at a 

concentration of 25μM SMX-NO, apart from donor S5 (max. at 12μM; Figure 

5.1). These results demonstrated that SMX-NO reactive T-cells had been 

generated during the priming cultures. However, the maximum proliferative 

response of T-cells from donor S1 only showed a stimulation index of 1.5 (at 
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25μM SMX-NO), which was not statistically significant (Figure 5.1). This 

suggested that priming to SMX-NO had not been successful in this volunteer. 

 

 

Figure 5.1: Proliferative response of T-cells from healthy donors to SMX-NO after in 

vitro T-cell priming assay. 

Naïve T-cells were cultured in the presence of autologous monocyte-derived DCs and SMX-NO 

for 8 days. T-cells (1x 105) were then restimulated with SMX-NO (12+ 25 μM) and autologous 

monocyte-derived DCs (4x 103) for 72 hours, and [3H]-thymidine was added for the final 16 

hours. Proliferation was determined by scintillation counting. Data represent mean cpm ± SEM 

of triplicate cultures. (*p< 0.02, **p< 0.003; Student’s t test).   
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5.3.2 TCR Vβ usage of SMX-NO responsive T-cells 

Using flow cytometry, we next analysed the TCR Vβ repertoire expressed by 

SMX-NO primed memory T-cells, and then compared the TCR Vβ usage of SMX-

NO responsive T-cells from each donor to the corresponding naïve T-cell 

population. 

An expansion of the TCR Vβ repertoire covered by the monoclonal antibodies 

was observed in T-cells from five donors following in vitro priming to SMX-NO, 

indicating clonal expansion of drug-specific T-cells had occurred (Table 5.1). 

Only a minor increase in TCR Vβ coverage was detected for T-cells from donor 

S1, supporting the assumption that in vitro priming had been unsuccessful. The 

sample was consequently excluded from further analysis. In naïve T-cells all 24 

TCR Vβs could be detected, with mean expression levels ranging from 0.18% for 

Vβ 9 up to 6.98% for Vβ 2 (see Appendix T3). After in vitro priming, an increase 

in expression levels of up to 16/24 TCR Vβs was seen in SMX-NO specific T-cells 

from the five positive donors (Figure 5.2). Skewing of individual TCR Vβ 

subtypes was examined as described by Hashizume et al. (2002) defining 

skewed TCR Vβ usage as the percentage of a particular TCR Vβ which is above 

the mean percentage + 3 SD of the same TCR Vβ in normal cells (in this study: 

naïve T-cells) (Hashizume et al. 2002). Skewed usage of TCR Vβ 4 and 9 was 

detected in SMX-NO reactive T-cells from all five individuals (Figure 5.2 & Table 

5.2). Usage of TCR Vβ 11, 13.6, 14 and 18 was found to be skewed in four 

donors respectively. Further, preferential expression of TCR Vβ 5.2 and 5.3 was 

observed in three of the five donors (Figure 5.2 & Table 5.2). In contrast, 

expression of TCR Vβ 1, 2 and 5.1 was substantially decreased (< mean %- 3SD 

of TCR Vβ in naïve cells) in three of the five donors (Appendix T3). 

 

Table 5.1: Coverage of the TCR Vβ repertoire of T-cells before (naïve) and 

after priming to SMX-NO (memory) using flow cytometry. 

TCR Vβ coverage (%) S1 S2 S3 S4 S5 S6 

Naïve 61 56 52 57 53 50 

Memory 65 83 78 71 76 65 
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Figure 5.2: Clonogram of naïve and SMX-NO primed memory T-cells from five healthy 

donors. 

TCR Vβ repertoire in naïve (white bars) and SMX-NO primed memory (black bars) CD3+ T-cells 

was measured by flow cytometry using fluorescence conjugated monoclonal antibodies against 

24 TCR Vβ. Data represent mean percentages of T-cells expressing the individual TCR Vβ 

subtypes. (◊ = skewed TCR Vβ usage, defined as percentage above mean value +3SD of TCR Vβ 

in naïve T-cells) 
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Figure 5.2 (continued): Clonogram of naïve and SMX-NO primed memory T-cells from 

five healthy donors. 
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Table 5.2: Summary of common skewed TCR Vβ usage (= mean % of TCR 

Vβ in naïve T-cells +3SD) of SMX-NO responsive T-cells from five healthy 

donors as detected by FACS analysis. 

TCR Vβ 4 5.2 5.3 9 11 13.6 14 18 

S2 ●   ● ●  ●  

S3 ● ● ● ● ● ● ● ● 

S4 ● ● ● ● ● ● ● ● 

S5 ● ● ● ● ● ● ● ● 

S6 ●   ●  ●  ● 

 

 

5.3.3 CDR3 spectratyping analysis of TCR Vβ diversity 

The TCR Vβ repertoire of naïve T-cells and memory T-cells reactive to SMX-NO 

was analysed in more detail by CDR3 spectratyping. 

Total RNA from naïve and memory T-cells was reverse transcribed to cDNA, 

and TCR Vβ chain transcripts amplified with 24 Vβ gene-specific primers and a 

Cβ primer. PCR products were subsequently amplified in a run-off reaction 

using a fluorescently labelled Cβ primer, and products analysed on an 

automated sequencer regarding the CDR3 size pattern of each TCR Vβ subtype. 

In the absence of antigenic stimulation CDR3 size profiles of individual TCR Vβs 

show a Gaussian-like distribution. A distortion of the CDR3 profiles 

characterised by the emergence of single or multiple dominant peaks within the 

TCR Vβ spectratyping profiles signifies antigen specific T-cell stimulation 

leading to clonal expansion. 

Nineteen of the 24 TCR Vβ subtypes could be detected in naïve T-cells from all 

five healthy volunteers. As expected, the majority of the TCR Vβ spectratyping 

profiles of naïve T-cells (52% and above) displayed a polyclonal distribution of 

CDR3 lengths (defined as quasi-Gaussian profile with ≥ 5 peaks) in all donors 

(see Appendix T3). Transcripts of TCR Vβ 2, 4, 11, 20 and 21 were present in 

some of the donors, but absent in others. For volunteers S3 and S5, no 
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spectratyping profile could be established for TCR Vβ 6 and TCR Vβ 8, 11, 17, 

and 23 respectively, as the genetic analyser failed to detect the size standard 

(no sizing data available). 

In SMX-NO primed memory T-cells, 19/24 TCR Vβ chains were present in all 

five donors responsive to SMX-NO (Appendix T4). TCR Vβ 2, 3, 4, 20 and 21 

could only be detected in some of the donors (Table 5.3). Due to missing sizing 

data, spectratyping failed for TCR Vβ 5, 6 and 24, and TCR Vβ 3, 17 and 23 in 

donors S2 and S4 respectively (Table 5.3). After SMX-NO priming, up to 80% of 

TCR Vβ subtypes showed an oligoclonal distribution of CDR3 lengths (skewed 

Gaussian profile with at least one dominant peak). Skewing of CDR3 profiles 

from poly- to oligoclonal distribution could be observed for between six and 

fifteen TCR Vβs (Table 5.3), indicating the expansion of a clonal T-cell 

population reactive to SMX-NO. Representative CDR3 spectratyping profiles of 

skewed TCR Vβs are shown in Figure 5.3. 

The TCR Vβs presenting skewed CDR3 profiles were compared among the five 

SMX-NO responsive donors to determine whether SMX-NO stimulation induced 

common skewing of specific TCR Vβ subtypes. SMX-NO specific memory T-cells 

from all five volunteers showed oligoclonal expression of TCR Vβ 18 (Table 5.3). 

Skewed usage of TCR Vβ 13B was observed in four donors, and TCR Vβ 1, 5, 9, 

13A, and 14 displayed a skewed CDR3 pattern in three individuals respectively 

(Table 5.3). These results suggest that T-cell responses to SMX-NO derived 

antigens may be in part controlled by public TCRs, which are present in all 

individuals responsive to SMX-NO treatment, alongside private TCR repertoires 

specific to each individual. 
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Table 5.3: TCR Vβ subtypes with oligoclonal distribution of CDR3 sizes following SMX-NO priming. 

 

● = oligoclonal expansion; x = not detected; s = no sizing data 
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Figure 5.3: Representative TCR Vβ spectratyping profiles of T-cells from healthy 

donors S2 (A) and S4 (B) showing skewed CDR3 lengths distribution after in vitro 

priming of naïve T-cells to SMX-NO. 
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5.3.4 Comparison of flow cytometric TCR Vβ analysis and CDR3 

spectratyping 

When skewed TCR Vβ subtypes of SMX-NO responsive memory T-cells 

identified by flow cytometry were compared to those observed in CDR3 

spectratyping, the results overlapped in large parts (Table 5.4). However, 

skewing of some TCR Vβs was only detected in the CDR3 spectratyping analysis 

(e.g. Vβ 1 in S2 and S5; Table 5.4). To some extent this was anticipated, as CDR3 

spectratyping is a more sensitive detection method with which even subtle 

changes in frequencies of clonal T-cell populations can be distinguished. On the 

other hand, preferential usage of some TCR Vβ subtypes was only observed in 

the FACS analysis (e.g. Vβ 4 and 11; Table 5.4). One reason for this could be that 

the specific TCR Vβ transcript could not be amplified due to inadequate binding 

specificity of the corresponding Vβ primer, which might have been the case for 

TCR Vβ 4. Alternatively, non-specific binding of monoclonal antibodies from the 

TCR repertoire kit might have caused false positive results, which could explain 

the events seen for TCR Vβ 11. Previous studies using both flow cytometry and 

CDR3 spectratyping to determine TCR Vβ usage have generally reported good 

correlation between the results obtained by flow cytometry and CDR3 

spectratyping (Pantaleo et al. 1994; Ortonne et al. 2006; Okajima et al. 2009). 

However, a comparison between the respective studies is difficult, as different 

antibodies and primers were used in each study, and strategies for data 

analysis, including criteria for determining clonal expansion, varied greatly. 
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Table 5.4: Skewed TCR Vβ usage of SMX-NO responsive T-cells as detected by flow cytometry (a) and CDR3 spectratyping (b). 

TCR Vβ 1 4 5 

(=5.1-3) 

9 11 13A 

(=13.6) 

13B 14 18 23 

 a b a b a b a b a b a b aⱡ b a b a b a b 

S2 
 

● ● x 
  

● ● ● 
   

ⱡ 
 

● 
  

● 
  

S3 
  

● x ● s ● 
 

● 
 

● 
 

ⱡ ● ● ● ● ● ● 
 

S4 
  

● x ● ● ● ● ● 
 

● ● ⱡ ● ● ● ● ● 
  

S5 
 

● ● s ● ● ● 
 

● s ● ● ⱡ ● ● 
 

● ● ● s 

S6 ● ● ● x 
 

● ● ● 
  

● ● ⱡ ● 
 

● ● ● 
 

● 

a= flow cytometric analysis; b= CDR3 spectratyping analysis; ●= skewing; x= not detected; s= no sizing data; ǂ= no antibody available. Nomenclature of TCR Vβ 

monoclonal antibodies largely corresponds to the nomenclature of the TCR Vβ primer, with a few exceptions as indicated in brackets (for more details see 

Appendix T5). 
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5.4 Discussion 

 

There is a large body of evidence demonstrating that drug-specific T-cells are 

the essential effector cells in delayed-type drug hypersensitivity reactions. It 

has been shown that the recognition of drug antigens by T-cells requires the 

interaction of the drug with HLA and TCR. Most studies investigating the 

molecular mechanisms involved in drug-induced HSRs have focused on the 

interaction of drug antigens with HLA expressed on the surface of APCs, 

whereas the role of the T-cell receptor in mediating drug hypersensitivity has 

been left largely unexplored. However, the recent study by Ko et al. (2011) has 

illustrated that specific T-cell receptors, similar to HLA alleles, may function as 

susceptibility factors for certain forms of drug-induced HSRs. Thus, the aim of 

this study was to establish a robust protocol which would allow a 

comprehensive characterisation of the TCR repertoire of T-cells from drug 

hypersensitive patients and healthy controls. 

Although various methods exist to determine the TCR repertoire diversity in 

individuals, we decided to concentrate on flow cytometric analysis and 

molecular CDR3 spectratyping, as both techniques have been widely used 

across different disease settings (Ortonne et al. 2006; Okajima et al. 2009; Hsieh 

et al. 2013; Tzifi et al. 2013). Naïve T-cells from healthy volunteers primed 

against SMX-NO were utilised to set up the different methods for TCR Vβ typing 

for several reasons. First, large amounts of T-lymphocytes were needed to 

optimize each of the assays, which excluded the use of patient samples. Also, the 

naïve T-cell population could be used as a baseline for TCR diversity in an 

individual. Third, in vitro priming of T-cells against SMX-NO has repeatedly 

been shown to be successful, producing stable drug-specific T-cell responses 

(Engler et al. 2004; Faulkner et al. 2012). 

In contrast to a previous study by Faulkner et al. (2012), priming of naïve T-

cells against SMX-NO was only successful in five of the six healthy volunteers. As 

the in vitro priming assay used in both studies is rather novel, and only a small 

number of samples have been processed, it seems more than likely that priming 
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will not be effective in 100% of samples. Although using a different in vitro 

priming protocol, a study by Engler et al. (2004) demonstrated that SMX-NO 

specific responses could be induced in nine out of ten drug-naïve donors. 

However, proliferative responses to SMX-NO were only detected in six donors, 

whereas nine individuals showed drug-specific cytotoxicity in a standard 

chromium release assay (Engler et al. 2004). Thus, it may be useful to include a 

more sensitive method, e.g. ELISpot assay, to test for drug specificity of in vitro 

primed T-cells. 

The flow cytometric analysis of TCR Vβ expression on drug-naïve T-cells 

showed that all 24 TCR Vβs were present in the five proliferation positive 

donors, with mean expression levels ranging from 0.18% for Vβ 4 to 6.98% for 

Vβ 2, and an average TCR Vβ coverage of 53.47%. Following SMX-NO in vitro 

priming, TCR Vβ coverage increased to a mean value of 74.58%, suggesting 

drug-specific clonal expansion had occurred. This is in line with previous 

studies which generally describe coverage of ≥ 70% of the total TCR repertoire 

(van den Beemd et al. 2000; McLean-Tooke et al. 2008; Tzifi et al. 2013), and it 

also matches the reference value of the TCR Vβ antibody kit reported to cover 

about 70% of the normal TCR Vβ repertoire. However, only a minor increase in 

TCR coverage (from 60% to 65%) was detected for T-cells from donor S1, 

confirming that in vitro priming against SMX-NO had been ineffective in this 

case. SMX-NO primed memory T-cells from the five drug-responsive volunteers 

displayed broad TCR Vβ usage, with increased expression levels in up to 16 TCR 

Vβs. TCR skewing was observed for 9 different Vβ subtypes across the five 

donors. Together these results suggest that multiple TCRs may be involved in 

drug antigen recognition. Similar observations have been made in T-cells 

responsive to abacavir, in which case the extensive TCR usage is thought to be 

responsible for the recognition of diverse novel self peptides presented on HLA-

B*57:01 in the presence of abacavir (Illing et al. 2012). Given that a range of 

SMX-NO protein adducts known to stimulate T-cells from hypersensitive 

patients have been reported in the literature (Schnyder et al. 2000; Farrell et al. 

2003; Callan et al. 2009; Castrejon et al. 2010), this result was somewhat 

anticipated. Further, common skewing of particular TCR Vβ subtypes (Vβ 4 and 
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Vβ 9) in all five drug-responsive individuals indicates that a public TCR 

repertoire may be involved in recognition of SMX-NO derived antigens. 

In order to gain a more complete picture of the clonal expansion occurring as a 

result of in vitro priming of T-cells against SMX-NO, CDR3 spectratyping 

analysis was performed. Eleven TCR Vβ subtypes were present in naïve as well 

as SMX-NO specific T-cells from all five volunteers, whereas six TCR Vβs (2, 3, 4, 

11, 20, and 21) were only detected in some of the donors. Spectratyping of 8 

TCR Vβs (3, 5, 6, 8, 11, 17, 23, and 24) failed in some cases due to missing sizing 

data. In most cases this technical issue can be solved by repeating the 

amplification and GeneScan run for the specific TCR Vβ in question. However, 

due to shortage of reagents and time constraints, we were unable to re-run the 

samples in this study. In naive T-cells most TCRs displayed polyclonal CDR3 

patterns, whereas CDR3 profiles of SMX-NO specific T-cells showed oligoclonal 

expansions across several TCR Vβ subtypes. For the individual volunteers, 

skewing of TCR Vβ profiles from polyclonal to oligoclonal distribution of CDR3 

sizes was detected in up to 16 different Vβ subtypes. Again, this may be 

explained by the various antigenic structures formed by SMX-NO, which are 

then recognised by different TCR Vβ subtypes. Further, common skewing of 

particular TCR Vβs was observed among the five donors, including TCR Vβ 18 in 

5/5 donors, TCR Vβ 13B in 4/5 donors, and TCR Vβ 1, 5, 9, 13A, and 14 in 3/5 

volunteers respectively. These findings strengthen the concept that a public 

TCR repertoire may be implicated in SMX-NO specific T-cell responses. 

Skewed TCR Vβ usage of SMX-NO responsive memory T-cells identified by 

CDR3 spectratyping only partially match the results obtained by flow 

cytometry. This was somewhat anticipated, as the definition and assessment of 

TCR Vβ skewing differs greatly between the two methods. The assessment of 

clonality of T-cells and definition of cut-off values is critical to obtain accurate 

results. For this reason, the use of a mathematical scoring system, e.g. as 

described by Okajima et al. (2008), might improve the evaluation of the TCR Vβ 

repertoire usage of different T-cell populations. 
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Another factor that might have affected our analysis is the fact that TCR Vβ 

usage of naïve T-cells, representing the control population, was analysed 

directly without undergoing an in vitro culture period. In contrast, analysis of 

SMX-NO specific memory T-cells was performed after 11 days of in vitro culture. 

Thus, any skewing of TCR Vβ usage due to in vitro culture conditions was not 

taken into account, and this could explain some of the discrepancies observed 

between the results from TCR Vβ spectratyping and flow cytometric analysis. 

Overall, we have been successful in testing the TCR Vβ usage of drug-specific T-

cells using both the CDR3 spectratyping method as well as TCR Vβ flow 

cytometric analysis. Further optimisation of the experimental set-up and data 

analysis strategy is however needed in order to achieve consistent and robust 

results, characterising the full scope of TCR Vβ expression patterns of drug-

reactive T-cells. 
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Chapter VI 

Final Discussion 
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Drug-induced hypersensitivity reactions (HSRs) represent a diverse group of 

adverse reactions which occur only in a minority of patients and cannot be 

predicted from the pharmacological mechanism of the drug. Extensive research 

in the field has shown that specific components of the immune system are 

involved in most, if not all, of these reactions. However, the detailed 

pathomechanisms leading to drug hypersensitivity have not yet been fully 

uncovered. 

Drug-specific T-cells have been identified as the key components in delayed-

type HSRs, and T-cells isolated from hypersensitive patients have been 

characterised extensively in vitro regarding their cellular phenotype and 

effector functions (Mauri-Hellweg et al. 1995; Zanni et al. 1999; Schnyder et al. 

2000; Naisbitt et al. 2003a; Naisbitt et al. 2003b; Nassif et al. 2004). This has 

helped considerably to define the different phenotypes of delayed-type HSRs 

and also explain the variety of clinical manifestations. 

The discovery that certain forms of drug hypersensitivity are strongly 

associated with specific HLA alleles has provided a new indication to the 

molecular mechanisms underlying these reactions. Furthermore, this has 

opened up the possibility of predicting patients at risk of developing drug 

hypersensitivity. A prime example is HLA-B*57:01 associated abacavir (ABC) 

hypersensitivity (see chapter 1.6.5). 

Similar achievements have been made in regards to carbamazepine-induced 

Stevens-Johnson syndrome (SJS) associated with HLA-B*15:02. Carbamazepine 

(CBZ) was found to specifically interact with HLA-B*15:02 resulting in CD8+ T-

cell stimulation (Wei, C. Y. et al. 2012a). However, as HLA-B*15:02 is expressed 

almost exclusively in South-east Asian populations, pharmacogenetic testing 

has been restricted to patients of Asian ancestry (Ferrell and McLeod 2008). 

In Caucasian patients, genetic studies have recently revealed a strong 

association between CBZ-induced HSRs and HLA-A*31:01, suggesting HLA-

A*31:01 may be a molecular target for CBZ, and the allele may therefore 

represent a possible genetic marker for CBZ hypersensitivity in Europeans 

(McCormack et al. 2011). 
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Thus, following the examples of CBZ and HLA-B*15:02 as well as ABC and HLA-

B*57:01, the relationship between HLA-A*31:01 expression and CBZ-induced T-

cell activation was explored in vitro using isolated PBMCs from a HLA-A*31:01+ 

CBZ hypersensitive patient (chapter 2). 

CD8+ T-cell clones from the patient were shown to be HLA-A31 restricted, and 

strong proliferative responses to CBZ were observed in the presence of 

allogeneic HLA-A*31:01+ APCs. The data present the first tentative proof that 

HLA-A*31:01 is functionally involved in mediating CBZ-specific T-cell responses. 

However, some CD8+ clones could be activated if APCs expressing other HLA-A 

were present, suggesting that recognition of CBZ may not be defined solely by 

HLA-A*31:01. A comprehensive study using APCs expressing HLA-A allotypes 

closely related to HLA-A*31:01 should facilitate the characterisation of the 

binding capacity of CBZ to HLA-A and determine the amino acid residues 

involved in CBZ presentation, as has been accomplished for CBZ in association 

with HLA-B*15:02 and for ABC (Chessman et al. 2008; Wei, C. Y. et al. 2012a). 

Ideally, this would involve the use of HLA transfected cell lines expressing a 

single HLA allele rather than EBV-transfected B-cells from healthy donors 

expressing the full range of HLA class I and class II alleles in order to avoid any 

HLA cross-reactivity. 

In chapter 2, I also investigated the HLA restriction profile of CD4+ T-cells 

isolated from the CBZ hypersensitive patient. In contrast to the predominant 

CD8+ T-cell response in CBZ-induced SJS patients, drug-specific CD4+ T-cells are 

commonly found in patients with CBZ-induced hypersensitivity syndrome or 

maculopapular rash. It was therefore of interest to see whether CD4+ T-cells 

from the patient also displayed specific HLA restriction. Activation of CD4+ 

clones was restricted by HLA-DP and DR simultaneously. In other autoimmune 

diseases, such as narcolepsy and type I diabetes, it has previously been reported 

that HLA class II alleles may co-operatively confer immune recognition (Temajo 

and Howard 2009; Han et al. 2012). Although it would have been interesting to 

explore further how each of the two HLA class II loci affects the stimulation of 

CD4+ T-cells by CBZ, the lack of information on HLA-DP prevented further 

analysis. Instead, I focused on HLA-DR, and in particular HLA-DRB1*04:04. This 
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allele has been shown to be part of a common haplotype with HLA-A*31:01 in 

Caucasians, and the patient expressed both HLA alleles. In accordance with this, 

it was demonstrated that CD4+ clones from the patient responded to CBZ in a 

HLA-DRB1*04:04 restricted manner. This suggests that CBZ is able to interact 

with several HLA molecules, which may lead to the phenotypically diverse T-

cell responses seen in Caucasian patients. Nevertheless, whether the HLA 

restriction profile observed in the patient is universally applicable needs to be 

confirmed in a larger cohort of patients. 

 

Due to the low incidence of drug-induced HSRs, the recruitment of drug 

hypersensitive patients to clinical studies has always been a large obstacle. 

Furthermore, in vitro studies investigating the immunological mechanisms have 

so far relied on the use of patient derived drug-specific memory T-cells, which 

does not allow the prediction of the allergic potential of a drug. As a result, 

several research groups have recently attempted to generate primary T-cell 

responses to drugs using cells from drug-naïve healthy volunteers (Engler et al. 

2004; Chessman et al. 2008; Ko et al. 2011; Faulkner et al. 2012; Monshi et al. 

2013; Wuillemin et al. 2013). 

Using the in vitro priming methods reported in the literature, I tried to generate 

a primary immune response to CBZ in drug-naïve T-cells isolated from HLA-

A*31:01+ healthy volunteers (chapter 3). A weak CBZ specific T-cell response 

could be induced in five out of eight HLA-A*31:01+ donors. However, activation 

of T-cells was not observed consistently across all read-out methods applied, 

but instead was limited to individual assays. Ideally, the drug specificity of the 

individual T-cell cultures would have been evaluated using the complete panel 

of read-outs available, however, the amount of T-cells that could be recovered 

after in vitro priming were in most cases insufficient to test all end-points. For 

this reason, it was difficult to determine in which of the samples a genuine T-

cell response to CBZ had been elicited and which, if any, might have represented 

an artefact. At the same time, the persistently elevated background levels of 

IFN-γ in T-cells from HLA-A*31:01+ volunteers suggested that these T-cells may 
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be more prone to bystander T-cell activation compared to those from HLA-

B*15:02+ donors, which in turn may obscure a response caused by CBZ. Further 

investigations are needed in order to understand the differences in bystander 

stimulation of T-cells from HLA-B*15:02+ compared to HLA-A*31:01+ donors. 

However, the data in chapter 3 clearly indicate that the expression of HLA-

A*31:01 on its own is not sufficient to stimulate a primary T-cell response to 

CBZ. The analysis of the extended HLA haplotype did not reveal any common 

pattern between the samples tested, making it unlikely that HLA-DRB1*04:04 

might play a role, as reported earlier for the HLA-A*31:01+ hypersensitive 

patient. 

 

Multiple factors, both environmental and genetic, are thought to contribute to 

the risk of an individual to develop a hypersensitivity reaction. Most recently, 

after specific T-cell clonotypes had been identified to play a role in mediating T-

cell responses to CBZ in HLA-B*15:02+ patients (Ko et al. 2011), the T-cell 

receptor has been brought forward as a possible susceptibility factor in drug-

induced hypersensitivity. 

In order to examine whether a specific TCR may be involved in CBZ-induced 

HSRs in HLA-A*31:01+ patients, a protocol for the comprehensive analysis of the 

TCR Vβ repertoire was established (chapter 5). 

Methods for the examination of TCR Vβ expression by flow cytometry as well as 

molecular CDR3 spectratyping were set up individually. The protocols were 

tested using naïve T-cells from healthy donors that were primed against the 

model drug antigen SMX-NO, as patient samples were considered too valuable. 

The TCR Vβ usage of the different T-cell subsets, i.e. naïve and SMX-NO specific 

memory T-cells, could be determined successfully on both protein and mRNA 

level. However, the data analysis process requires further optimisation in order 

to improve the coherence between the two read-outs, and thus allow a detailed 

characterisation of the TCR repertoire expressed by drug-specific T-cells. 

In an earlier attempt to characterise the TCR Vβ usage of a few selected T-cell 

clones from the HLA-A*31:01+ hypersensitive patient, flow cytometric analysis 
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had produced inconsistent results (data not shown). Expression of a single TCR 

Vβ could only be detected on two clones, whereas for the majority of CBZ-

specific clones no definite TCR Vβ usage could be determined. It may be that the 

TCR expressed by these particular clones was not covered by the antibody kit. 

In some cases, however, it seemed that non-specific binding of the monoclonal 

antibodies had occurred which masked the true TCR expression levels of the 

clones. For this reason, it was considered necessary to set up the more sensitive 

CDR3 spectratyping method, which encompasses a slightly broader range of 

TCR Vβs, and has already been used successfully in the study by Ko et al. (2011). 

Using the optimised spectratyping protocol, it should be possible to screen 

drug-specific T-cells from HLA-A*31:01+ CBZ hypersensitive patients for TCR Vβ 

expression, and determine whether particular TCR Vβs predominantly occur in 

patients compared to tolerant controls. If this were the case, this may explain 

why some carriers of the HLA risk allele remain tolerant to CBZ. Likewise, this 

could also explain why in some cases in vitro priming of drug-naïve T-cells from 

HLA-A*31:01+ volunteers had failed. 

Besides, if the corresponding TCR Vα chain could be identified, this would 

provide an opportunity to generate TCR transfected cell lines that could be used 

as an alternative to T-cell clones derived from patients, thereby avoiding the 

laborious process of T-cell cloning and the problems associated with it (e.g. loss 

of drug specificity). In previous studies it has been demonstrated that TCR 

transfected hybridoma cells show the same specificity and drug recognition 

pattern as the T-cell clones they were derived from originally, and therefore 

provide a valuable tool for the investigation of drug-TCR interactions (Schmid et 

al. 2006). 

In addition, CDR3 spectratyping would allow to assess whether T-cell response 

to CBZ in HLA-A*31:01+ patients are poly-, oligo- or monoclonal in nature, and 

hence give an indication of the scope of CBZ-derived antigens that may be 

involved in T-cell activation. 

Until now, the drug antigen(s) causing CBZ hypersensitivity remains elusive. 

Most evidence gained from in vitro studies so far points towards CBZ, the parent 
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drug, inducing the activation of T-cells. First, fixation of APCs with aldehyde, 

which inhibits the processing of proteins, did not suppress T-cell stimulation by 

CBZ, suggesting that the formation of a haptenated protein is not required (Wu 

et al. 2006; Wu et al. 2007; Wei, C. Y. et al. 2012a). Also, mass spectrometry 

analysis was unable to detect any CBZ-modified peptides bound by HLA-

B*15:02 (Yang et al. 2007; Illing et al. 2012). Second, addition of glutathione and 

other neutralising agents, which capture reactive metabolites, did not inhibit T-

cell responses to CBZ, signifying a metabolism-independent process (Wu et al. 

2006). Third, CBZ-pulsed APCs did not induce the activation of T-cells, 

suggesting a non-covalent binding mechanism (Wu et al. 2006; Wei, C. Y. et al. 

2012a). 

According to current hypotheses, presentation of CBZ as drug antigen could 

take place in either one of two ways: CBZ may bind non-covalently to a peptide-

HLA complex or directly to the TCR (p-i mechanism), or CBZ may be loaded into 

an empty HLA binding groove leading to a change of the peptide repertoire 

presented by the HLA allele (altered peptide model). The strong associations 

with HLA-B*15:02 and A*31:01 suggest that CBZ binding occurs at the HLA 

rather than the TCR interface. 

The data presented in chapter 3 and chapter 4 adds to the existing evidence that 

CBZ binds directly to the HLA molecule and subsequently induces T-cell 

activation. 

In a novel approach to assess the effect of metabolic activation of CBZ on T-cell 

stimulation, it was shown that halogenated derivatives of CBZ, which are stable 

against metabolic transformation, stimulated a proliferative response in T-cell 

clones from a HLA-B*15:02+ volunteer (chapter 3). Similarly, CBZ-specific 

clones isolated from a HLA-A*31:01+ patient could also be activated by the 

halogenated derivatives (Farrell et al. 2013). These findings further strengthen 

the concept that the metabolic activation of CBZ is not needed in order to form 

an antigenic structure that is presented to T-cells. 

Mass spectrometry analysis of peptides eluted from a HLA-A*31:01 expressing 

cell line treated with CBZ in vitro did not exhibit any CBZ-modified peptides 



  Chapter 6 

175 
 

(chapter 4). Instead, unbound CBZ could be detected in the peptide fractions. 

These results support a non-covalent binding mechanism of CBZ to HLA-

A*31:01. However, whether the interaction between CBZ and HLA molecule 

occurred within in the HLA binding groove and affected the peptide binding 

specificity of the HLA allele could not be determined conclusively, as too low 

numbers of HLA-A*31:01 specific peptides were identified to perform a detailed 

comparison of peptide binding in absence and presence of drug. 

In chapter 4, I performed in silico analysis of the binding specificity of HLA-

A*31:01 in comparison to B*15:02; this suggested that CBZ may bind in close 

proximity to the B-pocket of the HLA-A*31:01 molecule, but in a slightly shifted 

location compared to HLA-B*15:02. Earlier computational modelling studies 

have indicated that CBZ is most likely to bind to HLA-B*15:02 within the B-

pocket of the peptide binding cleft, underneath the peptide residues P4/P6 

(Illing et al. 2012; Wei, C. Y. et al. 2012a). In vitro studies involving the refolding 

of the individual HLA molecules in complex with a self-peptide and CBZ, and 

subsequent crystallisation of the drug-peptide-HLA complexes may provide 

proof of the in silico observations described in the literature and in this thesis. 

Taken together, the preliminary results from the in silico modelling and peptide 

elution study indicate that the altered peptide model may apply to interactions 

occurring between CBZ and HLA risk alleles and consequently cause T-cell 

activation. However, these findings need to be confirmed in further studies 

before a firm conclusion is drawn. 

Another question that remains to be answered in this context is: where do the 

T-cells responding to drug antigens or altered peptides originate from? 

In relation to this, it has been hypothesised that a subpopulation of memory T-

cells, which have been primed to a different antigen earlier, may be able to 

cross-react with the drug and/or altered peptide (Adam et al. 2011). Given that 

memory T-cells have a lower activation threshold than naïve T-cells, this could 

explain why the HLA-TCR interaction may be sufficient to cause T-cell 

activation. It has further been proposed that these pre-activated memory T-cells 

may be derived through heterologous immune responses induced by viral 
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infections, which have been associated with an increased risk of developing 

hypersensitivity (Adam et al. 2011; Ostrov et al. 2012). 

In case of CBZ, however, it seems that pre-activated memory T-cells are not a 

prerequisite to stimulate a primary T-cell response, as highly purified naïve T-

cells from HLA-B*15:02+ healthy volunteers could be successfully primed 

against CBZ (chapter 3). Thus, primary T-cell responses against CBZ and other 

drugs may be induced through different processes of drug antigen presentation, 

which may also occur concurrently (Pichler 2013). 

As a matter of fact, we have recently shown that a reactive metabolite of CBZ is 

able to form stable adducts with human serum albumin (HSA) in vitro, and the 

equivalent metabolite-conjugated HSA peptides could be identified in patients 

on regular CBZ treatment (data unpublished). However, at this stage, it is 

unclear whether these haptenated peptides may have antigenic potential and 

may induce T-cell responses in CBZ susceptible individuals. Following the in 

vitro studies performed with the contact sensitizer 2,4-dinitrobenzene sulfonic 

acid (Dietz et al. 2010), it may be possible to prepare synthetic HSA peptides 

haptenated with the CBZ metabolite and test these initially in T-cells from 

hypersensitive patients to assess their T-cell activation potential. Subsequently, 

priming of naïve T-cells from HLA-B*15:02+ donors against the synthetic CBZ-

modified HSA peptides could be attempted to evaluate the role of CBZ-modified 

peptides in generating primary T-cell responses. 

 

Overall, it is difficult to link T-cell responses observed in vitro to the conditions 

occurring in vivo. The majority of mechanistic studies has relied on the use of T-

cells derived from hypersensitive patients, and can therefore only describe the 

processes involved in the secondary stimulation of T-cells in vitro. The steps 

leading to the initial sensitisation of T-cells against a drug in vivo however 

remain unclear. Although it has been possible to induce a primary T-cell 

response in vitro against a few drugs (including SMX-NO, ABC and CBZ), the 

formation of the respective antigenic complex and its structure has not yet been 

elucidated. It can therefore not be excluded that the stimulation of a primary 
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immune response against a drug, both in vivo and in vitro, requires the 

formation of drug-modified protein adducts, which may have the ability to 

activate the innate as well as the adaptive immune system. 

 

In conclusion, a number of questions remain to be answered in order to fully 

understand the individual molecular processes involved in drug-induced HSRs. 

These relate especially to the mechanism of initial sensitisation to a drug, the 

formation of the drug antigen complex, as well as the function of the TCR in 

drug antigen recognition. Future research efforts aiming to resolve these 

ambiguities may permit to predict the risk of a drug to cause hypersensitivity, 

and ultimately assist in the development of safer drugs in future. 

 

 



 

178 
 

Appendix 

 

Figures 

F1 Self-presenting CD4+ (A) and CD8+ (B) T-cell clones reactive to CBZ. 

F2 Ramachandran plots of 3D-model structures of HLA-A*31:01 (A) and 

HLA-B*15:02 (B) generated by RAMPAGE. 

 

Tables 

T1 Summary of monoclonal antibodies used in FACS analysis. 

T2 Primers used in CDR3 spectratyping analysis 

T3 Flow cytometric analysis of TCR Vβ usage on naïve and SMX-NO specific 

memory T-cells. 

T4 CDR3 size distribution of TCR Vβ subtypes on naïve and SMX-NO specific 

memory T-cells. 

T5 Correspondence between the nomenclatures of TCR Vβ monoclonal 

antibodies and TCR Vβ primers. 
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Figure F1: Self-presenting CD4+ (A) and CD8+ (B) T-cell clones reactive to CBZ. 

T-cell clones were cultured with CBZ (25μg/ml) in the absence and presence of autologous B-

LCL. Proliferation was determined by [3H]-thymidine uptake. Data represent mean cpm ± SEM 

of n clones. 
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A) HLA-A*31:01 

 

 

Figure F2: Ramachandran plots of 3D-model structures of HLA-A*31:01 (A) and HLA-

B*15:02 (B) generated by RAMPAGE. 
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B) HLA-B*15:02 

 

 

Figure F2 (continued): Ramachandran plots of 3D-model structures of HLA-A*31:01 

(A) and HLA-B*15:02 (B) generated by RAMPAGE. 
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Table T1: Summary of monoclonal antibodies used in FACS analysis. 

Monoclonal 
antibody 

Fluorochrome Clone ID Supplier 

CD phenotyping 

anti-CD4 PE RPA-T4 BD Pharmingen 

anti-CD8 FITC HIT8a BD Pharmingen 

Intracellular cytokine staining assay 

anti-CD3 PerCP SP34-2 BD Pharmingen 

anti-CD4 APC-Cy7 RPA-T4 BD Pharmingen 

anti-TNF α PE-Cy7 MAb11 BD Pharmingen 

anti-IFN γ Pacific Blue 4S.B3 Biolegend 

anti-granzyme 
B 

Alexa Fluor 700 GB11 BD Pharmingen 

anti-IL 4 APC 8D4-8 eBioscience 

In vitro T-cell priming assay 

anti-CD14 FITC M5E2 BD Pharmingen 

anti-CD3 APC UCHT1 BD Pharmingen 

anti-CD25 PE 4E3 Miltenyi Biotech 

anti-CD45RA FITC HI100 BD Pharmingen 

anti-CD45RO Cy5 UCHL1 BD Pharmingen 

anti-CD4 FITC RPA-T4 BD Pharmingen 

anti-CD8 PE RPA-T8 BD Pharmingen 

APC= Allophycocyanin; Cy= cyanine; FITC= Fluorescein isocyanate; PE= 

Phosphatidylethanolamine; PerCP= Peridinin chlorophyll protein 
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Table T2: List of primers used in TCR Vβ CDR3 spectratyping  analysis 

Sequence Name Sequence  (‘5-‘3) 

humTCR-VB1 CCG CAC AAC AGT TCC CTG ACT TGC 

humTCR-VB2 ACA TAC GAG CAA GGC GTC GA 

humTCR-VB3 CGC TTC TCC CTG ATT CTG GAG TCC 

humTCR-VB4 CAT CAG CCG CCC AAA CCT AA 

humTCR-VB5 GAT CAA AAC GAG AGG ACA GC 

humTCR-VB6 A GAT CCA ATT TCA GGT CAT ACT G 

humTCR-VB6 B CAG GGS CCA GAG TTT CTG AC 

humTCR-VB6 C CAG GGT TCA GAG GTT CTG AC 

humTCR-VB7 CAA GTC GCT TCT CAC CTG AAT GC 

humTCR-VB8 GGT ACA GAC AGA CCA TGA TGC 

humTCR-VB9 TTC CCT GGA GCT TGG TGA CTC TGC 

humTCR-VB11 GTC AAC AGT CTC CAG AAT AAG 

humTCR-VB12 TCC TCC TCA CTC TGG AGT C 

humTCR-VB13 A GGT ATC GAC AAG ACC CAG GCA 

humTCR-VB13 B AGG CTC ATC CAT TAT TCA AAT AC 

humTCR-VB14 GGG CTG GGC TTA AGG CAG ATC TAC  

humTCR-VB15 CAG GCA CAG GCT AAA TTC TCC CTG 

humTCR-VB16 GCC TGC AGA ACT GGA GGA TTC TGG 

humTCR-VB17 TGT GAC ATC GGC CCA AAA GAA 

humTCR-VB18 CAA AGA GGG CCC CAG CAT 

humTCR-VB20 TGC CCC AGA ATC TCT CAG CCT CCA 

humTCR-VB21 GGA GTA GAC TCC ACT CTC AAG 

humTCR-VB22 GAT CCG GTC CAC AAA GCT GG 

humTCR-VB23 ATT CTG AAC TGA ACA TGA GCT CCT 

humTCR-VB24 GAC ATC CGC TCA CCA GGC CTG 

  

humTCR-CB1 (use with TCR-VB 5, 6B/C, 20) GGG TGT GGG AGA TCT CTG C 

humTCR-CB2RO (run-off PCR) FAM-ACA CAG CGA CCT CGG GTG GG 

humTCR-CB3 CCT TTT GGG TGT GGG AGA TCT C 
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Table T3: Flow cytometric analysis of TCR Vβ usage on naïve and SMX-NO specific memory T-cells. 

 Day 0- % naïve T-cells  Day 11- % SMX-NO spec. memory T-cells 

TCR S1 S2 S3 S4 S5 S6 
Mean day0 
(exclud.S1) 

SD 
mean 
-3SD 

mean 
+3SD 

S1 S2 S3 S4 S5 S6 

Vb 1 4.06 4.66 3.96 4.28 3.69 3.76 4.07 0.40 2.87 5.27 6.40 3.17 1.28 1.82 1.93 5.59 

Vb 2 6.94 7.12 8.49 6.65 7.29 5.34 6.98 1.14 3.57 10.39 10.66 18.12 0.88 0.62 1.30 9.89 

Vb 3 4.19 0.67 0.43 10.64 4.60 6.39 4.55 4.26 -8.23 17.32 3.21 1.24 0.57 6.81 3.57 4.11 

Vb 4 0.94 0.21 0.07 0.09 0.53 0.03 0.18 0.20 -0.42 0.79 0.10 2.85 3.27 3.37 5.24 3.92 

Vb 5.1 11.67 4.53 8.54 6.82 6.88 4.44 6.24 1.75 1.01 11.48 9.15 5.34 0.86 0.41 0.30 3.32 

Vb 5.2 0.98 0.77 0.80 0.33 0.61 0.91 0.68 0.23 0.01 1.36 0.11 0.73 10.65 7.88 12.22 1.00 

Vb 5.3 2.08 0.78 0.26 0.21 0.40 0.77 0.48 0.27 -0.33 1.30 0.16 1.16 3.88 4.25 2.88 0.82 

Vb 7.1 3.47 2.91 1.95 1.04 2.59 1.62 2.02 0.75 -0.22 4.26 3.56 5.36 0.70 0.73 1.12 1.64 

Vb 7.2 0.90 2.53 0.60 0.06 0.35 0.03 0.71 1.04 -2.42 3.85 0.14 3.11 1.98 1.00 1.47 0.00 

Vb 8 1.17 3.55 1.76 2.34 1.92 3.52 2.62 0.86 0.03 5.21 3.02 3.72 5.00 3.89 3.30 3.74 

Vb 9 1.35 0.18 0.22 0.15 0.15 0.07 0.15 0.05 -0.01 0.32 0.43 3.84 3.45 4.47 6.85 2.27 

Vb 11 0.78 0.75 0.87 0.77 0.73 0.58 0.74 0.10 0.43 1.05 0.09 1.18 4.69 5.66 2.92 0.65 

Vb 12 1.08 1.17 1.64 1.32 1.22 0.68 1.21 0.34 0.18 2.24 1.20 1.52 1.78 2.32 1.61 1.10 

Vb 13.1 2.36 3.27 4.27 2.84 3.27 3.57 3.45 0.53 1.86 5.03 5.20 4.62 3.35 2.81 3.66 5.03 

Vb 13.2 1.49 3.91 2.34 0.97 1.73 0.60 1.91 1.31 -2.01 5.83 1.37 3.92 0.49 0.57 0.51 0.42 

Vb 13.6 1.88 1.57 1.62 1.29 1.79 1.61 1.58 0.18 1.03 2.13 1.02 1.45 6.02 2.75 2.93 2.59 

Vb 14 0.38 2.19 0.89 2.47 0.85 0.89 1.46 0.80 -0.95 3.86 3.66 6.05 4.83 6.59 5.44 3.70 

Vb 16 1.07 0.55 0.86 0.75 0.82 1.09 0.81 0.19 0.23 1.39 0.17 0.38 1.37 0.69 1.15 0.62 

Vb 17 1.76 6.90 3.45 6.20 6.44 4.68 5.54 1.43 1.24 9.83 2.03 8.00 1.64 1.91 1.06 4.97 

Vb 18 1.26 0.52 0.11 0.17 0.12 0.39 0.26 0.18 -0.28 0.81 0.31 0.49 10.40 7.89 8.05 1.02 

Vb 20 5.16 1.33 2.18 0.96 2.14 1.43 1.61 0.54 0.00 3.22 2.05 2.68 2.35 0.67 1.93 2.25 

Vb 21.3 1.86 1.63 2.54 2.67 2.46 1.82 2.22 0.47 0.82 3.63 1.10 1.72 1.55 1.69 1.93 1.70 

Vb 22 2.02 3.10 3.47 4.02 1.79 4.00 3.27 0.92 0.52 6.03 6.40 1.88 1.14 1.56 0.65 3.87 

Vb 23 1.72 0.79 0.67 0.29 0.57 1.30 0.72 0.37 -0.39 1.84 3.81 0.54 5.65 0.37 4.21 0.85 

total Vb 60.60 55.59 51.95 57.33 52.95 49.52        65.33 83.08 77.79 70.72 76.23 65.09 
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Table T4: CDR3 size distribution of TCR Vβ subtypes on naïve and SMX-NO specific memory T-cells. 

  S1   S2   S3   S4   S5   S6   

TCR Vβ Naive Memory Naive Memory Naive Memory Naive Memory Naive Memory Naive Memory 

1 P O P O P P P P P O P O 

2 X X X X P P S/P P X X X X 

3 P O X P P P X O P S P O 

4 X X X X X X X X X S S/P X 

5 O O P P P S P O P O P O 

6A P O O O S O P P P P P O 

6B/C P O P O S S P S/P P P P O 

7 P O P O P P O O P O P P 

8 O O O O P O O O S O O O 

9 P O P O P P P O P P S/P O 

11 O O O O O O O O S O S/O X 

12 P X P S/O P P S/P O P P S/P P 

13A P O P P P P S/P O P O S/P O 

13B O O O S/O P O P S/O P O P O 

14 O O P P P P P O O O P O 

15 P O P P P P P O P P P P 

16 O O P P P P O O P O P O 

17 O O O O P O O O S S P O 

18 P O P O P O P O P O P O 

20 P O O O P O P S/X P P S/X P 

21 S/P P S/O O P P X X X X X X 

22 P O O O P O P P P P P O 

23 S/P O S/O O P P S/O S/O S S P O 

24 O O O P P S O O O S P O 
P= polyclonal (Gaussian-like distribution, ≥ 5 peaks); O= oligoclonal (skewed Gaussian profile, at least 1 dominant peak); X= undetectable (fluorescence intensity of profile below 250); S= no 

sizing data (no spectratype profile shown) 
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Table T5: Correspondence between the nomenclatures of TCR Vβ monoclonal 

antibodies and TCR Vβ primers. 

TCR Vβ primers 
(Pannetier et al. 1998) 

IMGT nomenclature 
(Lefranc et al. 1999) 

TCR Vβ mAB 
(Wei, S. et al. 1994) 

1 9 1 

2 20 2 

3 28 3 

4 29 4 

5 5(1,3-8) 5.1, 5.2, 5.3 

6A 7(2-3) - 

6B/C 7(4,6,8,9) - 

7 4(1-3) 7.1, 7.2 

8 12(3-5) 8 

9 3(1-2) 9 

11 25 11 

12 10-3 12 

13A 6(1-3,5-9) 13.1, 13.2, 13.6 

13B 6-4 - 

14 27 14 

15 24-1 - 

16 14 16 

17 19 17 

18 18 18 

20 30 20 

21 11(1-3) 21.3 

22 2 22 

23 13 23 

24 15 - 

 

 



  Bibliography 

187 
 

Bibliography 

 

Adam, J., W. J. Pichler and D. Yerly (2011). "Delayed drug hypersensitivity: models of T-

cell stimulation." Br J Clin Pharmacol 71(5): 701-707. 

Alfirevic, A., F. Gonzalez-Galarza, C. Bell, K. Martinsson, V. Platt, G. Bretland, J. Evely, M. 

Lichtenfels, K. Cederbrant, N. French, D. Naisbitt, B. K. Park, A. R. Jones and M. 

Pirmohamed (2012). "In silico analysis of HLA associations with drug-induced 

liver injury: use of a HLA-genotyped cell archive from healthy volunteers." 

Genome Med 4(6): 51. 

Alfirevic, A., A. L. Jorgensen, P. R. Williamson, D. W. Chadwick, B. K. Park and M. 

Pirmohamed (2006). "HLA-B locus in Caucasian patients with carbamazepine 

hypersensitivity." Pharmacogenomics 7(6): 813-818. 

Amir, A. L., L. J. A. D'Orsogna, D. L. Roelen, M. M. Van Loenen, R. S. Hagedoorn, R. De Boer, 

M. A. W. G. Van Der Hoorn, M. G. D. Kester, I. I. N. Doxiadis, J. H. F. Falkenburg, F. 

H. J. Claas and M. H. M. Heemskerk (2010). "Allo-HLA reactivity of virus-specific 

memory T cells is common." Blood 115(15): 3146-3157. 

Apple, R. J., H. A. Erlich, W. Klitz, M. M. Manos, T. M. Becker and C. M. Wheeler (1994). 

"HLA DR-DQ associations with cervical carcinoma show papillomavirus-type 

specificity." Nat Genet 6(2): 157-162. 

Aronson, J. K. and R. E. Ferner (2003). "Joining the DoTS: new approach to classifying 

adverse drug reactions." BMJ 327(7425): 1222-1225. 

Barnstable, C. J., W. F. Bodmer, G. Brown, G. Galfre, C. Milstein, A. F. Williams and A. 

Ziegler (1978). "Production of monoclonal antibodies to group A erythrocytes, 

HLA and other human cell surface antigens-new tools for genetic analysis." Cell 

14(1): 9-20. 



  Bibliography 

188 
 

Beeler, A., L. Zaccaria, T. Kawabata, B. O. Gerber and W. J. Pichler (2008). "CD69 

upregulation on T cells as an in vitro marker for delayed-type drug 

hypersensitivity." Allergy 63(2): 181-188. 

Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov 

and P. E. Bourne (2000). "The Protein Data Bank." Nucleic Acids Research 28(1): 

235-242. 

Bharadwaj, M., P. Illing, A. Theodossis, A. W. Purcell, J. Rossjohn and J. McCluskey 

(2012). "Drug hypersensitivity and human leukocyte antigens of the major 

histocompatibility complex." Annu Rev Pharmacol Toxicol 52: 401-431. 

Blum, J. S., P. A. Wearsch and P. Cresswell (2013). "Pathways of Antigen Processing." 

Annual Review of Immunology 31(1): 443-473. 

Brewerton, D. A., F. D. Hart, A. Nicholls, M. Caffrey, D. C. O. James and R. D. Sturrock 

(1973). "ANKYLOSING SPONDYLITIS AND HL-A 27." The Lancet 301(7809): 

904-907. 

Brunner, K. T., J. Mauel, J. C. Cerottini and B. Chapuis (1968). "Quantitative assay of the 

lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in 

vitro; inhibition by isoantibody and by drugs." Immunology 14(2): 181-196. 

Burrows, S. R., J. Rossjohn and J. McCluskey (2006). "Have we cut ourselves too short in 

mapping CTL epitopes?" Trends in Immunology 27(1): 11-16. 

Callan, H. E., R. E. Jenkins, J. L. Maggs, S. N. Lavergne, S. E. Clarke, D. J. Naisbitt and B. K. 

Park (2009). "Multiple Adduction Reactions of Nitroso Sulfamethoxazole with 

Cysteinyl Residues of Peptides and Proteins: Implications for Hapten Formation." 

Chemical Research in Toxicology 22(5): 937-948. 

Carr, D. F., M. Chaponda, A. L. Jorgensen, E. C. Castro, J. J. van Oosterhout, S. H. Khoo, D. G. 

Lalloo, R. S. Heyderman, A. Alfirevic and M. Pirmohamed (2013). "Association of 



  Bibliography 

189 
 

Human Leukocyte Antigen Alleles and Nevirapine Hypersensitivity in a Malawian 

HIV-Infected Population." Clinical Infectious Diseases 56(9): 1330-1339. 

Carrington, M., G. W. Nelson, M. P. Martin, T. Kissner, D. Vlahov, J. J. Goedert, R. Kaslow, S. 

Buchbinder, K. Hoots and S. J. O'Brien (1999). "HLA and HIV-1: Heterozygote 

advantage and B*35-Cw*04 disadvantage." Science 283(5408): 1748-1752. 

Castrejon, J. L., N. Berry, S. El-Ghaiesh, B. Gerber, W. J. Pichler, B. K. Park and D. J. Naisbitt 

(2010). "Stimulation of human T cells with sulfonamides and sulfonamide 

metabolites." J Allergy Clin Immunol 125(2): 411-418 e414. 

Cederbrant, K., M. Marcusson-StÅhl and P. Hultman (2000). "Characterization of 

primary recall in vitro lymphocyte responses to bacampicillin in allergic 

subjects." Clinical & Experimental Allergy 30(10): 1450-1459. 

Chang, C. C., C. L. Too, S. Murad and S. H. Hussein (2011). "Association of HLA-B*1502 

allele with carbamazepine-induced toxic epidermal necrolysis and Stevens-

Johnson syndrome in the multi-ethnic Malaysian population." Int J Dermatol 

50(2): 221-224. 

Chantarangsu, S., T. Mushiroda, S. Mahasirimongkol, S. Kiertiburanakul, S. 

Sungkanuparph, W. Manosuthi, W. Tantisiriwat, A. Charoenyingwattana, T. Sura, 

W. Chantratita and Y. Nakamura (2009). "HLA-B*3505 allele is a strong predictor 

for nevirapine-induced skin adverse drug reactions in HIV-infected Thai 

patients." Pharmacogenet Genomics 19(2): 139-146. 

Chessman, D., L. Kostenko, T. Lethborg, A. W. Purcell, N. A. Williamson, Z. Chen, L. Kjer-

Nielsen, N. A. Mifsud, B. D. Tait, R. Holdsworth, C. A. Almeida, D. Nolan, W. A. 

Macdonald, J. K. Archbold, A. D. Kellerher, D. Marriott, S. Mallal, M. Bharadwaj, J. 

Rossjohn and J. McCluskey (2008). "Human leukocyte antigen class I-restricted 

activation of CD8+ T cells provides the immunogenetic basis of a systemic drug 

hypersensitivity." Immunity 28(6): 822-832. 



  Bibliography 

190 
 

Chinen, J. and R. H. Buckley (2010). "Transplantation immunology: Solid organ and bone 

marrow." Journal of Allergy and Clinical Immunology 125(2, Supplement 2): 

S324-S335. 

Choo, S. Y. (2007). "The HLA system: genetics, immunology, clinical testing, and clinical 

implications." Yonsei Med J 48(1): 11-23. 

Chung, W. H. and S. I. Hung (2010). "Genetic markers and danger signals in stevens-

johnson syndrome and toxic epidermal necrolysis." Allergol Int 59(4): 325-332. 

Chung, W. H., S. I. Hung, H. S. Hong, M. S. Hsih, L. C. Yang, H. C. Ho, J. Y. Wu and Y. T. Chen 

(2004). "Medical genetics: a marker for Stevens-Johnson syndrome." Nature 

428(6982): 486. 

Cribb, A. E. and S. P. Spielberg (1992). "Sulfamethoxazole is metabolized to the 

hydroxylamine in humans." Clin. Pharm. Ther. 51(5): 522-526. 

Cribb, A. E., S. P. Spielberg and G. P. Griffin (1995). "N4-hydroxylation of 

sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and 

reduction of sulfamethoxazole hydroxylamine in human and rat hepatic 

microsomes." Drug Metab Dispos 23(3): 406-414. 

Dai, S., M. T. Falta, N. A. Bowerman, A. S. McKee and A. P. Fontenot (2013). "T cell 

recognition of beryllium." Curr Opin Immunol. 

Daly, A. K., P. T. Donaldson, P. Bhatnagar, Y. Shen, I. Pe'er, A. Floratos, M. J. Daly, D. B. 

Goldstein, S. John, M. R. Nelson, J. Graham, B. K. Park, J. F. Dillon, W. Bernal, H. J. 

Cordell, M. Pirmohamed, G. P. Aithal, C. P. Day, D. Study and S. A. E. C. 

International (2009). "HLA-B*5701 genotype is a major determinant of drug-

induced liver injury due to flucloxacillin." Nat Genet 41(7): 816-819. 

Dausset, J. (1958). "Iso-leuko-antibodies." Iso-leuco-anticorps. 20(1-4): 156-166. 



  Bibliography 

191 
 

Davis, M. M. and P. J. Bjorkman (1988). "T-cell antigen receptor genes and T-cell 

recognition." Nature 334(6181): 395-402. 

DeLano, W. (2002). The PyMOL Molecular Graphics System. San Carlos, CA, DeLano 

Scientific. 

Delves, P. J. and I. M. Roitt (2000). "The immune system. First of two parts." N Engl J Med 

343(1): 37-49. 

Descamps, V., A. Valance, C. Edlinger, A. M. Fillet, M. Grossin, B. Lebrun-Vignes, S. Belaich 

and B. Crickx (2001). "Association of human herpesvirus 6 infection with drug 

reaction with eosinophilia and systemic symptoms." Arch Dermatol 137(3): 301-

304. 

Dietz, L., P. R. Esser, S. S. Schmucker, I. Goette, A. Richter, M. Schnölzer, S. F. Martin and 

H.-J. Thierse (2010). "Tracking Human Contact Allergens: From Mass 

Spectrometric Identification of Peptide-Bound Reactive Small Chemicals to 

Chemical-Specific Naive Human T-Cell Priming." Toxicological Sciences 117(2): 

336-347. 

Dunkley, M., R. G. Miller and K. Shortman (1974). "A modified 51Cr release assay for 

cytotoxic lymphocytes." J Immunol Methods 6(1-2): 39-51. 

Edwards, I. R. and J. K. Aronson (2000). "Adverse drug reactions: definitions, diagnosis, 

and management." Lancet 356(9237): 1255-1259. 

Edwards, S. G., V. Hubbard, S. Aylett and D. Wren (1999). "Concordance of primary 

generalised epilepsy and carbamazepine hypersensitivity in monozygotic twins." 

Postgrad Med J 75(889): 680-681. 

Elliott, E.-C., S. L. Regan, J. L. Maggs, E. R. Bowkett, L. J. Parry, D. P. Williams, B. K. Park 

and A. V. Stachulski (2012). "Haloarene Derivatives of Carbamazepine with 

Reduced Bioactivation Liabilities: 2-Monohalo and 2,8-Dihalo Derivatives." 

Journal of Medicinal Chemistry 55(22): 9773-9784. 



  Bibliography 

192 
 

Engel, J. and T. A. Pedley (2008). Epilepsy : a comprehensive textbook. Philadelphia, 

Wolters Kluwer Health/Lippincott Williams & Wilkins. 

Engler, O. B., I. Strasser, D. J. Naisbitt, A. Cerny and W. J. Pichler (2004). "A chemically 

inert drug can stimulate T cells in vitro by their T cell receptor in non-sensitised 

individuals." Toxicology 197(1): 47-56. 

Erlich, H., A. M. Valdes, J. Noble, J. A. Carlson, M. Varney, P. Concannon, J. C. Mychaleckyj, 

J. A. Todd, P. Bonella, A. L. Fear, E. Lavant, A. Louey, P. Moonsamy and C. Type 1 

Diabetes Genetics (2008). "HLA DR-DQ haplotypes and genotypes and type 1 

diabetes risk: analysis of the type 1 diabetes genetics consortium families." 

Diabetes 57(4): 1084-1092. 

Esser, P., I. Kimber and S. Martin (2014). Correlation of Contact Sensitizer Potency with 

T Cell Frequency and TCR Repertoire Diversity. T Lymphocytes as Tools in 

Diagnostics and Immunotoxicology. S. F. Martin, Springer Basel. 104: 101-114. 

Ettinger, A. B. and C. E. Argoff (2007). "Use of antiepileptic drugs for nonepileptic 

conditions: psychiatric disorders and chronic pain." Neurotherapeutics 4(1): 75-

83. 

Farrell, J., M. Lichtenfels, A. Sullivan, E. C. Elliott, A. Alfirevic, A. V. Stachulski, M. 

Pirmohamed, D. J. Naisbitt and B. K. Park (2013). "Activation of carbamazepine-

responsive T-cell clones with metabolically inert halogenated derivatives." J 

Allergy Clin Immunol 132(2): 493-495. 

Farrell, J., D. J. Naisbitt, N. S. Drummond, J. P. Depta, F. J. Vilar, M. Pirmohamed and B. K. 

Park (2003). "Characterization of sulfamethoxazole and sulfamethoxazole 

metabolite-specific T-cell responses in animals and humans." J Pharmacol Exp 

Ther 306(1): 229-237. 

Faulkner, L., K. Martinsson, A. Santoyo-Castelazo, K. Cederbrant, I. Schuppe-Koistinen, H. 

Powell, J. Tugwood, D. J. Naisbitt and B. K. Park (2012). "The development of in 



  Bibliography 

193 
 

vitro culture methods to characterize primary T-cell responses to drugs." Toxicol 

Sci 127(1): 150-158. 

Ferrell, P. B. and H. L. McLeod (2008). "Carbamazepine, HLA-B*1502 and risk of 

Stevens–Johnson syndrome and toxic epidermal necrolysis: US FDA 

recommendations." Pharmacogenomics 9(10): 1543-1546. 

Fogdell, A., J. Hillert, C. Sachs and O. Olerup (1995). "The multiple sclerosis- and 

narcolepsy-associated HLA class II haplotype includes the DRB5*0101 allele." 

Tissue Antigens 46(4): 333-336. 

Fry, T. J. and C. L. Mackall (2005). "The Many Faces of IL-7: From Lymphopoiesis to 

Peripheral T Cell Maintenance." The Journal of Immunology 174(11): 6571-

6576. 

Gao, S., X. E. Gui, K. Liang, Z. Liu, J. Hu and B. Dong (2012). "HLA-dependent 

hypersensitivity reaction to nevirapine in Chinese Han HIV-infected patients." 

AIDS Res Hum Retroviruses 28(6): 540-543. 

Garcia, K. C. and E. J. Adams (2005). "How the T cell receptor sees antigen--a structural 

view." Cell 122(3): 333-336. 

Gatanaga, H., H. Yazaki, J. Tanuma, M. Honda, I. Genka, K. Teruya, N. Tachikawa, Y. 

Kikuchi and S. Oka (2007). "HLA-Cw8 primarily associated with hypersensitivity 

to nevirapine." AIDS 21(2): 264-265. 

Gogtay, N. J., S. B. Bavdekar and N. A. Kshirsagar (2005). "Anticonvulsant 

hypersensitivity syndrome: a review." Expert Opin Drug Saf 4(3): 571-581. 

Gomes, E. R. and P. Demoly (2005). "Epidemiology of hypersensitivity drug reactions." 

Curr Opin Allergy Clin Immunol 5(4): 309-316. 



  Bibliography 

194 
 

Gonzalez-Galarza, F. F., S. Christmas, D. Middleton and A. R. Jones (2011). "Allele 

frequency net: a database and online repository for immune gene frequencies in 

worldwide populations." Nucleic Acids Res 39(Database issue): D913-919. 

Gorentla, B. K. and X. P. Zhong (2012). "T cell Receptor Signal Transduction in T 

lymphocytes." J Clin Cell Immunol 2012(Suppl 12): 5. 

Gorer, P. A. (1936). "The detection of a hereditary antigenic difference in the blood of 

mice by means of human group a serum." Journal of Genetics 32(1): 17-31. 

Gourraud, P. A., A. Cambon-Thomsen, E. M. Dauber, M. Feolo, J. Hansen, E. Mickelson, R. 

M. Single, M. Thomsen and W. R. Mayr (2007). "Nomenclature for HLA 

microsatellites." Tissue Antigens 69 Suppl 1: 210-213. 

Gowthaman, U. and J. N. Agrewala (2009). "In silico methods for predicting T-cell 

epitopes: Dr Jekyll or Mr Hyde?" Expert Rev Proteomics 6(5): 527-537. 

Graham, R. R., W. Ortmann, P. Rodine, K. Espe, C. Langefeld, E. Lange, A. Williams, S. 

Beck, C. Kyogoku, K. Moser, P. Gaffney, P. K. Gregersen, L. A. Criswell, J. B. Harley 

and T. W. Behrens (2007). "Specific combinations of HLA-DR2 and DR3 class II 

haplotypes contribute graded risk for disease susceptibility and autoantibodies 

in human SLE." Eur J Hum Genet 15(8): 823-830. 

Gras, S., L. Kjer-Nielsen, S. R. Burrows, J. McCluskey and J. Rossjohn (2008). "T-cell 

receptor bias and immunity." Curr Opin Immunol 20(1): 119-125. 

Green, V. J., M. Pirmohamed, N. R. Kitteringham, A. Gaedigk, D. M. Grant, M. Boxer, B. 

Burchell and B. K. Park (1995). "Genetic analysis of microsomal epoxide 

hydrolase in patients with carbamazepine hypersensitivity." Biochem Pharmacol 

50(9): 1353-1359. 

Grunze, H. C. R. (2010). "Anticonvulsants in bipolar disorder." Journal of Mental Health 

19(2): 127-141. 



  Bibliography 

195 
 

Han, F., L. Lin, J. Li, S. X. Dong, P. An, L. Zhao, N. Y. Liu, Q. Y. Li, H. Yan, Z. C. Gao, J. Faraco, 

K. P. Strohl, X. Liu, H. Miyadera and E. Mignot (2012). "HLA-DQ association and 

allele competition in Chinese narcolepsy." Tissue Antigens 80(4): 328-335. 

Hashizume, H., M. Takigawa and Y. Tokura (2002). "Characterization of drug-specific T 

cells in phenobarbital-induced eruption." J Immunol 168(10): 5359-5368. 

Hausmann, O., B. Schnyder and W. J. Pichler (2010). "Drug hypersensitivity reactions 

involving skin." Handb Exp Pharmacol(196): 29-55. 

Hetherington, S., A. R. Hughes, M. Mosteller, D. Shortino, K. L. Baker, W. Spreen, E. Lai, K. 

Davies, A. Handley, D. J. Dow, M. E. Fling, M. Stocum, C. Bowman, L. M. Thurmond 

and A. D. Roses (2002). "Genetic variations in HLA-B region and hypersensitivity 

reactions to abacavir." Lancet 359(9312): 1121-1122. 

Hill, A. V. S., C. E. M. Allsopp, D. Kwiatkowski, N. M. Anstey, P. Twumasi, P. A. Rowe, S. 

Bennett, D. Brewster, A. J. McMichael and B. M. Greenwood (1991). "Common 

West African HLA antigens are associated with protection from severe malaria." 

Nature 352(6336): 595-600. 

Hirata, K., H. Takagi, M. Yamamoto, T. Matsumoto, T. Nishiya, K. Mori, S. Shimizu, H. 

Masumoto and Y. Okutani (2008). "Ticlopidine-induced hepatotoxicity is 

associated with specific human leukocyte antigen genomic subtypes in Japanese 

patients: A preliminary case-control study." Pharmacogenomics Journal 8(1): 29-

33. 

Holst, J., A. L. Szymczak-Workman, K. M. Vignali, A. R. Burton, C. J. Workman and D. A. A. 

Vignali (2006). "Generation of T-cell receptor retrogenic mice." Nat. Protocols 

1(1): 406-417. 

Hong, X., R. B. Yu, N. X. Sun, B. Wang, Y. C. Xu and G. L. Wu (2005). "Human leukocyte 

antigen class II DQB1*0301, DRB1*1101 alleles and spontaneous clearance of 

hepatitis C virus infection: a meta-analysis." World J Gastroenterol 11(46): 7302-

7307. 



  Bibliography 

196 
 

Horton, R., L. Wilming, V. Rand, R. C. Lovering, E. A. Bruford, V. K. Khodiyar, M. J. Lush, S. 

Povey, C. C. Talbot, Jr., M. W. Wright, H. M. Wain, J. Trowsdale, A. Ziegler and S. 

Beck (2004). "Gene map of the extended human MHC." Nat Rev Genet 5(12): 

889-899. 

Hsieh, Y. C., S. T. Chang, W. T. Huang, S. Y. Kuo, T. A. Chiang and S. S. Chuang (2013). "A 

comparative study of flow cytometric T cell receptor Vbeta repertoire and T cell 

receptor gene rearrangement in the diagnosis of large granular lymphocytic 

lymphoproliferation." Int J Lab Hematol 35(5): 501-509. 

Hung, S.-I., W.-H. Chung and Y.-T. Chen (2005a). "HLA-B genotyping to detect 

carbamazepine-induced Stevens-Johnson syndrome: implications for 

personalizing medicine." Personalized Medicine 2(3): 225-237. 

Hung, S.-I., W.-H. Chung, Z.-S. Liu, C.-H. Chen, M.-S. Hsih, R. C.-y. Hui, C.-Y. Chu and Y.-T. 

Chen (2010). "Common risk allele in aromatic antiepileptic-drug induced 

Stevens–Johnson syndrome and toxic epidermal necrolysis in Han Chinese." 

Pharmacogenomics 11(3): 349-356. 

Hung, S. I., W. H. Chung, S. H. Jee, W. C. Chen, Y. T. Chang, W. R. Lee, S. L. Hu, M. T. Wu, G. 

S. Chen, T. W. Wong, P. F. Hsiao, W. H. Chen, H. Y. Shih, W. H. Fang, C. Y. Wei, Y. H. 

Lou, Y. L. Huang, J. J. Lin and Y. T. Chen (2006). "Genetic susceptibility to 

carbamazepine-induced cutaneous adverse drug reactions." Pharmacogenet 

Genomics 16(4): 297-306. 

Hung, S. I., W. H. Chung, L. B. Liou, C. C. Chu, M. Lin, H. P. Huang, Y. L. Lin, J. L. Lan, L. C. 

Yang, H. S. Hong, M. J. Chen, P. C. Lai, M. S. Wu, C. Y. Chu, K. H. Wang, C. H. Chen, C. 

S. Fann, J. Y. Wu and Y. T. Chen (2005b). "HLA-B*5801 allele as a genetic marker 

for severe cutaneous adverse reactions caused by allopurinol." Proc Natl Acad Sci 

U S A 102(11): 4134-4139. 

Hwang, H. Y., Y. Y. Bahk, T.-G. Kim and T.-Y. Kim (2003). "Identification of a Commonly 

Used CDR3 Region of Infiltrating T Cells Expressing V[beta]13 and V[beta]15 

Derived From Psoriasis Patients." J Investig Dermatol 120(3): 359-364. 



  Bibliography 

197 
 

Illing, P. T., J. P. Vivian, N. L. Dudek, L. Kostenko, Z. Chen, M. Bharadwaj, J. J. Miles, L. Kjer-

Nielsen, S. Gras, N. A. Williamson, S. R. Burrows, A. W. Purcell, J. Rossjohn and J. 

McCluskey (2012). "Immune self-reactivity triggered by drug-modified HLA-

peptide repertoire." Nature 486(7404): 554-558. 

Jedema, I., M. van de Meent, J. Pots, M. G. D. Kester, M. T. van der Beek and J. H. F. 

Falkenburg (2011). "Successful generation of primary virus-specific and anti-

tumor T-cell responses from the naïve donor T-cell repertoire is determined by 

the balance between antigen-specific precursor T cells and regulatory T cells." 

Haematologica 96(8): 1204-1212. 

Jenkins, R. E., X. Meng, V. L. Elliott, N. R. Kitteringham, M. Pirmohamed and B. K. Park 

(2009). "Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin 

haptenated HSA in vitro and in vivo." PROTEOMICS – Clinical Applications 3(6): 

720-729. 

Kaniwa, N., Y. Saito, M. Aihara, K. Matsunaga, M. Tohkin, K. Kurose, J. Sawada, H. Furuya, 

Y. Takahashi, M. Muramatsu, S. Kinoshita, M. Abe, H. Ikeda, M. Kashiwagi, Y. Song, 

M. Ueta, C. Sotozono, Z. Ikezawa, R. Hasegawa and J. r. group (2008). "HLA-B 

locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-

Johnson syndrome and toxic epidermal necrolysis." Pharmacogenomics 9(11): 

1617-1622. 

Kano, Y., K. Hirahara, Y. Mitsuyama, R. Takahashi and T. Shiohara (2007). "Utility of the 

lymphocyte transformation test in the diagnosis of drug sensitivity: dependence 

on its timing and the type of drug eruption." Allergy 62(12): 1439-1444. 

Kaslow, R. A., M. Carrington, R. Apple, L. Park, A. Muñoz, A. J. Saah, J. J. Goedert, C. 

Winkler, S. J. O'Brien, C. Rinaldo, R. Detels, W. Blattner, J. Phair, H. Erlich and D. L. 

Mann (1996). "Influence of combinations of human major histocompatibility 

complex genes on the course of HIV-1 infection." Nature Medicine 2(4): 405-411. 



  Bibliography 

198 
 

Kim, S. H., M. Kim, K. W. Lee, S. H. Kim, H. R. Kang, H. W. Park and Y. K. Jee (2010). "HLA-

B*5901 is strongly associated with methazolamide-induced Stevens-Johnson 

syndrome/toxic epidermal necrolysis." Pharmacogenomics 11(6): 879-884. 

Kim, S. H., K. W. Lee, W. J. Song, S. H. Kim, Y. K. Jee, S. M. Lee, H. R. Kang, H. W. Park, S. H. 

Cho, S. H. Park, K. U. Min, Y. S. Chang and K. Adverse Drug Reaction Research 

Group in (2011). "Carbamazepine-induced severe cutaneous adverse reactions 

and HLA genotypes in Koreans." Epilepsy Res 97(1-2): 190-197. 

Kindmark, A., A. Jawaid, C. G. Harbron, B. J. Barratt, O. F. Bengtsson, T. B. Andersson, S. 

Carlsson, K. E. Cederbrant, N. J. Gibson, M. Armstrong, M. E. Lagerstrom-Fermer, 

A. Dellsen, E. M. Brown, M. Thornton, C. Dukes, S. C. Jenkins, M. A. Firth, G. O. 

Harrod, T. H. Pinel, S. M. Billing-Clason, L. R. Cardon and R. E. March (2008). 

"Genome-wide pharmacogenetic investigation of a hepatic adverse event without 

clinical signs of immunopathology suggests an underlying immune 

pathogenesis." Pharmacogenomics J 8(3): 186-195. 

Klein, J. and A. Sato (2000). "The HLA system. First of two parts." N Engl J Med 343(10): 

702-709. 

Knowles, S. R., L. E. Shapiro and N. H. Shear (1999). "Anticonvulsant hypersensitivity 

syndrome: incidence, prevention and management." Drug Saf 21(6): 489-501. 

Ko, T. M. and Y. T. Chen (2012). "T-cell receptor and carbamazepine-induced Stevens-

Johnson syndrome and toxic epidermal necrolysis: understanding a 

hypersensitivity reaction." Expert Rev Clin Immunol 8(5): 467-477. 

Ko, T. M., W. H. Chung, C. Y. Wei, H. Y. Shih, J. K. Chen, C. H. Lin, Y. T. Chen and S. I. Hung 

(2011). "Shared and restricted T-cell receptor use is crucial for carbamazepine-

induced Stevens-Johnson syndrome." J Allergy Clin Immunol 128(6): 1266-1276 

e1211. 



  Bibliography 

199 
 

Landsteiner, K. and J. Jacobs (1935). "STUDIES ON THE SENSITIZATION OF ANIMALS 

WITH SIMPLE CHEMICAL COMPOUNDS." The Journal of Experimental Medicine 

61(5): 643-656. 

Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. 

Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson and D. G. 

Higgins (2007). "Clustal W and Clustal X version 2.0." Bioinformatics 23(21): 

2947-2948. 

Lasser, K. E., P. D. Allen, S. J. Woolhandler, D. U. Himmelstein, S. M. Wolfe and D. H. Bor 

(2002). "Timing of new black box warnings and withdrawals for prescription 

medications." JAMA 287(17): 2215-2220. 

Lazarou, J., B. H. Pomeranz and P. N. Corey (1998). "Incidence of adverse drug reactions 

in hospitalized patients: a meta-analysis of prospective studies." JAMA 279(15): 

1200-1205. 

Leeder, J. S. (1998). "Mechanisms of idiosyncratic hypersensitivity reactions to 

antiepileptic drugs." Epilepsia 39 Suppl 7: S8-16. 

Leeder, J. S., R. J. Riley, V. A. Cook and S. P. Spielberg (1992). "Human anti-cytochrome 

P450 antibodies in aromatic anticonvulsant-induced hypersensitivity reactions." 

J Pharmacol Exp Ther 263(1): 360-367. 

Lefranc, M. P., V. Giudicelli, C. Ginestoux, J. Bodmer, W. Muller, R. Bontrop, M. Lemaitre, 

A. Malik, V. Barbie and D. Chaume (1999). "IMGT, the international 

ImMunoGeneTics database." Nucleic Acids Res 27(1): 209-212. 

Lehner, P. J., E. C. Wang, P. A. Moss, S. Williams, K. Platt, S. M. Friedman, J. I. Bell and L. K. 

Borysiewicz (1995). "Human HLA-A0201-restricted cytotoxic T lymphocyte 

recognition of influenza A is dominated by T cells bearing the V beta 17 gene 

segment." The Journal of Experimental Medicine 181(1): 79-91. 



  Bibliography 

200 
 

Lertratanangkoon, K. and M. G. Horning (1982). "Metabolism of carbamazepine." Drug 

Metab Dispos 10(1): 1-10. 

Leyva, L., M. J. Torres, S. Posadas, M. Blanca, G. Besso, F. O'Valle, R. G. del Moral, L. F. 

Santamaria and C. Juarez (2000). "Anticonvulsant-induced toxic epidermal 

necrolysis: monitoring the immunologic response." J Allergy Clin Immunol 105(1 

Pt 1): 157-165. 

Li, L. and M. Bouvier (2004). "Structures of HLA-A*1101 Complexed with 

Immunodominant Nonamer and Decamer HIV-1 Epitopes Clearly Reveal the 

Presence of a Middle, Secondary Anchor Residue." The Journal of Immunology 

172(10): 6175-6184. 

Li, L.-J., F.-Y. Hu, X.-T. Wu, D.-M. An, B. Yan and D. Zhou (2013). "Predictive markers for 

carbamazepine and lamotrigine-induced maculopapular exanthema in Han 

Chinese." Epilepsy Research 106(1–2): 296-300. 

Littera, R., C. Carcassi, A. Masala, P. Piano, P. Serra, F. Ortu, N. Corso, B. Casula, G. La 

Nasa, L. Contu and P. E. Manconi (2006). "HLA-dependent hypersensitivity to 

nevirapine in Sardinian HIV patients." AIDS 20(12): 1621-1626. 

Locharernkul, C., J. Loplumlert, C. Limotai, W. Korkij, T. Desudchit, S. Tongkobpetch, O. 

Kangwanshiratada, N. Hirankarn, K. Suphapeetiporn and V. Shotelersuk (2008). 

"Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated 

with HLA-B*1502 allele in Thai population." Epilepsia 49(12): 2087-2091. 

Lochmatter, P., A. Beeler, T. T. Kawabata, B. O. Gerber and W. J. Pichler (2009). "Drug-

specific in vitro release of IL-2, IL-5, IL-13 and IFN-γ in patients with delayed-

type drug hypersensitivity." Allergy 64(9): 1269-1278. 

Lonjou, C., N. Borot, P. Sekula, N. Ledger, L. Thomas, S. Halevy, L. Naldi, J. N. Bouwes-

Bavinck, A. Sidoroff, C. de Toma, M. Schumacher, J. C. Roujeau, A. Hovnanian, M. 

Mockenhaupt and S. s. g. Regi (2008). "A European study of HLA-B in Stevens-



  Bibliography 

201 
 

Johnson syndrome and toxic epidermal necrolysis related to five high-risk 

drugs." Pharmacogenet Genomics 18(2): 99-107. 

Lonjou, C., L. Thomas, N. Borot, N. Ledger, C. de Toma, H. LeLouet, E. Graf, M. 

Schumacher, A. Hovnanian, M. Mockenhaupt and J. C. Roujeau (2006). "A marker 

for Stevens-Johnson syndrome ...: ethnicity matters." Pharmacogenomics J 6(4): 

265-268. 

Lovell, S. C., I. W. Davis, W. B. Arendall, 3rd, P. I. de Bakker, J. M. Word, M. G. Prisant, J. S. 

Richardson and D. C. Richardson (2003). "Structure validation by Calpha 

geometry: phi,psi and Cbeta deviation." Proteins 50(3): 437-450. 

Lu, W. and J. P. Uetrecht (2008). "Peroxidase-mediated bioactivation of hydroxylated 

metabolites of carbamazepine and phenytoin." Drug Metab Dispos 36(8): 1624-

1636. 

Lucena, M. I., M. Molokhia, Y. Shen, T. J. Urban, G. P. Aithal, R. J. Andrade, C. P. Day, F. 

Ruiz-Cabello, P. T. Donaldson, C. Stephens, M. Pirmohamed, M. Romero-Gomez, J. 

M. Navarro, R. J. Fontana, M. Miller, M. Groome, E. Bondon-Guitton, A. Conforti, B. 

H. Stricker, A. Carvajal, L. Ibanez, Q. Y. Yue, M. Eichelbaum, A. Floratos, I. Pe'er, M. 

J. Daly, D. B. Goldstein, J. F. Dillon, M. R. Nelson, P. B. Watkins, A. K. Daly, D. R. 

Spanish, Eudragene, Dilin, Diligen and S. International (2011). "Susceptibility to 

amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I 

and II alleles." Gastroenterology 141(1): 338-347. 

Lundegaard, C., O. Lund, S. Buus and M. Nielsen (2010). "Major histocompatibility 

complex class I binding predictions as a tool in epitope discovery." Immunology 

130(3): 309-318. 

Maggs, J. L., M. Pirmohamed, N. R. Kitteringham and B. K. Park (1997). "Characterization 

of the metabolites of carbamazepine in patient urine by liquid 

chromatography/mass spectrometry." Drug Metab Dispos 25(3): 275-280. 



  Bibliography 

202 
 

Mallal, S., D. Nolan, C. Witt, G. Masel, A. M. Martin, C. Moore, D. Sayer, A. Castley, C. 

Mamotte, D. Maxwell, I. James and F. T. Christiansen (2002). "Association 

between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity 

to HIV-1 reverse-transcriptase inhibitor abacavir." Lancet 359(9308): 727-732. 

Marsh, S. G., E. D. Albert, W. F. Bodmer, R. E. Bontrop, B. Dupont, H. A. Erlich, M. 

Fernandez-Vina, D. E. Geraghty, R. Holdsworth, C. K. Hurley, M. Lau, K. W. Lee, B. 

Mach, M. Maiers, W. R. Mayr, C. R. Muller, P. Parham, E. W. Petersdorf, T. Sasazuki, 

J. L. Strominger, A. Svejgaard, P. I. Terasaki, J. M. Tiercy and J. Trowsdale (2010). 

"Nomenclature for factors of the HLA system, 2010." Tissue Antigens 75(4): 291-

455. 

Marson, A. G., A. M. Al-Kharusi, M. Alwaidh, R. Appleton, G. A. Baker, D. W. Chadwick, C. 

Cramp, O. C. Cockerell, P. N. Cooper, J. Doughty, B. Eaton, C. Gamble, P. J. Goulding, 

S. J. Howell, A. Hughes, M. Jackson, A. Jacoby, M. Kellett, G. R. Lawson, J. P. Leach, 

P. Nicolaides, R. Roberts, P. Shackley, J. Shen, D. F. Smith, P. E. Smith, C. T. Smith, 

A. Vanoli, P. R. Williamson and S. S. group (2007). "The SANAD study of 

effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or 

topiramate for treatment of partial epilepsy: an unblinded randomised 

controlled trial." Lancet 369(9566): 1000-1015. 

Martin, A. M., D. Nolan, I. James, P. Cameron, J. Keller, C. Moore, E. Phillips, F. T. 

Christiansen and S. Mallal (2005). "Predisposition to nevirapine hypersensitivity 

associated with HLA-DRB1*0101 and abrogated by low CD4 T-cell counts." AIDS 

19(1): 97-99. 

Matzinger, P. (1994). "Tolerance, Danger, and the Extended Family." Annual Review of 

Immunology 12(1): 991-1045. 

Mauri-Hellweg, D., F. Bettens, D. Mauri, C. Brander, T. Hunziker and W. J. Pichler (1995). 

"Activation of drug-specific CD4+ and CD8+ T cells in individuals allergic to 

sulfonamides, phenytoin, and carbamazepine." J Immunol 155(1): 462-472. 



  Bibliography 

203 
 

McCluskey, J., C. Kanaan and M. Diviney (2003). "Nomenclature and serology of HLA 

class I and class II alleles." Curr Protoc Immunol Appendix 1: Appendix 1S. 

McCormack, M., A. Alfirevic, S. Bourgeois, J. J. Farrell, D. Kasperaviciute, M. Carrington, G. 

J. Sills, T. Marson, X. Jia, P. I. de Bakker, K. Chinthapalli, M. Molokhia, M. R. 

Johnson, G. D. O'Connor, E. Chaila, S. Alhusaini, K. V. Shianna, R. A. Radtke, E. L. 

Heinzen, N. Walley, M. Pandolfo, W. Pichler, B. K. Park, C. Depondt, S. M. Sisodiya, 

D. B. Goldstein, P. Deloukas, N. Delanty, G. L. Cavalleri and M. Pirmohamed 

(2011). "HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in 

Europeans." N Engl J Med 364(12): 1134-1143. 

McLean-Tooke, A., D. Barge, G. P. Spickett and A. R. Gennery (2008). "T cell receptor 

Vbeta repertoire of T lymphocytes and T regulatory cells by flow cytometric 

analysis in healthy children." Clin Exp Immunol 151(1): 190-198. 

Megiorni, F. and A. Pizzuti (2012). "HLA-DQA1 and HLA-DQB1 in Celiac disease 

predisposition: practical implications of the HLA molecular typing." J Biomed Sci 

19: 88. 

Mehta, T. Y., L. M. Prajapati, B. Mittal, C. G. Joshi, J. J. Sheth, D. B. Patel, D. M. Dave and R. 

K. Goyal (2009). "Association of HLA-B*1502 allele and carbamazepine-induced 

Stevens-Johnson syndrome among Indians." Indian J Dermatol Venereol Leprol 

75(6): 579-582. 

Mignot, E., L. Lin, W. Rogers, Y. Honda, X. Qiu, X. Lin, M. Okun, H. Hohjoh, T. Miki, S. H. 

Hsu, M. S. Leffell, F. C. Grumet, M. Fernandez-Vina, M. Honda and N. Risch (2001). 

"Complex HLA-DR and -DQ Interactions Confer Risk of Narcolepsy-Cataplexy in 

Three Ethnic Groups." The American Journal of Human Genetics 68(3): 686-699. 

Miguel, A., L. F. Azevedo, M. Araujo and A. C. Pereira (2012). "Frequency of adverse drug 

reactions in hospitalized patients: a systematic review and meta-analysis." 

Pharmacoepidemiol Drug Saf 21(11): 1139-1154. 



  Bibliography 

204 
 

Monshi, M. M., L. Faulkner, A. Gibson, R. E. Jenkins, J. Farrell, C. J. Earnshaw, A. Alfirevic, 

K. Cederbrant, A. K. Daly, N. French, M. Pirmohamed, B. K. Park and D. J. Naisbitt 

(2013). "Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-

specific T cells provides the immunological basis for flucloxacillin-induced liver 

injury." Hepatology 57(2): 727-739. 

Morris, G. P. and P. M. Allen (2012). "How the TCR balances sensitivity and specificity 

for the recognition of self and pathogens." Nat Immunol 13(2): 121-128. 

Murphy, K., P. Travers, M. Walport and C. Janeway (2008). Janeway's immunobiology. 

New York, Garland Science. 

Musette, P., D. Bequet, C. Delarbre, G. Gachelin, P. Kourilsky and D. Dormont (1996). 

"Expansion of a recurrent V beta 5.3+ T-cell population in newly diagnosed and 

untreated HLA-DR2 multiple sclerosis patients." Proceedings of the National 

Academy of Sciences 93(22): 12461-12466. 

Naisbitt, D. J., M. Britschgi, G. Wong, J. Farrell, J. P. Depta, D. W. Chadwick, W. J. Pichler, M. 

Pirmohamed and B. K. Park (2003a). "Hypersensitivity reactions to 

carbamazepine: characterization of the specificity, phenotype, and cytokine 

profile of drug-specific T cell clones." Mol Pharmacol 63(3): 732-741. 

Naisbitt, D. J., J. Farrell, S. F. Gordon, J. L. Maggs, C. Burkhart, W. J. Pichler, M. 

Pirmohamed and B. K. Park (2002). "Covalent binding of the nitroso metabolite 

of sulfamethoxazole leads to toxicity and major histocompatibility complex-

restricted antigen presentation." Mol Pharmacol 62(3): 628-637. 

Naisbitt, D. J., J. Farrell, G. Wong, J. P. Depta, C. C. Dodd, J. E. Hopkins, C. A. Gibney, D. W. 

Chadwick, W. J. Pichler, M. Pirmohamed and B. K. Park (2003b). 

"Characterization of drug-specific T cells in lamotrigine hypersensitivity." J 

Allergy Clin Immunol 111(6): 1393-1403. 

Naisbitt, D. J., M. Pirmohamed and B. K. Park (2003c). "Immunopharmacology of 

hypersensitivity reactions to drugs." Curr Allergy Asthma Rep 3(1): 22-29. 



  Bibliography 

205 
 

Nassif, A., A. Bensussan, L. Boumsell, A. Deniaud, H. Moslehi, P. Wolkenstein, M. Bagot 

and J. C. Roujeau (2004). "Toxic epidermal necrolysis: effector cells are drug-

specific cytotoxic T cells." J Allergy Clin Immunol 114(5): 1209-1215. 

Neitzel, H. (1986). "A routine method for the establishment of permanent growing 

lymphoblastoid cell lines." Hum Genet 73(4): 320-326. 

Niihara, H., T. Kakamu, Y. Fujita, S. Kaneko and E. Morita (2012). "HLA-A31 strongly 

associates with carbamazepine-induced adverse drug reactions but not with 

carbamazepine-induced lymphocyte proliferation in a Japanese population." J 

Dermatol 39(7): 594-601. 

Noble, J. A., A. M. Valdes, M. D. Varney, J. A. Carlson, P. Moonsamy, A. L. Fear, J. A. Lane, E. 

Lavant, R. Rappner, A. Louey, P. Concannon, J. C. Mychaleckyj, H. A. Erlich and C. 

Type 1 Diabetes Genetics (2010). "HLA class I and genetic susceptibility to type 1 

diabetes: results from the Type 1 Diabetes Genetics Consortium." Diabetes 

59(11): 2972-2979. 

Norcross, M. A., S. Luo, L. Lu, M. T. Boyne, M. Gomarteli, A. D. Rennels, J. Woodcock, D. H. 

Margulies, C. McMurtrey, S. Vernon, W. H. Hildebrand and R. Buchli (2012). 

"Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an 

autoimmune model for HLA-associated drug hypersensitivity." AIDS 26(11): 

F21-F29. 

Nyfeler, B. and W. J. Pichler (1997). "The lymphocyte transformation test for the 

diagnosis of drug allergy: sensitivity and specificity." Clin Exp Allergy 27(2): 175-

181. 

Okajima, M., T. Wada, M. Nishida, T. Yokoyama, Y. Nakayama, Y. Hashida, F. Shibata, Y. 

Tone, A. Ishizaki, M. Shimizu, T. Saito, K. Ohta, T. Toma and A. Yachie (2009). 

"Analysis of T cell receptor Vbeta diversity in peripheral CD4 and CD8 T 

lymphocytes in patients with autoimmune thyroid diseases." Clin Exp Immunol 

155(2): 166-172. 



  Bibliography 

206 
 

Ortonne, N., D. Huet, C. Gaudez, A. Marie-Cardine, V. Schiavon, M. Bagot, P. Musette and 

A. Bensussan (2006). "Significance of circulating T-cell clones in Sezary 

syndrome." Blood 107(10): 4030-4038. 

Ostrov, D. A., B. J. Grant, Y. A. Pompeu, J. Sidney, M. Harndahl, S. Southwood, C. Oseroff, S. 

Lu, J. Jakoncic, C. A. de Oliveira, L. Yang, H. Mei, L. Shi, J. Shabanowitz, A. M. 

English, A. Wriston, A. Lucas, E. Phillips, S. Mallal, H. M. Grey, A. Sette, D. F. Hunt, 

S. Buus and B. Peters (2012). "Drug hypersensitivity caused by alteration of the 

MHC-presented self-peptide repertoire." Proc Natl Acad Sci U S A 109(25): 9959-

9964. 

Oza, A. M., S. Tonks, J. Lim, M. A. Fleetwood, T. A. Lister and J. G. Bodmer (1994). "A 

clinical and epidemiological study of human leukocyte antigen-DPB alleles in 

Hodgkin's disease." Cancer Res 54(19): 5101-5105. 

Ozeki, T., T. Mushiroda, A. Yowang, A. Takahashi, M. Kubo, Y. Shirakata, Z. Ikezawa, M. 

Iijima, T. Shiohara, K. Hashimoto, N. Kamatani and Y. Nakamura (2011). 

"Genome-wide association study identifies HLA-A*3101 allele as a genetic risk 

factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese 

population." Hum Mol Genet 20(5): 1034-1041. 

Padovan, E., G. Casorati, P. Dellabona, S. Meyer, M. Brockhaus and A. Lanzavecchia 

(1993). "Expression of two T cell receptor alpha chains: dual receptor T cells." 

Science 262(5132): 422-424. 

Pannetier, C., J. Even and P. Kourilsky (1995). "T-cell repertoire diversity and clonal 

expansions in normal and clinical samples." Immunology Today 16(4): 176-181. 

Pannetier, C., J.-P. Levraud, A. Lim, J. Even and P. Kourilsky (1998). The Immunoscope 

Approach for the Analysis of T Cell Repertoires. The Human Antigen T Cell 

Receptor, selected protocols and applications. J. R. Oksenberg. London, UK, 

Chapman & Hall: 287- 325. 



  Bibliography 

207 
 

Pantaleo, G., J. F. Demarest, H. Soudeyns, C. Graziosi, F. Denis, J. W. Adelsberger, P. 

Borrow, M. S. Saag, G. M. Shaw, R. P. Sekalytt and A. S. Fauci (1994). "Major 

expansion of CD8+ T cells with a predominant V[beta] usage during the primary 

immune response to HIV." Nature 370(6489): 463-467. 

Park, B. K., M. Pirmohamed and N. R. Kitteringham (1998). "Role of drug disposition in 

drug hypersensitivity: a chemical, molecular, and clinical perspective." Chem Res 

Toxicol 11(9): 969-988. 

Pavlos, R., S. Mallal and E. Phillips (2012). "HLA and pharmacogenetics of drug 

hypersensitivity." Pharmacogenomics 13(11): 1285-1306. 

Pearce, R. E., W. Lu, Y. Wang, J. P. Uetrecht, M. A. Correia and J. S. Leeder (2008). 

"Pathways of carbamazepine bioactivation in vitro. III. The role of human 

cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine." 

Drug Metab Dispos 36(8): 1637-1649. 

Pearce, R. E., G. R. Vakkalagadda and J. S. Leeder (2002). "Pathways of carbamazepine 

bioactivation in vitro I. Characterization of human cytochromes P450 

responsible for the formation of 2- and 3-hydroxylated metabolites." Drug Metab 

Dispos 30(11): 1170-1179. 

Peters, B., J. Sidney, P. Bourne, H. H. Bui, S. Buus, G. Doh, W. Fleri, M. Kronenberg, R. 

Kubo, O. Lund, D. Nemazee, J. V. Ponomarenko, M. Sathiamurthy, S. P. 

Schoenberger, S. Stewart, P. Surko, S. Way, S. Wilson and A. Sette (2005). "The 

design and implementation of the immune epitope database and analysis 

resource." Immunogenetics 57(5): 326-336. 

Petrovsky, N. and V. Brusic (2002). "Computational immunology: The coming of age." 

Immunol Cell Biol 80(3): 248-254. 

Phillips, E., J. A. Bartlett, I. Sanne, M. M. Lederman, J. Hinkle, F. Rousseau, D. Dunn, R. 

Pavlos, I. James, S. A. Mallal and D. W. Haas (2013). "Associations between HLA-

DRB1*0102, HLA-B*5801, and hepatotoxicity during initiation of nevirapine-



  Bibliography 

208 
 

containing regimens in South Africa." J Acquir Immune Defic Syndr 62(2): e55-

57. 

Phillips, E. and S. Mallal (2009). "Successful translation of pharmacogenetics into the 

clinic: the abacavir example." Mol Diagn Ther 13(1): 1-9. 

Phillips, E. J., J. R. Sullivan, S. R. Knowles and N. H. Shear (2002). "Utility of patch testing 

in patients with hypersensitivity syndromes associated with abacavir." AIDS 

16(16): 2223-2225. 

Picard, D., B. Janela, V. Descamps, M. D'Incan, P. Courville, S. Jacquot, S. Rogez, L. 

Mardivirin, H. Moins-Teisserenc, A. Toubert, J. Benichou, P. Joly and P. Musette 

(2010). "Drug reaction with eosinophilia and systemic symptoms (DRESS): a 

multiorgan antiviral T cell response." Sci Transl Med 2(46): 46ra62. 

Pichler, W. J. (2002). "Pharmacological interaction of drugs with antigen-specific 

immune receptors: the p-i concept." Curr Opin Allergy Clin Immunol 2(4): 301-

305. 

Pichler, W. J. (2003). "Delayed drug hypersensitivity reactions." Ann Intern Med 139(8): 

683-693. 

Pichler, W. J. (2013). "Consequences of drug binding to immune receptors: Immune 

stimulation following pharmacological interaction with immune receptors (T-cell 

receptor for antigen or human leukocyte antigen) with altered peptide-human 

leukocyte antigen or peptide." Dermatologica Sinica 31(4): 181-190. 

Pichler, W. J. and J. Tilch (2004). "The lymphocyte transformation test in the diagnosis of 

drug hypersensitivity." Allergy 59(8): 809-820. 

Pirmohamed, M. (2006). "Genetic factors in the predisposition to drug-induced 

hypersensitivity reactions." AAPS J 8(1): E20-26. 



  Bibliography 

209 
 

Pirmohamed, M., P. S. Friedmann, M. Molokhia, Y. K. Loke, C. Smith, E. Phillips, L. La 

Grenade, B. Carleton, M. Papaluca-Amati, P. Demoly and N. H. Shear (2011). 

"Phenotype Standardization for Immune-Mediated Drug-Induced Skin Injury." 

Clin Pharmacol Ther 89(6): 896-901. 

Pirmohamed, M., S. James, S. Meakin, C. Green, A. K. Scott, T. J. Walley, K. Farrar, B. K. 

Park and A. M. Breckenridge (2004). "Adverse drug reactions as cause of 

admission to hospital: prospective analysis of 18 820 patients." BMJ 329(7456): 

15-19. 

Pirmohamed, M., D. J. Naisbitt, F. Gordon and B. K. Park (2002). "The danger hypothesis-

-potential role in idiosyncratic drug reactions." Toxicology 181-182: 55-63. 

Porebski, G., A. Gschwend-Zawodniak and W. J. Pichler (2011). "In vitro diagnosis of T 

cell-mediated drug allergy." Clin Exp Allergy 41(4): 461-470. 

Posadas, S. J. and W. J. Pichler (2007). "Delayed drug hypersensitivity reactions - new 

concepts." Clin Exp Allergy 37(7): 989-999. 

Qiu, X., F. Zhang, D. Chen, A. K. Azad, L. Zhang, Y. Yuan, Z. Jiang, W. Liu, Y. Tan and N. Tao 

(2011). "HLA-B*07 is a high risk allele for familial cervical cancer." Asian Pac J 

Cancer Prev 12(10): 2597-2600. 

Rammensee, H., J. Bachmann, N. P. Emmerich, O. A. Bachor and S. Stevanovic (1999). 

"SYFPEITHI: database for MHC ligands and peptide motifs." Immunogenetics 

50(3-4): 213-219. 

Rammensee, H.-G. (1995). "Chemistry of peptides associated with MHC class I and class 

II molecules." Curr Opin Immunol 7(1): 85-96. 

Rapin, N., I. Hoof, O. Lund and M. Nielsen (2008). "MHC motif viewer." Immunogenetics 

60(12): 759-765. 



  Bibliography 

210 
 

Raucy, J. L., M. Ingelman-Sundberg, S. Carpenter, A. Rannug, A. Rane, M. Franklin and M. 

Romkes (1999). "Drug metabolizing enzymes in lymphocytes." J Biochem Mol 

Toxicol 13(3-4): 223-226. 

Rawlins, M. D. (1981). "Clinical pharmacology. Adverse reactions to drugs." British 

Medical Journal 282(6268): 974-976. 

Robinson, J., J. A. Halliwell, H. McWilliam, R. Lopez, P. Parham and S. G. Marsh (2013). 

"The IMGT/HLA database." Nucleic Acids Res 41(Database issue): D1222-1227. 

Roder, G., T. Blicher, S. Justesen, B. Johannesen, O. Kristensen, J. Kastrup, S. Buus and M. 

Gajhede (2006). "Crystal structures of two peptide-HLA-B*1501 complexes; 

structural characterization of the HLA-B62 supertype." Acta Crystallographica 

Section D 62(11): 1300-1310. 

Rogawski, M. A. and W. Loscher (2004). "The neurobiology of antiepileptic drugs." Nat 

Rev Neurosci 5(7): 553-564. 

Roujeau, J. C. (2006). "Immune mechanisms in drug allergy." Allergol Int 55(1): 27-33. 

Rozieres, A., A. Hennino, K. Rodet, M. C. Gutowski, N. Gunera-Saad, F. Berard, G. Cozon, J. 

Bienvenu and J. F. Nicolas (2009). "Detection and quantification of drug-specific 

T cells in penicillin allergy." Allergy 64(4): 534-542. 

Rudolph, M. G., R. L. Stanfield and I. A. Wilson (2006). "How TCRs bind MHCs, peptides, 

and coreceptors." Annu Rev Immunol 24: 419-466. 

Russmann, S., J. A. Kaye, S. S. Jick and H. Jick (2005). "Risk of cholestatic liver disease 

associated with flucloxacillin and flucloxacillin prescribing habits in the UK: 

Cohort study using data from the UK General Practice Research Database." 

British Journal of Clinical Pharmacology 60(1): 76-82. 

Sali, A. and T. L. Blundell (1993). "Comparative protein modelling by satisfaction of 

spatial restraints." J Mol Biol 234(3): 779-815. 



  Bibliography 

211 
 

Sanderson, J. P., D. J. Naisbitt, J. Farrell, C. A. Ashby, M. J. Tucker, M. J. Rieder, M. 

Pirmohamed, S. E. Clarke and B. K. Park (2007). "Sulfamethoxazole and its 

metabolite nitroso sulfamethoxazole stimulate dendritic cell costimulatory 

signaling." J Immunol 178(9): 5533-5542. 

Saper, M. A., P. J. Bjorkman and D. C. Wiley (1991). "Refined structure of the human 

histocompatibility antigen HLA-A2 at 2.6 A resolution." J Mol Biol 219(2): 277-

319. 

Schittenhelm, R. B., N. L. Dudek, N. P. Croft, S. H. Ramarathinam and A. W. Purcell (2014). 

"A comprehensive analysis of constitutive naturally processed and presented 

HLA-C*04:01 (Cw4) – specific peptides." Tissue Antigens: n/a-n/a. 

Schmid, D. A., J. P. Depta, M. Luthi and W. J. Pichler (2006). "Transfection of drug-specific 

T-cell receptors into hybridoma cells: tools to monitor drug interaction with T-

cell receptors and evaluate cross-reactivity to related compounds." Mol 

Pharmacol 70(1): 356-365. 

Schnyder, B., C. Burkhart, K. Schnyder-Frutig, S. von Greyerz, D. J. Naisbitt, M. 

Pirmohamed, B. K. Park and W. J. Pichler (2000). "Recognition of 

sulfamethoxazole and its reactive metabolites by drug-specific CD4+ T cells from 

allergic individuals." J Immunol 164(12): 6647-6654. 

Schnyder, B., D. Mauri-Hellweg, M. Zanni, F. Bettens and W. J. Pichler (1997). "Direct, 

MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta 

T cell clones." J Clin Invest 100(1): 136-141. 

Sidney, J., B. Peters, N. Frahm, C. Brander and A. Sette (2008). "HLA class I supertypes: a 

revised and updated classification." BMC Immunol 9: 1. 

Singer, J. B., S. Lewitzky, E. Leroy, F. Yang, X. Zhao, L. Klickstein, T. M. Wright, J. Meyer 

and C. A. Paulding (2010). "A genome-wide study identifies HLA alleles 

associated with lumiracoxib-related liver injury." Nat Genet 42(8): 711-714. 



  Bibliography 

212 
 

Somkrua, R., E. E. Eickman, S. Saokaew, M. Lohitnavy and N. Chaiyakunapruk (2011). 

"Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson 

syndrome and toxic epidermal necrolysis: a systematic review and meta-

analysis." BMC Med Genet 12: 118. 

Spina, E. and G. Perugi (2004). "Antiepileptic drugs: indications other than epilepsy." 

Epileptic Disord 6(2): 57-75. 

Spraggs, C. F., L. R. Budde, L. P. Briley, N. Bing, C. J. Cox, K. S. King, J. C. Whittaker, V. E. 

Mooser, A. J. Preston, S. H. Stein and L. R. Cardon (2011). "HLA-DQA1*02:01 is a 

major risk factor for lapatinib-induced hepatotoxicity in women with advanced 

breast cancer." J Clin Oncol 29(6): 667-673. 

Szymczak, A. L., C. J. Workman, Y. Wang, K. M. Vignali, S. Dilioglou, E. F. Vanin and D. A. A. 

Vignali (2004). "Correction of multi-gene deficiency in vivo using a single 'self-

cleaving' 2A peptide-based retroviral vector." Nat Biotech 22(5): 589-594. 

Tang, Y. H., M. Mockenhaupt, A. Henry, M. Bounoua, L. Naldi, S. Le Gouvello, A. Bensussan 

and J. C. Roujeau (2012). "Poor relevance of a lymphocyte proliferation assay in 

lamotrigine-induced Stevens–Johnson syndrome or toxic epidermal necrolysis." 

Clinical & Experimental Allergy 42(2): 248-254. 

Tassaneeyakul, W., S. Tiamkao, T. Jantararoungtong, P. Chen, S. Y. Lin, W. H. Chen, P. 

Konyoung, U. Khunarkornsiri, N. Auvichayapat, K. Pavakul, K. Kulkantrakorn, C. 

Choonhakarn, S. Phonhiamhan, N. Piyatrakul, T. Aungaree, S. Pongpakdee and P. 

Yodnopaglaw (2010). "Association between HLA-B*1502 and carbamazepine-

induced severe cutaneous adverse drug reactions in a Thai population." Epilepsia 

51(5): 926-930. 

Temajo, N. O. and N. Howard (2009). "The Co-operative Specificity Theory: Phenotypic 

protection from T1D by certain HLA Class II DRB1 and DQ alleles identifies the 

absence of co-operation between the respective DR and DQ molecules 

eventuating in no T1D-predisposition." Autoimmunity Reviews 8(5): 364-368. 



  Bibliography 

213 
 

The MHC sequencing consortium (1999). "Complete sequence and gene map of a human 

major histocompatibility complex." Nature 401(6756): 921-923. 

Then, S. M., Z. Z. Rani, A. A. Raymond, S. Ratnaningrum and R. Jamal (2011). "Frequency 

of the HLA-B*1502 allele contributing to carbamazepine-induced 

hypersensitivity reactions in a cohort of Malaysian epilepsy patients." Asian Pac J 

Allergy Immunol 29(3): 290-293. 

Thio, C. L., X. Gao, J. J. Goedert, D. Vlahov, K. E. Nelson, M. W. Hilgartner, S. J. O'Brien, P. 

Karacki, J. Astemborski, M. Carrington and D. L. Thomas (2002). "HLA-Cw*04 and 

hepatitis C virus persistence." J Virol 76(10): 4792-4797. 

Thorn, C. F., S. G. Leckband, J. Kelsoe, J. S. Leeder, D. J. Muller, T. E. Klein and R. B. Altman 

(2011). "PharmGKB summary: carbamazepine pathway." Pharmacogenet 

Genomics 21(12): 906-910. 

Tomar, N. and R. K. De (2010). "Immunoinformatics: an integrated scenario." 

Immunology 131(2): 153-168. 

Trowsdale, J. (2011). "The MHC, disease and selection." Immunol Lett 137(1-2): 1-8. 

Turner, S. J., P. C. Doherty, J. McCluskey and J. Rossjohn (2006). "Structural determinants 

of T-cell receptor bias in immunity." Nat Rev Immunol 6(12): 883-894. 

Tzifi, F., M. Kanariou, M. Tzanoudaki, C. Mihas, E. Paschali, G. Chrousos and C. Kanaka-

Gantenbein (2013). "Flow cytometric analysis of the CD4+ TCR Vbeta repertoire 

in the peripheral blood of children with type 1 diabetes mellitus, systemic lupus 

erythematosus and age-matched healthy controls." BMC Immunol 14(1): 33. 

Uetrecht, J. (2007). "Idiosyncratic drug reactions: current understanding." Annu Rev 

Pharmacol Toxicol 47: 513-539. 

Uetrecht, J. and D. J. Naisbitt (2013). "Idiosyncratic adverse drug reactions: current 

concepts." Pharmacol Rev 65(2): 779-808. 



  Bibliography 

214 
 

van den Beemd, R., P. P. C. Boor, E. G. van Lochem, W. C. J. Hop, A. W. Langerak, I. L. M. 

Wolvers-Tettero, H. Hooijkaas and J. J. M. van Dongen (2000). "Flow cytometric 

analysis of the Vβ repertoire in healthy controls." Cytometry 40(4): 336-345. 

Van Den Elsen, P. J., T. M. Holling, H. F. Kuipers and N. Van Der Stoep (2004). 

"Transcriptional regulation of antigen presentation." Curr Opin Immunol 16(1): 

67-75. 

Vandiedonck, C. and J. C. Knight (2009). "The human Major Histocompatibility Complex 

as a paradigm in genomics research." Brief Funct Genomic Proteomic 8(5): 379-

394. 

Vitezica, Z. G., B. Milpied, C. Lonjou, N. Borot, T. N. Ledger, A. Lefebvre and A. Hovnanian 

(2008). "HLA-DRB1*01 associated with cutaneous hypersensitivity induced by 

nevirapine and efavirenz." AIDS 22(4): 540-541. 

von Greyerz, S., G. Bültemann, K. Schnyder, C. Burkhart, B. Lotti, Y. Hari and W. J. Pichler 

(2001). "Degeneracy and additional alloreactivity of drug-specific human αβ+ T 

cell clones." International Immunology 13(7): 877-885. 

Wei, C. Y., W. H. Chung, H. W. Huang, Y. T. Chen and S. I. Hung (2012a). "Direct 

interaction between HLA-B and carbamazepine activates T cells in patients with 

Stevens-Johnson syndrome." J Allergy Clin Immunol 129(6): 1562-1569 e1565. 

Wei, C. Y., M. T. Lee and Y. T. Chen (2012b). "Pharmacogenomics of adverse drug 

reactions: implementing personalized medicine." Hum Mol Genet 21(R1): R58-

65. 

Wei, S., P. Charmley, M. A. Robinson and P. Concannon (1994). "The extent of the human 

germline T-cell receptor V beta gene segment repertoire." Immunogenetics 

40(1): 27-36. 

Wheeler, D. L., D. M. Church, R. Edgar, S. Federhen, W. Helmberg, T. L. Madden, J. U. 

Pontius, G. D. Schuler, L. M. Schriml, E. Sequeira, T. O. Suzek, T. A. Tatusova and L. 



  Bibliography 

215 
 

Wagner (2004). "Database resources of the National Center for Biotechnology 

Information: update." Nucleic Acids Res 32(Database issue): D35-40. 

WHO (1972). "International drug monitoring: the role of national centres. Report of a 

WHO meeting." World Health Organ Tech Rep Ser 498: 1-25. 

Wordsworth, B. P., J. S. Lanchbury, L. I. Sakkas, K. I. Welsh, G. S. Panayi and J. I. Bell 

(1989). "HLA-DR4 subtype frequencies in rheumatoid arthritis indicate that 

DRB1 is the major susceptibility locus within the HLA class II region." Proc Natl 

Acad Sci U S A 86(24): 10049-10053. 

Wu, Y., J. Farrell, M. Pirmohamed, B. K. Park and D. J. Naisbitt (2007). "Generation and 

characterization of antigen-specific CD4+, CD8+, and CD4+CD8+ T-cell clones 

from patients with carbamazepine hypersensitivity." J Allergy Clin Immunol 

119(4): 973-981. 

Wu, Y., J. P. Sanderson, J. Farrell, N. S. Drummond, A. Hanson, E. Bowkett, N. Berry, A. V. 

Stachulski, S. E. Clarke, W. J. Pichler, M. Pirmohamed, B. K. Park and D. J. Naisbitt 

(2006). "Activation of T cells by carbamazepine and carbamazepine metabolites." 

J Allergy Clin Immunol 118(1): 233-241. 

Wuillemin, N., J. Adam, S. Fontana, S. Krahenbuhl, W. J. Pichler and D. Yerly (2013). "HLA 

haplotype determines hapten or p-i T cell reactivity to flucloxacillin." J Immunol 

190(10): 4956-4964. 

Wyllie, E., A. Gupta and D. K. Lachhwani (2006). The treatment of epilepsy : principles & 

practice. Philadelphia, Lippincott Williams & Wilkins. 

Yan, Q. (2010). "Immunoinformatics and systems biology methods for personalized 

medicine." Methods Mol Biol 662: 203-220. 

Yang, C. W., S. I. Hung, C. G. Juo, Y. P. Lin, W. H. Fang, I. H. Lu, S. T. Chen and Y. T. Chen 

(2007). "HLA-B*1502-bound peptides: implications for the pathogenesis of 



  Bibliography 

216 
 

carbamazepine-induced Stevens-Johnson syndrome." J Allergy Clin Immunol 

120(4): 870-877. 

Yip, V., S. Heslop, C. Pennington, J. Evely and A. Marson (2013). "Severe Hypersensitivity 

to Antiepileptic Drugs: British Neurological Surveillance Unit (Bnsu)." J Neurol 

Neurosurg Psychiatry 84(11): e2. 

Yip, V. L., A. G. Marson, A. L. Jorgensen, M. Pirmohamed and A. Alfirevic (2012). "HLA 

genotype and carbamazepine-induced cutaneous adverse drug reactions: a 

systematic review." Clin Pharmacol Ther 92(6): 757-765. 

Yun, J., J. Adam, D. Yerly and W. J. Pichler (2012). "Human leukocyte antigens (HLA) 

associated drug hypersensitivity: consequences of drug binding to HLA." Allergy 

67(11): 1338-1346. 

Zaccara, G., D. Franciotta and E. Perucca (2007). "Idiosyncratic Adverse Reactions to 

Antiepileptic Drugs." Epilepsia 48(7): 1223-1244. 

Zanni, M. P., S. von Greyerz, Y. Hari, B. Schnyder and W. J. Pichler (1999). "Recognition of 

Local Anesthetics by [alpha][beta]+ T Cells."  112(2): 197-204. 

Zemmour, J., A. M. Little, D. J. Schendel and P. Parham (1992). "The HLA-A,B "negative" 

mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point 

mutation in the translation initiation codon." J Immunol 148(6): 1941-1948. 

Zhang, F. R., H. Liu, A. Irwanto, X. A. Fu, Y. Li, G. Q. Yu, Y. X. Yu, M. F. Chen, H. Q. Low, J. H. 

Li, F. F. Bao, J. N. Foo, J. X. Bei, X. M. Jia, J. Liu, H. Liany, N. Wang, G. Y. Niu, Z. Z. 

Wang, B. Q. Shi, H. Q. Tian, H. X. Liu, S. S. Ma, Y. Zhou, J. B. You, Q. Yang, C. Wang, T. 

S. Chu, D. C. Liu, X. L. Yu, Y. H. Sun, Y. Ning, Z. H. Wei, S. L. Chen, X. C. Chen, Z. X. 

Zhang, Y. X. Liu, S. L. Pulit, W. B. Wu, Z. Y. Zheng, R. D. Yang, H. Long, Z. S. Liu, J. Q. 

Wang, M. Li, L. H. Zhang, H. Wang, L. M. Wang, P. Xiao, J. L. Li, Z. M. Huang, J. X. 

Huang, Z. Li, J. Liu, L. Xiong, J. Yang, X. D. Wang, D. B. Yu, X. M. Lu, G. Z. Zhou, L. B. 

Yan, J. P. Shen, G. C. Zhang, Y. X. Zeng, P. I. de Bakker, S. M. Chen and J. J. Liu 



  Bibliography 

217 
 

(2013). "HLA-B*13:01 and the dapsone hypersensitivity syndrome." N Engl J 

Med 369(17): 1620-1628. 

Zhang, X., F. Liu, X. Chen, X. Zhu and J. Uetrecht (2011a). "Involvement of the immune 

system in idiosyncratic drug reactions." Drug Metab Pharmacokinet 26(1): 47-

59. 

Zhang, Y., J. Wang, L. M. Zhao, W. Peng, G. Q. Shen, L. Xue, X. X. Zheng, X. J. He, C. Y. Gong 

and L. Y. Miao (2011b). "Strong association between HLA-B*1502 and 

carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal 

necrolysis in mainland Han Chinese patients." Eur J Clin Pharmacol 67(9): 885-

887. 

 

 


