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ABSTRACT  
The effects of the abortifacient parasite, Neospora caninum on bovine foetuses in 

early and late gestation 

Patrick Sylvester Craig 

Neospora caninum is an obligate intracellular protozoan parasite, which is the most 

frequently diagnosed abortifacient in dairy cattle in the UK and is a leading cause of 

abortion worldwide. Neospora caninum infection in early gestation is associated with 

foetal death whereas in late gestation, infection can result in the birth of 

asymptomatic, but persistently infected animals. How the parasite kills the foetus is 

not fully understood, but it has been suggested that more mature foetuses are better 

able to mount a stronger immune response to control parasite multiplication and 

dissemination. The ability of the bovine foetus to respond to various antigens 

develops in a sequential fashion during the gestation period and foetal 

immunocompetence starts to develop at approximately 100 days gestation age (dg), 

but can only fully recognise antigens during mid-gestation at around 150 dg.  

Chapter 2 assessed the pathological effects of N. caninum on bovine foetuses in 

early and late gestation (70 and 210 days gestation, respectively) and also in foetuses 

from naturally infected dams after recrudescence of N. caninum in mid to late 

gestation. Based on results of an initial histological screen of 35 bovine foetuses and 

2 new-born calves, a total of 12 foetuses and calves were selected and subjected to 

more detailed histological examination. Both haemolymphatic and non-

haemolymphatic tissues were used.  The distribution of N. caninum antigen, CD3-

positive T cells, PAX5-positive B cells, monocytes/macrophages and neutrophils 

(myeloid/histiocyte antigen/calprotectin-positive), antigen presenting cells (MHCII), 

interferon gamma (IFN-γ) expressing cells, PCNA-positive proliferating cells and 

apoptotic cells (cleaved caspase 3-positive) was analysed by immunohistology. In 

uninfected, control foetuses in early gestation (90 days gestation), haemolymphatic 

tissues were moderately developed and exhibited normal morphological features with 

low lymphocyte turn over and no evidence of IFN-γ production. Uninfected foetuses 

in late gestation had fully developed haemolymphatic tissues with high lymphocyte 

turnover, indicative of a mature immune system. In the infected foetuses in early 

gestation, extensive apoptosis of lymphocytes was observed in the thymus and spleen 

compared to controls (p<0.001, student’s t-test). No histological changes were 

observed in the haemolymphatic tissues of infected foetuses in late gestation. In non-

haemolymphatic tissues, infected foetuses in early gestation exhibited extensive 

hepatocellular necrosis and apoptosis, glial cell necrosis and apoptosis in the CNS 

and high parasite loads in the liver, CNS and myocardium. There was no evidence of 

cell death in the heart despite the high parasite loads. In late gestation, histological 

lesions were restricted mainly to the CNS where non-suppurative inflammation and 

low parasite loads were observed. Other non-haemolymphatic tissues exhibited only 

mild mononuclear inflammatory infiltrates. The results suggest that in early 

gestation, tachyzoites replicate preferentially in foetal liver, brain and myocardium in 

the absence of an inflammatory response and cause extensive necrosis in the liver 

and brain. Unlike foetuses in early gestation, those in late gestation exhibited a mild 

to moderate mononuclear inflammatory infiltrate in various tissues dominated mainly 

by lymphocytes, plasma cells and smaller numbers of macrophages.  

In Chapter 3, the observation that N. caninum appeared to induce cellular 

degeneration in hepatocytes but not in the myocardium was investigated in more 



xi 

  

depth. An in vitro tissue culture system using the human HepG2 hepatoma cell line 

and the murine HL-1 cardiomyocyte cell line was used to establish the mechanism of 

cell death following N. caninum infection. The activation of the initiator and effector 

caspases (caspases 3, 8 and 9) was measured and the mitochondrial organisation in 

cells following N. caninum infection evaluated. Quantitative (caspase 3) and semi-

quantitative (caspase 8 and 9) analyses were used to assess differences in N. 

caninum-infected and uninfected HepG2 and HL-1 cells. A significant difference 

was observed in the numbers of cleaved caspase 3-positive HepG2 cells at 20-36 

hours post infection (p=0.029, Mann-Whitney U test) in infected cultures compared 

to controls. No significant difference was observed for caspase 8 and 9 expression. In 

HL-1 cultures, no significant difference was observed in the number of caspase 3, 8 

and 9-positive cells between infected and control cultures. This suggests that N. 

caninum infection is not associated with activation of the caspase cascade in 

cardiomyocytes. Neospora caninum tachyzoites were detected within intact HepG2 

and HL-1 cells with normal cellular morphology and which were not labelled with 

the caspase antibodies; whereas uninfected surrounding cells were caspase 3, 8 and 

9-positive, indicating that the parasites are involved in the inhibition of the caspase 

pathways (intrinsic and extrinsic). The mitochondrial organisation in N. caninum-

infected and uninfected cells was assessed in both cell lines using double 

immunofluorescence, which involved staining with a N. caninum specific polyclonal 

antibody and COX 1 mitochondrial marker. In the control cultures of both HepG2 

and HL-1 cells, mitochondrial clumping with large aggregates of mitochondria 

exhibiting a punctate pattern was observed in high numbers of cells, mainly in the 

perinuclear region and this is suggestive of mitochondrial fragmentation, which is 

associated with apoptosis. Other cells within the control cultures revealed an 

unaltered reticular pattern of mitochondria that is consistent with the normal cellular 

morphology. In the infected cultures, there was mitochondrial clumping with 

aggregates of mitochondria detected surrounding parasitophorous vacuoles; while in 

neighbouring uninfected cells, large aggregates of mitochondria, exhibiting a 

punctate pattern were present, suggesting mitochondrial clumping and fragmentation 

associated with cytochrome c release and apoptosis. Other uninfected HepG2 and 

HL-1 cells exhibited a diffuse, homogenous distribution of mitochondria, often with 

an unaltered reticular pattern as was observed in the control cultures and is consistent 

with the normal cellular morphology. The results indicate that N. caninum inhibits 

apoptosis in infected cells and is associated with increased apoptosis in infected 

HepG2 cultures, while not having any effects on HL-1 cardiomyocytes. 

Chapter 4 investigated the seroprevalence of N. caninum infection in Jamaican 

dairy herds. Serum samples were analysed from 499 Holstein-Friesian and Holstein 

Friesian crossbreed dairy cattle from three different farms in Jamaica. A 

seroprevalence of approximately 26% was found with the majority of seropositive 

animals aged 0-2 years old (25%), while the lowest seroprevalence was recorded in 

animals over 13 years old (13.3%). Pregnancy status was shown to influence the 

seroprevalence of cows, but no significant relation of seropositivity to age was 

found, suggesting that vertical transmission is the principal route of transmission in 

Jamaica.    

 

 



xii 

  

LIST OF FIGURES  
Figure 1.1. Life cycle of Neospora caninum. .............................................................. 5 

Figure 1.2. N. caninum ( .............................................................................................. 7 

Figure 1.3. Anti-apoptotic activities of protozoan parasites ..................................... 31 

Figure 2.1. Brain and spinal cord, foetus I-3, from dam infected with N. caninum at 

70 days gestation. ....................................................................................................... 55 

Figure 2.2. Brain, foetus I-3, from dam infected with N. caninum at 70 days 

gestation. .................................................................................................................... 56 

Figure 2.3. Liver, control foetus and foetuses from dams infected with N. caninum at 

70 days gestation. ....................................................................................................... 57 

Figure 2.4. Heart, foetus I-1, from dam infected with N. caninum at 70 days 

gestation. .................................................................................................................... 58 

Figure 2.5. Lung, muscle and kidney, foetus I-1, from dam infected with N. caninum 

at 70 days gestation. ................................................................................................... 59 

Figure 2.6. Thymus, control foetus (C-4; A and B) and foetus from dam infected 

with N. caninum at 70 days gestation......................................................................... 63 

Figure 2.7. Spleen, control foetus (C-4; A-C) and foetus from dam infected with N. 

caninum at 70 days gestation ..................................................................................... 64 

Figure 2.8. Bone marrow, control foetus (C-3) and foetuses from dams infected with 

N. caninum at 70 days gestation. ................................................................................ 65 

Figure 2.9. Brain and spinal cord, foetus I-12 from dam infected with N. caninum at 

210 days gestation. ..................................................................................................... 70 

Figure 2.10. Liver, heart, lung and muscle, foetuses from dams infected with N. 

caninum at 210 days gestation. .................................................................................. 71 

Figure 2.11. Lung and muscle, foetuses from dams infected with N. caninum at 210 

days gestation ............................................................................................................. 72 

Figure 2.12. Thymus, control foetus (C-11; A-C) and foetus from dam infected with 

N. caninum at 210 days gestation ............................................................................... 76 

Figure 2.13. Spleen, control foetus (C-8; A-C) and foetus from dam infected with N. 

caninum at 210 days gestation ................................................................................... 77 

Figure 2.14. Mesenteric lymph nodes, control foetus (C-8; A-C) and foetus from 

dam infected with N. caninum at 210 days gestation ................................................. 78 

Figure 2.15. Bone marrow, control foetus (C-11; A) and foetus from dam infected 

with N. caninum at 210 days gestation....................................................................... 79 

Figure 2.16. Brain, naturally infected foetus (R-5), from naturally infected dam after 

parasite recrudescence of N. caninum in mid to late gestation .................................. 83 

Figure 2.17. Spinal cord, naturally infected foetus (R-5), from naturally infected dam 

after parasite recrudescence of N. caninum in mid to late gestation .......................... 84 

Figure 2.18. Liver and muscle, naturally infected foetus (R-5) from naturally 

infected dam after parasite recrudescence of N. caninum in mid to late gestation .... 85 

Figure 2.19. Brain, spinal cord, liver and muscle, new-born calf (R-10), from 

naturally infected dam after parasite recrudescence of N. caninum in late gestation 88 



xiii 

  

Figure 2.20. Thymus, naturally infected foetus (R-5; A and B) and new-born calf (R-

10; C and D) from naturally infected dams after parasite recrudescence of N. 

caninum in mid to late gestation ................................................................................ 93 

Figure 2.21. Spleen, naturally infected foetus (R-5; A-C), and new-born calf (R-10; 

D) from naturally infected dams after parasite recrudescence of N. caninum in mid to 

late gestation............................................................................................................... 94 

Figure 2.22. Mesenteric lymph node, naturally infected foetus (R-5; A-D) and new-

born calf (R-10; E and F) from naturally infected dams after parasite recrudescence 

of N. caninum in mid to late gestation ....................................................................... 95 

Figure 3.1. Primary bovine hepatocytes, isolated, cultured and infected with N. 

caninum tachyzoites. ................................................................................................ 137 

Figure 3.2. HepG2 cells following infection with N. caninum tachyzoites and 

harvested at 60 hpi ................................................................................................... 138 

Figure 3.3. SDS-PAGE and immunoblot analysis of N. caninum (Nc-Liverpool) and 

Vero cell ................................................................................................................... 139 

Figure 3.4. Overview of cell pellet from N. caninum-infected (MOI of 2:1) and 

uninfected cultured HepG2 cells .............................................................................. 141 

Figure 3.5. Cell pellet from N. caninum-infected (A, C, E) and uninfected (B, D, F) 

HepG2 cells .............................................................................................................. 142 

Figure 3.6. Quantitative analysis of caspase 3 expression in N. caninum-infected and 

uninfected HepG2 cells. ........................................................................................... 143 

Figure 3.7. Combined immunoperoxidase (IP) and immunofluorescence (IF) 

labelling of N. caninum-infected and uninfected HepG2 cells ................................ 146 

Figure 3.8. Semi-quantitative analysis of caspase 8 expression in N. caninum-

infected and uninfected HepG2 cells ....................................................................... 147 

Figure 3.9. Combined immunoperoxidase (IP) and immunofluorescence (IF) 

labelling of N. caninum-infected and uninfected HepG2 cells ................................ 148 

Figure 3.10. Semi-quantitative analysis of caspase 9-expression in N. caninum-

infected and uninfected HepG2 cells ....................................................................... 149 

Figure 3.11. Combined immunoperoxidase (IP) and immunofluorescence (IF) 

labelling of N. caninum-infected and uninfected HepG2 cells ................................ 150 

Figure 3.12. Double immunofluorescence (IF) labelling of N. caninum-infected and 

uninfected HepG2 cells ............................................................................................ 151 

Figure 3.13. Semithin section of a N. caninum-infected HepG2 cell pellet harvested 

at 42 hpi .................................................................................................................... 153 

Figure 3.14. Ultrastructural features of N. caninum-infected and uninfected HepG2 

cells harvested at 42 hpi ........................................................................................... 154 

Figure 3.15. Ultrastructural features of N. caninum-infected HepG2 cells harvested 

at 46 hpi .................................................................................................................... 154 

Figure 3.16. Example of the 3D model image stack of N. caninum-infected HepG2 

cells harvested at 46 hpi ........................................................................................... 155 

Figure 3.17. N. caninum-infected (MOI of 2:1) and uninfected HL-1 cardiomyocytes 

at 20 hpi (A-C) and 28 hpi (D-F) ............................................................................. 157 



xiv 

  

Figure 3.18. Immunohistological staining of N. caninum-infected (A-C) and 

uninfected (D-F) HL-1 cardiomyocytes harvested at 32 hpi ................................... 157 

Figure 3.19. Quantitative analysis of caspase 3 expression in N. caninum-infected 

and uninfected HL-1 murine cardiomyocytes .......................................................... 158 

Figure 3.20. Combined immunoperoxidase (IP) and immunofluorescence (IF) 

labelling of N. caninum-infected (A-C) and uninfected (D-F) HL-1 murine 

cardiomyocytes harvested at 24 hpi ......................................................................... 158 

Figure 3.21. Semi-quantitative analysis of caspase 8 expression in N. caninum-

infected and uninfected HL-1 murine cardiomyocytes ............................................ 160 

Figure 3.22. Combined immunoperoxidase (IP) and immunofluorescence (IF) 

labelling of N. caninum-infected and uninfected HL-1 murine cardiomyocytes 

harvested at 32 hpi ................................................................................................... 161 

Figure 3.23. Semi-quantitative analysis of caspase 9 expression in N. caninum-

infected and uninfected HL-1 murine cardiomyocytes ............................................ 163 

Figure 3.24. Combined immunoperoxidase (IP) and immunofluorescence (IF) 

labelling of N. caninum-infected (A-C) and uninfected (D-F) HL-1 murine 

cardiomyocytes harvested at 32 hpi. ........................................................................ 164 

Figure 3.25. Double immunofluorescence labelling of N. caninum-infected (A-F) 

and uninfected (G- I) HL-1 murine cardiomyocytes at 28 hpi (A-C) and 32 hpi (D-I)

 .................................................................................................................................. 165 

Figure 4.1. Map of Jamaica showing the parishes where the farms are located ..... 181 

 

  



xv 

  

LIST OF TABLES  
Table 1.1: Specific components of the immune system in the bovine foetus listed 

sequentially according to the gestation day when they were first observed. ............. 29 

Table 2.1: Groups of foetuses included into the present study for histological 

screening .................................................................................................................... 44 

Table 2.2: Foetuses selected for detailed histological and immunohistological 

examination ................................................................................................................ 45 

Table 2.3: Antibodies used for immunohistological staining, with references ......... 47 

Table 2.4: Antigen retrieval methods ........................................................................ 47 

Table 2.5: Antibodies and immunohistological protocols ......................................... 48 

Table 2.6: Tissues used for histological and immunohistological study................... 52 

Table 2.7. Summary of histological and immunohistological findings in foetuses/calf 

from dams experimentally infected in early and late gestation and from naturally 

infected dams ............................................................................................................. 92 

Table 3.1: Specimens and staining protocols applied to cell pellets ....................... 124 

Table 3.2: Antibodies used for immunohistological and immunofluorescence 

staining ..................................................................................................................... 126 

Table 3.3: Immunohistological protocols: antigen retrieval, antibody dilution, 

secondary antibodies and detection systems ............................................................ 126 

Table 3.4: Antibodies and protocols for sequential double immunoperoxidase-

immunofluorescence and double immunofluorescence labelling ............................ 128 

Table 4.1: Overall seropositivity to N. caninum in cattle from different locations in 

Jamaica ..................................................................................................................... 186 

Table 4.2: Seropositivity to N. caninum in cattle of different age groups from three 

different locations in Jamaica................................................................................... 186 

Table 4.3: Linear regression model of N. caninum seropositivity in Jamaican dairy 

cattle ......................................................................................................................... 187 

Table 4.4: Overall association between the seroprevalence of N. caninum infection in 

pregnant and non-pregnant cattle on three different farms in Jamaica .................... 187 

 

  



xvi 

  

LIST OF ABBREVIATIONS 
 

% Percent  

°C Degree Celsius  

µg Microgram  

µl Microlitre  

µm Micrometre  

1-DE 

3D-EM 

One-dimensional gel electrophoresis 

3-dimensional electron microscopy 

ABC Avidin biotin complex  

APC Antigen presenting cell 

APS Ammonium persulphate 

AR Antigen retrieval  

ATP Adenosine triphosphate  

BALT Bronchus associated lymphoid tissue 

Bcl2 

BME 

BSA 

B cell lymphoma 2 

β-mercaptoethanol 

Bovine serum antigen 

BVDV Bovine viral diarrhoea virus 

CASPASE Cysteinyl aspartate-specific proteases 

CD Cluster of differentiation  

CMI Cell mediated immunity 

CNS Central nervous system 

DAB 

DAPI 

Diaminobencidin-tetrahydrochloride 

Dulbecco’s modified eagle medium 

ddH2O  Double distilled water 

dg Days of gestation 

dH2O Distilled water  

DNA Deoxyribonucleic acid 

DPX Distyrene plasticizer and xylene 

ECL Enhanced chemi-luminescence 

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethylene glycol tetraacetic acid 

ELISA 

ER 

Enzyme-linked immunosorbent assay 

Endoplasmic reticulum 

FADD Fas-Associated protein with Death Domain 

FBS 

FIB-SEM 

Foetal bovine serum 

Focused ion beam scanning electron microscopy 

g  Gram  

GALT Gut-associated lymphoid tissue 

h Hour  

HCl Hydrochloric acid  

HE Haematoxylin and eosin 



xvii 

  

HLA 

HMGB1 

HPF 

Human leucocyte antigen  

High mobility group box 1 

High power field  

hpi  Hours post infection  

HRP Horseradish peroxidase  

IB Immunoblotting  

IF 

IFAT 

Immunofluorescence  

Immunofluorescence antibody test 

IFN-γ Interferon gamma 

Ig Immunoglobulin 

IL 

IMM 

Interleukin  

Inner mitochondrial membrane 

IP Immunoperoxidase  

iv Intravenous  

KDa 

kV 

Kilodalton  

Kilovolt 

L Litre  

mAb  Monoclonal antibody 

mg  Milligram  

MHC Major histocompatibility complex 

min Minute  

ml  Millilitre  

mM Millimole  

mmol/L Millimole per litre 

MOI Multiplicity of infection  

mRNA Messenger ribonucleic acid  

NaCl Sodium chloride  

NaOH 

Nc 

NcGRA 

NcSAG 

NcSRS 

Sodium hydroxide 

Neospora caninum 

Neospora caninum dense granule protein 

Neospora caninum surface antigen 

Neospora caninum surface antigen related sequence 

NF-κB  Nuclear factor kappa beta   

OD 

OMM 

Optical density  

Outer mitochondrial membrane 

pAb  

PALS 

Polyclonal antibody 

Periarteriolar lymphoid sheath 

PAP Peroxidase anti-peroxidase  

PBS Phosphate buffered saline 

PCNA Proliferating cell nuclear antigen  

PCR 

PDCD5 

Polymerase chain reaction  

Programmed cell death 5 

PFA Paraformaldehyde  

pH  Percent hydrogen  



xviii 

  

PLP Perforin-like parasite protein  

PP Percent positivity  

PV Parasitophorous vacuole  

PVDF Poly-vinylidine fluoride  

PVM Parasitophorous membrane 

RT Room temperature  

SDS-PAGE  Sodium-dodecyl sulphate polyacrylamide gel electrophoresis 

SNP  Sodium nitroprusside  

TBST Tris-buffered sulphate tween  

TEM Transmission electron microscope 

TEMED 

Tg 

Tetramethylethylenediamine  

Toxoplasma gondii 

TGF-β Transforming growth factor beta 

Th T helper cell 

TMB Tetramethylbenzidine  

TNFR Tumour necrosis factor receptor 

TNF-α Tumour necrosis factor alpha 

TRADD 

TUNEL 

TNF receptor type 1-associated DEATH domain protein  

Terminal deoxynucleotidyl transferase dUTP nick end 

labelling  

v/v   Volume/volume  

w/v Weight/volume 



Chapter One   General Introduction  

1 

  

CHAPTER ONE: INTRODUCTION  

1.1 Neospora caninum  

Neospora caninum is a protozoan cyst forming apicomplexan parasite that causes 

neosporosis, notably in cattle (Bos taurus) and domestic dogs (Canis familiaris) 

(Bjerkas et al., 1984; Dubey and Lindsay, 1996). It is closely related to Toxoplasma 

gondii and has emerged as a major cause of reproductive failure in cattle world-wide 

(Dubey and Lindsay, 1996). It has been indicated by the point estimate of the 

population aetiology fraction for N. caninum that approximately 12 percent of 

abortions in cattle in England and Wales may be attributable to neosporosis which 

represents a major economic loss to the dairy industry (Davison et al., 1999b). 

Seroprevalence to N. caninum varies from approximately 6% in England and Wales 

(Davison et al., 1999b), 22% in Danish dairy cattle (Jensen et al., 1999), to 24% in 

beef cattle in the USA (Sanderson et al., 2000).  

Neospora caninum has been isolated from a variety of animal host species, 

such as the dog [Nc1; (Dubey et al., 1988b) and Nc-Liverpool (Barber et al., 1993)], 

cattle [BPA1 and BPA2 (Conrad et al., 1993)], sheep [NC-Sheep (Koyama et al., 

2001)] and water buffalo [NCBrbuf-1,2,3,4,5 (Rodrigues et al., 2004)]. Dogs (Canis 

familiaris) were the first to be identified as a definitive host for N. caninum 

(McAllister et al., 1998); however, dogs do not always seroconvert or excrete oocysts 

when exposed to N. caninum infected tissues (Larson and Hardin, 2003). Apart from 

the dog, other canids have also been considered as potential definitive hosts of N. 

caninum (McAllister, 1999). Some of these in which antibodies were found included 

the North American coyotes (Canis latrans) and Australian dingoes (Canis familiaris 

dingo) (Lindsay et al., 1996; Barber et al., 1997; Buxton et al., 1997). To date, 

coyotes (Gondim et al., 2004b), wolves (Canis lupus) (Dubey et al., 2011) and 

dingoes (King et al., 2010) have also been named as definitive hosts because they 

have been shown to shed oocysts after being fed infected tissues, while many other 

domestic and wild mammal species have been identified as intermediate hosts 

(Dubey et al., 2007; Dubey and Schares, 2011). Antibodies to N. caninum have also 

been identified in the captive sika deer (Cerus Nippon), mouflon (Ovis musimon), 

fallow deer (Dama dama), moose (Alces alces), European bison (Bison bonasus 

bonasus L.), wild rabbits (Oryctolagus cuniculus), brown hares (Lepus europeus) and 

dolphin (Tursiops truncatus) (reviewed by Dubey et al. (2007). A recent study in the 
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UK has reported DNA detection of N. caninum in mustelid species (Bartley et al., 

2013b). Finally, N. caninum antibodies have been detected in wild birds such as 

crows (Corvus corax) (Molina-López et al., 2012), and N. caninum DNA has been 

detected in the magpie (Pica pica) (Darwich et al., 2012). These findings could have 

significant implications for both domestic and sylvatic cycles as the latter can affect 

the seroprevalence of N. caninum in cattle in a given area especially if these animals 

could serve as a reservoir host for wild dogs (Almería and López-Gatius, 2013).  

Horses are an intermediate hosts of Neospora hughesi (Marsh et al., 1998), 

which was identified in an aborted equine foetus (Dubey and Porterfield, 1990). The 

parasite was later isolated from an 11-year old horse and described as a new species, 

with molecular differences to N. caninum (Marsh et al., 1998). The internal 

transcribed spacer 1 (ITS1) of N. hughesi differs in seven nucleotides from that of N. 

caninum; however, no structural or molecular differences were found between 

different Neospora isolates from dogs and cattle (Dubey, 1999). Tissues cysts for N. 

hughesi are generally smaller with thinner cyst walls than that of N. caninum, and 

bradyzoites are also smaller (Marsh et al., 1998). Recently, Neospora antibodies 

were detected in 100 adult horses in Northwest Iran (Yagoob, 2012), but it was 

unclear which species had actually infected these animals. High levels of antibodies 

to N. hughesi were also detected in presuckling colostral sera of naturally exposed 

foals from three mares in California (Pusterla et al., 2011). It is still unknown 

whether N. hughesi is the sole species of Neospora that infects horses or if N. 

caninum also plays a part in infection as both species can cross react serologically 

with each other (Gondim et al., 2009).  

1.2 History and economic impact of N. caninum 

Neospora caninum was first described in a dog with encephalomyelitis and myositis 

(Bjerkas et al., 1984). Neosporosis was later described in calves with 

myeloencephalitis (O'Toole and Jeffrey, 1987; Parish et al., 1987). The parasite was 

first isolated from dogs (NC-1) and named into a new genus and species (Dubey et 

al., 1988a). Neospora caninum (BPA1) was later isolated for the first time from an 

aborted bovine foetus in the United States (Conrad et al., 1993). In addition, N. 

caninum has also been implicated in causing sporadic disease in other livestock 

species including sheep (Dubey et al., 1990a), goats (Barr et al., 1992), horses 

(Marsh et al., 1996), deer (Woods et al., 1994), foxes (Buxton et al., 1997), and other 
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carnivores (Barber et al., 1997). Retrospective studies carried out in California 

confirmed that N. caninum has been endemic in the region since at least 1984; the 

infection was also identified retrospectively in a stillborn calf in Australia (Dubey 

and Lindsay, 1996). The latter was a full term animal that was born dead (Hartley 

and Bridge, 1975). Toxoplasmosis was excluded because the aborting cow had no T. 

gondii antibodies and furthermore, T. gondii is not an abortifacient in cattle (Dubey 

and Lindsay, 1996). Diagnosis was confirmed when N. caninum specific antiserum 

became available and parasites in bovine tissues were found to react with N. caninum 

antibodies (Lindsay and Dubey, 1989a).  

Neospora caninum is regarded as one of the most important infectious causes 

of abortion in cattle worldwide, yet there are no definitive studies that quantify losses 

due to neosporosis to the cattle industry; however, losses are estimated to be in the 

millions of dollars per year (Dubey, 2003; Reichel et al., 2013). The major economic 

loss due to neosporosis is as a result of reproductive failure in cattle in many 

countries worldwide (Dubey et al., 2007). The economic costs attributed to N. 

caninum infection are the product of estimations of the damage cause by the 

infection and their effect on the economy (Trees et al., 1999). Diagnosing Neospora-

associated abortion in cattle can be difficult and expensive (Dubey and Schares, 

2006). There are numerous other indirect costs associated with losses due to 

neosporosis and include possible loss of milk yield (seropositive cows in California 

were found to produce approximately one kilogramme less milk per day than their 

seronegative herd mates), rebreeding, replacement cost if cows are culled (Thurmond 

and Hietala, 1997a, b), and losses from the potential value of infected animals, which 

could be considerable (Trees et al., 1999). Early culling could, perhaps, account for a 

large proportion of the losses associated with neosporosis. In a retrospective study of 

a 2,000-cow dairy herd that had a history of N. caninum-associated abortion, 

Neospora-seropositive cows were culled on average six months earlier than 

seronegative animals (Dubey et al., 2007).  

Since reproductive efficiency, which is a measure of the percentage of cows 

exposed to bulls that weaned a calf, will be decreased in herds with more abortions, 

income will therefore be reduced in these herds with poorer reproductive 

performance (Larson et al., 2004). The cost of replacement heifers will increase and 

income from selling fewer heifers will be less (Larson et al., 2004). Presently, only a 

little is known about the causes of abortion in beef cattle probably because of the 
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difficulty in monitoring expulsion of small foetuses in the first trimester; therefore, 

accurate assessments of Neospora-induced losses in beef cattle is lacking (Dubey et 

al., 2007).  

1.3 Life cycle of N. caninum 

Neospora caninum is a coccidian parasite which has a heteroxenous life cycle 

(Dubey et al., 2006). The parasite has three asexual infectious development stages, 

i.e. tachyzoites, bradyzoites and sporozoites (Dubey, 1999). The sexual stages of 

Neospora have not been described, but it is likely that the schizont (asexual) and 

gamont (sexual) stages also exist in the gut epithelium of the definitive hosts as was 

shown for T. gondii when kittens were fed Toxoplasma cysts since these two 

parasites are closed related (Frenkel et al., 1970). The asexual development occurs in 

the intermediate hosts, whereas sexual reproduction occurs within the definitive hosts 

(Dubey, 1999). The tachyzoites are the rapidly dividing stage that can infect various 

cells types including neurons, hepatocytes, skeletal muscle cells, cardiomyocytes, 

tubular epithelial cells, alveolar macrophages, and placental trophoblasts (Barr et al., 

1991; Dubey et al., 2002; Macaldowie et al., 2004; Gibney et al., 2008). Tachyzoites 

were also found it the amniotic fluid of pregnant cows (King et al., 2011). In one 

publication it was assumed, but not proven, that tachyzoites can differentiate into 

bradyzoites in neurons, following the onset of a strong immune response resulting in 

the formation of tissue cysts (Peters et al., 2001).  

Bradyzoites are the slowly replicating encysted stages of N. caninum (Dubey et 

al., 2006). They remain within tissue cysts until reactivation (recrudescence), 

possibly due to changes in the immune system of the intermediate hosts as a 

consequence of pregnancy or infectious diseases, such as bovine viral diarrhoea 

(Björkman et al., 2000; Guy et al., 2001). Tissue cysts vary considerably in size 

depending on the number of bradyzoites they contain (Dubey et al., 2006).  
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Figure 1.1. Life cycle of Neospora caninum. The diagram shows the ingestion of tissue cysts by the 

definitive host (dog), which then pass out unsporulated oocysts in the faeces. The oocysts will later 

sporulate and can contaminate food and water, which will then be picked up by the intermediate host 

(in this case, cattle). The sporulated oocysts form tachyzoites, which may be transmitted 

transplacentally to the foetus (vertical transmission). Adopted from (Dubey, 1999). 

 

The environmentally resistant oocysts are excreted in the faeces of the 

definitive hosts (Fig.1.1) after consumption of infected materials such as foetal 

membranes (McAllister et al., 1998). Following ingestion of the oocysts, sporozoites 

(an oocyst contains two sporocysts with four sporozoites each) are released into the 

intestinal tract of the intermediate host, differentiate into tachyzoites and probably 

spread via the mononuclear phagocyte system (macrophages, monocytes) to the 

uterus in pregnant animals where they ultimately cross the placenta and infect the 

foetus (Williams et al., 2009).  

1.4 Structure and biology of N. caninum  

Tachyzoites and bradyzoites are the stages which occur in tissues of infected 

intermediate and definitive hosts, whereas sporozoites are present within sporocysts 

inside the oocysts which are excreted in the faeces of the definitive hosts (Dubey et 

al., 2006). Tachyzoites and bradyzoites of N. caninum have an ultrastructural 

morphology similar to that of T. gondii and contain two apical rings, a conoid, a 

pellicle which consists of a plasmalemma and an inner membrane complex, 22 
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subpellicular microtubules, micronemes, rhoptries, a mitochondrium, a nucleolus 

within the nucleus, Golgi complex, plastid, ribosomes, polysomes, dense granules, 

amylopectin granules, lipid bodies, vesicles, endoplasmic reticulum, micropores and 

a posterior pore (Speer et al., 1999). 

Tachyzoites (Figure 1.2) are usually present in the host cells within a 

parasitophorous vacuole (PV) that contains a well-developed tubulo-vesicular 

membrane network; a few host cell mitochondria are usually observed in close 

association with the PV (Speer et al., 1999). The tachyzoites of N. caninum are 

ovoid, lunate or globular and measure approximately 3-7 x 1-5 µm depending on the 

stage of division (Dubey et al., 2002). Each tachyzoite contains an average of 6-16 

rhoptries, which are homogenously electron-dense. Some rhoptries are located 

posterior to the centrally located zoite nucleus(Speer et al., 1999). Micronemes are 

numerous in N. caninum tachyzoites, with perpendicular orientation to the zoite 

pellicle as opposed to the haphazard orientation in T. gondii tachyzoites; in contrast, 

dense granules are scattered throughout the cytoplasm of the parasite, but tend to be 

more numerous at the posterior end in N. caninum and the anterior end in T. gondii 

(Speer et al., 1999).  

Bradyzoites are the slowly replicating, encysted stages of N. caninum and cysts 

may vary in size up to approximately 100µm in diameter depending on the number 

of parasites it contains (Dubey et al., 2006). Tissues cysts are mainly found in the 

brain and spinal cord of congenitally infected calves, but a few thin-walled tissue 

cysts have been reported in skeletal muscles of two naturally infected 2-day-old 

calves (Dubey et al., 1989). Bradyzoites are slender and measure 8 x 2 µm, contain 

fewer rhoptries (6-12) with electron-dense contents, amylopectin granules and 

terminally located nucleus (Dubey et al., 2006; Ortega-Mora et al., 2006).  

Neospora caninum oocysts are approximately 10 x 12 µm and are excreted in 

the faeces of the definitive hosts in the unsporulated form, after which sporulation 

occurs so that each oocyst contains two sporocysts, each containing four sporozoites 

(Lindsay et al., 1999). The oocysts are spherical to subspherical with smooth 

colourless walls of approximately 0.6 x 0.8 µm thickness (Lindsay et al., 1999). The 

sporocysts are ellipsoidal and measure approximately 8 x 6 µm in diameter with a 

sporocyst wall measuring 0.5 x 0.6 µm thickness. Sporozoites are elongated, 

sometimes flattened on one side and measure approximately 6 x 2 µm; they contain a 

central or slightly posterior nucleus (Lindsay et al., 1999). The schizogonic and 
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gametogenic stages, that have been speculated to precede the formation of oocysts in 

the intestines of dogs, are yet to be observed (Dubey et al., 2004).  

        

Figure 1.2. N. caninum (NC-Liverpool strain) infected cultured human hepatocyte (for method, see 

chapter 3 section 3.4.11). Transmission electron micrograph. Hepatocyte containing several 

tachyzoites. Co: conoid; Dg: dense granules; Hcs: host cell cytoplasm; Lb: lipid body; Mn: 

microneme; Nu: nucleus of tachyzoite; Nucl: nucleolus of tachyzoite; Pm: plasmalemma; Pr: polar 

ring; Pvm: parasitophorous vacuole membrane; Pv: parasitophorous vacuole; Rh: rhoptry. TEM. 

X8900      

 

1.5 Epidemiology of neosporosis and N. caninum infection 

The serological prevalence of N. caninum in cattle worldwide has been summarised 

and it showed considerable differences among and within countries, regions and 

between beef and dairy cattle (Dubey et al., 2007; Dubey and Schares, 2011). There 

are also indications that differences exist in seropositivity among different breeds of 

cattle (Duong et al., 2008; Munhoz et al., 2009), but it is argued that the production 

system used for the different breeds might have been a major cause for these 

differences rather than a breed susceptibility (Dubey and Schares, 2011). The 

prevalence differences of neosporosis are related to various risk and protective 

factors, which affect the risk of both infection and abortion (Goodswen et al., 2013). 

Some of the factors listed as affecting the risk of individual cattle or herds becoming 

infected with N. caninum were age of animals (Rinaldi et al., 2005), increasing 
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gestation number (Jensen et al., 1999), presence and number of farm dogs (Von 

Blumröder et al., 2006), stocking density and large herds (Barling et al., 2000; 

Schares et al., 2004), rearing of own heifers rather than acquiring from external 

sources (Barling et al., 2001) and the effect of climatic changes on sporulation or 

oocyst survival (Rinaldi et al., 2005). Additional factors influencing the risk of N. 

caninum-associated abortion in individual cattle or herds are the number of ingested 

oocysts by animals and the stage of gestation (Gondim et al., 2004a), immune status 

of the dam (Dubey et al., 2007) and seropositivity, as seropositive cows are more 

likely to abort than seronegative animals (Weston et al., 2005; Corbellini et al., 

2006).  

Neospora caninum-associated abortion in cattle herds may have a sporadic, 

epidemic or endemic pattern (Moen et al., 1998; McAllister et al., 2000). Sporadic 

abortion occurs occasionally within a herd, while an epidemic is defined as a 

temporary outbreak or exposure to a single source of infection and is defined as a 

10% of at-risk cows aborting over a 3 month period (McAllister et al., 2000; Schares 

et al., 2002). In endemic abortions, the pattern of infection is characterised by 

chronic, long term persistence of the infection as a point source exposure and 

abortion problems can persist for several months to years (Davison et al., 1999a; 

Dijkstra et al., 2002).  

Oocysts are the key in the epidemiology of bovine neosporosis and little is 

known about the biology of this stage of the N. caninum life cycle (Dubey et al., 

2007). Models of neosporosis depend on the environmental contamination by 

oocysts, so the larger the number of oocysts shed by the definitive hosts, the greater 

the chances or rates of horizontal transmission to hosts (Goodswen et al., 2013). 

Following experimental infection of 3 puppies with N. caninum-infected tissues, an 

average of 166,400 oocysts were observed and it continued for approximately 24 

days; coproscopic examination in many large dog population in Germany over a 3 

year period found evidence of oocyst shedding in 0.2% of dogs (McAllister et al., 

1998; Gondim et al., 2002; Schares et al., 2005). The number of oocysts required to 

establish an infection in cattle and induce abortion has not yet been determined; 

however, a few studies have experimented with varying doses of oocysts and 

revealed a low abortion rate (Trees et al., 2002; McCann et al., 2007). The 

maintenance of infection in cattle herds might not be entirely dependent on 
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transplacental transmission alone, but may be augmented by horizontal transmission 

from the environment (French et al., 1999).   

1.6 Transmission of N. caninum in cattle 

The two major routes of N. caninum transmission are horizontal, where cattle ingest 

sporulated N. caninum oocysts and vertical transmission, which includes 

transmission of the agent to the foetus during pregnancy either following reactivation 

of bradyzoites in the infected dam or de novo infection of the dam during pregnancy 

(Trees and Williams, 2005). Both routes play an important role and are vital for the 

survival of the parasite (Dubey et al., 2006; Dubey et al., 2007). The transplacental 

transmission of N. caninum is very efficient in cattle. Consequently, vertical 

transmission contributes significantly to the persistence of N. caninum in a herd by 

propagating the infection to successive generations (Björkman et al., 1996; Anderson 

et al., 1997; Schares et al., 1998; Wouda et al., 1998). Cows may remain infected for 

life (Trees et al., 1999) and may transmit the parasite to offspring either in several 

consecutive pregnancies (Hietala and Thurmond, 1999) or intermittently (Boulton et 

al., 1995; Wouda et al., 1998).  

The prevalence of congenital infection varies (Dubey et al., 2006), with 

reported infection rates ranging from approximately 40% to 95% (Davison et al., 

1999a; Bergeron et al., 2000; Björkman et al., 2003; Romero and Frankena, 2003; 

Pan et al., 2004). In one Dutch study involving foetuses of 500 infected dams, 

infection was found in 80% of calves from heifers, 71% of calves from second parity 

cows, 67% of calves from third parity cows and 66% of calves from fourth parity and 

older cows (Dijkstra et al., 2003). Despite the efficiency of vertical transmission, it is 

evident from theoretical modelling that infection with N. caninum cannot be 

sustained in cattle herds without horizontal transmission (French et al., 1999). So far, 

the ingestion of sporulated N. caninum oocysts from the environment is the only 

demonstrated natural mode of infection in cattle after birth (Dubey et al., 2007). 

Despite investigations of neosporosis outbreaks in cattle herds, which suggest an 

external source of infection, oral infection with oocysts from the environment or 

infection via contact with infected tissues and/or faeces, have not been demonstrated 

conclusively (Yaeger et al., 1994; McAllister et al., 1996).  

Shedding of oocysts by infected canids in cattle-feeding areas is a likely cause 

of horizontal transmission that could play an important role in infected herds, where 
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a lack of association between the seropositivity of dams and daughters is seen 

(Thurmond et al., 1997; Waldner et al., 1999; Dyer et al., 2000; Dijkstra et al., 2001). 

However, it was shown that ingestion of oocysts can lead to transplacental infection, 

as inoculation of cows with oocysts via an oesophageal tube led to abortion in one 

animal, and the foetus exhibited typical lesions consistent with neosporosis in which 

N. caninum was demonstrated by immunohistology and polymerase chain reaction 

(PCR). From the 19 cows infected, 17 seroconverted, while the control animals 

remained seronegative (Gondim et al., 2004a). In a later study in which 18 cows 

were challenged orally, only one abortion was definitively associated with N. 

caninum as in the previous study (McCann et al., 2007). It is believed that the 

oocysts excyst in the small intestine, each releasing eight sporozoites, which then 

parasitise the intestinal epithelium, transform into tachyzoites and undergo a phase of 

multiplication, possibly in the mesenteric lymph nodes (Dubey et al., 2006). The 

parasites are then released into the blood causing a parasitaemia, which leads to 

dissemination of N. caninum throughout the body, including the gravid uterus 

(Dubey et al., 2006). Neospora caninum DNA has been demonstrated in the 

leukocyte fraction of blood from naturally infected cattle in mid gestation (Okeoma 

et al., 2004) and after experimental infection, tachyzoites have been identified in 

leukocytes within placental maternal blood vessels (Gibney et al., 2008). These 

findings support the hypothesis that tachyzoites cross the placenta in the maternal 

circulation (Williams et al., 2000).  

Cow-to-cow transmission has not been observed to date, but many authors 

have looked at the possibility of infection via contaminated semen from infected 

bulls (Ortega-Mora et al., 2003; Canada et al., 2006; Serrano-Martínez et al., 2007; 

Jozani et al., 2012). However, artificial insemination of cows with semen in vitro 

contaminated with N. caninum tachyzoites (6.5 x 10
7
 and 1.8 x 10

7
 on day one and 

two, respectively) failed to induce infection (Canada et al., 2006). One animal 

developed a low antibody titre of 1:80 in the direct agglutination test at day ten after 

insemination, but was negative at day 45, which shows that the parasites were able to 

stimulate the immune system of this animal without causing infection (Uggla et al., 

1998; Davison et al., 2001; Canada et al., 2006).  

Bradyzoite reactivation and differentiation into tachyzoites, leading to 

transplacental transmission of N. caninum in naturally infected animals, is thought to 

be triggered by the down regulation of cell mediated immunity that occurs around 



Chapter One   General Introduction  

11 

  

mid-gestation; at this time, a Th2 cytokine environment at the materno-foetal 

interface would favour parasite invasion of the placenta and infection of the foetus. 

This process is probably due to down-regulation of  interferon gamma (IFN-γ), a Th1 

type cytokine produced by a range of cell types including NK cells and CD4-positive 

T cells, which is able to limit multiplication of intracellular parasites (Innes et al., 

2001; Almeria et al., 2003; Innes et al., 2005; Rosbottom et al., 2008; Almería et al., 

2011, 2012). 

1.7 Pathogenesis of N. caninum infection in cattle 

The pathogenesis of N. caninum induced abortion in cattle is yet to be fully 

elucidated. N. caninum infection in cows is mainly manifested in the placenta and 

foetal tissues following a maternal parasitaemia (reviewed in Dubey et al., 2006). 

Experimental studies have shown that infection of pregnant cows in early gestation 

leads to foetal death, which could be due to both extensive placental necrosis and 

necrosis in foetal tissues, such as the liver and brain (Williams et al., 2000; 

Macaldowie et al., 2004; Maley et al., 2006; Rosbottom et al., 2007; Gibney et al., 

2008; Rosbottom et al., 2008; Rosbottom et al., 2011).  

The occurrence of cellular damage in tissues of foetuses infected in early 

gestation has been reported by many authors and this destruction was attributed to 

the lack of ability of the foetuses to defend themselves from the effects of the 

parasites due to insufficient or lack of a mature immune defence mechanism 

(Williams et al., 2000; Gibney et al., 2008; Bartley et al., 2012; Caspe et al., 2012). 

Similarly, studies have also been conducted looking at foetal damage and immune 

response following infection at mid to late gestation, when the foetal immune system 

would have started to develop or is fully capable of recognising pathogens (Williams 

et al., 2000; Maley et al., 2003; Gibney et al., 2008; Almería et al., 2010; Bartley et 

al., 2013a). Others have focused on the detection of a N. caninum specific cell 

mediated immune (CMI) response, because CMI mechanisms can play an essential 

role in reducing parasite replication in the host, hence reducing parasitaemia and 

tissues damage (Almeria et al., 2003; Bartley et al., 2004; Bartley et al., 2012; 

Bartley et al., 2013a). In addition, foetal lymphocytes from foetuses in early 

gestation stimulated in vitro with N. caninum tachyzoite lysate failed to produce any 

detectable IFN-γ, while those harvested from foetal spleen and lymph nodes in mid 

to late gestation showed a N. caninum specific cytokine response, indicating that the 
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immune cells in older foetuses are mature and functional and would be better able to 

protect the foetus from parasite-induced pathological changes (Bartley et al., 2004; 

Bartley et al., 2012; Bartley et al., 2013a). The virulence of different strains of N. 

caninum must also be taken into consideration when interpreting the data available 

on foetal infection and pathological changes following infection. It is now clear that 

the more virulent strains result in greater damage to foetal tissues leading to foetal 

death, whereas parasites of low virulent strains induce only mild pathological 

changes, and foetal death was not recorded in one study where a low virulent Nc-

Spain 1H isolate was used in an experimental infection (Rojo-Montejo et al., 2009).  

Pathological changes in the placenta is often more severe during experimental 

infection and this is probably due to the parasite loads used and the time of infection. 

Lesions were evident in the placenta of dams infected at 70 days gestation age (dg) 

starting as early as 14 days post infection (dpi) (Macaldowie et al., 2004). Foetal 

death was recorded at approximately 21 dpi of the dams with a high virulent strain of 

N. caninum (Gibney et al., 2008), which signifies that pathological changes are 

induced in the placenta before parasite replication in foetal tissues and it is also likely 

that parasites reinvade the placenta after multiplying in the foetus and cause further 

damage. Foetal abortion is therefore likely due to the direct damage of the placenta 

(necrosis and inflammation), damage to vital foetal organs or a combination of both. 

There is a need to further elucidate the pathogenesis of N. caninum to fully 

understand how the parasites kill the foetus and the role of the foetal immune 

response in protecting itself from parasite-induced lesions.  

1.8 Host cell invasion and parasite replication 

Bovine neosporosis is a disease that is manifested during pregnancy. It is mainly a 

disease of the placenta and foetus following maternal parasitaemia, triggered either 

by an exogenous infection or by parasite recrudescence in chronically infected dams 

(Dubey et al., 2006). Neospora caninum is capable of actively invading a range of 

target cells, a process that has been investigated using different types of in vitro 

culture systems (Hemphill et al., 1996; Weiss et al., 1999; Naguleswaran et al., 2003; 

Hemphill et al., 2004; Vonlaufen et al., 2004; Lv et al., 2010).  

The first step in the physical encounter between the parasites and their host 

cells is the establishment of a low-affinity contact, mediated by N. caninum surface 

antigen 1 (NcSAG1) and N. caninum SAG1-related sequence 2 (NcSRS2), between 



Chapter One   General Introduction  

13 

  

the tachyzoites and host cell membrane; this is followed by the actual adhesion 

process (Hemphill et al., 1996). Prior to, during and after invasion of the host cells, 

N. caninum tachyzoites sequentially discharge micronemes, rhoptries and dense 

granules, respectively (Hemphill et al., 2004). Adhesion to and invasion of the 

parasite into the host cell is an active process, which requires metabolic energy on 

the part of the parasite only, whereas the host cell is only passively involved 

(Hemphill et al., 2004). As shown for T. gondii, during invasion, the parasite 

orientates itself perpendicularly to the host cell surface membrane and enters the 

cytoplasm by first advancing the anterior end until it is located within the cell 

enclosed by a PV (Dobrowolski and Sibley, 1996; Dobrowolski et al., 1997a; 

Dobrowolski et al., 1997b; Meissner et al., 2002). It is likely that penetration of the 

host cell membrane by N. caninum is also dependent on and powered by the parasite 

actin/myosin system as in T. gondii  (Hemphill et al., 2004). The organelles secreted 

by N. caninum tachyzoites at the onset of adhesion are the micronemes, and proteins 

within these organelles are also thought to be secreted as the parasites egress from 

host cells (Naguleswaran et al., 2001; Keller et al., 2002; Hemphill et al., 2004). 

Once inside the host cell, N. caninum resides in the PV, surrounded by a 

parasitophorous vacuole membrane (PVM), which is derived from the host cell 

plasma membrane (Hemphill and Gottstein, 2006). The PV is usually located in the 

vicinity of the host cell nucleus in associated with the mitochondria and endoplasmic 

reticulum (Hemphill et al., 1996; Sinai et al., 1997). This was shown for T. gondii, 

but limited information is available regarding N. caninum. The secretory products 

from the rhoptries are probably involved in modulating the host cell plasma 

membrane and triggering the formation of the PV (Hemphill et al., 2004; Hemphill 

and Gottstein, 2006).  

Neospora caninum tachyzoites start to divide by endodyogeny soon after 

invasion; the first division was observed at approximately 6 h post-invasion, and the 

number of parasites increased steadily with time (Hemphill et al., 1999; Hemphill et 

al., 2004). Following parasite multiplication, which continued for up to 72-80 h in 

the PV, host cell lysis occurs and tachyzoites egressed to infect neighbouring cells 

(Hemphill, 1999). Under normal circumstances, T. gondii egression takes place 

between 24 and 48 h after invasion (Caldas et al., 2010). Neospora caninum 

tachyzoites (Nc-1 isolate) were first observed egressing from infected bovine aortal 

endothelial cells in an in vitro model from 60–72 hours post infection (hpi) 
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(Hemphill et al., 1996). Parasite egress was considered to be passive due to cell lysis 

as a consequence of the high parasite loads, however there are reports providing 

evidence of an ordered and active egress of apicomplexan parasites from host cells 

(Kafsack et al., 2009; Caldas et al., 2010; Graewe et al., 2012). It is thought that the 

invasion and egress of protozoan parasites are dependent upon parasite motility and 

appear to be directed by fluctuations in intracellular calcium (Ca
2+

) levels (Black et 

al., 2000).  

1.9 Host immune response to N. caninum 

The mammalian immune system is highly complex and has evolved to protect the 

host against many forms of diseases (Entrican, 2002). Neospora caninum is an 

obligate intracellular pathogen, which means that CMI responses are likely to play a 

pivotal role in protective immunity, by reducing the multiplication of parasites within 

the host, hence reducing parasitaemia (Innes et al., 2005; Almeria et al., 2011). 

Protective immunity to intracellular pathogens is associated with type 1 T helper 

cells (Th1 cells), which secrete pro-inflammatory cytokines, such as interferon 

gamma (IFN-γ), tumour necrosis factor alpha (TNF-α) and interleukin (IL)12 

(Baszler et al., 1999b). These cytokines were shown to be upregulated during T. 

gondii infection in mice (Gazzinelli et al., 1994). Since both parasites are closely 

related and exhibit a similar biology, it has been predicted that the immune response 

to N. caninum will resemble that of T. gondii (Williams et al., 2000). It has been 

suggested that in sufficient quantity, the pro-inflammatory cytokines may be harmful 

during pregnancy due to IFN-γ production in response to the presence of the 

parasites in the placenta and it is believed this may play a role in compromising 

foetal survival (Innes et al., 2002), though there is limited evidence supporting this 

hypothesis. The pro-inflammatory cytokines, especially IFN-γ, are effective at 

limiting the multiplication of N. caninum and this was shown in an in vitro model 

using recombinant ovine IFN-γ in N. caninum-infected fibroblast cultures (Innes et 

al., 1995). During pregnancy, there appears to be a bias towards a Th2 type cytokine 

(anti-inflammatory) response, away from the Th1 type, which was found to be 

protective in protozoan infection (Almeria et al., 2011). It has been suggested that the 

switch from a Th1 to a Th2 bias can result in the pregnant host being unable to 

control the protozoan infection (Long and Baszler, 2000). Progesterone is also 

known to bias a T cell response towards a Th2 phenotype and can induce IL-4 
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production in established Th1 type T cell clones (Piccinni et al., 1995). The presence 

of prostaglandin E2 can also cause dendritic cells to produce IL-10, which biases the 

priming of naive T cells towards a Th2 phenotype (Kaliński et al., 1997).  

It has been suggested that the Th2 type (anti-inflammatory) cytokines, namely 

IL-4, and regulatory cytokines which includes IL-10 and transforming growth factor 

beta (TGF-β) are produced at the foeto-maternal interface in the placenta and can 

counteract the effect of the pro-inflammatory cytokines (Entrican, 2002). The Th2 

cytokines are associated with implantation of the foetus and maintenance of early 

pregnancy by suppression of local inflammatory responses (Wegmann et al., 1993; 

Chaouat et al., 2002). Foetal trophoblast cells produce IL-10, which floods the 

maternal immune system, creating a local Th2 cytokine environment at the foeto-

maternal interface (Wegmann et al., 1993). IL-10 can down-regulate the production 

of IFN-γ, which might facilitate the multiplication of N. caninum during pregnancy 

and alter the host-parasite balance in favour of the parasite (Entrican, 2002).  

Rosbottom et al. (2008) have shown that there was a significant increase in the 

cytokine response at the foeto-maternal interface in cattle when foetuses died after 

experimental infection at 70 dg, as opposed to a modest increase observed in cattle 

infected at 210 dg when the foetuses survived. The pro-inflammatory cytokines were 

upregulated, but the levels of the anti-inflammatory Th2 cytokines including IL-4, 

IL-10 and TGF-β1 were also increased in the placenta (Rosbottom et al., 2008). 

These results are consistent with other findings in naturally infected cows where Th1 

cytokines were up-regulated in the placenta, but were balanced by a significant 

increase in IL-4 and IL-10, which suggested that the response in the placenta was not 

polarised towards either a Th1 or Th2 phenotype (Rosbottom et al., 2011). Foetal 

derived Th1 type cytokines may play an important role in determining if foetuses 

survive during infection in early gestation, while the Th2 type cytokines are pivotal 

in reducing the harmful effects of the Th1 type maternal immune response and 

facilitating transplacental transmission of the parasite (Rosbottom et al., 2008; 

Gibney et al., 2008). 

1.10 In vitro cultivation of N. caninum 

One of the most important biological features shared between the invasive stages of 

N. caninum and T. gondii is their low degree of host cell specificity in vitro 

(Hemphill et al., 2004). Different cell types have been used for the in vitro 
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cultivation of N. caninum. The parasite was first isolated from dogs and cultured in 

bovine monocytes and cardio-pulmonary arterial endothelial cells (CPAE) (Lindsay 

and Dubey, 1989b). Since that time, N. caninum has been grown in several other cell 

types including Madin-Derby bovine kidney cells, human foreskin fibroblasts, 

human breast carcinoma cell 7 (MCF-7), African green monkey kidney cells (COS-

1), monkey kidney cells (MARC-145), bovine endothelial cells, CPAE (ATCC-

CCL209), different established and primary cell lines (bovine and murine) and 

African green monkey kidney cells (Vero cells – Sigma-Aldrich, St. Louis, MO, 

USA) (Conrad et al., 1993; Hemphill et al., 1996; Stenlund et al., 1997; Hemphill, 

1999; Weiss et al., 1999; Gondim et al., 2001; Vonlaufen et al., 2004; Cadore et al., 

2009; Rojo-Montejo et al., 2009; Lv et al., 2010). Organotypic rat brain slice 

cultures, previously developed to study the physiology of the neuronal tissues in vitro 

were also used to culture N. caninum (Stoppini et al., 1991), as this method mimics 

the in vivo situation upon experimental infection and the three-dimensional 

organisation of the tissues is preserved (Hemphill et al., 2004).  

Cell cultures containing N. caninum tachyzoites are usually maintained in 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Koyama et al., 2001), minimum 

essential medium (MEM) (Yamane et al., 1998) or Roswell Park Memorial Institute 

Medium (RPMI-1640) (Stenlund et al., 1997; Hemphill et al., 2004; Bień et al., 

2010; Reiterová et al., 2011). Growth medium is usually supplemented with foetal 

bovine/calf serum (FBS); however, care should be taken when selecting this product 

as many batches of commercially available FBS contain antibodies against N. 

caninum that could potentially lead to agglutination and death of the parasite once 

released into the medium following host cell lysis (Hemphill, 1999). One study 

showed that all FBS samples tested by western blot were positive for antibodies to N. 

caninum and 88% of the samples were positive on enzyme-linked immunosorbent 

assay (ELISA) (Torres and Ortega, 2006). In order to avoid the complications of 

culturing cells in FBS-supplemented medium, immunoglobulin G-free horse serum 

can be used as a substitute; however, cultures tend to be less prolific when horse 

serum is used (Hemphill, 1999). FBS has been used at different concentrations such 

as a 1% (Barber et al., 1995), 2% (Stenlund et al., 1997), 5% (Hemphill et al., 2004), 

7% (Vonlaufen et al., 2002), 10% (Weiss et al., 1999; Lv et al., 2010) and 20% 

(Hemphill et al., 1996) for cell culture.  
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Neospora caninum tachyzoites, in contrast to T. gondii, are very vulnerable to 

the effects of extracellular maintenance and lose their infectivity rapidly if kept in 

growth medium extracellularly for more than a few hours (Paré et al., 1996; 

Hemphill, 1999; Naguleswaran et al., 2003). However, long term in vitro culture of 

N. caninum tachyzoites did not impair infectivity in mice and cattle (Kritzner et al., 

2002; Cannas et al., 2003). However, attenuation of the virulence of N. caninum 

tachyzoites was achieved following continuous passage of the parasites in cell 

culture and clear differences in the in vivo pathogenicity was shown for parasites 

maintained in culture for different lengths of time (Bartley et al., 2006). When 

introduced back into in vitro cultures, the parasites showed rapid growth, which 

suggests that the tachyzoites may have adapted to the in vitro environment. 

Neospora caninum tachyzoite-to-bradyzoite in vitro cultivation has been 

performed in Vero cells, a system that allowed the separation of bradyzoites from the 

host cells (Vonlaufen et al., 2004). The induction of bradyzoites occurred after 

treatment of tachyzoite-infected Vero cell cultures for 8 days with sodium 

nitroprusside (SNP), an inducer of apoptosis (Vonlaufen et al., 2004). This process 

severely scaled down the parasite proliferation rate leading to reduced expression of 

the tachyzoite surface antigens and induced expression of the bradyzoite marker, N. 

caninum bradyzoite antigen 1 (NcBAG1). The stage conversion of T. gondii occurs 

more efficiently and is dependent on the strains of parasites used, whereas with N. 

caninum, this is more difficult to achieve and depends more on the host cell lines and 

parasite isolates and requires nitric oxide such as SNP as described above (Weiss et 

al., 1999). 

In vitro cell culture of N. caninum has been used for the development of tools 

that are used in immunodiagnosis, immunohistochemical and molecular (by PCR) 

detection of the parasite and for assessing the susceptibility of N. caninum 

tachyzoites to chemotherapeutic agents. It allows for the development of various 

ELISAs, indirect fluorescent antibody tests (IFAT) and it has also provided a means 

for defining ultrastructural differences between Neospora and Toxoplasma (Barr et 

al., 1991; Williams et al., 1997; Schares et al., 1998; Hemphill, 1999; Speer et al., 

1999). 
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1.11 Pathological changes in N. caninum infected cattle 

Bovine neosporosis is a disease of the placenta and foetus and is acquired either 

through a primary maternal infection or parasite recrudescence during pregnancy 

(Dubey et al., 2006). The parasite is transmitted very efficiently across the placenta 

and a high percentage of aborted foetuses do not exhibit gross pathological changes, 

while the in utero infected calves are generally born healthy (Dubey et al., 2006). 

Naturally Neospora aborted foetuses may be autolysed or mummified and can 

exhibit pale white foci in the skeletal and cardiac muscles as well as small, pale to 

dark foci of necrosis in the brain along with hydrocephalus (Dubey et al., 1998; 

Anderson et al., 2000; Piergili Fioretti et al., 2003). Gross placental lesions are 

limited to focal necrosis and areas of discolouration in placental cotyledons (Dubey 

et al., 1998; Piergili Fioretti et al., 2003).  

In experimental infections, light microscopy usually reveals severe lesions in 

the placenta (Dubey et al., 2006). After infection, the parasite causes damage by 

replicating in both the maternal and foetal tissues at the foeto-maternal interface and 

elicits a nonsuppurative inflammatory response in the foetal liver, CNS, skeletal 

muscle and heart (Maley et al., 2003; Macaldowie et al., 2004; Gibney et al., 2008). 

After intravenous inoculation of N. caninum tachyzoites at 70 dg, lesions consisted 

of serum leakage between the maternal and foetal tissues along with nonsuppurative 

inflammatory infiltrates, which were in direct association with N. caninum 

tachyzoites in the maternal septa, and necrosis of foetal mesenchymal and 

trophoblast cells at 14 dpi (Macaldowie et al., 2004). After inoculation of cows at 70 

dg when foetal death had occurred 20-22 days later, multifocal epithelial cell 

necrosis and focally extensive necrosis of foetal villi were the main placental lesions 

in all animals examined (Gibney et al., 2008). N. caninum tachyzoites were also 

detected by immunohistology and ultrastructural examination in degenerated 

epithelial cells and the maternal interstitial layer (Gibney et al., 2008). After 28 dpi, 

Macaldowie et al., (2004) observed extensive autolysis and necrosis of trophoblast 

cells in foetal villi, necrosis of the maternal septa and separation of foetal cotyledons 

from maternal caruncles. Foetuses from these animals were not alive at the time of 

euthanasia of the dam.  

In animals inoculated subcutaneously at 70 dg with N. caninum and euthanised 

at 14 dpi, placental lesions were less severe and consisted of mild nonsuppurative 

inflammatory infiltrates in the maternal septa with isolated areas of serum leakage 
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between maternal and foetal tissues, and low numbers of degenerated foetal villi and 

necrotic foetal trophoblast cells (Macaldowie et al., 2004). Severe lesions were 

observed in the placenta of one foetus that had died within 28 dpi and consisted of 

necrosis and separation of the foetal chorion from the caruncles with serum leakage, 

haemorrhage and necrosis of both maternal and foetal tissues; however, the placenta 

from a live foetus showed no significant lesions at 28 dpi.  In animals that were 

carrying dead foetuses at 42 and 56 dpi, foetal cotyledons were necrotic and had 

detached from the maternal caruncles, which were shrunken with sloughed maternal 

septa and necrotic foetal trophoblast cells (Macaldowie et al., 2004); these lesions 

were associated with a nonsuppurative inflammatory infiltrate within the interstitium 

of the detached foetal chorion and were associated with N. caninum tachyzoites, 

however it was not clear when post infection these two foetuses had died. The 

placentomes from cattle infected with the Nc-Spain 1H isolate (low virulence isolate) 

exhibited only mild serum leakage in the caruncular septa, while those infected with 

the Nc-1 isolate presented with multiple foci of non-suppurative inflammatory 

infiltrates in both the maternal and foetal interstitium, areas of epithelial cell necrosis 

and haemorrhage in the caruncular septa, necrosis of foetal villi, as well as cell debris 

and serum leakage between maternal and foetal tissues (Rojo-Montejo et al., 2009).  

Dams experimentally infected subcutaneously in mid gestation showed 

placental lesions, represented by necrosis of small groups of foetal villi with 

proteinaceous exudate between affected villi and maternal caruncular septa (Maley et 

al., 2003). In animals infected at 210 dg, they were restricted to mild multifocal 

nonsuppurative inflammatory infiltration in foetal villi and the surrounding maternal 

epithelium, without the presence of N. caninum tachyzoites (Gibney et al., 2008). 

Neospora caninum infection in early gestation has been associated with foetal 

death and extensive pathological changes in various tissues (Williams et al., 2000; 

Guy et al., 2001; Gibney et al., 2008; Rosbottom et al., 2008); whereas in foetuses 

from dams infected in late gestation, only the brain and spinal cord exhibited 

pathological changes (Gibney et al., 2008). It is believed that N. caninum tachyzoites 

enter the foetal bloodstream and invade the tissues with a preference for the CNS 

(Macaldowie et al., 2004); tachyzoites are mainly found in the brain where they 

multiply and cause destruction of neurons (Wouda et al., 1997). The main 

pathological lesion observed after infection of the dam in early gestation with 10
7
 N. 

caninum tachyzoites of the Liverpool strain was multifocal necrosis in the CNS and 
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liver with scattered necrotic cells in skeletal muscle, the renal tubular epithelium, 

pulmonary and pancreatic parenchyma, thymus, spleen and bone marrow (Gibney et 

al., 2008). N. caninum tachyzoites were detected within all affected tissues in 

foetuses in early gestation from the latter experiment. In another study, experimental 

infection of cattle with 10
7
 tachyzoites of the low virulent Nc-Spain 1H at 70 dg did 

not induce histopathological changes in the CNS of infected foetuses, whereas mild 

focal perivascular cuffing in the brain and multiple foci of hepatocellular necrosis in 

the liver were observed in foetuses that had died at 34 dpi (104 dg) following 

infection with the same dose of the more virulent Nc-1 isolate in the same 

experiment (Rojo-Montejo et al., 2009).  

Foetuses in mid to late gestation had lesions in the CNS, which consisted of 

mild microgliosis and perivascular mononuclear infiltration in association with N. 

caninum tachyzoites; while the tongue, skeletal muscle, liver and heart exhibited 

moderate to severe mononuclear infiltrates (Maley et al., 2003; Gibney et al., 2008; 

Almería et al., 2010).  

In a recent study, foetuses examined after parasite recrudescence in mid 

gestation showed only mild nonsuppurative infiltrates in skeletal muscles and CNS; 

tachyzoites were detected in the spinal nerve root of only one foetus (Rosbottom et 

al., 2011). The predominant lesion reported in calves born alive with clinical 

neosporosis (which is rare) was encephalomyelitis, with more prominent lesions in 

the spinal cord than the brain, represented by focal gliosis and perivascular 

mononuclear cuffing (Parish et al., 1987; Peters et al., 2001). One still born calf 

presented with extensive myocarditis, with low numbers of neutrophils and 

mononuclear cells, necrosis of cardiomyocytes and numerous tachyzoites throughout 

the myocardium, while the brain exhibited multifocal areas of necrosis with 

perivascular cuffing and capillary necrosis (Dubey et al., 1990b). Hepatic lesions in 

this calf consisted only of centrilobular necrosis without associated N. caninum 

tachyzoites.  

1.12 Diagnosis of bovine neosporosis  

For the diagnosis of bovine neosporosis, clinical history, epidemiological data, 

information about the abortion pattern and foetal age are important factors that 

should be considered (Ortega-Mora et al., 2006). The definitive diagnosis of 

neosporosis can be very difficult, because infection does not always result in abortion 
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and even demonstration of N. caninum infection, both histologically and 

immunohistologically, does not give conclusive evidence that the parasite is the 

cause of the abortion (Thurmond et al., 1999).  

With regards to post-mortem diagnosis in aborted foetuses, the ideal diagnostic 

samples include both the aborted foetus and the placenta, together with sera from the 

dam. If this is not feasible, samples from brain, heart and liver of the foetus should be 

submitted (Ortega-Mora et al., 2006). The brain is the most reliable tissue for the 

diagnosis, but the probability of diagnosing the infection increases when other 

tissues, such as heart and liver, are analysed (Ortega-Mora et al., 2006). 

Histopathological examination is an important diagnostic procedure (Dubey and 

Schares, 2006; Ortega-Mora et al., 2006). Histology allows for the detection of 

tachyzoites, inflammatory and degenerative changes in foetal tissues, especially in 

the CNS, heart, liver and muscles (reviewed in Dubey and Lindsay, 1996). However, 

the inflammatory lesions are not pathognomonic for N. caninum infection.  

Histology has been the most commonly used method for parasite detection 

initially, but immunohistological detection  of parasites in foetal brain, lung, liver 

and heart has been used to confirm the presence of the agent (Lindsay and Dubey, 

1989a; Boger and Hattel, 2003) . Both polyclonal and monoclonal antibodies specific 

to N. caninum can be used, but the polyclonal antibodies made in rabbits seem to be 

more reliable than the mouse-derived monoclonal antibodies for diagnostic purposes 

(Lindsay and Dubey, 1989a; Cole et al., 1994). Immunohistology is highly specific, 

although cross reactivity with T. gondii has been reported (Van Maanen et al., 2004). 

Polyclonal antibodies directed against N. caninum surface proteins Nc-p43 (specific 

for both N. caninum tachyzoites and bradyzoites) and Nc-p36 (reacts with 

tachyzoites only) have been evaluated for diagnostic purposes and were shown to 

react with two isolates of N. caninum (Nc-1 and Nc-Liverpool), but not T. gondii, 

indicating that they do not cross-react with T gondii (Hemphill and Gottstein, 1996; 

Hemphill et al., 1997; Fuchs et al., 1998). Another murine monoclonal antibody, 

which reacted specifically with N. caninum tachyzoites and tissue cysts had 

previously been generated to combat the problem of cross-reactivity between N. 

caninum and T. gondii in formalin-fixed paraffin-embedded tissues (Cole et al., 

1993). This antibody was shown to recognise N. caninum tachyzoites and 

bradyzoites in dog, cattle, mice, rats, sheep and goats (Hemphill, 1999; Uzêda et al., 

2013).  
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The PCR technique also plays an important role in the diagnosis of N. caninum 

infection when used in aborted foetal tissues (Gottstein et al., 1998; Baszler et al., 

1999a; Sager et al., 2001; Van Maanen et al., 2004) and other samples such as 

amniotic fluid (Ho et al., 1997) and cerebrospinal fluid (Peters et al., 2000; 

Schatzberg et al., 2003). The advantage of the PCR is its high specificity and high 

sensitivity and therefore the ability to detect small amounts of N. caninum DNA in a 

large quantity of tissue; PCR also works well when foetal tissues are autolysed, 

which is often the case with Neospora abortions (Ortega-Mora et al., 2006). An 

indirect in situ PCR method has also been described and it combines the advantage 

of the extraordinarily high sensitivity and specificity of PCR and the in situ 

representation of immunohistological methods (Löschenberger et al., 2004).   

Diagnosis of neosporosis by PCR is based on the detection of specific DNA 

sequences, such as the ITS1, 18S ribosomal (r) DNA and 28S rDNA (Ho et al., 1996; 

Buxton et al., 1998; Ellis et al., 1998). The sequence differences that exist among the 

ITS1 regions of different apicomplexan parasites, such as N. caninum, T. gondii, 

Hammondia hammondi and H. heydorni, allow for the establishment of species 

specific PCR protocols (Dubey and Schares, 2006). In addition to the single-step 

conventional PCR (Holmdahl and Mattsson, 1996; Payne and Ellis, 1996), two-step 

nested PCRs were also developed (Buxton et al., 1998; Uggla et al., 1998). The two-

step nested PCRs are more sensitive, but have the disadvantage of potential carryover 

contaminations. This has led to the development of an alternative single-step nested 

PCR with high sensitivity, but with a lower risk of carryover contamination (Ellis et 

al., 1999).  

Another technique that can be applied for the diagnosis of foetal neosporosis 

involves the isolation of N. caninum  in cell culture or bioassay by inoculation in 

highly receptive mouse strains such as IFN-γ knock-out and Balb/c nu/nu mice 

(Dubey, 1999). This technique, however, is not suitable for routine diagnosis since 

the success of the isolation depends on the number of organisms present (Dubey, 

1999). Also, it does not comply with the aim to reduce the use of laboratory animals 

and the replacement with alternative methods. 

The diagnosis of acute versus chronic N. caninum infection in adult cattle is 

epidemiologically important (Dubey and Schares, 2011). Avidity tests have been 

used to distinguish between acute and chronic infection and it was shown that low 

avidity values are associated with acute infection, as the first antibodies produced 
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after a primary infection have a lower affinity (binding strength) than those produced 

later during the infection (Björkman et al., 1999).  Two recombinant protein-based 

ELISAs utilising the immunodominant N. caninum dense granule protein (NcGRA7) 

and the N. caninum surface antigen (NcSAG4) protein were developed to investigate 

the usefulness of both methods in discriminating between acute and chronic infection 

(Aguado-Martínez et al., 2008). The results of the latter study suggested that in 

experimentally and naturally infected cattle, the anti-rNcGRA7 antibody levels are 

indicative of an acute infection (first infection, reinfection and recrudescence), 

whereas the presence of anti-rNcSAG4 antibodies may be associated with both acute 

and chronic infection (tachyzoites to bradyzoites conversion). A recent study also 

looked at the rNcGRA7 and rNcSAG1 antigens as an indicator for the activation 

stage of N. caninum (Hiasa et al., 2012). Its results suggested that rNcSAG1, as a 

marker of both acute and chronic infection, can be a useful tool for the detection of 

N. caninum infection, whereas rNcGRA7 would be an indicator of acute infection. 

The authors also suggested that if both antibodies are increased during pregnancy, 

then N. caninum activation and/or abortion risk should be considered.  

1.13 Prevention and control of N. caninum in cattle 

Several control measures have been proposed to reduce the risk of endogenous 

transplacental transmission of N. caninum in cattle (Dubey et al., 2007). Embryo 

transfer from infected dams to uninfected recipients is considered to be a cost-

effective preventative measure to reduce the likelihood of endogenous transplacental 

transmission of N. caninum, but identifying suitable negative recipients is vital 

(Baillargeon et al., 2001). The use of this technology enables the recovery of 

uninfected calves from genetically valuable, but N. caninum-infected dams (Dubey 

and Schares, 2011). Infection was not detected in embryos, foetuses or calves born to 

seronegative recipients that received embryos from seropositive donors, whereas five 

out of six calves in the embryo transfer from seronegative donors to seropositive 

recipients were infected with N. caninum (Baillargeon et al., 2001; Moskwa et al., 

2008).  The use of artificial insemination of seropositive dams with semen from beef 

bulls was also suggested (López-Gatius et al., 2005). Recent studies have indicated 

that there is a significantly lower risk of abortion in heifers and parous cows 

inseminated with beef bull semen compared to those inseminated with Holstein-

Friesian bull semen (Almería et al., 2009; Yániz et al., 2010). 
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Selective culling of seropositive cows has been advocated to eliminate 

infection from a herd (Larson et al., 2004; Hall et al., 2005) but whilst culling of 

infected cows is an effective control option, it is not always economically practical 

(Dubey et al., 2007). Culling decisions concerning cows with confirmed N. caninum 

abortion can be made with the knowledge that there is a high probability of repeat 

abortion in these animals as seropositive cows have a greater risk of abortion; these 

cows are likely to infect some or all of their offspring via transplacental transmission 

and can act as source of infection for dogs which may result in them producing 

oocysts which can infect other naïve cows within the herd (Moen et al., 1998; 

Haddad et al., 2005). 

There are no licenced drugs available for treatment of N. caninum infected 

cattle and use of chemotherapy as an economical control tool in cattle is questionable 

due to need to treat cows during pregnancy, thus raising the issue of unacceptable 

milk and meat residues and withdrawal periods (Reichel and Ellis, 2002, 2009). 

Drugs such as toltrazuril and its derivative ponazuril have shown effect on 

tachyzoites in mice both in vivo and in vitro, but did not result in elimination of the 

parasite (Strohbusch et al., 2009). There have also been attempts to alter the course 

of N. caninum infection in cows with the use of prophylactic medicine with a slow-

release monensin bolus, but results from that study were inconclusive (VanLeeuwen 

et al., 2011). Other drugs are being evaluated for treatment of N. caninum infection, 

but there is still a challenge in terms of clearing tissue cysts in chronically infected 

animals (Debache et al., 2011). 

Numerous reports have discussed the possible use of vaccines in the control 

of N. caninum infection in cattle (Romero et al., 2004; Williams and Trees, 2006; 

Williams et al., 2007; Reichel and Ellis, 2009; Weston et al., 2012; Weber et al., 

2013). An efficient vaccine would have to satisfy the criteria of protection against 

both infection and clinical disease and be effective in inducing a non-foetopathic, cell 

mediated immune response (Goodswen et al., 2013). Presently, there is no 

commercial vaccine available for neosporosis, but animal models have been used to 

test the efficacy of killed and recombinant N. caninum vaccines (Rojo-Montejo et al., 

2011; Weston et al., 2012). The latter commercial inactivated vaccine (NeoGuard) 

was recently evaluated, but demonstrated no significant effect when tested in a 

clinical trial to assess its efficacy (Weston et al., 2012) and it has subsequently been 

withdrawn from the market. The development of new animal models to investigate 
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N. caninum vaccine has been advocated and this is due in part to the unsatisfactory 

levels of foetal loss in mouse models, which are limited in their capacity as 

predictive systems for developing vaccines against bovine abortions (Reichel and 

Ellis, 2009). The use of sheep or other ruminants in clinical trials of new vaccines is 

also of little value when cattle are the main target species (Reichel and Ellis, 2009). 

1.14 Development of the bovine foetal immune response and its relevance for N. 

caninum infection 

The ability of the bovine foetus to respond to various antigens develops in a 

sequential fashion during the approximately 280 day gestational period (Maddox et 

al., 1987). Bovine foetuses were able to develop mitogenic cellular responses around 

day 80 of gestation (Osburn et al., 1982), but spleen and thymus cells of other N. 

caninum-infected foetuses showed no evidence of cell mediated immune response 

before 98 day of gestation age (Bartley et al., 2012). Foetal immunocompetence 

starts to develop at 100 dg, but only after 150 dg is the foetus able to recognise and 

respond to antigens effectively (Osburn, 1986). The immune system then becomes 

progressively more competent at recognising and responding in full to infectious 

agents, as has been shown for bovine viral diarrhoea virus (BVDV) (Nettleton and 

Entrican, 1995) and N. caninum (Williams et al., 2000). These findings may help to 

explain why foetuses infected with N. caninum early in gestation die due to parasite 

induced lesions and those infected during mid or late gestation survive. It is evident 

also that the foetus is beginning to develop a parasite-specific immune response 

around mid-gestation that will contribute to the changing dynamics of the host 

parasite relationship and ultimately influence disease outcome (Innes et al., 2005). 

Many authors have debated the hypothesis that the bovine foetus will be unlikely to 

survive if infected with N. caninum in the first trimester as this may give rise to 

fulminating parasitaemia and placental or foetal lesions that can terminate pregnancy, 

whereas foetuses can mount an effective immune response in the middle third of 

pregnancy that can result in the birth of animals that are clinically normal, but 

persistently infected (Williams et al., 2000; Andrianarivo et al., 2001b; Almeria et 

al., 2003; Bartley et al., 2004; Innes et al., 2005; Rosbottom et al., 2011). In natural 

infection, the majority of N. caninum-associated abortion was reported to occur 

between four and seven months of gestation age, a time when the foetal immune 

system is developing and may be mature enough to respond to pathogens (Anderson 
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et al., 1991). Those findings are in contrast to the hypothesis that foetuses in early 

gestation die due to a lack of a competent immune response, while those in mid to 

late gestation are born persistently infected.   

Extensive haematological and immunohistological studies have been 

undertaken on the immune response and lymphoid tissues in bovine embryos (<40 

dg), foetuses and neonates, providing information on the development of foetal 

haemolymphatic tissues and immunoglobulin levels as well as the production  of 

complement and interferon (Schultz et al., 1971b, 1973; Osburn et al., 1982; Ishino 

et al., 1991). When researchers first started to study the development of the bovine 

foetal immune response, information on the human foetal development was used as a 

basis, as the two species have approximately the same length of gestation period 

(~280). They indeed identified several similarities (Schultz et al., 1973; Namikawa et 

al., 1986; Lobach and Haynes, 1987; Spencer et al., 1992; Haynes and Hale, 1998; 

Flores et al., 2001; Szépfalusi, 2008). In 1973, a three component concept was 

proposed for the development of the bovine immune system where stem cells, which 

originate in the yolk sac, migrate to the foetal liver and subsequently to the thymus 

(T-cell system) and bone marrow (B cell system) (Osburn and Schultz, 1973). 

Lymphocytes were observed in thymus and blood of bovine foetuses at 42-43 dg 

(Schultz et al., 1971a; Osburn and Schultz, 1973).  

In cattle, the thymus is first morphologically evident at approximately 30 dg, 

but T cells were only detected in the developing lobules at 42 dg, prior to the first 

detection of lymphocytes in the blood at 45 dg (Schultz et al., 1973). At 

approximately 55 dg, foetuses exhibit a thymus composed of lobules with a 

distinguishable cortex and medulla that contains numerous thymocytes and Hassall’s 

corpuscules in the medulla (Schultz, 1973). In another study, conspicuous Hassall’s 

corpuscles were regularly observed from 65 dg onwards (Schultz et al., 1973). The 

relevance of these corpuscular bodies has not been determined in animals, but studies 

on the human thymus have shown that they express lymphopoietin, which activates 

thymic dendritic cells that are able to induce proliferation and differentiation of 

specific regulatory T cells. Hassall's corpuscules also play a role in the removal of 

apoptotic cells and the maturation of thymocytes (Farr et al., 2002; Watanabe et al., 

2005). A later study showed specifically that at 70dg, the thymic cortex contains 

numerous medium sized lymphocytes, whereas the medulla can often not be 

identified due to the presence of only few lymphocytes; at 150 dg, however, the 
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thymus is deeply lobulated and morphologically similar to that of new born calves 

(Ishino et al., 1991). Other studies focussed on the cellular composition of the 

thymus. They showed a relatively constant content of T lymphocytes (60-70% of 

cells) and B cells (only in the medulla, approximately 1%) throughout gestation, 

whereas macrophages were present in the medulla and increased from 1% at 3 

months gestation to almost 8% at birth (Senogles et al., 1979). In addition, 

eosinophils were observed; their role was not further assessed (Schultz et al., 1973).   

 The spleen is morphologically evident at 55 dg, when it was shown to be 

predominantly composed of reticulocytes (Osburn and Schultz, 1973; Schultz et al., 

1973). Lymphoid cells were first recognised at 60 dg (Schultz, 1973) and red and 

white pulp differentiation was first evident at 80-100 dg (Osburn and Schultz, 1973). 

The spleen showed an increasing percentage of T cells from 11% at three months 

gestation to over 40% at term while B lymphocytes consistently comprised two to 

three percent of cells from three months gestation to term (Senogles et al., 1979).  

Peripheral lymph nodes (i.e. prefemoral and prescapular lymph nodes) were 

present in foetuses at 60 dg (Schultz et al., 1973). At 70 dg, they consisted of spindle 

shaped mesenchymal cells, but did not show cortex and medulla differentiation 

(Ishino et al., 1991); between 90 and 120 dg, lymphocytes appeared and formed the 

cortex and medulla; however, only few lymphocytes were present in the medulla at 

that time point and only after 150 dg were cortical structures distinct with mature 

lymphocytes (Ishino et al., 1991). Most major lymph nodes were grossly evident by 

130 dg (Schultz et al., 1973). Follicular structures were described at 180 dg and after 

210 dg, lymph nodes showed a similar appearance to those of neonatal calves (Ishino 

et al., 1991).  

During foetal development, sequential appearance of immunoglobulins is 

observed even in the absence of obvious exogenous antigenic stimuli. 

Immunoglobulin M (IgM) containing cells were observed in spleen, lymph nodes 

and bone marrow and IgM was detected in foetal serum samples obtained at 130 dg, 

while IgG and IgG-containing cells were observed at 145 dg (Schultz et al., 1971a; 

Schultz et al., 1973). In spleen and lymph node, IgM-bearing cells were already 

demonstrated at 90 dg (Ishino et al., 1991) and in an earlier study even at 59 dg 

(Schultz et al., 1973), whereas cells expressing IgG were observed at 150 dg  and 

145 dg, respectively (Schultz et al., 1973; Ishino et al., 1991). 
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Lymphoid tissue in the gastrointestinal tract (gut-associated lymphoid tissue, 

GALT) was identified in foetuses older than 175 dg, although only to a minimal 

extent (Schultz et al., 1973); however, Ishino et al. (1991) have identified mild 

lymphocyte infiltration around blood vessels in the lamina propria as early as 120 dg; 

distinct lymphoid aggregation was seen at 150 dg and only at 180 dg were follicular 

structures detected (Ishino et al., 1991).  

The innate immune response in bovine foetuses mediated by phagocytes 

(macrophages and neutrophils) does not fully develop until late gestation, but there is 

a decline in its functional capacity leading up to birth due to an increase in 

circulating cortisol levels (Barrington and Parish, 2001). Presumably, this decline is 

due to the suppression of phagocytic activities by cortisol, even though more 

neutrophils may be present in the peripheral blood close to parturition (Hulbert et al., 

2011). Macrophages and neutrophils as the major phagocytic cells are very important 

innate immune cells comprising the first line of innate immunity (Kaufmann, 2008). 

These cells share a common origin and have functions such as phagocytosis of 

invading pathogens, similar kinetic behaviour during infection and antimicrobial as 

well as immunomodulatory properties (Silva, 2010). Macrophages have been 

observed from approximately 90 dg onwards, both in the thymus and, in a far larger 

quantity, the spleen (Senogles et al., 1979). Neutrophils were first observed at 130 dg 

and reached maximum values near parturition (Schultz et al., 1971a); while 

eosinophils were observed in the foetal age group nearest to parturition and were far 

less frequent than neutrophils (Schultz, 1973). Evidence of complement activity was 

found between gestation days 70 and 90 (Barta et al., 1972).  

Information concerning the occurrence of haematopoietic stem cells in the 

bone marrow during foetal development is mostly based on studies in mice. In 

human foetuses, medullary haematopoiesis starts by gestation week ten (Charbord et 

al., 1996). Based on information extrapolated from human medicine, it was 

hypothesised that lymphocytes start to appear in the liver at 30-35 dg since lymphoid 

development in the liver precedes thymic development; cells then migrate to the 

thymus, after which lymphoid cells appeared in the bone marrow at 55 dg, but were 

difficult to recognise in the organ due to their relative paucity  (Schultz, 1973). 
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Table 1.1: Specific components of the immune system in the bovine foetus listed 

sequentially according to the gestation day when they were first observed. 

Immune system component/organ or function Gestation days References 

Thymus  42 Schultz et al., 1973 

Lymphocytes in blood  45 Schultz et al., 1973 

Spleen and bone marrow 55 Schultz et al., 1973 

IgM expressing lymphocytes  59 Schultz et al., 1973 

Peripheral lymph nodes 60 Schultz et al., 1973 

Bactericidal activity in serum 75 Barta et al., 1972 

Phytohaemagglutinin lymphocyte blastogenesis  78 Renshaw and Osburn, 

1977 

Haemolytic complement activity, measurable C3 

in serum  

90 Schwartz and Osburn, 

1974 

Mesenteric lymph nodes 100 Schultz et al., 1973 

Blood granulocyte (neutrophils) 130 Schultz et al., 1971a 

IgG in serum  150 Ishino et al., 1991 

Lymphocytes in tonsils 150 Ishino et al., 1991 

IgG expressing lymphocytes  145-155 Schultz et al., 1973;  

Maclaren et al., 1984 

Lymphoid tissue of gastrointestinal tract 175 Osburn and Schultz, 1973;  

Schultz et al., 1973 

IgA expressing cells in prescapular lymph nodes 180 Ishino et al., 1991 

IgA expressing plasma cells in intestine Birth Rossi et al., 1978;  

Yamini and Sleight, 1980; 

Maclaren et al., 1984 

 

1.15 Pro- and anti-apoptotic activities of intracellular protozoan parasites  

The protozoan parasites constitute a heterogeneous group of unicellular pathogens 

that differ considerably in their life cycles, modes of transmission from one host to 

the next and the localisation and cellular niche within their respective hosts; this has 

caused for distinct adaptations in order to accomplish their complex life cycles and to 

ensure continuing transmission to new hosts (Graumann et al., 2009). The obligate 

intracellular parasites, such as N. caninum and T. gondii, rely on intact cells to grow, 

propagate and differentiate; thus, these parasites, among other protozoans, have 

evolved mechanisms to suppress or delay host cell death (apoptosis) in infected cells 

(Schaumburg et al., 2006; Graumann et al., 2009). Infection of cells by intracellular 

parasites can provide an appropriate stress signal, thus driving cells to commit 

suicide via the intrinsic apoptotic pathway, thereby limiting the spread of the parasite 

progeny (Schaumburg et al., 2006). Apoptosis could therefore be viewed as an innate 

defence mechanism against intracellular pathogens (Williams, 1994). The 

modulation of the host cell activities is very important especially for the slow 

growing bradyzoite stage of the parasite, as their needs shift from growth to one of 

maintenance (Weiss and Kim, 2000). To guarantee their long-term survival, it is 
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necessary for the parasites to keep the host cell alive. Contrary to their anti-apoptotic 

effects, some protozoan parasites can also modulate the host cells to induce 

apoptosis. T. gondii was shown to induce apoptosis in primary human trophoblast 

cells in vitro, but interestingly, apoptosis was only observed in uninfected cells, 

which might indicate that the pro-apoptotic activity was blocked by the presence of 

the parasites (Abbasi et al., 2003). Cryptosporidium parvum is thought to promote 

host cell apoptosis, but only the sporozoite and merozoite stages were shown to be 

involved, whereas the trophozoite stage was mainly linked to inhibition of apoptosis 

(Mele et al., 2004).  

Apoptosis (Fig. 1.3) is initiated and transduced via the intrinsic (mitochondrial) 

pathway, the extrinsic or death receptor pathway and the perforin/granzyme pathway 

(Schaumburg et al., 2006). The classical mitochondrial pathway is usually activated 

when the cell encounters stress signals, which includes DNA damage, growth factor 

withdrawal, toxins and importantly, infection with intracellular parasites 

(Schaumburg et al., 2006). These stress-related stimuli activate pro-apoptotic factors 

that are divided into multidomain [also called B cell lymphoma (Bcl-2 

homology/BH)] and BH3-only families such as Bad (pro-apoptotic) (Bouillet and 

Strasser, 2002). These proteins function as sensors for cellular damage and can 

inactivate anti-apoptotic members of the Bcl-2 family, while activating pro-apoptotic 

Bax/Bak-like Bcl-2 proteins, which induce mitochondrial outer membrane 

permeabilisation (Schaumburg et al., 2006). This later leads to the release of a 

variety of apoptotic factors from the mitochondria into the cytoplasm, most 

importantly cytochrome c, which induce the formation of the apoptosome, a complex 

containing cytochrome c; caspase 9 and apoptotic protease-activating factor-1 

(Adams and Cory, 2002; Cain et al., 2002); apoptosis-inducing factor (AIF) and 

endonuclease G (EndoG), which both translocate into the host cell nucleus and 

induce DNA fragmentation independently of caspases (Schaumburg et al., 2006). 

There are two forms of cytochrome c present within the mitochondria, one found 

bound to the inner mitochondrial membrane (IMM) and acts as a critical component 

of the electron transport chain, while the other form is freely floating between the 

IMM and outer MM (Cortese et al., 1998; Czerski and Nuñez, 2004). The release of 

cytochrome c activates the initiator caspase, caspase-9, which then activates the 

executioner caspase, caspase-3 (Slee et al., 1999).  
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Figure 1.3. Anti-apoptotic activities of protozoan parasites. Induction of apoptosis by death receptor 

activation, or in response to intrinsic triggers via the mitochondrial pathway, results in the activation 

of caspase-8 and caspase-9, respectively. Host cell apoptosis can also occur via the perforin/granzyme 

pathway. Several protozoan parasites are able to inhibit apoptosis (temporarily or permanently) in all 

pathways. N. caninum among other parasites can interfere with the intrinsic apoptotic pathway leading 

to caspase 9 activation upstream and the effector caspases downstream. Appropriate stress signals can 

also lead to the release of cytochrome c and other pro-apoptotic factors via the BH3-only proteins. 

BH3: Bcl-2 homology; Bax: Bcl-2-associated X protein; Bak: Bcl-2 homologous antagonist/killer; cyt 

c: cytochrome c; GrB: granzyme B. Adopted from (Graumann et al., 2009). 

 

The extrinsic apoptosis pathway is activated after ligation of death-receptor, 

namely Fas/CD95 and tumour necrosis factor-receptor 1 (TNF-R1) (Ashkenazi and 

Dixit, 1999). The extrinsic pathway plays a pivotal role in T and B cell development 

and also during the course of an immune response and is therefore of major 

importance for the course of parasitic infections (Dockrell, 2003). The binding of a 

death receptor ligand to a death receptor leads to the recruitment of the monomeric 

procaspase 8 protein through the death effector domain (DED) to form the death-

inducing signalling complex (McIlwain et al., 2013). The outcome of the death 

receptor-mediated activation of caspase 8 is dependent upon the cell type, i.e. type I 

and II cells. In type I cells, caspase 8 initiates apoptosis directly by cleaving and 

further activates the executioner caspases, whereas in type II cells, caspase 8 must 

first activate the intrinsic apoptotic pathway to induce efficient cell death (Samraj et 

al., 2006). The third pathway to cell death involves cytotoxic lymphocytes, i.e. T 
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lymphocytes and Natural Killer cells, which eliminate pathogen-infected cells by 

activating caspases (Lieberman, 2003).  

1.16 Parasite manipulation of host cells 

Many apicomplexan parasites are known to subvert apoptotic pathways in their host 

cells and at the same time, modify the cells for their own development. There is 

evidence of death receptor-mediated apoptosis repression during N. caninum 

infection and further data also showed that the executioner caspase (cysteinyl 

aspartate-specific proteases), caspase 3, did not become activated in infected cells 

(Herman et al., 2007). T. gondii-infected cells were shown to be resistant to multiple 

inducers of the death receptor and mitochondrial pathways of apoptosis (Nash et al., 

1998; Goebel et al., 2001). The inhibition is associated with a block of the caspase 

cascade and induction of the transcription factor, nuclear factor kappa beta (NF-κB) 

with concomitant upregulation of anti-apoptotic genes (Payne et al., 2003; Molestina 

and Sinai, 2005). Neospora caninum-infected cells are refractory to death receptor-

mediated apoptosis, which is associated with diminished caspase activity; however, 

unlike in T. gondii infected cells, the nuclear translocation of the host transcription 

factor NF-κB, which is a critical component of the anti-apoptotic and pro-survival 

responses during T. gondii infection, was not observed in N. caninum infected cells  

(Ghosh, 1999; Molestina et al., 2003; Herman et al., 2007). It was later concluded by 

Herman et al. (2007), that infection with N. caninum prevents DNA degradation 

associated with host cell apoptosis; the absence of caspase 3 activity in cells infected 

with either T. gondii or N. caninum was shown to be due to a block of caspase 3 

activation, but the specific mechanism(s) by which the caspase 3 activation is 

inhibited by N. caninum was not ascertained in the latter study.    

The mitochondrial release of cytochrome c from the inter-membrane space is a 

triggering event in apoptosis (Goldstein et al., 2000). Reports have suggested that T. 

gondii infected cells can resist the release of cytochrome c in response to diverse 

apoptogenic triggers (Goebel et al., 2001; Sinai et al., 2004). This restriction is likely 

due to the activation of anti-apoptotic Bcl-2 family of proteins by the parasite, but 

not those on the pro-apoptotic arm (Molestina et al., 2003). The release of 

cytochrome c, which initiates apoptosis, is believed to occur simultaneously from all 

mitochondria within the dying cell (Goldstein et al., 2000); however, mitochondria 

that are associated with the PVM in T. gondii did not undergo the permeability 
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transition, thus retaining their cytochrome c (Carmen et al., 2006). The release of 

cytochrome c from non-PVM-associated mitochondria should on its own activate 

apoptosis, but in the presence of either endogenous or exogenous caspase inhibitors, 

apoptosis was blocked despite the release of cytochrome c (Deveraux et al., 1998).  

1.18 Parasite egress from host cells 

Parasite escape from the host cells requires the breaching of the PVM, host cytosolic 

organelles, the host cytoskeleton and host cell plasma membrane (Roiko and 

Carruthers, 2009). A reduction in potassium ions (K
+
) concentration below a 

threshold of 80 mM has been implicated in triggering T. gondii egress from host cells 

(Moudy et al., 2001; Fruth and Arrizabalaga, 2007). Moudy et al. (2001) also showed 

that an increase in Ca
2+

 concentration is also needed to activate one of the 

mechanisms (motile apparatus) that apicomplexan parasites use in order for egress to 

occur. A mechanical or metabolic strain in parasite laden infected cells could cause 

K
+
 to decrease in cells, thereby activating egress (Roiko and Carruthers, 2009). 

While inside the infected cell, the parasites sense a high concentration of K
+
 in its 

surroundings and maintains a relatively non-motile state until K
+
 levels fall below 

the threshold, then activates its motility system (Moudy et al., 2001). Plasmodium 

sporozoites are said to respond to K
+
 fluxes in a similar manner (Kumar et al., 2007). 

Activation of phospholipase C (PLC) also seems to play an important role in the 

activation of parasite egress from host cells. This was shown in the related parasite, 

Plasmodium falciparum where the presence of an intracellular Ca
2+

 store has been 

described that can release Ca
2+

 in response to an increase in inositol 1,4,5-

trisphophate (IP3) levels (Moudy et al., 2001). The results from Moudy et al. (2001) 

later confirmed that the increase in Ca
2+

 during parasite egress is regulated by a PLC 

activity in the parasite.  

The exact sequence of the egress process is to date unclear, but the following 

are observations published on the order of events during egress: tubular network 

disintegration; disassembly of the rosette formation; tachyzoite motility; protrusion 

of the conoids; pushing of the PVM by the tachyzoites; PVM disintegration; 

tachyzoites gain access into the host cell cytoplasm; migration of tachyzoites to the 

periphery of the host cell; and association with the host cell plasma membrane with 

subsequent crossing to extracellular space (Caldas et al., 2010). Lysis of the PVM 

and host cell membrane is considered to be caused by a pore-forming perforin-like 
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parasite protein (PLP) as in the case of T. gondii, the TgPLP1 has been implicated 

(Graewe et al., 2012). It has been shown that the TgPLP1 can act on both the luminal 

side of the PVM and the cytoplasmic side of a second vacuole within the same cell to 

facilitate egress (Kafsack et al., 2009). This release of TgPLP1 from the micronemes 

of T. gondii could mean that the protein may be homologues in other intracellular 

apicomplexan parasites. 

1.19 Host cell death  

Destruction of the PVM has been supported as the main cause of host cell death in 

parasite infected cells (Heussler et al., 2010). Several phases of parasite egress and 

host cell death have been suggested (Kafsack et al., 2009). Infected cells with an 

intact PVM and host cell plasma membrane are considered as phase zero. In phase 

one, there is a release of parasite proteins from micronemes which disrupt the PVM, 

but the host cell membrane stays intact; phase two is characterised by a breach in the 

host cell plasma membrane, initiating a kind of necrotic cell death; and during phase 

three, the parasite protease subtilisin I (SUB1) is released into the host cell 

cytoplasm. It is still not clear whether cell death is initiated upon rupture of the PVM 

or the host plasma membrane. A recent study showed supporting evidence to the idea 

of host cell death upon PVM destruction (Zhao et al., 2009). The authors of this 

study also investigated infected host cells and found that PVM destruction induced 

host cell death, which they described as pyronecrosis, since the features of the dead 

cells did not support those of apoptosis or necrosis. Heussler et al. (2010) described 

an ordered form of cell death in Plasmodium-infected hepatocytes, which was 

considered to be parasite-dependent and could be clearly distinguished from both 

necrosis and apoptosis. The key event in this case appeared to be rupture of the 

PVM, which occurred first during egress, and host cell death probably was 

dependent on the activation of cysteine proteases (Heussler et al., 2010).  

1.20 The apoptosis-necrosis continuum  

The morphological characteristic of apoptosis and necrosis are clearly distinct. 

Apoptosis is controlled process that is characterised by changes in cellular 

morphology, condensation of cytoplasm and nuclear fragmentation, while necrosis is 

a more passive process and is characterised by cell swelling and total breakdown of 

plasma membrane (Elmore, 2007). The mitochondria are frequently the target of 
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injury after stresses leading to necrotic and apoptotic cell death (Lemasters et al., 

1999). Evidence indicated that necrosis and apoptosis represent morphological 

expressions of a shared biochemical network described as the apoptosis-necrosis 

continuum (Zeiss, 2003). Two clearly ascertainable factors that can alter an ongoing 

apoptotic process into a necrotic process include – a decrease in the availability of 

caspases and intracellular adenosine triphosphate (ATP) (Leist et al., 1997; Denecker 

et al., 2001). A decrease in cellular ATP production that ultimately leads to the 

generation of reactive oxygen species, both of which are consequences of 

cytochrome c release, can contribute to cell death in the absence of caspases (Zeiss, 

2003). In the intrinsic (mitochondrial) pathway, the formation of the apoptosome is 

dependent on ATP for its pro-apoptotic activity and progressive energy depletion 

would therefore result in a greater proportion of cells being committed to necrotic 

cell death rather than apoptosis (Leist et al., 1997; Nicotera et al., 1998; Eguchi et al., 

1999). Many insults in cells can induce apoptosis at lower doses and necrosis at 

higher doses; however, even in response to a certain dose of death-induced agent, 

morphological features of both apoptosis and necrosis may coexist in the same cell 

(Zong and Thompson, 2006). 

During necrosis, most of the intracellular content is released out of the plasma 

membrane, but a small amount of molecules have been identified that can elicit 

necrosis-induced immune signalling; these molecules include the damage-associated 

molecular pattern (DAMP), high-mobility group box 1 (HMGB1) protein and heat 

shock proteins (Zeh Iii and Lotze, 2005; Zong and Thompson, 2006). HMGB1 is a 

non-histone nuclear protein ubiquitously expressed in eukaryotes, exerts distinct 

functions at different subcellular localisations and plays an important role in the 

regulation of gene transcription in the cell nucleus (Bustin, 1999; Zhou et al., 2011). 

Although located primarily in the cell nucleus, HMGB1 can translocate to the 

cytoplasm, as well as the extracellular space, during cell activation and cell death 

(Harris et al., 2012). Inside the cell, HMGB1 binds DNA and modulates 

chromosomal architecture (Ueda and Yoshida, 2010). The immune properties of 

necrotic and apoptotic cells can differ, therefore, the deposition of HMGB1 during 

cell death is of utmost importance (Rock et al., 2011). During necrosis, HMGB1 

release occurs passively as cell permeability breaks down (Scaffidi et al., 2002; 

Rovere-Querini et al., 2004); while during apoptosis, nuclear retention of HMGB1 

occurs because of post-translational modifications that affect chromatin binding 
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(Scaffidi et al., 2002). It has also been suggested that HMGB1 extracellular release 

might occur during late apoptosis (secondary necrosis) due to changes in cell 

permeability as well as extensive nucleosomal degradation (Harris et al., 2012). 

Therefore, this protein could potentially be used as a maker during necrosis-induced 

cell death as there is retention in the cell nucleus during apoptosis.   

1.21 Aims and objectives of the study 

The coccidian parasite N. caninum is globally distributed and causes abortion in 

cattle. Numerous reports have been made on the pathogenesis of the infection mainly 

in the placenta and foetus. Data show that foetal death occurs following infection in 

early gestation, while infection in mid to late gestation can result in the calf being 

born alive, but persistently infected. It has also been shown that the bovine foetal 

immune system starts to become competent only after approximately 100 days 

gestation age, which means that foetuses in early gestation would be unable to 

respond to infection. The aim of this thesis is to analyse the pathological process that 

lead to N. caninum induced foetal death.  

In Chapter 2, the pathological effects of N. caninum tachyzoites on bovine foetuses 

following experimental infection of dams in early and late gestation (70 ad 210 days 

gestation, respectively) and of naturally infected cows after parasite recrudescence in 

mid to late gestation were analysed. The composition of the haemolymphatic and 

non-haemolymphatic tissues was evaluated along with the nature of the 

inflammatory response towards N. caninum using various leukocyte markers and 

marker for parasite detection.  

In Chapter 2, there was evidence of hepatocellular necrosis alongside apoptotic 

cells in the livers of foetuses in early gestation, whereas high parasite burden was 

detected in cardiomyocytes, but without evidence of necrosis or apoptosis. The aim 

of Chapter 3 was to study the mechanism of hepatocellular cell death following N. 

caninum infection by evaluating the activation of the apoptotic pathways using an in 

vitro tissue culture model. The ultrastructural features of infected hepatocytes were 

also evaluated to detect subtle changes and assess the interaction between host cell 

organelles and N. caninum tachyzoites. 

In Chapter 4, the seroprevalence of N. caninum in Jamaican dairy herds was 

investigated with the aim of understanding the epidemiology of the infection in the 



Chapter One   General Introduction  

37 

  

Caribbean region. Serum samples from local dairy herds were collected and 

evaluated using ELISA.  
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2.1 ABSTRACT  

Neospora caninum is a globally distributed, intracellular apicomplexan parasite and a 

major infectious cause of bovine abortion worldwide. The parasite was first reported 

as an unidentified protozoan in dogs with encephalomyelitis and myositis and later in 

calves with similar conditions. The major mode of transmission of the parasite is 

likely from infected dam to foetus via the placenta. Calves infected via this route 

could be born clinically healthy, but persistently infected. The pathological effects of 

N. caninum on bovine foetuses in early and late gestation (70 and 210 days gestation, 

respectively), and foetuses from dams following recrudescence of N. caninum in mid 

to late gestation, were assessed. An initial histological study was performed on 35 

bovine foetuses and 2 new-born calves. A total of 12 foetuses/calves were 

subsequently chosen and subjected to more detailed histological and 

immunohistological examination. The haemolymphatic and non-haemolymphatic 

tissues were examined and stained for the presence of T and B cells, antigen 

presenting cells, macrophages, proliferating cells, interferon gamma producing cells 

and apoptotic cells. The haemolymphatic tissues of control foetuses in early gestation 

were moderately developed, had no histological changes and with low lymphocyte 

turnover. Histological changes were observed in the haemolymphatic tissues of 

infected foetuses in early gestation and comprised extensive lymphocyte apoptosis, 

low cell turnover, but with no evidence of IFN-γ production. Foetuses in late 

gestation had mild histological changes and evidence of IFN-γ production was seen 

in spleen and lymph node of infected foetuses. In the non-haemolymphatic tissues, 

foetuses in early gestation had the most severe lesions and exhibited severe 

hepatocellular necrosis and apoptosis, glial cell and/or neuroblast necrosis and 

apoptosis in the CNS along with high parasite loads in the CNS, liver and 

myocardium. Parasite loads in cardiomyocytes were not associated with cell 

degeneration. A mononuclear cell infiltration was observed in tissues, but not in 

direct association with the parasite. Histological changes were present mainly in the 

CNS of foetuses in late gestation where focal necrosis and mild to moderate 

mononuclear cell infiltrates were present. Low numbers of parasites were detected in 

the CNS in association with the inflammation. Other non-haemolymphatic tissues 

had only mild mononuclear cell infiltrates which consisted mainly of CD3-positive T 

cell and fewer macrophages.  
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2.2 INTRODUCTION  

 

The apicomplexan parasite N. caninum is a major cause of reproductive failure in the 

cattle industry worldwide (Dubey et al., 2007). Transplacental transmission of N. 

caninum in cows is very efficient and only a proportion of infected animals abort 

(Trees et al., 1999). Prenatal N. caninum infection occurs as a result of reactivation 

of a persistent infection acquired before pregnancy or infection of the dam during 

pregnancy; while postnatal infection arise from the ingestion of oocysts shed by the 

definitive hosts (Trees et al., 2002; Trees and Williams, 2005). Infection via the 

exogenous or endogenous route of transmission can induce pathological changes in 

the foetus and lead to foetal death or the birth of a clinically healthy, but persistently 

infected calf (Dubey et al., 2006; Dubey and Schares, 2011). There are numerous 

reports of experimental N. caninum infection in animals (Williams et al., 2000; 

Gibney et al., 2008; Almería et al., 2010; Bartley et al., 2013a). Many different 

routes of challenge have been shown to lead to vertical transmission of N. caninum 

causing foetal infection and include intravenous, intramuscular, subcutaneous and 

oral (Uggla et al., 1998; Andrianarivo et al., 2000; Williams et al., 2003; Gibney et 

al., 2008). Following infection, N. caninum is able to gain access to the placenta 

probably via blood and establish itself in the maternal caruncular septum before 

crossing to the foetal placental villi (Dubey and Schares, 2011). For abortion to 

occur, the foetus and/or its placenta has to be damaged so that it is no longer viable 

(Gibney et al., 2008). 

Neospora caninum is a significant primary cause of bovine abortion. The 

parasite has been identified in aborted foetuses both after natural and experimental 

infection (Barr et al., 1994; Wouda et al., 1997; Gibney et al., 2008). Parasite-

induced pathological changes have also been described in foetuses and placenta of 

dams after parasite recrudescence (Barr et al., 1990; Wouda et al., 1997; Gibney, 

2008; Rosbottom et al., 2011). Grossly, parasite-induced lesions are rarely seen. In 

aborted foetuses, pale white foci in the heart and skeletal muscle and dark foci of 

necrosis in the brain with hydrocephalus have been recorded (Dubey et al., 1998; 

Piergili Fioretti et al., 2003). In the dam, focal areas of discolouration can 

occasionally be seen in the placenta (Dubey et al., 1998a; Piergili Fioretti et al., 

2003). 
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Histological changes in foetuses are variable depending on the age of the 

foetus. In young (< 4 months’ gestation) aborted foetuses, there are focal areas of 

necrosis in liver and brain; while N. caninum tachyzoites, without evidence of 

necrosis in infected cells, were observed in the myocardium (Wouda et al., 1997; 

Maley et al., 2006; Gibney et al., 2008). Older foetuses that probably would be 

carried to term (>4 months’ gestation age) showed focal mononuclear (lymphocytes, 

plasma cells and macrophages) inflammatory infiltrates in the CNS and peripheral 

nerves and skeletal muscles as well as a range of other organs, such as the kidneys, 

liver, adrenal glands and lungs, generally without parasites in the lesions (Barr et al., 

1990; Wouda et al., 1997; Gibney et al., 2008; Rosbottom et al., 2011). After parasite 

recrudescence in naturally infected animals, N. caninum tachyzoites were 

occasionally observed in areas surrounded by mononuclear inflammatory cell 

infiltrates in the CNS (Rosbottom et al., 2011).  

Histological changes in the placenta of foetuses that had died in early gestation 

are represented by multifocal epithelial cell necrosis with N. caninum tachyzoites 

within degenerated cells (Barr et al., 1990; Bergeron et al., 2001; Maley et al., 2006; 

Gibney et al., 2008). When foetuses were still alive 3 weeks post infection, the 

placenta showed necrosis of villi with moderate to severe mononuclear infiltration in 

the maternal caruncles. N. caninum tachyzoites were identified within areas of 

villous necrosis, but rarely in adjacent areas (Maley et al., 2006). In the surviving 

foetuses of dams infected in mid gestation, there were focal areas of necrosis with 

infiltration of neutrophils and mononuclear cells and serum exudates; tachyzoites 

were identified in the placenta (Almería et al., 2010). In one placenta where the 

foetus was found dead, there were large areas of necrosis and placentitis with 

mineralisation and few tachyzoites. After infection in late gestation, the histological 

changes were restricted to small areas of epithelial necrosis with mild mononuclear 

interstitial infiltration dominated by mononuclear cells in the maternal tissues 

(Gibney et al., 2008). 
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2.3 Aim of the study 

 

There is strong evidence that N. caninum infection in early gestation is associated 

with foetal death most probably due to lack of foetal immunocompetence, whereas in 

mid to late gestation, infection can result in the birth of asymptomatic, persistently 

infected animals (Williams et al., 2000; Guy et al., 2001b; Gibney et al., 2008; 

Rosbottom et al., 2011). Accordingly, the immunological development of the foetus 

is most likely critical in determining if a foetus is killed by the infection or survives, 

but becomes persistently infected. Survival of the foetus will therefore depend on its 

ability to raise an immune response to the parasite. 

The purpose of the present study was to define the immune response to N. caninum 

in bovine foetuses in early and late gestation (70 and 210 dg) and in foetuses after 

parasite recrudescence had occurred in mid to late gestation, by measuring the 

development and composition of the haemolymphatic tissue and the development of 

an inflammatory response to the parasites. The study was carried out on foetuses of 

dams experimentally infected either at 70 dg, a time when the foetal immune system 

is not thought to be functional, or at 210 dg when a foetus is expected to be more 

immunocompetent. In addition, foetuses of naturally infected dams that had evidence 

of parasite recrudescence in mid and late gestation and calves from persistently 

infected mothers that were born alive were examined.  
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2.4 MATERIALS AND METHODS 

2.4.1 Animals and foetal tissues, histological examination 

An initial histological study was performed on tissues from 37 Holstein-Friesan 

bovine foetuses (2 calves included, Table 2.1) that had been collected for histological 

examination in a previous experiment carried out at the University of Liverpool, then 

Faculty of Veterinary Science and The Liverpool School of Tropical Medicine, as 

part of the PhD project of Dr. Helen Gibney (Gibney, 2008). Briefly, three groups of 

foetuses were examined. Group 1 consisted of seven foetuses (including one set of 

twins) from 6 dams that had been infected intravenously (iv) with N. caninum 

tachyzoites (Liverpool strain) at 70 dg and 6 control foetuses whose dams had 

received uninfected Vero cells in phosphate buffered saline (PBS). Group 2 was 

comprised of 6 foetuses from dams that had been infected iv with N. caninum 

tachyzoites at 210 dg and 6 control foetuses from dams that had been inoculated with 

uninfected Vero cells in PBS. Group 3 consisted of 10 foetuses (including two sets of 

twins) and 2 new-born calves from 10 naturally persistently infected dams which had 

been euthanised after parasite recrudescence had occurred in mid to late gestation. 

Detailed information on the foetuses is provided in Table 2.1. 

Dams had been euthanised within 24 h after foetal death had been diagnosed 

(animals infected at 70 dg, group 1) or 20–22 days post inoculation in the control 

groups and in all animals infected at 210 dg (group 2). Eight dams in group 3 (a total 

of 10 foetuses) had been euthanised one week after a 50% increase in antibody levels 

had been detected and levels remained high. The remaining 2 dams were allowed to 

calve normally, because the rise in antibody levels was detected in one animal at 37 

weeks gestation and in the other only after parturition.   

All foetuses had been subjected to a gross post mortem examination within an 

hour after euthanasia of the dams. Euthanasia and post mortem examination of calves 

was carried out 2 weeks after birth. Tissues or tissue samples [thymus, spleen, 

mesenteric lymph node, femoral bone marrow, brain, spinal cord, Nervus femoralis, 

heart (apex), lung, left liver lobe, left kidney and adrenal gland, pancreas, section of 

jejunum and Musculus quadriceps femoris] had been collected from all foetuses. 

Lymph nodes were not sampled in group 1 (70 dg) foetuses, because they were not 

grossly apparent at that stage. Tissues had been fixed in 4% buffered 

paraformaldehyde (pH 7.4) and routinely paraffin wax embedded after 24-48 h 
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(Gibney, 2008). Sections (3-5μm thick) had been prepared and stained with 

haematoxylin-eosin (HE). For the present initial study, these sections were retrieved 

from the archive and a thorough histological assessment was undertaken to identify 

any histopathological changes and to assess the development and composition 

haemolymphatic tissues. Based on the results of this study, cases for the subsequent 

studies were selected.  

Table 2.1: Groups of foetuses included into the present study for histological 

screening 

Groups Number of foetuses 

(Infected/controls) 

Inoculation (iv) 

(Infected/controls) 

Time of inoculation 

(Infected/controls) 

Foetal status at 

euthanasia of dam 

Group 1 7 infected 107 N. caninum 

tachyzoites 

70 dg Dead, 91 ± 1 dg 

(all foetuses) 

6 controls 107 Vero cells in 

PBS 

70 dg Alive, 91 ± 1 dg 

(all foetuses) 

Group 2 6 infected 107 N. caninum 

tachyzoites 

210 dg Alive, 231 ± 1 dg 

(all foetuses)  

6 controls 107 Vero cells in 

PBS 

210 dg Alive, 231 ± 1 dg 

(all foetuses)  

Group 3  

Recrudescence  

10 naturally infected NA  NA Alive, 147 – 245 dg 

2 naturally infected NA NA Alive at birth 

 

2.4.2 Histology and immunohistology for the characterisation of pathological 

changes and the identification of the composition of haemolymphatic tissues 

Based on the results of the initial histological screening of all 37 foetuses/calves from 

both control and N. caninum infected dams (Table 2.1), a total of 12 foetuses/calf 

(group 1: 3 infected and 2 controls, group 2: 2 infected and 3 controls and group 3: 1 

infected and 1 uninfected control; Table 2.2) were selected. The infected foetus from 

group 3 was euthanised at 31 weeks gestation, while the calf (used as control) was 

born alive. Haemolymphatic tissues (thymus, spleen, mesenteric lymph node, 

femoral bone marrow) and other tissues (cardiac muscle, Musculus quadriceps 

femoris, liver, lung, brain, spinal cord, Nervus femoralis, intestine, kidney and 

adrenal gland) were subjected to a more detailed histological examination using 

special stains when appropriate, and an immunohistological examination to identify 

parasite antigen and leukocytes in tissues. 
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The haemolymphatic tissues of infected foetuses in early gestation (group 1) 

were chosen based on the presence of extensive necrotic lesions in spleen, thymus, 

bone marrow and liver and provided that enough tissue was present in the paraffin 

blocks to allow further sectioning. Infected foetuses at 210 dg (group 2) and those 

from the recrudescence group (group 3) with the most extensive lesions in any 

tissues were chosen. Control foetuses in early and late gestation were chosen based 

on the availability of enough tissues in the blocks, while from the recrudescence 

group, the calf was chosen as a control for the composition of the haemolymphatic 

tissues, because it was negative for N. caninum by PCR after birth. For other tissues, 

foetuses in early gestation were chosen due to the availability of enough tissues in 

the blocks, while those from 210 dg and the recrudescence group were chosen 

because they exhibited the most extensive lesions in various tissues. 

Table 2.2: Foetuses selected for detailed histological and immunohistological 

examination 

dg – days of gestation 

NA – Not applicable  

a 
Individual foetus numbers are those allocated in the original experiment (Gibney, 2008). 

b 
The case numbers refer to the Histology Laboratory database numbers that were provided at the time 

of the initial experiments. 

c 
Parasite recrudescence in mid gestation (persistently infected dams). 

d 
Neonatal calf born from seropositive dam. 

Day of 

inoculation 

Inoculum 

 

Foetal status at 

euthanasia of dam 

Individual foetus 

numbera 

 Numberb 

70 dg  N. caninum 

tachyzoites  

Died 91±1 dg  I-1 H03 - 2724 

70 dg N. caninum 

tachyzoites 

Died 91±1 dg I-3 H05 - 0562 

70 dg N. caninum 

tachyzoites 

Died 91±1 dg I-4 05L – 0708  

70 dg Vero cells 

(control)  

Alive 91±1 dg   C-3 H04 – 1517  

70 dg Vero cells 

(control) 

Alive 91±1 dg   C-4 H04 – 1518  

210 dg  N. caninum 

tachyzoites 

Alive 231±1 dg   I-11 H04 – 986  

210 dg N. caninum 

tachyzoites 

Alive 231±1 dg  I-12 H04 – 987  

210 dg Vero cells 

(control) 

Alive 231±1 dg  C-8 H04 – 976  

210 dg Vero cells 

(control) 

Alive 231±1 dg  C-9 H04 – 980  

210 dg Vero cells 

(control) 

Alive 231±1 dg  C-11 H04 – 984  

NA NA Alive 217 dg  R-5 c 05L – 2575 

NA NA Alive: full term R-10 d 05L – 3647  
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2.4.3 Lendrum’s Carbol Chromotrope stain for the demonstration of 

eosinophils 

In order to confirm cells identified as eosinophils in HE-stained sections, the 

Lendrum’s stain was performed on selected consecutive sections by the Histology 

Laboratory, Veterinary Laboratory Services, School of Veterinary Science. 

Following deparaffinisation in xylene for 5 min and rehydration through each graded 

alcohol, sections were placed in Mayer’s Haemalum (see Appendix) for 1 min, then 

blued in running tap water for 5 min. The sections were then stained in Carbol 

Chromatrope (BDH brand, VWR International, Lutterworth, UK) for 1 h (see 

Appendix for solutions) followed by rinsing in distilled water. This was followed by 

dehydration with ethanol, clearing with xylene and cover slips were mounted on 

slides with DPX (BDH brand, VWR International).  

2.4.4 Immunohistological staining  

Immunohistology was performed on 3-5 µm thick sections of formalin-fixed, 

paraffin-embedded tissues consecutive to those cut for the histological examination. 

Sections were mounted on Poly-L-Lysine treated slides and stained 

immunohistologically to detect N. caninum antigen and to identify T cells (CD3-

positive), B cells (PAX5-positive), monocytes/macrophages and neutrophils 

(myeloid/histiocyte antigen/calprotectin-positive, hereafter refer to as calprotectin), 

major histocompatibility complex class II antigen (MHCII-positive), apoptotic cells 

(cleaved caspase 3-positive), interferon gamma (IFN-γ) expressing cells and 

proliferating cells (proliferating cell nuclear antigen (PCNA)-positive) in 

haemolymphatic tissues and in other tissues with inflammatory infiltrates. Leukocyte 

markers were used in other tissues of foetuses in late gestation where inflammatory 

infiltrates were seen. Other tissues of foetuses in early gestation were also stained 

with the leukocytes markers if mononuclear cells were observed histologically in 

these tissues. Details of the antibodies used and the cell population to which they are 

directed are shown in Table 2.3.  
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Table 2.3: Antibodies used for immunohistological staining, with references 

Ligands Antibodies and sources Specificity  

CD3 Rabbit anti-human CD3,  

DAKO, Glostrup, Denmark (N1580) 

Pan T-cell marker  

(Rosbottom et al., 2008) 

Proliferating cell 

nuclear antigen 

(PCNA) 

Mouse anti- PCNA, clone PC10,  

DAKO (M0879) 

Proliferating cells in S phase, late G1 

and early G2 phases (Kubben et al., 

1994) 

PAX5 Mouse anti-human Pax-5, clone 24/Pax-5, 

BD Transduction Laboratories, Lexington, 

Kentucky, USA (610862) 

Pan B-cell marker  

(Agostinelli et al., 2010) 

MHC II Mouse anti-human HLA-DR, clone TAL. 1B, 

DAKO (M0746) 

Antigen presenting cells (APC), 

macrophages and lymphocytes 

(Rosbottom et al., 2011) 

Cleaved caspase 3 Rabbit anti-cleaved caspase-3, Asp 1756,  

DAKO (5A1E) 

Apoptotic cells (Gjørret et al., 2007) 

Myeloid/histiocyte 

antigen/calprotectin 

Mouse anti-human myeloid/histiocyte 

antigen/calprotectin, clone MAC 387,  

DAKO (M 0747) 

Monocytes, neutrophils and recently 

blood-derived macrophages 

(Rosbottom et al., 2008) 

IFN-γ Mouse anti-bovine IFN-γ, clone MCA1964, 

Jackson Immunoresearch Laboratories, 

Suffolk, UK 

Interferon-γ expressing cells  

(Rosbottom et al., 2008) 

Neospora caninum Rabbit anti-N. caninum , Parsley,  

University of Liverpool, Liverpool, UK 

Neospora caninum antigen in tissues 

(Gibney et al., 2008) 

 

The peroxidase anti-peroxidase (PAP) (Hsu et al., 1981; Kipar et al., 1998) and the 

avidin-biotin complex (ABC) (Kipar et al., 1998; Gibney et al., 2008) methods were 

performed as previously described (Table 2.5). Immunohistology followed standard 

protocols which are outlined below and antigen retrieval methods were applied for 

detection of some antigens (Tables 2.4 and 2.5). Three immunohistological methods 

(PAP mouse, PAP rabbit and ABC method) are described below for each detection 

system used (Table 2.5). A bovine spleen served as the positive control of each 

marker. 

Table 2.4: Antigen retrieval methods  

Antigen retrieval Retrieval details 

Protease  Incubate for 5 min in PBS (pH 7.2) at 37°C. 

5 min protease treatment at 37°C: 0.05% protease (bacterial protease type 

XXIV, P8038, Sigma) in pre-warmed (37°C) PBS (pH 7.2); wash 3x5 min 

ice-cold TBST. 

Citrate buffer, pH 4.0 Incubate in 96°C in pre-warmed citrate buffer for 15 min followed by 15 

min cooling at room temperature. For general method – see CD3. 

Microwave, 4x5 min 

in 10 mM EDTA 

Wash with distilled water then 4x5 min in 10 Mm EDTA in plastic racks in 

1 litre beaker in microwave (cover with 4 sheets of blue role and secure 

with elastic band; also use 0.5 litre beaker with distilled water to balance 

up heat in the microwave). Slides are then placed in distilled water 

immediately after microwaving. 

Citrate buffer, pH 6.0 Incubate at 97°C in pre-warmed citrate buffer for 25-30 min then cool at 

room temperature for 15-20 min. Wash in TBST. 

PBS – Phosphate buffered saline, TBST – Tris-buffered saline tween,  

EDTA – Ethylenediaminetetraacetic acid 
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Table 2.5: Antibodies and immunohistological protocols  

Primary 

antibody 

Antigen 

retrieval 

Antibody 

dilution 

Secondary 

antibody 

Detection system 

PAP/ABC 

Rabbit anti-

human CD3 

Citrate buffer
d
 1:10 in 20% 

SS in TBST 

Goat anti-rabbit 

IgG
a
 biotinylated, 

1: 100  in TBST 

ABC, polyclonal 

rabbit
a
, 0.9 µl A + 0.9 

µl B to 100 µl TBST 

Mouse anti-

PCNA 

Citrate buffer
e
 1:100 in TBST Rat anti-mouse 

IgG
b
, 1:100 in 1% 

BSA in TBST 

PAP, monoclonal 

mouse
b
, 1:500 in 1% 

BSA in TBST 

Mouse anti-

human PAX5 

Microwave
f
 1:40 in 1% 

(BSA) in 

TBST 

Rat anti-mouse 

IgG
b
, 1:100 in 

TBST 

PAP, monoclonal 

mouse
b
, 1:500 in 

TBST 

Mouse anti-

human HLA-DR 

Citrate buffer
d
 1:25 in TBST Rat anti-mouse 

IgG
b
, 1:100 in 1% 

BSA in TBST 

PAP, monoclonal 

mouse
b
, 1:500 in 1% 

BSA in TBST 

Rabbit anti-

cleaved caspase 3 

Citrate buffer
d
 1:50 in 20%  

SS in TBST 

Swine anti-rabbit 

IgG
c
, 1:100 in 20% 

SS in TBST 

PAP (rabbit), 

polyclonal
c
, 1:100 in 

20% SS in TBST 

Mouse anti-

human myeloid/ 

histiocyte antigen 

Protease  1:600 in TBST Rat anti-mouse 

IgG
b
, 1:100 in 

TBST 

PAP monoclonal 

mouse
b
 1:500 in 

TBST 

Mouse anti-

bovine IFN-γ 

Citrate buffer
d
 1:50 in TBST Rat anti-mouse 

IgG
b
, 1:100 in 

TBST  

PAP, monoclonal 

mouse
b
, 1:500 in 

TBST 

Rabbit anti-N. 

caninum  

No pre-

treatment  

1:1000 in 

20% SS in 

TBST 

Swine anti-rabbit 

IgG
c
 1:100 in 20% 

SS in TBST 

PAP rabbit
c
 (1:100 in 

20% SS in TBST 

a
 Obtained from Vector Laboratories Ltd, Peterborough, UK; 

b
 Obtained from Jackson 

Immunoresearch Laboratories, Suffolk, UK; 
c
 Obtained from DAKO, Glostrup, Denmark; 

d
 Treatment 

for 30 min at 97°C in citrate buffer (pH 6.0); 
e
 Treatment for 15 min at 96°C in citrate buffer (pH 4.0); 

f
 Treatment for 10 min at 800W in 10 mM EDTA (pH 9.0); BSA – Bovine serum antigen; SS – swine 

serum. 

 

The three detection methods (PAP using a mouse monoclonal primary antibody, PAP 

using a rabbit polyclonal primary antibody, ABC using a rabbit polyclonal primary 

antibody) are described, using the demonstration of myeloid/histiocyte 

antigen/calproectin, CD3 and N. caninum as examples. 

2.4.5 Staining for myeloid/histiocyte antigen/calprotectin (method: PAP mouse) 

The PAP method was performed as previously described (Hsu et al., 1981; Kipar et 

al., 1998). Tissue sections were deparaffinised in xylene for 10 min then rehydrated 

through each 2 min, twice in 100% ethanol and once in 96% ethanol. Following 

deparaffinisation, sections were incubated in methanol with 0.5% H2O2 (Perhydrol 

30% H2O2 P-a, Fisher Scientific, New Jersey, USA) for 30 min at room temperature 

(RT) to inactivate endogenous peroxidases. The sections were washed for 5 min in 

Tris-buffered saline tween (TBST, pH 7.6, see Appendix) followed by protease pre-
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treatment (antigen retrieval, Table 2.4). The sections were washed for 5 min in PBS 

(pH 7.2) at 37°C, then for 5 min in 0.05% protease treatment at 37°C (Bacterial 

protease type XXIV, Sigma-Aldrich, Dorset, UK) in pre-warmed (37°C) PBS, 

followed by 3 washes for 5 min each in ice-cold TBST. The slides were then placed 

in coverplates in Sequenza racks (Thermo Shandon, Pittsburgh, USA) and washed 

for 5 min with TBST followed by blocking of non-specific binding of antiserum by 

incubation in 10% rat serum in TBST for 10 min. Following blocking, the sections 

were incubated for 15-18 h at 4°C with monoclonal mouse anti-human 

myeloid/histiocyte antigen (1:600 in TBST, Table 2.5). On day 2, the slides were 

washed in TBST for 5 min then incubated for 30 min in rat anti-mouse IgG (1:100 in 

TBST, H&L, 425-055-100, Jackson ImmunoResearch, Suffolk, UK). A further 5 min 

wash in TBST was followed by 30 min incubation with PAP mouse (1:500 in TBST; 

223005025, Jackson ImmunoResearch). The slides were washed in TBST and 

removed from the cover-plates and further incubated with permanent stirring for 10 

min in 3,3’ diaminobencidin-tetrahydrochloride (DAB, Fluka Chemie AG, Buchs, 

Switzerland) with 0.01% H2O2 (Perhydrol 30% H2O2 P-a, Fisher Scientific) in 0.1 M 

imidazole buffer (pH7.1, Fluka Chemie AG; see Appendix) at RT. The slides were 

then washed in TBST three times for 5 min each then once for 5 min in distilled 

water. Slides were counter stained with Papanicolaou’s haematoxylin (Merck) for 1 

min then placed in running tap water for 5 min. The sections were dehydrated in 

ascending ethanol (1 min 96%, 2 min 100% and 3 min 100%), cleared in xylene (2 

min 100% and 2 x 3 min 100%) then cover slips were mounted on slides with 

Distyrene Plasticizer Xylene (DPX; BDH brand, VWR International). 

2.4.6 Staining for N. caninum antigen (method: PAP rabbit)  

The PAP method was applied as previously described (Kipar et al., 1998; Gibney et 

al., 2008). Tissue sections were deparaffinised in xylene for 10 min followed by 

rehydration through each 2 min, twice in 100% ethanol and once in 96% ethanol. 

The sections were incubated in methanol with 0.5% H2O2 (Perhydrol 30% H2O2 P-a, 

Fisher Scientific) for 30 min at room temperature to inactivate endogenous 

peroxidases. The slides were then placed in coverplates and Sequenza racks (Thermo 

Shandon) and washed for 5 min in TBST (pH 7.6, see Appendix), followed by 

blocking of non-specific binding of antiserum by incubation in swine serum, diluted 

1:2 in TBST for 10 min. The slides were incubated for 15-18 h at 4°C with rabbit 
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anti-Neospora caninum (Gibney et al., 2008) in 20% swine serum in TBST; dilution 

1:1,000. This was followed by a wash in TBST, then incubation for a further 30 min 

with swine anti-rabbit IgG (1:100 in 20% swine serum in TBST; DAKO). The slides 

were washed in TBST for 5 min then incubated for a further 30 min with PAP rabbit 

(1:100 in 20% in swine serum in TBST; DAKO). Following incubation, the slides 

were washed in TBST and removed from cover-plates followed by incubation with 

permanent stirring for 10 minutes with DAB (Fluka Chemie AG) with 0.01% H2O2 

(Perhydrol 30% H2O2 P-a, Fisher Scientific) in 0.1 M imidazole buffer (pH7.1, Fluka 

Chemie AG; see Appendix) at RT. This was followed by three washes in TBST for 5 

min each then once for 5 min in distilled water. Slides were counter stained with 

Papanicolaou’s haematoxylin (Merck) for 1 min then placed in running tap water for 

5 min. The sections were dehydrated in ascending ethanol (1 min 96%, 2 min 100% 

and 3 min 100%), cleared in xylene (2 min 100% and 2 x 3 min 100%) and cover 

slips were mounted on slides with DPX (BDH brand, VWR International). 

2.4.7 Staining for CD3 antigen (method: ABC) 

The ABC method was applied as previously described (Kipar et al., 1998; Gibney et 

al., 2008). Sections were deparaffinised in xylene for 10 min then rehydrated through 

each 2 min twice in 100% ethanol and once in 96% ethanol. The sections were 

incubated in methanol with 0.5% H2O2 (Perhydrol 30% H2O2 P-a, Fisher Scientific) 

for 30 minutes at RT to inactivate endogenous peroxidases. The slides were washed 

for 5 min in TBST (pH 7.6, see Appendix) followed by citrate pre-treatment (antigen 

retrieval, see Table 2.4) in screw top coplin jars, containing 30 ml citrate buffer pH 6, 

for 30 min at 97°C. Slides were removed from the water-bath and allowed to cool for 

approximately 20 min then later returned to distilled water. Slides were placed in 

cover-plates in Sequenza racks (Thermo Shandon) and washed for 5 min in TBST 

followed by block of non-specific binding of primary antibody by incubation in goat 

serum at 1:10 dilutions in TBST for 10 min. The sections were incubated for 15-18 h 

at 4°C with polyclonal rabbit anti-CD3 (1:10 in 20% swine serum in TBST, see table 

2.5). Following incubation, the slides were washed three times in TBST for 5 min 

each then incubated for a further 30 min with goat anti-rabbit IgG, biotinylated at 

1:100 dilutions in TBST (Vector Laboratories Ltd, Petersborough, UK). This was 

followed by a further 5 min wash in TBST and incubation for 30 min using the 

avidin biotin complex at RT with 0.9 µl A + 0.9 µl B to 100 µl TBST (Vectastain 
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ABC-Kit, Vector Laboratories Ltd). The slides were washed in TBST and removed 

from cover plates then incubated with permanent stirring for 10 min in DAB (Fluka 

Chemie AG) with 0.01% H2O2 (Perhydrol 30% H2O2 P-a, Fisher Scientific) in 0.1 M 

imidazole buffer (pH7.1, Fluka Chemie AG; see Appendix) at RT. The slides were 

washed in TBST three times for 5 min each and once for 5 min in distilled water. 

Slides were counter stained with Papanicolaou’s haematoxylin (Merck) for 1 min, 

then placed in running tap water for 5 min. The sections were dehydrated in 

ascending ethanol (1 min 96%, 2 min 100% and 3 min 100%), cleared in xylene (2 

min 100% and 2 x 3 min 100%) and cover slips were mounted on slides with DPX 

(BDH brand, VWR International). 

2.4.8 Quantitative data analysis 

The number of cleaved caspase 3-positive cells per 100 lymphocytes was counted 

under 40X magnification in 10 selected fields in the white and red pulp of the spleen 

and cortex and medulla of the thymus of infected and control foetuses in early 

gestation (91±1 dg), and the thymus of infected and control foetuses in late gestation 

(231±1 dg). The spleen of foetuses in late gestation was not used if a statistical 

difference was not found in the thymus. From each thymus and spleen from foetuses 

in early gestation, 10 randomly non-overlapping areas were chosen; while from 

foetuses in late gestation, five randomly selected non-overlapping areas in the cortex 

and five in the medulla were chosen. A photomicrograph was then taken of each 

section using a Zeiss Axio Imager M2 microscope (Carl Zeiss Ltd, Göttingen, 

Germany). A paper grid was then used to cover the photomicrograph and 100 cells 

within a rectangular section in the centre were counted. The arithmetic mean 

percentage and standard deviation values were calculated. Mean values were 

compared using the Student’s t-test. All statistical analyses were performed using 

IBM SPSS Statistics 20 software (IBM Corp., Armonk, New York). Statistical 

significance was accepted when p<0.05 (*) and p<0.01 (**). 
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2.5 RESULTS  

2.5.1 Histological and immunohistological findings in foetuses from dams 

infected in early gestation (day 70 dg) and control foetuses (91±1 dg) 

An initial histological screening was carried out on 13 foetuses in early gestation 

(Table 2.1). Five of these foetuses (three from infected, two from uninfected dams) 

were subsequently examined immunohistologically to evaluate the composition and 

activity of the haemolymphatic tissues (Table 2.6) to identify the potential changes 

induced by N. caninum. Furthermore, the distribution and effect of the parasite in 

other tissues was studied (Table 2.6). The foetuses from the infected dams had all 

died approximately 24 h prior to euthanasia.  

  

Table 2.6: Tissues used for histological and immunohistological study 

Haemolymphatic tissues  Non-haemolymphatic (other) tissues 

Thymus  Brain  

Spleen  Spinal cord 

Mesenteric lymph node (late gestation 

and natural infected foetuses only)  

Cardiac muscle 

Liver 

Femoral bone marrow Lung 

 Musculus quadriceps femoris 

Nervus femoralis 

Intestine (jejunum) 

Kidney 

Adrenal gland 

 

2.5.1.1 Non-haemolymphatic tissues 

2.5.1.1.1 Brain and spinal cord: In all foetuses at this stage of development, the 

histological structures in the brain and spinal cord were poorly differentiated, which 

made it difficult to identify the different areas. White and grey matter were 

undifferentiated and could not be discerned, therefore, the precise localisation of 

lesions in infected animals could not be determined. In all foetuses from infected 

dams, brain and spinal cord exhibited multifocal glial cell aggregates (Fig. 2.1A), 

which contained low numbers of necrotic (spinal cord only) cells and, as confirmed 

by immunohistology for cleaved caspase 3 (Fig. 2.1B), apoptotic cells. The latter 

were also found disseminated in the adjacent parenchyma (Fig. 2.1B). In one foetus, 

a focal area of white matter necrosis (Fig. 2.1C) with necrotic debris and few 

apoptotic cells (observed histologically and immunohistologically) was seen in the 
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spinal cord; in addition, low numbers of CD3-positve T cells (Fig. 2.1D) were 

randomly scattered in the grey and white matter and higher numbers were observed 

in the meninges. Immunohistology demonstrated numerous N. caninum tachyzoites 

in the brain of all selected foetuses (Fig. 2.2A). Tachyzoites were also identified in 

two of the four remaining foetuses. They were also observed in the spinal cord of all 

selected foetuses and three of the four remaining foetuses, within intact glial cells 

and sometimes cell free, but not in association with the glial cell aggregates. There 

was no evidence of an inflammatory cell infiltration in association with the presence 

of degenerated cells; immunohistology for T cells, B cells and 

macrophages/neutrophils was all negative; however, low numbers of CD3-positive T 

cells were detected within the glial cell aggregates in the brain parenchyma of the 

three cases examined in detail, and moderate numbers of T cells were present within 

blood vessels in the neuropil (Fig. 2.2B). These vessels also exhibited enlarged, 

bulging, i.e. activated endothelial cells (Fig. 2.2B, inset), indicating T cell 

recruitment into the brain parenchyma. The majority of the cells within the aggregate 

were positive for MHCII (morphologically consistent with microglial cells; Fig. 

2.2C) and individual infiltrating calprotectin-positive cells (morphology consistent 

with macrophages; Fig. 2.2D) were also detected. Control foetuses neither exhibited 

glial nodules nor T cells within blood vessels.  

 

2.5.1.1.2 Liver: In uninfected foetuses, distinct, though not fully developed portal 

areas, central veins and prominent hepatic cords were present, and the presence of 

numerous haematopoietic precursor cells indicated moderate haematopoietic activity 

(Fig. 2.3A). In infected foetuses, the hepatic architecture was disrupted and 

hepatocytes were disorderly arranged and markedly reduced in number. Hepatic 

cords, central veins and portal areas were not discernible and low to moderate 

numbers of necrotic hepatocytes were seen (Fig. 2.3B). Remaining hepatocytes were 

often hyper-eosinophilic and exhibited caspase-3 expression, indicating that they 

were undergoing apoptosis (Fig. 2.3C). Moderate numbers of CD3-positive T cells 

were present between hepatocyte clusters (Fig. 2.3D), representing either new T cells 

produced within areas of haematopoiesis, or infiltrating T cells. Overall, however, 

haematopoietic precursor cells were present in much lower numbers than in control 

foetuses and were often apoptotic, as indicated by the expression of caspase-3 (Fig. 

2.3C). Numerous N. caninum tachyzoites were detected in the liver, both cell-free 
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and within intact hepatocytes of all examined infected foetuses (Fig. 2.3E) and in a 

single megakaryocyte (in foetus 1-3 only; Fig. 2.3E, inset). 

 

2.5.1.1.3 Heart: The myocardium of infected foetuses did not exhibit distinct 

histological changes; however, moderate amounts of mononuclear cells were present 

in the tissue immediately beneath the epicardium (visceral epicardium) and 

sometimes within vessels (Fig. 2.4A). When tested, these cells were mainly CD3-

positive T cells which were also found in low numbers in the myocardium (Fig. 

2.4B). They were also generally MHCII-positive. Some infiltrating cells were 

apoptotic (caspase 3-positive; Fig. 2.4C). Similar mononuclear cells were also seen 

in the epicardium and sometimes within epicardial vessels of uninfected foetuses, 

which could represent haematopoiesis with new T cell production. High numbers of 

N. caninum tachyzoites were detected within intact cardiomyocytes of all foetuses, 

without any evidence of degeneration or cell death and no inflammatory reaction 

(Fig. 2.4D).  

 

2.5.1.1.4 Lungs: Complete foetal atelectasis was seen in all lungs, which in control 

foetuses and five foetuses from infected dams did not exhibit any histological 

changes. The other two foetuses had moderate autolysis in the lung. In all infected 

foetuses, however, apoptotic bronchial and bronchiolar epithelial cells were present, 

as confirmed by the immunohistological demonstration of cleaved caspase 3 

expression (Fig. 2.5A). When tested, moderate amounts of CD3-positive T cells were 

detected in the alveolar walls and within vessels in the lungs (Fig. 2.5B), which also 

contained activated endothelial cells with their typical morphology. Neospora 

caninum tachyzoites were detected in moderate numbers in two of the three selected 

foetuses within intact cells whose morphology was consistent with macrophages, in 

alveolar walls (Fig. 2.5C), while low numbers were detected within similar cells in 

the remaining four infected foetuses.  

 

2.5.1.1.5 Other tissues: All infected foetuses exhibited moderate amounts of 

apoptotic myoblasts in the Musculus quadriceps femoris (Fig. 2.5D) and, when 

tested, occasional T cells between the myofibres. Immunohistology for N. caninum 

antigen detected low numbers of tachyzoites within tubular epithelial cells in two of 

the three selected foetuses and in all of the remaining foetuses (Fig. 2.5E).  
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The remaining tissues (adrenal glands, Nervus femoralis, intestine, and pancreas) did 

not show any histological changes. Tissues examined from the control group showed 

normal foetal morphology and no histological changes. 

 

Figure 2.1. Brain and spinal cord, foetus I-3, from dam infected with N. caninum at 70 days 

gestation. A. A focal glial cell aggregate (glial nodule) is present in the neuropil (arrows). HE stain. 

Bar = 20µm. B. Cleaved caspase 3-positive apoptotic cells are detected within the glial aggregate 

(arrows) and as individual cells also in the neuropil. PAP method, Papanicolaou’s haematoxylin 

counterstain. Bar = 100µm. C. A focal area of white matter necrosis (arrows) is present alongside 

individual apoptotic cells. HE stain. Bar = 50µm. D. Low numbers of CD3-positive T cells are present 

in the spinal cord grey and white matter (arrowheads), while higher numbers are seen in the ventral 

fissure and meninges (large arrow). ABC method, Papanicolaou’s haematoxylin counterstain. Bar = 

50µm.  
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Figure 2.2. Brain, foetus I-3, from dam infected with N. caninum at 70 days gestation. A. Clusters of 

N. caninum tachyzoites are present within intact glial cells (arrowheads). PAP method, Papanicolaou’s 

haematoxylin counterstain. Bar = 50µm. B. Low numbers of CD3-positive T cells are present 

multifocally within the glial aggregate and within blood vessels, which exhibited enlarged, i.e. 

activated endothelial cells (inset). ABC method, Papanicolaou’s haematoxylin counterstain. Bar = 

20µm. C. Moderate numbers of MHCII-positive activated microglial cells are present within the glial 

aggregate and also in the surrounding neuropil (arrows). PAP method, Papanicolaou’s haematoxylin 

counterstain. Bar = 100µm. D. Individual macrophages (calprotectin-positive) are also present within 

the glial aggregate (arrowheads). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 

50µm. 
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Figure 2.3. Liver, control foetus and foetuses from dams infected with N. caninum at 70 days 

gestation. A. Liver of control foetus (C-3) showing orderly arrangement in lobules, with hepatocytes 

in cords (arrowhead), central veins (C) and portal areas (PA) along with numerous haematopoietic 

cells (arrows). HE stain. Bar = 100µm. B. Liver of infected foetus (I-1) showing loss of architecture 

and disorderly arranged hepatocytes. Portal tracts, central veins and hepatic sinusoids are not 

discernible. Hepatocytes are hyper-eosinophilic (severe hepatocellular necrosis, arrows). Moderate 

amounts of haematopoietic cells are present and diffusely scattered (arrowheads). HE stain. Bar = 

50µm. C. Hepatocytes exhibiting caspase 3-expression alongside necrotic cells (arrows). PAP method, 

Papanicolaou’s haematoxylin counterstain. Bar = 50µm. D. Moderate amounts of CD3-positive T 

cells are detected and multifocally distributed between hepatocyte clusters. ABC method, 

Papanicolaou’s haematoxylin counterstain. Bar = 50µm. E. Numerous N. caninum tachyzoites are 

present within intact hepatocytes and cell free (small arrows) and also in a single megakaryocyte 

(large arrow; inset, higher magnification). PAP method, Papanicolaou’s haematoxylin counterstain. 

Bar = 50µm.  
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Figure 2.4. Heart, foetus I-1, from dam infected with N. caninum at 70 days gestation. A. Moderate 

amounts of mononuclear cells are present in the visceral epicardium (E). HE stain. Bar = 50µm. B. 

The majority of the infiltrating cells appear to be T cells, as indicated by the large number of CD3-

positive cells in this location (E). Scattered T cells are also present between myoblasts (arrows). ABC 

method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. C. Some infiltrating cells in the 

epicardium are also caspase 3-positive apoptotic cells (arrows). PAP method, Papanicolaou’s 

haematoxylin counterstain. Bar = 50µm. D. Numerous N. caninum tachyzoites are present within 

intact cardiomyocytes (arrows). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. 
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Figure 2.5. Lung, muscle and kidney, foetus I-1, from dam infected with N. caninum at 70 days 

gestation. A. Cells in the interstitium are often apoptotic, i.e. caspase 3-positive (asterisk, leukocytes), 

similar to bronchiolar epithelial cells (arrow). PAP method, Papanicolaou’s haematoxylin 

counterstain. Bar = 50µm. B. Moderate amounts of CD3-positive T cells are present in the alveolar 

walls (asterisk) and numerous T cells are seen within blood vessels. These often show activated 

endothelial cells (arrow). ABC method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. C. 

High numbers of N. caninum tachyzoites are present in the lung within intact mononuclear cells 

(arrows). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 100µm. D. Moderate 

amounts of apoptotic myoblasts are present in the Musculus quadriceps femoris. PAP method, 

Papanicolaou’s haematoxylin counterstain. Bar = 50µm. E. Low numbers of N. caninum tachyzoites 

are present within renal tubular epithelial cells (arrows). PAP method, Papanicolaou’s haematoxylin 

counterstain. Bar = 100µm.  
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2.5.1.2 Haemolymphatic tissues 

The histological and immunohistological examination of the haemolymphatic tissues 

of control foetuses were used to establish the composition and activity of these 

tissues at the foetal age of approximately 90 dg. This information was used to allow 

identification of changes in infected foetuses.  

2.5.1.3 Thymus  

2.5.1.3.1 Control foetuses. The thymus was examined in three control foetuses and 

was generally moderately lobulated, with incomplete lobules consisting of an outer 

cortex and an inner medulla with a distinct corticomedullary zone (Fig. 2.6A). Both 

cortex and medulla were distinct. The cortex was densely cellular and composed of 

small lymphocytes and sparse epithelial cells. The medulla comprised fewer 

lymphocytes, but moderate numbers of epithelial reticular cells, macrophages and 

ovoid epithelial structures with concentric lamellated keratinisation (Hassall’s 

corpuscles) were present. The medullary lymphocytes were larger and had more 

cytoplasm than the cortical lymphocytes, consistent with the lower degree of 

maturation of medullary lymphocytes (Pearse, 2006). The majority of cells in both 

cortex and medulla were CD3-positive and could thereby be identified as T cells 

(Fig. 2.6B). B lymphocytes (PAX5-positive) were not observed. PCNA-positive 

proliferating cells (mainly lymphocytes) were detected in the cortex in low numbers 

and were even fewer in the medulla, whereas apoptotic cells (cleaved caspase 3-

positive) were present in low numbers predominantly in the cortex. These findings 

indicate a low turnover (low degree of proliferation and cell death) and thereby only 

minimal immune activity in the thymus as it would be expected in a foetus at this 

stage of maturation (Linton and Dorshkind, 2004). The medulla exhibited higher 

numbers of MHCII-positive cells [macrophages and dendritic cells (Lemos et al., 

2004; Rosbottom et al., 2011)] than the cortex, where they were dispersed among the 

cortical lymphocytes. IFN-γ-expressing cells were not detected, suggesting that the 

foetal lymphocytes were not functionally active. Neospora caninum antigen was not 

detected by immunohistology. 

 

2.5.1.3.2 Foetuses from infected dams. The composition of the thymus differed from 

that of controls. In all infected foetuses, the cortex exhibited low cellularity (Fig. 

2.6C) and a high number of these cells (mainly lymphocytes) was undergoing 
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apoptosis, as indicated by their caspase 3 expression (Fig 2.6D); fewer apoptotic 

cells were present in the medulla (Fig. 2.6D). Quantitative analysis showed that there 

is a significant increase in the number of apoptotic lymphocytes in the thymus of 

infected foetuses, compared to controls (mean number of apoptotic cells in infected 

foetus: 88.90±5.34, control: 16.60±6.95; p<0.001, Student’s t-test, Appendix 4). The 

overall number of CD3-positive T cells was lower in infected foetuses (Fig. 2.6E), 

which is likely a consequence of the observed apoptotic cell death. B cells were also 

not detected.  MHCII-positive cells were fewer than in controls, which indicate that 

macrophages and dendritic cells were also lost. PCNA-positive proliferating cells 

were also less numerous than in controls. This implies that the cell turnover was 

lower than in controls. Furthermore, IFN-γ-expressing cells were not detected as in 

the controls. Immunohistology identified N. caninum tachyzoites in the thymic 

medulla of infected foetuses, within large mononuclear cells consistent with 

macrophages (Fig. 2.6F). 

2.5.1.4 Spleen 

2.5.1.4.1 Control foetuses. The spleen was composed of numerous spindle-shaped 

cells; low numbers of lymphocytes and a moderate number of haematopoietic cells, 

with all precursor cell lineages (myeloid, erythroid and megakaryocytes) present 

(Fig. 2.7A). There was no specific organisation of lymphocytes into lymphoid 

follicles and a mixture of T and B cells was present within lymphoid aggregates. B 

cells were very rare (Fig. 2.7B). Accordingly, a red pulp and a white pulp could not 

be discerned. T cells were sometimes found arranged around small arteries, forming 

early periarteriolar lymphoid sheaths (PALS; Fig. 2.7C). Macrophages and splenic 

dendritic cells (MHCII-positive) were present in moderate amounts. PCNA-positive 

proliferating cells were present in low numbers and randomly scattered, consistent 

with the low turnover in the lymphoid organs of younger foetuses (Linton and 

Dorshkind, 2004). Individual caspase 3-expressing apoptotic cells were detected and 

randomly scattered. IFN-γ-expressing cells were not detected. Neospora caninum 

antigen was not detected by immunohistology. 

2.5.1.4.2 Foetuses from infected dams. The spleen had a similar morphology as in 

control foetuses, but was of lower cellularity, i.e. fewer lymphocytes and 

haematopoietic precursor cells were present (Fig. 2.7D). High numbers of randomly 

distributed caspase 3-positive apoptotic cells (predominantly lymphocytes) were 
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detected by immunohistology (Fig. 2.7E). Quantitative data analysis showed a 

significantly higher mean percentage of apoptotic lymphocytes in the spleen of 

infected foetuses, compared to control (mean number of apoptotic cells in infected 

foetus: 34.40±13.09, control: 2.4±1.58; p<0.001, Student’s t-test, Appendix 4). T 

cells were noticeably fewer in infected foetuses (Fig. 2.7F) compared to control 

foetuses, while B cells were equally low in number. Macrophages and dendritic cells 

(MHCII-positive) were present in amounts similar to those seen in the controls. 

PCNA-positive proliferating cells were present in low numbers, as in the control 

group. IFN-γ-expressing cells were not detected, as in the control foetuses. Neospora 

caninum tachyzoites were detected by immunohistology in moderate numbers in 

intact cells (consistent with macrophages) of all infected foetuses (Fig. 2.7G). 

2.5.1.5 Bone marrow 

2.5.1.5.1 Control foetuses. The femoral bone marrow was represented by small 

clusters of erythroid and myeloid precursor cells dispersed throughout abundant 

trabecular bone and cartilage (Fig. 2.8A). Numerous osteoblasts were present lining 

the trabecular bone. Megakaryocytes were not observed. T cells represented a small 

proportion and formed small clusters in the intertrabecular spaces, where B cells 

were also present in low numbers. A small population of MHCII-positive cells was 

detected. Proliferating cells were present in low numbers (haematopoietic precursor 

cells), whereas caspase 3-expressing, apoptotic cells were not observed. IFN-γ-

expressing cells were also not detected in the bone marrow. 

 

2.5.1.5.2 Foetuses from infected dams. The bone marrow had a similar composition, 

but was of lower cellularity than in controls (Fig. 2.8B) and, when tested, exhibited 

moderate amounts of caspase 3-positive apoptotic lymphocytes. T and B cells as well 

as MHCII-positive cells (pre-B cells and early macrophage lineage; see above) and 

PCNA-positive proliferating cells were present in low numbers. Neospora caninum 

tachyzoites were not present in the bone marrow of the selected foetuses, but were 

present as small clusters within intact mononuclear cells in one of the four remaining 

foetuses (Fig. 2.8C). IFN-γ-expressing cells were not detected as in the control 

foetuses. 

 



Chapter Two   Results 

63 

  

 

Figure 2.6. Thymus, control foetus (C-4; A and B) and foetus from dam infected with N. caninum at 

70 days gestation (I-1; C-F). A. In the control foetus, the thymus comprises a distinct cortex with large 

numbers of lymphocytes (C) and medulla (M) that is less cell dense. HE stain. Bar = 100µm. B. CD3-

positive T cells account for the vast majority of cells in both cortex and medulla. ABC method, 

Papanicolaou’s haematoxylin counterstain. Bar = 50µm. C. In an infected foetus, the thymus is far 

less cellular (C: cortex, M: medulla). HE stain. Bar = 50µm. D. High numbers of caspase 3-positive 

apoptotic cells are present in both cortex and medulla. PAP method, Papanicolaou’s haematoxylin 

counterstain. Bar = 50µm. E. The number of CD3-positive T cells in the thymus is also lower. ABC 

method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. F. Clusters of N. caninum 

tachyzoites are present in the medulla (M) within intact mononuclear cells (arrows). PAP method, 

Papanicolaou’s haematoxylin counterstain. Bar = 50µm.  
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Figure 2.7. Spleen, control foetus (C-4; A-C) and foetus from dam infected with N. caninum at 70 

days gestation (I-4; D-G). A. In the control foetus, the spleen comprises numerous spindle-shaped 

cells, low numbers of lymphocytes and moderate haematopoietic activity (arrows). HE stain. Bar = 

50µm. B. Low numbers of PAX5-positive B cells are present within lymphoid aggregates. PAP 

method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. C. CD3-positive T cells are present 

and sometimes found arranged around arteries forming early PALS (P). ABC method, Papanicolaou’s 

haematoxylin counterstain. Bar = 50µm. D. In the infected foetuses, the overall cellularity of the 

spleen is lower and fewer hematopoietic cells are present. HE stain. Bar = 50µm. E. Caspase 3-

positive apoptotic cells are present in high numbers. PAP method, Papanicolaou’s haematoxylin 

counterstain. Bar = 50µm. F. The number of CD3-positive T cells are notable lower in the spleen of 

the infected foetus. ABC method, Papanicolaou’s haematoxylin counterstain. Bar = 100µm. G. A 

cluster of N. caninum tachyzoites is present within an intact mononuclear cell (arrow). PAP method, 

Papanicolaou’s haematoxylin counterstain. Bar = 10µm. 
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Figure 2.8. Bone marrow, control foetus (C-3) and foetuses from dams infected with N. caninum at 

70 days gestation. A. In the control foetus, the bone marrow is of low cellularity with trabecular bone 

(asterisk) lined by numerous osteoblasts (arrow). HE stain. Bar = 50µm. B. In one infected foetus (I-

3), low numbers of haematopoietic cells are present, abundant trabecular bone (asterisk) and fewer 

osteoblasts lining the trabecular bones (arrow). HE stain Bar = 100µm. C. In one of the four 

remaining infected foetuses (I-4), small clusters of N. caninum tachyzoites are present within intact 

mononuclear cells. PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. 

 

In summary, haemolymphatic tissues, CNS and liver were the most severely 

affected organs with necrosis, apoptosis and high parasite loads especially in the 

liver, where tachyzoites were detected within intact cells; whereas surrounding 

hepatocytes were often apoptotic. Neospora caninum antigen was detected in all the 

tissues examined from infected foetuses, i.e. brain, spinal cord, liver, lung, heart, 

thymus, spleen, bone marrow and kidney, in early gestation, sometimes in 

association with cell death. Parasites were not associated with a distinct 

inflammatory reaction. However, there was evidence of T cell recruitment into the 

most affected tissues, i.e. brain, spinal cord and liver, indicated by the presence of T 

cells in vessel lumina and in the tissue, together with evidence of endothelial cell 

activation. Cardiomyocytes remained intact even with high parasite loads and were 

not directly associated with an inflammatory response.  
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2.5.2 Histological and immunohistological findings in foetuses from dams 

infected in late gestation (day 210) and control foetuses (231±1 dg) 

The initial histological screening was carried out on 12 foetuses (Table 2.1) of which 

five were selected for further examinations. The five representative foetuses (two 

from infected, three from uninfected dams) were examined histologically and by 

immunohistology to evaluate the composition and activity of the haemolymphatic 

tissues and to assess the pathological effects of N. caninum on haemolymphatic and 

other tissues after infection of the dams at 210 dg and euthanasia within 20-22 days. 

All foetuses, irrespective of whether they were from infected or uninfected dams 

were alive when the cows were euthanized.  

2.5.2.1 Non-haemolymphatic tissues  

2.5.2.1.1 Control foetuses. All tissues exhibited the normal foetal morphology and in 

the vast majority no histological alterations were observed. However, in the liver of 

one foetus examined in detail (C-9), a multifocal mixed cellular portal infiltrate, 

which consisted of low numbers of CD3-positive T cells [with fewer macrophages 

and neutrophils (calprotectin-positive)] was observed. The haematopoietic activity in 

the liver was generally low and small clusters of myeloid and erythroid precursor 

cells with few megakaryocytes were present. Neospora caninum antigen was not 

detected. 

 

2.5.2.1.2 Foetuses from infected dams. The two foetuses from dams infected at 210 

dg exhibited histological changes in some organs.  

 

2.5.2.1.3 Brain and spinal cord: In one foetus (I-12), a severe non-suppurative 

myelitis was seen. This was represented by extensive, multifocal, mononuclear 

inflammatory infiltrates, composed of lymphocytes and macrophages (Fig. 2.9A). 

These were found disseminated throughout the spinal cord and were most 

pronounced in the grey matter. CD3-positive T cells (Fig. 2.9B) dominated in the 

infiltrates and were present in moderate numbers within the grey matter, where they 

were admixed with fewer macrophages (calprotectin-positive). Numerous MHCII-

positive cells (activated microglial cells, activated lymphocytes), were detected 

within the inflammatory foci mainly in the grey matter (Fig. 2.9C), while occasional 



Chapter Two   Results 

67 

  

cells with a morphology consistent with plasma cells were seen. However, B 

lymphocytes (PAX 5-positive) were not observed. The grey and white matter also 

contained multifocal perivascular, mononuclear infiltrates, mainly comprised of 

CD3-positive T cells (Fig. 2.9B inset), with low numbers of macrophages 

(calprotectin-positive) and occasionally a few neutrophils. Vessels within the 

neuropil exhibited activated endothelial cells and leukocytes adhering (rolling) to the 

endothelium and accumulating in the perivascular spaces (emigration; Fig. 2.9A 

inset). Low numbers of apoptotic cells (identified based on their morphology and the 

expression of cleaved caspase-3) were also present within the inflammatory 

infiltrates of the grey matter and perivascular infiltrates. A small cluster of N. 

caninum tachyzoites was present within an intact glial cell (Fig. 2.9D). Moderate 

numbers of cells in the parenchymal and perivascular mononuclear infiltrates were 

found to be proliferating (PCNA-positive). In addition, this foetus also exhibited a 

mild radiculoneuritis of a spinal nerve root with focal leptomeningitis of the spinal 

cord, again with a low number of CD3-positive T cells (Fig. 2.9E) and fewer, 

randomly scattered calprotectin-positive macrophages. Only minimal inflammatory 

infiltrates were present in the brain, restricted to the grey matter of the cerebral 

cortex and individual proliferating glial cells were observed (PCNA-positive). IFN-γ-

expressing cells were not detected in the CNS. 

A second foetus (I-11) exhibited a focal area of necrosis with associated 

mononuclear infiltration in the white matter of the cerebral cortex (Fig. 2.9F).  Low 

numbers of N. caninum tachyzoites were detected by immunohistology within an 

intact glial cell in association with the inflammatory infiltrate (Fig. 2.9F, inset). In 

addition, moderate, multifocal, mononuclear perivascular infiltrates were observed 

(non-suppurative encephalitis). The infiltrates could not be assessed further by 

immunohistology, as they were not present in the consecutive sections. The spinal 

cord exhibited low numbers of disseminated CD3-positive T cells mainly in the 

white matter. 

Three of the four remaining foetuses exhibited mild mononuclear perivascular 

infiltrates, and the fourth foetus had a focal area of mononuclear infiltration, all in 

the grey matter of the brain. The spinal cord exhibited mild perivascular 

mononuclear infiltrates in the white matter in three foetuses; in one of these foetuses, 

they were also found infrequently in the grey matter. Low numbers of N. caninum 

tachyzoites were detected by immunohistology within intact glial cells in the white 
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matter of the latter foetus in association with the inflammatory infiltrates. Another 

foetus exhibited a focal area of necrosis in the white matter of the spinal cord, with 

mild mononuclear inflammatory infiltration, necrotic debris and occasional spheroids 

without the presence of N. caninum tachyzoites. Parasite antigen was not observed in 

the CNS of the remaining foetuses.  

 

2.5.2.1.4 Liver: Mild, mononuclear portal infiltrates and low numbers of 

haematopoietic precursor cells (myeloid, erythroid precursors and a few 

megakaryocytes; consistent with ongoing haematopoiesis) were observed in all 

foetuses. In one foetus (I-12), a focal area of hepatocellular necrosis with associated 

predominantly mononuclear inflammatory infiltration with occasional neutrophils, 

was observed (Fig. 2.10A). Moderate mononuclear, portal inflammatory infiltrates 

were observed in both foetuses. Immunohistology on the selected foetuses showed 

that the portal infiltrates were comprised of low numbers of each CD3-positive T 

cells and PAX-5 positive B cells and fewer macrophages (calprotectin-positive). 

Kupffer cells were also found to express both MHCII and calprotectin.  PCNA 

expression (moderate number of positive cells) and apoptosis (caspase 3 expression; 

few positive cells) was only observed in hepatocytes, and in a low number of cells, 

indicating parenchymal turnover (Linton and Dorshkind, 2004). Low numbers of 

IFN-γ-expressing cells were detected by immunohistology in portal areas and 

randomly scattered in the hepatic parenchyma (Fig. 2.10B). Neospora caninum 

antigen was not detected.  

 

2.5.2.1.5 Heart: All foetuses exhibited mild to moderate multifocal interstitial 

mononuclear inflammatory infiltrates (non-suppurative myocarditis; Fig. 2.10C). In 

both animals tested by immunohistology, these infiltrates were comprised of CD3-

positive T cells with fewer macrophages (MHCII and calprotectin-positive), but no B 

cells. Low numbers of PCNA-positive proliferating cardiomyocytes were seen, while 

caspase-3 expressing, apoptotic cells were not detected. IFN-γ-expressing 

lymphocytes were also present in low numbers and randomly scattered in the 

myocardium, indicating parasite specific cell-mediated immune (CMI) response (Fig. 

2.10D).  Neospora caninum antigen was not detected.  
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2.5.2.1.6 Lung: Low numbers of mononuclear cells were generally present in the 

peribronchial, peribronchiolar and alveolar septa (Figs. 2.11A). These were 

predominantly CD3-positive T cells. In the foetuses tested by immunohistology, high 

numbers of macrophages (MHCII and calprotectin-positive) were found diffusely 

distributed within the parenchyma. In one foetus, low numbers of mononuclear cells 

were also present in the pleura. Low numbers of apoptotic pulmonary epithelial cells 

(caspase 3-positive) were present. Small clusters of N. caninum tachyzoites were 

detected by immunohistology within intact mononuclear cells mainly within alveolar 

spaces and septa (Fig. 2.11B). IFN-γ was detected within the cytoplasm of 

mononuclear cells with morphology consistent with macrophages. These were 

present in high numbers in the bronchial epithelium of foetus I-11 (Fig. 2.11C); 

whereas in one of the remaining foetuses, numerous positive cells were also present 

predominantly in the bronchiolar epithelium with fewer scattered positive cells in the 

bronchial epithelium and alveolar septae. 

 

2.5.2.1.7 Other tissues: In most foetuses (in the two selected foetuses and three of the 

four remaining foetuses), mild multifocal mononuclear interstitial infiltrates were 

present in the Musculus quadriceps femoris (non-suppurative myositis; Fig. 2.11D). 

The infiltrates were found to be composed of CD3-positive T cells with fewer 

macrophages (MHCII and calprotectin-positive). Low numbers of B cells (PAX5-

positive) were also detected within the inflammatory infiltrates. IFN-γ-expressing 

cells were present in low numbers (Fig. 2.11E). Neospora caninum antigen was not 

detected.  

The adrenal gland in one of the four remaining foetuses contained a focal area of 

eosinophil infiltration within the medulla. Other tissues did not exhibit histological 

changes and N. caninum tachyzoites were not detected by immunohistology. 
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Figure 2.9. Brain and spinal cord, foetus I-12 from dam infected with N. caninum at 210 days 

gestation. A.  Severe non-suppurative myelitis with high numbers of mononuclear cells (lymphocytes 

and macrophages), sparse apoptotic cells (arrow) are present within the spinal cord grey matter along 

with mononuclear perivascular cuffing and endothelial cell activation (inset, arrowhead). HE stain. 

Bar = 50µm. B. CD3-positive T cells are present in moderate numbers within the grey matter (arrow) 

and perivascular areas (inset). ABC method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. 

C. Numerous MHCII-positive cells confirm microglial cell activation and infiltration of macrophages 

(arrows). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 100µm. D. A small cluster 

of N. caninum tachyzoites is detected within an intact glial cell in the grey matter (arrow). PAP 

method, Papanicolaou’s haematoxylin counterstain. Bar = 10µm. E. Low numbers of CD3-positive T 

cells are present in the spinal nerve root (arrows). ABC method, Papanicolaou’s haematoxylin 

counterstain. Bar = 50µm. F. Brain of another infected foetus (I-11) with a focal area of necrosis and 

associated mononuclear infiltrates. HE stain. Bar = 50µm. A small cluster of N. caninum tachyzoites 

is present within an intact glial cell in direct association with the inflammatory cells (inset). PAP 

method, Papanicolaou’s haematoxylin counterstain. 
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Figure 2.10. Liver, heart, lung and muscle, foetuses from dams infected with N. caninum at 210 days 

gestation. A. Foetus I-12 showing a focal area of hepatocellular necrosis (N) with associated 

mononuclear infiltrate admixed with low numbers of neutrophils. HE stain. Bar = 100µm. B. Liver of 

foetus I-11 showing low numbers of IFN-γ-expressing cells. PAP method, Papanicolaou’s 

haematoxylin counterstain. Bar = 100µm. C. The heart in foetus I-11 exhibits moderate multifocal 

mononuclear infiltrates in the interstitium (arrows). HE stain. Bar = 100µm. D. Individual IFN-γ-

expressing cells are present in the myocardium.  PAP method, Papanicolaou’s haematoxylin 

counterstain. Bar = 50µm.  
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Figure 2.11. Lung and muscle, foetuses from dams infected with N. caninum at 210 days gestation (I-

12 – A, B and D; I-11–C and E). A. Low numbers of mononuclear cells are also present in alveolar 

septa. HE stain. Bar = 100µm. B. A small cluster of N. caninum tachyzoites is detected within an 

intact mononuclear cell (arrow). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 

50µm. C. High numbers of IFN-γ-expressing cells are present within the bronchial epithelium (B – 

bronchus). The box shows an area at higher magnification (inset; 40X). PAP method, Papanicolaou’s 

haematoxylin counterstain. Bar = 100µm. D. In foetus I-12, mild non-suppurative myositis with 

multifocal to coalescing mononuclear inflammatory infiltrates are present in the interstitium of the 

Musculus quadriceps femoris. HE stain. Bar = 100µm. E. Low numbers of IFN-γ-expressing cells are 

detected in the inflammatory infiltrates in the muscle. PAP method, Papanicolaou’s haematoxylin 

counterstain. Bar = 50µm. 
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2.5.2.2 Haemolymphatic tissues  

The histological examination of haemolymphatic tissues of the control foetuses 

euthanized at approximately 230 dg was conducted to establish the normal 

composition of the tissues as a basis to assess the pathological changes in infected 

foetuses. 

2.5.2.3 Thymus  

2.5.2.3.1 Control foetuses. In contrast to the thymuses of foetuses in early gestation, 

the thymus in late gestation exhibited larger lobes with a highly cellular cortex 

comprised of small, densely packed lymphocytes (Fig. 2.12A), which were mainly 

CD3-positive T cells (Fig. 2.12B). MHCII-positive cells (dendritic cells and 

macrophages) were detected in moderate amounts diffusely distributed in the cortex. 

PCNA-positive proliferating lymphocytes were present in high numbers, confirming 

the much higher rate of cell proliferation in the thymus at this age compared to the 

younger foetuses. The medulla was less cellular and comprised of larger 

lymphocytes (CD3-positive T cells and fewer PAX5-positive B cells), with a large 

population of macrophages and dendritic cells [(non-phagocytic, bone marrow 

derived cells; MHCII-positive) (Pearse, 2006)], prominent reticular medullary 

epithelial cells, Hassall’s corpuscles and fewer polymorphonuclear cells that were 

confirmed as eosinophils by the Lendrum’s Carbol Chromotrope stain. The number 

of PCNA-positive proliferating lymphocytes in the medulla was much lower than in 

the cortex (Fig. 2.12C). IFN-γ-expressing cells were not detected in the thymus. 

Caspase 3-positive apoptotic cells were infrequent in both medulla and cortex.  

 

2.5.2.3.2 Foetuses from infected dams. The thymus generally exhibited a 

morphology, cellular composition (including the presence of low numbers of 

eosinophils in the medulla) and degree of proliferation (assessed on the basis of the 

number of PCNA-positive lymphocytes), similar to that of control foetuses. 

Histological alterations were not observed (Fig. 2.12D). However, 

immunohistological staining of apoptotic cells (cleaved caspase-3 positive) identified 

an overall slightly higher number of apoptotic cells in both cortex and medulla in 

infected foetuses compared to controls (Figs. 2.12E). Quantitative data analysis 

showed that the difference in the mean percentage (mean number of apoptotic cells) 

was not statistically significant (infected foetuses: 3.5±2.2; control foetuses: 4.6±3.8; 
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p=0.443, Student’s t-test, Appendix 4). IFN-γ-expressing cells were not detected as 

in the controls. Neospora caninum tachyzoites were not identified by 

immunohistology. 

2.5.2.4 Spleen  

2.5.2.4.1 Control foetuses. Different from the spleen of foetuses in early gestation, 

the spleen of foetuses in late gestation exhibited a well-developed red and white pulp 

(Fig. 2.13A). The degree of haematopoiesis was lower than in control foetuses in 

early gestation, as indicated by the low number of haematopoietic precursor cells, i.e. 

erythroid and myeloid precursors. Megakaryocytes, however, were more abundant in 

the older foetuses. The white pulp was comprised of loose, poorly delineated follicle-

like lymphocyte aggregates without germinal centre formation and composed of 

moderate amounts of PAX5-positve B cells (Fig. 2.13B) and MHCII-positive 

follicular dendritic cells. The PALS were composed of high numbers of CD3-

positive T cells (Fig. 2.13C) intermingled with splenic macrophages and dendritic 

cells (MHCII-positive). Proliferating (PCNA-positive) cells were present in moderate 

numbers in the white pulp (PALS and lymphoid follicles). The red pulp was 

organised into prominent splenic cords (cords of Billroth) and venous sinuses with 

high numbers of erythrocytes, lymphocytes (CD3-positve T cells and fewer PAX5-

positive B cells), dendritic cells and macrophages (both MHCII-positive). Occasional 

neutrophils and eosinophils were present in the red pulp. Low numbers of caspase 3-

positive cells were detected in red pulp and lymphoid follicles (mainly lymphocytes). 

The presence of both proliferating and apoptotic lymphocytes in red pulp and 

follicles confirms lymphocyte turnover in the spleen and thereby active lymphatic 

tissue (Mel'nikova et al., 2006). IFN-γ-expressing cells were not detected in the 

spleen. 

 

2.5.2.4.2 Foetuses from infected dams. The spleen of infected foetuses was similar to 

that of control animals; however, individual IFN-γ-expressing lymphocytes were 

detected. For the selected foetuses, only small tissue sections were examined due to 

inadequate amount of tissue in the block. One of the remaining foetuses was tested, 

but IFN- γ-expressing lymphocytes were not detected. There were no histological 

changes detected in the spleen of the infected foetuses (Fig. 2.13D) and N. caninum 

antigen was not identified.  



Chapter Two   Results 

75 

  

2.5.2.5 Mesenteric lymph nodes  

2.5.2.5.1 Control foetuses. The mesenteric lymph nodes appeared well developed 

(Fig. 2.14A) and exhibited a distinct superficial cortex with high numbers of densely 

packed B cells (Fig. 2.14B) and follicular dendritic cells (PAX5 and MHCII-positive, 

respectively) within prominent primary lymphoid follicles, which were surrounded 

by fewer CD3-positive T cells (Fig. 2.14C). The paracortex was composed of a less 

dense accumulation of T cells and macrophages (T cell compartment) with fewer B 

cells and occasional neutrophils. The medulla was less densely cellular with clearly 

defined medullary cords and sinuses containing a small population of lymphocytes 

(mainly B cells, fewer T cells), plasma cells, dendritic cells, neutrophils and 

macrophages. Occasional haematopoietic precursor cells were also present in the 

medulla. A small proportion of lymphocytes in the follicles and paracortex were 

found to be proliferating (PCNA-positive), a few proliferating cells were also 

detected in the medulla, while individual caspase 3-expressing cells were present and 

randomly scattered throughout the lymph node without any association to specific 

structures. IFN-γ-expressing cells were not detected. 

2.5.2.5.2 Foetuses from infected dams. The lymph nodes of infected foetuses did not 

differ histologically from the control group (Fig. 2.14D). Low numbers of IFN-γ-

expressing lymphocytes were present and randomly scattered mainly in the 

paracortex unlike in the controls (Fig. 2.14E). Neospora caninum antigen was not 

detected. 

2.5.2.6 Bone marrow 

2.5.2.6.1 Control foetuses. Compared to the bone marrow of foetuses in early 

gestation, the bone marrow of control foetuses in late gestation was highly cellular, 

with intense haematopoietic activity, represented by high numbers of erythroid and 

myeloid cells as well as megakaryocytes. Low numbers of adipocytes were present 

(Fig. 2.15A). A large population of PAX5-positive B cells was present, while CD3-

positive T cells represented a minority. Moderate amounts of MHCII-positive cells 

(mature B cells and cells of the monocyte-macrophage lineage), were present. Few 

cells were found to proliferate (PCNA-positive). Apoptotic cells were not detected. 

IFN-γ-expressing cells and N. caninum tachyzoites were not detected. 

2.5.2.6.1 Foetuses from infected dams. The bone marrow exhibited a similar 

morphology and activity, with all haematopoietic precursor cells present. 
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Histological changes were not detected (Fig. 2.15B), and IFN-γ-expressing cells 

were detected in low numbers compared to controls (Fig. 2.15C).  Neospora caninum 

tachyzoites were not identified.  

 

 

Figure 2.12. Thymus, control foetus (C-11; A-C) and foetus from dam infected with N. caninum at 

210 days gestation (I-11; D and E). A. The cortex in highly cellular with densely packed lymphocytes 

(C), while the medulla (M) is less cell-dense and contains numerous eosinophils HE stain. Bar = 

50µm. B.  CD3-positive T cells are the predominant cell type in the cortex and medulla. ABC method, 

Papanicolaou’s haematoxylin counterstain. Bar = 50µm. C. PCNA-positive proliferating cells are 

more frequent in the cortex than the medulla. PAP method, Papanicolaou’s haematoxylin counterstain. 

Bar = 50µm. D. The cortex (C) is highly cellular as in the control foetus and medulla is less cell dense 

with high numbers of eosinophils. HE stain. Bar = 50µm. E. Low numbers of caspase 3-positive 

apoptotic cells are present in the cortex and even fewer in the medulla. PAP method, Papanicolaou’s 

haematoxylin counterstain. Bar = 50µm.  

 

 

 



Chapter Two   Results 

77 

  

 

Figure 2.13. Spleen, control foetus (C-8; A-C) and foetus from dam infected with N. caninum at 210 

days gestation (I-11; D). A. Red pulp (R) and white pulp [PALS (P) and follicles (F)] are well 

differentiated. High numbers of lymphocytes are present in the PALS (P) and follicles are not well 

demarcated (F). Haematopoietic cells are few (arrow). HE stain. Bar = 50µm. B. Moderate amounts of 

PAX5-positive B cells are forming lymphoid follicle-like structures (F). PAP method, Papanicolaou’s 

haematoxylin counterstain. Bar = 50µm. C. The PALS (P) consists of high numbers of CD3-positive 

T cells and low numbers are scattered in the red pulp. ABC method, Papanicolaou’s haematoxylin 

counterstain. Bar = 50µm. D. In the infected foetus, the spleen has a similar morphology as in control 

foetuses. White pulp (P+F) and red pulp (R) are well differentiated and follicle-like structures (F) are 

present. Haematopoiesis is low (arrow). HE stain. Bar = 50µm.  
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Figure 2.14. Mesenteric lymph nodes, control foetus (C-8; A-C) and foetus from dam infected with N. 

caninum at 210 days gestation (I-11; D and E). A. The lymph node has well distinct superficial cortex 

(SC) with primary lymphoid follicles (F), densely cellular paracortex (PC) and extension of cortical 

cells into the medulla (M). Mild haematopoiesis is also observed in the medulla (arrow). HE stain. Bar 

= 100µm. B. Lymphoid follicles (F) contain high numbers of PAX5-positive B cells with fewer 

present in the medulla. PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 20µm. C. The 

paracortex (PC) has numerous CD3-positive T cells, while low numbers are present within lymphoid 

follicles (F) and medulla (M). ABC method, Papanicolaou’s haematoxylin counterstain. Bar = 20µm. 

D. In the infected foetus, the lymph node is structurally similar to that of the control foetus with 

highly developed superficial cortex (SC), paracortex (PC) and medulla (M). Primary lymphoid 

follicles are also prominent (F). HE stain. Bar = 100µm. E. Low numbers of IFN-γ-expressing cells 

are present mainly in the paracortex (arrows). PAP method, Papanicolaou’s haematoxylin 

counterstain. Bar = 50µm. 

 

 



Chapter Two   Results 

79 

  

 

Figure 2.15. Bone marrow, control foetus (C-11; A) and foetus from dam infected with N. caninum at 

210 days gestation (I-12; B and C). A. The bone marrow is of high cellularity with intense 

haematopoietic activity. All haematopoietic precursor cells are present. HE stain. Bar = 100µm. B. 

The bone marrow of the infected foetus is structurally similar to that of the control foetus and contains 

moderate amount of adipocytes (arrows). HE stain. Bar = 100µm. C. Low numbers of IFN-γ-

expressing cells are present (arrows). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 

50µm. 

2.5.3 Histological and immunohistological findings in a foetus and a new-born 

calf from naturally infected dams after recrudescence of N. caninum in mid to 

late gestation 

A total of ten foetuses and two new-born calves were subjected to the initial 

histological examination. All ten foetuses exhibited mild to moderate mononuclear 

inflammatory infiltrates in various tissues. Parasite DNA had been detected by PCR 

in the brain (7/10) and heart (1/10) of these foetuses (Gibney, 2008). The foetus with 

the most severe inflammatory infiltrations in which N. caninum tachyzoites were 

demonstrated by immunohistology in a spinal nerve root with associated 

mononuclear inflammatory infiltrates, and in Nervus femoralis, Musculus quadriceps 

femoris, myocardium and liver, and in which parasite DNA had been detected in the 

heart and brain (Gibney, 2008), was selected for more detailed examination (R-5; 

217 dg).  

One of the new-born calves (R-10) was chosen for comparison. In the dam of this 

animal, a rise in the N. caninum antibody level had been detected at the end of 

gestation (week 40) and a pre-colostrum serum antibody level showed that the calf 

was serologically positive for N. caninum infection (persistently infected) (Gibney, 

2008). The calf exhibited minor histological findings consistent with N. caninum 

infection in some tissues (mononuclear infiltration in brain, spinal cord, liver and 

heart), but the immunohistology for N. caninum antigen failed to detect parasite 
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antigen in the tissues. Parasite DNA was not detected by PCR in brain, heart or liver 

from this calf (Gibney, 2008). The second new-born calf did not exhibit histological 

changes in any of the tissues examined and N. caninum antigen was not detected by 

immunohistology. 

2.5.3.1 Non-haemolymphatic tissues of naturally infected foetus 

2.5.3.1.1 Brain and spinal cord: The grey matter of the brain exhibited perivascular 

inflammatory infiltrates that were dominated by CD3-positive T cells (Fig. 2.16A). 

Moderate MHCII expression was detected diffusely on glial cells with morphology 

consistent with activated microglial cells (Fig. 2.16B). B cells were not detected 

within the inflammatory infiltrates. PCNA-positive ependymal cells were observed, 

but caspase 3-positive cells were not identified. Neospora caninum antigen was not 

detected in the brain of the foetus.  

The spinal cord exhibited the most severe lesions, and consisted of multifocal, 

mononuclear infiltrates mainly in the white matter (Fig. 2.17A), together with the 

presence of fewer leukocytes in grey matter. In addition, moderate mononuclear 

perivascular inflammatory infiltrates were observed in the white matter (Fig. 2.17A) 

along with severe leptomeningitis, while severe, non-suppurative radiculoneuritis, 

which was composed of similar inflammatory cells, was observed (Fig. 2.17B). CD3-

positive T cells comprised the majority of the inflammatory cells and were detected 

in moderate numbers within the perivascular, spinal cord , meningeal (Fig. 2.17C) 

and spinal nerve root infiltrates. PAX5-positive B cells were also present within the 

spinal nerve root (Fig. 2.17D), but were less numerous than T cells. Low numbers of 

macrophages (calprotectin-positive) were detected within the inflammatory infiltrates 

of the spinal cord and leptomeninges (non-suppurative meningitis), while numerous 

strongly MHCII-positive cells were observed in the inflammatory infiltrates of the 

spinal cord parenchyma (microglia), meninges (macrophages, activated T 

lymphocytes and B cells (Holling et al., 2004) and spinal nerve roots (Fig. 2.17E). 

Low numbers of caspase 3-positive apoptotic cells were present within the 

inflammatory foci in the white matter and even fewer in the spinal nerve root. A 

small cluster of N. caninum tachyzoites was detected by immunohistology in a spinal 

nerve root within an intact glial cell in association with the inflammatory infiltrates 

(Fig. 2.17F).  
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The histological changes in the brains of the remaining nine naturally infected 

foetuses were limited to mild, focal and sometimes multifocal, mononuclear 

inflammatory infiltrates in the grey and white matter. In addition, perivascular 

cuffing was identified in the grey matter in two of nine foetuses. The spinal cord 

exhibited low numbers of scattered mononuclear inflammatory cells mainly in the 

grey matter, while mild perivascular mononuclear cell infiltrates were present in both 

grey matter and white matter in all foetuses. Parasite antigen was not detected in the 

CNS of these nine foetuses. 

 

2.5.3.1.2 Liver: The liver of the selected foetus exhibited mild, multifocal, 

mononuclear portal infiltrates and CD3-positive T cells were the predominant 

inflammatory cell type within these infiltrates (Fig. 2.18A and 2.18B), while low 

numbers of PAX5-positive B cells were admixed with these. MHCII-positive cells 

were numerous, mainly in portal areas (mainly macrophages) and in individual cells 

between hepatic cords (Kupffer cells). Low haematopoietic activity was seen, 

represented by the presence of erythroid and myeloid precursors and fewer 

megakaryocytes. PCNA-positive proliferating cells were present in high numbers 

(hepatocytes and fewer haematopoietic precursor cells), while individual caspase 3-

positive apoptotic hepatocytes were detected and randomly scattered in the 

parenchyma, indicating parenchymal turnover. Low numbers of IFN-γ-expressing 

cells were present within hepatic sinusoids and N. caninum antigen was not detected. 

Mild, multifocal, mononuclear portal infiltrates were identified in eight of the nine 

remaining foetuses and extramedullary haematopoiesis was present in all foetuses. 

Parasite antigen was not detected. 

 

2.5.3.1.3 Heart: The myocardium of the selected foetus exhibited low numbers of 

mononuclear inflammatory cells (non-suppurative myocarditis) among which CD3-

positive T cells predominated, with fewer PAX5-positive B cells. Some cells within 

these mononuclear infiltrates were MHCII-positive (macrophages, activated T 

lymphocytes and B cells). Myocardial endothelial cells were also MHCII-positive. 

Myocardial endothelial cell activation was less prominent in control foetuses. There 

was evidence of low-rate cardiomyocyte proliferation, indicated by the expression of 

PCNA in a few cardiomyocytes. Caspase 3 expression was not observed and N. 

caninum antigen was not detected. Mild non-suppurative myocarditis, represented by 
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low numbers of mononuclear cells was observed in eight of the nine remaining 

foetuses, but without the presence of N. caninum antigen. 

 

2.5.3.1.4 Lung: The lung of the selected foetus exhibited low numbers of 

mononuclear cells in alveolar septa and BALT (Fig. 2.18C), represented by both 

CD3-positive T cells and PAX5-positive B cells. MHCII expression was seen in 

numerous cells, some disseminated in the BALT, others in cells attached to the 

alveolar walls (macrophages and type II alveolar epithelial cells), alveolar septa and 

the interstitium (mononuclear cells consistent with macrophages). Caspase 3-positive 

apoptotic cells were few and located mainly within alveolar spaces (desquamated 

type II alveolar epithelial cells and macrophages). IFN-γ-expressing cells, with 

morphology consistent with macrophages, were present in moderate numbers mainly 

in bronchiolar epithelium, alveolar septa and alveolar spaces (Fig. 2.18D). N. 

caninum antigen was not detected. In six of the nine remaining foetuses, the lungs 

exhibited low numbers of mononuclear cells mainly in the alveolar septa. Parasite 

antigen was not detected. 

 

2.5.3.1.5 Muscle: The Musculus quadriceps femoris of the selected foetus exhibited 

mild multifocal mononuclear interstitial inflammatory infiltration (non-suppurative 

myositis, Fig. 2.18E), mainly by CD3-positive T cells (Fig. 2.18F) and fewer B cells 

(PAX5-positive) within the inflammatory infiltrates. MHCII expression was also 

observed in the infiltrating cells and diffusely in endothelial cells, indicating their 

activation. Proliferating cells or apoptotic cells were not observed. N. caninum 

antigen was not detected. Mild, multifocal non-suppurative myositis was observed in 

eight of the nine remaining foetuses and low numbers of N. caninum tachyzoites 

were detected by immunohistology in an intact myocyte immediately adjacent to the 

inflammatory infiltrate in one foetus. 

 

2.5.3.1.6 Other tissues: The kidney of the selected foetus exhibited low numbers of 

CD3-positive T cells, which were multifocally distributed within the cortex with 

MHCII expression mainly in the areas of T cell infiltration. The adrenal gland of the 

selected foetus did not exhibit histological changes. Three of the nine remaining 

foetuses exhibited only occasional mononuclear inflammatory infiltrates in the 

interstitial areas of the kidneys, while the adrenal glands in two of the nine foetuses 
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had low numbers of the latter inflammatory cells in the medulla. The Nervus 

femoralis of the selected foetus contained a focal area of mononuclear infiltration 

within which low numbers of CD3-positive T cells, with mild expression of MHCII, 

were present. The pancreas and intestine of the latter foetus only exhibited individual 

CD3-positive T cells in the interstitium and lamina propria, respectively. The 

remaining tissues in the selected and remaining foetuses showed no histological 

abnormalities or N. caninum antigen.  

 

 

Figure 2.16. Brain, naturally infected foetus (R-5), from naturally infected dam after parasite 

recrudescence of N. caninum in mid to late gestation. A. Perivascular mononuclear infiltrates are 

present in the grey matter (large arrow) and activated microglial cells are seen in the surrounding 

neuropil (small arrow). HE stain. Bar = 50µm. B. The activated microglial cells are MHCII-positive 

(arrows). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. 
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Figure 2.17. Spinal cord, naturally infected foetus (R-5), from naturally infected dam after parasite 

recrudescence of N. caninum in mid to late gestation. A. A focal area of mononuclear infiltrate 

(arrows) along with moderate perivascular infiltrates (P) is present in the ventral funiculi of the spinal 

cord white matter. HE stain. Bar = 100µm. B. Severe radiculoneuritis with high numbers of 

mononuclear inflammatory cells (arrows). HE stain. Bar = 50µm.C. The majority of the inflammatory 

cells in the white matter (W) and perivascular cuffing (P) are CD3-positive T cells. ABC method, 

Papanicolaou’s haematoxylin counterstain. Bar = 100µm. D. Moderate amounts of PAX5-positive B 

cells are present within the inflammatory infiltrates of the spinal nerve root. PAP method, 

Papanicolaou’s haematoxylin counterstain. Bar = 50µm. E. MHCII-positive cells, macrophages and 

activated lymphocytes are present in high numbers in the spinal nerve root. PAP method, 

Papanicolaou’s haematoxylin counterstain. Bar = 100µm. F. A cluster of N. caninum tachyzoites is 

present within an intact glial cell in the spinal nerve root in association with the inflammatory 

infiltrates (arrow). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 20µm.  
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Figure 2.18. Liver and muscle, naturally infected foetus (R-5) from naturally infected dam after 

parasite recrudescence of N. caninum in mid to late gestation. A. Mild mononuclear portal infiltrates 

are present in the portal areas (PA). Haematopoietic activity is low (arrows). HE stain. Bar = 20µm. B. 

The majority of the infiltrating cells in the PA are CD3-positive and low numbers are present in 

hepatic cords (arrows). ABC method, Papanicolaou’s haematoxylin counterstain. Bar = 100µm. C. 

The lung contains low numbers of mononuclear cells mainly in alveolar septa (arrowheads). HE stain. 

Bar = 100µm. D. Moderate numbers of IFN-γ-expressing cells are detected in the bronchiolar 

epithelium (arrows), alveolar septa and alveolar spaces (arrowheads). PAP method, Papanicolaou’s 

haematoxylin counterstain. Bar = 50µm. E. Mild non-suppurative myositis with moderate amounts of 

mononuclear cells. HE stain. Bar = 50µm. F. The majority of the infiltrating cells in the Musculus 

quadriceps femoris are CD3-positive T cells (arrows). ABC method, Papanicolaou’s haematoxylin 

counterstain. Bar = 100µm.  
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2.5.3.2 Non-haemolymphatic tissues of new-born calf 

2.5.3.2.1 Brain and spinal cord: the naturally infected foetus differed from foetuses 

from experimentally infected dams in late gestation; histological changes in the CNS 

of the new-born calf were limited to mild mononuclear infiltration in the grey matter 

and white matter of the brain and spinal cord, respectively. These were mainly 

represented by CD3-positive T cell aggregates in the grey matter of the cerebral 

cortex (Fig. 2.19A) and mild T cell dominated perivascular infiltrates in the spinal 

cord white matter and meninges (Fig. 2.19B). Admixed within the inflammatory 

infiltrates in both brain and spinal cord were low numbers of macrophages and 

activated microglial cells (calprotectin and MHCII-positive, respectively). Caspase 

3-positive apoptotic cells or N. caninum antigen was not detected in the CNS.  

 

2.5.3.2.2 Liver: Mild portal mononuclear inflammatory infiltrates (Fig. 2.19C) 

dominated by CD3-positive T cells, with moderate amounts of macrophages (MHCII 

and calprotectin-positive) were present. B cells were not observed. Low numbers of 

caspase 3-positive apoptotic cells (mainly biliary epithelial cells and mononuclear 

cells within the inflammatory infiltrates) were present. A small proportion of 

hepatocytes were proliferating, as indicated by the low number of PCNA-positive 

hepatocytes. Haematopoietic precursor cells were present in low numbers and 

represented by myeloid and erythroid precursors. Moderate numbers of IFN-γ-

expressing cells (macrophages and lymphocytes) were detected in the hepatic 

sinusoids, indicating their activation (Fig. 2.19D). Neospora caninum antigen was 

not detected. 

 

2.5.3.2.3 Heart: Low numbers of CD3-positive T cells were present in the 

myocardium along with individual macrophages (calprotectin-positive). Low 

numbers of cardiomyocytes were found to be proliferating (PCNA-positive). 

Neospora caninum antigen was not detected. 

 

2.5.3.2.4 Lung: Similar to the foetus, the lung exhibited a small number of 

mononuclear cells in the alveolar septa. These were mainly CD3-positive T cells and 

macrophages (calprotectin-positive), high numbers of MHCII-positive mononuclear 

cells along alveolar walls and desquamated within alveolar spaces (type II 
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pneumocytes). B cells were not detected. Low numbers of caspase 3-positive, 

apoptotic alveolar epithelial cells/alveolar macrophages were present. IFN-γ-

expressing cells were present in low numbers and detected only within blood vessels. 

Neospora caninum antigen was not detected. 

 

2.5.3.2.5 Muscle: The Musculus quadriceps femoris did not exhibit any histological 

changes in the new-born calf and N. caninum antigen was not detected. 

 

2.5.3.2.6 Other tissues: The intestine contained high numbers of mononuclear cells 

within the mucosa along with low numbers of polymorphonuclear cells with large 

eosinophil granules (eosinophils). CD3-positive T cells represented the majority of 

cells within the mucosa and low numbers of PAX5-positive B cells and fewer 

macrophages (calprotectin-positive) were admixed with the infiltrate. The gut 

associated lymphoid tissues (GALT) were composed of numerous B cells and a large 

proportion of these were PCNA-positive proliferating cells. Also, moderate amounts 

of caspase 3-positive apoptotic cells (mainly B cells) were present in the GALT, 

indicating ongoing lymphocyte turnover. The kidney exhibited minimal numbers of 

CD3-positiveT cells, which were randomly scattered in the interstitium along with 

low numbers of macrophages (calprotectin-positive). The pancreas exhibited 

individual CD3-positive T cells randomly scattered within the lobules. No other 

abnormalities or N. caninum antigen were observed in the tissues of the calf. 
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Figure 2.19. Brain, spinal cord, liver and muscle, new-born calf (R-10), from naturally infected dam 

after parasite recrudescence of N. caninum in late gestation. A. A focal aggregate of CD3-positive T 

cells is present in the grey matter of the brain (arrows). ABC method, Papanicolaou’s haematoxylin 

counterstain. Bar = 50µm. B. Mild perivascular cuffing (arrow) with low numbers of CD3-positive T 

cells and occasional positive cells are present in the spinal cord white matter. ABC method, 

Papanicolaou’s haematoxylin counterstain. Bar = 50µm. C. Occasional mononuclear portal infiltrates 

(PA) are present in the liver. HE stain. Bar = 100µm. D. Moderate numbers of IFN-γ-expressing 

mononuclear cells (mainly macrophages and fewer lymphocytes) are present in hepatic sinusoids 

(arrows; C – central vein). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. 

2.5.3.3 Haemolymphatic tissues 

Haemolymphatic tissues (thymus, spleen, lymph node and bone marrow) of the 

foetus and new-born calf were studied histologically and immunohistologically to 

evaluate any pathological effects due to N. caninum after parasite recrudescence in 

the dams.  

2.5.3.4 Thymus  

2.5.3.4.1 Naturally infected foetus. The thymus was morphologically similar to that 

of foetuses from dams experimentally infected in late gestation (Fig. 2.20A). The 

cortex was highly cellular and contained high numbers of compact small 

lymphocytes (mainly CD3-positive T cells), while fewer larger T cells with more 
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cytoplasm were present in the medulla (Fig. 2.20B). High numbers of macrophages 

and dendritic cells (MHCII-positive), reticular medullary epithelial cells, Hassall’s 

corpuscles and a large population of polymorphonuclear cells, identified as 

eosinophils by the Lendrum’s Carbol Chromotrope stain, were also present in the 

medulla. PAX5-positive B cells were detected in low numbers within the medulla. 

High numbers of PCNA-positive proliferating cells (lymphocytes) were detected in 

the cortex with fewer in the medulla, while moderate amount of caspase 3-positive 

apoptotic cells were detected in both cortex and medulla, consistent with high cell 

turnover. IFN-γ-expressing cells, however, were not detected. The thymus of the 

remaining nine foetuses was morphologically similar to that of the selected foetus 

and N. caninum antigen was not detected in any foetus. 

 

2.5.3.4.2 New-born calf. The thymus was structurally similar to that of the foetuses; 

however, slightly lower numbers of eosinophils were present in the medulla (Fig. 

2.20C). The thymus of the other new-born calf was structurally similar to the 

selected calf. PCNA-positive proliferating cells (Fig. 2.20D) were numerous with 

low numbers of caspase 3-positive apoptotic cells, indicating cell turnover. No 

histological alterations were observed and N. caninum antigen was not detected in 

both animals. 

2.5.3.5 Spleen  

2.5.3.5.1 Naturally infected foetus. The spleen appeared fully developed and 

structurally similar to that of foetuses from dams experimentally infected in late 

gestation. It was composed of a well-developed red and white pulp, the latter 

consisting of the PALS and follicle-like structures (Fig. 2.21A). High numbers of 

lymphocytes were present within the PALS and were mainly CD3-positive T cells 

(Fig. 2.21B) with scattered B cells (PAX5-positive, Fig. 2.21C). Follicles contained 

numerous PAX5-positive B cells and strongly MHCII-positive cells were observed 

in the white pulp (dendritic cells, follicular dendritic cell, splenic macrophages and B 

cells). The red pulp was comprised of a smaller population of T and B cells, 

numerous erythrocytes, macrophages (calprotectin-positive) and splenic dendritic 

cells (MHCII-positive). Myeloid and erythroid cells as well megakaryocytes were 

present in moderate numbers (moderate haematopoiesis). PCNA-positive 

proliferating cells were present in high numbers mainly within lymphoid follicles, 
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PALS (predominantly lymphocytes) and fewer randomly scattered mononuclear cells 

in the red pulp. Low numbers of caspase 3-positive apoptotic cells were present 

predominantly in the PALS and follicles, confirming T and B cell turnover. IFN-γ-

expressing cells were detected in low numbers, indicating that splenic lymphocytes 

were activated. The spleen appeared equally highly developed in all nine remaining 

foetuses. However, primary lymphoid follicles and PALS were poorly discernible in 

the white pulp of three of the nine foetuses that were between 21 and 24 weeks of 

gestation age. Neospora caninum antigen was not detected in any foetus. 

 

2.5.3.5.2 New-born calf. The spleen of the calf was structurally similar to that of the 

foetuses, however, prominent lymphoid follicles with conspicuous germinal centres 

(secondary follicles), were present in the white pulp (Fig. 2.21D). Different from the 

foetuses, the calf’s red pulp exhibited low numbers of neutrophils in the red pulp. 

The spleen of the other new-born calf was morphologically similar. Histological 

changes or N. caninum antigen were not observed in both calves. 

2.5.3.6 Mesenteric lymph node 

2.5.3.6.1 Naturally infected foetus. The lymph node was morphologically similar to 

that of foetuses from dams experimentally infected in late gestation. It was highly 

developed and exhibited a distinct cortex and medulla (Fig. 2.22A). The superficial 

cortex contained prominent primary lymphoid follicles with high numbers of PAX5-

positive B cells (Fig. 2.22B) and occasional CD3-positive T cells. T cells also 

formed a concentric rim around the follicles, but were more abundant in the 

paracortex (T cell compartment, Fig. 2.22C). The superficial and paracortex 

contained high numbers of MHCII-positive cells (follicular dendritic cells, dendritic 

cells, B cells and macrophages, Fig. 2.22D) and fewer were present in the medulla. 

The medulla consisted of a smaller population of T cells (Fig. 2.22C), high numbers 

of B cells (Fig. 2.22B) and plasma cells within a network of reticular cells.  Moderate 

numbers of PCNA-positive proliferating cells (mainly lymphocytes) were present 

predominantly in the lymphoid follicles with fewer in the paracortex. Caspase 3-

positive apoptotic cells were present in low numbers mainly in the lymphoid 

follicles. IFN-γ-expressing cells were detected in minimal numbers in paracortex. 

The lymph nodes of seven of the nine remaining foetuses were available for 

histological assessment. All lymph nodes appeared well developed and exhibited 



Chapter Two   Results 

91 

  

distinct superficial cortex, paracortex and medulla. In the older foetuses (31 and 34 

weeks’ gestation, the cortex was comprised of well-developed primary lymphoid 

follicles, whereas in the younger foetuses (21 to 27 weeks’ gestation age), only 

immature primary lymphoid follicles, represented by small aggregates of B cells 

were observed. Parasite antigen was not detected in any foetus.  

 

2.5.3.6.2 New-born calf. The lymph node of the calf was morphologically similar to 

that of the foetuses (Fig. 2.22E). However, it exhibited higher numbers of caspase 3-

positive apoptotic lymphocytes in the paracortex and medulla (corticomedullary 

junction) with low numbers in the superficial cortex and lymphoid follicles (Fig. 

2.22F). The lymph node in the other new-born calf was similar morphological and 

parasite antigen was also not observed in both calves.  

2.5.3.7 Bone marrow 

2.5.3.7.1 Naturally infected foetus. The bone marrow was structurally similar to that 

of foetuses from dams experimentally infected in late gestation. It was of high 

cellularity with all precursor cell lineages present, together with low numbers of 

adipocytes. PAX5-positive B cells were the predominant cell type detected by 

immunohistology, while CD3-positive T cells were present in moderate amounts.  

Marked MHCII expression was observed (cells of the monocyte-macrophage lineage 

and B cells). PCNA-positive proliferating cells (haematopoietic precursor cells and 

lymphocytes) were present in moderate amounts. Occasional caspase 3-positive cells 

were detected and individual IFN-γ-expressing cells were also present, indicating 

their activation. Neospora caninum antigen was not detected. In 3 of the 9 remaining 

foetuses the bone marrow was available for histological examination. It was 

generally of high cellularity with all haematopoietic cell lines present. High numbers 

of adipocytes were also observed. Parasite antigen was not detected. The bone 

marrow of both the selected new-calf and the other new-born calf was not available 

for histological examination.  
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Table 2.7. Summary of histological and immunohistological findings in foetuses/calf 

from dams experimentally infected in early and late gestation and from naturally 

infected dams 

Tissues   Early gestation Late gestation Natural infection 

Brain  Apoptosis + 

Tachyzoites ++    

T cells + 

MHCII ++ 

IFN-γ ‒ 

Necrosis +   

Tachyzoites +  

T cells +   

MHCII + 

IFN-γ ‒ 

T cells +  

PVC +  

Tachyzoites ‒ 

MHCII + 

IFN-γ ‒ 

Spinal cord Necrosis +   

Apoptosis +   

Tachyzoites ++   

T cells +  

MHCII ++ 

IFN-γ ‒ 

Apoptosis +   

Tachyzoites +  

T cells ++   

MHCII ++ 

IFN-γ ‒ 

T and B cells ++  

PVC ++   

Tachyzoites +   

MHCII +++ 

IFN-γ ‒ 

Liver  Necrosis +++  

Apoptosis +++  

Tachyzoites +++  

MHCII + 

T cells ++   

IFN-γ ‒ 

Necrosis + 

Tachyzoites ‒ 

T cells + 

MHCII ++ 

IFN-γ +   

T cells +  

Tachyzoites ‒ 

MHCII ++ 

IFN-γ +   

 

Cardiac muscle  Tachyzoites +++  

T cells +   

MHCII + 

IFN-γ ‒ 

T cells + 

Tachyzoites ‒ 

MHCII + 

IFN-γ +   

T cells + 

Tachyzoites ‒   

MHCII + 

IFN-γ ‒ 

Lung Apoptosis +  

Tachyzoites +  

T cells ++  

MHCII + 

IFN-γ ‒ 

T cells +  

Tachyzoites + 

MHCII ++ 

IFN-γ ++   

T and B cells + 

Tachyzoites ‒ 

MHCII ++ 

IFN-γ ++   

 

Musculus quadriceps 

femoris 

Apoptosis +  

T cells + 

Tachyzoites ‒  

MHCII + 

IFN-γ ‒ 

T and B cells +  

Tachyzoites ‒ 

MHCII + 

IFN-γ +   

T cells +   

Tachyzoites ‒ 

MHCII + 

IFN-γ ‒ 

Adrenal glands NHAIR 

Tachyzoites ‒ 

Eosinophils + 

Tachyzoites ‒ 

NHAIR 

Tachyzoites ‒  

Nervus femoralis  NHAIR 

Tachyzoites ‒ 

NHAIR  

Tachyzoites ‒ 

T cells +   

Tachyzoites ‒ 

Intestine (jejunum) NHAIR 

Tachyzoites ‒ 

NHAIR 

Tachyzoites ‒ 

T cells +   

Tachyzoites ‒ 

Kidney T cells + 

Tachyzoites +   

NHAIR 

Tachyzoites ‒ 

T cells +  

Tachyzoites ‒ 

Haemolymphatic tissues 

Thymus Apoptosis +++  

Tachyzoites +  

IFN-γ  ‒ 

NHAIR 

Tachyzoites ‒ 

IFN-γ  ‒  

NHAIR 

Tachyzoites ‒ 

IFN-γ  ‒  

Spleen Apoptosis ++  

Tachyzoites +  

IFN-γ  ‒ 

Tachyzoites ‒  

IFN-γ +  

Tachyzoites ‒ 

IFN-γ  + 

Mesenteric lymph node 

 

NS IFN-γ +   

Tachyzoites ‒ 

Tachyzoites ‒ 

IFN-γ +  

Femoral bone marrow Apoptosis +  

Tachyzoites +   

IFN-γ  ‒ 

Tachyzoites ‒ 

IFN-γ +  

Tachyzoites ‒ 

IFN-γ +  

+ - mild; ++ - moderate; +++ - severe; ‘‒’ – not detected; NHAIR – no histological abnormality is 

recognised; NS – not sampled; PVC – perivascular cuffing  
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Figure 2.20. Thymus, naturally infected foetus (R-5; A and B) and new-born calf (R-10; C and D) 

from naturally infected dams after parasite recrudescence of N. caninum in mid to late gestation. A. 

The cortex (C) and medulla (M) are well differentiated. High numbers of lymphocytes are present in 

the cortex, with fewer in the medulla and low numbers of eosinophils (arrows). HE stain. Bar = 50µm. 

B. The majority of cells in the cortex are CD3 positive, while lower numbers are present in the 

medulla. ABC method, Papanicolaou’s haematoxylin counterstain. Bar = 50µm. C. Cortex and 

medulla are well differentiated . Cortex has high numbers of lymphocytes and fewer are present in the 

medulla. HE stain. Bar = 100µm. D. PCNA-positive proliferating cells are present in high numbers in 

both cortex and medulla. PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 100µm.  
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Figure 2.21. Spleen, naturally infected foetus (R-5; A-C), and new-born calf (R-10; D) from naturally 

infected dams after parasite recrudescence of N. caninum in mid to late gestation. A. The spleen is 

highly developed with well differentiated red (R) and white pulp (P+F). Low numbers of 

haematopoietic cells are present in the red pulp (arrow). HE stain. Bar = 50µm. B. High numbers of 

CD3-positive T cells are present in the PALS and few are scattered in the red pulp (R). ABC method, 

Papanicolaou’s haematoxylin counterstain. Bar = 100µm. C. Numerous PAX5-positive B cells are 

present within the primary lymphoid follicle-like structures (F) and fewer positive cells are present in 

red pulp (R). PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 100µm. D. The spleen of 

the calf is highly developed with well differentiated red and (R) white pulp (P+F). HE stain. Bar = 

100µm.  
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Figure 2.22. Mesenteric lymph node, naturally infected foetus (R-5; A-D) and new-born calf (R-10; E 

and F) from naturally infected dams after parasite recrudescence of N. caninum in mid to late 

gestation. A. The lymph node is highly developed and contains distinct superficial cortex and 

paracortex (SC and PC) with prominent lymphoid follicles (F). The medulla (M) is less cell-dense. HE 

stain. Bar = 100µm. B. Numerous PAX5-positive B cells are present in primary lymphoid follicles 

and fewer are observed in medulla. PAP method, Papanicolaou’s haematoxylin counterstain. Bar = 

100µm. C. CD3-positive T cells are present in high numbers in the paracortex with fewer in the 

medulla. Occasional positive cells are also observed in lymphoid follicles. ABC method, 

Papanicolaou’s haematoxylin counterstain. Bar = 100µm. D.  Numerous MHCII-expressing cells are 

present in the paracortex and follicles with fewer in the medulla. PAP method, Papanicolaou’s 

haematoxylin counterstain. Bar = 100µm. E. The lymph node of the new-born calf is highly 

developed as in the foetus and consists of prominent primary lymphoid follicles (F) with germinal 

centres (GC). HE stain. Bar = 100µm. F. Numerous caspase 3-positive cells are present in the cortico-

medullary junction (CMJ). PAP method, Papanicolaou’s haematoxylin counterstain.  
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2.6 DISCUSSION 

The present study examined the pathological effects of N. caninum in bovine 

foetuses in early and late gestation (70 and 210 days respectively) and in 

foetuses/calves after parasite recrudescence had occurred in naturally infected dams 

in mid to late gestation. It represents an extension of an earlier study in which 

parasite distribution and lesions, following infection of cattle with N. caninum 

tachyzoites in early and late gestation or after parasite recrudescence in chronically 

infected cattle, were described (Gibney, 2008). Evidence of foetal death in dams that 

had been infected in early gestation was shown by Gibney (2008) but the 

developmental and structural changes in the same foetuses are described and 

compared in this present study.  

Previous experimental studies have shown that N. caninum infection in early 

gestation results in foetal death, while foetuses survive when the infection occurs 

later in gestation (Barr et al., 1994; Williams et al., 2000; Macaldowie et al., 2004; 

Gibney et al., 2008; Rosbottom et al., 2008). It was suggested that the reason for 

foetal death was the direct damage to the placenta and/or foetus by unhindered 

parasite multiplication, occurring due to a lack of immunocompetence in foetuses 

during early gestation (Gibney et al., 2008; Almería et al., 2010). In our study, foetal 

infection occurred regardless of the stage of gestation when the infection was 

established, and the resulting lesions were similar; however, the lesions in early 

gestation foetuses were more widely distributed, more extensive and more severe 

compared to those seen in foetuses in late gestation. In the placenta, they were 

represented by multifocal necrosis of both foetal and maternal epithelial cells 

(Gibney et al., 2008). Maley et al. (2006) also observed extensive damage with high 

numbers of parasites in the placenta of an experimentally infected dam (infected at 

70 dg) with a dead foetus at 98 dg compared to others with live foetuses. The 

severity of the placental lesions thus appears to determine foetal survival or death, 

since with more extensive damage foetal life cannot be sustained. In another study, 

the lesions comprised extensive multifocal epithelial cell necrosis in all the 

placentomes examined, together with cell loss in a range of organs, including 

myocytes in skeletal muscle, renal tubular epithelial cells, pulmonary epithelial cells 

and lymphocytes in the thymus, spleen and bone marrow in animals where foetal 

death had occurred after infection at 70 dg (Gibney et al., 2008). These findings 
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prompted the present study that aimed to shed more light on the processes leading to 

foetal death, i.e. lack of foetal immune response or placental insufficiency from 

maternal immune response. 

Immunocompetence in the bovine foetus is thought to develop from around 

120 dg (Swift and Kennedy, 1972). While foetal lymphocytes are capable of 

mitogenic responses earlier during gestation, as early as 78 dg, they are unable to 

recognise and respond to pathogens (Osburn et al., 1982). Experimentally infected 

foetuses have been shown to mount a significant cellular immune response to N. 

caninum from approximately 120 dg (Almeria et al., 2003).  

In the experiment that generated the material for the present study, all infected 

foetuses in early gestation died within 3 weeks of infection of the dams. The 

maternal immune response in the placenta can be harmful to the foetus although 

studies have shown that a Th1 immune response, which is linked to the production of 

IFN-γ, could protect against N. caninum abortion (López-Gatius et al., 2007; 

Williams et al., 2007b). However, a strong IFN-γ response was detected in a foetus 

that died 6 weeks post infection after experimental infection of the dam at 110 dg 

(Almeria et al., 2010). The authors believed that this high IFN-γ level occurred in 

response to high parasitaemia and was sufficient to cause placental damage and/or 

foetal pathological changes severe enough to kill the foetus. It was suggested that 

IFN-γ production and the direct damage to the placenta and foetus by multiplying 

parasites were likely complementary factors in foetal death in early gestation (Maley 

et al., 2006; Rosbottom et al., 2008). 

In the present study, we aimed to further investigate the foetal immune 

response to N. caninum, in particular to characterise the inflammatory response 

elicited by the infection. In order to assess this, the composition of the 

haemolymphatic tissues was studied in control foetuses and, by comparison with the 

tissues in the infected group, served to detect any changes in response to the parasite 

infection.  

2.6.1 The haemolymphatic tissues of control foetuses in early and late gestation 

The haemolymphatic tissues of control foetuses in early gestation (approximately 13 

weeks) were structurally similar and exhibited morphological features consistent 

with those described in previous studies on the development of bovine lymphoid 

tissues and the foetal immune response (Schultz, 1973; Schultz et al., 1973; Ishino et 
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al., 1991). The haemolymphatic tissues comprised mainly T cells and showed a low 

degree of lymphocyte turnover, as indicated by the detection of only few PCNA-

positive cells and scarce apoptotic cells. Also, there was no immunohistological 

evidence of IFN-γ expression by lymphocytes, all findings are consistent with low 

immune activity at this stage of development (Linton and Dorshkind, 2004).  

The composition of the haemolymphatic tissues of foetuses in late gestation 

differed from early gestation. The thymus appeared fully developed with numerous 

lymphocytes and prominent primary lymphoid follicles were seen in spleen and 

lymph nodes with high numbers of B cells, all of which are indications of a mature 

immune system. The control foetuses in late gestation (approximately 230 dg) also 

exhibited low numbers of apoptotic, cleaved caspase 3-positive lymphocytes, which 

were found randomly distributed in haemolymphatic tissues, and in similar amounts. 

Along with the few apoptotic lymphocytes, high numbers of PCNA-positive 

lymphocytes were present which is consistent with a relatively high cell turnover in 

late gestation compared to foetuses in early gestation.  

2.6.2 The effect of N. caninum infection on haemolymphatic tissues of foetuses in 

early gestation 

In early gestation, around day 92 of gestation, the haemolymphatic tissues of infected 

foetuses exhibited significantly higher numbers of apoptotic, cleaved caspase 3-

expressing cells than control foetuses. Since there was no evidence of a direct 

association between the parasite infection and lymphocyte death, it might be the 

result of stress leading up to foetal death. All foetuses died within 24 h prior to 

euthanasia of the dams and this could account for the high numbers of lymphocyte 

apoptosis observed in the haemolymphatic tissues. A recent study showed that 

corticosterone, released from the adrenal gland into the plasma of human foetuses, 

caused apoptotic cell death of lymphocytes in haemolymphatic tissues as well as the 

delayed and decreased output of pre-T-cells from bone marrow and thymus (Yan, 

2012). Extensive apoptosis of lymphocytes was also detected in the thymus of a rat 

12 h after dexamethasone (synthetic glucocorticoid) treatment (Elmore, 2007), while 

accelerated apoptosis of thymocytes was also observed in Bcl-2 
-
/
-
 knockout mice as 

early as 4 h following dexamethasone treatment, thus demonstrating its apoptotic 

effect on lymphocytes. Likewise, high and low doses of dexamethasone (20 mg/kg 

and 8 mg/kg, respectively) also induced atrophy and a dose-dependent lymphocyte 
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apoptosis in the thymus of BALB/c mice following intraperitoneal inoculation 

(Niknafs et al., 1998). The mechanism of glucocorticoid-induced apoptosis is poorly 

understood, but there is evidence supporting a receptor-mediated regulation of gene 

transactivation; however, the specific gene that is involved is not known (Distelhorst, 

2002). The process involves an initial stage where the glucocorticoid receptors 

mediate changes in the gene expression, which affects the influence of proapoptotic 

factors and finally leads to activation of the executioner caspase. It is not certain if 

cytochrome c is released during glucocorticoid-induced apoptosis (Veis et al., 1993). 

Furthermore, studies carried out on bovine foetuses showed that adrenal 17α-

hydroxylase cytochrome P-450 (P-45017α) mRNA expression, which correlates with 

foetal episodic cortisol production, is high at 50dg and reaches a maximum at 60-

70dg, then declines and becomes undetectable by 100dg, but then increases again 

after 240dg (Lund et al., 1988), indicating that the foetal adrenal is capable of 

cortisol production in the early stages of gestation. A return like this observed in 

human foetuses was thought to be a requirement for the maturation of a number of 

organs such as the lung and gut (Ballard, 1980). The immunoreactive hormone 

corticotropin was also detected in bovine foetal blood at 40-50dg. The findings in the 

current study are consistent with a stress-induced release of cortisol from the adrenal 

glands with resulting apoptosis of lymphocytes in the haemolymphatic tissues in the 

foetuses that died within 3 weeks after infection of the dams at 70dg.   

Caspase 3 activation and thereby apoptosis of lymphocytes could also result 

from initiation of the death receptor pathway, via binding of the death ligand (Fas 

ligand (FasL) or TNF-α) to the corresponding death receptors, Fas or TNF receptor-1 

(TNFR1), respectively (Czerski and Nuñez, 2004). The Fas molecule is a cell-surface 

receptor that belongs to the TNF receptor family and is important for the selection of 

T cells, the clonal deletion of peripheral lymphocytes and the activation of cell-death 

induction (Watkin et al., 2001; Silva et al., 2013). The binding of Fas to the FasL is 

important and results in the activation of the Fas-associated death domain (FADD) 

and, subsequently, caspase 8 activation which in turn activates the downstream 

signalling pathway leading to apoptosis (Silva et al., 2013). On the other hand, the 

activation of the death receptor TNFR1 by TNF-α leads the recruitment of TNFR1-

associated death domain protein (TRADD), which serves as a platform for the 

formation of various signalling complexes (Ichikawa et al., 2006). The TRADD can 

recruit FADD and lead to caspase 8 activation and apoptosis (Baud and Karin, 2001). 
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Rosbottom et al. (2008) had detected high levels of TNF-α mRNA in the cotyledons 

of the foetuses used in our study and concluded that the cytokine could have been 

either of foetal origin or expressed by infiltrating maternal macrophages. There is 

also evidence of TNF-α expression by human foetal trophoblast cells in early 

gestation (King et al., 1995); therefore, it is plausible that expression of TNF-α by 

foetal cells and also maternal macrophages, possibly due to placental impairment, 

could be one of the factors responsible for the high levels of apoptotic cell death in 

the haemolymphatic tissues of infected foetuses in early gestation.  

IFN-γ can mediate the upregulation of Fas or FasL-expression in cells infected 

with N. caninum (Nishikawa et al., 2001). Indeed, FasL was significantly increased 

on IFN-γ-treated cells in an in vitro cell culture model following infection with N. 

caninum. It was later concluded that both Fas and FasL are involved in apoptosis in 

N. caninum infected cells in the presence of IFN-γ (Nishikawa et al., 2001). In line 

with this, Rosbottom et al. (2008) detected a significant increase in the IFN-γ mRNA 

levels in the placenta of dams infected with N. caninum in early gestation. 

Furthermore, the results of that study showed that only a small percentage of the total 

cytokine mRNA was detected in the foetal cotyledons; nevertheless, there was a 

significant upregulation in the cotyledons of infected foetuses in early gestation 

compared to the controls. It was, however, unsure whether the cytokines, mainly 

IFN-γ, were from foetal cells or maternally derived mononuclear cell which were 

shown to be expressing IFN-γ in the maternal interstitium. Circulating IFN-γ, either 

of foetal or maternal origin, could also have been a factor in the high level of 

lymphocyte apoptosis detected in the haemolymphatic tissues of early gestation 

foetuses in the current study.  

Foetal immunocompetence develops gradually throughout gestation and strong 

N. caninum-specific CMI response (proliferative response and IFN-γ) was detected 

in infected foetuses around midgestation (Andrianarivo et al., 2001b; Bartley et al., 

2004). However, similar proliferative responses were not observed  in foetuses in 

early gestation, but bovine foetal splenocytes and thymocytes (98 dg) were able to 

produce detectable levels of IFN-γ following concanavalin A (ConA) stimulation 

(Bartley et al., 2012). In our study, the lack of any detectable IFN-γ expression in the 

haemolymphatic tissues and inflammatory infiltrates in the CNS, liver, heart, lung 

and skeletal muscle suggests that the T cells recruited into these tissues are immature 

and non-functional. Osburn et al. (1982) showed that foetal lymphocytes were 
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capable of mitogenic response and cytokine production when stimulated with ConA 

at around day 80 of gestation, but were not able to respond to infection. Our data 

indicate that the components of the CMI were not fully developed and T cells 

recruited to the tissues of foetuses did not respond to the antigenic stimulation from 

N. caninum.  

B cells were very rare in the foetuses at early gestation, were only seen in 

spleen and bone marrow and in small numbers. They were not detected in the 

thymus, where they have been shown to be generally present in the medulla of 

foetuses in late gestation (Senogles et al., 1979). The production of B cells in species 

other than rodents and man is thought to depend on the GALT as the B cells are 

generated in the ileal Peyer’s patches from late gestation onwards, but little is known 

about when and where B cell lymphopoiesis first occurs (Ekman et al., 2010). 

Results from Ekman et al. (2010) suggest that the bovine foetal bone marrow and 

lymph node support B cell lymphopoiesis via a pre-B cell like stage before and 

concomitantly with the development of the Peyer’s patches, and our findings do not 

contradict this hypothesis.  

 Foetuses in early gestation (approximately 13 weeks) exhibited low numbers 

of haematopoietic precursor cells within the bone marrow, without evidence of 

megakaryocytes. Instead, the liver and spleen were the main haematopoietic organs 

at this stage. In murine embryos, haematopoiesis commences in the yolk sac blood 

islands, aorta-gonad-mesonephros region and placenta before it occurs also in the 

liver, after spreading from one or more of the former sites, and remains in the liver 

for the remainder the foetal life (Medvinsky et al., 2011). At this stage, i.e. early to 

midgestation, haematopoiesis gradually shifts from the liver to the spleen in a time-

dependent manner that varies with species and cell lineage (Johns and Christopher, 

2012). Human foetal bone marrow erythropoiesis, for example, begins between 16 

and 18 weeks’ gestation as hepatocyte proliferation challenges haematopoiesis 

(Forestier et al., 1991). The fact that mild haematopoiesis was detected in the bone 

marrow of foetuses in our study, at approximately 13 weeks gestation, suggests that 

it starts earlier in cattle than in humans, although both species have approximately 

the same length of gestation. Also, in bovine foetuses, foetal macrophages that 

originated in the bone marrow were detected by Senogles et al. (1979) in the spleen 

after 12 weeks gestation age.  
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We did not observe megakaryocytes in the bone marrow of the early gestation 

foetuses, although they were prominent in the liver and spleen at this stage. 

Megakaryopoiesis consists of two distinct phases of cell size and nuclear to 

cytoplasmic ratio (Matsumura and Sasaki, 1989). The first phase is seen when 

megakaryopoiesis takes place in the yolk sac and in the liver (“early phase”), the 

second in the “late phase” of hepatic megakaryopoiesis, at the time when it begins to 

shift to the bone marrow, which then takes over the production of megakaryocytes 

(Matsumura and Sasaki, 1989). Numerous N. caninum tachyzoites were observed in 

a megakaryocyte in the liver of one infected foetus, which indicates that 

haematopoietic cells are target cells for the parasite at this stage.  

After infection in early gestation, all foetuses exhibited widespread histological 

changes (apoptosis, single cell necrosis and high parasite loads) in haemolymphatic 

tissues. In addition, low lymphocyte turnover in the haemolymphatic tissues similar 

to controls was observed, but with a significant increase in apoptotic lymphocytes 

compared to controls and without evidence of IFN-γ production by lymphocytes in 

the spleen. These findings provide further evidence that foetuses from dams infected 

in early gestation were immunologically immature. The presence of numerous N. 

caninum tachyzoites within mononuclear cells, most likely macrophages in these 

tissues at this stage provides further evidence that the parasites were multiplying 

rapidly (Maley et al., 2003; Macaldowie et al., 2004; Gibney et al., 2008). 

 

2.6.3 The effect of N. caninum infection on non-haemolymphatic tissues of foetuses in 

early gestation 

Infected foetuses in early gestation exhibited pathological changes of parenchymal 

cells (extensive hepatocellular necrosis and apoptosis, and necrosis and apoptosis of 

glial cells in the brain and spinal cord). This was seen in close association with the 

presence of numerous parasites. In the CNS parasites were far more frequent in these 

young foetuses than in foetuses in late gestation, where the CNS and lung were the 

only organs that contained immunohistologically detectable amounts of parasites. 

These findings are in accordance with those of Collantes-Fernández et al. (2006b) 

who observed highest parasite burdens and most severe lesions in foetuses in the first 

trimester of pregnancy.  
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In foetuses in early gestation, the presence of N. caninum tachyzoites within 

tissues appeared not to induce a substantial inflammatory reaction. However, there 

was evidence of T cell recruitment in association with damage and the presence of 

parasites in tissues. T cells were also present within blood vessels in the brain, and, 

though generally few in number, were found in the brain parenchyma and the spinal 

cord, where they were seen among the glial aggregates when N. caninum was 

detected by immunohistology, although not in direct association with the parasites.  

They were also found in the liver, heart, lungs and skeletal muscle (Musculus 

quadriceps femoris) in association with the presence of parasites in the tissue. These 

findings provide the first immunohistological evidence of a T cell response to N. 

caninum in early gestation foetuses. T cell infiltrates were not detected in the brain of 

control foetuses, and there was no evidence of T cells within blood vessels, 

suggesting that the T cell recruitment seen in the infected foetuses was a specific 

response to the parasites. However, it appears to be restricted to the recruitment of 

the cells, indicating that adhesion molecules are expressed and interact with T cells 

and endothelial cells at this stage, while the lack of immunohistological evidence of 

IFN-γ expression by these T cells indicates that they were not functionally active 

(Hughes et al., 1990).  

A recent study showed foetal death between 28 and 35 days post infection after 

inoculation of dams with 10
8
 Nc-Spain 7 tachyzoites at 65 dg. It also describes 

extensive inflammatory infiltrates in the brain, liver, heart, lung, muscle and tongue 

(Caspe et al., 2012). The CNS of all 5 foetuses (examined at 93 days gestation age), 

in that study, had “severe multifocal, mononuclear, meningoencephalitis; while 

perivascular cuffing and haemorrhage was associated with necrosis and microgliosis 

in the brainstem” in two of five foetuses. These findings are only in partial agreement 

with those of our study, which examined the foetuses at 91-92 dg, since we found T 

cells infiltrating the parenchyma in low numbers, not forming perivascular cuffs, 

even fewer infiltrating macrophages, and no other infiltrating cells. Instead, we 

observed microglial aggregates. Our findings were confirmed by immunohistology 

that identified the cells as CD3-positive T cells, MHC-positive activated microglial 

cells and calprotectin-positive macrophages. Microglial cells are resident 

macrophages in the brain and spinal cord and are present even at early gestation 

(Billiards et al., 2006); they comprise the main form of active immune defence in the 

CNS (Aloisi, 2001). Microglial cells become activated after CNS infection or any 
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inflammatory stimuli to perform innate immune functions and are not specifically 

recruited to the CNS during infection. The activated microglial cells, which we 

identified on the basis of their morphology and MHCII expression in the brains of 

the infected foetuses in our study, formed prominent (glial) aggregates. It is likely 

that these formed the mononuclear cell infiltrates described by Caspe et al. (2012).  

In the current study, hepatocellular necrosis and apoptosis was seen in the 

foetal liver following infection in early gestation and numerous N. caninum 

tachyzoites were detected within intact hepatocytes and sometimes extra-cellularly. 

These were not detected in direct association with the moderate numbers of scattered 

CD3-positive T cells, which could represent not only recruited inflammatory cells, 

like in other tissues (see above), but also new T cells generated as part of the 

observed haematopoiesis. The intracellular pathogens can induce stress-related 

signals, which could trigger cell death via the intrinsic pathway of apoptosis in an 

effort to prevent further development of the pathogen (Schaumburg et al., 2006). 

However, protozoan parasites (Trypanosoma cruzi, Leishmania sp., Cryptosporidium 

parvum, T. gondii) have developed anti-apoptotic mechanisms to counteract the 

potentially protective response of apoptosis (Heussler et al., 2001; Sinai et al., 2004; 

Herman et al., 2007). While intracellular protozoan parasites can manipulate the host 

cells’ caspases to deactivate cell death for their own survival, it is also important to 

note that the parasites produce cysteine proteinases during egress that could 

potentially lead to death of the surrounding cells (Graumann et al., 2009; Heussler et 

al., 2010). The high number of apoptotic hepatocytes could also be the result of a 

defence mechanism to induce pathological changes in the organ in an attempt to 

reduce the number of parasites. In one study, infection of mice with the RH strain of 

T. gondii led to high levels of Th1 type pro-inflammatory cytokines (IFN-γ, TNF-α, 

IL-12 and IL-18), which corresponded with high levels of apoptotic cell death in the 

livers (Mordue et al., 2001). Necrotic cells can also induce a strong inflammatory 

response by secreting pro-inflammatory cytokines, such as TNF-α and IFN-γ 

(Bruchhaus et al., 2007). However, IFN-γ expression was not observed in the livers 

of foetuses in early gestation in the current study, suggesting this was not the 

mechanism leading to hepatocyte apoptosis. Further infection studies to assess the 

potential transcription and translation of these cytokines in the foetal liver would be 

required to address this hypothesis.  
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Hepatocellular necrosis in association with N. caninum, following infection of 

foetuses in early gestation, has previously been confirmed by transmission electron 

microscopy (Gibney et al., 2008). The mechanism(s) by which hepatocytes undergo 

necrosis in response to the parasite is/are unknown. However, the findings clearly 

demonstrate the relevance of the liver as a target organ for N. caninum (Wouda et al., 

1997; Gibney et al., 2008). Another study has also reported hepatocellular necrosis in 

foetuses following N. caninum infection in early gestation, however, staining for 

apoptotic cells was not performed (Caspe et al., 2012). Infection in foetuses during 

midgestation resulted in focal hepatocellular necrosis with associated mononuclear 

infiltration along with lower parasite numbers, compared to those reported in early 

gestation, indicating a role of the inflammatory response in controlling the 

pathological effects of the parasite in the liver  (Almería et al., 2010).  

In our study, immunohistology provided evidence of higher parasite burden in 

the liver compared to the brain and spinal cord of all foetuses infected in early 

gestation, as indicated by the presence of higher numbers of tachyzoites. Similarly, 

naturally infected foetuses (approximately 5 months’ gestation age) exhibited more 

prominent lesions and larger quantities of N. caninum tachyzoites in the liver than in 

the brain (Wouda et al., 1997; Collantes-Fernández et al., 2006a). The higher parasite 

load detected in the liver compared to the brain is probably due in part to the 

chronicity of the infection; the higher parasite burden observed in the liver is 

consistent with acute infections, and this is in line with our findings, since the brain 

is more involved in chronic infections (Collantes-Fernández et al., 2006a).  

Neospora caninum tachyzoites were detected in renal tubular epithelial cells, 

cardiomyocytes and within mononuclear cells morphologically consistent with 

macrophages in the lungs of the day 70 foetuses, but were not in direct association 

with the inflammatory infiltrates observed in these organs. Apoptosis was observed 

in desquamated pulmonary type II epithelial cells/alveolar macrophages in the lungs, 

but this did not appear to be parasite associated. Necrotic cells were not detected 

even when parasites were present. The kidneys were moderately autolytic, which was 

most likely the consequence of hypoperfusion due to the compromised placenta and 

foetal circulation. However, there was no evidence of tubular epithelial cell necrosis.  

The high parasite loads detected by immunohistology within intact 

cardiomyocytes was not associated with any evidence of cell death or degeneration. 

Low numbers of T cells were present, but these were not in direct association with 
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the parasites.  Low numbers of apoptotic, cleaved caspase 3 expressing cells were 

detected within the visceral epicardium and probably represent areas of 

extramedullary haematopoiesis. These observations suggest that N. caninum can 

multiply within cardiomyocytes without cell degeneration. One study has shown that 

Trypanosoma cruzi does not induce apoptosis in murine fibroblasts as the parasites 

are able to regulate apoptosis (Clark and Kuhn, 1999), but others have found 

evidence of cell death in cardiomyocytes during T. cruzi infection both in vivo and in 

vitro (De Souza et al., 2003). In a canine model of T. cruzi infection in 

cardiomyocytes, apoptosis was only found in cells in close proximity to infiltrating 

mononuclear inflammatory cells (Zhang et al., 1999). It is therefore tempting to 

speculate that cardiomyocyte degeneration was not observed in the foetuses in our 

study due to the lack of sufficient and functional immune cells in direct association 

with the parasites. N. caninum has been shown to inhibit caspase 3 activity and block 

apoptosis in mouse embryonic fibroblasts  (Herman et al., 2007). The present 

findings are consistent with those of previous studies in which aggregates of N. 

caninum tachyzoites were observed within intact cardiomyocytes without associated 

necrosis or inflammation (Wouda et al., 1997; Gibney et al., 2008). This, however, 

does not exclude the possibility of degenerative changes via direct action of the 

parasites on cardiomyocytes as focal myocardial necrosis was occasionally seen in 

young naturally infected foetuses (90-120 dg) (Wouda et al., 1997).  

The results presented here show that N. caninum tachyzoites have a wide range 

of target cells in foetuses in early gestation, in the brain and spinal cord, heart, lung, 

liver, kidney, and haemolymphatic tissues. Equally, it has been shown elsewhere that 

the placenta from the dams exhibited extensive necrosis of foetal and maternal 

epithelial cells and parasites were also detected within necrotic and intact cells, both 

in association with inflammation (Gibney et al., 2008). This suggests that the 

parasites, invade the placenta and establish a local maternal immune response 

(Rosbottom et al., 2008). This immune response may have initially limited parasite 

dissemination within the placenta, but was unable to control the high parasite loads 

following the uncontrollable multiplication in the foetus, and reinvasion of the 

placenta by the parasites, leading to the severe pathological changes observed in 

maternal and foetal epithelial cells (Gibney et al., 2008). The fact that these changes 

led to the death of all foetuses in early gestation, within 3 weeks of infection, is 

consistent with other experimental studies where infection of cattle in the first 
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trimester resulted in foetal death (Barr et al., 1994; Williams et al., 2000; Gibney et 

al., 2008). Infection acquired in early gestation was accompanied by a Th1 type 

cytokine response in the dam with the production of TNF-α, IFN-γ and IL-12, all of 

which may be lethal to the foetus through the production of free oxygen radicals 

(Maley et al., 2003). In the present study, there was no evidence of foetal CMI 

response to N. caninum and it would be reasonable to conclude that the direct 

placental damage and the parasite multiplication in the foetus contributed to foetal 

death in early gestation. 

2.6.4 The effect of N. caninum infection on foetuses in late gestation and new born 

calves 

In comparison to foetuses in early gestation, the foetuses experimentally infected in 

late gestation exhibited no histological changes in haemolymphatic tissues, although 

all dams had been infected with the same dose of parasite inoculum as in early 

gestation and were euthanised at the same time post infection. Parasites were not 

detected in the haemolymphatic tissues, which suggest either that the tachyzoites 

were not able to spread to all tissues or that there are no target cells in these tissues in 

the older foetuses. Immunohistology detected IFN-γ expression in lymphocytes in 

the spleen and lymph node of the infected foetuses, which indicates a N. caninum-

specific CMI response to the parasites, since no IFN-γ was detected in control 

foetuses of the same age. The IFN-γ response may have limited parasite 

establishment in the haemolymphatic tissues. It is also another indication of the 

maturity of the foetal immune system. The role of IFN-γ in protective immunity 

against N. caninum has been established in a murine model (Khan et al., 1997). A 

similar experimental study in which dams had been infected with N. caninum at 110 

dg, found a 34.3 fold higher expression of IFN-γ mRNA in the spleen of infected 

foetuses compared to controls (Almeria et al., 2003). The presence of IFN-γ within 

the tissues may have served to limit parasite numbers and multiplication, thus 

reducing parasite-induced pathological changes (necrosis, apoptosis and 

inflammation) in the tissues compared to foetuses in early gestation (Bartley et al., 

2013a). In addition, infected foetuses in late gestation, in the current study, showed 

profoundly higher lymphocyte proliferation in the haemolymphatic tissues compared 

to foetuses in early gestation and apoptotic lymphocytes were significantly lower, 

suggesting high cell turnover in older foetuses.  
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In the thymus, low numbers of eosinophilic granulocytes were detected within 

the thymic medulla. Schultz et al. (1973) had observed these cells in the thymus of 

normal disease-free bovine foetuses close to parturition and suggested that they 

might be present at the sites of antigen-antibody reactions. Eosinophils were also 

detected in placental lesions of N. caninum infected cows following experimental 

infection in early gestation with subsequent foetal death (Macaldowie et al., 2004). 

Eosinophils were also observed, but in higher numbers in the thymic medulla of the 

naturally infected foetus compared to the new-born calf. The thymus of the dams did 

not exhibit eosinophils and this might suggest that with age, the number of these cells 

in the thymic medulla decreases and disappear in a time dependent manner.  

Foetuses in late gestation had inflammatory infiltrates in the brain, spinal cord, 

myocardium, Musculus quadriceps femoris, Nervus femoralis, lung and liver, 

represented by a mild lymphocyte-dominated mononuclear cell infiltration. The most 

severe changes were seen in the CNS and included focal necrosis and perivascular 

cuffs in the brain, a tissue response commonly reported in bovine neosporosis 

(Nishimura et al., 2013); the spinal cord exhibited severe mononuclear inflammatory 

infiltrates, which were dominated mainly by T cells and fewer macrophages. Low 

numbers of parasites were detected within an intact glial cell in one foetus in direct 

association with the necrosis and inflammation in the brain, while a small cluster of 

parasites was present in the spinal cord, also within an intact glial cell in the second 

selected foetus in direct association with the inflammatory infiltrates. This active 

inflammatory response supports our hypothesis that older foetuses can respond to the 

presence of the parasites and mount a protective CMI response. The glial cell 

activation and inflammation in direct association with the parasites is supporting this 

hypothesis. 

Low numbers of cells with morphology consistent with plasma cells were 

observed in the spinal cord, although B cells were not detected in the inflammatory 

infiltrates. Marginal zone B cells can be activated during protozoan infection and 

generate short lived plasma cells, which can provide a rapid antibody response 

(Amezcua Vesely et al., 2012). However, secondary lymphoid follicles were not 

present in spleen or lymph nodes in infected foetuses and plasma cells were not 

observed in any other tissues.  

The liver of foetuses infected in late gestation had a mild periportal non-

suppurative inflammatory infiltrate, dominated mainly by CD3-positive T cells, low 
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numbers of macrophages and a complete absence of N. caninum tachyzoites. The 

mild inflammatory response might indicate that parasites had invaded the liver, but 

had been controlled by the immune response. The one foetus that had a focal area of 

necrosis had a lymphocyte-dominated mononuclear infiltrate surrounding the 

necrotic foci with scant neutrophils. This may have been a site of parasite 

multiplication and necrotic cell death.  Overall, the older foetuses had fewer 

apoptotic, cleaved caspase 3-positve hepatocytes than the younger infected foetuses 

and moderate hepatocyte proliferation was observed, indicating parenchymal 

turnover.  

Evidence suggests that N. caninum tachyzoites cross the placenta and reach the 

foetus approximately 10 days after maternal infection (Barr et al., 1994). This might 

imply that the parasites invade the foetus and multiply within the foetal tissues before 

reinvading the placenta where they cause massive placental necrosis, as observed in 

foetuses in early gestation (Gibney et al., 2008). On the other hand, the opposite 

should be true for older foetuses with a mature immune system that can detect and 

respond to the parasite. This leads to the theory that parasites were able to invade 

foetal tissues, but multiplication was controlled by the mature foetal immune 

response with little to no reinvasion to the placenta. Previous work done on the 

placentae from the animals (infected in late gestation) used in our study revealed 

only small areas of epithelial cell necrosis affecting usually one foetal villus in the 

surrounding maternal epithelium.  

In all the naturally, persistently infected cattle in the present study, parasite 

recrudescence had occurred after 20 weeks of gestation age, and there is evidence 

that the parasites had reached the foetuses at the time of euthanasia since parasite 

DNA was detected in 7 of 10 foetuses (Gibney, 2008). Recrudescence in the dam of 

foetus examined in detail in the present study occurred at 26 weeks gestation when a 

rise in the N. caninum specific antibody level was detected and euthanasia was 

subsequently carried out at 31 weeks gestation (Gibney, 2008). Data from a previous 

study showed that foetuses survived to term when recrudescence occurred after the 

second half of gestation (Guy et al., 2001b); therefore, it would be plausible to 

assume that this foetus would have survived to term, had the dam not been 

euthanised (Williams et al., 2000; Maley et al., 2003; Bartley et al., 2004). Similar to 

the foetuses experimentally infected in late gestation, the haemolymphatic tissues of 

the foetus and the calf born alive from a naturally, persistently infected dam were 
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similar. Secondary lymphoid follicles were present in the spleen of the calf which 

might suggest B cell activation as a consequence of infection. These two animals did 

also not show evidence of parasites in any of the haemolymphatic tissues, an 

observation consistent with the foetuses experimentally infected in late gestation. 

Neospora caninum tachyzoites were only found in the CNS (spinal nerve root) 

in the naturally infected foetus and in direct association with the lymphocyte-

dominated mononuclear inflammatory infiltrates (T cells, fewer B cells and 

macrophages). MHCII-positive microglial cells, identified on the basis of their 

morphology, were also present in high numbers indicating their activation in 

response to the presence of the parasites. Mononuclear inflammatory cells were also 

observed in the liver, heart, Nervus femoralis and skeletal muscle (Musculus 

quadriceps femoris), though only mild to moderate, but without the presence of 

parasites. These findings are consistent with those observed in canine neosporosis 

where meningoencephalitis, hepatitis, radiculoneuritis, myositis, myocarditis and 

neuritis predominantly with lymphocytes, histiocytes, plasma cells and occasional 

neutrophils were described (Peters et al., 2000).  

Similar inflammatory infiltrates were observed in the remaining nine naturally 

infected foetuses, but the extent of the inflammation was lower. Infiltrates were 

present in CNS, liver, heart, lungs, Musculus quadriceps femoris, kidney and adrenal 

glands. This shows that the most severe lesions were found in the foetus at 31 weeks 

gestation age, while those at 20-26 weeks’ gestation age had fewer and milder 

lesions. This is in contrast to what is observed in experimentally infected foetuses, 

whose dams had been inoculated with N. caninum tachyzoites at 140 dg and 

euthanised at 14, 28, 42 and 56 days post infection (Maley et al., 2003). The most 

severe lesions in this study were found in younger foetuses examined at 14 and 28 

days post infection and comprised “foci of coagulative necrosis in the brain and 

spinal cord, surrounded by microglial cells and lymphocytes, perivascular cuffs, 

meningitis and periportal infiltrates”; while similar lesions were present in foetuses 

examined at 28 days post infection, but were fewer and milder. Interestingly, no 

lesions were found in foetuses examined after 56 days post infection. Others have 

also shown that the intensity of infection decreases with increasing foetal age in 

naturally infected foetuses (Collantes-Fernández et al., 2006b). As the foetal immune 

system gradually develops, it is expected that it would respond more rapidly to 

invading pathogens. This means that more severe lesions would be expected in 
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younger foetuses, while older animals would have a more mature immune response 

against the infection and therefore, milder lesions. These results from the naturally 

infected foetus could be due to the fact that parasite recrudescence was first detected 

at 26 week’s post infection and the dam was euthanised at 31 week’s gestation age 

(Gibney, 2008). Consequently, this would mean that the parasite would have a much 

longer time to replicate in this foetus and elicit a strong immune response; whereas 

the remaining foetuses, which were euthanised as soon as possible after parasite 

recrudescence was detected, would not have had enough time for a stronger immune 

response.  

It has previously been shown that the placenta of the naturally infected cows 

had little evidence of parasite-induced necrosis in the foetal villi which were 

associated with a T cell-dominated inflammatory infiltrate and a highly significant 

increase of IFN-γ as well as other pro-inflammatory cytokines (TNF-α, IL-12p40, 

IL-2 and IL-18) (Rosbottom et al., 2011). Other studies have reported the 

concomitant protective effect of IFN-γ and IL-12 (Marks et al., 1998; Baszler et al., 

1999b; Almeria et al., 2011). The inflammatory response noted in the naturally 

infected foetus indicates that they were responding to the infection, while the IFN-γ 

response may have contributed to the control of parasite dissemination and protection 

from parasite-induced pathological changes in foetuses.  

The calf born alive to the naturally, persistently infected dam, exhibited only 

minimal histological changes. These comprised mild T cell-dominated mononuclear 

infiltrates in the brain, spinal cord, liver and heart. However, N. caninum tachyzoites 

were not detected in any tissues examined. A rising maternal antibody level to N. 

caninum was detected only at week 40 of gestation age, which suggests that 

recrudescence occurred at the end of the gestation period. It was, however, not 

possible to determine whether the parasites had crossed the placenta and infected the 

foetus, as immunohistology and PCR failed to detect the parasite in the brain, heart 

and liver (Gibney, 2008). However, the high pre-colostral antibody level detected in 

the calf at birth indicated that tachyzoites had crossed the placenta and infected the 

foetus before parturition (Gibney, 2008). The mild inflammatory reaction observed 

in the heart, liver and CNS (target organs) suggests parasite invasion into these 

tissues, supporting the view that the calf was infected and probably a persistently 

infected animal. The lesions described in the tissues of the foetus and calf are 

consistent with those of other studies (Barr et al., 1994; Wouda et al., 1997; Gibney 
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et al., 2008). Inflammatory infiltrates were more numerous in the naturally and 

experimentally infected foetuses compared to the calf and again, this might be 

dependent on the time when the infection occurred.  

The virulence of different Neospora isolates is also of relevance for the 

assessment of parasite-induced changes, as highly virulent isolates will induce more 

widespread lesions and foetal death, while those of low virulence usually have a low 

capacity for multiplication in host tissues and for transplacental infection (Rojo-

Montejo et al., 2009a; Rojo-Montejo et al., 2009b). Low virulent isolates, such as 

Nc-Spain 1H failed to induce clinical signs or mortality in a non-pregnant mouse 

model and led to low levels of transplacental transmission and neonatal mortality in 

pregnant mice (Rojo-Montejo et al., 2009b). The Nc-Spain 1H did also not induce 

foetal death in cattle, different from more virulent isolates, such as Nc-Liverpool and 

Nc-1 (Rojo-Montejo et al., 2009a). Therefore, the unavailability of data such as the 

strain that was involved in the initial infection of the naturally infected dams used in 

this study, its virulence and route of infection may have affected the results. These 

are important factors that could determine the outcome of the pregnancy and the 

effects the parasites would have had on the foetus. However, the lesions detected in 

the tissues of the naturally infected foetus and new-born calf, even though mild, were 

consistent with lesions observed in other N. caninum infected animals; these were 

classified as non-suppurative myositis, myocarditis and pneumonia, focal necrosis 

and necrotising non-suppurative encephalitis (Pescador et al., 2007).  

We have shown here the characteristic differences in foetuses infected in early 

and late gestation and have compared them with uninfected control foetuses at the 

same gestation age. We have shown evidence of parasite-induced lesions in a foetus 

and new-born calf from naturally, persistently infected dams in which parasite 

recrudescence had occurred in mid to late gestation and compared these to 

experimentally infected foetuses in early and late gestation. Foetuses infected in 

early gestation had no evidence of a functional inflammatory immune response to N. 

caninum, suggesting a lack of ability to control parasite multiplication and all 

foetuses died within 3 weeks of the infection with widespread histological changes 

(apoptosis, single cell necrosis in haemolymphatic tissues, hepatocellular and glial 

cell necrosis and apoptosis). Unlike younger foetuses, those foetuses infected in late 

gestation and naturally infected foetuses all survived and evidence of an 

inflammatory response in response to the parasite was described. The results 



Chapter Two   Discussion 

113 

  

demonstrated that the timing when N. caninum occurs can be crucial in determining 

whether the foetus lives or dies and the inflammatory response detected in older 

foetuses (experimentally and naturally infected), might have been linked with 

protection from the parasites. This means that infection in early gestation can lead to 

foetal death and abortion, while in mid to late gestation the foetus could survive to 

term. High parasite loads were detected in the liver with evidence of hepatocellular 

necrosis and apoptosis, whereas similarly high parasite burden was present within 

cardiomyocytes without evidence of cell degeneration.  

  



Chapter Three   Investigation of Parasite-induced Apoptosis in cells 

114 

  

 

 

 

 

 

 

 

 

 

 

 

CHAPTER THREE: Investigation of parasite-

induced apoptosis in hepatocyte and cardiomyocyte 

cell lines  
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3.1 ABSTRACT 

Neospora caninum is a causative agent of bovine abortion and is closely related to T. 

gondii, which infects a wide range of animals and humans. In order for intracellular 

parasites to survive and propagate, they must be capable of modulating the host cell 

functions, which includes inhibiting apoptosis. The present study aimed to 

investigate in more detail the finding that N. caninum infection appears to induce 

degeneration and death in hepatocytes, but not cardiomyocytes. An in vitro tissue 

culture system, utilising human hepatocyte HepG2 and murine HL-1 cardiomyocyte 

cell lines, was used to study the cellular alterations in association with N. caninum 

infection, focusing on the apoptotic pathway, i.e. the activation of the initiator 

caspases 8 and 9, and the effector caspase 3. Mitochondrial organisation in infected 

hepatocytes and cardiomyocytes was also evaluated, using double staining 

techniques with anti-COX 1 (mitochondrial marker) and anti-N. caninum polyclonal 

antisera, to further understand the host-parasite interaction within infected cells. 

Quantitative (caspase 3) and semi-quantitative (caspases 8 and 9) analyses were used 

to assess differences in caspase activation in hepatocytes and cardiomyocytes. The 

quantitative analysis of caspase 3 expression revealed a significant difference in the 

numbers of caspase 3-expressing hepatocytes in infected cultures compared to 

controls between 20 and 36 hours post infection (p=0.029, Mann-Whitney U test). 

However, caspase 3 expression was detected exclusively within uninfected cells in 

the infected cultures, and infected hepatocytes remained unlabelled. Significant 

differences in caspase 3 expression between infected and control cultures were not 

observed for HL-1 cardiomyocytes; infected cells were unlabelled for caspase 3, 

suggesting inhibition of the effector caspase. Semi-quantitative analysis for caspases 

8 and 9 expression in infected HepG2 and HL-1 cultures revealed no significant 

differences in the number of positive cells in infected cultures compared to controls 

at each time point. Caspase 8 and 9 expression was mainly detected in uninfected 

cells, but infected hepatocytes were occasionally positive as well. Assessment of the 

mitochondrial organisation in HepG2 and HL-1 cells identified aggregated 

mitochondria along the parasitophorous vacuole membrane (PVM) in infected cells, 

while uninfected cells in the infected cultures exhibited large clusters of 

mitochondria. These cells often exhibited a punctate cytoplasmic distribution of the 

mitochondria, a finding consistent with mitochondrial fragmentation in association 
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with apoptosis. The results suggest that N. caninum inhibits apoptosis in infected 

hepatocytes in association with increased apoptosis of uninfected bystander cells. In 

contrast there was no evidence of parasite-induced apoptosis in either bystander or 

infected cardiomyocytes.  

3.2 INTRODUCTION  

Apoptosis is a form of caspase-mediated cell death with particular morphological 

features and anti-inflammatory outcome (Fink and Cookson, 2005). Apoptosis 

signalling occurs via the activation of caspase cysteine proteases and there are two 

initial pathways leading to caspase activation; the extrinsic pathway via the death 

receptors that process caspase 8, and the intrinsic pathway that is initiated following 

cytosolic release of mitochondria derived cytochrome c, in which caspase 9 is 

activated (Dorn, 2013). Both pathways terminate with the activation of the effector 

caspase, caspase 3. Apoptosis is often regarded as an active or programmed form of 

cell death due to its morphological and bioenergetic features (Zong and Thompson, 

2006). However, in the absence of phagocytosis, apoptotic cells/bodies could lose 

their integrity and subsequently undergo the so-called secondary or apoptotic 

necrosis (Fink and Cookson, 2005). Necrosis is a term used for non-apoptotic cell 

death. It is signalled by irreversible changes within the nucleus and cytoplasm and 

includes karyolysis, pyknosis, karyorhexis, condensation and intense eosinophilia of 

the cytoplasm, loss of structure and fragmentation (Majno and Joris, 1995). In 

response to a death stimulus, there exists a continuum of apoptosis and necrosis and 

many agents can induce apoptosis at lower doses and necrosis at higher doses or 

features of both could coexist in the same cell (Zong and Thompson, 2006). 

Apoptosis often precedes necrosis in cells as the former is an active energy 

dependent process that requires adenosine triphosphate (ATP), while the latter is 

passive and does not require energy (Elmore, 2007).   

The Apicomplexa, among other obligate intracellular parasites, are known to 

extensively modify their host cells to ensure their own survival (Lüder et al., 2009). 

The parasites invade the host as their reproduction is entirely reliant on intracellular 

resources and they acquire nutrients for their own benefit (Leirião et al., 2004). Once 

inside the host cells, parasites reside in a parasitophorous vacuole (PV) surrounded 

by a PVM, which is derived from the host plasma membrane (Hemphill et al., 2006). 

So far, there have not been extensive studies on the changes that develop in N. 
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caninum infected host cells. For their own survival, the parasites must avoid the 

harsh environment within a cell, circumvent the host defences, acquire nutrients, and 

kill or maintain the cell according to their needs (Leirião et al., 2004). T. gondii was 

shown to inhibit apoptosis of their infected host cells (Nash et al., 1998; Herman et 

al., 2007); however, in vitro infection of IFN-γ-treated BALB/3T3 clone A31 

fibroblasts with N. caninum resulted in apoptotic cell death (Nishikawa et al., 2001). 

The results of the latter study indicated that the bcl-2 protein played a role as its 

expression was upregulated by the infection, but was inhibited by IFN-γ. Bcl-2 is a 

member of the bcl-2 superfamily of mitochondrial proteins that play a major role in 

regulating apoptosis and prolongation of cell survival (Adams and Cory, 1998).  

Multiple inducers of apoptosis, including gamma and ultra-violet irradiation, 

drug-mediated apoptosis and IL-2 deprivation, failed to induce apoptotic cell death in 

different types of cells infected with tachyzoites of the closely related parasite T. 

gondii (Nash et al., 1998). It was later shown that N. caninum tachyzoites are able to 

inhibit apoptosis of host cells, as indicated by the lack of apoptosis-associated DNA 

degradation (Herman et al., 2007). This was confirmed through the induction of 

apoptosis via the death receptor pathway by treating the N. caninum-infected cultures 

with TNF-α and the protein synthesis inhibitor cycloheximide. The study, which 

used the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) 

method as a means to demonstrate apoptosis, showed that more than 20% of 

uninfected cells within the infected cultures were apoptotic, while only 

approximately 4% of N. caninum-infected cells were apoptotic. One of the major 

findings in the latter study was also the inhibition of caspase 3 by N. caninum in 

infected cells (Herman et al., 2007). This defence mechanism strongly supports a 

survival strategy of the parasites that modulates the apoptotic machinery of the host 

cells to their favour.  

Mitochondrial association to the PVM has been reported for many organisms 

including T. gondii and Chlamydia psittaci (Jones and Hirsch, 1972; Matsumoto et 

al., 1991; Sinai et al., 1997). This association is dependent on active parasite invasion 

of the cell and is thought to be achieved either during or soon after invasion and is 

not disrupted thereafter, even if the parasite is killed after cell entry (Sinai et al., 

1997). The association is thought to be a mechanism to acquire nutrients from the 

host cell cytoplasm (Sinai and Joiner, 1997). However, it was shown that T. gondii 

was able to inhibit ultraviolet light-induced apoptosis via inhibition of cytochrome c 
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release from the mitochondria that were in close association with the PVM (Carmen 

et al., 2006). Similar to T. gondii, N. caninum could potentially regulate host cell 

apoptosis via manipulation of the mitochondrial pathways (Payne et al., 2003). A 

similar association of host cell organelles has been reported for N. caninum, though 

fewer mitochondria were found to physically attach to the PVM compared to T. 

gondii (Hemphill et al., 1996).    

3.3 Aims of the study  

Hepatocellular necrosis was observed histologically in the livers of foetuses from 

dams infected in early gestation (70 dg) in association with high parasite loads, 

however, immunohistology also detected numerous cleaved caspase 3-positive, 

apoptotic hepatocytes (see Chapter 2 for details). The parasites were detected mainly 

within intact hepatocytes, while hepatocellular necrosis was observed in the 

surrounding uninfected cells. Hepatocellular necrosis has been confirmed by 

transmission electron microscopy (TEM), but the mechanism by which the 

hepatocytes undergo necrosis in response to the presence of N. caninum has not been 

ascertained (Gibney, 2008). High parasite loads were also observed within intact 

cardiomyocytes of infected foetuses in early gestation; however, these were not 

associated with necrosis, apoptosis or an inflammatory reaction (see Chapter 2 for 

details). To further understand the role of the parasite in the pathogenesis of 

neosporosis in the liver and heart of bovine foetuses, an in vitro tissue culture system 

utilising primary bovine hepatocytes, an established human hepatoma cell line 

(HepG2) and a murine cardiomyocyte cell line (HL-1) was used to investigate 

parasite-induced apoptosis at a cellular level. 

The aims of this study were to establish the mechanism of hepatocyte cell 

death following N. caninum infection, focusing on the mode of cell death and 

activation of the apoptotic pathways, i.e. the dissection of the apoptotic cascade – 

activation of initiator caspases (caspases 8 and 9) and effector caspase (caspase 3) - 

should it occur, and also to assess the mitochondrial organisation of N. caninum-

infected hepatocytes and cardiomyocytes.  

 

  



Chapter Three   Materials and Methods 

119 

  

3.4 MATERIALS AND METHODS  

A human hepatoma cell line (HepG2, ATCC HB-8065, kindly provided by the 

Department of Molecular and Clinical Pharmacology, University of Liverpool), 

primary bovine hepatocytes (derived from liver samples obtained from a local 

abattoir in Birkenhead, Liverpool, UK), a murine cardiomyocyte cell line (HL-1, 

kindly provided by Dr. William Claycomb, Health Science Centre, Louisiana State 

University, New Orleans, LA), an African Green Monkey kidney epithelial cell line 

(Vero cells, ATCC CCL-81) and N. caninum tachyzoites (Nc-Liverpool), both 

maintained at the Department of Infection Biology, University of Liverpool, were 

used for the in vitro studies. 

3.4.1 Culturing and maintenance of Vero cells 

Vero cells were maintained in RPMI-1640 medium supplemented with 2% (v/v) 

horse serum (Invitrogen, Paisley, UK), 50 IU/ml penicillin, and 50 µg/ml 

streptomycin (Lonza Bio-Whittaker, Walkersville, USA) [growth medium] at 37
°
C 

with 5% CO2 in T-75 tissue culture flasks (Nunc, Roskilde, Denmark). Flasks were 

inoculated with 3x10
5
 cells in 15 ml growth medium. When the Vero cell layer 

became confluent, it was washed with PBS/ethylenediaminetetraacetic acid (EDTA) 

[PE; 1 ml/wash] to remove all traces of medium and serum. Excess PE was then 

tipped off and replaced with 0.5 ml of 0.25% PBS/EDTA/Trypsin (PET). Excess 

PET was then removed leaving only enough to cover the cell layer, and the flask was 

incubated at 37
°
C for 5 min. Cells were then washed from the flask with 10 ml of 

growth medium and transferred to a centrifuge tube. A cell count was carried out 

using a Neubauer haemocytometer. New flasks were inoculated with 3x10
5
 cells/75 

cm
2
. 

3.4.2 Culturing and maintenance of N. caninum parasites  

N. caninum tachyzoites of the NC-Liverpool isolate (Barber et al., 1995) were 

maintained in Vero cells grown in RPMI-1640 medium supplemented with 2% (v/v) 

horse serum, penicillin 50 IU/ml, streptomycin 50 µg/ml (Lonza Bio-Whittaker), as 

previously described (Williams et al., 1997). Tachyzoites were harvested from the 

Vero cell monolayers after the cells had been destroyed following parasite egress, 

which resulted in the presence of numerous free tachyzoites in the culture medium. A 

sterile cell scraper (Fisher Scientific, New Jersey, USA) was used to remove the 
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parasite-infected cell monolayers. The suspension of parasites and Vero cells was 

homogenised by passages through a 25 gauge needle until all Vero cells had been 

disrupted and the intracellular tachyzoites released. The preparation containing the 

parasites and cell debris was washed twice in cold sterile phosphate buffered saline 

(PBS, pH 7.2) by centrifugation at 858 x g at 4
°
C. The final pellet was then passed 

through a Sephadex G-25M PD-10 Desalting column (Pharmacia, Uppsala, Sweden) 

that had been equilibrated with PBS as per the manufacture’s instruction. The eluted 

purified parasites were counted using a Neubauer haemocytometer and used to infect 

cell cultures or centrifuged at 12,000 x g and the pellet stored at -20ºC until needed.  

3.4.3 Isolation and culturing of primary bovine hepatocytes  

3.4.3.1 Reagents and solutions  

Collagenase type II (1 mg/ml), Hank’s balanced salt solution (HBSS), Dulbecco’s 

modified eagle medium (DMEM), bovine serum albumin fraction (BSA-fraction V), 

fungizone antimycotic (250 µg amphotericin B + 250 µg sodium desoxycholate/ml), 

gentamycin (250 mg), penicillin 10,000 U/ml/streptomycin 10 mg/ml, ethylene 

glycol tetraacetic acid (EGTA; 3.8g/L), sodium hydroxide (NaOH; 0.8g/L), calcium 

chloride (CaCl2; 5 mmol/L), HEPES 1.0 mM, PBS, foetal bovine serum (10% FBS). 

HBSS and fungizone were purchased from Life Technologies, Paisley, UK. All other 

chemicals were purchased from Sigma-Aldrich, Dorset, UK. Perfusate solutions and 

culture media were prepared as follows: perfusate A (wash buffer pH 7.0) contained 

1,000 ml PBS, 380 g/100 ml EGTA and 800 mg NaOH; perfusate B consisted of 500 

ml PBS, 250 mg gentamycin and 6 ml penicillin/streptomycin; perfusate C 

comprised 500 mg collagenase type II, 500 ml HBSS, 1M HEPES solution and 210 

mg CaCl2. The growth medium used for culturing the primary cells contained 

DMEM + HBSS (100 ml) 10% (v/v) FBS, fungizone antimycotic (250 µg 

amphotericin B + 250 µg sodium desoxycholate/ml) and 1 g/L of BSA-V. 

3.4.3.2 Isolation of primary bovine hepatocytes  

Each liver (four from the apical region of the caudate process with intact capsule 

from adult cows) was collected in cold NaCl solution (0.9 g/L) and transported to the 

lab within approximately 30 min. The procedure was carried out in a designated 

sterile lab used for primary cell isolation. The liver specimen was placed in a sterile 

Petri dish and a large vein on the cut surface was cannulated with a 14G needle. All 
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other vessels were ligated with either suture material or forceps to keep the fluid 

from escaping through the cut surface. The lobe was perfused for 15 min at a flow 

rate of 50 ml/min with perfusate A (37
°
C). Perfusate B was then administered for 3 

min at the same flow rate, after which the collagenase solution (perfusate C) was 

administered for 7 min at 50 ml/min (with the collagenase added to the buffer 

approximately 2 min before perfusion). The caudate process was then moved to a 

sterile plate in perfusate B and fine forceps were used to gently disrupt the liver 

capsule and release the cells into the buffer. Residual tissue was removed and the cell 

suspension was filtered into a sterile beaker through a 125 µm nylon blotting cloth, 

which was pre-treated with the same buffer to facilitate drainage. The cell suspension 

was allowed to settle for approximately 10 min on ice in 50 ml Falcon tubes after 

which the supernatant was removed and cells were washed three times with perfusate 

B (4
°
C, centrifugation for 3 min at 50 x g) before re-suspension in 20 ml PBS. The 

cell suspension was then layered over 20 ml of Lymphoprep solution (Progen 

Biotechnik, Heidelberg, Germany) and spun at 4
°
C

 
for 20 min at 1,000 x g. Cells 

were retrieved from the top of the Lymphoprep solution and re-suspended in PBS for 

viability determination by 0.4% (w/v) trypan blue (Sigma-Aldrich, Dorset, UK) 

exclusion and cell enumeration with a Neubauer haemocytometer.   

3.4.3.3 Culturing and maintenance of primary bovine hepatocytes  

The hepatocyte cell density was adjusted to 2x10
6
 cells per 25 cm

2
 collagen-coated 

flask (Sigma-Aldrich) in DMEM + HBSS growth medium containing 10% (v/v) 

FBS, BSA-V and fungizone and maintained at 37
°
C

 
in a humidified atmosphere of 

95% O2 and 5% CO2. After 24 h incubation, 50% of the growth medium was 

removed and fresh medium added, followed by complete replacement by fresh 

medium each 24 h. The monolayer was monitored daily using an inverted phase 

contrast microscope; morphological changes were assessed using a DCM900 digital 

camera (Oplenic Optronics Equipment Company Ltd, China). The monolayers were 

infected with different multiplicities of infection (MOI), i.e. 1x10
6
, 2x10

6 
and 4x10

6 

N. caninum tachyzoites, after reaching confluence. Parasites were allowed to interact 

with the host cells for 1 h after which the monolayer was washed and new growth 

medium added. Uninfected hepatocytes were used as controls and were treated 

similarly without the parasites. At the end of the experiment, the cell layers were 

harvested using a sterile cell scraper (Fisher Scientific) and the suspension was 
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collected into 15 ml tubes and centrifuged at 215 x g for 10 min. The cell pellets 

were washed twice in PBS then transferred to 1.5 ml Eppendorf tubes in PBS and 

centrifuged at 100 x g for 10 min. PBS was removed and the pellets were fixed in 4% 

paraformaldehyde (PFA). 

3.4.4 Culturing and maintenance of hepatocyte cell lines 

HepG2 cells were grown in T75 (Nunc, Roskilde, Denmark) tissue culture flasks in 

15 ml of growth medium (Lonza Bio-Whittaker). To prepare the growth medium, 

450 ml DMEM was supplemented with 50 ml of 10% (v/v) (FBS; heat inactivated at 

56
°
C

 
for 30 min) and 100 U/ml penicillin and 100 µg/ml streptomycin (both from 

Lonza Bio-Whittaker). Cell monolayers were washed with PBS, then trypsinised 

with 0.25% trypsin/EDTA (Lonza Bio-Whittaker) and incubated for 5 min at 37
°
C. 

Cells were washed from the flasks using growth medium and collected in 25 ml 

Falcon tubes. One hundred microlitres of the cell preparation was removed and 

added to an Eppendorf tube with 100 µl of 0.4% trypan blue to determine cell 

viability. Cell viability was greater than 95% at all times. Cells were counted using a 

Neubauer haemocytometer. A volume containing 3x10
6
 cells was added to each flask 

in growth medium and incubated in a humidified atmosphere with 5% CO2 in air at 

37
°
C. The cell layer was infected with 6x10

6
 N. caninum tachyzoites when 

approximately 80% confluent. Tachyzoites were allowed to interact with the cell 

layer for 1 h after which time the monolayer was washed twice with PBS (37
°
C) to 

remove free parasites, and new growth medium added. Uninfected HepG2 cells, 

treated similarly but without the parasites, were used as controls and were included 

for each time point to account for any spontaneous changes that might have occurred 

during culture. At harvesting, the monolayers were scraped from the flasks using a 

sterile cell scraper (Fisher Scientific). The suspension was collected in 15 ml tubes 

and centrifuged at 215 x g for 10 min followed by 2 washes with PBS at 215 x g for 

10 min each. Cells were transferred to 1.5 ml Eppendorf tubes in PBS and 

centrifuged at 380 x g for 10 min. PBS was removed and cell pellets were fixed in 

4% PFA. Cells were harvested every hour over a 48 h period. The same protocol was 

used to culture the human hepatoma cell line (HuH7) and a mouse hepatoma cell line 

(Hepa1C) in conjunction with HepG2 cells. All cell lines were cultured and HepG2 

cells were subsequently chosen for the study due to their ability to survive longer 

periods in culture and with fewer cell deaths compared to the other two cell lines. 
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3.4.5 N. caninum in vitro invasion-egression study 

To ascertain the length of time that N. caninum tachyzoites take to egress from 

infected cells following invasion, an invasion-egression study was performed. To do 

this, 3x10
4 

HepG2 cells/well were seeded on 8-well Lab-Tek chamber slides (Nunc) 

in DMEM with 10% (v/v) FBS. Cells were infected with N. caninum tachyzoites 

after reaching confluence, using an MOI of 2:1 and 5:1 (tachyzoites to host cell), 

respectively. The experiment was undertaken twice under similar conditions. At 1 h 

post infection, the wells were washed twice with pre-warmed PBS (37
°
C) to remove 

all free parasites and new growth medium was added. Chamber slides were checked 

every 3 h after the first 12 h for the first signs of parasite egress from infected cells. 

Once this was seen, slides were washed twice with PBS and cells were fixed in 4% 

PFA at the end of the study.  

3.4.6 Culturing and maintenance of murine cardiomyocyte cell line 

HL-1 cells were maintained in Claycomb’s medium (Sigma-Aldrich), according to 

the protocol supplied by the Claycomb laboratory (see Appendix 3), supplemented 

with 2 mM L-glutamine (Sigma-Aldrich), 0.1 mM norepinephrine, 10% (v/v) FBS 

(Sigma-Aldrich) 100 U/ml penicillin and 100 µg/ml streptomycin (Lonza Bio-

Whittaker) in 5% CO2 at 37°C and 95% humidity. The cells were passaged every 3 

days (d) after reaching confluence by trypsinisation (trypsin/EDTA, Lonza Bio-

Whittaker) and seeded onto T75 flasks. Flasks were gently washed with 6 ml of 

0.05% (v/v) trypsin/EDTA warmed to 37
°
C. The trypsin/EDTA was aspirated and 

another 3 ml was added and incubated for 2 min. This volume of trypsin/EDTA was 

then removed and a second 3 ml volume was added and incubated for a further 3-8 

min. Flasks were examined microscopically for cell detachment and gentle tapping 

on the flasks helped to dislodge adhering cells. Following trypsin digestion, an equal 

amount of Soybean Trypsin inhibitor (Sigma-Aldrich) was added directly onto the 

cells to inactivate the enzyme followed by the addition of Claycomb’s wash medium 

(Claycomb’s medium supplemented with 5% (v/v) FBS, 100 U/ml penicillin and 100 

µg/ml streptomycin) to the suspended cells, which were further pelleted by gentle 

centrifugation (5 min at 500 x g). The cells were resuspended in the supplemented 

Claycomb’s medium, cell viability was determined using trypan blue exclusion, and 

a total of 3x10
6 

viable cardiomyocytes were transferred to T75 flasks. The flasks 

were precoated with 6 ml of gelatin/fibronectin (Bacto-Gelatin and fibronectin; 
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Sigma-Aldrich) and incubated for approximately 12 h at 37
°
C before use

 
(see 

Appendix 3). Cells were infected with 6x10
6
 tachyzoites (MOI of 2:1), when the 

monolayer was approximately 80% confluent, and cultured in humidified atmosphere 

of 5% CO2 in air at 37
°
C. The monolayer was washed with PBS (37

°
C) to remove all 

free parasites 1 h after seeding and new growth medium was added. Uninfected HL-1 

cells were used as controls for each time point and were treated similarly without the 

parasites. Cells were harvested at the relevant time points (every 4 h over a 48 h 

period) using a sterile cell scraper (Fisher Scientific) and the suspension collected in 

a 15ml tube. The cell suspension was centrifuged at 500 x g for 5 minutes followed 

by 2 washes in PBS. Cells were transferred to 1.5 ml Eppendorf tubes in PBS and 

centrifuged at 500 x g for 5 min. Cell pellets were fixed in 4% PFA.  

3.4.7 Processing for histology, haematoxylin and eosin and Giemsa stain  

Processing for histology (i.e. paraffin wax embedding), the preparation of sections 

for light microscopy, and all routine immunohistology and immunofluorescence 

staining were performed by the technical staff in the Histology Laboratory, 

Veterinary Laboratory Services, School of Veterinary Science, University of 

Liverpool. After fixation in 4% PFA for 15-18 h, cell pellets were routinely 

embedded in paraffin wax. Series of sections (3-5 µm thick) were cut and mounted 

on Poly-L-Lysine treated slides and allowed to dry at 37ºC. They were deparaffinised 

in xylene for 10 min, then rehydrated in graded alcohols to distilled water and 

subjected to the haematoxylin-eosin (HE) and Giemsa stain and the various other 

staining protocols (Table 3.1). 

Table 3.1: Specimens and staining protocols applied to cell pellets 

Cell type Staining protocols Time point 

HepG2 cells IH caspases 3, 8 and 9 (single stain) 0-48 h  

IH + IF caspase 3 24 and 36 h 

IH + IF caspase 8 32 h 

IH + IF caspase 9 36 h 

IF (anti-Neospora + anti-COX 1) 32 h 

HL-1 cardiomyocytes Caspases 3, 8 and 9 (single stain) 0-48 h  

IH + IF caspase 3 24 h 

IH + IF caspase 8 32 h 

IH + IF caspase 9 32 h 

IF (anti-Neospora + ant-COX 1) 28 and 32 h 

IH – immunohistology; IF – immunofluorescence  

Time points were over a 48 h period (48 separate cultures plus controls). One time point was 

subsequently chosen randomly for each caspases 3, 8 and 9 between 24 and 36 h and shown in detail 

(time of parasite sgression).  
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For the HE stain, sections were stained in Mayer’s haemalum (see Appendix 2) for 5 

min, blued in tap water for 6 min and then stained in a working solution of eosin (see 

Appendix 2) for 2 min. After that, slides were transferred directly to 95% ethanol for 

7 dips and then submerged for 1 min. This process was repeated twice. Sections were 

then dehydrated in absolute alcohol, cleared in xylene and mounted in DPX (BHD 

brand, VWR International, Lutterworth, UK). 

The Giemsa stain was performed for the initial identification of N. caninum 

tachyzoites in sections processed for routine histology. Sections were stained in a 

coplin jar in a mixture of 1 ml of Giemsa stock (see Appendix) and 45 ml distilled 

water in a water bath at 56°C for 20 min, then rinsed in distilled water. They were 

differentiated by passing them through acetic acid (1/1500) for approximately 30s, 

then washed in distilled water. Sections were blot-dried, rinsed briefly in alcohol and 

cleared and mounted with DPX. Parasites are stained blue to dark blue. 

3.4.8 Immunohistology and immunofluorescence  

The peroxidase anti-peroxidase (PAP) method was applied (Kipar et al., 1998) as 

outlined in Table 3.3, following standard protocols described in Chapter 2, section 

2.4.4. Immunohistology (IH) was performed to identify cells undergoing apoptosis, 

i.e. expressing caspase 8 (extrinsic pathway of apoptosis), caspase 9 (intrinsic 

pathway of apoptosis) and cleaved caspase 3 (effector caspase) in N. caninum-

infected and uninfected cells. Section from a bovine foetal thymus and spleen served 

as positive controls and for optimisation of the protocols. Details of the antibodies 

used and the epitope to which they are directed are provided in table 3.2, information 

on antigen retrieval, antibody dilution, secondary antibodies and detection systems 

are given in table 3.3.  

Consecutive sections from each tissue served as negative controls in which the 

primary antibody was replaced by TBS. 
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Table 3.2: Antibodies used for immunohistological and immunofluorescence 

staining 

Ligands Antibodies and sources  Specificity   

Cleaved 

caspase 3 

Monoclonal rabbit anti-cleaved caspase 3, (ASP175, 

5A1E; Cell signalling), DAKO, Glostrup, Denmark. 

Apoptotic cells, 

effector caspase 

(Eckle et al., 2004) 

Caspase 8 Polyclonal rabbit anti-human caspase 8, LS-B2225, 

Lifespan Bioscience Inc., Nottingham, UK. 

Initiator caspase, 

extrinsic pathway 

(Csak et al., 2011) 

Caspase 9 Polyclonal rabbit anti-caspase 9, PA1-21141, Thermo 

Fisher Scientific, Loughborough, UK. 

Initiator caspase, 

intrinsic pathway  

 

MTCO1 Monoclonal mouse anti-MTCO1, clone 1D6E1A8, 

Abcam, Cambridge, UK. 

Mitochondrial marker, 

inner membrane  

(Clemente et al., 2013) 

N. caninum Monoclonal mouse anti-N. caninum (gp65) antibody, 

clone 5B6, Accurate Chemical and Scientific Co., New 

York, USA. 

N. caninum antigen 

(Uzêda et al., 2013) 

N. caninum Polyclonal rabbit anti-N. caninum , Parsley,  

University of Liverpool, Liverpool, UK 
N. caninum antigen 

(Gibney et al., 2008) 

 

Table 3.3: Immunohistological protocols: antigen retrieval, antibody dilution, 

secondary antibodies and detection systems  

Antibody Antigen retrieval Antibody dilution Secondary antibody Detection system  

Anti-

cleaved 

caspase 3 

(mAb) 

Citrate buffer 
a
 1:50 in 20% SS in 

TBST 

Swine anti-rabbit 
b
, 

1:100 in 20% SS in 

TBST 

PAP rabbit 
b
, pAb 

(1:250 in 20% SS 

in TBST) 

Anti-

caspase 8 

(pAb) 

Citrate buffer 
a
 1:100 in 20% SS 

in TBST 

Swine anti-rabbit 
b
, 

1:100 in 20% SS in 

TBST 

PAP rabbit 
b
, pAb 

in 20% SS in 

TBST) 
Anti-

caspase 9 

(pAb) 

Citrate buffer 
a
 1:4 in 20% SS in 

TBST 

Swine anti-rabbit 
b
, 

1:100 in 20% SS in 

TBST 

PAP rabbit 
b
, pAb 

in 20% SS in 

TBST) 
Rabbit anti-

N. caninum 

(pAb) 

No pre-treatment 1:1000 in 20% SS 

in TBST 

Swine anti-rabbit 

IgG 
b
, 1:100 in 20% 

SS in TBST 

PAP rabbit
 b 

(1:100 in 20% SS 

in TBST 

Mouse anti-

N. caninum 

(mAb) 

Protease 1:200 in TBST Rat anti-mouse 
c
, 

1:200 in TBST 

PAP mouse 
c
, 

mAb (1:500 in 

TBST) 
a
 Treatment for 30 min at 97°C in citrate buffer (pH 6.0); 

b
 Obtained from DAKO, Glostrup, Denmark; 

c
 Obtained from Jackson Immunoresearch Laboratories, Suffolk, UK; SS – swine serum;  

pAb – polyclonal antibody; mAb – monoclonal antibody  

 

3.4.8.1 Demonstration of N. caninum  

After deparaffination, sections were incubated in methanol with 0.5% H2O2 

(Perhydrol 30% H2O2 P-a, Fisher Scientific) for 30 min at room temperature (RT) to 

inactivate endogenous peroxidase, followed by a 5 min wash in Tris-buffered saline 

tween (TBST, pH 7.6, see Appendix). Protease pretreatment (antigen retrieval, see 
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Table 2.4, Chapter 2) was performed by washing the slides in PBS (pH 7.2) at 37°C 

for 5 min, followed by 0.05% protease treatment at 37°C (Bacterial protease type 

XXIV, Sigma-Aldrich) in pre-warmed (37°C) PBS for a further 5 min, then three 

washes for 5 min each in ice-cold TBST. The slides were placed in cover plates and 

Sequenza racks (Thermo Shandon, Pittsburgh, USA) and washed for 3 x 5 min in 

TBST, then non-specific binding of antiserum was blocked by incubation in 10% rat 

serum in TBST for 10 min. The sections were incubated overnight (15-18 h) at 4°C 

with mouse anti-N. caninum in TBST. Slides were washed in TBST 3 x 5 min, then 

incubated for 30 min with the secondary antibody. Following another wash in TBST, 

slides were incubated for 30 min with PAP mouse, then washed in TBST 3 x 5 min 

and removed from the cover plates. The sections were then incubated with permanent 

stirring for 10 min in DAB (Fluka Chemie AG, Buchs, Switzerland) with 0.01% 

H2O2 (Perhydrol 30% H2O2 P-a, Fisher Scientific) in 0.1 M imidazole buffer (pH7.1, 

Fluka Chemie AG; see Appendix) at RT. The slides were washed in TBST for 3 x 5 

min and 1 x 5 min in distilled water, counterstained with Papanicolaou’s 

haematoxylin (Merck) for 1 min, and placed in running tap water for 5 min. Sections 

were dehydrated in ascending ethanol (1 min 96%, 2 min 100% and 3 min 100%), 

cleared in xylene (2 min 100% and 2 x 3 min 100%), then cover slips mounted with 

DPX (BDH brand, VWR International). 

3.4.8.2 Double immunoperoxidase (IP) and immunofluorescence (IF) labelling for 

the demonstration of N. caninum and caspases in N. caninum-infected cell cultures  

A double IP and IF staining procedure was chosen since all primary antibodies (anti-

N. caninum and caspases had been generated in rabbit. The alternative use of the 

monoclonal mouse anti-N. caninum antibody was decided against since this antibody 

generated no reaction in the single immunohistological labelling. Prior to the use in 

the double staining, single labelling with each antibody had shown the presence of 

the target antigens in the tissues. 

The double IP and IF staining method followed previously described protocols 

(Ressel and Poli, 2010). The staining was performed in sequential steps with IP to 

detect the parasites (first antigen) and IF to detect a caspase (second antigen), 

followed by counterstaining with 4,6´-diamindino-2-phenylindole (DAPI). Details of 

the antibodies used and the detection systems are provided in table 3.4. 
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Table 3.4: Antibodies and protocols for sequential double immunoperoxidase-

immunofluorescence and double immunofluorescence labelling 

Immunoperoxidase Immunofluorescence 

Primary antibody
a
 Secondary antibody

b
 Primary antibody

c
 Secondary antibody

d
  

pAb rabbit anti-Neospora 

caninum 1:1000 in 20% 

SS in TBST 

3x drops DAKO anti-

rabbit (EnVision)  

Rabbit anti-cleaved 

caspase 3 (1:50) in 

20% SS in TBST 

Anti-rabbit Dylight 

549 (1:200) in 

antibody diluent 

pAb rabbit anti-Neospora 

caninum 1:1000 in 20% 

SS in TBST 

3x drops DAKO anti-

rabbit (EnVision)  

Rabbit anti-human 

caspase 8 (1:100) in 

20% SS in TBST  

Anti-rabbit Dylight
 

549 (1:200) in 

antibody diluent 
pAb rabbit anti-Neospora 

caninum 1:1000 in 20% 

SS in TBST 

3x drops DAKO anti-

rabbit (EnVision)  

pAb rabbit anti-

caspase 9 (Neat) 

Anti-rabbit Dylight 

549 (1:200) in 

antibody diluent  
 

 

NA 

 

 

NA  

mAb mouse  anti-

MTC01 (1:100) 

+ 

pAb rabbit anti-N. 

caninum (1:1000) in 

TBST 

Anti-mouse Dylight 

488 (1:200) 

+ 

Anti-rabbit Dylight 

549 (1:200) in 

antibody diluent 

pAb – polyclonal antibody; mAb – monoclonal antibody ; NA – not applicable 

a
 Produced at the University of Liverpool; 

b
 purchased from DAKO; 

c
 For antibody details, refer to 

Table 3.2 above; 
d
 purchased from Vector Laboratories Ltd 

 

Deparaffinised sectioned pellets were washed in distilled water for 5 min, 

followed by antigen retrieval with citrate buffer (Table 3.3. For detailed description 

see Chapter 2, Table 2.4). Following incubation, the slides were removed and 

allowed to cool for 20 min, then returned to distilled water. The slides were placed 

on a flatbed and washed 3 times with TBST for 2 min, followed by incubation with 

100 µl DAKO REAL peroxidase blocking solution for 10 min at RT. This was 

followed by three washes with TBST for 2 min each. Slides were later incubated for 

1 h at RT with polyclonal rabbit anti-N. caninum antibody, then washed 3 times with 

TBST for 2 min each and incubated with DAKO EnVision+ System-Peroxidase 

solution for 30 min at RT. The solution was removed by three washes in TBST for 2 

min each, followed by incubation of the sections with permanent stirring for 10 min 

in DAB (Fluka Chemie AG) with 0.01% H2O2 (Perhydrol 30% H2O2 P-a, Fisher 

Scientific) in 0.1 M imidazole buffer (pH7.1, Fluka Chemie AG; see Appendix 2) at 

RT. The slides were then washed three times in distilled water and placed back on 

the flatbed. This was followed by 3 washes with TBST for 2 min each and incubation 

for 15-18 h at 4°C with the primary antibody for the second antigen. Slides were then 

washed three times with TBST for 2 min each followed by incubation with a 

fluorescence labelled secondary antibody (Table 3.4 for antibodies and dilutions) for 

a further 30 min in the dark to demonstrate the caspases. This was followed by three 
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washes in TBST for 2 min each and washing with distilled water 3 times after which 

VECTASHIELD Hard Set mounting medium with DAPI (Vector Laboratories Ltd, 

Cambridgeshire, UK) was applied. The slides were then kept in the dark at 4°C until 

viewing.  

3.4.8.3 Double immunofluorescence staining for detection N. caninum tachyzoites 

and host cell mitochondria 

For evaluation of the host cell mitochondrial organisation in N. caninum-infected and 

uninfected HepG2 and HL-1 cells, the double immunofluorescence labelling 

technique was performed, using a mouse monoclonal antibody against the 

mitochondrial MTCO1 marker (from here on refer to as COX 1) as described 

(Clemente et al., 2013) and the rabbit anti-N. caninum polyclonal antibody for the 

detection of the parasites (Table 3.4). After deparaffinisation, slides were washed in 

distilled water for 5 min and placed on a flatbed followed by three washes with 

TBST for 2 min each. The sections were incubated for 15-18 h at 4°C with 100 µl of 

the primary antibody cocktail, then washed 3 times with TBST for 2 min each and 

incubated for a further 1 h in the dark with the fluorescence labelled secondary 

antibodies. This was followed by 2 washes with TBST for 2 min each. Slides were 

then passed through distilled water 3 times, and the VECTASHIELD Hard Set 

mounting medium with DAPI was applied. Slides were kept in the dark at 4°C until 

viewing.   

3.4.8.4 Image acquisition and editing 

Stained slides were examined with a Nikon Eclipse 80i microscope equipped with a 

digital sight DS-5Mc camera (Nikon Corporation, town, Japan). For the double IP 

and IF stained sections, an appropriate 400 x high power field (HPF) was chosen and 

two images were captured. The first was a red-green-blue (RGB) image from a 

DAB-stained section that was acquired under bright-field light, and a brown 

precipitate following the shape of the parasite was considered a positive reaction. 

Without changing the microscopic field or magnification, a second image was 

generated changing only the settings of the microscope to capture the fluorescence 

stain in the same field. This was captured and merged with DAPI at the same time. 

All images were saved as TIFF files, with 2,560 x 1,920 pixels (width x height) and 

8-bit depth. Images were processed using Adobe Photoshop CS6 software, version 
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13.0.1 (Adobe System Incorporated, San Jose, California, USA). The bright field 

image (layer one) was adjusted for contrast and resolution (300 pixels/inch) and 

layered onto a white background. The same resolution was set for the second image 

(fluorescence), then the Photoshop colour range was selected and the image copied 

and pasted over the bright field image, creating a second layer. The layers were 

merged using the transparency setting (blending options) creating a composite image 

of the two signals. The single images for histology and immunohistology were 

captured similarly as described above (first image). For the double IF, slides were 

examined with a Zeiss Axio Imager M2 microscope equipped with an AxioCam 

MRc camera (Carl Zeiss Ltd, Jena, Germany). All images were captured at 630 x 

HPF. Four images were automatically generated by the microscope (three single 

channels and one composite) and processing of images was performed using the Zen 

2012 Digital Imaging software (Carl Zeiss Ltd). 

3.4.9 Quantitative, semi-quantitative assessment and statistical data analysis 

Quantitative analysis for cleaved caspase 3-positive cells (HepG2 and HL-1 cell 

lines) was performed by counting 4 non-overlapping, representative 400 x HPF in 

one section of each infected and control cell pellets. The antibody selectively stained 

the cytoplasm of cells with morphological changes consistent with apoptosis and of 

cells without visible morphological changes. Four fields were used due to the 

relatively small size of the samples (cell pellets). A photomicrograph of each section 

was taken with the Zeiss Axio Imager M2 microscope (Carl Zeiss Ltd). The number 

of positive and negative cells was counted in each section and the mean percentage 

was given for infected and uninfected cells. The Kruskal-Wallis test was performed 

separately for the infected and control groups to test for differences across time 

points (0-48 h), then the Mann-Whitney U test was applied to test differences at each 

time point (infected versus control). 

To assess the number of caspases 8 and 9-positive cells, a subjective grading 

system was used to determine the intensity of the IH reaction in cells (0 = no 

reaction, 1 = weak staining, 2 = moderate staining, 3 = intense staining). Positive 

cells were identified based on both nuclear and cytoplasmic (caspase 8 - cytoplasmic 

only) reaction. In addition, a semi-quantitative scoring system of the percentage of 

positively labelled cells (proportion), independent of intensity, was applied (0 = 

negative, 1 = 1-25% positive cells, 2 = 26-50% positive cells, 3 = 51-75% positive 
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cells, 4 = >75% positive cells). Each section was divided into 4 non-overlapping 

representative 400 x HPF, and a number (0, 1, 2 or 3) was applied to represent each 

staining intensity and the proportion of positively stained cells (0, 1, 2, 3 or 4). The 

average of these 4 numbers generated from the four microscopic fields provided a 

single number for intensity (I) and for the proportion of positive cells (P), 

respectively. The mean immunohistological score (  ̅) was obtained by multiplying 

the average staining intensity by the average proportion of positives (  ̅x  ̅ =   ̅). The 

data were analysed using the Kruskal-Wallis test to check for differences between 

infected and control specimens separately, then the Mann-Whitney U test was 

applied to specimens from corresponding time points to check for statistical 

differences (scores) between infected and control cells (0-48 h). All statistical 

analyses were performed using the IBM SPSS Statistics 20 software (IBM Corp., 

Armonk, NY). Statistical significance was accepted when p<0.05 (*).  

3.4.10 One-dimensional poly-acrylamide gel electrophoresis (1-DE) and 

immunoblot analysis 

In sections from pellets prepared with both HepG2 and HL-1 cells stained with IH 

and IF, there was evidence that the cleaved caspase 3, caspases 8 and 9 antibodies 

cross-reacted with N. caninum tachyzoites. In order to confirm this cross reaction, a 

1-DE and immunoblot blot analysis was performed, using a N. caninum tachyzoite 

lysate prepared from cell-free tachyzoites from cultures maintained under the same 

conditions as those used for the initial immunohistological staining (Table 3.3). Vero 

cell protein extract was used as a positive control for caspases 3, 8 and 9 to show that 

the antibodies recognise the target proteins.  

3.4.10.1 Parasite and Vero cell preparation 

Neospora caninum tachyzoites and Vero cells were cultured and harvested as 

described above in section 3.4.2 and 3.4.1, respectively. A total of 1x10
8
 tachyzoites 

and 1x10
5 
Vero cells (grown in T75 flask) were used for protein extraction. 

3.4.10.2 Preparation of tachyzoite and Vero cell lysates 

Cell samples were lysed in a loading buffer containing 50 mM Tris-HCl (pH 6.8), 

1% (v/v) Triton X-100 and 10 μl/ml protease inhibitor (Sigma-Aldrich). The 

suspension was incubated on ice for 10 min after which tachyzoites and Vero cells 
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were disrupted by incubation in an ultrasonic bath sonicator (Thermo Fisher 

Scientific) at 4°C, followed by centrifugation at 12,000 x g for 10 min. Supernatants 

were collected and the remaining unlysed pellets discarded.  

3.4.10.3 Bradford protein assay  

The protein concentration of both the N. caninum and Vero cell extract was 

determined with the Bradford protein assay. The sample and standards (10 µl of each 

in triplicate) were pipetted into a 96-well plate, and 200 µl Coomassie protein assay 

reagent (Bradford Protein Assay Kit; Thermo Fisher Scientific) was added to each 

well and mixed thoroughly. The plate was incubated at RT for approximately 5 min 

and the absorbance measured with an Infinite F50 ELISA plate reader (Tecan, 

Salzburg, Austria) at 595 nm. A standard curve was generated from the absorbance 

and the sample concentration was calculated accordingly in μg/μl. 

3.4.10.4 Sodium-dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

The protein extracts of the N. caninum Liverpool isolate and Vero cell lysates were 

processed for SDS-PAGE. Resolving and stacking gels were prepared according to 

previously published protocols (Goebel et al., 2001). Acrylamide gel was made up 

with 30% acrylamide in 0.8% Bis-acrylamide stock solution (BDH brand, VWR 

International). The resolving gel solution [10 ml acrylamide, 5 ml 1.5M Tris-HCl 

(pH 8.8), 4.6 ml double distilled water (ddH2O), 200 μl 10% (w/v) ammonium 

persulphate (APS), 200 μl SDS and 20 μl tetramethylethylenediamine (TEMED)] 

was poured between two clean glass plates which were stabilised in a pouring stand, 

and a small volume of water was added to provide a smooth gel interface. Following 

the polymerisation of the resolving gel and water removal, the stacking gel [830 μl 

acrylamide, 630 μl 1M Tris-HCl (pH 6.8), 3.4 ml ddH2O, 50 μl 10% (w/v) APS, 50 

μl 10% (w/v) SDS and 5 μl TEMED] solution was poured on top of the resolving gel 

and a comb was added. Following stacking gel polymerisation, the comb was 

removed and the wells were washed with 1x SDS-PAGE running buffer [25 mM 

Tris-HCl (pH 7.5), 250 mM glycine, 0.1 % (w/v) SDS]. N. caninum and Vero cell 

protein samples were prepared using 4x LDS sample buffer (Invitrogen, Paisley, UK) 

supplemented with 10% β-mercaptoethanol (BME) reducing agent and denatured at 

95℃ for 10 min. A total of 7.5 μl ColorPlus pre-stained protein ladder [New England 

Biolabs: 10-230 kDa (P7711S)] was loaded as a reference for molecular weights, and 
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N. caninum and Vero cell protein extracts were loaded at a concentration of 10 μg 

each to separate wells. SDS-PAGE gel was run at 150V in 1x SDS-PAGE running 

buffer for approximately1 h, until optimum resolution of the marker was achieved. 

3.4.10.5 Western blot and immunoblot analysis 

Poly-vinylidine fluoride (PVDF) membranes (Millipore U.K. LTD, Feltham, UK) 

were primed in 100% methanol and equilibrated in SDS-PAGE transfer buffer [25 

mM Tris-HCl (pH 8.3), 192 mM glycine and 20% (v/v) methanol]. Two thick pieces 

of filter paper were also soaked in the transfer buffer. One piece of soaked filter 

paper was placed on the surface of a Bio-Rad semi-dry transfer apparatus, the soaked 

PVDF membrane was placed on top of this, followed by the complete SDS-PAGE 

gel. Finally, the second piece of soaked filter paper was placed on top of the SDS-

PAGE gel. Electrophoretic transfer was performed according to the manufacturer’s 

instructions at 150V for 1 h using a Hoefer TE 70 Semi-Dry transfer apparatus (GE 

Healthcare, Buckinghamshire, UK). Following the transfer, the PVDF membrane 

was blocked in 10% (w/v) non-fat skimmed milk powder (Sigma) prepared in Tris-

buffered saline [50 mM Tris-HCl (pH 8.3), 150 mM NaCl] containing 0.5% (v/v) 

Tween-20 (TBST). After blocking, the membrane was washed twice quickly with 

approximately 10 ml TBS-T, and 3 times for 5 min each with TBST, then cut into 

strips. Membranes were then incubated for 15-18 h at 4
o
C on a rocker with the 

primary antibodies, i.e. rabbit anti-cleaved caspase 3 mAb (1:1,000), rabbit anti-

human caspase 8 pAb (1:1,000), rabbit anti-caspase 9 pAb (1:1,000) and rabbit anti-

N. caninum pAb (1:500) diluted in antibody diluent (Abcam, Cambridge, UK). For 

antibody and manufacturers’ details, refer to Table 3.2 above. Following incubation, 

the strips were washed 3 times for 5 min each with TBST.  

Binding of the primary antibodies was detected with the goat anti-rabbit HRP-

conjugated secondary antibody (1:2,500; Abcam) diluted in antibody diluent 

(Abcam) and applied for 1 h at RT on a rocker. Following incubation, the strips were 

washed twice quickly with approximately 10 ml TBS-T, then 3 times for 5 min each 

with TBS-T. Binding of the secondary antibody was detected by enhanced chemi-

luminescence (ECL)-Plus (GE Healthcare). Antibody-bound proteins were visualised 

on a Bio-Rad Molecular Imager ChemiDoc XRS+ with Image Lab Software (Bio-

Rad laboratories Ltd, CA, USA) and images saved as TIFF files.  
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3.4.11 Ultrastructural examination of N. caninum-infected cells by transmission 

electron microscopy (TEM) 

Cultures containing 3x10
6 

HepG2 cells grown in T75 tissue culture flasks were 

infected with 6x10
6
 N. caninum tachyzoites (Liverpool strain, MOI of 2:1) and 

harvested at 40, 42 and 44 h post infection. Cell culture monolayers were harvested 

from flasks using a sterile cell scraper (Fisher Scientific). Cells were centrifuged at 

858 x g for 10 min and the resulting cell pellet was washed twice and resuspended in 

PBS in 1.5 ml Eppendorf tubes, then centrifuged at 1,000 x g for 10 min. Pellets 

were fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.4, at 4
°
C

 

until further processing. Processing of the pellets for TEM was undertaken by the 

technician in the Electron Microscopy Unit, Veterinary Laboratory Services, School 

of Veterinary Science, University of Liverpool (conventional TEM) and the Electron 

Microscopy Unit, Institute of Veterinary Pathology, Vetsuisse Faculty, and the 

Centre for Microscopy and Image Analysis, University of Zurich, Switzerland (3D-

TEM).  

For the conventional TEM processing, samples were washed in 0.1 M sodium 

cacodylate buffer for 10 min and post-fixed in 1% (w/v) osmium tetraxide for 40 

min. Subsequently, specimens were washed in distilled water for 10 min then 

prestained in uranyl acetate (2% UA in 0.69% maleic acid) for 40 min. Specimens 

were then dehydrated in graded series of ethanol (50, 70, 90 and 3 x 100%), and in 

acetone 100% (3 x 5 min each). Samples were then routinely embedded and went 

through a graded acetone series in resin, 30:70 Taab resin in acetone for 40 min, 

70:30 mix and the procedure was repeated twice using 100% resin for 1 h each.  

Specimens were then transferred into polyethylene moulds of undiluted resin for 

embedding and incubated at 60
°
C

 
overnight (15-18 h). Semi-thin sections were cut, 

stained with methylene blue and examined to select areas of interest for 

ultrastructural examination. Ultrathin sections were then cut from the polymerised 

blocks with a diamond knife (Diatome Ltd, Biel, Switzerland) on an ultracut 

ultramicrotome (Reichert Jung, Vienna, Austria) then loaded onto 200 mesh copper 

grids (Agar Scientific, Essex, UK). Staining with uranyl acetate and lead citrate was 

performed. Sections were viewed on a Philips EM208S (FEI UK Limited, 

Cambridge, UK) operating at 80 kV. 



Chapter Three   Materials and Methods 

135 

  

For the 3D-EM, tissue blocks were fixed in 2.5 glutaraldehyde in 0.1 M sodium 

cacodylate buffer, pH 7.4, overnight at 4ºC, washed in 0.1 M PB for 3 x 15 min, and 

post-fixed in 1% osmium tetroxide in 0.1 M PB for 1-2 h at RT. Specimens were 

washed 3 times for 10 min in distilled water and en-bloc stained with 2% aqueous 

uranyl acetate for 1 h at RT, then washed 3 x 5 min in distilled water. For 

dehydration, specimens were immersed in 50/70/95% ethanol for 10 min each, then 

in 100% ethanol and 100% propylene oxide for 3 x 15 min. For infiltration with 

resin, they were subsequently immersed in 1:1 EMBed 812 and propylene oxide 

overnight at RT in capped vials on a shaker and finally embedded in 100% EMBed 

812 for 2 h at RT with subsequent polymerisation at 60–70ºC (~65 ºC) in an oven for 

48 h. Semithin sectioning and staining was performed as described above. 

Preevaluation of sections and digital imaging was performed with a Philips CM 10 

(Philips, Eindhoven, Netherlands) and a Gatan Orius Sc1000 (832) digital camera, 

(Gatan Inc., Pleasanton, USA). For FIB-SEM nanotomography (“3D-EM”), ultrathin 

sections from these blocks were imaged with a TEM (Leo 912, Zeiss, Oberkochen, 

Germany) to localise N. caninum tachyzoites. Epoxy blocks were then glued onto an 

aluminum SEM sample holder by applying conductive carbon cement at the bottom 

and the sides. The sample was sputter coated with 10 nm of carbon. Milling and 

imaging was performed continuously in an Auriga 40 cross beam system (Zeiss, 

Oberkochen, Germany) using the FIBICS Nanopatterning software (Fibics Inc., 

Canada). Milling was carried out with a gallium-ion beam at 30 kV, 600 pA current, 

and a z-spacing of 15 nm. SEM images were acquired at an acceleration voltage of 

1.5 kV using an in-lens energy selective backscattered electron dectector (ESB) with 

a grid voltage of 1.3 kV and 14 µs dwell time. The pixel-size was set to 15 nm and 

tilt-corrected to obtain isotropic voxels. The obtained stack of serial images was 

registered and aligned with the software Fiji and the plugin TrackEM2. The 3D 

model of the data was visualized by loading the image stack into Imaris (Bitplane 

AG, Zurich, Switzerland).  

The distance between the PVM and associated outer mitochondrial membrane 

(OMM) was measured on images of known magnification and the mean and standard 

deviation calculated using IBM SPSS Statistics 20 software (IBM Corp.). 
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3.5 RESULTS  

3.5.1 Culturing and infection of primary bovine hepatocytes 

Primary bovine hepatocytes were isolated from livers of cows and infected with N. 

caninum tachyzoites to evaluate their effects on bovine hepatocytes in vitro. Livers 

from adult animals were used since it was impossible to acquire viable bovine foetal 

tissues at a slaughterhouse for the isolation of hepatocytes. Assessment of cell 

viability in freshly isolated bovine adult hepatocytes (Fig. 3.1A), using trypan blue 

exclusion, showed an average viability of 76% (range 67.5 - 84.5%).  Hepatocytes 

seeded onto T25 collagen-coated flasks began to adhere to the culture flasks after 

approximately 2 h in culture. After 24 h, numerous non-adherent, i.e. non-viable cells 

were observed floating in the medium and subsequently removed together with the 

old growth medium. Adhering hepatocytes exhibited an epithelial phenotype and 

survived in culture for approximately 8 d while maintaining their morphology (flat 

cells with one or two round nuclei, granular and sometimes vacuolated cytoplasm). 

After a week in culture, a heterogeneous population of cells, with high numbers of 

spindle-shaped cells (consistent with myofibroblasts), was observed among the 

hepatocytes. The proliferation of fibroblasts subsequently resulted in the overgrowth 

and death of the hepatocytes.  

Following infection of the isolated hepatocytes (approximately 24 h post 

isolation) with N. caninum tachyzoites at different MOI (0.5, 1 and 2 tachyzoites to 1 

hepatocyte), numerous dead, detached cells were observed in the flasks during the 

first 12-24 hpi. Remaining adhering hepatocytes appeared normal or shrunken, but 

the hepatocyte population was greatly reduced and therefore unsuitable for further 

investigation. The light microscopic examination of PFA-fixed, paraffin embedded 

cell pellets harvested at 24 hpi revealed that the majority of hepatocytes underwent 

coagulative necrosis, based on their morphology (Fig. 3.1B). Low numbers of viable 

hepatocytes, with distinct nuclei and cell borders, were observed in the infected 

culture. The majority of hepatocytes in the control cultures remained unaltered and 

the cellular morphology was retained, with a flattened appearance (Fig. 3.1C).  Low 

numbers of detached hepatocytes were present in the culture flasks of the uninfected 

controls, but this did not significantly affect the quantity of viable cells. Due to the 

high rate of cell death in culture following infection, further studies on isolated 

bovine hepatocytes were not attempted and the human hepatoma cell line (HepG2) 
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was subsequently used to study the effects of the parasites and to understand the 

mechanism of cell death following infection.  

 
Figure 3.1. Primary bovine hepatocytes, isolated, cultured and infected with N. caninum tachyzoites. 

A. Overview of primary bovine hepatocytes 2 h after isolation, presenting as a homogenous cell 

population. B. Hepatocytes following infection with N. caninum tachyzoites (MOI of 0.5) and 

harvested approximately 24 hpi. Low numbers of viable hepatocytes (arrowhead) are present, while 

the majority of cells are necrotic, with loss of cell borders and nuclei and poorly discernable 

cytoplasm (asterisk). C. Control culture with higher numbers of viable hepatocytes harvested at the 

same time as the infected culture. HE stains. Bars = 50µm. 

3.5.2 Neospora caninum in vitro invasion-egression time-course study 

Initially, human HepG2, HuH7 and murine Hepa1C cell lines were cultured and 

infected with N. caninum tachyzoites to assess the optimum cell line in terms of 

growth efficiency and survivability following N. caninum infection. All cell lines 

were harvested, stained immunohistologically and processed for TEM. The HepG2 

cell line was subsequently chosen due to its high survivability, uniform monolayer 

and high growth rate. The in vitro invasion-egression study was carried out to 

ascertain the approximate length of time N. caninum takes to invade, replicate and 

egress from the infected cells (the of invasion has been kept unchanged while 

studying the time of egression). To ensure that free tachyzoites were removed from 
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wells after infection, each well was washed twice with sterile PBS after 1 h 

incubation, to remove all remaining parasites. Extracellular tachyzoites were not 

observed between 12 and 24 hpi. The first sign of parasite egress was seen at 

approximately 36 hpi on a chamber slide culture infected with an MOI of 2:1 

(parasites/cells). In a repeat experiment under the same conditions and an MOI of 

5:1, parasite egress was first observed at approximately 48 hpi. Following egress, 

abundant cell debris was present within infected wells compared to controls, 

suggesting increased cell death around the time of parasite egress. 

Immunohistological demonstration of N. caninum antigen in the monolayer on the 

chamber slides revealed numerous large intact PV with high numbers of tachyzoites 

(Fig. 3.2A). Cell death was more extensive in the infected cultures following parasite 

egress, with large empty spaces observed on the monolayer, compared to the uniform 

growth on the control slides (Fig. 3.2B). Based on these results, all subsequent in 

vitro infections were carried out with an MOI of 2:1.  

 

Figure 3.2. HepG2 cells following infection with N. caninum tachyzoites and harvested at 60 hpi (for 

methods, see Chapter 2, section 2.4.6). A. Numerous intact PVs with high numbers of tachyzoites 

(arrowhead) are present. The majority are undergoing parasite egress (arrow). Bar = 20 µm. B. 

Control culture showing 100% confluence. Bar = 100 µm. PAP method, Papanicolaou’s haematoxylin 

counterstain. 

3.5.3 SDS-PAGE and immunoblot analysis 

The results of the immunohistological and immunofluorescence stains provided 

strong evidence of cross reaction of the primary antibodies against caspases 3, 8 and 

9 with N. caninum tachyzoites in both HepG2 and HL-1 cells. Tachyzoites within 

intact hepatocytes and cardiomyocytes were stained with the respective antibodies, 

while the specific cytoplasmic (all caspases) and/or nuclear (caspase 9) reaction was 

not observed in the cells (Figs. 3.5 and 3.17). To ascertain whether the binding of the 

antibodies to the parasites was non-specific, protein extract from free N. caninum 
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tachyzoites cultured under the same condition as those used for the initial 

immunohistological staining, was analysed by SDS-PAGE and immunoblotting with 

the same primary antibodies. Vero cell protein extract served as a positive control, 

and the immunoblots yielded a complex of immunoreactive banding specific for their 

respective antigens (Fig. 3.3): a 12 KDa protein representing the small subunit 

(cleaved) caspase 3 and a band representing pro-caspase 3 (approximately 32 KDa); 

a band of approximately 30 KDa detected by anti-human caspase 8; while anti-

caspase 9 detected 2 bands, a 25 and 35 KDa protein, representing the full length and 

cleaved intermediate caspase 9, respectively. These results confirm the specificity of 

the antibodies for the respective caspase. In contrast, immunoblots on the parasite 

extracts showed that the antibodies react with unknown proteins, ranging in size from 

approximately 10 to 40 KDa, with a similar pattern for all three antibodies. The 

rabbit anti-human caspase-8 antibody yielded the strongest bands, which correlated 

with the intensity of the immunohistological reaction that prompted the immunoblot 

analysis. These findings are consistent with non-specific binding of the anti-caspase 

antibodies to N. caninum antigens.   

                      
Figure 3.3. SDS-PAGE and immunoblot analysis of N. caninum (Nc-Liverpool) and Vero cell 

(positive control) protein extract run under reducing condition with rabbit antibodies against cleaved 

caspase 3, caspase 8 and caspase 9. Lane 1 – molecular weight markers; Lane 2 –Vero cell protein 

extract (positive control); Lane 3 – N. caninum protein extract. Caspase 3. Vero cells and N. caninum 

protein extract (10 µg) incubated with rabbit anti-cleaved caspase 3 and detected by immunoblot. A 

32 KDa (pro-caspase 3, black arrowhead) and a 12 KDa (small subunit caspase 3, white arrowhead) 

are detected. The primary antibody also binds to several parasite proteins ranging from approximately 

10-40 KDa (arrows, lane 3). Caspase 8. Vero cells and N. caninum protein extract (10 µg) incubated 

with rabbit anti-human caspase 8 and detected by immunoblot. Lane 2 – 30 KDa protein (arrowhead, 

Vero cells). The primary antibody also binds to several parasite proteins ranging from approximately 

10-40 KDa (arrows, lane 3). Caspase 9. Vero cells and N. caninum protein extract (10 µg) incubated 

with rabbit anti-caspase 9 and detected by immunoblot. Lane 2 – 35 KDa protein (black arrowhead, 

cleaved intermediate) and a 25 KDa protein (white arrowhead, full length caspase 9) are identified. 
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The primary antibody also binds to several parasite proteins ranging from approximately 10-40 KDa 

(arrows, lane 3). 

3.5.4 Cytopathic effects of N. caninum in HepG2 hepatoma cells 

In vivo studies (Chapter 2) showed evidence of hepatocellular necrosis and apoptosis 

in foetuses from dams infected at 70 dg, and the presence of large numbers of 

cleaved caspase 3-positive apoptotic, uninfected hepatocytes. To further assess the 

effect of the parasite on hepatocytes, the expression of cleaved caspase 3, caspase 8 

and caspase 9 was evaluated by immunohistology in an immortalised human 

hepatoma cell line, HepG2, in vitro. By light microscopy, both uninfected and 

infected hepatoma cells exhibited a normal morphology, while low numbers of 

apoptotic bodies were observed (Figs. 3.4A-F). In infected culture, moderate 

numbers of N. caninum tachyzoites were detected in intact hepatocytes during early 

time points and increased with time. Cleaved caspase 3-positive hepatocytes were 

detected in infected cultures at all time points studied, but tachyzoites were only 

found within intact, cleaved caspase 3-negative hepatocytes (Fig. 3.5A). In 

comparison, the uninfected control cultures (16-32 hpi) contained lower numbers of 

caspase 3-expressing apoptotic hepatocytes (Fig. 3.5D; 32 hpi) at the corresponding 

time points. Quantitative analysis of cleaved caspase 3 expression revealed no 

significant differences in the mean numbers of apoptotic cells between infected 

cultures and uninfected control cultures from 0-16 hpi (Fig. 3.6; p>0.05, Mann-

Whitney U test). At 20 hpi, however, the number of cleaved caspase 3-positive 

apoptotic hepatocytes was significantly increased and remained high until 36 hpi in 

infected cultures compared to controls (Fig. 3.6; p=0.029, Mann-Whitney U test). No 

significant differences were observed between infected and control cultures after the 

36 hpi time point, although slightly higher numbers of apoptotic cells were present in 

infected cultures.  
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Figure 3.4. Overview of cell pellet from N. caninum-infected (MOI of 2:1) and uninfected cultured 

HepG2 cells harvested at 4 hpi (A, B) and 36 hpi (C-F). A. At 4 hpi, hepatocytes are generally viable. 

HE stain. Bar = 50µm.  B. Higher magnification of A. HE stain. Bar = 10µm. C. At 36 hpi, N. 

caninum-infected culture has high numbers of viable hepatocytes. HE stain. Bar = 50µm. D. Higher 

magnification of C showing viable hepatocytes. HE stain. Bar = 10µm. E. At 36 hpi, uninfected 

control cultures exhibit high numbers of viable hepatocytes. HE stain. Bar = 50µm. F. Higher 

magnification of E. HE stain. Bar = 10µm.  
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Figure 3.5. Cell pellet from N. caninum-infected (A, C, E) and uninfected (B, D, F) HepG2 cells 

harvested at 36 hpi, stained for the expression of cleaved caspase 3 (A, B), caspase 8 (C, D) and 

caspase 9 (E, F). A. N. caninum tachyzoites (cross reaction with caspase antibody, discern based on 

parasite morphology) are detected within intact hepatocytes that are not labelled for caspase 3 

(arrows). B. Uninfected control culture showing caspase 3 expression. C. N. caninum tachyzoites are 

detected within viable cells not labelled for caspase 8 (arrow) and within caspase 8-positive 

hepatocytes (arrowhead). D. Uninfected control culture showing similar caspase 8 expression. E. High 

numbers of caspase 9-expressing hepatocytes are detected and N. caninum are present with an intact 

cell not labelled for caspase 9 (arrow). F. Caspase 9-expressing cells are detected in high numbers as 

in the infected cultures. Figs A-F: PAP method, Papanicolaou’s haematoxylin counterstain. Bars = 

20µm. 
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Figure 3.6. Quantitative analysis of caspase 3 expression in N. caninum-infected and uninfected 

HepG2 cells. Cultures were infected with N. caninum tachyzoites and apoptotic hepatocytes in 4 

randomly selected, non-overlapping, representative HPF were counted and compared with controls at 

corresponding time points. Significantly higher numbers of caspase 3-expressing hepatocytes were 

detected in infected cultures compared to controls at 20-36 hpi (asterisk, p<0.05). Whiskers represent 

95% confidence intervals.  

 

3.5.4.1 Caspase 3 expression in individual N. caninum infected cells using double 

immuno-labelling. The expression of cleaved caspase 3 was assessed in N. caninum-

infected cells using the combined IP and IF labelling technique for N. caninum 

tachyzoites and cleaved caspase 3, respectively. Sequential sections, following those 

used for the individual immunohistological staining for both antigens, were used for 

the double IP and IF staining. The IP-staining revealed high numbers of N. caninum 

tachyzoites within intact hepatocytes, which exhibited normal cellular morphology 

(Figs. 3.7A (24 hpi) and 3.7D (36 hpi). No cleaved caspase 3 expression was 

detected within infected cells by IF; however, surrounding uninfected hepatocytes 

were clearly positive [Figs. 3.7B, C (24 hpi) and E, F (36 hpi)], confirming the 

results of the single IH. Lower numbers of caspase 3-positive cells were detected in 

the control culture, also confirming the result of the single IH.  

 

3.5.4.2 Evaluation of the apoptotic pathways in N. caninum-infected and uninfected 

HepG2 cells: caspase 8 expression. Immunohistological staining for caspase 8 used 

sections from PFA-fixed paraffin embedded cultured hepatocytes cut after those used 

to analyse caspase 3 expression. Caspase 8 expression was characterised by intense 

cytoplasmic staining in hepatocytes with normal morphology. The semi-quantitative 

assessment (mean proportion, intensity and immunohistological score) of caspase 8 
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expressing hepatocytes in four HPF was undertaken and uninfected control and 

infected cultures compared between 0 and 48 hpi (Figs. 3.8A, B). Despite the 

apparent cross reaction of the anti-human caspase 8 antibody with N. caninum 

tachyzoites, it was possible to distinguish between parasites (based on their 

morphology) and host cell caspase 8 expression. N. caninum tachyzoites were clearly 

identified in hepatocytes not labelled for caspase 8 at different time points and were 

sometimes detected within intact caspase 8 expressing cells with normal morphology 

(Fig. 3.5B). The number of caspase 8-positive hepatocytes (normal cellular 

morphology) in infected cultures at each time point was generally high and 

considerably higher than the number of cleaved caspase 3 expressing cells at each 

corresponding time point. Control cultures had equally high numbers of caspase 8-

expressing cells as the infected cultures (Fig. 3.8E). Semi-quantitative data analysis 

of caspase 8-expressing hepatocytes in both infected and control cultures revealed a 

steady decline from the initial mean proportion at 0-20 hpi, followed by a plateau at 

20-24 hpi (Fig. 3.8A). An increased number of caspase 8-positive cells was observed 

at 28 hpi, followed by a gradual decrease up to 48 hpi. This pattern was apparent in 

both infected and control cultures and there was no significant difference between 

the two at corresponding time points (Figs. 3.8A-B; p>0.05, Mann-Whitney U test).  

The double IP and IF technique was used to detect tachyzoites and expression of 

caspase 8 in individual N. caninum-infected and uninfected HepG2 cells. Staining 

was performed on sections consecutive to those used for single IH. Clusters of N. 

caninum tachyzoites were detected within intact hepatocytes, which exhibited normal 

cellular morphology (Fig. 3.9A). Caspase 8 expression was detected by IF in high 

numbers of hepatocytes in the same section (Fig. 3.9B). The merged IP and IF image 

revealed that the majority of infected hepatocytes did not express caspase 8 (Fig. 

3.9C). However, unlike caspase 3, caspase 8 was also expressed by a few N. 

caninum-infected hepatocytes; these had normal cellular morphology (Fig. 3.9C). 

High numbers of caspase 8-positive uninfected hepatocytes were detected within the 

infected culture, and in the control cultures, similar numbers of caspase 8 expressing 

hepatocytes were evident (Fig. 3.9D-F).  

 

3.5.4.3 Evaluation of the apoptotic pathways in N. caninum-infected and uninfected 

HepG2 cells: caspase 9 expression. Expression of the mitochondria-dependent 

caspase 9 was assessed in N. caninum-infected HepG2 cells. Immunohistological 
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staining for caspase 9 was performed on sections from PFA-fixed paraffin embedded 

cultured hepatocytes cut after those stained for caspase 3 and 8. Caspase 9 expression 

was detected within intact hepatocytes with normal cellular morphology, and was 

represented by an intense nuclear (Ritter et al., 2000; Eckle et al., 2004) and 

cytoplasmic reaction. 

Semi-quantitative analysis was carried out as described above for caspase 8. 

No significant differences were observed between infected and control cells with 

regard to the mean proportion and immunohistological scores of caspase 9-positive 

hepatocytes (Fig. 3.10A-B; p>0.05, Mann-Whitney U test). A slight increase in the 

number of caspase 9-positive hepatocytes was observed in the infected cultures at 1, 

4, 16, 32 and 44 hpi compared to controls at corresponding time points, but this was 

not significant. Caspase 9 expression was predominantly detected in uninfected 

hepatocytes within the infected cultures (Fig. 3.5C). In control cultures, the 

expression was similar to that observed in infected cultures (Fig. 3.5F). The number 

of caspase 9 expressing cells increased slightly (0-16 hpi), followed by a moderate 

decrease (20-28 hpi; Fig. 3.10A). In comparison, the number of positive cells in the 

infected cultures increased modestly with time and plateaued at the time when 

parasite egress was observed (32-36 hpi), but similar numbers of positive cells were 

present in the controls. A fluctuation in the number of positive cells was observed 

after 36 hpi.  

To further evaluate the activation of the intrinsic, mitochondrial pathway in N. 

caninum-infected and uninfected cells, double IP and IF labelling for N. caninum and 

caspase 9 was performed on a pellet harvested at 36 hpi. Staining was undertaken on 

sections consecutive to those used for single IH. Clusters of N. caninum tachyzoites 

were detected within intact hepatocytes with normal cellular morphology (Fig. 

3.11A). IF of the same section showed high numbers of caspase 9-positive 

hepatocytes, but N. caninum-infected cells were caspase 9-negative (Fig. 3.11B, C). 

Hepatocytes within the control cultures exhibited similar cellular morphology as 

infected cells at corresponding time points and similar numbers of caspase 9-

expressing hepatocytes (Fig. 3.11D-F), which suggests that factors other than the 

parasites are responsible for cell death in the in vitro model.  
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Figure 3.7. Combined immunoperoxidase (IP) and immunofluorescence (IF) labelling of N. caninum-

infected and uninfected HepG2 cells. IP staining of N. caninum-infected and uninfected HepG2 cells 

using rabbit anti-N. caninum pAb with DAKO anti-rabbit EnVision (DAB; A, D, G) and further IF 

staining using rabbit anti-cleaved caspase 3 labelled with anti-rabbit Dylight 549 (red; B, E, H). Bars 

= 20 µm. Merged (C, F, I). A-C. At 24hpi, N. caninum tachyzoites are evident as a brown reaction 

(DAB) within the cytoplasm of hepatocytes under bright field light (arrows; A). IF shows caspase 3 

expresson in hepatocytes (arrowheads; B). Overlay of images A and B showing no co-localisation of 

N. caninum tachyzoites (arrows) and caspase 3 expressing cells (arrowheads) (C). D-F. At 36hpi, 

clusters of N. caninum tachyzoites are detected as a brown reaction (DAB) within intact hepatocytes 

(arrow, D). IF shows caspase 3 expressing hepatocyte (arrowhead, E). Overlay of D and E showing no 

co-localisation of caspase 3 expressing hepatocyte (arrowhead) with N. caninum tachyzoites (arrow) 

(F). G-I. At 36hpi, uninfected controls culture without N. caninum tachyzoites (G). IF reveals caspase 

3 expressing hepatocytes with diffuse cytoplasmic staining (arrowhead; H). Overlay of G and H 

showing caspase 3 expression in an uninfected hepatocyte (arrowhead; I).   
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Figure 3.8. Semi-quantitative analysis of caspase 8 expression in N. caninum-infected and uninfected 

HepG2 cells. A. Mean proportion of caspase 8-expressing hepatocytes in infected (black bars) and 

control cultures (white bars). No significant differences are observed between infected and control 

cultures at corresponding time point. B. Mean immunohistological scores for caspase 8 expression at 

corresponding time points. No significant differences were observed between infected (black bars) 

and uninfected control (white bars) cultures. Whiskers represent 95% confidence intervals. 
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Figure 3.9. Combined immunoperoxidase (IP) and immunofluorescence (IF) labelling of N. caninum-

infected and uninfected HepG2 cells using rabbit anti-N. caninum pAb with DAKO anti-rabbit 

EnVision (DAB; A, D) and further IF staining using rabbit anti-human caspase 8 labelled with anti-

rabbit Dylight 549 (red; B, E). Bars = 10µm. Merge (C, F). A-C. At 32hpi, N. caninum tachyzoites are 

evident (DAB) in the cytoplasm of intact hepatocytes (arrow) and two clusters within caspase 8-

expressing hepatocytes (arrowheads) (A). IF staining reveals high numbers of caspase 8 expressing 

hepatocytes and two cells where N. caninum tachyzoites are detected under bright field light 

(arrowheads) (B). Overlay of A and B showing clusters of tachyzoites within intact hepatocytes 

(arrow) and N. caninum tachyzoites within caspase 8 expressing cells (arrowheads) (C). D-F. At 

36hpi, uninfected control culture under bright field is negative for N. caninum tachyzoites (D). IF 

shows high numbers of caspase 8 expressing hepatocytes (E). Overlay of D and E showing caspase 8 

expression in uninfected HepG2 cells (F).  
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Figure 3.10. Semi-quantitative analysis of caspase 9-expression in N. caninum-infected and 

uninfected HepG2 cells. A. The mean proportion of caspase 9-expressing cells in infected (black bars) 

and control cultures (white bars). Significant differences were not observed in caspase 9-expression. 

B. Mean immunohistological score for caspase 9-expression in N. caninum-infected hepatocytes 

(black bars) and controls (white bars). Significant differences were not observed between infected and 

controls. Whiskers represent 95% confidence intervals. 
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Figure 3.11. Combined immunoperoxidase (IP) and immunofluorescence (IF) labelling of N. 

caninum-infected and uninfected HepG2 cells using rabbit anti-N. caninum pAb with DAKO anti-

rabbit EnVision (DAB; A, D) and further IF staining with rabbit anti-caspase 9 labelled with anti-

rabbit Dylight 549 (red; B, E). Bars = 10µm. Merge (C, F). A-C. At 36hpi, large clusters of N. 

caninum tachyzoites are detected within intact hepatocytes (arrows; A). IF reveals high numbers of 

caspase 9 expressing hepatocytes. Arrows point to areas where tachyzoites are detected under bright 

field light (B). Overlay of A and B showing clusters of tachyzoites in hepatocytes not labelled for 

caspase 9 (arrows; C). D-F. At 36hpi, uninfected control culture under bright field light is negative for 

N. caninum tachyzoites (D). IF reveals high numbers of caspase 9 expressing hepatocytes in the 

control culture (E). Overlay of D and E showing the distribution of caspase 9 expressing cells in the 

control culture (F).  

 

3.5.5 Mitochondrial organisation in N. caninum infected HepG2 cells 

The HepG2 cell line was used to assess the organisation of host cell mitochondria 

during N. caninum infection. In infected cultures at 24 and 32 hpi, N. caninum 

tachyzoites were detected within intact hepatocytes in which aggregates of host cell 

mitochondria were seen in close association with the PVM (Figs. 3.12A-C; 24 hpi 

and D-F; 32 hpi). Mitochondria were clumped in close proximity to the PVM. In 

contrast, uninfected hepatocytes in the infected cultures had large clusters of 

mitochondria which aggregated mainly in the perinuclear region. Other uninfected 

bystander hepatocytes in the infected cultures had a more diffuse, homogenous 

distribution of mitochondria, often with an unaltered reticular pattern consistent with 

the normal cellular morphology.  

In the control cultures, a large population of hepatocytes exhibited diffusely 

distributed mitochondria or mitochondrial aggregates with a punctate pattern and 

localised mainly in the perinuclear regions (Figs. 3.12G-I; 32 hpi), similar to 

uninfected cells in the infected cultures.  
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Figure 3.12. Double immunofluorescence (IF) labelling of N. caninum-infected and uninfected 

HepG2 cells with rabbit pAb and labelled with anti-rabbit Dylight 549 (red) and host cell 

mitochondria detected with mouse anti-MTCO1 mAb and labelled with anti-mouse Dylight 488 

(green). Bars = 10µm. A-C. At 24hpi, high numbers of N. caninum tachyzoites are detected within 

hepatocytes (arrows; A). Diffuse distribution of host cell mitochondria is detected with clumped 

pattern observed in cells with N. caninum tachyzoites (B). Overlay showing close contact of the host 

cell mitochondria with PVM (arrows; C). Arrowhead points to a more diffuse distribution of 

mitochondria. D-F. At 32hpi, high numbers of parasites are detected within hepatocytes (arrows; D). 

Clumped mitochondria are observed in hepatocytes containing tachyzoites (arrows; E). Overlay 

reveals the close association of the parasites with the host cell mitochondria (arrows; F). G-I. At 

32hpi, tachyzoites are not present in uninfected control culture (G). A diffuse distribution of host cell 

mitochondria is shown within uninfected hepatocytes with clumping and large aggregate, punctate 

pattern (arrow, COX 1; H). Overlay shows the distribution of mitochondria in uninfected hepatocytes 

and cells with clumping of mitochondria (arrow, COX 1 and DAPI), while others exhibit normal, 

homogenous distribution in the cytoplasm (arrowhead; I).  
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3.5.6 Ultrastructural characterisation of N. caninum-infected hepatocytes 

TEM served to closer examine the distribution of host cell mitochondria in N. 

caninum-infected HepG2 cells. In the infected cultures, harvested at 42 hpi, 

uninfected cells exhibited a normal morphology. Infected cells containing 

tachyzoites appeared intact, i.e. exhibited morphology similar to uninfected cells 

(Fig. 3.13). However, a close association of the host cell mitochondria with the N. 

caninum PVM was observed (Figs. 3.14A-B). A few mitochondria even appeared to 

be in direct physical contact with the PVM (Figs. 3.14A-B and 3.15A-B), while 

others formed small clusters in close apposition. Despite this, mitochondria were of 

homogenous size and structure, with unaltered membranes and matrices. The mean 

distance between the OMM and PVM was 140.30±118.70 nm (n=12) and range from 

approximately 25 to 375 nm. In viable hepatocytes from the control cultures, 

mitochondria were randomly distributed throughout the cytoplasm, although found 

mainly in the perinuclear region (Figs. 3.14C-D and 3.15A-B). Mitochondria were 

morphologically similar to those observed in the infected cells. Other cells within the 

control cultures were characterised by cytoplasmic vacuolation and mitochondrial 

clumping, which are features of early apoptosis (Fig. 3.14D; Haga et al., 2003). 

These features were not observed in infected cells with viable parasites at similar 

time points. In infected cells, the endoplasmic reticulum (ER) was often observed in 

close association with the PVM especially in the perinuclear region (Fig. 3.15B).   
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Figure 3.13. Semithin section of a N. caninum-infected HepG2 cell pellet harvested at 42 hpi. 

Clusters of N. caninum tachyzoites (arrowheads) are present with intact hepatocytes, exhibiting 

normal cellular morphology (arrow points to the nucleus of the infected cell). Toluidin blue stain, Bar 

= 20µm.  
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Figure 3.14. Ultrastructural features of N. caninum-infected and uninfected HepG2 cells harvested at 

42 hpi. A. Numerous N. caninum tachyzoites (T) are present within the PV in a hepatocyte which 

otherwise exhibits the normal cellular morphology. A cluster of mitochondria (M) is seen in close 

contact with the PVM (arrows). Bar = 11,000X. B. Hepatocyte with numerous tachyzoites (T) in a 

PV. A small cluster of mitochondria (M) is located in close apposition to the PVM (arrow) and a 

single mitochondrium is in direct contact with the PVM (arrowhead). C. Uninfected hepatocyte from 

the control culture with randomly distributed mitochondria (M) in the cytoplasm and surrounding the 

nucleus (N). Bar = 8,900X. D. Control culture. Hepatocytes with normal morphology and randomly 

distributed mitochondria (black asterisks) and a single apoptotic hepatocyte with clumped 

mitochondria (M) and small cytoplasmic vacuoles (white asterisk) Bar = 3,500X. Lead citrate/uranyl 

acetate staining. 

 

 
Figure 3.15. Ultrastructural features of N. caninum-infected HepG2 cells harvested at 46 hpi. A. N. 

caninum tachyzoites (T) are present in hepatocytes with numerous mitochondria (M) that are 

predominantly located in close contact with the PVM. B. Hepatocyte with two PV filled with 

tachyzoites (T). Numerous mitochondria (M) are located in the perinuclear region and in association 

with the PVM. Endoplasmic reticulum (ER) is also closely associated with the PVM. Lead 

citrate/uranyl acetate staining, FIB-SEM Nanotomography. 
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Figure 3.16. Example of the 3D model image stack of N. caninum-infected HepG2 cells harvested at 

46 hpi (same as in Fig. 3.15) and visualised using the Imaris software. Tachyzoites (T) are present 

within vable hepatocytes (arrows, cell border). Mitochondria (M) are seen in the cytoplasm 

surrounding the nucleus (N) and in association with PVM (arrowhead). Lead citrate/uranyl acetate 

staining, FIB-SEM Nanotomography.  

 

3.5.7 Effects of N. caninum on HL-1 murine cardiomyocytes 

Large numbers of N. caninum tachyzoites were detected within intact 

cardiomyocytes of foetuses from experimentally infected cows in early gestation 

without evidence of cell degeneration (Gibney et al., 2008). To further investigate 

these in vivo observations, the interaction between N. caninum and cardiomyocytes 

was investigated to understand why the parasites appear to have a different effect in 

these cells compared to hepatocytes. For this purpose, an in vitro cardiomyocyte 

culture system was used. Activation of the intrinsic (caspase 9) and extrinsic (caspase 

8) apoptotic cascade, along with expression of the effector caspase 3 was evaluated 

for evidence of apoptotic cell death in cardiomyocytes in association with N. 

caninum infection, either as a result of the direct impact of the parasites in infected 

cells or indirectly in neighbouring uninfected cells, similar to the effect in cultured 

hepatocytes. In the HE-stained sections of the PFA-fixed and paraffin embedded 

cardiomyocyte pellets, a uniform population of cardiomyocytes, with low numbers of 

apoptotic bodies was observed in both the infected and control cultures (Figs. 3.17A-

F). Cleaved caspase 3 was detected in the cytoplasm of cells with the morphology of 

apoptotic cells. Morphological assessment and quantification of cleaved caspase 3-
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positive cells showed that in the infected cultures, N. caninum tachyzoites were only 

detected within cleaved caspase 3-negative, viable cardiomyocytes, whereas a 

proportion of uninfected cells was found to be cleaved caspase 3-positive (Figs. 

3.18A). Their numbers were similar to the numbers of caspase 3-positive cells in 

control cultures at corresponding time points (Fig. 3.18D). Mean numbers of positive 

cells fluctuated mildly in both infected and control cultures, but there were no 

significant differences in the mean numbers between them (Fig. 3.19; p>0.05, Mann-

Whitney U test), suggesting that caspase 3-activation in the infected cultures is not 

parasite dependent.  

To further characterise the effects of N. caninum on HL-1 cardiomyocytes, the 

simultaneous double IP and IF staining technique to detect N. caninum and cleaved 

caspase 3 expression was employed on sequential sections consecutive to those cut 

for single IH. Again, N. caninum-infected cardiomyocytes exhibited normal cellular 

morphology, similar to cells in the control cultures at each time point. N. caninum 

tachyzoites were observed within intact cardiomyocytes in the IP-stained sections 

(Fig. 3.19A), and IF on the same sections revealed cleaved caspase 3 expression in 

uninfected cardiomyocytes, whereas infected cells remained unlabelled, (Fig. 3.20A-

C; 24 hpi). In the control cultures, similar numbers of cleaved caspase 3-positive 

cardiomyocytes were detected (Fig. 3.20D-F; 24 hpi). 
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Figure 3.17. N. caninum-infected (MOI of 2:1) and uninfected HL-1 cardiomyocytes at 20 hpi (A-C) 

and 28 hpi (D-F). A. At 20 hpi, infected cultures show predominantly viable cells. B. Higher 

magnification of A, showing uninfected apoptotic cells (arrowhead) among viable cells. C. Uninfected 

control culture harvested at 20 hpi, with similar morphological features as the infected culture. D. 

Infected HL-1 culture harvested at 28 hpi, showing high cell numbers and similar morphological 

features as in A. E. Higher magnification of D showing apoptotic (arrowhead) and viable cells. F. 

Uninfected control culture harvested at 28 hpi, exhibiting high cell numbers and similar to the infected 

culture. Figs A and D: HE stain. Bars = 100µm. Figs. B and E: HE stain. Bars = 50µm. Figs. C and F: 

HE stain. Bars = 100µm. 

 
Figure 3.18. Immunohistological staining of N. caninum-infected (A-C) and uninfected (D-F) HL-1 

cardiomyocytes harvested at 32 hpi for the expression of caspase 3 (A, D), caspase 8 (B, E) and 

caspase 9 (C, F). A. High numbers of caspase 3 expressing, apoptotic uninfected cells are detected in 

the infected culture (arrowhead), whereas N. caninum tachyzoites are present within intact cells not 

labelled for caspase 3 (arrow). B. N. caninum tachyzoites (arrows) are detected within intact caspase 

8-negative cells. Uninfected cells in the infected culture are expressing caspase 8 (arrowhead). C. 

Tachyzoites are detected within intact caspase 9-negative cells (arrow), while uninfected cells express 

caspase 9. D. Caspase 3 expression is detected in high numbers of cells in the control culture. E. 

Similar numbers of caspase 8-expressing cell are detected in the control culture. F. Uninfected control 

culture showing caspase 9 expression in a moderate number of cells. PFA-fixed and paraffin 

embedded cell cultures. PAP method, Papanicolaou’s haematoxylin counterstain. Figs A-C: Bars = 

10µm. Figs D-F: Bars = 50µm. 
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Figure 3.19. Quantitative analysis of caspase 3 expression in N. caninum-infected and uninfected HL-

1 murine cardiomyocytes. Four randomly selected, non-overlapping 40X high power fields were 

selected and assessed quantitatively for both infected (black bars) and control (white bars) cultures. 

No significant differences were observed in the numbers of caspase 3-expressing cardiomyocytes 

between infected and control cultures at corresponding time points. Whiskers represent 95% 

confidence interval.  

 

 
Figure 3.20. Combined immunoperoxidase (IP) and immunofluorescence (IF) labelling of N. 

caninum-infected (A-C) and uninfected (D-F) HL-1 murine cardiomyocytes harvested at 24 hpi. A. A 

cluster of N. caninum tachyzoite is detected within a cardiomyocyte (arrowhead). B. IF staining 

reveals low numbers of cleaved caspase 3-expressing cardiomyocytes (arrows). C. Merged image of 

A and B in which tachyzoites are evident as brown staining (arrowhead) and neighbouring, uninfected 

caspase 3-expressing cardiomyocytes as red fluorescent labelling (arrows). D-F. Uninfected control 

cultures at 24 hpi. D. N. caninum tachyzoites are not detected in uninfected cultures under bright field 

light. E. High numbers of cardiomyocytes are labelled for cleaved caspase 3. F. Merged image of D 

and E showing distribution of cleaved caspase 3-expressing uninfected cardiomyocytes. IP staining of 

N. caninum-infected HL-1 cardiomyocytes using rabbit anti-N. caninum pAb with DAKO anti-rabbit 

EnVision (DAB: A, D) and further IF staining with rabbit anti-cleaved caspase 3 labelled with anti-

rabbit Dylight 549 (red: B, E). Merged images: C, F. Bars = 10 µm. 
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3.5.7.1 Evaluation of the apoptotic pathways in N. caninum-infected and uninfected 

HL-1 murine cardiomyocytes: caspase 8 expression. Caspase 8 expression was 

characterised by intense cytoplasmic staining. To assess the extent of caspase 8 

expression in N. caninum-infected HL-1 cells, a semi-quantitative analysis, using the 

same approach as for the HepG2 cells, was conducted on immunohistologically 

stained sections consecutive to those used above. Within the infected cultures, 

caspase 8 expression was observed in large numbers of uninfected cardiomyocytes, 

whereas N. caninum-infected cells were caspase 8-negative (Fig. 3.18B). Similar 

numbers of caspase 8-expressing cells were detected in both infected and control 

cultures (Fig. 3.18E), and the statistical analysis of the mean proportion of caspase 8-

expressing cardiomyocytes confirmed this for all time points (Fig. 3.21A; p>0.05, 

Mann-Whitney U test). The mean IH score for caspase 8-expression also showed no 

significant difference between infected and control cultures (Fig. 3.21B; p>0.05, 

Mann-Whitney U test), except at 44 hpi, where the expression was significantly more 

intense in the control cultures. These findings indicate that N. caninum had no effect 

on caspase 8-activation following infection in the in vitro model.  

To further evaluate the caspase 8-expression in N. caninum-infected HL-1 

cells, the double IP and IF-labelling technique was performed, using the rabbit anti-

N. caninum and rabbit anti-human caspase 8 pAbs on sequential sections consecutive 

to those used above. Cardiomyocytes in both infected and control cultures exhibited 

normal cellular morphology at corresponding time points. N. caninum tachyzoites 

were detected by IP staining within intact, caspase 8-negative cardiomyocytes (Fig. 

3.22A). IF revealed caspase 8 expression with strong cytoplasmic staining in 

uninfected cardiomyocytes, while infected cells were caspase 8-negative (caspase 8 

antibody cross reaction is observed in the section, but parasites are identified based 

on their morphology) (Fig. 3.22B, C). Similar numbers of caspase 8-expressing 

cardiomyocytes were detected in the control cultures (Fig. 3.22D-F).   
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Figure 3.21. Semi-quantitative analysis of caspase 8 expression in N. caninum-infected and 

uninfected HL-1 murine cardiomyocytes. A. The mean proportion of caspase 8-expressing 

hepatocytes is slightly higher in infected cultures (white bars) at 12, 16, 24 and 36 hpi (p>0.05) 

compared to controls (black bars). B. The mean immunohistological scores for infected (white bars) 

and control cultures (black bars) are shown. A significant difference is observed at 44 hpi when the 

expression is more intense in control cultures. Asterisk denotes a p value of <0.05 and whiskers 

represent 95% confidence intervals. 
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Figure 3.22. Combined immunoperoxidase (IP) and immunofluorescence (IF) labelling of N. 

caninum-infected and uninfected HL-1 murine cardiomyocytes harvested at 32 hpi. A. Clusters of N. 

caninum tachyzoites are detected within intact cardiomyocytes (arrows). B. IF staining reveals caspase 

8 expression in the cytoplasm of cardiomyocytes (arrowheads). Arrows point to the clusters of 

tachyzoites with caspase 8 antibody cross-reaction (discerned based on parasite morphology). C. 

Overlay of A and B showing caspase-8 expressing cells (arrowheads) and localisation of tachyzoites 

(arrows). D-F. Uninfected controls culture harvested at 32 hpi. D. N. caninum tachyzoites are not 

detected in control cultures under bright field light. E. IF staining for caspase 8 reveals red fluorescent 

staining within the cytoplasm of uninfected cardiomyocytes (arrows). F. Overlay of D and E showing 

the distribution of caspase 8 expressing cells in the control culture. IP staining of N. caninum-infected 

HL-1 cardiomyocytes using rabbit anti-N. caninum pAb with DAKO anti-rabbit EnVision (DAB; A, 

D) and further IF staining with rabbit anti-human caspase 8 labelled with anti-rabbit Dylight 549 (red: 

B, E). Merged images: C, F. Bars = 10 µm. 

 

3.5.7.2 Evaluation of the apoptotic pathways in N. caninum-infected and uninfected 

HL-1 murine cardiomyocytes: caspase 9 expression. Caspase 9-expression in 

cardiomyocytes was characterised by a nuclear or both nuclear and cytoplasmic 

reaction (Eckle et al., 2004). Cells expressing caspase 9 exhibited the normal cellular 

morphology and were found in both infected and control cultures. The semi-

quantitative analysis was performed as described for HepG2 cells. In the infected 

cultures, IH detected N. caninum tachyzoites within intact, caspase 9-negative 

cardiomyocytes, whereas numerous uninfected cells were found to be caspase 9-

positive (Fig. 3.18C; 32 hpi). In the control cultures (Fig. 3.18F; 32 hpi), caspase 9 

expressing cells were less numerous than in the infected cultures at the 

corresponding time points. A significantly higher proportion of caspase 9-positive 

cells was observed in control cultures at 20, 32 and 48 hpi (Fig. 3.23A, B; p<0.05, 

Mann-Whitney U test). No differences were observed at other time points, although 
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caspase 9-positive cells were slightly more numerous in control cultures compared to 

infected cultures.  

To further evaluate the expression of caspase 9 in N. caninum-infected HL-1 

cardiomyocytes, the double IP and IF labelling technique was performed using the 

rabbit anti-N. caninum and the rabbit anti-caspase 9 pAbs on sequential sections 

consecutive to those used for the single IH staining. As was previously observed in 

N. caninum-infected HepG2 cells, tachyzoites were detected within intact HL-1 

cardiomyocytes exhibiting normal cellular morphology (Fig. 3.24A, 32 hpi). IF 

revealed high numbers of caspase 9 expressing cells in the same section, but N. 

caninum-infected cardiomyocytes remained unlabelled (Fig. 3.24B, C), thus 

confirming the IH results. Similarly high numbers of caspase 9-positive 

cardiomyocytes were detected in the control cultures (Fig. 3.24D-F).  
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Figure 3.23. Semi-quantitative analysis of caspase 9 expression in N. caninum-infected and 

uninfected HL-1 murine cardiomyocytes. A. A mild increase in the mean proportion of caspase 9-

expressing cells is observed in control HL-1 cultures (black bars) compared to infected cultures (white 

bars) at corresponding time points. B. Significant differences in the mean immunohistological scores 

of control cultures were observed 20, 32 and 52 hpi (black bars). Asterisk denotes a p value of <0.05 

and whiskers represent 95% confidence intervals. 
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Figure 3.24. Combined immunoperoxidase (IP) and immunofluorescence (IF) labelling of N. 

caninum-infected (A-C) and uninfected (D-F) HL-1 murine cardiomyocytes harvested at 32 hpi. A. 

Two clusters of N. caninum tachyzoites are detected by IP staining (arrows). B. IF detected caspase 9 

expressing cardiomyocytes with diffuse nuclear and cytoplasmic staining (arrowheads). C. Overlay of 

A and B showing caspase 9 expressing cardiomyocytes (arrowheads) and intact cells with N. caninum 

tachyzoites not labelled for caspase 9 (arrows). D-F. Uninfected controls culture harvested at 32 hpi. 

D. N. caninum tachyzoites are not present within the control culture. E. IF reveals caspase 9 

expressing cardiomyocytes in the nucleus and cytoplasm of uninfected cells (arrows). F. Overlay of D 

and E shows the distribution of caspase 9-positive cardiomyocytes in uninfected cells (arrows). IP 

staining of N. caninum-infected HL-1 cardiomyocytes using rabbit anti-N. caninum pAb with DAKO 

anti-rabbit EnVision (DAB: A, D) and further IF staining with rabbit anti-caspase 9 labelled with anti-

rabbit Dylight 549 (red: B, E). Merged images: C, F Bars = 10 µm. 

 

3.5.8 Mitochondrial organisation in N. caninum infected HL-1 cells 

To analyse the potential effect of N. caninum on mitochondrial organisation in 

cardiomyocytes, the double IF staining was performed with rabbit anti-N. caninum 

pAb for detection of the parasites and mouse anti-COX 1 mAb for labelling of the 

mitochondria on sequential sections of the infected HL-1 cell culture pellets 

consecutive to those used for the caspase staining described above. In the infected 

cultures, N. caninum tachyzoites were detected by IF (red fluorescence) within PV 

(Figs. 3.25A, D) in close association with mitochondria (green fluorescence) that 

formed aggregates surrounding the PVM (Figs. 3.25B, C; 28 hpi, 3.25E, F; 32 hpi). 

Among uninfected cells, approximately 40% comprised a uniform population of 

viable cells with a homogenous cytoplasmic distribution of mitochondria. The 

remaining uninfected cells exhibited clumps of mitochondria. These were 

represented by large aggregates of mitochondria with a punctate pattern and localised 

predominantly in the perinuclear region (Figs. 3.25B-C and E-F). In the control 
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cultures, a similar pattern of mitochondrial organisation was observed (Figs. 3.25H, 

I). A large proportion of cells exhibited a homogenous distribution of mitochondria, 

represented by a reticular pattern throughout the cytoplasm. The remaining 

approximately 40-50% of cells exhibited mitochondrial clumping, with large 

aggregates of cytosolic punctate mitochondria.  

 

 
Figure 3.25. Double immunofluorescence labelling of N. caninum-infected (A-F) and uninfected (G- 

I) HL-1 murine cardiomyocytes at 28 hpi (A-C) and 32 hpi (D-I). A-F. A. A large cluster of 

tachyzoites is detected within a cardiomyocyte (arrow). B. IF reveals mitochondrial distribution in the 

cytoplasm of cardiomyocytes in the infected culture. C. The overlay shows a close association of the 

clumped host cell mitochondria with the PVM (arrow) and a diffuse homogenous distribution of the 

mitochondria in an uninfected cell (arrowhead). D. At 32 hpi, high numbers of tachyzoites are 

detected within cardiomyocytes (arrows). E. Host cell mitochondria are observed in aggregates 

surrounding areas where parasites are detected. F. Aggregated host cell mitochondria are present in 

close association with the PVM (arrows), while a homogenous diffuse pattern is observed in 

uninfected cells (arrowhead). G. Control HL-1 cells are negative for N. caninum tachyzoites. H. Large 

aggregates of mitochondrial clumping are observed in the cytoplasm of uninfected cells (arrow). I. 

Merged image showing distribution of host cell mitochondria forming large aggregates in uninfected 

HL-1 cells (arrow) along with an even distribution of mitochondria in other cells (arrowhead). 

Immunolabelling of infected cardiomyocytes using rabbit anti-N. caninum pAb with anti-rabbit 

Dylight 549 (red; A, D, G) to identify the parasites and mouse anti-MTCO1 mAb followed by anti-

mouse Dylight 488 was used for detection of host cell mitochondria (B, E, H). Merged images: C, F, 

I. Bars = 10 µm.  
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3.6 DISCUSSION  

The current study sought to further investigate the observation that N. caninum 

tachyzoites induced hepatocellular death (necrosis and apoptosis) in foetuses 

following infection in early gestation, but did not lead to the death of 

cardiomyocytes. The analysis of the tissues of foetuses from experimentally infected 

dams detected tachyzoites mainly within intact foetal hepatocytes and 

cardiomyocytes which both exhibited normal cellular morphology. In the foetal liver, 

hepatocellular necrosis was observed along with high numbers of hyper-eosinophilic, 

cleaved caspase 3-positive, apoptotic cells. These observations indicated that 

hepatocytes that were infected with N. caninum, remained intact while surrounding 

uninfected cells underwent necrosis and/or apoptosis. Evidence of hepatocellular 

necrosis, in association with N. caninum infection in early gestation, was confirmed 

in these same foetuses by TEM in an earlier study (Gibney et al., 2008). To define 

the mechanisms underlying these findings, the impact of N. caninum infection on 

hepatocytes and cardiomyocytes was evaluated using an in vitro tissue culture 

system, focusing on the demonstration of initiator and effector caspases of the 

apoptotic pathways in infected and uninfected cells. 

3.6.1 The effects of N. caninum on primary bovine hepatocytes  

Cells isolated ex vivo more closely represent the physiology of cells in vivo and for 

this reason were chosen to further assess the mechanism of cell death following N. 

caninum infection (Zhang et al., 2011). Primary hepatocytes were isolated from the 

caudate process of adult bovine livers using the collagenase perfusion method to 

separate hepatocytes from the surrounding extracellular matrix. This method is 

widely used and produces a relatively large number of hepatocytes, which can be 

maintained for up to 10 days in culture (Risal et al., 2011; Zhang et al., 2011). We 

obtained a mean viability of 78% which was consistent with other studies of bovine 

primary hepatocyte isolation where viability of approximate 81% and 86% were 

recorded (Forsell et al., 1985; Zhang et al., 2011). Following the inoculation with N. 

caninum tachyzoites at different MOI, the viability of hepatocytes was significantly 

reduced after 24 h. This loss of viability could be due to several causes. For example, 

the culture conditions and growth medium are important factors; they ensure the 

survival of cells in the in vitro environment and can result in a significant reduction 
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of viable cells if not optimal (Clouet et al., 1998). When infected cultures were 

compared with control cultures after 24 h, a profound difference was observed in that 

control cultures exhibited almost full viability, which suggests that the addition of 

parasites to the primary cultures resulted in substantial cell death. Similarly, a high 

level of apoptotic cell death was observed in an in vitro model with primary human 

trophoblasts infected with T. gondii (Abbasi et al., 2003). This indicates that primary 

hepatocyte cultures may not be an ideal in vitro model for assessing the pathogenesis 

of N. caninum. Due to the findings in the initial experiments, any further experiments 

with primary bovine hepatocyte isolates were deemed unfeasible and further attempts 

not made.   

3.6.2 The effects of N. caninum on HepG2 cells 

The assessment of infected HepG2 cell cultures provided evidence that N. caninum 

inhibits apoptosis of infected cells.  Both mitochondrial and death receptor pathways 

appeared inhibited in infected hepatocytes, but not in uninfected bystander cells. 

Evidence of necrotic cell death was shown in foetuses following N. caninum 

infection in early gestation (Gibney, 2008), but immunohistological staining of 

sections from the same paraffin blocks revealed high numbers of cleaved caspase 3-

positive, apoptotic cells alongside necrotic hepatocytes (described in Chapter 2). 

Previous reports have shown that the protozoan parasite T. gondii targets the 

caspases and inhibits apoptosis induced in different cell types by a variety of pro-

apoptotic agents either through the intrinsic or extrinsic pathway (Nash et al., 1998; 

Goebel et al., 2001). Hence, the quantitative and semi-quantitative analyses 

undertaken in the present study were conducted to evaluate the type and degree of 

caspase activation in N. caninum-infected and uninfected control cultures. Antibodies 

that detect the active subunits of the caspases are valuable tools to identify apoptotic 

cells since the activation of the enzymes is a key molecular event during apoptotic 

cell death (Eckle et al., 2004). The use of antibody-based methods was chosen rather 

than using other methods such as TUNEL-assays which only label cells that already 

exhibit morphological changes of apoptosis and cannot discriminate between 

apoptotic, necrotic and autolytic cell death (Grasl-Kraupp et al., 1995).  

Based on the obvious lack of caspase 3 expression in N. caninum infected cells, 

the present data show that cells infected with N. caninum did not undergo apoptosis; 

in contrast, a proportion of uninfected cells in the infected cultures was found to 
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express cleaved caspase 3, i.e. to be apoptotic. There were higher numbers of caspase 

3-positive hepatocytes in the infected cultures compared to controls between 20 and 

36 hpi, indicating parasite-induced apoptotic cell death in uninfected bystander cells. 

Likewise, caspase 3 activation was not detected in T. gondii-infected murine 

fibroblasts and immunoblot analysis revealed caspase 3 activation in uninfected cells 

undergoing apoptosis (Payne et al., 2003), thus reinforcing the evidence that infected 

cells are refractory to apoptosis. A more recent study also reported inhibition of 

caspase 3 expression in mouse embryonic fibroblasts infected with both N. caninum 

and T. gondii (Herman et al., 2007). Immunoblot analysis of infected cultures in the 

latter study failed to detect the αII-spectrin cleavage, which is a major substrate for 

cysteine proteases involved in both necrotic cell death, which involves the activation 

of the Ca
2+ 

dependent calpain proteases (Liu et al., 2004), and apoptotic cell death 

(caspase 3 activation). The αII-spectrin cleavage was, however, detected in 

uninfected cultures, suggesting apoptotic cell death rather than necrosis (Herman et 

al., 2007). These findings support the results of the present study and provide further 

evidence that N. caninum blocks apoptosis in infected cells, but not in uninfected 

bystander cells. The mechanism by which uninfected bystander cells undergo 

apoptosis is not clear, but others have assessed the role of the T. gondii programmed 

cell death 5 gene (TgPDCD5) in Chinese hamster ovary epithelial cells, mouse 

macrophages and a human promyelocytic leukaemia cell line (HL-60 cells). PDCD5 

is a homologue of the human apoptosis-related molecule and was found to be located 

close to the rhoptries or vesicle-like structures of the parasite surface membrane in T. 

gondii (Bannai et al., 2008). The authors showed that TgPDCD5 was secreted from 

the parasite and also speculated that the heparin sulphate proteoglycan-binding 

motif-dependent internalisation of TgPDCD5 could lead to apoptosis of bystander 

cells, as was observed when recombinant TgPDCD5 was added to growth medium of 

T. gondii-infected cells along with IFN-γ. It was further argued that the pro-apoptotic 

effect of TgPDCD5 may not have sufficed to trigger apoptosis in the T. gondii-

infected cells, or the effect could have been counteracted by the anti-apoptotic effect 

of the parasites. It is believed that TgPDCD5 contributes to the activation of 

apoptosis in cooperation with other factors, such as IFN-γ, TNF-α and IL-12, but its 

mechanism in vitro is not clear (Bannai et al., 2008). Since N. caninum is the closest 

relative of T. gondii and comparison of their genome shows a high degree of 

sequence conservation and synteny (Reid et al., 2012), a similar mechanism could 
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contribute to apoptosis of uninfected bystander cells in N. caninum-infected cultures, 

which would explain why significantly higher numbers of uninfected apoptotic 

hepatocytes were detected leading up to the time when parasite egress usually occurs 

(approximately 36 hpi). The NcPDCD5 (hypothetical protein) is also expressed in N. 

caninum tachyzoites (NCLIV_002640) and have orthologs in T. gondii 

(toxodb.org/toxo/, version 11), which suggest it could play a similar role as proposed 

for T. gondii.  

Triggering of apoptosis is dependent on a balance between pro- and anti-

apoptotic stimuli. The apoptotic cascade will run its course when the caspase activity 

reaches a certain threshold, which means that if the stimulus is insufficient, cells 

could escape overt proteolytic destruction and recover or, alternatively, die via 

necrosis (Zhivotovsky, 2004). Moreover, it was shown that while caspases are 

necessary for apoptosis, they are not sufficient to exert it (Lukovic et al., 2003). 

Inhibition of the caspases does not always prevent cell death (Denecker et al., 2001). 

In the absence of caspase activation in a murine fibrosarcoma cell line (L929 cells), 

the death domain-containing components of the signalling pathway were activated 

which resulted in necrotic cell death (Vercammen et al., 1998a). This would suggest 

that both necrotic and apoptotic cells could develop in the same tissue following 

induction of cell death. Accordingly, this could at least partly explain why 

hepatocellular necrosis was observed alongside apoptosis in foetuses following 

infection in early gestation (Gibney et al., 2008). 

Caspase 8 and 9 expression was detected in high numbers of hepatocytes in 

both infected and control cultures, without significant difference between the two at 

corresponding time points, indicating that activation of the initiator caspases in 

infected cultures is not parasite driven or that other factors can contribute to the 

induction of apoptosis. However, a mild increase in the number of caspase 8 and 9 

expressing hepatocytes was observed in infected cultures, suggesting that parasite 

infection might play a role in activation of the initiator caspases. Infection by 

intracellular parasites can trigger the mitochondrial pathway of apoptosis mainly due 

to cell stress, but this natural cell response can be counterbalanced by the presence of 

viable tachyzoites that can offer protection from cell death (Schaumburg et al., 

2006). The mitochondrial pathway of apoptosis is of particular importance during 

infection with the intracellular protozoan parasites, as was observed in the present 

study; however, activation of the death receptor pathway was also detected during N. 
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caninum infection. Since activation of both pathways was mainly observed in 

uninfected cells and not in N. caninum infected cells, there is evidence that the 

parasites interfere with both the initiator and effector caspases. The results also 

indicate that the parasites might provide only partial protection from activation of the 

initiator caspases, but completely inhibit activation of the effector caspase. Similar 

findings were reported for T. gondii that inhibited caspase 3 following induction of 

apoptosis in vitro (Goebel et al., 1998; Goebel et al., 2001; Payne et al., 2003). The 

data obtained from the immunohistological studies were confirmed by the double IP 

and IF staining and these results further support the suggestion that N. caninum 

inhibits apoptosis to enhance its survival in the cell. They also support the findings in 

foetuses from dams infected in early gestation, where parasites were detected within 

intact hepatocytes, whereas the surrounding uninfected cells were caspase 3-positive 

or exhibited features of necrosis (Chapter 2). 

So far it is not known whether and how the PVM interferes with mitochondria 

in N. caninum infection. Mitochondria play a key role in apoptotic signalling 

pathways, as they are involved in the release of proteins such as cytochrome c into 

the cytoplasm, leading to activation of the caspase cascade (Desagher and Martinou, 

2000). In addition, mitochondria have been shown to be closely associated with the 

PVM in T. gondii-infected cells, and this mechanism is believed to be involved in 

energy acquisition of the parasite from host cells and, purportedly, the inhibition of 

cytochrome c and thereby the inhibition of caspase activation (De Melo et al., 1992; 

Sinai et al., 1997; Magno et al., 2005). De Melo et al. (1992) have also shown that 

the mitochondria of T. gondii were not labelled with rhodamine 123 after the parasite 

had entered a cell, whereas those in the extracellular parasites were labelled, 

indicating that the parasites’ mitochondria become inactive once within the PV and 

would depend on host cell energy sources whilst inside the cell. In the present study, 

the mitochondrial organisation in N. caninum-infected hepatocytes was assessed by 

double IF labelling and TEM. In N. caninum-infected HepG2 hepatocytes, 

mitochondria were found to accumulate in close association with the PVM. They 

also formed large perinuclear aggregates in the cytoplasm of both infected and 

uninfected cells in infected cultures and in uninfected control cultures. Mitochondrial 

aggregation and cytochrome c release was shown in uninfected HeLa cells 

undergoing apoptosis following transient overexpression of the pro-apoptotic protein 

bax, through transfection with a DNA encoding a His-tagged bax (Eskes et al., 
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1998). Accordingly, our results imply that mitochondrial aggregation in both infected 

and uninfected cells may be a consequence of stimulation of the mitochondria 

dependent apoptotic pathway. Overall, our results suggest that during N. caninum 

infection, the presence of parasites is associated with a stress signal that can trigger 

apoptotic cell death in uninfected and infected cells. However, the anti-apoptotic 

activity of the parasites may inhibit the pro-apoptotic pathway of its host cells, 

enhancing their survival whilst the parasites replicate, whereas uninfected bystander 

cells continue to undergo apoptosis. Furthermore, it was shown in cells induced to 

undergo apoptosis that following the first exposure to an apoptotic stimulus, 

mitochondria became aggregated and was followed by the release of cytochrome c to 

the cytoplasm triggering caspase 3 activation (Haga et al., 2003). This indicates that 

infected cells can remain viable due to the parasite’s anti-apoptotic effect, but will go 

on to die following parasite egress. Such a death mechanism was termed 

pyronecrosis since the morphological features were neither those of necrosis nor 

apoptosis (Heussler et al., 2010). 

The ultrastructural examination of parasite-infected cells further confirmed 

mitochondrial clumping and their association with the PVM in viable infected cells. 

Soon after invasion, the parasites multiply and the rapidly expanding PV will affect 

the host cell organelles mechanically since it will cause them to move to the 

periphery of the cell (Sinai et al., 1997). An older study has shown that  other 

parasites, such as Leishmania amazonensis and Coxiella burnetti, grow within 

vacuoles that are sometimes considerably larger than those of T. gondii, but these 

were not found in close contact with host cell organelles (Veras et al., 1994). Instead, 

a distance of approximately 30-50 nm was maintained between PVM and host cell 

organelle membranes; this was considered to be the minimum distance that could 

occur due to the repulsive forces, which create the so called exclusion zone between 

organelles (Sinai et al., 1997). This would imply that the closer association between 

the PV and host cell organelles observed with N. caninum infection (range from 

approximately 25-375 nm in this study) is an active process that overcomes the 

above-mentioned normal repulsive forces that keep organelles apart. The close 

contact observed between the PV and other organelles in a T. gondii infected cell is 

thought to be essential for the intracellular development of the parasite in so far as it 

enables the direct transfer of lipids from the host cell to the parasite at the site of 

PVM-organelle association (Sinai et al., 1997). However, others have suggested that 
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the PVM-organelle association is merely for physical strengthening of the PVM 

while it expands within the cell (Magno et al., 2005), as the protozoan parasites do 

not depend on host cell biosynthesis for most of their needs and only some small 

molecules are transported from the host cell cytoplasm to the PV via transport 

channels in the PVM (reviewed in (Saliba and Kirk, 2001)). The close association of 

mitochondria within the exclusion zone could be interpreted as a potential protein-

protein interaction, since the organelles were not affected by the repulsive forces 

(Sinai et al., 1997). Further studies are warranted to fully understand this interaction. 

The mitochondria play a key role in mediating apoptosis via the intrinsic 

pathway, also in cells infected with obligate intracellular parasites (Green and Reed, 

1998). Inhibition of the initiator (caspases 8 and 9) and effector caspase 3 was 

observed in T. gondii infected, but not the uninfected cells in vitro (Goebel et al., 

2001). The present study yielded similar findings, i.e. the effector caspase 3 was not 

expressed in N. caninum-infected cells; however, caspases 8 and 9 were infrequently 

expressed in infected cells, suggesting that parasites inhibited apoptosis only 

downstream of the initiator caspases. It has been shown that cytochrome c was 

released from the mitochondria of both T. gondii-infected and uninfected cells in 

culture, but the release in the latter was more rapid and led to activation of the 

initiator and executor caspases, while caspase 3 was not activated in infected cells 

(Carmen et al., 2006). This suggests that although cytochrome c is released from the 

mitochondria of infected cells, it does not result in effective activation of the initiator 

caspase. The question then arises how the parasite contributes to the inhibition of 

caspase activation in the face of cytochrome c release. PVM-associated mitochondria 

appear to have undergone distinct functional changes compared to non-PVM-

associated mitochondria; this small subset of mitochondria could be involved in anti-

apoptotic responses, which probably protect infected cells from activation of the 

initiator caspases (Sinai et al., 1997). It is likely that the association of host cell 

mitochondria with the PVM in N. caninum-infected cells is also linked to anti-

apoptotic mechanisms or a means of the parasites’ energy acquisition from the host 

cell. Mitochondrial clumping, which is associated with early apoptosis (Haga et al., 

2003), was confirmed ultrastructurally. This morphological feature was also seen in a 

proportion of cells within the uninfected culture, but the vast majority of viable cells 

had a more diffuse distribution of mitochondria in the cytoplasm. This therefore 

suggests that the presence of the parasites might act as a stimulus for apoptosis 
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activation, which may have resulted in mitochondrial clumping, but not apoptosis 

activation (Schaumburg et al., 2006).  

 

3.6.3 The effects of N. caninum on HL-1 cardiomyocytes 

HL-1 is a cardiac muscle cell line derived from a mouse atrial cardiomyocyte 

tumour, which has retained the ability to contract and the morphological and 

biochemical properties and the phenotype of differentiated cardiomyocytes during 

extended culturing, which renders it particularly useful for studies on cardiomyocyte 

function (Claycomb et al., 1998). The current study aimed to further assess and 

evaluate the findings documented in Chapter 2 where high parasite loads of N. 

caninum tachyzoites were detected within intact cardiomyocytes of foetuses 

following infection in early gestation. It also intended to assess if cardiomyocytes 

can be infected readily with N. caninum and responded to infection in the same way 

as hepatocytes. Previous in vivo studies have also reported N. caninum tachyzoites in 

cardiomyocytes without evidence of cellular degeneration (Wouda et al., 1997; 

Gibney et al., 2008). Apoptotic cell death was recorded in a canine model of T. cruzi 

infection, but only cardiomyocytes associated with inflammatory cells were affected 

(Zhang et al., 1999). Here, the quantitative and semi-quantitative analyses were 

performed to assess activation of the initiator and effector caspases in N. caninum-

infected and uninfected murine HL-1 cardiomyocytes. Following infection of 

cardiomyocytes with N. caninum tachyzoites, cleaved caspase 3-positive, apoptotic 

cells were observed; however, these were exclusively uninfected bystander cells. The 

numbers of cleaved caspase 3 expressing cardiomyocytes were similar in both 

infected and control cultures, indicating that N. caninum did not induce apoptosis in 

the infected cultures. These findings suggest that N. caninum inhibits caspase 3 

expression in cardiomyocytes, but has no effect on uninfected cells that appear to 

undergo apoptosis as part of the normal cell death in culture in association with cell 

turnover (Al-Rubeai and Singh, 1998). The double IF study confirmed the IH 

findings and revealed cleaved caspase 3-positive apoptotic uninfected cells in the 

infected cultures, whereas N. caninum-infected cardiomyocytes were caspase 3-

negative. These findings confirm the results in Chapter 2 where high parasite loads 

were detected within cardiomyocytes without evidence of necrosis or apoptosis. A 

similar study revealed cardiomyocyte apoptosis following infection with T. cruzi in 
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both an in vivo mouse model and in primary cultures of mouse embryonic 

cardiomyocytes in vitro (De Souza et al., 2003). The authors reported apoptosis of 

infected cardiomyocytes in both models. Their data are in contrast to our findings 

which indicate inhibition of the effector caspase by the parasites.  

The expression of the initiator caspases (8 and 9) was also assessed in N. 

caninum-infected cardiomyocytes. The results suggest that activation of the initiator 

caspases is also inhibited in N. caninum-infected cardiomyocytes. Either of the 

initiator caspases is generally required to activate the effector caspase 3, which was 

shown to likely be inhibited (see above). Semi-quantitative analysis of caspase 8 and 

9 expression was performed to evaluate activation of the initiator caspases following 

N. caninum infection. Interestingly, activation of the initiator caspases was observed 

exclusively in uninfected bystander cells in the infected cultures, whereas 

cardiomyocytes containing viable parasites were unlabelled, suggesting that N. 

caninum inhibits host cell apoptosis in cardiomyocytes starting at the level of the 

initiator caspases. The comparison with the control cultures at corresponding time 

points did not reveal significant differences in the numbers of caspase 8 and caspase 

9 expressing cardiomyocytes, indicating that other factors influence the induction of 

apoptosis in both infected and control cultures. Some of these factors that may have 

influenced the induction of apoptosis in cell culture have been outlined in previous 

reports and include pH and nutrient levels in the growth medium and failure to 

passage cells regularly after becoming confluent (Singh et al., 1997; Al-Rubeai and 

Singh, 1998; Singh and al-Rubeai, 1998) and these might be of particular importance 

in the induction of cell death in our in vitro model. The IH results of the current 

study are in accord with findings from the double IF labelling. Here N. caninum-

infected cardiomyocytes remained unlabelled, while high numbers of uninfected 

bystander cells express caspases 8 and/or 9. This suggests that N. caninum is able to 

block apoptosis in cardiomyocytes by manipulating both the intrinsic and extrinsic 

caspase pathways. Furthermore, the absence of cleaved caspase 3 activation in N. 

caninum-infected cardiomyocytes in the in vitro model suggests that the parasites are 

able to block apoptosis at all levels of the apoptotic cascade in their host cells. These 

findings are in agreement with results from other studies utilising the closely related 

parasite T. gondii (Payne et al., 2003).  

Apoptosis is a highly regulated form of cell death that is mediated by 

mitochondrial outer membrane permeabilisation and endoplasmic reticulum stress, 
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together with other factors (Lee and Gustafsson, 2009). Mitochondria play an 

important role in apoptosis triggered by various stimuli (Desagher et al., 1999). To 

further understand the processes involved in host cell death/manipulation following 

infection with N. caninum, cardiomyocytes were also evaluated by double IF 

labelling to assess the effect of N. caninum infection on the mitochondrial dynamics. 

As was observed in N. caninum-infected hepatocytes, a close association of 

aggregated mitochondria with the PVM was also detected in cardiomyocytes. 

Mitochondrial clumping in the cytoplasm, which is suggestive of early apoptosis, 

was seen substantially less frequently in infected cells than in uninfected bystander 

cells, indicating that the mitochondrial network in infected cells is less affected. 

Furthermore, the uninfected bystander cells exhibited large aggregates of 

mitochondrial clumps, which is a feature of early apoptosis. Mitochondrial fission is 

an early apoptotic event that occurs prior to the release of proteins involved in 

apoptosis, caspase 3 activation and membrane blebbing (reviewed by (Suen et al., 

2008)). Based on these findings, it is likely that the mitochondrial aggregation 

observed in the uninfected cardiomyocytes was an associated feature of early 

apoptosis of these cells. Though mitochondrial fragmentation and clumping is 

universally accepted as an early event of apoptosis, it is also important to note that 

excessive fission can occur following exposure to agents that can disrupt the inner 

mitochondrial membrane electrochemical potential and is not always associated with 

apoptosis (Suen et al., 2008).  

Cross-reactivity between N. caninum and the primary antibodies used for the 

detection of caspase activation was observed in the immunohistologically stained 

sections and occasionally following IF labelling. The antibody reaction occurred with 

unknown parasite proteins of molecular weights ranging from approximately 10-40 

KDa. The antibody cross-reaction appeared to concern surface proteins and possibly 

proteins located in interior organelles based, since the staining was diffuse over the 

parasites. A previous study has shown that mouse Fc fragments can also bind to T. 

gondii even at low concentrations, whereas parasites incubated with the Fab 

fragments do not bind even at very high concentrations (Vercammen et al., 1998b). 

These findings corroborate our results that the binding of the Fc, but not the Fab 

fragments of the rabbit antibodies, represents a non-specific binding of 

immunoglobulin to the parasite. Fc-receptors (FcR) are expressed by protozoan 

parasites, and metazoa, bacteria and some viruses induce FcR expression on infected 
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cells (Daëron, 1997). The presence of the FcR on N. caninum tachyzoites has not 

been examined so far; however, extensive work has been done on T. gondii and 

showed FcR expression with different degrees of affinity to ligands (Ferreira De 

Miranda-Santos and Campos-Neto, 1981; Budzko et al., 1989). It is therefore 

possible that the reaction observed in the current study constitutes a nonspecific 

binding of FcR on the surface of the parasites to Fc fragments of the antibodies. It is, 

however, not clear, whether this is a phenomenon of these antibodies only, but it is 

surprising that it should affect both mouse and rabbit antibodies.  

In summary, the present study demonstrates that N. caninum infection induces 

apoptosis in bystander hepatocytes as indicated by increased caspase 3 expression, 

but not in infected cells. In contrast to hepatocytes, the infection is established in 

cardiomyocytes without evidence of apoptosis in both infected and uninfected cells, 

as shown by the lack of increased caspase 3 expression in infected cultures compared 

to controls. There is a difference in the pathogenesis of N. caninum infection in 

hepatocytes and cardiomyocytes, as indicated by the cytopathic effect induced by the 

parasite in liver cultures, but it is still not clear why in infected cultures, uninfected 

hepatocytes but not cardiomyocytes undergo apoptosis. It is likely that the degree of 

response to N. caninum infection varies with different host cell types, but this is yet 

to be clarified. Different from previous studies using fibroblasts, the current in vitro 

study was undertaken on hepatocytes and cardiomyocytes in order to reflect the in 

vivo environment; it also focussed on the first 36 hpi, i.e. before parasite egress was 

observed in vitro, but this is likely to be different in vivo. Importantly, the results 

corroborate the findings of cytopathic effects observed in hepatocytes following N. 

caninum infection. The mechanism underlying the effect of the parasite on the 

activation of the intrinsic and extrinsic apoptotic pathways in host cells is unclear and 

warrants further investigation to fully understand how N. caninum is able to subvert 

host cell functions. It is also unclear if N. caninum actively recruits mitochondria to 

its PVM and the role of this organelle in parasite-host cell interaction.  
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4.1 ABSTRACT  

Neospora caninum is a cyst-forming protozoan parasite which causes abortion in 

cattle and neuromuscular disease in dogs. Appropriate techniques have been 

developed for the diagnosis of neosporosis both in vivo and in aborted foetuses. In 

cattle, the detection of N. caninum specific antibodies in serum or milk has been 

shown to be an efficient diagnostic option in live animals at both the herd and 

individual level. Blood samples were collected from 499 Holstein-Friesian and 

Holstein-Friesian crossbreed cattle in Jamaica and the serum aliquoted and used for 

the detection of N. caninum specific antibodies in order to study the seroprevalence 

of N. caninum in the country. A seroprevalence of approximately 26% was detected, 

with the majority of animals being between 0 and 2 years old, while the lowest 

seroprevalence was found in animals over 13 years of age. The status of pregnancy 

was shown to influence the seropositivity of animals, but age was not significant in 

influencing seropositivity, indicating that vertical transmission is the major route of 

transmission in Jamaican dairy herds. 
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4.2 INTRODUCTION  

Neospora caninum is a coccidian parasite which is an important cause of abortion in 

cows and neuromuscular disease in dogs (Dubey and Lindsay, 1996; Borsuk et al., 

2011). It is morphologically similar to Toxoplasma gondii, but is biologically 

different (Dubey and Schares, 2011). Abortion in N. caninum infected cows is a 

direct result of transplacental transfer of tachyzoites to the foetus during gestation 

(Björkman et al., 1996; Anderson et al., 1997). These tachyzoites may have arisen 

from either reactivation of a latent N. caninum infection or by ingestion of N. 

caninum oocysts (Jenkins et al., 2002).  

Considerable differences have been reported in the seroprevalence of N. 

caninum within countries, regions and between beef and dairy cattle (Dubey and 

Schares, 2011). Most of the surveys were carried out by testing sera from individual 

cattle; although bulk milk antibody detection is also an economical way of estimating 

N. caninum prevalence within a herd (Wapenaar et al., 2007; Frössling et al., 2008; 

Schares et al., 2009; Dubey and Schares, 2011).  

Serological tests have the advantage that they can be applied intra vitam and 

are suitable techniques for processing large numbers of samples (Dubey and Schares, 

2006). There are a variety of serological assays available for the detection of N. 

caninum antibodies in cattle (for review see Table 2, Dubey et al., 2006). The 

immunofluorescent antibody test (IFAT) has been widely used to detect N. caninum 

specific antibody in maternal serum or foetal fluids (Conrad et al., 1993b; Minervino 

et al., 2008; Benetti et al., 2009; Moore et al., 2009; Moré et al., 2009; Andreotti et 

al., 2010). In addition to the IFAT, a number of N. caninum specific enzyme-linked 

immunosorbent assays (ELISAs) have been described which utilise either whole, 

fixed N. caninum tachyzoites, aqueous or detergent-soluble tachyzoite extracts, 

tachyzoite antigens incorporated into immunostimulating complexes (iscoms) or 

recombinant tachyzoite antigens (Lally et al., 1996; Björkman et al., 1997; Williams 

et al., 1997; Jenkins et al., 2000; Schares et al., 2000). The N. caninum (NC-

Liverpool) antibody detection ELISA, which uses whole formalin-fixed tachyzoite-

coated plates, has a 96% specificity and 95% sensitivity and showed no cross-

reactivity with T. gondii, Babesia divergens, Cryptosporidium parvum, Sarcocytis 

cruzi, Eimeria alabamesis or E. bovis (Williams et al., 1997; Williams et al., 1999).  

There have been several studies investigating the seroprevalence of N. caninum 

in cattle over time.  One study showed that the value of serology can be hampered by 



Chapter Four                 Seroprevalence of N. caninum in Jamaica 

180 

  

a temporal variation of anti-N. caninum antibody levels in adult cattle (Sager et al., 

2001). In this study, 543 cattle of 3551 (15%) were found to be seropositive in one 

serological survey, but a second survey carried out 3-12 months later showed that 

39% of the 543 cattle that had tested positive in the first survey were classified as 

seronegative in the second. The reasons proposed for this were the possibility that the 

animals may have been misclassified as positive or negative, because the sensitivity 

and specificity of the ELISA used was not 100%; cattle with borderline antibody 

reactions above or below the ELISA cut-off value could have been misclassified 

when tested repeatedly over time; an increase in anti-N. caninum antibody in herds in 

which horizontal transmission of the parasite occurred (Paré et al., 1997; Davison et 

al., 1999b; Stenlund et al., 1999), or that antibody levels in persistently infected 

cattle fluctuate over time. Indeed, several studies have shown that antibody levels 

fluctuate in pregnant cattle that were naturally and persistently infected with N. 

caninum (Guy et al., 2001a; Kyaw et al., 2005). Evidence suggests that in 

persistently infected cattle, bradyzoites differentiate to tachyzoites during pregnancy 

and disseminate via the circulation to the placenta leading to foetal infection.  

Recrudescence of infection leads to an increase in N. caninum antibody, typically in 

the second half of pregnancy (Nogareda et al., 2007; Serrano et al., 2011) Because of 

these fluctuating antibody levels, some animals test serologically negative as 

antibody levels decline after pregnancy and because IgG is shunted into the 

colostrum in the last month of gestation (Nogareda et al., 2007; Dijkstra et al., 2008; 

Rosbottom et al., 2011). 

The discovery of N. caninum (Bjerkas et al., 1984), its first description by 

Dubey et al. (1988) and identification as a cause of bovine abortion are recent events. 

Neosporosis is ubiquitous and has been reported in all continents outside Antarctica; 

nevertheless, its significance as a cause of abortion in many countries is still 

unknown. Neospora caninum infection has never been considered as a potential 

cause of abortion in cattle in Jamaica and no effort has been made to diagnose the 

disease. The present study investigated the seroprevalence of N. caninum infection in 

cattle in three Jamaican dairy herds with the aim of establishing if N. caninum 

infection was present in cattle in Jamaica.  
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4.3 MATERIALS AND METHODS  

4.3.1 Cattle and sera  

Sampling was done on three dairy farms (Farms A, B and C), located in the counties 

of Middlesex (Farm B and C) and Surrey (Farm A) in Jamaica (Fig. 4.1). These 

farms were selected for the study because of the large herd sizes and the fact that the 

farmers agreed to participate. Farm A maintained five small herds, each of which 

included calves, heifers and adult breeding and milking animals of Holstein-Friesian 

and Holstein-Friesian crossbreed (crossed with Jamaica Hope, a local breed) animals. 

Farms B and C comprised smaller herds, mainly with dry cows, also Holstein-

Friesian and Holstein-Friesian crossbreds. The farms were isolated in deep rural 

areas, approximately 10 km from other farms. The majority of the surrounding farms 

held cattle in single digit numbers and surrounding households sometimes kept one 

or more cows as part of their livelihood. Cattle on all the farms spent most of their 

lives at pasture and received feed supplementation during periods of low pasture 

availability. Milking animals were sometimes housed in open buildings. Calves were 

kept in housing areas specifically for weaning stocks on the farms and were used for 

each new young stock.  

 

Figure 4.1. Map of Jamaica showing the parishes where the farms are located (A, B and C). Adopted 

from (www.jis.gov/jm). 
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4.3.2 Herd management 

Dairy cattle on all three farms were reared in a semi-intensive system, kept on 

pasture. Animals were bred by artificial and natural insemination; cows and heifers 

calved all year round and were milked twice per day. All animals were routinely 

screened for bovine tuberculosis and brucellosis and vaccination programmes used 

for the prevention of brucellosis, leptospirosis, clostridiosis, bovine viral diarrhoea 

virus and infectious bovine rhinotracheitis (BVDV/IBR). Domestic dogs lived 

among cattle on some of these farms and were allowed free access to cattle feeding 

areas and pastures.  

4.3.3 Blood sample collection and serology 

Blood samples were collected by coccygeal or jugular venipuncture from a total of 

499 Holstein-Friesian and Holstein-Friesian crossbreed dairy cattle using a 21 gauge 

sterile needle and 10 ml vacutainer tubes (BD Ltd, Oxford, UK). The samples were 

allowed to stand overnight at 4°C before centrifugation at 1,000 g for 10 min, after 

which the serum was aliquoted in 5 ml-serum tubes (Starlab, Milton Keynes, UK), 

labelled with all farm and individual identification codes, then heat inactivated at 

56°C for 30 min in a water bath before storage at -20°C. Serum samples were later 

transported on ice packs to the University of Liverpool, UK and stored at -20ºC until 

tested by ELISA. N. caninum specific antibody was measured using an in-house 

ELISA as detailed below. 

4.3.4 Culture and purification of N. caninum tachyzoites 

Neospora caninum tachyzoites (NC-Liverpool isolate) were maintained in Vero cells 

grown in RPMI-1640 medium (Lonza, Cambridge, UK) containing 2 % (v/v) horse 

serum (Invitrogen, Paisley, UK), 100 IU/ml penicillin G and 100 µg/ml streptomycin 

(Lonza) at 37°C/5% CO2 in T-75 tissue culture flasks (Nunc, Roskilde, Denmark). 

Tachyzoites were collected 7 to 10 d after passage when the Vero cell monolayer had 

been destroyed and there were numerous free tachyzoites in the culture medium. 

Remaining Vero cells were scraped off the flask using a sterile cell scraper (Fisher 

Scientific, Loughborough, UK) and the whole suspension of cells and parasites was 

washed twice in cold sterile phosphate buffered saline (PBS, pH 7.2) by 

centrifugation at 1,000 x g and 4°C. The final suspension was homogenised by three 

passages through a 25 gauge needle until all Vero cells had been disrupted and the 
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intracellular tachyzoites released. The suspension was then applied to a Sephadex G-

25M gel filtration column (PD10 column; Pharmacia, Uppsala, Sweden) that was 

previously equilibrated with PBS as per the manufacturer’s instruction. Tachyzoites 

were then washed in sterile PBS by centrifugation at 700 x g and counted. The 

tachyzoites were later flash-fixed in 2 % formaldehyde, then washed in PBS.  

4.3.5 ELISA technique 

To 10 ml of carbonate coating buffer (see Appendix), 100 µl of 1% poly-l-lysine 

(Sigma-Aldrich, St Louis, Missouri, USA) was added and mixed to give a working 

strength of 0.01%. To each well of the Immulon ELISA plates, 100 µl of 0.01% 

poly-L-lysine was added and plates were incubated for 1 h at room temperature (RT), 

covered. The tachyzoites were diluted in PBS/0.2% azide to 5x10
6
/ml (10ml/96-well 

plate = 5x10
7
 tachyzoites/plate), then the suspension was swirled and 10 ml removed 

with 100 µl added to each well using a multichannel pipette. N. caninum tachyzoites 

(diluted in PBS/0.2% azide) (Williams et al., 1997) were then coated onto Immulon I 

96-well plates (Nunc, Roskilde, Denmark). Plates were covered and incubated 

overnight at 4°C. On day two, the fluid in each well was flicked from the plates and 

100 µl/well of blocking buffer (see Appendix) was added and incubated for 1 h at 

RT. After that, the blocking buffer was flicked out and plates were washed 3 times 

for 1 min each with PBS-Tween (see Appendix). Plates were then dried at 37°C for 

30 min. Once dried, they were sealed with a plastic plate sealer, placed in a foil bag 

with silica crystals and heat sealed. Plates were stored at 4°C until needed.  

4.3.6 Measurement of N. caninum specific antibody by ELISA 

For the assay, ELISA plates, serum samples, 3,3´,5,5´-tetramethylbenzidine (TMB) 

and PBS-Tween were removed from the fridge and allowed to reach RT. Control 

sera were diluted by adding 5 µl of each to 2 ml of PBS-Tween (1:400 dilution) and 

all test samples were diluted in a 1:400 dilution. In a 96-well plate, 5 µl of test serum 

was added in duplicate to 95 µl of PBS-Tween (1:20). The Immulon plate was 

removed from the foil wrapper and a multichannel pipette was used to transfer 5 µl 

of sample from the dilution plate into 95 µl of PBS-Tween on the coated ELISA 

plate (1:20); the solution was mixed up and down taking care not to scrape the 

bottom of the plate. For ELISA plate control, a high positive, low positive, negative 

and a substrate control (blank) were included in quadruplicate on each plate to 
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assigned wells (100 µl/well). Plates were covered and incubated at 37°C for 30 min 

after which all wells were washed 3 times for 1 min with PBS-Tween. Plates were 

tapped on absorbent paper to remove residual fluid. After washing to remove 

unbound materials, 100 µl of a 1:45,000 dilution of a monoclonal antibody specific 

for bovine immunoglobulin G conjugated to anti-mouse horseradish peroxidise were 

added to all wells except for blank wells where only PBS was added. The plates were 

covered and incubated at 37°C for 30 min. After incubation, plates were washed as 

previously described. The plates were then incubated with 100µl of TMB solutions 

(TMB, hydrogen peroxide and proprietary catalysing and stabilising agents; 

Interchim, Montluçon, France) at RT (18-25°C) in the dark for 10 min. After 

incubation, the reaction was stopped by adding 100 µl of 0.5M hydrochloric acid 

(see Appendix) to all wells. The plates were read in a Dynatech MRX ELISA reader 

(Dynex technologies, Revelation. 3.2) at a wavelength of 450 nm. In order to 

minimise daily and plate variation, and to allow comparison between tests, the 

optical density (OD) readings of the test samples were expressed as a percentage of 

the high positive control (percent positivity-PP) using the following formula:  

Percent Positivity (PP) = (Mean OD of test sample/Mean OD of High positive 

control) x 100. A PP value of ≥20 indicates a positive result (Williams et al., 1999).  

4.3.7 Statistical Analysis 

The sample size was estimated to give a true seroprevalence of the infection and 

calculated as described (Humphry et al., 2004). The assumed true prevalence was 

taken to be 0.5, test sensitivity 95%, specificity 96%, the approximate population 

size in Jamaica – unknown, confidence level of 95% and desired precision of 5%. 

For a large population, a sample size of 464 is required. The current study used a 

sample size of 499 animals. Animal age, pregnancy status, abortion history and 

parity were obtained from farm records at the time of sampling from November 2011 

to January 2012. Association between animal age, pregnancy status, abortion history 

and parity and PP values were analysed by logistic regression. Both age and PP 

values were normalised by logarithmic transformation (Log10) prior to analysis and 

the gestation number of animals was normalised using square root. Normality testing 

was performed on all variables using the Anderson-Darling test. A backward 

stepwise regression selection was performed to exclude non-significant factors and 

the following linear regression equation was used: y=c+β1x1+β2x2+β3x3, where y is 
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the value of the response; c is the value of the response when predictor variables are 

zero; β1, β2 and β3 represent coefficient variables and x1, x2 and x3 are predictor 

variables. The response variable in this model was taken to be Log (PP), while the 

predictor variables were Log age, pregnancy status of animals (+/-) and square root 

of the number of gestations. Analysis was carried out using Minitab for Windows, 

version 16 (Minitab Corporation Software, Coventry, UK) and Microsoft Excel 

(Windows Corporation). A p value of ≤0.05 is considered significant. 
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4.4 RESULTS  

4.4.1 Neospora caninum ELISA results 

A total of 499 serum samples collected from Holstein-Friesian and Holstein Friesian 

crossbreed dairy cattle from three different farms, each located in a separate parish in 

Jamaica, were tested using the N. caninum ELISA and a summary of the results is 

shown in Table 4.1. Overall, the seroprevalence of N. caninum infection was 26% 

(129/499). Prevalence rates of 24.7%, 26.9% and 27.3% were recorded on Farm A, 

Farm B and Farm C, respectively (Table 4.1).  

Table 4.1: Overall seropositivity to N. caninum in cattle from different locations in 

Jamaica 

Farms  Herd size  Number of 

animals sampled 

Number of 

positive animals 

Number of 

negative animals 

Percentage  

positive 

Farm A
 
 5000

 a
  247 61 186 24.7 

Farm B 480 197 53 144 26.9 

Farm C 600  55 15 40 27.3 

Total NA 499 129 370 25.9 
     a

 Herd size including calves 

The largest group of animals sampled were between 3-5 years of age; however, 

animals over 12 years of age showed the highest percentage of seropositivity on all 

three farms (Table 4.2). Animals in the 0-2 and 9-11 year group showed similar 

seropositivity levels and these groups had the second highest seroprevalence rates 

within the 3 herds (Table 4.2).  

Table 4.2: Seropositivity to N. caninum in cattle of different age groups from three 

different locations in Jamaica 

Age groups Number of animals  Positives (%) Negatives Pregnant (%)
a
  

0-2 16 5 (31.3) 11 4 (25.0) 

3-5 229 53 (23.1) 176 43 (18.8) 

6-8 151 33 (21.9) 118 26 (17.2) 

9-11 66 22 (33.3) 44 10 (15.1) 

>12 30 13 (43.3) 17 4 (13.3) 

unknown  7 2 (28.6) 5 0 (0.0) 

a
 overall number of pregnant cows sampled  

 

On a per farm basis, the highest seropositivity levels were found in animals 10 

years and older compared to all other age groups. Older cows were found to have 

higher seropositivity values on each individual farm.  However, when all data for all 
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three farms were combined, there was no significant difference between age and N. 

caninum seroprevalence (Table 4.3, p>0.05). For all farms, the higher the number of 

pregnancies an animal had, the lower the PP values. There was a significant negative 

association between number of pregnancies and PP values in the regression analysis 

(p<0.05).   

PP values were affected by the pregnancy status of the animals. An animal that 

was seropositive to N. caninum was more likely to have a higher PP value [an 

increase in the Log (PP) by 0.033 units] if pregnant (p<0.05; Table 4.3). On Farm A, 

27.8% of all positive cows were pregnant, 21.9% had recently calved (fresh cows) 

and 27.2% were non-pregnant cows. Farm B showed similar seropositivity in 

pregnant cows as Farm A, while all animals from Farm C were non-pregnant (open) 

cows of which 27.3% were seropositive to N. caninum. On all farms, at the time of 

sampling, only a small number of pregnant animals were sampled (Table 4.4) 

because the majority of cows on these farms were non-pregnant (open) animals. 

Table 4.3: Linear regression model of N. caninum seropositivity in Jamaican dairy 

cattle 

Predictors Coefficient SE coefficient P value 

Log (age) 0.1789 0.1433 0.213 

Pregnancy status 0.03291 0.01616 0.042
a
 

SQRT (number of pregnancy) -0.12099 0.05283 0.022
b
 

Abbreviations: SQRT, square root; SE, standard error; 
a
, significant regression 

coefficient value for comparison between pregnancy status and seropositivity; 
b
, 

significant negative regression coefficient for comparison between number of 

pregnancy and seropositivity of animals.  

 

Table 4.4: Overall association between the seroprevalence of N. caninum infection in 

pregnant and non-pregnant cattle on three different farms in Jamaica 

Category N. caninum positive Total (%) 

Yes (%) No (%) 

Pregnant cows 23 (27.7) 60 83 (16.6) 

Open cows 92 (26.4) 256 348 (69.7) 

Fresh cows 14 (20.6) 54 68 (13.6) 

Total 129 (25.9) 370 499 
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Abortions were recorded on Farm A (7 aborted cases) and Farm B (one animal), 

representing a total abortion rate of 1.6%; of these, two animals (both on Farm A) 

were seropositive to N. caninum. 
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4.5 DISCUSSION  

 

This study represents the first serological survey performed to demonstrate the 

presence of N. caninum infection in Jamaica dairy cattle. The overall seroprevalence 

was 26%. The age of the animals within this study ranged from 2-16 years, with the 

majority falling between the 3-5 year age group. The estimated prevalence of N. 

caninum infection in cattle varies considerably between herds, regions and countries 

worldwide (Dubey et al., 2007; Frössling et al., 2008; Dubey and Schares, 2011). 

The seroprevalence of N. caninum have been estimated at approximately 12.9% in 

the UK (Woodbine et al., 2008), whereas it was as low as 2.8% in Sweden 

(Loobuyck et al., 2009) and reached 55.9% in Romania (Gavrea and Cozma, 2010), 

14-40% in the Americas (Moore, 2005), 6-36% in Asia (Koiwai et al., 2005) and 6-

21% in Oceania (Hall et al., 2006); the seroprevalence of 26% in Jamaica reported 

here is within the range described for other countries. In studies in which large 

numbers of cattle were sampled, it has been found that seroprevalence increased with 

age, a trend that would suggest horizontal (postnatal) transmission of the parasite 

(Romero-Salas et al., 2010; Eiras et al., 2011). However, in the present study there 

was no significant difference in the seroprevalence between different age groups, 

suggesting a preponderance of vertical transmission of N. caninum infection.  The 

high seroprevalence of N. caninum in cows over 12 years was not statistically 

significant and this category contained only 6% of animals tested (p>0.05).  Overall, 

these results suggest that vertical transmission is the most common route of 

transmission, leading to the persistence of the parasite in a herd by propagating the 

infection to successive generations. 

Dogs are a definitive host for N. caninum and often have contact with cows, 

placentae and foetal remains (Dubey et al., 2007). In some epidemiological studies, 

the presence of farm dogs was a risk factor for N. caninum seropositivity in cattle 

(Mainar-Jaime et al., 1999; Schares et al., 2004; Corbellini et al., 2006). It was also 

reported that post-natal transmission was observed on farms where dogs have 

defecated on stored grass and silage (Dijkstra et al., 2002a). Farm dogs were seen on 

one of the three farms in Jamaica (Farm B), but were categorically barred from the 

premises of Farm A. Dogs were not present on Farm C during sampling, but dogs 

from the nearby communities could easily gain access to the farm. The 
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seroprevalences on all three farms was similar (p<0.05) and although the dogs might 

not have been present in one area, it is possible that some cows might have acquired 

the infection in one location and later introduced it to other farms through purchase 

and movement of these animals. Testing for N. caninum is not practiced before 

acquisition of new arrivals to herds and this might be one important route of 

introducing infected animals to a once seronegative herd. There has been no history 

of recent importation of animals from outside the country into these herds. Farms B 

and C have been in existence for approximately 50 years, while Farm A has been in 

operation for about 30 years; however, there is no information on the origin of the 

animals. 

Abortion was reported in eight cows of which two were seropositive for N. 

caninum. It is possible that the rate of abortion is much higher than has been 

recorded in this study as there were reports of cows that had aborted in the field early 

during gestation before returning to oestrus. This has been observed on some of the 

farms in Jamaica, but the rate of early abortions is unknown as there is no record 

documenting these abortion cases. The two seropositive cows from Farm A had 

aborted in previous gestations, but the cause of abortion was not investigated or 

recorded. Although there was evidence of N. caninum infection serologically, 

definitive proof of the presence of N. caninum in cattle in Jamaica could only be 

obtained by identification of the parasite, histologically, in aborted foetal material.  

However obtaining such material is difficult because of practical logistical 

difficulties in Jamaica. 

There was a significant association between pregnancy status of cows and Log 

PP values; a seropositive pregnant cow was more likely to have higher PP values 

than a non-pregnant cow (p<0.05, Table 3). From the data collected, pregnant cows 

and those that had calved recently (fresh cows) had higher Log PP values compared 

to non-pregnant, infected cows. An increase in N. caninum specific antibody levels 

during gestation has been reported in the literature (Dubey et al., 1997; Andrianarivo 

et al., 2001a; Guy et al., 2001a) and it is known that the enhanced humoral response 

in N. caninum-infected dams reflects reactivation of the parasite and its 

transplacental transmission to the foetus (Guy et al., 2001a; Williams et al., 2003; 

Nogareda et al., 2007). A characteristic fluctuation pattern of PP values has been 

reported in infected cattle. With N. caninum infection, some animals may have high 

antibody levels for their entire life time; some might alternate between seropositive 
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and seronegative, while others might have detectable levels for only a short time 

(Weston et al., 2005). Antibody levels of N. caninum infected animals may fluctuate 

as a result of age and stage of gestation (Davison et al., 1999a), which might have 

been the case in the present study as the exact stage of gestation in infected animals 

was not ascertained. One infected animal from Farm A showed a PP value, which 

was much higher than the high positive control (PP-124%, high positive-100%) and 

this animal might have been pregnant and had experienced parasite recrudescence at 

the time of testing, or the antibody level had peaked just before the time at which an 

abortion would have occurred, thus registering the high PP value. The serum sample 

was tested three times with similar results. 

In the present study, gestation number showed a significant negative 

association with seropositivity. Higher seropositivity levels are more likely in herds 

with younger animals as older cows that may have aborted have a higher probability 

of being removed from the herd. This means that with age, the prevalence of N. 

caninum on farms would decrease compared to younger animals. Jensen et al. (1999) 

observed a different trend with a gradual increase in seropositivity levels in cattle 

with increased gestation number. He further explained that this could be as a result of 

the increasing risk of postnatal infection with age or it could be due to the fact that 

older cows tend to have more stable antibody levels due to prolonged antigenic 

stimulation after repeated activation of infection.  

In conclusion, this study is the first report presenting serological evidence of N. 

caninum infection in dairy cattle in Jamaica. The study shows high serological 

prevalence among cattle of all age groups, pregnancy status and location. The data 

provided here is not representative of the entire cattle industry in Jamaica as farms 

were not randomly selected; therefore, further large scale country-wide 

investigations are needed to fully evaluate the epidemiology of the parasite and its 

economic impact on the industry and whether there are any differences in the 

seroprevalence of the parasites in the local breed compared to the Holstein Friesian, 

which are more prevalent on dairy farms. 
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The exact cause and mechanisms leading to N. caninum-associated abortion is 

unclear. Once N. caninum-infected cows become pregnant, the infection can be 

efficiently transmitted across the placenta to infect the foetus. The animals either 

abort throughout gestation, or calves are born alive and clinically healthy or with 

signs of neuromuscular disorders. Experimental infection of pregnant cows with N. 

caninum tachyzoites in early and late gestation (70 and 210 days gestation age, 

respectively) resulted in foetal death in all foetuses in early gestation, while those in 

late gestation were still alive at the time of euthanasia (Gibney, 2008). The aim of 

our study was to assess the pathological effects of N. caninum on bovine foetuses 

following infection at 70 and 210 days gestation age and to evaluate the immune 

response towards the parasite. The immunological maturity of the foetus at the time 

of infection plays an important role and could determine the outcome of the 

pregnancy (Gibney et al., 2008; Rosbottom et al., 2008). In the current study, the 

development of the haemolymphatic tissues in infected foetuses was assessed and 

compared to uninfected controls at the same time points. Foetal immunological 

development occurs gradually throughout gestation and evidence of low cell turnover 

in the haemolymphatic tissues of all foetuses in early gestation was shown, compared 

to the high cell turnover observed in the thymus and spleen of the more mature 

foetuses in late gestation. The haemolymphatic tissues of foetuses infected in late 

gestation had no histological changes and there was no difference in the histological 

composition between infected and control foetuses. The morphological difference in 

the composition of the haemolymphatic tissues of foetuses in early and late gestation 

would indicate that the older foetuses are capable of recognising the parasites as non-

self and are capable of eliciting an immune response, which probably controlled 

parasite dissemination. The detection of N. caninum parasites in the haemolymphatic 

tissues of the younger foetuses, and not in the older foetuses, suggests that parasites 

were able to multiply rapidly in the tissues of the younger foetuses possibly due to 

the lack of a competent and functional immune response, which was insufficient to 

control the parasites.   

The non-haemolymphatic tissues of foetuses in early gestation showed necrosis 

and apoptosis in the CNS and liver; and a high parasite burden was detected mainly 

in the latter organs and heart, but the parasites were not in direct association with 

inflammatory cells. The importance of the CNS, liver and heart as target organs for 

N. caninum has been reported (Wouda et al., 1997). Neospora caninum appeared to 
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induce hepatocellular necrosis along with apoptosis in the liver, but had no 

pathological effect in cardiomyocytes. This could be because of the physiology of 

these cells, hepatocytes have a high cell turnover and high regenerative capacity; 

whereas cardiomyocytes are non-regenerative and cell turnover is usually not a 

characteristic feature of this organ after birth. Although high parasite loads were 

detected in the cardiomyocytes, these were not directly associated with the T cell 

infiltrates detected; suggesting that lymphocytes recruited into the heart might not be 

functional and therefore could not respond directly to the presence of the parasites. 

The CD3-positive T cells detected in the liver and CNS and were also not associated 

with areas of necrosis or parasites. Macrophages are effective antigen presenting 

cells and in the spleen and lymph nodes could potentially present N. caninum 

peptides in the context of MHC-II, which could result in activation and proliferation 

of  parasite specific T cells (Dion et al., 2011). The T cells appeared to be recruited 

in response to the parasites or tissue damage, but they did not appear capable of 

controlling parasite replication and there was a lack of detectable IFN-γ production. 

This lends further support to the hypothesis that the T cells present in the infected 

tissues were immature and non-functional. This is in contrast to what was observed 

in older foetuses where histological changes were restricted mainly to the CNS (focal 

necrosis) along with mild to moderate T cell dominated mononuclear infiltrates, 

which were in direct association with the necrosis and parasites. IFN-γ was also 

detected in the lung, liver and muscle in the day 210 foetuses, but not in the CNS. 

The production of IFN-γ by the spleen and lymph nodes of foetuses in late 

gestation supports our view that the time when the infection occurs is a deciding 

factor on whether or not the foetus will live or die. The presence of IFN-γ in the 

tissues of older foetuses may have served to limit parasite multiplication and 

dissemination throughout the tissues, hence the low parasite numbers and mild 

pathological changes. These changes were limited exclusively to the CNS, which is 

consistent with the predilection site of the parasites in older foetuses especially in the 

third trimester (Collantes-Fernández et al., 2006a). One of the major roles of the 

innate immune response in controlling intracellular parasites involves detection of 

the pathogen and production of cytokines such as IL-12, which are involved in the 

stimulation of T cells and natural killer cells to produce IFN-γ (Gazzinelli et al., 

1993). IFN-γ probably exerts a direct cytotoxic effect on parasite-infected cells, 

slowing down the growth of the parasites through the induced synthesis of nitric 
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oxide (NO), which was shown to inhibit T. gondii multiplication in infected 

macrophages (Adams et al., 1990; Chao et al., 1993). The specific mechanism of NO 

inhibition on parasite replication remains to be determined (Dupont et al., 2012). 

Another important mechanism of cell killing could involve cytotoxic T cells, which 

are specialised to recognise and destroy cells infected with pathogens (Gazzinelli et 

al., 1992). These cells were probably activated by IFN-γ leading to increased killing 

of N. caninum-infected cells (Tanaka et al., 2000). A N. caninum-specific cytokine 

response, elicited by the foetuses around the time of challenge was probably 

responsible for influencing the disease severity and parasite loads in the older 

foetuses, unlike those in early gestation where evidence of CMI response was not 

seen. Others have shown evidence of a cytokine response in studies looking at foetal 

immune responses in Neospora-infected cattle in mid to late gestation (Andrianarivo 

et al., 2001b; Almeria et al., 2003; Bartley et al., 2004; Bartley et al., 2013a), 

suggesting that the foetal immune response was sufficiently robust and was able to 

control the parasite, thus resulting in survival of infected foetuses. An area of further 

investigation includes the upregulation of the toll-like receptors (TLRs), which are a 

family of receptors that sense a broad range of microbial and protozoan products 

(Takeda et al., 2003). TLRs are involved in the innate activation of immune 

responses (Werling et al., 2006). Upregulation of TLRs was recently reported in the 

spleen and lymph nodes of N. caninum-infected cows and their foetuses following 

experimental infection at 210 days gestation age (Bartley et al., 2013a). 

The immune response in experimentally infected foetuses did not appear to be 

different to that in the naturally infected foetuses, although pathological changes in 

the latter were fewer and the parasite burden was lower. The foetuses from naturally 

infected dams were all alive at the time of euthanasia (Gibney, 2008) and would 

probably have survived to term. Although foetal infection is common following 

parasite recrudescence, foetal death usually occurs only in a minority of cases 

(Davison et al., 1999c). Some of the factors that could contribute to low parasite 

burden, mild parasite-induced lesions and foetal survival includes the foetal 

immunocompetence at the time of infection and virulence of the parasites. The 

majority of Neospora-associated abortions are reported to occur between four and 

seven months gestation age (approximately 120 dg) when the foetal immune system 

would have started to develop (Barr et al., 1991; Anderson et al., 1995). Since the 

foetal immunocompetence starts to develop at about 120 days of gestation (Swift and 



Chapter Five                  General Discussion and Conclusion  

196 

  

Kennedy, 1972), it could be argued that the immune response of the naturally 

infected foetuses, in the current study, played a crucial role in foetal survival. It is 

important to note that although the immune system starts to develop around the time 

when abortion cases are reported to occur, it might not provide adequate protection 

from the the parasites, as this development is a gradual process that continues 

throughout foetal life until parturition (Swift and Kennedy, 1972). It was shown that 

the lower virulent strains of N. caninum had a low vertical transmission rate in 

pregnant mice compared to more virulent strains (Rojo-Montejo et al., 2009b; 

Regidor-Cerrillo et al., 2010). This suggests limited dissemination of the parasites to 

the placenta and foetus and consequently, reduced parasite-induced lesions as the 

parasites would probably need more time to multiply in the tissues to produce similar 

lesions and foetal mortality as with the more virulent strains (Regidor-Cerrillo et al., 

2014). In contrast experimental infection early in gestation with the most virulent 

strains such as Nc-Liverpool resulted in foetal death within 3 weeks post infection in 

early gestation (Rosbottom et al., 2008).  

The findings of high parasite burden in hepatocytes with associated 

hepatocellular degeneration contrasted with the observation that in cardiomyocytes 

there were few histological changes associated with parasite infection. These 

observations were of particular interest and were therefore investigated further. The 

results presented in Chapter 3 suggest that N. caninum is associated with 

hepatocellular death by apoptosis and is consistent with what has been demonstrated 

in the livers of foetuses in early gestation where high numbers of apoptotic 

hepatocytes were detected alongside necrotic cells (Chapter 2). The fact that caspase 

3 expression was not detected within infected cells suggests active inhibition of host 

cell death by the parasites. It is not known how this occurs, but translocation of the 

p65 subunit of the host cell transcription factor NF-κB to the nucleus was shown to 

upregulate host anti-apoptotic genes in T. gondii-infected cells (Molestina et al., 

2003). In contrast nuclear localisation of the p65 subunit in N. caninum-infected cells 

in vitro was not observed regardless of the number of parasites within infected cells 

(Herman et al., 2007). This suggests that both N. caninum and T. gondii inhibit 

activation of the effector caspase via different mechanisms even though the parasites 

are closely related.  

Similar results were obtained for cardiomyocytes where no caspase 3 

expression was detected in parasite infected cells. In addition, the lack of caspases 8 
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and 9 activation in the majority of infected hepatocytes and cardiomyocytes supports 

the findings reported for T. gondii where caspase inhibition was evident at the level 

of both the initiator and effector caspases (Payne et al., 2003). It is likely that the 

bystander hepatocytes in the livers of N. caninum infected foetuses described in 

Chapter two initially underwent apoptotic cell death, but proceeded to secondary 

necrosis due to loss of cell integrity from either decreased phagocytosis following 

massive cell death or following foetal death. The fact that all infected foetuses in 

early gestation died within 24 hours of euthanasia of the dams, could also serve as a 

contributing factor to the loss of cell integrity leading to secondary necrosis; 

however, it is important to note that the cows in the initial experiment were 

euthanised as soon as foetal death was detected in an effort to minimise post-mortem 

changes in foetal tissues (Gibney, 2008). The death of the foetuses may have pushed 

the apoptotic appearance of hepatocytes to one of necrotic cell death, which was 

observed histologically, though a large quantity of these hepatocytes were expressing 

cleaved caspase 3. Cells in a living organism would demand energy via adenosine 

triphosphate production for the initiation of apoptosis; therefore, it is our view that 

while the foetuses were alive, hepatocellular apoptosis may have been induced by N. 

caninum and/or stress factors during foetal death, but following foetal death 

hepatocytes gradually lose their integrity and gained equilibrium with the 

surrounding tissues (secondary necrosis and autolysis). The data presented in Chapter 

3 are strongly suggestive of apoptotic cell death in N. caninum-infected liver cultures 

and the mitochondrial organisation in the uninfected bystander cells in the same 

cultures also strongly supports apoptosis that probably resulted as a direct or indirect 

effect of the parasites. The data also indicated that cardiomyocyte cell death was not 

influenced by the presence of N. caninum, though similar mitochondrial organisation 

was observed in uninfected bystander cells in the infected cultures. The latter 

findings are consistent with the immunohistological findings in Chapter two and the 

findings of others (Wouda et al., 1997).  

Neospora caninum is ubiquitously distributed and is a major cause of 

reproductive failure in cattle. The seroprevalence of N. caninum in cattle has been 

reported in many different countries and there are considerable differences among 

countries and regions, and within countries [reviewed in (Dubey and Schares, 2011)]. 

However, there have been no previous reports of neosporosis within the Caribbean 

region and therefore it was our aim to investigate its seroprevalence, focusing mainly 
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on Jamaican dairy herds to understand the epidemiology of the parasite in the region. 

The N. caninum seroprevalence in 499 cows from 3 herds in Jamaica was 

approximately 26% based on the ELISA results from serum samples collected and 

this seroprevalence is in line with values published for dairy cattle in the Central 

American region (Osawa et al., 2002; Romero et al., 2002; Munhoz et al., 2009; 

Romero-Salas et al., 2010). The three herds we investigated may not have been truly 

representative of dairy production in Jamaica due to the fact that only three herds 

were included in the study and a country-wide survey will be needed to give a true 

representation of the seroprevalence amongst all herds. Nevertheless, given the 

practical difficulties of sampling cattle over a wide area of the country, investigating 

seroprevalence within these large commercial herds provides preliminary evidence 

that the parasite is present within Jamaican cattle.  

Abortion was reported in 1.6% of total number of animals on the three farms at 

least once, but this may not have been a true reflection of the prevalence of 

Neospora-associated abortions, as cases are not always recorded and given the 

extensive management systems in these herds, abortion in the field could easily be 

missed. Cows infected with N. caninum may abort anywhere from three months 

gestation age to term, although the majority of abortion cases was reported in cows 

five to seven months of gestation age (Dubey et al., 2007; Almería and López-

Gatius, 2013). Significantly higher numbers of abortion cases were recorded in a 

retrospective study during the second term of gestation compared to the first and 

third terms (López-Gatius et al., 2004). Abortions that occurred in the field during 

early gestation could easily be overlooked, especially if the pregnancy status of the 

animal was not previously known, as these animals would return to oestrus without 

any complications. It is therefore possible that the 1.6% presented here in our study 

is not representative of the true rate of abortion among N. caninum-infected cattle in 

Jamaica. Despite the presence of farm dogs on some farms, the seropositivity in 

relation to animal age was not significant, indicating that vertical transmission rather 

than horizontal is the main route of N. caninum transmission in Jamaica. An increase 

in seropositivity with age would suggest horizontal transmission, but it is also likely 

that vertical transmission could be augmented by horizontal transmission. This would 

probably occur through contamination of feed and water sources by oocysts from the 

definitive host (McAllister et al., 1998).  
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In conclusion, the data provided in this thesis have shed more light on the 

complex pathogenesis of bovine neosporosis. The results showed widespread 

pathological changes in foetal tissues with evidence of T cell infiltration, which 

indicate that foetuses were trying to mount a response but in younger foetuses this 

was not protective. The placentae from the dams of these foetuses also showed 

parasite associated damage and inflammation, which may have contributed to foetal 

death (Gibney, 2008). The results from older foetuses reveal only mild pathological 

changes mainly in the CNS, which suggest that the immune response elicited in late 

gestation may have contributed to foetal survival. The high parasite burdens detected 

in the liver and heart are also consistent with other findings (Wouda et al, 1997). Our 

data indicate parasite-associated hepatocellular death in uninfected hepatocytes, but 

not in cardiomyocytes. Why hepatocytes die and not cardiomyocytes is still not clear 

and needs to be explored further to fully understand how the parasite interact with 

different cell types.  
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APPENDIX 1: Detailed histological description of foetal tissues 

 

Table 1: Histological features of infected foetus at 70 days gestation  

HO3-2724-98 (I-1) 

ORGAN DESCRIPTION 

 

Spleen  

HE Red and white pulp were poorly differentiated and exhibited moderate amount of 

lymphocytes. Numerous apoptotic lymphocytes were present. A large population 

of haematopoietic precursor cells (myeloid, erythroid and megakaryocyte 

precursors) was present.  

CD3 Moderate amounts of CD3-positive T cells were detected in the spleen and were 

not associated with any specific structures.   

MHCII Low numbers of positive cell were present and randomly scattered. 

PCNA Low numbers of PCNA-positive proliferating cells were detected and randomly 

scattered within the spleen. 

Caspase 3 Moderate amounts of caspase 3-positive apoptotic cells were present and 

randomly scattered. 

Neospora Low numbers of N. caninum tachyzoites were detected within intact cells 

(mononuclear cells). 

Thymus HE The thymus was moderately developed. The cortex and medulla were well distinct. 

The cortex exhibited low numbers of cells, while the medulla contained fewer 

cells. Apoptotic bodies were present in high numbers in the cortex than the 

medulla. 

CD3 Moderate amounts of CD3-positive T cells were present within the cortex and 

fewer positive cells were observed in the medulla. 

PAX5 B lymphocytes were not observed in the thymus. 

MHCII Low numbers of positive cells were present mainly in the medulla and fewer in the 

cortex. 

PCNA Proliferating cells were present in low numbers and mainly in the cortex. 

Caspase 3 High numbers of caspase 3-positive apoptotic cells were present in both cortex and 

medulla. 

Neospora N. caninum antigen was detected in intact mononuclear cells and cell free in the 

medulla. 

BM HE Bone marrow was of low cellularity with precursors of the erythroid and myeloid 

cell lineages present, but megakaryocytes were not observed. Abundant trabecular 

bone and cartilage were present.   

CD3 Low numbers of CD3-positive T cells were present in the bone marrow. 

PAX5 B cells were present in low numbers and sparsely scattered. 

MHCII Low numbers of MHCII-positive cells were present. 

PCNA Proliferating cells were present in low numbers. 

Casp3 High numbers of caspase 3-positive apoptotic cells were detected. 

Kidney  HE Occasional necrotic tubular epithelial cells were present. 

Neospora Low numbers of N. caninum tachyzoites were detected within intact tubular 

epithelial cells.  

Femoral nerve  HE NHAIR 

Neospora N. caninum antigen was not detected. 

Brain  HE Multifocal areas of glial cell aggregates were present with few necrotic and 

apoptotic cells.  

CD3 Low numbers of CD3-positive T cells were present and randomly scattered within 

the glial cell aggregates and majority of these cells were present within blood 

vessels. 

MHCII High numbers of positive cells were present within the glial cell aggregates 

(activated microglial cells) and endothelial cells were also positive (activated).  

Calprotectin Low numbers of positive cells were detected within the glial aggregates. 

Caspase 3 High numbers of caspase 3-expressing cells were present within the glial 

aggregates and also diffusely distributed in the neuropil.  

Neospora N. caninum antigen was detected within intact glial cells. 
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Spinal cord  HE Moderate autolysis. Histological abnormalities were not observed. 

Neospora N. caninum antigen was detected in intact glial cells. 

Heart  HE NHAIR 

CD3  Moderate numbers of CD3-positive T cells were present in the epicardium and 

fewer in the myocardium. 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present in the epicardium 

(leukocytes). 

Neospora Moderate numbers of N. caninum tachyzoites were detected within intact 

cardiomyocytes. 

Skeletal 

muscle 

HE  Moderate numbers of apoptotic cells (myoblasts) were observed. 

CD3 Low numbers of CD3-positive T cells were present in the interstitial areas. 

Caspase 3 High numbers of caspase 3-positive apoptotic cells were observed (foetal 

myoblast).  

Neospora N. caninum antigen was not detected. 

Liver HE The hepatic architecture was severely disrupted, hepatic cords and portal areas 

were inconspicuous. Hepatocytes were hypereosinophlic (necrosis) and moderate 

amounts of haematopoietic precursor cells were present (all precursors lineages). 

CD3 Moderate numbers of CD3-positive T cells were detected and randomly scattered 

in the parenchyma. 

Caspase 3 High numbers of caspase 3-positive apoptotic cells (hepatocytes and fewer 

haematopoietic cells) were present and randomly scattered. 

Neospora Numerous N. caninum tachyzoites were detected within degenerated hepatocytes, 

a megakaryocyte and cell free. 

Lung  HE Moderate autolysis along with low numbers of apoptotic bronchial epithelial cells. 

CD3 Low numbers of CD3-positive T cells were present in the interstitial areas of the 

lung and within vessels. 

Caspase 3 High numbers of caspase 3-positive apoptotic cells (pulmonary bronchiolar and 

bronchial epithelial cells) were observed. 

Neospora N. caninum antigen was detected in moderate amounts within intact interstitial 

cells and was not associated with any degenerated cells. 

kidney HE NHAIR 

Neospora N. caninum antigen was detected in low numbers within intact interstitial cells. 

HE - Haematoxylin and Eosin 

NHAIR - No histological abnormality is recognised  
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Table 2: Histological features of infected foetus at 70 days gestation 

HO5-0562-99 (I-3) 

ORGAN DESCRIPTION 

Spleen  HE The spleen was moderately developed and contained numerous spindle-shaped 

cells with low numbers of lymphocytes along with diffuse extramedullary 

haematopoiesis (all precursor cell lineages). Red and white pulp were poorly 

differentiated and lymphoid follicles were not formed.  

CD3 Low numbers of CD3-positive T cells were present and not associated with any 

specific structures. 

PAX5 B cells were present in lower numbers compared to T cells and not associated with 

any structures. 

MHCII Low numbers of MHCII-positive cells were present and randomly scattered. 

PCNA Proliferating cells were present in low numbers and randomly scattered. 

Caspase 3 High numbers of caspase 3-positive apoptotic cells were present and diffusely 

scattered. 

Neospora Low numbers of N. caninum tachyzoites were detected in intact mononuclear cells 

and also cell free. 

Thymus HE The thymus was moderately lobulated with distinct cortex and medulla. The cortex 

exhibited low numbers of lymphocytes, while medulla contained even fewer, larger 

cells. High numbers of apoptotic lymphocytes were present within both cortex and 

medulla. 

CD3 Low numbers of CD3-psitive T cells were present in the cortex and fewer in the 

medulla. 

PAX5 B cells were not observed in the thymus. 

MHCII Low numbers of MHCII-positive cells were present in the cortex and higher 

numbers were observed in the medulla (macrophages and bone marrow derived 

non-phagocytic dendritic cells). 

PCNA Proliferating cells were present in low numbers in both cortex and medulla. 

Caspase 3 High numbers of caspase 3-positive apoptotic cells were present in the cortex and 

fewer in the medulla. 

Neospora N. caninum tachyzoites were detected in low numbers in the medulla within intact 

mononuclear cells. 

BM HE Bone marrow was of low cellularity with low numbers of myeloid and erythroid 

precursor lineages. Megakaryocytes were not observed and low numbers of 

apoptotic precursor cells were present.  

CD3 Low numbers of CD3-positive T cells were observed. 

PAX5 B cells were not observed in the bone marrow. 

MHCII Moderate amounts of MHCII-positive cells were present. 

PCNA Proliferating cells were few and sparsely scattered. 

Caspase 3 High numbers of caspase 3-positive apoptotic cells were detected. 

Neospora N. caninum antigen was not detected in the bone marrow. 

Brain  HE The brain was highly cellular with multifocal aggregates of glial cells. Low 

numbers of apoptotic cells were present within these aggregates. 

CD3 Low numbers of CD3-positive T cells were present in the aggregates, within blood 

vessels and individual positives cells were detected in the neuropil.  

MHCII The majority of cells within the glial cell aggregates were MHCII-positive, 

consistent with activated microglial cells. MHCII expression was also detected on 

endothelial within the neuropil. 

Calprotectin  Occasional positive cells were present within the glial cell aggregates.  

Caspase 3 Low numbers of caspase 3-positive glial cells were present within the aggregates 

and numerous positive cells were also detected randomly scattered in the neuropil. 

Neospora Small clusters of N. caninum tachyzoites were detected within intact glial cells in 

the glial aggregates and were not associated with inflammation or necrosis. 

Spinal cord  HE There was moderate autolysis. Low numbers of necrotic cells were present in the 

white matter and not associated with inflammation. 

CD3 Moderate numbers of CD3-positive T cells are detected in the meninges, while 

fewer are present in the grey and white matter 

Caspase 3 Low numbers of caspase 3-expressing glial cells were detected within grey and 

white matter 

IFN-γ IFN-γ-expressing cells were not detected 
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Neospora N. caninum antigen was detected within intact glial cells.  

Heart  HE Low numbers of mononuclear cells were present in the epicardium. 

CD3 Moderate amounts of CD3-positive T cells were detected in the epicardium and 

low numbers were present in the myocardium. 

Caspase 3 The majority of mononuclear cells observed in the epicardium were caspase 3 

positive. 

IFN-γ IFN-γ-expressing cells were not detected 

Neospora N. caninum antigen was not detected. 

Lung HE Moderate autolysis with numerous sloughed bronchiolar epithelial cells. 

IFN-γ IFN-γ-expressing cells were not detected 

Neospora N. caninum antigen was not detected. 

Liver HE Hepatocytes were disorderly arranged and hepatic cords, central veins and portal 

areas were not discernible. Hepatocytes were hypereosinophilic (extensive 

hepatocellular necrosis) and low numbers of haematopoietic precursor cells were 

present. 

IFN-γ IFN-γ-expressing cells were not detected 

Neospora N. caninum antigen was detected in necrotic hepatocytes and cell free. 

Skeletal 

muscle 

HE Low numbers of apoptotic myoblasts were present and randomly distributed. 

IFN-γ IFN-γ-expressing cells were not detected 

Neospora N. caninum antigen was not detected. 

kidney HE Low numbers of epithelial cell necrosis was present in the renal cortex. 

CD3 Occasional T cells were detected within interstitial areas of the kidney 

Neospora N. caninum antigen was detected in intact cells and not associated with necrosis. 

Adrenal HE NHAIR 

Neospora N. caninum antigen was not detected. 

Ileum HE NHAIR 

Neospora N. caninum antigen was not detected. 

Pancreas HE NHAIR 

Neospora N. caninum antigen was not detected. 

Femoral nerve HE NHAIR 

Neospora N. caninum antigen was not detected. 

 

  



 Appendices 

                   

204 

  

Table 3: Histological features of infected foetus at 70 days gestation 

O5L-0708-118 (I-4) 

ORGAN DESCRIPTION 

Spleen  HE Spleen is composed of numerous spindle shaped cells with moderate number of 

lymphocytes not forming any structures. Apoptotic lymphocytes were present in 

moderate amounts. A large population of extramedullary haematopoietic precursor 

cells was also present. 

CD3 Moderate amounts of T cells were detected throughout the spleen. 

PAX5 Low numbers of positive cells were present and randomly scattered. 

MHCII Moderate amounts of positive cells were present. 

PCNA Low numbers of proliferating cells were present (lymphocytes). 

Caspase 3 High numbers of cells expressing the caspase 3 antibody were present throughout 

the spleen. 

Neospora N. caninum antigen was detected in intact cells in low numbers. 

Thymus HE The cortex was moderately cellular and the medulla exhibited fewer cells. Cortex 

exhibited high numbers of apoptotic lymphocytes and fewer were present in the 

medullar. 

BM HE Bone marrow was of low cellularity and contained low numbers of apoptotic 

lymphocytes. 

CD3 Low numbers of T cells were present throughout the bone marrow. 

PAX5 B cells were not observed. 

MHCII Low numbers of positive cells were present and randomly scattered throughout. 

PCNA Proliferating cells were few in the bone marrow. 

Caspase 3 A large proportion of cells were expressing the caspase 3 antibody.  

Neospora N. caninum antigen was not detected. 

Brain  HE Small multifocal aggregates of glial cells were present within the parenchyma. 

CD3 Low numbers of T cells were detected in the brain. 

MHCII A small population of positive cells were present within the cellular aggregate in 

the cerebrum and a focal area of positive cells in the granular layer of the 

cerebellum was also positive. 

Calprotectin  Positive cell were not detected within the brain. 

Caspase 3 High numbers of cells within white and grey matter expressing the caspase 3 

antibody. Positive cells were not present within the aggregate of cells described 

and moderate amounts were detected in the cerebellum. 

Neospora Small clusters of N. caninum tachyzoites were detected and not in association with 

inflammation. 

Spinal cord  HE Histological changes were not observed. There was moderate autolysis. 

CD3 Low numbers of CD3-positive T cells were detected mainly in the meninges. 

Caspase 3  Low numbers of caspase 3-expressing glial cells were detected  

Neospora N. caninum antigen was detected within a satellite cell in a spinal nerve root. 

Heart  HE NHAIR 

Neospora Numerous clusters of N. caninum antigen were detected within intact 

cardiomyocytes. 

Lung HE NHAIR 

Neospora Low number of parasites were detected in interstitial cells and not associated with 

degenerated cells. 

Liver HE The liver was disorderly arranged and hepatic cords were poorly visible. Portal 

areas and central veins could be seen in some sections. There was moderate 

multifocal hepatocellular necrosis and low numbers of apoptotic hepatocytes were 

present alongside necrotic cells. High numbers of haematopoietic precursor cells 

were present.  

Neospora High numbers of N. caninum parasites were present in degenerated hepatocytes. 

Skeletal 

muscle 

HE NHAIR 

Neospora N. caninum antigen was not detected. 

kidney HE NHAIR 

Neospora N. caninum antigen was detected in low numbers within intact interstitial cells. 

Adrenal HE NHAIR 
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Neospora N. caninum antigen was not detected. 

Ileum HE NHAIR 

Neospora N. caninum antigen was not detected. 

Pancreas HE NHAIR 

Neospora N. caninum antigen was detected in low numbers in acinar cells and was not 

associated with degenerated cells. 

Femoral nerve HE NHAIR 

Neospora N. caninum antigen was not detected. 

 

Table 4: Histological features of control foetus at 70 days gestation 

HO4-1517-113 (C-3) 

ORGAN DESCRIPTION 

Thymus HE Moderately lobulated with high numbers of densely packed lymphocytes in the 

cortex and fewer larger lymphocytes in the medulla, which contained high numbers 

of macrophages. 

CD3 CD3+ T cells were present in high numbers in the cortex and fewer larger cells 

were detected in the medulla.  

PAX5 Low numbers of B cells were present in the medulla only.  

MHCII Low numbers of MHCII+ cells were present in the cortex and a larger population 

was present within the medulla (macrophages, dendritic cells and B cells). 

PCNA Low numbers of proliferating cells were present mainly in the cortex and fewer in 

the medulla. 

Caspase 3 Low numbers of caspase 3-positive cells were present in the cortex and medulla. 

Spleen  HE Composed of numerous spindle-like cells, low numbers of lymphocytes and 

diffuse extra-medullary haematopoiesis. Red and white pulp are poorly 

differentiated. Lymphoid follicles were not identified.  

CD3 Low numbers of T cells were observed and randomly scattered throughout the 

spleen and was not associated with any structures.  

PAX5 Low numbers of B cells were present and randomly scattered.  

MHCII Low numbers of positive cells were present in the spleen.  

PCNA Proliferating cells were present in low numbers (lymphocytes). 

Caspase 3  Caspase 3-positive cells were detected in low numbers and randomly scattered. 

Bone marrow  HE Bone was of low cellularity. Small clusters of the erythroid and myeloid precursor 

lineages were dispersed throughout the intertrabecular spaces. 

CD3 Low numbers of T cells were randomly scattered throughout the intertrabecular 

spaces.  

PAX5 Low numbers of B cells were admixed within the T cell population. 

MHCII A small population of positive cells (monocytes and B cells) were present within 

the clusters. 

PCNA Proliferating cells were present in low numbers.  

Caspase 3 Occasional caspase 3-poitive cells were detected. 

Heart  HE NHAIR 

Skeletal 

muscle 

HE NHAIR 

Liver HE NHAIR  

Lung  HE NHAIR 

Brain  HE NHAIR 

CD3 T cells were not present within the brain parenchyma. 

MHCII Low numbers of positive cells were detected in a focal area of the white matter. 

Calprotectin  Macrophages were not detected. 

Spinal cord  HE NHAIR 

Intestine  HE NHAIR 

Kidney  HE NHAIR 

Femoral nerve  HE NHAIR 
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Table 5: Histological features of control foetus at 70 days gestation 

HO4-1518-119 (C-4) 

ORGAN DESCRIPTION 

Thymus HE Moderately lobulated with high numbers of densely packed lymphocytes in the 

cortex and fewer larger lymphocytes in the medulla, which contained high numbers 

of macrophages.  

CD3 Cortex exhibited high numbers of T cells, while medulla had fewer positive cells. 

PAX5 Low numbers of B cells were present in the medulla only.  

MHCII A small population of positive cells was present in the cortex and higher numbers 

were observed in the medulla (macrophages, dendritic cells and B cells).  

PCNA Low numbers of proliferating cells were detected mainly in the cortex. 

Spleen  HE A large population of spindle-shaped cells was present in the spleen. Red and white 

pulps were poorly differentiated and lymphoid follicles were not observed.  

CD3 Low numbers of T lymphocytes were present in the spleen and were not associated 

with any structures.  

PAX5 A small population of B cells was randomly scattered throughout the red and white 

pulp. 

MHCII Moderate amount of positive cells were present and diffusely scattered in the 

spleen.  

PCNA Low numbers of proliferating cells were detected and randomly scattered in red 

and white pulp. 

Caspase 3 Individual caspase 3-expressing cells were present and randomly scattered. 

Bone marrow  HE Bone was of low cellularity. Small clusters of the erythroid and myeloid precursor 

lineages were dispersed throughout the intertrabecular spaces. 

CD3 A small population of T lymphocytes was randomly scattered throughout the 

organ. 

PAX5 Low numbers of B cells were present. 

MHCII Low numbers of positive cells were detected (monocytes and B cells). 

PCNA Proliferating cells were present in low numbers. 

Caspase 3 Not detected. 

Heart  HE NHAIR 

Skeletal 

muscle 

HE NHAIR 

Liver HE NHAIR 

Lung  HE NHAIR 

Intestine  HE NHAIR 

Kidney  HE NHAIR 

Femoral nerve  HE NHAIR 

Brain  HE NHAIR 

CD3 T cells were not present within the brain parenchyma. 

MHCII Low numbers of positive cells were present within a focal area of the white matter.  

Calprotectin  Possible cells were not detected. 

Spinal cord  HE NHAIR 
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Table 6: Histological features of infected foetus at 210 days gestation 

HO4-986-399G (I-11) 

ORGAN DESCRIPTION 

Thymus HE The thymus was highly developed with well differentiated cortex and medulla. The 

cortex contained numerous small, tightly packed lymphocytes, while the medulla 

had a smaller population of large lymphocytes with high numbers of reticular 

medullary epithelial cells, macrophages, dendritic cells and a marked infiltration of 

polymorphonuclear cells (eosinophils). 

CD3 High numbers of T cells were present in the cortex and a smaller population was 

observed in the medulla. 

PAX5 Low numbers of B cell were present within the medulla only. 

MHCII The medulla had high numbers of MHCII-positive cells with few positive cells 

diffusely scattered in the cortex. 

PCNA PCNA-positive proliferating cells were present in high numbers in the cortex with 

fewer in the medulla. 

Caspase 3 Moderate amounts of caspase 3-posiitve cells (lymphocytes) were present in both 

cortex and medulla. 

IFN-γ IFN-γ-expressing cells were not detected 

Neospora N. caninum antigen was not detected. 

Spleen  HE The spleen had well differentiated red and white pulp and comprised of high 

numbers of lymphocytes within the white pulp (PALS and lymphoid follicles) and 

a fewer were present in the red pulp. Haematopoietic precursor cells were present 

in low numbers. 

CD3 High numbers of T cells were present in the white pulp. The red pulp contained a 

smaller population of T cells. 

PAX5 Numerous B cells were present within the lymphoid follicles (not fully formed) and 

a small population was observed within red pulp areas.  

MHCII High numbers of MHCII-positive cells were present in the white pulp, mainly in 

lymphoid follicles (macrophages, follicular dendritic cells, splenic dendritic cells 

and lymphocytes). The red pulp also contained high numbers of positive cells. 

PCNA Moderate amounts of PCNA-positive proliferating cells were present in both white 

and red pulps (lymphocytes and haematopoietic cells). 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present and randomly 

scattered in red and white pulp (mainly in lymphoid follicles). 

IFN-γ Low numbers of IFN-γ-expressing were detected within the spleen 

Neospora N. caninum antigen was not detected. 

Lymph node  HE Highly developed with distinct superficial cortex, paracortex and medulla.  Primary 

lymphoid follicles were present in the superficial cortex without germinal centres. 

High numbers of lymphocytes were present in cortex and fewer in the medulla. 

Low numbers of eosinophils were present in the medulla and occasional 

neutrophils. 

CD3  High numbers of T cells were present within the paracortex, low numbers scattered 

in B cell compartments and a smaller population observed in the medulla. 

PAX5 Numerous B cells were present within lymphoid follicles and fewer positive cells 

were detected in the paracortex and medulla. 

MHCII A large population of positive MHCII cells were present within the cortex 

(follicular dendritic cells, dendritic cells, macrophages and B cells) and a smaller 

population observed in the medulla. 

PCNA High numbers of proliferating cells were present mainly in the lymphoid follicles. 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present and randomly 

scattered. These were not associated with any specific structures. 

IFN-γ IFN-γ-expressing cell were detected in moderate numbers mainly in the paracortex 

Neospora N. caninum antigen was not detected. 

Bone marrow  HE The bone marrow was of high cellularity with all haematopoietic precursor cell 
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lineages present along with low numbers of adipocytes. 

CD3 Moderate amounts of T cells were present throughout the bone marrow. 

PAX5 High numbers of B cells were present and diffusely scattered throughout the organ. 

MHCII Moderate amount of positive cells were present in bone marrow 

(monocyte/macrophages lineage). 

PCNA High numbers of proliferating cells were observed (haematopoietic precursor cells). 

Caspase 3 Caspase 3-positive cell were not detected. 

IFN-γ Low numbers of IFN-γ-expressing were present  

Neospora N. caninum antigen was not detected. 

 

ORGAN DESCRIPTION 

Heart  HE Moderate multifocal to coalescing mononuclear infiltrates were present in the 

myocardium (non-suppurative myocarditis) and low numbers of eosinophils were 

observed in the inflammatory infiltrates. 

CD3 T cells were the predominant cell type present within the inflammatory infiltrate. 

PAX5 B cells were not detected in the inflammatory infiltrate. 

MHCII Low numbers of MHCII-positive cells were present within the inflammatory 

infiltrate. 

Calprotectin  Low numbers of macrophages were detected within the inflammatory infiltrate. 

Caspase 3 Caspase 3-positive cells were not detected. 

 IFN-γ-expressing cells were present in low numbers 

Neospora N. caninum antigen was not detected. 

Skeletal muscle HE Moderate multifocal mononuclear infiltrates were observed in the interstitial areas 

of the muscle (non-suppurative myositis).  

CD3 The inflammatory infiltrates were comprised mainly of CC3-positive T cells.  

PAX5 B cells were not present. 

MHCII MHCII expression was present in the inflammatory foci with mild staining 

intensity. Endothelial cells were also positive. 

Calprotectin  Low numbers of macrophages were detected in the inflammatory infiltrates. 

Caspase 3 Caspase 3-positive cells were not detected. 

IFN-γ IFN-γ-expressing were detected in low numbers 

Neospora N. caninum antigen was not detected. 

Lung HE Mild mononuclear inflammatory infiltrates were present within the alveolar septa 

and fewer in the interstitial spaces and pleura. 

CD3 Mild T cell infiltrates were detected in the pulmonary interstitium and alveolar 

septa with low numbers present in the pleura (pleuritis).  

PAX5 B cells were not detected within the infiltrates 

MHCII High numbers MHCII-positive cells were present in the BALT, interstitial areas, 

alveolar septa and alveolar sacs.  Mild expression was also observed in the pleura. 

Calprotectin  Numerous macrophages were present through the lung parenchyma (alveolar, 

interstitial and intravascular macrophages) and low numbers were detected in the 

pleura.  

IFN-γ Low numbers of IFN-γ-expressing cells were detected mainly in the bronchial 

epithelium 

Caspase 3 Caspase 3-positive cells were not detected.  

Neospora N. caninum antigen was not detected. 

Liver  HE The architecture of the liver was preserved. Multifocal, mild mononuclear portal 

infiltrates and low numbers of neutrophils were present. Low numbers of 

haematopoietic precursor cells were also present. 

CD3 Portal areas contained low numbers of CD3-positive T cells and fewer were 

detected in the parenchyma.  

PAX5 Low numbers of B cells were present in some portal areas.  

MHCII High numbers of MHCII-positive cells were detected diffusely in the hepatic 

parenchyma (macrophages and Kupffer cells) and small clusters were present 

predominantly in the portal areas (macrophages).  

Calprotectin  Low numbers of macrophages were present in the portal areas and diffuse 

expression was present in the hepatic parenchyma. 

Caspase 3 Caspase 3-positive cells were not detected.  

IFN-γ IFN-γ-expressing cells were present in low numbers and randomly scattered in the 

hepatic parenchyma. 

Neospora N. caninum antigen was not detected. 



 Appendices 

                   

209 

  

Brain  HE Focal area of necrosis with associated mild mononuclear infiltrate was observed in 

the white matter. In addition, mild perivascular mononuclear inflammatory cells 

were present. The necrotic foci and perivascular lesions were absent in the 

consecutive sections and therefore, further immunohistological assessment was 

done. 

Caspase 3 Caspase 3-positive cells were not detected. 

IFN-γ IFN-γ-expressing cells were not detected. 

Neospora Neospora caninum tachyzoites were present in low numbers within the focus of 

necrosis in an intact glial cell in association with the inflammatory infiltrate.  

Spinal cord  HE White and grey matter contained low numbers of mononuclear infiltrates, while 

meninges were moderately infiltrated with similar cells. 

CD3 Low numbers of CD3-positive T cells were present in the white and grey matter 

and were randomly scattered. Meninges also exhibited low numbers of T cells. 

PAX5 B cells represented a small proportion of the inflammatory cell in the spinal cord 

and meninges. 

MHC11 Diffuse MHCII expression was observed in the white and grey matter and 

meninges, consistent with activated microglial cells. 

Caspase 3 Occasional caspase 3-poisitve apoptotic cells were present in the grey matter 

(macroglial cells).  

IFN-γ IFN-γ-expressing cells were not detected. 

Neospora N. caninum antigen was not detected. 

Kidney  HE NHAIR 

Neospora N. caninum antigen was not detected. 

Adrenal  HE NHAIR 

Neospora N. caninum antigen was not detected. 

Femoral nerve  HE NHAIR 

Neospora N. caninum antigen was not detected. 
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Table 7: Histological features of infected foetus at 210 days gestation 

HO4-987-426G (I-12) 

ORGAN DESCRIPTION 

Thymus HE Highly developed with well differentiated cortex and medulla. Numerous 

lymphocytes occupied the cortex and lower numbers of large lymphocytes were 

present in the medulla along with nigh numbers of macrophages, reticular 

medullary epithelial cells, dendritic cells and few eosinophils.  

CD3 High numbers of T cells were present in the cortex and a smaller population was 

detected in the medulla. 

PAX5 Low numbers of B cells were present within the medulla. 

MHCII A large population of MHCII-positive cells were present in the medulla 

(macrophages, dendritic cell and lymphocytes) and a smaller population was 

diffusely scattered in the cortex. 

PCNA High numbers of proliferating lymphocytes were observed in the cortex and fewer 

in the medulla.  

IFN-γ IFN-γ-expressing cells were not detected within the thymus. 

Neospora N. caninum antigen was not detected. 

Spleen  HE The spleen had well differentiated red and white pulp with a large population of 

lymphocytes in the PALS and primary lymphoid follicles (white pulp) and 

moderate amounts were observed in the red pulp along with high numbers of 

macrophages, splenic dendritic cells, and occasional neutrophils and eosinophils. 

Haematopoietic precursor cells were present in low numbers.  

CD3 The PALS exhibited a high numbers of T cells and fewer were present in and 

around lymphoid follicles. Moderate amounts were also detected in the red pulp.  

PAX5 B cells were present in high numbers in the lymphoid follicles and low numbers 

were randomly scattered throughout the red pulp. 

MHCII A large population of MHCII-positive cells were observed in lymphoid follicles, 

PALS and red pulp areas (lymphocytes, dendritic cells and splenic macrophages). 

PCNA High numbers of proliferating cells were present in the white pulp and fewer were 

present in the red pulp.  

Neospora N. caninum antigen was not detected. 

Lymph node  HE Highly developed with well distinct superficial cortex, paracortex and medulla. 

Primary follicles were present in the superficial cortex without germinal centres. 

Paracortex had high numbers of lymphocytes, while low numbers were present in 

the medulla along with scant polymorphonuclear cells (eosinophils). 

CD3 High numbers of T cells were present in the paracortex with scattered positive cell 

in the superficial cortex, while a smaller population was detected in the medulla. 

PAX5 Lymphoid follicles contained a high numbers of B cells, low numbers were 

scattered in the paracortex and moderate numbers were present in the medulla. 

MHCII Numerous MHCII-positive cells were present in the cortex (dendritic cells, 

follicular dendritic cells, macrophages and lymphocytes) and a small population 

was observed in the medulla.           

PCNA Moderate amounts of proliferating cells were present predominantly in the cortex 

associated with lymphoid follicles and low numbers were detected in the medulla. 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present and randomly 

scattered in both cortex and medulla (lymphocytes). 

IFN-γ Low numbers of IFN-γ-expressing cells were detected in the paracortex.  

Neospora N. caninum antigen was not detected. 

Bone marrow  HE Bone marrow was of high cellularity with all haematopoietic precursor cell lines 

present along with scant adipose tissue. 

CD3 Moderate amounts of T cells were detected within the bone marrow. 

PAX5 High numbers of B cells were detected.  

MHCII The bone marrow exhibited moderate amount of MHCII-positive cells (cells of the 

monocyte/macrophage lines and Lymphocytes). 
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PCNA Low numbers of proliferating cells were observed (haematopoietic precursor cells 

and lymphocytes). 

Caspase 3 Caspase 3-positive apoptotic cells were not observed in the bone marrow.  

Neospora N. caninum antigen was not detected. 

Brain  HE The grey matter exhibited low numbers of mononuclear cells, represented mainly 

by lymphocytes.  

CD3 Low numbers of CD3-positive T cells were present in the grey matter. 

PAX5 B cells were not detected in the inflammatory infiltrates. 

MHCII Low numbers of MHCII-positive cells were present in the grey matter (microglial 

cells). 

PCNA Low numbers of proliferating cells (glial cells) were present in the grey and white 

matter. 

Caspase 3 Caspase 3-positive apoptotic cells were not detected. 

Neospora N. caninum antigen was not detected. 

Spinal cord  HE Severe non-suppurative myelitis was observed and represented by multifocal 

mononuclear infiltrates in the grey and white matter along with perivascular 

cuffing. The grey matter exhibited numerous mononuclear cells (macrophages and 

lymphocytes), vessels had activated endothelial cells with evidence of leucocytes 

adhesion and extravasation. Apoptotic cells were present in low numbers within 

the inflammatory infiltrates. Severe radiculoneuritis was always present and 

consisted of similar inflammatory cells. 

CD3 Moderate amounts of T cells were present within the grey matter in the cell rich 

areas and high numbers were detected in the perivascular cuffing. T cells were 

more numerous in the spinal nerve roots and fewer were detected in the meninges. 

PAX5 B cells were not detected within the inflammatory infiltrates. 

MHCII Numerous MHCII-positive cells were observed in the inflammatory infiltrates, 

consistent with activated microglial cells. 

PCNA High numbers of positive cells (mononuclear cells) were present in the spinal cord 

grey matter and fewer were randomly scattered in the white matter.  

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present in the grey matter 

and perivascular cuffing in both grey and white matter. 

Neospora N. caninum antigen was detected in low in association with the inflammatory 

infiltrates. 

Heart  HE Mild non-suppurative myocarditis, represented by multifocal mononuclear 

infiltrates in the myocardium. 

CD3 Low numbers of T cells were present within the inflammatory infiltrate. 

PAX5 B cells were not detected. 

MHCII Low numbers of MHCII-positive cells were present within the inflammatory 

infiltrates. 

PCNA Low numbers of proliferating cells were detected within the myocardium 

(cardiomyocytes).  

Caspase 3 Caspase 3-positive apoptotic cells were not detected. 

Neospora N. caninum antigen was not detected. 

Lung HE Mild multifocal peribronchiolar and peribronchial mononuclear infiltrates were 

observed.  

CD3 Low numbers of T cells were observed in the peribronchiolar, peribronchial areas 

and alveolar septa. 

PAX5 B cells were not observed. 

MHCII High numbers of MHCII-positive cells (alveolar, interstitial, intravascular 

macrophages and dendritic cells) were detected. 

PCNA Proliferating cells were not detected. 

Caspase 3 Low numbers of caspase 3-positive cells were present in the peribronchial, 

peribronchiolar areas and alveolar spaces.  

Neospora N. caninum antigen was detected in high numbers within intact mononuclear cells 

in alveolar spaces and alveolar septa, consistent with macrophages. 

Liver HE Moderate multifocal mononuclear portal infiltrates (non-suppurative hepatitis) was 

observed along with a focal area of necrosis, which was comprised of necrotic 

debris, surrounding mononuclear infiltrate and low numbers of neutrophils. 

Haematopoietic cells were present in low numbers.  

CD3 High numbers of T cells were present in the portal areas with fewer scattered 

positive cells in the hepatic parenchyma. 

PAX5 Low numbers of B cells were present within the inflammatory infiltrates in the 

portal areas.  
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MHCII There was diffuse staining of the liver (Kupffer cells) and within the inflammatory 

infiltrates in the portal areas (infiltrating macrophages). 

PCNA Moderate amounts of proliferating cells were present and randomly scattered 

(mainly hepatocytes). 

Caspase 3 Low numbers of caspase 3-positive apoptotic hepatocytes and lymphocytes were 

detected and randomly scattered throughout the hepatic parenchyma. 

Neospora N. caninum antigen was not detected. 

Skeletal 

 muscle 

HE Mild non-suppurative myositis was present and consisted of low numbers of 

mononuclear infiltrates in the interstitial areas. 

CD3 Low numbers of T cells were present within the inflammatory infiltrates. 

PAX5 B cells were not present. 

MHCII Low numbers of MHCII-positive cells were detected within the inflammatory 

infiltrates and endothelia cells are also positive. 

PCNA Proliferating cells were not present. 

Caspase 3 Caspase 3-positive apoptotic cells were not detected.  

Neospora N. caninum antigen was not detected. 

kidney HE NHAIR 

Neospora N. caninum antigen was not detected. 

Adrenal HE NHAIR 

Neospora N. caninum antigen was not detected. 

Ileum HE NHAIR 

Neospora N. caninum antigen was not detected. 

Pancreas HE NHAIR 

Neospora N. caninum antigen was not detected. 

Femoral nerve HE NHAIR 

Neospora N. caninum antigen was not detected. 
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Table 8: Histological features of control foetus at 210 days gestation 

HO4-976-382G (C-1) 

ORGAN DESCRIPTION 

Thymus HE The thymus exhibited well distinct cortex and medulla. Cortex comprised high 

numbers of lymphocytes, while the medulla had lower numbers of large 

lymphocytes and numerous macrophages and reticular medullary epithelial cells. 

High numbers of eosinophils were also present in the medulla.  

CD3 High numbers of T cells were present in the cortex and a smaller population was 

detected in the medulla. 

PAX5 B cells were detected in the medulla in moderate amounts. 

MHCII The medulla exhibited high numbers of MHCII-positive cells (macrophages, 

dendritic cells and lymphocytes), while lower numbers were present in the cortex 

and diffusely scattered.  

PCNA Numerous proliferating cells (lymphocytes) were present in the cortex and lower 

numbers detected in the medulla.  

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present and randomly 

scattered in cortex and medulla.  

Lendrum The polymorphonuclear cells in the medulla were positive for the Lendrum’s stain 

(eosinophils). 

Spleen  HE The spleen had well differentiated red and white pulp with a large population of 

lymphocytes in the PALS and primary lymphoid follicles and moderate amounts 

were observed in the red pulp. Haematopoietic precursor cells were present in low 

numbers.  

CD3 Numerous T cells were present in the PALS and low numbers in lymphoid 

follicles. Red pulp exhibited moderate amounts of T cells. 

PAX5 B cells were present in high numbers in the lymphoid follicles and fewer positive 

cells were detected in the red pulp. 

MHCII High numbers of MHCII-positive cells (splenic macrophages, dendritic cells and 

lymphocytes) were detected in the white pulp with intense staining in the lymphoid 

follicles. The red pulp also exhibited diffuse staining. 

PCNA High numbers of proliferating cells were present in both red and white pulp. 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present in red and white 

pulp and not associated with any specific structures.  

Lymph node  HE The cortex and medulla were well distinct and well differentiated. High numbers of 

lymphocytes were present in the superficial and paracortex. Primary follicles were 

present in the superficial cortex, but without germinal centres. Low numbers of 

lymphocytes and scant polymorphonuclear cells (eosinophils and few neutrophils) 

were present in the medulla. 

CD3 High numbers of T cells were present in the cortex within T cell zone and few 

scattered cells were also present in B cell zones. Low numbers were detected in the 

medulla.  

PAX5 High numbers of B cells were detected in lymphoid follicles and low numbers 

were present in the medulla. Occasional B cells were also detected in the 

paracortex. 

MHCII High numbers of MHCII-positive cells were present within the superficial cortex 

(follicular dendritic cell, dendritic cells, macrophages and lymphocytes) and 

paracortex.  Moderate amounts were detected in the medulla. 

PCNA Proliferating cells were present in low numbers and randomly scattered in the 

cortex and medulla. 

Caspase 3  Individual caspase 3-positive apoptotic cells were detected and randomly scattered 

in the cortex and medulla.  

Bone marrow  HE Bone marrow was highly cellular with all haematopoietic precursor cell lines 

present. Adipose tissue was also present in low numbers. 

CD3 Low numbers of T cells were detected. 

PAX5 Low numbers of B cells were present within the bone marrow. 
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MHCII Low numbers of MHCII-positive cells were detected.  

PCNA Proliferating cells were present in low numbers.  

Caspase 3 Caspase 3-positive cells were not detected. 

Heart  HE NHAIR 

Skeletal 

muscle 

HE NHAIR 

Liver HE Occasional mononuclear cells (lymphocytes) were present in the portal areas and 

low numbers of haematopoietic precursor cells were present in the hepatic 

parenchyma.  

Lung  HE NHAIR 

Intestine  HE NHAIR 

Kidney  HE NHAIR 

Femoral nerve  HE NHAIR 

Brain  HE NHAIR 

Spinal cord  HE NHAIR 
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Table 9: Histological features of control foetus at 210 days gestation 

HO4-984-411G (C-5) 

ORGAN DESCRIPTION 

Thymus HE The thymus exhibited well differentiated cortex and medulla. Cortex contained 

high numbers of lymphocytes, while the medulla had a smaller population of large 

lymphocytes, numerous macrophages and reticular medullary epithelial cells. High 

numbers of eosinophils were also present in the medulla. 

CD3 T cells were present in high numbers in the cortex and a lower numbers were 

detected in the medulla. 

PAX5 Low numbers of B cells were present in the medulla. 

MHCII Medulla contained high numbers of MHCII-positive cells and fewer were present 

in the cortex and diffusely scattered. 

PCNA High numbers of proliferating lymphocytes were present in the cortex with fewer 

detected in the medulla.  

Caspase 3 Moderate amounts of caspase 3-positive apoptotic cells were present in both cortex 

and medulla. 

Spleen  HE The spleen was highly developed with well differentiated red and white pulp. High 

numbers of lymphocytes were present in the white pulp and fewer were present in 

the red pulp along with high numbers of macrophages, dendritic cells and fewer 

neutrophils. Megakaryocytes were the predominant haematopoietic cell type with 

scant myeloid and erythroid precursors.    

CD3 T cells were present in high numbers in the PALS and few scattered cells were also 

present in the lymphoid follicles. The red pulp contained moderate amounts of T 

cells.  

PAX5 Lymphoid follicles exhibited high numbers of B cells and fewer were present in 

the red pulp. 

MHCII There was diffuse staining of MHCII-positive cells in the white pulp (dendritic and 

follicular dendritic cells, macrophages and lymphocytes) and red pulp 

(macrophages, dendritic cells and lymphocytes). 

PCNA High numbers of PCNA-positive proliferating cells (haematopoietic cells and 

lymphocytes) were present. The lymphoid follicles contained the majority of these 

cells, while lower numbers were present in red pulp. 

Caspase 3  Low numbers of caspase 3-positive cells were present and randomly scattered in 

red and white pulp. 

Lymph node  HE The cortex and medulla were well differentiated and similar morphologically to 

other foetuses. Primary follicles were present in the superficial cortex, but without 

germinal centres. Low numbers of lymphocytes and scant polymorphonuclear cells 

(eosinophils) were present in the medulla. 

CD3 High numbers of T cells were present in the paracortex and low numbers were 

detected within lymphoid follicles. Medulla contained a smaller population of T 

cells. 

PAX5 B cells were predominantly seen in the lymphoid follicles and fewer positive cells 

were detected in the paracortex and medulla. 

MHCII Numerous MHCII-positive cells were detected in the cortex (lymphoid follicles) 

and fewer positive cells were present in the medulla. 

PCNA Moderate amount of PCNA-positive proliferating cells were present mainly in the 

lymphoid follicles. 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were observed mainly in the 

lymphoid follicles. 

Bone marrow  HE Bone marrow was of high cellularity with all precursor cell lineages were present. 

Adipocytes were present in low numbers. 

CD3 Low numbers of T cells were detected. 

PAX5 Moderate amounts of B cells were detected. 

MHCII Diffuse staining of MHCII-positive cells was observed in the bone marrow 

(monocyte/ macrophage lineage). 
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PCNA Low numbers of proliferating cells were detected.  

Casp3 Caspase 3-positive apoptotic cells were not observed. 

Brain  HE NHAIR 

Spinal cord  HE NHAIR  

Heart  HE NHAIR  

Lung HE Low numbers of mononuclear cells were present in the BALT.  

Liver HE Occasional mononuclear cells were present in the portal areas and low numbers of 

haematopoietic precursor cells were present. 

Skeletal muscle HE Occasional mononuclear cells and scant polymorphonuclear cells (eosinophils) in 

interstitial areas. 

kidney HE NHAIR 

Adrenal HE NHAIR 

Ileum HE Low numbers of eosinophils were present in the lamina propria and sub-mucosa.  

Pancreas HE NHAIR 

Femoral nerve HE NHAIR 

 

  



 Appendices 

                   

217 

  

Table 10: Histological features of control foetus at 210 days gestation 

HO4-980-398G (C-3) 

ORGAN DESCRIPTION 

Thymus HE The thymus had well differentiated cortex and medulla. Cortex contained numerous 

small lymphocytes, while medulla exhibited lower numbers of large lymphocytes 

and a high numbers of macrophages, reticular medullary epithelial cells and fewer 

eosinophils. 

Spleen  HE Spleen exhibited well differentiated red and white pulp. High numbers of 

lymphocytes were occupied the white pulp (PALS and primary lymphoid follicles), 

while fewer were present in the red pulp with high numbers of macrophages, splenic 

dendritic cells and occasional neutrophils. Low numbers of haematopoietic cells 

were present.  

Lymph node HE The lymph node exhibited well differentiated cortex and medulla.  The superficial 

cortex contained primary lymphoid follicles without germinal centres, while high 

numbers of lymphocytes were present in the paracortex.  The medulla had low 

numbers of lymphocytes and scant neutrophils.  

BM HE Bone marrow was of high cellularity with intense haematopoietic activity. All 

precursor cell lineages were present and low numbers of adipocytes were observed. 

Heart  HE NHAIR 

Lung HE NHAIR 

Liver HE The liver exhibited low numbers of haematopoietic precursor cells and randomly 

scattered in the hepatic parenchyma. Low numbers of neutrophils were present 

within hepatic cords. 

Skeletal muscle HE NHAIR 

kidney HE NHAIR 

Adrenal HE NHAIR 

Ileum HE Mild eosinophilic infiltration was detected in the lamina propria.  

Pancreas HE NHAIR 

Femoral nerve HE NHAIR 

Brain  HE NHAIR 

Spinal cord  HE The spinal cord exhibited low numbers of polymorphonuclear cells within the 

meninges (eosinophils). 

Lendrum  The polymorphonuclear cells were identified as eosinophils. 
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Table 11: Histological features of naturally infected foetus after parasite 

recrudescence at 26 weeks gestation (foetal age - 31 weeks gestation age) 

05L-2575-438 (R-5) 

ORGAN DESCRIPTION 

Spleen  HE The spleen was highly developed with well differentiated red and white pulp. 

Large numbers of lymphocytes occupy the white pulp, which contained 

prominent primary lymphoid follicles without germinal centres. White pulp 

contained numerous macrophages, splenic dendritic cells, follicular dendritic 

cells and fewer lymphocytes. Extramedullary haematopoiesis was present. 

CD3 The white pulp exhibited high numbers of CD3-positive T cells in the PALS 

and a smaller population was present in the red pulp. 

PAX5 High numbers of B cells were present in the lymphoid follicles and fewer were 

scattered in the red pulp. 

MHCII High numbers of MHCII-positive cells were detected in the PALS and large 

numbers were present and diffusely scattered in the red pulp. 

PCNA High numbers of proliferating cells were present the white pulp. Mainly in the 

lymphoid follicles and few were present in red pulp. 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present in both red and 

white pulp. 

IFN-γ Low numbers of IFN-γ-expressing cells were present. 

Neospora N. caninum antigen was not detected. 

Thymus HE Highly developed with well differentiated cortex and medulla. Cortex 

contained high numbers of lymphocytes with fewer present in the medulla. A 

large population of macrophages, reticular medullary epithelial cells and 

dendritic cells were present in the medulla along with low numbers of 

eosinophils. 

CD3 High numbers of CD3-positive T cells were present in the cortex with fewer 

positive cells in the medulla. 

PAX5 Low numbers of B cells were present within the medulla. 

MHCII High numbers of MHCII-positive cells were present in the medulla and lower 

numbers were present in the cortex and diffusely scattered. 

PCNA PCNA-positive proliferating cells were present in the cortex and medulla in 

high numbers. 

Caspase 3 Low numbers of caspase 3-positie apoptotic cells were present in both cortex 

and medulla. 

IFN-γ IFN-γ-expressing cells were not detected. 

Neospora N. caninum antigen was not detected. 

Lymph node HE The lymph nodes were highly developed with distinct cortex and medulla. 

Prominent primary lymphoid follicles were observed in the superficial cortex 

with numerous lymphocytes; while high numbers of lymphocytes were present 

in the paracortex and fewer in the medulla (lymphocytes, dendritic cells and 

macrophages). 

CD3 T cells were present in the paracortex in high numbers and a small population 

was observed around and within lymphoid follicles. Fewer T cells were present 

in the medulla. 

PAX5 Numerous B cells were present in lymphoid follicles. Low numbers were 

scattered in the paracortex and moderate amounts were observed in the 

medulla. 

MHCII A large population of MHCII-positive cells were observed in the superficial 

cortex and paracortex with lower numbers present in the medulla. 

PCNA Moderate amounts of PCNA-positive proliferating cells were present mainly in 

the lymphoid follicles. 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present and randomly 

scattered in cortex and medulla. 

IFN-γ Occasional IFN-γ-expressing cells were present in the paracortex. 

Neospora N. caninum antigen was not detected. 

BM HE Highly cellular with all precursor cell lines present and low numbers of 

adipocytes.  

CD3 Moderate amounts of T cells were present in the bone marrow. 

PAX5 High numbers of B cells were observed and diffusely scattered. 

MHCII High staining intensity was observed and high numbers of positive cells were 

present.  
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PCNA Low numbers of PCNA-positive proliferating cells were present. 

Caspase 3 Low numbers of caspase 3-positive cells were observed. 

IFN-γ Low numbers of IFN-γ-expressing cells were detected. 

Neospora N. caninum antigen was not detected. 

Spinal cord  HE The spinal cord exhibited moderate mononuclear infiltrates in the white matter 

along with moderate perivascular infiltrates. Grey matter had low numbers of 

mononuclear inflammatory cells. The meninges were infiltrated with high 

numbers of similar inflammatory cells. Severe non-suppurative radiculoneuritis 

was also observed. 

CD3 The majority of the infiltrating inflammatory cells in the nerve roots, meninges 

and spinal cord were CD3-positive T cells.  

PAX5 Low numbers of B cells were present within the meninges and nerve roots of 

the spinal cord.  

MHCII The nerve roots and meninges had exhibited high numbers of MHCII-positive 

cells. Fewer positive cells were present in the perivascular cuffs in the spinal 

cord. 

Caspase 3 There were low numbers of caspase 3-positve apoptotic cells in the meninges 

and spinal cord nerve root. Fewer positive cells were present in the 

inflammatory infiltrates in the spinal cord white matter. 

Calprotectin  Low numbers of macrophages were present in the inflammatory infiltrates of 

the spinal cord, nerve roots and even fewer detected in the leptomeninges.  

IFN-γ IFN-γ-expressing cells were not present. 

Neospora Low numbers of N. caninum tachyzoites were detected within intact glial cells 

in the spinal nerve root. 

Brain  HE The brain exhibited mild multifocal mononuclear perivascular infiltrates in 

grey and white matter. 

CD3 CD3-positive T cells were present in low numbers within the inflammatory 

infiltrates. 

PAX5 B cells were not detected within the infiltrates. 

MHCII Moderate amounts of MHCII-positive cells were present in the inflammatory 

foci, consistent with activated microglial cells. 

PCNA Only Ependymal cells showed intense proliferation in the brain.  

Caspase 3 Caspase 3-positive apoptotic cells were not detected in the brain. 

IFN-γ IFN-γ-expressing cell were not present. 

Neospora N. caninum antigen was not detected. 

Heart  HE The myocardium exhibited low numbers of mononuclear cells (non-

suppurative myocarditis).  

CD3 Majority of the cells in the inflammatory infiltrate were CD3-positive T cells. 

PAX5 Low numbers of B cells were present in the inflammatory foci. 

MHCII Low numbers of MHCII-positive cells were present within the inflammatory 

foci of the myocardium. 

PCNA Low numbers of PCNA-positive proliferating cells were observed in the 

myocardium. 

Caspase 3 Caspase 3-positive cells were not detected. 

IFN-γ IFN-γ-expressing cells were not detected. 

Neospora N. caninum antigen was not detected. 

Skeletal muscle HE Mild non-suppurative myositis; the muscle had low numbers of mononuclear 

multifocally distributed in the interstitial areas and low numbers of neutrophils 

were found admixed within the inflammatory infiltrate. 

CD3 Low numbers of CD3-positive T cells were present within the inflammatory 

foci. 

PAX5 B cells were also present, but in lower numbers that B cells. 

MHCII Low numbers of positive cells observed between within the inflammatory 

infiltrates and endothelia cells were also positive. 

PCNA PCNA-positive cells were not present. 

Caspase 3 Caspase 3-positive cells were not detected. 

IFN-γ IFN-γ-expressing cell were not detected.  

Neospora N. caninum antigen was not detected. 

Liver HE Mild multifocal mononuclear portal infiltrates were observed. 
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CD3 CD3-positive T cells were present in low numbers in the portal areas of the 

liver. 

PAX5 Low numbers of B cells were admixed with the T cell infiltrates. 

MHCII High numbers of MHCII-positive cells were present in the parenchyma. Portal 

areas contained high staining intensity and moderate amounts of positive cells 

were observed. 

PCNA High numbers of PCNA-positive cells were present in the parenchyma. These 

were haematopoietic cells and fewer hepatocytes. 

Caspase 3 Caspase 3-positive cells were not detected. 

IFN-γ IFN-γ-expressing cells were detected in low numbers. 

Neospora N. caninum antigen was not detected. 

Lung  HE The lung exhibited moderate amounts of mononuclear cells in the BALT and 

fewer in the alveolar septa. 

CD3 Low numbers of T cells were present in the interstitial areas, BALT and 

occasional positive cells were observed in the alveolar septa. 

PAX5 B cells were detected in low numbers admixed with T cells in the BALT, 

alveolar septa and interstitial areas. 

MHCII High numbers of MHCII-positive cells were present in the BALT and diffuse 

staining was observed on cells within alveolar spaces and interstitial areas 

(macrophages). 

PCNA Proliferating cells were not detected. 

Caspase 3 Low numbers of caspase 3-positive cells were observed within alveolar spaces 

(macrophages) 

IFN-γ Moderate amounts of IFN-γ-expressing cells were detected in mainly in the 

bronchial epithelium. 

Neospora N. caninum antigen was not detected. 

Intestine  HE NHAIR 

CD3 Low numbers of T cells were detected within the lamina propria. 

PCNA Negative  

Caspase 3 Caspase 3-positive cells were not observed. 

Neospora N. caninum antigen was not detected. 

Adrenal  HE NHAIR 

CD3 T cells were not detected. 

PCNA Proliferating cells were not present in the adrenals.  

Caspase 3 Caspase 3-positive cells were not observed. 

Neospora N. caninum antigen was not detected. 

Pancreas  HE NHAIR 

CD3 Occasional T cells were present in the interstitial areas. 

MHCII Mild expression of MHCII was present within interstitial areas. Endothelial 

cells were positive. 

PCNA Proliferating cells were not observed. 

Caspase 3 Caspase 3-posiitve cells were not observed. 

Neospora N. caninum antigen was not detected. 

Kidney  HE NHAIR 

CD3 Low numbers of CD3-positive T cells were present within interstitial areas of 

the cortex and medulla. 

MHCII Mild expression was observed mainly in the cortex in the areas of T cell 

infiltrates. 

PCNA Low numbers of proliferating tubular epithelial cells were observed in the 

cortex. 

Caspase 3 Caspase 3-positive cells were not observed. 

Neospora N. caninum antigen was not detected. 

Femoral nerve  HE Occasional mononuclear cells were observed (neuritis). 

CD3 Low numbers of T cells were present in nerve fibres. 

MHCII Mild expression of MHCII was observed in the areas of T cell infiltrates. 

PCNA Proliferating cells were not present. 

Caspase 3 Caspase 3-positive cells were not observed. 

Neospora N. caninum antigen was not detected. 
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Table 12: Histological features of the neonatal calf after parasite recrudescence at 40 

weeks gestation age 

05L-3647-439 (R-10) 

ORGAN DESCRIPTION 

Spleen  HE The spleen was comprised of well differentiated red and white pulp. White 

pulp consisted of high numbers of lymphocytes in the PALS and distinct 

primary lymphoid follicles, which contained prominent germinal centres. The 

red pulp had high numbers of splenic macrophages, fewer lymphocytes and 

occasional neutrophils were also present. Haematopoietic precursor cells were 

present in low numbers. 

CD3 T cells were present in the PALS in high numbers and fewer were present in 

the red pulp.  

MHCII Red pulp contained high numbers of positive cells (macrophages, dendritic 

cells and lymphocytes). The white also had high numbers with high staining 

intensity and was more prominent in the lymphoid follicles (dendritic cells, 

follicular dendritic cells, and B cells). 

PCNA High numbers of proliferating cells were present within the PALS, mainly 

lymphoid follicles and fewer detected in the red pulp (lymphocytes and fewer 

haematopoietic cells). 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells were present mainly in the 

PALS (lymphoid follicles). 

Neospora N. caninum antigen was not detected. 

Thymus HE Cortex contained high numbers of small compact lymphocytes, while medulla 

exhibited a small population of larger lymphocytes, high numbers of 

macrophages, reticular medullary epithelial cell and dendritic cells. Low 

numbers of eosinophils were present in the medulla. 

CD3 The cortex had high numbers of CD3-positive T cells, while fewer were 

present in the medulla. 

MHCII High numbers of MHCII-positive cells were present in the medulla with strong 

staining intensity, while fewer were detected in the cortex and diffusely 

distributed. 

PCNA Numerous PCNA-positive proliferating cells were detected in the cortex and 

fewer in the medulla. 

Caspase 3 Low numbers of caspase 3-positive apoptotic lymphocytes were present in the 

cortex and medulla. 

Neospora N. caninum antigen was not detected. 

Lymph node HE Lymph node had distinct superficial cortex, paracortex cortex and medulla. 

Prominent primary lymphoid follicles were observed in the superficial cortex 

without germinal centres, while the T cell compartment contained numerous 

lymphocytes and fewer were present in the medulla.  

CD3 High numbers of T cells were present in the paracortex with scattered positive 

cells observed in B cell compartment. Lower numbers of T cells were present 

in the medulla. 

MHCII The lymphoid follicles and T cell compartment exhibited high numbers of 

MHCII-positive cells with high staining intensity. Fewer positive cells were 

observed in the medulla. 

PCNA High numbers of proliferating cells were present in the lymphoid follicles 

mainly and fewer were observed in T cell compartment and medulla. 

Caspase 3 High numbers of caspase 3-positive positive cells were present in the 

corticomedullary junction and low numbers were detected in the superficial 

cortex. 

Neospora N. caninum antigen was not detected. 

Heart  HE Occasional mononuclear cells were present in the myocardium. 

CD3 Minimal CD3-positive T cells were detected in the myocardium. 

PAX5 B cells were not detected. 

MHCII MHCII-positive cells were minimal within the myocardium. 

Calprotectin  Low numbers of macrophages were detected and randomly scattered in the 

myocardium. 

PCNA PCNA-positive proliferating cardiomyocytes were present in low numbers.  

Caspase 3 Caspase 3-positive cells were not observed. 

Neospora N. caninum antigen was not detected. 
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Skeletal 

muscle 

HE NHAIR 

CD3 T cells were not detected 

PAX5 B cells were not detected. 

MHCII Minimal numbers of positive cells were present mainly on endothelial cells. 

Calprotectin  Not detected  

PCNA Not detected 

Caspase 3 Not detected 

Neospora N. caninum antigen was not detected. 

Liver HE Occasional portal mononuclear inflammatory infiltrates. 

CD3 Occasional CD3-positive T cells were present in portal areas. 

PAX5 B cells were not detected. 

MHCII Moderate amount of MHCII-positive cells were detected in the portal areas and 

high numbers were present within the hepatic parenchyma (Kupffer cells). 

Calprotectin  High numbers of macrophages were present with the hepatic parenchyma 

(Kupffer cells). 

PCNA Low numbers of PCNA-positive proliferating cells were detected in the 

parenchyma (hepatocytes). 

Caspase 3 Occasional caspase 3-positive cells were present mainly in the portal areas and 

few biliary epithelial cells were positive. 

IFN-γ Low numbers of IFN-γ-expressing cells were detected in the liver. 

Neospora N. caninum antigen was not detected. 

Lung  HE Low numbers of mononuclear cells were present in the BALT and alveolar 

septa. 

CD3 Occasional CD3 T cells were detected in the BALT and even fewer in the 

alveolar septa. 

PAX5 B cells were not detected 

MHCII High numbers of MHCII-positive cells with high staining intensity were 

observed in interstitial areas, BALT and fewer within alveolar spaces.  

Calprotectin  High numbers of macrophages were present in interstitial areas and fewer in 

alveolar ducts. 

PCNA Proliferating cells were not detected. 

Caspase 3 Low numbers of caspase 3-positive apoptotic cells (alveolar epithelial cell) 

were present. 

IFN-γ Low numbers of IFN-γ-expressing cells were present mainly within blood 

vessels  

Neospora N. caninum antigen was not detected. 

Brain  HE Minimal numbers of mononuclear cells were present in the grey matter and 

multifocally distributed. 

CD3 The mononuclear cells were in the grey matter were CD3-positive T cells. 

PAX5 B cells were not detected in the brain. 

MHCII Low numbers of MHCII-positive cells were present within the inflammatory 

infiltrates (activated microglial cells). 

PCNA Proliferating cells were not observed in the brain. 

Caspase 3 Caspase 3-positive cells were not present. 

Neospora N. caninum antigen was not detected. 

Spinal cord  HE Low numbers of mononuclear inflammatory infiltrates were present in the 

white matter in the perivascular areas and meninges. 

CD3 The majority of the T cells were detected in the spinal cord meninges with 

fewer in the spinal cord white matter. 

PAX5 B cells were not detected. 

MHCII Positive cells were detected in the perivascular areas of the spinal cord white 

matter and within the meninges in low numbers. 

PCNA Proliferating cells were not observed. 

Caspase 3 Caspase 3-positive cells were not present. 

Neospora N. caninum antigen was not detected. 

Intestine  HE High numbers of mononuclear cells were present in the intestinal mucosa along 

with low numbers of polymorphonuclear cells (eosinophils and occasional 

neutrophils). 

CD3 T cells were the predominant cell type present within the inflammatory 

infiltrate on the intestinal mucosa.  
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PAX5 High numbers of B cells were present in the gastric associated lymphoid 

tissues (GALT). 

MHCII High numbers of positive cells were present in the lamina propria and GALT. 

Calprotectin  Moderate amounts of macrophages were present in the mucosa and submucosa 

of the intestine.  

PCNA High numbers of proliferating B cells were detected in the GALT. 

Caspase 3 Moderate amounts of caspase 3-positive cells (mainly B cells) were present in 

the GALT. 

Neospora N. caninum antigen was not detected. 

Kidney  HE NHAIR 

CD3 Minimal T cell infiltrates were randomly scattered in the cortex and medulla. 

PAX5 B cells not detected. 

MHCII Low numbers of positive cells were present in the both cortex and medulla 

within the interstitial areas. 

Calprotectin  Low numbers of macrophages were randomly scattered in the interstitial areas 

of the renal cortex and medulla. 

PCNA Low numbers of proliferating tubular epithelial cells were present. 

Caspase 3 Caspase 3-positive cells were not detected. 

Neospora N. caninum antigen was not detected. 

Adrenal  HE Focal area of mononuclear inflammatory infiltrate was present in the adrenal 

cortex (zonae glomerulosa and fasiculata). 

CD3 Minimal T cell infiltrates were randomly scattered in the cortex. 

PAX5 B cells were not detected. 

MHCII Low numbers of positive cells present and randomly scattered in cortex and 

medulla. 

Calprotectin  A focal area of mononuclear cell infiltrates was present in the cortex 

(macrophages) and low numbers were also scattered in the cortex and medulla. 

PCNA Low numbers of proliferating cells were detected in the adrenal cortex 

(randomly scattered in all zones). 

Caspase 3 Caspase 3-positive cells were not detected.  

Neospora N. caninum antigen was not detected. 

Pancreas  HE NHAIR 

CD3 T cells were not detected. 

PAX5 B cells were not detected. 

MHCII Low numbers of MHCII-positive cells were present within pancreatic lobules. 

Calprotectin  Occasional macrophages were also detected within the pancreatic lobules. 

PCNA Proliferating cells were not detected  

Caspase 3 Caspase 3-positive cells were not detected.  

Neospora N. caninum antigen was not detected. 
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APPENDIX 2: Reagents and recipes 

 

4% neutral buffered paraformaldehyde 

Dissolve 40 g paraformaldehyde into 800 ml PBS at 60°C in a fume hood (adjust pH 

to 7.24). Adjust concentration to 1 L with PBS (see below). 

Mayers Haemalum 

Haematoxylin   1 g 

Sodium iodate  0.2 g 

Potassium alum   50 g 

Distilled water   1 L 

Dissolve haematoxylin and potassium alum in distilled water using gentle heat and 

allow to cool. Add sodium iodate and dissolve by shaking. Filter solution and add 20 

ml glacial acetic acid. 

 

Eosin working solution 

Eosin stock solution  1 g eosin (HD supplies, Aylesbury, UK) in 100 ml distilled 

water (1% w/v) 

Working solution  mix 50 ml of 1% eosin with 390 ml of 95% ethanol and 2 ml 

glacial acetic acid 

 

Carbol Chromotrope (Lendrum’s stain) 

Chromotrope 2R  0.5 g 

Phenol  1 g 

Distilled water   100 ml 

 

Reagents for immunohistology  

 

10x Tris stock  60.57 g Tris 

(Store at 4°C)  610 ml distilled water 

   390 ml 1M HCl 

Adjust pH to 6.0  
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1x TBST  100 ml 10x Tris stock 

(Store at 4°C)  900 ml distilled water  

  7.2 g NaCl 

  500 µl Tween 20 

 

Phosphate Buffered Saline (PBS, pH 7.2) 

NaCl   42 g 

Na2HPO4.2H2O   9.26 g 

KH2PO4  2.15 g 

Dissolve in 1 L distilled water for stock solution 

Working solution – dilute stock solution 1:5 in distilled water 

 

0.1M Imidazole Stock 6.81 g Imidazole 

(Store at 4°C)  1000 ml distilled water 

Imidazole Buffer 280 ml 0.1M Imidazole Stock 

(Make fresh)  120 ml 0.42M HCl  

  Adjust pH to 7.18-7.20 using NaOH

  

DAB (diaminobenzine) 0.2 g DAB in 280 ml 0.1M Imidazole Buffer and 120 

ml 0.42M HCl (Filter). Adjust pH to 7.18-7.20 using 

10M NaOH 

Activate DAB with 140 µl hydrogen peroxide (H202) 

 

0.42M HCl Add 38.32 ml concentrated HCl to 1 L distilled H20 

Dilute to final volume 2.5 L with distilled H20 

 Store at room temperature 
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Papanicolaou’s Solution 

Mix Papanicolaou’s solution in distilled water (1:20) and filter. 

 

Stock citrate buffers 

Stock solution A (0.1M citric acid): 

Citric acid (C6H807)  10.505 g 

Distilled water   500 ml 

Store at 4°C 

 

Stock solution B (0.1M sodium citrate): 

Tri-sodium citrate (Na3C6H507.2H20) 14.705 g 

Distilled water   500 ml 

Store at 4°C 

 

Citrate 6 buffer (10 mM): 

Stock solution A    9 ml 

Stock solution B    41 ml  

Distilled water    Final volume 500 ml (pH 6.0) 

   Store at 4°C 

 

Citrate 4 buffer (10 mM): 

Stock solution A   9 ml 

Stock solution B   41 ml  

Distilled water   Final volume 500 ml (pH 4.0) 

Store at 4°C 

 

Microwave-EDTA (10 mM) 

Dissolve 0.93 g EDTA in 2 L distilled H20 (pH 9.0, NaOH) 

Top up with distilled H20 to final volume of 2.5 L (store at 4°C) 
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Reagents for Neospora ELISA  

Coating buffer Na2CO3 ANHYDROUS 0.159 g  

 NaHCO3  0.293 g 

Dissolve in 100 ml of distilled water (adjust pH 9.6). Alter with concentrated HCl as 

required and store at 4C. 

Washing buffer PBS + 0.05% Tween 20 

Blocking buffer PBS + 0.05% Tween 20 + 2% Marvel – make up fresh 

Stopping solution 0.5M HCl 

 

Reagents for SDS-PAGE and western blot [Resolving gel (10 ml)]  

30% acrylamide  5 ml 

1.5M Tris-HCl pH (8.8) 2.5 ml 

dH2O 2.3 ml 

10% (w/v) SDS 100 µl  

10% (w/v) APS 100 µl  

TEMED 10 µl  

 

Stacking gel (5 ml) 

30% acrylamide  830 µl 

1M Tris-HCl pH (6.8) 630 µl 

dH2O 3.4 ml 

10% (w/v) SDS 50 µl  

10% (w/v) APS 50 µl  

TEMED 5 µl 

 

10X Phosphate-Buffered Saline (PBS) 

NaCl (1.37M) 80 g/L   

KCl (27 mM) 2 g/L 

Na2HPO42H2O (100 mM) 17.8 g/L   

KH2PO4 (20 mM) 2.7 g/L 

Dissolve the compounds in 800mL of distilled H2O. Adjust the pH to 7.4 with HCl. 

Add H2O to 1L and sterilized by autoclaving and store the buffer at room 

temperature. 
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10% Sodium Dodecyl Sulphate (SDS)  

Dissolve 20 g in 60 ml of ddH2O, heat to 68C and stir with a magnetic stirrer to 

assist dissolution. If necessary, adjust the pH to 7.2 by adding a few drops of 

concentrated HCl. Adjust the volume to 200ml with ddH2O and store at room 

temperature. 

 

10X Tris-Buffered Saline (TBS) 

Tris-base (0.25M) 30 g/L 

NaCl (1.5M)  88 g/L 

Dissolve the compounds in 800 ml of dH2O. Adjust to pH 7.4 with HCl. Add dH2O 

to 1L and sterilized by autoclaving; store the buffer at room temperature.  

 

1X Towbin buffer (Transfer buffer) 

Tris-base (25 mM) 3.03 g/L 

Glycine (192 mM) 14.4 g/L 

Methanol (20% w/v) 200 ml 

Dissolve the compounds in 600 ml of dH2O and add 200 ml of methanol. Adjust to 

pH 7.5 with HCl and complete with ddH2O to 1L; store the buffer at room 

temperature. The methanol minimizes swelling of the gel and increases the efficiency 

of binding of proteins too nitrocellulose membrane. 

 

1M Tris-HCl pH 6.8 (1L)  

Add 121.14 g of Tris-HCl to 300 ml of ddH2O, dissolve and adjust to pH 6.8, and 

then add ddH2O to adjust volume to 1L. 

 

1M Tris-HCl pH 8.0 (1L)  

Adds 121.14 g Tris-HCl to 500 ml of ddH2O, adjust to pH 8.0, and then add ddH2O 

to adjust volume to 1L. 

 

1.5M Tris-HCl pH 8.8 (1L) 

Adds 181.7 g Tris-base to 500 ml of ddH2O, adjust to pH 8.8, and then add ddH2O to 

adjust volume to 1L. 
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APPENDIX 3: Material for culturing HL-1 cardiomyocyte cell line 

 

Chemicals 

 Claycomb Medium 

 Fetal bovine serum (FBS): current recommended lot number 3J0229.  

 Penicillin/Streptomycin (10000 U/ml and 10 mg/ml, respectively) 

 Norepinephrine [(±)-Arterenol] 

 L-Ascorbic acid, sodium salt 

 L-Glutamine, 200 mM, (store at -20°C) 

 95% FBS/5% DMSO (store at 4°C for up to a week) 

 Trypsin-EDTA, 1x 

 Trypsin inhibitor, soybean 

 Dulbecco’s phosphate buffered saline (PBS) 

 Fibronectin 

 Bacto © Gelatin 

 Distilled water, cell culture grade 

 

Supplemented Claycomb Medium / Wash Medium 

Ingredient Volume Final concentration 

Claycomb medium 87 ml 87%  

Foetal bovine serum 10 ml 10% (5% for wash medium) 

Penicillin/Streptomycin 1 ml 100 units/ml Penicillin,100 μg/ml Streptomycin 

Norepinephrine (10 mM stock) 1 ml 0.1 mM 

L-Glutamine (200 mM stock) 1 ml 2 mM 

 

 Prepare the supplemented medium as listed above. 

 Wrap the bottle with the Claycomb medium in aluminium foil, since the 

medium is extremely light sensitive. 

 Use fresh supplemented Claycomb medium (for up to two weeks). In case 

you want to use leftover medium after two weeks, you have to replenish the 

L-glutamine, which is chemically unstable. 
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Norepinephrine Stock Solution 

The following instructions are for a 10 mM stock solution of norepinephrine. 

Add 1 ml of this stock solution to 100 ml medium for a final concentration of 0.1 

mM. The norepinephrine stock solution needs to be freshly prepared monthly. 

1. Prepare 100 ml of 30 mM ascorbic acid by adding 0.59 g ascorbic acid to 100 

ml of distilled water. 

2. Add 80 mg norepinephrine to 25 ml of the 30 mM ascorbic acid. 

3. Filter sterilise the solution using a 0.2 μm acrodisc syringe filter. 

4. Prepare 1 ml aliquots in sterile microtubes with screw caps. 

 

Soybean Trypsin Inhibitor 

1. Dissolve 25 mg of soybean trypsin in 100 ml Dulbecco’s phosphate buffered 

saline (PBS). 

2. Filter sterilise (using a 0.2 μm syringe filter) into a 100 ml bottle. 

3. Store at 4
°
C up to a month.  

 

Pre-Coating Culture Flasks 

1. Add 0.1 g Bacto-Gelatin to 500 ml distilled water in a glass bottle. 

2. Autoclave. The gelatin will dissolve during the autoclavation. The final 

concentration of gelatin is 0.02%. 

3. Fibronectin is provided in 5 ml aliquots. Dilute 1 ml fibronectin in 199 ml of 

0.02% gelatin. Mix gently, and immediately aliquot 6 ml per 15 ml centrifuge 

tube. 

4. Store aliquots at -20
°
C. 

5. Before culturing cells, coat the flasks with this coating solution (2 ml/T25 or 

6 ml/T75 flask). 

6. Close the flasks and incubate at 37
°
C overnight. 

7. Remove the coating solution by aspiration the next day just before adding 

cells to the flasks. 

 

 



 Appendices 

                   

231 

  

Culturing and Maintaining Cells 

 Cultures are fed with supplemented Claycomb medium (5 ml/T25 flask) 

every day. 

 To avoid feeding the cells on weekends, 10 ml of supplemented Claycomb 

Medium should be added to each T25 flask on Friday afternoons; this 

medium is not changed until the following Monday morning. 

 

Digestion with Trypsin 

This procedure is necessary for dislodging the cells from the flask bottom before the 

passaging or freezing. 

1. Rinse each T25 flask briefly with 3 ml of 0.05% trypsin/EDTA warmed to 

37°C (use 6 ml for T75) by pipetting the trypsin/EDTA onto the bottom of 

the flask (side opposite the cap), trying not to hit the cells directly with the 

enzyme. 

2. Rinse gently and remove by aspiration. 

3. Add another 1.3 ml trypsin/EDTA per T25 flask (3 ml per T75). Incubate at 

37
°
C for 2 min.  

4. Remove and add fresh trypsin/EDTA. Incubate for an additional 3–8 min. 

Examine cells microscopically after 2 min. 

5. Examine microscopically and, if cells are still adhered, rap the flask very 

gently to dislodge remaining cells from the bottom of the flask. 

6. To inactivate the enzyme, add an equal amount (1.3 or 3 ml) of soybean 

trypsin inhibitor directly onto the cells. 

7. Rinse the empty flask with 5 ml (8 ml per T75) wash medium, and add this to 

the cells that are already in the 15 ml centrifuge tube. 

8. Centrifuge at 500 g for 5 min. 
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Passaging the Cells 

1. During the digestion or centrifugation steps, remove the coating solution from 

each T25 flask, and add 4 ml supplemented Claycomb medium per flask. Set 

aside. 

2. Remove the tube containing the harvested HL-cardiomyocytes from the 

centrifuge. Remove the supernatant by aspiration, and gently resuspend the 

pellet in 3 ml of supplemented Claycomb medium. 

3. Transfer 1 ml into each of three (clearly labelled) coated T25 flasks. Each 

flask contains 5 ml now. 

4. If the cells are passaged on a Friday, use 2x the volume of supplemented 

Claycomb Medium per flask. 

 

Freezing the Cells 

It is useful to freeze the contents of one confluent T75 flask into one cryovial. When 

cells are needed, this cryovial can be thawed and placed back into one T75 flask. 

1. Gently resuspend the cell pellet after the Trypsin digest in 1.5 ml of freezing 

medium (95% FBS/5% DMSO). 

2. Pipette resuspended cells into a cryovial. Place the cryovial containing the 

cells into a Nalgene freezing jar containing room temperature isopropanol. 

3. Immediately place the freezing jar into a -80
°
C freezer, and freeze cells at a 

rate of -1°C per min. 

4. Six to twelve hours later, transfer the vial to a liquid nitrogen Dewar vessel. 

 

Thawing the Cells 

1. Coat a tissue culture flask overnight in a 37°C incubator. 

2. Remove the coating solution from the culture flask the next morning, and 

replace with 10 ml of supplemented Claycomb medium. Place this flask back 

into the incubator. 

3. Transfer 10 ml wash medium into an empty 15 ml centrifuge tube. Incubate 

tube in a 37
°
C water bath. 
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4. Quickly thaw the cells in a 37
°
C water bath (about 2 min), and transfer them 

into the 15 ml centrifuge tube containing the wash medium. 

5. Centrifuge for 5 min at 500 g. 

6. Remove the tube from the centrifuge and remove the wash medium by 

aspiration. 

7. Gently resuspend the cell pellet in 5 ml supplemented Claycomb medium, 

and add the suspension to the 10 ml medium in the T75 flask. 

8. Replace the medium with 15 ml of fresh supplemented Claycomb medium 4 

hours later (after cells have attached to the flask bottom).  
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APPENDIX 4: Quantitative data analysis of cleaved caspase 3-positive lymphocytes 

(apoptosis) in the haemolymphatic tissues of foetuses from dams infected with N. 

caninum tachyzoites in early gestation  

Spleen (70 dg) 

 

Variables N Mean Std. Deviation Std. Error Mean 

Infected 10 34.40 13.091 4.140 

Control 10 2.40 1.578 0.499 

 

Thymus (70 dg) 

 

Variables N Mean Std. Deviation Std. Error Mean 

Infected 10 88.90 5.343 1.690 

Control 10 16.60 6.947 2.197 
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Quantitative data analysis of cleaved caspase 3-positive lymphocytes (apoptosis) in 

the thymus of foetuses from dams infected with N. caninum tachyzoites in late 

gestation  

Thymus (210 dg) 

 

Variables N Mean Std. Deviation Std. Error Mean 

Control 10 4.60 3.836 1.213 

Infected 10 3.50 2.224 0.703 
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APPENDIX 5: Serological survey in Jamaican dairy cattle  

 

 

The regression equation describes the relationship between the response and 

predictor variables. 

Response = constant + coefficient (predictor) + ... + coefficient (predictor)  

y = c + β1x1 + β2x2 + β3x3 

where c = constant (y intercept when all variables are zero) 

β1, β2 and β3 are coefficients of variables x1 x2 and x3, respectively 

x1, x2 and x3 are predictor variables  

Log (PP) = 1.11 + 0.179 Log(Age) + 0.0329(preg. status) – 0.121 SQRT(# of preg.) 

Predictor Coefficient SE coefficient T P value 

Constant 1.11082 0.07351 15.11 0.000 

Log (age) 0.1789 0.1433 1.25 0.213 

Pregnancy status 0.03291 0.01616 2.04 0.042 

SQRT (# of preg.) -0.12099 0.05283 -2.29 0.022 

S = 0.264440  

R
2
 = 1.8%  

R
2
 (adjusted) = 1.2% 

 

Analysis of Variance 

Source Degree of 

freedom 

Sum of 

squares 

Mean 

squares 

F P value 

Regression  3 0.60250 0.20083 2.87 0.036 

Residual Error 474 33.14613 0.06993 - - 

Total  477 33.74862 - - - 
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