
1 
 

 

 

 

 

 

The University of Liverpool 

 

Proteins, which are upregulated at early time points   

following Apc deletion, are involved in intestinal    

tumourigenesis and represent potential colorectal                     

cancer biomarkers 

 

Thesis submitted in accordance with the requirements of the 

University of Liverpool for the degree of Doctor in Philosophy by 

 

Dr Shahram Ali Ibrahim 

 

November 2014 

 

 

 



2 
 

ACKNOWLEDGEMNTS 

First and foremost I offer my sincerest gratitude to my first supervisor, Dr John 

Jenkins, who has supported me throughout my thesis with his patience and 

knowledge whilst allowing me the room to work in my own way. I attribute the level 

of my PhD degree to his encouragement and effort and without him this thesis, too, 

would not have been completed or written. One simply could not wish for a better or 

friendlier supervisor. 

I would also like to show my deepest gratefulness to my second supervisor, Professor 

Mark Pritchard, for helping me to focus and for keeping me on track throughout the 

study. His support, guidance and advice throughout the research project, as well as 

his pain-staking effort in proof reading the drafts, are greatly appreciated. Indeed, 

without his guidance, it would have taken me much more time to put the topic 

together. Also, if I would remember someone as a role model, it would be Mark.  

Thanks to Dr Karen Reed from the University of Cardiff for providing me with the 

animal samples and thanks to Dr Paul Sutton for providing me with the clinical 

samples. These samples were the corner stone for this project. I am also thankful to 

Professor Barry Campbell who accepted to be my mentor and advisor. I benefited 

from his sincere advice and constructive criticism. I highly acknowledge the help that 

Dave Berry, Dr Abdalla Hanedi, Dr Carrie Duckworth, Sue Courtney and other staff 

and colleagues gave me during the course of my work in the Department of 

Gastroenterology. Without them things could have been much more difficult.  

I would also like to thank my government, our Prime Minister Mr Nicheervan 

Barzani and Mr Bariz Barzani for funding my studies and for supporting me and all 

other Kurdish students all over the world.  

A special thanks to my family. Words cannot express how grateful I am to my 

mother and my brother and sisters for all of the sacrifices that they have made on my 

behalf. At the end I would like to express appreciation to my beloved wife who was 

always my support in the moments when there was no one to answer my queries. 

 



3 
 

Table of contents 

 

List of abbreviations ........................................................................................ 9 

Abstract .......................................................................................................... 13 

1. Introduction ............................................................................................... 16 

1.1 Epidemiology of colorectal cancer ..............................................................16 

1.1.1 Worldwide incidence and mortality .........................................................16 

1.1.2 Types of colorectal cancer .......................................................................16 

1.1.3 Distribution of colorectal cancer ..............................................................17 

1.1.4 Staging of colorectal cancer ....................................................................17 

1.1.5 Grading of colorectal cancer ....................................................................18 

1.1.6 Risk factors .............................................................................................19 

1.2 Colorectal carcinogenesis ............................................................................22 

1.2.1 The suppressor pathway (traditional or chromosomal instability) ............23 

1.2.2 Microsatellite instability (mutator) pathway (MSI) ..................................27 

1.2.3 Methylator pathway ................................................................................27 

1.3 The Wnt signalling pathway .......................................................................28 

1.3.1 Canonical Wnt pathway ..........................................................................29 

1.3.2 Wnt activity and the cytoplasmic destruction complex ............................30 

1.3.3 APC role in the Wnt pathway ..................................................................30 

1.3.4 Biological role of Wnt pathway ...............................................................31 

1.3.5 Wnt signalling in self-renewing tissues ...................................................31 

1.3.6 APC and Wnt signalling in intestinal cancer ............................................32 

1.4 Mouse models of colorectal cancer..............................................................34 

1.4.1 Apc mutant mice .....................................................................................34 

1.4.2 MMR (mismatch repair) and Apc mutations ............................................35 

1.4.3 Cancer progression & metastasis models .................................................35 

1.4.4 Chemically induced tumour formation ....................................................36 

1.4.5 Mouse models of inflammatory bowel disease and colorectal cancer .......36 

1.4.6 Cre and loxP mouse strains .....................................................................37 

1.5. Biomarkers and CRC screening.................................................................40 

1.5.1 Current CRC screening modalities ..........................................................40 

1.5.2 Biomarkers of colorectal cancer ..............................................................43 



4 
 

1.5.3 Importance of molecular sub-classification of CRC .................................46 

1.6 Work leading up to this project ..................................................................47 

1.6.1 The AhCre
+
Apc

fl/fl
 phenotype ..................................................................47 

1.7 Overview on the candidate protein biomarkers .........................................48 

1.7.1 Nucleosome Assembly protein1 like1 (NAP1L1) ....................................48 

1.7.2 DEAD Box 5 (DDX5) or p68 ..................................................................49 

1.7.3 Nucleophosmin (NPM) ...........................................................................49 

1.7.4 Ribosomal protein like 6 (RPL6) .............................................................50 

1.7.5 Fatty Acid Binding Protein 6 (FABP6) ....................................................50 

1.7.6 Nucleolin (NCL) .....................................................................................51 

1.7.7 Splicing factor, arginine/serine-rich 2 (SFRS2) or Serine/arginine rich 

splicing factor 2 (SRSF2) or SC35 ...................................................................51 

1.7.8 High mobility group box 1 (HMGB1) .....................................................52 

1.7.9 Prohibitin (PHB) .....................................................................................52 

1.8 Hypothesis, aims and objectives ..................................................................54 

1.8.1 Hypothesis ..............................................................................................54 

1.8.2 Aims .......................................................................................................54 

1.8.3 Objectives ...............................................................................................54 

2. Methods ...................................................................................................... 56 

2.1 Tissue samples .............................................................................................56 

2.1.1 Animal models ........................................................................................56 

2.1.2 Clinical samples ......................................................................................56 

2.2 Immunohistochemistry ................................................................................57 

2.2.1 Tissue preparation ...................................................................................57 

2.2.2 Immunohistochemistry methods and materials ........................................57 

2.2.3 Immunohistochemistry staining assessment .............................................59 

2.3 Haematoxylin and Eosin staining methods .................................................62 

2.4 Tissue culture ...............................................................................................63 

2.4.1 Maintaining cell lines ..............................................................................63 

2.5 Protein extraction ........................................................................................64 

2.5.1 Cell lines .................................................................................................64 

2.5.2 Tissues ....................................................................................................64 

2.5.3 Total protein estimation...........................................................................65 



5 
 

2.6 Western Blotting (WB) ................................................................................67 

2.7 siRNA transfection ......................................................................................70 

2.7.1 Liposome siRNA delivery .......................................................................70 

2.7.2 Mechanism of silencing...........................................................................71 

2.7.3 Transfection procedure ............................................................................72 

2.7.4 Assessing siRNA knockdown efficiency .................................................74 

2.8 Quantitative real time polymerase chain reaction (qRT-PCR) .................75 

2.8.1 RNA extraction .......................................................................................75 

2.8.2 1st strand cDNA synthesis (reverse transcription)....................................76 

2.8.3 qRT-PCR ................................................................................................77 

2.9 Sulforhodamine B (SRB) assay ...................................................................78 

2.10 Clonogenic survival assay ..........................................................................78 

2.11 Fluorescence activated cell sorting (FACS) analysis ................................79 

2.12 Immunocytochemistry ...............................................................................81 

2.13 Statistical analysis ......................................................................................82 

3. Validation of candidate biomarker proteins upregulation in 

animal models of CRC .................................................................................. 84 

3.1 Introduction and aims .................................................................................84 

3.2 IHC validation of Wnt pathway activation in AhCre
+
Apc

fl/fl 
mice .............85 

3.3 Detection of "Apc loss" driven lesions in Apc
Min/+ 

mice ..............................86 

3.4 Work overview .............................................................................................89 

3.4.1 IHC assessment of NAP1L1 expression ..................................................89 

3.4.2 IHC assessment of NAP1L1 expression, using an independent antibody .94 

3.4.3 IHC assessment of RPL6 expression ..................................................... 100 

3.4.4 IHC assessment of SFRS2 (Sc35) expression ........................................ 104 

3.4.5 IHC assessment of FABP6 expression ................................................... 108 

3.4.6 IHC assessment of Prohibitin (PHB) expression .................................... 112 

3.4.7 IHC assessment of  Nucleolin (NCL) expression ................................... 116 

3.4.8 IHC assessment of HMGB1 expression ................................................. 119 

3.4.9 IHC assessment of Nucleophosmin (NPM) expression .......................... 123 

3.4.10. IHC assessment of DDX5 expression ................................................. 126 

3.5 Western blot analysis of candidate protein expression ............................ 128 

3.5.1 Assessment of specificity of primary antibodies used in IHC work ........ 128 



6 
 

3.5.2 Western blot quantification of candidate proteins in AhCre
+
Apc

fl/fl 
and 

Apc
Min/+ 

mice ................................................................................................. 130 

3.6 Discussion ................................................................................................... 134 

3.6.1 Acute Apc deletion mouse model, AhCre
+ 

Apc
fl/fl

 ................................... 134 

3.6.2 Apc
Min/+ 

mice ......................................................................................... 135 

3.7 Conclusion.................................................................................................. 140 

4. Studying potential roles of selected candidate biomarker proteins 

in colorectal tumourigenesis ....................................................................... 142 

4.1 Introduction and aims ............................................................................... 142 

4.2 siRNA mediated silencing of candidate proteins ...................................... 144 

4.2.1 Optimisation of siRNA protocols .......................................................... 144 

4.2.2 Haemocytomter based cell counting ...................................................... 149 

4.2.3 Optimisation of the siRNA mediated knockdown of the candidate proteins 

in HCT116 cells ............................................................................................. 149 

4.3 Effect of NAP1L1 knockdown on cellular proliferation and apoptosis in 

cultured HCT116 and HT29 cell lines ............................................................ 151 

4.3.1 NAP1L1 knockdown in HCT116 cells .................................................. 151 

4.3.2 Impact of NAP1L1 knockdown on proliferation and apoptosis in HCT116 

cells ............................................................................................................... 152 

4.3.3 NAP1L1 knockdown in HT29 cells ....................................................... 154 

4.3.4 Independent assessment of cellular proliferation and cell survival after 

NAP1L1 knockdown in HCT116 and HT29 cells........................................... 156 

4.4 Effect of siRNA mediated knockdown of RPL6 on proliferation and 

apoptosis in HCT116 and HT29 cell lines ....................................................... 159 

4.4.1 RPL6 knockdown in HCT116 cells ....................................................... 159 

4.4.2 RPL6 knockdown in HT29 cells ............................................................ 162 

4.5 Assessment of RPL6 and Cyclin E expression and relationship in murine 

models of CRC ................................................................................................. 165 

4.6 Discussion ................................................................................................... 169 

5. Mechanistic studies on the function of SFRS2 and its possible 

roles in colorectal tumourigenesis .............................................................. 176 

5.1 Introduction ............................................................................................... 176 

5.2 Comparison of SFRS2 and CDC5L expression in colorectal tumourigensis 

using IHC ......................................................................................................... 177 

5.2.1 SFRS2 and CDC5L expression in AhCre
+
Apc

fl/fl 
mice ........................... 177 



7 
 

5.2.2 SFRS2 and CDC5L expression in Apc
Min/+ 

mice .................................... 178 

5.2.3 Assessment of WNT pathway activation and SFRS2 and CDC5L 

expression in animal models of early and advanced intestinal tumourigensis 

using IHC ...................................................................................................... 179 

5.3 Effect of SFRS2 knockdown on cellular proliferation and apoptosis in 

HCT116 and HT29 cells .................................................................................. 183 

5.4 Effect of CDC5L knockdown on cellular proliferation and apoptosis in 

HCT116 and HT29 cells .................................................................................. 189 

5.5 Assessment of cell cycle distribution following knockdown of SFRS2 and 

CDC5L ............................................................................................................. 196 

5.5.1 Effect of SFRS2 and CDC5L on cell cycle distribution ......................... 196 

5.6 Assessment of SFRS2 and CDC5L relationship in human CRC cell lines 

using immunocytochemistry ........................................................................... 198 

5.7 Assessment of rate and mechanism of apoptosis following SFRS2 and 

CDC5L knockdown ......................................................................................... 201 

5.8 Role of p53 in mediating apoptosis following SFRS2 and CDC5L 

knockdown in HCT116 cells ........................................................................... 204 

5.9 Discussion ................................................................................................... 208 

5.10 Conclusions .............................................................................................. 214 

6. The expression of candidate biomarker proteins in human 

colorectal cancer .......................................................................................... 217 

6.1 Introduction ............................................................................................... 217 

6.2 Haematoxylin and eosin (H and E) staining based histology of the samples

 .......................................................................................................................... 218 

6.3 Immunohistochemistry evaluation of the expression of candidate 

biomarker proteins .......................................................................................... 218 

6.3.1 Assessment of WNT pathway activity in normal and neoplastic human 

colon .............................................................................................................. 219 

6.3.2 NAP1L1 expression in human CRC ...................................................... 224 

6.3.3 RPL6 expression in human CRC ........................................................... 227 

6.2.4 PHB expression in human CRC............................................................. 231 

6.3.5 NCL expression in human CRC ............................................................ 233 

6.3.6 Assessment of SFRS2 and CDC5L expression in correlation with WNT 

pathway activity ............................................................................................. 235 

6.4 Discussion ................................................................................................... 244 

6.5 Conclusion.................................................................................................. 249 



8 
 

7. Discussion ................................................................................................. 251 

7.1 Analysis of NAP1L1 expression in clinical samples and animal/cell line 

models of CRC ................................................................................................. 252 

7.2 Analysis of RPL6 expression in clinical samples and animal/cell line 

models of CRC ................................................................................................. 253 

7.3 Analysis of SFRS2 and CDC5L expression and their interaction in clinical 

samples and animal/cell line models of CRC .................................................. 254 

7.4 Analysis of PHB and NCL expression in human samples and animal/cell 

line models of CRC .......................................................................................... 256 

7.5 Limitations of the studies carried out and possible steps for improvement

 .......................................................................................................................... 257 

7.6 Future work plans and medical implications of the studies that have been 

carried out ....................................................................................................... 259 

7.7 Conclusions ................................................................................................ 260 

8. References ................................................................................................ 263 

9 Appendix ................................................................................................... 295 

9.1 List of published abstracts ........................................................................ 295 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

List of abbreviations  

  A 

ACF aberrant crypt foci 

 AFAP attenuated familial adenomatous polyposis  

AJCC American Joint Committee on Cancer  

AML acute myeloid leukaemia  

ANOVA analysis of variance 

 AOM azoxymethane 

 APC adenomatous polyposis coli 

APES 3-aminopropyltriethoxysilane 

AS alternative splicing 

  

B 

   Bcl2 B cell lymphoma 2 

 BNF beta naphthoflavone  

BrdU 5-bromo-2-deoxyuridine  

 

C 

   CA carbohydrate antigen 

CBC crypt base columnar 

 CDC5L  Cell division cycle 5-like  

CEA carcinoembryonic antigen 

CHRPE congenital hypertrophy of the retinal pigment epithelium  

CID beta catenin inhibitory domain 

CIMP CpG island methylator phenotype  

CIN chromosomal instability 

CK1γ casein kinase 1 gamma 

COX cyclooxygenase 
 CpG cytosin-phosphate-guanin 

CRC colorectal cancer 
 CtBP C terminal binding protein 

CTC Computed tomographic colonography  

cyp1A1 cytochrome P450 subfamily1 A1 

 

D 

   DAB diaminobenzidine 
 DCC deleted in colorectal cancer 

DDX5 DEAD box protein 5  

dip diploid 
  DMEM Dulbecco's Modified Eagle Medium  

Dsh dishevelled 
 DSS dextran sodium sulphate 

 

 

 

   



10 
 

E  

ELISA enzyme linked immunosorbent assay 

 

F 

   FABP6 Fatty acid binding protein 6  

FACS fluorescence activated cell sorting 

FAP familial adenomatous polyposis  

FCS foetal calf serum 
 FIT faecal immunochemical testing 

FOBT faecal occult blood test 

FS flexibile sigmoidoscopy 

Fz frizzled 
   

G 

   gFOBT guaiac faecal occult blood test 

GIT gastrointestinal tract 
 GSKβ glycogene synthase kinase beta 

GTP Guanosine-5-phosphate 

 

H 

H and E haematoxylin and eosin 

HIV human immunodeficiency virus 

HMGB1 High-mobility group protein B1  

 

I 

   IBD inflammatory bowel disease 

ICC Immunocytochemistry  

iFOBT immunochemical faecal occult blood test 

IHC immunohistochemistry 

IPA Ingenuity pathway analysis  

iTRAQ isobaric tag for relative and absolute quantification 

 

L 

   LEF lymphoid enhancing factor 

LGr5 leucine rich repeat containing G protein coupled receptor 5 

LOH loss of heterozygosity 

 

M 

   MAM methylazoxy methanol 

MAP MUTYH associated polyposis 

MAPK mitogen-activated protein kinase  

MCR mutation cluster region 

MIC1 macrophage inhibitory cytokine 1  

Min multiple intestinal neoplasia 

MMP matrix metalloproteinases  

MMR mismatch repair 

 



11 
 

mRNA messenger RNA 

 MS Mass spectrometry 

 MSI microsatellite instability 

MUTYH MutY homolog 

  

N 

   NAP1L1 Nucleosome assembly protein 1-like 1  

NCL Nucleolin  
 NHPCC hereditary non polyposis colorectal cancer 

NPM Nucleophosmin  
  

P 

   PBS phophate buffered saline 

PHB Prohibitin  
 pre-mRNA precursor mRNA 
 PTEN Phosphatase and tensin homolog 

 

Q  
   qRT-PCR quantitative reverse transcription polymerase chain reaction 

 

R 

   RAGE receptor for advanced glycation end products  

RIPA radioimmunoprecipitation assay 

RNAi RNA interference 
 RP  Ribosomal protein  
 RPL6 Ribosomal protein L6  

 

S 

   SD standard deviation 
 SDS sodium dodecyl sulphate 

SFRS2 Splicing factor, arginine/serine-rich 2  

siRNA small interfering RNA 

SR serine rich 
 STK11 serine/threonine kinase11 

 

T 

   TBS tris buffered saline 
 TCF T cell factor 
 Tcf4 Transcriptional factor 4  

TEMED tetramethylethylenediamine 

Tgfbr2 transforming growth factor beta receptor 2 

TGFβ transforming growth factor beta  

TIMP Tissue inhibitor of metalloproteinase type  

TNM tumour node metastasis 

 

 

   



12 
 

U  

UICC  International Union against Cancer  

 

W 

   WB western blot 
 WHO world health organisation 

Wnt wingless/Int1 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Proteins, which are upregulated at early time points following Apc deletion, are 

involved in intestinal tumourigenesis and represent potential colorectal cancer 

biomarkers 

Abstract 

Colorectal cancer is a potentially curable disease if diagnosed at its earliest stages. 

However, as the current tools for early diagnosis of colorectal cancer are suboptimal, 

this condition is still a major health issue in the UK and the whole world. Each year 

nearly 40,000 new cases are diagnosed in the UK. Approximately half of these 

patients have advanced disease at the time of diagnosis and this is associated with a 

less favourable prognosis. Therefore, there is still an urgent need for better colorectal 

cancer screening tools. Moreover, it has long been suggested that APC deletion is an 

early and major event in the initiation of more than 80% of all colorectal cancers. 

However, the molecular events that occur following APC deletion are yet to be fully 

understood.  Working on an acute Apc deletion animal model, our group has 

identified several candidate biomarker proteins. It is postulated that studying these 

proteins will reveal new aspects about early colorectal tumourigenesis. We 

hypothesised that these proteins are upregulated very early following Apc deletion 

and are involved in various aspects of colorectal cancer development, therefore they 

are potential biomarkers and/or therapeutic targets for this disease.  

Most of the project’s aims were addressed using immunohistochemical assessment of 

the expression of several candidate biomarkers in a novel in vivo model of acute Apc 

deletion (AhCre
+
Apc

fl/fl 
mouse), a model of established early intestinal neoplasia 

(Apc
Min/+ 

mouse) and a model of invasive disease (AhCreER
T+

Apc
fl/+

Pten
fl/fl

 mouse) 

as well as clinical samples from patients with early and advanced colorectal cancer. 

Mechanistic studies were carried out using the human colonic adenocarcinoma cell 

lines, HCT116 and HT29. 

In the animal models, deletion of Apc resulted in an early activation of the Wnt 

signalling pathway as indicated by nuclear localisation of Beta catenin. Six 

(NAP1L1, RPL6, SFRS2, PHB, FABP6 and NCL) out of the nine candidate 

biomarker proteins tested and two proposed partner molecules (Cyclin E and 

CDC5L), demonstrated obvious differential patterns of expression in areas where 

Apc loss had induced Wnt pathway activation.  Specific knockdown studies of 



14 
 

selected members of this protein list in human colon adenocarcinoma cell lines using 

siRNA identified important effects of these proteins on critical cellular functions 

such as proliferation and apoptosis.  NAP1L1 and RPL6 knockdown had an 

inhibitory effect on cell proliferation and survival and caused a simultaneous increase 

in apoptosis. SFRS2 knockdown caused increased abundance of nuclear CDC5L and 

vice versa. SFRS2 down regulation had marginal effects on cell proliferation and cell 

survival and resulted in a small reduction in the amount of apoptosis. In contrast, 

CDC5L knockdown caused a dramatic inhibition of cellular proliferation, loss of the 

G2 cell cycle peak and a significant increase in the amount of apoptosis and caspase 

8 activity. HCT116 cells with a p53 deletion were more sensitive to toxicity of 

experimental (transfection) reagents and SFRS2 knockdown in these cells caused 

obvious inhibition of cell proliferation with increased apoptosis.  

Immunohistochemical staining of the candidate biomarker proteins in human 

samples of colorectal cancer generally supported the results shown in animal studies 

for early stages of the disease. Moreover, it demonstrated reduced nuclear expression 

of Beta catenin, nuclear relocalisation of CDC5L and cytoplasmic displacement of 

SFRS2 in the more advanced stages of colorectal cancer. PHB showed increased 

cytoplasmic staining in Dukes’ stage A and B cancers. These results were backed up 

by appropriate scoring systems. 

Our results concerning these proteins in colorectal cancer are novel and agree with 

several studies by other research groups describing their roles in other cancers or 

cancer models. Due to the relatively late detection of lesions in humans, the early 

changes which were observed in animals might have been missed in humans. 

NAP1L1, RPL6, SFRS2 and NCL showed early overexpression during colorectal 

tumourigenesis. These proteins therefore have the potential as screening biomarkers. 

Due to their role in regulating cellular proliferation, NAP1L1, RPL6 and CDC5L are 

potential therapeutic targets for colorectal cancer. PHB is also a potential marker for 

Dukes’ stage A and B cancers. Mechanistically, the interplay between SFRS2 and 

CDC5L during colorectal tumourigenesis is a promising case to follow.  

Based on this study and other studies conducted in our group, the above proteins are 

promising screening, predictive or prognostic markers as well as potential therapeutic 

targets for colorectal cancer.    
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1. Introduction 

1.1 Epidemiology of colorectal cancer 

1.1.1 Worldwide incidence and mortality 

Colorectal cancer (CRC) is the third most common cancer and second leading cause 

of cancer-related death in Europe and according to the World Health Organisation 

(WHO) it meets the criteria for mass screening [1]. It is considered the fourth most 

common cancer and second most common cause of  cancer related death in the UK 

[2]. Approximately 40,700 cases were diagnosed in 2010 in the UK and 15,700 

people died in the same year [2]. Moreover, research suggests that more than 90% of 

bowel cancer patients will survive for more than five years if diagnosed at the 

earliest stages. However, currently less than half of the cases are localised to the 

colon at time of diagnosis [3]. 

1.1.2 Types of colorectal cancer 

Ninety five percent of CRCs are adenocarcinomas. This means that they arise from 

the glandular element of the bowel lining. The glands produce mucus, a substance 

that acts as a lubricant in the bowel. Two of the rare morphological types of bowel 

adenocarcinoma are mucinous (cells lie in pools of mucus) and signet ring (mucus 

fills the individual cell, pushing the nucleus to one side giving it this particular 

shape) tumours [2]. Other less common tumours of the bowel include squamous cell 

carcinoma, neuroendocrine tumours, sarcomas (mostly leimyosarcoma, of smooth 

muscle origin) and lymphomas (1%) [2]. 

 

 

 

 

 

 

 



17 
 

1.1.3 Distribution of colorectal cancer  

More cases of CRC are diagnosed in the left than right side of the large bowel as 

shown in figure 1.1 below.  

 

 

 

 

 

 

Figure 1.1 UK percentage distribution of cases within the large intestine, 2007-

2009 [2]. Cancer Research UK. http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/bowel/incidence/19Nov2013. 

1.1.4 Staging of colorectal cancer 

Treatment strategies and prognosis vary according to the stage of CRC.  Accurate 

prognostic prediction of patients is important for improving treatment selection [4]. 

Moreover, due to the critical role of lymph node involvement in determining the 

outcome of CRC [4], the International Union against Cancer (UICC) and the 

American Joint Committee on Cancer (AJCC) recommend the Tumour, Node, 

Metastasis (TNM) system for staging CRC [5]. However, the modified Dukes' 

staging [6, 7] is still also being used [5]. 
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The table below (1.1) shows the two commonly used staging systems for CRC. The 

table is produced from data on the Cancer research UK website [2]. 

TNM 
 Modified 

Dukes' 

Stage 0 Carcinoma in situ  

Stage I Tumour invades submucosa (T1) 

Tumour invades musularis propria (T2) 

No nodal involvement nor distant metastasis (N0, M0) 

A 

Stage II, a 

               b 

Tumour invades serosa (T3) 

Tumour invades beyond serosa (locally) (T4) 

No nodal involvement nor distant metastasis (a & b) 

B 

Stage III, a 

               b 

               c 

1-3 regional lymph nodes involved (N1), (T1, T2) 

1-3 regional lymph nodes involved (N1), (T3, T4) 

4 or more regional lymph nodes involved (N2) , any T, 

not distant metastasis 

C 

Stage IV Any T and N with distant metastasis (M1) D 

Table 1.1 Staging systems commonly used in CRC 

Nowadays there is a concept that molecular diagnostics are equally important, if not 

more so, to anatomical factors in the staging of many solid tumours and that in 

future, classic morphology might give way to these molecular markers [5]. 

1.1.5 Grading of colorectal cancer  

Grading CRCs also has important therapeutic and prognostic implications. Grading 

of CRC is based on the morphology of cells and their degree of differentiation. As 

normal cells grow and mature they become more specialised for their role and 

position in the body (differentiation). Pathologists grade CRCs as: 

 Grade 1 (Low), very similar to normal cells 

 Grade 2 (Moderate), moderately abnormal 
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 Grade 3 (High), highly abnormal  

Low grade tumours unlike high grade ones tend to grow more slowly and are less 

likely to metastasise [2]. 

1.1.6 Risk factors 

The average lifetime risk for the development of sporadic CRC is about 5% [8].  

High consumption of red meat and low intake of dietary fibre increase the chance of 

developing bowel cancer [2].
 
Being overweight has also been shown to be a risk 

factor since at least 10% of all cases of colorectal cancer diagnosed in the UK are 

related to this problem [9].
 
Among other risk factors are inactivity and drinking more 

than 30 grams (4 units) of alcohol per day [10].
 
Chronic diseases such as diabetes 

mellitus and inflammatory bowel disease also increase the risk of developing bowel 

cancer [2]. 

Genetics 

Evidence suggests that a person’s genetic makeup accounts for 35% of the risk of 

developing colorectal cancer [11]. A first degree relative with colorectal cancer 

doubles the chance of a person developing the disease compared to an average risk 

individual [10].
 
Interestingly however, the majority of cases of colorectal cancer 

occur in individuals without a family history of such disease (sporadic CRC, 70-80% 

of cases) [10]. Moreover, around 20% of those who develop colorectal cancer have 

one or more family members with this condition (familial CRC) [9]. Known 

predisposing inherited conditions represent 5-10% of all cases of colorectal cancer 

(hereditary CRC) [9]. Most common of these conditions are hereditary non polyposis 

colorectal cancer (NHPCC) and familial adenomatous polyposis (FAP) [12]. 

Hereditary disorders predisposing to colorectal cancer 

A good classification of hereditary disorders predisposing to CRC was made in 1998 

by Lynch and Lynch [13]. This classification included pattern of inheritance, 

associated germinal mutations, polyp information, other associated malignancies, 

non-cancerous features, population screening, surgical and/or prophylactic strategies 

and DNA testing in asymptomatic individuals as well as genetic counselling [14]. 

These hereditary disorders include 

 Familial adenomatous polyposis (FAP) 

 Attenuated familial adenomatous polyposis (AFAP) 
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 I1307K mutation in Ashkenazi Jews 

 Juvenile polyposis coli 

 Peutz-Jeghers syndrome 

 Slight adenomatous polyposis of the colon and Burt's colorectal cancer 

 Hereditary non-polyposis colorectal cancer (HNPCC) 

 Familial colorectal cancer 

 Familial ulcerative colitis and Crohn's disease 

All but the last two are inherited in an autosomal dominant pattern [14]. 

FAP is an autosomal dominant disorder characterised by extensive polyposis of the 

colon (hundreds to thousands of polyps) that leads to cancer at an early age (typically 

less than 40 years). It affects people inheriting a germ line mutation in the APC gene, 

which is localised on chromosome 5q21 and is found in 60-80% of families with 

FAP [14, 15]. Polyps may also appear in the upper gastrointestinal tract (GIT) and 

tumours may affect other organs such as the brain and thyroid gland. Moreover, FAP 

patients may have other clinical problems such as congenital hypertrophy of the 

retinal pigment epithelium (CHRPE), jaw cysts, sebaceous cysts, and osteomas [14]. 

Gardner's syndrome is a phenotypic variant of FAP that also shows epidermoid cysts, 

jaw osteomas, CHRPE, fibromas, and desmoid tumours [16].  Moreover, FAP 

patients may develop extra colonic malignancies such as stomach, small intestine and 

periampullary cancers in addition to sarcomas [16]. The average age of cancer 

development in FAP is 39 years but it is not uncommon in teens and early adulthood 

[13].   

AFAP presents with fewer polyps (average 5-10 and often less than 100) with 

predilection for the proximal colon. It may also be associated with gastric fundic 

cystic gland polyps and duodenal adenomas. Cancers tend to develop at later ages 

[13]. Importantly, 16%–40% of patients with less than 100 polyps carry the bi-allelic 

inactivation of the MutY homolog (MUTYH) based-excision repair gene, a condition 

called MUTYH-associated polyposis (MAP). AFAP and MAP have very similar 

phenotypes [17]. 

Turcot's syndrome is characterised by 50 to 100 adenomas in the colon and cancers 

of the central nervous system. Medulloblastomas occur when APC is defective while 
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multiform glioblastomas develop when hMLH1 and hPMS2 genes are mutated [13].  

Juvenile polyposis patients show 10 or more juvenile hamartomatous polyps in the 

colon but also in the stomach and small intestine. It is defined by mutations in the 

tyrosine-phosphate (PTEN) gene [18]. Peutz-Jegher's syndrome in addition to 

hamartomatous polyps in the gastrointestinal tract (GIT) is also characterised by 

mucocutaneous melanin pigmentation, usually of the perioral area. The defective 

gene encodes for the serine-therionine kinase 11 (STK11) [18]. 

HNPCC patients only occasionally develop polyps, but never abundantly. Its 

diagnosis needs the exclusion of FAP. However, adenomas are bigger and more 

villous. HNPCC patients are prone to other malignancies such as endometrial, 

ovarian, small intestinal, gastric, ureteric, and renal pelvis cancers [13]. CRC in 

HNPCC develops at an early age and predominantly in the right colon [19]. 

Moreover, the average age for cancer development is 44 years with a rapid adenoma 

to carcinoma progression [13]. HNPCC develops due to defects in the DNA 

mismatch repair system (MMR) genes, mainly hMLH1 and hMSH2 and therefore 

tumours show microsatellite instability (MSI) [19]. 

Age
 

There is a progressive increase in the chance of developing colorectal cancer after the 

age of 40 with a sharp rise in incidence after 50 (figure 1.2) [9, 12].
 

 

Figure 1.2 Number of New Cases and Age-Specific Incidence Rates, UK, 2008 

[2]. Cancer Research UK. http://www.cancerresearchuk.org/cancer-

info/cancerstats/types/bowel/incidence/19Nov2013. 
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Adenomatous polyps 

Incidence of colorectal adenomas is about 15% in people aged between 40 and 60 

years and more than 40% in higher age groups. Although mostly non progressive, 

polyps increase the chance of developing CRC [10].
 
Usually a time window of 5 to 

10 years is required for the malignant transformation of these polyps (~95% are non-

progressive lesions) [8, 10].
 
Most if not all cases of CRC arise within polyps, 

therefore removal of polyps in the transition period significantly reduces the chance 

of developing colorectal cancer for an individual (70-90%) [20]. 

1.2 Colorectal carcinogenesis 
 

Colorectal tumours are a good model for studying carcinogenesis and the molecular 

events implicated in the development of cancer [14]. Hereditary forms follow 

defined stages from normal epithelium through adenoma to cancer [14]. They are the 

result of accumulation of multiple mutations in tumour suppressor genes and 

oncogenes that affect the balance between proliferation and apoptosis [14]. This is 

well represented by the multiple stages pattern "adenoma to carcinoma sequence" 

described by Vogelstein et al. [21]. 

The pathogenesis of CRC differs according to the genetic or epigenetic changes 

which are associated with each case. These genetic and epigenetic alterations are 

directly responsible for  a specific event(s) that leads to CRC, by contributing to the 

“initiation” of neoplastic transformation of healthy epithelium and/or determining the 

“progression” towards more invasive stages of the disease [19]. Moreover, without a 

cellular environment that accelerates the accumulation of genetic events, it may be 

difficult for a cancer to develop during the lifetime of a person. This environment is 

ensured via the creation of a state of genomic instability that enables the occurrence 

of strategic mutations at an increasingly greater likelihood [22]. In general, inherited 

factors may determine the predisposition of an individual to develop an adenoma and 

cancer; while environmental factors may determine which of the susceptible 

individuals will develop small adenomas, large adenomas or cancer [23].  

Colorectal carcinogenesis is not always the same; there are different pathways which 

are recognised for their characteristic models of genetic instability, associated 

clinical manifestations, and pathological behaviours [19]. The most common is the 

chromosomal instability (CIN) pathway, in which structural chromosomal defects 
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(aneuploidy) are responsible for the gross genetic abnormalities and wide spread loss 

of heterozygosity (LOH) [24]. The microsatellite instability (MSI) pathway is 

another carcinogenesis model in which there is failure to detect and/or repair the 

mismatched bases at microsatellite sequences of the daughter strand of DNA due to a 

defect in the mismatch repair system (MMR) [22]. Recently epigenetic factors have 

also been considered as drivers of carcinogenesis in a certain proportion of colorectal 

tumours [25]. CpG island methylator phenotype (CIMP
+
) cancers are an example of 

this, where methylation of promoter sequences is postulated to drive a separate 

colorectal carcinogenesis pathway, the serrated neoplasia pathway [26]. 

1.2.1 The suppressor pathway (traditional or chromosomal instability) 

 
CIN (figure 1.3) is the most well characterised colorectal carcinogenesis pathway 

[19].
 
About 70-85% of CRCs develop following this pathway [27]. The earliest 

lesion in this pathway is proposed to be the aberrant crypt focus (ACF), a 

microscopic lesion that precedes polyp formation [28]. Allelic losses are quite 

common in CRC and CIN is thought to induce carcinogenesis through loss of tumor 

suppressors and copy number gains of oncogenes [29, 30]. 

Genetic defects commonly seen in the tumours of this pathway include: 

 APC mutation and 5q loss of heterozygosity 

 K-ras mutation and 18q loss of heterozygosity 

 p53 mutation and 17p loss of heterozygosity 
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Figure 1.3 Sporadic/traditional/CIN pathway: sequential pathological stages 

and molecular events [22] (modified). ACF= aberrant crypt foci. 

 

Remarkably, only a small minority of CRCs show all of the above mutations together 

[31]. 

APC gene (5q21) 

In cancer, it is thought that each mutation confers a growth advantage to the affected 

cell. Therefore, multiple stages of clonal expansion may occur within the same 

tumour which in turn leads to tumour progression [32]. The majority of hereditary 

CRCs are due to mutations in tumour suppressor genes [33]. It is has been suggested 

that tumour suppressors are divided into gatekeepers which directly inhibit tumour 

growth and promote apoptosis and caretakers which do not directly affect tumour 

growth but their loss produces genomic instability [34].  

The APC gene (figure 1.4) is the gatekeeper of cell proliferation in the colonic 

epithelium. It was identified and characterised in 1991 [35]. It is localised on 

chromosome 5q21 and is made up of 8535 bp distributed onto 15 exons. It encodes a 

large protein of 2843 amino acids in its common isoform [36]. Exon 15 occupies 

more than 75% of the coding sequence of APC gene and is the most frequently 

affected by mutations, both germline and somatic [37].  
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Figure 1.4 This image is adapted from reference [38] depicting the structure of 

APC gene. EB1 end binding 1, RP1 retinitis pigmentosa 1, DLG discs large, 

PTP-BL protein tyrosine phosphatase-BL, CDK cyclin-dependent kinase, 

SAMP small archaeal modifier protein. Reprinted by permission from 

Macmillan Publishers Ltd: Nature reviews Cancer. APC, signal transduction 

and genetic instability in colorectal cancer. Copyright (2001). 

The APC protein forms homo-oligomers and is associated with catenins. It is made 

up of an oligomerisation domain and an armadillo region, 15 and 20 amino acid 

repetitions in its central portion and a carboxy-terminal end containing a basic 

domain and union sites for other proteins. Each domain has a defined role in APC 

activity [39]. The oligomerisation domain allows APC to form homodimers, the 

active forms of the protein while the armadillo region contributes to the stabilisation 

and motility of the cytoskeleton and it may not be essential for the tumour 

suppression function of APC [39]. The 15 and 20 amino acid sites allow the protein 

to bind Beta catenin [40].  

The various functions of APC include regulation of Beta catenin mediated WNT 

signalling, regulation of cell to cell adhesion via Beta catenin and cadherins, 

regulation of cell migration via interaction with the microtubules, cell cycle arrest 

and coordination of cell adhesion and motility [23, 41]. In addition to abnormalities 

of the above functions, APC’s contribution to tumourigenesis involves a deranged 

mitotic spindle function and a resultant genomic instability [42]. As a result, APC 

deletion is a key early mutation in sporadic CIN and FAP (germline mutation) [43]. 

The more frequent mutations of APC result in the production of truncated inactive 

proteins. An example of APC dysfunction is FAP, in which all cells of the body lack 

one copy of the APC gene and initiation of the adenoma carcinoma sequence in the 
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intestine follows the inactivation of the other existing copy, loss of hetrozygosity 

(LOH) [44].
 
Therefore, in FAP unlike sporadic adenomas there is APC mutation in 

all associated aberrant crypt foci (ACF) [22].
 
 

Due to relevance to this project, APC and the WNT signalling pathway are reviewed 

in more detail below. 

K-ras mutation (12p12) 

K-ras is a proto oncogene encoding a guanosine-5-triphosphate (GTP)-binding 

protein and when mutated it causes loss of inherent GTPase activity [22]. It is 

mutated (activating mutations) in more than 40% of CRCs,  driving constitutive 

signalling for proliferation through BRAF, which in turn activates the mitogen-

activated protein kinase (MAPK) pathway [45]. Higher rates of K-ras mutations in 

sporadic dysplastic ACF (63%) than those in CRC and advanced adenomas (35-42%) 

suggest that despite the growth advantage that mutation of this gene confers, it is 

neither sufficient nor necessary for driving colorectal carcinogenesis [22]. 

SMAD2, SMAD4 & deleted in colorectal cancer (DCC) genes 

SMAD2 and SMAD4 are involved in the transforming growth factor beta (TGFβ) 

signalling pathway that regulates growth and apoptosis. The DCC gene encodes a 

transmembrane receptor protein that mediates apoptosis in the absence of its ligand, 

netrin1 [22]. These three genes are located at 18q21.1 and allelic loss at this site is 

found in up to 60% of CRCs [46]. SMAD4 mutation is more frequently encountered 

than SMAD2 and DCC mutations, which are rare in CRC. Moreover, SMAD4 germ 

line mutation causes juvenile polyposis, which is associated with an increased risk of 

developing CRC [22].
 

p53 gene (17p13) 

The p53 gene encodes a tumour suppressor protein that controls the expression of 

genes regulating apoptosis, angiogenesis, the cell cycle and maintenance of the 

genome. Approximately half of human cancers contain mutated p53 genes, and 30–

60% of CRCs have mutations in the gene [47, 48]. Normal p53 protein is stabilised 

by DNA damage and acts as a transcription factor inducing the expression of cell 

cycle retarding genes. This function allows adequate time after an insult to DNA for 

the MMR system to repair the resulting defects during cell proliferation [22]. Loss of 
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p53 (usually through allelic loss) is a late event in the traditional pathway of 

colorectal carcinogenesis and adds an invasive trait to the abnormal growth [22]. 

1.2.2 Microsatellite instability (mutator) pathway (MSI) 

Another mechanism of genomic instability is the MSI pathway, which is seen in 

approximately 20% of CRCs (90% of HNPCC and 10-15% of sporadic CRC) [49, 

50]. Microsatellites are stretches of short DNA sequences, which contain a motif of 

1–5 nucleotides with tandem repeats spread throughout the human genome [51]. A 

change in microsatellites length (MSI) dramatically increases the chance of genetic 

errors and several microsatellites are present in genes implicated in CRC such as 

TGFβRII, Bax, Caspase5, MSH3, MSH6, Beta catenin, APC, IGFII and E2F4. 

In MSI, genetic defects are in the DNA mismatch repair (MMR) system [52]. There 

are at least six DNA mismatch repair genes, some of which are implicated in 

HNPCC aetiology. Any breach in the MMR system will lead to inheritance of DNA 

defects by daughter cells and accumulation of mutations in genes that control 

proliferation ending up with the formation of tumours [53].  

1.2.3 Methylator pathway 

Epigenetic processes such as methylation are involved in the regulation of gene 

transcription [22]. In CRC, there is universal hypo-methylation of the genome, 

mainly in repeat DNA sequences, while the promoter regions of strategic genes are 

hyper-methylated [54]. This latter phenomenon disrupts the involvement of a 

particular gene with the transcription mechanism by inhibiting binding of the 

transcription factor and changing histone acetylation, thereby interrupting its 

expression (silencing) [55]. Therefore, CpG island methylation corresponds to 

inactivation mutations during cancer development causing first and/or second hits 

(loss of function of vital tumour suppressors) [22]. 
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1.3 The Wnt signalling pathway 

The Wnt pathway is a highly conserved signalling cascade, which is activated by 

secreted Wnt proteins. Gene sequencing has revealed 20 Wnt proteins in humans, 

which are subdivided into 12 conserved subgroups (WNT1 to WNT11 and WNT16) 

according to their shared functions.  The biological significance of Wnt signalling 

comes from its involvement in all aspects of embryonic development as well as 

homeostasis and self-renewal in a number of adult tissues such as skin, adipose 

tissue, haematopoietic tissue and others [40]. Germline mutations in genes of this 

pathway may cause hereditary diseases and their somatic mutations cause cancer of 

the intestine and some other organs [56]. 

Currently one or more of three pathways are believed to be induced when Wnt 

receptors are activated: 

1. Canonical Wnt/ Beta catenin pathway 

2. Non canonical planar cell polarity pathway  

3. Wnt/Calcium pathway. 

The best understood so far is the canonical pathway [56]. 
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1.3.1 Canonical Wnt pathway 

After their secretion, Wnt proteins bind frizzled (Fz) and LRP trans-membrane 

receptors activating the canonical pathway [56]. Details of the possible events are 

illustrated in figure 1.5 below.  

 

 

 

 

 

 

 

 

Figure 1.5 Canonical Wnt Signaling: “(Left panel) When Wnt receptor 

complexes are not bound by ligands, the serine/threonine kinases, CK1 and 

GSK3α/β, phosphorylate β-catenin. Phosphorylated β-catenin is recognized by 

the F box/WD repeat protein β-TrCP, a component of a dedicated E3 ubiquitin 

ligase complex. Following ubiquitination, β-catenin is targeted for rapid 

destruction by the proteasome. In the nucleus, the binding of Groucho to TCF 

(T cell factor) inhibits the transcription of Wnt target genes. (Right panel) Once 

bound by Wnt, the Frizzled (Fz)/LRP coreceptor complex activates the 

canonical signalling pathway. Fz interacts with Dishevelled (Dsh), a cytoplasmic 

protein that functions upstream of β-catenin and the kinase GSK3β. Wnt 

signalling controls phosphorylation of Dsh. Wnts are thought to induce the 

phosphorylation of LRP by GSK3β and casein kinase I-γ (CK1γ), thus 

regulating the docking of Axin. The recruitment of Axin away from the 

destruction complex leads to the stabilization of β-catenin. In the nucleus, β-

catenin displaces Groucho from Tcf/Lef to promote the transcription of Wnt 

target genes” [56]. CK1 is casein kinase1, GSK is glycogen synthase kinase and 

LRP is lipoprotein receptor related protein. This article was published in Cell, 

127, Clevers H., Wnt/beta-catenin signaling in development and disease. 269-

280, Copyright Elsevier (2006). 

A new model of Wnt pathway signalling suggests that even during activation of this 

pathway, the destruction complex still captures and phosphorylates Beta catenin, but 

ubiquitination by b-TrCP is blocked [57].  
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1.3.2 Wnt activity and the cytoplasmic destruction complex 

The main player in the canonical pathway is Beta catenin which is a multifunctional 

cytoplasmic protein involved in cellular adhesion and Wnt signalling [56, 58, 59]. 

Stability of Beta catenin is regulated by the destruction complex [56, 60]. In this 

complex the tumour suppressor Axin acts as a scaffold as it directly interacts with the 

other components of the complex.  The complex involves Beta catenin, APC, 

Glycogen synthase kinase 3 (GSK3), and Casein kinase 1 (CK1) [56, 60]. When Wnt 

receptor complexes are not engaged, CK1 and GSK3 phosphorylate Beta catenin 

sequentially and Beta catenin is targeted for rapid destruction by the proteosome 

(figure 1.5) [56, 61].
 

1.3.3 APC role in the Wnt pathway 

The main role of APC in the Wnt pathway is negatively controlling its activity via 

ensuring efficient shuttling as well as loading and unloading of Beta catenin on to the 

destruction complex [56, 62]. To perform this task, APC has a series (seven) of 15-

20 amino acid repeats through which it interacts with Beta catenin [63] and three 

Axin binding motifs which are interspersed among these amino acid repeats [56].  

Beta catenin plays a second role in the simple epithelia as an element of adherens 

junctions, where APC may also have a role. Beta catenin has binding sites on both 

APC and E cadherin. E cadherin and Beta catenin interaction is regulated by the 

phosphorylation of the latter and this phosphorylation only occurs when a complex 

with the homodimer of APC protein has previously been formed [39]. Moreover, 

APC contributes to the ordered migration of intestinal cells inside the crypt where 

Beta catenin has a crucial role [64].  

It has been suggested that newly synthesised Beta catenin first saturates the adherens 

pool and it never becomes available for signalling. Excess cytoplasmic Beta catenin 

is then efficiently degraded by the APC complex, which means that the second 

highly unstable pool is regulated by Wnt signalling [56].
 
It has also been suggested 

that APC, independent of its role in the cytoplasmic destruction complex, acts on 

chromatin to facilitate CtBP (transcriptional co-repressor) mediated repression of 

Wnt target gene transcription in normal but not CRC cells [65]. 
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1.3.4 Biological role of Wnt pathway 

Loss of one or more components of the Wnt signalling cascade causes dramatic 

phenotypic changes that vary with different tissues and organs. One important role of 

the Wnt pathway is its involvement in the maintenance or activation of stem cells 

[66]. Wnt signals may activate transcriptional programmes, promote cell 

proliferation and tissue expansion and may control cell cycle as well as fate and 

terminal differentiation of post mitotic cells [67, 68]. However, the consequences of 

Wnt pathway activation differ according to the developmental identity of the induced 

cell rather than the content of the signal [69]. 

1.3.5 Wnt signalling in self-renewing tissues 

In addition to developmental processes, Wnt signalling in adult mammals is an 

essential lifelong tool for self-renewal and maintenance of tissue integrity for many 

organs. This fact is closely related to several disease states [56].
 

Gastrointestinal tract  

It has been demonstrated that Wnt signalling is essential to maintain the stem cell 

compartment of intestinal crypts [70]. It has been found that approximately six Lgr5
+
 

stem cells (crypt base columnar cells, CBC) are located at the bottom of the intestinal 

crypts; intermingled with Paneth cells in the small intestine and with goblet cells in 

the colon (figure 1.6) [71, 72]. Colonic epithelium almost constantly renews and it is 

replaced approximately every six days (2-3 days in human) [73]. In the mouse, 

around 300 cells are produced in each crypt every day [74]. This is balanced by the 

loss of cells at the surface by apoptosis and exfoliation. The epithelium forms a two 

dimensional layer that is in continuous upward movement except for the stem and 

Paneth cells which escape this flow. These stem cells cycle slowly and continuously 

producing rapidly proliferating "transit amplifying" cells, which have the capacity to 

differentiate to all other lineages. This gives them the ability to regenerate the 

epithelium after injury [66]. Moreover, it has been suggested that Wnt proteins are 

secreted by the crypt epithelial cells rather than the surrounding mesenchyme, giving 

the epithelium a self-renewal tool [75]. Committed progenitor cells stop cycling and 

start to differentiate upon reaching the top one third of the colorectal crypt or the 

crypt villus boundary in the small intestine. In adenomas, these events are deranged. 

Newly formed cells maintain their mitotic capacity and do not differentiate and their 

compartment expands to take up the whole crypt [14]. 
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Also in the intestinal crypt, the Wnt signal gradient mediates the expression of a 

genetic programme to maintain progenitor cell proliferation [56]. The Wnt gradient 

also controls the expression of EphB/EphrinB sorting receptors and ligands. The 

resulting EphB/EphrinB counter gradients determine the crypt villus boundaries and 

the position of Paneth cells at the bottom of the crypt [76]. 

 

 

 

 

 

 

 

Figure 1.6 Small intestinal (A) and colonic (B) stem cells. Adapted from [77]. 

CD24
+ 

staining (red) shows paneth cells (A) and colonic cells (B) while Lgr5-

GFP
+ 

stained cells (green) are stem cells. Counter stain: DAPI (4', 6-diamidino-

2-phenylindole) (blue). Reprinted by permission from Macmillan Publishers 

Ltd: Nature. Paneth cells constitute the niche for Lgr5 stem cells in intestinal 

crypts. Copyright (2011). 

Generally, current evidence suggests that the Wnt pathway is the main force 

controlling cell fate along the crypt villus axis. For instance in Tcf4
-/- 

(transcription 

factor 4) neonatal mice, the entire crypt progenitor compartment is absent while the 

villus is unaffected [70].  

1.3.6 APC and Wnt signalling in intestinal cancer 

In many tissues in which the Wnt signalling cascade controls stem cells, cancer 

develops upon abnormal activation of the Wnt pathway [66]. This indicates the 

importance of stem cell regulators in cancer [66]. In FAP, following the loss of APC, 

the large burden of adenomas eventually leads to the development of 

adenocarcinoma through clonal evolution, which is evident from the accumulation of 

mutations in additional critical genes such as K-Ras, p53 and Smad4 [66]. Mutational 

inactivation of APC leads to an abnormal stabilisation of Beta catenin which seems 

to play a critical role in transforming epithelial cells. Moreover, increased nuclear 

A B 
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activity of Beta catenin is considered a hallmark of APC loss induced intestinal 

neoplasia [78]. This is supported by the observation that reporter plasmids containing 

concatemerized Tcf binding sites such as pTOPFLASH, normally transcribed only 

upon Wnt signalling, are inappropriately transcribed in APC mutant cancer cells 

through the action of constitutive Beta catenin–Tcf4 complexes [79]. Further in 

agreement with this central role of Wnt pathway in colon cancer, in rare instances 

where APC is not mutated, mutations that also cause inappropriate stabilisation of 

Beta catenin can be found such as mutations of axin2 or Beta catenin [79, 80].  

Interestingly, it has been suggested that the Wnt pathway drives similar genetic 

programmes in both cancer and stem/progenitor cells [81]. Therefore, APC knockout 

adenoma cells can represent the transformed counterparts of the proliferative crypt 

progenitor cells; once the Wnt pathway is mutationally activated, adenoma cells can 

maintain their progenitor status indefinitely. This allows the adenoma to persist for 

many years providing a good environment for further mutations to occur. In further 

support of this, the in vivo model described by Sansom et al.,  in which they 

conditionally deleted both Apc alleles in the adult murine intestine, showed 

expansion of the crypt progenitor compartment and induction of the Wnt target genes 

already described in cancer cell lines [44]. Colorectal cancer almost always initiates 

with an activating mutation in the Wnt pathway, a fact that can be attributed to the 

dependence of the intestinal progenitor/stem cells on this cascade [66].   

It has also been suggested that APC mutations are not random and the position of the 

original mutation in FAP determines the nature and site of the somatic hit [63, 82]. 

Consistently, it has been reported that over 60% of somatic mutations occur within a 

mutation cluster region (MCR) between amino acids 1286-1513 [63]. Mostly these 

mutations lead to the production of a truncated APC protein with the removal of all 

aixin/conductin binding sites (SAMP repeats), often the Beta catenin inhibitory 

domain (CID) and most Beta catenin binding 20 amino acid repeats with a common 

end result of Beta catenin stabilisation. Therefore, one suggested mechanism for 

selectivity in the occurrence of the second hit, is the level of Beta catenin determined 

by the first hit [63].  

Remarkably, activating mutations of the WNT signalling pathway are not restricted 

to cancer of the intestine, as loss of function mutations of Axin2 have been found in 
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hepatocellular carcinoma while oncogenic mutations of Beta catenin have been 

found in a wide range of solid tumours [83]. Moreover, it has recently been found 

that CREPT (cell cycle-related and expression elevated protein in tumor)/RPRD1B 

(regulation of nuclear pre-mRNA domaincontaining protein 1B) protein elevated in 

many tumours, regulates Wnt activity. It acts as a co-factor for Beta catenin-Tcf4, 

engancing the transcriptional activity of this complex particulary for cell growth-

related genes such as c-Myc and Cyclin D1 [84]. 

1.4 Mouse models of colorectal cancer 

Various mouse models have revealed many aspects about the development, 

progression and management of colorectal cancer [85]. There have been recent 

advances in the ability to produce cancer models in mice [86]. One of the important 

techniques described, involves the ability to manipulate specific genes in defined 

tissues at a known time, using the Cre loxP system [87]. 

1.4.1 Apc mutant mice 

The mouse homologue of human APC is located on murine chromosome 18 [52]. 

The sequences are 86% and 90% identical in terms of nucleotides and amino acids 

respectively [88]. The first mouse carrying a mutation in this gene was identified in a 

colony that was subjected to chemical mutagenesis to induce random mutations 

(phenotype based detection) and it was called the Min (multiple intestinal neoplasia) 

mouse as it developed up to thirty neoplasms in the small intestine [89]. The 

underlying germline mutation involved truncation at codon 850 of the Apc gene 

producing an autosomal dominant Apc
Min 

allele [90].  This mouse has an average life 

span of 4-6 months after which it dies due to chronic anaemia and intestinal 

obstruction caused by tumour burden [88].
 

For further exploration of the role of Apc gene in tumourigenesis, several Apc 

truncation mutation models have subsequently been constructed. For example, 

Apc
Δ716

, Apc
1638N 

and Apc
Δ14 

mice
 
showed differences in the number of polyps 

developing in the small intestine but that were histologically indistinguishable [52]. 

Moreover, the impact of mutations in other genes has been studied in Apc mutant 

mice. Examples include; studying the effect of Cox enzymes in Apc mutant mice 

whose deletion caused great reduction in size and numbers of polyps. In addition, 

when Cdx2 was deleted, numerous polyps developed in the distal colon, whereas Apc 
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mutation alone caused polyps to develop mainly in the small intestine [91].  Another 

example was the introduction of the BubR1
+/-  

mutation in the Apc
Min/+

 mice, which 

caused 10 times more polyps to develop in the colon than in small intestine [52].
 
 

The roles of many other genes and pathways have also been assessed in intestinal 

tumorigenesis using mice models such as the role of Beta catenin. One research 

group used Cre recombinase mediated deletion of exon three (phosphorylation site) 

of Beta catein in the murine intestine. The expression of the enzyme was put under 

control of calbindin and either cytokeratin 19 (k19) or fatty acid binding protein gene 

promoters. Expression of each of these proteins, lead to the deletion of exon three 

from Beta catenin and rendered it rsistaant to phosphorylation. With calbindin, few 

polyps developed while the other two proteins caused 700-3000 polyps to develop in 

the small intestine [92, 93].
 
This discovery supports the involvement of the Wnt 

signalling pathway in polyp formation and that it is initiated from the transit 

amplifying cells in the proliferative zone where K19 and fatty acid binding proteins 

are expressed significantly, but where only traces of calbindin are found [85]. 

Calbindin is only expressed by differentiated cells, mainly in the proximal small and 

large intestine (duodenum and caecum respectivley) [94].
 

1.4.2 MMR (mismatch repair) and Apc mutations 

When MMR dysfunction related CRCs (positive for microsatellite instability, MSI) 

are examined in humans, most are also positive for APC mutations [85]. To further 

address this synergy, transgenic mouse lines have been constructed having both an 

Apc mutation (Min mice) and null mutations in different elements of the MMR 

system such as Msh2, Msh3, Msh6, Mlh1 and Pms2 [85]. These compound 

mutations caused tumours to develop almost exclusively in the intestine with 

incidence being related to the severity of MMR defects.  

1.4.3 Cancer progression & metastasis models 

The metastatic potential of a cancer determines its aggressiveness and most of the 

resulting mortalities. Therefore, mouse models have been constructed to investigate 

the underlining mechanisms responsible for tumour metastasis [85].
 
In mice, the Apc 

mutation alone has not been shown to cause a significant rate of progression of 

adenomatous polyps to invasive metastatic adenocarcinoma [85]. In the same context 

introducing the Smad4 mutation into Apc
Δ716 

mutant mice results in locally invasive 
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adenocarcinomas [95]. In addition, when Tgfbr2 and Apc
1368N 

mutations coexist, 

malignant transformation of the resulting adenomas is accelerated [96].
 

1.4.4 Chemically induced tumour formation 

Chemical agents are frequently used to induce tumour formation in the intestine of 

mice. These agents can either act directly without the need for enzymatic catalysis or 

indirectly after being changed chemically with the aid of tissue enzymes and 

sometimes normal bacterial flora [97]. The end results are molecules that react with 

the DNA to inflict changes that may not be repairable. Thus, after several cell cycles, 

unrepaired DNA damage occurs and with the accumulation of further changes, 

neoplasia can ensue. Common agents used in this process include dimethyl hydrazine 

(DMH) and its metabolites azoxymethane (AOM) and methylazoxy methanol 

(MAM) [97].
  

1.4.5 Mouse models of inflammatory bowel disease and colorectal cancer  

The most common mouse model that has been used to study IBD related CRC is the 

AOM/DSS (dextran sodium sulphate) model [98]. This model has shown that when 

mice are only subjected to DSS, prolonged exposures are needed to induce tumours, 

which have low multiplicity [99]. This suggests that other factors also contribute to 

neoplasia formation in IBD such as genetic background, changes in crypt cell 

metabolism, changes in bile salts circulation and even changes in bacterial 

microbiota (dysbiosis) [100]. Over the last decade, substantial evidence from both 

basic and clinical research has been obtained that gut microbiota can profoundly 

affect intestinal inflammation and tumour development. This is particulary true for 

certain members of the microbiota called the alpha bugs which possess unique 

virulence traits identified as direct drivers for carcinogensis [101]. For example, E 

coli colibactin (a genotoxin) has been shown to promote CRC development in 

experiemtal animals. Monoassociation of the adherent-invasive E. coli (AIEC) 

mouse strain NC101, which produces colibactin, enhanced colonic tumor 

development in azoxymethane (AOM)-treated interleukin-10- knockout (Il-10−/−) 

mice, a mouse model of colitis associated CRC [102]. Interstingly, gentic 

predisposition was also shown to be essential for colibactin to elicit its carcinogenic 

effects as observed in Apc
Min/+   

mice (altered Apc signalling) versus wild type mice 

infected with colibactin producing E. coli 11G5 [103]. Moreover, it has also been 
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observed that tumour development in germ free Apc
Min/+ 

mice was halved as 

compared with that in mice housed under specific pathogen-free conditions [104]. 

1.4.6 Cre and loxP mouse strains 

The Cre-lox system is an advanced transgenic mouse technology that can produce 

general knockouts, conditional knockouts and reporter strains. Moreover, insertion, 

inversion and translocation events can be carried out using this system [105, 106].  

Although the Min mouse is a very useful model for studying human diseases, it is 

limited in its ability to show the early changes that follow Apc loss. Moreover, 

deletion of both Apc alleles is lethal in utero. For these reasons, researchers have 

developed a mouse model using the Cre-loxP system to have spatial and temporal 

control of Apc deletion in the small intestine of an adult mouse, the AhCre
+
Apc

fl/fl 

model [107].  

A mouse strain carrying both Cre and flanked Apc genes within cells of interest was 

produced by crossing mice with a Cre recombinase transgene with mice carrying Apc 

alleles flanked with loxP sites [107]. In the latter, loxP sites were inserted into the 

introns around Apc exon 14, and the resultant mutant allele (Apc
580S

) was introduced 

into the mouse germline [108]. In this system, the orientation of the loxP sites  is 

critical for the fate of the intervening DNA sequence (target sequence) upon 

induction of Cre expression. If they are in same direction, the intervening DNA 

sequence will be deleted upon induction, otherwise it will only be inverted when the 

loxP sites are inverted [106].  

To achieve deletion of Apc alleles in small intestinal stem cells, Cre expression was 

placed under control of the cyp1A1 (cytochrome P450 subfamily1 A1) promoter. By 

injecting beta naphthoflavone (BNF) into the peritoneal cavity of the mouse, 

expression of the recombinase enzyme was induced (by activating cyp1A1), which in 

turn recombined the genome at the loxP sites deleting the intervening Apc alleles in 

the intestinal stem cells with nearly 100% efficiency [107].  

In the AhCre
+
Apc

fl/fl 
mouse model, intestinal epithelial changes were observed, 

including a rapid change in the histological appearance with gross distortion of the 

crypts (figure 1.7), immediate entrance of cells into S phase (DNA synthesis) of cell 

cycle and loss of differentiated cells including enteroendocrine cells and goblet cells 
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[44].  Interestingly, the increased number of cells which entered S phase did not 

correspond to an increase in mitotic figures, but to increased apoptosis and loss of 

control over nuclear volume. Among other acute changes following Apc loss were 

aberrant migration along the crypt villus axis and disturbed Paneth cells positioning 

[107]. Most of these changes can be seen in figure 1.8 below. 

 

 

 

 

 

 

 

Figure 1.7 shows control crypt-villus architecture (left) and distorted crypt 

villus architecture in AhCre
+
Apc

fl/fl 
mouse (right). The black lines show crypt 

length in the tissue samples (modified image). Adapted from [44]. 

 

 

 

 

 

 

 

Figure 1.8 small intestinal sections. Images a, b and g are from the control 

(AhCre
+
Apc

+/+
) while c, d and h are from AhCre

+
Apc

fl/fl 
mouse. a and c are BrdU 

incorporation of 2 hours duration while b and d are BrdU incorporation for 24 

hours where a and b show normal proliferation and migration of cells and c and 

d show increased proliferation and aberrant migration (evident from presence 

of new, stained cells all over the crypt) respectively. h shows increased apoptosis 

compared to g which is the normal pattern as depicted by active caspase3 

staining [44]. Reprinted by permission from Cold Spring Harbor Laboratory 

Press: Genes and development. Loss of Apc in vivo immediately perturbs Wnt 

signaling, differentiation, and migration.Copyright (2004). 

AhCre+Apcfl/fl AhCre+Apc+/+ 
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Since the proto-oncogene c-Myc has been described as a Wnt target gene in colon 

cancer cell lines, in normal crypts in vivo and in intestinal epithelial cells in the 

AhCre
+
Apc

fl/fl
 mouse (constitutively active Wnt pathway) model and because the 

significance of this was unclear, researchers have simultaneously deleted both Apc 

and c-Myc in the adult murine small intestine [44, 109, 110]. C-Myc deletion alone 

had little effect on intestinal epithelial cell proliferation and apoptosis over a five-day 

time course. However, in the double knockout model (Apc
fl/fl 

Myc
fl/fl

) almost all the 

phenotypic changes (shown in figures 1.7 and 1.8) associated with Apc deletion were 

rescued [110]. Interestingly, nuclear activity of Beta catenin remained high 

indicating the critical role of c-Myc in mediating the effects of Apc loss. Moreover, 

persistent Wnt activity allowed the examination of a number of genes that were 

shown to be Wnt dependent in the literature. These included 58 genes which were 

upregulated following Apc deletion. Deletion of c-Myc blocked the upregulation of 

62% of these genes in the double mutant mouse. Furthermore, the few unaffected 

genes were shown not to be sufficient to mediate the changes induced by Apc 

deletion [110]. 
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1.5. Biomarkers and CRC screening  

1.5.1 Current CRC screening modalities 

As described above, CRC is a major health problem that justifies the use of mass 

screening. Since CRC develops slowly from removable precancerous lesions; 

therefore, detection of these lesions at an early stage by regular health check-ups can 

potentially reduce CRC incidence and mortality [111]. Therefore, screening 

programmes have already been adopted by several countries [112].   

So far colonoscopy is the gold standard for diagnosing CRC; however, it is not 

generally accepted as a screening tool in many countries because of its invasiveness, 

cost and low compliance [1]. Moreover, evidence for the effectiveness of screening 

colonoscopy is limited. There are few randomised trials in average risk individuals 

and few observational studies which have evaluated the effects of screening 

colonoscopy, in comparison to unscreened controls, on CRC incidence or mortality 

[113, 114].  

By looking at published literature, one can find two different opinions about the 

efficacy and safety of flexible sigmoidoscopy (FS) as a screening tool for CRC. One 

suggests that FS is only recommended for individual groups and not mass screening. 

Flexible sigmoidoscopy has been reported to be as effective as colonoscopy in 

subjects less than 60 years however, there is a low compliance rate that has been 

reported to be as low as 15-30% of eligible individuals to undergo regular FS [115]. 

Although it has been reported that FS reduced CRC incidence by 70% in some series, 

prospective randomised controlled trials are missing to support this [115]. Moreover, 

one review from the Cochrane library that involved a meta-analysis of nine 

randomised controlled trials on more than 300,000 subjects and more than 400,000 

controls (FS vs. no screening, FOBT vs. no screening and FS vs. FOBT), 

demonstrated no clear benefits of FS over FOBT in reducing mortality from CRC. 

Moreover, the authors reported the need for more studies to better outline the risks 

associated with FS [116]. The second opinion is more positive; a trial that involved 

14 UK centres and 113,195 people for the control group (not offered endoscopy) and 

57,237 people for the intervention group. Of the latter group, 71% underwent FS and 

participants were followed up for a mean duration of 11.2 years. It was reported that 

incidence of CRC was reduced by 23% in the intervention group and mortality by 
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31% (33% vs 43% after correction for self-selection bias). Moreover, incidence of 

distal cancers (rectum and sigmoid colon) was reduced by 50%.  Therefore, the 

conclusion was; “FS is a safe and practical test and when offered once between ages 

55 and 64 years, confers a substantial and long lasting benefit” [117].  

Computed tomographic colonography (CTC) is another minimally invasive test that 

can be used for CRC screening. However, it also has limitations such as not being 

widely available, is costly, and has a false positive rate of 15%. Moreover, those with 

suspected lesions have to undergo colonoscopy and this has been reported to yield no 

more than 2% clinical benefit. Furthermore, although its sensitivity for invasive 

cancer is comparable to that of conventional colonoscopy, the sensitivity is inversely 

related to the size of lesions in less advanced disease. For example it has been shown 

to have a sensitivity of 85-93% and specificity of 97% for lesions larger than 1 cm 

and  a sensitivity of 70-86% and specificity of 86-93% for lesions measuring 6-9 mm 

[115]. 

DNA testing and molecular screening are becoming an important part of routine 

patient care [118]. Moreover, it is predicted that whole genome sequencing may 

replace the practice of only screening at risk individuals for target genes, as this can 

provide access to vital information that might not be directly related to CRC.  

The detection of abnormal DNA in stool from tumour cells shed into the lumen is 

expected to improve over time with improvements in the panel of mutant DNA being 

examined and the increase in clinical studies. Faecal DNA testing involves the 

identification of non-disintegrated human DNA (L-DNA) and mutations of specific 

genes known to be involved in colorectal carcinogenesis such as APC, KRAS and p53 

[111, 119]. This DNA comes from tumour cells shed into the colonic lumen. When 

detected the individual needs to undergo further confirmatory and localisation tests 

[120]. Very few faecal DNA tests have yet made their way into commercial use 

[121]. This is because of a lack of quality studies that can demonstrate the diagnostic 

accuracy of these tests. The existing few studies on the performance of faecal DNA 

tests demonstrated a sensitivity of 25-50% for cancer detection [122]. At present 

fecal DNA tests are not widely used and are reserved for those individuals who are 

not suitable or are unwilling to be screened by other modalities [115]. Other 

obstacles facing the wide implementation of faecal DNA testing are lack of 
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standardisation of faecal DNA panels for better sensitivity and specificity, unclear 

ease of use and acceptability by patients, lack of standard stool collection protocols, 

no defined intervals for screening individuals, and higher cost than faecal 

immunochemical testing (FIT) and faecal occult blood testing (FOBT) [118]. 

FOBT is the most widely available test for CRC screening. This is due to its non-

invasiveness, cost-effectiveness and ease of use. It has currently been adopted by 

several countries as an annual or biyearly examination for average risk individuals. 

Moreover, it is the only test where several randomised trials have shown its 

effectiveness in reducing incidence and mortality from CRC by 33% and 15-20% 

respectively [112, 115, 123].  This is primarily due to early detection of cancers 

and/or detection and removal of adenomas [124]. However, despite the development 

of more sensitive tests such as the immunochemical FOBT (iFOBT), the sensitivity 

of this test is still suboptimal. Immunochemical FOBT has been reported to have a 

sensitivity of 47-69% and a specificity of 88-97%. Guaiac based FOBTs have even 

lower sensitivity (37%) and specificity (86%) [115, 125] . Since many adenomas do 

not bleed, the sensitivity of FOBT is even lower for these lesions (about 10%) [111]. 

In addition, individuals with false positive tests will unnecessarily go through the 

discomfort, cost and risks of colonoscopy. Compliance issues and low referral rates 

further reduce the yields even after positive tests. Moreover, FOBT is ineffective if 

the patient undergoes one test and does not return for repeat testing or does not 

undergo colonoscopy after a positive test [115]. These facts are better understood by 

looking at the outcome of the CRC screening programme in England. Guaiac based 

FOBT kits are sent every two years to people between the ages of 60-75 years. It has 

been reported that out of 1000 participants who receive the kit, 20 will have a 

positive test. Sixteen will undergo colonoscopy: 8 will have nothing abnormal, 6 will 

have polyps and 2 will have cancer [2].  

Despite their low cost and non-invasiveness, sub-optimal sensitivity as well as the 

low compliance rate with FOBTs, is still preventing satisfactory results in places 

which have adopted these tests for mass screening [126, 127]. Strong evidence 

supporting these conclusions comes from the report of the English Bowel Cancer 

Screening Evaluation Committee. They showed that out of 2.1 million people (60-69 

years old) invited to undergo gFOBT between 2006 and 2008, only around 50% 

returned the test. Moreover, the results agree with what has already been 
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demonstrated in the initial European studies regarding the sensitivity and specificity 

of the test. Furthermore, the percentage of cancers that were found in the right colon 

was lower than expected [128]. 

Therefore, there is still an urgent need for non- or minimally invasive, cost-effective 

and accurate tests to detect adenomatous polyps and early CRC. Thus, novel CRC 

biomarkers that will further enhance the detection of the disease and trigger follow-

up colonoscopies when necessary should be developed [111]. 

1.5.2 Biomarkers of colorectal cancer 

A biomarker is a characteristic that can be objectively measured and evaluated as an 

indicator of a physiological or pathological process or of a pharmacological response 

to a therapeutic intervention [129]. Any specific molecular change in the DNA, 

RNA, metabolism or proteins is called a molecular biomarker.
 
The different purposes 

of biomarkers in clinical practice include assessment of disease predisposition, 

screening, staging and prediction of response to treatment.
 
The criteria for the ideal 

biomarker include specificity (more true negatives), sensitivity (more true positives), 

easy access (in serum or urine for instance) and practicality (simple and inexpensive) 

[129].
  

Blood based tests are attractive due to their minimal invasiveness and widespread 

acceptance by patients [1]. Over the past decades, several attempts have been made 

to detect tumour markers for CRC in the blood; however, validation data from large 

studies are still not sufficient or the tests showed suboptimal performances [130].  

Cancer pathology is complex and is determined by the interaction between cancer 

cells and epithelial and stromal cells, vasculature, and extracellular matrix in addition 

to the immune system. Elements of these interactions include cell surface antigens 

and receptors, secreted enzymes, cytokines and extracellular matrix molecules [131].  

Such molecules can pass in to the blood stream supplying the tissue making them 

potential biomarkers. Therefore, tumour markers in the blood could indicate the 

release of  proteins or nucleic acids by the tumour into the blood stream, the presence 

of tumour cells in the blood or the existence of a host generated response to tumour 

derived signals [1]. Interestingly mass spectrometry (MS) profiling has shown that a 

higher sensitivity and specificity can be obtained when biomarkers involving both 

cancer cells and reactive cells are analysed together and not separately. Therefore, 
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the main current direction in biomarker discovery is to seek panels of biomarkers 

rather than an ideal single cancer specific biomarker (more markers means more 

details and better judgement). Furthermore, despite decades of efforts, single 

biomarkers have not made their way into clinical practice for screening purposes, 

reflecting the complexity of the malignant micro-environment [129].  

Many efforts have been focused on protein biomarker discovery over the last decade 

and the majority of recently discovered biomarkers are based on 2D gels coupled to 

MS/MS. This is because most of the information reflecting the range of genes that 

are involved in cancer resides in the proteome [132, 133]. Moreover, proteins are 

easier to detect, using antibodies for instance in readily accessible samples such as  

body fluids [8].
 
Unfortunately, so far, only a limited number of proteins associated 

with CRC have been validated in the serum for non-invasive testing of CRC [8]. This 

has been attributed to lack of follow up studies due to technological limitations 

[133].   

Carcinoembryonic antigen (CEA) is a high molecular weight glycoprotein belonging 

to the immunoglobulin superfamily [111]. CEA is the best-known CRC serum 

biomarker in current use [8]. However, it is mainly useful to detect disease 

recurrence after surgery or metastasis, in particular to the liver [134]. It has not been 

accepted as a screening tool for the early stages of CRC, since less than 25% of 

patients at this stage have elevated CEA levels [135].  Moreover, advanced cancers 

may not produce CEA elevation, whereas non-cancerous conditions such as 

inflammatory conditions (inflammatory bowel disease, hepatitis, pancreatitis and 

obstructive pulmonary disease) may do so [111]. Furthermore, a study conducted in 

Birmingham by Shimwell (2010), concluded that currently suggested serum 

biomarkers for CRC are not useful neither individually nor as panels for the early 

detection of CRC due to suboptimal sensitivity and specificity [136].  

Carbohydrate antigen (CA) 19-9, which is the second most investigated 

gastrointestinal tumour marker, as well as other members of this family have all been 

extensively studied and all showed sensitivity lower than that of CEA [137]. 

Tissue inhibitor of metalloproteinase type (TIMP)-1 is a multifunctional glycoprotein 

which inhibits most matrix metalloproteinases (MMPs) has been reported to be 
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mainly elevated in advanced CRC [111].  Studies that suggest use of this protein in 

the early stages of CRC are lacking.  

A panel of five serum markers: spondin-2, tumor necrosis factor receptor 

superfamily member 6B (DcR3), TRAIL receptor 2 (TRAIL-R2), Reg IV and 

macrophage inhibitory cytokine 1 (MIC1), have been shown to be elevated in 

patients with CRC when compared to normal controls and patients with benign 

diseases in a study that involved 600 serum samples. According to these studies, this 

five-marker panel may perform better than CEA, a proposal that needs further 

investigation [111].  

Nicotinamide N-methyltransferase (NNMT) and Proteasome Activator Complex 

Subunit 3 (PSME3) were evaluated in some initial studies involving matched human 

CRC samples and adjacent normal tissues. PSME3 demonstrated sensitivity similar 

to that of CEA while NNMT was superior to CEA [138]. Collapsin Response 

Mediator Protein-2 (CRMP-2) in one series (serum from 201 CRC patients vs. 210 

healthy controls) showed a poorer specificity than CEA but superior sensitivity when 

used alone. The outcome was demonstrated to be better when both markers were 

interpreted together (77% sensitivity and 95% specificity) [139]. 

MicroRNAs have recently attracted major attention in the field of cancer research. 

They are involved in the post-transcriptional regulation of genes. Although not all 

miRNAs are functionally important, some of them regulate major physiological and 

pathological events [140]. For example, miRNA alterations have been reported in 

several cancers including CRC [141]. These are promising biomarkers and 

therapeutic targets, however they need to be further investigated.   

In conclusion, the above biomarkers and those shown in table 1.2 still require, large 

scale clinical studies to refine and validate their diagnostic accuracy and suitability as 

biomarkers. 
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Clinical use Subjects Types Potential markers 

In use 

Stool Protein Fecal hemoglobin 

Serum 
Protein Carcino-embryonic antigen (CEA) 

Carbohydrate Cancer antigen 19.9 (CA19.9) 

Clinical 
validation 

Stool 

DNA K-ras 

DNA APC 

DNA Long (L)-DNA 

DNA p53 

Serum Protein Tissue inhibitor of metalloproteinases 1 (TIMP-1) 

Preclinical 
development 

Serum 

Protein Spondin-2, Decoy receptor 3, Trail-R2, Reg IV, MIC1 

Protein Proteasome activator complex sub-unit 3 (PSME3) 

Protein Nicotinamide N-methyltransferase (NNMT) 

Protein Collapsin response mediator protein 2 (CRMP-2) 

Protein Macrophage migration inhibitory factor (MIF) 

Protein Macrophage colony stimulating factor (M-CSF) 

Protein Human neutrophiil peptide 1-3 

Protein M2-pyruvate kinase 

Protein Prolcatin 

Protein Colon cancer specifc antigen 2, 3, 4 

Protein Metalloproteinase 9, 7 

Protein Laminin 

Protein 
SELDI (apolipoprotein C1, C3a-desArg, α1 antitrypsin, 
transferring 

Plasma DNA Septin 9 

WBC DNA 5-gene panel (CDA, BANK1, BCNP1, MS4A1, MGC20553 
 

Table 1.2 shows current and potential CRC biomarkers. Adapted modified 

from [111]. SELDI surface-enhanced laser desorption/ionisation, C3a 

complement 3a, Trail-R2 TNF (tumour necrosis factor) related apoptosis 

inducing receptor ligand-receptor 2, MIC1 macrophage inhibitory cytokine 1, 

Reg IV regenerating islet-derived family member 4, CDA cytidine deaminase, 

BANK1 B-cell scaffold protein with ankyrin repeats 1, BCNP1 B-Cell Novel 

Protein 1, MS4A1 membrane-spanning 4-domains, subfamily A, member 1. 

1.5.3 Importance of molecular sub-classification of CRC 

The growing knowledge about the genetics and epigenetics of the syndromes 

predisposing to CRC and other cancers has helped to modify the natural history of 

these syndromes [118]. For example, many studies have shown that shifting the 

detection of the disease to an earlier stage via mass screening and intervening at early 

stages can reduce the risk of death from CRC [123].  

The treatment for sporadic CRC is primarily surgical [142]. Polyps can be removed 

during colonoscopy, but larger polyps and early cancers need a surgical approach for 

cure. An example of the current challenges in the management of CRC is to define 
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the sub-group of Dukes’ B CRC who can benefit from adjuvant chemotherapy like 

their Dukes’ C counterparts. A panel of seven cancer-related genes associated with 

colon cancer recurrence (Ki-67, c-MYC, MYBL2, FAP, BGN, INHBA, and 

GADD45B) analysed from the tumour specimen via real-time RT-PCR has been 

validated as a tool to help predict stage II patients whose tumours behave like stage 

III disease [32, 143]. Another important example of biologically driven clinical 

decisions is the survival benefit of CRC patients with retained MMR over those with 

defective MMR when treated with 5 fluorouracil based adjuvant chemotherapy [144, 

145]. In the same context, the use of epidermal growth factor receptor targeted 

therapy requires pre-knowledge of the mutational status of KRAS and BRAF genes, 

and phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA) mutation may 

determine the response of CRC patients to aspirin therapy for preventing recurrence 

[146].  

1.6 Work leading up to this project 

1.6.1 The AhCre
+
Apc

fl/fl
 phenotype 

Mutations in the Wnt pathway, particularly Apc, are regarded as the key drivers of 

sporadic CRC development. Our group have used murine intestinal samples from a 

novel transgenic mouse model with a conditional Apc gene deletion, AhCre
+
Apc

fl/fl
 

mouse [44] as part of our strategy to identify potential biomarkers and to study their 

roles.  

The initial stage of this project involved a proteomic analysis of extracted murine 

small intestinal epithelial cells in which acute Apc deletion was induced in vivo. This 

was carried out to study the changes in the protein profile of these cells immediately 

following loss of Apc. This is important as it can shed light on the molecular basis of 

the early changes during colorectal tumourigeneis, and provide the opportunity for 

identifying potential biomarkers or therapeutic targets for CRC. This work yielded 

81 proteins that demonstrated increased expression by at least 1.2 fold in the 

AhCre
+
Apc

fl/fl
 mice compared to control AhCre

+
Apc

+/+
 mice [147]. These were then 

subjected to Ingenuity pathway analysis (IPA) which further filtered down the 

candidate proteins to 13 proteins based on the possibility of their detection in the 

blood/serum. Nine of these proteins were further validated using independent 

techniques such as western blotting, ELISA and qRT-PCR in the same mouse model. 
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Moreover, 9 candidate proteins were also assessed for the relative mRNA expression 

in 15 human subjects (lesions vs. adjacent normal tissue). Four of the candidate 

proteins demonstrated statistically significant increases in CRC [147]. Furthermore, 

in separate unpublished work by a previous colleague (Dr. Fei Song) the remainder 

(5) of the candidate proteins also demonstrated significant mRNA upregulation in 

CRC compared to normal adjacent tissue.  

The candidate proteins described above and that were assessed during the course of 

this project are: 

 High-mobility group protein B1 (HMGB1) 

 Nucleolin (NCL) 

 Splicing factor, arginine/serine-rich 2 (SFRS2) 

 Nucleosome assembly protein 1-like 1 (NAP1L1) 

 Fatty acid binding protein6 (FABP6) 

 Nucleophosmin (NPM) 

 Ribosomal protein L6 (RPL6) 

 DEAD box protein 5 (DDX5) 

 Prohibitin (PHB) 

1.7 Overview on the candidate protein biomarkers 

Described below are some of the proteins, which have been proposed as candidate 

CRC biomarkers, based on the work of previous colleagues at the University of 

Liverpool. The proposal is that, their up-regulation shortly after APC loss is 

coincident with the early stages of CRC, making them candidate biomarkers for early 

colon cancer. 

1.7.1 Nucleosome Assembly protein1 like1 (NAP1L1) 

The exact mechanisms by which NAP1 like proteins function are currently unknown. 

There are contradicting reports about the sub-cellular localisation of NAP1L1; it has 

been suggested that NAP1L1 is a nuclear protein in one report [148] and mainly 

cytoplasmic in another report [149]. In terms of function, NAP1L1 has been 

suggested to mediate nucleosome formation and disassembly through transporting 

and depositing histones onto chromatin. Nucleosome assembly is crucial for 

maintaining genome integrity [149].
 
In one study that involved 15 CRC patients, 
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NAP1L1 mRNA was shown to be overexpressed by 2-9 fold in the tumours 

compared to normal adjacent tissue in seven patients [150]. Moreover, NAP1L1 has 

been demonstrated to be overexpressed in foetal liver compared to adult liver and in 

hepatoblastoma compared to non-diseased liver [151]. 

1.7.2 DEAD Box 5 (DDX5) or p68 

DDX5 or P68 is a DEAD box RNA helicase and it is described as a transcriptional 

co-activator for a number of highly regulated transcription factors such as oestrogen 

receptor alpha and the tumour suppressor p53 [152]. This family of proteins is 

involved in RNA processing and export as well as ribosome assembly and translation 

[152]. In some contexts, DDX5 can also act as a promoter dependent transcriptional 

repressor [153].
 
In cancer, the above cellular processes in which DDX5 is involved 

are commonly deregulated [154]. The role of DDX5 can be context dependent, as it 

has been reported that DDX5 has pro-proliferative and even oncogenic properties as 

well as anti-proliferative and tumour co-suppressor roles [154]. DDX5 is also 

involved in developmental processes such as organ differentiation and maturation. 

DDX5 has been shown to be over expressed in prostate and in breast cancers where 

its expression is associated with high-grade tumours and poor prognosis [154]. 

DDX5 is also over expressed in colonic adenomas and cancers, where it is post-

translationally modified [155].
 

1.7.3 Nucleophosmin (NPM) 

Nucleophosmin is a ubiquitously expressed multifunctional nucleolar phosphoprotein 

[156]. It is localised mainly to the nucleolus, but it shuttles in and out of the 

nucleolus and between the nucleus and cytoplasm [157, 158]. It belongs to the 

nucleophosmin family of chaperone proteins, which are involved in other cellular 

processes such as centrosome duplication, ribosome biogenesis and environmental 

stress responses. It is also involved in the regulation of tumour suppressor proteins 

such as p53 and p14
ARF

. In addition, NPM has been suggested to play role in 

maintaining genomic stability [159]. NPM is strongly implicated in cancer 

pathogenesis, although its role in oncogenesis is not clearly understood.
  

Pathologically NPM is mutated in a number of haematological disorders and it is the 

most frequently mutated gene in acute myeloid leukaemia (AML). In the latter 

condition, it has been reported that mutations (35% of patients) of the NPM gene 

causes cytoplasmic displacement of the protein [159].
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High levels of NPM could be found in tumour cells due to their rapid proliferation as 

the amount of NPM rapidly rises in G1 phase of mitosis [160]. However, some 

studies involving cell lines and mice have suggested a tumour suppressor role for this 

protein [161].  

1.7.4 Ribosomal protein like 6 (RPL6) 

Ribosomal proteins have extra-ribosomal functions in addition to protein synthesis 

[162]. RPL6 is located in the cytoplasm of cells. It is a ribosomal protein and a 

component of the 60s subunit belonging to the L6E family of ribosomal proteins.  

Increasing data have suggested that dysregulation of RPs occurs during 

tumourigenesis; for example, RPL19 is over expressed in breast cancer, while RPL7 

and RPL37 are increased in prostate cancer. However, their exact role in this process 

needs further investigation [163]. Consistently, some studies have shown that RPL6 

up-regulation may protect cancer cells against multiple chemotherapeutic drugs 

[164]. In the same context, it has been shown that RPL6 overexpression may 

correlate with tumour differentiation, promote G1 to S phase transition and up 

regulate cyclin E (Cyclin E is one of the major players in cell cycle progression from 

G1 phase to S phase, and its deregulation has been reported in many types of 

malignant tumours) expression. Conversely, down-regulating RPL6 inhibited cell 

proliferation, cell cycle progression and cyclin E expression in cancer cells [164].
 

Additionally, it has been reported that c-Myc’s role in murine tumours such as 

osteosarcomas and lymphomas and in human lymphomas is linked to ribosomal 

proteins in such a way that its ability to initiate and maintain tumorigenesisis is 

dependent on its ability to induce the expression of RP genes [165]. 

1.7.5 Fatty Acid Binding Protein 6 (FABP6) 

Fatty acid binding proteins are a family of small highly conserved cytoplasmic 

proteins that bind long chain fatty acids and other hydrophobic ligands. FABP6 and 

FABP1 (the liver fatty acid binding protein) are able to bind bile acids. The role of 

these proteins may include uptake, transport and metabolism of fatty acids. They are 

located in the cytoplasm within cells [166].
 

FABP6 is a cancer related protein that acts as an intra-cellular transporter of bile acid 

in the ileal epithelium. Due to the possible role of bile acids in colorectal 

carcinogenesis especially secondary ones, FABPs may be possible contributing 
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elements in this process.
  

FABP6 expression has also been correlated with certain 

clinico-pathological characteristics of CRC. For example, high FABP6 expression 

was noted in smaller tumours, tumours located in the left colon, and tumours with 

less serosal invasion (early stages). In addition, a dramatic reduction in FABP6 

expression was found in tumours with lymph node metastasis, suggesting that it 

plays a role in early carcinogenesis [166].  

1.7.6 Nucleolin (NCL) 

Nucleolin is a well-known major non-ribosomal protein consisting of 710 amino 

acids and which is located in the nucleolus. It is a ubiquitous phospho-protein that 

plays a role in the regulation of ribosomal biogenesis and maturation. In addition, it 

controls the transcription of ribosomal DNA (rDNA), pre-ribosome packaging and 

organisation of nucleolar chromatin [167]. 

Nucleolin is found at several locations in cells: in the nucleolus, it controls many 

aspects of DNA and RNA metabolism, in the cytoplasm, it shuttles proteins into the 

nucleus and provides a post-transcriptional regulation of strategic mRNAs and on the 

cell surface it serves as an attachment protein for several ligands such as midkine, 

lactoferrin, endostatin and HIV particles.
 

Furthermore, NCL levels are highly 

elevated in rapidly proliferating cells including cancer cell lines [167].
  

Surface NCL does not bind to all commercial antibodies, suggesting that a specific 

posttranslational modification in the conformation is gained during this re-

localisation [167]. Moreover, surface and cytoplasmic NCL levels change 

independently of those in nucleus [168]. 

It has been suggested that NCL binds to c-Myc G-quadreplex structures regulating 

the transcription of c-Myc and overexpression of nucleolin can significantly inhibit 

c-Myc promoter-driven transcription [169]. 

1.7.7 Splicing factor, arginine/serine-rich 2 (SFRS2) or Serine/arginine rich 

splicing factor 2 (SRSF2) or SC35 

SFRS2 belongs to the serine rich (SR) family of proteins, which are critical 

regulators of constitutive and alternative pre-mRNA splicing. The molecular 

functions of this protein include protein binding, RNA binding, nucleotide binding, 

transcription co-repressor activity and it is mainly located in the nucleus [170]. 



52 
 

Studies have shown that alterations in splicing regulators are involved in the 

development of malignancy, since cancer cells often take advantage of this flexibility 

in protein synthesis to produce proteins that promote growth and survival. Examples 

include SFRS2, which is one of the genes that is up-regulated in primary and 

metastatic pancreatic cancer in which c-Myc is also overexpressed [171]. 

1.7.8 High mobility group box 1 (HMGB1) 

HMGB1 acts as a chromatin binding protein that bends DNA and facilitates access to 

transcriptional protein assemblies on specific DNA targets [172]. In addition, it acts 

as an extra-cellular signalling molecule during inflammation, cell differentiation, cell 

migration and tumour metastasis.
 
HMGB1 is implicated in disease states including 

sepsis, ischaemia re-perfusion, arthritis, meningitis, neuro-degeneration, aging and 

cancer. It is constitutively expressed in the nucleus of both normal and cancer cells. 

HMGB1 overexpression and/or aberrant location are associated with all main 

hallmarks of cancer [172]. Both the extracellular and intracellular/nuclear forms of 

HMGB1 are implicated in cancer development, progression and resistance to 

treatment. HMGB1 is found at increased levels in a number of solid tumours such as 

cancers of the colon, breast, pancreas, prostate, skin (melanoma) and others [173]. 

In colon cancer, HMGB1 overexpression is associated with reduced apoptosis, which 

is thought to be due increased expression of the anti-apoptotic molecule-IAP2 [174]. 

Also it has been found that HMGB1 is expressed in CRC regardless of tumour stage, 

but tumour invasiveness increases when HMGB1 and the receptor for advanced 

glycation end products (RAGE) are co-expressed [175]. 

1.7.9 Prohibitin (PHB) 

PHB is a pleotropic protein, which has been shown to be involved in cellular 

proliferation, differentiation and apoptosis [176]. In the cell it localises to the inner 

membrane of the mitochondria, where it acts as a chaperone protein [177], but it is 

also found in the nucleus where it is involved in the negative regulation of 

transcription [178]. PHB has been shown to be upregulated in tumour cells compared 

with normal cells [179]. Moreover, recent studies have reported overexpression of 

PHB in different cancers such as liver, uterine and gastric cancers. In addition, it has 

been shown that PHB interacts with certain tumour suppressors to mediate apoptosis  

[180]. For example, in a Glutathione S-transferase (GST) pull-down assay, PHB was 
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shown to directly interact with p53, c-Myc and Bax in HaCaT (immortalised human 

epidermal ) cells [181]. Moreover, this PHB, c-Myc and p53 co-localisation was 

suggested as a mechanism to regulate apoptosis. However, despite the above 

observations, the functions and sub-cellular localisation of PHB still need to be better 

understood [181]. 
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1.8 Hypothesis, aims and objectives 

1.8.1 Hypothesis  

Proteins, which are upregulated at early time points following Apc deletion, are 

involved in intestinal tumourigenesis and represent potential CRC biomarkers 

1.8.2 Aims 

The main purpose of the project is to identify a panel of clinically valid human 

biomarkers for improved diagnosis and treatment of CRC as well as to understand 

the role of these proteins in the carcinogenesis process. 

 To verify intestinal overexpression of the candidate biomarker proteins in 

AhCre
+
Apc

fl/fl 
mice.  

 To investigate the expression patterns of the same candidate biomarker 

proteins during colorectal tumourigenesis in Apc
Min/+ 

mice. 

 To understand the molecular mechanisms and biological functions mediated 

by these candidate biomarker proteins. 

 To investigate the expression of the candidate biomarker proteins in human 

CRC samples. 

1.8.3 Objectives 

 Optimise the immunohistochemistry (IHC) experimental conditions for each 

of the candidate proteins in AhCre
+
Apc

fl/fl 
mice. 

 Investigate protein expression in established neoplastic lesions in Apc
Min/+ 

mice aged 1, 3 and 6 months using the optimised IHC conditions. 

 Assess the abundance of the candidate biomarker proteins using western blots 

in the same mouse models that were used for IHC.  

 Perform siRNA knockdown of selected candidate proteins in CRC cell lines 

to study their possible biological roles. 

 Apply the optimised assays to human colorectal tumour samples to assess the 

expression of selected candidate proteins using IHC. 

 

 

 



55 
 

 

 

 

 

Chapter two 

 

Materials and Methods 

 

 

 

 

 

 

 

 



56 
 

2. Methods 

2.1 Tissue samples  

2.1.1 Animal models 

All animal handling procedures were carried out in line with the UK Home Office 

regulations. Animal breeding, drug injections and tissue collection were conducted 

under supervision of Dr Karen Reed (University of Cardiff, project license numbered 

30/2737- awarded to Professor Alan Clarke). The experimental mice had access to 

food and water at all times. All AhCre
+
Apc

fl/fl
 mice used were of an outbred 

background and were genotyped to establish that they were carrying the correct 

alleles [44]. Ahcre-positive mice were intercrossed with mice carrying a LoxP 

flanked Apc allele: Apc580s [108] and the Rosa26R reporter allele. Progeny from this 

cross were intercrossed to derive an outbred colony, segregating for the C57BL6/J, 

129/Ola, and C3H genomes at a ratio of 75%, 12.5%, and 12.5%, respectively [44]. 

Apc
Min/+

 mice were maintained on an inbred C57BL/6J background [90]. 

AhCreER
T+

Apc
fl/+

Pten
fl/fl

 mice were maintained on an outbred background. Control 

(AhCreER
T+

Apc
fl/+

Pten
+/+

) mice were derived from the same colony as experimental 

mice but they were not always littermates [182]. Cre enzyme was induced using 

combined intraperitoneal injection of 80 mg/kg β-naphthoflavone and tamoxifen 

(Sigma), dissolved together in corn oil, for four consecutive days [183]. 

2.1.2 Clinical samples  

Samples were collected by Mr Paul Sutton, Countess of Chester Hospital NHS 

Foundation Trust under REC number 12/NW/001 IRAS reference: 88870. Patients 

were recruited from a population presenting to secondary care with abdominal/bowel 

symptoms warranting endoscopic evaluation and those attending for colon resection 

surgery in the above hospital. Tissues samples were assessed and colon cancer was 

diagnosed and staged by Dr Bushra Hamid, Consultant Pathologist, Pathology 

Department, Countess of Chester Hospital NHS Foundation Trust. Normal colon was 

established as not having colorectal carcinoma; high risk adenomas (greater than 1 

cm, ≥3 adenomas and/or villous structure) or low risk adenomas (less than 1 cm, less 

than 3 adenomas and/or no villous structure) as confirmed by endoscopy. Normal 

colon samples were mainly from patients who had a range of other conditions 

including; IBD, haemorrhoids, diverticultis and nothing detectable. Fixed tissue 

samples were obtained from the Countess of Chester NHS Trust, under a material 
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transfer agreement, (samples were, fixed and embedded following standard NHS 

protocols). 

2.2 Immunohistochemistry 

2.2.1 Tissue preparation   

Following sacrifice of the animals, the intestine was removed and flushed with PBS 

to remove the luminal contents. Sections of intestine (QF sections, figure 2.1) were 

fixed in formalin at 4 ºC for no more than 24 hours [44] then processed and 

embedded in paraffin wax.  This work was also carried out in Cardiff. Epithelial cell 

extracts (ECEs) were harvested by centrifugation and pellets of total intestinal 

epithelaial samples were prepared (in Cardiff) [147]. We used these cells to assess 

relative expression of candidate biomarkers in the mouse models by western blotting. 

Small intestinal sections from the AhCreER
T+

Apc
fl/+

Pten
fl/fl

 and colonic sections from 

six month old Apc
Min/+

 mice were bundled using surigal tape and fixed overnight. 

Longitudinal whole colon sections were used from one and three month old Apc
Min/+

 

mice. 

 

Figure 2.1 shows how the small and large intestine of mice used in this project 

was processed. SI, ECE and QF stand for small intestine, epithelial cell extract 

and quick fix respectively. 

2.2.2 Immunohistochemistry methods and materials 

Using a microtome, 4 µm sections were cut from the tissue blocks and put onto 3-

aminopropyltriethoxysilane (APES, Sigma) coated or free glass slides which were 

then incubated overnight at 37°C to be used in immunohistochemistry or 

haematoxylin and eosin (H and E) staining experiments respectively. 

Tissue de-waxing and rehydration  

Tissue slides were immersed into xylene twice, each time for 5 minutes and 100% 

industrial methylated spirit (IMS) twice, each time for 3 minutes. At this point 

endogenous peroxidase activity was blocked using 3% H2O2-Methanol solution for 
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10 minutes. Then the slides were further rehydrated using 90% IMS for 2 minutes 

and 70% IMS for another 2 minutes. Sections were then immersed in distilled water 

(D/W) for 5 minutes while on an orbital shaker. Sections were then washed in Tris 

buffered saline/0.1%Tween twenty (TBST) twice on the orbital shaker, for 5 minutes 

each time. 

Antigen retrieval  

Heat induced antigen retrieval was performed by immersing the sections in pre-

prepared citric buffer solution pH 6 and putting them into a domestic microwave at 

full power, 800 Watts for two 10 minutes sessions. Then sections were left to cool 

down for 10 minutes before washing them under running tap water for a further 10 

minutes. Sections were again washed in TBST three times, for 5 minutes each while 

moving on the orbital shaker.  

Blocking 

To prevent background staining resulting from secondary antibody binding to other 

antigens in the tissue, 10% normal goat serum in TBST was applied to the tissue 

sections for 45 min at room temperature. At this stage, the tissue sections on the 

slides were demarcated using a liquid blocker pap pen (Sigma).  

Primary antibody incubation 

The sections were incubated overnight with predetermined primary antibody 

dilutions in a humid box at 4°C in a refrigerator. The blocking serum was first 

removed using a piece of tissue. The optimal primary antibody dilution was 

determined in a preceding experiment, the range of dilutions for each antibody and 

the optimal one used are shown in table 2.1 (below). 

Secondary antibody incubation  

Next day, the sections were washed in TBST twice, each time for 5 minutes. Then a 

biotinylated secondary antibody, goat anti-rabbit or goat anti-mouse polyclonal 

(according to the species in which the primary antibody was developed) was applied 

to the tissues and the slides were incubated in a humid box for 30 minutes at room 

temperature. The secondary antibody solution was diluted to 1:200 for all 

experiments in 5% normal goat serum in TBST. 
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Stain development 

The sections were then washed in TBST solution two times, for 5 minutes each while 

moving them on the orbital shaker. Pre-prepared Vecta stain (details in table 2.2) was 

then applied bridging the secondary antibodies with peroxidase enzymes via avidin 

molecules. This was performed in the humid box for 30 minutes at room 

temperature. Then the sections were washed in TBST solution twice, for 5 minutes 

each time and the pre-prepared diaminobenzidine (DAB)-substrate solution (Sigma) 

was applied to the sections for 3-5 minutes again in the humid box and at room 

temperature to visualise the reaction. 

Haematoxylin counter staining  

The slides were then washed using de-ionized water to remove excess DAB and 

block further colouring. Then the slides were rinsed in TBST and for counter 

staining, Gills number 1 haematoxylin (Sigma) was used and slides were immersed 

in this solution for 3-5 minutes. Then the slides were placed under running slightly 

warm tap water for 5-10 minutes to deoxidize the haematoxylin (bluing).  

Dehydration and mounting  

The slides were then dehydrated by sequential immersion in 70% and then 90% IMS 

(dipping them at least 20 times). Then the slides were put in to 100% IMS twice for 2 

minutes each time. Lastly, sections were immersed in xylene twice for 5 minutes 

each time. At this stage the slides were cover slipped and left in the fume hood to dry 

prior to visualisation under a light microscope. 

2.2.3 Immunohistochemistry staining assessment 

AhCre
+
 Apc

fl/fl 
 mice IHC assessment: 

For each primary antibody, a series of dilutions were assessed and at least 3 mice 

(from a cohort of 5-10 mice) were included in each experiment. Each slide examined, 

contained 3-6 small intestinal (SI) cross sections and each cross section had 20-30 

crypt-villus structures (allowing significant repetition of staining patterns). 

Sections were assessed visually under a light microscope (Leica, DM1000) and the 

optimal dilution was determined based on maximum staining contrast between the 

crypts and villi in AhCre
+
Apc

fl/fl 
mice compared to those in control mice. This 

comparison was based on information provided by other groups in published work 
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[44]. In addition, we used Beta catenin nuclear localisation as an indicator of Apc 

deletion and Wnt pathway activation. Following the detemintation of the optimal 

primary antibody dilution, one slide (as described above) per mouse (n3) was 

assessed fully and representative images were taken using a Leica laser capture 

micro-dissection microscope. 

Apc
Min/+ 

mice IHC assessment: 

Tissue blocks from these mice were initially assessed for presence of adenomatous 

lesions using H and E and Beta catenin staining (as described below). Using 

predetermined IHC conditions for the selected primary antibodies, tissues were then 

stained and maximum DAB colour contrast between the lesions and the surrounding 

as well as the wild type tissues was used as a criterion for differential expression. 

The mice numbers were as follow; 

6 month old mice - sections were used from a cohort of 5-10 mice 

3 month old mice - sections were used from a cohort of 5-10 mice 

1 month old mice - sections were used from a cohort of 10-15 mice 

Following full assessment of one or more lesions per section per mouse (n3), 

representitaive images were taken using a Leica laser capture micro-dissection 

microscope. 
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Tables 2.1 and 2.2 show details of the materials used in IHC; 

Primary Ab Host & 

clonality 

Tested 

dilutions 

Optimal primary 

Ab dilution 

Secondary Ab Secondary Ab 

dilution 

Blocking 

agent 

HMGB1, abcam,  

ab18256 

Rabbit 

polyclonal 

1:100-

10000 

1:4000 in 10% 

GS in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

HMGB1, MBL, 

M137-3 

Rabbit 

polyclonal 

1:50-

1600 

1:50 in 10% GS 

in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

NCL, abcam, 

ab16940 

Rabbit 

polyclonal 

1:100-

2000 

1:500in 10% GS 

in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

NCL, abcam, 

ab22758 

Rabbit 

polyclonal 

1:250-

4000 

1:4000 in 10% 

GS in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

RPL6, Proteintech, 

15387-1-AP 

Rabbit 

polyclonal 

1:25-

1600 

1:200 in 10% 

GS in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

RPL6, abcam, 

ab50907 

Rabbit 

polyclonal 

1:50-

800 

1:200 in 10% 

GS in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

NAP1L1, Proteintech, 

14898-1-AP 

Rabbit 

polyclonal 

1:25-

1600 

1:100 in 10% 

GS in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

NAP1L1, abcam, 

ab33076 

Rabbit 

polyclonal 

1:125-

4000 

1:4000 in 10% 

GS in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

NPM, abcam, 

ab10530 

Mouse 

monoclonal 

1:250-

8000 

1:6000 in 10% 

GS in TBS 

Goat anti-Mouse, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

SFRS2, abcam, 

ab11826 

Mouse 

monoclonal 

1:125-

2000 

1:250 in 10% 

GS in TBS 

Goat anti-Mouse, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

SFRS2, Sigma, S2320 Rabbit 

polyclonal 

1:100-

1600 

1:100 in 10% 

GS in TBS 

Goat anti-Mouse, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

FABP6, abcam, 

ab911841 

Rabbit 

polyclonal 

1:25-

1600 

1:50 in 10% GS 

in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

DDX5, abcam,  

ab21696 

Rabbit 

polyclonal 

1:250-

40000 

Not found Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

Prohibitin, abcam, 

ab75771 

Rabbit 

monoclonal 

1:100-

1600 

1:200 in 10% 

GS in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

Cyclin E, Santa cruz, 

Sc481 

Rabbit 

polyclonal 

1:25-

1:800 

1:600 in 10% 

GS in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

CDC5L, Epitomics,, 

5761-1  

Rabbit 

monoclonal 

1:125-

1:10000 

1:10000 in 10% 

GS in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

Beta catenin, BD, 

610154 

Mousse 

monoclonal 

1:50-

1:800 

1:50 in 10% GS 

in TBS 

Goat anti-Mouse, 

polyclonal, Dako 

1:200 in 5% 

GS in TBS 

Normal Goat 

serum, Dako 

Lysozyme, Dako, 

EC3.2.1.17 

Rabbit 

polyclonal 

1:100-

1:800 

1:200in 10% GS 

in TBS 

Goat anti-Rabbit, 

polyclonal, Dako 

Normal Goat 

serum, Dako 

Normal Goat 

serum, Dako 

Table 2.1 shows the individual primary and secondary antibodies used in the 

IHC experiments with their supplier, origin, clonality and optimal dilutions. Ab 

= antibody, GS= goat serum. 

 



62 
 

Material Composition Remarks 

Tris buffered 

saline (TBS) 

NaCl (Sigma) 6.05g, Tris-

base (Sigma) 8.76g  

Completed to one litre by adding dH2O and pH 

adjusted to 7.5 by adding HCl 

Citric acid 

buffer 
Citric acid (Sigma) 1.92 g 

Completed to one litre by adding dH2O and pH 

adjusted to 6 by adding HCl 

10% Goat 

serum (GS) 
Normal GS (Dako)  

 To make up one ml; 100µl normal GS is added to 

900 µl of TBS and allowed to stand at room 

temperature (RT) for 45 minutes 

5% GS Normal GS (Dako) 

To make up one ml; 50 µl normal GS is added to 

950 µl of TBS and allowed to stand at RT for 45 

minutes 

Vectastain, 

(Vector labs) 
Agents A and B 

To 5 ml TBS 2 drops agent A and 2 drops of 

agent B were added and allowed to stand at RT 

for 30 minutes 

DAB Tablet 

(Sigma fast) 
3,3-Diaminobenzidine  

One tablet was added to 5 ml TBS and 5 µl 

hydrogen peroxide and kept in the dark until use 

(best within one hour) 

Haematoxylin, 

(Sigma Aldrich) 

Haematoxylin Solution, 

Gill No. 1 

Slides were immersed in undiluted solution for 3-

5 minutes. Solution was returned to the container 

after use.  

Table 2.2 shows the different solution compositions and methods of preparation  

2.3 Haematoxylin and Eosin staining methods  

The pre-prepared tissue sections were processed by de-waxing and rehydration using 

xylene (x2, five minutes each), reducing concentrations of ethanol (100%, 95%, 

twice in each concentration and for 5 minutes each time) and lastly deionised water 

(x1 for 5 minutes) in the fume hood. Sections were then immersed in haematoxylin 

(3-5 minutes) and placed under running tap water (10 minutes) followed by eosin 

staining (2.5 minutes) and then a single dip in water. Sections were then dehydrated 

in increasing concentrations of ethanol (95% and 100%, twice in each concentration 

and for 15 seconds each time) followed by two immersions in xylene, for 5 minutes 

each. At this point slides were mounted and left in the fume hood to dry. 
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2.4 Tissue culture  

2.4.1 Maintaining cell lines 

HT29 (kindly provided by professor Barry Campbell, Henry welcome Labortory, 

University of Liverpool), HCT116 and HCT116 p53
(-/-)

 ( kind gifit from professor B 

Vogelstein, The John Hopkins Medical Institutions, Baltimore, MD, USA) [184] 

human colon adenocarcinoma cell lines [185] were stored in the cell bank in liquid 

nitrogen by a previous colleague (Dr Ann McNamara, Henry Wellcome Laboratory, 

University of Liverpool). Cells were taken out in aliquots of 1-1.5 million cells in 

cryo-vials and partially thawed down in the water bath. Cells were then added to the 

relevant complete media, Dulbecco's Modified Eagle Medium (DMEM) for HT29 

and McCoy’s 5A modified for HCT116 cells. The growth media were supplemented 

with foetal calf serum (FCS) (Gibco) 10% (v/v), 0.4% (v/v) penicillin/streptomycin 

(Sigma) and 0.5% (v/v) L-glutamine (Sigma) to 2mM final concentration. Cells were 

grown as mono-layers in T75 flasks (Appleton Woods Ltd.). After 24 hours of 

incubation at 37°C and 5% CO2 (standard incubation conditions for all tissue culture 

work) the media was replaced to reduce toxicity from the freezing media. Cells were 

allowed to reach 80-90% confluence before sub-culturing. Two passages were 

allowed before the newly thawed cells were included in any experiment. Trypsin 

(50µg/ml, Sigma) was used for detaching cells during maintenance. Cells were 

maintained thereafter by sub-culturing at 80-90% confluence. Cells reaching high 

passage numbers (above 20) were discarded. 

HT29 (APC is deleted at the carboxyl terminus at residue 1555) [186] and HCT116 

(HCT116 cells have one allele of wild type Beta catenin and one allele of mutated 

Beta catenin that has a deletion at Ser-45 [187]) cells were used as induced WNT 

pathway models. HT29 and HCT116 cells have American type culture collection 

(ATCC) numbers of HTB-38 and CCL-247 respectively. 

Storage of cells 

Cells were stored as aliquots of 1-1.5 x10
6 

cells per cryo-vial in the freezing media in 

the cell bank. The freezing media was made up of 10% dimethyl sulphoxide (DMSO, 

50% w/w aqueous solution, Ben Venue laboratories, Inc.), 80% relevant complete 

media and 10% FCS.   
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2.5 Protein extraction 

For the purpose of detection and quantification by different techniques, proteins were 

extracted from: 

2.5.1 Cell lines 

Cells were allowed to grow to 60-70% confluence. The growth medium was then 

discarded and cells were washed with sterile PBS. Cells were detached from the flask 

by incubation with Trypsin (50 µg/ml., Sigma) for 5-10 minutes at 37°C. The action 

of Trypsin was then blocked by adding relevant complete media. Cells were 

collected by centrifugation at 1000 RPM (Sorvall Heraeues 3 S-R, rotor radius 145 

mm) and 4°C for 5 minutes. The supernatant was discarded and cell pellets were re-

suspended in one ml PBS, then transferred to 1.5 ml eppendorf tubes and centrifuged 

at 3000 RPM (microcentaur/Sanyo, rotor radius 50 mm) and 4°C for 5 minutes. The 

supernatant was again discarded and the cells were lysed by incubation with RIPA 

lysis buffer (50 mM Tris-HCl pH 8, 425 mM NaCl, 1% v/v  Igepal CA 630, 0.5% v/v 

Deoxycholic Acid, 0.1% w/v SDS, 1 mM EDTA, 10 mM Sodium Fluoride and 0.5 

mM sodium Orthovanadate in ultra-pure water) on ice for 40 minutes. Protease 

inhibitor (Calbiochem) (10 µl/ml RIPA buffer) and 2 Beta-Mercaptoethanol (0.7 

µl/ml RIPA buffer) were added prior to use. Then the cells were centrifuged again at 

13000 RPM (microcentaur/Sanyo, rotor radius 50 mm) and 4°C for 15-20 minutes. 

Proteins suspended in the supernatant were collected (at this stage samples were 

sometimes stored at -80°C for future work) for total protein estimation.  

2.5.2 Tissues  

Animal tissues 

Snap frozen small intestinal and colonic tissues from the mouse models were 

provided by our collaborators from the University of Cardiff and stored in our 

laboratory at -80ºC. A tissue sample or a piece of it was transferred into a 1.5 ml 

eppendorf tube and left to defrost on ice. Then RIPA lysis buffer was added and a 

homogenizer was used to disintegrate the tissue using short pulses to prevent 

unwanted heating of the sample. The tissue fragments were left on ice with the lysis 

buffer for 40 minutes. The sample was then centrifuged at 13000 RPM 

(microcentaur/Sanyo, rotor radius 50 mm) and 4°C for 15 minutes. The supernatant 

was collected and used for total protein estimation or stored in a -80°C freezer. 



65 
 

An alternative method for protein extraction from tissues 

For smaller tissue samples, an alternative extraction method was needed. The tissue 

of interest was placed in a mortar with liquid nitrogen and left to freeze dry while the 

nitrogen evaporated. A pestle was then used to smash the tissues into a fine powder 

which was then collected in an eppendorf tube. RIPA lysis buffer was then added, 

and steps similar to those described above were followed to extract the proteins. 

2.5.3 Total protein estimation 

Bradford assay 

This method involves the binding of Coomassie Brilliant Blue G-250 to amino acids. 

The binding of the dye to proteins causes a shift in the absorption spectrum of the 

dye from 465 to 595 nm, and it is the increase in absorption at 595 nm which is 

monitored. The Bradford assay is rapid, with the dye binding process being almost 

complete in approximately 2 minutes with good colour stability being maintained for 

1 hour. Cations such as sodium or potassium and carbohydrates such as sucrose have 

little or no effect on the test. However, large amounts of detergents such as sodium 

dodecyl sulfate, Triton X-100, and commercial glassware detergents may 

significantly interfere with the results [188]. 

Extracted proteins were stored in lysis buffer at -80°C. A standard curve was made 

from a series of known concentrations of bovine serum albumin (BSA) solution 

(1mg BSA/1ml ddH2O); 0, 10, 20, 30, 40 and 50 µl in one ml of ddH2O. The protein 

sample being tested was made from 5 µl protein suspension (lysate) and 995 µl 

ddH2O. Then 200 µl of the Bradford reagent was added to each of the BSA and the 

protein samples and mixed thoroughly. To quantify the proteins in the samples 200 

µl from each of the standard and the protein samples were loaded onto a 96 well 

plate and absorbance was read at 595 nm in a Tecan Sunrise micro-plate reader using 

XRead Plus v4.30 software. Once plotted against the standard curve, results from the 

protein samples represented the amount of total protein present in 5 µl of the original 

extracted protein sample. The standard curve showed optimum linearity between 10 

and 40 µg BSA. 
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Alternative method 

When RIPA buffer was used with high Igepal content (undiluted form), all protein 

samples displayed a dark blue colour resulting in falsely high protein content 

estimation by Bradford assay. Since these samples were from a successful siRNA 

transfection experiment, we decided to estimate the total protein in these samples 

using an alternative method that was not affected by the high Igepal content. 

Bicinchoninic acid (BCA) assay (Sigma, Catalog Numbers BCA1 AND B9643) 

The BCA assay is more sensitive than either Biuret or Lowry procedures. In addition, 

it has less variability than the Bradford assay (manufacturer’s instructions, Sigma). 

Moreover, it is not affected by a range of interfering compounds including the 

various detergents that are sometimes used during protein extraction.  

BCA is a Copper-based assay which comprises  protein–copper chelation followed 

by secondary detection of reduced copper [189]. Proteins reduce alkaline Cu (II) to 

Cu (I) in a concentration dependent manner. Bicinchoninic acid is a highly specific 

chromogenic reagent for Cu (I) and forms a purple complex with an absorbance 

maximum at 562 nm (540-590 nm). The results can be interpreted by comparing 

them to known concentrations of a protein such as BSA. 

The BCA assay procedure: 

The working reagent (WR) was made by adding 50 parts of reagent A (a solution 

containing 1% w/v bicinchoninic acid, 2% w/v sodium carbonate, 0.16% w/v sodium 

tartrate and 0.95% w/v sodium bicarbonate in 0.1N NaOH, pH 11.25) to one part of 

reagent B (4% w/v CuSO4.5H2O) and mixing these well until a light green colour 

was seen. To get a linear concentration range, one part of each protein sample was 

added to 20 parts of the WR (standard assay) or one part of each protein sample was 

added to 8 parts WR (micro assay). 

BCA micro assay (working concentration range 5-25 µg total protein): 

A standard curve was made using BSA dilutions 0, 5, 10, 15, 20 and 25 µg in 25 µl 

ddH2O. Protein samples were made by adding 5 µl of the extracted protein to 20µl of 

ddH2O. Also two controls were prepared from 25 µl ddH2O (blank) and 5 µl of RIPA 

buffer in 20 µl of ddH2O.  Twenty five µl of each test tube were mixed with 200 µl 

working reagent in a 96 well plate (samples were loaded first to facilitate good 

mixing) and this was incubated at 37ºC for 30 minutes. The samples were then left to 
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cool down to room temperature and absorbance was read at 570 nm in a Tecan 

Sunrise micro-plate reader. The colour complex was stable for more than one hour at 

room temperature.  

2.6 Western Blotting (WB) 

In this thesis, WB was used to detect and/or quantify a certain protein in a total 

protein sample. It was also used to determine the specificities of various primary 

antibodies that were used in IHC, to compare levels of candidate biomarker proteins 

between models and their wild type counterparts, and to show the success and degree 

of knockdown of proteins after siRNA transfection experiments. 

SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

After estimating the total protein content of a sample as described above, 20 µg 

proteins in 20 µl of RIPA lysis buffer were used per lane. Each sample was mixed 

with 5 µl sample buffer (2% SDS, 0.125 M Tris-base HCl pH 6.8, 0.001% w/v 

bromophenol blue, 10% v/v glycerol) and β-mercaptoethanol (one quarter volume of 

loading sample buffer), vortexed briefly and heated at 100°C for 2 minutes. The 

samples were centrifuged briefly before loading them onto the gel. 

The denatured protein samples were separated by SDS-PAGE using MINI 

PROTEAN
TM 

(BioRAD) gel casts. Ten percent gels were prepared by mixing 4.2 ml 

of  ddH2O, 3.3 ml polyacrylamide (30%, Sigma), 2.5 ml 1.5M Tris-base HCl pH 8.8, 

100 µl of 10% w/v SDS, 50 µl of 10% w/v APS (ammonium persulphate) and 5 µl 

TEMED (Sigma). TEMED was added just before loading the mixture into the gel 

cassette. Saturated butanol (1:9 parts ddH2O: butanol) was overlaid and the gel 

allowed to set for about 45 minutes. Butanol was washed off with water and any 

excess water was then removed using blotting paper. A 4% stacking gel (10 ml final 

volume) was made up of 6.6 ml ddH2O, 1.3 ml 30% acrylamide (Sigma), 2.5 ml of 

0.5M Tris-base HCl pH 6.8, 100 µl of 10% w/v SDS, 50 µl of 10% w/v APS 

(ammonium persulphate) and 10 µl TEMED (Sigma). The mixture was poured 

immediately over the resolving gel. A multiwell comb was inserted carefully and the 

gel was allowed to set for 20-30 minutes.  

The comb was removed and the protein samples were carefully loaded into the wells, 

avoiding any loss or spillage into adjacent lanes. The proteins were first allowed to 

penetrate through the stacking gel by running at a low voltage (50 V) for 30 minutes 
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in running buffer (14.4 g glycine (Sigma), 3.03 g Tris-base (Sigma) and 10 ml 10% 

w/v SDS (Sigma) in one litre ddH2O). Immediately thereafter the running voltage 

was increased to 100-150 V in order to separate the proteins according to their 

molecular weight. 

Western blotting: 

The separated proteins were transferred to a Protran
®
 nitrocellulose membrane 

(Shneiller and Shneider) in a transfer buffer (14.4 g glycine (Sigma), 3.03 g Tris-base 

(Sigma) and  200 ml MeOH in one litre ddH2O) using a 100 V current for one hour. 

Successful transfer was tested by soaking the membranes in Ponceau S solution (5% 

w/v in glacial acetic acid, Sigma) for few minutes. The membranes were then washed 

with PBS.  

For blocking non-specific antibody binding, the membranes were incubated in 1-5% 

non-fat dried milk in PBS/0.05% Tween 20 (or 1% w/v bovine serum albumin 

(Sigma) in PBS/0.05% Tween20) for 20-30 minutes with constant agitation on a 

roller. The membranes were then incubated with a primary antibody (at a dilution 

recommended by the manufacturer) (table 1) in the blocking solution for either 2 

hours at room temperature or overnight at 4°C with constant agitation. The 

membranes were then washed three times, for 5 minutes each in 0.1% v/v Tween20 

in PBS with constant agitation. Then they were incubated with the appropriate HRP-

conjugated secondary antibody (Dako) at a dilution of 1:1000-1:3000 in the blocking 

solution for one hour at room temperature again with constant agitation. The 

membranes were then washed three times, for 5 minutes each with agitation. 

For development, SuperSignal
® 

West Dura Extended Duration Substrate (Pierce) was 

used. Then images were captured using a Bio-Rad ChemiDoc
TM

XRS+System with 

Image Lab
TM

software. 

As a loading control, membranes were re-probed with 1:1000 mouse monoclonal 

anti-Pan actin antibody in the blocking solution for one hour at room temperature. 

Pan actin has a molecular weight of 42 kDa. 
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Antibody Company Dilution, final M.WT, kDa Host Reactivity 

Nap1l1 abcam 1:1000 45-52 Rabbit polyclonal Hu. 

Nap1l1 Proteintech 1:800 45-52 Rabbit polyclonal Hu., Ms. 

RPL6 Proteintech 1:1000 34 Rabbit polyclonal Hu., Ms. 

RPL6 abcam 1:400 33 Rabbit polyclonal Hu. 

SFRS2 abcam 1:1000 35 Mouse monoclonal Hu., Ms. 

SFRS2 abcam 1:2000 26-30 Rabbit polyclonal Hu. 

CDC5L Epitomics 1:1000 100 Rabbit monoclonal Hu., Ms., Rat 

PHB abcam 1:1000 30 Rabbit monoclonal Hu., Ms., Rat 

Cyclin E Santa cruiz 1:500 53 Rabbit polyclonal Hu., Ms. 

Beta catenin BD 1:1000 92 Mouse monoclonal Hu. 

NCL abcam 1:1000 76 Rabbit polyclonal Human 

FABP6 abcam 1:50 14 Rabbit polyclonal Ms., Rat 

Pan actin abcam 1:1000 42 Mouse monoclonal Ms., Rat., Hu. 
 

Table 2.3 Primary antibodies used in western blotting experiments. M.WT. = 

molecular weight, Hu= human, Ms= mouse, BD= Becton Dickinson. 

For most of the primary antibodies a range of dilutions was tested before adopting 

the optimal one. Moreover, with some antibodies such as those to SFRS2, RPL6, 

Beta catenin, Cyclin E and others many modifications to the protocols including 

varying the secondary antibody dilutions were tried to improve the results. Details of 

the specific modifications tried can be found in chapter three (section 3.5.2).  
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2.7 siRNA transfection 

Discovered in 1998 by Fire et al., RNA interference (RNAi) has now become an 

established way for inhibiting gene expression both in vitro and even in vivo [190]. 

Elbashir et al. described RNAi in mammalian cell lines [191]. RNAi involves 

double-stranded small interfering RNAs (siRNAs) approximately 21–23 nucleotides 

base pairs long that trigger a sequence-specific cleavage of primary transcripts 

leading to their subsequent degradation [192]. These siRNAs are generated 

intracellularly through the cleavage of longer double-stranded RNAs [193] or are 

introduced into the cell as chemically synthesized siRNA molecules [191]. However, 

the naked siRNA molecule, with negative charges, is susceptible to serum nucleases, 

renal clearance, and non-targeted bio-distribution, making cellular target sites more 

difficult to access [190]. These factors may render poor efficiency to RNAi due to 

short half-life and low stability [190]. Virus vectors are efficient delivery systems for 

nucleic acids; however, the potential for mutagenicity, limited loading capacities, 

high production costs, and most importantly, safety risks limit their uses [190]. 

Therefore, the need for alternative delivery methods led to the introduction of 

chemical modification of siRNA, nano-particles for delivering siRNA, liposomes, 

cell penetrating peptides, and targeted delivery [190]. 

2.7.1 Liposome siRNA delivery 

Liposomes represent the most commonly used siRNA delivery method. The 

phospholipid bilayer of these particles enables them to fuse with a cellular membrane 

to deliver a drug [190]. siRNA can either attach to the lipid surface or be enclosed in 

a lipid core to pass through the cell membrane [194, 195]. Neutral liposomes tend to 

be less toxic to mammalian cells but are less efficient, whereas cataionic liposomes 

have good biocompatibility, but can cause significant toxicity such as cell 

contraction and mitotic inhibition [196].  

It is worth highlighting that this method of gene knock down is limited by a number 

of factors that can affect the length of the time to reach peak silencing and the 

duration of silencing. These include the time cells take to double their numbers, the 

role of the target gene in regulating cell proliferation and the half-life of the target 

protein. For example cells that double within 24 hours may take 72 hours to show 

maximum silencing, but this can change with the above factors. Moreover, with 

certain cycles of doubling the pool of the siRNA in a cell will drop below the 
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effective threshold. Although generally resistant to degradation, siRNA degradation 

may also dilute their pool and reduce their efficiency.  

2.7.2 Mechanism of silencing 

The basic principle underlying RNA interference (RNAi) involves the disruption of 

mRNA by the use of homologous double stranded RNA (dsRNA) [197]. Small 

interfering RNAs are produced within cells from endogenous and exogenous longer 

ds-RNA molecules by the cleaving activity of Dicer, aribonuclease III-type protein 

[193, 198]. A dsRNA is cut by Dicer  into short 19–21 duplexes with two symmetric 

nucleotide overhangs at the 3′ end and a 5′ phosphate along with a 3′ hydroxyl group 

that are known as siRNAs [197]. Alternatively, exogenous siRNAs may be delivered 

in to the cells (figure 2.2). The siRNAs are recognised by a nuclease-containing 

multiprotein complex known as the RNA-induced silencing complex (RISC). The 

helicase domain of RISC binds to one end of the duplex and unwinds the siRNA in 

an ATP-dependent manner. RISC is activated when the antisense strand (template, 

also complementary for the target mRNA) of the siRNA enters into the complex. The 

activated RISC guided by the antisense strand finds the target mRNA and induces 

cleavage of the mRNA within the target site with subsequent degradation of the 

whole mRNA molecule [192]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2 Mechanism of siRNA mediated mRNA degradation, adapted from 

[199]. Reprinted by permission from Macmillan Publishers Ltd: Gynaecologic 

Oncology. The genesis of RNA interference, its potential clinical applications, 

and implications in gynecologic cancer. Copyright (2005). 

 



72 
 

2.7.3 Transfection procedure 

Specific and non-targeting (control) siRNAs, transfection reagents (TRs) and siRNA 

buffers were all purchased from Dharmacon, Inc. siRNA work was started based on 

recommendations made by the manufacturer for the cell lines used. The following 

table explains Dharamcon, Inc. volume recommendations for the plate format and the 

cells that we used: 

Plate 

format-

well 

number 

Surface 

area 

cm
2
/well 

Vol. of 5 

µM 

siRNA 

(µl) 

Serum 

free 

medium 

(µl) 

Vol. of 

DharmaFECT 

reagent (µl) 

Serum free 

medium (µl) 

Complete 

medium 

(µl/well) 

Total 

transfection 

medium 

6 10 10-50 150-190 4-10 190-196 1600 2000 

Table 2.4 The different materials used in each experiment and their volumes 

siRNAs were re-suspended according to the manufacturer’s guidelines.  siRNAs 

were stored in 20 µM aliquots, and upon transfection were diluted to 5 µM solutions.  

Optimised volumes (chapter four, section 4.2.1) of the transfection reagents (TRs) 

were used in the experiments conducted. Six well plates were used throughout the 

transfection work. 

We used three types of media during this work. Both cell types needed the same 

categories of media (refer to section 2.4.1 for concentrations). 

 Complete media (described for each cell line in cell culture section, 2.4.1) 

was used to maintain the cells before transfection. 

 Antibiotic free media (cells become vulnerable to antibiotic toxicity during 

transfection due to increased cell permeabilisation) was used 24 hours before 

actual transfection. This media was also used to maintain untransfected cells 

used as controls during this work. Moreover, this media was also used to 

complete the transfection media to the required volumes. 

 Serum free media was used to prepare and dilute the siRNAs before adding 

them to the antibiotic free media to make the final solutions. 
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The predetermined cell densities were allowed to attach for 24 hours in 2 ml 

antibiotic free media per well and these were incubated at 37ºC with CO2 supply in a 

humid environment.  

 

 

 

 

 

Figure 2.3 Six well plate format in the siRNA work. 0 = untrasfected cells, - = 

cell transfected with non-targeting siRNA and + = cells transfected with a 

specific siRNA, 1 and 2 represent duplicate samples. 

At each time point per cell line, target proteins were knocked down using treatment 

groups set up as shown in figure 2.3. Samples were run in duplicates. Initially, cells 

were allowed to attach in the antibiotic free media. The next day, before taking the 

cells out of the incubator, the required volumes of transfection media were prepared 

based on the number of samples (wells) to be treated. Each well required 2 ml of the 

total transfection media that replaced the antibiotic free media. The constituents of 

the final transfection media are shown in table 2.4. The same steps were duplicated 

for the non-targeting siRNA throughout the process. Due to possible losses during 

pipetting, an extra 0.15% was added to the calculated volume of each reagent, hence 

the final volumes per experiment were calculated. 

The transfection media was prepared in a sterile tissue culture hood. The 

predetermined siRNA volume was added to a volume of serum free media to make 

up 10% of the total transfection media and this was mixed thoroughly. This solution 

was left at room temperature for 5 minutes. At the same time, the predetermined 

volume of the TR was added to a volume of the serum free media to again make up 

10% of the total transfection media and this too was mixed well and left at room 

temperature for 5 minutes. Then the siRNA media was added to the TR medium and 

this was mixed well by pipetting, before leaving it at room temperature in the tissue 

culture hood for 20 minutes. Finally, this mixture was made up to 2 ml/well with 

antibiotic free media. 
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At this point, the media for untransfected cells was replaced with 2 ml/well of fresh 

antibiotic free media to rule out lack of nutrients as an interfering factor when 

interpreting experimental results. The media for the cells to be transfected was 

replaced with 2 ml/well of the corresponding siRNA media. Finally cells were re-

incubated at 37°C for the given duration of each time point. 

2.7.4 Assessing siRNA knockdown efficiency 

At the end of each time point floating and attached cells were counted and 

knockdown efficiency was assessed by western blotting and/or qRT-PCR (sections 

2.6 and 2.8). 

Cell counting 

The media in each well was collected into labelled tubes. Since dead cells detach and 

float, the number of the floating cells in this media was used as an approximate 

indication of the amount of apoptosis [200]. Moreover, as the total number of cells 

was changing, the percentage of floating cells to total cells per well was used to 

represent these results.  

After trypsinisation (400 µl/well), samples (50-100 µl) of attached cells were 

collected into labelled tubes. These were used as an approximate indication of the 

amount of cell proliferation per well. To ensure that significant numbers of cells 

were not left in the wells, 600 µl of media was added first and the cells were 

detached and separated from each other by thorough up and down pipetting. After 

collecting this, each well was washed with another 1 ml of media to collect any 

remaining cells.  

Cell harvesting 

At each time point, cells were trypsinised and collected as described above. 

Thereafter, the tubes were immediately put on ice. When cells from all wells had 

been collected, tubes (15 ml) were spun at 1000 RPM (Sorvall Heraeus, Multifuge 3 

S-R, rotor radius 145 mm) for 5 minutes at 4ºC to pellet the cells. The cells were then 

re-suspended in one ml PBS and transferred to 1.5 ml eppendorf tubes and spun at 

3000 RPM (microcentaur/Sanyo, rotor radius 50 mm) at 4ºC for 5 minutes. After 

discarding the supernatant, dry cell pellets were either stored at -80ºC for later use or 

were immediately used for protein extraction. 
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After estimating the total protein content of cells from each well, WB was used to 

estimate the relative expression of the appropriate target protein in each cell group. 

2.8 Quantitative real time polymerase chain reaction (qRT-PCR) 

RT-PCR was used as an alternative technique to assess knockdown efficiency for 

proteins that did not show conclusive results by WB. 

After harvesting, cells were stored at -80ºC before being used for RNA extraction. 

2.8.1 RNA extraction 

RNA extraction was carried out using RNeasy Mini Kit-QIAGEN. Since each 

sample contained less than 5 million cells, 350 µl of RTL (Guanidine Isothiocyanate)  

lysis buffer was added to disrupt cells and the suspension was pipetted up and down 

several times. Then a qia-shredder was used to homogenise the samples. 

Qiashredders were fitted to 2 ml collection tubes and centrifuged at full speed for 2 

minutes. The volume of the samples was measured and an equal volume of 70% 

ethanol was added and mixed well by pipetting the solution up and down. Up to 700 

µl of the samples were then used (including any precipitates) in an RNeasy mini 

column (RSC) placed in a 2 ml collection tube. The samples were then centrifuged at 

≥10000 RPM (Hawk 15/05 microcentrifuge/rotor radius 75 mm was used throughout 

the extraction process) for 15 seconds. The flow through was discarded (if the 

sample size was more than 700 µl, this step was repeated using the same collection 

tube provided the flow through was discarded each time so as not to contaminate the 

RSC).  700 µl of buffer RW1 (guanidine salt and ethanol) were added to the RSC 

from the previous step and centrifuged at ≥10000 RPM for 15 seconds. Flow through 

was discarded and 500 µl of RPE washing buffer were added to the RSCs and spun 

at ≥10000 RPM for 15 seconds. Then 500 µl of RPE buffer were again added to each 

RSC and centrifuged at ≥10000 RPM for 2 minutes. Finally the RSC was placed in a 

new 1.5 ml collection tube and 30-50 µl RNase free water was added directly in to 

the spin column membrane and this was spun at ≥10000 RPM for one minute to elute 

RNA. The latter step was repeated if the RNA volume was expected to be more than 

30 µg using RNase free water or the elute itself. A Nanodrop-spectrophotometer was 

used to quantify the eluted RNA. 
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2.8.2 1st strand cDNA synthesis (reverse transcription) 

The main purpose of PCR in this project was to measure the relative expression of a 

target mRNA. Reverse transcription was used to synthesise a complementary DNA 

(cDNA) from the target mRNA because DNA is more stable than RNA. 

The following table shows the reagents (Roche) for a single reaction of reverse 

transcription. The reagents that were prepared as a master mix are denoted with an *. 

Reagents Vol/sample Final conc. 

10x reaction buffer 2 µl 1x  * 

25 mM MgCl2 4 µl 5 mM 
* 

Deoxynucleotide mix 2 µl 1 mM * 

Primer, oligo p(dT)15 2 µl 0.75-1 µM * 

RNase inhibitor 1 µl 50 units * 

AMV RT   0.8 µl ≥20 units 

Sterile water 7.2 µl  

RNA sample 1 µl  

Total 20 µl  
 

Table 2.5 Recipe for a single reaction of reverse transcription. RNA amount 

used in each reaction was ≤ 1 µg.  AMV RT = Avian Myeloblastosis Virus 

Reverse Transcriptase. 

When all components were added, the tube was briefly vortexed and centrifuged to 

collect the solution at the bottom of the tube. Then the reaction was first incubated at 

+25ºC (using a bench heating block) for 10 minutes then at +42ºC for 60 minutes 

(for cDNA synthesis). Then AMV RT was denatured by incubating the samples at 99 

ºC for 5 minutes and then cooling them down at +4ºC (on ice) for another 5 minutes.  

The synthesised cDNA was then stored at -15 to -25ºC for later use in qRT-PCR 

experiments. However, for shorter storage periods (1-2 hours) cDNA was stored at 

+2 to +8 ºC. 
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2.8.3 qRT-PCR 

RT-PC was performed using LightCycler 480 (Roche, Burgess Hill, UK). A primer 

and probe technique was used. Probes were from the Universal Probe Library 

(Roche) and labled with fluorescein (FAM) at the 5’-end with a dark quencher dye 

near the 3’-end. 

Each gene tested required a stock of left and right primers mix (Roche). The latter 

was made up of 20% left (20 µM), 20% right (20 µM) and 60% RNase free water. 

The number of samples per gene per experiment determined the total volume 

required. Each sample was run in triplicate. Each well in the plate was loaded with 

20 µl of the reaction mixture. Each well contained 5 µl of the selected primer-probe 

mix (0.4 µl primers mix, 0.4 µl probe (10 µM) and 4.2 µl water). The remaining 15 

µl in each well was made up of 10 µl 2x probe master (Roche), predetermined cDNA 

volume and water. Each run incorporated control wells, without cDNA (to rule out 

contamination) and without primers.  

Running PCR reactions 

Assays were designed and were run according to the conditions shown below in table 

2.6. 

Cycle description Temperature, ºC 
Duration, 
seconds 

Cycles 

Pre-incubation 95 600 1 

Amplification 

95 10 

45 60 30 

72 1 

Cooling 40 30 1 
 

Table 2.6 Conditions of qRT-PCR reactions 
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2.9 Sulforhodamine B (SRB) assay 

The SRB assay is a widely used cytotoxicity assay that involves the determination of 

cellular density based on the total protein content of cells. SRB is a bright pink 

aminoxanthene dye that binds basic amino acid residues under mild acidic conditions 

and dissociates under basic conditions [201]. 

Cell groups transfected with either a target siRNA or a control non-targeting siRNA 

along with non-transfected cells were incubated for 48 hours in 6 well plates (as 

described above). After 48 hours, cells were harvested by trypsinisation. Cells from 

the attached monolayer in each well were counted using a haemocytometer and then 

adjusted to 1000 cells/100 µl of complete media for each cell. 

100 µl of cell suspension from each of the treatment categories above were loaded as 

6 replicates into 96 well plates. The format was set as untransfected, non-targeting 

siRNA, and target siRNA in adjacent columns for each protein. Seven plates were 

used for each protein and cells were allowed to grow from 1 to 7 days. Each day, one 

plate was stained with the SRB dye. The media was discarded and cells were fixed at 

room temperature in 100 µl/well glacial acid-methanol solution (3:1 vol/vol) for 5 

minutes. After discarding this fixative, the cells were gently washed with water and 

stained with 100 µl/well SRB dye (0.4% wt/vol in 1% glacial acid) at room 

temperature for 30 minutes. Then the wells were washed with 1% glacial acid at least 

three times with care being taken not to leave any excess dye on the walls of the 

wells. The plates were then left to dry overnight. Then the dye was re-suspended in 

100 µl/well 10 mM Tris-HCl solution pH 10.5 and mixing was achieved using an 

orbital shaker for 10-15 minutes at high speed. Then the plate was loaded in to a 

Sunrise Tecan micro-plate reader and the optical density in each well was determined 

at 572 nm. 

2.10 Clonogenic survival assay 

The clonogenic survival assay is based on assessing the ability of an individual cell 

to survive by forming a colony under given experimental conditions. A colony is 

generally defined as cluster of 50 cells or more [202]. 

The same cells used in the SRB assay were also used for clonogenic survival assay. 

1000 cell/well and 500 cells/well were used for HT29 and HCT116 cells 

respectively. Again cells transfected with the target siRNA or the two control groups 
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were seeded in 2 ml of the relevant complete media in 6 well plates and allowed to 

grow for 10 days in a CO2 supplied and humid incubator at 37ºC. Then the cells were 

fixed in 4% formaldehyde for 5 minutes at room temperature. The fixative was then 

discarded and colonies were stained with 5% crystal violet for 5 minutes. The plates 

were gently washed under tap water and left to dry overnight before counting the 

visible colonies.  

2.11 Fluorescence activated cell sorting (FACS) analysis 

FACS involves staining single-cell suspensions prepared from cell culture or tissues 

with fluorochrome labelled antibodies. The stained cells are then analysed using a 

flow cytometer. A flow cytometer uses a small nozzle to produce a tiny stream of 

fluid. The stream takes individual cells past a laser. Part of the light will be detected 

as front scatter and some as side scatter to give representations of cell size and 

complexity (cytoplasmic granules, membrane size etc.) respectively. Further sub-

classification of cells is possible using the fluorescence emitted from the 

fluorophores used to stain the cells as a result of excitation by the laser beam. A set 

of filters and mirrors (photo-multiplying tubes, PMTs) inside the cytometer will split 

the scattered light into defined wavelengths such that each sensor will detect 

fluorescence only at a specified wavelength. Examples of these sensors are the 

Fluorescein isothiocyanate (FITC) and Phycoerythrin (PE) channels which detect 

light at or near 519 and 575 nm respectively.  

Among the issues encountered with this technique are dealing with intracellular 

antigens, secreted antigens and the overlap that happens between the fuorophores 

that have a close range of wavelengths in multi-colour analysis. Therefore, successful 

analysis will depend on the optimisation of experimental conditions through 

choosing the right dilutions for the antibodies, use of suitable controls to set up the 

flow cytometer properly, and optimised fixation and permeabilisation procedures 

[203]. 

Optimisation steps were performed with untreated HCT116 cells to determine the 

best acquisition settings for dual staining. This mainly included determining the 

compensation setting required to avoid overlap between channels with a close range 

of wavelengths. For example channel one bleeds into channel two and the latter 

bleeds into channels 1 and 3. 
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For each individual protein, the same optimised siRNA conditions were applied prior 

to harvesting the cells at a pre-defined time point (section 2.7).  Cells were harvested 

as described in section 2.7.4.  

Fixation and permeabilisation 

Harvested cells (from untreated, scrambled siRNA and target siRNA groups) were 

first re-suspended in 1 ml PBS. Formaldehyde (Sigma, methanol free) was then 

added to a final concentration of 2-4%. Cells were then incubated for 10 minutes at 

37ºC, followed by chilling on ice for one minute. The fixative was then removed 

after pelleting the cells by centrifugation. Then the cells were re-suspended and 

permeabilised by adding 90% methanol and incubating them on ice for 30 minutes. 

At this point, cells were used for staining or stored at -20ºC for later use.  

Caspase 8 and propidium iodide (PI) staining 

Approximately one million cell aliquots were used per sample. Two samples were 

included from each treatment group. Two to three mls of the incubation buffer (0.5 g 

BSA in 100 ml PBS) were added to each tube and cells were rinsed by centrifugation 

(repeated 2-3 times). Cells were then re-suspended in 100 µl incubation buffer and 

blocked for 10 minutes at room temperature. Primary (Cell Signalling-Asp391, anti-

caspase 8, rabbit monoclonal IgG, # 9496) antibody was added to the tubes to make a 

dilution of 1:100 (recommended by the manufacturer) and cells were incubated for 

one hour at room temperature. After this step, cells were rinsed again in the 

incubation buffer 2-3 times. Then cells were re-suspended in 1:100 solution of the 

fluorochrome (FITC) conjugated secondary antibody (abcam, goat polyclonal to 

rabbit IgG, diluted in the incubation buffer) and incubated for 30 minutes at room 

temperature (in the dark).  After rinsing in the incubation buffer 2-3 times, cells were 

re-suspended in 40 µl of a 100 µg/ml solution of Ribonuclease A (Sigma) in 10 mM 

Tris-HCl pH 7.5/15 mM NaCl (Sigma) and incubated for 15 minutes at room 

temperature. After this step, cells were counter stained with 500 µl of 500 µg/ml PI 

(Sigma) in PBS. Cells were stored at 4ºC for later analysis (cells could be analysed 

immediately or after overnight incubation protected from light). Prior to analysis, 

cells were filtered through 40 micron cell strainers (Falcon). Cells were then 

processed using a BD FACSCalibur cytometer and CellQuest software and the 

acquired data were analysed using the free version of "FCSexpress 4 flow research 

edition" software.  
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2.12 Immunocytochemistry 

Cells were grown in 6 well plates following the same steps that were described above 

in section 2.7. The only difference was the addition of glass cover slip to the bottom 

of each well in the plate to allow the attachment of cells. The transfection procedure 

for each protein was the same as described in section 2.7.  

At a defined time point (section 2.7), culture media was discarded and the cells were 

washed twice in PBS. Then the cells were fixed by adding 2% paraformaldehyde 

(Sigma) and incubated for 20-30 minutes at room temperature. Thereafter, the cells 

were washed in PBS three times and permeabilised with 0.2% Triton X-100 (Sigma) 

in PBS for 30 minutes at room temperature. Cells were again washed in PBS three 

times and blocked with 10% normal goat serum (Dako) in PBS for 45 minutes at 

room temperature. Cells were then incubated with a predetermined optimal dilution 

of the target primary antibody (diluted in 10% normal goat serum in PBS) for 1-2 

hours at room temperature and in a humid box.  Cells were washed twice in PBS by 

gentle shaking over an orbital shaker for 2-3 minutes each time.  Then cells were 

incubated with the appropriate secondary antibody (Dako) in 5% normal goat serum 

in PBS for 30 minutes at room temperature. The cells were again washed in PBS as 

described above. Cells were then incubated with VECTASTAIN (Vector 

Laboratories, elite ABC kit) for 30 minutes at room temperature. The latter was 

prepared according the steps described in table 2.2. Again, cells were washed in PBS 

and then incubated with DAB (preparation details in table 2.2) for 5 minutes in the 

dark and at room temperature. Then DAB was blocked by the addition of distilled 

water. Cells were then counter stained using Gills number 1 haematoxylin (Sigma) 

for 3-5 minutes. The cells were then washed under gently running tap water for 5-7 

minutes. Finally, the cover slips were mounted on glass slides using DPX mountant.  

 

 

 

 

 

 

 

 



82 
 

2.13 Statistical analysis 

Most of the data (expressed as means ±SD unless otherwise stated) shown in this 

thesis were of the continuous numerical type and were divided into two groups with 

one dependent variable. Using Sigma plot software version 12, data were first 

checked for normality (by Shapiro-Wilk test) and equality of variance (using 

Levenes test). A two tailed t test was used for normally distributed data and a Mann 

Whitney U test was used for data that were not normally distributed or that had 

unequal variances. A p value of 0.05 was used as a threshold for statistical 

significance. 

For data that were divided into more than two groups but with one dependent 

variable; one way analysis of variance was used for data which had a normal 

distribution and equal variances, otherwise the Kruskal-Wallis test was used to assess 

the significance of any difference between the groups. Dunnett’s method was used to 

perform multiple comparisons with a control group. 

In the various figures in this thesis asterisks represent p values as follows:  

* p value of less than 0.05; ** p value of less than 0.01; *** p value of less than 

0,001 and **** p value of less than 0.0001. 

N stands for number of experiments performed while n indicates the number of 

replicate samples in each comparison group.  
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3. Validation of candidate biomarker proteins upregulation in animal models of 

CRC 

3.1 Introduction and aims 

If we accept the hypothesis that APC (adenomatous polyposis coli) gene mutation is 

an early key event in most cases (80%) of CRC [10] and that APC negatively 

regulates the activity of the WNT signalling pathway [204], then it would be rational 

to study the elements of the latter, when this relationship has been disturbed. This 

may provide a better understanding of mechanisms that are involved in colorectal 

carcinogenesis (the early stages in particular).  

The WNT signalling pathway is a major regulator of intestinal homeostasis; 

proliferation, self-renewal, cell cycle and apoptosis [205, 206]. For example, it has 

been suggested that the WNT pathway is part of the niche involved in maintaining 

the stem cells and the proliferative compartment located at the base of the intestinal 

crypt [60].   Moreover, it is now widely accepted that the few signalling pathways 

(including the WNT pathway) that orchestrate key developmental processes can also 

be involved in the development of major pathologies such as cancer [207]. However, 

deregulation of WNT signalling has  only been clearly documented to be involved  in 

a small number of tumours. Since, WNT derangement is observed in a wide range of 

carcinogenesis processes, but without clear and specific associations, it is critical to 

investigate this connection between WNT signalling and neoplasia [68]. This critical 

role of the WNT pathway in the pathogenesis of different cancers and CRC in 

particular provides a good opportunity for identifying biomarkers or therapeutic 

targets that can improve the outcome of screening and treatment respectively.  

As described in the introduction chapter, using iTRAQ/LC-MS, the following 

candidate proteins NAP1L1, RPL6, SFRS2, FABP6, PHB, NCL, NPM, HMGB1 and 

DDX5 were identified together with many other proteins that showed up regulation 

in the acute intestinal Apc deletion mouse model (AhCre
+
Apc

fl/fl
).  Moreover, based 

on initial data from bioinformatics analysis carried out by our team, it has been 

suggested that the selected proteins are linked to cellular processes that are critical 

during tumourigensis such as cellular proliferation, cell cycle regulation and 

apoptosis. Furthermore, these candidate proteins have not been extensively studied in 
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the context of colorectal tumourigenesis. Therefore, there is a possibility that one or 

more of these could be potential biomarkers of CRC or even therapeutic targets. 

In this chapter, using immunohistochemistry (IHC), the expression and localisation 

of the above proteins were assessed in AhCre
+
Apc

fl/fl 
and Apc

Min/+
 mice. For the 

Apc
Min/+

 mice 1, 3 and 6 month old mice were used to map possible changes in 

protein expression and correlate these with the histological progression of lesions 

during the average life span (6 months) of these mice by the end of which most of 

them develop numerous adenomas throughout the intestine (mainly the small 

intestine) [208]. 

Aims 

 Confirmation of upregulation of the candidate proteins at early time points 

after Apc deletion in the intestine (AhCre
+
Apc

fl/fl 
mice). 

 Investigation of the expression of the same candidate proteins in established 

intestinal neoplastic lesions in Apc
Min/+

 mice aged 1, 3 and 6 months. 

 

3.2 IHC validation of Wnt pathway activation in AhCre
+
Apc

fl/fl 
mice 

Beta catenin, is a key player in mediating an induced Wnt signalling pathway [206]. 

Moreover, nuclear translocation of this pivotal molecule is regarded as a surrogate 

maker for activity of the Wnt signalling pathway [80]. Therefore, we used this latter 

observation to confirm and locate Apc deletion induced Wnt derangement in tissues 

from both mouse models. 

As the whole small intestinal epithelium from the AhCre
+
Apc

fl/fl 
mouse was the 

source of the proteomic results, small intestinal sections from AhCre
+
Apc

fl/fl 
mice and 

their control counterparts were stained with anti-Beta catenin mouse monoclonal 

antibody (Becton Dickinson) to assess the state of the Wnt pathway. Several 

dilutions of the primary antibody were tested (1:25-1:800) of which 1:50 was thought 

to be optimal (shown below in figure 3.1). IHC protocols (described in methods 

section) were optimised in our laboratory. Moreover, the primary antibody was the 

same used by Sansom et al. [44] and our results (figure 3.1) were consistent with 

what they had previously described.  
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Figure 3.1 Small intestinal sections stained for Beta catenin protein. A) & B) 

images are from AhCre
+
Apc

+/+ 
mouse while C) and D) images show 

AhCre
+
Apc

fl/fl 
mouse tissue sections. All images are X40 objective (original 

magnification). Images in the upper panel are villi and those in the lower panel 

are crypts. N= 3-5 mice in each group. 

AhCre
+
Apc

fl/fl 
mice were sacrificed five days after the first Beta Naphthoflavone 

(BNF) injection. Within this period, only the small intestinal crypts were shown to 

exhibit constitutively active Wnt pathway (figure 3.1D), the hallmark of which is 

nuclear localisation of beta catenin [80]. 

3.3 Detection of "Apc loss" driven lesions in Apc
Min/+ 

mice 

Unlike the AhCre
+
Apc

fl/fl
 mouse in which Apc deletion is present in nearly all 

epithelial cells across the small intestine, Apc
Min/+

 mice develop scattered neoplastic 

lesions throughout the intestine. Therefore, it was not practical to stain random 

sections from tissue blocks as there was a high chance of not cutting through any 

neoplasm, and this would have been a waste of time and resources. Moreover, 

although intestinal segments with polyps were fixed and then paraffinised in labelled 

blocks, it was still not possible to identify lesions within an individual block without 

cutting through and staining it. Even after identifying lesions, the possible number of 

lesion positive sections was random, especially in younger animals. 

D B 

C A 

  AhCre
+
Apc

+/+              
AhCre

+
Apc

fl/fl 
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To identify lesions in a cost effective way, Haematoxylin and Eosin (H and E) 

staining was therefore used initially. However, it was found that H and E was not 

very useful (as described below). Beta catenin staining (described below) was then 

used for this purpose based on observations from other separate experiments. 

Haematoxylin and Eosin (H and E) staining in Apc
Min/+ 

mice 

In initial studies, we assessed tissue sections from Apc
Min/+

 mice for the presence of 

neoplastic lesions with H&E staining. Serial sections with lesions were then used in 

IHC experiments. 

 

 

 

 

 

Figure 3.2 H and E staining of colonic tissue sections from 3 month old (A) and 

6 month old (B) Apc
Min/+ 

mice. A) Shows abnormal crypts (encircled) while B) 

shows a polyp, exophytic with a stalk and hyperplastic crypts. The red arrow 

points to the dysplastic part and the black arrow to the normal part. Both 

images are x10 magnification. 

The abnormal crypts in the 3 month old Apc
Min/+ 

mouse (A) showed the same 

changes as the polyp tissue in image (B). The dysplastic areas generally showed an 

increase in the number of cells, loss of goblet cells and larger nuclei compared to the 

normal adjacent tissue. Unfortunately, H and E was not as useful especially in 

younger mice because there were fewer lesions which were small and difficult to 

recognise due to similar colour patterns to normal tissue. 

Beta catenin staining in Apc
Min/+ 

mice 

As described above, H and E staining was not very convenient for detecting small 

lesions especially in 1 and 3 month old Apc
Min/+ 

mice. On the other hand, we 

observed that even in a single abnormal cell, Beta catenin staining demonstrated 

obvious colour contrast (due to dramatic early changes in expression after Apc 

dysfunction) compared to normal surrounding cells. Therefore, Beta catenin staining 

was used to identify possible small neoplastic lesions in younger mice.  

A B 
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Below (figure 3.3) are examples of neoplastic lesions in the three age groups of 

Apc
Min/+ 

mice detected using Beta catenin staining. 

 

 

 

 

 

 

 

 

Figure 3.3 Intestinal sections stained with anti-Beta catenin mouse monoclonal 

antibody (1:50). A), B) and C) images show colonic sections from a one month 

old Apc
Min/+ 

mouse. D), E) and F) images show small intestinal sections from a 

three month old Apc
Min/+ 

mouse. Arrows point to neoplastic lesions where 

cellular Beta catenin expression is increased compared to normal surrounding 

tissue. Magnification used to capture the images is indicated with the labels. 

In one and three month old mice, lesions showed increased cellular expression of 

Beta catenin with more intensity in the nuclei, suggesting increased nuclear 

localisation of this protein. The latter observation was even more prominent with the 

advancement of tumourigeneis and the development of more advanced adenomas in 

six month old mice as shown below in figure 3.4. 

 

Figure 3.4 Colonic polyp from a six month old Apc
Min/+ 

mouse stained with Beta 

catenin (same conditions described for figure 3.1). A) is x10 and B) is x40 

magnification. 

A, x10 B, x40 

A, x10 B, x40 C, x63 

D, x10 E, x40 F, x63 
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3.4 Work overview 

The following section describes the assessment of nine proteins (NAP1L1, RPL6, 

SFRS2, FABP6, PHB, NCL, HMGB1, NPM and DDX5) in the AhCre
+
Apc

fl/fl
 mouse 

model five days after Apc deletion and in a time course in Apc
Min/+

  mice (1, 3 and 6 

month old animals). As the lesions in Apc
Min/+

 mice included here are thought to be 

Apc mutation driven, we tried to analyse changes in expression of the candidate 

proteins in correlation with the histological progression of lesions over a six month 

period. All experiments were carried out according to the protocols described in the 

methods section. Samples were from cohorts of 5-10 mice each. In each IHC 

experiment at least three target and three age matched control mice were included.  

In Apc
Min/+

 mice, the blocks that had lesions were mainly from the colon. Although 

non-intentional, working on murine colonic lesions may provide a pathophysiologic 

environment that is closer to that associated with human CRC. All images included 

in this chapter are representative and the number of sections examined and the mice 

used are described in the methods chapter, section 2.2.3.
 

3.4.1 IHC assessment of NAP1L1 expression 

NAP1L1 is one of the candidate proteins that showed upregulation shortly after Apc 

deletion in the proteomics studies performed in the AhCre
+
Apc

fl/fl 
mice. There are 

contradicting reports in the literature about the subcellular localisation of NAP1L1: it 

has been reported that NAP1L1 is mainly located in the cytoplasm by one paper and 

in the nucleus by another [148, 149]. NAP1L1 is linked to nucleosome assembly 

(chaperoning), chromatin modulation and cell proliferation [149]. Below are images 

showing IHC assessment of this protein in AhCre
+
Apc

fl/fl
 and Apc

Min/+ 
mice. The 

primary antibody was commercially available (Proteintech) and was tested using 

different dilutions (1:25-1:1600). We found a dilution of 1:100 to be optimal as it 

produced observable differential staining (figure 3.5). 
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Figure 3.5 Small intestinal tissues from a control mouse (A, B and C) an 

AhCre
+
Apc

fl/fl 
mouse (D, E and F)

 
stained with anti-NAP1L1 rabbit polyclonal 

antibody at a dilution of 1:100 and the secondary antibody was from Dako, used 

at a dilution of 1:200. A), B), D) & E) are X40 (original magnification) while C) 

& F) are X63 (original magnification). Images A and D are villi while the rest 

are images of small intestinal crypts. 
 

There was increased staining intensity in the cytoplasm of the crypt cells in the 

AhCre
+
Apc

fl/fl 
mouse, compared to the villi of the same mouse and also compared to 

both crypts and villi of the control mouse. 
 

IHC assessment of NAP1L1 expression in Apc
Min/+ 

mice 

The same experimental conditions used to assess the expression of NAP1L1 in 

AhCre
+
Apc

fl/fl 
mice were then applied to intestinal tissue samples from Apc

Min/+ 
mice 

aged 1, 3 and 6 months and their wild type control counterparts.  

 

 

 

 

 

A 

E 

D 

C B F 
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One month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Colonic sections from 1 month old Apc
Min/+ 

(A and B) and Apc
+/+ 

(C) 

mice stained with anti-NAP1L1 antibody. A) Shows a dysplastic lesion (arrow) 

X10, B) shows the same dysplastic lesion (X40) and C) shows wild type tissue 

(X40). 

The dysplastic lesion showed an obvious increase in brown staining in the cytoplasm 

when compared to the surrounding histologically normal mucosa or wild type tissue. 

 

 

 

 

 

 

 

 

 

 

A 

B C 
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Three month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Colonic sections from 3 month old Apc
Min/+ 

(A and B) and Apc
+/+ 

(C) 

mice stained with anti-NAP1L1 antibody. A) shows two dysplastic crypts 

(arrow) X10. B), the same dysplastic crypts X40 and C), wild type tissue. 

The dysplastic crypts (A and B) showed increased numbers of cells, loss of goblet 

cells and larger nuclei. The cells within the dysplastic crypts showed more NAP1L1 

staining in the cytoplasm compared to the surrounding normal appearing tissue, but 

the difference in staining was less obvious when compared to wild type tissue. 

Repeating the experiment on other tissue sections from this age group may 

demonstrate better differential staining. However, lack of suitable tissues prevented 

this. 

 

 

 

 

 

A 

B C 
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Six month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Six month old Apc
Min/+ 

(A-C) and Apc
+/+

 (D)
 
mice colonic tissue 

sections stained with anti-NAP1L1 antibody. A) shows a colonic polyp (black 

arrow) and normal appearing tissue (red arrow) X10, B) shows magnified 

section from the same polyp (X40), C) shows magnified section from the tissue  

adjacent to the polyp (X40) and D) shows section from the colon of a matched 

wild type mouse (X40). 

The increase in NAP1L1 staining seen within the polyp was mainly cytoplasmic and 

the intensity of staining within the polyp was again more than that observed in 

normal appearing adjacent and wild type tissues. Interestingly, sub-cellular re-

localisation was more obvious in these older Apc
Min/+ 

mice (figure 3.8). 

 

 

 

 

 

 

A 

B C D 
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3.4.2 IHC assessment of NAP1L1 expression, using an independent antibody 

AhCre
+
Apc

fl/fl 
mice 

In an attempt to validate our results observed above, an antibody (abcam, ab33076) 

that was reactive to a different epitope of NAP1L1 protein was also used. This 

antibody was initially assessed at different dilutions (1:125-1:4000) on small 

intestinal sections from AhCre
+
Apc

fl/fl 
mice and their control counterparts. The 

dilution 1:4000 demonstrated the best differential staining as shown below (figure 

3.9): 
 

  

A 

E 

D 

C B F 

Figure 3.9 Small intestinal tissues from a control mouse (A, B and C) and an 

AhCre
+
Apc

fl/fl 
mouse (D, E and F)

 
stained with anti-NAP1L1 rabbit polyclonal 

antibody (abcam, ab33076) at a dilution of 1:4000 and a secondary antibody 

from Dako, used at a dilution of 1:200. A), B), D) & E) are X40 objective 

(original magnification) while C) & F) are X63 objective (original 

magnification). Images A and D are villi while the rest of the images are 

crypts. 

With the second primary antibody, there was again the same cytoplasmic over 

expression of NAP1L1 in the crypt epithelial cells of the AhCre
+
Apc

fl/fl 
mice 

compared to AhCre
+
Apc

+/+ 
control mice. A point worth highlighting is that this 

antibody showed more obvious staining than the previous one (figure 3.3).
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Apc
Min/+ 

mice 

To further validate our results for NAP1L1 staining observed using the first primary 

antibody, lesions from the three age groups of Apc
Min/+

 mice were also stained with 

the second NAP1L1 antibody under the same conditions used for the AhCre
+
Apc

fl/fl
 

mice. 

One month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

Figure 3.10 Colonic sections from 1 month old Apc
Min/+ 

(A and B) and Apc
+/+  

(C) 

mice stained with anti-NAP1L1 antibody (second antibody). A) Shows a 

dysplastic lesion (arrow) x10, B) shows the same dysplastic lesion (X40 

objective) and C) shows wild type tissue (x40 objective). 

A similar pattern of staining was seen using the second NAP1L1 antibody as with the 

first one. There was increased cytoplasmic expression of NAP1L1 in the neoplastic 

lesions. 

 

 

 

 

 

A 

B C 
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Three month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

Figure 3.11 Intestinal sections stained with anti-NAP1L1 Rabbit polyclonal 

antibody (1:4000). A) and B) images show colonic sections from a three month 

old Apc
Min/+ 

mouse. D) and E) images show small intestinal sections from a three 

month old Apc
Min/+ 

mouse. Images (A and D) are X10 magnification while (B and 

E) are magnified sections (X40) from (A and D) respectively. Images (C and F) 

are age matched WT tissues. Arrows point to neoplastic lesions where NAP1L1 

expression is increased compared to the normal surrounding and wild type 

tissue.  

The differential staining (more cytoplasmic staining) was more obvious in the small 

intestine (images E vs. F) than in the colon (images B vs. C), an observation that 

needs more experiments to confirm. Lack of suitable tissue sections for this age 

group of mice was the reason not to do so. 
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Six month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Six month old Apc
Min/+ 

(A and B) and Apc
+/+ 

(C) mice colonic tissue 

sections stained with anti-NAP1L1 antibody (2nd NAP1L1 antibody). A) Shows 

a colonic polyp (arrow) X10, B) shows magnified section from the polyp (X40) 

and C) shows a section from the colon of a matched wild type mouse (X40). 

A similar staining pattern was again observed with this second NAP1L1 antibody as 

observed with the first antibody. This finding further supported our results for this 

protein in Apc
Min/+

   mice.  
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Co-expression of Beta catenin and candidate proteins 

Interestingly, some lesions from six month old Apc
Min/+

 mice showed mixed lineage 

crypts upon staining for the different proteins. Although normal crypts are thought to 

be monoclonal in adult mice and polyclonal only during the first few weeks of life 

[209, 210], the above observation agrees with the concept of loss of differentiation as 

part of the tumourigenesis process. These lesions (figure 3.13) were used as 

examples to show expression of candidate proteins in correlation with WNT activity 

as indicated by nuclear Beta catenin localisation.  

 

 

 

 

 

 

 

 

Figure 3.13 Colonic lesions in six month old old Apc
Min/+ 

mice. A) and B) show 

the same polyp stained with anti-Beta catenin and anti-NAP1L1 antibodies. C) 

Beta catenin staining, showing nuclear translocation in one part and normal 

membranous expression in the other part (arrows). D) Shows a similar 

differential staining (arrows) for NAP1L1 protein in a subsequent section from 

the same crypt. Images A and B are X5 magnification and images C and D are 

X40 magnification.  

The above images (figure 3.13) represent visual evidence for the co-expression of 

Beta catenin and one of our candidate proteins. Histologically, the same crypt (figure 

3.13, C and D) (arrows) showed both normal and abnormal cells in terms of number, 

organisation and shape of nuclei. Moreover, the presence of differential staining 

within the same crypt supported the findings found in other sections. Moreover, co-

expression of NAP1L1 with Beta catenin indicated that this protein and other 

candidate proteins which showed the same staining pattern are over expressed in the 

A B 

C D 
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setting of an activated WNT pathway. Further in agreement with these findings is co-

expression of this candidate protein and Beta catenin in the same tissue compartment 

in AhCre
+
Apc

fl/fl
 mice. 

Comments on NAP1L1 expression following Apc deletion 

NAP1L1, although acting on chromatin as a chaperone protein, appeared to have 

cytoplasmic localisation in both AhCre
+
Apc

fl/fl
 and Apc

Min/+ 
animal models. This is 

consistent with the way this protein is proposed to function, where it is thought to 

shuttle essential molecules (such as histone proteins) into the nucleus upon demand 

in situations such as proliferation and DNA replication and that it remains mainly 

cytoplasmic throughout the cell cycle [149]. In our work, NAP1L1 seems to play a 

role in the hyperproliferation that results from Apc loss in these mice. This is because 

NAP1L1 showed an early increase in expression as evident from the AhCre
+
Apc

fl/fl 

mice and the small lesions that were observed in one month old Apc
Min/+ 

mice. 

Furthermore, previous reports have shown marked over expression of NAP1L1 in T 

cells after induction with Phorbol 12-myristate 13-acetate (PMA)/ionomycin and a 

reduction by 50% in T cell proliferation after treatment with NAP1L1 antisense 

oligonucleotides. Therefore, NAP1L1 has been proposed as a therapeutic target in 

view of its possible role in promoting cell proliferation [211]. 
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3.4.3 IHC assessment of RPL6 expression  

AhCre
+
Apc

fl/fl 
mice 

RPL6 is the second candidate protein that was found to be upregulated in the 

proteomic analysis performed using the AhCre
+
Apc

fl/fl 
mouse model [147]. It has 

been reported that RPL6 is a cytoplasmic protein and it is involved in protein 

synthesis and modulation of the cell cycle [162]. Below is an IHC assessment of its 

expression in the AhCre
+
Apc

fl/fl  
and  AhCre

+
Apc

+/+ 
(control) mice. The first anti-

RPL6 primary antibody (abcam) that was used, although it was tested at various 

dilutions, did not show any conclusive staining. The second anti-RPL6 primary 

antibody from Proteintech was again tested at different dilutions (1:25-1:1600). The 

dilution 1:200 demonstrated the most clear differential staining pattern, as shown 

below (figure 3.14): 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Small intestinal tissues from an AhCre
+
Apc

+/+ 
control mouse (A, B 

and C) and an AhCre
+
Apc

fl/fl 
mouse (D, E and F) stained with anti-RPL6 rabbit 

polyclonal antibody at a dilution of 1:200 with the secondary antibody being 

from Dako and used at a dilution of 1:200.  A), B), D) & E) are X40 (original 

magnification) while C) & F) are X63 (original magnification). Images A and D 

are villi and the rest of the images are crypts. 

In the AhCre
+
Apc

fl/fl 
mouse, crypt cells showed increased expression of RPL6 protein 

as depicted by increased brown staining in the nuclei and to a lesser extent in the 

A 

E 

D 

C B F 
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cytoplasm of these cells compared to the villi of the same mouse and the whole crypt 

villus axis in wild type control tissue.  

IHC assessment of RPL6 expression in Apc
Min/+ 

mice 

The same experimental conditions used to assess expression of RPL6 in 

AhCre
+
Apc

fl/fl 
mice were applied to intestinal tissue samples from Apc

Min/+ 
mice aged 

1, 3 and 6 months and wild type control mice.  

One month old Apc
Min/+

 mice  

Difficulty in finding dysplastic lesions in this age group prevented us from assessing 

RPL6 expression in Apc
Min/+ 

and wild type mice at this stage. Unfortunately, this was 

the case for all the other proteins described in the rest of this chapter. 

Three month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 Colonic tissue sections from 3 month old Apc
Min/+ 

(A and B) and
 

Apc
+/+

 (C) mice, stained with anti RPL6 antibody. A) Shows dysplastic crypts 

(arrow) X10, B) shows the same dysplastic crypts X40 and C) shows wild type 

tissue (X40). 

The cells within dysplastic crypts (indicated by black arrows) showed more staining; 

this was mainly in the cytoplasm compared to the surrounding histologically normal 

mucosa and also wild type tissues.  
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Six month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Six month old Apc
Min/+ 

(A-C) and Apc
+/+ 

(D) control mice colonic 

tissue sections stained with anti-RPL6 antibody. A) shows a polyp (black arrow) 

and normal appearing tissue (red arrow) X10, B) shows magnified section from 

the polyp (X40), C) shows magnified section from the tissue  adjacent to the 

polyp (X40) and D) shows section from the colon of a matched wild type mouse 

(X40).  

RPL6 protein expression was again increased in the nuclei (mainly) and the 

cytoplasm of cells in the polyp tissue compared to the adjacent histologically normal 

tissue, but less obvious differences were observed when compared to wild type 

control tissue.  
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Similar to NAP1L1, RPL6 also demonstrated co-expression with Beta catenin in the 

same tissue compartment (crypts) in AhCre
+
Apc

fl/fl 
mice and in Apc

Min/+ 
 mice (figure 

3.17). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Co-expression of Beta catenin and RPL6 in the same tissue 

compartments in Apc
Min/+ 

 mice. A and B) show a colonic polyp  (X10) from a six 

month old mouse stained with anti-Beta catenin and anti-RPL6 antibodies 

respectively. C and D) show magnified sections (X40) from the same polyp in 

(A) and (B) respectively. 

Comments on RPL6 expression following Apc deletion 

RPL6 showed initial cytoplasmic over expression in lesions from three month old 

Apc
Min/+ 

mice, but interestingly this protein showed a predominant nuclear over 

expression in more advanced adenomas from six month old Apc
Min/+ 

mice. This 

nuclear localisation of RPL6 was also observed in the AhCre
+
Apc

fl/fl 
mice, suggesting 

a correlation between the severity of the phenotype and the sub-cellular location of 

this protein.  
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3.4.4 IHC assessment of SFRS2 (Sc35) expression 

SFRS2 is the third candidate protein that showed upregulation in the proteomic 

studies performed using the AhCre
+
Apc

fl/fl 
mouse model [147]. It is a member of the 

serine rich (SR) family of proteins which is involved mainly with pre-mRNA 

splicing. Normally, it is a component of the spliceosome units in the nuclei [170]. 

SFRS2 expression was again initially assessed in AhCre
+
Apc

fl/fl 
and their 

AhCre
+
Apc

+/+ 
control mice: the first antibody from Sigma was tested at different 

dilutions but it did not show any clear staining patterns. The second antibody was 

from abcam and after testing it at different dilutions (1:125-1:2000), a dilution of 

1:250 was selected as optimal as shown below (figure 3.17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 Small intestinal tissues from AhCre
+
Apc

+/+ 
(A, B and C) and 

AhCre
+
Apc

fl/fl 
(D, E and F)

 
mice stained with anti-SFRS2 mouse monoclonal 

antibody (abcam, ab11826) at a dilution of 1:250 and a secondary antibody 

from Dako at a dilution of 1:200. A), B), D) & E) are X40 (original 

magnification) while C) & F) are X63 (original magnification). Images A and D 

are villi and C, B, E and F are crypts. 

The AhCre
+
Apc

fl/fl 
mouse sections showed increased nuclear staining manifest as 

dark dots (speckles) in the nuclei. This can be seen in images (E) and (F) in the 

crypts compared to the villi from the same mouse (D) and to the control tissue (A-C).  
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IHC assessment of SFRS2 expression in Apc
Min/+ 

mice 

The same experimental conditions used to assess expression of SFRS2 in 

AhCre
+
Apc

fl/fl 
mice were then applied to intestinal tissue samples from Apc

Min/+ 
mice 

aged 3 and 6 months and Apc
+/+ 

control tissues.  

Three month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Colonic tissue sections from 3 month old Apc
Min/+ 

(A and B) and 

Apc
+/+

 (C) mice stained with anti-SFRS2 antibody. A) Shows two dysplastic 

crypts (arrow) X10. B) shows the same dysplastic crypts X40 and C) shows 

Apc
+/+

 tissue (X40).  

The cells within these dysplastic crypts showed more SFRS2 staining in nuclei 

compared to surrounding histologically normal tissue and wild type tissue. 
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Six month old Apc
Min/+ 

 mice 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 Six month old Apc
Min/+ 

(A-C) and Apc
+/+ 

(D) mice tissue sections 

stained with anti-SFRS2 mouse monoclonal antibody. Image A) is a colonic 

polyp X10 (original magnification). Image B) is a magnified section from the 

polyp (X 40 original magnification). Image C) is normal appearing tissue 

adjacent to the polyp (X40, original magnification). Image D) is a colonic tissue 

section from a matched  Apc
+/+ 

 mouse (X40).  

The polyp tissue (black arrow) showed a clear increase in SFRS2 staining in the 

nuclei compared to adjacent normal tissue (red arrow) and Apc
+/+ tissue.  

Co-expression of SFRS2 and Beta catenin was also noted in the crypts of 

AhCre
+
Apc

fl/fl 
mice following Apc deletion. Also, Apc

Min/+ 
mice showed co-

expression of these two proteins in the same tissue compartment (figure 3.21). This 

again indicated that SFRS2 overexpression is related to the activity of the WNT 

signalling pathway. 
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Figure 3.21 Co-expression of SFRS2 and Beta catenin in Apc
Min/+ 

mice. A and B) 

show colonic polyp (X10) from a six month old mouse stained with anti-Beta 

catenin and anti-SFRS2 antibodies respectively. C and D) show magnified 

sections (X40) from the same polyp in (A) and (B) repectively. 

Comments on SFRS2 expression following Apc deletion 

SFRS2 is a component of the chromatin associated dynamic structures, the 

spliceosomes [212]. Early following Apc deletion in AhCre
+
Apc

fl/fl 
mice, SFRS2 

showed increased nuclear expression, an observation that was also found in three and 

six month old Apc
Min/+ 

mice. Interestingly, SFRS2 staining was observed in a 

speckling pattern and was associated with increased Wnt activity. 
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3.4.5 IHC assessment of FABP6 expression 

FABP6 was also upregulated in the proteomic analysis carried out on AhCre
+
Apc

fl/fl  

mice [147]. It is normally cytoplasmic in localisation and is mainly involved with 

bile salt metabolism [166].
 
FABP6 expression was assessed in AhCre

+
Apc

fl/fl 
mice as 

shown below: the primary antibody from abcam was tested at different dilutions 

(1:25-1:1600) and the dilution 1:50 demonstrated the best differential staining as 

shown below in figure 3.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22 Small intestinal tissues from a control mouse (A, B and C) and an 

AhCre
+
Apc

fl/fl 
mouse (D, E and F) stained with anti-FABP6 Rabbit polyclonal 

antibody at a dilution of 1:50 while the secondary antibody was from Dako 

(1:200 dilution). A), B), D) & E) are X40 (original magnification) while C) & F) 

are X63 (original magnification). Images A and D are villi while the rest are 

crypts. 

In the AhCre
+
Apc

fl/fl 
mouse, small intestinal crypt cells showed increased expression 

of FABP6 protein as depicted by increased brown staining in the cytoplasm and in 

the nuclei of these cells compared to the villi of same mouse and the whole crypt 

villus axis of control mice.   
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IHC assessment of FABP6 expression in Apc
Min/+ 

mice 

The expression of FABP6 was also assessed in intestinal tissue samples from 

Apc
Min/+ 

mice aged 3 and 6 months and their wild type control tissues using the same 

experimental conditions that had been developed in the AhCre
+
Apc

fl/fl 
mice. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23 Colonic sections from 3 month old Apc
Min/+ 

(A and B)
 
and Apc

+/+ 
(C)

 

control mice stained with anti-FABP6 rabbit polyclonal antibody. A), shows 

dysplastic crypts (arrow) X10, B) shows the same dysplastic crypts X40 and C) 

shows wild type tissue (X40). 

The cells within the dysplastic crypts showed more FABP6 staining in the cytoplasm 

compared to the surrounding histologically normal and wild type tissues. This 

indicates a role for FABP6 early in colorectal tumourigenesis. This observation is 

consistent with the findings in AhCre
+
Apc

fl/fl 
mice. 
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Six month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24 Six month old Apc
Min/+ 

(A-C) and Apc
+/+

 (D) control mice colonic 

tissue sections stained with anti-FABP6 antibody. A) shows polyp tissue (red 

arrow) and normal appearing tissue (blue arrow) X10, B) shows magnified 

section from the polyp (X40), C) shows a magnified section from the tissue 

adjacent to the polyp (X40) and D) shows a section from the colon of a matched 

Apc
+/+

 mouse (X40). 

FABP6 expression was increased; mainly in the cytoplasm within polyp tissue when 

compared to adjacent histologically normal tissue and the wild type control tissue. 

Similar to all other candidate biomarkers already examined, FABP6 was also over 

expressed in the setting of an active WNT pathway as indicated by its co-expression 

with Beta catenin in crypts of AhCre
+
Apc

fl/fl 
mice. Moreover, FABP6 also 

demonstrated co-expression in the same tissue compartments as Beta cateinin in 

Apc
Min/+ 

mice (figure 3.25). 
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Figure 3.25 Co-expression of Beta catenin and FABP6 in Apc
Min/+ 

mice. A and B) 

show colonic polyp  (X10) from a six month old mouse stained with anti-Beta 

catenin and anti-FABP6 antibodies respectively. C and D) show magnified 

sections (X40) from the same polyp in (A) and (B) respectively. 

Comments on FABP6 expression following Apc deletion 

Increased expression of FABP6 in dysplastic lesions from  Apc
Min/+ 

mice  and in 

AhCre
+
Apc

fl/fl 
mice

 
is supported by other studies that have reported similar findings 

in humans where FABP6 expression was significantly increased in colonic adenomas 

versus normal adjacent tissue and in colonic cancer versus adenoma but decreased 

dramatically after nodal metastasis [166]. Therefore, FABP6 may also be involved in 

the early stages of colorectal tumourigenesis. 
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3.4.6 IHC assessment of Prohibitin (PHB) expression  

PHB was also upregulated after deletion of both Apc alleles in the intestinal 

epithelium of AhCre
+
Apc

fl/fl 
mice as shown by the proteomics studies [147]. PHB is a 

mitochondrial protein, but its functions are not fully understood [213]. PHB 

expression was assessed in the AhCre
+
Apc

fl/fl 
mice and their AhCre

+
Apc

+/+ 
control 

mice: the primary antibody (abcam) was tested at dilutions 1:50-1:1600. The dilution 

1:200 was optimal as shown below. The staining was in general faint despite varying 

the duration of incubation with DAB and using different secondary antibody 

dilutions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 Small intestinal tissues from a control mouse (A, B and C) and an 

AhCre
+
Apc

fl/fl 
mouse (D, E and F) stained with anti-PHB Rabbit monoclonal 

antibody at a dilution of 1:200 and a secondary antibody from Dako (1:200 

dilution).  A), B), D) & E) are X40 (original magnification) while C) & F) are 

X63 (original magnification). A and D= villi and B, C, E and F = crypts. 

In the AhCre
+
Apc

fl/fl 
mouse, crypt epithelial cells showed more brown staining in the 

cytoplasm compared to those in the AhCre
+
Apc

+/+ 
mouse. This suggests increased 

PHB expression following Apc deletion. 
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IHC assessment of PHB expression in Apc
Min/+ 

mice 

As with other candidate proteins, the same experimental conditions used to assess 

expression of PHB in AhCre
+
Apc

fl/fl 
mice were applied to intestinal tissue samples 

from Apc
Min/+ 

mice aged 3 and 6 months and wild type control tissues.  

Three month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 Colonic tissue sections from 3 month old Apc
Min/+ 

(A and B) and
 

Apc
+/+ 

(C) mice, stained with anti PHB antibody. A) Shows dysplastic crypts 

(arrow) x10. B) Shows the same dysplastic crypts X40 and C) shows wild type 

tissue (X40). 

Unlike AhCre
+
Apc

fl/fl
 mice, we observed only a very weak PHB staining in lesions 

from three month old min mice. 
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Six month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28 Six month old  Apc
Min/+

 (A-C) 
 
and wild type (D) control mice colonic 

tissue sections stained with anti-PHB antibody. A) Shows a section from a polyp 

X10, B) shows magnified section from the polyp (X40), C) shows an adjacent 

histologically normal tissue (X40) and D) shows section from the colon of a 

matched wild type mouse (X40).  

Similar to three month old mice, the staining was also weak in lesions from six 

month old mice. The staining was observed mainly in the cytoplasm of cells in the 

polyp area in comparison to the histologically normal adjacent and wild type tissues.   

PHB also exhibited changes in expression in the same tissue compartments as Beta 

catenin in both AhCre
+
Apc

fl/fl 
and Apc

Min/+ 
mice. Figure 3.29 shows co-expression of 

the two proteins in a polyp from a six month old Apc
Min/+ 

mouse. 
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Figure 3.29 co-expression of Beta catenin and PHB in Apc
Min/+ 

mice. A and B) 

show colonic polyp (X10) from a six month old mouse stained with anti-Beta 

catenin and anti-PHB antibodies respectively. C and D) show magnified sections 

(X40) from the same polyp in (A) and (B) respectively. 

 

Comments on PHB expression after Apc deletion  

PHB showed a probable weak over expression in lesions from three month old Apc 

Min/+ 
mice, but more clear differential staining was observed in more advanced 

adenomas from six month old Apc
Min/+ 

mice. These observations are consistent with 

those observed in the AhCre
+
Apc

fl/fl  
mice, suggesting a possible role for this protein 

in Apc deletion driven colorectal tumourigenesis. 
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3.4.7 IHC assessment of  Nucleolin (NCL) expression  

NCL is a nucleolar phosphoprotein that was also upregulated in the proteomic 

analysis performed on the AhCre
+
Apc

fl/fl 
mice [147]. It is found in the cytoplasm and 

on the cell surface [167].
 
NCL expression was assessed in the AhCre

+
Apc

fl/fl 
mice and 

their AhCre
+
Apc

+/+ 
counterparts as shown below: the first primary antibody (abcam) 

tested showed a lot of nonspecific staining. The second primary antibody (abcam) 

was again initially tested at different dilutions (1:250-1:4000). This showed more 

specific staining and the best dilution was 1:4000 as shown below. 

 

 

 

 

 

 

 

 

 

 

Figure 3.30 Small intestinal tissues from AhCre
+
Apc

+/+ 
(A, B and C) and 

AhCre
+
Apc

fl/fl 
(E, D and F)

 
mice stained with anti-NCL Rabbit polyclonal 

antibody at a dilution of 1:4000 and a secondary antibody from Dako used at a 

dilution of 1:200.. A), B), D) & E) are X40 (original magnification) while C) & 

F) are X63 (original magnification). A and D = villi and B, C, E and F = crypts. 

Nucleolin showed increased nuclear (and nucleolar) staining in the crypt epithelial 

cells of AhCre
+
Apc

fl/fl 
mice compared to those in the AhCre

+
Apc

+/+ 
mice. 
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IHC assessment of NCL expression in Apc
Min/+ 

mice 

To validate the observations in AhCre
+
Apc

fl/fl 
mice, the same experimental conditions 

used to assess expression of NCL in these mice were applied to intestinal tissue 

samples from Apc
Min/+ 

mice and wild type control tissues.  No neoplastic lesions from 

one and three month old mice were available at this stage. Therefore, NCL 

expression was only assessed in six month old Apc
Min/+ 

mice.  

Six month old Apc
Min/+ 

mice 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.31 Six month old Apc
Min/+ 

(A-C) and Apc
+/+

 (D) mice colonic tissue 

sections stained with anti-NCL Rabbit polyclonal antibody (abcam, 1:4000) and 

a secondary antibody from Dako (1:200). A) is a colonic polyp X10, B) is a 

magnified section from the polyp (X40), C) is normal appearing tissue adjacent 

to the polyp (X40) and D) is colonic tissue section from a matched  Apc
+/+

 control 

mouse (X40). 

Polyp tissue (A and B) showed a clear increase in NCL staining intensity which was 

mainly nuclear (nucleolar) in location compared to adjacent normal tissue (C) and 

wild type tissue (D). 
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By examining the expression of NCL in the context of a deranged Wnt pathway, it 

was obvious that NCL and Beta catenin co-express. This was evident in the crypts of 

AhCre
+
Apc

fl/fl 
mice and the neoplastic lesions in Apc

Min/+ 
mice (figure 3.32). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32 Co-expression of Beta catenin and NCL in the same tissue 

compartments in Apc
Min/+ 

mice. A and B) show colonic polyp (X10) from a six 

month old mouse stained with anti-Beta catenin and anti-NCL antibodies 

respectively. C and D) show magnified sections (X40) from the same polyp in 

(A) and (B) respectively. 

This co-expression again supports the proposal that candidate proteins demonstrated 

changes in expression in the setting of Apc loss induced activation of the Wnt 

pathway. 

Comments on NCL expression after Apc deletion 

Nucleolin, a ubiquitous nucleolar phosphoprotein is involved in diverse cellular 

functions such as ribosome biogenesis, transcription, G-quadreplex binding and 

apoptosis [169]. c-Myc, a Wnt target gene and a key molecule in cellular 

proliferation and growth, has been suggested to have a G-quadreplex structure that 

negatively regulates its expression [169].
 
Interestingly NCL has been reported to bind 

to this G-quadreplex structure, stabilising it. Therefore, Nucleolin may play a 

controlling role in high proliferation states (including cancer) by regulating c-Myc 
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activity [169]. This is supported by observations that NCL is highly expressed in 

rapidly dividing cells and rapidly degrades when cells become quiescent [214]. 

3.4.8 IHC assessment of HMGB1 expression  

HMGB1 is another candidate protein that showed up-regulation in the initial 

proteomics studies using the AhCre
+
Apc

fl/fl 
mouse model [147]. It is a nuclear 

chromatin binding protein and an extracellular signalling molecule that mediates 

inflammation as well as cell differentiation and migration [172]. Its expression was 

assessed in AhCre
+
Apc

fl/fl 
and AhCre

+
Apc

+/+ 
mice using optimised IHC experimental 

conditions: the first primary antibody (EBL) was tested at different dilutions with 

varying DAB incubation times and secondary antibody dilutions, but it caused strong 

staining in control tissues from various mice. The second antibody (abcam) also gave 

rise to similar staining patterns, as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33 Small intestinal tissues from AhCre
+
Apc

fl/fl 
and AhCre

+
Apc

+/+ 
mice 

stained with anti-HMGB1 Rabbit polyclonal antibody (abcam, dilution of 

1:4000).  The secondary antibody was from Dako at a dilution of 1:200. Images 

A), B) and C) are from AhCre
+
Apc

+/+ 
mouse and D), E) and F) are from 

AhCre
+
Apc

fl/fl 
mouse. A), B), D) & E) are X40 (original magnification) while C) 

& F) are X63 (original magnification). A and D= villi and B, C, E and F = 

crypts. 
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The epithelial cells of the villi of the AhCre
+
Apc

fl/fl 
mouse showed no observable 

nuclear staining whilst those of the crypts in the same mice did show a staining 

intensity similar to that observed  in the crypt cells of AhCre
+
Apc

+/+ 
mice. This 

suggests less HMGB1 protein in the villi of AhCre
+
Apc

fl/fl 
mouse relative to the 

crypts of the same mice or the villi of control mice. We cannot currently provide an 

explanation for the loss of HMGB1 from the villi of the knockout mice, but a 

structural modification of this protein or a subtle change in its expression may cause 

retention of abnormal cells within the crypts.  

IHC assessment of HMGB1 expression in Apc
Min/+ 

mice 

HMGB1 expression was also assessed in tissue samples from Apc
Min/+ 

mice aged 3 

and 6 months along with their wild type counterparts.  

Three month old Apc
Min/+ 

 mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34 Colonic sections from 3 month old Apc
Min/+ 

(A and B) and Apc
+/+

 (C) 

mice stained with anti-HMGB1 antibody (abcam, 1:4000) and a secondary 

antibody from Dako (1:200). Image A) shows two dysplastic crypts (arrow), X10 

original magnification. Image B) shows the same dysplastic crypts and C) shows 

wild type tissue sample (X40 original magnification). 

Dysplastic crypts showed increased number of cells, loss of goblet cells and larger 

nuclei. The above mentioned changes made dysplastic crypts stand out; otherwise the 
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intensity of HMGB1 staining in these crypts was similar to that of the surrounding 

normal and wild type control tissues. 

Six month old Apc
Min/+ 

mice 

 

 

 

 

 

 

 

 

 

 

Figure 3.35 Six month old Apc
Min/+ 

(A-C) and Apc
+/+

 (D) mice intestinal tissue 

samples stained with anti-HMGB1 rabbit polyclonal antibody (1:4000). The 

secondary antibody from Dako was used at a dilution of 1:200. A) is a colonic 

polyp showing dysplastic features in the form of increased number of cells and 

larger nuclei (black arrow) and normal adjacent tissue (red arrow). B), C) and 

D) are magnified (X40, original magnification) sections from the polyp, the 

normal appearing tissue adjacent to the polyp and crypt area from a matched 

wild type control mouse respectively. 

More intense staining was obviously seen in the polyp area relative to the normal 

adjacent tissue but this was slightly greater than that observed in the wild type 

control tissue. The other parts of the colonic epithelium in the same Apc
Min/+  

tissue 

section, showed staining patterns similar to that observed in wild type tissue (not 

shown). Morphological changes such as the increase in the size of nuclei and number 

of cells and loss of goblet cells in the polyp area may thus have contributed to the 

apparent difference in staining intensity between polyp and wild type tissues. 
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Comments on HMGB1 expression following Apc deletion  

HMGB1 is a nuclear protein involved in the regulation of gene expression without 

sequence specificity [215]. It is also found in the cytoplasm and as a secretory 

molecule with cytokine properties [216]. The latter form of the protein has been 

shown to be present in several cancers including colon cancer [217]. Furthermore, 

HMGB1 secretion by cancer cells has been suggested to mediate proliferation, 

migration and invasion by these cells [218]. In this piece of work, HMGB1 did not 

show a noticeable change in expression in the areas of the tissue where the WNT 

pathway was constitutively active, namely in the crypts of the AhCre
+
Apc

fl/fl 
mice 

and the neoplastic lesions of the Apc
Min/+ 

mice. However, in AhCre
+
Apc

fl/fl 
mice, villi 

showed less HMGB1 expression compared to villi in the control mice. Moreover, 

due to retention of new cells in the crypts fowlloing Apc deletion in AhCre
+
Apc

fl/fl 
 

mice [44], cells in the villi might not be shed normally and get older than they should 

be.   
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3.4.9 IHC assessment of Nucleophosmin (NPM) expression  

NPM is another protein that was detected by iTRAQ/MS-MS as being upregulated in 

the intestinal epithelium of AhCre
+
Apc

fl/fl 
mice after deletion of both Apc alleles 

[147]. It is a ubiquitous protein that is mainly localised to the nucleus [156]. It has 

multiple functions including ribosome biogenesis and regulation of cellular 

proliferation and transcription of some tumour suppressors [159]. Its expression was 

assessed in AhCre
+
Apc

fl/fl 
mice and AhCre

+
Apc

+/+ 
control mice as shown below: the 

primary antibody was initially tested at different dilutions (1:50-1:6000). The 

dilution 1:6000 showed the best differential staining as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.36 Small intestinal tissues from an AhCre
+
Apc

+/+ 
control mouse (A, B 

and C) and an AhCre
+
Apc

fl/fl 
mouse (D, E and F) stained with anti-NPM mouse 

monoclonal antibody at a dilution of 1:6000 with a secondary antibody from 

Dako at a dilution of 1:200.  A), B), D) & E) are X40 (original magnification) 

while C) & F) are X63 (original magnification). A and D= villi and B, C, E and F 

= crypts. 

In the AhCre
+
Apc

fl/fl 
mouse, villus epithelium showed less nuclear NPM staining than 

that observed in the crypts. At the same time, there was no observable difference in 

the intensity of NPM staining between the crypts of AhCre
+
Apc

fl/fl
 and control mice. 

Similar to HMGB1, NPM may contribute to the retention of cells within the 

abnormal crypts following deletion of Apc. 
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IHC assessment of NPM expression in Apc
Min/+ 

mice 

The same experimental conditions used in AhCre
+
Apc

fl/fl 
mice were applied to 

intestinal tissue samples from Apc
Min/+ 

mice to assess NPM expression in established 

neoplastic lesions. 

Three month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37 Colonic tissue sections from 3 month old Apc
Min/+  

(A and B) and 

Apc
+/+  

(C) mice stained with anti-NPM antibody. A) shows two dysplastic crypts 

(arrow) x10, B) shows the same dysplastic crypts X40 and C)  shows wild type 

tissue control. 

NPM staining intensity in the lesion was not clearly different from that observed in 

the histologically  normal adjacent or wild type tissues. 
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Six month old Apc
Min/+

 mice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38 Six month old Apc
Min/+ 

(A-C) and Apc
+/+ 

(D) control mice colonic 

tissue sections stained with anti-NPM antibody. A) shows a section from a polyp 

(red arrow) and adjacent normal appearing tissue (black arrow)  X10, B) shows 

magnified section from the polyp (X40), C) shows magnified section from the 

tissue  adjacent to the polyp (X40) and D) shows section from the colon of a 

matched Apc
+/+ 

 mouse (X40).  

NPM  protein expression was increased mainly in the nuclei (nucleoli prominently) 

of cells in the polyp area compared to the histologically normal adjacent tissue. Less 

obvious differences in staining intensity were observed when polyp tissue was 

compared to wild type control tissue. 

Comments on NPM expression after Apc deletion  

Nucleophosmin is a multifunctional nucleolar phospho-protein which is suggested to 

shuttle constantly between the nucleus and the cytoplasm [219]. In addition to 

ribosome assembly and transportation of ribosomal proteins to the cytoplasm, NPM 

is reported to play an essential role in cellular proliferation and growth by regulating 

cell cycle progression and centrosome duplication [220]. Moreover, NPM may also 

regulate the activity of tumour suppressors such as p53 and retinoblastoma protein 

(Rb) by direct binding and may interact with transcription factors such as c-MYC 

and NF-κB [221, 222]. In this current work, a clear change in the expression of NPM 

was not observed during colonic adenoma development. This may be explained by 

A 

B C D 
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suggestions made by other groups that NPM is mainly involved in the later stages of 

carcinogenesis, namely invasion and migration [219].
 

3.4.10. IHC assessment of DDX5 expression 

DDX5 also showed upregulation in the intestinal epithelium of AhCre
+
Apc

fl/fl 
mice as 

detected by iTRAQ-LC/MS analysis [147]. Normally it is a multifunctional nuclear 

protein [154]. We assessed its expression in AhCre
+
Apc

fl/fl 
and control mice as shown 

below: the primary antibody (abcam) was initially tested at dilutions 1:500-1:40,000. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.39 Small intestinal tissues from an AhCre
+
Apc

+/+ 
control mouse (A, B 

and C) and an AhCre
+
Apc

fl/fl 
mouse (D, E and F) stained with anti-DDX5 mouse 

monoclonal antibody at a dilution of 1:40000 with a secondary antibody from 

Dako at a dilution of 1:200.  A), B), D) & E) are X40 (original magnification) 

while C) & F) are X63 (original magnification). A and D= villi and B, C, E and F 

= crypts. 

This antibody was diluted to concentrations of up to 1:40000 and still no differential 

staining was observed between cells in the crypts and villi nor when AhCre
+
Apc

fl/fl
 

tissue was compared to control tissue. Therefore we decided to stop IHC work on 

this protein at this stage. 
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Comments on DDX5 expression following Apc deletion  

DDX5 was the only protein among those studied not to show any observable change 

in small intestinal tissues following Apc deletion. However, DDX5 has previously 

been reported to be over expressed in a number of cancers including CRC [155].
 

Moreover, DDX5 has been suggested to be over expressed in colorectal 

tumourigenesis even in pre-invasive adenomas in humans [155].
 
Either experimental 

conditions or species differences may have been responsible for seeing no change in 

DDX5 expression in our mouse models following Apc deletion. 
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3.5 Western blot analysis of candidate protein expression 

Although immunohistochemistry is a good and commonly used technique to study 

protein expression and provides information about the amount, subcellular 

localisation and even post-translational modifications of proteins, it still can be 

criticised as some antibodies show non-specific staining patterns and quantification 

can sometimes be difficult.  

Western blot analysis can support IHC results by further characterising the proteins 

under investigation. For example a more reproducible quantification of proteins can 

be achieved using western blots. Moreover, by showing antibody specificity, western 

blots can give more credibility to IHC results.  

In this section, the aims of performing western blots were to assess the specificity of 

the primary antibodies that were used in the IHC work described above. They were 

also used as a semi-quantitative analysis of changes in the expression of candidate 

proteins in the two animal models used in the IHC work.  

Guided by the results described above, western blot experiments were focused on 

those proteins that demonstrated clear differential staining patterns by IHC.  

3.5.1 Assessment of specificity of primary antibodies used in IHC work 

A criticism of IHC as described above is how genuine or specific are the results. This 

can be judged primarily based on the specificity of the primary antibodies used. 

Therefore, the western blot images shown in figure 3.35 demonstrate the 

corresponding bands for some of the primary antibodies that showed differential 

staining in the IHC part of the study.  
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Figure 3.40 Representative Western blot images. Each column represents whole 

cell protein extracts from HT29 cells. Full length blots are shown with the 

relevant candidate protein band indicated by an arrow. SFRS2, FABP6 and 

Beta catenin blots are not shown. 

The presence of more than one band in some of the blots might have been due to the 

presence of isoforms/post-translationally modified forms of the relevant protein 

however, no information could be found to support this neither in the company data 

sheets nor in literature.  

The table below shows details that assist in the interpretation of figure 3.35. 

Protein Molecular weight 

(kDa)-data sheet 

Primary antibody 

dilution 

Used dilution Secondary antibody 

dilution 

NAP1L1 45 1:250-1000 1:1000 1:1000 

RPL6 33 1:500-5000 1:500 1:1000 

SFRS2 35 1:1000  1:1000 

PHB 30 1:500-1000 1:1000 1:1000 

FABP6 14 1:50  1:1000 

NCL 76 1:1000 1:1000 1:1000 

Beta catenin 92 1:500-2000  1:1000 

Pan actin 42 1:1000 1:1000 1:1000 

Table 3.1 Details of the reagents used to produce the images in figure 3.40 and 

the other western blot analyses.  

As seen in the above table, the specificity of six candidate proteins in addition to 

Beta catenin was assessed. SFRS2, FABP6 and Beta catenin antibodies did not show 

any conclusive results (nonspecific background signal) in the western blot 

experiments. The anti-FABP6 antibody used was not reactive to human protein 

according to the manufacturer. This could explain the lack of specific bands in 

Pan actin     NAP1L1      RPL6          PHB           NCL 

206 

127 

89 

 

 

38 

31 

16 

 

6 

Ladder, kDa 
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proteins extracted from HCT116 and HT29 cells. For SFRS2 and Beta catenin, 

several modifications of the protocols (details can be found below) were tried to 

detect better bands. Unfortunately despite all variations, antibodies to these proteins 

did not work in western blotting. 

3.5.2 Western blot quantification of candidate proteins in AhCre
+
Apc

fl/fl 
and 

Apc
Min/+ 

mice 

To further validate the IHC results, the levels of candidate proteins that showed 

differential staining were examined using western blot analysis. All measurements 

made were relative the abundance of pan actin, enabling a comparison of expression 

for the individual proteins in AhCre
+
Apc

fl/fl 
and Apc

Min/+ 
mice with their wild type 

counterparts to be made. 

Relative expression of NAP1L1 in AhCre
+
Apc

fl/fl 
and Apc

Min/+ 
mice 

IHC analysis of NAP1L1 demonstrated cytoplasmic overexpression in AhCre
+
Apc

fl/fl 

and Apc
Min/+ 

mice in the Wnt active areas. Epithelial cell extracts from  AhCre
+
Apc

fl/fl
 

mice and colonic tissues from one, three and six month old Apc
Min/+ 

mice were used 

to extract whole proteins as described in the methods section. The whole cell lysates 

were then used in the western blot analyses of NAP1L1 expression as shown below. 

 

 

 

 

 

 

 

 

 

Figure 3.41 Western blot analysis of NAP1L1 expression in whole cell lysates 

obtained from small intestinal epithelial cell extracts of AhCre
+
Apc

+/+ 
and

 

AhCre
+
Apc

fl/fl 
mice (A). B) Shows fold change in NAP1L1 expression in 

AhCre
+
Apc

fl/fl 
mice relative to its level in AhCre

+
Apc

+/+ 
mice (N2, 3 mice per 

group). 
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The observed increase in NAP1L1 expression following Apc deletion in 

AhCre
+
Apc

fl/fl 
mice supported the IHC results for this protein. This indicated that 

NAP1L1 is directly or indirectly involved in the observed events and that the visual 

cytoplasmic overexpression of NAP1L1 after Apc deletion was associated with an 

increase in total expression of this protein. Unfortunately, lack of good quality tissue 

samples prevented the production of a sufficient number of experiments to show 

statistical significance. This is despite the use of different protein extraction methods 

(as outlined in the methods section) to improve protein quality and quantity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.42 Western blot analysis of NAP1L1 expression in Apc
Min/+ 

mice and 

their wild type counterparts.  A) shows NAP1L1 expression in one and three 

month old Apc
Min/+ 

mice. B) Shows NAP1L1 expression in six month old Apc
Min/+ 

mice and wild type counterparts. C) Shows densitometry analysis of NAP1L1 

expression in six month old Apc
Min/+ 

mice. N=2, n=3. 

Similar to AhCre
+
Apc

fl/fl 
mice,  Apc

Min/+ 
mice showed increased relative expression of 

NAP1L1 in polyps from the heterozygous group of the six month old mice (figure 

3.42 B and C). Again lack of sufficient tissue samples was an obstacle for producing 

enough data from one, three and six month old  Apc
Min/+ 

mice.  
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Similar studies were also attempted to evaluate the expression of PHB and NCL 

(figures 3.38 and 3.39) in both animal models using western blotting as shown 

below. 

 

 

 

 

 

 

 

 

 

 

Figure 3.43 Western blot analysis of PHB expression in whole cell lysates from 

intestinal epithelial cell extracts of AhCre
+
Apc

+/+ 
and

  
AhCre

+
Apc

fl/fl 
mice. A) 

shows PHB bands in both mice groups. B) Shows densitometry analysis of 

relative PHB expression in both mouse models. N=2, n2. 

 

 

 

 

 

 

 

 

 

Figure 3.44 Western blot analysis of NCL expression in AhCre
+
Apc

+/+ 
and

 

AhCre
+
Apc

fl/fl 
mice. A) is a blot showing NCL bands in both mice groups (two 

samples each). B) Shows densitometry analysis of relative NCL expression in 

both mouse models. N=1, n2. 
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Again, western blot results for PHB and NCL were in agreement with the IHC results 

observed in AhCre
+
Apc

fl/fl 
mice. Due to the reasons mentioned before, the number of 

experiments carried out was less than that required to show significance. Moreover, 

western blot experiments in Apc
Min/+ 

mice did not yield conclusive results for these 

two proteins. This was mainly due to inability to proceed with the optimisation 

process because of a lack of sufficient good quality tissue samples. 

Furthermore, SFRS2, RPL6, FABP6 and Beta catenin did not show bands good 

enough to assess their relative expression in the above two mouse models. This is 

despite the use of various troubleshooting strategies as listed below. 

 The use of protein lysates from two cell lines as controls 

 The use of different blocking agents (BSA in PBS and milk in PBS, both with 

and without Tween20) with various incubation periods and concentrations. 

 The use of different primary antibodies with varying dilutions and incubation 

periods and temperatures 

 Varying the concentration of the diluent (blocking solution) of the primary 

antibody  

 Varying the concentration of the secondary antibody 

 Varying the incubation period with super signal reagents 

 Varying washing times 

 Using fresh samples from AhCre
+
Apc

fl/fl 
mice and polyps from Apc

Min/+ 
mice 

 Various exposure times during development  

 Making sure that antibodies recognise denatured proteins 

It is worth mentioning that, the primary antibodies described in this chapter were 

primarily chosen on the basis that they were appropriate for IHC. However, 

according to the data sheets they could also be used in western blot experiments.  
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3.6 Discussion  

Unlike many other techniques, IHC provides the opportunity of assessing the 

localisation of any potential change in protein expression that might occur following 

Apc deletion. Moreover, simultaneous histological assessment may help in 

correlating any expression changes in protein abundance or position with coincident 

histological changes. However, as this is at best a semi-quantitative technique, 

interpretation of findings is sometimes challenging and conclusions may be 

influenced by the experimental conditions employed.  

3.6.1 Acute Apc deletion mouse model, AhCre
+ 

Apc
fl/fl 

As a result of acute deletion of both Apc alleles in all intestinal epithelial cells, the 

AhCre
+
Apc

fl/fl 
mouse model provides insights into the early events following Apc 

deletion in the intestine.  Almost all tissue sections from AhCre
+
Apc

fl/fl  
mice showed 

morphological changes in comparison to AhCre
+
Apc

+/+ 
mice. These took the form of 

longer crypts with increased number of cells and larger nuclei, reduced or absent 

goblet cells and aberrantly positioned Paneth cells. These findings are consistent with 

the original descriptions of this model [44]. Additionally, independent work by other 

groups has also shown similar phenotypic changes in a mouse model with 

constitutive Beta catenin activation [223]. This observation adds evidence to the 

concept that Apc mutation perturbs the Wnt signalling pathway in the intestine.  

In agreement with the above findings, all AhCre
+
Apc

fl/fl  
small intestinal sections 

examined showed nuclear localisation of Beta catenin (a hallmark of an active Wnt 

cascade) [80] in the crypts but not in the villi. Consistently, the latter finding was 

absent in the whole crypt villus axis in the AhCre
+
Apc

+/+ 
mice. This provided a good 

platform to study "whether or not" our candidate proteins were involved in these 

events. 

All proteins tested except DDX5 showed observable increased staining in the small 

intestinal crypts versus villi of AhCre
+
Apc

fl/fl 
mice. This observation that can be 

attributed to the  failure of Apc deficient cells to migrate upwards and their retention 

within crypts [107]. The sustained high EphB/EphrinB levels resulting from the 

abnormal activation of the WNT signalling pathway in Apc deficient cells have been 

suggested as an explanation for this defective migration [44, 76].  
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NAP1L1, RPL6, SFRS2, FABP6, NCL and PHB all showed observable differential 

staining in AhCre
+
Apc

fl/fl 
mice in comparison to their control counterparts. This 

suggests that these proteins may be involved in the histological changes that are 

observed in the intestine after Apc deletion.  The proteins that showed less clear 

observable changes were HMGB1 and NPM. The proteins showed reduced 

expression in the villi of AhCre
+
Apc

fl/fl 
mice in comparison to the villi of 

AhCre
+
Apc

+/+ 
mice.  We considered these changes outside our area of focus, since 

they were not in the area where the Wnt cascade was suspected to be activated (the 

crypts).  

3.6.2 Apc
Min/+ 

mice 

Genotypic and phenotypic similarities between Apc
Min/+ 

mice and familial 

adenomatous polyposis (FAP) patients, have made this mouse an excellent model to 

investigate intestinal tumourigenesis [208]. Apc
Min/+ 

 mice have a germ line 

autosomal dominant nonsense mutation of one Apc allele [208]. In this mouse model, 

as well as in FAP patients, all cells of the body carry only one functional Apc/APC 

allele, albeit very few cells progress to neoplasia. This indicates that there are other 

factors (genetic and/or environmental) which are needed for tumour development to 

begin [224]. Moreover, the intestinal predilection to Apc related tumours may be due 

to the constantly active and relatively tough environment involved, which in turn 

needs faster cell cycling and turnover rates with a higher chance for genetic 

instability and hence tumour development. 

It has been suggested in previous studies that in Apc
Min/+ 

mice, most neoplastic 

lesions develop in the first month of life and progress to larger adenomas toward the 

end of the mouse’s average life span [208]. This allowed us to follow the progression 

of lesions and changes in protein expression chronologically, by sampling a six 

month time course at only three points (1, 3 and 6 months). Moreover, in a previous 

study the genetic profiles of normal epithelium, intestinal adenomas and intestinal 

carcinomas were compared, and the latter two were very similar [225]. This further 

supports the adenoma carcinoma progression sequence that we have also adopted as 

our model for this work. 

More obvious differential staining intensities were observed for most proteins in the 

more advanced adenomas, consistent with the more apparent nuclear localisation of 
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Beta catenin in these lesions. A similar finding has been shown by another research 

group who concluded that higher levels of nuclear Beta catenin are associated with 

high grade dysplasia rather than low grade dysplasia or metaplasia in Barrett’s 

oesophagus [223]. Therefore these observations together suggest a causative or 

correlative role in tumourigenesis for the candidate proteins that showed similar 

patterns of staining. 

Although it was difficult to find dysplastic lesions in one month old Apc
Min/+ 

 mice, 

and thus suitable samples were not available for analysis in many cases, we could 

confirm that most of the proteins we studied started to show changes in expression as 

early as three months of age. 

In general, the proteins studied in this mouse model showed consistent results with 

those obtained from the AhCre
+
Apc

fl/fl 
mouse model. NAP1L1 protein showed a clear 

differential staining pattern using two independent primary antibodies while RPL6 

showed changes in staining intensity and localisation (younger vs. older mice). 

SFRS2, PHB and FABP6 also showed increases in expression in dysplastic lesions 

but no changes in the sub-cellular location of these proteins were observed. Similar 

to the findings in AhCre
+
Apc

fl/fl
 mice, HMGB1 and NPM did not show any clear 

differences in expression in the neoplastic lesions that we studied in Apc
Min/+ 

 mice.  

As described above six proteins showed consistent results in both mouse models 

therefore, they will be the focus of the following discussion. The other four proteins 

have already been briefly discussed at the end of their relevant results sections. 

The WNT pathway is critical in regulating embryonic development and maintaining 

adult tissues. It is therefore not surprising that this pathway is involved in stem cell 

homeostasis. Moreover, our candidate proteins are proposed to be WNT targets; they 

showed up-regulation in the setting of a deranged WNT pathway as demonstrated by 

the proteomics studies in AhCre
+
Apc

fl/fl
 mice in addition to co-localisation with Beta 

catenin in both  AhCre
+
Apc

fl/fl
  and Apc

Min/+ 
mice as demonstrated by the IHC work 

shown in this chapter. Therefore, it would not be surprising to find that these proteins 

were involved in the wide range of cellular processes which are thought to be 

mediated by the WNT signalling pathway. These processes include maintaining stem 

cells, promoting differentiation, proliferation, cell cycle progression, apoptosis and 

response to different kinds of stress outside the normal range of cell functions [226]. 
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NAP1L1 belongs to a family of proteins that include at least five proteins in 

mammals [227]. This family has been shown to be involved with nucleosome 

assembly, histone transport, transcriptional regulation and cell cycle progression 

[228]. NAP1L1 has been shown to be ubiquitously expressed and has been 

characterised as a histone chaperone [149]. Although there is little information on the 

role of NAP1L1 in colorectal tumourigenesis, there are contradictory reports about 

its expression in CRC. For example, one report based on serological identification of 

antigens by recombinant expression cloning (SEREX) identified NAP1L1 as a 

potential antigen that can be used as a marker of progression or a therapeutic target 

for CRC [150]. On the other hand, another report comparing NAP1L1 mRNA 

expression in small intestinal carcinoids, CRC and gastric cancer suggested no 

difference in NAP1L1 expression between CRC and normal adjacent tissue [148]. 

Our work supports a possible role for NAP1L1 in colorectal tumourigenesis due to 

its over expression within five days of Apc loss in AhCre
+
Apc

fl/fl 
mice and its 

upregulation in the early and advanced neoplastic lesions from Apc
Min/+ 

 mice as 

demonstrated by IHC and western blot analysis. 

RPL6 is a member of the ribosomal family of proteins (RPs) that are mainly involved 

in ribosome biosynthesis and protein translation [229]. Several reports are now 

pointing to abnormalities of protein translation in different malignancies and the 

possible involvement of RPs [230]. Moreover, RPs have also been suggested to act 

as oncogenes in various human tumours [231]. Several members of this family have 

been shown to be expressed in different cancers such as RPL19 in breast cancer and 

RPL15 in oesophageal cancer [232, 233]. Although these reports are increasing, the 

exact role of these proteins in tumourigenesis currently remains unclear [229].
 
This is 

also true for RPL6, however relatively recent work has suggested a possible role for 

RPL6 in promoting cell cycle progression (G1 to S) and cellular proliferation in 

human gastric cancer cell lines [163]. This may explain the early over expression of 

RPL6 in both mouse models that we studied and its translocation into the nucleus 

when neoplastic growth was more advanced in six month old Apc
Min/+ 

 mice. 

SFRS2 belongs to the serine rich (SR) family of proteins that have been linked to 

both constitutive and alternative pre-mRNA splicing [234]. Pre-mRNA splicing is a 

critical process, since more than 74% of human genes undergo alternative splicing, 

resulting in the production of different isoforms; sometimes with changes in radical 
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functional characteristics. A well-known example in this setting is the pro-apoptotic 

and anti-apoptotic isoforms of caspases [235]. Such changes can have dramatic 

effects on tumourigenesis [170]. There are many reports of the role of SFRS2 in 

haematological malignancies, but there are very few publications about its role in 

solid tumours especially colon cancer. However, there are reports that have 

suggested a role for SFRS2 in cell cycle control and induction of apoptosis [236]. In 

this setting, a recent study demonstrated that following  treatment of cell lines with 

cisplatin, SFRS2 induced cell cycle G2M arrest and modulation of caspase 8 pre-

mRNA splicing to increase the apoptosis of defective cells [237]. In the light of these 

observations, SFRS2 over expression in neoplastic lesions from Apc
Min/+ 

mice in our 

work could be a response to mediate apoptosis of defective cells. This observation 

may also explain the increased intestinal epithelial apoptosis rates that are observed 

in AhCre
+ 

Apc
fl/fl 

mice [44].
 

Fatty acid binding proteins are a family of small highly conserved cytoplasmic 

proteins that bind long chain fatty acids and other hydrophobic ligands. FABP6 and 

FABP1 (the liver fatty acid binding protein) are able to bind bile acids. The role of 

these proteins includes uptake, transport and metabolism of fatty acids [166].
 
FABP6 

expression has also been correlated with certain clinico-pathological criteria of CRC. 

For example, high FABP6 expression was noted in smaller tumours, tumours located 

in the left colon, and tumours with less serosal invasion (early stages of tumour 

development). In addition, a dramatic reduction in FABP6 expression was found in 

lymph node metastases suggesting that it plays a role in early carcinogenesis [166]. 

Our results showed a relatively early change in the level of this protein, an 

observation that supports the above suggestions. However, data to inform whether 

FABP6 is a direct or indirect factor in the tumourigenesis process are still limited. 

PHB is a mitochondrial protein whose functions are not yet clearly understood [213]. 

However, it has been reported that the PHB proteins in coordination with Rb protein 

can suppress E2F-mediated transcription and cell growth [213]. Reports from human 

CRC studies have shown over expression of PHB, with the most obvious increase in 

expression being observed in poorly differentiated cancers. The same study adopted 

the notion that PHB is a tumour suppressor and this paradoxical over expression may 

be due to its role in cell senescence [238] or to susceptibility of its promoter to c-

Myc actions [239]. Consistently, overexpression of PHB has been reported in 



139 
 

different solid tumours such as bladder [240] and stomach [179] cancers and cancer 

cell lines such as breast [241] and osteosarcoma [242]. Our results are consistent 

with the above observations, and suggest that PHB may be more important at the 

stage after cellular transformation. 

Nucleoloin, a nucleolar phosphoprotein, has been shown to be involved in critical 

cellular functions such as ribosomal biogenesis and maturation, RNA and DNA 

metabolism and cellular response to stress [167]. Therefore, it is not surprising that 

we found NCL to be upregulated in the context of an activated Wnt signalling 

pathway. NCL was upregulated in both AhCre
+ 

Apc
fl/fl  

and  Apc
Min/+ 

mice. As with 

some of our other candidate proteins, NCL may be involved in maintaining the state 

of cellular un-differentiation. This is supported by reports that have shown high 

expression of NCL in embryonic stem cells (ESCs) as part of the stemness 

mechanism. Moreover, NCL blockade by specific short hairpin RNAs in these cells 

caused a dramatic reduction in proliferation, increased apoptosis and G1 phase 

accumulation [214]. Furthermore, NCL down-regulation led to differentiation of 

ESCs and reduced their self-renewal ability. p53 up-regulation has been suggested as 

a mechanism which mediates these effects of NCL down-regulation [214]. It is also 

reported that NCL is highly expressed by rapidly dividing cells while it undergoes 

inactivation by auto-cleavage in quiescent cells [243]. These observations can help to 

explain the role of NCL in the hyperprolifertive state that is associated with a 

deranged Wnt signalling pathway. 
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3.7 Conclusion  

Despite the interpretation challenges involved with IHC, our results have added extra 

support to the preliminary data which were obtained in a previous study involving 

these proteins. Therefore, in the light of the previous data which were obtained using 

different techniques such as Western Blotting and qRT-PCR in mice and human 

subjects, we should further investigate those proteins that showed clear differential 

staining patterns in the setting of Apc deletion induced Wnt derangement, namely 

NAP1L1, RPL6, SRSF2, PHB, NCL and FABP6.  

Published data suggest possible roles for the above proteins during intestinal 

tumourigenesis. These involve critical cellular functions such as proliferation, cell 

cycle progression, apoptosis, chromatin modulation, transcription, pre-mRNA 

splicing, protein synthesis and others.  Our next task will be to attempt to understand 

the role of the selected proteins in colorectal tumourigenesis by investigating the 

cellular functions that they mediate and their main partners in this setting.  
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Chapter four 

 

Mechanistic studies on the functions of 

NAP1L1 and RPL6 and their possible roles 

in colorectal tumourigenesis 
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4. Studying potential roles of selected candidate biomarker proteins in 

colorectal tumourigenesis 

4.1 Introduction and aims 

Due to the importance of APC as a Gatekeeper protein in protecting against the 

initiation of intestinal tumourigenesis, understanding the biology underlying the 

changes that follow APC deletion may have important implications for the 

management of CRC. Loss of APC function has been shown to be a key early event 

in most if not all cases of sporadic colorectal cancer [10]. However, the molecular 

changes that follow this loss have not yet been fully uncovered [44]. 

The previous chapter (3) involved studying 9 candidate biomarker proteins. At the 

end of these studies we demonstrated that the proteins nucleosome assembly protein 

1 like 1 (NAP1L1), ribosomal protein like 6 (RPL6), serine/arginin rich splicing 

factor 2 (SFRS2), prohibitin (PHB), nucleolin (NCL) and fatty acid binding protein 6 

(FABP6) exhibited significant changes in their level of expression and/or sub-

cellular localisation as assessed by IHC in the AhCre
+
Apc

fl/f 
mouse model at five 

days after Apc deletion. Our working hypothesis is that these proteins are part of the 

immediate derangement that occurs following the deletion of Apc and that ultimately 

leads to malignant transformation. To test this hypothesis, we examined the 

expression of these proteins in a cohort of Apc
Min/+ 

mice, a model that involves a 

more extended period (six months) of APC dysfunction and which leads to tumour 

formation. The candidate proteins showed consistent results in the established 

neoplastic lesions in Apc
Min/+ 

mice and the crypts of AhCre
+
Apc

fl/fl 
 mice. 

Based on the results of the previous chapter, data from previous stages of this project 

and the previously published literature, the focus of the studies in this chapter will be 

upon NAP1L1 and RPL6. In addition, published observations by other groups have 

identified a strong correlation between RPL6 and Cyclin E [229] as will be shown 

later in this chapter. Therefore, Cyclin E was also included in the mechanistic studies 

described below. 

The S phase of the cell cycle is a critical stage in which cells replicate their DNA. 

Cyclin E together with its cyclin dependent kinase (CDK) partners regulates the S 

phase [244]. The Cyclin E/CDK2 complex mediates its effects on G1-S phase via 

phosphorylation and inactivation of the retinoblastoma protein (Rbp)-E2F complex 
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[245-247]. E2F then induces the transcription of genes needed for the S phase of the 

cell cycle including Cyclin E itself [248]. In addition, monomeric Cyclin E has been 

shown to perform cell cycle related functions independent of the CDKs [249].  

The exact role of Cyclin E is still under investigation; it has been shown that mouse 

embryos lacking Cyclin E develop normally until day 10 [250], however they then 

develop severe placental defects, suggesting a critical role for Cyclin E in the 

endoreplicative cell cycles of trophoblast giant cells [251]. It has been suggested that 

Cyclin A is sufficient for DNA replication, whereas Cyclin E is required for cells 

restarting cycling following quiescence [250]. Despite this controversy, there is no 

doubt about the catastrophic outcomes of abnormal Cyclin E expression; high levels 

of Cyclin E have been shown to correlate with more advanced stages and grade of a 

critical number of breast cancers as well as a number of other tumour types [252].  

Aims 

1. To study possible roles of the proteins NAP1L1 and RPL6 in regulating 

cellular processes that are known to be critical during intestinal 

tumourigensis. 

2. To assess possible partner molecules for these candidate proteins that may 

mediate their roles during intestinal tumourigenesis.  
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4.2 siRNA mediated silencing of candidate proteins 

Based on data from the previous chapter and from published work by other research 

groups [44], we propose that the upregulations observed in the expression of selected 

candidate proteins following Apc deletion in vivo are Wnt pathway dependent. 

Therefore, human colon cancer cell lines such as HCT116 and HT29 cells which 

harbour an induced WNT pathway are valid in vitro systems to assess the roles of 

these proteins during colorectal carcinogenesis. For this purpose, we have used 

siRNA mediated gene silencing to knock down the expression of candidate proteins 

and to study the impact of these changes on cellular functions. Details about the 

process of siRNA mediated gene knockdown can be found in the methods chapter. 

For this study we used liposome mediated siRNA transfection which included a 

number of elements that first needed optimisation as described below.  

4.2.1 Optimisation of siRNA protocols 

To establish efficient siRNA mediated protein knockdown protocols, a number of 

experimental conditions had to be optimised. These included the following: 

 Optimal cell density for a given time point 

The time point at which a given gene demonstrates maximum knockdown varies 

from one gene to another. Changes in the protein level are more accurate than 

changes in RNA abundance when correlating effects with cellular functions. 

Therefore, knockdown efficiency was initially assessed at the level of protein 

expression. The manufacturers recommend that maximum knockdown at the protein 

level can be observed between days 1 and 3 following siRNA treatment. 

Before testing these time points, the optimal seeding cell densities also needed to be 

determined. To do so, the following criteria were adopted: 

1. Ensuring the largest number of cells in the log phase during the siRNA 

incubation time. This was achieved by avoiding very low cell densities.  

2. Avoiding over confluence: this was achieved by avoiding very high cell 

densities. Slowness in growth due to over-confluence can interfere with data 

interpretation.   

A number of seeding densities were tested for both cell lines in six well plates. The 

densities ranged from 50,000 to 1,600,000 cells in a total volume of 2 mls per well. 

The cell densities that were finally chosen are shown in table 4.1. 
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Cell line 24 hr time point-

cells/well 

48 hr time point- 

cells/well 

72 hr time point- 

cells/well 

HCT116 700,000 300,000 100,000 

HT29 800,000 600,000 400,000 

Table 4.1 Cell line density based on the target time point in 6 well plate format. 

N3, n2. 

 siRNA concentrations and time points 

From previous experience in our laboratory, we knew that HT29 cells are relatively 

difficult to transfect. Therefore, these were made a priority during the optimisation 

process. 

The manufacturer recommended an siRNA final concentration between 5 and 50 nM. 

However, previous experiments using HT29 cells in our laboratory have needed to 

utilise siRNA concentrations above 50 nM to produce observable effects [200].  

Therefore, we decided to start the experimental series using a 25 nM final siRNA 

concentration. This concentration did not cause any observable effect (figure 4.1A), 

consequently the siRNA concentration was increased to 40 and then 50 nM per well 

(figure 4.1A). Each of the above concentrations was tested using the seeding 

densities identified in table 4.1 over three time points, 24, 48 and 72 hrs.  

Knockdown efficiency was assessed by western blot analyses for the selected 

proteins. Initially an observable reduction in expression was only seen with NAP1L1 

using this technique. A number of modifications in the western blotting conditions 

(as shown later in this chapter) were tried in an attempt to detect RPL6; however 

convincing bands were not observed. Therefore, we tested the knockdown efficiency 

for this protein by assessing mRNA expression using qRT-PCR (shown in the 

respective section for this protein). The efficiency assessment by qPCR was carried 

out at the 72 hr time point only. This is because, by the time this technique was used, 

results from other measurements (data shown in detail later in this chapter) had 

suggested that the 72 hr time point was the optimum time required for maximum 

knockdown of the proteins under investigation. 
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Below is an example of the optimisation process for NAP1L1 knockdown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Representative results of the optimisation process for NAP1L1 

knockdown in HT29 cells. A) Shows NAP1L1 WB bands for each siRNA 

concentration over three time points. B) Shows densitometry quantification for 

the knockdown level for the 72 hr time points. The comparison groups were 

untransfected, scrambled siRNA and target siRNA transfected HT29 cells 

(duplicates). Pan actin was used as a loading control. * p value < 0.05. N3, n2. 
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Protein levels are shown as fold changes relative to untransfected cells, but results 

from cells transfected with the scrambled siRNA were used as the basal cellular 

response for interpretation of results and statistical analysis. 

This detailed optimisation was only carried out in HT29 cells. The bands shown in 

figure 4.1A are representative bands from three or more experiments. Although the 

Pan actin bands shown in figure 4.1A are from one 72 hr time point only however, 

there were no changes in the actin levels compared to untreated controls for the other 

time points, concentrations and duplexes. Densitometry analysis of the bands from 

the 72 hr time points (figure 4.1B) showed a maximum reduction in NAP1L1 

abundance (48%, p value 0.04) with the 50 nM target siRNA concentration. 

Densitometry analyses from the other time points are not shown because they 

showed no significant change as assessed by WB images (figure 4.1A). 

Based on the above optimisation process, we chose 50 nM as our final siRNA 

concentration and 72 hours as our target time point for maximum knockdown of 

protein expression.  

 Selecting the optimal DharamaFECT reagent and type 

Dharmacon recommends one or more DharmaFECT reagents (1-4) for each cell line. 

Reagents 1 and 2 were suggested as first choices for HT29 and HCT116 cells 

respectively. Initially DharmaFECT reagent 2 was chosen for both cell lines, since it 

was recommended for both HT29 (6 µl/well) and HCT116 (4 µl/well) cells. 

However, when work on HCT116 cells was started, the knockdown level was 

significantly greater than that obtained with HT29 cells (as shown below) for the 

selected proteins. Moreover, although the cell background plays role in the 

sensitivity to transfection, choosing the right experimental tools may also improve 

the outcome. Therefore, it was decided to test DharmaFECT reagent 1 on HT29 

cells. For this set of experiments the volumes 6 and 8 µl/well were used while the 

other optimised conditions remained the same. Figure 4.2 shows the results from 

these experiments.  
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Figure 4.2 Using DharamFECT reagent 1 instead of reagent 2 for HT29 cells to 

knockdown NAP1L1. A) Shows WB bands from HT29 whole cell lysates. The 

three comparison groups were run in duplicates. B) Shows densitometry 

analysis of the relative expression of NAP1L1 protein in the three groups. This 

reagent was tested at the 72 hr time point. N3, n2. 

Changing DharmaFECT reagent improved the efficiency of the knockdown process. 

Also increasing the transfection reagent volume within the recommended range 

improved the knockdown efficiency (6 µl/well, 70% reduction, p value 0.04 vs. 8 

µl/well, 75% reduction, p value 0.02). 
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4.2.2 Haemocytomter based cell counting  

Haemocytometer based cell counting was used as a preliminary tool for: 

 Assessing the toxicity effect of reagents other than the target siRNA in the 

transfection process. 

 Assessing the knockdown efficiency during the optimisation stage. 

A minimum of 80% viability (as recommended by the manufacturer) in the cells 

transfected with scrambled siRNA was used to rule out any significant nonspecific 

toxicity. 

4.2.3 Optimisation of the siRNA mediated knockdown of the candidate proteins 

in HCT116 cells 

As mentioned above, HCT116 cells were much more sensitive to the transfection 

process than HT29 cells. Optimal knockdown of the selected proteins in these cells 

was assessed by cell counting at the end of each time point (24, 48 and 72 hrs). 

Similar to HT29 cells, results in HCT116 cells clearly suggested that 72 hrs was the 

time point where maximum knockdown occurred (figure 4.3). Therefore, this time 

point was used to assess the knockdown efficiency in these cells (by WB or qRT-

PCR). Assessment of knockdown was carried out for each experiment, but to avoid 

repetition, subsequent examples of knockdown results will be shown in the related 

section for each protein. 
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Figure 4.3 Haemocytometer based cell counting following NAP1L1 knockdown 

in HCT116 cells over three time points. N3, n2. Error bars represent standard 

deviation from the mean. **p value < 0.01. 

Consistent with the results from HT29 cells, counting of HCT116 cells demonstrated 

a maximum reduction in proliferation after 72 hrs incubation with the target siRNA. 

The target siRNA group showed 53% (p value 0.002) reduction at the 72 hr time 

point versus 40% and 35% reduction at 24 and 48 hr time points respectively. 

Based on results from the above experiments, the table below summarises the 

optimal conditions for each cell type and the siRNA concentrations as well as the 

transfection reagent type and volumes used. 

 Plate 

format-

well 

number 

Final  

siRNA 

conc. 

(nM/well) 

Volume of 

DharmaFECT 

reagent 

(µl/well) 

Time point 
Cell density 

per well 

HCT116 6 50 4  (TR2) 72 hours 100,000 

HT29 6 50 8 (TR1) 72 hours 400,000 

 

Table 4.2 Optimal experimental conditions for the siRNA treatment of HCT116 

and HT29 cells. NB. The total volume in each well was 2 ml. 
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4.3 Effect of NAP1L1 knockdown on cellular proliferation and apoptosis in 

cultured HCT116 and HT29 cell lines 

NAP1L1 has been shown to be involved with nucleosome assembly, histone 

transport, transcriptional regulation and cell cycle progression [228]. Moreover, 

NAP1L1 was one of the upregulated proteins in AhCre
+
Apc

fl/fl 
mice as demonstrated 

by the proteomic analysis carried out by previous colleagues using this model. 

Furthermore, NAP1L1 showed cytoplasmic overexpression in the crypts of 

AhCre
+
Apc

fl/fl 
mice and colonic adenomatous lesions from Apc

Min/+ 
mice compared to 

their wild type counterparts (as shown in chapter 3). 

To assess the significance of NAP1L1 upregulation in transformed cells in which 

Wnt signalling pathway is active, we used siRNA to knockdown NAP1L1 expression 

in HT29 and HCT116 cells and studied the impact of this on cell proliferation and 

survival as well as on apoptosis. WB was used to assess the knockdown efficiency. 

Shown below are the results of NAP1L1 knockdown in HCT116 and HT29 cells 

using various assessment techniques. The experiments were carried out under the 

optimised conditions described above.  

4.3.1 NAP1L1 knockdown in HCT116 cells 

After 72 hours incubation with a NAP1L1 specific siRNA, western blot analysis of 

HCT116 whole cell extracts showed more than 95% reduction in NAP1L1 

expression relative to that from the scrambled siRNA group (p value 0.02) (figure 

4.4b). 
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Figure 4.4 A) Western blot (representative of 3 experiments) of HCT116 whole 

cell proteins probed with anti-NAP1L1 antibody. Pan actin was used as loading 

control. B) Densitometry analysis of NAP1L1 expression relative to 

untransfected cells (N3, n2). Error bars represent standard deviation from the 

mean. * p value is < 0.05. 

 

4.3.2 Impact of NAP1L1 knockdown on proliferation and apoptosis in HCT116 

cells 

The effect of knocking down NAP1L1 expression in HCT116 cells was preliminarily 

assessed using haemocytometer based cell counting. A hundred thousand cells were 

plated in duplicates into 6 wells plates. Twenty four hours later, media were replaced 

with equal volumes of fresh antibiotic free media or transfection media accordingly. 

After 72 hours incubation at 37 ºC, floating cells (indicative of the apoptosis rate) in 

the media and attached cells (indicative of the proliferation rate) were counted using 

the haemocytometer method (figure 4.5). 
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Figure 4.5 Haemocytometer based cell counts. NAP1L1 knockdown in HCT116 

cells, 72 hr time point. A) Change in attached cell number. B) Percentage of 

apoptotic cells to total cells per sample. Error bars represent standard deviation 

from the mean. (N3, n2) and * p value < 0.05. 

Cells transfected with the scrambled siRNA did not show significant toxicity relative 

to untransfected cells. However, cells transfected with NAP1L1 specific siRNA 

showed a significant reduction in cell number (figure 4.5A, p value 0.02). Cells 

floating in the media from each well were counted and are shown as a percentage 

relative to total cells per well. Absolute numbers might be misleading due to the 

reduction in the total number of cells in the transfected group. An increase in 

apoptosis was observed concomitant with the reduction in proliferation after 

NAP1L1 knockdown, but this was not significant (figure 4.5B). 
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4.3.3 NAP1L1 knockdown in HT29 cells 

The above experiment was repeated with HT29 cells as shown below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 A) Western blot (representative of 3 experiments) of HT29 whole cell 

proteins probed with anti-NAP1L1 antibody. Pan actin was used as loading 

control. B) Densitometry analysis of NAP1L1 expression relative to 

untransfected cells (N3, n2).*p value < 0.05. 

HT29 cells were more resistant to transfection than HCT116 cells; hence the degree 

of knockdown was not as great as in HCT116 cells. This was further reflected in cell 

counts as shown below: 
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Figure 4.7 Haemocytometer based cell counts. NAP1L1 knockdown in HT29 

cells, 72 hr time point. A) Change in attached cell number. B) Percentage of 

apoptotic cells to total cells per sample. Error bars represent standard deviation 

from mean (N3, n2). * P value 0.01. 

The transfection conditions were the same as those for HCT116 cells except for the 

transfection reagent. Attached cells in the transfected group were reduced in number 

after 72 hours relative to the control cells (figure 4.7A) with a concomitant increase 

being observed in the number of apoptotic cells (figure 4.7B). Whilst the trend was 

the same, the magnitude of the effect (proliferation inhibition) was less in HT29 cells 

compared to HCT116 cells. 
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4.3.4 Independent assessment of cellular proliferation and cell survival after 

NAP1L1 knockdown in HCT116 and HT29 cells 

Whilst the haemocytometer based cell counting method provided a good preliminary 

assessment for proliferation and cell survival, we also assessed these parameters 

using more accurate and objective Sulphrhodamine B (SRB) and clonogenic survival 

assays.  These two assays involve a measurement of cell growth over longer periods 

of time, and therefore allow better and less subjective demonstration of any sustained 

changes following transfection. 

SulphorhodamineB (SRB) and Clonogenic assays 

The optimised transfection conditions outlined above were used. However, we used 

the 48 hour time point as the starting point for these assays. This was done to balance 

the level of transfection with the avoidance of dilution of samples with newly 

dividing untransfected cells. 

Previous SRB studies on HCT116 and HT29 cells in our laboratory have established 

a seeding density of 1000 cells/well to be optimal for 96 well plates [253]. 

Untransfected cells, cells transfected with a scrambled siRNA and cells transfected 

with the target siRNA were seeded in adjacent columns in 6 replicate wells. Seven 

plates were used to allow cells to grow for 1-7 days. Each day a plate was fixed and 

stained with the SRB dye and the optical density for each sample was determined 

using a micro plate reader at 572 nm wave length. 

For clonogenic assays, as again established previously in our laboratory, HCT116 

(500 cells/well) and HT29 (1000 cells/well) cells were seeded in 6 well plates using 

the above comparison groups in triplicates [254]. Cells were grown in the respective 

complete media (methods section) for 10 days. Then they were fixed and stained 

with crystal violet before manually counting colonies. 

Below are shown the results for the 7 day SRB assays following NAP1L1 

knockdown in both HCT116 and HT29 cells (figure 4.8). 
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Figure 4.8 SRB assays following proliferation for 7 days: (A) HCT116 and (B) 

HT29 cells showed reduced cellular density after knocking down NAP1L1. 

Error bars represent standard deviation from the mean (N3, n6). *p value < 

0.05. 

NAP1L1 knockdown caused the transfected cells to be less capable of increasing 

their numbers compared to the control cells, in both cell lines. This was apparent 

after day 3 and became significant at days 6 (p value 0.02) and 7 (p value 0.01) in 

HCT116 cells and days 3 (p value 0.04) and 4 (p value 0.03) in HT29 cells. 

 

 

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8

O
p

ti
ca

l d
es

n
it

y,
 5

72
 n

m
 

Days 

SRB assay, NAP1L1 knockdown, HT29 cells 

Untransfected

Scrambled siRNA

Target siRNA

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8

O
p

ti
ca

l d
en

si
ty

, 5
72

 n
m

 

Days 

SRB assay, NAP1L1 knockdown, HCT116 cells 

Untransfected

Scrambled siRNA

Target siRNA

* 
* 

* 
* 

A 

B 



158 
 

Clonogenic survival assay following NAP1L1 knockdown in HCT116 and HT29 

cells 

To further evaluate the effect of NAP1L1 knockdown on cellular viability we also 

performed clonogenic survival assays in both cells lines, as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Clonogenic survival assay. Both HCT116 cells (A) and HT29 cells (B) 

showed a significant reduction in survival and colony forming ability after 

NAP1L1 knockdown (* p value <0.05). Error bars represent standard deviation 

from the mean (N3, n3). 

NAP1L1 knockdown significantly affected the ability of both HCT116 and HT29 

cell lines to survive and form colonies. Consistent with the SRB assay, cells were not 

able to compensate for the growth defect that was caused by the initial reduction in 

NAP1L1 expression. 
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4.4 Effect of siRNA mediated knockdown of RPL6 on proliferation and 

apoptosis in HCT116 and HT29 cell lines 

RPL6 protein is a member of the ribosomal family of proteins (RPs) that are mainly 

involved in ribosome biosynthesis and protein translation [229]. The role of  RPL6 is 

not yet fully understood in cancer development. However, recent work has suggested 

a possible role for RPL6 in promoting cell cycle progression (G1 to S) and cellular 

proliferation in human gastric cancer cell lines [163]. 

4.4.1 RPL6 knockdown in HCT116 cells 

The optimisation process and final experimental conditions were as described 

previously. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 A) Western blot (representative of 3 experiments) of HCT116 whole 

cell proteins probed with anti-RPL6 antibody. Pan actin was used as loading 

control. B) Densitometry analysis of RPL6 expression relative to untransfected 

cells (N3, n2).**p value < 0.01. 

HCT116 cells showed a significant reduction in RPL6 level (by 57%, p value < 0.01) 

72 hrs after transfection (figure 4.10B). 
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As the results of knockdown assessment by WB were variable across the different 

experiments despite the use of several modifications in the protocols as described on 

page 47 in the previous chapter, we decided to also assess this at the level of mRNA. 

 

 

 

 

 

 

 

Figure 4.11 qRT-PCR analysis of relative RPL6 expression in HCT116 cells 72 

hrs following RPL6 knockdown. Error bars represent standard deviations from 

means. N3, n3. *** p value < 0.001. 

There was an approximately 80% (p value <0.001) reduction in RPL6 mRNA 

abundance relative to that from cells transfected with the scrambled siRNA. 
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Cell counting was performed post-tranasfection for the preliminary assessment of 

proliferation and apoptosis as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Haemocytometer based cell counts. RPL6 knockdown in HCT116 

cells, 72 hrs time point. A) Change in attached cell number. B) Percentage of 

apoptotic cells to total cells per sample. Error bars represent standard deviation 

from mean (N3, n2). *** & ** P values <0.001 and <0.01 respectively.  

HCT116 cells showed an obvious and significant inhibitory effect on proliferation 

following RPL6 knockdown peaking at 72 hrs after transfection. This was associated 

with a concomitant increase in the number of apoptotic cells (figure 4.12B). 
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4.4.2 RPL6 knockdown in HT29 cells 

In HT29 cells, due to inability to demonstrate RPL6 knockdown by WB, we used 

RT-PCR to determine the efficiency of the mRNA knockdown as shown below 

(figure 4.13A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 RPL6 knockdown in HT29 cells, 72 hrs time point. A) Relative 

RPL6 mRNA expression (N3, n3). B) Change in attached cell number. C) 

Percentage of apoptotic cells to total cells per sample. Error bars represent 

standard deviation from the mean (N3, n2).*p value < 0.05. 

The significant reduction (40%, p value <0.01) in RPL6 mRNA level (figure 4.13A) 

was not associated with a concomitant effect on cellular proliferation (figure 4.13B). 

However, there was a significant increase in apoptosis percentage (figure 4.13C). 
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Again SRB and clonogenic assays were used to more accurately investigate the 

effects of RPL6 knockdown in HCT116 and HT29 cells (figures 4.14 and 4.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14 SRB assay, HCT116 (A) and HT29 (B). Cells showed reduced 

proliferation after knocking down RPL6. Error bars represent standard 

deviation from the mean (N3, n6). P value * <0.05, ** < 0.001 

Consistent with the findings obtained by the haemocytometer method, the SRB 

assays identified a statistically significant (at days 5-7 in both cell lines) reduction in 

cell proliferation. 
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Again cell viability following RPL6 knockdown in both cells lines was also assessed 

using colonogenic survival assays as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 Clonogenic survival assay. Both HCT116 cells (A) and HT29 cells 

(B) showed a significant reduction in survival and colony forming ability after 

RPL6 knockdown (* p value <0.05 and ** < 0.01). Error bars represent 

standard deviation from the mean (N3, n3). 

The results are in agreement with the cell counting technique, identifying a 

statistically significant inhibition of cell survival following RPL6 knockdown. 
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4.5 Assessment of RPL6 and Cyclin E expression and relationship in murine 

models of CRC 

Ribosomal protein like 6 (RPL6) has been mainly linked to ribosome biosynthesis 

and protein translation [229]. There is increasing evidence that Ribosomal proteins 

are involved in different cancer processes [231, 255]. However, not much can be 

found on the involvement of RPL6 in cancer, particularly in CRC. One recent study 

on gastric cancer cell lines suggested that RPL6 up-regulation mediated tumour 

growth as well as tumour resistance to drug induced apoptosis. Moreover, they 

suggested Cyclin E as a possible partner molecule [229]. Furthermore, they were 

able to show co-localisation or RPL6 and Cyclin E in human gastric cancer samples. 

Here were tried to study the relationship between RPL6 and Cyclin E in our models 

of colorectal tumourigeneis. Using IHC, the expression of these two proteins was 

studied in AhCre
+
Apc

fl/fl 
and Apc

Min/+
 mice which represent the immediate stage and 

a more extended period following the deletion of Apc, respectively. 
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Figure 4.16 Small intestinal sections (villi-upper panel and crypts-lower panel) 

from the AhCre
+
Apc

+/+ 
(A and C) and AhCre

+
Apc

fl/fl 
(B and D) mice. A & B show 

RPL6 expression (Proteintech, dilution of 1:200) and C & D show Cyclin E 

(Santa Cruz, dilution of 1:600) staining. The secondary antibody was from Dako 

(dilution of 1:200). All images were taken with an X40 objective. A cohort of 3-5 

mice was used for each group. 

Within only 5 days there was nuclear overexpression of RPL6 in the Wnt active 

areas of the  AhCre
+
Apc

fl/fl
 (figure 4.16B) mice in comparison to their wild type 

counterparts (figure 4.16A). On the other hand Cyclin E, although mentioned to be 

overexpressed following the same pattern as RPL6 [229]; did not show nuclear 

overexpression.  Cyclin E showed intense granular staining at the crypt bases in the 

Ahcre
+
Apc

fl/fl
 mice (figure 4.16D). At this stage we thought that these were most 

likely to be Paneth cell granules. To test the latter assumption we also stained 

sections from the above models with an anti-Lysozyme antibody as shown below. 

AhCre+Apc+/+            AhCre+Apcfl/fl AhCre+Apc+/+            AhCre+Apcfl/fl 

A B C D 

                      RPL6                                                 Cyclin E 
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Figure 4.17 Small intestinal sections (villi-upper panel and crypts-lower panel) 

from the Ahcre
+
Apc

+/+ 
(A) and  Ahcre

+
Apc

fl/fl 
(B) mice. These are stained with 

anti-Lysozyme antibody (Dako, dilution of 1:200). The secondary antibody was 

also from Dako (dilution of 1:200). All images were taken with an x40 objective. 

A cohort of 3-5 mice was used from each group. 

Staining with anti-Lysozyme antibody is one of the ways of staining Paneth cells 

[44]. The staining confirmed that those granules at the base of the crypts in the  

AhCre
+
Apc

fl/fl
 (figure 4.16D) mice and that demonstrated intense Cyclin E staining 

were actually Paneth cell granules. 

After making this interesting observation with RPL6 and Cyclin E in the 

AhCre
+
Apc

fl/fl
 mice, we used the same IHC conditions to study the same proteins in 

the second mouse model, the Apc
Min/+

 mouse. The results are shown below. 

 

 

 

 

A B 



168 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Colonic sections from six month old Apc
+/+

 (A & C) and Apc
Min/+

 

mice (B & D). These were stained with anti-RPL6 antibody (Proteintech, 

dilution of 1:200) (A & B) and anti-Cyclin E antibody (Santa Cruz, dilution of 

1:600) (C & D). The secondary was from Dako (dilution of 1:200). Images were 

taken with X40 objective. A cohort of 3-5 mice were used from each group. 

The results in Apc
Min/+

 mice were in agreement with those from the Ahcre
+
Apc

fl/fl
 

mice. RPL6 showed increased nuclear expression in the colonic adenoma (figure 

4.18B). Cyclin E was excluded from the nuclei and was mainly over expressed in the 

cytoplasm in the polyp tissue (figure 4.18D). Western blot analysis was tried to 

further assess the changes in Cyclin E expression in these mouse models, however 

results were too non-specific to be interpreted.  
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4.6 Discussion  

In chapter three, we demonstrated that a number of our candidate proteins showed 

clear differential staining in the context of Apc deletion in vivo. Therefore, we 

decided to investigate the role of those proteins that showed the most consistent 

changes and which represented novel areas for better understanding the development 

of CRC.  For this reason we chose to study NAP1L1 and RPL6. 

RNA interference is an effective method for studying the functions of target proteins 

through regulating their mRNA expression [256]. However, particularly transient 

siRNA inhibition is limited by a number of factors. These include the time cells take 

to double their numbers, the significance of the target gene in proliferation and the 

half-life of the target protein [256].  

Moreover, the outcome of RNA interference (RNAi) may vary according to cell type 

due to variation in their susceptibility to transfection. In an attempt to understand the 

response of HCT116 and HT29 cells to the protein knockdown process, it is 

important to understand their genetic backgrounds. Both HCT116 and HT29 cells 

have a genetic profile that suggests the presence of an induced WNT pathway. 

However, the level of derangement may have a critical role in cell behaviour and the 

underlying protein networks. Unlike HCT116, HT29 cells are defective at the level 

of APC, therefore there might be other mechanisms that may inhibit the WNT 

pathway such as PTEN (phosphatase and tensin) protein [257]. By contrast in 

HCT116 cells, the defect is at the level of Beta catenin, rendering it resistant to any 

degradation. This may partly explain the more aggressive phenotype exhibited by 

these cells. There are reports that support this concept; one paper suggested that the 

level of Beta catenin activity has critical effects on tumour development. This notion 

has been validated in different Apc mutant mice which showed different levels of 

Beta catenin activity and different tumour phenotypes [63]. To complicate the matter 

further, some cell lines are inherently more resistant than others to siRNA 

transfection.  

In humans and mice, the NAP1 family consists of at least five members, NAP1L1, 

NAP1L2, NAP1L3, NAP1L4, and NAP1L5. Interestingly, three of the NAP1-like 

proteins (NAP1L2, NAP1L3, and NAP1L5) are almost exclusively found in the 

brain. However, NAP1L1 and NAP1L4 are expressed ubiquitously in all vertebrates 
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[258]. Some publications have described NAP1L1 as a cancer-related protein [148, 

259]. NAP1L1 and NAP1L4 serve as cytoplasmic anchors for Diacylglycerol kinase 

(DGK) and have potential protective effects against conditions of stress [260]. DGK 

is involved in the regulation of lipid mediated signal transduction through the 

metabolism of the second messenger diacylglycerol. Moreover, a recent study has 

shown that knocking down NAP1L1 in P19CL6 cells induced them to differentiate 

into cardiomyocytes [260]. 

In this thesis, knocking down NAP1L1 expression in HCT116 and HT29 human 

CRC cell lines caused a moderate effect on cellular proliferation as demonstrated by 

the various techniques employed. HCT116 cells were more sensitive to NAP1L1 

inhibition than HT29 cells. This observation may be attributed to differences 

between the two cell lines or the resistance to transfection exhibited by the latter. 

Moreover, this result may support the suggestion that NAP1L1 is involved in the 

state of cellular de-differentiation [260]. Therefore, knocking down NAP1L1 

expression in HCT116 cells in particular may contribute to the reduction in their 

aggressive behaviour.  

Changes in the tightly regulated process of ribosomal biogenesis have been 

implicated in a number of human pathologies [261].  Therefore, it is important to 

study the elements involved in this process including ribosomal proteins [262]. RPL6 

is another protein that was upregulated in the AhCre
+
Apc

fl/fl 
mouse 

 
intestine and that 

is also relatively new to the field of colorectal carcinogenesis. However, the role of 

the ribosomal family of proteins has been increasingly suggested in different cancers 

such as breast and oesophageal cancers [232, 233]. A recent study evaluating RPL6 

in gastric cancer lines suggested a possible role for RPL6 in promoting cell cycle 

progression (G1 to S), cellular proliferation and mediating resistance against drug 

induced apoptosis [163]. 

RPL6 knockdown in HCT116 and HT29 cells caused a marked inhibition of cell 

proliferation. Again the effect was more noticeable in HCT116 cells. This finding 

supports a role for RPL6 in mediating cell cycle progression and cellular 

proliferation. Moreover, RPL6 inhibition in both cell lines caused reduced viability 

and colony forming ability. This agrees with the observation that RPL6 upregulation 

causes enhanced colony forming abilities in gastric cancer cell lines [229]. 
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Furthermore, the observed increased rate of apoptosis following RPL6 knockdown, 

agrees with the notion that RPL6 up-regulation mediates resistance to apoptosis by 

tumour cells.  These findings make RPL6 a potential prognostic biomarker and even 

a therapeutic target at least in a subset of tumours.  

As we and others have shown, loss of APC function in the intestine is associated 

with a constitutively active Wnt pathway, and this leads to a state of 

hyperproliferation and the expression of a range of genes such as those involved in 

regulating the cell cycle including c-Myc and Cyclin D2 [263]. Recent work has 

shown that the Cyclin D2-cyclin dependent kinase 4/6 (CDK4/6) complex induces 

hyperproliferation in Apc deficient intestinal tissue and Apc
Min/+

 adenomas [263]. 

Moreover, this same work showed that the hyperproliferative state is partly attributed 

to Cyclin D2. By inhibiting the latter the authors were able to suppress the 

hyperprolifertive state and the adenoma cells. This is a good example of the 

importance of finding alternative therapeutic targets for undruggable molecules such 

as Beta catenin and c-Myc in CRC. In a similar context, Cyclin E has also been 

shown to be part of the tumourigenesis process in gastric cell lines [229]. Cyclin E 

was also shown to be linked to RPL6 in these cell lines and in human gastric cancer 

samples [229]. Therefore, we decided to study Cyclin E expression in the same Wnt 

active areas that showed RPL6 overexpression in our CRC mouse models. This 

might help to open new opportunities to find more suitable therapeutic targets in 

CRC management. 

The normal cell cycle is tightly controlled such that cells are only allowed to divide 

in a timely and scheduled manner. The control machinery involves two classes of 

proteins: the cyclin dependent kinases (CDKs) and their activators, the cyclins [264]. 

The G1/S phases of the cell cycle are mediated primarily by retinoblastoma 

susceptibility protein (Rb). Rb protein binds to the E2F family of transcription 

factors and acts as a repressor for genes required to mediate the S phase [263]. In 

early G1 phase, Cyclin D activates CDK4/6. The resultant complex leads to the 

phosphorylation of Rb, which in turn releases the E2F factor. The latter in turn 

induces the expression of genes needed for DNA replication and promotion of the 

G1/S phase of the cell cycle including Cyclin E [248]. 
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Figure 4.19 The mechanism by which Cyclin E mediates its function in cell cycle 

regulation. 

The Cyclin E/Cdk2 complex is required for the phosphorylation and inactivation of 

Rb releasing E2F factor (figure 4.19). Interestingly, Cyclin E can induce its own 

expression in a positive feedback loop. Not surprisingly, normal cells maintain strict 

control of Cyclin E activity and Cyclin E has been reported to be upregulated in 

many tumours including CRC. Not only that, but Cyclin E deregulation is thought to 

play a fundamental role in tumorigenesis [265]. Cyclin E has also been shown to be 

associated with high grade tumours and poor prognosis in CRC patients and 

therefore it is a potential prognostic marker [264]. The most common means of 

activating Cyclin E expression in cancers involve mutations in regulatory pathways, 

rather than within Cyclin E itself. 

We have shown that, in the setting of acute Apc loss in the small intestine of 

AhCre
+
Apc

fl/fl 
mice, Cyclin E showed intense staining in Paneth cell granules (figure 

4.16). At the same time, there was no obvious differential staining in other epithelial 

cell types relative to their wild type counterparts. To confirm this observation, an 

anti-lysozyme antibody was used to stain Paneth cells (figure 4.17). This showed the 

same granular staining pattern that was seen with the anti-Cyclin E antibody. 

Cyclin E/Cdk2
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Moreover, the absence of similar staining in the Paneth cells of control animals ruled 

out any nonspecific staining. 

To explain this observation, we need to explore the role of Paneth cells in the stem 

cells niche in the small intestine. The location and direction of Paneth cell migration, 

their high density and long residency time at the crypt base, and the nature of their 

secreted gene products, suggest that they may influence the structure and/or function 

of the stem cell niche [266]. For example, it has been shown that Paneth cells 

regulate the numbers of intestinal stem cells in vivo and that CD24 positive Paneth 

cells express EGF, TGF-a, Wnt3 and the Notch ligand Dll4, all of which are essential 

signals for stem-cell maintenance in culture [77]. Moreover, it has also been shown 

that the ability of stem cells to form organoids improves by co-culturing them with 

Paneth cells [77]. In addition, genetic deletion of Paneth cells results in the loss of 

Lrg5 stem cells. These observations indicate that Paneth cells at least feed a 

subgroup of stem cells with the essential signals for their sustainability. Cyclin E 

could be involved in this complex relationship between Paneth cells and stem cells. 

This may explain the observed increased level of Cyclin E in Paneth cells in the 

setting of a deranged Wnt pathway following the loss of Apc. 

In Apc
Min/+ 

mice, Cyclin E showed cytoplasmic staining in the colonic adenomas of 

six month old mice. To further highlight the role of Cyclin E in colorectal 

tumourigenesis, WB analysis was also used to study its expression in  AhCre
+
Apc

fl/fl   

and Apc
Min/+ 

mice as well as in HT29 and HCT116 cells following RPL6 knockdown. 

This is because Cyclin E upregulation in the setting of Apc loss induced Wnt 

activation could further support the role of this protein in the events observed. 

Moreover, the level of Cyclin E following RPL6 knockdown could provide a more 

objective indication about the relationship between these two proteins. However, 

unfortunately, due to the lack of sufficient samples and availability of good quality 

antibodies, it was not possible to produce blots that were good enough for 

quantification purposes. Moreover, lack of time did not allow the use of an 

alternative quantification technique such as qRT-PCR. 

Therefore, based only on IHC alone, a firm conclusion cannot be drawn about the 

relationship between RPL6 and Cyclin E in the setting of Apc deletion, apart from 

their concomitant overexpression.  
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In conclusion, it appears that NAP1L1 and RPL6 both play roles in mediating the 

hyper-proliferative state that is associated with activation of the Wnt pathway 

following Apc deletion. This was evident by the techniques used to assess 

proliferation (cell counting and SRB assay) and to assess cell viability and colony 

forming ability (clonogenic assay). Although, other work (not shown) by our group 

has demonstrated a similar pattern of expression between NAP1L1 and RPL6 in the 

serum of patients at different stages of CRC by ELISA (Dr. Fei Song), and it has 

been mentioned that RPL6 is one of the genes that has an expression profile closely 

related to NAP1L1 (G2SBC data base, breat cancer) [267], more specific tools such 

as immunoprecipitation and upregulation studies are needed to investigate whether 

there is any direct interaction between these proteins.  

Some studies have suggested a role for Beta catenin in the control of G1/S transition 

[268]. In this context, the candidate proteins RPL6 and NAP1L1 could therefore be 

possible mediators of this function of Beta catenin. 
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5. Mechanistic studies on the function of SFRS2 and its possible roles in 

colorectal tumourigenesis 

5.1 Introduction  

SFRS2 was among the proteins that showed upregulation in the proteomics analysis 

performed in the AhCre
+
Apc

fl/fl 
mice by a previous colleague in our department 

[147]. Also in chapter three, using IHC, it was shown that SFRS2 was upregulated in 

the intestine in the setting of acute Apc deletion and in colonic adenomas from six 

month old Apc
Min/+ 

mice. Moreover, preliminary work by our team at a previous 

stage of this project showed upregulation of SFRS2 in human CRC samples (blood 

and tissue). Therefore, we decided to further analyse the role of this protein in 

colorectal tumourigenesis.  

SFRS2 belongs to the serine rich (SR) family of proteins, one of the most important 

regulators of pre-mRNA splicing [234]. Pre-mRNA splicing is a critical process, 

because it is an important mechanism of genetic diversity [269]. Although SR 

proteins have well been documented to be linked to mRNA splicing in vitro, less is 

known about their role in vivo. However, SR proteins have been shown to be 

involved in critical biological functions such as cell viability and animal 

development [234].   

In an attempt to expand our knowledge about SFRS2, it was important to find a 

partner molecule with which it may directly or indirectly interact. We therefore 

carried out a literature search. A paper published in 2002 demonstrated that CDC5L 

(cell division cycle 5 like) overexpression displaced SFRS2 into the cytoplasm in cell 

lines [270]. This is even more interesting as both molecules are involved in the same 

spectrum of cellular functions such as pre-mRNA splicing and cell cycle progression. 

Therefore, we hypothesised that there may be some kind of antagonistic relationship 

between SFRS2 and CDC5L in mediating these functions.  

For the above reasons we decided to study the possible interconnected roles of 

SFRS2 and CDC5L in colorectal tuomourigenesis using animal and human cell line 

models of CRC.  
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Aims  

 To study the roles of SFRS2 and CDC5L in colorectal tumourigenesis 

 To compare the results of the above studies to investigate whether there are 

any possible functional interactions between these two proteins 

 

5.2 Comparison of SFRS2 and CDC5L expression in colorectal tumourigensis 

using IHC 

From our observations and evaluation of the published literature, there appears to be 

an important interaction between SFRS2 and CDC5L. Therefore, the expression of 

SFRS2 and CDC5L was initially investigated by IHC in three mouse models 

representing critical stages during colorectal tumourigenesis.  

5.2.1 SFRS2 and CDC5L expression in AhCre
+
Apc

fl/fl 
mice 

As described in chapter three, the AhCre
+
Apc

fl/fl
 mouse model allows the evaluation 

of events that occur in the intestine immediately after Apc deletion. Below are 

representative images showing the expression of SFRS2 and CDC5L in paraffin 

embedded sections of small intestinal epithelium from AhCre
+
Apc

fl/fl 
mice.  

 

 

 

 

 

 

 

 

Figure 5.1 Representiave images of paraffin embedded sections from murine 

small intestinal epithelium (top panel are villi and lower panel are crypts). A 

and B show AhCre
+
Apc

+/+
 and AhCre

+
Apc

fl/fl
 sections, respectively stained with 

anti-Beta catenin antibody; C and D are AhCre
+
Apc

+/+
 and AhCre

+
Apc

fl/fl
 

sections, respectively stained with anti-SFRS2 antibody; E and F are 

AhCre
+
Apc

+/+
 and AhCre

+
Apc

fl/fl
 sections, respectively stained with anti-CDC5L 

antibody. All images are X40 objective original magnification. 

A E D C B F 

    Apc+/+                       Apcfl/fl                        Apc+/+                 Apcfl/fl                     Apc+/+              Apcfl/fl 
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Beta catenin nuclear localisation indicated the presence of an active Wnt signalling 

pathway localised to the crypt areas of the small intestine in AhCre
+
Apc

fl/fl
 animals 

(figure 5.1B). SFRS2 did not show any observable expression in control intestinal 

epithelium (figure 5.1C). However, clear nuclear expression was observed in the 

Apc
fl/fl

 tissue (figure 5.1D). The latter was mainly in the form of speckles. 

Interestingly, while CDC5L showed a predominantly nuclear staining pattern in 

control small intestinal tissue (figure 5.1E), it was detected in the cytoplasm either 

equally or more intensely in the Apc knockout tissues (figure 5.1F). The latter 

observation may be due to displacement of CDC5L from the nuclei into the 

cytoplasm following Apc deletion. 

5.2.2 SFRS2 and CDC5L expression in Apc
Min/+ 

mice 

The expression of SFRS2 and CDC5L was also assessed in neoplastic lesions in  

Apc
Min/+ 

mice. This model allows evaluation of a more extended period of Apc 

induced changes that lead to tumour formation. Below are representative images of 

IHC in this model (figure 5.2). 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Representative images of paraffin embedded sections from Apc
+/+ 

colonic mucosa (A, C and E) and colonic polyps in six month old Apc
Min/+ 

(B, D 

and F) mice. A and B show Beta catenin staining. C and D show SFRS2 staining. 

E and F show CDC5L staining. The experimental conditions were the same as 

those described in figure 5.1. All images are X40 magnification. 

Apc
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Beta catenin staining showed evidence of active Wnt signalling in the polyps. 

Consistent with the findings from the AhCre
+
Apc

fl/fl
 mouse model, SFRS2 and 

CDC5L showed nuclear overexpression and increased cytoplasmic staining 

respectively in areas of adenoma. The interesting difference was that CDC5L 

expression was virtually absent from the nuclei in the adenomatous tissue (figure 

5.2F), whereas nuclear staining was as strong as the cytoplasmic staining in the 

AhCre
+
Apc

fl/fl 
mice (figure 5.1F, crypt area). This may be due to the longer time 

these lesions take to develop in Apc
Min/+ 

mice compared to those in the AhCre
+
Apc

fl/fl
 

mouse model. 

5.2.3 Assessment of WNT pathway activation and SFRS2 and CDC5L 

expression in animal models of early and advanced intestinal tumourigensis 

using IHC 

Due to the importance of WNT signalling pathway in colorectal tumourigensis, we 

investigated the state of this pathway in intestinal lesions from animal models known 

to have Apc deletion and a deranged Wnt pathway. AhCre
+
Apc

fl/fl 
and Apc

Min/+ 
mice 

represent the relatively early stages in which lesions are not transformed. The 

AhCreER
T+

Apc
fl/+

Pten
fl/fl

 mouse represents a model of accelerated intestinal 

tumourigensis which leads to the formation of malignant lesions in the intestine 

[182]. This enhanced tumourigensis is due to the addition of Pten knockout to a 

background in which Apc is also deleted [182]. Figure 5.3 shows different time 

points during the colorectal tumourigensis process using these animals. Nuclear 

localisation of Beta catenin was used as a surrogate marker for Wnt pathway activity.  

 

 

 

 

 

 

 

 

 

 

 



180 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Representative images of murine intestinal sections stained with anti-

Beta catenin antibody showing Wnt pathway activity at different time points 

during intestinal tumourigenesis. The secondary antibody was from Dako. A) 

Small intestinal crypt from an AhCre
+
Apc

+/+ 
mouse, (B) colonic section from an 

Apc
+/+ 

mouse. (C) Small intestinal crypt from an AhCre
+
Apc

fl/fl 
mouse, (D) 

neoplastic lesion from a one month old Apc
Min/+ 

mouse, (E) neoplastic lesion 

from a three month old Apc
Min/+ 

mouse, (F) neoplastic lesion from a six month 

old Apc
Min/+ 

mouse and (G) neoplastic lesion from an AhCreER
T+

Apc
fl/+

Pten
fl/fl

 
 

mouse. All images were taken with an X40 objective. Sections were from at least 

three mice in each group. 

As we showed previously (chapter 3), Beta catenin is mostly membranous under 

unstimulated conditions (figures 5.3 A and B). However, very early following Apc 

deletion, overexpression of Beta catenin occurs, which is manifested as nuclear 

translocation (figures 5.3 C, D, E and F). Interestingly, after transformation, Beta 

catenin overexpression persisted, but it was no longer localised to the nuclei (figure 

5.3 G).  

Due to the above observations, and because our candidate proteins are probably Wnt 

pathway dependent, we decided to study their expression in this tranformation 

model. We therefore stained intestinal lesions from AhCreER
T+

Apc
fl/+

Pten
fl/fl 

mice 

A 

E D C 

B 

F G 

        5 days                   1 month                   3 months              6 months                 malignancy  
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with anti-NAP1L1, RPL6 and SFRS2 (also FABP6, NCL and PHB) antibodies 

(sources of antibodies and experimental conditions were as described in chapter 3). 

Unfortunately, the antibodies used did not stain these sections. A possible reason for 

this is that a different fixation method (Methacarn, 60% absolute methanol, 30% 

chloroform and 10% glacial acetic acid) was used in the preparation of these 

sections. This fixative has been described as affecting the antigen binding efficiency 

of some antibodies [271]. Moreover, other factors might have been responsible such 

as the duration of the storage of the tissue slides; tissue slides that are more than 2 

months old are often suboptimal for IHC. 

However, when we stained sections from the same source with the anti-CDC5L 

antibody (under the same conditions described above) the results were interesting; 

below are representative images of CDC5L staining in AhCreER
T+

Apc
fl/+

Pten
fl/fl 

mice 

(figure 5.4). 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Representative images of murine small intestinal sections stained 

with anti-CDC5L antibody (experimental conditions were the same as in figure 

5.1). A and B) AhCreER
T+

Apc
fl/+

Pten
+/+

. C and D) A malignant lesion from 

AhCreER
T+

Apc
fl/+

Pten
fl/fl   

mouse. The black arrow in (C) points to a lesion with 

submucosal invasion.  A and C) are X5 original magnification whereas B and D 

are X40 original magnification. N= 3 mice. 
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Before neoplastic transformation, CDC5L showed predominantly cytoplamic 

expression (figures 5.1F and 5.2F) whereas Beta catenin showed predominant 

nuclear expression (figures 5.1B and 5.2B). However, CDC5L showed almost 

exclusive nuclear staining (figure 5.4D) in malignant lesions in which Beta catenin 

was excluded from the nuclei (figure 5.3G). Although effects of fixation on CDC5L 

and Beta catenin staining cannot be excluded in AhCreER
T+

Apc
fl/+

Pten
fl/fl

 mice, this 

seems to be unlikely due to the presence of obvious staining patterns in the lesions 

and in the control tissue.    

Unfortunately due to the limited number of sections available from the 

AhCreER
T+

Apc
fl/+

Pten
fl/fl 

mice, it was not possible to stain lesions from mice of 

different ages. However, the staining pattern observed was the same across lesions of 

different sizes. Moreover, despite the fact that SFRS2 staining was tried on different 

batches of tissue sections from AhCreER
T+

Apc
fl/+

Pten
fl/fl 

mice, no staining was 

observed. For the future, because of the potential importance of SFRS2 in
 

AhCreER
T+

Apc
fl/+

Pten
fl/fl  

model, it would be ideal if tissues from this model could be 

generated and processed in a way that enable staining with commercially available 

anti-SFRS2 antibodies (namely formalin fixation).  
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5.3 Effect of SFRS2 knockdown on cellular proliferation and apoptosis in 

HCT116 and HT29 cells 

Several reports have indicated a role for both SFRS2 and CDC5L in critical 

physiological processes such as proliferation, apoptosis and cell cycle distribution as 

well as pathological processes such as cancer development (as described earlier in 

this work). It was therefore important to investigate the role of SFRS2 and CDC5L in 

these processes as this may unveil novel diagnostic and/or therapeutic tools in the 

management of an important health problem such as CRC. Again, siRNA mediated 

knockdown of gene expression was used to down regulate SFRS2 in HCT116 and 

HT29 cells using the same transfection conditions established earlier (described in 

chapter four).  Knockdown efficiency was assessed by western blot and qRT-PCR, 

while effects on cells were assessed using the previously described techniques of 

haemocytometer based cell counting as well as SRB and clonogenic assays. Results 

are shown below. 

SFRS2 knockdown in HCT116 cells 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 A) Western blot (representative of 3 experiments) of HCT116 whole 

cell proteins probed with anti-SFRS2 antibody. Pan actin was used as loading 

control. B) Densitometry analysis of SFRS2 expression relative to untransfected 

cells (N3, n2). Error bars represent SD from means.  
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It is obvious that the antibody used to probe the membranes did not produce optimal 

bands. Despite the above limitations, densitometry demonstrated some degree of 

knockdown relative to both control groups. 

Different experimental conditions were tried to improve the western blot analysis of 

SFRS2 knockdown (as described in chapter three, p 132).  Unfortunately no great 

improvement was achieved. Therefore, qRT-PCR was used to demonstrate 

knockdown as shown in figure 5.6. 

 

 

 

 

 

 

 

 

Figure 5.6 qRT-PCR analysis of relative SFRS2 expression in HCT116 cells 72 

hrs following its knockdown. Error bars represent standard deviation from 

means. N3, n3. ** p value < 0.01. 

There was an approximately 80% reduction in SFRS2 mRNA abundance (figure 5.6) 

in the target siRNA transfected group compared to that from the scrambled siRNA 

transfected group (p value 0.002). 

Following the successful knockdown of SFRS2 in HCT116 cells, it was possible to 

assess cellular proliferation and apoptosis as shown below; preliminarily, numbers 

(counted using haemocytometer method) of attached cells (cultured) were used as 

indicators of proliferation and numbers of floating cells as indicators of apoptosis at 

the end of the predetermined time point.  
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Below (figure 5.3) are cell counting results following SFRS2 knockdown in HCT116 

cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Haemocytometer based cell counts. SFRS2 knockdown in HCT116 

cells, 72 hrs time point. A) Change in attached cell number. B) Percentage of 

apoptotic cells to total cells per sample. Error bars represent standard deviation 

from the mean (N3, n2).  

Cell counting after transfection showed a small but non-significant effect of SFRS2 

knockdown on cellular proliferation. More interestingly, floating cells showed a 

small but again non-significant reduction in numbers in the transfected group. This 

effect, although weak, may point to a role for SFRS2 in mediating apoptosis during 

colorectal tumourigensis (more details will be mentioned in the next sections). 
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As with HCT116 cells it was difficult to generate clear WB results with HT29 cells. 

Therefore, qRT-PCR was used to demonstrate the reduction in expression at the level 

of mRNA expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 SFRS2 knockdown in HT29 cells, 72 hrs time point. A) Relative 

SFRS2 mRNA expression (N3, n3). B) Change in attached cell number. C) 

Percentage of apoptotic cells to total cells per sample. Error bars represent 

standard deviation from the mean (N3, n2). 
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The results from the cell counting method did not demonstrate any obvious effects of 

SFRS2 knockdown on proliferation and apoptosis in HT29 cells. The SRB assay was 

then used to assess the effect of SFRS2 knockdown on both HCT116 and HT29 cells 

as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 SRB assay, HCT116 (A) and HT29 (B) cells showed a modest 

reduction in survival after knocking down SFRS2. Error bars represent 

standard deviation from the mean (N3, n6). * and **p values  < 0.05 and < 0.01 

respectively. 

The SRB assay demonstrated a small but statistically significant inhibitory effect of 

SFRS2 knockdown on proliferation in HCT116 (day 5) and HT29 (days 5 and 6) 

cells.  
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The survival of both cell lines following SFRS2 knockdown was also assessed using 

the clonogenic assay as shown below (figure 5.10). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Clonogenic survival assays. Both HCT116 cells (A) and HT29 cells 

(B) showed a mild reduction in survival and colony forming ability after SFRS2 

knockdown. Error bars represent standard deviation from the mean (N3, n3). 

SFRS2 knockdown did not cause a significant effect on the ability of the cancer cells 

to survive. This is consistent with the results obtained from other techniques shown 

above. 
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5.4 Effect of CDC5L knockdown on cellular proliferation and apoptosis in 

HCT116 and HT29 cells 

We included Cell division cycle 5 like (CDC5L) protein in our mechanistic studies 

because it has been mentioned in published literature that a possible interaction 

between this protein and our candidate protein, SFRS2 may exist. For instance, one 

report suggested a possible competition between these two proteins for the same 

binding molecule(s) [270]. 

CDC5L is an essential element for spliceosome assembly and catalysis [272]. 

Moreover, relatively recent studies have shown a direct role for this protein in the 

cellular response to DNA damage and cell cycle regulation [273]. It has also been 

suggested that CDC5L is required for G2M transition during the cell cycle [274]. 

Although CDC5L has not been well studied in CRC, it has been shown to be 

upregulated in human osteosarcoma and osteosarcoma cell lines [274]. 

To understand the role of CDC5L in CRC, we investigated its expression by IHC in 

various CRC models and we studied aspects of its role using siRNA knockdown 

techniques in HCT116 and HT29 cells. Below are the results for the knockdown 

experiments in HCT116 cells (figures 5.11 and 5.12). 
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Figure 5.11 A) Western blot of HCT116 whole cell proteins probed with anti-

CDC5L antibody. Pan actin was used as loading control. B) Densitometry 

analysis of CDC5L expression relative to untransfected cells. Error bars 

represent standard deviation from the mean (N3, n2). 

Densitometry analysis demonstrated a 90% reduction (p value 0.03) in CDC5L 

expression in the target group using previously established experimental conditions 

(figure 5.11A). CDC5L knockdown had a significant inhibitory effect on cell 

proliferation and apoptosis in HCT116 cells as shown below (figure 5.12).  
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Figure 5.12 Haemocytometer based cell counting.  siRNA knockdown of CDC5L 

in HCT116 cells at the 72 hr time point. A) Change in attached cell number. B) 

Percentage of apoptotic cells relative to total cells per sample. Error bars 

represent standard deviation from the mean. (N3, n2). P value ** <0.01 and *** 

<0.001. 

In HCT116 cells the observed effect was dramatic and statistically significant for 

both parameters (figure 5.12 A and B). When the knockdown studies were repeated 

in HT29 cells (figures 5.13), the same impact on proliferation and apoptosis was 

observed, however the magnitude of the effect was slightly smaller (figure 5.14). 
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Figure 5.13 A) Western blot of HT29 whole cell proteins probed with anti-

CDC5L antibody. Pan actin was used as loading control. B) Densitometry 

analysis of CDC5L expression relative to untransfected cells. Error bars 

represent standard deviation from the mean (N3, n2). 

As with other proteins, HT29 cells demonstrated a lower knockdown efficiency for 

CDC5L (61%, p value 0.02). Consistent with the less efficient protein knockdown, 

proliferation and apoptosis changes were also less pronounced in HT29 cells as 

shown below (figure 5.14). 
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Figure 5.14 Haemocytometer based cell counting. CDC5L knockdown in HT29 

cells, 72 hrs time point. A) Change in attached cell number (** p value 0.0029). 

B) Percentage of apoptotic cells to total cells per sample (* p value 0.04). Error 

bars represent standard deviation from the mean. (N3, n2).  

Similar to HCT116 cells, HT29 cells demonstrated a statistically significant 

alteration in proliferation and apoptosis following CDC5L knockdown. However, the 

degree of the effect was reduced in HT29 cells in comparison to that in HCT116 

cells, an observation that can possibly be explained by the reduced knockdown 

efficiency (60% vs. 90%) in the former.  
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As with the other proteins, the impact of knocking down CDC5L in vitro was further 

validated by SRB assay as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 SRB assay, HCT116 (a) and HT29 (B) cells showed a significant 

reduction in survival after knocking down CDC5L. Error bars represent 

standard deviation from the mean (N3, n6). * p value <0.05 and ** < 0.01.  

SRB assay results were in agreement with the cell counting results and showed a 

statistically significant inhibitory effect of CDC5L knockdown on cell proliferation 

in both HCT116 (days 4, 5 and 6) and HT29 (days 5 and 7) cells. Again the reduced 

transfection sensitivity of HT29 cells to CDC5L siRNA knockdown was also 

obvious in this assay.  
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The ability of cancer cells to survive by forming colonies, following CDC5L 

knockdown by siRNA was also assessed in HCT116 and HT29 cells as shown below 

(figure 5.16): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Clonogenic survival assays. Both HCT116 cells (A) and HT29 cells 

(B) showed a significant reduction in survival and colony forming ability after 

CDC5L knockdown. Error bars represent standard deviation from the mean 

(N3, n3). * p value is < 0.05 (0.03 and 0.01 respectively). 

CDC5L knockdown significantly affected the ability of cancer cells to survive. This 

further supported the role of this protein in regulating cellular growth.  
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5.5 Assessment of cell cycle distribution following knockdown of SFRS2 and 

CDC5L  

In the previous work shown in this chapter, we demonstrated that knocking down 

SFRS2 did not result in major effects on cellular proliferation and apoptosis. 

Therefore, it was important to try to study these parameters using alternative 

techniques. For this reason we used fluorescence activated cell sorting (FACS) to 

analyse the effect of SFRS2 knockdown on proliferation and apoptosis in HCT116 

cells. The latter cells were chosen due to their greater sensitivity to siRNA mediated 

knockdown than HT29 cells. Moreover, it was similarly important to study the effect 

of CDC5L knockdown on these cellular parameters using FACS to further expand 

our comparison between these two molecules. 

FACS is a widely used method for characterising and sorting different cell types in a 

heterogeneous cell population. This sorting is based on analysing cell size and 

volume as well as analysing the expression of cell surface and intracellular 

molecules. Moreover, it allows sorting the individual cells in the same cell group 

using multi-parameter analysis. The latter is achieved by measuring fluorescence 

activity produced by fluorescent labelled antibodies detecting proteins or ligands of 

specific cell associated molecules; for example detection of activated caspase 3 in 

apoptotic cells in a sample [44].  

5.5.1 Effect of SFRS2 and CDC5L on cell cycle distribution 

HCT116 cells (untransfected, scrambled siRNA and target siRNA groups) were 

prepared according to the conditions described in chapter four. After 72 hours, cells 

were harvested and fixed in methanol free formaldehyde and permeabilised in 90% 

methanol (technical details can be found in the relevant section of the methods 

chapter). At this point, cells were either used for immunostaining or stored at -20ºC 

for later use. The FACS experiments of cell cycle involved staining with propidium 

iodide (PI).  

The preparation of FACS samples needed a lot of optimisation of conditions, such as 

working out the right settings for acquiring data from the samples. When the 

instrument was appropriately set up, 0.5-1x10
6 

cells/sample were stained according 

to the steps mentioned in the methods section. Samples were run using a 

FACSCalibur machine and data were analysed using the free version of "FCSexpress 
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4 flow research edition" software. Below are representative images of the FACS 

analysis of HCT116 cell samples following the individual knockdown of SFRS2 and 

CDC5L. 
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Figure 5.17 Cell cycle analysis using FACS. A) shows HCT116 cells tranasfected 

with a SFRS2 target siRNA compared to the two control groups (upper panel) 

as well as the  same cells transfected with a CDC5L target siRNA in comparison 

to the two control groups (lower panel).  B) Shows the mean values of number of 

cells in each phase of the cell cycle. Error bars represent SD from the means. * 

and ** p values < 0.05 and <0.01 respectively. N4, n2. 
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Consistent with the other techniques used to assess the effect of SFRS2 knockdown, 

FACS also showed less pronounced changes in the cell cycle as seen in figure 5.17A, 

upper panel. The two peaks are still seen with no obvious increase in the sub-G1 cell 

population in the target siRNA group. By contrast, CDC5L knockdown had more 

pronounced effects (figure 5.17A, lower panel); it resulted in almost complete 

obliteration of the G2 peak and a clear increase in the sub-G1 population. The latter 

observation is indicative of increased cell death. Again, FACS results supported the 

results from the other techniques used to assess the pathophysiological effects of 

CDC5L knockdown. Moreover, the reduction in the G2 population and the increase 

of cells in the S phase of the cell cycle make it difficult to suggest which checkpoint 

is affected. Knowing that these studies represent a snap shot through the cell cycle; 

the results may not be true representations of the end results of knocking down these 

proteins. However, the possible underlying disruption may involve arrest at both G1 

and G2 check points. 

5.6 Assessment of SFRS2 and CDC5L relationship in human CRC cell lines 

using immunocytochemistry 

HCT116 and HT29 cells represent easily accessible models of CRC with active Wnt 

pathways. Therefore, we examined the expression of SFRS2 and CDC5L in these 

cells and correlated them with Wnt pathway activity.  

As shown repeatedly in this work, HT29 cells were not easy to transfect. In addition, 

HT29 cells were only loosely attaching to the cover slips that were used during the 

staining process. Therefore, the results in this section are mainly focused on HCT116 

cells, which were easier to transfect and attached to coverslips slightly better than 

HT29 cells. 

HCT116 cells were again transfected in 6 well plates containing cover slips. The 

transfection process was as described before and the 72 hr  time point was used. At 

the end of this time point, cells were fixed and premeabilised in 2% 

paraformaldehyde and 0.2% Triton X-100 in PBS respectively. Then the cells were 

processed with modified IHC protocols, in which xylene was not used and PBS was 

used to wash the cells instead of TBS. For all ICC, protocols did not include an 

antigen retrieval step as per IHC protocols performed on tissue sections.  Below are 

representative images of the ICC experiments. 
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Figure 5.18 shows ICC staining in HCT116 cells. A and B) show unstained 

untreated cells and untreated cells stained with anti-Beta catenin antibody 

respectively. D-F) show SFRS2 staining in untreated cells, SFRS2 staining in 

cells following SFRS2 target siRNA treatment and CDC5L staining in cells 

following SFRS2 target siRNA treatment respectively. H-J) show CDC5L 

staining in untreated cells, CDC5L staining in cells following CDC5L target 

siRNA treatment and SFRS2 staining in cells following CDC5L target siRNA 

treatment respectively. C and G) show unstained untreated control cells.  Ab. = 

antibody. N2, n2. 

These images represent the best two experiments out of several that were performed. 

The main problem with the unsuccessful experiments was cell detachment during the 

staining process. Interestingly, in HCT116 cells, Beta catenin showed almost 

exclusively cytoplasmic staining. This is not surprising as we know that HCT116 

cells were derived from an advanced and poorly differentiated CRC. There have been 

reports suggesting down regulation of Wnt pathway activity in the more advanced 
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stages of CRC [275, 276]. It is visually obvious that there was a successful 

knockdown of both SFRS2 and CDC5L. These observations support the results from 

western blots shown earlier in this chapter. Both proteins showed increased nuclear 

localisation following knocking down its proposed partner. However, this 

observation was more obvious for CDC5L following SFRS2 knockdown. We also 

tried to show this interdependent relationship between SFRS2 and CDC5L using 

western blot analysis of whole protein extracts from HCT116 cells (figure 5.19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Western blot analysis of CDC5L expression following SFRS2 

knockdown in HCT116 cells. A) is a representative blot and B) is densitometry 

of relative expression of CDC5L following SFRS2 knockdown. N3, n2. * p value 

is less than 0.05. 
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CDC5L did however demonstrate small but significant (p value 0.02) upregulation 
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prevented the use of an alternative quantification technique such as qRT-PCR to 

assess SFRS2 expression following CDC5L knockdown. However, assessment of 

proteins and mRNAs are not interchangeable and also any interaction between two 

molecules does not necessarily involve changes in their absolute levels.  

5.7 Assessment of rate and mechanism of apoptosis following SFRS2 and 

CDC5L knockdown  

As mentioned before, although haemocytometer based cell counting allowed an 

approximate estimation of the rate of apoptosis following the knockdown of SFRS2 

and CDC5L however, it was important to confirm these observations with a less 

observer dependent technique. Therefore, ICC and FACS analysis were used to 

achieve this. Figures 5.20 and 5.21 show the results from assessment of apoptosis in 

HCT116 cells after knocking down the above two proteins. 

It has been reported that cisplatin treated cells exhibited increased expression of 

SFRS2 which in turn caused G2M cell cycle arrest and induced alternative splicing 

of caspase 8 [237]. Caspase 8 is known to be the initiator of the extrinsic pathway of 

apoptosis [277]. As we are proposing that CDC5L knockdown might be associated 

with over activity of SFRS2, it was a logical step to study the activity of caspase 8 

following the knockdown of CDC5L. Therefore, caspase 8 activity was used as an 

indicator for the presence of apoptotic cells and was tested as a mechanism to explain 

the observed increase in apoptosis following the knockdown of CDC5L. However, a 

common step between the two pathways such as activated caspase 3 would be a 

better choice for studying the rate of overall apoptosis per se [44].  

An increase in caspase 8 mediated apoptosis was noted in HCT116 cells following 

the knockdown of CDC5L as assessed by immunocytochemistry (figure 5.20). 

Again, knockdown of SFRS2, in agreement with previous results, did not cause any 

obvious increase in caspase 8 staining.  
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Figure 5.20 Representative images of ICC in HCT116 cells. A) Shows 

untransfected cells/SFRS2 staining, B) shows cells transfected with SFRS2 

specific siRNA/ SFRS2 staining and C) shows  cells transfected with SFRS2 

specific siRNA/ caspase 8 staining. D) Shows untransfected cells/CDC5L 

staining, E) shows cells transfected with CDC5L specific siRNA/ CDC5L 

staining and F) shows cells transfected with CDC5L specific siRNA/ caspase 8 

staining. Arrows point to Caspase 8 positive cells. N2, n2. Images are X40 

original magnification. 

Reduced cell numbers and increased caspase 8 staining in the cells in which CDC5L 

was knocked down (figure 5.20F) in comparison to cells transfected with an SFRS2 

target siRNA, indicates increased rates of apoptosis and a role for caspase 8 in 

mediating this apoptosis in the former. These observations were validated with a set 

of FACS experiments using the same cells under the same knockdown conditions 

(figure 5.21). 
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Figure 5.21  Assessment of apoptosis in HCT116 cells following the knockdown 

of SFRS2 and CDC5L. A) Shows dot plots of cells stained with PI and anti-

caspase8 antibody; the rate of apoptosis was estimated from the summation of 

caspase8 positive cells and the sub-G cells. B and C) show percentages of cell 

populations in section (A). Values are means ± SD. N4, n2. 
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Again, consistent with the results shown above, CDC5L knockdown had a greater 

effect on the degree of apoptosis (figure 5.21).  This was evident from a 9 fold 

increase (p value < 0.001) in the percentage of caspase 8 positive cells in the target 

siRNA group compared to the scrambled siRNA group. Moreover, the cell 

population consisting of caspase 8 positive and sub-G1 cells increased by 8 fold (p 

value <0.001) in the target siRNA group. These observations indicate the extent of 

cell cycle disruption and the parallel increase in apoptosis following CDC5L 

knockdown in HCT116 cells. On the other hand, SFRS2 knockdown had a lesser 

effect on cell death induction. 

5.8 Role of p53 in mediating apoptosis following SFRS2 and CDC5L knockdown 

in HCT116 cells 

The balance between cellular proliferation and apoptosis is a critical process 

throughout life; the changes to this balance during aging and carcinogenesis may 

contribute to the increase in the incidence of uncontrolled cellular growth 

encountered [278]. Evidence supporting this concept comes from studies of GIT 

aging in rats, which showed an increase in proliferation and a reduction in apoptosis 

with increased age [279]. Similarly, cancer cells have increased metabolism with 

increased proliferative activity and maintenance of de-differentiation. They can 

produce embryonic proteins and stay immortal by evading apoptosis [280]. 

Moreover, proteins regulating apoptosis often show distinctive expression profiles in 

cancer and senescent cells. Examples for the latter suggestion include down 

regulation of  p53 [281] and upregulation of the antiapoptotic protooncogene Bcl2 

[282]. Furthermore, p53 is thought to play an important role in various cellular 

processes such as cell cycle regulation, DNA replication and apoptosis [283].  

SFRS2 and CDC5L have both been clearly linked to alternative splicing and cell 

cycle regulation and it is now strongly believed that coordinated proapoptotic 

splicing is linked to cell cycle checkpoints through mechanisms that are not fully 

understood. Therefore, it was important to study these two proteins in relation to p53 

in the setting of CRC.  

In the siRNA experiments that involved knockdown of SFRS2 and CDC5L, there 

were changes in the amount of apoptosis induced in HCT116 cells (which have wild 

type p53) as demonstrated by haemocytometer based counting and FACS analysis. 

Therefore, to evaluate the role of p53 in this apoptosis, HCT116 cells with knockout 
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p53 [185] were also subjected to the same siRNA knockdown experiments. Below 

are figures showing a comparison between the rates of apoptosis in HCT116 cells 

with WT p53 versus those with knockout p53.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Assessment of proliferation and apoptosis in attached HCT116 cells 

72 hrs following the knockdown of SFRS2.  A) Shows relative expression of 

SFRS2 mRNA in HCT116 WT p53 vs. knockout p53. B) Shows haemocytometer 

based counting of attached cells in the above cell groups. C) Shows percentage 

of apoptosis to total sample cells in the same cell groups. Values are means ±SD. 

* and ** p values are <0.05 and 0.01 respectively. N3, n2. 

Following successful knockdown of SFRS2 in both cell lines, attached and floating 

cells were counted. There was more obvious inhibition of cellular proliferation in 

cells with knockout p53 in comparison to cells with wild type p53. Although p53 null 
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HCT116 cells showed more significant increase in apoptotic cells after treatment 

with SFRS2 target siRNA, however this effect was also observed in the scrambled 

siRNA treated cells. This is suggesting an increased sensitivity of these cells to toxic 

conditions. 

The same above experiments were repeated with CDC5L targeted siRNA in HCT116 

cells with WT and knockout p53. Figure 5.23 demonstrates the efficiency of 

knockdown using western blotting.  

 

 

 

 

 

 

 

 

 

 

Figure 5.23 siRNA mediated knockdown of CDC5L in HCT116 WT p53 cells 

(left panel) and HCT116  knockout p53 cells (right panel). A) Shows western 

blots of whole proteins extracts from both cells. B) Shows densitometry analysis 

of relative CDC5L expression in both cell lines. Values are means ±SD. * and ** 

p values are < 0.05 and 0.01 respectively. N3, n2. 

It is evident from both cell lines that there is efficient and significant knockdown of 

CDC5L expression in both cell lines.  
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Again both attached and floating cells were counted as demonstrated below in figure 

5.24.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 Haemocytometer based cell counting following the knockdown of 

CDC5L in HCT116 cells WT p53 vs. knockout p53. A) Shows cellular 

proliferation represented by attached cells. B) Shows degree of apoptosis 

represented by the percentage of floating cells to total cells in each sample. 

Values are means ±SD. ** and *** p values are < 0.01 and 0.001 respectively. 

N3, n2. 

In contrast to SFRS2 knockdown, CDC5L knockdown caused a stronger inhibition 

of cellular proliferation in the presence of p53. This was also associated with a 

greater degree of apoptosis in the same cell group. 
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5.9 Discussion 

The aim of this chapter was to study the role of the protein SFRS2 in critical cellular 

functions that could have a fundamental impact on the course of colorectal 

tumourigeneis.  

SFRS2 belongs to the serine rich (SR) family of proteins that are well known for 

their role in constitutive and alternative splicing (AS) of precursor messenger RNA 

(pre-mRNA) [234]. In recent years, defects in alternative splicing have been 

frequently identified in various cancer related processes. The vast majority of human 

genes undergo alternative splicing, with the production of functionally different 

protein isoforms from the same gene. Therefore, this high throughput machinery can 

have dramatic effects upon tumourigenesis [170].  

Cell division cycle 5 like (CDC5L) protein is an essential component of the 

spliceosome assembly and catalysis [272]. In addition to pre-mRNA splicing, 

CDC5L has also been shown to have direct links to cellular response to DNA 

damage and cell cycle regulation [273]. Similar to SFRS2, there are a few reports 

about its role in cancer; for instance it has been shown that CDC5L plays an 

important role in human osteosarcoma development [274].  

A number of research groups have suggested that SFRS2 and CDC5L may interact. 

One research group stated that both these molecules compete for the same binding 

molecule and that overexpression of nuclear CDC5L displaced SFRS2 into the 

cytoplasm in cell lines [270]. Also, spliceosome analysis studies have shown that 

SFRS2 and CDC5L co-purify [284]. Both proteins function within the nucleus, a fact 

further supporting a possible interaction. Additionally, another group has suggested 

that hnRNPs (CDC5L is usually linked to these molecules during alternative 

splicing) and SR proteins bind to the same areas of pre-mRNAs, the G rich areas 

[272]. An example of this interaction is the observation that over expression of 

hnRNP A1 promotes degradation of caspase 2 via modulating its splicing, resulting 

in the inclusion of exon 9 and production of an anti-apoptotic molecule which 

mediates tumour survival while SFRS2 over expression promotes the opposite [285]. 

Another possible point of interaction could be a molecule needed by CDC5L to 

remain in the nucleus and hence functional, namely pleiotropic regulator 1 (PLRG1) 
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[286, 287]. Deficiency of PLRG1 has been shown to cause a similar impact on cell 

cycle and apoptosis as that caused by CDC5L knockdown [286]. 

Due to the above observations that support the existence of a functional interaction 

between SFRS2 and CDC5L and as both proteins have not been well studied in CRC, 

IHC was initially used to examine the amount and sub-cellular localisation of SFRS2 

and CDC5L during early and late phases of colorectal tumourigenesis. For this 

purpose, AhCre
+
Apc

fl/fl 
 and 

 
Apc

Min/+ 
mice were used as models of early neoplasia 

and AhCreER
T+

Apc
fl/+

Pten
fl/fl  

mice as a model of invasive disease. Early after Apc 

deletion in the AhCre
+
Apc

fl/fl 
mouse, there was nuclear translocation of Beta catenin, 

nuclear over expression of SFRS2 and cytoplasmic displacement of CDC5L (figure 

5.1). In 
 
Apc

Min/+ 
mice (figure 5.2), with advancement of tumourigenesis in the form 

of polyps, the same changes were also observed; apart from the fact that the cells in 

the polyp area showed almost complete cytoplasmic localisation of CDC5L. This 

observation may be explained by the longer time that these lesions take to develop, 

whereas AhCre
+
Apc

fl/fl 
mice were sacrificed within 5 days of Apc deletion.  

When the above three proteins were examined in malignant lesions from 

AhCreER
T+

Apc
fl/+

Pten
fl/fl 

mice, Beta catenin showed cytoplasmic overexpression and 

CDC5L was re-localised into the nucleus (figures 5.3 and 5.4). Unfortunately, 

despite the use of three batches of tissue from AhCreER
T+

Apc
fl/+

Pten
fl/fl 

mice, SFRS2 

staining was not successful in most sections that had invasive lesions. However, 

initial studies on human malignant tissues have suggested cytoplasmic displacement 

of SFRS2, as will be discussed in more detail in chapter 6.  

To further investigate the role of SFRS2 and CDC5L during colorectal 

tumourigensis, we knocked down their expression in two CRC cell lines. 

Interestingly, SFRS2 down regulation only had a modest effect on cellular 

proliferation. This was more pronounced in HCT116 cells as with other proteins 

studied in this thesis. However, this change in proliferation was not associated with a 

parallel increase in apoptosis. On the contrary, the trend observed was a reduction in 

the number of apoptotic cells. This was indicated by a reduced number of floating 

cells in the cells transfected with the SFRS2 siRNA (figures 5.7B and 5.8C). 

However, these findings were statistically not significant.  Interestingly, there have 

been published reports of a role for SFRS2 in cell cycle control and induction of 
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apoptosis. Specifically, in a recent study of cell lines treated with cisplatin, SFRS2 

(overexpression) was shown to induce cell cycle G2M arrest and to induce 

modulation of caspase 8 pre-mRNA splicing to increase apoptosis [237]. Also in 

similar work, it has been observed that E2F1 in response to DNA damage, increases 

the expression of SFRS2 to activate the apoptotic genes c-flip, caspases 8 and 9 and 

Bcl-x [234].   

Similar to all our other candidate biomarkers, the biological role of SFRS2 is likely 

to be multifaceted and context dependent. Therefore, one explanation for the 

reduction in the number of proliferating cells (assessed by various techniques) 

observed after SFRS2 knockdown is based on a report that suggests that p53 is 

activated after SFRS2 down regulation. This in turn causes G2M arrest via p21 

[288].  

We also knocked down CDC5L expression in HCT116 and HT29 cell lines and 

compared the effects of this to those of SFRS2 knockdown in an attempt to further 

understand their combined role during colorectal carcinogenesis. Unlike SFRS2 

knockdown, CDC5L knockdown had a dramatic and significant inhibitory effect on 

cellular proliferation and survival in both HCT116 and HT29 cell lines (by cell 

counting, SRB and clonogenic assays), but again the effect was more pronounced in 

the HCT116 cell line. Also, CDC5L knockdown was associated with an obvious 

increase in apoptosis. The role of CDC5L in regulation of cell cycle progression and 

cellular proliferation described by other research groups may explain the inhibitory 

effect of CDC5L knockdown on cellular proliferation observed in our in vitro studies 

[284]. For instance, it has been suggested that CDC5L is required for G2M 

transition; by shortening this phase, CDC5L facilitates cell entry into mitosis [274]. 

On the other hand, inhibition of CDC5L prolongs the G2 phase and delays entry into 

mitosis [284]. Moreover, it has been reported that CDC5L is completely cytoplasmic 

in inactive cells in the absence of serum, whereas the addition of serum (inducing 

proliferation) to the cells caused nuclear translocation of CDC5L [289]. All the 

above observations suggest that CDC5L is involved with positive regulation of the 

cell cycle and cellular proliferation.  

The cell cycle was the other aspect studied in this chapter to investigate the role of 

SFRS2 during colorectal tumourigenesis. The knockdown of SFRS2 and CDC5L had 
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variable effects on cell cycle distribution (figure 5.17). However, CDC5L 

knockdown caused a greater effect on both the cell cycle and rate of apoptosis. This 

supports our hypothesis that SFRS2 is more critical during the earlier stages of 

colorectal tumourigenesis and that CDC5L has pro-proliferative properties that are 

involved in cancer development.   

Cell cycle distribution analysis following CDC5L knockdown showed a reduction in 

the G2 cell population and a relative increase in the S phase cell population (figure 

5.17). This observation agrees with other publications in which it was shown that 

CDC5L knockdown prolonged G2M transition and delayed entry into mitosis [284]. 

Also, it agrees with our proposal that this could be due to SFRS2 over activity, as it 

has been reported that overexpression of the latter causes G2M arrest and induces 

apoptosis via switching on the apoptotic profile of certain regulators of apoptosis as 

described above (G2 cell death) [237]. 

SFRS2 knockdown mainly caused an increase in the S phase cell population (figure 

5.17). This disagrees with other observations which have suggested that G2M arrest 

or G1/S arrest (reduced S phase cells has been suggested to be due primarily to G2M 

arrest) [288] occur following SFRS2 knockdown [235, 288]. However, it is 

consistent with our proposal that SFRS2 knockdown causes CDC5L over activity, 

since the latter shortens G2M transition and promotes mitosis. Having said that, PI 

based analysis of the cell cycle relies on analysis of a single time point and does not 

fully show the percentage of cells in the different phases due to overlap between the 

various phases [290]. Therefore, the use of markers for specific cell cycle phases 

such as pulsed 5'-bromo-2'-deoxyuridine (BrdU) and phosphorylated histone H3 for 

S phase and M phase respectively may provide better estimations of the proportions 

of cells in each phase [291, 292].   

It has been shown that Cdc2 and Chk kinases are required for G2M transition, such 

that DNA damage induces Chk kinases, which in turn inhibit Cdc2 [293, 294]. 

Western blotting was used to assess the expression of these two proteins following 

the knockdown of both CDC5L and SFRS2 in HCT116 cells in an attempt to 

understand how these proteins mediate their effects on the cell cycle. Unfortunately 

however no conclusive results were obtained within the time frame available, despite 

several modifications to the experimental protocols.  
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In addition to the functional comparison we made between SFRS2 and CDC5L, 

immunocytochemistry (ICC) (figure 5.18) was also used to assess the possible 

interaction between these two molecules as a more direct tool. Although mild, 

SFRS2 demonstrated increased nuclear expression following CDC5L knockdown in 

HCT116 cells. CDC5L also demonstrated a more robust increase in nuclear 

localisation following SFRS2 knockdown in these cells. The latter increase was 

confirmed by western blot analysis (figure 5.19) of CDC5L expression following 

treatment with SFRS2 siRNAs. Unfortunately, western blot validation of the change 

in SFRS2 expression following CDC5L knockdown was not possible, due to 

technical issues related to the primary antibodies used. Interestingly, Beta catenin 

demonstrated almost no nuclear expression in HCT116 cells. Generally, the above 

results may support our hypothesis that SFRS2 and CDC5L interact during the 

course of colorectal tumourigenesis. 

The purpose of this study was also to assess the apoptotic pathway that is possibly 

associated with SFRS2 and CDC5L by using the siRNA knockdown technique. 

Although the haemocytometer method for counting floating cells in the culture media 

from each sample was a good initial indicator of the rate of apoptosis, it was essential 

to validate these data with more robust techniques such as ICC and FACS. In FACS 

analysis, in addition to cellular size, caspase 8 was used, because it both assessed 

apoptosis and was proposed as a potential mechanism involved in the apoptosis 

related to SFRS2 and CDC5L. Alternative splicing of Caspase 8 by SFRS2 has been 

reported to induce apoptosis during G2/M cell cycle arrest mediated by 

overexpression of the latter [237].  

This proposal was initially supported by the ICC results (figure 5.20) which showed 

increased caspase 8 staining following the knockdown of CDC5L in HCT116 cells. 

In the FACS analysis, CDC5L knockdown in HCT116 cells (figure 5.21) was 

associated with a 7 fold increase in sub-G1 cells (p value <0.001), a 9 fold increase 

in caspase 8 positive cells (p value < 0.001) and an 8 fold increase in overall 

apoptosis (summation of sub-G1 cells and caspase 8 positive cells) in the target 

siRNA group compared to the negative control group. These data agree with the 

proposal that CDC5L knockdown may be associated with SFRS2 over activity or 

nuclear presence that in turn mediates apoptosis via activating caspase 8. Western 

blot assessment of activation of caspase 8 was also attempted following the 
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knockdown of CDC5L in HCT116 cells. However, unfortunately the antibody used 

did not yield conclusive results.  

SFRS2 knockdown was associated with a much weaker apoptotic response. There 

was a 1.5 fold increase in sub-G1 cells, a 3 fold increase in caspase 8 positive cells 

and a 2 fold increase in total apoptosis.  

Since p53 is mutated in 30-60% of CRC cases [47], it was also important to examine 

the role of this tumour suppressor in the apoptosis that was associated with the 

knockdown of our two proteins. The transcription factor p53 is activated by various 

cellular responses that result in an insult to the DNA. This in turn causes the 

activation of a wide range of genes that exert tumour suppressive effects such as 

inhibition of the cell cycle and induction of apoptosis [295].   

SFRS2 knockdown resulted in increased amount of apoptosis in p53 knockout 

HCT116 cells (figure 5.22). This observation suggests activation of non-canonical 

apoptotic pathways or direct activation of downstream mechanisms bypassing p53. 

This can be attributed to cell cycle arrest that has been shown to induce apoptosis via 

modifying the alternative splicing of regulators of apoptosis independent of 

canonical apoptosis pathways. For example, stimuli that activate the G2/M 

checkpoint have been shown to trigger pro-apoptotic Bcl-x splicing [236]. In 

conclusion, SFRS2 abnormalities seem to involve DNA damage that mediates G2M 

arrest via p53 dependent and independent mechanisms. This suggestion is supported 

by two studies; one study in cell lines which showed G2M cell cycle arrest via p21 as 

a result of activation of p53 following SFRS2 knockdown and another study in mice 

in which knocking out p53 in an SFRS2 knockout model did not prevent the lethality 

of SFRS2 depletion [288]. 

Apoptosis associated with CDC5L knockdown was greater (10 fold vs. 3 fold 

increase) in the presence of WT p53 (figure 5.24). This observation suggests that 

CDC5L knockdown may also involve an insult to the DNA with resultant activation 

of p53. Moreover, increased caspase 8 activity following the knockdown of CDC5L 

may be linked to p53, as it has been reported that caspase 8 is an essential mediator 

of p53 dependent apoptosis induced by etoposide in HNSCC cells [296]. Again WB 

analysis was used to detect direct activation of p53 and caspase 8 following the 

knockdown of CDC5L in HCT116 cells, but no bands were detected under standard 
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experimental conditions. Although some modifications were tried such as changing 

antibody dilutions and the incubation duration and temperature, neither time nor 

resources allowed further optimisation of these conditions. 

5.10 Conclusions 

The observations made in this chapter may suggest that during the early (benign) 

stages of colorectal neoplasia, the Wnt pathway regulates the rates of proliferation 

and apoptosis via different mechanisms including SFRS2 over expression and 

cytoplasmic displacement of CDC5L. In contrast, upon tumour invasion, as Wnt 

pathway activity reduces (as demonstrated by loss of nuclear Beta catenin), 

proliferative stimuli (CDC5L nuclear re-localisation) overcome the apoptotic ones 

(loss of SFRS2 expression in the malignant lesions can further support this 

assumption) and possibly result in tumour progression. This scenario is not new to 

the field of oncology, since many reports have pointed to the balance between 

proliferative and apoptotic mechanisms during the benign stages of tumourigeneis 

and that this balance is lost in favour of proliferative mechanisms upon 

transformation [278, 279]. 

Taking the above observations into account, together with reports suggesting that 

Beta-catenin promotes apoptosis in several cell systems independent of G1/S 

regulators [297] and overexpression of a stable form of Beta catenin or inhibition of 

endogenous Beta-catenin degradation in epidermal keratinocyte cells induces a G2 

cell cycle arrest and leads to apoptosis, these results propose a role for Beta-catenin 

(Wnt pathway) in the control of cell cycle and apoptosis at the G2/M cell cycle check 

point in normal and transformed epidermal keratinocytes [298]. This suggests that 

tight control of Beta-catenin levels is required to ensure correct progression of cells 

through the cell cycle. Therefore, SFRS2 may be an autoregulatory mechanism 

mediated by the WNT pathway to fine tune its functions.  

The coordination between cell cycle, alternative splicing and apoptosis is critical in 

maintaining the balance between proliferative and apoptotic mechanisms. It has been 

shown that loss of balance favouring proliferation occurs during aging and 

carcinogenesis. Alternative splicing is high throughput machinery that can radically 

change cell fate. A critical example is the fine tuning existing between pro and anti-

apoptotic factors that is orchestrated by alternative splicing. Alternative splicing is 
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greatly altered in tumours, however its causes and consequences are still unknown. A 

disturbance in this balance has been shown to mediate apoptosis resistance in a 

mechanism independent of the canonical apoptosis pathways. Therefore, studying 

alternative splicing mediated factors contributing to tumour expansion can unveil 

therapeutic targets that may have fewer side effects.  

Our direct and indirect observations suggest that SFRS2 and CDC5L function on 

opposite sides of the equation, in such a way that SFRS2 is mediating the apoptotic 

arm while CDC5L promotes proliferation. However, due to the complexity of the 

process of alternative splicing which seems to mediate opposite functions using the 

same molecules, more direct tests should be implemented to more clearly define this 

relationship. For example; 

 Finding a common molecule between the two proteins using 

immunopreciptation for instance and then studying its splicing profile in 

various conditions in which SFRS2 and CDC5L have been up or down 

regulated. Up regulation studies may be more conclusive, but may need more 

time and resources than knockdown studies.  

 Using qRT-PCR to investigate the relative expression of SFRS2 following 

CDC5L knockdown and vice versa. However, it is not necessary that the 

interaction between SFRS2 and CDC5L involves changes in their levels, 

therefore quantifying one after knocking down the other may not provide the 

final answer. 

Also more robust techniques will need to be used to study the role of SFRS2 in 

apoptosis for example: 

 In vitro activation or over-activation of the Wnt pathway and analysis of the 

resultant changes in SFRS2 level and apoptosis. 

 In vitro induction of apoptosis using cytotoxic agents and analysis of SFRS2 

level as well as studying the effects of SFRS2 knockdown on induced 

apoptosis. 
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6. The expression of candidate biomarker proteins in human colorectal cancer 

6.1 Introduction 

At the beginning of this work as described in chapter three, we demonstrated that six 

out of nine proteins studied showed obvious differential staining in two mouse 

models of intestinal tumourigenesis using IHC. Moreover, it was also possible to 

study the expression of proteins such as CDC5L and Cyclin E that have been shown 

to be functionally related to some of these candidate biomarkers.  

These proteins have not previously been extensively studied in human cancers and in 

CRC in particular. Although IHC is unlikely to provide mechanistic insights into the 

roles of these proteins during colorectal carcinogenesis, we hope that it would be a 

good starting point from which more specific and in depth studies could be set out.  

In this chapter, IHC was used to study the expression of several candidate 

biomarkers and their related proteins in samples of human CRC.  The same 

optimised experimental conditions shown in chapter three were used in this work.  

The samples (biopsies or surgical resection specimens) were provided by Mr Paul 

Sutton with documentation of diagnosis and staging. The fixation process and 

storage conditions of these samples were however not known at the time these 

experiments were carried out. Five patients per tumour stage were included and the 

samples were grouped as: normal colon, benign adenomas, polyp cancers and Dukes' 

A to D CRC. Normal colonic tissues were obtained from patients who had undergone 

colonoscopy for non-malignant conditions (with samples being taken from normal 

looking colon). Human samples and ethics committee approval were obtained by Mr 

Paul Sutton, Countess of Chester Hospital. 

Sections from each sample were stained with haematoxylin and eosin to show the 

histology of each tumour. Then IHC was used to study the expression of each protein 

during the different stages of CRC. 

Aims  

1. To assess the immunohistochemical expression patterns of candidate 

biomarkers in relation to the different stages of CRC 
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2. To examine the relationship between CDC5L and Cyclin E expression and 

that of their potential partner proteins during human CRC development 

6.2 Haematoxylin and eosin (H and E) staining based histology of the samples 

H and E is the standard method used to assess the histopathology of cancers based on 

their morphology. H and E images are shown in figure 6.1 as a histological reference 

for the different stages of CRC. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Haematoxylin and Eosin stained human colonic sections. A) Shows 

normal colon, B) shows benign adenoma, C) shows polyp cancer and D-E) show 

Dukes’ A to D CRC respectively. All images are X40 original magnification.  

Although the histological appearance of each stage may vary according to the 

behaviour of the individual tumour, these images can be used as a general guide for 

how CRC changes during the different stages. Moreover, staging is not only based on 

the morphological changes but also on the invasion to the different surrounding 

structures as well as on distant metastasis. Refer to table 1.1 (p18) for more details. 

6.3 Immunohistochemistry evaluation of the expression of candidate biomarker 

proteins 

IHC is a good method for studying the association between changes in the expression 

of a particular protein and the histopathological and clinical behaviour of a tumour. 

A 

B C 

D E F G 
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IHC is also widely used to understand the distribution and localisation of biomarkers 

and differentially expressed proteins in different parts of a biological tissue. 

All images are representative, since whole tumour sections were examined from five 

patients per histological stage. 

6.3.1 Assessment of WNT pathway activity in normal and neoplastic human 

colon  

The canonical WNT signalling pathway plays a critical role in development, tissue 

homeostasis and cancer [68]. Cell fate, cell growth and cellular proliferation have all 

been reported to be regulated by this pathway. The complex relationship between the 

WNT pathway and cellular functions extends to mechanisms that control progression 

through the cell cycle. Consequently, aberrations of the WNT pathway during 

development or later in life can have catastrophic outcomes including cancer 

development [68].  Not surprisingly, the majority of human CRCs are initiated by 

abnormal activation of the WNT pathway [299]. However, the downstream 

mechanisms mediating this tumourigeneis are not yet fully understood [205].  

It was evident in chapter three that Apc deletion caused immediate derangement of 

the WNT pathway as demonstrated by nuclear re-localisation of Beta catenin in the 

areas of the AhCre
+
Apc

fl/fl  
mouse where DNA recombination occurred.  Moreover, 

colonic neoplastic lesions in Apc
Min/+ 

mice also demonstrated evidence of altered 

WNT activity. The proteins examined in this thesis also demonstrated the most 

obvious changes in expression patterns in the same tissue compartments where the 

Wnt pathway was active. It is therefore important to investigate the role of the WNT 

signalling pathway in human subjects and then correlate that with the expression of 

our candidate biomarker proteins. This will inform about the significance of WNT 

signalling pathway activation during human colorectal tumourigenesis.  

The same antibody to Beta catenin was used as in chapter three and the same 

experimental conditions were used in the IHC work that involved human colonic 

tissue samples. Figure 6.2 shows representative images of Beta catenin expression in 

samples from the various stages of human CRC. 
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Figure 6.2 Representative IHC images of Beta catenin expression in human 

CRC.  Images A to G represent normal colonic epithelium, small adenomatous 

polyp, polyp cancer, Dukes’ A, Dukes B’, Dukes’ C and Dukes’ D CRC 

respectively. All images are X40 original magnification. N=5 patients per 

tumour stage. 

Under un-stimulated conditions Beta catenin is cytoplasmic and membrane bound 

[59]. Normal colonic epithelium also demonstrated membranous localisation of Beta 

catenin (figure 6.2A). Consistent with the findings in the mouse models (chapter 

three), the earliest stages of colorectal cancer development, particularly adenomas, 

demonstrated increased nuclear localisation of Beta catenin (figure 6.2B). 

Interestingly, overexpression of Beta catenin continued with the progression of the 

lesions, however nuclear localisation was not the predominant distribution pattern 

anymore.  

Due to the inter-tumour heterogeneity described with many cancers [300] and to 

have a more objective assessment of the expression of Beta catenin and other 

candidate biomarkers in these samples, the intensity of nuclear and cytoplasmic 

staining of the various proteins was scored from 0-3. Zero represented no staining 

while 3 represented the most intense staining (figure 6.3). Scoring was performed by 

scanning the slides under a light microscope according to the following criteria: 

 Included tissues were more than 70% intact 

 More than 70% of the specimen had acceptable staining 

A 

G F E D 

C B 
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 The predominant staining pattern (more than 50-70% of the included tissue) 

was considered. It was not possible to determine the percentage of each minor 

variation in intensity because we were scoring two parameters (nuclear and 

cytoplasmic). 

 Artefacts were ignored  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Colour guide in the quick scoring used for all candidate proteins. A) 

Cartoon representation of colour intensities with corresponding scores. B) 

Representative IHC images for the different cytoplasmic (B) and nuclear (C) 

staining intensities with the respective scores. 

Intra-scorer variation was checked by re-scoring some slides on a different occasion 

with the scorer being blinded from knowing the slide label and tumour stage. Results 

were then compared as shown below in figure 6.4. 
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Figure 6.4 Re-scoring of staining intensity for some proteins on a different date. 

A) Shows rescoring of Beta catenin expression in 8 patients with benign colonic 

polyps. In graph (A) each tick mark on the X axis represents a data point from 

one patient. B) shows rescoring of PHB expression in 5 patients with polyp 

cancers. 

Rescoring was performed on several of the proteins and the results were acceptably 

close between the two rounds of scoring as demonstrated in two examples shown in 

figure 6.4.  
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Figure 6.5 below shows the scoring of nuclear and cytoplasmic Beta catenin staining 

in specimens representing the different stages of human CRC development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Nuclear and cytoplasmic Beta catenin staining scores in all stages of 

human CRC. For each histological stage, five patient’s samples were scored. A) 

Each segment represents a raw data point and each bar represents the 

cumulative staining intensity. B) Each data point represents the mode within 

each group. Cyto.=  cytoplasmic. 

Mouse models showed more consistent staining in the benign stages as seen in 

colonic polyps from six month old Apc
Min/+ 

mice and the intestinal crypts of 

AhCre
+
Apc

fl/fl
 mice. However, it is not surprising that the same consistency was not 

recapitulated in human CRC. This may be due to the following reasons: 

 Lesions studied in mice were all about the same age while polyps from 

humans were harvested at different time points during tumourigenesis.  
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 Experimental mice share the same genetic and environmental conditions 

while humans differ in these conditions. 

 It is documented that the type of Apc mutation determines the level of Beta 

catenin [63]. This observation supports the role of genetic background in 

determining tumour behaviour.  

Despite the above heterogeneity, Beta catenin expression appeared to be higher 

during the earliest stages of CRC development. Moreover, if we add up nuclear and 

cytoplasmic Beta catenin levels, we can see the total level is lowest in the normal 

colon and then it is upregulated, but almost the same during the other stages. This 

suggests a role for the nuclear Beta catenin/WNT pathway particularly during the 

early stages of colorectal tumourigenesis.   

6.3.2 NAP1L1 expression in human CRC 

NAP1L1 is a novel protein in the area of carcinogenesis that has not been studied 

extensively. Its upregulation has been reported in few studies; for example it has 

been shown to be upregulated in hepatoblastomas [301]. Moreover, in a study 

involving relative mRNA level comparison between human CRC samples and 

normal adjacent tissues involving 15 patients, a 2 - 9 fold increase in the level of 

NAP1L1 was seen in cancerous tissue in 7 patients [150]. Therefore studying 

NAP1L1 expression in human CRC samples using IHC may further clarify the role 

of NAP1L1 in this disease. 

NAP1L1 protein expression was studied in the various stages of human colorectal 

tumourigenesis using samples from 5 patients for each stage. Figure 6.6 shows 

representative images for NAP1L1 expression in early and advanced cases of human 

CRC. 
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Figure 6.6 Immunohistochemical NAP1L1 expression in human CRC.  Images 

A-G represent normal colonic epithelium, benign colonic adenoma, colonic 

polyp cancer, Dukes’ A, Dukes’ B, Dukes’ C and Dukes’ D stages CRC 

respectively. N=5 patients per stage. 

In agreement with a previous report that described NAP1L1 as a nuclear protein 

[148], NAP1L1 showed nuclear localisation in the normal colon. Again, consistent 

with the findings from IHC studies in animal models, NAP1L1 demonstrated 

cytoplasmic displacement and nuclear sparing immediately after the start of 

neoplasia development. Interestingly, the change does not seem to involve an 

obvious increase in the total level of NAP1L1 expression.  
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Scoring of NAP1L1 expression in normal and neoplastic colonic tissues was 

performed (figure 6.7) following the same criteria as those used for Beta catenin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Scoring results for NAP1L1 expression as detected by IHC in 

samples from normal and neoplastic human colon. N=5 patients per stage. A) 

Represents raw data and B) represents the mode values within each group. 

Cyto.= cytoplasmic. 

Strong nuclear expression of NAP1L1 was obvious in the normal colon. The early 

stages of colorectal neoplasia were associated with a reduction in the nuclear 

expression of NAP1L1 while after invasion there was complete loss of nuclear 

NAP1L1 expression. A more quantitative technique such as western blotting or 

qPCR may be superior for assessing changes in total NAP1L1 level.  
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6.3.3 RPL6 expression in human CRC 

Similar to NAP1L1, RPL6 has not been well studied in CRC. This protein however 

also showed upregulation in the mouse models previously studied. Moreover, in 

vitro, RPL6 knockdown caused significant inhibition of cellular proliferation with a 

simultaneous increase of apoptosis.  The same antibody and experimental conditions 

used in chapter three were also used in the IHC experiments involving human 

colonic tissue samples.  

 

 

 

 

 

 

 

 

 

Figure 6.8 RPL6 expression in human CRC. Images A-G represent normal 

colonic epithelium, benign colonic adenoma, colonic polyp cancer, Dukes’ A, 

Dukes’ B, Dukes’ C and Dukes D’ stages CRC respectively. N=5 patients per 

stage. 

Consistent with the results from the animal studies, RPL6 showed nuclear 

localisation early during colorectal tumourigenesis as seen in the benign adenoma 

sample.  Nuclear expression was absent in the more advanced tumour stages.  

Scoring of the staining intensity of nuclear and cytoplasmic RPL6 expression was 

performed on five patients for each stage of CRC as shown in figure 6.9. 
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Figure 6.9 Scoring results for RPL6 expression as detected by IHC in samples 

from normal and neoplastic human colon. N=5 patients per stage. A) Represents 

raw data and B) represents the mode values within each group. Cyto.= 

cytoplasmic. 

Unlike the animal models, nuclear expression of RPL6 was strong in normal colonic 

epithelium. Then with the start of the neoplastic process, RPL6 started to shift into 

the cytoplasm.  Almost no nuclear expression was seen in the more advanced 

tumours. This suggests a WNT dependent role of RPL6 in early but not late 

colorectal tumourigenesis. Also these results showed that RPL6 was a nuclear 

protein under normal conditions. Moreover, these observations are in agreement with 

studies which have reported cytoplasmic localisation of RPL6 in human gastric 

cancer tissues [163]. 
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We have previously studied whether RPL6 interacts with Cyclin E during colonic 

tumour development in vitro and in mouse models. Therefore, we decided to also 

study this relationship in human CRC. The same experimental conditions employed 

in chapter three were used to study Cyclin E expression in human colonic tissues. 

Figure 6.10 shows representative IHC images of Cyclin E expression and figure 6.11 

shows the scoring results from IHC experiments of five subjects per histological 

stage.  

 

 

 

 

 

 

 

 

 

Figure 6.10 IHC results of Cyclin E expression in human CRC. Images A-G 

represent normal colonic epithelium, benign colonic adenoma, colonic polyp 

cancer, Dukes’ A, Dukes’ B, Dukes’ C and Dukes’ D stages CRC respectively. 

N=5 patients per stage. 

Although animal studies did not show co-expression of RPL6 and Cyclin E as shown 

in chapter three, both proteins showed cytoplasmic localisation in human CRC. 

Despite this co-expression, no clear change in Cyclin E expression was seen in the 

above images. Because the above images are only representative of a larger scale 

experiment, figure 6.11 is shown to depict the results from five patients per stage.  
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Figure 6.11 Scoring results for Cyclin E expression as detected by IHC in 

samples from normal and neoplastic human colon. A) Represents raw data and 

B) represents the mode values within each group. Cyto.=  cytoplasmic. 

Cyclin E expression was cytoplasmic and did not alter in the various stages of CRC 

studied. The highest expression can be seen in Dukes’ D cancers. Interestingly, both 

RPL6 and Cyclin E showed the highest cytoplasmic to nuclear ratio in the most 

advanced stage of CRC. This finding may support the suggestion made by one 

research group that Cyclin E mediate effects of RPL6 in tumourigenesis [163]. 
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6.2.4 PHB expression in human CRC 

PHB showed mild changes in its level of expression in the animal studies, suggesting 

a small role if any for this protein during early colorectal tumourigenesis. 

Unfortunately, the anti-PHB antibody was among the antibodies that did not work in 

the animal model of advanced colorectal tumourigenesis. Similar to the other 

proteins studied in this thesis, PHB has also not been well studied in human CRC. 

Optimised IHC experimental conditions (as outlined in chapter three) were therefore 

used to study PHB expression in human CRC samples. Figure 6.12 shows 

representative images of an experiment that involved 5 patients per histological 

stage.  

 

 

 

 

 

 

 

 

 

Figure 6.12 assessment of PHB expression in the various stages of human CRC. 

A-G represent normal colonic epithelium, benign colonic adenoma, colonic 

polyp cancer, Dukes’ A, Dukes’ B, Dukes’ C and Dukes D’ stages CRC 

respectively. N=5 patients per stage. 

Although no major change of expression was seen in some adenomas (as shown in 

figure 6.12B), there was an obvious increase in the brown staining in the cytoplasm 

of colonic epithelial cells from the early stages of colorectal cancer (C-E). To further 

validate these results, tissue sections from all five patients in each stage were scored 

as demonstrated in figure 6.13. 
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Figure 6.13 Cytoplasmic and nuclear PHB staining intensity in the various 

stages of human CRC. N=5 patients per stage. A) Represents raw data and B) 

represents the mode values within each group. Cyto. = cytoplasmic 

The scoring results (figure 6.13) demonstrate that there was an increase in PHB level 

in benign polyps, polyp cancers, as well as Dukes’ A and Dukes’ B cancers. This 

further confirms the changes that were seen visually in figure 6.12. Moreover, these 

results are in agreement with quantitative RT-PCR data produced by a previous 

colleague (Dr. Fei Song, unpublished work) in human CRC tissues vs. normal 

adjacent tissues. She showed that PHB was mainly overexpressed in Dukes’ A and B 

stages colorectal tumours.   
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6.3.5 NCL expression in human CRC 

NCL was another protein that demonstrated overexpression in the animal models of 

early CRC. Therefore, it was selected to be tested in human colonic tissue samples. 

Below (figure 6.14) are representative images of NCL IHC that included five patients 

for each histopathological stage and used the same optimised experimental 

conditions as were described in chapters two and three.  

 

 

 

 

 

 

 

 

 

Figure 6.14 representative images of IHC staining of NCL in human CRC 

tissues.  Images A-G represent normal colonic epithelium, benign colonic 

adenoma, colonic polyp cancer, Dukes’ A, Dukes’ B, Dukes’ C and Dukes’ D 

stages CRC respectively. N=5 patients per stage. 

In the animal studies, NCL demonstrated overexpression early during colonic 

tumourigenesis. Interestingly, in human samples, it was visually obvious that NCL 

was down regulated in Dukes’ C and D stages. This protein could therefore be useful 

as a prognostic or predictive marker if this observation is confirmed in larger scale 

studies.  

All tissue sections in the above experiment were scored (figure 6.15) to produce a 

more objective assessment of NCL expression during the course of CRC progression.  
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Figure 6.15 Scoring results for NCL staining intensity in the various stages of 

human CRC. N=5 patients per stage. A) Represents raw data and B) represents 

the mode values within each group. Cyto. = cytoplasmic. 

In agreement with the images in figure 6.14, scoring demonstrated that NCL did not 

show obvious changes in expression except in Dukes’ C and D stages, where it 

showed an obvious reduction in staining intensity in comparison to normal colonic 

tissue.  

 

 

 

2 
0 

2 
0 

2 
0 

2 
0 

2 
0 

1 
0 

1 
0 

2 

0 

2 

0 

2 

0 

1 

0 

2 

0 

1 

0 

2 

0 

3 

0 

2 

0 

1 

0 

2 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

2 

0 

2 

0 

1 

0 

1 

0 

1 

0 

1 

0 

2 

0 

3 

0 

2 

0 

3 

0 

1 

0 

1 

0 0

2

4

6

8

10

12

Nuclear Cyto. Nuclear Cyto. Nuclear Cyto. Nuclear Cyto. Nuclear Cyto. Nuclear Cyto. Nuclear Cyto.

Normal Benign polyp Polyp cancer Dukes A Dukes B Dukes C Dukes D

patient1 patient2 patient3 patient4 patient5

NCL expression in human CRC 

0

0.5

1

1.5

2

2.5

Normal Polyp,
benign

Polyp
cancer

Dukes A Dukes B Dukes C Dukes D

St
ai

n
in

g 
in

te
sn

si
ty

 

NCL expression in human CRC 

Nucleus

Cytoplasm

A 

B 

In
d

iv
id

u
al

 a
n

d
 c

u
m

u
la

ti
ve

 s
co

re
s 

 



235 
 

6.3.6 Assessment of SFRS2 and CDC5L expression in correlation with WNT 

pathway activity 

As described in chapter five, SFRS2 and CDC5L may interact during colorectal 

carcinogenesis. In the IHC experiments performed on animal models of early 

colorectal tumourigenensis that we showed in chapter three, SFRS2 demonstrated 

nuclear over expression while CDC5L showed cytoplasmic displacement in areas 

where the WNT signalling pathway was shown to be active. CDC5L also showed 

nuclear re-localisation in the animal model of more advanced intestinal 

tumourigenesis (AhCreER
T+

Apc
fl/+

Pten
fl/fl  

mouse). Unfortunately two anti-SFRS2 

antibodies did not work on the tissue sections from this mouse model. We have now 

investigated the expression of these proteins during human colorectal tumour 

development.  

Below (figure 6.16) are representative images from each CRC stage. For each stage, 

samples from five patients were used. 
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Figure 6.16 shows assessment of SFRS2 and CDC5L expression in correlation with WNT pathway activity. 

These representative images from a subset of patients show loss of nuclear Beta catenin after the benign adenoma stage. At this stage, similar to the 

animal models described in chapter three, there was a simultaneous nuclear over expression of SFRS2 and cytoplasmic displacement of CDC5L. In the 

polyp cancer samples, SFRS2 started to show loss of nuclear activity while CDC5L expression remained cytoplasmic. From the stage of Dukes’ A 

cancers onwards, CDC5L started to regain nuclear localisation. N= 5 or more samples per tumour stage. 
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As with Beta catenin, scoring was carried out on the sections stained with anti-

SFSR2 and anti-CDC5L antibodies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17 Scoring results for SFRS2 expression in five patients per 

histopathological stage of human CRC. A) Represents raw data and B) 

represents the mode values within each group. Cyto. = cytoplasmic. 
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Figure 6.18 Scoring results for CDC5L expression in five patients per 

histopathological stage of human CRC. A) Represents raw data and B) 

represents the mode values within each group. Cyto. = cytoplasmic. 

Consistent with the images shown in figure 6.16, SFRS2 started to be observed in the 

cytoplasm as early as the benign adenoma stage and became almost completely 

cytoplasmic after that. On the contrary, CDC5L demonstrated more cytoplasmic 

staining initially, whereas it was predominantly re-localised to the nucleus after the 

polyp cancer stage. This observation indirectly shows opposite locations for the two 

proteins at least for most stages of CRC and for the more advanced ones in 

particular. These observations further support the preliminary findings that we 

showed in the mouse model of invasive disease. Moreover, they fill in the gap left in 

the data from this animal model, due to technical issues related to the anti-SFRS2 

antibodies.   
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To further elucidate the relationship between SFRS2 and CDC5L in correlation with 

WNT pathway activity, a more detailed scoring was carried out using a modified H 

score [302, 303]. This scoring was based on assessing 10 random X40 images for 

each individual tumour. One tumour was scored from each patient and five patients 

were included per histological stage; normal, benign adenoma, polyp cancer and 

Dukes’ stages A to D CRCs. Images were taken using a Leica laser capture micro-

dissection microscope.  

The three proteins included in this assessment need to be nuclear to be functional. 

Therefore, only nuclear expression was scored as an indicator of the activity of each 

protein during the different stages of CRC.  The intensity of staining was scored as 0, 

1, 2 and 3 representing negative, weak, intermediate and strong staining respectively 

(figure 6.19). The total number of cells in each field and the number of cells stained 

at each intensity were counted. Then the percentage of cells in each intensity group 

was calculated.   Then H score was calculated using the formula; H Score = (% of 

cells stained at intensity category 1 x 1) + (% of cells stained at intensity category 2 x 

2) + (% of cells stained at intensity category 3 x 3). An H-Score between 0 and 300 

was obtained where 300 was equal to 100% of tumour cells stained strongly (3+) 

(figure 6.19).  

 

 

 

 

 

 

 

 

Figure 6.19 an example illustrating the different nuclear staining intensities and 

their corresponding scorings.  
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Cells were counted manually using imageJ 1.47v software (plugins; analyse/cell 

counter). Intra-scorer variation was checked by rescoring the fields taken from one 

patient for each protein at a different date. Figure 6.20 shows rescoring results for 

both SFRS2 and CDC5L. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20 Analysis of intra-scorer variation. A) Shows two scorings for SFRS2 

staining in the benign adenoma stage of CRC. B) Shows two scorings for 

CDC5L staining in Dukes’ A stage of CRC. The scorings were performed more 

than two weeks apart. N=10 images. 
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After scoring several hundreds of fields for three different proteins, rescoring of 

randomly chosen patients and tumour stages at a different date with the scorer being 

blinded to the first round of scoring results is an effective way of assessing intra-

scorer variation. Results were compared with those from the same patient (images 

were already labelled). 

Figure 6.21 below, shows the distribution of data points from five patients per stage 

for each protein. 
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Figure 6.21 H-score data from IHC analysis of nuclear expression of Beta 

catenin, SFRS2 and CDC5L in human CRC. A) Each box represents mean H-

scores from five patients. Each mean represents ten H-scores from each 

individual tumour. B) Shows levels of SFRS2 and CDC5L correlated with WNT 

pathway activity. N=5 patients per stage. Within each histological stage, non-

parametric (Kruskal-Wallis) one way ANOVA was used to assess the statistical 

significance of the difference. P values *, ** and *** are less than 0.05, 0.01 and 

0.001 respectively. Beta cat = Beta catenin. 
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H-Score data (figures 6.20 and 6.21) supported what has already been shown in 

figures 6.16-6.19. The inverse relationship between SFRS2 and CDC5L expression is 

obvious in all Dukes’ stages. Moreover, in agreement with the notion that Wnt 

pathway activity is down regulated during the more advanced stages of CRC, WNT 

pathway activity remained weak throughout the tumourigenesis process after the 

benign polyp stage.  

Detailed statistical analysis of the H-score data was also performed. The mean or 

median values for the expression of each protein in five patients from each 

histopathological stage were compared to those from the normal patients. SPSS 

version 20 was used to assess the statistical significance of any existing difference. 

Dunnett’s test was used to compare each group to the control group (normal colon).  

Beta catenin was significantly different in benign adenoma, Dukes’B and Dukes’D 

stages of CRC when compared to its expression in normal colon. SFRS2 expression 

was significantly different in all stages but the benign adenoma stage from that in 

normal colon. CDC5L expression was only significantly different in the polyp cancer 

stage when compared to its expression in normal colon. 
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6.4 Discussion  

Following the validation of changes in the expression of selected proteins in the 

setting of Apc deletion in animals, it was important to also investigate the expression 

of these proteins in human subjects. Therefore, in this chapter, 

immunohistochemistry was used to evaluate the expression of these proteins in 

colonic tissues from patients who had different stages of CRC as well as normal 

colon. Five patients were used from each histopathological stage.  

The activity of the Wnt signalling pathway was evaluated using Beta catenin staining 

(figure 6.3 and 6.4). It was obvious from the representative images that there is over 

expression of Beta catenin throughout the tumourigensis process. In early adenomas, 

there were scattered areas of increased nuclear expression of Beta catenin. In the 

more advanced stages, there was a predominant cytoplasmic over expression of this 

protein.  This was verified by scoring both the intensity of cytoplasmic and nuclear 

staining. Scoring results agreed with what is shown in figure 6.3, as the most 

prominent nuclear expression of Beta catenin was noted at the early adenoma stage. 

Also, there was a marked increase in cytoplasmic expression of Beta catenin initially, 

and then some reduction was noted in the amount of both cytoplasmic and overall 

staining in the more advanced stages (Dukes’ C and D).  

A more homogenous expression of Beta catenin was observed in the animal models. 

Variation in the fixation conditions used for the human tissues may have had an 

important effect on the heterogeneity of IHC results. Moreover, the variability in 

genetic and environmental conditions may also have affected the results seen in 

humans. Unlike humans, laboratory animals share the same genetic backgrounds and 

live in controlled environments, making it possible for different mice to have similar 

lesions with similar expression profiles. Moreover, lesions in animals develop within 

a known time frame, whereas in humans lesions are detected at different ages.  

Furthermore, there is an increasing body of evidence which suggests that Apc 

deletion is not the only factor responsible for the nuclear translocation of Beta 

catenin. Because APC mutations are found in most if not all cases of CRC, the 

heterogeneity in the distribution pattern of nuclear Beta catenin in most CRCs 

supports this approach. Therefore, other genetic or epigenetic factors might be 

involved in this process [304, 305]. One interesting paper analysed the patterns of 
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nuclear Beta catenin expression in 88 colonic adenomas ranging from early to more 

advanced cases with the beginning of invasive growth. The authors reported a 

heterogeneous pattern of nuclear Beta catenin expression with the most significant 

correlation of nuclear Beta catenin expression being with the size but not the grade of 

dysplasia observed in an adenoma [306]. Also, the same paper reported a perfect 

correlation between nuclear Beta catenin and c-Myc expression, but no correlation 

between adenoma size and proliferative activity and no significant correlation 

between nuclear Beta catenin expression and proliferative activity [306]. This same 

group found that highly proliferating areas in large adenomas and rapidly 

proliferating small adenomas did not exhibit high nuclear Beta catenin expression. 

They suggested a possible mechanism for this; undetectable low levels of nuclear 

Beta catenin contribute to proliferation while high levels of nuclear Beta catenin 

contribute to resistance against progression of larger lesions towards more invasive 

phenotypes by depressing certain pro-proliferative genes [306].  Alternatively both 

nuclear Beta catenin and c-Myc may not be directly involved in regulating cell 

proliferation during the early stages of tumourigenesis. The authors suggested that 

induction of proliferation at these stages is an APC effect, independent of Beta 

catenin [306]. 

A study by Samowitz et al. demonstrated that mutations in Beta catenin with normal 

APC status are found more commonly in smaller adenomas rather than in late 

adenomas and cancers [307]. Interestingly they reported 5 mm as a threshold size 

above which Beta catenin mutations rapidly decrease. This polyp size has also been 

defined as a threshold for detecting observable levels of nuclear Beta catenin 

expression. This could mean that both Beta catenin and APC individually can induce 

some degree of hyperproliferation, but further tumour progression with a 

concomitant increase in nuclear Beta catenin expression needs APC mutations as a 

basic defect [306]. This implies that APC mutations can do more than reducing the 

degradation of Beta catenin [306].  

Consistent with the pattern of Beta catenin expression in our samples (figure 6.4), a 

study by Takayama et al., involving a number of human cancers such as 

oesophageal, gastric and colorectal, found that down regulation of Beta catenin was 

associated with malignant transformation [275]. Down regulation of Beta catenin 

was observed in 11 out of 22 CRC samples and this was associated with poorer 
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differentiation. Moreover, it has also been suggested that the WNT pathway 

dominates in the early stages of sporadic CRC development [276]. 

In the same context, but with different results, a study using human cell lines and a 

zebra fish model of CRC, showed that APC loss was not sufficient to induce nuclear 

translocation of Beta catenin. It was only possible for nuclear Beta catenin to 

accumulate and for an adenoma to progress after secondary K-Ras mutations 

occurred in a RAF1/RAC1 dependent manner [308].  Similarly, it has been found 

that human colonic adenomas and cancers are associated with significantly higher 

cytoplasmic but not nuclear Beta catenin expression than normal colon [309]. 

Moreover, nuclear Beta catenin expression was observed only in advanced 

carcinoma tissue and not in any adenomas associated with familial adenomatous 

polyposis coli (FAP) or sporadic adenomas. In a similar study by Anderson et al., 

nuclear Beta catenin expression was not found in 90% of polyps taken from FAP 

patients, but was present in 50% of cancers examined [310].  

Due to the observation mentioned above, it is appropriate to conclude with the 

following quotation “It is now widely accepted that the inappropriate localization of 

β-catenin to the nucleus is a key oncogenic process. The basic understanding of Wnt 

signalling whereby β-catenin translocates to the nucleus simply as a result of 

cytosolic accumulation may be an over simplification in many contexts. In reality the 

systems regulating nuclear β-catenin entry are likely to be multi-factorial and highly 

context-dependent. However, this should not perturb efforts to uncover these 

mechanisms since they are likely to be of significant therapeutic interest in 

malignancy” [311]. 

NAP1L1 staining in human samples showed results (figures 6.6 and 6.7) that were 

consistent with our results the animal studies. Early after the start of colorectal 

neoplasia, NAP1L1 was displaced into the cytoplasm. It became almost completely 

cytoplasmic in all four invasive cancer stages. However, results (figure 6.7) did not 

suggest any obvious increase in the overall amount of cellular NAP1L1 protein. 

Our results demonstrated that NAP1L1 was a nuclear protein in the normal human 

colon. A role in proliferation has been reported for NAP1L1 by some research 

groups. Also in our work (chapter four) siRNA knockdown of NAP1L1 in human 

CRC cell lines resulted in a modest inhibitory effect on cellular proliferation. 
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Therefore, one can speculate that this displacement may be part of a protective 

mechanism within cells against further uncontrolled proliferation.  

We were not able to find any published report of NAP1L1 expression in human 

CRC. Therefore, we hope that this piece of work may be a starting point for more in 

depth studies involving this protein. Also, because reports are contradictory about 

NAP1L1 sub-cellular localisation, it is difficult to judge the consequences of the 

cytoplasmic displacement of NAP1L1. 

RPL6 has been shown by a previous colleague in our department (Dr. Fei Song) to 

follow a pattern of expression similar to that of NAP1L1 in unpublished work that 

involved ELISA evaluation of serum samples from patients at the different stages of 

CRC. Therefore, it was not surprising to also find similarity between these two 

proteins in this piece of work. Although RPL6 retained some nuclear staining 

throughout the colorectal tumourigenesis process (figure 6.9), its expression was 

characterised by predominantly cytoplasmic expression as soon as neoplasia started.  

We (chapter four, siRNA studies) and others have shown a role for RPL6 in 

regulating the proliferation of cancer cells. Therefore, similar to NAP1L1, RPL6 

nuclear exclusion during the tumourigeneis process may be a protective mechanism 

to control growth and prevent the further progression of colorectal neoplasia.  

Cyclin E has been extensively studied for its role in tumourigenesis and increased 

expression has been correlated with adverse outcomes in breast cancer and a number 

of other tumours. However, its role needs further investigation, especially in CRC. 

Cyclin E has been suggested to have similar effects on cell cycle as RPL6 (G1/S 

transition) and one study has shown the co-expression of these two proteins in human 

gastric cancer samples [163]. Moreover, this paper suggested that Cyclin E mediated 

the effects of RPL6 on the cell cycle. Therefore, we included Cyclin E in our 

experiments on human CRC. In agreement with these observations and our prior 

observations in animal studies  (chapter four), Cyclin E and RPL6 showed co-

expression in the cytoplasm of malignant colonic epithelial cells. 

Consistent with the reports shown in the introduction chapter (section 1.6.9) which 

suggested that PHB was associated with the more advanced stages of CRC, PHB 

demonstrated cytoplasmic over expression after the early polyp stage of colorectal 



248 
 

tumour development. The highest expression was noted in Dukes’ B stage samples. 

This was also consistent with the data from the unpublished work of Dr Fei Song 

described above. She demonstrated increased PHB concentrations mainly in the sera 

of patients with Dukes’ A and B CRC. 

NCL was also one of the proteins that showed differential staining in the animal 

studies reported in chapter three. It showed early nuclear over expression in the 

AhCre
+
Apc

fl/fl  
mice and in colonic polyps from Apc

Min/+ 
mice. In human subjects, 

there was no obvious over expression of NCL during the early stages of colorectal 

tumour development (figures 6.14 and 6.15). In contrast, there was an obvious down 

regulation of NCL staining intensity in the more advanced stages (Dukes’ C and D) 

(figures 6.14 and 6.15). This finding could be quite interesting, since NCL has been 

reported to negatively regulate c-Myc promoter driven transcription via binding to c-

Myc G-quadreplex structures [169]. Therefore, down regulation of NCL may be 

associated with c-Myc driven proliferation. However, the role of NCL during 

tumourigenesis can vary according to its sub-cellular location. For example, cell 

surface NCL has been shown to promote tumour growth, angiogenesis and 

proliferation [312].  

To follow up our analysis of the proposed relationship between SFRS2 and CDC5L 

during colorectal carcinogenesis, these two proteins were also included in our 

experiments involving human CRC samples. Although, SFRS2 showed obvious over 

expression in the Wnt active areas in the animal models described in chapter three of 

this thesis, this was not the case in human CRC. Unlike the animal models, there was 

no clear over expression of SFRS2 in early adenomatous polyps, but interestingly 

cytoplasmic displacement of SFRS2 was noted thereafter (figure 6.16). This was 

coincident with a reduction in WNT pathway activity in these lesions. Again in 

agreement with our results in animal models, CDC5L showed cytoplasmic 

displacement in early and advanced colonic adenomas (figures 6.16-6.19).  It then 

demonstrated nuclear re-localisation in invasive cancers (Dukes’ A-D stages) with 

some remaining cytoplasmic staining (same above figures). These findings were 

further supported by the results of detailed H-scoring that was performed to correlate 

the activity of SFRS2 and CDC5L with each other and with WNT pathway activity 

during colorectal carcinogenesis (figure 6.21). Although, the reduction in the level of 

Beta catenin was not large, it still could have dramatic effects on tumour behaviour. 
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This is supported by the findings of other research groups who suggested pro-

proliferative effects for low levels of Beta catenin and anti-proliferative effects for 

high levels of this protein [275]. Therefore, it is tempting to speculate that this 

reduction in the level of Beta catenin was responsible for the cytoplasmic 

displacement of SFRS2 and nuclear re-localisation of CDC5L in the later stages of 

CRC. 

6.5 Conclusion 

In human CRC, WNT pathway activity is heterogeneous, with a modest down 

regulation occurring in the more advanced stages. The proteins investigated in this 

chapter showed results consistent with those described in the animal studies 

described in chapter three. NAP1L1 and RPL6 demonstrated cytoplasmic expression 

early after the start of the neoplastic process. Cyclin E showed co-expression with 

RPL6 with no obvious changes in expression level being observed. PHB showed 

over expression after transformation and it was most obvious in advanced adenomas, 

Dukes’ A and Dukes’ B cancers. There was a down regulation in the level of NCL in 

the more advanced stages of CRC (Dukes’ C and D). Therefore, these candidate 

proteins may be potential biomarkers both individually and as a panel for the 

different stages of CRC.  

Our findings about SFRS2 and CDC5L expression in human CRC further augmented 

our proposal that these two proteins have opposite functions during colorectal 

tumourigensis and that they are regulated at least in part by WNT pathway activity.  
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7. Discussion  

Although the early and critical role of Apc mutation in most if not all CRCs has been 

well documented, the molecular mechanistic consequences of loss of Apc function 

are not well understood [44, 313]. Moreover, issues with delays in diagnosis and 

targeted therapy are major contributors to the relatively high mortality and morbidity 

associated with CRC. Therefore, studying the events that follow Apc deletion may 

reveal new aspects about early colorectal tumourigenesis and help to modify disease 

outcome. By studying the concomitant changes in the intestinal proteome of a mouse 

model of acute intestinal Apc deletion (AhCre
+
Apc

fl/fl 
mouse), our group has 

identified several upregulated proteins. Based on the above findings and other data 

generated in our group, we hypothesised that these proteins are upregulated at early 

time points following Apc deletion and that they are  therefore potential key proteins 

that may serve as novel biomarkers or therapeutic targets in the management of 

CRC. We have tested this hypothesis using animal and cell line models of CRC and 

clinical samples obtained from patients with this disease. 

In the animal studies involving samples from AhCre
+
Apc

fl/fl 
and Apc

Min/+ 
mice as 

models of early colorectal tumourigenesis, we were able to confirm the over 

expression of six out of nine proteins studied. These proteins were NAP1L1, RPL6, 

SFRS2, PHB, FABP6 and NCL. These proteins have not previously been shown to 

be Wnt target genes, but they have been implicated in regulating a wide range of 

important cellular functions such as cellular proliferation, progression through the 

cell cycle, apoptosis, alternative splicing and protein translation. Derangement of one 

or more of these processes has well been linked to various tumourigenesis processes 

[226]. 

Also in these animal studies, we tried to explore mechanistic aspects about our 

proteins. Therefore, using mainly IHC and based on other published data, we studied 

Cyclin E and CDC5L as partners for RPL6 and SFRS2 respectively during colorectal 

tumourigenesis. In this part of the study we also included a mouse model of invasive 

CRC, the AhCreER
T+

Apc
fl/+

Pten
fl/fl  

mouse.  

In vitro studies (using HCT116 and HT29 cells) were also undertaken to identify 

whether selected proteins had causative or correlative roles during colorectal 

tumourigenesis. Based on other independent data generated in our group, NAP1L1, 
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RPL6 and SFRS2 were selected for this part of the study. Moreover, we used this 

system to further explore the hypothesised interaction between SFRS2 and CDC5L.  

Although animals are good pre-clinical disease models however, significant variation 

can exist in disease behaviour between animals and humans. Therefore, before 

investigating these proteins in large clinical trials it was wise to validate at least our 

principal findings from the animal models in clinical samples obtained from patients 

with CRC. For this purpose we used IHC to study the expression of those proteins 

which showed overexpression in our earlier animal studies. Due to the inter- and 

intra-tumour heterogeneity of IHC results, modified scoring systems were used to 

further augment our findings in these clinical studies.      

7.1 Analysis of NAP1L1 expression in clinical samples and animal/cell line 

models of CRC 

Similar to several other selected candidate biomarker proteins that we studied in this 

thesis, NAP1L1 has not previously been extensively studied in colorectal 

tumourigenesis. In our work, NAP1L1 localisation under normal conditions varied 

between animal and human samples. In the animal models NAP1L1 mainly showed 

cytoplasmic expression, whereas in the non-cancerous parts of the human CRC 

samples it showed predominantly nuclear expression. This variability is also found in 

papers describing NAP1L1 subcellular position in normal tissues [148, 149]. In the 

pathologic areas, NAP1L1 showed predominant and sometimes exclusively 

cytoplasmic expression immediately after Apc deletion in the AhCre
+
Apc

fl/fl
  mice, in 

the benign adenomas in Apc
Min/+ 

mice and in human subjects. In the animal model of 

invasive disease, the NAP1L1 antibody did not produce valid results, but in human 

CRC NAP1L1 expression remained cytoplasmic throughout the neoplastic process 

(including the invasive stages).  Since NAP1L1 has been shown to play a role in 

regulating cell proliferation and as NAP1L1 is believed to shuttle essential molecules 

into the nucleus from the cytoplasm [149, 211], a cytoplasmic localisation of 

NAP1L1 suggests that it may act as a driver in the tumourigenesis process. This was 

further supported by the inhibition of proliferation that we observed upon knocking 

down NAP1L1 expression in human colon adenocarcinoma cell lines. Our findings 

support a previous report which has suggested that NAP1L1 may be a therapeutic 

target for CRC [211]. 
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7.2 Analysis of RPL6 expression in clinical samples and animal/cell line models 

of CRC 

RPL6 has also not previously been well studied in colorectal tumourigenesis. 

Although it has been described as a constituent of ribosomes, RPL6 is not necessarily 

only a cytoplasmic protein. It is now accepted that ribosomal proteins also have other 

extra-ribosomal functions [162, 163]. This may therefore explain why we observed 

RPL6 expression in both the nucleus and cytoplasm of wild type control mice and in 

normal human colon samples. Early after Apc deletion in both mouse models, there 

was an obvious increase in the nuclear proportion of this protein. In contrast, in 

human CRC samples, cytoplasmic RPL6 expression was predominantly observed in 

benign adenomas as well as the more advanced tumour stages. This observation was 

similar to that reported by another research group in human gastric cancer samples 

[163]. RPL6 expression knockdown in cell line models of human CRC resulted in a 

dramatic inhibition of cellular proliferation, reduced colony formation and increased 

apoptosis. These findings agree with data from studies on gastric cancer cell lines 

which have suggested that RPL6 has oncogenic properties and that it regulates 

cellular proliferation, survival and resistance to drug induced apoptosis [164]. 

Moreover, RPL6 knockdown in gastric cancer cell lines appeared to cause similar 

effects to those that we observed in colon cancer cell lines [163].  

The concordance in expression between RPL6 and NAP1L1 in human CRC tissue 

samples shown by IHC was also found by mRNA analysis of these two proteins by a 

previous colleague (Dr Fei Song) in unpublished work comparing tissues from the 

various stages of CRC and normal adjacent colon.   

It has been suggested that Cyclin E mediates the effects of RPL6 on G1/S transition 

and cellular proliferation, thus contributing to the oncogenic properties of this 

protein. It has also been shown that RPL6 and Cyclin E are co-expressed in human 

gastric cancer [163, 231]. In AhCre
+
Apc

fl/fl
 mice, Cyclin E demonstrated increased 

staining in the granules of Paneth cells, whereas in colonic adenomas from Apc
Min/+

 

mice, it showed cytoplasmic displacement in comparison to the colon of wild type 

mice. This disagreed with the above suggestion, as RPL6 mainly showed nuclear 

overexpression in these two animal models. However, in the clinical samples both 

proteins were mainly localised in the cytoplasm during the various stages of CRC. 

This difference between human subjects and experimental animals may be due to the 
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longer time human tumours take to develop allowing for more stable phenotypes. It 

has also been shown that siRNA mediated RPL6 knockdown in gastric cancer cell 

lines resulted in down regulation of Cyclin E [163]. Unfortunately, the Western blot 

experiments that we carried out to assess Cyclin E abundance following RPL6 

knockdown were unsuccessful due to technical issues related to the anti-Cyclin E 

antibody that we used.   

7.3 Analysis of SFRS2 and CDC5L expression and their interaction in clinical 

samples and animal/cell line models of CRC 

SFRS2 and CDC5L are nuclear proteins that have been shown to be involved in a 

similar range of cellular functions such as regulating alternative splicing and cell 

cycle progression [170, 270]. Neither protein has previously been extensively studied 

in colorectal cancer. Moreover, there have been suggestions of a possible interaction 

between these two molecules. One direct observation was made by a group in 2002, 

who reported that nuclear overexpression of CDC5L caused cytoplasmic 

displacement of SFRS2 [270]. Therefore, we hypothesised that SFRS2 and CDC5L 

may interact during colorectal tumourigenesis. In our animal studies, SFRS2 showed 

nuclear overexpression both in AhCre
+
Apc

fl/fl  
mice and in the neoplastic lesions that 

arose in Apc
Min/+ 

mice, whereas CDC5L was displaced into the cytoplasm. When we 

examined these two proteins in an animal model of invasive colorectal tumours, the 

AhCreER
T+

Apc
fl/+

Pten
fl/fl 

mouse, CDC5L showed relocalisation into the nucleus. 

Although SFRS2 IHC was not successful in this mouse model, SFRS2 did show 

cytoplasmic displacement in all the invasive stages of human CRC that were 

assessed in this study. Also, in agreement with these findings, CDC5L showed 

predominantly nuclear localisation in the more advanced stages of human CRC. 

Further in agreement with our hypothesis, we observed nuclear overexpression of 

CDC5L following SFRS2 knockdown in HCT116 cells and vice versa.   

When we studied the effects of these two proteins in vitro by knocking down their 

expressions in human colonic adenocarcinoma cell lines, CDC5L down regulation 

caused a dramatic inhibition of cellular proliferation and survival in addition to an 

obvious increase in the amount of apoptosis observed. This agrees with observations 

made by other research groups which have described CDC5L as a pro-proliferative 

protein [274, 284, 289]. In contrast, SFRS2 knockdown caused weak non-significant 

effects on cellular proliferation and only resulted in a small reduction in the amount 
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of apoptosis observed. Based on the latter observation it was tempting to hypothesise 

that SFRS2 plays a role in mediating apoptosis. This could lead to the speculation 

that SFRS2 may be partly responsible for the increased apoptosis that has been 

observed in AhCre
+
Apc

fl/fl 
mice [44] as these animals also demonstrated 

overexpression of nuclear SFRS2. SFRS2 has previously been directly linked to 

apoptosis in a number of published studies. For example, it has been shown that 

SFRS2 overexpression mediated cisplatin treatment and DNA damage-induced 

apoptosis via modulating the alternative splicing of caspase 8, caspase 9, c-flip and 

Bcl-x [234, 237]. Taking these observations together, as well as the observed 

increase in nuclear SFRS2 abundance following CDC5L knockdown in HCT116 

cells, we further speculated that SFRS2 may contribute to the increase in apoptosis 

that we observed following the knockdown of CDC5L. Moreover, SFRS2 

overactivity following CDC5L knockdown may explain the loss of G2 peak of the 

cell cycle (figure 5.17), as it has been reported that SFRS2 causes G2M arrest and 

activation of regulators of apoptosis [237].  

Despite the overall increased sensitivity of p53 knockout cells to the mild toxicity of 

the transfection process itself, as indicated by increased cell death in cells transfected 

with scrambled siRNA, CDC5L knockdown caused more apoptosis in HCT116 cells 

with WT p53 in comparison to HCT116 cells with knockout p53. This may also 

explain the observed increase in caspase 8 activity in these cells, as it has been 

shown that caspase 8 is an essential mediator of p53 dependent apoptosis [296]. In 

contrast, SFRS2 knockdown caused a more pronounced increase in the amount of 

apoptosis in p53 null HCT116 cells. This may be attributed to the effect of SFRS2 

knockdown on the G2M checkpoint, resulting in the activation of downstream 

regulators of apoptosis such as Bcl-x independent of canonical apoptosis pathways 

[236]. These observations suggest that SFRS2 over expression (following CDC5L 

knockdown) can mediate p53 dependent apoptosis, whereas SFRS2 knockdown may 

induce non-canonical apoptosis pathways or molecules downstream of p53.    
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7.4 Analysis of PHB and NCL expression in human samples and animal/cell line 

models of CRC 

PHB and NCL were also studied in this thesis as potential biomarkers of CRC. PHB 

showed mild cytoplasmic overexpression in the animal models of early colorectal 

tumourigenesis, AhCre
+
Apc

fl/fl 
and Apc

Min/+ 
mice. In human CRC samples, PHB 

showed more obvious cytoplasmic overexpression in the more advanced stages of the 

disease, namely polyp cancers, Dukes’A and Dukes’ B cancers. Interestingly, these 

observations of an association between PHB and advanced CRC agree with other 

published reports. For example, Chen et al. reported that PHB was over expressed in 

human CRC with the most obvious increase in expression being in poorly 

differentiated cancers [213]. In addition, PHB’s promoter has been shown to be 

susceptible to the actions of c-Myc [239], which has in turn been shown to be 

important in the later stages of CRC [60]. 

NCL demonstrated an obvious increase in nucleolar staining early after Apc deletion 

in AhCre
+
Apc

fl/fl 
and Apc

Min/+ 
mice. In human samples representing the early stages 

of CRC however, no obvious increase in the staining intensity of NCL was noted in 

comparison to normal colon.  However, the total amount of this protein might be 

increased due to the larger nuclei and more densely packed cells within tumours. 

Interestingly, there was a reduction in the intensity of NCL staining in the two most 

advanced tumour stages, Dukes’ C and D cancers. Since NCL has been shown to 

regulate critical cellular functions such as ribosomal biogenesis, DNA and RNA 

metabolism and cellular response to stress [167], it is not surprising that NCL 

upregulation was observed in the crypts of AhCre
+
Apc

fl/fl  
mice and in the colonic 

adenomas of Apc
Min/+ 

mice. This could be due to the hyper-proliferative state that 

follows Apc deletion in these areas. The down regulation of NCL expression that we 

observed in advanced human colorectal cancers may be related to c-Myc activity, as 

this has been shown to be negatively regulated by NCL [169]. 
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7.5 Limitations of the studies carried out and possible steps for improvement  

Developing and validating new protein biomarkers of a malignancy is not easy.  

Despite the fact that countless studies have been carried out for this purpose, a 

limited number of biomarker proteins have made their way into routine clinical 

practice. This is attributed to the complex nature of malignant processes and this 

complexity is due to multi-level regulation of biological functions which often 

widens the search area beyond feasibility. For the same reason, efforts are now 

focusing on finding genetic fingerprints and mechanisms to define more specific 

features of a malignancy that can be used to modify one or more aspects of its 

management [314].   

The AhCre
+
Apc

fl/fl 
mouse is a novel in vivo model of an induced Wnt signalling 

pathway in the intestine. It allows study of the immediate events and underlying 

molecular changes that follow acute intestinal Apc deletion. However, in human 

CRC there is a long period of heterozygosity before the stage of loss of 

heterozygosis. This may involve many biological changes in the microenvironment 

of the tumour, which might contribute to any difference observed between 

AhCre
+
Apc

fl/fl  
mice and Apc

Min/+ 
mice or humans.  

Apc
Min/+ 

mice are not exempt either, since their death before malignant 

transformation causes an interruption in the process of mapping changes in the 

expression of candidate biomarker proteins based on the histological progression of 

lesions. Therefore, it would be good to analyse the expression of our proteins in 

lesions at different time points from a mouse model that shows tumour progression to 

invasive disease, thereby studying benign and malignant lesions from the same 

mouse model.  A good candidate for this would be the AhCreER
T+

Apc
fl/+

Pten
fl/fl 

mouse. Although we did perform a few preliminary experiments, lack of samples 

precluded more detailed investigation of this model and further work is needed. 

HCT116 and HT29 cell lines harbour mutations in elements of the Wnt pathway 

rendering it active, however HT29 cells also still have other mechanisms for 

regulating Beta catenin activity such as PTEN protein. In contrast HCT116 cells have 

defective Beta catenin which is resistant to degradation. This difference might have 

been a contributor to the variation in transfection results observed between the two 

cell lines. Therefore, for validation purposes, it might have been better to use cell 
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lines with more similar genetic profiles such that they all have the same primary 

genetic defect, Apc mutation in our case. This agrees with a recent call for emphasis 

on the importance of cell line genotype authentication and characterisation before 

selecting in vitro models for descriptive and functional research [315].  

HCT116 and HT29 cells were originally derived from poorly differentiated and 

moderately differentiated human colonic adenocarcinomas respectively. This means 

that using these cells to investigate a protein such as SFRS2 which we think it is 

important early in the tumourigenesis process, may be misleading. Therefore, it 

might be better in future to study this protein in a cell line which was derived from an 

earlier neoplastic lesion such as an adenoma cell line. Such cell lines are however 

more difficult to grow and manipulate.  

Transient RNA interference using siRNA mediated knockdown of gene expression 

has also some limitations such as off target effects which the manufacturer has tried 

to keep minimal via multiple modifications of the siRNAs including the use of a pool 

of siRNAs to increase efficacy at lower doses. Also, the type of cells, rate of cell 

proliferation and importance of the target protein in regulating cell proliferation will 

all affect the outcome of gene knockdown. This may include rate of transfection and 

sustainability of knockdown. Therefore, stable transfection, albeit more expensive 

and time consuming may ultimately provide a better reflection of the role of a target 

gene. 

When it comes to studying the proposed interaction between SFRS2 and CDC5L, 

upregulating one protein at a time may also provide more direct clues about their 

effects on the alternative splicing process.  

In the studies which we performed using clinical samples, differences in genetics, 

environment and age of lesions may all have contributed to the variation that we 

observed in staining patterns between human and animal samples. Moreover, non-

standardised fixation conditions during the collection of human samples may also 

have affected the results that we obtained. Ensuring similar fixation conditions might 

dramatically improve the reproducibility of future results using this experimental 

approach.  
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7.6 Future work plans and medical implications of the studies that have been 

carried out 

The importance of the studies described in this thesis lies in the fact that we have 

investigated novel proteins that have been postulated to be involved in colorectal 

tumourigensis. Our studies were designed to prepare for more specific and larger 

studies that will be needed to take these proteins into clinical practice.  

There are many research opportunities that could be developed from this project. The 

potential biomarker proteins could be examined in a large prospective clinical trial 

and then results could be correlated with clinical data from these patients. With the 

aid of appropriate analysis and statistical tools, this may also unveil markers that may 

predict response to therapy and/or overall prognosis. The patients in the national 

CRC screening programme represent an excellent opportunity for these types of 

assessments, because of the good documentation of their clinical course. Moreover, 

studying the blood/serum level of one or more of the candidate biomarker proteins 

which showed early upregulation following Apc deletion in participants of the 

national CRC screening programme could validate whether one or more of these 

proteins is a potential screening tool for this disease. 

As far as therapy is concerned, studying the effects of knocking down NAP1L1 and 

RPL6 in adenoma cell lines may indicate whether targeting either of these proteins 

has any merit as a chemopreventive measure for CRC.  The effect of blocking 

CDC5L on tumour progression should also be tested in animal models of colon 

cancer, particularly of invasive disease.  

The mechanistic studies that we conducted have generated promising initial data that 

have supported the hypothesis that the balance between SFRS2 and CDC5L 

expression is important in regulating apoptosis, possibly via a caspase 8 dependent 

mechanism and potentially involving alternative splicing. This should be further 

explored using new antibodies and optimised experimental conditions to quantify the 

expression of SFRS2 following CDC5L knockdown and vice versa using western 

blotting. Alternatively, qRT-PCR could be used to investigate this. 

Immunoprecipitation could also be used to find a common target molecule shared by 

both SFRS2 and CDC5L. The splicing profile of this target molecule could be 
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studied by up or down regulating one protein at a time to more robustly assess the 

antagonism that we propose exists between these two proteins. 

Using IHC in in vivo models, we have demonstrated that SFRS2 is up-regulated in 

the setting of an induced Wnt pathway. Inducing Wnt pathway activity in cell lines 

and then assessing the level of SFRS2 (by WB or qRT-PCR) would further validate 

this observation. Also, more specific tests could be implemented to study the role of 

SFRS2 in apoptosis; for example assessing the number of apoptotic cells following 

the induction of apoptosis in colon cancer cell lines in the presence and absence of 

SFRS2. Also, the level of SFRS2 could be assessed before and after inducing 

apoptosis using western blotting or qRT-PCR.  

In p53 knockout HCT116 cells, SFRS2 knockdown caused obvious effects on cell 

proliferation and apoptosis. Therefore, FACS analysis could be used to study the cell 

cycle distribution, apoptosis rate and caspase 8 activity in these cells following the 

knockdown of SFRS2. This might reveal more details about the role of SFRS2 in 

regulating apoptosis and the pathway involved. Also FACS or western blotting could 

be used to study the activity of p53 and/or its target proteins in this context.  

7.7 Conclusions 

In the studies carried out in this thesis, we were able to confirm the overexpression of 

six novel candidate biomarker proteins in animal models of early colorectal 

tumourigensis.  We were also able to validate these changes in human clinical 

samples of early CRC. Moreover, the clinical studies have also shown that some of 

these proteins are also involved in the invasive stages of the disease.  

Our data suggest that these proteins individually or as panels are promising candidate 

biomarkers that may be useful for screening as well as predicting response to therapy 

and prognosis of CRC. Based on their pro-proliferative properties, NAP1L1, RPL6 

and CDC5L should also be further tested as potential therapeutic targets for CRC.  

Our observations support the notion that nuclear Beta catenin expression is reduced 

during the more advanced stages of colorectal carcinogenesis and that this is 

associated with adverse outcomes. Several direct and indirect observations made in 

this work have also supported the hypothesis that SFRS2 and CDC5L interact during 

the course of colorectal tumourigenesis. Based on data from this thesis and other 
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published papers, SFRS2 over activity may at least partly mediate the apoptosis that 

is observed in animal models following Apc deletion and that followed CDC5L 

knockdown in vitro. This could be p53 dependent and may involve modulating the 

alternative splicing of proapoptotic molecules such as caspase 8. As SFRS2 

knockdown induced apoptosis that was observed in HCT116 cells with deleted p53, 

this may bypass p53 by activating downstream apoptotic molecules or involve non-

canonical apoptotic pathways. 

Whether cyclin E mediates the oncogenic effects of RPL6 during colorectal 

tumourigensis and whether it has any role in regulating the composition of the stem 

cell niche in the small intestine remain unclear. More specific studies are required to 

address this question.  

The studies described in this thesis have therefore presented several proteins as 

promising biomarkers or therapeutic targets for colorectal cancer. Also, they have 

revealed possible new aspects about the molecular events that follow Apc deletion in 

the colon. The data justify the need for more research in this area.   
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