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 I 

Abstract 

In recent years the number of genome sequencing projects has been 
exponentially increasing, leaving genome annotation dependent upon primarily 
automated tools. Recently, proteogenomics studies have attempted to bridge the 
gap between genomics and proteomics, by actively using proteomic data during 
the annotation stage. This project attempts to address some limitations in current 
bioinformatics approaches, such as the identification of N-terminal peptides and 
those spanning across exons – so called intron-spanning peptides (ISPs). 
Additionally it presents approaches for determining the quality of gene models. 
The results provide insights on the N-terminus of proteins (identification 
strategies, modifications), quality assessment on available gene annotation and 
performance of gene finders. A new method has also been developed for the 
identification of ISPs and, although this technique remains challenging, provides 
a framework in which future developments can be made. 
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1 Introduction 

1.1  The Biological framework 

1.1.1  From DNA information to active proteins 

Ever since the double helix structure of the Deoxyribonucleic acid (DNA) was 
elucidated in 1953 [1, 2] there have been enormous improvements in the 
understanding of the role of this molecule and how it relates to Ribonucleic acid 
(RNA) and proteins [3-5]. The basic structure of each strand of DNA is made by 
a long polymer of nucleotides linked together by a sugar molecule (2-
deoxyribose) and phosphate molecules, which act as the backbone. This 
backbone, held together by asymmetric phosphodiester bonds, creates an inner 
direction of the polymer (5’ and 3’ prime ends, ending respectively with a 
phosphate and hydroxyl group). This leads to the assembly of a double helix, 
where opposite polymers are entwined together by interaction of the 
nucleobases (Guanine, Adenine, Thymine, Cytosine and Uracil [6-8]) as well as 
by hydrogen bonds. Each nucleobase from a strand binds specifically to a 
nucleobase of the opposite strand in a process called base pairing: Adenine (A) 
binds to Thymine (T), or Uracil (U) in RNAs, while Guanine (G) binds to 
Cytosine (C). In thermodynamic studies it has been observed that the stability of 
the double helix is directly affected by the G-C content, as their bond is stronger 
than A-T [9]. Unlike DNA, in the RNA chain, mostly single stranded [10], the 
alternative ribose molecule replaces the 2-deoxyribose sugar. Large DNA 
molecules (chromosomes) are made by millions of these repeated nucleotides; 
very large chromosomes can span from around 3x107 to 9x107 nucleotide 
repetitions such as chromosome 1 for Homo sapiens [11] and chromosome 3B of 
common wheat (Triticum aestivum) [12]. 

The information in DNA, or RNA, is carried by stretches of sequence called 
genes. Eukaryotic and prokaryotic cells differ both in size and structure of the 
genome and genes [13]. In the former, the structurally organized linear DNA and 
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DNA-bound proteins are assembled as chromosomes, contained within the cell 
nucleus. The genes are mostly represented by non-contiguous fragmented 
stretches of DNA sequence. In prokaryotic unicellular organisms the nucleus is 
absent and the DNA, of circular structure, has higher gene density and less 
fragmentation [14-17].  

There are a large number of factors that influence gene expression such as non-
coding RNA (transcriptional and translational), promoters and proteins. RNA-
polymerases, which transcribe the gene sequences, also have the task of 
proofreading transcribed sequences preventing mutational errors [18-20]. The 
spliceosomes (large macromolecular complexes) remove the non-coding 
sequences located within the gene (introns) during the transcription from pre-
RNA to messenger-RNA [21, 22]. As the intron is excised at sites 3’ and 5’, the 
expressed sequences (exons) are joined together [21, 23-25] (Figure 1:1). 

  

Figure 1:1 During transcription in eukaryotes, the non-coding introns regions are spliced out 
from the pre-mRNA and the resulting mRNA can then be translated by ribosomal RNA. 

After the mRNA is translated by ribosomes (a macromolecule composed of RNA 
and proteins), the resulting protein can undergo several stable, unstable, 
reversible and non-reversible modifications. More than 200 different types of 
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modifications have been found and they can be categorized into two groups 
depending i) whether they are formed by chemical linkage to the N or C 
terminal group or specific side chains, or ii) whether they are formed by 
processing, such as peptide segments removed by the protein chain (Figure 1:2). 

 

Figure 1:2 Examples of chemical and processing modifications occurring in proteins. The 
chemical modification displayed involves binding of an acetyl group to the N-terminus (N-
terminal acetylation), catalysed by N-terminal acetyltransferase. The second modification 
shows the conversion of the precursor insulin protein preproinsulin into insulin. The signal 
peptide is cleaved after insertion in the endoplasmic reticulum; the protein then folds forming 
the C shape, proinsulin, allowing the A chain to bind to the B chain through disulphide 
bonds. The C chain is then cleaved leaving only the bound A-B chain, insulin, and thus 
activating the protein.  

1.1.2 Gene models 

Presently, for a large number of available raw genome sequences, the annotation 
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of the regions encoding for proteins is performed with automated bioinformatic 
tools. In this thesis genome annotation is considered as determining the set of 
gene sequences predicted or confirmed for a given organism; the description of 
genes and their protein products represent instead the functional annotation. 
These are largely based on probabilistic interpretations and experimental data 
[26]. Widely available gene finder algorithms can be separated in two categories 
depending on which evidence is used for assessments: intrinsic and extrinsic. 

In the first group can be found software packages such as Glimmer [27], Tigrscan 
[28], Genezilla [29], GeneMark [30, 31] and FGENE [32, 33]; these essentially 
attempt to predict the gene structure based on DNA pattern recognition such as 
AC-GT (splice and promoter motifs) and isochores (stretches of sequences with 
high GC content). In different studies isochores have been associated with both 
gene density and structure [26, 34-36]. Generally the Viterbi algorithm [37] and 
Markov models [38, 39] are used to rank the coding sequences. Here the 
automated version of the Markov model considers the unknown states that bring 
the resulting proteins, thus it is often referred to as a Hidden Markov model 
(HMM) [40]. Before the gene prediction stage can be carried out, the algorithms 
need to be tuned for the specific genomic sequence and this is performed with 
the generation of training sets. The HMM algorithms generally make these 
training sets by analysing the known data (i.e. confirmed gene sequences) on 
their genome sequence; then gene finder algorithms are able to evaluate the raw 
genomic sequence and rank gene structures based on these training sets [41]. 
Where high confidence data for training is not available, it is possible to use sets 
of Open Reading Frames (ORFs). These can be extracted from a six-frame 
translation of the genome, and are represented by long stretches of potentially 
translated genomic sequence located on the same frame. Throughout different 
studies these stretches can be comprised either between 2 stop codons or 
between a Methionine (start codon) and stop codon. As exons do not contain 
stop codons the ORF dataset can be seen as superset of the annotation, as each 
exon is contained within an ORF (Figure 1:3). The threshold length of 
computationally generated Open Reading Frames can be variable although the 
ORF datasets available on EupathDB online resource [42] are generated with 
Orf-Finder [43] (minimum length of 50 amino acids). In this particular study 
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both types of ORFs are used: Methionine_Stop (ORF_MS) and Stop_Stop 
(ORF_SS).  

The second group include software packages like Genscan [44, 45] and Genewise 
[46]; these incorporate sequence alignments [47] from related species (using 
ESTs, cDNAs, RNA) in their predictions. However the gene models obtained 
with this method rely on the accuracy of previously curated gene models (for 
other organism); therefore these generated models are based only on the high 
ranked homologs, as weak homologs with different conserved regions would 
result in lower accuracy at exonic level [48].  

Other ab initio gene finders such as Evigan [49] and Augustus [50-52], also allow 
the inclusion of data from external sources in the form of proteomic evidence 
and gene predictions from other software packages. These can provide useful as 
gene model predictions can be re-evaluated based on peptide sequences 
identified from the samples. 

Although in the recent years the use of transcriptome data has become popular 
thanks to new techniques such as RNASeq [53] only proteomic data provides 
definitive evidence that a protein product is made in the cell. 
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Figure 1:3 The above figure illustrates the complexity of a genomic region containing an 
example on gene structure and how informative open reading frames can be. To simplify the 
visualisation, only the forward strand is represented here. The gene is made of 5 exons that are 
located on different reading frame. The first and the last exons comprise both the coding 
sequence CDS, in yellow, as well as the five and three prime untranslated regions (5’UTR and 
3’UTR) in green and blue respectively. The 5’-UTR precedes the first CDS that begins with the 
start codon Methionine (M or Met depending on amino acid nomenclature). Similarly the 
final CDS ends with a stop codon, followed by the 3’-UTR.  The internal exons align only 
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with the CDS. The start and the stop codons are represented by M and star symbols 
respectively. As illustrated, the start codon can appear within the coding sequences other than 
the first CDS as it codes for a common amino acid. Differently the stop codon only encodes 
for the end of translation and as such it cannot be contained within the coding sequences; as 
such it can appear within the gene region on frames other than the current coding sequence 
frame (e.g. here the first stop codon in frame one and two are both within the first exon 
boundaries). The open reading frames can be selected as sequences comprised by a start 
codon Methionine and a stop codon (ORF_MS) or between two stop codons (ORF_SS) on the 
same frame. Here the first frame has three ORF_SS and four ORF_MS as each start to stop 
codon are considered as ORF_MS (second and fourth ORF_MS are subsets of the first and 
third ORF_MS respectively). Without setting a minimum length threshold for ORF_SS it 
would be possible to include all exons; instead even if selecting all the possible ORF_MS it is 
possible to miss exons (i.e. here exon three and the exon five).  

1.2  Proteins and proteomics 

1.2.1  Protein modifications 

The 20 amino acids encoded by codons share a similar molecular structure. The 

α carbon atom is linked to the carboxyl group and the amine group; this 

structure is repeated for all amino acids, constituting their backbone. The α 
carbon also binds to a side chain, which makes up for the different properties of 
different amino acids. With the exception for Glycine  (having only one 
hydrogen) the carbon structure of side chain (R chain) has Greek nomenclature 

(β, γ, δ, ε and ω). The type of R chain gives the amino acids its biophysical 
properties: isoelectric point, hydrophobic and hydrophilic as well as the capacity 
to bind specific elements [54]. The amino acids monomers are bound together by 
covalent reactions called peptide bonding during which the amino group from 
one monomer binds with the carboxyl group of another monomer (Figure 1:4).  
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Figure 1:4 The basic structure of amino acid molecules, showing N- C- terminal groups and 
the side chain. Through peptide bonding (Glycine and Alanine) water is released, keeping the 
same N- C- structure.  

Through the reaction, the hydrogen molecule released from the amino group 
forms a molecule of water with the hydrogen and oxygen molecules from the 
carboxyl group. This process, also called condensation, can be reversed through 
the addition of water (hydrolysis) [55]. This is maintained throughout the length 
of the monomer chain where one end presents the NH2- amino group (N-
terminal) while the other the COOH- carboxyl group (C-terminal). Peptides are 
short amino acids chains that are made of 2 or more amino acids (di-peptide, 
tripeptide and onwards). Single or multiple polypeptide chains make up the 
protein molecule [56]. As peptides are created the sequence is stabilised by 
hydrogen bonding, which leads it to the secondary structure with specific 
geometric shape. In the tertiary structure the different side chains interact in 
bonding, creating the specific molecular structure of the protein. The quaternary 
structure is given by multiple polypeptides binding together. The final translated 
protein can then go through a number of reversible and non-reversible 
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modifications. 

 The signal peptide can be considered as a processing modification, which sees 
the amino terminal region of the protein cleaved off upon correct cellular 
localisation. Signal peptides are generally short sequences (~20-30 amino acid 
long in eukaryotes), positioned at the N-terminus, which serve as target signals 
within the cellular environment. Its structure comprises three regions: a positive 
charged n-terminus, a central hydrophobic region and a lightly polar c-terminal 
hydrophilic region [57, 58]. 

The signal peptide is present on secretory proteins and allows these to pass or 
attach to the ER membrane. The carboxyl region of signal peptides is detected by 
signal peptidase proteins, which perform the cleavage leading to the mature 
protein [59]. Different studies have investigated the role of the residue positions 
within the cleavage site, highlighting the importance of position -3 and -1 of the 
hydrophilic region as a pattern recognised by signal peptidases [60]. The most 
frequent residues at these positions have been identified as Alanine–x–Alanine 
[61].  

The identification of signal peptides has been targeted with a number of 
computational tools (TargetP, SignalP, Signal-3L and Signal-CF [62-68]). These 
are generally based on a training set of known data and their algorithms include 
HMM models to identify secretory proteins and the cleavage site. Recent 
implementations have attempted to overcome the limitations in distinguishing 
between signal peptides and N-terminal helices of trans-membrane proteins 
(Phobius [69], Spoctopus[68], MEMSAT-SVM [70], SignalP4.0 [67]). In contrast to 
other software packages, SignalP4.0 is based on a neural network and works on 
two networks to assess the final score of cleavage positions (trans-membrane and 
non trans-membrane networks). However confident the predictions of signal 
peptides are, it remains a challenge to confirm these through proteomic analysis.  

Another frequent modification involved at the N-terminus is the excision of a 
peptide sequence or precise amino acids. N-terminal methionine excision (NME) 
seems to be present in high proportion of proteins and during the excision 
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process it appears that the amino acids following methionine may affect whether 
the cleavage takes place [71]. Other cleavages simply allow the protein to change 
state until needed (e.g. signal peptide cleavage and self-splicing synthesize 
insulin protein from its preproinsulin precursor, Figure 1:2).  

Through reversible and non-reversible chemical modifications protein activity 
can adapt and respond to external stimuli. Important for energy transfer and 
signalling within the cell, phosphorylation (a phosphate group bound to Serine, 
Threonine, Tyrosine and Histidine by protein kinases) can be frequently 
observed within the proteome, and for each protein this multi-site modification 
can be potentially performed and reversed several times [72]. Equally important 
is the reversible modification involving the addition of the acetyl group to the N-
terminus (by N-terminal acetyltransferase proteins), which affects gene 
regulation and is also frequent [73-78].  

Other common modifications include glycosylation [79-81] (oligosaccharide 
group added to secretory/membrane proteins), methylation [82-84] (chemical 
link on side chain specific residues Lysine and Arginine [85]) and ubiquitination 
[86-88] (protein degradation performed by ubiquitin activated enzymes).  

The large number of all possible modifications for each protein on the whole 
proteome scale makes protein prediction and the annotation process increasingly 
challenging. 

 

1.2.2  Mass spectrometry proteomic workflow 

Mass spectrometry (MS) based proteomic studies (Figure 1:5) offer a way to 
annotate the genes by allowing the annotator to validate the presence of the 
proteins in a sample [89] in a quantitative or qualitative manner [85].   

MS-based proteomics evaluation consists of measuring, with mass analyser 
instruments, the mass-to-charge ratio versus abundance of ionized peptides; 



 

 1-12 

these can be further fragmented into smaller ions during a two-stage analysis in 
a Tandem Mass Spectrometer (MS/MS). 

The peptides can either be obtained by separation of a digested protein mixture, 
as in Multidimensional Protein Identification Technology (MudPIT) [90, 91], or 
for example by in-gel digestion after electrophoretic separation of proteins [92]. 
This approach for protein identification is also known as bottom-up proteomics. 
In order to draft the peptide results to list proteins as identified (procedure also 
referred to as protein inference) it is necessary to assemble these resulting 
peptides and assess their confidence. To draft this list of peptides considered as 
reliable one must also consider whether the peptide is contained in multiple 
protein sequences, or whether only one peptide per protein was identified 
(problem known as “one-hit-wonder”) [93]. In this stud the protein inference 
step y makes use of these considerations and as such the proteins here identified 
must contain one unique peptide to be considered confident identifications.  

However as statistical methods are used to computationally assess the 
significance of spectral interpretations, it becomes challenging to validate the 
correctness of the interpreted sequence within very large datasets [94]. With 
generally adopted database search approaches the statistical importance of the 
identifications are given as the probability that each one is incorrect such as p-
value estimate. This can be seen as the probability distribution that a null 
hypothesis is true, such as that a peptide spectrum match (PSM) with the same 
or better score happens by chance in a sequence database [95, 96].  

MS top-down proteomics is a different approach as undigested proteins are 
analysed with MS; this can be extremely useful to provide precise protein mass, 
which, in turn, can lead to detailed information regarding possible PTMs. 
However this approach is still limited and not adept at the annotation process 
itself because of high resolving power and high mass range needed to perform 
the analysis. This approach also relies on accurate annotations, which are often 
not available [97]. 
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Figure 1:5 Basic proteomic workflow divided in 3 main stages: biological sample 
preparation (orange) where the sample goes through subcellular fractionation (a), protein 
separation (b) followed by proteases (c), resulting in peptide mixtures (d). During mass 
spectrometry stage (green) these peptide mixtures are further separated through the Liquid 
Chromatography (a); ionised peptides are detected (b) and selected peptide ions are 
fragmented (c) resulting in tandem mass spectra. Finally, during bioinformatic analyses 
(blue), the obtained spectral data (a) is processed with (b) specific software packages that 
identify (c) the peptide spectrum matches (PSMs) and provide protein inference (d).  

1.2.3  Protein and peptide separation 

Using the properties of different molecular weight (MW) and electric charge of 
the molecules can attain the separation of polypeptides. One-dimensional 
electrophoresis (1-DE) separates polypeptides by their mass and although it can 
efficiently separate a large amount of proteins, generally fails to separate 
polypeptides completely in complex mixtures [98].   
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The process of 2-DE addresses this limitation by separating the molecules first by 
their net charge, isoelectric focusing (IEF), and then by their MW. This separation 
over 2 different axes achieves a higher resolution [92, 99]. This process has clear 
advantages like resolving thousands of proteins at the same time on a single 2-
DE gel as well as separating/ revealing proteins with PTMs. There are some 
limitations associated with this method as proteins of very large or small size. 
Also hydrophobic proteins such as membrane proteins are generally difficult to 
observe in 2-DE gels. It may be difficult to detect low abundance proteins with 
conventional staining although protein pre-fractionation preceding 2-DE can 
simplify protein mixture [100]. Figure 1:6 taken from Xia et al. [101] paper, 
shows a 2-DE gel with localized spots.  

 

Figure 1:6 Example of a 2DE gel electrophoresis. This has been obtained from T.gondii for 
proteomic annotation in the Xia. et al study [101]. 

Following protein separation proteolysis is performed to digest proteins into 
peptides, for example using trypsin. Trypsin cleaves the peptide bond at the 
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carboxyl end of arginine and lysine amino acids as long as these are not followed 
by proline [102].  

Prior to mass spectrometry, High Performance Liquid Chromatography  (HPLC 
[103]) is often performed, which makes use of the different hydrophobicity of the 
peptides to perform the separation.  

1.2.4  Tandem Mass Spectrometry  

The prepared samples are then ready to be analysed in the Mass Spectrometer 
and the analysis is performed in 3 phases (Figure 1:5): 

• the samples are firstly ionized (using for example MALDI  (described 
below) [104] or Electrospray [103]); 

• the ions are then separated (Time-of-flight, Ion trap, Triple quadrupole 
[105]); 

• and finally the ions are detected; 

In ion trap mass analysers such as Quadrupole ion trap [106, 107] and Fourier 
transform ion cyclotron resonance [108] (FT-ICR) molecule detection is 
accomplished by trapping, within electric or magnetic fields in high vacuum 
cells, the desired ions of specific mass. The ions are then given a small 
electronvolts potential that send them towards the detecting end; or as for FT-
ICR the ion detection is accomplished by the frequency of the oscillating ions. 
Ion trap mass analysers have generally higher sensitivity and offer faster scan 
rates than older quadrupole mass filter analysers [109]. FT-ICR offers high mass 
accuracy and high resolution, thanks to its strong magnetic field. Similarly to FT-
ICR the Orbitrap mass analyser traps the selected peptide ions at specific 
frequencies; however the oscillating ions revolve around an electrode instead of 
in a magnetic field [110, 111]. Time of flight mass analyser represent the simplest 
type of instrument, where accelerated ions travel across vacuum tube to the 
detector. As the mass affects the molecule velocity, it is calculated based on the 
time of arrival [106, 112, 113]. The output is a mass spectrum showing the mass-
per-charge of the ion series and their intensities. 
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Peptide ionisation is mainly performed with Matrix Assisted Laser Desorption 
Ionisation (MALDI [104]) and electrospray ionisation (ESI [103]). The first 
technique uses a laser and a light absorbing matrix to desorb and ionise the 
molecules, generating mainly singly/ doubly charged ions. The second 
technique involves molecules going through a capillary tube contained within an 
electric field, generating mainly multiply charged ions. By identifying C-12 peaks 
and using mono-isotopic masses it is possible to calculate the charge of the ion 
and peptide mass. 

These peptide ions, confined by an electric field, are separated and detected 
based on their mass-per-charge (m/z) ratio during the MS1 pass. Then the most 
abundant ion species can be selected to go through further fragmentation into 
smaller ions (in data dependent acquisition instruments), which are then 
detected in the MS2 stage, from which peptide sequence information can be 
derived (Figure 1:5).   

The peptide fragmentation can be obtained with different techniques, such as 
Collisional Induced/Activation Dissociation (CID, CAD [114]) or Electron 
Transfer Dissociation (ETD) and Electron Capture Dissociation (ECD [115]). Each 
technique produces predominant ion series (Figure 1:7) from peptide bond 
fragmentation (i.e. CAD leads to -b and -y ions while ETD and ECD lead to -c 
and -z ions – see below for ion terminology). This makes these different 
techniques complementary [116] when combined and can produce more 
information in the output spectra, which can improve the computational 
interpretation of the spectra. As an example in Figure 1:5 the parent ions have 
their molecular ions accelerated by an electric field and collide with neutral gas 
such as helium or argon; then due to the acquired high kinetic energy the 
collision with the gas breaks the internal bonds making the molecular fragments 
into smaller fragment ions (CID, CAD). 
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Figure 1:7 Tandem MS spectrum from a peptide, TMEEFVIDLLR, identified by the y- ion 
ladder (MASCOT).  

If the fragments do not carry any charge they would simply not be detected. 
Fragment ions (Figure 1:9) resulting from backbone cleavage either at alpha C-

CH, C-N or N-αC are usually indicated with a, b or c if the charge is retained on 
the N-terminus; instead if the charge is retained on the C-terminus they are 
indicated with x, y or z (with a subscript indicating how many residues in the 
fragment). Also present, but not commonly observed as high CID is required, are 
d- v- and w- ions, resulting from side-chain cleavages.  

The MS2 spectrum, shown in Figure 1:7, can be seen as a graph where the Y-axis 
is the intensity while the X-axis is the mass over charge m/z (sometimes reported 
in Thompson units, Th). On the spectra the peaks correspond to the intensity (the 
tallest is normally labelled the base peak) while the X-axis shows the mass of the 
molecule divided by charge (if the graph shows a peak at 728.4665 m/z and it is 
doubly charged, then the MW of the peptide analysed would correspond to 
1454.917 Dalton).  
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Figure 1:8  Different ions species fragment differently (N- or C- terminus) as illustrated in the 
cleavage table. The position of the additional proton produces either N-terminal ions (a-, b-, c-, d-) 
in blue, or C-terminal ions (v-, w-, y-, x-, z-), in red. High energy CID causes side chain 
fragmentations, partial in d- and w- ions and complete in the v- ion. The example is obtained from 
residues GASVL. 
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1.3  Bioinformatics approaches 

In bottom-up mass spectrometry proteomic experiments the peptide sequences 
can be interpreted by different bioinformatics approaches (Figure 1:9). In 
sequence database searches experimental mass spectra are compared against 
theoretical fragmented spectra generated by computationally digested protein 
sequences or six-frame translations [117-123]; the result is a statistically 
significant identification for a proportion of the collected mass spectra. de novo 
sequencing instead attempts, through probabilistic networks and complex 
algorithms, to interpret the peptide sequence yielding the spectrum with no 
previous knowledge of the sequence [124-126]. Hybrid methods combine de novo 
and sequence database search in two steps: initially, computational algorithms 
provide sets of short amino acid, called TAGs, yielding adjacent peaks in the 
spectrum, then with this information the algorithms filter the sequence databases 
and perform database searches on a generated, restricted database [127-130]. In 
the spectral library search approach, unknown spectra are identified through 
comparison against compiled database of spectra. In this case the database/ 
library holds a large collection of observed high-quality spectra with identified 
peptide sequence [131, 132].     

All methods have some limitations: database dependent approaches are limited 
by the accuracy of the sequence available for searches; de novo approaches lack 
high confidence identification for long peptides [94, 133].  
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At present, algorithms used in search engine database software packages make 
use of statistical tools to score comparisons between theoretical and experimental 
tandem mass spectra. All candidate peptide sequences are weighted based on 
the estimated probability of random peptide sequences generating MS/MS 
spectra of the same or higher similarity by chance [134]. This can have 
repercussions on sensitivity and accuracy of peptide spectrum matches (PSMs) 
where the scoring system might lead to differences in results for searches of 
small sequence database versus large ones (i.e. high-quality gene models vs. six 
frame translation).  
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Figure 1:9 Tandem MS identification, in red, through four main bioinformatic approaches, 
from the top left clockwise: hybrid approaches generates peptide spectrum tags (PSTs, 
highlighted in green) to filter sequence databases before running the database search; de novo 
sequencing attempts to identify the full length peptide sequence using only the spectrum. 
With spectral libraries, comprising large sets of high quality spectra of known compounds, 
allow direct raw spectrum identification. In common database dependent approaches, 
algorithms computationally digest protein sequences and fragment peptides that are then 
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used for identification. 

1.3.1  Database dependant approaches 

The workflow for the first type of approach, typified by the MASCOT search 
engine [122],  is as follows. MASCOT allows both Peptide Mass Fingerprint 
(PMF [135]) as well as an “MS/MS Ion Search”. PMF is used to identify proteins 
by matching their constituent peptides masses (MS1 only) to the theoretical 
peptide masses generated from a protein database. The PMF identifications rely 
on observing a large number of peptides from the same protein at high mass 
accuracy. It is better used together with 2-DE data where proteins are generally 
separated into simple mixtures [136]. 

The MS/MS technique can be used to identify a protein from even a single 
peptide, even though the quality of the result will increase by searching an 
MS/MS run containing several peptides for a given protein. In the MS/MS 
search the experimental spectra are used to gather information about the 
precursor ion masses. In Sequest [119, 123, 137, 138] both experimental and 
theoretical spectrum are pre-processed where normalization of signal intensities 
allow the spectra to be comparable. In OMSSA [120] there is no normalization 
process but instead noise removal.  

The sequence database is processed and the search engine generates a set of 
theoretical spectra for all digested peptide sequences, whose mass falls within 
the mass tolerance. It then proceeds by fragmenting each sequence in this 
temporary set by recreating in silico fragmentation for each ion (-a, -b, -c, -x, -y, -
z). Finally it tries to match each expected value against the experimental value in 
the original spectrum. Each ion is given a score and all positive matches, within 
the tolerance window, between the theoretical spectrum and experimental are 
summed in the final score of the reconstructed the peptide sequence. 

The X!Tandem software search engine further analyses a compiled list of high 
confidence peptides in order to search for modified and non-enzymatic peptides 
within the protein result [118, 124, 139, 140]. Similarly the Phenyx search engine, 
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commercial software package distributed by GeneBio, Geneva Bioinformatics 
SA, has a two-step analysis for searching combinatorial modifications and an 
algorithm to evaluate which of the alternative matches is most probable [121, 
141, 142].   

MASCOT provides a statistical weighting for each individual PSM, based on the 
quality of the match between experimental and theoretical spectrum. This 
probabilistic approach is based on the MOWSE (for MOlecular Weight Search) 
algorithm [122, 143].  

With the protein score in PMF and ion score in MS/MS ion search MASCOT 
provides an expectation value that corresponds to the frequency of matches 
having equal or better score that could be obtained by random match. The 
MASCOT web-interface allows the user to view the search results with scalable 
level of details. It also provides the tabular form to map the identified peptide 
sequence to the query it has been matched (from Figure 1:10 to Figure 1:12). 
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Figure 1:10 MASCOT result summary view:  
A: Rank of identified protein sequences by the sum of their peptide score;  
B: This is the accession number of the sequence (computationally predicted Open Reading 
Frame in this case) and the peptides matched against. It leads to another page containing the 
full sequence and showing how peptides align to it. 
C: Expected mass of the protein/sequence in Daltons. 
D: The protein score is approximately the sum of each individual peptide score, derived from 
ion score  
E: The number of MS/MS spectra matched 
F: The identifier of the query matched against the peptide, it leads to a page with full Peptide 
view of the spectrum identifier. 
G: This is a summary of peptide different mass/per charge, which provides the observed mass 
queried against its theoretical uncharged mass, the theoretical closest peptide mass matched 
and their difference. 
H: Indicates where the match comes from an incomplete cleaved peptide, as by experience 
proteolysis usually fails to cleave every peptide, by allowing some partial cleavage. If its value 
is chosen inappropriately, like above 2, it will simply make MASCOT increase the random 
matches resulting in indiscriminate hits.    
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Figure 1:11 A: details of the mass spectrum matching with this peptide; B: spectrum graph 
showing the matched fragment ions, it can be zoomed by a factor of 2 by clicking on it. 
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Figure 1:12 The arrows shows how the spectrum graph (A) and the tabular form (B) can be 
traced back to the peptide sequence (C) ILELMDAVDTYIDSPVR. 
A: From the theoretical fragmentation in the spectrum graph it is possible to view peaks –y7, –
y8 and –y9.which allow identifying consecutive amino acids D and T. 
B: The tabular form for these fragmented ions shows the matches in BOLD RED for each ion 
type. 
C: Highlighted in green is an example of how each amino acid residue can be calculated based 
on the difference between adjacent ion fragment masses. 

1.3.2 Identification reliability: the assessed scores 

Some algorithms do not provide information on the process for scoring and 
ranking peptide identifications; similarly the score assessed by different 
algorithms and different sequence databases is not comparable [144]. The 
algorithms generally calculate the p-value and e-value as a method to evaluate 
the significance of the identified peptides. The p-value is described as being the 
area under the curve of the tail in the distribution generated by random matches; 
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in other words, a p-value assigned to a PSM A describes the probability of seeing 
a PSM B with the same or better score of A if B has been matched by random 
chance. In proteomic studies it is not uncommon for thousands of spectra to be 
searched against sequence database and this leads to the need to correct the 
score for multiple testing. The e-value, similarly to Bonferroni correction, 
provides multiple testing correction and it is defined as the expected frequency 
of PSMs having a better or equal score assuming that they have been matched to 
a given spectrum randomly [145]. It is calculated using the p-value and the 
search space, number of spectra and database length (the number of peptides, 
that are contained within the chosen tolerance, from the database); as an 
example the MASCOT [122] ion score is calculated from the probability P that 

the observed match is random event and it is reported as −10 log𝑃.  

Nesvizhskii et al [146] observe that the score distribution for each tool is 
influenced by many factors such as the quality of the mass spectrometer, the data 
and the database size. Hence by assessing the false discovery rate (FDR) [147] it 
can be possible to overcome these limitations [148].  The search engine results are 
re-scored using the FDR-based statistical methods to validate the expected rate 
of true positives and false positives of PSMs present below a FDR cut-off score. 
For this method, the original queried databases contain also a decoy set, 
sequences that are known to be incorrect. There are different methods to 
generate these sequences: generally the protein sequences are reversed, or the 
tryptic sites are conserved while the amino acids are shuffled in order. Then this 
can be interpreted as a binary classification problem in which a hypothesis can 
either be True (T) or False (F) and their results can either be Positive (P) or 
Negative (N), leading to 4 possible outcome, as shown on the table in Table 1:1. 

 True actual value False actual value 
Predicted positive 

outcome True positive (TP) False Positive (FP) 
Predicted negative 

outcome False negative (FN) True negative (TN) 

Table 1:1 Binary classification problem: the hypothesis can either be True (T) or False (F) and 
their results can either be Positive (P) or Negative (N), leading to 4 possible outcome. 
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From a real true result, if the outcome is also positive, then we can consider it as 
TP (true positive) while if the outcome is negative it will be a FN (false negative); 
while in the case of an incorrect (false) actual value, like a decoy sequence for 
instance, the results can be scored as either positive (FP) or negative (TN).  

The equation for the global FDR algorithm used in this thesis is the following:  

𝐹𝐷𝑅 =   
𝐹𝑃

𝑇𝑃 + 𝐹𝑃 

Where the FP (false positives) value is estimated within PSMs by counting the 
number of “decoy” PSMs above threshold. The TP (true positives) are calculated 

as 𝑇𝑃 =    𝑇 − 𝐹𝑃    where T comprises all PSMs above threshold [148]. 

 

Figure 1:13 Overlay of FDRScore, q-value and estimated global FDR on the right hand side 
plot and on the left hand side the selected area in red. The data has been obtained from [148] 
to highlight differences between stepwise q-value score and FDR estimates. 
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As a practical example, in a dataset, the search engine score such as the e-value is 
used to sort the PSMs; then, going from the lowest to the highest value, the PSMs 
are then labelled as FP if they are from the “decoys” otherwise they are 

calculated as TP (𝑇𝑃 =    𝑇 − 𝐹𝑃   ); then the FDR is then calculated for each 
identification. As an example, considering a dataset of 100 PSMs above given 
FDR threshold, if 5 PSMs came from the decoy database it will lead to a total 

number of 𝐹𝑃 =   5, while the 𝑇𝑃 =   90; that is within the 95 target PSMs there 

will be approximately 5 false positives thus 𝐹𝐷𝑅 = !
!"

. The total number of TP 

can then be obtained through a fixed FDR, normally 1% or 5%.  

As the FDR allows estimating the proportion of FP present at a given threshold 
in a dataset, the q-value can be defined as the as the minimal FDR value 

that  would render the identification reliable [149]. As described by Käll et al the 
q-value provides a method to score the significance of individual identifications 
in terms of FDR. That is a q-value of 0.05 for a specific peptide indicates that the 
peptide can appear within the output at a minimum FDR of 5%. The q-value is 
considered a global correction method on the dataset, since, as an example, any 
FP that has a higher rank of the real observed peptide would increase its q-value 
For instance if a confirmed peptide (NLISENVAFP) is in a dataset of 100 PSMs 
but its rank is lower than the only FP PSM then this q-value would be 0.01; if 
instead there are five FP PSMs and they rank above the confirmed peptide 
(NLISENVAFP) then its q-value would be 0.05. Basically the minimum FDR to 
set in order to include NLISENVAFP in the dataset has to be respectively 1% and 
5% in the two scenarios described [145]. After the FDR has been assigned, the q-
value is calculated one-by-one for all identifications, going from the highest to 
the lowest e-value. It is equal to lowest FDR encountered thus far if this is lower 
than the current estimated FDR; otherwise the q-value is equal to the estimated 
FDR, while the lowest FDR is then updated to the current estimated FDR. The 
FDRScore, showed in Figure 1:13, by Jones et al [148] is the FDR estimated 
between each decoy and it is calculated from the gradient of the connecting line 
between the step-points where the q-value increases (Figure 1:13). During 
multiple search engine queries this is used to calculate the combined FDRScore, 
re-scoring PSMs based on the different sets of search engines that have made the 
identification. 
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In addition to FDR is the Posterior Error Probability (PEP), sometimes denoted 
as local FDR [150]. This assesses the probability that the null hypothesis is null 
and as such that the observed PSM is incorrect [151] (Figure 1:14). As illustrated 
by Kall et al the non-parametric approach for calculating the PEP for a given 
PSM can be affected by the bin size by which the target and decoy PSMs have 
been divided. There have been other developed algorithms for calculating the 
PEP such as PeptideProphet [152, 153] and Percolator [154]. 

 

Figure 1:14 The FDR and PEP scoring curves drawn in the study by Käll et all [145] visualise 
the area (A and B) and the heights of the distribution. The FDR is the ratio of the incorrect 
PSMs with score > x (B) to all PSMs (A+B) score > x.  The PEP is the ratio of the heights of 
distribution at score = x where b is the incorrect PSMs at score = x while a is the number of 
correct PSM with the same score x.  

Generally search engine algorithms provide the e-value as an estimate that the 
identified peptide is correct. This is calculated from the p-value and the number 
of sequences S in the database (e-value = p-value * S); as such size of the database 
can linearly affect e-value estimates [155, 156]. Recent studies have stressed the 
importance for ensuring accurate FDR estimates before validating PSMs 
identified with target/decoy searches on large genomic databases, such as six-
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frame translations [157]. Compared to searches against gene annotations, 
searching 6 frame translations appears to be biased. This is due to the presence of 
6 (incorrect) frames (from the decoys) added to the 5 alternative (also incorrect) 
frames, competing against a single correct frame.  Additionally it should be 
stressed the importance of choosing the correct score. Given its properties the 
global FDR and q-value are rates related to the whole dataset and as such useful 
when analysing multiple identification within the dataset. However when the 
analysis is focused on assessing the reliability of one precise identification, then 
PEP should be chosen as it provides the probability that given identification is 
incorrect (Table 1:2). 

 

Table 1:2 The table shows the denotations of the main scores (p-value, e-value, FDR, PEP, 
q-value and FDRScore) and their simplified formulas.   
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1.3.3  De Novo sequencing and hybrid approaches 

As explained previously, de novo sequencing algorithms can provide useful 
information for unanticipated peptide sequences [158, 159], but they are still 
limited to very short sequences of amino acids identified with high confidence in 
the mass spectra. Key to de novo reconstruction is the score or probability 
assigned to peptide sequences such that the highest score reflects the best out of 
all interpreted peptide sequences [160, 161]. 

Some scoring algorithms are based on the correlation between observed and 
theoretical spectrum obtained from candidate peptides. Others evaluate the 
score from observed peaks by comparing statistical models based on ion 
fragmentation rules and against fragmentations led by a random process (Figure 
1:15) [125]. This is however computationally difficult as the probabilistic 
distribution appears too complex to be modelled and often leads to errors [162-
165].  

   

Figure 1:15 From adjacent ions belonging to the same series we can deduct the partial amino 
acid sequence it originated from. Here the partial sequence ELMDAVDT from the –y ion 
ladder of peptide ILELMDAVDTYIDSPVR (identified by MASCOT). 
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The de novo sequencing software PepNovo [161, 166, 167], like InSPecT 
(Interpretation of Spectra with PT modifications) software (Figure 1:16), initially 
analyses the mass spectrum to identify peptide sequence tags (PSTs), short 
amino acid sequences, and then attempts a full peptide sequence reconstruction. 
The InSPecT algorithm computes the score from three factors: intensity rank of 
the peak, isotope pattern and prefix residue mass (PRM) that represent each 
node from the constructed directed acyclic graph. By default the output is a set 
of long amino acid sequence, where the high confidence PST is contained. 
PepNovo algorithms are currently based on a training dataset obtained from 
mass spectra where the fragment ion has been achieved with collision-induced 
dissociation (CID). 

 

Figure 1:16 Peptide identified with InSPecT as database search engine. In this mode, its 
algorithm first generates a set of interpretations for high intensity peaks and from these it 
reconstructs peptide spectrum tags PSTs (typical length of three amino acid). The spectrum 
above shows DAV and IDS as calculated PSTs. Exploiting the TAG pattern and the spectrum 
mass the sequence database is filtered. Finally a search database query is performed on this 
restricted database.  

Most of the de novo sequencing software packages try to overcome the limitations 
in accuracy by combining analysis with search databases e.g. used in InSPecT, 
PEAKS and SPIDER, MS-Dictionary [127, 160, 168-171]. The approach comprises 
de novo algorithms for producing high confidence short amino acid TAGs with 
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their prefix and suffix m/z value (corresponding to -b and -y ions) [170]; this 
allows them to place the TAG (Figure 1:16) within the spectrum and with this 
information the sequence database is filtered in order to maximize peptide 
discovery of unknown sequences while querying a large starting sequence 
database [171]. 

1.3.4  Explainable tandem mass spectra 

Shotgun proteomics experiment can generate a very large number of MS/MS 

spectra (magnitude of𝟏𝟎𝟓 ) and although computational tools dedicated to 
spectral identification have been greatly improved, many of the collected spectra 
fail to be identified due to their low quality or to the inability of the algorithm to 
identify their matching peptide sequence [172, 173]. To this day different 
approaches have been implemented to maximize spectral identification by 
evaluating the quality of the spectra and processing only those identifiable. The 
collection of spectra can be pre-analysed with machine learning algorithms, such 
as Support Vector Machines (SVM), to assign to each spectrum specific features 
that allow the assessment of whether it was generated by some peptide in the 
digested protein sample (i.e. noticeable peak intensities in the CID spectra) [89, 
174]. Another approach developed to improve the tandem mass spectra 
identification relies upon spectral clustering on the basis that 1DE and 2DE LC-
MS/MS runs generate a range of duplicated spectra [175]. This method sees the 
clustering of duplicate spectra with subsequent redundancy removal in order to 
increase identification of those unassigned spectra. Pep-Miner [176] algorithms 
first cluster together spectra with similar characteristics, then for each cluster, 
they generate a representative spectrum used for subsequent analysis; thus 
reducing computational resources required to complete the search. However this 
approach is dependent on the data acquisition and is not yet tailored for rare 
peptide sequences that have not been fragmented more than once and for 
different charge state of spectra from the identical peptide. For testing these 
filtering techniques search engine database software, such as MASCOT and 
Sequest [119, 122] have been used to identify test datasets and assess high and 
low quality spectra. It remains challenging to filter out the unexplainable spectra 
without losing any useful data prior analysis (i.e. for database searches or de novo 
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sequencing) where at best removing around 80% of unworthy spectra leads to a 
10% loss of explainable spectra [177].  

1.4 Proteomics and proteogenomics 

1.4.1 Proteomics challenges  

Bottom-up proteomics approaches use digested protein sequences for 
identification. The confidence of protein identification is connected to the 
number of peptides that were used to identify the protein. The identification of 
low abundance peptide sequences and the presence of post-translational 
modifications (PTMs) can prove challenging for proteomic studies. In recent 
years mass spectrometry proteomic studies have increasingly provided 
researchers with a high-throughput method for identifying and measuring 
proteins, targeting their interactions, post translational modification and for 
annotating genes [123, 138, 178-180].   

Unlike prokaryotes, which feature compact genomes with only a small amount 
of non-coding sequences outside and within gene boundaries, eukaryote 
genomes present a far more complex structure where genes contain a large 
number of sequences that are removed between pre-mRNA and mRNA (Figure 
1:1). Ever since spliced genes were found, the presence of intragenic regions was 
considered of particular biological importance, for example as a driver of 
evolution [181]. 

Since multiple-exon genes in eukaryotes can be translated into more than one 
protein product due to alternative splicing, it is crucial to correctly predict 
intron-exon boundaries [21, 25, 182, 183].  

Of crucial importance for proteogenomics, are the peptides that align across 
introns, which essentially imply that a peptide sequence belongs to consecutive 
exons. During translation to protein the splice site might be encoded by one 
single codon, sharing one nucleotide with adjacent coding sequence. At present 
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it is still a huge challenge to find these peptides with bioinformatics approaches 
as they partly rely on gene finder accuracy. If the gene finders have not 
predicted the correct splice junction of a gene, it will not be possible to identify 
the spectra of intron-spanning peptides (ISPs) during analysis on the sequence.  

No matter how accurate gene prediction software can be, it is not unusual for 
them to miss out short single exon genes [184], or fail to detect different protein 
isoforms due to alternative splice sites [185-187]. If, for example, the mean length 
of each exon in a multi-exonic gene is about 50 amino acids there is a 25% 
probability that a tryptic peptide is crossing intronic boundaries [188]. EST 
approaches such as the Transcript Assemble Program (TAP) [189] have been 
implemented in order to maximize the identification accuracy of splice variants 
generating results with good sensitivity. However it remains intrinsically 
dependent on EST coverage [190] which is often low. 

 

Figure 1:17 View of a genomic region of Toxoplasma gondii extracted with Gbrowse [191, 192] 
from EupathDB [193]. The segments highlighted in red represent the coding regions from 
gene TGME49_051780 as per the official annotation. Below there are panels of alternative 
annotations predicted with different software packages (GlimmerHMM, Twinscan and 
Tigrscan) sharing similarities and divergences on the predicted gene structure. At the bottom 
the mass spectrometry peptide evidence provided by the Wastling group is shown. As shown, 
a peptide can confirm the genomic structure by providing evidence of splice sites. 
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Although a multiple database search approach such as querying Open Reading 
Frames (ORF_SS) or panels of alternative gene predictions can assist at 
correcting/ confirming annotation [178, 194, 195] (Figure 1:17), the approach 
would still be dependent on a protein/peptide sequence being present in the 
database. Even to this day, it remains a bioinformatic challenge to provide 
proteomic evidence of intron exon boundaries; the so-called splice sites or splice 
junctions [196-198], since confirming the presence of these elusive peptides in the 
experimental data relies on accurately predicted protein sequence [101, 188, 199-
201]. 

Also challenging are the N-terminal peptides, due to possible N-terminal 
modifications (i.e. signal peptide) and bioinformatic difficulties in correctly 
predicting the translational start of the protein. 

1.4.2 Proteogenomics role 

In the recent years mass spectrometry-based proteomics have advanced 
considerably providing rapidly improving techniques for generating 
comprehensive collections of data from studied organisms. Dedicated sample 
preparation (fractionation protocols and multiple proteases) makes it possible to 
increase depth in sub-cellular proteome analyses and expand sequence coverage 
[202]. With an ever-increasing number of genome sequencing project throughout 
the scientific community, thousands of genome sequences are now available for 
deeper proteomic research studies. Publicly available resources such as Genome 
Online Database (GOLD [203]) provide an outlook on genome sequencing 
project across the world. 

To this day manual annotation remains the most accurate method to determine a 
gene model; this however presents a considerable bottleneck in the process given 
the increasing number of organisms sequenced [204]. In contrast to data from 
transcriptomics, such as RNASeq [53], the use of proteomic data allows the 
validation of the models based on protein expression evidence, interactions and 
post-translational modification (PTMs) at precise life stages of the organisms 
through sequence database searches [123, 179, 180, 202]. A recent study from 
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Adamini et al, attempts to combine shotgun proteomic evidence with de novo 
transcriptome sequencing [205] to confirm expressed protein-coding genes for S. 
mediterranea. Through a comparison of identified tandem mass spectra (<1% 
FDR) on an available gene model set and their sequenced transcriptome, they 
highlight the importance of proteomic evidence for validating previous gene 
models [206, 207] 

Proteogenomic studies are closing the gap between proteomics and genomics, 
providing gene annotators with tandem mass spectra-derived peptide evidence 
for protein identification and characterization. In this study Castellana et al [208] 
refine the A. thaliana proteome by querying 3D LC tandem mass spectra with 
InSPecT search engine [171] against 3 distinct sequence databases: official 
proteome (TAIR), 6 frame translation and a splice graph (for all putative splice 
events). By providing proteomic evidence for ~12k genes, identifying ~500 novel 
genes and refining around 1000 gene sequences they bring support to 
proteogenomics approaches. The lack of data for low abundance proteins in the 
sample and low quality tandem mass spectra can be seen as limitations to their 
approach.  

In another interesting proteogenomic approach developed by the same group an 
imperfect genomic template is exploited with tandem mass spectra to 
successfully return the correct target protein [209]. Here spectra are used to 
construct the template sequence, where their chain order is given by the genomic 
sequence (6 frame translation of gene loci). Then anchors are selected by 
overlapping spectra providing specific amino acid substrings that appear with 
no mutations on both template and target proteins. The final stage of their 
method sees the extension of these anchors to create the protein sequence. 
However this method is still limited by both PTMs and unexpected splice sites 
present in the sample, as the consensus algorithm would miss these out.  

Another useful approach is comparative proteogenomics, whereby the tandem 
mass spectrometry-based proteomic data is exploited for parallel genome 
analyses across different species from the same genus [210]. This approach, 
however powerful, relies on sequence homology and domain conservation of the 
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studied species; it is also based on highly curated genomes to assess 
identification of the sequence on less curated genomes. Rare unexpected 
modifications require further evaluation in order to measure their confidence.      

Proteomic data can help to confirm not only the presence of gene expression as 
well as PTMs but also the complex structure of genes [171, 209] and protein-
protein interactions [211]. This data has been already exploited for genome 
annotation of several organisms such as Toxoplasma gondii [101], Plasmodium 
falciparum [212], Drosophila melanogaster [213], Homo sapiens [214] and 

Caenorhabditis elegans[178].	  	  	  	  

1.5 Organisms studied 

The data sets used to test and refine the approached developed in my project are 
obtained from protozoan parasites of the phylum Apicomplexa. These protists 
belong to the superphylum of the Alveolata of Chromalveolata kingdom and are 
all obligate intracellular parasites. The apicomplexan parasites differentiate from 
other Alveolata for their unique cellular morphology such as the characteristic 
apical complex (with secretory organelles) and the apicoplast, used during 
cellular invasion of host organisms [215, 216]. 	  These eukaryote parasites share 
many metabolic pathways with the host, which makes the development of 
therapeutic targets particularly difficult and there are no vaccines for most 
diseases caused by these parasites. They all have a complex life cycle, often 
comprising 3 different stages, both asexual and sexual (sporogony, merogony 
and gametogony); additionally many of these protists can have intermediate 
hosts (vertebrates and invertebrates) before reaching the definitive host. During 
initial cell invasion the parasites replicate asexually producing large quantities of 
sporozoites (one replication). From these, during merogony stage, the parasite 
replicates generating merozoites; during this stage the replication can occur 
multiple times. Following this, through the gametogony stage the parasites 
undergo sexual reproduction, generating gametes that form zygotes. Then the 
cycle starts over with sporogony stage. Although the whole life cycle can take 
place within the same tissue/ cell, it often occurs in different host/ tissues.  
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The Apicomplexan parasites are responsible for major tropical diseases such as 
Malaria caused by the plasmodium parasite, alone responsible for hundreds of 
thousands of cases resulting in death worldwide [217-221]. Toxoplasma gondii, the 
most common zoonotic parasite, can infect all warm-blooded animals and 
around the globe more than a billion people are infected [222]. This, among other 
coccidia, is one of the most extensively studied [223] with several genomes 
sequenced to this day [224]. Neospora caninum, closely related to toxoplasma, 
causes abortion in cattle. It can be transmitted horizontally and vertically, where 
it can pass consecutively and intermittently to the offspring [225, 226].   

Notably, there are genomic structural differences across the eukaryotic parasites 
of the phylum Apicomplexa such as Cryptosporidium parvum, Plasmodium 
falciparum, Toxoplasma gondii and Neospora caninum [42, 193, 227-229], which are 
studied in this work. Compared to the P. falciparum genome, the C. parvum 
genome appears to be almost two fifths smaller and presents an almost doubled 
gene density. This divergence increases with the T. gondii genome, which, with 
its 14 chromosomes, is over double in size compared to P. falciparum and 
presents a lower gene density having more introns per gene [230-232].  

As currently genome annotation is largely based on predictions of the gene 
structures, these can dramatically change over time as more accurate predictions 
are computed and released to the public [184]. Using sequence databases such as 
UniProtKB, NCBIgi and IPI can lead to out-dated peptide sequences reported in 
their protein identifications from proteomic studies [233]. Even in a well-
annotated genome there is a large percentage of hypothetical proteins (purely 
based on predictions and without known domains) and putative proteins 
(having sequence similarity with characterized proteins but not experimentally 
validated) [234]. As an example, during evaluation on the genome structure of 
apicomplexan parasites, P. falciparum presented only ~0.68% hypothetical and 
~32% putative, while for C. parvum, N. caninum and T. gondii were respectively 
~40% and  ~5%, ~43% and ~33%, ~64% and ~31% [101, 227, 232, 235]. 

The data for this project, used for mining or statistical evaluation, comes from: 
Cryptosporidium parvum [227], Plasmodium falciparum, Toxoplasma gondii, and 
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Neospora caninum (Table 1:3).  

In the recent years genome sequencing has been performed for these species. In 
this project, due to the close evolutionary distance, I have been using Toxoplasma 
gondii to provide a statistical insight on the current quality of annotation for the 
later sequenced Neospora caninum genome and how it could be improved (Table 
1:3 [193, 227-229, 231, 236-238] - for further sources EupathDB). 

 

Table 1:3 Genome sequence and proteomic data available for apicomplexan parasites. It 
takes consideration of the recent annotation improvements of N. caninum [239].  

 

1.6 Research objectives 

This research focuses on the implementation of novel approaches to maximise 
peptide identification for gene model validation and improvement. To achieve 
this target, attention is devoted to optimising database design. Additionally a 
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multi-sequence database approach is devised, similar to a multiple search engine 
mode, to examine the performance of specific database structures (e.g. gene 
models, six frame translation or ORF_SS/ ORF_MS). This analysis can be used to 
improve current database structure resulting in increased peptide identification. 
This type of approach is then tested on past and presently available genome 
sequences for T. gondii and N. caninum to provide a broad picture of genome 
annotation progress through time. 

Furthermore the research focuses on targeted peptide identification to confirm 
and correct gene structure as well as novel identifications. The peptide sequences 
in question are those peptides that span across two exons and N-terminal 
peptides. As only querying gene models can confidently identify the first type, a 
novel type of method is proposed. This method can be considered as a type of 
hybrid approach, involving peptide sequence tag identification and database 
searches; but the result is similar to a de novo approach since it works in the 
absence of gene models for full-length peptide identification. 

The challenges of N-terminal identification have been improved due to recent 
advances in techniques for sample preparation that allow selective enrichment of 
N-terminal peptides. This research focuses on database design assessment and 
performance optimisation that can provide lists of valid N-terminal peptides to 
confirm or correct the translational start of available models. Using these results 
we attempt to provide further rules to increase the identification confidence. 
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2 Gene annotation: quality assessment and 

improvements 

2.1  Abstract 

As most current gene annotations only result from computational predictions, 
proteomic data can be used to assess and validate them. This chapter proposes 
database design strategies to address limitations in both assessments of draft 
annotations and maximisation of peptide identification from tandem mass 
spectra. The designed strategy comprises multiple database searches followed by 
analyses and comparisons of the datasets searched against different databases. 

The pipeline compares results from official gene models and open reading 
frames (ORFs) derived from a six-frame translation, and identifies PSMs that are 
unique to individual databases for further investigation. This gives an overview 
on database performances (i.e. gene model accuracy). 

Using Neospora caninum data it was possible to identify from searches against 
ORFs 452 peptides that were absent from the official gene model draft (5.1 
release). By analysing all the available genomic sequences and draft annotation 
for T.gondii and N. caninum it was possible to evaluate the ratio of PSMs made 
from searches against ORFs versus official gene models. When gene models are 
high quality we expect the number of PSMs from hits to gene models to be 
significantly higher than hits to ORFs. This chapter shows the ratio varies from 
1:1 to 1:2 (ORF hits:gene model hits)in T.gondii and N. caninum as gene models 
improve over time. The change in this ratio acts as a score of gene model quality. 
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2.2  Introduction  

Genome curation is generally performed with automated methods [28-30, 49, 51] 
and it undergoes multiple refinement stage before an annotation is considered as 
complete. Although proteomic studies enable protein identification based on 
draft annotations it remains uncertain how to assess the accuracy of these 
predicted models. Recent bioinformatics improvements have provided increased 
confidence in the peptide sequences identified with search engines [118, 119, 122, 
148, 168, 171, 188, 234, 240-242]. This facilitates searches for novel genes and 
corrections on genomic structure through genome wide searches. Since open 
reading frame sequence databases (ORFs) are generally used for genome-wide 
database queries the strategies discussed in this chapter comprise analyses to 
improve ORF prediction for search optimisation [243].  

At the time this study was started, the Sanger Institute had recently released the 
N. caninum genomic sequence and highly annotated gene models were available 
(release 5.0) from the closely related T.gondii ME49 [101, 230, 239, 244, 245].  
Because of the evolutionary similarities the T.gondii annotation was used to 
provide an initial assessment of N. caninum gene models. This enabled the 
hypothesis to be formulated that N. caninum annotation could be improved, 
since the model was missing out ~2K genes. Through further rounds of 
annotation at the Sanger Institute [239] we were later provided with more 
accurate N. caninum data to test the theory.  

As described in the introductory chapter, Open Reading Frames (ORFs) in the 
thesis are extracted from the nucleotide sequence translated in all 6 frames (3 
forward and 3 reverse complement). Each ORF is then considered as the portion 
of sequence located on the same reading frame, comprised either between two 
stop codon (ORF_SS), or between a Methionine and a stop codon (ORF_MS). 
When generating them computationally, their minimum length is usually chosen 
between 50 to 100 amino acids, although the real coding sequence length is 
directly affected by the genomic structure of the organism (such as intron 
frequency). 
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One of the objectives here discussed is how ORF_SS prediction could be 
improved to yield the best set of sequences while improving search performance. 
This was achieved by evaluating the genomic structure of other apicomplexan 
organisms: C. parvum, P. falciparum and T. gondii [42, 193, 227-231, 246]. 

The designed pipeline enables us to compare the PSMs in the datasets and 
generate Venn diagrams. By tracking PSMs back to specific sequence databases, 
this can facilitate further design refinements. This approach was used with 
ORF_SS and gene model databases to adjust the predicted model. Additionally 
this method proved useful as part of a new protocol for accuracy assessment of 
gene models using proteomic data.  

The multiple database study also included assessment of multiple search engines 
performance compared to individual search engines. By incorporating 
alternative gene models in the study it was also possible to highlight their 
importance in a proteogenomics context; it also showed a rough benchmark of 
Glimmer and GeneMark software packages.  

This chapter has the following aims:  

• to improve the design of ORF_SS databases; 

• to provide additional evidence for N. caninum annotation improvements; 

• to measure the improvements of the gene models over time; 

• to benchmark gene finding software and the multiple search engine 
approach; 

 

2.3 Methods 

2.3.1 Understanding gene structure of studied organisms 

The first step in reducing the size of a six-frame translation database could be 
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achieved by extracting the putative Open Reading Frame (ORF) sequences [243, 
247, 248]. The ORF sequences discussed in this chapter are those stretches of 
sequence, located on the same reading frame, comprised between two stop 
codons (ORF_SS as referred to in the introduction chapter).  

In order to generate an ORF_SS database containing relevant data, while filtering 
out likely non-coding regions, it is necessary acquire some statistical figures on 
the genomic structure of the organism analysed. The initial study comprised the 
annotation release 5.1 for Neospora caninum as well as Toxoplasma gondii release 
5.1 and other species from the same phylum for which the annotation is at a 
more advanced stage such as Cryptosporidium parvum and Plasmodium falciparum 
release 4.1 and 5.5 respectively. The last two organisms were selected to validate 
the statistical methods used for analysing the others. 

2.3.2 Sequence database analysis   

The workflow for the database searches and scoring approach was designed to 
include a False Discovery Rate assessment algorithm [148]. As such, to construct 
the decoy sequence database the original sequences were reversed with a flag in 
their accessions (i.e. the word “Rev” prefixed to all headers); this was then 
concatenated to the original sequence database.  

The database search engine software of choice for analysing MS/MS data was 
X!Tandem [140] and MASCOT [122]. The searches with MASCOT were 
performed considering: peptide charge of 1+, 2+ and 3+, trypsin digestion, fixed 
modifications of carbamidomethyl on cysteine and methionine oxidation 
allowing only 1 missed cleavage, with MS peptide and MS/MS tolerance of ±0.8 
Da, after having tested various alternatives, to maximize output at fixed FDR 
(Appendix B Figure 7:1). 

The global FDR re-scoring allows assessment of the output quality and to 
measure its search performance by using the same MS/MS dataset in multiple 
parallel queries to different databases or simply with different search 
parameters. The parent and fragment ion tolerance was then assessed on three 
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N.caninum 5.1 sequence databases: ORF_SS provided by EupathDB.org, ORF_SS 
with threshold length of 40 amino acids and the official gene annotation, 
respectively (see Appendix B Figure 7:1). This method can facilitate the 
evaluation of sequence database design and optimisation of search parameters.  

2.3.3 Alternative gene models 

The gene finder software packages used include GlimmerHMM [28, 29, 39] and 
GeneMark [30, 31, 249]. GlimmerHMM is fully configurable for new organisms, 
since with enough genomic data it is possible to create new HMM trained 
models. 

Whenever possible only coding sequences from the available gene model were 
used to generate new GlimmerHMM models. The theory was based on the 
relation between training data accuracy and HMM model optimisation. For 
historical evaluation of the official gene models accuracy GlimmerHMM models 
have been generated using the previously available official release. When the 
trained models were created with the purpose of contributing to the current 
annotation, the official model from the same release was used as source data. 

For both software packages only default parameters were used, without altering 
the values for isochores (stretches of genomic sequence with higher content of 
GC). This was decided as the overall GC abundance throughout the different 
chromosomes demonstrated little variance across the T.gondii genome. In 
T.gondii the difference of GC frequency between coding and non-coding 
regions is very small and not evident.  

Initially the attention was focused on the quality of the predictions that could be 
generated; ideally the predicted sequence is expected to have a ~80-90% 
similarity when aligned against the official model. In order to carry out the most 
appropriate testing it was opted to create both a set of top 5 best predictions 
(which did contain a fair amount of sequence redundancy) and a set with only 
the best prediction. We also generated a set of the top 10 best predictions but due 
to computational time/resources it proved to be inefficient for our purposes, i.e. 
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slow searches for no gains in PSMs (data not shown). The results showed a 
general consensus in exon predictions across the top ranking predicted models; 
instead different ranks are directly connected to the way the exons are assembled 
into genes (the predicted splicing of exons).   

GeneMark does not require previous training for a specific organism for the 
assessment of hidden states during HMM predictive algorithm. This software 
package has been designed with Viterbi Algorithm [30, 37] that generates a 
variable number of hidden states as needed during the computation of gene 
predictions.  

For each species all available sequenced genome releases with their respective 
official gene model were gathered whenever there was a change between 
releases. In the case of T.gondii the whole shotgun genome sequences were 
available for the releases: 3.3, 4.x, 5.x and 6.x. The gene models came instead 
from only three releases: 3.3, 4.x, 5.x (5.x was unchanged in 6.x and 7.x) [250]. 
The first publicly available gene model, release 3.3, was generated using 
different gene finding software: Glimmer, Tigrscan (ab initio) and Twinscan (ab 
initio and homolog alignments). The second available release for gene model 4.3 
was generated by GLEANS, incorporating EST data. To generate predictions for 
N.caninum we used the genomic sequence and models 5.x and 6.x available from 
EuPathDB. The pre-release 7.x of T. gondii was evaluated for additional updates/ 
changes, but there were none. 

As previously explained, GlimmerHMM training sets were generated with 
known official models, except for T.gondii 3.3 as the gene model provided was 
not compiled as generic feature format (GFF) and it was not possible to acquire 
the detailed coordinates of the coding sequences. Instead for this particular 
release the alternative gene model based on Glimmer (provided on ToxoDB) was 
used [250].  For the same release the genomic sequence was provided in terms of 
BAC sequences, which were used to generate the ORF sequence database. 
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2.4 Results  

2.4.1 Gene structure of the Apicomplexa 

The figures needed to assess the genomic structure were the distribution of 
lengths of the genes and the length of their initial, internal and final exons. To 
provide a visual comparison the density plot in Figure 2:1 provides an insight on 
the different complexity of genomic structure across some apicomplexan species; 
C. parvum for example shows a very simple gene structure where ~95% of its 
genes are single exons, hence reduces the challenge of finding evidence for gene 
splicing. N.caninum and T.gondii share gene structure similarity, as shown on the 
density plot in Figure 2:1. Although the apex of the density is at single exon 
genes, for these two organisms, the density is also similar for genes having four 
to 20 exons.  
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Figure 2:1 The density plot shows the genomic structure of the Apicomplexa C. parvum 4.3, 
P. falciparum 5.5, N. caninum 5.1 and T. gondii 5.1. The plot focuses on the number of exon per 
gene throughout the whole genome for these parasites. Cryptosporidium appears to have 
mainly single exon genes and no gene with 10 or more exons at all. Plasmodium has a high 
number of single and double exon genes. Neospora and toxoplasma show a similar density of 
genes with five to 20 exons, although the latter shows a higher number of genes with less than 
four exons.   

The study aimed to provide information about short coding sequences located in 
short open reading frames that could potentially be filtered out during ORF_SS 
database generation. Figure 2:2 presents a boxplot and density plot of the exon 
lengths across the genome of all four parasites. The median of the boxplot shows 
the central tendency, which is 186, 162 and 186 bps for T. gondii, N. caninum and 
P. falciparum respectively. C. parvum, having mainly single exon genes, has a 
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median value of 1191 bps and a lower interquartile of 621 bps. For the other 
three species the lower interquartile is 104, 96 and 81 bps respectively. The 
higher interquartile shows similarities between T. gondii and N. caninum (446 
and 339 bps respectively) and similarities between P. falciparum and C. parvum 
(983 and 2070 bps). This is related to the number of exon per gene (Figure 2:1). 
The whiskers are drawn to indicate the minimum and maximum values that for 
P. falciparum and C. parvum are considerably more evident – particularly for the 
longest exon. The exon length and count distribution was considered when 
determining the minimum threshold for ORF_SS extraction in order to identify 
novel peptides and possibly novel genes. Given the difficulty of predicting the 
start of the protein with high accuracy, it appeared important to draw the 
attention to short exon frequencies, such as exons shorter than 90 bps (~30 amino 
acids), 120 bps (40 amino acids) or 150 bps (50 amino acids). These are presented 
in the density plot of Figure 2:2 as enlarged area between one and 2000 bps, with 
the overlaid ORF_SS thresholds; together with the boxplot it allows evaluating 
more accurately the minimum thresholds for capturing short exons that would 
be otherwise missed out (i.e. lower quartile regions). This can be useful as these 
sequence databases are often generated only computationally, by applying a 
length filter after extracting sequences from the genome. The length filter 
applied on the ORF_SS sequence database available on EupathDB.org is 50 
amino acids, so more than ~3000 exons could be missed out in P. falciparum, N. 
caninum and T. gondii. 
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Figure 2:2 A) The boxplot shows the exon distribution and the extreme values (whiskers) 
across apicomplexan parasites from C. parvum 4.3, P. falciparum 5.5, N. caninum 5.1 and T. 
gondii 5.1. As C. parvum 4.3 and P. falciparum 5.5 have mainly single or double exon genes 
their exons appear longer when compared with N. caninum 5.1 and T. gondii 5.1. As for T. 
gondii 5.1 the exons are generally shorter than 2000 bps the density plot has been focused 
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within 2000 bps limit. B) The density plot shows the length densities of the exons and from 
the data it is clear how T. gondii and N. caninum 5.1 could benefit from precise threshold 
length for ORF_SS. The ORF_SS thresholds of 30 and 40 amino acids have been displayed 
here. The different density of lengths can help chose appropriate filter for ORF_SS prediction.  

For instance in Figure 2:2 it is possible to note the median length among all exons 
as well as their interquartile and extreme values of the two species. Although 
both genomes show a similarity in gene structure (number of exon per gene), the 
total number of genes between these two species appears to be significantly 
different. The annotation of Neospora caninum 5.1, with 5587 predicted genes, 
appears to have 2406 genes less than in the Toxoplasma gondii (ME49) annotation. 
These similarities and differences allowed us to make use of known structures 
from well-curated genomes to aid the gene curation for the newly sequenced 
organism Neospora caninum. 

As the Sanger Institute was sequencing the N. caninum genome, the curators 
allowed the pre-release, corresponding to 6.0 [239], to be used in this study. As 
its generic feature format file (GFF) was accessible during late August 2009, the 
same statistical analysis was performed to observe divergences and similarities 
within different annotation releases from the same species. Both annotations 
were compared between each other as well as against T. gondii. The data shows 
how these organisms have similar genomic structure and provide further 
insights how Toxoplasma gondii data can potentially aid the on-going annotation 
for Neospora caninum.  In the new release N. caninum presents 1440 more genes 
(7027 in total) than in the previous release, and the average of exons per gene 
reduces from 7.3 to 5.9, closer to T.gondii 5.1. A similar profile of exon length was 
observed in T. gondii 5.1, N. caninum 5.1 and N. caninum 6.0 (Figure 2:3). 
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Figure 2:3 The release 6.0 of N. caninum shows an increase in similarity towards the T. gondii 
structure with a smaller density of exons 100-120 bps long. 

2.4.2 Defining the optimum length of ORF_SS 

The optimum ORF_SS length was selected from the statistical figures such as the 
mean length for genes, exons, introns and how they relate to each other on the 
sequence. We evaluated the statistics from N. caninum in comparison with T. 
gondii (ME49 strain) that, to our knowledge, had a better annotation at the time 
of the study. The mean length of the first exons was particularly important as 
MS/MS evidence could potentially confirm the correct start of the gene, or show 
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a different start. This information was used to decide the most appropriate 
threshold for the minimum length of ORF_SS from a six-frame translation.  

The main objective was to keep the threshold as low as possible to include as 
many potentially valid sequences to be contained in the database, including 
atypically short ones, while maintaining statistical power in the results of the 
search. From the data gathered for N. caninum release 5.1 about ~27% of all 
40,570 exons were sequences below 33 amino acids and about ~31% have length 
comprised between 30   and 66 amino acids (Figure 2:3). 

Our databases were generated using four values as threshold: one with no 
threshold (to include every sequence comprised between two stop codons) and 
the other three having respectively 30, 40 and 50 amino acids as the minimum 
length. The database size was 218Mb for threshold set at zero, and for the others 
was respectively 140Mb, 121Mb and 105Mb (Table 2:1).  

 

Table 2:1 Comparison of database size between ORF_SS with different thresholds and the 
official gene models for N. caninum. The calculated number of amino acid excludes decoy 
sequences. 
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2.4.3  Datasets comparisons 

The results from the first tests helped to formulate the best threshold level for a 
reasonable trade-off between database size and true positive - false positives 
ratio (Figure 2:5). It appears that all ORF_SS sequence databases returned very 
similar results (in this case the score is represented by the total number of TP 
PSMs at a fixed FDR threshold). In order to test the differences in ORF_SS 
threshold and evaluate how it affects identification of PSMs and peptide 
sequences it was decided to combine 10 slices from the same 1DE gel for N. 
caninum 5.1 (Figure 2:5). Merging all results into one dataset could potentially 
alter the statistical scoring of the final dataset. However querying each slice 
individually could increase the completeness for protein identification as these 
slices were sourced from different mass spectrometry runs.  

Next all the individual results for each database search were re-scored 
individually by FDR with a maximum threshold of 5%; in the following step all 
of these were combined into one file per search database where the sequence 
redundancy had been replaced by a counter of PSMs based on the peptide 
sequence alone. The final output provided all TP non-redundant peptide 
sequences found in each database, excluding all false positives, listing the lowest 
FDR found in case the peptide had been matched multiple times. An internally 
designed pipeline algorithm was used to perform a post-processing comparison 
of all sequences on both outputs mutually inclusive and exclusive sets of 
peptides (see Figure 2:4 for workflow). The final lists highlight whether specific 
peptide sequences are unique to either the ORF_SS database or to gene model 
databases, or common to both.  

The reason for this was to generate a small set of peptides that can be 
investigated further to elucidate whether or not they appear on the gene models. 
Even with increasingly accurate gene models, there can be missed peptide 
sequences from the gene models such as wrongly predicted splice sites and the 
N-terminus of the proteins are still difficult to predict with precision. 
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Figure 2:4 The workflow for the post-processing algorithm. Tandem MS data are queried 
with database search engine (DB SE) against different databases. The results are then 
individually rescored by fixed FDR and the redundancy is removed at peptide level. Finally 
the results from each datasets are compared organising them into mutually exclusive/inclusive 
sets of peptides. 

A comparison between different dataset can provide the intersection of the 
datasets, showing which database search yielded specific peptides (Figure 2:5). 
However as this could be the result of a statistical bias, it was appropriate to 
evaluate whether the peptides unique to a specific dataset were also unique to 
given database. 
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Figure 2:5 A) The bar chart shows the number of identified PSMs at 1% fixed FDR. The 
redundancy is the removed at peptide level as shown in the last column. The identifications 
were obtained by querying one spectra file containing 10 different slices from the same 1DE 
gel. B) The Venn diagrams show the intersection of peptide sequences as identified on the 
different datasets, as well as the number of peptides unique to the specific dataset. A further 
study was then conducted to establish if the peptides unique to a dataset were due to being 
not present in the other database. From ORF_SS ALL to ORF_SS 50, as the minimum length 
threshold increases, the selection of extracted sequences becomes more stringent. ORF_SS 40 
is by construction a subset of ORF_SS; all peptides unique to ORF_SS 40 dataset are present 
on ORF_SS ALL and ORF_SS 30 databases. Similarly all peptides unique to ORF_SS 50 
dataset are also contained an all other databases as they contain also ORF_SS with length 
below 50 amino acids. As in the diagram shown here, in the comparison between the ORF_SS 
40 and ORF_SS ALL, of the 63 peptide sequence uniquely identified on the ORF_SS ALL 
dataset, only 44 peptides are unique to the ORF_SS ALL database (shorter than 40 amino 
acids). In the comparison between ORF_SS 30 and ORF_SS 40, of the 61 peptides unique to 
ORF_SS 30 dataset only 42 are present only on ORF_SS 30 database (minimum length lower 
than 40 amino acids).  In the comparison between ORF_SS 40 and ORF_SS 50, of the 110 
unique peptides to ORF_SS 40 only 41 are only present on the ORF_SS 40 database. This 
shows how statistical evaluation and database design can have direct effect on peptides 
identified within the score threshold. 
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The next comparison was the ORF_SS_40 sequence database versus the current 
available gene model (N. caninum 5.1); to provide an insight on the current state 
of the annotation, as ideally, querying optimal gene models should produce 
significantly higher number of high confidence PSMs. Table 2:2 shows this 
comparison and it is clear that the official genome annotation (OGM) has been 
significantly outperformed by searches against the ORF_SS database, indicating 
that the current annotation could be improved; it was decided to repeat this 
comparison on other two organisms Toxoplasma gondii and Cryptosporidium 
parvum for which the genome annotation, to our knowledge, had higher quality. 

 

Table 2:2 The counts of true positive PSMs and the peptide sequences at 1% FDR from 10 
slices from the same 1DE gel for N. caninum. The results from ORF_SS database score, at PSM 
level, ~36% better than the official annotation from the same release; at peptide level there is a 
~7% gain. The alternative gene model offers similar outcomes (~18% and ~12% gain for PSM 
and peptide level respectively), indicating that improvements in the gene models are still 
possible. 

The 10 1DE gel slices for C. parvum and T. gondii were queried against sequence 
databases and the separate results were merged into one results file. This was 
post-processed to provide the total number of identified PSMs and the non-
redundant total of identified peptides. By comparing the results between 
different sequence databases, it is possible to see that, for T. gondii, ORF_SS 40 
yields a lower number of confident PSM and unique peptides at 1% fixed FDR. 
In T. gondii (Figure 2:6), querying the official gene model database yielded larger 
number of PSMs (increase of ~43.5%) and non-redundant peptides (increase of 
~39.4%) compared to queries against the ORF_SS 40 database at 1% fixed FDR. 
For C. parvum this comparison (Figure 2:7)	  showed a different picture due to the 
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structure of the genome itself as 95% of the genes are single exon genes. The 
results from querying the official gene model  (4.1 release) and the ORF_SS 40 
database differ by ~3% for PSMs identification and ~3.6% for non-redundant 
peptides – with slightly improved performance seen for ORF_SS, potentially 
indicating some genes have been missed in this annotation. 

 

Figure 2:6 A) Merged results from ten 1DE gel slice queried two different sequence 
databases for Toxoplasma gondii (release 5.1): ORF_SS with threshold of 40 amino acid 
minimum length and official gene models. The number of peptide sequence refers to the non-
redundant list of peptides gathered from the PSMs. B) The Venn diagram shows the peptides 
sequences that are unique identified from this specific dataset. However it was also evaluated 
whether these unique peptides were also not present on the compared database. Of the 22 
peptides unique to ORF_SS dataset, only 12 were missing from the gene model database. Of 
the 339 peptides unique to the gene model, 138 were unique to the gene model database. 
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Figure 2:7 A comparison of the combined 10 1DE gel slices from dataset queried against the 
ORF_SS sequence database and gene models for Cryptosporidium parvum (4.1 release). 
Although genes contain few introns (less than ~5%), the results from ORF_SS database and 
those obtained with gene model queries differ by ~3% in performance. The Venn diagram 
shows the intersection of the two dataset and their unique peptides. Of the 43 peptides unique 
to ORF_SS dataset, 40 were unique to ORF_SS database. Of the 17 peptides unique to gene 
model dataset, 14 were unique to gene model database. 

Together with the official and ORF_SS sequence database, alternative gene 
models were also tested, downloaded from a public repository (EuPathDB.org 
for TwinScan). Table 2:2 shows the comparison of PSM and peptide count 
between the three datasets (official gene model, Twinscan alternative models 
and ORF_SS); although initial results indicate that ORF_SS may be statistically 
biased as TwinScan predictions (7588 entries) yielded less PSMs but more unique 
peptides compared to ORF_SS. This would indicate that further analyses are 
needed for database design. Alternative gene models were also generated 
internally by gene finder software GlimmerHMM, trained specifically for this 
organism (discussed in detail later in the chapter). This achieved the desired 
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results by yielding high confidence PSM results, ranking second after the official 
gene model 6.0, with only ~10% fewer PSMs on average (in Table 2:3 in the 
section “Alternative gene model”). 

 

Table 2:2 The table shows the comparison between datasets obtained querying three different 
database: ORF_SS 40, official gene model and alternative gene model (Twinscan prediction) 
from N. caninum 5.1 release. The dataset was generated by combining 10 1DE gel slices as 
previously described. 

In late August 2009 we were provided with a pre-release of the newly compiled 
gene annotation for N. caninum, then released to the public on EupathDB March 
2011. Given the availability it was decided to test whether the new database gave 
improved results following the same approach. As shown Figure 2:4, it is 
possible to compare the results from the previous annotation as well as from the 
ORF_SS databases built from raw genome for both version 5.1 and 6.0. The data 
is shown (Figure 2:13) and discussed later in the chapter (in paragraph 2.4.5 
“Multiple database approach for official model evaluation”).  

Following this, the same comparison approach was performed on an experiment 
with a wider scale. All 1-DE gel MS/MS proteomic data available to us, 
approximately 200,000 spectra, were used to query both the ORF_SS and the 
annotated proteins database from N. caninum release 6.0. 

The final dataset for the peptide sequences matched uniquely to the ORF_SS 
sequence database total 453 unique peptide sequences (from a total of 749 
redundant PSMs, listed in Appendix B from Table 7:1 to Table 7:10). While the 
list with sequences uniquely matched to the official gene model resulted in about 
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3193 peptide sequences (belonging to 1328 different proteins, data not shown). 
This appears to be consistent with the improved quality of the newly annotated 
genome, and the method could be used by curators to evaluate the state of 
current annotations as well as to use this evidence within on-going annotation 
processes.  

A powerful software package developed by the Welcome Trust, Artemis 
Genome Viewer [251, 252], can be used to evaluate the peptide sequences, which 
are unique to the ORF_SS database and how they can be related to current gene 
models. The gene model sequence with its features is loaded on Artemis, which 
displays them graphically on the main window. The lower section displays the 
list of features such as the coordinates of genes, mRNA, exons and coding 
sequences; above this sits the whole genomic sequence both forward and reverse 
strand, in nucleotide as well as the three translated frames for each strand. 
Above it, the same sequences are presented on a much wider range, although the 
zoom scale and feature highlights can be adjusted to the user preferences; in the 
images portrayed as examples the stop codons are shown as black pipe symbols 
and methionines (start codons) with a purple pipe symbol. This feature allows 
quick recognition of ORF_SS sequences overlaid with the gene model structural 
sequences such as exons, presented as rectangular shapes situated on the 
genome and frame respectively, coloured in light blue and those belonging to 
the same gene are connected by a thin line of the same colour (see example 
Figure 2:8).   

The main objective is to provide the curator with a relatively small dataset that 
can be feasibly further analysed. These detailed examinations could help explain 
these sequences correlating them with possible adjustment and correction to the 
gene model studied. Peptide sequences suggesting a different start of the gene, 
or the splice sites as well as missed exons would provide strong evidence for 
reconstructing the gene structure.  

In order to assess the reliability of results a few peptide sequences were 
manually investigated by selecting them by: FDR score, number of PSMs and 
peptide length. The number of occurrences for a given peptide matched in 
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several spectra would decrease the probability of appearing by chance. 
Additionally some PSMs with either lower PSM count or with shorter length 
were inspected depending if they were located nearby official genes. 

The first example in Figure 2:8 has two different peptide sequences 
AFDEAGRTPDGEDGSQTTEQDLR and NLISENVAFPVTDRTGEESR both with 
FDR 0.0 were matched 11 and 1 time respectively on the same ORF on forward 
strand on chromosome XI within coordinates 6,061,873 to 6,062,736. Within the 
same ORF_SS, around 66 amino acids downstream of these PSMs, the first exon 
of the hypothetical protein-coding gene NCLIV_060250 is located with 
coordinates from 6,062,455 to 6,063,844 (Figure 2:8). At first it could be noted that 
upstream of the PSMs there are two potential start codons (purple bar), possibly 
indicating a different start codon may exist for this gene. However, as a stop 
codon is present downstream the most 5’ start codon, this cannot be considered 
as correct start codon. 

 

Figure 2:8 The image shows an extract of genomic sequence for the three forward frames for 
N. caninum (from 6,061,873 to 6,063,844 bps) taken with Artemis genome viewer. On each 
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reading frame potential start and stop codons are highlighted with a purple and black vertical 
bar respectively. The exons of gene NCLIV_060250 are highlighted in light blue, while the 
peptide sequences identified from the ORF_SS are highlighted in red and blue respectively.  
These adjacent peptides sequences (AFDEAGRTPDGEDGSQTTEQDLR and 
NLISENVAFPVTDRTGEESR respectively) are located on the first forward reading frame and 
are on the same reading frame of the first exon of the gene NCLIV_060250, which is located 
downstream. As there are no stop codons between the two peptides and the first exon, this 
could be further investigated to provide possible evidence for correcting the gene structure of 
NCLIV_060250.  

In other instances PSMs could provide the evidence to adjust and confirm 
intron/exon boundaries, which are notably challenging to be correctly predicted 
by gene finders. From the dataset one peptide sequence was observed in more 
detail: LLRPMEGVPVPER. This was aligned two times against the ORF_SS 
database, with lowest FDR 0.034. This PSM alignment overlaps with the 
hypothetical gene NCLIV_057700, sharing 4 codons with the second exon 
(Figure 2:9).  
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Figure 2:9 The image shows an extract of genomic sequence for the three forward frames for 
N. caninum (from 3,990,610 to 3,994,430 bps) taken with Artemis genome viewer.  As in the 
previous figure, the black and purple vertical bars on each frame indicate the stop and start 
codon respectively. The gene NCLIV_057700, in light blue, comprises five exons located on 
the three forward frames. The peptide LLRPMEGVPVPER identified only on ORF_SS aligns 
with the 5’ of the second exon, suggesting that intron-exon boundaries of this gene structure 
should be further inspected as potential corrections could be made.  

For some cases the PSM evidence from the ORF_SS database could supply the 
annotator with additional regions to consider while inspecting proteins and their 
coding sequences for missing exons. An additional peptide sequence 
(TYCSSPVVNNGDGLVIQLPNAEQK with lowest FDR of 0.0) was matched 
three times on the ORF_SS database detected in the intronic region 11 codons 
downstream of the first exon of hypothetical protein NCLIV_068460 on 
chromosome XII (Figure 2:10). 
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Figure 2:10 The image shows an extract of genomic sequence for the three forward frames for 
N. caninum (from 6,285,470 to 6,290,398 bps) taken with Artemis genome viewer.  As in the 
previous figure, the black and purple vertical bars on each frame indicate the stop and start 
codon respectively. The structure of the hypothetical gene NCLIV_068460 comprises three 
exons on the same forward reading frame (second). The peptide sequence identified on the 
ORF_SS, highlighted in red, is located on the second frame, 11 codons from the 3’ end of the 
first exon. Both the peptide sequence and the first exon are located within the same ORF_SS; 
thus this type of identifications, after further inspection, can lead to a correction of the 
annotation.  

2.4.4  Alternative gene models 

Following the sequence database comparison approach to evaluate both official 
models and ORF_SS, the attention was directed to the implementation of 
additional gene models for N. caninum that could be exploited. Because of the 
evolutionary close distance and the similarity of the genomic structure with 
Neospora caninum, a training set for GlimmerHMM was created using genes from 
Toxoplasma gondii (ME49 strain) and this was then used to generate alternative 



 

 2-68 

gene models for N. caninum.  

 

Table 2:3 The table shows how the different gene model predictions differ in size. The 
Neospora prediction “ME49” was based on the training set generated from T. gondii official 
gene models. The other two Glimmer predictions differ in the process used during the 
assembling of predicted coding sequences. The top first prediction is effectively a subset of 
the top five which contains four more different predicted splice sequences.  

As shown in Table 2:4, the same comparison method was applied to the results 
obtained by querying these three databases. The two alternative models created 
using Neospora training set are very different in size (i.e. the top five predictions 
is nearly five times bigger). The third alternative model differs from these two 
previous models as it was created from a training set based on T. gondii (Table 
2:3). However different these three alternative models are, they overall lead to 
rather similar results (supplementary table in appendix B Table 7:11). The 
comparisons were applied also against the current gene model, the alternative 
model (Twinscan [57] prediction from ToxoDB.org) and the generated ORF_SS 
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database. From the results in appendix B Table 7:11 it can be seen how the 
predictions made using a training set for a closely related organism could 
effectively help in case the gene annotation for the targeted organism had not 
been well implemented. The training sets that are constructed on either 
evolutionary related organism or on previous gene model of the same organism; 
these constructed predictions allowed to identify more PSMs when comparing 
the ORF_SS sequence database. 

Also the Twinscan predictions, downloaded from EuPathDB, were based on the 
5.1 version of Neospora caninum instead of the later improved 6.0 used 
elsewhere), which could explain the general low score (Table 7:11), compared to 
the other databases. In addition, as shown in Table 2:4 and Table 2:5, the 
difference between the top 5 predictions from GlimmerHMM and the top one 
only can be considered minimal, hence the overall process could be made faster 
by generating a smaller set of top predictions (i.e. the top 2 or 3 only).  

 

Table 2:4 The comparison of the combined 10 1DE gel slices from N. caninum queried against 
the official and alternative gene model sequence databases. The number of peptide sequence 
refers to the non-redundant list of peptides gathered from the PSMs at 1% fixed FDR. 

Nonetheless the differences between alternative gene models can be visually 
analysed with the Artemis genome viewer by overlaying them against the 
genomic sequence. It is possible to see how exon prediction obtained from 
Neospora and Toxoplasma training sets respectively was similar (e.g. exon 
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sequences predicted within close genomic regions). However at the same time, 
the comparison showed some difference in the sequences, such as length 
differences in predicted exons and splice sites (quantifiable in amino acid count 
and number of entries in the database). This is also given by different assembly 
of the predicted exons, which could lead to a future implementation for finding 
missed sequences (Table 2:4). 

In Figure 2:11 it is possible to see an example of sequence similarity between the 
alternative predictions. The segments highlighted in blue correspond to exons 
belonging to the N. caninum prediction based on T. gondii training sets (gene 
entry 414 in the database); those highlighted in green correspond to the N. 
caninum gene structure predicted based N. caninum training set (gene entry 292 
in the database). The gene finding algorithm numbers the predicted genes as the 
exons are predicted and assembled; the differences in numbering can be tracked 
down to how many genes have been predicted so far. Hence, although geneID 
414 and geneID292 show sequence similarities at exon level, T. gondii leads to an 
increase in predicted genes (Figure 2:12). The segments highlighted in yellow 
correspond to the gene structure of NCLIV_026500 from the official gene model  
(release 6.0). 

 

Figure 2:11  Differences between gene models (predicted and official); in blue is the 
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GlimmerHMM alternative gene model generated using training set based on T.gondii ME49, 
predicted gene ID:414 has 8 exons. In green is the alternative gene model generated with 
GlimmerHMM using the N.caninum training set, the predicted gene ID:292 has 7 exons. In 
yellow the official annotation is gene NCLIV_026500 with 6 exons. Although the predictions 
look similar to the official annotation, their intron-exon boundaries and the exon length 
assessment  is still of low quality when compared to the new official annotation release 6.0 

In both alternative models, in the same region, a gene has been predicted with 
similar exon-structure, which was the expected result by generating targeted 
predictions on N. caninum using the statistics from the genomic structure of T. 

gondii. 

An additional comparison between different sequence databases was performed 
on the same spectra file containing 10 concatenated 1DE gel slices from Neospora 
caninum. The query was performed with the multiple search engine mode 
[148] (OMSSA, X!Tandem and MASCOT). As shown in Figure 2:12, the data 
generated has clear improvements in TP identification at fixed FDR. 
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Figure 2:12 The comparison of the combined 10 1DE gel slices from N. caninum dataset 
queried against the ORF_SS sequence database and official gene models (OGM) using a 
single search engine (MASCOT) and multiple search engines. The number of peptide 
sequence refers to the non-redundant list of peptides gathered from the PSMs. 

2.4.5  Multiple database approach for official model evaluation 

The multiple sequence database approach has been used to further assess how it 
could be exploited to assess which stage the genome annotation for an organism 
has reached in terms of accuracy. 

The study design comprises the generation of ORF_SS sequence databases, as 
previously discussed, panels of alternative gene models and the official 
annotation.  

The sequence databases concatenated with decoys were searched in two search 
engine mode (OMSSA and X!Tandem) in order to maximise the true positive 
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PSMs; at this stage MASCOT was left aside since one of the objectives for this 
experiment was to create a pipeline that could be automated completely, using 
open source software.  

For each organism, the output from the search engines, for each database, was 
re-scored by FDR and the individual results from each gel slice were combined 
into one final output. In the last stage, PSMs redundancy is removed together 
with false positive identifications. In Figure 2:13 it is possible to view the results 
for T.gondii ME49 throughout the genomic sequencing project at 1% fixed FDR, 
with redundancy removed at PSM level first then at peptide level. The ratio of 
PSMs in the searches between official annotation (OGM) and ORF_SS changes 
over time; it varies from 1.4 to 1.9, respectively from releases 3.3 to 6.x, 
highlighting improvement in gene annotation. The direct comparison between 
which peptide sequences are unique to either the gene models or ORF_SS 
database, or commonly found in both datasets is in Figure 2:14. 

 

Figure 2:13 The PSMs and peptide counts from the whole dataset of 10 1DE gel slice for each 
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database query for T.gondii. It provides insight on the PSM count as well as non-redundant 
peptide sequences.  

The majority of the peptide sequences that were “uniquely” found a given 
database searched, were in fact present in both databases (Figure 2:14). This 
implies that most differences seen in presence/ absence of peptides in the final 
processed results from these pipelines are due to differential statistical 
thresholding of results, rather than intrinsic differences in the peptides contained 
within the databases. As the accuracy of gene models improves, the total number 
of peptides matched uniquely on the ORF sequences decreases notably. The 
alternative gene models appear to perform consistently better compared with the 
ORF_SS database. The Glimmer models (GLM) generated with training sets from 
previous annotation performed better than the GeneMark gene predictions (gM) 
(Figure 2:15). Although the predictions were obtained with default parameters 
on both gene finders, it appears to demonstrate that GlimmerHMM produces 
higher quality predictions for these species. The final analysis was designed to 
highlight peptide sequences that appeared uniquely on ORF_SS queries while 
absent from the gene model from the same release, but were present in the next. 
On T. gondii the comparison was performed on release 3.3 - 4.3, 4.3 – 5.x. 
However only one peptide sequence resulted uniquely identified on 4.3 and not 
on the 3.3 gene model, while results from 4.3 against 5.x showed 23 PSMs unique 
to ORF_SS 4.3 and annotation 5.x, obtained from 8 proteins (Table 2:5).  
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Figure 2:14 Venn diagrams showing the peptide sequences as unique or common to specific 
datasets searched against sequence databases ORF_SS or official gene model (GM) for T. 
gondii. In clockwise order the datasets are obtained from release 3.3, 4.3, 5.x and 6.x. For each 
dataset, the arrow indicates how many peptides were truly unique to the sequence database, 
as statistical biases could lead to peptides being scored outside the threshold window chosen. 
Compared versus gene models (GM), hits unique to ORF_SS are expected to decrease.  

 

 

Accession ID Peptide PSMs 
gb|TGME49_019800 AVVGEEALSPDDLLYLEFTDKFENR 1 
gb|TGME49_025320 AAGLASGDSPASR 1 
gb|TGME49_026830 QLQEMEAADLR 2 
gb|TGME49_029010 SAEGTSESPPVPQLGTPPRPAPR 2 
gb|TGME49_029010 VESIIAGSDTTPR 1 



 

 2-76 

gb|TGME49_029010 ESSSEDENQPPTTASRPSNGEGESQPPTAAPR 1 
gb|TGME49_067550 KIEGLSTLSHLR 1 
gb|TGME49_088360 TPFQDAALSIVKGAACIALSLK 2 
gb|TGME49_088360 MYQESYLDEFGIPANVK 2 
gb|TGME49_088360 CSITLGPIEVEPTAAEEALLK 2 
gb|TGME49_088360 STGQIADIQFESVKFNEEK 2 
gb|TGME49_088360 LVVLPEWNINANMYPVLK 2 
gb|TGME49_088360 TPFQDAALSIVK 1 
gb|TGME49_088360 STGQIADIQFESVK 1 
gb|TGME49_092920 TPAVVTGFLSSTLR 1 
gb|TGME49_097970 YGANFLSFVNETGSPYHSVLAVQQR 1 

Table 2:5 The table PSMs/ peptide sequence results from T. gondii from ORF_SS release 4.3 
and gene models release 5.x. It shows 23 PSMs (16 unique peptides) that were present in the 
ORF_SS dataset of release 4.3 but were absent from gene model dataset of the same release. 
These peptides were also present in the following release 5.x and identified on the official 
gene model.   

At later date, the datasets obtained by querying the two available releases (5.x 
against 6.x) for official annotation for N.caninum were analysed and compared 
between each other. This provided a first insight into the performance 
differences between releases and database designs. The ten 1DE gel slices 
combined were used to query the ORF_SS, the official gene model (OGM) as 
well as alternative gene models generated with GlimmerHMM (GLM) and 
GeneMark (gM) Figure 2:15.  

By comparing two different releases of gene model databases the annotation 
improvements are clear, with the average increase of true positive PSMs and 
unique peptide sequences at 1% fixed FDR up ~50% more than the older release. 
In the chart (Figure 2:16) it can be noted that the ORF_SS sequence database from 
the release 5.1 appears within the top ranking databases. This unexpected high 
scoring in the ORF_SS sequences 5.1 had subsequently been explained with the 
help of the original curator as Mycoplasma contamination in both the genome and 
proteomic data; the PSMs mapping to Mycoplasma were thus excluded in later 
releases. 
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The original hypothesis, that ORF_SS database would perform less well when 
compared to gene models (Figure 2:15), was then tested by comparing it can be 
seen how in release 6.0, the ORF_SS database performed substantially less well, 
with an average of ~43% fewer PSMs when compared to the gene model from 
the same release. This can provide additional evidence that a well-annotated 
genome would easily outperform any correspondent ORF_SS database, 
especially for intron rich genomes. 

The set of peptides uniquely identified in a given results set to a dataset, was 
analysed against the presence/ absence of sequence for a given database, to 
explain the cause (database design or statistical scoring). On release 5.x 126 
peptides were uniquely identified on the ORF_SS dataset, of which 122 were 
actually present only on ORF_SS database (Figure 2:16). The sequences uniquely 
identified on the ORF_SS on release 5.x were also evaluated against the OGM 
database for release 6.x in order to assess the confidence of the ORF_SS 
identifications. Out of these 122 peptides, 103 peptide sequences were present 
also on the official gene model of the later release 6.x. From these 103 peptides, 
only 95 were selected for protein identification: the proteins (24) were selected if 
they contained at least one unique peptide (Table 2:6). The results of this 
methodology can provide useful for further improvement in designing 
alternative sequence databases as well as for gene annotation. 
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Figure 2:15 The charts shows the PSM and peptide identified at 1% fixed FDR across 2 
different gene model/ raw genome sequence releases for N. caninum. The spectra file contains 
the concatenated spectra from 10 slices from the same 1DE gel. The different sequence 
databases listed are the official annotation (OGM), Glimmer (GLM) and GeneMark (gM) 
models as well as ORF_SS. It provides insight on the PSM count as well as non-redundant 
peptide sequences. 
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Figure 2:16 Venn diagram of the results from set of N. caninum showing the peptide 
sequences as unique or common to specific datasets searched against sequence databases 
ORF_SS or official gene model (GM). For each dataset, the arrow indicates how many 
peptides were truly unique to the sequence database, as statistical biases could lead to 
peptides being scored outside the threshold window chosen. Compared versus gene models 
(GM), hits unique to ORF_SS are expected to decrease. 
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Peptide ProteinID PSMs 

AGIIPDVLPESACR NCLIV_002850 1 

AVVFLTDPDAPSR NCLIV_002850 1 

AGDIESPQPANDLTECMAR NCLIV_002940 1 

CYLLTAGFSK NCLIV_002940 1 

LYEYPGDLTGSK NCLIV_002940 3 

SGKPDLYSYPGDMTAPR NCLIV_002940 2 

VFVWDYFEK NCLIV_002940 1 

ETAPEIDRNFLADFALTQSR NCLIV_007770 1 

GLVGDMLETGR NCLIV_007770 1 

AIGKDKYACDCPAGYSR NCLIV_010600 5 

CIDDASQPSRYTCECPQDSWR NCLIV_010600 1 

CVQGAEASLAER NCLIV_010600 1 

DAECVEDLNAGGSVR NCLIV_010600 6 

DKYACDCPAGYSR NCLIV_010600 3 

SMTSQSEEKCVQGAEASLAER NCLIV_010600 1 

TGCNAYSEYCNPGR NCLIV_010600 4 

YTCECPQDSWR NCLIV_010600 1 

YTLATDDGTLICAISSEGQPCR NCLIV_010600 1 

LLYLGNTGVAR NCLIV_011730 1 

LTPTLAAFLVK NCLIV_011730 1 

ASYQTLFPK NCLIV_013260 3 

LILDIEKSEEEVVR NCLIV_013260 4 

YACPGEDPNCTETTR NCLIV_013260 1 

CTALDLFMSSPLFAAGRPVSPEPSPGLASEVN NCLIV_028170 1 

FGLAVPLMAGQIR NCLIV_028170 4 

KLPSGFSSEELLNK NCLIV_028170 2 

KNTPEFSPPELVR NCLIV_028170 2 
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NTPEFSPPELVR NCLIV_028170 7 

SVMGELEAEDKCVSLVR NCLIV_028170 2 

SVVNFVQVLPVMVCDVQNVR NCLIV_028170 6 

TGQLFLTDFDALVR NCLIV_028170 5 

FGLVQVYTYQPATLK NCLIV_030820 1 

AKPFTDVFPK NCLIV_033230 14 

CPDNSTAVPAALGYPTNR NCLIV_033230 21 

EIPLESLLPGANDSWWSGVDIK NCLIV_033230 4 

EIPLESLLPGANDSWWSGVDIKTGVK NCLIV_033230 2 

FSADWWQGKPDTK NCLIV_033230 25 

FSADWWQGKPDTKDGAK NCLIV_033230 6 

LNHITLKCPDNSTAVPAALGYPTNR NCLIV_033230 2 

LTIPEASFPTTSK NCLIV_033230 17 

LTIPEASFPTTSKSFDVGCVSSDASK NCLIV_033230 2 

SCMVTVTVPPR NCLIV_033230 17 

SEKSPLLVNQVVTCDNEEK NCLIV_033230 2 

SFDVGCVSSDASK NCLIV_033230 5 

SPLLVNQVVTCDNEEK NCLIV_033230 3 

SPLLVNQVVTCDNEEKSSVAVLLSPK NCLIV_033230 4 

SSVAVLLSPK NCLIV_033230 12 

SVSSPEVYCTVQVEAER NCLIV_033230 8 

SVSSPEVYCTVQVEAERASAGIK NCLIV_033230 11 

TGVKLTIPEASFPTTSK NCLIV_033230 2 

DKGETGGENGDSPVLR NCLIV_033250 14 

ESEVIGQVAHCAYSSNVR NCLIV_033250 21 

EWVTGTLQQGIK NCLIV_033250 7 

GEASGVAGATLTIPKDQ NCLIV_033250 4 

IGQVAHCAYSSNVR NCLIV_033250 1 
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IPDEHYPATSK NCLIV_033250 1 

ITIPDEHYPATSK NCLIV_033250 15 

ITIPDEHYPATSKAFR NCLIV_033250 1 

KEWVTGTLQQGIK NCLIV_033250 8 

LLSEDDGLIVCNESDGEDECEK NCLIV_033250 1 

LRPITVNPENNGVTLICGPDGK NCLIV_033250 9 

NAAPLSTFLPGAK NCLIV_033250 7 

NAAPLSTFLPGAKK NCLIV_033250 5 

NVCLLNVYVQSR NCLIV_033250 5 

SENEKFTCLPK NCLIV_033250 3 

EFKLPTESYVAPPVWIR NCLIV_035220 1 

SISTAIQVGQAGAALVQNFVHR NCLIV_041120 1 

HDELSQLIK NCLIV_043270 2 

HDELSQLIKEGVVR NCLIV_043270 1 

YCSGFQAAANSYCNK NCLIV_043270 1 

YCSGFQAAANSYCNKR NCLIV_043270 1 

EAFPLNNGSCDTAK NCLIV_043760 2 

GAKPWAELFPGADK NCLIV_043760 4 

HKLEVGETCTIEMLPQNSK NCLIV_043760 2 

LEVGETCTIEMLPQNSK NCLIV_043760 1 

NFAFATTTSSSSLILK NCLIV_043760 2 

VPPHGDGQGFCFILR NCLIV_043760 4 

VTVEPEQLEKEAFPLNNGSCDTAK NCLIV_043760 1 

ARVPFSGYGQEK NCLIV_045870 1 

GLAGLIAAVAVLAAR NCLIV_045870 3 

MRNPPKTFMDEIK NCLIV_045870 2 

TASLFVALPAALFSAVFLSK NCLIV_045870 1 

VPFSGYGQEK NCLIV_045870 3 
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ILDLAPSFGEGPAEIVSR NCLIV_046530 1 

FVDPQSSSLIGR NCLIV_047390 1 

SSLPLFIVLPSEHLR NCLIV_048040 1 

MEEADDAPKPVPVR NCLIV_052880 2 

EEVSELNTVLMR NCLIV_056300 1 

EFKNEDEIANAVASLLYTVPAAVAELSAGYR NCLIV_056300 2 

VRPIQLDDIAAVLYGSDPR NCLIV_059000 1 

ITSQHTLFMPDGR NCLIV_060730 1 

LLPMSAIQTPEFR NCLIV_060730 2 

LLPMSAIQTPEFR NCLIV_060740 2 

QADGTVYPLITLPK NCLIV_062280 2 

TLDAPTSGSASFEVAQR NCLIV_062280 1 

Table 2:6 The table presents the peptide sequences that were identified on ORF_SS 
database but absent from official gene model (N.caninum release 5.x). These peptides were 
however present on the official gene model of the following release 6.0. This list contains the 
protein identified with one unique peptide at least.  

2.5 Conclusion 

The study discussed in this chapter focused on alternative database designs for 
proteogenomics. The results confirmed the importance in examining closely 
related species and their gene structure in order to build sequence databases. By 
comparing the identifications from different datasets resulting from ORF_SS and 
official annotation databases it is possible to give an insight into the quality of 
gene models using proteomic data. However careful attention needs to be paid 
at whether uniqueness of a peptide identified is due to statistical scoring or to 
database design. This approach can provide a shortlist of peptides that do not 
appear in the annotation but are identified on other database and as such could 
be further investigated. 

The ORF_SS database was designed after analyses on the genomic structure, 
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showing that the length filter could be a variable factor to be tweaked itself 
during the design. The ratio of hits to ORF_SS versus official annotation could be 
considered as a possible framework for assessing the quality of the gene models. 
A future study on intron patterns and protease specificity could potentially yield 
additional variables for selecting/ discarding ORF_SS during the extraction (i.e. 
ORF_SS containing a specific pattern would be flagged, long ORF_SS not 
containing a proteolytic site would be discarded).  

Additionally, as alternative gene models are compared against official 
annotation, we show the importance of generating them with different gene 
finding software. The algorithms of these, although sharing similarities, interpret 
the genomic sequence slightly differently. With large panels of alternative gene 
models it could be possible to increase the confidence of gene structures by 
evaluating the PSMs common between different models. 

However the number of search engine runs, together with some sizable sequence 
database and the post-processing needed could be considered as one of the 
constraints of the approach here described. Ideally both the creation of 
alternative gene models and ORF_SS and the post-processing algorithms need to 
be fully automated.  

  



 

 3-85 

3 Intron Spanning Peptides: identification by a blind 

search strategy 

3.1  Abstract 

At present, genome annotation is performed mainly with computational 
predictions. In organisms having mostly multi exon genes, experimental 
validation is still needed to confirm the gene structure is correctly predicted. 
MS/MS proteomic validation is crucial to gene annotation with database 
dependent approaches; however it can prove successful only if the analysed 
peptide sequences have been correctly predicted, and hence present in the 
sequence database. Although de novo sequencing could help identify these intron 
spanning peptides from the tandem mass spectra alone, this approach is yet not 
reliable for full length peptide predictions. Because of this, the task of confirming 
the intron-exon splice sites and intron spanning peptides is particularly 
challenging.  

This chapter presents a novel approach in identifying these intron spanning 
peptides (ISPs) by attempting to overcome bioinformatic challenges. This 
approach, comprising both database dependent and de novo sequencing, was 
designed to provide de novo ISPs identification; this new hybrid approach was 
tested on T. gondii. 

The hybrid pipeline comprises four main stages: (I) firstly standard sequence 
database queries are used to filter spectra that are easily explained and highlight 
genomic regions where PSMs have been identified. (II) Next InSPecT de novo 
algorithm is used to predict short amino acid sequences (TAG) from the spectra 
that have yet to be explained. These TAGs are then used to anchor the partial 
spectrum on previously selected genomic regions. (III) The full peptide sequence 
is then reconstructed by calculating all the possible combinations and splice 
position from nearby potential cleavage sites. (IV) Finally each spectrum is 
queried against a custom database of candidate intron spanning peptides (using 
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OMSSA). From a small dataset of known ISPs the highest identification rate 
achieved was ~26% sensitivity at 5% fixed FDR. The results as yet do not 
demonstrate this method is ready for deployment in proteogenomics pipelines. 
However further analysis of data reveal that accurate TAG generation remains a 
bottleneck. Thus improvements in this step may help to provide a new tool for 
proteogenomics. 

 

3.2 Introduction 

In a proteomic study the peptide sequences that align onto two exons are of 
particular importance [183]. These intron-spanning peptides (ISPs) determine 
how splicing occurs and can confirm the different isoforms generated through 
alternative splicing. With traditional bioinformatic approaches it is possible to 
correctly identify the splice site only if it has been predicted in the sequence 
database [198, 253, 254]. In this chapter, I describe a novel approach for 
identifying ISPs. The pipeline combines several stages using the output of 
InSPecT hybrid and de novo mode and the OMSSA search engine for the final 
analysis. InSPecT hybrid mode analyses the data in two stages: firstly, with a de 
novo algorithm, it predicts peptide spectrum tags (TAGs) along with their 
relevant prefix and suffix mass. Each TAG can be described as a short sequence of 
amino acids that correspond to the calculated acyclic path connecting spectrum 
peaks. Their prefix and suffix mass corresponds to b- and y- ions, thus providing 
the position of the TAG (and its forming amino acids) within the spectrum. 
InSPecT hybrid algorithm uses then the TAG data and the parent ion mass to 
perform the second stage: pre-filtering the sequence database based on predicted 
TAG data. The second stage concludes with a database search approach on the 
restricted database to identify PSMs.  

As discussed in this chapter, the designed pipeline analyses the mass spectra 
data in multiple passes (Figure 3:1). Initially standard database searches (e.g. 
against ORF_SS) provide information such as which spectra have been identified 
(PSMs) and, inherently, highlight where, on the genome, these identifications 
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have been made. The assumption of this approach is that the returned genomic 
regions represent the presence of genes encoding the identified proteins. Then de 
novo sequencing (InSPecT tag only mode) is exploited, on the spectra that have 
yet to be identified, to generate sets of interpreted TAGs. The designed algorithm 
attempts to align these against the genomic regions that were previously 
selected. When aligned, these TAGs are then processed to provide all possible 
full length peptide sequences that originated the spectrum. A final database 
search (OMSSA) is then used to identify the PSM from the list of full length 
peptide candidates.  

The pipeline described here includes both InSPecT and OMSSA. An earlier 
design comprised only InSPecT algorithms in an attempt to simplify the 
process. However, as the final stage of the pipeline consists of a search of a 
temporary sequence database, OMSSA search engine was ultimately chosen, 
as test results proved its algorithm and scoring appears to function 
adequately with unusually small database sizes (as produced here), which 
was not the case for InSPecT hybrid mode or X!TANDEM (data not shown). 

The development of this pipeline offered the opportunity to evaluate other de 
novo algorithms (e.g. PepNovo) available at the time of this study. The test 
dataset used for ISP pipeline development was also used in this comparison 
between different approaches. A panel of alternative gene models, generated 
with different gene finders, was compared against the results of the ISP pipeline 
and PepNovo. This confirmed that de novo algorithms still struggle to identify 
the full length peptide sequences; in addition the results show how different 
gene finders can provide divergent gene predictions and how this could affect 
the predicted exon-exon structure [166].  

3.3 Methods 

The pipeline comprises four main stages:  

1. Database queries generate a list of identified spectra that can highlight 
genomic regions of interest; 
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2. Unexplained spectra are processed by InSPecT and generated TAGs 
are mapped within genomic clusters providing spectrum anchors; 

3. Reconstruction of full length peptides with all possible splice sites 
stored in a temporary DB; 

4. The temporary DB is queried with the spectrum; 
 

The workflow in Figure 3:1 shows these four stages, fully discussed in detail in 
each subsection of the methods. During stage 1.1, tandem mass spectra are 
analysed with a standard database search engine against ORF_SS sequence 
database. The identified PSMs are rescored by FDR (stage 1.2) and they are 
clustered together based on their position on the genome (stage 1.3). These 
clusters represent the genomic regions (“filtered” database) for the following 
analyses in the second stage.  

In stage 2.1, InSPecT analyses the spectra that have not been identified in stage 
1.1, generating sets of interpreted TAGs. In stage 2.2 the algorithm aligns these 
TAGs against the indexed genome (TAGdb) within the genomic regions selected 
from stage 1.3. Then the aligned TAGs are used for reconstructing the partial 
peptide sequence: the spectrum anchor (stage 2.3).  

During the third stage, the algorithm exploits nearby tryptic sites (stage 3.1) and 
retrieves the full length peptide sequences. During stage 3.2 an additional 
process allows for calculating the expected but unknown splice site within the 
peptide sequence. This data, loaded into a temporary database, is ultimately 
searched with OMSSA search engine in the fourth and final stage of the pipeline. 

The initial approach to the pipeline design included de novo sequencing and 
sequence alignments that followed from step 3.2 (see Figure 3:1). The generated 
full-length peptides were then aligned against the de novo predictions to identify 
the splice site and shortlist ISP candidate sequences (see Appendix A for 
methods and results). As this proved to be inefficient it was soon replaced with 
different algorithms described in this chapter.   
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Figure 3:1 The pipeline workflow begins with a standard database search in stage 1.1; here the 
sequence are ORF_SS longer than 40 amino acids. This step provide a list of PSMs that are 
rescored by 1% FDR in stage 1.2 and then, in 1.3, these PSMs are clustered together based on 
their genomic locus. The first stage also filters the unexplained spectra, which in stage 2.1 are 
processed by InSPecT to yield a set of TAGs. Each TAG is mapped onto TAGdb within the 
clustered genomic regions in 2.2 and subsequently, the pipeline algorithm generate a set of 
spectrum anchors in stage 2.3. During the third stage the algorithms uses the nearby tryptic 
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sites and the unexplained spectrum mass (either N- or C terminal) to reconstruct all possible 
full-length peptides (stage 3.1). The algorithm uses both the PSMs position within their 
genomic region and a bps range in order to select the nearby tryptic sites for the unexplained 
terminus mass.  In stage 3.2 all possible splice sites are calculated for each full-length peptide 
based on their nucleotide sequence from stage 3.1. Before storing this data in a temporary 
sequence database, the algorithm evaluates all full length reconstructions and discards those 
that do not meet precise conditions (must be being tryptic peptides and without stop codons 
inside). The final stage of the pipeline 4.1 comprises a database search with OMSSA of the 
spectrum used to generate the TAGs; the final results are assessed by their e-value. 

The InSPecT de novo algorithms are here explained in detail. The algorithms, 
during a pre-processing step, remove the low intensity peaks by comparing each 
peak against all peaks within a 25 Da range and retaining only the top six. Then, 
in the acyclic graph, InSPecT algorithms compute all the possible paths that 
connect the assessed nodes. As in the paper from Tanner et al [171] the algorithm 
calculates the nodes, from each peak of mass M within parent mass P, as a 

possible result from b ions (𝑀 − |𝐻|) and y- (𝑃 −𝑀) ions and it assigns these a 
prefix residue mass (PRM).  

The PRM score 𝑆 𝑁   is derived from: i) intensity rank, ii) PRM supporting 

evidence and iii) isotope pattern. The intensity rank score 𝑆! 𝑁  assesses the 
probability that the node is the result of either a b or y ion against the probability 
that it was generated by a random event. The PRM supporting evidence score 

𝑆! 𝑁  lists a set of identified ions that would make the node a true positive node. 
This ion set includes the loss of ammonia and water for a-, b- and y- ions and the 

doubly charged b- and y- ions. Then the log score 𝑆! 𝑁  is calculated based on 
probabilistic evaluation that a given peak is randomly matched with b- or y- ions. 

The third score, isotope pattern 𝑆! 𝑁 , is the probability that the calculated 
relative intensity belongs to a specific isotopic peak. In other words this 
classification relates directly to the likelihood that given peak belongs to b- or y- 
ions. The amino acid residues are given by the mass difference of two adjacent 

nodes, allowing for PTMs. Each edge score 𝑆 𝐸  is calculated from the difference 
between the expected mass and the edge length (Figure 3:2).  
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Figure 3:2 This workflow shows how InSPecT algorithm generates the set of de novo 
predictions. In a pre-processing stage InSPecT removes the low intensity peaks (by retaining 
only the top six peaks within 25 Da range) and estimates the spectrum charge (unless the 
value is in the source file, or manually set for multiple charges to be evaluate). Then InSPecT, 
evaluating each peak n as a node, computes whether the peak was generated by b or y ion: 

𝑵 − 𝑯 (as prefix) and 𝑷 − 𝑵 (as suffix), where P is the parent mass. An acyclic path is drawn to 
connect the nodes, based on their respective prefix and suffix; if the mass difference of 
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adjacent nodes in the path is equal to amino acid residue mass, this is selected as part of the 
generating short TAG. Here the short extract of generated TAGs reports the respective TAG 
with the score (PRM) together with the expected prefix, suffix and parent mass. 

When generating the set of TAGs InSPecT provides the score for each identified 

nodes 𝑁! and edges 𝐸!, and retains the top 50 – 100 TAGS, as per Tanner et al 
paper: 

𝑆! 𝑁! + 𝑆! 𝑁! +   𝑆! 𝑁! +    𝑆(𝐸!)!
!!!

!
!!!  [171]  

When using InSPecT hybrid mode, the algorithms use both the set of generated 
TAGs and the parent mass to reduce the search space on the database (Figure 
3:2). Then the sequence database search on this pre-filtered database also 
attempts to identify a number of PTMs. The InSPecT algorithms attempt to 
restrict the database by mapping each TAG together with both their N- and C- 
terminus (i.e. the full peptide sequence with no splice sites). However this 
designed pipeline attempts to map the predicted TAG against the genome index, 
TAGdb, by allowing either of its termini to match (N-terminal as prefix or C-
terminal as suffix) Figure 3:1. The theory is that spliced peptides cannot be 
identified from an ORF database. By first mapping either terminus together with 
the TAG, it would be possible to then search for the unexplained terminus mass 
and find the correct splice site. However this type of alignment of TAGs against 
the genome is challenging because unexpected PTMs can alter prefix/suffix 
masses; also in particular cases the splice site can be present within the TAG 
itself, which would make the genomic alignment impossible. 

3.3.1 Genome database TAGdb construction 

In order to map InSPecT TAGs and their prefix/ suffix onto the whole genome, a 
pre-processing algorithm was run to create an appropriate index, stored on a 
server in a MySQL database. The algorithm evaluates the TAGs based on tryptic 
peptides. Although very short exons could lead to peptides that align across two 
or more introns this study focuses on peptides that spans across only one intron 
(i.e. one expected gap of unknown length). 
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The indexed genomic sequence TAGdb includes all possible combinations of 

three amino acid TAGs (20!) from the whole genome of T. gondii; the algorithm 
first converts the nucleotide sequences to a six-frame translation and then 
extracts the ORF_SS set. There is no length threshold for these extracted ORF_SS 
although those containing no tryptic sites are discarded. The algorithm, Figure 
3:3, traverses each retained ORF_SS sequence and selects the TAGs 
incrementally from position one to the end of the sequence. For each TAG the 
algorithm calculated the prefix and suffix mass up to the first tryptic site (i.e. 
trypsin cleaves after lysine K or arginine R not followed by proline P). 

If the ORF_SS sequence contains only one potential tryptic site, then the TAG 
would have either the prefix or the suffix. This would be the case if the tryptic 
site was either preceding the TAG or aligned with third amino acid of the TAG 
itself. Any value that cannot be calculated is flagged on the TAGdb as -1. If the 
tryptic site was located at position one or two of the TAG, then both prefix and 
suffix are flagged as -1 on TAGdb. This was chosen in order to avoid discarding 
data in view of future algorithm developments. This type of flag was assigned 
also in other cases where the prefix or suffix value could not be calculated: a 
TAG located between a stop codon and a tryptic site would have -1 as prefix 
value and the calculated suffix. On the TAGdb each TAG is stored with both its 
location on the genome (chromosome, strand, coordinates) and its calculated 
prefix and suffix values. The resulting genome index TAGdb was then loaded 
into a MySQL database [255-258] for future querying. The table created has 7 
columns (primary key, chromosome, strand, TAG, start coordinate, prefix and 
suffix). 
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Figure 3:3 The workflow illustrates the algorithm (orange) that generates the TAGdb index, 
showing how data is retained/ flagged or filtered out. To begin with the algorithm selects 
ORF_SS from six-frame translation and discards all ORF_SS with no tryptic site. Then the 
algorithm traverses the ORF_SS extracting all sequence TAGs and calculates their respective 
prefix/ suffix mass from the nearest tryptic site; if this value is missing, as no tryptic event at 
the terminus (e.g. TAGs located between the stop codon and the closest tryptic site: positions 
one to nine and 28 to 35), the value stored on TAGdb is flagged with -1. At this development 
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stage the algorithms computes the missed cleavages (t) only if they reside at position 1 or 2 
within the sequence TAG and each respective terminus can be located (e.g. here the second 
tryptic site, position 25). 

 

3.3.2 Pipeline stage 1: from DB search to genomic regions 

The aim of this designed pipeline is to identify ISP, without a previous genome 
annotation existing. This blind approach is designed for those organisms whose 
genome has been sequenced but their gene annotation is still missing or lacking 
accuracy. With this in mind the sequence database search (stage 1.1) is meant to 
be addressed with common search engine algorithms such as MASCOT, 
X!Tandem, OMSSA and InSPecT hybrid mode. The processes described in this 
chapter were initially designed to use only one search engine throughout and as 
such the database searches were performed only with InSPecT hybrid mode. 
However, stage 1.1 could equally well be performed with other search engine or 
a combined search engine approach. The ORF_SS database was constructed by 
extracting open reading frames comprised between two stop codons with 
minimum length of 40 amino acids as discussed in chapter two. In order to allow 
calculating the FDR score the ORF_SS database included a decoy database, made 
of reversed sequences.  

The stage 1.2 comprises the FDR rescoring of the PSMs identified with InSPecT 
searches against the ORF_SS database in the previous stage; the set of PSMs 
within the 1% FDR threshold is then used for the following stage, after the 
removal of the decoy hits.  

The clustering algorithm used in stage 1.3 organizes the selected PSMs by 
genomic regions into clusters. To do so, the designed algorithm aligns each PSM 
onto their correspondent chromosome and then orders the PSMs based on their 

coordinates. The distance threshold min 𝑑  is based on nucleotide length and it 
is given at run-time as end-user parameter input. As illustrated on Figure 3:4, for 

PSMs (𝑛!,𝑛!  ,𝑛!,𝑛!) located on the same chromosome (e.g. chromosome Ib) they 
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are first sorted ascending by their coordinate. The algorithm then traverses the 
chromosome evaluating the distance of each consecutive pair of PSMs and 

comparing it to the min 𝑑 ; if subtraction between the start of 𝑛! and the end of 

𝑛! is less or equal to the min 𝑑  then these PSMs would be grouped in the same 

cluster 1. Then it evaluates if the subtraction between the start of 𝑛! and the end 

of 𝑛! is less or equal to the min 𝑑 , if within the threshold the PSM 𝑛! is added to 
cluster 1 otherwise it will be added to new cluster 2. Several tests were 

performed to assess the optimal value min 𝑑 , such that resulting clusters would 
contain more than one PSM. After testing different lengths (i.e. 2000, 3000, 4000 
and 5000 bps), the 5000 bps value was used for this study. 
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Figure 3:4 Clustering algorithms groups together the PSMs located within chosen nucleotide 
range min(d) (user manual input). It first orders the PSMs by their chromosome and then sorts 
them by their position. It then evaluates the position of each pair of consecutive PSMs and if 
their distance is less or equal to min(d) then they are included in the same genomic region 
(cluster 1), otherwise they are assigned to separate genomic regions (cluster 1 and cluster 2).  
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3.3.3  Pipeline stage 2: from InSPecT TAGs to spectrum anchors 

During the second stage of the pipeline (stage 2.1) InSPecT is run on the mass 
spectra that have not been explained during the first stage. In this study InSPecT 
was set to run with fixed modification: carbamidomethyl (57 Da); variable 
modification: methionine oxidation (16 Da).  

InSPecT performance was also tested on several different sets of predicted TAGs, 
based on different modifications such as phosphorylation (80 Da), 
pyroglutamate (-17 Da), dehydration (-18 Da) and acetylation (42 Da). However 
poorer overall performance was achieved and so these data are not presented. 

Additional tests on PRM score thresholding indicated that only TAG with PRM 
score equal or above 50 were successfully mapped onto the genomic region (data 
not shown) and therefore PRM score of 50 was chosen as cut-off value for 
selecting InSPecT TAGs to process in the pipeline. 

The resulting set of TAGs (algorithm previously explained) is then queried 
against the TAGdb (stage 2.2) using a common SQL “select” query statement 
with the appropriate conditions (Figure 3:5). For each TAG, the query attempts 
to retrieve its TAG sequence if it matches either the prefix or the suffix with a 
mass range of ±0.8 Da (as it is LTQ ion trap data); this tolerance range can be 
selected by the end-user at run-time. The second condition of the query 
statement is that the TAG should be contained within the genomic regions 
previously selected (stage 1.3). At this stage only the start and the end of each 
genomic region is retained, with an additional user input coordinate range. 
Although the query itself is rather simple, the number of genomic regions can 
increase the search space and therefore the computational run-time of the 
algorithm. Whenever a TAG has been matched on the TAGdb, it will be 
extracted with its matched prefix or suffix; additionally a flag of binary value 
(0,1) is linked to the prefix and suffix to indicate which value had been matched 
(positive value indicates a positive match). After the TAG has been mapped on 
the TAGdb, with either its prefix (N-terminus) or suffix (C-terminus), it is 
possible to retrieve the amino acid sequence that stretches from the TAG to the 
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matched terminus. With this, the algorithm uses each matched TAG to partially 
align the correspondent tandem mass spectrum to the genome, hence generating 
a spectrum anchor (stage 2.3). This stage can generate a set of number of spectrum 
anchors, dependent upon the InSPecT TAG prediction accuracy and the selection 
of genomic regions. For this reason, this set can contain zero or more candidate 
spectrum anchors for each spectrum. 

 

Figure 3:5 A query statement (in green) written in SQL language is executed to retrieve data 
from TAGdb. Highlighted in bold and underlined are the specific query commands and 
Boolean conditions. The conditions here are that both the TAG pattern and prefix (or suffix 
mass) and at least one of the genomic regions are matched. The condition for prefix and suffix 

includes a mass tolerance ±𝟎.𝟖  Da based on InSPecT generated TAGs (user input). The 
condition for location includes all genomic regions (as generated from stage 2.3), although 
here only four are represented. The retrieved data is shown in yellow and each row has tag, 
coordinate, prefix, suffix, strand and chromosome as selected from TAGdb. An additional 
binary flag is provided for both prefix and suffix mass matching to retain information on 
which of these values has been positively matched. 
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3.3.4  Pipeline stage 3: from spectrum anchors to full length peptides   

The third stage of the pipeline comprises the full length reconstruction of 
peptides from the previously generated spectrum anchors. Unless stage 2.3 
generated a null set of spectrum anchors, the algorithm further processes the 
data as discussed in the following paragraphs. 

The genomic regions have been obtained by clustering the PSMs matched 
against ORF_SS sequence database; this allows the extraction of the start and the 
end coordinate of each ORF_SS where the PSMs have originally been identified. 
In this study each identified ORF_SS is considered as a potential exon from a 
potential gene; this is why the genomic regions retain the coordinate information 
about matched ORF_SS. The theory is that an intron spanning peptide would 
have the prefix aligning with exon n while the suffix would align with exon 

𝑛 + 1.   

The stage 3.1 uses the spectrum anchor to search for the terminus whose mass 
has yet to be explained. As an example in Figure 3:6, we can consider a genomic 
region that was obtained by three PSMs from two different ORF_SS entries; in 
this scenario the first PSM is contained in the first ORF_SS, while the second and 
third PSM are contained in the second ORF_SS. From this genomic region the 
algorithm would still retain both the start-end coordinates of the two ORF_SS 
and the start-end coordinates of the PSMs contained inside them. A TAG was 
mapped onto the first ORF_SS with a matching prefix located downstream of the 
C-terminus of the first PSM in the genomic region. Then the suffix value will be 
searched on a range starting from the TAG coordinate up to the N-terminal 
coordinate of the second PSM of the same genomic region. This strategy would 
further reduce the number of false positive from the list of retrieved tryptic sites, 
while it would still remain coherent with the basis of the ISP search, as no real 
PSM can be identified in a intron. In the case instead where a TAG was mapped 
on the first ORF_SS with a matching suffix located before the N-terminus of the 
first PSM, then the range would be calculated differently. This is due to the 
assumption that the unexplained N-terminus of the ISP could be located outside 
the genomic region; to account for this possibility the algorithm takes an 
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additional value for bps length as the manual input (in this study it is 1000 bps). 
Then the algorithm would effectively search for the N-terminus of the peptide 
within a coordinate range starting from the start of the ORF_SS minus 1000 bps 
up to the TAG coordinate. This approach provides the limits for stage 3.1 as the 
algorithm traverse the genomic sequence, between the TAG and the coordinate 
limit, extracting all contained tryptic sites. One additional limit based on 
coordinate range (in bps) is also added to stage 3.1; this takes in account those 
aligned TAGs that fall between genomic region start/ end and the first/ last 
element (PSM) of given genomic region.  

 

Figure 3:6 To illustrate how the algorithm selects the coordinate range for retrieving tryptic 
sites, the example above shows a genomic region comprised by three clustered PSMs located 
on two ORF_SS (in green). Where a TAG has been aligned by its prefix value (in orange), the 
tryptic site will be searched downstream the spectrum anchor from the TAG position to the 5’ 
of the nearest PSM (area highlighted in red). 

Stage 3.2 comprises the extraction of the partial peptide sequence corresponding 
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to the terminus mass to be explained (Figure 3:7). From each tryptic site the 
algorithm concatenates one by one the amino acids in order that their total mass 
is equal or less than the mass value to explain (e.g. suffix). This process allows 
generating potential partial peptide sequences from all tryptic sites but the 
algorithm also attempts to identify the unknown location of the splice site. In 
order to account for this, the algorithm extracts the partial sequence, for the 
unexplained terminus, that is adjacent to the spectrum anchor. The spectrum 
anchor is then concatenated with the adjacent partial sequence; the algorithm 
then generates an initial list of full length peptide sequence by concatenating 
each tryptic site partial sequence, one by one, with the spectrum anchor and 
adjacent sequence. 

This initial list would in theory contain, among all sequences, the correct N-
terminus and the potential C-terminus. As the splice site can occur at the 
nucleotide level inside a codon (i.e. the first base pair located in exon 1, while the 
following two base pairs located in exon 2) the algorithm uses the coordinate 
values of the spectrum anchor, adjacent sequence and tryptic site partial 
sequence to retrieve the nucleotides which could potentially encode the full 
length peptide sequence. Then all splice events are calculated from the TAG 
position to the end of tryptic site partial sequence. Before storing this list of all 
candidate full length peptides with all possible splice sites, the algorithm 
discards all peptide sequences if: the nucleotide length is not multiple of three 
(i.e. it must contain complete codons); if they contain more than one missed 
cleavage; they contain a stop codon or if they are not tryptic peptides. 

The results from stage 3.2 is a temporary database that contains a list of peptide 
sequences that attempt to explains the unknown terminal mass. 
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Figure 3:7 As InSPecT TAGs have been mapped within selected genomic regions, their 
matching value (prefix or suffix) is used to retrieve the partial sequence and generate a 
spectrum anchor. Here the TAG (FLE) has been aligned within genomic region (green line) 
and the matched prefix is used to retrieve the spectrum anchor (in orange). Then the 
unexplained suffix mass is used to retrieve a set of partial sequences from nearby tryptic sites 

(𝒖𝟏, 𝒖𝟐, 𝒖𝒌 in red). Given the expected presence of the splice site but its unknown position, the 

partial sequence adjacent to the spectrum anchor is also retrieved (𝒖𝒐 in blue). Both the partial 
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sequences in red and in blue have to satisfy the suffix mass condition. The mass of the partial 
sequence in blue, just like the mass of the partial sequence in red, has to be equal or less than 
the TAG suffix. After these nucleotide sequences have been retrieved and concatenated, the 
algorithm translates them into amino acid sequence. During this last step a filter discards all 
sequence that have either: i) incomplete codons; ii) more than one missed cleavage; iii) stop 
codons or iv) non tryptic peptides.  

3.3.5 Pipeline stage 4: search engine against temporary database  

The fourth stage of the pipeline comprises a traditional sequence database search 
with OMSSA. The temporary fasta database is formatted for OMSSA and the 
current MS/MS spectrum being evaluated is isolated from the original mass 
spectra file. The sequence database search with OMSSA algorithm generates a 
shortlist of full length peptides with their respective e-values.  

3.3.6 Sample acquisition and test dataset 

The data analysed were acquired from tachyzoite samples of T. gondii RH strain, 
harvested 3- 4 days post infection as described in [244]. The protein samples 
were processed by 1D SDS-PAGE, followed by in-gel digestion (trypsin), and 
analysed on an LTQ-ion trap mass spectrometer as described in [101]. 

A test dataset was constructed of known and correct intron-spanning peptides as 
follows. The data was sourced from 10 1D SDS gel slices from T. gondii RH strain 
acquired from [101]. The gene models used for testing were from ME49 strain as 
to our current knowledge it can be considered a well-annotated organism and all 
66 annotated gene for RH are most closely related to ME49. The sample spectra 
were queried against official annotation 6.3 with the three Search Engine mode 
(MASCOT, X!Tandem and OMSSA); parent and fragment ion tolerances: 0.8 Da; 
fixed modification: carbamidomethyl (C); variable modification: methionine 
oxidation. The combined results were re-scored using FDR estimates with a fixed 
threshold of 5% FDR. By mapping all peptide sequence back to their constituent 
genes, it was possible to filter out a set of all the spectra generated from intron 
spanning peptides. From this dataset 126 PSMs were selected with a total of 113 
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non-redundant peptides, mapped to 77 proteins, which were matched by all 
three search engines with low FDR (< 0.001). Methionine oxidation, present in 35 
PSMs, is allowed as a PTM as it is included in the search algorithm of InSPecT. 

3.4  Results  

3.4.1  ISP identification by sequence database searches 

The algorithm was evaluated by querying the test dataset (126 spectra known to 
match true ISPs). The approach was able to identify 26% of the ISPs through the 
blind search approach (Figure 3:8, details shown in Table 3:1 and appendix Table 
7:12). The remaining spectra were either incorrectly assigned during the last 
stage or were not assigned at all, resulting in null set. A total of 64 spectra were 
searched with OMSSA, providing correct ISPs for half of these (TP=32). The 
profile of e-value for TP and FP were substantially different (Figure 3:9); OMSSA 
algorithm was not only capable of assessing the correct peptides as true positive 
with confidence, it was also capable of identifying all incorrect identifications 

with low confidence, thus allowing a threshold of e-value < 𝐼𝑒!! to be selected 
for further processing. The e-value chosen for the FP corresponded to the lowest 
e-value available for a given set of results; in other words, where the 
identifications for ISPs were all incorrect, the best e-value was selected for this 
analysis. Although the currently designed algorithm achieved only 26% of 
correct ISP identifications, the results from OMSSA can be considered as 
partially successful given that the profile of TP and FP are clearly substantially 
different. Further implementation of the approach would focus on reducing the 
data loss and improving the other stages of the pipeline. 
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Figure 3:8 From the final test dataset it was possible to identify only 26% ISPs correctly. The 
remaining spectra were either identified, and considered FP due to OMSSA e-value, or 
filtered out at different stages in the pipeline. One reason for data loss was incorrect InSPecT 
TAG prediction, which generated FP ISP candidates (FP_db_Tag) or did not allow the 
spectrum to be located on the genome (NoDB_tag). Where the spectrum could not be correctly 
mapped to the genome it was caused by wrong prefix/ suffix mass assessed for the predicted 
TAG, or suboptimal parameters for genomic region filters. The second reason for data loss 
was the inaccuracy of genomic region selection, which in turn led to either false positive 
candidates (FP_db_region) or filtered out correctly predicted TAG (No_db_region). 
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Figure 3:9 Comparison of e-value calculated by OMSSA shows clear difference between 
accurate and inaccurate ISP identification. The plot shows the –LOG of the e-value for both 
correct (32) and incorrect (32) matches.  

The data loss for a large portion of ISPs was attributed to four different causes.  
The first reason involves InSPecT sequence TAGs being incorrectly predicted 
(amino acid composition) or being assigned wrongly to b-/y- ion (~19%). The 
second reason involved incorrectly assigned genomic regions (~9%).  The third 
and fourth reason for data loss involved OMSSA not yielding any results (~19%) 
from the searches against temporary sequence databases. This was the 
consequence of the correct ISP sequence not being in the temporary database, 
due to incorrect sequence TAG or genomic region (respectively ~10% and ~9%).  
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GENE Peptide PTM TAG R e-value 

TGME49_088
360 

YLQDVFDVPLVIQLTDDEK N/A 3 OK 3.55E-20 

TGME49_051
780 

ISQQAYNQAGSTDSSAGSEGTGSESGDK
K 

N/A 3 OK 1.93E-18 

TGME49_036
540 

MIELFPSSKQEMEFAAQGGDPR M:+16 2 OK 4.40E-18 

TGME49_063
180 

LQQVEPTADSQELTVQAK N/A 8 OK 7.75E-16 

TGME49_072
910 

GVHPQLIASSFLEASKQSEK N/A 6 OK 4.53E-14 

TGME49_061
950 

AAPLFADQSTEPGLLQTGIK N/A 3 OK 6.81E-14 

TGME49_090
200 

AGGIIGTAFGQGGFDWAMLK M:+16 4 OK 9.06E-14 

TGME49_026
960 

TLGEIVTFVADAVK N/A 7 OK 1.17E-13 

TGME49_032
180 

SLQTIIEDQTELAVYPHVGEALQR N/A 3 OK 1.96E-12 

TGME49_029
010 

SLYGGIANTLETPFADSEAVAK N/A 4 OK 2.81E-12 

Table 3:1 Extract from the list of the 126 ISPs processed through the pipeline (first set) 
ordered by OMSSA e-value. The first three and the last columns identify gene ID, peptide, 
PTMs and e-value (OMSSA). The fourth column shows the number of TAGs that align on the 
peptide (prefix/ suffix mass not considered here). The column “R” specify the reason why the 
match failed: ‘WR-TAG/ REG’ indicates false positive ISPs in the temporary DB due to 
incorrect TAG or wrong genomic region selected;  ‘WR’ indicates that OMSSA failed to match 
the correct peptide; ‘NR-TAG/ REG’ indicates that OMSSA yield null result due to incorrect 
TAG or wrong genomic region selected;  ‘NDB-TAG/ REG’ indicates that the temporary 
dataset of ISPs candidates was not generated due to incorrect TAG or wrong genomic region 
selected. The last peptide sequence is flagged with WR as OMSSA failed to correctly identify 
the ISP although it was contained in the temporary DB. The second last peptide instead is 
flagged with WR-TAG InSPecT did not provide correct TAGs identification for such 
spectrum.   

3.4.2 Targeting ISPs: comparison of bioinformatic approaches 

The same test dataset of 126 spectra was used to compare different bioinformatic 
approaches dealing with targeted intron spanning peptide identifications. 
Database searches were performed with three search engine mode with identical 
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parameters as in previous searches: 0.8 Da for both parent and ion tolerance; the 
results were rescored by FDR (fixed 5% FDR threshold) as previously discussed 
in chapter two. The sequence databases used were the alternative gene models, 
generated with GeneMark and GlimmerHMM gene finders described in the 
previous chapter. To allow FDR rescoring, the 126 spectra were combined with 
~1200 random spectra. 

The de novo sequencing approach (Appendix A) was evaluated by pairwise 
alignment (Smith-Waterman [47]) between each of the 3 highest ranked peptides 
predicted by PepNovo against the known ISP. The matrix used for scoring was 
BLOSUM62 (Block Substitution Matrix) with gap penalty and extension of 
respectively 1 and 0.5. All de novo predictions did not cover the entirety of the 
spectrum.  

The results from different approaches were compared to evaluate how many 
correct ISPs could be identified. For database dependent approaches it was 
possible to set a cut-off score at 5% fixed FDR. To enable comparisons with de 
novo predictions, only the peptides with similarity score above 90% were 
retained; sine in contrast to the other approaches PepNovo does not provide full-
length peptide sequences (Table 3:2).  

Overall the blind search pipeline can only be considered a limited success, as on 
this dataset, generating alternative gene models (with GeneMark) appears a 
more accurate route to ISP identification. 

 

Table 3:2 The tables shows the number of correctly identified ISPs respectively by 
alternative gene models (GeneMark, Glimmer), blind database search pipeline, and de novo 
predictions by PepNovo. The three best peptides interpreted by PepNovo were aligned 
against the ISPs; only those with alignment score above 90% were included here.  
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3.5 Conclusion 

The strategy presented here attempts to minimise the weaknesses of database 
dependent and de novo sequencing by combining the complementary 
information provided from their respective results, and provide an additional 
analysis stage to perform after common sequence database searches. Similarly to 
InSPecT hybrid approach, the devised algorithms attempt to exploit the 
predicted TAGs generated only from the spectra that have not been unexplained 
through database searches. 

A novel database dependent approach for de novo identification of ISPs was 
presented.  The development of the pipeline algorithms gave us the opportunity 
to perform tests on de novo sequencing; from these evaluations it was possible to 
confirm how it is still unable to provide high confidence identifications for those 
spectra that have not been explained by database. Even generated sequence 
TAGs can yield large number of false positives that would prevent the 
identification of those spectra (~50%) that have not yet been identified with 
database dependent methods. 

There are several factors that make the pipeline approach challenging:  

• the spectrum anchor length directly affects the confidence of the 
identification;  

• the spectrum anchor can be mapped only if the TAG and either its prefix/ 
suffix mass has been correctly predicted and it is present within the 
selected genomic region;  

• where present, the PTMs must to be correctly identified on the TAG 
prefix/ suffix masses;  

• the manual selection of ISP candidate from the OMSSA list of 
reconstructed/ identified full length peptides needs to be automated and 
its reliability should be further improved; 
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The pipeline design is still not optimal as there is a considerable data loss 
throughout the different stage processes. Also, the algorithm can be further 
implemented to decrease the running time for large-scale analyses. One of the 
future pipeline improvements would comprise the use of multiple search engine 
mode (here used to collect the test dataset) during the stage 1.1 for identifying 
spectra and clustering the PSMs in genomic regions. Additional improvements 
to the pipeline algorithms could reduce the error rate and data loss occurred 
when anchoring the spectra to the genome (tag prediction, genomic region 
filtering). With the availability of high-resolution data, it should be possible to 
better exploit tag prediction software and optimise the filter for genomic regions 
of interest. 

However our results have proved an initial framework for identification of ISP 
without a gene model set and an initial method for discriminating between real 
peptides and false identifications. The e-value assessed by OMSSA search engine 
can prove useful to efficiently assess the confidence of identified candidate 
intron spanning peptides. Future improvements in de novo sequencing 
algorithms, even for only the partial peptide reconstructions, could enable a 
further increase in the confidence for peptides identified during the final stage 
(OMSSA).  

A comparison of different approaches provided similar results between the ISP 
pipeline and GlimmerHMM gene models; GeneMark models appeared to be of 
higher quality as almost three times more ISPs were identified. Differently 
designed algorithms for gene finding can cause this. For instance GlimmerHMM 
analyses the genomic sequence and makes evaluations based on previously 
trained datasets (obtained from gene models of previous release). Instead 
GeneMark analyses the genomic sequence and using various algorithms, 
including Viterbi algorithm, it estimates the number of gene predictions (hidden 
paths for Hidden Markov Model) without the need for prior training datasets. 
Although GeneMark appears to have outperformed GlimmerHMM it would be 
advisable to use panels of alternative gene models to increase confidence of the 
results. 
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PepNovo algorithm is largely based on InSPecT algorithm and the peptide 
prediction accuracy is directly related to the predicted peptide length: the shorter 
the peptide, the higher the accuracy. However it can present datasets of widely 
different predictions; because of this, additional evaluations would be required 
to confidently identify peptides, even after sequence alignments. 
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4 Optimised bioinformatic processing of N-terminal 

proteomics data: characterisation of the N-terminome of 

Toxoplasma gondii 

4.1 Abstract 

To this day the identification of start codons for genome annotation purposes 
remains a bioinformatic challenge. The difficulties result from an inability to 
identify with high confidence the correct start codon (ATG) out of a number of 
possible alternatives [259]. A proteomic analysis of N-terminal peptides can 
confirm a protein’s presence in the samples, as well as provide additional 
information on signal peptides and other PTMs such as N-terminal methionine 
excision (NME).  

Novel approaches for targeted N-terminal identification have been developed, 
using protocols to selectively enrich for N-terminal peptides or deplete internal 
peptides. Now bioinformatic methods can be put in place to analyse this small 
percentage of the peptidome: which, for example, accounts for less than ~3% of 

the peptidome of T.gondii.	  

By combining recent improvements in data sampling/ acquisition with new 
bioinformatics approaches, this chapter presents a study on sequence database 
design and search query optimisations to maximise N-terminal identifications. 
Further analyses of the results also provide a deeper understanding of signal 
peptides and N-terminal methionine excision in the Apicomplexa. 
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4.2 Introduction 

Even with additional transcriptional data and ever more accurate gene 
predictions, it still remains challenging to identify the N-terminus of protein 
sequences with high confidence. Their prediction is generally a result of 
computational prediction by gene finders and, although their accuracy has 
notably improved in the recent years, the annotations still need to be verified 
experimentally [28-30, 39, 50, 51, 189, 194, 202, 242, 260]. Determining the correct 
start of the isoform remains a bioinformatic challenge due to 5’ UTR region and 
co- or post-translational modifications some proteins undergo. N-terminal 
peptide identification can provide valuable information about the protein 
analysed such as confirming the translational start and potentially give insight 
on its cellular location through the identification of a signal peptide. These short 
sequences on the amino terminus of secreted proteins play a major role in 
leading preproteins to their correct cellular compartment. The signal peptide, 
after having performed its role, is then cleaved off by signal peptidases and 
undergoes systemic degradation [57].  

Different groups have taken on the challenge of N-terminome identification and 
have provided insights on the future outlook and drawbacks of respective 
techniques. It has also been argued that N-terminal peptides could be sufficient 
for large-scale protein identification, since it would simplify the analysis process 
by minimising the number of peptides needed for protein identification [261, 
262].  

Of the few methods that have been implemented for identification of proteolytic 
cleavage sites and removal of internal peptide from sample pool are: COmbined 
FRActional DIagonal Chromatography (COFRADIC) [263-265], which allows for 
selective analysis following HPLC and Mass Spectrometry; selective enrichment 
of N-termini by removal of internal peptides [261, 262]; selective enrichment of 
analysed peptides [266].  

Gevaert et al group has successfully developed the COFRADIC [265, 267, 268] 
approach and combined with strong cation exchange chromatography (SXC) 



 

 4-115 

[269] to increase the portion of the terminome for proteome analysis. 

The positive enrichment approach developed by McDonald et al [262] is the one 
used to generate the datasets used in this chapter; this method comprise the 
immobilisation of acetylated N-termini and following depletion of internal 
peptides from the sample.  

Another study uses negative N-terminal selection via isotope labelling; the 
approach developed is termed terminal amine isotope labelling of substrate 
(TAILS) and allows the tagging and removal of internal peptides from the 
sample [270, 271]. In the study of Mommen et al, which is based on phospho-
tagging of internal peptides, these are separated instead via titanium dioxide 
(TiO2) chromatography [272].  

The identification of N-terminal peptides through selective enrichment can 
however prove to be challenging at the sampling steps. As the majority of 
peptides belong to internal peptide sequences it is important to reduce the false 
positive identifications that these could potentially generate during the analysis 
[273]. 

By including the signal peptide data within a study of the N-terminome, it can 
provide further information of biological relevance. As discussed previously, the 
hydrophobic region of the signal peptide displays high frequency for specific 
amino acids at the cleavage site (e.g. alanine, glycine, serine, cysteine). A number 
of software packages are now available, which allow for prediction of signal 
peptide based on extrinsic known data [274-279].     

Confident protein identification from a single peptide sequence could potentially 
simplify proteomic analysis while increasing space/time performance if the 
peptide sequence targeted is the N-terminal peptide. For Toxoplasma gondii [101, 
193, 229, 245, 250] the set of N-terminal peptides corresponds to less than ~3% of 
the peptidome. Until a few years ago this target was not considered as 
achievable due to the difficulty in N-terminal peptide extraction during sample 
preparation. Bioinformatic strategies would have resulted in biased results 
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containing a high abundance of internal peptide sequences. With the availability 
of an N-terminal dataset (from T.gondii), generated with protocols described 
below [261], we were given the opportunity to develop optimisation methods for 
both sequence database design and database query performance. 

The sequence databases used include alternative gene models generated with 
GeneMark, GlimmerHMM and FgeneSH [29, 30, 32, 280]. Also the set of all non-
redundant protein from all three strains (ME49, GT1 and VEG) for T. gondii were 
processed with signalP to include both preproteins and mature protein 
sequences into the database. Additionally a specific database design, similar to 
the one used by Dormeyer et al [281], allowed the pre-selection and pre-parsing 
of N-terminal sequences from gene models to take into consideration unexpected 
signal protease sites. The “frayed” database [281] contains all potential mature 
sequences in the first 100 amino acids of the proteins.  

The results from these analysis are used to elucidate the role of signal peptide 
proteases cleavage sites; additionally the cross comparison between signal 
peptide characterisation and semi specific enzymatic proteolysis can help 
targeted database design. 

4.3 Methods 

The N-terminal dataset from T. gondii was processed by Dr. Sanya Sanderson 
(Wastling group). 

4.3.1 Sample preparation 

Datasets of enriched N-terminal peptides were generated as follows (Figure 4:1). 
The enrichment was performed by protein N-terminal acetylation. After protein 
digestion the peptides free from acetylated N- termini are then bound to biotin 
and, using biotynilation-binding affinity, effectively removed by streptavidin 
[261]. The tandem mass spectrometry analysis was performed with HPLC 
(nanoACQUITY-nLC system from Waters MS technologies, Manchester, UK) 
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coupled with LTQ Ion Trap and LTQ-Orbitrap Velos (ThermoFisher Scientific, 
Bremen, Germany) mass spectrometer fitted with nanospray ion source [110, 
111].  
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Figure 4:1 Workflow for selective enrichment of N-terminal peptides as described in the 
study from McDonald et al [261]. 
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4.3.2 Sequence Database design 

The sequence databases, designed to maximise N-terminal peptide discovery, 
were based on T.gondii release 6.2 and comprised: an ORF_MS database, an 
ORF_MS database concatenated with the official gene models (OGM), the official 
gene models concatenated with a panel of alternative predictions (P_GM) and a 
database of frayed sequences of N-terminal regions, simulating all possible 
signal peptide cleavages.  

The ORF_MS were generated only from strain ME49, via six-frame translation of 
regions flanked by putative start and stop codons, longer than 40 amino acids, as 
described in chapter one. The official gene models for T.gondii included all non-
redundant genes from strain ME49, GT1 and VEG as described on EuPathDB.  

The panel of alternative gene models were based on the 14 chromosomes 
sequenced for ME49. The predictions generated with GeneMark (gM) were 
computed using the default parameters. The predictions generated with 
GlimmerHMM (GLM) were based on a training set computed on the previously 
released gene model 5.x; and the default parameters were used when running 
the algorithm as before. Furthermore the web-based gene finder FgeneSH 
(FgSH), freely available at softberry.com, was used to make a further set of 
predictions. Like Glimmer this software algorithm is based on HMM for 
generating predictions and the publicly available “human model” was used as a 
training set for T. gondii predictions. As with the previous gene finders, the 
default parameters were used during the prediction.  

The official gene model was processed by SignalP 4.0 to provide a set of 
predicted signal peptides (~2000). This was combined with a set of signal 
peptides available from EuPathDB (~700) based on signalP 3.0; the result was a 
non-redundant set of all signal peptides predicted for T.gondii. A script was 
written to create a sequence database that contained both the preproteins and the 
mature protein sequences including different signal peptide predictions where 
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possible. Different predictions were available for the same protein in some cases, 
due to the algorithmic differences between release 3.0 and 4.0 of signalP: the 
latest release being based on neural network while the previous on HMM. 

 

Table 4:1 Extract of the frayed sequence database. The example shows protein 
TGGT1_002270 first 100 amino acids. During each iteration (here starting position I to VI and 
LIX to LXII in the protein sequence) the first amino acid is cleaved in an attempt to provide 
the possible unpredicted cleaved signal peptide.  

The frayed database was designed to fit specifically the semi specific Arg-C 
protease used. For each protein sequence from the official gene model the first 
100 amino acid from the amino-terminal region were extracted. Then from each 
of these, a set of potential novel N-termini were created by incremental removal 
of each N-terminal residue (Table 4:1). This would enable a search for N-terminal 
peptides to include unexpected signal peptide cleavage sites or new N-termini 
due to different start codons. 

These four sequence databases designed vary in size and number of entries 
(Table 4:2) and they include also decoy sequences (made by reversed sequences).    
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Table 4:2 The four database used in this study and their respective composition. The 
calculated size and number of fasta entries does not include the decoy sequences. 

4.3.3 Database searches 

The N-terminal dataset included Tandem MS performed with the LTQ and 
Orbitrap mass spectrometers. For the database searches the same parameters 
were considered for fixed modification: N-terminal and lysine acetylation, 
carbamidomethyl C; variable modification: methionine oxidation. The data 
obtained with Orbitrap was analysed allowing parent and fragment ion 

tolerance set at ±0.8 Da and 10 ppm respectively. The parent and fragment ion 

tolerance for LTQ data were instead set to ± 0.8Da and ±1.5 Da respectively.  
“Semi specific Arg-C” was set as the enzyme for searches against sequence 
databases: frayed and ORF combined with official gene models. The ORF 
database and the panel of gene models (official and alternatives) including signal 
peptide predictions were searched using “full Arg-C” protease. All search results 
were then post-processed by the multiple search engine pipeline and rescored by 
fixed FDR [148]. 
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An initial test on the Orbitrap data (experiment 13) was performed to evaluate 
the best approach for search performance and output maximisation; the search 
parameters described above, with semi specific protease were used with the 
addition of variable modification of serine acetylation. The sequence database 
tested was the one comprising alternative gene models, the official annotation 
including preproteins and mature proteins. The test results, assessed by 1% fixed 
FDR, indicated an increase in TP for the searches with no additional variable 
modification. For both MASCOT and X!Tandem there was an increase in peptide 
identifications without serine acetylation, respectively 321 and 169 PSMs; when 
including this modification the peptide identification dropped to 260 and 126 
PSMs respectively.  

4.3.4 Signal peptide: study across species 

To study the distribution of signal peptides and their cleavage motifs, signalP4.0 
was used to generate a set of predicted signal peptide for five other eukaryotic 
organisms: A. thaliana [196, 282], C. elegans [283-285], D. melanogaster [195, 286, 
287], H. sapiens [288], M. musculus [289]. Compared to the set of predicted signal 
peptides for T.gondii, the number of predicted signal peptides for the other 
organisms was considerably larger as it included all available protein isoforms 
available from public repositories: ~101K for H. sapiens, ~59K for M. musculus, 
39K for A. thaliana, ~26K for D. melanogaster and C. elegans. The signal peptide 
composition was studied to understand the length distribution statistics; as well 
as providing additional information on the specificity and frequency of the 
amino acids located at the cleavage site position (-1, -2, -3).  This evidence was 
then used during the N-terminal study on T.gondii in an attempt to provide 
additional evidence for confirming, correcting and proposing candidate signal 
peptides through N-terminal peptide identifications from the MS data. 

4.3.5 Study on signal peptide cleavage 

Analyses performed on signal peptides across different eukaryotic organisms 
showed the high degree of similarity in both lengths of signal peptides and their 
cleavage sites. As already shown in other studies the signal peptides generally 
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have a length between 20 and 50 amino acids, visible as the median in Figure 4:2. 
This information can play an important role when analysing specific PSMs in 
search of candidate N-terminal peptides. As an example, if a PSM is expected to 
have been generated from an N-terminal peptide (as it has a fixed modification 
of N-terminal acetylation), it would have a higher probability of having arisen 
from signal peptide cleavage if it is located within the expected position of the 
protein sequence. This method could thus either correct signal peptide 
predictions or identify new signal peptides (not predicted by algorithms). 

 

Figure 4:2 The boxplot shows the graph of the signal peptide lengths as predicted by 
SignalP The organisms are D. melanogaster (D), A. thaliana (A), C. elegans (C), H. sapiens (H), 
M. musculus (M). For T. gondii, the predictions are respectively from SignalP 3.0 (Tg2) and 
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SignalP 4.0 (Tg1). 

Additionally the cleavage site were analysed in depth revealing amino acid 
frequencies at positions -1, -2, and -3, across different species (Figure 4:3). The 
last three amino acids from signal peptide predictions were counted and the 
three most frequent ones were selected.  

In order of frequency - alanine, serine, glycine, and lysine appear consistently at 
position -1 in all species (Figure 4:3).  At position -2 there appears to be a weaker 
motif, although serine is consistently reported. Position -3 appears to have 
similar importance as position -1, given the higher consensus of amino acids 
across species. The four most abundant are valine, alanine, threonine and serine.  

 

Figure 4:3 For the eukaryote species analysed, the graph generated with weblogo [290] 
reflects the pattern frequency of cleavage sites. From left to right they represent the last three 
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amino acids of signal peptides 1, 2, 3 (corresponding respectively to -3, -2, -1). The size of each 
letter represents the frequency at specific position. 

4.3.6 Dataset post-processing algorithms 

The data on signal peptides has been used to shortlist specific peptide sequences 
to confirm the likelihood of an identified peptides being an N-terminal peptide. 
The final results were parsed and organised depending on the peptide sequence 
composition (Figure 4:4). The remaining peptides were further analysed in order 
to discriminate between novel N-terminal peptides and internal peptides. An 
algorithm was devised to use the collected data on signal peptides for T. gondii to 
process these peptides (internal/ unexpected signal peptides). The statistical 
data also comprised the 20 most abundant three amino acid combinations from 
cleavage sites. 

The identified peptides were filtered by residue arrangement first to extract all 
possible candidate N-terminal sequences (with methionine or cleaved by NME). 
The peptides left were then judged as candidate N-terminal peptides after signal 
peptidase cleavage (Figure 4:4). If a signal peptide (SP) had been predicted, it is a 
matter of confirming the N-terminus after cleavage by sequence alignment. If the 
alignment was not successful then the peptide was checked if the coordinate 
range and the preceding residue pattern fall within the studied cleavage sites. If 
there was no evidence for being a signal peptide it was considered as an internal 
peptide. The final assessment was made for identified peptide in proteins with 
no predicted signal peptide; by analysing the coordinate range and preceding 
residue pattern it is possible to shortlist candidate N-terminal peptide with novel 
SP and discard the likely internal peptides. All output files were retained for a 
final manual evaluation. 
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Figure 4:4 Workflow for the assessment of identified peptide sequences. These were 
analysed to evaluate their position within the protein to predict/ correct signal peptide 
cleavage site. This enabled also the evaluation of the frequency of NME. Although the search 
engine can already take into account methionine excision, the designed algorithm also 
evaluates the peptide position within the protein sequence to highlight for potential novel N-
terminal peptide (*the first condition is that the Methionine is not preceded by a tryptic site). 
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4.4 Results 

4.4.1 How database design influences search engine performance  

The N-terminal dataset comprised 14 analyses on the LTQ and 3 analyses with 
the Orbitrap. The combined results (MASCOT and X!Tandem), rescored by FDR, 
were filtered at 1% fixed FDR. Through the results obtained from the traditional 
sequence database (official gene models only) it was possible to identify ~1999 
PSMs from ~386 proteins; this can be viewed as a baseline during assessment of 
different approaches. The designed database, comprising the frayed amino-
termini sequences of official gene models, led to the identification of 2135 PSMs 
from ~388 genes. Of the designed sequence databases studied the ORF_MS 
produced the lowest results (1717 PSMs) while the largest number of 
identification was generated with ORF_MS concatenated with the panel of 
alternative gene models (2601 PSMs) (Figure 4:5).  

 

Figure 4:5  The chart shows the complete set of PSMs from N-terminal dataset queries 
against different sequence databases. These PSMs have not been filtered to extract true N-
terminal candidate peptides from internal peptide sequences. Given the current quality of T. 
gondii annotation, it is not unexpected to see the ORF_MS results at lowest rank. The top-
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ranked results belong to ORF_MS-gene models database.  

From these results, with additional post-processing, it was possible to remove 
redundancy at peptide level and highlight specific peptides common to ORF_MS 
database, frayed database and the ORF_MS with concatenated official gene 
models (Figure 4:6).  

 

Figure 4:6 The Venn diagram shows the overlap across datasets obtained from different 
database designs: frayed, ORF_MS with gene models (ORF_MS+GM), ORF_MS. A script was 
used to remove the redundancy at peptide level. The majority of peptides appear to be 
common to all three datasets; although the dataset obtained from querying the frayed 
database yielded the second highest number of peptides. Due to the design of this database, 
all peptides from this dataset are also present on the other two databases; hence their sole 
presence on the frayed dataset is the result of statistics (i.e. search engine and scoring 
algorithms). 159 peptides are uniquely identified on ORF_MS+GM dataset, but out of these 
159 only 25 peptides are not present on the official gene model (subset of ORF_MS+GM 
sequence database); however, after further examination of the tryptic and methionine sites, 
these 25 peptides were assessed as belonging to internal sequences. Of the 159 peptides 134 
were also aligned on the official gene model but their starting position was found to be higher 
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than the length threshold used for the frayed database: 100 amino acids. Only three out of the 
eight peptides uniquely identified on the ORF_MS dataset were also present on the official 
gene model database. In particular these three peptides aligned with internal exons at position 
outside frayed database threshold; similarly the five peptides uniquely present on the 
ORF_MS dataset and database aligned with an intragenic region. 

From Figure 4:6 it is possible to identify the small number of peptide sequences 
identified on ORF_MS, which do not align with the panel of gene models. The 
frayed database appears to rank third, next to the panel of gene models. The 
frayed database intrinsically provides a way for N-terminal peptide candidate 
filtering by discarding internal peptide sequences (>100 amino acids from the N-
terminus). In Figure 4:6 there is a list of non-redundant peptides gathered from 
the datasets; the number of peptides here discussed is based on a non-redundant 
list of peptide sequences. All the peptide sequences unique to searches of the 
frayed database are also present on the other sequence databases. Of the peptide 
sequences unique to ORF_MS dataset (9), three of these are also present on 
official annotation database but aligned with an internal exon, hence did not 
appear on the frayed database. The other five peptide sequences uniquely 
present on the ORF_MS dataset were also unique to this database. Of the peptide 
sequences uniquely identified on the ORF_MS+GM (159), only 25 peptides do 
not appear on the official gene annotation; however, by examining the tryptic 
sites and methionine position preceding the peptides, these were not assessed as 
N-terminal sequences. The peptide sequences uniquely present on the frayed 
dataset (249) were also present on the other databases, but did not appear on 
other dataset as result of statistical evaluations of the search engines and 
rescoring algorithms. The peptide sequences common to ORF_MS and 
ORF_MS+GM identified 221 peptides. Out of these 31 peptides were not present 
on the frayed database but half of these were present on the official gene model. 
The peptide sequences common to ORF_MS+GM and frayed datasets (147 
peptide sequences) are all identified on the official annotation within 
ORF_MS+GM; this indicates that these peptides can be located within the first 
100 amino acids of the protein sequences from the official annotation. Although 
out of these 147 peptides, 34 have been identified also on ORF_ MS present on 
ORF_MS+GM they were missing from the ORF_ MS dataset due to statistical 
and search engine scoring and thresholding. The same can be said about the 
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peptide sequences common to frayed and ORF_ MS datasets as, although 
missing from the third dataset, they were common to all three databases. The 
peptides identified on the gene models database can potentially lead to 
prediction of novel gene structure and identification of signal peptides; however 
the results would need additional analysis to eliminate internal peptides.   

Listed in Table 4:3 non-redundant PSMs, obtained for each analysis and each 
sequence database, allow direct comparisons of the performance of different 
techniques. In this table the peptide redundancy has yet to be removed as this 
visualisation of the identified spectra is meant to provide a method to examine 
data acquisition protocols across all experiments. Focusing on Orbitrap data 
results, notably of higher quality, the importance of database design becomes 
evident as for the ratio of hits of the novel versus official annotation database is 
greatly increased.  

These results were further analysed to provide positional information of the non-
redundant peptides within the proteins of interest. The object of these analyses 
was to confirm peptide sequences as being N-terminal peptides, filtering out 
residual internal peptides (considered as FP), and to produce an overview of 
amino terminal cleavages (Signal peptides, NME). 
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Table 4:3 A comparison of the results for each experiment queried with multiple search 
engines against different sequence databases. This overview can help to evaluate the 
effectiveness of specific experiments (left-most column) and the performance of each database 
(top row). The count of PSMs listed is the estimated TP at 1% fixed FDR although peptide 
redundancy has yet to be removed.  

By just evaluating the dataset from frayed database I attempted to explain the 
identified peptide as N-terminal. With this approach the frayed dataset 
highlighted 669 non-redundant peptides as N-terminal candidates; next their 
residue pattern and position, within the gene, was examined to discard possible 
internal peptides. With this process I shortlisted a dataset of 26 peptide 
sequences as novel candidate N-terminal peptides with SP cleavage 
(supplementary data in appendix B Table 7:13).  For these no signal peptide had 
been predicted. Around half of these belonged to putative proteins while the 
other half to hypothetical ones. A list of 20 peptides (from 17 proteins) presented 
candidate N-terminal peptides with adjusted SP cleavage site (supplementary 
data in Table 7:14). For these proteins the signal peptides were predicted, but 
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their cleavage site did not completely align with the identified peptides. Around 
18 peptide sequences were confirmed to be N-terminal peptides, confirming the 
correctly predicted signal peptides (supplementary data in Table 7:15). The 
remaining peptide sequences were assessed to be internal peptides. The same 
approach was performed on the other datasets: ORF_MS with panel of gene 
models (P_GM). However the vast majority of the peptide sequences were 
assessed to be internal peptides (preceded by proteolytic site Arginine) (Table 
4:4).  

 

Table 4:4 The table lists the peptide sequence located around/ after the signal peptide 
cleavage site identified in the databases but not in official gene models. These were assessed 
as being N-terminal candidate peptides where signal peptide had been confirmed, not 
predicted or possibly to be corrected. 

By reviewing together the results from the three databases (frayed, 
ORF_MS+GM, panel of gene models) it was possible to analyse the peptides   
that can confirm/ correct predicted signal peptides and suggest novel 
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predictions. Of particular interest are the peptide sequences that appear to 
overlap within the predicted signal peptides. For example the identified peptide 
SVAHAQTAASEAEAATKVPDFR overlaps with one signal peptide 
MLSSALRSVRPAASAASRRFASVAHAQTAASEAEAA (signaP4.0) and does not 
align with MLSSALRSVRPAASAA (signalP3.0), protein TGME49_015280, 
potentially indicating that neither prediction is correct. 

 

Figure 4:7 Signal peptide cleavage site from N-terminal peptides evaluated as confirmed, 
corrected and not predicted.  

We compared the peptides that confirmed signal peptides against both 
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candidates for correction of the signal peptide cleavage and novel signal 
peptides. The idea was to examine how the length of signal peptides and the 
patterns of cleavage sites were allocated (Table 4:4, Figure 4:7 and Figure 4:8). 
The pattern of amino acids for confirmed signal peptides appears to be 
reasonable stable, with a high frequency at position -1 and -3 of alanine, glycine 
and valine. For both the candidate correction and novel signal peptides the 
pattern at position -1 and -3 display similar frequencies to each other; 
additionally there are present amino acid patterns with very low frequency (e.g. 
threonine, glutamic acid, lysine, glutamine). This could be caused by a bias in the 
small dataset, by there being real unexpected cleavage sites or by internal 
peptide contaminating the dataset. Additional experiments could help to 
discriminate with them high confidence. 

 

Figure 4:8 The amino acid frequency extracted from the cleavage site of signal peptides for 
the three set considered (confirmed SP 18 PSMs, candidate for correction SP 40 PSMs, 
candidate for novel SP 112 PSMs). The high abundance of alanine, glycine and valine is 
coherent with the study performed on other eukaryotic species.   
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From this pool of data it was possible to extract and analyse the peptide 
sequences uniquely identified from alternative gene models (Table 4:5).  In total 
there were identified 4 peptide sequences; these were assessed by official model 
as internal peptides while on the alternative gene models were considered as N-
terminal peptides. 3 of these peptides had also been identified on the frayed 
database.  

 

Table 4:5 The table displays the list of peptide sequence identified with novel database 
design and the number of spectra identified. From the left, the first column points out the 
number of spectra used for peptide identification (second column). The source column refers 
to the sequence database or gene model it was aligned on. The CDS column refers to the 
coding sequence (exon) of the protein from the official gene model. The “start” column locates 
the start of the identified peptide on the protein sequence. The last column shows the 
currently available proteomic evidence, viewable on EuPathDB (Gbrowse). All proteins are 
still described as putative. The first peptide was matched also on the official annotation but 
the selective algorithm did not shortlist as it was considered an internal peptide.  
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Figure 4:9 Workflow of steps in analysing N-terminal candidate peptides that present 
Methionine at the N-terminus.  

4.4.2 Analysis of the N-terminal Methionine  

By combining the results from four datasets (official annotation only, frayed, 
ORF_MS with official and alternative gene models, panel of gene models) it is 
possible to see in Figure 4:10 the overall peptide position within the protein 
sequences from the identified peptide sequences. I used previously described 
post-processing algorithms to generate a list of selected non-redundant N-
terminal peptides. After filtering out all dubious internal peptides an additional 
step grouped the results by peptides that retained the N-terminal Methionine (85 
PSMs) and those presenting NME event (204 PSMs). The data is obtained from 
the results across the three unified datasets where also each peptide’s relative 
position has been recalculated based on protein sequences. Although post-
processing analyses allowed discarding internal peptides, the density plot shows 
the general trend of position in the N-terminal region.  
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Figure 4:10 The plot shows four dataset obtained respectively from the sequence database: 
official gene annotation, frayed, ORF_MS with official and alternative gene models, panel of 
gene models displaying the density of the start position of identified peptide sequences 
across all four datasets. The overall results from frayed dataset can be seen as database pre-
filtering technique as the position are strictly within 100 amino acids from the start of the 
proteins. Additionally from the frayed dataset, it can be seen start position density is higher 
towards the 5’ of the gene. From the other dataset it is possible to view the density of internal 
peptides that are still being identified through search engines.  

The first list yielded 85 peptides with Methionine at the N-terminus; by 
additional positional filtering it was possible to discard 6 false positives (internal 
peptides) as located outside SP region range on known proteins (supplementary 
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data in Figure 7:16 - the appendix B). Although discarded at this stage some of 
these peptides might well be a true positive if the gene model is considerably 
wrong. The remaining 79 peptides identified 66 known proteins (official 
annotation), 5 alternative protein sequences and 5 ORF_MS.  

The second list of non-redundant peptides provided an opportunity for 
identifying N-terminal peptides and for evaluating the role of methionine 
amino-peptidase, which results in N-terminal methionine excision. From the 
dataset of 204 peptides (Table 7:17 - appendix B), it appears that methionine 
immediately precedes the peptide ~98% (196 peptides) while for the remaining 
2% (8 peptides) it is at position -2. Of all identified peptides whose N-terminus 
was located within the first three amino acids of the proteins (289 peptides), the 
NME modification is present with very high frequency: ~70%. 

We identified 192 proteins from the 204 short-listed peptides (supplementary 
data viewable in Table 7:17 in the appendix B). Of these peptides, one was found 
to align with the predicted SP suggesting that either the prediction was a false 
positive or the protein had not been processed by signal peptidase. Five peptide 
sequences were uniquely identified from the ORF_MS database. For the 
remaining eight peptides, although the identified protein did not have signal 
peptide, their position was within range of confirmed signal peptides.  

In this work we were able to identify with confidence 308 non-redundant N-
terminal peptides (from 1747 PSMs) from the official gene models. Substantial 
evidence for confirming and predicting the signal peptide cleavage sites was 
presented for 152 identified peptides. The NME frequency throughout the 
identified N-terminome of T. gondii was evaluated to be ~70%. We provide 4 
candidates for novel protein N-termini as peptides were identified on alternative 
gene models at the start site. Additional peptide sequences might need further 
experimental proof to assess whether they are internal peptides. 
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4.5 Conclusion 

In this chapter we show how advances in targeted proteomics at the sample 
preparation stage can be coupled with improvements in bioinformatics 
approaches for targeted peptide identification. The methodology described 
represents an attempt at maximising proteomic identification of amino terminal 
peptide identification. Although only one protease was used for these analyses, 
as proved successfully in other studies [291], the use of multiple proteases would 
generate datasets of complementary PSMs. These could potentially produce 
overlapping peptides resulting in higher confidence. Additional data generated 
with available software packages, such as signal peptide predictions with 
alternative gene models, could be further analysed with known structures. In 
this study the signal peptide sequences were generated with default parameters 
and were not analysed against known data, such as the Pfam database [292, 293]. 
As signal peptide predictions can differ, this information, together with available 
proteomic evidence from previous experiments (e.g. data from EupathDB), could 
be used to highlight specific proteins for database design and dataset post-
processing.  

The frayed database designed in this study was based on the official gene 
models and it can be considered as pre-filter for N-terminal peptides searches to 
also assess signal peptide predictions. For this reason, this approach should be 
applied to alternative gene models in order to restrict post-processing analysis; 
cross comparisons would allow to analyse those identified dubious peptides 
matched only on alternative models. Additionally, pre-processing sequence 
databases in this way could be useful for correcting N-terminal sequences and 
signal peptides for previously predicted proteins from newly sequenced 
genomes. Although this database is an attempt to pre-filter the data from 
possible internal peptides, these could potentially be used to increase confidence 
in low abundance protein identification for novel N-terminal peptides, 
achievable with sequence database comparison.  

Generating a panel of gene models can help confirm and correct the amino 
terminal structure of annotated genes, even for organisms on which detailed 
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manual curation has been already performed. Signal peptide predictions 
validated with proteomic N-terminal peptide sequences would allow to 
determine the mature protein sequence from gene model. However it has been 
shown how, for a highly annotated genome, database design can directly affect 
the performance of the search as designing targeted database can reduce search 
time and maximise results with higher confidence. The frayed database returned 
a higher number of PSMs uniquely identified on the dataset although the 
sequence database could be considered as subset of ORF_MS together with the 
panel of gene models database. 

With this study it was possible to provide: proteomic validation for amino 
terminal peptides, informative data on possible adjustments and confirmation of 
signal peptides based on the official gene model. Also it provided proteomic 
validation of the statistical importance of NME event and the high frequency 
across T. gondii genome. Additionally it was possible to evaluate the different 
performances of different database designs; for instance, statistical scoring can be 
affected by the size of the database searched and as such, combining panels of 
gene models with ORF_MS can yield results with lower significance. By 
designing frayed sequences the database search can be effectively restricted at a 
positional level, and this would ideally be suitable also for alternative gene 
models. Similarly the signal peptide predictions can prove to be effective when 
performed also on alternative gene models with the predicted dataset compared 
against the frayed design. The latter can effectively generate all possible signal 
peptide splice site even for protein sequence lacking a predicted signal peptide. 
Because of this, the design of an official gene model containing both the pre-
protein and the mature sequence would need to be accurately evaluated based 
on the ratio of predicted versus expected proteins with signal peptide (e.g. 
analyses with Pfam).      

With the additional search engine to the multiple search mode for future work it 
would be possible to reduce the time of post-processing analyses as the dataset 
would yield higher confidence identifications. Given the large quantity of data 
analysed it is mostly important to decrease manual validation but it is 
nevertheless required in order to correctly estimate FDR.  
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As demonstrated in other studies, analyses across species can help defining 
generalisations that can be abstracted in bioinformatic algorithms. Targeting 
signal peptides from a proteomic point of view remains still challenging, as 
additional validation is needed to corroborate the findings.   
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5 Final discussion 

5.1 Overview on the thesis: 

At present the number of genome sequencing projects for various organisms is 
steadily increasing. As manual genome annotation can be considered as a 
bottleneck we need improvements in automated methods to generate gene 
models with validated sequences. The identification of splice sites and N-
terminal peptides is crucial within the proteogenomic context.  

In this thesis I worked on proteogenomic approaches to provide methods to 
identify specific peptides from MS/MS data. I have attempted to exploit and 
combine together different bioinformatic techniques to target these specific 
peptides.   

In this study I focused on the construction of alternative gene models and 
ORF_SS database to look at the current gene model state. With this I also 
assessed whether these generated sequence database can be efficiently used to 
correct gene sequences or predict novel genes. Additionally, I conducted an 
evaluation on alternative gene models to provide an insight on the differences 
between gene finder and whether the training set used for the HMM algorithm 
affects the quality of gene model predictions. I tried to overcome the 
bioinformatic challenges given by ISPs identification, using a new hybrid 
“blind” approach. In the final project of this thesis, I focused on maximizing N-
terminal peptide identification and I evaluated how signal peptide analyses can 
provide further confidence on these identifications.  

5.1.1 Achievements  

As demonstrated throughout this work, database design can play an important 
role in peptide identification for validating predicted exons structures and 
assessing the quality of gene models. The presence of sequences on the database 
does not directly imply that the peptides identified by search engines will be 
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assessed as significant. This can translate into identified peptides having been 
assigned low confidence score, hence been missed out from the final dataset 
even though correctly present in the database, which becomes more evident as 
the database size increases. As manual validation is still required to a certain 
degree, a comparative analysis, evaluating mutually exclusive PSMs in the 
dataset and their source database, would generate a short list of unique peptide 
sequence to be investigated. Additionally, databases designed tailored for 
specific peptide sequences, such as N-terminal peptides, can reduce both the 
database search space and the manual post-processing required.  

With the work I performed in the second chapter I attempted to provide an 
additional filter to improve the quality of ORF_SS database. Although a six-
frame translation can be biased towards false positives, due to the 5:1 ratio of FPs 
to TPs present in the sequence database, it is useful for organisms for which 
there is no accurate gene model. By using a comparison approach I have been 
able to identify ~400 peptide sequences that were uniquely matched on the 
ORF_SS database and not present on results from gene models for N. caninum 
release 5.1. By repeating these analyses, on a smaller set of spectra, on the 
following release 6.1, I have been able to shortlist 95 peptide sequences (from 24 
proteins) that were later added to the gene models. These peptides, while being 
absent from the previous model (5.0), were successfully identified on the 
ORF_SS database (release 5.0). I used this approach, tested on T. gondii, to 
provide a novel method for assessing the quality of the gene models with 
proteomic data. 

With the work described in the third chapter I presented a novel approach, for 
ISPs identification, for proteogenomics pipelines. Although the study proved 
that blind identification of ISPs can be made from proteomic data, overall the 
pipeline could not be considered 100% successful at this stage. However, even 
considering the future framework for the designed pipeline, the algorithm was 
able to successfully identify ISPs with 26% sensitivity at 5% fixed FDR. This 
result, achievable by including OMSSA in the final step in the pipeline, 
presented a framework that can be improved upon in the future. The search 
engine scoring algorithm was able to differentiate between false and true 
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positive identifications. During the development of the designed pipeline I 
compared it against commonly used bioinformatics approaches such as de novo 
sequencing and database dependent methods, with alternative gene models. The 
results of this comparison showed the importance of not relying on one 
approach only: de novo sequencing can provide low confidence identifications 
with low coherence between the predictions; database approaches only rely on 
correctly predicted gene models, but these can be highly different due to 
algorithmic differences of the gene finder used.  

In chapter four I demonstrated the importance of database design for targeting 
N-terminal peptide sequences. Combining different sequence databases I was 
able to identify with high confidence a set of ~300 N-terminal peptides (from 
~1700 PSMs). Using the scripts I wrote for analysing signal peptides cleavage 
sites (position and amino acid frequency) I was able to shortlist ~150 N-terminal 
peptide sequences; these candidate peptides can provide evidence for correcting 
the predicted signal peptides and suggest novel predictions. Additionally with a 
further analysis of the identified N-terminal peptides I was able to assess the 
percentage of NME, within the found N-terminome for T. gondii, to be ~70%. 
Given the importance of NME as an irreversible co-translational modification 
present in various metabolic pathways, this finding could be further exploited 
for pharmaceutical drug delivery and targeting [294]. Studies on eukaryotic 
plants have identified that NME inhibition can affect key metabolic complexes 
within the cell life span [295, 296]. 

5.1.2  Shortcomings  

As the algorithms I designed post-process datasets from various bioinformatic 
software packages, the time needed to fine-tune them and make them 
compatible with all different formats could be considered a downside. One of 
the challenges faced was the lack of system interoperability of the different 
software packages, as most of them are compiled to run exclusively on one OS 
(i.e. Windows, Unix). Although most of the software packages can be run on the 
same machine, this OS incompatibility can lead to slow performance as the 
analyses as cannot be run in parallel. Additionally not all publicly available 
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bioinformatics tools are provided with conspicuous support; several have been 
published and made available but their support is not up to date (e.g. GeneZilla 
[29]). After testing various Unix systems, Biolinux [297], freely available to 
bioinformatic community, was found to be the best option for gene finding 
software packages as it is pre-loaded with compilers, libraries and several 
bioinformatics applications ready to use. 

Careful attention needs to be paid when comparing the datasets obtained by 
querying different sequence databases. The uniqueness of peptide identified 
may be due to statistical algorithms and not to efficient database design. 

The algorithms written for ISPs searches are still too slow and insufficiently 
accurate to be considered useful for large-scale analyses. Depending on the size 
of the genome and the computational resources available it may take a few hours 
to generate a fully indexed table for all short sequence tags, although it needs to 
be done only once. The time needed for processing each spectrum vary largely 
depending on the number of generated anchors (from ~2min to ~10min). Also 
during initial tests the purely De novo approach proved unsuccessful suggesting 
that high confidence De novo sequencing cannot be achieved alone. The results  
from ISP identifications are currently outperformed by the best gene finders, 
when accurate genomic sequence and annotations are available. However for 
some genomes, a purely De novo approach may be preferable using sequence 
alignments between different De novo algorithms.  

5.1.3 Framework for future developments 

The protocol for assessing gene models by direct comparison of PSMs against 
ORF_SS/ ORF_MS could be validly applied to other species with larger 
genomes. Additional filtering techniques, based on sample protocols, can be 
applied, when mining ORF_SS; as a practical example, short ORF_SS that do not 
meet minimum threshold are discarded during our analyses. However an 
additional filtering step could retain these short ORF_SS should they contain the 
same enzymatic cleavage sites used during sample preparation. This could help 
identifying short coding sequences that would otherwise not be in the final 
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sequence database. 

Producing alternative gene models with multiple gene finders could be 
automated including evaluation of genomic sequence and gene structures. For 
example by using proteomic identifications we can isolate a set of highly 
annotated genes to both train HMM models and evaluate the resulting 
predictions.  

By continuously improving the annotation of the amino terminus of the proteins 
we can obtain supplementary data to increase confidence in signal peptide 
prediction. This information could be added during the design of the frayed 
database by analysing the entire genomic sequence looking for the motif of 
signal peptide cleavage sites. This would enable searches for the N-terminus of 
the protein within the predicted and unpredicted sequence. 

Given the current limitations for ISPs blind searches, the core of the approach 
could be improved by limiting the search space. By using the official and panel 
of alternative gene models it would be possible to extract all alternative splices. 
This could be used to further test the results from the ISP pipeline to 
discriminate candidate ISPs identified. 

These methods and approaches studies in this thesis could be, at later date, 
further improved and combined into one pipeline. Targeted sampling and whole 
cell fractionation analysed with tandem MS can be analysed on alternative gene 
models, ORF_SS, official gene models and specifically designed sequence 
databases, such as frayed database, also applicable to alternative gene models. 
The high confidence identifications could then be used to analyse the genome for 
improved alternative gene models and refined filtered ORF_SS to be queried 
again. As the process could require increased computational resources it would 
be ideal to place a given pipeline on a cloud computing resource. A simplified 
interface would additionally increase the usability and availability of the 
pipeline by researchers.  



 

 5-147 

5.2 Proteomics: work in progress 

5.2.1 Latest advances  

In recent years shotgun proteomics has been increasingly recognised to generate 
large quantities of data. High-resolution mass spectrometers have contributed to 
the increase of the identification confidence. Novel protocols (enrichment/ 
depletion) have been devised to selectively extract peptide sequences from 
specific protein regions, to identify gene boundaries and PTMs. These 
improvements in data acquisition and the increased abundance of genomic 
sequences available have produced a requirement for notable advances in 
bioinformatic methods for predicting exon sequences, exon-exon structure (gene 
finders), increasing PSM confidence (search databases and posterior true positive 
estimates) while reducing false positive rates (e.g. through improved database 
designs). More studies used shotgun proteomics to: validate models of protein-
coding genes; suggest evidence for completely novel genes and assess protein-
coding genes from transcripts [205, 298]. Innovations in transcriptomics have 
enabled researchers to generate higher quality transcriptomes, used both at gene 
curation level and database searches with shotgun data.  

5.2.2 Future goals and challenges 

Although fairly recent, proteogenomics has already seen a number of successful 
strategies for evaluation and implementation by several groups [129, 157, 202, 
208-210, 299-305]. The principal goal of proteogenomics is to effectively use 
shotgun proteomic datasets for constructing and validating the models of 
protein-coding genes. However using proteomic data to provide identification 
on a large scale, such as entire peptidomes, is still a considerable challenge. Low 
abundance peptides, unexpected PTMs and splice sites represent a few of the 
limitations in peptide identification by bioinformatics strategies. Recent 
bioinformatic resources have been implemented to enable even small research 
groups to perform analyses with high computational power through cloud 
computing [306].  
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Combining together several approaches can increase the confidence of identified 
peptides and expand the final dataset; however different challenges are 
presented due to the resulting database size. Accurate design of the algorithms is 
needed to increase the software performance and reduce the error rate. New 
protocols to correctly assign with confidence the identified peptides to the 
correct genomic structure are currently being developed by several groups. To 
facilitate the reproducibility of the experiments and posterior analyses, the 
bioinformatic community is headed towards the adoption of standard data 
formats. However there are still a number of software packages that are not 
entirely supported or up to date, making it hard to combine multiple algorithms.  

Future bioinformatic approaches can prove invaluable to generate in silico 
peptide predictions that biologists could attempt to explain through targeted 
proteomic sampling. Instead for bioinformatics to provide methods to 
understand biological data, it should start to lead by providing theories that 
proteomic analyses could prove or discard. Additional challenges include 
external cellular factors and specific life stages that influence gene expression 
and the low dynamic range of proteins analysed in the experiments often 
prevent the detection of low abundance proteins. Similar to bioinformatics, the 
best approach might rely in combining the results from different sampling 
protocols and techniques (i.e. enzymes, selective enrichment of specific peptides, 
separation techniques) to provide complementary data and help overcome 
difficulties in detecting a small portion of the peptidome.  
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Appendix: A 

6 Original ISP pipeline design 

In this appendix I present the first design developed for intron spanning 
peptides using only de novo approach. This was initially devised as an approach 
to be used by curators of newly sequenced genome with no gene model 
available. The first stage of the pipeline is based on database searches against the 
whole genome to select the genomic regions where identifications have been 
made and select the mass spectra that have yet to be identified. Then pipeline 
attempts to identify the tandem mass spectra not identified through sequence 
database searches by anchoring their predicted TAG with InSPecT. The full 
peptide reconstruction is generated in the same way it is explained in chapter 3. 
However to shortlist the intron spanning peptide candidate is made by aligning 
the full length peptide predictions against each of the de novo MS/MS 
interpretations generated by PepNovo. The score of the alignment would ideally 
allow identifying the candidate ISP while the gap in the alignment would 
indicate the splice site. 

6.1 Methods 

6.1.1 Original pipeline design: De Novo sequencing and sequence 

alignments for full-length peptide identification 

The original design of the pipeline included sequence alignments with De Novo 
interpretations (PepNovo) as a method to highlight final full-length peptide 
candidates as intron spanning peptides. The theory was that a peptide sequence 
that spans across 2 exons would result in a gapped sequence alignment where 
ideally only one gap, of variable length, would be present. The theory was that 
the anchored spectrum peptide would be concatenated with an adjacent 
sequence of residues (with mass within that of the unexplained terminus from 
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InSPecT tag predictions). This was used to generate a list of candidate peptides, 
whose mass would have been larger than the spectrum mass, by concatenating 
the missing terminus obtained from nearby region. The final stage of the pipeline 
would have seen each of the PepNovo interpretations (up to 20) being aligned 
against each long peptide sequence from the generated list. By keeping track of 
the score of the alignment it would have been possible to shortlist only few 
candidate intron spanning peptide with splice position highlighted by a gap in 
the alignment (Figure 6:1).  

 

Figure 6:1 As in the previous design (figure 3:4) the sequence TAG with its data (b) is used 
to anchor the spectrum (c) within genomic regions and positional details from the given 
cluster (a). The unexplained terminus is extracted from sequence adjacent to the anchor and 
concatenated to extracted termini from nearby proteolytic sites (d). This generates a list of 
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peptide reconstructions whose mass is larger than the analysed spectrum mass. Each 
reconstructed peptide from the list is aligned against each PepNovo prediction (f) and the 
cumulative score used to shortlist the final candidate intron spanning peptide with the gap 
information (g).  

During the initial testing using the sequence alignment algorithm, each 
candidate sequence from tryptic sites was simply concatenated to the anchored 
sequence. It was assumed that given accurate De novo predicted peptide 
sequences, the sequence alignment algorithm would have been able to find the 
peptide sequence yielding the analysed spectrum, as well as highlighting the 
splice site.  

Finally by looping through the list of sequences from tryptic sites, each 
candidate sequence was concatenated with the elongated anchored sequence. 
The approach for this last stage is to recreate all possible splice sites between the 
DNA sequences prior concatenating them for translation to amino acids. 

6.1.2  Original pipeline design: performance evaluation of PepNovo 

The De novo sequencing software PepNovo relies on a training set generated 
using ion fragmentation rules in order to assess the probability of each candidate 
peptide yielding a given spectrum. The only training set currently available in 
the PepNovo algorithm is CID [160, 161, 166], which is used as a default. 
Although it is possible to generate new training sets based on different 
instrumentation, this task would require hundreds of thousands of high 
accuracy interpreted spectra. 

PepNovo analyses used the following parameters: peptide tolerance of 2.5 Da 
and fragment ion tolerance of 0.5 Da, both set in the only available model (CID-
IT-TRYP), fixed modification: carbamidomethyl (C) and variable modification: 
methionine oxidation (M). In this case the presence or absence of PTM during 
the evaluation would not affect the pipeline strategy as the numeric values of 
residue modifications in PepNovo peptide sequences (i.e. 
M+16QQASTEQQAGEQK indicating methionine oxidized) are removed. Also 
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these modifications tend to appear once or twice within a PepNovo set of 
interpretation (~20 per spectrum) and the alignment score, from sequence 
alignment between interpreted peptides sequence and ISP candidates, was the 
sum of all individual alignments. 

PepNovo performance was tested by producing predictions of different length, 
from a minimum 3 residues to the maximum length that could be interpreted. 
Not surprisingly the shorter predicted sequence had higher sensitivity, 
specificity and their similarity to InSPecT sequence TAGs become evident thus 
defeating the purpose of the De Novo sequencing approach being included in the 
pipeline for sequence identifications. It appears that the longer the predicted 
sequence, the lower the accuracy of amino acid residues predicted [94, 125, 126, 
163, 167, 169]. 

6.1.3  Original pipeline design: Sequence alignment 

Sequence alignment algorithms evaluate the homology of two distinct sequences 
by generating all possible alignments and assessing the score of each of them to 
find the optimal alignment. Three main algorithms can be used depending on 
the type of sequence and alignment:  

Global alignment (based on Needleman-Wunsch algorithm [307-309], which 
aligns two sequences completely minimizing the edit distance defined by gap 
penalty and substitution matrix; this method is generally applicable to sequences 
similar in length and pattern. 

Local alignment (based on Smith-Waterman algorithm [47]) which attempts to 
find sub-sequences that have minimal distance among all sub-sequences; a 
method generally applicable to sequences that have similar sub-sequences. 

Ends-free sequence alignment is a particular case of the global alignment [310]. 
This method assign no gap penalty to gap extending to the beginning or end of 
the sequence; commonly applied where one of the sequences is contained in the 
other. 
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Table 6:1 Table shows the constructed matrix alignment between intron spanning peptide 
GVHPQLIASSFLEASKQSEK and best De Novo prediction from PepNovo VQYEVLEASQQSEK. 
The scoring algorithm is based on Global alignment (Needleman-Wunsch[309] ) with match 
value set a 5, while mismatch and gap cost are set at -1. The matrix is constructed by evaluating 
each cell, and setting its value depending on diagonal left, left and top cell values. The match 
value is implemented as (diagonal cell + match value), (top cell – gap cost), (left cell – gap cost); 
the higher value between these three is chosen for each cell evaluated. To assign the residues to 
the sequence aligned (highlighted in red), the final sequence is constructed by backtracking from 
the last bottom right cell in a way to find the path with highest score. Column and semi-column 
symbols (highlighted in blue) and hyphen describe whether conserved or semi-conserved 
substitution or gap has been observed.  

The algorithm assesses the score by aligning one letter from one sequence to the 
other and adding points or penalties for matches, gaps, and gap length (Table 
6:1). The algorithm of choice implemented in the initial pipeline was based on 
the local alignment as ISPs were expected to have internal gap caused by splice 
site. For this the scoring system was adjusted not to penalize one gap in the 
sequence with no concern to its length, while deeply penalize the presence of 
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more than one gap, even if very short.  

The algorithm for processing and scoring sequence alignments was built to align 
each PepNovo prediction (~ 19 for each spectrum) against all candidate ISPs 
generated from the same spectrum. The final score for a candidate ISP was given 
by the sum of all scores across the PepNovo prediction.  In order to provide 
additional information on the sequence alignment consensus a designed 
algorithm would score each residue position across all alignments. This would 
provide visual insight showing how the residues of the candidate sequence 
aligned with De novo predicted sequences. This part of the strategy was later 
replaced by algorithm described in the previous paragraphs, since it relied too 
much on accuracy of De novo sequencing. 

6.2 Results  

6.2.1 Original pipeline design: 

From the test dataset a small subset of only 24 spectra yielding intron spanning 
peptides from 20 different proteins was created. This small set was put through 
the pipeline with genomic regions already restricted to the proteins of interest. 
The sequence TAGs generated by InSPecT were to be mapped within much 
smaller area than the final pipeline design. This was specific to test sequence 
alignment with De novo predictions, as the final shortlist of ISP comprised only 6 
peptide sequences, per spectrum, ranking highest after all sequence alignments. 

From the initial 24 spectra processed through the pipeline, for only 11 spectra the 
ISP was included within the shortlisted of candidate peptides, although in not 
one of them the splice site was correctly highlighted in the sequence alignment 
result (Figure 6:2, Table 6:2). Although the ISP peptide was correctly constructed 
and present in the list of candidates for 23 spectra, only 10 full-length peptide 
sequences were correctly identified after sequence alignments. However for a 
number of cases simple sequence alignments between ISP candidates and De 
novo predictions was not optimal for correct separation between real and false 
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matches, without a manual evaluation. The quality of the sequence tags (from 
InSPecT) influenced the number of full-length ISP candidates while the De novo 
(PepNovo) predictions for a given spectrum did not always proved to be 
coherent with each other. In one case InSPecT wrongly assigned the spectrum 
charge resulting to only partial peptide identification. Additionally an incorrect 
sequence tag generated a false result, not distinguishable from real peptide 
sequences by automated algorithms. 

 

Figure 6:2 From a small set of 24 ISPs, only a sub-set of the reconstructed full-length 
peptides were identified with sequence alignments. For a large majority the sequence, present 
in the temporary database, did not make it through the final selection. For a small minority 
the spectrum was improperly located on the genome due to an incorrect sequence TAG. 
Virtually in every positive result, seeing the correct candidate being shortlisted, the sequence 
alignment stage did not enable the correct identification of the splice site or to appropriately 
discriminate between false and true positive. 

A shortcoming of this approach was caused by PepNovo lack of consensus 
between its interpretations; in general the set of predicted peptides from a 
spectrum comprised large variation in amino acid composition of the peptides. 
Even in cases where PepNovo predicted the partial sequence correctly, if the 
majority of all reconstructions is not correct then sequence alignments would 
generate a bias towards FP. Similarly, due to low quantity of high confidence 
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predictions of reasonable length, sequence alignment did not prove successful in 
highlighting the splice positions within the candidate ISPs. The gap and 
mismatched from the alignments were inclined on either terminal of the peptide.  

Although the initial test was not able to correctly identify full-length peptides, it 
verified the ability to anchor the majority of spectra. For this reason a further 
pipeline test involved algorithms to automate the selection of the genomic 
regions of interest. The dataset for this test comprised only 12 spectra and the 
range for genomic region discovery was set to 5000 bps. Most of the spectra 
could not be correctly anchored and from the list of ISP candidates, generated 
with correct anchors, the sequence alignment stage did not prove successful. 
Successive algorithms replaced the stage involving De novo predictions and 
sequence alignment for splice site generation and OMSSA searches.  
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Table 6:2 The table lists identified ISPs with pipeline genomic regions selected based on 
gene coordinates and sequence alignments with PepNovo predictions. One peptide could not 
be mapped on the genome due to incorrect TAG; only 11 peptides were finally shortlisted 
after alignments due to a lack of coherence in PepNovo predictions. 
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7 Appendix: B 

 

Figure 7:1 10 1-DE gel slice from N. caninum were used to query official ORF sequence 
database available on EupathDB (longer than 50 amino acids). The output was rescored at 5% 

fixed FDR. Parent and fragment ion tolerance both set at ±0.6, ±0.8 and ±1 Da. 
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Table 7:1 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10. 
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Table 7:2 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10 
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.  

Table 7:3 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10. 
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Table 7:4 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10. 
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Table 7:5 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10. 
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Table 7:6 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10. 
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Table 7:7 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10. 
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Table 7:8 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10. 
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Table 7:9 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10. 
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Table 7:10 The result table for dataset from N. caninum release 5.1 lists the peptides uniquely 
identified on the ORF_SS database. *The complete list includes Table 7:1 to Table 7:10. 
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Table 7:11 The table shows comparative results from querying 10 1D gel from a N. caninum 
dataset; these represent the TPs at % fixed FDR. The different gene models databases 
comprise the official gene model, the ORF_SS and alternative models. Twinscan prediction 
was based on release 5.1 generated by Sanger Institute. The predictions generated with 
Glimmer were based on N. caninum and T. gondii training sets. For N. caninum we evaluated 
the differences between different sets of predictions (including differently spliced genes).   
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Table 7:12 Here below the list of the remaining 116 ISPs (from the set of 126) processed 
through the pipeline (first set) ordered by OMSSA e-value. The first three and the last 
columns identify gene ID, peptide, PTMs and e-value (OMSSA). The fourth column shows 
the number of TAGs that align on the peptide (prefix/ suffix mass not considered here). The 
column “R” specify the reason why the match failed: ‘WR-TAG/ REG’ indicates false positive 
ISPs in the temporary DB due to incorrect TAG or wrong genomic region selected;  ‘WR’ 
indicates that OMSSA failed to match the correct peptide; ‘NR-TAG/ REG’ indicates that 
OMSSA yield null result due to incorrect TAG or wrong genomic region selected;  ‘NDB-
TAG/ REG’ indicates that the temporary dataset of ISPs candidates was not generated due to 
incorrect TAG or wrong genomic region selected. The last peptide sequence is flagged with 
WR as OMSSA failed to correctly identify the ISP although it was contained in the temporary 
DB. The second last peptide instead is flagged with WR-TAG InSPecT did not provide correct 
TAGs identification for such spectrum. 

GENE Peptide PTM TAG R e-value 
TGME49_088

360 
AILIKELQALVLGHQER N/A 4 OK 1.13E-11 

TGME49_090
670 

FDMGGAAAVLGAAR M:+16 2 OK 1.16E-10 

TGME49_031
640 

QWVAITAYQPIDTVTK N/A 3 OK 1.24E-10 

TGME49_029
010 

SLYGGIANTLETPFADSEAVAK N/A 8 OK 1.74E-10 

TGME49_004
400 

TQTSTEEVGRVVSVGDGIAR N/A 1 OK 6.72E-10 

TGME49_005
510 

NVELSPLLPDEIAAEVK N/A 8 OK 1.34E-09 

TGME49_064
610 

LFVGGISDDVNDESLR N/A 3 OK 2.08E-09 

TGME49_050
770 

ELAQQIQKVVLALGDYLQVR N/A 9 OK 1.48E-08 

TGME49_039
820 

EALLGGLPQSAVNLQCVR N/A 3 OK 6.10E-08 

TGME49_064
610 

HTVDGTQVEVR N/A 7 OK 3.65E-07 

TGME49_072
910 

LLAPIAVDAVMK M:+16 1 OK 3.76E-07 

TGME49_091
950 

TAELIQGPPGTPGGAAAAGA
DLSAQSR 

N/A 7 OK 6.06E-07 

TGME49_088
360 

ELQALVLGHQER N/A 8 OK 8.57E-07 

TGME49_065
450 

AIVNDTVGTLVSCAYQR N/A 2 OK 9.69E-07 

TGME49_087
500 

ALGATAVVR N/A 3 OK 1.48E-06 

TGME49_034
500 

DVQDTFFLQAPK N/A 1 OK 3.02E-06 

TGME49_066
990 

TMEEFVIDLLR M:+16 5 OK 1.12E-05 

TGME49_048
810 

EGHMVVGDESAVITLK M:+16 2 OK 1.94E-05 
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TGME49_088
500 

NFLFEVPKLNTVLFANDVK N/A 5 OK 2.69E-05 

TGME49_090
670 

MGSQVFVR M:+16 3 WR 0.0005 

TGME49_026
960 

DAGTFSGSFSPLCFEFSDSLR N/A 2 OK 0.0006 

TGME49_075
690 

RVVGQDHAVQVVAEAIQR N/A 2 WR-
TAG 

0.001 

TGME49_111
720 

NAVVTVPAYFNDAQR N/A 7 WR 0.0015 

TGME49_029
360 

TNETNGGAAQNALEALR N/A 6 WR-
REG 

0.0015 

TGME49_072
910 

LLAPIAVDAVMK M:+16 1 OK 0.0022 

TGME49_063
180 

DVLRPEIIEITR N/A 0 WR-
TAG 

0.0038 

TGME49_019
320 

KSIDAFNFVSQLPEVR N/A 0 WR-
TAG 

0.0048 

TGME49_019
590 

TAPYTISEVVQVLK N/A 1 WR-
REG 

0.006 

TGME49_119
920 

LADIGEGIAQVELLK N/A 0 WR-
TAG 

0.0089 

TGME49_039
820 

TIGIIGLGQVGTHVAR N/A 0 WR-
TAG 

0.0108 

TGME49_035
470 

LPSEEYQLGK N/A 6 WR-
REG 

0.0113 

TGME49_080
380 

IDELFPSGLQYITPENPQVHLR N/A 1 WR 0.0163 

TGME49_028
210 

TLMELLNQLDGFDELGAVK M:+16 2 WR-
REG 

0.041 

TGME49_034
500 

GNEEASLDVAAIK N/A 10 WR-
TAG 

0.0466 

TGME49_009
950 

FTKLDADEHLSK N/A 8 OK 0.0479 

TGME49_049
180 

KTDDAATAEPSNAMSSLTSTR M:+16 2 WR-
TAG 

0.0712 

TGME49_032
130 

RPPSVFFINITHDPEGR N/A 2 WR-
REG 

0.0886 

TGME49_026
960 

TLGEIVTFVADAVK N/A 4 WR-
REG 

0.1587 

TGME49_051
780 

KSQVFSTAADNQTQVGIK N/A 1 WR-
REG 

0.1644 

TGME49_004
400 

TAVAVDAIINQK N/A 4 WR-
TAG 

0.1729 

TGME49_057
990 

ILDSALVEAAQLADRYITSR N/A 3 WR-
TAG 

0.3173 

TGME49_019
540 

QTLGMAEGNFPK M:+16 3 WR-
TAG 

0.351 

TGME49_028
210 

VALDMTTLTVMR M:+16 0 WR-
TAG 

0.3582 

TGME49_119
920 

ERPAPVSEPQAAASPSVGAEA
SSTTFSASPATR 

N/A 10 WR-
TAG 

0.4148 

TGME49_029
990 

TANAAAVQSIANILR N/A 0 WR-
TAG 

0.5549 

TGME49_073
090 

GQVVVIGATNR N/A 4 WR-
TAG 

0.6177 
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TGME49_010
730 

TSHHLNTMNANVGAR M:+16 5 WR-
TAG 

0.905 

TGME49_109
750 

GAGGPILIGSAR N/A 1 WR-
REG 

1.1351 

TGME49_072
910 

ASNNLMLDETER M:+16 3 WR-
REG 

1.2718 

TGME49_051
780 

SQVFSTAADNQTQVGIK N/A 6 WR-
REG 

1.9657 

TGME49_101
440 

MFDSDNSGKISSTELATIFGVS
DVDSETWK 

M:+16 9 WR-
REG 

3.5227 

TGME49_094
800 

NMITGTSQADVALLVVPAEA
GGFEGAFSKEGQTR 

M:+16 2 WR-
TAG 

5.5918 

TGME49_039
820 

GSVDSANADVLLLSAAQGVL
R 

N/A 5 WR 5.742 

TGME49_007
620 

DGAIVTDPLLRLPANPDVFVA
GDIAAYPYVK 

N/A 4 WR 8.1389 

TGME49_002
370 

DVYDADKELLVHAAMTALGS
K 

M:+16 2 NR-
TAG 

 

TGME49_023
680 

QMMPMMQNVLDNPELLR M:+16 3 NDB-
TAG 

 

TGME49_023
680 

TFLNPQMMQASLQMQQAMQ
NMQR 

M:+16 0 NDB-
TAG 

 

TGME49_023
930 

MAFVEFYDLR M:+16 6 NDB-
REG 

 

TGME49_026
960 

TLGEIVTFVADAVK N/A 3 NDB-
TAG 

 

TGME49_026
960 

TLGEIVTFVADAVK N/A 5 NDB-
REG 

 

TGME49_027
950 

ALVPTKDEGTVGEGFVIPTQV
NYVGLGGR 

N/A 0 NDB-
TAG 

 

TGME49_028
490 

SLAEAIANQGNVGSLLK N/A 0 NDB-
TAG 

 

TGME49_029
010 

SLYGGIANTLETPFADSEAVAK N/A 4 NDB-
TAG 

 

TGME49_029
010 

SVDTGSGSDASTEQQAGGQK
VVTPIPASK 

N/A 0 NR-
TAG 

 

TGME49_031
640 

REAEMVHFPAVEGAPPLPTIP
K 

M:+16 3 NDB-
REG 

 

TGME49_031
640 

TVPIGEETERQWVAITAYQPID
TVTK 

N/A 3 NDB-
TAG 

 

TGME49_031
640 

EAEMVHFPAVEGAPPLPTIPK
VEQVFKPK 

M:+16 0 NR-
TAG 

 

TGME49_032
280 

TIITEAGGFFGTPVA N/A 1 NR-
REG 

 

TGME49_035
970 

SFDVNKPGEEATNLQGGVAG
GSISQGVLK 

N/A 0 NDB-
TAG 

 

TGME49_039
820 

SQQLVSLVHLAEILGR N/A 1 NDB-
TAG 

 

TGME49_039
820 

NVALETLLASSDFITLHVPLLD
KTR 

N/A 0 NR-
TAG 

 

TGME49_043
800 

LLDDMQTLEPAVFSSVPR M:+16 4 NDB-
TAG 

 

TGME49_049
270 

LAGKIDAGTDAKPSEK N/A 4 NDB-
REG 

 

TGME49_049
270 

GDFSQESINTFLTQLLAGK N/A 3 NR-
TAG 
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TGME49_049
270 

GDFSQESINTFLTQLLAGK N/A 3 NR-
REG 

 

TGME49_049
390 

VSQDDRDVVLPDGTAVASGFE
FR 

N/A 0 NDB-
TAG 

 

TGME49_049
530 

FVALQILENTIQTR N/A 2 NR-
TAG 

 

TGME49_051
780 

SQVFSTAADNQTQVGIK N/A 3 NDB-
TAG 

 

TGME49_053
730 

LAAADVAQSKDLVEEVTDVQ
GSVQR 

N/A 2 NDB-
TAG 

 

TGME49_059
010 

SLAEVASIVSETDIELMR M:+16 2 NR-
REG 

 

TGME49_061
210 

QLAQTVQTMEAK M:+16 0 NR-
TAG 

 

TGME49_061
950 

LVLEVAQHLGENTVR N/A 1 NR-
TAG 

 

TGME49_061
950 

VVDTGAPIQVPVGVETLGR N/A 0 NR-
TAG 

 

TGME49_063
130 

KDSEFSPGLEGVVAGESAISSV
GPASLAGLTYR 

N/A 6 NDB-
REG 

 

TGME49_063
180 

STSISADEYALGKTMVFLKPQA
AK 

M:+16 1 NDB-
REG 

 

TGME49_067
550 

TAGPPASGGAPQESR N/A 7 NR-
TAG 

 

TGME49_072
910 

DAVNDLSLDYLAK N/A 3 NDB-
TAG 

 

TGME49_077
500 

TMLEIVNQLDGFEAR M:+16 4 NDB-
TAG 

 

TGME49_078
830 

VVIGLSGGSTPLPIYSALR N/A 10 NDB-
TAG 

 

TGME49_079
390 

TAADIVNGALKK N/A 0 NDB-
TAG 

 

TGME49_086
920 

DLLPSLFVDSGLPAAELEER N/A 4 NR-
REG 

 

TGME49_088
360 

GADLDIDIPFQYLTFILNDDDQ
LKEIGEK 

N/A 0 NDB-
TAG 

 

TGME49_088
360 

MYQESYLDEFGIPANVKEVR M:+16 12 NDB-
REG 

 

TGME49_088
360 

MYQESYLDEFGIPANVKEVR M:+16 0 NDB-
TAG 

 

TGME49_088
360 

AILIKELQALVLGHQER N/A 7 NR-
TAG 

 

TGME49_089
580 

ILYPLTDFGPLSSALDALLTK N/A 7 NR-
REG 

 

TGME49_090
200 

AGGIIGTAFGQGGFDWAMLK M:+16 3 NDB-
TAG 

 

TGME49_090
200 

DFLNATVVPGNMGQPVR M:+16 3 NDB-
REG 

 

TGME49_090
670 

VVTSFLETLLVELQPDLR N/A 0 NDB-
TAG 

 

TGME49_090
670 

TGGAQIELMKFDMGGAAAVL
GAAR 

M:+16 0 NR-
TAG 

 

TGME49_094
200 

ESNYDFPGNSLILEVQPHPSVR N/A 2 NDB-
REG 

 

TGME49_097
470 

LFYDEAMQDAFPEEGTMR M:+16 0 NDB-
TAG 
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TGME49_097
500 

LPIGDLATQYFADRDIFCAGR N/A 2 NDB-
REG 

 

TGME49_101
440 

ISSTELATIFGVSDVDSETWK N/A 6 NR-
REG 

 

TGME49_101
440 

ISSTELATIFGVSDVDSETWK N/A 6 NR-
REG 

 

TGME49_104
710 

LSVLSAITSTQQR N/A 2 NDB-
REG 

 

TGME49_108
860 

LAGAPGPSIVIPATSLLSK N/A 3 NR-
TAG 

 

TGME49_109
750 

GLVAAAKEVGFDKPVVLR N/A 5 NDB-
REG 

 

TGME49_109
750 

MPIDINQGISEPR M:+16 0 NR-
TAG 

 

TGME49_111
310 

LNDPITVVGDIHGQFYDLLK N/A 0 NDB-
TAG 

 

TGME49_111
470 

VTASGPQLTSVADLDTQFKEIP
DLVLR 

N/A 1 NR-
REG 

 

TGME49_113
230 

AALQAGQEVGDDEVTINIK N/A 0 NR-
TAG 

 

TGME49_113
410 

LQDPEPGVVALALQTLSVQLK N/A 1 NDB-
REG 

 

TGME49_113
410 

LQDPEPGVVALALQTLSVQLK N/A 4 NR-
TAG 

 

TGME49_114
740 

GAGFRTPAGVTVSLNPNEME
QEGVFTADVIR 

M:+16 4 NDB-
TAG 

 

TGME49_118
230 

LGIQDVGAQLTGK N/A 1 NR-
REG 
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Table 7:13 The table lists N-terminal candidate peptides, for a T. gondii dataset, with novel 
signal peptide cleavage obtained with the frayed database (chapter four). It provides a view 
on: the peptide sequence and the preceding residues, estimated FDR and current annotation 
status. 
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Table 7:14 The table lists PSMs (for T. gondii dataset), from the frayed database, for 
correcting the signal peptide cleavage site. For each peptide we can evaluate the preceding 
residues (Pre-AA) and compare the peptide starting position (PS) with the signal peptide 
cleavage site (SP site). 
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Table 7:15 The table lists PSMs (for T. gondii dataset) from the frayed database, for 
confirming the signal peptide cleavage site. For each peptide we can evaluate the preceding 
residues (Pre-AA) and compare the peptide starting position (PS) with the signal peptide 
cleavage site (SP site). 
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Table 7:16 The table here below shows the list of the N-terminal peptides (for T. gondii 
dataset) containing methionine at the N-terminus. It shows the sequence database entry and 
peptide identified in the first two columns. The third column “Start” represents the position 
of peptide within protein, while the fourth and fifth columns represent the eFDR score and 
the signal peptide (SP) sequence if predicted. 

Accession Peptide Start eFDR SP 
glimmerhmm|TG

ME49_chrIb_gene.2
51_rev_comp_3216 

METNHSGPEAAR 1 0.000137 N\A 

glimmerhmm|TG
ME49_chrIb_gene.3

2_forward_348 
MQPEEFAAAAR 1 0.0041596 N\A 

glimmerhmm|TG
ME49_chrIX_gene.
169_forward_1506 

MEGGAEHVER 1 0.000337 N\A 

glimmerhmm|TG
ME49_chrIX_gene.
726_rev_comp_1023 

MDPTVSLAAGAEPVAGE
KR 32 0.00028 N\A 

glimmerhmm|TG
ME49_chrVI_gene.
497_forward_1353 

MDASKKSEKDGAPAAPG
VSDIELISNR 1 0.0052851 N\A 

glimmerhmm|TG
ME49_chrVIIa_gen
e.235_forward_1653 

MEKLPTIILPGGKAVDETP
LSGR 1 0.0044926 N\A 

glimmerhmm|TG
ME49_chrVIIa_gen
e.500_rev_comp_91

8 
MFLTYVVRPGEAPEGR 1 0.0032259 N\A 

TGGT1_028510 MMMNNDPSPAR 14 0.0033403 N\A 
TGME49_002370 MNIATDEFGNPFIILR 1 0.0024026 N\A 
TGME49_002500 MYFTYVVR 1 0.0077205 N\A 
TGME49_002500 MYFTYVVRPGEAPEGR 1 0.0045446 N\A 
TGME49_005440 MIRPQGPVLVLKQNTKR 1 0.000163 N\A 
TGME49_005470 MVNFSVEQMR 1 0.0020068 N\A 
TGME49_009290 MEQPKLAKVEKVLGR 1 0.0042309 N\A 
TGME49_010840 MQALNVQVKEAFR 1 0.000745 N\A 
TGME49_011670 MFDDEFGEAFDPR 1 0.0019586 N\A 
TGME49_014440 MNTELLSLTDEPVILVR 1 0.0000557 N\A 
TGME49_016410 METLDEEKAEALLR 1 0.000464 N\A 

TGME49_017570 MEIDLLHPDPKVEASKHK
LKR 1 0.000715 N\A 

TGME49_018780 MEEADLSSLAATER 1 0.0015695 N\A 
TGME49_021470 MFNPNATMDWIR 64 0.000485 N\A 
TGME49_021630 MPPLEFEESFEV 2 0.0091932 N\A 
TGME49_025310 MDAQTASFFKQLR 14 0.000675 N\A 
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TGME49_026550 MIGSEEFWKTEADAPLLN
R 1 0.000577 N\A 

TGME49_029250 MVSSELLWQCVR 1 0.0025516 N\A 
TGME49_031850 MKSSAEIR 1 0.000576 N\A 
TGME49_032030 MQTDILEEHEQLMR 69 0.0068078 N\A 
TGME49_033680 MDTPTLDEAMTDSR 1 0.0021405 N\A 
TGME49_034450 MNVLADCLKTLVNAEKR 69 0.0000054 N\A 
TGME49_036570 MKAKMSHEALTETAR 1 0.0000133 N\A 
TGME49_036950 MNVLAYGTAEQR 1 0.000261 N\A 
TGME49_037140 MDQAATSAAASQR 1 0.0013254 N\A 
TGME49_040700 MEDHSQPR 1 0.0032165 N\A 

TGME49_042660 MIMEHDQEKLLDEASAV
VKEQAR 1 0.0089405 N\A 

TGME49_042730 MLAAAADANALSAAATK
SR 1 0.0052638 N\A 

TGME49_045460 MPVHQKKR 18 0.0018426 N\A 
TGME49_047460 MLEAKLQHASVLR 1 0.0041742 N\A 
TGME49_048390 MKFSSQVSSSR 1 0.000562 N\A 
TGME49_049250 MKKSGTKQPVR 1 0.000214 N\A 
TGME49_053820 MEGAKR 1 0.0080879 N\A 
TGME49_054140 MNVGGGGMGR 36 0.0033611 N\A 
TGME49_054900 METVIGIR 1 0.000313 N\A 
TGME49_055340 MEEAAFSMVR 1 0.000905 N\A 
TGME49_055900 MNVFEQYNQR 1 0.0031044 N\A 
TGME49_057090 MEEELTPEILAAR 1 0.0022829 N\A 
TGME49_057530 MESTEATMVER 1 0.0032109 N\A 
TGME49_058720 MIEVILNDR 1 0.00063 N\A 
TGME49_059240 MQNDEGR 1 0.000831 N\A 
TGME49_061030 MNPLSAALAAKPR 1 0.0046171 N\A 
TGME49_062670 MKADPTLQQKISQY 1 0.0000098 N\A 

TGME49_062670 MKADPTLQQKISQYQVVG
R 1 0.0016691 N\A 

TGME49_062690 MVKLLKSGR 1 0.0000231 N\A 

TGME49_062980 MNSADAASRPEAEGASG
R 1 0.000838 N\A 

TGME49_065180 MDAVMVVHQLQR 1 0.000329 N\A 
TGME49_067420 MTSGEEEDFYLR 1 0.0000436 N\A 
TGME49_068850 MVAIKDITAR 32 0.000969 N\A 
TGME49_070830 MDEKIVALNPNR 1 0.0024105 N\A 
TGME49_071440 MEKLVVLR 1 0.00019 N\A 
TGME49_073950 MLWVDKHAPR 1 0.000266 N\A 
TGME49_078540 MEQPGHPGSSVAPASGR 1 0.000483 N\A 
TGME49_089210 MDVEVTEEAQSR 1 0.0000663 N\A 
TGME49_089830 MRPLFLMGH 1 0.000574 N\A 
TGME49_089830 MRPLFLMGHAR 1 0.0051979 N\A 
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TGME49_093740 MDVAEEPQIQATADR 10 0.0015799 N\A 
TGME49_097970 MLGTSSAVAAALLEGGR 13 0.0000179 N\A 
TGME49_098970 MDPTLLLQEPLDIVR 1 0.0000164 N\A 
TGME49_099030 MEPGELIVHR 1 0.000451 N\A 
TGME49_100140 MKLLTPKDDVR 1 0.0021016 N\A 

TGME49_107810 MWSIFAPEALTSTSEPATK
PAGGATR 1 0.0014666 N\A 

TGME49_111240 MYFGSFPFGDDMR 1 0.000338 N\A 
TGME49_111310 MEPLADPLHDR 1 0.002797 N\A 
TGME49_115150 MKEAVAVPLASVEEKER 1 0.000145 N\A 

TGME49_118230 MLANKLGIQDVGAQLTG
KSVLIR 1 0.000261 N\A 

TGME49_120600 MEDQIQR 83 0.000253 

MGVSS
SKVFG
WGWF
SLHSR
ARSK 

TGME49_chrIX-
0R_2502455-
2502610-156 

MFALQDAEQLQLQR 1 0.0000048 N\A 

TGME49_chrVIII-
2F_1006917-
1007049-135 

MLLVGMTLVLLR 1 0.0035475 N\A 

TGME49_chrXI-
2F_578328-578976-

651 
MSLQTPEASAAASGTQSR

NFFCS 1 0.0063973 N\A 

TGME49_chrXII-
1R_6711199-
6711621-423 

MDTQNDVESAGR 100 0.000134 N\A 

TGME49_chrXII-
2F_6249996-
6250131-138 

MKNEFLGIR 1 0.0085351 N\A 
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Table 7:17 The table, here below, from T. gondii dataset shows candidate N-terminal 
peptides with NME pattern/ frequency (preAA), their start position within protein, eFDR 
score and signal peptide (SP if predicted). 

Accession Pre
AA Peptide Start eFDR SP 

dna.fa_293.lst-
chr_X-gene_4174 M AVKVLVPVAHDSEEIEA

VSIIDTLR 2 0.001133054 N\A 
dna.fa_31.lst-

chr_II-gene_4819 M STAATESDLDPTKGEGLF
VTLTSGFSKAR 2 0.006044464 N\A 

dna.fa_352.lst-
chr_XI-gene_5873 M SSLSVAAASPLAAAKSQ

WDAR 2 0.000092 N\A 
dna.fa_99.lst-

chr_V-gene_6989 M VAAGVSHGNR 2 0.0000156 N\A 
glimmerhmm|TG
ME49_chrIa_gene.
117_rev_comp_651 

M PELSTADAGVAVKENER 2 1.64E-08 N\A 

glimmerhmm|TG
ME49_chrIa_gene.
295_rev_comp_495 

M AAKQQER 2 0.004290744 N\A 

glimmerhmm|TG
ME49_chrIb_gene.
302_forward_681 

M ADAQVHSPQ 2 0.007640813 N\A 

glimmerhmm|TG
ME49_chrII_gene.2

26_forward_357 
M SKLMKGGLEGEEQR 2 0.00000695 N\A 

glimmerhmm|TG
ME49_chrIII_gene.
37_rev_comp_2334 

M AAEAGKKKSEPLSPDEV
TDLFR 2 0.004417482 N\A 

glimmerhmm|TG
ME49_chrIX_gene.
342_forward_654 

M ADILQENFQDLVHSPGG
GR 2 0.003105129 N\A 

glimmerhmm|TG
ME49_chrIX_gene.
444_rev_comp_152

7 
M AAAAPAVGGGIR 2 0.000636 N\A 

glimmerhmm|TG
ME49_chrIX_gene.
742_rev_comp_612 

M TFKKVVVIDCQGHLLGR 2 0.000000833 N\A 

glimmerhmm|TG
ME49_chrIX_gene.
782_forward_285 

M APKKTIVKKTKAKKDPN
APKRPLSAFIFFSKDKR 2 0.000119 N\A 

glimmerhmm|TG
ME49_chrIX_gene.
958_forward_4518 

M TDSNTNPALKFQR 2 0.002947293 N\A 

glimmerhmm|TG
ME49_chrVI_gene.

35_forward_306 
M SGIAVGLKR 2 0.002728356 N\A 

glimmerhmm|TG
ME49_chrVIIa_gen
e.178_forward_149

4 
M ASTKSGALPLFWSAAEL

AANPR 2 0.001135946 N\A 

glimmerhmm|TG
ME49_chrVIIb_ge M VSKNNVLPNVHLHKW

WQR 2 0.005501076 N\A 



 

 7-182 

ne.162_rev_comp_6
39 

glimmerhmm|TG
ME49_chrVIIb_ge
ne.261_forward_81

0 
M SGAASATTPPLAAQVQA

LLQAPELR 2 0.009711108 N\A 

glimmerhmm|TG
ME49_chrVIIb_ge

ne.321_rev_comp_2
49 

M ATSAKKSPSDFLQKVIGQ
R 2 0.001282555 N\A 

glimmerhmm|TG
ME49_chrVIII_gen
e.304_forward_990 

M APALVQR 2 0.003985192 N\A 

glimmerhmm|TG
ME49_chrXII_gene
.833_rev_comp_200

7 
M AVDSSNSATGPMR 2 0.00086 N\A 

TGME49_002870 M PSAEGNAATQGASYAS
MKVQELKDLLSQR 2 0.0000305 N\A 

TGME49_002980 M GTLKAPDRLR 2 0.008029858 N\A 
TGME49_003390 M AAPHER 2 0.001810441 N\A 
TGME49_003450 M TSKPESPQR 2 0.009114309 N\A 
TGME49_003810 M VTKAGSPSEDGPSR 2 0.002567807 N\A 
TGME49_005320 M AATVLATETQPR 2 0.0000632 N\A 
TGME49_005470 M VNFSVEQMR 2 0.000165 N\A 

TGME49_007770 M TSVTAVASGSPPAADDS
AKKLEELAAR 2 0.002342724 N\A 

TGME49_009030 MA DEEVQALVVDNGSGNV
KAGVAGDDAPR 3 0.008345375 N\A 

TGME49_009140 M SVVNVTNIR 2 0.001936967 N\A 
TGME49_009290 TFM ADETDLAGR 31 0.007815744 N\A 

TGME49_009910 M SGKGPAQKSQAAKKTA
GKSLGPR 2 0.000148 N\A 

TGME49_012290 M SNPAYLYETPLETR 2 0.003168262 N\A 
TGME49_013350 M ADAGDAAANQPKR 2 0.000192 N\A 
TGME49_013350 M ADAGDAAANQPKRR 2 0.005555759 N\A 
TGME49_013410 M ATVTPVNPKPFLTSLTGR 2 0.0000319 N\A 
TGME49_014260 M AQKGHTDAEAPDVR 2 0.0000359 N\A 
TGME49_014350 M APKKKEQAEEKILLGR 2 0.00118682 N\A 

TGME49_015470 M SKLSTDGLKKAIGEILEG
SR 2 0.00000192 N\A 

TGME49_015950 M AQSATTQLDSSAHR 2 0.0000158 N\A 

TGME49_016000 M SDAGTPPAVQGELSQPQ
ER 2 0.006309498 N\A 

TGME49_016050 M AHKTAGDPGR 2 0.001049028 N\A 

TGME49_016260 MA PSAATSAPQTPAGSTEA
R 3 0.000313 N\A 

TGME49_016450 M AGTGSGYDLSVSTFSPDG 2 0.002011987 N\A 
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R 

TGME49_016790 M APKQKKETEAVDDAR 2 0.000249 N\A 
TGME49_016810 M PLASTESAAPPESDR 2 0.000497 N\A 

TGME49_016860 M 
TTLEQNPADELVDYEED
EQNDAKEKGVEDVVVG
R 

2 0.000917 N\A 

TGME49_017460 M ALSPGAVLR 2 0.000506 

MALSP
GAVLRI
TRLASL
PPLSTV
TDVVL

AY 
TGME49_018210 MS SVKVAVR 3 0.002393191 N\A 
TGME49_018410 M AGPKGKSDKR 2 0.000051 N\A 

TGME49_018820 M ADVAAAPAPNATSQAA
NSTEGDAAAGSAR 2 0.004772766 N\A 

TGME49_019690 M AKPNDLAGLEKALNKN
DKIDLAR 2 0.00000814 N\A 

TGME49_019690 M AKPNDLAGLEKALNKN
DKIDLARTDTFVER 2 0.000581 N\A 

TGME49_019800 M AAQAAKADAALAH 2 0.000168 N\A 

TGME49_019800 M AAQAAKADAALAHAA
AASR 2 0.0000288 N\A 

TGME49_019800 MA AQAAKADAALAHAAA
ASRD 3 0.004518653 N\A 

TGME49_019850 M ATNSDVSVLSAEEQR 2 0.00000535 N\A 
TGME49_020140 M AGPPAVSEQHR 2 0.000243 N\A 
TGME49_020400 M ASGMGVDENCVAR 2 0.0000184 N\A 
TGME49_021950 M SASLLEHLR 2 0.008806594 N\A 

TGME49_022970 M STVNPADAVGEAKPGPE
VTVEFVQAIAR 2 0.004839344 N\A 

TGME49_024900 M AAPSGKR 2 0.002228297 N\A 
TGME49_025050 M AEQSKVKDLTLSAFGR 2 0.000000285 N\A 
TGME49_025080 M SIQVSNNQDFQHILR 2 0.0000973 N\A 
TGME49_026680 M ATLAASSAAGPPSSR 2 0.001461294 N\A 
TGME49_026970 M ATADVQTER 2 0.0000403 N\A 
TGME49_026980 M SSWEDEADEILEAEER 2 0.001386147 N\A 
TGME49_029250 M VSSELLWQCVR 2 0.000851 N\A 
TGME49_029360 M PQSKKR 2 0.001490024 N\A 
TGME49_029490 M GGVSKAKGATR 2 0.008511908 N\A 

TGME49_029930 M SIAGVFQSYTQGKGDMD
SR 2 0.000393 N\A 

TGME49_029990 M ALAIFGDR 2 0.000854 N\A 

TGME49_031140 M APKEKKTKEQIAAAAA
AGSR 2 0.0000297 N\A 

TGME49_032030 M TDETEPQEQMPLPEPPES 2 0.001496409 N\A 
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ITQR 

TGME49_032230 M AKKAKKSGSEGINSR 2 0.000000516 N\A 
TGME49_032410 M SQPVFASPLNVEKR 2 0.0000083 N\A 
TGME49_032550 M SAAVDAQAVPLGGQR 2 0.000921 N\A 
TGME49_032710 M AIGKNKR 2 0.006409937 N\A 

TGME49_032940 TRM 
SCCGGTVAEHEVVLDN
TGDMDEMLPDQLIPSVP
R 

9 0.000513 N\A 

TGME49_033200 M GDSPSPDPPETFR 2 0.001126748 N\A 
TGME49_033410 M VKVKVIHR 2 0.002065637 N\A 
TGME49_035470 M ASKTTSEELKTATALKKR 2 0.001950849 N\A 
TGME49_035930 M AQEEAEDVKMDR 2 0.000322 N\A 

TGME49_035970 M ANATTDHLRPQDLETLD
ISKLTPLSPDVISR 2 0.000000034 N\A 

TGME49_036570 AK
M SHEALTETAR 6 0.003433355 N\A 

TGME49_038950 M ALLTEIAALWVR 2 0.0000182 
MALLTE
IAALW

VRDLLR
RTLGG 

TGME49_040500 M ANIDSTAANTNR 2 0.000543 N\A 
TGME49_042330 M ATEAKLFGR 2 0.000877 N\A 
TGME49_042340 M TNLFNTRPKKFGPGSR 2 0.005137833 N\A 

TGME49_042380 M APTIVDAPLIQLLADGY
GQYR 2 0.007307383 N\A 

TGME49_044650 M ALVNIPR 2 0.001249253 N\A 
TGME49_045610 M AETALYYQELSR 2 0.001376772 N\A 

TGME49_047510 HT
M 

AASGHPIPELGEFIIANK
EKLR 33 6.88E-08 N\A 

TGME49_048340 M AAAAAQAVPEFKLILVG
DGGVGKTTLVKR 2 0.0000597 N\A 

TGME49_048370 M SQEQLTEAMR 2 0.002419961 N\A 
TGME49_050830 M APGVTQAEFQR 2 0.000213 N\A 
TGME49_051550 M ASQEEFER 2 0.003222488 N\A 
TGME49_051620 M GIKGLGKFVGDFAPR 2 0.0000146 N\A 
TGME49_051690 M TIDVNLLR 2 0.003146296 N\A 
TGME49_051810 M SDAEDVTFETADAGASH 2 1.34E-08 N\A 
TGME49_053700 M VAADAHPR 2 0.002529116 N\A 

TGME49_053730 M 
SAAPAAGGAPGDLQAL
AAQLPLASLLEETLAAN
PAAIR 

2 0.004412633 

MSAAP
AAGGA
PGDLQ
ALAAQ
LPLASL
LEETLA

A 
TGME49_054120 M PSIRDEVSFEKR 2 0.004330414 N\A 
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TGME49_054390 M SAATSPSGLPEQPATVH
ADDFR 2 0.002144606 N\A 

TGME49_054440 M APKFDPSEVKYIYLR 2 0.001481504 N\A 

TGME49_054520 M ASSKPGGASKAGVDAV
QEISMMAR 2 0.005948032 N\A 

TGME49_055890 M VSLSGTLNGEEALER 2 0.000995 N\A 
TGME49_056050 M VLADNNVFLEELGR 2 0.001670713 N\A 
TGME49_057310 M VDYSKWER 2 0.005911399 N\A 
TGME49_057480 M SSAFTDTTASSIAKTR 2 0.000078 N\A 

TGME49_057740 DA
M AATNTIESGTTR 16 0.000404 N\A 

TGME49_057750 M PHAGFTDDILLLDGGLG
THLR 2 0.00000086 N\A 

TGME49_058070 M AEALEAERPEGAFR 2 0.008811688 N\A 

TGME49_058170 M TDNAQTTSAEAGAANP
SGEHPSAGAKR 2 0.000208 N\A 

TGME49_059630 M AEQSEVTR 2 0.006316285 N\A 
TGME49_059660 M SSGNLSVSR 2 0.0000946 N\A 

TGME49_061240 AP
M SGGIKKPHR 33 0.001517565 N\A 

TGME49_062480 M SEVEETLNR 2 0.007857869 N\A 
TGME49_062620 M PADEQQQQLPR 2 0.0000324 N\A 
TGME49_062690 M VKLLKSGR 2 0.000677 N\A 
TGME49_062720 M PKNKGKGGKNR 2 0.00000724 N\A 

TGME49_062730 RY
M SFEEAQKASEAAKR 27 0.000149 

MKVTT
KGLAF

ALALLF
CTRCAT

AR 
TGME49_063080 M PAPAASGAAAVLSKDIA

R 2 0.00000612 N\A 

TGME49_063530 PK
M AANAASKFIPLLDR 24 0.0007 N\A 

TGME49_063700 M APKKSAKAATGEEGEA
QGSGLGPATR 2 0.000000005 N\A 

TGME49_063720 M AKDAAAGEEKKR 2 0.0000174 N\A 
TGME49_063850 M SYNPSYGGQFQGLNAAR 2 0.000000831 N\A 

TGME49_064450 M APAVLMVAEKPSIAETIA
R 2 0.000554 N\A 

TGME49_066460 M SDDKKDDAGEKEHMQL
KVR 2 0.002134891 N\A 

TGME49_067400 M APVSTVKR 2 0.000993 N\A 
TGME49_067420 M TSGEEEDFYLR 2 0.00000693 N\A 

TGME49_068850 NK
M VAIKDITAR 33 0.000129 N\A 

TGME49_073460 M SGEGQVADAGSLPVEKR 2 0.001042676 N\A 
TGME49_073900 M ANSGINWPGLYR 2 0.000151 N\A 
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TGME49_075750 M SGGVMSNKKLQKIMTQ
PINLIFR 2 0.001599131 N\A 

TGME49_075810 M TVPGMKFSLIPKANR 2 0.0000749 N\A 

TGME49_077510 M ASMSSAEASGALPAAGE
HELLQEQQR 2 0.000419 N\A 

TGME49_078530 M SFQDWTPVSWNKTGQR 2 0.000901 N\A 
TGME49_078950 M VLPLTLLR 2 0.000196 N\A 
TGME49_079400 M AETLASEAH 2 0.000093 N\A 
TGME49_079400 M AETLASEAHVAEWADR 2 0.00000545 N\A 

TGME49_079430 M TQRPLDYLDVGEHSQVI
LR 2 0.000706 N\A 

TGME49_079450 M AVSVEGSQDER 2 0.001969912 N\A 

TGME49_080550 M AGLSVSGVALLDSEGER 2 0.000103 
MAGLS

VSGVAL
LDSEGE 

TGME49_080750 M SHTILLVQFSDR 2 0.0000639 N\A 
TGME49_085510 M SGDSVAPHQR 2 0.000548 N\A 

TGME49_086750 M ASNKALGKKMSLLEEEL
R 2 0.000177 N\A 

TGME49_089600 M ADSSGPGDAR 2 0.000063 N\A 
TGME49_089690 M VCKLGINGFGR 2 0.0000141 N\A 

TGME49_090200 M GAPSPVAAGVAAR 2 0.000236 

MGAPS
PVAAG
VAART
KSPLLT
VCVCG
GGNSA
HAVAA 

/ 
MGAPS
VAAGV
AARTKS
PLLTV 

TGME49_090290 M ATPQESSGAAAHIDTDL
YSR 2 0.003491643 N\A 

TGME49_090850 M ATNLEIDSADVIR 2 0.000425 N\A 

TGME49_090890 M AKKVALVTGGNKGIGF
GVTR 2 0.0000347 N\A 

TGME49_091330 M TQSMLDMSLDDIVAAH
R 2 0.000147 N\A 

TGME49_093580 M ALAAASSASASSDQKR 2 0.0000157 N\A 
TGME49_094800 M GKEKTHINLVVIGH 2 0.000805 N\A 
TGME49_095040 M ATAGQTDEGDR 2 0.000184 N\A 
TGME49_095730 M ATDSQAPASR 2 0.000273 N\A 

TGME49_097060 GN
M AKAKYTLVLIR 15 0.000147 N\A 

TGME49_097500 M SHLLNAPIILLKDGVDTS
QGR 2 0.0000353 N\A 
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TGME49_100040 NK
M AGSTISNHQVSSNR 5 0.000404 N\A 

TGME49_104710 M ASDGDVDTNIEQWKIKR 2 0.000095 N\A 

TGME49_104760 M ATTSLEEEEYMEGERDE
GWGEAGEQR 2 0 N\A 

TGME49_105030 M ALDTPATSLAAR 2 0.00736 N\A 
TGME49_105050 M SSVEQKAR 2 0.00071 N\A 

TGME49_105160 M VAKKSAKSAKPKASGKS
GKGKKKR 2 0.00002 N\A 

TGME49_105290 M AMDDAEAQR 2 0.00049 N\A 

TGME49_105510 M AVAKLDGKTLPALR 2 0.00676 

MAVAK
LDGKTL
PALRLA
LCGEG
NAVTT
WWAA
MLLQS

AAFEVV
AAW 

TGME49_105820 M AATEQKRPQETSISR 2 0.00116 N\A 
TGME49_108050 M AISSALIQQR 2 0.00025 N\A 

TGME49_109120 M 
ATARPLVSVYKPEDGTA
SGTSLMPSVFLSPLRPDL
VR 

2 0 N\A 

TGME49_109820 M VKKGEENPMR 2 0.00313 N\A 

TGME49_110030 GT
M AKTGAEQLELHGDTWR 38 0.00298 N\A 

TGME49_110070 M TAYGKVDYWDER 2 0.00006 N\A 
TGME49_110640 M SELKGKNIFLTPDGR 2 0.00257 N\A 

TGME49_110860 M ALVAANAAGAALSVAP
ADAPSALAQNAR 2 0.00003 

MALVA
ANAAG
AALSV
APADA
PSALAQ 

TGME49_111690 M TMEGQQDLTVIPPLSHQ
DADRR 2 0.00001 N\A 

TGME49_112200 M AEGEGVSGEAATSQDTR 2 0.00001 N\A 
TGME49_112530 M GDLDFDEVEKLLDSR 2 0.00052 N\A 
TGME49_113100 M VLAELGEQISGALR 2 0.00062 N\A 

TGME49_113260 M SGTGGAGSGPLGSAGGA
R 2 0.00772 N\A 

TGME49_113390 M APTAAALAKKR 2 0.00034 

MAPTA
AALAK
KRLRTR
KPKRQL
YKSPAG
AAKRM
AKLRSSI
TPGTVL
ILLSGG
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HRGK / 
MAPTA
AALAK
KRLRTR 

TGME49_113390 MA PTAAALAKKR 3 0.00203 

MAPTA
AALAK
KRLRTR
KPKRQL
YKSPAG
AAKRM
AKLRSSI
TPGTVL
ILLSGG
HRGK / 
MAPTA
AALAK
KRLRTR 

TGME49_113560 M ANEDGETAASKMTYLSP
IASPLLDGKSLR 2 0.00005 N\A 

TGME49_114070 M AAAAEKVAYGPEDEAR 2 0 N\A 

TGME49_115110 M AAIAAGAASQAPR 2 0 

MAAIA
AGAAS
QAPRSP
ASLASL
SLQQLV

GV 

TGME49_115110 MA AIAAGAASQAPR 3 0.00076 

MAAIA
AGAAS
QAPRSP
ASLASL
SLQQLV

GV 
TGME49_115270 M APKKKGISVNLR 2 0.00931 N\A 
TGME49_115610 M VAKKAKTGPASR 2 0.00004 N\A 
TGME49_115780 M SNVVRPIKLQEQHLR 2 0.00032 N\A 
TGME49_118410 M VSIVNAKADVLR 2 0.00115 N\A 
TGME49_118750 M ATEQIYKQFTSR 2 0.00053 N\A 
TGME49_119730 M AFGSSSSSER 2 0.0006 N\A 

TGME49_120020 M AAAQETAMVVPNGSGL
ELQNR 2 0.00001 N\A 

TGME49_120050 M AFVKALKNKA 2 0.00049 N\A 
TGME49_120050 M AFVKALKNKAY 2 0.00072 N\A 
TGME49_120050 M AFVKALKNKAYFKR 2 0.00375 N\A 

TGME49_120570 M SGFVFNPNASVFVPGGV
SSAPPPPPPASEDPAR 2 0.00049 N\A 

TGME49_chrIb-
0F_1400812-
1401393-582 

MA PPAVTQSPGQR 3 0.00077 N\A 

TGME49_chrIII-
1F_412433-412749-

318 
M SATEAAQALKAKGN 2 0.00324 N\A 
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TGME49_chrVIIb-
0R_4431405-
4431836-432 

M ASKQPQTLSAGAVESGR 2 0.00178 N\A 

TGME49_chrVIII-
0F_2098510-
2098746-237 

CM
K 

TLEEKLAAAKELQATKA
AR 23 0 N\A 

TGME49_chrVIII-
1F_2235251-
2235471-222 

KL
M ELHGEAEDVGR 45 0.00113 N\A 
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