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Abstract 

This thesis investigates the relationships between gaze control, body 

segment coupling, and foot pressure patterns during walking, and discusses 

the resulting implications for both modern humans and our evolution. One of 

the major changes thought to underlie the transition between 

Australopithecus and Homo is the decoupling of the head and shoulders, and 

trunk and hips. The independent rotation of these segments enables greater 

control of the torque and free moments resulting from leg swing, and is 

considered key in the control of bipedal locomotion. Fossil evidence of 

semicircular canal morphology (Spoor et al., 1994) also indicates congruent 

changes in the vestibular system, which alongside the ability to track moving 

objects with clarity using smooth pursuit eye movements, are likely to have 

been fundamental to sensory integration and prioritisation during locomotion.  

 

This research therefore assesses how the increased neurological 

demands of active visual tracking in environments of varying visual 

complexity, and the artificial recoupling of body segments, impact on foot 

pressure variability during locomotion in modern man. The results 

demonstrate that foot pressure variability appears unaffected by larger levels 

of background visual clutter when tracking using smooth pursuit eye 

movements - variability appears to be higher in very low levels of visual 

clutter when there is a relative absence of visual referents. This variability 

was found to further increase when undertaking a secondary auditory task 

whilst compared to visual tracking alone. When considering the effects of 

experimental recoupling of body segments, an increase in foot pressure 

variability was also observed when compared to natural unrestricted walking, 

with increased arm and leg swing appearing to compensate for reduced hip 

and shoulder rotations.  

 

These changes in foot pressure variability indicate less consistent gait 

patterns, and suggest the utilisation of postural correction mechanisms, such 

as the lateral ankle strategy, to remain stable. The normal ageing process, 

and resulting joint stiffness and visual, vestibular, and cognitive decline, may 
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be expected to exacerbate such variability increasing the likelihood of falls. 

This research therefore not only contributes to the understanding of potential 

locomotor strategies in early hominins, but also has significant implications 

for the safety of the elderly and infirm during locomotion, particularly with 

respect to the built environment. 
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1 Introduction 

1.1 Postural Control in Modern Humans 

Postural control can be defined as the control of the position of the body 

in space in order to maintain stability and orientation (Shumway-Cook and 

Woollacott, 2000b). In this respect, orientation refers to the relationship between 

the segments of the body, and also the relationship between the body and the 

environment (Horak and Macpherson, 1996). Stability, or balance, refers to the 

ability to maintain the body in equilibrium: in other words, its movement is not 

significantly altered from the desired trajectory.  

The maintenance of postural control therefore requires the integration of 

the central nervous system, musculoskeletal system, and sensory systems in 

order to generate an appropriate motor response. The highly complex 

interactions between these systems can be broken down into seven 

components to build a model of the postural control system (Cech and Martin, 

2012). This includes limits of stability, sensory organisation, eye-head 

stabilisation, the musculoskeletal system, motor coordination, predictive central 

set, and environmental adaptation. 

The perimeters of the base of support define the typical limits of 

stability. When body weight is maintained above the base of support 

(Shumway-Cook and Woollacott, 2000b) i.e. the centre of the body’s total mass 

is balanced above the area of the body in contact with the ground, posture can 

be maintained. Different postures have a different base of support. During quiet 

stance for example, the circumference of the circular area defined by anterior-

posterior and medio-lateral sway over the ankles can be thought of as a ‘cone of 

stability’ which represents the limits within which standing posture can be 

maintained (Martin and Kessler, 2000). 

Sensory organisation is a critical component of the postural control 

system, with the visual, vestibular, and somatosensory systems essential in 

providing information regarding movement of the body and its position in space 
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in order to cue appropriate postural responses. Somatosensation, the combined 

sensory inputs of touch and proprioception (McKeon and Hertel, 2007), provides 

information from the lower limbs with regard to changes in pressure distribution 

under the feet (McKeon and Hertel, 2007), the length and tension of muscles, 

and activity at the ankle joint (Bray et al., 1999). The visual and vestibular 

systems are also crucial in providing information regarding movement of the 

environment and the head respectively. As the eyes must be able to maintain 

stability of the visual scene at all times, including as the head moves, the two 

act concurrently to ensure eye-head stabilisation so that vision is accurate and 

the head is stable in space (Cech and Martin, 2012). The importance and 

integration of all of the above senses is explored in more detail in chapter 1.3.  

The musculoskeletal system is a highly complex mechanically linked 

system containing many muscles, joint, tendons, and ligaments. Normal muscle 

tone, the force with which a muscle resists being lengthened, is naturally 

present, and many muscles of the body are tonically active during quiet stance 

(Basmajian and De Luca, 1985). This includes the soleus and gastrocnemius 

since the line of gravity falls slightly forwards of the knee and ankle, and the 

thoracic erector spinae of the trunk because the line of gravity falls forwards of 

the spinal column (Basmajian and De Luca, 1985). As such, motor 

coordination is key in coordinating the appropriate activation of such muscles 

to preserve posture. This includes the use of muscle synergies, a functional 

coupling of a combination of muscles such that they act together as a unit, 

hence reducing the demands on the central nervous system (Shumway-Cook 

and Woollacott, 2000b). It also includes specific locomotor strategies aimed at 

maximising balance.  Examples of both of which are described in chapter 1.4 

below. 

Such motor synergies can also be guided by the predictive central set. 

This internal representation of the dynamics of specific movements  can be 

utilised as a guide to prepare an appropriate response (Horak et al., 1989),  for 

example when catching or throwing an object, or sitting or rising from a chair. 
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All of these factors of course ultimately depend on the exact environment 

and task at hand, and hence environmental adaptation is also an important 

component of postural control. For instance, if one sense is not providing 

accurate information regarding the position and movement of the body, then the 

input of the other senses will become more important (Horak and Macpherson, 

1996). For example, somatosensory information will be less reliable on slippery 

or unstable surfaces, and therefore visual and vestibular information is likely to 

be more heavily relied on. 

 

1.2 Types of Postural Control 

Within this postural control system, four types of postural control have 

been defined: static, reactive, and anticipatory and adaptive postural control. 

Static postural control refers to the maintenance of the body’s centre of mass 

within the limits of the base of support (Shumway-Cook and Woollacott, 2000b). 

During quiet standing, postural control is considered static, although static 

posture in itself involves a natural degree of sway over the ankles as we 

maintain balance.  

Reactive postural control compensates for unexpected perturbations to 

the centre of mass that might place it outside the base of support (Nashner, 

1980). Depending on the magnitude of the perturbation, different postural 

movement responses are produced in response to the perturbation (Horak and 

Nashner, 1986). For example if the centre of mass was to be displaced to the 

left due to a slip, the weight shift over the left foot would be detected and 

automatic postural responses adjust posture to bring the centre of mass back to 

the right and into alignment with the base of support.  

Anticipatory postural control includes postural adjustments that are 

made in anticipation of an upcoming task. In these instances, the central 

nervous system forms a sensorimotor plan for the actions required based on 

prior experience of similar tasks (Shumway-Cook and Woollacott, 2000b). For 
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example, when planning to lift a heavy object we are aware of the load from 

prior experience, and hence can prepare our posture to be able to cope 

accordingly. In order to do this, information regarding the upcoming event based 

on past experiences is fed forward to the muscles involved in controlling posture 

and load distribution through the predictive central set to enable them to prepare 

for the action. 

Finally, adaptive postural control allows for changes to be made to 

posture in response to current need (Cech and Martin, 2012), for example 

during environmental adaptation as described above. 

The maintenance of stability therefore requires a delicate balance of 

systems to maintain a constant position of the centre of mass and minimise its 

displacement (McCollum and Leen, 1989). The vertical projection of such forces 

is known as the centre of pressure. The net centre of pressure lies between the 

feet during double support; however there is also a separate underfoot centre of 

pressure for each foot (Winter, 1995). Analysing the path of the underfoot centre 

of pressure can therefore provide considerable insight into how the body has 

maintained stability; for instance through the relocation of the centre of mass by 

coordinated movement of different body segments.  

1.3 Sensory Inputs and Postural Control 

1.3.1 Visuo-vestibular 

Visual and vestibular inputs provide information about the position of the 

head relative to the environment. During locomotion, the eyes can be subjected 

to changing acceleration within a step cycle resulting in considerable vertical 

linear translation and rotations of the head. This occurs during natural 

locomotion on the ground and in treadmill experiments (Moore et al., 1999). 

Acceleration of the head is attenuated to about 23% of the horizontal 

acceleration of the hip in young, healthy adults (Winter, 1991), and stabilisation 

of the head with respect to the environment has been shown to be precise  

during walking, and even running and hopping (Pozzo et al., 1990). By 
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restricting angular motions of the head, the ocular compensation required to 

maintain gaze stabilisation is also reduced. Thus, the body is able to maintain 

both balance and visual acuity during locomotion in a complex environment.  

The importance of visual information in the control of standing balance 

has been known for many years, with the increased magnitude of postural sway 

observed when the eyes are closed argued to demonstrate the importance of 

visual inputs (Lee and Lishman, 1975, Edwards, 1946). However, more recently 

vision has been shown to take on an even greater role during locomotion due to 

the clear need to avoid obstacles and navigate safely (Grasso et al., 1998, Patla 

and Vickers, 1997). It therefore appears that by utilising information from ‘optic 

flow’ - the pattern of perceived motion of objects, edges, and surfaces in the 

visual field (Gibson, 1954) - gait characteristics such as speed (Konczak, 1994) 

and stride length (Prokop et al., 1997) are appropriately modulated for a 

situation or task at hand. Indeed, vision is the only sensory modality that can 

provide information concerning distant environmental features – hence, it can be 

used in a feedforward manner to make postural adjustments for upcoming 

obstacles and changes in direction (Hollands et al., 2002). This predictive and 

anticipatory role has been demonstrated in several situations, for example when 

making anticipatory eye movements prior to making a turn (Grasso et al., 1998), 

and when approaching (but not when stepping over) an obstacle (Patla and 

Vickers, 1997).  

To be able to make such anticipatory adjustments however, the visual 

input has to be highly accurate. Therefore, in order to maintain visual acuity, a 

variety of volitional and reflexive eye movements are employed in order to track 

objects of interest and stabilize gaze upon them. The reflexive eye movements 

are the phylogenetically oldest and evolved in order to focus objects of interest 

on the retina as a whole. This includes the vestibulo-ocular reflex. The role of 

the vestibulo-ocular reflex is to generate compensatory eye movements in 

response to head movements, and thereby maintain a stable image and 

preserve visual acuity (Paige and Seidman, 1999). To achieve this, the 
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vestibulo-ocular reflex consists of components that compensate for both 

translational and rotational motions of the head. The translational vestibulo-

ocular reflex is the phylogenetically younger of the two reflexes, and is only well 

described for humans and primates (Liao et al., 2010, Angelaki et al., 2000, 

McHenry and Angelaki, 2000). It is generally considered that the functional goal 

of the translational vestibulo-ocular reflex is to reduce retinal image slip, and 

reduce binocular disparities occurring in self-motion (Hess and Angelaki, 2003, 

McHenry and Angelaki, 2000). 

Unlike the translational vestibulo-ocular reflex, The rotational vestibulo-

ocular reflex is highly conserved throughout evolution (Angelaki, 2004), and is 

called upon to stabilise the whole of the visual field on the retina during head 

rotations by rotating the eyes in parallel with the axis of head rotation.  

The optokinetic reflex is another highly conserved primitive motion 

sensing reflex that maintains a constant retinal position for images during 

movement. The optokinetic reflex can be observed in the majority of vertebrates 

with a mobile head or eyes  (Huang and Neuhauss, 2008, Walls, 1962) and also 

in some invertebrates (Land, 1999). However, as it occurs over the entire retina, 

there is a resultant lack of visual acuity; thus it cannot provide information as to 

object identity.  In humans the response is dominated by the more recently 

acquired fast optokinetic reflex (Cohen et al., 1981). The fast optokinetic reflex 

is closely associated with smooth pursuit eye movements (Barnes, 1993), the 

higher gain of which enables much more effective retinal image stabilisation 

(see below). 

Other volitional eye movements evolved with the evolution of the fovea, 

the area of the retina where acuity is greatest (Carpenter, 1988), in order to 

extract more detailed information regarding the environment. The fovea is 

extremely small, with an angular diameter of just 0.3 and 2°; thus, the foveal 

depression only accounts for 1/4000th of the retinal surface (Steinman, 2003). 

Hence the maintenance of an image on the fovea requires complex oculomotor 

control. Saccades are rapid step-like movements of the eye that redirect the 
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fovea to an object of interest, and hence ensure high clarity (Carpenter, 1988).  

As saccadic movements are not entirely accurate at about 5-10% of saccadic 

amplitude (Kowler and Blaser, 1995), they are often very quickly supplemented 

by smaller corrective saccades to ensure that the object is fully fixated.  

Furthermore, even when the eyes are fixed on the target, microsaccades of less 

than 0.5 degrees ensure that visual perception does not fade (Martinez-Conde 

et al., 2000) 

Saccadic movements are also a vital component of smooth pursuit eye 

movements. These smooth pursuit movements are essential in order to 

maintain moving objects on the fovea, and enable the eye to track moving 

targets smoothly and with clarity (Carpenter, 1988). When compared to 

saccadic movements, which are known to reach velocities of up to 700°/s 

(Carpenter, 1988), smooth pursuit eye movements are much slower (Robinson, 

1981) initiating around 90-150ms after target movement (Rashbass, 1961). As a 

result of this latency, the point of eye fixation is left lagging behind the target 

despite the fact that eye and target velocity are matched. Consequently, without 

an initial saccadic component driven by target offset, smooth pursuit eye 

movements are unable to centralise the target image on the fovea. Indeed, 

smooth pursuit will only work alone for target velocities up to 15°/s, beyond 

which it must be supplemented by saccades. For target movements greater 

than 100°/s, pursuit movements are entirely saccadic (Land, 2006). It has been 

known for some time that smooth pursuit eye movements can be influenced by 

learning, and hence are subject to predictive components. For example, studies 

have demonstrated that after repeated presentation of a moving target, when 

followed by a presentation in which the trajectory is unexpectedly changed, 

smooth pursuit eye movements continue along the path of the previous 

movement of the target until the conflict has been registered (Barnes and 

Asselman, 1991). 
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1.3.2 Somatosensation 

Visual and vestibular inputs are also supplemented by somatosensation 

which includes both the tactile and proprioceptive systems (McKeon and Hertel, 

2007). The tactile system is associated with the senses of touch, vibration, and 

pressure, detected by mechanoreceptors including Merkels cells, Pacinian 

Corpuscles, Meissner’s Corpuscles, and Ruffini endings (Bray et al., 1999). As 

these cutaneous receptors are found within the feet, and hence are found at the 

interface between the body and the ground, they are considered important in the 

control of upright posture (Kavounoudias et al., 1998). Indeed, studies that have 

attempted to disrupt feedback from such receptors have demonstrated their 

contribution to the control of balance: for instance, research has shown that 

when vibration is applied to the soles of the feet during standing that involuntary 

whole body tilt is induced (Kavounoudias et al., 1998). Furthermore, studies 

have shown similar effects when cooling (McKeon and Hertel, 2007) or 

anaesthetising (Meyer et al., 2004) the receptors on the soles of the feet, 

reporting an observed decrease in postural stability.   

Proprioceptive inputs include the sensations of changes in muscle length, 

muscle tension, and joint angles (McKeon and Hertel, 2007), and are measured 

by muscle spindles, joint afferents and Golgi tendon organs (McKeon and 

Hertel, 2007). Proprioceptive inputs provide feedback that is considered critical 

for automatic balance responses (Van Deursen and Simoneau, 1999, 

Kavounoudias et al., 1998): for example receptors in the legs provide 

information that can maintain posture via strategies discussed in more detail in 

chapter 1.4. 

The importance of somatosensation to such postural control mechanisms 

is highlighted both when it is reduced and increased: for example, in neuropathy 

a decline in balance control is observed (Van Deursen and Simoneau, 1999), 

whereas light fingertip touch to a stable surface is sufficient to reduce postural 

sway (Jeka and Lackner, 1994). 
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1.4 Motor Mechanisms for Postural Control 

1.4.1 Reflexes and Muscle Synergies 

Thus, after sensory inputs have been weighted depending on the 

environment, a range of automatic motor responses are generated to maintain 

balance. Inputs from the visual, vestibular, and somatosensory systems all 

influence ‘postural tone’: that is, the background activity of antigravity muscles 

that ensure the maintenance and fine-tuning of upright posture (Shumway-Cook 

and Woollacott, 2000b). For example, for continual fine tuning of posture, the 

vestibular inputs alter the distribution of postural tone in the neck and limbs in 

order to stabilise the head, and by association stabilise gaze.  

This is achieved by two reflexes, the vestibulo-spinal reflex and the 

vestibulo-collic reflex (Massion and Woollacott, 1996). The vestibulo-spinal 

reflex consists of two sub-pathways, the lateral vestibulo-spinal tract and the 

medial vestibulo-spinal tract. The former stabilises upright posture through 

innervation of the extensor muscle of the legs (Pompeiano, 1972); the latter 

stabilises the position of the head in space through mediation of the vestibulo-

collic reflex (Wilson and Schor, 1999, Iwamoto et al., 1996).  Further, the 

somatosensory inputs in the neck also contribute to head stabilisation. The 

afferent sensory changes caused by changing neck position generate 

compensatory contractions though the cervico-collic reflex (Goldberg and 

Peterson, 1986) in order to stabilise the head on the body. 

However, when the centre of mass is subject to a larger perturbation, the 

actions of motor synergies are required to correct balance. For smaller 

disturbances to the centre of mass, ‘in-place’ strategies can be employed 

immediately during the same step in which the disturbance has taken place, and 

hence can quickly correct imbalance. One such strategy is the ankle strategy, 

historically, one of the first patterns for the control of anterior-posterior sway to 

be identified. It has been known for some time that through movement centred 

around the ankle joint, the muscles of the ankle, knee, and hip act 
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synergistically to correct for anterior-posterior instability (Nashner, 1977). 

Following detection of forward sway perturbation through somatosensory 

receptors in the legs and feet, activation of the gastrocnemius occurs at around 

100 ms producing a torque to slow and reverse the forwards acceleration, which 

is then followed by activation of the hamstrings and paraspinal muscles to 

extend the hip and knees (Horak and Nashner, 1986). In response to backwards 

sway, the anterior tibialis is activated first, followed by the quadriceps and finally 

the abdominals.  More recently, a lateral ankle strategy has also been proposed 

in which modulation of foot rollover is argued to be important in helping to 

quickly regain centre of mass stabilisation during medio-lateral perturbations, 

but also in fine-tuning through compensating for inaccurate foot placement  (Hof 

et al., 2010).  Another strategy that can be used in-place is the hip strategy 

(Horak and Nashner, 1986).  Use of ankle strategies requires force generation 

in the muscles of the ankle joint and is most effective when on a stable support 

surface and the perturbation is small (Shumway-Cook and Woollacott, 2000b) 

Another strategy that may be employed to counteract anterior-posterior 

imbalance is the hip strategy. The hip strategy produces large and rapid 

counter-acting motion at the hip, and may be implemented when perturbations 

are faster or larger or occur on unstable supports (Horak and Nashner, 1986). 

To counteract forward sway, the abdominals are first activated followed by the 

quadriceps. In instances of backwards sway, the paraspinal muscles are first 

activated followed by the hamstrings (Horak and Nashner, 1986).  Both muscle 

synergies bring the centre of mass back into alignment with the base of support. 

However, when in-place strategies are insufficient in maintaining balance, 

the only solution is to correct at the next step. By taking a step, the support base 

can be realigned under the centre of mass, thus the stepping strategy is 

therefore used during particularly large perturbations that move the centre of 

mass out of the base of support (Nashner, 1989). That said, stepping responses 

have also been observed in situations where the centre of mass is still within the 
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base of support and before the limits of stability are reached (Brown et al., 1999, 

McIlroy and Maki, 1993). 

1.4.2 Human Gait and Balance Adaptations 

Various combinations of the afore-mentioned strategies are used during 

standing posture, depending upon the boundaries in which they can safely be 

used (Horak and Nashner, 1986). However, balance is yet further compromised 

during locomotion. During 40% of the gait cycle the body’s weight is borne by 

entirely by one supporting limb (Sutherland et al., 1994), and hence the 

stabilisation of the body over the one limb in contact with the ground is critical to 

balance. A delicate balance of forces is therefore required to maintain a 

constant position of the centre of mass and minimise its displacement 

(McCollum and Leen, 1989). The vertical projection of such forces is known as 

the centre of pressure. The net centre of pressure lies between the feet during 

double support; however there is also a separate underfoot centre of pressure 

for each foot (Winter, 1995). Analysing the path of underfoot pressures can 

therefore provide considerable insight into how the body has maintained 

stability. 

 As well as the aforementioned motor synergies responsible for the ankle, 

hip, and stepping strategies, several aspects of the human gait pattern help 

maintain the centre of pressure and preserve balance during locomotion. This is 

particularly the case during rotation of the pelvis as the swing leg induces a 

destabilising torque in what is known as the ‘pelvic step’ (Ducroquet et al., 

1968). In order to counteract this, an opposing axial counter-rotation of the trunk 

acts to reduce angular momentum about the longitudinal axis (Gracovetsky, 

1985). To compensate, these forces must be offset by equal opposing torques 

generation of counter-rotations of the trunk. As such, derived structural 

modifications enable the independent counter-rotation of the body segments to 

produce these balancing torques, including the presence of a narrow elongated 

waist (Aiello and Dean, 1990) that separates the trunk from the pelvis. 
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There is, however, debate as to whether these counter-rotations are 

advantageous at walking speeds. Bramble and Lieberman (2004) suggest that 

the benefits of the decoupling of body segments are linked only to running as 

they enable the control of destabilising torques in the aerial phase. They argue 

that during walking, the actions of the abductors and medial rotators of the hip of 

the stance leg are sufficient to control the inertially-induced rotation of the trunk. 

Conversely, there is evidence to suggest the recruitment of counter-rotations at 

walking speeds (Witte et al., 2004), and that axial rotation of the thorax 

increases with walking velocity (Feipel et al., 2001). This would suggest that 

although trunk rotations may be especially important at higher speeds, they are 

nonetheless advantageous during walking. Further, the lumbar lordosis of the 

spine enables flexion and extension of the trunk, and also absorbs body weight 

(Lovejoy, 2005). As the vertebrae also increase in mass caudally (Haeusler et 

al., 2002), this provides further adaptation to load-bearing.  

Trunk counter-rotations are also aided by arm swing, the importance of 

which has been demonstrated both in terms of balance and energetic efficiency 

(Pontzer et al., 2009b, Li et al., 2001). This dual benefit of arm swing is a 

consequence of its active and passive components. Passive arm swing is driven 

by trunk rotation and the passive mass damper effect of the shoulders (Pontzer 

et al., 2009), thereby balancing the angular momentum produced by leg swing 

with minimal energetic input. However, if balance is threatened the passive 

component of arm swing may not be sufficient to maintain stability. Therefore, 

active arm swing is employed in order to increase the counter-torsional effects 

of arm swing when the passive component alone is insufficient (Pontzer et al., 

2009). The effects of arm swing in reducing destabilising torques are increased 

by the broadness of the shoulders (Bramble and Lieberman, 2004). 

 Several features of the lower body also contribute to balance control, with 

the pelvis and lower limb modelled to allow for efficient forward propulsion whilst 

maintaining the balance of the upright trunk (Harcourt-Smith, 2007). The short, 

wide iliac blades and wide sacrum of the pelvis place the centre of gravity of the 
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trunk closer to the hip and position the lesser gluteal muscles at the side of the 

pelvis (Lovejoy, 1988). The result is that the trunk is able to tilt towards the 

supporting leg, providing greater stability and balance. Adaptations to high loads 

associated with bipedal posture are also seen in the lower limb, with large joints 

relative to body size (Jungers, 1988).   Further, the high bicondylar angle of the 

femur (8-11°) (Aiello and Dean, 1990), positions the knee close to the body 

midline and thus helps balance the centre of mass above the base of support.  

1.5 Adaptive Postural Control: Effects of Sensory Load and 

Attention 

In order to be able to respond effectively to changes in the relationships 

between the body and the position of the surrounding objects in space, signals 

from all three sensory systems: visual, vestibular, and somatosensory must be 

integrated. As no one sense alone can provide accurate information regarding 

the movement of the body in space, the central nervous system must organise 

sensory inputs to generate the appropriate motor strategies for the conditions 

and task at hand. 

It is in the parietal cortex where visual and vestibular information is 

integrated with that of the somatosensory system. In particular the inferior 

parietal lobule in Brodmann area 7 is heavily involved in the analysis and 

integration of higher order multi-modal integration. Neurons in area 7 process 

both body-referenced and world-referenced signals, and can hence provide an 

accurate image of the body’s position in space (Lynch, 1980). Indeed, the 

inferior parietal lobule is considered to act as a sensorimotor interface at which 

goal-directed motor actions are organised and planned (Fogassi and Luppino, 

2005). 

Exact motor responses are of course dependent on the environment and 

task at hand, and the CNS must continually adjust to rely more heavily on the 

most appropriate and accurate information available at the time. For example 

when subjected to a sudden increase in optic flow across the visual field, such 
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as traffic moving past, stability might be threatened by the sudden visual flow if 

balance was to remain strongly linked to visual inputs (Logan et al., 2010). In 

this instance, somatosensory and vestibular inputs become more important in 

maintaining an accurate picture about the body’s position within the environment 

and hence support upright equilibrium. Sensory reweighting therefore 

emphasises and de-emphasises sensory inputs based on the task at hand 

(Horak and Macpherson, 1996), in order to maintain stability. For example, the 

provision of tactile, visual, and auditory ‘perceptual anchors’ have been shown 

to reduce the level of postural sway induced by a visual motion stimulus (Meyer 

et al., 2013, Meyer et al., 2012) as postural control no longer remains heavily 

coupled to the moving visual stimulus.  

However, despite this sensory reweighting, complex sensorimotor 

integration can still place considerable neurological demand on processing. 

Therefore, when there is conflict between postural control and other cognitive 

demands, motor responses must also be prioritised according to the most 

immediate need. The ability to prioritise tasks in this manner is controlled by 

executive function: the higher cognitive processes that generate and modulate 

behaviour based on sensory information (Lezak et al., 1995). One component of 

executive function is divided attention, or the ability to perform multiple tasks 

simultaneously (Lezak et al., 1995). The allocation of attention amongst tasks 

therefore impacts on how well they are performed. 

Ecologically speaking, the maximisation of balance and avoidance of 

hazards may be considered more important than secondary cognitive tasks, and 

so it might be expected that more attention is allocated to postural control in 

most circumstances. Indeed, this is reported to be the case, with healthy 

subjects argued to use a ‘posture first’ strategy to give priority to stability over 

other cognitive tasks when not instructed otherwise (Shumway-Cook et al., 

1997).  However, others have indicated that this is not always the case, with 

young, healthy subjects having also been shown to allocate more attention to 

cognitive tasks rather than gait stability in several studies. In these instances, 
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secondary cognitive tasks have been shown to induce an increase in stride-to-

stride variability (Taylor et al., 2013, Beauchet et al., 2005), a decrease in stride 

length (Simoni et al., 2013, Taylor et al., 2013, O'Shea et al., 2002), and 

decreased walking speed (Simoni et al., 2013, Taylor et al., 2013, O'Shea et al., 

2002). 

Why then might subjects allocate attention to postural control and 

cognitive tasks differently? The nature of the task and environment, and prior 

experience my go some way to explaining these differences. For example, 

under most circumstances, visuo-motor responses are strongly coupled to 

postural control for the purposes of ensuring obstacle avoidance and 

recognising potential threats (Grasso et al., 1998). Hence, if the subject 

perceives strong risk in the environment they will likely prioritise these 

responses over a cognitive task. For instance, when walking on a narrow 

elevated walkway subjects allocated more attention to postural control than a 

cognitive task (Gage et al., 2003). However, if the task is simple and postural 

threat is low, healthy subjects with ample postural reserve will likely prioritise the 

cognitive task for as long as they perceive it safe to do so (Yogev‐Seligmann et 

al., 2012). It has also been shown that overlearned and skilled tasks place less 

demand on attention (Schmidt, 2008), and studies have shown that walking 

performance during dual-task scenarios can be improved with training 

(Silsupadol et al., 2009, Bherer et al., 2006). It is evident therefore, that the 

multi-modal control of posture is complex and highly dependent on the situation 

and complexity of task at hand.  

1.6 Postural Control and Ageing  

1.6.1 Sensorimotor Deficits Associated with Ageing 

Although sensorimotor systems act effectively to control balance in 

healthy individuals, there are clear implications for the abilities of those in whom 

sensory and motor coordination deficits are common. 
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 For instance, reduced visual function with ageing is known to alter eye 

movement control (Knox et al., 2005, Spooner et al., 1980, Sharpe and 

Sylvester, 1978). An increase in the latency of eye movements including smooth 

pursuit eye movements (Knox et al., 2005) and saccades (Munoz et al., 1998, 

Fischer et al., 1997, Pratt et al., 1997, Sharpe and Zackon, 1987) has been 

observed when compared to younger controls. As it appears that the motor 

circuitry responsible for eye movements is quite resistant to the effects of age 

(Munoz et al., 1998, Vijayashankar and Brody, 1977), but that there is a general 

reduction in the ability of older subjects to detect and respond to visual signals 

(Willis and Anderson, 2000, Porciatti et al., 1999), it has been argued that age 

related decline in sensory processing may be somewhat responsible for such 

latencies (Knox et al., 2005). It has been shown that visual decline directly 

contributes to falls (Abdelhafiz and Austin, 2003, Ivers et al., 2000, Grisso et al., 

1991) and increased mortality (Lee et al., 2002, Appollonio et al., 1995), even in 

the absence of overt eye pathology. Further, estimates suggest a total of almost 

756,000 people living with age-related macular degeneration in the UK by 2020 

(Minassian et al., 2011), which can further intensify the risks to postural control. 

Also contributing to reduced balance control is the decline of the 

vestibular system. Indeed, after age 40 a 3% decline in the vestibular function is 

seen each decade (Schwartz, 2013), and a 37% reduction in vestibular neurons 

has been reported in elderly subjects when compared to younger counterparts 

(Bergström, 1973). Furthermore, the risk of vestibular disorders such as benign 

paroxysmal positional vertigo increases: at least a third of elderly individuals 

over 70 experience a period of such vertigo at least once (Rogers, 2010).  

With regards to somatosensation, the loss of vibratory sensation is 

reported as one of the common sensory losses in the elderly (Cech and Martin, 

2012). Indeed, this has been shown to be particularly the case in the big toe 

(Merchut and Toleikis, 1989) which has clear implications for the amount of 

tactile feedback generated by mechanoreceptors of the plantar surface of the 

foot. The sensation of vibration has been shown to reduce after 50 years of age 
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(Steiness, 1957) and the threshold for detection appears to be doubled at age 

70 (Perry, 2006). Alongside these declines in tactile feedback, proprioceptive 

feedback is also affected by age, with the sensation of joint position reduced in 

the lower limbs (Skinner et al., 1984).    

These sensory deficits are accompanied by a decline in motor abilities, 

increasing the risk of falls, impact injuries or inappropriate patterns of muscle 

contraction. Among contributing intrinsic factors are reduced joint mobility, in 

part due to mechanical deterioration at the joint surfaces and in muscle, tendon 

and ligaments. Alongside numerical loss of muscle fibres (Freemont and 

Hoyland, 2007), muscle strength has been shown to decline by 10-15% each 

decade after age 30, and as a consequence the resulting risk of falls increases 

(Paterson et al., 2007). Loss of spinal stability also leads to decreased range of 

spinal rotation, as observed during standing reach tasks and when twisting 

when sitting (Cavanaugh et al., 1999, Schenkman et al., 1996).  

1.6.2 Balance Control in the Elderly and Infirm 

Under normal circumstances, the sub-clinical symptoms of ageing do not 

affect function as long as the central nervous system can compensate 

(Woollacott, 1989); Hence, it is not uncommon for the elderly to maintain 

balance when rotating body segments, and even to perform turning tasks as 

well as young healthy subjects (Baird and Van Emmerik, 2009, Paquette et al., 

2006).  

However, this said, it is also known that cognitive demands can have a 

large impact  on older subjects, with even healthy elderly known to have more 

trouble allocating attention to additional tasks than the young (Shumway-Cook 

and Woollacott, 2000a, Teasdale and Simoneau, 2001). The prefrontal areas of 

the brain that are associated with allocation of attention undergo structural 

change with age (Lezak et al., 1995), and this clearly poses further difficulty to 

balance control. In dual tasking situations, this often results in one task being 

performed at the expense of another, for instance talking at the expense of 
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walking, as performing both simultaneously is challenging (Lundin-Olsson et al., 

1997). 

The consequences of the increased difficulties in dealing with large 

sensorimotor load can be observed in the changes in gait patterns used by the 

elderly during locomotion. For example, some of the reported strategies 

observed during walking in the elderly include decreases in step length, velocity, 

and gait speed (Donoghue et al., 2013) and increased variability in the timing of 

steps (Menz et al., 2003). Generally speaking, a more conservative gait pattern 

has been described for elderly subjects, and is argued to be even more 

prevalent when the walking surface is irregular (Menz et al., 2003). This could 

well be in part due to the decreased somatosensory functions described above.  

One of the most common observations when considering the gait of older 

subjects appears to be the reduction in amplitude and acceleration of 

independent body segment rotations. The loss of mechanical separation of the 

head, trunk, and pelvis due to the motor deficits describe above, have been 

shown to result in reduced independent rotations of the head, shoulders, and 

pelvis in older subjects (Chiacchiero et al., 2010, Cinelli et al., 2008, Paquette et 

al., 2006, Van Emmerik et al., 2005). Whilst the increased rigidity and loss of 

strength in the muscular system clearly plays a large role in this effect, some 

authors put forward arguments to suggest that reducing and synchronising 

movement in the upper body segments could also be linked to deliberate 

strategy. For instance, Van Emmerik et al., (2005) suggest that minimising 

counter-rotations in the upper body may be employed to increase energy in the 

trunk in order to compensate for deficits in lower body strength, in particular 

ankle power. Alternatively, Menz et al. (2003) suggest that by employing 

reduced gait speed, the elderly are adapting their gait patterns to actively 

reduce magnitude of head and pelvis accelerations to what they describe as a 

’tolerable level’. They go on to stress that the cautious characteristics they 

observed of the elderly gait are likely linked to reluctance and fear rather than 

true inability.  
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In the unhealthy elderly, these effects of normal aging can be further 

exacerbated. For example, visual deficits known to be prevalent in Parkinson’s 

disease include impaired visual acuity (Jones et al., 1992), contrast sensitivity 

(Langheinrich et al., 2000, Harris et al., 1992, Regan and Neima, 1984), and 

colour vision (Pieri et al., 2000, Price et al., 1992). In addition, visual attention 

and motion perception are also affected (Uc et al., 2005). During locomotion, 

these deficits manifest as an inability to maintain a straight trajectory, perceive 

obstacles and doorways, and negotiate uneven terrain, which in turn may lead 

to gait disturbance through festination, freezing and falls (Nutt et al., 2011).  

It has long been known that the coordination of multiple motor components 

poses a challenge in Parkinson’s disease (Benecke et al., 1986). This is 

particularly prevalent in situations that involve coordinating separate motor 

tasks, for instance the transition between standing and initiating gait in a sit-to-

walk task (Buckley et al., 2008). Typically, the head and trunk move en bloc 

(Vaugoyeau et al., 2006), and pelvic rotation has been found to be limited 

(Vallabhajosula et al., 2013), possibly indicating loss of ability to  uncouple 

shoulder and pelvic segments to produce effective trunk rotations. Axial 

rotations are also smaller and slower compared to healthy older adults 

(Vallabhajosula et al., 2013). 

It is important to note however, that there is growing evidence to suggest 

that the environment can play a large role in the extent to which function in the 

elderly is affected.  Most research into the effects of the built environment on 

lifestyle are focused on younger and middle-aged adults, whereas sensory 

deficits associated with older age would clearly suggest that environmental 

factors would have more of an impact on the elderly and infirm (Sallis and Kerr, 

2006). Studies have noted that several factors impact upon the decision of 

elderly people to take exercise outside, including those with large sensory 

demands such as traffic and perceived fall hazards (Aronson and Oman, 2004). 

However, the benefits of physical activity are clear, even improving cognitive 

function amongst older adults (Angevaren et al., 2008). Crucially, those who 
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walk outside more often have been shown to be less functionally impaired 

(Kono et al., 2004), and hence it appears that increasing exposure to 

environmental situations can to some extent prevent some of the functional 

decline observed with ageing. These findings have clear implications for the 

design of urban environments, in order that they might optimise such benefits. 

1.7 Postural Control and Human Evolution 

1.7.1 The First Habitual Bipeds 

It is clear that the control of balance and postural control in modern 

humans is highly complex, requiring a wide range of motor and sensory 

capabilities as well as large attentional resources to cope with the considerable 

cognitive demands. So when did the required motor and sensory skills appear 

within our evolutionary history?   

It can be argued that the first evidence for the adoption of habitual 

bipedalism (i.e. where bipedal locomotion is the most common locomotor mode) 

can be associated with the genus Australopithecus. Perhaps the most well-

known and most debated evidence for habitual bipedalism in archaic human 

ancestors comes from fossil evidence attributed to Australopithecus afarensis. 

Dated between 2.9 and 3.8 Ma (Johanson and White, 1979), the fossil record 

for the species is rich, and includes the famous partial skeleton AL 228-1, ‘Lucy’. 

However despite the abundance of postcranial remains, there is considerable 

debate as to the exact locomotor repertoire of Australopithecus afarensis. Some 

suggest that the significant number of primitive postcranial traits imply that the 

preferred locomotor mode of the species would have been kinematically 

different from our own (Stern Jr, 2000, Clarke and Tobias, 1995, Berge, 1994, 

Duncan et al., 1994, Susman et al., 1984, Stern Jr and Susman, 1983), whereas 

others argue that the derived adaptations for terrestrial bipedalism enabled the 

species to walk with a fully erect gait much more equivalent to that of modern 

humans (Crompton et al., 1998, Latimer, 1991, Latimer and Lovejoy, 1989, 

Lovejoy, 1988, Latimer et al., 1987, Latimer, 1983). More recently however, 
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advances in inverse dynamics and evolutionary robotics have now 

demonstrated that Australopithecus afarensis (as represented by ‘Lucy’) was 

not only compatible with fully erect bipedalism (Crompton et al., 1998), but that it 

would in fact have been energetically optimal, with the bent hip bent knee 

locomotion proposed by Stern and Susman (1983) subject to almost double the 

energetic cost (Sellers et al., 2005).  

The AL-288-1 skeleton demonstrates several postcranial features 

suggesting significant adaptation to bipedalism. In the femur, this includes a 

high bicondylar angle implying that the leg would have been positioned close to 

the midline as in modern man (Johanson and Taieb, 1976). Further, the pelvis 

also exhibits features for efficient bipedalism, including short, wide iliac blades 

(McHenry, 1986, Stern Jr and Susman, 1983) which improve gluteal muscle 

lever arm and hence help counter the torque of body weight (Lovejoy et al., 

1973). Despite this however, the morphological configuration of body segments 

in early australopiths is likely to have impeded the ability to rotate body 

segments independently of one another, in particular the head and shoulders, 

and trunk and pelvis. The ribcage had been thought to imply a funnel-shaped 

trunk as in chimpanzees (Schmid, 1991), although some suggest 

Australopithecus may have had a tall waist (Haile-Selassie et al., 2010). 

However, overall it is likely to be much wider than that of Homo.  This would 

therefore have prevented the efficient counter rotations of the trunk that are 

thought to be important in counteracting the destabilising torque brought about 

during leg swing, perhaps indicating a less efficient mode of bipedal locomotion. 

Furthermore, it has also been argued that australopiths possessed a more 

cranially orientated glenoid and extensive muscular connections between the 

head and neck (Stern Jr and Susman, 1983) leading to elevated (‘shrugged’) 

shoulders. This in turn would have restricted the independent counter rotation of 

the shoulders that reduces axial rotation of the head, and may consequently 

have precluded efficient gaze control.  
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However, the morphology of later species of australopiths are argued to 

be much more derived and closer to that of Homo and modern humans. 

Australopithecus garhi for example was first discovered in the Middle Awash 

and dated to c 2.5 Ma (Asfaw et al., 1999). The BOU-VP-12/1 specimen 

demonstrates a human like humeral/femoral ratio (Asfaw et al., 1999), and 

crucially therefore marks the earliest appearance of the elongated femur that 

characterises Homo. When compared to Australopithecus afarensis therefore, 

the elongated femur would have increased step length and reduced inertial 

resistance to acceleration, making Australopithecus garhi a more efficient biped. 

In saying this, the forearm length was much like that of other australopiths 

(Asfaw et al., 1999), indicating that upper arm – lower arm proportions had yet 

to reach Homo-like proportions. 

Arguably the most interesting evidence regarding the behaviour of 

Australopithecus garhi, however, is that relating to tool-making ability and 

cognition. For a considerable length of time, many researchers regarded tool-

making as an ability associated only with Homo, however the discovery of stone 

tools that correlate temporally and spatially with Australopithecus garhi (Semaw, 

2000) has prompted serious reconsideration. Furthermore, Australopithecus 

garhi has also been associated with cut marks on bovid bones, indicating the 

use of stone tools in defleshing bones (De Heinzelin et al., 1999). It therefore 

seems that as early as 2.5 Ma, hominins were beginning to create and use 

primitive tools, made even more interesting by the fact that brain size had yet to 

increase to Homo-like proportions.   

1.7.2 Homo – The Predominant Bipeds 

While there is a clear diversity in the locomotor repertoire of the 

australopiths, there is a universal consensus that later species of Homo were 

much more human-like in their bipedal locomotor behaviours. The emergence of 

the genus in the period between 2.5 and 1.8 Ma can therefore be considered to 

be directly associated with the emergence of predominant bipedalism. A more 

definite move to human-like bipedalism can be found with the emergence of 
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Homo ergaster at c. 1.8 Ma, which is also associated with a move to more open 

country and savannah environments (Vrba, 1988). The Nariokotome Boy 

skeleton (KNM-WT 15000) found in Koobi Fora, Kenya (Brown et al., 1985) is 

human-like and is shown to have been a long distance striding biped capable of 

effective load carrying (Wang et al., 2004). It demonstrates all derived 

postcranial traits traditionally associated with such bipedalism, including short 

arms and long legs - the length of which are similar to those of modern humans 

(Ruff and Walker, 1993). Two intermediate pedal phalanges are also shorter 

and less curved than those of Australopithecus afarensis (Latimer et al., 1982, 

Day and Napier, 1964), which has been thought to suggest a more modern 

pressure distribution. Further, the narrower pelvis and barrel shaped rib cage 

(Jellema et al., 1993) indicates a move from the long funnel shaped trunk of 

australopiths, to a shorter barrel shaped trunk which would have aided balance 

through a higher position of the centre of gravity.    

However, despite this evidence suggests that shoulder-configuration and 

hence trunk counter-rotations were not fully modern until as recently as 

12,000Ka (Larson et al., 2007), potentially indicating that Homo ergaster would 

not have been an effective runner. The increased brain size in KNM-WT 15000 

of 880cc (Begun and Walker, 1993) may also indicate that improved bipedal 

efficiency was intrinsically linked to increasing cognitive ability. Indeed, Dunbar’s 

social brain hypothesis suggests that increased range through more efficient 

locomotion in turn led to increased number and complexity of social contacts, 

and hence selected for a larger brain size (Dunbar and Shultz, 2007, Dunbar, 

2003, Dunbar, 1998). This is supported by evidence suggesting that the 

distance over which stone tools, or their raw materials, were carried increased 

from around 2-10km in the Oldowan (Leakey, 1971, Hay, 1976) to potentially 

over 100km by 1.5 Ma (Clark, 1980), the latter correlating both temporally and 

spatially with Homo ergaster. Tool transport is therefore suggested as a 

selective factor for increased ranging and hence the more efficient sort-trunked 

long-legged morphology seen in KNM-WT 15000 (Wang et al., 2004). Overall, 

such a combination of highly efficient bipedal locomotion and increasing 
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cognitive abilities would suggest that Homo ergaster was well equipped to 

actively exploit open grassland environments. 

The distances over which early species of Homo ranged were yet further 

increased in Homo erectus, with fossil evidence indicating a very rapid dispersal 

out of Africa between 1.7 and 1.8 Ma (Antón et al., 2002, Gabunia and Vekua, 

1995, Wanpo et al., 1995). Homo erectus demonstrates unequivocally human-

like limb proportions, with femoral length indicating that overall leg length may 

have been up to 50% larger than in Australopithecus afarensis (Aiello and Dean, 

1990). Further, the substantially larger articular surfaces of the joints of the hind 

limb when compared to Australopithecus also indicate adaptation to increased 

loading to impact forces at heel strike (Jungers, 1988). The presence of an 

elongate narrow waist (Jellema et al., 1993) would also have substantially 

increased the degree of independent rotation of the trunk from the pelvis in 

Homo erectus, which would have been essential in counteracting the legs 

during running (Bramble and Lieberman, 2004). The dramatic reduction or 

absence of the extensive muscular connections between the head and 

shoulders (Aiello and Dean, 1990) when compared to australopiths would have 

also aided with balancing the destabilising torques produced by leg swing 

through counter-rotation of the shoulders and arms, and would have also 

reduced the axial rotation of the head.  

Such significant adaptation to running in particular has led to the 

description of Homo erectus as an endurance runner and persistence hunter 

(Bramble and Lieberman, 2004, Carrier et al., 1984) with its bipedal 

performance and energetic efficiency markedly improved from that of 

australopiths. This is reflected in the much more human-like morphology of the 

semicircular canals of Homo erectus, which imply that the vestibular system was 

much more sensitive to angular accelerations of the head (Spoor et al., 1994). 

Consequently, despite restrictions in neck motion, the species was likely to have 

been much more competent at head and gaze stabilisation during locomotion 
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when compared to australopiths, likely selected for as a consequence of its 

highly active lifestyle. 

1.8 Summary and Gaps in Knowledge 

The above discussion raises some important implications regarding the 

complex and adaptive nature of sensorimotor integration, and the demand it 

places on neuroprocessing, particularly from the perspective of healthy ageing 

and the infirm. It is clear that whilst visual inputs in particular are a crucial 

component of sensorimotor control, there is nonetheless a delicate balance and 

weighting of sensory information necessary for such control. This is especially 

the case in more demanding tasks such as dual tasking scenarios that are 

typical of everyday life. The emerging evidence for the potential use of feedback 

as a postural control mechanism may therefore be of particular interest in 

assisting those who may be particularly affected by complex environments. 

Although, the balance between the benefits and increased cognitive demands of 

sensory stimuli during locomotion and dynamic movements are yet to be fully 

established.  

It is also clear from the fossil record that whilst definitive adaptations for 

terrestrial bipedalism are clear from as early as 4.5 and 3 Ma, there is 

considerable debate about the exact nature of bipedalism in early hominins 

such as Australopithecus afarensis. The consensus that the species did not 

have a full waist but was certainly substantially capable of effective bipedal 

walking, at least over short distances, therefore makes it a crucial species for 

consideration by a human analogue study of segment coupling, as performed in 

this project. With the full transition to striding bipedalism complete in Homo 

ergaster, later species of Homo were consequently much more human-like in 

the type of bipedalism they practiced. As seen in Homo erectus, such species 

were likely to have been fully competent runners, enabling their rapid expansion 

and success. Alongside the growing cognitive and balance control abilities 

discussed, particular interest was placed on these species when considering the 

sensorimotor implications of this work.  
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As humans are habitual bipeds, the sole contact that the human body has 

with the ground is through the plantar surface of the feet. Despite the clear 

importance this implies for detailing the interactions at this interface with the 

overall function of foot during gait, recent advances in foot pressure analysis 

only serve to emphasise the complexity of the issue. The longstanding method 

for plantar pressure measurement, ten region subsampling (Rosenbaum and 

Becker, 1997), involves analysing the foot as a series of defined areas, each of 

which is then allocated a single pressure value. However, with the recent 

development of techniques to analyse plantar pressures at a pixel by pixel level 

(Pataky et al., 2008), it has been shown that such subsampling may actually 

exaggerate or under-represent statistical differences when comparing pressure 

values. When also considering the very small numbers of pressure plate records 

typically used in pressure analysis using ten region subsampling, this would 

suggest a very poor representation of accurate pressure distributions, 

particularly when considering recent evidence that natural inter- and intra-

subject variation in foot pressure distribution has shown to be high, even 

overlapping that of other apes (Bates et al., 2013b).  

The issue of variability is further complicated when considering the 

morphology and function of the feet of our ancestors. Fossil evidence of foot 

bones is sparse, and the locomotor conclusions made from even the most 

complete specimens are the subject of considerable debate due to their 

complex mosaic of characteristics for both arboreal and terrestrial locomotion 

(Kidd, 1999, Wood, 1974, Day and Napier, 1964). There are of course fossilised 

footprints, including the famous trail at Laetoli (Leakey and Hay, 1979), however 

much controversy still exists surrounding the extent to which actual pressure 

distribution is reflected in footprints given the insufficiently understood effects of 

differences in substrate properties. Indeed, recent evidence demonstrates that 

in modern humans, the overall depth of footprints has a significant effect on 

pressure distribution (Bates et al., 2013a). 
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As a consequence, research continues to attempt to find novel solutions to 

determine the most likely modes of locomotion in our ancestors, particularly 

those species that had begun to make the transition from dense forest 

environments to more open grassland and savannahs. Notably this includes 

Australopithecus afarensis, made famous by the 3.2 Ma ‘Lucy’ skeleton, which 

possessed an apparent mosaic of features for both terrestrial bipedalism 

(Latimer and Lovejoy, 1989, Johanson et al., 1982) and arboreal locomotion 

(Stern Jr and Susman, 1983, Susman, 1983). Consequently, a number of 

theories have been put forward regarding the gait of Australopithecus afarensis 

ranging from a chimpanzee-like bent hip bent knee gait (Stern Jr and Susman, 

1983, Susman et al., 1984) to fully erect bipedalism much like that that of 

modern humans (Lovejoy et al., 2002, Crompton et al., 1998, Latimer, 1991). 

Although computer modelling techniques suggest that the latter is most 

probable (Crompton et al., 1998), as yet the changes in foot pressure 

distribution that might have accompanied the transition from arboreal locomotion 

in dense woodland to habitual bipedalism in open environments are yet to be 

considered.  

Further, despite the known increase in the size of the semicircular canals 

in Homo (Spoor et al., 1994), and hence enhanced abilities for gaze and head 

stabilisation, the corresponding implications for adaptations in sensory 

processing that likely contributed to the efficiency of Homo erectus as a habitual 

biped, and its success as an endurance runner (Bramble and Lieberman, 2004) 

and persistence hunter (Carrier et al., 1984),  have also as yet remained 

unassessed. 

1.9 Research Question and Overarching Hypotheses 

The literature review above details the existing knowledge regarding the 

efficiency of modern human sensorimotor and postural control, the wide ranging 

theories surrounding the gait of ancestral hominins, and how the two are 

intrinsically linked. In doing so, it not only serves to highlight the gaps in 

knowledge that are yet to be answered, but also demonstrates that data from 
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modern human analogues could provide novel insight into specific species of 

hominin which are surrounded by continuing debate. 

As a consequence of the gaps in knowledge identified above, this project 

aimed to answer the following research question: 

 ‘How might increased sensory demand and the recoupling of body 

segments in modern humans impact on postural control, and what are the  

implications with respect to the built environment, ageing, and the 

evolution of human postural control?’ 

From this research question, two overarching hypotheses were developed: 

1) Sensory prioritisation during walking will result in alterations to 

postural control as attention is allocated to secondary tasks of 

varying complexity.  

 

2) The recoupling of the head and neck, and trunk and pelvis, will 

result in alterations to postural control as a consequence of the 

increased rigidity of the thorax segments. 

 

1.10 Thesis Outline 

In order to test these hypotheses, this thesis has conducted a unique 

combination of foot pressure, kinematic, and eye movement analysis during 

walking. As such, it provides a unique contribution to knowledge of the impacts 

of sensory load and the restriction of body segments on human foot pressure 

variability. The results of the studies are relevant to both the evolution of 

bipedalism, and also to modern ageing. 

The three study chapters of this thesis, Chapters 3, 4 and 5, were 

designed and executed with two overarching hypotheses, laid out in Chapter 

1.9, in mind.  
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Chapter 3 presents the results of a study assessing how foot pressure 

variability was affected by visual object tracking against varying levels of visual 

clutter. This involved the comparison of foot pressure records made during gaze 

fixation of a static object with those made during smooth pursuit against 

backgrounds of varying complexity.  

Chapter 4 extends the object tracking task considered in Chapter 3 by 

incorporating a dual auditory task. This enabled the comparison of the impact of 

filterable background auditory stimuli with a repeat-back language task requiring 

an active response, and the potential effects of processing prioritisation on foot 

pressure variability.  

Chapter 5 considered the effects of the restriction of independent counter-

rotations of body segments on whole body kinematics and foot pressure 

variability through the use of medical body braces.  

Chapter 6 summarises the results and conclusions made throughout this 

thesis. The results of the studies are discussed with respect to the hypotheses 

of their respective studies, and are then discussed together in the context of the 

overall research questions laid out above. Finally, the wide ranging implications 

of the results are considered, and limitations and opportunities for further work 

are discussed. 
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Chapter 2: Materials and Methods 

This thesis set out with two overarching hypotheses in mind: 1) Sensory 

prioritisation during walking will result in alterations to postural control as 

attention is allocated to secondary tasks of varying complexity; and 2) The 

recoupling of the head and neck, and trunk and pelvis, will result in alterations to 

postural control as a consequence of the increased rigidity of the thorax 

segments. 

In order to address these hypotheses, this thesis consisted of three studies 

involving the collection and analysis of foot pressure, kinematic, and pupil 

movement data. Of the three study chapters of this thesis, Chapters 3 and 4 

investigate the first hypothesis, and Chapter 5 investigates the second.  As the 

exact methods used for each study conducted as part of this project differ, this 

chapter presents an overview of the equipment, software, and data processing 

used. The exact protocols for each study are detailed within their own respective 

chapters below.  

2.1 Equipment 

Various pieces of equipment were used in the collection of data for this 

project. For all studies within this thesis, this included a Zebris FDM-T pressure 

sensitive treadmill (Isny im Allgäu, Germany) instrumented with an integrated 

sensor matrix for foot pressure measurement (Figure 2.1). This matrix consists 

of over 5000 sensors per 150cm x 50cm area, and hence provides a high 

quality and detailed record of foot pressures during walking. The treadmill was 

connected to a computer running the associated Zebris software, Win-FDM 

(Isny im Allgäu, Germany), through which data collection and processing was 

initiated. 

 Using Win-FDM, each foot pressure record is captured as a complete 

footstep from heel strike to toe off. As the system can correct for the effect of the 

movement of the treadmill belt over the sensors, completely stable foot rollover 
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patterns are captured. For each foot pressure record, a pressure value (N/cm2) 

is recorded for each sensor in contact with the plantar surface of the feet.  

 

                       

                                  Figure 2.1: Zebris-FDM foot pressure sensitive treadmill.  

 

The resulting values for each pressure sensor are then displayed as a 

colour map image in order to represent diagrammatically the relative pressure 

distribution under the different areas of the foot. In each image, the largest 

pressure values are displayed as ‘hot’ colours, and the lowest pressure values 

are displayed as ‘cool’ colours (Figure 2.2). The treadmill was run at a frequency 

of 100Hz, and typically, for a subject walking at a slow, consistent speed of 1.1 

m/s-1, around 200 foot pressure records were collected in a 2 minute trial, 

producing large sample sizes in a short period of time. 
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Figure 2.2: Exemplar foot pressure record displayed as a colour map. Colour bar represents actual 

pressure (N/cm2).  

 

  When collecting kinematic data alongside foot pressure data to study the 

second hypothesis (specifically for Chapter 5), the trigger-out capability of the 

pressure sensitive treadmill enabled the automatic triggering of a 9-unit Qualisys 

ProReflex (Gothenberg, Sweden) motion capture camera system when foot 

pressure recording was initiated. This therefore allowed for accurate 

synchronisation when capturing foot pressure and kinematic data. In order to 

collect accurate 3D kinematic data, the motion capture camera system must first 

be calibrated. Using the Qualisys Track Manager (QTM) software (Gothenberg, 

Sweden), an X,Y,Z coordinate system is defined using a stationary calibration 

frame, over which a calibration wand is moved to define the volume of the 

experimental area and hence calibrate the system (Figure 2.3). When a series 

of Qualisys 19mm retro-reflective markers (Gothenberg, Sweden) are then 

attached to anatomical landmarks on the body of a subject, they reflect back the 

infra-red light emitted by the cameras (Figure 2.4). As the cameras detect these 

reflections, the system is then able to calculate the global coordinates of each 

marker at a frequency of 100Hz (matching that of the treadmill), providing an 

accurate record of the movement of body segments of interest.  
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Figure 2.3: Example of the X,Y,Z coordinate system as seen in QTM. During processing, QTM shows the 
relative position of the motion capture cameras to the subject, a few of which are seen from this angle. 
Each green dot represents a reflective marker positioned on an anatomical landmark on the subject. 

 

 

Figure 2.4: Infrared light emitted by the motion capture cameras is reflected back from retro-reflective 
markers attached to anatomical landmarks on the subject. The global coordinates for each marker are then 
tracked. 

 

For studies investigating the first hypothesis in which subjects were 

required to track a visual object (Chapters 3 and 4), an eyetracker was used to 
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measure pupil movement. Two different models of eyetracker were used in this 

project. 

 The first was a monocular eye-tracking system, the Eye-trac 5000, 

Applied Science Laboratories (ASL) (Bedford, MA, USA), mounted on a Bauer 

HH1000L Ice Hockey helmet (Exeter, NH, USA). This system tracks eye 

movement using similar principles to that of the motion capture camera system. 

An infrared video camera is directed at the pupil, the light from which is reflected 

off the corneal surface (known as the specular reflection) and is detected by the 

camera.  

 The second was a binocular eye-tracking system, the ViewPoint BSU07 

USB-60x3, Arrington Research (Scottsdale, AZ, USA), mounted on a goggle-

based system. In this case, the system uses a ‘dark pupil’ approach in which the 

video cameras directed at the eyes are able to distinguish the pupils based on 

colour depth. Once defined the cameras then track the movement of the entire 

pupil. Despite differences in the methods of tracking between the systems, both 

provide the XY coordinates of the pupil(s) throughout a trial. Both therefore 

generate an accurate representation of pupil movement in both the horizontal 

and vertical planes. 

 

2.2 Data Processing  

2.2.1 Pupil Movement 

For the two studies (Chapters 3 and 4) in which pupil movement data was 

collected, the eye tracking profiles for each trial were used solely to confirm that 

efficient object tracking had taken place. As this project involved subjects 

alternating between periods of gaze fixation and smooth pursuit whilst walking 

on the treadmill, it also enabled the definition of each separate instance of each 

of these tracking types. The decision not to further analyse pupil movement data 

was taken due to the length of time required to prepare and analyse foot 
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pressure data, the primary dependent variable for all experiments conducted 

within this thesis (see chapter 2.2.2 for description).  

In order to utilise the pupil movement data for a trial, it was first exported 

in TSV format into MATLAB. Because of the differences in the format of the data 

files generated by the two eyetrackers, two slightly different versions of code 

were written to read in pupil movement data and to identify the timings for each 

period of each gaze tracking type. For the monocular Eye-Trac system, 

horizontal pupil positon was read in from the TSV file and a figure generated 

with horizontal pupil position at each frame of capture plotted as a line graph 

(Appendix A1.1). Using a series of crosshairs, each exact transitional point on 

this graph was marked to identify the points at which the subject switched 

between gaze fixation and smooth pursuit and vice versa (Figure 2.5). The 

frame numbers for each selected point were then returned and could then be 

manually converted to a value in seconds. For example, if the first exact period 

of gaze fixation occurred between frames 1 and 1200 frames, this was 

equivalent to the first 20 seconds of the trial (1200 frames / 60Hz = 20 seconds). 

The timings in seconds were then stored in a variable named ‘CutPoints’. 

 For the ViewPoint code, pupil position data for both eyes was read in 

from the TSV file (Appendix A1.2), and a figure generated on to which the line 

graphs of horizontal pupil movement of both eyes were superimposed. This 

ensured that the data for both eyes was synchronous, and hence that data 

acquisition was effective. If this was not the case then the trial was repeated. As 

with the code for Eye-Trac data, the exact transition points between tracking 

points were identified by marking crosshairs on the figure (Appendix A1.3) 

(Figure 2.6), however in this instance the ‘CutPoints’ file containing the timing 

information in seconds was generated automatically within the code.  
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Figure 2.5: Exemplar eye tracking profile of horizontal pupil movement measured using the Eye-Trac 
system. Red crosshairs mark the transitions between the gaze tracking types. Segments marked ‘S’ 
indicate the portions of the trial where the target is stationary and gaze fixated. Segments marked ‘M’ 
indicate areas of target movement, and hence smooth pursuit occurrence.  

 

                  

Figure 2.6: Exemplar eye tracking profile of horizontal pupil movement measured using the ViewPoint 
system. Red crosshairs mark the transitions between the gaze tracking types. Segments marked ‘S’ 
indicate the portions of the trial where the target is stationary and gaze fixated. Segments marked ‘M’ 
indicate areas of target movement, and hence smooth pursuit occurrence.  

 

2.2.2 Foot Pressure Records 

Firstly, the treadmill output for each trial was exported in ASCII format 

from the Win-FDM software that runs data acquisition for the Zebris treadmill. 

The peak pressure record for each footprint made during the trial was read into 

MATLAB and stored as a numerical series of pressure records using in-house 
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code (Appendix A1.4). This outputted and stored information regarding the 

numbers of left and right foot records and the sampling rate in a file named 

‘proc_info.m’ 

The CutPoints variables containing the timing information for the periods 

of tracking type during each trial, and their corresponding treadmill ‘proc_info’ 

outputs, were then used to identify which foot pressure records in each trial 

were made during each period (Appendix A1.5). A ‘buffer’ of one second was 

applied either side of each of the exact transitional timings defined in the 

CutPoints variable in order to be confident that no foot pressure records were 

included in subsequent analysis that may have been made across both tracking 

types. In each instance, a foot pressure record was only included within a group 

if it was made wholly within the exact timings specified for that group. This then 

identified the sequence numbers of the left and right foot records belonging to 

each time period (for example, the first period of gaze fixation may have 

contained left foot record numbers 1-36 and right foot record numbers 1-37) 

Once the foot pressure records in each trial had been allocated to each 

defined time period in this manner, a group of records could then be built for 

each period of gaze fixation and smooth pursuit in the trial.  Further in-house 

code (Appendix A1.6) returned an array of records for each group. It also 

resized the records to a standard number of pixels, and re-orientated all right 

foot records to left foot orientation, in order that they could be registered to one 

another. Finally, all groups of foot pressure records made during gaze fixation 

were combined, and all those made during smooth pursuit combined, to 

produce a single array of foot pressure records made during each tracking type. 

The foot pressure records were then ready for statistical analysis. 

In order to then compare foot pressure records statistically, the data were 

processed in MATLAB using an in-house toolkit, pedobarographic Statistical 

Parametric Mapping (pSPM) (Pataky and Goulermas, 2008). pSPM involves the 

use of a series of automated processing steps developed from techniques used 

to process functional MRI (fMRI) images (Friston, 1997) which enable the 
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analysis of brain imaging data sequences. By optimising the overlap of 

homologous structures between all foot pressure records in an array, pSPM 

enables statistical comparison at a pixel by pixel level, thereby removing the 

possibility of the over-exaggeration or under-representation of plantar pressure 

levels that may result from the traditional 10 region sub-sampling approach 

(Pataky and Goulermas, 2008). Conducting pSPM on an array of foot pressure 

records involves a series of processing steps as described below: 

Firstly, the foot pressure records were registered to one another using 

the within subject registration option of our in-house pSPM processing toolkit 

(Appendix A1.7), as all records in each array were made by the same subject. It 

is during this registration that the records were transformed to overlap optimally 

by translating and rotating each foot pressure record around its centroid (Pataky 

and Goulermas, 2008). This therefore took into account the slight differences in 

the orientation of each record resulting from natural differences in foot 

placement (Figure 2.7). To conduct this transformation, the first record in the 

data set acted as a template to which the rest of the prints were aligned. To 

avoid any bias resulting from registering the records to a single print, the mean 

peak pressure record from this registration was then calculated and a second 

registration is conducted using this mean as the template. 

However, the calculation of a mean peak pressure record from a large 

number of foot pressure records, with considerable natural variation in their 

shape, can result in extraneous ‘noise’ around the periphery of the print of no 

pressure value. The final processing step is therefore a thresholding step. To 

remove such extraneous data, and prevent it from impacting upon the results of 

statistical tests, the foot pressure records were thresholded (Appendix A1.8). 

The mean of the thresholded records was then calculated, and was itself also 

thresholded. Finally, the thresholded records were registered to the thresholded 

mean (using the same registration method as above).  All foot pressure records 

in the array were then directly comparable at a pixel by pixel level.  
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Figure 2.7: Registration of foot pressure records transforms each record to align with a template print. 
Pressure records are rotated around the centroid to optimally overlap the template image (represented 
here as a dot-based image).   

 

After completing this pSPM processing, the foot pressure records can be 

statistically compared. In this project, mean square error (MSE) analysis was 

conducted in MATLAB in order to provide a quantitative measure of variability of 

each foot pressure record in a set from the mean peak pressure distribution. 

The advantage of such methods is that by returning the MSE for each foot 

pressure record, the resulting value takes into account the differences in 

pressure at each individual pixel, whereas simply calculating a mean pressure 

value across all pixels in the record would average out any variation across the 

record.  Variance in MSE was then calculated for each group of records in order 

to provide a quantitative representation of variability in foot pressures within a 

group. Multivariate repeated measures Analyses of Variance (ANOVA) were 

then conducted in SPSS (Chicago, IL : SPSS Inc) in order to statistically 

compare the variance in foot pressure mean square error in different sensory 

environments. 

2.2.3 Kinematics 

Initial processing of kinematic data was conducted in Qualisys Track 

Manager (QTM). For each motion capture trial, each measured anatomical 
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landmark was identified and labelled through its corresponding reflective 

marker. Once all markers had been labelled, the quality of the tracking of each 

was assessed. If a landmark was tracked for less than 80% of the total trial the 

results for that segment were considered unrepresentative and discounted. The 

global coordinates for each of the landmarks were then exported as a TSV file 

for analysis in MATLAB. 

 

Using an in-house kinematic processing toolkit ‘QTrackTools’, the marker 

numbers and coordinate data were identified and placed into arrays 

(Appendices A1.9 and A1.10). These arrays contained the XYZ positions of 

each marker at each frame of capture. Using this global information, the angle 

between two markers in a plane of interest could be calculated at each frame of 

capture and the list of values returned in an array (Figure 2.8) (Appendix A1.11), 

hence identifying the range of motion of the associated body segment at each 

frame. If the minimum and maximum angles are then identified, a maximum 

range of excursion (in degrees) for the segment can be calculated. These 

maximum excursion values are calculated for each body segment of interest in 

each trial, and an overall mean maximum range of excursion and standard 

deviation is then calculated. Statistical comparisons were made using repeated 

measures ANOVAs in SPSS. 

                                     

Figure 2.8: Angles (ᶿ) calculated were those between two anatomical landmarks A and B. The angle 
measured is based on the intersection of vector A-B with the axis of interest (defined by A-C) hence the 
position of the distal trajectory B relative to that axis determined whether the angle was positive or 
negative. 

 



41 
 

2.3 Ethical Considerations  

Ethical permission for all experiments was granted by the University of 

Liverpool Research Ethics Committee (RETH000888). All subjects were 

provided with information sheets (Appendix A1.12) and gave informed prior 

consent (Appendix A1.13). Subjects were advised that they could withdraw at 

any time. In line with University of Liverpool Data Storage and Protection policy, 

all data was stored securely and anonymously. 
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Chapter 3: The Impact of Gaze Control During Walking 

3.1 Introduction 

As primates, modern humans are one of few species to have acquired the 

ability to centralise moving images on the fovea, the region of the retina where 

visual acuity is greatest, and track them with clarity using smooth pursuit eye 

movements (Collewijn and Tamminga, 1984). By minimising the movement of 

the image on the retina (Carpenter, 1988), smooth pursuit eye movements 

ensure that the image is maintained on this receptor-dense region; hence, the 

individual can attend to objects of interest appropriately.  

Smooth pursuit is just one of the processes contributing to gaze control, a 

behaviour composed of a combination of eye and head movements, that acts 

alongside inertia of the head (Peng et al., 1996, Keshner and Peterson, 1995) to 

maintain stable vision. This includes the less complex optokinetic reflex and 

saccadic eye movements, which contribute to gaze fixation on a static target 

(Walls, 1962, Westheimer, 1954, Dodge, 1903). This visual input is then 

integrated with those of the vestibular and somatosensory systems in order to 

derive estimates of self-motion and position which are fundamental to balance. 

In turn, the vestibulo-spinal reflex is then able to co-ordinate movements of the 

head and neck with the trunk and ankles (Carpenter et al., 2001, Allum and 

Pfaltz, 1985).  

Despite a need for information regarding the position of the body in space, 

more complex visual inputs may actually have a detrimental effect on balance. 

For instance it has been known for some time that smooth pursuit eye 

movements cause increased levels of postural sway when compared to 

saccadic eye movements (Straube et al., 1989). This effect is thought to be a 

consequence of the multisensory reweighting that prioritises (up-weights) or de-

emphasizes (down-weights) a sensory  input based on the most immediate 

need (Schweigart et al., 2003); for example, posture appears to acquiesce to 

the active role of vision in certain situations (Logan et al., 2010). Indeed, Logan 
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et al. noted that the gain of the hip and shoulder relative to visual scene motion 

during walking was significantly larger when compared to standing posture. The 

authors attribute this to differences in the role of vision between the static and 

dynamic postures, suggesting that the role of vision in providing estimates of 

self-motion during standing is expanded to that of predictive navigation and 

obstacle avoidance during walking. As such, they argue that the increased gain 

may actually reflect reduced resistance to perturbation (i.e. an active switch to a 

less stable state) in the anterior-posterior plane to enable stepping and better 

navigation through the environment. 

The mechanisms integrating this sensory feedback in order to produce co-

ordinated movements during locomotion are increasingly well understood in 

terms of  standing posture (Maylor et al., 2001, Shumway-Cook and Woollacott, 

2000a, Shumway-Cook et al., 1997, Maylor and Wing, 1996, Day et al., 1993); 

however the potential effects on these processes during dynamic movements 

and locomotion have received much less attention. This imbalance is striking 

given the importance of factors such as navigation and obstacle avoidance, as 

well as of the input of other stimuli and other cognitive processes, for example 

processing and responding to auditory stimuli (Imai et al., 2001, Moore et al., 

1999, Paige, 1994a, Bloomberg et al., 1992), which may further up-weight the 

importance of vision when compared to standing posture. 

The effects that visual prioritization might have on postural stability during 

dynamic movements are therefore yet to be fully established.  This study 

assesses how smooth pursuit eye movements made against backgrounds of 

varying levels of visual clutter impact on foot pressures and stability during 

locomotion in young, healthy subjects. Participation was limited to such subjects 

due to the potentially confounding factors of the visual and motor decline 

associated with ageing. It was predicted that since postural stability adjusts to 

support object tracking, the particularly important role of smooth pursuit in 

tracking moving targets would lead to larger variation in foot pressures when 

compared to gaze fixation on a static target, for which demand on processing is 
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lower (Hypothesis 1). It was also predicted that increasing levels of visual clutter 

during tracking would lead to a further increase in variation in foot pressures 

(Hypothesis 2), as resolving the target object amongst the background becomes 

more difficult. 

3.2 Methods  

3.2.1 Subjects 

Ten healthy subjects participated in this study. In order to be included, 

participants had to be clear of known neurological, vestibular deficits, diabetes, 

and musculoskeletal pain, amongst other limitations. All subjects had normal or 

corrected-to-normal vision. Subjects gave informed prior consent, and ethics 

approval was obtained from the University of Liverpool Research Ethics 

Committee (RETH000888). 

3.2.2 Experimental Setup 

Foot pressure data were collected from a Zebris FDM-THM foot pressure 

sensing Treadmill (Isny im Allgäu, Germany) at a frequency of 100 Hz. Pupil 

movement data was synchronously captured using a monocular eye-tracking 

system, Eye-trac 5000, Applied Science Laboratories (ASL) (Bedford, MA, USA) 

sampling at 60Hz. The system was mounted on a Bauer HH1000L Ice Hockey 

helmet (Exeter, NH, USA) that was fit-adjustable, so that it was possible to 

prevent movement of the eye tracker system relative to the head. An LCD 

projector (NEC NP2250) was used to project visual targets on to a curved 

projection screen (Beamax A-Velvet, 282 x 166cm) positioned 2m directly in 

front of the treadmill so as to block and peripheral visual information and 

distractions.  An example set up can be seen in Figure 3.1. 
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Figure 3.1: Diagrammatic representation of the experimental set up, including the eyetracker, pressure 
sensitive treadmill, projector, and curved projection screen. 

 

3.2.3 Protocol 

Subjects walked on the pressure sensitive treadmill at a set speed of 1.1 

m/s-1 whilst tracking the movement of a dot-shaped visual target projected on to 

the screen. This speed was chosen as all subjects confirmed that they felt 

secure walking at this speed, and since all were able to track the target 

efficiently (as demonstrated by their eye tracker profiles, see below). This speed 
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is also comparable with those of natural walking, with an observed range of self-

selected speeds of young adults of 0.71-1.76 m/s-1 (42.76 - 105.57 m/m-1) 

(Waters et al., 1988). The visual target alternated between stationary phases 

and periods of movement in order to initiate periods of gaze fixation and smooth 

pursuit respectively. The sequence lasted for four minutes, and included three 

stationary phases of 40 seconds, and three movements of 40 seconds. In each 

period of movement, the target moved horizontally and in both directions (left- 

to-right, and right-to-left), however for each of the three periods the vertical path 

of the target varied in order to prevent learning and associated anticipatory 

smooth pursuit eye movements. The subjects were made aware of the fact that 

the target would cycle between stationary pauses and movements, but the only 

instructions given were to track the object at all times, while walking and moving 

as freely as they would normally, within the constraints of the treadmill 

environment. This task was repeated against three different static backgrounds: 

a blank background (except for a central crosshair focal point), a savannah 

scene, and a forest scene, to represent the effects of increasing background 

visual clutter during smooth pursuit. The level of clutter in each scene was 

assessed quantitatively using MATLAB code designed by Rosenholtz et al. 

(2007) in order to confirm that the levels of visual clutter in each scene were 

quantitatively different (Figure 3.2). Visual clutter levels were determined using 

the feature congestion principle which computes clutter ‘maps’ representing the 

colour, texture, and orientation of features in an image, before combining and 

scaling these to provide an overall clutter value. 
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Figure 3.2: Background images representing each of the three visual clutter levels tested. Values represent 
feature congestion scalar values generated using the feature congestion code of Rosenholtz et al. 2007. 

 

During each trial, the experimental area was kept clear of any non-

experimental visual and auditory stimuli so as not to distract the subject from the 

task. This included mandating the absence of any staff or subjects not involved 

in data collection from the experimental area, and the prevention of any staff 

movement or communication within the experimental area. Further, a ‘warning 

light’ outside the lab was in use throughout each trial to prevent anyone from 

entering or disturbing the laboratory whilst the trials were in progress. 

3.2.4 Data Analysis 

Pupil movement data captured by the eye tracker was imported into 

MATLAB (MathWorks, USA) , and for each trial the movement of the pupil in the 

X (horizontal) plane was plotted as a line graph, enabling the different phases of 

the trial to be clearly segmented (Figure 3.3).  
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Figure 3.3: Exemplar eye tracking profile of horizontal pupil movement. Red crosshairs mark the transitions 
between the gaze tracking types, buffers around which allowed the removal of pressure records made 
during transitional phases from the data set. Segments marked ‘S’ indicate the portions of the trial where 
the target is stationary and gaze fixated. Segments marked ‘M’ indicate areas of target movement, and 
hence smooth pursuit occurrence.  

 

Using in-house MATLAB code (Appendix A1.1) the start and end points 

of each phase were marked by drawing cross hairs on the line graph (Figure 

3.3) for each trial, and the corresponding frame numbers were recorded. A one 

second buffer was added either side of each crosshair to avoid analysing any 

foot pressure records from transitional periods. The timing information was then 

matched with the frame numbers and timing data generated by the pressure 

sensing treadmill, and used to separate the foot pressure records into those 

made during gaze fixation and those during smooth pursuit (Appendices A1.4 – 

A1.6). For any trials in which the eye tracking profile was unsatisfactory, for 

instance where the pupil movement was particularly erratic and noisy, or it was 

clear that it had not tracked the target in the X plane, the data were discounted 

and the trial repeated (see Appendices A2.1 - A2.10 for the eye tracking profiles 

of each subject).  

 

The foot pressure groups thus formed were then analysed using in-house 

software package, pedobarographic Statistical Parametric Mapping (pSPM) 

(Pataky et al., 2008) (Appendices A1.7 and A1.8). The parametric mapping 
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technique was originally developed (Friston, 1997) as a series of algorithms for 

use with images produced during functional magnetic resonance imaging (fMRI) 

scans. pSPM registers each foot pressure record to all others in the data set so 

that smoothly varying pixel fields optimally overlap. This then enables 

comparisons to be made between the foot pressure records at the pixel level. 

The pressures in each record are represented using a false colour scale, where 

the hotter colours show areas of highest pressure.  

3.2.5  Repeatability 

As only one trial was conducted for each combination of visual scene and 

visual tracking type, repeatability testing was conducted to ensure that the foot 

pressure patterns were representative and repeatable. A subject was chosen at 

random to undergo this testing (subject 9), and after initial collection of the first 

data set, the subject repeated each of the trials 5 times. With both tracking types 

and all three clutter levels tested on each repeat, this resulted in 30 foot 

pressure record sets. The repeats were spread over the space of a month to 

ensure no bias was introduced from fatigue or learning.  

3.2.6  Statistical Analysis 

Once groups of foot pressure records had been prepared using pSPM, the 

mean square error was calculated for each foot pressure record within each 

group in order to define quantitatively how each record differed from the mean 

(see Appendices A2.11-A2.20 for diagrammatic representations of mean square 

error variance for each subject). The variance in mean square error for each 

group was then calculated and used as a measure of overall variability in foot 

pressures within the group. All subsequent statistical analysis was performed in 

SPSS (IBM, UK). A repeated measures ANOVA following Bonferroni correction 

was used to compare overall variance in foot pressure mean square error within 

subjects across both types of visual tracking (gaze fixation and smooth pursuit), 

and all three visual clutter levels (blank, savannah, and forest scenes). For the 

repeatability testing, a repeated measures ANOVA was used to compare 

variance in foot pressure mean square error within each of the six visual 
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tracking and visual clutter level combinations (gaze fixation with blank, 

savannah, and forest scenes; and smooth pursuit with blank, savannah, and 

forest scenes) across each repeat. 

3.3 Results 

3.3.1 Foot Pressure Variability 

A repeated measures ANOVA was used to determine the effects of visual 

tracking type and visual clutter level on foot pressure variability. Results 

demonstrated significant overall between-subject variability in foot pressure 

mean square error (F (1, 9) = 21.32, p = 0.001), indicating that foot pressure 

variability was highly variable across subjects. Within-subject results 

demonstrated only minor within-subject differences in variance in foot pressure 

mean square error between the visual tracking types (gaze fixation = 6.95 ± 

1.47 and smooth pursuit = 6.20 ± 1.41), and indeed these were found to be 

insignificant (F (1, 9) = 2.72, p = 0.13) (Figure 3.4).  

 

 

 

Figure 3.4: Comparison of variance in foot pressure mean square error (MSE) during object tracking using 
gaze fixation and smooth pursuit.  
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However, larger within-subject differences in variance in foot pressure 

mean square error were seen during tracking against the blank, savannah, and 

forest visual scenes (8.24 ± 1.27, 5.57 ± 1.15, and 5.91 ± 1.35 respectively), 

and the effect of visual clutter was found to be significant (F (2, 18) = 7.33, p = 

0.005). Post-hoc pairwise comparisons following Bonferroni correction 

determined that the variance in foot pressure mean square error during tracking 

against the blank visual scene was significantly higher than when tracking 

against the forest scene (p = 0.04) (Figure 3.5).  The effect of the interaction of 

visual tracking type and visual clutter level on variance in foot pressure mean 

square error was insignificant (F (2, 18) = 2.28, p = 0.57). 

 

 

 

Figure 3.5: Comparison of variance in foot pressure mean square error (MSE) during object tracking 
across three levels of background visual clutter.  

 

Following this significant difference in variance in foot pressure mean 

square error across visual clutter levels, and to assess further how foot 

pressures varied when tracking against the different clutter levels, a visual 

comparison of the mean foot pressure record to the most varied foot pressure 

record (that with the highest mean square error) across the levels provides a 

qualitative impression of how foot pressure might vary with each condition 
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(Figure 3.6). Figure 3.6 indicates that under-heel pressure remains relatively 

constant, and that differences expressed in the most variable prints are under 

the forefoot. These differences in underfoot pressure range through a more 

diffuse pressure across the lateral forefoot and midfoot (seen e.g. in subjects 1, 

3 and 4), and a shift in pressure under the medial forefoot and hallux (seen e.g. 

in subject 10) to a combination of both (subjects 2 and 5-9). 

 

 

 

Figure 3.6: Example foot prints for each of the 10 subjects (1-10) during smooth pursuit tracking against 
each clutter level (a = blank scene; b = savannah scene; and c = forest scene). The prints represented in 
each set are the mean (left) and the print with the highest mean square error (right). 
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3.3.2 Repeatability 

Repeatability analysis was conducted on subject 9 to ensure data was 

reliable and representative.  The subject repeated the exercise for each of the 

six combinations of visual tracking type and visual clutter level (both gaze 

fixation and smooth pursuit on plain, savannah, and forest scenes) five times. 

Variance in foot pressure mean square error (MSE) in each case demonstrated 

relative consistency across repeats 1-4, however variance values for repeat 5 

were consistently low when compared to the other repeats (Table 3.1).  

 

Combination Repeat 1 Repeat 2 Repeat 3 Repeat 4 Repeat 5 

B/GF 16.00 18.55 18.53 16.49 13.77 

B/SP 14.54 18.54 20.29 17.99 10.74 

S/GF 10.74 10.01 12.17 11.60 9.37 

S/SP 10.37 14.04 12.66 14.40 9.32 

F/GF 11.24 11.47 10.71 13.23 8.26 

F/SP 14.46 12.65 10.53 15.44 6.60 

Mean 12.89 14.21 14.15 14.86 9.68 

SD 2.39 3.61 4.20 2.29 2.43 

  

Table 3.1: Repeatability of variance in foot pressure MSE for each combination of tracking type (GF = gaze 
fixation, SP = smooth pursuit) and clutter type (B= blank, S= savannah, F= forest) in subject 9. Means and 
standard deviations are reported for each combination of tracking type and visual scene, and for each 
repeat. 

 

A repeated measures ANOVA demonstrated within-combination 

differences in variance in mean foot pressure MSE across the repeats (F (4, 20) 

= 8.818, p < 0.01). A post-hoc pairwise comparison following Bonferroni 

correction indicated that this significance was the result of repeat 5, with 

variance in foot pressure values in repeat 5 (9.67 ± 2.43) significantly lower than 

those recorded during repeat 4 (14.86 ± 2.29) (p = 0.04). No other significant 

within-combination-differences were recorded (Figure 3.7).  
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Figure 3.7: Comparison of variance in foot pressure mean square error (MSE) between repeats. 

 

Because of the fact that no other significant differences were observed 

between repeats, it is possible that a confounding factor contributed to the lower 

levels of foot pressure variability observed across the final repeat. This could 

include slight alterations in ambient light or noise levels outside of the 

experimental area that were difficult to control, or indeed at this point the 

number of prior repeats may have been sufficient to improve confidence and 

performance with the task even with the considerable time gaps between 

repeats.  

Further, the very fact that within-subject effects of tracking type were not 

significantly different across the single repeat of trial combinations conducted for 

all subjects suggests relative consistency of foot pressure variability (Figure 

3.8). Therefore, the single set of trials conducted for each subject was deemed 

representative. 
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Figure 3.8: Comparison of the mean variance in foot pressure mean square error (MSE) when tracking an 
object with gaze fixation (GF) or Smooth Pursuit (SP). Values represent the mean variance derived from 
individual values across all levels of visual clutter. 

 

3.4 Discussion 

The fact that foot pressure variability did not appear altered by visual 

tracking complexity is intriguing given the differences in neuroprocessing 

demand between smooth pursuit and gaze fixation. This suggests that modern 

humans are adapted for complex visual environments, and in particular dealing 

with moving visual stimuli. The results do however show a clear effect of 

background clutter level on foot pressure variability during visual tracking. 

Contrary to the hypotheses, it appears that a lack of visual referents rather than 

larger levels of visual clutter induces an increase in foot pressure variability. 

Indeed, these results might suggest that when tracking using smooth pursuit 

against  the savannah and forest backgrounds the static features could 

compensate for body motion induced by tracking the moving target by enabling 

postural control to utilise static  ‘anchors’. Such anchors were not provided to 

the same extent within the blank background, and hence postural control would 

have remained strongly coupled to the moving visual target. This could therefore 

explain why postural control was significantly reduced when gaze tracking in this 
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instance. This work therefore supports previous descriptions of the benefits of 

sensory anchors, including visual, by Meyer and colleagues (Meyer et al., 

2013). 

Indeed, in terms of the mechanics of the eye movements involved in gaze 

tracking, it is known that smooth pursuit eye movements are continually 

interrupted by saccadic movements that search the visual field for referents, and 

make smooth tracking less effective (Collewijn and Tamminga, 1984). It has 

also been shown that reference objects in backgrounds, even simple dots, can 

improve efficiency of smooth pursuit eye movements by providing necessary 

information about the target position relative to the background (Brenner et al., 

2001). Therefore, there appears to be a benefit to these static visual referents in 

providing stable reference points for postural stabilisation, and also through 

improved efficiency and reduced cognitive demands of smooth pursuit 

movements.   

However, in the relative absence of these referents when tracking against 

the blank background, automatic postural responses are likely to have to drive 

larger numbers of corrective movements due to the more disruptive and less 

stable visual input. For example the more diffuse pressure distribution under the 

forefoot seen in the most variable prints during smooth pursuit tracking is 

consistent with, and thus may in turn  result from, a so-called ‘lateral ankle 

strategy’ (Hof et al., 2010, Hof et al., 2007, Hoogvliet et al., 1997) that 

modulates foot rollover, and is the main balance strategy during single support. 

This strategy involves the contraction of muscles around the subtalar joint that 

induce a shift of centre of pressure under the foot and generate a stabilising 

moment of force to counteract unwanted body tilt (Hoogvliet et al., 1997).  Other 

muscle synergies such as the hip strategy may also be at play in activating the 

hip extensors and flexors to maintain position of the centre of mass (Shumway-

Cook and Woollacott, 2000b). Hence, the variability seen in foot pressures may 

reflect utilisation of the lateral ankle strategy and other motor synergies, 

particularly during the more vulnerable single support phase of the gait cycle, in 

order to support the head and maintain visual acuity. 
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 However, it should be noted that as this study utilised only static 

backgrounds for the visual tracking task, the potential impact of moving objects 

in the visual field has not been taken into account. It is suggested that the 

presence of movement in the visual field in itself is likely to reduce balance as 

postural control has to remain coupled to moving visual inputs. However, when 

also tracking a moving object across a moving visual field, balance is likely to be 

further compromised as smooth pursuit movements are more disjointed due to 

distraction from surrounding moving stimuli. Therefore it is possible that visual 

clutter level may actually have a significant impact when large numbers of 

moving stimuli are present in the environment, for example in areas of high 

traffic, although this will require further study. 

3.4.1 Implications with Respect to Ageing and the Built Environment  

Therefore although smooth pursuit eye movements do not appear to 

pose any greater threat to postural stability than does gaze fixation, the make-

up of individual features in the visual field does appear to impact upon multi-

modal integration and postural control.  The design and structure of built 

environments is of particular importance, especially with respect to the elderly 

and infirm in which it well known that sensorimotor integration is already 

compromised. The elderly often suffer from poor joint mobility (Freemont and 

Hoyland, 2007) reducing the independent rotational ability of the head, pelvis, 

and hips (Chiacchiero et al., 2010, Cinelli et al., 2008, Paquette et al., 2006, Van 

Emmerik et al., 2005), and as a result elderly people are often deliberately more 

cautious, using strategies such as reducing step length and velocity, and 

increasing step width to counteract fear of falling (Paquette et al., 2008, Fuller et 

al., 2007).  

Alongside this, reduced visual function with ageing is known to alter eye 

movement control (Knox et al., 2005, Spooner et al., 1980, Sharpe and 

Sylvester, 1978). It has been shown that visual decline directly contributes to 

falls (Abdelhafiz and Austin, 2003, Ivers et al., 2000, Grisso et al., 1991) and 
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smooth pursuit eye movements in particular have a reduced gain (Spooner et 

al., 1980, Sharpe and Sylvester, 1978) and an increased lag time (Knox et al., 

2005, Sharpe and Sylvester, 1978) in the elderly. Under normal circumstances 

the sub-clinical symptoms of ageing do not affect function as long as the CNS 

can compensate (Woollacott, 1989), however it is well known that the elderly 

have trouble allocating attention to additional tasks (Shumway-Cook and 

Woollacott, 2000a, Teasdale et al., 1991).  

This is of particular concern given the complex nature of modern 

environments where attention often has to be divided across several tasks.  It is 

therefore vital that the design of such environments takes into account the 

sensorimotor decline typical of ageing in order to maintain the wellbeing of 

elderly individuals (Frank and Patla, 2003). Whilst the results of this study 

suggest that there is unlikely to be much difference in postural control amongst 

medium and high level visual clutter in young, healthy subjects, this may not be 

the case for the elderly. Indeed, their sensorimotor deficits are likely to make 

sensorimotor integration in visually complex environments more difficult to some 

degree.   The results from this study also stress the importance of an adequate 

number of static visual referents that act as postural anchors even in young, 

healthy subjects. Such anchors are likely to be of greater importance to the 

elderly in which postural sway is already increased. Studies have also shown 

similar benefits to postural control of auditory and tactile postural anchors 

(Meyer et al., 2013), and hence relatively simple environmental features could 

help maintain balance in complex environments. For instance, in areas with 

high-speed traffic flow, larger and clearer signage, hand railings, and improved 

lighting and auditory cues, are all likely to help maintain balance in elderly 

individuals in their own right. However, when combined with traffic calming 

measures to slow down the traffic this would also allow elderly subjects more 

time to process the presence of, and deduce the speed of, oncoming vehicles. 

Consequently, older individuals are not only likely to be less prone to falls, but 

are also less likely to make poor judgements, providing a dual benefit to postural 

control and safety. 
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3.4.2 Implications for Evolution and Sensorimotor Adaptation 

The implications of these results are not just applicable to modern 

humans however, but potentially provide considerable insight into how our 

ancestors came to be able to utilise smooth pursuit at no extra cost to stability. It 

is probable, just as in modern humans, that performance of smooth pursuit was 

related to environment and training and it is likely that the endurance running  

and persistence hunting capabilities thought to characterise Homo erectus 

(Liebenberg, 2006, Bramble and Lieberman, 2004, Carrier et al., 1984) in 

particular played an important role in selecting for effective smooth pursuit.  

However, recent reconsideration of morphological differences between 

australopiths and early Homo, including leg length and body size, suggest that 

differences in body proportions once considered to be pronounced, may in fact 

be  more nuanced (Antón, 2012, Holliday, 2012, Pontzer, 2012). This in turn 

suggests that biomechanically the late australopiths may have been much 

similar than previously thought to early Homo in their capabilities. As the results 

of this study suggest that postural control may not have been significantly 

threatened in forest environments when compared to more open environments, 

it is possible that selection for efficient tracking against high levels of visual 

clutter in australopiths increased sensorimotor integration capabilities. This is 

supported by the fact that some of the first evidence of the defleshing of animal 

bones comes from cut marks on bovid bones associated with Australopithecus 

garhi (Semaw, 2000, De Heinzelin et al., 1999), a species known to inhabit both 

woodland and open grassland environments, and a species suggested as a 

possible  ancestor of Homo (Asfaw et al., 1999).  

Evidence suggests that the inferior parietal lobe, a region of the brain 

known to be involved in diverse auditory-motor (Price, 2010, Pa and Hickok, 

2008)  (Pa and Hickok, 2008, Price, 2010) tactile-motor (Eickhoff et al., 2006, 

Blakemore et al., 1998)  and visual-motor (Creem-Regehr and Lee, 2005, 

Johnson-Frey et al., 2005) transformations, is particularly important in tool use. 
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Consequently, the training and optimisation of processing in such areas 

associated with the visually complex forest environments may have optimised 

multimodal integration abilities and allocation of attention. This  may therefore 

help to explain why hominins that had yet to benefit from the large increase in 

brain size and encephalization seen in Homo from 500 Ka onwards (see e.g.  

Antón, 2003), were able to develop not only tool use, but cultural style in tool 

manufacture: clearly evinced in Acheulian industries from as much as 1.76 Ma 

(Lepre et al., 2011). 

3.4.3 Conclusion 

This study set out to assess how visual tracking impacts on foot pressure 

variability during treadmill walking in young healthy subjects. It has 

demonstrated that young healthy humans are under no increased risk to stability 

when walking and performing more complex smooth pursuit eye movements. It 

is likely that this reflects a high degree of adaptation to tracking moving stimuli, 

including predator or prey animals, in our evolutionary history, and the large 

numbers of pedestrians and traffic typical of modern day life, and the 

optimisation of neural processing we have acquired as a result.  Smooth pursuit 

was however seen to be affected by clutter levels, with increased variability in 

foot pressures seen against the blank background with the lowest level of visual 

clutter. It is inferred that this is a consequence of the need for sufficient static 

referents in the visual field from which to deduce information about target 

position and speed. With increasingly urban environments this has clear 

implications for the design of areas where multi-sensory integration is vital, such 

as pedestrian crossings. This is particularly important given our rapidly ageing 

population, with the associated increase in sensory deficits and fall risk. The 

relationship of smooth pursuit and clutter levels could also however provide 

insight into how the optimisation of multi-modal integration contributed to the 

initial development of cognitive abilities long before substantial increase in brain 

size (which began some 500 Ka) allowed for more human–like cognition. 
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Chapter 4: The Impact of a Dual Visual-Auditory Task During 

Walking 

4.1 Introduction 

During movements made in response to the environment, vision is 

combined with sensory feedback from the vestibular and proprioceptive systems 

to yield an overall sense of balance and position of the body in space. 

Maintaining stability during walking is therefore a complex, multi-dimensional 

process: it requires higher level motor control in order to enable adequate 

response to threats and cues in the environment, whilst other cognitive tasks 

are performed concurrently (Buchman et al., 2011). Under normal 

circumstances, the resulting competition between the attentional demands of 

walking and the concurrent task do not affect function as long as the CNS can 

compensate (Woollacott, 1989). However, when processing capabilities are 

exceeded, sensory inputs must be prioritised (up-weighted) or de-emphasised 

(down-weighted) according to the most immediate need (Schweigart and 

Mergner, 2008, Paige, 1994b). This often results in one task being performed at 

the expense of another: for instance, recent studies suggest that postural 

control acquiesces to active visual tracking and potentially to gaze fixation 

(Logan et al., 2010). This suggestion has important implications given the nature 

of urban environments, where attention often has to be divided between several 

tasks. For instance, even the simple act of talking has been shown to affect gait 

while walking (Lundin-Olsson et al., 1997). 

Dual-task related gait changes have been shown to include an increase in 

stride-to-stride variability (Taylor et al., 2013, Beauchet et al., 2005), a decrease 

in stride length (Donoghue et al., 2013, Simoni et al., 2013, Taylor et al., 2013, 

O'Shea et al., 2002), and decreased walking speed (Donoghue et al., 2013, 

Simoni et al., 2013, Taylor et al., 2013, Beauchet et al., 2008, O'Shea et al., 

2002) when performing an attention-demanding task compared to walking 

alone. These changes to gait patterns, particularly decreased gait-speed, are 
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thought to be the result of a deliberate strategy to avoid loss of balance. For 

instance, decreased stride velocity has been shown to be the consequence of 

increased stride time, which in turn has been linked to an increase in the length 

of the double support phase (Beauchet et al., 2005). This may therefore reduce 

attentional demand during the more vulnerable swing phase, and minimise risk 

of imbalance (Beauchet et al., 2005, Woollacott and Shumway-Cook, 2002)  

Exploring the impact of these observed effects is of particular importance 

due to the strong relationship between the afore-mentioned changes and the 

risk for falling. Decreased gait speed (Beauchet et al., 2008, Bootsma-van der 

Wiel et al., 2003, Lundin-Olsson et al., 1997) and increased stride to stride 

variability (Bloem et al., 2003) in particular have been associated with falls. 

Increased fall-risk is particularly likely in the elderly, in which difficulty allocating 

attention to additional tasks (Shumway-Cook and Woollacott, 2000a, Teasdale 

et al., 1991), and hence the challenge of dual-tasking, is further increased as a 

consequence of age related deficits in both cognitive and motor abilities. 

As such, research to date has mainly focused on the elderly and infirm 

(Donoghue et al., 2013, Simoni et al., 2013, Taylor et al., 2013) as those 

primarily at risk in dual task scenarios, and hence the impact of dual tasking in 

young, healthy subjects is less well known. However, although young, healthy 

subjects may be more able to integrate multiple modalities efficiently, there are 

still likely to be changes to gait patterns as a consequence of task prioritisation. 

In particular, studies have so far been unable to assess how underfoot pressure 

distributions may change in these conditions, and have focused on stride-to-

stride variability and gait velocity parameters (Donoghue et al., 2013, Simoni et 

al., 2013, Taylor et al., 2013, O'Shea et al., 2002). Indeed, considerable intra-

subject variability in foot pressure distribution patterns has been demonstrated 

during normal walking in young, healthy subjects (Bates et al., 2013b), and 

hence the impact of dual tasking on the gait of such individuals certainly 

warrants attention. In addition, the interactions between multiple tasks which are 

far more typical of real-life scenarios, for example the simultaneous tracking of 



63 
 

objects in the visual environment, and talking whilst walking, are yet to be fully 

established. For instance, studies to date have utilised cognitive tasks such as 

backwards counting exercises (Taylor et al., 2013, Doi et al., 2012), or alternate 

alphabet letter recital (Donoghue et al., 2013, Simoni et al., 2013) that, whilst 

eliciting a speech response, are not truly representative of day to day speech 

responses in natural situations: i.e. they may require more concentration and 

hence a larger attentional load than more naturalistic everyday conversation.  

The processing of language is indeed complex, with language relevant 

cortex extending over both the  inferior frontal gyrus (Pulvermüller and Fadiga, 

2010, Hagoort, 2005), and the inferior parietal lobule (Pa and Hickok, 2008). 

Alongside its’ role in interpretation and production of phonetic, syntactic, and 

semantic structure (Pulvermüller and Fadiga, 2010, Hagoort, 2005), the inferior 

frontal gyrus is also known for its’ involvement in the processing of several non-

vocal behaviours including visual search (Fink et al., 2006). Further, the inferior 

parietal cortex is known for its’ diverse roles in visual-motor (Creem-Regehr and 

Lee, 2005, Johnson-Frey et al., 2005) and  auditory-motor (Price, 2010, Pa and 

Hickok, 2008) responses. Consequently, such regions are under large 

processing loads during dual task scenarios in order to produce appropriate 

responses for visual and auditory tasks conducted while walking.  

However, despite the complexities of this multimodal integration, the 

benefits of training may have a positive impact on stability by optimising 

cognitive processing. For instance,  there is evidence to suggest that the 

effectiveness with which smooth pursuit eye movements are carried out in 

gymnasts when compared with controls demonstrates how enhancements of 

these eye movements can be seen with regular training (Von Lassberg et al., 

2012). This not only enables the neuroprocessing and control of these eye 

movements to be optimised, but could also indirectly benefit stability in itself by 

reducing demand on multimodal integration. In such individuals, this may 

thereby allow for efficient allocation of attention to both cognitive tasks and 
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postural control, hence posture may be less likely to be affected during dual task 

scenarios.   

By deploying a pressure sensing treadmill utilised alongside a binocular 

gaze tracking system, this study therefore aims to assess the impact of 

combined visual and auditory tasks of varying difficulty on foot pressure 

variability while walking, and hence in turn, their effects on balance and stability.  

It was expected that when comparing the impact of two auditory stimuli 

during smooth pursuit object tracking, foot pressure variability would be larger 

when the stimuli required a speech response when compared to a background 

stimulus due to increased processing demand (Hypothesis 1). It was also 

expected that that, if smooth pursuit tracking was made more complex with the 

addition of a more complex visual background, these effects on foot pressure 

variability would be further exacerbated as cognitive load further increased due 

to excessive visual stimuli (Hypothesis 2). Finally, professional gymnastics 

training was expected to have a positive impact on minimising the effects of 

attentional load on foot pressure variability when compared to cardio training or 

non-professional sports training, due to specific training of eye movements and 

motor control of balance (Hypothesis 3).  

 

4.2 Methods 

4.2.1 Subjects 

Ten healthy subjects participated in this study. In order to participate, 

subjects had to be free from known neurological and musculoskeletal disorders, 

amongst other limitations. All subjects had normal or corrected-to-normal vision. 

Ethics approval was obtained from the University of Liverpool Research Ethics 

Committee (RETH000888), with all subjects giving informed prior consent. 
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4.2.2 Experimental Setup 

Foot pressure data were collected from a Zebris FDM-THM foot pressure 

sensing treadmill (Isny im Allgäu, Germany) at a frequency of 100 Hz. Pupil 

movement data was synchronously captured using a binocular eye-tracking 

system, ViewPoint BSU07 USB-60x3, Arrington Research (Scottsdale, AZ, 

USA) sampling at 60Hz. An LCD projector, NEC NP2250 (Berkshire, UK) was 

used to project visual targets on to a curved projection screen, Beamax A-Velvet 

(Overpelt, Belgium) positioned 2m directly in front of the treadmill so as to 

prevent distractions from peripheral vision (see Figure 4.1). 

4.2.3 Protocol 

Subjects walked on the pressure sensitive treadmill at a set speed of 1.1. 

m/s-1 whilst tracking the movement of a dot shaped visual target projected on 

the screen. This speed was chosen as all subjects confirmed they felt secure 

walking at this speed and, as demonstrated by their eye tracker profiles (see 

below), were able to track the target efficiently. Further, the speed is also 

comparable with those seen of natural walking in young adults (0.71-1.76 m/s-1 

(42.76 - 105.57 m/m-1) (Waters et al., 1988). The target alternated between 

stationary phases and periods of movement in order to initiate gaze fixation and 

smooth pursuit respectively. The sequence lasted for three minutes, and 

included three stationary phases lasting 20 seconds each, and three 

movements lasting 40 seconds each. The subjects were made aware of the fact 

that the target would cycle between stationary phases and movement, the only 

instruction given being to track the object at all times. They were encouraged to 

walk and move freely as they would normally, taking into account the constraints 

of the treadmill environment. To prevent learning and anticipatory smooth 

pursuit movements, the path of the target varied with each movement.  
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Figure 4.1: Diagrammatic representation of experimental set up, including the eyetracker, pressure 
sensitive treadmill, projector, and curved projection screen. 

 

In order to assess hypothesis 1, subjects first completed this tracking 

task across a simple savannah background (see Figure 4.2), and in the 

presence of two forms of auditory stimuli, delivered through a personal mp3 

player and noise-cancelling headphones. These tasks involved a repeat-back 

language exercise and listening to a piece of background music. For the first 

trial, the repeat-back language trial, the subjects were played a sequence of 

clips in a variety of languages (French, Italian, and Spanish). Each consisted of 
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a short phrase in English followed by a translation, subjects being asked to 

repeat the translation as they heard it. Phrases were sourced from podcasts 

created as beginner guides to stock phrases for holidaymakers 

(http://www.thomson.co.uk/editorial/podcasts/foreign-phrases.html), and were 

purposely chosen to ensure relative simplicity of pronunciation and shortness of 

phrase. Each phrase was individually excised from the podcasts using an online 

Mp3 cutter (http://mp3cut.foxcom.su/en/). For the second trial, the background 

music trial, subjects were played ‘Well-Tempered Clavier, Book 1, Prelude 

No.1 in C major BWV846’ by Bach, chosen due to the monotonicity and 

consistent rhythmic pattern. 

For hypothesis 2, the two trials were repeated as above but the tracking 

background was changed to a more complex and visually cluttered forest scene 

(see Figure 4.2).   

 

 

Figure 4.2: Background images representing the two visual clutter levels tested. Values represent 
quantitative estimation of clutter generated using the code of Rosenholtz et al. (2007) as in Chapter 3). 

 

To ensure that the complexity of the backgrounds were quantitatively 

different, both the savannah and forest images were assessed using the code of 

Rosenholtz et al. which used the principles of feature congestion to provide 

values for the visual clutter levels in each image  (Rosenholtz et al., 
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2007)(Figure 4.2). Throughout all data collection, the experimental area was 

kept clear of any non-experimental visual and auditory stimuli so as not to 

distract the subject from the task.  This included prevention of any movement of, 

or communication between, researchers and other staff present in or adjacent to 

the experimental area by means of a ‘warning light’ in use throughout each trial.  

 

4.2.4 Data Analysis 

For each trial, pupil movement data captured by the eye tracker was 

imported into MATLAB (MathWorks, USA) to confirm that efficient object 

tracking had taken place (see Appendices A3.1-A3.10 for eye tracking profiles 

for each subject).  For any trials in which the eye tracking profile was 

unsatisfactory, for instance where the pupil movement was particularly erratic 

and noisy, or it was clear that it had not tracked the target in the X plane, the 

data were discounted and the trial repeated. The movement of the pupil in the X 

plane was plotted as a line graph, enabling the bouts of gaze fixation and 

smooth pursuit of the trial to be clearly segmented (Figure 4.3).  The start and 

end points of each bout were marked by plotting cross hairs on the profile, and 

using in-house code (Appendices A1.2 and A1.3) the foot pressure records 

obtained during the marked-off sections were then identified and grouped (A1.4 

– A1.6).  
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Figure 4.3: Exemplar eye tracking profile showing horizontal pupil movement. Segments marked ‘S’ 
indicate the portions of the trial where the target is stationary and gaze fixated. Segments marked ‘M’ 
indicate areas of target movement, and hence Smooth Pursuit (SP) occurrence. Red bars indicate 
transitional points, a buffer around which discounted any pressure records made during transitional 
phases.  

 

So as to prevent the inclusion of any records made during the transition 

between gaze fixation and smooth pursuit, a 2 second exclusion zone was put 

in place either side of the cross hairs. 

This yielded a group of foot pressure records made during smooth-pursuit 

tracking for each of the four conditions in each subject (40 groups in total). The 

foot pressure record groups so identified were then analysed using an in-house 

software toolkit, pedobarographic Statistical Parametric Mapping (pSPM) 

(Pataky et al., 2008) (Appendices A1.7 and A1.8). This technique, derived from 

algorithms originally developed for use with images produced during functional 

magnetic resonance imaging  (fMRI) (Friston, 1997), ‘fits’ each foot pressure 

record to all others in the data set so that structures optimally overlap, enabling 

comparisons to be made between them at the pixel level.  

4.2.5 Statistical Analysis 

Statistical analysis was performed in MATLAB (MathWorks, USA) and 

SPSS (IBM, UK). Firstly, mean square error was calculated for each pressure 

record within each group to quantitatively define how each record differed from 

the mean. The variance in mean square error for each group was then 
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calculated and used as a measure of overall variability for the foot pressure 

records within the group (See Appendices A3.11 - A3.20 for diagrammatic 

representations of foot pressure mean square errors for each subject). A 

repeated measures ANOVA was conducted following Bonferroni correction in 

SPSS (IBM, UK) to assess the effects of auditory task type, visual clutter level, 

and exercise training on foot pressure variability. 

 

4.3 Results 

A repeated measures ANOVA was used to assess the impact of the dual 

visual and auditory task on foot pressure variability during walking. Comparisons 

of within-subject variance in foot pressure mean square error with respect to the 

blank, savannah, and forest visual scenes (16.01 ± 5.32, 14.46 ± 3.40, and 

13.82 ± 4.22 respectively) demonstrated an insignificant effect of visual clutter 

level (F (2, 14) = 0.78, p = 0.48) (Figure 4.4).  

 

 

 

Figure 4.4: The effect of three different clutter levels on variance in foot pressure mean square error (MSE) 
during a dual visual-auditory task. 
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However, the effect of auditory task did have a significant impact on 

variance in foot pressure mean square error, with larger variability in foot 

pressure mean square error observed when undertaking the repeat-back 

language task (16.90 ± 4.63) when compared to the background music task 

(12.62 ± 3.92) (F = (1, 7) = 17.66, p = 0.004) (Figure 4.5). 

 

 

 

Figure 4.5: The effect of two auditory tasks on variance in foot pressure mean square error (MSE) during a 
dual visual-auditory task. 

 

To assess further how foot pressures varied during the different auditory 

tasks, a visual comparison of the mean print to the most varied print provides a 

qualitative impression of how foot pressure might vary with each auditory task 

(Figure 4.6). This indicates that under-heel pressure remains relatively constant, 

and that the differences expressed in the most variable prints are under the 

forefoot. These changes in underfoot pressure range through a more diffuse 

pressure across the lateral forefoot and midfoot (seen e.g. in subjects 2-4, 6, 7 

and 9), and a shift in pressure under the medial forefoot and hallux (seen e.g. 

subjects 5 and 8). 
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Figure 4.6: Example foot pressure records for each of the 10 subjects (1-10) during smooth pursuit tracking 
against the savannah scene when listening to music (a) or completing the language task (b). The prints 
represented in each set are the mean (left) and the record with highest mean square error (MSE) (right). 

 

4.4 Discussion 

Considering the impact of dual tasking when walking, these results 

demonstrate clearly, and as hypothesised, that there is significantly higher 
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variability in foot pressure patterns when tracking a visual object with the 

addition of a more complex auditory task (repeat-back language task) when 

compared to a simpler auditory task (listening to background music).  

Although seemingly requiring different sensory modalities - speech being 

centred around auditory and vocal modalities, and visual tracking being centred 

around predominantly the visual and proprioceptive modalities - the neural 

pathways involved in both tasks converge on the same areas of the brain.  One 

of these regions is the inferior parietal lobule, a region of the brain known to be 

involved in diverse auditory-motor (Price, 2010, Pa and Hickok, 2008) and 

visual-motor (Creem-Regehr and Lee, 2005, Johnson-Frey et al., 2005) 

transformations. This not only includes the dorsal stream that controls eye 

movements (including those made during smooth pursuit), and the guidance of 

actions in response to vision (Goodale and Milner, 1992), but  also vocal 

perception, imitation and production (Price, 2010, Peschke et al., 2009, Pa and 

Hickok, 2008). Information from the inferior parietal lobule is communicated to 

the premotor cortices of the frontal lobes which are responsible for generating 

sequential plans to be executed by the primary motor cortex.   

The frontal lobes are also associated with executive function and working 

memory; that is the higher level cognitive processes that include the planning 

and monitoring of strategies for different actions, and the control, regulation, and 

active maintenance of task-relevant information in both novel and familiar tasks 

(Malloy and Richardson, 1994). Hence the performance of the repeat-back 

language task in particular will have relied heavily on the efficient coordination of 

the visual and auditory inputs, but also a motor response in the vocal repetition.  

As a consequence, the inferior parietal lobule will have been subject to a higher 

level of cognitive load than that experienced when completing the background 

music task, thereby reducing cognitive resources available for other tasks, 

including postural control.  Therefore it is suggested that during the more 

complex repeat-back language task that subjects allocated more attention to the 

required motor response (speech) at the expense of postural control. This led to 
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more variable foot pressure patterns when compared to the simpler background 

music task which did not need to be allocated the same degree of attention.   

However, it was interesting to note that there was no significant impact of 

clutter level on foot pressure variability during the dual-task conditions. As the 

subjects completed the experiments in ascending visual clutter level order, it is 

plausible that a training effect came in to play i.e. that practice improved the 

efficiency of processing of the simultaneous tasks. There has been much 

evidence to suggest that dual-task performance can be improved with practice 

and training, both in young and older adults (Theill et al., 2013, Lussier et al., 

2012, Bherer et al., 2008, Bherer et al., 2006, Bherer et al., 2005, Kramer et al., 

1995). Further, both cognitive and  physical training have been shown to induce 

functional changes in brain regions of older adults involved in higher order 

cognition, including the prefrontal cortex and parietal cortex (Brehmer et al., 

2011, Voelcker-Rehage et al., 2011, Voss et al., 2010, Dahlin et al., 2008, 

Colcombe et al., 2004). It is also possible that a ‘ceiling effect’ is present, 

whereby the repeat-back language  task alongside smooth pursuit tracking 

evokes considerable neurological demand in itself, and hence the complexity of 

the visual scene during smooth pursuit tracking does not further influence 

postural control.  

Indeed, this is supported by the lack of any significant difference in foot 

pressure variability amongst activity type, indicating that there was no added 

benefit of professional training in hand-eye sports when compared to 

cardiovascular sports and non-professionals. This would suggest that any 

potential benefits of smooth pursuit training in those who take part in sports 

requiring precise hand-eye coordination might only be of benefit in less complex 

dual-tasking scenarios because of such ceiling effects.  

It is also important to note however, that this study has considered the 

effects of background clutter level on tracking against static background images 

only. It therefore remains to be seen if similar results would be observed when 

object tracking in a visual field made up of multiple moving components. In 
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situations where there are large numbers of moving objects in the field of view, 

and particularly if static referents are less frequent, stability might be further 

compromised as fewer sensory anchors (Meyer et al., 2013) are available to 

assist with the control of balance. 

Across the visual clutter levels, and for both the background music and 

language tasks, the more variable foot pressure records were characterised by 

differences in the forefoot and the midfoot, particularly on the lateral side. 

Therefore, it is concluded that these pressure records reflect the actions of the 

vestibulospinal reflex in making larger numbers of corrective movements during 

more disruptive visual tracking. The resulting innervations of muscles of the 

trunk, in particular, may shift the centre of mass laterally in response to medio-

lateral movements, leading to the resulting lateral pressure shift observed under 

the fore- and midfoot.  

Further, such pressure distributions might reflect the utilisation of in-place 

strategies through muscle synergies. This includes the ‘lateral-ankle strategy’ 

that modulates foot rollover, and is the main balance strategy during single 

support (Hof et al., 2010, Hof et al., 2007, Hoogvliet et al., 1997). This strategy 

involves the contraction of muscles around the subtalar joint that induce a shift 

of centre of pressure under the foot and generate a stabilising moment of force 

to counteract unwanted body tilt (Hoogvliet et al., 1997). It also includes the hip 

strategy that alters underfoot pressure distribution via activity of the flexors and 

extensors of the lower legs. Hence, the variability seen in foot pressures may 

also reflect the utilisation of both of these strategies, particularly during the more 

vulnerable single support phase of the gait cycle.  

4.4.1 Societal and Clinical Implications  

This research therefore has clear implications for those in whom 

cognitive deficits are common. For example, it is noted that the elderly often 

have difficulty allocating attention to additional tasks (Shumway-Cook and 

Woollacott, 2000a, Teasdale et al., 1991). Further, the elderly have been 

observed to possess a reduced postural reserve, the term used to define an 
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individual’s ability to respond to postural threat (Yogev‐Seligmann et al., 2008). 

As such, if a concurrent task becomes too complex, one task must be 

prioritised over another. This often results in one task being performed at the 

expense of another: for instance,  elderly subjects may stop talking while 

walking (Lundin-Olsson et al., 1997).  

Age-related changes in both the morphology and function of the brain have 

been known since the 1990s (Raz et al., 1997, Malloy and Richardson, 1994) 

and with recent advances in functional magnetic resonance imaging (fMRI), are 

becoming even easier to observe (Brehmer et al., 2011, Voss et al., 2010, Raz 

et al., 2005, Raz et al., 1997). It is known that the cerebral cortex degrades with 

age, resulting in both a reduction of grey and white matter in the pefrontal cortex 

and also a reduction of mass in the frontal lobe (Park and Reuter-Lorenz, 2009, 

Raz et al., 2005, Raz et al., 1997). Because the frontal regions in particular are 

affected, higher level functions - including executive functions – are most 

vulnerable. As a result, the extent to which neural plasticity can compensate for 

age related deficits is limited. It is therefore speculated that when performing 

concurrent tasks during walking, as required in many aspects of daily life, 

stability in the elderly and infirm may be further compromised.  

Even when dual tasks are successfully performed alongside walking, the 

allocation of attention to both the cognitive and postural tasks may result in 

poorer performance on both parts (Yogev‐Seligmann et al., 2008). Indeed, 

several studies of elderly subjects report reduced reaction times (Chen et al., 

1996, Ebersbach et al., 1995, Lajoie et al., 1993), or reduced performance 

(Lindenberger et al., 2000) of a cognitive task while walking. Studies have also 

observed increased gait variability (Dubost et al., 2006) and a larger number of 

(Lindenberger et al., 2000) in elderly subjects performing dual tasks while 

walking. These observed changes to gait patterns may have considerable 

implications when considering the risk of falls and injury in such individuals, 

particularly as the elderly are already at increased risk due to their muscle 

deterioration and weakness (Paterson et al., 2007). 
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This increased risk is of particular concern with regard to increasingly 

complex urban environments. Whilst the results of this study have found an 

insignificant effect of background clutter level on foot pressure variability whilst 

completing a dual visual-auditory task, the fact that task complexity had an 

effect on foot pressure variability has implications when considering the complex 

tasks required of daily life in such environments. For instance, pedestrian 

crossings pose a particular threat to the elderly who are less able to judge 

speed of oncoming vehicles, and may much more readily make inappropriate 

predictions on available crossing time (Zivotofsky et al. 2012), which can lead to 

falls or inappropriate muscle activations due to time pressure. Furthermore, 

current road markings and illuminations have been shown to be ineffective, and 

in some cases may even be harmful (Retting et al. 2003). In crossing situations, 

attention must be divided between watching and listening for traffic and 

preparing motor sequences to stop or cross when appropriate, and in the elderly 

this may be much more difficult due to the deficits described above. Particular 

care therefore needs to be taken to maximise safety in urban environments 

through the careful design of environments to optimise sensorimotor integration. 

Advances in vibrotactile feedback systems suggest that vibratory indications of 

head and trunk tilt may also help improve confidence and balance and minimise 

risk of fall and injury (Haggerty et al., 2012, Janssen et al., 2012). 

4.4.2 Implications for Evolution and Sensorimotor Adaptation 

The implications of these results however are not just applicable to 

modern humans, but may also provide considerable insight into the evolution of 

cognitive processing abilities in our ancestors. It is not unlikely that one of the 

selective forces for the large increase in brain size seen in later Homo erectus 

(Ruff et al., 1997) was the emergence of the persistence hunting lifestyle 

(Bramble and Lieberman, 2004, Carrier et al., 1984). The need to be able to 

track moving prey efficiently whilst giving chase is a key example of dual tasking 

need in our evolutionary history. It is therefore likely to have placed significant 

selection pressures on the efficiency of visual-motor integration, and hence the 

ability to process sensory input and consequent motor tasks simultaneously.  
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The concurrent emergence of further attention demanding tasks such as 

the increasing sophistication and cultural style in both tool use and manufacture 

(Lepre et al., 2011) from as far as 1.76 Ma, are also likely to have played a role 

in the optimisation of neural processing capabilities, especially in dual-task 

scenarios. For example, the late Acheulean tool-making associated with Homo 

erectus involved the intentional shaping of a bifacial tool (handaxe) using 

controlled and precise fracture (Asfaw et al., 1992, Isaacs and Curtis, 1974, 

Leakey, 1971). As it does not just rely on manual praxis, but rather on 

hierarchical action sequences and the updating of those sequences in response 

to sub-goals, it is neurologically complex (Stout and Chaminade, 2012). Indeed, 

it places large demand on anterior portions of the frontal cortex (Badre and 

D'Esposito, 2009), and increased activation is indeed observed in these areas in 

modern expert tool makers (Stout et al., 2008). In turn, this larger recruitment of 

areas of the frontal cortex indicates the increased visuo-motor coordination 

required of advanced tool-making. 

 The selection for these capabilities are likely to have played a significant 

role in hominin brain and cognitive evolution (Stout and Chaminade, 2012). This 

is further supported by the ‘technological pedagogy’ hypothesis, which suggests 

that intentional vocal communication evolved as a consequence of the complex 

manual praxis required of tool-making having to be inferred rather than simply 

observed (Stout and Chaminade, 2012), providing a context for imparting 

knowledge through demonstration (Csibra and Gergely, 2011).  

It is suggested therefore, that the development and perfecting of the 

persistence hunting lifestyle, alongside the development of other cognitively 

demanding processes such as speech and tool use, are likely to have played a 

significant role in the optimisation of multi-modal integration. It is proposed that 

the resulting efficiency of dual tasking in modern humans is, to some extent, a 

retained adaptation to the reliance of our ancestors on endurance running in the 

hunting of prey and avoidance of predators and their growing need for social 

learning and evolving pedagogy.  
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4.4.3 Conclusion 

This study aimed to determine the effects of dual visuo-auditory tasks of 

varying complexity on foot pressure variability during treadmill walking. It has 

demonstrated that, even in young, healthy subjects,  performing an auditory task 

requiring a speech response, as opposed to listening to a piece of background 

music which did not, led to a resulting increase in foot pressure variability.  It is 

likely that the high demand on shared neural circuits, particularly those requiring 

the planning and execution of motor acts such as the frontal lobes, leads to the 

acquiescence of postural control as visual and auditory input take priority. 

Interestingly, the lack of significant benefit of training in sports requiring large 

degrees of hand eye coordination may highlight a ceiling effect in terms of the 

effects of attentional load on postural control. This was also supported by the 

lack of a significant effect of increasing background visual clutter level during the 

performance of the dual task.  

  These results may be particularly important given our ever-ageing 

population, in maximising sensory processing and minimising fall risks in the 

elderly, particularly in complex urban environments. It could also, however, 

provide insight into how the development of cognitive abilities in our ancestors 

may have already begun to optimise multi-modal integration abilities that allow 

modern humans to cope with the complex day to day situations experienced in 

modern day life.  

 

 



80 
 

Chapter 5: The Impact of Body Segment Coupling During 

Walking 

5.1 Introduction 

The coordination of body segments during dynamic movements and their 

actions in regulating balance and posture require complex motor control.  In 

order to maintain stability during walking, balance must be regulated at two main 

levels: the balance of the head, arms and trunk about the supporting hip; and 

the balance of the body’s overall centre of mass about the centre of pressure 

(MacKinnon and Winter, 1993).  

Movement and control of the trunk in particular is known to contribute 

significantly to balance, as well as being the main locomotor organ in 

vertebrates, producing up to 50% of spatial gain (Fischer and Lehmann, 1998). 

During the single support phase in particular, balance is particularly threatened 

by the rotation of the pelvis as the swing leg induces a destabilising torque in 

what is known as the ‘pelvic step’ (Ducroquet et al., 1968). In order to 

counteract this, an opposing axial counter-rotation of the trunk acts to reduce 

angular momentum about the longitudinal axis (Gracovetsky, 1985).  

 Others have also argued that the benefits of independent trunk rotations 

also extend to energetic efficiency, with the trunk acting as an elastic linkage 

between the upper and lower extremities (Pontzer et al., 2009a). This can be 

modelled as two rigid segments (the torso and the pelvis) connected by a 

torsional spring (the waist) (LaFiandra et al., 2002), which therefore enables the 

storage and release of elastic energy between the segments. Further, axial 

rotation of the trunk has been shown to have a relative minimum velocity of 

1m/s-1 in modern humans which is energetically optimal for the whole body 

(Margaria et al., 1963). At this velocity the trunk acts as a resonating pendulum, 

and consequently, in addition to supporting balance, it requires minimum 

energetic input. 
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Trunk counter-rotations are also aided by both passive and active arm 

swing. Passive arm swing is driven by trunk rotation and the passive mass 

damper effect of the shoulders (Pontzer et al., 2009) to counteract the angular 

momentum produced by leg swing with minimal energy. Active arm swing is 

employed in order to increase the counter-torsional effects of arm swing when 

the passive component alone is insufficient, particularly when balance is 

threatened (Pontzer et al., 2009).  

The maintenance of stability of the trunk also plays a crucial role in the 

stabilisation of the head, which in turn stabilises gaze. This is primarily achieved 

through the action of the vestibulospinal reflex (Gernandt et al., 1959) that 

induces compensatory body movements to maintain balance after head motion, 

but is also aided by the vestibulocollic reflex (Outerbridge and Jones, 1971) that 

counteracts head motion by acting on the neck musculature (Land, 2004). It 

appears as if trunk motion is critical in attenuating accelerations between the 

trunk and head in all directions (medio-lateral, anterior-posterior, and vertical), 

although neck movements may play a lesser role (Kavanagh et al., 2006).  

Despite the clear importance of the coordination of the trunk with the head 

and pelvis however, the exact mechanisms by which these segments interact, 

both with each other and with the limbs, is unclear. For instance, although many 

studies have considered inter-segmental control of balance, most consider the 

interactions of only of the head and trunk (Kavanagh et al., 2005, Land, 2004, 

Keshner, 2003, Hollands et al., 2001, Stapley et al., 1999), and do not take into 

account the contribution of the limbs. There are also gender differences to 

consider, with the female pelvis having been shown to be subject to larger 

motion and accelerations in the frontal plane (Mazzà et al., 2009, Smith et al., 

2002), possibly in an attempt to reduce displacement of the centre of mass 

(Smith et al., 2002).  

While an understanding of the behaviour of individual segments is a 

prerequisite of analysis of segment interactions, it is suggested that the former 

are now well enough understood to advance to an analysis of the combined and 
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synergistic actions of the segments at a whole body level, and their influence on 

foot-ground interactions. This study contributes to the latter agenda by 

investigating the impact of decoupling between the head and shoulders, and 

trunk and pelvis, by artificially recoupling these segments in healthy young 

people by the use of medical braces.  

 

The hypotheses were as follows: (1) Foot pressure variability will be 

increased following body segment recoupling, due to the increased action of 

vestibulospinal and vestibulocollic reflexes, and muscle synergies, in stabilising 

the trunk and head; (2) Head movements will be restricted in all of the three 

major planes (pitch, roll, and yaw) as a consequence of head and shoulder 

coupling; (3) After recoupling the trunk and pelvis, a consequent reduction in 

shoulder and pelvic rotation will be observed due to the limited motion of the 

trunk; (4) In an attempt to preserve counter-rotations following segment 

recoupling, an increase in arm swing and arm abduction will also be observed; 

(5) Leg swing will be reduced in an effort to decrease step length, aiding 

maintenance of the stability of the centre of mass. (6) Gender differences in 

pelvic shape will result in changes in body segment kinematics between the 

sexes to maintain the same performance of counter-rotations and forward 

propulsion. 

 

5.2 Methods 

5.2.1 Subjects 

Ten healthy subjects participated in this study, five male and five female, 

with a mean age of 21.50 ± 2.80 years, a mean height of 172.21 ±8.76 cm, and 

a mean weight of 71.19 ± 11.26 kg. In order to participate, subjects had to be 

free from known neurological and musculoskeletal disorders, amongst other 

limitations. Ethics approval was obtained from the University of Liverpool 

Research Ethics Committee (RETH000888). All participants were provided with 

a participant information sheet and gave informed prior consent. 
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5.2.2 Experimental Setup 

Foot pressure data were collected from a Zebris FDM-THM foot pressure 

sensing treadmill (Isny im Allgäu, Germany)  at a frequency of 100 Hz. 

Kinematic data were synchronously captured using a 9-unit Qualisys ProReflex 

motion capture camera system (Gothenberg, Sweden)  running at the same 

frequency (see Figure 5.1 for experimental setup).  Qualisys 19mm retro-

reflective lightweight markers (Gothenberg, Sweden) were attached using 

double-sided tape to anatomical landmarks on the subjects, as shown in Figure 

5.1. The exact anatomical landmarks (and body segments) chosen for motion 

capture analysis are detailed in Figure 5.2 and Table 5.1. These markers were 

then tracked by the camera system, recording their global coordinates, and 

hence movement, throughout the trials.  To ensure foot pressure and kinematic 

data were synchronous, an external trigger from the treadmill was used to 

initiate kinematic capture. 
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Figure 5.1 Diagrammatic representation of experimental setup including pressure sensitive treadmill, 
motion capture camera system. 
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Figure 5.2: Reflective marker placement. Numbers correspond with exact anatomical landmarks defined In 
Table 5.1. Modified from hkadigital.co.uk. 
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Body 
Segment 

Central Trajectory Distal Trajectory Planes of 
Analysis 

Head Right Acromion Process (2) Forehead (1) Transverse 

Shoulders Right Acromion Process (2) Left Acromion Process (6) Transverse 

Pelvis Right Anterior Superior Iliac 
Spine (7) 

Left Anterior Superior Iliac 
Spine (8) 

Transverse 

Left Upper 
Arm 

Left Acromion Process (3) Left Olecranon Process (6) Sagittal 

Left Lower 
Arm 

Left Olecranon Process (6) Left Distal Third Phalanx 
(dorsal) (12) 

Sagittal 

Left Arm Left Acromion Process (3) Left Distal Third Phalanx 
(dorsal) (12) 

Frontal 

Left Upper 
Leg 

Left Greater Trochanter (10) Left Lateral Femoral 
Epicondyle (14) 

Sagittal 

Left Lower 
leg 

Left Lateral Femoral 
Epicondyle (14) 

Left Lateral Fibular Malleolus  
(16) 

Sagittal 

Left Leg Left Greater Trochanter (10) Left Lateral Fibular Malleolus 
(16) 

Frontal 

Right Upper 
Arm 

Right Acromion Process (2) Right Olecranon Process (5) Sagittal 

Right Lower 
Arm 

Right Olecranon Process (5) Right Distal Third Phalanx 
(dorsal) (11) 

Sagittal 

Right Arm Right Acromion Process (2) Right Distal Third Phalanx 
(dorsal) (11) 

Frontal 

Right Upper 
Leg 

Right Greater Trochanter (9) Right Lateral Femoral 
Epicondyle (13) 

Sagittal 

Right Lower 
Leg 

Right Lateral Femoral 
Epicondyle (13) 

Right Lateral Fibular Malleolus 
(15) 

Sagittal 

Right Leg Right Greater Trochanter (9) Right Lateral Fibular 
Malleolus(15) 

Frontal 

 

Table 5.1: Body segments (as defined by pairs of reflective markers) and the planes in which their 
movement was analysed. In each instance the movement analysed was that of the distal trajectory relative 
to the central trajectory. Numbers in parentheses correspond with marker numeration in Figure 5.2. 
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5.2.3 Protocol 

Subjects walked on the pressure sensitive treadmill at a set speed of 1.1. 

m/s-1. This speed was chosen as it was found to be comfortable for all subjects, 

all confirming that they felt secure walking at this speed. Both foot pressure and 

kinematics data were measured in two conditions: braced and non-braced. In 

the braced condition, subjects wore a lumbar brace: Double cross over lumbar 

brace (Physio-Med Services Ltd., Derbyshire, UK), and cervical brace: 

Adjustable cervical collar (Special Protectors Co., Ltd., Taiwan) in order to 

couple the trunk and pelvis; and head and shoulders, respectively (Figure 5.3).  

   

 

Figure 5.3: Images of the cervical and lumbar braces used in the experiment. Braces were adjustable to fit 
all subjects accordingly. 

 

In the non-braced control condition subjects walked freely and 

unrestricted as they would normally (within the constraints of the treadmill 

environment). Subjects first walked in the braced condition, and then after a 

short break the non-braced condition.  For each condition, synchronous foot 

pressure and kinematic data were recorded in two consecutive 150 second 

periods, resulting in a total of five minutes’ recording for each condition. If data 

collection was interrupted, for example if a reflective marker became detached 
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from the subject, or the subject’s position on the treadmill drifted, the data were 

rejected and recording was repeated. 

 

5.2.4 Data Analysis 

Foot pressure records captured during both conditions were grouped into 

those made in the braced and non-braced conditions in each subject, and were 

then analysed and compared using an in-house technique, pedobarographic 

statistical parametric mapping (pSPM) (Pataky et al., 2008) (Appendices 1.1 – 

1.3). Statistical parametric mapping, originally developed for analysis of 

functional magnetic resonance imaging (fMRI) scans (Friston, 1997), aligns 

each pressure record  with all others in the data set so that structures optimally 

overlap, enabling comparisons to be made between them at the pixel level.  

For kinematic analysis, each 150 second recording was imported into MATLAB 

(MathWorks, USA) and split into five 30 second sub-samples. This produced ten 

sub-samples, per condition, per subject. In each of these sub-samples, the 

minimum and maximum angle (Figure 5.4) for each segment in each plane of 

interest (as in Table 5.1, and represented diagrammatically in Figure 5.5)  were 

calculated (Appendix A1.4). From these values a maximum range of excursion 

could then be calculated for each segment. 

                

Figure 5.4: Angles (ᶿ) calculated were those between a central trajectory (A) and a distal trajectory (B) as in 
Table 6.1. The angle measured is based on the intersection of vector A-B with the axis of interest (defined 
by A-C) hence the position of the distal trajectory B relative to that axis determined whether the angle was 
positive or negative 
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Figure 5.5: Diagrammatic representation of segment angles considered. This includes whole arm and leg 
abduction in the frontal plane (A and C respectively) and upper and lower arm and upper and lower leg 
swing in the sagittal plane (B and D respectively). Diagrams modified from medicalanatomy.net.  E and F 
represent transverse plane analysis of shoulder and pelvic rotation respectively. Diagram F modified from 
bartleby.com/107/58. G represents head yaw(1), pitch(2), and roll(3) of which head movement was 
analysed with respect to the right shoulder. Diagram modified from resourcesonbalance.com. See Table 
6.1 for exact anatomical landmarks. 

 

On the whole kinematic capture was successful. In some subjects however, 

reflective markers were invisible to the camera system for considerable periods 

of time, and therefore if markers were captured for less than 80% of a 150 

second recording, the resulting data were not considered to be fully 

representative. In these subjects, such markers were excluded from analysis, 

which in turn also led to the exclusion of certain body segments from the 

analysis. Through this exclusion, the following body segment angles were not 

calculated:  

 Subject 4 (loss of left shoulder marker) - Shoulder rotation, Left upper-

arm swing, Left arm abduction. 

 Subject 10 (loss of left ASIS and greater trochanter markers) - Left lower-

leg swing, pelvic rotation. 

5.2.5 Statistical Analysis 

All analysis was performed in MATLAB (MathWorks, USA) and SPSS 

(IBM, UK). To compare foot pressure records between groups statistically, 

mean square error was calculated for each foot-pressure record in each group 
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(braced and non-braced) and for each subject, in order to quantitatively define 

how each print differed from the mean (see Appendices A4.1-A4.10 for 

diagrammatic representations of foot pressure mean square error for each 

subject). The variance in mean square error for each group was then calculated 

and used as a measure of overall variability in foot pressure within the group. A 

repeated measures ANOVA was conducted following Bonferroni correction to 

assess whether differences in variance in mean square error were significant. 

 

To determine under which regions of the foot that plantar pressure 

differed most, qualitative representations of plantar pressure distribution 

between the mean print and that with the highest mean square error were 

plotted.  

 

Kinematic data-processing yielded ten maximum range of excursion 

angles for each segment angle, per condition (braced and non-braced) for each 

subject.  From these ten angles, mean peak excursions and standard deviations 

were identified for each participant. Repeated measures ANOVA were 

conducted following Bonferonni correction to assess whether peak excursions 

for each body segment were significantly different across conditions. 

5.3 Results 

5.3.1 Foot pressures 

Firstly, the effect of body segment recoupling on foot pressure variability was 

examined. This involved comparing foot pressure records during unrestricted 

treadmill walking (non-braced condition) with those made when neck and trunk 

motion were restricted with the body braces (braced condition). A repeated 

measures ANOVA determined that variance in foot pressure mean square error 

was significantly larger (F (1, 9) = 5.95, p = 0.04) during walking in the braced 

condition when compared to the unrestricted non-braced condition (8.63 ± 1.76 

and 6.46 ± 1.53 respectively). (Figure 5.6).  
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Figure 5.6: Comparison of variance in foot pressure MSE between Braced and Non-Braced conditions. 

 

 

Despite the lack of significant difference in overall variance in foot 

pressure mean square error, a visual comparison of the mean foot pressure to 

the foot pressure record with the highest mean square error in each trial can still 

provide a qualitative impression of how foot pressure might vary with each 

condition in order to maintain balance (Figure 5.7). Figure 5.7 suggests that 

under-heel pressure remains relatively constant, but the differences expressed 

in the most variable pressure records are under the forefoot. These changes in 

underfoot pressure range through a more diffuse pressure across the lateral 

forefoot and midfoot (seen e.g. in subjects 1, 2, 6 and 8), and a shift in pressure 

under the medial forefoot and hallux (seen e.g. in subjects 4, 7 and 9) to a 

combination of both (subjects 3, 5, and 10). 
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Figure 5.7: Visual comparison of foot pressure records for all subjects (1-10) in Non-Braced (a) and Braced 
(b) conditions. In each case the mean foot pressure record (left) is compared with the most varied foot 
pressure record (right). 

 

5.3.2 Kinematics 

Calculated body segment angles and the results of repeated measures 

ANOVAs are specified in Table 5.2. Within the upper body, significant 

differences in body segment range of excursions between the braced and non-

braced conditions were observed in the head and the shoulders. The maximum 
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range of head pitch (°) was significantly lower (F (1, 8) = 6.51, p = 0.03) in the 

braced condition when compared to the non-braced condition (10.70 ± 0.78 and 

14.69 ± 2.13 respectively). The maximum range of shoulder rotation (°) was also 

significantly reduced (F (1, 7) = 6.59, p = 0.04) in the braced condition (10.92 ± 

0.91) when compared to the non-braced control (12.91 ± 0.92). No significant 

effect of gender, or interaction between bracing and gender, was observed for 

any of the upper body segments. 

 Within the lower body, significant differences in segment range of motion 

were observed only within the right thigh. In this case, the maximum range of 

right thigh swing (°) was significantly increased (F (1, 8) = 5.91, p = 0.04) in the 

braced condition (27.07 ± 0.25) relative to the non-braced condition (25.94 ± 

0.49). There was also a significant effect of gender (F (1, 8) = 14.37, p = 0.01), 

with females demonstrating a larger range of right thigh swing than males 

(27.68 ± 0.44 and 25.33 ± 0.44 respectively). The effect of the interaction 

between bracing and gender on right thigh swing was, however, insignificant (F 

(1, 8) = 2.15, p = 0.18). No significant effect of gender, or interaction between 

bracing and gender, was observed for any other lower body segment. 
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Body Segment Mean (°) 

Non-

Braced 

Condition 

Std. Error 

(°) Non-

Braced 

Condition 

Mean (°) 

Braced 

Condition 

Std. Error 

(°) Braced 

condition 

Mean 

(°) 

Female 

Std. 

Error (°) 

Female 

Mean 

(°) Male 

Std. 

Error (°) 

Male 

Repeated Measures ANOVA  

Brace Gender Gender*Brace 

F P F p F P 

Head Pitch 14.69 2.13 10.70 0.78 10.07 1.98 15.31 1.98 6.51 0.03 3.52 0.10 0.25 0.63 

Head Roll 9.68 1.87 8.19 0.87 10.85 1.89 7.02 1.89 1.57 0.25 2.06 0.19 0.67 0.44 

Head Yaw 18.12 1.47 17.16 1.48 18.02 2.21 17.26 2.21 0.57 0.47 0.06 0.82 0.00 0.97 

Shoulder Rotation 12.91 0.92 10.92 0.91 12.21 1.15 11.23 1.28 6.56 0.04 0.32 0.59 1.85 0.22 

Left Arm Abduction 12.13 2.10 11.83 1.58 7.44 0.69 7.42 0.72 0.10 0.77 0.00 0.98 1.18 0.31 

Left Arm Swing 32.18 2.82 33.18 2.69 36.93 3.59 28.43 4.01 0.72 0.42 5.38 0.16 0.57 0.48 

Left Bottom Arm Swing 55.75 3.36 55.21 3.31 61.92 4.79 49.04 4.79 0.11 0.75 3.62 0.09 0.00 1.00 

Left Top Arm Swing 24.59 2.13 24.37 2.04 26.01 2.74 22.96 3.06 0.09 0.78 4.11 0.48 0.31 0.87 

Right Arm Abduction 10.50 1.29 12.80 2.09 14.92 2.33 8.38 2.33 4.50 0.07 3.29 0.08 1.35 0.28 

Right Arm Swing 26.69 2.32 28.13 2.35 27.32 3.22 27.50 3.22 1.98 0.20 4.56 0.97 2.98 0.12 

Right Bottom Arm Swing 47.64 3.57 48.89 3.57 50.03 4.89 46.49 4.89 0.49 0.50 0.26 0.62 1.56 0.25 

Right Top Arm Swing 21.28 1.46 21.66 2.13 24.24 2.47 18.70 2.47 0.12 0.74 2.52 0.15 2.25 0.17 

Pelvis Rotation 10.86 0.67 10.43 1.21 11.97 1.16 9.32 1.30 0.22 0.65 2.33 0.17 0.18 0.68 

Left Leg Abduction 7.00 0.22 7.86 0.92 7.44 0.69 7.42 0.77 1.02 0.35 0.00 0.98 0.10 0.76 

Left Leg Swing 28.38 1.02 28.81 1.03 28.56 1.34 28.63 1.50 1.04 0.34 0.00 0.97 0.07 0.81 

Left Thigh Swing 25.82 1.04 26.24 0.92 27.50 1.29 24.57 1.44 1.65 0.24 2.29 0.17 2.37 0.17 

Left Shin Swing 55.43 1.57 55.27 1.56 56.04 2.20 54.66 2.20 0.34 0.57 0.20 0.67 0.33 0.58 

Right Leg Abduction 7.21 0.44 6.95 0.50 6.48 0.66 7.68 0.66 1.94 0.20 1.67 0.23 3.89 0.08 

Right Leg Swing 28.78 0.67 28.56 0.69 28.13 0.95 29.21 0.95 1.27 0.29 0.65 0.44 0.17 0.69 

Right Thigh Swing 25.94 0.49 27.07 0.25 27.68 0.44 25.33 0.44 5.91 0.04 14.37 0.01 2.15 0.18 

Right Shin Swing 56.82 1.07 56.36 1.22 58.29 1.61 54.89 1.61 2.50 0.15 2.23 0.17 0.01 0.91 

 

Table 5.2: Results of kinematic analysis of body segment range of motion (°). Statistical results from repeated measures ANOVAs are reported

.
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5.4 Discussion 

5.4.1 Foot pressures 

Considering the impact of segment coupling on foot pressures, the 

results of this study support hypothesis (1), that foot pressures during the 

braced condition would become more variable when compared to 

unrestricted non-braced walking. It is suggested that this increased foot 

pressure variability reflects the actions of the lateral vestibulospinal reflex in 

controlling for impaired balance induced by the reduced efficiency of trunk 

counter-rotations. The resulting innervations of the extensor muscles of the 

legs may shift the centre of mass laterally in response to increased medio-

lateral sway, leading to the resulting lateral pressure shift seen under the fore 

and midfoot as shown in Figure 5.7.  

Further, such pressure distributions might also be expected during the 

‘lateral-ankle strategy’ that modulates foot rollover, and which is the main 

balance strategy during single support (Hof et al., 2010, Hof et al., 2007, 

Hoogvliet et al., 1997). This strategy involves the contraction of muscles 

around the subtalar joint that induce a shift of the centre of the pressure 

under the foot and generate a stabilising moment of force to counteract 

unwanted body tilt (Hoogvliet et al., 1997). It is speculated that both actions 

may be of particular importance here, due to the restricted ability of the trunk 

to counteract the potentially destabilising torques produced by the swing leg 

(Ducroquet et al., 1968). Other muscle synergies, including those 

responsible for the hip strategy may also contribute to postural control 

through activity at the hip extensors (Shumway-Cook and Woollacott, 

2000b). The restrictions placed on independent body segment rotations 

could therefore place increased demand on the vestibulospinal reflex and 

lateral ankle strategy to maintain balance, particularly during the single 

support phase. 
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5.4.2 Kinematics 

5.4.2.1 Upper Body 

The results partially upheld the hypothesis (2) that head and shoulder 

coupling would decrease head movement in all planes, with subjects 

demonstrating a significant decrease in mean peak excursion in head pitch 

during the braced condition.  

Head stabilisation is a vital and complex component of locomotion, 

both from the perspective of gaze and postural control.  This therefore 

requires delicate control in order to sample the surrounding visual 

environment and anticipate the need for obstacle avoidance, whilst 

maintaining the stabilisation of the head in space in order to provide a frame 

of reference or ‘inertial guidance platform’ (Mulavara et al., 2002).  

During normal walking, the head is subjected to considerable pitch 

(Grossman et al., 1988). Indeed, both the vestibulopsinal and the 

vestibulocollic reflexes attempt to compensate for these movements in order 

to stabilise the head, thereby reducing the need for the vestibuloocular reflex 

to induce compensatory eye movements. It is therefore possible that the 

vestibulospinal reflex and vestibulocollic reflex were aided in this by the 

cervical brace, potentially explaining the reduced pitch observed. On the 

other hand, the fact that no significant effects were observed in head rotation 

and yaw may be an artifact of the restrictions of straight-line treadmill 

walking. That is, in the controlled, artificial conditions in which subjects were 

focusing on the task at hand, they had no real need to rotate the head to 

scan the visual environment. However, natural real-world locomotion clearly 

involves an array of dynamic movements, most importantly turns, which are 

known to initiate from the head (Grasso et al., 1998). This emphasises the 

need for further whole-body studies of this nature in (safely controlled) real 

world environments. 

The hypothesis that (3) shoulder and pelvic excursions would be 

reduced in the braced condition was partially upheld. Whilst no significant 

effects of bracing on pelvic excursion were observed, subjects did 
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demonstrate reduced shoulder excursions when trunk counter-rotations were 

restricted. This suggests that accelerations from the swinging legs and pelvis 

are attenuated by the lumbar brace, and hence the reductions in shoulder 

accelerations observed support a passive arm swing hypothesis (Pontzer et 

al., 2009a). 

The hypothesis (4) that trunk and pelvis coupling would alter arm 

swing and abduction in the braced condition was not upheld as no significant 

effects of bracing on arm swing or abduction were observed for either arm.  

However, it is suggested that an increase in active am swing in the braced 

condition is being masked due to the reduction of shoulder acceleration. In 

other words, the reduction in passive arm swing due to attenuated shoulder 

rotations evokes an increase in active arm swing, hence maintaining overall 

arm swing at the same level in order to preserve balance. This does have 

clear implications for energy expenditure however. 

5.4.2.2 Lower Body 

As mentioned above, pelvis excursion was not significantly different 

between the braced condition and non-braced control. It is therefore possible 

that active arm swing, as well as maintaining overall arm swing levels, is also 

therefore assisting with the active maintenance of pelvic excursion. Again 

however, the energetic cost of increased active arm swing would have an 

effect on the extent to which this strategy could be utilised, likely making it 

unsuitable for longer periods of activity. As this study had subjects walk in 

the braced condition for five minutes only, future studies may wish to 

consider the longer term implications of restricted counter-rotations on active 

control of the torso. 

When considering leg swing, contrary to hypothesis (5) that leg swing 

would decrease in the braced condition, there actually appeared to be 

increase in upper leg excursion in the right leg in the braced condition. As it 

is highly likely that the restrictions on counter-rotations of the trunk and 

impacted upon forward propulsion, it is possible that the increase in right 

upper–leg excursion seen in the braced condition indicates a compensating 

role of the hip extensors (Sadeghi et al., 2001b, Riley et al., 2001) in order to 
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maintain forward propulsion. As studies suggest that the left leg is usually 

dominant for postural stabilisation, and the right for mobilisation (Hirokawa, 

1989), the lack of significant differences in the left leg suggests that 

propulsion is affected more than balance, with reduced the effects of bracing 

appearing to be well compensated for. The significant increase in right thigh 

swing in females when compared to male also partially upheld the 

hypothesis that (6) gender differences in segment kinematics would be 

observed. Indeed, this again likely reflects a need for greater action of the hip 

extensors in females to maintain propulsion and step length due to the 

typically shorter leg length.  

No consistent effects were observed with regards to leg abduction in 

either leg, suggesting that subjects did not increase their step width during 

the braced condition in an attempt to increase their base of support. This 

may therefore imply that the increase in active arm swing, as discussed 

above, is a more efficient and effective method for aiding with the control of 

balance.  

5.4.3 Societal and Clinical Implications 

Although the compensatory mechanisms that have been observed in 

young subjects serve to support balance when counter-rotations of body 

segments are restricted, there are clear implications for those with motor 

coordination deficits, including the elderly. Among contributing intrinsic 

factors is reduced joint mobility: in part due to mechanical deterioration, both 

at the joint surfaces and in muscle, tendon and ligaments; alongside 

numerical loss of muscle fibres and loss of muscle strength (Freemont and 

Hoyland, 2007). As a result, reduced rotational freedom of the head, trunk, 

and pelvis, interferes with both counter-rotations required to maintain 

stability, and the redirection of gaze (Chiacchiero et al., 2010, Cinelli et al., 

2008, Paquette et al., 2006, Van Emmerik et al., 2005). Loss of spinal 

stability also leads to decreased range of spinal rotation, as observed during 

standing-reach tasks and when twisting when sitting (Cavanaugh et al., 

1999, Schenkman et al., 1996).  
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Furthermore, when compared to the healthy elderly, those with 

Parkinson’s disease are subject to several changes in motor patterns that 

further increase the risk of gait disturbance. It has long been known that the 

coordination of multiple motor components poses a challenge in Parkinson’s 

disease (Benecke et al., 1986). Typically, the head and trunk move en bloc 

(Vaugoyeou et al., 2006) and pelvic rotation has been found to be limited 

(Vallabhajosula et al., 2012), possibly indicating inability in uncoupling 

shoulder and pelvic segments to produce effective trunk rotations. Axial 

rotations are also smaller and slower compared to healthy older adults 

(Vallabhajosula et al., 2012), which is a likely consequence of disease- 

related rigidity and bradykinesia and the resulting lesser and slower muscle 

response (Halliday et al., 1998).  

As these results demonstrate gait changes in response to ‘en bloc’ 

movements of body segments even in healthy, young individuals, it is highly 

likely that any effects observed in the elderly and infirm could be further 

exacerbated, by influences including reduced muscle strength, and 

increased joint stiffness, as discussed above. For instance, the potential 

impact of restricted head movements during dynamic movements such as 

turning has already been discussed. Turning is known to be particularly 

difficult and pose a significant threat to balance in the elderly, with around 

30% of falls in occurring during a turning movement or when bending (Patla 

et al., 1992). These falls are particularly debilitating, as they often result in 

hip fracture, with a fall during turning almost eight times more likely to cause 

fracture than a fall when walking straight (Cumming and Klineberg, 1994).  

As the sequential top-down control of body segments has proved to 

be of major importance in turning initiation,  it is fair to assume that the 

restrictions placed on this sequential activation of body segments through 

reduced shoulder accelerations and more ‘en bloc’ movements of body 

segments could be a significant factor in turning inefficiency in these 

individuals. Indeed, the elderly often employ more energetically costly and 

destabilising spin turns (Akram et al., 2010), in which a change in direction is 

achieved by spinning around on the supporting leg (Hase and Stein, 1999).  
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The results also suggested that increased active arm swing could be 

of particular importance in providing counter-torsional forces when the trunk 

is restricted. Conversely, it has been shown that arm swing speed and 

amplitude are often reduced in the elderly (Elble et al., 1991), perhaps 

through over-caution, and that this is further exacerbated in  elderly fallers 

(Wolfson et al., 1990). Consequently, reducing arm swing appears to be 

counter-productive, and this could therefore emphasise the potential for 

training interventions in such individuals. 

The increased activity in the upper leg observed as a response to 

segment coupling may also have implications in the elderly. The importance 

of the hip extensors in control of balance in the elderly has been documented 

(Sadeghi et al., 2001a), and indeed, if the increased upper leg excursion 

observed reflects an increase in activity at the hip joint, this adaptation to 

increased trunk stiffness may well contribute to increased risk of femoral 

fracture in the elderly, a major cause of mortality and disability (Kanis and 

McCloskey, 1996).  

 

5.4.4 Evolutionary implications 

The results of this study could also have a number of implications 

when considering the bipedal gait of early hominin species, particularly 

Australopithecus afarensis, in which a funnel-shaped thorax and lack of a full 

waist (Schmid, 1989, Schmid, 1991, Berge, 1994); and the extensive 

muscular connections between the head and shoulders (Stern Jr and 

Susman, 1983), have traditionally been considered characteristic. The 

mosaic of features observed in the species has led to the gait of 

Australopithecus afarensis becoming the subject of considerable debate. 

Historically, fossil evidence of retained adaptations to arboreal locomotion 

((Stern Jr, 2000, Stern Jr and Susman, 1983, McHenry and Berger, 1998) 

led some researchers to argue that it would have been unlikely and 

inefficient for Australopithecus afarensis to walk fully erect as in modern man 
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(Stern Jr, 2000, Berge, 1994, Duncan et al., 1994, Berge, 1991, Ruff, 1988, 

Berge and Kazmierczak, 1986, Berge, 1984, Stern Jr and Susman, 1983).  

However, others suggest that the gait of Australopithecus afarensis 

would in fact have been more like our own (Crompton et al., 1998, Latimer, 

1991, Latimer and Lovejoy, 1989, Lovejoy, 1988, Latimer et al., 1987, 

Latimer, 1983) and through advantages in computer modelling techniques, 

the case for a fully erect Australopithecus afarensis has become much 

stronger (Sellers et al., 2005). Indeed, this is supported by the recent 

reconsideration of mounting fossil evidence suggesting that most of the 

perceived differences in segment proportions between Australopithecus and 

Homo can simply be attributed to differences in body size (Antón, 2012, 

Holliday, 2012, Pontzer, 2012). Therefore, although caution must be 

exercised when applying the results of this study, they could provide useful 

insights into our evolutionary history. 

Interestingly, the lack of any definitive changes to head rotations by 

the recoupling of the head and shoulders could imply that the extensive 

muscular connections between the head and shoulders in Australopithecus 

afarensis may not have restricted rotational movements to a significant 

degree when compared to later hominins and ourselves. Although, as 

discussed, this also needs to be assessed in dynamic movements such as 

turns, in which rotational movements of the head are known to be critical. In 

fact, these results suggest that the coupling of the head and shoulders may 

have actually been of benefit in reducing unwanted head tilt. In turn, this may 

emphasise the importance of the extensive neck muscles in the species in 

holding the head upright, particularly because of the position of the foramen 

magnum. Indeed, it has been shown that the primitive vestibular system of 

Australopithecus would be unable to compensate for large scale head 

movements (Spoor et al., 1994), and it is therefore likely that large scale 

head rotations were of relative unimportance in the species.  

In contrast, the putative (Bramble and Liebermann, 2004) persistence 

hunting, endurance runner Homo erectus demonstrates both a more 

complex vestibular system (Spoor et al., 1994), and greatly reduced 
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muscular connections between the head and neck (Aiello and Dean, 1990), 

which might suggest that greater independence of the head and pectoral 

girdle only became important when our ancestors began to track and hunt 

moving prey (Bramble and Lieberman, 2004). 

The results of this study also confirmed the hypothesis that trunk and 

pelvis coupling would reduce shoulder movements. Therefore it is fair to 

assume that the funnel-shaped thorax of Australopithecus afarensis would 

most likely have resulted in smaller shoulder rotations, thereby reducing the 

efficiency of counter-rotations. The results also demonstrated that, as a 

consequence, active arm swing may be of particular importance in balancing 

angular momentum when the movement of the trunk is restricted. 

Interestingly, the upper-limb morphology of Australopithecus afarensis lends 

itself to efficient arm swing, with an intermembral index (IMI) of roughly 88 

(Wang et al., 2003, Johanson et al., 1982, Jungers, 1982)  compared to 68-

70 in modern man (Wang et al., 2003). IMI is a ratio comparing upper and 

lower-limb length, with an index of 100 representing exactly equal length. 

When the upper and lower limb are the same length, the phasing between 

them is also equal and hence energetic efficiency is optimal (Wang et al., 

2003, Witte et al., 1991). Thus, the larger moment of inertia generated by the 

longer upper-limb, and the greater efficiency of matching the swinging 

frequency with the lower limb,  would have made the generation of counter-

torsional forces more efficient in Australopithecus afarensis when compared 

to modern man.  These features would therefore prove of particular benefit in 

balancing angular momentum, and may help to explain how the species 

would have been likely to walk fully erect at a lower cost than walking bent-

hip, bent-knee (Sellers et al., 2005) despite the restrictions placed upon 

shoulder rotations. 

The gender-based differences observed in upper leg excursions also 

point to possible gender differences in gait patterns in Australopithecus 

afarensis. Indeed, there is considerable evidence to suggest that the species 

was sexually dimorphic, although there is debate as to whether this was to a 

similar level as in modern humans (Reno et al., 2010, Reno et al., 2003) or to 
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a much larger degree (Richmond and Jungers, 1995, McHenry, 1991, Stern 

Jr and Susman, 1983).  It is possible therefore that gender differences in gait 

could have been further exaggerated in the species. As of yet, most 

biomechanical models of, and discussions surrounding the gait of, 

Australopithecus afarensis are based on the female skeleton ‘Lucy’, AL 288-

1,  as the most complete specimen. However, this specimen is at the low end 

of the range for body size in this species and hence segment proportions 

may be atypical of the species (see discussion above). These results 

therefore highlight the need to consider interspecific morphological variation, 

including sex-differences. 

5.4.5 Conclusion 

This study set out to examine the effects of body segment coupling on 

foot pressure variability and kinematics in young healthy subjects. It has 

demonstrated that coupling of the head and shoulders, and of the trunk and 

waist, reduces peak shoulder rotations and hence is likely to have reduced 

the efficiency of counter-rotations of the trunk necessary to balance the 

centre of mass.   

These changes in upper body rotational efficiency appeared to be 

compensated for in leg swing. Both male and female subjects exhibited the 

same changes in leg swing during segment coupling, with increased upper 

leg swing a potential strategy maintaining forward propulsion, however this 

appeared to be increased in females, possibly due to shorter leg length.  

Conversely, arm swing and abduction did not appear to be effected, but the 

possibility that increased active arm swing during segment recoupling acts to 

maintain arm swing to the same level has been discussed. 

Perhaps surprisingly, the effect of head and shoulder coupling on 

head rotations appears to be insignificant, with only head pitch appearing to 

be reduced. However, this may be an artifact of straight line walking, and 

further study is needed to assess how reduced head rotations may impact on 

dynamic movements such as turning. 

The results of this study may have considerable implications for the 

elderly, in whom joint stiffness and declines in muscular strength may 
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contribute significantly to reduced counter-rotations of body segments. 

Indeed, the changes to leg swing observed appeared to reflect the strategies 

seen in the elderly, including reduced step length and increased activity of 

the hip extensors. However, the differences observed in arm swing strategy 

imply that reduced arm swing through over-caution in the elderly may be 

counter-productive, and hence highlight the potential benefits of training and 

exercise interventions in such individuals. 

Further, these results may also provide insight into our evolutionary 

history, particularly with respect to Australopithecus afarensis, a species 

known to be bipedal but characterised by a coupled head and shoulders, and 

coupled trunk and pelvis. These results may highlight the importance of the 

relatively long arms of Australopithecus afarensis in maintaining sufficient 

counter-rotations of the funnel-shaped thorax. 
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Chapter 6: Overall Conclusion 

6.1 Project Summary 

Using what is to date a uniquely whole-body, multimodal approach, this 

thesis has assessed the potential impact of sensory load and the decoupling 

of body segments on foot pressure variability and hence stability. This 

assessment was accomplished using a combination of foot pressure 

analysis, motion capture and kinematic analysis of body segment 

movements, and eye tracking analysis.  

The project aimed to answer the following research question: 

 ‘How might increased sensory demand, and the recoupling of 

body segments in modern humans impact on foot pressure variability 

during walking, and what are the implications for human evolution, and 

for modern humans with respect to ageing and the increasing 

complexity of built environments?’ 

  

From this question, two overarching hypotheses were developed: 

1) Sensory prioritisation during walking will result in decreased 

efficiency of postural control as it acquiesces to support the 

processing of visual and auditory stimuli of varying complexity.  

 

2) The recoupling of the head and neck, and trunk and pelvis will 

result in changes to postural control as a consequence of the 

reduced effectiveness of the counteraction of destabilising 

torques through trunk counter-rotations.  
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6.2 Summary of Experimental Conclusions 

Chapter 3 presented the results of a study assessing how foot pressure 

variability was affected by visual object tracking against varying levels of 

visual clutter. This involved the comparison of foot pressure records made 

during gaze fixation of a static object with those made during Smooth Pursuit 

against backgrounds of varying complexity. The results of this study 

demonstrated that in young healthy subjects, eye movement and visual 

tracking complexity does not significantly impact on foot pressure variability 

and hence stability when walking. It is likely that this reflects a high degree of 

adaptation to tracking moving stimuli, including predator or prey animals, in 

our evolutionary history. However, postural control was seen to be affected 

by the level of background visual clutter, with increased variability in foot 

pressures seen when tracking against a blank background. It is suggested 

that this is a consequence of the lack of static referents to which posture can 

be coupled, and from which information about target position and speed can 

be deduced. 

Chapter 4 extended the object tracking task considered in Chapter 3 by 

incorporating a dual visual-auditory task. This enabled the comparison of the 

impact of filterable background auditory stimuli with a repeat-back language 

task requiring an active response, and the potential effects of processing 

prioritisation on foot pressure variability. It was concluded that the 

significantly increased foot pressure variability observed during the repeat 

back language task was the result of high demand on shared neural circuits, 

particularly those requiring the planning and execution of motor acts such as 

those in the frontal lobe. This leads to the acquiescence of postural control 

as visual and auditory input take priority. Interestingly, the lack of significant 

differences in foot pressure variability when the repeat-back language task 

was made more difficult with the addition of the more complex forest 

background, indicates that a ‘ceiling’ may be present at  which sensory load 

ceases to impact on postural control. This was also supported by the lack of 

significant difference in foot pressure variability between subjects trained in 

gymnastics with those not trained in hand eye coordination-centred sports. 



107 
 

Finally, Chapter 5 considered the effects of the restriction of 

independent counter-rotations of body segments on whole body kinematics, 

and foot pressure variability, through the use of medical body braces. It was 

concluded that coupling of the head and shoulders, and of the trunk and 

waist, reduces peak shoulder rotations and hence is likely to reduce the 

efficiency of counter-rotations of the trunk necessary to balance the centre of 

mass. The potential need for increased active arm swing as a consequence 

was discussed. Changes in leg swing during segment coupling were also 

seen, with increased upper leg swing appears to act as a strategy to 

maintain forward propulsion. The larger upper leg excursions seen in 

females may reflect a larger need for this hip extensor activity due to typically 

shorter leg length. It was also concluded that the lack of an effect of segment 

coupling on head rotations (roll and yaw) may be an artifact of straight line 

walking, and further study is needed to assess how reduced head rotations 

may impact on other dynamic movements. Finally, foot pressure variability 

was shown to be increased when segments were coupled, indicating an 

increased need for postural control. 

 

6.3 Conclusions about the Research Question 

As noted above, this project set out with the following research question 

in mind: 

 ‘How might increased sensory demand and the recoupling of body 

segments in modern humans impact on postural control, and what are 

the  implications with respect to the built environment, ageing, and the 

evolution of human postural control?’ 

The conclusions of  Chapters 3 and 4 suggest that foot pressure variability 

does indeed increase with the difficulty of both visual and auditory tasks, 

supporting the first overarching hypothesis of this thesis, that: ‘Sensory 

prioritisation during walking will result in alterations to postural control 

as attention is allocated to secondary tasks of varying complexity’.  
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The second overarching hypothesis stipulated that: ‘The recoupling of the 

head and neck, and trunk and pelvis, will result in alterations to 

postural control as a consequence of the increased rigidity of the 

thorax segments’. 

This hypothesis is upheld by the conclusions made in Chapter 5 concerning 

the increased variability in foot pressures with restriction of the head and 

pelvis movements. They further show the compensatory changes to leg 

swing, although these changes were subject to gender differences. 

Therefore, it is concluded that both increasing sensory demand, and 

the recoupling of body segments have a clear impact on foot pressure 

variability as the body attempts to maintain stability. However the results 

suggest that a baseline level of visual stimulation is necessary as a referent 

against which  to determine the position of the body in space, and equally 

that a ceiling effect may also be present beyond which no further impact on 

postural control is observed.  

6.4 Implications  

6.4.1 Evolutionary implications 

The clear benefit of reduced sensory load to stability during walking 

demonstrated in Chapters 3 and 4 suggests that the consequent optimisation 

of neuroprocessing abilities resulting from a spread of hominins  into more 

open grassland and savannah environments (albeit that Homo erectus also 

reinvaded tropical rainforest environments in South East Asia very quickly, 

see e.g. Elton, 2008) may have aided/been exaptive for the evolution of new 

cognitive behaviours, such as tool use, in late australopiths. Thus, it may 

further help to explain why hominins that had yet to benefit from the large 

increase in brain size and encephalization seen in Homo from 500 Ka 

onwards (see e.g.  Antón, 2003), were able to develop cultural style in tool 

manufacture: clearly evinced in Acheulean industries from as much as 1.76 

Ma (Lepre et al., 2011).  

Further, the putative persistence hunting lifestyle of Homo ergaster 

and Homo erectus  (Bramble and Lieberman, 2004, Carrier et al., 1984), and 



109 
 

the resulting importance of  stability whilst tracking and hunting moving prey 

efficiently, is a key example, in our evolutionary history, of selective 

pressures which might be exerted by tasks generating large cognitive load. 

Persistence hunting is likely to have placed significant selective pressures on 

the efficiency of visuo-motor integration, and hence the ability to process 

sensory input and consequent motor tasks simultaneously, further optimising 

for cognitive processing capabilities, especially in dual-task scenarios. The 

increased foot pressure variability with dual tasking that is evinced and 

discussed in Chapter 4, although in itself not demonstrating any connection 

to human evolutionary history, implies that the development and perfecting of 

the persistence hunting lifestyle, alongside the development of other 

cognitively demanding dual-tasking processes such as the development of 

speech, wider social intercourse and tool use, are likely to have posed a 

threat to balance control. As such, the honing of these abilities may have 

played a significant role in the optimisation of multi-modal integration to 

ensure optimal bipedal efficiency. 

Alongside sensory adaptations, the results discussed in Chapter 5 

indicate that the efficiency of bipedal gaits is likely to have been significantly 

improved in Homo as a result of acquisition of independent rotations of the 

head and shoulders, and trunk and pelvis. The reduced foot pressure 

variability in natural walking in modern humans, when compared to the 

braced condition, surely reflects a reduced need for corrective postural 

control. Further, the gender differences in leg swing observed indicates the 

importance of exercising caution when proposing locomotor strategies for 

hominin ancestors based solely on fossil evidence, particularly due to an 

added need to consider the high degree of sexual dimorphism known in 

species such as Australopithecus afarensis.  

6.4.2 Implications for Ageing and the Built Environment 

Alongside the evolutionary implications, the results of each of the 

studies are of course highly relevant when considering safety in the typically 

complex environments prevalent in modern society. The observed impact on 

foot pressure variability of high levels of visual and auditory stimuli in young, 



110 
 

healthy subjects that is discussed in Chapters 3 and 4 has clear implications 

for the elderly and infirm. Reduced visual function with ageing is known to 

alter eye movement control (Knox et al., 2005,  Spooner et al., 1980, Sharpe 

and Sylvester, 1978), and has been directly linked to the incidence of falls 

(Abdelhafiz and Austin, 2003, Ivers et al., 2000, Grisso et al., 1991). It is well 

known that the elderly have trouble allocating attention to additional tasks 

(Shumway-Cook and Woollacott, 2000a, Teasdale et al., 1991), making 

multi-modal integration, and hence the control of postural stability 

increasingly difficult. It is therefore likely that the effect of dual tasking would 

exacerbate the effects on postural control that have been described here for 

young, healthy subjects, in which integration is optimal. 

The above considerations therefore prompt careful consideration of 

the complexity of sensory stimuli during the design of built environments, so 

as to optimise both safety and usability, particularly with respect to 

vulnerable users. Examples of environments which may be of particular 

concern include pedestrian crossings, and areas with high pedestrian 

turnover including shopping centres and train stations. This research 

highlights the importance of providing adequate visual referents in the visual 

field from which to determine information regarding body position. This 

consideration supports previous work showing the positive effect of 

appropriately positioned perceptual anchors on the reduction of body sway in 

the presence of complex environments (Meyer et al., 2012, Meyer et al., 

2013), which are likely to be of similar or possibly even greater benefit to 

postural control during dynamic movements. 

The results of Chapter 5 also offer insight into the ‘en bloc’ 

movements of body segments typical of the elderly. The results of the 

segment recoupling study in young, healthy subjects suggested that 

increased active arm swing could be of particular importance in providing 

counter-torsional forces when the trunk is restricted. Conversely, it has been 

shown that arm swing speed and amplitude are often reduced in the elderly 

(Elble et al., 1991), and this could therefore emphasise the potential for 

training interventions in such individuals. 
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The increased activity in the upper leg observed as a response to 

segment coupling may also have implications in the elderly. The importance 

of the hip extensors in control of balance in the elderly has been documented 

(Sadeghi et al., 2001a), and their increased activity could contribute to 

increased risk of femoral fracture in the elderly, a major cause of mortality 

and disability (Kanis and McCloskey, 1996).  

 

6.5  Limitations and Further Research 

Despite the contribution of these conclusions and their implications to 

both evolutionary history and modern man, this project has nonetheless been 

subject to limitations. For instance, the very nature of treadmill walking is 

expected to have an effect on the rhythm of gait, which may in turn produce 

bias in the foot pressure data. Further, it is of course restricted to straight-line 

walking. Evidence suggests that dynamic movements, particularly turning 

movements, are more highly correlated with fall risk, and hence it would be 

expected that the effects on foot pressure variability observed would be 

further exacerbated when walking in more variable paths and especially in 

turning.  

Furthermore, as a consequence of the large volume of data 

engendered by this study and the resulting time constraints imposed by 

required processing time, the degree of pupil movement within the visual and 

dual task trials was not able to be analysed as part of this project. As eye 

movements have been shown to initiate turning movements (Grasso et al., 

1998), it is of clear importance to consider the impact of pupil movements on 

dynamic movements.  

Due to lack of appropriate lab facilities to allow the pursuit of ethical 

permission, it was also not possible to conduct trials on elderly subjects, for 

which these results have important implications, as discussed extensively 

above. Consequent to the well-documented changes in walking patterns in 

such subjects, arising from both visual and motor decline and over-caution, 

unfortunately these results can only go so far in indicating how the elderly 

may be affected by visual and auditory clutter. 
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Further research should therefore extend similar studies to the elderly - 

and the infirm, such as those with Parkinson’s disease - as these subjects 

could particularly benefit from increased knowledge of sensorimotor 

integration during complex tasks. To remove the bias induced by artificial 

environments and treadmill walking, real world data should be collected 

wherever possible. This would also allow for the consideration of dynamic 

movements. The analysis of pupil movement data would complete a whole-

body picture of the motor response to sensory stimuli.  

6.6 Closing Statement 

This thesis aimed to assess the impact of sensory load and body 

segment coupling during walking, with implications for both human evolution 

and modern ageing in built environments. It has provided a unique 

contribution to our understanding of how sensory load and segment 

decoupling may have contributed to the success of our persistence hunting 

ancestors through the use of human analogues, the results of which are also 

directly relevant to the elderly in which sensory processing, motor control, 

and joint stiffness are of particular concern.  

 

 

 

 

 

 

 

 

 

 



113 
 

 

7 References  

Abdelhafiz, A. H. & Austin, C. A. 2003. Visual factors should be assessed in older people 

presenting with falls or hip fracture. Age and Ageing, 32, 26-30. 

Aiello, L. & Dean, C. 1990. An introduction to human evolutionary anatomy, Academic 

Press. 

Akram, S. B., Frank, J. S. & Chenouri, S. 2010. Turning behavior in healthy older adults: Is 

there a preference for step versus spin turns? Gait & posture, 31, 23-26. 

Allum, J. H. J. & Pfaltz, C. R. 1985. Visual and vestibular contributions to pitch sway 

stabilization in the ankle muscles of normals and patients with bilateral peripheral 

vestibular deficits. Experimental Brain Research, 58, 82-94. 

Angelaki, D. E. 2004. Eyes on target: What neurons must do for the vestibuloocular reflex 

during linear motion. Journal of Neurophysiology, 92, 20-35. 

Angelaki, D. E., Mchenry, M. Q. & Hess, B. J. 2000. Primate translational vestibuloocular 

reflexes. I. High-frequency dynamics and three-dimensional properties during lateral 

motion. Journal of neurophysiology, 83, 1637-1647. 

Angevaren, M., Aufdemkampe, G., Verhaar, H., Aleman, A. & Vanhees, L. 2008. Physical 

activity and enhanced fitness to improve cognitive function in older people without 

known cognitive impairment. Cochrane Database Syst Rev, 3. 

Antón, S. C. 2012. Early Homo: Who, When, and Where. Current Anthropology, 53, S278-

S298. 

Antón, S. C., Leonard, W. R. & Robertson, M. L. 2002. An ecomorphological model of the 

initial hominid dispersal from Africa. Journal of Human Evolution, 43, 773-785. 

Appollonio, I., Carabellese, C., Magni, E., Frattola, L. & Trabucchi, M. 1995. Sensory 

impairments and mortality in an elderly community population: A six-year follow-up 

study. Age and Ageing, 24, 30-36. 

Aronson, R. E. & Oman, R. F. 2004. Views on Exercise and Physical Activity Among Rural‐

Dwelling Senior Citizens. The Journal of Rural Health, 20, 76-79. 



114 
 

Asfaw, B., Beyene, Y., Suwa, G., Walter, R. C., White, T. D., Woldegabriel, G. & Yemane, T. 

1992. The earliest Acheulean from Konso-Gardula. Nature, 360, 732-735. 

Asfaw, B., White, T., Lovejoy, O., Latimer, B., Simpson, S. & Suwa, G. 1999. 

Australopithecus garhi: A new species of early hominid from Ethiopia. Science, 284, 

629-635. 

Badre, D. & D'esposito, M. 2009. Is the rostro-caudal axis of the frontal lobe hierarchical? 

Nature Reviews Neuroscience, 10, 659-669. 

Baird, J. L. & Van Emmerik, R. E. A. 2009. Young and older adults use different strategies to 

perform a standing turning task. Clinical Biomechanics, 24, 826-832. 

Barnes, G. 1993. Visual-vestibular interaction in the control of head and eye movement: the 

role of visual feedback and predictive mechanisms. Progress in neurobiology, 41, 

435-472. 

Barnes, G. R. & Asselman, P. T. 1991. The mechanism of prediction in human smooth 

pursuit eye movements. Journal of Physiology, 439, 439-461. 

Basmajian, J. & De Luca, C. 1985. Description and analysis of the EMG signal. Muscles 

alive: their functions revealed by electromyography. Baltimore, Williams and Wilkins: 

John Butler, 19-167. 

Bates, K., Savage, R., Pataky, T., Morse, S., Webster, E., Falkingham, P., Ren, L., Qian, Z., 

Collins, D. & Bennett, M. 2013a. Does footprint depth correlate with foot motion and 

pressure? Journal of The Royal Society Interface, 10, 20130009. 

Bates, K. T., Collins, D., Savage, R., Mcclymont, J., Webster, E., Pataky, T. C., D'aout, K., 

Sellers, W. I., Bennett, M. R. & Crompton, R. H. 2013b. The evolution of compliance 

in the human lateral mid-foot. Proceedings of the Royal Society B: Biological 

Sciences, 280. 

Beauchet, O., Annweiler, C., Allali, G., Berrut, G., Herrmann, F. R. & Dubost, V. 2008. 

Recurrent falls and dual task-related decrease in walking speed: Is there a 

relationship? Journal of the American Geriatrics Society, 56, 1265-1269. 

Beauchet, O., Dubost, V., Herrmann, F. R. & Kressig, R. W. 2005. Stride-to-stride variability 

while backward counting among healthy young adults. Journal of NeuroEngineering 

and Rehabilitation, 2. 



115 
 

Begun, D. & Walker, A. 1993. The endocast. The Nariokotome Homo erectus skeleton, 326-

358. 

Benecke, R., Rothwell, J. C., Dick, J. P. R., Day, B. L. & Marsden, C. D. 1986. Performance 

of simultaneous movements in patients with Parkinson's disease. Brain, 109, 739-

757. 

Berge, C. 1984. Multivariate analysis of the pelvis for hominids and other extant primates: 

Implications for the locomotion and systematics of the different species of 

australopithecines. Journal of Human Evolution, 13, 555-562. 

Berge, C. 1991. Size- and locomotion-related aspects of hominid and anthropoid pelves: An 

osteometrical multivariate analysis. Human Evolution, 6, 365-376. 

Berge, C. 1994. How did the australopithecines walk? A biomechanical study of the hip and 

thigh of Australopithecus afarensis. Journal of Human Evolution, 26, 259-273. 

Berge, C. & Kazmierczak, J.-B. 1986. Effects of size and locomotor adaptations on the 

hominid pelvis: evaluation of australopithecine bipedality with a new multivariate 

method. Folia primatologica, 46, 185-204. 

Bergström, B. 1973. Morphology of the vestibular nerve: II. The number of myelinated 

vestibular nerve fibers in man at various ages. Acta oto-laryngologica, 76, 173-179. 

Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K. & Becic, E. 2006. 

Testing the limits of cognitive plasticity in older adults: Application to attentional 

control. Acta Psychologica, 123, 261-278. 

Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K. & Becic, E. 2008. 

Transfer effects in task-set cost and dual-task cost after dual-task training in older 

and younger adults: Further evidence for cognitive plasticity in attentional control in 

late adulthood. Experimental Aging Research, 34, 188-219. 

Bherer, L., Peterson, M. S., Kramer, A. F., Colcombe, S., Erickson, K. & Becic, E. 2005. 

Training effects on dual-task performance: Are there age-related differences in 

plasticity of attentional control? Psychology and Aging, 20, 695-709. 

Blakemore, S. J., Wolpert, D. M. & Frith, C. D. 1998. Central cancellation of self-produced 

tickle sensation. Nature Neuroscience, 1, 635-640. 



116 
 

Bloem, B. R., Steijns, J. a. G. & Smits-Engelsman, B. C. 2003. An update on falls. Current 

Opinion in Neurology, 16, 15-26. 

Bloomberg, J. J., Reschke, M. F., Huebner, W. P. & Peters, B. T. 1992. The Effects of 

Target Distance on Eye and Head Movement during Locomotion. Annals of the New 

York Academy of Sciences, 656, 699-707. 

Bootsma-Van Der Wiel, A., Gussekloo, J., De Craen, A. J. M., Van Exel, E., Bloem, B. R. & 

Westendorp, R. G. J. 2003. Walking and talking as predictors of falls in the general 

population: The Leiden 85-plus study. Journal of the American Geriatrics Society, 

51, 1466-1471. 

Bramble, D. M. & Lieberman, D. E. 2004. Endurance running and the evolution of Homo. 

Nature, 432, 345-352. 

Bray, J. J., Cragg, P., Macknight, A. & Mills, R. 1999. Human physiology. USA: Blackwell 

Scince. 

Brehmer, Y., Rieckmann, A., Bellander, M., Westerberg, H., Fischer, H. & Bäckman, L. 

2011. Neural correlates of training-related working-memory gains in old age. 

NeuroImage, 58, 1110-1120. 

Brenner, E., Smeets, J. B. J. & Van Den Berg, A. V. 2001. Smooth eye movements and 

spatial localisation. Vision Research, 41, 2253-2259. 

Brown, F., Harris, J., Leakey, R. & Walker, A. 1985. Early Homo erectus skeleton from west 

Lake Turkana, Kenya. Nature, 316, 788-792. 

Brown, L. A., Shumway-Cook, A. & Woollacott, M. H. 1999. Attentional demands and 

postural recovery: the effects of aging. The Journals of Gerontology Series A: 

Biological Sciences and Medical Sciences, 54, M165-M171. 

Buchman, A. S., Boyle, P. A., Leurgans, S. E., Barnes, L. L. & Bennett, D. A. 2011. 

Cognitive function is associated with the development of mobility impairments in 

community-dwelling elders. American Journal of Geriatric Psychiatry, 19, 571-580. 

Buckley, T. A., Pitsikoulis, C. & Hass, C. J. 2008. Dynamic postural stability during sit-to-

walk transitions in Parkinson disease patients. Movement Disorders, 23, 1274-1280. 



117 
 

Carpenter, M. G., Allum, J. H. J. & Honegger, F. 2001. Vestibular influences on human 

postural control in combinations of pitch and roll planes reveal differences in 

spatiotemporal processing. Experimental Brain Research, 140, 95-111. 

Carpenter, R. 1988. Movements of the eyes (2nd rev.), London, Pion Limited. 

Carrier, D. R., Kapoor, A. K., Kimura, T., Nickels, M. K., Satwanti, Scott, E. C., So, J. K. & 

Trinkaus, E. 1984. The Energetic Paradox of Human Running and Hominid 

Evolution [and Comments and Reply]. Current Anthropology, 25, 483-495. 

Cavanaugh, J. T., Shinberg, M., Ray, L., Shipp, K. M., Kuchibhatla, M. & Schenkman, M. 

1999. Kinematic characterization of standing reach: Comparison of younger vs. 

older subjects. Clinical Biomechanics, 14, 271-279. 

Cech, D. J. & Martin, S. T. 2012. Chapter 12 - Posture and Balance. In: MARTIN, D. J. C. T. 

(ed.) Functional Movement Development Across the Life Span (Third Edition). Saint 

Louis: W.B. Saunders. 

Chen, H.-C., Schultz, A. B., Ashton-Miller, J. A., Giordani, B., Alexander, N. B. & Guire, K. E. 

1996. Stepping over obstacles: dividing attention impairs performance of old more 

than young adults. The Journals of Gerontology Series A: Biological Sciences and 

Medical Sciences, 51, M116-M122. 

Chiacchiero, M., Dresely, B., Silva, U., Delosreyes, R. & Vorik, B. 2010. The relationship 

between range of movement, flexibility, and balance in the elderly. Topics in 

Geriatric Rehabilitation, 26, 148-155. 

Cinelli, M., Patla, A. & Stuart, B. 2008. Age-related differences during a gaze reorientation 

task while standing or walking on a treadmill. Experimental Brain Research, 185, 

157-164. 

Clarke, R. J. & Tobias, P. V. 1995. Sterkfontein Member 2 foot bones of the oldest South 

African hominid. Science, 269, 521-524. 

Cohen, B., Henn, V., Raphan, T. & Dennett, D. 1981. Velocity sorage, nystagmus, and 

visual vestibular interactions in humans. Annals of the New York Academy of 

Sciences, 374, 421-433. 



118 
 

Colcombe, S. J., Kramer, A. F., Mcauley, E., Erickson, K. I. & Scalf, P. 2004. Neurocognitive 

aging and cardiovascular fitness: Recent findings and future directions. Journal of 

Molecular Neuroscience, 24, 9-14. 

Collewijn, H. & Tamminga, E. P. 1984. Human smooth and saccadic eye movements during 

voluntary pursuit of different target motions on different backgrounds. Journal of 

Physiology, VOL. 351, 217-250. 

Creem-Regehr, S. H. & Lee, J. N. 2005. Neural representations of graspable objects: Are 

tools special? Cognitive Brain Research, 22, 457-469. 

Crompton, R. H., Yu, L., Weijie, W., Günther, M. & Savage, R. 1998. The mechanical 

effectiveness of erect and 'bent-hip, bent-knee' bipedal walking in Australopithecus 

afarensis. Journal of Human Evolution, 35, 55-74. 

Csibra, G. & Gergely, G. 2011. Natural pedagogy as evolutionary adaptation. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 366, 1149-1157. 

Cumming, R. G. & Klineberg, R. J. 1994. Fall frequency and characteristics and the risk of 

hip fractures. Journal of the American Geriatrics Society, 42, 774-778. 

Dahlin, E., Nyberg, L., Bäckman, L. & Neely, A. S. 2008. Plasticity of Executive Functioning 

in Young and Older Adults: Immediate Training Gains, Transfer, and Long-Term 

Maintenance. Psychology and Aging, 23, 720-730. 

Day, B. L., Steiger, M. J., Thompson, P. D. & Marsden, C. D. 1993. Effect of vision and 

stance width on human body motion when standing: Implications for afferent control 

of lateral sway. Journal of Physiology, 469, 479-499. 

Day, M. & Napier, J. 1964. Hominid fossils from Bed I. Olduvai Gorge, Tangany-ika: fossil. 

De Heinzelin, J., Clark, J. D., White, T., Hart, W., Renne, P., Woldegabriel, G., Beyene, Y. & 

Vrba, E. 1999. Environment and behavior of 2.5-million-year-old Bouri hominids. 

Science, 284, 625-629. 

Dodge, R. 1903. Five types of eye movement in the horizontal meridian plane of the field of 

regard. Am J Physiol, 8, 307-329. 

Doi, T., Makizako, H., Shimada, H., Yoshida, D., Ito, K., Kato, T., Ando, H. & Suzuki, T. 

2012. Brain atrophy and trunk stability during dual-task walking among older adults. 



119 
 

Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 67 A, 

790-795. 

Donoghue, O. A., Cronin, H., Savva, G. M., O'regan, C. & Kenny, R. A. 2013. Effects of fear 

of falling and activity restriction on normal and dual task walking in community 

dwelling older adults. Gait and Posture, 38, 120-124. 

Dubost, V., Kressig, R. W., Gonthier, R., Herrmann, F. R., Aminian, K., Najafi, B. & 

Beauchet, O. 2006. Relationships between dual-task related changes in stride 

velocity and stride time variability in healthy older adults. Human Movement 

Science, 25, 372-382. 

Ducroquet, R., Ducroquet, J. & Ducroquet, P. 1968. Walking and limping: a study of normal 

and pathological walking, Lippincott Philadelphia, PA. 

Dunbar, R. I. 1998. The social brain hypothesis. brain, 9, 178-190. 

Dunbar, R. I. 2003. The social brain: mind, language, and society in evolutionary 

perspective. Annual Review of Anthropology, 163-181. 

Dunbar, R. I. & Shultz, S. 2007. Evolution in the social brain. science, 317, 1344-1347. 

Duncan, A. S., Kappelman, J. & Shapiro, L. J. 1994. Metatarsophalangeal joint function and 

positional behavior in Australopithecus afarensis. American Journal of Physical 

Anthropology, 93, 67-81. 

Ebersbach, G., Dimitrijevic, M. R. & Poewe, W. 1995. Influence of concurrent tasks on gait: 

a dual-task approach. Perceptual and motor skills, 81, 107-113. 

Edwards, A. 1946. Body sway and vision J Exp Psychol 36, 526-535. 

Eickhoff, S. B., Amunts, K., Mohlberg, H. & Zilles, K. 2006. The human parietal operculum. 

II. Stereotaxic maps and correlation with functional imaging results. Cerebral Cortex, 

16, 268-279. 

Elble, R. J., Thomas, S. S., Higgins, C. & Colliver, J. 1991. Stride-dependent changes in gait 

of older people. Journal of Neurology, 238, 1-5. 



120 
 

Feipel, V., De Mesmaeker, T., Klein, P. & Rooze, M. 2001. Three-dimensional kinematics of 

the lumbar spine during treadmill walking at different speeds. European Spine 

Journal, 10, 16-22. 

Fink, G. R., Manjaly, Z. M., Stephan, K. E., Gurd, J. M., Zilles, K., Amunts, K. & Marshall, J. 

C. 2006. A role for Broca’s area beyond language processing: evidence from 

neuropsychology and fMRI, Oxford University Press New York. 

Fischer, B., Biscaldi, M. & Gezeck, S. 1997. On the development of voluntary and reflexive 

components in human saccade generation. Brain research, 754, 285-297. 

Fischer, M. S. & Lehmann, R. 1998. Application of cineradiography for the metric and 

kinematic study of in-phase gaits during locomotion of the pika (Ochotona 

rufescens, Mammalia: Lagomorpha). Zoology, 101, 148-173. 

Fogassi, L. & Luppino, G. 2005. Motor functions of the parietal lobe. Current opinion in 

neurobiology, 15, 626-631. 

Frank, J. S. & Patla, A. E. 2003. Balance and mobility challenges in older adults: 

Implications for preserving community mobility. American Journal of Preventive 

Medicine, 25, 157-163. 

Freemont, A. J. & Hoyland, J. A. 2007. Morphology, mechanisms and pathology of 

musculoskeletal ageing. Journal of Pathology, 211, 252-259. 

Friston, K. J. 1997. Testing for anatomically specified regional effects. Human Brain 

Mapping, 5, 133-136. 

Fuller, J. R., Adkin, A. L. & Vallis, L. A. 2007. Strategies used by older adults to change 

travel direction. Gait and Posture, 25, 393-400. 

Gabunia, L. & Vekua, A. 1995. A plio-pleistocene hominid from Dmanisi, East Georgia, 

Caucasus. Nature, 373, 509-512. 

Gage, W. H., Sleik, R. J., Polych, M. A., Mckenzie, N. C. & Brown, L. A. 2003. The allocation 

of attention during locomotion is altered by anxiety. Experimental Brain Research, 

150, 385-394. 

Gernandt, B. E., Iranyi, M. & Livingston, R. B. 1959. Vestibular influences on spinal 

mechanisms. Experimental neurology, 1, 248-273. 



121 
 

Gibson, J. 1954. The visual perception of objective motion and subjective movement. 

Psychol Rev, 304-314. 

Goldberg, J. & Peterson, B. W. 1986. Reflex and mechanical contributions to head 

stabilization in alert cats. J Neurophysiol, 56, 857-875. 

Goodale, M. A. & Milner, A. D. 1992. Separate visual pathways for perception and action. 

Trends in Neurosciences, 15, 20-25. 

Gracovetsky, S. 1985. An hypothesis for the role of the spine in human locomotion: A 

challenge to current thinking. Journal of Biomedical Engineering, 7, 205-216. 

Grasso, R., Prévost, P., Ivanenko, Y. P. & Berthoz, A. 1998. Eye-head coordination for the 

steering of locomotion in humans: An anticipatory synergy. Neuroscience Letters, 

253, 115-118. 

Grisso, J. A., Kelsey, J. L., Strom, B. L., Chiu, G. Y., Maislin, G., O'brien, L. A., Hoffman, S. 

& Kaplan, F. 1991. Risk factors for falls as a cause of hip fracture in women. New 

England Journal of Medicine, 324, 1326-1331. 

Grossman, G. E., Leigh, R. J., Abel, L. A., Lanska, D. J. & Thurston, S. E. 1988. Frequency 

and velocity of rotational head perturbations during locomotion. Experimental Brain 

Research, 70, 470-476. 

Haeusler, M., Martelli, S. A. & Boeni, T. 2002. Vertebrae numbers of the early hominid 

lumbar spine. Journal of human evolution, 43, 621-643. 

Haggerty, S., Jiang, L. T., Galecki, A. & Sienko, K. H. 2012. Effects of biofeedback on 

secondary-task response time and postural stability in older adults. Gait Posture, 35, 

523-8. 

Hagoort, P. 2005. On Broca, brain, and binding: a new framework. Trends in cognitive 

sciences, 9, 416-423. 

Haile-Selassie, Y., Latimer, B. M., Alene, M., Deino, A. L., Gibert, L., Melillo, S. M., Saylor, 

B. Z., Scott, G. R. & Lovejoy, C. O. 2010. An early Australopithecus afarensis 

postcranium from Woranso-Mille, Ethiopia. Proceedings of the National Academy of 

Sciences, 107, 12121-12126. 



122 
 

Harcourt-Smith, W. E. 2007. 5 The Origins of Bipedal Locomotion. Handbook of 

paleoanthropology. Springer. 

Harris, J. P., Calvert, J. E. & Phillipson, O. T. 1992. Processing of spatial contrast in 

peripheral vision in Parkinson's disease. Brain, 115, 1447-1457. 

Hase, K. & Stein, R. 1999. Turning strategies during human walking. Journal of 

Neurophysiology, 81, 2914-2922. 

Hess, B. J. & Angelaki, D. E. 2003. Vestibular contributions to gaze stability during transient 

forward and backward motion. Journal of neurophysiology, 90, 1996-2004. 

Hirokawa, S. 1989. Normal gait characteristics under temporal and distance constraints. 

Journal of Biomedical Engineering, 11, 449-456. 

Hof, A. L., Van Bockel, R. M., Schoppen, T. & Postema, K. 2007. Control of lateral balance 

in walking. Experimental findings in normal subjects and above-knee amputees. Gait 

and Posture, 25, 250-258. 

Hof, A. L., Vermerris, S. M. & Gjaltema, W. A. 2010. Balance responses to lateral 

perturbations in human treadmill walking. J Exp Biol, 213, 2655-64. 

Hollands, M., Patla, A. & Vickers, J. 2002. "Look where you're going!": Gaze behaviour 

associated with maintaining and changing the direction of locomotion. Experimental 

Brain Research, 143, 221-230. 

Holliday, T. 2012. Body Size, Body Shape, and the Circumscription of the Genus Homo. 

Current Anthropology, 53, S330-S345. 

Hoogvliet, P., Van Duyl, W. A., De Bakker, J. V., Mulder, P. G. H. & Stam, H. J. 1997. A 

model for the relation between the displacement of the ankle and the center of 

pressure in the frontal plane, during one-leg stance. Gait and Posture, 6, 39-49. 

Horak, F. & Macpherson, J. 1996. Postural orientation and equilibrium. Handbook of 

Physiology, Exercise: Regulation and Integration of Multiple Systems, Oxford. 

Horak, F. B., Diener, H. & Nashner, L. 1989. Influence of central set on human postural 

responses. J Neurophysiol, 62, 841-853. 



123 
 

Horak, F. B. & Nashner, L. M. 1986. Central programming of postural movements: 

adaptation to altered support-surface configurations. J Neurophysiol, 55, 1369-1381. 

Huang, Y.-Y. & Neuhauss, S. 2008. The optokinetic response in zebrafish and its 

applications. Front Biosci, 13, 1899-1916. 

Imai, T., Moore, S. T., Raphan, T. & Cohen, B. 2001. Interaction of the body, head, and eyes 

during walking and turning. Experimental Brain Research, 136, 1-18. 

Isaacs, G. L. & Curtis, G. H. 1974. Age of early Acheulian industries from the Peninj Group, 

Tanzania. Nature, 249, 624-627. 

Ivers, R. Q., Norton, R., Cumming, R. G., Butler, M. & Campbell, A. J. 2000. Visual 

impairment and risk of hip fracture. American Journal of Epidemiology, 152, 633-

639. 

Iwamoto, Y., Perlmutter, S., Baker, J. & Peterson, B. 1996. Spatial coordination by 

descending vestibular signals. Experimental brain research, 108, 85-100. 

Janssen, M., Pas, R., Aarts, J., Janssen-Potten, Y., Vles, H., Nabuurs, C., Van Lummel, R., 

Stokroos, R. & Kingma, H. 2012. Clinical observational gait analysis to evaluate 

improvement of balance during gait with vibrotactile biofeedback. Physiother Res 

Int, 17, 4-11. 

Jeka, J. J. & Lackner, J. R. 1994. Fingertip contact influences human postural control. 

Experimental Brain Research, 79, 495-502. 

Jellema, L. M., Latimer, B. & Walker, A. 1993. The rib cage. The Nariokotome Homo erectus 

Skeleton. Harvard University Press, Cambridge, MA, 294-325. 

Johanson, D. C., Lovejoy, C. O., Kimbel, W. H., White, T. D., Ward, S. C., Bush, M. E., 

Latimer, B. M. & Coppens, Y. 1982. Morphology of the Pliocene partial hominid 

skeleton (A.L. 288-1) from the Hadar formation, Ethiopia. American Journal of 

Physical Anthropology, 57, 403-451. 

Johanson, D. C. & Taieb, M. 1976. Plio-pleistocene hominid discoveries in Hadar, Ethiopia. 

Nature, 260, 293-297. 

Johanson, D. C. & White, T. D. 1979. A systematic assessment of early African hominids. 

Science, 203, 321-330. 



124 
 

Johnson-Frey, S. H., Newman-Norlund, R. & Grafton, S. T. 2005. A distributed left 

hemisphere network active during planning of everyday tool use skills. Cerebral 

Cortex, 15, 681-695. 

Jones, R. D., Donaldson, I. M. & Timmings, P. L. 1992. Impairment of high-contrast visual 

acuity in Parkinson's disease. Movement Disorders, 7, 232-238. 

Jungers, W. L. 1982. Lucy's limbs: Skeletal allometry and locomotion in Australopithecus 

afarensis. Nature, 297, 676-678. 

Jungers, W. L. 1988. Relative joint size and hominoid locomotor adaptations with 

implications for the evolution of hominid bipedalism. Journal of Human Evolution, 17, 

247-265. 

Kanis, J. A. & Mccloskey, E. V. 1996. Evaluation of the risk of hip fracture. Bone, 18, 127S-

132S. 

Kavanagh, J., Barrett, R. & Morrison, S. 2006. The role of the neck and trunk in facilitating 

head stability during walking. Experimental Brain Research, 172, 454-463. 

Kavounoudias, A., Roll, R. & Roll, J.-P. 1998. The plantar sole is a ‘dynamometric map’for 

human balance control. Neuroreport, 9, 3247-3252. 

Keshner, E. & Peterson, B. 1995. Mechanisms controlling human head stabilization. I. Head-

neck dynamics during random rotations in the horizontal plane. Journal of 

neurophysiology, 73, 2293-2301. 

Kidd, R. 1999. Evolution of the rearfoot. A model of adaptation with evidence from the fossil 

record. Journal of the American Podiatric Medical Association, 89, 2-17. 

Knox, P. C., Davidson, J. H. & Anderson, D. 2005. Age-related changes in smooth pursuit 

initiation. Experimental Brain Research, 165, 1-7. 

Konczak, J. 1994. Effects of optic flow on the kinematics of human gait: a comparison of 

young and older adults. Journal of motor behavior, 26, 225-236. 

Kono, A., Kai, I., Sakato, C. & Rubenstein, L. Z. 2004. Frequency of going outdoors: a 

predictor of functional and psychosocial change among ambulatory frail elders living 

at home. The Journals of Gerontology Series A: Biological Sciences and Medical 

Sciences, 59, M275-M280. 



125 
 

Kowler, E. & Blaser, E. 1995. The accuracy and precision of saccades to small and large 

targets. Vision research, 35, 1741-1754. 

Kramer, A. F., Larish, J. F. & Strayer, D. L. 1995. Training for Attentional Control in Dual 

Task Settings: A Comparison of Young and Old Adults. Journal of Experimental 

Psychology: Applied, 1, 50-76. 

Lafiandra, M., Holt, K. G., Wagenaar, R. C. & Obusek, J. P. 2002. Transverse plane kinetics 

during treadmill walking with and without a load. Clinical Biomechanics, 17, 116-122. 

Lajoie, Y., Teasdale, N., Bard, C. & Fleury, M. 1993. Attentional demands for static and 

dynamic equilibrium. Experimental Brain Research, 97, 139-144. 

Land, M. F. 1999. Motion and vision: Why animals move their eyes. Journal of Comparative 

Physiology - A Sensory, Neural, and Behavioral Physiology, 185, 341-352. 

Land, M. F. 2004. The coordination of rotations of the eyes, head and trunk in saccadic turns 

produced in natural situations. Experimental Brain Research, 159, 151-160. 

Land, M. F. 2006. Eye movements and the control of actions in everyday life. Prog Retin Eye 

Res, 25, 296-324. 

Langheinrich, T., Tebartz Van Elst, L., Lagrèze, W. A., Bach, M., Lücking, C. H. & Greenlee, 

M. W. 2000. Visual contrast response functions in Parkinson's disease: Evidence 

from electroretinograms, visually evoked potentials and psychophysics. Clinical 

Neurophysiology, 111, 66-74. 

Larson, S. G., Jungers, W. L., Morwood, M. J., Sutikna, T., Jatmiko, Saptomo, E. W., Due, 

R. A. & Djubiantono, T. 2007. Homo floresiensis and the evolution of the hominin 

shoulder. J Hum Evol, 53, 718-31. 

Latimer, B. The anterior foot skeleton of Australopithecus Afarensis.  American Journal of 

Physical Anthropology, 1983. John Wiley & Sons Inc., 605 Third Ave, New York, NY 

10158-0012, 217-217. 

Latimer, B. 1991. Locomotor adaptations in Australopithecus afarensis: the issue of 

arboreality. Origine (s) de la Bipédie chez les Hominidés, 169-176. 



126 
 

Latimer, B. & Lovejoy, C. O. 1989. The calcaneus of Australopithecus afarensis and its 

implications of the evolution of bipedality. American Journal of Physical 

Anthropology, 78, 369-386. 

Latimer, B., Ohman, J. C. & Lovejoy, C. O. 1987. Talocrural joint in African hominoids: 

Implications for Australopithecus afarensis. American Journal of Physical 

Anthropology, 74, 155-175. 

Latimer, B. M., Lovejoy, C. O., Johanson, D. C. & Coppens, Y. 1982. Hominid tarsal, 

metatarsal, and phalangeal bones recovered from the Hadar Formation: 1974–1977 

collections. American Journal of Physical Anthropology, 57, 701-719. 

Leakey, M. D. 1971. Olduvai Gorge, Excavations in Beds I and II, 1960–1963, vol. 3. 

Cambridge University Press, Cambridge. 

Leakey, M. D. & Hay, R. L. 1979. Pliocene footprints in the Laetolil Beds at Laetoli, northern 

Tanzania. Nature, 278, 317-323. 

Lee, D. & Lishman, J. 1975. Visual proprioceptive control of stance. Journal of Human 

Movement Studies, 87-95. 

Lee, D. J., Gómez-Marín, O., Lam, B. L. & Zheng, D. D. 2002. Visual acuity impairment and 

mortality in US adults. Archives of Ophthalmology, 120, 1544-1550. 

Lepre, C. J., Roche, H., Kent, D. V., Harmand, S., Quinn, R. L., Brugal, J. P., Texier, P. J., 

Lenoble, A. & Feibel, C. S. 2011. An earlier origin for the Acheulian. Nature, 477, 

82-85. 

Lezak, M. D., Howieson, D. & Loring, D. 1995. Neurological assessment. Oxford Univ. 

Press, New York. 

Li, Y., Wang, W., Crompton, R. H. & Gunther, M. M. 2001. Free vertical moments and 

transverse forces in human walking and their role in relation to arm-swing. Journal of 

Experimental Biology, 204, 47-58. 

Liao, K., Walker, M. F., Joshi, A. C., Reschke, M., Strupp, M., Wagner, J. & Leigh, R. J. 

2010. The linear vestibulo-ocular reflex, locomotion and falls in neurological 

disorders. Restor Neurol Neurosci, 28, 91-103. 



127 
 

Liebenberg, L. 2006. Persistence hunting by modern hunter-gatherers. Current 

Anthropology, 47, 1017-1025. 

Lindenberger, U., Marsiske, M. & Baltes, P. B. 2000. Memorizing while walking: increase in 

dual-task costs from young adulthood to old age. Psychology and aging, 15, 417. 

Logan, D., Kiemel, T., Dominici, N., Cappellini, G., Ivanenko, Y., Lacquaniti, F. & Jeka, J. J. 

2010. The many roles of vision during walking. Experimental Brain Research, 206, 

337-350. 

Lovejoy, C. O. 1988. Evolution of human walking. Scientific American, 259, 118-125. 

Lovejoy, C. O. 2005. The natural history of human gait and posture. Part 1. Spine and pelvis. 

Gait Posture, 21, 95-112. 

Lovejoy, C. O., Heiple, K. G. & Burstein, A. H. 1973. The gait of Australopithecus. American 

Journal of Physical Anthropology, 38, 757-779. 

Lovejoy, C. O., Meindl, R. S., Ohman, J. C., Heiple, K. G. & White, T. D. 2002. The Maka 

femur and its bearing on the antiquity of human walking: Applying contemporary 

concepts of morphogenesis to the human fossil record. American Journal of 

Physical Anthropology, 119, 97-133. 

Lundin-Olsson, L., Nyberg, L. & Gustafson, Y. 1997. 'Stops walking when talking' as a 

predictor of falls in elderly people. Lancet, 349, 617. 

Lussier, M., Gagnon, C. & Bherer, L. 2012. An investigation of response and stimulus 

modality transfer effects after dual-task training in younger and older. Frontiers in 

Human Neuroscience. 

Lynch, J. C. 1980. The functional organization of posterior parietal association cortex. 

Behavioral and Brain Sciences, 3, 485-499. 

Mackinnon, C. D. & Winter, D. A. 1993. Control of whole body balance in the frontal plane 

during human walking. Journal of Biomechanics, 26, 633-644. 

Malloy, P. F. & Richardson, E. D. 1994. Assessment of frontal lobe functions. The Journal of 

Neuropsychiatry and Clinical Neurosciences, 6, 399-410. 



128 
 

Margaria, R., Cerretelli, P., Aghemo, P. & Sassi, G. 1963. Energy cost of running. Journal of 

applied physiology, 18, 367-370. 

Martin, S. & Kessler, M. 2000. Neurologic intervention for physical therapist assistants, 

Saunders. 

Martinez-Conde, S., Macknik, S. L. & Hubel, D. H. 2000. Microsaccadic eye movements and 

firing of single cells in the striate cortex of macaque monkeys. Nature neuroscience, 

3, 251-258. 

Massion, J. & Woollacott, M. H. 1996. Posture and equilibrium. Clinical Disorders of 

Balance, Posture and Gait. Arnold, London, 1-19. 

Maylor, E. A., Allison, S. & Wing, A. M. 2001. Effects of spatial and nonspatial cognitive 

activity on postural stability. British Journal of Psychology, 92, 319-338. 

Maylor, E. A. & Wing, A. M. 1996. Age differences in postural stability are increased by 

additional cognitive demands. Journals of Gerontology - Series B Psychological 

Sciences and Social Sciences, 51, P143-P154. 

Mccollum, G. & Leen, T. K. 1989. Form and exploration of mechanical stability limits in erect 

stance. Journal of Motor Behavior, 21, 225-244. 

Mchenry, H. M. 1986. The first bipeds: a comparison of the A. afarensis and A. africanus 

postcranium and implications for the evolution of bipedalism. Journal of Human 

Evolution, 15, 177-191. 

Mchenry, H. M. 1991. Sexual dimorphism in Australopithecus afarensis. Journal of Human 

Evolution, 20, 21-32. 

Mchenry, H. M. & Berger, L. R. 1998. Body proportions in Australopithecus afarensis and A. 

africanus and the origin of the genus Homo. Journal of Human Evolution, 35, 1-22. 

Mchenry, M. Q. & Angelaki, D. E. 2000. Primate translational vestibuloocular reflexes. II. 

Version and vergence responses to fore-aft motion. Journal of neurophysiology, 83, 

1648-1661. 

Mcilroy, W. & Maki, B. 1993. Task constraints on foot movement and the incidence of 

compensatory stepping following perturbation of upright stance. Brain research, 616, 

30-38. 



129 
 

Mckeon, P. & Hertel, J. 2007. Diminished plantar cutaneous sensation and postural control. 

Perceptual and motor skills, 104, 56-66. 

Menz, H. B., Lord, S. R. & Fitzpatrick, R. C. 2003. Age-related differences in walking 

stability. Age and Ageing, 32, 137-142. 

Merchut, M. & Toleikis, S. C. 1989. Aging and quantitative sensory thresholds. 

Electromyography and clinical neurophysiology, 30, 293-297. 

Meyer, G., Clarke, E. & Robotham, T. 2012. Multisensory interactions in the automatic 

control of postural sway. Seeing and Perceiving, 25, 77-77. 

Meyer, G. F., Shao, F., White, M. D., Hopkins, C. & Robotham, A. J. 2013. Modulation of 

Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory 

Information: A 'Virtual Reality Check'. PLoS ONE, 8. 

Meyer, P. F., Oddsson, L. I. & De Luca, C. J. 2004. The role of plantar cutaneous sensation 

in unperturbed stance. Experimental brain research, 156, 505-512. 

Minassian, D. C., Reidy, A., Lightstone, A. & Desai, P. 2011. Modelling the prevalence of 

age-related macular degeneration (2010-2020) in the UK: Expected impact of anti-

vascular endothelial growth factor (VEGF) therapy. British Journal of 

Ophthalmology, 95, 1433-1436. 

Moore, S. T., Hirasaki, E., Cohen, B. & Raphan, T. 1999. Effect of viewing distance on the 

generation of vertical eye movements during locomotion. Experimental Brain 

Research, 129, 347-361. 

Mulavara, A. P., Verstraete, M. C. & Bloomberg, J. J. 2002. Modulation of head movement 

control in humans during treadmill walking. Gait and Posture, 16, 271-282. 

Munoz, D., Broughton, J., Goldring, J. & Armstrong, I. 1998. Age-related performance of 

human subjects on saccadic eye movement tasks. Experimental Brain Research, 

121, 391-400. 

Nashner, L. 1977. Fixed patterns of rapid postural responses among leg muscles during 

stance. Experimental Brain Research, 30, 13-24. 

Nashner, L. 1980. Balance adjustments of humans perturbed while walking. Journal of 

Neurophysiology 



130 
 

44, 650-664. 

Nashner, L. Sensory, neuromuscular, and biomechanical contributions to human balance.  

Balance: proceedings of the APTA Forum I P. Duncan.–Alexandria, 1989. 5-12. 

Nutt, J. G., Horak, F. B. & Bloem, B. R. 2011. Milestones in gait, balance, and falling. 

Movement Disorders, 26, 1166-1174. 

O'shea, S., Morris, M. E. & Iansek, R. 2002. Dual task interference during gait in people with 

Parkinson disease: Effects of motor versus cognitive secondary tasks. Physical 

Therapy, 82, 888-897. 

Outerbridge, J. S. & Jones, G. M. 1971. Reflex vestibular control of head movement in man. 

Aerospace medicine, 42, 935-940. 

Pa, J. & Hickok, G. 2008. A parietal-temporal sensory-motor integration area for the human 

vocal tract: Evidence from an fMRI study of skilled musicians. Neuropsychologia, 46, 

362-368. 

Paige, G. D. 1994a. Senescence of Human Visual-Vestibular Interactions - Smooth-Pursuit, 

Optokinetic, and Vestibular Control of Eye-Movements with Aging. Experimental 

Brain Research, 98, 355-372. 

Paige, G. D. 1994b. Senescence of human visual-vestibular interactions: Smooth pursuit, 

optokinetic, and vestibular control of eye movements with aging. Experimental Brain 

Research, 98, 355-372. 

Paige, G. D. & Seidman, S. H. 1999. Characteristics of the VOR in response to linear 

acceleration. 

Paquette, C., Paquet, N. & Fung, J. 2006. Aging affects coordination of rapid head motions 

with trunk and pelvis movements during standing and walking. Gait Posture, 24, 62-

9. 

Paquette, M. R., Fuller, J. R., Adkin, A. L. & Vallis, L. A. 2008. Age-related modifications in 

steering behaviour: Effects of base-of-support constraints at the turn point. 

Experimental Brain Research, 190, 1-9. 

Park, D. C. & Reuter-Lorenz, P. 2009. The adaptive brain: Aging and neurocognitive 

scaffolding. 



131 
 

Pataky, T. C., Caravaggi, P., Savage, R., Parker, D., Goulermas, J. Y., Sellers, W. I. & 

Crompton, R. H. 2008. New insights into the plantar pressure correlates of walking 

speed using pedobarographic statistical parametric mapping (pSPM). J Biomech, 

41, 1987-94. 

Pataky, T. C. & Goulermas, J. Y. 2008. Pedobarographic statistical parametric mapping 

(pSPM): A pixel-level approach to foot pressure image analysis. Journal of 

Biomechanics, 41, 2136-2143. 

Paterson, D. H., Jones, G. R. & Rice, C. L. 2007. Ageing and physical activity: evidence to 

develop exercise recommendations for older adults This article is part of a 

supplement entitled Advancing physical activity measurement and guidelines in 

Canada: a scientific review and evidence-based foundation for the future of 

Canadian physical activity guidelines co-published by Applied Physiology, Nutrition, 

and Metabolism and the Canadian Journal of Public Health. It may be cited as Appl. 

Physiol. Nutr. Metab. 32 (Suppl. 2E) or as Can. J. Public Health 98 (Suppl. 2). 

Applied Physiology, Nutrition, and Metabolism, 32, S69-S108. 

Patla, A. E., Frank, J. S. & Winter, D. A. 1992. Balance control in the elderly: Implications for 

clinical assessment and rehabilitation. Canadian Journal of Public Health, 83, S29-

S33. 

Patla, A. E. & Vickers, J. N. 1997. Where and when do we look as we approach and step 

over an obstacle in the travel path? Neuroreport, 8, 3661-3665. 

Peng, G., Hain, T. & Peterson, B. 1996. A dynamical model for reflex activated head 

movements in the horizontal plane. Biological cybernetics, 75, 309-319. 

Perry, S. D. 2006. Evaluation of age-related plantar-surface insensitivity and onset age of 

advanced insensitivity in older adults using vibratory and touch sensation tests. 

Neuroscience letters, 392, 62-67. 

Peschke, C., Ziegler, W., Kappes, J. & Baumgaertner, A. 2009. Auditory-motor integration 

during fast repetition: The neuronal correlates of shadowing. NeuroImage, 47, 392-

402. 

Pieri, V., Diederich, N. J., Raman, R. & Goetz, C. G. 2000. Decreased color discrimination 

and contrast sensitivity in Parkinson's disease. Journal of the Neurological Sciences, 

172, 7-11. 



132 
 

Pompeiano, O. 1972. Spinovestibular relations: anatomical and physiological aspects. 

Progress in brain research, 37, 263-296. 

Pontzer, H. 2012. Ecological Energetics in Early Homo. Current Anthropology, 53, S346-

S358. 

Pontzer, H., Holloway Iii, J. H., Raichlen, D. A. & Lieberman, D. E. 2009a. Control and 

function of arm swing in human walking and running. Journal of Experimental 

Biology, 212, 523-534. 

Pontzer, H., Holloway, J. H. T., Raichlen, D. A. & Lieberman, D. E. 2009b. Control and 

function of arm swing in human walking and running. J Exp Biol, 212, 523-34. 

Porciatti, V., Fiorentini, A., Morrone, M. C. & Burr, D. C. 1999. The effects of ageing on 

reaction times to motion onset. Vision research, 39, 2157-2164. 

Pozzo, T., Berthoz, A. & Lefort, L. 1990. Head stabilization during various locomotor tasks in 

humans. Experimental Brain Research, 82, 97-106. 

Pratt, J., Abrams, R. A. & Chasteen, A. L. 1997. Initiation and Inhibition of Saccadic Eye 

Movements in Younger and Older Adults an Analysis of the Gap Effect. The 

Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 52, 

P103-P107. 

Price, C. J. 2010. The anatomy of language: A review of 100 fMRI studies published in 2009. 

In: KINGSTONE, A. & MILLER, M. B. (eds.). 

Price, M. J., Feldman, R. G., Adelberg, D. & Kayne, H. 1992. Abnormalities in color vision 

and contrast sensitivity in Parkinson's disease. Neurology, 42, 887-890. 

Prokop, T., Schubert, M. & Berger, W. 1997. Visual influence on human locomotion 

modulation to changes in optic flow. Experimental Brain Research, 114, 63-70. 

Pulvermüller, F. & Fadiga, L. 2010. Active perception: sensorimotor circuits as a cortical 

basis for language. Nature Reviews Neuroscience, 11, 351-360. 

Rashbass, C. 1961. The relationship between saccadic and smooth tracking eye 

movements. The Journal of physiology, 159, 326-338. 



133 
 

Raz, N., Gunning, F. M., Head, D., Dupuis, J. H., Mcquain, J., Briggs, S. D., Loken, W. J., 

Thornton, A. E. & Acker, J. D. 1997. Selective aging of the human cerebral cortex 

observed in Vivo: Differential vulnerability of the prefrontal gray matter. Cerebral 

Cortex, 7, 268-282. 

Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., 

Dahle, C., Gerstorf, D. & Acker, J. D. 2005. Regional brain changes in aging healthy 

adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 

1676-1689. 

Regan, D. & Neima, D. 1984. Visual fatigue and visual evoked potentials in multiple 

sclerosis, glaucoma, ocular hypertension and Parkinson's disease. Journal of 

Neurology Neurosurgery and Psychiatry, 47, 673-678. 

Reno, P. L., Mccollum, M. A., Meindl, R. S. & Lovejoy, C. O. 2010. An enlarged postcranial 

sample confirms Australopithecus afarensis dimorphism was similar to modern 

humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 

365, 3355-3363. 

Reno, P. L., Meindl, R. S., Mccollum, M. A. & Lovejoy, C. O. 2003. Sexual dimorphism in 

Australopithecus afarensis was similar to that of modern humans. Proceedings of 

the National Academy of Sciences of the United States of America, 100, 9404-9409. 

Richmond, B. G. & Jungers, W. L. 1995. Size variation and sexual dimorphism in 

Australopithecus afarensis and living hominoids. Journal of Human Evolution, 29, 

229-245. 

Riley, P. O., Della Croce, U. & Casey Kerrigan, D. 2001. Propulsive adaptation to changing 

gait speed. Journal of Biomechanics, 34, 197-202. 

Robinson, D. A. 1981. The use of control systems analysis in the neurophysiology of eye 

movements. Annual Review of Neuroscience, 4, 463-503. 

Rogers, C. 2010. Presbyastasis: a multifactorial cause of balance problems in the elderly. 

South African Family Practice, 52. 

Rosenbaum, D. & Becker, H.-P. 1997. Plantar pressure distribution measurements. 

Technical background and clinical applications. Foot and Ankle Surgery, 3, 1-14. 

Rosenholtz, R., Li, Y. & Nakano, L. 2007. Measuring visual clutter. Journal of Vision, 7. 



134 
 

Ruff, C. 1988. Hindlimb articular surface allometry in hominoidea and< i> Macaca</i>, with 

comparisons to diaphyseal scaling. Journal of Human Evolution, 17, 687-714. 

Ruff, C. B., Trinkaus, E. & Holliday, T. W. 1997. Body mass and encephalization in 

Pleistocene Homo. Nature, 387, 173-176. 

Ruff, C. B. & Walker, A. 1993. Body size and body shape. The Nariokotome Homo erectus 

skeleton, 234-265. 

Sadeghi, H., Prince, F., Zabjek, K. F. & Allard, P. 2001a. Sagittal-hip-muscle power during 

walking in old and young able-bodied men. Journal of Aging and Physical Activity, 9, 

172-183. 

Sadeghi, H., Sadeghi, S., Prince, F., Allard, P., Labelle, H. & Vaughan, C. L. 2001b. 

Functional roles of ankle and hip sagittal muscle moments in able-bodied gait. 

Clinical Biomechanics, 16, 688-695. 

Sallis, J. F. & Kerr, J. 2006. Physical activity and the built environment. President's Council  

on Physical Fitness and Sports, 7, 1-8. 

Schenkman, M., Shipp, K. M., Chandler, J., Studenski, S. A. & Kuchibhatla, M. 1996. 

Relationships between mobility of axial structures and physical performance. 

Physical Therapy, 76, 276-285. 

Schmid, P. 1989. How different is Lucy. See Giacobini, 1989, 109-14. 

Schmid, P. 1991. The trunk of the australopithecines. Origine (s) de la Bipédie chez les 

Hominidés. Presses du CNRS, Paris, 225-234. 

Schmidt, R. A. 2008. Motor learning and performance: a situation-based learning approach, 

Human Kinetics. 

Schwartz, S. 2013. Factors Leading to Falls in Elderly Patients With Hip Fractures. Topics in 

Geriatric Rehabilitation, 29, 277-280. 

Schweigart, G., Maurer, C. & Mergner, T. 2003. Combined action of smooth pursuit eye 

movements, optokinetic reflex and vestibulo-ocular reflex in macaque monkey 

during transient stimulation. Neuroscience Letters, 217-220. 



135 
 

Schweigart, G. & Mergner, T. 2008. Human stance control beyond steady state response 

and inverted pendulum simplification. Experimental Brain Research, 185, 635-653. 

Sellers, W. I., Cain, G. M., Wang, W. & Crompton, R. H. 2005. Stride lengths, speed and 

energy costs in walking of Australopithecus afarensis: using evolutionary robotics to 

predict locomotion of early human ancestors. J R Soc Interface, 2, 431-41. 

Semaw, S. 2000. The world's oldest stone artefacts from Gona, Ethiopia: Their implications 

for understanding stone technology and patterns of human evolution between 2.6-

1.5 million years ago. Journal of Archaeological Science, 27, 1197-1214. 

Sharpe, J. A. & Sylvester, T. O. 1978. Effect of aging on horizontal smooth pursuit. 

Investigative Ophthalmology and Visual Science, 17, 465-468. 

Sharpe, J. A. & Zackon, D. H. 1987. Senescent saccades: effects of aging on their accuracy, 

latency and velocity. Acta oto-laryngologica, 104, 422-428. 

Shumway-Cook, A. & Woollacott, M. 2000a. Attentional demands and postural control: The 

effect of sensory context. Journals of Gerontology - Series A Biological Sciences 

and Medical Sciences, 55, M10-M16. 

Shumway-Cook, A. & Woollacott, M. 2000b. Motor Control: Theory and Practical 

Applications (2nd edition), Baltimore, Lippincott Williams and Wilkins. 

Shumway-Cook, A., Woollacott, M., Kerns, K. A. & Baldwin, M. 1997. The effects of two 

types of cognitive tasks on postural stability in older adults with and without a history 

of falls. Journals of Gerontology - Series A Biological Sciences and Medical 

Sciences, 52, M232-M240. 

Silsupadol, P., Shumway-Cook, A., Lugade, V., Van Donkelaar, P., Chou, L.-S., Mayr, U. & 

Woollacott, M. H. 2009. Effects of single-task versus dual-task training on balance 

performance in older adults: a double-blind, randomized controlled trial. Archives of 

physical medicine and rehabilitation, 90, 381-387. 

Simoni, D., Rubbieri, G., Baccini, M., Rinaldi, L., Becheri, D., Forconi, T., Mossello, E., 

Zanieri, S., Marchionni, N. & Di Bari, M. 2013. Different motor tasks impact 

differently on cognitive performance of older persons during dual task tests. Clinical 

Biomechanics, 28, 692-696. 



136 
 

Skinner, H. B., Barrack, R. L. & Cook, S. D. 1984. Age-related decline in proprioception. 

Clinical orthopaedics and related research, 184, 208-211. 

Smith, L. K., Lelas, J. L. & Kerrigan, D. C. 2002. Gender differences in pelvic motions and 

center of mass displacement during walking: Stereotypes quantified. Journal of 

Women's Health, 11, 453-458. 

Spooner, J. W., Sakala, S. M. & Baloh, R. W. 1980. Effect of aging on eye tracking. Archives 

of Neurology, 37, 575-576. 

Spoor, F., Wood, B. & Zonneveld, F. 1994. Implications of early hominid labyrinthine 

morphology for evolution of human bipedal locomotion. Nature, 369, 645-648. 

Steiness, I. 1957. Vibratory perception in normal subjects. Acta Medica Scandinavica, 158, 

315-325. 

Steinman, R. 2003. Gaze control under natural conditions. In: Chalupa, L.M., Werner, J.S. 

(Eds.), The Visual Neurosciences., Cambridge MA, MIT Pres. 

Stern Jr, J. T. 2000. Climbing to the top: A personal memoir of Australopithecus afarensis. 

Evolutionary Anthropology, 9, 113-133. 

Stern Jr, J. T. & Susman, R. L. 1983. The locomotor anatomy of Australopithecus afarensis. 

American Journal of Physical Anthropology, 60, 279-317. 

Stout, D. & Chaminade, T. 2012. Stone tools, language and the brain in human evolution. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 75-87. 

Stout, D., Toth, N., Schick, K. & Chaminade, T. 2008. Neural correlates of Early Stone Age 

toolmaking: Technology, language and cognition in human evolution. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 363, 1939-1949. 

Straube, A., Paulus, W., Quintern, J. & Brandt, T. 1989. Visual ataxia induced by eye 

movements: Posturographic measurements in normals and patients with ocular 

motor disorders. Clinical Vision Sciences, 4, 107-113. 

Susman, R. L. 1983. Evolution of the human foot: Evidence from plio-pleistocene hominids. 

Foot and Ankle, 3, 365-376. 



137 
 

Susman, R. L., Stern Jr, J. & Jungers, W. L. 1984. Arboreality and bipedality in the Hadar 

hominids. Folia primatologica, 43, 113-156. 

Sutherland, D. H., Kaufman, K. R. & Moitoza, J. R. 1994. Kinematics of Normal Human 

Walking. In: ROSE, J. & GAMBLE, J. G. (eds.) Human Wallking. Baltimore:USA: 

Williams and Wilkins. 

Taylor, M. E., Delbaere, K., Mikolaizak, A. S., Lord, S. R. & Close, J. C. T. 2013. Gait 

parameter risk factors for falls under simple and dual task conditions in cognitively 

impaired older people. Gait and Posture, 37, 126-130. 

Teasdale, N. & Simoneau, M. 2001. Attentional demands for postural control: The effects of 

aging and sensory reintegration. Gait and Posture, 14, 203-210. 

Teasdale, N., Stelmach, G. E., Breunig, A. & Meeuwsen, H. J. 1991. Age differences in 

visual sensory integration. Experimental Brain Research, 85, 691-696. 

Theill, N., Schumacher, V., Adelsberger, R., Martin, M. & Jäncke, L. 2013. Effects of 

simultaneously performed cognitive and physical training in older adults. BMC 

Neuroscience, 14. 

Uc, E. Y., Rizzo, M., Anderson, S. W., Qian, S., Rodnitzky, R. L. & Dawson, J. D. 2005. 

Visual dysfunction in Parkinson disease without dementia. Neurology, 65, 1907-

1913. 

Vallabhajosula, S., Buckley, T. A., Tillman, M. D. & Hass, C. J. 2013. Age and Parkinson's 

disease related kinematic alterations during multi-directional gait initiation. Gait and 

Posture, 37, 280-286. 

Van Deursen, R. & Simoneau, G. G. 1999. Foot and ankle sensory neuropathy, 

proprioception, and postural stability. Journal of orthopaedic & sports physical 

therapy, 29, 718-726. 

Van Emmerik, R. E., Mcdermott, W. J., Haddad, J. M. & Van Wegen, E. E. 2005. Age-

related changes in upper body adaptation to walking speed in human locomotion. 

Gait Posture, 22, 233-9. 

Vaugoyeau, M., Viallet, F., Aurenty, R., Assaiante, C., Mesure, S. & Massion, J. 2006. Axial 

rotation in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 

77, 815-821. 



138 
 

Vijayashankar, N. & Brody, H. 1977. A study of aging in the human brainstem. A study of the 

nucleus of the trochlear nerve Acta Anat, 99, 169-172. 

Voelcker-Rehage, C., Godde, B. & Staudinger, U. M. 2011. Cardiovascular and coordination 

training differentially improve cognitive performance and neural processing in older 

adults. Frontiers in Human Neuroscience. 

Von Lassberg, C., Beykirch, K., Campos, J. L. & Krug, J. 2012. Smooth pursuit eye 

movement adaptation in high level gymnasts. Motor Control, 16, 176-194. 

Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Malkowski, E., Alves, H., Kim, J. 

S., Morris, K. S., White, S. M., Wójcicki, T. R., Hu, L., Szabo, A., Klamm, E., 

Mcauley, E. & Kramer, A. F. 2010. Functional connectivity: A source of variance in 

the association between cardiorespiratory fitness and cognition? Neuropsychologia, 

48, 1394-1406. 

Vrba, E. S. 1988. Late Pliocene climatic events and hominid evolution. Evolutionary history 

of the “robust” australopithecines. Aldine de Gruyter, New York, 405-426. 

Walls, G. L. 1962. The evolutionary history of eye movements. Vision Research, 2, 69-80. 

Wang, W., Crompton, R., Li, Y. & Gunther, M. 2003. Optimum ratio of upper to lower limb 

lengths in hand-carrying of a load under the assumption of frequency coordination. 

Journal of biomechanics, 36, 249-252. 

Wang, W., Crompton, R. H., Carey, T. S., Günther, M. M., Li, Y., Savage, R. & Sellers, W. I. 

2004. Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 

Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, 

with implications for the evolution of bipedalism. Journal of human evolution, 47, 

453-478. 

Wanpo, H., Ciochon, R., Yumin, G., Larick, R., Qiren, F., Schwarcz, H., Yonge, C., De Vos, 

J. & Rink, W. 1995. Early Homo and associated artefacts from Asia. Nature, 378, 

275-278. 

Waters, R. L., Lunsford, B. R., Perry, J. & Byrd, R. 1988. Energy‐speed relationship of 

walking: standard tables. Journal of Orthopaedic Research, 6, 215-222. 

Westheimer, G. 1954. Mechanism of saccadic eye movements. A.M.A. archives of 

ophthalmology, 52, 710-724. 



139 
 

Willis, A. & Anderson, S. J. 2000. Effects of glaucoma and aging on photopic and scotopic 

motion perception. Investigative ophthalmology & visual science, 41, 325-335. 

Wilson, V. J. & Schor, R. H. 1999. The neural substrate of the vestibulocollic reflex. 

Experimental brain research, 129, 483-493. 

Winter, D. A. 1991. Biomechanics and motor control of human gait: normal, elderly and 

pathological. 

Winter, D. A. 1995. Human balance and posture control during standing and walking. Gait 

and Posture, 3, 193-214. 

Witte, H., Hofmann, H., Hackert, R., Schilling, C., Fischer, M. S. & Preuschoft, H. 2004. 

Biomimetic robotics should be based on functional morphology. Journal of Anatomy, 

204, 331-342. 

Witte, H., Preuschoft, H. & Recknagel, S. 1991. Human body proportions explained on the 

basis of biomechanical principles. Zeitschrift fur Morphologie und Anthropologie, 78, 

407-423. 

Wolfson, L., Whipple, R., Amerman, P. & Tobin, J. N. 1990. Gait assessment in the elderly: 

A gait abnormality rating scale and its relation to falls. Journals of Gerontology, 45, 

M12-M19. 

Wood, B. 1974. Olduvai Bed I post-cranial fossils: a reassessment. Journal of Human 

Evolution, 3, 373-378. 

Woollacott, M. 1989. Aging, posture control, and movement preparation. In: Development of 

posture and gait across the life span. Columbia, SC. 

: University of South California Press. 

Woollacott, M. & Shumway-Cook, A. 2002. Attention and the control of posture and gait: A 

review of an emerging area of research. Gait and Posture, 16, 1-14. 

Yogev‐Seligmann, G., Hausdorff, J. M. & Giladi, N. 2008. The role of executive function and 

attention in gait. Movement disorders, 23, 329-342. 



140 
 

Yogev‐Seligmann, G., Hausdorff, J. M. & Giladi, N. 2012. Do we always prioritize balance 

when walking? Towards an integrated model of task prioritization. Movement 

Disorders, 27, 765-770. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 
 

8 Appendices 

Appendix 1: Supplementary Information for Materials and 

Methods 
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% Function to read in data from EyeTrac and plot the V or H pos 

values to 
% permit sectioning of data based on eye movement and return timing 
% information. Input data should be exported text files from Eye 

Tracker 
% software with the header removed. Also enter X or Y for H or V 

movements 

  
function eyeTracker(infile,xy,cuts) 

  
global CUTPOINTS; 
CUTPOINTS=zeros(cuts,1); 

  
[X,Y]=loadEyeData(infile);                           % Read data 

from file 

  
if xy=='X' 
    plot(X); 
else 
    plot(Y); 
end 
%set(gca,'XLimMode','manual','YLimMode','manual');  % Fix axes 

limits  
set(gcf,'numberTitle','off','name','eyeTracker') 
set(gcf,'menubar','none','closeRequestFcn',@closeFigure) 
hold on;  

  
for i=1:cuts; 
    [x,y] = ginput(1);  % Select a point with the mouse  
    x = round(x);       % Round x to nearest integer value  
    plot([x x],get(gca,'YLim'),'k--');  % Plot dashed line  

  
    CUTPOINTS(i)=x; 

  
end 

  
assignin('base','CutPoints',CUTPOINTS) 
hold off 
delete(gcf) 

  

  

  
function[X,Y]=loadEyeData(infile) 

  
[A,D]=importdata(infile); 
AA=A.data; 

  
[a,b]=size(AA); 

  
for i=1:a 
    if AA(i,6)==0 
        start=i; 
        stime=AA(i,1); 
    end 
end 
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j=1; 

  
for i=start:a 
    ctime=AA(i,1); 
    if (ctime-stime)<300 
        X(j)=AA(i,2); 
        Y(j)=AA(i,3); 
    end 
    j=j+1; 
end 

  
function closeFigure(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
global CUTPOINTS; 
assignin('base','XY',CUTPOINTS) 
hold off 
delete(gcf) 

  
%return 

 

Appendix A1.1: MATLAB script to read in pupil position data from Eye-Trac system and plot the 
horizontal or vertical movement as a line graph. Sections of different eye movements are defined by 
plotting crosshairs along the graph and the timing information (frame number) for each is then 
returned. These values can then be correlated with frame numbers from the treadmill data output and 
the prints made during each section/type of eye movement grouped together. 

 

% Function to extract Eye XY positions from Viewpoint Eyetracker 
% 
% Syntax: EyeData=getEyeData(infileName, Axis); 

 
function[A,B,timing]=getEyeData(infile, XY) 

  
fprintf('\nWarning! This code is intended for use with ViewPoint 

EyeTracker\n\n'); 
fprintf('The following assumptions are made with respect to the 

data:\n'); 
fprintf('%c1. The Auto Calibration option was used\n',9); 
fprintf('%c2. The system was opperating in Binocular mode\n',9); 
fprintf('%c3. The Start/Stop control was via external 

triggering\n',9); 
fprintf('%c4. No Event data was written to the output file\n',9); 
fprintf('%c5. The input file name is valid for a file in the current 

directory\n',9); 
fprintf('%c6. The full file name including extention is entered e.g. 

''Trial_1.txt''\n\n',9); 
fprintf('If any errors occure during data extraction the most likely 

cause is\n'); 
fprintf('a corrupted data file or incorrect setting/aquisition 

options where used.\n\n'); 

  
inp=fopen(infile,'r'); 

  
% Scan over header 
tag=0; 
while tag ~= 16 
    tag=fscanf(inp,'%d'); 
    if tag~= 16 
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        fgetl(inp); 
    end 
end 

  
% Check correct positioning in file 
tline=fgetl(inp); 
if strcmp(tline,'.000000    STARTUP.BMP')~=1 
    fprintf('\n\nERROR! Cannot find start of data block\n\n'); 
    A=-1; 
    B=-1; 
    return 
end 

  
% read in eye data 
line=1; 
while ~feof(inp) 
    tline=fgetl(inp); 
    a=sscanf(tline,'%d %f %f %f %f %f %f %d %f %f %d %f %f %f %f %f 

%f %f %d %f %f %d %f %d'); 

  
    if a(1)==10 
        eyeData(line,1)=a(2); 
        eyeData(line,2)=a(4); 
        eyeData(line,3)=a(5); 
        eyeData(line,4)=a(15); 
        eyeData(line,5)=a(16); 
        line=line+1; 
    end 
end 

  
[A,B]=despike(eyeData,XY); 
timing=eyeData(:,1); 
fclose(inp); 
 

Appendix A1.2: MATLAB code for reading data from ViewPoint files where A is the returned movement 
for eye A in the axis specified by Axis. B is the same data for eye B. T is the timing data for the eye 
movement. Inputdata is the file name. Axis indicates which movement axis to use e.g. 
[A,B,T]=getEyeData('Subject1_Slide1_a.txt', 'X') will read in horizontal pupil position. A figure is 
displayed with two graphs, the top graph is the raw data and the bottom is the filtered result. The pupil 
movement profile can then be filtered to allow accurate positioning of transition points. Whilst 
excessive filtering is not normally recommended, as eye movement data was not analysed this was not 
a concern. 

 

% Function to permit sectioning of data based on eye movement and 
return timing 
% information. Input data should be exported text files from Eye 

Tracker 
% software with the header removed. Also enter X or Y for H or V 

movements 

  
function eyeTracker(A,B,t,cuts) 

  
global CUTPOINTS; 
CUTPOINTS=zeros(cuts,1); 

  
plot(t,A,'DisplayName','A','XDataSource','t','YDataSource','A');hold 

all;plot(t,B,'DisplayName','B','XDataSource','t','YDataSource','B');

hold off;figure(gcf); 



145 
 

legend('EyeA','EyeB'); 

  
set(gcf,'numberTitle','off','name','eyeTracker') 
set(gcf,'menubar','none','closeRequestFcn',@closeFigure) 
hold on;  

  
for i=1:cuts; 
    [x,y] = ginput(1);  % Select a point with the mouse  
    x = round(x);       % Round x to nearest integer value  
    plot([x-2 x-2],get(gca,'YLim'),'k--');  % Plot dashed line  
    plot([x+2 x+2],get(gca,'YLim'),'k--');  % Plot dashed line  

  
    CUTPOINTS(i)=x; 

  
end 

  
assignin('base','CutPoints',CUTPOINTS) 
hold off 
delete(gcf) 

  

  
function closeFigure(varargin) 
%%%%%%%%%%%%%%%%%%%%%%%%% 
global CUTPOINTS; 
assignin('base','XY',CUTPOINTS) 
hold off 
delete(gcf) 

  
%return 

 
Appendix A1.3: MATLAB script to superimpose pupil movement profiles from both eyes on to a line 
graph on to which crosshairs can be plotted to select transition periods between types of eye 
movement. The program then returns a variable called CutPoints containing the timing information for 
the cuts. 

 

function Zebris_NoGUI(varargin) 

  
% check for existance of input struct 
if exist('ZebStruct.mat','file') 
    load('ZebStruct'); 
else 
    disp('Error: ZebStruct.mat not found!'); 
    return 
end 
if exist('ZebStruct','var')==0 
    disp('Error: ZebStruct variable not found!'); 
    return 
end 

  
% check that specified input file exists 
if exist(ZebStruct.InFile,'file') 
    infile=ZebStruct.InFile; 
else 
    a=sprintf('Error: Input file %s not found',ZebStruct.InFile); 
    disp(a); 
    return 
end 
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% get print count L and R and number of frames and rate: 
% these are stored in proc_info.mat 

  
%[Lcount,Rcount,Fcount]=getPrintCount(infile); 
getPrintCount(infile); 

  
% extract prints 
extractPrints(ZebStruct); 

  
% check if option to skip registration selected 

  
stcmp=strcmp(varargin(1),'noReg'); 
if stcmp 
    fprintf('\nNo Registration Selected\n'); 
    return 
end 

  
% register prints 

  
res_name2='Zeb_Batch'; 
save res_file_name res_name2; 
if ZebStruct.RegPeak 
    PP=dir('??_P*.mat'); 
    p=size(PP); 
    if p(1)==0 
        disp('Error: No Peak Pressure Prints'); 
        return 
    end 
    if ZebStruct.RecLandR 
        zebris_regallLandR(PP); % if L & R seperate 
    end 
    if ZebStruct.RecLtoR 
        zebris_regallLtoR(PP);  % if L flip to R 
    end 
    if ZebStruct.RecRtoL 
        zebris_regallRtoL(PP);  % if R flip to L 
    end               
end 

  
if ZebStruct.RegImpulse 
    IP=dir('??_I*.mat'); 
    i=size(IP); 
    if i(1)==0 
        disp('Error: No Impulse Prints'); 
        return 
    end 
    if ZebStruct.RecLandR 
        zebris_regallLandR(IP); % if L & R seperate 
    end 
    if ZebStruct.RecLtoR 
        zebris_regallLtoR(IP);  % if L flip to R 
    end 
    if ZebStruct.RecRtoL 
        zebris_regallRtoL(IP);  % if R flip to L 
    end               

     
end 
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system('del proc_info.mat'); 
system('del Pinfo.txt'); 
system('del res_file_name.mat'); 

  
% Function to count number of prints in input file 
% No error checking, assumes that input file is correct format. If 

not 
% then will fail 

  
%function[Lc,Rc,count]=getPrintCount(infile) 
function getPrintCount(infile) 

  
inp=fopen(infile,'r'); 

  
% read past header and get count 
for i=1:14 
    tline=fgetl(inp); 
end 
[a,b]=strtok(tline); 
rate=str2double(b); 
tline=fgetl(inp); 
[a,b]=strtok(tline); 
count=str2double(b); 

  
for i=1:4 
    tline=fgetl(inp); 
end 

  
% read in data 
X = fscanf(inp,'%f', [7,count])'; 

  
fclose(inp); 
rfoot=X(:,3); 
lfoot=X(:,4); 

  
% locate frames with print data for left and right 
% if the force columns have possitive values for a print 
% then the foot was in contact 

   
pl=1; 
pr=1; 
for i=1:count 
    if lfoot(i)>0 
        lfeet(pl)=i; 
        pl=pl+1; 
    end 
    if rfoot(i)>0 
        rfeet(pr)=i; 
        pr=pr+1; 
    end 
end 

  
[lcount,lext]=count_prints(lfeet,'unused',1); 
[rcount,rext]=count_prints(rfeet,'unused',2); 

     
if exist('proc_info.mat','file') == 2 
    delete('proc_info.mat'); 
end 
save proc_info infile lcount lext rcount rext count rate 
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Lc=lcount; 
Rc=rcount; 
 

Appendix A1.4: Using the ‘noReg’ option of the ‘Zebris_NoGUI’ command in the ‘Zebris’ in-house 
toolkit, the pressure records from a trial are extracted from the ASCII file exported from the WIN-FDM 
treadmill software. 
  

% function to build registration groups from proc_info.m and 

CutPoints Var 

  
function eyetrackRegSects(bufferWidth) 

  
% load required data 

  
CutPoints=evalin('base','CutPoints'); 
load('proc_info.mat','rate','lcount','lext','rcount','rext'); 

  
% convert CutPoints to frame numbers 

  
numCuts=size(CutPoints); 
cutFrames=zeros(numCuts(1),2); 

  
for i=1:numCuts 
    cutFrames(i,1)=(CutPoints(i)-bufferWidth)*rate; 
    cutFrames(i,2)=(CutPoints(i)+bufferWidth)*rate; 
end 

  
% get count of prints in each cut zone 

  
lc=zeros(numCuts(1),2); 
rc=zeros(numCuts(1),2); 

  
for i=1:numCuts 
    lb=cutFrames(i,1); 
    ub=cutFrames(i,2); 

  
    for j=1:lcount 
        if lext(j,1)<=lb && lext(j,2)>=lb 
            lc(i)=lc(i)+1; 
        else 
            if lext(j,1)>=lb && lext(j,2)<=ub 
                lc(i)=lc(i)+1; 
            else 
                if lext(j,1)<=ub && lext(j,2)>=ub 
                    lc(i)=lc(i)+1; 
                end 
            end 
        end 
        if lc(i,1)==1 
            lc(i,2)=j; 
        end 
    end 

     
    for j=1:rcount 
        if rext(j,1)<=lb && rext(j,2)>=lb 
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            rc(i)=rc(i)+1; 
        else 
            if rext(j,1)>=lb && rext(j,2)<=ub 
                rc(i)=rc(i)+1; 
            else 
                if rext(j,1)<=ub && rext(j,2)>=ub 
                    rc(i)=rc(i)+1; 
                end 
            end 
        end 
        if rc(i,1)==1 
            rc(i,2)=j; 
        end 
    end 
end 

  
% group prints outside cut zones 

  
lGroups=zeros(numCuts(1)+1,2); 
rGroups=zeros(numCuts(1)+1,2); 

  
lGroups(1,1)=1; 
rGroups(1,1)=1; 
lGroups(1,2)=lc(1,2)-1; 
rGroups(1,2)=rc(1,2)-1; 

  
for i=2:numCuts(1) 
    lGroups(i,1)=lGroups(i-1,2)+lc(i-1,1)+1; 
    lGroups(i,2)=lc(i,2)-1; 
    rGroups(i,1)=rGroups(i-1,2)+rc(i-1,1)+1; 
    rGroups(i,2)=rc(i,2)-1; 

     
end 

  
lGroups(numCuts(1)+1,1)=lc(numCuts(1),1)+lc(numCuts(1),2); 
rGroups(numCuts(1)+1,1)=rc(numCuts(1),1)+rc(numCuts(1),2); 
lGroups(numCuts(1)+1,2)=lcount; 
rGroups(numCuts(1)+1,2)=rcount; 

  
fprintf('\nCut Zones:\n\n'); 
fprintf('      Zone    Start Print    Print Count\n') 

  
for i=1:numCuts 
    fprintf('Left   %2d         %d              

%d\n',i,lc(i,2),lc(i,1)); 
end 
fprintf('\n'); 
for i=1:numCuts 
    fprintf('Right  %2d         %d              

%d\n',i,rc(i,2),rc(i,1)); 
end 
fprintf('\n'); 
fprintf('\nPrint Groups:\n\n'); 
fprintf('      Group    Start Print    End Print\n') 
for i=1:numCuts+1 
    fprintf('Left    %2d         %3d           

%d\n',i,lGroups(i,1),lGroups(i,2)); 
end 
fprintf('\n'); 
for i=1:numCuts+1 
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    fprintf('Right   %2d         %3d           

%d\n',i,rGroups(i,1),rGroups(i,2)); 
end 

  
save groups lGroups rGroups 

  
%disp(lc) 
%disp(rc) 
%disp(lGroups) 
%disp(rGroups) 
 

Appendix A1.5: MATLAB script that uses the CutPoints variable defined from the previous step 
alongside the treadmill pressure record output (Proc Info) to group the prints into those made during 
different types of visual tracking. The output is a list of start and end pressure records in each group for 
left and right feet are saved. 

 

% function to load the appropriate prints based on the contents of 

lGroups 
% & rGroups 

  
function eyetrackLoadPrints() 

  
% creat lists of print numbers 

  
load groups 

  
a=size(lGroups); 
numGroups=a(1); 

  
%left prints 
lpc=zeros(numGroups,1); 
for i=1:numGroups 
    k=0; 
    for j=lGroups(i,1):lGroups(i,2) 
        lp(i,k+1)=lGroups(i,1)+k; 
        %fprintf('%d ',lGroups(i,1)+k); 
        k=k+1; 
    end 
    lpc(i)=k; 
    %fprintf('\n'); 
end 

  
%right prints 
rpc=zeros(numGroups,1); 
for i=1:numGroups 
    k=0; 
    for j=rGroups(i,1):rGroups(i,2) 
        rp(i,k+1)=rGroups(i,1)+k; 
        %fprintf('%d ',rGroups(i,1)+k); 
        k=k+1; 
    end 
    rpc(i)=k; 
    %fprintf('\n'); 
end 

  
% load prints 
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% left 
for i=1:numGroups 
    evalstr='LeftGrp'; 
    if i<10 
        evalstr=strcat(evalstr,'0'); 
    end 
    pstart=lp(i,1); 
    for j=1:lpc(i) 
        evalstr2=evalstr; 
        

evalstr2=strcat(evalstr2,num2str(i),'(',num2str(j),').P=load(''','LP

_P_'); 
        if pstart<10 
            evalstr2=strcat(evalstr2,'00'); 
        else 
            if pstart<100 
                evalstr2=strcat(evalstr2,'0'); 
            end 
        end 

  
        

evalstr2=strcat(evalstr2,num2str(pstart),'.mat''',',','''LP_P_'); 

  
        if pstart<10 
            evalstr2=strcat(evalstr2,'00'); 
        else 
            if pstart<100 
                evalstr2=strcat(evalstr2,'0'); 
            end 
        end 

         
        evalstr2=strcat(evalstr2,num2str(pstart),''');'); 

         
        eval(evalstr2); 
        %fprintf('%s\n',evalstr2); 
        pstart=pstart+1; 
    end 
end 

  
% right 
for i=1:numGroups 
    evalstr='RightGrp'; 
    if i<10 
        evalstr=strcat(evalstr,'0'); 
    end 
    pstart=rp(i,1); 
    for j=1:rpc(i) 
        evalstr2=evalstr; 
        

evalstr2=strcat(evalstr2,num2str(i),'(',num2str(j),').P=load(''','RP

_P_'); 
        if pstart<10 
            evalstr2=strcat(evalstr2,'00'); 
        else 
            if pstart<100 
                evalstr2=strcat(evalstr2,'0'); 
            end 
        end 
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evalstr2=strcat(evalstr2,num2str(pstart),'.mat''',',','''RP_P_'); 

  
        if pstart<10 
            evalstr2=strcat(evalstr2,'00'); 
        else 
            if pstart<100 
                evalstr2=strcat(evalstr2,'0'); 
            end 
        end 

         
        evalstr2=strcat(evalstr2,num2str(pstart),''');'); 

         
        eval(evalstr2); 
        %fprintf('%s\n',evalstr2); 
        pstart=pstart+1; 
    end 
end 

  
% find largest array 
gs=[0,0]; 

  
% left 
for i=1:numGroups 
    evalstr='psize=size(LeftGrp'; 
    if i<10 
        evalstr=strcat(evalstr,'0'); 
    end 
    evalstr=strcat(evalstr,num2str(i)); 
    pstart=lp(i,1); 
    for j=1:lpc(i) 
        evalstr2=evalstr; 
        evalstr2=strcat(evalstr2,'(',num2str(j),')','.P.LP_P_'); 
        if pstart<10 
            evalstr2=strcat(evalstr2,'00'); 
        else 
            if pstart<100 
                evalstr2=strcat(evalstr2,'0'); 
            end 
        end 
        evalstr2=strcat(evalstr2,num2str(pstart),');'); 
        eval(evalstr2); 
        pstart=pstart+1; 
        if psize(1)>gs(1) 
            gs(1)=psize(1); 
        end 
        if psize(2)>gs(2) 
            gs(2)=psize(2); 
        end 
    end 
end 

  
% right 
for i=1:numGroups 
    evalstr='psize=size(RightGrp'; 
    if i<10 
        evalstr=strcat(evalstr,'0'); 
    end 
    evalstr=strcat(evalstr,num2str(i)); 
    pstart=rp(i,1); 
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    for j=1:rpc(i) 
        evalstr2=evalstr; 
        evalstr2=strcat(evalstr2,'(',num2str(j),')','.P.RP_P_'); 
        if pstart<10 
            evalstr2=strcat(evalstr2,'00'); 
        else 
            if pstart<100 
                evalstr2=strcat(evalstr2,'0'); 
            end 
        end 
        evalstr2=strcat(evalstr2,num2str(pstart),');'); 
        eval(evalstr2); 
        pstart=pstart+1; 
        if psize(1)>gs(1) 
            gs(1)=psize(1); 
        end 
        if psize(2)>gs(2) 
            gs(2)=psize(2); 
        end 
    end 
end 

  
% convert to pImage stacks 

  
for i=1:numGroups 
    % process right first 
    l=1; 
    evalstr='P=RightGrp'; 
    if i<10 
        evalstr=strcat(evalstr,'0'); 
    end 
    evalstr=strcat(evalstr,num2str(i)); 
    pstart=rp(i,1); 
    grpName='Group'; 
    grpName=strcat(grpName,num2str(i)); 
    for j=1:rpc(i) 
        evalstr2=evalstr; 
        evalstr2=strcat(evalstr2,'(',num2str(j),')','.P.RP_P_'); 
        if pstart<10 
            evalstr2=strcat(evalstr2,'00'); 
        else 
            if pstart<100 
                evalstr2=strcat(evalstr2,'0'); 
            end 
        end 
        evalstr2=strcat(evalstr2,num2str(pstart),';'); 
        eval(evalstr2); 
        PP=pImage2D(P); 
        PP=resize(PP,gs); 

         
        pstart=pstart+1; 
        storeName=grpName; 
        storeName=strcat(storeName,'(',num2str(l),')=PP;'); 
        l=l+1; 
        eval(storeName); 
        %fprintf('%s\n',storeName); 

         
    end 

  
    evalstr='P=LeftGrp'; 
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    if i<10 
        evalstr=strcat(evalstr,'0'); 
    end 
    evalstr=strcat(evalstr,num2str(i)); 
    pstart=lp(i,1); 
    grpName='Group'; 
    grpName=strcat(grpName,num2str(i)); 
    for j=1:lpc(i) 
        evalstr2=evalstr; 
        evalstr2=strcat(evalstr2,'(',num2str(j),')','.P.LP_P_'); 
        if pstart<10 
            evalstr2=strcat(evalstr2,'00'); 
        else 
            if pstart<100 
                evalstr2=strcat(evalstr2,'0'); 
            end 
        end 
        evalstr2=strcat(evalstr2,num2str(pstart),';'); 
        eval(evalstr2); 
        P=flipud(P); 
        PP=pImage2D(P); 
        PP=resize(PP,gs); 

         
        pstart=pstart+1; 
        storeName=grpName; 
        storeName=strcat(storeName,'(',num2str(l),')=PP;'); 
        l=l+1; 
        eval(storeName); 
        %fprintf('%s\n',grpName); 
    end 

     
    astring='assignin('; 
    

astring=strcat(astring,char(39),'base',char(39),',',char(39),grpName

,char(39),',',grpName,');'); 
    eval(astring); 
end 

 

Appendix A1.6: Based on the groups of pressure records defined in the previous step, the arrays of 
prints are then built and stored in pImage2D format. These groups can then be combined to form 
overall arrays of pressure records made during different conditions and are now ready for analysis 
using pSPM. 

 

Pr1=registerWS(P(1),P); 

M=mean(Pr1);' 

Pr2=registerWS(M,P); 

 

Appendix A1.7: MATLAB script to conduct a within subject registration within in-house pSPM toolkit 
where ‘P’ is the array of records. Returns prints registered to the first record in the array (Pr1), and 
then re-registers to the mean pressure profile from this registration to avoid bias (Pr2). 

 

Pr2Thresholded=threshold(Pr2,1); 

  
MeanPrint=mean(Pr2Thresholded); 
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MeanPrintThresholded=threshold(MeanPrint,1); 

  
PThresholded_Reg=registerWS(MeanPrintThresholded,Pr2Thresholded); 
 

Appendix A1.8: MATLAB script to complete a thresholded registration on a pre-registered sample of 
pressure records where ‘P’ is the array of records. 

 

% QtrackTools - Get data from TSV file 
% 
% [names,nodes]=qtReadTSV(tsvInputFile); 
% Input = string label for disk file 
% 
% Outputs: names=struct containing Marker Names 
%          data=MxN matrix of marker positions M=Number of Frames 
%                                              N=Number of Markers * 

3 

  
function[markerList,markerData]=qtReadTSV(tsvInput) 

  
% open input file 
% No error checking will fail if file name invalid 
inp=fopen(tsvInput,'r'); 

  
% get number of frames 
tline=fgets(inp); 
l=size(tline); 
f=substr(tline,13,l(2)-13); 
frames=str2double(f); 

  
fprintf('Frame Count = %d\n',frames) 

  
% get number of cameras 
tline=fgets(inp); 
l=size(tline); 
f=substr(tline,14,l(2)-14); 
cameras=str2double(f); 

  
fprintf('Camera Count = %d\n',cameras) 

  
% get number of markers 
tline=fgets(inp); 
l=size(tline); 
f=substr(tline,14,l(2)-14); 
markers=str2double(f); 

  
fprintf('Marker Count = %d\n',markers) 

  
% get sample frequency 
tline=fgets(inp); 
l=size(tline); 
f=substr(tline,10,l(2)-10); 
frequency=str2double(f); 
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fprintf('Samples per Second = %d\n',frequency) 

  
% currently ignore Analog info as not used 

  
for i=1:6 
    tline=fgets(inp); 
end 

  
% check that line is correct and extract names 
str=substr(tline,1,12); 
if strcmp(str,'MARKER_NAMES') 

  
    % get Number of Markers 
    l=size(tline); 
    numMarkers=1; 
    for i=14:l(2) 
        if tline(i)==9 
            numMarkers=numMarkers+1; 
        end 
    end 

     
    % get marker divisions 
    p=zeros(numMarkers+1,1); 
    k=1; 
    for i=1:l(2) 
        if tline(i)==9 
            p(k)=i; 
            k=k+1; 
        end 
    end 
    p(k)=l(2); 

     
    % put marker names into cell 
    c=cell(1,numMarkers); 
    for i=1:numMarkers 
        if i<numMarkers 
            str=substr(tline,p(i)+1,p(i+1)-p(i)-1); 
        else 
            str=substr(tline,p(i)+1,p(i+1)-p(i)); 
        end 
        c{i}=str; 
    end 

     
    markerList=c; 
else 
    markerList=-1; 
    return 
end 

  
% put data into array 

  
markerData=zeros(frames,numMarkers*3); 

  
% fill array 
for k=1:frames 
    markerData(k,:)=fscanf(inp,'%f',numMarkers*3); 
end 
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% close input file 
fclose(inp); 
 

Appendix A1.9: MATLAB script to read in data from the TSV file. Firstly information regarding camera 
number, marker number, marker names and capture frequency is identified. Marker names are then 
stored in a list and the global coordinate data for each stored in a matrix.   

 

% qtDisplayNames - Display the maker names and numbers read from tsv 

file 

  
function qtDisplayNames(names) 

  
numMarkers=size(names); 

  
fprintf('\n'); 
for i=1:numMarkers(2) 
    fprintf('Marker Number: %d %s %s\n',i,9,names{i}); 
end 
 

Appendix 1.10: MATLAB script to display marker names and numbers in a variable. 

 

% function to calculate 2 Point angles with a major axis 

  
function[angle]=qtCalc2PointAngle(pointA,pointB,data,AXIS) 

  
pAx=data(:,((pointA-1)*3)+1); 
pAy=data(:,((pointA-1)*3)+2); 
pAz=data(:,((pointA-1)*3)+3); 

  
pBx=data(:,((pointB-1)*3)+1); 
pBy=data(:,((pointB-1)*3)+2); 
pBz=data(:,((pointB-1)*3)+3); 

  
a=size(pAx); 

  
angle=zeros(a(1),1); 

  
for i=1:a(1) 
    switch AXIS 
        case 'XaY' 
            pa=[pAx(i),pAy(i),0]; 
            pb=[pBx(i),pBy(i),0]; 
            pc=[pBx(i),pAy(i),0]; 
        case 'XaZ' 
            pa=[pAx(i),0,pAz(i)]; 
            pb=[pBx(i),0,pBz(i)]; 
            pc=[pBx(i),0,pAz(i)]; 
        case 'YaZ' 
            pa=[0,pAy(i),pAz(i)]; 
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            pb=[0,pBy(i),pBz(i)]; 
            pc=[0,pBy(i),pAz(i)]; 
        case 'XYaZ' 
            pa=[pAx(i),pAy(i),pAz(i)]; 
            pb=[pBx(i),pBy(i),pBz(i)]; 
            pc=[pBx(i),pBy(i),pAz(i)]; 
        case 'XZaY' 
            pa=[pAx(i),pAy(i),pAz(i)]; 
            pb=[pBx(i),pBy(i),pBz(i)]; 
            pc=[pBx(i),pBy(i),pBz(i)]; 
        case 'YZaX' 
            pa=[pAx(i),pAy(i),pAz(i)]; 
            pb=[pBx(i),pBy(i),pBz(i)]; 
            pc=[pAx(i),pBy(i),pAz(i)]; 
        otherwise 
            return 
    end 

  
    v21=[pa(1)-pb(1),pa(2)-pb(2),pa(3)-pb(3)]; 
    v23=[pc(1)-pb(1),pc(2)-pb(2),pc(3)-pb(3)]; 
    angle(i) = 180/pi*(atan2(norm(cross(v21,v23)),dot(v21,v23))); 
end 
 

Appendix A1.11: MATLAB script to calculate an angle between two markers (point A, point B) for a 
given trial (data) and relative to an axis (XY, XZ,YZ). 
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Appendix A1.12: Participant Information Form 
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Committee on Research Ethics 

 
CONSENT FORM  

 
 

          
Participant Name                                                     Date                       Signature 

 
 
 
                 
        Name of Person taking consent                                Date                      Signature 
 

 
 

       
        Lead Researcher                                                       Date                     Signature 
 
The contact details of lead Researcher (Principal Investigator) are: 
Professor Robin Huw Crompton, Institute of Aging and Chronic Disease,The University of 
Liverpool, Ashton Street, Liverpool L69 3GE email: rhcromp @liv.ac.uk; work phone 0151794 
5500; website www.liv.ac.uk/premog 
Version 4 March 2011 RHC 
 

 

Appendix A1.13: Participant Consent Form 

Title of Research 
Project: 

Energy Costs, External Forces, Limb 
Motion and Gait Control in Human 

Bipedal Gaits  
 

Please circle as appropriate 
Protocols/Conditions requested and 

agreed to: 
 1   2  A   B   C  D   E   F   G 

 
 

 
 
 

Please 
initial box 

Researcher(s): Prof. R.H. Crompton (Lead Researcher/PI) Dr. Nathan 

Jeffery, Mr. Russell Savage, Dr. Karl Bates, Ms. Emma 
Webster, Ms. Sarita Morse and others 
 

1. I confirm that I have read and have understood the information sheet dated 4 
March 2011 for the above circled studies/conditions/protocols. I have had the 
opportunity to consider the information, ask questions and have had these 
answered satisfactorily.   

 

 

2. I understand that my participation is voluntary and that I am free to withdraw at any 
time without giving any reason, without my rights being affected.    

3. I understand that, under the Data Protection Act,  I can at any time ask for access 
to the information I provide and I can also request the destruction of that 
information if I wish. 

 

4. I agree that, if required, a third party (for example, my General Practitioner) may be 
contacted about my participation in this research.  

 
 

http://www.liv.ac.uk/premog
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Appendix 2: Supplementary Information for Chapter 3 

 

This Appendix contains Eye Tracking and Foot Pressure mean square error profiles 

associated with Chapter 3. 
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Appendix A2.2: Subject 2 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) plane. 

  

Appendix A2.1: Subject 1 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) plane. 

A) 

A) 

B) 

B) 

C) 

C) 
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 Appendix A2.3: Subject 3 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) plane. 

  

Appendix A2.4: Subject 4 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) plane. 

A) B) C) 

A) B) C) 
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Appendix A2.5: Subject 5 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) plane. 

 

Appendix A2.6: Subject 6 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) plane.  

C) B) A) 

A) B) C) 



168 
 

 

Appendix A2.7: Subject 7 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) plane.  

  

A) B) C) 

B) C) A) 

Appendix A2.8: Subject 8 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) plane. 

 

C) B) A) 
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Appendix A2.9: Subject 9 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) plane. 

A) B) C) 

C) A) B) 

Appendix A2.10: Subject 10 Eye Tracker Profiles when tracking on the blank (A), savannah (B), and forest scene (C). Pupil position was measured in the X (horizontal) 

plane. 
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Appendix A2.11: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 1. 

 

 

 

  

 

 

Appendix A2.12: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 2. 
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Appendix A2.13: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 3.  

 

 

 

 

 

   
Appendix A2.14: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 4.  
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Appendix A2.15: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 5.  

 

 

 

 

 

 

 

 

 

Appendix A2.16: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 6.   
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Appendix A2.17: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 7. 

Appendix A2.18: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 8. 

A) B) 

A) B) 
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Appendix A2.19: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 9.  

 

 

 

 

 

 

Appendix A2.20: Diagrammatic comparison of the range of foot pressure MSE during (A) Gaze fixation vs Smooth Pursuit on the blank background, and (B) Smooth Pursuit 
across the three backgrounds for subject 10.
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Appendix 3: Supplementary Information for Chapter 4 

 

This Appendix includes Eye Tracking and Foot Pressure mean square profiles associated 

with Chapter 4.  
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A) B) 

C) D) 

Appendix A3.1: Subject 1 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object 
tracking on the forest scene. 
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A) B) 

C) D) 

Appendix A3.2: Subject 2 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object 
tracking on the forest scene. 
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A) B) 

C) D) 

Appendix A3.3: Subject 3 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object 
tracking on the forest scene. 
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  A) B) 

C) D) 

Appendix A3.4: Subject 4 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object 
tracking on the forest scene. 
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A) B) 

C) D)

D 

Appendix A3.5: Subject 5 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object 
tracking on the forest scene. 
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A) B) 

C) D) 

Appendix A3.6: Subject 6 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object 
tracking on the forest scene. 
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  A) B) 

C) D) 

Appendix A3.7: Subject 7 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object 
tracking on the forest scene. 



183 
 

 

  A) B) 

C) D) 

Appendix A3.8: Subject 8 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object 
tracking on the forest scene. 
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C) D) 

A) B) 

C) 

Appendix A3.9: Subject 9 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object 
tracking on the forest scene. 
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C) D) 

A) B) 

Appendix A3.10: Subject 10 eye tracking profiles for dual task study. A) Repeat back language task when object tracking on the savannah scene. B) Background music 
task when object tracking on the savannah scene. C) Repeat back language task when object tracking on the forest scene. D) Background music task when object tracking 
on the forest scene. 
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Appendix A3.11: Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 1. A) dual tasking in the presence of 
the savannah scene. B) dual tasking in the presence of the forest scene. 

 

 

 

 

 

 

 

 

 

Appendix A3.12: Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 2. A) dual tasking in the presence of 
the savannah scene. B) dual tasking in the presence of the forest scene. 
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Appendix A3.13: Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 3. A) dual tasking in the presence of 
the savannah scene. B) dual tasking in the presence of the forest scene. 

 

 

 

 

 

 

Appendix A3.14: Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 4. A) dual tasking in the presence of 
the savannah scene. B) dual tasking in the presence of the forest scene. 
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Appendix A3.15:  Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 5. A) dual tasking in the presence of 
the savannah scene. B) dual tasking in the presence of the forest scene. 

 

 

 

 

 

                 

Appendix A3.16: Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 6. A) dual tasking in the presence of 
the savannah scene. B) dual tasking in the presence of the forest scene. 
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Appendix A3.17: Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 7. A) dual tasking in the presence of 
the savannah scene. B) dual tasking in the presence of the forest scene. 

 

 

 

 

 

    

Appendix A3.18: Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 8. A) dual tasking in the presence of 
the savannah scene. B) dual tasking in the presence of the forest scene.  
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Appendix A3.19: Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 9. A) dual tasking in the presence of 
the savannah scene. B) dual tasking in the presence of the forest scene. 

 

 

 

 

 

     

Appendix A3.20: Diagrammatic comparisons of MSE values for individual foot pressure records during each dual task condition for subject 10. A) dual tasking in the presence 
of the savannah scene. B) dual tasking in the presence of the forest scene. 
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Appendix 4: Supplementary Information for Chapter 5 

 

This Appendix presents Foot Pressure MSE profiles associated with Chapter 5.  



192 
 

0

5

10

15

20

25

1

26 51 76

10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

45
1

47
6

50
1

Fo
o

tp
ri

n
t 

M
SE

Footprint Number

Braced Non-Braced

0

5

10

15

20

25

1

26 51 76

10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

45
1

47
6

50
1

Fo
o

tp
ri

n
t 

M
SE

Footprint Number

Braced Non-Braced

 

 

 

 

 

 

 

0

5

10

15

20

25

1

2
8

5
5

8
2

10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

51
4

54
1

Fo
o

tp
ri

n
t 

M
SE

Footprint Number

Braced Non-Braced

0

5

10

15

20

25
1

2
6

5
1

7
6

10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

45
1

47
6

50
1

Fo
o

tp
ri

n
t 

M
SE

Footprint Number

Braced Non-Braced

Appendix A4.2: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 2. 

 

Appendix A4.1: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 1. 

 

Appendix A4.3: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 3. 

 

Appendix A4.4: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 4. 
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Appendix A4.5: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 5. 

 

Appendix A4.6: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 6. 

 

Appendix A4.7: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 7. 

 

Appendix A4.8: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 8. 
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Appendix A4.9: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 9. 

 

Appendix A4.10: Diagrammatic comparisons of MSE values for individual foot  
pressure records during each dual task condition for subject 10. 

 

0

5

10

15

20

25

1

25 49 73 97

12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

40
9

43
3

45
7

48
1

Fo
o

tp
ri

n
t 

M
SE

Footprint Number

Braced Non-Braced

0

5

10

15

20

25
1

26 51 76

10
1

12
6

15
1

17
6

20
1

22
6

25
1

27
6

30
1

32
6

35
1

37
6

40
1

42
6

45
1

47
6

50
1

Fo
o

tp
ri

n
t 

M
SE

Footprint Number

Braced Non-Braced



195 
 

Appendix 5: Publications 

 

Webster E, Hudson P, Channon S. 2014 ‘Comparative Functional Anatomy of the Epaxial 

Musculature of Dogs (Canis familiaris) bred for Sprinting versus Fighting’. J Anat. 

doi: 10.1111/joa.12208 

 

Bates KT, Collins D, Savage R, McClymont J, Webster E, Pataky TC, D’Aout K, Sellers WI, 

Bennett MR, Crompton RH. 2013 ‘The evolution of compliance in the human lateral mid-foot.’ 

Proc R Soc B 280: 20131818. 

 

Bates KT, Savage R, Pataky TC, Morse SA, Webster E, Falkingham PL, Ren L, Qian Z, Collins 

D, Bennett MR, McClymont J, Crompton RH. 2013 ‘Does footprint depth correlate with foot 

motion and pressure?’ J R Soc Interface 10: 20130009. 

 


