

Integration of a Web Processing Service (WPS),

GIS and hydraulic modelling (TELEMAC) for

geophysical analysis

Yicheng Zhang

Department of Engineering, University of Liverpool

September 16, 2014

i

Publications

Morsali, A., Zhang Y.C., Chen M., Chen, D., 2011. Development of a

contaminated land risk assessment model HERA-Soil-GIS in

open source QGIS, Environmental Modelling & Software.

Zhang, Y.C., Shams, S., Torres, J.A., Leone, A., Li, M., Chen, D.Y.,

Integration of Web Processing Service (WPS) and Openlayers in

Hydro Information System (HIS) for assessing water balance of a

catchment area, Journal of Hydro-Environment Research. (In

review)

ii

Contents

Publications ... i

Contents ... ii

List of Figures ... v

List of Tables .. vii

Symbols ... viii

Acknowledgements ... ix

Abstract ... xi

Chapter 1 Introduction .. 1

1.1 Background .. 1

1.2 Objectives .. 8

Chapter 2 Services and Service-Oriented Architecture 9

2.1 Introduction.. 9

2.2 Overview of system architecture ... 10

2.3 Object-oriented and Service-oriented Paradigm 12

2.3.1 Existing configurations .. 13

2.3.2 Embracing SOA structure .. 16

2.4 Web Services .. 21

2.4.1 The Web Services Architecture 22

2.4.2 Protocol specification .. 22

Message orientation .. 23

2.5 Key Feature of Web service: loose-coupling 25

2.6 Summary .. 27

Chapter 3 Methodology .. 29

3.1 Introduction.. 29

3.2 Related works .. 31

3.3 Overall design .. 33

3.4 CUAHSI Hydrologic Information System (HIS) 33

3.5 3O-HIS architecture ... 40

iii

3.5.1 Data layer ... 41

3.5.2 Service layer .. 44

3.5.3 Presentation layer .. 50

3.5.4 Specifications and protocols for supporting the design of

3O-HIS .. 56

3.6 Ontology in 3O-HIS .. 57

3.7 Summary .. 61

Chapter 4 Data management ... 64

4.1 Introduction.. 64

4.2 Major linking resource with SOA in environmental science 67

4.3 SOA with database ... 69

4.4 Challenge for design SOA with data repositories 74

4.5 Data conversion ... 78

4.5.1 Steering file conversion ... 79

4.5.2 Boundary file conversion .. 82

4.5.3 Result file conversion .. 83

4.5.4 Data transmission .. 88

4.6 Key input files stored in service .. 88

4.6.1 Geometry file ... 88

4.6.2 Hydrodynamic models .. 89

4.7 Summary .. 93

Chapter 5 Application ... 95

5.1 Introduction.. 95

5.2 Current states of GIS with Hydrological Modelling 96

5.3 User guide of 3O-HIS .. 99

5.3.1 Installation ... 100

5.3.2 Using the 3O-HIS .. 106

5.4 Service deploying for different hydrological models 115

5.4.1 System configurations ... 116

5.4.2 Service component configuration 116

5.5 Case Study: Flooding forecast around Blackpool 119

5.5.1 TELEMAC in 3O-HIS .. 123

5.5.2 Telemac service bus in 3O-HIS 126

iv

5.5.3 Flooding forecast data analysis 129

5.6 Case Study Area: Demra of Bangladesh 134

5.6.1 Data definition/ Collection .. 137

5.6.2 Results and Discussions .. 141

5.7 Comparing uDig-Telemac with ArcGIS-Telemac 144

5.8 Summary .. 149

Chapter 6 Conclusions and Further works ... 152

6.1 Introduction.. 152

6.2 Major findings ... 153

6.2.1 Components of 3O-HIS ... 154

6.2.2 Application of 3O-HIS .. 156

6.3 Further works ... 158

References ... 160

Appendix I .. 170

SQLConnection.java .. 170

OpenFile.java ... 180

Read_file_code.java .. 182

Read_fortran_files.java .. 191

v

List of Figures

Figure 2.1 SOA explained (Huhns and Singh, 2005, After

Service-Oriented Computing: Key Concepts and Principles,

Page 76). .. 17

Figure 2.2 The anatomy of a service (Webber and Parastatidis, 2009,

after: Service-oriented computing, Realizing Service-Oriented

Architectures with Web Services, Page 57). 20

Figure 2.3 General Web services architecture. 23

Figure 2.4 Contrasting a (a) tight-coupling and (b) loose-coupling

approach for model integration (after: Jonathan et al.,2011,

Modelling water resource systems using a service-oriented

computing paradigm, Page 574). .. 27

Figure 3.1 The key components of the CUAHSI HIS

service-oriented architecture (after: Zaslavsky and Maidment,

2011) ... 35

Figure 3.2 The 3O-HIS’s architecture ... 41

Figure 3.3 The bottom structure of 3O-HIS 44

Figure 3.4 52°North WPS service and HIS 48

Figure 4.1 Distributed flowchart between users and TELEMAC ... 80

Figure 4.2 Type of value stored in services in 3O-HIS 81

Figure 4.3 The mechanism of tranmision from res to PostSQL... 84

Figure 4.4 Result data conversion from TELEMAC to 3O-HIS 86

Figure 4.5 Structure of Totalvariable ... 87

Figure 5.1 The processing flow of 3O-HIS 102

Figure 5.2 An example of geom feature representation in GML2 105

Figure 5.3 Display of Catchment area using 52°North WPS 106

Figure 5.4 GUI for TELEMAC ... 107

Figure 5.5 GUI of hydraulic model linking with 3O-HIS 109

Figure 5.6 The retrieval of mesh of Wyre River Estuary Mesh 109

vi

Figure 5.7 GUI for TELEMAC (Options tag) 110

Figure 5.8 SQL statement – shapefiles .. 112

Figure 5.9 SQL statement – shapefiles .. 113

Figure 5.10 The inundation map and water depth with time series

(three random points) in 3O-HIS.. 113

Figure 5.11 Water depths with time series 114

Figure 5.12 Map of the Blackpool-Fleetwood area (After Wyre

Borough Council, 2004) .. 120

Figure 5.13 ASCII text file: Steering file 125

Figure 5.14 3O-HIS service bus(linkage TELEMAC model) 127

Figure 5.15 a) inundation map SLR 0cm in Fleetwood, b)

inundation map SLR 49cm in Fleetwood 130

Figure 5.16 Location Map of the Study area (Source:Magellan

Geographix) .. 136

Figure 5.17 Discharge of Lakhya river from 2002-2011............... 138

Figure 5.18 Land use in GIS ArcView .. 139

Figure 5.19 Web service and local response Time with 141 times

test ... 142

Figure 5.20 Blackpool features in uDig .. 146

vii

List of Tables

Table 3.1 The OpenMI model execution time varies as the number

of modelling elements ... 52

Table 3.2 Different components’ execution time varies as the

number of modelling elements ... 54

Table 5.1 Inundation areas based on the different sea level rise ... 131

Table 5.2 Total Direct damage amount based on the different sea

level rise .. 133

Table 5.3 Values of K for selected crops (Source: Subramanya, 2008)

 .. 140

Table 5.4 System configurations between Tele-Arc and Tele-uDig

 .. 145

Table 5.5 Comparing the response time between Tele-Arc and

Tele-uDig .. 147

viii

Symbols

3O-HIS

Object Oriented (OO) technologies

with extensions of OpenGIS

standard

DEM Digital Elevation Models

EPA Environmental Protection Agency

FWD Floodline Warnings Direct

GIS Geographic Information Systems

GML Geography Markup Language

HIS Hydrologic Information System

LTER
Long Term Ecological Research

Network

NEON
National Ecological Observatory

Network

OGC Open Geospatial Consortium

OO Object Oriented

SOA Service-Oriented Architecture

SOAP Simple Object Application Protocol

WSDL Web Service Description Language(

WPS Web Processing Service

http://www.baidu.com/link?url=-sUrOHOQm-h3f6FzvZImy2MrhQSjhaqdXmxTUsBKj2O

ix

Acknowledgements

I would like to express my gratitude and thanks to my supervisor,

Dr. Ming Li, whose expertise, understanding, and patience,

added considerably to my graduate experience. I appreciate his

vast knowledge and skill in supervising me throughout my PhD

works and for advising me on TELEMAC and motivating me to

use computing knowledge (FORTRAN). I would also like to

thank my supervisor Professor Daoyi Chen, who provided his

valuable advices at all levels of the research project. I would

also like to thank my secondary supervisor Dr. Xiaoxian Zhang

for his advice.

I would like to thank my family and friends for their support and

for all the great times we've had over the last few years. Finally,

I would like to thank Dr. Shahriar Shams for his advice for my

x

article based on my research works and also motivating me

during my stress time.

xi

Abstract

In recent years, environmental management is shifting from a

single considerable paradigm of modelling which providing

answers to specific queries such as future states of a particular

environmental system to much more complicated integrations of

environmental applications. For example, determining and

visualising coastal zone inundation usually needs to integrate

many elements such as population, infrastructure and

environment to process an assessment of coastal vulnerability.

Because these elements are not independent and interactive with

each other, single environmental application can not represent

environmental processes comprehensively. This phenomenon

commonly exist in environmental field such as population

expansion affects environment; the changing weather leads

extreme conditions in short term; sediment accumulation and

xii

pollutants potentially damage infrastructure in long term. They

are interactive and relate with physical, hydrological and

biological processes and needs interoperation among difference

organizations such as meteorology, ecology, economy.

In order to fully understanding of environmental process and

possible implications to population and environment, an

integrated approach is required for encapsulating different

hydrological models and a multi-disciplinary management. A

typical system presents in this dissertation is the development of

the integrated modelling system (3O-HIS) based on the service

principle of matching the hydrological data with corresponding

web services. The advantage of multi-processer computing is

noticeable and a trend that the modern modelling system

increasingly makes use of network-linked computing service

with information distribution system, instead of the traditional

single server based approach. In the modelling system,

xiii

commonly available data such as elevation and image data is

fetched from web services, processed in hydrological models

and results can be analysed as well as Geographic Information

Systems (GIS) software. Different hydrological models can be

integrated in one system, each model is encapsulated in services

and the loose couple feature supports to compose freely for

solving a particular environmental problem. Therefore, it can

meet the requirements for multi-scale and multi-object

assessment and decision-making.

From the precious studies, the multi-object assessment is a goal

for many researcher achieved by developed an open standard of

hydrologic system. For example, Castronova et al. (2013)

developed an OpenMI interface for hydrologic information

system; Tarboton et al., (2009) developed a HydroServer which

includes an ODM database for managing time series data.

However, to achieve these goals is not easy. When dealing with

xiv

complicated modelling scenarios, the gathering input data from

multidisciplinary sources, unifying data formatting and

distributing information across the multi-agency system are still

a significant challenge and may hinder the development.

Limited studies have discussed the solutions. This dissertation

aims to fill in this gap by developing a new 3O-HIS (Object

Oriented (OO) technologies with extensions of OpenGIS

standard Hydrologic Information System). The study focuses on

the key links to 3O-HIS with hydrodynamic modelling by

exploring ways to provide interoperability between services. It

streamlines the links of the modelling chain, such as distributed

geospatial processing, with services using Open Geospatial

Consortium (OGC) standards, Web Service Description

Language (WSDL), Geography Markup Language (GML) and

Simple Object Application Protocol (SOAP). The platform

provides a feasible way to collect hydraulic data from

xv

multidisciplinary data at distributed locations via multiple web

services. Hydrodynamic modelling encapsulated in services

based on service-oriented architectures (SOA) has the capability

in managing, analysing, and publishing images and numerical

results, and the integration of 3O-HIS with GIS is convenient to

capture, store, manipulate, analyse, manage, and ultimately

present all types of geographical spatial data.

Two case studies: flooding simulation at Blackpool in England

and water resources management at Demra in Bangladesh are

considered in order to demonstrate the advantages of GIS with

hydrodynamic modelling using 3O-HIS architectural style. We

illustrate the advantages in two aspects: 1) to demonstrate our

new 3O-HIS GIS-based approach is better than the

hydrodynamic modelling itself and 2) to compare 3O-HIS

GIS-based approach with other web services based on GIS.

xvi

One unique feature in 3O-HIS is Telemac hydrologic modelling

encapsulated on the services and can be run by the processing

flows between web services under SOA. The data on multiple

services can be interoperation for policy makers, planners and

coastal engineers. The considerable assessment between GIS

and hydrodynamic results under web services using 3O-HIS

indicates a promising future for GIS application in hydrological

modelling.

1

Chapter 1 Introduction

1.1 Background

Computer model has now been used extensively and plays an

important role in fulfilling the core tasks of policy making,

water resources management and research (STOWA/RIZA,

1999). However, from an application-oriented perspective,

Mineter et al. (2003) argued the need for a new generation of

environmental applications that from an application-oriented

perspective, shifting from the centralized, local desktop

applications towards loosely coupled unit which composed of a

service interface and a service implementation.

More recently, a number of geospatial studies, involving

hydrologic modelling, have illustrated the use of web services

2

can be very effective to achieve the goal. Alonso et al. (2004)

implemented service-oriented architectures and Foster (2005)

developed standard interfaces and protocols that allow

developers to encapsulate models as services. Lecca et al. (2011)

used ideal service-oriented architectures for hydrological

applications. The hydrological models and service interfaces for

clients are loosely coupled at globally distributed locations.

Granell et al. (2009) and Feng et al. (2011) also developed the

approach to access geospatial computational models using GIS

techniques and Open Geospatial Consortium (OGC)
1
, Web

Processing Service (WPS)
2
 standard. A significant improvement

can be found in Castronova et al. (2013) with models being

integrated in the framework of the Consortium of Universities

1 OGC: Open Geospatial Consortium(OGC), is an interface standards which has an

consortium of 475 companies, government agencies and unicersities participating

for publicly available interface standards (OGC,2014).

2 WPS: Web Processing Service(WPS), is an interface standard which provides rules

for standardizing how inputs and outputs for geospatial processing

services(WPS,2014).

3

for the Advancement of Hydrologic Science, Inc. (CUAHSI)

HIS web services under the OpenMI standard.

Similarly trend and development can also be found in the coastal

management and flood prevention. For example, in the UK, it is

estimated that 20 times of the risk of flooding is increased due to

the climate change according to the Environment Agency

government’s ‘Foresight Future Flooding’ report, and it will

more than double the number of people at a high risk from

flooding (Pitt, 2008). By 2080, flood management investment is

required to be increased to maintain the current level of flood

risk from £1 billion to £2 billon per annum as estimated by the

House of Commons Environment Food and Rural Affairs

Committee (House of Commons EFRA Committee, 2008). It is

still a challenge to use even the present day state-of-art

modelling tool to reduce the cost and to understand the

circumstances such as flooding impacts on people, property and

4

critical infrastructure, and the implication for flood risk

management as set out by the Environment Agency, part of the

Department for Environment, Food and Rural Affairs (Defra). It

has been recognised that the development of a new flood

warning system based on a Service-Oriented Architecture (SOA)

will be able to deliver timely warnings and improve the

performance of the existing flood modelling and hence

management capability.

In recent years, SOA has been developing rapidly for helping

people manage the water resources and take control of flood risk

with innovative service such as sending timely warnings, using

multiple communication channels to the public. For example

Floodline Warnings Direct (FWD) application has been

developed in UK which is based on SOA that enables the

Environment Agency to determine target areas for pre-defined

warning messages. During the coastal floods of January 2008,

5

FWD delivered 29,000 calls; and in April, 2012 the system

delivered 54,000 warning calls to address 459 areas vulnerable

to be flooded, an 86% increase in comparison to previous model.

Applications based on SOA are suitable for sharing hydrologic

data and facilitate policymakers on future coastal flooding

management.

Using SOA, it is convenient for data transmission from user to

services or data communication between services. However, it is

facing new challenges for developing service-oriented and

component-based environmental models. The new concepts and

methodology haven’t form common ‘standards’ or ‘protocols’ to

guide us to establish a service-oriented application; in particular

for environmental management for multi-scale and

multi-objective assessment and decision making. Sharing data

across observatories is currently complicated by the fact that the

volume of heterogeneous data is explosion and investigated by

6

disparate research groups. In 3O-HIS， many considerable

common protocols such as Simple Object Application Protocol

(SOAP)
3
 and Web Service Description Language (WSDL)

4

have been applied to integrate heterogeneous types of data and

knowledge encapsulation of models as Services. It has the

ability of scientists to discover and use data from more than one

repository. We listed two problems that it exists when creating a

data collection and analysis infrastructure at large scales.

The challenge of developing 3O-HIS is no particular ‘standards’

or ‘protocols’ to define the rules to build a service-oriented

application i.e. a model integration platform for environmental

applications. Currently, two mature specifications: SOAP and

3 SOAP : Simple Object Access protocol (SOAP) is a protocol specification for

exchanging structured information in the implementation of web service in

computer networks.

4 WSDL: Web Services Description Language (WSDL) is an XML_based interface

definition language that is used for describing the functionality offered by a web

service.

7

WSDL used in SOA to form the message-oriented underlay

which could have problems in model integration for

environmental application. By using SOAP and WSDL, large

number of objects (e.g. elements of Mesh) and time series of

hydrodynamic features can be transmission between services, it

is simplify and concise for the system. The transmission of

massive and heterogeneous types of data between services is

improved.

Rare hydraulic systems involves ‘Interoperability’ concept

which is the feature providing in designing processing. They

were generally designed to do a particular job and it is difficult

for interoperability when modelling encapsulated as services

and is hardly for disparate data resource exchange interactively.

This dissertation represents the knowledge that encapsulated

hydrodynamic modelling on services to achieve the

interoperability that vary researchers can use the model and

8

disparate data exchange seamlessly.

1.2 Objectives

These purposes that include: 1) understanding of the natural

processes 2) testing of the representation of process 3) providing

the likely future state of an environmental system 4)

consideration and representation of trans-disciplinary systems to

support making a decision. And it transmits to the objectives of

this research are;

 To examine SOA linking with hydrodynamic modelling to

represent multi-objective assessment and decision making.

 To understand the heterogeneous resource communicated

efficiently under web services to drive hydrodynamic

modelling.

 To understand GIS-based 3O-HIS technology for making

decisions based on flood warning maps under different

scenarios.

javascript:void(0);

9

Chapter 2 Services and Service-Oriented

Architecture

2.1 Introduction

This chapter is centred on the concept of services and

service-oriented architecture to create distributed applications

for the research in hydraulic science. To support the modelling

integrations, a range of considerable approaches, tools such as

Geographic Information Systems (GIS), object-oriented

concepts, service-oriented concepts, and component based

modelling techniques and modelling frameworks.

In recent years, environmental management is shifting from a

single considerable paradigm of modelling for multi-task

modelling which providing answers to specific queries such as

10

future states of a particular environmental system to much more

complicated integrations of environmental applications. This

chapter provides an overview of the existing approach of

integrated applications from the conceptual and technological

aspects. It covers a review of the developments in recent

years including service-oriented concepts, component-based

modelling techniques and modelling frameworks. Solutions

are reviewed which are migrated from dedicated desktop to

on-line, loosely coupled and standards-based services in

order to meet the requirements for multi-scale and

multi-object assessment and decision- making.

2.2 Overview of system architecture

Over time, the level of abstraction at which functionality is

consumed has gradually become higher and higher. It has

progressed from models, to objects, to components and even to

services (Sprott and Wilkes, 2004). Recently the system

11

architecture including Service-Oriented (SO) concept has been

discussed frequently which a computing integrated services and

a computing paradigm. SO has been developed that utilizes

services as fundamental elements for changing mission

requirements. Major advantages of Service-Oriented

Architectures (SOAs) are 1) a loosely coupled architecture

which can support dynamic simulation process; 2) a distributed

system architecture for data sharing in an Internet-based

infrastructure (Georgakopoulos and Papazoglou, 2012; Peckham

and Goodall, 2013); 3) services are suitable to encapsulate

software capabilities (Sprott and Wilkes, 2004), and 4)

higher-level abstractions are provided for organizing

applications for large-scale and open environments (Granell et

al., 2009).

Based on SOA, a range of environmental modelling and

software development approaches encapsulated services for

12

supporting and increasing management requirements dealing

with huge data resource in the environmental science fields.

(Georgakopoulos and Papazoglou, 2012; Argent, 2004;

Papajorgji et al., 2004). From a range of environmental

modelling, the trend of development of system architectures is

from centralized, object-oriented integration platforms through

to the loosely coupled, service-oriented programs, the mission

requirements are modified to focus on between services.

Interoperation between services is important that services

distribute seamlessly to eliminate barriers. The integrated

modelling platform abstracts the functionality in a high level

and provides service implementation independently and

interactively for multi-objective assessment.

2.3 Object-oriented and Service-oriented Paradigm

Object-oriented paradigm (OO) and service-oriented (SO)

paradigm are the two commonly system architectures used to

13

encapsulate functionality for the purpose of interoperation in the

integrated hydraulic applications. OO paradigm defined the

function usually recalled on a local machine while SO

functionality is provided by procedures of a service. They both

can encapsulate the hydraulic models with objects or class. For

example an OO approach is explained by Guariso et al. (1996)

that a strong integration of the various modules implemented

under OO structure and Rizzoli et al. (1998) developed

framework–based approaches using OO structures for

optimization, scenario exploration and decision support.

Recently, Argent (2005) developed a simple catchment-based

nonpoint source pollution models using OO paradigm as

modelling methods, and different data types in this system

architecture to estimate pollution loads.

2.3.1 Existing configurations

Overview of OO paradigm, it reveals that OO structures support

14

well the concepts of model reuse and extensibility. It encouraged

users to define their own hierarchy of model classes. OO

structures can separate the different modelling as components

and such distributed mechanism ensure that one modelling

changed do not call for changes in others. However, OO

structure is not beneficial when thinking about requirement of

the light of existing models constraints (Bih, 2006), especially

isolated service requests/components. On the database

management side, OO framework almost inevitably becomes

much more complicated because it stores massive objects for

representation of processes such as hydraulic tide process. There

is a need for large memory for storage in databases and even

duplicate the data.

While SO paradigm solves these issues and satisfies the new

requirements in light of constraints such as decoupled and

independent service implementation. The principle of “services

15

and messages” in SO architecture (SOA) provides an attractive

way for integrating different modelling, especially design a

complex framework. Services can store different types of data

and data sets can be communicated by messages. For example

various and massive hydraulic attributes such as bathymetric

information, digital elevation models’ (DEM) maps, water depth

and velocity are arranged in difference resource repositories

(NASA, USGS, OSGE, EPA) and are interacted by messaging

under different protocols (SOPA, WSDL).

SO paradigm concerns interoperation between modelling have

to fulfil an interface for linking other modelling. SO structure

can fulfil the emerging requirements to flexibility operation flow

because SO structure is essentially a collection of services and

the communicating and connecting services to each other

remotely. It creates a flexible framework. The challenge is the

scale of framework need to be carefully designed using SO

16

paradigm for researchers to develop models that operate Level

I-IV which is explained in details in model integration by Argent

(2004).

Compare with OO paradigm, SOA can generally represent any

data independently to encourage reuse of data and other

resources for different users’ scenarios. SO paradigm is more

attractive and interactivity provides different distributed

computational components and implies the superiority that

distributed components interoperate over a network (Huhns and

Singh, 2005). The following section shows how the principles of

SOA are embodied by modern Web Services practices.

2.3.2 Embracing SOA structure

A design strategy for large information systems, service-oriented

architecture (SOA) is an evolutionary distributed computing

from the design hypothesis based on requests and responses for

17

synchronous and asynchronous applications and relies on a

collection of loosely coupled self-contained functional modules,

referred to as services, which communicate with each other and

can be called from multiple clients or chained in processing

workflows. SOA includes comprised of three primary parties:

Provider (of services), Consumer (of services), Directory (of

services), as shown in Figure 2.1(Huhns and Singh, 2005).

Providers publish or announce their services on registries, where

consumers find and then invoke them. These services have free

connection that service interface is independent implementation.

Figure 2.1 SOA explained (Huhns and Singh, 2005, After

Service-Oriented Computing: Key Concepts and Principles, Page 76).

18

The service provider is the network-addressable entity that

accepts and executes requests from consumers (Chatterjee,

2004). It is the mainframe of the architecture, components

executes the service request. Service registry contains available

services which stores contracts from service providers and

provide to the service consumers. Usually service registry used

to identify services, describing the service and the service

function. Service requestor requires services for achieving an

idea or a solution. Service requestor nodes often discover and

invoke other software services that need call remotely to a

distributed object, the service provider.

In SOA there is a fundamental abstraction from which all

higher-level functionality is built: messages. It supports the

requestor/provider services communicating in an interoperable

way. A canonical service may resemble that of Figure 2.2. It

contains the layer of messaging, logic, and resources. The

19

services communicate with each other’s only in message

processing layer which represent an “event horizon” (Webber

and Parastatidis, 2009). Message exchanges between services

where the messages arrive and leave in message processing

layer. It resemble interface/function application, the internal

architecture of a service is kept hidden from the outside world.

SOA provides the standard communication protocol as well as

methodology to discover, invoke, and publish online web

services (Horsburgh et al., 2009). The protocol view defines the

message formats and message exchange patterns. Some

principles need to follow for the design of protocols: boundaries

are explicit; services are autonomous; services share only

schema and contract; and policies determine service

compatibility (Webber and Parastatidis, 2009). The message

functionality is a fundamental abstraction that makes

transmission between services. Therefore, message exchange

20

between services makes the chance for designing services

independently. For example UK hydraulic data (e.g. water depth)

stored in National Oceanography Centre service, we can obtain

the data by using message to contact service registry, and service

is processed independently without affecting other services such

as bathymetric map service and elevation service.

Figure 2.2 The anatomy of a service (Webber and Parastatidis, 2009, after:

Service-oriented computing, Realizing Service-Oriented Architectures

with Web Services, Page 57).

The implementation level focuses on the implementation of flow

that services chained in processing workflows. Services are

21

designed to facilitate the message exchange for the protocols it

supports. From many articles, it is important to understand that

services should not be considered “containers” which contains

serialized objects, functions. It is wrong to relegate them to mere

interfacing or encapsulating them as interfacing application. We

need to pay less attention on how the functions are “hidden”

well in services; we need to consider how a series of services are

designed by reading the messages that service application

abstracts. With a summary, the loose-coupled services, messages

and standard communication protocols provides reusable

components and interoperable communications in 3O-HIS.

2.4 Web Services

Web services as a real implementation technology under SOA

has been examined including a typical Web Service is designed,

implemented, and hosted in a runtime environment. Section

2.4.1 introduces the web services architecture; Section 2.4.2

22

explains specifications and principles when Web services

implement in distributed systems.

2.4.1 The Web Services Architecture

In the early days of the Internet, we shared information

efficiently using static websites called HTML. However, this

process was not suitable for delivering services over the Internet.

The original HTTP and HTML protocol stack often provide

static, or at least highly cacheable. In contrast, the Web services

architecture is designed for highly dynamic program-to program

interactions. The architecture view encompasses web services

protocols which are designed with layers cleanly.

2.4.2 Protocol specification

A number of protocols may be implemented in distributed

systems such as protocols in Security (WS-Security, WS-Trust),

Reliable messaging (WS-ReliableMessaging) and Transactions

(WS-AT/BA, WS-TransactionManagement). Three major

23

principles: message orientation, protocol compatibility and

autonomous services have been discussed in the following

section.

Message orientation

Message orientation is the core principle that communicates

between services using only messages. Three general protocols a

WSDL protocol, a SOAP protocol and XML for message

communication provide data accessibility over Internet as

shown in Figure.2.3.

Figure 2.3 General Web services architecture.

It is important to understand how individual messages are

formed and processed between services. SOAP is an

XML-based, stateless, one-way message exchange protocol for

24

interacting with web services over HTTP. WSDL is an

XML-based format for describing Web services as collections of

network endpoints or ports (Lutz et al., 2009; Paul and Ghosh,

2008). The client side receives WSDL files from the server side

that learns the service‘s methods, and a SOAP request is then

sent to the server to identify the needs. The server processes the

SOAP request and sends output in XML format. Unlike RPC

systems in which messages are strictly subordinate to the local

programming experience, the Web services architecture is built

with messages as the atomic unit of communication (Webber

and Parastatidis, 2009).

Protocol composability

Protocols can be used either independently or in combination.

Based on SOAP as the lowest layer in the protocol stack, new

protocols can be composited through the use of a flexible header

mechanism. The protocols have two layers: header and body for

25

message exchanges between services. One advantage is that

there is absolutely no cost to applications that only loaded the

protocols that used. For a particular application, the external

protocols can be used such as WS-Security,

WS-ReliableMessaging (Webber and Parastatidis, 2009). This

can maximize the applicability of the architecture.

Autonomous services

Services are designed and evolve independently from each other.

If there is an internal changing in one service and will not affect

other services. Evolution of a service’s implementation may not

consider the other’s behaviour of the service. This feature helps

to improve the portability of architectures.

2.5 Key Feature of Web service: loose-coupling

In this section loose-coupling feature is the key to Web services

interoperability. It provides a robust way to evolve a service’s

implementation. Generally, there is another approach to called

26

tight-coupling integration approach which differs from many of

the service-oriented approaches for integrating water resource

simulation models. The two approaches tight-coupling approach

in Figure 2.4(a) and loose-coupling approach in Figure 2.4(b),

Figure 2.4(a) is demonstrated the originally independent models

are integrated by porting code into a single modelling

application (Band et al., 1993; Facchi et al., 2004; Maxwell and

Miller, 2005). The tight-coupling approach provides complete

control and complicated numerical problems can be solved

efficiently (Pingali and Stodghill, 2004). However, the inflexible

architecture is difficult to provide an efficient and reliable

manner and hard to ensure the science being performed is

relevant to a particular environmental management context.

Internal conventions such as data structures and semantics

within a model are fixed and become difficult to integrate

models. It is not easy to integrate external models which do not

define with internal conventions.

27

Figure 2.4 Contrasting a (a) tight-coupling and (b) loose-coupling

approach for model integration (after: Jonathan et al.,2011, Modelling

water resource systems using a service-oriented computing paradigm,

Page 574).

A standardization of interfaces is requirement data for

development a loosely-coupled architecture. The advantages of

adopting a loose-coupling, service-oriented paradigm for

modelling are to enhance the interoperation between services

and to provide a uniform framework for data exchange.

Loose-coupling 3O-HIS will be described in next chapter.

2.6 Summary

The concept of services and service-oriented to create

distributed applications for the research in hydraulic science

28

have been reviewed in this chapter. SOA provides a delivering

information structure from hydrologic data in organizations.

Under SOA, it is desired to establish a robust system to support

data/model interoperation and data publication in distributed

networks. CUAHSI HIS has many advantages in accessing

disparate information sources, publishing hydraulic data and

interfacing with a variety of community models. However the

successful CUAHSI HIS has become overloaded, as massive

hydraulic data linking with CUAHSI HIS central, the

inconsistency of CUAHSI HIS central may occur because vast

ontologies need to be paired with hydrologic data stored in web

services.

29

Chapter 3 Methodology

3.1 Introduction

This chapter presents the physical and mechanical concepts of

3O-HIS platform and the methodology of encapsulating

hydrodynamic modelling (e.g. Telemac) in 3O-HIS. SOA has

been reviewed previously as a basic work frame for developing

3O-HIS. In this chapter, the encapsulating methodology of

3O-HIS has been discussed, including its mechanical concepts,

the structure and behaviour of solutions, as well as an example

of encapsulating Telemac in 3O-HIS which helps us understand

encapsulating hydrodynamic modelling in technological aspects

necessarily.

With the background of HIS management, institutional

30

repositories and scientific process changes as mentioned in

previous chapters, 3O-HIS has been developed with the idea of

CUAHSI HIS and cyberinfrastructure and supports web service

based SOA. It can be seen that it is not only a framework that is

better aligned and interact with hydraulic data which extends

well beyond just the representation of natural phenomena, but

also accommodate new concept applied for multi-scale and

multi-objective assessment and decision-making. The existence

of huge information repositories have their own framework and

cannot be interactive apparently between the external and

internal parts. 3O-HIS has been developed for solving this

problem and information can be interoperate. This chapter

provides a comprehensive method for creating 3O-HIS

architecture based on environmental management imperatives

underlying recent HIS development, highlights some of the

specifications and protocols, semantic, operational process

requirements, these are addressed in technological aspects of

31

integrated modelling to develop 3O-HIS for preparing

assessment in an interdisciplinary way.

3.2 Related works

Past work using SOA in the application of web services within

the water resources community has focused primarily on

exposing historical databases (Goodall et al., 2008), integrating

water data across heterogeneous data providers (Horsburgh et al.,

2009), or data processing workflows using web services

(Granell et al., 2010). Recent attention has focused on

service-oriented architectures as a means for building

environmental decision support systems (Mineter et al., 2003;

Granell et al., 2011; Goodall et al., 2008; Horsburgh et al., 2009).

A software system is viewed as independent components or

services that are loosely-coupled and able to exchange

hydrologic data with one another over a network (Curbera et al.,

2002; Huhns and Singh, 2005). In hydrologic fields,

32

service-orientation is a core concept behind distributed

computing where the Internet is used for primarily spatial data

analysis. For example integrative Telemac modelling with GIS

in the design of SOA works, possibly with the aid of numerical

predictions of the coastal morph dynamics and the flood risk

analysis of the lowland such as Blackpool in England.

Recently the development of CUAHSI HIS has shown two

fundamental aspects: 1) to integrate hydrologic observational

data from heterogeneous federal, state, and local data providers

into a web service using a service-oriented architecture; 2) to

encapsulate hydrologic modelling and modelling interactive aid

management decision making (Maidment, 2008; Castronova et

al., 2013 and Al-Sabhan et al., 2003). Granell et al. (2010)

demonstrate how the role of services can be expanded to handle

data delivery, data processing and visualization. Summarize

these literatures along the lines given above; the authors use

33

hydrologic simulation models as part of their service-oriented

architecture for multi-scale and multi-object assessment and

decision-making.

3.3 Overall design

Design of environmental modelling system undertaken for a vast

range of reasons, one motivation of developing 3O-HIS is better

understanding the processing of natural phenomenon. The goal

of design 3O-HIS is the concept of reuse and interoperation

between services; each layer is explicit and each component is

processing separately and independently for operation. 3O-HIS

has been derived from CUAHSI HIS.

3.4 CUAHSI Hydrologic Information System (HIS)

CUAHSI HIS initiatively is supported by a 5-year grant from

the National Science Foundation (NSF) and developed well with

a joint effort among more than 100 universities and funded by

NSF to advance research in hydrology (University of California

34

San Diego, 2008). Three key parts: several data storage, delivery

and discovery tools and standards have been developed within

the context of the CUAHSI HIS project (Tarboton et al., 2009).

Meanwhile, a new comprehensive infrastructure known as

“cyberinfrastructure” has allowed the research teams to share

distributed data resources via high-speed networks.

Cyberinfrastructure has been developed by many activities and

organisations to support the needs of multidisciplinary

collaborative research, such as the National Ecological

Observatory Network (NEON) (Taylor, 2013), the Long Term

Ecological Research Network (LTER) (Robertson et al., 2007)

and the Geosciences Network (GEON). It has been developed as

a part of a HIS that integrates data sources and functions using

web services in a distributed network and enables the

infrastructure to access, organise and analyse datasets

(Horsburgh et al., 2009). Under cyberinfrastructure, CUAHSI

35

HIS was developed as a part of advanced hydrologic research.

Users can implement web services to discover and access a

variety of hydrologic data sources and develop applications for

the desktop and the web (Zaslavsky, et al., 2007). The goal of

CUAHSI HIS is to promote data sharing and reuse through the

use of standards and web services for information exchange

(Horsburgh et al., 2009).

Figure 3.1 The key components of the CUAHSI HIS service-oriented

architecture (after: Zaslavsky and Maidment, 2011)

From the Figure 3.1, three classes of functionality compose the

CUAHSI HIS services oriented architecture: 1) data collection

(HydroCatalog); 2) data transmission, including Observations

Data Model (ODM), WaterOneFlow web services and WaterML;

HIS Central

HydroDesktop HydroServer

36

and 3) data publication including HydroServer and

representation tools Hydroseek and HydroDesktop. CUAHSI

HIS integrated these functions and have the capacity of

interoperation of multiple hydrologic and environmental

observation data repositories.

The core of the CUAHSI HIS is a WaterOneFlow SOAP service

that creates a standard mechanism for interoperating of

hydrologic data between servers’ and users’ computers

(CUAHSI HIS, 2010) by providing uniform access to disparate

hydrologic observation data from multiple heterogeneous

repositories (Zaslavsky, 2007). The WaterOneFlow web services

generate XML message named CUAHSI WaterML, which is an

XML schema that defines the format of hydrologic data values

and time series as well as the hydrologic metadata (Zaslavsky et

al., 2007). CUAHSI HIS has also been developed as an

Observations Data Model (ODM) that provides a standard

37

database schema for use in the storage of hydrologic

observations data collected by multiple investigators. Within it,

a relational database is created in a geographically distributed

network to effectively share hydrologic information between

investigators.

For the purpose of moving from CUAHSI HIS to 3O-HIS, it is

necessary to understand the concept of CUAHSI HIS. It is

possible to access disparate information sources in a uniform

standards-based manner; easily publish locally collected

observational data; and easily interface with a variety of

community models and analysis and visualization codes.

Meanwhile CUAHSI HIS supports the interdisciplinary research

such as a range of climate models related meteorology enable

cross-scale analysis of hydrologic cycles. A higher level of

interoperability of hydrologic information may save

considerable time and money which perform similar task in

38

multiple environments in particularly data-intensive hydrology

research (Shams and Huang, 2009).

Under CUAHSI HIS framework, difference of hydrologic

information data such as water properties, distribution and

circulation on the earth’s surface and high-resolution remote

sensing can be retrieved from multidisciplinary repositories at

distributed locations (Goodchild, 2007). The disparate data

resource is collected through a multitude of agencies including

the Environmental Protection Agency (EPA), U.S. Geological

Survey (USGS), and the National Oceanic and Atmospheric

Administration (NOAA). However, some limitations exist when

vast ontologies stored in CUAHSI HIS.

Although disparate data sources can be collected from EPA,

USGS, USDA and NOAA, there could have integration issues

that not all these databases are incompatible with each other

39

(Zaslavsky et al., 2007). It means that it is possible to collect

hydraulic data from multidisciplinary sources at distributed

locations via multiple web services. However, there is a lack of

an effective and efficient method to extract expected information

from massive and complex spatial databases. For example, it

hinders the decision makers to manage water efficiently under

the availability of partial databases.

The key issues are the hydrologic community ontology in the

HIS central. Although CUAHSI HIS central is a unique feature

of the CUAHSI HIS that showed us that it was possible to

bridge the gaps to access data across many independently

managed observation networks and datasets. However the

tremendous success of HIS has resulted in problems of

framework inflexibility and became bloated due to vast

ontologies that need to be paired with hydrologic data stored in

web services. Thus the key issue is linking data effectively and

40

reliably from multiple services. Additionally, maintaining the

central metadata catalogue in synchronization with multiple

sources of hydrologic data has been one of the main bottlenecks

to CUAHSI HIS. In addition, CUAHSI HIS has not yet

developed the capability to integrate other data such as

economic, social, land use and remote sensing data.

3.5 3O-HIS architecture

We developed 3O-HIS which was first built by Leone et al.

(2006); Spanou and Chen (2000); Leone and Chen (2007);

Shams and Huang (2009), using object oriented (OO)

technologies with extensions of OpenGIS standard. It inherits

the idea of CUAHSI HIS and cyberinfrastructure and supports

SOA providing a framework for integration of different types of

disparate data, information management, analysis and modelling

implemented across multidisciplinary boundaries (Zaslavsky et

al., 2007, Chen et al., 2010). 3O-HIS developed based on the

41

ideas of SOA and the architecture of the system along with

different layers including data layer, service layers and

presentation layer. The architecture of 3O-HIS has been shown

in Figure 3.2.

Figure 3.2 The 3O-HIS’s architecture

3.5.1 Data layer

Hydrologic data consists of many different kinds of observations

such as rainfall, stream flow, and water depth. Federally

42

organized, observational data repositories, including the above

mentioned NASA, USGS NWIS, EPA STORET, USDA

SNOTEL, and NCDC provide the hydrology data that are both

spatially and temporally distributed. Two major hydrological

data are point (discharge) and distributed (rainfall, runoff,

evaporation) types as used in hydrological models (Leone et al.,

2006).

Researchers in hydrology rely to a large extent on federally

organized; observational data repositories. In data layer,

different data repositories have similar standard for hydrologic

data transmission. For example, the repositories of USGS and

NWIS are developing the HydroML language which is similar

with WaterML developed by CUAHSI HIS. From the left of

data layer, the distribution of hydrologic data can be broken

down into two parts, first part is the data sets which mean the

data itself and the second one is metadata repository which is

43

the description of the data being served and repositories. The

key value pair metadata is stored in metadata repository and in

this way it can be registered to incorporate new data formats.

The main purpose of the data layer is to store the metadata of

data files and to provide a mapping between hydrological terms

and the datasets being served. We also developed a local

database frame, called PostgreSQL shown on the right of Figure

3.2. It provides the capability to store results calculated by

numerical modelling. This function is an important feature for

data collection. For example, if a place that is rarely observed

and it lacks of historical or observational data stored in

repositories, simulation of natural phenomenon by hydraulic

modelling is a considerable way. Results stored in the local

system and posted, submitted and shared with other users;

provide us a new way for multi-scale and multi-objective

assessment and decision-making. The logical layout of the data

layer structure of 3O-HIS is shown in Figure 3.3.

44

Three modules are processed separately and independently for

operation. The initial result is calculated in the first part, and

GIS can handle spatial data analysis and visualize based on

products in the data management block. In addition, the

products from GIS can resend to the environmental modelling as

a new input file. Based on the results produced by GIS, many

likely future states of environmental processes can be

represented by re-sending different scenario files.

Figure 3.3 The bottom structure of 3O-HIS

3.5.2 Service layer

Recent development of environmental models is designed

typically by an entrenched linear process. In environmental

45

modelling side, changing other environmental models is not as

easy as we expect. To choose other environmental modelling or

other database software, the workflow was stopped possibly by

the inconsistent methods of connection and the lack of each

block linkage. Argent (2005) stated environmental models are

rarely designed to communicate with other models within

standard disciplines. For example, environmental modelling and

data management have different sub environmental system.

There is a limited open and extensible architecture for integrated

GIS with environmental modelling. The technical limitations

and issues lead users to have limited choice but to deal with

other developer workflows. For example, users cannot choose a

suitable environmental modelling for customized design. It

raises a concern as how to harmonise between various

environmental tools, without changing sub environmental

system. 3O-HIS design has a set of concepts of flexibility, reuse

and interoperability.

46

In service layer, web services application in software

engineering is considered as fundamental and vital part in

3O-HIS. It supports the requirements of interaction of

information within the organization and metadata information

ensures the hydrologic data delivering from multi-repositories to

user platform. A web service is a software system that is

specified by URI (Universal Resource Identifier) and their

general interface is defined and interpreted using XML; other

systems can interact with web service by a determined

behaviour and in accordance with its definition. Web services

are among the most important recent developments in software

field which will certainly have remarkable results for designing

and implementing applications and paving the way for the new

generation of web-based applications. Web services can be used

for implementing SOA and create the constructive blocks of the

function which are accessible through the Internet. The

47

designers of SOA typically use web service standards, used

extensively in industrial and commercial contexts, to implement

their services. These standards remarkably increase the

interoperability of commercial systems.

Web service matches the ontological differences and provides

the hypothesis based request/response for synchronous and

asynchronous applications. We not only need to consider the

information from existing repositories, but also design web

services for sharing the result stored locally. We show that web

services can be used as an initial block in program creation

according to several indicators like accessibility, quality, cost

and efficiency. After reviewing the general Web services

architecture and analysis of required services for organization,

we present our 3O HIS service oriented design method.

Key of these demands that influenced by the needs of today’s

48

scientists is “integrated” modelling. That is means different

components of the natural other systems are modelled in a

linked way representing features of system behaviour. The

software architecture of server-client linkage is shown in Figure

3.4. In our designed Web service, XML is generated to solve this

challenge, which ensures that the geospatial data interoperate

seamlessly between web services.

Figure 3.4 52°North WPS service and HIS

Generally, the Water Discharge Module remains at the server

side, while 3O-HIS remains at the client side. At the server side,

an XML file defines the DescribeProcess operation. It sends the

49

type of data for input and output to the service. The Water

Discharge Module compiled in Java is uploaded to 52°North

WPS. 3O-HIS provides these standard programming paradigms

that allows hydrologic modelling as components, located on any

network to be discovered, published, and invoked by other

modelling web service. Regardless of location of distributed

network and development platform is one of contributions using

3O-HIS that any service-based application can interact with any

other service-based application based on distributed

components.

The first step in creating a service component-based system is

the identification of individual components of layers.

Identification of each component is not easy working, although

there are various hydraulic models used for representation the

nature of process and thousands of hydraulic information

uploaded by ocean stations, federations and web water

50

repositories. Most of hydraulic modelling were generally

designed to do a particular job and are often not able to provide

the features we now desire, such as flexible exchange of

algorithms or connect with other models.

3.5.3 Presentation layer

Currently, HydroDesktop software has been developed by Ames

et al. (2012). There are many advantages for using

HydroDesktop. It accessed hydrologic data services that have

been published using CUAHSI HIS and the default of search

across all WaterOneFlow web services registered at HIS Central.

It can be used for discovering and accessing hydrologic and

climate data in different data repositories. However, a difficult

task for HydroDesktop consumes valuable time. Two tasks are

implemented to reduce time consumption in our designed web

service. Zaslavsky et al. (2007) stated for the time issues,

limitations to the number and size of hydrologic data stored on

51

individual workstations, and HydroDesktop platform is missing

the ability to query over arbitrary hydrologic themes. Our design

system have has the ability to query certain volume of available

data using OGC and GML standards and the process time is

limited to gather all of the actual time series data values for

larger themes from distributed data services. Web services

registered at the HIS Central is unrestrained. All web services

are interoperable, sustainable, and extensible by using OGC and

GML standards for data exchange and community semantics.

These standards provide standardised ways of manipulating the

GIS data so that data can be utilised more efficiently (Shams et

al., 2010; Chen et al., 2010).

In an organization, information of the operation process must be

kept on service-receiver or customer side in order to minimize

the storage volume of the information and to enhance the speed

of the organization. Time issue should be noticed that when the

52

number of modelling units per simulation is tested in the

OpenMI system, the execution time may increase as a nonlinear

trend may occur (Castronova et al., 2013). We summarized the

result of the OpenMI model execution time stated by

Castronova et al. (2013) in Table 3.1.

Table 3.1 The OpenMI model execution time varies as the number of

modelling elements

Table 3.1 is the result of the large-scale loading test and

illustrates how performance when the number of model

elements extends into the thousands in the OpenMI model

scales.

The execution time is under 1.5 second when numbers of Model

elements below 7000. There is no evidence of nonlinearity in the

Number of Model Elements (10
3
) Execution Time (Sec)

0-1 0-1

1-2 ~1.1

2-3 ~1.3

3-5 ~1.5

5-7 ~1.5

53

OpenMI communication itself. The component-to-component

communication represents only a small fraction of the total

model execution time. However, model execution time varies

with different models as shown in Table 3.2 Choosing an

appropriate model as component is important beyond the range

of the previous test (Castronova et al., 2013). From the table 3.2

we found different components’ execution time varies. This is

the major reason for time consumption. One advantage of this

type of model is that the components are isolated and we can

handle the computational bottlenecks by tracking the runtime of

each component. Because each component is loosely coupled

within the system, efforts can be made to address computational

inefficiencies of a single component in isolation of the larger

system. However, Khanbabaei and Asadi (2011) stated loose

coupling of services in negative side. The coupling of several

services together lowers the efficiency of the web. The

occurrence of any problem with each one of these services

54

leads to the breakdown of the whole application. There is a

requirement that increases the accessibility of control of the

web to prevent these breakdowns.

Table 3.2 Different components’ execution time varies as the number of

modelling elements

At first, we attempted to reduce the time required to download

reused data, such as those downloaded from the Hybrid maps in

the VirtualEarth WMS service. Once reused data are

downloaded via a web service, they are accessed as local service

components
Number of Model

Elements(10
3
)

Execution Time(Sec)

Initialize

Unit Hydrograph

0-1 0-1

1-2 ~2

2-3 ~4

3-5 ~8

5-7 ~9

Muskingum

PerformTimeStep

0-1 ~17

1-2 ~200

2-3 ~400

3-5 ~1000

5-7 ~2000

Curve Number

Finish methods

0-1 ~5

1-2 ~10

2-3 ~20

3-5 ~30

5-7 ~40

55

for further needs. The constant values are stored in a local

database to increase performance. The land-use map for the

catchment or the study area is obtained as GIS data, vegetation

cover is calculated using GIS spatial function, and all data are

stored in a local database. The catchment area and the vegetation

cover, which serve as the inputs for the water balance, can be

stored in a local service. The ESRI shapefile format files for the

study area hydrological domain are uploaded in ArcMap 10.1,

including agricultural, industrial and residential maps. Because

the types of crops determine the water storage, as described in

section 2, a ‘Reclass’ function was used in ArcMap based on the

different types of crops. Subsequently, each sub-area can be

calculated in an Attribute Table using a ‘Calculate Geometry’

function. The number of pixels for each type of vegetation cover

is determined. Each pixel has a unique ET that is calculated

based on a particular type of vegetation with a known crop

coefficient. Finally, these values are stored in the PostgreSQL

56

database as a part of water balance model input. The water

balance model is programmed in Java; the model obtains the

required data from the remote services and the local database

and computes the water storage to compare it with the measured

discharge in order to validate the results.

3.5.4 Specifications and protocols for supporting the design of

3O-HIS

The service-oriented architectures are represented in previous

chapters. However, it seems useful to mention some geospatial

specifications and protocols for particularly supporting the

design of 3O-HIS which are needed to be considered when

designing a service-oriented architecture such as Web Services

Description Language (WSDL); Universal Description,

Discovery, and Integration (UDDI) and SOAP. WSDL forms the

basis for the original Web services specification. In some cases,

Universal Description, Discovery, and Integration (UDDI) used

57

to express a registry of services. Zaslavsky et al. (2007)

represents one of the key requirements for a hydrologic

information system is the ability to easily discover, retrieve, and

interpret hydrologic time series for solving the interoperability

issues between the datasets with other disparate datasets.

Integrating hydrologic data across agency boundaries and

combining them with an observation time series collected by

multiple academic research projects has been challenging due to

the extreme heterogeneity in how the different repositories are

organized, described, accessed, and maintained.

3.6 Ontology in 3O-HIS

In 3O-HIS, ontologies is used for semantic resources

registration and transmission between services. Ontology likes a

material transport in services. The mechanism of ontology

transport in systems is important and it supports the processing

of ontologies transport validly and effectively in the hydraulic

58

systems. During the processing ontology transportation, the

criteria or protocol has been developed to identify the ontology

for validity, classify and retrieval. It is necessary to develop

concise protocols for standardization services for data

interoperability. The criteria need to be in common use that the

services which can meet a common criterion. Users on client

face conveniently in finding suitable data to solve the semantic

heterogeneities.

Ontology is essence in 3O-HIS and ontological differences

between scientific disciplines are challenges to represent one

science to others and to process the view of the nature of the

world comprehensively (Argent, 2004). As mentioned before,

HIS centre is a vital services in CUAHSI HIS. Using of

ontologies that is a key in the development of HIS centre can

partly solve this issue and over 96% of repositories are available

for ontology-based discovery and they focus on the ongoing

59

ontology development and want to establish community

consensus mechanisms (Zaslavsky et al., 2007). However, the

existence of huge information repositories is inconsistent

created by different specifications and protocols, and prevents

information flow to go further between services. For example,

Zaslavsky et al. (2007) stated that the existence of huge

information repositories created by traditional applications

prevents information flow between the external and internal

parts. After summarizing environmental modelling issues both

technically and conceptually, the inconsistent issues have been

one of the main bottlenecks to design modelling frameworks

and component-based modelling. It is necessary that hydraulic

data and modelling as services have free connection that service

interface is independent implementation.

Using ontologies for pairing these traditional repositories in HIS

centre is challenging that replaces these huge sources by loose

60

coupling services and satisfies the required information flow

using SOA (Zaslavsky et al., 2007). In time consuming side,

although using SOA in the long term is time consuming, it leads

to save on costs, while it causes high costs in short term usage.

For example, other extra costs are consumed including involved

as a result of promoting the web and security technologies,

training in, learning new system, and managing organizational

system(Verma et al., 2012). In data maintenance side, due to

open communications which exist besides web services in

sharing information among the staff, customers, partners and

others, the security of an organization is compromised and in

need of strong security mechanisms. Zaslavsky et al. (2007)

stated the challenge of maintaining the central metadata catalog

in synchronization with multiple sources of hydrologic data. The

challenge of maintaining the central metadata catalog and lack

of information exchange standards may have the issues of time

consumption, potentially when connecting one from huge

61

repositories and maintains ontology for synchronization with

hydrologic data in repositories. These standards and structural

framework necessitated towards better alignment and

interaction.

3.7 Summary

This chapter presents a 3O-HIS platform and the methodology

of encapsulating hydrodynamic modelling (e.g. Telemac) in

3O-HIS. A new service-oriented web application 3O-HIS which

is derived from CUAHSI HIS has been developed that services

interaction by full use of existing and emerging standards to

aggregate heterogeneous geospatial data and observational data,

and deliver rich user interface for users. This innovative way

performs analysis tasks at service-side and represents results at

client-side.

The vital part in CUAHSI HIS called ‘HIS centre’ has been

62

removed by fully use of SOAP, WSDL and XML standards to

enable users and applications to search across a comprehensive

catalog of hydrologic time series available from data

repositories. Integration of hydrodynamic modelling with

3O-HIS, we need to understand the requirements in both

technically and conceptually. In technical aspect, the key

limitation is that models are varied and consists of different

inherent codes and algorithms which are hidden. In code and

preference level, inherent TELEMAC framework hardly

transplant into new 3O-HIS.

The architectures of 3O-HIS have three layers: Data layer,

Service layer and protocols, compare with CUAHSI HIS, ‘HIS

centre’ has been removed, and the structure of 3O-HIS is more

concise. In particular, the structure works well for data-intensive

hydrologic research, such as massively hydrologic data varied

with time series. The system configuration and definition of key

63

input files are represented which relates the service bus. The

development of 3O-HIS provides a flexible, rapid and open way

and service interface that allows differently modelled parts of

the system to work together. Finally data repositories, SOA and

data repositories with SOA are represented including the

principle of definition geometry file and hydrodynamic models

which use to define input files preparing the Blackpool and

Demra case studies.

64

Chapter 4 Data management

4.1 Introduction

This chapter defines a major link to resource with SOA and

highlights the challenge during data transmission between

services. A large datasets of model results have been generated

in order to understand the circumstances processing under

various conditions. The accumulated datasets need to build a

comprehensive datasets manage frame that has a capability to

access, organize, integrate, visualize and analyse these data.

Several large geosciences organizations have made attempts on

the implementation of searching and integrating information

across different data repositories such as NEON, LTER and

GEON. 3O-HIS likes other data repositories, has the capabilities

of data discovery, data retrieval, and data visualization. They are

65

the basis of new comprehensive infrastructures known as

“cyberinfrastructure” that allow the research team to share

distributed data resources through high-speed networks.

Cyberinfrastructure has been developed by many activities and

organizations to support the needs of multidisciplinary

collaborative research, such as the National Ecological

Observatory Network (NEON) (Keller et al., 2008), the Long

Term Ecological Research Network (LTER) (Bain et al., 2012),

the Geosciences Network (GEON) (Richard et al., 2011),

Geospatial One-Stop (GOS) (Choi and Yu, 2008), and

Consortium for the Advancement of Hydrologic Sciences Inc.

(CUAHSI)’s Hydrologic Information System (HIS) (Maidment,

2008). And our 3O-HIS is developed based on CUAHSI HIS as

a prototype.

All these programs are under a same cyberinfrastructure concept;

meanwhile each of the organization has its own focus. NEON

66

usually cover U.S. ecological variability, LTER aimed at

understanding processes in a wide range of ecosystems in a

long-term. Geospatial One-Stop is used as geoportal to find

geographic information; the prototype was the basis for the

OpenGIS Portal Reference Architecture. Geoportal server used

by local government consists of data of various formats. GEON

is a research program for the earth science community. GEON

Portal, a web-based distributed resource management system,

provides integrated access to data and tools needed for

knowledge discovery in the Geosciences.

It is important to understand the workflow in these database

systems. Each processing between services can be treated as

message transmission between client/server. For example the

assumption of the workflow starts from a user who wants to

request data resource such as a map. User access at client side,

request information sends to server, server may send the map

67

client side or send the request information to other services

depend on the data location. In addition, users also can upload

the map to a service from the client side.

4.2 Major linking resource with SOA in environmental

science

SOA assists interoperation among various information resources.

Different types of resources have emerged in many disciplines

related environmental science, including in the solid earth

sciences (The Geosciences Network, or GEON:

www.geongrid.org), ecology (The National Ecological

Observatory Network, or NEON: www.neoninc. org),

oceanography (The Ocean Observatories Initiative, or OOI:

http://oceanobservatories.org), and atmospheric sciences

(Linked Environments for Atmospheric Discovery, or LEAD:

http://lead.ou.edu). Environmental databases are varies and each

one has own focus. For example, NEON and LTER are the

http://www.geongrid.org/
http://www.neoninc/
http://lead.ou.edu/

68

database more related with ecological ecosystems, GEON is the

database for the earth science. For the requirements of

integration database, several systems has been developed

recently such as Geospatial One-Stop (GOS) and CUAHSI HIS.

GOS is a web-based portal that provides public access to

geospatial information as part of a United States e-government

initiative. GOS aims to promote coordination and alignment of

geospatial data collection and maintenance among all levels of

government. For the purpose of GOS, GOS seems most

appropriate for design 3O-HIS based on web services. However,

semantic heterogeneities may occur, because all levels of

government uploaded data do not follow a standard, the criteria

are not met for all government and user on conventional

keyword-based search techniques that data is same and

redundant. For example according to the 2001 initial business

case for GOS, about 50 percent of the federal government

69

maintain the same or similar information because of each

federal government established own standard for data collecting.

In CUAHSI HIS, HIS Central is physically composed of

numerous servers and supports users to request data in

‘hydrodesktop’ clients and to get access to data through data

discovery. Resource are used to define in a HIS Central service.

Source schema provided by HIS Central can instance of

ontologies commonly and the resources associated ontology

concepts, spatial and temporal extents can be found according to

a user’s query.

4.3 SOA with database

A key advantage by using SOA is avoiding code duplication

(Papazoglou and Georgakopoulos, 2003). It depends on the

protocols defined in services to direct the target information

precisely. Each subservices are be interoperate with consistent

70

protocols under different system operation environment (e.g.

windows, Linux). A loose-coupled structure of application is

flexible for services adding or removing. New services can be

easily created and then consumed within client applications. All

communication between services and clients is through a

defined interface, there is platform independence between

clients and servers. Loosely-coupled services are possible for

developers to reuse the same underlying services within multiple

applications (Huhns and Singh, 2005) and the application can

process across multiple environmental systems. For example,

UK real-time sea level data has been obtained from National

Oceanography Centre, the sea level data which is investigated

by observation station inputs into Telemac model to predict the

sea levels at each node in the mesh of Blackpool. Compare with

the Linux operating system which supports Telemac processing,

the results of sea levels at each node can have an analysis for

policy makers, planners and coastal engineers under ArcGIS

71

10.0 in Windows operating system. Using FORTRAN on a

Linux operating system for TELEMAC calculation and service

could still be consumed by a Windows client

The detail code of application is hidden and the standard

messages passed between different modelling system and the

service. The service execution remains external to the modelling

system; therefore it maintains maximum integrity of modelling.

SO modelling allows for a hierarchical representation of

complex water resource systems. A service can be a

conglomeration of other services, allowing for different levels of

system abstraction. In some cases modelling water resource

systems requires a coarse view of the natural world (e.g.

decomposing a system into atmosphere, land surface, subsurface,

and other model services), while other cases may require a more

detailed view into individual process-level components (e.g.

infiltration, evaporation, overland flow, and other process-level

72

services). Coarse decompositions minimize the complexity in

setting up a system representation as a workflow by specifying

how data is exchanged between system components. Because

tight-coupling approaches are generally more computationally

efficient than loose-coupling approaches, coarse decompositions

also improve computational performance (Pingali and Stodghill,

2004). Refined decompositions allow for increased flexibility

because smaller units within the modelling system can be more

easily added or removed. Ideally, systems would be represented

by a hierarchical structure where coarse services are themselves

workflows consisting of more refined services. For example,

ideally TELEMAC may define as refined decompositions in a

hierarchical structure of 3O-HIS. We have not achieved linking

TELEMAC with refined services because of limited

understanding of TELEMAC hierarchy in a distributed manner

and the system difference increased the difficulty of combining.

73

We can also extend the theory that refined services, processing

are synchronized which implicates the use of high performance

computing (HPC) through computational architectures like the

Grid (Foster et al., 2001). The Grid provides important

extensions for service-oriented modelling including state and

fault handling, authentication, and resource management. Even

without Grid computing, services can aid in improving model

performance and efficiency. For example, web services could be

used to expose a model with large data input requirements but

relatively small output datasets. A spatially distributed

watershed model, for example, might be exposed as a web

service, keeping the terrain, soil, and other parameterizations of

the model on the server side and only transmitting soil moisture

outputs for client applications. In such a case, the model would

be stored geographically near the large input datasets, saving the

end user that is only interested in soil moisture conditions from

having to download and process these input data required for

74

running the model locally.

4.4 Challenge for design SOA with data repositories

To review the related works mentioned above, several

challenges can be summarized. From the system design point of

view, the primary challenges of a web services approach to

environmental modelling are related to the loosely-coupled, web

based architecture of services that can result in performance,

reliability, and security issues. Performance challenges in using

web services for water resource modelling, primarily relate to

tightly coupled process interactions that may require large data

transfers, particularly when initializing and parameterizing the

modelling domain, or from computation tasks with long

computation times. In addition to performance issues, reliability

of services can also be a disadvantage of service-oriented

modelling approaches. There is the possibility of remote servers

becoming temporarily unavailable, thus disconnecting all client

75

applications dependent on that service. Finally, security must be

considered to prohibit unauthorized users and track overuse and

abuse of services. Many of these issues are addressed by

existing technologies such as Grid infrastructures (Foster et al.,

2001) that can be used to enhance the applicability of

service-oriented architectures for modelling. In many, but

certainly not all modelling scenarios, these disadvantages of

service-oriented approaches can be minimized through

thoughtful system design (Pingali and Stodghill, 2004). When

designing services, it is important to consider the response time

and size of messages passed over the Internet. Model processes

that require numerous communications with data transfers

during runtime should be tightly-coupled within a single service

to avoid network latency. Intelligent caching of data can also be

used to minimize data transfers of repetitive information. For

example, if a large dataset is required to initialize a modelling

domain within a service, the data can be maintained within the

76

service’s state so that it does not need to be passed to the service

with each service method call.

In application point of view, the main barrier to make full use of

data resource on services is that users are unable to rapidly

access data sources and retrieve appropriate data sets from

different data repositories. The issues can be represented as

syntactic and semantic heterogeneity among data from different

sources (Goodall et al., 2008). Syntactic heterogeneity is

resolved by converting proprietary data formats into an XML

document. Schematic heterogeneity is faced by adopting the

OGC standard service protocols, such as OGC Reference Model

(ORM) as well as Catalogue Service (CAT). The OGC

Reference Model (ORM) describes a standards baseline

consisting of abstract and implementation standards. CAT

supports the publication and searching of collections of

descriptive information (metadata) about geospatial data,

77

services, and related resources. It needs attempt to extend the

standards for OGC’s services including the WMS, the WFS, and

the WCS widely implemented to facilitate interoperability.

Because the semantic heterogeneity issues has been addressed in

recent years. Ontologies are extensively used which can be seen

as best solution and are clearly defined by protocols for

improving the search capability, alleviating the semantic

heterogeneity issues between repositories and enhancing

interoperability between them (Beran and Piasecki, 2009). To

obtain an actual ontology becomes another significant challenge

with the increasing growth in popularity of web services.

Ontologies needs be viewed from locating web services by

enabling robust queries. A key important thing with the above

technologies is purely syntactic that finding an actual ontology

relies on software developers to understand the intended

meaning of the descriptions and to carry out the activities related

to web service usage; thereby OGC’s services do not include

78

automatic service discovery and invocation and fully

machine-understandable semantic descriptions of web services

are necessary to provide support for on-the-fly discovery.

4.5 Data conversion

The data conversion is not simple and takes lots of efforts, and is

a core part in 3O-HIS. Based mainly on data conversion,

TELEMAC model is encapsulated in 3O-HIS seamlessly.

3O-HIS linking Telemac as an example, three types of

mandatory files: a Steering file, a Boundary file and a

Geometry file are required to convert appropriate format in

3O-HIS. The Steering file and Boundary file are ASCII text

files that each line has no spatial meaning, and researchers

hardly set up the relations between map and text files. In

3O-HIS, the value of parameters must have the geographic

reference system in order to associate with mesh node locations.

The lack of the spatial capacity in TELEMAC input files

79

implicates the requirement of conversion from a Steering file

or/and a Boundary file to shapefiles.

4.5.1 Steering file conversion

Conversion from Steering file is straightforward. Steering file is

Text format and, the text has been divided into two groups by

different conversion ways. The first group includes STEERING

FILE ='MerseyDeeopen.cas'; BOUNDARY CONDITIONS

FILE ='Lbay2.bc'; GEOMETRY FILE ='Lbay2.geo' and

RESULTS FILE='LbayTel.res'. In the first group, data are

variable for different cases. For example, GEOMETRY FILE

parameter often changed for Telemac collection. The other

group represents a constant type such as MASS-BALANCE

=YES, we defined MASS-BALANCE parameter as a standard

that all services should comply with. The value usually is

constant and stored in PostSQL database. It is important to

notice that the environment is totally changing from MS-DOS to

80

distributed services by Java IDE.

In 3O-HIS, some parameters in Steering file may not be suitable

for sharing to all users. For example, FRICTION

COEFFICIENT is not appropriate to share with others because

different location has different type of soil and frictional

resistance is various. FRICTION COEFFICIENT parameters

defined as variable type.

Figure 4.1 Distributed flowchart between users and TELEMAC

Following the instructions shown in Figure 4.1, the GUI can

build a uniform ‘Steering’ file for each service. Usually GUI is

used to set different variable physical parameters for different

users as a uniform format under 3O-HIS. For example, it is

necessary to set the difference of time step for each user in a

81

national scale analysis. The mesh is divided into several pieces;

some areas with a fine mesh that researchers want to understand

the environmental processing clearly such as Liverpool Bay and

River Wyre in Fleetwood. And some areas may have a rough

mesh; the time step may be changed in different meshes based

on the complexity of topography. Therefore, it is necessary to

develop a GUI interface for Steering file and Boundary file

conversion.

(A): common standards or constant value for all users

(B): specific value in certain service

Figure 4.2 Type of value stored in services in 3O-HIS

The function is related to the type of value stored in each service

(see Figure 4.2). Common standards in (A) will be stored in

SQL service and other services invoke these common standards

B A

User1 User2 User3 User4

B B A B A A

82

directly under a same project. Usually the information is stored

and shared in one services. It defines some specific values

individually in (B), which cannot transmit to other users to

ensure the services receive valid data. Because if we share the

Geometry file from user1 to user2, the inconsistency between

geometry file and others, such as boundary files or FORTRAN

file may lead the interruption when TELEMAC model is

initiated. Balancing the values stored in public or private can

reduce the amount of work for data collection and facilitates

using the TELEMAC model in an integrated framework for a

large scale.

4.5.2 Boundary file conversion

Boundary file conversion is complex because there is no spatial

information in text (.txt) format. Firstly, the positions of each

point on the mesh need to be obtained. Value of position is saved

in the database. PostgreSQL and PostGIS add-on is selected to

83

be the database management system (DBMS) as the basis of the

mesh database. PostgreSQL can store the geographic objects

spatially and has the capability of performing complex queries

and supporting various programming languages (e.g. Java).

4.5.3 Result file conversion

The most commonly used format is the Selafin format for results

stored. The internal standard format described in TELEMAC2D

user manual. In this section, it focuses on the conversion from

Selafin format to PostSQL spatial database. A solution for

conversion from res to PostSQL is to use interfaces shown in

Figure 4.3. Res file placed in the middle is the Selafin format

from Telemac model. The entrance of the 3O-HIS is the main

function in lib.read_fortran_files; lib.OpenFile files used to

check the validity of the res file. It defines the operations’

signatures, and check the size of the res file. The

lib.read_file_code is the main part of res conversion. It is

84

indicated that a number of get functions are created for each

physical variable which is linked to the item defined in res file.

Most of them are mesh information such as getNELEM() is the

number of elements in mesh; getNPOIN() is the number of point

in mesh; getX() is the X coordinate of each point and getY() is

the Y coordinate of each point.

Figure 4.3 The mechanism of tranmision from res to PostSQL

Figure 4.3 shows an example which utilizes a collection of

tables to represent the result of the TELEMAC and the

corresponding conversion to 3O-HIS. The TELEMAC model

lib.read_file_code

lib.OpenFile

lib.OpenFile.getr

lib.OpenFile.openf

getNBV1()

Res

Title

NEL

NBV

NPO

Time

X

Y

lib.read_fortran_fil

getresulttablenam

e()

main(String[])

lib.SQLConnection

droptable(String)

connection()

creattable(String)

getName()

getNELEM()

getNPOIN()

gettotalvariable()

getY()

getX()

85

code solves depth-averaged free surface flow equation from

Saint-Venant. The result can be predicted based on the last time

step. Therefore, all points obtain the value of all physical

parameters and then prepare a calculation from the boundary for

the next moment. The calculation is a recursive loop. Figure 4.4

represents the structure of the result after a finite number of

iteration. It shows the result at time1, time2 and timeN which is

physical parameters for all points after time step×n. It is a

challenge to transfer the structure of data storage into 3O-HIS.

Generally, the study aims to understand the tides processing in

specific areas. It means we make an effort to focus on physical

parameters such as variable in the time series in specific points.

It consumes a massive memory. For example, the water depth at

point 2 is a specific location. We need to link all tables

(time1-timeN) and fetch the value (it is in Row 2 and column H).

Because all tables cannot close until the timeN table is end of

loading, the system will collapse due to out of Java Heap

86

Memory.

Figure 4.4 Result data conversion from TELEMAC to 3O-HIS

Physical parameters are represented in the time series. A

‘container’ is built when data conversions begin. The ‘container’

operates gettotalvariable() function to obtain an array named

totalvariable. The array of totalvariable is important as it

includes the value of the each physical parameter. The structure

87

of array of totalvariable in container is shown in Figure 4.5. The

array of totalvariable is a three-dimensional array: name of

variable, number of points and the Number of time steps. NBV1

represents the name of the variable, and it determines a specific

physical parameter selected for conversion. NPOIN is the value

of points, and time steps are the maximum size, number of time

steps for conversion. We suggested the size is no more than 200,

because after 200 iterations, the array of totalvariable is bloated

and time consuming. The default of iterations is 150, after 150

times, the value in the array of totalvariable will link the

lib.SQLConnection and write into PostSQL. After this, the

container is clean for next 150 iterations. This design in newly

3O-HIS is suitable for data storage and avoid out of Java Heap

Memory.

Figure 4.5 Structure of Totalvariable

88

4.5.4 Data transmission

Data transmission uses a uniform standard: XML that each

distributed services can store geospatial data, semantic

descriptions and geoprocessing service chains based on it. Based

on the instructions, users can distribute meshes in different

computers through web servers under the framework of 3O-HIS.

4.6 Key input files stored in service

4.6.1 Geometry file

Topographical information is a critical factor and significantly

influence the patterns of floodplain inundation (Marks and Bates,

2000), meaning that high-resolution elevation data with

improved spatial accuracy can provide significant advantages in

predicting inundation patterns. Usually Light Detection and

Ranging (LiDAR) and Interferometric Synthetic Aperture Radar

(IfSAR) are two notable remote sensing technologies to provide

an accurate topographic map sources (Jorgenson and Brown,

89

2005). Topographic maps are provided by Marine Digimap

(EDINA), The Bathymetry & Elevation (BE) have been used

which describe the natural shape of the Earth’s surface of land

and under the sea and includes height contours and digital

elevation models. The coastal line gaps existing in the DEM, in

the sea levelling system the reference of the depth data

approximates to LAT, for land survey datum the reference of

depth data related Ordnance Datum (Newlyn) which is the point

of origin corresponds to the average value of Mean Sea Level

(MSL) at Newlyn during the years 1915 to 1921 (EDINA) were

used. The difference between two data sources were adjusted by

manual editing.

4.6.2 Hydrodynamic models

Previously, local assessments of coastal flood hazard were based

upon detailed 2D or 3D hydrodynamic models that simulate

hydraulic changes in water flow and level resulting from

90

specific benchmark events (Battjes and Gerritsen, 2002). The

accuracy of the result depends on the detailed hydrodynamic

models and conditions such as boundary conditions and the

interpretation of hydraulic roughness and bottom topography

from bathymetric surveying. Potentially, an accurate result

requires a detailed description of initial boundary conditions and

computational mesh. It is computational and complex that

models iterate over successive time-steps using differential flow

equations across the mesh. In hydrodynamic models with GIS

fields, simpler finite-difference (raster) models have been

developed and Bates and de Roo (2000), Horritt and Bates

(2001) stated that raster models were quicker than finite-element

models.

In raster models, a grid mesh of 10
6
cells has been developed in

Horritt and Bates (2001) studies, the elevation of each cell is

crucial that it determines the water flow by comparing with the

91

elevation of around 8 cells. The simple raster model takes

advantage of Geographical Information Systems (GIS) which

can provide an effective framework to integrate and analyse

disparate environmental data sources, especially more general

methods of strategic flood-risk assessment can be processed

over larger areas. However the accuracy of inundation map

produced by simple raster model is not as good as numeric 2D

or 3D hydrodynamic models. Thus, Thumerer et al. (2000)

developed another way that identifies of distinctive flood

characteristics within a vector GIS. This approach can easily

identify some hydraulic characteristics such as velocity, depth,

features represented by points. However points, lines and

polygons are difficult to represent spatial patterns in flooding.

Developing 3O-HIS would take the both advantages,

considerable hydrodynamic models can be encapsulated and

grid-based (raster) GIS can distinguish spatial variation and

92

spatial patterns in flooding with an appropriate resolution

especially for larger areas for assessing flood risk. This chapter

will explain in detail how to deploy the 3O-HIS by

understanding the case study of flood risk assessment in

Blackpool.

In Hydrodynamic models, the Telemac model gives insight into

the development of the hydrodynamic processing such as

flooding over land leads an inundation depth. The model

consists of a two-dimensional flow model that is based on the

Saint Venant equations. So WPS technique has been used that

Telemac model is encapsulated to operate on spatially

referenced data. It specifies three operation GetCapabilities,

DescribeProcess and Execute and make applications easier to

collect a lot of input data that represent the natural shape of the

surface of land and under the sea.

93

4.7 Summary

This chapter represents data repositories, SOA and data

repositories with SOA in many. Details features of data

repositories and SOA structures have been represented such as

client/server; coarse/refine. Any processing between services or

between user and services can treat as client/server. The client

sends the required information to the services from the portal

which is defined by data repositories, and services may link

other services or send the result to the client. Currently, the

protocols between client and service are XML, GML, and SOAP

in 3O-HIS which explained in other chapters. Coarse/Refine is

an important concept of design SOA with data repositories. The

modelling built in services normally is no single framework,

because of the computational algorithm and large number of

parameters. The refine decomposition is needed. On the other

hand, Coarse/Refine concept may support the HPC and Gird

computing, because the small refine processing are

94

synchronized.

This chapter also represents the challenges of using

loose-coupled SOA for model/data communication between data

repositories or between applications. Reduce the duplication and

problems for adding or removing services, conglomeration of

other services with Coarse/Refine, and processing in different

environmental system. An application of hydrodynamic model

enclosed in 3O-HIS is discussed which two case studies are

represented in chapter 5.

95

Chapter 5 Application

5.1 Introduction

This chapter presents the applications of GIS in water resources

and hydrological modelling. Two Case studies: Blackpool in

England and Demra in Bangladesh are presented to implicate

the benefits that integrate GIS and hydrodynamic modelling in

3O-HIS platform. Assessment between GIS and hydrodynamic

results under web services indicate a promising future for GIS

application in hydrological modelling.

Section 5.2 discussed the current states of integrating GIS with

hydrological modelling, and general user guidance for

deployment of services in 3O-HIS are explained in section 5.3;

other different existing hydrological modelling to deploy in

96

3O-HIS are discussed in section 5.4. Section 5.5 shows case

studies such as Blackpool in England, and Demra in Bangladesh

for a better understanding of the advantages of integrating GIS

and hydrological models in section 5.6. Section 5.7 comparing

the other open standard GIS with commercial GIS, it represents

the interoperability of 3O-HIS for large distributed data analysis

and modelling. Finally a summary reviewed in section 5.8.

5.2 Current states of GIS with Hydrological Modelling

GIS has evolved dramatically and emerges to combine with

statistical analysis, and database technology due to its powerful

ability of spatial data analysis (Foote and Lynch, 1995). It is

convenient to capture, store, manipulate, analyse, manage, and

ultimately present all types of geographic spatial data. The

ability of spatial data analysis feature in GIS can help

researchers analyse and/or present huge amounts of data, and

GIS can have different applications and hence is of high interest

97

in various fields of study. Water Resource Engineering indeed

needs to present modelling and analysing spatially distributed

data with different spatial resolutions (spatially and temporally

distributed). Therefore, GIS is indeed a suitable tool for solving

water resources problems.

Liang and Molkenthin (2001) firstly take advantage of the

evolved network communications, developed a virtual

GIS-based hydrodynamic model in a distributed environment.

After that Argent (2004) also discussed the great potential for

distributed computing and databases, as well as distributed

communication achieved between the clients and server.

However, there are several limitations in existing clients-server

GIS-based hydrodynamic model. New challenges include data

collection infrastructure at unprecedented scale, management of

increasing volumes of data as the temporal and spatial frequency

of data collection increases (Horsburgh et al., 2011). The major

98

issue was large datasets exchanging inefficiently between

services in WWW platform. The issue becomes more complex

when the hydrodynamic model and the mesh need a very fine

resolution for consideration of different scenarios such as

various boundary conditions, sea level rise and

economy-societal factors (e.g. land use, cost of buildings).

Limited studies have discussed the solutions. The previous

studies have demonstrated the applicability of utilizing GIS as

an integrated environment for manipulating hydrologic. The fact

makes a difficult situation that observatories are geographically

distributed and run by disparate research groups. With the

increasing volumes of data, it is challenge that sharing

environmental data in Internet across observatories. It is

currently complicated that data can be published for

cross-observatory analyses. To overcome the obstacles, a new

3O-HIS has been developed which considered as service

99

orientation linked to GIS. The desire of creating 3O-HIS is

establishing an interactive system that heterogeneity of data can

be discovered from more than one observatory and hydraulic

model as an encapsulated component.

5.3 User guide of 3O-HIS

In this section, a general user guide has been written for

discussing how to use 3O-HIS. Lot of efforts has been made in

deployment of services in 3O-HIS, to ensure other researchers

can follow the deployment for creating their own hydraulic

model-GIS system, there is a requirement to represent a guide

including how to deployment services in 3O-HIS. The features

of data in 3O-HIS can be interoperation, communication, and

publication ultimately present Telemac modelling encapsulated

as services.

A series of software has been listed in section 5.3.1 for

100

preparation for input. And how to deploy the services is

discussing in section 5.3.2. Finally GUI of 3O-HIS discussed in

section 5.3.3.

5.3.1 Installation

For successfully managing, analysing, and publishing results of

numerical models, particularly in cases when the datasets are

extremely large, software which needs to install to set up the

environment for services deployment is listed below.

 Tomcat (test version 6.0.35)

 WPS-52n

 Notepad++(http://notepad-plus-plus.org/)

 Geoserver (Optional)

 Eclipse (Optional)

The five listed software need to install properly for developing

3O-HIS. The Tomcat and WPS-52n are obligatory which used

setting up the system environment. Tomcat is an open source

101

software implementation of the Java Servlet and JavaServer

Pages (http://tomcat.apache.org/) for the client/service

environment. WPS-52n is one of WPS applications for services

processing (http://52north.org). Notepad++ is a free code editor

which we use it for editing XML, GML and js
5
 files. Geoserver

is a web service with OpenGIS specifications. Eclipse is a

platform for Java and plug-in development plus adding new

plugins. Before we test many brewers as client, Foxfire browser

is the best one that has less client response times and the feature

of ‘fire bug’ can have a debugging during the design step.

The mechanism of processing flow with software is shown in

Figure 5.1. An assumption of software installed successfully

which bundles Tomcat (6.0.32) and WPS-52n in services.

Tomcat is used to deploy WPS online and WPS-52n provides

5 Js: js means Java Servlet, in this dissertation it created particularly for processing

Openlayer software in Foxfire browser which is an open source software for

displaying map in browsers.

102

the method to processing geographic features. A processing flow

has been charted for understanding the relationship between

software, as shown in shown in Figure 5.1

Figure 5.1 The processing flow of 3O-HIS

From the Figure 5.1, each software has own function in specific

place in the chart. The orange colour box represents the general

architectural and procedural components which include the

following: 1) data observation infrastructure which collects

observations by the sensors and telemetry systems. 2) Data

storage represents data systems and software required for

creating a persistent repository. 3) quality assurance is the

processing that transitioning from raw data to publishable data

Observation

Quality Data storage Interoperabili

Presentation

Geoserver Notepad++ Tomcat Eclipse WPS-52n

103

products 4) interoperability: this is the key processing in the

flow that data are processing following WPS technology and

publishing the data in interoperable formats and 5) presentation:

the tools data consumers use to get the data for the purpose of

creating visualizations and analyses. Tomcat is used to deploy

WPS online and notepad++ edits the XML and GML files for

the messages transmission, they are shown as blue arrows.

Geoserver is one of services used to storage dataset. One reason

for choosing Geoserver is open source server. It desires for

interoperability, and supports any major spatial data source

using open standards. Here the version of Geoserver needs to be

consistency with the version of ‘PostgreSQL’ which is used for

storing spatial datasets. Any version of ‘org.postgresql.Driver’

inconsistency may lead the connection to fail. WPS-52n

provides the method to processing geographic features. The

Openlayer package (http://openlayers.org/) can be used as

representation tools for publishing the data in interoperable

http://openlayers.org/

104

formats. Using Openlayer code for deploying hydrodynamic

parameters on services. There is an example for deploying

Blackpool vector map on Geoserver and representing on

Openlayer, it shows in the line:

var Blackpool _2002_shp = new OpenLayers.Layer.Vector("Blackpool _2002_shp ", {

 projection: new OpenLayers.Projection("EPSG:4326"),

 strategies: [new OpenLayers.Strategy.BBOX()],

 protocol: new OpenLayers.Protocol.WFS({

 url: "http://localhost:8081/geoserver/WPS_Water_Discharge/wfs",

 featureType: " Blackpool _shp",

 featureNS: "http://www.opengeospatial.net/WPS_Water_Discharge",

 version: "1.0.0",formatOptions: {outputFormat: 'GML3'},outputFormat: "GML3",

 readFormat: new OpenLayers.Format.GML.v3(gmlOptionsIn)})

 });

For successfully processing the version of Openlayer need to be

defined that index.html file in the folder

(apache-tomcat-6.0.35\webapps) needs to modify and change

the line:

<script type="text/javascript" src="http://openlayers.org/api/OpenLayers.js"></script>

to

<script type="text/javascript" src="http://openlayers.org/api/2.9.1/OpenLayers.js"></script>

Eclipse provides the platform for compiling hydraulic models

with Java code. The services include hydraulic models that can

105

have a numerical processing between services. In Eclipse, the

polygon output (Geometries) are created using GML2 standard.

In GML2 standard, the tag pair of the_geom use to store the

polygon geometry as shown in Figure 5.2.

Figure 5.2 An example of geom feature representation in GML2

The tag pair of gml:posList store a number of values which

represent the location of one polygon vertex . All value together

in the gml:postList represents an unique polygon to the related

geospatial mesh. Nine maps were uploaded to Geoserver from

2002 to 2010, and they generate a GML2 format to describe

106

geographic features. After the Geometry stored in services, the

topological information can be retrieved from any location or

remote computer under the framework of 3O-HIS. In Figure 5.3,

polygon features are represented as the agricultural areas in

2002.

Figure 5.3 Display of Catchment area using 52°North WPS

5.3.2 Using the 3O-HIS

The graphic user interface (GUI) (Figure 5.4) is created for

http://en.wikipedia.org/wiki/Geospatial_topology

107

linkage the results and geographical features. Setting appropriate

parameters for running hydraulic models. The Shapefile is

composed of geospatial vector data in 3O-HIS. Mesh files and

boundary covers shapefiles and some physical parameters such

as boundary files stored in PostSQL. A Shapefile usually stores

geospatial vector data format.

Figure 5.4 GUI for TELEMAC

The linkage of PostGIS with Shapefile as shown in Figure 5.5.

Connection component was developed for saving model

simulation results into the PostSQL database. The connecting

method has been developed using Java that 3O-HIS provides a

108

feasible functionality for hydrodynamic results connecting with

local or/and remote services. The development goal for this

component was to seamlessly retrieve data from model

components during a simulation run and write them to the

underlying PostSQL. Doing so enables modellers to view, edit,

and manage simulation results using GUI of 3O-HIS. We need

to notice that the location of shapefile in GUI should be same as

the location in Geoserver which information stored in

index.html. If it is consistent with location of map in web

services, the Shapefile can be displayed in 3O-HIS. For example

it is composed of geospatial vector data which represent

triangular mesh in 3O-HIS in Blackpool (see Figure 5.6). The

mesh representation in Network is simple that store the

geometric data types of points, lines and polygons to represent

geometric locations and usually linked to GIS. Points, lines and

polygons have been used for creating Delaunay triangulation

effectively. Each element of the triangular mesh may store many

109

physical parameters values.

Figure 5.5 GUI of hydraulic model linking with 3O-HIS

Figure 5.6 The retrieval of mesh of Wyre River Estuary Mesh

110

Figure 5.7 GUI for TELEMAC (Options tag)

In addition we created a default service which named ‘mydb’

with the username of ‘postgres’ and the password ‘zyc0107’.

Figure 5.7 shows the setting of the parameters of transmission

hydrodynamic data. The number of column of tables and the

time step for hydraulic models can be settled in the GUI. Once

click the ‘run’ button, the results storage in SQL (Figure 5.7).

For linking PostSQL database, connection() function is used for

111

a PostSQL connect. SQL options function is used to set up the

tables for constant or common standards. Connect() functions

are developed in 3O-HIS, particularly standards/ rules

established between uses. Once the spatial database has been

created and value of x, y in each point on the boundary input

into a spatial database is shown in Figure 5.8. The gid serial

column represents BOUNDARY_COLOUR parameter and X, Y

column represent X, Y coordinates in the Ordnance Survey

National Grid reference system, and the_geom column

introduces the spatial information. ArcGIS displays the

boundary database and it is important to understand there is no

need to add more information to identify the boundary type

(open or close boundary). In TELEMAC model, boundary file

gives the numbers to each boundary node to determine the

boundary type. However, in 3O-HIS, because the spatial

information has been added by PostGIS, which offers the

application programming interfaces to perform spatial query and

112

analysis, boundary type has been identified for each boundary

node. Therefore, ArcGIS can recognize the boundary type itself.

For example, boundary node located at water levels defining

open boundary node. In contrast, at the land boundary, the water

level should remain zero all the time. In Figure 5.9 the open

boundary nodes display as black colour and land boundary

nodes show as cyan colour.

Figure 5.8 SQL statement – shapefiles

113

Figure 5.9 SQL statement – shapefiles

Figure 5.10 The inundation map and water depth with time series (three

random points) in 3O-HIS

114

Raster file as background map is used to represent Geometry file.

It is generated by a number of rectangular grids of pixels. Raster

files in 3O-HIS, in essence, are digital image represented by

grids. To enable an accurate flooding simulation, 10m x 10m

raster graphics pixel has been used in 3O-HIS (Figure 5.10).

Users can plot the time series at the interested location picked

up in the digital map with the selected physical variable and

specified time span through the GUI. The Figure 5.11 shows the

sensitive degree of inundation that it extracts building layers

related with water depth.

Figure 5.11 Water depths with time series

115

After the result map uploaded in service, GUI that it can retrieve

the results, the Figure 5.11 shows the inundation map retrieved

from web services. Comparing with single Telemac hydraulic

modelling, the results include combing with GIS are a more

representative way that provide an insight into the surrounding

environment and associated physics in terms of prevented flood

damage.

5.4 Service deploying for different hydrological models

3O-HIS needs link with other hydrological models to represent

that 3O-HIS is an interoperable and open standard architecture.

It is necessary to discuss the accessibility for linkage other

hydrological models, and it can extend the range of hydrological

models. To achieve the goal of expansion of applications, some

configurations which need to be processed in hydrological

models deployment are discussed in this section.

116

5.4.1 System configurations

From Figure of ‘the processing flow of 3O-HIS’ (see Figure 5.1,

Page 102), different hydrological or hydrodynamic models are

compiled and stored in ‘interoperability’ frame. It wills directly

linage the ‘data storage’ component and ‘representation’

component. ‘Data storage’ component is the data service

component to support the data communication and information

sharing. ‘Representation’ component more related with data

visualization represents the computational results displaying.

5.4.2 Service component configuration

Configuration of data service component is important because it

is crucial step if the hydrological models changed and it is

required re-definition the services components for input.

Different hydrological models have varied type of date source as

input. And different data sources storage properly in the service

component is an important question if the hydrological models

117

changed. Vary type of dataset required carefully consideration

for storage in services and interpolation between services under

same standards. The comments have been represented for

generally integrating other hydrological models.

 OpenGIS standards do not need to change. In 3O-HIS

processing flow, the open standards are consistent from data

services to representation component.

 It requires re-definition of Geometry file when hydrological

models are changed. Checking the number of pixels in

metadata files and the accessibility that new hydrological

models load geometry file.

 Geometry file is needed as an input file to represent the

topographical or bathymetric value and the associated mesh

node locations where the calculation is carried out. The grids

118

can be reduced and enlarged and raster graphics pixel as the

smallest individual grid unit building block of an image.

 Type of Boundary file usually is changed when new

hydrological models applied. The information that the depth

and velocity changed with time series at each point in

boundary is used for driven the processing of simulation.

Currently the file format supports TXT and Res.

 The design architecture of new hydrodynamic models

requires consideration the input files before we deploy

hydrodynamic models in 3O-HIS such as retrieval of

hydraulic data sources from disparate repositories. The

3O-HIS’s of framework flow should be consistent with the

data processing, encapsulation web service and platform data

viewing.

119

The next section will explain the Blackpool case study that

simulates Telemac models to understand the Blackpool costal

processing under various climate conditions are used to

understand hydrodynamic models running in web service.

5.5 Case Study: Flooding forecast around Blackpool

The Blackpool to Fleetwood area in the North West England is a

well-known low lying area with the mean surface elevation

below the Highest Astronomical Tidal level and has always been

susceptible to the coastal flooding (Department for Environment,

Food and Rural Affairs 2010). In these areas, the total length of

frontage is 24.4km and the existing flooding structures designed

for a 1 in 200 year event calculated to protect a benefit area as

2,750 hectares (Wyre Borough Council, 2004).

120

Figure 5.12 Map of the Blackpool-Fleetwood area (After Wyre Borough

Council, 2004)

This area includes 28,000 properties, 1,500 industrial units, 22.8

km of public highway, and 825 hectares of agricultural land. It

has a high environmental value with the northern facing coastal

121

frontage from Rossall Point and the full length of the estuary

being designated as a Special Site of Scientific Interest (SSSI)

and candidate Special Area of Conservation (cSAC). The

tangible discounted benefit derived from these assets is £165

million. Intangible benefits have not been considered

numerically due to the potential to relocate tourist activities to

neighbouring frontages. However, tourism plays a major role

within the Borough employing over 3,200 people with estimated

revenues of £60 million per year. The high value of the

environmental assets and the tangible assets within the area has

been determined (Figure 5.12), which are consequently related

to the economic damage involved.

Since the recorded flooding event in 1891, there has been a

number of severe floods occurred in the past, including the

event in Year 1980 in which total 2000 hectares of land and over

four hundreds houses were lost, and in Year 2000, extensive

122

flooding to the frontages of Ainspool area and Farms in the

White Brook area. To be able to forecast the potential flood area

due to extreme tide and river flows are very important to the

management and sustainability of this area. The newly

developed 3O-HIS system has been coupled with the

coastal-ocean model of TELEMAC 6.2 (Hervouet and Bates,

2000) to formulate a new flood simulation tool and provide

forecasts of the flood process under extreme tidal condition and

the potential impacts and risk associated with various land uses

in this area. The reason to choose TELEMAC system is two

folds: at first, to enable accurate representation of flood in the

low lying area due to tidal flows, the model should be able to

simulate the water run up to the land the flood the originally dry

area and then when the tide retreat to the sea (ebb), the model

should be able to allow the flood area to become dry again, i.e.

the capability to simulate the wet-and-dry process which is

critical for the flooding simulation. TELEMAC has been

123

approved to be able to produce reliable predictions under the

oscillatory flows over complex bathymetry with wet-and-dry

process (Hervouet and Bates, 2000). Secondly, TELEMAC is an

open-source code system which all source code can be accessed

and hence it is much easier to modify the simulation or

inputs-outputs of the system to combine with the proposed

3O-HIS system in comparison with many other commercial

codes with similar capability. The following sections discuss

details of the system configuration and coupling between

3O-HIS and TELEMAC model.

5.5.1 TELEMAC in 3O-HIS

Observation means the environmental data made by

environmental observatories. For example, the data of water

temperature are recorded by using in-situ sensor and the

measurements of flow made using Price current meter in United

States (Linsley et al., 1992). Recently the robust communication

124

infrastructure such as Internet connections, radio, satellite

provide the availability of investigation of data at remote

locations and more powerful for data digging. These

technologies meet observatory data collection needs.

In TELEMAC model, a Steering file, a Boundary file, a

Geometry file is required for the calculation. The Steering file

and Boundary file are ASCII text files that can be readily

created through any text editor, the Geometry files usually are

binary and saved as GEO or SLF format. A Steering file has

directives which are sending the main body of the TELEMAC

modelling (Figure 5.13). Each line within the Steering file

represents a command for TELEMAC to follow in the

calculation. Usually many constant parameters such as friction

coefficient, velocity diffusivity, initial elevation and time step

are defined in the Steering file for TELEMAC simulation. In

Boundary file, each line of the file is dedicated to one point on

125

the mesh boundary. Each point on the boundary can be specified

a number that is very important for prescribing values. The

bottom geometry file can be readily processed while the mesh is

being built using MATISSE or BLUEKENUE (Telemac user

manual, 2010).

Figure 5.13 ASCII text file: Steering file

Depending on the simulation conditions, a FORTRAN file

sometime is also necessary for the TELEMAC simulation. In the

126

present flooding case, a FORTRAN file is used to create the

necessary water level information along all open boundary

nodes at each time step so that the tide can be represented

properly in this area. In particular, the instantaneous water level

along the seaward boundary is prescribed as a sum of series

sinusoidal function that is based on the tidal constitutions with

particular range and frequency. Once the water level is given at

each node, the computation within the domain can then be

carried out based on mass and momentum conservation laws

written in TELEMAC.

5.5.2 Telemac service bus in 3O-HIS

For clearly understand the mechanism of encapsulating

TELEMAC model in 3O-HIS, the 3O-HIS service bus has been

shown in Figure 5.14. It includes obligatory files as input files to

drive the 3O-HIS, as well as Telemac model as a hydrodynamic

model to calculate hydrodynamic characteristics, as exemplified

127

in Figure 5.14.

Figure 5.14 3O-HIS service bus(linkage TELEMAC model)

The mechanism of data transmission between services in

3O-HIS is similar to the client/server typical three-tier

architecture. Different types of input files in Telemac require

converting into an appropriate format which can be stored in

services in a distributed manner. A lot of input data files are

required and stored in different services such as Geometry

service and Initial service call this process as ‘Inputs’. The files

can send to ‘Hydrodynamic models’ in order to able to evoke

128

Telemac model. 3O-HIS architecture explained in chapter 4 had

a facility for transporting input files such as three obligatory

files-Steering file, Geometry file and Boundary file. Except

three obligatory files, many other files can also interact in

service which contains specific number of physical parameters

during a simulation for specified conditions.

The advantages of GIS with hydrodynamic model in service

orientation architectural style and its capabilities have been

demonstrated by two case studies: Blackpool in England and

Demra in Bangladesh. Two case studies are represented in order

to: 1) demonstrate the advantage of GIS based 3O-HIS,

comparing with single Telemac hydraulic modelling, combing

GIS has the potential benefits of distributed collaboration; 2)

illustrate some results during system configurations which are

necessary when designing a distributed application in order to

satisfy requirements such as identification of steering file,

129

geometry file and boundary files on both local service platforms

in service bus.

5.5.3 Flooding forecast data analysis

The case study of Blackpool shows the multi-object analysis in

3O-HIS, and it can extend the Telemac simulation capability:

land use, sea level rise and socio-economic factors.

The main problems in this area with the estuary are their ad hoc

nature, lack of maintenance and in some instance the presence

of weakness and low defences. Future sea level rise will

increase coastal squeeze within the estuary leading to loss of

protective salt marsh frontages and direct erosion of the flood

embankments.

The Intergovernmental Panel on Climate Change (IPCC)

estimated a global sea level rise with a ‘best-guess’ value of 49

130

cm by the year 2100 (Gornitz, 1994). The potential subsidence

issues reported by Blackpool Borough Council could

substantially increase the apparent SLR. Two sea-level rise

scenarios for the year 2100 have been adopted for the present

analysis: ‘best-guess’ (SLR 49 cm) and High (SLR 88 cm)

which are derived from IPCC and Gornitz (1994). A failure in

the upper estuary defences could lead to flooding to the majority

of the urban area, and particularly in the low-lying areas which

is shown in Figure 5.15.

Figure 5.15 a) inundation map SLR 0cm in Fleetwood, b) inundation map

SLR 49cm in Fleetwood

This is the most vulnerable area under the SLR 49cm scenario;

(a) (b)

131

almost 2/3 of the area has been inundated. Two costal lanes

which we need to carefully consider are Fleetwood Pier to

Rossall Point and St Mary’s R C Church to Fleetwood Museum.

The first one is left corner of northern facing frontage, most of

the houses affected immediately if the upper portion of sea wall

fails. In the second vulnerable area, St Mary’s R C Church and

Fleetwood Museum buildings may be seriously affected due to

49cm sea level rise.

Table 5.1 Inundation areas based on the different sea level rise

Direct physical damage related to flood depth to derive based on

empirical flood damage data from two catastrophic floods- in

1953 in the Netherlands and in 1993 river Meuse. Later flooding

events the Elbe flood in 2002 and the New Orleans in 2005

Flood

depth(m)
Area m

2
(SLR 0cm) Area m

2
 (SLR 49cm)

Urban area

0-0.5 28452000 31341600

0.5-1 4095100 7912100

1-2 3894700 5035000

2-3 340100 698100

3-4 24700 52600

4-6.42 21000 33300

132

provides important updates and specific damage factor is

estimated and relates to flood depth.

The total inundation area is 36827600 m
2

(SLR 0cm). Major

flood depth is below 0.5 m and 77.25% of the total inundation

area. Under the SLR 49cm scenario, the total inundation area is

45072700 m
2
; it increased by 22.38% compared to the SLR 0cm

as shown in Table 5.1.

From Table 5.2, it is nearly 0.7 billion increased in sea-level rise

scenarios for the year 2100. Currently, the urban area and

households are distinguished in the direct physical damage

assessment. Urban area has a high density of population and

more vulnerable in terms of human and economic losses.

Site-specific conditions or regional differentiation are not

accounted for in the assessment procedure such as agriculture.

133

Table 5.2 Total Direct damage amount based on the different sea level

rise

Sea

level

rise

Damage

category

Flood

depth(m)

Measurement

Value

Damage

factor

Per

damage

amount

damage

amount

Total

damage

amount

0cm

Urban area

0-0.5 28452000 0.1 4.9 139414800

2.73billion

0.5-1 4095100 0.15 7.35 30098985

1-2 3894700 0.2 9.8 381680.6

2-3 340100 0.35 17.15 5832715

3-4 24700 0.6 29.4 726180

4-6.42 21000 1 49 1029000

Households

0-0.5 65851 0.1 24100 1587009100

0.5-1 10577 0.15 36150 382358550

1-2 10113 0.2 48200 487446600

2-3 877 0.35 84350 73974950

3-4 103 0.6 144600 14893800

4-6.42 48 1 241000 11568000

49cm

Urban area

0-0.5 31341600 0.1 4.9 153573840

3.42billion

0.5-1 7912100 0.15 7.35 58153935

1-2 5035000 0.2 9.8 77538580

2-3 698100 0.35 17.15 11972415

3-4 52600 0.6 29.4 1546440

4-6.42 33300 1 49 16317

Households

0-0.5 70861 0.1 24100 1707750100

0.5-1 17371 0.15 36150 627961650

1-2 11278 0.2 48200 543599600

2-3 2403 0.35 84350 202693050

3-4 73 0.6 144600 10555800

4-6.42 106 1 241000 25546000

134

Consideration of the regional differentiation undoubtedly helps

to understand flood characteristics and transfer flood risk and

flood damage assessments across different scenarios. Further,

careful consideration and examination of land use can make

damage estimations more reasonable. For the results, we can

summarize that beach volumes are consistently improving;

consideration on maintaining and repairing existing structures

and examination of the need to provide improved crest levels

where defences are weak. It needs a comprehensive estuary

shoreline management policies and boundary definitions.

5.6 Case Study Area: Demra of Bangladesh

Dhaka, the capital of Bangladesh, is situated in the central part

of the country and has an area of 298 Sq. Km. It is bounded by

the Buriganga River in the south, the Balu River in the east, the

Tongi Khal in the north and the Turag River in the west (see

Figure 5.16). These rivers are connected to the

135

Ganges-Brahmaputra River system (locally known as the

Padma-Meghna-Jamuna River system, which also includes the

Old Brahmaputra River) that flows southeast from all sides of

the larger neighbouring study areas. The larger area is closely

dissected by a number of rivers and canals that are connected to

these major rivers. Dhaka is the fastest growing mega-city in the

world (Alam and Rabbani, 2007), with an estimated 300,000 to

400,000 new migrants, who are mostly poor, arriving to the city

annually. Its population is currently near 14.2 million and is

projected to grow to 20 million in 2020, making it the world’s

third largest city (UN 2008; UN Population Division, 2010).

The landform of the city is characterised by the Madhupur Tract,

an elevated Pleistocene terrace (Morgan and McIntire, 1959)

that stands higher than the neighbouring floodplain and

low-lying marshlands.

136

Figure 5.16 Location Map of the Study area (Source:Magellan

Geographix)

The area represents a significant variation in elevation ranges

from 1.5 to 15 m, with an average of 6 m above PWD (Public

Works Datum) (+/- 0.45 meter with respect to mean sea level).

The area slopes towards the southeast, east and west, but the

general slope extends from the north to the southeast, where the

ground surface merges gently with the floodplains of the

Buriganga River. The eastern edge is mainly covered by the

#

Catchment

Agriculture

River

Road

Station

Residential

Industry
N

EW

S

Catchment Area

137

floodplains of the Balu River. These floodplains are

characterised by low-lying depressions and marshy areas that

remain inundated for a significant period of the year. The storm

runoff accumulates in the low-lying areas, flows through canals

and local rivers and slowly discharges to the major rivers. These

lowlands and wetlands are performing important drainage

functions by storing storm water and keeping the relatively

higher lands free from rainfall flooding. The area has a tropical

monsoon (May to October) climate like other parts of the

country, with an average precipitation of 2000 mm/year.

5.6.1 Data definition/ Collection

The GIS data were used in the form of vectors or shape files to

delineate the catchment or river basin areas. Collection of the

vectors is similar to the collections represented in section 5.4.

Different shapefiles represent the different land use in the

catchment Area.

138

The variable parameters are different with the variable

parameters in Telemac, in the water balance model, the various

climatic data are the precipitation in mm, mean maximum and

minimum temperature (°C), air humidity (%), wind speed

(km/day) and daily sunshine (hours). All these data can be

obtained from the Bangladesh Meteorological Department

(BMD). The precipitation in mm from the year 2002 to 2011 has

been stored in a web service in this case study in Figure 5.17.

We can compare the precipitation data from BMD with the data

calculated in 3O-HIS.

Figure 5.17 Discharge of Lakhya river from 2002-2011

139

Figure 5.18 Land use in GIS ArcView

The agricultural areas are shown in Figure 5.18. Each

agricultural area was calculated using a spatial function of GIS

ArcView, The catchment area of 37.69 sq. km. was calculated

using the spatial function of GIS ArcView. Of this area, 12.62 sq.

km is a residential area and 3.37 sq. km. is an industrial area.

The rest of the area (21.7 sq. km) is agricultural and it has been

divided into 74 agricultural areas which have a minimum value

of 90.488 m
2
 and a maximum value of 489392.728 m

2
. Based on

140

the topological information, discharge of each area is calculated

via the Eq. (1):

Discharge i = Total Discharge x (Area i /Total area)………………Eq. (1)

Table 5.3 Values of K for selected crops (Source: Subramanya, 2008)

The developed water balance model, two values: coefficient K

and N are important in predicting the discharge. Values of K is

variable based on the crops, and based on the topological

information, the crop coefficient K of 74 agricultural areas are

valued in the catchment in Bangladesh as shown in Table 5.3.

Crops Average value of K
Range of monthly

values

Rice 1.10 0.85-1.30

Wheat 0.65 0.50-0.75

Maize 0.65 0.50-0.80

Sugarcane 0.90 0.75-1.00

Cotton 0.65 0.50-0.90

Potatoes 0.70 0.65-0.75

Natural Vegetation

Very Dense 1.30

1.20

1.00

0.80

Dense

Medium

Light

http://en.wikipedia.org/wiki/Geospatial_topology
http://en.wikipedia.org/wiki/Geospatial_topology

141

Coefficient N used to represent the difference between the

predicted and measured discharges. The Relativity parameter N

used to represent the difference between calculated/predicted

and measured discharge is defined as follows:

Ni = 5 sin(
π

2
× |Prec − MPrec| × K)…………… . .… Eq. (5)

Ni represents the relativity between the predicted and measured

discharge. The Ni value usually does not exceed 5. A low Ni

value suggests that the predicted discharge closely approximates

the measured discharge. K is a random value between 10% and

15% based on the type of crop.

5.6.2 Results and Discussions

In Demra case study, the water balance model is developed and

the hydraulic modelling is entirely written by Java code. The

data transmission is directly through services under OpenGIS

protocols.

142

The response time of water balance model in 3O-HIS has been

compared with the running time of the water balance model on

local service. The response time of the web service was roughly

identical to that of the local PC in all 141 tests. Once the map

data were downloaded from a web service, they were accessed

as local service. Therefore, the response time of the web service

performed better than the local calling process, as shown in

Figure 5.19. Moreover, both services could retrieve data fewer

than 100 ms in most cases.

Figure 5.19 Web service and local response Time with 141 times test

143

The results suggest that the 3O-HIS architecture and distributed

infrastructures can offer solutions to the challenge of

interoperability for data collected at a low level (72 agriculture

areas as a data input). Due to the lack of data, the web service

response time was not compared with the local response time in

the present study. Goodall (2008) proposed that the response

time significantly increased since the date when the number of

records exceeded 10,000. Because the same XML technology

was used for service communication in the present study, the

response time may be affected when large amounts of data are

collected.

The accumulation of large amounts of data invariably increases

the response memory size due to encoding objects in GML.

However, 3O-HIS provides an optimised architecture, i.e.,

service chaining and reuse, which reduces objects in GML to

minimise the problems of data accessibility and interoperability

144

in distributed services.

5.7 Comparing uDig-Telemac with ArcGIS-Telemac

The discussion concentrated on the service orientation and

system configurations and Open source GIS has been discussed

the processing flow between services and many advantages of

the deployment of hydrodynamic models using Open source

GIS such as interoperability and extendibility.

Flooding simulation around Blackpool has been carry out using

ArcGIS-Telemac, To represent that 3O-HIS is an interoperable

and open standard architecture to support large amounts of

commercial and free GIS software, it is necessary that carrying

out one simulation for the flooding forecast using freely open

standard GIS software.

Unlike commercial GIS, Open source GIS is more widely used

145

by “government, businesses, and non-profits alike because of

the financial benefit” (Confino and Laplante, 2010). UDig is one

of the most popular open source GIS software, built with

Eclipse Rich Client technology, an example of lining uDig with

Telemac has been shown in Figure 5.20. In the rest part, a

compression is discussed between ArcGIS-Telemac and

uDig-Telemac to demonstrated that 3O-HIS can support Open

source GIS seamlessly.

Background of Blackpool has been described in section 5.4.

Therefore, it will not be repeated here, and the system

configurations are listed below (Table 5.1):

Table 5.4 System configurations between Tele-Arc and Tele-uDig

Telemac-ArcGIS and Telemac-uDig are under the same 3O-HIS

 Telemac-ArcGIS Telemac-uDig

System environment Visual Studio 2010 Eclipse

Geometry file PostGIS WMS

Boundary file Notepad++ Notepad++

Parameter file Geoserver PostSQL

146

architecture, however comparing the system configurations

(Table 5.1), most of the input files are processing under different

software. Visual Studio 2010 is running for ArcGIS and uDig is

processing under Eclipse, Geometry file requires transmission

and storage at PostGIS, and in uDig WMS services can be

directly used for receiving geographical maps. In ArcGIS the

Parameter file storage in service-side and the Parameter file

stores in client-side in PostSQL service in uDig.

Figure 5.20 Blackpool features in uDig

Comparing with the Blackpool features in ArcGIS; there are

147

several differences with the features loading in uDig.

 The background map is the VirtualEarth WMS service in

uDig with the coordinate reference system ‘4326’ code and

the map in ArcGIS are downloading from VirtualEarth

Hybrid with the coordinate reference system ‘27700’ code.

 There is no raster interpolation function in uDig which can

generate water depth map with time series from points using

an inverse distance weighted technique.

The results of response time from testing the basic functions

shown as Table 5.5.

Table 5.5 Comparing the response time between Tele-Arc and Tele-uDig

The results is an average value from 10 groups, each group

randomly select 300 points in Blackpool mesh for buffer, clip,

 Telemac-ArcGIS Telemac-uDig

Buffer 3.4s 0.2s

Clip 3s 0.12s

Select 2.2s Less 0.01s

Split 3.6 0.15s

148

select and split analysis. The results show that Telemac-uDig has

a really fine response time comparing with Telemac-ArcGIS. It

extremely likely that the system optimization. It means that,

Eclipse, as a platform supports uDig, same as the platform for

developing the code of linking hydraulic models and GIS. The

consistency which exists at the bottom of infrastructure

improves the performance of data analysis.

Combining with open source GIS tools, ArcGIS-Telemac still is

a reasonable approach. It can be more powerful for spatial data

analysis. The Telemac results can be projected to an appropriate

coordinate system by using ‘Projections and Transformations’

functionality. Moreover, raster interpolation function can

interpolate a raster surface from the points which are the results

of Telemac model. For example the user can access and

manipulate information associated with geographic features and

look for spatial or temporal patterns and/or relationships in

149

different layers of the GIS map. In addition, a raster of

accumulated flow into each cell is created in flow accumulation

function in ArcGIS. The abundant function for data spatial

analysis leads to achieve the gold of hydrology analysis using.

5.8 Summary

The association between SOAs under 3O-HIS brings newly

ideas for developing modelling system and helps developers

analysis hydrological data in a comprehensive way. By using

these benefits, 3O-HIS is applied in two case studies to illustrate

an newly and comprehensive way for hydrological data analysis

over the conventional GIS system.

The different types of vector are used in two case studies. In the

Blackpool case study, the mesh is created by a number of points

and lines. The prediction of water level depth is stored in each

point. The points represent the stations in National scale. In

150

Demra case study, to predict the discharge depend on the value

of agricultural areas. The water balance model requests

polygons uploaded in services.

The 3O-HIS was designed to explore methods to interoperate

hydrologic data between servers’ and users’ computers. Two

hydraulic models were deployed on servers; designed to be a

service-oriented web application tool that makes water storage

calculation on the Internet available to users by allowing them to

access data and relevant web services in a distributed network.

Results obtained from 3O-HIS, helps policy makers to

encompass the full management unit. It is the powerful ability of

spatial data analysis to spatially distribute data and improve the

resolutions of water resources problems. In addition, the

network structure provides assistance to the policymakers on

multiple sources of hydrologic data and hydrologic modelling as

151

services were encapsulated in the architecture of service layer of

3O-HIS. It supports Open source GIS and commercial GIS and

increases the broad range of GIS and has the capacity of further

expansion of applications and solving problems.

152

Chapter 6 Conclusions and Further works

6.1 Introduction

A new 3O-HIS is developed to encapsulate distributed

hydrologic modelling for the purpose of interoperation in the

integrated hydraulic applications. It provides a practical way to

access hydrodynamic models in a web service environment.

3O-HIS is designed to explore methods to interoperate

hydrologic data between servers’ and users’ computers.

Hydrodynamic models, designed as a service-oriented web

application tool was deployed on a server which makes

hydrologic applications on the Internet available to non-expert

users by allowing them to access data, process them and publish

results in a distributed network.

153

Comparing with other traditional framework–GIS based

approaches, 3O-HIS has a high level of performance which is

designed under the concept of loosely coupled self-contained

services and is developed for optimal, scenario exploration and

decision support. It provides a flexible platform, loosely coupled

self-contained services, data accessibility and service

interoperability for environmental models.

6.2 Major findings

3O-HIS, a common framework has been developed to provide

an innovative way to make full use of existing and emerging

standards to aggregate heterogeneous geospatial data and

observational data, and deliver rich user interface for users to

perform domain analysis tasks at client-side. In particular, the

new 3O-HIS system includes the following components:

hydrological models, data processing based on OpenGIS

protocols, GUI for data representation.

154

6.2.1 Components of 3O-HIS

Hydrological models are the fundamental component in 3O-HIS.

The models can be integrated and comprise of an ‘engine’ for

hydrodynamic data generator. The validity of the hydrological

models mainly depends on the selected hydrodynamic data and

it is out of scope. Our concern is how hydrologic models

encapsulated smoothly in 3O-HIS representing by two case

studies. In Blackpool case, the process of encapsulating

TELEMAC model into 3O-HIS has been represented. In Demra

case study, map information, physical parameters and water

balance model are uploaded into 52n service. Shapefiles and

PostSQL in both studies can be loaded in GIS directly and the

data transmission depends on OpenGIS standard protocols such

as SOAP, XML and GML.

Simplicity is the key word for describing the data processing

flow of 3O-HIS, we try to make data conversion simply during

155

the data processing. Integration these specific standards in

different hydrological models, users may have more concise

way to select hydrological models, it is necessary to develop a

more general way of encapsulating different models. Currently,

many common file formats can be converted such as TXT,

HTML, and dbf and most of raster files such as jpg and bmp.

For example, In Demra case study, jpg files have been used for

raster date analysis where each pixel represents 10m×10m areas,

the value of agriculture areas.

The concise solution requires a series of protocols which are

implemented during data processing. XML and GML are two

key protocols for data transmission such as physical parameters,

information of messages in services (call/response). Both of

them are tag pairing, and the information is stored in each

pairing. The pairing method extends the types of data resource

stored in 3O-HIS. To ensure the pair of tag are same, and there

156

is no constraint for the information between the tags.

A GUI has been developed for data representation and the data

can be represented in common GIS applications which allows

link to database. For example, a GUI has been created and links

to PostSQL for directly checking the results in the Blackpool

case and the GUI links to 52n services in Demra case to

represent data interoperation.

6.2.2 Application of 3O-HIS

Two cases have been used in 3O-HIS. In the Blackpool case

study, the bottom file, and boundary file convert into shapefiles

and PostSQL database stores physical parameters. While in

Demra case study, polygon maps and raster maps are loaded in

52n services. Two case studies represent the hydrological

models distributed to local and services. Four major findings can

be found:

157

 3O-HIS runs TELEMAC model initially on local, huge of

hydrological data are generated (about 6.5 GB), and we

reorganized the structure of results in TELEMAC from

representing all hydrological value in each time to represent

each hydrological value in the time series. After the tests,

when the time step=3 hours, it is most efficient for container

carries hydrological value.

 GML2 is used for geometry information exchange. GML2

has the function of gml:posList which can present the

geometry files such as mesh, XML has no specific

instructions for geometry file. GML2 is recommended for

geometry information of message exchange.

 Small pieces of hydrological models are more suitable than

the single frame hydrological models. The water balance

158

model is small one, which is deployed on WPS services

directly. The TELEMAC haven’t been encapsulated in

services. The major reason is speed, we test the data

exchange, it shows that the common time cost is 0-1s for

each send/receive processing, the iteration in TELEMAC

arithmetic is huge and time consuming will be considerable.

 Comparing with the original CUAHSI HIS, the ‘HIS centre’

which is a vital part in CUAHSI HIS replaces several

protocols. We used XML, GML and SOAP for data exchange.

It is concise for data exchange. However, the time response

is longer than CUAHSI HIS.

6.3 Further works

 Grid computing with service-orientation structure, to

processing computational hydraulic applications in

internet-scale. Currently TELEMAC integrate with 3O-HIS

159

at a low level, Grid computing with service-orientation

provides opportunity for conglomeration other services,

using idle processing power, have a high performance

computing for computational hydraulic models.

 Balance the granularity of services, one solution from the

major fining is that TELEMAC are divided, and refined

services compose the hydraulic model. The granularity of

each refined service need to careful design. Too coarse will

reduce the flexibility, Too refined will reduce the

computational performance.

 Balance the protocols and the services. From last finding

shows some services are redundant for storing massive data

to enhance the performance and protocols may control the

behavioural services.

160

References

Alam, M., Rabbani, G., 2007. Vulnerabilities and responses to climate

change for Dhaka, Environment and Urbanisation, IIED, 19 (1),

81–97.

Alonso, G., Casati, F., Kuno, H., Machiraju, V. 2004. “Web Services:

Concepts, Architectures and Applications”, Springer-Verlag,

Berlin Heidelberg New York.

Al-Sabhan, W., Mulligan, M., Blackburn, G.A., 2003. A real-time

hydrological model for flood prediction using GIS and the WWW.

Computers, Environment and Urban Systems, 27, 9-32.

Ames, D.P., Horsburgh, J.S., Cao, Y., Kadlec, J., Whiteaker, T., Valentine,

D., 2012. HydroDesktop: Web services-based software for

hydrologic data discovery, download, visualization, and analysis.

Environmental Modelling & Software, 37, 146-156.

Argent, R., 2004. An overview of model integration for environmental

applications: components, frameworks and semantics,

Environmental Modelling & Software, 19 (3), 219-324

Argent, R., 2005. A case study of environmental modelling and

simulation using transplantable components, Environmental

Modelling & Software, 20 (12), 1514-1523.

Bain, D.J., Hale, R.L., and Wollheim, W.M., 2012. Hotbeds of

biogeochemical diversity; insights from urban long-term

ecological research sites, Mineralogical Society of America and

http://www.sciencedirect.com.ezproxy.liv.ac.uk/science/article/pii/S1364815212001053
http://www.sciencedirect.com.ezproxy.liv.ac.uk/science/article/pii/S1364815212001053
http://www.mendeley.com/research/case-study-environmental-modelling-simulation-using-transplantable-components-6/
http://www.mendeley.com/research/case-study-environmental-modelling-simulation-using-transplantable-components-6/

161

Mineralogical Society of Great Britain and Ireland and

Mineralogical Association of Canada and Geochemical Society

and Clay Minerals Society, International, 435-438.

Band, L., Patterson, P., Nemani, R., Running, S., 1993. Forest ecosystem

processes at the watershed scale: incorporating hillslope

hydrology, Agricultural and Forest Meteorology, 63 (1–2), 93–

126.

Bates, P.D., Roo, A.D., 2000. A simple raster-based model for flood

inundation simulation, Journal of hydrology, 236 (1), 54-77.

Battjes, J.A., Gerritsen, H., 2002. Coastal modelling for flood defence.

Philos Trans A Math Phys Eng Sci. 360(1796),1461-75.

Beran, B., Piasecki, M., 2009. Engineering new paths to water data.

Computers and Geosciences 35, 753–760.

Bih, J., 2006. Service Oriented Architecture – A new paradigm to

implement dynamic E-business solutions, ubiquity, 07(30).

http://ubiquity.acm.org/article.cfm?id=1159403.

Castronova, A.M., Goodall, J.L., Elag, M.M., 2013. Models as web

services using the Open Geospatial Consortium (OGC) Web

Processing Service (WPS) standard, Environmental Modelling &

software, 41, 72-83.

Castronova, A.M., Goodall, J.L., Ercan, M.B., 2013. Integrated modeling

within a hydro-logic information system: an OpenMI based

approach, Environmental Modelling & software, 39, 263-273.

Chatterjee, S., 2004. Messaging Patterns in Service-Oriented

Architecture,

http://msdn.microsoft.com/en-us/library/aa480027.aspx.

Chen, D., Shams, S., Carmona-Moreno, C., Leone, A., 2010. Assessment

of Open Source GIS Software for Water Resources Management

in Developing Countries, J of Hydro-Environment Research, 4 (3),

253-264.

http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=RO4T7pcAAAAJ&citation_for_view=RO4T7pcAAAAJ:u5HHmVD_uO8C
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=RO4T7pcAAAAJ&citation_for_view=RO4T7pcAAAAJ:u5HHmVD_uO8C
http://www.ncbi.nlm.nih.gov/pubmed/12804260
http://ubiquity.acm.org/article.cfm?id=1159403
http://msdn.microsoft.com/en-us/library/aa480027.aspx

162

Choi, K.W., Yu, K., 2008 Strategies for Introducing Geospatial One-Stop

(GOS) to Fulfil Domestic Needs, International Journal of

Geoinformatics, 4(1), 29-35.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.,

2002. Unraveling the Web Services Web, IEEE Internet

Computing, 6, 86-93.

Facchi, A., Ortuani, B., Maggi, D., Gandolfi, C., 2004. Coupled SVAT –

groundwater model for water resources simulation in irrigated

alluvial plains, Environmental Modelling & Software, 19 (11),

1053–1063.

Feng, M., Liu, S., Euliss Jr., N.H., Young, C., Mushet, D.M., 2011.

Prototyping an online wetland ecosystem services model using

open model sharing standards. Environmental Modelling &

Software, 26 (4), 458-468.

Foote, K.E., Lynch, M., 1995 Data Sources for GIS, Department of

Geography, University of Texas at Austin.

Foster, I., 2005. Service-Oriented Science, Science, 308 (5723),

814-817.

Foster, I., Kesselman, C., NickJ.M., Tuecke, S., 2001. Grid services for

distributed system integration, Computer, 35 (6), 37-46.

Georgakopoulos, D., Papazoglou, M., 2012. Service-Oriented

Computing, Cambridge, Massachusetts, London, England.

Goodall, J.L., Horsburgh, J.S., Whiteaker, T.L. Maidment, D.R., Zaslavsky,

I., 2008. A first approach to web services for the National Water

Information System. Environmental Modeling & Software, 23 (4),

404-411.

Goodall, J.L., Robinson, B.F., Castronova, A.M., 2011. Modeling water

resource systems using a service-oriented computing paradigm,

Environmental Modelling & Software, 26(5), 573-582.

javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22International%20Journal%20of%20Geoinformatics%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','mdb~~a9h%7C%7Cjdb~~a9hjnh%7C%7Css~~JN%20%22International%20Journal%20of%20Geoinformatics%22%7C%7Csl~~jh','');
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=VGoSakQAAAAJ&citation_for_view=VGoSakQAAAAJ:UeHWp8X0CEIC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=VGoSakQAAAAJ&citation_for_view=VGoSakQAAAAJ:UeHWp8X0CEIC

163

Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered

geography, GeoJournal 69 (4), 211–221.

Gornitz, V., 1995. Sea level rise: a review of recent past and

near-future trends, Earth Surface Processes and Landforms, 20,

7-20.

Granell, C., Diaz, L., Gould, M., 2009. Distributed geospatial processing

services, Encyclopedia of Information Science and Technology,

Information Science Reference, 1186–1193

Granell, C., Diaz, L., Gould, M., 2010. Service-oriented applications for

environ-mental models: reusable geospatial services,

Environmental Modelling & Software, 25(2), 182-198.

Guariso, G., Hitz, M., Werthner, H., 1996. An integrated simulation and

optimization modelling environment for decision support,

Decision Support Systems, 16 (2), 103-117.

Hervouet, J.M., Bates, P., 2000. The TELEMAC modelling system

Special issue, Hydrological Processes, 14(13), 2207-2208.

Horritt, M.S., Bates, P.D., 2001. Evaluation of 1D and 2D numerical

models for predicting river flood inundation, Journal of

Hydrology, 268 (1), 87-99.

Horsburgh, J.S., Tarboton, D.G., Maidment, D.R., Zaslavsky, I., 2011.

Components of an environmental observatory information

system. Computer & Geosciences, 37(2011), 207-218.

Horsburgh, J.S., Tarboton, D.G., Piasecki, M., Maidment, D.R., Zaslavsky,

I., Valentine, D., Whitenack, T., 2009. An integrated system for

publishing environmental observations data. Environmental

Modelling & Software, 24 (8), 879-888.

House of Commons EFRA Committee, 2008. The potential of

England’s rural economy, Volume I, 5-9.

http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=RO4T7pcAAAAJ&citation_for_view=RO4T7pcAAAAJ:u-x6o8ySG0sC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=RO4T7pcAAAAJ&citation_for_view=RO4T7pcAAAAJ:u-x6o8ySG0sC

164

Huhns, M., Singh, M., 2005. Service-Oriented computing: key concepts

and Principles, IEEE Internet Computing, 9(1), 75-81.

Jorgenson, M.T., Brown. J., 2005. Classification of the Alaskan Beaufort

Sea Coast and estimation of carbon and sediments inputs from

coastal erosion, Geo-Marine Letters, (25), 69-80.

Keller, M., Schimel, D.S., Hargrove, W.W., Hoffman, F.M. 2008. A

Continental Strategy for the National Ecological Observatory

Network, Frontiers in Ecology and the Environment, 6 (5),

282-284.

Khanbabaei, M., Asadi, M., 2011. Principles of Service-Oriented

Architecture and Web Services Application In Order to

Implement Service-Oriented Architecture in Software

Engineering, Australian Journal of Basic and Applied Sciences,

5(11), 2046-2051.

Lecca, G., Petitdidier, M., Hluchy, L., Ivanovic, M., Kussul, N., Ray, N.,

Thieron, V., 2011. Grid computing technology for hydrological

applications, Journal of Hydrology, 403(1-2), 186-199.

Leone, A., Chen, D., 2007. Implementation of an Object Oriented data

model in an Information System for water catchment

management: JAVA JDO and db4o Object Database.

Environmental Modelling & Software, 22, 1805-1810.

Leone, A., Shams, S., Chen, D., 2006. An Object-Oriented and OpenGIS

Supported Hydro Information System (30-HIS) for Upper Mersey

River Basin Management. Journal of River Basin Management,

4(2), 1-9.

Liang, S.J., Molkenthin, F., 2001. A virtual GIS-based hydrodynamic

model system for Tamshui River, Journal of Hydro informatics,

3(2011), 195-202.

165

Lutz, M., Sprado, J., Klien, E., Schubert, C., Christ, I., 2009. Overcoming

semantic heterogeneity in spatial data infrastructures.

Computers & Geosciences, 35(4), 739-752.

Maidment, D. R., 2008. Bringing Water Data Together, Journal of

Water Resources Planning and Management, 134(2), 95-96.

Marks, K., Bates, P., 2000. Integration of high-resolution topographic

data with floodplain flow models, Hydrological Processes, 14

(11-12), 2109-2122.

Maxwell, R.M., Miller, N.L., 2005. Development of a coupled land

surface and groundwater model, Journal of Hydrometeorology, 6

(3), 233.

Miller, H. J., Han, J., 2009. Geographic data mining and knowledge

discovery, Data mining and knowledge discovery series (2nd ed).

Mineter, M.J., Jarvis, C.H., Dowers, S., 2003. From stand-alone

programs towards grid aware services and components: a case

study in agricultural modelling with interpolated climate data.

Environmental Modelling & Software, 18 (4), 379–391.

Morgan, J.E., McIntire, W.C., 1959. Quaternary geology of Bengal Basin,

East Pakistan and India, Geological Society of America Bulletin,

70, 319-342.

OGC, 2014. Open Geospatial Consortium Making location count.,

http://www.opengeospatial.org/ogc.

Papajorgji, P., Beck, H.W., Braga, J.L., 2004. An architecture for

developing service-oriented and component-based

environmental models, Ecological Modelling, 179, 61-76.

Papazoglou, M.P., Georgakopoulos, D., 2003. Introduction:

Service-oriented computing, Communications of the ACM -

Service-oriented computing, 46(10), 24-28.

http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=RO4T7pcAAAAJ&citation_for_view=RO4T7pcAAAAJ:9yKSN-GCB0IC
http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=RO4T7pcAAAAJ&citation_for_view=RO4T7pcAAAAJ:9yKSN-GCB0IC
http://www.opengeospatial.org/ogc

166

Paul, M., Ghosh, S.K., 2008. A framework for semantic interoperability

for distributed geospatial repositories, Computing and

Informatics, 27, 73-92.

Peckham, S. D., Goodall, J.L., 2013. Driving plug-and-play models with

data from web services: A demonstration of interoperability

between CSDMS and CUAHSI-HIS, Computers & Geosciences, 53,

154RLIN

Pingali, K., Stodghill, P., 2004. O’SOAP - A Web Services Framework for

DDDAS Applications, Workshop on Dynamic Data-Driven

Application Systems, International Conference on Computational

Science, 3038, 797-804.

Pirie, D., 2012. Flood Warning Strategy 2012 to 2016, Scottish

Environment Protection Agency, 5-18.

Pitt, M., 2008. An update of the Foresight Future Flooding 2004

qualitative risk analysis, Chapter 1, 3-4.

Robertson, G. P., L. W. Burger, C. L. Kling, R. Lowrance, and D. J. Mulla.

2007. New approaches to environmental management research

at landscape and watershed scales, 27-50.

Richard, S.M., Clark, R., Grunberg, W., 2011. Application of the US

Geoscience Information Network to deploying a National

Geothermal Data System, Cambridge University, Cambridge,

United Kingdom, 350-370.

Rizzoli, A., Donatelli, M., Athanasiadis, I., Villa, F., Huber, D., 2008.

Semantic links in integrated modelling frameworks, Mathematics

and Computers in Simulation, 78(2-3), 412-423.

Subramanya, K., 2008. Engineering Hydrology, McGraw-Hill, 75.

Shams, S., Huang. J., 2009. Object-Oriented Hydro Information System

(OHIS) for the Estimation and Visualization of Vegetation Water

Content, Journal of Engineering and Technology Vol. 7, No. 2

(JETIUT), 37- 50.

http://www.sciencedirect.com/science/journal/00983004/53/supp/C
http://www.cs.cornell.edu/~stodghil/papers/iccs04.pdf
http://www.cs.cornell.edu/~stodghil/papers/iccs04.pdf
http://search.usi.ch/people/b741daf7a677b3fd1f57748c2848e648/Rizzoli-Andrea-Emilio
http://search.usi.ch/publications/3803/Semantic-links-in-integrated-modelling-frameworks
http://www.sciencedirect.com/science/journal/03784754
http://www.sciencedirect.com/science/journal/03784754

167

Shams, S., Zakzok, E., Chen, D., Huang, J., 2010. Estimation and

monitoring non-point source pollutant loads: an object oriented

hydro information approach, Int. J. Environment and Waste

Management, 6(3/4), 220 - 236.

Singh, M.P., Huhns, M.N., 2005. Service-Oriented Computing:

Semantics, Processes, Agents, 71-84.

Spanou, M., Chen, D., 2000. An Object-Oriented tool for the control of

point-source pollution in river systems, Environmental

Modelling and Software, 15(1), 35-54.

Sprott, D., Wilkes, L., 2004. Understanding Service-Oriented

Architecture, Developer Network.

http://msdn.microsoft.com/en-us/library/aa480021.aspx.

STOWA/RIZA, 1999. Smooth Modelling in Water Management, Good

Modelling Practice Handbook, 30.

Tarboton, D.G., Horsburgh, J.S., Maidment, D.R., Whiteaker, T.,

Zaslavsky, I., Piasecki, M., Goodall, J., Valentine, D., Whitenack, T.,

2009. Development of a community hydrologic information

system. In: 18th World IMACS/MODSIM Congress. Cairns,

Australia, 988-994.

Taylor, J., 2014. Implementation of NEON’s quality assurance and

quality control analyses and their quantification though a quality

metric framework, Exhibit Hall, Sacramento Convention Center

http://eco.confex.com/eco/2014/webprogram/Paper45307.ht

ml.

Telemac user manual, 2010. 2D hydrodynamics TELEMAC-2D

software Version 6.0 USER MANUAL.

Thumerer, T., A. P. Jones, D. Brown., 2000. A GIS based coastal

management system for climate change associated flood risk

assessment on the east coast of England, International Journal of

Geographical Information Science, 14(3), 265-281.

http://www.inderscience.com/browse/index.php?journalID=75&year=2010&vol=6&issue=3/4
http://msdn.microsoft.com/en-us/library/aa480021.aspx

168

UN Population Division, 2010, World Population Prospects: The 2008

Revision and World Urbanization Prospects: The 2009 Revision,

Retrieved on 18 October, 2010 from:

http://esa.un.org/wup2009/unup/.

University of California San Diego, 2008. US Hydrologic information

system initiative.

Verma,S., Verma, R.K., Singh, A., Naik, N.S., Web-Based GIS and

Desktop Open Source GIS Software: An Emerging Innovative

Approach for Water Resources Management, Advances in

Computer Science,1061-1074.

Webber, J., Parastatidis, S., 2009. Realizing Service-Oriented

Architectures with Web Services, 53-66.

WPS, Web Processing Service, OGC Making location count.,

http://www.opengeospatial.org/standards/wps.

Wyre Borough council, 2004. Wyre Flood and Coastal Defence

Strategy Plan.

Zaslavsky, I., Maidment.,D. R., 2011. Service orientation in the design

of a community hydrologic information system, 200.

Zaslavsky, I., D. Valentine, D. R. Maidment, 2007. CUAHSI

cyberinfrastructure for hydrologic sciences, Geoinformatics,

http://gsa.confex.com/gsa/2007GE/finalprogram/abstract_122

270.htm.

Zaslavsky, I., D. Valentine, R. Hooper, M. Piasecki, A. Couch, A. Bedig,

2012, Community practices for naming and managing hydrologic

variables, in Proceedings of the AWRA Spring Specialty

Conference on GIS and Water Resources, New Orleans, LA,

http://his.cuahsi.org/documents/IlyaZaslavsky_51e7c422_7956

.pdf.

http://esa.un.org/wup2009/unup/
http://www.opengeospatial.org/standards/wps
http://gsa.confex.com/gsa/2007GE/finalprogram/abstract_122270.htm
http://gsa.confex.com/gsa/2007GE/finalprogram/abstract_122270.htm

169

Zaslavsky, I., Valentine, D., Whiteaker, T., 2007. CUAHSI WaterML, OGC

07-041r1, Open Geospatial Consortium Discussion Paper,

http://portal.opengeospatial.org/files/?artifact_id=21743.

http://portal.opengeospatial.org/files/?artifact_id=21743

170

Appendix I

SQLConnection.java

package lib;

import java.io.PrintStream;

import java.sql.Connection;

import java.sql.DatabaseMetaData;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.ArrayList;

import java.util.List;

public class SQLConnection

{

 private static Connection db;

 private static Statement sql;

 private static DatabaseMetaData dbmd;

 private static ResultSet sqlresults;

 private static boolean isconnection=false;

 private static int totalnumbertable;

 private static int numberselcetNBV1;

 public static boolean isconnection(){

 return isconnection;

 }

 public static void connection()

 {

 String database = "//localhost:5432/mydb";

171

 String username = "postgres";

 String password = "zyc0107";

 try {

 Class.forName("org.postgresql.Driver");

 try {

 db = DriverManager.getConnection("jdbc:postgresql:" + database, username, password);

 dbmd = db.getMetaData();

 System.out.println("Connection to " + dbmd.getDatabaseProductName() + " " +

 dbmd.getDatabaseProductVersion() + " successful.\n");

 sql = db.createStatement();

 isconnection=true;

 }

 catch (SQLException e) {

 e.printStackTrace();

 }

 }

 catch (ClassNotFoundException e1) {

 e1.printStackTrace();

 }

 }

 public static Statement getsql()

 {

 return sql;

 }

 public static ResultSet getsqlresults() {

 return sqlresults;

 }

 public static void selecttable(String tablename) {

 String sqlText = "select * from " + tablename;

 try {

 sqlresults = sql.executeQuery(sqlText);

 }

 catch (SQLException e)

 {

172

 e.printStackTrace();

 }

 }

 public static void inserttable(String nameofresulttable) {

 List<?> steplist = read_file_code.getsteplist();

 int maxnumberoftable=(int) (Math.ceil(steplist.size() / 150)+1);

 System.out.println(maxnumberoftable);

 List<Integer> fsearchpointgroup=read_fortran_files.getfsearchpointgroup();

 String resulttablename= read_fortran_files.getresulttablename();

 System.out.println(fsearchpointgroup.get(1));

 System.out.println(resulttablename);

 for (int StepForRunPoint=0; StepForRunPoint<3;StepForRunPoint++){

 for (int i=1;i<=maxnumberoftable;i++){

 String textString=null;

 if(i==1){

 textString = "SELECT * into " + nameofresulttable+StepForRunPoint+" FROM

"+resulttablename+"_"+i+" WHERE

"+resulttablename+"_"+i+".gid="+fsearchpointgroup.get(StepForRunPoint);

 }

 else{

 String textString_1 = " SELECT * FROM "+resulttablename+"_"+i+" WHERE

"+resulttablename+"_"+i+".gid="+fsearchpointgroup.get(StepForRunPoint);

 textString="INSERT INTO "+nameofresulttable+StepForRunPoint+ textString_1;

 }

 System.out.print(textString);

 try

 {

 sql.executeUpdate(textString);

 System.out.println(textString);

 }

 catch (SQLException e) {

173

 e.printStackTrace();

 }

 }

 }

 }

 public static void creattable(String tablename) {

 String textString = "";

 String text = "";

 String textStringhead = "";

 String tablenametrim = tablename.trim();

 String NameofUnitTrim = tablename.trim();

 String NameofUnitTrimChange = "";

 if ((tablenametrim != null) || (tablenametrim != "")) {

 if (NameofUnitTrim.indexOf(" ") != -1)

 NameofUnitTrimChange = NameofUnitTrim.replace(" ", "_");

 else {

 NameofUnitTrimChange = NameofUnitTrim;

 }

 List<?> step = read_file_code.getsteplist();

 List<?> AT = read_file_code.gettimelist();

 textStringhead = "Number varchar(40), X double precision,Y double precision,";

 for (int i = 0; i < step.size() - 1; i++) {

 int timeInt = ((Float)AT.get(i)).intValue();

 String time = Integer.toString(timeInt).trim();

 text = NameofUnitTrimChange + time + " varchar(40),";

 textString = textString + text;

 }

 String lasttime = Integer.toString(((Float)AT.get(AT.size() - 1)).intValue()).trim();

 String string = NameofUnitTrimChange + lasttime + " varchar(40)";

 String sqlText = "create table IF NOT EXISTS " + NameofUnitTrimChange + "(" + textStringhead +

textString + string + ")";

174

 System.out.print(sqlText);

 try {

 sql.executeUpdate(sqlText);

 }

 catch (SQLException e) {

 e.printStackTrace();

 }

 }

 }

 public static void updatetable(String tablename, String NameofUnit,int tableofnumber)

 {

 String sqlText = "";

 ArrayList<String> arr = new ArrayList<String>();

 String NameofUnitTrim = NameofUnit.trim();

 String NameofUnitTrimChange = "";

 int NPOIN = read_file_code.getNPOIN();

 if ((NameofUnitTrim != null) || (NameofUnitTrim != "")) {

 if (NameofUnitTrim.indexOf(" ") != -1)

 NameofUnitTrimChange = NameofUnitTrim.replace(" ", "_");

 else {

 NameofUnitTrimChange = NameofUnitTrim;

 }

 List<?> steplist = read_file_code.getsteplist();

 List<?> AT = read_file_code.gettimelist();

 Object[][][] totalvariable = read_file_code.gettotalvariable();

 numberselcetNBV1=read_fortran_files.getnumberselcetNBV1();

 String textString = "";

 String text = "";

 String string = "";

 totalnumbertable = (int)Math.ceil(steplist.size() / 150)+1;

 System.out.println("totalnumbertable"+totalnumbertable);

 for (int n = 0; n < NPOIN; n++)

 {

 if (tableofnumber == totalnumbertable) {

175

 System.out.println("totalnumbertable1"+totalnumbertable);

 tableofnumber=tableofnumber-1;

 for (int i = tableofnumber * 150; i < steplist.size(); i++) {

 int subStep=i%150;

 int timeInt = ((Float)AT.get(i)).intValue();

 String time = Integer.toString(timeInt).trim();

 if (((i + 1) % 150 != 0) && (i != steplist.size() - 1)) {

 text = NameofUnitTrimChange + time + " =" +

totalvariable[numberselcetNBV1][n][subStep] + ",";

 textString = textString + text;

 } else {

 String lasttime = Integer.toString(((Float)AT.get(i)).intValue()).trim();

 string = NameofUnitTrimChange + lasttime + " =" +

totalvariable[numberselcetNBV1][n][subStep];

 int a = n + 1;

 tableofnumber = tableofnumber + 1;

 sqlText = "UPDATE " + tablename + "_" + tableofnumber + " SET " + textString +

string + " where gid=" + a;

 arr.add(sqlText);

 textString = "";

 text = "";

 string = "";

 System.out.println("totalnumbertable"+sqlText);

 }

 }

 }

 else {

 tableofnumber=tableofnumber-1;

 for (int i = 0; i < 150; i++) {

 int timeInt = ((Float)AT.get(i + tableofnumber * 150)).intValue();

 String time = Integer.toString(timeInt).trim();

 if (((i + 1) % 150 != 0) && (i != steplist.size() - 1)) {

 text = NameofUnitTrimChange + time + " =" + totalvariable[numberselcetNBV1][n][i]

+ ",";

176

 textString = textString + text;

 } else {

 String lasttime = Integer.toString(((Float)AT.get(i + tableofnumber *

150)).intValue()).trim();

 string = NameofUnitTrimChange + lasttime + " =" +

totalvariable[numberselcetNBV1][n][i];

 int a = n + 1;

 tableofnumber = tableofnumber + 1;

 sqlText = "UPDATE " + tablename + "_" + tableofnumber + " SET " + textString +

string + " where gid=" + a;

 arr.add(sqlText);

 textString = "";

 text = "";

 string = "";

 }

 }

 }

 if ((n % 500 == 0 && n!=0) || (NPOIN - 1 - n <= 150)){

 try {

 for (int i = 0; i < arr.size(); i++) {

 sql.addBatch((String)arr.get(i));

 if (i==arr.size()-1 && tableofnumber==8){

 System.out.println("Executing this command: " + (String)arr.get(i) + "\n");

 }

 }

 sql.executeBatch();

 arr.clear();

 System.out.println("n " + n);

 }

 catch (SQLException e)

 {

 e.printStackTrace();

177

 }

 }

 }

 totalvariable=null;

 }

 }

 public static void droptable(String tablename)

 {

 String sqlText = "";

 String tablenametrim = tablename.trim();

 String NameofUnitTrim = tablename.trim();

 String NameofUnitTrimChange = "";

 if ((tablenametrim != null) || (tablenametrim != "")) {

 if (NameofUnitTrim.indexOf(" ") != -1)

 NameofUnitTrimChange = NameofUnitTrim.replace(" ", "_");

 else {

 NameofUnitTrimChange = NameofUnitTrim;

 }

 sqlText = "DROP table Export_" + NameofUnitTrimChange;

 try

 {

 sql.executeUpdate(sqlText);

 System.out.print("OK");

 }

 catch (SQLException e) {

 e.printStackTrace();

 }

 }

 }

 public static void altertable(String tablename, String NameofUnit,String serialnum)

 {

 String text = "";

 String sqlText = "";

178

 String NameofUnitTrim = NameofUnit.trim();

 String NameofUnitTrimChange = "";

 int numbertable = 0;

 boolean go = true;

 if ((NameofUnitTrim != null) || (NameofUnitTrim != "")) {

 if (NameofUnitTrim.indexOf(" ") != -1)

 NameofUnitTrimChange = NameofUnitTrim.replace(" ", "_");

 else {

 NameofUnitTrimChange = NameofUnitTrim;

 }

 List<?> step = read_file_code.getsteplist();

 List<?> AT = read_file_code.gettimelist();

 for (int i = 0; i < step.size(); i++)

 {

 if (((i % 150 == 0) || (step.size() - 1 - (numbertable - 1) * 150 < 150)) && go==true)

 {

 numbertable++;

 System.out.println(i);

 sqlText = "select * into " + tablename+serialnum + "_" + numbertable + " from " +

tablename;

 if (step.size() - 1 - i < 150){

 go = false;

 }

 try

 {

 sql.executeUpdate(sqlText);

 System.out.println(sqlText);

 }

 catch (SQLException e) {

 e.printStackTrace();

 }

 }

 System.out.println(i);

 int timeInt = ((Float)AT.get(i)).intValue();

179

 String time = Integer.toString(timeInt).trim();

 text = NameofUnitTrimChange + time + " numeric";

 sqlText = "alter table " + tablename+serialnum + "_" + numbertable + " add " + text;

 try

 {

 sql.executeUpdate(sqlText);

 System.out.println(sqlText);

 }

 catch (SQLException e) {

 e.printStackTrace();

 }

 }

 }

 }

 public static void closed()

 {

 try

 {

 db.close();

 }

 catch (SQLException e) {

 e.printStackTrace();

 }

 }

}

180

OpenFile.java

package lib;

import java.io.File;

import javax.swing.JFileChooser;

import javax.swing.filechooser.FileFilter;

public class OpenFile {

 static String path;

 public static void openfile() {

 int flag;

 JFileChooser fileChooser = new JFileChooser();

 fileChooser.setCurrentDirectory(new File("."));

 fileChooser.setAcceptAllFileFilterUsed(false);

 final String[][] fileENames = { { ".java", "JAVA 源程序 文件(*.java)" },

 { ".res", "Telemac 文件(*.res)" },

 { ".xls", "MS-Excel 2003 文件(*.xls)" }

 };

 fileChooser.addChoosableFileFilter(new FileFilter() {

 public boolean accept(File file) {

 return true;

 }

 public String getDescription() {

 return "所有文件(*.*)";

 }

 });

 for (final String[] fileEName : fileENames) {

 fileChooser.setFileFilter(new javax.swing.filechooser.FileFilter() {

 public boolean accept(File file) {

 if (file.getName().endsWith(fileEName[0]) || file.isDirectory()) {

 return true;

 }

 return false;

 }

181

 public String getDescription() {

 return fileEName[1];

 }

 });

 }

 flag=fileChooser.showDialog(null, null);

 if(flag==JFileChooser.APPROVE_OPTION){

 String path=fileChooser.getSelectedFile().getPath();

 OpenFile.path=path;

 }

 }

 public static String getrespath() {

 return path;

 }

}

182

Read_file_code.java

package lib;

import java.awt.Label;

import java.io.BufferedInputStream;

import java.io.DataInputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.sql.Statement;

import java.util.ArrayList;

import java.util.List;

public class read_file_code {

 static DataInputStream dis;

 static int Take_Number;

// static Object[][] variable;//变量，NPOIN

 static Object[][][] totalvariable;//变量，NPOIN

 static int NBV1;

 static int NBV2;

 static int NPOIN;

 static int NELEM;

 static float AT;

 static List<Float> timelist;

 static List<Integer> steplist;

 static String[] NameofUnit;

 static String[] Unit;

 static Object[] X;

 static Object[] Y;

 static byte[] itemBuf;

 static String charTake_Number;

 static boolean initial=true;

 static boolean sencenumber=false;

183

 public static boolean sence(int Take_Number){

 boolean sence=false;

 if (Take_Number>0&Take_Number<1000){

 sence=true;

 }else sence=false;

 return sence;

 }

 public static int getNBV1(){

 return NBV1;

}

 public static DataInputStream getdis(String fileName){

 return dis;

 }

 public static String[] getNameofUnit(){

 return NameofUnit;

 }

 public static Object[][][] gettotalvariable(){

 return totalvariable;

 }

 public static int getvariablenumber(){

 return NBV1;

 }

 public static int getNPOIN(){

 return NPOIN;

 }

 public static int getNELEM(){

 return NELEM;

 }

 public static Object[] getX(){

 return X;

 }

 public static Object[] getY(){

 return Y;

 }

184

 public static List<Integer> getsteplist(){

 return steplist;

 }

 public static List<Float> gettimelist(){

 return timelist;

 }

 public static void readFile(String fileName,int filenumber){

 read_file_code.totalvariable=null;

 File file = new File(fileName);

 try {

 DataInputStream dis = new DataInputStream(

 new BufferedInputStream(

 new FileInputStream(file)));

 read_file_code.dis=dis;

 System.out.println("开始读取文件");

 byte[] itemBuf = new byte[80];

 read_file_code.itemBuf=itemBuf;

 //80

 boolean logic=false;

 while (logic==false) {

 int t = dis.readInt();

 logic=sence(t);

 Take_Number=t;

 }

 dis.read(itemBuf, 0, 72);

 String title = new String(itemBuf,0,72);

 System.out.println("title:"+ title);

 dis.read(itemBuf, 0, 8);

 String format = new String(itemBuf,0,8);

 System.out.println("format:"+ format);

 //80

 logic=false;

 while (logic==false) {

 int t = dis.readInt();

185

 logic=sence(t);

 Take_Number=t;

 }

 dis.readInt();//8

 int NBV1 = dis.readInt(); //number of variable //9

 System.out.println("Number of NBV1 "+NBV1);

 int NBV2 = dis.readInt();//0

 System.out.println("Number of NBV2 "+NBV2);

 String[] NameofUnit = new String[NBV1];

 String[] Unit = new String[NBV1];

 dis.readInt(); //8

 int unit = dis.readInt();//32

 for(int i=0; i <NBV1; i++){

 int halfunit= unit/2;

 dis.read(itemBuf, 0, halfunit);

 String variable_name = new String(itemBuf,0,halfunit);

 NameofUnit[i]=variable_name;

 dis.read(itemBuf, 0, halfunit);

 String variable_name_units = new String(itemBuf,0,halfunit);

 Unit[i]=variable_name_units;

 System.out.println("变量名称:"+ NameofUnit[i]+Unit[i]);

 dis.read(itemBuf, 0, 8);

 }

 System.out.println("NBV1 变量个数:"+ NBV1);

 System.out.println("NBV2 变量个数:"+ NBV2);

 // dis.readInt();//32

 // dis.readInt();//40

 //IPARAM

 boolean gomore = false;

 for (int i=0; i<10; i++){

 if (i==9){

 int panduan=dis.readInt();

 if(panduan==1){

186

 gomore=true;

 }

 else {

 gomore=false;

 }

 }else {

 dis.readInt();

 }

 }

 int FORMAT = dis.readInt();

 int NELEM=0;

 int NPOIN=0;

 int NDP=0;

 if (FORMAT==40){//SERAPHIN FORMAT FILE

 if (gomore==true){

 for (int i=0; i<8; i++){

 dis.readInt();

 }

 }

 dis.readInt();//16

 NELEM = dis.readInt();//number of elements

 NPOIN = dis.readInt();//number of points

 NDP = dis.readInt();// number of points per element

 dis.readInt();//1

 System.out.println("NELEM "+NELEM);

 System.out.println("NPOIN "+NPOIN);

 System.out.println("NDP "+NDP);

 }

 //IKLE

 dis.readInt();//16

187

 dis.readInt();//196584

 Object[][] NELEMList = new Object[NELEM][NDP];

 int i=0;

 Object[] NELEMEach;

 while (i<NELEM){

 NELEMEach = new Object[NDP];

 for (int n=0; n<NDP;n++){

 NELEMEach[n] = (Object) dis.readInt();

 }

 if (i==0||i==NELEM-1){//last 2628 3374 5797 node

 System.out.println("NELEMList[i++] "+NELEMEach[0]+" "+NELEMEach[1]+"

"+NELEMEach[2]);

 }

 NELEMList[i] = NELEMEach;

 i=i+1;

 }

 //IPOBO

 dis.readInt();//196584

 dis.readInt();//33940

 Object[] IPOBO = new Object[NPOIN];

 for (int n=0; n<NPOIN;n++){

 IPOBO[n] = (Object) dis.readInt();

 }

 //x

 dis.readInt();//33940

 dis.readInt();//33940

 Object[] X = new Object[NPOIN];

 for (int n=0; n<NPOIN;n++){

 X[n] = (Object) dis.readFloat();

188

 }

 // System.out.println("X[n] "+X[2]);

 //Y

 dis.readInt();//33940

 dis.readInt();//33940

 Object[] Y = new Object[NPOIN];

 for (int n=0; n<NPOIN;n++){

 Y[n] = (Object) dis.readFloat();

 }

 int Step = 0;

 boolean go = true;

 List<Float> timelist = new ArrayList<Float>();

 List<Integer> steplist = new ArrayList<Integer>();

 Object[][][] totalvariable= new Object[NBV1][NPOIN][150];

 while(go==true) { //第一次循环，为的是找到 step 值

 try{

 // System.out.println("第"+Step+"输出开始");

 int subStep=Step%150;

 int numberoftable=(int)Math.floor(Step / 150)+1;

 //每次 step ，是循环 NBV1 次，录入 NBV1 个变量

 for (i=0; i<NBV1;i++){

 //定义 NBV1 个循环开始前的头

 int number=0;

 if (i==0){

 while(number<5) {

 if (number!=2){

 dis.readInt();

 }else {

 Float AT=dis.readFloat();

189

 timelist.add(AT);

 }

 number=number+1;

 }

 }else

 while(number<2) {

 dis.readInt();

 number=number+1;

 }

 number=0;

 // 头之后 又录入了 NPOIN 个变量

 while(number<NPOIN) {

 if (numberoftable==filenumber){

 totalvariable[i][number][subStep]=(Object) dis.readFloat() ;

 }else {

 dis.readFloat();

 }

 number=number+1;

 }

 }

 steplist.add(Step);

 System.out.println("第"+Step+"步");

 if (numberoftable==filenumber){

 System.out.println("第"+timelist.get(Step)+"秒的数值");

 for (int n=0;n<NBV1;n++){

 System.out.println(NameofUnit[n]+" "+Unit[n]+" "+NPOIN+"

"+totalvariable[n][NPOIN-1][subStep]);

 }

 System.out.println("第"+Step+"输出完毕");

 }

190

 read_file_code.dis=dis;

 if (filenumber==1){

 read_file_code.dis=dis;

 read_file_code.NBV1= NBV1;

 read_file_code.NBV2= NBV2;

 read_file_code.NPOIN= NPOIN;

 read_file_code.NELEM= NELEM;

 read_file_code.timelist= timelist;

 read_file_code.steplist= steplist;

 read_file_code.NameofUnit= NameofUnit;

 read_file_code.Unit= Unit;

 read_file_code.X= X;

 read_file_code.Y= Y;

 read_file_code.itemBuf= itemBuf;

 }

 read_file_code.totalvariable=totalvariable;

 Step=Step+1;

 }catch(java.io.EOFException e){

 go=false;

 }

 }

 totalvariable=null;

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

191

Read_fortran_files.java

package lib;

import java.awt.Choice;

import java.awt.EventQueue;

import java.awt.Font;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import java.io.DataOutputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.PrintStream;

import java.util.ArrayList;

import java.util.List;

import javax.swing.JButton;

import javax.swing.JComboBox;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.SpringLayout;

import javax.swing.border.EmptyBorder;

import lib.OpenFile;

import lib.SQLConnection;

import lib.read_file_code;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import javax.swing.JTextField;

import java.awt.event.KeyAdapter;

import java.awt.event.KeyEvent;

public class read_fortran_files extends JFrame

{

 static Object[][] variable;

192

 static int NBV1;

 static int NBV2;

 static int NPOIN;

 static int NELEM;

 static String resulttablename;

 static String[] NameofUnit;

 static String[] Unit;

 static Object[] X;

 static Object[] Y;

 private JPanel contentPane;

 private Choice choice;

 private JTextField txtResulttable;

 private JTextField textField;

 private JTextField textField_1;

 private JTextField textField_2;

 private JTextField txtBlackpool;

 private JComboBox<String> choice_1=new JComboBox<String>();

 static String fsearchresulttablename;

 private static List<Integer> fsearchpointgroup;

 static int numberselcetNBV1;

 private JTextField txtA;

 public static String getfsearchresulttablename(){

 return fsearchresulttablename;

}

 public static List<Integer> getfsearchpointgroup(){

 return fsearchpointgroup;

}

 public static int getnumberselcetNBV1(){

 return numberselcetNBV1;

}

193

 public static String getresulttablename(){

 return resulttablename;

}

 public static void main(String[] args)

 {

 EventQueue.invokeLater(new Runnable() {

 public void run() {

 try {

 read_fortran_files frame = new read_fortran_files();

 frame.setVisible(true);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 });

 }

 public read_fortran_files()

 {

 txtBlackpool = new JTextField();

 txtBlackpool.setText("blackpool");

 choice_1.setBounds(423, 179, 76, 21);

 final JButton btnImport = new JButton("Import");

 btnImport.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 }

 });

 btnImport.setBounds(171, 241, 101, 23);

 final JButton btnAlterTable = new JButton("Alter Table");

 btnAlterTable.setBounds(45, 241, 108, 23);

 btnAlterTable.setEnabled(false);

 setDefaultCloseOperation(3);

 setBounds(150, 150, 532, 378);

194

 this.contentPane = new JPanel();

 this.contentPane.setBorder(new EmptyBorder(5, 5, 5, 5));

 setContentPane(this.contentPane);

 JButton btnReadfortranfiles = new JButton("OK");

 btnReadfortranfiles.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 }

 });

 btnReadfortranfiles.setBounds(434, 110, 65, 23);

 btnReadfortranfiles.addMouseListener(new MouseAdapter(){

 public void mouseClicked(MouseEvent arg0) {

 System.out.println("开始");

 SQLConnection.connection();

 String filepath = read_fortran_files.this.choice.getSelectedItem();

 read_file_code.readFile(filepath,1);

 boolean connectionsuccessful = SQLConnection.isconnection();

 NameofUnit = read_file_code.getNameofUnit();

 NBV1=read_file_code.getNBV1();

 if (connectionsuccessful) {

 btnImport.setEnabled(true);

 btnAlterTable.setEnabled(true);

 NBV1=read_file_code.getNBV1();

 choice_1.removeAllItems();

 for (int i=0;i<NBV1;i++){

 choice_1.addItem(NameofUnit[i]);

 }

 }

 System.out.println("结束");

 }

 });

 JButton btnNewButton = new JButton("Exit");

 btnNewButton.setBounds(400, 241, 99, 23);

 btnNewButton.addMouseListener(new MouseAdapter()

195

 {

 public void mouseClicked(MouseEvent arg0) {

 System.exit(0);

 }

 });

 contentPane.setLayout(null);

 this.contentPane.add(btnReadfortranfiles);

 JLabel lblNewLabel = new JLabel("Open Fortran Files");

 lblNewLabel.setBounds(182, 15, 246, 100);

 lblNewLabel.setFont(new Font("宋体", 0, 15));

 this.contentPane.add(lblNewLabel);

 this.contentPane.add(btnNewButton);

 this.choice = new Choice();

 choice.setBounds(192, 111, 150, 21);

 String filepath1 = "./result/lbay.res";

 String filepath2 = "F:/算例 blackpool 数据/算例/模拟数据/res/T2DRES_success_13";

 String filepath3 = "./result/LbayTel.res";

 this.choice.addItem(filepath1);

 this.choice.addItem(filepath2);

 this.choice.addItem(filepath3);

 this.contentPane.add(this.choice);

 JButton btnNewButton_1 = new JButton("Open");

 btnNewButton_1.setBounds(352, 110, 76, 23);

 btnNewButton_1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 }

 });

 btnNewButton_1.addMouseListener(new MouseAdapter()

 {

 public void mouseClicked(MouseEvent e) {

 OpenFile.openfile();

 String path = OpenFile.getrespath();

 read_fortran_files.this.choice.addItem(path);

196

 read_fortran_files.this.choice.select(path);

 }

 });

 this.contentPane.add(btnNewButton_1);

 btnImport.setEnabled(false);

 btnImport.addMouseListener(new MouseAdapter()

 {

 public void mouseClicked(MouseEvent arg0) {

 if (btnImport.isEnabled())

 {

 List<?> steplist = read_file_code.getsteplist();

 int totalnumbertable = (int)Math.ceil(steplist.size() / 150)+1;

 numberselcetNBV1=choice_1.getSelectedIndex();

 for (int i=1;i<=totalnumbertable;i++){

 String filepath = read_fortran_files.this.choice.getSelectedItem();

 System.out.println("(filepath,i)"+i);

 read_file_code.readFile(filepath,i);

 resulttablename=txtBlackpool.getText()+txtA.getText();

 SQLConnection.updatetable(resulttablename, choice_1.getSelectedItem().toString(),i);

 }

 SQLConnection.closed();

 }

 }

 });

 this.contentPane.add(btnImport);

 JButton btnExportXy = new JButton("Export X,Y");

 btnExportXy.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 }

 });

 btnExportXy.setBounds(282, 241, 108, 23);

 btnExportXy.addMouseListener(new MouseAdapter()

 {

197

 public void mouseClicked(MouseEvent arg0) {

 FileOutputStream f_write = null;

 try

 {

 String path="d:/"+txtBlackpool.getText()+".txt";

 f_write = new FileOutputStream(path);

 }

 catch (FileNotFoundException e1) {

 e1.printStackTrace();

 }

 DataOutputStream dos = new DataOutputStream(f_write);

 System.out.println("Input:");

 Object[] X = read_file_code.getX();

 Object[] Y = read_file_code.getY();

 int NPOIN = read_file_code.getNPOIN();

 try {

 dos.writeBytes("X,Y");

 dos.writeBytes("\r\n");

 }

 catch (IOException e1) {

 e1.printStackTrace();

 }

 for (int n = 0; n < NPOIN; n++)

 {

 String XString = X[n].toString();

 String YString = Y[n].toString();

 String xyString = XString + ",\t" + YString;

 try

 {

 dos.writeBytes(xyString);

 dos.writeBytes("\r\n");

 System.out.print(xyString);

 }

198

 catch (Exception e) {

 throw new InternalError("Unexpected CloneNotSUpportedException: " + e.getMessage());

 }

 }

 try

 {

 dos.close();

 }

 catch (IOException e) {

 e.printStackTrace();

 btnAlterTable.setEnabled(true);

 }

 }

 });

 this.contentPane.add(btnExportXy);

 txtResulttable = new JTextField();

 txtResulttable.setBounds(171, 210, 171, 21);

 txtResulttable.setText("resulttable");

 btnAlterTable.addMouseListener(new MouseAdapter()

 {

 public void mouseClicked(MouseEvent arg0) {

 SQLConnection.altertable(txtBlackpool.getText(),

choice_1.getSelectedItem().toString(),txtA.getText());

 }

 });

 this.contentPane.add(btnAlterTable);

 JButton btnNewButton_2 = new JButton("Result");

 btnNewButton_2.setBounds(370, 209, 129, 23);

 btnNewButton_2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 }

 });

199

 btnNewButton_2.addMouseListener(new MouseAdapter() {

 @Override

 public void mouseClicked(MouseEvent e) {

 System.out.print("textString");

 fsearchpointgroup=null;

 resulttablename=txtBlackpool.getText()+txtA.getText();

 List<Integer> searchpointgroup = new ArrayList<Integer>();

 int searchpointgroup_1=Integer.parseInt(textField.getText());

 int searchpointgroup_2=Integer.parseInt(textField_1.getText());

 int searchpointgroup_3=Integer.parseInt(textField_2.getText());

 searchpointgroup.add(searchpointgroup_1);

 searchpointgroup.add(searchpointgroup_2);

 searchpointgroup.add(searchpointgroup_3);

 fsearchpointgroup=searchpointgroup;

 fsearchresulttablename=txtResulttable.getText()+txtA.getText();

 SQLConnection.inserttable(fsearchresulttablename);

 }

 });

 contentPane.add(btnNewButton_2);

 contentPane.add(txtResulttable);

 txtResulttable.setColumns(10);

 JLabel lblText = new JLabel("Creat table name:");

 lblText.setBounds(45, 151, 134, 15);

 contentPane.add(lblText);

 JLabel lblChooseTheResult = new JLabel("Choose the result files:");

 lblChooseTheResult.setBounds(45, 108, 176, 27);

 contentPane.add(lblChooseTheResult);

200

 JLabel lblChooseThe = new JLabel("Choose the Row:");

 lblChooseThe.setBounds(45, 182, 99, 15);

 contentPane.add(lblChooseThe);

 textField = new JTextField();

 textField.setText("13880");

 textField.setBounds(171, 179, 76, 21);

 contentPane.add(textField);

 textField.setColumns(10);

 textField_1 = new JTextField();

 textField_1.setText("18840");

 textField_1.setBounds(257, 179, 76, 21);

 textField_1.setColumns(10);

 contentPane.add(textField_1);

 textField_2 = new JTextField();

 textField_2.setText("16400");

 textField_2.setBounds(343, 179, 76, 21);

 textField_2.setColumns(10);

 contentPane.add(textField_2);

 JLabel lblResultTableName = new JLabel("Result table name:");

 lblResultTableName.setBounds(45, 207, 108, 15);

 contentPane.add(lblResultTableName);

// textField_4 = new JTextField();

 txtBlackpool.addMouseListener(new MouseAdapter() {

 @Override

 public void mouseClicked(MouseEvent e) {

 }

 });

201

 txtBlackpool.setBounds(170, 148, 76, 21);

 txtBlackpool.setColumns(10);

 contentPane.add(txtBlackpool);

 contentPane.add(choice_1);

 JLabel lblSer = new JLabel("Serial Number:");

 lblSer.setBounds(260, 151, 99, 15);

 contentPane.add(lblSer);

 txtA = new JTextField();

 txtA.setText("a");

 txtA.setColumns(10);

 txtA.setBounds(352, 148, 147, 21);

 contentPane.add(txtA);

 }

private List<Integer> VaulttoInt(String text) {

 // TODO Auto-generated method stub

 return null;

}

}

	Publications
	Contents
	List of Figures
	List of Tables
	Symbols
	Acknowledgements
	Abstract
	Chapter 1 Introduction
	1.1 Background
	1.2 Objectives

	Chapter 2 Services and Service-Oriented Architecture
	2.1 Introduction
	2.2 Overview of system architecture
	2.3 Object-oriented and Service-oriented Paradigm
	2.3.1 Existing configurations
	2.3.2 Embracing SOA structure

	2.4 Web Services
	2.4.1 The Web Services Architecture
	2.4.2 Protocol specification
	Message orientation
	Protocol composability
	Autonomous services

	2.5 Key Feature of Web service: loose-coupling
	2.6 Summary

	Chapter 3 Methodology
	3.1 Introduction
	3.2 Related works
	3.3 Overall design
	3.4 CUAHSI Hydrologic Information System (HIS)
	3.5 3O-HIS architecture
	3.5.1 Data layer
	3.5.2 Service layer
	3.5.3 Presentation layer
	3.5.4 Specifications and protocols for supporting the design of 3O-HIS

	3.6 Ontology in 3O-HIS
	3.7 Summary

	Chapter 4 Data management
	4.1 Introduction
	4.2 Major linking resource with SOA in environmental science
	4.3 SOA with database
	4.4 Challenge for design SOA with data repositories
	4.5 Data conversion
	4.5.1 Steering file conversion
	4.5.2 Boundary file conversion
	4.5.3 Result file conversion
	4.5.4 Data transmission

	4.6 Key input files stored in service
	4.6.1 Geometry file
	4.6.2 Hydrodynamic models

	4.7 Summary

	Chapter 5 Application
	5.1 Introduction
	5.2 Current states of GIS with Hydrological Modelling
	5.3 User guide of 3O-HIS
	5.3.1 Installation
	5.3.2 Using the 3O-HIS

	5.4 Service deploying for different hydrological models
	5.4.1 System configurations
	5.4.2 Service component configuration

	5.5 Case Study: Flooding forecast around Blackpool
	5.5.1 TELEMAC in 3O-HIS
	5.5.2 Telemac service bus in 3O-HIS
	5.5.3 Flooding forecast data analysis

	5.6 Case Study Area: Demra of Bangladesh
	5.6.1 Data definition/ Collection
	5.6.2 Results and Discussions

	5.7 Comparing uDig-Telemac with ArcGIS-Telemac
	5.8 Summary

	Chapter 6 Conclusions and Further works
	6.1 Introduction
	6.2 Major findings
	6.2.1 Components of 3O-HIS
	6.2.2 Application of 3O-HIS

	6.3 Further works

	References
	Appendix I
	SQLConnection.java
	OpenFile.java
	Read_file_code.java
	Read_fortran_files.java

