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Model checking is a well-established technique for the formal verification of concurrent
and distributed systems. In recent years, model checking has been extended and adapted
for multi-agent systems, primarily to enable the formal analysis of belief–desire–intention
systems. While this has been successful, there is a need for more complex logical
frameworks in order to verify realistic multi-agent systems. In particular, probabilistic and
real-time aspects, as well as knowledge, belief, goals, etc., are required.
However, the development of new model checking tools for complex combinations of logics
is both difficult and time consuming. In this article, we show how model checkers for
the constituent temporal, probabilistic, and real-time logics can be re-used in a modular way
when we consider combined logics involving different dimensions. This avoids the re-
implementation of model checking procedures. We define a modular approach, prove its
correctness, establish its complexity, and show how it can be used to describe existing
combined approaches and define yet-unimplemented combinations. We also demonstrate
the feasibility of our approach on a case study.

© 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Model checking is a powerful approach for the formal verification of computer systems. In the area of verification, model
checking has been studied extensively, and has become a well-established area of research and technology [1].

In recent years model checking techniques have been applied to the verification of multi-agent systems. Multi-agent
systems comprise many different facets, which often makes their formal description hard. They are therefore often diffi-
cult to describe formally. The verification of multi-agent systems is also difficult, because there are often many different
dimensions to look at simultaneously, including: autonomous behaviour of agents; beliefs, desires and intentions; team-
work; uncertainty in sensing and communication; real-time aspects; etc. Thus, we may want to represent not only the
basic dynamic behaviour of a multi-agent system, but also several of the various aspects mentioned above. Modal logics
can specify some of the concepts, such as knowledge, beliefs, intentions, norms, and temporal aspects. However, applying
model checking techniques that were introduced for standard temporal logics, such as LTL [2] or CTL [3], to the verification
of multi-agent systems [4] is not straightforward. In order to overcome this problem, researchers have attempted to extend
basic model checking techniques by adding further operators. These extensions have been carried out based on sophisticated
models of autonomous behaviour, uncertainty, and interaction [5].
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1.1. State of the art

Model checking temporal–epistemic aspects of multi-agent systems has recently received considerable attention. How-
ever, the large amount of individual aspects of multi-agent systems has resulted in an unmanageable set of their combina-
tions in the literature.

In [6], for example, some theoretical analysis is done for the model checking problem of epistemic linear temporal logics
on “interpreted systems with perfect recall”. In [7] an approach to the model checking of a temporal logic of knowledge,
CKLn , which combines LTL with epistemic logic, was developed. With this approach, local propositions provide a means to
reduce CKLn model checking to LTL model checking. In [4] a bounded model checking technique is applied to the epistemic
logic of branching time CTLK, which comprises both CTL and knowledge operators. Work in [8] describes the tool MCK for
model checking the logic of knowledge, which supports a range of knowledge semantics and choices of temporal language.
[9] studies using the model checker tool NuSMV for the verification of epistemic properties of multi-agent systems. The
work [10] presents a model checking algorithm based on SMV for the logic CKKn , which combines CTL and epistemic
operators. The work in [11] presents the MCMAS tool, which was developed for verifying temporal and epistemic operators
in interpreted systems. A multi-valued μK -calculus, which can specify knowledge and time in multi-agent systems, is
presented in [12]. In [13], the authors introduce a symbolic model checking algorithm, based on “interpreted systems with
local propositions” semantics, for the logic CKLn via ‘Ordered Binary Decision Diagrams (OBDDs)’ and develop the MCTK
model checker. The work reported in [14] presents a verification technique, based on the model checker NuSMV, for the
logic CTLK. In [15] multi-agent systems are verified by means of a special action-based temporal logic, ACTLW. On the
theoretical side, [16,17] study combinations of the epistemic modal logic S5n with temporal logics. Finally, Dennis et al. have
developed a practical framework for model checking belief–desire–intention (BDI) properties of multi-agent programs [18].

Real-time and epistemic aspects of multi-agent systems have also been considered. The real-time temporal knowledge
logic RTKL, which combines real-time and knowledge operators, is introduced in [19], and a model checking algorithm
for this logic is presented. Furthermore, the authors extend RTKL with cooperation modalities and obtain the logic RATKL.
Lomuscio et al. [20] present the real-time extension of the existential fragment of CTLK, and extend the corresponding
bounded model checking algorithm based on a discretisation method.

The relations between knowledge and probability were also investigated in the domain of multi-agent systems [21,22].
Delgado et al. proposed an epistemic extension of the probabilistic CTL temporal logic, called KPCTL, allowing epistemic
and temporal properties as well as likelihoods of events in [23], where the authors also describe how to extend the PRISM
model checker [24] to verify KPCTL formulas over probabilistic multi-agent system models.

1.2. Contribution

The main drawback of the research mentioned above is that numerous combined logics have been introduced to rep-
resent different views on multi-agent systems, and this has required the implementation of many different verification
systems.

In this article we present a different approach to model checking. Instead of introducing new logics for combinations of
different aspects, analysing the model checking problem, and implementing a new checker for a particular combination, we
combine logics representing different aspects, using a generic model checking method suitable for most of these different
combinations of logics. In this way, many aspects of multi-agent systems, such as knowledge and time, knowledge and
probability, real-time and knowledge, etc., can be represented as a combination of logics. A combined model checking
procedure can then be synthesised from model checkers for constituent logics. The component logics we have in mind are
logics that refer to key aspects of multi-agent systems, including:

– classic temporal logics (CTL, LTL, etc.);
– belief/knowledge logics (modal logics KD45, S5, etc.);
– logics of goals (modal logics KD, etc.);
– probabilistic temporal logics (PCTL, etc.); and
– real-time temporal logics (TCTL, etc.).

While the formal description of multi-agent systems is essentially multi-dimensional, we generally do not have verification
tools for all appropriate combinations. For example, we might have separate verification tools for logics of knowledge,
logics of time, real-time temporal logics, or probabilistic temporal logics, but we have no tool that can verify a description
containing all these dimensions.

In this article we study results and methods for model checking of combined logics. This can be seen as an extension
of the work of Franceschet et al. [25], where model checking for combinations of modal and (simple) temporal logics are
considered. They study combinations of logics, whose semantics is defined as standard Kripke Structures 〈W , R, l〉, where W
is the underlying set of worlds/states, l is a labelling function describing the propositions true at each world/state, and R is
the accessibility/transition relation between elements of W . The main drawback of the work in [25] is that their framework
does not capture more complex logics, whose semantics is not of the above form. Specifically, models of probabilistic
temporal logics can also be represented in the 〈W , R, l〉 form, but here R is not just a simple relation between pairs of
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states/worlds, but also includes a probability distribution for transitions. Similarly, real-time temporal logics have a relation
R that is extended with a set of clock constraints, and the model itself is extended with a finite set of clocks. It may well be
that some probabilistic/real-time temporal logics can be transformed into standard propositional temporal logics, allowing
for the application of the techniques of Franceschet et al. [25], but it is likely that blow-up incurred in the structure will be
prohibitive.

In this article, we extend the framework from [25] such that it can be used for more complex combinations of proposi-
tional logics. This allows us to combine logics of time, logics of belief, logics of intentions, probabilistic temporal logics, and real-time
temporal logics, etc., in order to provide a coherent framework for the formal analysis of multi-agent systems. We provide
a generic model checking algorithm, which synthesises a combined model checker from the model checkers of simpler
component logics. We show that the method terminates, and is both sound and complete. We also analyse the computa-
tional complexity of the resulting method, and show that the complexity of the synthesised model checker is essentially the
supremum of the complexities of the component model checkers. This result suggests that modularity is easier to obtain for
model checking than for deductive approaches, where combination can lead to exponential (or worse) complexity.

We also show that our combination method is quite useful in determining model checking complexities of some existing
logics. Using our generic approach, we (re-)prove the model checking complexities of several logics, such as the polynomial
bound for the branching time epistemic logic, CTLK [26], the PSPACE bound for the linear time epistemic logic, CKLn [7],
polynomial bound for the probabilistic epistemic logic KPCTL [23], and the PSPACE bound for the real-time epistemic logic
TECTLK [20].

1.3. Organisation of the article

In Section 2, we provide a brief review of logical combination methods. In Section 3, we introduce the notation that will
be used throughout the article. We then present the combined model checking algorithm for the modal case, and establish
its completeness and complexity in Section 4. In Section 5, we extend the combined model checking algorithm to include
real-time logics, apply our method to some existing logics, and present some complexity results. Finally, in Section 6, we
apply the combination method to the Scatterbox message-forwarding system to demonstrate the usefulness of our generic
model checking approach. We close with a discussion of our results and potential future work in Section 7.

2. Combinations of logics

Much work has been carried out on the combination of various modal/temporal logics. Temporalisation, fusion (or inde-
pendent combination), and product (or join) are among the popular forms of logic combination [27–30].

To provide an overview of these different types of combinations, let us first assume that we want to combine two logics,
Logic1 and Logic2. Further, let us assume that Logic1 is a temporal logic of some form. Let us represent these graphically as

Temporalisation. This is a method that adds a temporal dimension to another logic system. With this method, an arbitrary
logic system is combined with temporal modalities to create a new system. Basically a combination of two logics, A and B,
resulting in a logic A(B), where a pure subformula of B can be treated as an atom within A. Consequently, the combination
is not symmetric — the logic A is the main one, but at each world/state described by A, we might have a formula of B that
describes a ‘B-world’.

Temporalisation is investigated in [31], where the logical properties soundness, completeness, and decidability are analysed.
In [25] a model checking procedure is presented for temporalised logics. However, the procedure only covers combining
modal propositional temporal logics.

Fusion (or ‘Independent Join’). The independent combination of two logic systems put together the expressive power of
the two component logic systems in an unrestricted way [25]. In other words, independent combination of two logics over
a set of atomic propositions is obtained by the union of the respective sets of connectives and the union of the formation
rules of both logics [31]. Unlike temporalisation, the fusion of two logics A and B, denoted A⊕ B, is symmetric. That is, at
any state/world we can either take an ‘A-step’ or a ‘B-step’.
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Note that the two logics are essentially independent (hence the name). This means properties such as OPAOPBϕ⇔ OPBOPAϕ ,
where OPX is an operator in logic X, are rarely valid. (For tighter linking of this kind we use the product combination below.)
The logical properties of fusion, such as soundness, completeness, and decidability, are analysed in [31], while [25] tackles
the model checking problem for the fusion of modal temporal logics.

Product (or ‘Join’). In both, temporalisation and independent join, formulas are evaluated at a single node of a model. In
contrast to this, the join of two temporal system flows of times are considered over a higher-dimensional plane. Thus,
when using the join method, it is possible to produce higher-dimensional temporal logics by combining lower-dimensional
temporal logics.

This product combination is similar to fusion, but with a much tighter integration of the logics. The join of two logics A
and B is denoted A⊗ B, and can be visualised as follows.

Specifically, the operators of the constituent logics tend to be commutative. That is, we have axioms such as � OPAOPBϕ⇔
OPBOPAϕ . The product construction is investigated in [31], where logical properties of soundness, completeness, and decid-
ability are analysed. In [25] a combined model checking procedure for modal temporal logic products is presented.

The decision problem for product logics is typically more complex than that for fused logics, with products of relatively
benign logics even becoming undecidable. For this reason, product logics are rarely used in practise, with fusions being the
main tool for combining logics in a deductive way. However, we argue that this disadvantage does not extend to model
checking product logics. This observation turns the model checking problem for products of logics into a feasible approach.

We end this section by giving some results for the combining methods mentioned above. Most of the work carried out
on combining logics has been from a deducibility or expressiveness point of view. To generalise many years of important
research, we can say that, usually, decidability and axiomatisability properties transfer to both temporalisations and fusions
from the constituent logics [32,33]. Thus, the fusion of two decidable ‘normal polyadic polymodal logics’ is decidable [34].
Work in [35] obtained decidability for modal logics with the ‘converse operator interpreted over transitive frames’. The
temporalisation and fusion of the one-dimensional logic PLTL, i.e., PLTL(PLTL) and PLTL⊕ PLTL, respectively, are also found
to be decidable [31,27]. In the case of join, the combinations are less tame: S5 ⊗ S5 is NEXPTIME-complete [36], S53 is
undecidable [37], and PLTL⊗ PLTL is undecidable [38], too.

3. Preliminaries

In this section, we define the notation that will be used throughout the article. The logics we will define are mainly
branching logics, because most of the examples we will discuss later are based on branching-time temporal logics.

3.1. Computation tree logic (CTL)

CTL is a branching-time temporal logic with a discrete notion of time and only future modalities. The temporal operators
of CTL allow us to express properties about some or all computations. CTL is defined according to the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ∃ψ | ∀ψ
ψ ::=©ϕ | ϕ1Uϕ2
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where p ∈ AP, which is a set of atomic propositions. CTL formulas are interpreted over transition systems, which are a class
of Kripke structures. The execution of a transition system constructs a set of paths, which are infinite sequences of states. The
ith element of a path σ is denoted by σ [i]. The set of paths from a state s is denoted by Paths(s).

Definition 3.1. Assume M = 〈S,E, l〉 is a transition system, where S is a finite set of states, E is a transition relation and
S → 2AP is a labelling function. For a given CTL-formula ϕ and state s ∈ S , the satisfaction relation |� is inductively defined
on the structure of ϕ as follows:

M, s |� p iff p ∈ l(s)

M, s |� ¬ϕ iff M, s �|� ϕ

M, s |� ϕ1 ∧ψ2 iff M, s |� ϕ1 and M, s |� ϕ2

M, s |� ∃ψ iff M,σ |�ψ for some σ ∈ Paths(s)

M, s |� ∀ψ iff M,σ |�ψ for all σ ∈ Paths(s)

Path formulas are defined on the following semantics:

M,σ |�©ϕ iff M,σ [1] |� ϕ

M,σ |� ϕ1Uϕ2 iff ∃i � 0 s.t. M,σ [i] |� ϕ2 and (∀ j < i) M,σ [ j] |� ϕ1

3.2. Probabilistic CTL (PCTL)

PCTL [39] is an extension of CTL, which can express statements such as “the probability that a process eventually termi-
nates is 0.2”, “the probability that the system energy exceeds a certain value is � 0.8”, etc. PCTL is interpreted over (Markov
chains or) Markov decision processes.

Definition 3.2. A Markov decision process is a tuple 〈S, A,E,μ, l〉, where

– S is a finite set of states;
– A is a finite set of actions;
– E ⊆ S × A × S is a finite set of edges;
– μ : E→ [0,1] is a probability transition function,1 such that, for all s ∈ S and a ∈ A,

∑
e∈Ea

s
μ(e)= 1, where Ea

s denotes
the edges from s with the action a chosen, i.e., Ea

s = {〈s,a, s′〉 ∈ E};
– l : S → 2AP is a labelling function.

The execution of a Markov decision process (MDP) constructs a set of paths, which are infinite sequences of states.
A probability measure πm for a set of paths with a common prefix of the length n, s0 → s1 → ·· ·→ sn , is defined to be the
product of transition probabilities along the prefix, i.e., μ(〈s0,a1, s1〉)× · · · ×μ(〈sn−1,an, sn〉) [39].

Apart from the usual operators from classical logic such as ∧ (and), ∨ (or) and ⇒ (implies), PCTL has the probabilistic
operator P∼r , where 0 � r � 1 is a probability bound and ∼∈ {<,>,�,�,=}. Intuitively, a state s of a model satisfies P∼r[ϕ]
if, and only if, the probability of taking a path from s that satisfies the path formula ϕ is bounded by ‘∼ r’. The following
path formulas ϕ are allowed: ©ϕ , ϕUψ and ϕU�kψ (where k ∈N). The semantics of PCTL formulas is given below:

Definition 3.3. Assume M= 〈S, A,E,μ, l〉 is a Markov decision process. For a given PCTL-formula ϕ and a state s ∈ S , the
satisfaction relation |� is inductively defined on the structure of ϕ as follows [39]:

M, s |� p iff p ∈ l(s)

M, s |� ¬ϕ iff M, s �|� ϕ

M, s |� ϕ1 ∧ ϕ2 iff M, s |� ϕ1 and M, s |� ϕ2

M, s |� P∼r[ψ] iff πm
(
σ ∈ Paths(s) s.t. M,σ |�ψ

)∼ r

Path formulas are defined on the following semantics:

1 In order to keep the syntax simple, we consider only one probability distribution μ. It is straightforward to modify our definition to accommodate a
finite set of probability distributions

∏= {μ1, . . . ,μn}.



66 S. Konur et al. / Theoretical Computer Science 503 (2013) 61–88
M,σ |�©ϕ iff M,σ [1] |� ϕ

M,σ |� ϕ1Uϕ2 iff ∃i � 0 s.t. M,σ [i] |� ϕ2 and (∀ j < i) M,σ [ j] |� ϕ1

M,σ |� ϕ1U�kϕ2 iff ∃i � k s.t. M,σ [i] |� ϕ2 and (∀ j < i) M,σ [ j] |� ϕ1

As an example, the property that “the probability of ϕ eventually occurring is greater than or equal to b” can be ex-
pressed in PCTL as follows:

P�b[true Uϕ].

3.3. Timed automata

A timed automaton [40] is a transition system with a finite set of real-valued clocks. As time progresses, all clocks
increase their values at the same rate. In each transition, some clocks can be reset, and the remaining clocks continue to
proceed their values. Therefore, clock values denote the elapse of time units since the last reset of the clocks. In a timed
automaton, transitions are associated with clock constraints, which are called guards (enabling conditions). A transition is
enabled if the corresponding guard is satisfied by the current clock values. Assume C is a set of clocks. The set of clock
constraints over C , denoted by Ψ (C), is defined by the following syntax:

ψ ::= true | x∼ k | ¬ψ |ψ1 ∧ψ2

where x ∈ C , k ∈ N and ∼∈ {<,>,�,�,=}. When a transition is enabled, a set of clocks are reset to zero, while the
remaining clocks keep their values. In addition to clock constraints enabling transitions, timed automata might also contain
clock constraints that are used to restrict the time spent in locations. Such constraints are called invariances. They are
defined in a similar way to guards.

Definition 3.4. (See [40].) A timed automaton A is a tuple 〈L, A, C,E, inv, l〉, where

– L is a finite set of locations;
– A is a finite set of actions;
– C is a finite set of clocks;
– E ⊆ L ×Ψ (C)× A × 2C × L is a set of edges between locations;
– inv : L → Ψ (C) is a function associating each location with some clock constraint in Ψ (C);
– l : L → 2AP is a labelling function (AP is a set of atomic propositions).

In the definition above, the invariance function inv assigns clock constraints to locations. The automaton might stay in a
location � while inv(�) holds. As soon as inv(�) becomes false, the automaton makes a transition, such that the current clock
values satisfy the clock constraints (guard) of this transition. Let �, �′ ∈ L be two locations, γ ∈ Ψ (C) be a clock constraint,
a ∈ A be an action, and X ⊆ C be a set of clocks. An edge (transition) is denoted by a tuple 〈�,γ ,a, X, �′〉, which can be
informally interpreted as “the automaton moves from � to �′ if the current clock values satisfy the clock constraint γ ; if
this is the case, the action a is taken and all the clocks of X are reset to zero”.

Here, we define the semantics of timed automata. To do this, we first introduce further notation. Clock constraints are
defined on clock valuations. A clock valuation ν over a clock set C is a mapping from C to R�0, i.e., ν : C →R�0. The value
of a clock x ∈ C is denoted by ν(x). The set of all clock valuations of C is denoted by RC

�0. Let ν ∈RC
�0 be a clock valuation

and d ∈R+ be a positive real number. ν+d denotes the clock valuation which assigns each clock x ∈ C to the value ν(x)+d.
ν[x] denotes the clock valuation which resets x to 0, and keeps the values of other clocks same. Also, we write ν |� x∼ k if,
and only if, ν satisfies x∼ k, i.e., ν(x)∼ k.

We can define the semantics of a timed automaton in terms of a timed transition system:

Definition 3.5. (See [41].) A timed transition system TA of a timed automaton A= 〈L, A, C,E, inv, l〉 is a tuple 〈S, AT ,→, lT 〉,
where

– S = {〈�, ν〉 | � ∈ L, ν ∈RC
�0 s.t. ν |� inv(�)},

– AT = A ∪R+ ,
– →⊆ S × {A ∪R+} × S can be defined in either of the rules below:

– 〈�, ν〉 d→〈�, ν + d〉 iff ∃d ∈R+ s.t. ν + d′ |� inv(�), ∀(0 � d′ � d),

– 〈�, ν〉 a→〈�′, ν ′〉 iff 〈�,γ ,a, X, �′〉 ∈ E , ν |� γ , ν ′ = ν[X] and ν ′ |� inv(�′),
– lT (〈�, ν〉)= l(�)∪ {γ ∈ Ψ (C) | ν |� γ }.

A configuration of a timed automaton A is a state of the corresponding transition system TA , which is a pair 〈�, ν〉, where
� ∈ L is a location and ν ∈RC is a valuation. TA has an infinite set of states. Each path (execution) σ of TA corresponds to
�0
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a possible behaviour of the automaton A, and it is defined as an infinite sequence s0
ξ0→ s1

ξ1→ s2
ξ2→ ·· · , where ξi ∈ A ∪R+

(for i ∈ N). The ith element of a path is denoted by σ [i]. The set of all paths from a state s is denoted by Paths(s). The
elapsed time of reaching a state s′ from a state s within a path σ is the sum of the delays along the path, and it is denoted

as T(s
σ�→ s′).

As mentioned above, TA has an infinite number of states. However, some of the states do not differ for some clock
valuations in the sense that they display a similar behaviour modulo bisimulation. We therefore define the notion of clock
equivalence, which is used to obtain a finite region graph.

Let integral and fractional parts of d ∈ R+ be denoted by �d� and frac(d), respectively, and cx be the largest constant
for x ∈ C that is compared in some clock constraint in A or in a formula ϕ . (Clock constraints might also exist in logical
formulas, cf. Section 3.4.) Given two clock valuations ν and ν ′ , ν is equivalent to ν ′ , denoted ν ∼= ν ′ , if, and only if, the
following is true [40]:

– ∀x ∈ C , ν(x) > cx iff ν ′(x) > cx and
– ∀x, y ∈ C , ν(x) � cx and ν(y) � c y implies

– �ν(x)� = �ν ′(x)�,
– frac(ν(x))= 0 iff frac(ν ′(x))= 0, and
– frac(ν(x)) � frac(ν(y)) iff frac(ν ′(x)) � frac(ν ′(y)).

Let ∼= be a clock equivalence on C . For any γ ∈ Ψ (C), ν ∼= ν ′ implies that ν |� γ iff ν ′ |� γ [40]. The equivalence class of
ν ∈ RC

�0, which is denoted by [ν], is defined by [ν] = {ν ′ ∈ RC
�0 | ν ∼= ν ′}. Since the set of equivalence classes is finite, this

allows us to define a finite region graph.

Definition 3.6. (See [41].) Given a timed automaton A= 〈L, A, C,E, inv, l〉, the region transition system R(A) of the automa-
ton A is a tuple 〈Q r, Ar,Er, lr〉, where

– Q r = {〈�, [ν]〉 | � ∈ L, ν ∈RC
�0},

– Ar = A ∪ {λ},
– Er is defined by as follows:

– 〈〈�, [ν]〉, λ, 〈�, succ([ν])〉〉 ∈ Er iff succ([ν]) |� inv(�),
– 〈〈�, [ν]〉,a, 〈�′, [ν ′]〉〉 ∈ Er iff 〈�,γ ,a, X, �′〉 ∈ E , ν |� γ , ν ′ = ν[X] and ν ′ |� inv(�′),

– lr(〈�, [ν]〉)= l(�)∪ {γ ∈ Ψ (C) | ν |� γ }

where succ([ν]) is the successor equivalence class, defined as follows [40]: Let α and β be a two equivalence classes such
that α �= β . We say succ(α)= β iff for every η ∈ α, there exists t ∈R>0 such that for all t′ < t , η+ t ∈ β and η+ t′ ∈ α ∪ β .

Definition 3.6 suggests that the region transition system is constructed by considering timed regions as states. As seen
in the definition of Er , we label all timed transitions with a special symbol λ to represent a time step. We also extend the
labelling function lr with the atomic clock constraints of A that are true at each location.

3.4. Timed CTL (TCTL)

TCTL [40] is a real-time extension of the branching time logic CTL, where constraints on duration are added to temporal
operators. It is a logic, in which timing properties of complex systems can be expressed, something which cannot be done
using classical temporal logics. Given that ∼∈ {<,>,�,�,=}, c ∈N and p ∈ AP, TCTL is defined according to the following
syntax:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ∃ϕ1U∼cϕ2 | ∀ϕ1U∼cϕ2

The operators ♦∼c and �∼c can be derived in usual way. These operators are extensions of the standard ♦ and � operators
with timing constraints. For example, the formula ∃♦�5 on states that “the system will be in the on state within 5 time
units”.

TCTL can be used to express properties of timed automata. Its formulas are interpreted over a timed transition system.
Below we define the semantics:

Definition 3.7. Assume A = 〈L, A, C,E, inv, l〉 is a timed automaton, and TA = 〈S, AT ,→, lT 〉 is the corresponding timed
transition system of A. For a given TCTL-formula ϕ and a state s = 〈�, ν〉 in TA , the satisfaction relation |� is inductively
defined on the structure of ϕ as follows:

TA, s |� p iff p ∈ lT (s)

TA, s |� ¬ϕ iff TA, s �|� ϕ
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TA, s |� ϕ1 ∧ ϕ2 iff TA, s |� ϕ1 and TA, s |� ϕ2

TA, s |� ∃ϕ1U∼cϕ2 iff ∃σ ∈ Paths(s) with s= σ [0] and ∃i � 0 s′ = σ [i]
s.t. T

(
s

σ�→ s′
)∼ c,TA, s′ |� ϕ2 and

(∀ j < i with s′′ = σ [ j])TA, s′′ |� ϕ1

TA, s |� ∀ϕ1U∼cϕ2 iff ∀σ ∈ Paths(s) with s= σ [0] and ∃i � 0 s′ = σ [i]
s.t. T

(
s

σ�→ s′
)∼ c,TA, s′ |� ϕ2 and

(∀ j < i with s′′ = σ [ j])TA, s′′ |� ϕ1

We say that A |� ϕ iff TA, 〈�, ν0〉 |� ϕ , where 〈�, ν0〉 ∈ S is the initial state [40].

3.5. Probabilistic timed automata

Probabilistic timed automata are an extension of timed automata with discrete probability distributions, or an extension
of Markov decision processes with clocks [42]. They are used to model systems that exhibit probabilistic behaviour, such as
communication protocols, physical sensors, complex network systems, etc. Probabilistic timed automata are different from
timed automata in the sense that transitions between locations can be both non-deterministic and probabilistic. In addition
to the time aspect existing in timed automata, probabilistic timed automata provide a probability distribution to make a
probabilistic choice among the set of enabled edges [43].

Below we give a definition of probabilistic timed automata, slightly different to that of [43] in the sense that we add
actions providing a probabilistic distribution over transitions. Therefore, our definition of probabilistic timed automata is
more general and more expressive, because we extend timed automata with actions, which is not the case in [43].

Definition 3.8. A probabilistic timed automaton (PTA) is a tuple 〈L, A, C,E, inv,μ, l〉, where

– L is a finite set of locations;
– A is a finite set of actions;
– C is a finite set of clocks;
– E ⊆ L ×Ψ (C)× A × 2C × L is a set of edges between locations;
– inv : L → Ψ (C) is a function associating each location with some clock constraints in Ψ (C);
– μ : E→[0,1] is a probability transition function,2 s.t., for all � ∈ L and a ∈ A

∑
e∈Ea

�
μ(e)= 1 where Ea

� denotes the edges

from � with the action a is chosen, i.e., Ea
� = {〈�,γ ,a, X, �′〉 ∈ E};

– l : L → 2AP is a labelling function (AP is a set of atomic propositions).

The semantics of probabilistic timed automata is defined in terms of a probabilistic timed transition system. All the nota-
tions defined in Section 3.3 are also used for PTAs.

Definition 3.9. A probabilistic timed transition system PA of the probabilistic timed automaton A= 〈L, A, C,E, inv,μ, l〉 is a
continuous time Markov decision process 〈S, AT ,→, lT 〉, where

– S = {〈�, ν〉 | � ∈ L, ν ∈RC
�0 s.t. ν |� inv(�)},

– AT = {〈a,μ〉 | a ∈ A} ∪R+ ,
– →⊆ S × AT × S can be defined in either of the rules below:

– 〈�, ν〉 d→〈�, ν + d〉 iff ∃d ∈R+ s.t. ν + d′ |� inv(�), ∀(0 � d′ � d),

– 〈�, ν〉 〈a,μ〉→ 〈�′, ν ′〉 iff e = 〈�,γ ,a, X, �′〉 ∈ E , μ(e) > 0, ν |� γ , ν ′ = ν[X] and ν ′ |� inv(�′),
– lT (〈�, ν〉)= l(�)∪ {γ ∈ Ψ (C) | ν |� γ }.

Each path of PA corresponds to a possible behaviour of A, and it is defined as an infinite sequence s0
ξ0→ s1

ξ1→ s2
ξ2→ ·· · ,

where ξi ∈ {〈a,μ〉 | a ∈ A} ∪ R+ (i ∈ N). Executions of A can be obtained by resolving both non-deterministic and proba-
bilistic choices, which can be achieved using schedulers. This process is not the subject of this article, so we refer the reader
to [43] for a detailed discussion.

We now define a finite-state region transition system as in Section 3.3. The idea of constructing region graphs for proba-
bilistic timed automata is very similar to that of timed automata. However, in the probabilistic case, the region graphs are
in the form of Markov decision processes [43]. We transfer the concepts and properties introduced for the construction of
region graphs for timed automata.

2 In order to keep the syntax simple, we consider only one probability distribution μ. It is straightforward to modify our definition to accommodate a
finite set of probability distributions

∏= {μ1, . . . ,μn}.



S. Konur et al. / Theoretical Computer Science 503 (2013) 61–88 69
Definition 3.10. Given a probabilistic timed automaton A = 〈L, A, C,E, inv,μ, l〉, the region transition system R(A) of the
automaton A is a tuple 〈Q r, Ar,Er,μr, lr〉, where

– Q r = {〈�, [ν]〉 | � ∈ L, ν ∈RC
�0},

– Ar = A ∪ {λ},
– Er is defined as follows:

– 〈〈�, [ν]〉, λ, 〈�, succ([ν])〉〉 ∈ Er iff succ([ν]) |� inv(�),
– 〈〈�, [ν]〉,a, 〈�′, [ν ′]〉〉 ∈ Er iff 〈�,γ ,a, X, �′〉 ∈ E , ν |� γ , ν ′ = ν[X] and ν ′ |� inv(�′),

– for every er ∈ 〈〈�, [ν]〉,α, 〈�′, [ν ′]〉〉 ∈ Er

μr(er)=
{

1 if α = λ∑
e∈Adms(〈�,ν〉,a,〈�′,ν′〉) μ(e)∑

e∈Adms(〈�,ν〉,a) μ(e) if α = a

– lr(〈�, [ν]〉)= l(�)∪ {γ ∈ Ψ (C) | ν |� γ },

where

Adms(〈�, ν〉,a)= {〈�,γ ,a, X, �̄〉 ∈ E | ν |� γ and ν[X] |� inv(�̄)}
Adms(〈�, ν〉,a, 〈�′, ν ′〉)= {〈�,γ ,a, X, �′〉 ∈ E | ν |� γ ,ν ′ = ν[X] and ν ′ |� inv(�′)} [44].

Informally speaking, Adms(〈�, ν〉,a) is the set of all admissible edges from the location � by executing the action a,
and Adms(〈�, ν〉,a, 〈�′, ν ′〉) is the set of all admissible edges from � to �′ through executing a. Note that the definitions
Adms(〈�, ν〉,a) and Adms(〈�, ν〉,a, 〈�′, ν ′〉) mark different sets. The former considers the edges to all target locations which
are reached by resetting some clocks; the latter considers the edges to the target location �′ which is reached by executing
the action a and resetting some clock set. So, the latter is a subset of the former.

As in Section 3.3, we label all timed transitions with a special symbol λ representing time steps. We also extend the
labelling function lr with the atomic clock constraints of A which are true at each location.

4. Generic model checking for modal, temporal, and probabilistic logics

In this section, we generalise the model checking algorithm for combined logics given in [25] to cover more complex
cases, such as knowledge, belief, and probability. As we have seen in the previous section, the semantics of these logics is
defined over more general structures than standard Kripke structures. In our extended model checking algorithm, different
model types of combined logics are therefore assumed to have an appropriate hybrid model type.

In the sequel, the following general definition can be used for a propositional logic. (We assume a propositional extension
of modal logic.) The language is built from a countable signature of propositional letters AP = {p1, p2, . . .}, the boolean
connectives ∧ and ¬, a set of operators OP = {O i1

1 , . . . , O in
n } with arities i1, . . . , in (for n ∈N), respectively, and the following

formation rules:

– every propositional letter p ∈ AP is a formula;
– if ϕ1,ϕ2 are formulas, so are ¬ϕ1 and ϕ1 ∧ ϕ2;
– if O ik

k ∈ OP and ϕ1, . . . , ϕik are formulas, so are O ik
k (ϕ1, . . . , ϕik ) (for k ∈N).

The other boolean connectives, such as ∨, →, and ↔, and the constants ⊥ and � can be defined as usual. Depending on
the type of the logic, e.g., temporal, probabilistic, belief etc., the semantics is defined over different structures, such as Kripke
structures, Markov chains, interpreted systems, etc.

In this section, we assume models with explicit sets of states, such as Kripke structures, with a discrete labelling function.
In Section 5, we will discuss the case of models with symbolic states, such as timed automata. For simplicity, we do not
denote initial states in the structure of a model. This can be added without any problem.

Assume a frame is a Kripke structure without a valuation function, i.e., a pair 〈S, T 〉 where S is a non-empty set of
states, and T is a relation defined on S . Given that 〈S1, T1〉 is a frame for the logic A and 〈S2, T2〉 is a frame for the logic B,
a model M for A(B) is a tuple 〈S1 ∪ S2, T1, T2, l〉. Note that T1 (resp. T2) is an n-tuple denoting a relation with an arbitrary
(possibly empty) labelling of states and accessibility relations on states. Since we consider A and B to be any modal logic,
we assume that T can be more general than the accessibility relation, which is usually denoted by R . Namely, T1 (resp. T2)
gets a different form according to the type of logic A (resp. B). For example, if A (resp. B) is a modal logic, then T1 (resp.
T2) is defined simply as the accessibility relation R . If, however, A (resp. B) is a probabilistic logic, T1 (resp. T2) will be the
transition relation with probability labels on edges. In Section 4.4 we show how T1 (resp. T2) can have different forms
according to the type of the logic. We note that within temporalisation, l : S2 → 2AP is a labelling function assigning S2 to
sets of proposition letters.

For a given finite A(B)-model M and A(B)-formula ϕ , the model checking problem for A(B) is to check whether there
exists s ∈ S1 ∪ S2 such that M, s |�A(B) ϕ . Let MCA and MCB be model checkers for the logics A and B, respectively.
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MCAB

Input: M= 〈S, T1, T2, l〉 and AB formula ϕ

for every ψ ∈MSSub(ϕ) (increasing order of |ψ |)
case(ψ)

ψ = p ∈ AP : Sat(ψ) := {s ∈ S | p ∈ l(s)}
ψ =ψ1 ∧ψ2 : Sat(ψ) := {s ∈ S | pψ1 ∈ l(s)∧ pψ2 ∈ l(s)};
ψ =¬ψ1 : Sat(ψ) := {s ∈ S | pψ1 /∈ l(s)}
ψ = OA(ψ1, . . . ,ψn) : Sat(ψ) :=MCA(〈S, T1, l〉,OA(pψ1 , . . . , pψn ))

ψ = OB(ψ1, . . . ,ψn) : Sat(ψ) :=MCB(〈S, T2, l〉,OB(pψ1 , . . . , pψn ))

for every s ∈ Sat(ψ), set l(s) := l(s)∪ {pψ }

Fig. 1. Model checking algorithm MCAB for the combination of the logics A and B.

The algorithm in Fig. 1 can be used for model checking the combined logic A(B) with the inputs M and ϕ . The procedure
first computes MSSub(ϕ), a set of maximal state subformulas of ϕ . The maximal state subformulas is the smallest set of
subformulas of ϕ that satisfies the following constraints:

• ϕ is in MSSub(ϕ),
• if ψ ′ is in MSSub(ϕ) and ψ ′ does not start with an operator of OPA then the maximal subformulas of ψ ′ that do start

with an OPA operator is in MSSub(ϕ),
• if ψ ′ is in MSSub(ϕ) and ψ ′ does not start with an operator of OPB then the maximal subformulas of ψ ′ that do start

with an OPB operator is in MSSub(ϕ),
• the atomic propositions that occur in ϕ are in MSSub(ϕ),
• if ψ is in MSSub(ϕ) and ¬ψ is a subformula of ϕ , then ¬ψ is in MSSub(ϕ), and
• if ψ and ψ ′ are in MSSub(ϕ) and ψ ∧ψ ′ is a subformula of ϕ , then ψ ∧ψ ′ is in MSSub(ϕ).

For example, consider the A(B) formula ∀ (true U(∃♦ ∃� p)), where OPA = {∀,U} and OPB = {∃,♦,�}. According to the
definition, the maximal state subformulas of A and B are {∀U} and {∃♦ ∃�, p}, respectively. Note that ∃� is a not a maximal
state subformula. The maximal state subformulas of the logic A are designed to keep the number of calls to the component
model checkers low.

The procedure then model checks formulas in MSSub(ϕ) in increasing order of length of subformulas and extends the
labelling l within M accordingly. The parse tree of ϕ is recursively descended. For each maximal state subformula ψ

of ϕ , the satisfaction set Sat(ψ), representing the set of states where ψ holds, is calculated. For propositional formulas
p ∈ AP, the procedure is trivial. Formulas, whose main operator is in the language of the logics A resp. B are resolved by
taking advantage of the corresponding model checker. Prior to calling this model checker, the input to the model checker
is modified: for formulas OA(ψ1, . . . ,ψn) and OB(ψ1, . . . ,ψn), every subformula ψi (for 1 � i � n) is replaced by a new
proposition pψi . This is simply because ψi can be either from A or B; therefore we cannot apply MCA to OA(ψ1, . . . ,ψn) if
a subformula ψi is a B-formula (and vice versa).

Note that the OA(ψ1, . . . ,ψn) and OB(ψ1, . . . ,ψn) are not necessarily operators from the component logics; they are
rather formula trees in the component logics. For boolean formulas, e.g., ψ =ψ1 ∧ψ2, the satisfaction set of the formula ψ

is calculated according to the set of states where pψ1 and pψ2 hold.
In Fig. 1, we assume model checkers take a model and a formula ψ as input and return the set of states at which ψ

holds.

4.1. Fusion (independent combination)

Let A and B be two propositional logics. A structure M for A⊕ B is a tuple 〈S1 ∪ S2, T1, T2, l〉, where T1 (resp. T2) is a
tuple whose elements depend on the type of A (resp. B). Given that M is a finite A⊕B-structure and ϕ is an A⊕B-formula,
the model checking problem for A⊕ B is to check whether there exists s ∈ S1 ∪ S2 such that M, s |�A⊕B ϕ . The algorithm
in Fig. 1 can again be used for model checking A⊕ B with the input M and ϕ .

Remark 1. Note that temporalisation is a special case of fusion.

4.2. Join

Let A and B be two propositional logics. Assume 〈S1× S2, T , l〉 is a model for the product logic A⊗B. Here T is a relation
on S1× S2, from which we will derive T1 and T2 denoting the corresponding relation for the logic A and B, respectively. T1
and T2 have different form depending on the type of the logic. Namely,
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(i) if A (resp. B) is a modal or temporal logic without actions, then given that T = R = (R1 ∪ R2), T1 = R1 (resp. T2 = R2),
where R1 (resp. R2) denotes a binary relation;

(ii) if A (resp. B) is a modal or temporal logic with actions, then given that T = 〈A = (A1∪ A2),E = (E1∪E2)〉, T1 = 〈A1,E1〉
(resp. T2 = 〈A2,E2〉), where A1 (resp. A2) is the set of actions for the logic A (resp. B), and E1 (resp. E2) is the
corresponding set of edges for the logic A (resp. B);

(iii) if A (resp. B) is a probabilistic logic, then given that T = 〈A = (A1 ∪ A2),E = (E1 ∪ E2),μ〉, T1 = 〈A1,E1,μ1〉 (resp.
T2 = 〈A2,E2,μ2〉), where μ1 (resp. μ2) is a probability transition function.

These cases are formally expressed as follows:

case (i) T1 = R1, where
R1 =

{
e

∣∣ e = 〈〈s1, s〉, 〈s′1, s〉〉 ∈ R s.t. s1 �= s′1
}

case (ii) T1 = 〈A1,E1〉, where
E1 =

{
e|e = 〈〈s1, s〉,a1, 〈s′1, s〉〉 ∈ E s.t. s1 �= s′1 and a1 ∈ A1

}
case (iii) T1 = 〈A1,E1,μ1〉, where

E1 =
{

e
∣∣ e = 〈〈s1, s〉,a1, 〈s′1, s〉〉 ∈ E s.t. s1 �= s′1 and a1 ∈ A1

}
μ1(e)=μ(e) for every e ∈ E1

3

T2 is calculated in a similar way. Given that M is a finite A⊗ B-structure and ϕ is an A⊗ B-formula, the model checking
problem for A⊗ B is to check whether there exists a 〈s1, s2〉 ∈ S1× S2 such that M, 〈s1, s2〉 |�A⊗B ϕ . The algorithm in Fig. 1
can again be used for model checking A⊗ B with inputs M and ϕ .

Remark 2. Note that we assume we are given a two-dimensional model 〈S1 × S2, T , l〉, from which we calculate the input
M = 〈S1 × S2, T1, T2, l〉 to the model checker. Therefore, on top of the cost of model checking on M, there will be an
overhead cost for constructing M.

Remark 3. Here we do not consider handshaking (synchronisation) of the action sets A1 and A2. Therefore, we assume
A1 ∩ A2 = ∅. We consider the case A1 ∩ A2 �= ∅ in Section 5.2.

4.3. Correctness and complexity

Theorem 4.1 (Termination). Let M= 〈S, T1, T2, l〉 be a finite structure for the combined logic AB. Assume the model checkers MCA
and MCB are terminating. Then, the combined model checker MCAB as defined in Fig. 1 also terminates.

Proof. MCAB computes the set of formulas MSSub(ϕ) in finite time. The procedure also extends the labelling function l that
maps each state to a set of proposition letters in finite time. Since the model checkers MCA and MCB are also terminating,
the combined model checker MCAB terminates. �
Theorem 4.2 (Correctness). Let M= 〈S, T1, T2, l〉 be a finite model for the combination of the logics A and B, and ϕ be a combined
formula. Assume the model checkers MCA and MCB are sound, complete and terminating. Then, pϕ ∈ l(s) if, and only if, M, s |�AB ϕ ,
where s ∈ S.

Proof. We show by induction over the structure of ϕ that, for every s ∈ S that pψ ∈ l(s) holds if, and only if, M, s |�AB ψ .
The base cases, ψ = p (p ∈ AP), is obvious.

For the induction step, the cases of boolean combinations, ψ = ¬ψ1 and ψ = ψ1 ∧ ψ2, of maximal state formulas is
trivial. The induction step for the remaining composed modal operators is as follows.

ψ = OA(ψ1, . . . ,ψn): By induction hypothesis, pψi ∈ l(si) iff M, si |�AB ψi holds for all 1 � i � n and all si ∈ S . Let ψ ′ =
OA(pψ1 , . . . , pψn ) be a formula obtained by replacing the ψi in OA(ψ1, . . . ,ψn) by pψi .
The soundness and completeness of the model checker MCA provides pψ ≡ pOA(ψ1,...,ψn) ∈ l(s) iff 〈S1, T1, l〉, s |�A ψ ′ .
With 〈S1, T1, l〉, s |�A ψ ′ iff M, s |�AB ψ , we obtain pψ ∈ l(s) iff M, s |�AB ψ .

ψ = OB(ψ1, . . . ,ψn): Similar to above case. �
We now analyse the computational complexity of the model checker MCAB. The complexity of the combined model

checker is the sum of component model checking cost, which is the cost of performing component model checks, and interac-
tion processing cost, which is the sum of the cost of processing inputs and outputs of the component model checks and the
cost of operations on the labelling function.

3 Note that it is trivial to observe that
∑

e∈Ea μi(e)= 1 for i ∈ {1,2} (Ea
i denotes the edges from q with the action a is chosen, i.e., Ea

i = {〈q,a,q′〉 ∈ Ei}).

iq q q
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Theorem 4.3 (Time complexity). Let M= 〈S, T1, T2, l〉 be a finite model for the combination of the logics A and B, ϕ be a combined
formula, and CA and CB be the time complexities of the model checkers MCA and MCB , respectively. Then, provided that CA and CB
are at least linear in the size of the specification, we can model check the validity of ϕ in M in time

O
(
max

{
CA

(|M|, |ϕ|),CB
(|M|, |ϕ|)})

Proof. We first calculate the time required for model checking, which is bounded by
∑

ψ∈MSSub(ϕ) CX(|M|, |ψ̂ |), where X

is the appropriate model checker for the respective subformula ψ ∈MSSub(ϕ), and ψ̂ is the simplified subformula that the
model checker is called with. (I.e., ψ̂ is the formula obtained from ψ by replacing each true subformulas ψ ′ ∈MSSub(ϕ) of
ψ by pψ ′ .)

By a simple inductive argument along the structure of the formula, we can show that the sum of the length∑
ψ∈MSSub(ϕ) |ψ̂ |< 2|ϕ|.
For m =max{CA(|M|, |ϕ|),CB(|M|, |ϕ|)}, this provides us—together with the trivial assumption that the cost of model

checking is at least linear in the size of the specification—with the straight forward estimation
∑

ψ∈MSSub(ϕ) CX(|M|, |ψ̂ |) <

2m.
We now calculate the interaction processing cost. The computation time of MSSub(ϕ) is linear in the size of ϕ , and is

therefore in O(|ϕ|). The cost factor of computing or updating the labelling functions l depends on the form of ψ . According
to the model checking algorithm, l is updated

∑
ψ∈MSSub(ϕ)

∑
s∈S 1 times. The outer sum is iterated O(|ϕ|) times, and the

inner sum |S| times. Hence, the processing time of l is in O(|ϕ|.|S|). This implies that the interaction processing cost is
dominated by the component model checking cost.

The total cost of the combined model checking is therefore in O(max{CA(|M|, |ϕ|),CB(|M|, |ϕ|)}). �
Theorem 4.4 (Concise representation). If storing the model and the results concisely provide a complexity advantage, then this advan-
tage is inherited.

Proof. The correctness of the algorithm does not depend on the representation. �
Examples for using conciseness are more often referring to space complexity. Region graphs are simple examples, where

the explicit representation as a region graph is exponential in the abstract representation as a timed automaton. However,
if the fusion (or product) refers to locations of the timed automaton (not distinguishing different states of the region graph
that refer to the same location), then a model checking algorithm can maintain and extend the labelling function on a more
abstract timed automaton. With proofs similar to those of the time complexity, we can establish the same claim for space
complexity.

Theorem 4.5 (Space complexity). Let M= 〈S, T1, T2, l〉 be a finite model for the combination of the logics A and B, ϕ be a combined
formula, and CA and CB be the space complexities of the model checkers MCA and MCB , respectively. Then, provided that CA and CB
are at least linear in the size of the specification, we can model check the validity of ϕ in M in space

O
(
max

{
CA

(|M|, |ϕ|),CB
(|M|, |ϕ|)})

Remark 4. Although MCA and MCB are not applied to the whole model M, we give the complexity of the generic model
checking in terms of |M|. In fact, as we can see in Fig. 1, MCA and MCB are applied to 〈S1, T1, l〉 and 〈S2, T2, l〉, respectively,
which are smaller then M. We calculate the complexity in terms of |M| in order to keep modularity and simplicity.

Remark 5. We note that the combined model checking cost of ‘join’ is in general higher than that of either ‘temporalisation’
or ‘fusion’. First of all, the state space of the combined model is the product of state spaces of the component logics while
in ‘temporalisation’ and ‘fusion’ the combined state space is the union of two constituent state spaces. Secondly, the model
checking of join has an extra overhead cost while calculating T1 and T2 (see Section 4.2). This cost does not change the
overall complexity, but requires extra computation time.

4.4. Example combinations

In this section, we show how the method can be applied to represent some combinations of different aspects of multi-
agent systems. The examples demonstrate how simple it becomes with our technique to determine the model checking
complexity of these logics (and to synthesise a model checker for them).

4.4.1. Time + knowledge
Let us consider the combination of time and knowledge aspects. A typical example is the fusion of the temporal logic CTL

with the modal logic S5n . Typically, the S5n modal operator is used to formalise epistemic concepts. Thus, the combination
CTL⊕ S5n can be used to reason about knowledge and time.
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Assume the modalities ‘group knowledge’, ‘common knowledge’ and ‘distributed knowledge’ are already defined in S5n .
The language of CTL⊕ S5n is the smallest set of formulas generated by the following grammar:

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | ∃© ϕ | ∃�ϕ | ∃[ϕ1Uϕ2] | Kiϕ | EΓ ϕ | CΓ ϕ | DΓ ϕ

Other operators (∃♦, ∀©, ∀♦, ∀�, ∀U , etc.) can be derived in the usual way. In this grammar, p ∈ AP is an atomic proposi-
tion, and the operators ∃©, ∃� and ∃U are the standard CTL operators. Given a set of agents A= {1, . . . ,n}, for any agent
i ∈ A, the formula Kiϕ is read as “agent i knows ϕ”. Given that Γ ⊆ A denotes a group of agents, the form formula EΓ ϕ
is read as “everybody in group Γ knows ϕ”; the formula CΓ ϕ is read as “ϕ is common knowledge in group Γ ”; and the
formula DΓ ϕ is read as “ϕ is distributed knowledge in group Γ ”.

Assume the combined model M for the logic CTL⊕ S5n is a tuple 〈S, Rt ,∼1, . . . ,∼n, l〉, where S = S1 × · · · × Sn is a set
of global states, Rt ⊆ S× S is a temporal relation, ∼i ⊆ S× S is an epistemic accessibility relation for i, and l : S → 2AP . Here
we assume that 〈s, s′〉 ∈ Rt iff s′ is the result of applying a transition function t : S × A → S (where A ⊆ A1× · · · × An is the
set of joint actions) to the global state s and a joint action a ∈ A. As can easily be observed, M is an interpreted system,
〈S, Rt〉 is a Kripke frame for CTL, and 〈S,∼1, . . . ,∼n〉 is a Kripke frame for S5n .

Given that σ is a path, which is an infinite sequence of states, and σ [i] is the ith element of σ , the semantics of
CTL⊕ S5n is defined inductively by:

M, s |� p iff p ∈ l(s), for p ∈ AP

M, s |� ¬ϕ iff not M, s |� ϕ

M, s |� ϕ1 ∧ ϕ2 iff M, s |� ϕ1 and M, s |� ϕ2

M, s |� ∃© ϕ iff for some σ ∈ Paths(s), σ [0] = s and M,σ [1] |� ϕ

M, s |� ∃�ϕ iff for some σ ∈ Paths(s), σ [0] = s and (∀i � 0)M,σ [i] |� ϕ

M, s |� ∃[ϕ1Uϕ2] iff for some σ ∈ Paths(s), σ [0] = s and (∃k � 0)

s.t. M,σ [k] |� ϕ2 and ∀(0 � j < k)M,σ [ j] |� ϕ1

M, s |� Kiϕ iff (∀s′ ∈ S) s∼i s′ implies M, s′ |� ϕ

M, s |� EΓ ϕ iff (∀s′ ∈ S) s∼E
Γ s′ implies M, s′ |� ϕ

M, s |� CΓ ϕ iff (∀s′ ∈ S) s∼C
Γ s′ implies M, s′ |� ϕ

M, s |� DΓ ϕ iff (∀s′ ∈ S) s∼D
Γ s′ implies M, s′ |� ϕ

where ∼E
Γ=

⋃
i∈Γ ∼i , ∼D

Γ=
⋂

i∈Γ ∼i , and ∼C
Γ= (∼E

Γ )+ (the transitive closure of ∼E
Γ ).

According to our combined model checking procedure, the model checking complexity of CTL⊕ S5n transfers the com-
plexity of the component logics CTL and S5n . It is trivial to observe that the model checking problem of CTL⊕ S5n can be
solved in polynomial time.

This result is interesting, because without introducing a complex method we could solve the model checking problem of
a combined logic of time and knowledge. Basically, our result provides an upper bound for the model checking problem of
the epistemic logic of branching time, CTLK [26]. As can be easily seen, CTL⊕ S5n and CTLK are the same logics, because
they have the same grammar and same semantics over interpreted systems. The model checking problem of the logic CTLK
was previously analysed by bounded model checking [26], by unbounded model checking [4], and by building upon an
extension of the model checker NuSMV [14], and the same result was found.

Above we have applied our method to combine knowledge and branching time aspects. We can also use our approach
to combine knowledge and linear time aspects. Namely, we can define the fusion of the logic LTL and S5n , which will result
in the same language of the logic CKLn [7]. We can easily show that the complexity of the model checking LTL ⊕ S5n is
the same as that of LTL, because the complexity of the LTL model checking is higher than the complexity of the S5n model
checking. This is the same result as that of [7], where the model checking problem of CKLn is reduced to LTL model checking
by a method that uses local propositions. The advantage of our approach is that we can prove the model checking complexity
of a combined logic just using the model checking complexities of component logics.

4.4.2. Probability + knowledge
In the case of merging the probability and knowledge dimensions of multi-agent systems, we can combine probabilistic

CTL, PCTL [39], with the modal epistemic logic S5. PCTL ⊕ S5 allows us to express probabilistic, temporal and epistemic
properties.

Let A= {1, . . . ,n} be a set of agents. The syntax of PCTL⊕ S5 is given according to the following syntax:

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | Pr∼r[ψ] | Kiϕ | EΓ ϕ | CΓ ϕ | DΓ ϕ

ψ ::= ϕ | ©ϕ | ϕ1U�kϕ2 | ϕ1Uϕ2
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where ∼∈ {<,>,�,�,=}, r ∈ [0,1], k ∈ N, i ∈ A, Γ ⊆ A, p ∈ AP is an atomic proposition, Pr∼r is the probability operator,
Ki, EΓ , CΓ and DΓ are epistemic operators as described in Section 4.4.1, and U ,U�k are path formulas.

The combined model for the logic PCTL ⊕ S5 is a tuple 〈S, A,E,μ,∼1, . . . ,∼n, l〉, where S = S1 × · · · × Sn is a set
of global states, A is a set of actions, E is a set of edges and μ is the probability transition function (see Section 3.2),
∼i ⊆ S × S is an epistemic accessibility relation for i, and l : S → 2AP . The semantics of the probabilistic formula Pr∼r[ψ]
and the path formulas ©ϕ , ϕ1U�kϕ2, ϕ1Uϕ2 are defined as in Section 3.2; and the semantics of the epistemic formulas
Kiϕ, EΓ ϕ, CΓ ϕ, DΓ ϕ are defined as in Section 4.4.1.

According to our combined model checking procedure, PCTL⊕ S5 transfers complexities from the component logics PCTL
and S5. We know that PCTL model checking over a Markov chain has polynomial complexity [45]. Therefore, we can find
a polynomial upper bound for the model checking of the combined logic PCTL⊕ S5. This is interesting because PCTL⊕ S5
subsumes the logic KPCTL, which was shown to have polynomial model checking complexity [23]. Thus, with our method
we could establish the same complexity result without devising a new model checking algorithm.

Remark 6. In this section, we have shown how our method can be used to combine different dimensions, such as time,
knowledge and probability. Actually, this approach can be applied to typical extensions of modal logic. For example, in
Section 6 we apply the combination method to Hybrid Logics [46], an extension of modal logic with a reference to locations,
called nominals.

5. Generic model checking for modal, temporal, probabilistic, and real-time logics

In the cases “time + knowledge” and “probability + knowledge”, we considered models with explicit states, and therefore
we could consider model checkers as mapping states to sets of subformulas of ϕ . However, model checkers for real-time
logics, in general, receive models with non-explicit states. For example, in timed automata such states are called locations,
which are just abstract representations. The explicit states can be viewed as the tuples of locations and clock valuations.
Therefore, we can no longer consider such a model checker labelling locations with subformulas that are true.

In this section, we generalise the model checking algorithm from Section 4 to cover real-time logics. As mentioned above,
the semantics of all these different logics are defined over different structures. In the extended model checking algorithm,
we should therefore either combine different model types of combined logics into a single structure and deal with hybrid
model types, or define a generic model for all different types of logics. The former approach requires extending algorithms in
such a way that they deal with the combination of different types of models. However, this makes algorithms unnecessarily
complex and impractical. We therefore chose the latter approach and use a generic model type for different types of models.
For the case of combining modal, temporal, probabilistic, and real-time logics, probabilistic timed automata (PTA) can be used
as a generic structure, because PTA embed Kripke structures, Markov decision processes and timed automata.

5.1. Fusion

In this section, we consider a model checking procedure for the combination (fusion) of A and B, which are any arbitrary
modal, temporal, probabilistic, or real-time logics. In order to employ real-time logics whose models include non-explicit
states, we must modify the algorithm from Fig. 1.

Since we need a generic structure that covers all the types of logics mentioned, we assume that the fusion A ⊕ B is
interpreted over a probabilistic timed automaton A= 〈L, A, C,E, inv,μ, l〉, where A is the union of the probabilistic timed
automata A1 = 〈L1, A1, C1,E1, inv1,μ1, l1〉 and A2 = 〈L2, A2, C2,E2, inv2,μ2, l2〉. Given that A1 ∩ A2 = ∅ and C1 ∩ C2 = ∅,
we define A=A1 ∪A2 as follows.

− L = L1 ∪ L2,
− A = A1 ∪ A2,
− C = C1 ∪ C2,
− inv(�)= inv1(�)∪ inv2(�) for every � ∈ L,
− E = E1 ∪ E2,

− μ(e)=
{

μ1(e) if e ∈ E1,

μ2(e) if e ∈ E2,

− l(�)= l1(�)∪ l2(�) for every � ∈ L.

E includes the edges 〈�,γ1,a1, X1, �
′〉 ∈ E1 and 〈�,γ2,a2, X2, �

′〉 ∈ E2. Since the clock sets X1 and X2 are disjoint, the clock
constraints γ1 and γ2 cannot refer to the same clocks.

Let ϕ be a A⊕ B-formula and A=A1 ∪A2 be a A⊕ B-model. The algorithm in Fig. 2, with the inputs A, A1, A2 and ϕ ,
can be used for model checking A |�A⊕B ϕ .

In Fig. 2, we first construct the region graph R(A⊕ z,ϕ)= 〈Q r, Ar,Er,μr, lr〉 as defined in Definition 3.10. Every state
q ∈ Q r is a tuple 〈�, [ν]〉, where � ∈ L is a location and [ν] is an equivalence class. Er consists of two types of transitions:
(i) transitions representing the passage of time; (ii) transitions representing the edges in probabilistic timed automata. Here,
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MCAB

Input: A= 〈L, A, C,E, inv,μ, l〉, A1, A2 and AB formula ϕ

compute R(A⊕ z,ϕ) := 〈Q r , Ar ,Er ,μr , lr〉
compute R1 := 〈Q r , Ar1 ,Er1 ,μr1 , lr〉
compute R2 := 〈Q r , Ar2 ,Er2 ,μr2 , lr〉
for every ψ ∈MSSub(ϕ) (increasing order of |ψ |)

case(ψ)

ψ = p ∈ AP : Sat(ψ) := {q ∈ Q r | p ∈ lr(q)}
ψ =ψ1 ∧ψ2 : Sat(ψ) := {q ∈ Q r | pψ1 ∈ lr(q)∧ pψ2 ∈ lr(q)};
ψ =¬ψ1 : Sat(ψ) := {q ∈ Q r | pψ1 /∈ lr(q)}
ψ = OA(ψ1, . . . ,ψn) : Sat(ψ) :=MCÂ(R1,OÂ(pψ1 , . . . , pψn ))

ψ = OB(ψ1, . . . ,ψn) : Sat(ψ) :=MCB̂(R2,OB̂(pψ1 , . . . , pψn ))

for every q ∈ Sat(ψ), set lr(q) := lr(q)∪ {pψ }

Fig. 2. Generic model checking algorithm for the combination of modal, temporal, probabilistic and real-time logics.

μr is the probability distribution of the region graph, which is calculated as described in Definition 3.10. It is easy to observe
that the region graph R is actually a Markov decision process.

Note that automaton A is extended with a new clock variable z /∈ C , that the clock constraints within the formula ϕ
refers to. R(A⊕ z,ϕ) actually depends on the formula ϕ . This is simply because the maximal constants of ϕ are taken into
the consideration when calculating equivalence classes. If ϕ = true or the maximal constants in ϕ do not exceed the maximal
constants of the clock constraints of the automaton, then R(A⊕ z,ϕ) reduces to R(A⊕ z). Otherwise, the labelling function
lr should also include the clock constraints of ϕ . We recall that while constructing region transition systems in Sections 3.3
and 3.5, we considered atomic clock constraints of (probabilistic) timed automata as atomic propositions, and updated the
labelling function accordingly. Since R(A⊕ z,ϕ) depends on ϕ , the definition of lr (in Definition 3.10) is modified as follows
(here Ψϕ denotes the set of clock constraints of ϕ):

lr
(〈
�, [ν]〉)= l(�)∪ {

γ ∈ Ψ (C)
∣∣ ν |� γ

}∪ {γ ∈ Ψϕ | ν |� γ }
The model checking algorithm then calculates the graphs R1 := 〈Q r, Ar1 ,Er1 ,μr1 , lr〉 and R2 := 〈Q r, Ar2 ,Er2 ,μr2 , lr〉, where

– Ar1 =Ar \ (A2 \ A1),
– Ar2 =Ar \ (A1 \ A2),
– Er1 = Er \ {〈〈�, [ν]〉,a, 〈�′, [ν ′]〉〉 ∈ Er | a ∈ A2 \ A1},
– Er2 = Er \ {〈〈�, [ν]〉,a, 〈�′, [ν ′]〉〉 ∈ Er | a ∈ A1 \ A2},
– μr1(er1 )=μr(er1 ) for every er1 ∈ Er1 ,
– μr2(er2 )=μr(er2 ) for every er2 ∈ Er2 .

Informally speaking, R1 (resp. R2) is a model for the first (resp. second) component logic where the edges labelled with
the actions of the second (resp. first) logic are abstracted from.

Note that any subformula ψ of the form of OA(ψ1, . . . ,ψn) (resp. OB(ψ1, . . . ,ψn)) is translated into the formula ψ̂ =
OÂ(ψ1, . . . ,ψn) (resp. OB̂(ψ1, . . . ,ψn)) by eliminating timing constraints in ψ . Then, the model checking MCÂ (resp. MCB̂) is
called for OÂ(pψ1 , . . . , pψn ) (resp. OB̂(pψ1 , . . . , pψn )). Here, Â (resp. B̂) refers to the corresponding logic of A (resp. B), where
timing parameters are removed. If there is no timing parameter, we assume A≡ Â (resp. B≡ B̂) and ψ ≡ ψ̂ .

We eliminate the timing parameters by simply extending the probabilistic timed automaton A under investigation with
a new clock variable z, which is not included in the clock set of A. The extended automaton is denoted by A ⊕ z (i.e.,
z is added to the clock set of A). The new clock z is used to measure the elapse of time until a subformula of the given
formula ψ holds. The basic idea is that the clock constraints of ψ are extended with z so that we obtain the corresponding
atomic propositions referring to z. Namely, we remove any clock constraint, e.g., ∼ c, in an operator, e.g., U∼c , and obtain
the atomic proposition z∼ c and the untimed operator U .

We exemplify this idea on the example of TCTL. Assume ψ = P(ψ1U∼cψ2) is a TCTL formula, where P ∈ {∃,∀} is a path
quantifier. If we eliminate the timing parameters, then we obtain the formula ψ̂ = P((ψ1 ∨ ψ2)U(z ∼ c) ∧ ψ2), which is
the corresponding CTL formula. Namely, the clock constraint ∼ c is eliminated from the TCTL formula ψ , and the formula
z ∼ c, which is the extension of the clock constraint with z, is added as an atomic proposition in the corresponding timing
parameter-free CTL formula ψ̂ . For example, the TCTL formula ∃♦<1ϕ is replaced by the CTL formula ∃♦((z < 1)∧ ϕ).

5.2. Product (join)

The fusion of A and B results in a restricted logic. Although it is computationally not (much) harder, the product of two
logics results in a much richer language. Assume that A1 = 〈L1, A1, C1,E1, inv1,μ1, l1〉 and A2 = 〈L2, A2, C2,E2, inv2,μ2, l2〉



76 S. Konur et al. / Theoretical Computer Science 503 (2013) 61–88
are probabilistic timed automata with C1 ∩ C2 = ∅.4 Given that A⊆ A1 ∩ A2 is a set of handshaking actions, the probabilistic
timed automaton A=A1‖AA2, which is the parallel composition automaton of A1 and A2, is defined as 〈L, A, C,E, inv,μ, l〉
where

– L = L1 × L2,
– A = A1 ∪ A2,
– C = C1 ∪ C2,
– inv(〈�1, �2〉)= inv1(�1)∧ inv2(�2) for every 〈�1, �2〉 ∈ L,
– E = E0 ∪ E1 ∪ E2 s.t.

– for a ∈A, e = 〈〈�1, �2〉, γ1 ∧ γ2,a, X1 ∪ X2, 〈�′1, �′2〉〉 ∈ E0 iff e1 = 〈�1, γ1,a, X1, �
′
1〉 ∈ E1 and e2 = 〈�2, γ2,a, X2, �

′
2〉 ∈ E2

(denoted by e = e1‖ae2),
– for a /∈ A, e = 〈〈�1, �2〉, γ1,a, X1, 〈�′1, �2〉〉 ∈ E1 iff e1 = 〈�1, γ1,a, X1, �

′
1〉 ∈ E1 and ��′2 ∈ L2 s.t. e2 = 〈�2, γ2,a, X2, �

′
2〉∈ E2 (denoted by e = e1 � ‖ae2),

– for a /∈ A, e = 〈〈�1, �2〉, γ2,a, X2, 〈�1, �
′
2〉〉 ∈ E2 iff e2 = 〈�2, γ2,a, X2, �

′
2〉 ∈ E2 and ��′1 ∈ L1 s.t. e1 = 〈�1, γ1,a, X1, �

′
1〉∈ E1 (denoted by e = e2 � ‖ae1),

– μ(e)=
{

μ1(e1)×μ2(e2) if e = e1 ‖a e2,

μ1(e1) if e = e1 ∦a e2,

μ2(e2) if e = e2 ∦a e1,
– l(〈�1, �2〉)= l1(�1)∪ l2(�2) for every 〈�1, �2〉 ∈ L.

The combined model checking procedure MCAB in Fig. 2 can be used to model check an A⊗ B formula ϕ over a parallel
composite automaton A=A1‖AA2. MCAB takes A, A1, A2 and ϕ as input, and returns whether A satisfies ϕ .

5.3. Correctness and complexity

Let M= 〈L, A, C,E, inv,μ, l〉 be a composition automaton (either union or product), PM be the corresponding proba-
bilistic timed transition system (as defined in Definition 3.9) and R= 〈Q r, Ar,Er,μr, lr〉 be the corresponding region graph
(as defined in Definition 3.10).

Theorem 5.1 (Termination). Let M be a model for the combination of the logics A and B. Assume the model checkers MCÂ and MCB̂
are terminating. Then, the combined model checker MCAB also terminates.

Proof. MCAB computes the region graph R, and the graphs R1,R2 in finite time. The calculation of subformulas MSSub(ϕ)

and the update of the labelling function l are also bounded, because the number of iterations is bounded by finite sets.
Since the model checkers MCÂ and MCB̂ are also terminating, the combined model checker MCAB terminates. �

We now prove the correctness of the model checking algorithm. We first define the following lemma.

Lemma 5.2. Let ψ be a formula, and A be a probabilistic timed automaton. The state 〈�, ν〉 of the corresponding probabilistic timed
transition system PA satisfies ψ if, and only if, the vertex 〈�, [ν]〉 of the corresponding region graph R(A,ψ) satisfies the formula ψ̂ ,
where ψ̂ is derived by eliminating timing constraints in ψ .

Proof. If ψ is a formula of a logic that does not contain any timing constraint, then no clock valuation and equivalence class
is defined, and A, PA and R(A,ψ) become similar. Also, ψ and ψ̂ become the same formula. It is then trivial to observe
that the lemma is true.

If ψ is a formula of a logic with timing constraints, then clock valuations and equivalence classes are defined. The lemma
is proven in [40] for the case of TCTL, and in [43] for the case of PTCTL. �

In this article, we consider TCTL and PTCTL as logics of timing constraints. We therefore consider these two logics in the
lemma above. The proof methods presented in [40] and [43] apply to similar logics.

Theorem 5.3 (Correctness). Let M be a model for AB and ϕ be an AB formula. Assume the model checkers MCÂ and MCB̂ are sound,
complete and terminating. Then pϕ ∈ lr(〈�, [ν]〉) if, and only if, PM, 〈�, ν〉 |�AB ϕ , where 〈�, [ν]〉 ∈ Q r .

Proof. We show by induction over the structure of ϕ that, for every ψ ∈MSSub(ϕ) and 〈�, [ν]〉 ∈ Q r , pψ ∈ lr(〈�, [ν]〉) holds
if, and only if, PM, 〈�, ν〉 |�AB ψ . The base cases, ψ = p (p ∈ AP), is obvious.

4 Here, we assume that the clock sets of the automata A1 and A2 are disjoint, because if there is a transition between these two automata (this is the
case, for example, at intersection nodes), this clock will be forced to be reset. This will result in an unexpected situation as a common clock, which should
not be affected from transitions between automata, will be reset at each transition.
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For the induction step, the cases of boolean combinations, ψ = ¬ψ1 and ψ = ψ1 ∧ ψ2, of maximal state formulas is
trivial. The induction step for the remaining composed modal operators is as follows.

ψ = OA(ψ1, . . . ,ψn): By induction hypothesis we have that pψi ∈ lr(〈�i, [νi]〉) iff PM, 〈�i, [νi]〉 |�AB ψi , for 1 � i � n.
Let R1 = 〈Q r, Ar1 ,Er1 ,μr1 , lr〉, and let P1 be the corresponding probabilistic timed transition system of R1. Since MCÂ
is sound and complete, by the combined model checking procedure we have that pψ ≡ pOA(ψ1,...,ψn) ∈ lr(〈�, [ν]〉) iff
R1, 〈�, [ν]〉 |�Â OÂ(pψ1 , . . . , pψn ).
By Lemma 5.2, R1, 〈�, [ν]〉 |�Â OÂ(pψ1 , . . . , pψn ) iff P1, 〈�, ν〉 |�A OA(pψ1 , . . . , pψn ). Together, this implies that pψ ≡
pOA(ψ1,...,ψn) ∈ lr(〈�, [ν]〉) iff P1, 〈�, ν〉 |�A OA(pψ1 , . . . , pψn ).
We know that the graph R1 is calculated by eliminating the transitions with the actions from A2 \ A1, i.e., Er1 =
Er \ {〈〈�, [ν]〉,a, 〈�′, [ν ′]〉〉 ∈ Er | a ∈ A2 \ A1} (see Section 5.1). So, we have that Er1 ⊆ Er . Note that the probability
distributions are defined in Definition 3.9 such that the sum of probabilities of edges per action is 1, and eliminating
the transitions with the actions from A2 \ A1 in R1 does not affect the probability distributions of R the remaining
edges. Thus, the property of being a probability distribution is not affected for the remaining actions and the R1 is
defined properly. Furthermore, in the definition of R1 we have for any edge e1 ∈ E1 that the corresponding transition
er1 ∈ Er1 of the graph R1 provides μr1 (er1)=μr(er1 ).
From this observation we can conclude that P1, 〈�, ν〉 |�A OA(pψ1 , . . . , pψn ) iff PM, 〈�, ν〉 |�AB OA(pψ1 , . . . , pψn ). Hence,
pψ ∈ lr(〈�, [ν]〉) iff PM, 〈�, ν〉 |�AB ψ .

ψ = OB(ψ1, . . . ,ψn): Similar to the above case. �
We now analyse the computational complexity of the model checker MCAB.

Theorem 5.4 (Complexity). Let M be a model for AB, ϕ be a AB formula, and CÂ and CB̂ be the time (or space) complexities of the
model checkers MCÂ and MCB̂ , respectively, where Â (resp. B̂) refers to the corresponding logic of A (resp. B) where timing parameters
are removed. Then, provided that CÂ and CB̂ are at least linear in the size of the specification, we can model check the validity of ϕ in
M in

O
(
max

{
CÂ

(|R|, |ϕ|),CB̂

(|R|, |ϕ|)})
time (or space), where (given that for x ∈ C , cx be the largest constant that is compared in some clock constraint in M or in a
formula ϕ), where

|R| ∈O
(
|M|.|C |!.

∏
x∈C

cx

)

Proof. We first calculate the cost of constructing the region graphs. Assume L is the set of locations, E is the set of
edges and C is the set of clocks of a timed automaton A. [40] proves that the size of the corresponding region graph
R is in O((|L| + |E |).|C |!.∏x∈C cx). Probabilistic timed automata also include probability distribution μ; but the addition
of probability distributions to times automata does not significantly increase the size of region graph over the size of
non-probabilistic region graph [43]. So, for a probabilistic timed automaton A, we have that |R| ∈O(|A|.|C |!.∏x∈C cx).

From this result we can derive that the size of R is in O(|M|.|C |!.∏x∈C cx).5 Since |R1|< |R| and |R2|< |R|, the sizes
of R1 and R2 are also in O(|M|.|C |!.∏x∈C cx).

MSSub(ϕ) calculates the maximal state subformulas ψ of ϕ . By a simple inductive argument along the structure of
the formula, we can show that the sum

∑
ψ∈MSSub(ϕ) |ψ̂ | < 2|ϕ| of the length of the simplified subformula ψ̂ the model

checker is called with, is bounded by 2m. (ψ̂ is again the formula obtained from ψ by replacing each true subformulas
ψ ′ ∈MSSub(ϕ) of ψ by pψ ′ .)

We now consider the cost of updating the labelling function l, which is updated |MSSub(ϕ)|.|Q r | times. |MSSub(ϕ)| is
in O(|ϕ|). For the case of timed automata, [40] proves that the size of Q r is in O(|L|.|C |!.∏x∈C cx). For probabilistic timed
automata, we have that |Q r | is in O(|A|.|C |!.∏x∈C cx). Hence, the cost of updating l is in O(|ϕ|.|M|.|C |!.∏x∈C cx).

We now calculate the time required for component model checking. The total cost of applying MCÂ is∑
ψ∈MSSub(ϕ) CÂ(|R1|, |ψ̂ |). From the assumption that the cost of model checking is at least linear in the size of the speci-

fication and the fact
∑

ψ∈MSSub(ϕ) |ψ̂ |< 2|ϕ|, we can derive that the cost of MCÂ is in O(CÂ(|R1|, |ϕ|))⊂O(CÂ(|R|, |ϕ|)),
where |R| =O(|M|.|C |!.∏x∈C cx). Similarly, the cost of MCB̂ is in O(CB̂(|R|, |ϕ|)).

We assume that the cost of model checking is at least linear in the size of the specification, which implies that
the total cost of constructing region graphs and updating labelling function is dominated by the component model
checking costs. Thus, the total cost of the combined model checking is in O(max{CÂ(|R|, |ϕ|),CB̂(|R|, |ϕ|)}), where
|R| =O(|M|.|C |!.∏x∈C cx).

5 The computation of the successor class succ of any equivalence class (see Definition 3.6) requires additional O(|C |) time. Since this is dominated by
the cost of constructing the region graph, we can ignore this cost.
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The same argument applies for space. �
As in the modal case, this extends to concise representations.

Theorem 5.5 (Complexity for concise systems). Let M be a model for AB, ϕ be a AB formula, and CÂ and CB̂ be the time (or space)
complexities of the model checkers MCÂ and MCB̂ , respectively, where Â (resp. B̂) refers to the corresponding logic of A (resp. B) where
timing parameters are removed. Then, provided that CÂ and CB̂ are at least linear in the size of the specification, we can model check
the validity of ϕ in M in

O
(
max

{
CÂ

(|M|, |ϕ|),CB̂

(|M|, |ϕ|)})
time (or space), provided that the extended labelling function produced by the algorithm from Fig. 2 only refers to the locations of M.

Proof. In this case, the Sat(ψ) for the formulas in MSSub(ϕ) is independent of the clock valuations, and it hence suffices
to compute them for the case that all clock values are 0. The extended labelling function then refers to the location of the
(probabilistic) timed automaton M. The remainder is as in the explicit case. �
Remark 7. Usually, the concise representation cannot be used for product.

Remark 8. Although the complexity bounds for model checking fusion and product of logics are similar, model checking of
product requires more computation time, because the state space of the product model is the product of the state spaces of
the component logics while in fusion the combined state space is the union of two constituent state spaces.

Remark 9. Note that the model checking algorithm presented in Fig. 2 is the real-time extension of the algorithm in Fig. 1.
Therefore, if the component logics are not real-time logics, both algorithms are equivalent.

5.4. Example combinations

Below we analyse different combinations of real-time logics. Here we select TCTL to express real-time clock constraints.
Other real-time logics can be analysed along the same lines.

5.4.1. Real-time+ modal (temporal) logics
In this section, we consider the combination (fusion) TCTL⊕X of TCTL with any modal logic X. As described above, TCTL

is interpreted over timed automata. A timed automaton can be represented in terms of a probabilistic timed automaton
A1 = 〈L1, A1, C1,E1, inv1,μ1, l1〉, if we define a probability transition function μ1 that assigns 1 to the probability of each
transition. That is, A1 with μ1 : E1 → 1 represents a timed automaton whose every edge is labelled with the probability
of 1. In this way, we can eliminate the probability element from A1.

The second component of the fusion is the modal logic X, which is assumed to be interpreted over Kripke structures.
In order to represent a Kripke structure in terms of a probabilistic timed automaton A2 = 〈L2, A2, C2,E2, inv2,μ2, l2〉,
similar to the TCTL case, we simply assign 1 to each transition probability, i.e., μ2 : E2 → 1. We can eliminate the real-time
dimension by defining an empty clock set and an empty clock constraint set, i.e., C2 = ∅ and Ψ (C2) = ∅. However, this
is not sufficient to remove the time element from the A2, because the automaton can wait in any location infinitely. We
therefore need to assign f alse to the invariance of each location, i.e., inv2(�) = ⊥ for any � ∈ L2. In this way, as soon as
the automaton enters a location �, it exists immediately because inv2(�) is never valid. By eliminating the probability and
real-time elements, A2 becomes a Kripke structure, which can be used as a model for the logic X.

Given that A1 and A2 satisfy the constraints above, we assume that the union A=A1∪A2 is a model for the combined
logic. Then, the model checking procedure presented in Fig. 2 can be instantiated to cover the fusion of TCTL⊕ X.

In order to show the usefulness of combining TCTL with any other logic X, we assume X is the branching logic CTL∗ . The
syntax of TCTL⊕ CTL∗ is defined by the following grammar:

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | ∃ϕ1U∼cϕ2 | ∀ϕ1U∼cϕ2 | ∃ψ | ∀ψ
ψ ::= ϕ | ¬ψ |ψ1 ∧ψ2 |ψ1Uψ2

where ∼∈ {<,>,�,�,=} and c ∈N. Standard abbreviations can be done as usual.
Assume TCTL ⊕ CTL∗ is interpreted over the combined structure A = 〈L, A, C,E, inv, l〉, which is the union of A1 =

〈L1, A1, C1,E1, inv1,μ1, l1〉 and A2 = 〈L2, A2, C2,E2, inv2,μ2, l2〉 with the restrictions stated above; i.e., A1 is a timed
automaton, and A2 is a Kripke structure. We also assume that E2 = {〈�,⊥, ε,∅, �′〉 | 〈�,γ ,a, X, �′〉 ∈ E1}. Intuitively, this
means that E2 simulates E1 by adding untimed edges labelled with dummy action ε /∈ A1. We further assume L1 = L2 = L.
Therefore, in the region graph, for each transition 〈q,a,q′〉 ∈ Er labelled with an action a ∈ A1, there will be a transition
〈q, ε,q′〉 ∈ Er labelled with a dummy action ε . This allows the generic model checking algorithm to call the component
model checkers on the same state space, and bisimilar graphs.
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The logic TCTL⊕CTL∗ combines the expressive powers of TCTL and CTL∗ . (The semantics of the modalities can be defined
as in Section 3.) It is therefore more expressive than all of the logics LTL, CTL, CTL∗ and TCTL. TCTL⊕CTL∗ can express some
properties that cannot be expressed in any of these languages. For example, consider the fairness property

“if there are infinitely many processes p along any path, then the process q cannot continuously run for more than k
seconds”,

which can be expressed by the TCTL⊕ CTL∗ formula

∀[�♦p→ (∀�(
q→∀♦>k¬q

))]
Note that this property cannot be expressed in either LTL, CTL, CTL∗ or TCTL. Similarly, the TCTL⊕ CTL∗ formula ∀♦�p ∨
∀�∃♦�kq cannot be expressed in any of these logics.

Given that ϕ is a TCTL⊕ CTL∗ formula, by Theorem 5.4, the algorithmic model checking complexity of TCTL⊕ CTL∗ is
calculated as O(max{CCTL(|RA|, |ϕ|),CCTL∗ (|RA|, |ϕ|)}). Since the model checking complexity of CTL is linear in the size of
input, the model checking complexity of the first component is EXPTIME (due to the size of R), which dominates the cost
of model checking CTL∗ , which is PSPACE.

From the model checking complexities of the constituent logics, we might assume that the model checking complexity
of TCTL ⊕ CTL∗ is EXPTIME. However, we can achieve a better result. The work in [40] proves that the model checking
complexity of TCTL is PSPACE. Since we take the fusion of TCTL and CTL∗ , at the intersection nodes of the combined model
(where the timed automaton is entered), the clock values are reset to 0. This means that we can consider these nodes
as the initial locations of the timed automaton. Therefore, the correctness of a subformula at an intersection node can
be easily assessed by calling the TCTL model checker without a need to create a region graph for the combined model.
This suggests that we can only consider the model size of the concise representation, which is the timed automaton itself,
when determining the complexity. By Theorem 5.5, since storing the model and the results concisely provide a complexity
advantage, we can inherit this complexity advantage. Therefore, we can consider that the TCTL model checking can be done
using space polynomial in the length of the input (rather than EXPTIME). From this, we can easily derive that the model
checking complexity of TCTL⊕ CTL∗ is PSPACE.

This result is important in the sense that extending TCTL with CTL∗ semantics (thus with LTL semantics), or extending
CTL∗ with timing constraints does not increase the model checking complexities of these logics.

5.4.2. Real-time+ knowledge
In this section, we discuss the combination (fusion) of real-time and knowledge. We consider the fusion of the real-time

logic TCTL and the logic of knowledge S5. Assume A= {1, . . . ,n} be set of agents. The syntax of the resulting logic TCTL⊕S5
is defined by the following grammar:

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | Kiϕ | EΓ ϕ | CΓ ϕ | DΓ ϕ | ∃ϕ1U∼cϕ2 | ∀ϕ1U∼cϕ2

where ∼∈ {<,>,�,�,=}, c ∈N, i ∈A, Γ ⊆A, and p ∈ AP is an atomic proposition. Standard abbreviations include ⊥,ϕ1 ∨
ϕ2,ϕ1 ⇒ ϕ2, etc. as well as ∃♦∼cϕ , ∀♦∼cϕ , ∃�∼cϕ and ∀�∼cϕ .

Assume TCTL ⊕ S5 is interpreted over a combined structure A = 〈L, A, C,E, inv,μ, l〉, which is the fusion of A1 =
〈L, A, C,E1, inv, μ̄, l〉 and A2 = 〈L,∅,∅,∅,⊥, μ̄, l〉, where L = L1 × · · · × Ln is a set of global states, μ̄ denotes a proba-
bility transition function that assigns 1 to every transition, ⊥ denotes that the invariance of each location is f alse. It is easy
to see that A1 has no probability dimension and A2 has no real-time dimension.

In order to employ epistemic relations, we modify the graph R2 in Fig. 2 as follows:

R2 = 〈Q r,∼1, . . . ,∼n, lr〉
where Q r and lr are defined as before, ∼i⊆ Q r × Q r is an epistemic relation defined by 〈�, ν〉 ∼i 〈�′, ν ′〉 if, and only of,
pr ji(�)= pr ji(�

′) and ν $ ν ′ , for each agent i and for valuations ν,ν ′ ∈ RC
�0. Here, pr ji : L → Li returns the location of the

agent i in the global location. Note that R2 is an interpreted system on Q r , over which the semantics of epistemic operators
are defined.

The semantics of the real-time formulas ∃ϕU∼cψ and ∀ϕU∼cψ can be defined as in Section 3.4, and the semantics of
the epistemic formulas Kiϕ, EΓ ϕ, CΓ ϕ and DΓ ϕ are defined as in Section 4.4.1. The model checking procedure presented
in Fig. 2 (with the modified definition of R2) can be used to for model checking TCTL⊕ S5 formulas.

The model checking problem of the combination of real-time and epistemic aspects of multi-agent systems was studied
in [20], where the fusion of an existential fragment of TCTL and the logic S5, called TECTLK, was introduced. TCTL⊕ S5 is a
more expressive logic than TECTLK. In [20], it was shown that the model checking problem is decidable; but no complexity
result was provided.

Using our combination method, we derive that the algorithmic model checking complexity of TCTL⊕ S5 is in EXPTIME.
However, as described in Section 5.4.1, we can inherit the complexity advantage for TCTL, which reduces the complexity to
PSPACE. This result fills an important gap in the spectrum.
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5.4.3. Real-time+ probability
In this section, we analyse the combination of real-time and probability dimensions. Namely, we consider the product

TCTL⊗ PCTL6 of the logics TCTL and PCTL. The syntax of the product is defined inductively as follows:

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | ∃ϕ1U∼cϕ2 | ∀ϕ1U∼cϕ2 | P∼r[ϕ1Uϕ2]
where ∼∈ {<,>,�,�,=}, c ∈N and r = [0,1]. Standard abbreviations can be done as usual.

Assume TCTL⊗ PCTL is interpreted over the combined structure A= 〈L, A, C,E, inv,μ, l〉, which is the product of A1 =
〈L, A, C,E1, inv, μ̄, l〉 and A2 = 〈L, A,∅,E2,⊥,μ, l〉 (where μ̄ denotes a probability transition function that assigns 1 to
every transition and ⊥ denotes that the invariance of each location is f alse). Clearly, A1 has no probability dimension and
A2 has no real-time dimension. We also assume that E2 = {〈�,⊥,a,∅, �′〉 | 〈�,γ ,a, X, �′〉 ∈ E1}. Intuitively, this means that
E2 includes the untimed simulations of the edges of E1.

The model checking procedure presented in Fig. 2 can be instantiated to cover the product of TCTL ⊗ PCTL. The se-
mantics of the formulas ∃ϕ1U∼cϕ2,∀ϕ1U∼cϕ2,P∼r[ϕ1Uϕ2] can be found in Section 5.4.1. TCTL⊗ PCTL allows us to express
properties such as “with probability greater than 0.9 the message is delivered within 3 seconds”, which can be expressed
as P>0.9[true U�3 delivered]. This suggests that we can formalise properties that involve both real-time constraints and
probabilistic expressions.

A similar logic was defined in [43], where Probabilistic Timed CTL (PTCTL) is introduced. PTCTL includes both the proba-
bilistic and timed operators. Namely, PTCTL has the following syntax:

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | P%r[∃ϕ1U∼cϕ2] | P%r[∀ϕ1U∼cϕ2]
where %∈ {>,�}, ∼∈ {<,>,�,�,=}, c ∈ N, and r = [0,1]. PTCTL formulas are interpreted over probabilistic timed au-
tomata.

As can be seen TCTL⊗PCTL has a richer syntax than PTCTL. For example, some TCTL⊗PCTL formulas, such as P�r[∃♦∼cϕ]
and ∃♦∼c(P<r[true Uϕ]), cannot be expressed in PTCTL. This makes the combined logic more expressive than its similar
counterpart.

Theorem 5.4 implies that the algorithmic model checking complexity of TCTL ⊗ PCTL is EXPTIME. Note that since we
consider the product space of the constituent logics, we can no longer take the advantage of the coincide representation
unlike the case of fusion. We therefore cannot place the complexity below EXPTIME.

Our complexity analysis shows that TCTL⊗ PCTL and PTCTL have the same model checking complexities. This shows the
usefulness of our combination method, which allows us to calculate the model checking complexity without introducing a
new method.

5.4.4. Real-time+ probability + knowledge
In this section, we analyse a more complex situation, where we consider the combination of ‘real-time’, ‘probability’ and

‘knowledge’ dimensions. If we extend TCTL⊗ PCTL with S5, we obtain the combination (TCTL⊗ PCTL)⊕ S5. The syntax of
the new logic is:

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | ∃ϕ1U∼cϕ2 | ∀ϕ1U∼cϕ2 | P∼r[ϕ1Uϕ2] | Kiϕ | EΓ ϕ | CΓ ϕ | DΓ ϕ

where ∼∈ {<,>,�,�,=}, c ∈N and r = [0,1].
Assume TCTL ⊗ PCTL is interpreted over the automaton A1 = 〈L, A, C,E, inv,μ, l〉, as in Section 5.4.3. The semantics

of (TCTL ⊗ PCTL) ⊕ S5 formulas can be defined on the fusion of the structures A1 and A2 = 〈L,∅,∅,∅,⊥, μ̄, l〉, where
L = L1 × · · · × Ln . As discussed in Section 5.4.2, we construct an interpreted system 〈Q r,∼1, . . . ,∼n, lr〉 for the epistemic
component of the combination. Here, ∼i ⊆ Q r× Q r is an epistemic relation defined by 〈�, ν〉 ∼i 〈�′, ν ′〉 if, and only if prji(�)=
prji(�

′) and ν $ ν ′ , for each agent i and for valuations ν,ν ′ ∈RC
�0.

Theorem 5.4 implies that the model checking complexity of (TCTL ⊗ PCTL) ⊕ S5 is EXPTIME. This result shows that
‘knowledge’ dimension can be added to the combination of ‘real-time’ and ‘probability’ without increasing the complexity.

5.5. Discussion

Above, we have shown how model checkers for the constituent temporal, probabilistic and real-time logics can be re-used
in a modular way when we consider combined logics involving different dimensions. This avoids the re-implementation of
model checking procedures. We have shown that our combination method is very useful in determining model checking
complexities of some existing logics by studying their combined counterparts.

Our approach is novel in the sense that:

(i) we can re-produce some complexity results in the literature: For example, we have found that the complexity of CTL⊕ S5 is
polynomial, which is same as the complexity of the equivalent logic CTLK [26] (see Table 1). Similarly, the complexity
result we have found for the logic LTL⊕ S5 is PSPACE, which is the same as that of its counterpart CKLn [7].

6 We do not include the bounded until operator within the syntax of PCTL in order to prevent confusion with the bound operator in TCTL.
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Table 1
Summary of combining different elements and the corresponding complexity results.

Combination Related logic Complexity Remark

CTL⊕ S5 = CTLK PTIME confirming [26]
PCTL⊕ S5 ⊇ KPCTL PTIME confirming [23] – richer logic
LTL⊕ S5 = CKLn PSPACE confirming [7]
TCTL⊕ CTL∗ – PSPACE new logic – new complexity result
TCTL⊕ S5 ⊇ TECTLK PSPACE richer logic – new complexity result
TCTL⊕ PCTL ⊇ PTCTL EXPTIME confirming [43] – richer logic
(TCTL⊗ PCTL)⊕ S5 – EXPTIME new logic – new complexity result

(ii) we can obtain richer logics without increasing the complexity: For example, TCTL⊕ S5 is more expressive than TECTLK [20].
Although the complexity problem for TECTLK has not been studied, we have found that the complexity of TCTL⊕ S5 is
PSPACE. Another example is the logic PCTL⊕ S5. Although we have found the same complexity as that of KPCTL [23],
the former is more expressive than the latter.

(iii) we can obtain new logics: For example, by combining different dimensions we have obtained the logics TCTL⊕ CTL∗ and
(TCTL⊗ PCTL)⊕ S5 and studied their complexities. This shows the usability of the combination method to introduce
new logics that have not been studied before.

6. Application of the method to a pervasive system

In this section, we apply the combination method to the Scatterbox message-forwarding system to demonstrate the
usefulness of our generic model checking approach, which allows us to handle the combination of distinct and non-trivial
logics.

We will start with a simple model of the Scatterbox system, which can be analysed using separate model checking
techniques. We will then refine this simple model into more realistic and more complex versions in order to show that
standard techniques cannot easily be used for verification.

6.1. Scatterbox: A message delivery system

The Scatterbox system [47] is a message delivery system, which is “a test bed for context-aware computing in a pervasive
computing environment”. The following is taken from [47]: Scatterbox system provides a content-filtering service to its
users by forwarding relevant messages to their mobile phones. The user’s context is derived by tracking his/her location and
monitoring his/her daily schedule. This context data is analysed, and situations are identified that indicate the user’s level
of interruptibility. As messages arrive, Scatterbox forwards them to subscribed users provided the user’s available context
suggests they are in a situation where they may be interrupted. Scatterbox consists of the following components: Construct,
a distributed, fully decentralised platform supporting the building of context-aware, adaptive, pervasive and autonomous
systems; Bluetooth and calendar sensors, which provide Scatterbox with contextual data; an e-mail handler that interacts with
an e-mail server to access a user’s e-mail and determine each e-mail’s importance; a situation reasoner that takes these
context data and determines whether or not the user is interruptible, and whether a particular message is relevant enough
to be forwarded to the user; and the message delivery component, which sends relevant messages to the user via either
Bluetooth or SMS.

6.2. Modelling the system

The Scatterbox has been formally analysed in [48]. Here we take a different approach.
As an initial step, we model the behaviour of the message forwarding component of the system. Basically, if Scatter-

box decides to forward a message, downloaded from the user’s e-mail server, to the user’s mobile device, the message
forwarding component forwards the message either through Bluetooth or SMS. If the user’s mobile device is in range of a
‘Bluetooth-enabled node’, the message is forwarded to the user’s device through that node. When it arrives on the user’s
handset, the user has the opportunity to accept or reject the message. If the device is outside the range of a Bluetooth-
enabled node, the message is forwarded through SMS. In this case, the user does not have the option to reject the message.

A simplified model of the message forwarding component is given in Fig. 3, illustrating the probabilistic distribution of
Bluetooth sensor usage, and rates of message acceptance, message rejection, and message loss, based on our assumption. In
order to model this probabilistic behaviour, we adapt the model, which allows the specification of probabilistic state changes.
Markov chains, in particular Discrete Time Markov chains (DTMCs), are a simple and adequate formalism for representing
probabilistic behaviour over time.

According to the simple model in Fig. 3, when a message is forwarded to the user’s mobile device, 70% of the time this
is done via SMS, and 30% of the time is done via Bluetooth. For simplicity we assume that there are three Bluetooth sensors,
and the frequency of their usage is the same. When a message is forwarded to the user via Bluetooth, the probabilities of
the user accepting and rejecting the message is 0.5 and 0.4, respectively; the probability of the message being lost is 0.1. On
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Fig. 3. A simple model of the message forwarding component of the Scatterbox system.

the other hand, when the system sends a message via SMS, the user does not have the option to reject the message, and
the probability of the message arrival is 0.99 and message loss is 0.01. This is due to the fact that SMS technology is more
reliable than Bluetooth, and the rate of loosing messages in transmission is lower.

Properties of probabilistic systems are specified in the logic PCTL [39]. We can model check some typical safety and
liveness properties, such as “what is the probability, from the initial state of the model, of a message eventually being
accepted or rejected?”.

Although the simplified model of the message forwarding component can be used to verify some simple probabilistic
properties, the model does not include many important characteristics of the behaviour of the pervasive message forwarding
system. For example, the model should denote the spatial configurations of locations over time as well as the probabilistic
transition of system states. We must therefore refine our model in order to construct a more realistic system model, and
formalise more meaningful properties.

To model the evolution of spatial configurations, we use the notion of location. A location is a generic place where an
execution occurs. It can be a mobile device, a lecture room, a sensor, a web page, a data object, etc. Locations can be nested
within each other. For example, a location ‘computer’ may be contained in another location ‘server’. Each location contains
a number of ‘local processes’. A location can enter/exist another location, etc. The details of such concepts can be found in
[49].

In order to evaluate the behaviour of the message forwarding component more accurately and realistically, we refine the
model in Fig. 3. The refined model, as shown in Fig. 4, includes both probabilistic behaviour and the evolution of spatial
configurations of the locations of the Scatterbox system. Namely, the model contains probability information for transitions
between different states, and the information how the spatial configuration changes over time. Each state in the model is
represented as a labelled graph (see Fig. 4), where each node is represented by the location name and the state of its local
processes. Note that the location names are nominals, i.e., reference names to locations, and the states of local processes
are sets of atomic propositions. The edges represent the sub-location relation, where the child location is intuitively inside
the parent location. As outlined in Fig. 4, the spatial configuration changes when the system states change in different
transitions.

Before giving an intuitive description of the model, let us first give an intuition for the locations. The locations comprise
the message, the Bluetooth sensors, the Scatterbox server, the SMS server and the user’s mobile device. We use the following
nominals as locations names. SCATTERBOX denotes the root, i.e., the outermost, location. Everything is in the domain (or
location) SCATTERBOX. On the next level, we will see the Scatterbox server SRV, the Bluetooth sensors B1, B2, B3, the
denoting the SMS server SMS, and the user’s mobile device MBL. Finally, we consider a message MSG that is to be forwarded.
We also define the following propositions: accept1? (resp. accept2?, accept3?), which denotes that B1 (resp. B2,
B3) has asked the user for the permission to deliver the message, accept1 (resp. accept2, accept3), which denotes
that the user has accepted the delivery of the message from B1 (resp. B2, B3), reject1 (resp. reject2, reject3),
which denotes that the user has rejected the delivery of the message from B1 (resp. B2, B3), lost, which denotes that the
message has been lost, in-range1 (resp. in-range2, in-range3), which denotes that the user’s mobile device is in
the range of B1 (resp. B2, B3), and no-bluet, which denotes that the user’s mobile device is not in the range of any of
the Bluetooth sensors.
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Fig. 4. A refined model of the message forwarding component illustrating the evolution of spatial configurations.

The model shown in Fig. 4 can be briefly described as follows. The message is initially in the Scatterbox server, denoted
by the downward arrow from SRV to MSG. With a probability of 0.1, the user’s mobile device is in the range of Bluetooth
sensor 1, denoted by B1,in-range1. We recall that the proposition in-range1 represents the state of the local pro-
cess of B1. In this case, B1 is in the range of the user’s device. The Bluetooth sensors 2 and 3 can be treated similarly.
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The message is then forwarded to the Bluetooth sensor 1, denoted by the downward arrow from B1 to MSG. This Blue-
tooth sensor then queries, whether or not the user will accept the delivery of the message, denoted by B1, accept1?.
Subsequently, the message is rejected, accepted, or lost with a probability 0.4, 0.5, or 0.1, respectively.

From the initial state, there is also a probability of 0.7 that the user’s mobile device is not in the range of any Bluetooth
sensor, denoted by SMS,no-bluet.7 The rest of the model follows the same pattern and can be read with the same
intuition.

Based on the more realistic model of the message forwarding component given in Fig. 4, we now want to verify more
complex properties. From a technical point of view, one may wish to express properties including explicit reference to
individual locations. Such examples include:

– “a message cannot be delivered through a Bluetooth sensor without user’s permission”;
– “a message cannot be sent via a particular Bluetooth sensor if the user’s mobile is not within the range of this sensor”;
– “the probability that the server eventually becomes clear is greater than p”;
– “B1 has at most one message at a time”; etc.

Clearly, we cannot express two dimensions simultaneously using a single formal framework. Thus, although PCTL can be
used to specify the properties of the probabilistic behaviour, it cannot specify the properties regarding spatial dimension.
A probabilistic model checker will not be sufficient to verify the properties mentioned above. We therefore need another
technique for this more complex verification problem. In Section 6.3 we will solve the problem by combining the model
checking methods of PCTL and Hybrid Logics.

In Figs. 3 and 4 we only considered the message forwarding behaviour of the Scatterbox system. If we also take the
e-mail retrieval and context gathering behaviours into account, we will have a more complex model, which is shown in
Fig. 5. The new model now has also a real-time dimension as well, which can be modelled with a timed automaton [50].

We can informally describe the model in Fig. 5 as follows: When a new e-mail arrives, the e-mail gathering component
downloads it within t1 seconds. The system then asks for any new contextual information to decide whether to forward
the message or not. At this point the system either forwards the message, cancels the message, or waits t2 seconds before
it asks for new contextual information. In the WAIT state, if new contextual information does not arrive within t_max time
units, the system cancels the message forwarding. If the contextual information arrives, and the reasoner decides not to
forward the message, the message forwarding is cancelled. If the contextual information arrives and the reasoner decides
to forward it, the message is forwarded to the message forwarding component, which is depicted in Fig. 5 by a transition
from CONTEXT to MSG_FRWRD, where MSG_FRWRD denotes the model in Fig. 4.

We note that for the simplicity some of the location relations were not shown in Fig. 5. For example, in INIT, MSG is
not within SRV; in RECEIVE, MSG moves into SRV; in WAIT, CNTX (denoting the context information) is not within SRV;
in CONTEXT SRV contains CNTX; etc. Clearly, the model in Fig. 5 is not a homogeneous timed automaton. In fact, it is
a combined model including real-time, probabilistic and spatial dimensions. Therefore, we can no longer use the standard
verification techniques defined just for timed automata. A real-time temporal logic, such as TCTL [40], can be used to express
the real-time dimension, but it cannot express the probabilistic and spatial dimensions. For example, some of the properties
that we may wish to verify are as follows: “there exists a behaviour of the system that, within t seconds a message will
be in the range of the Bluetooth sensor 1”; “when a message arrives, the probability of the server eventually being clear is
greater than p”; “when a message arrives, the system will not wait for context information forever”; etc. As can be seen,
these specifications tend to explore many dimensions simultaneously. Therefore, a single framework will not be sufficient
to express the properties we are interested in without quite complex, and often contorted, encoding. In Section 6.3, we will
show how to use our earlier combination technique to solve this problem by simply combining the logics TCTL, PCTL and
Hybrid Logic.

6.3. Combining logics

In this section we first define a combined structure that pairs probabilistic and hybrid logics and allows us to capture
the message forwarding behaviour depicted in Fig. 4, modelling both probabilistic transitions of system states and spatial
distributions of locations. The probabilistic behaviour can be expressed in PCTL and the spatial behaviour can be expressed
in Hybrid logic (HL) [46]. Thus, the behaviour of the message forwarding component can be modelled through a suitable
combination of PCTL and Hybrid logics. For the case of Fig. 4, we can take this choice of combination just as ‘temporalisa-
tion’.

Thus the message forwarding behaviour depicted in Fig. 4 can be modelled by means of a temporalised model 〈S, T , g〉,
where T = 〈E,μ〉. The outer frame 〈S, T 〉 models the probabilistic behaviour over time, and for every s ∈ S , g(s) is a hybrid
model which is a labelled rooted graph representing the topology of the structure of locations.

A ‘temporalised’ combined logic PCTL(HL) can be used to express the requirements of the message forwarding compo-
nent, mentioned in Section 6.2. Probabilistic statements are captured by PCTL, while spatial statements are captured by HL.

7 To allow for a more compact representation, we have associated the proposition no-bluet with the nominal SMS. Alternatively, we could have defined
such a proposition for each Bluetooth sensor, similar to the not-in-range1 attribute.
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Fig. 5. The refined model including the e-mail retrieval, context gathering and message forwarding behaviour.

6.3.1. The constituent logics
PCTL is a probabilistic extension of CTL, as discussed in Section 3.2. HL is an extension of modal logic with a reference

to locations, called nominals. Basically, HL contains nominals and the operators @ and ↓ as well as the standard existential
modality ♦ and the universal modality �. Intuitively, @iϕ holds if, and only if, ϕ holds at the location named by i, while
↓ x.ϕ holds if, and only if, ϕ holds whenever the current location is named by x.

6.3.2. Defining PCTL(HL)
Assume that ϕHL denotes monolithic formulas of HL. The language of PCTL(HL)8 is defined by the following grammar:

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕHL | P∼r[©ϕ] | P∼r[ϕ1Uϕ2]
In the following, the expressive power of the resulting combined logic is shown by specifying a number of meaningful
properties of Scatterbox locations, mixing probabilistic and temporal requirements. Specifically, we consider the examples
mentioned in Section 6.2.

The property that “the probability of the servers eventually being clear is greater than r” can expressed in PCTL(HL) as
follows:

P�r[true U@SRV¬♦MSG]
The property that “a message cannot be delivered through a Bluetooth sensor without the user’s permission” is translated
into PCTL(HL) as follows:

P=0[(@B1¬accept1∧@B2¬accept2∧@B3¬accept3∧@SMS¬♦MSG)U@MBL♦MSG]

8 We do not include the bounded until operator within the syntax of PCTL.
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The property “a message cannot be sent via a particular Bluetooth sensor if the user’s mobile is not within the range of this
sensor” is formally specified as follows:

P=0
[
(@B1¬in-range1U @B1♦MSG)∨ (@B2¬in-range2U @B2♦MSG)∨

(@B3¬in-range3U @B3♦MSG)
]

Note that none of the properties above can be expressed in either of PCTL or HL alone. As shown above, using the combined
logic PCTL(HL) we can specify two dimensions at the same time.

A model checker for PCTL(HL) can be synthesised from component model checkers PCTL and HL. Using this combined
model checker we can verify the properties expressed in the combined framework over the combined model in Fig. 4.
We already proved that the combined model checking procedure transfers complexities from model checking within the
component logics. We know that PCTL model checking over a DTMC has a polynomial complexity [39] and checking HL
over hybrid model has PSPACE complexity. We can therefore show that the model checking problem for the combined logic
PCTL(HL) has a PSPACE upper bound. This means that we can, in principle, model check the combined probabilistic and
spatial dimensions at the same complexity of the spatial dimension itself.

6.3.3. Extending to TCTL(PCTL(HL))
We now present a framework combining real-time, probabilistic and spatial aspects to capture the e-mail retrieval,

context gathering and message forwarding behaviours of the Scatterbox system, as depicted in Fig. 5. The combined structure
in Fig. 5 can be modelled by means of a temporalised combination of a timed automaton and a PCTL(HL) model.

In order to express the real-time aspect, we consider a real-time extension of CTL, the logic TCTL. In TCTL temporal
operators are equipped with timing constraints, used to express real-time properties. For example, the formula ∃♦�2ϕ
asserts that there is a state satisfying ϕ , which can be reached within 2 seconds.

We can now define the ‘temporalised’ combined logic TCTL(PCTL(HL)) to express the requirements of the e-mail retrieval,
context gathering and message forwarding behaviour of the Scatterbox system.

The language of TCTL(PCTL(HL)) is defined according to following rules:

ϕ ::= � | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕPCTL(HL) | ∃ϕ1U∼kϕ2 | ∀ϕ1U∼kϕ2

where ϕPCTL(HL) denotes monolithic formulas of PCTL(HL). We now specify the properties mentioned in Section 6.2 using
the combined framework:

The property that “there exists a behaviour of the system that within t seconds a message will be in the range of the
Bluetooth sensor 1” can be expressed in TCTL(PCTL(HL)) as follows:

∃♦(∃♦�50@B1in-range1
)

The property that “when a message arrives, the probability of the server’s eventually being clear is greater than r” is
translated into TCTL(PCTL(HL)) as follows:

∃♦(
@SRV♦MSG∧ P�r[true U@SRV¬♦MSG]

)
The property “when a message arrives, the system will not wait for a context information forever” is formally specified as
follows:

∃♦(
@SRV♦MSG∧@SRV¬♦CNTX∧ ∃♦�t@SRV♦CNTX

)
where t is a constant.

Note that these specifications have several dimensions simultaneously. Therefore, a single framework will not be suffi-
cient to concisely express these properties. On the other hand, TCTL(PCTL(HL)) allows us to have all these dimensions in a
formula at the same time.

The complexity of model checking TCTL(PCTL(HL)) is the maximum complexity of model checking the component logics.
We have already shown that the model checking complexity of PCTL(HL) is PSPACE. By Theorem 5.4, the combined logic
TCTL(PCTL(HL)) has a PSPACE upper bound. This means that we can model check the real-time, probabilistic and spatial
dimensions simultaneously in PSPACE.

6.4. Discussion

Pervasive systems are complex, and their formal description can involve many different logical dimensions. Therefore,
properties that express the dynamics of a pervasive system frequently contain several aspects. In the Scatterbox system
discussed in this section, for example, we needed at least three dimensions: nominals, probability, and real-time.

When using existing ad-hoc approaches to model checking, we can analyse only one of these dimensions in isolation.
This is, however, not sufficient, because we cannot model check properties involving several dimensions, and we therefore
cannot perform the required analysis of different interdependent system aspects.
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Our combination method shows that one can often benefit from model checking, even in these more complex cases. On
the Scatterbox system, we have applied our approach to particular logics relevant for this pervasive system. We have shown
that a single logic is not sufficient to analyse complex properties, such as those describing the dynamics of the Scatterbox
system, and that our combination approach can be used to express and analyse more complex properties that cannot be
handled when using a single framework.

Note that we do not want to work on artificially created case studies. The requirement to simultaneously reason about
different dimensions is natural in pervasive computing. In this article, we have therefore considered a genuine and realistic
pervasive system as a case study.

7. Conclusion

In this article, we have presented a modular approach to model checking multi-agent systems. Instead of introducing
new logics for combinations of different aspects and studying the resulting model checking problems, we have combined
logics that represent different aspects and introduced a generic model checking method for different combinations of logics.
In this way, many aspects of multi-agent systems, such as knowledge and time, knowledge and probability, real-time and
knowledge, etc., can be viewed as simple standard combinations of logics and, without introducing a new logic, a generic
combined model checking procedure can be synthesised from model checkers of simpler component logics. As we generally
do not have verification tools for all the appropriate combinations, the application of the above approach can avoid the need
for complex re-implementation of model checking procedures. For example, we might have verification tools for logics of
knowledge, logics of context, real-time temporal logics, or probabilistic temporal logics, yet we have no tool that can verify
a description containing all these dimensions.

We showed how our combined model checking method can be used to describe some existing combined approaches that
have been applied in agent verification. There are numerous others that could be tackled, including alternating temporal
logics, logics of intention, logics of belief, etc. We can also describe new, and as yet un-implemented, combinations. For
example, we can combine the probabilistic and cooperation aspects, real-time and intention aspects, belief and uncertainty
aspects, etc.

We showed that the generic model checking algorithm terminates, and is both sound and complete. We have also
analysed the computational complexity of the resulting method, and have shown that the complexity of the synthesised
model checker is essentially the supremum of the complexities of the component model checkers. This result confirms
that modularity is easier to obtain in model checking than in deductive approaches, where combination often leads to
exponential (or worse) complexity.

To illustrate and further motivate our approach—and to demonstrate its usefulness—we tackled a message forwarding
system called Scatterbox and instantiated our approach to particular logics relevant for this pervasive system. We showed
that a single model checking method is not a natural mechanism to verify complex systems such as Scatterbox, and that
our combination method can solve more complex (and useful) verification problems, which cannot easily be handled within
a single framework.

Finally, the future work here centres around implementing the technique and actually applying it in practise to a range
of case studies. We will also consider logics in which region graphs are not enough to devise a model checking algorithm.
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