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Abstract

We consider G̃ = ̃SU(1,1) ≅ ̃SL(2,R). The aim of this thesis is to compute

the fundamental domains for two series of groups of the form Γ̃1 × Γ̃2 acting

on G̃ by left-right multiplication, i.e. (g, h) ⋅ x = gxh−1, where Γ̃1 and Γ̃2 are

discrete subgroups of G̃ of the same finite level and Γ̃2 is cyclic. The level of

a subgroup Γ̃ in G̃ is defined as the index of the group Γ̃∩Z(G̃) in the center

Z(G̃) ≅ Z. From computing the fundamental domain we can describe the

biquotients Γ̃1/G̃/Γ̃2 which are diffeomorphic to the links of certain quasi-

homogeneous Q-Gorenstein surface singularities, i.e. the intersections of the

singular variety with sufficiently small spheres around the isolated singular

point as shown in [16].
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Chapter 1

Introduction

In this thesis we compute the fundamental domains for two series of discrete

subgroups of finite level in ̃SU(1,1) acting by left and right multiplication.

The level is the index of the intersection of a subgroup Γ̃ of ̃SU(1,1) with the

center of ̃SU(1,1). We consider a discrete subgroup Γ̃1 and a cyclic discrete

subgroup Γ̃2 in G̃ = ̃SU(1,1) of the same level k. We consider the product

Γ̃1 × Γ̃2 acting on G̃ by (g, h) ⋅ x = gxh−1. We study the corresponding fun-

damental domains in more detail by determining the faces and edges and

describing the gluing of the faces under the group action. Some of the fig-

ures of corresponding fundamental domains are given as well. The choice of

the discrete subgroups which we study is motivated by the singularity theory.

We consider the universal covering G̃ of the Lie group PSU(1,1) which is

equivalent to PSL(2,R), the group of orientation-preserving isometries of the

hyperbolic plane. Let the unit disc D in C be our model of the hyperbolic

plane. The group G̃ is considered as a hypersurface embedded in the bundle

L̃ = R+ × G̃. The Killing form on G̃ induces a Lorentz metric of signature

(2,1) on G̃ and a pseudo-Riemannian metric of signature (2,2) on L̃.

We define the fundamental domains as follows:

Definition 1. Let G be a group. Let X be a set. Let G act on X. A subset

F of X is a fundamental domain for the action of G on X if

� ⋃g∈G g(F ) =X.

1



� (F ○) ∩ g(F ○) = Ø for any g ∈ G − {Id}.

In 1992, Fischer [20] suggested how to construct fundamental domains for

the action of a discrete subgroup of PSU(1,1) by left multiplication. Hence,

Fischer studied the case where the discrete subgroup Γ̃1 is of level 1 and

the subgroup Γ̃2 is trivial. After that, the case of level 2 was studied by

Pratoussevitch in 1998 [14] . Subsequently, in 2000 Pratoussevitch [15], [17]

introduced the main construction of polyhedral fundamental domains for a

discrete subgroup Γ̃1 which acts on ̃SU(1,1) by left translations. Then, in

2011 Pratoussevitch [18] generalised the corresponding construction to the

case of an action of Γ̃1 × Γ̃2 on ̃SU(1,1). Therefore, a special case for the

construction given in [18] is when the subgroup Γ̃2 is trivial where the con-

struction becomes the same as in [15] and [17].

The resulting fundamental domains that come from the above construc-

tion are polyhedra in the Lorentz manifold G̃ with totally geodesic faces. In

particular, we use tangent half-spaces on the submanifold ̃SU(1,1) in points

of Γ̃1 × Γ̃2 to construct a 4-dimensional polytope P . Under the radial pro-

jection, the images of the 3-dimensional faces of the polytope P are the

fundamental domains for the action of Γ̃1 × Γ̃2 on ̃SU(1,1). In other words,

we obtain the fundamental domains for the action of Γ̃1×Γ̃2 by projecting the

faces of the polyhedron P onto G̃. The fundamental domains are compact if

the subgroup Γ̃1 is co-compact.

Milnor, Dolgachev and Neumann in [11], [6], [12] and [13] studied the

connection between discrete subgroups of finite level and quasi-homogeneous

isolated singularities of complex surfaces. There is a correspondence be-

tween the class of subgroups for which we compute the fundamental do-

mains and an interesting class of singularities. The subgroups from this

class correspond one-to-one to quasi-homogeneous Q-Gorenstein surface sin-

gularities. In particular, Pratoussevitch [16] proved that there is a diffeo-

morphism between the bi-quotients of the form Γ̃1/G̃/Γ̃2 and the links of

quasi-homogeneous Q-Gorenstein surface singularities. The links of quasi-

homogeneous Q-Gorenstein surface singularities are the intersections of the

singular varieties with sufficiently small spheres around the isolated singular

2



point. Bi-quotients of the form Γ̃1/G̃/Γ̃2 are standard Lorentz space forms

which were studied by Kulkarni and Raymond [9].

As we mentioned at the beginning of the introduction the main aim of

this thesis is to compute the fundamental domains for two series of discrete

subgroups of finite level in ̃SU(1,1) acting by left and right multiplication.

Let Γ̃1 × Γ̃2 be a product of two discrete subgroups of G̃, one of them cyclic.

This product is acting on G̃ via (g, h) ⋅ x = gxh−1. Let Γ̃1 = Γ̃1(p1, q, r)k and

Γ̃2 = (Cp2)k. The group Γ̃1(p1, q, r)k is a subgroup of level k whose image

in PSU(1,1) is a triangle group Γ(p1, q, r) (For more details see section 3.1).

The group Γ̃2 = (Cp2)k is a subgroup of level k whose image in PSU(1,1) is

a cyclic group of order p2. Particularly, we construct the fundamental do-

mains for the following two series of discrete subgroups of finite level in G̃:

Γ̃(k + 3,3,3)k × (C3)k and Γ̃(2k + 3,3,3)k × (C3)k.

The motivation for choosing these particular discrete subgroups Γ̃1 of fi-

nite level in ̃SU(1,1) correspond to the singularities in the series E and Z

according to the classification by V. I. Arnold. See table 6.1 for more details.

Our method to compute the fundamental domains for Γ̃1×Γ̃2 is as follows:

First we use the main Theorem which was introduced by Pratoussevitch in

[18] to construct the fundamental domains. By applying this Theorem we

obtain infinitely many prisms (prism-like polyhedra) and we know that in

the co-compact case the fundamental domains are already obtained using

finitely many prisms. Therefore, we use an estimate to exclude infinitely

many prisms which are far from the fundamental domain. We show that for

the products of groups: Γ̃(k + 3,3,3)k × (C3)k and Γ̃(2k + 3,3,3)k × (C3)k

there are such finite sets of finitely many prisms which yield the fundamental

domain. After that, we look at such prisms and how they intersect with the

tangent space for the identity element ẽ. Then we choose several faces of each

prism and obtain polyhedron which is contained in the fundamental domain.

After that, we use the combinatorial criterium to show the that polyhedron

is the fundamental domain. Furthermore, we explicitly study the faces of the

fundamental domain and the way how the faces are glued together to obtain

the links of quasi-homogeneous Q-Gorenstein surface singularities.

3



This thesis is organized as follows:

In Chapter 2 we describe some basic concepts such as linear fraction

transformations and the covering spaces of the Lie group PSU(1,1). Then

we look at the embedding of this Lie group in the 4-dimensional pseudo-

Euclidean space and the embedded tangent spaces and half-spaces. The

main aim of this chapter is to introduce the main Theorem for the construc-

tion of the fundamental domains for Γ̃1 × Γ̃2.

In Chapter 3 we describe the discrete subgroups Γ̃1 of ̃SU(1,1) whose images

in PSU(1,1) are triangle groups. We state the conditions for the existence

of a subgroup of G̃ of level k and we find the generators for such groups Γ̃1.

We define the edge crown and the vertex crown of a triangle group.

In Chapter 4 we discuss the methods of finding finite representations of

the fundamental domains. First, we prove some estimates and apply them

to exclude infinitely many prisms. After that, we describe a combinatorial

criterium similar to the Poincaré-Maskit Theorem.

In Chapter 5 we compute the fundamental domains for the two series of

products of discrete subgroups of finite level in G̃: Γ̃(k + 3,3,3)k × (C3)k

and Γ̃(2k + 3,3,3)k × (C3)k. First, we find the generators of the groups

Γ̃(p1,3,3)k × (C3)k. Then, we study the shape of the fundamental domains

and describe the faces and the edges of the fundamental domains. We also

look at the gluing of the faces of the fundamental domains. The main results

for the case Γ̃(k + 3,3,3)k × (C3)k are contained in Definition 69, Theorem

75 and Proposition 74. The main results for the case Γ̃(2k + 3,3,3)k × (C3)k

are contained in Definition 76, Theorem 83 and Proposition 82.

In Chapter 6 we look at the link spaces of Q-Gorenstein quasi-homogeneous

surface singularities. We show that there are diffeomorphisms between the

link spaces of Q-Gorenstein quasi-homogeneous surface singularities and the

biquotients of Γ̃1/G̃/Γ̃2. We explain our motivation for choosing the sub-

groups Γ̃1.
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Chapter 2

Construction of fundamental

domains

The material of this chapter follows [15], [17] and [18].

2.1 Linear fractional transformations

Definition 2. (Linear fractional transformations): A linear fractional trans-

formation is a mapping f ∶ C̄→ C̄ (where C̄ = C ∪ {∞}) of the form

f(z) = az + b
cz + d

for a, b, c, d ∈ C, ad − bc ≠ 0.

The group of all linear fractional transformations is denoted by LF(2,C).

We can consider two subgroups of the set of linear fractional transfor-

mations. Each of these subgroups is isomorphic to the group of orientation-

preserving isometries of the hyperbolic plane:

a) The group PSL(2,R) which consists of all linear fractional transformations

of the form

f(z) = az + b
cz + d

, a, b, c, d ∈ R, ad − bc = 1.

5



We can think of PSL(2,R) as the group of orientation-preserving isome-

tries of the upper half-plane model H of the hyperbolic plane.

Now consider the isomorphism between the group of all such transforma-

tions PSL(2,R) and the group SL(2,R)/{±1}, where

SL(2,R) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

c d

⎞
⎠
∶ a, b, c, d ∈ R, ad − bc = 1

⎫⎪⎪⎬⎪⎪⎭
.

So, we obtain

Isom+(H) = PSL(2,R) = SL(2,R)/{±1}.

b) The group PSU(1,1) which consists of all linear fractional transformations

of the form

f(z) = az + b
b̄z + ā

, a, b ∈ C, aā − bb̄ = 1.

We can think of PSU(1,1) as the group of orientation-preserving isome-

tries of the disk model D of the hyperbolic plane.

We have

Isom+(D) = PSU(1,1) = SU/{±1},

where

SU(1,1) =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a b

b̄ ā

⎞
⎠
∶ (a, b) ∈ C2, ∣a∣2 − ∣b∣2 = 1

⎫⎪⎪⎬⎪⎪⎭
.

There are three types of elements in the group PSU(1,1), distinguished by

their fixed point behavior. A hyperbolic element has in D̄ two fixed points,

which are in ∂D, a parabolic element has in D̄ one fixed point, which is in

∂D. Moreover, an elliptic element has in D one fixed point, which is in D.

We can tell the difference between those types by looking at the traces of the

corresponding matrices. The trace of the matrix is the sum of its diagonal

elements. For T =
⎛
⎝
a b

c d

⎞
⎠

we have tr(T ) = a + d. We denote the absolute

value of the trace by Tr(T ) = ∣a + b∣. An element T is elliptic if Tr(T ) < 2,

parabolic if Tr(T ) = 2 and hyperbolic if Tr(T ) > 2.

6



2.2 PSU(1,1) and its covering space ̃PSU(1,1)

From the topological point of view the group SU(1,1) is homeomorphic to

the open solid torus S1 ×C ≃ S1 ×D via the map
⎛
⎝
a b

b̄ ā

⎞
⎠
↦ ( a∣a∣ , b). So, to

find the fundamental group for the group SU(1,1) we just need to find the

fundamental group of S1 × C, which is π1(S1 × C) ≅ Z. The matrix group

SU(1,1) is a 2-fold covering of PSU(1,1), hence we obtain

π1(PSU(1,1)) ≅ π1(PSL(2,R)) ≅ π1(S1 ×C) ≅ Z.

A connected covering of PSU(1,1) (as a Lie group) is uniquely determined

up to an isomorphism by the number of the sheets. The covering with the

countably infinite number of sheets is the universal covering. The pre-image

of the identity element of PSU(1,1) under this covering map is the centre of

the covering Lie group of PSU(1,1).

2.3 Embeddings of PSU(1,1) and ̃PSU(1,1)

The bilinear form ((w1, z1), (w2, z2)) ∶= Re(w1w̄2 − z1z̄2) induces a pseudo-

Riemannian metric on C2. The totally geodesic submanifolds with respect

to this metric are the affine subspaces. We consider the pseudo-sphere with

respect to this bilinear form:

G = {(a, b) ∈ C2 ∶ ∣a∣2 − ∣b∣2 = 1}.

The identification of G with SU(1,1) gives a group structure on G with

identity element e = (1,0). We consider the pseudo-sphere G and the positive

cone L over G,

L = {(w, z) ∈ C2 ∶ ∣w∣ > ∣z∣} = R+ ⋅G

as pseudo-Riemannian manifolds with the (induced) metric of signature (+,−,
−) and (+,+,−,−) respectively. The radial projection Ψ ∶ L → G is a triv-

ialisable R+-bundle over G. The nonempty intersections of G with linear

subspaces of (real) dimension 2 and 3 in C2 are the totally geodesic subman-

ifolds of G of dimension 1 and 2 respectively.
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Let G̃ and L̃ be the universal coverings of G and L with the pseudo-

Riemannian metrics of signature (+,−,−) and (+,+,−,−) which is obtained

as the pull-back of the metric on G and L respectively. The projection G̃→ G

induces a group structure on G̃. Let ẽ be the identity element with respect

to this group structure.

We can describe L̃ as

L̃ = {(α, r, z) ∈ R ×R+ ×C ∣ ∣z∣ < r},

π ∶ L̃→ L, i.e. π(α, r, z) = (reiα, z).

We call the number α ∈ R the argument of the element (α, r, z) ∈ L̃. The real

number r is the absolute value of w if (w, z) = π(α, r, z). Moreover, we can

describe G̃ as

G̃ = {(α, r, z) ∈ R ×R+ ×C ∣ ∣z∣2 = r2 − 1} ⊂ L̃.

Let arg ∶ L̃ → R be the lift with arg(ẽ) = 0 of the map L → S1 given by

(a, b)↦ a
∣a∣ . We have the following commutative diagram:

L̃
arg //

π

��

R

��
L // S1,

where the map R → S1 is the universal covering of S1 given by t ↦ eit. We

have arg(g̃−1) = −arg(g̃), where g̃ ∈ G̃.

The following two Propositions are taken from [15], Proposition 1 and 2.

Proposition 3. For g ∈ G let Lg,Rg,Kg ∶ G ↦ G be the left resp. right

multiplication resp. the conjugation with the element g, i.e. Lg(h) = gh,

Rg(h) = hg, Kg(h) = ghg−1 and Kg = Lg ○R−1
g . Let η, ε ∶ G ↦ G be defined

by η((a, b)) = (ā, b̄) and ε((a, b)) = (ā,−b). The map ε is the taking of

the inverse in G, i.e. ε(g) = g−1. The maps Lg,Rg,Kg, η, ε are isometries

of G. The maps Kg and η are automorphisms of G, the map ε is an anti-

automorphism of G. We have

Isom0(G) = ⟨La,Rb ∣ a, b ∈ G⟩ ≅ (G ×G)/{(z, z) ∶ z ∈ Z(G)}
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and

Isom+(G) = ⟨Isom0(G), η⟩, Isom(G) = ⟨Isom0(G), ε⟩ = ⟨Isom+(G), η, ε⟩.

Proposition 4. For g̃ ∈ G̃ let Lg̃,Rg̃,Kg̃ ∶ G̃ ↦ G̃ be the left resp. right

multiplication resp. the conjugation with the element g̃, i.e. Lg̃(h̃) = g̃h̃,

Rg̃(h̃) = h̃g̃, Kg̃(h̃) = g̃h̃g̃−1 and Kg̃ = Lg̃ ○ R−1
g̃ . Let η̃, ε̃ ∶ G̃ ↦ G̃ be

the lifts of the isometries η resp. ε of G with η̃(ẽ) = ẽ and ε̃(ẽ) = ẽ. We

have arg ○ε̃ = −arg and arg ○η̃ = −arg. The maps Lg̃,Rg̃,Kg̃, η̃, ε̃ are isome-

tries of G̃. The maps Kg̃ and η̃ are automorphisms of G̃, the map ε̃ is an

anti-automorphism of G̃. We have

Isom0(G̃) = ⟨La,Rb ∣ a, b ∈ G̃⟩ ≅ (G̃ × G̃)/{(z, z) ∶ z ∈ Z(G̃)}

and

Isom+(G̃) = ⟨Isom0(G̃), η̃⟩, Isom(G̃) = ⟨Isom+(G̃), ε̃⟩ = ⟨Isom0(G̃), η̃, ε̃⟩.

2.4 Embedded tangent spaces and half-spaces

The hyperplane Êg= {y ∈ C2 ∶ (y, g) = 1} with g ∈ G divides C2 in two

half-spaces

Ĥg = {y ∈ C2 ∶ (y, g) ≤ 1} and Îg = {y ∈ C2 ∶ (y, g) ≥ 1}.

We can see clearly from the formula of the half-space Ĥg that the point 0 is

in Ĥg. Let

Eg = Êg ∩L, Hg = Ĥg ∩L, Ig = Îg ∩L.

The submanifolds Eg and Êg are the embedded tangent spaces of G at the

point g in L and C2 respectively. By this we mean that the submanifolds Eg

and Êg are the maximal totally geodesic submanifolds of L and C2 respec-

tively which are tangent on G at the point g.
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Proposition 5. We have for e = (1,0)

Êe = {(w, z) ∈ C2 ∶ Re(w) = 1},

Îe = {(w, z) ∈ C2 ∶ Re(w) ≥ 1},

Ĥe = {(w, z) ∈ C2 ∶ Re(w) ≤ 1}.

Moreover

Ee = {(w, z) ∈ C2 ∶ Re(w) = 1, ∣z∣ < ∣w∣},

Ie = {(w, z) ∈ C2 ∶ Re(w) ≥ 1, ∣z∣ < ∣w∣},

He = {(w, z) ∈ C2 ∶ Re(w) ≤ 1, ∣z∣ < ∣w∣}.

Proposition 6. For a, g ∈ G we have a ⋅Eg = Eag, a ⋅ Ig = Iag, a ⋅Hg =Hag.

Proposition 7. Let g ∈ G. Then Eg and Ig are star-convex with respect to

g, i.e. any segment between g and any point in Eg or Ig stays in Eg or Ig

respectively.

Corollary 8. For any g ∈ G the sets Eg and Ig are contractible.

We use the projection maps π ∶ G̃ → G and π ∶ L̃ → L to define Ẽg̃, Ĩg̃

and H̃g̃, where g̃ ∈ G̃ and π(g̃) = g ∈ G. Let Ẽg̃ and Ĩg̃ be the connected

components of π−1(Eg) and π−1(Ig) respectively which contain g. Similarly

to Eg, the submanifold Ẽg̃ is the embedded totally geodesic submanifold in

L̃ which is tangent to G̃ at the point g̃. Ẽg̃ divides L̃ into two halfspaces

which are Ĩg̃ and H̃g̃ = L̃ − (Ĩg̃)○.

Proposition 9. For ã, g̃ ∈ G̃ we have ã ⋅ Ẽg̃ = Ẽãg̃, ã ⋅ Ĩg̃ = Ĩãg̃, ã ⋅ H̃g̃ = H̃ãg̃.

Proposition 10. We have

Ẽẽ = {g̃ ∈ L̃ ∶ π(g̃) ∈ Ee, ∣arg(g̃)∣ < π/2},

Ĩẽ = {g̃ ∈ L̃ ∶ π(g̃) ∈ Ie, ∣arg(g̃)∣ < π/2},

H̃ẽ = {g̃ ∈ L̃ ∶ π(g̃) ∈He, ∣arg(g̃)∣ < π/2} ∪ {g̃ ∈ L̃ ∶ ∣arg(g̃)∣ ≥ π/2}.

Moreover

H̃ẽ = π−1(He) ∪ ⋃
g̃∈π−1(e)−ẽ

Ĩg̃.
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Proposition 11. For g̃ ∈ G̃ and g = π(g̃) ∈ G we have π(Ẽg̃) = Eg, π(Ĩg̃) = Ig
and π(H̃g̃) = L. The maps π∣Ẽg̃ ∶ Ẽg̃ → Eg and π∣Ĩg̃ ∶ Ĩg̃ → Ig are homeomor-

phisms.

2.5 Elliptic elements and their lifts

Let x be a base point in D and t ∈ R. We consider the map ρx ∶ R →
PSU(1,1), where ρx(t) is the rotation at x through the angle t, i.e the element

of PSU(1,1) with the fixed point x and the derivative at x equal to eit. If

t ∉ 2π×Z then the element ρx(t) is elliptic whereas if t ∈ 2π×Z then ρx(t) = id.

There exists a map rx ∶ R→ G s.t. for all t the projection of rx(t) to PSU(1,1)
is ρx(t) and rx(0) = (1,0) = e. The map rx ∶ R→ G is given by

rx(t) = ( cos
t

2
+ i1 + ∣x∣2

1 − ∣x∣2
sin

t

2
,−i 2x

1 − ∣x∣2
sin

t

2
).

Then rx(2π) = (−1,0) = −e. There exists a map r̃x ∶ R → G̃ s.t. for all t the

projection of r̃x(t) to PSU(1,1) is ρx(t) and r̃x(0) = ẽ. The maps ρx, rx and

r̃x are homomorphisms. The element r̃x(t) acts on D as the rotation at x

through the angle t. If x = 0 then r0(t) = (eit/2,0) and arg (r̃0(2t)) = t.

Proposition 12. If g(0) = 0 or h(0) = 0 then arg(g ⋅ h) = arg(g) + arg(h).

Proposition 13. We have r̃x(2π) = c, where c does not depend on x ∈ D.

The element c is one of the two generators of the center Z(G̃). Moreover,

we have arg(r̃x(2t)) ∈ (0, π) for any t ∈ (0, π) and x ∈ D.

2.6 Discrete subgroups of ̃SU(1,1)

A Fuchsian group is a discrete subgroup of PSU(1,1). Let Z(G̃) be the

center of G̃. Note that Z(G̃) ≅ Z. The level of a discrete subgroup Γ̃ of G̃ is

the index of Γ̃ ∩ Z(G̃) in Z(G̃). Equivalently, the level of Γ̃ is the smallest

k ≠ 0 such that ck ∈ Γ̃, where c is the generator of Z(G̃) defined in Proposition

13.
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2.7 Elements of the construction

Let Γ̃1 and Γ̃2 be discrete subgroups of finite level k in G̃ and let Γ̃2 be cyclic.

For i = 1,2, let Γi be the image of Γ̃i in PSU(1,1). We assume the existence

of a joint fixed point u ∈D of Γ1 and Γ2.

For i = 1,2, the isotropy group (Γi)u of u in Γi is a finite cyclic group

generated by ρu(2π/pi), where pi = ∣(Γi)u∣. The isotropy group (Γ̃i)u of u in

Γ̃i is an infinite cyclic group generated by d̃i = r̃u(4ϑi), where ϑi = πk
2pi

. We

can assume without loss of generality that u = 0 ∈ D. The element

d̃1 = r̃u (
2πk

p1
)

is a generator of (Γ̃1)u, the stabiliser of u in Γ̃1. The element

d̃2 = r̃u (
2πk

p2
)

is a generator of (Γ̃2)u = Γ̃2.

Γ̃1 × Γ̃2 acts on G̃ by left-right multiplication

(g, h) ⋅ x = gxh−1.

Remark 14. Note that in fact we are considering the action of the group

Γ̃1 × Γ̃2/⟨(ck, ck)⟩, which means that (g̃1, g̃2) ∼ (g̃1c
k, g̃2c

k). This is since

(g̃1, g̃2) ∶ x ↦ g̃1xg̃
−1
2

(g̃1c
k, g̃2c

k) ∶ x ↦ (g̃1c
k)x(g̃2c

k)−1 = g̃1c
kxc−kg̃−1

2 = g̃1xg̃
−1
2 ckc−k = g̃1xg̃

−1
2 .

We define for a point x in the orbit Γ̃1(u)

T (x) = {(g̃1, g̃2) ∈ Γ̃1 × Γ̃2 ∣ g̃1(u) = x}.

Let

Qx = ⋂
(g̃1,g̃2)∈T (x)

H̃g̃1g̃2 and Rx = ⋃
(g̃1,g̃2)∈T (x)

Ĩg̃1g̃2 .
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For instance, for x = u we have that

T (u) = (Γ̃1)u × Γ̃2 = {(d̃m1
1 , d̃m2

2 ) ∣ m1,m2 ∈ Z} = ⟨(d̃1, e), (e, d̃2)⟩.

The generator (d̃1, e) acts on G̃ by left multiplication with d̃1 and the gener-

ator (e, d̃2) acts on G̃ by right multiplication with d̃−1
2 .

Let p = lcm(p1, p2) be the least common multiple of p1 and p2. Let

d̃ = r̃u (
2πk

p
) .

Then ⟨d̃1, d̃2⟩ = ⟨d̃⟩. Let

ϑk =
πk

2p
= πk

2 lcm(p1, p2)
.

Then

d̃ = r̃u(4ϑk).

The element d̃ acts on G̃ by left multiplication:

d̃ ⋅ (α, r, z) = (α + 2ϑk, r, ze
2iϑk),

and it acts on the (α, r)−half-plane by the translation mapping

τ(α, r) = (α + 2ϑk, r).

Remark 15. If gcd(p1, p2) = 1 then p = lcm(p1, p2) = p1 ⋅ p2. Therefore,

d̃ = r̃u ( 2πk
p1⋅p2 ). So,

d̃p1 = r̃u (
2πk

p2
) = d̃2,

d̃p2 = r̃u (
2πk

p1
) = d̃1.

We have

Qu = ⋂
(g̃1,g̃2)∈T (u)

H̃g̃1g̃2 = ⋂
m1,m2∈Z

H̃d̃
m1
1 d̃

m2
2

= ⋂
m∈Z

H̃d̃m

since ⟨d̃1, d̃2⟩ = ⟨d̃⟩.
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Proposition 16. We have T (u) = (Γ̃1)u × Γ̃2. For x ∈ Γ̃1(u) and a ∈ T (x)
we have T (x) = a ⋅ T (u),Qx = a ⋅Qu and Rx = a ⋅Ru.

2.8 Prisms Qx

We are going to mention how Pratoussevitch in [18] described the set Qx.

Recall that Qu = ⋂m∈Z H̃d̃m . The image of the set H̃ẽ under the projection

(α, r, z)↦ (α, r) is

Xẽ = {(α, r) ∈ R ×R+ ∣ r ⋅ cosα ≤ 1 or ∣α∣ ≥ π
2
}.

Figure 2.1: The image Xu of Qu in the (α, r)− half-plane. (Adapted from
[15]).

The images of the sets H̃d̃m = d̃m ⋅ H̃ẽ under the projection (α, r, z) ↦
(α, r) are the translates τm(Xẽ) of the set Xẽ, where τ is the translation

τ(α, r) = (α + 2ϑk, r). The manifold Qu is a disc bundle over its image

Xu = ⋂m∈Z τ
m(Xẽ) in the (α, r)-plane. The shaded area in figure 2.1 is Xu.

(The real line is not part of Xu.) An important condition for the construction

to work will be p > k. This condition ensures that ϑk = πk
2p < π

2 and hence

the sets τm(∂Xẽ) intersect and Qu is a prism, compare with figure 2.1. The

subsets Qx are images of the subset Qu under the action of the group Γ̃1× Γ̃2.

For any x ∈ Γ̃1(u) there is an element g ∈ Γ̃1 such that g(x) = u. Then

Qx = g ⋅Qu.
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The sets g ⋅Qu play a central role in our construction. We want to explain the

geometric nature of these objects. We have described Qu as a disc bundle over

the setXu in the (α, r)-half-plane R×R+. We may describeQu ⊂ L̃ ⊂ C×R×R+

as

Qu = (C ×Xu) ∩ L̃.

We think of Xu as a universal covering of a punctured plane polygon.

The projection (α, r)↦ reiα projects the boundary ∂Xẽ into a star polygon.

For more details see [18] pp 7 and 8.

The following estimates are obtained by approximating the prisms Qx via

their inscribed and circumcribed cylinders:

Proposition 17. Let x be a point in D that belongs to the orbit Γ1(u) of

the point u. Let (w, z) ∈ L. Then

i) If (w, z) ∈ π(Qx) then ∣w∣ − ∣z∣ < ∣w∣ − ∣x∣ ⋅ ∣z∣ ≤ ∣w − z̄x∣ ≤
√

1−∣x∣2
cosϑk

.

ii) If ∣w − z̄x∣ ≤
√

1 − ∣x∣2 then π−1((w, z)) ⊂ Qx.

Proof. Let us first consider the case x = u = 0. In this case (i) reduces

to: (w, z) ∈ π(Qu) ⇒ ∣w∣ ≤ 1
cosϑk

. This is clear from figure 2.1: If (w, z) ∈

π(Qu) then w = reiα, where (α, r) belongs to the shaded area in figure 2.1.

For (α, r) in the shaded area, r is the largest when α is an odd multiple of

ϑk and is then equal to r = 1
cosϑk

. Hence for (w = reiα, z) ∈ π(Qu) we have

∣w∣ = r ≤ 1

cosϑk
.

For (ii), in the case x = u = 0 it reduces to: ∣w∣ ≤ 1 ⇒ π−1((w, z)) ⊂ Qu.

Let g = (w, z) ∈ L with ∣w∣ ≤ 1. Then we have g ∈ Hπ(ã) for all ã ∈ (Γ̃1)u and

therefore π−1(g) ⊂ H̃ã for all ã ∈ (Γ̃1)u. Thus

π−1(g) ⊂ Qu.

In the general case x ∈ Γ̃1(u) ∖ {u}, let g̃ ∈ Γ̃1 be an element such that
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g̃(x) = u and let (a, b) = π(g̃). The element (a, b) ∈ G acts on D by

(a, b) ⋅ x = ax + b
b̄x + ā

.

The property (a, b) ⋅ x = u = 0 implies b = −ax. From (a, b) ∈ G we conclude

1 = ∣a∣2 − ∣b∣2 = ∣a∣2 − ∣a∣2∣x∣2 = ∣a∣2(1 − ∣x∣2)

and hence ∣a∣ = 1√
1−∣x∣2

. Let us consider (w, z) ∈ L. Let (w′, z′) = π(g̃) ⋅(w, z).

Then

∣w′∣ = ∣aw + bz̄∣ = ∣aw − axz̄∣ = ∣a∣ ⋅ ∣w − xz̄∣ = ∣w − xz̄∣√
1 − ∣x∣2

.

To show (i), assume that (w, z) ∈ π(Qx). Then

(w′, z′) = π(g̃) ⋅ (w, z) ∈ π(g̃) ⋅ π(Qx) = π(g̃ ⋅Qx) = π(Qu),

hence ∣w′∣ ≤ 1
cosϑk

. On the other hand, ∣w − xz̄∣ = ∣w′∣ ⋅
√

1 − ∣x∣2, hence

∣w − xz̄∣ ≤
√

1−∣x∣2
cosϑk

. The other inequalities in (i) follow using the triangle

inequality:

∣w − x̄z∣ ≥ ∣∣w∣ − ∣x̄z∣∣ = ∣∣w∣ − ∣x∣ ⋅ ∣z∣∣.

We know that (w, z) ∈ L⇒ ∣w∣ > ∣z∣ and ∣x∣ < 1⇒ ∣w∣ > ∣x∣ ⋅ ∣z∣. Thus

∣∣w∣ − ∣x∣ ⋅ ∣z∣∣ = ∣w∣ − ∣x∣ ⋅ ∣z∣ > ∣w∣ − ∣z∣.

To show (ii), assume that

∣w − xz̄∣ ≤
√

1 − ∣x∣2.

Then ∣w′∣ = ∣w−xz∣√
1−∣x∣2

≤ 1, hence π−1((w′, z′)) ⊂ Qu and

π−1((w, z)) = π−1(π(g̃)−1 ⋅ (w′, z′)) = g̃−1 ⋅ π−1((w′, z′)) ⊂ g̃−1 ⋅Qu = Qx.
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2.9 Construction

We are going to state the main Theorem which describes the construction of

the fundamental domains for Γ̃1 × Γ̃2 given by Pratoussevitch [18].

Theorem 18. Let Γ̃1 and Γ̃2 be discrete subgroups of finite level k in G̃, let

Γ̃2 be cyclic. Let Γ1 and Γ2 be the images of Γ̃1 and Γ̃2 in PSU(1,1). Let

p1 = ∣(Γ1)u∣, p2 = ∣Γ2∣ = ∣(Γ2)u∣ and p = lcm(p1, p2). Consider p > k. For a

point x in the orbit Γ̃1(u) let

T (x) = {(g̃1, g̃2) ∈ Γ̃1 × Γ̃2 ∣ g̃1(u) = x}.

Let

Qx = ⋂
(g̃1,g̃2)∈T (x)

H̃g̃1g̃2 .

We consider in L̃ the four-dimensional polytope

P = ⋃
x∈Γ̃1(u)

Qx = ⋃
x∈Γ̃1(u)

⋂
(g̃1,g̃2)∈T (x)

H̃g̃1g̃2 .

The boundary of P is invariant with respect to the action of Γ̃1 × Γ̃2. The

subset

Fẽ = Cl∂P (Int(∂H̃ẽ ∩ ∂P ))

is a fundamental domain for the action of Γ̃1 × Γ̃2 on ∂P . The family

(Fg̃1g̃2)g̃1∈Γ̃1,g̃2∈Γ̃2

is locally finite in ∂P . The projection L̃ ↦ G̃ induces a Γ̃1 × Γ̃2-equivalent

homeomorphism

∂P ↦ G̃.

The images Fẽ of Fẽ under the projection are fundamental domains for

the action of Γ̃1 × Γ̃2 on G̃. The family (Fg̃1g̃2)g̃1∈Γ̃1,g̃2∈Γ̃2
is locally finite.

If Γ̃1 is co-compact, then the fundamental domain Fg̃ is a compact poly-

hedron, i.e. a finite union of finite compact intersections of half-spaces Ĩã.

Remark 19. Int and Cl denote the interior and the closure with respect to
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∂P .

Proposition 20.

Fẽ = CI Int
⎛
⎝
(Ẽẽ ∩ ∂Qu) −

⎛
⎝ ⋃
x∈Γ̃1(u)∖{u}

Int Qx
⎞
⎠
⎞
⎠
.

Figure 2.2: Q and L. (Taken from [15]).

Figure 2.3: Qx and L. (Taken from [15]).

Figure 2.4: F,L and Qx. (Taken from [15]).

Definition 21. Let S̃ẽ = Ẽẽ ∩ ∂Qu and for a subset N of Γ̃1(u) ∖ {u} let

FN = S̃ẽ ∩⋂x∈N Rx = Ẽẽ ∩ ∂Qu ∩⋂x∈N Rx. Using this notation we can rewrite
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Proposition 20 as

Fẽ = CI Int (FΓ̃1(u)∖{u}) .

Moreover, let Se = π(S̃ẽ) = {(1 + iω, z) ∈ L ∶ ∣ω∣ ≤ tanϑk}.

Remark 22. The set S̃ẽ can be seen in projection to Ee as the horizontal

layer Se between two horizontal planes ω = ± tanϑk, intersecting with the

complement Rx of Qx amounts to cutting out Qx. Figures 2.2, 2.3 and 2.4

illustrate the construction in the case k = 1, Γ̃1 = Γ(4,3,3)1, Γ̃2 =< c >= Z(G̃).

We identify the tangent space Ee with R3. We can think of the sets Qx as

prisms. The layer S̃ẽ is indicated in the figures by the top and bottom of the

hyperboloid and the prism. In particular, figure 2.2 shows how S̃ẽ intersects

with Rx in order to cut out one prism Qx. Also, figure 2.3 shows how two

prisms Qx go together and how S̃ẽ intersects them. Moreover, if we think of

all the prisms Qx and intercutting with S̃ẽ that will give us the faces of the

fundamental domain F as in figure 2.4.
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Chapter 3

Triangle groups

This chapter is mostly based on [15], [17] and [18].

3.1 Triangle groups

The cases we are going to consider are where Γ̃1 is related to a triangle group.

A triangle group Γ(p, q, r) is the subgroup of orientation-preserving isometries

in a discrete group of isometries Γ(p, q, r)∗ of the hyperbolic plane, where the

group Γ(p, q, r)∗ ⊂ Isom(D) is generated by the reflections in the edges of a

triangle with angles π
p ,

π
q and π

r for p, q, r ∈ N. Γ(p, q, r) is a subgroup of index

2 in Γ(p, q, r)∗ which is generated by the rotations through 2π
p ,

2π
q ,

2π
r in the

vertices of the triangle (each rotation is a product of 2 reflections). We have

Γ(p, q, r) = Γ(p, q, r)∗ ∩ Isom+(D).

The sum of angles of a hyperbolic triangle is less than π, hence we obtain

that π
p +

π
q +

π
r < π. Two triangle groups are conjugate as subgroups in the

group of orientation-preserving isometries if and only if the corresponding

hyperbolic triangles are isometric.

Let ∆(p, q, r) be the hyperbolic triangle in D with vertices u, v and w such

that

u = 0, v ∈ R, v > 0 and Im(w) > 0,

with the angles at the vertices u, v,w being

αu =
π

p
, αv =

π

q
and αw = π

r
,
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see figure 3.1. Note that arg(w) = π
p , hence w = ∣w∣ ⋅ ei

π
p .

Figure 3.1: Hyperbolic triangle.

Let `v = ρ(u, v) = ρ(0, v), `w = ρ(u,w) = ρ(0,w) and `vw = ρ(v,w) be the

lengths of the edges of the above triangle ∆(p, q, r) .

Using the general formulae for hyperbolic triangles, we can compute the

length of the edges as follows:

cosh `v =
cos πp cos πq + cos πr

sin π
p sin π

q

,

cosh `w =
cos πp cos πr + cos πq

sin π
p sin π

r

,

cosh `vw =
cos πq cos πr + cos πp

sin π
q sin π

r

.

Also, using cosh2 x − sinh2 x = 1, we obtain

sinh `v =
W

sin π
p sin π

q

, sinh `w = W

sin π
p sin π

r

, sinh `vw = W

sin π
q sin π

r

,

where

W =
√

cos2
π

p
+ cos2

π

q
+ cos2

π

r
+ 2 cos

π

p
cos

π

q
cos

π

r
− 1.

Let

ρu = ρu(
2π

p
), ρv = ρv(

2π

q
) and ρw = ρw(

2π

r
),
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where ρx(t) is the rotation at x through the angle t as defined in section 2.5.

The triangle group Γ(p, q, r) is generated by the elements ρu, ρv, ρw and

has the presentation

Γ(p, q, r) =< ρu, ρv, ρw∣ρpu = ρqv = ρrw = ρuρvρw = 1 > .

The third generator ρw can be expressed in terms of the other two, hence we

also have the presentation

Γ(p, q, r) =< ρuρv ∣ρpu = ρqv = (ρuρv)r = 1 > .

Let

r̃u = r̃u(
2π

p
), r̃v = r̃v(

2π

q
), and r̃w = r̃w(

2π

r
),

where r̃x(t) is as defined in section 2.5.

Proposition 23. (Taken from [15] Proposition 36 )

We have r̃pu = r̃qv = r̃rw = r̃ur̃v r̃w = c.

Proposition 24. In the case Γ̃1 = Γ̃(p,3,3) we have (r̃2
v r̃

−1
u )2 = r̃ur̃−2

v c and

r̃ur̃v r̃u = r̃2
v r̃

−1
u r̃

2
v .

Proof. We have q = r = 3, hence r̃pu = r̃3
v = r̃3

w = r̃ur̃v r̃w = c by Proposition

23. Then r̃w = r̃−1
v r̃

−1
u c and c = r̃3

w = (r̃−1
v r̃

−1
u c)3, hence c = (r̃−1

v r̃
−1
u )3c3 and

(r̃−1
v r̃

−1
u )3 = c−2. Now r̃3

v = c implies r̃−1
v = r̃2

vc
−1. Hence c−2 = (r̃−1

v r̃
−1
u )3 =

(r̃2
vc
−1r̃−1

u )3 = (r̃2
v r̃

−1
u )3c−3 and therefore c = (r̃2

v r̃
−1
u )3 = (r̃2

v r̃
−1
u )2r̃2

v r̃
−1
u . So,

r̃ur̃
−2
v c = (r̃2

v r̃
−1
u )2.

For r̃ur̃v r̃u = r̃2
v r̃

−1
u r̃

2
v we have (r̃2

v r̃
−1
u )2 = r̃2

v r̃
−1
u r̃

2
v r̃

−1
u = r̃ur̃−2

v c. Now r̃3
v = c

implies r̃−2
v = r̃vc−1 and therefore r̃ur̃

−2
v c = r̃ur̃vc−1c = r̃ur̃v. Hence, r̃2

v r̃
−1
u r̃

2
v =

r̃ur̃v r̃u.

Theorem 25. (Taken from [15] Theorem 38 )

If the condition

gcd(k, p) = gcd(k, q) = gcd(k, r) = 1, pqr − pq − qr − rp ≡ 0 mod k (3.1)
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is satisfied, then there exists a unique subgroup of G̃ of level k with image

Γ(p, q, r) in PSU(1,1). We denote this subgroup by Γ(p, q, r)k. If the condi-

tion (3.1) is satisfied, then there exist integers nu and nv such that

pnu + 1 ≡ qnv + 1 ≡ 0 mod k,

and then a set of generators of Γ(p, q, r)k is given by the elements r̃uc
nu , r̃vc

nv ,

ck. If the condition (3.1) is not satisfied, then there is no subgroup of G̃ of

level k with image Γ(p, q, r) in PSU(1,1).

In particular:

If q = r = 3, k ≢ 0 mod 3 and p ≡ 3 mod k, then the condition (3.1) is satisfied.

A set of generators of the subgroup Γ(p,3,3)k is then given by the elements

r̃uc
n, r̃vc

n, ck, where n is the unique integer such that 3n + 1 ≡ 0 mod k and

0 ≤ n < k.

Example 26. Let k = 2 then by applying Theorem 25 we have that the

generators of the subgroup Γ(p,3,3)2 are given by r̃uc, r̃vc, c
2 since k = 2 and

n = 1. We know from Proposition 13 that c = r̃x(2π) for any x ∈ D. The

projection from G̃ to SU(1,1) gave us that c = r̃x(2π)↦ rx(2π) = −1. So, the

generators of the subgroup Γ(p,3,3)2 are given by:

r̃uc↦ −ru, r̃vc↦ −rv, c2 ↦ (−1)2 = 1.

Remark 27. A lift of the triangle group Γ(p, q, r) into the k-fold covering

Gk of PSU(1,1) is a subgroup of Gk such that the restriction of the projection

Gk → PSU(1,1) is an isomorphism of the subgroup and Γ(p, q, r).

There is a 1-1-corresponding between lifts of Γ(p, q, r) into Gk and subgroups

of level k in G̃ whose projection is Γ(p, q, r).

3.2 Crowns of triangle groups

A tiling of the hyperbolic plane D is given by the orbit of the hyperbolic

triangle ∆(p, q, r) under the action of the group Γ(p, q, r)∗.

Let Γ = Γ(p, q, r) be a triangle group.

Definition 28. (Dirichlet region): Dirichlet region for the group Γ centered
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at x ∈D is the set

Dx(Γ) = {z ∈D ∣ ρ(z, x) ≤ ρ(z, T (x)) for all T ∈ Γ}.

The Dirichlet region of Γ centered at u can also be described as the union

of those images of the triangle ∆(p, q, r) under the elements of Γ(p, q, r)∗

which contain the point u.

Definition 29. (Vertex crown Vx): The vertex crown Vx of x ∈ Γ(u) con-

sists of all those point in Γ(u)/{x} whose Dirichlet region shares at least one

point with the Dirchlet region of x.

Definition 30. (Edge crown Ex): The edge crown Ex of x ∈ Γ(u) consists

of all those points in Γ(u)/{x} whose Dirichlet region shares at least an edge

with the Dirchlet region of x.

Let V = Vu and E = Eu. We have

V = {xm,l ∣ 0 ≤m < p,1 ≤ l < q} ∪ {x′m,l ∣ 0 ≤m < p,1 ≤ l < r}

and

E = {x0,1,⋯, xp−1,1, x
′
0,1,⋯, x′p−1,1},

where xm,l = (ρmu ρlv)(u) and x′m,l = (ρmu ρlw)(u) for m, l ∈ Z.

Proposition 31. In the case Γ = Γ(p,3,3) we have

V = E = {xm,1, xm,2∣0 ≤m < p}.

The figures 3.2 and 3.3 show the edge crown and the vertex crown for

the triangle groups Γ(5,3,3) and Γ(7,3,3).
The red region is the Dirichlet region for the triangle group Γ(p,3,3) centered

at u = 0, where p = 5,7, and the green region is the union of Dirichlet regions

for the edge crown and the vertex crown for this group.

Proposition 32. For all x ∈ E we have

coshρ(u,x) = 2B2 + 1 and ∣x∣ = B√
B2 + 1

,
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Figure 3.2: The edge crown and the vertex crown for Γ(5,3,3).

Figure 3.3: The edge crown and the vertex crown for Γ(7,3,3).
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where B = sinh `v sin π
q .

Proposition 33. For all m ∈ Z we have

coshρ(xm,1, xm,q−1) = 2 sinh2 `v sin2 2π

q
+ 1,

coshρ(xm,q−1, xm+1,1) = 2 sinh2 `w sin2 2π

r
+ 1,

∣xm,1 − xm,q−1∣ =
sinh `v sin 2π

q

sinh2 `v sin2 π
q + 1

,

∣xm,q−1 − xm+1,1∣ =
sinh `w sin 2π

r

sinh2 `w sin2 π
r + 1

.

Moreover
∣xm,1 − xm,q−1∣

cos πq
=

∣xm,q−1 − xm+1,1∣
cos πr

.

3.3 Lifting elliptic elements

To describe isometries in PSU(1,1) via matrices, we consider their lifts into

SU(1,1). Note that the pre-image of an elliptic element ρx(t) under the

projection SU(1,1) → PSU(1,1) is ±rx(t). We will determine these lifts for

the generators

ρu = ρu(
2π

p
), ρv = ρv(

2π

q
) and ρw = ρw(

2π

r
)

of the triangle group Γ(p, q, r).

Recall that u = 0, v ∈ R, v > 0,w = ∣w∣ ⋅ ei
π
p (see figure 3.1). Using formula for

rx(t) in section 2.5 we obtain:

ru = r0 (
2π

p
) = (cos

π

p
+ i sin π

p
,0)

= (ei
π
p ,0).
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rv = rv (
2π

q
)

= (cos
π

q
+ i coshρ(0, v) sin

π

q
,−i v

∣v∣
sinhρ(0, v) sin

π

q
)

= (cos
π

q
+ i coshρ(0, v) sin

π

q
,−i sinhρ(0, v) sin

π

q
) .

rw = rw (2π

r
)

= (cos
π

r
+ i coshρ(0,w) sin

π

r
,−i w

∣w∣
sinhρ(0,w) sin

π

r
)

= (cos
π

r
+ i coshρ(0,w) sin

π

r
,−iei

π
p sinhρ(0,w) sin

π

r
) .

Finally we can write these elements as matrices as follows:

ru =
⎛
⎝
e
iπ
p 0

0 e
−iπ
p

⎞
⎠
,

rv =
⎛
⎝

cos πq + i coshρ(0, v) sin π
q −i sinhρ(0, v) sin π

q

i sinhρ(0, v) sin π
q cos πq − i coshρ(0, v) sin π

q

⎞
⎠
,

rw =
⎛
⎝

cos πr + i coshρ(0,w) sin π
r −iei

π
p sinhρ(0,w) sin π

r

ie
iπ
p sinhρ(0,w) sin π

r cos πr − i coshρ(0,w) sin π
r

⎞
⎠
.

Proposition 34. For k, l ∈ Z we have

rku = (ei
kπ
p ,0), rlv = ( cos

lπ

q
+ iC sin

lπ

q
,−iB(l)),

where C = coshρ(0, v), S = sinhρ(0, v) and B(l) = S sin lπ
q = sinhρ(0, v) sin lπ

q .
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Chapter 4

Finding finite representation

of fundamental domains for

the groups Γ̃(p1, q, r)
k
× (Cp2)

k

4.1 Net estimate

Let Γ̃1 = Γ̃(p1, q, r)k, with p1 ≥ k + 3. Let Γ̃2 = (Cp2)k be the covering of a

cyclic group of order p2 in PSU(1,1). Recall that ϑk = πk
2 lcm(p1,p2) . In the

case gcd(p1, p2) = 1 we have ϑk = πk
2p1p2

. In this section we generalise the net

estimate described in [15] to the case Γ̃(p1, q, r)k × (Cp2)k.

4.1.1 Net estimate

We are going to show an estimate for the distance from the vertical axis in

the (w, z)−space to the points in π(FE), where FE = (Ẽẽ∩∂Qu)○−(⋃x≠uQx),
by approximating the sets π(Qx) through their inscribed cylinders.

Notation: In a metric space X let us denote by U(x, r) resp. B(x, r) the

open resp. closed ball of radius r with center at x ∈X.

Definition 35. An s−net of radius d is a finite subset of the circle of radius

d with center at 0 in C such that for some numbering x1, ..., xm, xm+1 = x1

of the points clockwise we have maxi ∣xi − xi+1∣ = s > 0. (Then the inequality

s ≤ 2d must hold).
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Definition 36. Let N ⊂ Γ̃1(u)Ó {u} be an s-net of radius d < 1. Recall that

s < 2d. Let

RN = 2d2

√
4d2 − s2

.

If RN < 1 then s < 2d
√

1 − d2, hence there exists ϑN ∈ (0, π2 ) such that

cosϑN = s

2d
√

1 − d2
.

For ϑ ∈ [−ϑN , ϑN ] let

`±N(ϑ) = 1

RN
± 1

2d2

√
4d2(1 − d2) cos2 ϑ − s2.

Remark 37. RN < 1 implies `+N(ϑ) ≥ 1
RN

> 1. The functions `±N are even.

The functions `−N and `+N are monotone increasing and decreasing respectively

on [0, ϑN ].

Theorem 38. Let N ⊂ Γ̃1(u) be an s-net of radius d < 1 such that RN < 1

and ϑN ≥ ϑk. The inequality ϑk ≤ ϑN implies that the functions `±N are

defined on [−ϑk, ϑk]. Assume that `−N(ϑk) ≤ 1. Then for w = 1 + i tanϑ such

that ∣ϑ∣ ≤ ϑk we have that if the point (w, z) is in π(FN) then

∣z∣ < `−N(ϑ) ⋅ ∣w∣.

Proof. Let x1,⋯, xm be a numbering of the points of the net N such that

maxi=1,⋯,m∣xi − xi+1∣ = s,

where xm+1 = x1. We have ∣xi∣ = d. Let zi = w̄
x̄i

and r =
√

1−d2
d . The geometric

meaning of zi and r is as follows: the point zi corresponds to the axis of the

prism Qxi and r is the inscribed radius of Qxi . This can be made precise

using Proposition 17, which implies that (w, z) ∈ π(Qxi) provided that

∣w − xiz̄∣ ≤
√

1 − ∣xi∣2 and ∣w∣ < ∣z∣.
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We can rewrite the first inequality as

∣z̄ − w

xi
∣ ≤

√
1 − ∣xi∣2

∣xi∣
, ∣z − w̄

x̄i
∣ ≤

√
1 − ∣xi∣2

∣xi∣
.

With zi = w̄
x̄i

and ∣xi∣ = d we can rewrite this inequality as

∣z − zi∣ ≤
√

1 − d2

d
= r.

The points zi = w̄
x̄i

are obtained from the points xi through inversion, rotation

and scaling, hence they also form a net, say a 2ŝ-net of radius d̂. We have

d̂ = ∣zi∣ = ∣ wxi ∣ =
∣w∣
d . In order to find ŝ we compute:

∣zi − zi+1∣ = ∣ w̄
x̄i
− w̄

x̄i+1
∣ = ∣w̄∣ ⋅ ∣ x̄i+1 − x̄i

x̄ix̄i+1
∣ = ∣w∣ ⋅ s

d2
,

hence 2 ŝ = ∣w∣⋅s
d2

. We know that w = 1 + i tanϑ and ∣w∣ =
√

1 + tan2 ϑ =
√

cos2 ϑ+sin2 ϑ
cos2 ϑ

= 1
cosϑ for ϑ ∈ [−π2 ,

π
2 ]. The inequality ∣ϑ∣ ≤ ϑk ≤ ϑN implies that

∣w∣ = 1
cosϑ ≤ 1

cosϑN
= 2d

√
1−d2
s . Hence ŝ ≤ r because ŝ = s⋅∣w∣

2d2
≤
√

1−d2
d . We have

∣zi − zi+1∣ = 2ŝ ≤ 2r, hence the circles ∂B(zi, r) and ∂B(zi+1, r) intersect each

other in two points at the distance to the origin equal to

Figure 4.1: The subscribed circle estimate.(Taken from [15]).
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√
d̂2 − ŝ2 ±

√
r2 − ŝ2

=
√

∣w∣2
d2

− s
2∣w∣2
4d4

±
√

1 − d2

d2
− s

2∣w∣2
4d4

= ∣w∣ ⋅
⎛
⎜
⎝

√
4d2 − s2

4d4
±

¿
ÁÁÀ 1 − d2

d2∣w∣2
− s2

4d4

⎞
⎟
⎠

= ∣w∣ ⋅
⎛
⎜
⎝

1

RN
± 1

2d2

¿
ÁÁÀ4d2(1 − d2)

∣w∣2
− s2

⎞
⎟
⎠

= ∣w∣ ⋅ `±N(ϑ),

see figure 4.1. Thus the annulus {z ∈ C ∶ `−N(ϑ) ≤ ∣z∣∣w∣ ≤ `
+
N(ϑ)} is contained in

the union of the disks B(zi, r). Taking into account the assumption `−N(ϑk) ≤
1, we have

`−N(ϑ) ≤ `−N(ϑk) ≤ 1 < `+N(ϑk) ≤ `+N(ϑ).

Hence `−N(ϑ)∣w∣ ≤ ∣z∣ < ∣w∣ implies `−N(ϑ) ≤ ∣z∣∣w∣ < 1 ≤ `+N and therefore (w, z) ∈

π(Ẽẽ ∩⋃x∈N Qx). Thus ∣z∣ < `−N(ϑ) ⋅ ∣w∣ implies (w, z) ∈ π(FN).

Proposition 39. Let Γ be the triangle group Γ(p, q, r) with p ≥ q ≥ r. Let

B = sinh `v ⋅ sin π
q , where `v is defined in subsection 3.1. Then the edge crown

E is an s-net of radius d, where

s =
2B cos πq

B2 + 1
and d = B√

B2 + 1
.

For this net, we have d < 1, RE = tanh `v < 1, ϑE = π
q and

`±E(ϑ) =
1

RE
± 1

B
⋅
√

cos2 ϑ − cos2
π

q
.

Proof. Proposition 32 implies that E is an s-net of radius d, where

s = max{∣xm,1 − xm,q−1∣, ∣xm,q−1 − xm+1,1∣} and d = B√
B2 + 1

.
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Proposition 33 and the fact that q ≥ r imply

∣xm,1 − xm,q−1∣ =
cos πq

cos πr
⋅ ∣xm,q−1 − xm+1,1∣ ≥ ∣xm,q−1 − xm+1,1∣,

hence s = ∣xm,1 − xm,q−1∣ =
sinh `v sin 2π

q

sinh2 `v sin2 π
q
+1

=
2B cos π

q

B2+1
. From the formula for s

and d one can derive the formula for RE , ϑE and `±E(ϑ).

Now we can specialise Theorem 38 for the case Γ̃1 × Γ̃2 = Γ̃(p1,3,3)k ×
(Cp2)k and N = E :

Theorem 40. Let Γ̃1 × Γ̃2 = Γ̃(p1,3,3)k × (Cp2)k. We assume that ϑk ≤ π
q

and `−E(ϑk) ≤ 1. Let w = 1+ i tanϑ such that ∣ϑ∣ ≤ ϑk. Then if the point (w, z)
is in π(FE) then

∣z∣ < `−E(ϑ) ⋅ ∣w∣.

4.1.2 Application of the net estimate

We shall apply the net estimate to the edge crown E . The following Propo-

sition was taken from [15].

Proposition 41. Let x be a point in Γ̃1(u)/{u} such that ∣x∣ ≥ R > 0. Then

for all (w, z) ∈ π(Qx) we have

∣z∣ ≥ ( 1

R
−

√
1 −R2

R∣w∣ cosϑk
) ⋅ ∣w∣.

Proof. Let (w, z) be a point in π(Qx). Proposition 17 implies that ∣z∣ ≥
f(∣x∣) ⋅ ∣w∣, where f(t) = 1

t (1 − c
√

1 − t2) and c = 1
∣w∣ cosϑk

≥ 1. The function f

is monotone increasing on (0,1) because f ′(t) = c−
√

1−t2
t2
√

1−t2
. Thus

∣z∣ ≥ f(∣x∣) ⋅ ∣w∣ ≥ f(R) ⋅ ∣w∣.

In subsection 4.1.1 we proved an estimate on the distance from the vertical

axis to the points of the set π(FE). On the other hand, in Proposition 41

the lower bound was determined for the distance from the vertical axis to
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the points of the set π(Qx). Combining these two estimates we can show

under certain conditions that the sets π(Qx) with x ∉ E ∪{u} share no points

with π(FE) and therefore with π(Fẽ) ⊂ π(FE), i.e. π(Fẽ) = π(FE) and hence

Fẽ = FE .

Notation: For R ∈ (0,1) let

MR = 1 −
√

1 −R2

R
.

We have MR ∈ (0,1).

Proposition 42. Let N ⊂ Γ̃1(u) be an s-net of radius d < 1 such that RN <
1 and ϑN ≥ ϑk. The inequality ϑk ≥ ϑN implies that the function `±N is

defined on [−ϑk, ϑk]. We assume that `+N(ϑk) ≥ 1 (follows from RN < 1) and

`−N(ϑk) ≤MR for some R ≥ RN . Then π(Qx) ∩ π(FN) = ∅ for all x ∈ Γ̃1(u)
such that ∣x∣ ≥ R.

Proof. Let x be a point in Γ̃1(u)/{u} such that ∣x∣ ≥ R. Let w = 1 + i tanϑ

such that ∣ϑ∣ ≤ ϑk. We have ∣w∣ = 1
cosϑ and `−N(ϑk) ≤ MR < 1. So, all the

conditions of Theorem 38 are satisfied, hence for all (w, z) ∈ π(FN) we have

∣z∣ < `−N(ϑ) ⋅ ∣w∣.

On the other hand, Proposition 41 implies that for all (w, z) ∈ π(Qx) we have

∣z∣ ≥ ( 1

R
−

√
1 −R2

R ⋅ ∣w∣ cosϑk
) ⋅ ∣w∣

= ( 1

R
− cosϑ

cosϑk
⋅
√

1 −R2

R
) ⋅ ∣w∣.

So, it is sufficient to show that the function

∆(ϑ) = ( 1

R
− cosϑ

cosϑk
⋅
√

1 −R2

R
) − `−N(ϑ)

is non-negative on [0, ϑk]. The function ∆(ϑ) can be written as

∆(ϑ) = a(ϑ) ⋅ cosϑ

cosϑk
+ ( 1

R
− 1

RN
) ,
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where

a(ϑ) = ( 1

RN
− `−N(ϑ)) ⋅ cosϑk

cosϑ
−

√
1 −R2

R
.

We compute

( 1

RN
− `−N(ϑ)) = ( 1

RN
− ( 1

RN
− 1

2d2

√
4d2(1 − d2) cos2 ϑ − s2))

= 1

2d2

√
4d2(1 − d2) cos2 ϑ − s2.

We see that

a(ϑ) = ( 1

RN
− `−N(ϑ)) ⋅ cosϑk

cosϑ
−

√
1 −R2

R

= cosϑk
2d2

⋅
√

4d2(1 − d2) − s2

cos2 ϑ
−

√
1 −R2

R

is monotone increasing on ϑ ∈ [−ϑk,0] and monotone decreasing for ϑ ∈
[0, ϑk]. Hence we have for all ϑ ∈ [−ϑk, ϑk] that

a(ϑ) ≥ a(ϑk).

We compute

a(ϑk) = ( 1

RN
− `−N(ϑk)) −

√
1 −R2

R

= 1

2d2

√
4d2(1 − d2) cos2 ϑk − s2 −

√
1 −R2

R

= ( 1

RN
− 1

R
) + 1

R
−

√
1 −R2

R
− 1

RN
+ 1

2d2

√
4d2(1 − d2) cos2 ϑk − s2

= ( 1

RN
− 1

R
) + 1 −

√
1 −R2

R
− ( 1

RN
− 1

2d2

√
4d2(1 − d2) cos2 ϑk − s2)

= ( 1

RN
− 1

R
) + (MR − `−N(ϑk)).
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and therefore

∆(ϑ) = a(ϑ) ⋅ cosϑ

cosϑk
+ ( 1

R
− 1

RN
)

≥ cosϑ

cosϑk
(( 1

RN
− 1

R
) + (MR − `−N(ϑk))) + ( 1

R
− 1

RN
)

≥ (( 1

RN
− 1

R
) + (MR − `−N(ϑk))) + ( 1

R
− 1

RN
)

= MR − `−N(ϑk).

Recall that from our assumptions we have `−N(ϑk) ≤ MR ≤ 1. Hence MR −
`−N(ϑk) ≥ 0 and thereofre ∆(ϑ) ≥ 0. So, we have shown that

π(Qx) ∩ π(FN) = ∅

for all x ∈ Γ̃1(u) such that ∣x∣ ≥ R.

Now we can specialise Proposition 42 for the edge crown E as follows:

Proposition 43. Let Γ̃1 × Γ̃2 = Γ̃(p1, q, r)k × (Cp2)k with p1 ≥ q ≥ r. We

assume that ϑk ≤ π
q and `−E(ϑk) ≤MR for some R ≥ RE . Then

π(Qx) ∩ π(FE) = ∅

for all x ∈ Γ̃1(u) such that ∣x∣ ≥ R.

Theorem 44. Let Γ̃1 × Γ̃2 = Γ̃(p1, q, r)k × (Cp2)k with p1 ≥ q ≥ r. We assume

that ϑk ≤ π
q . Let R ≥ RE be such that Γ̃1(u)∩U(u,R) ⊂ E ∪ {u} and `−E(ϑk) ≤

MR. Then

FΓ̃1(u)∖{u} = FE .

Proof. We have `−E(ϑk) ≤ MR < 1. Proposition 43 implies that π(Qx) ∩
π(FE) = ∅ for all x ∈ Γ̃1(u)/(E ∪ {u}) and therefore FΓ̃1(u)∖{u} = FE .
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4.1.3 Applying the net estimate for the cases Γ̃(p1,3,3)k ×

Γ̃(C3)
k

We are going to use the net estimate for the groups Γ̃(p1, q, r)k × (Cp2)k =
Γ̃(p1,3,3)k×(C3)k and we will see how the net estimate works for these cases.

In particular, we shall use Theorem 44 in order to show that FΓ̃1(u)∖{u} = FE .
Let us recall some formulas. Recall from Proposition 34 the notation C =
cosh `v = coshρ(0, v) and S = sinh `v = sinhρ(0, v). Recall from subsection 3.1

C = cosh `v =
cos πp cos πq + cos πr

sin π
p sin π

q

=
cos π

p1
cos π3 + cos π3

sin π
p1

sin π
3

=
cos π

p1
+ 1

sin π
p1

⋅
cos π3
sin π

3

=
(2 cos2 π

2p1
− 1) + 1

2 sin π
2p1

cos π
2p1

⋅ cot
π

3
=

2 cos2 π
2p1

2 sin π
2p1

cos π
2p1

⋅ 1√
3

= 1√
3
⋅ cot

π

2p1
,

S =
√

cosh2 `v − 1 =

¿
ÁÁÀ( 1√

3
⋅ cot

π

2p1
)

2

− 1

=

¿
ÁÁÁÀ

cos2 π
2p1

3 sin2 π
2p1

− 1 =

¿
ÁÁÁÀ

cos2 π
2p1

− 3 sin2 π
2p1

3 sin2 π
2p1

= 1√
3
⋅

√
cos2 π

2p1
− 3 sin2 π

2p1

sin π
2p1

= 1√
3
⋅

√
1
2(1 + cos π

p1
) − 3

2(1 − cos π
p1

)
sin π

2p1

= 1√
3

√
2 cos π

p1
− 1

sin π
2p1

.
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Using the formula (8.5) (in appendix) which says that cos 3x = cosx(2 cos 2x−
1) we have

S = 1√
3

√
2 cos π

p1
− 1

sin π
2p1

= 1√
3 sin π

2p1

¿
ÁÁÁÀ

cos 3π
2p1

3 cos π
2p1

= 1√
3 sin π

2p1
D
,

where D ∶=
√

cos π
2p1

cos 3π
2p1

> 1. Recall that RE = tanh `v and B = sinh `v ⋅ sin π
q (see

Proposition 39). Hence

RE =
sinh `v
cosh `v

= S

C
=

1√
3 sin π

2p1
D

1√
3
⋅ cot π

2p1

= 1

cos π
2p1
D
,

and

B = S ⋅ sin π
3
= 1√

3 sin π
2p1
D
⋅
√

3

2
= 1

2 sin π
2p1
D
.

Note that D can be rewritten as D = 1√
2 cos π

p1
−1
, hence S = 1√

3

√
2 cos π

p1
−1

sin π
2p1

,

RE =
√

2 cos π
p1
−1

cos π
2p1

and B =
√

2 cos π
p1
−1

2 sin π
2p1

. Recall that ϑk = kπ
2 lcm(p1,p2) , hence in our

case ϑk = kπ
6p1

.

Proposition 45. We have

`−E(ϑk) =D (cos
π

2p1
− sin

π

2p1

√
4 cos2 ϑk − 1) .

Proof. We know that

`−E(ϑk) = 1

RE
− 1

B
⋅
√

cos2 ϑk − cos2
π

q

= cos
π

2p1
⋅D − 2 sin

π

2p1
⋅D ⋅

√
cos2 ϑk −

1

4

= D ⋅ (cos
π

2p1
− sin

π

2p1

√
4 cos2 ϑk − 1) .
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Now, in order to be able to apply Theorem 44 we need to find R ≥ RE such

that Γ̃1(u) ∩U(u,R) ⊂ E ∪ {u}.

Proposition 46. For

R =
cos π

2p1

cos π
p1

⋅ 1

D
=

cos π
2p1

cos π
p1

⋅
√

2 cos
π

p1
− 1,

we have R > RE and Γ̃1(u) ∩U(u,R) ⊂ E ∪ {u}.

Proof. For Γ̃1 = Γ(p1,3,3)k we have

coshρ(0, x) ≥
2 cos2 π

p1

sin2 π
2p1

− 1

for any x ∈ (Γ̃1(u)/{u}) − E as a consequence of Lemma 11.2 and Formula

(11.6) in [8], where the angle αu in [8] corresponds here to the angle π
p1

.

Using the formula

∣x∣2 = coshρ(0, x) − 1

coshρ(0, x) + 1
,

which connects the Euclidean and hyperbolic distance in D, we obtain

∣x∣2 = coshρ(0, x) − 1

coshρ(0, x) + 1
= 1 − 2

coshρ(0, x) + 1
≥ 1 − 2

(
2 cos2 π

p1

sin2 π
2p1

− 1) + 1

= 1 −
sin2 π

2p1

cos2 π
p1

=
cos2 π

p1
− sin2 π

2p1

cos2 π
p1

.

Moreover

cos2 π

p1
− sin2 π

2p1
=

⎛
⎝

1 + cos 2π
p1

2

⎞
⎠
− (

1 − cos π
p1

2
)

=
cos 2π

p1
+ cos π

p1

2
= cos

3π

2p1
cos

π

2p1
.
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We obtain

∣x∣2 ≥
cos π

2p1
cos 3π

2p1

cos2 π
p1

= R2

for any x ∈ Γ̃1(u)/({u} − E). Moreover

1

R
=

cos π
p1

cos π
2p1

⋅D < cos
π

2p1
⋅D = 1

RE
,

hence

R > RE .

Proposition 47. For R as in Proposition 46 we have

MR = 1 −
√

1 −R2

R
=D ⋅

cos π
p1
− sin π

2p1

cos π
2p1

.

Proof. We know that

D =

¿
ÁÁÁÀ

cos π
2p1

cos 3π
2p1

, R =
cos π

2p1

cos π
p1
⋅D

.

Then

MR = 1 −
√

1 −R2

R
=

1 −
√

1 − (
cos π

2p1

cos π
p1
⋅D)

2

cos π
2p1

cos π
p1
⋅D

= D

cos π
p1

(1 −
√

1 −
cos2 π

2p1
cos 3π

2p1

cos2 π
p1

cos π
2p1

)

cos π
2p1

= D

cos π
p1

(1 −
√

cos2 π
p1
−cos π

2p1
cos 3π

2p1

cos2 π
p1

)

cos π
2p1

.
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Let α = π
2p1

, then cos π
p1

= cos 2α = 2 cos2 α − 1, cos 3π
2p1

= cos 3α = 4 cos3 α −
3 cosα. Let x = cosα. Then

cos2 π

p1
− cos

π

2p1
cos

3π

2p1
= cos2(2α) − cosα cos(3α)

= (2x2 − 1)2 − x(4x3 − 3x) = 4x4 − 4x2 + 1 − 4x4 + 3x2

= −x2 + 1 = 1 − cos2 α = sin2 α = sin2 π

2p1
.

So,

MR = D ⋅
cos π

p1
(1 −

√
sin2 π

2p1

cos2 π
p1

)

cos π
2p1

=D ⋅
cos π

p1
− sin π

2p1

cos π
2p1

.

Therefore we can now apply Theorem 44 as follows:

Proposition 48. In the case Γ̃1 × Γ̃2 = Γ̃(p1,3,3)k × (C3)k we have `−E(ϑk) ≤
MR and hence

FΓ̃1(u)∖{u} = FE = Fẽ.

Proof. We apply Theorem 44 for the radius R as defined in Proposition 46.

We have to show that MR ≥ `−E(ϑk). By using Propositions 45 and 47 we can

show that the inequality

MR ≥ `−E(ϑk)

is equivalent to

√
4 cos2 ϑk − 1 ≥

cos2 π
2p1

− cos π
p1
+ sin π

2p1

sin π
2p1

cos π
2p1

,

as follows:

We know that

MR =D ⋅
cos π

p1
− sin π

2p1

cos π
2p1

,

`−E(ϑk) =D (cos
π

2p1
− sin

π

2p1

√
4 cos2 ϑk − 1) .
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So,

MR ≥ `−E(ϑk)

D ⋅
cos π

p1
− sin π

2p1

cos π
2p1

≥ D ⋅ ( cos
π

2p1
− sin

π

2p1

√
4 cos2 ϑk − 1)

cos π
p1
− sin π

2p1

cos π
2p1

− cos
π

2p1
≥ − sin

π

2p1

√
4 cos2 ϑk − 1

cos2 π
2p1

+ sin π
2p1

− cos π
p1

cos π
2p1

sin π
2p1

≤
√

4 cos2 ϑk − 1

Using formula (8.8) and (8.9) (in appendix) we obtain

cos2 π
2p1

+ sin π
2p1

− cos π
p1

cos π
2p1

sin π
2p1

=
cos2 π

2p1
+ sin π

2p1
− cos2 π

2p1
+ sin2 π

2p1

cos π
2p1

sin π
2p1

=
sin π

2p1
+ 1

cos π
2p1

= cot (π
4
− π

4p1
).

Then, it remains to show that

√
4 cos2 ϑk − 1 ≥ cot (π

4
− π

4p1
)

4 cos2 ϑk − 1 ≥ cot2 (π
4
− π

4p1
).

We also can obtain the following:

cot2 (π
4
− π

4p1
) + 1 = 1

sin2 (π4 −
π

4p1
)
.

Hence

4 cos2 ϑk ≥
1

sin2 (π4 −
π

4p1
)

2 cosϑk sin (π
4
− π

4p1
) ≥ 1

We know that ϑk = kπ
2 lcm(p1,p2) . We have p2 = 3 and p1 = lk + 3, where
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l ∈ {1,2}. Then ϑk = kπ
6p1

= kπ
6(lk+3) =

π( (lk+3)−3
l

)
6(lk+3) = π

6l −
3π

6(lk+3)l =
π
6l −

π
2p1l

. For

l = 1 we have ϑk = π
6 −

π
2p1

and for l = 2 we have ϑk = π
12 −

π
4p1

.

We have 0 < ϑk = π
6l −

π
2p1l

≤ π
6 − π

2p1
≤ π

4 − 3π
4p1

< π
4 . Hence cosϑk ≥

cos (π4 −
3π
4p1

). Therefore

2 cosϑk sin (π
4
− π

4p1
)

≥ 2 cos (π
4
− 3π

4p1
) sin (π

4
− π

4p1
)

= sin (π
4
− 3π

4p1
+ π

4
− π

4p1
) + sin (π

4
− π

4p1
− π

4
+ 3π

4p1
)

= sin (π
2
− π

p1
) + sin ( π

2p1
)

= cos ( π
p1

) + sin ( π

2p1
).

Let α = π
2p1

. We know that α ∈ (0, π8 ) since p1 ≥ 4. Then

cos ( π
p1

) + sin ( π

2p1
)

= cos 2α + sinα

= 1 − 2 sin2 α + sinα

= 1 + sinα(1 − 2 sinα).

Note that 0 < α < π
6 , hence, sin 0 = 0 < sinα < sin π

6 = 1
2 . We obtain sinα ∈

(0, 1
2)⇒ 2 sinα ∈ (0,1)⇒ 1 − 2 sinα ∈ (0,1). Therefore,

1 + sinα(1 − 2 sinα) ≥ 1.
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4.2 Combinatorial criterium

This section follows [8] and [15].

In the cases where we have a polytope which we think is a fundamental do-

main, we will use the following combinatorial criterium (Theorem 8 in [15])

in the spirit of the Poincaré-Maskit Theorem to check that it is a funda-

mental domain. The Theorem describes sufficient conditions for a subset of

a 3-manifold which is homeomorphic to a polyhedron to be a fundamental

domain for a group action. See [15] for the proof and more details, also com-

pare with [8].

Theorem 49. Let M be a simply connected 3-manifold without boundary.

Let Γ̃ be a discrete group which acts on M properly discontinuously via home-

omorphisms. We assume that there exists a subset F of M such that the

family (γF)γ∈Γ̃ covers M and is locally finite in M . Let P be a subset of M

with the following properties:

(1) P is connected, the boundary of P is a manifold.

(2) A homeomorphism from P to a compact polytope in R3 with a homoge-

neous 3-dimensional flag complex is given. Then it is clear what is the

set of faces F and the set of edges E of P. Let

C = {(f, k) ∈ F ×E ∶ k ⊂ f}.

Suppose that there is an involution τ ∶ C↦ C such that for (g, l) = τ(f, k)
holds f ∩ g = k = l.

(3) There exists an involution σ on C and a family (γf)f∈F of elements of Γ̃

with the following properties:

● σ(f, k) = (γff, γfk) for any (f, k) ∈ C.

● For any face f ∈ F and any point x ∈ f○ there exists a neighborhood U

of x such that γf(U ∩ (P)○) ∩ (P)○ = ∅.

● γγff = γ−1
f for any face f ∈ F.

● The group Γ̃ is generated by the set {γf ∣ f ∈ F}.
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(4) Let (f, k) ∈ C and let m be the length of the τσ-orbit of (f, k). In the case

m > 1 for i ∈ {1, . . . ,m+1} let (fi, ki) = (τσ)i−1(f, k), γi = (γfi ⋅ ⋅ ⋅ ⋅ ⋅γf1)−1,

Pi = γiP and hi = γifi+1.

In the case m = 1 let us replace m with the order of γf and define γi =
(γf)−i, (fi, ki) = γi(f, k), Pi = γiP and hi = γifi+1.

● γm = 1.

● For any point x ∈ k○ there exists a neighbourhood U of x such that

U ∩Pi ∩Pi+1 = U ∩ hi

for all i ∈ {1, . . . ,m + 1} and

U ∩Pi ∩Pj = U ∩ k

for all i, j ∈ {1, . . . ,m + 1} with i < j − 1.

Let N = Γ̃×P/ ∼, where (δγf , x) ∼ (δ, γfx) for δ ∈ Γ̃, f ∈ F and x ∈ f . Let

the projection pr ∶ N →M be given by pr([(γ, x)]) = γx.

Then the map pr is a homeomorphism and the set P is a fundamental

domain for the action of the group Γ̃ on M .

Remark 50. The case m = 1 in part (4) of Theorem 49 corresponds to the

action of Γ̃ having fixed points. This case was not included in [15], but only

minor modifications of the proof are needed to include it.

4.2.1 Application of the combinatorial criterium

We shall now apply the combinatorial criterium in the following situation:

M = G̃ is a simply connected 3-dimensional manifold without boundary and

Γ̃ = Γ̃1×Γ̃2 = Γ̃(p1,3,3)k×(Cp2)k. The group Γ̃ = Γ̃1×Γ̃2/⟨(ck, ck)⟩ acts on M =
G̃ be left-right multiplication properly discontinuously via homeomorphisms.

For a subset F of G̃ such that the family (γF)γ∈Γ̃1×Γ̃2
covers G̃ and is locally

finite in G̃ we can take F = Fẽ. We construct a subset W ⊂ S̃ẽ for which we

would like to show that W = Fẽ. If the set P = Ψ(W ) satisfies the conditions

of Theorem 49 then we can apply the Theorem and conclude that P = Fẽ
and W = Fẽ.
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We shall now list the conditions and describe in more detail how we

shall go about checking that they are satisfied. It is sufficient to check the

conditions for W instead of P = Ψ(W ) since the map Ψ∣S̃ẽ is an equivariant

homeomorphism onto the image.

The first two conditions, that the set W is connected and homeomorphic

to a compact polytope in R3 with a homogeneous 3-dimensional flag complex,

will follow from the precise description of the set W .

The next two conditions will be confirmed with combinatorial methods.

In all cases that we will consider for every face f of W there exists an

element (g̃1, g̃2) ∈ Γ̃1 × Γ̃2/⟨(ck, ck)⟩ such that f ⊂ Ẽg̃1g̃2 ∩ Ẽẽ. Then let γf ∶=
(g̃−1

1 , g̃2).

Next we need to show that σ(f, k) = (γff, γfk) for every (f, k) ∈ C. For

every face f of W we shall compute where f is mapped under γf . Since the

action of γf is a linear map C2 ↦ C2, it is sufficient to compute the images

of the vertices of f . Let f be a face of W which is contained in Ẽg̃1g̃2 ∩ Ẽẽ.
A vertex of f can be represented as an intersection Ẽẽ ∩ Ẽg̃1g̃2 ∩ Ẽh̃1 ∩ Ẽh̃2 of

4 hyperplanes. Hence the image of this vertex under γf = (g̃−1
1 , g̃2) can be

represented as

(g̃−1
1 , g̃2) ⋅ (Ẽẽ ∩ Ẽg̃1g̃2 ∩ Ẽh̃1 ∩ Ẽh̃2)

=Ẽg̃−11 g̃−12
∩ Ẽg̃−1g̃1g̃2g̃−12 ∩ Ẽg̃−11 h̃1g̃−12

∩ Ẽg̃−11 h̃2g̃−12

=Ẽẽ ∩ Ẽg̃−11 g̃−12
∩ Ẽg̃−11 h̃1g̃−12

∩ Ẽg̃−11 h̃2g̃−12
.

If the images of all vertices of f are again vertices of a face f ′ of W in

the correct order, i.e. if two vertices are connected by an edge then their

images are also connected by an edge, then the action of γf maps the face f

bijectively onto the face f ′ and maps vertices and edges of f into the vertices

and edges of f ′.

Next we need to show that for every face f ∈ F and every point x ∈ f○

there exists a neighbourhood U of x such that γf(U ∩ (W )○) ∩ (W )○ = ∅.

Let the face f be contained in Ẽg̃1g̃2 ∩ Ẽẽ. The map given by action of γf =
(g̃−1

1 , g̃2) preserves the orientation and maps the face f into the face contained

in Ẽg̃−11 g̃−12
∩ Ẽẽ. If the orientation of the sequence of edges of the face f is
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given, then one can see from the orientation of the image face induced by

the action of γf that for every x ∈ f○ there exists a neighbourhood U such

that γf ⋅ (U ∩ (W )○) ∩ (W )○ = ∅.

Next we need to show that γγff = γ−1
f for every face f ∈ F: Let the face f

be contained in Ẽg̃1g̃2 , then γf = (g̃−1
1 , g̃2). Since γff is contained in (g̃−1

1 , g̃2) ⋅
(Ẽg̃1g̃2∩Ẽẽ) = Ẽg̃−11 g̃−12

∩Ẽẽ, we conclude that γγff = ((g̃−1
1 )−1, g̃−1

2 ) = (g̃1, g̃
−1
2 ) =

(g̃−1
1 , g̃2)−1 = γ−1

f .

Next we have to show that the group Γ̃ is generated by the set {γf ∣ f ∈ F}.

Theorem 25 implies that the group Γ̃1 is generated by r̃uc
nu , r̃vc

nv , ck, where

nup + 1 and nvq + 1 are divisible by k. The group Γ̃2 is generated by d̃2 =
r̃u(2πk

p2
) = d̃p1 . Hence Γ̃ = Γ̃1 × Γ̃2 is generated by (r̃ucnu , ẽ), (r̃vcnv , ẽ), (ck, ẽ),

(ẽ, d̃p1). It is sufficient to represent these generators of Γ̃ in terms of γf .

In all cases that we will consider explicitly we will have gcd(p1, p2) = 1,

there will be a face of W , the bottom face, such that the corresponding

group element is of the form γtop = (d̃−x1 , d̃−y2 ), where x, y are such integers

that xp2 + yp1 = 1. Therefore,

γp2top = (d̃−p2x1 , d̃p2y2 ) = (d̃−1+p1y
1 , d̃p2y2 ) = (d̃−1

1 cky, cky) = (d̃−1
1 , ẽ),

γp1top = (d̃−xp11 , d̃yp12 ) = (d̃−xp11 , d̃1−p2x
2 ) = (c−kx, c−kxd̃2) = (ẽ, d̃2),

γp1p2top = (ẽ, d̃p22 ) = (ẽ, ck),

γ−p1p2top = (ẽ, c−k) = (ck, ẽ).

Therefore the group generated by (d̃1, ẽ), (ck, ẽ) and (ẽ, d̃2) is contained in

the group generated by γtop. It remains to express r̃vc
nv in terms of elements

γf , f ∈ F. In all cases we will find an element γf of the form (r̃vcnv) ⋅h, where

h is generated by (d̃1, ẽ), (ck, ẽ) and (ẽ, d̃2), hence r̃vc
nv can also be expressed

in terms of elements γf . More precisely, this element γf will be of the form

(f0,−ld̃
t
1, d̃

s
2), where f0,−l will be defined later.

From now on we shall denote the edge which is contained in Ẽa ∩ Ẽb ∩ Ẽẽ

of the face which is contained in Ẽa ∩ Ẽẽ as (a; b). The same edge can

sometimes be decoded by several pairs (a, b), but the following statements

will be true for all such edges and faces. After we have described the action
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of the involution σ, we can compute for every pair (f, k) ∈ E the edge cycle,

i.e. the sequence of pairs (fi, ki) = (τσ)i−1(f, k). In all cases that we shall

explicitly consider in this thesis the edge cycles will be of one of the following

two types:

� A. The cycle consists of 3 edges of which two are convex and contained

in the top resp. bottom face, while the third edge is not convex and

not contained in the top or bottom face. Let the non-convex edge be

(a; b). Let a = a1a2, b = b1b2 with a1, b1 ∈ Γ̃1, a2, b2 ∈ Γ̃2.

The edge cycle is of the form

((a1, a2); (b1, b2))
σ
××Ö

((a−1
1 , a−1

2 ); (a−1
1 b1, b2a

−1
2 ))

τ
××Ö

((a−1
1 b1, b2a

−1
2 ); (a−1

1 , a−1
2 ))

σ
××Ö

((b−1
1 a1, a2b

−1
2 ); (b−1

1 , b−1
2 ))

τ
××Ö

((b−1
1 , b−1

2 ); (b−1
1 a1, a2b

−1
2 ))

σ
××Ö

((b1, b2); (a1, a2))
τ
××Ö

((a1, a2); (b1, b2))

or, in the short notation,

((a1, a2); (b1, b2))
↧

((a−1
1 b1, b2a

−1
2 ); (a−1

1 , a−1
2 ))

↧
((b−1

1 , b−1
2 ); (b−1

1 a1, a2b
−1
2 )) .
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We have γf1 = (a−1
1 , a2), γf2 = (b−1

1 a1, b2a
−1
2 ) and γf3 = (b1, b−1

2 ). Then

γ1 = (γf1)
−1 = (a−1

1 , a2)−1 = (a1, a
−1
2 ),

γ2 = (γf2γf1)
−1 = ((b−1

1 a1, b2a
−1
2 ) ⋅ (a−1

1 , a2))
−1 = (b−1

1 , b2)−1 = (b1, b−1
2 ),

γ3 = (γf3γf2γf1)
−1 = ((b1, b−1

2 ) ⋅ (b−1
1 a1, b2a

−1
2 ) ⋅ (a−1

1 , a2))
−1

= ((b1, b−1
2 ) ⋅ (b−1

1 , b2))
−1 = ẽ−1 = ẽ.

The edge (a; b) is non-convex and W looks like (Ĩa ∪ Ĩb) ∩ Ẽẽ near this

edge. In all such cases the other two edges are convex and the elements

(a−1
1 b1, b2a

−1
2 ) and (b−1

1 a1, a2b
−1
2 ) correspond to the top/bottom edges.

We have that W looks like H̃a−11 b1b2a−12
∩ Ĩa−11 a−12

∩ Ẽẽ near the edge

((a−1
1 b1, b2a

−1
2 ); (a−1

1 , a−1
2 )) and like Ĩb−11 b−12

∩ H̃b−11 a1a2b−12
∩ Ẽẽ near the

edge ((b−1
1 , b−1

2 ); (b−1
1 a1, a2b

−1
2 )).

We obtain for a sufficiently small neighbourhood U of an interior point

of the edge (a; b):

W ∩U = ((Ĩa ∪ Ĩb) ∩ Ẽẽ) ∩U,

γ1W ∩U = γ1(H̃a−11 b1b2a−12
∩ Ĩa−11 a−12

∩ Ẽẽ) ∩U

= (H̃b1b2 ∩ Ĩẽ ∩ Ẽa1a2) ∩U = (H̃b ∩ Ĩẽ ∩ Ẽa) ∩U,

γ2W ∩U = γ2(Ĩb−11 b−12
∩ H̃b−11 a1a2b−12

∩ Ẽẽ) ∩U

= (Ĩẽ ∩ H̃a1a2 ∩ Ẽb1b2) ∩U = (Ĩẽ ∩ H̃a ∩ Ẽb) ∩U.

Hence

W ∩ γ1W ∩U = (H̃b ∩ Ẽa ∩ Ẽẽ) ∩U

and

W ∩ γ2W ∩U = (H̃a ∩ Ẽb ∩ Ẽẽ) ∩U

are equal to the intersections of the neighbourhood U with the faces

which are contained in Ẽa ∩ Ẽẽ resp. Ẽb ∩ Ẽẽ. Furthermore, the set

γ1W ∩ γ2W ∩U = (Ĩẽ ∩ Ẽb ∩ Ẽa) ∩U = γ1(Ĩa−11 a−12
∩ Ẽa−11 b1b2a−12

∩ Ẽẽ) ∩U
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is equal to the image of the face of W which is contained in Ẽa−11 b1b2a−12
∩

Ẽẽ under the action of γ1 = (a1, a
−1
2 ).

� B. The cycle consists of one convex edge, say (a; b). We can write a

and b as products a = a1a2, b = b1b2 with a1, b1 ∈ Γ̃1, a2, b2 ∈ Γ̃2.

In all such cases we will be able to check by computation that a3
1 =

cx, a3
2 = c−x for some integer x and b1 = a−1

1 , b2 = a−1
2 . Consequently

a3
1a

3
2 = cxc−x = ẽ and a2

1a
2
2 = a−1

1 a−1
2 = b1b2 = b.

For an edge cycle of type B we set γi = (γf)−i, where f is the face con-

tained in Ẽa ∩ Ẽẽ, i.e. γf = (a−1
1 , a2). Thus γi = (a−1

1 , a2)−i = (a1, a
−1
2 )i.

The edge (a; b) is convex and W looks like Ĩa ∩ Ĩb ∩ Ẽẽ near this edge.

For a sufficiently small neighbourhood U of an interior point of the edge

(a; b) we obtain

W ∩U = (Ĩa ∩ Ĩb ∩ Ẽẽ) ∩U = (Ĩa1a2 ∩ Ĩb1b2 ∩ Ẽẽ) ∩U.

The edge (a; b) is fixed under the action of γi, hence

γ1W ∩U = γ1(W ∩U) = (a1, a
−1
2 ) ⋅ ((Ĩa1a2 ∩ Ĩb1b2 ∩ Ẽẽ) ∩U)

= (Ĩa21a22 ∩ Ĩa1b1b2a2 ∩ Ẽa1a2) ∩U = (Ĩb ∩ Ĩẽ ∩ Ẽa) ∩U,

γ2W ∩U = γ2(W ∩U) = (a2
1, a

−2
2 ) ⋅ ((Ĩa1a2 ∩ Ĩb1b2 ∩ Ẽẽ) ∩U)

= (Ĩa31a32 ∩ Ĩa21b1b2a22 ∩ Ẽa21a22) ∩U = (Ĩẽ ∩ Ĩa ∩ Ẽb) ∩U.

Hence

W ∩ γ1W ∩U = (Ĩb ∩ Ẽa ∩ Ẽẽ) ∩U

and

W ∩ γ2W ∩U = (Ĩa ∩ Ẽb ∩ Ẽẽ) ∩U

are equal to the intersections of the neighbourhood U with the faces
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which are contained in Ẽa ∩ Ẽẽ and Ẽb ∩ Ẽẽ. Furthermore, the set

γ1W ∩ γ2W ∩U = (Ĩẽ ∩ Ẽa ∩ Ẽb) ∩U = γ1(Ĩa−11 a−12
∩ Ẽa−11 b1b2a−12

∩ Ẽẽ) ∩U

= γ1(Ĩb ∩ Ẽa ∩ Ẽẽ) ∩U

is in the image of the face of W which is contained in Ẽa−11 b1b2a−12
∩ Ẽẽ

under the action of γ1.
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Chapter 5

Construction of fundamental

domains for the groups

Γ̃(p, 3, 3)k × (C3)
k

NOTATION: We will use p instead of p1 from now on since p2 = 3.

5.1 Generators of the group Γ̃(p,3,3)k × (C3)
k

Let Γ̃1 = Γ̃(p,3,3)k, Γ̃2 = (C3)k, p ≠ 0 mod 3, p = kl + 3, l = 1,2. Recall

that: c = r̃u(2π), r̃u = r̃u(2π
p ), d̃1 = r̃u(2πk

p ) = r̃ku, d̃2 = r̃u(2πk
3 ), d̃ = r̃u(2πk

3p ).

Note that d̃1 = d̃3, d̃2 = d̃p We know that Γ̃1 = Γ̃(p,3,3)k can be generated by

elements of the form d̃a1 r̃
b
vd̃
h
1c
m, where a, h ∈ {0,⋯, (p− 1)}, b = 2l and m ∈ Z.

Moreover, we know that Γ̃2 = (C3)k can be generated by the element d̃2.

Now, we have found the generators of Γ̃1 = Γ̃(p,3,3)k and the generator

of Γ̃2 = (C3)k. Therefore, any element of the form g̃1g̃2, where g̃1 ∈ Γ̃1 and

g̃2 ∈ Γ̃2, can be written in the form

g̃1g̃2 = d̃a1 r̃bvd̃h1 d̃n2cm.
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We compute d̃h1 d̃
n
2 as follows:

d̃h1 d̃
n
2 = r̃u (

2πk

p
)
h

r̃u (
2πk

3
)
n

= r̃u (2πk (h
p
+ n

3
))

= r̃u (2πk (3h + np
3p

))

= r̃u (
2πk

3p
)
(3h+np)

= d̃(3h+np).

Hence,

g̃1g̃2 = d̃a1 r̃bvd̃h1 d̃n2cm = d̃3ar̃bvd̃
(3h+np)cm.

Note that 1 = gcd(p,3) can be written as a linear combination of p and 3

with integer coefficients (Euclidean algorithm), hence 3h + np can take any

integer value for a suitable choice of h and n.

Proposition 51. We have r̃u = c−td̃
tp+1
k

1 = c−td̃
3(tp+1)

k , where t is an integer

such that 3t + 1 = 0 mod k. In particular

1. For k = 1 mod 3 we have t = k−1
3 and 3(tp + 1) = k(p − l),

2. For k = 2 mod 3 we have t = 2k−1
3 and 3(tp + 1) = k(2p − l).

Remark 52. Note that tp+ 1 = t(kl+ 3)+ 1 = tkl+ (3t+ 1) = 0 mod k, hence
tp+1
k is an integer.

Proof.

We have

d̃
tp+1
k

1 = r̃u (
2πk

p
⋅ tp + 1

k
) = r̃u (2πt + 2π

p
) = r̃u(2π)t ⋅ r̃u (

2π

p
) = ctr̃u,

hence

r̃u = c−td̃
tp+1
k

1 = c−td̃
3(tp+1)

k .

Therefore,
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1. For k = 1 mod 3 we have that t = k−1
3 is an integer and 3t = k − 1 ⇒

3t + 1 = k⇒ 3t + 1 = 0 mod k

We compute

3(tp + 1) = 3(k − 1

3
p + 1) = kp − p + 3 = kp − kl = k(p − l).

2. For k = 2 mod 3 we have that t = 2k−1
3 is an integer and 3t = 2k − 1⇒

3t + 1 = 2k⇒ 3t + 1 = 0 mod k

We compute

3(tp + 1) = 3(2k − 1

3
p + 1) = 2kp − p + 3 = 2kp − kl = k(2p − l).

Corollary 53. We have

r̃u = c
1−λk

3 ⋅ d̃
λp−l
3

1 = c
1−λk

3 ⋅ d̃λp−l,

where λ = 1 if k = 1 mod 3 and λ = 2 if k = 2 mod 3.

Let

f0,−l = r̃v ⋅ r̃2
u ⋅ c−1.

Recall that π ∶ ̃SU(1,1) → SU(1,1) is the covering map. We have π(c) =
−1, π(r̃u) = ru = ru(2π/p) and π(r̃v) = rv = rv(2π/3). Now let d1 = ru(2πk/p) =
rku, d = ru(2πk/3p), d1 = d3. Note that π(d̃1) = d1 and π(d̃) = d.

Corollary 54. Let t be an integer such that 3t + 1 = 0 mod k. Then

π(r̃u) = (−1)−t ⋅ d
3(tp+1)

k , π(r̃2
u) = d

6(tp+1)
k , π(f0,−l) = r4

v ⋅ d
6(tp+1)

k .

Proof. We have

π(r̃u) = π(c−t ⋅ d̃
3(tp+1)

k ) = (−1)−t ⋅ d
3(tp+1)

k ,

π(r̃2
u) = (−1)−2t ⋅ d

6(tp+1)
k = d

6(tp+1)
k ,
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π(f0,−l) = π(r̃v ⋅ r̃2
u ⋅ c−1) = π(r̃v)π(r̃2

u)π(c−1) = rvd
6(tp+1)

k (−1) = r4
v ⋅ d

6(tp+1)
k .

Corollary 55. 1. For k = 1 mod 3 we have

π(r̃u) = (−1)k−1 ⋅ dp−l, π(r̃2
u) = d2(p−l), π(f0,−l) = r4

v ⋅ d2(p−l).

2. For k = 2 mod 3 we have

π(r̃u) = −d2p−l, π(r̃2
u) = d2(2p−l), π(f0,−l) = r4

v ⋅ d2(2p−l).

Corollary 56. 1. For p = k + 3 (i.e. l = 1) and k = 1 mod 3 we have

π(r̃u) = (−1)k−1 ⋅ dk+2, π(r̃2
u) = d2(k+2), π(f0,−l) = r4

v ⋅ d2(k+2).

2. For p = k + 3 (i.e. l = 1) and k = 2 mod 3 we have

π(r̃u) = −d2k+5, π(r̃2
u) = d2(2k+5), π(f0,−l) = r4

v ⋅ d2(2k+5).

3. For p = 2k + 3 (i.e. l = 2) and k = 1 mod 3 we have

π(r̃u) = (−1)k−1 ⋅ d2k+1, π(r̃2
u) = d2(2k+1), π(f0,−l) = r4

v ⋅ d2(2k+1).

4. For p = 2k + 3 (i.e. l = 2) and k = 2 mod 3 we have

π(r̃u) = −d4(k+1), π(r̃2
u) = d8(k+1), π(f0,−l) = r4

v ⋅ d8(k+1).

5.2 Symmetries of the fundamental domain Fẽ

We call an isometry ϕ of L̃ a symmetry of the fundamental domain Fẽ if

ϕ(∂P ) = ∂P and ϕ(Fẽ) = Fẽ. For each isometry ϕ of L̃ we have :

ϕ(H̃g̃) = H̃ϕ(g̃), ϕ(Ĩg̃) = Ĩϕ(g̃).

From the definitions of ∂P and Fẽ we obtain that an isometry ϕ of L̃ is a

symmetry of Fẽ if and only if ϕ(Γ̃1) = Γ̃1, ϕ(g̃1(Γ̃1)u ⋅ Γ̃2) = ϕ(g̃1) ⋅ (Γ̃1)u ⋅
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(Γ̃2) for all g̃1 ∈ Γ̃1, ϕ(ẽ) = ẽ. If an isometry ϕ of L̃ is compatible with

multiplication, i.e. if ϕ(ab) = ϕ(a) ⋅ϕ(b) for all a, b ∈ L̃, then ϕ is a symmetry

of Fẽ if and only if ϕ(Γ̃1) = Γ̃1, ϕ((Γ̃1)u ⋅Γ̃2) = (Γ̃1)u ⋅Γ̃2, ϕ(Γ̃2) = Γ̃2 and ϕ(ẽ) =
ẽ. We are going to describe some isometries of L̃. Using the criteria above

we are going to show that they are symmetries of the fundamental domain

Fẽ. These symmetries will help us to reduce the amount of calculation.

We are going to look at the cases Γ̃1 × Γ̃2 = Γ̃(p,3,3)k × (C3)k.

Definition 57. (Taken from [15], P. 38 and 44)

Let the map ρ ∶ L̃→ L̃ be defined by ρ(g̃) = r̃ug̃r̃−1
u .

Let η ∶ L → L be defined by η((w, z)) = (w̄, z̄). Let η̃ ∶ L̃ → L̃ be defined as

the lift of η with η̃(ẽ) = ẽ. We have arg ○η̃ = −arg. The isometry η̃∣G̃ is an

automorphism.

If q = r = 3 we can have the following map ρ̃ ∶ L̃ → L̃ which is defined by

ρ̃(g̃) = r̃′ug̃r̃
′−1
u where r̃

′
u = r̃u(π/p). Note that (r̃′u)2 = r̃u, hence ρ̃2 = ρ.

Proposition 58. (Taken from [15], Propositions 19 and 61).

We have

ρ ∶ r̃u ↦ r̃u, r̃v ↦ r̃ur̃v r̃
−1
u , c↦ c, η̃ ∶ r̃u ↦ r̃−1

u , r̃v ↦ r̃−1
v , c↦ c−1

ρ̃ ∶ r̃u ↦ r̃u, r̃v ↦ r̃2
v r̃

−1
u , c↦ c.

Corollary 59. We have

ρ ∶ d̃1 ↦ d̃1, d̃2 ↦ d̃2, d̃↦ d̃, η̃ ∶ d̃1 ↦ d̃−1
1 , d̃2 ↦ d̃−1

2 , d̃↦ d̃−1,

ρ̃ ∶ d̃1 ↦ d̃1, d̃2 ↦ d̃2, d̃↦ d̃.

Proposition 60. For a, b, h, n,m ∈ Z, in the case Γ̃1(p,3,3)k × (C3)k, where

p = kl + 3 and l = 1,2 we have

ρ(d̃3ar̃bvd̃
fcm) = d̃3a+λp−lr̃bvd̃

l−λp+fcm,

η̃(d̃3ar̃bvd̃
fcm) = d̃−3ar̃−bv d̃

−fc−m,

ρ̃(d̃3ar̃2
v d̃
fcm) = d̃3a+λp−lr̃4

v d̃
fcm−

λk+2
3 ,

ρ̃(d̃3ar̃4
v d̃
fcm) = d̃3ar̃2

v d̃
l−λp+fcm+

λk+2
3 ,

where λ = 1 if k ≡ 1 mod 3 and λ = 2 if k ≡ 2 mod 3.
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Proof. Recall that r̃u = c
1−λk

3 d̃λp−l according to Corollary 53. For the case

of ρ(d̃3ar̃bvd̃
fcm) we have

ρ(d̃3ar̃bvd̃
fcm) = ρ(d̃3a)ρ(r̃bv)ρ(d̃f)ρ(cm)

= d̃3ar̃ur̃
b
v r̃

−1
u d̃

fcm

= d̃3ac
1−λk

3 d̃λp−lr̃bvc
λk−1

3 d̃l−λpd̃fcm

= d̃3a+λp−lr̃bvd̃
l−λp+fcm.

For the case of η̃(d̃3ar̃bvd̃
fcm) we have

η̃(d̃3ar̃bvd̃
fcm) = η̃(d̃3a)η̃(r̃bv)η̃(d̃f)η̃(cm)

= d̃−3ar̃−bv d̃
−fc−m.

For the case of ρ̃(d̃3ar̃2
v d̃
fcm) we have

ρ̃(d̃3ar̃2
v d̃
fcm) = ρ̃(d̃3a)ρ̃(r̃2

v)ρ̃(d̃f)ρ̃(cm)

= d̃3aρ̃(r̃v)ρ̃(r̃v)d̃fcm

= d̃3a(r̃2
v r̃

−1
u )(r̃2

v r̃
−1
u )d̃fcm.

Using Proposition 24 (r̃2
v r̃

−1
u )2 = r̃ur̃−2

v c we obtain

d̃3a(r̃2
v r̃

−1
u )(r̃2

v r̃
−1
u )d̃fcm = d̃3ar̃ucr̃

−2
v d̃

fcm

= d̃3ac
1−λk

3 d̃λp−lr̃3
vc
−1cr̃−2

v d̃
fcm

= d3a+λp−lr̃v r̃
3
vc
−1d̃fc

1−λk+3m
3

= d̃3a+λp−lr̃4
v d̃
fcm−

λk+2
3 .

56



For the case of ρ̃(d̃3ar̃4
v d̃
fcm) we have

ρ̃(d̃3ar̃4
v d̃
fcm) = ρ̃(d̃3ar̃−3

v cr̃
4
v d̃
fcm)

= ρ̃(d̃3a)ρ̃(r̃v)ρ̃(d̃f)ρ̃(cm+1)

= d̃3ar̃2
v r̃

−1
u d̃

fcm+1

= d̃3ar̃2
vc

λk−1
3 d̃l−λpd̃fcm+1

= d̃3ar̃2
v d̃
l−λp+fcm+

λk+2
3 .

Proposition 61. The isometries ρ̃ and η̃ are symmetries of Fẽ.

Proof. The isometries ρ̃∣G̃ and η̃∣G̃ are automorphisms, thus it remains to

show that Γ̃1, Γ̃2 and (Γ̃1)u are invariant under ρ̃ and η̃. Recall that the group

Γ̃1 is generated by r̃vc
n, d̃1 and the group Γ̃2 is generated by d̃2. The stabiliser

(Γ̃1)u ⋅ Γ̃2 is generated by d̃. Proposition 58 shows that ρ̃(d̃) = d̃, ρ̃(d̃1) =
d̃1, ρ̃(d̃2) = d̃2, ρ̃(r̃v) = r̃2

v r̃
−1
u , ρ̃(c) = c and ρ̃(r̃vcn) = r̃2

v r̃
−1
u c

n. Moreover, η̃(d̃) =
d̃−1, η̃(d̃1) = d̃−1

1 , η̃(d̃2) = d̃−1
2 , η̃(r̃v) = r̃−1

v , η̃(c) = c−1 and η̃(r̃vcn) = r̃−1
v c

−1.

Proposition 62. We have

ρ̃−1(d̃3ar̃2
v d̃
fcm) = d̃3ar̃4

v d̃
λp−l+fcm−

λk+2
3 ,

ρ̃−1(d̃3ar̃4
v d̃
fcm) = d̃3a+l−λpr̃2

v d̃
fcm+

λk+2
3 .

5.3 The intersection of Eg ∩Ee and the intersection

of Ĩg̃ ∩ Ẽẽ

The section taken from sections 10 and 11 in [15].

Proposition 63. Let g = (a, b) be an elements in G with b ≠ 0 and therefore

∣a∣2 = 1 + ∣b∣2 > 1. In the case Re(a) > −1 the set Eg ∩Ee is connected. In the

case Re(a) < −1 the set Eg ∩Ee consists of two connected components whose

image under the projection (1 + iω, z) ↦ ω is a complement of a compact

interval.
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Notation. For M ⊂ C2 , ω ∈ R we have M(ω) = {z ∈ C ∣ (1+ iω, z) ∈M}.

Lemma 64. Let g = (a, b) be an element in G.

1. If Re(a) ≥ 0 then there exists an element g̃ in G̃ such that ∣arg(g̃)∣ ≤ π
2

and π(g̃) = g. Moreover Ig ∩Ee = π(Ĩg̃ ∩ Ẽẽ).

2. If Re(a) < 0 then there exist elements g̃′ and g̃′′ in G̃ such that π(g̃′) =
π(g̃′′) = g, arg(g̃′) ∈ (π2 ,

3π
2 ) and arg(g̃′′) ∈ (−3π

2 ,−
π
2 ). Let t = tan(arg(g̃′)) =

tan(arg(g̃′′)). For p = (1 + iω, z) ∈ Ig ∩ Ee we have p ∈ π(Ĩg̃′ ∩ Ẽẽ) in

the case ω > t and p ∈ π(Ĩg̃′′ ∩ Ẽẽ) in the case ω < t, while the case ω = t
does not occur.

Notation. For M ⊂ Ee and t ∈ R let M[< t] = {(1 + iω, z) ∈ M ∣ ω < t}
and M[> t] = {(1 + iω, z) ∈M ∣ ω > t}.

Proposition 65. Let g̃ ∈ G̃ and ϕ ∶= arg(g̃) ∈ R. In the case ∣ϕ∣ ≥ 3π
2

we have Ĩg̃ ∩ Ẽẽ = ∅ and π(Ĩg̃ ∩ Ẽẽ) = ∅. In the case ∣ϕ∣ < 3π
2 the map

π∣Ĩg̃∩Ẽẽ ∶ Ĩg̃ ∩ Ẽẽ → π(Ĩg̃ ∩ Ẽẽ) is a homeomorphism and

π(Ĩg̃ ∩ Ẽẽ) = Iπ(g̃) ∩Ee, if ∣ϕ∣ ≤ π
2
,

π(Ĩg̃ ∩ Ẽẽ) = (Iπ(g̃) ∩Ee)[> tanϕ], if ϕ ∈ (π
2
,
3π

2
) ,

π(Ĩg̃ ∩ Ẽẽ) = (Iπ(g̃) ∩Ee)[< tanϕ], if ϕ ∈ (−3π

2
,−π

2
) .

5.4 The arguments of the group elements in Γ̃1× Γ̃2

In this section we are going to look at the arguments of the elements of the

group Γ̃1×Γ̃2 = Γ̃(p,3,3)k×(C3)k where, p = lk+3 and l = 1,2. In particularly,

we are interested in finding the elements with arguments between −π2 and π
2

because of Proposition 65.
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Proposition 66. (Taken from [15], Proposition 60 and the proof of Propo-

sition 18).

We have

arg(r̃u) =
π

p
, arg(r̃v) =

π

2
− π

2p
, arg(r̃2

v) =
π

2
+ π

2p
, arg(c) = π.

Lemma 67. Consider the element f0,−l = r̃v r̃2
uc

−1 in Γ̃1 × Γ̃2. Let ϑk = πk
6p we

have

arg(f0,−ld̃
j) = (2j − 3l)ϑk,

and

∣arg(f0,−ld̃
j)∣ < π

2

for j = 0,⋯,3l.

Proof. First we are going to look at the argument of f0,−l. Using Proposi-

tions 12 and 66 we have

arg(f0,−l) = arg(r̃v r̃2
uc

−1)

= arg(r̃v) + 2 arg(r̃u) − arg(c−1) = (π
2
− π

2p
) + 4π

2p
− π

= 3π

2p
− π

2
.

We know that p = lk + 3. So,

arg(f0,−l) = 3π

2p
− π

2

= 3π

2(lk + 3)
− π(lk + 3)

2(lk + 3)
= 3π − πlk − 3π

2(lk + 3)
= −πlk

2(lk + 3)

= −πlk
2p

= −3l ⋅ πk
6p

= −3lϑk.

Now, we look at the argument of d̃. According to Proposition 66 we have

arg(d̃) = arg (r̃u (
2πk

3p
)) = πk

3p
= 2ϑk.
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Hence, arg(d̃j) = πkj
3p = 2j ⋅ ϑk. So, the argument for the element f0,−ld̃

j is as

follows:

arg(f0,−ld̃
j) = arg(f0,−l) + arg(d̃j)

= −3lϑk + j2ϑk = (2j − 3l)ϑk.

Since 0 ≤ j ≤ 3l⇒ −3l ≤ 2j−3l ≤ 3l, we obtain that −3lϑk ≤ arg(f0,−ld̃
j) ≤ 3lϑk.

Note that

3lϑk = 3l
πk

6p
= (p − 3)π

2p
= π

2
− 3π

2p
∈ (−π

2
,
π

2
) .

So, the elements

f0,−l, f0,−ld
1, f0,−ld

2, ..., f0,−ld
3l have arguments in (−π2 ,

π
2 ).

5.5 Projections of elements with small argument

In section 5.4 we obtained the elements which have small arguments and we

are going to look at the projection of these elements in SU(1,1).
Let εmdarbvd

t be an element in SU(1,1), where εm = (−1)m,m ∈ Z.

We are going to write the element as a matrix since it is an element in

SU(1,1). Recall that from section 3.3 we have ru = r0(2kπ
p ) = (ei

kπ
p ,0) and

d = ru(2πk
3p ) = r0(2πk

3p ) = (ei
πk
3p ,0). Proposition 34 tells us that rlv = (cos lπq +

iC sin lπ
q ,−iB(l)), where B(l) = S sin lπ

q ,C = coshρ(0, v), S = sinhρ(0, v). In

our case we have q = r = 3. The element εmdarbvd
t is equal to
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εmdarbvd
t

=εm (ei
kπ
3p ,0)

a

(cos
π

3
+ iC sin

π

3
,−iS sin

π

3
)
b

(ei
kπ
3p ,0)

t

=εm (ei
akπ
3p ,0)(cos

bπ

3
+ iC sin

bπ

3
,−iS sin

bπ

3
)(ei

tkπ
3p )

=εm
⎛
⎝
e
iakπ

3p 0

0 e
−iakπ

3p

⎞
⎠
⎛
⎝

cos bπ3 + iC sin bπ
3 −iS sin bπ

3

iS sin bπ
3 cos bπ3 − iC sin bπ

3

⎞
⎠

⋅
⎛
⎝
e
i tkπ

3p 0

0 e
−i tkπ

3p

⎞
⎠

=εm
⎛
⎝
e
iakπ

3p (cos bπ3 + iC sin bπ
3 ) e

iakπ
3p (−iS sin bπ

3 )
e
−iakπ

3p (iS sin bπ
3 ) e

−iakπ
3p (cos bπ3 − iC sin bπ

3 )
⎞
⎠

⋅
⎛
⎝
e
i tkπ

3p 0

0 e
−i tkπ

3p

⎞
⎠

=εm
⎛
⎝
e
iakπ

3p e
i tkπ

3p (cos bπ3 + iC sin bπ
3 ) e

iakπ
3p e

−i tkπ
3p (−iS sin bπ

3 )
e
−iakπ

3p e
i tkπ

3p (iS sin bπ
3 ) e

−iakπ
3p e

−i tkπ
3p (cos bπ3 − iC sin bπ

3 )
⎞
⎠

=εm
⎛
⎜
⎝

e
i
(a+t)kπ

3p (cos bπ3 + iC sin bπ
3 ) e

−i (t−a)kπ
3p (−iS sin bπ

3 )

e
i
(t−a)kπ

3p (iS sin bπ
3 ) e

−i (a+t)kπ
3p (cos bπ3 − iC sin bπ

3 )

⎞
⎟
⎠

=εm (ei
(a+t)kπ

3p (cos
bπ

3
+ iC sin

bπ

3
), e−i

(t−a)kπ
3p (−iS sin

bπ

3
))

Let

β = bπ
3
, α = (a + t)kπ

3p
and σ = (t − a)kπ

3p
.

Hence,

εmdarbvd
t = εm(eiα(cosβ + iC sinβ),−ie−iσB(b)).
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5.6 The equations of the embedded tangent spaces

Eg and half-spaces Hg and Ig

We are going to find the equations of the half spaces Hεmdarbvd
t , Iεmdarbvdt and

the embedded tangent space Eεmdarbvdt . First, we are going to find Eεmdarbvdt .

So, from the definition of Eg we need to work out (g, y) = 1. The element

g = εmdarbvdt is equal to

εm(eiα(cosβ + iC sinβ),−ie−iσB(b))

=εm((cosα + i sinα)(cosβ + iC sinβ),−i(cosσ − i sinσ)B(b))

=εm( cosα cosβ + i cosα sinβC + i sinα cosβ − sinα sinβC,

− i cosσB(b) −B(b) sinσ)

=εm((cosα cosβ − sinα sinβC) + i(cosα sinβC + sinα cosβ),

− sinσB(b) − i cosσB(b)).

Let M = cosα cosβ−sinα sinβC,N = cosα sinβC+sinα cosβ, T = − sinσB(b)
and R = − cosσB(b). Then we have g = εmdarbvdt = εm(M + iN,T + iR). For

y = (w1+iw2, z1+iz2). We have (g, y) = (εm(M + iN,T + iR), (w1 + iw2, z1 + iz2))
is equal to

= εm(Mw1 +Nw2 − Tz1 −Rz2)

= εm((cosα cosβ − sinα sinβC)w1 + (cosα sinβC + sinα cosβ)w2 −

(− sinσB(b))z1 − (− cosσB(b))z2)

= εm((cosα cosβ − sinα sinβC)w1 + (cosα sinβC + sinα cosβ)w2 +

sinσB(b)z1 + cosσB(b)z2).

For y = (w1,+iw2, z1 + iz2) ∈ Ee we have w1 = 1. Let w2 = ω. Then

(g, y) = 1 means

εm sinσB(b)z1 + εm cosσB(b)z2 = 1 − εm(cosα cosβ − sinα sinβC)

−εm(cosα sinβC + sinα cosβ)ω.
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Recall: For M ⊂ C2 , ω ∈ R we have M(ω) = {z ∈ C ∣ (1 + iω, z) ∈M}.

We have b ∈ {2,4}. Therefore, we have either B(2) = sinhρ(0, v) sin(2π
3 ) > 0

or B(4) = sinhρ(0, v) sin(4π
3 ) < 0. We know that C = coshρ(0, v) = 1√

3
cot π

2p .

Hence, we need to study the following two cases:

(1) The case b = 2:

We have β = 2π
3 . Therefore, εm sinσB(2)z1 + εm cosσB(2)z2 is equal to

= 1 − εm ((−1

2
) cosα − (

√
3

2
) sinα( 1√

3
cot

π

2p
))

−εm ((
√

3

2
) cosα( 1√

3
cot

π

2p
) + (−1

2
) sinα)ω

= 1 − εm (−1

2
(cosα + sinα cot

π

2p
)) − εm (1

2
(cosα cot

π

2p
− sinα))ω

= 1 + εm
⎛
⎝

cosα sin π
2p + sinα cos π

2p

2 sin π
2p

⎞
⎠
− εm

⎛
⎝

cosα cos π
2p − sinα sin π

2p

2 sin π
2p

⎞
⎠
ω

= 1 +
εm sin( π2p + α)

2 sin π
2p

−
εm cos( π2p + α)

2 sin π
2p

ω.

Hence we have for z = z1 + iz2:

� z ∈ Eεmdar2vdt(ω) if and only if

εm sinσz1 + εm cosσz2 = 1

B(2)
⎛
⎝

1 +
εm sin( π2p + α)

2 sin π
2p

−
εm cos( π2p + α)

2 sin π
2p

ω
⎞
⎠
.

� z ∈Hεmdar2vd
t(ω) if and only if

εm sinσz1 + εm cosσz2 ≤ 1

B(2)
⎛
⎝

1 +
εm sin( π2p + α)

2 sin π
2p

−
εm cos( π2p + α)

2 sin π
2p

ω
⎞
⎠
.

� z ∈ Iεmdar2vdt(ω) if and only if

εm sinσz1 + εm cosσz2 ≥ 1

B(2)
⎛
⎝

1 +
εm sin( π2p + α)

2 sin π
2p

−
εm cos( π2p + α)

2 sin π
2p

ω
⎞
⎠
.
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(2) The case b = 4:

We have β = 4π
3 . Therefore, εm sinσB(4)z1 + εm cosσB(4)z2 is equal to

= 1 − εm ((−1

2
) cosα − (−

√
3

2
) sinα( 1√

3
cot

π

2p
))

−εm ((−
√

3

2
) cosα( 1√

3
cot

π

2p
) + (−1

2
) sinα)ω

= 1 − εm (−1

2
(cosα − sinα cot

π

2p
)) − εm (−1

2
(cosα cot

π

2p
+ sinα))ω

= 1 + εm
⎛
⎝

cosα sin π
2p − sinα cos π

2p

2 sin π
2p

⎞
⎠
+ εm

⎛
⎝

cosα cos π
2p + sinα sin π

2p

2 sin π
2p

⎞
⎠
ω

= 1 +
εm sin( π2p − α)

2 sin π
2p

+
εm cos( π2p − α)

2 sin π
2p

ω.

Hence we have for z = z1 + iz2:

� z ∈ Eεmdar4vdt(ω) if and only if

εm sinσz1 + εm cosσz2 = 1

B(4)
⎛
⎝

1 +
εm sin( π2p − α)

2 sin π
2p

+
εm cos( π2p − α)

2 sin π
2p

ω
⎞
⎠
.

� z ∈Hεmdar4vd
t(ω) if and only if

εm sinσz1 + εm cosσz2 ≥ 1

B(4)
⎛
⎝

1 +
εm sin( π2p − α)

2 sin π
2p

+
εm cos( π2p − α)

2 sin π
2p

ω
⎞
⎠
.

� z ∈ Iεmdar4vdt(ω) if and only if

εm sinσz1 + εm cosσz2 ≤ 1

B(4)
⎛
⎝

1 +
εm sin( π2p − α)

2 sin π
2p

+
εm cos( π2p − α)

2 sin π
2p

ω
⎞
⎠
.

Proposition 68. For a complex number z = z1 + iz2 and a real number ω we

have
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� z ∈ Eεmdar2vdt(ω) if and only if

εm sinσz1 + εm cosσz2 = 1

B(2)
⎛
⎝

1 +
εm sin( π2p + α)

2 sin π
2p

−
εm cos( π2p + α)

2 sin π
2p

ω
⎞
⎠
.

� z ∈Hεmdar2vd
t(ω) if and only if

εm sinσz1 + εm cosσz2 ≤ 1

B(2)
⎛
⎝

1 +
εm sin( π2p + α)

2 sin π
2p

−
εm cos( π2p + α)

2 sin π
2p

ω
⎞
⎠
.

� z ∈ Iεmdar2vdt(ω) if and only if

εm sinσz1 + εm cosσz2 ≥ 1

B(2)
⎛
⎝

1 +
εm sin( π2p + α)

2 sin π
2p

−
εm cos( π2p + α)

2 sin π
2p

ω
⎞
⎠
.

� z ∈ Eεmdar4vdt(ω) if and only if

εm sinσz1 + εm cosσz2 = 1

B(4)
⎛
⎝

1 +
εm sin( π2p − α)

2 sin π
2p

+
εm cos( π2p − α)

2 sin π
2p

ω
⎞
⎠
.

� z ∈Hεmdar4vd
t(ω) if and only if

εm sinσz1 + εm cosσz2 ≥ 1

B(4)
⎛
⎝

1 +
εm sin( π2p − α)

2 sin π
2p

+
εm cos( π2p − α)

2 sin π
2p

ω
⎞
⎠
.

� z ∈ Iεmdar4vdt(ω) if and only if

εm sinσz1 + εm cosσz2 ≤ 1

B(4)
⎛
⎝

1 +
εm sin( π2p − α)

2 sin π
2p

+
εm cos( π2p − α)

2 sin π
2p

ω
⎞
⎠
.

Here,

α = (a + t)kπ
3p

σ = (t − a)kπ
3p

and B(b) = sinhρ(0, v) ⋅ sin πb
3
.
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5.7 Fundamental domains for the case Γ̃(k+3,3,3)k×

(C3)
k

In this section we are going to compute fundamental domains for the case

Γ̃(k + 3,3,3)k × (C3)k explicitly. Recall that according to Proposition 20 the

fundamental domain Fẽ can be described as

Fẽ = CI Int(FΓ̃1(u)∖{u}) ,

where FN = S̃ẽ ∩⋂x∈N Rx = Ẽẽ ∩ ∂Qu ∩⋂x∈N Rx for N ⊂ Γ̃1(u) ∖ {u}.

First we will construct a polyhedron P ⊂ S̃ẽ such that P ⊂ FE , where E is

the edge crown of Γ̃1. Proposition 48 shows that FΓ̃1(u)∖{u} = FE = Fẽ. Hence,

we have P ⊂ FΓ̃1(u)∖{u} = Fẽ. Therefore, if we show that P is a fundamental

domain then we obtain P ⊆ Fẽ and they are both fundamental domains for

Γ̃(k + 3,3,3)k × (C3)k. Thus, we obtain Int(P ) = Int(Fẽ) since if a funda-

mental domain is inside another fundamental domain then their interior is

exactly the same. Then P = CI Int(P ) = CI Int(Fẽ) = Fẽ.
To be more clear, we describe the image π(P ) in Se and construct a polyhe-

dron P̂ in Ŝe such that π(P ) = P̂ ∩L. After that, we study the polyhedron P̂

to determine the combinatorial structure of its faces and we show the picture

of some faces of P̂ as in figure 5.1. Then, we obtain π(P ) = P̂ ∩L = P̂ since

P̂ ⊂ L. Now, we need to apply Theorem 49 to Ψ(P ) as we described in sub-

section 4.2.1. After checking all the conditions of Theorem 49 we obtain that

Ψ(P ) is a fundamental domain for the action of Γ̃1 × Γ̃2 on G̃. Finally, as we

mentioned in the beginning of this section, we have from Proposition 48 that

Ψ(P ) ⊂ Ψ(FΓ̃1(u)∖{u}) = Ψ(Fẽ) and they are both fundamental domains of

the action of Γ̃1 × Γ̃2 on G̃. Hence P = FΓ̃1(u)∖{u} = Fẽ (up to the boundary

points).

Recall: The elements with small argument which we obtained in Lemma 67

are:

f0,−1, f0,−1d̃, f0,−1d̃
2, f0,−1d̃

3,

where f0,−1 = r̃v r̃2
uc

−1.
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Using Corollary 53 we obtain

f0,−1 = r̃v r̃
2
uc

−1

= r̃v (c
1−λk

3 d̃λp−1)
2
c−1 = r̃vd̃2(λp−1)c

−(2λk+1)
3 ,

where λ = 1 if k ≡ 1 mod 3 and λ = 2 if k ≡ 2 mod 3.

We know that r̃3
v = c. So, we can write f0,−1 as

f0,−1 = r̃4
v d̃

2(λp−1)c
−2(λk+2)

3 .

Let

a0 = f0,−1d̃ = r̃4
v d̃

2λp−1c
−2(λk+2)

3 ,

b0 = f0,−1d̃
2 = r̃4

v d̃
2λpc

−2(λk+2)
3 .

Using the symmetries in Section 5.2 we can define am = ρ̃m(a0) and bm =
ρ̃m(b0). Using Proposition 62 we obtain

b−1 = ρ̃−1(b0) = ρ̃−1 (r̃4
v d̃

2λpc
−2(λk+2)

3 )

= d̃1−λpr̃2
v d̃

2λpc
−(λk+2)

3 .

Now, we are going to look at the projection of these elements. Let Am =
π(am) and Bm = π(bm). Using Corollary 56 we obtain

A0 = π(a0) = r4
vd

2λp−1,

B0 = π(b0) = r4
vd

2λp,

B−1 = π(b−1) = d1−λpr2
vd

2λpε
λk+2

3 .

see figure 5.1.

Notation: From now on for the ease of notation we will write Ẽam instead

of Ẽam , EAm instead of EAm and similar for bm,Bm.
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Definition 69. Let ω± = ± tan πk
6p . Let

P = ⋂
m∈Z

(ĨAm ∪ ĨBm)[ω−, ω+].

Note that (ĨAm ∪ ĨBm) is contained in the complement of Qxm, hence P

is contained in the complement of ⋃m∈ZQxm = ⋃x∈E Qx. Therefore, P ⊂ FE .

Proposition 65 and Lemma 67 imply that

π(P ) = ⋂
m∈Z

(IAm ∪ IBm)[ω−, ω+]

and that π∣P ∶ P ↦ π(P ) is a homeomorphism. Let

P̂ = ⋂
m∈Z

(ÎAm ∪ ÎBm)[ω−, ω+].

We will use some of the net estimate results to show that P̂ = π(P ). We

shall study the combinatorial structure of the boundary of P̂ as illustrated

in figure 5.1. To do this we are going to use the analytic geometry in the

appendix 8.6.

A−1 A0 A1

B1B0B−1

Figure 5.1: The surface of P̂ for Γ̃(k + 3,3,3)k × (C3)k .

Proposition 70. We have
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� z ∈HA0(ω) if and only if

sin(π
p
+ π

3
) z1 + cos(π

p
+ π

3
) z2

≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
,

� z ∈HB0(ω) if and only if

sin
2π

3
z1 + cos

2π

3
z2 ≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

−
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
,

� z ∈HB−1(ω) if and only if

− sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2

≤ 1

B(2)
⎛
⎝

1 −
sin( π2p +

π
3 )

2 sin π
2p

−
cos( π2p +

π
3 )

2 sin π
2p

ω
⎞
⎠
.

Proof. We will use Proposition 68.

� The case HA0: We have A0 = r4
vd

2λp−1, so from the definition of σ and

α we obtain that

σ1 = α1 = (2λp − 1)kπ
3p

= (2λp − 1)(p − 3)π
3p

= 2λpπ

3
− (6λ + 1)π

3
+ π
p
.

If k = 1 mod 3 then λ = 1 and p = k + 3 ≡ 1 mod 3 ⇒ p = 3x + 1 for

some x ∈ Z. Therefore,

2λpπ

3
−(6λ + 1)π

3
+π
p
= 2

3
(3x+1)π−7π

3
+π
p
= 2xπ−5π

3
+π
p
≡ π
p
+π

3
mod 2π.

If k = 2 mod 3 then λ = 2 and p = k + 3 ≡ 2 mod 3 ⇒ p = 3x + 2 for

some x ∈ Z. Therefore,

2λpπ

3
−(6λ + 1)π

3
+π
p
= 4

3
(3x+2)π−13π

3
+π
p
= 4xπ−5π

3
+π
p
≡ π
p
+π

3
mod 2π.
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Hence for the case HA0 we obtain the following inequality: z ∈HA0(ω)
if and only if

sin(π
p
+ π

3
) z1 + cos(π

p
+ π

3
) z2

≥ 1

B(4)
⎛
⎝

1 +
sin(−π2 + (π6 −

π
2p))

2 sin π
2p

+
cos(−π2 + (π6 −

π
2p))

2 sin π
2p

ω
⎞
⎠
.

Also, we can write this inequality as z ∈HA0(ω) if and only if

sin(π
p
+ π

3
) z1 + cos(π

p
+ π

3
) z2

≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
.

� The case HB0: We have B0 = r4
vd

2λp, so from the definition of σ and α

we obtain that

σ2 = α2 = (2λp)kπ
3p

= α1 +
kπ

3p
= π
p
+ π

3
+ π(p − 3)

3p
≡ 2π

3
mod 2π.

Note that π
2p − α2 ≡ −π2 − (π6 −

π
2p) mod 2π. Thus for the case HB0 we

obtain the following inequality: z ∈HB0(ω) if and only if

sin
2π

3
z1 + cos

2π

3
z2

≥ 1

B(4)
⎛
⎝

1 +
sin(−π2 − (π6 −

π
2p))

2 sin π
2p

+
cos(−π2 − (π6 −

π
2p))

2 sin π
2p

ω
⎞
⎠
.

We can write this conditions as z ∈HB0(ω) if and only if

sin
2π

3
z1 + cos

2π

3
z2 ≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

−
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
.

� The case HB−1: We have B−1 = d1−λpr2
vd

2λpε
λk+2

3 , so from the definition

of σ and α we obtain that
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σ3 =
(3λp − 1)kπ

3p
, α3 =

(1 + λp)kπ
3p

, ε
λk+2

3 = (−1)
λk+2

3 .

If k = 1 mod 3 then λ = 1,

σ3 = πp − 3π − π
3
+ π
p
, α3 =

(p − 2)π
3

− π
p
, ε

k+2
3 = (−1)

k+2
3 .

If k = 1 mod 3 and k is even, then k = 4 mod 6, i.e. k = 6x+4 for some

x ∈ Z.

Then ε
k+2
3 = 1 and we obtain

σ3 = π(p − 3) − (π
3
− π
p
) = πk − (π

3
− π
p
) ≡ −(π

3
− π
p
) mod 2π,

and

π

2p
+ α3 = −( π

2p
+ π

3
) + (p − 1)π

3
≡ −( π

2p
+ π

3
) mod 2π

since
(p−1)π

3 = (k+2)π
3 = (6x+6)π

3 = 2(x + 1)π ≡ 0 mod 2π.

If k = 1 mod 3 and k is odd then k = 1 mod 6, i.e. k = 6x + 1 for some

x ∈ Z. Then ε
k+2
3 = −1 and we obtain

σ3 = π(p − 3) − (π
3
− π
p
) = πk − (π

3
− π
p
) ≡ π − (π

3
− π
p
) mod 2π

since k is odd and

π

2p
+ α3 = −( π

2p
+ π

3
) + (p − 1)π

3
≡ π − ( π

2p
+ π

3
) mod 2π

since
(p−1)π

3 = (k+2)π
3 = (6x+3)π

3 = (2x + 1)π ≡ π mod 2π. However, we

know that cos(φ + π) = − cosϕ and sin(ϕ + π) = − sinϕ and we know

that for every sin and cos there is ε and in the case where k is odd we

have ε = −1. Hence, the sign will cancel each other and we will have
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the following inequality for HB0 for λ = 1: z ∈HB−1(ω) if and only if

− sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2

≤ 1

B(2)
⎛
⎝

1 −
sin( π2p +

π
3 )

2 sin π
2p

−
cos( π2p +

π
3 )

2 sin π
2p

ω
⎞
⎠
.

If k = 2 mod 3 then λ = 2,

σ3 = 2πp − 6π − π
3
+ π
p
, α3 =

(2p − 5)π
3

− π
p
, ε

2(k+1)
3 = (−1)

2(k+1)
3 = 1.

We have

σ3 = 2π(p − 3) − (π
3
− π
p
) ≡ −(π

3
− π
p
) mod 2π

and

π

2p
+ α3 = −( π

2p
+ π

3
) + 2π ((p − 2)

3
) ≡ −( π

2p
+ π

3
) mod 2π

since p − 2 = k + 1 ≡ 0 mod 3, i.e. p−2
3 is an integer.

We can see that there is no difference between the cases λ = 1 and λ = 2.

Therefore, we have z ∈HB−1(ω) if and only if

− sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2

≤ 1

B(2)
⎛
⎝

1 −
sin( π2p +

π
3 )

2 sin π
2p

−
cos( π2p +

π
3 )

2 sin π
2p

ω
⎞
⎠
.

Proposition 71. We have 0 ∉ (HA0 ∩HB0)(ω).

Proof. We have
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� z ∈HA0(ω) if and only if

sin(π
p
+ π

3
) z1 + cos(π

p
+ π

3
) z2

≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
,

� z ∈HB0(ω) if and only if

sin
2π

3
z1 + cos

2π

3
z2 ≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

−
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
.

Thus 0 ∈ (HA0 ∩HB0)(ω) would imply that

1

B(4)
⎛
⎝

1 − 1

2 sin π
2p

(cos(π
6
− π

2p
) ± sin(π

6
− π

2p
)ω)

⎞
⎠
≤ 0.

We know that B(4) < 0, hence 1− 1
2 sin π

2p
(cos(π6 −

π
2p) ± sin(π6 −

π
2p)ω) ≥ 0 and

therefore
cos(π

6
− π

2p
)

2 sin π
2p

≤ 1. However, we have
cos(π

6
− π

2p
)

2 sin π
2p

> cos(π
6
)

2 sin π
8
> 1 since p ≥ 4.

Hence 0 ∉ (HA0 ∩HB0)(ω).

Proposition 72. The bisector of the sector (HA0 ∩HB0)(0) contains the

origin.

Proof. We apply Proposition 92 (in the appendix) for H− = HA0(0) and

H+ =HB0(0). The inequalities of the half planes are

� z ∈HA0(ω) if and only if

sin(π
p
+ π

3
) z1 + cos(π

p
+ π

3
) z2 ≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

⎞
⎠
,

� z ∈HB0(ω) if and only if

sin
2π

3
z1 + cos

2π

3
z2 ≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

⎞
⎠
.

73



Proposition 73. The lines EA0(ω+),EB0(ω+) and EB−1(ω+) meet at one

point. Here ω+ = tan(πk6p )

Proof. The equations of the lines are

� z ∈ EA0(ω) if and only if

sin(π
p
+ π

3
) z1 + cos(π

p
+ π

3
) z2

= 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
,

� z ∈ EB0(ω) if and only if

sin
2π

3
z1 + cos

2π

3
z2 = 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

−
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
,

� z ∈ EB−1(ω) if and only if

− sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2

= 1

B(2)
⎛
⎝

1 −
sin( π2p +

π
3 )

2 sin π
2p

−
cos( π2p +

π
3 )

2 sin π
2p

ω
⎞
⎠
.
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For the equation of the line EA0 we have the right hand side

1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠

= 1

B(4)
⎛
⎝

2 sin π
2p − cos π6 cos π

2p − sin π
6 sin π

2p + ω sin(π6 −
π
2p)

2 sin π
2p

⎞
⎠

= 1

B(4)

⎛
⎜
⎝

√
3(
√

3
2 sin π

2p −
1
2 cos π

2p) + ω sin(π6 −
π
2p)

2 sin π
2p

⎞
⎟
⎠

= 1

B(4)
⎛
⎝
−
√

3 sin(π6 −
π
2p) + ω sin(π6 −

π
2p)

2 sin π
2p

⎞
⎠
.

Thus,

z ∈ EA0(ω) ⇐⇒ sin(π
p
+ π

3
) z1 + cos(π

p
+ π

3
) z2 =

sin(π6 −
π
2p)

B(4)2 sin π
2p

(ω −
√

3) .

Similarly, for the equation of EB0(ω) we have

z ∈ EB0(ω) ⇐⇒ sin
2π

3
z1 + cos

2π

3
z2 =

− sin(π6 −
π
2p)

B(4)2 sin π
2p

(ω +
√

3) .

For the equation of HB−1 we have the right hand side

1

B(2)
⎛
⎝

1 −
sin( π2p +

π
3 )

2 sin π
2p

−
cos( π2p +

π
3 )

2 sin π
2p

ω
⎞
⎠

= 1

B(2)
⎛
⎝

2 sin π
2p − sin( π2p +

π
3 ) − ω cos( π2p +

π
3 )

2 sin π
2p

⎞
⎠

= 1

B(2)
⎛
⎝

2 sin π
2p − sin π

2p cos π3 − sin π
3 cos π

2p − ω(cos π
2p cos π3 − sin π

2p sin π
3 )

2 sin π
2p

⎞
⎠

= 1

B(2)
⎛
⎝
−
√

3 sin(π6 −
π
2p) − ω sin(π6 −

π
2p)

2 sin π
2p

⎞
⎠
.
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Therefore, z ∈ EB−1(ω) if and only if

− sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2 =

− sin(π6 −
π
2p)

B(2)2 sin π
2p

(
√

3 + ω) .

Recall that B(2) = S ⋅ sin 2π
3 =

√
3

2 ⋅ S and B(4) = S ⋅ sin 4π
3 = −

√
3

2 ⋅ S. We can

now apply Corollary 91 (in appendix). We have

∆(ω) =

RRRRRRRRRRRRRRRRRRRRRRRRR

sin(πp +
π
3 ) cos(πp +

π
3 ) −

sin(π
6
− π

2p
)

√
3⋅S sin π

2p

(ω −
√

3)

sin 2π
3 cos 2π

3 −
sin(π

6
− π

2p
)

√
3⋅S sin π

2p

− (ω +
√

3)

− sin (π3 −
π
p ) cos (π3 −

π
p ) −

sin(π
6
− π

2p
)

√
3⋅S sin π

2p

(ω +
√

3)

RRRRRRRRRRRRRRRRRRRRRRRRR

= −
sin(π6 −

π
2p)√

3 ⋅ S sin π
2p

RRRRRRRRRRRRRRRRR

sin(πp +
π
3 ) cos(πp +

π
3 ) (ω −

√
3)

sin 2π
3 cos 2π

3 − (ω +
√

3)
− sin (π3 −

π
p ) cos (π3 −

π
p ) (ω +

√
3)

RRRRRRRRRRRRRRRRR

.

= −
sin(π6 −

π
2p)√

3 ⋅ S sin π
2p

∆1(ω).

First we need to check if δ ≠ 0, where δ =
RRRRRRRRRRRR

sin(πp +
π
3 ) cos(πp +

π
3 )

sin 2π
3 cos 2π

3

RRRRRRRRRRRR
=

sin(πp −
π
3 ). We have −π3 < π

p −
π
3 < 0 since p > 3. Thus, sin(πp −

π
3 ) ≠ 0, i.e. δ ≠ 0.
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We compute

∆1(ω) = (ω −
√

3) sin(2π

3
+ (π

3
− π
p
))

−(−(ω +
√

3)) sin((π
p
+ π

3
) + (π

3
− π
p
))

+(ω +
√

3) sin((π
p
+ π

3
) − 2π

3
)

= (ω −
√

3) sin(π − π
p
) + (ω +

√
3)(sin(2π

3
) + sin(π

p
− π

3
))

= (ω −
√

3) sin(π
p
) + (ω +

√
3)(

√
3

2
(1 − cos

π

p
) + 1

2
sin

π

p
)

= (ω −
√

3)2 sin
π

2p
cos

π

2p
+ (ω +

√
3) sin

π

2p
cos

π

2p

+(ω +
√

3)(
√

3

2
(2 sin2 π

2p
))

= sin
π

2p
((3ω −

√
3) cos

π

2p
+ sin

π

2p
(
√

3ω + 3))

= 2
√

3 sin
π

2p
(ω (

√
3

2
cos

π

2p
+ 1

2
sin

π

2p
) + (

√
3

2
sin

π

2p
− 1

2
cos

π

2p
))

= 2
√

3 sin
π

2p
(ω cos(π

6
− π

2p
) − sin(π

6
− π

2p
)) .

We know that ω+ = tan πk
6p =

sin(π
6
− π

2p
)

cos(π
6
− π

2p
) . Thus,

∆1(ω+) = 2
√

3 sin
π

2p

⎛
⎝

sin(π6 −
π
2p) cos(π6 −

π
2p)

cos(π6 −
π
2p)

− sin(π
6
− π

2p
)
⎞
⎠
= 0.

∴ The lines EA0(ω+),EB0(ω+) and EB−1(ω+) meet at one point.

Using Propositions 71, 72 and 73 we can follow the mutual position of

the lines EAm,EBm as ω changes from ω = ω− to ω = ω+, see figures 5.2, 5.3

and 5.4 for the case k = 2, p = 5.

Now, we understand the combinatorial structure of the faces of P̂ , com-

pare with figure 5.1.

77



Figure 5.2: The intersections of the prisms Qx for Γ̃1(5,3,3)2 × (C3)2 with
the plane ω = ω−.

Figure 5.3: The intersections of the prisms Qx for Γ̃1(5,3,3)2 × (C3)2 with
the plane ω = 0.
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Figure 5.4: The intersections of the prisms Qx for Γ̃1(5,3,3)2 × (C3)2 with
the plane ω = ω+.

Proposition 74. The identification scheme for the faces of the boundary of

P under the action of Γ̃1 × Γ̃2 is:

(d̃; bm) ↦ (d̃−1;am+2),

(bm; d̃, am, am+1) ↦ (am+1; bm+1, d̃
−1, bm),

(am; d̃−1, bm, bm−1) ↦ (bm−1;am−1, d̃, am)

and the edge cycles

(bm; d̃)↦ (bm+1;am+1)↦ (d̃−1;am+2),

(bm;am+1)↺ .

Proof.

In the beginning of this section we studied the polyhedron P̂ . The faces

of P correspond to the elements

a0 = f0,−1d̃ = r̃4
v d̃

2λp−1c
−2(λk+2)

3 ,

b0 = f0,−1d̃
2 = r̃4

v d̃
2λpc

−2(λk+2)
3 ,

and their images am = ρ̃m(a0), bm = ρ̃m(b0). Here λ = 1 if k = 1 mod 3 and
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λ = 2 if k = 2 mod 3. We will look at the identification schemes for this case.

We know that the action of Γ̃1 × Γ̃2 on G̃ is

(g̃1, g̃2) ⋅ x = g̃1xg̃
−1
2 .

So,

(g̃−1
1 , g̃2) ⋅ x = g̃−1

1 xg̃−1
2 .

Hence, x↦ g̃−1
1 xg̃−1

2 . Therefore, Ẽam ↦ Ẽg̃−11 amg̃−12
and Ẽbm ↦ Ẽg̃−11 bmg̃−12

. Let

am = ρ̃m(a0), bm = ρ̃m(b0).

We can write a0 and b0 as

a0 = r̃4
v d̃

2λp−1c
−2(λk+2)

3 = r̃vd̃2λp−1c
−(2λk+1)

3 ,

b0 = r̃4
v d̃

2λpc
−2(λk+2)

3 = r̃vd̃2λpc
−(2λk+1)

3

Hence,

a1 = ρ̃(a0) = ρ̃(r̃vd̃2λp−1c
−(2λk+1)

3 )

= ρ̃(r̃v)ρ̃(d̃2λp−1)ρ̃(c
−(2λk+1)

3 )

= r̃2
v r̃

−1
u d̃

2λp−1c
−(2λk+1)

3 = r̃2
v d̃
λpc

−(λk+2)
3 ,

since r̃−1
u = c

λk−1
3 d1−λp according to Corollary 53. Similarly, b1 = ρ̃(b0) =

r̃2
v d̃
λp+1c

−(λk+2)
3 . Note that bm = amd̃.

1. The face Ẽb0 ∩ Ẽẽ:

We have b0 = r̃4
v d̃

2λpc
−2(λk+2)

3 . We need to write b0 as a product g̃1 ⋅ g̃2

with g̃1 ∈ Γ̃1 and g̃2 ∈ Γ̃2:

b0 = r̃4
v d̃

2λpc
−2(λk+2)

3 = (r̃4
vc

−2(λk+2)
3 )(d̃2λ

2 ) = g̃1 ⋅ g̃2.

We consider the action of (g̃−1
1 , g̃2) ∈ Γ̃1 × Γ̃2 on G̃ by x ↦ g̃−1

1 xg̃−1
2 .

Then, we need to calculate g̃−1
1 g̃−1

2 in order to find where Ẽẽ is mapped
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a−1

d̃−1

a0 a1

b1

d̃
b0b−1

Figure 5.5: The surface of P for Γ̃(k + 3,3,3)k × (C3)k .

to:

g̃−1
1 g̃−1

2 = (r̃4
vc

−2(λk+2)
3 )−1(d̃2λ

2 )−1

= r̃−4
v d̃

−2λpc
2(λk+2)

3 = r̃2
v d̃
λpc

−(λk+2)
3 = a1.

Here we used r̃3
v = c and d̃3p = ck. Hence

Ẽẽ ↦ Ẽa1 .

Now, let us look at the image of Ẽb0 :

b0 ↦ g̃−1
1 b0g̃

−1
2

= (r̃−4
v c

2(λk+2)
3 )(r̃4

v d̃
2λpc

−2(λk+2)
3 )(d̃−2λp) = ẽ,

hence

Ẽb0 ↦ Ẽẽ.

So,

Ẽb0 ∩ Ẽẽ ↦ Ẽẽ ∩ Ẽa1 ,

i.e. the face b0 is glued to the face a1.
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Note that b0 and a1 have the following properties: b0 = g̃1g̃2, a1 =

g̃−1
1 g̃−1

2 , g̃3
1 = (r̃4

vc
−2(λk+2)

3 )
3

= r̃12
v c

−2(λk+2) = c4c−2λk−4 = c−2λk, g̃3
2 =

(d̃2λ
2 )3 = d̃6λp = (d̃3p)2λ = c2λk. We will see later that the edge (b0;a1)

is in an edge cycle of length 1 and the properties of b0 and a0 discussed

above will mean that the conditions of Theorem 49 are satisfied.

Now, we still need to look at the edges of the face Ẽb0 ∩ Ẽẽ:

(a) Ẽb0 ∩ Ẽẽ ∩ Ẽd̃:

We have

d̃ ↦ g̃−1
1 d̃g̃−1

2

= (r̃−4
v c

2(λk+2)
3 )d̃(d̃−2λp)

= r̃2
v d̃
λp+1c

−(λk+2)
3 = b1.

So,

Ẽb0 ∩ Ẽẽ ∩ Ẽd̃ ↦ Ẽẽ ∩ Ẽa1 ∩ Ẽb1 .

Hence,

The edge (b0; d̃) is glued to the edge (a1; b1).

(b) Ẽb0 ∩ Ẽẽ ∩ Ẽa0 :

We have

a0 ↦ g̃−1
1 a0g̃

−1
2

= (r̃−4
v c

2(λk+2)
3 )(r̃4

v d̃
2λp−1c

−2(λk+2)
3 )(d̃−2λp)

= d̃−1.

So,

Ẽb0 ∩ Ẽẽ ∩ Ẽa0 ↦ Ẽẽ ∩ Ẽa1 ∩ Ẽd̃−1

Hence,

The edge (b0;a0) is glued to the edge (a1; d̃−1).
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(c) Ẽb0 ∩ Ẽẽ ∩ Ẽa1 :

We have

a1 ↦ g̃−1
1 a1g̃

−1
2

= (r̃−4
v c

2(λk+2)
3 )(r̃2

v d̃
λpc

−(λk+2)
3 )(d̃−2λp)

= r̃4
v d̃

2λpc
−2(λk+2)

3 = b0.

So,

Ẽb0 ∩ Ẽẽ ∩ Ẽa1 ↦ Ẽẽ ∩ Ẽa1 ∩ Ẽb0

Hence,

The edge (b0;a1) is glued with to the edge (a1; b0).

2. The face Ẽa0 ∩ Ẽẽ:

We have shown that the edge gluings of the face Ẽb0 ∩ Ẽẽ are the

following:

(a) The edge (b0; d̃) is glued with to the edge (a1; b1),

(b) The edge (b0;a0) is glued with to the edge (a1; d̃−1),

(c) The edge (b0;a1) is glued with to the edge (a1; b0).

Now, by changing the directions and shifting m by 1 (i.e. applying the

symmetrie ρ̃) we obtain the edge gluings of the face Ẽa0 ∩ Ẽẽ:

(a) The edge (a0; b0) is glued with to the edge (b−1; d̃),

(b) The edge (a0; d̃−1) is glued with to the edge (b−1;a−1),

(c) The edge (a0; b−1) is glued with to the edge (b−1;a0).

3. The face Ẽd̃ ∩ Ẽẽ:
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Now, we still need to look at the top face Ẽd̃ ∩ Ẽẽ. We need to write d̃

as a product g̃1 ⋅ g̃2 with g̃1 ∈ Γ̃1 and g̃2 ∈ Γ̃2:

We know that d̃3h+np = d̃h1 d̃n2 and what we need to find is d̃. Therefore,

we need to solve the equation 1 = 3h + np. If λ = 1 mod 3, we have

d̃ = d̃
−(k+1)−1

3
1 d̃2. If λ = 2 mod 3, we have d̃ = d̃

k+4
3

1 d̃−1
2 . We know that

d̃3
2 = ck, d̃p1 = ck, therefore d̃−1

2 = c−kd̃2
2 = d̃−p1 d̃2

2 = d̃−k−3
1 d̃2

2. Hence, d̃ =

d̃
−2(k+2)−1

3
1 d̃2

2. Thus,

d̃ = (d̃1)
−λ(k+λ)−1

3 (d̃2)λ = g̃1 ⋅ g̃2.

We consider the action of (g̃−1
1 , g̃2) ∈ Γ̃1 × Γ̃2 on G̃ by x ↦ g̃−1

1 xg̃−1
2 .

Therefore, in order to obtain the face which is glued with the top face

Ẽd̃ ∩ Ẽẽ, we do the following:

d̃↦ d̃
λ(k+λ)+1

3
1 d̃d̃−λ2 = d̃λ(k+λ)+1d̃d̃−λp = d̃λ

2−3λ+2 = d̃(λ−1)(λ−2) = d̃0 = ẽ.

Here we obtained that d̃(λ−1)(λ−2) = d̃0 since λ ∈ {1,2}.

So, Ẽd̃ ↦ Ẽẽ. We still need to look at where Ẽẽ is mapped to.

ẽ↦ d̃
λ(k+λ)+1

3
1 ẽd̃−λ2 = d̃λ(k+λ)+1d̃−λp = d̃λ

2−3λ+1 = d̃−1.

Here we obtained that d̃λ
2−3λ+1 = d̃−1 since λ ∈ {1,2}.

So Ẽẽ ↦ Ẽd̃−1 and

Ẽd̃ ∩ Ẽẽ ↦ Ẽd̃−1 ∩ Ẽẽ.

Hence,

The face in Ẽd̃ is glued to the face in Ẽd̃−1 .

We are going to looked at the edges of the top face Ẽd̃:

(a) Ẽd̃ ∩ Ẽẽ ∩ Ẽb0 :
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Let us look at Ẽb0 :

b0 ↦ d̃
λ(k+λ)+1

3
1 b0d̃

−λ
2 = d̃λ(k+λ)+1(r̃vd̃2λpc

−(2λk+1)
3 )d̃−λp

= d̃λ(k+λ)+1r̃vd̃
λpc

−(2λk+1)
3 .

On the other hand,

a2 = ρ̃2(a0) = r̃ua0r̃
−1
u = r̃u(r̃vd̃2λp−1c

−(2λk+1)
3 )r̃−1

u .

Using r̃u = d̃λp−1c
(1−λk)

3 and r̃−1
u = c

(λk−1)
3 d̃1−λp, we can see that

a2 = (d̃λp−1c
1−λk

3 )(r̃vd̃2λp−1c
−(2λk+1)

3 )(d̃λp−1c
1−λk

3 )−1

= d̃λp−1r̃vd̃
2λp−1d̃1−λpc

1−λk
3 c

−(2λk+1)
3 c

−1+λk
3 = d̃λp−1r̃vd̃

λpc
−(2λk+1)

3 .

Hence

Ẽd̃ ∩ Ẽẽ ∩ Ẽb0 ↦ Ẽd̃−1 ∩ Ẽẽ ∩ Ẽa2 ,

i.e. the edge (d̃; b0) is glued to the edge (d̃−1;a2).

Shifting m (i.e. applying ρ̃) we obtain:

The edge (d̃; bm) is glued to the edge(d̃−1;am+2).

4. The face Ẽd̃−1 ∩ Ẽẽ:

We obtained that the gluing of the edges of the face Ẽd̃∩Ẽẽ is as follows:

The edge (d̃; bm) is glued to the edge (d̃−1;am+2).

Now, by changing the direction and shifting m by 2 we will obtain the

gluings of the edges of the bottom face Ẽd̃−1 ∩ Ẽẽ:

The edge (d̃−1;am) is glued to the edge (d̃; bm−2).
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Now, we are going to find the edge cycles for P . We have determined the

identifications of the faces and edges of P :

(d̃; b0) ↦ (d̃−1;a2),

(b0; d̃, a0, a1) ↦ (a1; b1, d̃
−1, b0),

(a0; d̃−1, b0, b−1) ↦ (b−1;a−1, d̃, a0).

So, under the symmetry ρ̃ we have:

ρ̃(am) = am+1, ρ̃(bm) = bm+1, ρ̃(d̃) = d̃.

We obtain the following face and edge identifications:

(d̃; bm) ↦ (d̃−1;am+2),

(bm; d̃, am, am+1) ↦ (am+1; bm+1, d̃
−1, bm),

(am; d̃−1, bm, bm−1) ↦ (bm−1;am−1, d̃, am).

We work out the edge cycles using the identifications and the combina-

torics of the faces:

(bm; d̃)↦ (bm+1;am+1)↦ (d̃−1;am+2),

(bm;am+1)↺,

see figure 5.6.

Now, we can apply Theorem 49 and we obtain the following result:

Theorem 75. We have

Fẽ = P.

Proof. Theorem 49 implies that Ψ(P ) is a fundamental domain for Γ̃1 ×
Γ̃2. Moreover, we will show that the fundamental domains Ψ(P ) and Fẽ

coincide. Proposition 48 implies that FΓ̃1(u)∖{u} = FE = Fẽ. We know that

P = Cl Int(P ) and Fẽ = Cl Int(FE). We also know that P ⊂ FE . This all

implies that P ⊂ Fẽ and hence

Fẽ = P
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a−1

3

b−1

21

1

a0

32

3

b0

21

1

a1

32

b1

Figure 5.6: Identification scheme for Γ̃(k + 3,3,3)k × (C3)k .
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Figures of Fundamental Domains for Γ̃(k + 3,3,3)k × (C3)k

Figure 5.7: Fundamental Domain
for Γ̃(5,3,3)2 × (C3)2.

Figure 5.8: Fundamental Domain
for Γ̃(7,3,3)4 × (C3)4.

Figure 5.9: Fundamental Domain
for Γ̃(8,3,3)5 × (C3)5.

Figure 5.10: Fundamental Domain
for Γ̃(10,3,3)7 × (C3)7.
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Figure 5.11: Fundamental Domain
for Γ̃(11,3,3)8 × (C3)8.

Figure 5.12: Fundamental Domain
for Γ̃(13,3,3)10 × (C3)10.

5.8 Fundamental domains for the case Γ̃(2k+3,3,3)k×

(C3)
k

In this section we are going to compute fundamental domains for the case

Γ̃(2k+3,3,3)k ×(C3)k explicitly. Recall that according to Proposition 20 the

fundamental domain Fẽ can be described as

Fẽ = CI Int(FΓ̃1(u)∖{u}) ,

where FN = S̃ẽ ∩⋂x∈N Rx = Ẽẽ ∩ ∂Qu ∩⋂x∈N Rx for N ⊂ Γ̃1(u) ∖ {u}.

First we will construct a polyhedron P ⊂ S̃ẽ such that P ⊂ FE , where E
is the edge crown of Γ̃1. Proposition 48 shows that FΓ̃1(u)∖{u} = FE = Fẽ.
Hence, we have P ⊂ Fẽ. Therefore, if we show that P is a fundamental

domain then we obtain Int(P ) ⊆ Int(Fẽ) and they are both fundamental do-

mains for Γ̃(2k + 3,3,3)k × (C3)k. Thus, we obtain P = FΓ̃1(u)∖{u} = Fẽ since

if a fundamental domain is inside another fundamental domain then their

interior is exactly the same. Then P = Cl Int(P ) = Cl Int(Fẽ) = Fẽ.
To be more clear, we describe the image π(P ) in Se and construct a polyhe-

dron P̂ in Ŝe such that π(P ) = P̂ ∩L. After that, we study the polyhedron P̂

to determine the combinatorial structure of its faces and we show the picture

of some faces of P̂ as in figure 5.13. Then, we obtain π(P ) = P̂ ∩ L = P̂
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since P̂ ⊂ L. Now, we need to apply Theorem 49 to Ψ(P ) as we described in

subsection 4.2.1. After checking all the conditions of Theorem 49 we obtain

that Ψ(P ) is a fundamental domain for the action of Γ̃1×Γ̃2 on G̃. Finally, as

we mentioned in the beginning of this section, we have from Proposition 48

that Ψ(P ) ⊂ Ψ(FΓ̃1(u)∖{u}) = Ψ(Fẽ) and they are both fundamental domains

of the action of Γ̃1× Γ̃2 on G̃. Hence P = FΓ̃1(u)∖{u} = Fẽ (up to the boundary

points).

Recall: Lemma 67 shows that the elements with small argument are:

f0,−2, f0,−2d̃, f0,−2d̃
2, f0,−2d̃

3, f0,−2d̃
4, f0,−2d̃

5, f0,−2d̃
6,

where f0,−2 = r̃v r̃2
uc

−1.

Using Corollary 53 we obtain

f0,−2 = r̃v r̃
2
uc

−1

= r̃v(c
1−λk

3 d̃λp−2)2c−1 = r̃vd̃2(λp−2)c
−(2λk+1)

3 ,

where λ = 1 if k ≡ 1 mod 3 and λ = 2 if k ≡ 2 mod 3.

We know that r̃3
v = c. So, we can write f0,−2 as

f0,−2 = r̃4
v d̃

2(λp−2)c
−2(λk+2)

3 .

Let

a0 = f0,−2d̃
2 = r̃4

v d̃
2(λp−2)d̃2c

−2(λk+2)
3 = r̃4

v d̃
2λp−2c

−2(λk+2)
3 ,

b0 = f0,−2d̃
3 = r̃4

v d̃
2(λp−2)d̃3c

−2(λk+2)
3 = r̃4

v d̃
2λp−1c

−2(λk+2)
3 ,

c0 = f0,−2d̃
4 = r̃4

v d̃
2(λp−2)d̃4c

−2(λk+2)
3 = r̃4

v d̃
2λpc

−2(λk+2)
3 .

Using the symmetries in Section 5.2 we define am = ρ̃m(a0), bm = ρ̃m(b0)
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and cm = ρ̃m(c0). Using Proposition 62 we obtain

c−1 = ρ̃−1(c0) = ρ̃−1 (r̃4
v d̃

2λpc
−2(λk+2)

3 )

= d̃2−λpr̃2
v d̃

2λpc
−λk−2

3 = d̃2−λpd̃3λpc−λkr̃2
v d̃

2λpc
−λk−2

3

= d̃2λp+2r̃2
v d̃

2λpc
−4λk−2

3

since we know that d̃3λp = cλk. Now, we are going to look at the projections

of these elements. Let Am = π(am),Bm = π(bm) and Cm = π(cm). Using

Corollary 56 we obtain

A0 = π(a0) = r4
vd

2λp−2,

B0 = π(b0) = r4
vd

2λp−1,

C0 = π(c0) = r4
vd

2λp,

C−1 = π(c−1) = d2λp+2r2
vd

2λp.

Notation: From now on for the ease of notation we will write Ẽam instead

of Ẽam , EAm instead of EAm and similar for bm,Bm, cm and Cm.

Definition 76. Let ω± = ± tan(πk6p ). Let

P = ⋂
m∈Z

(ĨAm ∪ ĨBm ∪ ĨCm)[ω−, ω+].

Note that (ĨAm ∪ ĨBm ∪ ĨCm) is contained in the complement of Qxm,

hence P is contained in the complement of ⋃m∈ZQxm = ⋃x∈E Qx. Therefore,

P ⊂ FE . Proposition 65 and Lemma 67 imply that

π(P ) = ⋂
m∈Z

(IAm ∪ IBm ∪ ICm)[ω−, ω+]

and that π∣P ∶ P ↦ π(P ) is a homeomorphism. Let

P̂ = ⋂
m∈Z

(ÎAm ∪ ÎBm ∪ ÎCm)[ω−, ω+].

We will use some of the net estimate results to show that P̂ = π(P ). We
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shall study the combinatorial structure of the boundary of P̂ as illustrated

in figure 5.13. To do this we are going to use the analytic geometry in the

appendix 8.6.

A−1 A0 A1

C1C0C−1

B−1 B0 B1

Figure 5.13: The surface of P̂ for Γ̃(2k + 3,3,3)k × (C3)k .

Proposition 77. We have

� z ∈HA0(ω) if and only if

sin(π
p
+ π

3
)z1 + cos(π

p
+ π

3
)z2

≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
.

� z ∈HB0(ω) if and only if

sin( π
2p

+ π
2
) z1 + cos( π

2p
+ π

2
) z2 ≥ 1

B(4)
⎛
⎝

1 − 1

2 sin π
2p

⎞
⎠
.

� z ∈HC0(ω) if and only if

sin(2π

3
)z1 + cos(2π

3
)z2 ≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

−
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
.
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� z ∈HC−1(ω) if and only if

− sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2

≤ 1

B(2)
⎛
⎝

1 +
sin(5π

3 − π
2p)

2 sin π
2p

−
cos(5π

3 − π
2p)

2 sin π
2p

ω
⎞
⎠
.

Proof.

We will use Proposition 68.

� The case HA0: We have A0 = r4
vd

2λp−2, so from the definition of σ and

α we obtain that

σ1 = α1 = (2λp − 2)kπ
3p

= (2λp − 2)(p − 3)π
6p

= 2λpπ

6
+ (−6λ − 2)π

6
+ π
p
.

If k = 1 mod 3 then λ = 1 and p = 2k + 3 ≡ 5 mod 6, hence p = 6x + 5

for some x ∈ Z. Therefore,

2λpπ

6
−(6λ + 2)π

6
+π
p
= 2

6
(6x+5)π−8π

6
+π
p
= 2xπ+2π

6
+π
p
≡ π
p
+π

3
mod 2π.

If k = 2 mod 3 then λ = 2 and p = 2k + 3 ≡ 7 mod 6, hence p = 6x + 7

for some x ∈ Z. Therefore,

2λpπ

6
+(−6λ − 2)π

6
+π
p
= 4

6
(6x+7)π−14π

6
+π
p
= 4xπ+7π

3
+π
p
≡ π
p
+π

3
mod 2π.

Note that π
2p −α1 = −π2 + (π6 −

π
2p) mod 2π. Hence for the case HA0 we

obtain the following inequality:

z ∈HA0(ω) ⇐⇒ sin(π
p
+ π

3
)z1 + cos(π

p
+ π

3
)z2

≥ 1

B(4)
⎛
⎝

1 +
sin(−π2 + (π6 −

π
2p))

2 sin π
2p

+
cos(−π2 + (π6 −

π
2p))

2 sin π
2p

ω
⎞
⎠
.
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We can write this condition as

z ∈HA0(ω) ⇐⇒ sin(π
p
+ π

3
)z1 + cos(π

p
+ π

3
)z2

≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
.

� The case HB0: We have B0 = r4
vd

2λp−1, so from the definition of σ and

α we obtain that

σ2 = α2 = (2λp − 1)kπ
3p

= α1 +
kπ

3p
≡ π
p
+ π

3
+ π(p − 3)

6p
≡ π

2p
+ π

2
mod 2π.

Hence for the case HB0 we obtain the following inequality: z ∈HB0(ω)
if and only if

sin( π
2p

+ π
2
)z1 + cos( π

2p
+ π

2
)z2 ≥ 1

B(4)
⎛
⎝

1 −
sin π

2

2 sin π
2p

+
cos π2

2 sin π
2p

ω
⎞
⎠
.

Moreover, we obtain z ∈HB0(ω) if and only if

sin( π
2p

+ π
2
) z1 + cos( π

2p
+ π

2
) z2 ≥ 1

B(4)
⎛
⎝

1 − 1

2 sin π
2p

⎞
⎠
.

� The case HC0: We have C0 = r4
vd

2λp, so from the definition of σ and α

we obtain that

σ3 = α3 = (2λp)kπ
3p

= α2 +
kπ

3p
= π

2p
+ π

2
+ π(p − 3)

6p
≡ 2π

3
mod 2π.

Hence for the case HC0 we obtain the following inequality:

z ∈HC0(ω) ⇐⇒ sin(2π

3
)z1 + cos(2π

3
)z2

≥ 1

B(4)
⎛
⎝

1 +
sin(−π2 − (π6 −

π
2p))

2 sin π
2p

+
cos(−π2 − (π6 −

π
2p))

2 sin π
2p

ω
⎞
⎠
.
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Moreover, we obtain z ∈HC0(ω) if and only if

sin(2π

3
)z1 + cos(2π

3
)z2 ≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

−
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
.

� The case HC−1: We have C−1 = d2λp+2r2
vd

2λp, so from the definition of

σ and α we obtain that

σ4 =
−2kπ

3p
, α4 =

(4λp + 2)kπ
3p

= 4λpπ

6
+ (−12λ + 2)π

6
− π
p
.

If k = 1 mod 3 then λ = 1 and p = 2k + 3 ≡ 5 mod 6, hence p = 6x + 5

for some x ∈ Z. Therefore,

σ4 = −(π
3
− π
p
) .

α4 =
4π

6
(6x + 5) + −10π

6
− π
p
= 4xπ + 10π

6
− π
p
≡ 5π

3
− π
p

mod 2π.

If k = 2 mod 3 then λ = 2 and p = 2k + 3 ≡ 7 mod 6, hence p = 6x + 7

for some x ∈ Z. Therefore,

σ4 = −(π
3
− π
p
) .

α4 =
8π

6
(6x + 7) + −22π

6
− π
p
= 8xπ + 34π

6
− π
p
≡ 5π

3
− π
p

mod 2π.

Hence for the case HC−1 we obtain the following equation:

z ∈HC−1(ω) ⇐⇒ − sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2

≤ 1

B(2)
⎛
⎝

1 +
sin(5π

3 − π
2p)

2 sin π
2p

−
cos(5π

3 − π
2p)

2 sin π
2p

ω
⎞
⎠
.

Proposition 78. We have 0 ∉ (HA0 ∩HC0)(ω).
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Proof. We have

� z ∈HA0(ω) if and only if

sin (π
p
+ π

3
)z1 + cos (π

p
+ π

3
)z2

≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
,

� z ∈HC0(ω) if and only if

sin(2π

3
)z1 + cos(2π

3
)z2 ≥ 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

−
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
.

Thus 0 ∈ (HA0 ∩HC0)(ω) would imply that

1

B(4)
⎛
⎝

1 − 1

2 sin π
2p

(cos(π
6
− π

2p
) ± sin(π

6
− π

2p
)ω)

⎞
⎠
≤ 0.

We know that B(4) < 0, hence 1− 1
2 sin π

2p
(cos(π6 −

π
2p) ± sin(π6 −

π
2p)ω) ≥ 0 and

therefore
cos(π

6
− π

2p
)

2 sin π
2p

≤ 1. However, we have
cos(π

6
− π

2p
)

2 sin π
2p

> cos(π
6
)

2 sin π
10

> 1 since p ≥ 5.

Hence 0 ∉ (HA0 ∩HC0)(ω).

Proposition 79. The bisector of the sector (HA0 ∩HC0)(0) contains the

origin.

Proof. We apply Proposition 92 (in the appendix) for H− = HA0(0) and

H+ =HC0(0). The inequalities of the half planes are

z ∈HA0(ω) ⇐⇒ sin (πp +
π
3 )z1 + cos (πp +

π
3 )z2

≥ 1
B(4) (1 −

cos(π
6
− π

2p
)

2 sin π
2p

) .

z ∈HC0(ω) ⇐⇒ sin(2π
3 )z1 + cos(2π

3 )z2 ≥ 1
B(4) (1 −

cos(π
6
− π

2p
)

2 sin π
2p

) .
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Proposition 80. The lines EA0 (tan (π6 −
π
2p)) ,EC0 (tan (π6 −

π
2p)) and EC−1

(tan (π6 −
π
2p)) meet at one point. Note that tan (π6 −

π
2p) > tan ( π

12 −
π
4p) = ω

+.

Proof. The equations of the lines are

� z ∈ EA0(ω) if and only if

sin(π
p
+ π

3
)z1 + cos (π

p
+ π

3
)z2

= 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
,

� z ∈ EC0(ω) if and only if

sin(2π

3
)z1 + cos(2π

3
)z2 = 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

−
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
,

� z ∈ EC−1(ω) if and only if

− sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2

= 1

B(2)
⎛
⎝

1 +
sin(5π

3 − π
2p)

2 sin π
2p

−
cos(5π

3 − π
2p)

2 sin π
2p

ω
⎞
⎠
.

For the equation of the line EA0 we have the right hand side

1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠

= 1

B(4)
⎛
⎝

2 sin π
2p − cos π6 cos π

2p − sin π
6 sin π

2p + ω sin(π6 −
π
2p)

2 sin π
2p

⎞
⎠

= 1

B(4)

⎛
⎜
⎝

√
3(
√

3
2 sin π

2p −
1
2 cos π

2p) + ω sin(π6 −
π
2p)

2 sin π
2p

⎞
⎟
⎠

= 1

B(4)
⎛
⎝
−
√

3 sin(π6 −
π
2p) + ω sin(π6 −

π
2p)

2 sin π
2p

⎞
⎠
.
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Thus,

z ∈ EA0(ω) ⇐⇒ sin(π
p
+ π

3
)z1 + cos(π

p
+ π

3
)z2 =

sin(π6 −
π
2p)

B(4)2 sin π
2p

(ω −
√

3) .

Similarly

z ∈ EC0(ω) ⇐⇒ sin
2π

3
z1 + cos

2π

3
z2 = −

sin(π6 −
π
2p)

B(4)2 sin π
2p

(ω +
√

3) .

For the equation of HC−1 we have the right hand side

1

B(2)
⎛
⎝

1 +
sin(5π

3 − π
2p)

2 sin π
2p

−
cos(5π

3 − π
2p)

2 sin π
2p

ω
⎞
⎠

= 1

B(2)
⎛
⎝

2 sin π
2p + sin(5π

3 − π
2p) − ω cos(5π

3 − π
2p)

2 sin π
2p

⎞
⎠

= 1

B(2)
⎛
⎝

2 sin π
2p + sin 5π

3 cos π
2p − cos 5π

3 sin π
2p − ω(cos π

2p cos 5π
3 + sin π

2p sin 5π
3 )

2 sin π
2p

⎞
⎠

= 1

B(2)
⎛
⎝
−
√

3 sin(π6 −
π
2p) − ω sin(π6 −

π
2p)

2 sin π
2p

⎞
⎠
.

Therefore, z ∈ EC−1(ω) if and only if

− sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2 =

− sin(π6 −
π
2p)

B(2)2 sin π
2p

(
√

3 + ω) .

Recall that B(2) = S ⋅ sin 2π
3 =

√
3

2 ⋅ S and B(4) = S ⋅ sin 4π
3 = −

√
3

2 ⋅ S. We can

now apply Corollary 91 (in appendix). We have
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∆(ω) =

RRRRRRRRRRRRRRRRRRRRRRRRR

sin(πp +
π
3 ) cos(πp +

π
3 ) −

sin(π
6
− π

2p
)

√
3⋅S sin π

2p

(ω −
√

3)

sin 2π
3 cos 2π

3

sin(π
6
− π

2p
)

√
3⋅S sin π

2p

(ω +
√

3)

− sin (π3 −
π
p ) cos (π3 −

π
p ) −

sin(π
6
− π

2p
)

√
3⋅S sin π

2p

(ω +
√

3)

RRRRRRRRRRRRRRRRRRRRRRRRR

= −
sin(π6 −

π
2p)√

3 ⋅ S sin π
2p

RRRRRRRRRRRRRRRRR

sin(πp +
π
3 ) cos(πp +

π
3 ) (ω −

√
3)

sin 2π
3 cos 2π

3 − (ω +
√

3)
− sin (π3 −

π
p ) cos (π3 −

π
p ) (ω +

√
3)

RRRRRRRRRRRRRRRRR

.

= −
sin(π6 −

π
2p)√

3 ⋅ S sin π
2p

⋅∆1(ω).

First we need to check if δ ≠ 0, where δ =
RRRRRRRRRRRR

sin(πp +
π
3 ) cos(πp +

π
3 )

sin 2π
3 cos 2π

3

RRRRRRRRRRRR
=

sin(πp −
π
3 ). We have −π3 < π

p −
π
3 < 0 since p > 3. Thus, sin(πp −

π
3 ) ≠ 0, i.e. δ ≠ 0.

Note that ∆1(ω) coincides with the determinate computed in the proof

of Proposition 73, i.e.

∆1(ω) = 2
√

3 sin
π

2p
(ω cos(π

6
− π

2p
) − sin(π

6
− π

2p
)) .

We know that ω+ = tan( π12 −
π
4p). Thus, ∆1(ω) = 0 if and only if ω = tan(π6 −

π
2p).

Therefore, the lines EA0 (tan (π6 −
π
2p)) ,EC0 (tan (π6 −

π
2p)) and EC−1

(tan (π6 −
π
2p)) meet at one point.

Proposition 81. The lines EA0(ω+),EB0(ω+) and EC−1(ω+) meet at one

point. Here ω+ = tan ( π
12 −

π
4p).

Proof. The equations of the lines are
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� z ∈ EA0(ω) if and only if

sin (π
p
+ π

3
)z1 + cos (π

p
+ π

3
)z2

= 1

B(4)
⎛
⎝

1 −
cos(π6 −

π
2p)

2 sin π
2p

+
sin(π6 −

π
2p)

2 sin π
2p

ω
⎞
⎠
,

� z ∈ EB0(ω) if and only if

sin( π
2p

+ π
2
)z1 + cos( π

2p
+ π

2
)z2 = 1

B(4)
⎛
⎝

2 sin π
2p − 1

2 sin π
2p

⎞
⎠
,

� z ∈ EC−1(ω) if and only if

− sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2

= 1

B(2)
⎛
⎝

1 +
sin(5π

3 − π
2p)

2 sin π
2p

−
cos(5π

3 − π
2p)

2 sin π
2p

ω
⎞
⎠
.

We know from the proof of Proposition 80 that

z ∈ EA0(ω) ⇐⇒ sin(π
p
+ π

3
)z1 + cos(π

p
+ π

3
)z2 =

sin(π6 −
π
2p)

B(4)2 sin π
2p

(ω −
√

3)

and

z ∈ EC−1(ω) ⇐⇒ − sin(π
3
− π
p
)z1 + cos(π

3
− π
p
)z2

=
− sin(π6 −

π
2p)

B(2)2 sin π
2p

(
√

3 + ω) .

Recall that B(2) = S ⋅ sin 2π
3 =

√
3

2 ⋅ S and B(4) = S ⋅ sin 4π
3 = −

√
3

2 ⋅ S. We can

now apply Corollary 91 (in appendix). We have
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∆(ω) =

RRRRRRRRRRRRRRRRRRRRRRRRR

sin(πp +
π
3 ) cos(πp +

π
3 ) −

sin(π
6
− π

2p
)

√
3⋅S sin π

2p

(ω −
√

3)

sin ( π
2p +

π
2 ) cos ( π

2p +
π
2 ) −

2 sin π
2p
−1

√
3⋅S sin π

2p

− sin (π3 −
π
p ) cos (π3 −

π
p ) −

sin(π
6
− π

2p
)

√
3⋅S sin π

2p

(ω +
√

3)

RRRRRRRRRRRRRRRRRRRRRRRRR

= −
sin(π6 −

π
2p)√

3 ⋅ S sin π
2p

RRRRRRRRRRRRRRRRRRR

sin(πp +
π
3 ) cos(πp +

π
3 ) (ω −

√
3)

sin ( π
2p +

π
2 ) cos ( π

2p +
π
2 )

2 sin π
2p
−1

sin(π
6
− π

2p
)

− sin (π3 −
π
p ) cos (π3 −

π
p ) (ω +

√
3)

RRRRRRRRRRRRRRRRRRR

.

= −
sin(π6 −

π
2p)√

3 ⋅ S sin π
2p

∆1(ω).

First we need to check if δ ≠ 0, where δ =
RRRRRRRRRRRR

sin(πp +
π
3 ) cos(πp +

π
3 )

sin ( π
2p +

π
2 ) cos ( π

2p +
π
2 )

RRRRRRRRRRRR
=

sin( π2p −
π
6 ). We have −π6 < π

2p −
π
6 < 0 since p > 3. Thus, sin( π2p −

π
6 ) ≠ 0, i.e.

δ ≠ 0.
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∆1(ω) = (ω −
√

3) sin(( π
2p

+ π
2
) + (π

3
− π
p
))

−
⎛
⎝

2 sin π
2p − 1

sin(π6 −
π
2p)

⎞
⎠

sin((π
p
+ π

3
) + (π

3
− π
p
))

+(ω +
√

3) sin((π
p
+ π

3
) − ( π

2p
+ π

2
))

= (ω −
√

3) sin(5π

6
− π

2p
)

−
⎛
⎝

2 sin π
2p − 1

sin(π6 −
π
2p)

⎞
⎠

sin(2π

3
)

+(ω +
√

3) sin( π
2p

− π
6
)

= (ω −
√

3)(1

2
cos

π

2p
+

√
3

2
sin

π

2p
)

−
⎛
⎜
⎝

√
3

2

2 sin π
2p − 1

1
2 cos π

2p −
√

3
2 sin π

2p

⎞
⎟
⎠

+(ω +
√

3)(
√

3

2
sin

π

2p
− 1

2
cos

π

2p
)

= ω(
√

3 sin
π

2p
) −

√
3 cos

π

2p
−
√

3
⎛
⎝

2 sin π
2p − 1

cos π
2p −

√
3 sin π

2p

⎞
⎠

=
√

3
⎛
⎝
ω sin

π

2p
−
⎛
⎝

cos2 π
2p −

√
3 cos π

2p sin π
2p + 2 sin π

2p − 1

cos π
2p −

√
3 sin π

2p

⎞
⎠
⎞
⎠

=
√

3
⎛
⎝
ω sin

π

2p
−
⎛
⎝
− sin2 π

2p −
√

3 cos π
2p sin π

2p + 2 sin π
2p

cos π
2p −

√
3 sin π

2p

⎞
⎠
⎞
⎠
.

We know that

ω+ = tan( π
12

− π

4p
) = tan

1

2
(π

6
− π

2p
)

=
1 − cos(π6 −

π
2p)

sin(π6 −
π
2p)

=
1 − 1

2(
√

3 cos π
2p + sin π

2p)
1
2(cos π

2p −
√

3 sin π
2p)

.
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Hence, we have

ω+ sin
π

2p
=

2 sin π
2p −

√
3 cos π

2p sin π
2p − sin2 π

2p

cos π
2p −

√
3 sin π

2p

.

Thus,

∆1(ω+) =
√

3
⎛
⎝
ω+ sin

π

2p
−
⎛
⎝
− sin2 π

2p −
√

3 cos π
2p sin π

2p + 2 sin π
2p

cos π
2p −

√
3 sin π

2p

⎞
⎠
⎞
⎠

=
√

3
⎛
⎝

2 sin π
2p −

√
3 cos π

2p sin π
2p − sin2 π

2p

cos π
2p −

√
3 sin π

2p

⎞
⎠

−
√

3
⎛
⎝
− sin2 π

2p −
√

3 cos π
2p sin π

2p + 2 sin π
2p

cos π
2p −

√
3 sin π

2p

⎞
⎠

= 0

∴ The lines EA0(ω+),EB0(ω+) and EC−1(ω+) meet at one point.

Using Propositions 78, 79, 80 and 81 we can follow the mutual position

of the lines EAm,EBm,ECm as ω changes from ω = ω− to ω = ω+, see figures

5.14, 5.15 and 5.16 for the case k = 2, p = 7.

Figure 5.14: The intersections of the prisms Qx for Γ̃1(7,3,3)2 × (C3)2 with
the plane ω = ω−.
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Figure 5.15: The intersections of the prisms Qx for Γ̃1(7,3,3)2 × (C3)2 with
the plane ω = 0.

Now, we understand the combinatorial structure of the faces of P̂ , com-

pare with figure 5.13.

Proposition 82. The identification scheme for the faces of the boundary of

P under the action of Γ̃1 × Γ̃2 is:

(d̃; cm) ↦ (d̃−1; bm+p+1),

(d̃; bm) ↦ (d̃−1;am+p+1),

(cm; d̃, am+1, bm) ↦ (am+1; bm+1, cm, d̃
−1),

(bm; d̃, cm, d̃
−1, am) ↦ (bm+p; cm+p, d̃, am+p, d̃−1),

(am; bm, d̃
−1, cm−1) ↦ (cm−1; d̃, bm−1, am),

and the edge cycles

(cm; d̃)↦ (bm+1;am+1)↦ (d̃−1; bm+p+1),

(cm; bm)↦ (d̃−1;am+1)↦ (bm−p; d̃),

(cm;am+1)↺ .

Proof.

In the beginning of this section we study the polyhedron P̂ . The faces of
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Figure 5.16: The intersections of the prisms Qx for Γ̃1(7,3,3)2 × (C3)2 with
the plane ω = ω+.

P̂ correspond to the elements

a0 = r̃4
v d̃

2λp−2c
−2(λk+2)

3 ,

b0 = r̃4
v d̃

2λp−1c
−2(λk+2)

3 ,

c0 = r̃4
v d̃

2λpc
−2(λk+2)

3 ,

and their images am = ρ̃m(a0), bm = ρ̃m(b0), cm = ρ̃m(c0) under ρ̃. Here λ = 1

if k = 1 mod 3 and λ = 2 if k = 2 mod 3. We will look at the identification

schemes for this case. We know that the action of Γ̃1 × Γ̃2 on G̃ is

(g̃1, g̃2) ⋅ x = g̃1xg̃
−1
2 .

So,

(g̃−1
1 , g̃2) ⋅ x = g̃−1

1 xg̃−1
2 .

Hence, x ↦ g̃−1
1 xg̃−1

2 . Therefore, Ẽam ↦ Ẽg̃−11 amg̃−12
and similar for Ẽbm , Ẽcm .

We can write a0, b0 and c0 as
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a0 = r̃4
v d̃

2λp−2c
−2(λk+2)

3 = r̃vd̃2λp−2c
−(2λk+1)

3 ,

b0 = r̃4
v d̃

2λp−1c
−2(λk+2)

3 = r̃vd̃2λp−1c
−(2λk+1)

3 ,

c0 = r̃4
v d̃

2λpc
−2(λk+2)

3 = r̃vd̃2λpc
−(2λk+1)

3 .

Hence,

a1 = ρ̃(a0) = ρ̃(r̃vd̃2(λp−1)c
−(2λk+1)

3 )

= ρ̃(r̃v)ρ̃(d̃2(λp−1))ρ̃(c
−(2λk+1)

3 )

= r̃2
v r̃

−1
u d̃

2(λp−1)c
−(2λk+1)

3 = r̃2
v d̃
λpc

−(λk+2)
3 ,

since r̃−1
u = c

λk−1
3 d−λp+2 according to Corollary 53. Similarly, b1 = ρ̃(b0) =

r̃2
v d̃
λp+1c

−(λk+2)
3 and c1 = ρ̃(c0) = r̃2

v d̃
λp+2c

−(λk+2)
3 . Note that bm = amd̃ and

cm = bmd̃.

a−1 a0

d̃−1

a1

c1

d̃
c0c−1

b−1 b0 b1

Figure 5.17: The surface of P for Γ̃(2k + 3,3,3)k × (C3)k .

1. The face Ẽc0 ∩ Ẽẽ:

We have c0 = r̃4
v d̃

2λpc
−2(λk+2)

3 . We need to write c0 as a product g̃1 ⋅ g̃2

with g̃1 ∈ Γ̃1, g̃2 ∈ Γ̃2. We have
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c0 = r̃4
v d̃

2λpc
−2(λk+2)

3 = (r̃4
vc

−2(λk+2)
3 )(d̃2λ

2 ) = g̃1g̃2.

We consider the action of (g̃−1
1 , g̃2) ∈ Γ̃1 × Γ̃2 on G̃ by x ↦ g̃−1

1 xg̃−1
2 .

Then, we need to calculate g̃−1
1 g̃−1

2 in order to find the image of Ẽẽ.

g̃−1
1 g̃−1

2 = (r̃4
vc

−2(λk+2)
3 )−1(d̃2λ

2 )−1

= r̃−4
v d̃

−2λpc
2(λk+2)

3 = r̃6
vc
−2r̃−4

v d̃
λpc−λkc

2(λk+2)
3

= r̃2
v d̃
λpc

−(λk+2)
3 = a1.

Here we used r̃3
v = c and d̃3p = ck. Hence

Ẽẽ ↦ Ẽa1 .

Now, let us look at the image of Ẽc0 :

c0 ↦ g̃−1
1 c0g̃

−1
2

= (r̃−4
v c

2(λk+2)
3 )(r̃4

v d̃
2λpc

−2(λk+2)
3 )(d̃−2λp) = ẽ,

hence

Ẽc0 ↦ Ẽẽ.

So,

Ẽc0 ∩ Ẽẽ ↦ Ẽẽ ∩ Ẽa1 ,

i.e. the face c0 is glued to the face a1.

Note that c0 and a1 have the following properties: c0 = g̃1g̃2, a1 =

g̃−1
1 g̃−1

2 , g̃3
1 = (r̃4

vc
−2(λk+2)

3 )
3

= r̃12
v c

−2(λk+2) = c4c−2λk−4 = c−2λk, g̃3
2 =

(d̃2λ
2 )3 = d̃6λp = (d̃3p)2λ = c2λk. We will see later that the edge (c0;a1)

is in an edge cycle of length 1 and the properties of c0 and a0 discussed

above will mean that the conditions of Theorem 49 are satisfied.

Now, we still need to look at the edges of the face Ẽc0 ∩ Ẽẽ:
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(a) Ẽc0 ∩ Ẽẽ ∩ Ẽd̃:
We have

d̃ ↦ g̃−1
1 d̃g̃−1

2

= (r̃−4
v c

2(λk+2)
3 )d̃(d̃−2λp)

= r̃6
v r̃

−4
v d̃d̃

λpc−2c−λkc
2(λk+2)

3

= r̃2
v d̃
λp+1c

−(λk+2)
3 = b1.

So,

Ẽc0 ∩ Ẽẽ ∩ Ẽd̃ ↦ Ẽẽ ∩ Ẽa1 ∩ Ẽb1

Hence,

The edge (c0; d̃) is glued to the edge (a1; b1).

(b) Ẽc0 ∩ Ẽẽ ∩ Ẽa1 :

We have

a1 ↦ g̃−1
1 a1g̃

−1
2

= (r̃−4
v c

2(λk+2)
3 )(r̃2

v d̃
λpc

−(λk+2)
3 )(d̃−2λp)

= r̃−4
v r̃

6
v r̃

2
v d̃
λpd̃λpc−2c−λkc

2(λk+2)
3 c

−(λk+2)
3

= r̃4
v d̃

2λpc
−2(λk+2)

3 = c0.

So,

Ẽc0 ∩ Ẽẽ ∩ Ẽa1 ↦ Ẽẽ ∩ Ẽa1 ∩ Ẽc0 .

Hence,

The edge (c0;a1) is glued to the edge (a1; c0).

(c) Ẽc0 ∩ Ẽẽ ∩ Ẽb0 :
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We have

b0 ↦ g̃−1
1 b0g̃

−1
2

= (r̃−4
v c

2(λk+2)
3 )(r̃4

v d̃
2λp−1c

−2(λk+2)
3 )(d̃−2λp)

= d̃2λp−1d̃−2λp = d̃−1.

So,

Ẽc0 ∩ Ẽẽ ∩ Ẽb0 ↦ Ẽẽ ∩ Ẽa1 ∩ Ẽd̃−1 .

Hence,

The edge (c0; b0) is glued to the edge (a1; d̃−1).

2. The face Ẽb0 ∩ Ẽẽ:

We know that

b0 = r̃4
v d̃

2λp−1c
−2(λk+2)

3 .

We need to write b0 as a product g̃1 ⋅ g̃2 with g̃1 ∈ Γ̃1, g̃2 ∈ Γ̃2. We have

b0 = r̃4
v d̃

2λp−1c
−2(λk+2)

3

= (r̃4
v d̃

−(λp+1)c
−2(λk+2)

3 )(d̃3λp)

= (r̃4
v d̃

−(λ(2k+3)+1)
3

1 c
−2(λk+2)

3 )(d̃3λ
2 ) = g̃1g̃2.

Here we used the fact that for k = 1 mod 3 we have λ = 1 and λ(2k +
3) + 1 = 2k + 4 = 0 mod 3 and for k = 2 mod 3 we have λ = 2 and

λ(2k + 3) + 1 = 4k + 7 = 0 mod 3. So,
λ(2k+3)+1

3 ∈ Z in both cases.

We consider the action of (g̃−1
1 , g̃2) ∈ Γ̃1 × Γ̃2 on G̃ by x↦ g̃−1

1 xg̃−1
2 . We

look at the image of Ẽẽ:
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ẽ ↦ g̃−1
1 ẽg̃−1

2

= (r̃4
v d̃

−(λp+1)c
−2(λk+2)

3 )−1
ẽ(d̃3λp)−1

= d̃(λp+1)r̃−4
v c

2(λk+2)
3 d̃−3λp = d̃(λp+1)r̃6

v r̃
−4
v c

−2c−λkc
2(λk+2)

3

= d̃(λp+1)r̃2
vc

−(λk+2)
3 .

On the other hand

bp = b2k+3 = ρ̃2k+3(b0) = ρ̃2k+2(ρ̃(b0))

= ρ̃2(k+1)(b1) = ρk+1(b1) = r̃ub1r̃−1
u

since ρ̃2 = ρ. We also know from Corollary 53 that r̃u = c
1−λk

3 d̃λp−2 and

r̃−1
u = c

λk−1
3 d̃2−λp. Hence

bp = ρk+1(b1) = r̃k+1
u b1r̃

−(k+1)
u

= r̃k+1
u (r̃2

v d̃
λp+1c

−(λk+2)
3 ) r̃−(k+1)

u

= c
(1−λk)(k+1)

3 d̃(λp−2)(k+1) (r̃2
v d̃
λp+1c

−(λk+2)
3 ) c

(λk−1)(k+1)
3 d̃(2−λp)(k+1)

= d̃(λ(2k+3)−2)(k+1)r̃2
v d̃
λ(2k+3)+1d̃(2−λ(2k+3))(k+1)c

−(λk+2)
3

= d̃2λk2+k(5λ−2)+3λ−2r̃2
v d̃

−2λk2+k(2−3λ)+3c
−(λk+2)

3 .

We have

−(2λk2 + k(3λ − 2) − 3) = −(λk − 1)(2k + 3) = −p(λk − 1).

Therefore,

d̃−2λk2+k(2−3λ)+3 = d̃−p(λk−1) = d̃3p
(1−λk)

3 = (d̃3p)
1−λk

3 = (ck)
1−λk

3 = c
k(1−λk)

3
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since we know that 1 − λk ≡ 0 mod 3, so 1−λk
3 ∈ Z. Thus,

bp = d̃2λk2+k(5λ−2)+3λ−2r̃2
v d̃

−2λk2+k(2−3λ)+3c
−(λk+2)

3

= d̃2λk2+k(5λ−2)+3λ−2r̃2
v d̃

3p 1−λk
3 c

−(λk+2)
3

= d̃2λk2+k(5λ−2)+3λ−2r̃2
vc

k(1−λk)
3 c

−(λk+2)
3

= d̃2λk2+k(5λ−2)+3λ−2c
k(1−λk)

3 r̃2
vc

−(λk+2)
3

= d̃2λk2+k(5λ−2)+3λ−2d̃−p(λk−1)r̃2
vc

−(λk+2)
3

= d̃2λk2+k(5λ−2)+3λ−2d̃(2k+3)(1−λk)r̃2
vc

−(λk+2)
3

= d̃2λk+3λ+1r̃2
vc

−(λk+2)
3

= d̃λp+1r̃2
vc

−(λk+2)
3 .

So, we have shown that ẽ↦ bp, hence

Ẽẽ ↦ Ẽbp .

Note that similarly

cp = ρ̃p(c0) = d̃λp+1r̃2
v d̃c

−(λk+2)
3 ,

ap = ρ̃p(a0) = d̃λp+1r̃2
v d̃

−1c
−(λk+2)

3 = d̃λp+1r̃2
v d̃

3p−1c
−3k−(λk+2)

3 .

Now, we need to look at the image of Ẽb0 . We have

b0 ↦ g̃−1
1 b0g̃

−1
2

= (r̃4
v d̃

−(λp+1)c
−2(λk+2)

3 )−1(r̃4
v d̃

−(λp+1)c
−2(λk+2)

3 d̃3λp)(d̃3λp)−1 = ẽ,

hence,

Ẽb0 ↦ Ẽẽ.

Therefore,

Ẽb0 ∩ Ẽẽ ↦ Ẽẽ ∩ Ẽbp .
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Now, we have to study the edges of the face Ẽb0 ∩ Ẽẽ:

(a) Ẽb0 ∩ Ẽẽ ∩ Ẽd̃:
We have

d̃ ↦ g̃−1
1 d̃g̃−1

2

= (d̃λp+1r̃−4
v c

2(λk+2)
3 )d̃(d̃−3λp)

= d̃λp+1r̃6
v r̃

−4
v d̃

−3λp+1c−2c
2(λk+2)

3

= d̃λp+1r̃2
v d̃c

−(λk+2)
3 = cp.

So,

Ẽb0 ∩ Ẽẽ ∩ Ẽd̃ ↦ Ẽẽ ∩ Ẽbp ∩ Ẽcp .

Hence,

The edge (b0; d̃) is glued to the edge (bp; cp).

(b) Ẽb0 ∩ Ẽẽ ∩ Ẽc0 :

We have

c0 ↦ g̃−1
1 c0g̃

−1
2

= (d̃λp+1r̃−4
v c

2(λk+2)
3 )(r̃4

v d̃
2λpc

−2(λk+2)
3 )(d̃−3λp)

= d̃λp+1d̃2λpd̃−3λp = d̃.

So,

Ẽb0 ∩ Ẽẽ ∩ Ẽc0 ↦ Ẽẽ ∩ Ẽbp ∩ Ẽd̃.

Hence,

The edge (b0; c0) is glued to the edge (bp; d̃).

(c) Ẽb0 ∩ Ẽẽ ∩ Ẽd̃−1 :
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We have

d̃−1 ↦ g̃−1
1 d̃−1g̃−1

2

= (d̃λp+1r̃−4
v c

2(λk+2)
3 )d̃−1(d̃−3λp)

= d̃λp+1r̃6
v r̃

−4
v d̃

−1c−2c−λkc
2(λk+2)

3

= d̃λp+1r̃2
v d̃

−1c
−(λk+2)

3 = ap.

So,

Ẽb0 ∩ Ẽẽ ∩ Ẽd̃−1 ↦ Ẽẽ ∩ Ẽbp ∩ Ẽap .

Hence,

The edge (b0; d̃−1) is glued to the edge (bp;ap).

(d) Ẽb0 ∩ Ẽẽ ∩ Ẽa0 ∶
We have

a0 ↦ g̃−1
1 a0g̃

−1
2

= (d̃λp+1r̃−4
v c

2(λk+2)
3 )(r̃4

v d̃
2(λp−1)c

−2(λk+2)
3 )(d̃−3λp)

= d̃λp+1d̃2λp−2d̃−3λp = d̃−1.

So,

Ẽb0 ∩ Ẽẽ ∩ Ẽa0 ↦ Ẽẽ ∩ Ẽbp ∩ Ẽd̃−1 .

Hence,

The edge (b0;a0) is glued to the edge (bp; d̃−1).

3. The face Ẽa0 ∩ Ẽẽ:
We know the gluing rules for the face Ẽc0 ∩ Ẽẽ:

(c0; d̃, a1, b0)↦ (a1; b1, c0, d̃
−1).

Inverting the identification and shifting m by 1 (i.e. applying the sym-

metry ρ̃−1) we obtain the following gluings for the face Ẽa0 ∩ Ẽẽ:

(a0; b0, c−1, d̃
−1)↦ (c−1; d̃, a0, b−1).
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4. The face Ẽd̃ ∩ Ẽẽ:

We still need to look at the top face Ẽd̃ ∩ Ẽẽ. We are going to write d̃

as a product g̃1 ⋅ g̃2 with g̃−1
1 ∈ Γ̃1, g̃2 ∈ Γ̃2:

d̃ = (d̃1)
−2λp+1

3 (d̃2)2λ = g̃1g̃2.

We consider the action of (g̃−1
1 , g̃2) ∈ Γ̃1 × Γ̃2 on G̃ by x ↦ g̃−1

1 xg̃2 on

G̃ by x ↦ g̃−1
1 xg̃−1

2 . Therefore, in order to obtain the image of the top

face Ẽd̃ ∩ Ẽẽ, we compute

d̃↦ g̃−1
1 d̃g̃−1

2 = d̃
2λp−1

3
1 d̃d̃−2λ

2 = d̃2λp−1d̃d̃−2λp = ẽ.

So, Ẽd̃ ↦ Ẽẽ. We now need to look at the image of ẽ:

ẽ↦ g̃−1
1 ẽg̃−1

2 = d̃
2λp−1

3
1 ẽd̃−2λ

2 = d̃2λp−1d̃−2λp = d̃−1.

So, Ẽẽ ↦ Ẽd̃−1 . Hence,

The face in Ẽd̃ is glued to the face in Ẽd̃−1 .

We will now consider the edge gluings:

(a) Ẽd̃ ∩ Ẽẽ ∩ Ẽc0 :

c0 ↦ g̃−1
1 c0g̃

−1
2 = d̃

2λp−1
3

1 (r̃4
v d̃

2λpc
−2(λk+2)

3 )d̃−2λ
2

= d̃2λp−1r̃4
vc

−2(λk+2)
3 .

On the other hand we obtain using Proposition 60 that

bp+1 = ρ̃(bp) = ρ̃(d̃λp+1r̃2
vc

−λk+2
3 )

= d̃(λp+1)+(λp−2)r̃4
vc

−λk+2
3

−λk+2
3

= d̃2λp−1r̃4
vc

−2(λk+2)
3 .
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So,

Ẽd̃ ∩ Ẽẽ ∩ Ẽc0 ↦ Ẽd̃−1 ∩ Ẽẽ ∩ Ẽbp+1 .

Hence,

The edge (d̃; c0) is glued to the edge (d̃−1; bp+1).

Note that we can compute similarly that

ap+1 = d̃2λp−1r̃4
v d̃

−1c
−2(λk+2)

3 ,

cp+1 = d̃2λp−1r̃4
v d̃c

−2(λk+2)
3 .

(b) Ẽd̃ ∩ Ẽẽ ∩ Ẽb0 :

b0 ↦ g̃−1
1 b0g̃

−1
2 = d̃

2λp−1
3

1 (r̃4
v d̃

2λp−1c
−2(λk+2)

3 ) d̃−2λ
2

= d̃2λp−1r̃4
v d̃

−1c
−2(λk+2)

3 = ap+1.

So,

Ẽd̃ ∩ Ẽẽ ∩ Ẽb0 ↦ Ẽd̃−1 ∩ Ẽẽ ∩ Ẽap+1 .

Hence,

The edge (d̃; b0) is glued to the edge (d̃−1;ap+1).

Applying the symmetry ρ̃ we obtain that:

(d̃; bm) ↦ (d̃−1;am+p+1),

(d̃; cm) ↦ (d̃−1; bm+p+1).

5. The face Ẽd̃−1 ∩ Ẽẽ:
We obtained the gluing of the edges of Ẽd̃ ∩ Ẽẽ.

Hence, by inverting the identifications and shifting m by p+1 we obtain:

(a) The edge (d̃−1; bm) is glued with the edge (d̃−1; cm−p−1),
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(b) The edge (d̃−1;am) is glued with the edge (d̃−1; bm−p−1).

Now, we are going to find the edge cycles for P . We have determined the

identifications of the faces and edges of P :

(d̃; c0) ↦ (d̃−1; bp+1),

(d̃; b0) ↦ (d̃−1;ap+1),

(c0; d̃, a1, b0) ↦ (a1; b1, c0, d̃
−1),

(b0; d̃, c0, d̃
−1, a0) ↦ (bp; cp, d̃, ap, d̃−1),

(a0; b0, d̃
−1, c−1) ↦ (c−1; d̃, b−1, a0).

So, under the symmetrie ρ̃ we have:

ρ̃(am) = am+1, ρ̃(bm) = bm+1, ρ̃(d̃) = d̃.

We obtain the following face and edge identifications:

(d̃; cm) ↦ (d̃−1; bm+p+1),

(d̃; bm) ↦ (d̃−1;am+p+1),

(cm; d̃, am+1, bm) ↦ (am+1; bm+1, cm, d̃
−1),

(bm; d̃, cm, d̃
−1, am) ↦ (bm+p; cm+p, d̃, am+p, d̃−1),

(am; bm, d̃
−1, cm−1) ↦ (cm−1; d̃, bm−1, am).

We work out the edge cycles using the identifications and the combina-

torics of the faces:

(cm; d̃)↦ (bm+1;am+1)↦ (d̃−1; bm+p+1),

(cm; bm)↦ (d̃−1;am+1)↦ (bm−p; d̃),

(cm;am+1)↺,

compare with figure 5.18.
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Figure 5.18: The surface of P for Γ̃(2k + 3,3,3)k × (C3)k .
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Now, we can apply Theorem 49 and we obtain the following result:

Theorem 83. We have

Fẽ = P.

Proof. Theorem 49 implies that Ψ(P ) is a fundamental domain for Γ̃1 ×
Γ̃2. Moreover, we will show that the fundamental domains Ψ(P ) and Fẽ

coincide. Proposition 48 implies that FΓ̃1(u)∖{u} = FE = Fẽ. We know that

P = Cl Int(P ) and Fẽ = Cl Int(FE). We also know that P ⊂ FE . This all

implies that P ⊂ Fẽ and hence

Fẽ = P

Figures of Fundamental Domains for Γ̃(2k + 3,3,3)k × (C3)k

Figure 5.19: Fundamental Domain
for Γ̃(7,3,3)2 × (C3)2.

Figure 5.20: Fundamental Domain
for Γ̃(11,3,3)4 × (C3)4.
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Figure 5.21: Fundamental Domain
for Γ̃(13,3,3)5 × (C3)5.

Figure 5.22: Fundamental Domain
for Γ̃(17,3,3)7 × (C3)7.

Figure 5.23: Fundamental Domain
for Γ̃(19,3,3)8 × (C3)8.

Figure 5.24: Fundamental Domain
for Γ̃(23,3,3)10 × (C3)10.
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Chapter 6

On the link space of a

Q-Gorenstein

quasi-homogeneous surface

singularity

In this chapter we are going to look at our motivation for computing the

fundamental domains for the groups Γ̃1 × Γ̃2. Milnor [10] studied the link

spaces of isolated singularities. Dolgachev [6] proved that the link space

of a Gorenstein quasihomogeneous surface singularity is diffeomorphic to

a quotient Γ̃1/G̃. After that, Pratoussevitch [16] generalised the result of

Dolgachev and proved the link space of a Q-Gorenstein quasi-homogeneous

surface singularity is diffeomorphic to a biquotient Γ̃1 Ó G̃Ò Γ̃2.

6.1 Basic concepts

We are going to recall the basic concepts of singularity theory.

Definition 84. We consider the space Cn with fixed coordinates x1,⋯, xn. A

holomorphic function f ∶ (Cn,0)→ (C,0) is said to be quasihomogeneous of

degree d with indices α1,⋯, αn, if for any λ > 0 we have

f(λα1x1,⋯, λαnxn) = λdf(x1,⋯, xn).

The index αs is also called the weight of the variable xs.
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In terms of the Taylor series f = ∑ fkxk the condition of quasihomogene-

ity of degree 1 means that all the indices (k1,⋯, kn) of the non-zero terms

f(k1,⋯, kn)xk1a ⋯xknn of the series lie on a hyperplane

γ = {K ∶ α1k1 +⋯ + αnkn = 1}.

Recall the definitions of a Gorenstein singularity and a Q-Gorenstein

singularity:

Definition 85. A normal isolated singularity of dimension n is Gorenstein

if and only if there exists a nowhere vanishing n−form on a punctured neigh-

bourhood of the singular point. For example all isolated singularities of com-

plete intersections are Gorenstein.

A natural generalisation of Gorenstein singularities are the Q-Gorenstein

singularities.

Definition 86. A normal isolated singularity of dimension at least 2 is Q-

Gorenstein if there is a natural number r such that the divisor r ⋅KX is defined

on a punctured neighbourhood of the singular point by a function. Here KX
is the canonical divisor of X.

The smallest such number r is called the index of the singularity. A

normal isolated singularity is Gorenstein if and only if it is Q-Gorenstein of

index 1.

6.2 On the link spaces of Gorenstein and Q-Gorenstein

quasi-homogeneous surface singularities

Now we are going to look at the definition of the link space of a singularity.

As we mentioned, Milnor studied the topology of the link spaces of isolated

singularities. We consider the following:

Let f(z1,⋯, zn+1) be a non-constant polynomial in n + 1 complex variables,

and let V be the algebraic set consisting of all (n+1)−tuples Z = (z1,⋯, zn+1)
of complex number with f(Z) = 0. (Such a set called a complex hypersur-

face.) Let K = V ∩ Sε be the intersection of the hypersurface V with the

small sphere Sε centered at the given point Z0. Now we are going to state

the result introduced by Milnor [10].
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Theorem 87. For a small ε > 0 the intersection of V with the ball Dε of

radius ε is homeomorphic to the cone over K = V ∩ Sε. In fact the pair

(Dε, V ∩ Dε) is homeomorphic to the pair consisting of the cone over Sε

and the cone over K. The space K = V ∩ Sε for sufficiently small ε is the

link space of V .

Here, by the cone over K, denoted Cone (K), we mean the union of all line

segments tk + (1− t)x0, 0 ≤ t ≤ 1, joining a point k ∈K to the base point x0.

The set Cone (Sε), defined similarly, is of course precisely equal to Dε.

After we looked at the topology of the link space of singularities, we recall

the result of Dolgachev [6].

Theorem 88. Let (X,0) be a hyperbolic Gorenstein quasi-homogeneous sur-

face singularity and M be its link space. Then M is diffeomorphic to a quo-

tient Γ̃1/G̃, where G̃ is the universal cover ̃PSU(1,1) of the 3-dimensional

Lie group PSU(1,1), while Γ̃1 is a discrete subgroup of finite level in G̃.

Conversely, if M is the link space of a normal quasi-homogeneous surface

singularity and M is diffeomorphic to a quotient as above, then M is the link

space of a hyperbolic Gorenstein quasi-homogeneous surface singularity.

Pratoussevitch [16] generalised the result of Dolgachev as follows:

Theorem 89. The link space of a hyperbolic Q-Gorenstein quasi-homogeneous

surface singularity of index r is diffeomorphic to a biquotient

Γ̃1/G̃/Γ̃2,

where G̃ is the universal cover ̃PSU(1,1) of the 3-dimensional Lie group

PSU(1,1), while Γ̃1 and Γ̃2 are discrete subgroups of the same finite level m

in G̃, Γ̃1 is co-compact, and the image of Γ̃2 is a cyclic subgroup of order r.

Conversely, any biquotient as above is diffeomorphic to the link space of a

quasi-homogeneous hyperbolic Q-Gorenstein singularity.

Our motivation for choosing the discrete subgroup Γ̃1 is that it corre-

sponds to some singularities in the series E and Z according to the classi-

fication by V.I.Arnold. We listed in the table below the normal form, level

and signature of the image in PSU(1,1) for those subgroup of ̃PSU(1,1). For

more details see [1] ,[4], [5] and [15].
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Type normal form Restriction Level k Signature

E6j+2 x3 + y3j+2 + axy2j+2 j ≥ 2,
j is even

((6j + 2) − 10)/4 (0,k+3,3,3)

E6j x3 + y3j+1 + axy2j+1 j ≥ 3,
j is odd

((6j) − 10)/4 (0,k+3,3,3)

Z12j+6i+1 x3 + bxy2j+2i+2 + y3j+3i+2
j ≥ 1,
i ≥ 0,

i is even
((12j + 6i + 1) − 9)/4 (0,2k+3,3,3)

Z12j+6i−1 x3 + bxy2j+2i+1 + y3j+3i+1
j ≥ 1,
i ≥ 1,
i is odd

((12j + 6i − 1) − 9)/4 (0,2k+3,3,3)

Table 6.1: The normal form for Γ̃1.
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Chapter 7

Conclusion

In this thesis we have computed the fundamental domains for two series of

groups of the form Γ̃1×Γ̃2 acting on G̃ by left-right multiplication, i.e. (g, h) ⋅
x = gxh−1, where Γ̃1 is a discrete subgroup of G̃ of the form Γ̃(p,3,3)k, p =
kl + 3, l = 1,2 and Γ̃2 is a cyclic discrete subgroup of G̃ of order 3. We can

see clearly from figures 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 that the series of

the form Γ̃1 × Γ̃2 = Γ̃(k + 3,3,3)k × (C3)k has similar fundamental domains.

Similarly, from figures 5.19, 5.20, 5.21, 5.22, 5.23 and 5.24 we see that the

series of the form Γ̃1 × Γ̃2 = Γ̃(2k + 3,3,3)k × (C3)k has similar fundamental

domains. Note that while Γ̃1 in all these cases are triangle groups Γ̃(p, q, r)k,
the combinatorics of fundamental domains for Γ̃1 = Γ̃(k + 3,3,3)k and Γ̃1 =
Γ̃(2k+3,3,3)k is different. Hence the combinatorics of fundamental domains

computed here shows the structure of these groups which does not show in

their fundamental domains in the hyperbolic plane. Clearly there is plenty

of scope for future research. There are other infinite series of possible cases

to study, for example the fundamental domains for the series of the form

Γ̃1 × Γ̃2 = Γ̃(p,3,2)k × (C3)k and Γ̃1 × Γ̃2 = Γ̃(p,4,2)k × (C3)k. We also can

consider the case where Γ̃2 is a cyclic group of order 5 or 7.
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Chapter 8

Appendix

This appendix is taken from [15].

In this appendix we shall collect all the formulae and facts of the Euclidean

and hyperbolic trigonometry, linear algebra and analytic geometry which we

often use in computations.

8.1 Trigonometry

sin2 x + cos2 x = 1 (8.1)

sin(x ± y) = sinx cos y ± sin y cosx

cos(x ± y) = cosx cos y ∓ sinx sin y

tan(x ± y) = tanx ± tan y

1 ∓ tanx tan y
(8.2)

sinx ± tan y cosx = sin(x ± y)
cos y

cosx ± cot y sinx = sin(y ± x)
sin y (8.3)
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sin 2x = 2 sinx cosx

cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x

tan 2x = 2 tanx

1 − tan2 x

tan
x

2
= 1 − cosx

sinx
= sinx

1 + cosx
(8.4)

sin 3x = 3 sinx − 4 sin3 x = sinx(2 cos 2x + 1)

= sinx(3 − 4 sin2 x) = sinx(4 cos2 x − 1)

cos 3x = 4 cos3 x − 3 cosx = cosx(2 cos 2x − 1)

= cosx(4 cos2 x − 3) = cosx(1 − 4 sin2 x) (8.5)

sinx sin y = 1

2
(cos(x − y) − cos(x + y))

cosx cos y = 1

2
(cos(x − y) + cos(x + y))

sinx cos y = 1

2
(sin(x − y) + sin(x + y)) (8.6)

sinx + sin y = 2 sin
x + y

2
cos

x − y
2

sinx − sin y = 2 sin
x − y

2
cos

x + y
2

cosx + cos y = 2 cos
x − y

2
cos

x + y
2

cosx − cos y = −2 sin
x + y

2
sin

x − y
2

(8.7)

sin(π
4
− x) = 1√

2
⋅ (cosx − sinx)

cos(π
4
− x) = 1√

2
⋅ (sinx + cosx)

sin2 (π
4
− x) = 1

2
⋅ (1 − sin 2x)

cos2 (π
4
− x) = 1

2
⋅ (1 + sin 2x) (8.8)
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tan(π
4
− x) = 1 − tanx

1 + tanx
= 1 − sin 2x

cos 2x
= cos 2x

1 + sin 2x
(8.9)

8.2 Hyperbolic trigonometry

cosh2 x − sinh2 x = 1

sinhx =
√

cosh2 x − 1

coshx =
√

sinh2 x + 1 for x > 0 (8.10)

sinh 2x = 2 sinhx coshx

cosh 2x = sinh2 x + cosh2 x = 2 cosh2 x − 1 = 2 sinh2 x + 1 (8.11)

sinh
x

2
=
√

coshx − 1

2

cosh
x

2
=
√

coshx + 1

2

tanh
x

2
=
√

coshx − 1

coshx + 1
for x > 0 (8.12)

sinh2 x = tanh2 x

1 − tanh2 x

cosh2 x = 1

1 − tanh2 x

tanh2 x = 1 − 1

cosh2 x

coth2 x = cosh2 x

cosh2 x − 1
(8.13)

8.3 Formulae for hyperbolic triangles

sinha

sinα
= sinh b

sinβ
= sinh c

sinγ
(8.14)
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Figure 8.1: Hyperbolic triangle.

cosh c = cosα cosβ + cosγ

sinα sinβ
(8.15)

cosh c = cosha cosh b − sinha sinh b cosγ (8.16)

8.4 Data of the triangle ∆(p1, q, r)

∆(p1, q, r) is the hyperbolic triangle with vertices u, v,w ∈ D and angles

αu =
π

p1
, αv =

π

q
and αw = π

r
.

The lengths of the sides `v = ρ(u, v), `w = ρ(u,w) and `vw = ρ(v,w) can be

computed from the angles using Formula (8.15).

In the case Γ̃1 = Γ̃(p1,3,3) we have

cosh `v =
1√
3
⋅ cotα, sinh `v =

1√
3
⋅

√
cos 3α

sinα
√

cosα
, tanh `v =

√
cos 3α

cosα
√

cosα
,

where α = π
p1

.
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8.5 Hyperbolic geometry

Let ρ be the hyperbolic and d the Euclidean metric on D. Let a, b ∈ D, then

d2(a, b) = coshρ(0, a) − 1

coshρ(0, a) + 1
+ coshρ(0, b) − 1

coshρ(0, b) + 1

− 2 ⋅ coshρ(0, a) coshρ(0, b) − coshρ(a, b)
sinhρ(0, a) sinhρ(0, b)

⋅

¿
ÁÁÀ(coshρ(0, a) − 1)(coshρ(0, b) − 1)

(coshρ(0, a) + 1)(coshρ(0, b) + 1)
(8.17)

d(a, b) =
√

2(coshρ(a, b) − 1)
coshρ(0, a) + 1

, if ρ(0, a) = ρ(0, b) (8.18)

coshρ(0, a) = 1 + ∣a∣2

1 − ∣a∣2
, ∣ sinhρ(0, a)∣ = 2∣a∣

1 − ∣a∣2
, ∣a∣2 = coshρ(0, a) − 1

coshρ(0, a) + 1

(8.19)

8.6 Analytic geometry

Proposition 90. Let us consider two lines and a closed halfplane H in R2

given by the equations/inequalities

a1x + b1y = c1,

a2x + b2y = c2,

a3x + b3y ≤ c3.

Let

δ =
RRRRRRRRRRR

a1 b1

a2 b2

RRRRRRRRRRR
, ∆ =

RRRRRRRRRRRRRRRRR

a1 b1 c1

a2 b2 c2

a3 b3 c3

RRRRRRRRRRRRRRRRR

.
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We assume that δ ≠ 0, i.e. the two lines intersect each other in exactly one

point, say p. Then

p ∈ IntH ⇐⇒ δ ⋅∆ > 0,

p ∉H ⇐⇒ δ ⋅∆ < 0,

p ∈ ∂H ⇐⇒ ∆ = 0.

Corollary 91. We consider three lines in R2 given by the equations

a1x + b1y = c1,

a2x + b2y = c2,

a3x + b3y = c3.

Let

δ =
RRRRRRRRRRR

a1 b1

a2 b2

RRRRRRRRRRR
, ∆ =

RRRRRRRRRRRRRRRRR

a1 b1 c1

a2 b2 c2

a3 b3 c3

RRRRRRRRRRRRRRRRR

.

We assume that δ ≠ 0, i.e. the first two lines intersect each other in exactly

one point, say p. Then all three lines meet at one point if and only if ∆ = 0.

Proposition 92. Let z = (z1, z2) be the coordinates in C ≅ R2. We consider

the halfplanes H+ and H− in C given by the inequalities

z ∈H−⇔ z1 sinx + z2 cosx ≥ c,

z ∈H+⇔ z1 sin y + z2 cos y ≥ c,

then the bisector of the sector H− ∩H+ is given by the equation

(sinx − sin y)z1 + (cosx − cos y)z2 = 0

and hence contains the origin 0.
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