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Abstract 

The selective hydrogenation and dehydrogenation of organic molecules is a 

fundamentally challenging and an attractive transformation for both, industry and 

academia. However, catalysts capable of undergoing both transformations under 

environmentally benign conditions are rare. In this thesis, our contribution to the 

development of a “universal” catalyst capable of achieving both hydrogenation and 

dehydrogenation of a wide range of organic compounds under mild conditions is 

presented.  

A general introduction covering the recent developments in the area of transfer 

hydrogenation of C=X (X = O, N) bonds, relevant applications of cyclometalated 

half-sandwich complexes and previous work in the area developed within our group 

is described in Chapter 1. In Chapter 2, Cyclometalated iridium complexes are 

shown to be highly efficient and chemoselective catalysts for the transfer 

hydrogenation of a wide range of carbonyl groups with formic acid in water. 

Examples include α-substituted ketones (α-ether, α-halo, α-hydroxy, α-amino, α-

nitrile, α-ester), α-keto esters, β-keto esters, and α,β-unsaturated aldehydes. The 

reduction was carried out at substrate/catalyst ratios of up to 50000 at pH 4.5, 

requiring no organic solvent. The protocol provides a practical, easy and efficient 

way for the synthesis of β-functionalised secondary alcohols, such as β-

hydroxyethers, β-hydroxyamines and β-hydroxyhalo compounds, which are valuable 

intermediates in pharmaceutical, fine chemical, perfume and agrochemical synthesis. 

In Chapter 3, the cyclometalated iridium complexes are shown to catalyse the 

transfer hydrogenation of various nitrogen heterocycles, including but not limited to 

quinolines, isoquinolines, indoles and pyridiniums, in aqueous solution under mild 
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conditions. The catalyst shows excellent functional group compatibility and high 

turnover number (up to 7500), with loading as low as 0.01% being feasible. 

In Chapter 4, cyclometalated iridium complexes are found to be versatile catalysts 

for the direct reductive amination of carbonyls to give primary amines under transfer 

hydrogenation conditions with ammonium formate as both the nitrogen and 

hydrogen source. The activity and chemoselectivity of the catalyst towards primary 

amines is excellent, with a substrate to catalyst ratio of 1000 being feasible. Both 

aromatic and aliphatic primary amines were obtained in high yields. Moreover, a 

first example of a homogeneously catalysed transfer hydrogenative direct reductive 

amination (DRA) has been achieved for -keto ethers, leading to the corresponding 

-amino ethers. In addition, non-natural -amino acids could also be obtained in 

excellent yields with this method. 

Following the success of hydrogenation, cyclometalated iridium complexes were 

also found to be versatile catalysts for the oxidant-free, acceptorless dehydrogenation 

of various N-heterocycles, including tetrahydroquinolines, tetrahydroisoquinolines, 

tetrahydroquinoxalines and indolines. This protocol was also successfully applied to 

the total synthesis of alkaloids as presented in Chapter 5. 

Chapter 6 describes the development of a new strategy for the oxidant- and base-free 

dehydrogenative coupling of N-heterocycles at mild conditions. Under the action of 

an iridium cyclometalated catalyst, N-heterocycles undergo multiple sp
3
 C-H 

activation, generating a nucleophilic enamine that reacts in situ with various 

electrophiles to give highly functionalised products. The dehydrogenative coupling 

can be cascaded with Friedel-Crafts addition, resulting in double functionalisation of 

the N-heterocycles. The dehydrogenation products could also be saturated under 
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either hydrogenation or transfer hydrogenation conditions, giving rise to structurally 

diverse products. 

Final conclusion and perspectives of the research covered in this PhD thesis are 

presented in Chapter 7. 
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1.1 Introduction 

The reduction of C=X (X = O, N) bonds is one of the most important 

transformations in both academia and industry.
[1]

 The resulting products, alcohols 

and amines, are both important intermediates in fine chemicals, agrochemicals, 

pharmaceuticals and advanced material synthesis.
[2]

 In fact, these functional groups 

are present in numerous bioactive molecules and natural products (Scheme 1.1).
[3,4]

 

 

Scheme 1.1: Representative examples of bioactive molecules containing alcohol and amine moiety. 

Such reactions are typically performed with a stoichiometric reducing agent such as 

metal hydrides based on boron or aluminium. Since their discovery both LiAlH4 and 

NaBH4 have been the choice of reducing agents for the carbonyl reduction.
[5]

  They 

have been routinely implemented in the pharmaceutical industry with numerous 

applications due to their robustness and reliability.
[6]

 NaBH4 is cheaper and tolerates 

more functional groups (i.e. esters, amides, nitriles) than LiAlH4; thus it is the 

preferred reagent on large scale synthesis.
[7]

 However, for the reductive amination 

(RA), NaBH(OAc)3 is preferred as it is more selective than NaBH4.
[8,9]

 

NaBH(OAc)3, at pH 5-6, reduces imines but not ketones whereas NaBH4 reduces 

both imines and ketones. Although these metal hydrides are robust, the 

stoichiometric inorganic waste that is generated after the work up is an 

environmental concern, especially in industrial or scale up processes. Work up also 
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includes an aqueous quench, sometimes acidic to destroy the residual borohydride. 

This process is exothermic and evolves hydrogen gas that raises safety issues.
[10]

 

Thus other reduction systems have been developed as greener alternatives, which are 

catalytic and encourage waste minimisation.
[11]

 These include biocatalytic
[12]

 and 

organocatalytic
[13]

 systems, but heterogeneous and homogeneous catalysts based on 

transition metals are the most promising and widely studied systems.
[14,15]

 

Heterogeneous catalysts are widely applied to the reduction of carbonyl and imino 

bonds; however these catalysts are beyond the scope of this chapter and have been 

highlighted in excellent reviews.
[15,16]

 Homogeneous catalysts, depending on the 

hydride source used, can be divided into two categories:  

 Metal catalysed hydrogenation where H2 gas is used as the hydrogen source.  

 Metal catalysed transfer hydrogenation where hydride source other than H2 is 

used (typically HCO2H or 
i
PrOH).  

The latter is more desirable as it circumvents the use of potentially explosive H2 and 

the handling of high pressure reactors.
[17]

 Moreover, hydrogen sources such as 

formates and 
i
PrOH are cheap, air stable, easy to handle and do not require any 

specialised equipments to conduct reactions.
[18]

 Thus this chapter will focus on 

advances in homogeneous transition metal catalysed transfer hydrogenation (TH) of 

C=X (X = O, N) bonds. 

1.2 TH of ketones in organic media 

The first TH of carbonyls to alcohols was reported in 1925, known as Meerwein-

Ponndorf-Verley (MPV) reduction.
[19]

 The reaction proceeds via a six-membered 

transition state, where a hydride from an α carbon of the alcohol is transferred to the 
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carbonyl (Scheme 1.2).
[20]

 The reaction is catalysed by Al(O
i
Pr)3 and the reverse of 

such reaction is known as Oppenauer oxidation (OPP).
[19,20]

  

 

Scheme 1.2: Meerwein-Ponndorf-Verley (MPV) reduction. 

Since then, much attention was devoted to the development of heterogeneous 

catalysis based on various transition metals. However the homogeneous catalysts for 

TH of ketones did not gain much attention until the early 1980’s, when ruthenium 

complexes were shown to catalyse the dehydrogenation of alcohols.
[2]

 It was also 

reported that the addition of a base such as NaOH significantly improved the 

dehydrogenation of alcohols. Thus, Bäckvall and co-workers reported that 

[RuCl2(PPh3)3] could catalyse the TH of ketones in 
i
PrOH using catalytic amounts of 

NaOH under mild conditions (82 °C).
[21]

 The yields obtained were moderate and no 

reduction proceeded in the absence of NaOH (Scheme 1.3). These results however 

presented a significant improvement when using 
i
PrOH as a hydride source, as the 

earlier examples reported with Ru required elevated temperatures (150-200 °C).
[21]

 

When 
i
PrOH is used as the hydrogen source, the equilibrium involving the 

i
PrOH 

and acetone sets a limit to the conversion of ketones. Therefore, to achieve useful 

conversions the reaction is usually carried out in large excess of 
i
PrOH (low 

substrate concentration of about 0.1 M) or by removal of acetone from the reaction 

mixture in situ.
[2]
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Scheme 1.3: TH of ketones catalysed by [RuCl2(PPh3)3] in 
i
PrOH. 

Highly active catalysts for the TH of ketones started emerging by the end of 1990’s, 

prior to that the reaction rate and the productivity of the catalysts were low.  Van 

Koten and co-workers reported the Ru(II) pincer complexes containing a terdentate 

bis(phosphanyl)aryl (PCP) ligand (Scheme 1.4).
[22]

 TOFs of up to 10000 h
-1

 were 

achieved for the TH of cyclohexanone using just 0.01 mol% 1, with KOH as the 

promoter in 
i
PrOH at 82 °C. In contrast, when the cationic variant 2 was used TOFs 

of up to 27000 h
-1

 were achieved. These values were superior to those obtained 

earlier with Ru(II) complexes bearing only monodentate phosphane ligands, such as 

[RuCl2(PPh3)3].
[21]

 The reaction only proceeded under inert atmosphere and a low 

KOH concentration was necessary to inhibit the side aldol products.  

 

Scheme 1.4: Pincer-type Ru(II) complexes containing terdentate PCP ligands. 

In addition, Barrata and co-workers independently prepared a diverse series of 

cyclometalated Ru(II) complexes (Scheme 1.5), and subsequently applied them to 

the TH of ketones in 
i
PrOH under basic conditions.

[23,24]
 Complex 3, containing a 
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bidentate ethylendiamine coligand at 0.1 mol% loading, was found to transfer-

hydrogenate acetophenone in quantitative yields in 30 min, using NaOH as a base in 

i
PrOH. Remarkably, considerable rate acceleration was observed when 

ethylendiamine coligand was replaced with 1-(pyridin-2-yl)methanamine (Pyme); 

the same reaction finished in only 5 min using only 0.05 mol % 4 with TOF reaching 

up to 60000 h
-1

. However, when the analogous 2-(pyridine-2-yl)ethanamine was 

used as coligand instead of Pyme, this resulted in much less active reduction (TOF 

4000 h
-1

),
[23]

 suggesting that the Pyme coligand is essential for the catalytic activity. 

Their system was also applicable on a gram scale as demonstrated by the TH of 

benzophenone with 0.01 mol% catalyst loading (90% isolated yield of 

benzhydrol).
[23]

  

 

Scheme 1.5: Series of diverse cyclometalated Ru(II) complexes and their activity in TH of ketones. 
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Subsequently, the cyclometalated carbene Pyme and terdentate CNN ruthenium 

complexes 5 and 6 were reported (Scheme 1.5).
[24,25]

 Complex 5 is highly efficient in 

the reduction of numerous ketones, including alkyl and dialkyl ketones with TOF up 

to 1.2 x 10
5
 h

-1
 using 0.05 mol% catalyst.

[24]
 This high activity could be ascribed to 

the relative strong bonding of the carbene ligand. Complex 6 is also highly robust. 

For example at an S/C ratio of 20000:1, 1-phenylethanol was quantitatively obtained 

within 5 min of TH of acetophenone with a remarkable TOF of up to 1.1 x 10
6
 h

-1
 in 

i
PrOH.

[25]
 Addition of further amounts of acetophenone into the reaction mixture 

also resulted in complete reduction, showing the high catalytic activity of the 

catalyst. This TH was also demonstrated on a gram scale at S/C of 100000:1. The 

high catalytic activity is probably due to the role of the NH2 group in assisting the 

TH of ketone. The NH2 group offers metal-ligand bifunctionality; thus when it was 

replaced with NMe2 group the activity decreased. Rigid framework built by the CNN 

ligand together with chelating diphosphine retarded the deactivation of catalyst.
[25]

  

Complexes based on iridium and rhodium are also known to be effective for the TH 

of ketones by 
i
PrOH.

[26-34]
 Inspired by the seminal work of Bianchini on Ir 

complexes featuring aminodiphosphine ligands,
[26]

 Rashid and co-workers developed 

the bifunctional pincer complex 7.
[27]

 Indeed, complex 7 was found to be highly 

active for the TH of ketones in the absence of a base in 
i
PrOH, with acetophenone 

being converted into the corresponding alcohol using only 0.001 mol% catalyst 

loading (Scheme 1.6). The high activity of this complex was due to the availability 

of the hydrogen on the nitrogen donor, which plays an important role for the 

reactivity with concerted hydrogen transfer from both NH and Ir-H to the ketone.
[27]

 

Earlier Bianchini and co-workers had reported similar aminodiphosphine ligands 

with a NR moiety (where R represents an alkyl substituent) instead of an NH; 
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however the catalytic performance was much lower, highlighting the importance of 

NH.
[26,27]

  

 

Scheme 1.6: Iridium catalysed TH of ketones. 

Nolan and co-workers reported the use of cationic Ir(I) mono-carbene complex 8 for 

the TH of ketones.
[28]

 This catalyst is analogous to Crabtree’s [Ir(cod)(py)(PCy3)]PF6 

hydrogenation catalyst.
[29]

 Complex 8 catalysed the reduction of simple ketones 

using 
i
PrOH/KOH under reflux, with a low catalyst loading and short reaction times 

(Scheme 1.7). The same catalyst also exhibits activity toward the reduction of C=C 

bond and NO2 group. Consequently, Crabtree and co-workers developed a series of 

bis(N-heterocyclic carbene) complexes based on Rh(III)
[30]

 and Ir(III)
[31]

 that are air 

and moisture stable. The two carbene moieties were linked by a methylene bridge. 

The stability of the complexes was attributed to the chelate effect of the bis-carbene 

that resists degradation under catalytic conditions. Ir(III) complexes were much more 

active than their Rh(III) counterparts for the TH of ketones. The catalytic activity 

was highly influenced by the nature of the R group on the carbene (Scheme 1.8).
[31]

 

For example when complex 9a (R = Me) was used for the TH of benzophenone in 

i
PrOH under reflux condition, the corresponding alcohol was achieved in 98% 

conversion after 90 min with a TOF of up to 2000 h
-1

. In contrast, when 9c (R = 

neopentyl) was used under the same condition, the reaction was completed in only 4 

min with a TOF of up to 50000 h
-1

 being achieved at 50% conversion. With complex 
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9b (R = Bn) the reaction was much slower (98% conversion in 20 h), however. The 

activity of these bis-carbene complexes is significantly higher than that observed for 

related mono-carbene complex 8.
[28]

  

 

Scheme 1.7: TH of simple ketones catalysed by [Ir(cod)(py)ICy]PF6 in 
i
PrOH. 

 

Scheme 1.8: TH of ketones with Ir and Rh bis(N-heterocyclic carbene) complexes. 

Among the half-sandwich Ir(III) NHC complexes, complex 11, reported by Peris and 

co-workers is an interesting catalyst.
[32]

 The Cp* is tethered to the NHC leaving the 

complex with two possible vacant coordination sites. Thus, complex 11 was found to 

be much more active than its analogous complex 12,
[33]

 providing the reduction of a 

range of ketones at low catalyst loading (0.1 mol% compared with 1 mol% when 

using 12). Rh(III) CNC pincer complex 13, with two NHC donor moieties, was also 

reported to be active for TH of cyclohexanone, acetophenone and benzophenone 

with low catalyst loadings (Scheme 1.9).
[34]
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Scheme 1.9: TH of ketones with Ir half-sandwich NHC complexes and Rh-CNC complex. 

Three main pathways have been proposed for the metal catalysed TH between 

alcohols (
i
PrOH) and ketones (Scheme 1.10);

[35]
  

 Pathway A involves direct hydrogen transfer where simultaneous hydride 

transfer takes place between the alkoxide and ketone, while both are coordinated 

to the metal centre. A typical example that follows such pathway is Meerwein-

Ponndorf-Verley reduction.  

 Pathway B is a typical example of metal-ligand bifunctional catalyst such as 7, 

where the metal hydride transfers one hydrogen atom to the carbon of C=O bond, 

while the acidic amine provides the second hydrogen atom to the oxygen, usually 

via six membered transition state.  

 Meanwhile in pathway C once the metal hydride species is formed the reaction 

proceeds by the coordination of ketone to the metal and then the hydride transfer 

takes place. Complex 9 follows this pathway as suggested by Crabtree and co-

workers.  
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Scheme 1.10: Reaction pathways proposed for the metal catalysed TH of ketones by 
i
PrOH. 

1.3 TH of ketones in aqueous media 

The TH of carbonyls can also be conducted in an aqueous media using formate salts 

as the hydride source as demonstrated by the seminal work of Sasson and Blum,
[36,37]

 

and later by Joo
[38,39]

 and co-workers in the 1980’s. A number of aromatic aldehydes 

were reduced in moderate to good yields by HCO2Na at 90 °C using RuCl2(PPh3)3 as 

the catalyst. In the case of ketone reduction analogous RhCl(PPh3)3 proved to have a 

higher activity, although a large excess of PPh3 was required for a sufficient 

reaction.
[36]

 Later studies by Joo revealed that the reactions in aqueous media are pH 

dependent.
[39]

 For example in a study using Ru and a water soluble (3-

sulfonatophenyl)diphenylphosphane (m-TPPMS) ligand in excess, TH of 
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cinnamaldehyde at pH 9 resulted in the formation of cinnamyl alcohol exclusively; 

however, at pH 3 the same reaction afforded 3-phenylpropanal as the major product 

(Scheme 1.11).
[39,40]

  

 

Scheme 1.11: Selectivity of the hydrogenation of cinnamaldehyde as a function of pH value. 

The in situ NMR experiments conducted revealed the formation of various Ru(II) 

hydrides; [HRuCl(m-TPPMS)3] and [RuH2(m-TPPMS)4] were the dominant species 

detected in acidic and basic solutions, respectively. [HRuCl(m-TPPMS)2], which is 

formed in acidic solution by the dissociation of phosphine from [HRuCl(m-

TPPMS)3] was reported to be the active species for the selective reduction of C=C 

bond. Conversely, [RuH2(m-TPPMS)4] formed under basic conditions is selective for 

C=O bond reduction (Scheme 1.12).
[39-41]

 The coordinative saturation of [RuH2(m-

TPPMS)4] probably prevents the coordination of C=C bond to the metal centre, but 

allows the reduction of C=O bond by intermolecular nucleophilic hydride transfer. 

 

Scheme 1.12: Formation of Ru-hydride species and their selectivity towards unsaturated bonds. 

Recently, water-soluble half-sandwich Ir(III),
[42]

 Rh(III)
[43]

 and Ru(II)
[44]

 complexes 

have shown to be active in carbonyl TH using HCO2Na or HCO2H (Scheme 1.13). 

For the reduction, the active hydride species is generated in situ from the 

decarboxylation of formate. Ogo and co-workers have reported that Ir complexes 14, 
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15 and 16 are effective for the TH of carbonyls under acidic conditions.
[42,45,46]

 The 

reaction is highly pH dependent and only works in a certain pH interval and is also 

dependent on the catalyst used. For example, in the case of 16 the optimum TOF is 

achieved when the reaction is conducted between pH 2.0-3.0 for both water soluble 

(cyclohexanone) and water insoluble (acetophenone) substrates using HCO2H. The 

reaction is faster because under these acidic conditions the carbonyl groups are 

activated by the protons; hence hydride transfer is easier.
[42,45]

 The formation of the 

active hydride catalyst 16a is also pH dependent, as high concentrations of it are 

only observed between the pH values of 2.0-6.0. Below pH 2.0, the protonation of 

16a occurs with H2 evolution. Above pH 6.0, 16 is predominantly deprotonated to 

form a hydroxo complex 16b that is inactive and hardly reacts with formic acid 

(Scheme 1.14).
[45]

 In comparison, complexes 14 and 15 were less active than 16.
[42,45]

 

The aqua complex 17, a Rh analogue of 14 was also less active.
[46,47]

 In contrast, 

Ru(II) catalyst 18 performed best at the pH of 4.0 with TOF up to 153 h
-1

 being 

achieved.
[44]

 

 

Scheme 1.13: Water-soluble half-sandwich complexes.   
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Scheme 1.14: Species observed at different pH values. 

Some of these complexes can also be used in conjunction with enzymes for the 

enantioselective reduction. Redox enzymes such as alcohol dehydrogenases require a 

cofactor such as nicotinamide adenine dinucleotide hydride (NADH) or nicotinamide 

adenine dinucleotide phosphate hydride (NADPH) as the hydride source. However, 

the in situ regeneration of these cofactors is expensive; thus efforts have been made 

to develop cheaper non-enzymatic regeneration systems. Steckhan and co-workers 

reported the use of half-sandwich [Cp*Rh(bpy)H]
+
 for the regioselective reduction 

of NAD
+
 to 1,4-NADH.

[48]
 The active hydride catalyst [Cp*Rh(bpy)H]

+
, which is an 

analogue of [Cp*Rh(bpy)OH2]
2+

 19, was generated in situ from the decarboxylation 

of HCO2Na. This system was successfully applied for the cofactor regeneration 

process in enzymatic reduction of ketones.
[49]

 Later, Fish and co-workers elucidated 

the mechanism of this important reaction.
[50]

 They proposed that once the hydride 

catalyst is formed, the amide functionality of the NAD
+
 coordinates to the Rh metal 

centre. This coordination site occurs by the ring slippage mechanism of the Cp* ring, 

where the coordination mode of the Cp* changes from 5
 to 3

. Next, the selective 

hydride transfer at C4 of the NAD
+
 occurs via six-membered transition state, which 

simultaneously includes the reversion of the coordination of Cp* from 3
 to 5

. 
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Finally, H2O displaces the NADH and gives the precursor catalyst 19 (Scheme 

1.15).
[50]

  

 

Scheme 1.15: Proposed mechanism for the regioselective, catalytic reduction of NAD
+
 model.   

Inspired by Ogo’s work,
[42-44]

 Süss-Fink and co-workers reported a series of 

complexes containing chelating 1,10-phenanthroline ligands.
[51,52]

 However, the 

activity of these complexes was lower in comparison to bipyridine complexes.
[44]

 For 

example using 18, a TON of 196 was achieved after 4 h at 70 °C for the TH of 

acetophenone using HCO2H, whereas under the same condition a TON of 144 was 

achieved after 48 h when 1,10-phenanthroline ligand was used.
[44,51]

 Subsequently, 

the Rh cationic chlorido complex 20, which was reported by the same group, was 

found to be highly active in the TH of NAD
+
 in aqueous media. TOF of up to 2000 

h
-1

 was obtained using only 0.1 mol% catalyst. It was also compatible for the NADH 

regeneration for the stereoselective TH of ketones with alcohol dehydrogenase 

(Scheme 1.16).
[52]
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Scheme 1.16: Proposed mechanism for the chemoenzymatic ATH of ketones. 

1.4 TH of aldehydes 

Compared to ketones, the TH of aldehydes is less explored. Phosphine ligands have 

been traditionally used on transition metal catalysts for the TH of aldehydes. 

However, their conversions remained moderate.
[53,54]

 Catalytic TH of aldehydes is 

often challenging and several reasons may apply for the low conversion usually 

obtained; 

I. When reduction is carried out in 
i
PrOH under basic conditions, the α-CH group 

to the carbonyl can be deprotonated and lead to the formation of aldol product. 

II. Substrate decarbonylation that may deactivate the catalyst through coordination 

of the resulting carbonyl.   

Crabtree and co-workers have recently reported that NHC ligands, being a stronger 

electron donors, can enhance the reactivity of the transition metal.
[55]

 The Ir-NHC 

complex 21, catalysed the TH of various aldehydes, achieving TOF’s of up to 3000 

h
-1

, in 
i
PrOH (Scheme 1.17). 
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Scheme 1.17: TH of aldehydes by Ir-NHC complex in 
i
PrOH. 

More recently, Baratta and co-workers reported the most efficient system for the TH 

of aldehydes using tridentate CNN ruthenium complex 22.
[56]

 
i
PrOH served as both 

the solvent and hydride donor and a TOF up to 5.0 x 10
5
 h

-1
 was achieved for the 

reduction of benzaldehyde using only a 0.05 mol% catalyst loading (Scheme 1.18). 

The association of a CNN ligand with the bulky diphosphane was considered to 

hinder the substrate decarbonylation. The system was also effective in reducing 

aliphatic aldehydes in high yield.  

 

Scheme 1.18: TH of aldehydes in 
i
PrOH by Ru-CNN complex. 

Xiao and co-workers demonstrated that the TH of aldehydes can be enhanced when 

conducted in aqueous media in an “on water” fashion.
[57]

 The half-sandwich catalyst 

23 was prepared in situ using [Cp*IrCl2]2 and monotosylated ethylenediamine 

ligand. Although the catalyst was insoluble in water, it afforded a TOF of up to 1.3 x 
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10
5
 h

-1
 for the reduction of benzaldehdye in neat water (Scheme 1.19). Interestingly, 

when the same reaction was carried using F/T or 
i
PrOH, only a conversion up to 3% 

was achieved. This system was highly chemoselective towards aldehyde reduction 

when the TH of a substrate containing both an aldehyde and a ketone functionality 

was attempted. Moreover, the catalyst was also chemoselective towards the TH of 

α,β-unsaturated aldehydes giving allylic alcohols in high yields. An ample variety of 

functional groups were tolerated and reduction of aliphatic aldehydes was also 

viable. 

 

Scheme 1.19: TH benzaldehyde in water. 

1.5 ATH of ketones in organic media 

Asymmetric transfer hydrogenation (ATH) of ketones has also been developed in 

both organic and aqueous media. In early studies chiral monophosphine ligands were 

employed for the ATH of ketones, though the enantioselectivities achieved were 

generally low.
[2]

 Pfaltz and co-workers reported that Ir(I) complexes prepared in situ 

from [Ir(COD)Cl2] and tetrahydrobi(oxazoles) 24 can catalyse the reduction of 

ketones with 
i
PrOH under reflux conditions (Scheme 1.20).

[58]
 Alkyl aryl ketones 
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were smoothly reduced giving optically active alcohols in moderate to good 

enantioselectivities, whereas aliphatic substrates were found unreactive. Since then, 

several other chiral systems were developed by Genêt (Ru),
[59]

 Evans (Sm)
[60]

 and 

Lemaire (Rh),
[61]

 although the enantioselectivity was generally lower than 90%.  

 

Scheme 1.20: ATH using tetrahydrobi(oxazole) ligand. 

The pioneering work by Noyori, Ikariya and co-workers in 1995 led to a Ru(II) 

catalyst bearing a N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine (Ts-DPEN) 

ligand, which was found to be highly efficient for the ATH of ketones.
[62]

 The 

enantioselectivities achieved were excellent (>95%), which was a significant 

breakthrough, as for the earlier reported systems the enantioselectivities were 

generally moderate. 
i
PrOH was used as the hydride source and the reaction was 

conducted at room temperature. It was important to run the reaction with a low 

substrate concentration (0.1 M) to achieve high enantioselectivity. At high 

concentration the enantiomeric purity of the chiral product deteriorated due to the 

occurrence of the reverse process originating from the structural similarity of the 

hydrogen donor (
i
PrOH) and product, both secondary alcohols. Subsequently, the 

same group reported that this problem could be avoided by substituting 
i
PrOH with 

F/T azeotrope as the hydrogen source.
[63]

 As a result, the reaction could be conducted 

with much higher substrate concentration (2-10 M) in comparison with the 
i
PrOH 
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reaction (<0.1 M), with almost quantitative yields and excellent enantioselectivities 

(Scheme 1.21).  

 

Scheme 1.21: ATH of acetophenone using Ru-TsDPEN. 

Since its discovery these Noyori-Ikariya type catalysts have found broad applications 

and inspired intense research into ATH. Many ligands have been developed that 

offer metal-ligand bifunctionality, such as bidentate,
[64]

 terdentate
[65]

 and tetradentate 

ligands.
[66]

 Some representative ligands are shown in Scheme 1.22, and their 

applications in the ATH of ketones have been summarised in many reviews.
[2,14,35,67]

   

 

Scheme 1.22: Representative ligands for ATH. 

Catalysts 25 and 34 are also efficient for the ATH of 1,2-diketones, giving the 

corresponding 1,2-diols in high yields and excellent enantioselectivities (up to 99%) 

in the presence of the F/T azeotrope.
[68,69] 

For unsymmetrically substituted 1,2-
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diketones the reduction took place at the less hindered carbonyl group first, and 

further reduction led to anti-1,2-diols. Under the same reaction conditions, racemic 

benzoin was also transformed into chiral diols via dynamic kinetic resolution 

(DKR).
[69]

 ATH of α,β-unsturated ketones to allylic alcohols, and methyl 2-

acylbenzoates to 3-alkylphtalides is also feasible with the same catalyst.
[70,71] 

Using 

the isoelectronic Rh(III) catalyst 35, a series of α-halo ketones, including heteroaryl 

ones, were reduced chemoselectively (Scheme 1.23).
[72]

 These catalysts are much 

more reactive compared with Ru-TsDPEN complexes. For example with an S/C of 

5000 the reduction of α-chloroacetophenone proceeded rapidly to give the 

corresponding chiral alcohol quantitatively with 96% ee (initial TOF, up to 2500h
-1

). 

In contrast, complex 34, which is highly effective for the ATH of simple ketones, 

exhibited no remarkable activity even at a lower S/C of 1000.  

 

Scheme 1.23: Half-sandwich Noyori-Ikariya type catalysts and their reactivity towards ATH of α-

chloroacetophenone. 
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An analogous Ir(III) complex 36 exhibited high reactivity but poor enantioselectivity 

(Scheme 1.23).
[72]

 This remarkable difference in the reactivity could be attributed to 

the electronic properties of the central metals. The chiral halo-hydrins are useful 

intermediates for the synthesis of optically active styrene oxides and aminoethanols 

that serve as building blocks for the synthesis of various pharmaceuticals. The ATH 

is an attractive way to these halo-hydrins and using Noyori-Ikariya type catalysts, the 

reaction has been demonstrated on relatively large scale at Pfizer and Eli Lilly.
[73]

 

Pfeffer and co-workers reported that ruthenacycles generated from [Ru(η
6
-

benzene)Cl2]2 and chiral amines (primary or secondary) are good catalyst precursors 

for the ATH of simple ketones.
[74]

 Enantioselectivities ranging from 38 to 89% were 

achieved for the TH of acetophenone with such catalysts (Scheme 1.24). The main 

advantage is the use of simple commercially available chiral amines that could easily 

be complexed in one step.  

 

Entry Ligand Product yield 

(%) 

ee(%) Configuration 

1 37 79 38 S 

2 38 86 54 S 

3 39 78 30 S 

4 40 96 69 S 

5 41 49 89 R 

Scheme 1.24: Primary and secondary amine ligands for ATH of acetophenone. 

Recently, the Ru(II)Pyme catalysts, which have previously shown good efficiency in 

the achiral TH of ketones, were also explored for asymmetric reduction (Scheme 
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1.25). Baratta and co-workers reported Ru(II) complex 42, bearing a chiral 

phosphine ligand and Pyme, which was found to be highly active for the reduction of 

ketones in 
i
PrOH, affording a TOF of up to 300000 h

-1
 and enantioselectivities 

ranging from 85 to 94%. The use of chiral CNN ligand was also feasible; good 

enantioselectivity was obtained with the high activity retained.
[75,76]

 Ru complexes 

44 and 45 bearing unsymmetrical NNN ligands have been reported recently by Yu 

and co-workers (Scheme 1.26).
[77]

 High yields with up to 97% ee are obtained for the 

corresponding alcohols in a few minutes at room temperature in 
i
PrOH with just 0.1 

mol% catalyst loading.  

 

Scheme 1.25: ATH of ketones with Ru(II)Pyme complexes. 

 

Scheme 1.26: ATH of ketones with Ru(II)-NNN complexes.  
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Wills and co-workers developed a series of structurally rigid, tethered complexes 

based on Rh and Ru (Scheme 1.27).
[78-82] 

These catalysts are highly active for the 

ATH of ketones and generally provide faster reaction rate than the non-tethered 

analogous using F/T as the hydrogen source. The rigid framework stabilises the 

catalyst making it moisture and air insensitive and also offers an additional element 

in controlling the reaction enantioselectivity. Of particular note is the oxo-tethered 

Ru amido complex 48 with a three-legged piano-stool configuration, recently 

developed independently by Ikariya and Wills.
[80,83] 

It exhibits excellent catalytic 

activity and selectivity for a wide range of ketones, affording up to >99% yield and 

99% ee for the corresponding alcohols (Scheme 1.28). The reaction was also 

performed at loadings as low as S/C = 30000 without the loss of catalytic activity or 

enantioselectivity, thus providing the highest activity among a series of Ru-TsDPEN 

complexes. In addition, the catalytic performance of oxo-tethered Ru complex is 

much higher than that of carbon chain tethered Ru complex reported earlier by 

Wills.
[83]

 Rh(III) complex 49, like its non-tethered analogous 35, is particularly good 

for  the ATH of -substituted aromatic ketones, affording the corresponding alcohols 

in quantitative yields and high enantioselectivities (up to 99.6%).
[81]

 Of further 

interest is the Rh(III) catalyst 50, which, containing a tethered monotosylated 1,2-

diaminocyclohexane (TsDAC) ligand, represents one of the best ATH systems for 

aliphatic ketones, providing 87% ee in the case of cyclohexylmethyl ketone.
[82] 

 

 

Scheme 1.27: Tethered complexes for ATH. 
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Scheme 1.28: ATH with oxo-tethered complex. 

1.6 ATH of ketones in aqueous media  

Transition metal catalysed ATH of ketones can be carried out efficiently in water. 

Significant advances have been made since the early 2000’s for the exploration of 

Noyori-Ikariya type catalysts in water. Williams, Blacker and co-workers reported 

TsDPEN and TsDAC containing a sulfonic acid or sulfonic acid sodium salt group, 

which made these ligands water soluble (51 and 52, Scheme 1.29).
[84] 

Subsequently, 

they tested these ligands for the ATH of simple ketones. The catalysts were prepared 

in situ by reacting the ligand with [Ru(p-cymene)Cl2]2 or [Cp*MCl2]2 (M = Rh, Ir). 

i
PrOH was used both as a co-solvent and as a hydrogen source and the reactions 

were carried out at room temperature. Although good to excellent 

enantioselectivities (up to 96%) were achieved, the activity was much lower 

compared with the reaction reported earlier in organic media.
[62,63] 

 

Chung and co-workers reported the first examples of ATH of ketones in neat water 

without any organic co-solvents. The active catalyst was formed by combining 

[Ru(p-cymene)Cl2]2 with a water soluble (s)-proline amide ligand, 53 (Scheme 

1.29).
[85]

 Sodium formate was used as the hydrogen source and the catalyst could be 

recycled up to 6 times without the loss of activity. A highly water soluble ligand 54 

has also been developed and found to have good activity in the presence of a 

surfactant sodium dodecyl sulfate (SDS).
[86]

 Remarkably, this system is also capable 
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of reducing α-bromo acetophenone in good yield and enantioselectivity. This is a 

challenging substrate, as under homogeneous condition using F/T azeotrope as the 

hydrogen source usually only formate displacement is observed.
[86]

  

 

Scheme 1.29: Water soluble ligands for ATH of ketones. 

A common focus in the research for the successful ATH of ketones in water has been 

the development of water soluble catalysts. However, Xiao and co-workers reported 

that water insoluble 34 and M-TsDAC (M = Ru, Rh, Ir) can also catalyse the 

reduction of ketones by HCO2Na. Water was found to accelerate the asymmetric 

reduction of unfunctionalised ketones. For example using 34 at S/C = 100 

acetophenone was fully reduced to its corresponding alcohol (95% ee) in 1 h at 40 

°C by HCO2Na in water. In comparison, the reaction run in F/T only afforded a 

conversion of 2% in 1 h (Scheme 1.30).
[87]

 Further investigation revealed that the 

ATH of ketones promoted by the Ru-TsDPEN catalyst in water is pH dependent, 

with higher pH favouring higher rates and enantioselectivities.
[88]

 The catalyst is 

partitioned in the substrate and water phase being more soluble in the former. Hence, 

it could be described as “on water” (biphasic) reaction. The tethered Rh-TsDAC 

complex 50 is also highly effective for the reduction of ketones in aqueous media 

including heterocyclic ketones.
[82] 

Thus, 2-acetylfuran was reduced to its 

corresponding alcohol using only a 0.01 mol% catalyst loading at room temperature 
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with an enantioselectivity of 98%. The ATH of aliphatic ketones was also feasible in 

water, albeit with slightly lower enantioselectivities.  

 

Scheme 1.30: Selected examples of alcohols obtained with Ru-TsDPEN in water. 

Li and co-workers demonstrated the ATH of α-keto esters to the highly useful chiral 

α-hydroxy esters in water using Ru(II) catalysts.
[89]

 They found that a bulkier tosyl 

variant afforded greater conversions and enantioselectivities compared with less 

bulky ligands. The use of surfactant was necessary for higher activity with the best 

results obtained in the presence of dodecyltrimethylammonium bromide (DTAB) 

(Scheme 1.31). There appears to be, however, some effects from the substituents on 

the aryl ring of the substrates. Thus, high enantioselectivities were obtained with 

electron donating substrates compared with substrates containing electron 

withdrawing groups. Other metals tested such as Ir and Rh were less active, 

however. Wang and co-workers showed that complex 34 enables efficient ATH of α-

cyano aryl ketones, β-keto esters and β-keto amides when the reaction is performed 

in an emulsion of DCM and aqueous HCO2Na in the presence of 

tetrabutylammonium iodide (TBAI).
[90]
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Scheme 1.31: The effect of bulkier Ts-DPEN on the ATH of methyl 2-oxo-2-phenylacetate. 

Carreira and co-workers developed a series of chiral aqua complexes derived from 

Ir(III) trihydrate precatalysts (Scheme 1.32).
[91-93]

 Screening of a range of 

sulfonamides revealed that ligands bearing strong electron deficient sulfonamides 

provided the highest selectivity and reactivity. Thus, catalyst 57, bearing a 

perfluorinated sulfonamide reduced a range of α-cyano ketones using HCO2H in 

water (pH = 3.5) at a low catalyst loading (0.25-0.5 mol%).
[91]

 Substrates with 

electron donating and electron withdrawing groups did not adversely affect the 

selectivity or conversion, and substrates containg heteroaromatic ring were also 

viable (Scheme 1.33). Reduction of α-chloro and α-nitro ketones was also feasible 

albeit at lower pH of 2.0. Complex 58, containing a chiral diamine, which can be 

seen as a simplified alternative to commonly used Ts-DPEN, was also found to be 

highly efficient for the ATH of both α-nitro and α-cyano aryl ketones with generally 

>92% enantioselectivities achieved in most cases. It is particularly selective for the 

ortho-substituted aryl ketones, which have been known to give lower enantiomeric 

excess in the past, with up to 99% ee achieved with the current system.
[92]

 Further 

work revealed that the reaction is pH independent as it tolerates a wide pH range. For 

instance, the ATH of ethyl benzoylacetate proceeded with 100% conversion and 

94% ee to its corresponding alcohol at pH = 5.0. Remarkably exactly same result 

was obtained when the reaction was conducted at higher pH = 10.5.
[93]
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Scheme 1.32: Chiral aqua complexes. 

 

Scheme 1.33: Representative examples of ATH of various α-cyano ketones in water. 

1.7 TH of imines 

In contrast to the TH of ketones, the transition metal catalysed TH of imines is more 

challenging and a relatively underdeveloped transformation.
[94,95]

 One of the main 

reasons for that is the competitive coordination of the reduced products (ability to 

coordinate to a metal: amine>alcohol) to the metal centre that may lead to undesired 

catalyst poisoning. Despite that some significant advances have been achieved in the 

area of imine TH in the past two decades. Ru, Rh and Ir-based complexes are still 

usual catalysts choice. Imines are most commonly prepared from the condensation of 

amines and carbonyls. If the imine formation and its subsequent reduction are carried 

out in one pot, the reaction is known as direct reductive amination (DRA). 

Consequently, imine reduction is sometimes referred as indirect reductive amination 

(Scheme 1.34).  
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Scheme 1.34: Imine reduction and DRA. 

Grigg and co-workers reported the first example of TH of imine using the 

Wilkinson’s catalyst. A number of aldimines were reduced to their corresponding 

secondary amines in good yields in the presence of sodium carbonate in 
i
PrOH.

[96]
 In 

1992, Bäckvall and co-workers showed that the Ru complex [RuCl2(PPh3)3] can also 

catalyse the reduction of imines in 
i
PrOH.

[97]
 K2CO3 was essential for the reaction to 

proceed and aromatic imines gave better results than aliphatic ones. The reaction was 

sluggish when the monophosphine ligand was replaced by bidentate phosphine 

ligands such as 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) or 1,4-

bis(diphenylphosphino)butane (dppb), which could be attributed to the higher steric 

demand of the imines. Later studies revealed that the dihydride [RuH2(PPh3)3] was 

the active species and it catalysed the reduction of C=N bond in the absence of a 

base, indicating that this reaction proceeds through the hydride mechanism without 

ligand assistance (Scheme 1.35).
[98]
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Scheme 1.35: Proposed mechanism of [RuCl2(PPh3)3] catalysed TH of imine. 

Catalytic TH of imines can also be realised with the half-sandwich dimeric Shvo’s 

catalyst 60, which had earlier shown to be effective in ketone reduction.
[99]

 In 

solution, Shvo’s catalyst dissociates into interchangeable species 60a and 60b, with 

the former active in hydrogenation and the latter in dehydrogenation of 
i
PrOH 

(Scheme 1.36). The catalyst is highly active and reduces a range of N-aryl imines at 

very low catalyst loadings under mild conditions. The rate of imine reduction can be 

enhanced by carrying out the reaction under microwave irradiation.
[100]

 Interestingly, 

Shvo’s catalyst is also active for the racemisation of amines and alcohols.
[101]

  

 

Scheme 1.36: TH of imines with Shvo’s catalyst. 
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Casey and co-workers proposed an outer-sphere mechanism for the TH of imines 

with Shvo’s catalyst, where the hydride and the proton from the OH group of the 

cyclopentadienyl (Cp) ring were transferred simultaneously to the C=N bond, 

without it being coordinated to the metal centre.
[102]

 This mechanism is also 

consistent with ketone reduction. In contrast, Bäckvall and co-workers suggested an 

inner-sphere mechanism, where imine coordination is followed by the hydride 

transfer. A key step would involve the ring slippage of Cp from 5
 to 3

 to generate 

a coordinately unsaturated species, required for the imine to coordinate (Scheme 

1.37).
[103]

 

 

Scheme 1.37: Outer-sphere and inner-sphere mechanism proposed for imine reduction with Shvo’s 

catalyst. 

In recent years several reports have emerged describing the development of N-

heterocyclic carbene (NHC) complexes for the reduction of imines in 
i
PrOH.

[30,104-

108]
 Rh(III) complexes 10 and 61, bearing chelating bis-carbene ligands were found 

to catalyse the reduction of aldimines to the corresponding amines in good yield 

(Scheme 1.38).
[30]

 Interestingly, the analogous iridium catalyst 9c (see page 8), 

which was more active for promoting the TH of ketones (vide supra), was only 
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active for the TH of aromatic aldimines but rather ineffective in the case of aldimines 

prepared by the condensation of benzaldehyde and aliphatic amine, even at higher 

catalyst loadings.
[104]

 Both catalysts were sluggish, however, in the case of ketimine 

reduction. A Ru complex 62, with a pincer type bis NHC ligand has been 

demonstrated to be capable of TH of both ketones and aldimine at a very low loading 

(0.015 mol%); however only one example was presented in the case of the latter 

(Scheme 1.38).
[105]

 The high activity of the catalyst is probably due to the availability 

of two reactive sites and the stability provided by the chelating pincer type ligand.  

 

Scheme 1.38: Chelating bis-carbene complexes for TH of imines. 

A mono NHC Ru(II) complex 63 has recently been demonstrated to be capable of 

both the hydrogenation and TH of aldimine in 
i
PrOH, although higher catalyst 

loading was required for the latter (Scheme 1.39).
[106]

 The Ir(III) complex 64 was 

found to be active under base free conditions; however a silver salt is necessary for 

the removal of the chlorides to activate the catalyst (3 equiv. AgOTf relative to 64). 

Again only one example was described, where N-benzylideneaniline was reduced to 

its corresponding amine in 
i
PrOH at S/C = 1000 (Scheme 1.39).

[107]
 The combination 

of Ni(0) with NHC ligand also works effectively for the TH of imines, as 
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demonstrated by Schneider and co-workers.
[108]

 A range of imines, including 

ketimines were hydrogenated in the presence of Et2CHONa as the hydrogen source. 

Even though cyclic imines were also viable substrates, the reaction was not selective 

for the substrates containing halogen groups, and heteroaromatic substrates were 

found to poison the catalyst.   

 

Scheme 1.39: Mono-carbene complexes for TH of imines. 

1.8 ATH of imines 

The first ATH of imines was reported by Noyori and co-workers using the half-

sandwich complex 34 as catalyst and their analogues 65-67, some of which had been 

previously reported for the enantioselective TH of ketones.
[109]

 The reaction 

proceeded at room temperature using F/T azeotrope as the hydrogen source. The TH 

was found ineffective in 
i
PrOH or other alcoholic media, unlike the analogous ketone 

reductions. The use of aprotic polar co-solvents such as DMF, DMSO and MeCN 

was beneficial for the reaction, as in the neat F/T the reduction preceded slowly. 

Various imines, particularly the ones bearing alkyl and benzyl groups adjacent to the 

C=N bond, were reduced with high yields and enantioselectivities (Scheme 1.40). 

However, acyclic imines led to lower yields and enantioselectivities, possibly due to 

their configurational instability (easy interconversion between E and Z isomers in 

solution). Interestingly, under the conditions employed, the C=N bonds are reduced 

more than 1000 times faster than the C=O bonds. Thus the chemoselectivity of this 
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reaction is superior to that observed with NaBH3CN.
[109]

 Later, Vedejs and co-

workers applied this system for the reduction of aniline substituted 3,4-

dihydroisoquinolines.
[110]

 Even though moderate yields were obtained, the 

enantioselectivity was excellent.  

 

Scheme 1.40: ATH of imines using Ru(II) complexes. 

Complex 34 is also effective for the TH of N-sulfonylimines to their corresponding 

sultams.
[111]

 Ring-strained aziridines can be obtained from the ATH of arylazirines 

with the catalyst derived from the combination of [RuCl2(p-cymene)]2 and a chiral 

amino alcohol ligand, albeit with moderate enantioselectivities (Scheme 1.41).
[112]

 

The reaction was conducted in 
i
PrOH, whereas the use of F/T led to the 

decomposition of azirine.   
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Scheme 1.41: ATH of aziridines. 

Baker and co-workers demonstrated that complex 35, which is isoelectronic with and 

analogous in structure to 34, was more active for imine reduction with F/T 

azeotrope.
[113]

 However, the enantioselectivities obtained are generally slightly lower 

than those observed with 34, especially for acyclic imines derived from the 

condensation of acetophenone and benzylamine (Scheme 1.42). Blacker and co-

workers have recently described that the ATH of acyclic imines bearing a sterically 

bulky N-diphenylphosphinoyl group led to the corresponding amines with a high 

degree of enantioselectivity (Scheme 1.42).
[114]

 This superior enantiocontrol could be 

attributed to the bulkiness of the N-substituent, which may force the imine to exist 

predominantly in one geometrical isomer. In fact this transformation using 35 as 

catalyst has been accomplished on large scale too.
[114]

 Still of further interest is that 

catalyst 35 has recently been applied to the reduction of N-sulfonyl ketimines and 

cyclic sulfamate imines, affording the corresponding amines with enantioselectivities 

up to 99% ee (Scheme 1.42).
[115,116]

 The high selectivity observed could be attributed 

to the well defined E-geometry of N-sulfonyl imines.
[115]
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Scheme 1.42: ATH of imines using Rh(II) complex. 

Compared with ketones, the mechanism for TH of imines with Noyori’s Ru(II)-

TsDPEN has been less explored. However, a few reports have suggested that the 

reaction with imines may proceed through a different pathway to that proposed for 

carbonyl reductions. For instance in a stoichiometric reaction conducted by Bäckvall 

and co-workers, complex 69, derived from 34, did not react with ketimines under 

neutral condition. However, the reaction took place rapidly in the presence of an 

acid.
[117]

 Further studies conducted on 2-methylquinoline reduction also led to the 

same observations (Scheme 1.43).
[118]

 These evidences are consistent with an ionic 

pathway, where the imine is activated by protonation prior to the hydride transfer 

and no coordination of the substrate to the metal is involved. Such hypothetical 

mechanism clearly differs from the well established concerted pathway followed by 

34 for ketone reduction.
[14]
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Scheme 1.43: Stoichiometric reduction with Ru-H.  

ATH of imines can also be carried out in neat water. A range of cyclic imines were 

reduced with high yields and enantioselectivities with a catalyst prepared from 

[Ru(p-cymene)Cl2]2 and the water soluble diamine, 54.
[119]

 HCO2Na was used as the 

hydrogen source and the presence of a surfactant, cetyltrimethylammonium bromide 

(CTAB), was found to be beneficial to the reaction, probably because it increased the 

solubility of the substrate in water. Interestingly, in some cases the 

enantioselectivities achieved were higher than those obtained in F/T (Scheme 1.44). 

Discouragingly, attempts to reduce acyclic imines in water resulted in complete 

decomposition of the starting imine. A simpler method using Noyori’s catalyst 34 in 

the presence of CTAB and AgSbF6 was also reported for cyclic imines reduction.
[120]

 

The protocol also permitted the reduction of polycyclic iminium salts, allowing an 

easy access to alkaloids such as harmicine and crispine. In addition, 3,4-

dihydroisoquinolines bearing an aryl substituent at C1 position were also viable for 

reduction, albeit requiring a Lewis acid to activate the C=N bond towards the 

hydride attack (Scheme 1.45).    
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Scheme 1.44: ATH of imines in neat water. 

 

Scheme 1.45: ATH of cyclic and polycyclic iminium salts in water. 

1.9 Immobilised catalysts 

Catalyst separation is an important issue in homogeneous catalysis. Thus efforts 

have been made to immobilise these catalysts for recycling. Selected examples of 

immobilised ligands and catalysts are shown in Scheme 1.46. Besides being 

reusable, these ligands/catalysts have shown excellent activity and stereoinduction 

properties for ATH of ketones. The PEG-supported 70, represents one of the most 

efficient catalyst for the ATH of ketones in water. A wide range of aromatic ketones 

including heteroaromatic examples can be reduced using HCO2Na as the hydrogen 

source, with results comparable to those obtained with catalyst 34 (non-supported 

Ru-TsDPEN) under the same conditions. Remarkably, the catalyst could be recycled 

up to 14 times without compromising the enantioselectivity in the ATH of 

acetophenone in water (Scheme 1.47).
[121]
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Scheme 1.46: Immobilised catalyst and ligands for ATH. 

 

Scheme 1.47: ATH in water with supported Noyori-Ikariya catalyst. 

Li and co-workers have recently reported magnetically recoverable catalysts based 

on chiral ligands such as TsDPEN and TsDAC attached to SiO2 coated Fe3O4 

nanoparticles (71 and 72, Scheme 1.46).
[122]

 When such ligands were combined with 

[Cp*IrCl2]2 or [Cp*RhCl2]2, excellent activities and enantioselectivities (upto 99% 

ee) were obtained for the ATH of aromatic ketones in water. In addition to their high 

efficiency the main advantage of such catalysts is that they can be easily recovered 

by using a magnet. Thus neither filtration nor extraction is necessary. Moreover, the 

catalyst could be reused up to 10 times without losing its efficiency. 

The crosslinked polystyrene immobilised ligand 73, in combination with [Ru(p-

cymene)Cl2]2, was effective in the ATH of N-benzyl imines in DCM using F/T as the 
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hydride source to give the corresponding amines in high yields and good 

enantioselectivities. The role of the metal was essential for achieving high efficiency 

as longer reaction times were required and lower enantioselectivities were obtained 

when [Ru(p-cymene)Cl2]2 was replaced with the isoelectronic [Cp*IrCl2]2 and 

[Cp*RhCl2]2 (Scheme 1.48).
[123]

  

 

Scheme 1.48: ATH of N-benzyl imine with the crosslinked polystyrene immobilised catalysts. 

1.10 Cheap metal-catalysed TH of carbonyls and imines  

Parallel to the quest for more robust catalysts based on precious metals, chemists 

have also started to make progress with the use of cheaper metals, such as iron, 

cobalt and nickel.
[108,124-126]

 Fe is cheaper, abundant and environmentally benign 

compared with other metals. However, the development of Fe based catalysts, in 

particular for TH, lags far behind.
[2]

 Although, the potential of Fe in TH had been 

demonstrated as early as 1980’s, significant progress has only been achieved in the 

past few years. Beller and co-workers reported a Fe/porphyrin system for the TH of 

ketones, using 
i
PrOH as hydrogen source and Fe3(CO)12 as a  suitable metal 

precursor. Both aromatic and aliphatic ketones were reduced with excellent yields; 

however the reduction of -substituted aromatic ketones did not proceed under the 

reaction conditions (Scheme 1.49).
[127]
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Scheme 1.49: Fe-prophyrin catalysed TH of ketones in 
i
PrOH. 

Casey and co-workers reported a bifunctional Fe complex 75, which is analogous to 

the active Shvo’s Ru catalyst (Scheme 1.50).
[128]

 This catalyst displays high 

selectivity towards carbonyls and is active under both hydrogenation and TH 

conditions. It has been proposed that the hydrogenation of carbonyls with complex 

75 proceeds by the concerted outer-sphere pathway in which both the hydride and 

the OH group contribute to the reduction (Scheme 1.50).
[125]

  

 

Scheme 1.50: Reduction of ketones with a bifunctional Fe complex and the proposed reaction 

pathway. 
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Morris and co-workers have developed a series of iron complexes with tetradentate 

PNNP ligands (Scheme 1.51).
[129-131]

 Complex 76 represents the first well defined 

iron catalyst capable of ATH of aromatic ketones. Using only 0.5 mol% catalyst 

most of the aromatic ketones were fully reduced within half hour, although the 

enantioselectivities obtained were relatively low.
[129]

 Complex 77, prepared with a 

chiral diphenylethylenediamine backbone significantly improved the activity and 

selectivity, affording a TOF up to 4900 h
-1

 and enantioselectivities up to 99% for the 

TH of ketones.
[130]

 The analogous 78 is highly enantioselective for the ATH of N-

(diphenylphosphinoyl) and N-(p-tolylsulphonyl) ketimines (Scheme 1.51).
[131]

 These 

iron complexes represent viable alternative to precious metal catalytic systems for 

TH; however they are still in their infancy. The catalytic activity and substrate scope 

have to be further improved in order to compete with the catalysts based on precious 

metals. In addition, their sensitivity to air and moisture makes them difficult for 

industrial applications.  

 

Scheme 1.51: Iron complexes for ATH. 
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1.11 Cyclometalated complexes 

A complex containing a metal-carbon  bond that is stabilised by at least one donor 

atom (such as N, O, C, P) is known as a cyclometalated complex (Scheme 1.52).
[132]

 

Cope and Siekman reported the first example of a cyclometalated reaction in 1965, 

when Pt and Pd dimer complexes were synthesised by reacting azobenzene with 

K2PtCl2 and PdCl2, respectively, at room temperature in dioxane/water mixture 

(Scheme 1.53).
[133]

  

 

Scheme 1.52: General scheme for cyclometalation reaction. 

 

Scheme 1.53: First example of synthesis of a cyclometalated reaction. 

Since then, a wide variety of organometallic complexes have been synthesised by 

cyclometalation. In particular, half-sandwich cyclometalated complexes based on Rh 

and Ir are probably two of the most popular classes of organometallic derivatives. 

Indeed, these metalacycles are particularly interesting because they are often 

encountered as intermediates in CH bond activation reactions promoted by 

[Cp*MCl2]2 (M = Rh, Ir) complexes.
[132,134]

 These complexes have garnered much 

attention since the seminal reports of Davies
[135]

 and Jones
[136]

 on their reactivity 
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towards unsaturated organic molecules. Depending on the donor atom, metalacycles 

can be divided into four different classes: [Cp*M(C
^
C)Cl], [Cp*M(C

^
P)Cl], 

[Cp*M(C
^
O)Cl] and [Cp*M(C

^
N)Cl]. 

Recently, many catalytic applications have been found for half-sandwich 

cyclometalated complexes, such as racemisation of alcohols and amines,
[137]

 

hydroamination
[138]

 and oxidation of water.
[139]

 [Cp*Ir(C
^
N)Cl] complex 79, reported 

by Feringa, de Vries and co-workers, is highly versatile for the racemisation of chiral 

alcohols, including aliphatic and -halo alcohols in the presence of a base. Its 

analogous 80 is active in the racemisation of chiral amines. In the absence of a base, 

the racemisation of secondary and tertiary chiral amines was completed within few 

hours (Scheme 1.54).
[137]

 The reaction was sluggish in the case of primary amines 

and led to the formation of dimers. Interestingly, complete racemisation of (S)-2-

methyl-1,2,3,4-tetrahydroquinoline was also viable.  

 

Scheme 1.54: Racemisation of alcohols and amines with complex 79 and 80. 



Chapter 1 

45 
 

Jin and co-workers reported a new type of cyclometalated half-sandwich Ir and Rh 

complexes containing carboranylamidinate ligands. These complexes were prepared 

in a one pot reaction by in situ formation of a C-lithio-carboranylamidinate ligand, 

followed by the addition of [Cp*MCl2]2 (M = Rh, Ir) in THF at room temperature. 

Precatalyst 81 showed high activity for the polymerisation of norbornene in the 

presence of methylaluminoxane (MAO) as cocatalyst (Scheme 1.55).
[140]

 Complexes 

82-84, synthesised by Crabtree and co-workers are active in number of reactions 

including N-alkylation of amines with alcohols and -alkylation of secondary 

alcohols with primary alcohols (Scheme 1.55).
[141]

 

 

Scheme 1.55: Cyclometalated half-sandwich complexes and their application in catalysis. 

Ikariya and co-workers have recently synthesised a new type of C-N chelate amido-

Ir bifunctional complexes derived from benzylic amines (Scheme 1.56).
[142]

 These 

complexes were subsequently explored as catalysts for the TH of acetophenone with 

i
PrOH as the hydrogen source. Surprisingly, the activity of 88 was found to be much 

higher than that of 36 under the same conditions, clearly demonstrating the 

electronic properties that the C-N ligands impart on the metal/NH bifunctional 
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system. The enantioselectivities obtained with 88 were however moderate, compared 

with 36 (Scheme 1.56).
[142]

  

 

Scheme 1.56: Amino-Ir complexes and their reactivity towards the reduction of acetophenone. 

Ikariya and co-workers also developed a -NH based bifunctional catalyst 89, 

bearing a C-N chelating protic pyrazole. Catalyst 89 promoted the intramolecular 

hydroamination of -alkenic primary amines to give the cyclisation product in the 

presence of KO
t
Bu. A metal-ligand cooperating mechanism was proposed, where the 

reaction would involve the nucleophilic attack of the amine to the coordinated olefin 

which is assisted by the secondary interaction with the basic pyrazolato ligand. 

Subsequent proton transfer from the pyrazole nitrogen would cleave the Ir-C bond, 

releasing the cyclisation product and regenerating the catalyst (Scheme 1.57).
[143]
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Scheme 1.57: Intramolecular hydroamination catalysed with 89. 

A recently reported Cr(CO)3-bound iridacycle 90 can readily promote the tandem 

transformation of terminal alkynes into racemic N-phenylamines by hydroamination 

and hydrosilation-protodesilation reactions under mild conditions (Scheme 1.58).
[144]

 

Rh and Ir complexes, prepared with a pyrazolyl-NHC donor ligand and a 

[Cp*MCl2]2 (M = Rh, Ir) precursor, also promoted the hydroamination of internal 

alkynes to give indolyl and pyrolyl heterocycles in good yields. The Ir catalyst 

showed higher efficiency than its Rh counterpart and in both cases addition of the 

silver salt AgBF4 was necessary to activate the catalysts (Scheme 1.59).
[145]
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Scheme 1.58: Hydroamination and hydrosilation-protodesilation reactions. 

 

Scheme 1.59: Hydroamination of internal alkynes. 

Recently Fujita, Yamaguchi and co-workers reported complex 93, prepared by the 

NaOAc promoted cyclometalation of 6-phenyl-2-pyridone with [Cp*IrCl2]2. This 

complex exhibited high activity for the dehydrogenation of secondary alcohols. 

Under base free conditions, only a 0.1-0.5 mol% catalyst loading was sufficient for 

fully converting alcohols to their corresponding ketones. In comparison, a loading of 

2 mol% was required for dehydrogenating primary alcohols. In the presence of a 

base moderate yields were achieved in most cases for their corresponding aldehydes. 

In both cases the reaction proceeded with the release of hydrogen gas (Scheme 

1.60).
[146]
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Scheme 1.60: Dehydrogenation of alcohols. 

[Cp*M(C
^
C)Cl] and their role in catalysis have been mainly reported by the groups 

of Peris, Crabtree and Albrecht, where the C donor is usually a carbene (Scheme 

1.61).
[147-149]

 Albrecht and co-workers reported complexes 94 and 95, prepared by 

the metalation of pyridinium functionalised triazolium salt with [Cp*IrCl2]2 in the 

presence of Ag2O. These complexes were found to exhibit excellent activity in 

electrochemically induced water oxidation.
[147]

 Later, Crabtree and co-workers 

synthesised Cp*Ir complex 96, bearing a cyclometalated N,N’-diphenylimidazolyl 

ligand. This catalyst was also competent to serve as a precursor for water oxidation 

in the presence of ceric ammonium nitrate (CAN).  The excellent activity observed 

with these catalysts may be due to the relative strong  donating ability of the NHC 

ligand which probably stabilises the high valent form of Ir during the reaction.
[148]

 

Peris and co-workers have recently reported the six-membered iridacycle 97 that 

shown catalytic activity for the diboration of olefins providing high conversions (60-

100%) for organodiboronate products.
[149]

 In contrast, phosphorous and oxygen 

containing cyclometalated complexes of the formula [Cp*M(C
^
P)Cl] or 

[Cp*M(C
^
O)Cl] have mainly been investigated in CH activation studies.

[132,150]
 It is 
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now evident that these half-sandwich cyclometalated complexes are emerging and 

beginning to realise their potential in catalysis. Although these catalysts have shown 

excellent activity in various reactions such as water oxidation and hydroamination, 

they are still relatively unexplored in TH or dehydrogenation reactions. 

 

Scheme 1.61: Cyclometalated half-sandwich complexes with C donor atom. 

1.12 Previous work within our group and the aim of this thesis  

During study of TH of imines, our group serendipitously discovered the 

cyclometalated Cp*Ir(III) complexes bearing ketimine ligands (Iridicycles). These 

complexes show excellent chemoselectivity and activity for the TH of imines, 

achieving an initial TOF up to 1.9 x 10
4
 h

-1
. They are active for both aldimines and 

ketimines reduction, including aromatic and aliphatic ones. Moreover, these catalysts 

are also versatile in transfer hydrogenative reductive amination, capable of 

chemoselectively reducing a wide range of aromatic and aliphatic derivatives of 

ketones and amines (Scheme 1.62).
[151]

 Analogous complexes bearing aldimine 

ligands have been reported by the groups of Davies and Jones; however they have 

not been reported for any catalytic reactions so far.  
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Scheme 1.62: Cyclometalated Cp*Ir(III) complexes bearing ketimine ligands. 

The main aim of this thesis is to understand and explore the scope of these new types 

of cyclometalated ketimine complexes. In particular, they are easy to synthesise and 

their modular structure framework allows for the detailed and rational development 

of more active catalysts (Scheme 1.63). Our main target was the development of a 

single versatile catalyst that would be capable of transfer-hydrogenating various 

unsaturated bonds such as ketones, imines and N-heterocycles. Catalysts capable of 

selectively reducing multiple bonds under relatively mild conditions are rare, and 

their development would be of significant interest to the industry. Although 

transition metal catalysed TH of ketones and imines has been widely studied during 

the last 20 years, there is a continuous demand in developing new versatile catalysts 

that can achieve such reactions under greener conditions and using simple 

methodologies that can be easily scaled up. In particular, catalysts capable of 

chemoselectively reducing functionalised acyclic ketimines, -substituted ketones 

and various N-heterocycles are highly desirable. Once a robust catalytic system has 

been established for hydrogenation, the next aim would be to explore such catalysts 

for dehydrogenation reactions. Catalytic acceptorless dehydrogenation (AD) of 

organic molecules has recently attracted great interest as it is clean, only liberating 

H2, which is viewed as high energy clean fuel for the future. Therefore a single 
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catalyst capable of hydrogenate/dehydrogenate of organic molecules would be 

attractive and on demand.   

 

Scheme 1.63: Modular structure of cyclometalated Cp*MCl complexes. 

During the course of my thesis, other members of our group have further expanded 

the scope of these cyclometalated Cp*Ir(III) complexes to numerous reactions. 

These include hydrogenation of imines
[152]

 and N-heterocycles with H2,
[153]

 

dehydrogenation of formic acid,
[154]

 the TH of simple ketones and the RA of 

aldehydes, ketones and levulinic acid with various amines in water, which 

demonstrate the versatility of these catalysts (Scheme 1.64).
[155-156]

 

 

Scheme 1.64: Scope of cyclometalated Cp*Ir(III) complexes reported by our group. 
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2.1 Introduction 

The reduction of α-substituted ketones to form β-functionalised secondary alcohols  

has drawn a lot of attention in the last two decades, due to the products being 

ubiquitous in naturally occurring and synthetic bioactive compounds.
[1]

 For example, 

β-hydroxyethers have been used as biological probes and synthetic intermediates for 

molecular switches.
[2,3]

 β-Aminoethers can be readily derived from β-hydroxyethers 

and are important precursors in the preparation of a wide variety of pharmaceutical 

compounds.
[4]

 A further example is found in β-hydroxyamines, which have been 

demonstrated as building blocks in many synthetic methodologies, leading to various 

bioactive compounds, including, for example, medicines that affect the central 

nervous and respiratory systems (Scheme 2.1).
[5]

 Of further interest are β-

hydroxyhalo compounds, which have found use in the preparation of numerous 

compounds for pharmaceuticals, fine chemicals and functional materials.
[2,6]

 

 

Scheme 2.1: Examples of drugs containing β-functionalised secondary alcohols. 

Given the versatility of the α-substituted ketones, a number of reagents and methods 

have been developed for their selective reduction, especially the asymmetric 

version.
[6-9]

 However, few catalysts are known that are capable of selective transfer 

hydrogenation (TH) of a wide range of α-substituted ketones.
[7]

 In addition, most of 

the reactions are conducted in organic solvents, which generates unwanted waste. 

One way of minimising the environmental impact caused by the use of organic 
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solvents would be the use of water as the reaction medium. It is cheap, benign and 

readily available. However, the reduction of α-substituted ketones with TH in water 

is challenging, because the substrates are usually acid and/or base sensitive.
[6]

 Thus, 

there is a need for a catalyst that is versatile, active and chemoselective for the TH of 

α-substituted ketones with diverse properties to form the corresponding secondary 

alcohols. Herein, we report that the cyclometalated iridium complexes are also 

highly efficient and chemoselective for the TH of various α-substituted ketones, keto 

esters and α,β-unsaturated aldehydes in water (Scheme 2.2). 

 

Scheme 2.2: Transfer hydrogenation of α-substituted ketones and α,β-unsaturated carbonyls under 

aqueous conditions.
 

2.2 Results and discussion 

2.2.1 Optimisation of reaction conditions 

A series of cyclometalated iridium complexes, iridicycles C1-C6 (Scheme 2.3), were 

firstly synthesised according to the reported procedures.
[10]

 To investigate the 

efficacy of the iridicycles in reducing α-substituted ketones, the synthesised 

complexes C1-C6 were screened, by using 1-phenoxypropan-2-one as the 

benchmark substrate at a substrate/catalyst (S/C) ratio of 1000. As shown in Table 

2.1, all of these six precatalysts afforded good to excellent conversions for the TH in 

water at pH 4.5 in a short reaction time of 0.5 h (Table 2.1, Entries 3-8). Without the 
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imino ligand, the [Cp*IrCl2]2 is inactive (Table 2.1, entry 2). As expected, no 

reaction took place without a catalyst (Table 2.1, entry 1). It appears that the more 

electronic donation of the imino ligand to the iridium, the faster the reduction in 

water. This is seen by comparing the TH by using C2 with those by using C1 and 

C3. The highly conjugated C4 and C6 gave even higher conversions, although the 

anthracenyl-containing C5 was surprisingly less active. In particular, the 

phenanthrenyl-ligated C6 afforded almost full conversion in 0.5 h (Table 2.1, entry 

8), with higher S/C ratios being feasible. Thus, at an S/C of 10000, the TH was 

approximately complete in 2 h (Table 2.1, entry 9), and the catalyst delivered a 

conversion of 82% in 20 h at a much higher S/C of 50000 (Table 2.1, entry 11).  

 

Scheme 2.3: Iridicycle catalysts examined for TH in water. 

The TH reactions above were carried out at pH 4.5. Screening of the reaction 

conditions with C4 revealed that the solution pH value plays a critical role in the 

reduction. Thus, the TH occurred only within a certain window of acidic conditions 

(pH 3.0-5.0 for greater than 50% conversions), with the optimal pH value being 4.5 

(Figure 2.1), which was adopted for subsequent studies.  
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Table 2.1: Screening of catalysts for the TH of 1-phenoxypropan-2-one in water 

 

Entry
[a]

 Catalyst S/C
[b]

 Time (h) Conv. (%)
[c]

 

1 - - 0.5 n.r. 

2 [Cp*IrCl2]2 1000 0.5 <2 

3 C1 1000 0.5 88 

4 C2 1000 0.5 96 

5 C3 1000 0.5 59 

6 C4 1000 0.5 98 

7 C5 1000 0.5 75 

8 C6 1000 0.5 >99 

9 C6 10000 2 99 

10 C6 20000 6 96 

11 C6 50000 20 82 

[a] Reaction conditions: ketone (2.5 mmol), catalyst (0.01 mol%), HCO2H/HCO2Na aqueous solution 

(pH = 4.5; 3mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O), 80 °C, stirred 

in a carousel tube for 0.5 h. [b] S/C = substrate/catalyst molar ratio. [c] Conversion determined by 
1
H-

NMR spectroscopy; n.r. = no reaction. 

 

Figure 2.1: The effect of pH value on the TH of 1-phenoxypropan-2-one. 

This value is higher than that required for the TH of acetophenone using an 

analogous catalyst (pH 3.5),
[11]

 which presumably reflects the more electron-rich 
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ketone being reduced in this study. However, pH 4.5 is lower than that used with the 

Noyori-Ikariya M-TsDPEN catalysts (M = Ru, Rh or Ir), for which neutral to slightly 

basic reaction conditions were found to be optimal.
[12,13]

  As explained before,
[11,14]

 

the iridicycle catalyst is not capable of activating the ketone through its ligands, 

which renders activation through an acidic medium necessary, whereas the Noyori-

Ikariya type catalysts are able to readily hydrogenate a ketone by virtue of hydrogen 

bonding between the NH proton of the ligand and the substrate.
[12,15]

 

2.2.2 TH of β-keto ethers in water 

With the optimised reaction conditions in hand, the substrate scope of the reduction 

was explored. Firstly, a wide range of β-keto ethers were effectively and 

chemoselectively reduced to the desired β-hydroxy ethers. As shown in Table 2.2, 

the C6 catalyst is capable of reducing all type of β-keto ethers. Keto ethers featuring 

either aromatic or aliphatic units and aromatic, aliphatic, heterocyclic and 

fluoronated ethers were all viable and furnishing excellent yields at the S/C ratio of 

10000 and 2.5 mmol substrate scale. Furthermore, for β-aryl ketone aryl ethers, 

neither electron-withdrawing substituents nor electron-donating groups on the aryl 

ring of either ketones or ethers significantly affected the productivity and selectivity 

of the catalyst. Thus, TH of 1a and 1b afforded similar yields (Table 2.2, entry 1 

versus 2) and the reductions of 1f, 1g and 1h all provided excellent yields (Table 2.2, 

entries 6-8). The sterically bulky substituent on the aryl ether 1d also has little effect 

(Table 2.2, entry 4). More importantly, substrates containing a hexafluoroisopropyl 

group (1i) and a heptafluorobutoxy group (1j) can be reduced smoothly with 87% 

and 86% yields to afford highly demanding intermediates for pharmaceuticals and 

fine chemicals.
[16,17]

 To the best of our knowledge, there is no literature report for the 

TH of these substrates previously. The aliphatic substrates 1l-1o can also be 
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translated into the desired products smoothly with good to excellent yields (Table 

2.2, entries 12-15).  

Table 2.2: TH of β-keto ethers with C6 in water 

 

Entry
[a]

 Substrate Product Yield (%)
[b]

 

1 

  

2a 93 

2 

  

2b 91 

3 

  

2c 97 

4 

  

2d 95 

5 

  

2e 89 

6 

  

2f 97 

7 

  

2g 97 

8 

  

2h 93 

9 

  

2i 87 

 

10 
 

 

 

2j 

 

86 
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11 
  

 

2k 

 

98 

 

12 
  

 

2l 

 

97 

 

13 
  

 

2m 

 

91 

 

14
[c]

 
  

 

2n 

 

90 

 

15
[d]

   

 

2o 

 

87 

[a]
 
Reaction conditions: ketone (2.5 mmol), C6 (0.01 mol%), HCO2H/HCO2Na aqueous solution (pH 

= 4.5; 3 mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O), 80 °C, stirred in a 

carousel tube for 14 h. [b] Yield of isolated product. [c] 42:58 (trans:cis). [d] 52:48 (trans:cis)  

2.2.3 TH of α-substituted ketones 

α-Halo, hydroxy, nitrile-substituted ketones are more challenging to reduce due to 

the ease of dissociation of these α-functional groups under acidic and/or basic 

conditions.
[18]

 However, the current reduction system overcomes these challenges. 

By modification of the reaction conditions, the desired products were obtained with 

excellent isolated yields for almost all of these problematic ketones. As shown in 

Table 2.3, with the cyclometalated complex C4, which is slightly more active than 

C6, α-hydroxyacetophenone (3a) was converted to a 1,3-diol with 93% yield at an 

S/C ratio of 1000 (Table 2.3, entry 1), and α-chloroacetophenone (3b) was reduced 

to the α-chlorophenylethanol with 94% isolated yield (Table 2.3, entry 2). For the 

substrates 3c and 3d, which bear an electron-donating and -withdrawing group, 

respectively, the reduction afforded almost identical yields (Table 2.3, entries 3 and 

4). Moreover, α,α-dichloroacetophenone (3e) was successfully reduced to α,α-

dichlorophenylethanol with 87% yield (Table 2.3, entry 5), albeit at a lower S/C ratio 
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of 200. The reduction of α-chloroketones is often problematic because they are 

vulnerable to dechlorination under TH conditions.
[18,19]

 The α-fluoroketones were 

also viable for this reduction system. Thus, excellent yields were obtained for the TH 

of α-fluoro- and α,α,α-trifluoroacetophenone (3f and 3g, respectively; Table 2.3, 

entries 6 and 7). Equally, the α-nitrile ketones (3h-3l) were converted into the 

corresponding secondary alcohols with excellent yields, including examples of 

heterocyclic ketones (Table 2.3, entries 8-12). Still further, the catalytic system was 

successfully applied to α-acyloxy, α-morpholino, and α-semialdehyde ketones (3m-

3p; Table 2.3, entries 13-16), with the α-functional groups tolerated and high yields 

obtained for all of the desired products. Selective reduction of analogues of 3m by 

TH is difficult, because the acyl group is prone to migration by hydrolysis.
[20]

 

Indeed, there are only a few literature reports describing the TH of this class of 

substrates; however, the catalyst loadings are high and the yields are relatively low 

due to the aforementioned problem.
[21]

 To the best of our knowledge, this is the first 

time that a homogeneous catalyst has been reported for the TH of α-piperidyl and α-

semialdehyde ketones. 

Unfortunately, the TH of α-bromoacetophenone is not selective under the present 

condition. The liability of α-bromo group meant that a range of products were 

obtained (Scheme 2.4). 3q underwent debromonation to give 3r, which in turn is 

further reduced to 4r. Displacement of α-bromo group by formate ion gave 3s, which 

was also further reduced to 4s to some degree. However, despite the unwanted by-

products, the desired 4q was obtained in a moderate yield.  
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Table 2.3: TH of α-substituted ketones with C4 in water 

 

Entry
[a]

 Substrate Product  Yield (%)
[b]

 

1 

  

4a 93 

2 

  

4b 94 

3 

  

4c 92 

4 

  

4d 93 

5
[c]

 

  

4e 87 

6 

  

4f 95 

7 

  

4g 96 

8 

  

4h 90 

9 

  

4i 92 

10 

  

4j 91 

11 

  

4k 89 

12 

  

4l 90 
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13 

  

4m 96 

14 

  

4n 88 

15
[d]

 

  

4o 86 

16 

  

4p 94 

[a] Reaction conditions: ketone (2.5 mmol), C4 (0.1 mol%), HCO2H/HCO2Na aqueous solution (pH = 

4.5; 3 mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O, 80 °C, stirred in a 

carousel tube for 18 h. [b] Yield of isolated product.
 
[c] S/C = 200.

 
[d] Yield determined by 

1
H-NMR 

spectroscopy. 

 

Scheme 2.4: TH of α-bromoacetophenone under present conditions. 
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2.2.4 TH of α- and β-keto esters 

To showcase the broader utility of the catalytic system, C4 was also applied to the 

reduction of keto esters.
[22]

 Both aromatic and aliphatic β-keto esters were reduced to 

afford the corresponding alcohols with excellent yields under the catalysis of 0.1 

mol% of C4 (Table 2.4). Likewise, the analogous α-keto esters were also reduced 

with ease, which demonstrates the versatility of the cyclometalated iridium catalyst. 

Products 6e and 8c are known to be important intermediates for medicines and fine 

chemicals.
[17,23]

 Again, there appears to be no correlation between the electron 

properties of the substituents on the phenyl ring and the yield obtained under the 

conditions employed (Table 2.4, entries 1-4). 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2  

74 
 

Table 2.4: TH of α- and β-keto esters with C4 in water 

 

Entry
[a]

 Substrate Product  Yield (%)
[b]

 

1 

  

6a 94 

2 

  

6b 91 

3 

  

6c 94 

4 

  

6d 92 

5 
  

6e 95 

6 

  

8a 96 

7
[c]

 

  

8b 91 

8 

  

8c 92 

[a] Reaction conditions: keto ester (2.5 mmol), C4 (0.1 mol%), HCO2H/HCO2Na aqueous solution 

(pH = 4.5; 3 mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O), 80 °C, stirred 

in a carousel tube for 14 h. [b] Yield of isolated product.
 
[c] Yield determined by 

1
H-NMR 

spectroscopy. 
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2.2.5 TH of α,β-unsaturated aldehydes 

The highly efficient and chemoselective reduction of α,β-unsaturated ketones and 

aldehydes has been a research topic in the last several decades.
[24,25]

 Mixtures of 

products are frequently obtained, because many catalysts reduce both C=O and C=C 

bonds rather than exclusively either the C=O or C=C bond. Hence, selectivity is still 

an issue.
[25] 

Therefore, we subsequently examined these substrates with the current 

reduction system. Disappointedly, C4 was not chemoselective for the reduction of 

α,β-unsaturated ketones and catalysed the reduction of both the C=C and C=O bonds 

(Scheme 2.5). 

 

Scheme 2.5: Attempted chemoselective TH of α,β-unsaturated ketones in water. 

Catalyst C4 is, however, highly chemoselective in the reduction of α,β-unsaturated 

aldehydes to afford only unsaturated alcohols (Table 2.5). In the case of the aromatic 

α,β-unsaturated aldehydes, almost identical yields of allylic alcohols were obtained 

for those substrates that are relatively sterically demanding (9b, 9c and 9f; Table 2.5, 

entries 2, 3 and 6), or that bear electron-withdrawing or -donating groups substituted 

on the phenyl ring (9d versus 9e; Table 2.5, entry 4 versus 5). Good yields were also 

achieved for the TH of aliphatic α,β-unsaturated aldehydes (Table 2.5, entries, 7-9). 

The chemoselectivity observed with the α,β-unsaturated aldehydes  may stem from 

the aldehyde group being easier to reduce than a ketone. Once reduced, the C=C 

bond can no longer be hydrogenated by the catalyst. 
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Table 2.5: TH of α,β-unsaturated aldehydes with C4 in water 

 

Entry
[a]

 Substrate Product  Yield (%)
[b]

 

1 
  

10a 95 

2 
  

10b 91 

3 
  

10c 90 

4 
  

10d 88 

5 
  

10e 96 

6 
  

10f 94 

7
[c]

 
  

10g 92 

8   10h 78 

9 
  

10i 85 

[a] Reaction conditions: aldehyde (2.5 mmol), C4 (0.1 mol%), HCO2H/HCO2Na aqueous solution 

(pH = 4.5; 3 mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O), stirred in a 

carousel tube for 6 h. [b] Yield of isolated product.
 
[c] E/Z = 52:48. 

2.2.6 Mechanistic considerations 

A plausible mechanism is proposed for the TH in question in Scheme 2.6. Catalyst C 

is first converted into the formate complex I in the presence of formate.
[26]

 

Decarboxylation of I leads to the active, but coordinatively saturated, hydride 

species II.
[27]

 The ketone substrate, activated by the hydroxonium ion under the 

acidic conditions employed,
[11]

 is then reduced through direct hydride transfer from 

II without ketone coordination to the metal centre, that is, by the ionic or outer-
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sphere mechanism.
[28]

 In previous studies, our group have shown that hydride can be 

easily generated from an iridicycle and formate and transferred to protonated 

imines.
[27]

 

 

Scheme 2.6: Proposed mechanism for the TH by an iridicycle. 

2.3 Conclusion 

In summary, this chapter has demonstrated that cyclometalated iridium complexes, 

iridicycles, catalyse the highly efficient and chemoselective TH of a wide variety of 

carbonyl groups, including a series of α-substituted ketones, α- and β-ketoesters, and 

α,β-unsaturated aldehydes. With the reduction feasible in water at S/C ratios of 

1000-50000, the current protocol provides a practical, easy and efficient synthesis of 

β-functionalised secondary alcohols, especially β-hydroxyethers, β-hydroxyamines 

and β-hydroxyhalo compounds, which are bioactive and/or of value for the synthesis 

of pharmaceuticals, fine chemicals, perfumes and agrochemicals. 

2.4 Experimental 

2.4.1 General information 

Unless otherwise specified, all reagents were commercially purchased and used 

without further purification. Deionised water was used for the reactions. NMR 

spectra were recorded on a Bruker 400 MHz or 250 MHz NMR spectrometer with 
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TMS as the internal standard. HRMS were obtained by chemical ionisation (CI) at 

the Department of Chemistry, University of Liverpool or by (FAB) at the EPSRC 

National Mass Spectrometry Service Centre at Swansea University. Elemental 

analyses were performed by the Elemental Analysis Service of Department of 

Chemistry. β-keto ethers (1a-j and 1l-m) were prepared according to the 

literature.
[29]

 Pentamethylcyclopentadienyliridium(III) chloride, dimer [Cp*IrCl2]2 

was purchased from Strem Chemicals Inc. Solution of various pH value was 

prepared by a reported method and measured using a pH meter at 20 
ᵒ
C.

[11]
 
1
H-NMR, 

13
C-NMR and HRMS were collected for all the products, and the NMR data are 

consistent with the reported literature. 

2.4.2 General procedure for the preparation of imine ligands 

Ketone (5.0 mmol) and amine (5.5 mmol) were dissolved in toluene (80 mL). 

NaHCO3 (420 mg, 5 mmol) and 4Å MS (1.2 g) were then added. The mixture was 

stirred under reflux for 24 h, then cooled to room temperature and filtered through 

celite. The solvent was removed under vacuum and the resulting crude mixture was 

crystallised using hexane/DCM to give the corresponding imine.
[30]

 

2.4.3 General procedure for the preparation of cyclometalated iridium 

complexes 

[Cp*IrCl2]2 (200 mg, 0.25 mmol), imine ligand (0.55 mmol), NaOAc (206 mg, 2.5 

mmol) were placed in a carousel reaction tube. DCM (10 mL) was introduced and 

the resulting mixture was stirred for 24 h at room temperature. The reaction mixture 

was then filtered through celite and dried over Na2SO4. The solvent was evaporated 

under vacuum and the resulting solid was washed with a hexane/diethyl ether (2:1) 

mixture.
[10]
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2.4.4 Typical procedure for the TH of β-keto ethers in water 

β-Keto ether (2.5 mmol) and C6 (0.17 mg, 2.5 x 10
-4

 mmol) were placed in a 

carousel reaction tube. The tube was degassed and charged with nitrogen. 

HCO2H/HCO2Na aqueous solution of pH 4.5 (3 mL) was then introduced and the 

mixture was stirred at 80 °C for 14 h under nitrogen. The reaction mixture was 

cooled to room temperature and quenched with saturated sodium bicarbonate 

solution. The aqueous layer was extracted with ethyl acetate (3 x 25 mL) and the 

combined organic layers were washed with brine (25 mL). The organic layer was 

collected and dried over anhydrous sodium sulphate. Filtration, followed by 

evaporation of the solvent under reduced pressure, gave the crude mixture. Flash 

column chromatography of the crude mixture afforded the desired β-hydroxy ether 

product. 

2.4.5 Typical procedure for the TH of α-functionalised aromatic ketones in 

water 

Ketone (2.5 mmol) and C4 (1.6 mg, 2.5 x 10
-3

 mmol) were placed in a carousel 

reaction tube. The tube was degassed and charged with nitrogen. HCO2Na/HCO2H 

aqueous solution of pH 4.5 (3 mL) was then introduced and the mixture was stirred 

at 80 °C for 18 h under nitrogen. The reaction mixture was cooled to room 

temperature, quenched with saturated NaCl solution (20 mL) and extracted with 

ethyl acetate (3 x 25 mL). The combined organic layer was dried over anhydrous 

sodium sulphate. Filtration, followed by evaporation of the solvent under reduced 

pressure, gave the crude mixture. Flash column chromatography of the crude mixture 

afforded the desired product. 

 



Chapter 2  

80 
 

2.4.6 Typical procedure for the TH of α-keto and β-keto esters in water 

Keto ester (2.5 mmol) and C4 (1.6 mg, 2.5 x 10
-3

 mmol) were placed in a carousel 

reaction tube. The tube was degassed and charged with nitrogen. HCO2Na/HCO2H 

aqueous solution of pH 4.5 (3 mL) was then introduced and the mixture was stirred 

at 80 °C for 14 h under nitrogen. The reaction mixture was cooled to room 

temperature, quenched with saturated NaCl solution (20 mL) and extracted with 

ethyl acetate (3 x 25 mL). The combined organic layer was dried over anhydrous 

sodium sulphate. Filtration, followed by evaporation of the solvent under reduced 

pressure, gave the crude mixture. Flash column chromatography of the crude mixture 

afforded the desired hydroxy ester product. 

2.4.7 Typical procedure for the TH of α,β-unsaturated aldehydes in water 

α,β-Unsaturated aldehyde (2.5 mmol) and C4 (1.6 mg, 2.5 x 10
-3

 mmol) were placed 

in a carousel reaction tube. The tube was degassed and charged with nitrogen. 

HCO2Na/HCO2H aqueous solution of pH 4.5 (3 mL) was then introduced and the 

mixture was stirred at 80 °C for 6 h under nitrogen. The reaction mixture was cooled 

to room temperature, quenched with saturated NaCl solution (20 mL) and extracted 

with ethyl acetate (3 x 25 mL). The combined organic layer was dried over 

anhydrous sodium sulphate. Filtration, followed by evaporation of the solvent under 

reduced pressure, gave the crude mixture. Flash column chromatography of the 

crude mixture afforded the desired alcohol product. 
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2.4.8 Data of the cyclometalated iridium complexes 

 

Complex C1:
[14]

 Black solid; m.p. 170-174 °C: 
1
H NMR (CDCl3, 400 MHz, 253 K) 

δ (ppm): 8.62 (d, J = 2.3 Hz, 1H), 7.89 (dd, J = 8.4, 2.3 Hz, 1H), 7.78 (d, J = 8.3 Hz, 

1H), 7.64 (d, J = 8.5 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 8.1 Hz, 1H), 6.84 

(d, J = 8.6 Hz, 1H), 3.89 (s, 3H), 2.51 (s, 3H), 1.46 (s, 15H). 
13

C NMR (CDCl3, 100 

MHz, 253 K) δ (ppm): 180.5, 168.4, 157.9, 153.6, 148.8, 143.6, 129.2, 128.7, 124.4, 

123.1, 117.1, 115.1, 112.5, 90.1, 55.7, 17.8, 8.8. Anal. calc. for C25H28ClIrN2O3 (%): 

C, 47.50; H, 4.46; N, 4.43. Found: C, 47.56; H, 4.43; N, 4.42. HRMS (FAB) for 

C25H28Cl
191

IrN2O3 [M]
+
: m/z calc., 630.1389; found, 630.1383. 

 

Complex C2: Yellow solid; m.p. 271-275 °C:
 1

H NMR (CDCl3, 400 MHz, 253 K) δ 

(ppm): 7.78 (d, J = 8.3 Hz, 1H), 7.21 (d, J = 8.1 Hz, 1H), 7.00-6.78 (m, 3H), 6.59 (d, 

J = 8.1 Hz, 1H), 6.12 (d, J = 1.2 Hz, 1H), 6.03 (d, J = 1.2 Hz, 1H), 3.87 (s, 3H), 2.38 

(s, 3H), 1.49 (s, 15H). 
13

C NMR (CDCl3, 100 MHz, 253 K) δ (ppm): 180.5, 157.4, 

150.5, 148.5, 144.3, 143.1, 142.2, 125.3, 125.1, 123.7, 114.9, 112.2, 102.9, 99.6, 

89.6, 55.6, 17.6, 9.1. HRMS (FAB) for C26H29O3N
191

Ir [M-Cl]
+
: m/z calc., 594.1748; 

found, 594.1747. 

 

Complex C3: Yellow solid; m.p. 278-282 °C:
 1

H NMR (CDCl3, 400 MHz, 253 K) δ 

(ppm): 7.86 (d, J = 7.6 Hz, 1H), 7.47-7.41 (m, 2H), 7.35-7.05 (m, 7H), 7.04-6.99 (m, 

1H), 6.96-6.89 (m, 1H), 6.84 (d, J = 7.7 Hz, 1H), 1.44 (s, 15H). 
13

C NMR (CDCl3, 

100 MHz, 253 K) δ (ppm): 184.0, 169.9, 151.0, 148.3, 135.3, 134.3, 131.7, 131.3, 
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129.8, 129.7, 128.6, 128.1, 127.6, 125.6, 124.0 (br), 121.2, 89.7, 8.27. HRMS 

(ASAP) for C29H30ClIrN [M+H]
+
: m/z calc., 620.1696; found, 620.1699. 

 

Complex C4:
[14]

 Red solid; m.p. 276-280 °C: 
1
H NMR (CDCl3, 400 MHz, 293 K) δ 

(ppm): 8.16 (s, 1H), 8.05 (s, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.80 (dd, J = 8.3, 2.9 Hz, 

2H), 7.48 (dd, J = 8.4, 7.4, 1H), 7.32 (dd, J = 8.4, 7.6 Hz, 1H), 7.08-6.82 (m, 3H), 

3.90 (s, 3H), 2.58 (s, 3H), 1.47 (s, 15H).
 13

C NMR (CDCl3, 100 MHz, 253 K) δ 

(ppm): 181.3, 159.5, 157.6, 148.1, 144.2, 136.9, 132.2, 129.6, 129.2, 129.1, 127.4, 

126.5, 125.1, 123.5, 123.4, 114.9, 112.3, 89.0, 55.7, 17.3, 8.8. Anal. calc. for 

C29H31ClIrNO (%): C, 54.66; H, 4.90; N, 2.20. Found: C, 54.33; H, 4.90; N, 2.06. 

HRMS (FAB) for C29H31Cl
191

IrNO [M]
+
: m/z calc., 635.1695; found, 635.1692.  

 

Complex C5: Deep Red solid; m.p. >300 °C: 
1
H NMR (CDCl3, 400 MHz, 253 K) δ 

(ppm): 8.42 (s, 1H), 8.35 (s, 1H), 8.27 (d, J = 13.1 Hz, 2H), 7.99 (dd, J = 16.4, 8.4 

Hz, 2H), 7.94-7.87 (m, 1H), 7.48-7.36 (m, 2H), 7.09-6.84 (m, 3H), 3.90 (s, 3H), 2.59 

(s, 3H), 1.49 (s, 15H).
 13

C NMR (CDCl3, 100 MHz, 253 K) δ (ppm): 180.8, 157.7, 

156.9, 148.8, 144.2, 135.0, 133.0, 131.2, 130.1, 129.9, 129.0, 128.6, 128.4, 128.3, 

128.2, 125.9, 125.3, 124.2, 123.4, 114.9, 112.3, 89.0, 55.7, 17.3, 8.8. HRMS (FAB) 

for C33H33NO
191

Ir [M-Cl]
+
: m/z calc., 650.2163; found, 650.2156. 

 

Complex C6: Deep Red solid; m.p. >300 °C: 
1
H NMR (CDCl3, 400 MHz, 253 K) δ 

(ppm): 9.10 (s, 1H), 8.84 (d, J = 8.1 Hz, 1H), 8.05 (s, 1H), 7.96-7.84 (m, 2H), 7.76-
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7.57 (m, 4H), 7.12-6.84 (m, 3H), 3.90 (s, 3H), 2.62 (s, 3H), 1.52 (s, 15H).
 13

C NMR 

(CDCl3, 100 MHz, 253 K) δ (ppm): 181.4, 162.9, 157.6, 147.8, 144.1, 133.5, 133.2, 

129.4, 129.0, 128.6, 128.5, 128.0, 127.5, 127.0, 126.1, 125.0, 124.6, 123.6, 123.5, 

115.0, 112.3, 89.2, 55.7, 17.3, 9.0. Anal. calc. for C33H33ClIrNO (%):C, 57.67; H, 

4.84; N, 2.04. Found: C, 57.88; H, 4.80; N, 1.91. HRMS (FAB) for C33H33NO
191

Ir 

[M-Cl]
+
: m/z calc., 650.2163; found, 650.2160. 

2.4.9 Data of the β-hydroxy ethers 

 

2-(4-Chlorophenoxy)-1-phenylethanol, 2a:
[31]

 
1
H NMR (CDCl3, 250 MHz, 300 K) δ 

(ppm): 7.48-7.33 (m, 5H), 7.27-7.20 (m, 2H), 6.90-6.82 (m, 2H), 5.12 (dt, J = 8.5, 

2.7 Hz, 1H), 4.13-3.93 (m, 2H), 2.73 (bs, OH). 
13

C NMR (CDCl3, 63 MHz, 300 K) δ 

(ppm): 157.0, 139.4, 129.4, 128.6, 128.3, 126.2 (2), 115.9, 73.6, 72.5. HRMS for 

C14H12ClO [(M-H2O) + H]
+
: m/z calc., 231.0571; found, 231.0579. 

 

2-(4-Methoxyphenoxy)-1-phenylethanol, 2b:
[32]

 
1
H NMR (CDCl3, 250 MHz, 300 K) 

δ (ppm): 7.47-7.28 (m, 5H), 6.88-6.79 (m, 4H), 5.09 (dd, J = 8.8, 3.2 Hz, 1H), 4.05 

(dd, J = 9.6, 3.2 Hz, 1H), 3.94 (dd, J = 9.7, 8.8 Hz, 1H), 3.76 (s, 3H), 2.87 (bs, OH). 

13
C NMR (CDCl3, 63 MHz, 300 K) δ (ppm): 154.2, 152.5, 139.7, 128.5, 128.1, 

126.3, 115.7, 114.7, 74.1, 72.6, 55.7. HRMS for C15H20NO3 [M+NH4]
+
: m/z calc., 

262.1443; found, 262.1435. 

 

2-(Naphthalen-2-yloxy)-1-phenylethanol, 2c:
[33]

 
1
H NMR (CDCl3, 250 MHz, 300 

K) δ (ppm): 7.75-7.56 (m, 3H), 7.43-7.24 (m, 7H), 7.13 (dd, J = 9.0, 2.5 Hz, 1H), 

7.03 (d, J = 2.4 Hz, 1H), 5.09 (dd, J = 8.4, 3.4 Hz, 1H), 4.14-4.01 (m, 2H), 3.13 (bs, 

OH). 
13

C NMR (CDCl3, 63 MHz, 300 K) δ (ppm): 156.4, 139.9, 134.6, 129.7, 129.3, 
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128.7, 128.3, 127.8, 126.9, 126.6, 126.5, 124.0, 118.8, 107.2, 73.4, 72.6. HRMS for 

C18H15O [(M-H2O) + H]
+
: m/z calc., 247.1123; found, 247.1117. 

 

2-(2,6-Dimethylphenoxy)-1-phenylethanol, 2d:
[4]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.45-7.40 (m, 2H), 7.38-7.32 (m, 2H), 7.32-7.26 (m, 1H), 6.99 (d, J = 

7.5 Hz, 2H), 6.91 (dd, J = 8.3, 6.5 Hz, 1H), 5.16-5.09 (m, 1H), 3.89-3.84 (m, 2H), 

3.06 (bs, OH), 2.27 (s, 6H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 155.6, 

140.2, 131.1, 129.4, 128.9, 128.5, 126.7, 124.6, 77.3, 73.8, 16.8. HRMS for 

C16H22NO2 [M+NH4]
+
: m/z calc., 260.1651; found, 260.1646. 

 

1-Phenyl-2-(pyridin-3-yloxy)ethanol, 2e:
[4]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 8.18 (t, J = 1.7 Hz, 1H), 8.14-8.10 (m, 1H), 7.48-7.42 (m, 2H), 7.40-7.34 (m, 

2H), 7.32-7.28 (m, 1H), 7.19-7.14 (m, 2H), 5.11 (dd, J = 6.8, 5.5 Hz, 1H), 4.50 (bs, 

OH), 4.08-4.03 (m, 2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 154.9, 142.1, 

140.1, 137.7, 128.6, 128.2, 126.3, 124.0, 121.5, 73.7, 72.3. HRMS for C13H14NO2 

[M+H]
+
: m/z calc., 216.1025; found, 216.1029. 

 

1-(4-Chlorophenyl)-2-phenoxyethanol, 2f:
[33]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.41-7.35 (m, 4H), 7.31-7.27 (m, 2H), 7.00-6.97 (m, 1H), 6.92-6.89 (m, 2H), 

5.10 (dd, J = 8.7, 3.2 Hz, 1H), 4.08 (dd, J = 9.6, 3.3 Hz, 1H), 3.96 (dd, J = 9.6, 8.7 

Hz, 1H), 2.83 (bs, OH). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 158.2, 138.1, 

133.9, 129.6, 128.8, 127.7, 121.5, 114.6, 73.1, 72.0. HRMS for C14H17ClNO2 

[M+NH4]
+
: m/z calc., 266.0942; found, 266.0932.  
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4-(1-Hydroxy-2-phenoxyethyl)benzonitrile, 2g:
[31]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.60-7.56 (m, 2H), 7.47-7.36 (m, 5H), 6.99-6.96 (m, 2H), 5.16 (dd, J = 

8.4, 3.4 Hz, 1H), 4.15-4.06 (m, 2H), 2.42 (bs, OH). 
13

C NMR (CDCl3, 100 MHz, 300 

K) δ (ppm): 161.7, 139.2, 134.1, 128.7, 128.5, 126.2, 119.0, 115.3, 104.6, 73.4, 72.4. 

HRMS for C15H17N2O2 [M+NH4]
+
: m/z calc., 257.1285; found, 257.1283. 

 

1-(4-Methoxyphenyl)-2-phenoxyethanol, 2h:
[33]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.40-7.35 (m, 2H), 7.31-7.24 (m, 2H), 6.99-6.89 (m, 5H), 5.08-5.04 (m, 

1H), 4.06 (dd, J = 9.6, 3.3 Hz, 1H), 3.99 (dd, J = 9.6, 8.8 Hz, 1H), 3.81 (s, 3H), 2.79 

(d, J = 2.1 Hz, OH). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 160.0, 158.8, 

132.2, 130.0, 128.0, 121.7, 115.1, 114.4, 73.7, 72.6, 55.7. HRMS for C15H15O2 [(M-

H2O) + H]
+
: m/z calc., 227.1072; found, 227.1066. 

 

2-((1,1,1,3,3,3-Hexafluoropropan-2-yl)oxy)-1-phenylethanol, 2i: 
1
H NMR (CDCl3, 

400 MHz, 300 K) δ (ppm): 7.40-7.32 (m, 5H), 5.01 (dt, J = 8.8, 2.8 Hz, 1H), 4.32 

(sep, J = 5.9 Hz, 1H), 4.00 (dd, J = 10.3, 2.8 Hz, 1H), 3.86 (dd, J = 10.3, 9.1 Hz, 1H), 

2.53 (d, J = 2.7 Hz, OH). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 138.8, 128.7, 

128.4, 126.1, 121.4 (ddq, J = 3.1, 14.3, 285.7 Hz), 79.7, 76.5 (sep, J = 32.4 Hz), 73.2.
 

19
F NMR (CDCl3, 375 MHz, 300 K) δ (ppm): -73.9. HRMS for C11H14F6NO2 

[M+NH4]
+
: m/z calc., 306.0923; found, 306.0927. 

 

2-(2,2,3,3,3-Pentafluoropropoxy)-1-phenylethanol, 2j: 
1
H NMR (CDCl3, 400 MHz, 

300 K) δ (ppm): 7.40-7.28 (m, 5H), 4.92 (dt, J = 8.7, 2.8 Hz, 1H), 4.14-3.94 (m, 2H), 

3.78 (dd, J = 9.9, 3.1 Hz, 1H), 3.64 (dd, J = 9.9, 9.0 Hz, 1H), 2.69 (d, J = 2.6 Hz, 
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OH). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 139.4, 128.6, 128.2, 126.2, 

116.2 (qt, J = 288.3, 33.7 Hz), 114.8 (tq, J = 257.1, 31.9 Hz), 109.0 (tq, J = 264.8, 

38.7 Hz), 78.3, 72.9, 68.0 (t, J = 25.6 Hz).
 19

F NMR (CDCl3, 375 MHz, 300 K) δ 

(ppm): -137.9 (m), -131.1 (m), -91.2 (m). HRMS for C12H15F7NO2 [M+NH4]
+
: m/z 

calc., 338.0986; found, 338.0987. 

 

1-Phenoxypropan-2-ol, 2k:
[34]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.26 

(dd, J = 8.8, 7.4 Hz, 2H), 6.94 (t, J = 7.4 Hz, 1H), 6.89 (dd, J = 8.8, 0.91 Hz, 2H), 

4.21-4.13 (m, 1H), 3.88 (dd, J = 9.4, 3.3 Hz, 1H), 3.77 (dd, J = 9.4, 7.6 Hz, 1H), 2.83 

(d, J = 3.4 Hz, OH), 1.26 (d, J = 6.5 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 158.6, 129.6, 121.1, 114.6, 73.2, 66.3, 18.9. HRMS for C9H16NO2 

[M+NH4]
+
: m/z calc., 170.1176; found, 170.1171. 

 

1-(2,6-Dimethylphenoxy)propan-2-ol, 2l:
[35]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.01 (d, J = 7.5 Hz, 2H), 6.92 (dd, J = 8.4, 6.6 Hz, 1H), 4.26-4.20 (m, 1H), 

3.72 (dd, J = 9.4, 3.3 Hz, 1H), 3.64 (dd, J = 9.4, 7.7 Hz, 1H), 2.65 (bs, OH), 2.28 (s, 

6H), 1.26 (d, J = 6.4 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 155.6, 

131.2, 129.4, 124.5, 77.4, 67.5, 19.0, 16.7. HRMS for C11H20NO2 [M+NH4]
+
: m/z 

calc., 198.1494; found, 198.1490. 

 

1-(Pyridin-3-yloxy)propan-2-ol, 2m:
[36]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 8.19 (t, J = 1.8 Hz, 1H), 8.11 (t, J = 3.0 Hz, 1H), 7.15-7.11 (m, 2H), 4.18-4.09 

(m, 1H), 3.86 (dd, J = 9.4, 3.7 Hz, 1H), 3.80 (dd, J = 9.4, 7.1 Hz, 1H), 1.22 (d, J = 

6.4 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 154.0, 140.9, 136.8, 

123.0, 120.3, 72.7, 64.8, 18.2. HRMS for C8H12NO2 [M+H]
+
: m/z calc., 154.0868; 

found, 154.0863. 
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2-Ethoxycyclohexanol, 2n:
[37]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): (42:58, 

trans:cis): trans isomer: 3.83-3.81 (m, 1H), 3.62-3.35 (m, 3H), 2.76 (bs, OH), 2.09-

1.99 (m, 1H), 1.79-1.68 (m, 2H), 1.63-1.49 (m, 2H), 1.29-1.19 (m, 6H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 83.4, 73.5, 63.9, 32.0, 29.2, 24.2, 22.2, 15.6.; cis 

isomer: 3.75-3.67 (m, 1H), 3.62-3.35 (m, 2H), 3.05-2.99 (m, 1H), 2.70 (bs, OH), 

2.09-1.99 (m, 1H), 1.79-1.68 (m, 2H), 1.63-1.49 (m, 3H), 1.29-1.19 (m, 5H). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 78.3, 68.4, 63.5, 30.4, 26.6, 23.9, 21.1, 

15.5. HRMS for C8H17O2 [M+H]
+
: m/z calc., 145.1223; found, 145.1228. 

 

2-Methyltetrahydrofuran-3-ol, 2o:
[38]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

(52:48, trans:cis): trans isomer: 4.13-4.05 (m, 1H), 4.00-3.81 (m, 2H), 3.72-3.62 (m, 

1H), 2.28 (bs, OH), 2.20-2.05 (m, 1H), 1.83-1.71 (m, 1H), 1.13 (d, J = 6.4 Hz, 3H). 

13
C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 77.6, 72.1, 64.6, 33.6, 12.9; cis 

isomer: 4.00-3.81 (m, 2H), 3.77 (qd, J = 6.4, 3.3 Hz, 1H), 3.72-3.62 (m, 1H), 2.70 

(bs, OH), 2.20-2.05 (m, 1H), 1.93-1.83 (m, 1H), 1.20 (d, J = 6.4 Hz, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 81.0, 76.2, 65.1, 34.7, 17.9. HRMS for 

C5H14NO2 [M+NH4]
+
: m/z calc., 120.1019; found, 120.1020. 

2.4.10 Data of the α-functionalised alcohols 

 

1-Phenylethane-1,2-diol, 4a:
[39]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.38-

7.28 (m, 5H), 4.78 (dd, J = 8.4, 3.4 Hz, 1H), 3.71 (dd, J = 11.5, 3.4 Hz, 1H), 3.62 

(dd, J = 11.5, 8.4 Hz, 1H), 3.30 (bs, 2 OH’s). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 140.5, 128.6, 128.0, 126.1, 74.7, 68.1. HRMS for C8H14NO2 [M+NH4]
+
: m/z 

calc., 156.1019; found, 156.1020. 
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2-Chloro-1-phenylethanol, 4b:
[40]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.37-7.29 (m, 5H), 4.86 (dt, J = 8.7, 3.3 Hz, 1H), 3.71 (dd, J = 11.3, 3.5 Hz, 1H), 

3.62 (dd, J = 11.4, 8.7 Hz, 1H), 2.87 (d, J = 3.0 Hz, OH). 
13

C NMR (CDCl3, 100 

MHz, 300 K) δ (ppm): 140.0, 128.7, 128.5, 126.1, 74.1, 50.9. HRMS for C8H13ClNO 

[M+NH4]
+
: m/z calc., 174.0686; found, 174.0681. 

 

2-Chloro-1-(4-methoxyphenyl)ethanol, 4c:
[41]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.30 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 4.84 (dd, J = 8.6, 3.3 Hz, 

1H), 3.80 (s, 3H), 3.71-3.60 (m, 2H), 2.69 (bs, OH). 
13

C NMR (CDCl3, 100 MHz, 

300 K) δ (ppm): 159.7, 132.1, 127.3, 114.1, 73.7, 55.3, 50.9. HRMS for C9H12ClO2 

[M+H]
+
: m/z calc., 187.0520; found, 187.0522. 

 

2-Chloro-1-(4-fluorophenyl)ethanol, 4d:
[41]

 
1
H NMR (CDCl3, 250 MHz, 300 K) δ 

(ppm): 7.40-7.29 (m, 2H), 7.11-7.00 (m, 2H), 4.86 (dt, J = 8.4, 3.8 Hz, 1H), 3.72-

3.55 (m, 2H), 2.93 (d, J = 3.2 Hz, OH). 
13

C NMR (CDCl3, 63 MHz, 300 K) δ (ppm): 

162.6 (d, J = 246.7 Hz), 135.7 (d, J = 3.2 Hz), 127.8 (d, J = 8.2 Hz), 115.5 (d, J = 

21.6 Hz), 73.4, 50.7 (d, J = 1.1 Hz). 
19

F NMR (CDCl3, 235 MHz, 300 K) δ (ppm): -

113.5. HRMS for C8H7ClF [(M-H2O) + H]
+
: m/z calc., 157.0215; found, 157.0214. 

 

2,2-Dichloro-1-phenylethanol, 4e:
[42]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.45-7.35 (m, 5H), 5.82 (d, J = 5.4 Hz, 1H), 4.98 (dd, J = 5.5, 4.2 Hz, 1H), 2.90 (d, J 

= 4.0 Hz, OH). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 137.3, 129.1, 128.5, 

127.1, 78.9, 76.4. HRMS for C8H7Cl2 [(M-H2O) + H]
+
: m/z calc., 172.9919; found, 

172.9923. 
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2-Fluoro-1-phenylethanol, 4f:
[43]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.40-7.29 (m, 5H), 5.01-4.94 (m, 1H), 4.55-4.31 (m, 2H), 2.83 (d, J = 2.0 Hz, OH). 

13
C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 139.1 (d, J = 8.2 Hz), 129.5, 129.3, 

127.2, 88.0 (d, J = 174.7 Hz), 73.8 (d, J = 19.8 Hz). HRMS for C8H8F [(M-H2O) + 

H]
+
: m/z calc., 123.0605; found, 123.0606. 

 

2,2,2-Trifluoro-1-phenylethanol, 4g:
[44]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.46-7.32 (m, 5H), 4.94 (q, J = 6.7 Hz, 1H), 3.02 (bs, OH). 
13

C NMR (CDCl3, 

100 MHz, 300 K) δ (ppm): 133.9, 129.6, 128.7, 127.5, 124.3 (q, J = 281.5 Hz), 72.8 

(q, J = 31.8 Hz). 
19

F NMR (CDCl3, 375 MHz, 300 K) δ (ppm): -78.3 (d, J = 6.7 Hz). 

HRMS for C8H6F3 [(M-H2O) + H]
+
: m/z calc., 159.0416; found, 159.0414. 

 

3-Hydroxy-3-phenylpropanenitrile, 4h:
[45]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.41-7.28 (m, 5H), 4.95 (t, J = 6.1 Hz, 1H), 3.26 (bs, OH), 2.68 (d, J = 6.2 

Hz, 2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 141.1, 128.9, 128.7, 125.6, 

117.6, 69.8, 27.9. HRMS for C9H10NO [M+H]
+
: m/z calc., 148.0757; found, 

148.0758. 

 

3-Hydroxy-3-(p-tolyl)propanenitrile, 4i:
[46]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.27 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 4.99-4.95 (m, 1H), 2.74-

2.70, 3.26 (m, 2H), 2.60 (d, J = 3.4 Hz, OH), 2.35 (s, 3H). 
13

C NMR (CDCl3, 100 

MHz, 300 K) δ (ppm): 138.7, 138.1, 129.6, 125.5, 117.4, 70.0, 27.9, 21.1. HRMS for 

C10H15N2O [M+NH4]
+
: m/z calc., 179.1179; found, 179.1183. 
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3-(4-Fluorophenyl)-3-hydroxypropanenitrile, 4j:
[47]

 
1
H NMR (CDCl3, 250 MHz, 

300 K) δ (ppm): 7.42-7.29 (m, 2H), 7.14-7.01 (m, 2H), 5.08-4.92 (m, 1H), 3.32 (d, J 

= 3.9 Hz, OH), 2.71 (d, J = 6.1 Hz, 2H). 
13

C NMR (CDCl3, 63 MHz, 300 K) δ 

(ppm): 162.6 (d, J = 247.2 Hz), 136.9 (d, J = 3.2 Hz), 127.4 (d, J = 8.3 Hz), 117.4, 

115.7 (d, J = 21.7 Hz), 69.2, 28.0. 
19

F NMR (CDCl3, 235 MHz, 300 K) δ (ppm): -

113.1. HRMS for C9H9FNO [M+H]
+
: m/z calc., 166.0663; found, 166.0666. 

 

3-Hydroxy-3-(thiophen-2-yl)propanenitrile, 4k:
[47]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.31 (dd, J = 5.1, 1.0 Hz, 1H), 7.08 (d, J = 3.5 Hz, 1H), 7.03 (dd, J = 5.1, 

3.7, 1H), 5.32-5.24 (m, 1H), 2.93 (d, J = 3.2 Hz, OH), 2.89-2.83 (m, 2H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 144.4, 127.1, 125.8, 124.8, 117.0, 66.3, 28.2. 

HRMS for C7H8NOS [M+H]
+
: m/z calc., 154.0321; found, 154.0326. 

 

3-(Furan-2-yl)-3-hydroxypropanenitrile, 4l:
[47]

 
1
H NMR (CDCl3, 400 MHz, 300 K) 

δ (ppm): 7.43-7.39 (m, 1H), 6.42-6.35 (m, 2H), 5.07-5.00 (m, 1H), 2.90 (d, J = 6.3 

Hz, 2H), 2.87 (d, J = 5.0 Hz, OH). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 

152.9, 142.9, 116.9, 110.6, 107.5, 63.8, 24.9. HRMS for C7H11N2O2 [M+NH4]
+
: m/z 

calc. 155.0815; found, 155.0817. 

 

2-Hydroxy-2-phenylethyl benzoate, 4m:
[48]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 8.06 (d, J = 7.7 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.50-7.30 (m, 7H), 5.16-

5.07 (m, 1H), 4.53 (dd, J = 11.6, 3.4 Hz, 1H), 4.43 (dd, J = 11.6, 8.2 Hz, 1H), 2.66 

(bs, OH). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 166.8, 139.9, 133.3, 129.8, 

129.7, 128.7, 128.5, 128.3, 126.2, 72.6, 69.8. HRMS for C15H13O2 [(M-H2O) + H]
+
: 

m/z calc., 225.0910; found, 225.0910. 
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2-Morpholino-1-phenylethanol, 4n:
[49]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.41-7.28 (m, 5H), 4.75 (dd, J = 10.4, 3.6 Hz, 1H), 3.80-3.69 (m, 4H), 2.80-

2.69 (m, 2H), 2.58-2.40 (m, 4H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 

141.9, 128.4, 127.6, 125.9, 68.6, 67.1, 66.7, 53.5. HRMS for C12H18NO2 [M+H]
+
: 

m/z calc., 208.1332; found, 208.1334. 

 

3,3-Dimethoxy-1-phenylpropan-1-ol, 4p:
[50]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.37-7.31 (m, 4H), 7.28-7.23 (m, 1H), 4.86 (dd, J = 9.1, 3.4 Hz, 1H), 4.55 (t, 

J = 5.6 Hz, 1H), 3.37 (s, 3H), 3.34 (s, 3H), 2.10-2.02 (m, 1H), 1.99-1.94 (m, 1H). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 144.2, 128.4, 127.4, 125.7, 103.4, 70.8, 

53.7, 53.0, 41.6. HRMS for C11H20NO3 [M+NH4]
+
: m/z calc., 214.1438; found, 

214.1442. 

2.4.11 Data of the α-hydroxy and β-hydroxy esters 

 

Ethyl 3-hydroxy-3-phenylpropanoate, 6a:
[51]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.40-7.25 (m, 5H), 5.11 (dt, J = 8.9, 4.1 Hz, 1H), 4.15 (q, J = 7.2 Hz, 2H), 

3.45 (d, J = 3.6 Hz, OH), 2.77-2.64 (m, 2H), 1.24 (t, J = 7.2 Hz, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 172.4, 142.6, 128.5, 127.8, 125.7, 70.3, 60.9, 

43.4, 14.2. HRMS for C11H16NO2 [(M-H2O) + NH4]
+
: m/z calc., 194.1176; found, 

194.1169. 

 

Ethyl 3-hydroxy-3-(3-nitrophenyl)propanoate, 6b:
[51]

 
1
H NMR (CDCl3, 400 MHz, 

300 K) δ (ppm): 8.27 (s, 1H), 8.15 (dd, J = 8.1, 1.3 Hz, 1H), 7.74 (d, J = 7.7 Hz, 1H), 
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7.54 (t, J = 8.1 Hz, 1H), 5.28-5.18 (m, 1H), 4.20 (q, J = 7.2 Hz, 2H), 3.78 (d, J = 3.5 

Hz, OH), 2.80-2.72 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 

300 K) δ (ppm): 172.0, 148.4, 144.7, 131.9, 129.5, 122.7, 120.8, 69.3, 61.2, 43.0, 

14.1. HRMS for C11H17N2O5 [M+NH4]
+
: m/z calc., 257.1132; found, 257.1126. 

 

Ethyl 3-hydroxy-3-(m-tolyl)propanoate, 6c:
[52]

 
1
H NMR (CDCl3, 400 MHz, 300 K) 

δ (ppm): 7.24 (dd, J = 7.5, 6.9 Hz, 1H), 7.20 (s, 1H), 7.16 (d, J = 7.7 Hz, 1H), 7.10 

(d, J = 7.4 Hz, 1H), 5.11 (dt, J = 8.9, 3.8 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.27 (d, J 

= 3.4 Hz, OH), 2.78-2.66 (m, 2H), 2.35 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 172.5, 142.5, 138.2, 128.6, 128.5, 126.4, 122.7, 

70.3, 60.9, 43.3, 21.5, 14.2. HRMS for C12H15O2 [(M-H2O) + H]
+
: m/z calc., 

191.1067; found, 191.1070. 

 

Ethyl 3-hydroxy-3-(3,4,5-trimethoxyphenyl)propanoate, 6d:
[53]

 
1
H NMR (CDCl3, 

400 MHz, 300 K) δ (ppm): 6.60 (s, 2H), 5.06 (dt, J = 9.0, 3.4 Hz, 1H), 4.19 (q, J = 

7.1 Hz, 2H), 3.85 (s, 6H), 3.82 (s, 3H), 3.50 (d, J = 3.3 Hz, OH), 2.78-2.65 (m, 2H), 

1.27 (t, J = 7.1 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 172.3, 153.2, 

138.5, 137.2, 102.5, 70.5, 60.9, 60.8, 56.0, 43.6, 14.2. HRMS for C14H19O5 [(M-

H2O) + H]
+
: m/z calc., 267.1227; found, 267.1230. 

 

Ethyl 4,4,4-trifluoro-3-hydroxybutanoate, 6e:
[54]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 4.51-4.41 (m, 1H), 4.36 (bs, OH), 4.21 (q, J = 7.2 Hz, 2H), 2.75-2.63 

(m, 2H), 1.29 (t, J = 7.2 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 

170.8, 124.5 (q, J = 281.2 Hz), 67.0 (q, J = 32.4 Hz), 61.6, 34.9, 13.9. 
19

F NMR 

(CDCl3, 375 MHz, 300 K) δ (ppm): -80.0. HRMS for C6H13F3NO3 [M+NH4]
+
: m/z 

calc., 204.0842; found, 204.0843. 
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Ethyl 2-hydroxy-2-phenylacetate, 8a:
[55]

 
1
H NMR (CDCl3, 250 MHz, 300 K) δ 

(ppm): 7.45-7.25 (m, 5H), 5.15 (d, J = 5.7 Hz, 1H), 4.30-4.10 (m, 2H), 3.51 (d, J = 

5.7 Hz, OH), 1.22 (t, J = 7.1 Hz, 3H). 
13

C NMR (CDCl3, 63 MHz, 300 K) δ (ppm): 

173.7, 138.4, 128.5, 128.4, 126.5, 72.9, 62.2, 14.0. HRMS for C10H11O2 [(M-H2O) + 

H]
+
: m/z calc., 163.0754; found, 163.0751. 

 

Ethyl 3,3,3-trifluoro-2-hydroxypropanoate, 8c:
[56]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 4.42-4.38 (m, 1H), 4.36-4.25 (m, 2H), 3.43 (bs, OH), 1.29 (t, J = 7.2 Hz, 

3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 167.9 (d, J = 2.2 Hz), 122.6 (q, J 

= 283.2 Hz), 70.3 (q, J = 33.1 Hz), 64.1, 14.3. 
19

F NMR (CDCl3, 375 MHz, 300 K) δ 

(ppm): -76.6. HRMS for C5H8F3O3 [M+H]
+
: m/z calc., 173.0420; found, 173.0418. 

2.4.12 Data of the α,β-unsaturated alcohols 

 

3-Phenylprop-2-en-1-ol, 10a:
[57]

 
1
H NMR (CDCl3, 250 MHz, 300 K) δ (ppm): 7.39-

7.20 (m, 5H), 6.59 (d, J = 15.9 Hz, 1H), 6.34 (dt, J = 15.9, 5.6 Hz, 1H), 4.29 (dd, J = 

5.6, 1.3 Hz, 2H), 2.07 (bs, OH). 
13

C NMR (CDCl3, 63 MHz, 300 K) δ (ppm): 136.7, 

131.1, 128.6, 128.5, 127.7, 126.5, 63.6. HRMS for C9H9 [(M-H2O) + H]
+
: m/z calc., 

117.0699; found, 117.0695. 

 

3-(2-Nitrophenyl)prop-2-en-1-ol, 10b:
[58]

 
1
H NMR (CDCl3, 250 MHz, 300 K) δ 

(ppm): 8.00-7.85 (m, 1H), 7.65-7.52 (m, 2H), 7.46-7.33 (m, 1H), 7.09 (dt, J = 15.7, 

1.6 Hz, 1H), 6.35 (dt, J = 15.7, 5.3 Hz, 1H), 4.49-4.30 (m, 2H), 2.10 (bs, OH). 
13

C 

NMR (CDCl3, 63 MHz, 300 K) δ (ppm): 147.8, 134.1, 133.1, 132.5, 128.8, 128.1, 

125.8, 124.5, 63.3. HRMS for C9H13N2O3 [M+NH4]
+
: m/z calc., 197.0921; found, 

197.0919. 
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3-(2-Methoxyphenyl)prop-2-en-1-ol, 10c:
[59]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.41 (d, J = 7.5 Hz, 1H), 7.21 (t, J = 7.9 Hz, 1H), 6.93-6.84 (m, 3H), 6.35 (dt, 

J = 16.1, 5.9 Hz, 1H), 4.29 (d, J = 5.5 Hz, 2H), 3.81 (s, 3H), 2.12 (bs, OH). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 156.7, 129.4, 128.8, 127.0, 126.1, 125.8, 120.7, 

110.9, 64.1, 55.4. HRMS for C10H13O2 [M+H]
+
: m/z calc., 165.0916; found, 

165.0913. 

 

3-(4-Nitrophenyl)prop-2-en-1-ol, 10d:
[60]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 8.18 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 16.0 Hz, 1H), 

6.55 (dt, J = 15.9, 5.0 Hz, 1H), 4.41 (td, J = 5.4, 1.5 Hz, 2H), 1.87 (t, J = 5.7 Hz, 

OH). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 146.9, 143.3, 133.6, 128.2, 

126.9, 124.0, 63.1. HRMS for C9H13N2O3 [M+NH4]
+
: m/z calc., 197.0921; found, 

197.0918. 

 

3-(4-Methoxyphenyl)prop-2-en-1-ol, 10e:
[61]

 
1
H NMR (CDCl3, 250 MHz, 300 K) δ 

(ppm): 7.25 (d, J = 8.7 Hz, 2H), 6.81 (d, J = 8.7 Hz, 2H), 6.49 (d, J = 15.9 Hz, 1H), 

6.17 (dt, J = 15.9, 5.8 Hz, 1H), 4.23 (d, J = 5.8 Hz, 2H), 3.76 (s, 3H), 2.97 (bs, OH). 

13
C NMR (CDCl3, 63 MHz, 300 K) δ (ppm): 159.2, 130.6, 129.5, 127.7, 126.4, 

114.0, 63.6, 55.2. HRMS for C10H13O2 [M+H]
+
: m/z calc., 165.0916; found, 

165.0915. 

 

2-Methyl-3-phenylprop-2-en-1-ol, 10f:
[57]

 
1
H NMR (CDCl3, 250 MHz, 300 K) δ 

(ppm): 7.36-7.18 (m, 5H), 6.52 (s, 1H), 4.17 (s, 2H), 1.96 (bs, OH), 1.89 (s, 3H). 
13

C 

NMR (CDCl3, 63 MHz, 300 K) δ (ppm): 137.7, 137.6, 128.9, 128.1, 126.4, 125.0, 

68.9, 15.3. HRMS for C10H11 [(M-H2O) + H]
+
: m/z calc., 131.0855; found, 

131.0858. 
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3,7-Dimethylocta-2,6-dien-1-ol, 10g:
[57]

 mixture of E/Z isomers (52:48): 
1
H NMR 

(CDCl3, 400 MHz, 300 K) δ (ppm): 5.49-5.37 (m, 1H), 5.14-5.04 (m, 1H), 4.15-4.08 

((m, 2H): 4.14 (d, J = 6.9 Hz, 1H, CH2OH, E isomer), 4.09 (d, J = 7.2 Hz, 1H, 

CH2OH, Z isomer)), 2.12-2.01 (m, 4H), 1.75-1.60 (m, 10H). 
13

C NMR (CDCl3, 100 

MHz, 300 K) δ (ppm): Z isomer: 139.8, 132.4, 124.5, 123.8, 58.9, 32.0, 26.5, 26.66, 

23.4, 17.7. E isomer: 139.6, 131.7, 123.9, 123.4, 59.3, 39.5, 26.4, 26.65, 17.6, 16.2. 

HRMS for C10H17 [(M-H2O) + H]
+
: m/z calc., 137.1325; found, 137.1322. 

 

Oct-2-en-1-ol, 10h:
[62]

 
1
H NMR (CDCl3, 250 MHz, 300 K) δ (ppm): 5.76-5.57 (m, 

2H), 4.08 (d, J = 4.7 Hz, 2H), 2.12-1.95 (m, 2H), 1.56 (bs, OH), 1.44-1.21 (m, 6H), 

0.89 (t, J = 6.8 Hz, 3H). 
13

C NMR (CDCl3, 63 MHz, 300 K) δ (ppm): 133.5, 128.8, 

63.8, 32.2, 31.4, 28.8, 22.5, 14.0. HRMS for C8H15 [(M-H2O) + H]
+
: m/z calc., 

111.1168; found, 111.1169. 

 

Cyclohex-1-en-1-ylmethanol, 10i:
[63]

 
1
H NMR (CDCl3, 250 MHz, 300 K) δ (ppm): 

5.79-5.57 (m, 1H), 3.96 (s, 2H), 2.14-1.92 (m, 5H), 1.75-1.50 (m, 4H). 
13

C NMR 

(CDCl3, 63 MHz, 300 K) δ (ppm): 137.5, 122.9, 67.5, 25.5, 24.9, 22.5, 22.4. HRMS 

for C7H11 [(M-H2O) + H]
+
: m/z calc., 95.0855; found, 95.0855. 
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3.1 Introduction 

Saturated nitrogen heterocycles are frequently found in drug and biologically active 

molecules, such as oxamniquine, a schistosomicide,
[1]

 paroxetine, a CCRI type anti-

depressant,
[2]

 salsolinol, an endogenous monoamine oxidase inhibitor,
[3]

 and CEPC a 

serotonin 5-HT2C antagonist,
[4]

 (Scheme 3.1). The most obvious route to access these 

types of molecules is via the reduction of the corresponding unsaturated parent 

heterocycles, which can be efficiently synthesised by cross-coupling and classic 

heterocyclic chemistry. Nonetheless, this method only has 0.8% occurrence rate 

among the medical chemist’s toolbox, despite the fact that 42.9% of the total 

pharmaceutical compounds contain aliphatic amines.
[5]

 This must be a reflection of 

either limited supply of the building blocks from commercial sources or significant 

challenges at the late stage reduction step. 

 

Scheme 3.1: Bioactive molecules that contain a saturated nitrogen heterocycle core. 

Reduction of nitrogen heterocycles has traditionally been done by heterogeneous 

hydrogenation (i.e. Pd/C, Rh/C, Adams's catalyst, Raney nickel),
[6]

 electrolytic 

reduction,
[7]

 Birch reduction
[8]

 and more recently with homogenous hydrogenation.
[9]

 

Despite the fact that there are many examples in the literature, one or more 

significant limitations are always found under those reaction conditions. For 

example, Birch and metal hydride reduction require stoichiometric amount of 
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metallic reductants and have very limited functional group compatibility. Whilst 

heterogeneous catalysts containing Pd, Pt, Ni or Rh on supported materials can 

reduce a range of heterocycles even under atmospheric pressure of hydrogen, they 

often have limited selectivity and the potential of over reduction. Homogeneous 

catalysis has attracted much attention, due to the easily controllable selectivities and 

reactivities through ligand modification. Nevertheless, there are still significant 

challenges in this area, including the improvement in turnover number (TON) and 

turnover frequency (TOF), reduction in cost, and the expansion of the reaction scope.  

Transfer hydrogenation (TH) of heterocycles is a reaction of great interest due to its 

operational simplicity. In contrast to ketones, the TH of heterocycles has been much 

less explored. Yamaguchi demonstrated that by using [IrCp*Cl2]2 in a mixture of 

i
PrOH and H2O under refluxing conditions, a series of quinolines can be fully 

reduced to tetrahydroquinolines (Scheme 3.2).
[10]

 The presence of an acid 

considerably enhanced the reduction, presumably by activating the quinoline through 

the protonation to form a quinolinium salt, which is easier to reduce.  

 

Scheme 3.2: Ir catalysed TH of quinolines with 
i
PrOH. 

Frediani and co-workers reported a Rh-bipyridine catalyst that can reduce quinoline 

and pyridines with a moderate conversion by using 
i
PrOH as the hydride source 

(Scheme 3.3).
[11]

 The same catalyst could also be applied to the reduction of other 

unsaturated bonds, including C=C and C=O bonds in reasonable conversions. 



Chapter 3 

102 
 

Crabtree identified a cationic Ir(I)-NHC catalyst (1a) that can reduce quinolines to 

tetrahydroquinolines in 
i
PrOH with moderate yields. Pyrazine showed complete 

conversion to piperazine under the reaction condition (Scheme 3.4).
[12]

 Other N-

heterocycles, for instance, isoquinolines, pyridines and indoles, were found to be 

inactive in this system.  

 

Scheme 3.3: Rh catalysed TH of quinolines with 
i
PrOH. 

 

Scheme 3.4: 1a catalysed TH of N-heterocycles. 

The most versatile, simple and yet highly active system was recently reported by 

Xiao and co-workers. By using [Cp*RhCl2]2 with KI as an additive, a range of N-

heterocycles, including quinolines, isoquinolines, quinoxalines and pyridinium salts, 

can be reduced in the HCO2H-NEt3 azeotrope.
[13,14]

 As shown in Scheme 3.5, N-

heterocycles were reduced in high yields using just 0.01-0.2 mol% catalyst under 

mild condition. TH of indoles did not proceed under the protocol, however, and the 

reduction of 4-subtituted quinoline was rather sluggish. For example at higher 

catalyst loading of 2 mol% and 50% KI, only 23% conversion of 4-methyl quinoline 

was obtained after 24 h.
[13]

 Interestingly, the TH of pyridinium salts affords two 
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different products, depending on the substitution pattern at the pyridinium ring. For 

instance, 2- or 3-substitued pyridines are fully reduced to piperdines, while 4-

substitued pyridines exclusively gives 1,2,3,6-tetrahydropyridines (Scheme 3.6). 

This is because the hydride addition preferentially takes place at the 4 position for 2- 

or 3-substituted pyridines (i.e. 1,4-addition), whereas in the case of 4-substituted 

pyridines 1,4-addition is disfavoured possibly due to the steric reasons and instead 

1,2-addition takes place (Scheme 3.7).
[14]

 

 

Scheme 3.5: [Cp*RhCl2]2 catalysed TH of N-heterocycles. 

 

Scheme 3.6: [Cp*RhCl2]2 catalysed TH of pyridinium salts. 
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Scheme 3.7: 1,4-Addition versus 1,2-addition. 

Asymmetric transfer hydrogenation (ATH) of N-heterocycles has also been 

investigated, mainly with organocatalysts
[15]

 and to a lesser degree with 

homogeneous catalysts.
[16]

 However, Hantzsch esters are predominantly used, which 

are expensive hydrogen donors compared with others that are commercially 

available (
t
Bu-HEH - £70.5/gram versus HCO2H - £30/L).  

The conditions for both TH and ATH of N-heterocycles reactions are not yet ideal, 

as high catalyst loadings, high reaction temperature and/or a limited substrate scope 

are limitations often encountered. Moreover, organic solvents are normally used that 

impose an environmental impact. In addition, an active, versatile catalyst capable of 

either hydrogenation or TH of various N-heterocycles, for example quinolines, 

isoquinolines, quinoxalines, indoles and pyridines, remain to be seen. Following the 

success of iridicycles in the TH of a range of -substituted ketones in water 

described in Chapter 2, we report in this chapter our efforts to test whether the same 

catalysts are capable of reducing these more inert N-heterocycles in water.  
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3.2 Results and discussion 

3.2.1 Optimisation of the reaction conditions 

In Chapter 2 it was discussed that the complex C4 exhibits the highest activity at pH 

4.5 for the TH of -substituted ketones in water; hence the same conditions were 

adopted for the optimisation study. 2-Methylquinoline (2a) was chosen as a model 

substrate. TH of 2a gave full conversion within 3 h with only 0.1 mol% loading of 

C4 at both 80 °C and 60 °C, in an aqueous formate solution of pH 4.5 (Table 3.1, 

entries 1 and 2). Gratifyingly, lowering the temperature to 30 °C also led to a 70% 

conversion within 3 h (Table 3.1, entry 3). Screening of the solution pH with C4 

revealed that the reaction occurs only within a certain window of acidic condition. 

pH 4.5 was adopted for subsequent studies. This finding is also consistent with the 

TH of -substituted ketones (vide supra). In contrast, the analogous Rh complex D4 

only gave a 12% conversion (Table 3.1, entry 6). Other catalysts, which are known 

to be active for the TH of quinolines (Scheme 3.8), showed much lower activities 

under the reaction conditions employed (Table 3.1, entries 7-11). Although the 

dimeric [Cp*IrCl2]2 also led to a moderate conversion (38% in 3 h, Table 3.1, entry 

11), further testing showed that it exhibited very limited substrate scope (Table 3.2). 

For instance, TH of 3-methylquinoline led to its tetrahydro variant only in 4% 

conversion after 20 h (Table 3.2, entry 2).  

 

Scheme 3.8: List of TH catalysts examined for quinoline reduction. 
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Table 3.1: Screening of catalysts for the TH of 2-methylquinoline in water 

 

Entry
[a]

 Catalyst pH Temp. (°C) Conv. (%)
[b]

 

1 C4 4.5 80 >99 

2 C4 4.5 60 >99 

3 C4 4.5 30 70 

4 C4 2.5 30 20 

5 C4 6.5 30 <5 

6 D4 4.5 30 12 

7 1a 4.5 30 n.r. 

8 1b 4.5 30 8 

9 [Cp*RhCl2]2 4.5 30 5 

10
[c]

 [Cp*RhCl2]2 4.5 30 4 

11 [Cp*IrCl2]2 4.5 30 38 

[a] Reaction conditions: 2-methylquinoline (2.5 mmol), catalyst (0.1 mol%), HCO2H/HCO2Na 

aqueous solution (pH = 4.5; 3mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of 

H2O), stirred in a carousel tube for the time indicated. [b] Conversion determined by 
1
H-NMR 

spectroscopy [c] With 10 mol% KI; n.r. = no reaction. 

Table 3.2: Substrate scope with [Cp*IrCl2]2 

Entry
[a]

 Substrate Time (h) Temp. (°C) Conv. (%)
[b]

 

1 Quinoline 20 30 8 

2 3-Methylquinoline 20 30 4 

3 6-Bromoquinoline 3 30 n.r. 

4 Indole 20 30 n.r. 

[a] Reaction conditions: substrate (0.5 mmol), [Cp*IrCl2]2 (1 mol%), HCO2H/HCO2Na aqueous 

solution (pH = 4.5; 3mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O), stirred 

in a carousel tube for the time indicated. [b] Conversion determined by 
1
H-NMR spectroscopy; n.r. = 

no reaction. 
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In order to establish that aqueous conditions are the optimum, other hydride sources 

and solvents were also tested using C4 for the TH of 2-methylquinoline. As seen in 

Table 3.3, apart from water, the TH also worked in MeOH and TFE with F/T as the 

hydrogen source, but with lower conversions (65% and 68%, respectively). Much 

lower conversions were recorded in non-protic solvents, such as THF or DMF (<5% 

conversion in 3 h). Other commonly used hydride sources such as 
i
PrOH and Et3SiH 

were sluggish under the reaction conditions (Table 3.3, entries 7 and 8).  

Table 3.3: Screening of hydride sources and solvents 

 

Entry
[a]

 Hydride source Solvent Conv. (%)
[b]

 

1 F/T MeOH 64 

2 F/T TFE 68 

3 F/T THF 1 

4 F/T toluene 3 

5 F/T DCM 13 

6 F/T DMF 4 

7 0.1M KOH/
 i
PrOH i

PrOH 15 

8 Et3SiH H2O n.r. 

[a] Reaction conditions: 2-methylquinoline (2.5 mmol), C4 (0.1 mol%), hydride source (20 equiv.), 

solvent, stirred in a carousel tube for the 3 h. [b] Conversion determined by 
1
H-NMR spectroscopy; 

n.r. = no reaction. 

3.2.2 TH of quinolines 

Once the optimal TH condition for 2-methylquinoline had been established, an array 

of 26 diversely substituted quinolines (2a-2z) was hydrogenated in the aqueous 

formate solution of pH 4.5, as summarised in Table 3.4. The iridium based catalyst 

C4 exhibited high reactivity for all of the quinoline substrates examined. Thus, 
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unsubstituted quinoline 2d, 2-substituted quinoline 2a and 3-substitued quinoline 2b 

were all effectively reduced at 30 °C with excellent yields (Table 3.4, entries 1, 2 

and 4). Increasing the steric bulkiness at the 2-postion led to a decrease in 

conversion, which could be compensated by increasing the reaction temperature to 

reflux (3e, 84% yield; Table 3.4, entry 5). Challenging 4-substitued quinolines 2c 

and 2z were also reduced in high yields, albeit with high temperature (Table 3.4, 

entries 3 and 26). Other functional groups, including halogen (2g-2k), ether (2m-2o), 

protected amine (2q), amide (2r), ester (2s), carboxylic acid (2t), heterocycles (2v-

2x) and a trifluoromethyl group (2p) were all tolerated under the reaction condition, 

exhibiting insignificant effect on the yields with products isolated in average yield of 

>90% (Table 3.4, entries 7-20 and 22-24). Even with a highly sensitive functional 

group, such as boronic acid pinacol ester, 3u was isolated in 62% (Table 3.4, entry 

21), together with 30% of the deboronated product 3a. 

Table 3.4: TH of quinolines 

 

Entry
[a]

 Substrate Product Yield (%)
[b]

 

1 
  

3a 96 

2 
  

3b 93 

3
[c]

 

  

3c 90 

4 
  

3d 90 
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5
[c]

 
  

3e 84 

6 

  

3f 94 

7 
  

3g 97 

8 
  

3h 97 

9 
  

3i 95 

10 
  

3j 98 

11 

  

3k 92 

12 
  

3l 95 

13 
  

3m 96 

14 
  

3n 94 

15 
  

3o 93 

16 
  

3p 98 

17
[c,d]

 
  

3q 90 

18
[c]

 

  

3r 91 
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19 

  

3s 92 

20 

  

3t 82 

21
[c]

 

  

3u 62 

22 

  

3v 95 

23 

  

3w 96 

24
[c]

 

  

3x 82 

25 

  

3y 95 

26
[c,e]

 

  

3z 84 

[a] Reaction conditions: quinoline (2.5 mmol), C4 (0.1 mol%), HCO2H/HCO2Na aqueous solution 

(pH = 4.5; 3mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O), 30 °C stirred 

in a carousel tube for 14 h. [b] Yield of isolated product. [c] Reaction was carried out at reflux. [d] 

Yield determined by 
1
H-NMR spectroscopy. [e] 0.5 mol% C4 used. 

In order to demonstrate the potential usefulness of this method in process chemistry, 

2a was used as the model substrate for a larger scale reduction. As shown in Scheme 

3.9, 35.8g (0.25 mol) of 2a was effectively reduced with just 0.01 mol% C4 at 30 °C 

(75% conversion in 24 h; TON = 7500). The product was separated from the reaction 

mixture by a simple phase separation and purified by fractional distillation. 
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Moreover, the aqueous layer could be reused by adjusting the pH back to 4.5 by the 

addition of fresh formic acid. No special equipment was required for this reaction, 

nor was an inert atmosphere necessary. In addition, no organic solvent was required 

for the entire operation, and only minimum waste was generated, showing the 

protocol to be greener than the traditional methods, which often involves the use of 

NaBH3CN in acetic acid or Pd/C or Pd/Al2O3 under high pressure of H2.
[17,18]

 

 

Scheme 3.9: Large scale TH of 2-methylquinoline. 

3.2.3 TH of isoquinolines and pyridines  

Based on the successful results obtained for the TH of quinolines with C4, the 

substrate scope was expanded to more challenging isoquinolines and pyridines. 

Reduction of isoquinoline and 2-phenylpyridine led to the recovery of the starting 

material under the reaction conditions used in Table 3.4, presumably due to their 

high aromatic stability. It was thought that activating the substrate by quaternizing 

the nitrogen atom would lead to a higher activity.
[14]

 This is indeed the case, and the 

optimisation results for isoquinoline and pyridine are shown in Table 3.5 and 3.6, 

respectively. 

 

 

 

 



Chapter 3 

112 
 

Table 3.5: Reaction optimisation for the TH of isoquinoline 

 

Entry
[a]

 R X
-
 Temp. (°C) Conv. (%)

[b]
 

1 - - 30 n.r. 

2 - - reflux n.r. 

3 H OTf reflux 47 

4 Me I reflux n.r. 

5 Et I reflux 89 

6 Bn Br reflux 90 

7 Bn Br 30 n.r. 

[a] Reaction conditions: isoquinoline (0.5 mmol), C4 (1 mol%), HCO2H/HCO2Na aqueous solution 

(pH = 4.5; 3mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O), stirred in a 

carousel tube for 24 h. [b] Conversion determined by 
1
H-NMR spectroscopy; n.r. = no reaction. 

Table 3.6: Reaction optimisation for the TH of pyridine 

 

Entry
[a]

 R X
-
 Temp. (°C) Time (h) Conv. (%)

[b]
 

1 - - 30 24 n.r. 

2 - - reflux 24 n.r. 

3 H OTf reflux 24 n.r. 

4 Me I reflux 24 n.r. 

5 Et I reflux 24 63 

6 Et I reflux 36 93 

7 Bn Br reflux 36 92 

[a] Reaction conditions: pyridine (0.5 mmol), C4 (1 mol%), HCO2H/HCO2Na aqueous solution (pH = 

4.5; 3mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O), stirred in a carousel 

tube for the time indicated. [b] Conversion determined by 
1
H-NMR spectroscopy; n.r. = no reaction. 
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After the optimised conditions had been established, an array of 6 isoquinolinium 

(4a-4f) and 10 pyridinium (6a-6j) salts were reduced (Table 3.7). Unsubstitued 

isoquinolinium, 1-methyl, 3-methyl and 6-methyl isoquinolinium salts gave the 

highest yields (>95%; Table 3.7, entries 2-5). Increasing the steric bulk at the 1-

position by replacing the methyl group with a phenyl did not affect the yield (Table 

3.7, entry 1). A functional group, such as bromine, was well tolerated under the 

reaction condition (Table 3.7, entry 6). Likewise, 2-substituted pyridinium salts (6a-

6e) were all reduced with good yields, regardless of the nature of the functional 

groups (Table 3.7, entries 7-11). Interestingly, substrates bearing an electron 

withdrawing group at the 4-position gave exclusively the fully reduced piperidines, 

whilst those having an electron donating group led to the partially reduced 3,4-

unsaturated piperidines (Table 3.7, entries 13 and 14 versus 15 and 16). This 

phenomenon could be explained by a competitive 1,2-hydride addition versus 1,4-

hydride addition (vide supra). Having an electron withdrawing substituent probably 

renders the 4-position more electrophilic, favouring the 1,4-addition. 
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Table 3.7: TH of isoquinolinium and pyridinium salts 

 

Entry
[a]

 Substrate Product Yield (%)
[b]

 

1 

  

5a 90 

2 
  

5b 95 

3
[c]

 

  

5c 98 

4
[c]

 
  

5d 97 

5 
  

5e 99 

6 
  

5f 91 

7 

  

7a 90 

8
[d]

 

  

7b 72 

9 

  

7c 90 

10 

  

7d 94 

11 

  

7e 81 
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12
[c]

 

  

7f 82 

13
[c]

 

  

7g 95 

14 

  

7h 92 

15 

  

7i 82 

16 

  

7j 80 

[a] Reaction conditions: isoquinolinium or pyridinium salts (2.5 mmol), C4 (1 mol%), 

HCO2H/HCO2Na aqueous solution (pH = 4.5; 3mL; 14.0 mmol of HCO2H and 29.4 mmol of 

HCO2Na in 2.8 mL of H2O), reflux, stirred in a carousel tube for 24 h (isoquinolinium) or 36 h 

(pyridinium). [b] Yield of isolated product. [c] Yield determined by 
1
H-NMR spectroscopy. [d] 

Isolated as debenzylated product after the column. 

3.2.4 TH of indoles 

Substrate scope of indoles was examined next with C4 under the condition of Table 

3.4. A range of indoles with both electron-donating and electron-withdrawing groups 

were reduced to the corresponding indolines in good yields (Table 3.8). However, 

TH of 5-bromoindole gave a lower yield (Table 3.8, entry 3). For 5-bromoindole 8c, 

a thick layer of coating was always observed on the reaction vessel above the solvent 

level, even at reflux and with the addition of MeOH as a co-solvent. This reflects 

that the solubility of 8c was an issue under the reaction conditions employed and this 

may have led to the lower conversion. Disappointedly, TH of sterically hindered 2-

phenylindole failed to proceed under the present reaction conditions, and 3-
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methylindole gave a low yield (Table 3.8, entries 6 and 7). One of the explanations 

could be the unfavourable tautomerization of 8f or difficulty in its protonation at the 

3-position due to sterics, following which 1,2-hydride addition can occur. 

Table 3.8: TH of indoles 

 

Entry
[a]

 Substrate Product Yield (%)
[b]

 

1 
  

9a 96 

2 

  

9b 94 

3
[c,d]

 

  

9c 30 

4 
  

9d 92 

5
[c]

 

  

9e 78 

6
[c,d]

 

  

9f 33 

7 
  

9g n.r. 

[a] Reaction conditions: indole (2.5 mmol), C4 (0.1 mol%), HCO2H/HCO2Na aqueous solution (pH = 

4.5; 3mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of H2O), 30 °C, stirred in a 

carousel tube for 16 h. [b] Yield of isolated product. [c] Using 0.5 mol% C4, at reflux and with the 

addition of MeOH (1 mL). [d] Yield determined by 
1
H-NMR spectroscopy; n.r. = no reaction. 
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3.2.5 TH of other N-heterocycles and imines 

In order to further demonstrate the potential of C4 as a versatile catalyst for the TH 

of a range of heterocycles, rather than a specialised catalyst for a particular class of 

substrates, a range of diverse substrates, including cyclic and acyclic imines and 

other fused heterocycles, were examined. Acridine (10b), neocuproine (10c) and 

quinoxaline (10a) were all reduced to their corresponding products in excellent 

yields, although the latter was exclusively isolated as a mono N-formyl derivative 

(Table 3.9, entries 1-3). Interestingly, 1H-cyclopenta[b]pyridine 10d was reduced at 

the carbocycle ring to give the pyridine 11d (Table 3.9, entry 4). Both the cyclic and 

acyclic imines were fully reduced to give the corresponding amines 11f and 11g, 

respectively, with good yields (Table 3.9, entries 6 and 7). Salsolidine (11f) is 

naturally isolated from the plants of the genus salsola and is a stereoselective 

competitive inhibitor of the enzyme monoamine oxidase.
[19]

 Under the present 

reaction condition pyrazine also resisted the TH with C4 (Table 3.9, entry 5).  
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Table 3.9: TH of other N-heterocycles and imines  

 

Entry
[a]

 Substrate Product Yield (%)
[b]

 

1 
 

 

11a 90 

2 
  

11b 82 

3 

  

11c 96 

4 

  
11d 99 

5 
 

 

11e n.r. 

6
[c]

 

  

11f 98 

7
[d,e]

 

  

11g 90 

[a] Reaction conditions: N-heterocycle or imine (2.5 mmol), C4 (0.1 mol%), HCO2H/HCO2Na 

aqueous solution (pH = 4.5; 3mL; 14.0 mmol of HCO2H and 29.4 mmol of HCO2Na in 2.8 mL of 

H2O), reflux, stirred in a carousel tube for 16 h. [b] Yield of isolated product. [c] Reaction conducted 

at 30 
°
C. [d] Yield determined by 

1
H-NMR spectroscopy. [e] Obtained as a mixture of 60% and 30% 

11g and its N-formyl derivative, respectively; n.r. = no reaction 
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3.2.6 Mechanistic investigations 

The TH of quinolines in an acidic medium has been suggested to proceed by an ionic 

pathway.
[13]

 The initial hydride delivery to the protonated quinoline may occur via 

the 1,4-addition fashion; isomerisation and further reduction via 1,2-addition would 

afford the product (Scheme 3.10). If the reaction is initiated by 1,2-hydride addition, 

the resulting 1,2-dihydroquinoline may not be further reduced; but it may undergo 

dehydrogenation to go back to the starting material or disproportionate.
[20]

 In order to 

gain more insight into the reaction mechanism, a combination of intermediate 

reactions, isotope labelling and stoichiometric reactions were explored. 

 

Scheme 3.10: Suggested possible reaction pathways for the TH of quinolines. 

3.2.6.1 Deuterium labelling 

Deuterium labelling reactions were carried out on the model substrate 2a with C4 at 

30 
°
C in water. Using fully deuterated reagents and solvent, 87%, 94% and 100% 

deuterium incorporation onto the 2, 3 and 4-position of the product was observed, 

respectively (Scheme 3.11, eq. 1). When HCO2Na and HCO2H were used together 

with D2O, 52%, 49%, and 55% deuterium were incorporated onto the 2, 3 and 4-

position of the product, respectively (Scheme 3.11, eq. 2). On the other hand, when 

DCO2D, DCO2Na were used in H2O, only 18%, 0%, and 14% deuterium were 

incorporated onto these positions, respectively (Scheme 3.11, eq. 3). One possible 
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explanation for deuterium (Eq. 2) and hydrogen (Eq. 3) incorporation is that 

following the formation of the iridium hydride/deuteride takes place, the transfer of 

the hydride/deuteride to the substrate is the rate limiting step. This would allow the 

iridium hydride/deuteride to be scrambled with the solvent (Scheme 3.11, eq. 4 and 

5), producing a mixture of iridium hydride and deuteride and consequently the 

partial incorporation of deuterium into the product.
[21]

 The reaction shown in Eq. 3 

also reveals that when H2O was used as the solvent, no deuterium was incorporated 

onto the 3-position. This is consistent with the assumption that there is an acid-

mediated isomerisation reaction between the hydride addition steps (Scheme 3.10). 

 

Scheme 3.11: Deuterium labelling experiments. 

3.2.6.2 Monitoring the reaction by 
1
H-NMR in situ  

Further support to the hydride transfer being the rate limiting was gained by 

monitoring the reduction of the protonated 2a with C4 in situ using 
1
H-NMR 

spectroscopy (Figure 3.1). As noted before, neutral 2a was not reduced with an 

isolated closely-related Ir-H.
[22]

 The reaction was carried out in a NMR tube 
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equipped with a Young’s tap, containing 1 equiv. of C4 and 5 equiv. of 2a
.
HBF4 in 

d
4
-MeCN (Figure 3.1, spectrum 1). After the addition of 5 equiv. of the F/T, a 

hydride signal was immediately observed at  -15.8 (Spectrum 2). While the signal 

of the product tetrahydroquinoline gradually increased in intensity over time (Spectra 

3 and 4), signals corresponding to the potential intermediates 2a1, 2a2 and 2a3 

(Scheme 3.10) were not observed. Nonetheless the hydride signal remained, which, 

together with the rapid hydride formation, is consistent with the assumption that the 

transfer hydrogenation in question is turnover-limited by the step of hydride transfer. 

 

Figure 3.1: In situ 
1
H-NMR; spectrum 1: C4 and 2a

.
HBF4 (5 equiv.) in d

4
-MeCN; spectrum 2: after 

the addition of F/T (5 equiv.); spectrum 3: after 5 min; spectrum 4: after 30 min. 

3.2.6.3 Reactions of proposed intermediates  

The TH of 2a may yield two distinct intermediates, namely 1,2-dihydroquinoline 

(via 1,2-addition) and 3,4-dihydroquinoline (via 1,4-addition) (Scheme 3.10). To 

gain evidence into their possible involvement in the reduction, a 1:1 mixture of 

dihydroquinoline 2l1 and quinoline 2l was subjected to the standard reaction 

conditions (Scheme 3.12, eq 6). In the presence of C4, only the fully reduced 

4 

3 

2 

1 
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tetrahydroquinoline 3l (100%) was obtained after the reaction. However, in the 

absence of C4, 23% of 3l and 77% of 2l were obtained. And in both cases, no 

starting dihydroquinoline 2l1 was observed after the reaction. These results supports 

the hypothesis that the 1,2-addition product (e.g. 2l1) is consumed via a 

disproportionation mechanism instead of being reduced by the catalysis of C4. 

Further evidence to this hypothesis comes from the observation that when 2l2 was 

used as a substrate, no reaction occurred (Scheme 3.12, eq 7). 

 

Scheme 3.12: Control experiments. 

To probe whether the 1,4-addition  precedes the 1,2-addition in the TH or vice versa, 

a model substrate N-cinnamylidene aniline 12a was subjected to the C4 catalysed 

reduction. Under the standard reaction conditions, a mixture of 13a and 13b (43:57) 

was obtained (Scheme 3.13), indicating that both 1,2- and 1,4-hydride additions are 

likely to happen for quinoline type substrates. 

 

Scheme 3.13: Reaction of N-cinnamylidene aniline with C4 in water. 
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3.2.6.4 Proposed reaction mechanism 

On the basis of the experimental results presented above, a plausible mechanism is 

proposed for the TH of quinolines (Scheme 3.14). C4 reacts with formate to generate 

the active Ir-H species that can react with the 2ax (2-methylquinoline, pKa 5.4) in 

two different pathways. In Pathway 1, 2ax undergoes 1,4-addition to give the 1,4-

dihydroquinoline 2a2, which then isomerises to 2a3. Protonation of 2a3 followed by 

1,2-addition then yields 3a. Pathway 2 involves the 1,2-hydride addition as the first 

step to give 1,2-dihydroquinoline 2a1, which then reduces 2ax to 2a2. Isomerisation 

of the latter affords 2a3, which is finally reduced by 1,2-addition after protonation to 

yield 3a. Whilst the pathway 1 and 2 are both competitive, the rate of each is likely 

to be affected by both steric and electronic effects. 

 

Scheme 3.14: Plausible reaction mechanism for the TH of quinolines catalysed by C4. 
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3.3 Conclusion 

In summary, this chapter demonstrates that a wide variety of N-heterocycles, 

including but not limited to quinolines, isoquinolines, indoles, quinoxalines and 

pyridinium salts, can be effectively reduced using an iridicycle in water. This 

reaction is applicable to large scale synthesis with no need for specialised equipment. 

The use of environmentally benign solvent, renewable hydride donor and easy work-

up and purification provides a significant advantage for industrial applications. To 

the best of our knowledge, this work constitutes the first example of a highly 

versatile homogenous catalyst that can reduce a range of N-heterocycles in water 

under the TH conditions. In addition, iridicycle exhibits great functional group 

tolerance, including highly sensitive boronic acid pinacol ester. 

3.4 Experimental 

3.4.1 General information 

Unless otherwise specified, all reagents were commercially purchased and used 

without further purification. Deionised water was used for the reactions. NMR 

spectra were recorded on a Bruker 400 MHz or 250 MHz NMR spectrometer with 

TMS as the internal standard. Elemental Analysis and Mass Spectrometry Analysis 

were carried out at the Microanalysis Centre of the University of Liverpool. 

Quinolines 2n-t, 2v-x and 2z were prepared according to the reported literature 

procedures.
[23]

 All the data collected for the products were consistent with the 

literature. Compounds 3f, 3n, 3o, 3r-y, 5e, 5f, 7e, 7i and 11a are unknown.  
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3.4.2 Typical reaction procedure for the TH of quinolines 

Quinoline (2.5 mmol) and C4 (1.6 mg, 2.5 x 10
-3

 mmol) were placed in a carousel 

reaction tube. HCO2H/HCO2Na aqueous solution of pH 4.5 (3 mL) was then 

introduced and the mixture was stirred at 30 °C for 14 h. The reaction mixture was 

quenched with saturated sodium bicarbonate solution. The aqueous layer was 

extracted with ethyl acetate (3 x 10 mL) and the combined organic layers were 

washed with brine (20 mL). The organic layer was collected and dried over 

anhydrous sodium sulphate. Filtration, followed by evaporation of the solvent under 

reduced pressure, gave the crude mixture that was purified with flash column 

chromatography to afford the desired 1,2,3,4-tetrahydroquinoline. 

3.4.3 Typical reaction procedure for the TH of isoquinolinium and pyridinium 

salts 

Isoquinolinium or pyridinium (2.5 mmol) and C4 (16 mg, 2.5 x 10
-2

 mmol) were 

placed in a carousel reaction tube. HCO2H/HCO2Na aqueous solution of pH 4.5 (3 

mL) was then introduced and the mixture was stirred at reflux temperature for 24 h 

(36 h for pyridinium). The reaction mixture was quenched with saturated sodium 

bicarbonate solution. The aqueous layer was extracted with ethyl acetate (3 x 10 mL) 

and the combined organic layers were washed with brine (20 mL). The organic layer 

was collected and dried over anhydrous sodium sulphate. Filtration, followed by 

evaporation of the solvent under reduced pressure, gave the crude mixture that was 

purified with flash column chromatography to afford the desired 1,2,3,4-

tetrahydroisoquinoline or piperidine. 
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3.4.4 Typical reaction procedure for the TH of indoles, imines and other N-

heterocycles 

Imine/N-heterocycle (2.5 mmol) and C4 (1.6 mg, 2.5 x 10
-3

 mmol) were placed in a 

carousel reaction tube. HCO2H/HCO2Na aqueous solution of pH 4.5 (3 mL) was 

then introduced (for substrate 8c, 8e and 8f, 1 mL of MeOH was added) and the 

mixture was stirred at 30 °C (or at reflux, refer to the Tables 3.8 and 3.9 for the 

reaction temperature) for 16 h. The reaction mixture was quenched with saturated 

sodium bicarbonate solution. The aqueous layer was extracted with ethyl acetate (3 x 

10 mL) and the combined organic layers were washed with brine (20 mL). The 

organic layer was collected and dried over anhydrous sodium sulphate. Filtration, 

followed by evaporation of the solvent under reduced pressure, gave the crude 

mixture that was purified with flash column chromatography to afford the desired 

product. 

3.4.5 Data of the cyclometalated rhodium complex D4 

 

Complex D4: Red solid; 
1
H NMR (CD2Cl2, 400 MHz, 293 K) δ (ppm): 8.11 (s, 1H), 

8.02 (s, 1H), 7.83 (d, J = 8.3 Hz, 2H), 7.52-7.33 (m, 4H), 7.00 (d, J = 8.5 Hz, 2H), 

3.86 (s, 3H), 2.43 (s, 3H), 1.40 (s, 15H).
 13

C NMR (CD2Cl2, 100 MHz, 293 K) δ 

(ppm): 178.8, 175.5, 175.2, 157.9, 147.5, 143.5, 135.7, 133.5, 130.1, 128.9, 127.6, 

127.2, 126.1, 124.0, 123.8, 113.8, 96.2, 96.1, 55.5, 16.9, 8.5. Anal. calc. for 

C29H31ClRhNO + H2O (%): C, 61.55; H, 5.88; N, 2.47. Found: C, 61.70; H, 5.46; N, 

2.37. 
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3.4.6 Data of 1,2,3,4-tetrahydroquinolines (3a-z) 

 

2-Methyl-1,2,3,4-tetrahydroquinoline, 3a:
[13]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ 

(ppm): 6.95-6.94 (m, 2H), 6.61-6.58 (m, 1H), 6.47-6.45 (m, 1H), 3.66 (bs, 1H), 3.42-

3.35 (m, 1H), 2.87-2.70 (m, 2H), 1.95-1.88 (m, 1H), 1.63-1.53 (m, 1H), 1.20 (d, J = 

6.3 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 144.8, 129.3, 126.7, 

121.1, 117.0, 114.0, 47.2, 30.2, 26.6, 22.6. HRMS for C10H14N [M+H]
+
: m/z calc., 

148.1121; found, 148.1124. 

 

3-Methyl-1,2,3,4-tetrahydroquinoline, 3b:
[13]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ 

(ppm): 6.98-6.92 (m, 2H), 6.60 (td, J = 7.3, 1.1 Hz, 1H), 6.47 (d, J = 7.9 Hz, 1H), 

3.82 (bs, 1H), 3.28-3.24 (m, 1H), 2.89 (dd, J = 10.6, 9.7 Hz, 1H), 2.77 (ddd, J = 16.0, 

4.8, 1.8 Hz, 1H), 2.42 (dd, J = 16.0, 10.3 Hz, 1H), 2.11-1.99 (m, 1H), 1.04 (d, J = 6.7 

Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 144.2, 129.5, 126.7, 121.2, 

117.0, 113.9, 48.9, 35.5, 27.2, 19.0. HRMS for C10H14N [M+H]
+
: m/z calc., 

148.1121; found, 148.1125. 

 

4-Methyl-1,2,3,4-tetrahydroquinoline, 3c:
[22]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ 

(ppm): 7.05 (d, J = 7.5 Hz, 1H), 6.97-6.93 (m, 1H), 6.62 (td, J = 7.4, 1.0 Hz, 1H), 

6.46 (dd, J = 8.0, 0.9 Hz, 1H), 3.79 (bs, 1H), 3.35-3.23 (m, 2H), 2.95-2.86 (m, 1H), 

2.01-1.94 (m, 1H), 1.71-1.63 (m, 1H), 1.28 (d, J = 7.0 Hz, 3H). 
13

C NMR (CDCl3, 

100 MHz, 298 K) δ (ppm): 144.3, 128.5, 126.7, 126.6, 117.0, 114.2, 39.0, 30.3, 29.9, 

22.7. HRMS for C10H14N [M+H]
+
: m/z calc., 148.1121; found, 148.1126. 

 

1,2,3,4-Tetrahydroquinoline, 3d:
[22]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 

6.97-6.93 (m, 2H), 6.59 (t, J = 7.4 Hz, 1H), 6.46 (d, J = 7.8 Hz, 1H), 3.79 (bs, 1H), 
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3.29 (t, J = 5.4 Hz, 2H), 2.75 (t, J = 6.4 Hz, 2H), 1.96-1.90 (m, 2H). 
13

C NMR 

(CDCl3, 100 MHz, 298 K) δ (ppm): 144.8, 129.5, 126.7, 121.5, 116.9, 114.2, 42.0, 

27.0, 22.2. HRMS for C9H12N [M+H]
+
: m/z calc., 134.0970; found, 134.0974. 

 

2-Phenyl-1,2,3,4-tetrahydroquinoline, 3e:
[13]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ 

(ppm): 7.40-7.33 (m, 4H), 7.30-7.26 (m, 1H), 7.02-6.99 (m, 2H), 6.65 (td, J = 7.4, 

0.8 Hz, 1H), 6.54 (d, J = 7.7 Hz, 1H), 4.44 (dd, J = 9.4, 3.3 Hz, 1H), 4.05 (bs, 1H), 

2.96-2.88 (m, 1H), 2.73 (dt, J = 16.3, 4.7 Hz, 1H), 2.15-2.09 (m, 1H), 2.04-1.94 (m, 

1H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 144.8, 144.7, 129.3, 128.6, 

127.4, 126.9, 126.6, 120.9, 117.2, 114.0, 56.3, 31.0, 26.4. 

 

3-Methyl-1,2,3,4-tetrahydrobenzo[f]quinoline, 3f: 
1
H NMR (CDCl3, 400 MHz, 298 

K) δ (ppm): 7.72 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.7 Hz, 

1H), 7.43-7.38 (m, 1H), 7.22-7.18 (m, 1H), 6.76 (d, J = 8.8 Hz, 1H), 3.86 (bs, 1H), 

3.48-3.40 (m, 1H), 3.15-3.08 (m, 1H), 3.02-2.94 (m, 1H), 2.15-2.08 (m, 1H), 1.77-

1.67 (m, 1H), 1.27 (d, J = 6.3 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 

141.9, 133.4, 128.4, 127.8, 127.2, 126.3, 121.6, 121.3, 118.2, 111.5, 46.9, 30.1, 22.6, 

22.2. HRMS for C14H16N [M+H]
+
: m/z calc., 198.1280; found, 198.1283. 

 

6-Fluoro-2-methyl-1,2,3,4-tetrahydroquinoline, 3g:
[13]

 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 6.69-6.64 (m, 2H), 6.41-6.37 (m, 1H), 3.57 (bs, 1H), 3.38-3.30 (m, 

1H), 2.86-2.77 (m, 1H), 2.72-2.66 (m, 1H), 1.94-1.88 (m, 1H), 1.60-1.50 (m, 1H), 

1.20 (d, J = 6.2 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 155.5 (d, J = 

234.7 Hz), 141.0 (d, J = 1.7 Hz), 122.5 (d, J = 6.8 Hz), 115.4 (d, J = 21.5 Hz), 114.7 

(d, J = 7.7 Hz), 113.2 (d, J = 22.4 Hz), 47.3, 29.9, 26.7, 22.5. HRMS for C10H13FN 

[M+H]
+
: m/z calc., 166.1027; found, 166.1031. 
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6-Chloro-2-methyl-1,2,3,4-tetrahydroquinoline, 3h:
[13]

 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 6.92-6.88 (m, 2H), 6.38 (d, J = 8.3 Hz, 1H), 3.69 (bs, 1H), 3.41-3.33 

(m, 1H), 2.83-2.65 (m, 2H), 1.94-1.88 (m, 1H), 1.60-1.50 (m, 1H), 1.20 (d, J = 6.3 

Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 143.3, 128.8, 126.5, 122.6, 

121.3, 114.9, 47.1, 29.7, 26.5, 22.5. 

 

6-Bromo-2-methyl-1,2,3,4-tetrahydroquinoline, 3i:
[13]

 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 7.06-7.01 (m, 2H), 6.33 (d, J = 8.5 Hz, 1H), 3.72 (bs, 1H), 3.41-3.33 

(m, 1H), 2.83-2.65 (m, 2H), 1.94-1.88 (m, 1H), 1.59-1.49 (m, 1H), 1.20 (d, J = 6.3 

Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 143.7, 131.7, 129.3, 123.1, 

115.4, 108.3, 47.1, 29.6, 26.4, 22.5. HRMS for C10H13BrN [M+H]
+
: m/z calc., 

226.0226; found, 226.0230. 

 

7-Fluoro-2-methyl-1,2,3,4-tetrahydroquinoline, 3j:
[13]

 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 6.85 (t, J = 7.4 Hz, 1H), 6.27 (td, J = 8.5, 2.5 Hz, 1H), 6.15 (dd, J = 

10.8, 2.5 Hz, 1H), 3.76 (bs, 1H), 3.43-3.35 (m, 1H), 2.80-2.64 (m, 2H), 1.95-1.88 

(m, 1H), 1.60-1.50 (m, 1H), 1.20 (d, J = 6.3 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 

298 K) δ (ppm): 162.1 (d, J = 240.3 Hz), 145.9 (d, J = 10.5 Hz), 130.0 (d, J = 9.9 

Hz), 116.4 (d, J = 2.4 Hz), 103.3 (d, J = 21.5 Hz), 100.1 (d, J = 24.4 Hz), 47.0, 30.0, 

26.0, 22.5. HRMS for C10H13FN [M+H]
+
: m/z calc., 166.1027; found, 166.1030. 

 

8-Chloro-2-methyl-1,2,3,4-tetrahydroquinoline, 3k:
[24]

 
1
H NMR (CDCl3, 250 MHz, 

298 K) δ (ppm): 7.06 (d, J = 7.9 Hz, 1H), 6.86 (d, J = 7.4 Hz, 1H), 6.51 (t, J = 7.7 

Hz, 1H), 4.26 (bs, 1H), 3.53-3.40 (m, 1H), 2.91-2.69 (m, 2H), 1.99-1.89 (m, 1H), 

1.66-1.50 (m, 1H), 1.27 (d, J = 6.3 Hz, 3H). 
13

C NMR (CDCl3, 63 MHz, 298 K) δ 

(ppm): 140.7, 127.4, 126.7, 122.4, 117.8, 116.3, 47.2, 29.6, 26.7, 22.5. 
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2,6-Dimethyl-1,2,3,4-tetrahydroquinoline, 3l:
[13]

 
1
H NMR (CDCl3, 400 MHz, 298 

K) δ (ppm): 6.78-6.76 (m, 2H), 6.40 (d, J = 8.3 Hz, 1H), 3.52 (bs, 1H), 3.39-3.31 (m, 

1H), 2.85-2.76 (m, 1H), 2.71-2.65 (m, 1H), 2.20 (s, 3H), 1.94-1.87 (m, 1H), 1.62-

1.52 (m, 1H), 1.19 (d, J = 6.2 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 

142.4, 129.8, 127.2, 126.3, 121.2, 114.3, 47.3, 30.4, 26.6, 22.6, 20.4. HRMS for 

C11H16N [M+H]
+
: m/z calc., 162.1277; found, 162.1279. 

 

6-Methoxy-2-methyl-1,2,3,4-tetrahydroquinoline, 3m:
[13]

 
1
H NMR (CDCl3, 400 

MHz, 298 K) δ (ppm): 6.60-6.57 (m, 2H), 6.44 (d, J = 8.4 Hz, 1H), 3.72 (s, 3H), 3.47 

(bs, 1H), 3.36-3.29 (m, 1H), 2.88-2.80 (m, 1H), 2.73-2.67 (m, 1H), 1.94-1.88 (m, 

1H), 1.62-1.52 (m, 1H), 1.19 (d, J = 6.3 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 

K) δ (ppm): 151.9, 138.9, 122.5, 115.3, 114.7, 112.9, 55.8, 47.5, 30.3, 26.9, 22.6. 

HRMS for C11H16NO [M+H]
+
: m/z calc., 178.1226; found, 178.1229. 

 

6-(Benzyloxy)-2-methyl-1,2,3,4-tetrahydroquinoline, 3n: 
1
H NMR (CDCl3, 400 

MHz, 298 K) δ (ppm): 7.42-7.27 (m, 5H), 6.65-6.63 (m, 2H), 6.43-6.41 (m, 1H), 

4.95 (s, 2H), 3.47 (bs, 1H), 3.35-3.28 (m, 1H), 2.86-2.78 (m, 1H), 2.71-2.65 (m, 1H), 

1.92-1.86 (m, 1H), 1.61-1.51 (m, 1H), 1.18 (d, J = 6.2 Hz, 3H). 
13

C NMR (CDCl3, 

100 MHz, 298 K) δ (ppm): 151.1, 139.2, 137.8, 128.5, 127.7, 127.5, 122.5, 116.0, 

115.2, 114.0, 70.9, 47.5, 30.3, 26.9, 22.6. HRMS for C17H20NO [M+H]
+
: m/z calc., 

254.1545; found, 254.1541. 

 

6-(Allyloxy)-2-methyl-1,2,3,4-tetrahydroquinoline, 3o: 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 6.62-6.59 (m, 2H), 6.43 (d, J = 8.1 Hz, 1H), 6.09-5.99 (m, 1H), 5.38 

(dd, J = 17.3, 1.6 Hz, 1H), 5.24 (dd, J = 10.5, 1.4 Hz, 1H), 4.44 (dt, J = 5.3, 1.4 Hz, 

2H), 3.44 (bs, 1H), 3.37-3.29 (m, 1H), 2.87-2.79 (m, 1H), 2.72-2.66 (m, 1H), 1.94-
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1.88 (m, 1H), 1.62-1.52 (m, 1H), 1.19 (d, J = 6.3 Hz, 3H). 
13

C NMR (CDCl3, 100 

MHz, 298 K) δ (ppm): 150.8, 139.1, 134.0, 122.5, 117.2, 115.9, 115.2, 113.9, 69.7, 

47.5, 30.3, 26.9, 22.6. HRMS for C13H18NO [M+H]
+
: m/z calc., 204.1383; found, 

204.1391. 

 

2-Methyl-6-(trifluoromethyl)-1,2,3,4-tetrahydroquinoline, 3p:
[25]

 
1
H NMR (CDCl3, 

400 MHz, 298 K) δ (ppm): 7.18-7.17 (m, 2H), 6.44 (d, J = 8.9 Hz, 1H), 4.03 (bs, 

1H), 3.49-3.41 (m, 1H), 2.86-2.71 (m, 2H), 1.98-1.92 (m, 1H), 1.61-1.52 (m, 1H), 

1.23 (d, J = 6.3 Hz, 3H). 
19

F NMR (CDCl3, 376 MHz, 298 K) δ (ppm): -60.8. 
13

C 

NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 147.3, 126.3 (q, J = 3.7 Hz), 125.0 (q, J = 

270.3 Hz), 124.0 (q, J = 3.8 Hz), 120.3, 118.1 (q, J = 32.3 Hz), 112.9, 47.1, 29.4, 

26.4, 22.4. HRMS for C11H13F3N [M+H]
+
: m/z calc., 216.0995; found, 216.1000. 

 

N,N-Diethyl-2-methyl-1,2,3,4-tetrahydroquinoline-6-carboxamide, 3r: 
1
H NMR 

(CDCl3, 400 MHz, 298 K) δ (ppm): 7.05 (s, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.41 (d, J 

= 8.2 Hz, 1H), 3.97 (bs, 1H), 3.45-3.40 (m, 5H), 2.86-2.69 (m, 2H), 1.97-1.91 (m, 

1H), 1.62-1.53 (m, 1H), 1.22 (d, J = 6.3 Hz, 3H), 1.17 (d, J = 7.0 Hz, 6H). 
13

C NMR 

(CDCl3, 100 MHz, 298 K) δ (ppm): 172.0, 145.7, 128.4, 125.6, 125.3, 120.5, 112.9, 

47.2, 29.8, 26.4, 22.5, 13.6 (br), one carbon signal is not observed. HRMS for 

C15H23N2O [M+H]
+
: m/z calc., 247.1805; found, 247.1812. 

 

Methyl 2-methyl-1,2,3,4-tetrahydroquinoline-6-carboxylate, 3s: 
1
H NMR (CDCl3, 

400 MHz, 298 K) δ (ppm): 7.66-7.64 (m, 2H), 6.40 (d, J = 8.9 Hz, 1H), 4.26 (bs, 

1H), 3.83 (s, 3H), 3.52-3.44 (m, 1H), 2.86-2.74 (m, 2H), 1.99-1.93 (m, 1H), 1.62-

1.52 (m, 1H), 1.24 (d, J = 6.3 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 

167.5, 148.6, 131.1, 129.1, 119.8, 117.7, 112.6, 51.5, 47.2, 29.4, 26.3, 22.4. HRMS 

for C12H16NO2 [M+H]
+
: m/z calc., 206.1176; found, 206.1182. 
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2-Methyl-1,2,3,4-tetrahydroquinoline-6-carboxylic acid, 3t: 
1
H NMR (CDCl3, 400 

MHz, 298 K) δ (ppm): 7.72-7.69 (m, 2H), 6.40 (d, J = 9.0 Hz, 1H), 3.54-3.46 (m, 

1H), 2.86-2.75 (m, 2H), 2.00-1.93 (m, 1H), 1.62-1.52 (m, 1H), 1.24 (d, J = 6.3 Hz, 

3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 172.1, 149.4, 131.8, 129.9, 

119.7, 116.5, 112.5, 47.2, 29.4, 26.3, 22.4. HRMS for C11H14NO2 [M+H]
+
: m/z calc., 

192.1019; found, 192.1024. 

 

2-Methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4-

tetrahydroquinoline, 3u: 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 7.43-7.41 (m, 

2H), 6.43 (d, J = 7.7 Hz, 1H), 3.92 (bs, 1H), 3.47-3.39 (m, 1H), 2.85-2.70 (m, 2H), 

1.95-1.89 (m, 1H), 1.61-1.51 (m, 1H), 1.31 (s, 12H), 1.20 (d, J = 6.3 Hz, 3H). 
13

C 

NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 147.5, 136.1, 133.8, 119.9, 113.0, 83.1, 

47.1, 29.9, 26.3, 24.8, 22.6, one carbon signal is not observed. HRMS for 

C16H24BNO2 [M]
+
: m/z calc., 273.2009; found, 273.2005. 

 

6-(Furan-2-yl)-2-methyl-1,2,3,4-tetrahydroquinoline, 3v: 
1
H NMR (CDCl3, 400 

MHz, 298 K) δ (ppm): 7.37-7.36 (m, 1H), 7.29-7.27 (m, 2H), 6.48 (d, J = 8.9 Hz, 

1H), 6.41-6.38 (m, 2H), 3.90 (bs, 1H), 3.47-3.39 (m, 1H), 2.90-2.73 (m, 2H), 1.98-

1.92 (m, 1H), 1.65-1.55 (m, 1H), 1.23 (d, J = 6.3 Hz, 3H). 
13

C NMR (CDCl3, 100 

MHz, 298 K) δ (ppm): 155.0, 144.2, 140.6, 125.0, 122.9, 121.1, 120.4, 114.0, 111.4, 

101.8, 47.3, 30.0, 26.6, 22.5. HRMS for C14H16NO [M+H]
+
: m/z calc., 214.1226; 

found, 214.1230. 
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2-Methyl-6-(thiophen-2-yl)-1,2,3,4-tetrahydroquinoline, 3w: 
1
H NMR (CDCl3, 400 

MHz, 298 K) δ (ppm): 7.24-7.21 (m, 2H), 7.13-7.10 (m, 2H), 7.01-6.99 (m, 1H), 

6.45 (d, J = 8.9 Hz, 1H), 3.80 (bs, 1H), 3.46-3.38 (m, 1H), 2.89-2.72 (m, 2H), 1.97-

1.91 (m, 1H), 1.64-1.54 (m, 1H), 1.21 (d, J = 6.3 Hz, 3H). 
13

C NMR (CDCl3, 100 

MHz, 298 K) δ (ppm): 145.6, 144.4, 127.8, 127.1, 124.8, 123.5, 122.6, 121.2, 120.7, 

114.1, 47.3, 30.0, 26.6, 22.6. HRMS for C14H16NS [M+H]
+
: m/z calc., 230.0998; 

found, 230.1005. 

 

2-Methyl-6-(pyridin-4-yl)-1,2,3,4-tetrahydroquinoline, 3x: 
1
H NMR (CDCl3, 400 

MHz, 298 K) δ (ppm): 8.53 (d, J = 6.0 Hz, 2H), 7.42 (d, J = 6.2 Hz, 2H), 7.33-7.27 

(m, 2H), 6.53 (d, J = 8.8 Hz, 1H), 3.99 (bs, 1H), 3.48-3.46 (m, 1H), 2.88-2.84 (m, 

1H), 2.83-2.84 (m, 1H), 1.97-1.93 (m, 1 H), 1.63-1.60 (m, 1H), 1.24 (d, J = 6.4 Hz, 

3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 150.0, 148.4, 145.9, 127.8, 

125.8, 125.4, 121.2, 120.3, 114.1, 47.2, 29.8, 26.6, 22.5. HRMS for C15H17N2 

[M+H]
+
: m/z calc., 225.1392; found, 225.1397. 

 

2,5,7-Trimethyl-1,2,3,4-tetrahydroquinoline, 3y: 
1
H NMR (CDCl3, 250 MHz, 298 

K) δ (ppm): 6.35 (s, 1H), 6.20 (s, 1H), 3.61 (bs, 1H), 3.38-3.25 (m, 1H), 2.72-2.49 

(m, 2H), 2.18 (s, 3H), 2.13 (s, 3H), 2.05-1.92 (m, 1H), 1.65-1.49 (m, 1H), 1.19 (d, J 

= 6.3 Hz, 3H). 
13

C NMR (CDCl3, 63 MHz, 298 K) δ (ppm): 144.8, 136.9, 135.8, 

120.0, 116.9, 112.7, 46.7, 30.6, 23.6, 22.5, 21.0, 19.3. 
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2-Methyl-4-phenyl-1,2,3,4-tetrahydroquinoline, 3z:
[26]

 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 7.33-7.30 (m, 2H), 7.25-7.20 (m, 3H), 6.98-6.95 (m, 1H), 6.59-6.57 

(m, 1H), 6.53-6.49 (m, 2H), 4.14 (dd, J = 12.5, 5.5 Hz, 1H), 3.84 (bs, 1H), 3.64-3.56 

(m, 1H), 2.13 (ddd, J = 12.9, 5.5, 2.3 Hz, 1H), 1.88-1.79 (m, 1H), 1.23 (d, J = 6.2 Hz, 

3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 145.9, 145.2, 129.7, 128.7, 

128.5, 127.1, 126.4, 124.9, 117.4, 114.1, 47.7, 44.6, 41.2, 22.6. HRMS for C16H18N 

[M+H]
+
: m/z calc., 224.1434; found, 224.1443. 

3.4.7 Data of 1,2,3,4-tetrahydroisoquinolines (5a-5f) and piperidines (7a-7j) 

 

2-Ethyl-1-phenyl-1,2,3,4-tetrahydroisoquinoline, 5a:
[27]

 
1
H NMR (CDCl3, 400 

MHz, 298 K) δ (ppm): 7.31-7.22 (m, 5H), 7.12-7.06 (m, 2H), 6.99-6.96 (m, 1H), 

6.68 (d, J = 7.8 Hz, 1H), 4.58 (s, 1H), 3.21-3.16 (m, 1H), 3.14-3.08 (m, 1H), 2.88-

2.82 (m, 1H), 2.66-2.57 (m, 2H), 2.40-2.31 (m, 1H), 1.04 (t, J = 7.1 Hz, 3H). 
13

C 

NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 144.3, 138.7, 134.8, 129.7, 128.9, 128.4, 

128.2, 127.1, 125.8, 125.6, 68.0, 48.2, 46.7, 29.1, 11.5. HRMS for C17H20N [M+H]
+
: 

m/z calc., 238.1596; found, 238.1599. 

 

2-Ethyl-1,2,3,4-tetrahydroisoquinoline, 5b:
[28]

 
1
H NMR (CDCl3, 400 MHz, 298 K) 

δ (ppm): 7.14-6.99 (m, 4H), 3.62 (s, 2H), 2.92 (t, J = 5.9 Hz, 2H), 2.73 (t, J = 5.9 Hz, 

2H), 2.58 (q, J = 7.1 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H); 
13

C NMR (CDCl3, 100 MHz, 

298 K) δ (ppm): 134.8, 134.3, 128.6, 126.6, 126.1, 125.6, 55.8, 52.2, 50.6, 29.1, 

12.4. 

 

2-Ethyl-6-methyl-1,2,3,4-tetrahydroisoquinoline, 5e: 
1
H NMR (CDCl3, 250 MHz, 

298 K) δ (ppm): 6.91 (bs, 3H), 3.52 (s, 2H), 2.87 (t, J = 5.9 Hz, 2H), 2.71 (t, J = 5.9 
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Hz, 2H), 2.56 (q, J = 7.2 Hz, 2H), 2.28 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 298 K) δ (ppm): 135.5, 134.1, 131.8, 129.1, 126.5, 126.4, 55.6, 

52.2, 50.8, 29.1, 21.0, 12.4. HRMS for C12H18N [M+H]
+
: m/z calc., 176.1439; 

found, 176.1442. 

 

6-Bromo-2-ethyl-1,2,3,4-tetrahydroisoquinoline, 5f: 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 7.38 (t, J = 4.6 Hz, 1H), 6.99 (d, J = 4.9 Hz, 2H), 3.61 (s, 2H), 2.87 

(t, J = 6.0 Hz, 2H), 2.75 (t, J = 6.0 Hz, 2H), 2.58 (q, J = 7.2 Hz, 2H), 1.19 (t, J = 7.1 

Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 137.4, 134.2, 130.1, 126.9, 

125.8, 125.2, 55.9, 51.9, 50.7, 30.3, 12.4. 

 

1-Benzyl-2-phenylpiperidine, 7a:
[14]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 7.47-

7.20 (m, 10H), 3.78 (d, J = 13.5 Hz, 1H), 3.12 (d, J = 9.4 Hz, 1H), 3.00-2.81 (m, 

2H), 2.03-1.87 (m, 1H), 1.78 (d, J = 12.5 Hz, 2H), 1.71-1.52 (m, 3H), 1.37 (td, J = 

8.4, 3.8 Hz, 1H). 13
C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 128.8, 128.5, 128.0, 

127.5, 126.9, 126.6, 69.2, 59.7, 53.3, 36.9, 25.9, 25.2. (2 C signals not observed due 

to low intensity). HRMS for C18H22N [M+H]
+
: m/z calc., 252.1752; found, 252.1753. 

 

Diphenyl(piperidin-2-yl)methanol, 7b:
[29]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 

7.36-7.32 (m, 11 H), 4.87 (bs, 1H), 2.58 (t, J = 7.3 Hz, 2H), 2.44 (q, J = 6.6 Hz, 1H), 

2.30 (t, J = 7.3 Hz, 2H), 1.45 (quin, J = 7.5 Hz, 2H), 1.32-1.25 (m, 2H). 13
C NMR 

(CDCl3, 100 MHz, 298 K) δ (ppm): 141.6, 128.5, 128.2, 128.1, 85.6, 52.6, 47.1, 38.1, 

25.6, 22.2. 

 

Benzyl ((1-benzylpiperidin-2-yl)methyl)carbamate, 7c:
[14]

 
1
H NMR (CDCl3, 400 MHz, 298 

K) δ (ppm): 7.33-7.15 (m, 10H), 5.33 (bs, 1H), 5.09 (s, 2H), 3.98 (d, J = 13.5 Hz, 1H), 

3.54-3.42 (m, 1H), 3.37-3.26 (m, 1 H), 3.20 (d, J = 13.5 Hz, 1H), 2.88-2.73 (m, 1H), 
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2.47-2.31 (m, 1H), 2.12-1.94 (m, 1H), 1.77-1.59 (m, 2H), 1.56-1.45 (m, 2H), 1.45-

1.22 (m, 2H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 161.1, 156.8, 139.0, 

136.8, 128.8, 128.5, 128.3, 127.8, 126.9, 66.6, 59.3, 57.7, 51.8, 42.7, 28.8, 24.8, 

23.7. HRMS for C21H27N2O2 [M+H]
+
: m/z calc., 339.2073; found, 339.2066. 

 

Tert-butyl ((1-benzylpiperidin-2-yl)methyl)carbamate, 7d:
[14]

 
1
H NMR (CDCl3, 400 

MHz, 298 K) δ (ppm): 7.33-7.24 (m, 5H), 5.05 (bs, 1H), 4.00 (d, J = 13.5 Hz, 1H), 

3.44-3.41 (m, 1H), 3.28-3.20 (m, 2H), 2.83-2.80 (m, 1H), 2.41-2.40 (m, 1H), 2.06-

2.01 (m, 1H), 1.72-1.63 (m, 2H), 1.54-1.26 (m, 13H). 
13

C NMR (CDCl3, 100 MHz, 

298 K) δ (ppm): 156.4, 139.1, 128.9, 128.3, 126.9, 79.0, 59.5, 57.6, 51.8, 42.2, 28.9, 

28.5, 24.7, 23.7. HRMS for C18H29N2O2 [M+H]
+
: m/z calc., 305.2229; found, 

305.2231. 

 

1-Benzyl-2-(4-methoxyphenyl)piperidine, 7e: 
1
H NMR (CDCl3, 400 MHz, 298 K) δ 

(ppm): 7.43-7.33 (m, J = 8.2 Hz, 2H), 7.32-7.13 (m, 5H), 6.92-6.79 (m, J = 8.4 Hz, 

2H), 3.85-3.66 (m, 4H), 3.05 (dd, J = 2.4, 11.0 Hz, 1H), 2.95 (d, J = 11.5 Hz, 1H), 

2.78 (d, J = 13.7 Hz, 1H), 1.97-1.86 (m, 1H), 1.81-1.71 (m, 2H), 1.66-1.52 (m, 3H), 

1.42-1.28 (m, 1H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 158.5, 139.9, 

137.8, 128.7, 128.4, 128.0, 126.5, 113.9, 68.5, 59.7, 55.3, 53.5, 37.1, 26.1, 25.3. 

 

1,4-Dibenzyl-1,2,3,6-tetrahydropyridine, 7h:
[14]

 
1
H NMR (CDCl3, 400 MHz, 298 K) 

δ (ppm): 7.35-7.15 (m, 10 H), 5.39-5.34 (m, 1H), 3.57 (s, 2H), 3.28 (s, 2H), 3.00-

2.98 (m, 2H), 2.53 (t, J = 5.8 Hz, 2H), 2.08-2.02 (m, 2H). 
13

C NMR (CDCl3, 100 

MHz, 298 K) δ (ppm): 139.5, 135.9, 129.3, 129.1, 128.7, 128.3, 128.2, 127.1, 126.0, 

124.2, 62.7, 52.8, 49.8, 43.5, 30.9. HRMS for C19H22N [M+H]
+
: m/z calc., 264.1747; 

found, 264.1753. 
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Isolated as 9:1 mixture; 1-Benzyl-4-(trifluoromethyl)piperidine, 7i: 
1
H NMR 

(CDCl3, 400 MHz, 298 K) δ (ppm): 7.33-7.23 (m, 5H), 3.50 (s, 2H), 2.97-2.94 (m, 

2H), 2.02-1.90 (m, 3H), 1.82-1.79 (m, 2H), 1.68-1.58 (m, 2H). 
13

C NMR (CDCl3, 

100 MHz, 298 K) δ (ppm): 138.2, 129.0, 128.3, 127.8 (q, J = 278.0 Hz), 127.1, 63.1, 

52.4, 40.4 (q, J = 27.2 Hz), 24.7 (q, J = 2.6 Hz). HRMS for C13H17F3N [M+H]
+
: m/z 

calc., 244.1313; found, 244.1311. 1-Benzyl-4-(trifluoromethyl)-1,2,3,6-

tetrahydropyridine, 7i-1:
[14]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 7.33-7.23 

(m, 5H), 6.27-6.23 (m, 1H), 3.61 (s, 2H), 3.09-3.06 (m, 2H), 2.62 (t, J = 5.7 Hz, 2H), 

2.30-2.27 (m, 2H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 137.8, 128.6 (q, J 

= 44.3 Hz), 128.4, 128.3, 127.3, 127.2 (q, J = 28.1 Hz), 123.5 (q, J = 272.0 Hz), 62.3, 

51.5, 48.5, 23.2. HRMS for C13H15F3N [M+H]
+
: m/z calc., 242.1157; found, 

242.1154. 

 

Ethyl 1-benzylpiperidine-4-carboxylate, 7j:
[30]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ 

(ppm): 7.32-7.22 (m, 5H), 4.12 (q, J = 7.1 Hz, 2H), 3.49 (s, 2H), 2.89-2.81 (m, 2H), 

2.33-2.21 (m, 1H), 2.07-1.97 (m, 2H), 1.90-1.72 (m, 4H), 1.24 (t, J = 7.1 Hz, 3H). 

13
C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 175.2, 138.4, 129.0, 128.2, 126.9, 

63.2, 60.2, 52.9, 41.2, 28.3, 14.2. HRMS for C15H22NO2 [M+H]
+
: m/z calc., 

248.1651; found, 248.1647. 

3.4.8 Data of indolines and other saturated N-heterocycles 

 

Indoline, 9a:
[22]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 7.11 (d, J = 7.2 Hz, 1H), 7.01 

(t, J = 7.6 Hz, 1H), 6.70 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 7.7 Hz, 1H), 3.73 (bs, 1H), 3.54 (t, J 

= 8.4 Hz, 2H), 3.02 (t, J = 8.4 Hz, 2H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 151.6, 

129.3, 127.2, 124.6, 118.7, 109.4, 47.3, 29.9. HRMS for C8H10N [M+H]
+
: m/z calc., 

120.0813; found, 120.0817. 
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5-Methoxyindoline, 9b:
[22]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 6.75 (s, 1H), 6.59 

(d, J = 1.4 Hz, 2H), 3.74 (s, 3H), 3.53 (t, J = 8.3 Hz, 2H), 3.35 (bs, 1H), 3.01 (t, J = 8.3 Hz, 

2H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 153.6, 145.3, 131.2, 112.2, 111.6, 110.1, 

56.0, 47.8, 30.5. HRMS for C9H12NO [M+H]
+
: m/z calc., 150.0919; found, 150.0926. 

 

2-Methylindoline, 9d:
[22]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 7.07 (d, J = 7.3 Hz, 

1H), 7.00 (t, J = 7.6 Hz, 1H), 6.68 (t, J = 7.4 Hz, 1H), 6.59 (d, J = 7.7 Hz, 1H), 4.02-3.94 (m, 

1H), 3.67 (bs, 1H), 3.13 (dd, J = 15.4, 8.5 Hz, 1H), 2.63 (dd, J = 15.4, 7.8 Hz, 1H), 1.28 (d, J 

= 6.2 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 151.0, 128.9, 127.2, 124.7, 

118.5, 109.2, 55.2, 37.8, 22.3. HRMS for C9H12N [M+H]
+
: m/z calc., 134.0970; found, 

134.0972. 

 

5-Chloro-2-methylindoline, 9e:
[31]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 7.01 (s, 

1H), 6.95 (dd, J = 8.2, 2.0 Hz, 1H), 6.49 (d, J = 8.2 Hz, 1H), 4.04-3.96 (m, 1H), 3.69 (bs, 

1H), 3.12 (dd, J = 15.6, 8.6 Hz, 1H), 2.61 (dd, J = 15.7, 7.7 Hz, 1H), 1.27 (d, J = 6.3 Hz, 

3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 149.5, 130.8, 127.0, 124.9, 123.0, 109.8, 

55.6, 37.6, 22.2. HRMS for C9H11ClN [M+H]
+
: m/z calc., 168.0580; found, 168.0581. 

 

3,4-Dihydroquinoxaline-1(2H)-carbaldehyde, 11a: 
1
H NMR (CDCl3, 400 MHz, 298 K) δ 

(ppm): 8.73 (s, 1H), 7.06 (dd, J = 8.0, 1.2 Hz, 1H), 7.00 (td, J = 7.7, 1.4 Hz, 1H), 6.74-6.67 

(m, 1H), 6.64 (dd, J = 8.0, 1.4 Hz, 1H), 4.05 (bs, 1H), 3.92-3.86 (m, 2H), 3.41 (t, J = 4.8 Hz, 

2H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 160.1, 136.5, 125.9, 123.7, 117.9, 

117.7, 115.1, 41.2, 37.3.  
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9,10-Dihydroacridine, 11b:
[13]

 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 7.15-6.99 (m, 

4H), 6.85 (td, J = 7.4, 1.0 Hz, 2H), 6.66 (d, J = 7.8 Hz, 2H), 5.94 (bs, 1H), 4.05 (s, 2H). 
13

C 

NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 140.1, 128.6, 127.0, 120.7, 120.1, 113.4, 31.4. 

 

2,9-Dimethyl-1,2,3,4-tetrahydro-1,10-phenanthroline, 11c:
[32]

 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 7.88 (d, J = 8.3 Hz, 1H), 7.16 (d, J = 8.3 Hz, 1H), 7.09 (d, J = 8.1 Hz, 1H), 

6.94 (d, J = 8.1 Hz, 1H), 5.84 (bs, 1H), 3.60-3.55 (m, 1H), 3.03-2.95 (m, 1H), 2.89-2.82 (m, 

1H), 2.68 (s, 3H), 2.06-2.02 (m, 1H), 1.77-1.67 (m, 1H), 1.37 (d, J = 6.3 Hz, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 298 K) δ (ppm): 155.8, 140.1, 136.8, 136.0, 127.8, 125.3, 121.3, 116.6, 

113.3, 46.6, 30.0, 26.7, 25.2, 22.5. HRMS for C14H17N2 [M+H]
+
: m/z calc., 213.1386; found, 

213.1393. 

 

6,7-Dihydro-5H-cyclopenta[b]pyridine, 11d:
[33]

 
1
H NMR (CDCl3, 250 MHz, 298 K) δ 

(ppm): 8.32 (d, J = 4.8 Hz, 1H), 7.48 (dd, J = 7.5, 0.9 Hz, 1H), 7.01 (dd, J = 7.5, 5.0 Hz, 1H), 

3.04-2.90 (m, 4H), 2.12 (pen, J = 7.5 Hz, 2H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 

165.6, 147.4, 136.8, 132.0, 120.9, 34.2, 30.7, 23.0. HRMS for C8H10N [M+H]
+
: m/z calc., 

120.0813; found, 120.0811. 

 

6,7-Dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinoline, 11f:
[34]

 
1
H NMR (CDCl3, 400 

MHz, 298 K) δ (ppm): 6.63 (s, 1H), 6.57 (s, 1H), 4.05 (m, 1H), 3.86 (s, 3H), 3.85 (s, 3H), 

3.28-3.23 (m, 1H), 3.03-2.97 (m, 1H), 2.83-2.73 (m, 1H), 2.68-2.62 (m, 1H), 1.84 (bs, 1H), 

1.44 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): 147.3, 147.2, 132.4, 

126.8, 111.7, 109.0, 56.0, 55.9, 51.2, 41.8, 29.6, 22.9. HRMS for C12H18NO2 [M+H]
+
: m/z 

calc., 208.1332; found, 208.1336. 
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4.1 Introduction 

Primary amines are important motifs in organic compounds because of the presence 

of this functional group in numerous bioactive molecules and their widespread 

pharmaceutical applications (Scheme 4.1).
[1]

 Hence, the efficient and economical 

production of primary amines is of high priority.
[2]

  

 

Scheme 4.1: Examples of drugs containing primary amines. 

There are several methods with which these amines can be synthesised. Typical 

examples include the reduction of nitriles, amides and nitro compounds,
[3]

 alkylation 

of ammonia with organic halides,
[4]

  and hydroamination of alkenes.
[5]

 However, one 

of the most desired and convenient ways of synthesising primary amines is by direct 

reductive amination (DRA),
[6-8]

 in which a carbonyl group is condensed with an 

ammonia source and subsequently reduced in situ without the need of isolating the 

often unstable imine intermediate (Scheme 4.2). A well-known example is the 

classic Leuckart-Wallach reaction.
[9]

 

 



Chapter 4  

144 
 

 

Scheme 4.2: General scheme of direct reductive amination (DRA). 

Reducing agents such as pyridine borane, NaBH3CN and NaBH(OAc)3 are 

commonly employed in the DRA process.
[10]

 However, for successful, complete 

DRA, excess amount of these boron reducing agents is often required. NaBH3CN is 

highly toxic and the final product is usually contaminated with cyanide. 

NaBH(OAc)3 is poorly soluble in most commonly used organic solvents and 

pyridine borane, on the other hand, can be unsafe to use on industrial scales due to its 

propensity to violently decompose.
[11]

 Heterogeneous catalysts have also been 

widely used in DRA;
[12]

 however poor chemoselectivity limits their performance. In 

this context, a homogeneously catalysed DRA would be of great interest. Indeed, a 

lot of efforts have been made in developing homogeneous organocatalytic,
[13]

 

hydrogenative
[14]

 and transfer hydrogenative
[8,15]

 catalytic systems for DRA in the 

past few years. However, they are mainly directed to the production of secondary 

and tertiary amines. In terms of primary amines, DRA reactions have been much less 

explored.
[16-18]

 

The first successful hydrogenative homogeneous metal catalysed DRA with 

ammonia was reported by Beller and co-workers.
[16]

 Although high selectivity was 

achieved towards primary amines formation, high temperatures and pressures were 

required (135 °C, 65 bar H2). Most of the reported reactions were conducted with 

aromatic aldehydes and poor yields were obtained when aliphatic amines were used. 

Kadyrov and co-workers also described the use of hydrogenative DRA with 

ammonia. However, the selectivity towards primary amine formation (versus 
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alcohol) and the yields obtained were relatively poor.
[17]

 Subsequently, 

enantioselective DRA of β-keto amides and β-keto esters were also reported, albeit 

requiring high pressures of H2.
[18] 

One way of overcoming these problems would be the transfer-hydrogenative DRA, 

by using a hydrogen source other than hydrogen gas. This is an operationally simple 

and versatile method for reduction, avoiding the need for high-pressure reactors that 

are typically required for hydrogenation.
[11,19]

 The Leuckart-Wallach reaction uses 

formic acid as the reductant and no catalyst. However, it requires high temperatures 

and is poorly chemoselective.
[9]

 Despite the huge potential of catalytic DRA, only a 

few examples have been reported for the synthesis of primary amines by 

homogeneous metal-catalysed transfer hydrogenative DRA.
[20-23]

  

The first successful example of such a DRA with HCO2NH4 was reported by 

Kitamura and co-workers (Scheme 4.3).
[20]

 The reaction conditions were milder (low 

temperature) than those used in the hydrogenative DRA and the catalyst was also 

effective in the DRA of α-keto acids. The substrate scope was, however, not 

satisfactory, and the selectivity towards primary amines (versus ketone reduction and 

N-alkylation) was still an issue. Subsequently, Kadyrov and co-workers reported the 

enantioselective DRA with HCO2NH4 (Scheme 4.4).
[21]

 The use of additional NH3 

was found to be crucial to enhance the enantioselectivity. High yields and 

enantioselectivities were only achieved in the case of aromatic ketones and inferior 

results were obtained when examples of aliphatic ketones were attempted. In 

addition, the selectivity towards primary amines was low, as N-formyl derivatives 

were obtained as the major products, which subsequently had to be hydrolysed. Ogo 

and co-workers reported a water-soluble catalyst that enabled DRA of α-keto acids 
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under aqueous conditions (Scheme 4.5).
[23]

 Optimal pH of 5 was critical for the 

selective synthesis of α-amino acids. 

 

Scheme 4.3: Rhodium catalysed transfer hydrogenative DRA. 

 

Scheme 4.4: Ruthenium catalysed transfer hydrogenative DRA. 

 

Scheme 4.5: Iridium catalysed transfer hydrogenative DRA under aqueous condition. 

Although the few reports above have described the synthesis of primary amines by 

DRA, the results are still far from satisfactory. From the literature, we can highlight 

some major issues for both hydrogenative and transfer-hydrogenative DRA:  

1) Substrate scope is limited, especially for ketones with additional functional 

groups. 

2) Selectivity towards primary amine is still a major challenge. 

3) Catalysts capable of the DRA of aliphatic ketones are highly desirable.  

4) In terms of economy, a robust, versatile catalyst for the synthesis of primary 

amines by DRA is of high priority.  

Thus, developing a catalyst that overcomes these issues would be of great interest. 

Following the successful exploration of cyclometalated Ir(III) complexes in the 
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transfer hydrogenation of -substituted ketones and N-Heterocycles in water, we 

report in this chapter that such complexes are also highly versatile and 

chemoselective for the synthesis of primary amines by direct reductive amination.
[24]

 

4.2 Results and discussion 

4.2.1 Optimisation of reaction conditions 

Aiming to find a robust catalyst for the DRA concerned, a range of complexes C1-

C12 (Scheme 4.6) were firstly prepared. These complexes are diverse in both the 

conjugation and electronic property of the aromatic rings coordinated to the iridium 

metal.  

 

Scheme 4.6: Cyclometalated iridium complexes examined in this chapter. 

In this study, 2-acetonaphthone was chosen as a model substrate for the optimisation 

of reaction conditions. Initial reduction experiments were carried out at an S/C ratio 
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of 1000:1, by using 10 equivalents of HCO2NH4 and temperature of 80 °C. The 

results are summarised in Table 4.1. Only 6% conversion was obtained when the 

reductive amination was carried out in the presence of the iridium dimer [Cp*IrCl2]2. 

Catalyst C8, bearing no substituents on the phenyl rings afforded 36% conversion 

with a high selectivity towards the primary amine 2a (28% relative to the starting 

1a); however, the byproducts alcohol (3a), secondary amine (4a) and N-formyl (5a) 

were also observed in 5, 1 and 2% yields, respectively. These byproducts are 

common in metal-catalysed DRA reactions, although the later N-formyl derivative 

could be converted into the desired primary amine by one additional step of 

hydrolysis. Catalysts or reaction conditions disfavouring the production of these 

byproducts, especially alcohol and secondary amine, would be highly beneficial. 

Catalyst C9 and C1, with a meta-NO2 and para-NO2 group (with respect to imine) 

on the ligand did not improve the activity (Table 4.1, entries 3 and 4). When the 

OMe group was replaced with a more electron-donating –NMe2 group, the activity 

decreased (C10; Table 4.1, entry 5). Since the amino group might get protonated, the 

electron donating ability of the NMe2 probably decreases. Interestingly, catalyst 

C11, with an electron-rich OMe group at the meta-position significantly improved 

the catalytic activity, giving a 70% conversion (64% primary amine) in 4 h (Table 

4.1, entry 6). The result was slightly improved by introducing another methoxy 

group at the para-position also (C12; Table 4.1, entry 7). Gratifyingly, 98% 

conversion (90% primary amine) was achieved when catalyst C2, which contained a 

1,3-dioxol group on the phenyl ring was used (Table 4.1, entry 8). Other aromatic 

rings, such as naphthyl, phenanthrenyl and anthracenyl were also targeted. To our 

delight, catalyst C4 which contains a naphthyl ring gave excellent results, with 99% 

conversion and a very high selectivity towards primary amines (Table 4.1, entry 10). 
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Table 4.1: Optimising reaction conditions of DRA 

 

Entry
[a]

 Catalyst Solvent Conv. (%)
[b]

 2a
[b]

 3
[b]

 4
[b]

 5
[b]

 

1 [Cp*IrCl2]2 MeOH 6 - 1 - 5 

2 C8 MeOH 36 28 5 1 2 

3 C9 MeOH 9 5 1 1 2 

4 C1 MeOH  38 35 - 1 2 

5 C10 MeOH 12 7 3 1 1 

6 C11 MeOH 70 64 2 2 2 

7 C12 MeOH 86 79 2 2 3 

8 C2 MeOH 98 90 3 2 3 

9 C7 MeOH 42 34 4 1 3 

10 C4 MeOH 99 94 1 2 2 

11
[c]

 C4 MeOH 54 53 - - 1 

12
[d] 

C4 MeOH 82 65 9 3 5 

13 C5 MeOH 93 84 1 2 6 

14 C6 MeOH 65 53 4 3 5 

15 C3 MeOH 62 47 5 4 6 

16 C4 H2O 99 1 98 - - 

17 C4 toluene 15 4 3 1 7 

18 C4 DMF 18 3 - 2 13 

19 C4 EtOAc 35 1 13 2 19 

20 C4 TFE 96 81 4 3 8 

[a] Reaction conditions: 2-acetonaphthone (0.5 mmol), HCO2NH4 (5 mmol), catalyst (5x10
-4

 mmol), 

HCO2H/Et3N (5:2) azeotrope (0.5 mL) and solvent (3 mL), stirred at 80 °C in a carousel tube for 4 h. 

[b] Determined by 
1
H NMR spectroscopy (%). [c] In the absence of F/T azeoptrope. [d] Five 

equivalents of ammonium formate used. 

Addition of the formic acid-triethyl amine (F/T) azeotrope was found to promote the 

reaction. In its absence, the C4-catalysed reaction proceeded in only 54% conversion 
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in 4 h (Table 4.1, entry 11). The F/T azeotrope increases the acidity of the reaction 

medium, and indeed it is known that the imine formation and its subsequent 

reduction benefits from the acidic conditions.
[25]

 When the reaction was conducted 

with five equivalents of ammonium formate, the conversion decreased and formation 

of more byproducts was observed (Table 4.1, entry 12). In contrast, the catalysts C5 

and C6, bearing an anthracene and phenanthrene ring, respectively, gave lower 

conversions (Table 4.1, entries 13 and 14). This is at least partly due to their low 

solubility in the reaction medium. It was confirmed that the reaction did not proceed 

in the absence of a catalyst. 

The reaction in various solvents was investigated next. MeOH was found to be the 

best medium, giving high selectivity towards the primary amine relative to other 

solvents (Table 4.1, entries 17-20). Interestingly, when the reaction was conducted in 

water, the reduction of ketone dominated, with the alcohol product observed in 98% 

ratio (Table 4.1, entry 16). Our group have recently shown that aqueous media of 

lower pH favour the ketone reduction over the imine formation.
[26]

 

4.2.2 DRA of aromatic ketones with HCO2NH4 

The substrate scope was examined with catalyst C4 under the optimised conditions 

(0.1 mol% C4, 80 °C in MeOH). The results of DRA of aromatic ketones are 

summarised in Table 4.2. All the phenyl derivatives, regardless of the nature of the 

substituents and their positions, gave excellent yields (Table 4.2, entries 3-16). The 

naphthyl derivatives also reacted well giving high yields (Table 4.2, entries 1 and 2). 

Disubstituted aromatic ketones and those with increasing chain length at the α-

position did not affect the yields of the product (Table 4.2, entries 17-19). When an 

α,β-unsaturated ketone was subjected to the DRA under the present conditions, 
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reduction of the carbon double bond was observed as well (Table 4.2, entry 20). This 

suggests that when a double bond is present next to a carbonyl, 1,4-reduction 

pathway is favoured over 1,2-reduction, and it is not surprising, as 1,4-reduction is 

frequently observed in transfer hydrogenation.
[27]

   The cyclic substrates, 1-indanone 

and 1-tetralone, both gave their corresponding amines in excellent yields (Table 4.2, 

entries 21 and 22). In contrast to the α,β-unsaturated ketone, when 2-

acetylbenzofuran was used, the double bond was retained, with 1-(benzofuran-2-

yl)ethanamine obtained in 91% yield (Table 4.2, entry 23), a result that reflects the 

aromaticity of the substrate. A thiophene ring was also tolerated well, affording 1-

(2,5-dimethylthiophen-3-yl)ethanamine in an excellent yield (Table 4.2, entry 24). It 

was found that a prolonged reaction time increases the concentration of N-formyl 

derivatives in these reactions. In fact, reaction times of 4-12 h were sufficient for the 

completion of the DRA. 

Table 4.2: DRA of aromatic ketones with HCO2NH4 

 

Entry
[a]

 Ketones Amines  Yields (%)
[b]

 

 

1 
  

 

2a 

 

93 

 

2 
  

 

2b 

 

94 

 

3 
  

 

2c 

 

84 

 

4 

  

 

2d 

 

91 
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5 
  

 

2e 

 

88 

 

6 
  

 

2f 

 

89 

 

7 
  

 

2g 

 

91 

 

8 

  

 

2h 

 

85 

 

9 

  

 

2i 

 

90 

 

10 

  

 

2j 

 

89 

 

11 

  

 

2k 

 

90 

 

12 

  

 

2l 

 

87 

 

13 

  

 

2m 

 

82 

 

14 

  

 

2n 

 

88 

 

15 
  

 

2o 

 

84 

 

16 
  

 

2p 

 

86 
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17 

  

 

2q 

 

90 

 

18 
  

 

2r 

 

92 

 

19 
  

 

2s 

 

88 

 

20 
  

 

2t 

 

82 

 

21 
  

 

2u 

 

90 

 

22 
  

 

2v 

 

87 

23 
  

2w 91 

 

24 

  

 

2x 

 

92 

[a] Reaction conditions: ketone (0.5 mmol), HCO2NH4 (5 mmol), catalyst (5x10
-4

 mmol), 

HCO2H/Et3N (5:2) azeotrope (0.5 mL) and MeOH (3 mL), stirred at 80 °C in a carousel tube for 12 h. 

[b] Yield of  isolated product. 
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4.2.3 DRA of aliphatic ketones with HCO2NH4 

Reactions of aliphatic ketones with HCO2NH4 are summarised in Table 4.3. As can 

be seen, 4-phenylbutan-2-one and its variant 4-(3,4-methylenedioxy)phenyl-2-

butanone both were converted to their corresponding amines in excellent yields 

(Table 4.3, entries 1 and 2). Cyclohexanamine and 1-cyclohexylethanamine were 

also obtained in good yields (Table 4.3, entries 3 and 4). Interestingly, a bulkier 

substrate, cyclododecanone, was also aminated in a high yield without any 

predicament (Table 4.3, entry 5). Long-chain aliphatic substrates worked well, 

furnishing good yields regardless of the position of the carbonyl unit (Table 4.3, 

entries 6 and 7). Still interestingly, 6-methylhept-5-en-2-one gave its corresponding 

amine in a very good yield, leaving its C=C double bond intact. This shows the 

selectivity of the catalyst towards C=N bond reduction over a C=C bond. Indeed, the 

reduction of C=C double bond is only observed when it is present at a position α to 

the C=O group. 3,3-Dimethyl-1,5-dioxaspiro[5.5]undecan-9-one, a useful 

monoprotected form of the dione, was selectively aminated in excellent yield without 

the hydrolysis of its 1,3-dioxane being observed (Table 4.3, entry 9). Thus, the 

catalytic system offers a simple and efficient way of obtaining 

aminocyclohexanones, which are useful intermediates, especially for the synthesis of 

Pramipexole, a dopamine agonist of the non-ergoline class used for the treatment of 

signs and symptoms of idiopathic Parkinson’s disease.
[28]

 2-Aminotetralin, another 

key precursor, was also obtained in a very good yield from its corresponding β-

tetralone (Table 4.3, entry 10). 2-Aminotetralins are used in the synthesis of many 

therapeutic agents and have also been known to possess other pharmacological 

activities, including dopamine receptor activity.
[29]
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Table 4.3: DRA of aliphatic ketones with HCO2NH4 

 

Entry
[a]

 Ketones Amines  Yield (%)
[b]

 

1 

  

7a 91 

2 

  

7b 93 

3 

  

7c 80 

4 

  

7d 83 

5 

  

7e 90 

6 
  

7f 80 

7 
  

7g 81 

8 
  

7h 83 

9 

  

7i 90 

10 
  

7j 87 

[a] Reaction conditions: ketone (0.5 mmol), HCO2NH4 (5 mmol), catalyst (5x10
-4

 mmol), 

HCO2H/Et3N (5:2) azeotrope (0.5 mL) and MeOH (3 mL), stirred at 80 °C for 8 h. [b] Yield of 

isolated product. 
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4.2.4 DRA of β-keto ethers with HCO2NH4 

Next, the substrate scope was expanded to β-keto ethers. The product β-amino 

ethers, generated from the DRA, are of biological interest as the analogues are 

effective sodium channel blockers.
[30]

 To the best of our knowledge, the 

homogeneous metal-catalysed transfer-hydrogenative DRA of β-keto ethers has 

previously never been reported. Our protocol is mild and efficient, allowing direct 

access to β-amino ethers in a one-pot fashion. The results are presented in Table 4.4. 

As can be seen, 1-phenoxypropan-2-one, containing an aliphatic ketone and a 

phenoxy group, was aminated to give 9a in a high yield (Table 4.4, entry 1). The 

amino ether product offers a valuable building block for the synthesis of various 

antiepileptic agents.
[31]

 Aromatic β-keto ethers, regardless of the substituent nature, 

all reacted well under the present conditions (Table 4.4, entries 2-4). Interestingly, 

unusual β-keto ethers bearing an aromatic ketone and fluoro-alkoxy group were also 

tolerated, leading to their corresponding amines in a good yield (Table 4.4, entries 5-

6). 2-Ethoxycyclohexanamine was also obtained in a good yield, showing again the 

excellent activity of C4 towards the DRA of β-keto ethers (Table 4.4, entry 7).   
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Table 4.4: DRA of β-keto ethers with HCO2NH4 

 

Entry
[a]

 Ketones Amines  Yield (%)
[b]

 

1 

  

9a 87 

2 

  

9b 93 

3 

  

9c 90 

4 

  

9d 91 

5 

  

9e 74 

6 

  

9f 77 

7
[c]

 

  

9g 81 

[a] Reaction conditions: ketone (0.5 mmol), HCO2NH4 (5 mmol), catalyst (5x10
-4

 mmol), 

HCO2H/Et3N (5:2) azeotrope (0.5 mL) and MeOH (3 mL), stirred at 80 °C for 12 h. [b] Yield of 

isolated product. [c] Syn/anti ratio = 6:1. 
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4.2.5 DRA of α-keto acids with HCO2NH4 

To further demonstrate the versatility of C4, the DRA of α-keto acids was targeted 

next and the results are summarised in Table 4.5. Non-natural α-amino acids are in 

the focus of interest, as they are widely used as building blocks in drug synthesis, 

especially in the synthesis of semi-synthetic broad-spectrum antibiotics like 

Ampicillin and Amoxicillin.
[32]

 Transfer hydrogenative DRA of α-keto acids offers 

an easy way of generating these non-natural α-amino acids, in particular, as they are 

generally difficult to be synthesised through enzymatic methods.
[20,33]

 Electron 

neutral substrates, 2-oxo-2-phenylacetic acid and 2-(naphthalen-2-yl)-2-oxoacetic 

acid, were successfully aminated to their corresponding amines in near quantitative 

yields (Table 4.5, entries 1 and 5). Both electron-poor and -rich substrates gave 

excellent yields of their amines (Table 4.5, entries 2-4). Interestingly, α-keto acids 

containing a heteroatom posed no poisoning effect on the catalyst, giving excellent 

yields (Table 4.5, entries 6-7). The protocol is attractive not only because high yields 

are obtained, but also because the α-amino acid products precipitate from the 

reaction mixture and can be obtained by a simple filtration. 
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Table 4.5: DRA of α-keto acids with HCO2NH4 

 

Entry
[a]

 Ketones Amines  Yield (%)
[b]

 

1 

  

11a 95 

2 

  

11b 91 

3 

  

11c 90 

4 

  

11d 88 

5 

  

11e 96 

6 

  

11f 94 

7 

  

11g 92 

[a] Reaction conditions: ketone (0.5 mmol), HCO2NH4 (5 mmol), catalyst (5x10
-4

 mmol), 

HCO2H/Et3N (5:2) azeotrope (0.5 mL) and MeOH (3 mL), stirred at 80 °C for 12 h. [b] Yield of 

isolated product. 
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4.2.6 Synthesis of Mexiletine 

To showcase the synthetic utility of the DRA, the protocol was applied to a synthesis 

of Mexiletine, a class Ib antiarrhythmic agent that interferes with the sodium channel 

(Scheme 4.7).
[34]

 1-(2,6-Dimethylphenoxy)propan-2-one was synthesised by reacting 

2,6-dimethylphenol with chloroacetone.
[35]

 Transfer-hydrogenative DRA of the 

resulting β-keto ether by C4 afforded the target Mexiletine with an overall yield of 

77% (Scheme 4.7). This two-step synthesis is economical and high-yielding under 

mild reaction conditions. A conventional three-step method, by using Raney nickel 

under hydrogenative conditions,
[36,37]

 
 
is shown in Scheme 4.8.  

 

Scheme 4.7: Synthesis of Mexiletine by transfer hydrogenative DRA. 

 

Scheme 4.8: A conventional three-step synthesis of Mexiletine. 
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4.2.7 Mechanistic considerations 

A reaction mechanism for the DRA is proposed in Scheme 4.9. Reduction by the 

catalyst C4 most likely proceeds by the ionic mechanism,
[38]

 as the catalyst does not 

offer metal-ligand bifunctionality.
[39]

 Complex C4 is first converted into I in the 

presence of formic acid. The decarboxylation of formate by iridium leads to the 

iridium hydride species II.
[40,41]

 Simultaneously, an imine is generated through the 

condensation of a ketone with ammonia. This imine is protonated under the acidic 

conditions and enters the catalytic cycle as the iminium ion, where it is reduced to 

the product by direct hydride transfer to the protonated C=N bond.
[38, 42]

  

 

Scheme 4.9: Proposed DRA mechanism under the present conditions. 

In the preliminary studies, the DRA reaction of acetonaphthone 1a was monitored in 

situ by 
1
H-NMR spectroscopy under the normal catalytic conditions but at room 

temperature. Formation of hydride II was confirmed and shown to be instantaneous. 

However, no other new species were observed at this temperature, which indicated 

that hydride transfer or imine generation may be more difficult than the hydride 

formation in the overall DRA. Condensation of 1a with ammonia was not observed 
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even after heating the sample at 50 
°
C for 10 min. Complex II was isolated and 

characterised by X-ray diffraction (Figure 4.1). Our previous study suggests that the 

imine is reduced by the cyclometalated iridium hydride at room temperature only 

when it is present in its protonated but not neutral form.
[40]

 These results are in 

agreement with the proposed ionic mechanism. 

 

Figure 4.1: Molecular structure of the hydride II determined by X-ray diffraction. Thermal ellipsoids 

are displayed at 50% probability 

4.3 Conclusion 

This chapter demonstrates that primary amines can be readily accessed by the DRA 

of various ketones by using economic, safe and easy-to-handle ammonium formate. 

Cyclometalated iridium complexes hold the key, allowing the DRA to proceed with 

high productivity and excellent chemoselectivity toward primary amines under mild 

transfer-hydrogenative conditions. Aromatic ketones, aliphatic ones, α-keto acids 

and β-keto ethers are all viable substrates under the current conditions, showing the 

versatility of the iridicycle catalyst identified. 
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4.4 Experimental 

4.4.1 General information 

Unless otherwise specified, all reagents were commercially purchased and used 

without further purification. Dichloromethane (DCM) was dried over CaH2 and 

distilled prior to use. MeOH was dried over magnesium and distilled prior to use. 

NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer unless 

otherwise specified. HRMS analyses were carried out by the EPSRC National Mass 

Spectrometry Service Centre at Swansea University. Cyclometalated iridium hydride 

was in situ formed and was also prepared according to the literature procedure.
[40]

 β-

Keto ethers (8a-g) were prepared according to the literature.
[35]

 8e, 8f and 9f are 

unknown compounds. 
1
H-NMR, 

13
C-NMR and HRMS were collected for all the 

products. 
1
H-NMR and 

13
C-NMR are consistent with the reported literature (see 

below). 

4.4.2 Typical procedure for the DRA of ketones 

Ketone (0.5 mmol), C4 (0.32 mg, 5x10
-4

 mmol) and ammonium formate (315 mg, 5 

mmol) were placed in a carousel reaction tube. MeOH (3 mL) was introduced with a 

syringe and the resulting mixture was bubbled with nitrogen for 2 min. The F/T 

azeotrope (0.5 mL) was then added and the mixture was stirred at 80 °C for 8-12 h. 

The reaction mixture was cooled to room temperature and the solvent evaporated 

under vacuum. 1M HCl solution was added to the resulting residue and the mixture 

was washed with diethyl ether (2 x 15 mL) to remove neutral compounds. The 

aqueous layer was basified with dilute KOH solution and was bought to a pH of 10-

12. It was than extracted with DCM (3 x 30 mL) and the combined organic layers 
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were dried over anhydrous sodium sulphate. Filtration, followed by evaporation of 

solvent under reduced pressure gave the desired product. 

4.4.3 Representative procedure for the DRA of α-keto acids 

2-Oxo-2-phenylacetic acid (75.1 mg, 0.50 mmol), C4 (0.32 mg, 5x10
-4

 mmol) and 

ammonium formate (315 mg, 5.00 mmol) were placed in a carousel reaction tube. 

MeOH (3 mL) was introduced with a syringe and the resulting mixture was bubbled 

with nitrogen for 2 min. The F/T azeotrope (0.5 mL) was then added and the mixture 

was stirred at 80 °C for 12 h. The reaction mixture was cooled to room temperature 

and the resultant precipitate filtered off and washed with MeOH to give 2-amino-2-

phenylacetic acid as a white solid (71.8 mg, 95% yield).  

4.4.4 Data of the cyclometalated iridium complexes 

 

Complex C7: Yellow solid: 
1
H NMR (CDCl3, 400 MHz, 253 K) δ (ppm): 8.17 (s, 

1H), 8.08 (s, 1H), 7.91 (d, J = 7.8 Hz, 1H), 7.81 (dd, J = 8.2, 2.8 Hz, 2H), 7.57-7.41 

(m, 3H), 7.35-7.29 (m, 2H), 6.93 (d, J = 7.6 Hz, 1H), 2.58 (s, 3H), 1.45 (s, 15H).
 13

C 

NMR (CDCl3, 100 M Hz, 253 K) δ (ppm): 181.2, 159.6, 150.7, 148.0, 137.0, 132.3, 

130.2, 129.6, 129.3, 129.2, 127.7, 127.5, 126.6, 126.5, 123.8, 123.6, 122.3, 89.0, 

17.4, 8.7. HRMS for C28H29ClIrN [M]
+
: m/z calc., 607.1605; found, 607.1603. 

 

Complex C8: Orange solid; 
1
H NMR (CDCl3, 400 MHz, 253 K) δ (ppm): 7.85 (d, J 

= 7.3 Hz, 2H), 7.56 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.42 (t, J = 7.4 Hz, 

1H), 7.32-7.21 (m, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.87 (d, J = 7.5 Hz, 1H), 2.47 (s, 
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3H), 1.41 (s, 15H). 
13

C NMR (CDCl3, 100 MHz, 253 K) δ (ppm): 181.5, 168.2, 

150.7, 147.7, 135.1, 132.3, 130.1, 128.7, 127.7, 126.4, 123.6, 122.5, 121.6, 89.2, 

17.2, 8.7. Anal. calc. for C24H27ClIrN (%): C, 51.74; H, 4.88; N, 2.51. Found: C, 

51.31; H, 4.79; N, 2.35. HRMS (FAB) for C24H27ClIrN [M]
+
: m/z calc., 557.1448; 

found, 557.1442. 

 

Complex C9: Red solid: 
1
H NMR (CDCl3, 400 MHz, 253 K) δ (ppm): 8.36 (d, J = 

2.3 Hz, 1H), 8.07 (dd, J = 8.4, 2.3 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.76 (dd, J = 

8.8, 2.0 Hz, 1H), 7.02 (dd, J = 8.9, 2.4 Hz, 1H), 6.95 (dd, J = 8.4, 2.4 Hz, 1H), 6.85 

(dd, J = 8.4, 2.1 Hz, 1H), 3.89 (s, 3H), 2.56 (s, 3H), 1.45 (s, 15H). 
13

C NMR (CDCl3, 

100 MHz, 253 K) δ (ppm): 181.9, 180.8, 157.9, 148.6, 143.3, 142.7, 135.7, 126.0, 

124.5, 123.3, 123.2, 115.2, 112.5, 90.6, 55.7, 17.4, 8.8. Anal. calc. for 

C25H28ClIrN2O3 (%): C, 47.50; H, 4.46; N, 4.43. Found: C, 47.70; H, 4.26; N, 4.20. 

HRMS (FAB) for C25H28Cl
191

IrN2O3 [M]
+
: m/z calc., 630.1389; found, 630.1390. 

 

Complex C10: Black solid: 
1
H NMR (CDCl3, 400 MHz, 253 K) δ (ppm): 8.62 (d, J = 

2.2 Hz, 1H), 7.88 (dd, J = 8.6, 2.2 Hz, 1H), 7.78-7.65 (m, 1H), 7.60 (d, J = 8.6 Hz, 

1H), 6.89-6.61 (m, 3H), 3.03 (s, 6H), 2.51 (s, 3H), 1.47 (s, 15H). 
13

C NMR (CDCl3, 

100 MHz, 253 K) δ (ppm): 179.6, 168.1, 154.0, 149.0, 148.7, 140.1, 129.2, 128.4, 

124.1, 123.0, 117.0, 113.3, 110.3, 90.0, 40.9, 17.8, 8.8. HRMS (FAB) for 

C26H31Cl
191

IrN3O2 [M]
+
: m/z calc., 643.1705; found, 643.1698. 
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Complex C11: Red solid: 
1
H NMR (CDCl3, 400 MHz, 253 K) δ (ppm): 7.79 (d, J = 

8.8 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.07 (d, J = 2.5 Hz, 1H), 7.02-6.95 (m, 2H), 

6.91 (d, J = 8.1 Hz, 1H), 6.81 (d, J = 8.3 Hz, 1H), 3.88 (s, 3H), 3.83 (s, 3H), 2.44 (s, 

3H), 1.44 (s, 15H). 
13

C NMR (CDCl3, 100 MHz, 253 K) δ (ppm): 181.4, 157.8, 

157.5, 154.9, 148.0, 144.2, 135.3, 124.9, 123.4, 119.5, 114.9, 113.0, 112.3, 88.9, 

55.6, 55.4, 17.3, 8.8. Anal. calc. for C26H31ClIrNO2 (%): C, 50.60; H, 5.06; N, 2.27. 

Found: C, 50.53; H, 5.08; N, 2.16. HRMS (FAB) for C26H31IrNO2 [M-Cl]
+
: m/z 

calc., 582.1984; found, 582.1980. 

 

Complex C12: Red solid: 
1
H NMR (CDCl3, 400 MHz, 253 K) δ (ppm): 7.80 (d, J = 

8.1 Hz, 1H), 7.31 (s, 1H), 7.03 (s, 1H), 6.98 (d, J = 8.3 Hz, 1H), 6.90 (d, J = 8.3 Hz, 

1H), 6.81 (d, J = 8.1 Hz, 1H), 4.06 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 2.44 (s, 3H), 

1.44 (s, 15H). 
13

C NMR (CDCl3, 100 MHz, 253 K) δ (ppm): 180.3, 161.7, 157.3, 

151.8, 144.3, 144.1, 139.3, 125.1, 123.8, 115.9, 114.9, 112.2, 110.8, 88.9, 55.9, 55.7, 

55.6, 17.4, 8.9. Anal. calc. for C27H33ClIrNO3 (%):C, 50.10; H, 5.14; N, 2.16. Found: 

C, 50.07; H, 5.10; N, 2.10. HRMS (FAB) for C27H33Cl
191

IrNO3 [M]
+
: m/z calc., 

645.1749; found, 645.1758. 

 

Complex II: Purple solid: 
1
H NMR (Benzene-d6, 400 MHz, 300 K) δ (ppm): 8.59 (s, 

1H), 7.98 (d, J = 8.3 Hz, 1H), 7.88 (s, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.43 (t, J = 7.5 

Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 6.93-6.55 (m, 2H), 3.35 (s, 3H), 2.00 (s, 3H), 1.72 

(s, 15H), -15.23 (s, 1H). Anal. calc. for C29H32IrNO (%):C, 57.78; H, 5.35; N, 2.32. 
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Found: C, 57.48; H, 5.68; N, 2.34. HRMS (APCI) for C29H31NO
191

Ir [M-H]
+
: m/z 

calc., 600.2006; found, 600.2002. 

4.4.5 Data of the β-keto ethers 

 

1-Phenyl-2-(2,2,2-trifluoroethoxy)ethanone, 8f: 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.92 (d, J = 7.7 Hz, 2H), 7.64 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.8 Hz, 

2H), 4.99 (s, 2H), 4.08 (q, J = 8.7 Hz, 2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 195.3, 134.6, 134.4, 129.3, 128.2, 124.2 (q, J = 278.9, CF3), 74.6, 68.9 (q, J = 

34.4 Hz, CH2CF3). 
19

F NMR (CDCl3, 376 MHz, 300 K) δ (ppm): -74.6. HRMS for 

C10H10O2F3 [M+H]
+
: m/z calc., 219.0627; found, 219.0626. 

 

2-(1,1,1,3,3,3-Hexafluoropropan-2-yloxy)-1-phenylethanone, 8g: 
1
H NMR (CDCl3, 

400 MHz, 300 K) δ (ppm): 7.92 (d, J = 7.8 Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.52 (t, 

J = 7.8 Hz, 2H), 5.14 (s, 2H), 4.55 (sep, J = 5.8 Hz, 1H). 
13

C NMR (CDCl3, 100 

MHz, 300 K) δ (ppm): 193.7, 134.7, 134.4, 129.4, 128.3, 123.2 (q, J = 283.4, 2CF3), 

75.8 (sep, J = 32.7 Hz, OCH(CF3)2), 74.3. 
19

F NMR (CDCl3, 376 MHz, 300 K) δ 

(ppm): -73.5. HRMS for C11H8O2F6Na [M+Na]
+
: m/z calc., 309.0326; found, 

309.0318. 

4.4.6 Data of the aromatic primary amines 

 

1-(Naphthalen-2-yl)ethanamine, 2a:
[8]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.88-7.77 (m, 4H), 7.55-7.43 (m, 3H), 4.30 (q, J = 6.5 Hz, 1H), 2.56 (bs, 2H), 

1.51 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 144.7, 133.9, 

133.1, 128.7, 128.3, 128.0, 126.5, 126.0, 124.9, 124.4, 51.8, 25.6. HRMS for 

C12H14N [M+H]
+
: m/z calc., 172.1121; found, 172.1119. 
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1-(6-Methoxynaphthalen-2-yl)ethanamine, 2b:
[43]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.73-7.67 (m, 3H), 7.44 (dd, J = 8.4, 1.8 Hz, 1H), 7.16-7.09 (m, 2H), 

4.24 (q, J = 6.6 Hz, 1H), 3.90 (s, 3H), 1.55 (bs, 2H), 1.45 (d, J = 6.6 Hz, 3H). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 157.9, 143.4, 134.1, 129.6, 129.3, 127.4, 

125.4, 124.1, 119.2, 106.1, 55.7, 51.7, 26.1. HRMS for C13H15NO [M]
+
: m/z calc., 

201.1148; found, 201.1146. 

 

1-Phenylethanamine, 2c:
[8]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.36-7.29 

(m, 4H), 7.26-7.19 (m, 1H), 4.11 (q, J = 6.6 Hz, 1H), 1.53 (bs, 2H), 1.38 (d, J = 6.6 

Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 148.2, 128.9, 127.2, 126.1, 

51.7, 26.1. HRMS for C8H12N [M+H]
+
: m/z calc., 122.0964; found, 122.0964. 

 

1-(Biphenyl-4-yl)ethanamine, 2d:
[44]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.68-7.60 (m, 4H), 7.52-7.44 (m, 4H), 7.42-7.36 (m, 1H), 4.21 (q, J = 6.6 Hz, 1H), 

1.70 (bs, 2H), 1.49 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 147.3, 141.4, 140.2, 129.2, 127.7, 127.6, 127.5, 126.6, 51.5, 26.1. HRMS for 

C14H16N [M+H]
+
: m/z calc., 198.1277; found, 198.1277. 

 

1-(4-Methoxyphenyl)ethanamine, 2e:
[8]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.26 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.07 (q, J = 6.6 Hz, 1H), 

3.78 (s, 3H), 1.51 (bs, 2H), 1.36 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 

300 K) δ (ppm): 158.9, 140.4, 127.1, 114.2, 55.7, 51.1, 26.2. HRMS for C9H14NO 

[M+H]
+
: m/z calc., 152.1070; found, 152.1069. 
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1-(4-Fluorophenyl)ethanamine, 2f: 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.27-7.21 (m, 2H),  6.97-6.90 (m, 2H), 4.05 (q, J = 6.6 Hz, 1H), 1.59 (bs, 2H), 1.29 

(d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 162.1 (d, J = 

244.3 Hz), 143.7 (d, J = 3.1 Hz), 127.6 (d, J = 7.9 Hz), 115.6 (d, J = 21.1 Hz), 51.1, 

26.2. HRMS for C8H11NF [M+H]
+
: m/z calc., 140.0870; found, 140.0867. 

 

1-(4-Bromophenyl)ethanamine, 2g:
[45]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.37 (d, J = 8.4 Hz, 2H),  7.16 (d, J = 8.4 Hz, 2H), 4.02 (q, J = 6.6 Hz, 1H), 

1.60 (bs, 2H), 1.29 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 147.0, 131.9, 128.0, 120.8, 51.2, 26.1. HRMS for C8H11NBr [M+H]
+
: m/z 

calc., 200.0069; found, 200.0068. 

 

1-(4-(Trifluoromethyl)phenyl)ethanamine, 2h:
[46]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.61 (d, J = 8.2 Hz, 2H),  7.50 (d, J = 8.2 Hz, 2H), 4.22 (q, J = 6.6 Hz, 

1H), 1.70 (bs, 2H), 1.42 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 152.0, 129.5 (d, J = 32.4 Hz), 127.5, 126.5 (2C), 125.8 (q, J = 3.7 Hz), 123.3 

(d, J = 272.1 Hz, CF3), 51.4, 26.1. HRMS for C9H11NF3 [M+H]
+
: m/z calc., 

190.0838; found, 190.0834. 

 

1-(4-Nitrophenyl)ethanamine, 2i:
[11]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

8.09 (d, J = 8.8 Hz, 2H),  7.46 (d, J = 8.7 Hz, 2H), 4.18 (q, J = 6.6 Hz, 1H), 1.60 (bs, 

2H), 1.33 (d, J = 6.7 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 155.6, 

147.2, 127.1, 124.2, 51.3, 26.2. HRMS for C8H11N2O2 [M+H]
+
: m/z calc., 167.0815; 

found, 167.0815. 
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1-(3-Methoxyphenyl)ethanamine, 2j:
[47]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.25 (d, J = 7.5 Hz, 1H),  6.95-6.89 (m, 2H), 6.80-6.75 (m, 1H), 4.09 (q, J = 

6.6 Hz, 1H), 3.81 (s, 3H), 1.62 (bs, 2H), 1.38 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 

100 MHz, 300 K) δ (ppm): 160.2, 150.0, 129.9, 118.5, 112.5, 111.8, 55.6, 51.7, 26.0. 

HRMS for C9H14NO [M+H]
+
: m/z calc., 152.1070; found, 152.1071. 

 

1-(3-Fluorophenyl)ethanamine, 2k:
[47]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.34-7.28 (m, 1H),  7.16-7.05 (m, 2H), 6.94 (td, J = 8.5, 2.6 Hz, 1H), 4.14 (q, 

J = 6.6 Hz, 1H), 1.61 (bs, 2H), 1.39 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 

300 K) δ (ppm): 163.4 (d, J = 245.6 Hz), 150.9 (d, J = 6.5 Hz), 130.3 (d, J = 8.2 Hz), 

121.8 (d, J = 2.7 Hz), 114.0 (d, J = 21.2 Hz), 113.0 (d, J = 21.4 Hz), 51.4 (d, J = 1.7 

Hz), 26.1. HRMS for C8H11FN [M+H]
+
: m/z calc., 140.0870; found, 140.0867. 

 

1-(3-Bromophenyl)ethanamine, 2l:
[48]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.43 (t, J = 1.7 Hz, 1H),  7.28 (d, J = 7.8 Hz, 1H), 7.19 (d, J = 6.8 Hz, 1H), 7.11 (t, J 

= 7.7 Hz, 1H), 4.01 (q, J = 6.6 Hz, 1H), 2.02 (bs, 2H), 1.29 (d, J = 6.6 Hz, 3H). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 150.1, 130.5, 130.4, 129.4, 124.9, 123.0, 

51.3, 25.8. HRMS for C8H11BrN [M+H]
+
: m/z calc., 200.0069; found, 200.0069.  

 

1-(3-(Trifluoromethyl)phenyl)ethanamine, 2m:
[47]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.63 (s, 1H), 7.55 (d, J = 7.5 Hz, 1H),  7.50 (d, J = 7.3 Hz, 1H), 7.44 (dd, 
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J = 7.5, 7.3 Hz, 1H), 4.20 (q, J = 6.6 Hz, 1H), 1.94 (bs, 2H), 1.41 (d, J = 6.6 Hz, 3H). 

13
C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 148.7, 131.2 (q, J = 32.2 Hz), 129.7, 

129.3, 124.7 (q, J = 272.4 Hz, CF3), 124.1 (q, J = 3.9 Hz), 123.0 (q, J = 3.6 Hz), 

51.4, 26.0. HRMS for C9H11F3N [M+H]
+
: m/z calc., 190.0838; found, 190.0837.  

 

1-(3-Nitrophenyl)ethanamine, 2n:
[49]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

8.25 (s, 1H), 8.09 (d, J = 8.2 Hz, 1H),  7.72 (d, J = 7.7 Hz, 1H), 7.49 (dd, J = 8.2, 7.7 

Hz, 1H), 4.27 (q, J = 6.6 Hz, 1H), 1.58 (bs, 2H), 1.42 (d, J = 6.6 Hz, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 150.2, 148.8, 132.6, 129.7, 122.3, 121.3, 51.2, 

26.2. HRMS for C8H11O2N2 [M+H]
+
: m/z calc., 167.0815; found, 167.0812. 

 

1-(2-Methoxyphenyl)ethanamine, 2o:
[50]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.33 (dd, J = 7.5, 1.6 Hz, 1H), 7.20 (ddd, J = 8.3, 7.3, 1.7 Hz, 1H),  6.94 (td, J 

= 7.4, 1.1 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 4.35 (q, J = 6.7 Hz, 1H), 3.84 (s, 3H), 

1.65 (bs, 2H), 1.39 (d, J = 6.7 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 157.2, 136.2, 128.0, 126.1, 121.0, 110.9, 55.6, 46.4, 23.7. HRMS for 

C9H14ON [M+H]
+
: m/z calc., 152.1070; found, 152.1068. 

 

1-(2-Fluorophenyl)ethanamine, 2p:
[51]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.43 (td, J = 7.6, 1.7 Hz, 1H), 7.26-7.19 (m, 1H), 7.14 (td, J = 7.5, 1.1 Hz, 

1H), 7.06-7.00 (m, 1H), 4.40 (q, J = 6.7 Hz, 1H), 1.75 (bs, 2H), 1.44 (d, J = 6.7 Hz, 

3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 160.8 (d, J = 244.6 Hz), 134.8 (d, 

J = 13.6 Hz), 128.5 (d, J = 8.4 Hz), 127.1 (d, J = 5.0 Hz), 124.6 (d, J = 3.5 Hz), 115.8 

(d, J = 22.2 Hz), 45.8 (d, J = 2.8 Hz), 24.4. HRMS for C8H11FN [M+H]
+
: m/z calc., 

140.0870; found, 140.0867. 
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1-(3,4-Dimethoxyphenyl)ethanamine, 2q:
[47]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 6.83 (s, 1H),  6.81-6.71 (m, 2H), 4.00 (q, J = 6.6 Hz, 1H), 3.81 (s, 3H), 3.77 

(s, 3H), 1.41 (bs, 2H), 1.28 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) 

δ (ppm): 149.4, 148.2, 140.9, 118.0, 111.5, 109.5, 56.3, 56.2, 51.4, 26.2. HRMS for 

C10H15NO2Na [M+Na]
+
: m/z calc., 204.0995; found, 204.0994. 

 

1-(Benzo[d][1,3]dioxol-5-yl)ethanamine, 2r:
[52]

 
1
H NMR (CDCl3, 400 MHz, 300 K) 

δ (ppm): 6.87 (d, J = 1.6 Hz, 1H),  6.81-6.73 (m, 2H), 5.93 (s, 2H), 4.05 (q, J = 6.5 

Hz, 1H), 1.56 (bs, 2H), 1.35 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 

K) δ (ppm): 148.1, 146.7, 142.4, 119.1, 108.5, 106.7, 101.3, 51.5, 26.2. HRMS for 

C9H12NO2 [M+H]
+
: m/z calc., 166.0863; found, 166.0860. 

 

1-Phenylpropan-1-amine, 2s:
[47]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.38-

7.31 (m, 4H), 7.28-7.23 (m, 1H), 3.82 (t, J = 6.8 Hz, 1H), 1.77-1.67 (m, 4H, 

including NH2), 0.89 (t, J = 7.4 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 146.8, 128.8, 127.3, 126.8, 58.2, 32.8, 11.4. HRMS for C9H14N [M+H]
+
: m/z 

calc., 136.1121; found, 136.1118. 

 

1,3-Diphenylpropan-1-amine, 2t:
[53]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.27-7.22 (m, 4H), 7.21-7.15 (m, 3H), 7.12-7.04 (m, 3H), 3.84 (t, J = 7.0 Hz, 1H), 

3.01 (bs, 2H), 2.58-2.41 (m, 2H), 2.06-1.90 (m, 2H). 
13

C NMR (CDCl3, 100 MHz, 

300 K) δ (ppm): 145.0, 142.0, 129.1, 128.8 (2C), 127.8, 127.0, 126.3, 56.2, 40.6, 

33.0. HRMS for C15H18N [M+H]
+
: m/z calc., 212.1434; found, 212.1432. 
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2,3-Dihydro-1H-inden-1-amine, 2u:
[54]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.38-7.33 (m, 1H), 7.28-7.21 (m, 3H), 4.39 (t, J = 7.5 Hz, 1H), 3.04-2.94 (m, 

1H), 2.89-2.78 (m, 1H), 2.58-2.48 (m, 1H), 1.75-1.68 (m, 3H, including NH2). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 147.8, 143.5, 127.6, 126.9, 125.1, 123.7, 

57.7, 37.8, 30.5. HRMS for C9H12N [M+H]
+
: m/z calc., 134.0964; found, 134.0962. 

 

1,2,3,4-Tetrahydronaphthalen-1-amine, 2v:
[8]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.42 (d, J = 7.2 Hz, 1H), 7.24-7.14 (m, 2H), 7.10 (d, J = 7.2 Hz, 1H), 4.00 (t, 

J = 5.7 Hz, 1H), 2.90-2.71 (m, 2H), 2.11-1.91 (m, 2H), 1.85-1.68 (m, 2H), 1.62 (bs, 

2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 141.5, 137.1, 129.4, 128.4, 

127.0, 126.4, 49.8, 33.9, 30.0, 20.0. HRMS for C10H14N [M+H]
+
: m/z calc., 

148.1121; found, 148.1118. 

 

1-(Benzofuran-2-yl)ethanamine, 2w:
[55]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.43 (ddd, J = 7.5, 1.6, 0.9 Hz, 1H), 7.37-7.33 (m, 1H), 7.18-7.08 (m, 2H), 

6.41 (t, J = 0.9 Hz, 1H), 4.13 (q, J = 6.7 Hz, 1H), 2.04 (bs, 2H), 1.44 (d, J = 6.7 Hz, 

3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 163.2, 155.1, 128.9, 124.1, 

123.0, 121.2, 111.4, 100.8, 45.9, 22.3. HRMS for C10H12NO [M+H]
+
: m/z calc., 

162.0913; found, 162.0912. 

 

1-(2,5-Dimethylthiophen-3-yl)ethanamine, 2x:
[56]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 6.69 (s, 1H), 4.14 (q, J = 6.6 Hz, 1H), 2.41 (s, 3H), 2.35 (s, 3H), 1.75 

(bs, 2H), 1.34 (d, J = 6.6 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 

143.4, 136.3, 130.3, 123.7, 45.3, 24.9, 15.6, 13.0. HRMS for C8H13NSNa [M+Na]
+
: 

m/z calc., 178.0661; found, 178.0657. 
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4.4.7 Data of the aliphatic primary amines 

 

4-Phenylbutan-2-amine, 7a: 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.33-7.27 

(m, 2H), 7.24-7.19 (m, 3H), 2.95 (sex, J = 6.4 Hz, 1H), 2.75-2.63 (m, 2H), 1.73-1.62 

(m, 2H), 1.27 (bs, 2H), 1.13 (d, J = 6.3 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 

K) δ (ppm): 142.7, 128.8, 128.7, 126.1, 47.0, 42.3, 33.3, 24.5. HRMS for C10H16N 

[M+H]
+
: m/z calc., 150.1277; found, 150.1275. 

 

4-(Benzo[d][1,3]dioxol-5-yl)butan-2-amine, 7b:
[8]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 6.65 (d, J = 7.8 Hz, 1H), 6.62 (d, J = 1.2 Hz, 1H), 6.57 (dd, J = 7.8, 1.2 

Hz, 1H), 5.84 (s, 2H), 2.86 (sex, J = 6.4 Hz, 1H), 2.59-2.44 (m, 2H), 1.75 (bs, 2H), 

1.60-1.51 (m, 2H), 1.05 (d, J = 6.4 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 147.9, 145.9, 136.5, 121.4, 109.2, 108.5, 101.1, 46.8, 42.3, 32.9, 24.3. HRMS 

for C11H16NO2 [M+H]
+
: m/z calc., 194.1176; found, 194.1175. 

 

Cyclohexanamine, 7c:
[57]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 2.69-2.51 

(m, 1H), 1.87-1.52 (m, 5H), 1.32-0.95 (m, 7H). 
13

C NMR (CDCl3, 100 MHz, 300 K) 

δ (ppm): 50.9, 37.3, 26.1, 25.5. HRMS for C6H14N [M+H]
+
: m/z calc., 100.1121; 

found, 100.23. 

 

1-Cyclohexylethanamine, 7d:
[20]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 2.67 

(quin, J = 6.4 Hz, 1H), 1.82-1.63 (m, 5H), 1.46 (bs, 2H), 1.30-1.10 (m, 4H), 1.04 (d, 

J = 6.5 Hz, 3H), 1.02-0.91 (m, 2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 

52.0, 45.8, 29.5, 29.3, 27.0, 26.8, 26.7, 21.2. HRMS for C8H18N [M+H]
+
: m/z calc., 

128.1434; found, 128.1432. 
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Cyclododecanamine, 7e:
[58]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 2.97-2.88 

(m, 1H), 1.82 (bs, 2H), 1.63-1.52 (m, 2H), 1.45-1.25 (m, 20H). 
13

C NMR (CDCl3, 

100 MHz, 300 K) δ (ppm): 48.1, 33.4, 24.6, 24.2, 23.8, 23.7, 21.7. HRMS for 

C12H26N [M+H]
+
: m/z calc., 184.2060; found, 184.2060. 

 

Octan-2-amine, 7f:
[20]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 2.90-2.77 (m, 

1H), 1.93 (bs, 2H), 1.34-1.13 (m, 10H), 1.00 (d, J = 6.3 Hz, 3H), 0.81 (d, J = 6.8 Hz, 

3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 47.3, 40.5, 32.2, 29.8, 26.8, 24.2, 

23.0, 14.4. HRMS for C8H20N [M+H]
+
: m/z calc., 130.1590; found, 130.1589. 

 

Nonan-3-amine, 7g: 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 2.63-2.51 (m, 

1H), 2.07 (bs, 2H), 1.37-1.14 (m, 12H), 0.88-0.79 (m, 6H). 
13

C NMR (CDCl3, 100 

MHz, 300 K) δ (ppm): 53.1, 37.6, 32.3, 30.7, 29.9, 26.5, 23.0, 14.5, 10.7. HRMS for 

C9H22N [M+H]
+
: m/z calc., 144.1747; found, 144.1746. 

 

6-Methylhept-5-en-2-amine, 7h:
[59]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

5.04 (td, J = 7.1, 1.1 Hz, 1H), 2.90-2.76 (m, 1H), 2.04-1.86 (m, 2H), 1.62 (s, 3H), 

1.54 (s, 3H), 1.48 (bs, 2H), 1.35-1.24 (m, 2H), 1.00 (d, J = 6.3 Hz, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 132.0, 124.6, 47.1, 40.5, 26.1, 25.4, 24.2, 18.1. 

HRMS for C8H18N [M+H]
+
: m/z calc., 128.1434; found, 128.1432. 

 

3,3-Dimethyl-1,5-dioxaspiro[5.5]undecan-9-amine, 7i: 
1
H NMR (CDCl3, 400 MHz, 

300 K) δ (ppm): 3.48 (s, 2H), 3.45 (s, 2H), 2.79-2.65 (m, 1H), 2.23-2.11 (m, 2H), 

1.76-1.64 (m, 2H), 1.55-1.25 (m, 6H, including NH2), 0.93 (s, 6H). 
13

C NMR 
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(CDCl3, 100 MHz, 300 K) δ (ppm): 98.9, 72.0, 71.6, 51.5, 34.0, 32.3, 31.9, 24.5. 

HRMS for C11H22NO2 [M+H]
+
: m/z calc., 200.1645; found, 200.1648. 

 

1,2,3,4-Tetrahydronaphthalen-2-amine, 7j:
[60]

 
1
H NMR (CDCl3, 400 MHz, 300 K) 

δ (ppm): 7.06-6.96 (m, 4H), 3.18-3.04 (m, 1H), 2.97-2.88 (m, 1H), 2.85-2.74 (m, 

2H), 2.55-2.44 (m, 1H), 1.99-1.88 (m, 1H), 1.78 (bs, 2H), 1.59-1.46 (m, 1H). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 135.5, 134.9, 129.0, 128.4, 125.5, 125.4, 

47.1, 39.0, 32.5, 27.8. HRMS for C10H14N [M+H]
+
: m/z calc., 148.1121; found, 

148.1120. 

4.4.8 Data of the β-amino ethers 

 

1-Phenoxypropan-2-amine, 9a:
[61]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.34-7.27 (m, 2H), 7.00-6.91 (m, 3H), 3.89 (dd, J = 8.9, 1.1 Hz, 1H), 3.70 (dd, J = 

8.9, 1.1 Hz, 1H), 3.41-3.32 (m, 1H), 1.69 (bs, 2H), 1.19 (d, J = 6.5 Hz, 3H). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 159.3, 129.9, 121.2, 114.9, 74.8, 46.7, 

20.2. HRMS for C9H14NO [M+H]
+
: m/z calc., 152.1070; found, 152.1069. 

 

2-(2,6-Dimethylphenoxy)-1-phenylethanamine, 9b:
[62]

 
1
H NMR (CDCl3, 400 MHz, 

300 K) δ (ppm): 7.47 (d, J = 7.2 Hz, 2H), 7.38 (dt, J = 7.4, 1.7 Hz, 2H), 7.31 (dt, J = 

7.2, 1.9 Hz, 1H), 7.01 (d, J = 7.4 Hz, 2H), 6.95 (dd, J = 8.2, 6.6 Hz, 1H), 4.48 (dd, J 

= 8.0, 4.3 Hz, 1H), 3.87 (m, 2H), 2.34 (bs, 2H), 2.28 (s, 6H). 
13

C NMR (CDCl3, 100 

MHz, 300 K) δ (ppm): 155.8, 142.2, 131.2, 129.3, 128.9, 128.0, 127.3, 124.3, 77.6, 

56.7, 16.7. HRMS for C16H20NO [M+H]
+
: m/z calc., 242.1539; found, 242.1542. 
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2-(4-Chlorophenoxy)-1-phenylethanamine, 9c:
[62]

 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.47 (d, J = 7.2 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.35 (dt, J = 7.2, 2.5 

Hz, 1H), 7.24 (dt, J = 9.0, 2.8 Hz, 2H), 6.85 (dt, J = 9.0, 2.8 Hz, 2H), 4.44 (dd, J = 

8.8, 3.6 Hz, 1H), 4.07 (dd, J = 9.0, 3.7 Hz, 1H), 3.92 (t, J = 9.1 Hz, 1H), 2.13 (bs, 

2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 157.7, 141.8, 129.8, 129.1, 

128.3, 127.3, 126.2, 116.3, 74.5, 55.6. HRMS for C14H15NOCl [M+H]
+
: m/z calc., 

248.0837; found, 248.0840. 

 

2-(4-Methoxyphenoxy)-1-phenylethanamine, 9d: 
1
H NMR (CDCl3, 400 MHz, 300 

K) δ (ppm): 7.48 (d, J = 7.2 Hz, 2H), 7.42-7.37 (m, 2H), 7.33 (dt, J = 7.2, 1.8 Hz, 

1H), 6.89-6.82 (m, 4H), 4.43 (dd, J = 9.0, 3.6 Hz, 1H), 4.06 (dd, J = 9.0, 3.6 Hz, 1H), 

3.90 (t, J = 9.1 Hz, 1H), 3.79 (s, 3H), 2.20 (bs, 2H). 
13

C NMR (CDCl3, 100 MHz, 

300 K) δ (ppm): 154.4, 153.2, 142.1, 129.0, 128.1, 127.4, 116.0, 115.0, 75.0, 56.1, 

55.7. HRMS for C15H18NO2 [M+H]
+
: m/z calc., 244.1332; found, 244.1335.  

 

1-Phenyl-2-(2,2,2-trifluoroethoxy)ethanamine, 9e:
[63]

 
1
H NMR (CDCl3, 400 MHz, 

300 K) δ (ppm): 7.41-7.27 (m, 5H), 4.24 (dd, J = 9.0, 3.6 Hz, 1H), 3.91-3.80 (m, 

2H), 3.75 (dd, J = 9.0, 3.6 Hz, 1H), 3.57 (t, J = 9.0 Hz, 1H), 2.25 (bs, 2H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 141.7, 129.0, 128.2, 127.3, 125.7 (q, J = 279.6, 

CF3), 79.0, 69.2 (q, J = 34.2 Hz, OCH2CF3), 55.8. 
19

F NMR (CDCl3, 376 MHz, 300 

K) δ (ppm): -74.5. HRMS for C10H13NOF3 [M+H]
+
: m/z calc., 220.0944; found, 

220.0946. 

 

 



Chapter 4  

178 
 

 

2-(1,1,1,3,3,3-Hexafluoropropan-2-yloxy)-1-phenylethanamine, 9f: 
1
H NMR 

(CDCl3, 400 MHz, 300 K) δ (ppm): 7.33-7.23 (m, 5H), 4.23 (dd, J = 9.1, 3.4 Hz, 

1H), 4.05 (sep, J = 5.9 Hz, 1H), 3.90 (dd, J = 9.1, 3.4 Hz, 1H), 3.70 (t, J = 9.1 Hz, 

1H), 1.99 (bs, 2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 140.9, 129.1, 

128.4, 127.3, 123.3 (q, J = 283.7, 2CF3), 81.6, 76.8 (sep, J = 32.1 Hz, OCH(CF3)2), 

55.8. 
19

F NMR (CDCl3, 376 MHz, 300 K) δ (ppm): -74.3. HRMS for C11H12NOF6 

[M+H]
+
: m/z calc., 288.0823; found, 288.0812. 

 

2-Ethoxycyclohexanamine, 9g:
[64]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

syn:anti = 6:1; for Syn isomer: 3.58 (dq, J = 9.3, 7.0 Hz, 1H), 3.44 (dq, J = 9.3, 7.0 

Hz, 1H), 3.37 (dddd, J = 3.6, 3.4, 3.4, 3.0 Hz, 1H), 2.88 (ddd, J = 7.7, 4.2, 3.6 Hz, 

1H), 1.86-1.77 (m, 1H), 1.77-1.65 (bs, 2H), 1.63-1.51 (m, 4H), 1.44-1.35 (m, 1H), 

1.34-1.24 (m, 2H), 1.21 (t, J = 7.0 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 79.0, 64.0, 51.3, 31.7, 27.7, 23.1, 21.8, 16.1. HRMS for C8H18NO [M+H]
+
: 

m/z calc., 144.1383; found, 144.1382.  

4.4.9 Data of the α-amino acids 

 

2-Amino-2-phenylacetic acid, 11a:
[65]

 
1
H NMR (DMSO-d6 + HCl, 400 MHz, 300 

K) δ (ppm): 8.96 (bs, 3H), 7.53-7.47 (m, 2H), 7.47-7.40 (m, 3H), 5.05 (s, 1H). 
13

C 

NMR (DMSO-d6 + HCl, 100 MHz, 300 K) δ (ppm): 169.9, 133.5, 129.6, 129.2, 

128.5, 55.9. HRMS for C8H10NO2 [M+H]
+
: m/z calc., 152.0706; found, 152.0706. 
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2-Amino-2-(4-chlorophenyl)acetic acid, 11b:
[66]

 
1
H NMR (DMSO-d6 + HCl, 400 

MHz, 300 K) δ (ppm): 9.04 (bs, 3H), 7.57-7.48 (m, 4H), 5.11 (s, 1H). 
13

C NMR 

(DMSO-d6 + HCl, 100 MHz, 300 K) δ (ppm): 169.6, 134.4, 132.5, 130.5, 129.2, 

55.1. HRMS for C8H9NO2Cl [M+H]
+
: m/z calc., 186.0316; found, 186.0316. 

 

2-Amino-2-(4-(trifluoromethyl)phenyl)acetic acid, 11c:
[67]

 
1
H NMR (DMSO-d6 + 

HCl, 400 MHz, 300 K) δ (ppm): 9.14 (bs, 3H), 7.82 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 

8.0 Hz, 2H), 5.24 (s, 1H). 
13

C NMR (DMSO-d6 + HCl, 100 MHz, 300 K) δ (ppm): 

169.3, 137.9, 130.0 (q, J = 31.9), 129.5, 126.1 (q, J = 3.5 Hz), 124.3 (q, J = 272.9 

Hz), 55.4. 
19

F NMR (CDCl3, 376 MHz, 300 K) δ (ppm): -61.7. HRMS for 

C9H9NO2F3 [M+H]
+
: m/z calc., 220.0580; found, 220.0581. 

 

2-Amino-2-(4-methoxyphenyl)acetic acid, 11d:
[68]

 
1
H NMR (DMSO-d6 + HCl, 400 

MHz, 300 K) δ (ppm): 8.88 (bs, 3H), 7.43 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 8.7 Hz, 

2H), 4.99 (s, 1H), 3.76 (s, 3H). 
13

C NMR (DMSO-d6 + HCl, 100 MHz, 300 K) δ 

(ppm): 170.2, 160.2, 129.9, 125.4, 114.6, 55.7, 55.3. HRMS for C9H11NO3Na 

[M+Na]
+
: m/z calc., 204.0631; found, 204.0633. 

 

2-Amino-2-(naphthalen-2-yl)acetic acid, 11e:
[69]

 
1
H NMR (DMSO-d6 + HCl, 400 

MHz, 300 K) δ (ppm): 9.10 (bs, 3H), 8.08 (s, 1H), 8.03-7.89 (m, 3H), 7.66-7.52 (m, 

3H). 
13

C NMR (DMSO-d6 + HCl, 100 MHz, 300 K) δ (ppm): 169.9, 133.2, 132.8, 

131.0, 129.0, 128.3, 128.2, 128.1, 127.4, 127.3, 125.5, 56.0. HRMS for 

C12H11NO2Na [M+Na]
+
: m/z calc., 224.0682; found, 224.0683. 
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2-Amino-2-(1H-indol-3-yl)acetic acid, 11f:
[70]

 
1
H NMR (DMSO-d6 + HCl, 400 

MHz, 300 K) δ (ppm): 11.6 (bs, 1H), 8.77 (bs, 3H), 7.67 (d, J = 7.9 Hz, 1H), 7.56 (d, 

J = 1.9 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H) 7.15 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 7.3 Hz, 

1H), 5.29 (s, 1H). 
13

C NMR (DMSO-d6 + HCl, 100 MHz, 300 K) δ (ppm): 170.6, 

136.4, 126.3, 125.5, 122.2, 119.7, 119.2, 112.3, 106.8, 49.2.  

 

2-Amino-2-(thiophen-2-yl)acetic acid, 11g:
[71]

 
1
H NMR (DMSO-d6 + HCl, 400 

MHz, 300 K) δ (ppm): 9.03 (bs, 3H), 7.64 (d, J = 5.1 Hz, 1H), 7.32 (d, J = 3.2 Hz, 

1H), 7.10 (dd, J = 5.1, 3.6 Hz, 1H) 5.40 (s, 1H). 
13

C NMR (DMSO-d6 + HCl, 100 

MHz, 300 K) δ (ppm): 169.2, 134.4, 129.2, 128.4, 127.6, 51.3. HRMS for 

C6H7NO2SNa [M+Na]
+
: m/z calc., 180.0090; found, 180.0089. 

4.4.10 Data of the Mexiletine 

 

1-(2,6-Dimethylphenoxy)propan-2-amine:
[72] 1

H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.03 (d, J = 7.3 Hz, 2H), 6.94 (dd, J = 8.2, 6.8 Hz, 1H), 3.68 (dd, J = 9.0, 4.2 

Hz, 1H), 3.57 (dd, J = 9.0, 7.6 Hz, 1H), 3.45-3.36 (m, 1H), 2.31 (s, 6H), 1.92 (bs, 

2H), 1.20 (d, J = 6.5 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 155.9, 

131.2, 129.3, 124.2, 78.6, 47.7, 20.1, 16.7. HRMS for C11H18NO [M+H]
+
: m/z calc., 

180.1383; found, 180.1383. 
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4.4.11 Crystallographic data of complex II 

 

 

 

CCDC 942737 

Table 1 Crystal data and structure refinement for complex II 

Identification code 942737 

Empirical formula C29H32IrNO 

Formula weight 602.76 

Temperature/K 100.15 

Crystal system monoclinic 

Space group I2/a 

a/Å 17.6600(18) 

b/Å 8.7325(9) 

c/Å 30.881(4) 

α/° 90.00 

β/° 92.0600(10) 

γ/° 90.00 

Volume/Å
3
 4759.3(9) 

Z 8 

ρcalcmg/mm
3
 1.682 

m/mm
-1

 5.632 

F(000) 2384.0 

Crystal size/mm
3
 0.25 × 0.25 × 0.1 

2Θ range for data collection 2.64 to 52.76° 

Index ranges -22 ≤ h ≤ 22, -10 ≤ k ≤ 10, -38 ≤ l ≤ 38 

Reflections collected 23179 
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Independent reflections 4860[R(int) = 0.0456] 

Data/restraints/parameters 4860/48/300 

Goodness-of-fit on F
2
 1.113 

Final R indexes [I>=2σ (I)] R1 = 0.0545, wR2 = 0.1189 

Final R indexes [all data] R1 = 0.0626, wR2 = 0.1248 

Largest diff. peak/hole / e Å
-3

 8.45/-3.51 

μ(MoKα)    5.632 mm
-1
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5.1 Introduction  

Catalytic dehydrogenation (CDH) is one of the most important reactions in the 

manufacturing of commodity chemicals.
[1]

 For instance, annually approximately 17 

million tons of styrene are produced by CDH of ethyl benzene over oxide catalysts. 

However, CDH has been much less used in the synthesis of fine chemicals, 

pharmaceuticals and agrochemicals, although it offers considerable benefits with 

respect to atom economy and environmental impact due to the avoidance of using 

stoichiometric oxidants. In recent years, CDH of alkanes,
 
alcohols and amines has 

been realized with transition-metal complexes, although sacrificial hydrogen 

acceptors and additives are frequently used.
[2,3]

 However, homogeneous catalysts 

capable of dehydrogenating heterocycles are very rare, and those catalysts that are 

active are mostly heterogeneous ones, which usually show poor functionality 

tolerance and require harsh reaction conditions.
[4,5]

  

Fujita and Yamaguchi reported the first example of homogeneous dehydrogenation 

of tetrahydroquinolines using a Cp*Ir(2-hydroxypyridine) catalyst.
[6]

 A limitation is 

that only a few examples of 1,2,3,4-tetrahydroquinolines were demonstrated and the 

reaction conditions were relatively forcing [2 mol% catalyst for 20 h in refluxing p-

xylene (bp 138 °C) or 5 h in mesitylene (bp 165 °C)]. A significant advantage is that 

the same catalyst is capable of the reverse reaction, i.e. hydrogenation of quinolines 

to tetrahydroquinolines under H2 (1 atm) in quantitative yield (Scheme 5.1). 

Recently, the same group demonstrated the first homogeneous perdehydrogenation 

of fused bicyclic N-heterocycles using a Cp*Ir catalyst bearing a 1,10-

phenanthroline-2,9-dione ligand (Scheme 5.2).
[7]

 The reverse, perhydrogenation was 

also viable, albeit with high pressures of H2 (70 atm). 
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Scheme 5.1: Dehydrogenation and hydrogenation of 2-methyl tetrahydroquinoline. 

 

Scheme 5.2: Perdehydrogenation and perhydrogenation of 2,6-dimethyldecahydro-1,5-naphthyridine. 

Ru hydride complexes (1c-1e) are also efficient for acceptorless dehydrogenation of 

N-heterocycles.
[8]

 Among them, Shvo’s complex shows the best activity with almost 

quantitative yield of the desired products. Relatively high temperature and catalyst 

loadings are required for the reaction to proceed and again, only a few examples of 

N-heterocycles were demonstrated which are shown in Scheme 5.3.  

 

Scheme 5.3: Representative examples of dehydrogenation with Ru-H complexes. 
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More recently, Jones reported a well defined Fe complex 1f, bearing a 

bis(phosphino)amine pincer ligand that promoted the acceptorless dehydrogenation 

of a range of N-heterocycles (Scheme 5.4).
[9]

 Remarkably, a challenging piperidine 

substrate was also fully dehydrogenated to its corresponding pyridine. In addition, 

catalyst 1f is also active in the hydrogenation of unsaturated N-heterocycles. 

 

Scheme 5.4: Representative examples of dehydrogenation with a Fe complex. 

Given the importance of nitrogen-containing aromatics in numerous naturally 

occurring alkaloids and synthetic pharmaceuticals, and as potential hydrogen storage 

materials,
[10] 

developing a single catalytic system with higher CDH activity and 

wider scope would be of significant interest. 

As shown in earlier chapters, the cyclometalated Cp*Ir(III) imino complexes are 

excellent catalysts for reductive amination and for ketones and N-heterocycles 

reduction.
[11] 

They readily form hydrides under H2 pressure or when treated with 

formate, and can release H2 with the aid of an acid. Inspired by the work of Fujita 

and Yamaguchi, we envisioned that when reacted with an amine, complex C could 

undergo β-hydrogen elimination, thus generating an imino bond and H2 upon 

protonation (Scheme 5.5). However, C differs from Fujita-Yamaguchi catalyst (1a) 

not only structurally but also probably mechanistically if it catalyses the 

dehydrogenation. Containing no bifunctional ligand, the hydride generated from C 
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can only be protonated intermolecularly. In contrast, 1a operates by ligand-promoted 

dehydrogenation.
[12,13]

  

 

Scheme 5.5: Cyclometalated Cp*Ir(III) imino complexes and hypothesised dehydrogenation of N-

-heterocycles. 

Following the success of Cp*Ir(III) imino complexes in hydrogenation reactions as 

demonstrated in earlier chapters, it would be interesting to test if the same complexes 

could be exploited for the CDH (Scheme 5.5). This chapter reports that such 

complexes are indeed capable of dehydrogenating not only tetrahydroquinolines but 

other N-heterocycles as well.
[14]

 These results further demonstrate the versatility of 

Cp*Ir(III) imino complexes in both hydrogenation and dehydrogenation reactions. 
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5.2 Results and discussion 

5.2.1 Optimisation of reaction conditions 

2-Methyl-1,2,3,4-tetrahydroquinoline (2a) was chosen as a model substrate for the 

optimisation. As expected, in the absence of a catalyst, formation of 2-methyl-

quinoline (3a) was not detected in 2,2,2-trifluoro-ethanol (TFE; bp 78 °C) after 2 h 

at reflux (Table 5.1, entry 1). After screening a variety of precatalysts and solvents 

(Table 5.1, entries 2-19), we were pleased to observe that complex C11, which bears 

electron-donating OMe groups efficiently catalysed the CDH of 2a in TFE 

furnishing 88% conversion in 2 h. Full conversion, along with release of H2, was 

reached with 0.1 mol% catalyst overnight (Table 5.1, entry 7). Formation of H2 was 

confirmed by GC analysis and quantified with the water displacement method (vide 

infra). Other complexes and solvents were less effective.  

TFE appears to play multiple roles in the CDH. It may promote the dissociation of 

chlorine from the catalyst and hence the coordination of 2a to C11 before CDH takes 

place (Scheme 5.6). In support of this view, addition of a chloride salt inhibits the 

CDH (Table 5.1, entry 20). However, adding a silver or sodium salt did not improve 

the reactivity of C11 when the reaction was carried out in toluene (Table 5.1, entries 

21-22). It was noted that strong reflux is necessary for higher conversions, and 

remarkably, when nitrogen was bubbled through the solution, the CDH occurred 

even at room temperature, thus affording 52% conversion overnight. These 

observations indicate that the CDH is rate-limited by the step of dihydrogen 

formation,
[12]

 which is probably facilitated by TFE through protonation of the 

intermediate hydride (Scheme 5.7).
[15]
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Scheme 5.6: TFE promoted dissociation of chlorine from the catalyst.  

 

Scheme 5.7: TFE facilitated dihydrogen formation. 

Consistent with this, the CDH became progressively slower when alcohols of lower 

acidity were used, for example, TFE (pKa 12.5) versus 2,2-difluoro-ethanol (DFE; 

pKa 13.1), and ethanol (pKa 15.8; Table 5.1, entries 7, 10 and 11). Thus, CDH by 

C11 appears mechanistically distinct from that by the Fujita-Yamaguchi catalyst 

(1a). To further demonstrate that the high activity of this CDH results from the 

combination of C11 and TFE, that is, a solvent-assisted CDH, C11 was compared 

with 1a. Under the conditions of Table 5.1, the later afforded less than 2% 

conversion (Table 5.1, entry 23). In contrast, the conversion was less than 1% with 

the former but 77% with the latter under Fujita’s conditions (2 mol%, p-xylene, 

reflux, 20 h). 
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Table 5.1: Optimising reaction conditions for the CDH 

 

Entry
[a]

 Catalyst Additive Solvent Conv. (%)
[b]

 

1
[c]

 none - TFE n.r. 

2 [Cp*IrCl2]2 - TFE 3 

3 IrCl3.3H2O - TFE <1 

4 C8 - TFE 42 

5 C13 - TFE 74 

6 C1 - TFE 25 

7
[d]

 C11 - TFE 88 

8 C9 - TFE 29 

9 C12 - TFE 72 

10 C11 - DFE 23 

11 C11 - EtOH 4 

12 C11 - 
i
PrOH <1 

13 C11 - MeOH 14 

14 C11 - H2O 3 

15
[c]

 C11 - THF n.r. 

16
[c]

 C11 - DMF n.r. 

17 C11 - MeCN <1 

18
[c]

 C11 - toluene n.r. 

19
[e]

 C11 - p-xylene <1 

20
[f]

 C11 TBAC TFE 56 

21 C11 AgBF4 toluene 6 

22
[c]

 C11 NaBF4 toluene n.r. 

23 1a - TFE 2 

24
 [g]

 1a - p-xylene 77 

[a] Reaction conditions: 2a (0.5 mmol) and catalyst (1 mol%) in solvent (3 mL) stirred at reflux under 

nitrogen for 2 h; 1 mol% additive when used. [b] Determined by 
1
H-NMR spectroscopy. [c]

 
No 

reaction observed. [d] Full conversion with 0.1 mol% C11 overnight. [e] 2a (1.0 mmol) and catalyst 

(2 mol%), reflux, 20h. [f] 20 mol% TBAC used. [g] 2 mol% 1a used. Cp* = C5Me5, DFE = 

difluoroethanol, n.r. = no reaction, TBAC = tetrabutylammonium chloride.  
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5.2.2 CDH of tetrahydroquinolines 

With the C11/TFE catalytic system in hand, a variety of tetrahydroquinolines (2) 

were subjected to the CDH (Table 5.2). These were dehydrogenated to give 

quinolines in good to excellent yields with 0.1 mol% of C11. Slightly lower yields 

were obtained with the nonsubstituted 1,2,3,4-tetrahydroquinoline (2b) and 3-

methyl-1,2,3,4-tetrahydroquinoline (2c), even at a higher catalyst loading of 1 mol% 

(Table 5.2, entries 2 and 3).
[16]

 All the 6-substituted substrates afforded the 

corresponding products in high yields (Table 5.2, entries 5-8), regardless of the 

nature of the substituent. The less basic 2j was also dehydrogenated in excellent 

yield (Table 5.2, entry 10). The acridine 3k and the 1,2,3,4-tetrahydro variant 3l, 

used as antitumor drugs and an analogue of acetylcholinesterase inhibitor,
[17]

 were 

obtained from 2k and 2l, respectively, in excellent yields (Table 5.2, entries 11 and 

12). Notably, the 2,2’-biquinoline 3m, a well-known diamine ligand, was generated 

along with liberation of 4 equivalents of H2 from the octahydro form 2m (Table 5.2, 

entry 13). The catalyst is chemoselective, as seen in the CDH of 2i bearing a primary 

alcohol group, affording 3i with exclusive dehydrogenation selectivity towards the 

N-heterocyclic ring (Table 5.2, entry 9). 
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Table 5.2: CDH of tetrahydroquinolines 

 
Entry

[a]
 Substrate  Product  yield (%)

[b]
 

1 
 

2a 
 

3a 95 

2
[c]

 
 

2b 
 

3b 87 

3
[c]

 
 

2c 
 

3c 72 

4 
 

2d 
 

3d 87 

5 
 

2e 
 

3e 94 

6 
 

2f 
 

3f 97 

7 
 

2g 
 

3g 93 

8 
 

2h 
 

3h 94 

9 
 

2i 
 

3i 81 

10 
 

2j 
 

3j 92 

11 
 

2k 
 

3k 92 

12 
 

2l 
 

3l 88 

13
[c]

 
 

2m 
 

3m 81 

[a] Reaction conditions: 2 (0.5 mmol) and C11 (0.1 mol%) in TFE (3 mL) stirred at reflux under 

nitrogen for 20 h. [b] Yield of isolated product. [c] Used 1 mol% C11. 
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5.2.3 CDH of tetrahydroisoquinolines and tetrahydro-β-carbolines  

Isoquinolines and β-carbolines have broad pharmaceutical applications.
[18]

 They can 

be obtained by traditional oxidation of the easily accessible tetrahydro or 3,4-dihydro 

analogs.
[19]

 Following the CDH of 2, tetrahydroisoquinolines and 

tetrahydro-β-carbolines (4) were examined. These substrates are challenging to fully 

dehydrogenate, because of their tendency to form stable imine intermediates.
[20] 

Table 5.3 shows that 4 can be dehydrogenated to isoquinolines (5) in good to 

excellent yields in general at a 0.1 mol% catalyst loading (entries 1-8). Among the 

substrates examined, only the nonsubstituted 4a and sterically demanding 4e 

necessitated a higher catalyst loading of 1 mol%. In the case of the former, 5a was 

obtained in only 30% yield. Worth noting is that the tetrahydroharman 4i was fully 

dehydrogenated to give the aribine 5i, an important β-carboline alkaloid (Table 5.3, 

entry 9), and 4j was converted into 5j in high yield (Table 5.3, entry 10). 
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Table 5.3: CDH of tetrahydroisoquinolines and tetrahydro-β-carbolines 

 

Entry
[a]

 Substrate  Product  yield (%)
[b]

 

1
[c,d]

 
 

4a 
 

5a 30 

2 
 

4b 
 

5b 90 

3 
 

4c 
 

5c 92 

4 
 

4d 
 

5d 93 

5
[c]

 
 

4e 
 

5e 82 

6 
 

4f 
 

5f 95 

7 
 

4g 
 

5g 93 

8 
 

4h 
 

5h 96 

9
[c]

 
 

4i 
 

5i 93 

10 
 

4j 
 

5j 95 

[a] Reaction conditions: 4 (0.5 mmol) and C11 (0.1 mol%) in TFE (3 mL) stirred at reflux under 

nitrogen for 20 h. [b] Yield of isolated product. [c] Used 1 mol% C11. [d] Yield as determined by 
1
H-

NMR spectroscopy. 
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5.2.4 CDH of 3,4-dihydroisoquinolines 

The CDH of 3,4-dihydroisoquinolines (6), which can be produced by the classical 

Bischler-Napieralski reaction, were targeted next (Table 5.4).
[21]

 Although high 

yields were achieved, surprisingly a high catalyst loading (1 mol%) was required 

(Table 5.4, entries 1-6). Under the reaction conditions used for 1,2,3,4-

tetrahydroisoquinolines 4 (Table 5.3), CDH of 6 was hardly detectable, thus 

suggesting that the CDH of 4 does not proceed via the intermediacy of 6. 

Table 5.4: CDH of 3,4-dihydroisoquinolines 

 

Entry
[a]

 Substrate  Product  yield (%)
[b]

 

1 

 

6a 

 

5b 89 

2 

 

6b 

 

5c 92 

3 

 

6c 

 

5f 93 

4 

 

6d 

 

5g 94 

5 

 

6e 

 

5h 95 

6 

 

6f 

 

5i 81 

[a] Reaction conditions: 6 (0.5 mmol) and C11 (1 mol%) in TFE (3 mL) stirred at reflux under 

nitrogen for 20 h. [b] Yield of isolated product. 
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Apart from CDH, C11 also catalyses the hydrogenation of 6a into 4b with excellent 

conversion at 20 °C and 1 atm H2 pressure (Scheme 5.8). The highly stable 5b was 

hydrogenated as well, although more forcing reaction conditions were needed. 

Together with the results in Tables 5.3 and 5.4, these results weave a unique network 

which links the three forms of isoquinoline by hydrogenation and dehydrogenation 

using a single catalyst (C11; Scheme 5.8). 

 

Scheme 5.8: Hydrogenation/dehydrogenation-linked interchangeable transformations between 

isoquinoline and derivatives. 

5.2.5 CDH of indoline derivatives and tetrahydroquinoxalines 

Bearing in mind that there are diverse ways for the preparation of indolines,
[22] 

direct 

CDH adds a valuable alternative to the strategies of indole synthesis. Using C11, 

various indoline derivatives were dehydrogenated, affording indoles in excellent 

yields (Table 5.5). In particular, sterically demanding 2,3-dimethyl and 2-

phenylindolines were dehydrogenated to indoles in 96% yield (Table 5.5, entries 5 

and 7). However, as with 4a, the nonsubstituted 7a was more difficult to 

dehydrogenate (Table 5.5, entry 1). 
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Table 5.5: CDH of indoline derivatives 

 

Entry
[a]

 Substrate  Product  yield (%)
[b]

 

1
[c]

 

 

7a 

 

8a 91 

2 

 

7b 

 

8b 95 

3
[d]

 

 

7c 

 

8c 93 

4 

 

7d 

 

8d 90 

5 

 

7e 

 

8e 96 

6 

 

7f 

 

8f 98 

7 

 

7g 

 

8g 96 

[a] Reaction conditions: 7 (0.5 mmol) and C11 (0.1 mol%) in TFE (3 mL) stirred at reflux under 

nitrogen for 20 h. [b] Yield of isolated product. [c] Used 1 mol% C11. [d] Used 0.5 mol% C11. 

Traditional synthesis of quinoxalines makes use of reactions such as condensation 

and oxidative cyclisation.
[23]

 To the best of our knowledge CDH has not been 

employed for the synthesis of quinoxalines. We therefore investigated the 

dehydrogenation of tetrahydroquinoxalines (9; Table 5.6). The CDH worked, giving 

rise to good to excellent yields of the quinoxalines 10 with 0.1 mol% of C11. 

However, a higher catalyst loading was necessary for the sterically bulky 9d and 9e 

(Table 5.6, entries 4 and 5). 
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Table 5.6: CDH of tetrahydroquinoxalines 

 

Entry
[a]

 Substrate  Product  yield (%)
[b]

 

1 

 

9a 
 

10a 92 

2 

 

9b 
 

10b 79 

3 

 

9c 
 

10c 93 

4
[c]

 

 

9d 
 

10d 85 

5
[c]

 

 

9e 
 

10e 82 

6 

 

9f 
 

10f 62 

7 

 

9g 
 

10g 64 

[a] Reaction conditions: 9 (0.5 mmol) and C11 (0.1 mol%) in TFE (3 mL) stirred at reflux under 

nitrogen for 20 h. [b] Yield of isolated product. [c] Used 1 mol% C11. 

5.2.6 CDH in total synthesis of alkaloids 

To showcase the synthetic utility of the CDH, the protocol was applied to a rapid 

total synthesis of two well-known, naturally occurring alkaloids, papaverine and 

harmine. Papaverine is an opium alkaloid antispasmodic drug, clinically used for the 

treatment of vasospasm and occasionally for erectile dysfunction.
[24]

 Harmine is a 
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major β-carboline alkaloid found in pegunam harmala extract. It is an inhibitor of 

monoamine reuptake system and has also shown cytotoxic activities against a series 

of tumor cell lines.
[25]

 Our synthesis of papaverine started with the condensation of 

commercially available homoveratric acid and homoveratrylamine under 

microwave-assisted, neat conditions, thus generating the corresponding amide in 

almost quantitative yield (Scheme 5.9). The amide was then treated with POCl3 to 

furnish a cyclic imine by the Bischler-Napieralski reaction.
[21] 

The last step of the 

synthesis was accomplished by C11 catalysed CDH of the 3,4-dihydroisoquinoline. 

The three-step synthesis, employing commercially available materials with an 

overall yield of 78%, appears to offer a most efficient and economically sound 

method for this significant alkaloid.
[26]

 

 

Scheme 5.9: Synthesis of papaverine. 

Scheme 5.10 shows the synthesis of harmine starting with a Pictet-Spengler 

reaction
[21]

 of acetaldehyde with 6-methoxytryptamine. CDH of the resulting 

tetrahydroharmine by C11 afforded the target alkaloid, with an overall yield of 57%. 

In comparison with other known methods,
[27] 

this concise synthesis of harmine using 

commercially available materials is high-yielding and less wasteful under mild 

reaction conditions. 
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Scheme 5.10: Synthesis of harmine. 

5.2.7 Mechanistic considerations 

Preliminary mechanistic studies of CDH of 2-methyl-1,2,3,4-tetrahydroquinoline 

(2a) and 1-methyl-1,2,3,4-tetrahydroisoquinoline (4b) shed light on how these CDH 

reactions may take place. In the presence of C11 in TFE-d3, 2a undergoes rapid H-D 

exchange at the C2-position at room temperature. However, no other species were 

observed apart from 2a and trace amounts of 3a in the 
1
H NMR spectrum (Figure 

5.1). This suggests again that dehydrogenation, without releasing H2, is a fast 

process.

  

Figure 5.1: 
1
H NMR spectra recorded at 298 K: a) 2a (0.25 mmol, 37 mg) in TFE-d3 (0.8 mL); b) a) 

+ C11 (0.05 mmol), 3.5 min after addition; c) 20 min after addition of C11. c = catalyst, s = solvent, p 

= product. 
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Under the normal reflux conditions (Table 5.2), 3a was obtained with deuterium 

incorporation at the C3 and methyl position. To further confirm the deuteration, the 

dehydrogenation of 2f was carried out using TFE-d3 under reflux conditions for 20 h 

(whereby the Me of OMe at C6 could be used as an internal standard). 2f was 

converted to 3fd with partial deuteration (60%) at C3 and multiple deuterations (61% 

in total) at the R group (Scheme 5.11).  

 

Scheme 5.11: Dehydrogenation of 2f in TFE-d3. 

On this basis, CDH of 2a is suggested to proceed by the pathway shown in Scheme 

5.12. At low temperature, 2a is in equilibrium with 2a1, which is probably 

protonated by or hydrogen-bonded with the medium, and 2a2, with the equilibrium 

strongly favouring 2a. At high temperature 2a1 isomerises to 2a4 by acid catalysis, 

which hydrogenates 2a3, thus resulting in the formation of 3a and 2a. 

 

Scheme 5.12: Proposed pathway for the CDH of tetrahydroquinolines. 

When 4b was subjected to CDH with 0.1 mol% of C11 in refluxing TFE for a short 

time, both 6a and 5b were observed (Scheme 5.13, Eq. 1). However, 6a showed no 

observable CDH under these conditions (Eq. 2), although it gave 4b and 5b at 1 
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mol% of C11 (Eq. 3). In contrast, using of 0.1 mol% of C11 but in the presence of 

4c, 6a was converted into 4b and 5b (Eq. 4), thus showing that 6a can readily 

undergo CDH, probably by 4b, if a hydride donor such as 4c, is present.  

 

 

Scheme 5.13: Control experiments. 

These observations suggest that the CDH of 4b involves a pathway as shown in 

Scheme 5.14, where 4b can be dehydrogenated into either 6a or 4b1. But it is 4b1 

that gives rise to the product 5b. The formation of 5b from 6a proceeds by its first 

reduction to 4b. When 6a alone is dehydrogenated, it is likely to be reduced to 4b in 

the first place by TFE, a solvent of well-known to resistance to oxidation.
 
This 

explains why 6 is more difficult to dehydrogenate than 4.  
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Scheme 5.14: Proposed pathway for the CDH of tetrahydro- and dihydroisoquinolines. 

The hypothesis on TFE acting as a hydride donor finds support in the observation of 

Ir-H hydride resonance at δ -10.10 ppm in the 
1
H NMR spectrum when C11 was 

dissolved in TFE and heated to 60 °C for 1 h in a high pressure sapphire NMR tube. 

The formation of 2,2,2-trifluoroacetaldehyde was also observable at δ 9.66 ppm as a 

quartet (Figure 5.2). 

  

 

Figure 5.2: 
1
H NMR spectrum of TFE + C11 recorded at 60 °C after 1 h, showing the hydride and 

aldehydes region. Conditions: TFE (1 mL) + C11 (10 mg, 0.017 mmol). 

5.3 Conclusion 

In summary, this chapter demonstrates the development of a versatile catalytic 

system for the oxidant-free, acceptorless CDH of various benzo-fused 

N-heterocycles.
[14]

 The high activity and broad substrate scope of the catalytic 

system make the protocol a promising alternative for laboratory as well as industrial 
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applications, and this is reinforced by the ease of operation, atom economy and 

environmental benefits offered by CDH. 

5.4 Experimental 

5.4.1 General information 

Unless otherwise specified, reagents and solvents were purchased commercially and 

used as received. Substrates 2a, 2c, 2e, 2f, 2g, 2h, 2i, 2j, and 2l were prepared by the 

reduction of corresponding quinolines, and 9a, 9b, 9c, 9f, and 9g  by reduction of the 

corresponding quinoxalines.
[28]

 Substrate 2m was prepared by the hydrogenation of 

2,2’-biquinoline according to the literature method using Adam’s catalyst.
[29]

 

Substrates 7b and 7e were prepared by the hydrogenation of the corresponding 

indoles according to the literature method.
[30]

 7f was obtained from reduction by 

using sodium borocyanohydride,
[31]

 while 7g was synthesised through tin-mediated 

reduction of the corresponding indoles.
[32]

 9d and 9e were prepared by the reduction 

with sodium borohydride of the corresponding quinoxalines, which were prepared by 

the condensation of diamines with diketones or dialdehydes according to the 

literature methods.
[33,34]

 Dihydroisoquinolines were prepared by the Bischler-

Napieralski synthesis and were subsequently reduced to give their tetrahydro 

variants.
[28,34]

 NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer 

unless otherwise specified. Elemental analysis and mass spectrometry analysis were 

carried out at the Microanalysis Centre of University of Liverpool and the EPSRC 

National Mass Spectrometry Service Centre at Swansea University. 
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5.4.2 General procedure for the dehydrogenation of N-heterocyclic amines 

N-Heterocyclic amine (0.50 mmol) and C11 (0.31 mg, 5x10
-4

 mmol, measured using 

a stock TFE solution) were dissolved in TFE (3 mL) in a carousel reaction tube. The 

tube was then degassed and the reaction mixture was refluxed under N2 for 20 h.  It 

was then cooled to room temperature and the solvent was evaporated under vacuum. 

The resulting crude solid was purified using flash chromatography to give the 

corresponding product. All the dehydrogenation products are known, except 5g, and 

their NMR spectra were consistent with the literature.  

5.4.3 Typical procedure for the hydrogen evolution experiment 

A solution of 2-methyl-1,2,3,4-tetrahydroquinoline (0.5 mmol) in TFE (2 mL) was 

added to a thick walled glass vessel fitted with a side arm and a rubber septum which 

had been preheated to the appropriate temperature by means of an oil bath. The 

vessel was previously degassed three times and placed under an N2 atmosphere. The 

vessel was connected to the gas collection apparatus (standard water displacement 

apparatus, using a graduated cylinder to determine volume) and the entire system 

was flushed with N2 for 5 minutes and allowed to equilibrate for 5 minutes. A 

solution of the catalyst C11 (18.6 mg, 6 mol%) in TFE (1 mL) was added via syringe 

through the septum. Any small volume of gas collected resulting from addition of 

the catalyst solution was noted and subtracted from the values for gas collected. The 

reaction was stirred vigorously at a constant temperature until gas evolution ceased 

(2.5 h). The volume of collected gas was noted, supposing that all the gas consisted 

of hydrogen. The presence of hydrogen in the collected gas was confirmed by GC. 

After the reaction was complete, the solution was evaporated to give a crude product 
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which was analysed by 
1
H NMR, which confirmed full conversion of the 2-

methylquinoline product. 

The calculation of the volume of 1 mole of H2 at 25 °C was carried out using Van 

der Waals equation, as shown below: 

   
   

             

Where; 

R: 8.3145 m³ Pa mol
-1

 K
-1  

T: 298.15 K  p: 101,325 Pa (1 atm) 

a: 0.002476 m
6
·Pa·mol

-2
   b: 0.02661x10

-3
 m

3
·mol

-1 

  Thus, V (H2, 25 °C, 1 atm) = 24.49 L·mol
-1 

  

The collected volume of gas in the experiment above was 24.2 mL, which 

corresponds to 0.98 mmol of H2. Since the dehydrogenation is 0.5 mmol in scale, 

this is consistent with the release of 2 equivalents of H2 per mole of 2-methyl-

1,2,3,4-tetrahydroquinoline. 

5.4.4 Data for the quinolines  

 

2-Methylquinoline (3a):
[35]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.02 (d, J = 

8.4 Hz, 2H), 7.75 (dd, J = 8.2, 1.0 Hz, 1H), 7.67 (ddd, J = 8.6, 6.8, 1.6 Hz, 1H), 7.46 

(ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 159.4, 148.3, 136.6, 129.8, 129.0, 127.9, 126.9, 

126.1, 122.4, 25.8. MS (CI) for C10H10N [M+H]
+
: m/z 144.2. 
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Quinoline (3b):
[36]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.92 (dd, J = 4.2, 

1.7 Hz, 1H), 8.13 (t, J = 9.3 Hz, 2H), 7.81 (d, J = 8.1 Hz, 1H), 7.71 (ddd, J = 8.4, 7.0, 

1.4 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.38 (dd, J = 8.1, 4.2 Hz, 1H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 150.8, 148.7, 136.4, 129.9, 129.8, 128.7, 128.2, 

126.9, 121.5. Anal. calc. for C9H7N (%): C, 83.69; H, 5.46; N, 10.84. Found: C, 

83.60; H, 5.42; N, 10.77. MS (CI) for C9H8N [M+H]
+
: m/z 130.2. 

 

3-Methylquinoline (3c):
[36]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.78 (d, J = 

2.1 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.93 (s, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.65 

(ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.54-7.50 (m, 1H), 2.53 (s, 3H). 
13

C NMR (CDCl3, 

100 MHz, 300 K) δ (ppm): 152.3, 146.9, 135.1, 130.9, 129.5, 128.9, 128.5, 127.5, 

127.0, 19.2. Anal. calc. for C10H9N (%): C, 83.88; H, 6.34; N, 9.78. Found: C, 83.74; 

H, 6.58; N, 9.91. MS (CI) for C10H10N [M+H]
+
: m/z 144.0. 

 

4-Methylquinoline (3d):
[37]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.76 (d, J = 

4.4 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.96 (dd, J = 8.4, 1.6 Hz, 1H), 7.69 (ddd, J = 

8.4, 6.8, 1.6 Hz, 1H), 7.54 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H),  7.19 (dd, J = 4.4, 0.8 Hz, 

1H), 2.67 (J = 0.8 Hz, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 150.6, 

148.4, 144.6, 130.4, 129.5, 128.7, 126.7, 124.2, 122.2, 19.0. Anal. calc. for C10H9N 

(%): C, 83.88; H, 6.34; N, 9.78. Found: C, 84.28; H, 6.57; N, 9.89. MS (CI) for 

C10H10N [M+H]
+
: m/z 144.2. 

 

2,6-Dimethylquinoline (3e):
[38]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.94 

(d, J = 8.6 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.55-7.47 (m, 2H), 7.24 (d, J = 8.3 Hz, 

1H), 2.72 (s, 3H), 2.51 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 158.4, 

146.9, 135.9, 135.8, 132.0, 128.7, 126.9, 126.8, 122.3, 25.7, 21.9. Anal. calc. for 
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C11H11N (%): C, 84.04; H, 7.05; N, 8.91. Found: C, 83.81; H, 7.08; N, 8.87. MS (CI) 

for C11H12N [M+H]
+
: m/z 158.1. 

 

6-Methoxy-2-methylquinoline (3f):
[36]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.92 (t, J = 8.2 Hz, 2H), 7.33 (dd, J = 9.2, 2.8 Hz, 1H), 7.23 (d, J = 8.5 Hz, 1H), 7.04 

(d, J = 2.8 Hz, 1H), 3.91 (s, 3H), 2.70 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 157.6, 156.7, 144.3, 135.4, 130.4, 127.7, 122.6, 122.2, 105.6, 55.9, 25.4. 

Anal. calc. for C11H11NO (%): C, 76.28; H, 6.40; N, 8.09. Found: C, 76.23; H, 6.46; 

N, 8.12. MS (CI) for C11H12NO [M+H]
+
: m/z 174.2. 

 

6-Fluoro-2-methylquinoline (3g):
[39]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

8.02-7.98 (m, 2H), 7.45 (td, J = 8.8, 2.8 Hz, 1H), 7.38 (dd, J = 8.9, 2.8 Hz, 1H), 7.30 

(d, J = 8.3 Hz, 1H), 2.73 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 

160.1 (d, JCF = 246.7), 158.7 (d, JCF = 2.7 Hz), 145.3, 135.9 (d, JCF = 5.2 Hz), 131.4 

(d, JCF = 9.5 Hz), 127.4 (d, JCF = 9.8 Hz), 123.1, 119.9 (d, JCF = 26.1 Hz) 110.9 (d, 

JCF = 22.1 Hz), 25.6. MS (CI) for C10H8FN [M+H]
+
: m/z 162.1. HRMS for C10H9FN 

[M+H]
+
: m/z calc., 162.0714; found, 162.0713. 

 

6-Chloro-2-methylquinoline (3h):
[40]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.96 (dd, J = 8.6, 4.0 Hz, 2H), 7.75 (d, J = 2.3 Hz, 1H), 7.61 (dd, J = 9.0, 2.3 Hz, 

1H), 7.31 (d, J = 8.4 Hz, 1H), 2.74 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 159.8, 146.7, 135.6, 131.7, 130.7, 130.6, 127.5, 126.6, 123.3, 25.7. Anal. 

calc. for C10H8ClN (%): C, 67.62; H, 4.54; N, 7.89. Found: C, 67.40; H, 4.25; N, 

7.91. MS (CI) for C10H9ClN [M+H]
+
: m/z 178.2. 

 

Quinolin-2-ylmethanol (3i):
[41]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.15 

(d, J = 8.8 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.74 (ddd, J = 
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8.0, 6.8, 1.2 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 4.93 (s, 2H), 

4.57 (br, 1H),. 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 159.3, 147.1, 137.3, 

130.2, 129.0, 128.1, 128.0, 126.8, 118.7, 64.5. Anal. calc. for C10H9NO (%): C, 

75.45; H, 5.70; N, 8.80. Found: C, 74.99; H, 5.71; N, 8.60. MS (CI) for C10H10NO 

[M+H]
+
: m/z 160.2. 

 

2-Phenylquinoline (3j):
[42]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.29-8.12 

(m, 4H), 7.88 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H) 7.78-7.69 (m, 1H), 7.58-

7.44 (m, 4H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 157.8, 148.7, 140.1, 

137.2, 130.2, 130.1, 129.7, 129.3, 128.0, 127.9, 127.6, 126.7, 119.4. Anal. calc. for 

C15H11N (%): C, 87.77; H, 5.40; N, 6.82. Found: C, 87.56; H, 5.26; N, 6.62. MS (CI) 

for C15H12N [M+H]
+
: m/z 206.1.  

 

Acridine (3k):
[43]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.79 (s, 1H), 8.25 (d, 

J = 8.8 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H), 7.80 (ddd, J = 8.4, 6.8, 1.6 Hz, 2H), 7.55 (t, 

J = 7.2 Hz, 2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 149.5, 136.3, 130.8, 

129.8, 128.6, 127.0, 126.1. Anal. calc. for C13H9N (%): C, 87.12; H, 5.06; N, 7.82. 

Found: C, 86.24; H, 4.97; N, 7.72. MS (CI) for C13H10N [M+H]
+
: m/z 180.2. 

 

1,2,3,4-Tetrahydroacridine (3l):
[44]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.98 (d, J = 8.4 Hz, 1H), 7.81 (s, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.61 (ddd, J = 8.4, 

7.0, 1.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 3.14 (t, J = 6.4 Hz, 2H), 2.98 (t, J = 6.4 Hz, 

2H), 2.03-1.96 (m, 2H), 1.95-1.87 (m, 2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 159.7, 147.0, 135.4, 131.4, 128.9, 128.7, 127.6, 127.3, 126.0, 34.0, 29.7, 

23.7, 23.3. Anal. calc. for C13H13N (%): C, 85.21; H, 7.15; N, 7.64. Found: C, 84.84; 

H, 7.18; N, 7.51. MS (CI) for C13H14N [M+H]
+
: m/z 184.2. 
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2,2'-Biquinoline (3m):
[45]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.85 (d, J = 

8.6 Hz, 2H), 8.32 (d, J = 8.6 Hz, 2H), 8.23 (d, J = 8.5 Hz, 2H), 7.88 (dd, J = 8.1, 1.2 

Hz, 2H), 7.75 (ddd, J = 8.5, 6.9, 1.5 Hz, 2H), 7.57 (ddd, J = 8.1, 6.9, 1.2 Hz, 2H). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 156.7, 148.4, 137.1, 130.4, 129.9, 128.9, 

128.1, 127.4, 119.9. Anal. calc. for C18H12N2 (%): C, 84.35; H, 4.72; N, 10.93. 

Found: C, 84.16; H, 4.61; N, 10.89. MS (CI) for C18H13N2 [M+H]
+
: m/z 257.2. 

5.4.5 Data for the isoquinolines 

 

1-Methylisoquinoline (5b):
[46]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.39 (d, 

J = 5.7 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.67 (ddd, J = 8.1, 

6.9, 1.2 Hz, 1H), 7.59 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.51 (d, J = 5.8 Hz, 1H), 2.97 

(s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 159.0, 142.2, 136.3, 130.3, 

127.9, 127.6, 127.4, 126.0, 119.7, 22.8. Anal. calc. for C10H9N (%): C, 83.88; H, 

6.34; N, 9.78. Found: C, 83.46; H, 6.52; N, 9.54. MS (CI) for C10H10N [M+H]
+
: m/z 

144.2. 

 

1-Isopropylisoquinoline (5c):
[47]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.49 

(d, J = 5.6 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.65 (ddd, J = 

8.0, 6.8, 1.2 Hz, 1H), 7.58 (ddd, J = 8.4, 6.8, 1.2 Hz, 1H), 7.48 (d, J = 5.6 Hz, 1H), 

3.96 (septet, J = 6.8 Hz, 1H), 1.45 (d, J = 6.4 Hz, 6H). 
13

C NMR (CDCl3, 100 MHz, 

300 K) δ (ppm): 166.7, 142.3, 136.8, 129.9, 127.9, 127.2, 126.7, 125.2, 119.4, 31.4, 

22.6. Anal. calc. for C12H13N (%): C, 84.17; H, 7.65; N, 8.18. Found: C, 84.41; H, 

7.84; N, 8.10. MS (CI) for C12H14N [M+H]
+
: m/z 172.2. 
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3-Methylisoquinoline (5d):
[48]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 9.19 (s, 

1H), 7.93 (d, J = 8.1 Hz, 1H), 7.73 (d, J = 8.2 Hz, 1H), 7.66-7.62 (m, 1H), 7.54-7.48 

(m, 2H), 2.71 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 152.4, 152.0, 

137.0, 130.7, 127.9, 127.2, 126.7, 126.3, 118.9, 24.6. Anal. calc. for C10H9N (%): C, 

83.88; H, 6.34; N, 9.78. Found: C, 84.00; H, 6.33; N, 9.70. MS (CI) for C10H10N 

[M+H]
+
: m/z 144.0. 

 

1-(tert-Butyl)isoquinoline (5e):
[49]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

8.53 (d, J = 8.8 Hz, 1H), 8.44 (d, J = 5.6 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.62 (ddd, 

J = 8.0, 6.8, 1.2 Hz, 1H), 7.54 (ddd, J = 8.4, 6.8, 1.6 Hz, 1H), 7.50 (d, J = 5.6 Hz, 

1H), 1.67 (s, 9H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 167.8, 141.0, 137.8, 

129.2, 128.7, 127.7, 126.6, 126.1, 120.2, 40.3, 31.6. Anal. calc. for C13H15N (%): C, 

84.28; H, 8.16; N, 7.56. Found: C, 84.87; H, 8.14; N, 7.29. MS (CI) for C13H16N 

[M+H]
+
: m/z 186.2. 

 

1-Cyclohexylisoquinoline (5f):
[50]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.47 

(d, J = 5.6 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.64 (ddd, J = 

8.0, 6.8, 1.2 Hz, 1H), 7.58 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.47 (d, J = 5.6 Hz, 1H), 

3.56 (tt, J = 11.6, 3.2 Hz, 1H), 2.01-1.76 (m, 7H), 1.60-1.34 (m, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 166.1, 142.4, 136.8, 129.9, 127.9, 127.2, 126.7, 

125.1, 119.3, 42.0, 33.0, 27.3, 26.7. Anal. calc. for C15H17N (%): C, 85.26; H, 8.11; 

N, 6.63. Found: C, 85.94; H, 8.37; N, 6.63. MS (CI) for C15H18N [M+H]
+
: m/z 

212.4. 
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1-Cyclohexyl-6,7-dimethoxyisoquinoline (5g): 
1
H NMR (CDCl3, 400 MHz, 300 K) 

δ (ppm): 8.36 (d, J = 5.6 Hz, 1H), 7.40 (s, 1H), 7.34 (d, J = 5.6 Hz, 1H), 7.06 (s, 1H), 

4.05 (s, 3H), 4.02 (s, 3H), 3.39 (tt, J = 11.4, 3.1 Hz, 1H), 2.10-1.22 (m, 10H). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 163.6, 152.7, 150.2, 141.5, 133.6, 122.3, 

118.1, 106.0, 103.6, 56.4, 42.2, 32.8, 27.3, 26.7. Anal. calc. for C17H21NO2 (%): C, 

75.25; H, 7.80; N, 5.16. Found: C, 75.00; H, 7.98; N, 5.06. MS (CI) for C17H22NO2 

[M+H]
+
: m/z 272.4. 

 

6,7-Dimethoxy-1-phenylisoquinoline (5h):
[51]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 8.48 (d, J = 5.6 Hz, 1H), 7.71 (dd, J = 6.8, 1.6 Hz, 2H), 7.55-7.46 (m, 4H), 

7.38 (s, 1H), 7.13 (s, 1H), 4.05 (s, 3H), 3.86 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 

300 K) δ (ppm): 158.7, 153.1, 150.4, 141.8, 140.5, 134.2, 130.0, 128.8, 122.9, 119.1, 

106.0, 105.4, 56.5, 56.3. Anal. calc. for C17H15NO2 (%): C, 76.96; H, 5.70; N, 5.28. 

Found: C, 76.28; H, 5.72; N, 5.18. MS (CI) for C17H16NO2 [M+H]
+
: m/z 266.3. 

 

1-Methyl-9H-pyrido[3,4-b]indole (5i):
[52]

 
1
H NMR (d

6
-Acetone, 400 MHz, 300 K) δ 

(ppm): 10.69 (bs, 1H), 8.27 (d, J = 5.2 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 

5.2 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.52 (ddd, J = 8.2, 7.2, 1.0 Hz, 1H), 7.25 (ddd, 

J = 8.0, 7.0, 1.0 Hz, 1H), 2.79 (s, 3H). 
13

C NMR (d
6
-Acetone, 400 MHz, 300 K) δ 

(ppm): 143.5, 141.9, 139.4, 136.1, 129.1, 128.8, 123.1, 122.8, 120.7, 113.7, 113.1, 

21.0. MS (CI) for C12H11N2 [M+H]
+
: m/z 183.3. 

 

1-Phenyl-9H-pyrido[3,4-b]indole (5j):
[52]

 
1
H NMR (d

6
-DMSO, 400 MHz, 300 K) δ 

(ppm): 11.60 (s, 1H), 8.47 (d, J = 5.2 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 8.13 (d, J = 
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5.2 Hz, 1H), 8.06-8.03 (m, 2H), 7.67-7.51 (m, 5H),  7.27 (ddd, J = 8.0, 7.0, 1.0 Hz, 

1H). 
13

C NMR (d
6
-DMSO, 400 MHz, 300 K) δ (ppm): 142.5, 141.5, 138.8, 133.4, 

129.5, 129.1, 128.9, 128.7, 128.5, 122.0, 121.2, 119.9, 114.3, 112.8. MS (CI) for 

C17H13N2 [M+H]
+
: m/z 245.3. 

5.4.5 Data for the indoles 

 

1H-indole (8a):
[53]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.1(bs, 1H), 7.65 

(dd, J = 7.9, 0.7 Hz, 1H), 7.40 (dd, J = 8.1, 0.8 Hz, 1H), 7.23-7.17 (m, 2H), 7.15-7.09 

(m, 1H), 6.58-6.54 (m, 1H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 136.2, 

128.3, 124.6, 122.4, 121.2, 120.3, 111.5, 103.0. Anal. calc. for C8H7N (%): C, 82.02; 

H, 6.02; N, 11.96. Found: C, 81.82; H, 6.00; N, 11.91. MS (CI) for C8H8N [M+H]
+
: 

m/z 118.0. 

 

5-Methoxy-1H-indole (8b):
[53]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.09 

(bs, 1H), 7.31 (d, J = 8.8 Hz, 1H), 7.20 (t, J = 2.8 Hz, 1H), 7.16 (d, J = 2.4 Hz, 1H), 

6.92 (dd, J = 8.8, 2.5 Hz, 1H), 6.54-6.51 (m, 1H), 3.90 (s, 3H). 
13

C NMR (CDCl3, 

100 MHz, 300 K) δ (ppm): 154.6, 131.4, 128.7, 125.3, 112.8, 112.2, 102.8, 102.7, 

56.3. Anal. calc. for C9H9NO (%): C, 73.45; H, 6.16; N, 9.52. Found: C, 73.35; H, 

6.17; N, 9.57. MS (CI) for C9H10NO [M+H]
+
: m/z 148.2. 

 

5-Chloro-1H-indole (8c):
[54]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.15 (bs, 

1H), 7.61 (d, J = 2.1 Hz, 1H), 7.30 (d, J = 8.7 Hz, 1H), 7.22 (t, J = 2.8 Hz, 1H), 7.14 

(dd, J = 8.6, 2.0 Hz, 1H), 6.51-6.48 (m, 1H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 134.5, 129.4, 125.9, 125.8, 122.7, 120.5, 112.4, 102.9. Anal. calc. for 

C8H6ClN (%): C, 63.38; H, 3.99; N, 9.24. Found: C, 63.55; H, 3.89; N, 9.24. MS 

(CI) for C8H7ClN [M+H]
+
: m/z 151.9. 
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2-Methyl-1H-indole (8d):
[55]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.61(bs, 

1H), 7.50 (d, J = 7.5 Hz, 1H), 7.22-7.17 (m, 1H), 7.12-7.03 (m, 2H), 6.19 (s, 1H), 

2.35 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 136.5, 135.6, 129.5, 

121.4, 120.1, 110.7, 100.8, 14.1. Anal. calc. for C9H9N (%): C, 82.41; H, 6.92; N, 

10.68. Found: C, 82.10; H, 6.73; N, 10.49. MS (CI) for C9H10N [M+H]
+
: m/z 132.1. 

 

2,3-Dimethyl-1H-indole (8e):
[56]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.62 

(bs, 1H), 7.55 (d, J = 6.9 Hz, 1H), 7.28 (dd, J = 6.7, 1.8 Hz, 1H), 7.22-7.13 (m, 2H), 

2.39 (s, 3H), 2.30 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 135.6, 

131.1, 129.9, 121.3, 119.4, 118.4, 110.5, 107.5, 11.9, 8.9. Anal. calc. for C10H11N 

(%): C, 82.72; H, 7.64; N, 9.65. Found: C, 82.58; H, 7.63; N, 9.64. MS (CI) for 

C10H12N [M+H]
+
: m/z 146.2.  

 

3-Methyl-1H-indole (8f):
[57]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.72 (bs, 

1H), 7.58 (d, J = 6.8 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.18 (t, J = 7.0 Hz, 1H), 7.12 

(t, J = 6.8 Hz, 1H), 6.90 (s, 1H), 2.32 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ 

(ppm): 136.7, 128.7, 122.3, 122.1, 119.6, 119.3, 112.1, 111.4, 10.1. Anal. calc. for 

C9H9N (%): C, 82.41; H, 6.92; N, 10.68. Found: C, 82.45; H, 6.91; N, 10.64. MS 

(CI) for C9H10N [M+H]
+
: m/z 132.1. 

 

2-Phenyl-1H-indole (8g):
[58]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.36 (bs, 

1H), 7.68 (dd, J = 8.2, 1.0 Hz, 3H), 7.47 (t, J = 7.6 Hz, 2H), 7.42 (d, J = 8.0 Hz, 1H), 

7.35 (t, J = 8.0 Hz, 1H), 7.24 (td, J = 7.2, 1.2 Hz, 1H), 7.18 (td, J = 7.4, 0.8 Hz, 1H), 

6.87 (d, J = 1.2 Hz, 1H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 138.3, 137.2, 

132.8, 129.7, 129.5, 128.2, 125.6, 122.8, 121.1, 120.7, 111.4, 100.4. Anal. calc. for 
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C14H11N (%): C, 87.01; H, 5.74; N, 7.25. Found: C, 86.90; H, 5.73; N, 7.21. MS (CI) 

for C14H12N [M+H]
+
: m/z 194.3. 

5.4.6 Data for the quinoxalines 

 

2-Methylquinoxaline (10a):
[59]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.73 (s, 

1H), 8.06 (dd, J = 8.1, 1.5 Hz, 1H), 8.00 (dd, J = 8.2, 1.4 Hz, 1H), 7.75-7.67 (m, 2H), 

2.77 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 156.2, 148.5, 144.5, 

143.4, 132.5, 131.6, 131.4, 131.1, 25.1. Anal. calc. for C9H8N2 (%): C, 74.98; H, 

5.59; N, 19.43. Found: C, 75.04; H, 5.58; N, 19.29. MS (CI) for C9H9N2 [M+H]
+
: 

m/z 145.0. 

 

2-Phenylquinoxaline (10b):
[60]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 9.35 (s, 

1H), 8.22-8.13 (m, 4H), 7.83-7.75 (m, 2H), 7.61-7.52 (m, 3H). 
13

C NMR (CDCl3, 

100 MHz, 300 K) δ (ppm): 152.3, 143.8, 142.7, 142.0, 137.2, 130.8, 130.6, 130.05, 

130.01, 129.6, 129.5, 128.0. Anal. calc. for C14H10N2 (%): C, 81.53; H, 4.89; N, 

13.58. Found: C, 80.88; H, 4.98; N, 13.24. MS (CI) for C14H11N2 [M+H]
+
: m/z 

207.2. 

 

2,3-Dimethylquinoxaline (10c):
[61]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

7.99 (dd, J = 6.3, 3.5 Hz, 2H), 7.67 (dd, J = 6.4, 3.5 Hz, 2H), 2.74 (s, 6H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 153.9, 141.5, 129.2, 128.7, 23.6. Anal. calc. for 

C10H10N2 (%): C, 75.92; H, 6.37; N, 17.71. Found: C, 75.97; H, 6.25; N, 17.77. MS 

(CI) for C10H11N2 [M+H]
+
: m/z 159.1. 

 

2-Methyl-3-phenylquinoxaline (10d):
[61]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 8.15-8.12 (m, 1H), 8.09-8.06 (m, 1H), 7.78-7.71 (m, 2H), 7.69-7.66 (m, 2H), 
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7.57-7.48 (m, 3H), 2.80 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 

155.3, 152.9, 141.6, 141.4, 139.4, 130.2, 129.7, 129.6, 129.4, 129.3, 129.0, 128.7, 

24.8. Anal. calc. for C15H12N2 (%): C, 81.79; H, 5.49; N, 12.72. Found: C, 81.42; H, 

5.68; N, 12.62. MS (CI) for C15H13N2 [M+H]
+
: m/z 221.1. 

 

2,3-Diphenylquinoxaline (10e):
[62]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 

8.23-8.20 (m, 2H), 7.82-7.78 (m, 2H), 7.57-7.54 (m, 4H), 7.41-7.34 (m, 6H), 2.62 (s, 

3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 153.9, 141.6, 139.5, 130.4, 

130.3, 129.6, 129.2, 128.7. Anal. calc. for C20H14N2 (%): C, 85.08; H, 5.00; N, 9.92. 

Found: C, 84.68; H, 5.00; N, 9.83. MS (CI) for C20H15N2 [M+H]
+
: m/z 283.1. 

 

5-Methylquinoxaline (10f):
[63]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.87 

(dd, J = 6.7, 1.7 Hz, 2H), 7.98 (d, J = 8.4 Hz, 1H), 7.71-7.63 (m, 2H), 2.83 (s, 3H). 

13
C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 145.0, 144.1, 143.6, 142.7, 138.1, 

130.5, 130.3, 127.8, 17.8. Anal. calc. for C9H8N2 (%): C, 74.98; H, 5.59; N, 19.43. 

Found: C, 74.49; H, 5.68; N, 19.13. MS (CI) for C9H9N2 [M+H]
+
: m/z 145.2. 

 

6-Methylquinoxaline (10g):
[64]

 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.81 

(d, J = 8.3 Hz, 2H), 8.01 (d, J = 8.6 Hz, 1H), 7.89 (s, 1H), 7.63 (dd, J = 8.6, 1.6 Hz, 

1H), 2.62 (s, 3H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 145.3, 144.5, 143.5, 

141.9, 141.1, 132.8, 129.4, 128.7, 22.3. Anal. calc. for C9H8N2 (%): C, 74.98; H, 

5.59; N, 19.43. Found: C, 74.51; H, 5.72; N, 19.10. MS (CI) for C9H9N2 [M+H]
+
: 

m/z 145.2. 

5.4.7 Synthesis of papaverine 

N-(3,4-Dimethoxyphenethyl)-2-(3,4-dimethoxyphenyl)acetamide. The amide was 

prepared from the corresponding amine and acid according to the literature method 
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with some modification.
[65]

 A mixture of 3,4-dimethoxyphenylacetic acid (2.5 mmol, 

500 mg) and 3,4-dimethoxyphenethylamine (2.5 mmol, 477 mg) in a test vial was 

heated at 150 
o
C for 30 min under microwave irradiation. After cooling to ambient 

temperature, the solidified mixture was dissolved in DCM (100 mL) followed by 

washing sequentially with 10% KOH aq (10 ml), 5% HCl aq (10 mL) and brine (10 

mL). The organic layer was dried over MgSO4, filtered and concentrated under 

reduced pressure to give a pale-yellow solid (880 mg, 98% yield). 
1
H NMR (CDCl3, 

400 MHz, 300 K) δ (ppm): 6.80 (d, J = 8.0 Hz, 1H), 6.72-6.68 (m, 3H), 6.62 (d, J = 

1.6 Hz, 1H), 6.52 (dd, J = 8.0, 2.0 Hz, 1H),   5.44 (bs, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 

3.83 (s, 6H), 3.48 (s, 2H), 3.44 (q, J = 6.8 Hz, 2H), 2.68 (t, J = 7.0 Hz, 2H). 
13

C 

NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 171.6, 149.7, 149.4, 148.7, 148.0, 131.4, 

127.6, 122.0, 121.0, 112.8, 112.1, 111.8, 111.5, 56.30, 56.26, 56.24, 56.22, 43.9, 

41.1, 35.4. MS (CI) for C20H26NO5 [M+H]
+
: m/z 360.4. 

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxy-3,4-dihydroisoquinoline (3,4-

dihydropapaverine). The cyclic imine was prepared from the corresponding amide 

according to the literature.
[66] 

To a solution of N-(3,4-dimethoxyphenethyl)-2-(3,4-

dimethoxyphenyl)acetamide (2.0 mmol, 701 mg) in toluene (40 mL), POCl3 (4.0 

mmol, 0.4 mL) was introduced dropwise at room temperature. The mixture was 

refluxed for 5 h and evaporated to remove toluene after cooling. The resulting 

residue was basified with an aqueous solution of Na2CO3 followed by extraction 

with DCM (5×30 mL). The combined organic extracts were evaporated to dryness 

before running a short column (silica gel, EtOAc/MeOH) to obtain the desired imine 

(slightly yellow solid, 614 mg, 90% yield). 
1
H NMR (CDCl3, 400 MHz, 300 K) δ 

(ppm): 7.00 (s, 1H), 6.87-6.84 (m, 2H), 6.79-6.77 (m, 1H), 6.66 (s, 1H), 3.98 (s, 2H), 

3.88 (s, 3H), 3.83 (s, 3H), 3.82 (s, 3H), 3.75 (s, 3H),  3.73 (t, J = 7.6 Hz, 2H), 2.65 (t, 
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J = 7.6 Hz, 2H). 
13

C NMR (CDCl3, 100 MHz, 300 K) δ (ppm): 166.0, 151.1, 149.5, 

148.1, 147.6, 132.2, 131.0, 122.0, 121.1, 112.1, 111.7, 110.87, 110.1, 56.4, 56.32, 

56.27, 56.22, 47.6, 43.5, 26.2. MS (CI) for C20H24NO4 [M+H]
+
: m/z 342.4. 

1-(3,4-Dimethoxybenzyl)-6,7-dimethoxyisoquinoline (Papaverine):
[67]

 The reaction 

conditions were the same as for the general dehydrogenation except for using 1 

mol% catalyst under 12 h. The product was obtained in 88% yield as a slightly 

yellow solid. 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 8.37 (d, J = 5.6 Hz, 1H), 

7.43 (d, J = 5.6 Hz, 1H), 7.35 (s, 1H), 7.05 (s, 1H),  6.83-6.81 (m, 2H), 6.77-6.75 (m, 

1H), 4.53 (s, 2H), 4.00 (s, 3H), 3.91 (s, 3H), 3.82 (s, 3H), 3.77 (s, 3H). 
13

C NMR 

(CDCl3, 100 MHz, 300 K) δ (ppm): 158.2, 152.8, 150.2, 149.4, 147.9, 141.5, 133.9, 

132.7, 123.4, 120.9, 119.1, 112.3, 111.6, 105.7, 104.6, 56.4, 56.27, 56.26, 56.21, 

42.7. MS (CI) for C20H22NO4 [M+H]
+
: m/z 340.2. 

5.4.8 Synthesis of harmine 

7-Methoxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole 

(Tetrahydroharmine). The tetrahydroharmine was prepared by Pictect-Spengler 

reaction according to a modified literature method.
[68]

 6-Methoxytryptamine (2.0 

mmol, 381 mg) was added to an aqueous solution (25 mL) of H2SO4 (conc., 2.4 

mmol, 240 mg). After introducing acetaldehyde (16.0 mmol, 0.9 mL), the mixture 

was heated for 20 min at 110 
o
C and then cooled to room temperature.  The mixture 

was extracted with DCM (4×20 mL) after being basified with an aqueous solution of 

KOH. The combined organic extracts were evaporated to dryness before passing a 

short column (silica gel, DCM/MeOH) to afford the desired product (pale-yellow 

solid, 272 mg, 63% yield). 
1
H NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 7.76 (bs, 

1H), 7.35 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 1.2 Hz, 1H), 6.77 (dd, J = 8.4, 1.6 Hz, 1H), 
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4.15 (q, J = 6.6 Hz, 1H), 3.83 (s, 3H), 3.36 (dt, J = 12.8, 4.2 Hz, 1H), 3.04 (ddd, J = 

13.1, 8.5, 4.9 Hz, 1H), 2.78-2.66 (m, 2H), 1.88 (bs, 1H), 1.44 (d, J = 6.4 Hz, 3H). 
13

C 

NMR (CDCl3, 400 MHz, 300 K) δ (ppm): 156.6, 136.8, 136.2, 122.4, 119.0, 109.2, 

108.7, 95.4, 56.2, 48.6, 43.2, 23.1, 21.2. MS (CI) for C13H17N2O [M+H]
+
: m/z 217.2. 

7-Methoxy-1-methyl-9H-pyrido[3,4-b]indole (Harmine):
[69]

 The reaction conditions 

were the same as for the general dehydrogenation except for using 1 mol% catalyst 

under 30 h. The product was obtained in 91% yield as a slightly yellow solid. 
1
H 

NMR (d6-DMSO, 400 MHz, 300 K) δ (ppm): 11.40 (bs, 1H), 8.15 (d, J = 5.2 Hz, 

1H), 8.06 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 5.2 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.84 

(dd, J = 8.6, 2.2 Hz, 1H), 3.87 (s, 3H), 2.72 (s, 3H). 
13

C NMR (d6-DMSO, 400 MHz, 

300 K) δ (ppm): 160.4, 142.3, 141.6, 138.1, 134.9, 127.6, 123.0, 115.2, 112.3, 109.4, 

94.9, 55.7, 20.7. MS (CI) for C13H13N2O [M+H]
+
: m/z 213.3. 
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6.1 Introduction 

Circumventing the use of stoichiometric oxidants, acceptorless dehydrogenation 

reactions have recently become a rapidly growing area of research.
[1]

 These reactions 

can be performed under mild conditions, with the only byproduct being H2, which is 

a valuable feedstock itself and energy carrier.
[2]

 Not only can such reactions be 

applied to the synthesis of unsaturated compounds, they also allow for easy bond 

formation, giving rise to novel coupling reactions, which require no 

prefunctionalisation of the coupling partners. Indeed, the last few years have 

witnessed the application of this acceptorless dehydrogenative coupling (ADC) 

strategy to the synthesis of many value-added compounds in a manner that is more 

straightforward and economic and greener than the conventional methods.
[1,3]

 In the 

vast majority of the reported cases, an alcohol is first dehydrogenated, generating an 

electrophilic carbonyl species that can react with a common nucleophile (Scheme 

6.1). Examples are seen in the ADC of alcohols with amines to form amides,
[4]

 

imines,
[5]

 and N-heterocycles,
[6]

 and of alcohols to form esters,
[7]

 polyesters,
[8]

 or 

lactones.
[9]

 

 

Scheme 6.1: General modes of ADC reactions reported in the literature. 

Dehydrogenation of alcohols has also been harnessed to make C-C bonds. Thus, an 

alcohol is dehydrogenated to an electrophilic carbonyl, or a nucleophilic enolate in 

the presence of a base, which subsequently reacts with a carbon nucleophile or an 
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electrophile to generate an unsaturated bond that is reduced in situ by the H2 

borrowed from the initial dehydrogenation step (Scheme 6.1).
[10,11]

  

Acceptorless dehydrogenation of N-heterocycles is rare in the literature, however, 

and ADC of N-heterocycles is even rarer. To the best of our knowledge, there 

appears to be only one report where an N-phenyl tetrahydroisoquinoline was 

alklylated with carbon nucleophiles at the 1-position,
[12]

 whilst the simultaneous 

activation of an amine to generate an enamine to allow for C-C coupling remains 

unknown in the context of ADC.
[13]

 Although a number of excellent examples have 

been demonstrated in the cross dehydrogenative coupling of N-heterocycles with 

various nucleophiles, these reactions generally necessitate the use of stoichiometric 

oxidants, such as 
t
BuOOH, rather than releasing the hydrogen as H2.

[14]
 

It was successfully demonstrated in Chapter 5 that when the dehydrogenation of 2-

methyl tetrahydroquinoline was carried out using cyclometalated iridium complex in 

TFE-d3, the reaction led to extensive H-D exchange at the α and  positions. This 

suggested that the dehydrogenation leads to the generation of an imine, which 

isomerises to an enamine at these positions (Scheme 6.2). Therefore, it was 

envisioned that this nucleophilic intermediate might be intercepted by a carbon-

based electrophile, thus affording C-C bond formation at -methyl and consequently 

functionalisation of quinolines.
[15,16]

 This chapter will cover our efforts in showing 

that the same cyclometalated iridium complexes can be exploited for this new 

strategy. Not only does the ADC enables the coupling of the sp
3
 carbon with a range 

of electrophiles, but it can also be cascaded with Friedel-Crafts addition at sp
2
 

carbons and with reduction to generate novel saturated N-heterocycles (Scheme 6.2).  
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Scheme 6.2: ADC, Friedel-Crafts-ADC, and ADC-reduction reactions. 

6.2 Results and discussion 

6.2.1 Optimisation of reaction conditions 

The study was initiated by testing various cyclometalated iridium complexes 

(Iridicycles C; Scheme 6.3) for the ADC of 2-methyl-1,2,3,4-tetrahydroquinoline 

(1a) with ethyl 3,3,3-trifluoropyruvate (TFP) as an electrophile.  

 

Scheme 6.3: Cyclometalated iridium complexes. 

As expected, in the absence of a catalyst, formation of 2a was not detected in 2,2,2-

trifluoroethanol (TFE) after 2 h stirring at 30  C, although 2a2 was obtained in a high 

yield (Table 6.1, entry 1). [Cp*IrCl2]2 without the ligand was also ineffective (Table 

6.1, entry 2).  
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Table 6.1: Optimisation of reaction conditions   

 

Entry
[a]

 Catalyst Solvent 2a
[b]

 2a1
[b]

 2a2
[b]

 10a
[b]

 

1 none TFE - - <95 - 

2 [Cp*IrCl2]2 TFE <2 <1 <90 - 

3 C8 TFE 61 28 <3 <1 

4 C9 TFE 38 16 5 <2 

5 C10 TFE 46 14 4 <2 

6 C11 TFE 64 31 <1 <2 

7 C2 TFE 63 30 <1 <2 

8 C4 TFE 58 20 <1 <2 

9 C11 H2O 8 6 - - 

10 C11 MeOH - 18 10 4 

11 C11 
i
PrOH - - 11 - 

12 C11 Toluene - - 62 - 

13 C11 EtOAc - 6 48 - 

14
[c]

 C11 TFE 40 56 <1 <2 

15
[d]

 C11 TFE 71 24 <1 <2 

16
[e]

 C11 TFE 78 16 <1 4 

17
[f]

 C11 TFE 77 12 <1 8 

18
[g,h]

 C11 TFE 60 2 <1 24 

19
[e,i]

 C11 TFE 78 16 <1 4 

20
[e,j]

 C11 TFE 76 15 <1 4 

[a] See experimental section for details. [b] Conversion (%) determined by 
1
H-NMR spectroscopy. [c]

 

1.0 equivalent of 3,3,3-trifluoropyruvate (TFP) used. [d] 2.5 equiv. of TFP used. [e] 2.8 equiv. of TFP 

used. [f] 3.0 equiv. of TFP used. [g] 4.0 equiv. of TFP used. [h] Some other unidentified byproducts 

observed by 
1
H-NMR spectroscopy. [i] Under N2. [j] Under Air. 
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After screening a variety of iridicycles (Table 6.1, entries 3-8), electron-rich 

complexes were found to give a higher activity compared with electron-poor, with 

C11 furnishing the desired product 2a in 64% yield in just 2 h (Table 6.1, entries 6). 

ADC proceeds best in TFE, compared to other solvents that were screened (Table 

6.1, entries 9-13). Variation of electrophile ratio revealed that the optimal yield was 

achieved when 2.8 equivalents of electrophile was used in the reaction (Table 6.1, 

entries 6 and 14-20). The excess amount of electrophile was necessary to inhibit the 

dehydrogenation of 1a to 2a1. Formation of H2 was confirmed by GC-MS analysis. 

The hydrogenation of TFP by C11 was not observed. 

6.2.2 ADC of 2-methyl tetrahydroquinolines 

Using the optimal conditions established, the ADC of various tetrahydroquinolines 

1a-v with TFP was explored. In each case, the corresponding products 2a-v was 

obtained in good to excellent isolated yields, with the C-C coupling taking place 

almost exclusively at the β position (Table 6.2). These quaternary trifluoromethyl 

hydroxyl compounds are highly valuable in pharmaceuticals due to their biological 

activities.
[16,17]

 A variety of functionalities were tolerated, demonstrating the utility 

of the protocol in practice. Thus, substrates bearing either electron-donating or -

withdrawing groups all gave excellent yields regardless of their positions (Table 6.2, 

entries 2-5 and 11-12). Hydrogenation-labile aromatic halides, with the substituent at 

different positions, afforded the coupling products 2f-j in more than 70% yield 

(Table 6.2, entries 6-10). Whilst ester and amide moieties are typically employed in 

ortho-directing C-H functionalisation, regioselective ADC took place when 1m-p 

were coupled with TFP, furnishing excellent yields for the expected 2m-p (Table 

6.2, entries 13-16). Delightfully, thiophene- and pyridine-containing substrates 

underwent the ADC without poisoning the catalyst (Table 6.2, entries 18 and 19). 
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However, when the furan derivative 1t was subjected to the ADC, competitive 

Friedel-Crafts alkylation was observed at the furan ring, leading to a highly 

functionalised product 2t (Table 6.2, entry 20). It is known that furan can undergo 

electrophilic aromatic substitution at the 2-position in acidic media.
[18] 

Further to our 

delight, substrates containing boronic acid pinacol ester and an allyl ether group 

were also well tolerated, furnishing corresponding products in good yields (Table 

6.2, entries 21 and 22). Aryl boronic esters can readily undergo transition metal 

catalysed reaction and have in fact often been applied in cross coupling reactions as 

one of the coupling partners.
[19]

 Likewise, allylic ether groups are prone to aromatic 

Claisen rearrangement and can give rise to allylic substitution.
[20]

 

Table 6.2: Regioselective dehydrogenative sp
3
 C-H functionalisation of 2-methyl 

tetrahydroquinolines 

 

Entry
[a]

 Substrate Product  
Yield 

(%)
[b]

 

1 

  

2a 76 

2 

  

2b 78 

3 

  

2c 87 

4 

  

2d 89 
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5 

  

2e 80 

6 

  

2f 86 

7 

  

2g 90 

8
[c]

 

  

2h 70 

9 

  

2i 79 

10 

  

2j 82 

11 

  

2k 89 

12 

  

2l 82 

13
[c]

 

  

2m 82 

14 

  

2n 86 

15 

  

2o 81 

16 

  

2p 88 
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17 

  

2q 84 

18 

  

2r 85 

19 

  

2s 64 

20 

  

2t 90 

21 

  

2u 78 

22 

  

2v 55 

[a] See experimental section for details. [b] Yield of isolated product. [c] Yield determined by 
1
H-

NMR spectroscopy. 

Remarkably, the coordinating 3a-b could be selectively mono- or di-alkylated, 

affording 4a-b in a good yield (Scheme 6.4). The exclusive mono-functionalisation 

of 3a suggests that the ADC proceeds via dehydrogenation rather than a direct C-H 

functionalisation at the 2-methyl position. Selective di-alkylation or mono-alkylation 

of 2-methyl phenanthrolines is challenging and is typically performed under harsh 

conditions.
[21]

 Clearly, the current protocol offers an alternative route to these 

functionalised phenanthrolines. 
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Scheme 6.4: Regioselective dehydrogenative sp
3
 C-H functionalisation of tetrahydro- and octahydro-

phenanthroline. 

6.2.3 ADC of 2-methyl tetrahydroquinolines with other electrophiles 

To further demonstrate the utility of our protocol, ADC using different electrophiles 

was investigated. As can be seen from Table 6.3, the transformation occurred; 

however, the product yield varied with both the electrophiles and nucleophiles. In 

particular, low yields were obtained with 1,1,1-trifluoroacetone and pentafluoro-

benzaldehyde (Table 6.3, entries 7 and 8), presumably as a result of their lower 

electrophilicity. Also, the electrophile 1,1,1-trifluoroacetone can interact with protic 

solvents, leading to addition products.
[22]

 Disappointedly, ADC did not proceed when 

imine electrophiles were used under the present conditions (Table 6.3, entries 9 and 

10).  
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Table 6.3: Dehydrogenative sp
3
 C-H functionalisation of 1 with other electrophiles 

 

Entry
[a]

 Substrate Electrophile Product  
Yield 

(%)
[b]

 

1 1a 

  

5a 74 

2 1n 

  

5b 52 

3 1c 

  

5c 62 

4 1a 

  

5d 65 

5 1f 

  

5e 28 

6 
1c   

5f 42 

7
[c]

 1a 

  

5g 22 

8
[c]

 1a 

  

5h 18 

9
[d]

 

 

1a  - - n.r. 

10
[d]

 

 

1a  - - n.r. 

[a] See experimental section for details. [b] Yield of isolated product. [c] Yield determined by 
1
H-

NMR spectroscopy. [d] No reaction observed 
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6.2.4 One-pot synthesis of 6-alkylated quinolines 

It is known that tetrahydroquinolines can undergo Friedel-Crafts reactions at the 6-

position.
[23,24]

 Indeed, 2-methyl-1,2,3,4-tetrahydroquinoline 1a was alkylated with 

TFP at this position when they were mixed in TFE in the absence of C11 (Table 6.1, 

entry 1). Following the Friedel-Crafts reaction, introduction of C11 should trigger 

dehydrogenation, leading to one-pot synthesis of 6-alkylated quinolines. This would 

provide a simple way of generating these products which are traditionally 

synthesised by using stoichiometric organometallic species, such as Grignard, 

organozinc or organolithium reagents.
[25]

 Satisfactorily, reacting 1a and 6a-e with 

TFP for 2 h followed by adding the catalyst C11 afforded 7a-f in excellent yields, 

regardless of the position of the substituents on the N-containing ring (Table 6.4, 

entries 1-6). Furthermore, functionalised indoles could also be obtained in good 

yields (Table 6.4, entries 7 and 8). Friedel-Crafts addition at the 5-position of indoles 

is challenging, as the 3-position is more reactive.
[24] 

As maybe expected, Friedel-

Crafts reaction did not proceed when 2-methyl quinoline, instead of 1a or 6, was 

used under the present conditions. 
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Table 6.4: Sequential Friedel-Crafts and dehydrogenative functionalisation of N-

heterocycles 

 

Entry
[a]

 Substrate Product  Yield (%)
[b]

 

1
[c]

 

  

7a 72 

2 

  

7b 89 

3 

  

7c 92 

4 

  

7d 91 

5 

  

7e 86 

6 

  

7f 90 

7
[c]

 

  

9a 68 

8 

  

9b 89 

[a] See experimental section for details. [b] Yield of isolated product. [c] Yield determined by 
1
H-

NMR spectroscopy. 



Chapter 6 

240 
 

6.2.5 One-pot sequential Friedel-Crafts-dehydrogenative sp
2
 and sp

3
 C-H 

functionalisation of 2-methyl-1,2,3,4-tetrahydroquinoline 

More interestingly, double functionalisation of tetrahydroquinolines becomes 

possible when the Friedel-Crafts reaction is cascaded with the ADC. Scheme 6.5 

presents the unprecedented, one pot sequential Friedel-Crafts addition and ADC 

reactions, allowing the functionalisation of both 6-position and -methyl of 1a to 

give 10a in excellent yield. Two different electrophiles can also be introduced into 

the nucleophile in this one-pot strategy, as demonstrated by the synthesis of the 

highly functionalised 11a and 12a. 

 

Scheme 6.5: One-pot sequential Friedel-Crafts-dehydrogenative C-H functionalisation of 1a. 

6.2.6 Saturated N-heterocycles by in situ reduction 

Our group had previously reported that the Iridicycles are capable of catalysing both 

hydrogenation and transfer hydrogenation.
[26]

 Thus, we postulated that saturated 
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functionalised N-heterocycles could also be obtained in a one pot fashion by 

combining ADC and reduction. Indeed, hydrogenating 2a with H2, in situ generated 

from 1a by ADC, afforded 14a in 74% yield at     C (Scheme 6.6). Surprisingly, a 

novel compound 13a was isolated in 71% yield when the reductant was switched 

from H2 to HCO2H. Most likely, the high reaction temperature together with the 

acidic reaction condition employed in the transfer hydrogenation promoted the 

formation of the lactam product. These reactions further demonstrate the versatility 

of C11 in both dehydrogenation and hydrogenation reactions. 

 

Scheme 6.6: Saturated N-heterocycles by in situ reduction of 2a in a one-pot fashion using C11. 

6.2.7 Mechanistic consideration 

Based on the mechanism proposed in Chapter 5 for the dehydrogenation of 2-methyl 

tetrahydroquinoline, a plausible reaction pathway is proposed in Scheme 6.7. In the 

presence of C11 in TFE (pKa 12.5), 1a is in equilibrium with the imino intermediate 

I, which is probably protonated by or hydrogen-bonded with the medium. 

Isomerisation of I generates the active enamine nucleophile III that attacks an 

electrophile, thus resulting in IV. The intermediate IV can equilibrate with V, which 

probably hydrogenates II, resulting in the formation of VI and 1a. Control 
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experiments shown in Scheme 6.8 also suggest that sp
3
 C-H functionalisation of 1a 

is favoured by the ADC pathway over alkylation catalysed by C11.   

 

Scheme 6.7: A plausible reaction pathway. 

 

Scheme 6.8: Control experiments. 

6.3 Conclusion 

In conclusion, this chapter describes the development of a new protocol for the 

oxidant- and base-free functionalisation of N-heterocycles to afford novel quinoline, 

phenanthroline and indole derivatives under mild conditions. The core strategy is the 

ADC chemistry, which enables acceptor-less dehydrogenation of the N-heterocycles 

and site-selective C-C bond formation thereafter. The ADC catalyst also allows the 

dehydrogenated product to be saturated under either hydrogenation or transfer 

hydrogenation conditions, giving rise to structurally diverse products.  
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6.4 Experimental 

6.4.1 General information   

Unless otherwise specified, all reagents and solvents were purchased commercially 

and used as received. 2-Methyl quinolines were prepared according to the literature 

procedure reported by Yoshida,
[27]

 Mahadevan
[28]

 and Marsden.
[29]

 Substrates 1b-v, 

3a and 6b-e were prepared by the reduction of the corresponding quinolines 

according to the method reported in Chapter 3. Substrate 3b was prepared by the 

hydrogenation of neocuproine using 5 mol% Adam’s catalyst in DCM (4  bar H2, 35 

°C, and 36 h). NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer 

unless otherwise specified. Elemental Analysis and Mass Spectrometry analysis were 

carried out at the Microanalysis Centre of University of Liverpool. IR spectra were 

recorded on a Bruker Alpha FT-IR spectrometer. 

6.4.2 Representative procedure for the regioselective dehydrogenative sp
3
 C-H 

functionalisation of 2-methyl tetrahydroquinoline (1a)  

1a (73.6 mg, 0.5 mmol) was dissolved in TFE (1 mL) in a carousel tube. Meanwhile 

in separate vials C11 (3.1 mg, 5x10
-3

 mmol) was dissolved in TFE (1 mL) and ethyl 

3,3,3-trifluoropyruvate (238.1 mg, 0.19 mL, 1.4 mmol) was dissolved in TFE (1 

mL), respectively. The solution of C11 was then injected into the solution of 1a in a 

carousel tube. The tube was shaken once and the solution of ethyl 3,3,3-

trifluoropyruvate was then added slowly while shaking the tube gradually. The 

reaction mixture was then stirred at 30 °C under N2 for 12 h (carousel reactor was 

pre-heated to 30 °C). The solvent was removed under vacuum and the resulting 

crude mixture was purified using flash chromatography to give the corresponding 

product 2a as a white solid (119.1 mg, 76% yield).  
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Note: it is important that the tube is shaken prior to the addition of ethyl 3,3,3-

trifluoropyruvate in order to inhibit the side Friedel-Crafts alkylation.  

The same procedure was followed when other electrophiles were used. Products 2a, 

2b, 2g, 2h, 2i, 2j, 2q and 5a are known compounds and their NMR spectra are 

consistent with the literature. All the other products are unknown. 

6.4.3 Representative procedure for the sequential Friedel-Crafts and 

dehydrogenative functionalisation of 1a 

1a (73.6 mg, 0.5 mmol) was dissolved in TFE (2 mL) in a carousel tube and ethyl 

3,3,3-trifluoropyruvate (102.1 mg, 0.080 mL, 0.6 mmol) was added. The mixture 

was stirred at 30 °C under N2 for 2 h. A freshly prepared solution of C11 (3.1 mg, 

5x10
-3

 mmol in 1 mL of TFE) was then added and the reaction was heated to reflux 

for 14 h. The reaction mixture was cooled to room temperature and the solvent was 

removed under vacuum. The resulting crude mixture was purified using flash 

chromatography to give the corresponding product 7f as a light yellow solid (141.0 

mg, 90% yield). 

The same procedure was followed when indolines were used as substrates. 

6.4.4 Representative procedure for one pot sequential Friedel-Crafts-

dehydrogenative sp
2
 and sp

3
 C-H functionalisation of 1a to 11a 

1a (73.6 mg, 0.5 mmol) was dissolved in TFE (1 mL) in a carousel tube and ethyl 

3,3,3-trifluoropyruvate (102.1 mg, 0.080 ml, 0.6 mmol) was added. The mixture was 

stirred at 30 °C under N2 for 2 h. A solution of C11 (3.1 mg, 5x10
-3

 mmol in 1 mL of 

TFE) was then added followed by a solution of ethyl pyruvate (162.6 mg, 0.156 ml, 

1.4 mmol in 1 mL of TFE). The reaction mixture was heated to reflux for 14 h. The 
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reaction mixture was cooled to room temperature and the solvent was removed under 

vacuum. The resulting crude mixture was then purified using flash chromatography 

to give the corresponding product 11a as a yellow liquid (154.6 mg, 72% yield). 

6.4.5 Data for 2a-v 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-(quinolin-2-ylmethyl)propanoate, 2a:
[16]

 White 

solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8. 6 (d, J = 8.  Hz, 1H), 7.87 (d, 

J = 8.3 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.3 Hz, 

1H), 7.24 (d, J = 8.4 Hz, 1H), 6.77 (bs, 1H), 4.16 (q, J = 6.9 Hz, 2H), 3.68 (d, J = 

15.3 Hz, 1H), 3.45 (d, J = 15.4 Hz, 1H), 1.10 (t, J = 6.9 Hz, 3H). 
19

F NMR (CDCl3, 

 76 MHz, 298 K) δ (ppm): -78.5. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 

168.9, 156.4, 146.6, 137.3, 130.1, 128.5, 127.7, 127.0, 126.7, 122.2, 122.0 (q, J = 

285.7 Hz), 78.3 (q, J = 29.0 Hz), 62.8, 38.4, 13.9.  IR (neat, cm
-1

): 3049, 2989, 2941, 

1747, 1600, 1295, 1202, 1161, 1111, 1000, 750. Anal. Calc. for C15H14F3NO3 (%): C, 

57.51; H, 4.50; N, 4.47. Found: C, 57.25; H, 4.45; N, 4.34. HRMS for C15H15F3NO3 

[M+H]
+
: m/z calc., 314.1004; found, 314.1011 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-((6-methylquinolin-2-yl)methyl)propanoate, 

2b:
[16]

 Yellow liquid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8. 5 (d, J = 8.4 

Hz, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.56-7.53 (m, 2H), 7.29-7.26 (m, 1H), 7.03 (bs, 

1H), 4.22 (q, J = 7.1 Hz, 2H), 3.72 (d, J = 15.4 Hz, 1H), 3.50 (d, J = 15.4 Hz, 1H), 

2.53 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3,  76 MHz, 29  K) δ (ppm): -

78.4. 
13

C NMR (CDCl3, 1   MHz, 29  K) δ (ppm): 168.8, 155.4, 145.2, 1 6.7, 

132.4, 128.1, 127.0, 126.5, 124.8 (q, J = 286.0 Hz), 122.1, 78.1 (q, J = 29.2 Hz), 

62.7, 38.3, 21.6, 13.9, 1 C is not observed. IR (neat, cm
-1

): 3495, 2984, 2940, 1737, 

1600, 1503, 1302, 1232, 1176, 1137, 1066, 828. Anal. Calc. for C16H16F3NO3 (%): C, 

58.71; H, 4.93; N, 4.28. Found: C, 58.67; H, 4.92; N, 4.13. HRMS for C16H17F3NO3 

[M+H]
+
: m/z calc., 328.1155; found, 328.1165. 
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Ethyl 3,3,3-trifluoro-2-hydroxy-2-((6-methoxyquinolin-2-yl)methyl)propanoate, 

2c: Light red solid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8.   (d, J = 8.  Hz, 

1H), 7.84 (d, J = 9.2 Hz, 1H), 7.36 (dd, J = 9.2, 2.8 Hz, 1H), 7.27 (d, J = 8.3 Hz, 1H), 

7.06 (d, J = 2.7 Hz, 1H), 6.91 (bs, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.93 (s, 3H), 3.70 (d, 

J = 15.2 Hz, 1H), 3.48 (d, J = 15.4 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H). 
19

F NMR 

(CDCl3,  76 MHz, 29  K) δ (ppm): -78.4. 
13

C NMR (CDCl3, 1   MHz, 29  K) δ 

(ppm): 168.9, 157.9, 153.6, 142.7, 136.0, 129.9, 128.1, 122.9, 122.5, 122.0 (q, J = 

286.4 Hz), 105.1, 78.1 (q, J = 29.1 Hz), 62.8, 55.6, 38.2, 13.9. IR (neat, cm
-1

): 3443, 

3382, 3001, 2949, 1737, 1625, 1602, 1504, 1297, 1224, 1173, 1132, 1015, 831, 705. 

Anal. Calc. for C16H16F3NO4 (%): C, 55.98; H, 4.70; N, 4.08. Found: C, 55.97; H, 

4.69; N, 3.97. HRMS for C16H17F3NO4 [M+H]
+
: m/z calc., 344.1104; found, 

344.1117. 

 

Ethyl 2-((6-(benzyloxy)quinolin-2-yl)methyl)-3,3,3-trifluoro-2-hydroxypropanoate, 

2d: White solid.
 1

H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8. 1 (d, J = 8.4 Hz, 

1H), 7.85 (d, J = 9.2 Hz, 1H), 7.49-7.34 (m, 6H), 7.26 (d, J = 8.4 Hz, 1H), 7.13 (d, J 

= 2.7 Hz, 1H), 6.88 (bs, 1H), 5.18 (s, 2H), 4.23 (q, J = 7.1 Hz, 2H), 3.70 (d, J = 15.3 

Hz, 1H), 3.48 (d, J = 15.3 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3, 376 

MHz, 29  K) δ (ppm): -78.4. 
13

C NMR (CDCl3, 1   MHz, 29  K) δ (ppm): 168.9, 

157.0, 153.8, 142.8, 136.3, 136.1, 130.0, 128.7, 128.3, 128.0, 127.6, 123.2, 122.5, 

122.0 (q, J = 286.0 Hz), 106.5, 78.1 (q, J = 29.2 Hz), 70.3, 62.8, 38.2, 13.9. IR (neat, 

cm
-1

): 3151, 2970, 2899, 1743, 1626, 1602, 1506, 1454, 1385, 1207, 1187, 1147, 

1066, 1017, 834, 752, 717. Anal. Calc. for C22H20F3NO4 (%): C, 63.00; H, 4.81; N, 

3.34. Found: C, 62.52; H, 4.73; N, 3.49. HRMS for C22H21F3NO4 [M+H]
+
: m/z calc., 

420.1417; found, 420.1430. 
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Ethyl 2-((5,7-dimethylquinolin-2-yl)methyl)-3,3,3-trifluoro-2-hydroxypropanoate, 

2e: White solid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8.24 (d, J = 8.5 Hz, 

1H), 7.57 (s, 1H), 7.27-7.20 (m, 2H), 4.22 (q, J = 7.0 Hz, 2H), 3.72 (d, J = 15.4 Hz, 

1H), 3.50 (d, J = 15.4 Hz, 1H), 2.63 (s, 3H), 2.50 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H), 

OH signal not observed. 
19

F NMR (CDCl3,  76 MHz, 29  K) δ (ppm): -78.4. 
13

C 

NMR (CDCl3, 1   MHz, 29  K) δ (ppm): 168.9, 155.8, 147.2, 14 . , 1 4.2, 1  .6, 

129.5, 125.7, 124.5, 124.9 (q, J = 286.4 Hz), 120.9, 78.4 (q, J = 28.3 Hz), 62.7, 38.1, 

21.8, 18.4, 13.9. IR (neat, cm
-1

): 3110, 2996, 2911, 1757, 1595, 1450, 1264, 1186, 

1138, 1052, 856, 703. Anal. Calc. for C17H18F3NO3 (%): C, 59.82; H, 5.32; N, 4.10. 

Found: C, 59.73; H, 5.24; N, 3.97. HRMS for C17H19F3NO3 [M+H]
+
: m/z calc., 

342.1312; found, 342.1308. 

 

Ethyl 2-((6-chloroquinolin-2-yl)methyl)-3,3,3-trifluoro-2-hydroxypropanoate, 2f: 

Light yellow solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8. 4 (d, J = 8.5 Hz, 

1H), 7.88 (d, J = 9.0 Hz, 1H), 7.78 (d, J = 2.3 Hz, 1H), 7.63 (dd, J = 9.0, 2.3 Hz, 1H), 

7.35 (d, J = 8.5 Hz, 1H), 6.15 (bs, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 15.4 Hz, 

1H), 3.51 (d, J = 15.4 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3, 376 MHz, 

298 K) δ (ppm): -78.5. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 168.8, 156.5, 

145.1, 136.2, 132.4, 131.0, 130.1, 127.6, 126.3, 123.2, 121.9 (q, J = 286.6 Hz), 78.0 

(q, J = 29.2 Hz), 63.0, 38.7, 13.9. IR (neat, cm
-1

): 3465, 3010, 2950, 1733, 1601, 

1494, 1309, 1220, 1190, 1145, 1075, 953, 880, 825, 696, 628, 420. Anal. Calc. for 

C15H13ClF3NO3 (%): C, 51.81; H, 3.77; N, 4.03. Found: C, 51.75; H, 3.72; N, 3.82. 

HRMS for C15H14ClF3NO3 [M+H]
+
: m/z calc., 348.0609; found, 348.0614. 

 

Ethyl 3,3,3-trifluoro-2-((6-fluoroquinolin-2-yl)methyl)-2-hydroxypropanoate, 

2g:
[16]

 Light brown solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8. 9 (d, J = 

8.4 Hz, 1H), 7.94 (dd, J = 9.1, 5.3 Hz, 1H), 7.50-7.42 (m, 2H), 7.35 (d, J = 8.4 Hz, 
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1H), 6.33 (bs, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 15.4 Hz, 1H), 3.52 (d, J = 

15.4 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ (ppm): 

-112.9, -78.5. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 168.8, 159.2 (d, J = 

248.5 Hz), 155.5 (d, J = 2.6 Hz), 143.8, 136.5 (d, J = 5.7 Hz), 130.9 (d, J = 8.9 Hz), 

127.6 (d, J = 10.1 Hz), 123.0, 121.9 (q, J = 285.7 Hz), 120.2 (d, J = 26.1 Hz), 110.6 

(d, J = 22.4 Hz), 78.1 (q, J = 29.3 Hz), 63.0, 38.6, 13.9. IR (neat, cm
-1

): 3273, 3073, 

2989, 1737, 1606, 1508, 1300, 1201, 1171, 1109, 1004, 828, 714, 469. Anal. Calc. 

for C15H13F4NO3 (%): C, 54.39; H, 3.96; N, 4.23. Found: C, 54.40; H, 3.89; N, 4.10. 

HRMS for C15H14F4NO3 [M+H]
+
: m/z calc., 332.0904; found, 332.0907. 

 

Ethyl 3,3,3-trifluoro-2-((7-fluoroquinolin-2-yl)methyl)-2-hydroxypropanoate, 

2i:
[30]

 Brown solid. 
1
H NMR (CDCl3, 400 MHz, 298 K) δ (ppm): 8.1  (d, J = 8.4 Hz, 

1H), 7.80 (dd, J = 8.9, 6.0 Hz, 1H), 7.56 (dd, J = 9.8, 1.8 Hz, 1H), 7.36-7.27 (m, 2H), 

4.27 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 15.3 Hz, 1H), 3.51 (d, J = 15.3 Hz, 1H), 1.22 (t, 

J = 7.1 Hz, 3H), OH signal not observed. 
19

F NMR (CDCl3,  76 MHz, 298 K) δ 

(ppm): -108.4, -78.5. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 168.8, 162.1 (d, 

J = 251.3 Hz), 157.4, 147.6 (d, J = 12.5 Hz), 137.1, 129.7 (d, J = 10.2 Hz), 124.0, 

122.0 (q, J = 286.8 Hz), 121.6 (d, J = 2.5 Hz), 117.1 (d, J = 24.8 Hz), 112.2 (d, J = 

20.3 Hz), 78.1 (q, J = 29.1 Hz), 63.0, 38.7, 13.9. IR (neat, cm
-1

): 3076, 2971, 2934, 

1740, 1626, 1600, 1509, 1247, 1166, 1111, 1006, 969, 868, 630, 437. Anal. Calc. for 

C15H13F4NO3 (%): C, 54.39; H, 3.96; N, 4.23. Found: C, 54.79; H, 3.98; N, 4.34. 

HRMS for C15H14F4NO3 [M+H]
+
: m/z calc., 332.0904; found, 332.0906. 

 

Ethyl 2-((6-chloroquinolin-2-yl)methyl)-3,3,3-trifluoro-2-hydroxypropanoate, 

2j:
[16]

 Yellow liquid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.18 (d, J = 8.3 

Hz, 1H), 7.83 (dd, J = 7.5, 1.0 Hz, 1H), 7.74 (dd, J = 8.2, 0.9 Hz, 1H), 7.47 (t, J = 7.9 

Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.10 (bs, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.84 (d, J = 

15.8 Hz, 1H), 3.57 (d, J = 15.8 Hz, 1H), 1.19 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3, 

 76 MHz, 298 K) δ (ppm): -78.5. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 

168.6, 157.6, 142.8, 137.8, 132.8, 130.1, 128.2, 126.7, 126.6, 123.0, 121.9 (q, J = 
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285.6 Hz), 78.2 (q, J = 29.2 Hz), 62.9, 38.5, 13.8. IR (neat, cm
-1

): 3470, 2985, 1738, 

1600, 1501, 1250, 1176, 1139, 1068, 833, 760, 674, 460. Anal. Calc. for 

C15H13ClF3NO3 (%): C, 51.81; H, 3.77; N, 4.03. Found: C, 52.05; H, 3.77; N, 3.82. 

HRMS for C15H14ClF3NO3 [M+H]
+
: m/z calc., 348.0609; found, 348.0613. 

 

Ethyl 2-((6-cyanoquinolin-2-yl)methyl)-3,3,3-trifluoro-2-hydroxypropanoate, 2k: 

Light brown solid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8.2 -8.19 (m, 2H), 

8.03 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.47 (d, J = 8.5 Hz, 1H), 5.54 (bs, 

1H), 4.32 (q, J = 7.0 Hz, 2H), 3.83 (d, J = 15.4 Hz, 1H), 3.57 (d, J = 15.4 Hz, 1H), 

1.25 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3,  76 MHz, 29  K) δ (ppm): -78.5. 
13

C 

NMR (CDCl3, 1   MHz, 29  K) δ (ppm): 168.8, 159.4, 147.8, 1 7.2, 1  .9, 1  .7, 

130.1, 126.3, 124.1, 121.9 (q, J = 286.3 Hz), 118.4, 110.4, 77.7 (q, J = 29.0 Hz), 

63.3, 39.2, 13.9. IR (neat, cm
-1

): 3467, 2964, 2228, 1728, 1602, 1416, 1312, 1224, 

1184, 1141, 1077, 839, 703. Anal. Calc. for C16H13F3N2O3 (%): C, 56.81; H, 3.87; N, 

8.28. Found: C, 56.58; H, 3.89; N, 8.10. HRMS for C16H13F3N2O3Na [M+Na]
+
: m/z 

calc., 361.0776; found, 361.0791. 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-((6-(trifluoromethyl)quinolin-2-yl)methyl) 

propanoate, 2l: Light brown solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 

8.24 (d, J = 8.4 Hz, 1H), 8.14 (s, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.88 (d, J = 8.8 Hz, 

1H), 7.45 (d, J = 8.5 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 3.82 (d, J = 15.4 Hz, 1H), 

3.57 (d, J = 15.4 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H), OH signal not observed. 
19

F NMR 

(CDCl3,  76 MHz, 298 K) δ (ppm): -78.5, -62.4. 
13

C NMR (CDCl3, 100 MHz, 298 

K) δ (ppm): 168.8, 158.6, 147.7, 1 7.8, 129.8, 128.4 (q, J =  2.7 Hz), 126. , 125.8 

(q, J = 2.9 Hz), 125.6 (q, J = 4.4 Hz), 123.6, 122.5 (q, J = 272.3 Hz), 121.9 (q, J = 

285.9 Hz), 77.9 (q, J = 29.3 Hz), 63.1, 39.0, 13.9. IR (neat, cm
-1

): 3475, 2965, 1733, 

1608, 1316, 1288, 1188, 1131, 1114, 1063, 840, 691, 623. Anal. Calc. for 

C16H13F6NO3 (%): C, 50.40; H, 3.44; N, 3.67. Found: C, 50.89; H, 3.52; N, 3.69. 

HRMS for C16H14F6NO3 [M+H]
+
: m/z calc., 382.0872; found, 382.0880. 
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Ethyl 3,3,3-trifluoro-2-hydroxy-2-((6-(pivaloyloxy)quinolin-2-yl)methyl) 

propanoate, 2n: White solid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8. 9 (d, J 

= 8.4 Hz, 1H), 7.95 (d, J = 9.1 Hz, 1H), 7.52 (d, J = 1.4 Hz, 1H), 7.42 (d, J = 9.0, 

1H), 7.33 (d, J = 8.4 Hz, 1H), 6.49 (bs, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.76 (d, J = 

15.4 Hz, 1H), 3.52 (d, J = 15.4 Hz, 1H), 1.40 (s, 9H), 1.19 (t, J = 7.1 Hz, 3H). 
19

F 

NMR (CDCl3,  76 MHz, 29  K) δ (ppm): -78.5. 
13

C NMR (CDCl3, 100 MHz, 293 

K) δ (ppm): 177.1, 168.8, 156. , 149. , 144.6, 1 6.9, 129.9, 127. , 125.4, 122.7, 

121.9 (q, J = 285.9 Hz), 118.3, 78.2 (q, J = 29.1 Hz), 62.9, 39.2, 38.5, 27.1, 13.9. IR 

(neat, cm
-1

): 3150, 2977, 1750, 1606, 1476, 1280, 1206, 1135, 1117, 1106, 1060, 

909. Anal. Calc. for C20H22F3NO5 (%): C, 58.11; H, 5.36; N, 3.39. Found: C, 57.74; 

H, 5.22; N, 3.11. HRMS for C20H23F3NO5 [M+H]
+
: m/z calc., 414.1523; found, 

414.1540. 

 

Methyl 2-(2-(ethoxycarbonyl)-3,3,3-trifluoro-2-hydroxypropyl)quinoline-6-

carboxylate, 2o: White solid.
 1

H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8.57 (d, J 

= 1.7 Hz, 1H), 8.29 (dd, J = 8.9, 1.8 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 

8.9 Hz, 1H), 7.40 (d, J = 8.5 Hz, 1H), 6.16 (bs, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.00 (s, 

3H), 3.81 (d, J = 15.5 Hz, 1H), 3.55 (d, J = 15.5 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H). 
19

F 

NMR (CDCl3,  76 MHz, 29  K) δ (ppm): -78.5. 
13

C NMR (CDCl3, 100 MHz, 293 

K) δ (ppm): 168.8, 166.4, 158.6, 148.5, 1 8. , 1  .8, 129.6, 128.8, 128.2, 126.1, 

123.1, 121.9 (q, J = 285.0 Hz), 78.0 (q, J = 29.2 Hz), 63.1, 52.5, 38.9, 13.9. IR (neat, 

cm
-1

): 3466, 3408, 2960, 1734, 1715, 1696, 1625, 1601, 1439, 1281, 1233, 1179, 

1136, 1095, 786, 695. Anal. Calc. for C17H16F3NO5 (%): C, 54.99; H, 4.34; N, 3.77. 

Found: C, 55.41; H, 4.77; N, 3.35. HRMS for C17H17F3NO5 [M+H]
+
: m/z calc., 

372.1059; found, 372.1058. 
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Ethyl 2-((6-(diethylcarbamoyl)quinolin-2-yl)methyl)-3,3,3-trifluoro-2-hydroxy 

propanoate, 2p: Yellow liquid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8.16 

(d, J = 8.3 Hz, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.84 (s, 1H), 7.69 (d, J = 8.4, 1H), 7.37 

(d, J = 8.4 Hz, 1H), 4.27 (q, J = 7.0 Hz, 2H), 3.78 (d, J = 15.6 Hz, 1H), 3.60-3.52 (m, 

3H), 3.29 (bs, 2H), 1.30-1.14 (m, 9H), OH signal not observed. 
19

F NMR (CDCl3, 

 76 MHz, 29  K) δ (ppm): -78.5. 
13

C NMR (CDCl3, 1   MHz, 29  K) δ (ppm): 

170.3, 168.8, 157.2, 146.6, 137.5, 135.5, 128.9, 128.1, 126.5, 125.6, 123.0, 121.9 (q, 

J = 285.3 Hz), 78.1 (q, J = 29.2 Hz), 63.0, 43.4, 39.5, 38.7, 14.3, 13.9, 12.9. IR (neat, 

cm
-1

): 3460, 2980, 2939, 1742, 1617, 1484, 1430, 1281, 1176, 1133, 1067, 1016, 

841. Anal. Calc. for C20H23F3N2O4 (%): C, 58.25; H, 5.62; N, 6.79. Found: C, 57.98; 

H, 5.46; N, 6.31. HRMS for C20H24F3N2O4 [M+H]
+
: m/z calc., 413.1688; found, 

413.1697. 

 

Ethyl 2-(benzo[f]quinolin-3-ylmethyl)-3,3,3-trifluoro-2-hydroxypropanoate, 2q:
[16]

 

White solid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8.92 (d, J = 8.4 Hz, 1H), 

8.59 (d, J = 8.0 Hz, 1H), 7.99-7.93 (m, 2H), 7.83 (d, J = 9.0 Hz, 1H), 7.73-7.64 (m, 

2H), 7.48 (d, J = 8.3 Hz, 1H), 6.87 (bs, 1H), 4.25 (q, J = 6.9 Hz, 2H), 3.79 (d, J = 

15.2 Hz, 1H), 3.57 (d, J = 15.2 Hz, 1H), 1.18 (t, J = 6.9 Hz, 3H). 
19

F NMR (CDCl3, 

 76 MHz, 29  K) δ (ppm): -78.4. 
13

C NMR (CDCl3, 1   MHz, 29  K) δ (ppm): 

168.9, 155.5, 146.7, 132.0, 131.7, 131.6, 129.3, 128.8, 127.5, 127.4, 127.1, 124.2, 

122.5, 122.3, 122.0 (q, J = 285.8 Hz), 78.4 (q, J = 29.1 Hz), 62.8, 38.2, 13.9. IR 

(neat, cm
-1

): 3201, 2979, 2936, 1740, 1594, 1293, 1242, 1207, 1165, 1123, 1095, 

1011, 829, 759. Anal. Calc. for C19H16F3NO3 (%): C, 62.81; H, 4.44; N, 3.86. Found: 

C, 62.42; H, 4.37; N, 3.81. HRMS for C19H17F3NO3 [M+H]
+
: m/z calc., 364.1155; 

found, 364.1162. 
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Ethyl 3,3,3-trifluoro-2-hydroxy-2-((6-(thiophen-2-yl)quinolin-2-yl)methyl) 

propanoate, 2r: Yellow solid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8.14 (d, 

J = 8.5 Hz, 1H), 7.99-7.93 (m, 3H), 7.45 (d, J = 3.6 Hz, 1H), 7.37 (d, J = 5.0 Hz, 

1H), 7.33 (d, J = 8.4 Hz, 1H), 7.14 (dd, J = 5.0, 3.7 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 

3.76 (d, J = 15.4 Hz, 1H), 3.52 (d, J = 15.4 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H), OH 

signal not observed. 
19

F NMR (CDCl3,  76 MHz, 29  K) δ (ppm): -78.4. 
13

C NMR 

(CDCl3, 1   MHz, 29  K) δ (ppm): 168.8, 156.2, 146. , 14 .2, 1 7.2, 1 2.8, 129. , 

128.6, 128.4, 127.3, 125.9, 124.2, 123.6, 122.9, 122.0 (q, J = 285.2 Hz), 78.2 (q, J = 

29.1 Hz), 62.9, 38.5, 13.9. IR (neat, cm
-1

): 3093, 2994, 1752, 1598, 1251, 1190, 

1143, 1061, 830, 698. Anal. Calc. for C19H16F3NO3S (%): C, 57.72; H, 4.08; N, 3.54. 

Found: C, 57.52; H, 3.99; N, 3.36. HRMS for C19H17F3NO3S [M+H]
+
: m/z calc., 

396.0881; found, 396.0868. 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-((6-(pyridin-4-yl)quinolin-2-yl)methyl) 

propanoate, 2s: Yellow solid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 8.72-

8.71 (m, 2H), 8.22 (d, J = 8.3 Hz, 1H), 8.06-8.04 (m, 2H), 7.97 (d, J = 8.8 Hz, 1H), 

7.61-7.60 (m, 2H), 7.40 (d, J = 8.3 Hz, 1H), 6.49 (bs, 1H), 4.28 (q, J = 6.9 Hz, 2H), 

3.80 (d, J = 15.3 Hz, 1H), 3.56 (d, J = 15.3 Hz, 1H), 1.23 (t, J = 6.9 Hz, 3H). 
19

F 

NMR (CDCl3,  76 MHz, 29  K) δ (ppm): -78.4. 
13

C NMR (CDCl3, 100 MHz, 293 

K) δ (ppm): 168.8, 157.2, 15 .4, 147.3, 146.8, 137.5, 136.4, 129.5, 128.8, 127.1, 

126.1, 123.1, 122.0 (q, J = 286.3 Hz), 121.8, 78.2 (q, J = 29.1 Hz), 63.0, 38.8, 14.0. 

IR (neat, cm
-1

): 3050, 2985, 2811, 1741, 1598, 1491, 1307, 1254, 1189, 1149, 1060, 

999, 820, 671, 612. Anal. Calc. for C20H17F3N2O3 (%): C, 61.54; H, 4.39; N, 7.18. 

Found: C, 61.23; H, 4.35; N, 7.01. HRMS for C20H18F3N2O3 [M+H]
+
: m/z calc., 

391.1270; found, 391.1277. 
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Ethyl 2-((6-(5-(3-ethoxy-1,1,1-trifluoro-2-hydroxy-3-oxopropan-2-yl)furan-2-

yl)quinolin-2-yl)methyl)-3,3,3-trifluoro-2-hydroxypropanoate, 2t: Yellow brownish 

crystalline solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.14 (d, J = 8.5 Hz, 

1H), 8.05 (s, 1H), 7.94 (s, 2H), 7.33 (d, J = 8.5 Hz, 1H), 6.81 (d, J = 3.5 Hz, 1H), 

6.74 (d, J = 3.5 Hz, 1H), 6.49 (bs, 1H), 4.52-4.44 (m, 3H), 4.26 (q, J = 7.1 Hz, 2H), 

3.76 (d, J = 15.4 Hz, 1H), 3.52 (d, J = 15.4 Hz, 1H), 1.39 (t, J = 7.2 Hz, 3H), 1.19 (t, 

J = 7.1 Hz, 3H). 
19

F NMR (CDCl3, 376 MHz, 298 K) δ (ppm): -78.4, -76.1. 
13

C 

NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 168.8, 167.2, 156.5, 154. , 146. , 146.1, 

137.3, 129.1, 128.1, 127.1, 126.4, 123.0, 122.1, 122.0 (q, J = 286.3 Hz), 120.9 (q, J = 

286.3 Hz), 112.9, 107.2, 77.9 (q, J = 29.3 Hz), 75.1 (q, J = 31.9 Hz), 64.8, 62.9, 38.6, 

13.9, 13.8. IR (neat, cm
-1

): 3438, 2987, 1740, 1690, 1602, 1474, 1302, 1232, 1173, 

1137, 1015, 838, 696. Anal. Calc. for C24H21F6NO7 (%): C, 52.47; H, 3.85; N, 2.55. 

Found: C, 52.48; H, 3.88; N, 2.46. HRMS for C24H22F6NO7 [M+H]
+
: m/z calc., 

550.1295; found, 550.1314. 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-((6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)quinolin-2-yl)methyl)propanoate, 2u: Brown solid. 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 8.31 (s, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.91 

(d, J = 8.4 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 6.73 (bs, 1H), 4.23 (q, J = 7.1 Hz, 2H), 

3.76 (d, J = 15.5 Hz, 1H), 3.52 (d, J = 15.5 Hz, 1H), 1.39 (s, 12H), 1.16 (t, J = 7.1 

Hz, 3H). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ (ppm): -78.5. 
13

C NMR (CDCl3, 100 

MHz, 298 K) δ (ppm): 168.8, 157.4, 148.1, 137.9, 135.9, 134.9, 127.5, 126.4, 124.8 

(J = 286.4 Hz), 122.2, 84.3, 78.2 (J = 29.0 Hz), 62.8, 38.6, 24.9, 13.9, one carbon 

signal is not observed. Anal. Calc. for C21H25BF3NO5 (%): C, 57.42; H, 5.74; N, 

3.19. Found: C, 56.94; H, 5.62; N, 2.98. HRMS for C21H26
10

BF3NO5 [M+H]
+
: m/z 

calc., 439.1892; found, 439.1903 and C21H26
11

BF3NO5 [M+H]
+
: m/z calc., 440.1856; 

found, 440.1861. 
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Ethyl 2-((6-(allyloxy)quinolin-2-yl)methyl)-3,3,3-trifluoro-2-hydroxypropanoate, 

2v: Light brown crystalline solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8. 1 

(d, J = 8.4 Hz, 1H), 7.84 (d, J = 9.2 Hz, 1H), 7.39 (dd, J = 9.2, 2.7 Hz, 1H), 7.27 (d, J 

= 5.1 Hz, 1H), 7.06 (d, J = 2.7 Hz, 1H), 6.78 (bs, 1H), 6.16-6.06 (m, 1H),  5.47 (dd, J 

= 17.2, 1.3 Hz, 1H), 5.34 (dd, J = 10.5, 1.1 Hz, 1H), 4.65 (d, J = 5.2 Hz, 2H), 4.23 (q, 

J = 7.1 Hz, 2H), 3.70 (d, J = 15.3 Hz, 1H), 3.48 (d, J = 15.3 Hz, 1H), 1.18 (t, J = 7.1 

Hz, 3H). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ (ppm): -78.4. 
13

C NMR (CDCl3, 100 

MHz, 298 K) δ (ppm): 168.9, 156.8, 15 .7, 142.7, 1 6. , 1 2.7, 129.9, 128. , 12 .1, 

122.5, 122.0 (q, J = 286.6 Hz), 118.1, 106.3, 78.1 (q, J = 28.9 Hz), 69.1, 62.7, 38.2, 

13.9. IR (neat, cm
-1

): 3481, 3090, 3029, 2984, 2937, 1733, 1601, 1501, 1303, 1213, 

1171, 1115, 990, 833. Anal. Calc. for C18H18F3NO4 (%): C, 58.54; H, 4.91; N, 3.79. 

Found: C, 58.44; H, 4.90; N, 3.68. HRMS for C18H19F3NO4 [M+H]
+
: m/z calc., 

370.1261; found, 370.1268. 

6.4.6 Data for 4a and 4b 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-((9-methyl-1,10-phenanthrolin-2-yl)methyl) 

propanoate, 4a: Light brown solid. 
1
H NMR (CDCl3, 4   MHz, 29  K) δ (ppm): 

8.21 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.75-7.68 (m, 2H), 7.55-7.48 (m, 

2H), 4.27-4.24 (m, 2H), 3.86 (d, J = 14.6 Hz, 1H), 3.66 (d, J = 14.6 Hz, 1H), 2.88 (s, 

3H), 1.17 (t, J = 6.8 Hz, 3H), OH signal not observed. 
19

F NMR (CDCl3, 376 MHz, 

29  K) δ (ppm): -78.0. 
13

C NMR (CDCl3, 1   MHz, 29  K) δ (ppm): 168.9, 159.5, 

155.9, 144.6, 144.4, 137.2, 136.1, 127.4, 126.9, 126.6, 124.9, 123.9, 123.8, 122.2 (q, 

J = 286.8 Hz), 78.8 (q, J = 29.0 Hz), 62.7, 38.4, 25.6, 13.9. IR (neat, cm
-1

): 3065, 

2984, 2907, 1746, 1589, 1499, 1274, 1200, 1169, 1134, 1050, 859, 715. Anal. Calc. 

for C19H17F3N2O3 (%): C, 60.32; H, 4.53; N, 7.40. Found: C, 60.19; H, 4.36; N, 7.24. 

HRMS for C19H18F3N2O3 [M+H]
+
: m/z calc., 379.1270; found, 379.1278. 
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Diethyl 2,2'-((1,10-phenanthroline-2,9-diyl)bis(methylene))bis(3,3,3-trifluoro-2-

hydroxypropanoate), 4b: White solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 

8.22 (d, J = 8.2 Hz, 2H), 7.77 (s, 2H), 7.64-7.56 (m, 2H), 4.34-4.21 (m, 4H), 3.90-

3.82 (m, 2H), 3.71-3.59 (m, 2H), 1.16 (q, J = 7.5 Hz, 6H). 
19

F NMR (CDCl3, 376 

MHz, 298 K) δ (ppm): -78.0. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 156.1, 

144.4, 136.9, 127.7, 126.2, 126.2 (q, J = 292.4 Hz), 124.6, 63.1, 29.7, 13.8, two 

carbon signals not observed due to low intensity. HRMS for C24H22F6N2O6Na 

[M+Na]
+
: m/z calc., 571.1280; found, 571.1276. 

6.4.7 Data for 5a-f 

 

Ethyl 2-hydroxy-2-methyl-3-(quinolin-2-yl)propanoate, 5a:
[30]

 Yellow liquid.
 1

H 

NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8. 9 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.5 

Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.70-7.66 (m, 1H), 7.52-7.48 (m, 1H), 7.27 (d, J = 

8.4 Hz, 1H), 6.23 (bs, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.56 (d, J = 15.4 Hz, 1H), 3.26 

(d, J = 15.4 Hz, 1H), 1.58 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H). 
13

C NMR (CDCl3, 100 

MHz, 298 K) δ (ppm): 176. , 159.1, 146.9, 1 6.7, 129.7, 128.7, 127.5, 126.8, 126. , 

122.2, 75.1, 61.1, 46.4, 26.4, 14.1. IR (neat, cm
-1

): 3377, 3060, 2980, 2936, 1724, 

1600, 1505, 1290, 1189, 1105, 1017, 822, 752, 615. Anal. Calc. for C15H17NO3 (%): 

C, 69.48; H, 6.61; N, 5.40. Found: C, 68.99; H, 6.66; N, 5.04. HRMS for 

C15H17NO3Na [M+Na]
+
: m/z calc., 282.1106; found, 282.1100. 

 

Ethyl 2-hydroxy-2-methyl-3-(6-(pivaloyloxy)quinolin-2-yl)propanoate, 5b: Yellow 

liquid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8. 5 (d, J = 8.5 Hz, 1H), 8.   

(d, J = 9.1 Hz, 1H), 7.50 (d, J = 2.4 Hz, 1H), 7.40 (dd, J = 9.1, 2.5 Hz, 1H), 7.29 (d, J 

= 8.5 Hz, 1H), 6.19 (bs, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.56 (d, J = 15.4 Hz, 1H), 3.27 

(d, J = 15.4 Hz, 1H), 1.58 (s, 3H), 1.40 (s, 9H), 1.10 (t, J = 7.1 Hz, 3H). 
13

C NMR 
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(CDCl3, 1   MHz, 298 K) δ (ppm): 177.1, 175.9, 158.8, 148.8, 144.8, 1 6.4, 1  . , 

127.1, 125.0, 122.7, 118.1, 75.1, 61.2, 46.3, 39.2, 27.1, 26.4, 14.1. IR (neat, cm
-1

): 

3480, 2978, 2937, 2874, 1782, 1742, 1605, 1208, 1100, 1025, 905. HRMS for 

C20H26NO5 [M+H]
+
: m/z calc., 360.1811; found, 360.1819. 

 

Ethyl 2-hydroxy-3-(6-methoxyquinolin-2-yl)-2-methylpropanoate, 5c: Yellow 

liquid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 7.98 (d, J = 8.4 Hz, 1H), 7.87 

(d, J = 9.2 Hz, 1H), 7.34 (dd, J = 9.2, 2.8 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.04 (d, J 

= 2.8 Hz, 1H), 6.23 (bs, 1H), 4.08 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H), 3.50 (d, J = 15.3 

Hz, 1H), 3.22 (d, J = 15.3 Hz, 1H), 1.57 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H). 
13

C NMR 

(CDCl3, 1   MHz, 298 K) δ (ppm): 176. , 157.6, 156.4, 14 . , 1 5.5, 1  .1, 127.8, 

122.5, 122.4, 105.1, 75.2, 61.1, 55.5, 46.1, 26.4, 14.1. IR (neat, cm
-1

): 3350, 2979, 

2937, 1726, 1600, 1500, 1379, 1229, 1107, 1024, 831. Anal. Calc. for C16H19NO4 

(%): C, 66.42; H, 6.62; N, 4.84. Found: C, 66.63; H, 6.70; N, 4.72. HRMS for 

C16H20NO4 [M+H]
+
: m/z calc., 290.1392; found, 290.1382. 

 

1,1,1-Trifluoro-3-(quinolin-2-yl)-2-(4-(trifluoromethyl)phenyl)propan-2-ol, 5d: 

White solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.7  (bs, 1H), 8.10 (d, J = 

8.4 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.3 Hz, 2H), 7.77 (d, J = 8.2 Hz, 

1H), 7.71 (d, J = 7.7 Hz, 1H), 7.57-7.51 (m, 3H), 7.24 (d, J = 8.4 Hz, 1H), 3.82 (d, J 

= 15.2 Hz, 1H), 3.67 (d, J = 15.2 Hz, 1H). 
19

F NMR (CDCl3, 376 MHz, 298 K) δ 

(ppm): -79.2, -62.7. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 157.2, 146.2, 

142.6, 137.9, 130.4, 130.3 (q, J = 32.8 Hz), 128.3, 127.7, 127.3, 126.9, 126.8, 126.3 

(q, J = 284.7 Hz), 125.1 (q, J = 3.7 Hz), 122.6 (q, J = 272.1 Hz), 122.3, 77.5 (q, J = 

28.1 Hz), 39.9. IR (neat, cm
-1

): 3086, 2920, 1600, 1509, 1431, 1327, 1156, 1119, 

1103, 1069, 1040, 950, 839, 764, 623. Anal. Calc. for C19H13F6NO (%): C, 59.23; H, 

3.40; N, 3.64. Found: C, 59.34; H, 3.37; N, 3.47. HRMS for C19H14F6NO [M+H]
+
: 

m/z calc., 386.0980; found, 386.0968. 
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3-(6-Chloroquinolin-2-yl)-1,1,1-trifluoro-2-(4-(trifluoromethyl)phenyl)propan-2-

ol, 5e: White solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8. 8 (s, 1H), 8.   

(d, J = 8.6 Hz, 1H), 7.88 (d, J = 9.0 Hz, 1H), 7.73 (d, J = 2.1 Hz, 1H), 7.63 (dd, J = 

9.0, 2.1 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 3.80 (d, J = 15.4 

Hz, 1H), 3.67 (d, J = 15.2 Hz, 1H), OH signal not observed. 
19

F NMR (CDCl3, 376 

MHz, 298 K) δ (ppm): -79.2, -62.7. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 

157.5, 144.6, 142.4, 136.9, 132.7, 131.4, 130.5 (q, J = 32.4 Hz), 129.8, 127.5, 127.2, 

126.4, 125.2 (q, J = 3.9 Hz), 124.9 (q, J = 285.9 Hz), 123.9 (q, J = 271.3 Hz), 123.2, 

77.3 (q, J = 28.5), 40.0. HRMS for C19H13ClF6NO [M+H]
+
: m/z calc., 420.0584; 

found, 420.0589. 

 

1,1,1-Trifluoro-3-(6-methoxyquinolin-2-yl)-2-(3-(trifluoromethyl)phenyl)propan-

2-ol, 5f: White solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.74 (bs, 1H), 

7.99 (s, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 9.2 Hz, 

1H), 7.49 (d, J = 7.6 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.32 (dd, J = 9.2, 2.7 Hz, 1H), 

7.16 (d, J = 8.4 Hz, 1H), 6.96 (d, J = 2.7 Hz, 1H), 3.85 (s, 3H), 3.76 (d, J = 15.2 Hz, 

1H), 3.61 (d, J = 15.4 Hz, 1H). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ (ppm): -79.2, -

62.6. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 158. , 154.4, 142.4, 1 9.9, 

136.5, 130.5 (q, J = 32.4 Hz), 130.2, 129.5, 128.7, 128.0, 125.1 (q, J = 3.9 Hz), 125.0 

(q, J = 285.9 Hz), 124.1 (q, J = 272.0 Hz), 123.8 (q, J = 3.9 Hz), 123.3, 122.5, 105.0, 

77.3 (q, J = 28.5 Hz), 55.5, 39.6. HRMS for C20H16F6NO2 [M+H]
+
: m/z calc., 

416.1080; found, 416.1077. 

6.4.8 Data for 7b-f 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-(3-methylquinolin-6-yl)propanoate, 7b: Light 

yellow solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.78 (s, 1H), 8.24 (s, 1H), 
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8.10 (d, J = 9.1 Hz, 1H), 8.04 (d, J = 9.1 Hz, 1H), 7.97 (s, 1H), 5.06 (bs, 1H), 4.50-

4.38 (m, 2H), 2.52 (s, 3H), 1.40-1.36 (m, 3H). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ 

(ppm): -76.0. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 168.7, 15 .4, 146. , 

135.6, 131.3, 131.2, 129.0, 127.5, 126.6, 126.3, 121.7 (q, J = 286.5 Hz), 78.1 (q, J = 

30.4 Hz), 64.5, 18.7, 13.9. IR (neat, cm
-1

): 3070, 2984, 2745, 1742, 1505, 1446, 

1247, 1155, 1145, 1116, 1029, 896, 731. Anal. Calc. for C15H14F3NO3 (%): C, 57.51; 

H, 4.50; N, 4.47. Found: C, 57.19; H, 4.41; N, 4.21. HRMS for C15H15F3NO3 

[M+H]
+
: m/z calc., 314.1004; found, 314.1009. 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-(4-methylquinolin-6-yl)propanoate, 7c: White 

solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.78 (d, J = 4.4 Hz, 1H), 8.51 (d, 

J = 1.6 Hz, 1H), 8.17-8.10 (m, 2H), 7.27-7.26 (m, 1H), 5.39 (s, 1H), 4.51-4.37 (m, 

2H), 2.73 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ 

(ppm): -76.0. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 168.7, 151.2, 147.9, 

145.3, 130.9, 130.0, 127.7, 127.3, 123.0, 122.4, 121.7 (q, J = 285.7 Hz), 78.2 (q, J = 

30.1 Hz), 64.4, 18.7, 13.9. IR (neat, cm
-1

): 3060, 2983, 2686, 1747, 1593, 1240, 

1162, 1128, 1017, 843, 684. Anal. Calc. for C15H14F3NO3 (%): C, 57.51; H, 4.50; N, 

4.47. Found: C, 57.38; H, 4.44; N, 4.34. HRMS for C15H15F3NO3 [M+H]
+
: m/z calc., 

314.1004; found, 314.1009. 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-(2-phenylquinolin-6-yl)propanoate, 7d: Light 

yellow solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.   (d, J = 1.7 Hz, 1H), 

8.25-8.10 (m, 5H), 7.90 (d, J = 8.7 Hz, 1H), 7.54-7.44 (m, 3H), 4.59 (s, 1H), 4.53-

4.38 (m, 2H), 1.39 (t, J = 7.2 Hz, 3H). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ (ppm): 

-76.0. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 168.7, 158.6, 148.4, 1 9.4, 

137.5, 130.6, 129.9, 129.6, 129.2, 128.9, 127.7, 126.7, 126.5, 121.7 (q, J = 285.8 

Hz), 119.6, 78.0 (q, J = 30.4 Hz), 64.7, 13.9. IR (neat, cm
-1

): 3173, 2985, 1745, 1602, 

1492, 1275, 1150, 1133, 1116, 982, 843, 763, 705. Anal. Calc. for C20H16F3NO3 (%): 

C, 64.00; H, 4.30; N, 3.73. Found: C, 63.87; H, 4.25; N, 3.65. HRMS for 

C20H17F3NO3 [M+H]
+
: m/z calc., 376.1161; found, 376.1167. 
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Ethyl 3,3,3-trifluoro-2-hydroxy-2-(2-methyl-4-phenylquinolin-6-yl)propanoate, 7e: 

Light yellow solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.36 (s, 1H), 8.13-

8.08 (m, 2H), 7.57-7.48 (m, 5H), 7.28 (s, 1H), 4.42 (s, 1H), 4.42-4.26 (m, 2H), 2.79 

(s, 3H), 1.22 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ (ppm): -76.2. 

13
C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 168.8, 159.9, 149.1, 148.5, 137.7, 

130.1, 129.5, 129.2, 128.7, 128.6, 127.4, 124.8, 124.4, 122.8, 121.5 (q, J = 286.4 

Hz), 78.1 (q, J = 28.2 Hz), 64.6, 25.4, 13.7. IR (neat, cm
-1

): 3223, 3060, 2973, 1739, 

1591, 1491, 1288, 1165, 1128, 1109, 1010, 971, 847, 760, 703. Anal. Calc. for 

C21H18F3NO3 (%): C, 64.78; H, 4.66; N, 3.60. Found: C, 64.60; H, 4.48; N, 3.32. 

HRMS for C21H19F3NO3 [M+H]
+
: m/z calc., 390.1312; found, 390.1324. 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-(2-methylquinolin-6-yl)propanoate, 7f: Light 

yellow solid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.26 (s, 1H), 8.1 -8.03 

(m, 3H), 7.33 (d, J = 8.5 Hz, 1H), 4.63 (s, 1H), 4.53-4.38 (m, 2H), 2.76 (s, 3H), 1.39 

(t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ (ppm): -76.1. 
13

C NMR 

(CDCl3, 1   MHz, 298 K) δ (ppm): 168.7, 16 .5, 148. , 1 6.8, 1  .1, 128.8, 127.4, 

126.7, 125.8, 122.7, 121.6 (q, J = 285.7 Hz), 77.9 (q, J = 30.4 Hz), 64.6, 25.4, 13.9. 

IR (neat, cm
-1

): 3090, 2990, 2746, 1742, 1604, 1445, 1257, 1175, 1157, 1133, 1031, 

842, 730, 692. Anal. Calc. for C15H14F3NO3 (%): C, 57.51; H, 4.50; N, 4.47. Found: 

C, 57.39; H, 4.44; N, 4.34. HRMS for C15H15F3NO3 [M+H]
+
: m/z calc., 314.1004; 

found, 314.1014. 

6.4.9 Data for 9b 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-(2-methyl-1H-indol-5-yl)propanoate, 9b: Deep 

red viscous liquid. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 7.92 (s, 2H), 7.50 

(d, J = 8.6 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H), 6.24 (d, J = 0.8 Hz, 1H), 4.49-4.33 (m, 

2H), 4.29 (s, 1H), 2.42 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3, 376 MHz, 
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298 K) δ (ppm): -76.2. 
13

C NMR (CDCl3, 1   MHz, 298 K) δ (ppm): 169.6, 136.4, 

136.3, 128.9, 124.8 (q, J = 286.3 Hz), 124.1, 119.3, 118.3, 110.0, 101.0, 78.5 (q, J = 

30.1 Hz), 64.1, 13.9, 13.7. IR (neat, cm
-1

): 3460, 3401, 2986, 1732, 1625, 1500, 

1477, 1234, 1160, 1131, 1100, 1013, 806, 733, 623. Anal. Calc. for C14H14F3NO3 + 

H2O (%): C, 52.67; H, 5.05; N, 4.39. Found: C, 52.94; H, 4.78; N, 4.10. HRMS for 

C14H14F3NO3Na [M+Na]
+
: m/z calc., 324.0823; found, 324.0824. 

6.4.10 Data for 10a, 11a and 12a 

 

Ethyl 2-((6-(3-ethoxy-1,1,1-trifluoro-2-hydroxy-3-oxopropan-2-yl)quinolin-2-

yl)methyl)-3,3,3-trifluoro-2-hydroxypropanoate, 10a: Yellow liquid. 
1
H NMR 

(CDCl3, 4   MHz, 298 K) δ (ppm): 8.30 (s, 1H), 8.19 (d, J = 8.4 Hz, 1H), 8.11 (d, J 

= 9.0 Hz, 1H), 7.97 (d, J = 9.0 Hz, 1H), 7.37 (d, J = 8.4 Hz, 1H), 6.38 (d, J = 2.9 Hz, 

1H), 4.54-4.38 (m, 2H), 4.52 (s, 1H), 4.30-4.24 (m, 2H), 3.78 (d, J = 15.4 Hz, 1H), 

3.53 (d, J = 15.4 Hz, 1H), 1.40 (t, J = 7.1 Hz, 3H), 1.25-1.20 (m, 3H). 
19

F NMR 

(CDCl3,  76 MHz, 298 K) δ (ppm): -78.5, -76.1. 
13

C NMR (CDCl3, 100 MHz, 298 

K) δ (ppm): 168.8, 168.5, 157.7, 146.8, 1 7.9, 1 1.1, 128.7 (d, J = 2.4 Hz), 128.1, 

126.9, 126.3, 124.8 (q, J = 286.1 Hz), 122.9, 121.5 (q, J = 286.1 Hz), 78.1 (q, J = 

29.7 Hz), 77.5 (q, J = 30.5 Hz), 64.8, 63.0, 38.7, 13.9 (x2). IR (neat, cm
-1

): 3469, 

2987, 1737, 1601, 1500, 1370, 1233, 1178, 1153, 1013, 831, 703, 674. Anal. Calc. 

for C20H19F6NO6 (%): C, 49.70; H, 3.96; N, 2.90. Found: C, 49.25; H, 3.87; N, 2.73. 

HRMS for C20H19F6NO6Na [M+Na]
+
: m/z calc., 506.1014; found, 506.1011. 

 

Ethyl 2-(2-(3-ethoxy-2-hydroxy-2-methyl-3-oxopropyl)quinolin-6-yl)-3,3,3-

trifluoro-2-hydroxypropanoate, 11a: Yellow liquid. 
1
H NMR (CDCl3, 400 MHz, 

298 K) δ (ppm): 8.27 (d, J = 1.8 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 8. 9 (d, J = 9.1 

Hz, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 6.01 (d, J = 5.1 Hz, 1H), 

4.57 (bs, 1H), 4.54-4.38 (m, 2H), 4.13-4.07 (m, 2H), 3.58 (dd, J = 15.5, 2.6 Hz, 1H), 

3.28 (d, J = 15.4 Hz, 1H), 1.58 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H), 1.15-1.10 (m, 3H). 
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19
F NMR (CDCl3,  76 MHz, 298 K) δ (ppm): -76.1. 

13
C NMR (CDCl3, 100 MHz, 

298 K) δ (ppm): 175.9 (d, J = 2.2 Hz), 168.6, 16 .5, 147. , 1 7.4, 130.7, 128.8, 

127.8, 126.8, 126.2, 122.9, 121.5 (q, J = 286.8 Hz), 77.9 (q, J = 30.3 Hz), 75.0, 64.7, 

61.2 (d, J = 2.6 Hz), 46.5, 26.4, 14.1, 13.9. IR (neat, cm
-1

): 3339, 2984, 2938, 1740, 

1601, 1371, 1234, 1182, 1155, 1107, 1017, 978, 832. Anal. Calc. for C20H22F3NO6 

(%): C, 55.94; H, 5.16; N, 3.26. Found: C, 55.52; H, 5.12; N, 3.05. HRMS for 

C20H23F3NO6 [M+H]
+
: m/z calc., 430.1477; found, 430.1475. 

 

Ethyl 3,3,3-trifluoro-2-hydroxy-2-(2-(3,3,3-trifluoro-2-hydroxy-2-(4-

(trifluoromethyl)phenyl)propyl)quinolin-6-yl)propanoate, 12a: Yellow liquid. 
1
H 

NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 8.50 (bs, 1H), 8.27 (s, 1H), 8.13 (d, J = 

8.8 Hz, 2H), 7.99 (d, J = 9.0 Hz, 1H), 7.82 (d, J = 7.8 Hz, 2H), 7.56 (dd, J = 8.2, 3.7 

Hz, 2H), 7.28 (d, J = 8.4 Hz, 1H), 4.63 (bs, 1H), 4.53-4.34 (m, 2H), 3.83 (d, J = 15.2 

Hz, 1H), 3.70 (d, J = 15.2 Hz, 1H), 1.37 (t, J = 7.1 Hz, 3H). 
19

F NMR (CDCl3, 376 

MHz, 298 K) δ (ppm): -79.3 (d, J = 25.1 Hz), -76.1, -62.8.  
13

C NMR (CDCl3, 100 

MHz, 298 K) δ (ppm): 168.4, 158.7, 146. , 142.4, 1 8.6 (d, J = 2.8 Hz) 1 1.4, 1  .5 

(dq, J = 2.3, 32.4 Hz), 128.5 (d, J = 1.1 Hz) 128.4 (d, J = 1.6 Hz), 127.3 (d, J = 4.4 

Hz), 127.0, 126.2, 125.2 (q, J = 2.3), 123.9 (q, J = 272.0 Hz), 123.0 (q, J = 285.9 

Hz), 123.0 (m), 122.9, 77.7 (q, J = 30.8 Hz), 77.4 (q, J = 28.5 Hz), 64.8 (t, J = 13.9 

Hz), 40.0 (t, J = 14.6 Hz), 13.8 (q, 7.7 Hz). HRMS for C24H19F9NO4 [M+H]
+
: m/z 

calc., 556.1165; found, 556.1167. 

6.4.11 Data for 13a and 14a 

 

(2RS,3aRS)-2-Hydroxy-2-(trifluoromethyl)-3,3a,4,5-tetrahydropyrrolo[1,2-

a]quinolin-1(2H)-one, 14a-major product and (2SR,3aRS)-2-hydroxy-2-

(trifluoromethyl)-3,3a,4,5-tetrahydropyrrolo[1,2-a]quinolin-1(2H)-one, 14a-minor 

product, 13a: Light off white solid. Isolated as a 7:3 mixture of isomers. 
1
H NMR 
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(DMSO-d6 with a drop of TFA, 4   MHz, 298 K) δ (ppm): 8.58 (d, J = 9.8 Hz, 1H-

major), 8.50 (d, J = 8.6 Hz, 1H-minor), 7.24-7.17 (m, 2H-major and 2H-minor), 

7.11-7.03  (m, 1H-major and 1H minor), 4.04 (dddd, J = 14.4, 11.3, 6.1, 2.5 Hz, 1H-

major), 3.87-3.78 (m, 1H-minor), 3.00-2.88 (m, 1H-major and 1H-minor), 2.88-2.78 

(m, 1H-major and 2H-minor), 2.41 (dd, J = 13.7, 6.0 Hz, 1H-major), 2.25-2.16 (m, 

1H-major and 1H- minor), 2.01 (dd, J = 13.7, 8.8 Hz, 1H-major), 1.93 (dd, J = 13.8, 

8.7 Hz, 1H-minor), 1.67-1.51 (m, 1H-major and 1H-minor). Signal at 7.41 (s, 1H-

major and 1H-minor) exchange with TFA. 
19

F NMR (DMSO-d6 with a drop of TFA, 

 76 MHz, 298 K) δ (ppm): -78.9 (minor), -78.5 (major). 
13

C NMR (DMSO-d6, 100 

MHz, 298 K) δ (ppm): Major: 166.8, 1 6. , 1  . , 127.2, 127. , 124.7 (q, J = 28 .6 

Hz), 124.7, 118.6, 76.6 (q, J = 30.1 Hz), 53.8, 35.2, 28.3, 27.2; Minor: 166.8, 135.8, 

130.0, 127.4, 126.9, 125.2 (q, J = 288.2 Hz), 124.9, 119.1, 76.2 (q, J = 30.1 Hz), 

53.3, 35.4, 29.2, 27.0. HRMS for C13H13F3NO2 [M+H]
+
: m/z calc., 272.0893; found, 

272.0890. Relative stereochemistry were assigned based on 
1
H-

19
F HOESY, strong 

correlation was observed between CF3 and CH in the minor isomers but was absence 

in the major isomer. 

 

(RR)-Ethyl 3,3,3-trifluoro-2-hydroxy-2-(((SR)-1,2,3,4-tetrahydroquinolin-2-

yl)methyl)propanoate and (RS)-ethyl 3,3,3-trifluoro-2-hydroxy-2-(((RS)-1,2,3,4-

tetrahydroquinolin-2-yl)methyl)propanoate, 14a: Colourless oil. Isolated as a 2:1 

mixture of isomers. 
1
H NMR (CDCl3, 4   MHz, 298 K) δ (ppm): 6.98-6.89 (m, 2H-

major and 2H-minor) 6.64-6.57 (m, 1H-major and 1H-minor), 6.46 (d, J = 8.0 Hz, 

1H-minor) 6.38 (d, J = 7.8 Hz, 1H-major), 4.66 (bs, 1H-minor), 4.39 (q, J = 7.2 Hz, 

1H-major), 4.21-4.13 (m, 2H-major and 1H-minor), 3.95-3.76 (m, 2H-major and 2H-

minor), 3.26 (t, J = 7.0 Hz, 1H-minor), 2.87-2.67 (m, 2H-major and 2H-minor), 2.37-

2.11 (m, 1H-major and 2H-minor), 1.99 (dd, J = 14.0, 3.7 Hz, 1H-major), 1.91-1.67 

(m, 2H-major and 2H-minor), 1.34 (t, J = 7.1 Hz, 3H-minor), 0.99 (t, J = 7.2 Hz, 3H-

major). 
19

F NMR (CDCl3,  76 MHz, 298 K) δ (ppm): -79.3 (minor), -78.5 (major). 

13
C NMR (CDCl3, 100 MHz, 298 K) δ (ppm): Mixture of major and minor product: 

48.5, 44.9 (d, J = 13 Hz), 37.0 (t, J = 6.9 Hz), 36.5 (t, J = 7.7 Hz), 29.5, 23.6 (t, J = 

8.5 Hz). Major: 170.8, 142.6, 129.3 (m), 126.9 (m), 123.6 (q, J = 286.7 Hz), 120.5, 
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117.4 (m), 114.5 (d, J = 6.9 Hz), 76.4 (q, J = 28.5 Hz), 64.0 (m), 26.0 (m), 13.7 (q, J 

= 6.9 Hz). Minor: 169.5, 143.9, 129.3 (m), 126.9 (m), 123.1 (q, J = 286.7 Hz), 120.4, 

117.4 (m), 114.2 (d, J = 6.9 Hz), 78.6 (q, J = 29.3 Hz), 64.0 (m), 26.0 (m), 14.0 (q, J 

= 6.9 Hz). HRMS for C15H19F3NO3 [M+H]
+
: m/z calc., 318.1312; found, 318.1311. 

Strong correlation between CF3 and CH was observed in the major product but 

absent in the minor product in 
1
H-

19
F HOESY. 
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7 Conclusion and perspectives 

The hydrogenation of unsaturated bonds is one of the most widely studied 

transformations in both academia and industry. However, there are still challenges in 

the selective reduction of imino bonds, especially N-heterocycles under mild 

conditions. In addition, single catalysts capable of reducing multiple substrates, 

while tolerating an ample variety of functionalities are rare. Throughout this PhD 

thesis, our efforts in tacking some of the major issues affecting current reduction 

methods have been presented. The cyclometalated Ir(III) complexes presented herein 

are capable of not just reducing multiple substrates but also capable of tolerating 

sensitive functionalities which have been problematic in the past. Moreover, 

reductions could be carried out under environmentally benign reaction conditions 

and using user friendly reductants. Challenging substrates such as -functionalised 

ketones and N-heterocycles were reduced in water with high yields (Scheme 7.1 and 

Scheme 7.2, respectively). In addition, the reductive amination of ketones with 

ammonium formate has also been developed with iridicycles to give direct access to 

primary amines which have been challenging to achieve in the past (Scheme 7.3).  

 

Scheme 7.1: Transfer hydrogenation of -substituted ketones in water. 
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Scheme 7.2: Transfer hydrogenation of N-heterocycles in water. 

 

Scheme 7.3: Synthesis of primary amines by direct reductive amination of ketones. 

The dehydrogenation of saturated organic molecules represents an important 

synthetic route towards unsaturated molecules, such as the conversion of amines to 

imines, or the conversion of alcohols to carbonyls. Acceptorless dehydrogenation 

permits such transformations in the absence of stoichiometric sacrificial hydrogen 

acceptors, such as benzoquinone or O2. Molecular hydrogen that is released from the 

molecules is a high energy fuel. In terms of atom economy and from an industrial 

point of view, catalysts capable of activating such molecules to release H2 are highly 

desirable. In this thesis, we have demonstrated that cyclometalated Ir(III) complexes 

are highly versatile for the acceptorless dehydrogenation of a range of N-

heterocycles that have potential hydrogen storage applications. Moreover, such 

catalysts can also be utilised for the formation of C-C bonds leading to novel 
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functionalised N-heterocycles. This work is summarised in Scheme 7.4 and Scheme 

7.5, respectively. In addition, we have also demonstrated that the reverse 

hydrogenation is also viable with the same catalysts for such molecules.   

 

Scheme 7.4: A highly versatile cyclometalated Ir(III) complex for the acceptorless dehydrogenation 

of N-heterocycles. 

 

Scheme 7.5: A new acceptor-less and base free C-C bond formation strategy. 
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Thus, cyclometalated Ir(III) complexes are “universal” catalysts capable of 

hydrogenating and dehydrogenating multiple challenging substrates, rather than 

specialised catalysts for a particular set of substrates. Their robustness and versatility 

make them ideal for industrial use. Indeed, such complexes developed are now 

commercially available.   

 

 

 

 A robust and versatile catalyst for 

hydrogenation 

 Air and moisture stable 

 Displays excellent selectivity 

 Tolerates sensitive groups 

 Successful in reductive amination 

 Wide substrate scope, with 

excellent yields 

  A robust and versatile catalyst for 

dehydrogenation 

 Air and moisture stable 

 Displays excellent selectivity 

 Tolerates sensitive groups 

 Wide substrate scope, with 

excellent yields 

Scheme 7.6: Cyclometalated Ir(III) complexes for hydrogenation and dehydrogenation. 

Hopefully, the work presented in this thesis opens up the door for further exciting 

chemistry in the future. In the area of transfer hydrogenation, a natural extension 

would be the development of asymmetric reduction systems with cyclometalated 

complexes. These complexes have also shown promise in the dehydrogenation of 

both primary and secondary alcohols. This work has not been included in this thesis; 

but preliminary results are summarised in Scheme 7.7. Future work could include 

developing a robust catalyst capable of such transformation with low catalyst 

loadings. Further, cyclometalated Ir(III) complexes could also be tested for the 

dehydrogenation of more challenging substrates, for instance alkanes to alkenes, 
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primary amines to nitriles. For acceptorless dehydrogenation coupling, chiral 

organocatalysts can be used together with iridicycles to induce chirality at the newly 

formed quaternary centres after the attack on the electrophile. 

 

Scheme 7.7: Dehydrogenation of primary and secondary alcohols. 
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