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Abstract1

Measures of biodiversity change such as the Living Planet Index describe proportional change in the abundance2

of a typical species, which can be thought of as change in the size of a community. Here, I discuss the orthogonal3

concept of change in relative abundances, which I refer to as shape change. To be logically consistent, a measure4

of the rate of shape change should be scaling invariant (have the same value for all data with the same vector5

of proportional change over a given time interval), but existing measures do not have this property. I derive a6

new, scaling invariant measure. I show that this new measure and existing measures of biodiversity change such as7

the Living Planet Index describe different aspects of dynamics. I show that neither body size nor environmental8

variability need affect the rate of shape change. I extend the measure to deal with colonizations and extinctions,9

using the surreal number system. I give examples using data on hoverflies in a garden in Leicester, UK, and the10

higher plant community of Surtsey. I hypothesize that phylogenetically-restricted assemblages will show a higher11

proportion of size change than diverse communities.12
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1. Introduction13

The Living Planet Index (Loh et al., 2005) and similar indices (e.g. Buckland et al., 2011; Burns et al., 2013;14

Dirzo et al., 2014) measure proportional change in the abundance of a typical species. They are used by a number15

of major conservation organizations and have resulted in alarming headline figures such as the mean 25% decline16

in abundance of terrestrial vertebrate populations between 1970 and 2000 (Loh et al., 2005). I will refer to the17

property measured by these indices as “size” change. It is obvious that there are other aspects of change in the18

abundances of species in a community, which may also be of both theoretical and applied interest. I will concentrate19

on one of these:20

Definition 1. “Shape” change is “change in the relative abundances of species in a community” (Lewis, 1978),21

where the relative abundance of a species is its abundance divided by the sum of abundances of all species in the22

community.23

Lewis (1978) used Definition 1 as part of a definition of succession, and measuring the rate of change in relative24

abundances is an important aspect of testing theories about succession (e.g. Boit and Gaedke, 2014; Walker and25

Wardle, 2014). However, in this manuscript I avoid the term “succession”, because it has been associated with a26

much wider set of changes in communities and ecosystems (Odum, 1969). A number of measures of the rate of27

shape change have been proposed (Jassby and Goldman, 1974; Lewis, 1978; Foster and Tilman, 2000), and measures28

developed for other purposes (Field et al., 1982; Legendre and Gallagher, 2001) have also been used to measure29

shape change. Nevertheless, there has been little systematic consideration of how such a measure should behave, or30

of the connection to size change. I believe that the field would benefit from the kind of systematic approach that31

has been applied to measures of evenness (e.g. Smith and Wilson, 1996) and other aspects of diversity (e.g. Jost,32

2007; Leinster and Cobbold, 2012).33

In this paper, I first outline the properties that a measure of rate of shape change should have. This gives34

a rough idea of how a suitable measure can be derived. After deriving such a measure, I show that it has two35

simple interpretations: first, as proportional to the Aitchison distance (Aitchison, 1992) between two sets of relative36

abundance data; and second, as the among-species sample standard deviation of mean proportional population37

growth rates over a finite time period. Note that the proportional growth rate for a species with positive abundance38

x(t) at time t is defined as (1/x)dx/dt, assuming that x(t) is differentiable with respect to t1. I define the growth39

space of a community as a real space whose axes represent proportional growth rates of each species. I show that40

the new measure of rate of shape change and the Living Planet Index (Loh et al., 2005) are proportional to the41

lengths of projections onto orthogonal subspaces of growth space, and thus measure distinct aspects of community42

dynamics. The geometry of growth space leads to the results that body size, generation time and environmental43

variability have no necessary connection to the rate of shape change. I illustrate the calculation of the rate of shape44

1Widely-used near-synonyms include ‘per capita growth rate’ and ‘specific growth rate’. However, ‘per capita’ is not strictly appro-
priate when individuals are not well defined (e.g. clones, colonies) or not measured (e.g. proportional cover, biomass), and the term
‘proportional growth rate’ agrees with the usages ‘proportional change’ and ‘proportional scale’, which are important in this context.
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Table 1: Notation. Major symbols used in both main text and appendices. Quantities for which no dimensions are indicated are
dimensionless. Abundances are shown as dimensionless here, although in some cases they will have dimensions such as numbers per
unit area.
Symbol Meaning Dimensions
ci observed count of the ith species
k1 number of species present at start and end of a time interval
k2 number of species present at start but absent at end of a time interval
k3 number of species absent at start but present at end of a time interval
k4 number of species absent at start and end of a time interval
M an n× n diagonal matrix with positive diagonal elements mi

n number of species
pi relative abundance xi/(

∑n
j=1 xj) of the ith species

q projection of r onto the subspace orthogonal to line of equal proportional growth rates T−1

r proportional growth rate (1/x)dx/dt T−1

r̃i(t, t+∆t) mean proportional growth rate over time interval (t, t+∆t] T−1

r vector of proportional growth rates (or mean proportional growth rates) T−1

r̄ among-species sample mean of mean proportional growth rates T−1

sr among-species sample standard deviation of mean proportional growth rates T−1

S1 set of species present at start and end of a time interval
S2 set of species present at start but absent at end of a time interval
S3 set of species absent at start but present at end of a time interval
S4 set of species absent at start and end of a time interval
t time T
∆t a time interval (not necessarily small) T
θ angle between r and line of equal proportional growth rates
u projection of r onto the line of equal proportional growth rates T−1

vij ratio of abundances xi/xj of a pair of species at a given time
v vector of abundance ratios vij
wk mean proportional rate of change in the kth abundance ratio in v

w vector of mean proportional rates of change in abundance ratios in v

xi abundance of the ith species
x,y abundance vectors for a set of species
ψ the surreal number ω1/ω

ω simplest surreal number greater than all positive real numbers

change using data on hoverflies in a garden in Leicester, UK. I then extend the approach to deal with colonization45

and extinction, making use of the surreal number system, which includes quantities further from and closer to46

zero than any real number (Conway, 2001). The surreal numbers are useful because, for example, an extinction47

should represent a larger change than any reduction in abundance that does not involve extinction, and yet such48

reductions can lead to arbitrarily large real numbers. I apply this extended method to the higher plant community49

on the volcanic island of Surtsey. Finally, I discuss the hypothesis that phylogenetically-restricted assemblages will50

show a relatively high proportion of size change compared to diverse communities. Notation used throughout is51

summarized in Table 1.52

2. Properties of a measure of rate of shape change53

In this section, I list the properties that I believe a measure of the rate of shape change should have in order to54

match up with biological intuition. If we accept these properties, we will know a lot about what a suitable measure55

should look like, even before we have attempted to derive it. It is of course true that others might choose a different56
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list of properties, and thus arrive at measures that will be useful for different purposes.57

Property 1. By Definition 1, the rate of shape change should be expressible as a function of relative abundances58

and time alone. Although not explicit in the definition, I will here be concerned with scalar measures of59

rate (in physical terms, “speed” rather than “velocity”). This is needed because one will often want to60

make comparisons of rates between communities containing different sets of species, which cannot be61

done if the rate has multiple components, each associated with a particular species or group of species.62

If the community consists of n species (not all of which may be observed at a particular time), then63

denote by xi ≥ 0 a measure of the abundance of the ith species, i = 1, 2, . . . , n. The abundances of64

all species in the community at time t can then be represented as a column vector x(t) ∈ R
n
≥0 (the65

n-dimensional space of positive real numbers).66

The relative abundance of the ith species at time t is pi(t) = xi(t)/
∑n
j=1 xj(t). The set of relative67

abundances for all species is also known as a composition, and is a vector in the unit simplex S
n−1.68

Although it is necessary that a rate of shape change can be expressed in terms of relative abundances69

and time alone, many other necessary properties are easier to interpret in terms of absolute abundances.70

Property 2. The rate should be a mean rate of change over a finite time interval. This is required if such a rate is71

to be calculated from observations taken at discrete points in time. Furthermore, it is often useful to72

average out stochastic variability in community composition, so as to focus on underlying trends.73

Given observations at the start and end of a time interval (t, t+∆t] and the intuitive concept of speed,

the rate of shape change should be a function of the form

f(x(t),x(t+∆t),∆t) =
1

∆t
g(x(t),x(t+∆t)).

This means that we need only find a suitable way of measuring the difference between two abundance74

vectors.75

Property 3. Defining shape change as change in relative rather than absolute abundances (Definition 1) means that76

it should not be altered if all abundances at a given time are multiplied by a constant. In other words,77

g(x,y) = g(φx, ρy), φ > 0, ρ > 0. (1)

Any function of a composition satisfying Equation 1 is expressible in terms of ratios of the form xi/xj78

(Aitchison, 1992). This property also means that we can work with samples from which absolute79

abundance data are not available (which can apply to everything from light traps to environmental80

sequencing).81

Property 4. If no net change has occurred over a time interval, the rate of shape change over that interval should be82
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zero. Intuitively, if all the abundances are unchanged, a measure that depends only on those abundances83

and the time interval should also be unchanged. In other words,84

g(x,x) = 0. (2)

Property 5. The rate of shape change should be non-negative. Intuitively, the community is different in some way

if any of the relative abundances have changed, and a measure of the “speed” of change over some time

interval should be positive if any change has occurred. In other words,

g(x,y) ≥ 0.

Properties 4 and 5 together imply that the rate of shape change cannot be additive over subintervals.85

Suppose that over two successive subintervals we move from x to y 6= x and then back to x. From86

property 4, the net change over the combined interval is g(x,x) = 0. From property 5, the net change87

over each of the subintervals is positive.88

Property 6. If all species have the same proportional growth rate, relative abundances do not change, and the

rate of shape change should be zero. This is the important special case of a deterministic neutral

community. If Equations 1 and 2 hold, setting y = x in Equation 1 shows that this will be the case.

In all other cases, the rate should not be zero. In other words,

g(x,y) = 0 if and only if y = φx, (φ > 0).

Property 7. The rate of shape change should be the same for all abundance trajectories having the same vector of89

proportional changes over some specified time interval. This is both the most important and the most90

difficult requirement to grasp, and is needed in order to make the rate of shape change consistent with91

the way in which population growth is measured.92

For a single species, the same amount of proportional growth has occurred if the population of that93

species increases from 1 to 10 as if it increases from 10 to 100 units. This can be justified at the individ-94

ual level by considering the population as a birth-death process. If the population changes by the same95

proportion in each case, then any individual experiences the same balance between proportional birth96

and death rates. Similarly, for a set of three species, the amount of proportional change from [1, 1, 1]′97

(where the prime denotes transpose) to [1.1, 0.9, 1.2]′ is the same as from [10, 10, 10]′ to [11, 9, 12]′, and98

from [1, 10, 1]′ to [1.1, 9, 1.2]′. Thus, we require,99

g(x,y) = g(Mx,My) (3)

for all n × n matrices M with positive diagonal elements mi and zero off-diagonal elements. In other100
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words, there is an equivalence class consisting of all pairs (x,y) such that for all i ∈ 1, . . . , n, yi/xi = mi101

for some species-specific constants mi. Since multiplication by M corresponds to a scaling transfor-102

mation with factors m1,m2, . . .mn, a function satisfying Equation 3 may be called scaling invariant2.103

Figure 1 explains scaling invariance visually. Consider any arbitrary abundance trajectory (left, dashed104

lines, here shown for three species), with two abundance vectors x and y lying on this trajectory, sep-105

arated by time ∆t. Applying the scaling M to the entire trajectory transforms x and y to Mx and106

My respectively (right). A function is scaling invariant if its value is unchanged by the action of any107

scaling matrix M with positive diagonal elements on any two abundance vectors x and y.108

Scaling invariance is important theoretically if we want to take an organism-centred view of temporal109

dynamics. For any species, level sets in niche space are sets of points for which the species has the same110

proportional growth rate, and therefore experiences an environment of equivalent quality. This idea111

extends the concept of the Hutchinson niche, which is bounded by the level set of zero proportional112

growth rate (Maguire, 1973). A scaling M applied to an abundance trajectory does not alter the113

proportional growth rate for any species at any time, and therefore should not alter a measure that114

tells us about how organisms experience change.115

An unrelated but important practical consequence of scaling invariance is that there is no need to116

measure abundance in the same units for every species, provided that the same units are used for a117

given species at all time points. For example, the abundance of one species could be measured in118

percentage cover, and that of another species in numbers trapped in a pitfall trap, without affecting119

the value of a scaling invariant measure of rate of change. In this case the matrix M can be thought of120

as representing the conversion factors needed to put all abundances in the same units, and if Equation121

3 holds, M does not need to be known. Similarly, if detection probabilities differ among species but122

remain constant over time, they do not affect the value of a scaling invariant measure of rate of change123

(although if detection probabilities change over time in different ways for different species, such a124

measure will be affected).125

There is one obvious objection to the idea that change should be measured on a proportional scale: it126

might be argued that the proportional scale gives too much weight to rare species. Many important127

properties of communities and ecosystems can be approximated as functions of abundance. Examples128

include the structural complexity of the community, the rate of primary production, and the conserva-129

tion value of the community. The simplest plausible functions relating these properties to abundance130

are linear combinations of abundances, where each species has a weight that measures the contribution131

2The term used in compositional data analysis is perturbation invariant (e.g. Aitchison, 1992; Egozcue et al., 2003), but in ecology
this is likely to cause confusion with the idea of a perturbation as a disturbance to a system. Note that scaling invariance is distinct
from Property 3, which is sometimes called scale invariance.
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Figure 1: Scaling invariance (Property 7). Left: arbitrary abundance trajectory for three species represented as dashed lines, with
abundance on the vertical axis and time on the horizontal axis. Abundance vectors x and y lie on this trajectory, separated by time ∆t
(circle, triangle and diamond symbols represent the three abundances in each vector). Applying the scaling M to the whole trajectory
leads to corresponding abundance vectors Mx and My (right). If the function g(x,y) is scaling invariant, then it is unchanged by the
action of the scaling M.
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of a unit of abundance of that species to the function (e.g. Gross and Cardinale, 2005). If the abun-132

dance of a rare species is doubled, many of these properties might be almost unchanged. In contrast,133

doubling the abundance of a common species might result in large changes in these properties.134

There are two answers to this objection. First, a scaling invariant function must give equal weight135

to every species (Appendix D). Thus, the decision to take an organism-centred view of temporal136

dynamics (which leads to scaling invariance) precludes also taking the ecosystem function-centred view137

outlined above. Second, I believe that if changes in ecosystem function are of interest, they should138

be studied directly, rather than through using change in abundances as a surrogate. Rare species will139

sometimes be important to ecosystem function. For example, a rare but very large tree species might140

have a big effect on structural complexity, a rare keystone predator might have a big indirect effect141

on primary production, and a rare but endangered organism such as a rhinoceros might have a big142

effect on conservation value. Thus, it is meaningless to talk about a measure that gives “too much143

weight” to a rare species unless the right weight to give each species is known. If the weights are144

known, the appropriate function can be studied. If the weights are unknown, studying abundances will145

be misleading. Even the simplest families of population growth models such as the exponential and the146

logistic are not closed under addition (Kingsland, 1985, p. 89). Thus, a weighted sum of abundances147

of populations, each growing according to a different member of such a family, will have qualitatively148

different behaviour from any member of the family. In summary, changes in abundance should be149

studied only if they are of interest in their own right, not as a surrogate for some other property.150

Exponential growth is an important idealized case in population dynamics, playing a similar role in151

population biology to that of a body with no forces acting on it in Newtonian physics (Ginzburg152

and Colyvan, 2004, chapter 6). It also provides an easy way to demonstrate whether a measure of153

the rate of shape change could be scaling invariant. In this special case, each population experiences154

an environment of constant quality, and grows at a constant proportional rate. In other words all155

relevant aspects of the system have either zero or non-zero but constant proportional rates of change.156

A necessary but not sufficient condition for scaling invariance is that a measure of the rate of shape157

change is constant over time when every species is growing exponentially (Appendix A). The measures158

of rate of shape change in common use (Jassby and Goldman, 1974; Lewis, 1978; Field et al., 1982;159

Foster and Tilman, 2000; Legendre and Gallagher, 2001) are not constant over time under exponential160

growth (Figure 2A and Appendix B), and are therefore not scaling invariant. For example, it is easy to161

see that measures of the rate of shape change based on squared (Foster and Tilman, 2000) or absolute162

(Lewis, 1978) differences in composition will not be invariant under constant proportional changes in163

composition resulting from exponential growth.164

The arguments above do not need the assumption that exponential growth is common in nature. Any165
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Figure 2: A: relative rate of shape change against time for three species growing exponentially, as measured by sr (black line, Equation
5, the among-species standard deviation of proportional growth rates) and five existing measures of rate of shape change (Jassby and
Goldman, 1974; Lewis, 1978; Field et al., 1982; Foster and Tilman, 2000; Legendre and Gallagher, 2001, red, blue, green, purple, orange,
respectively, as in panel C key). B: proportional growth rate [(1/xi)dxi/dt] against time for three species growing logistically. C: relative
rate of shape change against time for three species growing logistically as in panel B. D: relative rate of shape change against time
for three species growing logistically, as in panel B except that initial abundances and carrying capacities (and all abundances on the
trajectory between these points) are scaled by M = diag(1/3, 1/9, 1/2), keeping proportional growth rates constant. In A, C, and D:
Euclidean is 1/∆t times the distance in Foster and Tilman (2000); Chi-squared is 1/∆t times the distance in Legendre and Gallagher
(2001); Bray-Curtis is 1/∆t times the distance in Field et al. (1982), calculated on relative abundances with a 1/4 power transform;
constant time interval ∆t = 0.001 between observations; each measure of rate of shape change is plotted relative to its value over the first
time interval. Parameters for A: initial abundances [0.5, 0.1, 0.4]′; proportional growth rates [−0.2, 0.2,−0.1]′. Parameters for B and C:
initial abundances [1, 0.3, 0.4]′, proportional growth rates at low abundance [0.2, 0.1, 0.2]′, carrying capacities [3, 9, 2]′. Parameters for
D: initial abundances [1/3, 1/30, 1/5]′, proportional growth rates at low abundance [0.2, 0.1, 0.2]′, carrying capacities [1, 1, 1]′.
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two patterns of growth resulting in the same pattern of proportional change over a given time interval166

should correspond to the same rate of shape change, no matter what trajectories the populations167

involved followed to get from the start to the end of the interval.168

Property 8. A measure of the rate of shape change should not depend (in a statistical sense) on the number of169

species being studied. This is important for two reasons. First, it is usually impossible to measure the170

abundance of every species in the community. If instead we have abundances for a random sample of171

species, then a measure whose expected value does not depend on the number of species sampled can172

be used to estimate the rate of shape change in the entire community. In general, it will be difficult173

to obtain a random sample of species. Selecting species at random from a complete species list is174

rarely possible. Choosing individuals at random and identifying them does not give a random sample175

of species, because more abundant species are more likely to be included in the sample. In practice,176

available data are often used without any attempt at random sampling (e.g. Collen et al., 2013, p. 72).177

Nevertheless, independence of the number of species studied remains a desirable statistical property.178

Second, we will often want to compare communities with different numbers of species. Other things179

being equal, there is no intuitive reason why a change in the number of species should be associated180

with a change in the rate of shape change.181

3. A new measure of rate of shape change182

In what follows, I initially restrict attention to cases where there is no colonization or extinction, so that all183

abundances are positive. I later show how to deal with colonization and extinction in a way that is consistent with184

the approach taken below.185

Consider a single species with abundance x(t) at time t, where x(t) is a differentiable, positive function of time,186

and proportional growth rate (1/x)dx/dt. The mean proportional growth rate over the time interval (t, t+∆t] is187

r̃(t, t+∆t) =
1

∆t

∫ t+∆t

t

1

x

dx

du
du =

log x(t+∆t)− log x(t)

∆t
, x > 0, (4)

(throughout, log denotes the natural logarithm). The requirement that x(t) is differentiable is not much of a limita-188

tion, because even in stochastic models where abundance may not be differentiable, there is usually a differentiable189

expected abundance to which we can apply Equation 4. The mean proportional growth rate is obviously a constant190

for all abundance trajetories resulting in the same amount of proportional growth over a given time interval. I show191

in Appendix C that the natural generalization of Equation 4 to a scalar measure of the rate of shape change is the192

among-species sample standard deviation of mean proportional growth rates,193

sr =

[

1

n− 1

n
∑

i=1

(r̃i(t, t+∆t)− r̄(t+∆t))2

]1/2

, (5)
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where r̃i(t, t + ∆t) is the mean proportional growth rate of the ith species over the time interval (t, t + ∆t], and194

r̄(t, t+∆t) is the among-species mean of mean proportional growth rates over this interval:195

r̄(t, t+∆t) =
1

n

n
∑

i=1

r̃i(t, t+∆t). (6)

I show in Appendix C that Equation 5 satisfies Properties 1 to 8 (although Property 8 is only satisfied asymptot-196

ically). In particular, this measure is scaling invariant, unlike existing measures of the rate of shape change. For197

example, the black line in Figure 2A is the value of sr for a numerical example in which all species are growing198

exponentially. I show in Appendix C that Equation 5 is proportional to the Aitchison distance between the relative199

abundances at two time points. The Aitchison distance is the standard measure of distance between compositions200

(Aitchison, 1992; Egozcue et al., 2003). Finally, I show in Appendix C that Equation 5 can also be expressed in201

terms of relative abundances:202

sr =
1

∆t





1

n(n− 1)

n−1
∑

i=1

n
∑

j=i+1

(

log

(

pi(t+∆t)

pj(t+∆t)

)

− log

(

pi(t)

pj(t)

))2




1/2

. (7)

Although I have shown that sr is scaling invariant while a number of other proposed measures of shape change203

are not, one might wonder whether there are other possible scaling invariant measures of shape change. In Appendix204

D, I show that any scaling invariant function is a function of the vector r of mean proportional growth rates. Among205

such functions, a function proportional to the Aitchison distance is in some sense the simplest way to measure change206

in relative abundances (Aitchison, 1992).207

4. A logistic growth example208

In this section, I illustrate how sr and existing measures of the rate of shape change behave in the simple209

case of logistic growth. Exponential growth is defined by constant proportional growth rates. Under patterns of210

growth other than exponential, proportional growth rates do not remain constant over time, and so the rate of211

shape change should not in general be constant. For example, Figure 2B shows proportional growth rates for three212

species under logistic growth, and Figure 2C shows the corresponding values of sr (black line) and several existing213

measures of rate of shape change. Applying any non-identity scaling to the abundance trajectories (for example,214

M = diag(1/3, 1.9, 1/2)) leaves the proportional growth rates (Figure 2B) and sr (Figure 2D, black line) unchanged,215

but causes qualitative changes in existing measures of the rate of shape change (Figure 2D, red, blue, green, purple216

and orange lines). In Figure 2D, the Jassby and Goldman, Lewis, Bray-Curtis, Euclidean and chi-squared measures217

have local minima just before time 20, which are absent in Figure 2C. All these measures can also differ qualitatively218

from sr. In Figure 2D, the Jassby and Goldman, Lewis, Euclidean and chi-squared measures have local maxima219

close to the time at which sr has its first local minimum, and the Bray-Curtis measure has a local minimum close220

to the time at which sr has its first local maximum. It is also obvious from Figure 2C and D that rates of shape221

change need not be decreasing functions of time, even under very simple models of population growth. It has been222
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suggested that during succession, “rate-of-change curves are usually convex, with change occurring most rapidly at223

the beginning” (Odum, 1969) for a wide range of ecosystem properties. The results in Figure 2 suggest that if real224

communities typically have decreasing rates of shape change over time, some biologically interesting mechanism225

must be generating them.226

5. Shape change and biodiversity trends227

In this section, I show the geometric connection between the new measure of rate of shape change (Equation228

5) and three high-profile measures of biodiversity trends. This connection is a major strength of sr, not shared229

by existing measures of the rate of shape change. I consider three major measures of biodiversity trends: the the230

Living Planet Index (Loh et al., 2005), which measures global changes in vertebrate populations; the UK Wild Bird231

Indicators (Buckland et al., 2011), which measures changes in UK bird populations; and the Watchlist Indicator,232

which measures population trends in 155 species of birds, mammals, butterflies, and moths of conservation priority233

in the United Kingdom (Burns et al., 2013, pages 10 and 81). All these measures are based on the exponential of the234

among-species mean of mean proportional growth rates. They reveal patterns of major conservation importance,235

such as the mean 25% decline in terrestrial vertebrate populations between 1970 and 2000 (Loh et al., 2005), and236

the mean 77% decline in species of conservation priority in the United Kingdom between 1970 and 2010 (Burns237

et al., 2013, p. 10).238

Such declines do not necessarily involve shape change in the sense of Definition 1: if all species decline at the239

same rate, fewer organisms are present in total, but their relative abundances are unchanged. To understand the240

connection between shape change and these measures of biodiversity trends, I introduce the idea of the growth241

space of a community. For a given set of species, every vector of proportional growth rates can be represented as a242

point in a space Rn which I refer to as the growth space of the community (Figure 3 is a two-dimensional example).243

In the following I drop the time indexing for simplicity. The line r1 = r2 = . . . = rn in growth space represents244

a deterministic neutral community, in which all species have the same proportional growth rate and the rate of245

shape change is zero (Property 6). The growth rate vector r can be decomposed into two orthogonal components246

(Appendix C). The first component u is the projection of r onto the line of equal proportional growth rates, which247

represents change in abundance without shape change. The among-species mean of mean proportional growth rates248

(Equation 6) is proportional to the length of this component and is a natural measure of size change. Size change249

is therefore essentially the same as the natural log of the measures of biodiversity trends described above. This250

component is important because change purely in the r1 = r2 = . . . = rn direction represents balanced exponential251

growth, a state disallowed by the standard Lotka-Volterra model of consumer-resource dynamics, but possible under252

ratio-dependent dynamics (Arditi and Ginzburg, 2012, section 6.1).253

However, it is unlikely that precisely balanced growth will occur in a real community. The length of the second254

component q measures the extent to which growth is unbalanced. It represents change in relative abundance (shape)255
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θ

Figure 3: Geometric interpretation of the rate of shape change in a two-species community. The axes r1 and r2 are the proportional
growth rates of the two species. The position vector r represents the mean proportional growth rates for a given time interval. The
diagonal line r1 = r2 represents equal proportional growth rates, and therefore no shape change. The vector u is the projection of r onto
the r1 = r2 line. It represents the rate of change of size of the community, and each of its elements equals the among-species mean of
mean proportional growth rates. The norm of the projection q of r onto the subspace orthogonal to the r1 = r2 line represents change
in shape of the community, and is proportional to the among-species standard deviation of mean proportional growth rates. The square
of the cosine of angle θ is change in size as a proportion of total change. All the internal equilibria are mapped to the origin (black
dot). On the bold half-lines (r1 < 0, r2 = 0) and (r1 = 0, r2 < 0), one species declines while the other remains at constant abundance.
The dotted lines are contours of constant rate of shape change, with the rate increasing away from the r1 = r2 line.

13



and is proportional to the among-species standard deviation of mean proportional growth rates (Equation 5). The256

orthogonality of these two components implies that the proposed measure of rate of shape change is distinct from257

measures of biodiversity trends such as the Living Planet Index (Loh et al., 2005), the UK Wild Bird Indicators258

(Buckland et al., 2011), and the Watchlist Indicator (Burns et al., 2013).259

Two further quantities can be obtained from Figure 3. First, the total amount of change in a community is the260

norm ‖r‖ of the vector r. This norm is zero if the community is at equilibrium, and positive otherwise. I refer to it261

as the “activity” level of the community (with dimensions time−1). To make comparisons among communities, the262

scaled activity n−1/2‖r‖ is useful because its expected value does not depend on the number of species sampled.263

Second, cos2 θ = (‖u‖/‖r‖)2 (Figure 3) measures the proportion of change that is size change. The value of cos2 θ264

is a useful way of comparing the dynamics of communities because it is dimensionless, and does not depend on265

the number of species in the community. In terms of linear models, cos2 θ is the coefficient of determination for a266

one-dimensional linear model containing only a mean term (Saville and Wood, 1991, p. 410).267

6. Properties of growth space268

The geometry of growth space makes it easy to visualize some properties of the rate of shape change (Figure269

3), and leads to important theoretical results. As already mentioned, the rate of shape change is zero along the270

line r1 = r2 = . . . = rn (Figure 3, solid line). Thus, the community can increase or decrease in total abundance271

without shape change, by remaining on this line. Lines parallel to the r1 = r2 = . . . = rn line (Figure 3, dotted272

lines) have constant rate of shape change, increasing away from the r1 = r2 = . . . = rn line in each direction. At273

the origin (r1 = r2 = . . . = rn = 0, Figure 3, black dot), corresponding to all the equilibria of the system, there is274

no shape change and no growth. The bold half-lines in Figure 3 (excluding the origin) consist of points for which275

some proportional growth rates are zero and others are negative. If all species had positive abundance for such a276

community, and growth rates remained at a fixed point on the bold half-lines, the community would asymptotically277

approach a boundary equilibrium at which the species with negative growth rates were absent. Since such points278

do not lie on the r1 = r2 = . . . = rn line, the rate of shape change would not go to zero as the equilibrium279

was approached (although such situations are unlikely to be common, and species with very low abundance would280

eventually go extinct, as discussed later).281

Similar but more complicated cases may also occur. In a Lotka-Volterra competition model for proportional cover282

of six components in a coral reef system (Spencer and Tanner, 2008), the abundance of macroalgae and pocilloporid283

corals is very close to zero from around 25 years onwards (Figure 4A, green and orange lines respectively). The284

proportional growth rates of these two components have large but fluctuating negative values (Figure 4B, green285

and orange lines respectively), while the proportional growth rates for the other components are much closer to286

zero. In growth space, the system is approximately moving relatively far from zero in the (−,−) quadrant of a287

plane on which all components other than macroalgae and pocilloporid corals have zero proportional growth rates.288
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Figure 4: A: changes in proportional cover over time in a 6-component Lotka-Volterra competition model for a coral reef system (Heron
Island, Protected Crest site). Parameter estimates from Table 2 in Spencer and Tanner (2008). B: Mean proportional growth rates
(over one-year intervals) against time for the data in A. C: sr (black line, Equation 5) and five existing measures of rate of shape change
(red, blue, green, purple, orange, respectively: Jassby and Goldman, 1974; Lewis, 1978; Field et al., 1982; Foster and Tilman, 2000;
Legendre and Gallagher, 2001). Each measure is plotted relative to its value in the first time interval.

Thus, from around 25 years onwards, the rate of shape change as measured by sr is large, but fluctuates over time289

(Figure 4C, black line). Existing measures of the rate of shape do not have large values for this portion of the model290

output (Figure 4C, red, blue, green, purple and orange lines). They behave differently from sr because they do not291

measure distance in growth space.292

Two important theoretical results follow immediately from the geometry of growth space. First, there is no293

necessary connection between the typical body size and generation time for species in a community and the rate294

of shape change. Differences in generation time are likely to be associated with differences in body size and the295

among-species mean of maximum proportional growth rates (e.g. Drury and Nisbet, 1973; Tilman, 1988, p. 230).296

It is possible (although not necessarily true) that there are corresponding effects on mean proportional growth297

rates in the field. Nevertheless, it is only the among-species standard deviation of mean proportional growth rates298
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that determines how fast the relative abundances change. In consequence, there is no reason to assume that shape299

change must be faster in, for example, a microbial community than in a forest. If shape change is generally faster in300

microbial than plant communities (Fierer et al., 2010), it is not simply because microbes have faster growth rates.301

Similarly, although there may be a relationship between body size and the rate of shape change, as Anderson (2007)302

suggested in the broader context of succession, it is not a mathematical necessity.303

Second, environmental variability per se need not affect the rate of shape change. Although such variability304

may result in movement in growth space, the rate of shape change is only affected if this movement is not parallel305

to the r1 = r2 = . . . = rn line. In other words, environmental variability only affects the rate of shape change if it306

affects different species in different ways.307

7. Example: temporal change in a hoverfly assemblage, Leicester, UK308

The data analyzed here are a 30-year record of abundances of hoverflies (Diptera: Syrphidae) in a suburban309

garden in Leicester, United Kingdom. A Malaise trap was used to catch flying insects from 1 April to 31 October,310

on the same site every year from 1972 to 2001 (Owen, 2010, p. 37). Hoverflies were studied in more detail than311

other insect groups, and annual numbers for the 14 species caught more than 1000 times in total were reported312

(Owen, 2010, p. 88). Hoverflies in the UK have one, two, or more than two generations a year (Owen, 2010, p.313

91), so 30 years is a relatively long time scale for this assemblage. Larvae of different species use different food314

resources, including plant tissues, decaying organic matter, and aphids (Owen, 2010, p. 80), so the assemblage is315

quite functionally diverse. Large, active species are thought to be trapped less efficiently than small species (Owen,316

2010, p. 84). Therefore, existing measures of rate of shape change, which are not scaling invariant (Property 7),317

will not be useful descriptions of these data.318

Variation in annual counts is a combination of deterministic trends in true abundance, stochastic variation in319

true abundance (process error) and observation error. I used a state-space model (Appendix E) to describe both320

process and observation error, and calculated rates of change in size and shape using the expected abundances from321

this model. The four occasions on which a zero count was recorded can plausibly be treated as observation error322

based on a Poisson sampling model: a species which was not recorded in the trap sample in a given year is still323

likely to have been present in the local area.324

In Figure 5A, the logs of observed counts ci+1 are plotted against year, with one line for each species (note that325

the log(ci+1) transformation is used only for plotting the data: a Poisson sampling model is used for analysis). The326

slope of the line segment connecting the abundances of a given species in two successive years approximates the mean327

proportional growth rate r̃i for that species (except in the rare cases where the count was zero). Three important328

features are immediately obvious. First, there was a general downward trend in abundances, which may be caused329

by urbanization of surrounding agricultural land and a gradual increase in temperature (Owen, 2010, p. 229).330

Second, there were year-to-year fluctuations of more than two orders of magnitude. Third, these fluctuations often331
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involved simultaneous increases or decreases in many species. Important causes of these fluctuations include warm332

weather in spring and summer, variation in food supply for species whose larvae feed on aphids, and immigration333

from surrounding agricultural land (Owen, 2010, pp. 86-87).334

The size component (Figure 5B) fluctuated a lot despite the general negative trend in abundances, and there335

were many intervals in which it was positive (indicating that a typical species increased in abundance over that336

period). Note that for most of these intervals, the 95% confidence band for size change did not include zero, so that337

these short-term fluctuations are likely to be real, rather than a consequence of observation error. Similarly, the338

most obvious feature of the shape component was its variability from year to year (Figure 5C). I will return to the339

ecological meaning that can be extracted from these patterns after developing methods to deal with colonization340

and extinction.341

8. Colonization and extinction342

So far, I assumed that abundances are strictly positive (or at least that the underlying expected abundances343

are positive, if sampling zeros occurred). Even in cases where a complete census has been conducted, one could344

think of the set of individuals present as being a single realization of a stochastic process with positive expected345

abundances. Thus, treating absences as sampling zeros will usually be appropriate. Nevertheless, true zeros may346

occur, with a transition from a true zero to a positive abundance representing colonization and a transition from347

positive abundance to true zero representing extinction. Perhaps more importantly, the following analysis provides348

a link to related measures for presence/absence data.349

If abundance xi of some species is zero, the proportional growth rate (1/xi)dxi/dt is undefined. This has350

important practical consequences. For example, the Watchlist Indicator (Burns et al., 2013) is closely related to351

the rate of change in size (Equation 6) for species of conservation priority. It would be undefined if one or more of352

the species of interest went extinct, yet such an event would be of even more concern than a decline in abundance353

without extinction.354

Looking at the form of the mean proportional growth rate (Equation 4) suggests an approach. In the following355

explanation, I focus on extinction, because colonization is simply the mirror image. Intuitively, suppose that we356

would like an index based on a weighted sum of two terms, one reflecting changes in abundance measured on a357

proportional scale, and the other reflecting extinctions. The mean proportional growth rate (Equation 4) involves358

log xi(t), and limxi(t+∆t)→0+ log xi(t+∆t) = −∞. Choosing a real weight for extinctions is equivalent to adding an359

arbitrary constant to an observed zero, and it is in principle possible for abundance to be positive but less than this360

constant. Thus for every real choice of weight given to the extinction component and given initial abundance xi(t),361

there is a positive abundance xi(t +∆t) for which the magnitude of the mean proportional growth rate is greater362

than this weight. In other words, for any finite weight given to extinctions, there will be changes in abundance363

not involving extinction that count for more than changes involving extinction, which is intuitively unreasonable.364
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Figure 5: Dynamics of the hoverfly assemblage of a Leicester, UK garden. A: log of observed count ci+1 against time for the 14 species
that were trapped more than 1000 times (one line per species). B: rate of change in size (among species mean of mean proportional
growth rates r̄, years−1) against time. C: rate of change in shape (among-species standard deviation of mean proportional growth rates,
sr, years−1) against time. In B and C, the black line is the mean estimate, and the grey area is a 95% confidence band.
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Therefore the weight given to an extinction should have greater magnitude than any real number.365

Simply calling the weight given to an extinction infinite is not satisfactory. Intuitively, one would like the366

extinction of a common species to represent a larger change than the extinction of a rare species. Also, one would367

like the transition from a given non-zero abundance to zero abundance to represent a more negative rate of change368

if it occurs over a shorter time interval ∆t. Arithmetic operations involving infinite quantities are not defined in369

the real number field, so these properties will not hold.370

There is a a natural solution. Instead of replacing zero abundances by limxi→0+ , replace them by a number larger371

than zero but smaller than all positive real numbers. Such numbers exist in the surreal number field (Conway, 2001),372

and their logarithms have magnitude greater than all positive real numbers. The surreal number field contains the373

real numbers, but has arithmetic operations defined for infinite as well as finite numbers. These operations behave374

as expected when applied to real numbers. If a species has nonzero abundance at time t but zero abundance at time375

t + ∆t, define its mean proportional growth rate as (log(1/ω) − log xi(t))/∆t, where 1/ω is the simplest number376

that is greater than zero but smaller than all positive real numbers (Conway, 2001, p. 12). Under this definition,377

the mean proportional growth rate is more negative if xi(t) is larger, or if ∆t is smaller, as required.378

The size and shape components of the rate of change for a community can then be calculated as described in379

Appendix F. The size component becomes a surreal number with an infinite and a real part:380

r̄(t, t+∆t) =
(k3 − k2)ψ

n∆t
+
a− b

n∆t
, (8)

where k3 is the number of colonizations, k2 is the number of extinctions, ψ = ω1/ω is the negative of the natural381

logarithm of 1/ω (and is larger than all positive real numbers), a is the sum of log abundances for all species with382

nonzero abundance at time t+∆t, and b is the sum of log abundances for all species with nonzero abundance at time383

t. Equation 8 reduces to Equation 6 if there are no colonizations or extinctions. The coefficient of ψ in Equation 8384

is the among-species mean of a variable taking the values −1/∆t for extinctions, 1/∆t for colonizations, and zero385

otherwise (Appendix G). If the difference between the numbers of colonizations and extinctions is not zero, the386

magnitude of this term will always be greater than the magnitude of the second term (the real part, proportional387

to a − b). To understand how Equation 8 works, consider a case where a community loses one species but gains388

another, whose final abundance is the same as the initial abundance of the lost species. No other species change389

abundance. Intuitively, there has been no change in size. If the species gained has lower final abundance than the390

species lost, there has been a reduction in size, but not as large as if a species was lost and no new species, however391

rare, colonized.392

If there are extinctions and colonizations, the shape component also has infinite and real parts:393

sr ≃
α1/2ψ

(n− 1)1/2∆t
+

β

2[α(n− 1)]1/2∆t
, (9)
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where394

α = k2 + k3 −
1

n
(k3 − k2)

2,

β = 2

(

∑

i∈S2

log xi(t) +
∑

i∈S3

log xi(t+∆t)−
1

n
(a− b)(k3 − k2)

)

,
(10)

and S2 and S3 are the sets of species going extinct and colonizing, respectively. Equation 9 is approximate in395

the sense that it ignores terms whose magnitude is less than any positive real number. The coefficient of ψ in396

Equation 9 is the among-species standard deviation of a variable taking the values −1/∆t for extinctions, 1/∆t for397

colonizations, and zero otherwise (Appendix G). Thus the infinite part will be large if there is a lot of change in the398

set of species present (k2+ k3 is large), but there is little change in the number of species present (k3− k2 is small).399

The second term in Equation 9 (the real part) will be large if the species going extinct had large abundances at400

time t and/or the species colonizing had large abundances at time t+∆t.401

The scaled activity level and the proportion of change that is size change in the presence of colonizations and402

extinctions can be calculated as described in Appendix F. Because standard probability distributions are not defined403

over the whole of the surreal number field, and there is so far no generally satisfactory definition of an integral for404

surreal functions (Fornasiero, 2003; Rubinstein-Salzedo and Swaminathan, 2014), parametric statistical analyses of405

these quantities would be difficult. However, surreal numbers can be ranked unambiguously (Appendix F), and406

so statistics based on ranks of the scaled activity level and of the proportion of change that is size change are407

straightforward.408

If only presence/absence data are available, only the infinite terms in Equations 8 and 9 can be calculated.409

The coefficients of these terms are natural measures of size and shape change for presence/absence data, and it is410

not necessary to make any explicit use of the surreal number system to calculate them. Appendix G summarizes411

the calculation of scaled activity and proportion of change that is size change from presence-absence data. The412

measures of rate of succession from presence/absence data defined by Anderson (2007) are based on rescalings of413

k2 + k3, which is proportional to the squared activity level from presence/absence data (Appendix G).414

9. Example: the higher plant community on Surtsey415

I calculated the rate of shape change sr (Equation 9) and the among-species mean proportional growth rate416

r̄ (Equation 8) for the higher plant community on the volcanic island of Surtsey, using data and background417

information from Fridriksson (1989). The island was formed in 1963, and its higher plant community has been418

surveyed annually since the first plant was found in 1965, initially by complete census, and later by quadrat and419

transect samples (Fridriksson, 1987). Relatively few plant species are found on the island, because of the scarcity of420

water, low nutrient levels, salt spray, sand abrasion, and wave action (Fridriksson, 1989). However, soil formation421

has been fairly rapid, due to organic matter being washed ashore (Fridriksson, 1987). I used the data for 1965 to422

1981 in Table 1 of Fridriksson (1989). Data from later years were excluded because there was no count for the most423

abundant species after 1981. By 1981, 22 taxa had been observed, including one that was identified only to genus424
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and a category of unidentified plants. There were many zero values.425

It is plausible that abundances were exactly known, and therefore that zeros represent true absences (at least426

during the early part of the study, when complete censuses were made). The counts themselves can only take427

natural number values, so cannot be differentiable functions of time. Nevertheless, it is reasonable to treat expected428

abundances conditional on the data (which coincide with the counts at sampling times) as differentiable functions429

of time, and therefore to calculate the rates of change in size and shape using Equations 8 and 9 respectively.430

Figure 6A shows the logs of observed counts ci + 1 against year, with the same interpretation as Figure 5A431

when abundances were nonzero (again, the log(ci + 1) transformation is used only for plotting, not for analysis).432

However, colonization and extinction were major features of these data. Species arrived at different times, with433

dispersal by birds probably the most common route (Fridriksson, 1987). Of these arrivals, most did not persist434

or remained at low abundance, some increased in abundance and then decreased again, and one (the sandwort435

Honckenya peploides, Figure 6A, black line) became numerically dominant.436

Equation 8 gives the among-species mean r̄ of mean proportional growth rates, including colonizations and437

extinctions. In Figure 6B, the dots connected by lines represent the infinite part of r̄, while the lengths of the438

arrows represent the real part (on a separate scale, magnified by a factor of 0.1ψ). The most striking feature of439

the temporal pattern in r̄ is that it does not increase systematically over time, despite changes in the environment440

that might be expected to favour plant growth. For example, over the last two time periods, the abundance of441

the dominant species Honckenya peploides, and the total number of individuals, were increasing rapidly. Biomass442

production and soil fertility, driven by inputs of fish waste and guano from seabirds, were also increasing (Fridriksson,443

1989). Furthermore, as the abundance of H. peploides increased, dense stands of this plant modified the environment444

in ways that increased the germination and survival rates of two other species (Fridriksson, 1987), an example of445

the type of positive interaction thought to be important in facilitating succession (Bertness and Callaway, 1994).446

Nevertheless, both the infinite and real parts of r̄ were lower in the last two time periods than in much of the first447

half of the series. In other words, for a typical species, the environment was less favourable at the end than the448

start of the time series.449

The rate of change in shape, sr (Equation 9) had relatively high values in the middle of the study period (Figure450

6C). Inspection of Figure 6A shows that in the middle part of the series, there were relatively large numbers of451

colonizations and extinctions (values of log(ci + 1) changing to and from zero). Simultaneous colonizations and452

extinctions tend to make the infinite part of sr large (Figure 6C, dots connected by lines). There was little obvious453

temporal pattern in the real part of sr (Figure 6C, arrows, on a separate scale magnified by a factor of 0.1ψ).454

Figure 6A shows that at most time points, there was substantial among-species variability in changes in abundance.455

At least over this time scale, the idea that rates of shape change are decreasing over time is not supported. In456

retrospect this is unsurprising, because as Figures 2C and D show, it is easy to construct cases in which rates of457

change are not decreasing over time in the short term.458
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Figure 6: Higher plant community on Surtsey, 1965 to 1981. A: log of observed count ci + 1 against time for each species. Black
line is the dominant species Honckenya peploides, grey lines are other species. B: rate of change in size (among-species mean of mean
proportional growth rates r̄, years−1) against time. Dots represent the infinite part (measured in units of ψ, main scale) and lengths of
arrows represent the real part (secondary scale, magnified by 0.1ψ). C: rate of change in shape (among-species standard deviation of
mean proportional growth rates, sr, years−1) against time. Infinite and real parts represented as in B.
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The amount of change in the Surtsey plant community was almost always not commensurate with that in the459

Leicester hoverfly assemblage, in the sense that colonization and extinction represent infinitely larger changes than460

any change in abundance not involving such events. Nevertheless, the proportion of change that is size change461

(cos2 θ) can be directly compared (Figure 7). This proportion was strikingly higher for the Leicester hoverfly462

assemblage (median 0.22, lower quartile 0.07, upper quartile 0.35) than for the Surtsey higher plant community463

(median 0.05, lower quartile 0.02, upper quartile 0.09), although a hypothesis test is not appropriate because464

no hypothesis was proposed before looking at the data. In general, one might expect phylogenetically restricted465

assemblages of organisms such as the Leicester hoverflies to show larger amounts of size change than more diverse466

assemblages of organisms such as the Surtsey higher plants. This is because if there is strong niche conservatism467

(Wiens et al., 2010), closely-related species will tend to have similar proportional growth rates under most sets of468

environmental conditions, and when proportional growth rates are similar, cos2 θ will tend to be large (Figure 3).469

Conversely, in a diverse assemblage, it is unlikely that all species will have similar proportional growth rates under470

most sets of environmental conditions, and cos2 θ will generally be small. Thus, in diverse assemblages, indices of471

size change such as the Living Planet Index may be relatively uninformative about community dynamics. I will472

not attempt to test this hypothesis here, because such a test will require data from a wide range of assemblages of473

differing taxonomic diversity, but it is closely connected to the idea that compensatory dynamics (predominantly474

positive interspecific covariances in abundance) will occur in assemblages where many species are functionally475

equivalent (Houlahan et al., 2007).476

In summary, the Surtsey higher plant data illustrate how patterns in size change may not accord with simple477

perceptions of the favourability of an environment, and do not support the idea that rates of shape change will478

generally be decreasing over time. Change in shape was much more important in the Surtsey higher plant assemblage479

than in the Leicester hoverfly assemblage.480

10. Discussion481

Here, I have derived a measure of the rate of shape change (in the sense of Definition 1) that is consistent with482

the basic principles of population dynamics and takes an organism-centred view. The most important result is483

that if two abundance trajectories have the same proportional growth rates at corresponding time points, they are484

equivalent from an organism’s point of view, and should therefore have the same rate of shape change. It may seem485

surprising that equal proportional changes make equal contributions to the rate of shape change (and to indices of486

biodiversity change such as the Living Planet Index) whether they occur in rare or common species. Thus, shape487

change could be rapid in a community whose dominant species do not change in abundance. Population biologists488

have accepted the idea that the proportional scale is appropriate for analyses of single-species dynamics (Gaston489

and McArdle, 1994). A reluctance to apply the same logic at the community level (e.g. Lewis, 1978; Field et al.,490

1982; Legendre and Gallagher, 2001) might imply that some variable other than the composition of the community491
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Figure 7: Boxplots of proportion of change that is size change (cos2 θ) for higher plants on Surtsey (17 annual time intervals: infinitesimal
parts not shown) and hoverflies in a Leicester, UK, garden (29 annual time intervals, bootstrap mean values plotted). Thick line: median.
Box extends from the lower to the upper hinges, which are approximately the lower and upper quartiles. Whiskers extend from the
ends of the box to the furthest observations no more than 1.5 times the width of the box away.
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is in fact of primary interest. Such variables might include total biomass or its distribution among species, nutrients,492

phylogenetic diversity, or structural complexity. These are all important aspects of a broader concept of succession.493

Nevertheless, one should not object to a measure of the rate of shape change on the grounds that it does not describe494

the rate of change of some other variable. The properties studied by community ecologists (such as abundances)495

and the properties studied by ecosystem ecologists (such as biomass, nutrients, and structural complexity) may496

behave in quite different ways.497

Other interesting measures of community dynamics could be obtained under different invariance principles. For498

example, one might argue that for a single population, all points on the same logistic growth curve are equivalent in499

the long term. Under this argument, one would want a measure (such as the carrying capacity) that indexes long-500

term behaviour rather than short-term dynamics. There are two key differences from the approach taken in this501

manuscript. First, situations that will be equivalent in the long term are not equivalent from an organism’s point502

of view. Instead, they might represent equivalence in properties such as long-term conservation value. Second,503

such an approach requires a parameterized model of community dynamics. There are fairly simple and general504

stochastic models of community dynamics (e.g. Ives et al., 2003; Mutshinda et al., 2009; Hampton et al., 2013),505

but they will not apply to all situations. The model would (I think) have to be parameterized, because it would be506

difficult to find a useful measure that was invariant over the space spanned by all members of a family of models,507

rather than the space spanned by a particular member of that family. There is a similar issue with measures of508

physiological time. It is easy to find a physiological time scale on which some process such as organism growth has509

a constant proportional rate, but impossible to find a universal time scale on which all relevant processes will have510

this property (van Straalen, 1983). In contrast, the approach used here does not rely on any parameterized model511

of community dynamics (other than in the trivial sense that because we do not usually know abundances exactly,512

we have to use a model to estimate proportional growth rates).513

There may be a deeper connection between measures of diversity and measures of the rate of shape change.514

Diversity indices are scalar summaries of a relative abundance vector, while measures of the rate of shape change515

are scalar summaries of changes in relative abundance vectors. Most diversity indices can be expressed in terms of516

Hill numbers, a family of functions indexed by the weight they give to evenness (Hill, 1973; Jost, 2006). There are517

generalizations that account for functional or taxonomic similarity (Leinster and Cobbold, 2012; Chiu and Chao,518

2014). The obvious place to look for a connection between the concepts of diversity and rate of shape change is beta519

diversities, which measure differences in diversity between communities. Beta diversities based on Hill numbers520

unify a wide range of measures of community similarity (Jost, 2007), including the Jaccard and Morisita-Horn521

indices used by Dornelas et al. (2014) to measure temporal change in communities. They are not scaling invariant522

(M. Spencer, unpublished results, unless no weight is given to evenness, in which they only measure colonization523

and extinction), but the possibility of a less obvious connection remains.524

Traditionally, multivariate community ecology has focussed on variation among sites (e.g. Gauch, 1982). Even525
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when samples form a time series, the usual approach is to analyze them in “abundance space”, where each ob-526

servation represents the abundance vector at a single time (e.g. Warwick et al., 2002; Lear et al., 2008). This is527

implicitly a static view of communities, in which abundance is directly determined by environmental conditions. It528

is in conflict with the dominant view in population dynamics that environmental conditions act on the proportional529

growth rate of a species, rather than directly on its abundance (Birch, 1953; Hutchinson, 1957; Maguire, 1973).530

In contrast, the decomposition of patterns of change into size and shape components gives an ecologically mean-531

ingful low-dimensional representation of dynamics, which may offer a useful alternative to traditional ordination.532

Furthermore, it can be extended to deal with colonizations and extinctions, or to data on presence/absence alone.533

Related work includes the regression method used by Ives (1995) to study the responses of communities to long-term534

directional perturbations, although this focusses on responses of mean abundance to environmental change, rather535

than on decomposing empirical patterns of proportional growth rates.536

What could measures of size and shape change be used for? One obvious idea is to quantify global patterns537

in community change. There is evidence of global variation in size change in vertebrate assemblages since 1970538

(Collen et al., 2009, 2013). For example, among terrestrial species, tropical populations appear to be declining while539

temperate populations are increasing. For marine species, populations in the Southern and Indian Oceans appear540

to be declining, while populations in the Pacific and Atlantic are relatively stable. Thus, there is clearly shape541

change as well as size change at the global scale, and some of this change can be explained by simple geographical542

differences. Similarly, among insects there was an overall 45% decline in abundance between 1970 and 2010, but543

declines were less severe in Lepidoptera than in other insects (Dirzo et al., 2014). The geometric approach taken544

here shows that we can think of the Living Planet Index and related indices as being based on a one-dimensional545

linear model (e.g. Saville and Wood, 1991, chapter 5). Rather than fitting separate one-dimensional models for546

subgroups, as is currently done (Collen et al., 2013), it would be productive to fit a single linear model with an547

overall size change pattern, differences between groups (e.g. tropical and temperate populations) represented as548

orthogonal contrasts (e.g. Saville and Wood, 1991, section 7.3), and a residual shape change component. This549

will allow quantification of the amount of change that can be explained by simple differences such as tropical vs550

temperate, and the amount of unexplained but ecologically meaningful shape change. The fact that abundances551

do not need to be measured in the same units for different species moves the task of studying such global patterns552

from impossible to merely very difficult. Furthermore, it may be possible to calculate the analogous measures for553

presence/absence data in cases where abundances cannot be reliably estimated. For example, it would be possible554

to calculate size and shape change indices from historical records and fossil communities, and hence study global555

patterns of change over very long time scales.556

In the two communities I analyzed, there was a striking difference in the proportion of change that was size557

change. It therefore seems likely that size-based indices such as the Living Planet Index will be much more558

informative about some communities than others. I hypothesized that phylogenetically-restricted assemblages might559
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show mainly size change, while diverse assemblages might show mainly shape change. For example, hydrothermal560

vent communities occur are characterized by evolutionary radiations of a fairly small group of taxa (Van Dover561

et al., 2002). It seems plausible that such communities might show a relatively high proportion of size change.562

In contrast, one might expect tropical forests and coral reefs, with high phylogenetic diversity, to show a high563

proportion of shape change.564

In conclusion, shape change is distinct from but complementary to the property measured by indices such as565

the Living Planet Index. The rate of shape change should be measured in a way that is consistent with population566

dynamics. The measures I have derived satisfy this requirement. The key to understanding their properties is the567

geometry of growth space, whose axes are the proportional growth rates of each species involved.568
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Appendix A. Invariance under exponential growth and scaling invariance579

Theorem 1. A measure of the rate of shape change satisfying Property 7 is invariant under exponential growth,

in the sense that it will have the same value for any pairs of vectors x, y generated by a given initial abundance

vector x0, a constant vector of species-specific proportional growth rates r and a constant time interval ∆t. In other

words,

g(x, eR∆tx) = g(eRtx, eR(t+∆t)x).

Proof. Property 7 is that
g(x,y) = g(Mx,My)

for all n×n matrices M with positive diagonal elements and zero off-diagonal elements. Choose x = x0, y = eR∆tx

where R = diag(r), and M = eRt for any time t. Then by Property 7,

g(x0, e
R∆tx0) = g(eRtx0, e

R(t+∆t)x0)

for any t.580

Theorem 2. Invariance under exponential growth is necessary for Property 7.581

Proof. Suppose that there exist a set of proportional growth rates r and a time interval ∆t for which the measure582

is not invariant. In other words, for some initial vector x, y = eR∆tx and z = eR∆ty, but g(x,y) 6= g(y, z). Then583

for M = eR∆t, Property 7 does not hold.584

Theorem 3. Invariance under exponential growth is not sufficient for Property 7. For example, a measure which585

is invariant under exponential growth from any given initial conditions, but with a different value for each initial586

condition, does not satisfy Property 7.587

Proof. Suppose that for any initial condition x, y = eR∆tx. Choose x1 so that there is no t for which x1 = eRtx,588

and y1 = eR∆tx1. Suppose that g(x,y) 6= g(x1,y1), then Property 7 does not hold for M such that x1 = Mx.589
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Appendix B. Existing measures of rate of shape change590

Here, I review some widely-used measures of the rate of shape change. The original authors did not use the591

term shape change. Instead, they used terms such as “succession rate”, “rate of change” and “compositional592

dissimilarity” to describe what they were measuring. Nevertheless, they all fit Definition 1.593

The most obvious choice for a measure of the mean rate of shape change (Foster and Tilman, 2000) is 1/∆t594

times the Euclidean distance between the relative abundance vectors at times t and t+∆t,595

1

∆t

[

n
∑

i=1

(pi(t+∆t)− pi(t))
2

]1/2

. (B.1)

As a physical analogy, this is the way one would calculate the mean speed of an object in space, given its position596

at two points in time. However, although Euclidean distance is the natural choice for points in the real space R
n,597

relative abundances lie in the unit simplex S
n−1, for which Euclidean distance is not a natural choice. For example,598

the Euclidean distance between [0.5, 0.5]′ and [0.4, 0.6]′ is the same as that between [0.1, 0.9]′ and [0.2, 0.8]′, but599

the latter case represents a much larger proportional change. Since exponential growth corresponds to constant600

proportional change, Euclidean distance is not invariant under exponential growth (Figure 2A, purple line).601

In an insightful paper, Jassby and Goldman (1974) pointed out that an absolute abundance vector can be

mapped to a point e on the unit s-sphere by the transformation ei(t) = xi(t)/[
∑n
i=1(xi(t))

2]1/2. As the community

changes, it traces out a path on the sphere of length

S(t) =

∫ t

0

∣

∣

∣

∣

de

du

∣

∣

∣

∣

du.

They therefore proposed602

σ = dS/dt =

[

n
∑

i=1

(dei/dt)
2

]1/2

(B.2)

as a measure of the instantaneous rate of shape change. They estimated σ using a finite-difference approximation,603

replacing dei/dt by ∆ei/∆t, for small ∆t. However, their measure is not invariant under exponential growth (Figure604

2A, red line).605

Lewis (1978) argued (wrongly, in my view) that σ does not weight each species equally, and proposed606

σs =
1

∆t

n
∑

i=1

|pi(t+∆t)− pi(t)| (B.3)

(over sufficiently small time intervals ∆t) as a more equitable measure of the instantaneous rate of shape change.607

The community is represented as a point on the surface of a polygon embedded in R
n, and distance is measured608

as the sum of absolute distances along each dimension. This is a rescaling of the taxicab metric, which is discussed609

extensively by Miller (2002). While it has a simple geometric interpretation, it does not measure proportional610

change, and is not invariant under exponential growth (Figure 2A, blue line).611

The Bray-Curtis distance is widely used as a measure of dissimilarity between communities, and changes in Bray-612
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Curtis distances among samples in a sequence are sometimes interpreted as changes in the rate of shape change613

(e.g. Nicholson et al., 1979). It is particularly popular with marine ecologists studying changes in communities614

(Field et al., 1982). Most of this marine ecological work has been based on the ranks of distances rather than the615

distances themselves, but clearly, a rank-based approach relies to some extent on the properties of the underlying616

distance. Denote by κi(t) = h(xi(t)) the score for species i at time t, where h is some suitable transformation.617

Then a Bray-Curtis-based measure of the rate of change in scores per unit time is618

∑n
i=1 |κi(t+∆t)− κi(t)|

∆t
∑n
i=1[κi(t+∆t) + κi(t)]

(B.4)

(Field et al., 1982). If κi(t) = pi(t), then this is just 1/2 times Lewis’s σs (Equation B.3). However, Field et al.619

(1982) recommend a transformation that reduces the weighting given to very abundant species, such as the fourth620

root. For relative abundances, this is κi(t) = [pi(t)]
1/4. Whether the transformation is applied to relative or to621

absolute abundances, the result is not invariant under exponential growth (Figure 2A, green line, using relative622

abundances).623

Plant ecologists often use methods based on correspondence analysis to search for relationships between envi-

ronmental variables and community structure (ter Braak, 1985). Correspondence analysis preserves the chi-square

distance between communities:

dχ2(t, t+∆t) = (x..)
1/2

[

n
∑

i=1

1

x.i
(pi(t+∆t)− pi(t))

2

]1/2

,

where x.. is the sum of abundances over all species and times, and x.i is the sum of abundances of the ith species624

over all times (Legendre and Gallagher, 2001). The desire to interpret distances on a correspondence analysis biplot625

as measures of the amount of change leads to626

dχ2(t, t+∆t)

∆t
(B.5)

as a possible measure of the rate of shape change. Equation B.5 is not invariant under exponential growth (Figure627

2A, orange line). Detrended correspondence analysis (Hill and Gauch, 1980) is one of the most popular methods628

based on correspondence analysis, and distances on a detrended correspondence analysis plot are sometimes viewed629

as amounts of change (e.g. Jacobson and Grimm, 1986; Bush et al., 2004; Walker and del Moral, 2003, p. 253). I630

do not discuss detrended correspondence analysis in detail, but the additional ad-hoc operations it involves do not631

alter the basic conclusion that chi-square distances are not invariant under exponential growth.632

The patterns of change over time in Equations B.2 to B.5 in a community of exponentially-growing species633

depend on the proportional growth rates and initial abundances of the species, so that they may in other cases634

show patterns quite different from those in Figure 2A. I therefore do not attempt to make any statements about635

their relative usefulness, other than that changes in their values cannot be used to identify ecologically meaningful636

changes in the rate of shape change.637
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Appendix C. Deriving a measure of rate of shape change638

Here, I derive a measure of the rate of shape change which has Properties 1 to 8, for the case where there are639

no colonizations or extinctions.640

I start with an analogous but simpler problem. Consider a single species with abundance x(t) at time t, where

x(t) is a differentiable, positive function of time. Denote by r̃(t, t+∆t) the mean proportional growth rate over the

time interval (t, t+∆t], which is

r̃(t, t+∆t) =
1

∆t

∫ t+∆t

t

1

x

dx

du
du =

log x(t+∆t)− log x(t)

∆t
, x > 0,

(throughout, log denotes the natural logarithm). This mean proportional growth rate is obviously a constant for641

all patterns of change resulting in the same amount of proportional growth in a given time.642

I will now derive a similar measure of the mean rate of proportional change in relative abundances (thus satisfying643

Properties 1 and 2). All the information in relative abundance data is contained in the set of ratios vij = xi/xj ,644

i = 1, . . . , n−1, j = i+1, . . . , n, satisfying Property 3). In other words, a basis for the space of relative abundances645

can be constructed from functions of these ratios (Egozcue et al., 2003). We therefore need only consider the vector646

of ratios v(t) = [v12(t), v13(t), . . . , v1n(t), v23(t), . . . vn−1,n(t)]
′. Although v(t) is a generating set for the space of647

relative abundances, it is not a minimal generating set (basis). Nevertheless, treating all its elements symmetrically648

makes it easy to see the biological interpretation of the resulting measure, and results in the same measure as would649

be obtained from a basis.650

There are c = n(n− 1)/2 elements in v(t), but their order is not important in what follows. Denote by wk the

mean proportional rate of change in the kth element of v (which I index by vij) over the time interval (t, t +∆t],

and denote by r̃i(t, t +∆t) the mean proportional growth rate of the ith species over the time interval (t, t +∆t],

defined as in Equation 4. Then, assuming vij is a differentiable function of time,

wk =
1

∆t

∫ t+∆t

t

1

vij

dvij
du

du, vij > 0,

=
log vij(t+∆t)− log vij(t)

∆t

=
1

∆t

[

log
xi(t+∆t)

xj(t+∆t)
− log

xi(t)

xj(t)

]

=
1

∆t
[(log xi(t+∆t)− log xi(t))− (log xj(t+∆t)− log xj(t))]

= r̃i(t, t+∆t)− r̃j(t, t+∆t).

This expression will be zero for any i and j if x(t+∆t) = x(t) (Property 4), or if x(t+∆t) = ax(t), where a > 0651

(Property 6). Because wk is the difference between mean proportional growth rates, any pattern of growth that652

leads to the same proportional change in species i and j over a given time interval will result in the same value of653

wk, and Property 7 is satisfied.654

The obvious scalar measure of the mean rate of proportional change in relative abundances is then the Euclidean655
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norm of the vector w = [w1, w2, . . . , wc]
′, which is656

‖w‖ =

[

c
∑

k=1

w2
k

]1/2

=
1

∆t





n−1
∑

i=1

n
∑

j=i+1

[log vij(t+∆t)− log vij(t)]
2





1/2

=





n−1
∑

i=1

n
∑

j=i+1

[r̃i(t, t+∆t)− r̃j(t, t+∆t)]
2





1/2

.

(C.1)

Squaring each element in w ensures that the measure will be non-negative (Property 5).657

The second line of Equation C.1 expresses ‖w‖ in a way that shows it is proportional to the Aitchison distance658

(Aitchison, 1992; Egozcue et al., 2003) between the relative abundance vectors at times t and t+∆t. The Aitchison659

distance is in some sense the simplest measure of difference between two compositions that satisfies Properties 3, 4660

and 7, as well as the additional requirements of symmetry and invariance under arbitrary reorderings of the species661

(Aitchison, 1992). It also satisfies the triangle inequality. The third line of Equation C.1 expresses ‖w‖ in a way662

that shows it is a function of the mean proportional growth rates of all the species.663

To obtain a measure that is independent of the number of species (Property 8), I will use a geometric inter-664

pretation of Equation C.1. For a given set of species, every vector of proportional growth rates r (dropping the665

time indexing for simplicity) can be represented as a point in a space R
n which I refer to as the growth space of666

the community (Figure 3 is a two-dimensional example). The growth rate vector r can be decomposed into two667

orthogonal components. The first component is the projection u of r onto the line of equal proportional growth668

rates, which represents change in abundance without shape change. I call this size change. It is straightforward669

(e.g. Saville and Wood, 1991, p. 69) to show that u = r̄1, where670

r̄ =
1

n

n
∑

i=1

r̃i, (C.2)

with dimensions time−1. In other words, each element of u is the among-species sample mean of mean proportional

growth rates. The second component q is orthogonal to u, and the square of its Euclidean norm is

‖q‖2 =
n
∑

i=1

(r̃i − r̄)2,
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(e.g. Saville and Wood, 1991, pp. 49-50). It is straightforward to show that ‖w‖2 = n‖q‖2:

‖w‖2 =

n
∑

i=1

n
∑

j=i+1

[r̃i − r̃j ]
2

=
1

2

n−1
∑

i=1

n
∑

j=1

[r̃i − r̃j ]
2

=
1

2

n
∑

i=1

n
∑

j=1

[(r̃i − r̄)− (r̃j − r̄)]
2

=
1

2

n
∑

i=1

n
∑

j=1

[

(r̃i − r̄)2 − 2(r̃i − r̄)(r̃j − r̄) + (r̃j − r̄)2
]

= n

n
∑

i=1

(r̃i − r̄)2 −
n
∑

i=1



(r̃i − r̄)

n
∑

j=1

(r̃j − r̄)





= n
n
∑

i=1

(r̃i − r̄)2 −
n
∑

i=1



(r̃i − r̄)





n
∑

j=1

r̃j − nr̄









= n

n
∑

i=1

(r̃i − r̄)2 −
n
∑

i=1

(r̃i − r̄) (nr̄ − nr̄) from Equation C.2

= n

n
∑

i=1

(r̃i − r̄)2 −
n
∑

i=1

(r̃i − r̄)× 0

= n‖q‖2.

In other words, the norm of q is proportional to the proposed scalar measure of mean rate of proportional change671

in relative abundances (Equation C.1), which can be thought of as measuring change in shape of the community.672

An obvious measure of rate of shape change that is independent of the number of species is therefore673

sr =

[

1

n− 1

n
∑

i=1

(r̃i − r̄)2

]1/2

=
1

(n− 1)1/2
‖q‖

=
1

(n(n− 1))1/2
‖w‖,

(C.3)

which is just the sample standard deviation of the mean proportional growth rates, with dimensions time−1. Since674

the sample standard deviation is an asymptotically unbiased estimator of the population standard deviation of675

the mean proportional growth rates, the expected value of sr will (in the limit of a large number of species) be676

constant among communities with different numbers of species but the same population standard deviation of mean677

proportional growth rates, or among random samples of different numbers of species from a single community.678

Thus Property 8 is satisfied asymptotically in principle. However, the above argument assumes that the mean679

proportional growth rates are known exactly. In reality, the true abundances (and hence true mean proportional680

growth rates) will be uncertain. This uncertainty may affect how the value of sr depends on the number of species,681

but the way in which it does so will depend on how abundances are estimated. Furthermore, sr is biased for finite682
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samples. In principle, this bias can be corrected, but only by assuming a particular distribution, such as the normal,683

for the proportional growth rates (e.g. Gurland and Tripathi, 1971).684

To obtain Equation 7, use Equation C.1 with vij = xi/xj = pi/pj and Equation C.3.685
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Appendix D. What kinds of functions are scaling invariant?686

It is worth asking whether there are many kinds of scaling invariant functions other than sr, and if so, what687

they look like. The theorem below is essentially a rephrasing of Aitchison (1992, p. 373). It leads to the result that688

other scaling invariant functions take particular forms (such as contrasts), and cannot involve any kind of weighting689

by abundance.690

Theorem 4. All scaling invariant functions are functions of the vector r of mean proportional growth rates over691

some fixed time interval.692

Proof. Denote by Z the set of pairs of abundance vectors z = (x,y) ∈ R
n
>0 ×R

n
>0. A scaling can be represented by693

an n × n matrix M with positive diagonal elements, that maps (x,y) to (Mx,My) (property 7). Denote by Mz694

the action of M on z.695

The matrices M form a group M under matrix multiplication (Pollatsek, 2009, problem 4.5.8). The orbit Oz696

of any z ∈ Z is the set of elements of Z that can be reached by the action of any M ∈ M on z, and is the set of697

pairs of abundance vectors equivalent to the pair z = (x,y) under scaling (Eaton, 1989, p. 21).698

A function g is invariant if g(z) = g(Mz) for all M ∈ M, and maximal invariant if it is invariant and if699

g(z1) = g(z2) implies z1 = Mz2 for some M ∈ M (Eaton, 1989, Definition 2.4). In other words, a maximal700

invariant has the same value for all members of an orbit, and a different value for each different orbit. Any invariant701

function is a function of a maximal invariant (Eaton, 1989, Theorem 2.3). Thus, we need to show that r is a702

maximal invariant.703

First, we show that r is invariant under scaling. Denote by mi the ith diagonal element of M. The ith mean
proportional growth rate for some fixed time interval ∆t is

ri =
1

∆t
log

(

yi
xi

)

=
1

∆t
log

(

miyi
mixi

)

.

Thus the vector r of mean proportional growth rates is scaling invariant.704

Second, we show that r(1) = r(2) implies r(1) = Mr(2), for two mean proportional growth rate vectors r(1), r(2),
some matrix M ∈ M, and some fixed time interval ∆t. Consider the ith elements of r(1) and r(2):

r
(1)
i = r

(2)
i

1

∆t
log

(

y
(1)
i

x
(1)
i

)

=
1

∆t
log

(

y
(2)
i

x
(2)
i

)

y
(1)
i

y
(2)
i

=
x
(1)
i

x
(2)
i

y
(1)
i =

x
(1)
i

x
(2)
i

y
(2)
i

Thus, z1 = Mz2 for the diagonal matrix M with ith diagonal element mi = x
(1)
i /x

(2)
i . In consequence, r is a705

maximal invariant under scaling, and any scaling invariant function must be a function of r.706

In this paper, I considered only the mean and standard deviation of the elements of r. By Theorem 4 and the707

obvious result that any function of a maximal invariant is an invariant function, there are lots of other potentially708

interesting scaling invariant functions of r. For example, contrasts (differences between the means of subsets of the709

elements of r) are also scaling invariant, and can be used to measure differences in rates of change between groups710

of organisms. However, Theorem 4 shows that there is no need to consider functions that cannot be written in711

terms of proportional growth rates. For example, a scaling invariant function cannot involve any kind of weighting712

by abundance, because such weightings do not appear in the maximal invariant r.713

35



Appendix E. Estimating size and shape change714

To estimate sr and r̄ from the hoverfly data, estimates of abundance in each year are needed. The following715

simple approach is adequate to demonstrate the behaviour of sr and r̄ for these data, and accounts for both716

parameter uncertainty and stochasticity.717

I treated each species as independent. At each time t, I modelled the observed count ci(t) of the ith species as

being generated by a Poisson distribution with parameter λi(t), the expected abundance. I modelled the log of the

Poisson parameter as a random walk (in discrete time, because the observations were made at annual intervals).

The model is

log λi(t+ 1) = log λi(t) + ǫi(t)

ǫi(t) ∼ N (0, σ2)

ci(t) ∼ Poisson(λi(t))

This is about the simplest model that could be used to describe these data. In particular, it does not include density718

dependence, interspecific competition or consistent trends in proportional growth rates. It is not likely to make719

good long-term predictions, but it is being used for smoothing, rather than forecasting. Expected log abundances720

were almost indistinguishable from observed abundances.721

I fitted this model in 64-bit R version 3.0.1 for Linux (R Core Team, 2012) using the package sspir 0.2.10722

(Dethlefsen and Lundbye-Christensen, 2006). I used Iterated Extended Kalman Smoothing (Durbin and Koopman,723

2001) to obtain an approximating Gaussian model. I estimated σ2 using maximum likelihood, with the Brent724

algorithm in R function optim. I initialized the Kalman filter with E(log λi(0)) = log ci(0) and V (log λi(0)) =725

1 × 106, so that expected initial abundance matched the observations but had high uncertainty. I did not include726

the first time interval in the analyses of patterns in sr and r̄. This is a quick and dirty approach, but the Kalman727

filter converges quickly, so that the choice of initialization has little effect on the results for later time intervals.728

Using the fitted approximating Gaussian model, I sampled 1000 replicate time series of the conditional distri-729

bution of log λi and used them to calculate the distributions of sr and r̄ as follows:730

1. Draw a value σ2∗ from the normal sampling distribution of σ2, specified by the maximum likelihood estimate731

and its asymptotic variance.732

2. Draw a value log λ∗i (t) for each time from the conditional distribution of log λi(t), given the entire observation733

vector ci = [ci(0), ci(1), . . .]
′. This was done using the ksimulate function in sspir, with the sampled σ2∗.734

3. Obtain simulated proportional growth rates

r̃∗i (t, t+ 1) = log λ∗i (t+ 1)− log λ∗i (t),

for intervals of length one year (Equation 4 with ∆t = 1).735
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4. Use the simulated proportional growth rates to calculate simulated values of sr (Equation 5) and r̄ (Equation736

C.2).737

I report the mean and 0.025- and 0.975-quantiles of the simulated distributions of sr and r̄. The whole procedure738

took less than an hour with an 3.2 GHz Intel Xeon processor and 16G RAM. The code is included as an electronic739

enhancement.740

37



Appendix F. Measuring colonization and extinction741

Motivation742

The proportional growth rate of a single species, 1
x
dx
dt , is undefined if x = 0. This makes it difficult to deal with743

colonization and extinction in the framework of proportional change. Here, I describe a solution.744

When calculating a mean proportional growth rate (Equation 4) it is reasonable to replace zero abundances x = 0745

by limx→0+ x, since abundances cannot be negative. Then because limx→0+ log x = −∞, a colonization or extinction746

can be thought of as representing an infinite amount of proportional change. This creates additional difficulties.747

First, it does not discriminate between extinction of rare and common species, because −∞ + log x(t) = −∞ for748

any real log x(t). Second, it does not discriminate between fast and slow extinctions, because −∞/∆t = −∞ for749

any real ∆t. Third, the arithmetic operations involved in the size and shape components of change (Equations 6750

and 5) will often be undefined.751

All these problems can be solved by working with surreal rather than real numbers. The surreal numbers752

(Conway, 2001) are a field which contains all the real numbers, and many others besides, including infinite and753

infinitesimal numbers. Arithmetic operations such as addition and multiplication, and logical comparisons such as754

greater than, are well-defined for all surreal numbers. Instead of taking the limit as x → 0+, zero abundances can755

be replaced by the surreal number 1/ω, which is greater than zero but smaller than all positive real numbers. This756

is similar to the idea of non-standard analysis, in which infinitesimals are used instead of limits (Conway, 2001, p.757

44). The integral in Equation 4 is valid for surreal numbers (Fornasiero, 2003, section 5.1). The natural logarithm758

function is defined for all positive surreal numbers, and log(1/ω) = −ω1/ω (Gonshor, 1986, pp. 161-163), which is759

more negative than all the real numbers, and therefore satisfies the requirement that a colonization or extinction760

represents a greater amount of proportional change than any event not involving a colonization or extinction. The761

choice 1/ω is not unique, because there are many other numbers greater than zero but smaller than all positive762

real numbers (for example, 2/ω and 1/ω2). Choosing one of these other numbers would give the same qualitative763

result, but 1/ω is in some sense the simplest number having the required properties (Conway, 2001, p. 12).764

Size change765

The among-species mean proportional growth rates (the size component) can be calculated as follows. For each

time interval (t, t+∆t], divide the set of species being considered into four subsets, depending on whether they are

present or absent at the start and end of the interval:

S1 = {i : xi(t) > 0 ∧ xi(t+∆t) > 0}, (always present),

S2 = {i : xi(t) > 0 ∧ xi(t+∆t) = 0}, (extinctions),

S3 = {i : xi(t) = 0 ∧ xi(t+∆t) > 0}, (colonizations),

S4 = {i : xi(t) = 0 ∧ xi(t+∆t) = 0}, (never present).
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Denote by k1, k2, k3, k4 the cardinalities of these sets. Denote by ai the function

ai =















log xi(t+∆t), xi(t+∆t) > 0,

−ω1/ω, xi(t+∆t) = 0,

Denote by bi the similar function of xi(t). Denote by a and b the sums of log abundances for species present at

times t+∆t and t respectively:

a =
∑

i∈S1∪S3

ai,

b =
∑

i∈S1∪S2

bi.

Then the among-species mean of mean proportional growth rates over (t, t+∆t] is766

r̄ =
1

n

n
∑

i=1

ai − bi
∆t

=
1

n∆t

[

∑

i∈S1

(log xi(t+∆t)− log xi(t))

+
∑

i∈S2

(−ω1/ω − log xi(t))

+
∑

i∈S3

(log xi(t+∆t)− (−ω1/ω))

+
∑

i∈S4

(−ω1/ω − (−ω1/ω))

]

=
1

n∆t
[(k3 − k2)ω

1/ω + a− b].

(F.1)

This reduces to Equation 6 if all species have non-zero abundance at all times. Otherwise, r̄ has an infinite part767

which will be positive if there are more colonizations than extinctions, zero if there are equal numbers of colonizations768

and extinctions, and negative if there are more extinctions than colonizations. The finite part of r̄ has contributions769

from changes in abundance that do not involve colonization or extinction, the initial abundances of species that770

went extinct, and the final abundances of species that colonized.771

Shape change772

To calculate the among-species standard deviation of mean proportional growth rates (the shape component), it773

is easiest to first find the among-species variance and then take its square root. The among-species sample variance774

is775

1

n− 1

(

n
∑

i=1

r̃2i − nr̄2

)

. (F.2)
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The first term in the parentheses in Equation F.2 is776

n
∑

i=1

r̃2i =
1

(∆t)2

n
∑

i=1

(ai − bi)
2

=
1

(∆t)2

[

∑

i∈S1

(log xi(t+∆t)− log xi(t))
2

+
∑

i∈S2

(−ω1/ω − log xi(t))
2

+
∑

i∈S3

(log xi(t)− (−ω1/ω))2

+
∑

i∈S4

(−ω1/ω − (−ω1/ω))2
]

=
1

(∆t)2

[

(k2 + k3)ω
2/ω + 2ω1/ω

(

∑

i∈S2

log xi(t) +
∑

i∈S3

log xi(t+∆t)

)

+
∑

i∈S1

(log xi(t+∆t)− log xi(t))
2 +

∑

i∈S2

(log xi(t))
2 +

∑

i∈S3

(log xi(t+∆t))2
]

.

(F.3)

From Equation F.1, the second term in the parentheses in Equation F.2 is777

nr̄2 = n

[

1

n∆t
[(k3 − k2)ω

1/ω + a− b]

]2

=
1

n(∆t)2
[(k3 − k2)

2ω2/ω + 2(a− b)(k3 − k2)ω
1/ω + (a− b)2].

(F.4)

Using Equations F.3 and F.4, the among-species sample variance in mean proportional growth rates can be written778

in the form779

1

(n− 1)(∆t)2
(αω2/ω + βω1/ω + γ), (F.5)

where the coefficients α, β, γ are the real numbers

α = k2 + k3 −
1

n
(k3 − k2)

2,

β = 2

(

∑

i∈S2

log xi(t) +
∑

i∈S3

log xi(t+∆t)−
1

n
(a− b)(k3 − k2)

)

,

γ =

(

∑

i∈S1

(log xi(t+∆t)− log xi(t))
2 +

∑

i∈S2

(log xi(t))
2 +

∑

i∈S3

(log xi(t+∆t)2 −
1

n
(a− b)2

)

.

If all species have non-zero abundance at all times, α = β = 0 and the sample standard deviation is given by

Equation 5. Otherwise, to find the sample standard deviation, write the second factor in Equation F.5 as

αω2/ω + βω1/ω + γ = αω2/ω(1 + δ),

where

δ =
βω1/ω + γ

αω2/ω
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is an infinitesimal number. Then780

[αω2/ω(1 + δ)]1/2 = α1/2ω1/ω

[

1 +
1

2
δ +

1

2

(

1

2
− 1

)

δ2

2
+ . . .

]

(F.6)

(Conway, 2001, Theorem 24). Using Equations F.5 and F.6, the sample standard deviation is

1

(n− 1)1/2∆t

(

α1/2ω1/ω +
β

2α1/2
+ infinitesimal terms

)

.

Unless the infinitesimal terms can be shown to have any biological interpretation, it seems reasonable to discard781

them, leaving just the infinite and real terms (at least for drawing graphs).782

Activity and cos2 θ783

The norm ‖r‖ is given by the square root of Equation F.3, which can be evaluated using Equation F.6. Values784

of the scaled activity level n−1/2‖r‖ can be ranked by comparing coefficients of powers of ω in Equation F.3 in785

descending order. The value of the first coefficient that differs between two values determines their rank.786

The squared norm ‖u‖2 is given by Equation F.4. The proportion of change that is size change, cos2 θ =787

(‖u‖/‖r‖)2, will then be a ratio of the form788

aω2/ω + bω1/ω + c

dω2/ω + eω1/ω + f
, (F.7)

with real coefficients a, b, c, d, e, f . Dividing the numerator and the denominator by ω2/ω,

cos2 θ =
a

d+ eω−1/ω + fω−2/ω
+ infinitesimal terms,

whose value will be close to a/d. I therefore use the real approximation cos2 θ ≃ a/d in graphs. However, the789

infinitesimal parts may be important in resolving ties. It is straightforward to rank two ratios of the form (F.7), by790

cross-multiplying by their denominators and comparing the coefficients of matching powers of ω. I use this approach791

when calculating statistics based on the ranks of cos2 θ.792
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Appendix G. Size and shape change in presence-absence data793

In the notation of Appendix F, the mean proportional growth rate over the interval (t, t+∆t] for the ith species794

is r̃i = (ai−bi)/∆t. The coefficient of ψ = ω1/ω in r̃i is the only part that can be calculated if only presence/absence795

data are available. Denote this coefficient by r
(ψ)
i . Its value is796

r
(ψ)
i =































−1
∆t , extinction,

1
∆t , colonization,

0, otherwise.

(G.1)

The among-species mean of these coefficients is a natural measure of size change:797

1

n∆t

n
∑

i=1

r
(ψ)
i = k2(−1) + k3(1)

=
k3 − k2
n∆t

,

(G.2)

where k2 is the number of extinctions and k3 is the number of colonizations. Equation G.2 is the coefficient of ψ in798

Equation 8.799

The among-species sample standard deviation of these coefficients is a natural measure of shape change:

1

∆t





1

n− 1





n
∑

i=1

(r
(ψ)
i )2 −

1

n

(

n
∑

i=1

r
(ψ)
i

)2








1/2

=
1

∆t

[

1

n− 1

(

k2(−1)2 + k3(1)
2 −

1

n
(k3(1) + k2(−1))2

)]1/2

=
1

∆t

[

1

n− 1

(

k2 + k3 −
1

n
(k3 − k2)

2

)]1/2

,

which is the coefficient of ψ in Equation 9.800

The coefficient of ψ2 in the squared activity level is

n
∑

i=1

(r
(ψ)
i )2 =

k2(−1)2 + k3(1)
2

(∆t)2

=
k2 + k3
(∆t)2

.

Thus, the measures of rate of shape change proposed by Anderson (2007), which are proportional to k2 + k3, are801

measures of squared activity.802

Finally, using the results above, the scaled activity from presence-absence data is (1/(n−1/2∆t))(k2 + k3)
1/2,803

and the proportion of change that is size change is cos2 θ = (k3 − k2)
2/(n(k2 + k3)).804
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