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Abstract 

Bettridge, J.M. The epidemiology and ecology of infectious diseases in Ethiopian village 

chickens, and the role of co-infection in infection risk. 

The scavenging village chicken is important to millions of smallholders in Ethiopia, as in other 

less-economically developed countries, for its contribution to the economic, nutritional and 

social well-being of farmers, especially women and children. Infectious diseases are frequently 

cited as the greatest constraint to village chicken production, and in Ethiopia, most mortality is 

attributed to seasonal outbreaks of Newcastle disease (ND). This study conducted four cross-

sectional surveys over an 18-month period in two geographically distinct regions of Ethiopia, to 

examine a range of bacterial, viral and parasitic infections in randomly-selected village chickens, 

and to look at their 6-month survival rate. The two chicken populations of the different regions 

were found to be different in terms of their population dynamics and phenotypic 

characteristics, and these may be driven by farmer demands, which are dictated by the local 

economic and cultural value placed on specific qualities in the chickens. Over the course of the 

study, no large outbreaks were observed in the eight villages which took part in the study, and 

only 9 out of 1280 birds (0.7%) were found to be serologically positive for ND.  However, even 

in the absence of large outbreaks, around 20% of the birds in the study were reported to have 

died of disease within the 6-month follow-up period, and a further 13% lost to predation. Both 

location and seasonal variation influenced a bird’s fate, as did farmer decisions, such as 

choosing birds with specific characteristics to sell or eat. Rather than large outbreaks, the rainy 

season appeared to be associated with increased small-scale losses, and a variety of signs were 

described, suggesting several pathogens may be involved. No single infection measured at the 

time of sampling was a good predictor of subsequent death from disease; instead different 

pathogens appeared to be important in each region, and reduced the probability of survival 

through a variety of mechanisms. Positive correlations between Pasteurella and Salmonella, 

and between Marek’s disease and parasitic diseases were identified, but fewer birds than 

expected were identified with pathogens from both these groups, perhaps suggesting a 

decreased chance of survival for co-infected birds. Strong seasonal variation in prevalence was 

not observed for any of the infections in the study, suggesting that seasonal rises in disease 

mortality are unlikely to be attributable to a single infection, but other factors may play a role, 

including an increased probability of co-infection. This makes it difficult to prioritise control 

strategies for individual diseases; instead development programmes may find broad-based 

strategies, such as improving hygiene and chick management may be more beneficial to 

minimise the small-scale losses. Programmes also need to be tailored to local needs rather than 

assuming a blanket strategy will work equally well for all farmers or regions. Any development 

strategies to control single diseases should consider potential impacts on non-target infections, 

due to the existence of multiple interactions between pathogens in this system.       
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There is widespread recognition of the importance of poultry keeping to poor rural 

households in developing countries throughout the world (Copland and Alders, 2005; Mack 

et al., 2005). A substantial amount of research over the past 25 years has focused on ways 

to improve village chicken production in order to benefit the poorest and most 

marginalised members of society. The Food and Agriculture Organization of the United 

Nations (FAO) together with the International Atomic Energy Agency (IAEA) conducted a 

Coordinated Research Project in 13 African countries over a five-year period beginning in 

1998, and concluded that vaccination against Newcastle disease virus (NDV) was the most 

critical intervention in all cases, and that other interventions such as improving feed, 

housing or controlling parasites were only effective if used in conjunction with vaccination. 

All 13 country projects demonstrated an economic return on the investment in NDV 

vaccines (Dwinger and Unger, 2006). Ethiopia was not one of the countries involved in this 

programme.  

Although there is recognition within Ethiopia of the potential benefits to the development 

of village poultry, both by researchers and at government levels, the emphasis there has 

been different to that put forward by the FAO/IAEA study. In Ethiopia, research has focused 

on attempting to improve productivity by incorporating high-performing commercial lines 

of chickens into village production systems. Disease control appears to have received much 

less attention until relatively recently, and as such, Ethiopia may be lagging behind other 

countries in the region with respect to knowledge of poultry diseases in the village chicken 

population. There is no reason to suspect that Ethiopia is substantially different from other 

surrounding countries with regard to the methods of chicken production or constraints 

experienced by village chicken producers, or that the methods employed by other 

countries would not substantially benefit Ethiopian producers. In addition, it is highly likely 

that the existing genetic improvement programmes would benefit from incorporating some 

knowledge of infectious disease epidemiology in the village situation. This review aims to 
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summarize some of the existing literature on infectious diseases in village chickens, with 

particular reference to the current situation in Ethiopia. 

 
1.1 The role of village poultry in human development in Ethiopia 

The FAO splits the poultry industry into four broadly defined production sectors (FAO, 

2004). Sectors 1 and 2 deal with intensively reared, industrialised poultry produced for 

commercial purposes. Sector 3 describes a small to medium commercial enterprise with 

low or minimal biosecurity and birds usually entering live bird markets. The key features of 

Sector 4 production are an extensive management system with minimal inputs or 

biosecurity and birds often consumed locally. This sector is variously referred to as 

smallholder, family, rural, indigenous, traditional, scavenging, village or backyard poultry. 

Although the terms are frequently used interchangeably, Ahlers et al. (2009) differentiates 

village poultry, which are usually unconfined and scavenge around the home and village, 

with or without small amounts of supplementary feed from kitchen waste or surplus grains; 

from backyard poultry, which are more typically found in urban or peri-urban areas and 

raised in an enclosure. These authors use family poultry as an umbrella term to encompass 

both these types of production system. 

These small poultry flocks can also be categorised according to their function. McLeod et al. 

(2009) described the “safety net” flock; kept for their contribution to poor families’ 

livelihoods and social dynamics. Birds are typically indigenous breeds which require few 

inputs and have low outputs of both eggs and meat. They usually contribute little in terms 

of economic income, but may be sold or given away as required, typically for small 

expenses, such as school fees or medicines.  The “asset-builder” flock is seen as a potential 

route out of poverty, where the flock may represent a significant proportion of the owner’s 

assets and income. In order to be a success, good market connections are required, and it 
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can be quite a high-risk enterprise, as owners invest money, time and food resources into 

the flock with no guarantee of good returns.  

There are numerous advantages to developing village poultry production systems. Poultry 

are easily accessible, even to the poorest households or ones with a lack of able-bodied 

workers, as they require minimal land, labour or financial inputs. They can scavenge for 

food, and do not compete for food resources with humans, and they are normally in close 

proximity to the household, under minimal supervision, enabling them to be managed by 

women and children while placing few additional burdens on these groups. Their role in 

managing this household asset gives women greater control over the income from sale of 

poultry and eggs, and this can be used to support child education. As such, the 

improvement programs for family poultry have the potential to contribute to several of the 

UN’s Millennium Development Goals (Alders and Pym, 2009). 

The Federal Democratic Republic of Ethiopia, like many other developing countries, has 

recognised both the need for and the benefits of poultry development schemes. Since 

2010, the United Nations (UN) has assessed poverty levels in member countries using the 

Multidimensional Poverty Index (MPI), which identifies multiple deprivations in the same 

households in education, health and standard of living. The most recent survey data 

available for estimating MPI figures for Ethiopia were collected in 2011. In Ethiopia 87.3% 

of the population lived in multidimensional poverty and 71.1% in severe poverty, ranking 

the country 173rd out of 186 in the UN Human Development Index (UNDP, 2013). Ethiopia 

is multiethnic, multilingual and multicultural, with 9 regional states and around 83 

individual languages (http://www.mfa.gov.et/). Although it supports a wide range of 

livelihood activities, through traditional pastoralism to urban lifestyles, agriculture is the 

predominant activity, accounting for around 47% of GDP and around 85% of employment 

(CIA, 2013). Oromiya is the largest regional state in Ethiopia, both in terms of land area and 

http://www.mfa.gov.et/
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population. At the time of the last Ethiopian census, approximately 88% of the population 

of the Oromiya region of Ethiopia were living in rural households (CSA, 2007). The latest 

published estimates by the Central Statistics Agency of Ethiopia put the total poultry 

population at approximately 49.3 million (CSA, 2010/11), of which around 18.8 million 

(38%) are in Oromiya. Although it is described as “poultry”, the data presented only refers 

to chickens, as the numbers of other farmed poultry species in Ethiopia are negligible. The 

report estimates that over 97% of Ethiopian chickens are indigenous breeds.  

With both a large rural (human) and a large poultry population, several Ethiopian 

researchers have identified the potential for development of village chickens as an 

economic and nutritional resource (Yami, 1995; Nasser et al., 2000; Dessie and Ogle, 2001; 

Duguma, 2009; Moges et al., 2010b). There are several published descriptions of the village 

production systems throughout Ethiopia and identification of numerous constraints faced 

by village poultry keepers, including disease, predation, lack of feed, water and shelter; and 

poor access to veterinary services and to markets (Dessie and Ogle, 2001; Halima et al., 

2007; Dinka et al., 2010). Poor productivity is also described; hens show high levels of 

broodiness which limits egg production, and high losses among chicks limit the number of 

birds which can be sold for meat. In addition, high losses among the adult birds mean that a 

considerable proportion of eggs must be hatched and reared in order to obtain 

replacement stock, further limiting the availability of both eggs and birds for sale or 

consumption (Dessie and Ogle, 2001) 

 

1.2 Poultry development programmes 

Kitalyi (1998) recommended a step-wise program for the development of backyard poultry 

into a semi-commercial enterprise. Starting with the basic indigenous stock, initial 

developments should include good hygiene, shelter, preferential treatment of chicks and 
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control of the most devastating diseases, such as Newcastle disease (ND). Later 

improvements in the management include developing feeding and other disease control 

programmes, followed by improving the stock by introducing high-yielding traits and 

developing marketing strategies.  

Exotic lines of chickens were distributed to small-scale farmers in Ethiopia by research 

institutes, governmental and non-governmental organisations (NGOs) from the 1950s, as 

live birds, fertile eggs and later as a cockerel-exchange programme, where farmers 

exchanged indigenous cocks for those from exotic, commercial lines (Teklewold et al., 

2006).  In 1996, the Ethiopian Ministry of Agriculture developed a poultry extension 

package for rural farmers which involved training a member of the household in various 

aspects of poultry management, and providing a nucleus flock of Rhode Island Red 

chickens. These birds were vaccinated against NDV prior to distribution by the poultry 

multiplication centres throughout the country (Dessie and Jobre, 2004), although it is 

unclear whether vaccination schedules were able to be maintained after distribution. These 

programmes were not a great success, as the exotic birds showed a poor tolerance to the 

harsh conditions, and farmers have complained that this distribution of exotic cocks, pullets 

and fertile eggs has negatively impacted on the local poultry’s brooding ability and 

adaptation to low-input feeding systems (Dinka et al., 2010). Bell (2009) argues that it is not 

genetic make-up which is limiting the productivity of backyard chickens, and one of their 

key advantages is that they are able to find their own feed, thus making them far more 

profitable per unit of money invested than a commercial bird, for which feed has to be 

purchased. In Ethiopia, the adoption of exotic birds was found to be greater amongst 

farmers who offered supplementary feed to their poultry (Teklewold et al., 2006), and 

farmers who had adopted Rhode Island Red birds rated their scavenging behaviour as 

inferior to that of indigenous birds (Dana et al., 2010). The same author reported that 

“adaptation”, consisting of disease and stress tolerance, flightiness, ability to escape 
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predators and scavenging vigour, was rated as the most important attribute of village 

chickens by farmers, although they would like to see improvements in egg production and 

growth, as bodyweights play a substantial role in dictating the market price. Farmers also 

rated the taste of eggs and meat from indigenous birds more highly than their exotic 

counterparts  

New strategies in Ethiopia are now being developed which focus on utilising the indigenous 

birds, and several recommendations have already been made as to what needs to be done 

in terms of improving chicken production (Moges et al., 2010b). These broadly agree with 

those made by Kitalyi in 1998, but prioritise genetic improvement of the indigenous breeds, 

and shifting to market-oriented production systems. Rather than placing the emphasis on 

disease control, basic hygiene and nutrition, which in Kitalyi’s work were the foundation on 

which further improvements could be built, Moges’s report mentions these aspects only 

briefly, and provides no specific recommendations as to how they may be implemented. It 

would appear that for several years after the death of Dr. Mohammed Nasser, who 

contributed much to Newcastle Disease research in Ethiopia (Dessie and Jobre, 2004), 

there was only scant research devoted to poultry disease, and the development agenda 

concentrated heavily on ways that the existing chicken distribution programmes may be 

improved. In order to utilise the genetic merits of the indigenous breeds, a programme has 

been in development at the Ethiopian Institute for Agricultural Research (EIAR) for several 

years. The premise is to use selective and cross-breeding to develop a dual-purpose chicken 

which meets the requirements of farmers for adaptation to a scavenging system, whilst 

having higher outputs of eggs and meat than the existing ecotypes (Dana et al., 2011).  

Although this approach may appear promising, life-history theory (based on the idea that 

organisms have finite resources which are competitively allocated to growth, maintenance 

and reproduction) suggests that adaptive changes must come with costs, often described 
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as “trade-offs”, and that the immune response can be evaluated as a life-history trait, and 

be affected by such trade-offs (Zuk and Stoehr, 2002). Therefore artificial selection for 

growth and high egg production might be predicted to compromise other traits, including 

immunity to infectious diseases. Indeed, there is evidence from selected chicken lines that 

selection for growth frequently compromises specific humoral or cellular responses to a 

novel antigen (van der Most et al., 2011), whilst numerous studies in other avian species 

have observed increasing parasite burdens in birds which mature early, lay more eggs and 

rear more clutches, leading to speculation that there are “costs” associated with resisting 

infections which are borne by individuals which invest more into reproduction (Møller, 

1997; Zuk and Stoehr, 2002). Individuals achieve greater reproductive success when not 

constrained by limited nutritional resources, but there is also some evidence that immune 

responses are also decreased when resources are limited (Lochmiller et al., 1993). 

Maintaining a functional immune system is vital for animals in an environment where they 

can be exposed to a range of diseases. In commercial settings, exposure to infections can 

be better controlled and feed provision matched to animals’ energy requirements, making 

fast-growing animals more profitable. The design of the current selective breeding 

programme in Ethiopia means that the advantages seen in the environment of an intensive 

farm, where vaccinations and biosecurity measures have been put in place to control 

disease, and all feed is provided, may not be transferred to the village situation, where 

limited feed resources are a frequent constraint. This may exert additional pressure on 

immune responses in individuals selected for their ability to divert more resources into 

growth and reproduction. In addition, the risk of losing some important disease resistance 

genes from the “improved” population, which has, of necessity, been developed from a 

small foundation flock, may make them more vulnerable than the source population from 

which they were derived. Therefore some knowledge of the diseases present in the field 

situation may assist the success of any poultry development programme put in place. 
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1.3 Disease as a constraint to village poultry production 

Disease is consistently highlighted by village poultry keepers as one of the biggest 

constraints to production (Guèye, 1998; Mack et al., 2005), but the key to an effective 

intervention programme requires specific knowledge of which infections are present in the 

population. Numerous serological surveys have been reported in the literature for a wide 

range of infectious diseases in village chickens in Ethiopia and throughout the world. 

Serological surveys have the advantage of being relatively cheap and easy to perform, and 

clearly demonstrate that village chickens have been exposed to many potential pathogens. 

The main problem with serological surveys is that they can demonstrate exposure to the 

disease without providing much information about its impact on the population. A high 

seroprevalence indicates that a large number of animals have been exposed, but does not 

necessarily correlate with a high impact on that population – for example, infectious bursal 

disease in a flock of adult chickens may pass unnoticed, as birds will not show clinical signs 

(Eterradossi and Saif, 2008). Conversely a low seroprevalence may be found both in cases 

where the exposure to a pathogen is low, but also where a highly virulent pathogen, such 

as velogenic NDV, occurs in a classic epizootic outbreak, with case fatality rates of close to 

100% (Martin, 1991). 

Estimating the relative importance of various diseases in a population is therefore complex. 

In Ethiopia, the lack of knowledge of poultry disease by local veterinary extension services 

combined with the lack of an effective reporting network, which makes it very difficult for 

those who do have specialist knowledge in this area to detect outbreaks, means that most 

poultry disease goes unreported and uninvestigated (Halima et al., 2007). Alamargot (1985) 

performed a series of post-mortem examinations in order to determine which diseases 

were causing the most losses in Ethiopian poultry. However 193 out of the 198 necropsies 

were birds from commercial farms, and as such his findings cannot necessarily be 
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extrapolated to village poultry. Reports of outbreak investigations in the Ethiopian 

literature on village poultry have been confined to areas where there had been distribution 

of exotic birds (Mazengia et al., 2009), and as such may not represent what is occurring in 

indigenous poultry; either because of disease introduction with the exotic birds, which are 

reared intensively before distribution, or because exotic birds are likely to be more 

susceptible to endemic diseases, due to their poor adaptation to the village situation. 

Diseases in village chickens which have to date been reported in Ethiopia include Newcastle 

disease (Tadesse et al., 2005; Mazengia et al., 2010; Chaka et al., 2012); infectious bursal 

disease (Degefu et al., 2010; Mazengia et al., 2010; Chaka et al., 2012; Jenbreie et al., 2012; 

Kassa and Molla, 2012; Zeryehun and Fekadu, 2012); salmonellosis (Berhe et al., 2012; 

Berihun et al., 2012; Alebachew and Mekonnen, 2013);, pasteurellosis (Chaka et al., 2012), 

and mycoplasma (Chaka et al., 2012). Marek’s disease has also been identified in village 

chickens kept under intensive management (Duguma et al., 2005). Parasitic diseases, 

including coccidiosis (Ashenafi et al., 2004b; Luu et al., 2013), helminths (Tolossa et al., 

2009; Molla et al., 2012) and ectoparasites (Belihu et al., 2009; Tolossa et al., 2009) have 

also been demonstrated to be highly prevalent in the country. An overview of each is given 

here, together with a brief review of the literature which may be relevant to the diseases’ 

epidemiology in the village situation in Ethiopia. 

 

1.4 Newcastle Disease Virus 

1.4.1 Biology and Pathology 
 
(Summarised from Alexander and Senne (2008) 

Newcastle disease virus (NDV) is a Type I avian paramyxovirus. It is a single stranded, 

negative sense RNA virus with haemagglutination and neuraminidase activity. There is wide 

variation between different strain types, but they can be grouped according to five main 
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categories: Viscerotropic velogenic and neurotropic velogenic NDV both cause acute, 

lethal infections in all ages of chickens, with mortality up to 100% in housed flocks. The two 

strains respectively cause haemorrhagic lesions of digestive tract and a syndrome 

comprising respiratory and neurological signs. Mesogenic strains cause respiratory 

infections and mortality in young birds and a drop in egg production in laying hens, whilst 

lentogenic viruses cause mild or inapparent respiratory infections. The fifth virus type is an 

asymptomatic enteric virus, which cause gut infection without obvious disease. Virus 

pathotype is not usually clear-cut, and signs of milder strains may be exacerbated by 

concurrent disease or adverse conditions. Immunity to one strain is cross-protective, and 

milder strains are often used in vaccine production. 

NDV may infect avian species other than chickens; ducks, geese, and many wild species can 

be infected and transmit virus, but show no clinical signs; turkeys and game birds can be 

clinically infected. It is also occasionally reported to cause zoonotic infections, causing 

conjunctivitis, sometimes accompanied by fever and flu-like symptoms (Swayne and King, 

2003). In chickens, disease may present with a variety of signs, including sudden death, 

lethargy, fluffed feathers, respiratory signs, green diarrhoea, torticollis, paralysis, oedema 

of head and neck, or a decrease in egg production (Alexander and Senne, 2008).  

1.4.2 Epidemiology 

NDV is shed both from the respiratory tract and in faeces, and infection can be through 

inhalation or ingestion, with an incubation period of between 2 and 15 days. Although the 

virus is heat-labile, it may persist for up to 6 months in faeces. However, under village 

conditions, it is unlikely to persist for more than 1 month in the environment (Alders and 

Spradbrow, 2001). Spread can also occur through contact with contaminated people, 

animals and equipment, feed, water, vaccines and poultry products, including viscera from 

dead birds fed to chickens, or to cats and dogs, which can shed virus for a short period in 
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faeces. Although respiratory spread is important in housed flocks, under village conditions, 

where there is less direct contact, faeco-oral spread is probably more important, and 

spread throughout a village may take weeks to months (Martin, 1991). Epizootic outbreaks 

usually occur when an infected bird is introduced into a fully susceptible flock, with up to 

100% mortality, whilst endemic disease can occur under village conditions, where birds of 

varying age and infection status can freely mix. Where breeding birds have survived an 

outbreak, lower-level mortalities will then occur in susceptible (primarily young) birds, until 

a large population of susceptible birds has built up, when epizootic outbreaks may occur.  

These outbreaks are often seasonal, associated with climatic stress, changes in food 

availability, movement of birds through markets, or periods of increased hatching and 

rearing which increase the susceptible population (Awan et al., 1994). 

The circulation of several different strains of virus may complicate the picture under village 

conditions. Lentogenic or avirulent strains can be maintained in circulation for prolonged 

periods, and may give partial immunity to velogenic strains. Infected birds may then carry 

and shed virus, but without the associated clinical signs (Martin, 1991; Awan et al., 1994). 

Recent studies in Ethiopia have confirmed the presence of both virulent and lentogenic 

strains circulating within rural household flocks (Chaka et al., 2013a; Fentie et al., 2013). 

Concurrent parasitic disease appears important in determining susceptibility (Martin, 1991) 

but although ectoparasites can be infected, they do not transmit disease (Alexander and 

Senne, 2008).  Experimental studies have shown that helminth infections can reduce the 

antibody response to vaccination/ challenge with NDV, although the cellular immune 

response still protects birds from clinical disease (Horning et al., 2003). Other risk factors, 

such as exposure to wild birds, and restocking practices, have been examined in Uganda, 

but no significant associations were found (Otim et al., 2007). 
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Worldwide, the significance of NDV as a major constraint to village chicken production is 

well recognised, and the benefits of vaccination, as a cost-effective intervention, have been 

demonstrated in 13 different African countries (Dwinger and Unger, 2006). In Tanzania and 

Mozambique, effective NDV control programmes have resulted in increased chicken 

numbers and subsequent increases in households’, and particularly women’s, purchasing 

and decision-making powers (Alders and Pym, 2009). 

In Ethiopia, comparatively little attention has been paid to controlling Newcastle disease in 

village poultry to date. A review of the disease in Ethiopia published in 2004 (Dessie) 

reported only two serological studies, from a DVM and an MSc thesis, and complained of a 

lack of monitoring capacity in the state Veterinary Services department. In the 10 years 

since this review was published, more work has been done on NDV in Ethiopia, but the 

literature is confusing. Several studies of the effects of disease on village poultry 

production have been in the form of participatory rural appraisal (PRA) and/or 

questionnaire-based studies. Although Ethiopian farmers can recognise and describe a 

variety of diseases (Sambo, 2012), they tend to designate any acute disease with high 

mortality as “fengele” (Chaka et al., 2012), which was described by Dessie and Ogle (2001) 

as a syndrome comprising of inappetance, watery, yellowish droppings, paralysis and 

eventually death. The term “fengele” has, in subsequent studies, become synonymous with 

Newcastle disease, even though this syndromic description could potentially include a 

number of other disease conditions.  

Studies based on interviews or PRA work report outbreaks of “fengele” to be seasonal and 

to occur annually during the rainy season (Dessie and Ogle 2001, Halima 2007, Dinka 2010), 

although since villagisation in the 1980s, losses occur throughout the year (Dessie and Ogle, 

2001). This is not inconsistent with ND occurring in both epidemic and endemic patterns in 

different areas of Ethiopia; which would be borne out by the wide range of reported levels 
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of seropositivity (Zeleke, 2005b; Tadesse et al., 2005; Regasa et al., 2007; Mazengia et al., 

2010; Chaka et al., 2012), which range from 6 – 64%. However, it is difficult to make any 

comparisons between these studies, due to the differences in sampling techniques and test 

procedures used. Although there is little doubt that NDV is important in Ethiopia, the 

literature which discusses disease in more general terms as a constraint may be confusing 

the issue, because there appears to have been some spurious assumptions made which 

have since been cited several times without sufficient evidence. This has taken the form of: 

o Mortality is higher in the wet season 

o NDV is a disease which causes widespread mortality 

o Therefore NDV outbreaks are occurring in the wet season 

 

Although many other diseases have, in very recent years, begun to receive more attention 

from those in the veterinary field, those without specialist knowledge of poultry disease 

often appear to attribute all disease problems to NDV, without appreciation that other 

diseases may be involved in the seasonal “fengele” occurrence, and thus may over-

emphasise its importance. A potential concern is that, should any vaccination programmes 

for NDV be implemented in future, these may not meet local people’s expectations for 

controlling “fengele”, unless this disparity is carefully explained. Komba (2012) reported 

continued disease outbreaks in chicks and growers in Tanzania, despite achieving good 

vaccine coverage with a thermostable NDV vaccine, suggesting other diseases also needed 

to be controlled for.  

Vaccination of village chickens in Ethiopia is still in its infancy. Although the exotic birds 

distributed in the government programmes were vaccinated prior to distribution, there is 

almost no literature describing vaccination of indigenous birds. A recent paper by Nega et 

al. (2012) assessing I2 thermostable NDV vaccine in village chickens in Ethiopia reported a 
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reduction in mortality of 82%; however this appears to have been assessed by asking 

owners to estimate mortality rates before and after vaccination. Nonetheless, it would 

appear that NDV vaccination would be a promising intervention for Ethiopian farmers to 

adopt, as it has been in many other countries in the region. 

 

1.5  Avian Influenza 

1.5.1 Biology and Pathology  

(Summarised from Swayne and Halvorson (2008)) 

Avian influenza is a type A influenza virus; a negative sense single-stranded RNA virus with 

segmented genome of 8 segments of the orthomyxovirus family. Strain typing is based on 

serological type of haemagglutinin (HA) and neuraminidase (NA) proteins. 16 HA and 9 NA 

types are recognised. In addition, viruses are classified according to pathotype – i.e. their 

ability to cause pathogenic effects in the chicken host. They are either highly pathogenic 

(HPAI) or low pathogenicity (LPAI). This classification is made either on the intravenous 

pathogenicity index in 6-week-old chicks, or by using molecular methods. A variety of 

pathogenic effects may be seen in the field, regardless of the laboratory definition of 

pathotype, as host species, age and immune status play important roles in determining the 

outcome of infection. HPAI infections usually have close to 100% morbidity and mortality, 

with clinical signs of pathologies in multiple organs – including cardiovascular and 

neurological signs. Sudden death, and severe depression and anorexia with loss of 

production are usually seen. LPAI infections may show no signs, or common clinical 

presentations will include respiratory signs, loss of production, occasionally diarrhoea and 

generalised signs of lethargy and decreased appetite. Mortality is usually less than 5%.  

 

 



Chapter 1 | General introduction and thesis objectives 
 

  
33 

 
  

1.5.2 Epidemiology  

HPAI viruses can infect man, and have done so sporadically, usually after direct contact 

with birds in markets or villages infected with the H5N1 strain. Circulation of the infecting 

virus among humans is usually very limited, but can cause severe flu-like illness and 

mortalities in affected individuals. Because of their devastating impact on the poultry 

industry and their zoonotic potential, all HPAI viruses and any LPAI viruses of the H5 or H7 

subtype are notifiable. This is due to the ability of LPAI H5 and H7 viruses to mutate to HPAI 

during circulation in poultry (Swayne and Halvorson, 2008). Because of the clinical 

similarities of HPAI to NDV, its presence in developing countries is thought to be under-

reported, as people may regard mass mortality of chickens as normal, and see no value in 

reporting it (Cardona et al., 2010). In addition, because HPAI is notifiable and a stamping-

out policy is usually applied, losses in a village situation occur from culling, as well as 

disease, but are not usually compensated. In Indonesia and Cambodia, where outbreaks 

have occurred, the impact on rural families has been severe (Rushton et al., 2005). HPAI 

has never been reported in Ethiopia, where general and targeted surveillance measures are 

in place. Notifiable LPAI was last reported in Ethiopia in 2006. (O.I.E., 2013) 

 

1.6 Infectious Bursal Disease Virus (IBD, Gumboro)   

1.6.1 Biology and Pathology  

(Summarised from Eterradossi and Saif (2008)). 

Infectious bursal disease virus is an avibirnavirus, a non-enveloped RNA virus, which can 

infect chickens, turkeys, ducks, guinea fowl and ostriches. Serotype 1 causes clinical disease 

in chickens under 10 weeks, while Serotype 2 is not associated with clinical disease. 

Chickens over the age of 10 weeks are not clinically affected; nor are any other avian 

species. The virus targets developing B-lymphocytes in the bursa of Fabricius, hence its age-
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specific presentation. It causes severe, acute disease in birds of 3-6 weeks, with watery 

diarrhoea, ruffled feathers, anorexia, and prostration. Morbidity is very high, and mortality 

is usually from 5-40%; although a very virulent subtype (vvIBD), first isolated in the 

Netherlands in the late 1980s, can cause up to 100% mortality. There are distinctive post-

mortem lesions with peri-bursal oedema, swelling and haemorrhages; echymotic 

haemorrhages in muscle; and swelling and discolouration of the kidneys. Birds under 3 

weeks can have a mild or subclinical form of disease, which may cause depletion of 

lymphoid tissue in the bursa in birds less than 2 weeks of age. This results in a markedly 

decreased humoral response and increases susceptibility to several other infections or may 

cause vaccine failure, although there is still a normal antibody response to IBD virus. Birds 

over 10 weeks usually do not develop clinical signs.  

1.6.2 Epidemiology 

IBD virus particles are highly resistant to heat and disinfection and can persist in the 

environment for long periods (at least 4 months). Spread is possible through water, feed 

and fomites. Its epidemiology is principally known through infections in large commercial 

flocks, and may be somewhat different in a village situation. The incubation period is only 

2-3 days, and in a housed fully susceptible flock, morbidity can be 100%, receding after 5-7 

days. There is no carrier status: repeat outbreaks are caused by survival of the pathogen in 

the environment. Recurring outbreaks may be silent, as birds are often infected at under 3 

weeks old (Eterradossi and Saif, 2008). Studies in village poultry have detected high 

proportions of positive samples, even where clinical disease is rarely observed (Abdu et al., 

1986). Studies in Mauritania and Tanzania reported proportions of positive samples up to 

46 and 42% respectively (Bell et al., 1990; Permin and Bisgaard, 1999). 

IBD was reported in Ethiopia for the first time in 2002 – before that, the country was 

thought to be free of the disease. The report focused on an outbreak in commercial 
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broilers in Debre Zeit (Zeleke et al., 2005a). A report for the same area in 2004-2005 

identified lesions suggestive of IBD on one farm (Chanie et al., 2009). The first study on the 

incidence of IBD in Ethiopian village poultry was in two areas in the Amhara region which 

had received “improved” chicks from a commercial farm (Mazengia et al., 2009), and it has 

been suggested that this was the cause of the introduction of the disease to village poultry. 

Serological studies have since demonstrated infection in indigenous birds in several areas 

of the country (Chaka et al., 2012; Jenbreie et al., 2012; Kassa and Molla, 2012; Zeryehun 

and Fekadu, 2012), with the proportion of positive samples ranging from 75 to 96%. 

However, at least two of these studies have purposely selected areas where there is regular 

distribution of chicks from the government multiplication centres to village producers. Two 

papers on the molecular characterisation of virus isolates have identified very virulent IBD 

strains from commercial and indigenous birds (Negash et al., 2012; Jenberie et al., 2013).   

Control of IBD through vaccination, even in commercial farms, remains difficult. 

Determining the timing of vaccination for chicks is highly dependent on the level of 

maternal antibody. A wide variety of vaccine strains are commercially produced, mostly 

derived from classical virus strains, which do not all successfully protect against the vvIBD 

strains. “Hot” vaccines, which break through maternal antibody, are now in frequent use in 

countries which have vvIBD circulating, although their use risks causing bursal lesions, and 

as such may affect the response to other vaccinations or cause immunosuppression (Müller 

et al., 2012). Very little appears to have been published on the use of IBD vaccines in the 

village situation. One report on the use of IBD vaccines in day-old chicks distributed to 

farmers in Egypt concluded it reduced mortality (Azzam et al., 2004). There is also a report 

of a joint project between the Australian Centre for International Agricultural Research and 

Indonesia, to develop a vaccine for use in village poultry, although it is unclear if this has 

since made it into commercial production (Ignjatovic and Parede, 2009). Failure of 

commercial vaccines to protect industrialised flocks in Ethiopia has prompted efforts to 
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attenuate the local vvIBD strain to produce vaccines suitable for use within the country 

(Jenbreie, personal communication), although these will, again, be primarily intended for 

use on commercial units. 

 
1.7 Marek’s Disease Virus 

1.7.1 Biology and Pathology 

(Summarised from Schat and Nair (2008) and Payne and Venugopal (2000)) 

Marek’s disease virus is an oncogenic herpesvirus of the genus Mardivirus. Serotype 1 

viruses are now classified as the species Gallid herpesvirus 2. This species is further divided 

into pathotypes, known as mild, virulent, very virulent and very virulent plus. Serotypes 2 

and 3 are non-oncogenic. Hosts other than chickens include quail, turkeys and pheasants. 

The pathogenesis is complex and split into stages. Infection through the respiratory route is 

followed 3-6 days post-infection by an early cytolytic phase in B cells and activated T cells, 

causing marked immunosuppression. The virus spreads throughout the body, including to 

the feather follicles, from which it is shed into the environment. The second stage involves 

latent infection in CD4+ cells of varying duration; and the third and fourth stages involve 

late cytolytic infection with immunosuppression, infiltration of nerves and neoplastic 

transformation of the infected T-cells, resulting in lymphomatous lesions in various organs. 

Different forms of disease are seen depending on the age of the chicken, the strain of the 

virus and the resistance of the host. Classical forms, which mainly exhibit neural 

involvement, are mainly seen in chickens between 2 and 12 months of age. Young chickens 

infected with virulent strains may develop early mortality syndrome 8-14 days post-

infection. Paralysis usually develops 8-12 days post-infection, and some birds which recover 

from this may go on to succumb to lymphomas within a few weeks. Infection with the very 

virulent strains may result in acute mortality syndrome, where birds die during the cytolytic 
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phase of infection, well before the development of lymphomas. There is also an uncommon 

manifestation of disease where transient paralysis of 24-48 hrs develops in birds between 5 

and 18 weeks of age, which involves encephalitic infections. Morbidity in housed flocks is 

usually between 10 and 30%, though may be as high as 70% with acute forms of disease. 

Mortalities may increase rapidly, then cease, or continue over several months.  

1.7.2 Epidemiology 

Transmission is direct or indirect, as the virus particles are shed in feather dander which 

can contaminate the environment and be spread by the airborne route, on fomites or on 

people. Spread through a housed flock is rapid, especially in young chicks. Virus particles in 

contaminated houses can survive for over a year (Schat and Nair, 2008). The epidemiology 

of disease in village poultry is largely unknown, although it is thought that clinical disease is 

rarely seen, as it is most likely to manifest under conditions where there are high 

concentrations of poultry and associated high levels of early challenge (Wajid et al., 2013). 

Reports of Marek’s disease in Ethiopia are confined to exotic chickens reared on 

commercial farms (Lobago and Woldemeskel 2004) or in village ecotypes kept 

experimentally in confined conditions (Duguma et al., 2005). Marek’s disease is considered 

to be of importance in village birds, but there are few published studies looking at the 

disease under village conditions. One study in Mexico found around 8% of commercially-

reared birds placed in village conditions at 3 weeks of age developed signs of MDV 

infection. Disease developed in both vaccinated and unvaccinated birds (Rodriguez et al., 

1997).  A seroprevalence study in the Galapagos looked at four farms keeping backyard 

poultry, each with more than 50 birds. Seroprevalence ranged from 20-50% between farms 

(Soos et al., 2008). A study in Kenya comparing seropositivity between domestic and wild 

poultry and game bird species only looked at eleven free-range village chickens, but seven 

of them had MDV antibodies (Morgan, 1971). A study in Iraq isolated MDV virus from just 
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under 50% of sampled birds, and found little difference in the proportion of positive 

samples between commercial and village birds (Wajid et al., 2013). All viruses isolated in 

this last study showed genetic similarities to well-characterised very virulent isolates.  

Susceptibility to MDV has a strong genetic component, and it has been suggested that 

village birds, in which the virus may have been circulating for long periods, may have been 

naturally selected for resistance (Wajid et al., 2013). However, one Ethiopian paper 

suggested that the local ecotypes were highly susceptible to MDV when reared under 

confined management and there was variation between the ecotypes. Unfortunately in this 

study the pathotype of the infecting virus was unknown (Duguma et al., 2005). 

 
1.8 Pasteurella multocida (Fowl Cholera) 

1.8.1 Biology and Pathology 

(Summarised from Glisson et al. (2008)) 

Pasteurella multocida is a gram-negative, non-motile, non-sporulating rod-shaped 

bacterium. Different strains have been grouped by serotype and sequencing to give three 

subspecies: P. multocida subspecies multocida, P. multocida subspecies septica and P. 

multocida subspecies gallicida. Pathogen virulence depends on both the strain and host 

species. A wide range of avian hosts are susceptible and it has also been isolated from a 

variety of mammalian hosts, although only swine isolates have been shown to be 

pathogenic for poultry. Infections can be acute or chronic, and healthy birds can carry the 

organism for prolonged periods in the pharynx or cloaca. 

Most infections occur in older birds over 16 weeks of age, with acutely infected birds 

showing signs of fever, lethargy, mucoid secretions from the mouth, watery or greenish 

diarrhoea, and sudden death. Pathological lesions are those associated with septicaemia. 

Chronic infections are usually localised and may be suppurative, with sinusitis, arthritis, 
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torticollis, conjunctivitis or pharyngitis most commonly observed. In infections in housed 

flocks, around 20% mortality is usually seen, although up to 45% has been reported.  

1.8.2 Epidemiology 

Infections are most likely introduced by chronically infected birds. Although it has been 

isolated from insects including acarid parasites of chickens, they probably do not transmit 

the disease (Glisson et al., 2008). Clinical signs and duration of infection have been shown 

to be worse in concurrent infections with Ascaridia galli under experimental conditions 

(Dahl et al., 2002). 

The proportion of positive samples in village poultry is in Ethiopia has been reported at 63% 

(Chaka et al., 2012), and at levels of 52% in Zimbabwe (Kelly et al., 1994). Mortality rates in 

village poultry attributed to P. multocida infections appear to be low; Biswas et al. (2005) in 

a longitudinal study in Bangladesh attributed less than 7% of deaths to pasteurellosis, and it 

may be that most strains in village poultry are of low pathogenicity, hence the high 

exposure rates reported. Healthy birds may become chronic carriers, even in the absence 

of visible fowl cholera outbreaks. The proportion of village birds infected has been reported 

at rates of 0.7% in Tanzania by isolation of the pathogen from tracheal swabs of scavenging 

birds (Muhairwa et al., 2001) and rates of 1.1% were found in family flocks in Kenya 

(Mbuthia et al., 2008). In this last study, bacterial carriage from birds sampled in markets 

has been reported to be significantly higher than that on farms. 

 
1.9 Salmonella enterica  

1.9.1 Biology and Pathology 

(Summarised from Shivaprasad and Barrow (2008) and Chappell et al. (2009)) 

Salmonella enterica are gram-negative, slender rod-shaped, facultatively anaerobic 

bacteria. Several serovars are capable of infecting chickens, including the motile 
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paratyphoid serovars, S. Enteritidis and S. Typhimurium, which infect a wide range of 

species and are both major public health issues. On the other hand, S. enterica serovar 

Gallinarum and serovar Pullorum infections are predominantly restricted to chickens, 

although there are some reports of outbreaks in turkeys, game birds and parrots. S. 

Gallinarum is the causal agent of Fowl Typhoid, which affects birds of all ages, while S. 

Pullorum is the causal agent of Pullorum disease, which causes substantial mortality in 

chicks up to 2-3 weeks old. While the paratyphoid serovars of Salmonella are flagellated, 

and cause intestinal inflammation early in infection, the non-flagellate serovars Gallinarum 

and Pullorum cause little inflammation, are taken up by macrophages and dendritic cells, 

and may result in severe systemic disease. Disease severity is highly variable, depending on 

factors such as the age and strain of bird, management factors and route and dose of 

exposure. Mortality from systemic salmonellosis can be up to 100% in young birds. 

Infection takes place in three stages; intestinal invasion, development of systemic infection 

and eventually immune clearance, death or development of a subclinical carrier state, 

where the bacteria persist within macrophages. Clinical signs for both Fowl Typhoid and 

Pullorum disease include early death in birds hatched from infected eggs, weakness, 

depression, poor appetite, ruffled feathers, pale combs, poor growth/ decreased egg 

production, diarrhoea and dehydration. Post-mortem lesions can be seen in the liver, 

spleen, heart, pericardium, lungs, yolk sac and joints in young birds. In adults, lesions are 

most often found in the ova and pericardium. Paratyphoid infections may cause similar 

signs in very young chicks, but may be asymptomatic in adults. 

1.9.2 Epidemiology 

Most Salmonella transmission is only horizontal, via the faeco-oral route, and persistently 

infected birds are probably an important route of spread. In a housed flock, spread can 

occur through cannibalism of infected birds and eggs, or through faeces, contaminated 
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litter, feed or water, and mechanical spread by personnel, rodents or flies may also occur 

(Shivaprasad and Barrow, 2008). S. Pullorum can also be vertically transmitted, as it 

frequently persists in a carrier state following infection, and can recrudesce at point of lay 

in females (Chappell et al., 2009). Salmonella does not survive well in the environment, 

possibly up to a week in faeces, but it can be killed by direct sunlight. The route of spread in 

village flocks is not studied but may be more likely to be direct transmission. 

Both S. Pullorum and S. Gallinarum possess ‘O’ antigens 9 and 12, and the OIE Terrestrial 

Manual states that the same antigen is used for serological detection of both (O.I.E., 2012). 

In addition, cross reactions to S. Enteritidis or S. Typhimurium are likely. Two recently 

published studies in Ethiopia which tested sera from backyard flocks using rapid slide 

agglutination tests report the proportion of S. Pullorum-positive birds as 39% (Berhe et al., 

2012) and S. Gallinarum-positives as 45% (Berihun et al., 2012), although neither describes 

the antigen used, so it is unclear whether they can specifically attribute results to the 

reported serovar. Serological studies using an S. Gallinarum antigen in rural poultry in other 

African countries report positivity of 6.3% in Tanzania using an agglutination test (Mdegela 

et al., 2000) and up to 58% in Morocco using an ELISA test (Bouzoubaa et al., 1992). The 

latter study also reported S. Pullorum rates in Morocco to be around 6% using an 

agglutination test. Isolation of Salmonella from village chicken faeces in Ethiopia has been 

reported in one study, with 41% of samples yielding a positive culture, although no typing 

was performed (Alebachew and Mekonnen, 2013). S. Gallinarum and Pullorum have been 

isolated from intensive poultry farms in Ethiopia (Aragaw et al., 2010). 
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1.10 Coccidiosis 

1.10.1 Biology and Pathology 

(Summarised from McDougald and Fitz-Coy (2008)) 

Coccidiosis is caused by a protozoal infection by intracellular apicomplexan parasites of the 

Eimeria genus. All species are host-specific, and there are nine known to infect chickens. 

The parasites have a direct life cycle: Oocysts are shed in faeces of infected hosts, which 

then sporulate, and sporozoites are released after ingestion. These then undergo two to 

four rounds of asexual reproduction (schizogony –formation of schizonts) in epithelial cells 

in the gut, before producing gametocytes which combine to form an oocyst. The cycle takes 

4-6 days. Pathologies are caused by the rupturing of schizonts to release merozoites, 

causing damage to cells, and the host inflammatory reactions to gametocytes. Gross lesions 

appear as plaques in the intestines, haemorrhage, mucoid exudates and enteritis. Different 

Eimeria species are found in different parts of the intestinal tract, and have different 

pathogenic effects. This is used to help in identification of species, although molecular 

methods are becoming more widely applied. Eimeria brunetti, necatrix and tenella are 

considered to be more pathogenic, whilst E. praecox and mitis are less so, although the 

extent of lesions in all infections will also depend on the age of the bird and infective dose, 

which is likely to vary across production systems. Marek’s disease and IBD may interfere 

with immunity to coccidiosis, resulting in more severe disease, and secondary enteric 

infections with Clostridium perfringens or S. Typhimurium can occur due to tissue damage. 

Most clinical infections are seen between 3-6 weeks of age, as the majority of young chicks 

have protection from maternal antibodies and older birds usually develop a strong immune 

response after infection. There is no cross-protective immunity between different species, 

so some birds can develop subsequent infections. E. necatrix infections tend to occur later, 

between 8-18 weeks of age, and E. brunetti infections may occur early or late. 
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1.10.2 Epidemiology 

Ingestion of viable sporulated oocysts is the only method of infection. These can survive for 

several weeks in soil, but are quickly killed by exposure to heat or drying, so risks are higher 

in cool, damp weather. They may be spread mechanically (McDougald and Fitz-Coy, 2008). 

The proportion of birds positive for coccidiosis under village conditions in Ethiopia has been 

reported to be between 13% and 61% in local breeds (Ashenafi et al., 2004b; Gari et al., 

2008). Clinical coccidiosis in village birds from the same studies, defined either as live birds 

showing depression and haemorrhagic diarrhoea or as birds with intestinal lesions at post 

mortem, was reported at 12-15%. Ashenafi et al. (2004b) reported higher levels of infection 

in highland areas in Ethiopia compared to lowland areas, although only one market was 

selected in each area for comparison. A study in Kenya found no significant difference in 

the proportion of positives across different climatic regions (Kaingu et al., 2010). Species 

reported in Ethiopia are E. necatrix, E. acervulina, E. maxima, E. tenella, E. brunetti and E. 

mitis (Lobago et al., 2005; Gari et al., 2008). 

 
1.11 Nematodes 

A number of parasitic nematodes are found in poultry. A brief description of some of the 

more prevalent African species is given below, summarised from Permin and Hansen (1998) 

and Yazwinski and Tucker (2008). 

1.11.1 Ascaridia galli 

These are large, (Males 50-76mm, Females 60-116mm) thick, yellowish-white worms, 

primarily found in the small intestine, but occasionally reported from crop, gizzard, body 

cavity, oviduct and egg. This species has a direct life cycle; eggs become infective after 7-28 

days and can survive low environmental temperatures, with larvae maturing after 28-30 

days. Pathogenic effects include retarded growth, anaemia, hypoglycaemia, increased 
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mortality and infection can increase the effects of coccidiosis. Birds develop an age-related 

resistance, and arrested larval development often occurs in birds over 3 months. Birds’ 

nutritional status can also affect resistance, particularly levels of Vitamins A and B, calcium 

and lysine. 

1.11.2 Heterakis gallinarum 

 A small (Males 7-13mm, Females 10-15mm) white worm found in the caeca of chickens, 

turkeys, game birds and waterfowl. It has a direct life cycle, although eggs ingested by 

earthworms are still infective. The eggs are indistinguishable from those of A. galli. Larvae 

live in the walls of the caeca for 12 days then become free in the lumen. The pathogenic 

effects include caecal inflammation, and nodule formation and secondary infections, with 

hepatic granulomata occasionally reported. H. gallinarum is a vector for the protozoan 

Histomonas meleagridis (Blackhead), which is a particular problem for turkeys. 

1.11.4 Subulura (Allodapa) brumpti  

These are small (Males 7-10mm, Females 9-14mm) worms with curved tails, found in the 

lumen of the caecum. Their intermediate hosts are beetles or cockroaches. There are no 

known pathogenic effects. 

1.11.3 Capillaria spp. 

There are many species of this nematode which infect the chicken. The size varies 

depending on species, with most being 10-25mm but some species reaching 60mm long. 

Species can be divided into those found in the crop or oesophagus (C. annulata, C. 

contorta); those found in the small intestines (C. caudinflata, C. obsignata, C. bursata) and 

those found in the caecum (C. anatis). Life cycles are either direct or involving an 

earthworm intermediate host, depending on species. All species are pathogenic, causing 

inflammation and ulceration of tissues. All ages of bird may be affected. Weight loss, 



Chapter 1 | General introduction and thesis objectives 
 

  
45 

 
  

weakness and poor growth are the predominant signs, but heavy burdens, especially of the 

crop worms, may cause significant mortality in young birds. 

1.11.5 Cheilospirura (Acuaria) hamulosa 

These are medium (Males 9-19mm, Females 16-25mm) worms found in the gizzard lining, 

where they cause small lesions and nodules in the gizzard endothelium and musculature. 

However, they have little pathogenic effect except in heavy infestations. Intermediate 

hosts include grasshoppers, weevils and beetles. 

1.11.6 Dyspharynx spiralis 

Small (Males 7-8mm, Females 9-10mm) worm rolled in a spiral, found in the proventriculus 

with their heads buried in the mucosa. Intermediate hosts are isopod spp. such as the 

woodlouse. Pathologies caused by these worms involve ulceration, inflammation and 

pronounced thickening of the proventriculus, with signs of weight loss and anaemia, and 

potentially heavy losses of young birds. 

1.11.7 Epidemiology 

The proportion of birds under village conditions positive for nematode infections in 

previous studies in Ethiopia has been reported to be around 75%. The most common 

species reported are A. galli (32-55%), H. gallinarum (17-48%) and S. Brumpti (17-27%). 

Other species have been reported at rates of less than 5% (Eshetu et al., 2001; Ashenafi 

and Eshetu, 2004a; Tolossa et al., 2009; Heyradin et al., 2012; Molla et al., 2012). The 

majority of infected birds are infected with more than one species. The altitude and 

climatic conditions have been suggested to affect infection prevalence, with highland areas 

being linked to lower proportions of infected birds (Eshetu et al., 2001). However, neither 

Tolossa et al. (2009) nor Molla et al. (2012) found any such differences between different 

climactic regions. Although the proportion of positives may be high, parasites tend to be 

over-distributed, with around 10% of birds carrying large burdens which may have clinical 
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impact (Magwisha et al., 2002). Little work on the extent of the clinical impact of helminth 

infections in rural poultry appears to have been carried out. Weight loss or retarded 

growth, anaemia, weakness and mortality are known to be problems in experimental 

infections. 

 

1.12 Cestodes 

A brief description of some of the more important species of cestodes in Africa is given 

below, summarised from Permin and Hansen (1998) and McDougald (2008). 

1.12.1 Davainea proglottina 

A small worm - less than 4mm, with fewer than 9 proglottids – found in the duodenal 

mucosa. High burdens of over 3000 worms have been found in individual birds. The 

intermediate hosts are slugs and snails. This worm is pathogenic in young birds, causing 

reduced growth, emaciation and weakness.  

1.12.2 Raillietina tetragona and Raillietina echinobothrida 

These large worms (25-34 cm) are found in the small intestine and cause a hyperplastic 

nodular enteritis. Clinical signs include weight loss and decreased egg production. The 

intermediate host is the ant. 

1.12.3 Raillietina cesticillus 

This 15cm worm is found in the duodenum or jejunum, but is not thought to be pathogenic. 

Intermediate hosts are several beetle species. 

1.12.4 Amoebotaenia sphenoides (Amoebotaenia cuneata) 

This very small worm – less than 4mm – is found between the duodenal villi. The 

intermediate host is the earthworm. The exact pathogenic effects unclear, but infections 

are usually associated with haemorrhagic enteritis, or chronic wasting. 
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1.12.5 Choanotaenia infundibulum 

This is a distinctive white worm, up to 23cm in length, found in the proximal intestines. It 

has several intermediate hosts including Musca (housefly) spp. and several beetles. It has 

been described as “moderately pathogenic” although there are no reported controlled 

experiments. 

1.12.6 Hymenolopis cantainana 

This is a very slender, thread-like worm, 2cm in length, found in the small intestines. 

Intermediate hosts are scarab (dung) beetles. It is not believed to be pathogenic. 

1.12.7 Epidemiology 

The level of cestode infections in village birds has been reported in studies in Ethiopia at 

values between 55 -86% (Ashenafi and Eshetu, 2004a; Tolossa et al., 2009; Heyradin et al., 

2012; Molla et al., 2012). Variation between different regions with different altitude and 

climate conditions was reported, with three studies reporting lower proportions of infected 

birds in highland areas (Eshetu et al., 2001; Tolossa et al., 2009; Molla et al., 2012). 

Infection with multiple species was commonly reported. The more prevalent species are 

reported as R. tetragona, R. echinobothrida, A. sphenoides and H. cantainana. The more 

pathogenic D. proglottina has been reported at much lower rates of between 1% and 8%. 

 

 
1.13 Ectoparasites 

A number of ectoparasites of poultry have been described. Many have a worldwide 

distribution, whilst others are restricted to the tropics. A brief description of those poultry 

parasites previously described in the Ethiopian literature is listed below, summarised from 

Lapage (1956), Permin and Hansen (1998) and Wall and Shearer (2001). 
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Ticks 

1.13.1 Argas persicus 

 This is a soft bodied red-brown tick, all life stages of which feed on poultry. Adults are 

active at night, but hide during the day in cracks in housing. The life cycle can be completed 

in 1 month, or stages can survive up to a year in the environment. This tick has significance 

as a vector for two haemoparasites of poultry; Aegyptianella pullorum and Borrelia 

anserina (causing spirochaetosis). 

Mites 

1.13.2 Dermanyssus gallinae  

Commonly known as the chicken mite or red mite, this parasite spends most of the time off 

the host, living in crevices in housing, and feeding on hosts at night. Its life cycle can be 

completed in 7-9 days. Large infestations can result in decreased weight gain and egg 

production. 

1.13.3 Ornithonyssus bursa 

 The tropical fowl mite is a mite whose entire life cycle takes place on the host. They are 

found on the fluff of the feathers especially around the vent, and certain life stages feed on 

blood, which may result in anaemia, weight loss, decreases in egg production and even 

mortality. They can transmit Fowlpox, NDV and pasteurellosis. Short-lived zoonotic 

infections have been reported, but the mite cannot survive away from the bird host. 

1.13.4 Cnemidocoptes mutans 

The scaly leg mite, as its name suggests, burrows under scales on legs and feet, causing 

cornification and hypertrophy of tissues, which can lead to distortion and crippling in 

severe cases. This mite is also found on a range of wild birds. 
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1.13.5 Cytoditus nudus 

The air sac mite is found in respiratory passages and air sacs and is transmitted in 

respiratory mucus. Also has occasionally been found in body cavities on the serosal surface 

of organs. It is moderately pathogenic, causing dyspnoea, cough, secondary respiratory 

infections and peritonitis. 

1.13.6 Epidermoptes bilobatus 

Known as the skin mite, this is found all over the body and is a cause of dermatitis, pruritus 

and loss of production. 

Fleas 

1.13.7 Echidnophaga gallinacea 

The common name, sticktight flea, describes the behaviour of this parasite, the adult of 

which lives permanently attached to face and wattles, where they can survive for many 

months. They can cause anaemia and a decrease in egg production in adult birds and 

reduced growth and mortality in chicks. 

1.13.8 Ctenocephalides felis 

 The cat flea has been reported on one bird in one Ethiopian study. The pathogenic 

significance of this flea in chickens is unknown, but unlikely to be significant. 

Lice 

1.13.9 Menacanthus stramineus 

Although commonly called the chicken body louse, its hosts include many other wild bird 

species. Its entire life cycle occurs on the host, with eggs glued to host feathers. This is a 

chewing louse, feeding on skin and feathers, and may cause skin lesions and a decrease in 

egg production. In severe infestations it may cause anaemia, restlessness, poor digestion 
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and occasional mortality in young birds. It is thought to limit Ornithonyssus mite 

infestation. 

1.13.10 Menopon gallinae 

Alternative names include the shaft louse and feather louse. This is a small (2mm) pale 

yellow, chewing louse, which feeds on blood from young quill feathers. Like Menacanthus, 

it causes skin lesions and decrease in egg production.  

1.13.11 Gonoides gigas 

This large species has the common name of tropical brown chicken louse. It usually occurs 

in too small numbers to be pathogenic. 

1.13.12 Goniocotes gallinae 

This is commonly called the fluff louse, as it is predominantly found in down feathers. It is 

usually only present in small numbers and not pathogenic. 

1.13.13 Cuclotogaster hetrographus 

Named the head louse, as its predilection sites are the head and neck. It can cause 

pathology in young birds, namely anaemia, weakness and poor growth. 

1.13.14 Epidemiology 

Two studies on ectoparasites in Ethiopian village chickens found 92 and 84% of birds 

infected with at least one species of ectoparasite (Belihu et al., 2009; Tolossa et al., 2009). 

Other studies do not give an overall finding for ectoparasites, but report separately for 

individual species. Lice were the most frequent ectoparasite identified in all studies, 

particularly Menacanthus stramineus, with the proportion of infected chickens ranging 

from 26 – 65%; and Menopon gallinae, reported at a rate ranging from 20 -60% (Abebe et 

al., 1997; Belihu et al., 2009; Tolossa et al., 2009; Mekuria and Gezahegn, 2010). Mites and 

ticks were found at much lower frequency. The flea species Echidnophaga gallinacea was 
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found in three of the studies, identified in 1.3, 12.8 and 51% of birds (Belihu et al., 2009; 

Tolossa et al., 2009; Mekuria and Gezahegn, 2010), although there was no clear reason for 

this difference. None of the studies found differences between different climatic regions, 

although two studies reported levels of infestation to be higher in males than females. Co-

infection with multiple species would appear to be common, although none of the studies 

specifically examined this aspect. 

 
1.14 Co-infections in village chickens 

Interactions between pairs of infections have long been studied under experimental 

conditions in poultry. Pre-infection with Marek’s disease has been observed to alter the 

clearance of certain Eimeria species (Biggs et al., 1968), while both Pasteurella multocida 

and Salmonella enterica serovar Enteritidis infections have been shown to be more severe 

in the presence of pre-infection with the nematode Ascaridia galli  (Dahl et al., 2002; 

Eigaard et al., 2006). Ascaridia galli has also been shown to reduce the antibody response 

to vaccination with NDV (Horning, 2003). The explanation for these interactions is thought 

to lie with the response of the chicken immune system. In the case of pre-infection with the 

cytolytic MDV, which impairs the adaptive immune response to several pathogens, this 

effect of enhancing Eimeria infections is perhaps unsurprising. The effect of Ascaridia galli 

infections on responses to three different pathogens is thought to be mediated through the 

altered differentiation of T-cells. Protection to extracellular infections, such as 

macroparasites usually requires antibody and primes the immune system towards a Th2-

type response. However, protective cell-mediated responses to intracellular microbial 

pathogens, such as NDV and Salmonella, are primarily driven by T helper 1 (Th1) cells, and 

the priming of the immune system towards a Th2 response by Ascarid infection reduces its 

subsequent ability to produce an adequate Th1 cell response (Degen et al., 2005). 
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Despite the wide range of infections reported in village chickens, the vast majority of 

observational studies focus on single infections. Even those studies which investigate more 

than one species of pathogen, for example Tolossa et al. (2009), who reports on several 

species of both endo- and ecto-parasite, neglect to report even the most basic figures of 

birds infected with more than one species. A serological study in Zimbabwe (Kelly et al., 

1994) only stated that there was no relationship between seropositivity for any of the 

infections studied, which included infectious bronchitis virus, reticuloendotheliosis, IBD, 

pasteurellosis, Mycoplasma, NDV, avian encephalomyelitis, avian leucosis and avian 

reovirus infections. However, a longitudinal study by Biswas et al. (2005) in Bangladesh 

suggested that around 10% of mortalities were caused by mixed infections, of which the 

most common combination was Salmonella and Pasteurella multocida. Only 2.3% of cases 

involving multiple infections did not involve at least one of either NDV or Pasteurella.  

One recent example of a study investigating multiple infectious diseases is the work by 

Chaka et al. (2012) in Ethiopia, which reported that 86% of birds had antibodies to more 

than one of the four diseases under investigation, and that over 75% of these co-infections 

involved IBD. However, over 90% of birds had IBD antibodies in the study at each time-

point measured; therefore this is perhaps not surprising. There was no comment on 

whether the involvement of IBD in so many co-infections was more or less than expected 

under an assumption of independence. The study also reported that birds were 

seropositive to a greater number of diseases in the wet, compared to the dry season. 

However, the only disease which increased in seroprevalence from the dry to the wet 

season was Mycoplasma gallisepticum, which is known to affect birds longer and more 

severely during cold weather. This organism is frequently reported to occur in housed 

flocks in conjunction with other pathogens such as NDV or infectious bronchitis virus, which 

may predispose to M. gallisepticum infection, or with Escherischia coli, which may 

complicate it (Ley, 2008).  
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It would therefore appear that despite increasing knowledge of how pathogens may 

interact in experimental and intensively farmed poultry, both the frequency and the 

significance of multiple infections in village poultry are still only poorly understood. There is 

evidence from studies in wild mammal populations that existing infections may pose 

greater risks for further infections than environmental variables (Telfer et al., 2010), and 

that host survival may be severely affected by multiple, coincident infections (Jolles et al., 

2008).  A recent study in zebu cattle in Kenya also found that co-infection with 

Trypanosoma species or strongyle nematodes increased the risk of death in Theileria parva 

infections, clearly demonstrating the importance of co-infections in livestock under field 

conditions (Thumbi et al., 2014). As it might be anticipated that chickens in a village 

situation are likely to be regularly exposed to multiple pathogens, this is clearly an area 

which needs addressing.  

 
1.15 Aims of this thesis 

There is currently a need for the Ethiopian development programmes for village chickens to 

incorporate an aspect of infectious disease control. Although NDV is highly likely to be 

important, we hypothesise that several other pathogens may be contributing towards the 

seasonally described “fengele” outbreaks, which occur in the wet season. The survival and 

transmission of many infectious agents is better under cool, damp conditions, and as such 

there may be seasonal differences in exposure to many important pathogens. There may 

also be interactions between infections, such that singly infected birds may survive, but co-

infected birds may succumb, or certain infections may predispose to further infection with 

an additional pathogen. In addition, other non-infectious causes may play a role in the 

reported seasonal patterns observed. Examples of such factors would be cold or nutritional 

stress; seasonal differences in bird movements or management practices; and seasonal 

breeding, which affects the size of the susceptible population. To inform the Ethiopian 
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development programmes, especially the breeding programme, which aims to start 

incorporating disease resistance traits into its future selection criteria, there is a need to 

better describe and quantify not just the presence but the impact of a range of infections, 

and to better understand their potential interactions with each other and with their hosts. 

 

The aims of this thesis are: 

1) To better understand the Ethiopian village production system with a specific focus 

on practices that may alter the risk of infectious diseases. 

2) To quantify the impact of disease on Ethiopian village poultry production and 

describe any temporal and spatial variation 

3) To investigate the epidemiology of a range of pathogen types, including micro- and 

macro-parasites in Ethiopian village chickens and measure their temporal and 

spatial variation 

4) To investigate potential associations between observed pathogens which may alter 

the infection risk 

 

As this thesis is part of a wider study, the “Chicken Health for Development” project, which 

also examines the population genetics of Ethiopian indigenous chickens and the socio-

economic aspects of chicken keeping, a further aim is to inform and work alongside these 

lines of research, such that a detailed observation of the system of village chicken keeping 

in Ethiopia in its broadest sense may be obtained. 
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2.2 Introduction 

This chapter covers the design of the epidemiological study, the collection of the data, the 

laboratory methods and the major statistical methods which have been used in this thesis. 

Subsequent chapters deal with different aspects of the results, but as all data were 

collected as part of the same observational study, the methods of data collection are 

identical throughout. Therefore to save repetition, the materials and methods are 

described in detail here, whilst subsequent chapters will only highlight the most relevant 

aspects and any additional statistical methods specific to a particular analysis. 

 

2.3 Study design 

The multidisciplinary nature of the study meant that there were certain requirements 

which needed to be fulfilled in designing the sampling strategy.  In the original design, it 

was planned to compare one lowland and one highland region. The two regions needed to 

be geographically distant, with a low probability that chickens from the two areas would be 

genetically related, i.e. there should be no direct trade of chickens between them. Two 

geographically separate woredas (administrative districts) in the Oromia region of Ethiopia 

were purposely selected, both with chicken populations which had been previously well-

characterised: Horro, in the western highlands, and Jarso in the east. Woredas are divided 

into smaller administrative districts, known as kebeles, which may comprise several villages 

or sub-areas.  Two market sheds (a group of villages linked by trading networks, as 

described by Tadelle (2003)), were purposely selected within each region, and two kebeles 

were selected within each of the four market sheds. This nested design was to allow an 

examination of the population structure and any differences in exposure to infections, as 

there is theoretically little movement of chickens between market sheds. 
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Kebeles were selected in consultation with local representatives of the Department of 

Agriculture and the communities. Selection was made on the basis that the community was 

willing to participate, that the area was believed locally to be representative of the woreda, 

and on knowing there was no recent improvement programme in these areas, since 

introduction of exotic breeds or vaccination programmes would interfere with the study of 

either the genetics or the serological detection of infections, respectively. In the event, it 

was decided to abandon the original plan of selecting villages in the lowland areas of Jarso, 

due to potential risks of kidnapping and bandit activity in the lowland areas, which are 

close to the border with the Ethiopian Somali region. Therefore two highland market sheds 

in the Jarso region were selected. A map of the study areas is shown in Figure 2.1. 

The sampling was designed to run over two years, and to sample both before and after the 

main rainy season (when most disease outbreaks reportedly occur), in order to capture 

seasonal changes in seroprevalence, and to assess whether these were consistent between 

years. Sample size calculation, accounting for the expected degree of clustering, was 

performed at the design stage, and it was planned to sample 1600 birds across the entire 

study. Due to the later decision to incorporate follow-up visits to farms, it was later decided 

to reduce the number of sampled households in the second year of the study for logistical 

and financial considerations. 

 

2.4 Data Collection 

2.4.1 Ethics statement 

Ethical approval for the study was obtained from the University of Liverpool research ethics 

committee (reference RETH000410). A later amendment was made after the study design 

was adjusted to collect follow-up data on the birds, to allow participants’ names to be 

recorded. Due to low literacy levels among participants, a statement explaining the study 
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objectives and outlining sampling methods was read to the farmers before they elected to 

participate. They were also informed that they could withdraw from the study at any time, 

and asked to contact their local development agent (DA) in the event of any subsequent 

problems. DAs are employees of the agricultural extension service provided by the 

Ethiopian Government whose role is to provide farmers with access to training, research 

and technologies (http://www.moa.gov.et/policies-and-strategies). Oral permission was 

obtained for data collection and bird sampling. All data were anonymised, and only very 

limited personal data was collected from the study participants. Local ethical approval for 

animal sampling was not required. 
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Figure 2.1   Map of Ethiopia, showing sampling areas. 
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2.4.2 Rapid rural appraisal (RRA) 

In January 2011, a rapid rural appraisal (RRA) was conducted in four of the study kebeles; 

one from each of four market sheds. These were carried out by some of the Ethiopian 

members of the study team, accompanied by district veterinarians or officials from the 

local agriculture office. Focus group discussions (FGD) comprised of up to 50 farmers, of 

which between 20 and 50% were female. Group discussions typically took two hours. 

Following the FGD, field visits were conducted in each of the kebeles to directly observe 

village poultry production. Discussions with key informants, such as district administrators 

and animal extension workers, were used to collect additional information and triangulate 

the FGD. The results of these were fed back to the rest of the study team and informed 

questionnaire development and fieldwork planning. 

2.4.3 Sample selection 

A pilot study was performed in one kebele in the Horro region in April 2011, where 

questionnaires and sampling techniques were trialled in the field. Sera collected during the 

pilot study were used in the development of laboratory tests. Questionnaires and data 

collection techniques were further refined before the study commenced.  

Each kebele was visited on four occasions; in May/June and October/November in each 

year of the study (2011-2012). These visits were timed for before and after the main rainy 

season, which occurs between June and September. Each visit to the kebele took place 

over 2-4 days. Lists of farmers in each kebele, grouped by village or area, were compiled by 

the local DAs. Within each kebele, a number of contiguous sub-areas were selected in 

order to produce a list of approximately 400-700 households. Systematic random sampling 

was used to select 104 potential participants in each kebele by selecting every nth name 

from each list with a starting place chosen at random. The selected names were split into 

four groups, one for each sampling season, so that different households were selected to 



Chapter 2 | Materials and methods 

  
64 

 
  

sample on each visit to the kebele. Approximately 30% more names than were required 

were selected to allow for exclusions or non-participation.  

Ethiopian staff were recruited to collect the field samples, and conduct the questionnaires 

in the local language. Training was provided beforehand, and where necessary in the field if 

problems were identified. Selected households were visited by the study team, and farmers 

were interviewed to confirm that they had no exotic birds or vaccinations used in their 

flock. They also needed to own two indigenous-type birds of at least six months of age in 

order to be included in the study.  

Two birds were selected from each household to be sampled, and where possible one cock 

and one hen were chosen; otherwise two hens were sampled. If the household owned 

more than one cock over six months of age, each bird was allocated a number then, using 

random number tables, one was selected for sampling. Hens were sampled using the same 

method, but if possible, birds related in the first degree to the cock were excluded, based 

on the farmer’s knowledge of their birds. This was to minimise the relatedness of birds 

where possible for the genetics study. Once the team had made the selection from all 

available birds, they were caught, usually by members of the household, and placed 

securely in baskets. 

2.4.4 Questionnaires 

A questionnaire interview was carried out with a member of the household, in order to 

collect data on the management practices and the disease history of the flock. Interviews 

were conducted in the local language either with the person with main responsibility for 

caring for the birds or with the head of the household, and answers recorded in English. A 

copy of the questionnaires used is in General Appendix A. Basic questions for this study 

remained the same throughout, but some additional questions were asked for one or more 

seasons, as complimentary projects by other students were carried out simultaneously.  
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Household latitude and longitude were recorded using handheld Global Positioning System 

(GPS) units. Altitude was not recorded, due to poor agreement between individual units, 

but was subsequently found from the location data using Google Earth software. 

2.4.5 Clinical examination 

A form was provided with a checklist of the information which needed to be collected for 

each bird (General Appendix A) for fieldworkers to complete. This form was labelled with a 

unique code to identify the household and bird, and all samples collected from that bird 

were labelled with the same code, in the form of pre-printed stickers. Bird codes were also 

linked to the household questionnaire. 

Information about the clinical history of the two sampled birds was obtained by 

interviewing a member of the household. A series of photographs were taken of each bird, 

comprising a lateral, dorsal and frontal view, and close-up shots of the head, feet and skin. 

These were identified by taking a photograph of the label with the bird’s unique identifying 

code before commencing the photo series. Photos were also imprinted with the date and 

time, to help with identification. Photographs were primarily to help with characterisation 

of the bird phenotypes, but also served a useful role in identifying individuals. 

 The birds were each then subjected to a clinical examination, and scoring for 

ectoparasites. The checklist provided comprised a series of tick boxes for fieldworkers to 

complete, to ensure that birds were examined thoroughly and consistently. Information 

was collected on various clinical signs exhibited, and also on certain morphological traits, 

such as feathering, for the genetics study. Birds were weighed in the baskets, and ascribed 

a body condition score on a 0 – 3 grading system (Gregory and Robins 1998). 

A scoring system was also devised for selected ectoparasites. Ticks, fleas or mites were 

scored by counting the number found on an examination of the most likely places to find 

them – the naked areas on the face, under the wings or around the vent. Lice were scored 
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by performing a timed count of 3 areas of the body – one side of the keel, the back and the 

rump - and a total count of lice under the tail feathers and at the base of the flight feathers 

of one wing, as described by Clayton and Drown (2001). Birds were also scored for scaly leg 

mite, by grading the amount of hyperkeratosis; none, mild or severe.  If ectoparasites were 

observed or suspected, a sample of the parasite or a skin scraping from the leg was 

collected and stored in 70% ethanol.  

A 1.5ml blood sample was taken from the wing vein of each bird. This was collected into a 

syringe which had been flushed with sodium citrate. The sample was gently mixed by 

inverting the syringe prior to being transferred to eppendorf tubes for storage. In addition, 

some blood was placed on FTA cards and, for birds sampled in the first two sampling 

periods, two blood smears were made at the time of sampling and fixed in methanol for 30 

seconds. Before releasing sampled birds, they were fitted with a leg ring, the colour and 

number of which was recorded on the checklist. 

Wherever possible, a faecal sample was collected from the basket where the bird had been 

confined, or where the bird was observed to defecate after release. If it could not be 

collected from the bird, a sample was taken from the household environment. Fieldworkers 

were required to record in the checklist whether or not the faecal sample was known to 

come directly from the sampled bird. Blood and faecal samples were stored and 

transported in a refrigerated container to the laboratory in Debre Zeit, where plasma was 

separated from the cell pellets and stored at -20°C. The faecal samples were kept at 4°C 

until processed. Ectoparasite samples were stored in ethanol at room temperature. 

2.4.6 Follow-up data collection 

A follow-up visit was carried out for households interviewed during the first three rounds. 

This visit occurred around 6 months later, at the time of the next visit to the kebele. 

Farmers took part in a short interview questionnaire (General Appendix A) to ascertain 
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what further disease events they had experienced in the intervening period, and the fate of 

the two previously sampled birds was determined. Surviving birds were re-examined, 

including body condition scoring and re-weighing, and a second photograph series was 

taken. If a bird had not survived, farmers were asked to report what had happened to it, 

and to provide some brief description of signs if it had died from disease.  

 
2.5 Laboratory testing – serological methods 

A laboratory was established at the Ethiopian Institute of Agricultural Research (EIAR) in 

Debre Zeit, which lies in the central highlands of Ethiopia, approximately 45km southeast of 

the capital, Addis Ababa. All serological and coprological examinations were carried out in 

this laboratory. Methanol-fixed blood smears and ectoparasites in 70% ethanol were 

exported under license to the University of Liverpool for microscopic examinations, and 

FTA cards were exported under license to the University of Nottingham, where they 

formed the basis of the genetics studies. The laboratory manuals used during the project 

which give full details of the Enzyme-linked immunosorbent assay (ELISA) and 

haemagglutination inhibition (HAI) test procedures, including preparation of reagents, are 

shown in General Appendix B. 

2.5.1 Infectious Bursal Disease Virus (IBDV) ELISA 

Serum samples were screened for antibodies to IBDV using a Flockscreen antibody ELISA kit 

(x-OvO, Dunfermline, UK). Samples were diluted 1 in 500 with the sample diluents 

provided, and added in triplicate to the antigen-coated wells. The positive and negative 

controls were provided with the kit and added in the last two positions on each plate. After 

a 30-minute incubation, the plates were manually washed with the wash buffer, and an 

enzyme conjugate was added. The plates were incubated for a further 30 minutes, then 

washed a second time before adding the enzyme substrate reagent. These were incubated 
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for 15 minutes and a stop solution was added. For the first two rounds of testing, the stop 

solution had to be replaced with 0.5M sodium hydroxide (NaOH), due to difficulties in 

transporting the kit’s stop solution from the UK on a commercial airline. Plates were read 

after 5 minutes on the spectrophotometer at an absorbance of 562, as the recommended 

550 wavelength was not available. Where the test was not valid after 5 minutes, plates 

were read again at intervals, as the colour continued to develop. All plates gave a valid 

reading within 15 minutes. 

2.5.2 Pasteurella multocida, Salmonella O9 serotype and Marek’s Disease virus ELISAs 

2.5.2(a) Preparation of Antigen 

Antigens for the bacterial serology tests were prepared according to the method described 

by Beal (2004). A nalidixic acid-resistant isolate of Salmonella enterica serovar Gallinarum 

was grown in Luria Bertani broth and an isolate of Pasteurella multocida grown in brain-

heart infusion broth. Both were incubated overnight at 37° C in an orbital incubator (150 

rpm). Bacterial cells were pelleted by centrifugation at 4100 g for 40 min and washed twice 

with phosphate buffered saline (PBS). Cultures were re-suspended in 40ml PBS, then heat 

inactivated at 65° C for 4 hours. They then underwent three freeze–thaw cycles at -70° C 

before sonication (10 x 20 second bursts) on ice. The suspensions were clarified by 

centrifugation at 4100 g for 40 min followed by centrifugation at 30,000 g for 20 min to 

remove insoluble fractions. Protein concentrations of the soluble antigen preparations 

were measured using the Fluka protein quantification kit rapid (Sigma-Aldrich, Gillingham, 

UK) and aliquots stored at -20  C.  

Antigen for the Marek’s Disease virus (MDV) ELISAs was kindly provided by the Institute of 

Animal Health (Compton, UK), and consisted of a suspension of chicken kidney cells 

infected with a CV1988 strain of MDV, which had been lysed with 4 freeze-thaw cycles. In 

addition, the Institute provided non-infected chicken kidney cell lysate (CKCL) as a control. 
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2.5.2(b) Antibody detection 

Flat-bottomed polystyrene ELISA plates (Greiner Bio-one, Stonehouse, UK) were coated 

with antigen in 100 μl/well of carbonate buffer (pH 9.6) overnight at 4 °C. Dilutions of the 

different antigens are given in Table 2.1. Following removal of the antigen, plates were 

blocked with PBS Tween-20 (0.05%) (PBS-T) supplemented with 3% skimmed milk powder 

(diluent) for 1 hour at 37 °C, and washed once with PBS-T. Serum samples were diluted 

1:100 in the diluent and plates were incubated at 37 °C for 1 hour and washed three times 

with PBS-T. Bound antibodies were detected by incubating with 100 µl rabbit anti-chicken 

IgY (Sigma-Aldrich, Gillingham, UK) diluted 1:1000 in diluent for 1 hour at 37°C. After three 

washes in PBS-T, bound antibodies were detected following the addition of 4-Nitrophenyl 

phosphate disodium salt hexahydrate tablets (Sigma-Aldrich, Gillingham, UK) dissolved in 

glycine buffer (pH 10.4) with 1mM zinc chloride and 1mM magnesium chloride. Plates were 

incubated at 37 °C in the dark for 15 min, after which the reaction was stopped with 3M 

sodium hydroxide and absorbance read at 405 nm using an ELx808 Absorbance microplate 

reader (BioTek, Potton, UK). 

In order to test for antibodies to MDV, samples were required to be tested against both 

infected and uninfected chicken kidney cells, to rule out cross-reactivity of the sera under 

evaluation to cellular antigens. To try and minimise the influence of external conditions 

such as atmospheric temperature, or timing differences on the test results, sera were 

tested against infected and uninfected cells on two plates run simultaneously.  

 

Table 2.1   Dilution of antigen used in the laboratory-developed ELISA tests 

Antigen Dilution in carbonate buffer 
 S. gallinarum antigen (6.4μg/ml) 1/80 

 P. multocida antigen (11.1 µg/ml) 1/80 

 MDV-infected chicken kidney cell lysate 1/20 

 Non-infected chicken kidney cell lysate 1/20 
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2.5.3 Controls and ELISA validation 

The commercial kit for the IBD ELISA included positive and negative control sera. For the 

laboratory-developed assays, negative controls were sera collected from specific-pathogen 

free birds in the UK. Positive controls for each of the laboratory tests were produced as 

described below. The performance of the controls for the four assays is shown in the 

Appendix to Chapter 2. 

2.5.3(a) Pasteurella 

Positive controls were generated by vaccinating four adult white Leghorn birds at the 

research station in EIAR with an ovine Pasteurella multocida vaccine. Birds were given two 

doses of 300µl subcutaneously 19 days apart, and sera were collected 3 weeks after the 

second vaccination.  

In order to validate the laboratory-developed Pasteurella ELISA, it was tested against a 

commercial kit (Flockchek, Idexx Laboratories, The Netherlands). Twenty field samples at a 

1:50 dilution and both the laboratory and the kit positive and negative controls were tested 

in triplicate on both the commercial and laboratory ELISAs, run simultaneously. 

Both the kit and the laboratory negative controls tested negative on both plates. The 

laboratory positives generated by vaccination were detected as only weakly positive or 

negative by the commercial kit. Nineteen of the twenty field samples were detected as 

positive, and the last one gave an equivocal result. All of the positive controls and all 

twenty field samples gave positive results on the laboratory ELISA (i.e. they had an optical 

density (OD405) at least three times greater than the negative control). However, the kit 

positive was detected as being only weakly positive on the laboratory ELISA. 

Apart from one equivocal test, both ELISAs showed good agreement in detecting antibody-

positive sera. The laboratory test was likely to be less specific than the commercial kit, 

although this was not possible to demonstrate, as there was a lack of negative field 
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samples available for testing. However, the laboratory test gave higher optical density 

readings for samples at the same dilution, and was likely to be more sensitive than the kit, 

which is particularly developed to evaluate vaccine efficacy. The most positive of the sera 

from the vaccinated birds was chosen to use as a control for testing the field samples 

(Positive 1); in addition a second positive control for the laboratory test was made by 

pooling sera from 4 positive field samples (Positive 2). 

2.5.3(b) Salmonella O9 serotypes 

An initial positive control was made from pooled sera collected from specific pathogen free 

chickens infected experimentally with S. Enteritidis in the UK. Pilot samples showed that 

many field samples had much higher titres than this; thus a new positive serum was 

selected from among the pilot samples for the testing of the study samples (Positive 1). As 

this was used up, a second positive was made by pooling positive field sera, and tested 

alongside the original control sera on 7 plates before being used alone. 

2.5.3(c) Marek’s Disease Virus 

An initial positive control was provided by the Institute of Animal Health, consisting of 

antiserum against the HPR516 strain of MDV. A positive serum from among the pilot 

samples was identified and validated as the positive control for the testing of field samples 

(Positive 1.) Pooled positive field samples were used to make up a replacement positive as 

the first one ran low (Positive 2) and was run in parallel with Positive 1 on 14 plates. 

2.5.4 Plate and sample exclusion 

The commercial IBD kit provided guidelines to assess the validity of the plates. These 

required that: 

a) Mean Negative control absorbance must be <0.2 

b) Mean Positive control absorbance must be at least 2 times the optical 

density of the negative control absorbance with a minimum difference of 

0.2 OD. 
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Two IBDV plates were excluded because no positive control was added, and samples were 

tested again on different plates. 

Out of 39 plates accepted, all satisfied the criterion that the positive should be at least 2 

times the optical density of the negative, and all satisfied at least one of the other two 

criteria. One plate had a negative control value which was too high (Plate B9: negative 

control OD562 = 0.3025). Eighteen plates failed to meet the criterion of a minimum 

difference of 0.2 OD562. This has occurred across all seasons of testing, so appears to be 

unrelated to substituting NaOH for the stop solution in the first two seasons. There 

appeared to be a marked difference in colour development between different bottles of 

substrate, noticeable when two different bottles of substrate solution were used on the 

same plate. Therefore it may be an issue related to the transport / storage of the substrate 

reagent. Since it was not possible to retest all these plates due to lack of materials, we have 

accepted these plates, even though they do not meet the recommended criteria. However, 

we have adjusted for differences between plates in the analysis, and lowered the 

manufacturer’s recommended cut-off slightly, to account for the relatively low OD562 

values. 

No prior criteria were set for acceptance of the laboratory-developed ELISA tests, with the 

exception of the MDV ELISA, where positive controls were required not only to have a high 

OD405 against the infected cell lysate, but also to have a low OD405 against the uninfected 

CKCL (Zelnik et al. 2004). We set a minimum difference of 0.1 for the positive control 

against infected and uninfected cells. Otherwise, for all assays, plates were evaluated 

against all previous plates as the assays were carried out, and a subjective assessment 

made as to whether they were valid, based on the normal range of values for their controls 

(Figure 2.2). 
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Figure 2.2   Example of the daily log of positive and negative control values for the Salmonella ELISA 

plates over different batches of testing. The log was used to help determine invalid plates by 

comparing the control OD values to their normal range. Labels indicate plates which were rejected, 

because of (a) a high negative control OD and (b) the positive control OD was less than twice that of 

the negative control. 

 

Four Pasteurella ELISA plates were rejected, because the mean positive control absorbance 

was less than twice that of the mean negative control absorbance, either because of 

unusually high negative or unusually low positive readings. Two Salmonella plates were 

rejected; one because the negative control OD405 was too high, and one because the 

positive control was less than twice the negative control absorbance. One MDV test plate 

was rejected, as the OD405 of the positive and negative controls was too high against the 

uninfected cells. 

Samples were tested in triplicate where possible, or in duplicate when reagents began to 

run low. This affected all ELISA tests except Pasteurella, and samples from all regions and 

seasons of collection, with the general exception of those collected in the third season. The 

co-efficient of variation (CV) was calculated for all samples and all those with a CV >25% 
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were retested. Where samples were tested in triplicate, one replicate may be excluded if it 

had an absorbance noticeably different from the other two readings, if this would bring the 

CV below 20%. 

The test for MDV antibodies required that samples be tested against lysates of both virus-

infected and uninfected chicken kidney cells; the OD405 against the uninfected cell lysate 

was then subtracted from the OD405 against the infected lysate to give a net value which 

was used in further calculations. Samples with a net value greater than 3x the standard 

deviation of the net values (after accounting for the effect of the different test plates) were 

deemed to be cross-reacting to the cells in which the virus was grown and were discarded 

from further analyses. 

2.5.5 Newcastle Disease Haemagglutination Inhibition (HAI) assays 

2.5.5(a) Test procedure 

HAI assays were carried out according to the procedure described in the OIE Terrestrial 

manual (2009). Briefly, 250µl of PBS was dispensed into each well of a V-bottomed 

microtitre plate, 250 µl of test sera were dispensed into the first well of each row, and two-

fold dilutions were made across the plate. Dilutions were made up to 1/64, in order to be 

able to test more samples per plate. Four haemagglutinating units (HAU) of virus in 250µl 

of PBS were then added to each well, and plates were incubated for 30 minutes at room 

temperature. A volume of 250µl of a 1% solution of chicken red blood cells (RBCs) was then 

added to each well, gently mixed and allowed to settle for 45 minutes at room 

temperature. 

Agglutination was read by gently tilting the plates, and the haemagglutination (HI) titre was 

the highest dilution of serum which caused complete inhibition of 4 HAU of virus. A line of 

6 red blood cell control wells, containing 250µl of a 1% chicken RBC solution and 500µl of 
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PBS, were included on each plate, and only those wells in which red blood cells streamed at 

the same rate as the control wells were considered to show inhibition.  

A virus control was also included on each plate. This consisted of twofold dilutions of the 

virus suspension in volumes of 250µl, plus 250µl of PBS and 250µl of chicken RBCs. This was 

included to confirm the virus solution had been correctly titrated and was able to 

agglutinate chicken RBCs. Positive and negative control sera were also included on each 

plate.  Plates were rejected if the negative control gave a titre > 1/4, if the positive control 

was not within one dilution of the known titre, if the virus was not within one dilution of 

the expected titre, or if the red blood cell control did not stream. Samples were considered 

as positive if they inhibited agglutination at a dilution of 1/16 or above. 

2.5.5(b) Validation  

Inter-reader variation was assessed for the two main readers who carried out the HAI 

assays. This consisted of both readers being asked to read four plates independently of 

each other and provide the titre for each of the 12 samples on each plate. I made a 

comparison of the two scores, and where the two scores differed, I and one other observer 

also read the plates and allocated a third score.  

The four readings of the positive control agreed either exactly or to within one dilution. 

However, Reader 1 scored the negative control two- to fourfold higher than Reader 2, and 

a similar pattern was seen for the readings of the test samples. Where Reader 1 had 

classed a sample as negative, there was good agreement between the two scores. 

However, of the 10 samples which Reader 1 classed as positive, none were scored as 

positive by Reader 2, or by the third arbitrator. Where there was disagreement between 

the two readers, the third score invariably agreed with Reader 2’s assessment of the titre. 

In addition, we were able to test 17 samples with an NDV ELISA test (Biocheck, Hounslow, 

UK). This confirmed as negative 12 samples which both readers had scored as negative. 
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One sample which both readers scored as positive was not classed as positive by the ELISA. 

One sample which Reader 2 had classed as positive, and Reader 1 had classed as equivocal 

was classed as positive by the ELISA, and one sample which Reader 1 had classed as 

positive and Reader 2 as negative was classed as negative by ELISA. Two samples tested by 

ELISA were read by only one reader, of which the ELISA agreed with the negative reading 

by Reader 2, but disagreed with the positive reading by Reader 1. 

From this, it was evident that there was considerable subjectivity in the reading of the test, 

and Reader 1’s assessment appeared to be much less specific than Reader 2’s 

interpretation. In order to try and establish a consistent measurement of samples, it was 

therefore decided to accept only the samples scored as negative by Reader 1, and for 

Reader 2 to retest all samples which Reader 1 had given a titre 4 or greater, providing there 

was sufficient serum left to do so. 

 
2.6  Laboratory testing - Faecal Examination 

Faecal samples were examined for Eimeria oocysts and nematode and cestode eggs using a 

modified version of the concentration McMaster technique (Permin and Hansen 1998). 

Due to the small volumes of faeces for individual birds and the necessity, in some cases, of 

keeping part of the samples for later DNA extractions, it was not possible to use the 

recommended 4g of faeces. Counts were therefore done on 1g of faecal material from each 

bird.  

1g of faeces was suspended in 14ml of water. Where necessary, this was soaked for a few 

minutes to break up hard clumps: The mixture was then stirred, and put through a strainer, 

and the whole of the resulting suspension was centrifuged at 1200 RPM for 7 minutes. The 

supernatant was removed, and the sediment re-suspended in 6ml saturated salt solution 

shortly before counting. Two chambers of a McMasters slide were filled with the faecal 



Chapter 2 | Materials and methods 

 

  
77 

 
  

suspension and each species counted separately. The total number in two chambers for 

each species was multiplied by 20 to give the resulting eggs per gram. 

Initially, eggs were tentatively identified to genus or species level, by using published keys 

(Lapage 1956, Soulsby 1982, Permin and Hansen 1998) and a selection of photographs 

were sent to an expert in the field, to confirm identification as far as possible. Because of 

the difficulty in identifying a number of eggs, it was decided to concentrate only on 

nematode eggs which could be attributed either to Ascaridia galli or Heterakis gallinarum, 

although it was not possible to confidently differentiate the two species. Although other 

types of nematode eggs were seen in low numbers, there were no other frequently 

occurring species. Eggs identified as being of the class Cestoda were also grouped as a 

single entity, as were oocysts of the Eimeria genus. 

 
2.7 Ectoparasite Identification 

Ectoparasite samples were of two types: scrapings from birds observed to have 

hyperkeratosis of the legs and/or feet, and arthropod specimens directly observed during 

examination. Skin scrapings were cleared by placing them on a slide with a drop of 10% 

potassium hydroxide for 10 minutes. They were then examined microscopically for the 

presence of Cnemidocoptes mites. Other arthropod specimens were examined using light 

microscopy to identify the species using published keys. (Soulsby, 1982; Walker, 1994; Price 

and Graham, 1996; Taylor, et al., 2007; Price et al., 2003; Emerson, 1956; Matsudaira and 

Kaneko, 1969; Marshall, 2003; Ledger, 1980; Osborn, 1896; Tuff, 1977; Bowman, 1999; 

Wall and Shearer, 2001; Permin et al., 2002). A stage micrometer was used to measure 

individual specimens to assist in identification. A photographic record of specimens was 

made using a digital camera (Digital Sight DS-L1, Nikon Instruments Inc., USA) mounted 

onto the compound microscope or a low magnification USB digital microscope (Traveler 
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USB Microscope, Sertonics Ltd., UK) for viewing at 40-200x magnification. A subset of 

samples was sent to an expert in livestock parasitology at the University of Edinburgh for 

confirmation of the putative classification assigned by the student undertaking the project. 

 

2.8 Data handling and statistical methods 

2.8.1 Database management 

Data for the various components of the project (kebele statistics, socio-economic data, 

household locations, flock management, disease experience, reproductive traits, 

phenotypic traits, bird examinations, laboratory data, genetic single nucleotide 

polymorphism (SNP) data, ectoparasite identifications and follow-up data at household and 

bird level) were managed independently by the people who had a primary interest in or 

responsibility for each area (Table 2.2). Microsoft Excel spreadsheets were used to input 

data by all parties, and each was responsible for checking data quality. Coded labels linking 

laboratory and questionnaire data were used throughout, in order to subsequently link 

data collected from each household with its bird occupants. However, for convenience, the 

socio-economic and genetic researchers used their own codes in parallel with the linking 

codes for identification. 

For data collected during the fieldwork, a random selection of 60 bird questionnaires and 

32 household questionnaires were checked for accuracy of data entry. Each variable was 

also examined to detect patterns in missing data, or any outlying values, which were 

checked against the original questionnaires. Descriptive variables, such as veterinary and 

ethnoveterinary treatments or peculiar clinical findings were grouped thematically, to 

examine whether new variables should be created to describe these characteristics, and to 

ensure consistency among the descriptive terms used. 
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After checking and cleaning, data from the spreadsheets was imported into a database 

(Microsoft Access, 2010) where different spreadsheets were linked.  Database queries were 

then set up to retrieve specified information for different research questions, which were 

exported and stored as Excel spreadsheets (Figure 2.3). 

Data exploration, tabulation and graphical summaries, statistical tests, regression 

modelling, ordination analyses, mapping and spatial tests were all performed using R 

software (R Development Core Team, 2008).   

 

Table 2.2   People contributing to different data types 

Data type Primary responsibility Data input 

Kebele statistics Takele Taye Takele Taye 

Socio-economic data Zelalem Terfa Zelalem Terfa 

Household locations Judy Bettridge Judy Bettridge 

Flock management 
Disease experience 
Bird examinations 
Follow-up bird data 
Follow-up household data 

Judy Bettridge Judy Bettridge 
Eskindar Aklilu 
Stacey Lynch 
Ian Tuerena 
Lisa Liu 
Becca McKown 
Sally Hutton 
Alex Harvey 
Emmanuel Sambo 

Laboratory data Judy Bettridge Stacey Lynch 
Judy Bettridge 
Marisol Collins 
Camilla Brena 
Kasech Melese 

Reproductive data Eskindar Aklilu Eskindar Aklilu 
Judy Bettridge 

Phenotypic data Takele Taye Takele Taye 

Genetic SNP data Takele Taye Takele Taye 

Ectoparasite identification Marisol Collins Marisol Collins 
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2.8.2 ELISA data transformations 

Optical densities for all of the ELISA samples are converted into a ratio to the positive 

control (s:p ratio) using Equation 2.1. 

          
               –                   

                   –                   
     (2.1) 

This is designed to make values comparable between plates by allowing all values to be 

expressed on a scale where 0 is equal to the negative control and 1 is equal to the positive 

control, and normally a cut-off value will be designated in order to discriminate positive 

and negative samples. Figure 2.4 shows the distribution of s:p ratios for the commercial IBD 

ELISA, with the manufacturer’s recommended cut-off value of 0.306. There is a clear 

“shoulder” in the distribution, with the negative and positive controls either side of this, 

allowing a cut-off to be easily determined.  

Figure 2.4   Distribution of IBD s:p ratios, showing the placement of the cut-off, and the negative and 

positive controls. 
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For the ELISAs that were developed within the laboratory, determination of a cut-off value 

was much more difficult, as neither a panel of negative sera were available with which to 

validate the tests, nor a “gold-standard” test with which to compare our results. Plotting 

the distribution of the s:p ratios did not demonstrate a clear “shoulder” in the region 

between the negative and positive controls, but showed a smooth, continuous distribution 

of the range of values. Thus even a small change in the cut-off value chosen resulted in a 

very different estimation of prevalence for the Salmonella and Pasteurella in particular 

(Figure 2.5), both of which showed a long tail of samples with optical densities that were 

many times higher than the positive controls. 

 

Figure 2.5  The change in prevalence with the alteration of the cut-off value for the Salmonella data  
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For the Salmonella, the explanation for these very high samples may be to do with the 

different subspecies of Salmonella which would induce antibodies which would be 

detected by the assay. The O9  serotype  includes  both  S. Enteritidis  and  S. Pullorum,  

which  induce  quite  different  antibody profiles (Chappell et al. 2009). The positive control 

used was from an S. Enteritidis-infected bird, but S. Pullorum infection may induce much 

greater antibody responses (Chappell et al. 2009). The latter may also be maintained in a 

carrier state, so high antibody titres may be sustained over a longer period. Pasteurella can 

also induce a carrier state, although in poultry the immune responses to this infection are 

largely unstudied (Wigley 2013). 

Due to both the difficulty in determining cut-off values for the in-house ELISAs and the loss 

of potentially valuable information from dichotomising the continuous data, we elected to 

work with the s:p ratios when trying to make comparisons in exposure between birds, 

areas or seasons. However, there were two issues with the raw data. Firstly, as new 

positive controls had to be introduced for later plates, it was necessary to estimate a value 

for the original control on a small number of plates (1 Salmonella and 8 MDV plates), in 

order to have a consistent benchmark scale with which to compare samples. These 

estimates were made using predicted values from a regression model which used the 

negative and second positive controls to predict the value of the first positive from all the 

plates where the two controls had been run in parallel. 

Secondly, due to the high variation in control readings between plates, (see Appendix 1) we 

found that the s:p ratio conversion (Equation 2.1) was inadequate by itself to allow us to 

compare readings made on different plates, as the sample values were strongly influenced 

by the control values of individual plates. If the positive or both control readings were 

unusually high, samples tended to have lower s:p ratios, whereas if the difference between 

the controls was small, then s:p ratios would be correspondingly greater (Figure 2.6). 
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Where some samples were tested on more than one plate to assess continuity, it was 

found that the greater the optical density of the sample, the more variation there was 

between s:p ratios for the same sample calculated from different plates. In order to adjust 

for between-plate variation, plate was included as a factor in analyses of the ELISA data. 

2.8.3 Multilevel random-effect models 

Multilevel models are used when data has a complex, often nested or hierarchical 

structure. Individuals drawn from the same group might be expected to be more alike than 

those from different groups, therefore this clustering needs to be taken into account when 

analysing the data. Random effects models account for this clustering by estimating the 

variance between groups in the population. The groups themselves are assumed to be a 

random selection from a larger population. The simplest multilevel model with a single 

explanatory variable is 

yij = β0 + β1xij + uj + eij      (2.2)  

where yij is the value of y for the i th individual in the j th group. This model assumes an 

overall linear relationship between the explanatory variable x and the response variable y. 

This relationship is represented by a line with intercept β0 and a slope β1. However, the 

residual uj represents the difference between the group mean for the individuals in group j 

from the overall mean, and so the intercept for group j is given by β0 + uj. The group 

residuals are assumed to come from a normal distribution with mean zero and variance   
  

(Summarised from Steele (2008)). 

Our data have two main structures; samples within plates and chickens within households 

(which are further nested within kebeles, market sheds and regions). I have used multilevel 

modelling throughout this thesis to explore various types of data and investigate potential 

relationships. An outline of the processes I have used, and how the models have been 

adapted for various data types follows. 
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2.8.3(a) Adjusting for variation in the ELISA data  

Early explorations suggested that the plate on which a sample was tested was a source of 

important variation, for the reasons described above. To account for this, in all models 

where ELISA s:p ratio is a response variable, plate is included as a random effect. However, 

where s:p ratios are used as explanatory variables for another outcome (such as bird 

survival, or a different infection), a different approach was required, as the large number of 

plates precluded this being fitted as an interaction term.  

Before fitting s:p ratios as explanatory model variables, they were first adjusted using a 

random-effects intercept-only regression model with plate as a random effect.  

s:p ratioij = β0 + uplate j + eij     (2.3) 

The bird-level residual eij was then taken as an estimation of the individual’s antibody 

response. This has the effect of decreasing the variation estimated to be attributable to the 

plate, and also re-centres the distribution around 0 (Figure 2.7). This residual value for each 

ELISA I have called the adjusted s:p value. 

Figure 2.7   Values for the Pasteurella s:p ratios before (top) and after (bottom) random-effect 

modelling to adjust for between-plate variation. 
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2.8.3(b)  Adapting models to different data types: Binomial and multinomial outcomes 

(References summarised from Steele (2008) and Faraway (2006)). 

For response data which is not continuously distributed but can only take one of a fixed 

number of outcomes, the linear model is not appropriate. If we have a binary outcome, the 

response variable Yi  for i = 1,...,ni , where n is the number of independent trials, can be 

modelled using the binomial distribution  

           
  
   

        
          (2.4) 

This distribution has a mean np and a variance np(1-p), which is not constant, but varies 

with the mean. Because of this, and the fact that probabilities are strictly bounded 

between 0 and 1, the linear regression model, which requires constant variance and 

predicts probabilities outside these boundaries cannot be used to predict the response 

variable directly. However, if the individual trials which comprise the response Y are subject 

to the same q predictors, then a linear predictor can be modelled   

η = β0 + β1xi1 + ... + βqxiq       (2.5) 

The linear predictor is transformed to give p by means of a link function. We have used the 

logit link function 

     
 

   
        (2.6) 

as this is most easily interpretable in terms of an odds ratio. Odds give the probability of an 

event happening compared to the probability of it not happening; therefore η gives the log 

odds of an event. Using equation 2.5, it can be seen that a unit increase in xi1, if all other 

variables are held constant, will increase the odds of an outcome by exp β1. 

Multinomial outcomes, where response data are nominal rather than ordered, are similar, 

but have the requirement that the probabilities for each individual outcome must add up 
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to 1. However, individual components of the multinomial response may also be considered 

as Poisson responses if the total number of trials is sufficiently large. The Poisson 

distribution usually describes count data, when the number of times something happened 

is known, but the number of times it did not happen is unknown. This is useful for 

modelling rates of an outcome during a fixed time period and responses take the form of 

positive integers. Multinomial responses can be treated as individual Poisson responses if a 

response factor is introduced, which has an observation for each level of multinomial 

outcome. This acts like a dummy variable, such that for each set of observations for an 

individual, one response will be one and the rest zero. The explanatory variables are 

replicated for the individual for as many response categories as required. 

Using our data on the outcomes for chickens at the follow-up visit as an example, a chicken 

could be assigned to one of the categories, “Survival”, “Died of disease”, “Used for gain” or 

“Lost to non-disease causes”. These categories were mutually exclusive (i.e. a bird could 

not be assigned to more than one) and non-ordered. Table 2.3 shows how the data is 

reorganised from a multinomial response to allow it to be analysed using a Poisson log-

linear model. 

As with the binomial models, the regression gives a linear predictor, which is transformed 

to give an estimate of the mean μ of the Poisson-distributed outcome, using the log link 

function  

                                      (2.7) 

In other words, the log outcome rate can be expressed as a linear function of the set of 

explanatory variables. The equation can be rearranged to give 

                              (2.8) 
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Table 2.3   Data reorganisation from a multinomial response to allow Poisson log-linear 
modelling. 
  

Unique ID Region Sex Survival Disease Gain  Loss 

HA1A01A H M 0 0 0 1 

HA1A02A H M 1 0 0 0 

HA1A02B H F 1 0 0 0 

HA1A04A H M 0 1 0 0 

... ... ... ... ... ... ... 

       

       

Unique ID Region Sex 
Response 
category Y 

HA1A01A H M Survival 0 

HA1A01A H M Disease 0 

HA1A01A H M Gain 0 

HA1A01A H M Loss 1 

HA1A02A H M Survival 1 

HA1A02A H M Disease 0 

HA1A02A H M Gain 0 

HA1A02A H M Loss 0 

HA1A02B H F Survival 1 

HA1A02B H F Disease 0 

... ... ... ... ... 

 

 

This equation can be used to estimate the relative risks for the explanatory variables. If, for 

example we wished to estimate the relative risk of having 30 lice compared to 5 lice, this 

could be written as 

                          (2.9) 

For the multinomial responses, each outcome is modelled as a function of the interactions 

between the explanatory variables with the response category for that variable. Thus, for 

our example here, the rate of survival of Males in Horro would be given by the equation 

                                                                      (2.10) 

As both the explanatory variables here are categorical, the exponential of the coefficients 

gives the relative rate compared to the reference category for that variable. Where the 

variables are continuous, the exponential of the coefficient shows the relative rate change 

for every unit increase in that variable. 
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2.8.3(c) Selection of model variables 

When considering variables to include in the models, I started by considering all possible 

variables which I might expect to have a potential influence on the outcome of interest, 

and how I might expect them to influence each other. Explanatory variables were checked 

for potential correlations with each other using tabular and/or graphical summaries, 

correlation coefficients and chi-squared tests. Univariable regression models were 

constructed to check for relationships between the explanatory variables and the outcome 

and, for continuous variables, Generalised Additive Models (GAM) were used to examine 

whether the relationship could be adequately modelled with a straight line, or whether 

variables needed to be re-defined in order to better describe the relationship.  

 

 

 

Figure 2.8    Drawing of potential relationships between variables 
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Before constructing multivariable models, I sketched diagrams for each outcome such as 

the one shown in Figure 2.8, to help visualise potential networks of variables. This assisted 

in controlling for potential confounding variables during the model selection process. 

Models were constructed using a stepwise process, in which individual variables were 

added to the null model one by one, based on knowledge of what might be expected to be 

of greatest biological significance. Interactions were tested with other variables. Non-

significant variables were removed, including variables which later became non-significant 

when additional variables were added to the model. Likelihood ratio tests and the Akaike 

Information Criterion were also used to judge whether the addition of more variables 

significantly improved the fit of the model. 

 

2.9 Mapping and spatial correlations 

Mapping of household points was carried out using the RGoogleMaps package in R 

(Loecher 2011), which allowed a satellite map of the terrain in a grey scale to be 

downloaded and points plotted according to their geographical coordinates. The package 

adjusted for map projections, and so gives a more precise location than using latitude and 

longitude values on a two-dimensional scatterplot. 

After performing some of the random-effects regression models, particularly those looking 

at an infection outcome, the household-level residuals were plotted on maps. This allowed 

a visual examination of where those households with unusually high or low infection values 

might be situated. A spatial test statistic (Eagle, unpublished) was used to assess whether 

the variation in households over a range of distances was less than might be expected 

compared to a random distribution of the data points, which might suggest spatial 

clustering of the data.  
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2.10 Principal component analysis and redundancy analysis 

Analyses were performed using R software (R Development Core Team, 2008) using the 

vegan package (Oksanen et al. 2011), and according to the methods described by Borcard 

(2011).  

Principal component analysis (PCA) is a technique for reducing a data set of p random 

variables such that the majority of information – the variances of each of the p variables 

and the correlations or co-variances between the variables – is preserved in a smaller 

number of derived variables. It is a purely descriptive method, used to represent the main 

trends of the data, which can then be visualised. The first PCA axis explains the largest 

variance or, when fitted as a straight line to the data, gives the least total residual sums of 

squares but, unlike explanatory variables in multiple regression, it is not derived from 

measured data but a theoretical variable estimated from the outcomes alone. If a single 

variable does not adequately capture all the information in the data, a second axis is fitted, 

uncorrelated with the first axis, which also best captures the information. Further axes may 

be added, subject to the same constraint, that they are uncorrelated with all higher axes, 

up to the number of variables in the dataset. However, in practice, higher axes that explain 

only small amounts of variation are generally ignored (Zuur, Ieno and Smith 2007). The 

Kaiser-Guttman criterion, which compares each axis to the mean of all eigenvalues, 

suggests that only those axes greater than the mean should be interpreted and others are 

essentially random variation (Borcard 2011). 

Redundancy analysis (RDA) combines regression with principal component analysis 

(Borcard 2011). It regresses a matrix of centred response data on a second matrix of 

explanatory variables and the fitted values are combined in a matrix. A PCA of the fitted 

values produces canonical eigenvalues and a matrix of canonical eigenvectors, which can 

be used to calculate the coordinates of the sites, either in the space of the original 
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response variables, or in the space of the explanatory variables (i.e. on the fitted response 

variables). The residual values from the multiple regressions can also be submitted to a PCA 

to obtain an unconstrained ordination of the residuals. 

The adjusted R2 value was used to test whether the inclusion of explanatory variables was a 

significantly better fit than the null model, and a forward selection process was used to 

select those significant variables which explained the greatest proportion of the variance in 

the response data (Borcard, 2011). Permutation tests were used to test how many RDA 

axes explained a significant proportion of the variation. The Kaiser-Guttman criterion was 

applied to unconstrained axes, to determine those which explained variation of interest. 

Biplots and triplots were produced, which were scaled according either to the distances 

between observations (scaling 1 in the vegan package) or the correlations between 

variables (scaling 2). 

 

2.11 Discussion 

The main laboratory and statistical methods have been described here in detail, and only 

the most relevant aspects will be highlighted where they recur in subsequent chapters of 

this thesis. Other methods, where used, will be described in the appropriate chapters. The 

aim is to prevent unnecessary repetition, but also to highlight some of the difficulties 

encountered with some of the laboratory data, and explain the rationale for some of the 

decisions taken in the best way to handle the serology results in the statistical analysis, as 

this is highly relevant to some of the findings in later chapters.  

The major issues were generally related to high variability in the serology results. The likely 

causes of these include degradation of reagents, arising from transport and storage issues 

where a cold chain could not be maintained; variation in water quality, as the laboratory in 
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Ethiopia had filtered, but not purified water; high variation in ambient temperatures in the 

laboratory and operator variation. The decision to carry out the laboratory testing in 

Ethiopia was made partly to avoid the difficulty of importing samples which could 

potentially include unknown pathogens into the UK, but mainly to provide some diagnostic 

capacity within the agricultural research centre. Thus problems with setting up and running 

a laboratory in a less economically developed country, such as acquiring reagents, and 

maintaining a regular water supply were largely unavoidable. One of the functions of the 

laboratory was to provide training for students and technicians in the performance of 

diagnostic tests; therefore the large number of operators running the tests was also 

inevitable.  

The decision to use serology, rather than identification of infectious agents, was also a 

practical decision, as almost all reagents are available within country, tests are cheap to 

run, and the issue with collecting and transporting samples from remote field sites is far 

less of a problem for sera, which are relatively stable. In ideal circumstances, the ELISA 

tests would have been validated by testing them against a panel of known negative and 

positive sera. Unfortunately, it proved impossible to find birds or sera in Ethiopia which 

were known to be negative, and only a very limited amount could be brought from the UK. 

This is clearly an issue for other researchers and diagnostic facilities in Ethiopia, and may 

limit the development of local diagnostic capacities until this issue is addressed. 

With regard to our data, the inability to validate the tests was a major factor in the decision 

to use the continuous data, rather than dichotomising it. However, it is also true that the 

continuous data may provide some additional valuable information, for example in the case 

of the Salmonella ELISAs, where high values potentially represent infection with a different 

serovar. I have tried as far as possible to control for some of the variability introduced by 

the test itself, by fitting the test plate as a random effect in regression analyses, although as 
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there was often spatial and temporal correlation between the samples tested on the same 

plate, this method may potentially underestimate the effects of kebele and sampling 

season, attributing them instead to between-plate variation. 
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Appendix 2.1 Summary of ELISA testing and performance of control sera 

 

IBD   Negative control Positive control 
 1310 tests 

 39 plates 

 21 days over an  
     18-month period 

 All plates All plates 
Mean 0.066 0.319 

Standard deviation 0.042 0.149 
Range 0.039 – 0.303 0.172 – 0.849  

 
 

Pasteurella   Negative 
control 

Positive 1 Positive 2 

 1319 tests 

 46 plates 

 33 days over a  
     9-month period 

 All plates All plates 40 / 46 plates 
Mean 0.226 1.036 1.105 

Standard deviation 0.071 0.349 0.258 
Range 0.136 – 0.424 0.319 – 2.094 0.556 – 1.498 

 
 

Salmonella   Negative 
control 

Positive 1 Positive 2 

 1244 tests 

 38 plates 

 17 days over an  
     18-month period 

 All plates 37 / 38 plates 8 / 38 plates 
Mean 0.195 0.664 0.75 

Standard deviation 0.058 0.242 0.140 
Range 0.11 – 0.36 0.34 – 1.28 0.50 – 0.86 

 

MDV   Negative 
control 

Positive 1 Positive 2 

 1282 tests Infected cells All plates 24 / 32 plates 22 / 32 plates 

 32 pairs of plates 
 17 days over a     

2-month period 

Mean 0.189 0.577 0.896 
Standard deviation 0.055 0.146 0.270 

Range 0.130 – 0.360 0.340 – 0.930 0.520 – 1.420 

 Uninfected cells    

 Mean 0.197 0.260 0.354 

 Standard deviation 0.076 0.068 0.094 

 Range 0.100 – 0.480 0.180 – 0.400 0.240 – 0.570 
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3.1 Introduction 

The Ethiopian Ministry of Agriculture states that its vision for Ethiopia is to “Create market-

led modern agriculture and a society free from poverty” (http://www.moa.gov.et/ 

web/pages/vision-mission-and-objective). The rising demand for poultry products in 

Ethiopia’s growing and increasingly urbanized population should be a market opportunity 

for rural households which raise the indigenous poultry preferred by most Ethiopians. 

Indigenous birds are perceived as having superior taste and quality of both the eggs and 

meat that they produce (Dana et al., 2010), and in addition have a number of other 

characteristics which make them better able to survive and reproduce successfully in an 

extensive scavenging system. From a smallholder farmer’s point of view,  the profitability 

per unit of money invested in village chickens is higher than for commercial birds, despite 

the latter’s greater outputs in terms of eggs and meat. Whereas feed for commercial birds 

must be purchased, indigenous birds find their own feed, and so have a better benefit/cost 

ratio (Bell, 2009). 

However, the system under which village chickens are currently kept imposes many diverse 

constraints to their productivity. Disease, predation, lack of feed, water and shelter; and 

poor access to veterinary services are most frequently reported to restrict the numbers of 

village chickens kept (Halima et al., 2007, Dessie and Ogle, 2001, Dinka et al., 2010); whilst 

slow growth and low egg outputs limit their profitability (Dessie and Ogle, 2001), the 

problem being compounded by poor access to markets (Moges et al., 2010b).  High bird, 

and particularly chick, mortalities mean that a large proportion of what would otherwise be 

potentially saleable eggs and birds are required to be hatched and raised for replacement 

stock. In order to take advantage of growing markets, rural households need to be able to 

increase the offtakes from their flocks, whilst still utilising the natural advantages of the 

http://www.moa.gov.et/%20web/pages/vision-mission-and-objective
http://www.moa.gov.et/%20web/pages/vision-mission-and-objective


Chapter 3 | Chicken keeping in two highland regions of Ethiopia:  

  
102 

 
  

scavenging system. Kitalyi (1998) recommended a step-wise program starting with the 

basic indigenous stock, and initially developing practices including good hygiene, shelter, 

preferential treatment of chicks and control of the most devastating diseases, such as 

Newcastle disease virus (NDV). Later improvements in the management include developing 

feeding and other disease control programmes, followed by improving the stock by 

introducing high-yielding traits and developing marketing strategies.  

An approach adopted by the Ethiopian Agricultural Research Institute (EIAR) has focused on 

the use of selective and cross-breeding programmes to improve the productivity of 

indigenous chickens both in terms of increased egg and meat production (Dana et al., 

2011). The aim of this programme is to to produce a dual-purpose bird specifically intended 

for village systems by utilising the genetic merits of the indigenous breeds. However, birds 

in the breeding programme are maintained in an intensive system, i.e. in housed conditions 

with a supply of commercial feed, and reliance on vaccination for disease control. There is 

therefore some concern that, when reared under village conditions, the “improved” 

indigenous birds will continue to require unsustainable investments in terms of vaccination 

or feed inputs in order to sustain the higher levels of productivity. Although growth and egg 

yield are important characteristics, “adaptation”, comprising disease and stress tolerance, 

flightiness (conferring ability to escape predators) and scavenging vigour, is recognised by 

Ethiopian farmers to be the most important trait of chickens kept in village systems (Dana 

et al., 2010). From this it may be seen that farmers well recognise the diverse array of 

pressures which act on the village chicken; disease, climate, predation and nutrition are 

important selection pressures in these birds as they would be in a wild population, whilst in 

addition the village chicken is also subject to the selection choices made by farmers over 

generations to fulfil their own requirements for desirable bird characteristics. These 

characteristics are frequently dictated by market demands, and include factors such as 

comb type and plumage colour, as well as factors which can be more directly linked to 
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productivity, such as size, broodiness and mothering ability (Moges et al., 2010a, Dana et 

al., 2010).  

The extensive system in which village birds are kept exposes them to numerous potential 

sources of infectious disease; biosecurity is minimal and, as yet, vaccination programmes 

are not widely available for rural farmers in Ethiopia (Dana et al., 2010, Moges et al., 

2010b). Management of disease clearly needs to be incorporated into the current poultry 

development programmes in order for them to succeed. Veterinary studies on village 

chickens in Ethiopia to date have tended to focus on identifying exposure to or infection 

with various pathogens in healthy birds, sometimes examining bird signalment, 

management or environmental variables as potential risk factors for infection (for 

examples, see Mekuria and Gezahegn (2010), Jenbreie et al. (2012), Chaka et al. (2013). 

Several other studies have described the village chicken characteristics and their 

management in various regions of Ethiopia in great detail (Dessie and Ogle, 2001, Duguma, 

2009, Dinka et al., 2010), yet whilst these all mention disease as a major constraint, none 

have addressed factors associated with an increased disease risk. 

 The gap between those studies focused on pathogens and those studies focused on birds 

and their production system needs to be addressed, as there is a difference between 

“infection” and “disease”, which is not considered by many researchers. The veterinary 

studies’ identification of clinically healthy infected and seropositive birds within household 

flocks demonstrates that many birds are resisting or tolerating these infectious pathogens. 

The manifestation and outcomes of clinical disease, on the other hand, will be affected by 

many factors; not only the pathogens to which chickens are exposed, but  also the innate 

and acquired characteristics of the birds themselves which dictate how the bird responds 

to an infecting pathogen. This interaction is, in turn, influenced by decisions the farmers 
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make about the management of their birds, which shape both the chicken population and 

how birds can interact with the production environment.  

The aim of this study was to describe the village production system as an agroecological 

system with the potential to be inhabited by micro- and macroparasites of chickens; as 

many of the management practices previously reported have the potential to be risk 

factors for exposure to various pathogens, or to alter the interaction between chicken and 

pathogen. To address this, we collected data from Ethiopian farmers on the management 

of chickens and how they contribute to the economics of smallholder production, and also 

studied various characteristics of the birds themselves. Two geographically separate 

regions in Ethiopia, expected a priori to have some differences in their approach to chicken 

keeping, were studied to encompass at least some of the differences in social, cultural, 

economic and productivity constraints.  

Objectives were: 

 1) To describe the diversity of the village production systems, farmer behaviour and 

motivators. 

 2) To better understand how the different local ecotypes are adapted to their specific 

environments and farmer requirements.  

3) To hypothesise how any observed variations in the production system may have a 

bearing on infection dynamics or biology. 
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3.2 Methods 

3.2.1 The study areas 

This study was conducted in two geographically distinct woredas (administrative districts) 

within the Oromia region.  Oromia is the largest administrative region in Ethiopia and 

includes 180 woredas, which are further divided into kebeles. These are the smallest 

administrative districts in Ethiopia and often encompass a number of proximate 

communities or villages. Kebeles may be loosely grouped within market sheds, which 

supply chicken or chicken products to a sub-regional market or urban centre (Tadelle et al., 

2003). Market sheds are not simply the geographical areas and population surrounding one 

or more markets, but rather describe the flow of products along a network (FAO, 2014).  

Horro woreda is located in the Horro Guduru Wellega zone, in western Ethiopia. The 

administrative town, Shambu, is located at 9° 34′ 0″ N, 37° 6′ 0″ E, approximately 310 km 

from the capital, Addis Ababa. At the time of the last census in 2007, the population was 

estimated to be 74,989, of which 71,320 were living in rural districts. According to 

unpublished data obtained from Horro woreda Office of Agriculture, the estimated current 

human population is 87,505, and the predominant religions, Ethiopian Orthodox and 

Protestant Christian, are followed by 89.5% of the population. Population density is 

considered moderate, and the topography of the land is predominantly undulating, with 

good vegetation coverage, including varied grasslands. The average annual rainfall ranges 

from 1200mm to 1800mm across the zone, and the main rainy season lasts from early May 

to the end of September. The zone is known for production of teff, niger seed (as a cash 

crop) and cattle, and considered an area of high agricultural potential, producing an annual 

food surplus (FEG, 2009). 
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Jarso woreda lies in the East Harerge zone, in the eastern part of the country. The 

administrative town, Ejerso Goro, is located at 9° 29′ 0″ N, 42° 14′ 0″ E, approximately 

560km from the capital, Addis Ababa. The last census estimate of the population was 

116,638, of which 112,708 were living in rural areas (CSA, 2007). According to unpublished 

data obtained from the woreda Office of Agriculture the estimated current human 

population is 134,426, and 88% of the population follow Islam. The population is described 

as moderately dense, and the landscape is undulating, with bushes, shrubs and forest being 

the primary vegetation. The average annual rainfall is only 700mm to 800mm across the 

zone, and most crops are grown in the main rainy season between July and September. The 

main crops are chat (a cash crop, chewed as a mild stimulant), vegetables, sorghum and 

maize, but the area has a food deficit every year (FEG, 2008).  

Within each woreda, four kebeles were purposely selected in consultation with local 

representatives, as described in Chapter 2, which also shows a map of the study areas. 

Initially, a rapid rural appraisal (RRA) was conducted in four of the study kebeles; 2 each in 

Horro and Jarso. Focus group discussions (FGD) comprised of up to 50 farmers, of which 

between 20 and 50% were female. Group discussions typically took two hours. Following 

the FGD, field visits were conducted in each of the kebeles to directly observe village 

poultry production. Discussions with key informants, such as district administrators and 

animal extension workers, were used to collect additional information and triangulate the 

FGD. 

Subsequently, cross-sectional surveys were used to collect further information. Lists of 

farmers in each kebele were compiled by the local development agents (DA). Within each 

kebele, a number of sub-areas were selected in order to produce a list of approximately 

400-700 households. Potential participants were selected from the final list by systematic 

random sampling. 
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Each kebele was visited on four occasions; in May/June and October/November in each 

year of the study (2011 and 2012). These visits were timed for before and after the main 

rainy season, which occurs between June and September. Different households were 

selected to visit on each occasion to take part in a questionnaire survey and for two of their 

chickens to be sampled. Ethiopian staff were recruited to collect the field samples, and 

administer the questionnaires in the local language. Training was provided beforehand and, 

where necessary, in the field if problems were identified.  Households were visited by the 

study team, and the farmers were interviewed to confirm that they had no exotic birds or 

vaccinations used in their flock. They also needed to own two indigenous-type birds of at 

least six months of age in order to be included in the study on poultry infectious diseases 

and genetics.  

An additional 200 households, 25 in each kebele, were visited during the first round of 

surveys in May 2011. Selection of these households was identical to that described above, 

but without the inclusion criterion that required them to currently own chickens. These 

households were only required to complete a survey relating to the social and economic 

aspects of chicken-keeping, and so did not need to currently own chickens in order to take 

part. This survey was only carried out during one round of sampling, as it was not expected 

that the findings would be affected by the timing of the survey, unlike the data collected to 

investigate infectious diseases, where it was anticipated that findings may vary between 

seasons and years.  

 
3.2.2 Questionnaires 

During each round of sampling, questionnaire interviews were carried out with a member 

of each recruited household, in order to collect data on the management practices and the 

disease history of the flock. During the first round of sampling (May 2011), all households 

recruited, including those additional ones selected, were asked to participate in a 
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questionnaire on social and economic aspects of chicken keeping, and how this contributed 

to their livelihood. During the second round of sampling (October 2011), households were 

asked a number of additional questions relating specifically to aspects of reproduction and 

productivity of their birds. A copy of each questionnaire used is in General Appendix A. 

3.2.3 Clinical examination 

A form was provided with a checklist of the information which needed to be collected for 

each bird (General Appendix A) for fieldworkers to complete, labelled with a unique code 

to identify the bird and link it to the household questionnaire. Information about the 

clinical history of the two sampled birds was obtained by interviewing a member of the 

household. Hens sampled were classified by the farmer as being either currently in lay, 

incubating eggs, rearing chicks or not currently contributing to production. Farmers were 

also asked to estimate the birds’ ages, and provide information as to the origin of the bird; 

whether bred at home or, if brought in, where it was obtained. 

As part of the clinical examination and scoring for ectoparasites, as detailed in Chapter 2, 

information was collected on certain morphological traits, such as feathering, for the 

genetics study. Birds were also weighed in the baskets, and ascribed a body condition score 

on a 0 – 3 grading system (Gregory and Robins, 1998). In addition, birds sampled during the 

second round of sampling (October – November 2011) had a number of anatomical 

characteristics measured (General Appendix A) as part of a project undertaken by a 

Masters student. 

3.2.4 Analysis 

Birds were classified according to age and sex into the following categories: Hens and cocks 

were birds of breeding age (from approximately 6 months) and juvenile females and males 

between approximately 2 and 6 months are classified as pullets and cockerels. All birds 

below 2 months of age are classified as chicks. 
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Livestock holdings in each household were converted to a Tropical Livestock Unit (TLU) 

following Storck (1991) to facilitate a comparison between individuals and areas. 

Descriptive statistics, chi-squared tests and Mann-Whitney tests, and multilevel modelling 

were performed using R software (R Development Core Team, 2008). See Chapter 2.8.3 for 

a further description of how modelling was performed. 

 
3.3 Results 

3.3.1 Response rates 

A total of 840 households were visited over the course of the study period, and their 

contributions to the data collected are shown in Table 3.1. Of those 640 households which 

answered the questionnaire relating to flock management, 60% gave a complete set of 

answers. There were 173 farmers (27%) who missed only one question, 156 of whom failed 

to report how they disposed of dead birds. This may have been to do with the layout of the 

questionnaire, as this question followed the section on recent experiences of disease, and 

so may have been omitted by the enumerator if farmers had not described any diseases in 

the flock. Excluding this question, 482 (75%) farmers gave a complete set of answers, 124 

(19%) missed one question, 23 (3.6%) missed two questions and 11 (1.7%) missed more 

than two. Appendix 3.1 gives a complete list of the missing data for each question relating 

to flock management. 

All 400 farmers asked the socio-economic questionnaire provided all data necessary to 

calculate their current flock sizes, the numbers of chickens and eggs sold over the previous 

year and the proportion of their annual income derived from poultry and poultry products. 

There were 13 (3%) of farmers who did not report why they kept chickens, and 29 (7%) 

farmers who did not report where they sold them. Only one (0.5%) of 199 farmers asked to 

estimate hens’ reproductive parameters did not answer these questions.     
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Table 3.1    Contributions of households recruited in each round of sampling 

Data types collected May 
2011 

October 
2011 

May 
2012 

October 
2012 

Total 

Total number of households 
recruited 

400 199 120 121 840 

Questionnaire on flock management 
and disease experiences 
Sampling of two birds 

200 199 120 121 640 

Questionnaire on social and economic 
aspects 

400    400 

Questionnaire on reproductive 
aspects of poultry keeping 
Measurements of two birds sampled 

 199   199 

 

 

3.3.2 Demographic and socio-economic structures  

The main livelihood activities in both woredas, as ranked by participants during the RRA, 

were crop production, livestock production, petty trading (defined as informal distribution 

or selling of cheap consumer goods, Hart (1973)), unskilled labour and skilled labour. The 

crops of main importance, as ranked by the developmental agents, in Horro were teff, 

maize and wheat; and maize, wheat and sorghum in Jarso.  Chat (Catha edulis) is also very 

common in Jarso; its evergreen leaves are chewed for their stimulating properties and 

routinely sold to generate additional or continuous income. Key livestock in all areas 

included cattle, sheep, goats and chickens, as well as donkeys. Crop production and 

livestock production were reported to be practiced by all wealth categories with 

involvement increasing from the poorer to wealthier households.   

The RRA indicated that chicken production was practised more by the medium to poor 

households than by the wealthier households. It also highlighted a clear difference 

between the regions, suggesting that in Horro, chickens were viewed as an important 

source of additional income for incidental expense or as continuous low-level income from 

the sale of eggs and birds, and that women often managed this income. In contrast, chicken 

production appeared to offer much less opportunity for income in Jarso, where chat 
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provided an important source of incidental or continuous income. These findings were 

supported by economic data collected during the questionnaire surveys, which showed 

that chicken production in both regions contributed a greater percentage of family income 

in poorer households, and that the income derived from poultry was positively correlated 

with the number of adult birds kept. However, it was also observed that in Horro, wealthier 

families tended to derive slightly more income from their chickens than poorer families did, 

even after allowing for the difference in flock size. In Jarso, income from chickens was 

similar across all wealth categories. Income per adult bird kept was significantly less in 

Jarso (Figure 3.1). The vast majority of farmers – 84% in Horro and 86% in Jarso – sold their 

birds locally, either to neighbours or in the local market.  

 

Figure 3.1   Farmer income derived from poultry compared to total annual household income. Points 

are scaled relative to the income generated per adult bird kept.  
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3.3.3 Poultry production and drivers for bird selection 

Householders reported that the primary purpose of keeping chickens was either for sale, 

for consumption, or both, although fewer farmers in Jarso kept chickens for consumption 

(Figure 3.2). Fifty seven per cent of Horro farmers had sold at least one chicken within the 

last 12 months, and among those who had sold chickens, an estimated total of 516 birds 

had been sold, giving a mean of 4.5 birds per farmer. In Jarso, however, only 38% of 

farmers had sold a chicken within the previous 12 months,  and  only 237 birds  had  been  

sold  between them, giving  a mean  of  3.1  chickens  per farmer. Approximately 68% of 

Horro farmers but only 18% of Jarso farmers reported that they had consumed chicken in 

the past year, and around 17% of farmers in Horro and 23% in Jarso had consumed eggs. 

 

 

 

 

 

 

 

Figure 3.2: Purposes of chicken and egg production in the two study regions  
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Egg production, in addition for sale or consumption, was also undertaken for reproduction, 

and in Horro, this was the primary destination of eggs for over half of farmers questioned. 

In Jarso, 66% of farmers reported the sale of eggs to be among the primary reasons for 

undertaking egg production (Figure 3.2), although only 18.5% of Jarso farmers reported 

receiving any  income  from eggs  in the past year;  the mean annual  income from eggs  for 

these  farmers was 40.6 Ethiopian Birr (ETB). This was comparable to a mean annual 

income from egg sales of 38.1 ETB among the farmers who sold them in Horro, although 

only 17 of the Horro farmers who were interviewed (8.5%) reported receiving income from 

eggs within the previous 12 months. There were 39 farmers in Horro (19.5%) and 73 in 

Jarso (36.5%) who, despite all owning at least one adult hen, reported that they had 

neither eaten nor sold chickens or eggs in the previous 12 months. 

When asked during the survey to describe the most important characteristics of hens, the 

most frequently mentioned items in both areas were egg production followed by 

mothering ability. Mothering ability was mentioned as being either the most or second 

most important characteristic by 55% of Horro farmers, and 41% of Jarso farmers. Egg 

productivity was ranked first or second by 66% of Jarso farmers and 55% of Horro farmers. 

Other trait preferences mentioned in both areas were to do with growth or body size 

(18%), behavioural characteristics (15%) and appearance (16%).  

Appearance, namely colour or comb type, was more important for cocks, with 52% of Jarso 

farmers and 38% of Horro farmers mentioning this as their first or second most important 

trait. Breeding requirements, such as virility and caring for the rest of the flock was also 

highly ranked in both areas, mentioned by 45% of Horro farmers and 38% of Jarso farmers. 

However, a notable difference between the two areas was the importance attached to 

body size or growth, mentioned by 43% of Horro farmers, compared to only 12% in Jarso. 
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Jarso farmers were more likely to mention other behavioural characteristics as being 

important, such as docility or alertness to predators. 

3.3.4 Reproduction 

3.3.4 (a) Hatching and rearing practices 

Of 621 respondents, only 20 did not provide a nest box for hens rearing chicks, of which 18 

were in the Jarso region. Households would set eggs under a broody hen to hatch chicks 

between 1 and 5 times per year, with the exception of 6 households, who said they had not 

yet hatched their own chicks. Half of all respondents (n=319) set eggs just twice a year. 

There was a significant difference between the regions, with respondents in Jarso being 

more likely to set eggs only once a year, and Horro respondents more likely to set eggs 

more than twice (chi squared statistic 97.8, p<0.01). 

Data collected as part of the reproduction questionnaire in the second sampling season 

indicated that in Horro the median number of eggs set was 14, and the median number of 

chicks successfully reared by a broody hen to 8 weeks of age was 6. In Jarso, the median 

numbers of eggs and chicks were 12 and 5, respectively. This represented a small but 

significant difference between the regions (Mann-Whitney-Wilcoxon test, for both 

comparisons p<0.01). 

There was also a striking difference in the preference of the timing of hatches between the 

two regions. Whereas the respondents in Horro preferred to set eggs between September 

and May, those in Jarso preferred to hatch eggs in June, July or August (Figure 3.3). The 

main rainy season in Ethiopia occurs between June and August, and anecdotes from 

farmers suggest that chick rearing was avoided during this period in Horro, as cold and mud 

adversely affected the chicks. However, in Jarso, chick survival was reported to be better 

during the rainy season, when there was more vegetation cover, which allowed chicks to 

avoid predators, particularly birds of prey.  
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Figure 3.3    Farmer preferences for the time of year in which to hatch eggs in Horro and Jarso regions 

 

 

3.3.4 (b) Reproductive status 

Farmers who answered the reproduction questionnaires in the second sampling season 

were asked to estimate the average breeding parameters for their chickens. Although not 

significantly different between the two regions, farmers in Jarso tended to give slightly 

greater estimates of the number of clutches per year, clutch length (i.e. the number of 

weeks a bird is in lay) and the inter-clutch period (the time she is not productive). However, 

they did give lower estimates of the number of eggs per clutch (median of 12 eggs 

compared to 15 in Horro) (Figure 3.4).  

At the time of examination, farmers reported the stage of the production cycle their hens 

were in. On the whole, kebeles in Jarso had higher proportions of birds which were not in 

production (i.e. neither in lay, nor brooding eggs or chicks) at the time of sampling.  
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Figure 3.4    Farmers’ estimates of hen reproductive parameters in each region 

 

 

Numbers of birds incubating eggs were similar in the two areas, but in Horro, the random 

sample of hens included twice as many hens brooding chicks compared to Jarso. However, 

in Jarso a greater proportion of birds sampled were in lay (Figure 3.5). 

 

Figure 3.5    Production status of sampled hens by kebele and season of sampling 
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3.3.5 Flock size 

3.3.5 (a) Regional differences in flock composition 

Flock size has been calculated using data from those households which participated in the 

questionnaires on flock management and disease, and had their birds sampled. Although 

this introduces a bias, in that these households had to own at least 2 adult chickens in 

order to participate, from data collected on reasons for non-participation, we estimate that 

around 5% of the randomly-selected farmers who kept chickens in Horro and 8.5% of those 

in Jarso were excluded because they owned fewer than 2 adult birds. We have chosen to 

use this data, which was collected over the four seasons of the study, to capture how flock 

size may vary throughout the year, and between years, rather than the socio-economic 

data which, although it includes the small flocks, was measured at only a single time-point.  

One farm in Horro was accidentally included in the survey despite owning only one adult 

bird, as the farmer submitted two birds for sampling, one of which belonged to his brother, 

who lived in the adjoining household. The birds owned by both families’ households were 

treated as one flock, although for the purposes of the questionnaire, the sampled farmer 

reported only the birds which his family actually owned.  

Flock size in the sampled households therefore ranged from 1 to 44 birds in Horro (median 

7.5 birds), and from 2 to 37 birds in Jarso (median 5 birds), showing a clear difference 

between the two populations (Mann-Whitney-Wilcoxon test, p<0.01). The median number 

of cocks owned by households in both areas was 1, and the median number of hens owned 

was 2 and 3 in Horro and Jarso respectively.  

Although Horro flocks tended to be larger, young stock represented a greater proportion of 

the birds owned (Figure 3.6), especially once flock sizes reached more than 8 birds, when 

adult hens made up, on average, less than a quarter of the flock. In Jarso, adult hens made 

up, on  average, over 60% of  the flock, and even  in larger flocks still  tended to comprise at 
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Figure 3.6   Distribution of household flock sizes in Horro and Jarso. Each bin is split into 5 segments 

which represent the mean proportion of bird types, classified by age and sex, for different sizes of 

flock. 

 

least a third of the stock. Over 80% of the randomly-sampled adult birds had been bred by 

the owner, and a further 10% had been bought from neighbours in the same kebele. Only 

10% had been bought in from other kebeles or markets. 

3.3.5(b) Seasonal changes in flock size 

In each region, there were no differences in the distribution of flock sizes between 

sampling rounds carried out in May to June between the two years of the study; or 

between those rounds carried out in October and November. However, in both areas, 

there were differences in the distribution of flock sizes between the spring and autumn 

sampling periods. In Horro, flock sizes were larger in spring, with a median flock size of 11 

birds, compared to a median of only 6 birds in autumn. This represented a significant 

difference between the two times of year (Mann-Whitney-Wilcoxon, p<0.01). However, in 
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Jarso, flock sizes were significantly larger in autumn (Mann-Whitney-Wilcoxon, p<0.01), 

with a median flock size of 6 birds, compared to only 4 during spring samplings. In both 

regions there were no differences in the numbers of adult stock between spring and 

autumn; and the seasonal differences in the flock sizes was attributable to increasing 

numbers of chicks, pullets and cockerels, although the increase in the latter was only 

evident in Horro (Appendix 3.2). 

3.3.6 Age distribution 

A multilevel model (see Appendix 3.3) suggested that much of the variation in age of the 

randomly sampled birds was due to between-farm variation, but there were sex and 

regional differences with an interaction between these variables. The mean age of Horro 

males was just under 11 months old, whereas females were around 2.5 months older. 

Males in Jarso were, on average, around 14 months old. Around 15% of Jarso females were 

estimated to be over 2 years old, compared to just 3% of Horro females, and their mean 

age was around 19 months (Figure 3.7). 

 

Figure 3.7   Age distributions of females and males sampled in each region 
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3.3.7 Growth and secondary sex characteristics 

Bird weights were found to be influenced by a variety of factors, including age, sex, body 

condition, region and sampling period. There were also interactions between several of 

these variables (Appendix 3.4). Bird weights increased with age, and males grew larger than 

females. However, Horro birds of both sexes grew larger with increasing age than their 

counterparts in Jarso, and the difference in body weight between males and females of the 

same age was larger in Horro than it was in Jarso (Figure 3.8). In addition, the wattle length 

of birds was also affected by the age, sex and region, with a significant interaction between 

all three of these variables (Appendix 3.5). There was no difference between the females’ 

wattles between the two regions; however, males in Horro had a larger increase in the size 

of their wattles with increasing age than did males in Jarso (Figure 3.8). 

 (a)  

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

   Figure 3.8    Plots of (a) weight and (b) wattle length against age for females and males in different 

regions 
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3.3.8 Bird management 

3.3.8a) Night shelters 

The majority of farmers kept their birds inside the family house at night. In Horro, 59% of 

farmers kept their birds in the house and 29% kept them in the kitchen building; 6% had 

constructed a separate shelter, either for chickens or for livestock in general, and 6% kept 

birds on the veranda overnight. In Jarso, 83% of farmers kept them in the house, 7% in the 

kitchen building, and 10% of farmers had constructed a separate shelter for them. 

3.3.8 (b) Feeding practices 

Nearly all farmers (98%) in both regions provided supplementary feed for their birds, and 

98% provided supplementary feed separately for chicks. The majority of farmers (75% in 

Horro and 66% in Jarso) provided additional feed for birds during the rainy season. 

Between 10% and 20% of farmers in all kebeles provided the same amount of feed year 

round, and a minority of farmers reduced or stopped providing supplementary feed in the 

rainy season, although this differed between regions, and in Jarso, between kebeles. In 

three kebeles in Jarso, between 19 and 25% of respondents reported they offered less feed 

during the rainy season, whereas in kebele J2B only 6 farmers (7.6%) gave less feed.  

3.3.8 (c) Confinement 

Birds were generally allowed to scavenge freely during the day. However, some farmers 

would confine their chickens for some periods. There were differences between the two 

regions, and also between kebeles within a region. Jarso farmers were, in general, more 

likely to confine birds, with 58% of respondents reporting that they confined their birds for 

some part of the year, compared to 36% in Horro. In one Jarso kebele, J1A, only 36% of 

farmers confined their birds; however, those that did were more likely to confine them for 

between 3 and 6 months of the year. This contrasted with the other kebeles in the region, 

where farmers generally confined birds for only one or two months, coinciding with the 

planting  season  in  April / May.  In  both  regions,  farmers  were  generally  least  likely  to  
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Figure 3.9   Proportion of farmers who confine birds in each month of the year. 

 

confine their birds towards the end of the rainy season, between August and October 

(Figure 3.9). 

3.3.8 (d) Mixing between household flocks 

Farmers were asked to grade the amount of time their birds were able to mix with chickens 

from other households on a scale ranging from 0 to 5, where 0 was “never” and 5, “every 

day for more than an hour”. They were asked to do this for both the wet and dry seasons. 

The amount of time farmers estimated their birds mixed with other flocks is shown in 

Figure 3.10. Only 5 farmers (0.7%) estimated that their birds’ contacts increased during the 

wet season, whereas 33% of Horro farmers and 22.6% of Jarso farmers estimated a 

decrease in birds’ contacts from the dry to the rainy season. 

3.3.9 Parasite control 

Farmers in both regions took a variety of approaches to parasite control. There were 36% 

of farmers in Horro and 42% in Jarso who stated that they used no preventive treatment 

against parasites. In Horro, 24% of farmers used an insecticide spray on the housing, and a  
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Figure 3.10   Farmers’ estimates of the amount of time their chickens spend mixing with those from 

other households 

 

further 7% used a spray on the birds. However, in Jarso, only 3% used a spray in the 

housing and less than 1% of farmers interviewed used a spray on the birds. Chemicals 

mentioned included malathione and DDT. 

Ethnoveterinary (referring to people’s knowledge, beliefs, practices, technology and 

resources pertaining to animal health; McCorkle (1986)) techniques were used commonly 

against parasites. These included changing the perches and the nest box, or cleaning, either 

with hot water, or sometimes with local plants. Singeing the perches, putting the nest in 

the sun and burning the nest were also mentioned as ways of reducing parasites in the 

housing. Fumigation using various local leaves, roots and barks or manure was used for 

both the housing and the birds themselves. Other external treatments mentioned included 

rubbing or cleaning the birds with ash, various types of leaf, lemon juice or manure. Enteric 

treatments included combinations of red or green chilli peppers, onion and garlic, either 

mixed in water or feed, or given with oil as a drench. Penicillin was also mentioned as a 

parasite treatment by one householder. 
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3.4 Discussion 

Although the production environments of village chickens may, at first glance, appear 

similar across the areas studied here, we found a number of differences both between the 

two regions and between kebeles and households within these regions. The chickens are 

only one of many enterprises in the mixed crop-livestock system practised by these 

farmers, and their contribution to income, especially in wealthier households, is relatively 

small. Here we examine some of the forces that may be shaping these two chicken 

populations to allow them to meet the various roles that farmers demand of them.   

3.4.1 Economic and cultural importance of chickens 

In both areas, the primary purpose of keeping chickens was to derive monetary benefits 

from them, although some families also used them for home consumption. Income derived 

from chickens tended to be low, both in terms of the contribution to the total household 

income and the actual monetary income per bird kept. Whilst a small number of 

households derived regular income from birds, they were frequently more important as an 

asset which could be sold occasionally to meet incidental expenses. Previous studies have 

reported seasonal fluctuations in demand for and price of chickens, based around the 

Orthodox Church calendar (Moges et al., 2010b), and lack of organised marketing systems 

(Dinka et al., 2010), which preclude many smallholders from deriving regular income from 

chickens. Similar constraints are likely to exist in the regions in our study.  

Eating chicken was much more common in Horro, and anecdotes from Jarso families 

suggested that many of them did not know how to prepare chicken for consumption. Egg 

consumption was similar in both areas, both in the percentage of families who consumed 

eggs and the numbers of eggs they consumed annually. Strategies and potential for income 

generation from chickens thus appeared to vary between the two areas. Given that the 
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vast majority of farmers only sell their birds locally, the cultural differences, which make 

chicken consumption more common in Horro, are likely to provide greater marketing 

opportunities for live birds in this region. Therefore most families tend to sell live chickens, 

and use eggs primarily for reproduction. This may be a factor in allowing Horro farmers to 

derive more income from each adult bird kept, due to the higher prices commanded by live 

birds, compared to eggs. In Jarso, fewer families sold live chickens, and those that did sold 

fewer chickens, on average, than farmers in Horro. More families sold eggs than those in 

Horro, but this still involved only a low proportion of households overall. A substantial 

proportion of families in both regions had not sold or eaten chicken or eggs within the last 

12 months, suggesting that, for them, chickens fulfilled the “safety net” role (McLeod et al., 

2009). 

The marketing potential also appeared to influence the characteristics that farmers found 

desirable in their chickens. Horro farmers gave a greater weight to mothering ability, rather 

than simply egg production in hens; whilst in cocks they gave growth rates and body size an 

almost equal importance with breeding ability, and appearance was the third most 

frequently mentioned attribute. Jarso farmers, in contrast to this, rarely mentioned body 

weight as having any importance, but were predominantly concerned with appearance. 

Dana et al. (2010) reported of farmers interviewed in five Ethiopian woredas that weight 

was one of the most important characteristics to them, due to the higher prices 

commanded by heavier birds. However, this may not hold true for the farmers in Jarso, 

where there would appear to be little opportunity for marketing birds for consumption.   

We found Horro birds, especially the cocks, to have larger body sizes and better body 

condition scores. This may partly be a reflection of diet, as more Horro farmers provided 

extra feed in the rainy season, when food was scarce. However, it may also be a result of 

selection by farmers over many generations for larger birds, so that, despite the apparently 
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uncontrolled natural mating within the village chicken population, larger birds have been 

favoured and retained for breeding, whereas smaller ones have been culled. Local markets 

are thought to be the principal dictators of selection criteria in Ethiopia (Dana et al., 2010), 

and this weight difference in birds between the two regions may well be a reflection of the 

differences in local cultures and frequency of chicken consumption. 

3.4.2 Reproduction and dynamics of the “Village Flock” 

The village flock population is not static, but fluctuates with birds entering and leaving the 

population continuously. Our results, in agreement with other surveys (Guèye, 1998, Dessie 

and Ogle, 2001) suggested that, although the village chicken population is not closed, the 

majority of birds are born and raised within the kebele, rather than entering it from 

outside. Losses from the population occur as birds are either sold or eaten (which may be 

considered beneficial for farmers) or die, often from disease, predation or accidents (which 

represent a loss for farmers, both in terms of invested resources into each bird reared, and 

loss of the potential to benefit from the bird). The adult bird population size in both areas 

was apparently stable at all the time points sampled, but the population of young birds was 

found to be different between regions, and between spring and autumn samplings. The 

choice of the majority of Jarso farmers to set eggs predominantly during June, July or 

August led to an increase of young stock, and consequently flock size, during the autumn 

months at the start of the dry season. In Horro, the reverse was true, and with more than 

50% of farmers setting eggs for the remaining 9 months of the year, and a tendency to 

hatch more clutches per year than Jarso farmers, flock sizes, proportions of young stock 

and the number of hens rearing chicks were consistently greater in Horro at each time 

point sampled, and particularly so towards the end of the dry season. Within each region 

there was no difference in the distributions of flock sizes observed between the two years 

of the study for comparable seasons, perhaps suggesting these seasonal fluctuations are 
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relatively consistent in the absence of any major perturbation, such as a disease outbreak, 

which was never reported during the study period. 

The fact that the adult population in both regions appears relatively stable, despite the 

difference in the numbers of young birds, suggests that the population turnover is more 

rapid in Horro. This is reinforced by the difference in age distributions between the two 

areas, with females in particular being relatively long-lived in Jarso. In ecology terms, this 

could be interpreted as a difference in life-history choices, with Horro birds utilising more 

of a “live fast, die young” strategy. Organisms which adopt such a strategy invest more 

resources into reproductive rather than maintenance functions, such as immunity (Møller, 

1997, Zuk and Stoehr, 2002). Reproductive effort per se in village chickens is difficult to 

quantify, as not all eggs laid will be incubated, hatched or reared due to human 

intervention. Therefore the resources allocated by an individual bird into egg production do 

not directly translate into reproductive effort. In addition, she must also hatch and rear the 

chicks, requiring energy to be diverted into protecting them and helping them find food.   

Some reproductive differences were observed between the two populations. Hens in Horro 

reportedly laid slightly more eggs per clutch, and clutch length was slightly shorter, 

implying a higher rate of lay. The inter-clutch period, when hens are not in production, was 

also shorter, and more Horro birds were found to be in production than their Jarso 

counterparts. Although Horro farmers reported that their hens laid fewer clutches of eggs 

per year, this will be influenced by the additional amount of time these hens must spend 

rearing chicks. Although we did not collect estimates on the number of eggs per hen per 

year, it might be predicted that Jarso birds may come back into lay more quickly if they are 

not required to brood, thus allowing them to lay more eggs overall. Horro birds were also 

ascribed a greater propensity for broodiness, which will decrease egg production. One 

further indicator that Horro birds may make greater investments into reproduction is the 
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finding that cocks in Horro have more pronounced secondary sex characteristics, as typified 

by wattle length. Horro birds are also believed to have brighter plumage colours (Desta, 

personal communication). 

Horro birds were clearly rearing more chicks, but whether this was a natural trait exploited 

by farmers to produce more young stock in as short a time as possible, or whether it has 

evolved in response to farmer selection cannot be determined. Although differences are 

not as extreme as in intensive farming systems, the two regions do appear to be following 

different business models, with Horro birds more akin to a broiler breeder flock, and Jarso 

playing more of a layer role. This again may be a consequence of the differing market 

opportunities and production strategies adopted by farmers in the two regions, with Horro 

farmers producing more birds for the live market, whilst Jarso farmers have less potential 

to sell birds, and so rear fewer broods of chicks. The mystery remains as to what farmers in 

Jarso do with their eggs during the remainder of the year, given that so few families 

reported consuming them, and even fewer reported deriving any income from them. One 

possibility is that eggs are bartered rather than sold, and the questionnaire, designed to 

elicit the monetary income from eggs, has not captured this information adequately. Guèye 

(1998) has also suggested that, since the priority of most village poultry keepers is to 

maintain a small flock, many eggs are simply stored for several weeks as an insurance 

against the high mortality rates in young birds.  

3.4.3 Potential risk factors for disease 

Husbandry practices showed only minor differences between the regions in terms of 

housing, feeding and scavenging management. Nearly all farmers provided some protective 

shelter for their chickens at night; although very few had invested in a shelter specifically 

for this purpose, and more commonly provided perches or roosting areas within existing 

buildings. Nest boxes were almost always provided for hens to incubate eggs and rear 
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young chicks. The importance of cleanliness and hygiene of the poultry accommodations 

was clearly recognised by a number of farmers, who frequently mentioned cleaning these 

areas as a key component of parasite control. 

Although confinement for limited periods of the year was practiced by many farmers, 

particularly to protect young crops during the planting season, birds were generally 

allowed to scavenge freely during the day, which allows them to come into contact with 

birds from other households. The degree of contact with other birds was generally greater 

in Jarso. This is likely to be related to the fact, made from personal observations and 

corroborated by evidence gathered during the PRA and as part of the socio-economic 

questionnaire (Terfa, personal communication), that, in Jarso, farmer landholdings are 

smaller and households are closer together. In both areas, farmers estimated that birds 

tended to contact other flocks less frequently in the rainy season, although this was 

reportedly the time when farmers were least likely to confine their birds. Whether this 

reduction in roaming is a choice made by birds in order to avoid bad weather, or whether 

there is less necessity for them to scavenge due to the tendency of most farmers to provide 

extra feed to compensate for the decrease in scavenging resources in the rainy season is 

unclear. It is interesting that farmers note a decrease in contact frequency during the 

months when disease outbreaks have been reported to be more likely to occur (Dessie and 

Ogle, 2001, Halima et al., 2007, Dinka et al., 2010), perhaps emphasising the importance of 

indirect transmission and environmental survival of pathogens in the village situation. 

Alternatively, for directly transmitted pathogens, mixing of flocks may not be sufficient to 

initiate an outbreak, but it may be that other seasonal factors alter birds’ susceptibility to 

disease.  

The large number of young stock and mixed age groups of birds in Horro would be 

predicted to be a risk factor for a number of diseases, as the constant influx of young, 
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susceptible birds into the population over most of the year should increase the potential 

for successful transmission of infections to occur, and for pathogens to be maintained 

within the population. In Jarso, where it appears that most young stock is reared during a 

more restricted time period, this may limit the number of susceptible hosts to certain 

diseases for much of the year, which may then be expected to follow more of a classical 

epidemic pattern. 

 
3.5 Conclusions 

Chickens raised under a village situation are likely to be under very different pressures 

compared to intensively farmed birds, upon which most of our knowledge of poultry 

disease and immunity is based, and as such may be more akin to wildlife populations, 

which have only limited energy resources available. Ecological trade-off theory suggests 

that the maintenance of an immune system is a costly investment for individuals, and that 

the allocation of energy resources to other life history choices, such as increased growth or 

reproductive effort may be made at the expense of an individual’s immune function 

(Møller, 1997, Zuk and Stoehr, 2002). The observed phenotypic differences in growth and 

bodyweight between our two populations may well be market-driven, and a result of 

human selection pressures. The rate of population turnover may also be partially human-

driven, as farmers dictate how many eggs will be hatched and how many birds eaten or 

sold.  

Whether this enforced life-history choice for Horro birds to grow larger and rear more 

young has implications for the maintenance requirements for individuals is not clear, 

although their shorter lifespan compared to their Jarso counterparts might suggest this to 

be the case. If this hypothesis is true, it may be predicted that Horro birds would suffer 

increased morbidity and mortality, which will be examined in subsequent chapters of this 
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thesis. These life-history choices may not always be in concordance with the direction that 

other selection pressures, in particular those from infectious diseases, may exert on the 

population, and as such may be of considerable importance when we come to consider 

how these birds interact with the pathogens in their environment.  
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Appendix 3.1  Missing data from bird management questionnaire 

 

Table 3.2   Number of cases of missing data for each question relating to bird 

management 

 
Question Horro Jarso Total (%) 

Number of birds currently owned by age and sex 5 6 11 (1.7) 

Housing type 4 1 5 (0.8) 

Waste disposal method 0 2 2 (0.3) 

Nest Box provision 12 7 19 (3.0) 

Supplementary Feed provision 1 2 3 (0.5) 

Feed provision separately for chicks 6 6 12 (1.9) 

Alteration in feed provision during the rainy season 4 3 7 (1.1) 

Confinement of birds for part of the year 4 3 7 (1.1) 

Which months confined 15 7 22 (3.4) 

Contacts with other birds 22 7 29 (4.5) 

Length of time since last bird brought into the flock 15 16 31 (4.8) 

Number of times eggs set annually 14 13 27 (4.2) 

Which months egg setting is preferred 5 6 11 (1.7) 

Which months egg setting is avoided 4 6 10 (1.6) 

Method of disposal of dead birds 66 90 156 (24.4) 

Use of parasite treatment 11 8 19 (3.0) 
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Appendix 3.2 Seasonal flock size distribution by region  

Figure 3.11   Distribution of flock sizes in Horro for different sampling seasons 

Figure 3.12   Distribution of flock sizes in Jarso for different sampling seasons 
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Appendix 3.3 Linear model of bird age 

 

Mixed-effect linear regression model predicting age as a function of sex and region, with 

household fitted as a random effect. 

Linear mixed model fit by REML  

Formula: Age ~ RegionID * relevel(Sex, "M") + (1 | FarmUnID)  

   Data: birds  

  AIC  BIC logLik deviance REMLdev 

 8747 8778  -4368     8737    8735 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 FarmUnID (Intercept) 25.931   5.0923   

 Residual             47.374   6.8829   

Number of obs: 1237, groups: FarmUnID, 626 

 

 

Table 3.3   Coefficients for linear model of bird age 

Fixed effects Coefficient SE lci uci z P 

(Intercept) 10.70 0.54 9.64 11.76 19.80 <0.01 

Categorical variables       Region Horro Reference      

Region Jarso 2.99 0.81 1.40 4.58 3.69 <0.01 

Sex Male Reference      

Sex Female 2.47 0.60 1.31 3.64 4.15 <0.01 

Region Jarso : Sex Female 2.77 0.88 1.04 4.50 3.13 <0.01 

 

 

 

Appendix 3.4 Linear model of bird weight 

 
Mixed-effect linear regression model predicting weight as a function of age, sex, body 

condition, region and season, with household fitted as a random effect. 

 

Linear mixed model fit by REML  

Formula: BirdWt ~ SeasonID * RegionID + Sex * Age * RegionID + 

relevel(as.factor(BCS),"3") + (1 | FarmUnID)  

    

Data: birds  

    AIC   BIC logLik deviance REMLdev 

 -33.26 63.48  35.63   -189.7  -71.26 

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 FarmUnID (Intercept) 0.016436 0.1282   

 Residual             0.036786 0.1918   

 

Number of obs: 1202, groups: FarmUnID, 624 
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Table 3.4  Coefficients for linear model of bird weight 

Fixed effects Coefficient SE lci uci z P 

(Intercept) 1.35 0.04 1.28 1.43 34.73 <0.01 

Continuous variables 
      Age 0.01 0.00 0.00 0.01 4.42 0.00 

Categorical variables 
      Season A Reference 

     Season B 0.07 0.03 0.02 0.12 2.57 0.01 

Season C 0.02 0.03 -0.04 0.09 0.77 0.44 

Season D 0.03 0.03 -0.03 0.09 0.88 0.38 

Region Horro Reference 
     Region Jarso 0.08 0.04 0.00 0.16 2.01 0.04 

Sex Female Reference 
     Sex Male 0.12 0.04 0.05 0.19 3.39 <0.01 

Body condition score 3 Reference 
     Body condition score 2 -0.17 0.03 -0.22 -0.12 -6.77 <0.01 

Body condition score 1 -0.31 0.03 -0.36 -0.25 -11.16 <0.01 

Body condition score 0 -0.55 0.07 -0.69 -0.41 -7.54 <0.01 

Interactions 
      Region Jarso : Season B -0.19 0.04 -0.26 -0.11 -4.86 <0.01 

Region Jarso : Season C -0.22 0.04 -0.31 -0.13 -5.00 <0.01 

Region Jarso : Season D -0.22 0.04 -0.30 -0.13 -4.97 <0.01 

Sex Male : Age 0.02 0.00 0.02 0.03 8.94 <0.01 

Region Jarso : Sex Male 0.09 0.05 -0.02 0.19 1.61 0.11 

Region Jarso : Age -0.01 0.00 -0.01 0.00 -2.68 0.01 

Region Jarso : Sex Male : Age -0.02 0.00 -0.02 -0.01 -4.84 <0.01 

 

 

 

 

 

 

Figure 3.13  Diagnostic plots of residuals from regression model of bird weight 
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Appendix 3.5 Linear model of bird wattle length 

 
Mixed-effect linear regression model predicting wattle length as a function of age, sex, and 

region, with household fitted as a random effect. 

 

Linear mixed model fit by REML  

Formula: WattleL ~ RegionID * Sex * Age + (1 | FarmUnID)  

    

Data: Esk  

   AIC   BIC logLik deviance REMLdev 

 793.2 832.3 -386.6    728.1   773.2 

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 FarmUnID (Intercept) 0.026949 0.16416  

 Residual             0.402047 0.63407  

 

Number of obs: 370, groups: FarmUnID, 192 

 

 

Table 3.5  Coefficients for linear model of bird wattle length 

Fixed effects Coefficient SE lci uci z P 

(Intercept) 0.70 0.11 0.49 0.90 6.54 <0.01 

Continuous variables 
      Age 0.01 0.01 0.00 0.02 1.22 0.22 

Categorical variables 
      Region Horro Reference 

     Region Jarso 0.10 0.16 -0.21 0.40 0.61 0.54 

Sex Female Reference 
     Sex Male 1.58 0.17 1.24 1.92 9.13 <0.01 

Interactions 
      Region Jarso : Sex Male -0.10 0.28 -0.64 0.44 -0.37 0.71 

Region Jarso : Age -0.01 0.01 -0.03 0.01 -1.12 0.26 

Sex Male : Age 0.10 0.01 0.08 0.13 8.18 <0.01 

Region Jarso : Sex Male : Age -0.05 0.02 -0.09 -0.02 -2.92 <0.01 

 

 

Figure 3.14 Diagnostic plots of residuals from regression model of bird wattle length
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4.1 Introduction 

There is widespread recognition of the importance of poultry-keeping to poor rural 

households in developing countries. Birds are typically indigenous breeds which require 

few inputs and have low outputs of both eggs and meat. McLeod et al. (2009) described the 

“safety net” flock; which usually contribute little in terms of a family’s economic income, 

but may be sold or given away as required, and thus contribute both to poor families’ 

livelihoods and to their social dynamics. The “asset-builder” flock is seen as a potential 

route out of poverty, and here poultry may represent a much greater proportion of a 

household’s assets and income, but such an enterprise carries a high risk. In shifting village 

poultry production from the safety-net to the asset-builder flock, disease is reported as one 

of the greatest constraints (Guèye, 1998; Mack et al., 2005). A study in 13 African countries 

concluded that vaccination against Newcastle disease virus (NDV) was the most critical 

intervention in all cases, and that other interventions such as improving feed, housing or 

controlling parasites were only effective if used in conjunction with vaccination. All 13 

country projects demonstrated an economic return on the investment in NDV vaccines 

(Dwinger and Unger, 2006). However, as Bell (2009) points out, the key to improving 

profitability via disease control is to know which diseases are prevalent in the area before 

starting. 

Numerous studies looking at the seroprevalence of antibodies to NDV have been carried 

out in Ethiopia with reported values ranging from 6 – 64% (Tadesse et al., 2005; Zeleke et 

al., 2005b; Regasa et al., 2007; Mazengia et al., 2010; Chaka et al., 2012). However, NDV is 

not the only problem; other surveys in village chickens have identified the presence of 

infectious bursal disease (Mazengia et al., 2010; Chaka et al., 2012; Jenbreie et al., 2012), 

salmonellosis (Berhe et al., 2012; Alebachew and Mekonnen, 2013), pasteurellosis and 
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mycoplasma infection (Chaka et al., 2012). Marek’s disease has also been identified in 

village chickens kept under intensive management (Duguma et al., 2005). Parasitic 

diseases, including coccidiosis (Ashenafi et al., 2004b; Luu et al., 2013), helminths (Tolossa 

et al., 2009; Molla et al., 2012) and ectoparasites (Belihu et al., 2009; Tolossa et al., 2009) 

have also been demonstrated to be highly prevalent in the country. The main problem with 

prevalence surveys is that they demonstrate the presence of the infection without 

necessarily providing much information about its impact on the population. A high 

seroprevalence indicates that a large number of animals have been exposed, but does not 

necessarily correlate with a high impact on that population – for example, infectious bursal 

disease in a flock of adult chickens may pass unnoticed, as birds will not show clinical signs 

(Eterradossi, 2008). Conversely, a low seroprevalence may be found both in cases where 

the exposure to a pathogen is low, but also where a highly virulent pathogen, such as 

velogenic NDV, has led to high mortality rates in infected animals. 

Estimating the relative importance of various diseases in a population is therefore complex. 

Alamargot (1987) performed a series of post-mortem examinations in order to determine 

which diseases were causing the most losses in Ethiopian poultry. However 193 out of the 

198 necropsies were birds from commercial farms, and as such his findings cannot 

necessarily be extrapolated to village poultry. Investigating field outbreaks in village poultry 

is challenging in Ethiopia, due to both a lack of knowledge of poultry disease in local 

veterinary extension services (Mammo et al., 2011), and the lack of supporting diagnostic 

services, which prevents the identification of the aetiological agents (Halima et al., 2007). 

Although Ethiopian farmers can recognise and describe a variety of diseases (Sambo, 2012) 

they tend to designate any acute disease with high mortality as “fengele”, which was 

described by Dessie and Ogle (2001) as a syndrome comprising of inappetance, watery, 

yellowish droppings, paralysis and eventually death. However, it has also been translated 

by Nega et al. (2012) to mean “sudden, dorsal prostration”. The term has, in many 
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participatory and questionnaire-based studies without laboratory confirmation, become 

synonymous with Newcastle disease, even though the syndromic description could in fact 

include a number of other disease conditions.  

Studies based on interviews or PRA work report outbreaks of “fengele” to be seasonal and 

to occur annually during the rainy season (Dessie and Ogle, 2001; Halima et al., 2007; Dinka 

et al., 2010). However, almost no work has been done which attempts to quantify the 

impact of these outbreaks. One study by  Nega et al. (2012) reports that disease-related 

mortality rates of chickens between 1 day old to (undefined) adult age was  34% (my 

calculation); and that NDV vaccination reduced mortality by 82%. However, these rates 

appear to have been derived from farmers’ estimates taken during a questionnaire survey. 

Chick mortality has been estimated to be around 60% up to 8 weeks of age in a 

participatory study in Ethiopia (Dessie and Ogle, 2001), but attributed to a variety of 

causes, including disease, predation, feed deficiency and a hostile environment. Mortality 

rates in adult chickens do not appear to have been reported in Ethiopia, although the main 

causes are reported to be disease and predation (Halima et al., 2007; Dinka et al., 2010; 

Selam and Kelay, 2013). 

The aim of this study was to quantify losses in adult village poultry in two geographically 

distinct areas of Ethiopia and to investigate the impact of NDV in these populations. Due to 

the remoteness of the two locations, and the inaccessibility during the rainy season, it was 

unfeasible to gather these data by means of a cohort study to calculate proportional 

mortalities from different causes, or to actively investigate any outbreaks, due to the lack 

of any reporting system. We therefore chose to address the research question by 

measuring the 6-month survival rate in a population of randomly-sampled birds, with a 

series of cross-sectional serological surveys to monitor the population exposure to NDV. In 
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addition, we gathered detailed information on disease outbreaks from farmers through 

questionnaires to gain an overall picture of the seasonal patterns of disease. 

Objectives were 

1) To estimate the rate of losses of adult birds from disease, predation, or other 

causes 

2) To measure any variations with respect to season or region 

3) To measure population changes in the seroprevalence of NDV over the same 

period, and observe any correlations with disease-related mortality rates. 

 

 
4.2 Methods 

This study was carried out between May 2011 and November 2012 in two geographically 

distinct woredas (administrative districts), Horro and Jarso, within the Oromia region of 

Ethiopia. Woredas are divided into smaller administrative districts, called kebeles, which 

may comprise several villages. A group of villages which are linked by trading networks is 

collectively known as a market-shed (Tadelle et al., 2003)  

Within each region two market-sheds and two kebele per market shed, believed locally to 

be representative of the woreda, were purposively selected on the basis of their willingness 

to participate, in consultation with local representatives of the Department of Agriculture 

and the communities. A list of names of all household heads in each kebele, grouped by 

sub-area, was obtained from the respective kebele agricultural development agents (DA). 

Within each kebele a number of sub-areas were selected, so that each kebele included 

approximately 400-700 households; finally systematic random sampling was used to select 

potential participants.  
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Each kebele was visited on four occasions; in May/June and October/November in each 

year of the study (2011-2012). These visits were timed for before and after the main rainy 

season, which occurs between June and September. Different households were selected to 

visit on each occasion to take part in a questionnaire survey and for two of their chickens to 

be sampled. Households which did not own at least two indigenous breed chickens of over 

6 months of age were excluded from the study. Two chickens of at least 6 months of age 

were selected from the household flock using random number tables. Blood samples were 

collected from the brachial vein of the selected birds into sodium citrate and transported to 

the laboratory for testing. Sera were tested for antibodies to NDV using the 

haemagglutination inhibition (HAI) assay (O.I.E., 2009). 

Information on disease occurrence over the previous 12 months was collected in a 

questionnaire interview with a member of the household. Farmers were asked to provide 

details of outbreaks in their flock, with details of when they occurred, how many birds were 

lost and which age groups were affected. An outbreak was defined as an event where 

several birds died from the same disease. A follow-up visit was also carried out for 

households interviewed during the first three rounds of sampling. This visit occurred 

around 6 months later, at the time of the next visit to the kebele. Farmers took part in a 

short interview to ascertain what further disease events they had experienced in the 

intervening period, and what had happened to the two previously sampled birds. Surviving 

birds were re-examined and matched using leg rings and photographs. If a bird had not 

survived, farmers were asked to describe what had happened to it. 

Data were stored in an Access database (Microsoft, 2007). Statistical calculations, graphical 

summaries and multilevel modelling were performed using R software (R Development 

Core Team, 2008). Multilevel random effects logistic regression models were constructed 

to investigate whether there were any factors that altered the probability of farmers’ 
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reporting of outbreaks and, given an outbreak was reported, whether this consisted of 

single or multiple deaths. Explanatory variables tested included region, season, time 

elapsed between the outbreak and the time of interview, whether it was the first or second 

interview, and whether the month of the outbreak was in the rainy or the dry season. For 

farms reporting more than one death in an outbreak, the same explanatory variables were 

fitted in a Poisson regression model to see whether any of these factors contributed to the 

number of birds lost. Only farms which could provide month-specific data were included in 

the model, and data were arranged to create an observation for each month a farm was 

asked about in the questionnaire. Thus, farms that were interviewed twice had 18 

observations, and those interviewed only once had 12. Variables were created for the first 

or second time of interviewing, and the length of time elapsed between the recalled month 

and the interview. Also a categorical variable was introduced to define whether the month 

in question was in the wet or dry season. Stepwise selection of variables to include was 

performed, including interactions between variables. Full details of the model formulae, 

along with an example of the data, are given in Appendices 4.2 and 4.3.  

 
4.3 Results and discussion 

4.3.1 Bird mortality 

In total we ascertained the fate of 946 birds over the total period of the study, 6 months 

after they were first recruited. A number of fates were described, which we classified into 

seven outcomes: Birds may have survived, or they may have been sold or consumed, which 

are beneficial to the farmer; or they may have been an economic loss, if they died due to 

disease, predation or accidents, or simply went missing. The only outcome we could verify 

was if the bird had survived, otherwise we relied on the farmer to report what had 

happened to the bird in question. However, although we confirmed the identity of 496 

survivors, we were also presented at the second visit with another 46 “surviving” birds 
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which, when we compared photographs, were found not to be part of the original study 

group. There may therefore be some error in the non-surviving fates of birds reported by 

farmers, as it is not always possible for them to identify individuals accurately. 

Deaths from disease accounted for a considerable proportion of the losses in farmers’ 

flocks. In Horro, 32% of the birds we examined were reported to have died from disease 6 

months later. In Jarso, the most common cause of death was predation, while only 9.1% 

had died from disease; a significantly lower proportion than that in Horro (Chi-square value 

= 70.8, p<0.01). In Horro, significantly fewer of those birds we examined (only 5.7%, 

compared to 14.8% in Jarso) were later reported to have been killed by predators (Chi-

square value = 19.8, p<0.01). 

Birds recruited in Seasons A and C were rechecked after the end of the wet season, 

whereas those recruited in Season B were only followed through the months of the dry 

season. There was no difference in the proportion of birds dying from disease between 

these two groups (Chi-square value = 1.92, p=0.16), although a slightly  greater proportion 

of birds from the Season C group died from disease compared to the other two seasons. 

(Figure 4.1) 

Figure 4.1    Fates of birds at the time of the follow-up visit. Other fate includes sale, consumption 

accident and missing. 
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4.3.2 NDV seroprevalence 

Only nine birds over all four sampling seasons showed a positive antibody response to 

Newcastle disease virus by HAI. This equates to an overall seroprevalence of 0.7% (95% C.I.  

0.3 - 1.3%). Two birds in village H1B in Season A were in the same household, and the 

others were individuals in different households in different villages. Of the 9 seropositive 

birds, two birds with low positive haemagglutinating titres came from households with no 

history of recent outbreaks or introductions of new birds into the flock, and are most likely 

to represent imperfect test specificity. All other households had either had an outbreak in 

the last 4 months, or the birds which tested seropositive were recently introduced to the 

household (Table 4.1). 

Table 4.1   Cases of NDV seropositivity 

Farm Season Village Titre Comments 

HA1B22 
± 

A H1B > 64 Outbreak 2 months previously, 26 birds died 

JA1B07 A J1B    16 No outbreaks, bird bred at home 

HB1A06 B H1A    16 No outbreaks, bird bred at home 

HB1B02 B H1B > 64 Bird bought in within last 6 months 

JB1B06 B J1B > 64 Bird bought in within last 6 months 

JB2A23 B J2A > 64 Outbreak 4 months previously, 3 birds died 

HC2A07 C H2A > 64 Bird bought in within last 3 months 

HD1A14 D H1A    32 Outbreak 1 month previously, 15 birds died 
±
Both birds tested in this house were seropositive. 

 

The low seroprevalence may be due to several reasons. One possibility is that the HAI test 

may have had a low sensitivity. However, it was still able to detect antibodies in the 

positive control serum even when this was diluted to a concentration of 1 in 2048. In two 

of the households where seropositive birds were detected and which had had recent 

outbreaks, the other bird in the household tested negative, despite having reportedly been 

present in the flock at the time of the outbreak. Assuming that these birds were exposed, it 

is possible that NDV antibodies wane very quickly following infection and recovery in these 

birds, or were low to start with. There is little known about the factors governing the 
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antibody response to NDV, although it has been associated with particular genetic markers 

in whole-genome studies, and can be highly variable in crossbred chickens (Luo et al., 

2013).  

The very low prevalence of NDV antibodies throughout the study period, and the failure to 

detect any seropositive birds in three of the villages meant that we were unable to fulfil our 

original objective of determining whether mortalities were correlated with changes in NDV 

seroprevalence. Although more of the randomly-sampled birds in Horro had died from 

disease than those in Jarso, our data did not confirm that there was a strong seasonal 

variation. This conflicted with previous reports (Dessie and Ogle, 2001; Halima et al., 2007; 

Dinka et al., 2010) and evidence gathered during the PRA that high-mortality outbreaks, 

attributed to NDV, occurred annually during the rainy season, at least at the scale of our 

study. It was decided to analyse the data collected during the farmer questionnaire surveys 

to try and describe the farmers’ experiences with poultry disease outbreaks, to look for 

possible explanations for this discrepancy.  

 

4.3.3 Household questionnaire surveys 

A total of 640 farms were recruited during the course of the study; their distribution by 

village and season is shown in Table 4.2. In addition, 494 successful revisits were carried 

out at the farms recruited in the first three seasons, equating to an overall follow-up rate of 

over 95%. The main reasons why farms were lost from the follow-up part of the study were 

poor weather making parts of the village inaccessible, not finding farmers at home and 

running out of time to complete all visits. 

At the first visit, 28 farmers did not give complete details about outbreaks that had 

occurred in the last 12 months: Of these, 2 failed to answer the question at all; 7 recorded 

having an outbreak, but could not provide details of when it happened; 17 recorded when  
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Table 4.2   Distribution of farms recruited to the study by village and season.  

Village codes beginning with an H indicate villages from the Horro region, while those 

beginning with a J indicate villages in the Jarso region. Numbers in parentheses show the 

percentage of successful follow-up visits.  

 

Season 

Village   

H1A H1B H2A H2B J1A J1B J2A J2B Total 

A 
May 2011   

(Oct 2011) 

25 

(100%) 

25 

(100%) 

25 

(96%) 

25 

(100%) 

25 

(100%) 

25 

(100%) 

25 

(80%) 

25 

(80%) 

200 

(94.5%) 

B 
Oct 2011 

(May2012) 

25 

(96%) 

25 

(100%) 

25 

(96%) 

25 

(96%) 

25 

(96%) 

24 

(92%) 

25 

(96%) 

25 

(100%) 

199 

(96.5%) 

C 
May 2012 

(Oct 2012) 

15 

(100%) 

15 

(93%) 

14 

(71%) 

16 

(94%) 

15 

(100%) 

15 

(93%) 

15 

(100%) 

15 

(100%) 

120 

(93.3%) 

D 
Oct 2012 15 15 16 15 15 15 15 15 121 

  Total 

80 

(98.5%

) 

80 

(98.5%

) 

80 

(90.6%

) 

81 

(97%) 

80 

(98.5%

) 

79 

(95.3%

) 

80 

(90.8%

) 

80 

(92.3%) 

640 

(95.2%) 

 

 

they had outbreaks, but not how many birds were lost, and 2 were able to estimate when 

and how many birds were lost, but not the age groups. 

At the second visit, 17 farmers failed to answer the question about whether they had had 

an outbreak in the intervening period. Of 144 farmers who had had an outbreak, 33 were 

unable to say in which month it occurred, and 10 did not say how many birds were lost. 

Based on previous studies, which describe the majority of disease events as causing 

widespread losses, where morbidity/mortality can affect up to 100% of the flock, we 

attempted to define “outbreak” as an event where a farmer lost more than one bird to the 

same presumed disease, in order to try and capture information specific to epidemic 

infectious diseases in the population. Over the 30 month period covered by our 
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questionnaires, a total of 332 outbreaks were reported. However, 67 of these were single 

deaths, and as such they did not meet our original definition of outbreak. In addition, 10 

people told us about outbreaks of disease where no birds had died. Some of these events 

may have been due to an endemic infectious disease or a non-infectious disease. Given the 

small flock sizes, it is also conceivable that the single deaths were part of an epidemic, but 

farmers may have only lost one susceptible bird - others may have recovered, or been 

immune. It is difficult to know how “outbreak” is understood by the farmers, and whether 

they may be incorporating other information when they decide whether they had an 

outbreak, such as whether neighbouring households were also affected. The interpretation 

therefore needs some caution, as the term “outbreak” cannot be taken to be specific to 

infectious diseases, but may include cases of anything a farmer considers to class as 

“disease”, which may include nutritional or other aetiologies.  

In total, there were 230 reported events which conformed to the original definition of at 

least two birds in the household dying, and had sufficient detail about when they occurred 

to be included in the analyses. Given the uncertainty over the single deaths, data have 

been analysed both with and without these events included. 

4.3.4 Number of outbreaks 

4.3.4(a) Initial questionnaires 

Farmers reported between 0 and 3 outbreaks in the twelve-month period preceding the 

date they received the first questionnaire. However, the only farmers who ever reported 

having three outbreaks in the last 12 months were those in the Horro region interviewed in 

Season A (n=6, 6.1%). Of 220 farmers in Horro interviewed over the following 3 rounds, 

only 5 (2.3%) had had more than one outbreak, and no-one had had more than two. 

Similarly in Jarso, only 2 (0.6%) respondents over the whole study period ever reported 

having had more than one outbreak in the preceding 12 months. 
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The proportion of Horro farmers who reported having at least one outbreak is significantly 

greater in season A than the other 3 seasons (Chi-square value= 15.7, p< 0.01); this is also 

true in Jarso (Chi-square value= 14.2, p<0.01). However, the proportion of Jarso farmers 

who had experienced recent outbreaks is consistently lower than the corresponding 

proportion of Horro farmers across all four rounds of sampling. The highest percentage of 

Jarso farmers who had experienced an outbreak was among those sampled in Season A, at 

28%: In Horro the percentage of farmers who had suffered an outbreak was never found to 

be less than 30%, and in Season A the percentage was 58%.  

4.3.4(b) Follow-up questionnaires 

In the period between the two visits 144 (30.2%) farmers said they had an outbreak, 46 

(32%) of whom had reported having outbreaks previously. The lowest proportion of 

outbreaks during the follow-up period was in the Season B group, who were the only group 

followed over the dry season; the difference from the two groups followed over the rainy 

season was almost, but not quite statistically significant. (Chi-square value 5.88, p=0.053). 

4.3.5 Timing of outbreaks 

The distribution of reported outbreaks over the time period covered is shown in Figure 4.2. 

It appeared there was a general tendency for more outbreaks to be reported to have 

occurred during or just after the rainy season. However, the peaks identified by different 

cohorts of respondents did not quite correspond in timing or magnitude. In particular, 

there appeared in all cohorts of respondents other than those in Season A, a tendency to 

report fewer outbreaks from further back in time compared to the more recent periods. 

We had some concerns that there may be a tendency for people to readily report more 

recent outbreaks, but to either fail to report outbreaks in the more distant past or to 

underestimate how long ago they occurred, and to report them as having occurred more 

recently. 
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Figure 4.2   Proportion of households reporting outbreaks (with deaths of 2 or more birds) in each 

month for 2 regions. The graph for all respondents (a) shows an amalgamation of first round and 

follow-up data for each time period. Solid lines show outbreaks with deaths of 2 or more birds, and 

dashed lines show all households with at least one death. Graphs b) to e) show the contributions of 

the four cohorts of respondents. Solid lines show data collected in the initial questionnaire, the timing 

of which is shown by the solid arrow, where each cohort of respondents is asked to recall outbreaks 

in the preceding 12 month period. Dashed lines show data collected in the follow-up questionnaires, 

the timing of which is shown by the white arrows. Shaded areas represent the approximate timing of 

the main rainy season.  

 

In order to investigate this, we began by splitting the time period covered by the initial 

questionnaire into  two  six-month  blocks;  Period  1  covers  the  time  6  to  12  months  

prior  to  the  date  of  the questionnaire,   and   period  2  covers   the  more  recent  period  

from  0  to  6 months before the questionnaire took place. Period 3 is the 6 months covered 

by the follow-up questionnaire. The purpose of this was to compare data for the same time 

period in respondents interviewed at different times.  For example, three different sets of 

respondents were asked to describe outbreaks which occurred in the period between May 

2011 and November 2011. This included Season C respondents, first interviewed in May 

2012, for whom they are period 1 outbreaks; Season B respondents, interviewed in 
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November 2011, for whom they are period 2 outbreaks; and Season A respondents, 

interviewed for the second time in November 2011, for whom they are period 3 outbreaks 

(Figure 4.3).  

 

 

 

Figure 4.3    Corresponding time periods for different cohorts of respondents 

 

 

We compared period 1 with period 2 and 3 responses for respondents in the same cohort, 

and also for respondents in different cohorts for the corresponding time-periods. We 

found, with the exception of Season A respondents, that only a few farmers reported 

outbreaks which occurred more than 6 months ago, and a higher proportion of farmers 

reported outbreaks in any given period if it was more recent (Table 4.3). 
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Table 4.3    Outbreaks by reporting period for four different cohorts of respondents.  

Red cells show periods which were completely within the dry season. Blue cells show 

periods which include the months of the rainy season. Cells for corresponding time periods 

are shaded the same colour. 

 Respondent cohort  

      Time period  Season A Season B Season C Season D 

 Period 1.     6-12 months ago  May-Oct 
2010 

Nov-Apr 
2011 

May-Oct 
2011 

Nov-Apr 
2012 

Number of households having any disease 60 (30.5%)  6 (3.0%) 6 (5.0%) 6 (5.0%) 

Number of households having >1 death 46 (24.1%)  5 (2.5%) 6 (5.0%) 5 (4.2%) 

Median (range) of losses, excluding single 
deaths 

 

6 (2-48) 6 (2-18) 10 (2-15) 5 (2-8) 

Period 2.      0-6 months ago   Nov-Apr 
2011 

May-Oct 
2011 

Nov-Apr 
2012 

May-Oct 
2012 

Number of households having any disease 34 (17.3%) 39 (19.8%) 18 (15.1%) 27 (22.7%) 

Number of households having >1 death 24 (12.4%) 29 (14.7%) 9 (8.0%) 19 (16.0%) 

Median (range) of losses, excluding single 
deaths 

 

4 (2-42) 5 (2-45) 4 (2-24) 6 (2-42) 

Initial questionnaire and examination 

Period 3.    Follow-up 6 month period May-Oct 
2011 

Nov-Apr 
2012 

May-Oct 
2012 

 

Number of households having any disease 64 (34.8%)  45 (23.8%) 35 (33.0%)  

Number of households having >1 death 42 (23.9%)  26 (13.8%) 25 (23.8%)  

Median (range) of losses, excluding single 
deaths 

 

3.5 (2-100) 3 (2-13) 4 (2-17)  

Follow-up questionnaire 

 

This effect appeared relatively consistent across villages, with the exception of Village H2B 

(See Appendix 4.1). The greater number of outbreaks in more recent months was partly 

explained by more single deaths being reported in more recent time periods – only 10 of 

the 67 single deaths reported occurred longer than 6 months ago – but even when these 
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were removed from the dataset, there were still generally more reports of outbreaks in 

more recent months.    

We also observed a tendency for more outbreaks to be reported among respondents in the 

follow-up period than among respondents interviewed for the first time in the 

corresponding season. (i.e. comparing period 3 with period 2 for equivalent time periods: 

Table 4.3). This effect was consistently seen across all villages, again with the exception of 

Village H2B (Appendix 4.1). We therefore had some concern that we may have introduced 

an effect of priming in respondents interviewed twice, leading them to report more 

outbreaks at the second time of asking. This effect could also have been seen if we had 

caused iatrogenic spread of disease into their farm when visiting for the first time.  

Using random effect logistic regression models to estimate which factors influenced 

reporting of outbreaks (detailed in Appendix 4.2), it was found that the odds of 

respondents in Horro reporting a disease outbreak were 4.05 (95%C.I. 2.93 – 5.60) greater 

than those in Jarso. The odds of reporting an outbreak in the rainy season (i.e. in the 

months of June to September) were 1.87 (95%C.I. 1.40 – 2.50) greater than the odds of one 

being reported in the dry season. 

The odds of reporting an outbreak increase by 1.3 (95% C.I. 1.09 – 1.55) for each month 

that the time interval between the outbreak and the interview decreased, up to a limit of 4 

months before the interview (Figure 4.4). If an outbreak happened within the last 4 

months, there was no difference in the odds of reporting it, regardless of when in this 

period it happened. However, for Season A respondents, there was no change in the odds 

of reporting for up to 10 months before the interview. There was no difference in the odds 

of outbreak reporting between the first and second interviews, once factors such as time 

elapsed  and  wet/dry months were taken  into account.  Including the single deaths in  the  
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Figure 4.4    Generalised additive model plots showing the change in reporting with respect to time 

elapsed for the four cohorts of respondents. 

 

model made little difference to the parameters, other than increasing the effect of the time 

elapsed for all but the Season A farmers; reflecting the fact that very few single deaths 

were reported above 6 months before the interview in any other cohort. 

These results suggests a difference in recall between farmers interviewed in Season A (May 

2011) and the farmers who were interviewed in other seasons. In this group there were 

more outbreaks reported, especially in Horro, over the rainy season of 2010, which 

occurred 8-11 months previous to the date of the interviews. This could reflect an 

unusually large number of outbreaks in that period, or a greater than normal severity, 

which has caused people to recall them more readily. When taken in conjunction with the 

increased number of farmers who had more than one outbreak and the decreased 

proportion who had no outbreak in this season, it seems feasible that there was an 

epidemic in the year preceding the commencement of our fieldwork, but that no such 

outbreak occurred in the following two years, during the time we were working in the 
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villages. If this is the case, it may be that the deaths recorded in the birds we examined, 

which did not show a pronounced seasonal variation, may be more a reflection of the 

endemic patterns of disease seen. Since the data collection finished, we have heard 

second-hand of another large outbreak which occurred in Horro early in 2013. This has 

been of particular concern to farmers, as it has occurred in the middle of the dry season, 

when they do not usually expect large outbreaks to occur (Terfa, personal communication). 

4.3.6 Losses 

In total, 303 households were able to provide month-specific data on how many birds they 

lost in a disease event. If a household had an outbreak in Horro, the median loss reported 

was 4 birds (range 1 – 100). In Jarso, the median loss was 2 birds (range 1-17). If single 

losses were excluded, the median values for Horro and Jarso rose to 5 and 3 birds, 

respectively. Although more outbreaks occur during the months of the rainy season, 

outbreaks causing high mortalities were reported year-round in both regions (Figure 4.5).  

 

 

Figure 4.5   The reported numbers of birds which died on each farm by the month the farmer 

reported an outbreak occurred. Lines represent the median loss for each month. Two farms reporting 

losses of 90 and 100 birds each have been excluded from the Horro plot. 
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Multilevel modelling was also used to investigate the effects of memory and priming on 

respondents’ estimates of loss, given that they reported an outbreak (Appendix 4.3). Firstly, 

a binomial model was used to estimate variables which contributed to a household 

reporting either one or more than one death. Secondly, we only considered the 230 events 

where two or more birds died, and investigated whether any factors contribute to 

households reporting greater losses, using a Poisson regression model. 

The only factor which contributed significantly to farmers reporting more than one bird lost 

was the region, with farmers in Horro over 7 times more likely (95% C.I. 3.5 – 15.3) to 

report multiple deaths than those in Jarso.  

Given that farmers had lost at least two birds, a number of factors were found to influence 

the number of birds reported lost. This included the village, season, respondent cohort, 

time of asking, and the interval between outbreak and interview. However, it was found 

that this model was heavily weighted by two observations, both from the same village and 

farmer cohort, where the farmers reported losses of 90 and 100 birds respectively at the 

second interview. These estimates were considered to be somewhat inflated, given that we 

never observed any flocks larger than 45 birds. The two farms in question had had flocks of 

19 and 15 birds respectively at the first interview.    

When these observations were excluded, the only factors which contributed to variation 

were region, season and whether it was the first or second interview. Farmers in Horro 

tended to lose slightly greater numbers of birds than those in Jarso (5.9 compared to 3.4), 

but farmers in both areas tended to report slightly fewer birds lost during the rainy season. 

This may be due to the common practice of farmers selling birds before the rainy season in 

anticipation of outbreaks, and thus a reduction in flock sizes over this period (Moges et al., 

2010a).  
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Higher losses in Horro may be due, at least in part, to the larger flock sizes in this area. 

Unfortunately we did not collect data on the flock size at the time of the outbreak or the 

proportion of the flock affected, although this may have been difficult for farmers to 

provide over such an extended time period. However, we did collect data during the 

follow-up visits on the number of birds which were affected and recovered or did not 

become sick at the time of any outbreak reported in this period. This will be discussed in 

the next section. 

It was also observed that there was a tendency to report fewer deaths per outbreak at the 

second interview, independent of region or season. It is possible that some farmers 

interviewed the first time may have inflated their estimates slightly. It was remarked by 

some of the fieldworkers that the appearance of a “farenji” (foreigner) in the village led 

many farmers to expect aid donations, and so they may have exaggerated the disease 

losses in order to exact sympathy. They may also have been primed by the first interview to 

be more observant of losses in the follow-up period; and so able to report more accurately 

at the second time of asking. 

4.3.7 Clinical presentation 

For the 144 outbreaks reported to occur during the follow-up period, owners were asked 

some additional questions relating to the symptoms shown, and the number of birds which 

had died, been clinically affected and recovered, or had shown no symptoms. The most 

commonly reported symptoms were diarrhoea and depression, both observed in 45% of 

the reported outbreaks. These two symptoms were observed together in 20% of cases. 

Other reported signs were paralysis (17%), sudden death (13%), respiratory problems (2%), 

eye problems (2%), inappetance (2%), prolapsed vent (1%), haemorrhagic nasal discharge 

(1%), shaking (1%) and wounds under the wings (1%). 
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 Owners were also asked to describe the symptoms in the randomly-sampled birds which 

died from disease. The symptoms reported were similar to those above, with 39% of birds 

which had died having exhibited both depression and diarrhoea. Approximately two thirds 

of the randomly-sampled birds which had died had exhibited the same symptoms as other 

birds in the household flock. 

Mortality rates in each household flock were estimated from the number of birds reported 

to have died, compared to the numbers which recovered or were not affected. These 

ranged from 0 to 100%, but showed no associations with the set of symptoms displayed, 

the village or the season of sampling. 

4.3.8 Age affected 

The majority (46.5%) of reported outbreaks affected only adult birds (over 6 months old), 

but outbreaks affecting all age groups were reported throughout the year (Appendix 4.4). 

The majority (87%) of outbreaks which only affected chicks (under 2 months) and 59% of 

outbreaks which only affected growers (2-6 months old) occurred between June and 

October, i.e. during or shortly after the rainy season.  

Although farmer reports indicated a seasonal pattern of disease in village chickens, from 

our observations this manifested as an increase in the number of households experiencing 

disease losses during the rainy season, the majority of which were relatively small-scale, 

whereas outbreaks causing high mortalities occurred sporadically throughout the year. The 

seasonal pattern seen possibly reflects the additional stresses put on the birds in the wet 

season, when they may have to cope with cold weather and food shortages, which leads to 

them succumbing to one of a number of chronic or endemic infections. This would explain 

the disproportionate number of outbreaks in young stock, which are probably more 

affected by the climactic and nutritional stresses, at this time of year. It may, alternatively 

or in addition, reflect an increase in the infection rates, as most pathogens will survive 
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more readily in a cool and moist environment, and birds may have to forage more widely, 

increasing the opportunity for either direct or indirect transmissions.  The wide variety of 

clinical presentations, including frequent single deaths, and highly variable mortality rates 

would support the role of a variety of infectious and non-infectious causes in the reported 

outbreaks. 

 
4.4 Conclusions 

Previous studies report outbreaks of “fengele” to be seasonal and to occur annually during 

the rainy season (Dessie and Ogle 2001, Halima 2007, Dinka 2010). The translation of 

“fengele” as Newcastle Disease by a number of researchers may be inaccurate, as the 

seasonal increase in mortalities associated with the rainy season, at least in our study, 

would seem to be largely due to an increased frequency of small-scale losses. Our data 

would suggest that over time, many of these small outbreaks and single deaths are 

forgotten by farmers, who focus on the more memorable large-scale losses. Although we 

cannot rule out endemic Newcastle disease as being the cause of these small-scale losses, 

the seroprevalence of Newcastle disease antibodies in this population was remarkably low, 

and we would expect the population to be highly susceptible. This may be supported by the 

fact that a large outbreak was reported to have occurred in Horro a few months after our 

last round of sampling. 

 Instead, we hypothesise that a number of diseases are contributing to the seasonal 

mortality which have been lumped together under the “fengele” umbrella. Our data would 

suggest that during the two years the study ran in these villages, there was no epidemic in 

these regions, thereby disputing the claim that such outbreaks are an annual occurrence (at 

least at the geographic scale of our study). Controlling Newcastle disease is undoubtedly 

important in order to prevent such outbreaks, but other diseases should not be 
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overlooked. Farmers incentivised to vaccinate against “fengele” may lose motivation if they 

expect a Newcastle disease vaccine to protect against a multitude of diseases, and it does 

not live up to their expectations. One possibility, which we were unable to investigate due 

to restrictions imposed by the funding bodies for this work, is that avian influenza virus, 

which may also cause high mortality outbreaks, could be circulating undetected in these 

regions. However, general and targeted surveillance measures in Ethiopia have never 

detected highly pathogenic avian influenza, and notifiable low pathogenic avian influenza 

has not been reported in Ethiopia since 2006 (O.I.E., 2013). 

If what we have observed in these villages is a representation of the ongoing losses, then 

endemic diseases are a significant burden on the population, even before large epidemics 

are taken into account. Approximately one third of the adult population of Horro chickens 

that were randomly sampled died of disease within 6 months. Reducing the impact of 

endemic disease may therefore be of economic benefit to farmers, for some of whom even 

the death of one chicken can represent the loss of a significant proportion of the flock. 

However, there were clearly large differences in the impact of disease between the two 

regions. Therefore it cannot be assumed that any strategies for disease control will have an 

equal impact in different areas, but that different focuses may be required, depending on 

the local needs. Measures which reduce predation may be of as much or more benefit to 

farmers in some regions, including Jarso, to reduce losses in adult birds. 
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Appendix 4.2  

 

In order to model factors which influenced the probability of a farmer reporting an 

outbreak, data were first organised to generate one observation for every month that a 

farm was asked about in the study. Thus, farms that were interviewed twice had 18 

observations, and those interviewed only once had 12. Variables were created for the first 

or second time of interviewing, and the length of time elapsed between the recalled month 

and the interview. Also a categorical variable was introduced to define whether the month 

in question was in the wet or dry season. 

Table 4.6   Example of data organised for random-effect models of outbreak reporting 

 

FarmUnID SeasonID RegionID Elapse AskTime Rain OB Loss 

1 HA1A01 A H -12 1 Dry 0 0 

2 HA1A01 A H -11 1 Wet 0 0 

3 HA1A01 A H -10 1 Wet 1 5 

4 HA1A01 A H -9 1 Wet 1 3 

5 HA1A01 A H -8 1 Wet 0 0 

6 HA1A01 A H -7 1 Dry 0 0 

7 HA1A01 A H -6 1 Dry 0 0 

8 HA1A01 A H -5 1 Dry 0 0 

 

... ... ... ... ... ... ... ... 

 

 

A multilevel model, with farm as a random effect, was fitted to the data, using the formula 

shown below. An interaction term between the season of asking and the time elapsed since 

the interview was found to be significant, but other interactions did not significantly 

improve the model fit. 

Generalized linear mixed model fit by the Laplace 

approximation  

Formula: OB ~ relevel(RegionID,"J") + Rain + relevel(SeasonID, 

"B")* lapse2 + as.factor(AskTime) + (1 | FarmUnID)  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 FarmUnID (Intercept)  0        0       

Number of obs: 10219, groups: FarmUnID, 639 
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Table 4.7   Model coefficients for probability of outbreak reporting 

Fixed 
effects  

Coefficient SE 
Odds 
Ratio 

95% C.I. z P 

(Intercept) -3.86 0.49 0.02 0.01 - 0.05 -7.92 <0.01 

Region Jarso reference 
      

 
Horro 1.40 0.17 4.05 2.93 - 5.60 8.47 <0.01 

         
Season Dry reference 

      

 
Wet 0.63 0.15 1.87 1.40 - 2.50 4.25 <0.01 

         Interview 
cohort 

       B reference 
                  A -0.73 0.52 0.48 0.17 - 1.34 -1.40 0.16 

            C -0.17 0.64 0.84 0.24 - 2.93 -0.27 0.78 

            D 0.03 0.74 1.03 0.24 - 4.42 0.04 0.96 

         1
st

  interview reference 
      2

nd
 interview 0.02 0.17 1.02 0.73 - 1.42 0.10 0.92 

         Continuous variables 
Interval (per month for 
periods > 4 months) 0.26 0.09 1.30 1.09 - 1.55 2.97 <0.01 

Interactions 
       Season A: Interval period -0.26 0.10 0.77 0.63 - 0.93 -2.71 0.01 

Season C: Interval period -0.07 0.12 0.93 0.74 - 1.18 -0.60 0.55 

Season D: Interval period -0.02 0.14 0.98 0.75 - 1.28 -0.15 0.88 
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Appendix 4.3 

 

Logistic regression modelling the variables contributing to farmers reporting either one or 

more than death, given that they report an outbreak to have occurred. A stepwise selection 

of variables suggested that only region contributed significantly.  

 

Formula: Loss > 1 ~ relevel(RegionID, "J") + (1 | FarmUnID)  

   Data: ltim[which(ltim$Loss > 0), ]  

 

   AIC   BIC logLik deviance 

 292.6 303.7 -143.3    286.6 

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 FarmUnID (Intercept) 1.5248   1.2348   

 

Number of obs: 297, groups: FarmUnID, 236 

 

 

Table 4.8   Binomial (logistic) regression model coefficients for more than one death, 

compared to single death events 

Fixed 
effects 

 
Coefficient SE Odds Ratio 95% C.I. z P 

(Intercept) 0.29 0.27 1.34 0.78 - 2.30 1.08 0.28 

Region Jarso reference 
     

 
Horro 1.99 0.37 7.35 3.54 - 15.25 5.36 <0.01 

 

 

 

 

A Poisson regression model was then fitted only to those households which had lost more 

than one bird in their reported outbreak, to estimate what factors influenced the number 

of birds reported lost. All the measured variables contributed significantly to the variation, 

with significant interactions between the farmer cohort and the season, and the farmer 

cohort and the time elapsed between outbreak and interview. However, this was found to 

be heavily weighted by two observations where two households in one season reported 

losing 90 and 100 birds at the second visit. When these observations were excluded, only 

Region, Season and the time of asking contributed significant variation.  
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Formula: Loss ~ relevel(VillageID, "J2B") + as.factor(AskTime) 

+ Rain *relevel(SeasonID, "C") + relevel(SeasonID, "C")* 

lapse2 +      (1 | FarmUnID)          

 

   AIC   BIC logLik deviance 

 701.5 773.7 -329.8    659.5 

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 FarmUnID (Intercept) 0.55015  0.74172  

Number of obs: 230, groups: FarmUnID, 183 

 

Table 4.9   Poisson regression model coefficients for number of birds dying in an outbreak 

Fixed 
effects 

 
Coefficient SE Relative risk 95% C.I. z P 

(Intercept) 0.06 0.47 1.07 0.43 -2.67 0.14 0.89 

Categorical variables 
     Village J2B reference 

      

 
H1A 0.75 0.34 2.11 1.09 - 4.08 2.21 0.03 

 
H1B 0.72 0.35 2.06 1.05 - 4.07 2.09 0.04 

 
H2A 0.76 0.34 2.14 1.10 - 4.16 2.25 0.02 

 
H2B 0.56 0.35 1.75 0.88 - 3.49 1.60 0.11 

 
J1A -0.04 0.41 0.96 0.43 - 2.12 -0.10 0.92 

 
J1B 0.13 0.63 1.13 0.33 - 3.91 0.20 0.84 

 
J2A 0.43 0.38 1.54 0.73 - 3.27 1.13 0.26 

         1
st

 interview 
 

reference 
      2

nd
 interview 0.78 0.11 2.19 1.75 - 2.73 6.90 <0.01 

         Season Dry reference 
      

 
Wet -0.55 0.24 0.57 0.36 - 0.91 -2.34 0.02 

         Interview cohort C reference 
      

 
A 0.16 0.38 1.18 0.56 - 2.47 0.43 0.66 

 
B -1.13 0.55 0.32 0.11 - 0.95 -2.05 0.04 

 
D 2.83 1.07 16.95 2.08 - 138.31 2.64 0.01 

         Continuous variables 

Interval  period (> 4 months) -0.15 0.05 0.86 0.79 - 0.94 -3.29 <0.01 

        
Interactions 

       Season A: Wet season 0.04 0.26 1.04 0.63 - 1.73 0.16 0.87 

Season B: Wet season 1.64 0.37 5.14 2.51 - 10.54 4.47 <0.01 

Season D: Wet season -0.11 0.58 0.90 0.29 - 2.79 -0.19 0.85 

Season A: Interval period 0.01 0.05 1.01 0.91 - 1.11 0.13 0.89 

Season B: Interval period -0.10 0.08 0.91 0.77 - 1.07 -1.14 0.25 

Season D: Interval period 0.39 0.15 1.47 1.09 - 1.99 2.52 0.01 
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Model excluding two outlying observations 

Formula: Loss ~ relevel(RegionID, "J") + as.factor(AskTime) + 

Rain + (1 |      FarmUnID)  

   Data: ltim[which(ltim$Loss > 1 & ltim$Loss < 60), ]  

 

   AIC   BIC logLik deviance 

 538.8 555.9 -264.4    528.8 

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 FarmUnID (Intercept) 0.38991  0.62443  

 

Number of obs: 228, groups: FarmUnID, 182 

 

Table 4.10   Poisson regression model coefficients for the number of birds dying in an 

outbreak, excluding outlying observations 

Fixed 
effects 

 
Coefficient SE 

Relative 
risk 95% C.I. z P 

(Intercept) 1.21 0.14 3.36 2.57 - 4.39 8.84 <0.01 

         Region Jarso 
       

 
Horro 0.58 0.14 1.78 1.35 - 2.34 4.08 <0.01 

        1
st

 interview 
       2

nd
 interview -0.31 0.09 0.73 0.62 - 0.87 -3.54 <0.01 

         Season Dry 
       

 
Wet 0.17 0.08 1.18 1.00 - 1.39 2.01 0.04 
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5.1 Introduction 

Disease, and in particular Newcastle disease (ND), is widely reported to be one of the major 

constraints to village chicken production, and it is well established that vaccination to 

control ND can bring economic benefits to rural producers (Dwinger and Unger, 2006, Bell, 

2009, Alders et al., 2010). Although epidemic outbreaks may have a devastating impact on 

chicken stocks, ongoing losses of birds to endemic diseases and predation represent 

another drain on farmers’ resources. These losses also deserve consideration, as the small 

flock sizes kept can mean that loss of even one bird may represent a considerable 

proportion of the chicken resources owned. Furthermore the necessity of having to replace 

these ongoing losses reduces the availability of chickens and eggs which would otherwise 

be valuable for income, nutritional or social purposes (Dessie and Ogle, 2001).  

Although Ethiopian farmers interviewed in peri-urban villages can recognise and describe a 

variety of diseases (Sambo, 2012), they tend to designate any acute disease with high 

mortality as “fengele”, which was described by Dessie and Ogle (2001) as a syndrome 

comprising of inappetance, watery, yellowish droppings, paralysis and eventually death. 

Outbreaks of “fengele” are reported to be seasonal and to occur annually during the rainy 

season (Dessie and Ogle 2001, Halima 2007, Dinka 2010). Newcastle disease has certainly 

been reported to show seasonal patterns in several other countries, often associated with 

seasonal change or periods of climactic stress (Martin, 1991). Other factors may also 

contribute to a seasonal appearance of epidemics, such as holidays which increase trading 

activity, seasonal peaks in breeding which increase the susceptible population (Awan et al., 

1994) and seasonal alterations in the scavenging resources available (Moges et al., 2010), 

placing birds under nutritional stress and potentially altering the distances they must travel 

to find food, which can alter their exposure to direct and indirect sources of transmission.  
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These seasonal factors will not only affect ND epidemiology, but could impact on the 

biology of a range of micro- and macroparasite infections by altering either exposure or 

tolerance. A number of pathogens survive better in cool, moist environments, including the 

influenza and ND viruses and the protozoan parasite, Eimeria (Swayne and Halvorson, 

2008, Martin, 1991, McDougald, 2003), whilst the long dry season can impede the 

development of nematode larvae (Weaver et al., 2010). For those parasites with an indirect 

lifecycle, seasonal fluctuations in rainfall and temperature may alter the abundance or 

behaviour of the intermediate hosts, such as snails, earthworms, beetles and flies. Seasonal 

changes can affect how pathogens interact with their hosts; for example, mycoplasma 

infections affect birds more severely and for longer periods during cold weather (Ley, 

2008). Physical stresses, such as chilling, overheating, nutrient or water deficiency, or 

concurrent infections can reduce birds’ ability to tolerate even organisms normally 

considered to be commensal or of low pathogenicity (Bermudez, 2008). As such, seasonal 

changes might be expected to be associated with the recrudescence of chronic infections, 

such as Pasteurella or Salmonella, or add to the immunosuppressive effects of viruses such 

as Marek’s disease virus (MDV) or infectious bursal disease virus (IBDV).  

Our observations of a very low seroprevalence of ND antibodies across the entire time 

period of this study, described in Chapter 4, together with an absence of any reports of 

large-scale focal mortalities, are consistent with this study having taken place during an 

inter-epidemic phase. However, farmers still reported a seasonal increase in mortalities 

over the rainy season, which were frequently described as “fengele”. We hypothesise that 

a number of infections are contributing to the mortalities which have been aggregated 

within the umbrella of the annual “fengele” problem, and that pathogens other than ND 

virus (NDV) may be a cause of significant loss either in their own right or in combination. 

Due to the difficulty in accessing the remote areas in which the study villages were situated 

during the rainy season, it was not feasible to investigate the chicken deaths via necropsies 
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and pathogen isolation, especially since the lack of reported large outbreaks would have 

necessitated a considerable time period spent in each village to carry out post mortems on 

a sufficient number of birds. Therefore in order to explore our hypothesis we used the data 

we collected at the time of the birds’ recruitment to the study to see if previous exposure 

to various infections was associated with survival or loss at a follow-up time point, 

approximately 6 months later.  

The pathogens chosen for investigation have all been previously identified in village 

chickens in Ethiopia. In addition, several have features which may make them of particular 

relevance to a bird’s longer-term survival, such as the ability to cause immunosuppression 

(MDV and IBDV); a variable latent period, with clinical signs appearing weeks to months 

after initial infection (MDV); or chronic, inapparent or mildly debilitating infections, which 

may become of greater relevance when other stressors are present (Salmonella, 

Pasteurella, macroparasitic infections). Although our main interest was in whether these 

infections might be associated with later death from disease, it is also possible that some 

may be sufficiently debilitating to put a bird at greater risk of predation. Modelling the risk 

of death is further complicated by the fact that removal of birds by sale, consumption or 

culling would censor them from other causes of death, including disease or predation, and 

that these outcomes are influenced by human decisions. Such decisions may have little to 

do with the biological factors we have measured or alternatively may be influenced 

(consciously or inadvertently) by characteristics of individual birds. Some characteristics 

which might be anticipated to influence the decision to sell, such as weight, which affects 

the market price (Dana et al., 2010) can potentially be affected by a bird’s infection status. 

The aim of this study was therefore to develop a series of models to try and describe the 

contribution of various risk factors to a bird’s fate over a six-month period. 
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5.2 Methods 

Sampling was conducted between May 2011 and November 2012 in two geographically 

separate woredas (administrative districts) in the Oromia region of Ethiopia; Horro, in the 

western highlands, and Jarso in the east. Two market sheds (a group of villages linked by 

trading networks, as described by Tadelle et al. (2003)) were purposely selected within 

each region, and two kebeles (smaller administrative districts, roughly equivalent to a 

ward) were selected within each of the four market sheds. For each of the eight kebeles, 

lists of farmers were compiled by the local development agents (DAs) and potential 

participants were selected from the final list by systematic random sampling. Selected 

households were invited to take part in a questionnaire survey and for two of their 

chickens to be sampled. A questionnaire interview was conducted in the local language 

either with the person with main responsibility for caring for the birds or with the head of 

the household, in order to collect data on the management practices and the disease 

history of the flock.  

Two randomly selected birds from the household flock were examined for signs of clinical 

disease and ectoparasite infestation, and blood samples were collected from a wing vein 

into sodium citrate. Wherever possible, a faecal sample was collected from the basket 

where the bird had been confined, or where the bird was observed to defecate after 

release. If a faecal sample could not be collected from the bird, a fresh sample was taken 

from the household environment. A series of photographs were taken of each bird, 

comprising a lateral, dorsal and frontal view, and close-up shots of the head, feet and skin, 

and birds were fitted with a leg ring before release. 

Blood and faecal samples were stored and transported in a refrigerated container to the 

laboratory in Debre Zeit, where the plasma was separated from the cell pellets and stored 
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at -20°C. The faecal samples were kept at 4°C until processed. Blood samples were tested 

by ELISAs for antibodies to Infectious bursal disease virus, Marek’s diseases virus, 

Pasteurella multocida and Salmonella O9 serotypes. Modified McMaster’s egg counts were 

performed on faeces, and Eimeria oocysts and different species of nematode and cestode 

eggs were counted separately. 

A follow-up visit was carried out to the recruited households around 6 months later to 

determine the fate of the two previously sampled birds. Three cohorts of farms were 

recruited over the study period; two cohorts recruited in May of the two consecutive years 

of the study were revisited in October after the rainy season. One cohort recruited in 

October was followed only through 6 months of the dry season and revisited the following 

May. Surviving birds were re-examined and their identification confirmed using leg rings 

and photographs. If a bird had not survived, farmers were asked to describe what had 

happened to it. 

Farmers described a variety of different outcomes which were grouped into four 

categories: Survival, Death from disease, Gain (which comprised of outcomes which were 

beneficial to the farmer, namely either sale or consumption of the birds) and Loss (which 

was predominantly made up of birds which were predated, but also those which went 

missing, or died due to some other accident).  

All models and graphical summaries were performed using R (R Development Core Team, 

2008). For each of the four outcomes (Survival, Disease, Gain and Loss), intercept-only 

random effect regression models were used to estimate the variance partitioning using the 

binary linearization and the latent variable methods (Goldstein et al., 2002). This 

partitioning, also known as the intraclass correlation coefficient (ICC), provides an 

estimation of the distribution of the observed variation that is attributable to the different 

levels (birds within farms within villages within market sheds within regions). Multilevel 
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logistic regression and Poisson log-linear models were used to examine the potential 

associations of variables measured at the time of the first visit with the different bird 

outcomes recorded at the second visit. Additional details of how each of the models was 

constructed can be found in Chapter 2. Explanatory variables were fitted stepwise for each 

model, such that only those which significantly improved the fit of the model (p<0.05) were 

retained. A list of explanatory variables with their definitions is given in Appendix 5.1. 

Different structures of nested models were used to explore some particular results, due to 

the multinomial nature of the response, and the difficulty with interpreting some of the 

model outputs.  

The following nest structures were used (Figure 5.1): 

1) A two-step approach based on survival, first separating surviving birds from the 

non-survivors with a logistic regression model, and then using a multinomial 

approach to assess the odds of each non-surviving outcome with a Poisson log-

linear model. 

2) A two-step approach based on human agency, which used a nested series of 

logistic regression models, initially assigning birds to either being lost to natural 

causes (Disease or Loss outcomes), or available for human uses (Survival or Gain 

outcomes). A second model was then used within each category to estimate the 

odds of the outcomes within it. 

3) A four-way multinomial approach, using a Poisson log-linear model to investigate 

all outcomes simultaneously. 

Mapping of model residuals was performed using the RgoogleMaps package (Loecher, 

2011), and spatial tests were performed using the spatial test function (Eagle, unpublished) 

as described in Chapter 2. 

3) 
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Figure 5.1   Three different nested model structures to explore the multinomial outcome bird fate 

 

 

Results  

In total, the fate of 946 birds over the total period of the study was ascertained 6 months 

after they were first recruited. The only verifiable outcome was if the bird had survived, 

otherwise the farmer was relied on to report what had happened to the bird in question. 

However, although the identity of 492 survivors was confirmed, another 46 “surviving” 

birds were also presented at the second visits which, when photographs were compared, 

were found not to be part of the original study group. There may, therefore, be some error 

in what farmers reported the non-surviving outcomes of their birds to be, as it may not 

always have been possible for them to identify/recall individuals accurately. 
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Calculations of the ICC for each outcome suggested that the majority of variation was at 

bird level, with the exception of death from disease. This outcome was highly clustered 

within farms, with the differences between farms estimated to contribute over 43% of the 

variance using the binary linearization method, and around 93% of the variance using the 

latent variable method. Whilst this latter approach is perhaps more appropriate for binary 

variables derived from an underlying continuous variable (Goldstein et al., 2002), and the 

model gave warnings of errors with the likelihood estimation, it supports our conclusion 

that farm-level variation is of particular importance in disease outcomes. Market shed did 

not contribute significantly to the variation for any outcome (Table 5.1).  All model fits were 

significantly improved by including region as a fixed effect, whilst for all of the non-survival 

outcomes (i.e. death from disease; sale/consumption; predation) model fits were further 

improved by incorporating village instead of region. This suggests that, whilst survival odds 

are relatively similar for villages within a region, the reasons for non-survival, especially 

death from disease, may differ between villages in the same region (Figure 5.2). 

 
Table 5.1   Variance partitioning estimates (%) using two methods.  

Binary linearisation Survival Disease Loss Gain 

Farm 13.06 43.63 7.97 11.54 

Village 0.93 5.62 0.75 1.53 

Market-shed <0.01 <0.01 0.94 <0.01 

Region 6.96 13.07 2.61 1.85 

Residual 79.05 37.67 87.73 85.08 

 

Latent variable Survival Disease* Loss Gain 

Farm 9.32 93.05 8.82 14.72 

Village 1.27 <0.01 3.96 4.87 

Market-shed <0.01 <0.01 0.45 <0.01 

Region 4.29 <0.01 2.82 0.68 

Residual 85.12 6.95 83.96 79.73 

 
*This model gave warnings of false convergence 
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Figure 5.2    Log odds ratios for four univariable logistic regression models, comparing the effect of 

village on each outcome (Survival, Death from Disease, Loss or Gain). All models include farm as a 

random effect. 

 

Model fits for all outcomes except death from disease were significantly improved by 

including season as an explanatory variable, and by fitting an interaction term between the 

season and the village or region. The model fit for death from disease was improved by 

fitting farmer cohort, which suggested that there was not only variation in the risk of dying 

from disease between the birds sampled in the wet and dry seasons, but also variation in 

the risk between the wet seasons in two consecutive years.  

The results of the models suggested that the outcomes not only varied between villages, 

but also according to seasonal patterns. Proportions of bird outcomes by village and season 

are illustrated in Figure 5.3. The model results indicated that whereas birds in Horro were 

more likely to survive during the dry season, birds in Jarso had greater odds of survival over 

the wet season. This appeared to be both due to fewer incidences of predation and fewer 

birds being sold and consumed in this period, and was relatively consistent between 

villages. However, in Horro there was more variation between the villages.  The reference 

village,  H2B,  was  the only  one in Horro  which  lost more  birds to predation than disease; 
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Figure 5.3    Proportions of bird fates 6 months after sampling for each village and season  

 

but unlike Jarso, predation losses were worse in the wet season. In all Horro villages there 

were more losses to disease during the wet season compared to the dry season, but in 

market shed 1, the wet season was also the time when farmers tended to sell more birds, 

anecdotally so they could avoid the disease losses. However, in village H2B, considerably 

more birds were sold during the dry season. Therefore the fate of non-surviving birds 

depended on both the village and the time of year, but resulted overall in relatively minor 

differences in the odds of survival for birds sampled within the same region and season.  

When multivariable models were constructed for each outcome it was found that there 

were several interactions between the region and other variables, suggesting some risk 

factors were more important in one region than another. It was therefore decided to 

construct different models for the two regions. 
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5.3.1 Approach 1  

The initial approach taken was to first model surviving and non-surviving birds using a 

logistic regression model, then estimate the three non-surviving outcomes with a 3-way 

Poisson regression model. This is a standard approach, which is easy to comprehend. 

However, it was not always clear how the explanatory variables contributed to each 

outcome. For example, whilst male birds in Horro were less likely to survive than females, 

this variable did not predict which of the non-surviving outcomes might occur. Male birds 

in Jarso were also less likely to survive, but in this case being male increased the odds of 

being sold or consumed, whilst decreasing the odds of being predated. 

Survival in Horro was also influenced by a bird’s age, with older birds having increased odds 

of survival up to the age of around 3 years. However, there was an interaction between age 

and Pasteurella antibody levels, so that in young birds high levels were protective, whereas 

in birds over the age of 2 years they were found to decrease the odds of survival (Figure 

5.4). Despite this, Pasteurella antibody level and age did not appear to predict which of the 

non-surviving outcomes would occur. 

 

Figure 5.4   Model predictions for the probability of survival versus non-survival for birds in Horro, 

showing the interaction between age and Pasteurella s:p ratio. 
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Table 5.2     Horro model: Approach 1. Binomial separation of survival from non-survival 
outcomes, followed by multinomial regression on non-survival outcomes 
 

Level 1 
Binomial 
regression Number of birds 

     
 

1= Survival  200 
      

 
0= Any other outcome 260 

               Random effects 
  

Variance Std.Dev. 
   

  
Farm 

 
0.70 0.84 

   
         
  

coefficient se OR 95% C.I. P 
(Intercept) -0.17 0.31 0.84 0.46 - 1.55 0.58 

         Village H2B reference 
      

 
H1A -0.29 0.33 0.75 0.40 - 1.42 0.38 

 
H1B -1.06 0.35 0.35 0.18 - 0.69 <0.01 

 
H2A -0.63 0.34 0.53 0.27 - 1.04 0.07 

         Sex       Female reference 
      

 
  Male -0.66 0.23 0.52 0.33 - 0.81 <0.01 

         Pasteurella OD 1.01 0.35 2.73 1.36 - 5.47 <0.01 

         Age (months) 0.05 0.02 1.06 1.02 - 1.09 <0.01 

         Pasteurella: Age interaction -0.06 0.02 0.94 0.90 - 0.99 0.01 

        
Level 2 

3-way Poisson 
regression Number of birds 

     
 

Disease 137 
      

 
Sale/Consumption 73 

      
 

Predation / Accident 37 
               Random effects: 

       
   

Variance Std.Dev. Corr 
   

 
Farm Disease 0.00 0.00 

    
  

Sale/Consumption 0.00 0.00 -0.11 
   

  
Predation / Accident 0.00 0.00 -0.04 -0.37 

          
  

coefficient se OR 95% C.I. P 

Disease (Intercept) -1.37 0.28 0.25 0.15 - 0.44 <0.01 
Village H2B reference 

      
 

H1A 0.96 0.32 2.62 1.39 - 4.95 <0.01 

 
H1B 0.98 0.32 2.67 1.44 - 4.96 <0.01 

 
H2A 1.26 0.32 3.52 1.89 - 6.56 <0.01 

New bird bought in:        No reference 
      

 
                     Yes -0.49 0.21 0.61 0.40 - 0.93 0.02 

                  Sale/Consumption (Intercept) -0.83 0.21 0.44 0.29 - 0.65 <0.01 
Village H2B reference 

      
 

H1A -0.45 0.31 0.64 0.35 - 1.17 0.15 

 
H1B -0.58 0.30 0.56 0.31 - 1.01 0.05 

 
H2A -1.10 0.39 0.33 0.16 - 0.71 0.00 

New bird bought in:         No reference 
      

 
                    Yes 0.26 0.25 1.30 0.79 - 2.13 0.30 

               -   Predation / Accident  (Intercept)  -1.52 0.28 0.22 0.13 - 0.38 <0.01 
Village H2B reference 

      
 

H1A -1.16 0.48 0.31 0.12 - 0.80 0.02 

 
H1B -0.92 0.40 0.40 0.18 - 0.87 0.02 

 
H2A -1.62 0.56 0.20 0.07 - 0.59 <0.01 

New bird bought in:        No reference 
      

 
                     Yes 1.02 0.33 2.78 1.45 - 5.32 <0.01 
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Table 5.3   Jarso model: Approach 1. Binomial separation of survival from non-survival 
outcomes, followed by multinomial regression on non-survival outcomes 
 

Level 1 Binomial regression Number of birds 
     

 
1= Survival  235 

      
 

0= Any other outcome 126 
               Random effects: 

       
   

Variance Std.Dev. 
    

  
Farm 0.47 0.68 

             
  

coefficient se OR 95% C.I. P 
(Intercept) 

 
1.22 0.37 3.38 1.62 - 7.05 <0.01 

Production  In lay reference 
     status rearing chicks -1.11 0.59 0.33 0.10 - 1.04 0.06 

 
incubating eggs -1.78 0.68 0.17 0.04 - 0.63 0.01 

 
not in production -0.16 0.41 0.85 0.38 - 1.92 0.70 

 
Male -1.74 0.38 0.18 0.08 - 0.37 <0.01 

         Season Dry reference 
     

 
Wet 0.92 0.29 2.52 1.42 - 4.48 <0.01 

         MDV antibody ELISA OD -0.53 0.31 0.59 0.32 - 1.07 0.08 

         Eimeria oocysts  per 1000 (up to 
3000 epg) -0.59 0.17 0.55 0.40 - 0.76 <0.01 
         Level 2 3-way Poisson regression Number of birds 

     
 

Disease 41 
      

 
Sale/Consumption 42 

      

 

Predation / 
Accident 78 

               Random effects: 
       

  
Name Variance Std.Dev. Corr 

   
  

Disease 0.76 0.87 
    

  
Sale/Consumption 0.04 0.20 -1 

   
  

Predation / Accident 0.10 0.31 -1 1 
          

  
coefficient se OR 95% C.I. P 

Disease (Intercept) -1.50 0.39 0.22 0.11 - 0.48 <0.01 
Village J1A reference 

     
 

J1B 0.44 0.50 1.55 0.58 - 4.13 0.38 

 
J2A -0.60 0.61 0.55 0.17 - 1.81 0.32 

 
J2B -0.19 0.55 0.83 0.28 - 2.42 0.73 

         Sex Female reference 
     

 
Male -0.47 0.38 0.63 0.30 - 1.31 0.22 

         Sale/Consumption (Intercept) -2.36 0.49 0.09 0.04 - 0.24 <0.01 
Village J1A reference 

     
 

J1B -0.59 0.45 0.55 0.23 - 1.34 0.19 

 
J2A -0.37 0.38 0.69 0.33 - 1.47 0.34 

 
J2B -1.32 0.56 0.27 0.09 - 0.80 0.02 

         Sex Female reference 
     

 
Male 1.97 0.48 7.20 2.79 - 18.56 <0.01 

         Predation / Accident (Intercept) -0.89 0.28 0.41 0.24 - 0.71 <0.01 
Village J1A 

       
 

J1B 0.15 0.39 1.17 0.54 - 2.52 0.69 

 
J2A 0.56 0.34 1.75 0.90 - 3.41 0.10 

 
J2B 0.70 0.34 2.02 1.04 - 3.92 0.04 

         Sex Female reference 
      

 
Male -0.59 0.25 0.56 0.34 - 0.90 0.02 
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In Jarso, increasing levels of two disease measures – MDV and Eimeria - were associated 

with decreased odds of survival, as were females who were incubating eggs at the time of 

sampling. However, none of these variables were associated with any of the non-surviving 

outcomes. This lack of association of any of the infections with subsequent death from 

disease may suggest birds are generally tolerant of these infections, but may also be a Type 

II error, as only a relatively small number of birds were available for inclusion in the 3-way 

Poisson regression models. 

Other than village, the only variable found to have an impact on whether a bird died from 

disease was whether the household had bought in a new bird in the 12 months prior to the 

initial questionnaire. This apparently decreased the odds of an individual dying from 

disease, but only for birds in the Horro region. Since it is unlikely that the introduction of a 

new bird would impact directly on the likelihood of an individual contracting an infection 

up to 18 months later, one possible explanation for this finding could be that this variable is 

a proxy for some other household practice, such as how much importance they place on 

poultry. It is possible that households which make a financial investment in their flock, in 

the form of buying in birds, may pay more attention to other husbandry factors which 

reduce disease risk. 

5.3.2 Approach 2  

Whilst dividing surviving from non-surviving birds initially appeared to be a logical way to 

approach the models, it did not adequately explain how some of the risk factors were 

contributing to the outcomes. This may be to do with the fact that a bird’s fate is 

determined by interdependent biological and human processes, which are of greater or 

lesser relevance to certain outcomes. For example, for a bird to survive, it must both avoid 

death by disease or predation, but also be selected for retention in the flock by the farmer. 

Characteristics such as sex or age might be expected to influence both the human decisions 
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and the biological processes which result in survival, but not necessarily in the same 

direction.  

The second approach to modelling the outcomes used a nested series of logistic regression 

models. The first stage (Level 1 models) separates the “bad” outcomes presumed to be 

beyond farmer control (“Disease” or “Loss”) from those which are “good” outcomes for the 

farmer – namely retention of the bird in the flock (“Survival”) or an outcome which brings 

an economic, agricultural or nutritional benefit (“Gain”) to the farmer, such as when the 

bird is sold or consumed. Within the “bad” and “good” categories, a second logistic 

regression model (Level 2 model) then further differentiated birds into the two outcomes 

which go to make up that category. Again, Horro and Jarso were modelled separately, due 

to the number of interactions between the region and other explanatory variables. 

5.3.2(a) Horro 

The set of explanatory variables found to contribute significantly to the fit of the models 

were the same as those found in the first model structure, but with the addition of the 

scaly leg scores. Birds were more likely to have a “bad” outcome in all villages other than 

the reference village, and in villages H2A and H2B, this was more likely to occur in the rainy 

season. Again, birds in households which had recently acquired a new bird had improved 

odds of “good” outcomes, as did older birds. The interaction between age and Pasteurella, 

with lower odds of survival in older birds with higher titres, as noted in the first model 

structure (Figure 5.4), was still significant in this model series. This was not associated with 

dying from disease but, unexpectedly, in the comparison between survival and sale. One 

possible explanation is that whilst owners are generally more likely to sell young birds 

which, on the whole, tend to have slightly lower Pasteurella titres, they may also purposely 

cull birds with characteristics associated with high Pasteurella titres. Whereas a high 

antibody titre in a young bird may simply indicate recent exposure, it is possible that high  
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Table 5.4   Horro model: Approach 2. Nested series of logistic regression models. At level 1, 
birds are assigned to being lost to natural causes or available for human uses. Level 2 models 
the outcomes within these categories. 
  

Level 1 
Binomial 
regression 

 
Number of birds 

    
 

1= Survival, Sale or consumption 260 
     

 
0= Disease or predation  

 
166 

              Random effects: 
 

Variance Std.Dev. 
    

  
Farm 1.53 1.24 

             
  

coefficient se OR 95% C.I. P 
(Intercept) 2.39 0.72 10.96 2.69 - 44.71 <0.01 
Village H2B reference 

      
 

H1A -2.34 0.81 0.10 0.02 - 0.47 <0.01 

 
H1B -2.82 0.81 0.06 0.01 - 0.29 <0.01 

 
H2A -2.18 0.81 0.11 0.02 - 0.56 0.01 

         Season Dry 
       

 
 Wet -2.32 0.77 0.10 0.02 - 0.45 <0.01 

         Village: Season Interaction 
       H1A  Wet 2.04 0.95 7.68 1.20 - 49.26 0.03 

H1B  Wet 1.87 0.94 6.52 1.03 - 41.34 0.05 
H2A  Wet 1.09 0.96 2.98 0.45 - 19.52 0.26 

         New bird bought in:       No 
       

 
                    Yes 0.86 0.32 2.36 1.25 - 4.45 0.01 

         Age (months) 0.04 0.02 1.04 1.00 - 1.08 0.04 

         Level 2 Binomial regression 
 

Number of birds 
    

 
1 = Survival 

 
182 

     
 

0 = Sale or consumption 
 

70 
              Random effects: 

 
Variance Std.Dev. 

    
  

Farm 1.46 1.21 
             

  
coefficient se OR 95% C.I. P 

(Intercept) 1.33 0.47 3.77 1.51 - 9.42 <0.01 
Sex  Female reference 

      
 

Male -1.37 0.36 0.25 0.13 - 0.51 <0.01 

         Scaly leg No signs or mild reference 
      

 

Severe 
hyperkeratosis -0.97 0.42 0.38 0.16 - 0.87 0.02 

         Age (months) 0.08 0.03 1.08 1.01 - 1.15 0.02 

         Pasteurella OD 1.40 0.55 4.07 1.38 - 12.07 0.01 

         Pasteurella:Age interaction -0.09 0.04 0.91 0.84 - 0.98 0.02 

                  Level 2 Binomial regression 
 

Number of birds 
    

 
1= Predation / Accident 

 
38 

     
 

0= Disease 
 

146 
              Random effects: 

 
Variance Std.Dev. 

    
  

Farm 46.77 6.834 
             

  
coefficient se OR 95% C.I. P 

(Intercept) 3.70 1.75 40.45 1.32 - 1237 0.16 
Village H2B reference 

      
 

H1A -6.77 2.59 0.0011 0.00 - 0.18 0.01 

 
H1B -5.73 1.83 0.0032 0.00 - 0.12 <0.01 

 
H2A -7.70 3.22 0.0005 0.00 - 0.25 0.02 
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Table 5.5   Jarso model: Approach 2. Nested series of logistic regression models. At level 1, 
birds are assigned to being lost to natural causes or available for human uses. Level 2 models 
the outcomes within these categories. 
 

Level 1 Binomial regression 
 

Number of birds 
    

 
1= Survival, Sale or consumption 268 

     
 

0= Disease or predation  93 
              Random effects: 

       
 

Groups Name Variance Std.Dev. Corr 
   

 
Farm Season Dry 0.04 0.19 

    
  

Season Wet 2.08 1.44 -0.11 
   

  
AdjMDV 0.08 0.28 0.02 -1.00 

          
  

coefficient se OR 95% C.I. P 
(Intercept) 

 
1.92 0.50 6.82 2.56 - 27.80 <0.01 

Village J1A reference 
      

 
J1B 0.30 0.49 1.35 0.52 - 3.51 0.54 

 
J2A -0.01 0.45 0.99 0.41 - 2.40 0.99 

 
J2B -0.85 0.45 0.43 0.18 - 1.04 0.06 

         Season Dry reference 
      

 
Wet 0.95 0.33 2.58 1.34 - 4.97 <0.01 

         Production  In lay reference 
      status rearing chicks -1.18 0.68 0.31 0.08 - 1.16 0.08 

 
incubating eggs -2.24 0.86 0.11 0.02 - 0.57 0.01 

 
not in production -0.47 0.50 0.62 0.24 - 1.65 0.34 

 
Male -1.00 0.46 0.37 0.15 - 0.91 0.03 

         MDV OD 
 

-2.47 0.83 0.08 0.02 - 0.43 <0.01 

         Eimeria oocysts  per 1000  
(up to 3000 epg) -0.73 0.18 0.48 0.34 - 0.68 <0.01 

         MDV: rearing chicks interaction 3.24 1.77 25.53 0.79 - 824 0.07 
MDV: incubating eggs interaction 1.49 1.66 4.43 0.17 - 114 0.37 
MDV:not in production interaction 1.64 0.96 5.14 0.79 - 33.7 0.09 
MDV:Male interaction 3.32 1.11 27.54 3.14 - 242 <0.01 

         Level 2 Binomial regression 
 

Number of birds 
    

 
1 = Survival 

 
291 

     
 

0 = Sale or consumption 41 
              Random effects: 

       
   

Variance Std.Dev. 
    

  
Farm 0.00 0.00 

             
  

coefficient se OR 95% C.I. P 
(Intercept) 

 
4.16 0.69 63.98 16.44 - 249.05 <0.01 

         Village J1A reference 
      

 
J1B -1.67 0.59 0.19 0.06 - 0.61 0.01 

 
J2A -0.04 0.60 0.96 0.30 - 3.15 0.95 

 
J2B 0.62 0.73 1.86 0.44 - 7.80 0.40 

         Season Dry reference 
      

 
Wet 1.63 0.45 5.11 2.10 - 12.43 <0.01 

         Sex Female reference 
      

 
Male -3.68 0.58 0.03 0.01 - 0.08 <0.01 

         Scaly leg No signs 
       

 
Hyperkeratosis -0.97 0.44 0.38 0.16 - 0.90 0.03 

         Level 2 Binomial regression 
 

Number of birds 
    

 
1= Predation / Accident 78 

     
 

0= Disease 
 

41 
              Random effects: 

       
   

Variance Std.Dev. 
    

  
Farm 56.50 7.52 

             
  

coefficient se OR 95% C.I. P 
(Intercept) 

 
5.23 1.17 185.98 18.83 - 1837.31 <0.01 
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titres in older birds  may reflect a more chronic pasteurellosis.  Chronically infected birds 

may be showing respiratory signs, or perhaps have low productivity, and as such may be 

removed from the flock. Sex was a strong predictor for sale, as male birds were more likely 

to be sold.  Hyperkeratosis due to scaly leg mite infestation also increased the odds of 

being sold compared to surviving, although, like the Pasteurella, age and sex variables, it 

had no impact on the odds of dying from disease or predation. 

Village was the main factor in determining whether they were lost to disease or predation; 

among these villages in Horro, only H2B reported predation as its biggest cause of loss, 

whereas disease claimed higher numbers of birds in the other three villages. However, 

there was considerable between-household variation in the model comparing disease to 

predation. 

5.3.2(b) Jarso 

Again, the same explanatory variables contributed significantly to the outcomes as those 

from the first approach, with the addition of the scaly leg score. There were fewer 

differences between the villages in Jarso, with only village J1B being less likely to sell birds. 

It was found that for the Level 1 model, comparing “good” to “bad” outcomes, the fit was 

significantly improved by allowing the coefficient for season to vary between households. 

This suggested that the model explained most of the variation in the probability that birds 

would have a good outcome in the dry season, and that in this season, there was very little 

difference between households.  However, there was far more variation between 

households in the rainy seasons as to whether birds would have a good outcome  (Figure 

5.5).  Comparing the spatial distribution of the household residuals for the wet seasons to a 

randomly generated spatial distribution suggested that there was no spatial correlation 

between households with a higher probability of good outcomes, or those where birds  
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Figure 5.5   Household residuals plotted by farmer cohort, showing farms followed over the wet 

seasons (A and C) show far more variation as to whether their birds die from disease /predation than 

farms followed over the dry season (B). 

 

were more likely to die (Appendix 5.2). This would suggest that some other, unmeasured, 

household variable was contributing significantly to the survival risk in the wet season. 

After controlling for village and season, other variables were also important in determining 

the birds’ fates. As in Horro, male birds were more likely to be sold, which reduced their 

odds of survival, but the production status of a female also appeared to influence her 6-

month outcome; females which were incubating eggs at the first visit had significantly 

lower odds of a good outcome compared to birds in lay. Also, as in Horro, signs of 

hyperkeratosis increased the odds of a bird being sold or consumed compared to surviving.  

Two other disease measurements significantly improved fits in this second series of 

models: Marek’s disease antibody levels and Eimeria oocyst counts (up to 3000 oocysts per 

gram of faeces). Increasing measures of both of these diseases decreased the odds of a 

good outcome. MDV also demonstrated an interaction with the sex of a bird, such that 

increasing MDV titres decreased the odds of a good outcome in females, but not in males.  
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There were no variables which, given the bird died, were associated with whether it was 

more likely to die of disease or predation. There was, however, considerable variation 

between households. This may suggest unmeasured household risk factors which may alter 

disease risk, including management, environmental or spatial factors. It was also found that 

the fit of the model predicting a “good” outcome was significantly improved by fitting an 

interaction between household and the MDV antibody levels. This would suggest that the 

effect of MDV on the outcome also varies between households.  

5.3.3 Approach 3 

The third approach was a multinomial Poisson regression model, to compare all four 

outcomes simultaneously. For Horro, all variables previously mentioned were found to 

significantly improve the fit of the model, but some, such as the age-Pasteurella 

interaction, although approaching a critical probability of 0.05, were no longer found to 

significantly alter the odds of any one outcome (Table 5.6). This model reinforced many of 

the main findings from the previous models, namely that older birds had enhanced odds of 

survival; birds in households where there had been a new bird introduced within the 

previous 12 months were at lower risk of dying of disease, and males and birds with 

hyperkeratosis were most likely to be sold. There were no risk factors which were 

associated with an increased risk of predation among the villages in Horro (but note that 

predation was a relatively uncommon outcome in Horro). Village and season 

predominantly affected the odds of disease mortality. 

In Jarso, only village, season, sex and Eimeria counts were important factors in the 

multinomial model. Hyperkeratosis and MDV were no longer found to significantly improve 

the fit. Males were less likely to survive, but much more likely to be sold. Birds in village J2B 

were less likely to be sold, and in all villages birds were much more likely to be sold in the 
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dry season. Increasing Eimeria counts (up to 3000 epg) put a bird at increased risk of 

subsequent death from disease (Table 5.7). 

 

Table 5.6.   Horro model: Approach 3. Four-way multinomial Poisson regression  
 Multinomial Poisson 
regression Number of birds 

     
 

Survival 175 
      

 
Disease 119 

      
 

Sale/Consumption 67 
      

 
Predation / Accident 33 

               Random effects: 
 

Variance Std.Dev. Corr 
   

  
Survival 0.00 0.00 

    
  

Disease 0.29 0.54 0.00 
   

  
Sale/Consumption 0.62 0.79 0.00 -0.82 

 

  

Predation / 
Accident 0.85 0.92 0.00 -0.39 -0.213 

         
  

coefficient se OR 95% C.I. P 

Survival (intercept) -0.74 0.22 0.48 0.31 - 0.73 <0.01 
Village H2B reference 

     
 

H1A -0.13 0.20 0.88 0.59 - 1.29 0.50 

 
H1B -0.52 0.22 0.59 0.38 - 0.92 0.02 

 
H2A -0.19 0.21 0.82 0.55 - 1.24 0.36 

         Season Dry 
       

 
Wet -0.29 0.16 0.75 0.55 - 1.03 0.07 

         Scaly leg                    No signs 
       

 

                  
Hyperkeratosis 0.02 0.15 1.02 0.75 - 1.38 0.90 

         New bird bought in:       No 
       

 
                      Yes 0.20 0.17 1.22 0.87 - 1.71 0.25 

         Sex       Female 
       

 
  Male -0.29 0.16 0.75 0.54 - 1.03 0.07 

         Age (months) 0.03 0.01 1.03 1.01 - 1.05 0.01 

         Pasteurella OD 0.44 0.23 1.55 0.99 - 2.43 0.06 

         Pasteurella:Age interaction -0.03 0.02 0.97 0.94 - 1.00 0.08 

         
         Disease (Intercept) -2.43 0.41 0.09 0.04 - 0.20 <0.01 
Village H2B reference 

     
 

H1A 1.09 0.38 2.97 1.42 - 6.22 <0.01 

 
H1B 1.43 0.37 4.20 2.02 - 8.71 <0.01 

 
H2A 1.45 0.38 4.27 2.03 - 9.00 <0.01 

         Season Dry 
       

 
Wet 0.62 0.23 1.85 1.18 - 2.92 0.01 

         Scaly leg                 No signs 
       

 
                Hyperkeratosis -0.24 0.21 0.78 0.52 - 1.18 0.25 

         New bird bought in:    No 
       

 
                     Yes -0.58 0.26 0.56 0.34 - 0.94 0.03 

         Sex  Female 
       

 
Male 0.07 0.20 1.08 0.72 - 1.60 0.72 

         Age (months) -0.02 0.02 0.98 0.96 - 1.01 0.30 

         Pasteurella OD -0.38 0.36 0.68 0.33 - 1.39 0.29 

         Pasteurella:Age interaction 0.02 0.03 1.02 0.97 - 1.07 0.42 
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coefficient se OR 95% C.I. P 

Sale / consumption   (Intercept) -1.99 0.46 0.14 0.06 - 0.33 <0.01 
Village H2B reference 

     
 

H1A -0.29 0.39 0.75 0.35 - 1.60 0.45 

 
H1B -0.21 0.40 0.81 0.37 - 1.76 0.59 

 
H2A -0.83 0.47 0.43 0.17 - 1.10 0.08 

         Season Dry 
       

 
Wet -0.41 0.32 0.66 0.35 - 1.25 0.20 

         Scaly leg No signs 
       

 
Hyperkeratosis 0.58 0.30 1.79 0.99 - 3.23 0.05 

         New bird bought in:      No 
       

 
                     Yes 0.16 0.35 1.17 0.60 - 2.32 0.64 

         Sex  Female 
       

 
Male 0.73 0.29 2.08 1.17 - 3.70 0.01 

         Age (months) -0.03 0.03 0.97 0.92 - 1.02 0.21 

         Pasteurella OD -0.57 0.44 0.56 0.24 - 1.35 0.20 

         Pasteurella:Age interaction 0.04 0.03 1.04 0.98 - 1.11 0.18 

         
         Predation / Accident   
(Intercept) -2.07 0.66 0.13 0.03 - 0.46 <0.01 
Village H2B reference 

     
 

H1A -0.88 0.60 0.41 0.13 - 1.34 0.14 

 
H1B -0.67 0.58 0.51 0.17 - 1.59 0.25 

 
H2A -1.16 0.69 0.31 0.08 - 1.22 0.09 

         Season Dry 
       

 
 Wet -0.08 0.47 0.93 0.37 - 2.31 0.87 

         Scaly leg No signs 
       

 
Hyperkeratosis -0.23 0.43 0.80 0.34 - 1.86 0.60 

         New bird bought in:     No 
       

 
                    Yes 0.80 0.46 2.22 0.90 - 5.51 0.09 

         Sex                      Female 
       

 
                    Male -0.29 0.45 0.75 0.31 - 1.79 0.51 

         Age (months) -0.03 0.04 0.97 0.90 - 1.05 0.49 

         Pasteurella OD -0.24 0.64 0.79 0.23 - 2.74 0.71 

         Pasteurella:Age interaction 0.03 0.05 1.03 0.94 - 1.13 0.50 
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Table 5.7.  Jarso model: Approach 3. Four-way multinomial Poisson regression 
 

Single level poisson regression Number of birds 
     

 
Survival 220 

      
 

Disease 30 
      

 
Sale/Consumption 30 

      
 

Predation / Accident 60 
               Random effects: 

       
  

Name Variance Std.Dev. Corr 
   

  
Survival 0.00 0.00 

    
  

Disease 2.37 1.54 0 
   

  
Sale/Consumption 0.03 0.16 0 -1 

 
 

Predation / Accident 0.22 0.47 0 -1 1 

         

  
coefficient se OR 95% C.I. P 

Survival (intercept) -0.51 0.18 0.60 0.42 - 0.85 <0.01 
Village J1A 

       
 

J1B 0.17 0.19 1.19 0.82 - 1.73 0.37 

 
J2A 0.10 0.19 1.10 0.76 - 1.59 0.61 

 
J2B 0.12 0.20 1.13 0.77 - 1.67 0.53 

         Season Dry reference 
     

 
Wet 0.27 0.15 1.31 0.98 - 1.75 0.07 

         Sex Female 
       

 
Male -0.47 0.16 0.63 0.46 - 0.86 <0.01 

         Eimeria oocysts  per 1000 
 (up to 3000 epg) -0.18 0.10 0.83 0.69 - 1.01 0.07 

         Disease (intercept) 

 
-3.82 0.70 0.02 0.01 - 0.09 <0.01 

Village J1A 
       

 
J1B 0.26 0.76 1.30 0.30 - 5.71 0.73 

 
J2A -0.38 0.81 0.68 0.14 - 3.32 0.64 

 
J2B -0.48 0.85 0.62 0.12 - 3.23 0.57 

         Season Dry 
       

 
Wet -0.06 0.60 0.94 0.29 - 3.01 0.91 

         Sex Female 
       

 
Male 0.50 0.49 1.65 0.63 - 4.33 0.31 

         Eimeria oocysts  per 1000  
(up to 3000 epg) 0.56 0.24 1.74 1.10 - 2.77 0.02 

         Sale/Consumption (Intercept) -2.87 0.57 0.06 0.02 - 0.17 <0.01 
Village J1A 

       
 

J1B -0.88 0.52 0.41 0.15 - 1.15 0.09 

 
J2A -0.66 0.44 0.52 0.22 - 1.23 0.13 

 
J2B -2.48 1.04 0.08 0.01 - 0.64 0.02 

         Season Dry 
       

 
Wet -0.85 0.38 0.43 0.20 - 0.89 0.02 

         Sex Female 
       

 
Male 2.53 0.54 12.55 4.33 - 36.41 <0.01 

         Eimeria oocysts  per 1000  
(up to 3000 epg) -0.16 0.28 0.85 0.49 - 1.46 0.56 

         Predation / Accident (Intercept) -2.00 0.37 0.14 0.07 - 0.28 0.00 
Village J1A 

       
 

J1B -0.27 0.49 0.76 0.29 - 1.99 0.58 

 
J2A 0.40 0.40 1.49 0.68 - 3.24 0.32 

 
J2B 0.65 0.39 1.92 0.90 - 4.08 0.09 

         Season Dry 
       

 
Wet -0.39 0.29 0.68 0.39 - 1.18 0.17 

         Sex Female 
       

 
Male 0.13 0.29 1.14 0.65 - 2.00 0.65 

         Eimeria oocysts  per 1000 
 (up to 3000 epg) 0.19 0.14 1.21 0.91 - 1.60 0.18 
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5.4 Discussion  

The nature of the extensive scavenging production system under which village chickens in 

Ethiopia and elsewhere are kept exposes them to a variety of potential risks which impact 

on their chances of survival. Whilst our primary interest in this study lay in determining 

how exposure to different pathogens may alter the risk of dying from disease, it is clear 

that infections may also subtly alter the risk of other outcomes. Although a production 

animal, and subject to human decisions, village chickens are in some respects more akin to 

a wild population, and subject to a degree of natural selection, including predation and 

competition for feed resources. The balance of these human and environmental pressures 

may vary widely between farms, and modelling this mathematically has proved challenging. 

The benefit of using the three different nested model structures was found to be in the 

interpretation of some of the more subtle effects, as the relatively small numbers of birds 

was likely to make the multinomial models, in particular, prone to type II error. When an 

explanatory variable, such as sex in Jarso, was strongly associated with two outcomes, in 

that males were more likely to be sold and therefore less likely to survive, the multinomial 

model was able to clearly demonstrate both these associations. However, some other 

variables did not show such clear relationships. For example, whilst increasing age in Horro 

was associated with improved survival, it appeared that this was because young birds were 

more likely to be sold and be predated and die of disease. 

These relationships became more apparent when single outcomes were compared to each 

other. However, the conventional nested approach, where survivors were first separated 

from non-survivors, could have led to incorrect assumptions. It would be easy to assume 

that Pasteurella reduced the odds of survival because it would make birds more likely to 

die from disease, when in fact it was not shown to increase the odds of this outcome, but 
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rather to alter the odds of sale or consumption in birds which did not die from natural 

causes. This difference was highlighted only through the use of the three different model 

structures.  

Overall, the models showed some interesting similarities and differences between the two 

regions. The tendency in both areas was to sell or consume males, and birds showing 

hyperkeratosis were also more likely to be sold in both areas. In Horro, the models also 

suggested that the older birds with high Pasteurella antibodies were also selected for sale 

or consumption. This might suggest that farmers are purposely selecting older birds which 

are showing mild signs of ill-health to remove from the flock if they wish to make a sale, 

allowing them to keep the younger and healthier older birds for breeding.  One of the most 

notable differences was the difference in the effect of season between the two regions. 

Whereas in Horro birds were at significantly greater odds of dying of disease during the 

rainy season, no such effect was seen in Jarso. This contrasts with the findings reported in 

Chapter 4, where farmers in both regions were more likely to report that they had 

experienced disease outbreaks during the rainy season. However, it was also noted from 

the farmer reports that fewer birds per farm were lost over the rainy season, which may 

account for this discrepancy between the risk to individuals and the risk of disease at farm-

level. 

No single infection stood out as a good predictor of subsequent death from disease, but 

the models suggested that different diseases are of greater importance in each area, at 

least in the time period of this study. Whereas Pasteurella was only significant in Horro, 

Eimeria and MDV were of greater importance in Jarso. Previous research in Ethiopia has 

suggested that chicks of the Jarso ecotype raised under confined conditions were more 

susceptible to MDV mortalities than ecotypes from other areas of Ethiopia, including Horro 

(Duguma et al., 2005). Eimeria in this study was not differentiated into the different 

species, although a subset of samples from both regions was speciated by PCR (Luu et al., 
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2013). Although there were no differences between the regions in the isolation of the 

species regarded as highly pathogenic (Eimeria tenella, necatrix and brunetti), Jarso did 

have significantly greater levels of the moderately pathogenic Eimeria maxima, whereas 

the predominant species in Horro was E. praecox, which is generally regarded as only mildly 

or non-pathogenic (McDougald and Fitz-Coy, 2008). Therefore both pathogen and host-

resistance factors are likely to be contributing to regional differences in disease mortalities. 

There may also be differences in pathogen exposure between the regions and villages. 

The MDV-sex interaction, which was included in Approach 2 in Jarso, did not significantly 

improve the fit of any of the other model structures. This would suggest that, whilst males 

were less likely to survive overall, because they were more likely to be sold, having a higher 

MDV titre did not greatly alter the odds of whether they are available to sell or keep within 

a six month period. As MDV in a village situation is likely to be of low virulence, and take 

the form of a chronic disease, males may be tolerating MDV infections over extended 

periods of time, and so still be available for sale. Conversely in females, those with higher 

MDV levels were found to be more likely to die from either disease or predation within the 

6-month follow-up period. Research has previously shown that males are less likely to 

develop tumours following MDV infection (Payne and Venugopal, 2000); thus it may be 

that females in the clinical phase of an MDV infection, where they can be both 

immunosuppressed and suffering from neuropathologies, are indeed at risk of predation, 

or other infections, or go on to die of MDV. It may also be that farmers do not always 

observe the exact fate of their birds, and tend to attribute most deaths to predators, 

especially if they do not see signs of an obvious disease. 

The possibility that farmers are not aware of the exact fate of their birds and tend to 

attribute unobserved deaths to a particular cause should be borne in mind. This may 

contribute to the strong regional difference in reported fates, where Horro birds were 
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more likely to be reported to have died of disease, whereas Jarso birds were more likely to 

be reported to have died of predation. If this was indeed a cultural effect, it may be that 

farmers in Jarso were underestimating the impact of diseases in their flocks, which may 

have implications for the uptake of any future disease-control interventions in this area. 

However, it may also be a genuine finding, and measures to prevent predation may be of 

far greater benefit to these farmers than disease control programmes. Conversely, it may 

be that Horro farmers overestimate disease mortality; although we have assumed they 

report death from disease because they find a sick or dead bird, we did not specifically 

elicit this information during the questionnaire interviews. Without confirming the fate of 

every bird in the study, it will not be possible to disentangle a regional cultural difference 

from a regional disease mortality difference. However, the fact that both MDV and Eimeria 

decreased the odds of a bird being available to sell or keep in Jarso suggests that diseases 

are still important in this region. As both of these infections may have more subtle, 

subclinical effects, such as reducing scavenging behaviour or feed conversion efficiency, 

farmers may be less aware of their impact. If interventions such as confining birds in 

shelters to protect them from predators are put in place, such diseases may become more 

important as their epidemiology may alter with a change in management.  

 

5.5 Conclusions 

Our original hypothesis was that a number of infections may be contributing to the annual 

increase in reported mortalities, normally put down to “fengele”, which occur during the 

rainy season. In order to do this it was necessary to understand both the human decision-

making processes and the biological processes which go together to determine a bird’s 

fate. Modelling the fate of birds has proved challenging, and the use of several different 

approaches was found to be beneficial. Whilst no single infection was strongly associated 
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with subsequent disease mortality, they may still be relevant as causes of indirect loss, for 

example by influencing farmer decisions to cull, or by increasing vulnerability to predators. 

It is possible that infections did not appear associated with disease mortality as most birds 

we detected as infected, especially using serology, would be in the recovery stages, and 

therefore we may have failed to measure any which died during the acute stages of 

infection. Another possibility is that whilst single infections alone may not impact mortality, 

multiple infections may be of much greater consequence. The high variation between 

households in the risk of disease mortality, and especially in Jarso the variation between 

households in the effect of season and MDV infection on mortality, would suggest that 

some households may already have practices which are effectively mitigating or 

exacerbating these risks. Whilst, unfortunately, we have been unable to identify these 

practices during this study, it may be possible to elicit and promote the exchange of such 

information between villagers, by encouraging the formation of groups to discuss “best 

practice”, and a more qualitative evaluation of strategies which have been found to work 

well in situ. The diversity observed between the two regions would reinforce our belief that 

no single intervention is likely to be uniformly beneficial to reduce disease mortality.
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Appendix 5.1 

 
Table 5.8   List of explanatory variables which were tested for inclusion as fixed effects in 

each multivariate regression model. Farm was included as a random effect in each of the 

models. 

Variable Description Comments 

Household-level variables  
Region 2 levels, Horro and Jarso 

 
 

Village 4 levels within each of the two regions 
 

Models cannot include 
both region and village as 
fixed effects 
 

Season “Wet” describes birds which were followed 
over the rainy season, i.e. from around May to 
October.  
“Dry”  describes birds which were followed 
only through the dry season, i.e. around 
October to May 

Cohorts A and C are 
“Wet” 
Cohort  B is “Dry” 

New bird Whether or not a new birds has been bought 
into the flock within the last 12 month period 

 

Waste Use of bird excreta as fertilizer, or disposal by 
other means 

 

Dead disposal Method of disposal of dead birds, including 
throwing away near or far from the house, 
burying, burning or feeding to dogs 

 

Contact Contact time with other flocks during the wet 
or dry season 

 

Feed Provision of feed in the rainy compared to the 
dry season, can take the values “More”, “the 
Same”, “Less” or “None” 

 

Bird-level variables  

Age Bird age in months  

Sex Bird sex  

Production  
status 

Females are subdivided into “In lay”, “Rearing 
chicks”, “Incubating eggs” or “Not in 
production”.  
Males are a single category 

 

Source Birds may have been home bred or bought 
into the flock from either the market, a private 
household in the same village or a private 
household in a different village  

 

BIOP Length of time in owner’s possession ( 
months). 
Grouped into less than 3, 3-6, 6-12 or more 
than 12 months 

Highly correlated with 
Age 
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Scaly leg Degree of hyperkeratosis; “None”, “Mild” or 
“Severe” 

 

Lice total The total count of lice of any species found on 
all areas of the bird 

 

Eimeria  1000 Oocysts per  gram of faeces Increases over 3000 do 
not alter the risk 

Ascarid Eggs per gram of faeces  

IBDV The sample:positive ratio against IBDV * 

Pasteurella The sample:positive ratio against Pasteurella * 

Salmonella The sample:positive ratio against Salmonella 
O9 serotypes 

* 

MDV The sample:positive ratio against MDV, after 
subtraction of the optical density of the 
sample against cell lysate. See Chapter 2 for 
full details 

* 

 
*These values have been adjusted for the differences between plates, as described in 
Chapter 2 
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Appendix 5.2 

 
Figures 5.6 to 5.9 show (a) Circle plots and (b) semivariograms of household residuals from 

Jarso villages in the wet season (Approach 2, comparing “good” to “bad” outcomes) 

showing that residuals were not observed to be more spatially correlated than those 

generated by a random spatial distribution. 

 Figure 5.6   J1A wet season, p=0.52 

 

 

Figure 5.7    J1B wet season, p=0.34 

(a) (b) 

(a) (b) 
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Figure 5.8   J2A wet season, p=0.53 

 

 

 

Figure 5.9   J2B wet season, p=0.54 

 

 

 

  

(a) (b) 

(a) (b) 
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6.1 Introduction 

Infectious disease is recognised as one of the major constraints to developing village 

poultry production (Guèye, 1998; Mack et al., 2005). Control of Newcastle disease virus 

(NDV) has been identified as the most critical intervention in numerous studies throughout 

Africa, and other interventions such as improving feed, housing or controlling parasites are 

only effective if used in conjunction with vaccination (Dwinger and Unger, 2006). A number 

of seroprevalence surveys have demonstrated the presence of NDV in several areas of 

Ethiopia (Tadesse et al., 2005; Mazengia et al., 2010; Chaka et al., 2012), although little 

attention has been paid as yet to control strategies. However, NDV is not the only problem; 

chickens under a village production system are exposed concurrently or consecutively to a 

number of different pathogens. In Ethiopia seroprevalence surveys in village chickens have 

identified the presence of infectious bursal disease (Mazengia et al., 2010; Chaka et al., 

2012; Jenbreie et al., 2012), salmonellosis (Berhe et al., 2012; Alebachew and Mekonnen, 

2013), pasteurellosis and mycoplasma infection (Chaka et al., 2012). Marek’s disease has 

also been identified in village chickens kept under intensive management (Duguma et al., 

2005). Parasitic diseases, including coccidiosis (Ashenafi et al., 2004b; Luu et al., 2013), 

helminths (Tolossa et al., 2009; Molla et al., 2012) and ectoparasites (Belihu et al., 2009; 

Tolossa et al., 2009) have also been demonstrated to be highly prevalent in the country.  

Host survival may be severely affected by multiple, coincident infections (Jolles et al., 2008) 

and there is evidence from studies of wild rodents that existing infections may pose greater 

risks for further infections than environmental variables (Telfer et al., 2010). Associations 

between diseases may be the result of direct interactions between the pathogens 

themselves or indirectly, via the bird’s immune system, such that their impact on the host 

may be altered. Pre-infection with Marek’s disease has been observed to alter the 

clearance of certain Eimeria species (Biggs et al., 1968), while both Pasteurella multocida 
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and Salmonella enterica serovar Enteritidis infections have been shown to be more severe 

in the presence of pre-infection with the nematode Ascaridia galli  (Dahl et al., 2002; 

Eigaard et al., 2006). Many of these interactions are thought to be mediated through the 

altered differentiation of T-lymphocytes; whereas protective cell-mediated responses to 

intracellular microbial pathogens are primarily driven by T helper 1 (Th1) cells, protection 

to extracellular infections, including macroparasites, usually requires antibody and primes 

the immune system towards a Th2-type response.  Hosts in a natural environment may 

have limited ability to effectively mount both types of immune response simultaneously, 

particularly where they are constrained by limited resources (Jolles et al., 2008). The 

helminth Ascaridia galli has also been shown to reduce the antibody response to 

vaccination with NDV (Horning, 2003), therefore determining pathogen interactions may 

have implications for disease control programmes. Indeed, the health consequences of 

multiple low-grade infections may become more significant as interventions reduce the 

impact of single diseases (Pullan and Brooker, 2008).  

However, apparent interactions between infections may arise simply because diseases 

have other risk factors in common, including host factors, such as sex, age, socio-economic 

status or behaviours, or similar transmission routes or temporal patterns of exposure 

(Hellard et al., 2012). In Ethiopia, mortalities from infectious diseases are reportedly 

associated with the rainy season (Dessie and Ogle, 2001; Halima et al., 2007), when 

seasonal factors, such as cold or changes in the available nutrition may impact on a bird’s 

susceptibility to new infections, and the outcome of that infection. However, a number of 

pathogens survive better in cool, moist environments, including the influenza and NDV 

viruses and the protozoan parasite, Eimeria (Martin, 1991; McDougald, 2003; Swayne and 

Halvorson, 2008). For parasitic diseases, the long dry season can impede the development 

of nematode larvae (Weaver et al., 2010) and seasonal fluctuations in rainfall and 

temperature may alter the abundance or behaviour of invertebrate intermediate hosts. 
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 It might, therefore, be predicted that the observed tendency for a seasonal increase in 

chicken mortality associated with the rainy season in Ethiopia is associated with increased 

exposure to one or more environmental pathogens, not only NDV, as is frequently 

assumed. One of the objectives in undertaking this study was to investigate seasonal 

changes in infection prevalence with a variety of pathogens, by carrying out repeated cross-

sectional surveys before and after the rainy season in two consecutive years. The aim was 

to explore seasonal variation both within and between years. However, if indeed other 

pathogens, which may also show seasonal variation, are also risk factors for infection, then 

this will clearly confound the analysis. The use of generalised linear mixed models, as 

proposed by Fenton et al. (2010) for the analysis of macroparasite data, can account for 

this, but assume a directional relationship between pathogens. For serological surveys 

which measure the host’s adaptive immune response rather than the pathogen itself, a 

positive result does not necessarily represent a current infection. As the order of infection 

is important in determining the immune response to each single infection, and it is thought 

that susceptibility to new co-infections may return to normal soon after the clearance of 

the first infection (Telfer et al., 2010), models which assume a directional relationship are 

unsuited to cross-sectional serological data (Hellard et al., 2012). 

In order to explore possible interactions between infections, we sought a method that did 

not assume a directional relationship and allowed us to combine the different data 

(continuous, count and ordinal) measurements for the range of infections we studied. 

Ordination methods are commonly used in ecology for community analysis: Here they have 

been applied to this community of pathogens, where each bird may be thought of as a 

“site”, which has the potential to be exploited by any of the micro- and macroparasite 

species. Two main techniques were used to explore this data set. Principal component 

analysis (PCA) is an ordination technique which seeks to extract the main trends in the data 

set such that it may be explained by a few linearly uncorrelated principal components, 
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which will be less than or equal to the number of original variables. The main structures in 

the data may then be displayed in a graph(s) constructed from the reduced set of 

orthogonal axes. Graphs, known as biplots, can be scaled according either to the distances 

between sites or the correlations between variables (Zuur et al., 2007). Redundancy 

analysis (RDA) is a canonical ordination technique which combines regression with principal 

component analysis, and thus tests the relationships of a set of explanatory variables to the 

multivariate response data.  

This chapter presents the results of the ordination analyses, whilst Chapter 7 presents a 

more detailed look at the individual distributions of infection measurements and 

incorporates some multivariable regression modelling to test some of the findings from the 

ordination. The work in the two chapters was undertaken as an iterative process, but is 

presented separately, to highlight different aspects of the methods and findings. 

 

6.2 Methods 

The study used data from four cross-sectional surveys carried out between May 2011 and 

November 2012 in two geographically distinct woredas (administrative districts), Horro and 

Jarso, within the Oromia region of Ethiopia. Eight kebeles (small administrative districts, 

roughly equivalent to a ward) were visited on four occasions; in May/June and 

October/November in each year of the study. These visits were timed for before and after 

the main rainy season, which occurs between June and September. Different households 

were selected on each occasion and two chickens in each household were sampled. 

Households which did not own at least two indigenous breed chickens of over 6 months of 

age were excluded from the study. Full details of the selection process can be found in 

Chapter 2. 
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Information on management and disease occurrence over the previous 12 months was 

collected in a questionnaire interview in the local language with an adult member of the 

household. In addition, two chickens of at least 6 months of age were randomly selected 

from the household flock and each underwent clinical examination, was condition scored 

using a 0-3 grading scale (Gregory and Robins, 1998), and was scored for lice using a timed 

count of 3 areas of the body – one side of the keel, the back and the rump - and a total 

count of lice at the base of the flight feathers of one wing and the tail feathers (Clayton and 

Drown, 2001). Birds were also scored for the degree of hyperkeratosis of the legs and feet 

(none, mild or severe), and scrapings were taken to confirm the presence of Cnemidocoptes 

mutans (scaly leg mite). Data on the chickens’ age, origin and current status of production 

was collected from the owner. Blood samples were drawn from the brachial vein of the 

selected birds into sodium citrate and faecal samples were collected from individual birds 

wherever possible; environmental faecal samples were taken to represent the household, if 

individual samples were not forthcoming. All samples were kept chilled and were 

transported to the laboratory for testing. 

Serological testing was carried out for bacterial and viral infections by enzyme-linked 

immunosorbent assays (ELISA). Infectious bursal disease (IBD) virus antibodies were tested 

for using a commercial kit (Flockscreen, x-OvO, Dunfermline, UK), while antibody ELISAs 

were developed in-house for Pasteurella multocida (PM) and Salmonella O9 serotypes, 

using S. Gallinarum (SG) antigen, according to the protocols by Beal et al. (2004); and to 

Marek’s disease virus (MDV) according to the protocol described by Zelnik et al. (2004). A 

full description of all the laboratory methods can be found in Chapter 2. Optical densities 

for all ELISA samples were converted into a ratio to the positive control (s:p ratio) to allow 

comparison of samples tested on different plates, using Equation 6.1.  

          
Mean sample OD - Nega ve control OD

Posi ve control OD – Nega ve control OD
     (6.1) 
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Mixed-effects linear regression was used to control for the variation between plates and 

the bird-level residuals were taken as an estimation of the antibody response. 

Faecal samples were examined for Eimeria spp. oocysts and nematode eggs using a 

modified version of the concentration McMaster technique and identified to genus level 

where possible using published keys (Lapage 1956, Soulsby 1982, Permin and Hansen 

1998). Only the most common egg types, which could be attributed to nematodes of the 

Ascaridida order Ascaridia galli or Heterakis gallinarum, were counted. These eggs were 

counted as a single group, as it was not possible to accurately differentiate the two species. 

Although other types of nematode eggs were seen in low numbers, there were no other 

frequently occurring species. Cestode eggs were also counted, but were not speciated. 

Analyses were performed using R software (R Development Core Team, 2008) using the 

vegan package (Oksanen et al., 2011), and according to the methods described by Borcard 

et al. (2011). A matrix of response variables was constructed from the ELISA s:p ratios for 

the viral and bacterial pathogens (IBD, PM, SG and MDV); counts of the three parasites 

(Ascaridida, Eimeria and lice) and the hyperkeratosis grading. In order to make all response 

variables dimensionally homogeneous, each variable was scaled by centring values on the 

mean and dividing by the standard deviation. This ensured additional weights were not 

given to the parasites with a larger range of values and fulfils one of the basic requirements 

for application of PCA. In order to test whether the results were features of the data 

(different data types, presence of outliers), data were re-analysed following a number of  

prior transformations, including log transformations of the ELISA s:p ratios, square root 

transformations of the individual parasite count data, and Hellinger transformations of the 

parasite count matrix. In addition, data were re-analysed following dichotomisation. The 

IBD ELISA was dichotomised using the manufacturer’s recommended cut-off (0.306). The 

range of s:p ratios to the ELISA tests developed in-house did not demonstrate clear cut-off 
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points, and sufficient negative sera were not available to confidently determine positive 

cut-offs for these tests. A small panel of sera from birds with known exposure to vaccines 

or experimental infection were used to determine a conservative cut off value for each test 

which would still detect all known positives. Cut-off values chosen were 0.34, 0.61 and 0.29 

for SG, PM and MDV, respectively. The analyses were also run with preselected cut-offs of 

both 0.3 and 0.5 for these three ELISAs. Presence / absence was used to dichotomise the 

parasite counts and hyperkeratosis. 

Initially, an unconstrained PCA was carried out on the matrix to identify correlations 

between parasites; a second matrix of explanatory variables, including household data and 

bird signalment, was then incorporated using RDA. A category “production status” was 

used to combine data on sex and the current state of production (in lay, not in lay, 

brooding eggs, rearing chicks or male). Each centred response variable was regressed on 

the explanatory variables and the fitted values combined in a matrix. PCA of the fitted 

values produced canonical eigenvalues and a matrix of canonical eigenvectors, used to 

calculate the coordinates of the sites (chickens), either in the space of the original response 

variables, or in the space of the explanatory variables (i.e. on the fitted response variables). 

The residual values from the multiple regressions were also submitted to a PCA to obtain 

an unconstrained ordination of the residuals.  

The adjusted R2 value was used to test whether the inclusion of explanatory variables was a 

significantly better fit than the null model, and a forward selection process was used to 

select those significant variables which explained the greatest proportion of the variance in 

the response data (Borcard, 2011). Permutation tests were used to test how many RDA 

axes explained a significant proportion of the variation. The Kaiser-Guttman criterion, 

which compares each axis to the mean of all eigenvalues, was applied to unconstrained 

axes, to determine those which explained variation of interest. Biplots and triplots were 



Chapter 6 | Infection interactions in Ethiopian village chickens 

 

  
216 

 
  

produced, scaled according either to the distances between observations (scaling 1 in the 

vegan package) or the correlations between variables (scaling 2). 

 

6.3 Results 

A total of 1056 birds, 532 from the Horro region and 524 from the Jarso region, were 

included in the analysis. All birds were found to be in reasonable health at the time of 

sampling, with only a very few displaying any clinical signs which may have been 

attributable to the diseases of interest. As only 9 birds over all four seasons of testing were 

found to be serologically positive for NDV antibodies (HAI titre of 16 or greater) this disease 

was not included in the ordination analyses. Cestode counts were not included in the PCA 

analysis, as there was some concern that the test sensitivity may have altered over time. All 

other infections were present in each village and at each sampling season with the 

exception of IBD, where no positive birds were found in one Jarso village at any time point, 

and seropositive birds were detected in only three villages in Horro during the second year 

of sampling 

Using the manufacturer’s cut-off of 0.306, 3.6% of birds tested positive to IBD. Using the 

chosen cut-off values of 0.34, 0.61 and 0.29 for Salmonella, Pasteurella and MDV, 

respectively gave corresponding estimated seroprevalence of around 86%, 69% and 32% 

for the study samples, with only minor fluctuations between different villages and seasons. 

However, some birds demonstrated OD values far in excess of the positive controls. The 

parasitic diseases were also present in all villages at each time of sampling, with overall 

detection prevalence of 17%, 56% and 34% for Ascaridida, Eimeria spp. and lice 

respectively. Birds showed considerable variation in the intensity of infection. Signs of 

hyperkeratosis were seen in 41% of birds; its identification was strongly associated with a 

positive identification of scaly leg mites from a skin scrape (McNemar’s test, p<0.01).  
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Correlations between the infections were examined using scatterplots and correlation 

coefficients (Figure 6.1). On the whole, there was very low correlation between any of the 

pairs of variables. Salmonella and Pasteurella shared the highest coefficient of correlation 

(r=0.3), but the majority of birds did not display high antibody titres / parasite counts to 

more than one pathogen. There were no negative correlations identified. 

 

 

Figure 6.1   Correlations between disease variables 
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6.3.1 Principal component analysis 

After constructing the correlation matrix of responses to each infection, principal 

component analysis was used to explore the variation in the scaled dataset (shown in 

Appendix 6.1). Regardless of the prior data transformation used, this suggested that three 

axes represented interesting variation in the data (using the Kaiser-Guttman criterion), and 

the other axes displayed essentially random variation. However, the first three axes 

represented less than 50% of the variation, accounting for 17.0%, 14.7% and 13.2 % (total, 

44.9%) respectively on the untransformed data (Figure 6.2). Figure 6.3 shows that the 

majority of the data points are intermediate in all variables, with a relatively small number 

of birds spread out by the three axes. 

 

 

 

 

 

Figure 6.2    Variation in the dataset represented by the PCA axes 
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The first axis principally represents the variation contributed by the Salmonella and 

Pasteurella titres, which, as shown in the biplots, make up one group of correlated 

variables (Figure.6.3). The majority of the second axis consists of the variation added by 

scaly leg mite, MDV, Eimeria and, to a lesser extent, lice.  This second group of correlated 

variables is approximately orthogonal to the first group, indicating almost no correlation 

between these groups. Lice counts and IBD titre are negatively correlated and form the 

principal part of the variation represented by the third axis; lice have a low positive 

correlation with scaly leg and Pasteurella. Ascaridida principally contribute to the fourth 

(non-significant) axis, and has some correlation with Eimeria and IBD. 

Analyses following other data transformations showed similar overall groupings, although 

binarisation emphasised negative correlations between scaly leg and both IBD and Eimeria 

(Figure 6.4); whilst Hellinger transformations gave more weight to the distances between 

the three transformed parasite counts and highlighted negative correlations between 

Eimeria and lice intensity, and between Ascaridida and scaly leg (Figure 6.5). All PCA’s 

illustrated a strong correlation between Salmonella and Pasteurella which consistently 

contributed the 1st principal component and therefore the greatest variation in the data.  
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Figure  6.3    Biplots of principal components (scaling 2) showing correlations between variables. 

Note that correlation is indicated by the angles of the vectors, rather than the apices of the arrows. 

Labels a-c) correspond to the 3-dimensional views shown above. 
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Figure 6.4   Biplots after dichotomisation of the response data 

 

Figure 6.5   Biplots after Hellinger transformation of the parasite data 

 

 

6.3.2 Constrained ordination 

 

  A forward selection process identified the following explanatory variables for inclusion in 

the RDA model (shown in Appendix 6.2): bird production status and weight; and at the 

household level, the use of chemical sprays for parasite control and whether the household 

had had any recent outbreaks of disease in their chicks or growing birds. Variables which 

were tested but not deemed to significantly improve model fit included the season in which 
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the household was sampled, the village or region, body condition, age of the bird, and 

where the bird had come from. 

Although significant, the explanatory variables accounted for only a very small proportion 

of the total variation in the dataset (adjusted R-squared value 0.030), and a permutation 

test of these axes suggested that 3 of them described significant variation. However, when 

the household-level variation was partialled out from the model by fitting this as a fixed 

effect prior to fitting other explanatory variables (the permutation tests used preclude this 

variable from being fitted as a random effect), this explained around 59% of the variation in 

disease responses, and left only bird weight and production status as significant bird-level 

explanatory variables, and only two significant RDA axes (Figure 6.6). Appendix 6.3 shows 

the full RDA results.  

 

Figure 6.6  Triplots showing the relationships between response and explanatory variables between 

the first two canonical axes. Angles between variables reflect their correlations. Solid lines represent 

pathogens (outcomes); dashed lines represent the explanatory variables. 
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Some relationships were evident between variables: Male birds were positively correlated 

with lice infestation but negatively with Salmonella, and MDV was also correlated more 

with males and/or birds with heavier weights. Higher Pasteurella titres were observed in 

females which were either rearing chicks or not in production. Households reporting recent 

deaths in chicks appeared to have birds with greater Ascaridida shedding, but also this 

variable appeared correlated with the use of household sprays to control parasites. Scaly 

leg was also associated with households which were using sprays in the housing to treat 

parasite infestations. Neither the season, nor the sampling cohort explained a significant 

proportion of variation in the infection responses, and nor did the village or region. 

The residuals from the multiple regressions were also subjected to an unconstrained PCA. 

The Kaiser-Guttman criterion suggested 4 axes may be required to represent the residual 

variation of interest in the data, and the groupings of the disease variables remain much as 

they were before. Salmonella and Pasteurella still maintained a positive correlation, even 

after accounting for the measured explanatory variables they have in common. Lice, MDV 

and scaly leg also maintained their previous cluster, although Eimeria became more distant 

from this group. 

 

6.4 Discussion 

Multiple micro- and macroparasites were circulating within the apparently healthy adult 

village chicken population in Ethiopia. However, identifying potential interactions between 

parasites and testing the strength of these associations, especially when the order of 

infection is unknown, remains a complex issue. The use of ordination methods was found 

to be a useful exploratory tool with this dataset, and appeared to be robust to the 

combination of different types of response data (ordinal scores, counts and serological 

titres).  
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PCA does not require normally distributed variables, but in community ecology count data 

are frequently transformed (e.g. Hellinger or chord transformations) in order to reduce the 

effect of large counts and to eliminate the apparent correlation of sites with double zeroes, 

(i.e. where two species may be absent, but for different reasons; Zuur et al. 2007). 

However, we did not find any advantage to using the Hellinger transformation with our 

parasite data. Because this transformation gives a Euclidean distance in the space of each 

site’s (i.e. bird’s) total parasite abundance, standardising the data gave a large weight to 

the difference between 0 and 1 parasite, but no difference to the difference between 1 and 

60 parasites, if the other parasites were held constant. Since parasite intensity is important 

for bird health, it was decided that total burden should not be lost from the analysis. In 

addition, the test methods used for detecting parasite infection are not especially sensitive 

and the data is likely to contain a number of false negatives. The serological data, being 

already continuously distributed, did not require prior transformation to avoid the issue of 

double zeroes, and log transformations or dichotomisation to reduce the impact of outlying 

values resulted in relatively minor differences to the main components. In an analysis of 

river water quality variables, Cao et al. (1999) suggested transforming data to give 

weightings to observations which were outside the normal range of each variable, in order 

to give more biological relevance to the analysis. The untransformed scaled data 

maintained the distances between those birds whose infection measurements may be 

considered outliers from the general population. Since these may be of most interest, 

either in terms of their immune response and infection tolerance or because they are likely 

to be significant contributors to pathogen spread in this population, analysing and 

presenting the scaled untransformed data appeared to be of most value in this context.    

The results of the ordinations show some interesting groupings of pathogens which may 

warrant further investigation. These correlations were maintained even after in-common 

measured risk factors were accounted for, and even after accounting for the effect of farm, 
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which might explain common exposures due to management. Therefore it would appear 

that either there are some attributes of the birds themselves which dictate the set of 

pathogens they harbour, or certain pathogens increase the risk of infection/exposure to 

others, resulting in the observed correlations.   The closest correlation was seen between 

Salmonella and Pasteurella measurements: as both of these were measured by ELISA, this 

may be a reflection of individual’s ability to mount an adaptive immune response. The 

higher antibody titres were correlated with being female, and Pasteurella titres showed a 

particular correlation with females which were rearing chicks. Salmonella Pullorum 

infections have been shown to recrudesce at the onset of lay in females, with the increase 

in bacterial numbers triggering a subsequent increase in antibody titres (Wigley et al., 

2005). However, this increase in bacterial numbers does not occur in carrier males at the 

onset of sexual maturity. In females, sexual maturity corresponds with a decrease in T-cell 

proliferation (Wigley et al., 2005); therefore it is plausible that the reproductive demands 

placed on females may increase pathogen load, not just of Salmonella but of other chronic 

or frequently encountered infections. It is also possible that there is some other 

unmeasured risk factor in common, such as different male and female behaviours, which 

increases exposure to these pathogens, and hence antibody titres. Although all birds in our 

study were unconfined and scavenged freely, some cocks were observed to roam for some 

distance, whilst hens, especially those with chicks, tend to stay close to the homestead. 

This may give different rates of contact with chronically infected birds, which are thought 

to be the major route of transmission of both Salmonella and Pasteurella infections.  

The second clustering of diseases grouped MDV loosely with Eimeria, and MDV also 

showed a positive correlation with lice counts and scaly leg scores. MDV would be expected 

to negatively impact the immune response through lymphocyte depletion, and previous 

findings have demonstrated that MDV-infected birds are less able to clear Eimeria 

infections (Biggs et al., 1968). The antibody titre to MDV is indicative of exposure, but it is 
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unclear as to how it relates to the extent of disease, as it is primarily a cellular immune 

response which regulates the latent phase of this viral infection. Birds with the highest 

titres tended to have low to moderate oocyst counts, and birds with very high oocyst 

shedding tended to have moderate MDV antibody titres (results not shown). However, a 

cellular immune response is also important in controlling Eimeria, and it may be that birds 

tolerating MDV infections are also able to moderate Eimeria infections to a certain extent, 

but not necessarily clear them as effectively as an MDV-uninfected bird. This grouping of 

diseases was most closely associated with male birds and/or heavier birds in the RDA. 

Males infected with MDV are less susceptible to the development of tumours (Payne and 

Venugopal, 2000), and in other avian species larger body sizes have been shown to 

correlate with greater abundances of lice (Møller and Rózsa, 2005); therefore it may be 

that males are simply tolerating these infections better, whilst females are more likely to 

succumb. 

There was a large group of birds which were not spread out by the ordination analyses. 

Salmonella and Pasteurella antibody distributions were positively-skewed, with the cut-off 

value falling well below the mean (this will be further explored in Chapter 7). High antibody 

titres against Salmonella O9 serotypes are thought to be in response to S. Pullorum, 

allowing establishment of a carrier state (Chappell et al., 2009); this may be the reason 

behind the occurrence of a low number of birds with antibody levels far in excess of our 

positive control. The more moderate levels of antibody titres may represent exposure to S. 

Enteritidis. Pasteurella multocida is also capable of establishing a carrier state, although the 

mechanisms and the immune response to this bacterium remain largely unstudied in 

poultry. This clustering of birds, which were intermediate in all antibody measurements, 

may therefore suggest that most of these birds have been exposed to Salmonella and 

Pasteurella, but are probably not chronically infected, and are negative for IBD and MDV 

and all parasites. This group of birds is challenging to interpret; low antibody titres may 
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mean that birds have not been exposed, were infected too long ago to detect the response 

or simply have a poor immune response, possibly as a result of another 

immunosuppressive or immune-modifying infection. For the parasite species that we 

measured more directly, a negative count may again mean a bird has not been exposed, or 

has been previously infected and cleared the infection.   

As illustrated by the number of axes required to explain the residual variation in disease 

responses, there were almost no birds which had high responses / counts to more than one 

pathogen group. This finding was also confirmed using the dichotomised data, which 

suggested that fewer birds were infected with, for example, Salmonella and lice than would 

be expected under an assumption of independence (data not shown). This may in part be 

due to other opposing and mutually exclusive risk factors, such as sex, in that higher lice 

burdens are associated with males, but females tend to have higher Salmonella titres. 

Although including household as a partial fixed effect in the RDA then prohibited the 

inclusion of variables measured at the household or village level, it did illustrate the 

significant contribution of household to many of the disease responses, suggesting that 

either there are some important, unmeasured, household factors or that exposure to these 

diseases at any single time point varies significantly even within a village. This may be due 

to geographical and management factors, but may also be due to the relatedness of birds 

in the same household giving them similar immune characteristics. The scarcity of co-

positive birds may be due to a lack of synchronicity between infections. It is also possible 

that birds recently infected with two pathogens in a short time period, where we may 

expect both a high antibody titre and a high parasite burden, frequently do not survive to 

be measured, hence the lack of these in this dataset. In order to investigate many of these 

hypotheses, longitudinal studies are required; however, the ordination analyses has proved 

useful in the generation of these hypotheses, and in illustrating some potential 
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associations, both positive and negative, between different types of pathogens, even with 

very different types of measurement used. 

The very low proportion of variation for which the explanatory variables accounted might 

suggest that other factors are more important in determining birds’ responses to the 

various diseases of interest. The fact that neither season nor sampling cohort contributed 

significantly to the variation may suggest that there is no strong association of any of these 

diseases with the rainy season, although this analysis did not allow the fitting of 

interactions between explanatory variables. As demonstrated in Chapter 5, there were 

differences between regions, villages and even households as to the outcomes for birds in 

the rainy season. It is probable that disease measures may similarly vary, and this will be 

further explored in the next chapter. However, it is clear from this analysis that there are 

some relationships between infections which need to be controlled for when analysing 

other risk factors for the infection data. 

The presence of multiple interacting pathogens in these regions has implications for 

interventions to improve chicken health and production in Ethiopia. For example, 

programmes aiming for genetic improvement of indigenous stock by selective breeding 

(Dana et al., 2011) need to be aware of the range of infectious diseases to which village 

chickens are exposed, and be careful not to lose important protective immune traits from 

the population. Our results would suggest that certain birds are better at tolerating specific 

pathogen types, and so maintaining diversity at the population level is likely to be 

important under the current production system. The impact of these multiple infections in 

the village chicken population is likely to be of greatest significance within the young stock 

that families rear for replacements, sale or consumption, and which generally mix freely 

with the adult population. The observed correlation between birds with high Ascaridida 

counts and households which had had recent deaths in their chicks may suggest that 
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nematodes are of particular significance for this age group, allowing targeted interventions 

to be considered. However, as demonstrated in other systems (Nacher, 2011), 

interventions such as de-worming could, whilst controlling for one pathogen, have 

implications for the infection biology and epidemiology of others; therefore any 

intervention undertaken in this population should carefully monitor any effects on other 

diseases, especially those with zoonotic implications.  
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Appendix 6.1  Principal components analysis of variance in disease outcomes  

 
 
Partitioning of correlations: 

              Inertia Proportion 

Total               8          1 

Unconstrained       8          1 

 

Eigenvalues, and their contribution to the correlations  

 

Importance of components: 

                   PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8 

Eigenvalue         1.356 1.165 1.051 1.003 0.956 0.917 0.863 0.6859 

Prop. Explained   0.169 0.145 0.131 0.125 0.119 0.114 0.107 0.0857 

Cumulative Prop.  0.169 0.315 0.446 0.571 0.691 0.806 0.913 1.0000 

 

Scaling 2 for species and site scores 

* Species are scaled proportional to eigenvalues 

* Sites are unscaled: weighted dispersion equal on all dimensions 

* General scaling constant of scores:  9.783041  

 

 

Species scores 

 

              PC1      PC2      PC3      PC4     PC5     PC6 

AdjIBD    1.49172 -0.18750 -1.64275  0.52879  1.8596  0.6610 

AdjPM     2.47948 -0.54839  0.76631 -0.69760 -0.3597 -0.1293 

AdjSal    2.72670 -0.03201  0.03846 -0.05843 -0.4438 -0.2663 

AdjMDV   -0.50099 -1.91311 -0.65386 -0.81159  1.4942 -1.9715 

Coccidia -0.17364 -1.79034 -1.36871  1.43362 -0.6541  1.4861 

AscType  -0.29059 -0.36638 -1.36809 -2.81782 -0.8659  1.0169 

LiceTot  -0.22939 -1.25094  2.17937 -0.59738  1.4402  1.7073 

Cnemido  -0.02846 -2.24605  0.60680  0.46791 -1.4733 -0.6419
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Appendix 6.2  Redundancy analysis 

 
 

Partitioning of variance: 

              Inertia Proportion 

Total          8.0000    1.00000 

Constrained    0.2653    0.03316 

Unconstrained  7.7347    0.96684 

 

 

Eigenvalues, and their contribution to the variance  

 

Importance of components: 

                   RDA1   RDA2  RDA3  RDA4  RDA5   RDA6   RDA7    

Eigenvalue       0.1667 0.0446 0.0251 0.0180 0.00599 0.00347  0.0016 

Prop. Explained  0.0208 0.0055 0.0031 0.0022 0.00075 0.00043  0.0002  

Cumulative Prop. 0.0208 0.0263 0.0295 0.0317 0.03252 0.03296  0.0331     

 

   PC1   PC2   PC3   PC4   PC5   PC6   PC7     PC8 

Eigenvalue    1.2833 1.145 1.023 0.987 0.919 0.896 0.813 0.6659 

Prop. Explained    0.1604 0.143 0.127 0.123 0.114 0.112 0.101 0.0832 

Cumulative Prop.   0.1936 0.336 0.464 0.588 0.703 0.815 0.916 1.0000 

 

 

Accumulated constrained eigenvalues 

Importance of components: 

                    RDA1   RDA2   RDA3   RDA4    RDA5    RDA6   RDA7 

Eigenvalue         0.166 0.0441 0.0251 0.0180 0.00599 0.00347 0.0016 

Prop. Explained    0.628 0.1664 0.0949 0.0680 0.02260 0.01308 0.0061 

Cumulative Prop.   0.628 0.7951 0.8901 0.9582 0.98081 0.99389 1.0000 

 

Scaling 2 for species and site scores 

* Species are scaled proportional to eigenvalues 

* Sites are unscaled: weighted dispersion equal on all dimensions 

* General scaling constant of scores:  9.5712  

 

 

Species scores 

 

               RDA1   RDA2   RDA3    RDA4    RDA5     RDA6 

Cnemido         -0.313  0.425 -0.169 -0.1437  0.1583  -0.0273 

AdjIBD           0.197  0.084 -0.174  0.1229 -0.0066   0.1053 

AdjPM               0.506 -0.321 -0.253 -0.2787 -0.0075  -0.0365 

AdjSal            0.794  0.195 -0.140  0.0784 -0.0324   0.0109 

AdjMDV          -0.440 -0.235  0.071 -0.1438  0.0496   0.1132 

Coccidia         0.208 -0.014  0.241 -0.0125  0.0255  -0.0925 

AscType            0.113  0.346  0.167 -0.2558 -0.1386   0.0438 

LiceTot        -0.796  0.019 -0.231  0.0281 -0.1417  -0.0559 

 

                         RDA1   RDA2    RDA3    RDA4    RDA5    RDA6 

Chicks        0.1733 -0.346 -0.5443 -0.5408 -0.4313 -0.2297 

In lay           0.5908  0.391  0.3817  0.0970  0.0843 -0.2327 

Non-productive         0.2820 -0.479  0.2712  0.0166  0.1108  0.5685 

Male        -0.9593  0.119 -0.0332  0.1635  0.0174  0.0185 

Outbreak (Chicks)     -0.0511  0.495  0.1143 -0.0456 -0.7976  0.2532 

Outbreak (Growers)     0.1252  0.232 -0.4662  0.4660 -0.3741  0.5704 

Parasite Spray        -0.0772  0.484 -0.2203 -0.5732  0.3360  0.5111 
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Appendix 6.3 Redundancy analysis conditioned on household 

 
 

Partitioning of variance: 

              Inertia Proportion 

Total          8.0000    1.00000 

Conditioned    4.7084    0.58855 

Constrained    0.1514    0.01893 

Unconstrained  3.1402    0.39252 

 

Eigenvalues, and their contribution to the variance  

after removing the contribution of conditiniong variables 

 

Importance of components: 

                         RDA1    RDA2     RDA3     RDA4     RDA5     

Eigenvalue            0.11335 0.02443 0.008658 0.003467 0.001497  

Prop. Explained       0.03444 0.00742 0.002630 0.001050 0.000450  

Cumulative Proportion 0.03444 0.04186 0.044490 0.045540 0.046000  

 

  PC1   PC2   PC3   PC4   PC5   PC6    PC7    PC8 

Eigenvalue        0.513 0.494 0.479 0.433 0.355 0.316 0.2796 0.2678 

Prop. Explained   0.156 0.150 0.145 0.131 0.107 0.096 0.0849 0.0813 

Cumulative Prop.  0.202 0.352 0.498 0.629 0.737 0.833 0.9186 1.0000 

 

 

Accumulated constrained eigenvalues 

Importance of components: 

                        RDA1    RDA2     RDA3     RDA4     RDA5 

Eigenvalue            0.1134 0.02443 0.008658 0.003467 0.001497 

Proportion Explained  0.7487 0.16138 0.057180 0.022900 0.009890 

Cumulative Proportion 0.7487 0.91003 0.967210 0.990110 1.000000 

 

Scaling 2 for species and site scores 

* Species are scaled proportional to eigenvalues 

* Sites are unscaled: weighted dispersion equal on all dimensions 

* General scaling constant of scores:  9.5712  

 

 

Species scores 

 

                 RDA1    RDA2    RDA3     RDA4     RDA5     PC1 

Cnemido    -0.333 -0.1987  0.1232 -0.11621 -0.02961 -0.1889 

AdjIBD         0.129  0.0211  0.0652  0.10078  0.04032 -0.4937 

AdjPM        0.472 -0.4032 -0.1057  0.03228 -0.02084 -1.5627 

AdjSal        0.485 -0.1228  0.1155 -0.00723  0.00187 -1.4222 

AdjMDV     -0.402 -0.1287 -0.1655 -0.04677  0.07148  0.0251 

Coccidia      0.300 -0.0127  0.0299 -0.03497  0.07831  0.1452 

AscType       0.191 -0.0225  0.1204 -0.04570  0.05171  0.8157 

LiceTot     -0.649 -0.2119  0.1111  0.09718  0.01673 -0.6733 

 

                      RDA1    RDA2    RDA3     RDA4    RDA5   PC1 

Chicks     0.129 -0.2909 -0.0504   0.4611  -0.2116    0 

In Lay              0.476  0.0569  0.3271   0.0147   0.3524    0 

Non-productive       0.296  0.0908 -0.5275  -0.2077  -0.0860    0 

Male              -0.807 -0.0186  0.0999  -0.0439   0.1050    0 

Bird Weight         -0.357 -0.3905  0.0991  -0.2751   0.1178    0 
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7.1 Introduction 

Worldwide, the significance of Newcastle disease virus (NDV) as a major constraint to 

village chicken production is well recognised, and the benefits of vaccination, as a cost-

effective intervention, have been demonstrated in 13 different African countries (Dwinger 

and Unger, 2006). In Tanzania and Mozambique, effective NDV control programmes have 

resulted in increased chicken numbers and subsequent increases in households’, and 

particularly women’s, purchasing and decision-making powers (Alders and Pym, 2009). 

However, as Bell (2009) remarks, the key to effective disease control is to know which 

diseases are prevalent in the area before starting. 

In Ethiopia, whilst control programmes for NDV in village chickens are still in their infancy, 

there has been a growing interest in recent years. One study by Nega et al. (2012) in 

Ethiopia estimated that NDV thermostable vaccines reduced chicken mortality by 82%. 

Although likely to be of benefit, control strategies for NDV may not have such a high impact 

universally. As demonstrated by the wide range of reported seroprevalence values in 

Ethiopia (Zeleke, 2005b; Tadesse et al., 2005; Regasa et al., 2007; Mazengia et al., 2010; 

Chaka et al., 2012), which range from 6 – 64%, exposure to the virus varies widely, and 

disease may occur both endemically and as epizootic outbreaks. This pathogen’s 

epidemiology is complicated by circulating lentogenic and avirulent strains, seasonality and 

a wide range of risk factors (Martin, 1991; Awan et al., 1994). In Tanzania, Komba et al. 

(2012) reported continued undiagnosed disease outbreaks in chicks and growers despite 

achieving good vaccine coverage with a thermostable NDV vaccine, suggesting other 

diseases also needed to be controlled.  

A number of other potential pathogens, including infectious bursal disease virus, 

Salmonella enterica serovars Gallinarum and Pullorum, Pasteurella multocida, Mycoplasma 
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gallisepticum, Eimeria, helminths and ectoparasites have all been reported in rural village 

chickens in Ethiopia (Ashenafi et al., 2004b; Belihu et al., 2009; Tolossa et al., 2009; Degefu 

et al., 2010; Berhe et al., 2012; Berihun et al., 2012; Chaka et al., 2012; Jenbreie et al., 

2012; Molla et al., 2012; Zeryehun and Fekadu, 2012; Luu et al., 2013). Even in the absence 

of reported large outbreaks, we have found in some kebeles that mortalities attributed to 

disease occurred in approximately 30% of adult chickens within 6 months of recruitment 

(Chapters 4 and 5). Nevertheless, in Ethiopia, the majority of mortalities among village 

chickens tend to be attributed to “fengele”, a syndromic description which is often 

mistranslated as Newcastle disease. A potential concern, therefore, is that, should any 

vaccination programmes for NDV be implemented in future, these may not meet local 

people’s expectations for reducing (the multi-factorial) mortality unless it is made clear that 

a number of other pathogens are also likely to be of significance. Furthermore, it was also 

noted (Chapters 4 and 5) that there was considerable variation in disease mortality 

between geographic areas, so the impact of vaccination may be expected to vary in space, 

and possibly in time. 

 

7.1.1 Seasonal patterns of disease 

The importance of seasonal climate factors on pathogens may be direct, in that cooler, 

wetter conditions are likely to promote the survival and spread of many pathogens in the 

environment. A number of pathogens survive better in cool, moist environments, including 

the influenza and NDV viruses and the protozoan parasite, Eimeria (Martin, 1991; 

McDougald, 2003; Swayne and Halvorson, 2008). Airborne spread of respiratory viruses 

such as influenza on water droplets is greatly affected by ambient temperature and relative 

humidity in temperate climates (Fuhrmann, 2010). For parasitic diseases, the long dry 

season can impede the development of nematode larvae (Weaver et al., 2010) and 

seasonal fluctuations in rainfall and temperature may alter the abundance or behaviour of 
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invertebrate intermediate hosts. Indirect effects of climate on disease may also be 

occurring. Additional stresses may be placed on the host with the change in season, making 

them more susceptible to infections, or contact rates may vary seasonally. In Ethiopia, feed 

tends to be scarcer during the rainy season, placing birds under nutritional stress, and 

potentially forcing them to travel further in order to scavenge enough feed, thus increasing 

direct or indirect contacts with other birds. Cold or heat stress, seasonal breeding and 

increased movement of birds through markets associated with holiday periods are also 

factors which can contribute to seasonal patterns of disease (Awan et al., 1994). 

Seasonality of disease is well recognised in village chickens, associated with the rainy 

season in Ethiopia (Dessie and Ogle, 2001; Halima et al., 2007), but often associated in 

other countries with hot and dry or hot and humid seasons (Awan et al., 1994). Despite this 

well-recognised temporal variation, most knowledge of the infectious agents present is 

based on cross-sectional studies to assess prevalence or seroprevalence, and little account 

is taken of the timing of the survey. For studies which have tried to investigate seasonal 

effects, only a limited number of pathogens have so far been considered. One study in 

Tanzania has reported increasing seroprevalence and antibody titres to Newcastle disease 

from June to October in village chickens, and a corresponding increase in the number of 

virus isolates (Yongolo et al., 2002). A small study in Kenya reported higher NDV antibody 

titres in the wet compared to the dry season, but only 24 birds, selected purposively, were 

sampled at each time point (Kemboi et al., 2013). In Ethiopia, in their survey of village birds 

bought in markets, Chaka et al (2012) reported that birds were seropositive to significantly 

more diseases in the rainy season. This appeared to be predominantly due to an increase in 

seropositivity to Mycoplasma gallisepticum, as they also reported finding no significant 

difference in the seroprevalence of IBD, Pasteurella or NDV between seasons. In a survey of 

household flocks, there was found to be a higher NDV seroprevalence and virus detection 

in the dry season (Chaka, 2013b).  
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The effect of climate on macroparasite distributions in village chickens has primarily been 

studied by making comparisons between different agro-ecological zones (e.g. high- and 

low-altitude), but results are conflicting (Eshetu et al., 2001; Tolossa et al., 2009; Molla et 

al., 2012). Similarly, infection prevalence of the protozoan parasite Eimeria has been 

compared between high and low altitude situations in Ethiopia (Ashenafi et al., 2004a) and 

Kenya (Kaingu et al., 2010), but with conflicting results. One study in Tanzania found that 

burdens of the nematode Capillaria increased with progression of time during a single rainy 

season, but did not study birds in the dry season, nor investigate whether this was 

consistent between years (Magwisha et al., 2002). A second study in Tanzania found some 

seasonal differences in both prevalence and burden of selected nematodes, but also found 

that these patterns varied between different climatic zones (Permin et al., 1997). It has 

been suggested that this may be due to differences in the optimal climatic conditions for 

survival for free-living stages or intermediate hosts, which vary between different parasite 

species. 

In light of the association frequently reported between disease mortalities and the main 

rainy season in Ethiopia (Dessie and Ogle, 2001; Halima et al., 2007; Dinka et al., 2010), the 

more frequent reporting of disease during the months of the rainy season by farmers at our 

study sites (Chapter 4) and the higher numbers of birds lost to disease during follow-up 

over the rainy season at one of our sites (Chapter 5), we wished to better understand the 

seasonal dynamics of the pathogens in the adult chicken populations. We hypothesised 

that the increased mortalities in the Horro region compared to the Jarso region, and the 

increased mortalities in Horro in the rainy season may be associated with an increase in 

exposure to one or more specific pathogens, which may be detectable at the population 

level.  
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Specific questions we wished to answer were: 

1. Are there geographical differences in exposure to pathogens, which may be 

contributing to higher disease mortality in Horro compared to Jarso, and to 

variation in disease mortality between the Horro kebeles? 

2. Are there seasonal differences in exposure to pathogens, which may contribute to 

the observed higher mortality, particularly in Horro in the rainy season? 

3. Are there other seasonal household risk factors such as changes in feed, contacts, 

or housing which alter the risk of infection? 

 
The pathogens to be investigated were chosen based on knowledge of what was likely to 

be important in backyard flocks, and to represent a range of pathogen types. Naturally it is 

not a complete list of all the diseases which may be affecting the population, but the 

pathogens chosen interact with a variety of immune system components, and in addition 

are some of those which are thought to be the most likely to cause mortality in village 

chickens.  

 
 

7.2 Methods 

The study used data from four cross-sectional surveys carried out between May 2011 and 

November 2012 in two geographically distinct woredas (administrative districts), Horro and 

Jarso, within the Oromia region of Ethiopia. Eight kebeles (small administrative districts, 

roughly equivalent to a ward) were visited on four occasions; in May/June and 

October/November in each year of the study. These visits were timed for before and after 

the main rainy season, which occurs between June and September. Different households 

were selected on each occasion and two chickens in each household were sampled. 

Households which did not own at least two indigenous breed chickens of over 6 months of 
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age were excluded from the study. Full details of the selection process can be found in 

Chapter 2. 

Information on management and disease occurrence over the previous 12 months was 

collected in a questionnaire interview with an adult member of the household, normally 

either the household head or the main carer for the chickens. In addition, two chickens of 

at least 6 months of age were randomly selected from the household flock and each 

underwent clinical examination, was condition scored using a 0-3 grading scale (Gregory 

and Robins, 1998), and was scored for lice using a timed count of 3 areas of the body – one 

side of the keel, the back and the rump - and a total count of lice at the base of the flight 

feathers of one wing and the tail feathers (Clayton and Drown, 2001). Birds were also 

scored for the degree of hyperkeratosis of the legs and feet (none, mild or severe), and 

scrapings were taken to confirm the presence of Cnemidocoptes mutans (scaly leg mite). 

Data on the chickens’ age, origin and current status of production was collected from the 

owner. Blood samples were drawn from the brachial vein of the selected birds into sodium 

citrate and faecal samples were collected from individual birds wherever possible; 

environmental faecal samples were taken to represent the household, if individual samples 

were not forthcoming. All samples were kept chilled and were transported to the 

laboratory for testing. 

Serological testing was carried out for bacterial and viral infections by enzyme-linked 

immunosorbent assays (ELISA). Testing for Infectious bursal disease virus antibodies was 

performed using a commercial kit (Flockscreen, x-OvO, Dunfermline, UK), while antibody 

ELISAs to Salmonella O9 serotypes, Pasteurella multocida and Marek’s disease virus were 

developed in-house. Full details of all these tests can be found in Chapter 2. Samples were 

tested in triplicate wherever possible, or in duplicate when reagents became limited. 
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Samples with high variation between replicates were retested. Positive and negative 

controls were run on each plate.  

The test for Marek’s disease virus required that samples be tested against lysates of both 

virus-infected and uninfected chicken kidney cells; the optical density (OD405) against the 

uninfected cell lysate was then subtracted from the OD405 against the infected lysate to give 

a net value which was used in further calculations. Samples with a net value greater than 3x 

the standard deviation of the net values (after accounting for the effect of the different test 

plates) of were deemed to be cross-reacting to the cells in which the virus was grown and 

were discarded from further analyses. 

Optical densities for all of the ELISA samples are converted into a ratio to the positive 

control (s:p ratio), using the formula; 

 
Mean sample OD-Nega ve control OD

Posi ve control OD –Nega ve control OD
                   Formula 7.1 

We have elected to work with the continuous data when trying to make comparisons in 

disease patterns, as the dichotomisation of the data may result in the loss of potentially 

valuable information. For the serological measurements, we have no clear cut-off value for 

the laboratory-developed tests to discriminate positive and negative samples, because we 

had no “gold standard” test or enough samples with a known infection status with which to 

compare our results. The range of s:p ratios to the ELISA tests developed in-house did not 

demonstrate clear cut-off points, and sufficient negative sera were not available to 

confidently determine positive cut-offs for these tests. However, in order to produce some 

estimates of prevalence, it was desirable to have some approximate cut-off values. A small 

panel of sera from birds with known exposure to vaccines or experimental infection were 

used to determine a conservative cut off value for each test which would still detect all 

known positives. Cut-off values chosen were 0.34, 0.61 and 0.29 for Salmonella, Pasteurella 
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and MDV, respectively.  In addition, data were analysed with a pre-selected s:p ratio cut-off 

of 0.3 or 0.5, to give a generous and a conservative estimate of the prevalence, 

respectively. The exception to this is IBD, which, as a commercial kit, had a recommended 

cut-off of 0.306. However, due to issues with the running of the test (described in more 

detail in Chapter 2), and dictated by the data, it was decided that the cut-off needed to be 

lowered to 0.285. 

 We also chose to use the parasite count data, as the number of macroparasites in a host is 

highly relevant to any disease process, and of more value than simply defining their 

presence or absence. Definitions of the terms specific to the parasite data are given in 

Appendix 7.1. 

7.2.1 Modelling 

All models and graphical summaries were performed using R (R Development Core Team, 

2008). Intercept-only random effect regression models were used to estimate the variance 

partitioning for the serological data, to estimate the relative contributions of each level of 

the hierarchical data (Bird/Household/Kebele/Market shed/Region) and the contribution of 

the ELISA test plate to the variation in the continuous responses. The variance partitioning 

was also estimated after dichotomisation of the serological responses using the latent 

variable method (Goldstein et al., 2002). The values chosen for dichotomisation were s:p 

ratios of 0.5 for the Salmonella and Pasteurella data, 0.3 for the MDV data and 0.285 for 

the IBD data. 

 The s:p ratio is designed to allow comparison of samples tested on different plates; 

however, there was found to be considerable variation in the data which was attributable 

to the plate on which the sample had been tested (which we have called “plate effect”). 

The cause of this was wide variation in the control values between different test plates, 

due to practical difficulties in standardising the laboratory conditions, such as ambient 
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temperature, water quality and operator accuracy.  To control for this variation, where 

regression models have been used to model the optical density, Plate has been included as 

a random effect. Where optical densities are used as explanatory variables for other 

outcomes, values have first been corrected for the variation between plates by using a 

regression model to adjust for the plate effect and taking the bird-level residuals as an 

estimation of the antibody response.  

Generalised linear mixed-effects models were used to estimate the effects of different 

explanatory variables on the infection measurements, with the primary interest being 

whether seasonal or regional variation contributed significantly, whilst controlling for the 

effect of other explanatory variables. Gaussian models were used for the serological data, 

logistic regression for parasite positivity and Poisson regression for the parasite count data 

for birds detected positive. The relationships between individual explanatory and 

responses variables were initially explored using tabulation and graphical summaries, 

univariable models and Generalised Additive Models. Continuous explanatory variables 

with a non-linear relationship were fitted piece-wise. Multivariable models were then 

constructed for each infection outcome, by fitting explanatory variables stepwise for each 

model, such that only those which significantly improved the fit of the model (p<0.05) were 

retained. 

In some cases where models estimated considerable variation between households, or 

household residuals were non-normally distributed, attempts were made to investigate 

spatial autocorrelation by plotting household residuals according to their geographical co-

ordinates using the RGoogleMaps package in R (Loecher, 2011) to make a visual 

assessment of the locations of outlying household residuals. A spatial test statistic (Eagle, 

unpublished) was used to assess whether the variation in households over a range of 
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distances was less than might be expected compared to a random distribution of the data 

points, which might suggest spatial clustering of the data.  

A linear quantile mixed modelling approach was also investigated for some of the 

serological data, where the distribution of the response data did not appear to be 

adequately modelled by the classical linear modelling approach. Quantile regression 

extends regression based on the mean to the entire conditional distribution of the outcome 

variable, and so allows for the fact that individuals who rank differently according to the 

outcome variable may be affected to a different extent, or even in opposite ways, by the 

explanatory variables (Koenker and Hallock, 2001; Geraci, 2014). Linear quantile mixed 

models were fitted to each 10th percentile of the distribution using the lqmm package in R 

(Geraci, 2014), and plots of the parameter estimates over the distribution were produced. 

The bootstrapped standard errors of the parameters were used to estimate over which 

quantiles of the distribution the explanatory variables significantly affect the serological 

responses.      
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7.3 Results 

7.3.1 Serological data 

Seroprevalence estimates suggested that exposure to the bacterial pathogens was 

common, and that between 70-90% of birds had antibodies to Salmonella and Pasteurella 

(Table 7.1). Exposure to the viral pathogens was lower, with an estimated 3.6% of adult 

birds demonstrating antibodies to IBDV, and 20-30% of birds positive for Marek’s disease 

antibody. There was a large range of antibody measurements to the three ELISAs 

developed in-house (Salmonella, Pasteurella and MDV), with a number of birds 

demonstrating values more than three times that of positive controls. Distributions of s:p 

ratios for each test are shown in Figure 7.1. 

Intraclass correlation coefficients (ICCs), estimated on both continuous and binarised data 

for each disease (Fig 7.2) suggested that plate contributed significant variation to all the 

serological measurements, with the exception of the IBD when values were dichotomised. 

All measurements showed moderate household level clustering, with region, market shed 

and kebele contributing relatively little to the overall variance for any of the diseases. 

Table 7.1    Estimates of seroprevalence for bacterial and viral diseases tested by ELISA 

 Pasteurella Salmonella IBD MDV 

Valid test results (n) 1225 1244 1216 1208 

Cut-off value selected 
based on data   

0.61 0.34 0.285 0.29 

Prevalence (95% CI) 
based on selected cut-
off 

69.5%   
(66.8 – 72.0) 

85.5% 
(83.5 – 87.4) 

3.6%* 
(2.7 – 4.8) 

31.3% 
(28.7 – 34.0) 

Prevalence (95% CI) 
cut-off value=0.3 

91.5%   
(89.8 – 92.9) 

88.3% 
(86.4 – 89.9) 

n/a 
30.6% 
(28.1 – 33.3) 

Prevalence (95% CI) 
cut-off value=0.5

 
79.0% 
(76.7 – 81.2) 

74.4% 
(71.9 – 76.7) 

n/a 
19.6% 
(17.5 – 22.0) 

Number (%) of 
positives with s:p ratio 
>3 

28 (2.3%) 86 (6.9%) 0 2 (0.17%) 
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 Figure 7.2    Estimates of intraclass correlation coefficients for serological data. For each pair of bars, 

the top bar shows the estimates using the continuous data, whilst the bottom bar shows the 

estimates derived from binomial data using the latent variable method. The left (blue) bars indicate 

the variance attributable to the ELISA plate, the right (red) bars indicate the variance due to the 

clustering of birds within households, villages, market sheds and regions. 

1. One outlying bird with an s:p ratio >10 has been excluded 

2. Three outlying birds with an s:p ratio >10 have been excluded 

 

7.3.1(a) Pasteurella  

An intercept-only random-effect model fitted to the log value of the Pasteurella s:p ratios 

suggested that at least 80% of the variation was at the bird level, even when the outlying 

bird was excluded, with less than 10% accounted for at the household level (Fig 7.2). When 

fitted as fixed effects, season, region, production status, recent outbreaks, feed provision 

and Salmonella titres all significantly improved model fit (Table 7.2). 

The results suggested that antibody titres were almost, but not quite, significantly lower in 

Jarso, compared to Horro, but that in both regions there was an increase in the antibody 

levels in both sampling years across the population in October, i.e. following the rainy 

season. Households in Horro which had reported an outbreak in the last 12 months tended 

to have slightly lower antibody titres, although those in Jarso did not. Birds in households 
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which did not provide supplementary feed during the rainy season tended to have lower 

antibody titres. At the bird level, hens which were rearing chicks had higher levels of 

antibody, compared to those in lay, but male birds had lower titres. Antibody titres tended 

to increase with weight in birds in Horro, but not in Jarso. The relationship between 

Salmonella and Pasteurella was found to be non-linear, and so the Salmonella variable was 

fit as a piecewise term.  As birds’ antibody levels to Salmonella increased up to an s:p ratio 

of 2, there appeared to be a corresponding increase in Pasteurella antibody measurement, 

but further increases in the Salmonella titre above 2 had no effect. 

Table 7.2   Model coefficients for Pasteurella s:p ratio 

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 0.007 0.085 

 

Plate (Intercept) 0.006 0.080 

 

Residual 

 

0.070 0.264 

  
coefficient se 95% C.I. P 

(Intercept) 
 

0.63 0.08 0.48 - 0.78 <0.01 

Categorical variables 
       Region Horro reference 

     
 

Jarso 0.16 0.08 0.00 - 0.32 0.06 

Season May 2011 reference 
     

 
Oct 2011 0.08 0.03 0.01 - 0.14 0.02 

 
May 2012 0.03 0.04 -0.05 - 0.11 0.46 

 
Oct 2012 0.19 0.04 0.11 - 0.27 <0.01 

Production status In lay reference 
     

 
Rearing chicks 0.11 0.03 0.05 - 0.17 <0.01 

 
Incubating eggs 0.03 0.04 -0.05 - 0.11 0.48 

 
Not in production 0.04 0.02 -0.01 - 0.09 0.13 

 
Male -0.05 0.02 -0.10 - -0.01 0.03 

Outbreak in last 12 
months No reference 

     
 

Yes -0.06 0.03 -0.11 - -0.01 0.02 

Feed in rainy season Some reference 
     

 
None -0.20 0.09 -0.37 - -0.02 0.03 

Recent outbreak: Jarso interaction -0.08 0.04 -0.16 - 0.01 0.07 
 
 
Adg 
 

       
Continuous variables 

       Salmonella titre (≥2) 
 

0.01 0.01 -0.01 - 0.04 0.28 

Salmonella titre (<2) (Intercept) -0.11 0.05 -0.21 - -0.02 0.02 

Salmonella titre (<2)  
 

0.18 0.02 0.13 - 0.22 <0.01 

Weight (kg) 
 

0.12 0.04 0.05 - 0.19 <0.01 

Weight: Jarso interaction -0.13 0.05 -0.24 - -0.03 0.01 
 
 
Adg 
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7.3.1 (b) Salmonella 

An intercept-only random-effect model fitted to the log values of the Salmonella s:p ratios 

suggested that around 76% of the variation was at bird level, and around 11% at household 

level, with no variation contributed by regions or market sheds. Both season and kebele 

significantly improved models fits when fitted as fixed effects, although as other variables 

were fitted to the model, it became apparent that the season effect was only through 

interactions with some of the other variables. These interactions suggested that whilst 

antibody levels to Salmonella rose with increasing Pasteurella titres, this effect was more 

pronounced in birds measured at the end of the wet season (October) compared to birds 

measured at the end of the dry season (May). However, the opposite effect was observed 

for the cell lysate, in that increasing measurements of this variable corresponded with a 

greater increase in Salmonella titre for birds measured at the end of the dry than the wet 

season (Figure 7.3). The model also suggested that the MDV s:p ratio was negatively 

correlated with  the Salmonella s:p ratio, and male birds had significantly lower titres than 

females (Table 7.3). 

Figure 7.3   Effect of interactions between season and the s:p ratios for Pasteurella and cell lysate on 

predicted Salmonella s:p ratios 
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Table 7.3    Model coefficients for Salmonella s:p ratio 

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 0.014 0.117 

 

Plate (Intercept) 0.008 0.089 

 

Residual 

 

0.088 0.296 

  
coefficient se 95% C.I. P 

(Intercept)  0.60 0.05 0.50 - 0.69 <0.01 

        
Categorical variables 

       Kebele J2B reference 
     

 
H1A 0.16 0.06 0.06 - 0.27 <0.01 

 
H1B 0.02 0.06 -0.09 - 0.13 0.68 

 
H2A 0.07 0.06 -0.04 - 0.18 0.24 

 
H2B 0.00 0.05 -0.10 - 0.11 0.94 

 
J1A 0.09 0.06 -0.03 - 0.20 0.13 

 
J1B 0.15 0.05 0.05 - 0.25 <0.01 

 
J2A 0.09 0.05 0.00 - 0.19 0.05 

Season Dry reference 
     

 
Wet -0.01 0.05 -0.10 - 0.07 0.75 

Sex Female 
      

 
Male -0.16 0.02 -0.20 - -0.12 <0.01 

        
Continuous variables 

       IBD s:p ratio  0.31 0.08 0.15 - 0.46 <0.01 

MDV s:p ratio  -0.04 0.02 -0.08 - -0.00 0.03 

Pasteurella s:p ratio  0.09 0.01 0.06 - 0.11 <0.01 
Wet season: Pasteurella 
interaction 0.10 0.02 0.06 - 0.14 <0.01 

CKCL s:p ratio  0.09 0.01 0.06 - 0.12 <0.01 

Wet season: CKCL interaction -0.06 0.02 -0.09 - -0.03 <0.01 

         

However, examination of the model residuals suggested that there was an increase in the 

variance of the errors as the fitted values increased, and that the distribution of residuals 

was right-skewed, despite having log-transformed the response variable. Examination of 

the household residuals did not suggest any spatial correlation, and indeed the variance on 

the household errors was small, and they were reasonably normally distributed. This 

suggested that the model only poorly explained the Salmonella antibody responses in birds 

with measurements at the upper end of the distribution, and that these high responses 

were unlikely to be attributable to a localised outbreak. 
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One possible interpretation of the higher Salmonella titres is that these come from birds 

which were chronically infected with S. Pullorum, whereas more moderate levels of 

antibody titres may represent exposure to S. Enteritidis or S. Gallinarum. Tabulating the 

numbers of birds with s:p ratios greater than 2 demonstrated that there was a considerable 

differences in the proportion of these birds between kebeles, and that those kebeles with 

the highest proportions tended to be the ones which the model had suggested were 

significantly different from the reference kebele (Table 7.4).  This raised the question of 

how to interpret the results of the model, as it suggested that the mean s:p ratio for birds 

in kebele H1A was 1.2 times greater than birds in kebele J2B. However, this may be due to 

the greater proportion of birds with very high titres, rather than because all birds in kebele 

H1A had been more recently exposed to Salmonella. It was therefore decided to use a 

quantile mixed effects regression model to look at the effects of the explanatory variables 

over the entire distribution of Salmonella measurements. 

Quantile regression suggested that the effect of different kebeles was not consistent across 

all quantiles of the Salmonella distribution (Figure 7.4). Below the 40th percentile, there 

were no significant differences between kebeles. Whilst kebele J1B appeared to be a 

significant risk factor for increase in titres across the whole distribution above the 40th 

percentile, resulting in a relatively flat curve, kebele H1A was only a significant risk factor at 

the upper quantiles of the distribution, above the 70th percentile. If our interpretation of 

the antibody responses is correct, then this may represent more widespread recent 

exposure in kebele J1B, but higher numbers of persistent carrier birds in kebele H1A.  

Table 7.4   Proportion of birds with high Salmonella s:p ratios in each kebele 

Kebele H1A H1B H2A H2B J1A J1B J2A J2B 

Proportion of birds 

with Salmonella s:p 

ratio >2 

0.18 0.07 0.12 0.09 0.13 0.15 0.09 0.03 
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Figure 7.4   Plots of parameter estimates at different quantiles for the Salmonella quantile regression 

models. Solid lines show estimates, dashed lines show bootstrapped 95% confidence intervals. The 

red dotted lines show estimates based on mean regression. Black dotted lines indicate the reference 

kebele J2B.  
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 Figure 7.5  Plots of parameter estimates at different quantiles for the Salmonella quantile regression 

models. Solid lines show estimates, dashed lines show bootstrapped 95% confidence intervals. The 

red dotted lines show estimates based on mean regression. Black dotted lines indicate a female 

reference bird from kebele J2B measured in the dry season with average IBD, Pasteurella, MDV and 

cell lysate values. 
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Similarly, other risk factors also showed differences in the effect across different quantiles 

of the distribution. Whilst both sex and Pasteurella measurements appeared to be 

significant risk factors across all quantiles, they both exerted a much greater effect on 

Salmonella measurements at the higher quantiles of the distribution. IBD appeared to only 

significantly affect Salmonella at the upper quantiles, but the interaction between season 

and Pasteurella was only significant for the lower third of the distribution. 

7.3.1(c) Infectious Bursal Disease 

An intercept-only model suggested that households contributed around 13% of the 

variation in IBD s:p ratios, although when the outcome was binarised it was estimated that 

household contributed over 90% of the variation (using the latent variable method). Risk 

factors identified to significantly improve the fit of a multivariable model were kebele, 

season, Salmonella measurement and if the household had reported an outbreak of 

disease in their growing birds within the last 12 months (Table 7.6). 

Only one kebele appeared to have significantly higher antibody levels (H1A), and the 

inclusion of each of the other kebeles as separate risk factors did not significantly improve 

the fit of the model (judged on both likelihood ratio tests and the Akaike information 

criterion). Therefore kebele was fitted as a two-level risk factor, comparing kebele H1A to 

all other kebeles. Mean s:p ratios in all kebeles were slightly higher in Season B compared 

to other sampling seasons. Birds from households which had reported recent outbreaks of 

disease in growing birds also tended to have slightly higher levels of antibody, but 

outbreaks affecting other age groups were not found to have a significant effect. For kebele 

H1A there appeared to be some spatial autocorrelation of households over very short 

distances with high residuals in Seasons B and D (p=0.048, Figure 7.6), although this was 

not evident in other kebeles or in all seasons.  
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Table 7.5     Model coefficients for IBD s:p ratio    

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 0.002 0.017 

 

Plate (Intercept) 0.004 0.061 

 

Residual 

 

0.013 0.113 

  
coefficient se 95% C.I. P 

(Intercept)  0.00 0.02 -0.03 - 0.03 0.98 

        
Categorical variables 

       Kebele All other kebeles reference 
     

 
H1A 0.07 0.02 0.03 - 0.12 >0.01 

Season A reference 
     

 
B 0.04 0.02 0.01 - 0.08 0.02 

 
C 0.03 0.03 -0.02 

 
0.08 0.23 

 
D 0.04 0.03 -0.02 - 0.09 0.17 

       0.02 Outbreak in growers No reference 
     

 
Yes 0.03 0.01 0.00 - 0.06 0.05 

Continuous variables 
       

Salmonella s:p ratio  0.13 0.06 0.02 - 0.25 0.02 
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Figure 7.6   a) Map of household-level residuals for one Horro market shed for a mixed-effects model 

of IBD s:p ratios. b) Plot of model residuals and c) semivariogram for model residuals for kebele H1A 

in Season B showing spatial autocorrelation over short distances.   

H1A 

H1B 

a) 

b) c) 
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7.3.1 (d) Marek’s Disease Virus 

A mixed effects model of the MDV s:p ratios suggested that both season and kebele 

contributed significantly to variation in antibody measurements, with an interaction 

between them. In order to simplify model interpretation, a combined kebele/season 

variable was created, such that each kebele/season combination was compared to kebele 

J1B in season D, which had the lowest mean s:p ratio. This suggested that s:p ratios in 

villages H2B and J2A were significantly greater in three sampling seasons, and other villages 

had occasional seasons where s:p ratios rose. However, there did not appear to be any 

consistent pattern across seasons or villages in the same region. Figure 7.7 shows the 

proportion of birds with MDV s:p ratios over 0.5 in each kebele and sampling season, which 

ranged from 8 to 52%.  

 

 

Figure 7.7    Proportion of birds with MDV sample:positive >0.5 in each kebele during each season of 

sampling 
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Table 7.6     Model coefficients for MDV s:p ratio   

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 0.065 0.254 

 

Plate (Intercept) 0.104 0.322 

 

Residual 

 

0.196 0.443 

  
coefficient se 95% C.I. 

 
P 

(Intercept)  -0.39 0.22 -0.83 - 0.04 0.08 

        Categorical 
variables 

 
coefficient se 95% C.I. 

 
P 

Village         Season       
 J1B D Reference category     
 H1A A 0.50 0.24 0.02 - 0.97 0.04 
 H1A B 0.38 0.28 -0.17 - 0.93 0.18 
 H1A C 0.36 0.27 -0.18 - 0.89 0.19 
 H1A D 0.55 0.30 -0.04 - 1.14 0.07 
 H1B A 0.55 0.26 0.04 - 1.06 0.03 
 H1B B 0.34 0.24 -0.14 - 0.82 0.17 
 H1B C 0.50 0.25 0.01 - 1.00 0.05 
 H1B D 0.28 0.30 -0.31 - 0.86 0.35 
 H2A A 0.26 0.26 -0.25 - 0.77 0.31 
 H2A B 0.54 0.25 0.05 - 1.03 0.03 
 H2A C 0.11 0.27 -0.43 - 0.64 0.69 
 H2A D 0.38 0.28 -0.18 - 0.93 0.19 
 H2B A 0.42 0.25 -0.06 - 0.91 0.09 
 H2B B 0.62 0.23 0.16 - 1.08 0.01 
 H2B C 0.53 0.27 0.00 - 1.06 0.05 
 H2B D 0.87 0.29 0.31 - 1.44 <0.01 
 J1A A 0.70 0.24 0.23 - 1.17 <0.01 
 J1A B 0.36 0.26 -0.14 - 0.86 0.16 
 J1A C 0.61 0.27 0.07 - 1.15 0.03 
 J1A D 0.33 0.18 -0.03 - 0.69 0.07 
 J1B A 0.18 0.24 -0.30 - 0.66 0.46 
 J1B B 0.68 0.26 0.16 - 1.19 0.01 
 J1B C 0.47 0.27 -0.05 - 0.99 0.08 
 J2A A 0.36 0.25 -0.13 - 0.85 0.15 
 J2A B 0.53 0.26 0.03 - 1.03 0.04 
 J2A C 0.53 0.26 0.02 - 1.04 0.04 
 J2A D 1.19 0.19 0.83 - 1.56 <0.01 
 J2B A 0.32 0.25 -0.18 - 0.81 0.21 
 J2B B 0.24 0.28 -0.30 - 0.78 0.38 
 J2B C 0.45 0.26 -0.06 - 0.95 0.08 
 J2B D 0.69 0.29 0.12 - 1.25 0.02 
        Production 
status 

Male reference      
Rearing Chicks -0.05 0.05 -0.15 - 0.06 0.37 

 Incubating Eggs -0.26 0.08 -0.41 - -0.11 <0.01 
 In lay -0.16 0.04 -0.24 - -0.08 <0.01 
 Non-productive -0.01 0.04 -0.09 - 0.07 0.78 

        
Continuous variables 

       Salmonella titre (≥1.7) 
 

0.04 0.02 0.01 - 0.08 0.02 
Salmonella titre (<1.7) (Intercept) 

 
0.16 0.06 0.05 - 0.27 0.01 

Salmonella titre (<1.7)   -0.12 0.05 -0.22 - -0.03 0.01 
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The multivariable model also suggested that female birds which were either in lay or 

incubating eggs had significantly lower antibody levels compared to male birds, and that 

MDV titres were also correlated with Salmonella titres. Salmonella and MDV showed a non-

linear relationship, so this variable was fit as a piece-wise term. There was a negative 

correlation up to a Salmonella s:p ratio of 1.7, but a positive correlation above 1.7. 

However, a positive correlation (r=0.25) was also noted between the Salmonella s:p ratio 

and the s:p ratio to the cell lysate, which contributes to the final MDV measurement. This 

was particularly noticeable for test results at the lower end of the s:p ratio; below 2 for the 

Salmonella and 4 for the cell lysate.  

7.3.2 Parasitic infections 

Faecal samples were processed for 1239 birds. However, only 1039 samples were known to 

come directly from the randomly selected birds used in the survey. Sixty two samples 

processed were recorded as coming from the environment around the household and the 

source of another 138 was not recorded, but would have either come from the individual 

bird or the household environment. These latter samples can therefore be attributed to the 

household, but not necessarily to the individuals. Figure 7.8 shows the estimates of 

intraclass correlation co-efficients for the parasite data (calculated on presence/absence) 

using the latent variable method (Goldstein et al., 2002). Estimates were also calculated 

using the binary linearization method, but were within 5% of the latent variable method 

estimates in all cases (data not shown). 

7.3.2 (a)  Ascarids 

Worm eggs of the order Ascaridida (likely to belong either to Ascaridia galli or Heterakis 

gallinarum) were identified in 207 out of 1239 samples (16.7%). The median intensity was 

60 epg (range 20 to 12800 epg). This was not different from the prevalence in the samples  
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Figure 7.8   Intraclass correlation coefficients for the parasitic diseases (latent variable method) 

 

 

known to have come from a randomly sampled bird, at 16.2% with the median intensity 

still 60 epg. 

Parasite burdens (measured by the number of eggs shed in faeces) were highly aggregated, 

as measured by the corrected moment estimate of k (0.008) and the index of discrepancy 

(0.96). A Kolmogorov-Smirnov test indicated that distributions of parasites were not the 

same between the two regions (p value <0.01), although no seasonal differences were 

detected in either region. The infection prevalence in Horro was 21.8% (95% C.I. 18.7 – 

25.3%), and the median number of eggs shed by an infected bird was 60 epg. In Jarso, the 

prevalence of infected birds was only 11.3% (95% C.I. 9.0 – 14.2%) but infected birds had a 

median number of 80 epg of faeces, and overall, far fewer parasite eggs were counted in 

the Jarso population (see Figure 7.9.a). 
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Table 7.7     Logistic regression model coefficients for Ascaridida positivity   

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 2.45 1.57 

        

  
OR se 95% C.I. P 

(Intercept)  0.31 0.34 0.16 - 0.60 <0.01 

        
Categorical variables 

       Kebele H2B reference 
     

 
H1A 0.29 0.44 0.12 - 0.70 0.01 

 
H1B 0.80 0.41 0.36 - 1.79 0.59 

 
H2A 0.26 0.47 0.10 - 0.66 <0.01 

 
J1A 0.38 0.44 0.16 - 0.89 0.03 

 
J1B 0.25 0.47 0.10 - 0.64 <0.01 

 
J2A 0.07 0.65 0.02 - 0.27 <0.01 

 
J2B 0.10 0.56 0.03 - 0.30 <0.01 

Sex Female 
      

 
Male 0.57 0.23 0.37 - 0.90 0.02 

Hyperkeratosis Negative reference 
     

 
Positive 0.57 0.24 0.35 - 0.92 0.02 

Eimeria Negative reference 
     

 
Positive 1.80 0.24 1.43 - 2.87 0.75 

        
Continuous variables 

       MDV s:p ratio  3.39 0.34 1.43 - 8.04 0.01 

MDV s:p ratio: village interaction  
      

 
H1A 0.29 0.81 0.06 - 1.40 0.12 

 
H1B 0.32 0.81 0.07 - 1.56 0.16 

 
H2A 1.62 0.79 0.34 - 7.64 0.54 

 
J1A 0.18 0.83 0.04 - 0.92 0.04 

 
J1B 0.94 0.76 0.21 - 4.21 0.94 

 
J2A 0.09 1.05 0.01 - 0.68 0.02 

 
J2B 0.64 1.17 0.06 - 6.31 0.70 

         

 

A multivariable logistic regression model suggested that the odds of positivity for 

Ascaridida varied significantly between the kebeles, with kebeles H2B and H1B having the 

highest risk. However, kebele was not a significant risk factor for the infection intensity 

(number of epg of faeces, given that a bird was positive). There appeared to be little 

seasonal variation either in infection prevalence or intensity, once other risk factors were  
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Table 7.8     Poisson regression model coefficients for Ascaridida count, given positivity   

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 1.402 1.184 

        

  
OR se 95% C.I. P 

(Intercept)  6.42 0.16 4.67 - 8.82 <0.01 

        
Categorical variables 

       Region Horro reference 
     

 
Jarso 0.71 0.29 0.40 - 1.26 0.24 

Sex Female 
      

 
Male 0.49 0.12 0.39 - 0.62 <0.01 

Eimeria Negative reference 
     

 
Positive 0.56 0.17 0.40 - 0.78 <0.01 

Sex:Region 
Interaction 

 
      Male:Jarso 1.47 0.21 0.97 - 2.21 0.07 

Eimeria:Region 
interaction 

 
      Positive:Jarso 2.00 0.28 1.15 - 3.48 0.01 

        
Continuous variables 

       Salmonella s:p ratio  0.70 0.06 0.62 - 0.79 <0.01 

         

 

taken into account. Male birds appeared to be at significantly lower risk of being positive 

for Ascarids, and to have significantly lower epg of faeces if they were positive in Horro. 

However, in Jarso, the difference in infection intensity between the sexes appeared less, 

reflected in the almost, but not quite significant interaction between the region and sex 

variables in the Poisson regression model. 

Other infections also were found to significantly affect the risk of positivity and/or 

intensity. Higher MDV s:p ratios significantly increased the odds of being positive in some, 

but not all villages, but appeared to have no effect on infection intensity. Salmonella, on 

the other hand did not appear to alter the odds of being positive, but higher Salmonella s:p 

ratios were associated with lower faecal egg counts in positive birds. Eimeria  appeared to 

affect both the odds of being positive and the infection intensity, but in opposite 

directions: Eimeria-positive birds were at greater odds of being positive for Ascaridida, but 
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Ascaridida-infected birds in Horro tended to have a lower intensity of infection if they were 

positive for Eimeria. This did not, however, appear to be significant in Jarso (Tables 7.7 and 

7.8). 

7.3.2 (b) Cestodes 

Cestode eggs were found in 284 samples, giving an overall prevalence of 22.9% (95% C.I. 

20.6 – 25.4%). Again, excluding samples not taken directly from the randomly selected 

birds made no difference to the estimate of prevalence. The median intensity was 80epg, 

with a range of 20 to 12300epg.  Overall, 37% of households sampled had one or more 

infected birds present.  

No eggs were detected in the Horro samples from season A: However, these were the first 

set of samples tested and the lack of positive samples is likely to be due to a problem with 

the identification guides available, which meant if any cestode eggs were seen in these 

samples, they were probably ignored by the readers. This could potentially also affect some 

of the samples from Jarso in season A, but as the order in which samples were tested was 

not recorded, it is not possible to tell which ones are truly negative and which may simply 

have been tested earlier. This alteration in test sensitivity over time is likely to bias any 

further analysis looking for regional or seasonal differences, and so Season A samples have 

been excluded from further analyses. 

 A Kolmogorov-Smirnov test did not indicate a significant difference existed between the 

regions (p value = 0.12) (Figure 7.8.b). However, a logistic regression model indicated that 

birds sampled in Horro in October 2012 were at considerably greater odds of being positive 

for cestodes. The only other variable which significantly affected infection was Pasteurella, 

higher titres of which reduced the odds of cestode infection (Table 7.9). Attempts to model 

cestode intensity in positive birds suggested several variables were significant, but many 

showed significant interactions with the region, and some also with the sex of the bird.  
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Table 7.9     Logistic regression model coefficients for cestode positivity   

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 0.376 0.613 

        

  
OR se 95% C.I. P 

(Intercept)  0.34 0.23 0.22 - 0.53 <0.01 

        
Categorical variables 

       Region Jarso reference 
     

 
Horro 0.87 0.33 0.46 - 1.65 0.67 

Season May 2012 
      

 
October 2011 1.11 0.29 0.62 - 1.97 0.72 

 
October 2012 0.64 0.35 0.32 - 1.27 0.21 

        Region:Season interaction  
      

 
Horro: October 2011 1.34 0.42 0.60 - 3.04 0.48 

 
Horro: October 2012 6.20 0.47 2.46 - 15.60 <0.01 

        
Continuous variables 

       Pasteurella s:p ratio  0.77 0.11 0.62 - 0.96 0.02 

         

Table 7.10     Poisson regression model coefficients for cestode egg count, given positivity 
(Jarso)  

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 2.45 1.57 

        

  
OR se 95% C.I. P 

(Intercept)  0.33 0.96 0.05 - 2.19 0.25 

        
Categorical variables 

       Sex Male reference 
     

 
Female 16.25 1.05 2.09 - 126.6 0.01 

Hyperkeratosis Negative reference 
     

 
Positive 0.51 0.25 0.31 - 0.84 0.01 

Eimeria Negative reference 
     

 
Positive 8.33 0.63 2.41 - 28.81 <0.01 

Sex:Eimeria interaction  
      

 
Female:Positive 0.13 0.68 0.04 - 0.50 <0.01 

Continuous variables 
       Body condition score  3.48 0.44 1.46 - 8.29 <0.01 

BCS: sex interaction  
      

 
Female 0.28 0.47 0.11 - 0.70 0.01 

MDV s:p ratio  0.26 0.12 0.20 - 0.33 <0.01 
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Table 7.11     Poisson regression model coefficients for cestode egg count, given positivity 
(Horro)  

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 1.31 1.14 

        

  
OR se 95% C.I. P 

(Intercept)  1.31 0.60 0.40 - 4.26 0.65 

        
Categorical variables 

       Sex Male reference 
     

 
Female 1.59 0.62 0.47 - 5.34 0.45 

Season May 2012 
      

 
October 2011 6.82 0.43 2.96 - 15.73 <0.01 

 
October 2012 6.24 0.42 2.77 - 14.08 <0.01 

        Sex:Season interaction  
      

 
Female: October 2011 0.20 0.41 0.09 - 0.44 <0.01 

 
Female: October 2012 0.42 0.41 0.19 - 0.94 0.03 

        Hyperkeratosis Negative reference 
     

 
Positive 1.95 0.15 1.44 - 2.64 <0.01 

Eimeria Negative reference 
     

 
Positive 2.06 0.24 1.29 - 3.30 <0.01 

Sex:Eimeria interaction  
      

 
Female:Positive 0.39 0.30 0.21 - 0.69 <0.01 

Continuous variables 
       Body condition score  0.57 0.24 0.36 - 0.90 0.02 

BCS: sex interaction  
      

 
Female 2.11 0.28 1.20 - 3.68 0.01 

MDV s:p ratio  0.22 0.35 0.11 - 0.43 <0.01 

MDV s:p ratio: sex interaction  
      

 
Female 3.75 0.39 1.73 - 8.14 <0.01 

Pasteurella s:p ratio  0.76 0.09 0.64 - 0.89 <0.01 

         

 

Therefore it was decided to model the regions separately. In both regions higher MDV s:p 

ratios were associated with reduced numbers of eggs, but in Jarso this was seen in birds of 

both sexes, whilst in Horro it was only seen in male birds. Eimeria showed a similar sex 

interaction, such that in Jarso, birds positive for Eimeria had significantly higher cestode 

counts, but in Horro this was again only seen in males. 
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Although hyperkeratosis, associated with scaly-leg mite, significantly affected cestode 

counts in both regions, it showed opposite effects, being associated with higher counts in 

Horro, but lower counts in Jarso. Body condition scores in males, but not females, also 

affected counts in both regions, but again in opposite directions; higher cestode numbers 

were associated with birds of low body condition in Horro, but higher body condition in 

Jarso. Pasteurella and sampling season were only significant risk factors in Horro, where 

raised Pasteurella measurements were associated with decreased egg counts. In Horro, 

higher egg counts were found in males (but not females) in the October sampling season in 

both years, compared to those birds sampled in May 2012. As previously mentioned, the 

first sampling season was excluded from the analysis. 

 

7.3.2 (c)  Eimeria  

Eimeria oocysts were detected in 689 samples, giving a prevalence of 55.6%. The median 

intensity was 200 eggs per gram (epg) of faeces, with a range of 20 to 84,120 epg. If only 

the samples known to be attributable to a sampled bird are considered, prevalence was 

56.2%, and a median intensity of 220 epg.  

Parasites were highly aggregated, as measured by the corrected moment estimate of k 

(0.035) and the index of discrepancy (0.91). The Kolmogorov-Smirnov test indicated that 

distributions of parasites were not significantly different between the two regions (p value 

= 0.96) (Figure 7.8.c). However, there were found to be significant differences in the 

probability of being positive between different villages, with birds significantly more likely 

to be positive in kebeles H1A, H2A, H2B and J1A, compared to H1B. Intensity of infection 

also varied between kebeles and regions. Seasonal variation was observed in the 

probability, but not the intensity of infection, with birds being at significantly greater risk of 

infection in October 2011 and May 2012. Multivariable models also suggested that 
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Salmonella, Ascarids, cestodes and scaly leg mite also significantly affected Eimeria 

infections, and that sex and age were also important risk factors. 

 

Table 7.12     Binomial regression model coefficients for Eimeria positivity  

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 0.552 0.743 

        

  
OR se 95% C.I. P 

(Intercept)  0.24 0.33 0.13 - 0.47 <0.01 

        
Categorical variables 

       Village H1B reference 
     

 
H1A 2.87 0.31 1.58 - 5.23 <0.01 

 
H2A 2.35 0.30 1.31 

 
4.22 <0.01 

 
H2B 2.29 0.30 1.27 - 4.10 0.01 

 
J1A 2.11 0.30 1.17 - 3.79 0.01 

 
J1B 1.82 0.32 0.98 - 3.38 0.06 

 
J2A 1.38 0.30 0.77 - 2.46 0.28 

 
J2B 1.83 0.31 0.99 - 3.38 0.06 

Season  May 2011 reference 
     

 
October 2011 4.15 0.35 2.07 - 8.32 <0.01 

 
May 2012 2.44 0.45 1.00 - 5.92 0.05 

 
October 2012 2.15 0.42 0.94 - 4.92 0.07 

        Cestodes Negative reference 
     

 
Positive 2.64 0.19 1.80 - 3.87 <0.01 

        
Continuous variables 

       Age  1.04 0.02 1.01 - 1.08 0.02 

Age: season interaction  
      

 
October 2011 0.95 0.02 0.91 - 0.99 0.01 

May 2012 0.95 0.03 0.90 - 1.00 0.05 

 
October 2012 0.98 0.02 0.93 - 1.02 0.33 

Salmonella s:p ratio  0.89 0.05 0.81 - 0.99 0.04 
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Table 7.13     Poisson regression model coefficients for Eimeria count, given positivity  

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 4.04 2.01 

        

  
OR se 95% C.I. P 

(Intercept)  24.55 0.24 15.30 - 39.4 <0.01 

        
Categorical variables 

       Region Horro reference 
     

 
Jarso 1.23 0.20 0.82 - 1.84 0.31 

Sex Female reference 
     

 
Male 0.43 0.02 0.41 - 0.45 <0.01 

Cestodes Negative reference 
     

 
Positive 2.01 0.04 1.88 - 2.16 <0.01 

        Scaly leg None/mild reference 
     

 
Severe 1.69 0.03 1.58 - 1.80 <0.01 

        
Continuous variables 

       Age  (≤9 months) 0.85 0.03 0.81 - 0.90 <0.01 

Age ( >9 months – Intercept) 0.31 0.20 0.21 - 0.46 <0.01 

Age (>9 months)  1.17 0.03 1.11 - 1.23 <0.01 

Salmonella s:p ratio  0.46 0.02 0.44 - 0.48 <0.01 

Salmonella s:p ratio squared 
 

1.39 0.01 1.36 - 1.43 <0.01 

Ascarid count  0.98 <0.01 0.97 - 0.99 <0.01 

Ascarid: Jarso region interaction
 

1.23 0.01 1.21 - 1.25 <0.01 
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Figure 7.9    Cumulative faecal parasite densities among chickens in each region 

a. 

b. 

c. 
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7.3.2 (d) Lice 

The prevalence of lice infestation was 33.2% (95% C.I. 30.6 – 35.9%). However, there were 

significant differences in lice distributions between the two regions (Kolmogorov-Smirnov 

test, D=0.1996, p<0.001). Although in both regions the median parasite intensity was 3, in 

Jarso, only 23.3% of birds were infested (95% C.I. 20.1 -26.8%), and parasites were highly 

aggregated, with a corrected moment estimate of k =0.05 and the index of discrepancy 

=0.91. However, in Horro, prevalence was much higher, and 43% of birds were observed to 

be carrying lice (95%C.I. 39.3 – 47.2%), but lice burdens were less aggregated between 

birds (corrected moment estimate of k =0.21, index of discrepancy =0.81, Figure 7.10).  

Within each region, there were fewer positive birds in Season C, but there was found to be 

no significant difference in the intensity of infection between seasons after other 

explanatory variables were controlled for (Table 7.14 and 7.15). Sex was an important risk 

factor both for being found positive and the number of lice found, but interacted with the 

weight and body condition for this latter outcome. This suggested that hens were not only  

Figure 7.10    Cumulative louse densities among chickens in each region  
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Table 7.14     Binomial regression model coefficients for lice positivity  

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 0.71 0.84 

        

  
OR se 95% C.I. P 

(Intercept)  0.49 0.16 0.36 - 0.67 <0.00 

        
Categorical variables 

       Region Horro reference 
     

 
Jarso 0.36 0.15 0.27 - 0.49 <0.01 

Season May 2011 reference 
     

 
Oct 2011 0.70 0.19 0.48 - 1.02 0.06 

 
May 2012 0.59 0.23 0.37 - 0.93 0.02 

 
Oct 2012 1.15 0.22 0.75 - 1.76 0.51 

Sex Female reference 
     

 
Male 3.72 0.14 2.81 - 4.91 <0.01 

Fumigate housing No reference 
     

 
Yes 1.61 0.22 1.05 - 2.46 0.03 

         
 

Table 7.15     Poisson regression model coefficients for lice intensity   

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 0.852 0.923 

        

  
OR se 95% C.I. P 

(Intercept)  4.12 0.91 0.69 - 24.46 0.12 

        
Categorical variables 

       Sex Female 
      

 
Male 0.05 1.06 0.01 - 0.38 <0.01 

Use of parasite control Yes 
      

 
No 1.44 0.13 1.12 - 1.84 <0.01 

        
Continuous variables 

       Age ( ≥24 months) 1.10 0.02 1.07 - 1.13 <0.01 

Age (<24 months -  Intercept) 6.65 0.48 2.62 - 16.9 <0.01 

Age (<24 months)  0.94 0.02 0.90 - 0.98 <0.01 

Weight  0.10 0.68 0.03 - 0.39 <0.01 

Weight: male interaction 16.64 0.83 3.29 - 84.1 <0.01 

Weight: body condition interaction 2.59 0.35 1.31 - 5.11 0.01 

Body condition score  0.27 0.41 0.12 - 0.60 <0.01 

Body condition: male interaction 6.17 0.54 2.14 - 17.81 <0.01 
Weight:body condition:male 
interaction 

0.29 0.41 0.13 - 0.62 <0.01 
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less likely to be infected, but also tended to have fewer lice as their weight and body 

condition increased; however, increases in these variables in cocks predicted greater louse 

burdens. The region variable became non-significant once these variables were added to 

the model, suggesting that the observed regional variation in louse densities may be largely 

explained by the larger body sizes of chickens in the Horro region. Age was fitted as a 

piecewise variable, as louse intensity tended to decrease up to the age of 24 months, but 

increase thereafter. Increasing Pasteurella s:p ratio was also associated with a significant 

increase in the louse intensity, but no other infections contributed significant variation. 

Birds in households which did not use any form of parasite control tended to have higher 

louse burdens, but birds in households which fumigated the housing were more likely to be 

positive. 

7.3.2 (e) Cnemidocoptes mutans (Scaly leg mite) 

Scaly leg mite infestation prevalence, judged by the number of birds with hyperkeratosis, 

was estimated at 41.2% (95% C.I. 38.5-44.0%). Of those birds showing signs of 

hyperkeratosis, 48% were graded as “severe”. Identification of hyperkeratosis was strongly 

associated with a positive identification of scaly leg mites from a skin scrape (McNemar’s 

test, p<0.01). 

In Jarso there was an almost, but not quite, significantly lower prevalence of observed 

hyperkeratosis in the first sampling season (May 2011), compared to the final one (October 

2012); whereas in Horro the highest prevalence was observed in the first sampling season, 

and indeed all other seasons had significantly higher prevalence compared to the final 

season. In both regions, the odds of an infested bird having severe hyperkeratosis were 

greater in the middle two seasons. Males were both more likely to be infested and to have 

severe hyperkeratosis, if infected, but females incubating eggs were also more likely to 

have  hyperkeratosis,  compared  to  those  not  in  production.  Fumigation of the  housing 
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Table 7.16     Binomial regression model coefficients for hyperkeratosis  

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 1.15 1.07 

        

  
OR se 95% C.I. P 

(Intercept)  0.52 0.36 0.25 - 1.05 0.07 

        
Categorical variables 

       Region Jarso reference 
     

 
Horro 0.31 0.44 0.13 - 0.74 0.01 

Season October 2012 reference 
     

 
May 2011 0.50 0.36 0.25 - 1.02 0.06 

 
October 2011 0.86 0.38 0.40 - 1.82 0.68 

 
May 2012 0.74 0.45 0.31 - 1.80 0.51 

Season: Horro interaction 
     

 
May 2011 10.66 0.56 3.59 - 31.6 <0.01 

 
October 2011 3.04 0.55 1.04 - 8.91 0.04 

 
May 2012 4.17 0.65 1.16 - 14.99 0.03 

Disposal of dead 
birds 

In yard reference 
     Far from yard 0.82 0.26 0.49 - 1.36 0.44 

 
Bury 0.69 0.36 0.34 - 1.39 0.30 

 
Burn 0.05 1.30 0.00 - 0.65 0.02 

 
Fed to dog 0.51 0.86 0.09 - 2.78 0.44 

Fumigate housing No reference 
     

 
Yes 0.55 0.28 0.32 - 0.95 0.03 

Eimeria Negative reference 
     

 
Positive 1.72 0.18 1.22 - 2.44 <0.01 

Production 
status 

Non-productive reference 
     In lay 1.43 0.25 0.88 - 2.35 0.15 

 

Incubating 
eggs 2.75 0.42 1.22 - 6.22 0.01 

 
Rearing chicks 1.26 0.33 0.67 - 2.38 0.48 

 
Male 2.14 0.22 1.38 - 3.32 <0.01 

         

 

appeared to be protective, as did burning the carcasses of dead birds, but severe 

infestations were more likely in households which used chemical sprays on the birds 

themselves. Severe infestations were also associated with decreasing numbers of chicks in 

the household flock.  Eimeria infection was also identified as significant risk factor, but a 

concurrent Ascarid infection appeared to reduce severity (Tables 7.16 and 7.17).  
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Table 7.17     Binomial regression model coefficients for severe hyperkeratosis, given 
presence  

Random effects 
     

 

Groups Name Variance Std.Dev. 

 

Household (Intercept) 0.390 0.625 

        

  
OR se 95% C.I. P 

(Intercept)  0.55 0.23 0.35 - 0.86 0.01 

        
Categorical variables 

       Season May 2011 reference 
     

 
October 2011 3.57 0.27 2.10 - 6.09 <0.01 

 
May 2012 2.24 0.30 1.24 - 4.04 0.01 

 
October 2012 1.29 0.32 0.69 - 2.40 0.42 

Sex Female reference 
     

 
Male 1.57 0.21 1.04 - 2.38 0.03 

Ascaridida Negative reference 
     

 
Positive 0.48 0.32 0.26 - 0.89 0.02 

Chemical spray 
on birds 

No reference 
     Yes 3.53 0.59 1.12 - 11.1 0.03 

        
Continuous variables 

       Chick numbers in household flock 0.94 0.03 0.89 - 0.99 0.01 

                 

 

 
7.4 Discussion 

Our results have shown that a number of different infectious micro- and macroparasites 

are circulating in the two poultry populations under study. Exposure to Salmonella, 

Pasteurella, MDV and IBD, as measured by the distributions of antibody titres, was 

observed to be broadly similar between the two study regions. Whilst the antibody 

distributions to Pasteurella varied very little between kebeles, the kebele was a significant 

risk factor for Salmonella, MDV and IBD, with birds in kebele H1A in particular being 

observed to have higher responses to IBD. The MDV responses varied considerably within 

kebeles over time, such that no single kebele was at consistently greater risk, but several 

demonstrated at least one season where antibody responses were found to be significantly 
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above the average. For Salmonella, there were kebeles in both Horro and Jarso which had 

significantly higher mean antibody titres, but whereas for the kebeles in Jarso this 

appeared to be due to a general increase in antibody measures across the distribution, in 

Horro the mean s:p ratio was influenced by a large number of outlying birds with antibody 

measures far in excess of the positive control in the kebele in question. This may be a 

reflection of different Salmonella serotypes with differing prevalence between the two 

regions (for example, a higher proportion of infections in Horro being attributable to 

S.Pullorum, rather than S. Enteritidis), or differences in bird antibody responses in the two 

bird ecotypes. 

Of the parasitic diseases, Eimeria counts were also found to have similar distributions 

between the two regions, although prevalence varied between kebeles, with three Horro 

kebeles and one Jarso kebele exhibiting significantly higher prevalence over the course of 

the study. The prevalence of scaly leg infestation fluctuated over the course of the study, 

with Horro having a higher prevalence in the first season, but a significantly lower 

prevalence by the final sampling 18 months later. Both regions also showed increasing 

numbers of severe cases of hyperkeratosis in the second and third sampling seasons. 

Cestode prevalence and intensity appeared broadly similar between regions, although 

exhibited more seasonal variation in Horro. Lice counts and Ascaridida egg counts showed 

in both cases that higher numbers of parasites were to be found in Horro, and that these 

were less aggregated between hosts, leading to a higher prevalence of infected birds in 

both cases.  

All of these diseases were clustered to some extent within households, particularly IBD, 

which had a household level ICC of 0.13-0.9, depending on the method used. Previous 

studies have also suggested that this disease has a relatively high degree of clustering 

within household, with ICC reported as 0.39 by Otte and Gumm (1997). In kebele H1A, for 
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two of the four sampling seasons, it was observed that the household residuals for the IBD 

model were not spatially independent. These observations would be consistent with 

sporadic, localised IBD outbreaks within the kebele, with virus readily transmitted within 

and between neighbouring flocks. The model also suggested that slightly higher titres in the 

adult birds in this study were observed in households which had reported recent losses 

among the growing birds. This is consistent with the pathogenesis of IBD, which tends to 

only cause clinical signs in birds of 3-12 weeks of age (Eterradossi and Saif, 2008). 

Marek’s disease was also found to exhibit moderate household level clustering, whilst ICCs 

for the bacterial diseases were somewhat lower. In their calculations of ICCs for 20 

livestock infections, Otte and Gumm (1997) also reported that the bacterial diseases 

leptospirosis and brucellosis had some of the lowest levels of clustering. This may be due to 

chronically infected individuals within households being the main route of spread of these 

bacterial infections, so although exposure to both Salmonella and Pasteurella was found to 

be widespread in our study, antibody titres of birds within households still exhibit 

considerable variation, as they are perhaps more strongly influenced by individual factors, 

including the timing of infection and individual response. Parasites in our study also 

exhibited considerable household-level clustering, particularly the scaly leg mite (0.33), 

Ascarid nematodes (0.20) and Eimeria (0.14). These latter two are similar to the ICCs 

reported for directly transmitted nematodes and Eimeria in cattle (Otte and Gumm, 1997). 

Correlations between serological measurements, which were observed during multivariate 

analysis (see Chapter 6), were borne out by the regression models. Salmonella and 

Pasteurella were positively correlated, and each was found to be a significant risk factor for 

the other. Salmonella was also correlated positively with IBD, and negatively with MDV. 

However, further investigation of this latter relationship suggested that Salmonella may be 

more strongly correlated with the cell lysate response, which was subtracted from the 
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MDV-infected cell response to give the final MDV ratio. These correlations tended to only 

hold true for Salmonella s:p ratios up to around 2 times the positive control, whilst the 

model suggested that Salmonella titres above this were primarily influenced by some 

other, unknown bird-level factor. These correlations between the ELISA test results at 

lower optical densities may reflect variation in non-specific antibody binding between 

birds. Parmentier et al. (2004) observed that naive birds selected for high or low antibody 

responses to sheep red blood cells exhibited similar high or low antibody binding to seven 

other novel antigens, suggesting differences in the level of natural antibodies. These are 

antigen-binding antibodies, frequently polyreactive, which are present in the absence of 

infection or immunisation and are normally dismissed as “background” in ELISA tests 

(Ochsenbein et al., 1999). A large proportion may be auto-antibodies, which may explain 

their binding to the chicken kidney cell lysate, but they also bind with low affinity to a wide 

range of evolutionary conserved molecules, and so form a part of the innate immune 

response to viral and bacterial pathogens (Ochsenbein et al., 1999). Although dilution of 

sera for the ELISA tests should reduce the effect of this non-specific binding, it is possible 

that by choosing to use the continuous data, rather than dichotomising the ELISA results, 

we have incorporated a measure of these natural antibodies into our data, and therefore 

the correlations between the bacterial infections are not simply a result of common 

exposure but at least partly reflect an individual’s ability to produce antibody.  

In light of the fact that most previous studies have agreed that disease tends to occur 

during the rainy season, we anticipated that we may observe a seasonal pattern to one or 

more infections at the population level. In contrast to this, the majority of the infections we 

measured did not exhibit a clear seasonal pattern, or in some cases (such as Salmonella) 

the apparent seasonality was explained by other risk factors, particularly covariance with 

other infections. This emphasises the importance of controlling for co-infections when 

examining risk factors for individual disease. The only infection to show a consistent 
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increase in antibody levels after the rainy season in both years of the study was Pasteurella, 

although the increase in the mean was relatively small. Although not examined in detail, 

quantile regression did suggest that these seasonal effects were not consistent over the 

entire distribution of Pasteurella s:p ratios, and as such this finding may benefit from 

further investigation. Previous studies examining risk factors for infection have considered 

all birds in a village as a single epidemiological unit (e.g. Otim et al. (2007), Jenbreie et al. 

(2012)). From our findings, as demonstrated by the high level of household clustering, the 

spatial correlation of household residuals, and the finding that some risk factors only 

appear to influence specific quantiles of response distributions, it seems more likely that 

small, localised outbreaks causing elevated antibody titres in a small number of birds are 

primarily responsible for the observed spatial and temporal variation in our study. 

Given our earlier findings (reported in Chapters 4 and 5) that farmers in Horro reported 

more disease mortality in their birds, especially during the wet season, it was somewhat 

surprising that pathogen levels appeared so similar between the two regions. However, 

there may be other unmeasured pathogens, including NDV, responsible for the reported 

mortalities. As we appeared to have conducted the study during an inter-epidemic period 

(see Chapter 4), we may not have detected sporadic high-mortality outbreaks. It may be 

that small outbreaks caused by a variety of single pathogens occasionally overlap to give 

the appearance of larger “epidemics” of high mortality. Other factors and stressors, such as 

nutrition or temperature, may also be acting synergistically with these infections to cause 

increases in morbidity/ mortality. Our data on these are not sufficiently detailed to be able 

to investigate these hypotheses, however the influence of factors such as bodyweight and 

body condition on both selected antibody titres and parasite burdens might suggest 

nutrition may be a contributing factor and worth further investigation.   
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The infections which showed the greatest and most consistent regional differences across 

the study period were those which are not normally associated with mortality in adult 

birds; namely the parasitic Ascarid and lice infections, both of which were more abundant 

in Horro. Cestode infection was the single infection the prevalence of which was observed 

to rise only in Horro after the rainy season in both years of the study. However, these 

observed changes in parasite burdens do suffer from significant limitations. In the case of 

faecal egg counts, it is difficult to interpret these, as they do not approximate the worm 

burden (Permin and Hansen, 1998). They may be influenced by the number of worms, their 

age and fecundity, by host factors, such as the age, sex and immune status of the host and 

the consistency of the faeces, which is in turn influenced by diet and the freshness of the 

sample. Ascaridia galli are particularly immunogenic worms, and it has been shown that 

their individual fecundity decreases as worm burden increases, through the chicken’s 

immune response to the parasite. Ascarids also have a relatively long pre-patent period (4-

8 weeks) so recent infections may not be detected. The lower limit of detection for the test 

method we used was 20 epg of faeces. False negative tests may be expected to be a 

feature of these data. 

Lice burdens are also affected by many factors. Although we have grouped them as one 

taxa, bird lice are formed of two main sub-orders; Amblycera, which live in direct contact 

with host skin and feed on skin secretions, debris and blood from developing feathers; and 

Ischnocera, which live on feather surfaces and eat keratin. Work done on the samples we 

collected throughout the course of this study suggested that there was greater taxonomic 

diversity of both these sub-orders of lice in Horro compared to Jarso (Collins, unpublished 

data). Although we did not quantify abundance of the lice species separately, the majority 

of species identified were Amblycera. Møller and Rózsa (2005) found that taxonomic 

richness in Ischnocera was correlated with both Amblycera abundance and with host body 
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size. This corresponds with our findings, in that Horro birds tend to have a larger body size, 

as well as both more lice and a greater diversity of lice species.  

Louse abundance and intensity of Amblycerans has also been observed to be positively 

correlated with larger group sizes in the host population (Whiteman and Parker, 2004), and 

group size can also affect the degree of aggregation of the more mobile Amblycerans. 

Louse abundances have also been observed to increase following nutritional stress in birds 

and to show seasonal changes related to breeding and moulting (Freed et al., 2008), and 

Amblycera diversity has been observed to correlate with an increasing T-cell response in 

nestlings (Møller and Rózsa, 2005). As Horro farmers tend to keep larger flocks, breed more 

frequently and have different types of supplementary grain to feed, there may be a 

number of potential factors which contribute to the differences in louse populations.  

Therefore it is difficult to interpret the observed differences in the parasite burdens seen in 

our study populations. One hypothesis is that differences in the chickens’ immune response 

between the two regions may contribute to the observed differences, as this may cause 

suppression of both worm fecundity and of lice numbers. Although these parasites are 

generally thought to have little impact on host survival, their higher abundance in Horro 

may potentially be of some significance for the birds. Taken together with our findings of 

low co-positivity (Chapter 6), we may speculate that there is ecological interference 

between parasitic and bacterial/ viral infections, such that birds infected with both are less 

likely to survive. If this is occurring at higher rates in Horro, it may be a possible explanation 

for the mortality difference between the regions. It would be interesting to determine 

whether effective anti-parasiticides have a positive impact on chicken survival in one or 

both of these very different ecosystems.  

It is clear from our results that there is a complex system of interactions present among the 

numerous pathogens present in the scavenging production system, and their interactions 
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with the host are affected on a variety of levels, from interactions at the cellular level to 

those human interventions which are the most frequently considered risk factors in most 

epidemiological studies. Modifying any management practices at the human level might, 

therefore, be expected to perturb this ecosystem, and could have implications for 

infections beyond those targeted for control. 
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Appendix 7.1 

Parasite burdens are described in various ways, as the number of parasites per host is an 

important factor in the ecology of the species. The definition of certain terms is provided 

here. (Margolis et al., 1982; Rozsa et al., 2000) 

Prevalence:  Number of hosts infected with a particular parasite species   
      Total number of hosts examined 
 

Intensity: Number of individuals of a parasite species (determined directly or indirectly) 

within each infected host. Often given as a range. 

Mean / Median intensity: The mean / median number of individuals of a particular 

parasite species within the total number of infected hosts (i.e. excluding all hosts with 0 

parasites) 

Abundance: The total number of individuals of a particular parasite species in a sample of 

hosts 

Mean / Median abundance: The mean / median number of individuals of a particular 

parasite species within the total number of sampled hosts (i.e. infected and uninfected) 

Aggregation: The tendency for parasite intensities to be unevenly distributed throughout 

the host population, such that a small number of hosts carry large numbers of parasites 

Corrected moment estimate of k: Estimate of the parameter k of the negative binomial 

distribution, which approximately describes the parasite distribution among hosts, adjusted 

for sample size  (Gregory and Woolhouse, 1993)         

        
 
 

    
     

 (7.11) 

Index of discrepancy: A measure of aggregation, comparing the parasite distribution 

among sampled hosts with the hypothetical situation, where all hosts harbour the same 

number of parasites (Poulin, 1993). Found by the equation: 

     
      

 
   

 
   

       
      (7.12) 

Where x is the number of parasites in host j (hosts are ranked from least to most infected) 

and N is the total number of hosts in the sample. 
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8.1 Introduction 

Village chickens are still important to millions of people in less economically developed 

countries, and likely to remain so for many years to come (Alders and Pym, 2009). The 

purpose of this research project was to inform ongoing development programmes in 

Ethiopia, which place heavy emphasis on genetic improvement of local stock, and use 

selective and cross-breeding programmes to produce “improved” birds for the Ethiopian 

producer (Dana et al., 2010; Moges et al., 2010b). Farmers who participate in such 

improvement programmes are often required to radically alter their management system, 

in terms of housing and feeding the birds, and buying in chicks from large distributors, 

rather than rearing their own replacement stock. A potential concern with these 

“improved” birds is that they may have lost some of their natural disease resistance, which 

is a trait highly valued by farmers, and thus re-introduction into field conditions may not be 

as successful as hoped.  

Among the previous literature on village chickens there are numerous studies 

characterising seroprevalence of various infections in healthy birds, and many reports of 

disease as a constraint to poultry production. There is, however, very little literature which 

covers the gap between infection and disease, and addresses how birds in a village 

situation are tolerating the pathogens with which they come into contact. The specific 

objectives of this thesis were to better understand the village production system and 

particularly the practices which may impact infectious disease ecology; to quantify the 

impact of disease on village poultry production; and to describe some of the infections 

present in birds in two geographically distinct populations, and identify potential risk 

factors, including the impact of co-infections, in order to help prioritise avian diseases for 

control in East Africa.  
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Through a series of cross-sectional studies, this study has attempted to provide a detailed 

observation of the impacts of infectious disease on chicken keeping in two geographically 

distinct areas of Ethiopia. The two regions, selected based on known cultural differences, 

and chosen to represent two well-characterised chicken ecotypes thought to be genetically 

distinct, were expected,  a priori, to have some differences which would influence the way 

that people interacted with their chickens, due to differences in the socio-cultural 

importance of chickens in the two human populations. It was also believed that the two 

chicken populations may have differences in their genetic susceptibility to certain diseases, 

or have different phenotypic adaptations to their local environments. Evidence for these 

differences has been found through the socio-economic and genetic analyses performed by 

other members of the study team. It was also anticipated that there may be differences in 

the epidemiology of infectious diseases between the two regions, perhaps through 

variation in exposure due to different management systems, differences in climate or in 

social factors such as marketing practices. Previous studies in Ethiopia have attributed the 

majority of chicken mortality to “fengele”, generally translated as Newcastle disease (ND), 

although numerous other chicken pathogens have been identified in the country. We 

believe this is one of the first studies in village chickens to not only identify the presence of 

multiple infections, but to consider their impact on bird survival, by studying both infection 

and mortality in the populations, and to try and fit this in the context of the local agro-

ecology of the regions studied. Whilst it has been largely hypothesis-generating, it can 

nevertheless provide some useful insights for current development programmes in 

Ethiopia. 
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8.2 Main findings 

The two regions have different agro-ecologies and cultures, and data about these was 

gathered through rapid rural appraisals, from existing published data and from data 

provided by the local agricultural offices. The predominantly Christian Horro region has 

high agricultural potential, and produces cattle, teff and niger seed, and values chickens for 

their cultural importance in welcoming guests and to use in celebratory dishes at festivals. 

Horro farmers particularly value larger body sizes in cocks, and good mothering ability in 

hens, and tend to sell and eat more birds, and rear more chicks. These findings were 

reflected in the observations of the chicken population in Horro, where birds had larger 

body weights, better body condition scores, more pronounced secondary sex 

characteristics, and flock sizes were larger and comprised a greater proportion of young 

stock. The main business model may be analogous to that of a broiler-breeder flock, as the 

majority of eggs go into reproduction, although it should be noted that most farmers do 

not make regular income from their chickens, and they are consumed only infrequently. 

Maintaining a flock as an asset, the sale of which can be used to cover small, incidental 

expenses (“safety net” role) appeared to be the most common purpose of chicken 

production in both areas. 

Jarso is a predominantly Muslim area, where chickens are eaten infrequently, and many 

families did not know how to prepare chicken. The area is food insecure, but is a high 

producer of the mild stimulant, chat (Catha edulis), which is sold as a cash crop. Fewer 

chickens are reared than in Horro, and even fewer sold. Although birds still fulfil the “safety 

net” role, they may be less important due to the predominance of chat, which provides 

cash income. The traits most valued by farmers are appearance in cocks, and egg-laying in 

hens. Hens are reportedly less broody than in Horro, and chicks tend to be reared only for a 

limited period each year, which it might be supposed would result in more of a layer flock 
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business model; however, in practice it would appear that eggs are sold or eaten relatively 

infrequently, and many may be potentially wasted. 

The day-to-day management of chickens, covering such items as feed provision, waste 

management, housing and confinement, appeared broadly very similar between the two 

regions. However, differences in the breeding management were more obvious, both in the 

frequency and the timing of rearing broods of chicks; whereas in Horro chicks were reared 

from September to May, farmers in Jarso tended to rear fewer broods and mainly confined 

rearing to the months of June, July and August, when the additional vegetation in the main 

rainy season helped birds to avoid predation, which Jarso farmers cited as their biggest 

constraint to chicken rearing. Horro farmers reported disease as the biggest cause of loss, 

especially disease “outbreaks” during the rainy season. To minimise the problems 

associated with cold and mud during the rainy season, Horro farmers preferred to avoid 

rearing chicks during this period. Horro farmers were also more likely to provide additional 

feed during the rainy season, and around one third reported that their birds were less likely 

to have contact with birds from other flocks at this time of year. A higher proportion of 

them also used forms of parasite control in their birds, largely in the form of 

ethnoveterinary treatments, including cleaning and hygiene measures. 

Despite the fact that many factors which might be predicted to decrease disease risk, such 

as lower frequency of direct contacts with other flocks, more supplementary feed provided 

during the rainy season and more attention to parasite control through hygiene measures 

were more commonly characteristics of farms in Horro than Jarso, our findings from 

Chapter 4 suggested that disease was actually more prevalent in Horro. This result, 

gathered from questionnaire surveys of farmers’ recent experiences of disease events in 

their flocks, agreed with the reports from the rapid rural appraisal, as did the finding that 

the majority of disease “outbreaks” that only affected the young stock were reported 
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during the months of the rainy season, justifying the practice in Horro of not setting eggs 

during this period. The management practices which might be expected to decrease 

disease especially during high-risk periods may, therefore, be responses of farmers to an 

existing problem, and the efficacy of these in reducing disease risk is difficult to assess. 

We found that our definition of “outbreak” did not necessarily correspond with what 

farmers regarded as an outbreak, as a significant proportion of them described events 

where only a single bird suffered mortality due to disease. It was found that there was 

indeed a regional difference in how often outbreaks were reported, with Horro farmers 

both more likely to report the occurrence of disease in their chickens, and more likely to 

report higher numbers of deaths in any disease event than farmers in Jarso. From farmer 

reports, it appeared that a larger epidemic had occurred in Horro the year before the study 

began (summer 2010), but that no such epidemic occurred during the study period. This, 

combined with the very low levels of ND seropositivity (<1%) led us to believe that we had 

conducted the study in an inter-epidemic period for ND, and that other infections, which 

led to farmers describing a variety of symptoms affecting different age groups, were 

contributing to the seasonal increase in disease mortality, which farmers still described as 

“fengele”. It appeared that most of this seasonal rise in mortality was attributable to an 

increased frequency of small-scale losses, including single birds being lost, whereas 

individual farms reporting large-scale losses occurred sporadically throughout the year. 

However, over time, farmers tended to overlook the small-scale losses and focus on the 

large outbreaks when discussing the problem of disease. 

We also examined factors which may predict individual bird mortality and survival, and 

found a complex web of factors which may lead to a bird being more likely to be lost due to 

disease or predation, or available for farmers’ uses –either to be sold, consumed or 

retained. Although overall survival rates were relatively constant, reasons for non-survival 
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varied considerably between villages even within a region. The odds of an individual bird 

dying of disease in Horro were significantly greater during the rainy season, but also varied 

from year to year. However, in Jarso, the individual risk of dying from disease did not show 

a significant seasonal fluctuation. This perhaps correlates with findings from the previous 

chapter in that, whilst farmers in the wet season were more likely to report a disease 

outbreak, they also tended to lose fewer birds overall during this period, which may result 

in a relatively constant risk at the individual bird level.  

Factors predicting the fate of an individual varied between regions, although male birds 

and birds with a scaly leg mite infestation in both regions were more likely to be sold or 

eaten. Previous infections did appear to influence a bird’s subsequent fate, although none 

strongly predicted death from disease. In Horro, older birds with high Pasteurella antibody 

levels were more likely to be sold or eaten, perhaps as these may represent chronically 

infected birds, which may show respiratory signs or show reduced productivity. In Jarso, 

Marek’s disease and Eimeria infections both increased the probability that birds died from 

disease or predation within the subsequent 6 months, reducing their availability for farmer 

use. There was high variation between households in the risk of disease mortality, and in 

Jarso the effect of season and MDV exposure on the risk of disease varied between 

households, suggesting some households may be effectively mitigating these risks.  

It was also noted that whilst males were less likely to survive overall, because they were 

more likely to be sold, having a higher MDV titre did not greatly alter the odds of whether 

they are available to sell or keep within a six month period. However, females in Jarso with 

high MDV titres were at greater risk of dying from disease or predation within the 6-month 

follow-up period, perhaps indicating that there was not only regional variation between 

birds’ resistance to disease, but also perhaps some differences between the sexes, and that 

in females, even the production status may have some impact on birds’ survival, with 
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females incubating eggs at the time of initial sampling having the lowest odds of surviving 

the subsequent 6 months.  

In the final two chapters, patterns of infection and co-infection were examined by using 

both multivariate analyses, and regression models to look at each infection outcome 

individually. The temporal and spatial variation of infections was examined to see if any 

differences may account for the different patterns of mortality observed between the two 

study regions, whilst controlling for other risk factors, including co-infections. Little 

difference in exposure to the bacterial or viral infections was found between the two 

regions. It was found that several of the infections appeared to interact with each other, 

such that birds rarely had high levels of more than one infection, with the exception of 

Pasteurella and Salmonella, high antibody titres to which were observed to co-occur more 

frequently than expected under an assumption of independence. However, MDV and 

parasitic infections appeared to cluster away from these bacterial infections, and higher 

burdens appeared more frequent in male birds, which may be more tolerant of such 

chronic infections. Strong seasonal patterns of infection were not observed, but Horro 

demonstrated higher prevalence and lower aggregation of the macroparasitic lice and 

Ascarid infections, and seasonal fluctuations of cestode infections, with a rise in birds 

sampled at the end of the rainy season. As these infections are generally not regarded as 

causing mortality in adult birds, it may be that birds infected with both a parasitic and a 

bacterial infection are more likely to be unable to combat both simultaneously and die; 

hence the lack of these observations in our dataset, and potentially why more mortalities 

are observed in Horro, where higher parasite prevalence would make co-infection likely to 

occur more frequently.  

However, we did not observe a current infection with any of the parasitic diseases in Horro 

to impact on a bird’s likelihood of dying of disease within the 6-month follow-up period. It 
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was observed that there were slight increases in Pasteurella s:p ratios after the rainy 

season in both regions in both years of the study, and measurements of other diseases 

tended to fluctuate. Thus it may be that what farmers sometimes observe as an “outbreak” 

in the rainy season is multiple coincident infections causing a rise in mortality, rather than a 

single epidemic infection, although the latter may also occur from time to time. Although 

exposure to these infections is widespread, the majority of birds we examined in our study 

showed no clinical signs, and were clearly able to tolerate a wide range of infections. Other 

factors may be at play during the rainy season, such as cold stress and a lack of energy-rich 

feed, which impact on birds’ immunity and contribute to the observed mortality epidemic 

in Horro. Jarso may be less at risk, due to the dryer climate and the fact that more maize is 

grown in this area, and commonly forms a part of birds’ dietary supplementation. 

However, other factors may also be at play. Climate and macroparasite infections were not 

the only thing to differ between the two regions. There were also phenotypic differences in 

the birds, in that Horro birds grew larger, and had more pronounced secondary sex 

characteristics, such as combs and wattles, and brighter plumage colours. They also reared 

more chicks, influenced by the choices the farmers made as to when and how often they 

set eggs for hatching. Ecological trade-off theory would suggest that this investment into 

reproduction reduces the energy available for maintenance, including immunity. This 

would offer another possible explanation for the shorter lifespan, greater disease-mortality 

and higher intensity and prevalence of macroparasite infections observed in Horro. 

Variation between birds would appear to play a substantial role in the differences we 

observed in infection measurements. Even though there was a moderate degree of 

clustering within farms for all of the diseases we looked at, modelling suggested that even 

after this and other farm-level risk factors were controlled for, there were still substantial 

differences between birds on the same farm, particularly for Salmonella and Pasteurella, 

where bird level risk factors such as sex were also important determinants of s:p ratios. 
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Whether this reflects differences in bird behaviour between the sexes and consequent 

differences in exposure, or whether this is due to differences in the bird immune response 

between the sexes cannot be determined from our data. However, what is clear is that 

there is no simple answer to the question of which infections are having the greatest 

impact on bird survival, due to this complex interplay between the pathogens, the birds, 

their environment and the human influences in this system. 

Study strengths and limitations 

Perhaps the greatest limitation of this study is that direct observations were very limited, 

both of the pathogens and of the birds. By choosing to measure a single serological 

response rather than isolating pathogens, it is often difficult to know how to interpret 

these in the context of the questions we were trying to answer. Although we can detect a 

small rise in mean antibody titre over the population, this does not necessarily equate to 

widespread exposure to the pathogen in question, but may be due to a small number of 

birds with much higher titres being included in the sample. Quantile regression appeared to 

be a promising approach to exploring this question. Spatial analysis of household residuals 

was also helpful in identifying potential small localised outbreaks. However, where 

household clustering was lower, for example Salmonella, this could not explain the 

appearance of individual birds with very high titres within households. More data on the 

pathogens themselves, such as isolation and identification of the circulating Salmonella 

serovars, would be useful, in order to aid interpretation of the antibody response. Similarly, 

parasitic infections such as the lice and Eimeria have been treated in this analysis as a single 

species, although subsets of them were speciated by MSc students and differences in the 

diversity and prevailing species were shown between the two regions, which may clearly 

have implications for bird health as species differ in their pathogenicity. 
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The other problem with serological responses is that they do not indicate current infection, 

and therefore using them in regression models which assume a directional response is 

potentially misleading. We have tried to overcome this problem by using both a 

multivariate analysis as well as regression to explore potential correlations between 

infections, and controlling for infections which co-vary when trying to explore other risk 

factors. By combining several different methods, we have illustrated the complexity and 

the numerous interactions in the system, and are able to gain a more holistic picture of 

possible risk factors.  

The other main outcome that we did not observe directly was that of the fate of the birds. 

Although we were able to confirm survival in most cases (with the exception of around 10% 

of birds which farmers presented as “survived”, but were found on comparison of previous 

photos to be different birds), we relied entirely on farmers to tell us if birds had died of 

disease, predation, or some other cause. There is therefore likely to be some error, not 

only because farmers cannot always identify individuals accurately, but also because 

deaths are not necessarily witnessed. Therefore deaths attributed to predators may be due 

to disease morbidity/ mortality and birds being scavenged by predators. It is hard to know 

how much people’s perception of what happened to their birds is influenced by the 

prevailing local beliefs as to the major constraints they are under. Where people reported 

birds to have died from disease, we tried to collect data on symptoms displayed, and 

whether other birds in the flock were also affected, but we are still relying heavily on 

people’s ability to recall such events.  

Although we have collected many data on these two regions and were therefore able to 

explore in detail how disease exposure and survival varied within and between these 

regions, some of the factors that we hypothesise may drive how birds and pathogens are 

interacting, such as climate, agro-ecology and human social and economic factors have 
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mainly been collected at the regional level, and therefore no conclusions can be drawn on 

possible correlations between these factors, as there are only two data points available. In 

addition, it should be borne in mind that we only have data for two years, and therefore 

observations such as the seasonal fluctuation of risk of disease mortality in one region but 

not the other may not be representative of variation or trends in the longer-term. 

 

Implications of the findings and possible future work 

This study was designed to inform the Ethiopian genetic improvement programme, where 

selective breeding of indigenous birds on station has been going on for several years to 

produce a dual-purpose chicken which meets local farmers’ requirements. The 8th 

generation of these “improved” Horro chickens are now being trialled on farms in the 

Horro region, as well as in villages around the research centre in Debre Zeit where the 

selection took place. It will be interesting to see the outcome of this trial, as our results 

suggest that i) pathogens may impact mortality differently in different areas and ii) there is 

diversity amongst birds within a village, such that they tolerate different pathogens, yet 

fewer birds than expected are present which appear able to tolerate both a bacterial and 

parasitic infection simultaneously. The implications of these findings are that birds would 

appear to be locally adapted, and that it is important to maintain the diversity at the 

population level, so that the population can continue to recover from the dynamic and 

diverse array of pathogenic infections. Birds distributed from the research centre will have 

passed through a population bottleneck, and the risk is that some genetic diversity and 

adaptive immune traits may have been lost from this population, which may impact their 

survival. 

The continued reporting by farmers of deaths from “fengele”, despite our finding that 

almost all birds were seronegative for NDV, would suggest that “fengele” is probably 
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comprised of several of the diverse array of infections we have found in the population. 

This has important implications for any vaccination programme, as this discrepancy needs 

to be carefully explained lest farmers have unrealistic expectations for a vaccine, and lose 

incentive to use it. When we revisited the villages in May 2014 and held public meetings to 

explain our findings and provide some education about the various diseases, this was 

appreciated by most farmers, who confirmed that they saw all the clinical syndromes which 

we described, and that it made sense that multiple diseases were involved. Although it may 

seem very obvious from a veterinary standpoint that multiple infections will be present, the 

lack of veterinary input into a lot of the previous research in Ethiopia may have contributed 

to an over-simplification of the problem of infectious disease in village chickens, and led to 

the erroneous belief that ND is the only disease of importance (Dessie and Jobre, 2004; 

Halima et al., 2007; Dinka et al., 2010; Moges et al., 2010b). Whilst it is likely that an ND 

vaccination programme would bring benefits, it should perhaps be emphasised that it may 

not have an equal impact in all areas, as our study has demonstrated it does not circulate 

continuously in all regions, and large epidemics do not affect all areas every year, as 

previously seems to have been assumed (Dessie and Jobre, 2004; Halima et al., 2007; 

Moges et al., 2010a). In some areas, protection from predators, basic hygiene and 

biosecurity and improvements in breeding management may also bring substantial 

benefits, and thus extension services should be tailored to the local needs, rather than 

adopting a blanket approach. This applies equally whether the approach is through 

distribution of “improved” birds or other technologies to improve health or productivity. 

Different production models, such as concentrating on birds for meat or egg production 

may in fact suit different areas, depending on the local markets, or what markets people 

are able to access. Current strategies also rely on substantially altering the production 

environment by introducing measures such as full-time housing of birds and providing all 

feed. This contradicts the premise of utilising the existing semi-scavenging system, to which 
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the indigenous birds are highly adapted, and is likely to radically alter the epidemiology of 

the existing infections in these areas. Certainly infections such as MDV and Eimeria would 

be likely to become far more significant under housed conditions. 

In view of the fact that the landscape of chicken production is changing rapidly in Ethiopia, 

with more and more money going into projects focused on breeding high-producing birds 

for the environment, coupled with a focus on changing production systems towards (semi-

)intensification, perhaps the most important role of infectious disease research at present 

would be to monitor the impact such rapid changes are having on the epidemiology and 

ecology of infections. We have demonstrated that apparent interactions exist between, for 

example, Salmonella and Ascarid worms, but should a worming control programme be 

introduced, for example, it is difficult to predict whether Salmonella burdens would 

increase, due to the removal of ecological interference and survival of birds which may 

previously have died due to co-infections, or whether it would decrease due to birds being 

better able to control bacterial infections and reduction in faecal shedding. However, since 

this disease is clearly of zoonotic importance, it would be of interest to monitor whether 

such a programme would have impacts on non-target diseases, as well as improvements in 

survival. Although in this study we have focused on mortality as the main reason for 

investigating infectious diseases, gains in productivity may also be had through infection 

controls. The question is whether such benefits will outweigh the costs, particularly if the 

costs include increasing burdens of zoonotic diseases in smallholder communities which 

continue to manage their chickens in a traditional system.   

Due to the growing pressures of food security and increasing demand for animal protein, 

the scavenging village chicken clearly still has a valuable role, as it can utilise food waste, 

weeds and insects and therefore dose not compete with humans for food, nor require 

labour to provide all its feed requirements. Changing to an intensive system where all feed 
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is provided will not necessarily bring all the hoped-for economic advantages to a small-

scale producer. However, the current smallholder system appears to be very wasteful, with 

around 30% of adult birds lost from the system every 6 months, according to our findings, 

and reported rates of chick loss are even higher (Dessie and Ogle, 2001). Given one 

hypothesis from this study is that the bird ecotype which grew larger and reared more 

offspring appeared more prone to die of disease, we could ask whether breeding for larger 

birds and birds which lay more eggs within the current scavenging system will be 

economically advantageous, or whether it will in fact introduce more wastage into the 

system. However, it may be that small alterations, such as providing more energy-rich 

supplementary feed at periods of stress may have profound benefits, if indeed energy is a 

main limiting factor. Clearly assessments of the cost/benefit would also need to be made of 

any strategies, as well as their impact on the birds’ health. However, it should be borne in 

mind that as most people currently appear to keep their birds for their “safety net” role, 

wastage in many flocks may be a natural consequence of farmers under-utilising their birds, 

and would require cultural change in order to shift from simply maintaining flocks to seeing 

them as a productive asset.  

Our experiences with Ethiopian farmers would indicate that they are very keen to access 

new technologies which might allow them to reduce the burden of disease in their chicken 

flocks. However, most of what is known about poultry disease, even in industrialised 

countries, is aimed at control in intensively farmed flocks where there is heavy reliance on 

biosecurity measures to prevent introduction of infections. Trying to exclude infections in 

the backyard situation is clearly unfeasible. Yet over-reliance on vaccines to control 

infections has demonstrably driven the evolution of pathogen strains of increasing 

virulence (for examples, see Atkins et al. (2013), Gandon et al. (2001)). Therefore, as a long-

term strategy, widespread vaccination against multiple endemic infections in village 

chickens may not be desirable either. Although the Ethiopian Government’s focus is on a 
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drive towards (semi)-intensification of chicken production, it is interesting to contrast this 

with the situation in more economically developed countries such as the UK and USA, 

where numbers of backyard flocks are increasing. However, in the main, such small flocks 

are not maintained for the economic benefits of chicken production, and veterinary 

involvement and service provision to the backyard poultry sector is also inadequate in 

these countries (Garber et al., 2007; Karabozhilova et al., 2012).  

Findings from the genetics part of the Chicken Health for Development project suggested 

that the Horro and Jarso chicken populations both had high levels of diversity, yet were 

clearly differentiated, which may be attributed partly to adaptation to their particular 

ecological niche (Desta, personal communication). Furthermore, different genetic loci 

associated with Salmonella and IBD resistance were found in the two populations (Psifidi, 

personal communication). Rather than focus solely on developing intensive farming 

systems, where animals need the provision of large quantities of energy and protein-dense 

food, which often has to be shipped in and could be used for human nutrition, developing 

countries, such as Ethiopia, might be well-placed to lead the way in devising strategies to 

derive the greatest benefits from smallholder poultry production by utilising their robust 

and locally adapted chicken ecotypes to fulfil the various roles that people demand of them 

in diverse production systems. It has been suggested that in order to farm sustainably, we 

need to optimise, rather than maximise production levels, as high-producing animals can 

no longer meet their metabolic demands from local produce. (van Dijk, 2014). Perhaps 

considering endemic infections within the ecological framework of the smallholder 

production system, as this study has done, will help to devise ways which allow chickens to 

tolerate the pathogens, yet still produce enough to have a valuable contribution to 

nutrition and livelihoods worldwide.   
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Chicken Health for Development – Cross sectional study.   

 

1. Start by greeting the respondent in their language! 
 

2. Explain the following to the respondent! 
 
This questionnaire is part of a research study into the health problems of village poultry in rural 
Ethiopia, Jarso and Horro. The study is conducted by International Livestock Research Institute, the 
Ethiopian Instistute of Agricultural Research and the University of Liverpool in Great Britain. 
 
Before you decide if you want to participate, we will explain to you why the research is being done 
and what it will involve for you. Please feel free to ask us if you would like more information or if 
there is anything that you do not understand.  
We hope to find out which the most important diseases in Habesha poultry are and why this affects 
some birds more than others. By doing this, we hope we can develop ways to reduce the problems 
with disease that will work in your village. Many other villages in Ethiopia are also taking part. 
 
We want to examine two of your birds; then take some blood samples, some photographs of the 
birds and identify them with leg rings. If you wish to sell the birds, you can remove the rings. It is 
possible that your chicken could develop a bruise or an infection under the wing, where we take the 
blood sample, but the risk of this is very small. We will keep a small amount of blood from your 
chickens which we will send to researchers in England, who will test it to see whether certain 
chickens in Ethiopia are better at resisting diseases and whether we can recognise those chickens. 
The rest of the tests will be done here in Ethiopia, in Debre Zeyit. If you would like us to stop the 
examination or the sampling of your chickens at any time, you are free to tell us to stop without 
giving us a reason.  
We would also like to ask you some questions about the management of your birds. The questions 
will take about 30 minutes. We will record the answers on paper, and they will be stored in a safe 
place, where no-one else can see them. 
 
We would like to stress that you do not have to accept this invitation and should take part only if 
you want to. If you change your mind after you have answered the questions and would not like to 
be included in our study, we can destroy your answers or samples from your birds so they are not 
used. If you are worried for any reason, or have any problems with your birds after the sampling, 
please tell your Development Agent, who will contact us. 
 
Thank you in advance for your willingness to discuss with us! 
 
If the household is happy to take part and has agreed for the chickens to be sampled,              
please tick this box. 
 
Have you ever used any vaccinations in your birds?   Yes    No 
 
If yes, can you provide any details of when they were vaccinated and against which diseases? 
..................................................................................................................................................................
.................................................................................................................................................................. 
.................................................................................................................................................................. 
 
If the household has used any vaccines in the last 2 years, unfortunately we cannot use them for 
this survey. 
 
Date /dd/mm/yyyy/:......................................................................................................................... 
 
Name of the enumerator:............................................................................................................... 

 

Stick one of the bird stickers here 
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Poultry ownership 

 
Poultry  by Age and 

sex group  

Hens Cocks Pullets Cockerels Chicks 

Number currently 

owned 

      

 
 
 
Housing 
1. Where do birds sleep at night?  Separate shelter....................... 

Perches in the house................  

Perches in the kitchen.............. 

Perches on the veranda............ 

Other (please describe)..................................................... 

2.      If you don’t have a separate house for your chickens, why not?
 1

    
Lack of knowledge (Awareness).............................................. 

      Lack of importance of poultry................................................. 
      Lack of construction materials (Availability and Cost)............ 
      Risk of predators..................................................................... 
      Risk of theft............................................................................. 
     Other (please describe).................................................................. 

 

3.     What do you do with bird waste products such as excreta?  Used as fertiliser....... 

Burning..................... 
Thrown away............ 

 
4. Do you provide nest boxes for incubating/ brooding hens and chicks?           Yes                 No 

 
 
Feed and water 
5. Do you ever provide any supplementary feed for your birds? Yes  No 

 
6. Do you provide separate supplementary feed just for chicks?  Yes  No 
 
 
7. During the rainy season, do you provide:     More feed........................... 

      The same amount of feed.   
      Less feed............................ 
      No feed.............................. 

 
 
 
 
 
 
 

                                                           
1
 This question was part of an MSc student’s survey on the reproductive aspects of poultry keeping, 

and was only included during the second season of sampling 
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8.    What type(s) of supplementary feed do you provide? (Multiple answers possible)
2
 

Wheat...................  Sorghum.......................... 
Maize...................  Household scraps.............  

 Barley................... 
 Other(describe)............................................................................ 
 
 

9. Are there periods during the year when birds are confined within their housing eg planting, 
harvesting?         

Yes  No 
 

If yes, which months?................................................................................................................... 

 

Contact with other birds 
10. For each season, can you grade the amount of time you estimate your birds spend in areas 

where they can mix with other peoples’ birds? Only consider adult birds without chicks for this 

exercise. 

 Not at all   Rarely 
 

A few 
times a 
week, for 
less than 
one hour 

A few 
times a 
week for 
more than 
one hour 
 

Every day 
for less 
than one 
hour  

Every day 
for more 
than one 
hour 

Don’t 
know 

Dry 
season 

0 1 2 3 4 5 99 

Rainy 
season 

0 1 2 3 4 5 99 

 
 
 
Source of new birds 
11. When was the last time you bought or were given a new bird?  

 

Within the last 12 months.......................If yes, which month?......................................................... 

Between 1 and 2 years ago......... 

Between 2 and 3 years ago......... 

More than 3 years ago................ 

 

Was this bird:       From someone you know in your village?.......................... 

From someone you know in a different village?................. 

From the market?............................................................... 

From another source (please describe)........................................................................................ 

 
 
 
 
 

                                                           
2
 This question was not asked in the first sampling season. It was added as part of an MSc student 

survey during the second season of sampling, and retained thereafter 
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Poultry and egg selling places and target seasons (multiple answers possible) 

12.       Selling places (A) Main seasons at which you sell them (B) 

Neighbours........................ 
Local collectors................ 
Near market.................... 
Take to far markets..........  
To restaurants.................  
Others...................................................... 

Christmas.......................................................... 
Easter................................................................ 
Ramadan........................................................... 
Meskel............................................................... 
New year.......................................................... 
Any time needs arise or birds available............ 
 

13.   Do you practice culling of birds? 
3
   Yes           No 

          If yes, what is your reason for culling (multiple answers are possible) 
 
Old age................      Low production..........       Unwanted plumage colour/pattern.....       
Illness..................  Bad temperament.....           Other (specify)....................................                   

 
 
Loss of birds to diseases 

14. In the last 12 months, how many outbreaks have you had, where you lost several of your birds 

to the same disease?  .............................................. 

 
For each outbreak, can you write how many birds you lost in the month the outbreak occurred and 
tick which age groups were affected for each outbreak? 
 

 Sept Oct Nov Dec Jan Feb Mar April May Jun Jul Aug 

Total lost 
in  month 
(number) 

 
 
 

           

Chicks     
(√) 

            

Growers 
(√) 

            

Adults     
(√) 

            

 

 

 

Treatment of sick birds and treatment of healthy birds to prevent disease 

15. If you had an outbreak in the last 12 months, did you attempt any treatment of sick birds? 

  

Yes  No 

 

a.  If Yes, what did you try? 

....................................................................................................................................................

.................................................................................................................................................... 

b. Was your treatment successful at curing the sick birds? 

Completely  Partly  Not at all 

                                                           
3
 This question was not asked in the first sampling season. It was added as part of an MSc student 

survey during the second season of sampling, and retained thereafter 



A1 – Health and genetics questionnaire 

  
325 

 
  

 

c. Did you give the same treatment to healthy birds to prevent them from becoming sick? 

Yes  No 

 

d. Was your treatment successful at preventing birds from becoming sick? 

Completely  Partly  Not at all 

 

 

 

16. Do you use any other measures to try and reduce losses from disease outbreaks?  

Sold birds before your flock was affected by disease................ 

Sold healthy birds after you had seen disease in your flock....... 

Isolated sick birds from healthy birds.......................................... 

Slaughtered birds showing signs of disease................................ 

Slaughtered healthy birds........................................................... 

Use ethno-veterinary treatment(s) to prevent disease................. 

 

Other.(please describe) ............................................................................................................. 

.................................................................................................................................................... 

 

17. What do you do with carcasses of birds which have died from disease?  

Throw away in or close to your yard.........  Bury....................................................... 

Throw away far away from your yard.......  Burn...................................................... 

 

Other (please describe)................................................................................................... 

 

18.  Do you see any skin parasites on the birds? 
4
   Yes  No 

 

 If yes, please show pictures to farmer and ask them to identify any they have seen. 

 

 

 Tick any seen on 
the bird 

Where on the bird do you 

see them? 

Do you 

remove any 

by hand? 

Tick any seen 

in the housing  

a. Stick-tight 

flea              

 …………………………………………   

b. Soft tick  …………………………………………   

c. Hard tick  …………………………………………   

d. Lice  …………………………………………   

e. Other 

(Please write name) 
……………. ………………………………………   

 

                                                           
4
 This question was part of an MSc student survey on ectoparasites, and was only included during the 

fourth season of sampling 
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19. Do you use any treatments against parasites? 

Insecticide spray treatment of housing......   Insecticide spray on birds.................... 

Treating housing by smoking........................   Other treatment of birds.....................  

Other, please describe ...................................................................................................................... 

 

 

20.  Do you have any birds with disease problem at the moment?  Yes        If Yes, how many?............ 

                 No 

21. Do you have access to advisory/technical/ support from extension workers on poultry 
production?   

     Yes     No  
 

If yes, how often do they visit you per month? ............................................................................... 

 
 
Characteristics of your chickens 
 
22. Have you observed any variation in disease resistance among your chickens? 

5
  

  
      Yes     No  
 

23. How would you describe the temperament of your chickens? 
6
 

    Docile      Moderately tractable                   Wild  

24.   Do your birds take dust bath regularly? 
6
     Yes       No  

 

Breeding and Hatching chicks 
 
25. Reproductive traits 

6 
Hen Cock 

 Age at first mating(mo)    

 Age at first lay(mo)   

 
26.   Average number of clutches per hen per year (circle) 

6
  1          2         3          4           5 

Average length of inter-clutch period (wk) 
6
............................................................. 

Average length of single clutch (wk) 
6
........................................................................ 

Average number of eggs per clutch (N) 
6
.................................................................. 

                                                           
5
 This question was part of the genetics survey and was not included during the third round of 

sampling 
6
 This question was part of an MSc student’s survey on the reproductive aspects of poultry keeping, 

and was only included during the second season of sampling 
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27.   How many times a year do you incubate eggs for hatching............................................................. 

28. Underline  the months when you prefer to set eggs for hatching 

Sept     Oct       Nov    Dec     Jan     Feb      Mar     Apr      May    Jun       Jul       Aug 

 

29. Underline the months (if any) when you will not set eggs for hatching 

Sept     Oct       Nov    Dec     Jan     Feb      Mar     Apr      May    Jun       Jul       Aug 

 

Why do you not set in these months? 
7
..................................................................................... 

 
30.   Do you select eggs for incubation? 

7
         Yes        No  

 
31.   For how long (days) do you store eggs before incubation? 

7
 ....................................................... 

32. Average number of 
eggs set to a broody 
hen 

7 

Average hatch rate 
(%) in the dry 
season

7 

Average hatch rate 
(%) in the wet 
season

7 

Survival rate of 
chicks to 8 weeks 
(%)

7 

  
 

   

 
 
33.    How would you describe broodiness in your hens (circle)

7
   

Common           Sometimes                   Rare 
 
  

34.  Interval between two consecutive brooding period (months
7
)......................................................... 

 
35.  How do you deal with unwanted broodiness behaviour? (multiple answers are possible) 

7 

 Hanging hen upside-down....    Disturbing.........................    Inserting feathers through nostrils...  
Taking to another place......... Taking away brooding nest..     Immersing in cold water.......  
Other (specify) ...............................................................................................   
 

36.  Which two characteristics of hens are most important to you? 
7

 ................................................................ 

 ................................................................ 

37.  Do you have your own cock 
7
     Yes        No  

38.  Which two characteristics of cocks are most important to you? 
7

 ................................................................ 

 ................................................................ 

                                                           
7
 This question was part of an MSc student’s survey on the reproductive aspects of poultry keeping, 

and was only included during the second season of sampling 
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Preferences for appearance of chickens 

 

39. Plumage colour of your preference (rank, 1=most important)
8
 

 

39.1. Hen 

1. .......................................    2. .....................................   3. ....................................  

 

39.2.Cock 

1. ....................................... 2. .....................................   3. ...................................  

 

 

39.3. Which plumage colours do you dislike? 
8 

 

1. ....................................... 2. .....................................   3. ...................................  

 

 

39.4. Reason for plumage colour preference 
8 

         1. Aesthetic value....................................  2. High market value.......................  

         3. Cultural and religious value.................   4. Other(Specify)................................... 

 

 

40. Which comb type do you prefer? 
8 

  1. Single    2. Double   3.Others (Specify)................................ 

40.1. Reason for comb type preference 
8 

         1. Aesthetic value....................................  2. High market value.......................  

         3. Cultural and religious value.................   4. Other(Specify)................................... 

 

41. Which shank colour do you prefer?  
8
  

1. Yellow     2. White  3. Black/grey  

 

42. Do you prefer 
8
  

1. Normal feathered chicken    2. Naked neck     

 

 

43. Which type of chicken do you prefer? 
9
    Crested     No crest   No preference 

43.1. Why? 

         1. Aesthetic value....................................  2. High market value.......................  

         3. Cultural and religious value.................   4. Other(Specify)................................... 

 

 

 

                                                           
8
 This question was only included in the first two rounds of sampling as part of the genetics survey 

9
 This question was only included during the third round of sampling, as part of the genetics survey 
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44.  Presence of any cultural or religious belief to rear a special type of chicken
10

 

           1. Yes           2. No 

If yes; specify the type of cultural/religious belief to rear a special type of chicken 

 _________________________________________________________________ 

Presence of any cultural or religious belief not to eat chicken meat and eggs 

        1. Yes         2. No 

If yes; specify the type of cultural/religious belief not to eat chicken meat and eggs 

_________________________________________________________________ 

Presence of any cultural or religious belief not to sell chicken and eggs 

       1. Yes                     2. No 

 If yes; specify the type of cultural or religious belief not sell chicken and eggs 

__________________________________________________________________ 

 

 

Thank you very much for taking part in this survey 

                                                           
10

 This question was part of an MSc student’s survey on the reproductive aspects of poultry keeping, 
and was only included during the second season of sampling 
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Chicken Health for Development cross sectional study.  Introductory sheet (SE 

only) 

 

3. Start by greeting the respondent in their language! 
 

4. Explain the following briefly to the respondent! 
 

This is a questionnaire is part of a research study into the economic and health problems of village 

poultry in rural Ethiopia, Jarso and Horro. The study is conducted by International Livestock Research 

Institute and the University of Liverpool. Before you decide whether to participate, we would like to 

explain to you why the research is being done and what it will involve. Please feel free to ask us if 

you would like more information or if there is anything that you do not understand.  

The data to be generated will be on socioeconomic importance of poultry in your household and 

poultry health services. This questionnaire will take about 90 minutes but respondents have the 

right to stop the interview at any time. Yet, the data will only be used if the questionnaire is 

completed. Data generated with this questionnaire will not be transferred to a third person and will 

be used only for the purpose of the study.  

 

Some households are also having their birds sampled, but we do not need to do this in every 

household, so we have chosen these by a lottery. We are returning to sample more birds in the 

village later this year and again next year, so we may ask to sample your birds in the future. We 

hope to find out which the most important diseases are in your village, and why this affects some 

birds more than others. By doing this, we hope we can develop ways to reduce the problems with 

disease that will work in your village. 

We would like to stress that you do not have to take part today and should do so only if you want to. 

If you decide later you would like your data to be removed, you can tell your DA who will contact us. 

 

Thank you in advance for your willingness to discuss with us! 

 

If the household is happy to take part, please tick this box. 

Date /dd/mm/yyyy/:...................................................................................................................... 

Name of the enumerator:................................................................................................................ 

Village name.................................................................................................................................... 

 

Time started................................................................................................................... 

 

 

NOTE: QUESTIONS CAN HAVE MORE THAN ONE ANSWER! 

 

Questionnaire Code number 
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Researchers' 

  

      
Bird 
ID 

  Initials         

                   
Date 

  

            

        Camera number   

                      

Latitude.......................................................   Longitude................................................................... 
                      

1. Photograph bird id       2. Photograph of flock      

           Random selection of one cock and one hen, or two hens over 6 months;  
                       

3. Weight of basket.......................................   Weight of basket + bird......................................... 

          4. Bird details 
        Sex         

 
Age.................. 

 
  

Male     Female   
 

Known     Estimated   

           Origin                     

Homebred   Directly from household 
in the same village 

  Directly from household 
in a different village 

    Purchased 
from market 

  

            

           Length of time in flock (if not homebred)               

< 1 month     1-3months     3-6months      6 -12 months   

>12 months                     

           Production (hens)                 

Laying 
 

  Incubating eggs     Brooding chicks    Not in production 
 

           Has this bird had any previous diseases?     Yes     No   

           Has this bird had any treatment to treat or prevent disease? Yes     No   

           Other history? (Details of previous diseases, recent treatments, owner's comments on productivity)   

  

           5. Photographs 
         Lateral     Front     Back         

           Skin     Detail of head     Detail of leg         

           

           6. Clinical Examination of Bird                

i.  Demeanor and appearance: Bright    Quiet, depressed, ruffled         

                      
ii.  Breathing   Normal     Open-beak breathing    Distressed, noisy   

                      
iii.  Neurological Normal    Torticollis (twisted neck)     Paralysis   
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iv.  Body condition score:  

(Circle one option)  0 1 2              3   
                      

Head                     

v.  Discharge from eyes Absent     Present         

                      vi.  Discharge from nostrils Absent     Present         

          vii.  Inside beak   Normal     Lesions present         

                      viii.  Skin of face, comb, wattle Normal     Pale    Swollen   

            Bruising     Crusting scabs    

                      

a. Head shape  Plain     Crest         

b. Earlobe  Present     Absent         

                      

Feathers and skin                

ix.  Feathers   Normal     Moulting    Abnormal feather loss   

                      c. Feather type Hard     Soft     Frizzle or curly   

                  Silky or hookless   

                      d. Tail type  Normal     Rumpless     Henny feather   

                 Long tail, non-moulting   

                      
Under wings and side of keel                
                   
  

  
Total count of underside of one wing, including skin at base of flight 
feathers 

  
Body lice: 
    .................. 
      Timed count of: One side of keel (30secs)    .................. 
                    
Back and rump              
Body 
lice:   Timed count of: Back (30secs)    .................. 
        Rump (60secs)      .................. 
                      
                      
Body lice:   Total count of underside of tail feathers 

  
.................. 

                      

ix.  Vent Clean 
 

Soiled 
 

     Any observations on any part of skin of body           

x.  Skin   Normal     Bruising     Nodules   

                  Wounds   
 

Legs and feet                  

xii. Legs/feet    Normal     Scaling     Bruising   

            Wounds    Joint swelling   

           Scaly-leg Mites:       0 – No  visible signs         

         1 – minor scaling (affecting bottom parts of legs only)   

         2 - large amount of scaling (whole leg infested).   
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 Legs and feet                 

e. Multiple spurs       Present     Absent   

           f. Hen spur  Vestigial     Present     Absent   

           g. Polydactyl (additional toes)     Present     Absent   

           h. Heterodactyly (different number of toes on each foot) Present     Absent   

           j.Syndactyly (webbed toes, two or more are fused together) Present     Absent   

           k.Mottling on leg (uneven colour spots on leg)  Present     Absent   

Other 
          l. Bantam type (dwarfism)       Present     Absent   

           Are there any other unusual morphological traits?  Yes     No   
                    If yes, describe or note any other comments 

          Are there any other parasites? If yes, describe what and where from. 

   
          Collect and Label               

Blood sample  1x Anticoag. tube     FTA card     
   

         Faecal sample (tick one) From bird    From environment       

  
         Ectoparasites collected?   yes no How many tubes?.................. 

(leg scrapings, feather ruffling, or freeze parasites with alcohol)       
  

         Have you taken additional photographs of this bird? yes   no   
           Ring placed   Yellow             

      White             

      Blue     Ring Number ...................................... 
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Body measurements 11

                                                           
11

 This question was part of an MSc student’s survey on bird phenotypes, and was only included 
during the second season of sampling 
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CH4D Follow-up Questionnaire for revisiting households 

Date...................................................................... 

Enumerator........................................................... 

Latitude.....................................................  Longitude................................................... 

 
Start by greeting the respondent in their language, and explain the following. 

This questionnaire is a follow-up to the research study that you took part in 6 months ago, into the 
health problems of village poultry in rural Ethiopia. The study is conducted by International Livestock 
Research Institute, the Ethiopian Instistute of Agricultural Research and the University of Liverpool in 
Great Britain. Please feel free to ask us if you would like more information or if there is anything that 
you do not understand.  
We sampled 400 birds in several villages in this area and in another part of Ethiopia, and we are 

working on these samples to find out which the most important diseases in Habesha poultry are and 

why this affects some birds more than others. By doing this, we hope we can develop ways to 

reduce the problems with disease that will work in your village. We would like to find out what 

happened to the two of your birds that we sampled at our last visit. This will involve a few questions, 

which should take less than 10 minutes. We will record the answers on paper, and they will be 

stored in a safe place, where no-one else can see them. If you still have the birds, we would like to 

examine them again, and take another smaller blood sample. This will help us to see what has 

happened to your bird in the last few months. It is possible that your chicken could develop a bruise 

or an infection under the wing, where we take the blood sample, but the risk of this is very small. If 

you would like us to stop the examination or the sampling of your chickens at any time, you are free 

to tell us to stop without giving us a reason.  

We would like to stress that you do not have to accept this invitation and should take part only if 

you want to. If you change your mind after you have answered the questions and would not like to 

be included in our study, we can destroy your answers or samples from your birds so they are not 

used. If you are worried for any reason, or have any problems with your birds after the sampling, 

please tell your Development Agent, who will contact us. 

If the household has agreed to take part and for chickens to be sampled (if applicable), tick box. 

Part A 

1. Has there been an outbreak of disease in your flock since our last visit?   Yes..............Go to Q.2 
                                                                                                                                             No....      ..Go to Part B 

2. Which month?................................................................................................. 

 

3. What symptoms did the birds show? 

    Sudden death with no other signs....           Diarrhoea.................... 
Paralysis/ loss of co-ordination.........           Breathing problems.... 
Depressed/ruffled............................. 

 
Other (please describe)................................................................... 

4. How many of your birds: 

Died Had disease and recovered Did not become sick 

 
 

  

 
Stick new bird label(s) here 

only if bird(s) are re-sampled 
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Part B 

We would now like to ask some questions specifically about the birds we sampled at the last visit. 

First bird Ring colour Yellow.............   

    White..............  Ring Number.................................  
    Blue.................    (No number)........... 
 
 
1. Is the bird still in the flock? Yes................. .................Complete a re-examination sheet  

No..................       ......................................... Go to Question 2 
   

 
2. Why is the bird no longer in the flock? 

Sold.............................. Killed by a predator (witnessed)........................ 
   Consumed.................... Probably killed by a predator (not witnessed)... 
   Culled

a
........................... Died due to an accident.....................................

 

   Died due to disease
b
...

 
Missing for reason unknown.............................. 

 
a 

If it was culled, please describe why................................................................................................... 
 
b 

 If it died due to disease, what symptoms did it show? 
   Sudden death with no other signs..................         Diarrhoea................ 
   Paralysis/ loss of co-ordination.......................         Breathing problems.. 
   Depressed/ruffled........................................... 
    

Other(please describe).................................................................................. 
 
       

 

 

Second  bird Ring colour Yellow.............   
    White..............  Ring Number.................................  
    Blue.................    (No number)........... 
 
 
1. Is the bird still in the flock? Yes................. .................Complete a re-examination sheet  

No..................       ......................................... Go to Question 2 
   

 
2. Why is the bird no longer in the flock? 

Sold.............................. Killed by a predator (witnessed)........................ 
   Consumed.................... Probably killed by a predator (not witnessed)... 
   Culled

a
........................... Died due to an accident.....................................

 

   Died due to disease
b
...

 
Missing for reason unknown.............................. 

 
a 

If it was culled, please describe why................................................................................................... 
 
b 

 If it died due to disease, what symptoms did it show? 
   Sudden death with no other signs..................         Diarrhoea................ 
   Paralysis/ loss of co-ordination.......................         Breathing problems.. 
   Depressed/ruffled........................................... 
    

Other(please describe).................................................................................. 
 



A5 – Follow-up bird examination recording sheet 

  
349 

 
  

CH4D - Re-examination Recording Sheet 
       

Researchers' 

  

      
Bird 
ID 

  

Initials         

                  

Date 

  

            

        Camera number   

                      
Latitude...............................................   Longitude......................................................   

Ring identification Yellow               

      White     Ring Number ..................................   

      Blue     No number         

                      
 
3. Weight of basket........................................   Weight of basket + bird..................... 

           4. Bird details 
         Laying     Incubating eggs    Brooding chicks    Not in production   

           Has this bird had any diseases since last sampled? Yes     No   

           Has this bird had any treatment to treat or prevent disease? Yes     No   

           Please describe any disease, its severity, and treatment since last sampled    

  

           6. Clinical Examination of Bird                

i.  Demeanor and appearance: Bright   Quiet, depressed, ruffled         

                     
ii.  Breathing   Normal    Open-beak breathing    Distressed,noisy   

                      iii.  Neurological Normal    Torticollis (twisted neck)     Paralysis   

                      
iv.  Body condition score: (Circle one option)  0 1 2   3   
                      
Head                     
                      
v.  Discharge from eyes Absent     Present         

                      vi.  Discharge from nostrils Absent     Present         

                      vii.  Inside beak   Normal     Lesions present         

                      viii.  Skin of face, comb, wattle Normal     Pale     Swollen   

            Bruising    Crusting scabs    

Stick-tight Flea: Examination of face and wattles, total count 0 none present   

              1 1 to 10    

              2 11 to 50     

              3 over 50    
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Feathers and skin                 

ix.  Feathers     Normal     Moulting    Abnormal feather loss   

                      
Under wings and side of keel                
Ticks: Examination and total count             
                                                                                                                                                                   .............. 
Body lice:     Total count of underside of one wing, including skin at base of 

flight feathers  
  

      ............. 

      

Timed count 
of: 
 

One side of keel (30secs) 
   ............. 

Back and rump                   

Body lice:   
  
Timed count of: Back (30secs)       ............. 

        
 
Rump (60secs)       ............. 

                      
Body lice:  Total count of underside of tail feathers   

 
............. 

                      xi.Vent     Clean     Soiled          

                      Tropical Fowl Mites: vent region (an area approximately 6 cm in diameter immediately in front of 
the vent 

              0  no mites visible,    

              1  1–50 mites,    

              2  51–500 mites,    

              3  >500mites    

 
Any observations on any part of skin of body          

x.  Skin     Normal     Bruising     Nodules   

                  Wounds   

Legs and feet                   

xii. Legs/feet     Normal     Scaling     Bruising   

            Wounds     Joint swelling   

           Scaly-leg Mites:       0 – No  visible signs         

         1 – minor scaling (affecting bottom parts of legs only)   

         2 - large amount of scaling (whole leg infested).   

Any other comments                 

                      
  

         
  

  
         

  
                      

           Collect and Label                 

Photographs (Side, front, back, close-up of head, close-up of feet)         

  
         

  

Blood sample 
 

 1x tubes     2x Smears         

  
         

  

Faecal sample (tick one) From bird    From environment         

  
         

  
Have you taken additional photographs of this 
bird? 
 

Yes 
   

No 
     



 

  
351 

 
  

 

General Appendix B  

 

 

Laboratory manuals 

 

 

B.1  ELISA methods 

B.2  HAI methods 

B.3  Modified McMasters faecal egg count 



 

  
352 

 
  



CH4D Laboratory method - ELISA   

  
353 

 
  

CH4D laboratory method 2: 

ELISA Assay for the detection of antibodies to Salmonella 
and  Marek’s disease virus 

Updated November 2011.  

CONTENTS 

 

1. Introduction  
2. Standard Indirect ELISA procedure 
3. Checkerboard titrations for ELISA validation 
4. Reagent preparation 
5. Dilutions  
 

Introduction  

The key to all ELISA systems is the use of antibodies. These are proteins produced in 
animals in response to antigenic stimuli. Antibodies are specific chemicals that bind to the 
antigens used for their production; thus, they can be used to detect particular antigens if 
binding can be demonstrated. Conversely, specific antibodies can be measured by the use 
of defined antigens, and this forms the basis of many assays in diagnostic biology. 
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2  Standard ELISA procedure 

 Antigen  Positive sera Negative sera Limits 

Pasteurella1 Soluble lysate 
antigen 

Diluted 
1/80 

Ovine PM 
vaccinated bird 
(EIAR) 

Under validation Under 
validation 

Salmonella  Soluble lysate 
antigen 

Diluted 
1/80 

Field serum 
Ethiopia 

Field serum 
Ethiopia 

Under 
validation 

Marek’s  
disease virus 

Cell lysate from 
CV1988 infected 
CKC cells 

Diluted 
1/20 

MDV vaccinated 
birds (EIAR) 

Field serum 
Ethiopia 

Under 
validation 

 
 

ELISA Reagents  Components Per plate 

Coating buffer Carbonate buffer pH9.6 10ml 

Wash buffer (PBST) PBS+ 0.05% Tween-20 150ml 

Diluent  PBST + 3% skim milk 20ml 

Substrate buffer 0.1M glycine buffer, pH 10.4, 1 mM MgCl2,1 mM ZnCl2 10ml 

Substrate  Alkaline phosphatase yellow (pNPP)  tablets dissolved in substrate 
buffer 

2 tablets 

Stop solution 3M NaOH 5ml 

Primary antibody  Animal sera. Diluted 1:100 in diluents variable 

Secondary 
antibody  

Anti-chicken IgG (stored at 4 degrees) 10ul  

 

* Ensure you have all reagents before proceeding. 

1. Add 100ul of antigen diluted in coating buffer to each well. 

2. Cover with cling wrap and incubate at 4°C overnight in the fridge. 

3. Remove the antigen.  Bang the plate on absorbent material to ensure all liquid is 

removed. 

4. Add 100ul of diluent, cover with cling wrap and incubate at 37°C for 1hr. 

5. Remove diluent. Bang the plate on absorbent material to ensure all liquid is 

removed. 

6. Add 100ul of pre-diluted serum (primary antibody)  in duplicate (Diluted 1:100 in 

diluent). 

7. Add 100ul of pre-diluted positive and negative control serum. 

8. Cover with cling wrap and incubate at 37°C for 1hr. 

9. Remove the primary antibody. Bang the plate on absorbent material to ensure all 

liquid is removed. 

10. Wash wells three times with 200ul of PBST. Bang the plate on absorbent material 

to ensure all liquid is removed between each step. 

11. Add 100ul of anti-Chicken IgY (secondary antibody) (Sigma A 9171) diluted 1:1000 

in diluent. 

12. Cover with cling wrap.  Incubate at 37°C for 1hr. 

13. Remove the secondary antibody.  Bang the plate on absorbent material to ensure 

all liquid is removed. 
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14. Wash wells three times with 200ul of PBST. Bang the plate on absorbent material 

to ensure all liquid is removed between each step. 

15. Add 100ul of Substrate. Make sure you add tablets to the buffer. 

16. Cover with cling wrap.  Incubate at 37°C for 15 mins. 

17. Add 50ul of stop solution. 

18. Read plates at OD 405nm. 
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3     Checkerboard titration for Elisa validation 

1. Add 200ul of antigen (pre-diluted in coating buffer or undiluted) to Columns 1 & 7 

2. Add 100ul of coating buffer to columns 2-12 (not 7) 

3. Perform two fold serial dilutions of the antigen in coating buffer by transferring 

100ul from column 1 to column 2 and so on......Discard the 100ul for the last 

dilution in column 6. Repeat transferring 100ul from column 7 to column 8 and so 

on.  Discard the 100ul for the last dilution in column 12 

4. Incubate at 4°C overnight in the fridge 

5. Remove the antigen 

6. Add 100ul of Blocking solution and incubate at 37°C for 1hr 

7. Remove blocking solution and wash wells once with 200ul of PBST  

8. Add 200ul of prediluted serum (diluted 1:50) into row A 

9. Add 100ul of diluent solution (PBST+3% Skim milk powder) into all remaining wells 

10. Perform two fold serial dilutions of the antigen in coating buffer by transferring 

100ul from row A to row B and so on...... 

11. Incubate at 37°C for 1hr 

12. Remove the primary antibody and wash wells three times with 200ul of PBST (PBS 

+0.05% Tween-20) 

13. Add 100ul of anti-Chicken IgY (Sigma A 9171) diluted 1:1000 

14. Incubate at 37°C for 1hr 

15. Remove the secondary antibody and wash wells three times with 200ul of PBST  

16. Add 100ul of Substrate (Alkaline phosphatase yellow (pNPP) (Sigma A 3469)), 

incubate at 37°C for 15mins  

17. Add 50ul of 3M NaOH to each well 

18. Read plates at OD 405nm 

 

Antigen Titration 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 1/20 1/40 1/80 1/160 1/320 1/640 1/20 1/40 1/80 1/160 1/320 1/640 

B 1/20 1/40 1/80 1/160 1/320 1/640 1/20 1/40 1/80 1/160 1/320 1/640 

C 1/20 1/40 1/80 1/160 1/320 1/640 1/20 1/40 1/80 1/160 1/320 1/640 

D 1/20 1/40 1/80 1/160 1/320 1/640 1/20 1/40 1/80 1/160 1/320 1/640 

E 1/20 1/40 1/80 1/160 1/320 1/640 1/20 1/40 1/80 1/160 1/320 1/640 

F 1/20 1/40 1/80 1/160 1/320 1/640 1/20 1/40 1/80 1/160 1/320 1/640 

G 1/20 1/40 1/80 1/160 1/320 1/640 1/20 1/40 1/80 1/160 1/320 1/640 

H 1/20 1/40 1/80 1/160 1/320 1/640 1/20 1/40 1/80 1/160 1/320 1/640 

 

Antibody Titration (4 different samples.  Sample 1 A:D 1-6) 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 

B 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

C 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 

D 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 

E 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 1/50 

F 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 1/100 

G 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 1/200 

H 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 1/400 
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4- Reagent preparation 

Phosphate buffered saline (PBS) 

  1 x Stock 10 x Stock 

  1000ml 500ml 1000ml 500ml 

Sodium Chloride NaCl 8g 4g 80g 40g 

Potassium Chloride KCl 0.2g 0.1g 2g 1g 

Disodium hydrogen 
orthophosphate 

Na2HPO4 1.44g 0.72g 14.4g 7.2g 

Potassium dihydrogen 
phosphate 

KH2PO4 0.24g 0.12g 2.4g 1.2g 

Distilled water dH2O 800ml 400ml 800ml 400ml 

                                         Adjust the pH to 7.4 

Adjust to final volume  ~200ml ~100ml ~200ml ~100ml 

 

 Dissolve chemicals in 80% of the final volume of distilled water 

 Adjust the pH to 7.4 

 Adjust the volume to the final volume with distilled water 

 Store at 4 °C and discard if microbial growth is detected. 
* solutions can be sterilised using the pressure cooker for longer storage 
 

TO MAKE PBS FROM A 10X STOCK- dilute 10x stock 1:10 with dH2O  
eg add 100ml of 10x stock to 900ml of dH2O.  
 

WASH BUFFER [ PBST ] (PBS + 0.05% Tween-20) 
 Add 200ul of Tween-20 to 1L of PBS  (20ul/100ml) 

 Store at room temperature or 4 °C and discard if microbial growth is detected. 
 

DILUENT (PBST+ 3% skim milk) 
 Add 3g of skim milk powder to 100ml of PBST  

 Store in the fridge for no more than 3 days 
 

COATING BUFFER (carbonate buffer pH9.6)  
  500ml 1000ml 

Sodium bicarbonate Na2CO3 2.65g 5.3g 

Distilled water dH2O 400ml 800ml 

Sodium   NaHCO3 2.1g 4.2g 

  pH to 9.6 

Adjust to final volume with dH2O ~100ml ~200ml 

 

 Dissolve Na2CO3 in the required volume of dH2O (80% final vol.) 

 Dissolve NaHCO3 in the solution from step 1. 

 pH to 9.60. 

 Adjust the volume to the final volume with additional dH2O 

 Store at 4 °C and discard if microbial growth is detected. 
* solutions can be sterilised using the pressure cooker for longer storage 
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SUBSTRATE substrate buffer 
 (0.1M glycine buffer, pH 10.4, 1 mM MgCl2,1 mM ZnCl2) 
  500ml 1000ml 

Glycine  3.75g 7.51g 

Magnesium chloride  MgCl2 0.1g 0.20g 

Zinc chloride ZnCl2 0.06g 0.13g 

Distilled water dH2O 400ml 800ml 

  pH to 10.4 

Adjust to final volume with dH2O ~100ml ~200ml 

 

 Dissolve chemicals in the required volume of dH2O (80% final vol.) 

 Adjust pH to 10.40 (use solid NaOH pellets) 

 Adjust the volume to the final volume with additional dH2O 

 Store at 4 °C and discard if microbial growth is detected. 
* solution can be sterilised using the pressure cooker for longer storage 
 

STOP solution (3M NaOH) 
 
40g NaOH pellets per 100ml 
Eg 120g NaOH pellets in 300ml distilled water 
 

SUBSTRATE Alkaline phosphatase yellow (pNPP)  
1. Remove the tablets 10 mins before making the solution 
2. Add  1 tablet to 5ml of room temperature ELISA substrate buffer (2 tablets in 10ml)   
3. Allow the tablet to dissolve prior to use 
4. Use straight away and discard if solution turns yellow 
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5- Dilutions 
 
How do i dilute the primary antiserum? 

 I need to dilute the primary antiserum 1/100. 
1/100 dilution of serum = 1 part serum in 99 parts of diluents  
Eg 1 ul serum + 99ul of diluent; 5 ul serum in 495ul of diluent 

 I need to dilute the primary antiserum 1/500. 
1/500 dilution of serum=1 part serum in 499 parts of diluents  
Eg 1 ul serum + 499ul of diluent; 2 ul serum in 998ul of diluent 
 
How do i dilute the secondary antibody? 

 I need to use a 1/1000 dilution of the secondary antibody. 
1/1000 dilution of secondary antibody= 1 part secondary antibody in 999 parts of diluents 
 Eg 1 ul serum + 999ul of diluent; 10 ul serum in 9.990 ml of diluent 
 
How do i dilute the coating antigen? 

 I need to make 20mls of the coating antigen at a 1/80 dilution. 
1/80dil. * 20ml= ml of antigen to add to 20mls (remember to subtract this volume) 
Eg 1/80 * 20ml = 0.25ml (250ul) + 19.75 coating buffer 
 
How do i make a 1 x PBS solution from a 10 x stock in 500ml? 
Dilute the 10x stock 1:10  
1/10 dilution of 10x stock = 1 part 10x stock plus 9 parts of diluents  
 
Eg 50ml of 10x PBS + 450ml dH20 or 100ml of 10x PBS + 900ml dH2O 
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CH4D laboratory method 3: 

Haemagglutination inhibition assay for the detection of 
antibodies to Newcastle disease virus.  

Updated : November 2011 

Reference :  A basic laboratory manual for the small-scale production and testing of I-2 

Newcastle disease vaccine.  FAO Corporate repository 

http://www.fao.org/docrep/005/ac802e/ac802e0b.htm 

CONTENTS 

1- Introduction          

2- Haemagglutination inhibition assay        
3- Titration to establish haemagglutinin (HA) titre of a virus suspension  

4- Preparation of Newcastle disease virus antigen for use in HI tests  

5- Preparation of a 1% red blood cell solution      

6- Re using micro titre plates        

 

1. Introduction 
All strains of Newcastle disease virus agglutinate chicken red blood cells. 
This is the result of the haemagglutinin part of the 
haemagglutinin/neuraminidase viral protein binding to receptors on the 
membrane of red blood cells. The linking together of the red blood cells, by 
the viral particles, results in clumping. This clumping is known as 
haemagglutination. 

Haemagglutination is visible macroscopically and is the basis of 
haemagglutination tests to detect the presence of viral particles. Other 
viruses will also agglutinate chicken red blood cells. To demonstrate that the 
haemagglutinating agent is Newcastle disease virus, it is necessary to use a 
specific Newcastle disease virus antiserum to inhibit the haemagglutinating 
activity. 

 

      

 

Figure 1 Haemagglutination of RBC by Newcastle disease virus 
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2. Haemagglutination inhibition assay to detected Newcastle 
antibodies in chicken serum 

When serum containing antibodies against the haemagglutinin protein of 
Newcastle disease virus is mixed with Newcastle disease virus, the 
antibodies bind to the haemagglutinin protein in the envelope of the virus. 
This blocks the haemagglutinin protein from binding with the receptor site on 
chicken red blood cells.  Thus the haemagglutination reaction between the 
virus and the red blood cells is inhibited. By performing two-fold serial 
dilutions on the serum prior to testing, the concentration of the serum 
antibodies can be expressed as an HI titre to the log base 2. 

Materials 

 Thawed serum samples in racks 
 V-bottom microwell plates and covers 
 PBS 
 1 percent washed red blood cells 
 V-bottom reagent trough 
 50 µL single and multichannel pipettes and tips 
 Microwell plate recording sheet. 
 Newcastle disease virus antigen diluted to 4 HA units per 50 µL 
 Standard positive and negative serum 

 

Method 
1. Fill in recording sheets to record how samples will be dispensed into 
microwell plates. 
3. Dispense 50 µL of PBS into each well of the plates. 
 
Test serum 
4. Shake each serum sample and dispense 50 µL into the first well. Add 
50uL of positive control sera and negative control sera in the last two rows 
respectively. 
5. Use a multichannel pipette to make two-fold serial dilutions as required. 
Discard the last 50 µL. See Figure 2 for instructions on carrying out two-fold 
serial dilutions. 
6. Add 50 µL of the 4HA dilution of antigen to each well, excluding the RBC 
control wells  
 
RBC control wells 
7. Add 50 µL of PBS (in place of virus) to all RBC control wells. 
 
Virus control and back titration  
8. Add 50 µL of the 4HA dilution of antigen to the Virus control neat well.   
9.  Dilute the 4HA dilution of antigen 1:2, 1:4, 1:8, 1:16 and 1:32 (two-fold 
dilutions) 
This can be performed in tubes or wells of the plate.  For 1:2 mix 100 µL of 
PBS with 100 µL of 4HA dilution of antigen.  For 1:4 dilution, mix 100 µL of 
the 1:2 dilution with 100 µL of PBS............ etc 
10. Add 50 µL of each dilutions (1:2, 1:4 etc) to the appropriate wells. 
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All samples  
11. Gently tap the sides of the microwell plates to mix the reagents. Cover 
plates with a lid. Allow to stand for 30 minutes at room temperature. 
 
12. Add 50 µL of 1 percent washed red blood cells to each well including the 
control wells. 
13. Gently tap the sides of the microwell plates to mix the reagents. Allow to 
stand at room temperature for 45 minutes.  
 
14. Read the settling patterns for each serum sample. Read the control 
serum well first then read the patterns in the other wells. 
 
15. Record the pattern observed in each well on a microwell plate recording 
sheet. Determine the endpoint. This is the point where there is complete 
inhibition of haemagglutination (a button). 
 
16. Record the antibody level for each serum sample.  The antibody titre is 
the reciprocal of the last serum dilution to inhibit the agglutination.  
Eg: if 1/16 dilution of serum is the last dilution where a button is seen 
(haemagglutination inhibition) that the titre is 16. 
 
Plate layout test serum samples 
 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 1a 1b 1c 1d 1e 1f 9a 9b 9c 9d 9e 9f 

B 2a 2b 2c 2d 2e 2f 10a 10b 10c 10d 10e 10f 

C 3a 3b 3c 3d 3e 3f 11a 11b 11c 11d 11e 11f 

D 4a 4b 4c 4d 4e 4f 12a 12b 12c 12d 12e 12f 

E 5a 5b 5c 5d 5e 5f 13a 13b 13c 13d 13e 13f 

F 6a 6b 6c 6d 6e 6f 14a 14b 14c 14d 14e 14f 

G 7a 7b 7c 7d 7e 7f +a +b +c +d +e +f 

H 8a 8b 8c 8d 8e 8f -a -b -c -d -e -f 

Where a:2
1
, b: 2

2
, c: 2

3
, d: 2

4
, e: 2

5
, f: 2

6
 and samples 1:14 are tested. 

2
1
= 1:2 dilution (50% serum, 50% PBS) 

PLATE LAYOUT CONTROL 

 1 2 3 4 5 6 7 8 9 10 11 12 

A Neat 1:2 1:4 1:8 1:16 1:32 RBC RBC RBC RBC RBC RBC 

            Virus control and back titration 
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Figure 2 Two fold dilutions 
  
(assay performed using 50ul) 

Interpretation of results 

 In the wells where antibodies are present there will be 
haemagglutination inhibition, the red blood cells will settle as a button. 

 In the wells where antibodies are absent, the red blood cells will 
agglutinate. 

 The end point of the titration is the well that shows complete 
haemagglutination inhibition. Sometimes it is not easy to determine. 
Look at the size of the button as an indication of the degree of 
haemagglutination inhibition. Use the control well as a point of 
comparison. Be consistent in determining the endpoint. The plates 
can be tilted.  Compare the ‘tear drop shape of the RBC control well  
no haemagglutination inhibition to the test samples. 

 The HI titre of the positive serum is no more than one dilution higher 
or lower than the assigned titre. 

 Haemagglutination inhibition is not seen in the negative serum 
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WORK FLOW FOR HAEMAGGLUTINATION ASSAY 

 

 

* 50ul used instead of 25ul  
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3. Titration to establish haemagglutination (HA) titre of a virus 

suspension 

The haemagglutination test is used to quantify the amount of Newcastle 
disease virus in a suspension. This is done by carrying out two-fold serial 
dilutions of the viral suspension in a microwell plate and then testing to 
determine an end point. This result can then be used to determine the 
amount of haemagglutinin in the suspension and is expressed as a HA titre. 

Materials 

 96 well V-bottom microwell plate and cover 
 50 uL single and multi-channel micropipettes and tips 
 PBS 
 1 percent chicken red blood cells 
 Sample to be titrated 
 Reagent troughs 
 Microwell plate recording sheet. 

 
Method 
1. Record on recording sheets how samples will be dispensed in microwell 
plate. 
2. Dispense 50 µL of PBS into each well of the microwell plate. 
3. Place 50 µL of virus-containing solution (or solutions to test) in first well of 
each row of column 1. Samples can be tested in duplicate or triplicate if 
necessary. 
4. Use a multichannel pipette to carry out two-fold serial dilutions across the 
plate until Column 11.  
5. Add 50 µL of PBS to each well. 
6. Add 50 µL of 1 percent red blood cells to each well including Column 12. 
The wells in this column are control wells that contain only PBS and red 
blood cells. 
7. Gently tap sides of the plate to mix. Place a cover on the plate. 
8. Allow the plate to stand for 45 minutes at room temperature. 
9. Read and record the results in each well. All the control wells should be 
HA negative. 
10. HA negative: A sharp button of red blood cells at the bottom of the V-
bottom well. 
11. HA positive: A hazy film of red blood cells, no button or a very a small 
button of red blood cells at the bottom of the V-bottom well. 
12. Identify the end point. This will be the last well to show complete 
haemagglutination and contains one haemagglutinating unit. 
 
Example plate layout (you may need to dilute up to 1/2048 to get an 
endpoint) 
 

 1 2 3 4 5 6 7 8 9 10 11 12 

A Neat 1:2 1:4 1:8 1:16 1:32 RBC RBC RBC RBC RBC RBC 
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Definition of one HA unit 
One HA unit in the haemagglutinin titration is the minimum amount of virus 
that will cause complete agglutination of the red blood cells. The last well that 
shows complete agglutination is the well that contains one HA unit. 

 

Calculation of the HA titre of the test sample 
The HA titre is the reciprocal of the dilution that produces one HA unit. 
The endpoint titre is the last dilution of virus suspension which agglutinates 
the red blood cells.  This dilution of the virus material contains. 
For example: 1 HA unit. 
The HA titre of the test sample is therefore the reciprocal of 1/64 = 64 = 26 
The titre of the suspension of Newcastle disease virus can be expressed as 
64 or 26 HA units in 50 uL. 
 

 

4. Preparation of Newcastle disease virus antigen for use in HI tests 

Antigen is prepared by inoculating embryonated eggs with a sample of 
Newcastle disease virus and harvesting the allantoic fluid four days later. A 
volume of 50 mL to 100 mL is adequate for a large number of tests. 
Centrifuge the sample at 1 200 g to clarify and remove any contaminating 
red blood cells. Store the antigen in one mL aliquots at -20°C. 

Preparation of 4HA units of Newcastle disease virus antigen 

The standard amount of Newcastle disease virus used in the 
haemagglutination inhibition (HI) test is 4HA units. It is necessary to prepare 
and test a suspension of Newcastle disease virus containing 4HA units in 
order to carry out the HI test. This involves a series of following steps. 

1. Titrate the stored suspension of virus to be used as the antigen in the HI 
test.  
2. Calculate the dilution factor required to produce 4 HA units. A simple way 
is to divide the HA titre by 4. 
3. Apply the dilution factor and dilute the original suspension of antigen in 
PBS to produce an adequate volume of 4HA antigen to carry out the HI test. 
Allow 2.5 mL for each microwell plate. 
4. Titrate the diluted (4HA) suspension of virus. This is a back titration to 
check the diluted antigen contains 4 HA units. 
5. Read HA titre. It should equal 4HA units. If not adjust the dilution and 
titrate again. 
6. Use the 4HA unit dilution of antigen in an HI test to test the standard 
positive and negative serum. The HI titre of the laboratory standard positive 
serum should equal the predetermined titre. 
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5. Preparation of a 1% red blood cell solution 

Blood collection 
Select chickens from a non-vaccinated stock (if available) otherwise from 
vaccinated chickens if that is all that is available. Collect blood from more 
than one chicken. A collection of 1.0 mL from each of three chickens will 
usually give between 8 to 10 mL of a 10 percent solution of washed red 
blood cells.  

Materials 

 Syringe and needle 
 Ethanol to wipe wing vein 
 Alsever’s solution. 
 Sterile centrifuge tubes (15ml)  
 Pipette. 

1- Add 1ml of Alsever's (anticoagulant) solution to a syringe and collect 
1ml from the wing vein of each of three birds. 

2- Gently invert the syringe to mix the blood and anticoagulant.   
3- After collecting the blood from all three chickens, remove the needles 

from the syringes and pool the blood samples in a sterile bottle with a 
lid. 

 

Washing the red blood cells 
After collection of the blood into an anticoagulant, the cells are washed and 
stored.  

Materials 

 Blood in anticoagulant 
 DGV or PBS solution for washing. 
 Sterile 15 mL centrifuge tube with a lid . 
 Pasteur pipette or 10 mL graduated pipette with pipette filler. 

Method 

1. Transfer the blood to a container suitable for centrifugation. 
2. Add PBS to fill the container. Mix gently. 
3. Centrifuge at 500 g (~1000rpm) for 10 minutes. 
4. Use a Pasteur pipette or a 10 mL glass pipette to remove the supernatant. 
Take care not to disturb the pellet of red blood cells. 
5. Repeat Steps 2, 3, and 4 twice. 
 
The cells have now formed a pellet after being washed three times and 
centrifuged.  
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Preparation of 10 percent red blood cells without using a micro-
haematocrit centrifuge to measure packed cell volume (PCV) 

1. Use a micropipette or glass pipette to remove one mL of the pellet of 
packed red blood cells after they have been washed as described above. 
Add 9 mL of sterile PBS to dilute to a 10 percent suspension. 

2. Store the suspension at 4°C.  

Note- As the cells settle under gravity, the storage solution should remain 
clear. Any red colour in the storage solution indicates haemolysis of the cells 
and the suspension is not suitable for use and should be discarded. Normally 
a 10 percent suspension in Alsever’s can be kept for 2 -4 weeks at 4°C. 
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Alsever's Solution 

Reagents 

· Citric acid C(OH)(COOH)(CH2.COOH)2.H2O 0.055g 

· Sodium Citrate Na3C6H5O7.2H2O 0.8g 

· D-Glucose C6H12O6 2.05g 

· Sodium chloride NaCl 0.42g 

· Distilled water to make up to 100 mL  

Method 

1. Weigh out reagents into a conical flask. 
2. Dissolve of distilled water and make up to100 mL. 
3. Dispense into sterile 10 mL bottles. 
4. Sterilize by autoclaving at 116°C for 10 minutes. Use slow exhaust. 
5. Allow to cool, then tighten the lids and label the bottles. 
6. Store in the refrigerator. 

 

Reusing micro titre plates: 

These plates cannot be autoclaved  

(1) Disinfect by soaking overnight in a 2 percent chloride solution 

(Bleach).  

(2) Wash and rinse three times in tap water 

(3) Rinse three times in distilled water 

(4) Dry, in the incubator and re use 
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CH4D Laboratory Protocols - Processing faecal samples: The Concentration McMaster 
Technique 
 

1. Weigh out 3g of the faeces sample. 
2.  Add 42ml of tap water. (or 14ml for every 1g of faeces, if less than 3g is used ) 
3. Mix the faeces and the tap water thoroughly with a stirring device. (very hard 

lumps may need to soak for up to 30 minutes to break up, but this is not usually 
necessary)  

4. Pour the faecal suspension through a tea strainer into a second container. 
5. Transfer the faecal suspension into a test tube to the 10 ml mark.  
6. Centrifuge the test tube for 7 minutes at 1200 RPM (revolutions per minute). 
7. Remove the supernatant with a pipette, but be careful not to resuspend the 

sediment.  
8. Add flotation fluid (stock: 1 litre water, 400g salt) up to the 4 ml mark. 
9. Resuspend the sediment very careful, by sucking up and down in a Pasteur pipette 

several times, or using a whirlimix. Avoid making bubbles in the suspension, as 
these will make the egg counts less reliable. 

10. Fill two McMaster counting chambers with the faecal suspension, immediately 
after resuspension of the sediment. Be careful to avoid air bubbles, and ensure the 
engraved side of the coverslip is in contact with the soloution. 

11. Leave the filled McMaster chamber to rest on the table for 3-5 minutes before 
counting (minimum 3 minutes to allow all eggs to float, and maximum 10 minutes, 
as some eggs may be distorted in the flotation fluid).  

12. Count the number of eggs in both counting fields and calculate the number of eggs 
per gram of faeces by multiplying the number of eggs by 20  

13. After counting, the McMaster chamber should be washed under running tap water 
 
Counting 

1. Focus on the counting grid and count the different nematode eggs within the 
engraved area of both sides of the chamber.  Use 10 x 10 magnification  

2. When counting the engraved areas, the general rules for counting should be 
followed: all eggs inside the grid should be counted plus all eggs touching two 
sides of the grid (e.g. the upper and the left borderlines), while excluding all 
eggs touching the two other sides of the grid (e.g. the lower and the right 
borderlines). 

3. Every type of nematode egg, cestode egg or coccidia oocyst should be counted 
separately. 

4. Add the number of eggs in both chambers together, and multiply by 20 to give 
the number of eggs per gram. 

 
 
NOTES 

 Make sure the container is unambiguously labelled (disposable containers may be 
labelled in waterproof marking ink). 

 After centrifuging and removing the supernatant, it is possible to interrupt the 
procedure by closing the tube and storing it in a refrigerator (approx. 4°C) for up to 
7 days without any significant reduction in the egg counts. If many samples are to 
be handled simultaneously, this possibility for storage makes the laboratory work 
more flexible and rational, as 50-100 samples may be sieved and centrifuged in one 
step, thereafter they are stored until they are counted one by one. 
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Figure 4.7 The most important helminth eggs and segments of cestodes. A: Ascaridia 
galli B: Heterakis gallinarum C: Allodapa suctoria D: Strongyloides avium E: Syngamus 
trachea F: Tetrameres americana G: Acuaria spp. H: Acuaria hamulosa I: 
Gongylonema ingluvicola J: Oxyspirura mansoni K: Capillaria annulata L: Capillaria 
anatis M: Capillaria obsignata N: Capillaria contorta O: Prosthogonimus spp. P - U: 
Segments of cestodes P: Amoebotaenia cuneata Q: Hymenolepis carioca R: Raillietina 
cesticillus S: Raillietina echinobothrida T: Raillietina tetragona U: Segment of 
Choanotaenia infundibulum and a single egg (Redrawn after Soulsby 1982). 
 
Reference: Permin and Hanson (1998) 
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Chapter 2 

#Figure 2.4 Distribution of IBD s:p ratios, showing the placement of 

the cut-off, and the negative and positive controls 

 

library(lme4) 

 

setwd('M:/Documents/Poultry Disease/R stuff/Bird analysis/') 

birds <- read.csv("basic bird.csv", header=T, sep=,) 

ibd<-na.omit(birds[,c(1,61,62)]) 

y<-sort(birds$IBDV) 

 

cutoff<-seq(min(y),max(y),0.005) 

prev<-rep(0 ,length(cutoff)) 

res<- data.frame(cbind(cutoff,prev)) 

n<- length(cutoff) 

 

 for(i in 1:n) 

     { 

    div<-ifelse(y>cutoff[i],1,0) 

    pro<-prop.table(table(div)) 

    res$prev[i]<-pro[2] 

    } 

 

#select cut-off value u and determine prevalence v 

    u<-0.306 

   (v<-res[  which(abs( res$cutoff-u)==min(abs(res$cutoff-u))),2] ) 

 

plot(res$prev~res$cutoff, type="l",lwd=2,col="darkblue", xlab="s:p 

ratio", ylab="Prevalence") 

     x1<-c(u,u) 

     y1<-c(-0.05,v) 

     x2<-c(-0.5,u) 

     y2<-c(v,v) 

  

#cut-off line 

      lines(x1,y1,lty=4, col="red", lwd=1.8) 

      lines(x2,y2,lty=4, col="red", lwd=1.8) 

      text(u,v+0.1,"cut-off value") 

      text(u,v+0.05,"=0.306") 

       

#positive and negative controls 

(p<-res[  which(abs( res$cutoff-1)==min(abs(res$cutoff-1))),] ) 

        points(p[1],p[2], col="red", pch=16, cex=1.5) 

(q<-res[  which(abs( res$cutoff-0)==min(abs(res$cutoff-0))),] ) 

         points(q[1],q[2], col="cyan", pch=16, cex=1.5) 

 

legend(1,0.95,c("Positive control", "Negative 

control"),cex=0.8,bty="n", pch=16,col=c("red","cyan")) 

   

#################################################################### 

   # Figure 2.5 The change in prevalence with the alteration of the 

cut-off value for the Salmonella data. 

 

birds$Salmonella[birds$SalHigh==1]<-4.5 

sal<-na.omit(birds[,c(1,67:70)]) 

y<-sort(sal$Salmonella) 

 

cutoff<-seq(min(y),max(y),0.05) 

prev<-rep(0 ,length(cutoff)) 
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res<- data.frame(cbind(cutoff,prev)) 

for(i in 1: length(cutoff)) 

     { 

    div<-ifelse(y>cutoff[i],1,0) 

    pro<-prop.table(table(div)) 

    res$prev[i]<-pro[2] 

    } 

 

plot(res$prev~res$cutoff, type="l",lwd=2,col="darkblue", xlab="s:p 

ratio", ylab="Prevalence") 

 

#positive and negative controls 

p<-  res[ which(abs( res$cutoff-1)==min(abs(res$cutoff-1))),] 

points(p[1],p[2], col="red", pch=16, cex=1.2) 

q<-  res[ which(abs( res$cutoff-0)==min(abs(res$cutoff-0))),] 

points(q[1],q[2], col="cyan", pch=16, cex=1.2) 

 

#choose sequence of cut-off values 

uv<-c(0.3,0.5) 

 

#plot chosen cut-offs against prevalence 

       for (u in uv) 

       { 

       cufx<- rep(u,2) 

       cufy<-c(par("usr")[3] ,res[which(abs( res$cutoff-

u)==min(abs(res$cutoff-u))),2] ) 

       lines( cufx,cufy,  type="l",lty=3, col="red", lwd=1) 

 

       cofx<- c(par("usr")[1] ,u) 

       cofy<- rep(res[which(abs( res$cutoff-u)==min(abs(res$cutoff-

u))),2],2) 

       lines( cofx,cofy,  type="l",lty=3, col="red", lwd=1) 

       } 

        

legend(14.7,0.97,c("Positive control", "Negative 

control"),cex=0.8,bty="n", pch=16,col=c("red","cyan")) 

 

################################################### 

#Figure 2.6 Sample OD values and s:p ratios for each plate for the 

IBD ELISA 

 

library(lattice) 

library(latticeExtra) 

setwd('M:/Documents/Poultry Disease/R Stuff/Serology/IBDV') 

ibd<-read.csv("ibdfulltests.csv", header=T, sep=,) 

 

n<-nrow(ibd) 

ibd$ netOD<- ibd$MeanOD - ibd$Neg 

ibd$netpos<-      ibd$Pos - ibd$Neg 

ibd$ratio<- ibd$netOD/ibd$netpos 

ibd$posrat<-rep(1,n) 

ibd$negrat<-rep(0,n) 

 

windows(20,10) 

xyplot(ibd$ratio~ibd$MeanOD|ibd$PLATE.ID, pch=19, col="grey40", 

xlab="Mean OD values", ylab="S:P ratio")   + 

as.layer(xyplot(ibd$posrat~ibd$Pos|ibd$PLATE.ID, pch=19, 

col="orangered" )) + 

as.layer(xyplot(ibd$negrat~ibd$Neg|ibd$PLATE.ID, pch=19, col="cyan" 

)) 

############################# 
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#Figure 2.7  Values for the Pasteurella s:p ratios before and after 

random-effect modelling to adjust for between-plate variation 

 

pas<-na.omit(birds[,c(1,64:66)]) 

      (m3<-glmer(Pasteurella ~ 1 + (1|PMPlate), data=pas,REML = T, 

na.action=na.omit, family="gaussian")) 

      pas$Resid<-residuals(m3) 

      birds$AdjPM<-pas$Resid[match(birds$UniqueID,pas$UniqueID)] 

       

windows(20,10) 

par(mfrow=c(2,2)) 

barplot(pas$Pasteurella, ylab="Raw", cex.lab=1.5) 

hist(pas$Pasteurella,breaks=100, main="",xlab="",ylab="", 

col="steelblue3") 

barplot(pas$AdjPM, ylab="Plate-adjusted",cex.lab=1.5) 

hist(pas$AdjPM,breaks=50, main="",xlab="",ylab="", col="steelblue3") 
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Chapter 3 

 

#Figure 3.1 Farmer income derived from poultry compared to total 

annual household income 

 

setwd('M:/Documents/Poultry Disease/R stuff/HH analysis/') 

sedata <- read.csv("socioeconomic data.csv", header=T, sep=,) 

 

sedata$lv.inc.prop   <- 100*sedata$LivestockIncome/ 

sedata$TOTAlincome 

sedata$ck.inc.prop   <- 100*sedata$PoultryIncome/ sedata$TOTAlincome 

sedata$cp.inc.prop   <- 100*sedata$CropNetincome/ sedata$TOTAlincome 

sedata$ot.inc.prop   <- 100*sedata$Otherincome/ sedata$TOTAlincome 

sedata$incperhen<- sedata$PoultryIncome/(sedata$Hen + sedata$Cock) 

sedata$a<-sqrt(sedata$incperhen/pi) 

b<-c(50,100,200) 

ba<-sqrt(b/pi) 

fba<-0.1+0.25*ba 

 

windows(12,8) 

 

plot (sedata[which(sedata$RegionID=="H"),130]~  

sedata[which(sedata$RegionID=="H"),96], xlim=c(0,35000), pch=19, 

cex= 0.1+ 0.25*sedata[which(sedata$RegionID=="H"),134],col="red", 

ylab="percentage of income contributed by poultry", xlab="Total 

annual income (ETB)") 

 

points (sedata[which(sedata$RegionID=="J"),130]~ 

sedata[which(sedata$RegionID=="J"),96],  pch=19, cex= 0.1+ 

0.25*sedata[which(sedata$RegionID=="J"),134],col="blue") 

 

legend(35000,27,c("Horro","Jarso","","50 ETB", "100 ETB","200 ETB"), 

pch=19, col=c("red","blue","white",rep("black",3)), 

cex=1.5,pt.cex=c(1.5,1.5,0.1,fba),title.adj=1,xjust=1,bty="n",title=

"") 

      

######################################## 

#Figure 3.2 Purposes of chicken and egg production in the two study 

regions 

 

#install.packages(VennDiagram) 

library("VennDiagram") 

   

draw.pairwise.venn(181,69,62,category=c("Sale","Consumption"),fill=c

(rgb(1,0,0,1),rgb(1,0,0,0.5)), 

   

cat.just=c(list(c(0.5,1)),list(c(1,1))),cat.fontfamily=rep("sans",2)

,fontfamily=rep("sans",3), cex=2, cat.cex=1.8,cat.dist=-0.05, 

ext.length=0.9) 

    

draw.pairwise.venn(175,35,21,category=c("Sale","Consumption"),fill=c

(rgb(0,0,1,1),rgb(0,0,1,0.5)), 

   

cat.just=c(list(c(0.5,1)),list(c(0.7,0.1))),cat.fontfamily=rep("sans

",2),fontfamily=rep("sans",3), cex=2, cat.cex=1.8,cat.dist=-0.05, 

ext.length=0.9) 
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# Triple Venn diagrams were drawn by hand, as the programme cannot 

handle 0 values    

###################################### 

#Figure 3.3  Farmer preferences for the time of year in which to 

hatch eggs in Horro and Jarso regions 

 

setwd('M:/Documents/Poultry Disease/R Stuff/HH analysis') 

hhs<-read.csv("hhs.csv", header=T, sep=,) 

  eggset<-na.omit( hhs[,c(1,3,4,5,6,54:65)] ) 

  reg<-table(eggset$RegionID) 

  egg<- aggregate(eggset[,c(6:17)], 

by=list(Reg=eggset$RegionID),sum) 

  eggs<-as.data.frame(t(egg[,-1])) 

  mo<-1:12 

eggs<- data.frame(mo,eggs) 

eggs$H.prop<- 100* eggs$V1 / rep( reg[1], length(eggs$V1)) 

eggs$J.prop<- 100* eggs$V2 / rep( reg[2], length(eggs$V2)) 

 

monames<-

c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov",

"Dec") 

 

windows(10,5) 

plot(eggs$mo,eggs$H.prop, type="l", xaxt="n", xlab="Month", 

ylab="Percentage of Households",  col="red", lwd=2 ) 

 

points(eggs$mo,eggs$J.prop,col="blue",  type="l", lwd=2) 

 axis(1,at=c(1:12),labels=monames) 

 

legend("bottomright", c("Horro", "Jarso"), col=c("red", "blue"), 

lwd=1,  bty="n") 

 

####################################################### 

#Figure 3.4 Farmers’ estimates of hen reproductive parameters in 

each region 

 

setwd('M:/Documents/Poultry Disease/R stuff/HH analysis/') 

eggs<-  read.csv("hhsseason2esk.csv", header=T, sep=,) 

 

windows(12,4) 

par(mfrow=c(1,4)) 

plot(eggs$RegionID,eggs$ClutchNo, ylab="Number of clutches per 

year", col=c("red","blue"), names=c("Horro","Jarso"), cex.lab=1.8, 

cex.axis=1.5) 

 

plot(eggs$RegionID,eggs$CluLeng,ylab="Average length of clutch 

(wks)", 

col=c("red","blue"),names=c("Horro","Jarso"),cex.lab=1.8,cex.axis=1.

5) 

 

plot(eggs$RegionID,eggs$InterClu,ylab="Average inter-clutch length 

(wks)", 

col=c("red","blue"),names=c("Horro","Jarso"),cex.lab=1.8,cex.axis=1.

5) 

 

plot(eggs$RegionID,eggs$EggsClu,ylab="Average number of eggs per 

clutch", 

col=c("red","blue"),names=c("Horro","Jarso"),cex.lab=1.8,cex.axis=1.

5) 
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#################################################### 

#Figure 3.5  Production status of sampled hens by village and season 

of sampling 

 

setwd('M:/Documents/Poultry Disease/R stuff/Bird analysis/') 

birds <- read.csv("basic bird.csv", header=T, sep=,) 

x<- 17 

 

(oba<-table 

(birds[birds$VillageID=="H1A",x],birds[birds$VillageID=="H1A",9]) ) 

obp<-prop.table(oba[1:4,],2) 

(obb<-table 

(birds[birds$VillageID=="H1B",x],birds[birds$VillageID=="H1B",9]) ) 

obbp<-prop.table(obb[1:4,],2) 

(obc<-table 

(birds[birds$VillageID=="H2A",x],birds[birds$VillageID=="H2A",9]) ) 

obcp<-prop.table(obc[1:4,],2) 

(obd<-table 

(birds[birds$VillageID=="H2B",x],birds[birds$VillageID=="H2B",9]) ) 

obdp<-prop.table(obd[1:4,],2) 

 

 (obe<-table 

(birds[birds$VillageID=="J1A",x],birds[birds$VillageID=="J1A",9]) ) 

obep<-prop.table(obe[1:4,],2) 

(obf<-table 

(birds[birds$VillageID=="J1B",x],birds[birds$VillageID=="J1B",9]) ) 

obfp<-prop.table(obf[1:4,],2) 

(obg<-table 

(birds[birds$VillageID=="J2A",x],birds[birds$VillageID=="J2A",9]) ) 

obgp<-prop.table(obg[1:4,],2) 

(obh<-table 

(birds[birds$VillageID=="J2B",x],birds[birds$VillageID=="J2B",9]) ) 

obhp<-prop.table(obh[1:4,],2) 

 

cols<- c( "lightsteelblue","steelblue" ,"steelblue4","firebrick") 

windows(20,10) 

 

par(fig=c(0,0.15,0,0.85)) 

oba<-barplot (obp[c(3,2,1,4),], col=cols,xaxt="n", ylab= 

"Proportion", sub="H1A") 

text( oba,par("usr")[3]-0.025 ,labels=levels(birds$SeasonID), xpd=T) 

par(fig=c(0.1,0.25,0,0.85),new=T) 

 

oba<-barplot (obbp[c(3,2,1,4),], col=cols, sub="H1B",xaxt="n", 

yaxt="n", ylab= "") 

text( oba,par("usr")[3]-0.025 ,labels=levels(birds$SeasonID), xpd=T) 

 

par(fig=c(0.25,0.4,0,0.85),new=T) 

barplot (obcp[c(3,2,1,4),], col=cols,sub="H2A", xaxt="n",yaxt="n", 

ylab= "") 

text( oba,par("usr")[3]-0.025 ,labels=levels(birds$SeasonID), xpd=T) 

 

par(fig=c(0.35,0.5,0,0.85),new=T) 

barplot (obdp[c(3,2,1,4),], col=cols, sub="H2B", xlab= 

"",xaxt="n",yaxt="n", ylab= "") 

text( oba,par("usr")[3]-0.025 ,labels=levels(birds$SeasonID), xpd=T) 

 

par(fig=c(0.5,0.65,0,0.85), new=T) 

barplot (obep[c(3,2,1,4),], col=cols,sub="J1A", xlab= 

"",xaxt="n",yaxt="n", ylab= "") 
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text( oba,par("usr")[3]-0.025 ,labels=levels(birds$SeasonID), xpd=T) 

 

par(fig=c(0.6,0.75,0,0.85),new=T) 

oba<-barplot (obfp[c(3,2,1,4),], col=cols, sub="J1B",xaxt="n", 

yaxt="n", ylab= "") 

text( oba,par("usr")[3]-0.025 ,labels=levels(birds$SeasonID), xpd=T) 

 

par(fig=c(0.75,0.9,0,0.85),new=T) 

barplot (obgp[c(3,2,1,4),], col=cols,sub="J2A", xaxt="n",yaxt="n", 

ylab= "") 

text( oba,par("usr")[3]-0.025 ,labels=levels(birds$SeasonID), xpd=T) 

par(fig=c(0.85,1,0,0.85),new=T) 

barplot (obhp[c(3,2,1,4),], col=cols, sub="J2B", xlab= 

"",xaxt="n",yaxt="n", ylab= "") 

text( oba,par("usr")[3]-0.025 ,labels=levels(birds$SeasonID), xpd=T) 

    

par(fig=c(0,1,0,1), mar=c(0,0,0,0)) 

   legend(3,1.1, c("Laying", "Incubating eggs","Rearing chicks","Not 

in production"), fill=c( "lightsteelblue","steelblue" , 

"steelblue4", "firebrick"), ncol=2, bty="n" , cex=1.6)    

    

#################################################### 

#Figure 3.6  Distribution of household flock sizes in Horro and 

Jarso 

 

setwd('M:/Documents/Poultry Disease/R Stuff/HH analysis') 

hhs<-read.csv("hhs.csv", header=T, sep=,) 

hhs$Flock<-rowSums(hhs[,c(18:22)]) 

 

jres<-matrix(0,5,45) 

N<-c(1:45) 

 

for (i in 1:45) 

  { 

  B<- hhs[which(hhs$RegionID=="J" & hhs$Flock==i),c(18:22)] 

  jres[,i]<-mean(B) 

  N[i]<-nrow(B) 

  } 

 

jres[,which(jres[1,]=="NaN")] <-0 

V<-colSums(jres) 

jres2<-prop.table(jres,2) 

 

for (i in 1:45) 

  { 

   jres2[ ,i]<- jres2[ ,i]*N[i] 

   } 

 

hres<-matrix(0,5,45) 

M<-1:45 

 

for (i in 1:45) 

  { 

  C<- hhs[which(hhs$RegionID=="H" & hhs$Flock==i),c(18:22)] 

  hres[,i]<-mean(C) 

  M[i]<-nrow(C) 

  } 

 

hres[,which(hres[1,]=="NaN")] <-0 

V<-colSums(hres) 

hres2<-prop.table(hres,2) 
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for (i in 1:45) 

  { 

   hres2[ ,i]<- hres2[ ,i]*M[i] 

   } 

 

cols<-c("darkred","orangered","gold","lightblue","steelblue3") 

 

windows(20,12) 

par(fig=c(0,1,0.62,1),mar=c(0,5,2,4),oma=c(5,0,0,0)) 

barplot(hres2,main="", col=cols,ylab="Horro", cex.lab=1.5,xaxt="n", 

xlab="", ylim=c(0,40), space=0) 

legend("topright",  names(B), bty="n", fill=cols, cex=1.2) 

par(fig=c(0,1,0,0.58) , new=T,mar=c(2,5,0,4)) 

barplot(jres2,main="", col=cols,ylab="Jarso",  

cex.lab=1.5,xlab="",ylim=c(0,60),space=0,cex.names=0.8, 

names.arg=c(1:45), axis.lty=1) 

 

############################################### 

 #Figure 3.7  Age distributions of females and males sampled in each 

region 

 

setwd('M:/Documents/Poultry Disease/R stuff/Bird analysis/') 

birds <- read.csv("basic bird.csv", header=T, sep=,) 

  labs<-c("Females","Males","Females","Males") 

  windows(9,6) 

  boxplot(birds$Age~ birds$Sex*birds$Region, col=c("red", "red", 

"blue","blue"), ylab="Age (months)",names=labs ) 

  legend("topright",c("Horro","Jarso"),fill=c( "red", "blue"), 

bty="n") 

   

##################################################### 

  #Figure 3.8  Plots of (a) weight and (b) wattle length against age 

for females and males in different regions 

 

setwd('M:/Documents/Poultry Disease/R stuff/Bird analysis/') 

birds <- read.csv("basic bird.csv", header=T, sep=,) 

setwd('M:/Documents/Poultry Disease/R stuff/Bird analysis/') 

Esk <- read.csv("Esk.csv", header=T, sep=,) 

 

windows(15,12) 

par(fig=c(0,0.4,0.5,1)) 

plot( birds[which(birds$RegionID=="H" & birds$Sex=="F"),20]   

~birds[which(birds$RegionID=="H" & birds$Sex=="F"),14], 

pch=4,col="red",cex.lab=1.3, ylab="Weight (kg)", xlab="Age 

(months)",xlim=c(0,72), ylim=c(0,3), main="Females") 

abline(lm( birds[which(birds$RegionID=="H" & birds$Sex=="F"),20] 

~birds[which(birds$RegionID=="H" & birds$Sex=="F"),14]),col="red") 

points( birds[which(birds$RegionID=="J" & birds$Sex=="F"),20] ~birds 

[which(birds$RegionID=="J" & birds$Sex=="F"),14], 

pch=4,col="steelblue1") 

abline(lm( birds[which(birds$RegionID=="J" & birds$Sex=="F"),20] 

~birds[which(birds$RegionID=="J" & 

birds$Sex=="F"),14]),col="steelblue1") 

 

par(fig=c(0.4,0.8,0.5,1), new=T) 

plot( birds[which(birds$RegionID=="H" & birds$Sex=="M"),20] 

~birds[which(birds$RegionID=="H" & birds$Sex=="M"),14], 

pch=4,col="darkred",cex.lab=1.3,ylab="Weight (kg)", xlab="Age 

(months)", xlim=c(0,72), ylim=c(0,3), main="Males") 
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abline(lm( birds[which(birds$RegionID=="H" & birds$Sex=="M"),20] 

~birds[which(birds$RegionID=="H" & 

birds$Sex=="M"),14]),col="darkred") 

points(birds[which(birds$RegionID=="J" & birds$Sex=="M"),20] ~birds 

[which(birds$RegionID=="J"&birds$Sex=="M"),14], 

pch=4,col="steelblue3") 

abline(lm( birds[which(birds$RegionID=="J" & birds$Sex=="M"),20] 

~birds[which(birds$RegionID=="J" & 

birds$Sex=="M"),14]),col="steelblue3") 

 

par(fig=c(0,0.4,0,0.5), new=T) 

plot( Esk[which(Esk$RegionID=="H" & Esk$Sex=="F"),36] 

~Esk[which(Esk$RegionID=="H" & Esk$Sex=="F"),9], 

pch=19,col="red",cex.lab=1.3,ylab="Wattle length (cm)", 

xlab="Age",xlim=c(0,72), ylim=c(0,8), main="") 

abline(lm( Esk[which(Esk$RegionID=="H" & Esk$Sex=="F"),36] 

~Esk[which(Esk$RegionID=="H" & Esk$Sex=="F"),9]),col="red") 

points( Esk[which(Esk$RegionID=="J" & Esk$Sex=="F"),36] 

~Esk[which(Esk$RegionID=="J" & Esk$Sex=="F"),9], 

pch=19,col="steelblue1",ylab="Wattle length", xlab="Age (months)") 

abline(lm( Esk[which(Esk$RegionID=="J" & Esk$Sex=="F"),36] 

~Esk[which(Esk$RegionID=="J" & Esk$Sex=="F"),9]),col="steelblue1") 

 

 

par(fig=c(0.4,0.8,0,0.5), new=T) 

plot( Esk[which(Esk$RegionID=="H" & Esk$Sex=="M"),36] 

~Esk[which(Esk$RegionID=="H" & Esk$Sex=="M"),9], 

pch=19,col="darkred",cex.lab=1.3,ylab="Wattle length (cm)", 

xlab="Age (months)", xlim=c(0,72), ylim=c(0,8), main="") 

abline(lm( Esk[which(Esk$RegionID=="H" & 

Esk$Sex=="M"),36]~Esk[which(Esk$RegionID=="H" & Esk$Sex=="M"),9]) 

,col="darkred") 

points( Esk[which(Esk$RegionID=="J" & Esk$Sex=="M"),36] 

~Esk[which(Esk$RegionID=="J" & Esk$Sex=="M"),9], 

pch=19,col="steelblue3") 

abline(lm( Esk[which(Esk$RegionID=="J" & 

Esk$Sex=="M"),36]~Esk[which(Esk$RegionID=="J" & Esk$Sex=="M"),9]) 

,col="steelblue3") 

  

par(fig=c(0.8,1,0,1), mar=c(2,0,2,0),xpd=T) 

legend( 5,0.5,c("Horro", "Jarso" ), pch=19, col=c("darkred", 

"steelblue"), bty="n", cex=1.6) 

          

################################ 

#Figure 3.9  Proportion of farmers who confine birds in each month 

of the year 

 

setwd('M:/Documents/Poultry Disease/R Stuff/HH analysis') 

hhs<-read.csv("hhs.csv", header=T, sep=,) 

res<-matrix(0,12,8) 

for(i in 36:47) 

 { 

 z<-prop.table( table(hhs[,i],hhs$VillageID),2) 

 res[i-35,]<-z[2,] 

 } 

mo<-1:12 

res<-cbind(mo,res) 

cols<-

c("red","red","darkred","darkred","blue","blue","steelblue1","steelb

lue1") 

lin<-c(  1,6,1,6,1,6,1,6) 
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windows(12,8) 

plot(res[,1],res[,2], type="l", xaxt="n", xlab="Month", 

ylim=c(0,0.5),ylab="Proportion of Households", main="", col="red", 

lwd=2 ) 

for(i in 3:9) 

 { 

 points(res[,1],res[,i],col=cols[i-1],  type="l", lwd=2, lty=lin[i-

1]) 

 } 

 

axis(1,at=c(1:12),labels=monames) 

legend(11,0.5,c("H1", "H2","J1","J2"), col=cols[c(1,3,5,7)], lwd=1, 

title="Marketshed", bty="n"  ) 

legend(11,0.38,c("A", "B"), lty=c(1,6), lwd=1, title="Village", 

bty="n"  ) 

 

######################################## 

#Figure 3.10   Farmers’ estimates of the amount of time their 

chickens spend mixing with those from other households 

setwd('M:/Documents/Poultry Disease/R Stuff/HH analysis') 

hhs<-read.csv("hhs.csv", header=T, sep=,) 

contacts<-na.omit(hhs[,c(1,3:6,48,49)]) 

drys<-prop.table(table(contacts$DryConta, 

contacts$VillageID)[1:6,],2) 

wets<-prop.table(table(contacts$WetConta, 

contacts$VillageID)[1:6,],2) 

pal<-c( "steelblue3","lightblue","yellow3", "gold3" 

,"darkorange3","firebrick3") 

 

windows(18,12) 

 par(fig=c(0,0.5,0.2,1) ) 

 barplot (drys[c(1:6),], beside=F, ylim=c(0,1), main="Dry Season", 

col=pal) 

 par(fig=c(0.5,1,0.2,1), new=T) 

 barplot (wets[c(1:6),], beside=F, ylim=c(0,1), main="Wet Season", 

col=pal) 

 par(fig=c(0,1,0,0.25), mar=c(0,5,0,5)) 

 legend("top", c("No mixing", "Rarely","A few times a week for less 

than one hour", "A few times a week for more than one hour", 

    "Every day for less than one hour", "Every day for more than one 

hour"),cex=1.4,bty="n", ncol=2, fill=pal) 

     

 ######################################### 

#Figure 3.11 and 3.12 Distribution of flock sizes for different 

sampling seasons 

setwd('M:/Documents/Poultry Disease/R Stuff/HH analysis') 

hhs<-read.csv("hhs.csv", header=T, sep=,) 

hhs$Flock<-rowSums(hhs[,c(18:22)]) 

 S<-levels(hhs$SeasonID) 

Time<-c("May 2011", "Oct 2011", "May 2012", "Oct 2012") 

cols<-c("darkred","orangered","gold","lightblue","steelblue3") 

posx<-

matrix(c(0.1,0.55,0.55,1,0.55,1,0.55,1,0.1,0.55,0.1,0.55,0.55,1, 

0.1, 0.55) ,4,4) 

hres<-matrix(0,5,45)  

    M<-1:45 

     

windows(20,12) 

par(mfrow=c(2,2))  
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for(j in 1:4) 

 { 

  for (i in 1:45) 

  {  

  B<- hhs[which(hhs$RegionID=="H" & hhs$SeasonID==S[j] & 

hhs$Flock==i),c(18:22)]  

  hres[,i]<-mean(B) 

  M[i]<-nrow(B) 

  } 

   

hres2<-prop.table(hres,2) 

for (i in 1:45) 

  { 

   hres2[ ,i]<- (hres2[ ,i]*M[i]) /sum(M) 

   } 

   

par(fig=posx[,j], new=T) 

barplot(hres2,main="", col=cols,ylab="",  sub=Time[j],xlab="", 

ylim=c(0,0.3), space=0,cex.names=0.8, names.arg=c(1:45), axis.lty=1)  

   } 

 

par(fig=c(0.08,1,0,1), new=T) 

plot(hhs$Flock,type="n",axes=F, xlab="Flock size", ylab="Proportion 

of flocks sampled", cex.lab=1.8) 

legend("topright",  names(B), bty="n", fill=cols, cex=1.2) 

 

N<-c(1:45) 

jres<-matrix(0,5,45)     

  

windows(20,12) 

par(mfrow=c(2,2))  

      

for(j in 1:4) 

 { 

  for (i in 1:45) 

  {  

  B<- hhs[which(hhs$RegionID=="J" & hhs$SeasonID==S[j] & 

hhs$Flock==i),c(18:22)]  

  jres[,i]<-mean(B) 

  N[i]<-nrow(B) 

  } 

   

jres2<-prop.table(jres,2) 

for (i in 1:45) 

  { 

   jres2[ ,i]<- (jres2[ ,i]*N[i]) /sum(N) 

   } 

   

par(fig=posx[,j], new=T) 

barplot(jres2,main="", col=cols,ylab="",  

sub=Time[j],xlab="",ylim=c(0,0.3),space=0,cex.names=0.8, 

names.arg=c(1:45), axis.lty=1)  

    } 

    

par(fig=c(0.08,1,0,1), new=T) 

plot(hhs$Flock,type="n",axes=F, xlab="Flock size", ylab="Proportion 

of flocks sampled", cex.lab=1.8) 

legend("topright",  names(B), bty="n", fill=cols, cex=1.2) 

 

 

############## 
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#Appendix 3.3 and 3.4 

setwd('M:/Documents/Poultry Disease/R stuff/Bird analysis/') 

birds <- read.csv("basic bird.csv", header=T, sep=,) 

 m4<-glmer(  Age~ RegionID*relevel(Sex,"M")+ (1|FarmUnID), 

data=birds,REML=T,  na.action=na.omit, family="gaussian") 

summary(m4) 

 

m5<-glmer(BirdWt~ SeasonID*RegionID+ Sex*Age*RegionID+ 

relevel(as.factor (BCS),"3")+(1|FarmUnID),data=birds,REML=T, 

na.action=na.omit, family="gaussian")  

summary(m5) 

   

#Figure 3.13 Diagnostic plots of model residuals from regression 

model for bird weight 

windows(12,4) 

par(mfrow=c(1,3)) 

plot( fitted(m4),residuals(m4), xlab="Fitted", ylab="Residuals", 

main="Bird Weight residuals" ) 

qqnorm(residuals(m4),main="Bird level")                          

qqnorm(ranef(m4)$FarmUnID[[1]],main="Farm effects") 

 

 

############################## 

#Appendix 3.5 

setwd('M:/Documents/Poultry Disease/R stuff/Bird analysis/') 

Esk <- read.csv("Esk.csv", header=T, sep=,) 

 

(m1<-glmer( WattleL~RegionID*Sex*Age+ (1|FarmUnID) ,data=Esk, 

na.action=na.omit, family="gaussian")) 

 

#Figure 3.14 Diagnostic plots of model residuals from regression 

model for bird wattle length 

windows(   12,4) 

par(mfrow=c(1,3)) 

plot( fitted(m1),residuals(m1), xlab="Fitted", ylab="Residuals", 

main="Bird Wattle length residuals" ) 

qqnorm(residuals(m1),main="Bird level")                          

qqnorm(ranef(m1)$FarmUnID[[1]],main="Farm effects")
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Chapter 4 

#Figure 4.1  Fates of birds at the time of follow-up visit 

 

setwd('M:/Documents/Poultry Disease/Epidemiology/Spreadsheets/csv 

files/') 

HHS <- read.csv("Household level survival.csv", header=T, sep=,) 

 

tabD<-as.data.frame(aggregate(HHS[,c(6:13)], 

by=list(Region=HHS$RegionID, Season=HHS$SeasonID),sum)) 

tabD$Total<-rowSums(tabD[,c(3:10)]) 

 

    proptab<-tabD 

    for(i in c(3:10)) 

    { 

    for (j in c(1:6)) 

    { 

    proptab[j,i]<- proptab[j,i]/proptab[j,11] *100 

    } 

    } 

 

gra<- as.matrix(cbind(proptab[c(1:6),c(3:5)], 

rowSums(proptab[c(1:6),c(6:9)]) ,proptab[c(1:6),10] )) 

nom<-c("Survived",  "Died of disease", "Eaten by predator", "Other 

fate*", "Lost to follow-up") 

cols<- c( "red3", "blue3",  "firebrick3", "royalblue2", 

"indianred1", "cornflowerblue") 

 

windows(12,6) 

barplot(gra, col=cols, beside=T, names.arg=nom,ylim=c(0,70), 

ylab="percentage" ) 

legend("topright", c("Season A Horro","Season A Jarso", "Season B 

Horro", "Season B Jarso","Season C Horro","Season C Jarso"), 

fill=cols, bty="n") 

 

 

################################################# 

#Figure 4.2  Prevalence of reported household outbreaks in each 

month for 2 regions 

 

setwd('M:/Documents/Poultry Disease/R Stuff/Outbreaks') 

mons<- read.csv("months_1.csv", header = T, sep= ",") 

 

(mons2<-strptime(mons$Month, format="%d/%m/%Y")) 

mons2<-as.POSIXlt(mons2) 

e<-cbind(mons2,mons) 

 

windows (title="ab",20,12) 

par(fig=c(0,1,0.66,1),mar=c(0,5,5,4),oma=c(5,0,0,0)) 

plot(  e$mons2, e$Hprev, col="red", type="l",lwd=3,xaxt="n", 

xlab="", ylab="", ylim=c(0,20)) 

      lines(e$mons2, e$Hallprev, col="red", lty=5) 

      lines (e$mons2, e$Jprev, col="blue",lwd=3) 

      lines (e$mons2, e$Jallprev, col="blue",lty=5) 

      legend("topleft","a) All respondents",  bty="n") 

 

legend("topright", c("Horro","Jarso","All deaths", "Outbreaks of 2 

or more birds"), lwd=c(2,2,1,3), 
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lty=c(1,1,5,1),col=c("red","blue","black","black"),  

title="",ncol=2, bty="n", cex=0.8) 

 

 

par(fig=c(0,1,0.52,0.6598),mar=c(0,5,0,4) , new=T) 

hma<- plot(  e$mons2, e$HA, col="red", type="l",lwd=2, xaxt="n", 

xlab="", ylab="",  ylim=c(0,15),yaxt="n") 

axis(4, cex.axis=0.8) 

      lines(e$mons2, e$Harep, col="red", lty=5,lwd=2) 

      lines (e$mons2, e$JA, col="blue",lwd=2) 

      lines (e$mons2, e$Jarep, col="blue",lty=5,lwd=2) 

      legend("topleft","b) Season A respondents", cex=0.8, bty="n") 

      legend("topright", c("Initial period", "Follow-up period     

"), lwd=2, lty=c(1,2),col=c("black","black"),  title="",ncol=2, 

bty="n", cex=0.8) 

 

par(fig=c(0,1,0.39,0.52),mar=c(0,5,0,4) , new=T) 

hma<- plot(  e$mons2, e$HB, col="red",type="l",lwd=2, xaxt="n", 

xlab="", ylab="",  ylim=c(0,15),cex.axis=0.8) 

      lines(e$mons2, e$Hbrep, col="red",lty=5,lwd=2) 

      lines (e$mons2, e$JB, col="blue",lwd=2) 

      lines(e$mons2, e$Jbrep, col="blue",lty=5,lwd=2) 

      legend("topleft","c) Season B respondents", cex=0.8, bty="n") 

 

par(fig=c(0,1,0.26,0.39),mar=c(0,5,0,4) , new=T) 

hma<- plot(  e$mons2, e$HC, col="red", type="l",lwd=2, xaxt="n", 

xlab="", ylab="", cex.lab=0.8, ylim=c(0,15),yaxt="n") 

axis(4,cex.axis=0.8) 

      lines(e$mons2, e$Hcrep, col="red", lty=5, lwd=2) 

      lines (e$mons2, e$JC, col="blue", lwd=2) 

      lines(e$mons2, e$Jcrep, col="blue", lty=5, lwd=2) 

      legend("topleft","d) Season C respondents", cex=0.8, bty="n") 

 

par(fig=c(0,1,0,0.26),mar=c(5,5,0,4) , new=T) 

hma<- plot(  e$mons2, e$HD, col="red",type="l",lwd=2, 

xaxt="n",xlab="Month", ylab="",  ylim=c(0,15),cex.axis=0.8) 

lines (e$mons2, e$JD, col="blue", lwd=2) 

legend("topleft","e) Season D respondents", cex=0.8, bty="n") 

          

to<- (par("usr")[2] - par("usr")[1] )/31 

      p<-rep(0,32) 

      for (i in 1:length(p)) 

      { 

      p[i]<- par("usr")[1]+ ((i-1)*to ) 

      } 

labs<-c("May 2010", "Sept 2010", "Jan 2010", "May 2011", "Sept 

2011", "Jan 2011", "May 2012", "Sept 2012") 

       

axis(1,at=p[c(2,6,10,14,18,22,26,30)],labels=labs, cex.axis=0.8) 

        

 

######################## 

# Figure 4.4 GAM plots showing the change in reporting with respect 

to time elapsed   

library(mgcv) 

 

setwd('M:/Documents/Poultry Disease/R stuff/My dataframes/') 

source("outbreaks ch4.r") 

 

ltim$BOB<- ifelse(ltim$Loss>1,1,0) 
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g1<-gam(BOB~s(Elapse), data=ltim[which(ltim$SeasonID=="A"),], 

method="REML", family=binomial) 

g2<-gam(BOB~s(Elapse), data=ltim[which(ltim$SeasonID=="B"),], 

method="REML", family=binomial) 

g3<-gam(BOB~s(Elapse), data=ltim[which(ltim$SeasonID=="C"),], 

method="REML", family=binomial) 

g4<-gam(BOB~s(Elapse), data=ltim[which(ltim$SeasonID=="D"),], 

method="REML", family=binomial) 

 

windows(20,10) 

par(mfrow=c(2,2)) 

plot(g1, jit=T, col="darkred", ylab="",ylim=c(-5,2),lwd=2, xlab="", 

sub="Season A",cex.sub=1.5) 

plot(g2,jit=T, col="red", lwd=2,ylab="",ylim=c(-

5,2),xlab="",sub="Season B" , cex.sub=1.5) 

plot(g3, jit=T, col="orangered", lwd=2,ylab="",ylim=c(-5,2), 

xlab="", sub="Season C",cex.sub=1.5) 

plot(g4,jit=T, col="orange", lwd=2,ylab="",ylim=c(-

5,2),xlab="",sub="Season D", cex.sub=1.5 ) 

 

########################################################### 

#Figure 4.5  Reported numbers of bird deaths on each farm by month 

farmer reported that outbreak occurred 

        

setwd('M:/Documents/Poultry Disease/R Stuff/Outbreaks') 

hhs = read.csv("hhdis.csv", header = T, sep= ",") 

reps = read.csv("repsoutbreak.csv", header = T, sep= ",") 

 

setwd('M:/Documents/Poultry Disease/R Stuff/Outbreaks') 

mons<- read.csv("months_1.csv", header = T, sep= ",") 

mop<-levels  (mons$Month) 

mop<-mop[c(9,12,15,18,21,24,27,29,1,3,5,7,10,13,16,19,22,25,28,30, 

2,4,6,8,11,14,17,20,23,26)] 

 

try<-data.frame (rep(0,1),rep(0,1)) 

names(try)<-c("Loss", "Month") 

HA<-hhs[which(hhs$SeasonID=="A" & hhs$RegionID=="H"),] 

HA1<-HA[,c( 24:31,20:23)] 

   

for(i in 1:12) 

  { 

 bib<-HA1[which(HA1[,i]>0),  i] 

  a<-length(bib) 

  try[i,1]<-a 

  try[i,2]<-mop[i] 

   } 

   try$Mono<-c(1:12) 

long<-as.data.frame(lapply(try, function(x)rep(x,try$Loss))) 

 

 bib<-HA1[which(HA1[,1]>0),  1] 

 b<-data.frame( bib) 

 names(b)<-"bib" 

 for(i in 2:12) 

 { 

   bib<-HA1[which(HA1[,i]>0),  i] 

    a<-as.data.frame(bib) 

    b<-rbind(b,a) 

    } 

       HA<-cbind(b,long[,c(2,3)]) 

     names(HA)<-c("Loss","Month","Mono") 
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  #----------- 

 tryB<-data.frame (rep(0,1),rep(0,1)) 

 names(tryB)<-c("Loss", "Month") 

 HB<-hhs[which(hhs$SeasonID=="B" & hhs$RegionID=="H"),] 

 HB1<-HB[,c( 30:31,20:29)] 

   for(i in 1:12) 

  { 

 bib<-HB1[which(HB1[,i]>0),  i] 

  a<-length(bib) 

  tryB[i,1]<-a 

  tryB[i,2]<-mop[i+6] 

  } 

 tryB$Mono<-c(7:18) 

 longB<-as.data.frame(lapply(tryB, function(x)rep(x,tryB$Loss))) 

 b<-data.frame( HB1[which(HB1[,2]>0),  2]) 

 names(b)<-"bib" 

  for(i in 3:12) 

 { 

   bib<-HB1[which(HB1[,i]>0),  i] 

 a<-as.data.frame(bib) 

 b<-rbind(b,a) 

    } 

 HB<-cbind(b,longB[,c(2,3)]) 

 names(HB)<-c("Loss","Month","Mono") 

 

      #------------------------------ 

       tryC<-data.frame (rep(0,1),rep(0,1)) 

   names(tryC)<-c("Loss", "Month") 

    HC<-hhs[which(hhs$SeasonID=="C" & hhs$RegionID=="H"),] 

  HC1<-HC[,c( 24:31,20:23)] 

   for(i in 1:12) 

  { 

 bib<-HC1[which(HC1[,i]>0),  i] 

  a<-length(bib) 

  tryC[i,1]<-a 

  tryC[i,2]<-mop[i+12] 

  } 

   tryC$Mono<-c(13:24) 

longC<-as.data.frame(lapply(tryC, function(x)rep(x,tryC$Loss))) 

   b<-data.frame( HC1[which(HC1[,1]>0),  1]) 

 names(b)<-"bib" 

   for(i in 2:12) 

 { 

   bib<-HC1[which(HC1[,i]>0),  i] 

    a<-as.data.frame(bib) 

    b<-rbind(b,a) 

    } 

    HC<-cbind(b,longC[,c(2,3)]) 

     names(HC)<-c("Loss","Month","Mono") 

 

   #------- 

tryD<-data.frame (rep(0,1),rep(0,1)) 

names(tryD)<-c("Loss", "Month") 

HD<-hhs[which(hhs$SeasonID=="D" & hhs$RegionID=="H"),] 

HD1<-HD[,c( 30:31,20:29)] 

for(i in 1:12) 

  { 

 bib<-HD1[which(HD1[,i]>0),  i] 

  a<-length(bib) 

  tryD[i,1]<-a 

  tryD[i,2]<-mop[i+18] 
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  } 

 tryD$Mono<-c(19:30) 

 longD<-as.data.frame(lapply(tryD, function(x)rep(x,tryD$Loss))) 

  b<-data.frame( HD1[which(HD1[,3]>0),  3]) 

 names(b)<-"bib" 

  for(i in 4:12) 

 { 

   bib<-HD1[which(HD1[,i]>0),  i] 

    a<-as.data.frame(bib) 

    b<-rbind(b,a) 

    } 

HD<-cbind(b,longD[,c(2,3)]) 

names(HD)<-c("Loss","Month","Mono") 

 

  #----------- 

HR<-na.omit(reps[which(reps$RegionID=="H"),c(16,9)]) 

mib<-as.data.frame(mop) 

mib$Mono<-c(1:30) 

HR$Mono<-mib$Mono[match(HR$Month,mib$mop)] 

names(HR)<- c("Loss","Month","Mono") 

HALL<-rbind(HA,HB,HC,HD,HR) 

HALL$RegionID<-"H" 

 

        #################### 

try<-data.frame (rep(0,1),rep(0,1)) 

names(try)<-c("Loss", "Month") 

JA<-hhs[which(hhs$SeasonID=="A" & hhs$RegionID=="J"),] 

JA1<-JA[,c( 24:31,20:23)] 

for(i in 1:12) 

  { 

 bib<-JA1[which(JA1[,i]>0),  i] 

  a<-length(bib) 

  try[i,1]<-a 

  try[i,2]<-mop[i] 

   } 

try$Mono<-c(1:12) 

long<-as.data.frame(lapply(try, function(x)rep(x,try$Loss))) 

b<-data.frame( JA1[which(JA1[,3]>0),  3]) 

names(b)<-"bib" 

for(i in 4:12) 

 { 

   bib<-JA1[which(JA1[,i]>0),  i] 

    a<-as.data.frame(bib) 

    b<-rbind(b,a) 

    } 

JA<-cbind(b,long[,c(2,3)]) 

names(JA)<-c("Loss","Month","Mono") 

 

  #----------- 

tryB<-data.frame (rep(0,1),rep(0,1)) 

names(tryB)<-c("Loss", "Month") 

JB<-hhs[which(hhs$SeasonID=="B" & hhs$RegionID=="J"),] 

JB1<-JB[,c( 30:31,20:29)] 

for(i in 1:12) 

  { 

 bib<-JB1[which(JB1[,i]>0),  i] 

  a<-length(bib) 

  tryB[i,1]<-a 

  tryB[i,2]<-mop[i+6] 

  } 

    tryB$Mono<-c(7:18) 
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 longB<-as.data.frame(lapply(tryB, function(x)rep(x,tryB$Loss))) 

   b<-data.frame( JB1[which(JB1[,2]>0),  2]) 

 names(b)<-"bib" 

  for(i in 3:12) 

 { 

   bib<-JB1[which(JB1[,i]>0),  i] 

    a<-as.data.frame(bib) 

    b<-rbind(b,a) 

    } 

JB<-cbind(b,longB[,c(2,3)]) 

names(JB)<-c("Loss","Month","Mono") 

 

      #------------------------------ 

tryC<-data.frame (rep(0,1),rep(0,1)) 

names(tryC)<-c("Loss", "Month") 

JC<-hhs[which(hhs$SeasonID=="C" & hhs$RegionID=="J"),] 

JC1<-JC[,c( 24:31,20:23)] 

for(i in 1:12) 

  { 

 bib<-JC1[which(JC1[,i]>0),  i] 

  a<-length(bib) 

  tryC[i,1]<-a 

  tryC[i,2]<-mop[i+12] 

  } 

   tryC$Mono<-c(13:24) 

longC<-as.data.frame(lapply(tryC, function(x)rep(x,tryC$Loss))) 

b<-data.frame( JC1[which(JC1[,1]>0),  1]) 

names(b)<-"bib" 

for(i in 2:12) 

 { 

   bib<-JC1[which(JC1[,i]>0),  i] 

    a<-as.data.frame(bib) 

    b<-rbind(b,a) 

    } 

JC<-cbind(b,longC[,c(2,3)]) 

     names(JC)<-c("Loss","Month","Mono") 

 

   #------- 

          tryD<-data.frame (rep(0,1),rep(0,1)) 

   names(tryD)<-c("Loss", "Month") 

    JD<-hhs[which(hhs$SeasonID=="D" & hhs$RegionID=="J"),] 

  JD1<-JD[,c( 30:31,20:29)] 

   for(i in 1:12) 

  { 

 bib<-JD1[which(JD1[,i]>0),  i] 

  a<-length(bib) 

  tryD[i,1]<-a 

  tryD[i,2]<-mop[i+18] 

  } 

    tryD$Mono<-c(19:30) 

 longD<-as.data.frame(lapply(tryD, function(x)rep(x,tryD$Loss))) 

  b<-data.frame( JD1[which(JD1[,1]>0),  1]) 

 names(b)<-"bib" 

  for(i in 2:12) 

 { 

   bib<-JD1[which(JD1[,i]>0),  i] 

    a<-as.data.frame(bib) 

    b<-rbind(b,a) 

    } 

    JD<-cbind(b,longD[,c(2,3)]) 

     names(JD)<-c("Loss","Month","Mono") 
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  #----------- 

  JR<-na.omit(reps[which(reps$RegionID=="J"),c(16,9)]) 

  mib<-as.data.frame(mop) 

    mib$Mono<-c(1:30) 

   JR$Mono<-mib$Mono[match(JR$Month,mib$mop)] 

    names(JR)<- c("Loss","Month","Mono") 

         JALL<-rbind(JA,JB,JC,JD,JR) 

         JALL$RegionID<-"J" 

    ################################### 

 summary( HALL$Loss) 

 summary( JALL$Loss) 

 

 (meds<- aggregate( HALL$Loss, by=list(M=HALL$Mono),median)) 

 (meds2<- aggregate( JALL$Loss, by=list(M=JALL$Mono),median)) 

 windows(20,15) 

par(fig=c(0,1,0.5,1),mar=c(0,5,5,4),oma=c(5,0,0,0))  

stripchart(c(0,0,JALL$Loss,0)~c(1,2,JALL$Mono,30), vertical=T, 

pch=16, col=rgb(0,0,1,0.3),xaxt="n",ylim=c(0,50), ylab="Losses") 

points(meds2$M,meds2$x, type="l", col="blue") 

legend("left", "Jarso",bty="n") 

 

par(fig=c(0,1,0,0.5) ,mar=c(5,5,0,4), new=T)  

stripchart(HALL$Loss~HALL$Mono, vertical=T,  

pch=16,col=rgb(1,0,0,0.3),group.names=mop[1:30],ylim=c(0,50),ylab="L

osses") 

points(meds$M,meds$x, type="l", col="red") 

legend("topleft", "Horro",bty="n") 

       

######################## 

# Regression model code 

library(mgcv) 

library(lme4) 

 

setwd('M:/Documents/Poultry Disease/R stuff/MyFunctions/') 

source("Regression outputs.r") 

 

setwd('M:/Documents/Poultry Disease/R stuff/My dataframes/') 

source("outbreaks ch4.r") 

 

 

ltim$BOB<- ifelse(ltim$Loss>1,1,0) 

 

g1<-gam(BOB~s(Elapse), data=ltim[which(ltim$SeasonID=="A"),], 

method="REML", family=binomial) 

g2<-gam(BOB~s(Elapse), data=ltim[which(ltim$SeasonID=="B"),], 

method="REML", family=binomial) 

g3<-gam(BOB~s(Elapse), data=ltim[which(ltim$SeasonID=="C"),], 

method="REML", family=binomial) 

g4<-gam(BOB~s(Elapse), data=ltim[which(ltim$SeasonID=="D"),], 

method="REML", family=binomial) 

 

  windows(20,10) 

  par(mfrow=c(2,2)) 

plot(g1, jit=T, col="darkred", ylab="",ylim=c(-5,2),lwd=2, 

xlab="",sub="Season A", cex.sub=1.5) 

plot(g2,jit=T, col="red", lwd=2,ylab="",ylim=c(-

5,2),xlab="",sub="Season B" , cex.sub=1.5) 

plot(g3, jit=T, col="orangered", lwd=2,ylab="",ylim=c(-

5,2),xlab="",sub="Season C",cex.sub=1.5) 
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plot(g4,jit=T, col="orange", lwd=2,ylab="",ylim=c(-

5,2),xlab="",sub="Season D",  ) 

 

   ltim$lapse2<-ltim$Elapse 

   ltim$lapse2[which(ltim$lapse2> -5 )] <- -4 

    

 (m6<-glmer(BOB ~ relevel(RegionID,"J")+ Rain +    

relevel(SeasonID,"B")* lapse2+ as.factor(AskTime)+ (1|FarmUnID) , 

data=ltim,REML = T, na.action=na.omit, family="binomial")) 

        log.reg.outputs(m6) 

 

  (m3<-glmer(Loss>1 ~ relevel(RegionID,"J")  +(1|FarmUnID) , 

data=ltim[which(ltim$Loss>0),],REML = T, na.action=na.omit, 

family="binomial")) 

  log.reg.outputs(m3) 

         

 (m4<-glmer(Loss ~ relevel(RegionID,"J")+ Rain  +as.factor(AskTime)+ 

(1|FarmUnID) , data=ltim[which(ltim$Loss>1 & ltim$Loss<60),],REML = 

T, na.action=na.omit, family="poisson")) 

     log.reg.outputs(m4) 

 

########################################### 

#Appendix 4.2 

library(lme4) 

setwd('M:/Documents/Poultry Disease/R stuff/MyFunctions/') 

source("Regression outputs.r") 

ltim$lapse2<-ltim$Elapse 

ltim$lapse2[which(ltim$lapse2> -5 )] <- -4 

    

(m6<-glmer(BOB ~ relevel(RegionID,"J")+ Rain +    

relevel(SeasonID,"B")*  lapse2+ as.factor(AskTime)+ (1|FarmUnID) , 

data=ltim,REML = T, na.action=na.omit, family="binomial")) 

        

log.reg.outputs(m6) 

 

########################################### 

#Appendix 4.3 

(m3<-glmer(Loss>1 ~ relevel(RegionID,"J")  +(1|FarmUnID) , 

data=ltim[which(ltim$Loss>0),],REML = T, na.action=na.omit, 

family="binomial")) 

   

log.reg.outputs(m3) 

 

(m4a<-glmer(Loss ~ relevel(VillageID,"J2B")+as.factor(AskTime)+ 

relevel(SeasonID,"C")*Rain + relevel(SeasonID,"C")*lapse2+ 

(1|FarmUnID) , data=ltim[which(ltim$Loss>1) ,],REML = T, 

na.action=na.omit, family="poisson")) 

 

log.reg.outputs(m4a) 

  

(m4b<-glmer(Loss ~ relevel(RegionID,"J")+ Rain  +as.factor(AskTime)+ 

(1|FarmUnID) , data=ltim[which(ltim$Loss>1 & ltim$Loss<60),],REML = 

T, na.action=na.omit, family="poisson")) 

 

log.reg.outputs(m4b) 

 

################################## 
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#Figure 4.6  Reported outbreaks showing age groups affected across 

different months 

 

MOnames<-

c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct", 

"Nov","Dec") 

age<- hhs[,c(1,3,6, 15:19,8:14,20:31, 36:47)] 

        

Jan<-age[which(age[,4]>0),c(1:3,4,4+12,4+24) ] 

names(Jan)[4:6]<-c("Month" ,"Loss","AgeGp") 

Jan[,4]<-MOnames[4-3] 

b<-Jan 

        

for(i in 5:15) 

        { 

       Jan<-age[which(age[,i]>0),c(1:3,i,i+12,i+24) ] 

      names(Jan)[4:6]     <-c("Month" ,"Loss","AgeGp") 

       Jan[,4]<-MOnames[i-3] 

       b<-rbind(b,Jan) 

       } 

nrow(b) 

        

cols<-c("darkred","red","orange","gold","chartreuse3","steelblue3", 

"slateblue") 

mos<-c("J","F","M","A","M","J","J","A","S","O","N","D") 

cols2<-rep(cols[1:7],each=12) 

         

z<- table(b$Month,b$AgeGp ) 

zz<-z[c(5,4,8,1,9,7,6,2,12,11,10,3),-1] 

yy<-t(zz) 

        

windows(12,8) 

par(mfrow=c(2,1)) 

barplot(yy, beside=T,names=MOnames, col=cols, space=c(0,2)) 

legend("topright",labl[-1],fill=cols,bty="n", cex=0.9) 

          

barplot(zz, beside=T,names=rep(mos,7),cex.names=0.5, col=cols2, 

space=c(0,2)) 
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Chapter 5 

library(mgcv) 

library(lme4) 

library(MASS) 

library(RgoogleMaps) 

library(geoR) 

 

 setwd('M:/Documents/Poultry Disease/R stuff/MyFunctions/') 

 source("Regression outputs.r") 

 source("spatial test function oct2012.R")  

 

setwd('M:/Documents/Poultry Disease/R stuff/Survival analysis/') 

suv <- read.csv("multioutcome.csv", header=T, sep=,) 

 

names(suv) 

 

suv$LiceTot<- rowSums(suv[,c(22:26)]) 

suv$outcome<-rowSums (suv[,c(7:13)]) 

 

suv$Finben<-  rowSums(suv[,c(10:11)]) 

suv$Finloss<-  rowSums(suv[,c(9,12,13)]) 

 suv$Goodoc<-ifelse(suv$Survival==1 |suv$Finben==1,1,0) 

  suv$Season<-as.factor(ifelse(suv$SeasonID=="B","Dry","Wet") ) 

       mydat<-suv[which(suv$outcome==1),] 

 

 ################################# 

 #Intraclass correlation coefficients 

 (Shh0<-glmer(Survival ~ 1+(1|RegionID/MarkShID/VillageID/FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="gaussian")) 

       summary(Shh0) 

 (Shhbin<-glmer(Survival ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial")) 

       summary(Shhbin)     

(Shh1<-glmer(Survival ~ RegionID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="gaussian")) 

       anova(Shh0,Shh1) 

       (Shh2<-glmer(Survival ~ VillageID+(1|FarmUnID), data=suv,REML 

= T, na.action=na.omit, family="gaussian")) 

       anova(Shh2,Shh1) 

 

(Dhh0<-glmer(Disease ~ 1+(1|RegionID/MarkShID/VillageID/FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="gaussian")) 

       summary(Dhh0) 

       (Dhhbin<-glmer(Disease ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial")) 

       summary(Dhhbin) 

(Dhh1<-glmer(Disease ~ VillageID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="gaussian")) 

       anova(Dhh0,Dhh1) 

(Dhh2<-glmer(Disease ~ RegionID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="gaussian")) 

       anova(Dhh2,Dhh1) 

 

(Lhh0<-glmer(Finloss ~ 1+(1|RegionID/MarkShID/VillageID/FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="gaussian")) 

       summary(Lhh0) 
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       (Lhhbin<-glmer(Finloss ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial")) 

       summary(Lhhbin) 

(Lhh1<-glmer(Finloss ~ RegionID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="gaussian")) 

       anova(Lhh0,Lhh1) 

       (Lhh2<-glmer(Finloss ~ VillageID+(1|FarmUnID), data=suv,REML 

= T, na.action=na.omit, family="gaussian")) 

       anova(Lhh2,Lhh1) 

 

(Bhh0<-glmer(Finben ~ 1+(1|RegionID/MarkShID/VillageID/FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="gaussian")) 

       summary(Bhh0) 

       (Bhhbin<-glmer(Finben ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial")) 

       summary(Bhhbin) 

(Bhh1<-glmer(Finben ~ VillageID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="gaussian")) 

       anova(Bhh0,Bhh1) 

(Bhh2<-glmer(Finben ~ RegionID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="gaussian")) 

       anova(Bhh2,Bhh1) 

        

    ########################## 

  #Figure 5.2 

 (Shh9<-glmer(Survival ~ relevel(VillageID,"H2B")+(1|FarmUnID), 

data=mydat,REML = T, na.action=na.omit, family="binomial",nAGQ=2)) 

   tab1<-          log.reg.outputs(Shh9) 

 

 (Dhh7<-glmer(Disease ~ relevel(VillageID,"H2B")+(1|FarmUnID), 

data=mydat,REML = T, na.action=na.omit, family="binomial",nAGQ=2)) 

   tab2<-          log.reg.outputs(Dhh7) 

 

 (Phh4<-glmer(Finloss ~ relevel(VillageID,"H2B") +(1|FarmUnID), 

data=mydat,REML = T, na.action=na.omit, family="binomial",nAGQ=2)) 

   tab3<-          log.reg.outputs(Phh4) 

 

 (Ehh6<-glmer(Finben ~ relevel(VillageID,"H2B") +(1|FarmUnID), 

data=mydat,REML = T, na.action=na.omit, family="binomial",nAGQ=2)) 

   tab4<-          log.reg.outputs(Ehh6) 

 

res<-data.frame(rep(0,40),rep(0,40),rep(0,40)) 

names(res)<-c("OR","LCI","UCI") 

           for ( i in 1:8) 

           { 

          p<- rbind(tab1[i,3:5],tab2[i,3:5],tab3[i,3:5],tab4[i,3:5] 

) 

          res[(5*i- 3):(5*i),]<- p 

          } 

 

 

  library(plotrix) 

  windows(14,6) 

         par(fig=c(0.15,1,0,1),mar=c(4,0,2,10), xpd=T) 

          plotCI(log(res[7:40,1]),pch=19, col=c("blue", "red", 

"orange","chartreuse3","white"),ylim=c(-5,7),yaxt="n", 

ylab="",xaxt="n", xlab="", 

ui=log(res[7:40,3]),li=log(res[7:40,2]),slty=1 , sfrac=0.005) 

         axis (4) 
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         mtext("log odds ratio", side=4, padj=4) 

         x<-seq(5,30,5) 

          for (i in 1:7) 

          { 

          lines(c(x[i],x[i]),c(-5,5), lty=3,col="grey60") 

          } 

          lines(c(15,15),c(-5,7), lty=2) 

                lines(c(0,35),c(0,0), lty=3) 

 

          y<-seq(2.5,32.5,5) 

          mtext(levels(mydat$VillageID)[c(1:3,5:8)], side=1, at=y) 

          mtext(c("Horro","Jarso"), side=1, at=c(5,25), 

cex=1.2,padj=2) 

          mtext("H2B",side=2, at=0, cex=1.2, las=2, adj=2) 

          mtext("Reference",side=2, at=-6, cex=1.2, las=2, adj=1.2) 

          mtext("village",side=2, at=-6.6, cex=1.2, las=2, adj=1.5) 

           legend(38,7,legend=c("Survival", 

"Disease","Loss","Gain"),cex=0.9,pch=19,lty=1, col=c("blue", "red", 

"orange","chartreuse3"), bty="n") 

 

############################################### 

 # Village/Season interaction models 

(Shh1<-glmer(Survival ~ RegionID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial")) 

(Shh2<-glmer(Survival ~ Season*RegionID+(1|FarmUnID), data=suv,REML 

= T, na.action=na.omit, family="binomial"))  # best fit 

       anova(Shh2,Shh1) 

(Shh3<-glmer(Survival ~ 

Season*relevel(VillageID,"H1B")+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial")) 

       anova(Shh2,Shh3) 

(Shh4<-glmer(Survival ~ relevel(SeasonID,"B")*RegionID+(1|FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="binomial")) 

       anova(Shh2,Shh4) 

 

 

(Dhh1<-glmer(Disease ~ relevel(VillageID,"J2A")+(1|FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="binomial", nAGQ=2))   

(Dhh3<-glmer(Disease ~ Season*relevel(VillageID,"J2A")+(1|FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="binomial", nAGQ=2)) 

       anova(Dhh1,Dhh3) 

(Dhh4<-glmer(Disease ~ 

relevel(SeasonID,"B")+relevel(VillageID,"J2A")+(1|FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="binomial", nAGQ=2)) # 

best fit 

       anova(Dhh1,Dhh4) 

 

   

(Lhh1<-glmer(Finloss ~ RegionID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial")) 

(Lhh2<-glmer(Finloss ~ VillageID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial")) 

       anova(Lhh2,Lhh1) 

(Lhh3<-glmer(Finloss ~ Season*relevel(VillageID,"J2A")+(1|FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="binomial"))# best fit 

       anova(Lhh2,Lhh3) 

(Lhh4<-glmer(Finloss ~ relevel(SeasonID,"B")*VillageID+(1|FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="binomial")) 

       anova(Lhh4,Lhh3) 
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(Bhh1<-glmer(Finben ~ VillageID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial")) 

(Bhh2<-glmer(Finben ~ RegionID+(1|FarmUnID), data=suv,REML = T, 

na.action=na.omit, family="binomial"))  

anova(Bhh1,Bhh2)      

(Bhh3<-glmer(Finben ~ Season*relevel(VillageID,"J2A")+(1|FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="binomial"))  # best 

fit 

       anova(Bhh3,Bhh1) 

(Bhh4<-glmer(Finben ~ relevel(SeasonID,"B")*VillageID+(1|FarmUnID), 

data=suv,REML = T, na.action=na.omit, family="binomial")) 

       anova(Bhh3,Bhh4) 

 

##################### 

  #Figure 5.3 

  suv$sv<-paste(suv$VillageID,suv$Season) 

   oc<-   aggregate(  suv[,c(7,59,8,60)],na.rm=TRUE, 

by=list(v=suv$sv),sum) 

    windows(12,7) 

         par(mar=c(10,4,2,10), xpd=T) 

   barplot(   prop.table(t(oc[,-1]),2),  col=c("blue","chartreuse3", 

"red", "orange"), space=c(1,0,1,0,1,0,1,0,2,0)) 

   y<-  c(2,5,8,11,15,18,21,24) 

   mtext(levels(mydat$VillageID), side=1, at=y,padj=2,cex=1.2) 

    mtext("Village", side=1, at=28,padj=2,cex=1.2) 

   mtext(rep(c("Dry"),8), side=1, at=y-0.5) 

   mtext(rep(c("Wet"),8), side=1, at=y+0.5) 

    mtext("Season", side=1, at=28) 

    mtext(levels(mydat$MarkShID), side=1, 

at=c(3.5,9.5,16.5,22.5),padj=4,cex=1.5) 

     mtext("Marketshed", side=1, at=28,padj=4,cex=1.5) 

      mtext(c("Horro", "Jarso", "Region"), side=1, at=c(6.5,19.5 

,28),padj=6,cex=1.8) 

  legend(26,0.95,legend=c("Survival", 

"Disease","Loss","Gain"),cex=0.9, fill=c("blue", "red", 

"orange","chartreuse3"), bty="n") 

   

  ########################## 

   

 mydatH<-mydat[which(mydat$RegionID=="H"),] 

  mydatH$Age<-ifelse(mydatH$Age>40,36,mydatH$Age) 

  mydatH$recpur<-ifelse(mydatH$LastBird==0,1,0)  

   

 #Horro Approach 1      

 Shh9<-glmer(Survival ~ relevel(VillageID,"H2B")+AdjPM* 

Age+Sex+(1|FarmUnID), data=mydatH,REML = T, na.action=na.omit, 

family="binomial",nAGQ=2) 

summary(Shh9) 

(tab1<- log.reg.outputs(Shh9)) 

 

death<-

na.omit(mydatH[which(mydatH$Survival==0),c(1:6,63,14,8,59,60)]  ) 

colSums( death[,9:11]) 

 

Ys<-c(t(death[,9:11])) 

xs<-c(t(matrix(as.factor(death$Sex),nrow(death),3))) 

xv<-c(t(matrix(as.factor(death$VillageID),nrow(death),3))) 

xb<-c(t(matrix(death$recpur,nrow(death),3))) 

rs<- c(t(matrix(death$FarmUnID,nrow(death),3))) 

cat<-c(t(matrix(1:3,nrow(death),3,T))) 
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chck<-cbind(xs,xb,xv,rs,cat,Ys) 

head(chck) 

 

ref.model1<-glmer(Ys ~ -1+as.factor(cat)+ 

as.factor(cat):relevel(as.factor(xv),"H2B")+ as.factor(cat):xb+ (-

1+as.factor(cat)|rs) , REML = T, na.action=na.omit, 

family="poisson") 

log.reg.outputs(ref.model1)  

 

#Fig 5.4 

fixef(Shh9) 

 model<-Shh9           

summary(mydatH$Age) 

summary(mydatH$AdjPM) 

 

hl1<-seq(-2,4,length.out=100) 

 

Age1<-rep(6, times =100) 

age.hl.6<-

fixef(model)[1]+fixef(model)[6]*Age1+fixef(model)[5]*hl1+fixef(model

)[8]*Age1*hl1 

 

Age1<-rep(12,times =100) 

age.hl.12<-

fixef(model)[1]+fixef(model)[6]*Age1+fixef(model)[5]*hl1+fixef(model

)[8]*Age1*hl1 

 

Age1<-rep(24, times =100) 

age.hl.24<-

fixef(model)[1]+fixef(model)[6]*Age1+fixef(model)[5]*hl1+fixef(model

)[8]*Age1*hl1 

 

Age1<-rep(36, times =100) 

age.hl.36<-

fixef(model)[1]+fixef(model)[6]*Age1+fixef(model)[5]*hl1+fixef(model

)[8]*Age1*hl1 

 

out<-as.data.frame(cbind( exp(age.hl.6)/(1+exp(age.hl.6)), 

exp(age.hl.12)/(1+exp(age.hl.12)), 

exp(age.hl.24)/(1+exp(age.hl.24)), 

exp(age.hl.36)/(1+exp(age.hl.36)))) 

 

c1<-c("darkred", "red", "orange","gold") 

 

windows(10,6) 

par(mfrow=c(1,1)) 

plot(y=out[,1],x=hl1+ 1.021, type="l", col=c1[1], lwd=2, 

ylim=c(0,1),ylab="Probability of survival", xlab="Pasteurella s:p 

ratio") 

lines(y=out[,2],x=hl1+ 1.021, type="l", col=c1[2], lwd=2) 

lines(y=out[,3],x=hl1+ 1.021, type="l", col=c1[3], lwd=2) 

lines(y=out[,4],x=hl1+ 1.021, type="l", col=c1[4], lwd=2) 

 

 legend("bottomleft", c("6 mths", "12 mths", "24 mths", "36 

mths"),bty="n", lwd=2,col=c1) 

 

 

################ 
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#Approach 2 

 

mydatHtmp<-na.omit(mydatH[, c(1:6,15,61,62,63)]) 

table(mydatHtmp$Goodoc) 

 

(Dhh7<-glmer(Goodoc ~ 

relevel(VillageID,"H2B")*Season+Age+recpur+(1|FarmUnID), 

data=mydatHtmp,REML = T, na.action=na.omit, 

family="binomial",nAGQ=2)) 

(tab2<- log.reg.outputs(Dhh7)) 

 

good <-

na.omit(mydatH[which(mydatH$Goodoc==1),c(1:6,62,54,27,15,14,7,59)]  

) 

table(good$Survival) 

(Dhh8<-glmer(Survival ~ 

Sex+Age*AdjPM+as.factor(Cnemido>1)+(1|FarmUnID), data=good,REML = T, 

na.action=na.omit, family="binomial",nAGQ=2)) 

(tab2<-log.reg.outputs(Dhh8)) 

 

 bad <-na.omit(mydatH[which(mydatH$Goodoc==0),c(1:6,62,8,60)]  ) 

 table(bad$Finloss) 

 (Dhh9<-glmer(Finloss ~ -1+relevel(VillageID,"H2B")+(1|FarmUnID), 

data=bad,REML = T, na.action=na.omit, family="binomial",nAGQ=8)) 

 (tab3<-log.reg.outputs(Dhh9)) 

 

 #Approach 3 

all<-

na.omit(mydatH[which(mydatH$outcome==1),c(1:5,62,27,63,54,14,15,7,8,

59,60)]  ) 

colSums( all[,12:15]) 

 

Ys<-c(t(all[,12:15])) 

xs<-c(t(matrix(as.factor(all$Sex),nrow(all),4))) 

xv<-c(t(matrix(as.factor(all$VillageID),nrow(all),4))) 

xb<-c(t(matrix(all$recpur,nrow(all),4))) 

xt<-c(t(matrix(as.factor(all$Season),nrow(all),4))) 

xa<-c(t(matrix(all$Age,nrow(all),4))) 

xp<-c(t(matrix(all$AdjPM,nrow(all),4))) 

xl<-c(t(matrix(all$Cnemido,nrow(all),4))) 

 

rs<- c(t(matrix(all$FarmUnID,nrow(all),4))) 

cat<-c(t(matrix(1:4,nrow(all),4,T))) 

 

chck<-cbind(xs,xa,xl,xb,xv,xp,rs,cat,Ys) 

head(chck) 

 

ref.model2<-glmer(Ys ~ -1+as.factor(cat)+ 

as.factor(cat):relevel(as.factor(xv),"H2B") 

+as.factor(cat):xt+ 

as.factor(cat):as.factor(xl>0)+as.factor(cat):xb+ 

as.factor(cat):xs+as.factor(cat):xa*  as.factor(cat):xp+ 

(-1+as.factor(cat)|rs) , REML = T, na.action=na.omit, 

family="poisson") 

 

summary(ref.model2) 

log.reg.outputs(ref.model2) 

 

 

 

############################ 
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#Jarso  

 

 mydatJ<-mydat[which(mydat$RegionID=="J"& mydat$PooSourc==0),] 

  mydatJ$Cocount<-ifelse(mydatJ$Coccidia<150,mydatJ$Coccidia*0.02,3) 

   

  #Approach 1 

     (Shh8<-glmer(Survival ~ relevel(LayState,"L")+Season+AdjMDV + 

Cocount+(1|FarmUnID), data=mydatJ,REML = T, na.action=na.omit, 

family="binomial",nAGQ=2)) 

     ( tab1<-log.reg.outputs(Shh8)) 

      

 mydatJ<-mydat[which(mydat$RegionID=="J"),] 

 death<-

na.omit(mydatJ[which(mydatJ$Survival==0),c(1:5,62,14,8,59,60)]  ) 

 colSums( death[,8:10]) 

 

Ys<-c(t(death[,8:10])) 

xs<-c(t(matrix(as.factor(death$Sex),nrow(death),3))) 

xv<-c(t(matrix(as.factor(death$VillageID),nrow(death),3))) 

 

rs<- c(t(matrix(death$FarmUnID,nrow(death),3))) 

cat<-c(t(matrix(1:3,nrow(death),3,T))) 

 

chck<-cbind(xs,xv,rs,cat,Ys) 

head(chck) 

 

ref.model0<-glmer(Ys ~ -1+as.factor(cat)+as.factor(cat):xs+ 

as.factor(cat):relevel(as.factor(xv),"J1A")+(-1+as.factor(cat)|rs) , 

REML = T, na.action=na.omit, family="poisson") 

summary(ref.model0) 

log.reg.outputs(ref.model0)  

 

 

#Approach 2 

 mydatJ<-mydat[which(mydat$RegionID=="J"& mydat$PooSourc==0),] 

  mydatJ$Cocount<-ifelse(mydatJ$Coccidia<150,mydatJ$Coccidia*0.02,3) 

table(mydatJ$Goodoc)  

 

 (Dhh11<-glmer(Goodoc 

~relevel(VillageID,"J1A")+Season+relevel(LayState,"L")*AdjMDV+Cocoun

t+(1+Season+AdjMDV|FarmUnID), data=mydatJ,REML = T, 

na.action=na.omit, family="binomial",nAGQ=4)) 

   (tab2<- log.reg.outputs(Dhh11)) 

    

  (Dhh10<-glmer(Goodoc 

~relevel(VillageID,"J1A")+Season+relevel(LayState,"L")*AdjMDV+Cocoun

t+(1+AdjMDV|FarmUnID), data=mydatJ,REML = T, na.action=na.omit, 

family="binomial")) 

  anova(Dhh10,Dhh11) 

   

   mydatJ<-mydat[which(mydat$RegionID=="J"),] 

   good <-

na.omit(mydatJ[which(mydatJ$Goodoc==1),c(1:6,62,27,14,7,59)]  ) 

           

      table(good$Survival) 

       (Dhh8<-glmer(Survival ~ 

Sex+as.factor(Cnemido>0)+relevel(VillageID,"J1B")+Season+(1|FarmUnID

), data=good,REML = T, na.action=na.omit, family="binomial",nAGQ=2)) 

      ( tab2<- log.reg.outputs(Dhh8)) 

 

    bad <-na.omit(mydatJ[which(mydatJ$Goodoc==0),c(1:6,62,8,60)]) 
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      names(bad) 

      table(bad$Finloss) 

             

       (Dhh9<-glmer(Finloss ~ 1+(1|FarmUnID), data=bad,REML = T, 

na.action=na.omit, family="binomial",nAGQ=20)) 

      (tab2<-log.reg.outputs(Dhh9)) 

       

       

#######################################################       

 #Approach 3 

mydatJ<-mydat[which(mydat$RegionID=="J"& mydat$PooSourc==0),] 

  mydatJ$Cocount<-ifelse(mydatJ$Coccidia<150,mydatJ$Coccidia*0.02,3)         

all<-

na.omit(mydatJ[which(mydatJ$outcome==1&mydatJ$PooSourc==0),c(1:5,62,

27,63,56,14,7,8,59,60)]  ) 

colSums( all[,11:14]) 

 

Ys<-c(t(all[,11:14])) 

xs<-c(t(matrix(as.factor(all$Sex),nrow(all),4))) 

xv<-c(t(matrix(as.factor(all$VillageID),nrow(all),4))) 

xc<-c(t(matrix(all$Cocount,nrow(all),4))) 

xt<-c(t(matrix(as.factor(all$Season),nrow(all),4))) 

xm<-c(t(matrix(all$AdjMDV,nrow(all),4))) 

xl<-c(t(matrix(as.factor(all$Cnemido>0),nrow(all),4))) 

 

rs<- c(t(matrix(all$FarmUnID,nrow(all),4))) 

cat<-c(t(matrix(1:4,nrow(all),4,T))) 

 

chck<-cbind(xs,xl,xt,xv,xm,xc,rs,cat,Ys) 

head(chck) 

 

ref.model6<-glmer(Ys ~ -

1+as.factor(cat)+as.factor(cat):xs+as.factor(cat):relevel(as.factor(

xv),"J1A")+as.factor(cat):xt+as.factor(cat):xc+ (-

1+as.factor(cat)|rs) , REML = T, na.action=na.omit, 

family="poisson") 

summary(ref.model6) 

 

log.reg.outputs(ref.model6) 

 

############################################ 

names(mydatJ) 

farm<- na.omit( mydatJ[, c(1:6,62,21,56,63,61)]) 

farm$Latitude<-  mydatJ$Latitude[    match(  

farm$UniqueID,mydatJ$UniqueID)] 

farm$Longtude<-  mydatJ$Longtude[    match(  

farm$UniqueID,mydatJ$UniqueID)] 

 

 #Figure 5.5 

 (Dhh11<-glmer(Goodoc 

~relevel(VillageID,"J1A")+Season+relevel(LayState,"L")*AdjMDV+Cocoun

t+(1+Season+AdjMDV|FarmUnID), data=farm,REML = T, na.action=na.omit, 

family="binomial",nAGQ=4)) 

head(ranef(Dhh11)[[1]] ) 

 head(coef(Dhh11)$FarmUnID) 

 hist(coef(Dhh11)$FarmUnID[,5], breaks=20, main="Jarso farm-level 

Season coefficients") 

 

farmplot<-unique(farm[,c(2:7,12,13)]) 

farmplot<- cbind(farmplot,  coef(Dhh11)[[1]]) 

hist(farmplot$SeasonWet, breaks=20) 
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windows(12,6) 

plot(farmplot$SeasonID,farmplot$AdjMDV, col=c("darkred", "orange", 

"orangered")) 

 

 

############################################ 

#Appendix B 

J1<-farmplot[which(farmplot$MarkShID=="J2"),] 

  windows(10,10) 

      H1s<-PlotOnStaticMap( lat=J1$Latitude, lon=J1$Longtude,  

zoom=7, size = c(640,640), GRAYSCALE  = FALSE, 

               add=FALSE, FUN = points, pch="",mar=c(0,0,0,0), 

NEWMAP = TRUE, TrueProj = TRUE, axes= FALSE, verbose = 1) 

                PlotOnStaticMap( 

MyMap=H1s,lat=J1[J1$SeasonID=="A",7], lon=J1[J1$SeasonID=="A",8],   

zoom=14, size = c(640,640), GRAYSCALE  = FALSE, 

               add=T, FUN = points,col=c("darkred"), 

pch=19,cex=0.75*(1.2+J1[J1$SeasonID=="A",13]),mar=c(0,0,0,0), NEWMAP 

= F, TrueProj = TRUE, axes= FALSE, verbose = 1) 

                PlotOnStaticMap( 

MyMap=H1s,lat=J1[J1$SeasonID=="C",7], lon=J1[J1$SeasonID=="C",8],   

zoom=14, size = c(640,640), GRAYSCALE  = FALSE, 

               add=T, FUN = points,col=c("orangered"), 

pch=19,cex=0.75*(1.2+J1[J1$SeasonID=="C",13]),mar=c(0,0,0,0), NEWMAP 

= F, TrueProj = TRUE, axes= FALSE, verbose = 1) 

                 

                

     legend("topright", c("Season A", "Season C"), 

col=c("darkred","orangered"), pch=19 , bty="n" , cex=1.5, pt.cex=1.5 

)   

      

      

J1.Wet<-na.omit(farmplot[farmplot[,2]=="J1A" & 

farmplot[,6]=="Wet",c(7,8,9)] ) 

test1 <- spatial.test(J1.Wet, u.vector=seq(0,1,0.001), nsim=10000) 

 

J1.Wet<-na.omit(farmplot[farmplot[,2]=="J1B" & 

farmplot[,6]=="Wet",c(7,8,9)] ) 

test1 <- spatial.test(J1.Wet, u.vector=seq(0,1,0.001), nsim=10000) 

 

J1.Wet<-na.omit(farmplot[farmplot[,2]=="J2A" & 

farmplot[,6]=="Wet",c(7,8,9)] ) 

test1 <- spatial.test(J1.Wet, u.vector=seq(0,1,0.001), nsim=10000) 

 

J1.Wet<-na.omit(farmplot[farmplot[,2]=="J2B" & 

farmplot[,6]=="Wet",c(7,8,9)] ) 

test1 <- spatial.test(J1.Wet, u.vector=seq(0,1,0.001), nsim=10000)
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Chapter 6 

library(vegan) 

library(lattice) 

library("MASS") 

library(car) 

library(RColorBrewer) 

 

setwd('M:/Documents/Poultry Disease/R stuff/Multivariate analysis/') 

sero <- read.csv("svepm data.csv", header=T, sep=,) 

sero2<-na.omit(sero[,c(1:6,31:37,23)]) 

 

# unscaled data matrix 

test0 <- as.data.frame(sero2[,7:14]) 

 

# scaled by mean / sd 

test1 <- as.data.frame(scale(sero2[,7:14])) 

 

# scaled by min/max 

test2<- as.data.frame(matrix(0,nrow(sero2),8)) 

 for(i in 7:14) 

 { 

a <- ((sero2[,i])-min(sero2[,i]))/ (max(sero2[,i])-min(sero2[,i]) ) 

test2[,(i-6)]<-a 

 } 

  

 names(test2)<-names(sero2) [7:14] 

  

# scaled by log transformations of IBD, Salmonella and PM and square 

root transforations of counts 

test3<- as.data.frame(matrix(0,nrow(sero2),8)) 

 for(i in 7:9) 

 { 

a <- log(2+sero2[,i]) 

test3[,(i-6)]<-a 

 } 

 

 test3[,4]<-sero2$AdjMDV 

 test3[,8]<-sero2$Cnemido 

 for(i in 11:13) 

 {                                    

a <- sqrt(sero2[,i]) 

test3[,(i-6)]<-a 

 } 

  

  names(test3)<-names(sero2) [7:14] 

  

 #  standardise by Hellinger transformation of parasite counts and 

min/max scaling of serological valuessummary( 

 chord<-decostand(sero2[,11:13],"hel") 

 test4 <-cbind   (test2[,1:4],chord, test2$Cnemido) 

 names(test4)[8]<-"Cnemido" 

  

 

 # dichotomise data 

  setwd('M:/Documents/Poultry Disease/R stuff/Bird analysis/') 

birds <- read.csv("basic bird.csv", header=T, sep=,) 
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prop.table(table(birds$AdjIBD> 0.225)) 

prop.table(table(birds$AdjPM> -0.41)) 

prop.table(table(birds$AdjSal> -0.84)) 

prop.table(table(birds$AdjMDV> 0.125)) 

 

 bin<-  (sero2[,7:14]) 

 0.306-mean(birds$IBDV, na.rm=T)  

bin$IBDpos<-ifelse(bin$AdjIBD>0.27,1,0) 

 0.41-   mean(birds$Pasteurella, na.rm=T)   

bin$PMpos<-ifelse(bin$AdjPM> -0.52,1,0) 

 mean(birds$Salmonella, na.rm=T)  -0.84 

bin$Salpos<-ifelse(bin$AdjSal> -0.68,1,0) 

0.125+    mean(birds$MDVnet, na.rm=T)  

bin$MDVpos<-ifelse(bin$AdjMDV> 0.34,1,0) 

bin$Ascpos<-ifelse(bin$AscType> 0,1,0) 

bin$Eimpos<-ifelse(bin$Coccidia> 0,1,0) 

bin$Licepos<-ifelse(bin$LiceTot> 0,1,0) 

bin$SLpos<-ifelse(bin$Cnemido> 0,1,0) 

test5<-bin[,9:16] 

 names(test5)<-names(test4) 

 

 

################################# 

# Figure 6.1 Correlations between disease variables 

 

panel.hist <- function(x, ...) 

{ 

    usr <- par("usr"); on.exit(par(usr)) 

    par(usr = c(usr[1:2], 0, 1.5) ) 

    h <- hist(x, plot = FALSE) 

    breaks <- h$breaks; nB <- length(breaks) 

    y <- h$counts; y <- y/max(y) 

    rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...) 

} 

 

panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...) 

{ 

    usr <- par("usr"); on.exit(par(usr)) 

    par(usr = c(0, 1, 0, 1)) 

    r <- abs(cor(x, y)) 

    txt <- format(c(r, 0.123456789), digits = digits)[1] 

    txt <- paste(prefix, txt) 

    if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt) 

    text(0.5, 0.5, txt, cex = cex.cor * ((r)^(1/3))) 

} 

 

labs<-c("IBD", "Pasteurella", "Salmonella","MDV","Ascaridida", 

"Coccidia","Lice") 

 

windows(18,18) 

pairs(sero2[,7:13], labels=labs, cex.labels=1.5,font.labels= 

3,lower.panel=panel.smooth, upper.panel=panel.cor, diag.panel= 

panel.hist, pch=21, bg=rgb(.2,.2,.2,.1)) 

 

####################################### 

#Figure 2 Variation in the dataset represented by the PCA axes 

sero.pca<-rda(test1, scale=T) 

summary(sero.pca) 

 

ev<-(sero.pca$CA$eig) 

ev[ev>mean(ev)] 



R code Chapter 6 

  
407 

 
  

 

windows(12,6) 

par(mfcol=c(1,1)) 

barplot(ev,main="Eigenvalues", col="bisque", las=2) 

abline(h=mean(ev), col="red", lwd=2) 

legend("topright", "Average Eigenvalue", lwd=2, col=2, bty="n", 

cex=1.5) 

 

######################################## 

Figure 6.3 Biplots of PCA 

  

library(rgl) 

d<-data.frame(summary(sero.pca)[2]) 

plot3d(d[,1], d[,2], d[,3], size=5) 

 

labs<-c("IBD", "Pasteurella", "Salmonella","MDV", 

"Eimeria","Ascaridida","Lice","Scaly leg") 

pos1<-c( 4,4,4,2,1,2,2,1) 

pos2<-c( 4,4,4,2,2,1,3,1) 

pos3<-c( 1,3,1,2,2,2,3,2) 

 

windows(15,6) 

par(mfrow=c(1,3)) 

 

biplot(sero.pca, main="a)", cex.main=2, cex.lab=1.7,    

display="sites",  xlim=c(-1.5,4)) 

 

test<-scores(sero.pca,choices=1:2,scaling=2,display="sp") 

   arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=1) 

text(  test[,1],test[,2],labs,cex=1.5,offset=1,pos=pos1) 

 

biplot(sero.pca, main="b)",choices=c(1,3), cex.main=2, cex.lab=1.7, 

display="sites", xlim=c(-2,4)) 

 

test<-scores(sero.pca,choices=c(1,3),scaling=2,display="sp") 

   arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=1) 

text(  test[,1],test[,2],labs,cex=1.5,offset=1,pos=pos2) 

 

biplot(sero.pca, main="c)", choices=c(2,3),cex.main=2, cex.lab=1.7, 

display="sites", ylim=c(-3,2.5)) 

 

test<-scores(sero.pca,choices=c(2,3),scaling=2,display="sp") 

   arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=1) 

text(  test[,1],test[,2],labs,cex=1.5,offset=1,pos=pos3) 

 

############################### 

#Figure 6.4  Biplots after binarisation of the response data 

pos7<-c( 1,1,4,2,1,1,2,1) 

pos8<-c( 3,4,4,2,3,3,1,1) 

pos9<-c( 2,3,3,2,3,3,2,1) 

 

sero.pca<-rda(test5, scale=T) 

 

windows(15,6) 

 par(mfrow=c(1,3)) 

 

biplot(sero.pca, main="a)", cex.main=2, cex.lab=1.7, 

display="sites", xlim=c(-1.5,4)) 

test<-scores(sero.pca,choices=1:2,scaling=2,display="sp") 

   arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=1) 

text(  test[,1],test[,2],labs,cex=1.5,offset=1,pos=pos7) 
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biplot(sero.pca, main="b)",choices=c(1,3), cex.main=2, cex.lab=1.7, 

display="sites", xlim=c(-2,4)) 

 

test<-scores(sero.pca,choices=c(1,3),scaling=2,display="sp") 

   arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=1) 

text(  test[,1],test[,2],labs,cex=1.5,offset=1,pos=pos8) 

 

biplot(sero.pca, main="c)", choices=c(2,3),cex.main=2, cex.lab=1.7, 

display="sites", ylim=c(-3,3)) 

 

test<-scores(sero.pca,choices=c(2,3),scaling=2,display="sp") 

   arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=1) 

text(  test[,1],test[,2],labs,cex=1.5,offset=1,pos=pos9) 

 

########################## 

#Figure 6.5 Biplots after Hellinger transformation of the parasite 

data 

pos4<-c( 4,4,3,2,3,4,1,3) 

pos5<-c( 4,4,4,1,2,1,3,3) 

pos6<-c( 4,3,3,2,3,1,3,3) 

 

sero.pca<-rda(test4, scale=T) 

 windows(15,6) 

 par(mfrow=c(1,3)) 

  

biplot(sero.pca, main="a)", cex.main=2, cex.lab=1.7, 

display="sites", xlim=c(-1.5,4)) 

   

test<-scores(sero.pca,choices=1:2,scaling=2,display="sp") 

   arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=1) 

 text(  test[,1],test[,2],labs,cex=1.5,offset=1,pos=pos4) 

  

biplot(sero.pca, main="b)",choices=c(1,3), cex.main=2, cex.lab=1.7, 

display="sites", xlim=c(-2,4)) 

   

test<-scores(sero.pca,choices=c(1,3),scaling=2,display="sp") 

   arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=1) 

 text(  test[,1],test[,2],labs,cex=1.5,offset=1,pos=pos5) 

   

biplot(sero.pca, main="c)", choices=c(2,3),cex.main=2, cex.lab=1.7, 

display="sites", ylim=c(-3.5,3)) 

   

test<-scores(sero.pca,choices=c(2,3),scaling=2,display="sp") 

   arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=1) 

 text(  test[,1],test[,2],labs,cex=1.5,offset=1,pos=pos6) 

 

############################ 

 #RDA 

  

sero2<-na.omit(sero[,c(1,2,3,5,6,9:11,13:16,17,19:22,23,31:37)]) 

sero2$Season<-

ifelse(sero2$SeasonID=="A"|sero2$SeasonID=="C","Dry","Wet") 

sero2$VS<- paste(sero2$VillageID, sero2$SeasonID) 

 YT <- as.data.frame(scale(sero2[,c(18:25)])) 

 W<-  sero2[,c(2,6:17,27)] 

  

 bdsrda<-rda(YT~.,W[,-1]) 

 summary(bdsrda) 

 coef(bdsrda) 

  anova.cca(bdsrda,step=1000) 
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  anova.cca(bdsrda,by="axis",step=1000) 

  d<-data.frame(summary(bdsrda)[2]) 

  RsquareAdj(bdsrda)$adj.r.squared 

 

#variable selection to be retained in the model - takes a bit of 

time to run 

(step.forward<- ordistep(  rda(YT~1,data=W[,-1]) , 

scope=formula(bdsrda),direction="forward",pstep=1000)) 

 

#model partialling out household variation 

parsrda<-rda(YT ~ relevel(LayState,"E") + BirdWt+    

Age+BCS+Source+VS+Condition(FarmUnID), data = W  ) 

  

summary(parsrda) 

   

anova.cca(parsrda,step=1000) 

anova.cca(parsrda,by="axis",step=1000) 

  

(step.forward<- ordistep(  rda(YT~1,data=W[,c(1,9:14)]) , 

scope=formula(parsrda),direction="forward",pstep=1000)) 

  

#construction of most parsimonius RDA models 

sero3<-na.omit(sero[,c(1,2,9:10,14,17,21,23,31:37)]) 

 

YT <- as.data.frame(scale(sero3[,c(8:15)]))    

W2<-   sero3[,c(1:7)] 

  

hhsrda<-rda(YT ~ relevel(LayState,"E") + BirdWt+  ChckSick 

+GrowSick+HseSpray, data = W2  ) 

  

parsrda<-rda(YT ~ relevel(LayState,"E") + BirdWt+ 

Condition(FarmUnID), data = W2  )  

  

  

############## 

#Figure 6.6 Triplots 

      

windows(18,10) 

vars1<- c("Rearing","In lay","Not in lay","Male","Weight","Chick 

deaths", "Grower deaths", "Spray") 

pos1<-c( 1,3,4,2,1,3,3,3) 

labs<-c("Scaly leg","IBD", "Pasteurella", "Salmonella","MDV", 

"Eimeria","Ascaridida","Lice") 

pos2<-c( 2,3,4,4,2,4,3,2) 

  

par(mfrow=c(1,2))  

plot(hhsrda,type="n",scaling=2,choices=c(1,2), main="Without 

household as fixed effect",lwd=2,display=c("lc"),  col="darkblue", 

xlim=c(-1.1,1.2),ylim=c(-0.6,0.6)) 

  

test<-scores(hhsrda,choices=c(1,2),scaling=2,display="bp") 

 arrows(0,0,test[,1],test[,2],length=0,lty=4,lwd=2) 

text(  test[,1],test[,2],vars1, offset=1,pos=pos1, cex=0.85, font=3) 

    

test<-scores(hhsrda,choices=c(1,2),scaling=2,display="sp") 

 arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=2) 

text(  test[,1],test[,2],labs, offset=0.5, pos=pos2) 

  

   pos3<-c( 1,4,4,2,1) 

   pos4<-c( 1,4,4,4,3,4,1,2) 
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plot(parsrda,type="n", scaling=2,choices=c(1,2), main="Including 

household as fixed effect",lwd=2,display="lc",xlim=c(-1,0.9), 

ylim=c(-1,1)) 

  

test<-scores(parsrda,choices=c(1,2),scaling=2,display="bp") 

arrows(0,0,test[,1],test[,2],length=0,lty=4,lwd=2) 

text(  test[,1],test[,2],vars1[1:5],font=3, offset=1, cex=0.9, 

pos=pos3) 

    

test<-scores(parsrda,choices=c(1,2),scaling=2,display="sp") 

arrows(0,0,test[,1],test[,2],length=0,lty=1,lwd=2) 

text(  test[,1],test[,2],labs, offset=0.5, pos=pos4) 

 

  ################################################### 

  

#Appendix 6.1 

sero.pca<-rda(test1, scale=T) 

summary(sero.pca) 

  

#Appendix 6.2       

 summary(hhsrda) 

  

 #Appendix 6.3 

 summary(parsrda)
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Chapter 7 

library(binom) 

library(lme4) 

library(mgcv) 

library(RgoogleMaps) 

library(geoR) 

library(RColorBrewer) 

library (lqmm) # Needs R package 3.1 or above 

  

setwd('M:/Documents/Poultry Disease/R stuff/MyFunctions/') 

 source("Regression outputs.r") #Code for summarising model outputs 

 source("spatial test function oct2012.R") #Code for spatial test 

 

setwd('M:/Documents/Poultry Disease/R stuff/Survival analysis/') 

suv <- read.csv("multioutcome.csv", header=T, sep=,) 

 

setwd('M:/Documents/Poultry Disease/R stuff/Multivariate analysis/') 

sero <- read.csv("svepm data.csv", header=T, sep=,) 

 

setwd('M:/Documents/Poultry Disease/R stuff/Bird analysis/') 

birds <- read.csv("basic bird.csv", header=T, sep=,) 

 

birds$SalHigh<-ifelse(birds$Salmonella>2,1,0) 

 

for(i in c(75:76,78:79) ) 

{ 

birds[which(is.na(birds[,i])),i]<-0 

} 

birds$LiceTot<-rowSums(birds[,75:79]) 

 

 birds$Season<-"Dry" 

  birds[which(birds$SeasonID=="A"), 84]<-"Wet" 

  birds[which(birds$SeasonID=="C"), 84]<-"Wet" 

  table(birds$Season, birds$SeasonID) 

 

  xx<-suv[match(birds$UniqueID,suv$UniqueID),c(1,32:45,49:52)] 

  yy<-sero[match(birds$UniqueID,sero$UniqueID),c(1,13:16)] 

 

birds<-cbind(birds,xx[,2:18], yy[2:5]) 

   

setwd('M:/Documents/Poultry Disease/R Stuff/') 

blood <- read.csv("Plasma record.csv", header=T, sep=,) 

birds$CKCL<-    blood$CKCL[match(birds$UniqueID,blood$SampleID)] 

 

################################### 

#Table 7.1   

sum(complete.cases(  birds$AdjPM)) 

    

binom.confint(x=sum(birds$AdjPM+mean(birds$Pasteurella,na.rm=T)>0.61

, na.rm=T),  sum(complete.cases(  birds$AdjPM)), conf.level=0.95, 

method="wilson") 

  

binom.confint(x=sum(birds$AdjPM+mean(birds$Pasteurella,na.rm=T)>0.3, 

na.rm=T),  sum(complete.cases(  birds$AdjPM)), conf.level=0.95, 

method="wilson") 

  

binom.confint(x=sum(birds$AdjPM+mean(birds$Pasteurella,na.rm=T)>0.5, 
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na.rm=T),  sum(complete.cases(  birds$AdjPM)), conf.level=0.95, 

method="wilson") 

   

binom.confint(x=sum(birds$AdjPM+mean(birds$Pasteurella,na.rm=T)>3, 

na.rm=T),  sum(complete.cases(  birds$AdjPM)), conf.level=0.95, 

method="wilson") 

    

sum(complete.cases(  birds$AdjSal)) 

     

binom.confint(x=sum(birds$AdjSal+mean(birds$Salmonella,na.rm=T)>0.34

, na.rm=T),  sum(complete.cases(  birds$AdjSal)), conf.level=0.95, 

method="wilson") 

  

binom.confint(x=sum(birds$AdjSal+mean(birds$Salmonella,na.rm=T)>0.3, 

na.rm=T),  sum(complete.cases(  birds$AdjSal)), conf.level=0.95, 

method="wilson") 

  

binom.confint(x=sum(birds$AdjSal+mean(birds$Salmonella,na.rm=T)>0.5, 

na.rm=T),  sum(complete.cases(  birds$AdjSal)), conf.level=0.95, 

method="wilson") 

   

binom.confint(x=sum(birds$AdjSal+mean(birds$Salmonella,na.rm=T)>3, 

na.rm=T),  sum(complete.cases(  birds$AdjSal)), conf.level=0.95, 

method="wilson") 

 

sum(complete.cases(  birds$IBDV)) 

      

binom.confint(x=sum(birds$IBDV>0.285, na.rm=T),  sum(complete.cases(  

birds$AdjIBD)), conf.level=0.95, method="wilson") 

   

binom.confint(x=sum(birds$AdjIBD+mean(birds$IBDV,na.rm=T)>0.265, 

na.rm=T),  sum(complete.cases(  birds$AdjIBD)), conf.level=0.95, 

method="wilson") 

   

sum(complete.cases(  birds$AdjMDV)) 

    

binom.confint(x=sum(birds$AdjMDV+mean(birds$MDVnet,na.rm=T)>0.29, 

na.rm=T),  sum(complete.cases(  birds$AdjMDV)), conf.level=0.95, 

method="wilson") 

      

binom.confint(x=sum(birds$AdjMDV+mean(birds$MDVnet,na.rm=T)>0.3, 

na.rm=T),  sum(complete.cases(  birds$AdjMDV)), conf.level=0.95, 

method="wilson") 

         

binom.confint(x=sum(birds$AdjMDV+mean(birds$MDVnet,na.rm=T)>0.5, 

na.rm=T),  sum(complete.cases(  birds$AdjMDV)), conf.level=0.95, 

method="wilson") 

            

binom.confint(x=sum(birds$AdjMDV+mean(birds$MDVnet,na.rm=T)>3, 

na.rm=T),  sum(complete.cases(  birds$AdjMDV)), conf.level=0.95, 

method="wilson") 

 

################################ 

#Figure 7.1 

 

windows(12,8) 

par(mfcol=c(2,2)) 

   

bob<-seq(-0.5,13.7,0.2) 

pal<-c(rep("steelblue3",4),"gold",rep("orangered2",14), 

rep("darkred",58)) 
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hist(birds$AdjPM +mean(birds$Pasteurella,na.rm=T), breaks= bob, 

col=pal, xlab="Pasteurella s:p ratio", main="", xlim=c(-0.5,10), 

ylim=c(0,200)) 

    

bob<-seq(-0.5,19.1,0.2) 

pal<-c(rep("steelblue3",4),"gold",rep("orangered2",14), 

rep("darkred",58)) 

              

hist(birds$AdjSal +mean(birds$Salmonella,na.rm=T), breaks= bob, 

col=pal, xlab="Salmonella s:p ratio", main="",xlim=c(-0.5,10), 

ylim=c(0,200)) 

 

bob<-seq(-0.254,1.486,0.02) 

pal<-c(rep("steelblue3",27),"gold",rep("orangered2",56), 

rep("darkred",52)) 

 

hist(birds$AdjIBD , breaks= bob, col=pal, xlab="IBD s:p ratio", 

main="", xlim=c(-0.26,1.5),ylim=c(0,200)) 

              

legend("topright",c("Negative", "Equivocal", "Positive","High 

positive"),fill=c("steelblue3","gold","orangered2","darkred"), 

bty="n") 

             

bob<-seq(-2.3,3.8,0.1) 

pal<-c(rep("steelblue3",26),rep("gold",2),rep("orangered2",14), 

rep("darkred",58)) 

 

hist(birds$AdjMDV +mean(birds$MDVnet,na.rm=T), breaks= bob, col=pal, 

xlab="MDV s:p ratio", main="",xlim=c(-2.5,4)) 

 

############################ 

   #Figure 7.2 

     (P0<-glmer(Pasteurella ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID)+(1|PMPlate), 

data=birds[which(birds$Pasteurella<10),],REML = T, 

na.action=na.omit, family="gaussian")) 

        

   (S0<-glmer(Salmonella ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID)+(1|SalPlate), 

data=birds[which(birds$Salmonella<10),],REML = T, na.action=na.omit, 

family="gaussian")) 

        

   (I0<-glmer(IBDV ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID)+(1|IBDPlate), 

data=birds,REML = T, na.action=na.omit, family="gaussian")) 

        

   (M0<-glmer(MDVnet ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID)+(1|MDVPlate), 

data=birds,REML = T, na.action=na.omit, family="gaussian")) 

 

 

   (P0b<-glmer(Pasteurella >0.5~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID)+(1|PMPlate), 

data=birds[which(birds$Pasteurella<10),],REML = T, 

na.action=na.omit, family="binomial")) 

 

   (S0b<-glmer(Salmonella>0.5 ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID)+(1|SalPlate), 

data=birds[which(birds$Salmonella<10),],REML = T, na.action=na.omit, 

family="binomial")) 
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   (I0b<-glmer(IBDV >0.285~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID)+(1|IBDPlate), 

data=birds,REML = T, na.action=na.omit, family="binomial")) 

        

   (M0b<-glmer(MDVnet>0.3 ~ 

1+(1|RegionID/MarkShID/VillageID/FarmUnID)+(1|MDVPlate), 

data=birds,REML = T, na.action=na.omit, family="binomial")) 

        

res<-matrix(NA,6,4) 

row.names(res)<-c("Plate","Region","Market Shed","Village","Farm", 

"Bird") 

 

res[,1]<-c( as.numeric(VarCorr(P0)[c(2,5,4,3,1)]) , 

attr(VarCorr(P0), "sc")^2 ) 

res[,2]<-c( as.numeric(VarCorr(S0)[c(2,5,4,3,1)]) , 

attr(VarCorr(S0), "sc")^2 ) 

res[,3]<-c( as.numeric(VarCorr(I0)[c(2,5,4,3,1)]) , 

attr(VarCorr(I0), "sc")^2 ) 

res[,4]<-c( as.numeric(VarCorr(M0)[c(2,5,4,3,1)]) , 

attr(VarCorr(M0), "sc")^2 ) 

     

resb<-matrix(NA,5,4) 

row.names(resb)<-c("Plate","Region","Market Shed","Village","Farm") 

 

 resb[,1]<-as.numeric(VarCorr(P0b)[c(2,5,4,3,1)]) 

  resb[,2]<- as.numeric(VarCorr(S0b)[c(2,5,4,3,1)]) 

   resb[,3]<-as.numeric(VarCorr(I0b)[c(2,5,4,3,1)]) 

    resb[,4]<-as.numeric(VarCorr(M0b)[c(2,5,4,3,1)]) 

 

 resb1<-resb 

 resb1<-rbind( resb1,rep(pi,4)) 

 row.names(resb1)[6]<-"Residual" 

 

res1<-res 

 res1[,1:4]<- 100*(prop.table(res[,1:4],2)) 

 resb1[,1:4]<- 100*(prop.table(resb1[,1:4],2)) 

  

allres<-cbind(res1[,1],resb1[,1],res1[,2],resb1[,2],res1[,3], 

resb1[,3],res1[,4],resb1[,4]) 

  

cols<-brewer.pal(5,"Reds") 

 

  xtext<-c( -allres[1,c(1,4,5,7)]-3) 

  ytext<-seq(16.89,2,-4.5) 

  bartext<-c("Pasteurella","Salmonella","IBDV","MDV") 

  barfonts<-c(3,3,1,1) 

  gap<-rep(c(2,0.5),4) 

 

windows(15,8) 

par(fig=c(0.21,1,0,1), mar=c(5,0,5,10), xpd=T) 

  a<-barplot(allres[-1,c(8:1)], beside=F, horiz=T, col=cols, 

space=gap, main="Percentage of variance contibuted", xlim=c(0,100)) 

   legend(105,20,  rownames(res)[2:6],fill=cols, title="Levels", 

bty="n") 

  par(fig=c(0,0.20,0,1), mar=c(5,5,5,0), new=T) 

   b<-barplot( -allres[1,c(8:1)],  horiz=T, col="steelblue3", 

space=gap, main="ELISA Plate variance", axes=F) 

    text(xtext,ytext,bartext,font=barfonts, adj=1,cex=1.2) 

     text(xtext[1:2]+1,ytext[1:2]+0.3,c(1,2), adj=1,cex=0.8) 
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######################################### 

Pasteurella model 

 

(m4<-lmer(log(1+Pasteurella) ~ 

(Outbreak>0)*RegionID+(RainFeed=="N")+SeasonID 

+RegionID*BirdWt+relevel(LayState,"L")+AdjSal*(AdjSal<1)+(1|PMPlate)

+ (1|FarmUnID), data=full,REML = T, na.action=na.omit)) 

  

summary(m4) 

             

lin.reg.outputs(m4) 

 

 

######################################### 

Salmonella model 

   

full<-na.omit(birds[ ,c(1,5:9,17,67:68,66,13,74,63,84,106)]) 

     

ms11<-glmer(log(1+Salmonella) 

~Season+relevel(VillageID,"J2B")+AdjIBD+Sex+AdjMDV+ Season* AdjPM 

+Season*CKCL +(1|SalPlate)+ (1|FarmUnID), data=full,REML = T, 

na.action=na.omit, family="gaussian") 

 

summary(ms11) 

                   

lin.reg.outputs(ms11) 

 

##################################### 

#Figure 7.3 

 

model<-ms11 

 fixef(model) 

summary(full$AdjPM) 

 hl1<-seq(-2,11,length.out=100) 

sD<-fixef(model)[1]+fixef(model)[13]*hl1 

sW<-

fixef(model)[1]+fixef(model)[13]+fixef(model)[13]*hl1+fixef(model)[1

5]*hl1 

 

c1<-c("darkred", "orange", "black", "black") 

 

par(mfrow=c(1,1)) 

plot(sD,x=hl1+ 1.021, type="l", col=c1[1], lwd=2, ylab="Predicted 

Salmonella titre", xlab="Explanatory s:p ratio", ylim=c(0,3), 

xlim=c(-2,12)) 

lines(sW,x=hl1+ 1.021, type="l", col=c1[2], lwd=2) 

 

summary(full$CKCL) 

 hl1<-seq(-2,12,length.out=100) 

cD<-fixef(model)[1]+fixef(model)[14]*hl1 

cW<-

fixef(model)[1]+fixef(model)[14]+fixef(model)[14]*hl1+fixef(model)[1

6]*hl1 

 

lines(cD,x=hl1, type="l", col=c1[1], lwd=2,lty=2 ) 

lines(cW,x=hl1, type="l", col=c1[2], lwd=2, lty=2) 

 

legend("bottomright", c("Dry", "Wet","Pasteurella", "Cell 

lysate"),bty="n", lwd=2,col=c1,lty=c(1,1,1,2)) 
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########################### 

Table 7.4 

 

a<-  chisq.test(table( birds$VillageID, birds$Salmonella>2)) 

prop.table( a$observed,1) [,2] 

 

################################ 

#Quantile regression  

 

full<-na.omit(birds[ ,c(1,5:9,17,67:68,66,13,74,63,84,106)]) 

 

res<-as.data.frame(matrix(0,8,18)) 

res[,1]<-seq(0.2,0.9,0.1) 

 

seres<-as.data.frame(matrix(0,8,18)) 

seres[,1]<-seq(0.2,0.9,0.1) 

 

for(i in 1:nrow(res)) 

{ 

salqm<-

lqmm(fixed=Salmonella~Season+relevel(VillageID,"J2B")+AdjIBD+Sex+ 

AdjMDV+Season* AdjPM +Season*CKCL , random=~1,group=SalPlate, 

tau=res[i,1], nK=7, type="normal", data=full)              

s<-summary(salqm) 

res[i,2:17]<-coef(salqm) 

res[i,18]<-VarCorr(salqm) 

seres[i,2:17]<-s$tTable[,2] 

}   

 

names(res)<-c("tau",names(coef(salqm)),"Plate") 

names(seres)<-c("tau",names(coef(salqm)),"Plate") 

 

s<- summary(salqm) 

s 

s$tTable 

res 

 

ms12<-lmer(log(1+Salmonella) 

~Season+relevel(VillageID,"J2B")+AdjIBD+Sex+ AdjMDV+Season* AdjPM 

+Season*CKCL +(1|SalPlate), data=full,REML = T, na.action=na.omit) 

summary(ms12)  

 

village<-levels(birds$VillageID) 

nom<-

c("","Intercept","Season",village[1:7],"IBD","Sex","MDV","Pasteurell

a","Cell lysate", "Pasteurella:Season interaction", "Cell lysate: 

Season interaction") 

 

 

#Figure 7.4 

windows (12,20)      

par(mfrow=c(4,2)) 

for(i in c(2,4:10)) 

{ 

plot(res$tau,res[,i], ylim=c(-0.5,1.5),type="l",main=nom[i], 

xlab="Quantile", ylab="Parameter estimate") 

lines(res$tau, res[,i]+(2*seres[,i]), lty=2) 

lines(res$tau, res[,i]-(2*seres[,i]), lty=2) 

lines(x=c(0.1,1), y=c(rep(fixef(ms12)[i-1],2)), lty=3, col="red") 

lines(x=c(0.1,1), y=c(0,0), lty=3) 

} 
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yl<-c(0,0,-0.5,0,0,0,0,0,0,0,-1,-1,-0.5,-0.5,-0.5,-0.5,-1) 

yu<-c(0,0,1,0,0,0,0,0,0,0,2,0.5,0.5,1,1,1,0.5) 

 

Figure 7.5 

windows (12,20)      

par(mfrow=c(4,2)) 

for(i in c(3,11:17)) 

{ 

plot(res$tau,res[,i], ylim=c(yl[i],yu[i]),type="l",main=nom[i], 

xlab="Quantile", ylab="Parameter estimate") 

lines(res$tau, res[,i]+(2*seres[,i]), lty=2) 

lines(res$tau, res[,i]-(2*seres[,i]), lty=2) 

lines(x=c(0.1,1), y=c(rep(fixef(ms12)[i-1],2)), lty=3, col="red") 

lines(x=c(0.1,1), y=c(0,0), lty=3) 

} 

 

######################################### 

IBD model 

 

full<-na.omit(birds[  ,c(1,5:9,61,62,70,100)]) 

  (m3<-lmer(IBDV ~ 

AdjSal+GrowSick+(VillageID=="H1A")+SeasonID+(1|IBDPlate)+ 

(1|FarmUnID), data=full,REML = T, na.action=na.omit)) 

lin.reg.outputs(m3) 

 

######################################### 

Figure 7.6 

 

full$Latitude<-  birds$Latitude[    match(  

full$UniqueID,birds$UniqueID)] 

full$Longtude<-  birds$Longtude[    match(  

full$UniqueID,birds$UniqueID)] 

 

farm<-unique(full[,c(2:6,11,12)]) 

nrow(farm) 

     

farmeff<-ranef (m3)$FarmUnID[[1]] 

summary(farmeff) 

farm<-cbind(farm,farmeff) 

 

#plot farm effects by market shed 

library(RgoogleMaps) 

   

H1<-farm[which(farm$MarkShID=="H1"),] 

   

windows(10,10) 

       

H1s<-PlotOnStaticMap( lat=H1$Latitude, lon=H1$Longtude,  zoom=7, 

size = c(640,640), GRAYSCALE  = FALSE,add=FALSE, FUN = points, 

pch="", mar=c(0,0,0,0), NEWMAP = TRUE, TrueProj = TRUE, axes= FALSE, 

verbose = 1) 

                 

PlotOnStaticMap( MyMap=H1s,lat=H1[H1$SeasonID=="A",6], 

lon=H1[H1$SeasonID=="A",7],   zoom=14, size = c(640,640), GRAYSCALE  

= FALSE,  add=T, FUN = points,col=c("darkred"), pch=19, 

cex=4*(0.1+3*H1[H1$SeasonID=="A",8]), mar=c(0,0,0,0), NEWMAP = F, 

TrueProj = TRUE, axes= FALSE, verbose = 1) 
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PlotOnStaticMap( MyMap=H1s,lat=H1[H1$SeasonID=="B",6], 

lon=H1[H1$SeasonID=="B",7],   zoom=14, size = c(640,640), GRAYSCALE  

= FALSE,add=T, FUN = points,col=c("orangered"), 

pch=19,cex=4*(0.1+3*H1[H1$SeasonID=="B",8]),mar=c(0,0,0,0), NEWMAP = 

F, TrueProj = TRUE, axes= FALSE, verbose = 1) 

                  

PlotOnStaticMap( MyMap=H1s,lat=H1[H1$SeasonID=="C",6], 

lon=H1[H1$SeasonID=="C",7],   zoom=14, size = c(640,640), GRAYSCALE  

= FALSE,add=T, FUN = points,col=c("orange"), 

pch=19,cex=4*(0.1+3*H1[H1$SeasonID=="C",8]),mar=c(0,0,0,0), NEWMAP = 

F, TrueProj = TRUE, axes= FALSE, verbose = 1) 

                  

PlotOnStaticMap( MyMap=H1s,lat=H1[H1$SeasonID=="D",6], 

lon=H1[H1$SeasonID=="D",7],   zoom=14, size = c(640,640), GRAYSCALE  

= FALSE, add=T, FUN = points,col=c("yellow1"), 

pch=19,cex=4*(0.1+3*H1[H1$SeasonID=="D",8]),mar=c(0,0,0,0), NEWMAP = 

F, TrueProj = TRUE, axes= FALSE, verbose = 1) 

   

legend("topright", c("Season A", "Season B", "Season C", "Season 

D"), col=c("darkred","orangered","orange", "yellow1"), pch=19 , 

bty="n" , cex=1.5, pt.cex=0.75 ) 

 

 

#Spatial test 

 

test<-data.frame(farm$VillageID, farm$MarkShID, 

farm$SeasonID,farm$Longtude,farm$Latitude,  farm$farmeff) 

 

head(test) 

H1.A<-na.omit(test[test[,2]=="H1" ,4:6]) 

H1.A<-test[test[,1]=="H1A" & test[,3]=="B",4:6] 

test1 <- spatial.test(H1.A, u.vector=seq(0,1,0.001), nsim=10000) 

 

######################################### 

MDV model 

 

birds$MDV<-ifelse (birds$MDVxreact==1,NA,birds$MDVnet) 

full<-na.omit( birds[,c(1,5:9,71,17,70,107)])  

full$sv<-paste(full$VillageID,full$SeasonID) 

 

mm2<-lmer(MDV ~ relevel(as.factor(sv),"J1B 

D")+relevel(LayState,"N/A")+AdjSal*(AdjSal<0.5)+(1|MDVPlate)+ 

(1|FarmUnID), data=full,REML = T, na.action=na.omit) 

 

summary(mm2) 

lin.reg.outputs(mm2) 

 

#Figure 7.7 

full1<-na.omit( birds[,c(1,5:9,74)])  

  full1$sv<-paste(full1$VillageID,full1$Season)  

  full1$MDpos<-

ifelse(full1$AdjMDV+mean(birds$MDVnet,na.rm=T)>0.5,1,0) 

  x<-aggregate(  full1$MDpos, by=list(v=full1$sv),sum) 

  n<-aggregate(  complete.cases(full1$MDpos), 

by=list(v=full1$sv),sum) 

  x<-cbind(x,n[,2]) 

  x$pp<-x[,2]/x[,3] 

   

   cols<-c("darkred","orangered","orange", "yellow1") 

   res<-matrix(x[,4],4,8) 
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windows(12,8) 

  barplot(res, beside=T,col=cols, names.arg=levels(birds$VillageID)) 

   legend("topleft", c("Season A", "Season B", "Season C", "Season 

D"), fill=c("darkred","orangered","orange", "yellow1"),  bty="n"  ) 

 

######################################### 

Figure 7.8 

      

(A0b<-glmer(AscType >0~ 1+(1|RegionID/MarkShID/VillageID/FarmUnID), 

data=birds,REML = T, na.action=na.omit, family="binomial")) 

        

(B0b<-glmer(Cestodes >0~ 1+(1|RegionID/MarkShID/VillageID/FarmUnID), 

data=birds[which(!birds$SeasonID=="A"),],REML = T, 

na.action=na.omit, family="binomial")) 

        

(C0b<-glmer(Coccidia>0 ~ 1+(1|RegionID/MarkShID/VillageID/FarmUnID), 

data=birds,REML = T, na.action=na.omit, family="binomial"))      

(I0b<-glmer(LiceTot >0~ 1+(1|RegionID/MarkShID/VillageID/FarmUnID), 

data=birds,REML = T, na.action=na.omit, family="binomial")) 

        

(M0b<-glmer(Cnemido>0 ~ 1+(1|RegionID/MarkShID/VillageID/FarmUnID), 

data=birds,REML = T, na.action=na.omit, family="binomial")) 

        

  resb<-matrix(NA,4,5) 

  row.names(resb)<-c("Region","Market Shed","Village","Farm") 

 

 resb[,1]<-as.numeric(VarCorr(A0b)[c(4:1)]) 

  resb[,2]<- as.numeric(VarCorr(B0b)[c(4:1)]) 

  resb[,3]<- as.numeric(VarCorr(C0b)[c(4:1)]) 

   resb[,4]<-as.numeric(VarCorr(I0b)[c(4:1)]) 

    resb[,5]<-as.numeric(VarCorr(M0b)[c(4:1)]) 

 

resb1<-resb 

rs<-(pi^2)/3 

 resb1<-rbind( resb1,rep(rs,5)) 

 row.names(resb1)[5]<-"Residual" 

resb1<- 100*(prop.table(resb1,2)) 

  

cols<-brewer.pal(5,"Reds") 

  xtext<-rep(100,5) 

  ytext<-seq(15.5,2,-3) 

  bartext<-c("Ascaridida","Cestodes","Eimeria","Lice","Scaly leg") 

  barfonts<-c(1,1,3,1,1) 

  gap<-rep(c(2,0.5),4) 

 

windows(12,8) 

par(fig=c(0,1,0,1), mar=c(5,5,5,10), xpd=T) 

   

a<-barplot(resb1[,c(5:1)], beside=F, horiz=T, col=cols, space=2, 

main="Percentage of variance contibuted", xlim=c(0,100)) 

    

legend(105,15,  rownames(resb1),fill=cols, title="Levels", bty="n") 

    

text(xtext,ytext,bartext,font=barfonts, adj=1,cex=1.2)Salmonella 

model 

 

    

 

 

 

##################################     
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    # Parasite statistical tests 

 

moment.k<-function(x) 

     { 

     m<-mean(na.omit(x)) 

      v<- var(na.omit(x)) 

      l<- length(na.omit(x)) 

      p<-v/l 

      (m^2 - p)/(v-m) 

      } 

       

       D.stat<-function(x) 

    {  

     y<-sort(na.omit(x)) 

        m<-mean(na.omit(x)) 

        l<- length(na.omit(x)) 

         b<-rep(0,l) 

         d<-rep(0,l) 

          

        for(i in 1:l) 

        { 

        b[i]<-sum(y[1:i]) 

        d[i]<-mean(y)*i 

        } 

         

       B<- sum(b) 

       D<-sum(d) 

        1-(B/D) 

        } 

         

 D.stat(birds$AscType) 

 moment.k(birds$AscType)  

 

z<-80 

H<- birds[which(birds$RegionID=="H"),z] 

J<- birds[which(birds$RegionID=="J"),z] 

       

ks.test(H,J) 

 

######################################### 

Ascarid model 

 

full<-na.omit(  birds[,c(1,5:9,13, 14, 74,70,54,90,  80,81)]) 

  

(m1b<-

glmer(AscType>0~Sex+(Cnemido>0)+(Coccidia>0)+AdjMDV*relevel(VillageI

D,"H2B")+ (1|FarmUnID), data=full,REML = T, na.action=na.omit, 

family="binomial")) 

 

  log.reg.outputs(m1b) 

 

(mc5<-

glmer(AscType~Sex*RegionID+AdjSal+RegionID+(Coccidia>0)*RegionID + 

(1|RegionID/FarmUnID),  data=full[which(full$AscType>0 

&full$AscType<500),],REML = T, na.action=na.omit, family="poisson")) 

 

   log.reg.outputs(mc5) 

 

 

 

######################################### 
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Cestode models 

 

full<-na.omit(  birds[which(!birds$SeasonID=="A"),c(1,5:9,66,82)]) 

 

(m4b<-glmer(Cestodes>0 ~ AdjPM+ 

relevel(RegionID,"J")*relevel(SeasonID,"C") +(1|FarmUnID), 

data=full,REML = T, na.action=na.omit, family="binomial"))  

          log.reg.outputs(m4b) 

 

full<-na.omit(  birds[which(birds$RegionID=="J"& 

!birds$SeasonID=="A"),c(1,5:9,13,74,82,21,54,81)]) 

 

(m3Jb<-glmer(Cestodes 

~relevel(Sex,"M")*(Coccidia>0)+(Cnemido>0)+AdjMDV+relevel(Sex,"M")*B

CS +(1|FarmUnID), data=full[which(full$Cestodes>0),],REML = T, 

na.action=na.omit, family="poisson")) 

 

log.reg.outputs(m3Jb) 

 

full<-na.omit(  birds[which(birds$RegionID=="H"& 

!birds$SeasonID=="A"),c(1,5:9,13,82,21,54,66,74,81)]) 

 

(m3Hb<-glmer(Cestodes ~relevel(Sex,"M")*(Coccidia>0)+(Cnemido>0) 

+relevel(Sex,"M")*AdjMDV+AdjPM+relevel(Sex,"M")*BCS+relevel(Sex,"M")

*relevel(SeasonID,"C") +(1|FarmUnID), 

data=full[which(full$Cestodes>0),], REML = T, na.action=na.omit, 

family="poisson")) 

 

log.reg.outputs(m3Hb) 

 

######################################### 

Coccidia models 

 

full<-na.omit(  birds[which(birds$PooSourc==0), 

c(1,5:9,14,70,82,81)]) 

 

cb8<-glmer(Coccidia>0~relevel(VillageID,"H1B")+SeasonID*Age+AdjSal+ 

(Cestodes>0)+(1|FarmUnID),  data=full,REML = T, na.action=na.omit, 

family="binomial") 

 

log.reg.outputs(cb8) 

 

 

full<-na.omit(  birds[which(birds$PooSourc==0), 

c(1,5:9,13,14,70,82,81,80,54)])   

full$  Sal.sq<-full$AdjSal^2 

 

c4<-glmer(Coccidia~RegionID+Sex+Age*(Age>9)+AdjSal+Sal.sq+ 

(Cestodes>0)+RegionID*AscType+(Cnemido>1)+(1|FarmUnID), 

data=full[which(full$Coccidia>0),],REML = T, na.action=na.omit, 

family="poisson") 

 

log.reg.outputs(c4) 

 

 

 

########################################### 

Figure 7.9 

 

  nom<-c("Ascaridida","Coccidia","Cestodes") 

     fact<-c(20,2,20) 
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     windows(14,24) 

     par(mfrow=c(3,1)) 

    for (z in c(80,82,81))  

    { 

     H<- birds[which(birds$RegionID=="H"),z] 

      J<- birds[which(birds$RegionID=="J"),z]  

       

      x<-H 

       y<-sort(na.omit(x)) 

         l<- length(na.omit(x)) 

         b<-rep(0,l) 

                  

        for(i in 1:l) 

        { 

        b[i]<-sum(y[1:i]) 

         } 

       

plot(b*fact[z-79],1:l*100/l, type="l", col="red",lwd=2, 

ylab="Percentage of birds", xlab="Cumulative number of parasites 

shed", main=nom[z-79], xlim=c(0,1.05*fact[z-

79]*(max(sum(na.omit(H)),sum(na.omit(J))))) ) 

          

         x<-J 

       y<-sort(na.omit(x)) 

        m<-mean(na.omit(x)) 

        l<- length(na.omit(x)) 

         b<-rep(0,l) 

         d<-rep(0,l) 

          

        for(i in 1:l) 

        { 

        b[i]<-sum(y[1:i]) 

        d[i]<-mean(y)*i 

        } 

         lines(b*fact[z-79],1:l*100/l, type="l", col="blue", lwd=2) 

         

          } 

         

legend("bottomright" , c("Horro","Jarso"), col=c("red","blue"), 

lwd=2, bty="n") 

       

 

########################################## 

Figure 7.10 

 

windows(10,6) 

    

    for (z in 83)  

    { 

     H<- birds[which(birds$RegionID=="H"),z] 

      J<- birds[which(birds$RegionID=="J"),z]  

       

      x<-H 

       y<-sort(na.omit(x)) 

         l<- length(na.omit(x)) 

         b<-rep(0,l) 

                  

        for(i in 1:l) 

        { 

        b[i]<-sum(y[1:i]) 

         } 
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plot(b,1:l*100/l, type="l", col="red",lwd=2, ylab="Percentage of 

birds", xlab="Cumulative number of parasites observed", main="Lice", 

xlim=c(0,1.05*(max(sum(na.omit(H)),sum(na.omit(J))))) ) 

          

         x<-J 

       y<-sort(na.omit(x)) 

        m<-mean(na.omit(x)) 

        l<- length(na.omit(x)) 

         b<-rep(0,l) 

         d<-rep(0,l) 

          

        for(i in 1:l) 

        { 

        b[i]<-sum(y[1:i]) 

        d[i]<-mean(y)*i 

        } 

         lines(b,1:l*100/l, type="l", col="blue", lwd=2) 

          } 

       

legend("bottomright" , c("Horro","Jarso"), col=c("red","blue"), 

lwd=2, bty="n") 

 

################################################ 

#Lice models 

 

full<-na.omit(  birds[,c(1,5:9,13,14,102:105,83)]) 

 

lb3<-glmer(LiceTot>0~RegionID+SeasonID+Sex+HseSmoke+(1|FarmUnID), 

data=full,REML = T, na.action=na.omit, family="binomial") 

 

   summary(lb3) 

   log.reg.outputs(lb3) 

 

full<-na.omit(  birds[,c(1,5:9,13,14,20,21,66,102:105,83)]) 

 

l3<-glmer(LiceTot~Sex+Age*(Age<24)+BirdWt*Sex*BCS+AdjPM+NoPara+ 

(1|FarmUnID), data=full[which(full$LiceTot>0),],REML = T, 

na.action=na.omit, family="poisson") 

 

summary(l3) 

log.reg.outputs(l3) 

 

 

################################################ 

#Hyperkeratosis models 

 

full<-na.omit(  birds[,c(1,5:9,13,17,81,98,105,54)]) 

full1<-na.omit(  birds[,c(1,5:9,13,80,81,87,89,2,3,102:106,54)]) 

full1$Pullets<-ifelse(full1$Pullets>6,6,full1$Pullets) 

 

l1<-glmer(Cnemido>0~relevel(RegionID,"J")*relevel(SeasonID,"D") 

+as.factor(DeadDisp)+(Coccidia>0)+relevel(LayState,"N")+HseSmoke+(1|

FarmUnID), data=full,REML = T, na.action=na.omit, family="binomial") 

        

lb1<-glmer(Cnemido>1~BrdSpray+relevel(SeasonID,"A")+Chicks+( 

AscType>0) +Sex+(1|FarmUnID), data=full1[which(full1$Cnemido>0),], 

REML = T, na.action=na.omit, family="binomial") 

 

log.reg.outputs(l1) 

log.reg.outputs(lb1)
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