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Summary 23 

Disease surveillance must assess the relative importance of pathogen hazards. Here we use the 24 

Hirsch index (h-index) as a novel method to identify and rank infectious pathogens that are likely 25 

to be a hazard to human health in the North American region. This bibliometric index was 26 

developed to quantify an individual’s scientific research output and was recently used as a proxy 27 

measure for pathogen impact. Analysis of more than 3000 infectious organisms indicated that 28 

651 were human pathogen species that had been recorded in the North American region. The h-29 

index of these pathogens ranged from 0 to 584. The h-index of emerging pathogens was greater 30 

than non-emerging pathogens as was the h-index of frequently pathogenic pathogens when 31 

compared to non-pathogenic pathogens.  As expected the h-index of pathogens varied over time 32 

between 1960 and 2011. We discuss how the h-index can contribute to pathogen prioritisation 33 

and as an indicator of pathogen emergence. 34 

 35 
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 37 

Introduction 38 

Effective disease surveillance and control rely on an ability to assess the relative importance of 39 

diseases and pathogens. Such prioritisation often involves the use of decision support tools to 40 

identify which diseases to target and where to focus resources and funding. These can be biased 41 

by the quality of evidence utilised, time taken for its collection and therefore the timeliness of 42 

results, or by the opinion of experts employed to make judgements on topics (McIntyre et al, 43 

2011). In this work we use a quantitative method to identify and compare pathogens that are 44 

hazardous to human health in the North America region, which is quick and relatively simple to 45 
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calculate, and we consider whether it might be used as a method to rank pathogens according to 46 

their impact. This novel method involves the use of the Hirsch index (h-index); a bibliometric 47 

index which was originally developed to quantify an individual’s scientific research output 48 

(Hirsch, 2005), by accounting for the number of publications produced and the number of 49 

citations of those publications. “A scientist has an index h if h of his or her Np publications have 50 

at least h citations each and the other (Np-h) papers have ≤ h citations each” (Hirsch, 2005). It 51 

can be calculated using a range of bibliometric services such as those available from the Institute 52 

for Scientific Information’s Web of Science (WOS) (Thomson Reuters, 2011), and is given as a 53 

standard metric in output generated by Google Scholar (Google, 2013). While the h-index was 54 

initially devised to assess the output of individual scholars, it has been extended to measure the 55 

productivity of research groups (Van Raan, 2006), and some services now provide h-index 56 

values associated with groups of keywords or phrases in a given bibliometric database (Thomson 57 

Reuters, 2011). 58 

 59 

Recently the h-indices of a number of human pathogens (n=27) were shown to be significantly 60 

positively correlated with their impact as measured by disability adjusted life year (DALY) 61 

estimates (McIntyre et al, 2011). DALYs provide a combined measure of the years of healthy 62 

life lost as a result of poor health or disability in combination with an estimation of the potential 63 

years of life lost due to premature death. They were developed by the World Health Organization 64 

(Murray, 1994) and although they have only been estimated for a small number of diseases, they 65 

have become the most widely-used measure of the true burden of disease (Mathers et al, 2004). 66 

Thus, although the h-index is a measure that reflects global scientific interest in a pathogen (and 67 
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inherently reflects research trends and funding), it is a reasonable proxy indicator of high impact 68 

human pathogens (McIntyre et al, 2011). 69 

 70 

The aims of this work are to investigate: 71 

1) whether the h-index might be used to identify the pathogens that are likely to have a high 72 

impact upon human health in the North American region.  73 

2) how the h-index might be used to apply a relative ranking to a set of pathogens identified as 74 

emerging hazards. In this second aim we focus on examples of pathogens of interest to Canada 75 

because our research institution and funding agency are based in Canada. 76 

3) how the h-index of a pathogen changes over time. 77 

 78 

 79 

Materials and Methods 80 

Identification of pathogen species 81 

The ‘ENHanCEd Infectious Diseases’ (EID2) database (University of Liverpool, 2011) provided 82 

the raw data for this study. The purpose of this database is to provide a method of studying the 83 

main pathogens and hosts involved in disease transmission (McIntyre et al, 2013). It contains 84 

information about more than 740,000 organisms (such as vectors, hosts and pathogens) and their 85 

structure in the phylogenetic tree. This includes details regarding all pathogens that are known to 86 

infect humans and some known to infect domestic or companion animal species. Information 87 

about pathogens is assigned using data-mining of meta-data and semi-automated literature 88 

searches, for further details see McIntyre et al (2013). 89 

 90 
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Information was extracted about all organisms classified as ‘pathogen species’ that were known 91 

to infect humans. Analysis only included human pathogen species, since the database did not 92 

include all known North American animal host species. All data searches were undertaken in 93 

October 2011.  94 

 95 

Information about the taxonomic division and pathogenic status of each pathogen was extracted 96 

from the database. Pathogenic status was defined as one of ‘frequently pathogenic’ (frequently 97 

causes morbidity and/or mortality in the general population), ‘non-pathogenic’ (does not 98 

frequently cause clinical signs within the general population, but may affect immune-99 

compromised individuals) or ‘unknown’ (there was insufficient evidence to determine 100 

pathogenic effects). 101 

 102 

Zoonotic potential and emerging status of the pathogens were taken from (Taylor et al, 2001; 103 

Woolhouse and Gowtage-Sequeria, 2005) where available. Definitions were described in those 104 

publications as follows. Zoonotic potential was classified as either ‘non-zoonotic’ or ‘zoonotic’. 105 

Zoonotic pathogens were those that are naturally transmitted between vertebrate animals and 106 

humans. Pathogens previously but no longer transmitted from animals, such as HIV, were not 107 

regarded as zoonotic. Pathogens were classified as ‘non-emerging’ or ‘emerging’. Emerging 108 

pathogens were those that have appeared in a human population for the first time, or have 109 

occurred previously but are increasing in incidence or expanding into areas where they had not 110 

previously been reported over the last 20 years. Once the h-index of pathogens had been 111 

calculated (see below), the indices of pathogenic versus non-pathogenic, zoonotic versus 112 
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non-zoonotic and emerging versus non-emerging pathogens were compared using the 113 

non-parametric Mann Whitney U test. 114 

 115 

Calculation of the h-index of pathogens 116 

The h-index scores were obtained for all pathogen species named in the database using WOS 117 

(Thomson Reuters, 2011). The following specific search protocol was followed in order to 118 

identify all scientific papers relating to each pathogen, and thus to calculate the h-index of the 119 

pathogen. 120 

 121 

For each pathogen, literature searches were undertaken using search phrases specified using 122 

quotation marks (“”), the ‘topic’ search field and with lemmatization turned off. Search phrases 123 

were compiled which included the scientific name and any alternative names, synonyms or 124 

alternative spellings according to the National Center for Biotechnology Information (NCBI) 125 

taxonomy website (National Center for Biotechnology Information, 2011); searches for 126 

organisms contained ‘exclusion terms’ when necessary. Searches for viruses were more complex 127 

because of the frequent existence of synonyms and acronyms. Synonyms and acronyms were 128 

obtained from the NCBI taxonomy website (National Center for Biotechnology Information, 129 

2011) or the International Committee on Taxonomy of Viruses (ICTV) website (International 130 

Committee on Taxonomy of Viruses, 2011) and were included as additional search terms. Since 131 

some acronyms were used for more than one virus, or occurred in a non-viral context, searches 132 

also included the term ‘virus’ if they had ‘virus’ within their pathogen name or if they were 133 

within the ‘virus’ division of the NCBI Taxonomy database and excluded any other entities (viral 134 

or non-viral) which shared the acronym. The Boolean operators ‘AND’, ‘OR’ and ‘NOT’ were 135 
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used to link multiple search phrases. For example the query for Sin nombre virus contained the 136 

following search terms: (‘sin nombre virus’ OR ‘sin nombre hantavirus’ OR (‘snv’ AND 137 

‘virus’)) AND NOT (‘spleen’ OR ‘sindbis’).  All searches were restricted to the years from 1900 138 

to 2011, inclusive. Search terms are available on request from the authors. 139 

 140 

Identification of pathogens that occur in the North American region 141 

Having calculated the h-index for all pathogens in the EID2 database, we firstly, identified which 142 

pathogens are able to establish in the North American region, and secondly, ranked them 143 

according to their h-index. Thus we use previous occurrence in the North American region as an 144 

indicator of the pathogens that are more likely to emerge again in the same area, either because 145 

they are endemic and have the potential to re-emerge or because, in the past, they have had the 146 

opportunity to establish in the region. Clearly this is a simple indicator, however it provides a 147 

method of identifying pathogens that are able to occur in a specific geographical region. Our 148 

ranking of pathogens ‘of interest’ to Canada (see below) takes into account pathogens that are 149 

exotic to Canada. 150 

 151 

Two methods were used to identify which of the pathogens had been recorded in at least one of 152 

the following North American countries: Canada, United States, Mexico or Greenland. These 153 

countries (which we defined as the North American region and now refer to as ‘North America’) 154 

were selected to comprise the North American land mass, while excluding the countries of 155 

Central America for simplicity.  156 

 157 



 

8 
 

The first method involved searching for the pathogens within the NCBI Nucleotide database 158 

(National Center for Biotechnology Information, 2011a). This database is a collection of genome 159 

sequences from sequencing projects around the world. The metadata for nucleotide sequences in 160 

some cases contains information about the location of pathogen isolation. In order to identify 161 

location, searches established where the pathogen and at least one of the geographical ‘Medical 162 

Subject Headings’(MeSH) terms for Canada, United States, Mexico or Greenland co-occurred. 163 

MeSH terms act as a controlled thesaurus and are used for indexing articles by the US Library of 164 

Medicine (US National Library of Medicine, 2012a). If one sequence from a pathogen had been 165 

recorded in North America within the Nucleotide database, then this was used as confirmation of 166 

pathogen presence. A second method was also used to identify pathogen location because the 167 

NCBI nucleotide database did not include location information about all pathogens in our study. 168 

This second method used the PubMed database, a database that contains more than 21 million 169 

citations of biomedical and life sciences literature (US National Library of Medicine, 2012b). 170 

The database was searched for all publications where the pathogen search terms (described 171 

above) and at least one of the geographical MeSH terms for Canada, United States, Mexico or 172 

Greenland co-occurred. The search terms had to be recorded in the title or abstract of the 173 

publication. There was a degree of inaccuracy associated with this method, since co-occurrence 174 

of a pathogen and a North American search term does not necessarily indicate that the pathogen 175 

has occurred in that region. Co-occurrence could also arise in publications that describe pathogen 176 

absence, animal models or simulation models for example. In order to account for this 177 

inaccuracy, only searches for pathogens which generated at least five references in the same 178 

country were used as confirmation of pathogen presence in North America. The threshold of five 179 

was chosen following sensitivity testing of the results from searches conducted for 21 randomly 180 
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selected pathogens. In brief, this involved stratifying the scientific publications according to the 181 

pathogen and the continent to which they were linked via a MeSH term for a country. The 182 

association was checked to substantiate that the pathogen was found in hosts (including humans) 183 

within a MeSH term country. This indicated that on average 95% of the associations in single 184 

papers were accurate. Therefore setting the threshold at five papers would result in a positive 185 

predictive value PPV (i.e. proportion of predicted interactions for which papers provide 186 

supporting evidence) exceeding 99.9%. A high enough threshold to avoid false positives was 187 

balanced with the need to avoid causing any major bias against ‘newer’ pathogens that have 188 

fewer publications. For detailed description see McIntyre et al, (2013). 189 

 190 

Comparison of the h-index calculated from WOS with PubMed 191 

The h-index was calculated from the WOS, which differs in its bibliographic content to other 192 

bibliographic databases. In order to compare the output from WOS with the PubMed database, 193 

non-parametric Spearman rank was used to correlate the WOS h-index of pathogens that 194 

occurred in North America with the number of publications for that pathogen in PubMed.  195 

 196 

Ranking ‘pathogens of concern’ in Canada. 197 

Additional descriptive analysis focused on ‘pathogens of interest’ in Canada. These were 198 

identified from three different sources. The first source was a recent publication which 199 

highlighted pathogens that are likely to emerge in North America in response to climate change 200 

(Greer et al, 2008). The second source was researchers from the Zoonotics Division of the Public 201 

Health Agency of Canada (PHAC) (N. Ogden pers comm.). PHAC provided funding support to 202 

the project and the researchers provided a list of pathogens that are of interest due to their 203 
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potential to become emerging hazards in Canada. Details about the characteristics of these 204 

pathogens, including whether they have occurred in North America, were collated and they were 205 

ranked according to their h-index. The third source was the Ontario burden of infectious disease 206 

study (Kwong et al, 2010), a study that describes the mortality and morbidity of infectious 207 

diseases in Ontario. It lists three measures of disease burden for infectious diseases that have 208 

occurred in Ontario. The measures are YLL: Years of Life Lost due to premature mortality, 209 

YERF: Year-Equivalents of Reduced Function as a result of disease or condition, and HALY: 210 

Health Adjusted Life Years, which are calculated by adding the YLL and YERF for each 211 

pathogen. Spearman rank correlation was used to compare each of these measures with the h-212 

index of the pathogen.  Kwong et al, (2010) calculated the burden for a total of 69 diseases, 213 

however we only included those for which the pathogen was specified and could therefore be 214 

matched with an h-index. Thus, general terms describing a disease or condition such as 215 

‘Septicaemia’ were excluded from this analysis. 216 

 217 

Calculation of change in h-index over time 218 

Time-bounded h-index scores were obtained for a selected set of pathogens using the same 219 

phrase searches as described above. However, here the cumulative h-index was calculated every 220 

year from 1960 to 2011 inclusive to assess how the index changed over time. The pathogens 221 

chosen were Chikungunya virus, Hendra virus, Monkeypox virus, Nipah virus, Rift Valley Fever 222 

virus, Trypanasoma cruzi (the cause of Chagas disease) and West Nile Virus. These pathogens 223 

were chosen as example pathogens that have been classified as either ‘emerging’ or ‘non-224 

emerging’; with the intent to compare the change in h-index of both types of pathogens. 225 

Furthermore, they are examples of pathogens that were deemed to be of particular interest to the 226 
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PHAC (N. Ogden pers comm.) due to their potential for emergence in Canada. In addition we 227 

calculated the cumulative h-index for Plasmodium falciparum, because it is a pathogen of 228 

worldwide concern and because preliminary calculations showed that it has one of the highest h-229 

indices. 230 

 231 

In order to assess the rate of change in h-index for these pathogens, two negative binomial 232 

models were evaluated. The first model assessed the cumulative h-index as the outcome where 233 

the time since first publication was used as an offset. Since the rate of change will be largely 234 

influenced by the number of publications for pathogens of major importance (e.g. P. falciparum), 235 

the second model assessed the rate of change of h-index by year. The outcome for this model 236 

was calculated by subtracting the cumulative h-index for a particular year from the previous 237 

year, except for the first year of the series. Similarly, the number of years since first publication 238 

was used as an offset. Both models included a categorical variable indicating the pathogen, a 239 

variable indicating the calendar year when h-index was computed and the interaction between 240 

these two variables. These models were assessed using the Deviance and X2 goodness of fit tests 241 

(Dohoo et al, 2009). The predicted rates from these models were calculated and plotted against 242 

time for each pathogen.  243 

 244 

Results 245 

Pathogens likely to have a high impact in North America 246 

A total of 3627 pathogen species were recorded in EID2 and of these 1827 were classified as 247 

human pathogens species. Of these, 651 were human pathogens that have been recorded in North 248 

America. These consisted of 474 pathogen species that have occurred in North America 249 
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according to the Nucleotide database, and an additional 177 pathogens that were identified when 250 

the pathogen search terms occurred in at least five publications in conjunction with the North 251 

American search terms entered into the PubMed database. A total of 258 occurred in both the 252 

Nucleotide database and the PubMed searches.  253 

 254 

The h-index of the human pathogen species ranged from 0 to 584 and was highly over dispersed 255 

(Figure 1). Only a limited number of pathogens had an h-index over 100, with most pathogens 256 

scoring a relatively low value (median=37). Although, the h-index was calculated from WOS, 257 

which differs to some extent in its bibliographic content from PubMed, the h-index was 258 

significantly correlated with the number of publications recorded in the PubMed database 259 

(Spearman rank correlation rs=0.736, p<0.001, n=651), (Figure 2).  260 

 261 

The largest proportion (42.2%) of pathogen species were bacteria, followed by fungi (21.2%) 262 

and viruses/prions (16.0%) (Table 1). The 10 pathogens with the highest h-index included one 263 

yeast (Saccharomyces cerevisiae), five viruses and four bacteria species (Table 2). 264 

 265 

Information about emergence status (emerging or non-emerging) and zoonotic potential 266 

(zoonotic or non-zoonotic) was obtained from two publications. These publications assigned an 267 

emergence status to 462 (71%) and a zoonotic status to 464 (71%) of the 651 pathogens included 268 

in our analysis. Of the 462 pathogens that had an emergence status, 26.2% were classified as 269 

emerging. Pathogen species with the highest h-index recorded in WOS that were classified as 270 

emerging included Escherichia coli, Human immunodeficiency virus 1 and 2 and Hepatitis C 271 

virus (Table 2). Emerging pathogens had a significantly higher h-index than non-emerging 272 
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pathogens (Mann Whitney U, p<0.001) (Table 3). A total of 464 of the pathogens had been 273 

assigned a zoonotic potential status and 67.9% of these were zoonotic (Table 3). The h-index 274 

values of zoonotic and non-zoonotic pathogens were not significantly different (Mann Whitney 275 

U, p = 0.718). Pathogens that were frequently pathogenic had significantly higher h-index scores 276 

than pathogens that were non-pathogenic (Mann Whitney U, p<0.001) (Table 3). There were 13 277 

pathogens of ‘unknown’ pathogenicity, which were excluded from this analysis. 278 

 279 

Using the h-index to apply a relative ranking to pathogens of interest 280 

Additional analysis focused on pathogens that had been identified as potential emerging hazards 281 

within Canada in the literature or by PHAC. These pathogens were both endemic and exotic to 282 

Canada. Of the pathogens of interest to PHAC, two (Plasmodium falciparum) and Verotoxic E. 283 

coli) cause notifiable diseases in Canada (Public Health Agency of Canada, 2010) and three 284 

(Nipah virus, Hendra virus and Rift Valley Fever virus) had not previously been recorded in 285 

North America (and therefore did not feature in our list of North American pathogens). 286 

 287 

All of the pathogens of interest from both sources were classed as frequently pathogenic. Of the 288 

pathogens that were highlighted by Greer et al. (2008), those with the highest h-index were E. 289 

coli, P. falciparum and Streptococcus pneumoniae (Table 4). All had previously been recorded in 290 

North America. Additional pathogens of concern to PHAC with the highest h-indices were 291 

Trypanosoma cruzi (the cause of Chagas Disease), Nipah Virus and Hendra Virus (Table 5). 292 

Only T. cruzi has been recorded in North America and had a much higher h-index (130) than any 293 

of the others deemed to be of interest by PHAC. Overall, the median h-index of the pathogens 294 

listed in Tables 4 and 5 is 82, which is considerably greater than the median value of 37 for all 295 
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North American pathogens analysed. The h-index of 31 of these 33 pathogens were ranked in the 296 

top 50% of the North American pathogens (figure 1). The only exceptions were the food and 297 

water borne pathogens Cryptosporidium hominis and Shigella boydii.  298 

 299 

The h-index of pathogens was positively correlated with the HALY measure of pathogen impact 300 

in Ontario (Spearman rank correlation rs=0.627, p<0.001, n=41), (Figure 3). The h-index was 301 

also positively correlated with the two measures that make up the HALY score, namely the YLL 302 

(rs=0.676, p<0.001, n=41) and the YERF (rs=0.448, p<0.003, n=41). Of the 20 pathogens with 303 

the highest HALY score in Ontario, a total of 8 also feature in the top 20 pathogens with the 304 

highest h-index, while 15 feature in the top 50 and 16 have an h-index of greater than 100. The 305 

strength of this correlation is likely influenced by a few very high impact pathogens and we 306 

highlight that there are also a few pathogens that have a relatively high h-index score, although a 307 

relatively low HALY measure, e.g. malaria. 308 

 309 

Change in h-index over time 310 

The h-index of pathogens varied considerably over time. Figure 4 shows the time series for seven 311 

pathogens; P. falciparum was excluded from this figure because it has a high h-index that tends 312 

to obscure the series of the other pathogens. The h-index of Rift Valley fever virus and 313 

Monkeypox virus increased gradually from 1960 onwards. This was also the case for T. cruzi, 314 

although the h-index value for this pathogen was much greater than for any of the other six. The 315 

h-index of Chikungunya virus increased gradually from 1960 onwards, showing a steep increase 316 

in 2005 until 2007. West Nile virus showed a steady increase in h-index from 1960, until around 317 

1998 at which point it was associated with a sharp increase which only recently appeared to have 318 
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reached a plateau. The h-index scores for Hendra virus and Nipah virus were zero until the mid-319 

1990s, but then increased relatively rapidly until around 2005 when both appear to have 320 

plateaued to some extent.  321 

 322 

When the h-index was adjusted for the number of years since the first record of the pathogen (or 323 

in the case of ‘older’ pathogens the record in 1960, when our dataset began), the pathogens with 324 

the highest h-index were P. falciparum and T. cruzi (Figure 5a) throughout this time. In the 325 

2000s the h-index of the pathogens Hendra virus and Nipah virus increased more rapidly than 326 

the other pathogens tested. When the yearly rate of change of the h-index was measured 327 

(adjusted by discounting the h-index from previous years), the h-index of P. falciparum and of 328 

West Nile virus increased at a higher rate than any of the other pathogens (Figure 5b). In 329 

comparison the rate of change of the h-index for T. cruzi gradually decreased from 1960. Finally, 330 

both Hendra virus and Nipah virus showed a rapid increase in the 1990s, although in more recent 331 

years (since the early 2000s) the rate of change of the h-index of these viruses has decreased. 332 

 333 

Discussion 334 

Pathogens likely to have a high impact in North America 335 

The h-index of a pathogen can be viewed as an indicator of the relative scientific interest in that 336 

pathogen. Although it likely reflects trends in research interest, research funding and regional 337 

bias, the h-index of a limited number of pathogens has been correlated with their DALY measure 338 

which suggests that it might be used as a measure of impact (McIntyre et al, 2011). We focused 339 

on human pathogens that have been recorded in North America. We used previous occurrence in 340 

North America as an indicator of the pathogens that are more likely to emerge again in the same 341 
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area, because geographic proximity is a characteristic that has been deemed a risk for emergence, 342 

for example in Canada (Cox et al, 2012). Clearly, this is a simple indicator and other non-343 

endemic pathogens that have not previously been recorded in the region could still emerge.    344 

 345 

The species with the highest h-index values included yeast (Saccharomyces cerevisiae), which 346 

can cause opportunistic infection, food-borne pathogens (E. coli), person to person transmitted 347 

viruses (Hepatitis B and C virus, Human Immunodeficiency virus, human herpesvirus), bacteria 348 

that cause multiple clinical infections (Staphylococcus aureus) and person to person transmitted 349 

bacteria (Helicobacter pylori).  While some of these pathogens have a high impact on the human 350 

population, others are likely to have generated a high h-index for other reasons. For example, the 351 

vast majority of publications about S. cerevisiae are related to its industrial use in brewing and 352 

baking, rather than opportunistic infection. Similarly, the high h-index of S. aureus is likely to be 353 

associated with non-zoonotic infections in multiple species, rather than simply human illness.  354 

 355 

There are two implications of these findings. Firstly that there may be a need to refine our search 356 

terms, as we increase our understanding of the biases of the h-index. Secondly, that the h-index 357 

may be most useful for ranking selected pathogens of concern. We suggest, therefore that it 358 

might be most reliably used as one complementary component of a pathogen prioritisation risk 359 

assessment particularly since such studies often rely on qualitative data or expert opinion (Cox et 360 

al, 2012, Krause and Working Group on Prioritization at Robert Koch Institute, 2008). Indeed 361 

the first publication on the h-index notes (when assessing the h-index of the individual 362 

researcher) that, ‘a single number can never give more than a rough approximation to an 363 
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individual’s multifaceted profile, and many other factors should be considered in combination in 364 

evaluating an individual’ (Hirsch, 2005).  365 

 366 

Using the h-index to apply a relative ranking to pathogens of interest 367 

An additional part of our work focused on pathogens that have been identified as ‘pathogens of 368 

interest’ in Canada. All of the pathogens that were identified by PHAC or by Greer et al, (2008) 369 

had a relatively high ranking h-index. Those with the highest h-index were E. coli, P. falciparum 370 

and S. pneumonia. These pathogens are likely to have a high h-index either because they tend to 371 

be virulent and/or because they spread relatively easily in the human population, either via 372 

vectors, food and water or from person to person. It is important to note that our analysis only 373 

included species level pathogens and that we did not differentiate between strains of pathogens. 374 

This may be a useful distinction in future analyses. E coli, for example, are a large and diverse 375 

group of bacteria, which includes both virulent and non-virulent strains as well as zoonotic and 376 

non-zoonotic strains. In our analysis, E. coli has been classified as zoonotic, because at least 377 

some strains are zoonotic. This group is likely to score a high h-index not only due to the impact 378 

of virulent strains such as zoonotic Verotoxic E. coli O157, but also due to the prevalence of 379 

non-zoonotic illness such as urinary tract infections and neonatal meningitis.  380 

 381 

Within our list of pathogens ‘of interest’ there are some that score a relatively high h-index but 382 

that do not cause especially severe disease. Examples, with an h-index greater than 100, include 383 

Salmonella enterica, Respiratory synctial virus and influenza virus. These tend to cause mild 384 

symptoms in the general population, (although they can be severe in individuals who are 385 

immunocompromised). They are likely to have generated scientific interest (and therefore a high 386 
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h-index) due to their morbidity and their ease of transmission. Salmonella enterica for example, 387 

which has an h-index of 107, causes a diarrheal infection and occurs worldwide. In Canada there 388 

are an estimated 6,000 to 12,000 cases per year (Health Canada, 2012), although it is likely that 389 

cases are under-reported and that the actual number of infections is much higher.   390 

 391 

A positive correlation between the h-index and the HALY score indicated that the h-index is a 392 

proxy for this measure of pathogen impact in Ontario and it could therefore be used to rank 393 

pathogens that are known to occur in a specific region. While we found a positive relationship 394 

between the two measurements, we also show that the ranking needs to be interpreted in the 395 

correct context. For example, P. falciparum scores a high h-index, but a relatively low HALY in 396 

Ontario. This shows that it has a high impact on a global scale, but that its impact within the 397 

cooler climate of Ontario is relatively low because it does not commonly occur.  398 

 399 

Overall, our analysis of pathogens ‘of interest’ from three different sources, supports the idea 400 

that the h-index could be a practical method to compare potential pathogen hazards. There are 401 

two particular ways that it could be best used. Firstly as a method to separate high and low 402 

priority pathogens and therefore act as a rapid screening method for pathogens that require 403 

further risk analysis. Secondly, to rank pathogens that are ‘of interest’ in a specific region. For 404 

example to rank pathogens that are exotic to a region, but are of concern due to their global 405 

impact, or to rank pathogens that are endemic in a region and that occur frequently enough to 406 

have become ‘of interest’. 407 

 408 

Change in h-index over time 409 



 

19 
 

Analysis of time series data demonstrated that the h-index of a pathogen changes over time, even 410 

after accounting for the increasing trend in total number of publications. We hypothesise that the 411 

rate of change of the h-index might be used as a crude indicator of a pathogen’s emergence 412 

and/or the spread of infection. Hendra virus, for example, was discovered in horses in Australia 413 

in 1994 and its h-index began increasing from 0 in 1995. Similarly the h-index of Nipah virus 414 

increased from the time that it was discovered in a pig population in Malaysia in 1999. The 415 

h-index of both of these recently emerging pathogens has increased rapidly since their 416 

identification compared to the other pathogens studied here. It is also notable that the h-index of 417 

West Nile virus, which increased steadily from 1960 showed a relatively rapid increase from 418 

1999 onwards and we hypothesise that this increase coincides with the emergence of the disease 419 

in the Eastern United States in 1999 (Soverow et al, 2009). Finally, the increase in the h-index of 420 

Chikungunya virus from 2005 to 2007 coincides with its outbreak in the Indian Ocean territories 421 

in 2005 (Schuffenecker et al, 2006). 422 

 423 

There is likely to be a bias in the h-index towards ‘old’ pathogens compared to newly emerging 424 

pathogens, for which papers have not yet had time to accumulate citations. Indeed, it has been 425 

suggested that the h-index can only provide a realistic assessment of the achievement of 426 

academics (and therefore in our work – the impact of a pathogen) who have been publishing for 427 

at least ten years (Harzing, 2008). One way to compare between pathogens with different lengths 428 

of ‘academic publishing’ is to divide the h-index by the number of years since the first 429 

publication, a measure referred to as the ‘m-quotient’ (Hirsch, 2005). Our analysis, which 430 

controlled for the number of years of publication, revealed how the rate of change of P. 431 

falciparum and West Nile virus was higher than the other pathogens tested. The high rate of 432 
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increase in the h-index of the malaria pathogen reflects the impact of the disease for which there 433 

were approximately 219 million cases worldwide in 2010 (World Health Organisation, 2012). 434 

Although the impact in terms of mortality rates has fallen by 26% since 2000, the increasing 435 

h-index also accounts for the fact that malaria is a risk to over half of the world’s population, and 436 

that international disbursements and government funding for malaria control rose steeply during 437 

this time (World Health Organisation, 2012). We suggest that the h-index of West Nile virus has 438 

increased at a high rate because this reflects the impact of the pathogen as it has spread across the 439 

USA since it emerged in 1999 and because its emergence has been attributed to climate warming 440 

(Soverow et al, 2009). In contrast, the rate of change in h-indices of other pathogens such as T. 441 

cruzi and Chikingunya virus have decreased yearly. These pathogens have both been described 442 

as ‘neglected tropical diseases’, which tend to be endemic in low income, developing regions and 443 

typically have a high morbidity, but low mortality (Hotez, 2011). The rate of change in the h-444 

indices of newly emerging pathogens (Nipah virus and Hendra virus) showed a different pattern 445 

to that of the ‘older’ pathogens, with a rapid increase following their emergence which then 446 

slowed in more recent years. This trajectory is likely to reflect the increasing scientific interest in 447 

a newly emerging pathogen, which then levels off as knowledge is established.   448 

 449 

Identifying patterns of disease emergence using bibliometric measures or electronic resources 450 

has proven a valuable tool to augment disease monitoring and surveillance. For example, 451 

patterns of disease reporting in ProMED (the Internet-based ‘Program for Monitoring Emerging 452 

Diseases’ (International Society for Infectious Diseases, 2013)) have been used as an early-453 

warning of disease emergence (Cowen et al, 2006), while records of Internet queries have been 454 

used to track the spread of influenza infections (Google Flu Trends, 2012; Ginsberg et al, 2009) 455 
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and Methicillin Resistant S. aureus (Dukic et al, 2011). Similarly, social networking tools such 456 

as Twitter, have proven to be real-time indicators of public health concerns, since the number of 457 

Twitter posts relating to ‘swine flu’ and/or ‘H1N1’ in 2009 correlated well with H1N1 incidence 458 

data (Chew and Eysenbach, 2010). Twitter has also been used to measure the uptake of research 459 

findings, with the number of tweets generated within the first 3 days of an article’s publication 460 

being a good predictor of highly cited articles. A proposed ‘twimpact factor’ has therefore been 461 

suggested as a timely metric to gauge research impact and influence (Eysenbach, 2011). A 462 

comparison of ‘twimpact factor’ with h-index may provide some predictive value in the case of 463 

disease monitoring. 464 

 465 

In comparison to the h-index, the indicators described above are more instantaneous measures 466 

and it is unlikely that the change in h-index could be used for real-time surveillance purposes due 467 

to the time lag in the measure of the h-index and the relative impact. In addition, newly emerging 468 

pathogens are likely to be under-represented. However, the trajectory of the h-index may be 469 

relatively predictable if combined with other measures. Work has shown that it is possible to 470 

predict the future h-index of scientists as far as five to ten years into the future, on the basis of 471 

additional publicly available information, including years since publishing their first article, 472 

number of distinct journals published in and the number of articles in five prestigious journals 473 

(Acuna et al, 2012).  474 

 475 

Assessment of a wider range of pathogens would be beneficial, with a particular focus on 476 

emerging pathogens. Specific incidences of emerging diseases and global emerging disease 477 

hotspots have been identified in the past (Jones et al, 2008). Comparison of the h-index of 478 
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pathogens with their global emergence may reveal the typical time delay between disease 479 

emergence and changes in associated h-indices, as well as whether there is a level of increase in 480 

h-index that can be reliably interpreted as an early warning of future disease emergence. 481 

 482 

Comparison of the h-index with other bibliometric sources 483 

The h-index scores in the present study were generated from one bibliometric source and 484 

comparison was not made with other sources. Other bibliometric services, such as SCOPUS or 485 

Google Scholar, search different literature sources over differing temporal periods. Although 486 

alternative sources produce slightly different h-index values, these tend to be comparable across 487 

platforms (McIntyre et al, 2011). Our work demonstrated a clear correlation between the h-index 488 

calculated in WOS and the number of publications recorded in PubMed.   489 

 490 

Overall the h-index combines an assessment of both the quantity of publications and the quantity 491 

of citations. A pathogen cannot have a high h-index without having a substantial number of 492 

papers published about it. However the number of papers is not enough – a reasonable number of 493 

these papers need to have been cited in order to increase the h-index value. The h-index thus 494 

corrects for pathogens that might have a limited number of highly cited papers, or many that 495 

have not been cited. It therefore tends to highlight pathogens that generate a continuous stream of 496 

publications with above average publication impact. While the h-index is the most commonly 497 

cited metric, alternative methods of assessing research output have been suggested (Harzing, 498 

2007; Alonso et al, 2009) and might be considered in future assessments of pathogen impact. For 499 

example, the g-index could be used to give more weight to highly-cited articles (Egghe, 2006) 500 

and has been suggested as a useful complement to the h-index (Harzing, 2008). We also suggest 501 
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an evaluation of the measure ‘cf’, which takes into account the differences in number of citations 502 

received by all articles in a given year, so that scientific impact can be compared across years 503 

(Radicchi et al, 2008). 504 

 505 

In conclusion, the h-index is a quantitative measure that can be used to estimate the potential 506 

impact of a pathogen and that can be calculated quickly and easily. It can be used to identify and 507 

to rank individual pathogens or types of pathogens (e.g. zoonotic, emerging and pathogenic) and 508 

to measure changes over time. It could provide a rapid method of screening for pathogens that 509 

are likely to be important and therefore it would be particularly useful if incorporated into a 510 

prioritisation tool to complement a set of more qualitative criteria.  511 
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 527 
Figure captions 528 
 529 
Figure 1 A scatter-plot showing the h-index value (y axis) of 651 pathogen species that are 530 
infectious to humans and have been recorded in the North American region against the rank 531 
position of each of those pathogens (x axis).  532 
Points that have been coloured black indicate pathogens that were identified as potential 533 
emerging hazards and therefore of interest in Canada.  534 
 535 
Figure 2 Correlation of h-index with number of publications reported in the PubMed database for 536 
651 human pathogen species.  537 
(The x-axis has been truncated at 300 to better demonstrate the association of the h-index and the 538 
total number of publications. There were only four pathogens with an h-index greater than 300. 539 
These were Saccharomyces cerevisiae, Escherichia coli, Human Immunodeficiency virus 1 and 540 
2). 541 
 542 
Figure 3 Correlation of h-index with Health Adjusted Life Year measurement of 36 infectious 543 
diseases that occurred in Ontario in 2010. 544 
Data labels show the pathogen or disease named in the study by (Kwong et al, 2010). 545 
 546 
Figure 4 The h-index score by year from 1960 to 2009 for seven selected pathogens. 547 
 548 
Figure 5 The modelled rate of change of the h-index from 1960 to 2009 for eight pathogens.  549 
A. The h-index has been adjusted according to the number of years since the first record. 550 
B. The yearly rate of change of the h-index. This model has been adjusted according to the 551 
number of years since the first record and it also discounts the h-index from previous years.  552 
 553 
Table captions 554 
 555 
Table 1 Taxonomic classification of 651 human pathogen species that have been recorded in the 556 
North American region. 557 
 558 
Table 2 Pathogen species with the highest h-index recorded in Web of Science from those human 559 
pathogen species recorded in the North American region. All were classed as frequently 560 
pathogenic. 561 
 562 
Table 3 Summary of h-index values for human pathogen species that have been recorded in the 563 
North American region, grouped according to emerging, zoonotic and pathogenic status  564 
A total of 651 human pathogen species were recorded in the North American region, however 565 
not all had been assigned a status for each characteristic. 566 
 567 
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Table 4 The h-index of 33 pathogens that have been identified as an emergence risk in Canada 568 
by Greer et al (2008). 569 
Pathogen names in grey indicate a pathogen that can cause the associated disease, but that is not 570 
commonly the main cause of the disease in the North American region. 571 
 572 
Table 5 The h-index of six pathogens that have been identified as pathogens of emergence 573 
concern in Canada by the Public Health Agency of Canada (N. Ogden pers comm.).  574 
 575 
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