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Abstract

On Ergodic Theory in Non-Archimedean Settings

Alena Jaššová

November 2014

In this thesis we use tools from ergodic theory to study ergodic and metric

properties of Schneider’s continued fraction map in non-Archimedean settings.

We show that the natural extension of this map is isomorphic to a Bernoulli

shift with entropy #(k)
#(k)−1

log(#(k)). Results about various averages and moving

averages of partial quotients of this expansion are proved as well.

We also use ergodic theoretic methods to prove the uniform distribution

of β-adic Halton sequences in the form (φβ(kj))j≥1 where a sequence of non-

negative integers (kj)
∞
j=1 is Hartman uniformly distributed and L2-good univer-

sal and the bases β = (β1, . . . , βs) are special Pisot-Vijayaraghavan numbers.
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Introduction

In this thesis we use tools in ergodic theory to study ergodic and metric proper-

ties of a continued fraction map in non-Archimedean settings and to investigate

the distribution behaviour of multidimensional β-adic Halton subsequences.

Motivation to study continued fractions in non-Archimedean settings, es-

pecially on p-adic numbers, is given by many well-known results explored for

continued fractions on real numbers. Naturally one of the first things one might

try to do is to explore the extent to which, theorems true for continued frac-

tions on the real numbers, extend to the p-adic numbers. For the most part,

the regular continued fraction expansion and its properties can be extended to

the field of formal Laurent series over a finite field in a relatively trouble free

manner. In the context of the p-adic numbers, the direct analogue of the regu-

lar continued fraction is the Ruban continued fraction [59]. However, there are

problems with this algorithm. Although it is possible to define a sequence of

rationals analogous to the convergents of the regular continued fractions, their

convergence to the number they are supposed to represent is not assured. This

deficiency can be avoided using a system of weights which leads to Schneider’s

continued fraction expansion [63]. However, this brings some other issues: we

are dealing with a non-Archimedean field so one should expect to have a theory

which is not as satisfactory as that one in the case of the regular continued

fraction expansions. For instance, in the case of Schneider’s continued fraction

expansion, the sequence of convergents does not necessarily provide a sequence

of best approximations to the p-adic number they approximate, unlike in the

real case of the regular continued fraction expansion.

Despite the fact that Schneider’s continued fraction map does not possess as
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many desirable properties as the regular continued fraction map, it is worthy of

study as it can be a useful and powerful tool in many situations. For instance,

it is sometimes very useful in delicate constructions on the p-adic numbers, as

observed in [9] where it is used to construct numbers that distinguish between

the Mahler and Koksma schemes of approximation to a specified degree.

Another interesting application of Schneider’s continued fraction is to de-

termine the algebraic independence of a set of p-adic numbers. See [11] and

[38] for details.

It is well known that the restriction of the Gauss map to the rational num-

bers gives the Euclidean algorithm. If we set p = 2 and restrict the Schneider’s

continued fraction map to the rational numbers, we obtain the Binary Eu-

clidean algorithm. This is another method of calculating the greatest common

divisor of two integers, particularly well adapted to efficient implementation

on binary machines.

The theory of Schneider’s continued fraction has been of interest to many

authors. Some p-adic analogues of standard properties of the regular continued

fraction for the real numbers were partially recovered, for example, in [2], [3],

[4], [10], [69] where authors investigate when a p-adic continued fraction is

either finite or periodic. Recently, some ergodic and metric properties of this

map were developed in [21] and [24].

In this thesis we will study Schneider’s continued fraction map in greater

generality and prove some new ergodic and metric properties of this general

algorithm.

The other half of this thesis is devoted to studying uniform distribution of

β-adic Halton sequences. The importance of uniform distribution theory is as

follows. A standard problem in numerical analysis is estimating the integral

of a function using its value at a finite number of points (xn)Nn=1. In the case

of stochastic sequences (xn)Nn=1, this is known as Monte Carlo integration. In

the case of deterministic sequences (xn)Nn=1 we talk about Quasi-Monte Carlo

integration. This is encapsulated in the famous Koksma-Hlawka inequality

2



[25] which bounds the integration error in Quasi-Monte Carlo integration∣∣∣∣∣ 1

N

N∑
n=1

f({xn})−
∫

[0,1]s
f(x)dx

∣∣∣∣∣ ≤ V (f)D?
N .

Here V (f) denotes the variation of a function f on [0, 1)s (in the sense of

Hardy and Krause) and D?
N is the star-discrepancy of any finite set of points

{x1, . . . ,xN} in [0, 1)s defined by

D?
N = D?

N(x1, . . . ,xN) = sup
u∈[0,1)s

∣∣∣∣ 1

N
#{1 ≤ n ≤ N : xn ∈ [0,u)} − λs([0,u))

∣∣∣∣ .
Here λs denotes s-dimensional Lebesgue measure. To estimate

∫
[0,1]s

f(x)dx

sufficiently precisely, we need a good bound for D?
N and a serviceable bound for

V (f), which is usually straight forward. To be useful this sequence {x1, . . . ,xN}
must be uniformly distributed modulo one. The discrepancy can be viewed as a

quantitative measure of uniformity of distribution. In particular, the sequence

(xn)n≥1 is uniformly distributed modulo one if and only if D?
N → 0 as N →∞.

In a sense the faster D?
N decays as a function of N , the better uniformly dis-

tributed the sequence (xn)n≥1 is. There are limitations to the uniformity of

distribution of an arbitrary sequence which is one of the fundamental issues in

this subject. Another is the complementary problem of constructing sequences

with discrepancy as small as possible in order to minimise the integration error

in Quasi-Monte Carlo integration.

The properties of one-dimensional β-adic Halton sequences have been in-

vestigated by a number of authors, for example [1], [48], [66]. The properties

of the multidimensional version have also been explored in [26]. In this thesis

we will be interested in a more general form of the multidimensional β-adic

Halton sequence.

The thesis is organised as follows. The first chapter serves as a brief intro-

duction to ergodic theory, non-Archimedean fields and other subjects which

are used later in the thesis. In the second chapter, the ergodic and metric

theory of the generalised Schneider’s continued fraction map is studied. The

third chapter is devoted to the distributional behaviour of multidimensional
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β-adic Halton sequences. The last chapter summarises the main results in this

thesis and gives ideas for future research problems.
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Chapter 1

Background

The purpose of this chapter is to give the reader a brief introduction to ergodic

theory and non-Archimedean fields useful for other chapters of this thesis.

1.1 Non-Archimedean Fields

In this section we describe the general setting in which we work for most of

this thesis. Definitions and results of this section can be also found in [12],

[17], [47], [57] and [70].

Let K denote a locally compact topological field. By this we mean that the

field K is a locally compact group under addition with respect to a topology.

This ensures that there is a translation invariant Haar measure µ on K, that

is unique up to positive scalar multiplication. For an element a ∈ K, we are

now able to define its absolute value, as

|a| = µ(aF )

µ(F )
,

for every µ measurable F ⊆ K with finite positive measure µ.

In this thesis, we will assume the topology to be non-discrete. Sometimes a

field which is a locally compact topological field with respect to a non-discrete

topology is referred to as a local field.

Throughout the thesis, we use N = {1, 2, 3, . . .} to denote the natural
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numbers and N0 = N ∪ {0}. Further, Z,Q and R denote the integers, the

rational numbers and the real numbers respectively. The non-negative real

numbers are denoted by R≥0 and the positive real numbers by R+.

Let us recall the standard definition of an absolute value.

Definition 1.1.1. A function |.| : K → R≥0 is called an absolute value on a

field K if it has the following properties:

1. |a| = 0 if and only if a = 0,

2. |ab| = |a||b| for all a, b ∈ K,

3. |a+ b| ≤ |a|+ |b| for all a, b ∈ K.

Definition 1.1.2. An absolute value on K is called non-Archimedean when

it has the additional property that

3?. |a+ b| ≤ max{|a|, |b|} for all a, b ∈ K.

This property is also called the ultrametric inequality and fields with an

absolute value satisfying the property 3? are called non-Archimedean fields.

Other fields are called Archimedean. An absolute value gives rise to a metric

defined by d(a, b) = |a − b| with a, b ∈ K, whose topology coincides with the

original topology on the field K.

Definition 1.1.3. Let K be a field with an absolute value |.|. Let a ∈ K and

r ≥ 0 be a real number. The open ball of radius r centered at a is the set

B(a, r) = {x ∈ K : |x− a| < r}.

The closed ball of radius r and center a is the set

B(a, r) = {x ∈ K : |x− a| ≤ r}.

These structures are standard in any metric space. However, in a non-

Archimedean space, these balls have some surprising properties as one can see

in the following proposition.

6



Proposition 1.1.4. Let K be a non-Archimedean field.

• If b ∈ B(a, r), then B(a, r) = B(b, r) which means that every point that

lies in an open ball is a center of that ball.

• If b ∈ B(a, r), then B(a, r) = B(b, r) which means that every point that

lies in a closed ball is a center of that ball.

• The set B(a, r) is both open and closed.

• If a, b ∈ K and r > 0, s > 0, then B(a, r) ∩ B(b, s) 6= ∅ if and only if

B(a, r) ⊂ B(b, s) or B(b, s) ⊂ B(a, r) which means that any two open

balls are either disjoint or one ball is contained in the other ball.

Proof: The proof can be found in [17] on page 34. �

In Chapter 2 of this thesis we will work with non-Archimedean local fields.

Another approach to defining a non-Archimedan local field is via discrete

valuations.

Definition 1.1.5. Let K be a field and K∗ = K\{0}. A map v : K∗ → R is

called a valuation if it satisfies

• v(K∗) 6= {0},

• v(xy) = v(x) + v(y) for all x, y ∈ K,

• v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K.

The valuation v then determines a non-Archimedean absolute value as fol-

lows. Fix some real number α > 1 and put

|x| =

α−v(x) if x 6= 0,

0 if x = 0.

Conversely, if we are given a non-Archimedean absolute value |.| then for a real

number α > 1 we put v(x) = logα |x|. So, v(x) is a valuation – an additive

version of |x|. One can extend v to K formally by letting v(0) = ∞. We

exclude the trivial valuation given by v(x) = 0 for all x ∈ K∗. We say that

two valuations v1 and v2 are equivalent if v1 = cv2 for some real constant c > 0.
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Definition 1.1.6. A valuation v is discrete if v(K∗) = sZ for some positive

real number s. If v(K∗) = Z, we call v a normalised discrete valuation.

Let v : K∗ → R be a valuation corresponding to the non-Archimedean

absolute value |.| : K → R≥0. Then

O = Ov := {x ∈ K : v(x) ≥ 0} = OK := {x ∈ K : |x| ≤ 1}

is a ring, called the valuation ring of v or the ring of integers and K is its field

of fractions. The set of units in O is

O× = {x ∈ K : v(x) = 0} = {x ∈ K : |x| = 1}

and

M = {x ∈ K : v(x) > 0} = {x ∈ K : |x| < 1}

is the unique maximal ideal in O. Note that O = O× ∪M. Since M is a

maximal ideal, we have that k = O/M is a field called the residue field of O.

There is an alternative definition of a non-Archimedean local field which is

as follows.

Definition 1.1.7. If K is a field which is complete with respect to a discrete

valuation and its residue field is finite, then K is called a (non-Archimedean)

local field.

Definition 1.1.8. Suppose the valuation v : K∗ → Z is normalised and dis-

crete. An element π ∈M such that v(π) = 1 is called a uniformiser.

Every x ∈ K∗ can be written uniquely as x = uπn with u ∈ O× and n ∈ Z.

In particular, every x ∈ M can be written uniquely as x = uπn for a unit

u ∈ O× and n ≥ 1.

Proposition 1.1.9. Let K be a field and v : K∗ → Z be a normalised and

discrete valuation. Let A ⊆ O be a system of representatives for O/M such

that 0 ∈ A and π ∈ O is a uniformiser. Then every x ∈ K∗ can be expressed

uniquely in the form

x =
∞∑
n=k

anπ
n
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with an ∈ A for n = k, k + 1, . . . and ak 6= 0, n ∈ Z. The field K is complete if

and only if every sum
∑∞

n=k anπ
n converges.

Proof: The proof can be found in [47] on page 126. �

Examples of local fields:

• Archimedean local fields: real numbers R and complex numbers C.

• Non-Archimedean local fields:

– with characteristic 0: the finite extensions of the field of p-adic

numbers Qp for some prime number p,

– with positive characteristic p (p is a prime number): the field of

formal Laurent series over a finite field.

The above examples are the only types of local fields. This is formally stated

in the following theorem.

Theorem 1.1.10. Given any local field k, we have that

• if k has characteristic 0, then k is R, C or a finite extension of Qp;

• if k has characteristic p > 0, then k is non-Archimedean and isomorphic

to the field of formal Laurent series in one variable over a finite field.

Proof: The proof can be found in [56] on page 140. �

The rest of this section will be devoted to a more detailed description of

the field of p-adic numbers and the field of formal Laurent series.

1.1.1 p-adic Numbers

Let p be a prime. Any non-zero rational number a can be written in the form

a = pα(r/s) where α ∈ Z, r, s ∈ Z and p - r, p - s. Sometimes, α is denoted by

vp(a) and is called the p-adic valuation.
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Definition 1.1.11. The p-adic absolute value of a ∈ Q is defined by

|a|p = p−α

and |0|p = 0.

It can be shown that |.|p is a non-Archimedean absolute value on Q.

It is a fact that the real numbers R is the completion of the rationals Q
with the respect to the standard absolute value. Similarly, the field Qp of

p-adic numbers is constructed by completing the rationals with the respect to

the p-adic absolute value.

Definition 1.1.12. The metric on Q defined by dp(x, y) = |x − y|p is called

the p-adic metric.

This metric satisfies the ultrametric inequality, i. e. for any x, y, z ∈ Qp we

have

|x− z|p ≤ max{|x− y|p, |y − z|p}.

The topology of Qp is generated by the metric induced by the p-adic abso-

lute value. So, as in Definition 1.1.3 we define open and closed balls for p-adic

numbers.

Definition 1.1.13. Let a ∈ Qp and r ≥ 0 be a real number. The open ball of

radius r centered at a is the set

B(a, r) = {x ∈ Qp : |x− a|p < r}.

The closed ball of radius r and center a is the set

B(a, r) = {x ∈ Qp : |x− a|p ≤ r}.

As the field of p-adic numbers is non-Archimedean, these balls have all

properties described in Proposition 1.1.4.

The field Qp is fully determined by the facts that:

• Q is dense in Qp,
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• the absolute value |.|p extends the p-adic norm from Q to Qp,

• Qp is complete with respect to |.|p, i.e. every Cauchy sequence in Qp

(with the respect to |.|p) has a limit in Qp.

There exists a special subset of Qp and that is the ring of p-adic integers.

Definition 1.1.14. The ring of p-adic integers is

Zp = {x ∈ Qp : |x|p ≤ 1}.

Let us notice that B(0, 1) = Zp. The ideas introduced for non-Archimedean

fields specialise in the case of the p-adic numbers to:

• the field: K = Qp,

• the valuation ring: O = Zp,

• the maximal ideal in O: M = pZp,

• the uniformiser: π = p,

• the residue field of K: k = Zp/pZp.

It can be shown that Zp/pZp ∼= Z/pZ which means that k is a finite field. Since

Qp is complete with respect to the p-adic absolute value |.|p and k is finite, we

can conclude that the field of p-adic numbers Qp is a local field. Hence, Qp

is locally compact and so it comes endowed with a translation invariant Haar

measure. The ring of p-adic integers Zp is then compact [47], p. 135.

Using Proposition 1.1.9 we get the following representation of p-adic num-

bers. Every x ∈ Zp can be expressed in the form

x =
∞∑
n=0

bnp
n (1.1)

with bn in {0, 1, . . . , p− 1} and this represetation is unique.

A representation for Qp can be then constructed as follows. Any element

of Qp can be written in the form z/pm where z ∈ Zp. Notice that z in the form
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(1.1) divided by pm gives us a power series in p where some of the powers can

be negative. Hence, every x ∈ Qp can be expressed in the form

x =
∞∑
n=k

bnp
n

where k is an integer, bn is in {0, 1, . . . , p− 1} for n = k, k + 1, . . . and bk 6= 0.

This representation is unique.

1.1.2 Formal Laurent Series

Let q be a power of the prime p and let Fq be the finite field with q elements.

Denote by Fq[X] the ring of polynomials with coefficients in Fq and by Fq(X)

the quotient field of Fq[X]. Let Fq((X−1)) denote the field of formal Laurent

series

Fq((X−1)) =
{
g = anX

n + · · ·+ a0 + a−1X
−1 + · · · : n ∈ Z, ai ∈ Fq

}
.

The field Fq((X−1)) is the completion of Fq(X) with respect to the non-

Archimedean absolute value |.| which is determined by |g| = q−v(g) for g ∈
Fq((X−1)) and |0| = 0. Here the valuation v(g) is defined as

v(g) = − deg(g) = inf{n ∈ Z, an 6= 0}

with deg(g) denoting the degree of g ∈ Fq((X−1)).One can see that |g| = qdeg(g)

for all g ∈ Fq((X−1)) and |0| = 0. Also dq(x, y) = |x− y| for x, y ∈ Fq((X−1))

defines a metric on Fq((X−1)). We have a subset of Fq((X−1)) which we denote

by L and it is

L = {x ∈ Fq((X−1)) : |x| ≤ 1} = {a0 + a−1X
−1 + a−2X

−2 + · · · , ai ∈ Fq}.

In the case of the field of formal Laurent series over the finite field we have:

• the field: K = Fq((X−1)),

• the valuation ring: O = L,
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• the maximal ideal in O: M = X−1L = {x ∈ Fq((X−1)) : |x| < 1} =

{a0X
−1 + a−1X

−2 + a−2X
−3 + · · · , ai ∈ Fq},

• the uniformiser: π = X−1,

• the residue field of K: k = L/X−1L = Fq.

Since Fq((X−1)) is complete with respect to the non-Archimedean absolute

value |.| and k = Fq is finite, we again conclude that the field of formal Laurent

series Fq((X−1)) is a local field. Thus, Fq((X−1)) is locally compact and so it

comes endowed with a translation invariant Haar measure. The ring L is then

compact [47], p. 135.

For any a ∈ Fq((X−1)) and any real number r ≥ 0 we define a (open) ball

of radius r centered at a by

B(a, r) = {g ∈ Fq((X−1)) : |g − a| < r}.

Let a radius of a ball be r = q−n and a center a ∈ Fq((X−1)). Then the

Haar measure on Fq((X−1)) is fully characterised by its value on the balls

B(a, q−n), i.e. µ(B(a, q−n)) = q−n, see [65], p. 65–70.

1.2 Ergodic Theory – Basic Definitions and

Results

The aim of this section is to introduce basic definitions and results in ergodic

theory which will be used in other chapters of this thesis. Definitions and

results in this section can be also found in [13], [52], [51], [54], [55] and [68].

Ergodic theory studies the long-term average behaviour of dynamical sys-

tems. We will consider a dynamical system consisting of a space X and a map

or a transformation T : X → X (for the case of discrete time). Let T 0 be the

identity map of X. Then for n ≥ 1 we have the n-th iterate of T given by

T n = T ◦ T n−1 = T (T n−1). If T is invertible, then the notation extends to all

n ∈ Z such that T−n = (T−1)n.
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Next, we will consider a probability space (X,B, µ) where X is a set, B is

a σ-algebra of subsets of X and µ is a probability measure defined on B.

Definition 1.2.1. A transformation T : X → X is measurable if T−1(A) ∈ B
for all A ∈ B.

Definition 1.2.2. T is a measure-preserving transformation with respect to

µ (or the measure µ is T -invariant) if T is measurable and µ(T−1(A)) = µ(A)

for all A ∈ B.

Example 1.2.3. The doubling map T : R/Z → R/Z which is defined by

T (x) = 2x (mod 1) is measure-preserving with respect to Lebesgue measure.

Definition 1.2.4. Let (X,B, µ) be a probability space and T : X → X be a

measure-preserving transformation. T is said to be an ergodic transformation

with respect to µ (or µ is an ergodic measure) if µ(A) = 0 or 1 for any T -

invariant set A ∈ B, i. e. T−1(A) = A.

We can think of ergodic transformations as being indecomposable into sub-

systems.

Example 1.2.5. The doubling map T : R/Z → R/Z which is defined by

T (x) = 2x (mod 1) is ergodic with respect to Lebesgue measure.

The following theorem is a useful characterisation of ergodicity.

Theorem 1.2.6. Let (X,B, µ) be a probability space and T : X → X be a

measure-preserving transformation. The following statements are equivalent:

• T is ergodic;

• whenever f ∈ L1(X,B, µ) satisfies (f ◦ T )(x) = f(x) µ-a.e. then f is

constant µ-a.e.

Proof: The proof can be found in [68] on page 28. �

There are properties that imply ergodicity and also many results follow

from ergodicity. In many cases, it is easier to prove another property satisfied

by a transformation T which then implies ergodicity than to prove directly

that T is ergodic. We will now present some of these properties.
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Definition 1.2.7. Let T be a measure-preserving transformation of (X,B, µ).

• T is defined to be strong-mixing if for all A,B ∈ B we have

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B).

• T is said to be weak-mixing if for all A,B ∈ B we have

lim
n→∞

1

n

n−1∑
j=0

|µ(T−jA ∩B)− µ(A)µ(B)| = 0.

Proposition 1.2.8. If T is a strong-mixing transformation on (X,B, µ), then

T is weak-mixing.

Proof: The proof follows from definitions and using the fact that for any

sequence {an} of real numbers if limn→∞ an = 0 then limn→∞
1
n

∑n
i=0 |ai| = 0.

�

Proposition 1.2.9. If T is a weak-mixing transformation on (X,B, µ), then

T is ergodic.

Proof: If T is weak-mixing then for all A,B ∈ B we have

lim
n→∞

1

n

n−1∑
j=0

|µ(T−jA ∩B)− µ(A)µ(B)| = 0.

This implies that

lim
n→∞

(
1

n

n−1∑
j=0

µ(T−jA ∩B)

)
− µ(A)µ(B) = 0.

Let E ∈ B be an invariant set, i.e. T−1E = E,E ∈ B. Taking A = B = E, we

get

µ(E) = lim
n→∞

1

n

n−1∑
j=0

µ(E) = µ2(E).

Thus, µ(E) = µ2(E) and so µ(E) = 0 or 1 which proves that T is ergodic. �
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The converse of this proposition is not true. It means that there exist

transformations which are ergodic but not weak-mixing as we can see in the

following example.

Example 1.2.10. Let X = R/Z and define the rotation map T : X → X by

T (x) = x + a(mod 1) where a ∈ R is irrational. It is known that T is ergodic

with respect to Lebesgue measure µ. One can check that T is not weak-mixing.

Definition 1.2.11. Let T be a measure-preserving transformation of (X,B, µ).

Let N be the trivial σ-algebra, i.e. N = {A ∈ B |A = ∅ a.e. or A = X a.e.}.
The transformation T is called exact if

∞⋂
n=0

T−nB = N .

The following lemma is a useful tool for proving exactness.

Lemma 1.2.12. Let (X,B, µ) be a probability space and assume A ⊂ B is an

algebra that generates B. If there exists K > 0 such that

Kµ(B)µ(I) ≤ µ(B ∩ I)

for all I ∈ A then µ(B) = 0 or µ(B) = 1.

Proof: Assume ε > 0. Since B is generated by A, there is a set I ∈ A such

that µ(BC 4 I) < ε where BC denotes the complement of the set B. So,

|µ(BC)− µ(I)| < ε. Note that µ(B ∩ I) < ε. This is because B ∩ I ⊂ BC 4 I.

Thus we get

µ(B)µ(BC) ≤ µ(B)(µ(I) + ε) ≤ µ(B)µ(I) + µ(B)ε ≤ 1

K
µ(B ∩ I) + ε

≤
(

1

K
+ 1

)
ε.

Since ε > 0 is arbitrary, we have that µ(B)µ(BC) = 0 and thus, µ(B) = 0 or

µ(B) = 1. �

There are several relationships between exactness, ergodicity and mixing

as the following propositions show.
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Proposition 1.2.13. If T is an exact transformation of the probability space

(X,B, µ) then T is ergodic.

Proof: Assume that T−1B = B,B ∈ B. When we iterate this, we have that

T−nB = B for all n ≥ 0. So, B ∈ T−nB for all n ≥ 0, which implies that

B ∈
⋂∞
n=0 T

−nB. Since T is exact, it means that B ∈ N and so µ(B) = 0 or 1

which concludes the proof. �

Proposition 1.2.14. If T is an exact transformation of the probability space

(X,B, µ) then T is strong-mixing.

Proof: The proof can be found in [55] on page 125. �

To sum up, from Propositions 1.2.8 – 1.2.14 we can conclude that for non-

invertible transformations there is the following hierarchy:

Exact ⇒ strong-mixing ⇒ weak-mixing ⇒ ergodic.

The definition of exactness holds for non-invertible transformations. If T

is invertible, we have T−1B = B and so
⋂∞
n=0 T

−nB = B. Hence an invertible

transformation can never be exact (except for the trivial case when B = N ).

However, there is the following definition for invertible transformations.

Definition 1.2.15. An invertible measure-preserving transformation T of a

probability space (X,B, µ) is said to be a K-automorphism if there exists a

sub-σ-algebra A ⊂ B satisfying:

• A ⊂ TA,

•
∨∞
n=0 T

nA = B,

•
⋂∞
n=0 T

−nA = N .

Similarly, as for non-invertible transformations, there is also the following

hierarchy for invertible transformations (proofs are omitted):

K-automorphism ⇒ strong-mixing ⇒ weak-mixing ⇒ ergodic.
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A basic question in ergodic theory asks about the convergence of averages
1
n

∑n−1
i=0 f(T ix). This means we are interested in when limn→∞

1
n

∑n−1
i=0 f(T ix)

exists in some sense. Ergodic theorems resolve this problem and fundamental

examples are due to von Neumann and Birkhoff. There are many variants

of the ergodic theorem which depend on the the type of function (whether

f is integrable, L2, or continuous for instance) and the type of convergence

(pointwise, L2, uniform and so on). We will state the first ergodic theorem

relevant for this thesis which is Birkhoff’s Theorem for f ∈ L1 and pointwise

convergence.

Theorem 1.2.16 (Birkhoff’s Ergodic Theorem). Let (X,B, µ) be a probability

space. Assume T : X → X is an ergodic measure-preserving transformation

and f ∈ L1(X,B, µ). Then

lim
n→∞

1

n

n−1∑
j=0

f(T j(x)) =

∫
fdµ

for almost all x ∈ X.

Proof: The proof can be found in [68] on page 38. �

1.3 Entropy

The entropy theory of dynamical systems is an important part of ergodic the-

ory. Entropy plays a big role in the ‘isomorphism problem’ because it is in-

variant under an isomorphism which will be defined later. Entropy also has

wider applications to other fields such as information theory and communica-

tion theory. We first define information as a function on a probability space

with respect to a finite or countable partition. We can then understand the

entropy as the expected value of the information.

There are a number of ‘stages’ in the definition of the entropy of a trans-

formation. These are entropy of a partition, conditional entropy, the entropy

of a transformation relative to a partition and finally, the most important –

the entropy of a transformation irrespective of partition. All of them will be
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defined in this section. For definitions and results in this section and for more

information see also [13], [52], [51], [54], [55] and [68].

We will use logarithms to base 2 and we will also set 0 · log 0 = 0.

Definition 1.3.1. A partition, denoted by α = {A1, A2, . . .}, of a probability

space (X,B, µ) is a collection of elements of B such that Ai ∩Aj = ∅ for i 6= j

and
⋃
iAi = X.

We will consider finite or countable partitions.

Definition 1.3.2. Given two finite partitions α = {A1, A2, . . . , An} and β =

{B1, B2, . . . , Bk} of (X,B, µ) we define their join to be the partition

α ∨ β = {Ai ∩Bj : 1 ≤ i ≤ n, 1 ≤ j ≤ k}.

Definition 1.3.3. Let α be a finite or countable partition of (X,B, µ). The

information function I(α) : X → R is defined by

I(α)(x) = −
∑
A∈α

χA(x) log µ(A).

Definition 1.3.4. Let α be a finite or countable partition of (X,B, µ). The

entropy of α is the number

H(α) =

∫
I(α)dµ = −

∑
A∈α

µ(A) log µ(A).

One can see that the entropy of a partition is the expected value of the

information.

Besides the entropy of a partition there is also conditional entropy which

is not necessary for defining the entropy of a transformation but is useful in

deriving properties of entropy. Moreover, we will use it to derive an alternative

definition of the entropy of a transformation relative to a partition. As before,

we define conditional entropy using the conditional information function.

Definition 1.3.5. Given a finite or countable partition α = {A1, . . .} of

(X,B, µ) and a sub-σ-algebra A ⊂ B we define the conditional information
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function of α given A by

I(α|A)(x) = −
∑
A∈α

χA(x) log µ(A|A).

Here µ(A|A) is the conditional probability of A given A and is defined

as a function µ(A|A) = E(χA|A) where the function E(χA|A) is called the

conditional expectation.

If A ⊂ B is a sub-σ-algebra and f ∈ L1(X,B, µ) then the conditional

expectation of f given A, denoted by E(f |A), is the unique A-measurable

function such that
∫
A
fdµ =

∫
A
E(f |A)dµ for all A ∈ A.

We can think of the conditional information as follows. If we know which

element of A a given point x ∈ X lies in, then I(α|A) indicates the amount of

additional information we get from knowing which element of the partition α

the point x is in. The conditional entropy can be then defined as the expected

value of the conditional information.

Definition 1.3.6. Let α be a finite or countable partition of (X,B, µ) and let

A be a sub-σ-algebra. The conditional entropy of α given A is

H(α|A) =

∫
I(α|A)dµ = −

∑
A∈α

µ(A|A) log µ(A|A).

If β is a finite or countable partition of (X,B, µ), then β generates a sub-

σ-algebra, say β̂, of B formed by the collection of all elements of B which

are unions of elements of β. We will use the notational convention E(f |β) for

E(f |β̂), µ(A|β) for µ(A|β̂) or H(α|β) for H(α|β̂) etc. For computations we

will use the fact that the conditional probability of a set A ∈ B given β is

µ(A|β) =
∑
B∈β

χB
µ(A ∩B)

µ(B)
.

There are a number of basic properties for the conditional entropy, e.g. if

α, β, γ are countable partitions, then we have [68], p. 81:

• H(α ∨ β|γ) = H(α|γ) +H(β|α ∨ γ),
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• H(α ∨ β) = H(α) +H(β|α),

• H(α) ≥ H(α|β),

• H(α ∨ β|γ) ≤ H(α|γ) +H(β|γ).

Definition 1.3.7. Let T : X → X be a measure-preserving transformation

of the probability space (X,B, µ) and α be a countable partition of X. The

entropy of T relative to α is defined by

hµ(T, α) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iα

)
.

It can be shown that the above limit always exists. There is an alternative

formula for hµ(T, α) which is frequently used in calculating entropy and that

is

hµ(T, α) = lim
n→∞

H

(
α|

n∨
i=1

T−iα

)
= H

(
α|
∞∨
i=1

T−iα

)
. (1.2)

Finally, we can give the definition of the measure-theoretic entropy of T with

respect to the measure µ (irrespective of α).

Definition 1.3.8. Let T : X → X be a measure-preserving transformation

of the probability space (X,B, µ). Then the (measure-theoretic) entropy of T

with respect to µ is

hµ(T ) = suphµ(T, α)

where the supremum is taken over all finite or countable partitions α with

H(α) < +∞.

To compute the entropy from the definition can be very difficult. However,

there is a method for practical computation which is given by the following

theorems and definitions. First, we state a theorem where the supremum in

Definition 1.3.8 is replaced by a limit.

Theorem 1.3.9 (Abramov). Let α1 ≤ α2 ≤ . . . ↑ B be countable partitions

such that H(αn) <∞ for all n ≥ 1. Then

hµ(T ) = lim
n→∞

hµ(T, αn).
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Remark 1.3.10. Given two countable partitions we say that α2 is a refinement

of α1 and we write α1 ≤ α2 if every element of α1 is a union of elements of α2.

Proof: The proof can be found in [55] on page 87. �

A way to generate the increasing partitions is stated by the following defi-

nition.

Definition 1.3.11. A countable partition α is a strong generator for the prob-

ability space (X,B, µ) if
n−1∨
i=0

T−iα→ B

as n → ∞. A countable partition α is a generator for the probability space

(X,B, µ) if T is invertible and

n−1∨
i=−(n−1)

T−iα→ B

as n→∞.

The following theorem is the main tool in computing the entropy of a

transformation.

Theorem 1.3.12 (Sinai). If α is a (strong) generator and H(α) <∞ then

hµ(T ) = hµ(T, α).

Proof: The proof can be found in [68] on page 95. �

Example 1.3.13. The entropy of the doubling map T : R/Z→ R/Z defined

by T (x) = 2x (mod 1) is log 2.
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1.4 Isomorphism Problem and Bernoulli prop-

erty

In mathematics, it is natural to ask when two mathematical objects of the same

class are in some sense ‘the same’, which can be referred to as the isomorphism

problem. In ergodic theory, this problem is to decide when two measure-

preserving transformations are isomorphic. Since this is very hard, the usual

way we deal with this is to look for invariants, i.e. quantities that do not change

under isomorphism. One of these invariants is entropy which was defined

earlier.

Definitions and results in this section can be also found in [13] and [68].

Definition 1.4.1. Let (X1,B1, µ1) and (X2,B2, µ2) be probability spaces and

let T1 : X1 → X1, T2 : X2 → X2 be measure-preserving transformations. We

say that T1 and T2 are isomorphic if there exist M1 ∈ B1 and M2 ∈ B2 such

that

• µ1(M1) = 1, µ2(M2) = 1,

• T1(M1) ⊆M1, T2(M2) ⊆M2,

and there exists an invertible measure-preserving transformation φ : M1 →M2

such that

φT1(x) = T2φ(x) for all x ∈M1.

For a better visualisation of the definition see the commutative diagram

below.
X1

T1−−−→ X1

φ

y φ

y
X2

T2−−−→ X2

As we mentioned before, measure-theoretic entropy is invariant under isomor-

phism, meaning that if two measure-preserving transformations are isomorphic

then they have the same entropy. However, in general, entropy is not a com-

plete invariant by which we mean that two measure-preserving transforma-

tions with equal entropy are not necessarily isomorphic. However, there exists
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a class of measure-preserving transformations for which entropy is a complete

isomorphism invariant. We will now define such transformations.

Definition 1.4.2. Suppose (Y, C,m) is a probability space and let Yn =

(Y, C,m) for each n ∈ Z. Suppose that (X,B, µ) =
∏

n∈Z Yn and σ : X → X is

the shift σ({xj}) = {xj+1}, j ∈ Z. The shift σ is then an invertible measure-

preserving transformation and is said to be the Bernoulli shift with state space

(Y, C,m).

In this definition, {xj} denotes a bi-infinite sequence of elements of the set

Y and the measure µ is the product measure generated by the measure m,

that is µ = ⊗∞−∞m, and is called Bernoulli measure. In 1969 D. S. Ornstein

proved that entropy is a complete isomorphism invariant on the collection of all

Bernoulli shifts. This is formally stated in the following fundamental theorem.

Theorem 1.4.3 (Ornstein). Any two Bernoulli shifts with the same entropy

are isomorphic.

Proof: The proof can be found in [49]. �

Remark 1.4.4. So far we have discussed two-sided Bernoulli shifts, i.e. in-

vertible shifts. In the case, when (X,B, µ) =
∏

n∈Z+
0
Yn, the shift σ : X →

X, σ({xj}) = {xj+1}, j ∈ Z+
0 is non-invertible and we talk about one-sided

Bernoulli shifts. Ornstein’s Theorem 1.4.3 is not true for one-sided shifts so

entropy is not a complete invariant for one-sided shifts.

Definition 1.4.5. A measure-preserving transformation is said to be Bernoulli

if it is isomorphic to a Bernoulli shift.

For a non-invertible transformation, the shift is understood to be one-sided,

and for an invertible transformation the shift is two-sided.

Example 1.4.6. The doubling map T : R/Z → R/Z which is defined by

T (x) = 2x (mod 1) is isomorphic to the Bernoulli
(

1
2
, 1

2

)
-shift.

The Bernoulli property is even stronger than exactness for non-invertible

transformations and stronger than K-automorphism for invertible transforma-

tions. This is stated in the following theorem.
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Theorem 1.4.7. If an invertible measure-preserving transformation is Ber-

noulli then it is also a K-automorphism. Similarly, if a non-invertible measure-

preserving transformation is Bernoulli then it is exact.

Proof: The proof can be found in [68] on page 107. �

From Theorem 1.4.7 and Propositions 1.2.8 – 1.2.14 one can see that the

Bernoulli property implies a number of strictly weaker properties which can

be summarised in the following hierarchy:

For non-invertible transformations:

Bernoulli ⇒ exact ⇒ strong-mixing ⇒ weak-mixing ⇒ ergodic.

For invertible transformations:

Bernoulli ⇒ K-automorphism ⇒ strong-mixing ⇒ weak-mixing ⇒ ergodic.

To any non-invertible measure-preserving transformation (X,B0, µ0, T0), we

can associate an invertible transformation (XT0 ,B, µ, T ) which may be con-

structed as follows. Set

XT0 = {(x0, x1, x2, . . .) : xn = T0(xn+1), xn ∈ X,n = 0, 1, 2, . . .},

and let T : XT0 → XT0 be given by the formula

T ((x0, x1, . . . , )) = (T0(x0), x0, x1, . . .).

The map T is one-to-one on XT0 . To transform XT0 into a measure space, we

define a measure µ on XT0 , by defining µ on the cylinder sets of the form

C(A0, A1, . . . , Ak) = {(x0, x1, x2, . . .) : x0 ∈ A0, x1 ∈ A1, . . . , xk ∈ Ak}

by

µ(C(A0, A1, . . . , Ak)) = µ0(T−k0 (A0) ∩ T−k+1
0 (A1) ∩ . . . ∩ Ak),

for k ≥ 1. By the Kolmogorov Extension Theorem, the measure µ on the

cylinder sets can be extended to the measure µ defined on the σ-algebra B.
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One can check that the transformation (XT0 ,B, µ, T ) is measure-preserving as a

consequence of the measure-preservation of the transformation (X,B0, µ0, T0).

Given this construction, we will introduce the following definition.

Definition 1.4.8. The invertible measure-preserving transformation T of the

space (XT0 ,B, µ) is said to be the natural extension of the measure-preserving

transformation T0 of the space (X,B0, µ0).

The existence and uniqueness of the natural extension is assured by the

following theorem which was proved by V. A. Rokhlin.

Theorem 1.4.9. Every non-invertible measure-preserving transformation has

a natural extension and this extension is unique up to isomorphism.

Proof: The proof can be found in [58]. �

There are relationships between the ergodic properties of T0 and T which

are summarised in the following theorem.

Theorem 1.4.10. Let T0 be a non-invertible measure-preserving transforma-

tion of (X,B0, µ0) and let T be its natural extension as defined above. Then

• T is ergodic if and only if T0 is ergodic.

• T is strong-mixing, resp. weak-mixing if and only if T0 is strong-mixing,

resp. weak-mixing.

• The entropy of T0 equals to the entropy of its natural extension T.

• If T0 is exact, then its natural extension T is a K-automorphism. If

T is a K-automorphism, then T is a natural extension of some exact

transformation.

Proof: The proof can be found in [58]. �
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1.5 Uniform Distribution Modulo One

In this section we give a brief relevant introduction to uniform distribution

theory. For definitions and results in this section see also [35].

Definition 1.5.1. A sequence of real numbers (xn)∞n=1 is called uniformly

distributed modulo one if for each interval I ⊆ [0, 1), we have

lim
N→∞

1

N
#{n ≤ N : {xn} ∈ I} = |I|

where |I| denotes the length of the interval I and for a real number x we denote

its fractional part by {x}.

The definition says that a sequence of reals (xn)∞n=1 is uniformly distributed

modulo 1 if for each interval I, the frequency with which the fractional parts

of xn lie in the interval I is the same as the length of the interval I.

A necessary and sufficient condition for the uniform distribution modulo 1

for (xn)∞n=1 is given by the following result.

Theorem 1.5.2 (Weyl’s Criterion). The following statements are equivalent:

• the sequence of real numbers (xn)∞n=1 is uniformly distributed modulo 1;

• for any real-valued continuous function on [0, 1], we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫ 1

0

f(x) dx;

• for all integers h 6= 0, we have

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0.

Proof: The proof can be found in [35] on pages 2 and 7. �

Example 1.5.3. The sequence (αn)∞n=1 where α ∈ R\Q is uniformly dis-

tributed modulo 1.
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We now introduce the concept of uniform distribution mod 1 in higher

dimensions. Let s ∈ Z such that s ≥ 2 and let a = (a1, . . . , as) and b =

(b1, . . . , bs) denote vectors with real components, i.e. a,b ∈ Rs. The inequal-

ities a < b or a ≤ b mean that aj < bj or aj ≤ bj for all j = 1, . . . , s. We

denote the set of points x ∈ Rs such that a ≤ x < b by [a,b) and call it a

s-dimensional interval. Similarly, we define other s-dimensional intervals, e.g.

[a,b]. The interval [0, 1)s is called s-dimensional unit cube. For the integral

part of x = (x1, . . . , xs) we write [x] = ([x1], . . . , [xs]) and for the fractional

part of x we write {x} = ({x1}, . . . , {xs}).

Definition 1.5.4. A sequence (xn)∞n=1 of vectors in Rs is called uniformly

distributed on [0, 1)s if for all s-dimensional intervals [a,b) ⊆ [0, 1)s, we have

lim
n→∞

1

N
#{n ≤ N : {xn} ∈ [a,b)} =

∞∏
j=1

(bj − aj).

The definition says that a sequence (xn)∞n=1 ∈ Rs is uniformly distributed

on [0, 1)s if for any s-dimensional cube, the frequency with which the fractional

parts of xn lie in the cube is the same as the s-dimensional volume of the cube.

Theorem 1.5.5 (Multidimensional Weyl’s Criterion). The following state-

ments are equivalent:

• the sequence (xn)∞n=1 = (x1
n, . . . , x

s
n)∞n=1 of vectors in Rs is uniformly

distributed on [0, 1)s;

• for every continuous function on [0, 1)s, we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =

∫
[0,1)s

f(x) dx;

• for all h = (h1, . . . , hs) ∈ Zs,h 6= 0, we have

lim
N→∞

1

N

N∑
n=1

e2πi(h1x1n+···+hsxsn) = 0.
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Proof: The proof can be found in [35] on page 48. �

Example 1.5.6. The sequence (α1n, . . . , αsn)∞n=1 ∈ Rs is uniformly distributed

on [0, 1)s if the real numbers α1, . . . , αs and 1 are linearly independent over

the rational numbers.

1.6 Subsequence Ergodic Theory

This section will provide the arithmetic and number theoretic context in which

the results of Section 2.6 are proved. We are interested in two issues that are

determining which sequences of integers satisfy a pointwise ergodic theorem

and calculating the limit of the ergodic averages in the instances where these

limits exist. First we introduce some definitions to describe the framework

in which this is done and then we state some known results. Definitions and

results in this section can be also found in [21] and [42].

Definition 1.6.1. A sequence of integers (an)∞n=1 is called Lp-good universal

if for each dynamical system (X,B, µ, T ) and f ∈ Lp(X,B, µ) we have that

f(x) = lim
N→∞

1

N

N∑
n=1

f(T an−1x)

exists almost everywhere with respect to µ.

Example 1.6.2. We give some examples of Lp-good universal sequences for

some p ≥ 1 :

1. The positive integers: The sequence (n)∞n=1 is L1-good universal. This

follows from Birkhoff’s Pointwise Ergodic Theorem 1.2.16.

2. Polynomial like sequences: Let φ(x) be a polynomial such that φ(N) ⊆ N
and let pn be nth prime. Then (φ(n))∞n=1 and (φ(pn))∞n=1 are Lp-good

universal sequences for p > 1. See [7] and [41].

The following theorem enables us to calculate the limit of the ergodic av-

erages for an Lp-good universal sequence. This theorem is used to make the

calculations in Section 2.6 given an Lp-good universal sequence.
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Theorem 1.6.3. Suppose that (an)n≥1 is L2-good universal and ({anγ})∞n=1 is

uniformly distributed modulo one for each irrational number γ. If the dynam-

ical system (X,B, µ, T ) is weak-mixing, then f(x) exists and f(x) =
∫
X
fdµ

almost everywhere with respect to µ.

Proof: The proof can be found in [42]. �

Remark 1.6.4. Note that Theorem 1.6.3 extends readily to p > 1 by approx-

imation by L2-functions.

1.7 Moving Averages

Let (X,B, µ) be a probability space and T be an ergodic measure-preserving

transformation from X onto itself. Given (nl, kl)
∞
l=1 to be a sequence of pairs

of positive integers, we can define the sequence of averaging operators

Al,f (x) =
1

kl

kl−1∑
i=0

f(T nl+ix). (1.3)

In [5] Bellow, Jones and Rosenblatt gave necessary and sufficient conditions

for the almost everywhere convergence of the sequence of averages (1.3). This

result will be used for applications in Section 2.7. Definitions and theorems in

this section can be also found in [5] and [21]. To proceed, we introduce some

notation. Let Z be a collection of points in Z× N and let

Zh = {(n, k) : (n, k) ∈ Z and k ≥ h},

Zh
α = {(z, s) ∈ Z2 : |z − y| < α(s− r) for some (y, r) ∈ Zh}

and

Zh
α(λ) = {n : (n, λ) ∈ Zh

α}

where α > 0 and λ is a positive integer. Geometrically we can think of Z1
α as

the lattice points contained in the union of all solid cones with aperture α and

vertex contained in Z1 = Z.
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Definition 1.7.1. A sequence of pairs of positive integers (nl, kl)
∞
l=1 is called

Stoltz if there exists a collection of points Z in Z×N, and a function h = h(t)

tending to infinity with t such that (nl, kl)
∞
l=t ∈ Zh(t) and there exist h0, α0

and A > 0 such that for all integers λ > 0 we have |Zh0
α0

(λ)| ≤ Aλ.

This technical condition is important for the following theorem which was

given in [5].

Theorem 1.7.2. Let (X,B, µ) be a probability space and T : X → X be a

measure-preserving map. Suppose that the sequence of pairs of positive integers

(nl, kl)
∞
l=1 is Stoltz and f ∈ L1(X,B, µ). Then the limit

Af (x) = lim
l→∞

1

kl

kl−1∑
i=0

f(T nl+ix)

exists almost everywhere with respect to the measure µ.

Proof: The proof can be found in [5]. �

The following theorem will be used for applications in Section 2.7.

Theorem 1.7.3. Let (X,B, µ) be a probability space and T : X → X be an

ergodic map. Suppose that the sequence of pairs of positive integers (nl, kl)
∞
l=1

is Stoltz and f ∈ L1(X,B, µ). Then

lim
l→∞

1

kl

kl−1∑
i=0

f(T nl+ix) =

∫
X

fdµ

almost everywhere with respect to the measure µ.

Proof: If we set

Al,f (x) =
1

kl

kl−1∑
i=0

f(T nl+ix)

then

Al,f (Tx)− Al,f (x) = k−1
l (f(T nl+kl)− f(T nlx)).

So, we get that Af (Tx) = Af (x) µ almost everywhere. From Theorem 1.2.6

we have that if T is ergodic and Af (Tx) = Af (x) almost everywhere, then
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Af (x) is constant almost everywhere. Because
∫
X
f(x)dµ =

∫
X
Af (x)dµ, we

have Af (x) =
∫
X
fdµ almost everywhere. �

Averages where kl = 1 for all l are called non-moving.

Example 1.7.4. If we take nl = 22l and kl = 22l−1
, then (nl, kl)

∞
l=1 is Stoltz.

1.8 Continuous Transformations on Compact

Metric Spaces

In this section we will assume that X is a compact metric space. For definitions

and results in this section see also [13], [54] and [68].

We will denote the σ-algebra of Borel subsets of X by B and the set of

all Borel probability measures on (X,B) by M(X). We can see that M(X) is

convex, i.e. for µ1, µ2 ∈ M(X) and 0 ≤ α ≤ 1, we have αµ1 + (1 − α)µ2 ∈
M(X).

There is a member δx of M(x) defined for each x ∈ X by

δx(A) =

1 if x ∈ A,

0 if x /∈ A.

We call δx the Dirac measure at x. The map x → M(x) : x → δx is then a

continuous embedding of X in M(X). We also have that
∫
f dδx = f(x).

Theorem 1.8.1 (Riesz Representation Theorem). Let X be a compact metric

space and let J : C(X)→ C be a functional such that:

1. J is bounded, i.e. for all f ∈ C(X) we have |J(f)| ≤ ‖f‖∞ ;

2. J is linear, i.e. J(λ1f1 + λ2f2) = λ1J(f1) + λ2J(f2) where λ1, λ2 are

complex numbers;

3. J is positive, i.e. if f ≥ 0 then J(f) ≥ 0;

4. J is normalised, i.e. J(1) = 1.
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Then there exists a Borel probability measure µ ∈ M(X) such that for all

f ∈ C(X) we have

J(f) =

∫
X

f dµ.

Proof: The proof can be found in [53] on page 145. �

Note that a linear functional is continuous, i.e. fn ∈ C(X) and fn → f

then J(fn) → J(f), if and only if it is bounded. So, if a functional is linear,

the condition 1 is equivalent to saying that J is continuous.

The Riesz Representation Theorem describes the relationship between ele-

ments of M(X) and continuous linear positive normalised functionals. This is

a useful method for constructing measures.

Now suppose that T : X → X is a continuous transformation of the com-

pact metric space X. One can see that T−1B ⊂ B so T is measurable. There

is a map on the set M(X) induced by T which is T∗ : M(X)→M(X) defined

by

(T∗µ)(B) = µ(T−1B).

The following lemma shows how to perform integration with respect to T∗µ.

Lemma 1.8.2. For every function f ∈ C(X) we have∫
f d(T∗µ) =

∫
f ◦ T dµ.

Proof: The proof can be found in [68] on page 150. �

There is a topology on M(X) which is given by the following definition.

Definition 1.8.3. The smallest topology on M(X) such that for each of the

maps µ →
∫
X
f dµ (f ∈ C(X)) is continuous, is called the weak∗ topology on

M(X).

In the weak∗ topology, a sequence of probability measures µn converge to

µ in M(X) if for every f ∈ C(X) we have∫
f dµn →

∫
f dµ
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as n → ∞. This is called weak∗ convergence. The space M(X) is metrisable

in the weak∗ topology and it is also compact in this topology [68], p. 148–150.

Our interest will now be focused on probability measures in M(X) which

are invariant with respect to T . We know that the measure µ is T -invariant if

and only if T∗µ = µ. We will denote the space of all Borel probability invariant

measures by

M(X,T ) = {µ ∈M(X)|T∗µ = µ}.

There is a useful lemma which tells us how one can check whether a measure

is T -invariant.

Lemma 1.8.4. Suppose that T : X → X is a continuous transformation of a

compact metric space and µ ∈M(X). Then µ ∈M(X,T ) if and only if for all

f ∈ C(X) we have ∫
f ◦ T dµ =

∫
f dµ.

Proof: The proof can be found in [68] on page 151. �

The properties of the set M(X,T ) where T : X → X is a continuous

transformation of a compact metric space X, are [68], p. 152:

• M(X,T ) is non-empty, i.e. there exists at least one T -invariant proba-

bility measure.

• M(X,T ) is a compact subset of M(X).

• M(X,T ) is convex.

• The probability measure µ in M(X,T ) is ergodic if and only if µ is an

extreme point of M(X,T ), i.e. whenever µ = αµ1 + (1 − α)µ2, where

µ1, µ2 ∈M(X,T ), α ∈ (0, 1) then µ1 = µ2 = µ.

• There exists at least one ergodic measure in M(X,T ).

Now, we will look at transformations where M(X,T ) has only one member.

Definition 1.8.5. Let T be a continuous transformation on a compact metris-

able space X. We say that T is uniquely ergodic if there is only one T -invariant

Borel probability measure on X.

34



Example 1.8.6. Let T : R/Z → R/Z be the irrational rotation map defined

by T (x) = x+α (mod 1) with α irrational. Then T is uniquely ergodic where

the unique invariant probability measure is Lebesgue measure.

For uniquely ergodic dynamical systems there is a stronger variant of

Birkhoff’s Ergodic Theorem.

Theorem 1.8.7. Suppose that T is a continuous transformation on a compact

metrisable space X and µ is a T -invariant Borel probability measure on X. The

following statements are equivalent:

1. T is uniquely ergodic.

2. For any function f ∈ C(X) (the space of continuous functions on X)

the time means 1
n

∑n−1
i=0 f(T ix) converge uniformly to a constant.

3. For any f ∈ C(X) 1
n

∑n−1
i=0 f(T ix) converges pointwise to a constant.

4. For any f ∈ C(X) and all x ∈ X, we have

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫
X

f(x) dµ.

Proof: The proof can be found in [68] on page 160. �
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Chapter 2

Schneider’s Continued Fraction

Map on a Non-Archimedean

Local Field

In this chapter we study ergodic properties of a generalisation of Schneider’s

p-adic continued fraction map. Results in this chapter can be also found in

[21] and [29].

2.1 Motivation

To give a motivation for studying Schneider’s continued fraction map, we be-

gin with a brief summary of terms and results for regular continued fractions

relevant for further discussion. Any real number x ∈ [0, 1] can be written in

the form

x =
1

c1 +
1

c2 +
1

c3 + .. .

(2.1)

where c1, c2, . . . are natural numbers. The expression (2.1) is called the reg-

ular continued fraction expansion which is also written more compactly as
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[c1, c2, . . .]. The terms c1, c2, . . . are called the partial quotients of the contin-

ued fraction expansion and the sequence of rational truncates

[c1, c2 . . . , cn] =
pn
qn
, (n = 1, 2, . . .)

are called the convergents of the continued fraction expansion. It is well known

that if x is rational, the continued fraction expansion (2.1) is finite and if x is

irrational, the expansion (2.1) is infinite.

There is a transformation related to continued fractions called the Gauss

map, defined on [0, 1] by

T (x) =

{ {
1
x

}
if x 6= 0,

0 if x = 0.

Notice that cn(x) = cn−1(Tx) (n = 1, 2, . . .). We now consider the particular

ergodic properties of the dynamical system (X,L, γ, T ) where X denotes [0, 1],

L is the σ-algebra on X, γ is the Gauss measure on (X,L) defined for any A

in L by

γ(A) =
1

log 2

∫
A

dx

x+ 1

and T is the Gauss map. It is known that the Gauss map T is measure-

preserving with respect to Gauss measure γ. It is also ergodic and exact, with

a Bernoulli natural extension and the measure-theoretic entropy equal to π2

6 log 2
.

See also [13], p. 165–177, or Chapter 4 of [27]. This point of view can be used

to prove results like the following.

Suppose F : R≥0 → R is continuous, increasing and such that∫ 1

0

|F (c1(x))|dx <∞.

For each n ∈ N and arbitrary real numbers d1, . . . , dn we set

MF,n(d1, . . . , dn) = F−1

[
F (d1) + . . .+ F (dn)

n

]
.
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Then we have

lim
n→∞

MF,n(c1(x), . . . , cn(x)) = F−1

[∫ 1

0

F (c1(x))dx

]
,

almost everywhere with respect to Lebesgue measure on [0, 1], see [61]. For

instance, restricting to the case F (x) = log x, we recover A. Khinchin’s famous

result that

lim
n→∞

(c1(x) · · · cn(x))
1
n =

∞∏
k=1

(
1 +

1

k2 + 2k

) log k
log 2

,

almost everywhere with respect to Lebesgue measure [34]. Results for means

other than the geometric mean can be obtained by different choices of F . See

also [27], p. 230–232 for more details.

Another well known result about the statistics of partial quotients in con-

tinued fractions is the following. Let Pn(x, q) (n = 1, 2, . . .) denote the number

of c1(x), . . . , cn(x) such that ci(x) = q where q is a positive integer. Then

lim
n→∞

Pn(x, q)

n
=

1

log 2
log

(q + 1)2

q(q + 2)
,

almost everywhere with respect to Lebesgue measure. This result is known

as the pointwise Gauss-Kuzmin theorem and it was first suggested by K. F.

Gauss in the letters to P. S. Laplace [16]. R. O. Kuzmin gave the first proof of

this problem with additional estimates in [36] and [37] and shortly after that

P. Lévy developed another proof with new estimates [40]. For other results in

this area see also [71]. A nice summary of the theory of the Gauss-Kuzmin

distribution can be found in [33], Chapter 9.

Extensions of the above results to subsequence and moving averages appear

in [42] and [32] respectively.

The purpose of this chapter is to extend this study of the ergodic and

metric theory of continued fractions to the non-Archimedean settings.
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2.2 Introduction of Generalised Schneider’s

Continued Fraction Map

Let K be a non-Archimedean local field with a normalised discrete valuation.

Then O = {x ∈ K : |x| ≤ 1} is the valuation ring, M = {x ∈ K : |x| < 1}
is the maximal ideal in O, k = O/M is the residue field of K and π is the

uniformiser. Our primary object of study in this chapter is the map Tv :M→
M defined by

Tv(x) =
πv(x)

x
− b(x) (2.2)

where v(x) is the valuation of x and b(x) denotes the residue class to which
πv(x)

x
belongs in k\{0}.

This gives rise to the continued fraction expansion of x ∈M in the form

x =
πa1

b1 +
πa2

b2 +
πa3

b3 + .. .

(2.3)

where bn ∈ k∗ = k\{0}, an ∈ N for n = 1, 2, . . . .

The rational approximants to x ∈ M arise in a manner similar to that in

the case of the real numbers as follows. We suppose that A0 = 0, B0 = 1, A1 =

πa1 , B1 = b1. Then set

An = πanAn−2 + bnAn−1 and Bn = πanBn−2 + bnBn−1 (2.4)

for n ≥ 2. The sequence of rational numbers (An
Bn

)∞n=1 are the convergents to

x ∈M.
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Let us fix n ∈ N. Then the n-th step of the expansion of x ∈M is

An
Bn

=
πa1

b1 +
πa2

b2 +
πa3

b3 + .. .
+
πan

bn

. (2.5)

Now let

g(z) =
πa1

b1 +
πa2

b2 +
πa3

b3 + .. .
+

πan

bn + z

. (2.6)

for some z ∈M.

Lemma 2.2.1. We have

An−1Bn − AnBn−1 = (−1)nπa1+···+an (2.7)

for n = 1, 2, . . . .

Proof: We prove it by induction. First let us check that it is valid for n = 1.

The left hand side of (2.7) is

A0B1 − A1B0 = −πa1 · 1 = −πa1 = (−1)1πa1

which is equal to the right hand side (−1)1πa1 . Now we suppose that (2.7)

is valid for n and we want to prove it for n + 1, i.e. we want to show that

AnBn+1 − An+1Bn = (−1)n+1πa1+···+an+1 . Using (2.4) we have

AnBn+1 − An+1Bn = An(πan+1Bn−1 + bn+1Bn)−Bn(πan+1An−1 + bn+1An)

= πan+1(AnBn−1 − An−1Bn) = −πan+1(An−1Bn − AnBn−1)

= −πan+1((−1)nπa1+···+an) = (−1)n+1πa1+···+an+1
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which we wanted to show and thus (2.7) holds for all n = 1, 2, . . . . �

Lemma 2.2.2. For z ∈M we have that

g(z) =
zAn−1 + An
zBn−1 +Bn

.

Proof: Using the formulas (2.4) we get

g(z) =
πanAn−2 + (bn + z)An−1

πanBn−2 + (bn + z)Bn−1

=
πanAn−2 + bnAn−1 + zAn−1

πanBn−2 + bnBn−1 + zBn−1

=
An + zAn−1

Bn + zBn−1

.

�

2.3 Properties of Generalised Schneider’s Con-

tinued Fraction Map

Throughout this chapter we will consider the dynamical system (M,B, µ, Tv)
where B is the Haar σ-algebra restricted toM, µ denotes Haar measure onM
and Tv is defined by (2.2). For the Haar measure one checks that µ(πa+πnO) =

(#(k))1−n where #(k) denotes the cardinality of the finite set k. So, one sees

that µ(πO) = µ(M) = 1.

Lemma 2.3.1. Let m,n be positive integers, c0 ∈ k\{0} and a ∈ O. We then

have
πm

c0 + πa+ πnO
=

πm

c0 + πa
+ πn+mO.

Proof: Let b ∈ O. Then −πnb ∈ πnO. Since c0 ∈ k\{0}, we know c0 cannot be

equal to π, then the valuations v(c0 + πa) = 0 and v(c0 + πa + πnb) = 0 and

also v(c0 + πa) + v(c0 + πa + πnb) = v((c0 + πa)(c0 + πa + πnb)) = 0. Thus

(c0 + πa)(c0 + πa+ πnb) ∈ O× and so

−πnb
(c0 + πa)(c0 + πa+ πnb)

∈ πnO
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which implies that

1

c0 + πa+ πnb
− 1

c0 + πa
∈ πnO.

From this we obtain that

πm

c0 + πa+ πnb
∈ πm

c0 + πa
+ πn+mO

and finally,
πm

c0 + πa+ πnO
⊆ πm

c0 + πa
+ πn+mO.

Now, again let b ∈ O, then −πnb ∈ πnO. Since v(c0 + πa) = 0, which implies

that c0+πa ∈ O×, we have −πnb(c0+πa) ∈ πnO. Since v(1+πnb(c0+πa)) = 0,

we get
−πnb(c0 + πa)

1 + πnb(c0 + πa)
∈ πnO.

This implies that

c0 + πa

1 + πnb(c0 + πa)
− c0 − πa ∈ πnO

and
c0 + πa

1 + πnb(c0 + πa)
∈ c0 + πa+ πnO.

Now, we have
1 + πnb(c0 + πa)

c0 + πa
∈ 1

c0 + πa+ πnO
leading to

1

c0 + πa
+ πnb ∈ 1

c0 + πa+ πnO
and finally

πm

c0 + πa
+ πn+mO ⊆ πm

c0 + πa+ πnO
.

Thus, we proved that
πm

c0 + πa+ πnO
=

πm

c0 + πa
+ πn+mO.

�
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Proposition 2.3.2. The map Tv : M → M defined by (2.2) is measure-

preserving with respect to Haar measure µ, i.e. µ(T−1
v (A)) = µ(A) for all

Haar measurable sets A ∈ B.

Proof: To prove that Tv preserves Haar measure on M we only need to check

it for special sets of the form A = πa + πnO, where a ∈ O. This is because

sets of this form generate the Haar σ-algebra on M. Suppose c0 ∈ k\{0} and

let m,n be positive integers. Then

Tv

(
πm

c0 + πa+ πnO

)
= πa+ πnO.

It follows that

T−1
v (πa+ πnO) =

⋃
c0∈k\{0}

∞⋃
m=1

(
πm

c0 + πa+ πnO

)
.

By Lemma 2.3.1 we have that

πm

c0 + πa+ πnO
=

πm

c0 + πa
+ πn+mO

and so

µ

(
πm

c0 + πa
+ πn+mO

)
= (#(k))1−m−n.

It follows that

µ(T−1
v (πa+ πnO)) =

∑
c0∈k\{0}

∞∑
m=1

µ

(
πm

c0 + πa
+ πn+mO

)

=
∑

c0∈k\{0}

∞∑
m=1

(#(k))1−n−m

= (#(k)− 1)

1
#(k)

1− 1
#(k)

· (#(k))1−n

= (#(k))1−n = µ(πa+ πnO),

as required. So, Tv is measure-preserving with respect to Haar measure µ. �
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Next, we will show that the map Tv is exact, but first we need to introduce

some notation.

Let B = k∗×N and let j = (j1, j2, . . .) be a countable sequence of elements

of B. For a particular element j∗ = (b, a) ∈ B define the cylinder-set ∆(j∗) by

∆(j∗) =

{
x ∈M : v(x) = a and

(
πv(x)

x
mod π

)
= b

}
.

Now let ∆(0) = M and let ∆
(1)
j = ∆(j1), where j1 is the first element of the

sequence j. Next define

∆
(2)
j = ∆(2)(j1, j2) = {x ∈M : x ∈ ∆(j1) and Tv(x) ∈ ∆(j2)}.

Proceeding inductively we get

∆
(n)
j = ∆(n)(j1, . . . , jn)

= {x ∈M : x ∈ ∆(j1), Tv(x) ∈ ∆(j2), . . . , T n−1
v (x) ∈ ∆(jn)}.

So, ∆
(n)
j is the set of all x ∈ M with continued fraction expansion starting

with j1, j2, . . . , jn. This means that ∆
(n)
j depends only on the first n terms of

j. If Jn = (j1, j2, . . . , jn) ∈ Bn, we have

M =
⋃

Jn∈Bn
∆

(n)
j for all n ≥ 1

such that ⋃
jn∈B

∆
(n)
j = ∆(n−1)(j1, . . . , jn−1),

Tv(∆
(n)
j ) = ∆(n−1)(j2, . . . , jn),

and

Tv(∆
(1)
j ) =M.

We will also need the following lemmas.
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Lemma 2.3.3. Let N = a1 + · · ·+ an. Then T−nv |∆(n)
j

is bijective and

dµ(T−nv (x)) = (#(k))−Ndµ(x)

(on ∆
(n)
j ).

Proof: For x ∈ ∆
(n)
j , its nth convergent is An

Bn
defined by (2.5). One can see

that T−nv (x)|
∆

(n)
j

is nothing else than g(x) which is defined by (2.6). Using

Lemma 2.2.2 we get that

g(x)− An
Bn

=
xAn−1 + An
xBn−1 +Bn

− An
Bn

=
x(An−1Bn − AnBn−1)

Bn(xBn−1 +Bn)
=

(−1)xπN

Bn(xBn−1 +Bn)

and so

g(x) =
An
Bn

+
(−1)nxπN

(xBn−1 +Bn)Bn

.

As Bn is in O× and multiplication by πN scales Haar measure by (#(k))−N ,

this lemma is proved if we show that the map t :M→M defined by

t(x) =
x

xBn−1 +Bn

preserves Haar measure. Fix L ∈ N and u ∈ O. Let v = t(πu) = πu
πuBn−1+Bn

.

If x ∈ πu + πLO then we get t(x) ∈ v + πLO. Conversely, if we suppose

w ∈ v + πLO, then we get

t−1(w) =
wBn

1− wBn−1

which belongs to the coset t−1(v) + πLO = πu+ πLO. So, we checked that for

every u and L, t maps the coset πu+πLO bijectively to the coset t(πu)+πLO.

Cosets of this type form a basis for the open sets of M and have the same

measure, so t is measure-preserving with respect to Haar measure. Hence our

lemma is proved. �

Lemma 2.3.4. We have that µ(∆
(n)
j ) = 1

(#(k))N
where N = a1 + · · ·+ an.

Proof: Since ∆
(n)
j is the set of all x ∈ M with continued fraction expansion

starting with j1, j2, . . . , jn, it means that we need to compute the Haar measure
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of the set
πa1

b1 +
πa2

b2 +
πa3

b3 + .. .
+

πan

bn + πO

.

If we apply Lemma 2.3.1 repeatedly, we obtain that

πa1

b1 +
πa2

b2 +
πa3

b3 + .. .
+

πan

bn + πO

=
πa1

b1 +
πa2

b2 +
πa3

b3 + .. .
+
πan

bn

+ πa1+···+an+1O,

which has the Haar measure equal to (#(k))−N with N = a1 + · · ·+an. Hence,

the lemma is proved. �

Note that the above results are generalisations of the results proved in [24].

Theorem 2.3.5. The generalised Schneider’s continued fraction map Tv is

exact.

Proof: We would like to show that (M,B, µ, Tv) is exact where B is the Haar

σ-algebra of M, µ is Haar measure on M and Tv is described by (2.2). For

the proof we will use Lemma 1.2.12.

In our case A is the collection of all finite unions of cylinder-sets ∆
(n)
j form-

ing an algebra which generates the Haar σ-algebra B. Let B ∈
⋂∞
n=1 T

−n
v (B).

It suffices to show that

µ(B ∩∆
(n)
j ) = µ(B)µ(∆

(n)
j )

for all ∆
(n)
j .
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For each n ≥ 1 there exists a set An such that µ(An) = µ(B) and B =

T−nv (An). By the change of variables formula if we set

Aj = A(j1, j2, . . . , jn) = T−nv (A) ∩∆(n)(j1, j2, . . . , jn)

then we get

µ(Aj) =

∫
A

dµ(T−nv (x))

dµ(x)
dµ(x) =

∫
A

dµ(T−nv (x)).

By Lemma 2.3.3 we have that dµ(T−nv (x)) = 1
(#(k))N

dµ(x). Thus

µ(Aj) =
1

(#(k))N

∫
A

dµ(x) =
1

(#(k))N
µ(A).

By Lemma 2.3.4 we know that 1
(#(k))N

= µ(∆
(n)
j ) and so we get

µ(Aj) = µ(∆
(n)
j )µ(A). (2.8)

Applying (2.8) to the set An, we get

µ(B ∩∆
(n)
j ) = µ(T−nv (An) ∩∆

(n)
j ) = µ(An)µ(∆

(n)
j ) = µ(B)µ(∆

(n)
j )

which we wanted to show. Now from Lemma 1.2.12 it follows that µ(B) = 0

or 1 so Tv is exact. �

Because (M,B, µ, Tv) is exact, by Propositions 1.2.8 – 1.2.14, other strictly

weaker properties are implied:

• Tv is strong-mixing, i.e. for all A,B ∈ B we have

lim
n→∞

µ(T−nv A ∩B) = µ(A)µ(B)

which impies
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• Tv is weak-mixing, i.e. for all A,B ∈ B we have

lim
n→∞

1

n

n−1∑
j=0

|µ(T−jv A ∩B)− µ(A)µ(B)| = 0

which implies

• Tv is ergodic, i.e. µ(B) = 0 or 1 for any B ∈ B with T−1
v (B) = B.

The following theorem is an analogue of Khinchin’s Theorem for our map

Tv. It is the generalised version of the p-adic analogue of Khinchin’s Theorem

proved in [24].

Theorem 2.3.6. For almost all x ∈M the generalised Schneider’s continued

fraction expansion (2.3) satisfies

lim
n→∞

a1 + a2 + · · ·+ an
n

=
#(k)

#(k)− 1
.

Proof: We use Ergodic Theorem 1.2.16. Since Tv is ergodic and measure-

preserving transformation and we will see that f ∈ L1(M,B, µ), then we have

lim
n→∞

f(x) + f(Tvx) + · · ·+ f(T n−1
v x)

n
=

∫
M
fdµ

for almost all x ∈ M. Let f(x) = v(x) where v(x) is the valuation. Then we

have f(T ivx) = ai+1 and thus we get

lim
n→∞

a1 + a2 + · · ·+ an
n

=

∫
x∈M

v(x)dµ(x).

We can write ∫
M
v(x)dµ(x) =

∞∑
n=1

nµ({x : v(x) = n})

where µ({x : v(x) = n}) = µ(πnO\πn+1O). Because πn+1O ⊂ πnO, then

µ(πnO\πn+1O) = µ(πnO)− µ(πn+1O) =
1

(#(k))n−1
− 1

(#(k))n
=

#(k)− 1

(#(k))n
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for n = 1, 2, . . . . Using the identity
∑∞

n=1 nx
n = x

(1−x)2
for |x| < 1 we get that

∞∑
n=1

nµ({x : v(x) = n}) =
∞∑
n=1

n(#(k)− 1)

(#(k))n
= (#(k)− 1)

∞∑
n=1

n

(#(k))n

= (#(k)− 1) ·
1

#(k)

(1− 1
#(k)

)2
=

#(k)

#(k)− 1
.

So, we obtained that

lim
n→∞

a1 + a2 + · · ·+ an
n

=
#(k)

#(k)− 1
,

which we wanted to prove. Note that this also shows that f(x) = v(x) belongs

to L1(M,B, µ). �

2.4 Entropy of Generalised Schneider’s Con-

tinued Fraction Map

The main goal of this section is to compute the measure-theoretic entropy of

the map Tv.

Theorem 2.4.1. Let B denote the Haar σ-algebra restricted to M and let

µ denote Haar measure on M. Then the measure-theoretic entropy of the

measure-preserving transformation Tv :M→M defined by (2.2) with respect

to Haar measure µ is #(k)
#(k)−1

log(#(k)).

Proof: Take jn = (bn, an), n = 1, 2, . . . with jr 6= js if r 6= s and let α =

{∆(j1),∆(j2),∆(j3), . . .} be the partition. Notice that

∆
(n)
j = ∆(j1) ∩ T−1

v (∆(j2)) ∩ T−2
v (∆(j3)) ∩ · · · ∩ T−(n−1)

v (∆(jn))

= ∆
(1)
j ∩

⋃
J1∈B

∆
(2)
j ∩

⋃
J2∈B2

∆
(3)
j ∩ · · · ∩

⋃
Jn−1∈Bn−1

∆
(n)
j .

To compute entropy, we first need to find the conditional information function
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I(α|
∨n−1
i=1 T

−i
v α) which is defined as

I(α|T−1
v α∨· · ·∨T−(n−1)

v α) = −
∑

∆(j)∈α

χ∆(j)(x) log µ(∆(j)|T−1
v α∨· · ·∨T−(n−1)

v α).

If x ∈ ∆
(n)
j , then χ∆(j1)(x) = 1 and χ∆(ji)(x) = 0 for all i ≥ 2. So, we get

I(α|T−1
v α ∨ · · · ∨ T−(n−1)

v α) = − log µ(∆(j1)|T−1
v α ∨ · · · ∨ T−(n−1)

v α).

The conditional probability is

µ(∆(j1)|T−1
v α ∨ · · · ∨ T−(n−1)

v α) =
∑

C∈T−1
v α∨···∨T−(n−1)

v α

χC(x)
µ(∆(j1) ∩ C)

µ(C)
.

If x ∈ ∆
(n)
j , we set C1 = T−1

v (∆(j2))∩T−2
v (∆(j3))∩· · ·∩T−(n−1)

v (∆(jn)). Then

we can see that χC1(x) = 1 and for other

Ci 6= T−1
v (∆(j2)) ∩ · · · ∩ T−(n−1)

v (∆(jn))

where i ≥ 2 we have χCi(x) = 0. Thus, we obtain that

µ(∆(j1)|T−1
v α ∨ · · · ∨ T−(n−1)

v α)

=
µ(∆(j1) ∩ T−1

v (∆(j2)) ∩ · · · ∩ T−(n−1)
v (∆(jn)))

µ(T−1
v (∆(j2)) ∩ · · · ∩ T−(n−1)

v (∆(jn)))

=
µ(∆(n)(j1, j2, . . . , jn))

µ(∆(n−1)(j2, j3, . . . , jn))
.

Recall that by Lemma 2.3.4 we have µ(∆
(n)
j ) = 1

(#(k))N
with N = a1 + · · ·+an.

Thus, we have that

µ(∆(j1)|T−1
v α ∨ · · · ∨ T−(n−1)

v α) =
1

(#(k))N

/
1

(#(k))N−a1
= (#(k))−a1

and the conditional information function is

I(α|T−1
v α ∨ · · · ∨ T−(n−1)

v α) = − log((#(k))−a1) = a1 log(#(k)).
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By (1.2), we see that the entropy of Tv relative to the partition α is

hµ(Tv, α) = lim
n→∞

H

(
α|

n−1∨
i=1

T−iv α

)

where

H

(
α|

n−1∨
i=1

T−iv α

)
=

∫
I

(
α|

n−1∨
i=1

T−iv α

)
dµ.

So, we get

hµ(Tv, α) = lim
n→∞

∫
a1 log(#(k)) dµ.

Notice that a1(x) = v(x) and in the proof of Theorem 2.3.6 we computed that∫
M v(x) dµ = #(k)

#(k)−1
. Hence, we have

hµ(Tv, α) = lim
n→∞

∫
v(x) log(#(k)) dµ =

#(k)

#(k)− 1
log(#(k)).

We claim that α is a strong generator for Tv. This is because for almost every

x, y ∈ M if x 6= y, the points x and y have distinct generalised Schneider’s

continued fraction expansions. This implies the partition α seperates almost

every pair of points. Hence, by Sinai’s Theorem 1.3.12, the measure-theoretic

entropy of Tv with respect to the Haar measure µ is

hµ(Tv) = hµ(Tv, α) =
#(k)

#(k)− 1
log(#(k)).

�

2.5 Bernoulli Property for Generalised Schnei-

der’s Continued Fraction Map

In this section we will prove that the natural extension of our map Tv is

Bernoulli, i.e. it is isomorphic to a Bernoulli shift. To prove this, we first

need to introduce some definitions which can be also found in [28] and [64].
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Definition 2.5.1. Let P = (p1, p2, . . .) and Q = (q1, q2, . . .) denote two µ-

measurable denumerable partitions of the same set X. Then P and Q are said

to be ε-independent and we write P⊥εQ if∑
i

∑
j

|µ(pi ∩ qj)− µ(pi)µ(qj)| < ε.

Definition 2.5.2. A denumerable partition P is called weak Bernoulli with

respect to an invertible, measure-preserving transformation T if for each ε > 0

there exists a positive constant K = K(ε) such that for every n ≥ 0 we have

0∨
i=−n

T iP ⊥ε
K+n∨
i=K

T iP.

Definition 2.5.3. We say that T is a weak Bernoulli transformation if T has

a weak Bernoulli generator.

The given definition of weak Bernoulli property is not the only way to

formulate this property. As observed in [64] for a non-invertible transformation

we have the following definition.

Definition 2.5.4. A denumerable partition P is weak Bernoulli for a non-

invertible, measure-preserving transformation T if for each ε > 0 there exists

K = K(ε) such that for all n ≥ 0 we have

n∨
i=0

T−iP ⊥ε
K+2n∨
i=K+n

T−iP.

A natural extension of a non-invertible measure-preserving transformation T

is then weak Bernoulli if T has a weak Bernoulli generator.

Because we need our transformation to be invertible (so the following theo-

rem can be used), natural extensions come into consideration. From Theorem

1.4.9 we know that for any measure-preserving transformation there exists a

unique natural extension and hence, our map Tv has a unique natural exten-

sion. Using Theorem 1.4.10 and results from Section 2.3 for the map Tv, we
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also know that the natural extension of Tv is ergodic, weak-mixing and strong-

mixing and it is a K-automorphism. The measure-theoretic entropy of the

natural extension of Tv is equal to #(k)
#(k)−1

log(#(k)).

The existence of an isomorphism to a Bernoulli shift is then ensured by the

following theorem which was proved by N.A. Friedmann and D.S. Ornstein

[14].

Theorem 2.5.5. A weak Bernoulli (invertible) transformation is isomorphic

to a Bernoulli shift with the same entropy.

Proof: The proof can be found in [14]. �

Now, we will prove the following theorem.

Theorem 2.5.6. Let B denote the Haar σ-algebra restricted to M and let µ

denote Haar measure on M. Then the transformation Tv : M→M defined

by (2.2) has a natural extension that is Bernoulli.

Proof: Set

Aj = T−n−`v (A) ∩∆
(n)
j .

Then we get

µ(Aj) =

∫
T−`
v A

dµ(T−nv (x))

dµ(x)
dµ(x) =

∫
T−`
v A

dµ(T−nv (x)).

By Lemma 2.3.3 we have that

µ(Aj) =
1

(#(k))N

∫
T−`
v A

dµ(x) =
1

(#(k))N
µ(T−`v A) =

1

(#(k))N
µ(A).

Recall that by Lemma 2.3.4 we know that 1
(#(k))N

= µ(∆
(n)
j ) and so we get

µ(T−n−`v (A) ∩∆
(n)
j ) = µ(∆

(n)
j )µ(A).

Suppose both ∆
(n)
j and A belong to

∨n
i=0 T

−i
v α where

α = {∆(j1),∆(j2),∆(j3), . . .}
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is a generator for Tv. Then ∆ = T−`−nv A ∈
∨`+2n
i=`+n T

−i
v α and we get

µ(∆ ∩∆
(n)
j )− µ(∆)µ(∆

(n)
j ) = 0

which implies∑
∆

(n)
j ∈

∨n
i=0 T

−i
v α

∑
∆∈

∨`+2n
i=`+n T

−i
v α

∣∣∣µ(∆ ∩∆
(n)
j )− µ(∆)µ(∆

(n)
j )
∣∣∣ = 0 < ε.

Thus we proved that the generator α for Tv is weak Bernoulli and so the

natural extension of Tv is weak Bernoulli which by Theorem 2.5.5 means that

the natural extension of Tv is isomorphic to a Bernoulli shift with the entropy
#(k)

#(k)−1
log(#(k)). �

2.6 Application of Pointwise Subsequence Er-

godic Theorems

In this section we state and prove a number of interesting applications of

Theorem 1.6.3.

Theorem 2.6.1. Suppose (kn)n≥1 is a Lp-good universal sequence such that

({knγ})n≥1 is uniformly distributed modulo one for each irrational number γ

and suppose F1 : R≥0 → R and F2 : R≥0 → R are continuous increasing

functions with∫
M
|F1(a1(x))|p dµ <∞ and

∫
M
|F2(b1(x))|p dµ <∞

For each n ∈ N, ` ∈ {1, 2} and arbitrary real numbers d1, . . . , dn we define

MF`,n(d1, . . . , dn) = F−1
`

[
F`(d1) + · · ·+ F`(dn)

n

]
.

Then we have that

lim
n→∞

MF1,n(ak1(x), . . . , akn(x)) = F−1
1

[∫
M
F1(a1(x)) dµ

]
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and

lim
n→∞

MF2,n(bk1(x), . . . , bkn(x)) = F−1
2

[∫
M
F2(b1(x)) dµ

]
almost everywhere with respect to Haar measure on M.

Proof: We apply Theorem 1.6.3 with f(x) = F1(a1(x)) which means we get

lim
N→∞

1

N

N∑
n=1

F1(a1(T kn−1
v x)) =

∫
M
F1(a1(x)) dµ.

Notice that a1(T kn−1
v x) = akn(x). Now

lim
n→∞

MF1,n(ak1(x), . . . , akn(x)) = lim
n→∞

F−1
1

[
F1(ak1(x)) + · · ·+ F1(akn(x))

n

]
= lim

n→∞
F−1

1

[
1

n

n∑
j=1

F1(akj(x))

]
= F−1

1

[
lim
n→∞

1

n

n∑
j=1

F1(a1(T kj−1
v x))

]

= F−1
1

[∫
M
F1(a1(x)) dµ

]
which we wanted to show.

For the other part of the proof, note that b1(T kn−1
v x) = bkn(x) and as before,

apply Theorem 1.6.3 with f(x) = F2(b1(x)). �

Theorem 2.6.2. Let (kn)n≥1 be a Lp-good universal sequence (kn)n≥1 where

the sequence ({knγ})n≥1 is uniformly distributed modulo one for each irrational

number γ. Let H1 : Nm → R and H2 : Nm → R be functions such that∫
M
|H1(a1(x), . . . , am(x))|p dµ <∞ and

∫
M
|H2(b1(x), . . . , bm(x))|p dµ <∞

where m is a positive integer. Then we have that

lim
N→∞

1

N

N∑
n=1

H1(akn(x), akn+1(x), . . . , akn+m−1(x)) (2.9)

=
∑

(i1,...,im)∈Nm

(#(k)− 1)m

(#(k))i1+···+im
H1(i1, . . . , im)
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and

lim
N→∞

1

N

N∑
n=1

H2(bkn(x), bkn+1(x), . . . , bkn+m−1(x)) (2.10)

=
∑

(i1,...,im)∈{k\{0}}m

1

(#(k)− 1)m
H2(i1, . . . , im)

almost everywhere with respect to Haar measure on M.

Proof: To prove (2.9), we apply Theorem 1.6.3 with f(x) = H1(a1(x), . . . , am(x)).

So, we obtain that

lim
N→∞

1

N

N∑
n=1

H1(a1(T kn−1
v x), a2(T kn−1

v x), . . . , am(T kn−1
v x))

=

∫
M
H1(a1(x), a2(x), . . . , am(x)) dµ.

For positive integers i` where ` ∈ {1, 2, . . . ,m} we have that∫
M
H1(a1(x), a2(x), . . . , am(x)) dµ

=
∑

(i1,...,im)∈Nm

(#(k)− 1)m

(#(k))i1+···+im
H1(i1, . . . , im).

Since we have ai(T
kn−1
v x) = akn+i−1(x) for i ≥ 1, we get that

lim
N→∞

1

N

N∑
n=1

H1(a1(T kn−1
v x), a2(T kn−1

v x), . . . , am(T kn−1
v x))

= lim
N→∞

1

N

N∑
n=1

H1(akn(x), akn+1(x), akn+2(x), . . . , akn+m−1(x))

=
∑

(i1,...,im)∈Nm

(#(k)− 1)m

(#(k))i1+···+im
H1(i1, . . . , im)

as required.

To prove (2.10), we apply Theorem 1.6.3 with f(x) = H2(b1(x), . . . , bm(x)).

56



So, we get that

lim
N→∞

1

N

N∑
n=1

H2(b1(T kn−1
v x), b2(T kn−1

v x), . . . , bm(T kn−1
v x))

=

∫
M
H2(b1(x), b2(x), . . . , bm(x)) dµ.

For i` ∈ k\{0} where ` ∈ {1, 2, . . . ,m} we have that∫
M
H2(b1(x), b2(x), . . . , bm(x)) dµ

=
∑

(i1,...,im)∈{k\{0}}m

1

(#(k)− 1)m
H2(i1, . . . , im).

Since we have bi(T
kn−1
v x) = bkn+i−1(x) for i ≥ 1, we obtain that

lim
N→∞

1

N

N∑
n=1

H2(b1(T kn−1
v x), b2(T kn−1

v x), . . . , bm(T kn−1
v x))

= lim
N→∞

1

N

N∑
n=1

H2(bkn(x), bkn+1(x), bkn+2(x), . . . , bkn+m−1(x))

=
∑

(i1,...,im)∈{k\{0}}m

1

(#(k)− 1)m
H2(i1, . . . , im)

as required. �

Theorem 2.6.3. For any Lp-good universal sequence (kn)n≥1 such that the

sequence ({knγ})n≥1 is uniformly distributed modulo one for each irrational

number γ we have

lim
N→∞

1

N

N∑
n=1

akn =
#(k)

#(k)− 1
, (2.11)

lim
N→∞

1

N

N∑
n=1

bkn =
#(k)

2
, (2.12)

almost everywhere with respect to Haar measure on M.

Proof: Again, we apply Theorem 1.6.3 where we take f(x) = v(x) for the
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relation (2.11). Hence, we get that

lim
N→∞

1

N

N∑
n=1

v(T kn−1
v x) =

∫
M
v(x) dµ =

#(k)

#(k)− 1
.

Since v(T kn−1
v x) = akn , we get

lim
N→∞

1

N

N∑
n=1

v(T kn−1
v x) = lim

N→∞

1

N

N∑
n=1

akn =
#(k)

#(k)− 1
.

To prove (2.12) we take f(x) = b(x) and applying Theorem 1.6.3 we get

that

lim
N→∞

1

N

N∑
n=1

b(T kn−1
v x) =

∫
M
b(x) dµ =

#(k)

2
.

Since b(T kn−1
v x) = bkn , we obtain that

lim
N→∞

1

N

N∑
n=1

b(T kn−1
v x) = lim

N→∞

1

N

N∑
n=1

bkn =
#(k)

2
.

�

Next, we will investigate the Gauss-Kuzmin distribution (see Section 2.1) in the

generalised Schneider’s continued fraction with respect to a special sequence

(kn)n≥1.

Theorem 2.6.4. Let (kn)n≥1 be an Lp-good universal sequence such that the

sequence ({knγ})n≥1 is uniformly distributed modulo one for each irrational

number γ. Then for positive integers i and j, i < j we have

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn = i} =

#(k)− 1

(#(k))i
, (2.13)

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn ≥ i} =

1

(#(k))i−1
, (2.14)

lim
N→∞

1

N
#{1 ≤ n ≤ N : i ≤ akn < j} =

1

(#(k))i−1

(
1− 1

(#(k))j−i

)
; (2.15)

almost everywhere with respect to Haar measure on M.
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Proof: To prove (2.13) we apply Theorem 1.6.3 with f(x) = IB1(x), where IB1

is the characteristic function of the set B1 = {x ∈ M : a1(x) = i}. Hence, we

get that

lim
N→∞

1

N

N∑
n=1

IB1(T
kn−1
v x) =

∫
M
IB1(x) dµ = µ({x ∈M : a1(x) = i})

= µ({x ∈M : v(x) = i}) = µ

 ⋃
b∈k\{0}

πi

b+ Tv(x)


=

∑
b∈k\{0}

µ

(
πi

b+ Tv(x)

)
=

∑
b∈k\{0}

1

(#(k))i
=

#(k)− 1

(#(k))i
.

Since

lim
N→∞

1

N

N∑
n=1

IB1(T
kn−1
v x) = lim

N→∞

1

N
#{1 ≤ n ≤ N : akn = i},

we obtain that

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn = i} =

#(k)− 1

(#(k))i
.

To prove (2.14) we apply Theorem 1.6.3 with f(x) = IB2(x), where IB2 is

the characteristic function of the set B2 = {x ∈M : a1(x) ≥ i}. So, we have

lim
N→∞

1

N

N∑
n=1

IB2(T
kn−1
v x) =

∫
M
IB2(x) dµ = µ({x ∈M : a1(x) ≥ i})

= µ

(
∞⋃
l=i

{x ∈M : a1(x) = l}

)
=
∞∑
l=i

µ({x ∈M : a1(x) = l})

=
∞∑
l=i

#(k)− 1

(#(k))l
=

#(k)− 1

(#(k))i
·
(

1 +
1

#(k)
+

1

(#(k))2
+ · · ·

)
=

#(k)− 1

(#(k))i
· 1

1− 1
#(k)

=
1

(#(k))i−1
.
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Because

lim
N→∞

1

N

N∑
n=1

IB2(T
kn−1
v x) = lim

N→∞

1

N
#{1 ≤ n ≤ N : akn ≥ i},

we get that

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn ≥ i} =

1

(#(k))i−1
.

To prove (2.15) we again apply Theorem 1.6.3 with f(x) = IB3(x), where

IB3 is the characteristic function of the set B3 = {x ∈M : i ≤ a1(x) < j}. So,

lim
N→∞

1

N

N∑
n=1

IB3(T
kn−1
v x) =

∫
M
IB3(x) dµ = µ({x ∈M : i ≤ a1(x) < j})

= µ

(
j−1⋃
l=i

{x ∈M : a1(x) = l}

)
=

j−1∑
l=i

µ({x ∈M : a1(x) = l})

=

j−1∑
l=i

#(k)− 1

(#(k))l
=

#(k)− 1

(#(k))i
·
(

1 +
1

#(k)
+

1

(#(k))2
+ · · ·+ 1

(#(k))j−i−1

)

=
#(k)− 1

(#(k))i
·

1− 1
(#(k))j−i

1− 1
#(k)

=
1

(#(k))i−1

(
1− 1

(#(k))j−i

)
.

Because

lim
N→∞

1

N

N∑
n=1

IB3(T
kn−1
v x) = lim

N→∞

1

N
#{1 ≤ n ≤ N : i ≤ akn < j},

we get that

lim
N→∞

1

N
#{1 ≤ n ≤ N : i ≤ akn < j} =

1

(#(k))i−1

(
1− 1

(#(k))j−i

)
.

�
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Theorem 2.6.5. Let (kn)n≥1 be an Lp-good universal sequence such that the

sequence ({knγ})n≥1 is uniformly distributed modulo one for each irrational

number γ. Then for i ∈ k\{0} and j ∈ k\{0}, i < j we have

lim
N→∞

1

N
#{1 ≤ n ≤ N : bkn = i} =

1

#(k)− 1
, (2.16)

lim
N→∞

1

N
#{1 ≤ n ≤ N : bkn ≥ i} =

#(k)− i
#(k)− 1

, (2.17)

lim
N→∞

1

N
#{1 ≤ n ≤ N : i ≤ bkn < j} =

j − i
#(k)− 1

; (2.18)

almost everywhere with respect to Haar measure on M.

Proof: To prove (2.16) we apply Theorem 1.6.3 with f(x) = ID1(x), where ID1

is the characteristic function of the set D1 = {x ∈ M : b1(x) = i}. Hence, we

get that

lim
N→∞

1

N

N∑
n=1

ID1(T
kn−1
v x) =

∫
M
ID1(x) dµ = µ({x ∈M : b1(x) = i})

= µ

(
∞⋃
a1=1

πa1

i+ Tv(x)

)
=

∞∑
a1=1

µ

(
πa1

i+ Tv(x)

)

=
∞∑
a1=1

(#(k))−a1 =
1

#(k)− 1
.

Since

lim
N→∞

1

N

N∑
n=1

ID1(T
kn−1
v x) = lim

N→∞

1

N
#{1 ≤ n ≤ N : bkn = i},

we get that

lim
N→∞

1

N
#{1 ≤ n ≤ N : bkn = i} =

1

#(k)− 1
.

To prove (2.17) we apply Theorem 1.6.3 with f(x) = ID2(x), where ID2 is
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the characteristic function of the set D2 = {x ∈M : b1(x) ≥ i}. So, we have

lim
N→∞

1

N

N∑
n=1

ID2(T
kn−1
v x) =

∫
M
ID2(x) dµ = µ({x ∈M : b1(x) ≥ i})

= µ

#(k)−1⋃
l=i

{x ∈M : b1(x) = l}

 =

#(k)−1∑
l=i

µ({x ∈M : b1(x) = l})

=

#(k)−1∑
l=i

1

#(k)− 1
=

#(k)− i
#(k)− 1

.

Because

lim
N→∞

1

N

N∑
n=1

ID2(T
kn−1
v x) = lim

N→∞

1

N
#{1 ≤ n ≤ N : bkn ≥ i},

we get that

lim
N→∞

1

N
#{1 ≤ n ≤ N : bkn ≥ i} =

#(k)− i
#(k)− 1

.

To prove (2.18) we again apply Theorem 1.6.3 with f(x) = ID3(x), where

ID3 is the characteristic function of the set D3 = {x ∈M : i ≤ b1(x) < j}. So,

lim
N→∞

1

N

N∑
n=1

ID3(T
kn−1
v x) =

∫
M
ID3(x) dµ = µ({x ∈M : i ≤ b1(x) < j})

= µ

(
j−1⋃
l=i

{x ∈M : b1(x) = l}

)
=

j−1∑
l=i

µ({x ∈M : b1(x) = l})

=

j−1∑
l=i

1

#(k)− 1
=

j − i
#(k)− 1

.

Since

lim
N→∞

1

N

N∑
n=1

ID3(T
kn−1
v x) = lim

N→∞

1

N
#{1 ≤ n ≤ N : i ≤ bkn < j},
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we get that

lim
N→∞

1

N
#{1 ≤ n ≤ N : i ≤ bkn < j} =

j − i
#(k)− 1

.

�

Remark 2.6.6. Note that (n)n≥1 is L1-good universal sequence and ({nγ})n≥1

is uniformly distributed modulo 1 for any irrational number γ. So, all previous

results will be the same for the case (kn)n≥1 = (n)n≥1.

2.7 Application of Moving Average Pointwise

Ergodic Theorem

In this section we state and prove moving average variants of the results in the

previous section. For proofs we will use Theorem 1.7.2 and Theorem 1.7.3.

Theorem 2.7.1. Suppose that (nl, kl)l≥1 is Stoltz. Suppose also that we have

F1 : R≥0 → R and F2 : R≥0 → R which are continuous increasing and such

that ∫
M
|F1(a1(x))| dµ <∞ and

∫
M
|F2(b1(x))| dµ <∞.

Suppose MF`,n(d1, . . . , dn) for ` ∈ {1, 2} is defined as in Theorem 2.6.1. Then

lim
l→∞

MF1,kl(anl+1(x), . . . , anl+kl(x)) = F−1
1

[∫
M
F1(a1(x)) dµ

]
and

lim
l→∞

MF2,kl(bnl+1(x), . . . , bnl+kl(x)) = F−1
2

[∫
M
F2(b1(x)) dµ

]
almost everywhere with respect to Haar measure on M.

Proof: Applying Theorem 1.7.3 with f(x) = F1(a1(x)), we get that

lim
l→∞

1

kl

kl−1∑
i=0

F1(a1(T nl+iv x)) =

∫
M
F1(a1(x)) dµ.
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Note that a1(T nl+iv x) = anl+i+1(x). Now

lim
l→∞

MF1,kl(an1+1(x), . . . , anl+kl(x))

= lim
l→∞

F−1
1

[
F1(an1+1(x)) + · · ·+ F1(anl+kl(x))

kl

]
= lim

l→∞
F−1

1

[
1

kl

kl∑
i=1

F1(anl+i(x))

]
= F−1

1

[
lim
l→∞

1

kl

kl∑
i=1

F1(a1(T nl+i−1
v x))

]

= F−1
1

[
lim
l→∞

1

kl

kl−1∑
i=0

F1(a1(T nl+iv x))

]
= F−1

1

[∫
M
F1(a1(x)) dµ

]

which we wanted to show.

For the other part of the proof, note that b1(T nl+iv x) = bnl+i+1(x) and as

before, apply Theorem 1.7.3 with f(x) = F2(b1(x)). �

Theorem 2.7.2. Suppose that (nl, kl)l≥1 is Stoltz and H1 : Nm → R and

H2 : Nm → R are functions such that∫
M
|H1(a1(x), . . . , am(x))| dµ <∞ and

∫
M
|H2(b1(x), . . . , bm(x))| dµ <∞

where m is a positive integer. Then we have that

lim
l→∞

1

kl

kl∑
j=1

H1(anl+j, anl+j+1, . . . , anl+j+m−1)(x) (2.19)

=
∑

(i1,...,im)∈Nm

(#(k)− 1)m

(#(k))i1+···+im
H1(i1, . . . , im)

and

lim
l→∞

1

kl

kl∑
j=1

H2(bnl+j, bnl+j+1, . . . , bnl+j+m−1)(x) (2.20)

=
∑

(i1,...,im)∈{k\{0}}m

1

(#(k)− 1)m
H2(i1, . . . , im)

almost everywhere with respect to Haar measure on M.
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Proof: To prove (2.19), we apply Theorem 1.7.3 with f(x) = H1(a1(x), . . . , am(x))

and hence we get that

lim
l→∞

1

kl

kl−1∑
j=0

H1(a1(T nl+jv x), a2(T nl+jv x), . . . , am(T nl+jv x))

=

∫
M
H1(a1(x), a2(x), . . . , am(x)) dµ

=
∑

(i1,...,im)∈Nm

(#(k)− 1)m

(#(k))i1+···+im
H1(i1, . . . , im).

Since ai(T
nl+j
v x) = anl+j+i(x) for i ≥ 1, we obtain that

lim
l→∞

1

kl

kl−1∑
j=0

H1(a1(T nl+jv x), a2(T nl+jv x), . . . , am(T nl+jv x))

= lim
l→∞

1

kl

kl−1∑
j=0

H1(anl+j+1(x), anl+j+2(x), . . . , anl+j+m(x))

= lim
l→∞

1

kl

kl∑
j=1

H1(anl+j(x), anl+j+1(x), anl+j+2(x), . . . , anl+j+m−1(x))

=
∑

(i1,...,im)∈Nm

(#(k)− 1)m

(#(k))i1+···+im
H1(i1, . . . , im)

as required.

The proof for (2.20) is very similar – we just apply Theorem 1.7.3 with

f(x) = H2(b1(x), . . . , bm(x)). �

Theorem 2.7.3. Suppose (nl, kl)l≥1 is Stoltz then we have

lim
l→∞

1

kl

kl∑
j=1

anl+j =
#(k)

#(k)− 1
, (2.21)

lim
l→∞

1

kl

kl∑
j=1

bnl+j =
#(k)

2
(2.22)

almost everywhere with respect to Haar measure on M.
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Proof: We apply Theorem 1.7.3 with f(x) = v(x) for the relation (2.21). So,

we have that

lim
l→∞

1

kl

kl−1∑
j=0

v(T nl+jv x) =

∫
M
v(x) dµ =

#(k)

#(k)− 1
.

Since v(T nl+jv x) = anl+j+1, we obtain that

lim
l→∞

1

kl

kl−1∑
j=0

v(T nl+jv x) = lim
l→∞

1

kl

kl−1∑
j=0

anl+j+1 = lim
l→∞

1

kl

kl∑
j=1

anl+j =
#(k)

#(k)− 1
.

To prove (2.22) we take f(x) = b(x) and using Theorem 1.7.3 we have

lim
l→∞

1

kl

kl−1∑
j=0

b(T nl+jv x) =

∫
M
b(x) dµ =

#(k)

2
.

Since b(T nl+jv x) = bnl+j+1, we get that

lim
l→∞

1

kl

kl−1∑
j=0

b(T nl+jv x) = lim
l→∞

1

kl

kl−1∑
j=0

bnl+j+1 = lim
l→∞

1

kl

kl∑
j=1

bnl+j =
#(k)

2
. �

Theorem 2.7.4. For Stoltz (nl, kl)l≥1 and for positive integers i and j, i < j,

we have that

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : anl+j = i} =

#(k)− 1

(#(k))i
, (2.23)

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : anl+j ≥ i} =

1

(#(k))i−1
, (2.24)

lim
l→∞

1

kl
#{1 ≤ t ≤ kl : i ≤ anl+t < j} =

1

(#(k))i−1

(
1− 1

(#(k))j−i

)
, (2.25)

almost everywhere with respect to Haar measure on M.

Proof: For the proof of (2.23) we apply Theorem 1.7.3 with f(x) = IB1(x),

where IB1 is the characteristic function of the set B1 = {x ∈ M : a1(x) = i}.
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So, we obtain that

lim
l→∞

1

kl

kl−1∑
j=0

IB1(T
nl+j
v x) =

∫
M
IB1(x) dµ = µ({x ∈M : a1(x) = i})

=
#(k)− 1

(#(k))i
.

Because

lim
l→∞

1

kl

kl−1∑
j=0

IB1(T
nl+j
v x) = lim

l→∞

1

kl
#{0 ≤ j ≤ kl − 1 : anl+j+1 = i}

= lim
l→∞

1

kl
#{1 ≤ j ≤ kl : anl+j = i},

we get that

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : anl+j = i} =

#(k)− 1

(#(k))i
.

To prove (2.24) we apply Theorem 1.7.3 with f(x) = IB2(x), where IB2 is

the characteristic function of the set B2 = {x ∈M : a1(x) ≥ i}. So, we get

lim
l→∞

1

kl

kl−1∑
j=0

IB2(T
nl+j
v x) =

∫
M
IB2(x) dµ = µ({x ∈M : a1(x) ≥ i})

=
1

(#(k))i−1
.

Since

lim
l→∞

1

kl

kl−1∑
j=0

IB2(T
nl+j
v x) = lim

N→∞

1

kl
#{0 ≤ j ≤ kl − 1 : anl+j+1 ≥ i}

= lim
l→∞

1

kl
#{1 ≤ j ≤ kl : anl+j ≥ i},

we obtain that

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : anl+j ≥ i} =

1

(#(k))i−1
.
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To prove (2.25) we apply again Theorem 1.7.3 with f(x) = IB3(x), where

IB3 is the characteristic function of the set B3 = {x ∈M : i ≤ a1(x) < j} and

so we have that

lim
l→∞

1

kl

kl−1∑
t=0

IB3(T
nl+t
v x) =

∫
M
IB3(x) dµ = µ({x ∈M : i ≤ a1(x) < j})

=
1

(#(k))i−1

(
1− 1

(#(k))j−i

)
.

Because

lim
l→∞

1

kl

kl−1∑
t=0

IB3(T
nl+t
v x) = lim

l→∞

1

kl
#{0 ≤ t ≤ kl − 1 : i ≤ anl+t+1 < j}

= lim
l→∞

1

kl
#{1 ≤ t ≤ kl : i ≤ anl+t < j},

we get that

lim
l→∞

1

kl
#{1 ≤ t ≤ kl : i ≤ anl+t < j} =

1

(#(k))i−1

(
1− 1

(#(k))j−i

)
. �

Theorem 2.7.5. For Stoltz (nl, kl)l≥1 and for i, j ∈ k\{0}, i < j, we have

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : bnl+j = i} =

1

#(k)− 1
, (2.26)

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : bnl+j ≥ i} =

#(k)− i
#(k)− 1

, (2.27)

lim
l→∞

1

kl
#{1 ≤ t ≤ kl : i ≤ bnl+t < j} =

j − i
#(k)− 1

, (2.28)

almost everywhere with respect to Haar measure on M.

Proof: For the proof of (2.26) we apply Theorem 1.7.3 with f(x) = ID1(x),

where ID1 is the characteristic function of the set D1 = {x ∈ M : b1(x) = i}.
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So, we obtain that

lim
l→∞

1

kl

kl−1∑
j=0

ID1(T
nl+j
v x) =

∫
M
ID1(x) dµ = µ({x ∈M : b1(x) = i})

=
1

#(k)− 1
.

Since

lim
l→∞

1

kl

kl−1∑
j=0

ID1(T
nl+j
v x) = lim

l→∞

1

kl
#{0 ≤ j ≤ kl − 1 : bnl+j+1 = i}

= lim
l→∞

1

kl
#{1 ≤ j ≤ kl : bnl+j = i},

we get that

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : bnl+j = i} =

1

#(k)− 1
.

To prove (2.27) we apply Theorem 1.7.3 with f(x) = ID2(x), where ID2 is

the characteristic function of the set D2 = {x ∈M : b1(x) ≥ i}. So, we get

lim
l→∞

1

kl

kl−1∑
j=0

ID2(T
nl+j
v x) =

∫
M
ID2(x) dµ = µ({x ∈M : b1(x) ≥ i})

=
#(k)− i
#(k)− 1

.

Since

lim
l→∞

1

kl

kl−1∑
j=0

ID2(T
nl+j
v x) = lim

N→∞

1

kl
#{0 ≤ j ≤ kl − 1 : bnl+j+1 ≥ i}

= lim
l→∞

1

kl
#{1 ≤ j ≤ kl : bnl+j ≥ i},

we obtain that

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : bnl+j ≥ i} =

#(k)− i
#(k)− 1

.
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To prove (2.28) we apply again Theorem 1.7.3 with f(x) = ID3(x), where

ID3 is the characteristic function of the set D3 = {x ∈M : i ≤ b1(x) < j} and

so we have that

lim
l→∞

1

kl

kl−1∑
t=0

ID3(T
nl+t
v x) =

∫
M
ID3(x) dµ = µ({x ∈M : i ≤ b1(x) < j})

=
j − i

#(k)− 1
.

Since

lim
l→∞

1

kl

kl−1∑
t=0

ID3(T
nl+t
v x) = lim

l→∞

1

kl
#{0 ≤ t ≤ kl − 1 : i ≤ bnl+t+1 < j}

= lim
l→∞

1

kl
#{1 ≤ t ≤ kl : i ≤ bnl+t < j},

we get that

lim
l→∞

1

kl
#{1 ≤ t ≤ kl : i ≤ bnl+t < j} =

j − i
#(k)− 1

.

�

2.8 Special Cases

2.8.1 Schneider’s p-adic Continued Fraction Map

In the case where K = Qp, the map Tv becomes the original Schneider’s

continued fraction map Tp, which motivates the previous investigation of the

generalised map Tv. Recall that in the case when K = Qp, the valuation ring is

O = Zp, the maximal ideal in O isM = pZp, the uniformiser is π = p and the

residue field of K is k = Zp/pZp. The map Tp was introduced by T. Schneider

in [63] and is defined as follows. For x ∈ pZp define the map Tp : pZp → pZp
by

Tp(x) =
pv(x)

x
−
(
pv(x)

x
mod p

)
=
pa(x)

x
− b(x) (2.29)
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where v(x) is the p-adic valuation of x, a(x) ∈ N and b(x) ∈ {1, 2, . . . , p− 1}.
Then using the continued fraction algorithm for x, we get the expansion

x =
pa1

b1 +
pa2

b2 +
pa3

b3 + .. .

(2.30)

where bn ∈ {1, 2, . . . , p− 1}, an ∈ N for n = 1, 2, . . . .

As in the generalised case, the map Tp defined by (2.29) gives rise to an

integer recurrence relationship. This is as follows. Suppose that A0 = 0, B0 =

1, A1 = pa1 , B1 = b1. Then set

An = panAn−2 + bnAn−1 and Bn = panBn−2 + bnBn−1 (2.31)

for n ≥ 2. As in the proof of Lemma 2.2.1 an inductive argument gives for

n = 1, 2, . . .

An−1Bn − AnBn−1 = (−1)npa1+···+an . (2.32)

Because p does not divide Bn we deduce that the integers An and Bn are

coprime. The sequence of rational numbers (An
Bn

)∞n=1 are the convergents to x

in pZp arising from (2.30).

Since the map Tp is a special case of the map Tv, the p-adic continued

fraction map Tp has all properties which were proved for Tv in previous sections.

We will therefore consider the dynamical system (pZp, C, ρ, Tp) where C is the

Haar σ-algebra on pZp, ρ is the Haar measure on pZp and Tp is defined by

(2.29). For the Haar measure we have ρ(pa+ pmZp) = p1−m.

The metric theory of the p-adic continued fraction map is initiated in the

paper by J. Hirsh and L. C. Washington [24] where the following was proved:

• Tp is measure-preserving with respect to ρ, i.e. ρ(T−1
p (A)) = ρ(A) for all

A ∈ C.

• Tp is ergodic, i.e. ρ(B) = 0 or 1 for any B ∈ C with T−1
p (B) = B.
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• The p-adic analogue of Khinchin’s Theorem: For almost all x ∈ pZp the

p-adic continued fraction expansion (2.30) satisfies

lim
n→∞

a1 + a2 + · · ·+ an
n

=
p

p− 1
.

Other properties of this map are developed in the paper by J. Hančl, A.

Jaššová, P. Lerchoosakul and R. Nair [21] where exactness and results about

various averages and moving averages of partial quotients using subsequence

pointwise and moving average ergodic theorems are proved. A summary of

theorems follows. The proofs are special cases of the proofs for the generalised

continued fraction map Tv and are therefore omitted. Moreover, we can con-

sider the theorems as corollaries of the theorems in Sections 2.3, 2.6 and 2.7

where we have k = Zp/pZp ∼= Z/pZ and so #(k) = p.

Theorem 2.8.1. The p-adic continued fraction map Tp is exact. This means

that
⋂∞
n=0 T

−n
p C = N where N = {B ∈ C |B = ∅ a.e. or B = X a.e.}.

Again, since (pZp, C, ρ, Tp) is exact, we have other strictly weaker proper-

ties:

• Tp is strong-mixing, i.e. for all A,B ∈ C we have

lim
n→∞

ρ(T−np A ∩B) = ρ(A)ρ(B),

which implies

• Tp is weak-mixing, i.e. for all A,B ∈ C we have

lim
n→∞

1

n

n−1∑
j=0

|ρ(T−jp A ∩B)− ρ(A)ρ(B)| = 0,

which implies

• Tp is ergodic, i.e. ρ(B) = 0 or 1 for any B ∈ C with T−1
p (B) = B.

Theorem 2.8.2. Suppose (kn)n≥1 is a Lp-good universal sequence such that

({knγ})n≥1 is uniformly distributed modulo one for each irrational number γ.
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Suppose F1 : R≥0 → R and F2 : R≥0 → R are continuous increasing functions

with ∫
M
|F1(a1(x))|p dρ <∞ and

∫
M
|F2(b1(x))|p dρ <∞

For each n ∈ N, ` ∈ {1, 2} and arbitrary real numbers d1, . . . , dn we define

MF`,n(d1, . . . , dn) = F−1
`

[
F`(d1) + · · ·+ F`(dn)

n

]
.

Then we have

lim
n→∞

MF1,n(ak1(x), . . . , akn(x)) = F−1
1

[∫
pZp

F1(a1(x)) dρ

]

and

lim
n→∞

MF2,n(bk1(x), . . . , bkn(x)) = F−1
2

[∫
pZp

F2(b1(x)) dρ

]
almost everywhere with respect to Haar measure on pZp. �

Theorem 2.8.3. Let (kn)n≥1 be a Lp-good universal sequence (kn)n≥1 where

the sequence ({knγ})n≥1 is uniformly distributed modulo one for each irrational

number γ. Let H1 : Nm → R and H2 : Nm → R be functions such that∫
pZp
|H1(a1(x), . . . , am(x))|p dρ <∞ and

∫
pZp
|H2(b1(x), . . . , bm(x))|p dρ <∞

where m is a positive integer. Then we have

lim
N→∞

1

N

N∑
n=1

H1(akn(x), akn+1(x), . . . , akn+m−1(x))

=
∑

(i1,...,im)∈Nm

(p− 1)m

pi1+···+im
H1(i1, . . . , im)
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and

lim
N→∞

1

N

N∑
n=1

H2(bkn(x), bkn+1(x), . . . , bkn+m−1(x))

=
∑

(i1,...,im)∈{1,...,p−1}m

1

(p− 1)m
H2(i1, . . . , im)

almost everywhere with respect to Haar measure on pZp. �

Theorem 2.8.4. For any Lp-good universal sequence (kn)n≥1 such that the

sequence ({knγ})n≥1 is uniformly distributed modulo one for each irrational

number γ we have that

lim
N→∞

1

N

N∑
n=1

akn =
p

p− 1
,

lim
N→∞

1

N

N∑
n=1

bkn =
p

2
,

almost everywhere with respect to Haar measure on pZp. �

Note that in the case kn = n where n = 1, 2, . . ., the first part of this result is

the p-adic analogue of Khinchin’s Theorem [24]. Next, we will investigate the

Gauss-Kuzmin distribution (see Section 2.1) in Schneider’s p-adic continued

fraction with respect to a special sequence (kn)n≥1.

Theorem 2.8.5. Let (kn)n≥1 be a Lp-good universal sequence such that the

sequence ({knγ})n≥1 is uniformly distributed modulo one for each irrational

number γ. Then for positive integers i and j, i < j, we have that

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn = i} =

p− 1

pi
,

lim
N→∞

1

N
#{1 ≤ n ≤ N : akn ≥ i} =

1

pi−1
,

lim
N→∞

1

N
#{1 ≤ n ≤ N : i ≤ akn < j} =

1

pi−1

(
1− 1

pj−i

)
;

almost everywhere with respect to Haar measure on pZp. �
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Theorem 2.8.6. Let (kn)n≥1 be an Lp-good universal sequence such that the

sequence ({knγ})n≥1 is uniformly distributed modulo one for each irrational

number γ. Then for i, j ∈ {1, . . . , p− 1}, i < j, we have that

lim
N→∞

1

N
#{1 ≤ n ≤ N : bkn = i} =

1

p− 1
,

lim
N→∞

1

N
#{1 ≤ n ≤ N : bkn ≥ i} =

p− i
p− 1

,

lim
N→∞

1

N
#{1 ≤ n ≤ N : i ≤ bkn < j} =

j − i
p− 1

;

almost everywhere with respect to Haar measure on pZp. �

The moving average variants of previous theorems follow.

Theorem 2.8.7. Suppose that (nl, kl)l≥1 is Stoltz and suppose that we have

F1 : R≥0 → R and F2 : R≥0 → R which are continuous increasing and such

that ∫
pZp
|F1(a1(x))| dρ <∞ and

∫
pZp
|F2(b1(x))| dρ <∞.

Suppose MF`,n(d1, . . . , dn) for ` ∈ {1, 2} is defined as in Theorem 2.8.2. Then

lim
l→∞

MF1,nl(anl+1(x), . . . , anl+kl(x)) = F−1
1

[∫
pZp

F1(a1(x)) dρ

]

and

lim
l→∞

MF2,nl(bnl+1(x), . . . , bnl+kl(x)) = F−1
2

[∫
pZp

F2(b1(x)) dρ

]
almost everywhere with respect to Haar measure on pZp. �

Theorem 2.8.8. Suppose that (nl, kl)l≥1 is Stoltz and H1 : Nm → R and

H2 : Nm → R are functions such that∫
pZp
|H1(a1(x), . . . , am(x))| dρ <∞ and

∫
pZp
|H2(b1(x), . . . , bm(x))| dρ <∞
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where m is a positive integer. Then we have

lim
l→∞

1

nl

nl∑
j=1

H1(akl+j, akl+j+1, . . . , akl+j+m−1)(x)

=
∑

(i1,...,im)∈Nm

(p− 1)m

pi1+···+im
H1(i1, . . . , im)

and

lim
l→∞

1

nl

nl∑
j=1

H2(bkl+j, bkl+j+1, . . . , bkl+j+m−1)(x)

=
∑

(i1,...,im)∈{1,...,p−1}m

1

(p− 1)m
H2(i1, . . . , im)

almost everywhere with respect to Haar measure on pZp. �

Theorem 2.8.9. Suppose (nl, kl)n≥1 is Stoltz. Then we have that

lim
l→∞

1

kl

kl∑
j=1

anl+j =
p

p− 1
,

lim
l→∞

1

kl

kl∑
j=1

bnl+j =
p

2

almost everywhere with respect to Haar measure on pZp. �

Theorem 2.8.10. For Stoltz (nl, kl)l≥1 and positive integers i and j, i < j,

we have that

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : anl+j = i} =

p− 1

pi
,

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : anl+j ≥ i} =

1

pi−1
,

lim
l→∞

1

kl
#{1 ≤ t ≤ kl : i ≤ anl+t < j} =

1

pi−1

(
1− 1

pj−i

)
,

almost everywhere with respect to Haar measure on pZp. �

76



Theorem 2.8.11. For Stoltz (nl, kl)l≥1 and i, j ∈ {1, . . . , p − 1}, i < j, we

have that

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : bnl+j = i} =

1

p− 1
,

lim
l→∞

1

kl
#{1 ≤ j ≤ kl : bnl+j ≥ i} =

p− i
p− 1

,

lim
l→∞

1

kl
#{1 ≤ t ≤ kl : i ≤ bnl+t < j} =

j − i
p− 1

,

almost everywhere with respect to Haar measure on pZp. �

In Section 2.4 we also computed the measure-theoretic entropy of the map

Tv. Because the map Tp is the special case we can also immediately conclude

that the measure-preserving transformation (pZp, C, ρ, Tp) has the measure-

theoretic entropy with respect to the Haar measure ρ equal to p
p−1

log p.

Further, in Section 2.5 we showed that the map Tv has a natural extension

that is Bernoulli. Hence, the natural extension of the p-adic continued fraction

map Tp is isomorphic to a Bernoulli shift with the entropy p
p−1

log p. Since we

know that two dynamical systems with different entropies cannot be isomor-

phic, this means that for each prime p the corresponding Schneider’s continued

fraction maps are mutually non-isomorphic. Each of them is however isomor-

phic to the analogue of Schneider’s map on the field of formal Laurent series

over a finite field of p elements.

Now, we show some examples of p-adic continued fraction expansions.

Example 2.8.12. Let x = 325
289

and p = 5. We want to write x as a p-adic

continued fraction expansion in the form (2.30).

We use the continued fraction algorithm using the map Tp (2.29). So, first

we find v(325
289

) = v(52·13
172

) = 2, that is a1 = 2. Now, we have

Tp(x) =
52

325
289

−
(

52

325
289

mod 5

)
=

289

13
−
(

289

13
mod 5

)
. (2.33)

Hence, b1 ≡ 289
13

mod 5 where 1
13

is treated as the inverse of 13 modulo 5, i.e.
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(13)−1 mod 5. So, we get

b1 ≡ 4 · (3)−1 mod 5 ≡ 4 · 2 mod 5 ≡ 3 mod 5

and hence b1 = 3. Getting back to (2.33), we have Tp(x) = 289
13
− 3 = 250

13
which

we denote x1.

We perform another step of the algorithm by applying the map Tp again

to x1. So, we have v(250
13

) = v(53·2
13

) = 3 = a2. Now,

Tp(x1) =
53

250
13

−
(

53

250
13

mod 5

)
=

13

2
−
(

13

2
mod 5

)
. (2.34)

Hence, we get

b2 ≡ 13 · (2)−1 mod 5 ≡ 3 · 3 mod 5 ≡ 4 mod 5

and so b2 = 4. Getting back to (2.34), we obtain Tp(x1) = 13
2
− 4 = 5

2
which

we denote x2. Again, we apply Tp to x2. We have v(5
2
) = 1 = a3 and

Tp(x2) =
51

5
2

−
(

51

5
2

mod 5

)
= 2− (2 mod 5). (2.35)

So, we get b3 ≡ 2 mod 5 and hence b3 = 2. Getting back to (2.35), we have

Tp(x2) = 2 − 2 = 0 which means that the algorithm terminates and we can

write the 5-adic continued fraction expansion of x = 325
289

as

x =
52

3 +
53

4 +
51

2

.

Example 2.8.13. Let x = 234
49

and p = 3. Again, we want to write x as a

p-adic continued fraction expansion in the form (2.30).

As in the previous example, we use the continued fraction algorithm using

the map Tp (2.29). So, we have v(234
49

) = v(2·32·13
72

) = 2, that is a1 = 2. Now,
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we have

Tp(x) =
32

234
49

−
(

32

234
49

mod 3

)
=

49

26
−
(

49

26
mod 3

)
. (2.36)

Hence, b1 ≡ 49
26

mod 3 ≡ 49·(26)−1 mod 3 ≡ 1·(2)−1 mod 3 ≡ 1·2 mod 3 ≡
2 mod 3 and so b1 = 2. Getting back to (2.36), we have Tp(x) = 49

26
− 2 = − 3

26

which we denote x1.

Now, we apply the map Tp again to x1. So, we have v(− 3
26

) = 1 = a2. Now,

Tp(x1) =
31

− 3
26

−
(

31

− 3
26

mod 3

)
= −26− (−26 mod 3) . (2.37)

Hence, we obtain

b2 ≡ −26 mod 3 ≡ 1 mod 3

and so b2 = 1. Getting back to (2.37), we obtain that Tp(x1) = −26− 1 = −27

which we denote by x2. Again, we apply Tp to x2. We now have v(−27) =

v(−33) = 3 = a3 and

Tp(x2) =
33

−27
−
(

33

−27
mod 3

)
= −1− (−1 mod 3). (2.38)

Hence, we get b3 ≡ −1 mod 3 ≡ 2 mod 3 and hence b3 = 2. Getting back to

(2.38), we obtain Tp(x2) = −1− 2 = −3 and denote it x3.

Again, v(−3) = 1 = a4 and

Tp(x3) =
31

−3
−
(

31

−3
mod 3

)
= −1− (−1 mod 3). (2.39)

So, b4 ≡ −1 mod 3 ≡ 2 mod 3 and hence b4 = 2. Getting back to (2.39), we

obtain Tp(x3) = −1 − 2 = −3. We can see that from this point the partial

quotients will still be the same, so ai = 1 and bi = 2 for all i ≥ 4. Finally, we
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can write the 3-adic continued fraction expansion of x = 234
49

as

x =
32

2 +
31

1 +
33

2 +
31

2 +
31

2 + . . .

.

One will notice that in both examples we were working with rational num-

bers, however in the first example the p-adic continued fraction expansion is

terminating while in the second example the expansion is non-terminating. So,

unlike the regular continued fraction expansion in the real case where the con-

tinued fraction expansions of rational numbers always terminate, in the p-adic

case, the continued fraction expansions of rational numbers can be both ter-

minating and non-terminating. When a negative number occurs in the p-adic

continued fraction expansion, this expansion cannot terminate. Moreover, in

[10] the following was proved. If the p-adic continued fraction expansion of a

rational number does not terminate, then the tail of the expansion is of the

form

p− 1 +
p

p− 1 +
p

p− 1 + . . .

.

In [24] the authors gave data indicating that rational numbers with non-

terminating p-adic continued fraction expansions seem to be more common

than rationals with terminating expansions.
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2.8.2 Schneider’s Continued Fraction Map in Positive

Characteristic

We now consider Schneider’s continued fraction map in the case where K is

the field of formal Laurent series, i.e. K = Fq((X−1)). Recall that in this case

the valuation ring is O = L = {x ∈ Fq((X−1)) : |x| ≤ 1}, the maximal ideal

in O is M = X−1L = {x ∈ Fq((X−1)) : |x| < 1}, the uniformiser is π = X−1

as v(X−1) = 1 and the residue field of K is k = L/X−1L = Fq. The map Tv is

then defined on X−1L. Let us denote Schneider’s continued fraction map Tv

on X−1L by Tq.

For x ∈ X−1L define the map Tq : X−1L→ X−1L by

Tq(x) =
X−v(x)

x
− b(x) (2.40)

where v(x) is the valuation of x and b(x) denotes the residue class to which
X−v(x)

x
belongs in Fq\{0}.

This gives rise to the continued fraction expansion of x ∈ X−1L in the form

x =
X−a1

b1 +
X−a2

b2 +
X−a3

b3 + .. .

(2.41)

where bn ∈ Fq\{0}, an ∈ N for n = 1, 2, . . . .

The properties and results in Sections 2.3 – 2.7 introduced for the gener-

alised Schneider’s continued fraction map Tv are the same for the map Tq with

#(k) = q. We will not further discuss the details here.

However, we would like to give an example of a continued fraction expansion

of x ∈ X−1L in the form of (2.41).

Let Fq be a finite field with 3 elements. So, we have F3 = Z\3Z =

{−1, 0, 1}. We want to find a continued fraction expansion (2.41) of α ∈ X−1L
given by X−1 +X−2.

We apply the continued fraction algorithm using the map (2.40). So, we
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have v(X−1 +X−2) = −(−1) = 1 = a1. Now,

Tq(α) =
X−1

X−1 +X−2
− b1

where b1 is the equivalence class to which X−1

X−1+X−2 belongs in {−1, 1}. The

next step is to write X−1

X−1+X−2 in the form of formal Laurent series. We write

X−1

X−1 +X−2
= anX

n + · · ·+ a0 + a−1X
−1 + a−2X

−2 + a−3X
−3 + · · · .

So, we get

X−1 = (anX
n + · · ·+ a0 + a−1X

−1 + a−2X
−2 + · · · )(X−1 +X−2)

= anX
n−1 + · · ·+ a2X + a1 + a0X

−1 + a−1X
−2 + a−2X

−3 + · · ·

+anX
n−2 + · · ·+ a3X + a2 + a1X

−1 + a0X
−2 + a−1X

−3 + · · ·

and we compare coefficients. Thus, we obtain that ai = 0 for all i ≥ 1 and

a0 = 1, a−1 = −1, a−2 = 1, a−3 = −1, . . . , so a−2j = 1 and a−2j−1 = −1 for

j ≥ 0. Hence, we have

X−1

X−1 +X−2
= 1−X−1 +X−2 −X−3 +X−4 −X−5 + · · · .

Now, we get that b1 = 1 and so

Tq(α) = 1−X−1 +X−2 −X−3 + · · · − 1 = −X−1 +X−2 −X−3 + · · · .

Let us denote −X−1 +X−2 −X−3 + · · · by α′ and again apply the continued

fraction algorithm using the map (2.40). We have v(α′) = 1 = a2 and

Tq(α
′) =

X−1

−X−1 +X−2 −X−3 + · · ·
− b2

where b2 is the equivalence class to which X−1

−X−1+X−2−X−3+··· belongs in {−1, 1}.
Similarly, as before, we can write X−1

−X−1+X−2−X−3+··· in the form of formal Lau-
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rent series as
X−1

−X−1 +X−2 −X−3 + · · ·
= −1−X−1.

So, we have that b2 = −1 and

Tq(α
′) = −1−X−1 + 1 = −X−1.

Let us denote α′′ = −X−1 and again using the continued fraction algorithm,

we get

Tq(α
′′) =

X−1

−X−1
− b3 = −1− b3

where v(α′′) = 1 = a3 and b3 = −1. Thus, Tq(α
′′) = 0 which concludes

the algorithm. Hence, the continued fraction expansion in the form (2.41) of

X−1 +X−2 is

X−1 +X−2 =
X−1

1 +
X−1

−1 +
X−1

−1

.
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Chapter 3

Uniform Distribution of β-adic

Halton Subsequences

In this chapter we will give conditions which will be used to construct variants

of Halton sequences that are uniformly distributed on [0, 1)s.

3.1 Motivation

As suggested earlier in the introduction, the central role in Quasi-Monte Carlo

integration is played by low-discrepancy sequences. One of the most famous

examples of such a sequence is the so called van der Corput sequence. This

is described as follows. Let Zb denote b-adic integers and let τ : Zb → Zb be

defined by τ(x) = x + 1. The dynamical system (Zb, τ) is uniquely ergodic.

Every x ∈ Zb has a unique expansion of the form

x =
∞∑
n=0

anb
n

for an integer b ≥ 2 and with an ∈ {0, 1, . . . , b− 1} for all n ∈ N0. For x ∈ Zb
we define a map ϕb : Zb → [0, 1) to be

ϕb

(
∞∑
n=0

anb
n

)
=
∞∑
n=0

anb
−n−1
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and this map is called the b-adic Monna map. The sequence (ϕb(n))n≥0 is

then the van der Corput sequence in base b. This sequence is also uniformly

distributed modulo 1 which can be shown using an isomorphism and unique

ergodicity of (Zb, τ), see [18].

Given pairwise coprime integers bi, i = 1, . . . , s, all greater than 1, we define

the b-adic Halton sequence as

(ϕb(n))n≥0 = (ϕb1(n), . . . , ϕbs(n))n≥0.

The b-adic Halton sequence is uniformly distributed in [0, 1)s and it is also a

low-discrepancy sequence in [0, 1)s.

In recent years there has been an interest in analogues of the van der Corput

and Halton sequences where the role of the numbers {b1, . . . , bs} is taken by

real numbers {β1, . . . , βs} with βi > 1 for all i = 1, 2, . . . , s. A dynamical

approach to the distribution of these sequences is based on the ergodic theory

of the Parry-Renyi beta transformations Ti(x) = {βix} where i = 1, 2, . . . , s.

In this chapter we study the distribution of subsequences of β-adic Halton

sequences, primarily using ergodic but also some other analytic methods. The

results in this chapter are suggested by work of M. Hofer, M. R. Iaco and

R. Tichy in [26] where they investigate the distribution behaviour of Halton

sequences with special bases for the special case kj = j, j = 0, 1, 2, . . . .

3.2 Hartman Uniform Distribution and Uni-

que Ergodicity

In this section we introduce the definition of Hartman uniform distribution of

a sequence of integers and state and prove results using this concept together

with some ergodic properties. This will be one of the important conditions

used later in Section 3.4. Definitions and results in this section also appear in

[21] and [30].
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Definition 3.2.1. A sequence of integers (an)n≥1 is uniformly distributed on

Z if for each m ∈ N \ {1} and j ∈ [0,m− 1] ∩ N we have

lim
M→∞

1

M
#{n : n ≤M,an ≡ j mod m} =

1

m
.

Definition 3.2.2. A sequence of integers (an)∞n=1 is called Hartman uniformly

distributed on Z if ({anγ})∞n=1 is uniformly distributed modulo one for each

irrational γ and (an)∞n=1 is uniformly distributed on Z.

Remark 3.2.3. Note that a sequence of integers (an)∞n=1 is Hartman uniformly

distributed if and only if

lim
N→∞

1

N

N∑
n=1

e2πitan = 0

for all t ∈ R\Z. This is observed in [35] on page 296.

Remark 3.2.4. Throughout this chapter, we will assume that a sequence

of integers (an)∞n=1 is Lp-good universal and Hartman uniformly distributed.

Under these conditions the relation

f(x) = lim
N→∞

1

N

N∑
n=1

f(T an−1x)

is T -invariant where T is an ergodic transformation. That is,

f(Tx) = f(x) = lim
N→∞

1

N

N∑
n=1

f(T an−1x) = lim
N→∞

1

N

N∑
n=1

f(T anx)

almost everywhere with respect to a corresponding measure. This follows from

the proof of Theorem 3.2.6.

Let us consider the space L2(X,B, µ) of complex-valued square-integrable

functions where (X,B, µ) is a measure space, i.e. the set of all measurable

functions f : X → C such that

‖f‖2 =

(∫
X

|f |2 dµ
) 1

2

<∞.
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It is know that this space is a Hilbert space with respect to the inner product

〈f, g〉 =

∫
X

fg dµ.

Notice that for any f ∈ L2(X,B, µ) we have

〈f, f〉 =

∫
X

ff dµ =

∫
X

|f |2 dµ = ‖f‖2
2 .

Any measurable transformation T of a measure space (X,B, µ) generates

a linear operator U on L2(X,B, µ) by defining Uf(x) = f(Tx). Sometimes,

operators can be useful since ergodic-theoretic properties of T can often be

related with spectral properties of U .

Proposition 3.2.5. The transformation T is measure-preserving if and only if

the operator U is an isometry, i.e. 〈Uf, Ug〉 = 〈f, g〉 for all f, g in L2(X,B, µ).

Furthermore, if T is invertible and measure-preserving then U is unitary.

Proof: The proof can be found in [68] on page 25. �

Let T be an invertible, measure-preserving transformation of the measure

space (X,B, µ). For any element f ∈ L2(X,B, µ) one can consider the sequence

(〈Unf, f〉)n∈Z. Now, let us recall that any sequence (cn)n∈Z is called positive

definite if, given a bi-sequence of complex numbers (zn)n∈Z, only finitely many

of whose terms are non-zero, we have
∑

n,m∈Z cn−mznzm ≥ 0 where z is the

conjugate of the complex number z. The sequence is (〈Unf, f〉)n∈Z is positive

definite since U is an isometry and so for any family of complex numbers

ψ0, ψ1, . . . , ψm we have

0 ≤

∥∥∥∥∥
m∑
k=0

ψkU
kf

∥∥∥∥∥
2

2

=

(
m∑
i=0

ψiU
if,

m∑
j=0

ψjU
jf

)
=

m∑
i,j=0

〈
U i−jf, f

〉
ψiψj. (3.1)

Then by the Bochner-Herglotz Theorem we have that there is a finite measure

ωf on the unit circle T such that

〈Unf, f〉 =

∫
T
zn dωf (z) (3.2)
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with n ∈ Z.
In the case when T is non-invertible, the sequence (〈Unf, f〉)n∈Z is defined

only for n ≥ 0. We put (〈Unf, f〉)n = (〈Unf, f〉)−n when n is negative. Then

the relations (3.1) and (3.2) remain valid.

For Hartman uniform distributed sequences of integers, it is possible to

prove a version of Theorem 1.6.3 using only ergodicity. The following theorem

shows that for Hartman uniformly distributed sequences, we need far more

elementary mixing information about a transformation than in the general

setting. See also [21], [30] and [45].

Theorem 3.2.6. Suppose that (X,B, µ, T ) is an ergodic dynamical system.

Further suppose that (an)∞n=1 is Hartman uniformly distributed on Z and also

Lp-good universal for p ∈ (1, 2]. Then f(x) exists and f(x) =
∫
X
fdµ almost

everywhere with respect to µ.

To prove this theorem we need the following lemma which is a special case

of a theorem due to S. Sawyer [62].

Lemma 3.2.7. Let (X,B, µ, T ) be a dynamical system and f ∈ L2(X,B, µ)

where ||f ||2 = (
∫
X
|f |2dµ)

1
2 . Set

Mf(x) = sup
N≥1

∣∣∣∣∣ 1

N

N∑
n=1

f(T anx)

∣∣∣∣∣ . (N = 1, 2, . . . )

If (an)n≥1 is Lp-good universal for p > 1, then there exists C > 0 such that

||Mf ||2 ≤ C||f ||2.

Proof of Theorem 3.2.6: Let f ∈ L2(X,B, µ). Since by Lemma 3.2.7 we have

that ∣∣∣∣∣ 1

N

N∑
n=1

f(T anx)

∣∣∣∣∣ ≤Mf(x) (N = 1, 2, . . . )

and Mf 2 ∈ L1, the Dominated Convergence Theorem implies

g(x) = lim
N→∞

1

N

N∑
n=1

f(T anx)
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exists in L2 norm. Our next step is to show that g(Tx) = g(x). Let U be an

operator associated to the transformation T , that is Uf(x) = f(Tx). Since T

is measure-preserving, U is an isometric operator on L2 and hence the relations

(3.1) and (3.2) hold. So, we obtain that∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
n=1

f(T an+1x)− 1

N

N∑
n=1

f(T anx)

∣∣∣∣∣
∣∣∣∣∣
2

2

=

∫ ∣∣∣∣∣ 1

N

N∑
n=1

f(T an+1x)− 1

N

N∑
n=1

f(T anx)

∣∣∣∣∣
2

dµ

=

∫ (
1

N

N∑
n=1

f(T an+1x)− 1

N

N∑
n=1

f(T anx)

)

·

 1

N

N∑
n=1

f(T an+1x)− 1

N

N∑
n=1

f(T anx)

 dµ

=

∫ (
1

N

N∑
n=1

f(T an+1x)− 1

N

N∑
n=1

f(T anx)

)

·

(
1

N

N∑
n=1

f(T an+1x)− 1

N

N∑
n=1

f(T anx)

)
dµ

=

∫ (
1

N

N∑
n=1

f(T an+1x) · 1

N

N∑
n=1

f(T an+1x)− 1

N

N∑
n=1

f(T an+1x) · 1

N

N∑
n=1

f(T anx)

− 1

N

N∑
n=1

f(T anx) · 1

N

N∑
n=1

f(T an+1x) +
1

N

N∑
n=1

f(T anx) · 1

N

N∑
n=1

f(T anx)

)
dµ

=
1

N2

〈
N∑
n=1

Uan+1f,

N∑
m=1

Uam+1f

〉
− 1

N2

〈
N∑
n=1

Uan+1f,

N∑
m=1

Uamf

〉

− 1

N2

〈
N∑
n=1

Uanf,

N∑
m=1

Uam+1f

〉
+

1

N2

〈
N∑
n=1

Uanf,

N∑
m=1

Uamf

〉
.
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Now using (3.1), we get that

=
1

N2

∑
1≤n,m≤N

〈
Uan−amf, f

〉
− 1

N2

∑
1≤n,m≤N

〈
Uan+1−amf, f

〉
− 1

N2

∑
1≤n,m≤N

〈
Uan−am−1f, f

〉
+

1

N2

∑
1≤n,m≤N

〈
Uan−amf, f

〉
.

Using (3.2), we obtain that

= 2 · 1

N2

∑
1≤n,m≤N

∫
T
zan−am dωf (z)− 1

N2

∑
1≤n,m≤N

∫
T
zan−am+1 dωf (z)

− 1

N2

∑
1≤n,m≤N

∫
T
zan−am−1 dωf (z)

=

∫
T

2

(
1

N

N∑
n=1

zan · 1

N

N∑
m=1

z−am

)
dωf (z)

−
∫
T
z

(
1

N

N∑
n=1

zan · 1

N

N∑
m=1

z−am

)
dωf (z)

−
∫
T
z−1

(
1

N

N∑
n=1

zan · 1

N

N∑
m=1

z−am

)
dωf (z)

=

∫
T
(2− z − z−1)

∣∣∣∣∣ 1

N

N∑
n=1

zan

∣∣∣∣∣
2

dωf (z).

Now, we use the parametrization z = e2πiθ for θ ∈ [0, 1) and we obtain that

= 4

∫
T

sin2 (θπ)

∣∣∣∣∣ 1

N

N∑
n=1

zan

∣∣∣∣∣
2

dωf (z).

Using the fact that sin(θπ) = 0 if θ = 0, we conclude that the inner integrand is

zero. For θ 6= 0 we use the fact that (an)n≥1 is Hartman uniformly distributed

and hence, by Remark 3.2.3, the integrand tends to zero as N → ∞. Thus,

we see that g(Tx) = g(x) almost everywhere. We also have that
∫
X
g(x)dµ =∫

X
f(x)dµ. The same observation extends to Lp since L2 is dense in Lp for

p ∈ (1, 2].
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By Theorem 1.2.6 we know that if T is ergodic and g(Tx) = g(x) almost

everywhere, then g(x) is constant almost everywhere, say Cf .

Now we want to show that the pointwise limit is the same as the norm

limit, i.e. that f(x) = g(x) = Cf . We consider a sequence of natural numbers

(Nt)t≥1 such that ∣∣∣∣∣
∣∣∣∣∣ 1

Nt

Nt∑
n=1

f(T anx)− Cf

∣∣∣∣∣
∣∣∣∣∣
p

≤ 1

t
.

Thus
∞∑
t=1

∫
X

∣∣∣∣∣ 1

Nt

Nt∑
n=1

f(T anx)− Cf

∣∣∣∣∣
p

dµ <∞.

Fatou’s Lemma tells us that∫
X

(
∞∑
t=1

∣∣∣∣∣ 1

Nt

Nt∑
n=1

f(T anx)− Cf

∣∣∣∣∣
p)

dµ <∞,

which implies that

∞∑
t=1

∣∣∣∣∣ 1

Nt

Nt∑
n=1

f(T anx)− Cf

∣∣∣∣∣
p

<∞

almost everywhere. This means that

lim
t→∞

∣∣∣∣∣ 1

Nt

Nt∑
n=1

f(T anx)− Cf

∣∣∣∣∣
p

= 0

µ almost everywhere and thus we obtain that

lim
t→∞

1

Nt

Nt∑
n=1

f(T anx) = Cf

almost everywhere. As (an)n≥1 is Lp-good universal, we must have f(x) = Cf

almost everywhere with respect to µ.

Now suppose that 0 < M < ∞ and |f | ≤ M almost everywhere. Then
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using the Bounded Convergence Theorem, we get that

lim
N→∞

∫
X

(
1

N

N∑
n=1

f(T anx)

)
dµ =

∫
X

Cf dµ = Cf .

Since we have that∫
X

(
1

N

N∑
n=1

f(T anx)

)
dµ =

∫
X

f(x) dµ,

we conclude that Cf =
∫
X
fdµ. For a general function f , set fM = min(f,M).

Then limM→∞ fM = f almost everywhere. Evidently, we also have that CfM =∫
X
fMdµ. Letting M → ∞, we get that Cf =

∫
X
fdµ. Thus we proved that

f(x) =
∫
X
fdµ almost everywhere with respect to µ. �

We have the following theorem which is a stronger version of Theorem 3.2.6

and restricted to the case kn = n (n = 0, 1, 2, . . .), it reduces to Theorem 1.8.7.

See also [30] and the partial proof can be also found in [45].

Theorem 3.2.8. Suppose (kn)n≥0 is Hartman uniformly distributed and L2-

good universal. Let T be a continuous map of a compact metrisable space X.

Also let µ denote a measure defined on a σ-algebra B of subsets of X. The

following statements are equivalent:

1. the transformation (X,B, µ, T ) is uniquely ergodic;

2. for each function f in C(X) (the space of continuous functions on X),

there is a constant Cf independent of x such that

lim
N→∞

1

N

N−1∑
n=0

f(T knx) = Cf

pointwise on X;

3. for each function f in C(X), there is a constant Cf independent of x

such that

lim
N→∞

1

N

N−1∑
n=0

f(T knx) = Cf ,
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uniformly on X;

4. there is µ ∈M(X,T ) such that for all f in C(X) and all x ∈ X,

lim
N→∞

1

N

N−1∑
n=0

f(T knx) =

∫
X

fdµ.

Proof: It is evident that 3) implies 2). We next consider the proof that 4)

implies 1). Let

SNf(x) =
1

N

N−1∑
n=0

f(T knx). (N = 1, 2, . . .)

Suppose that µ and ν are in M(X,T ). By the assumption we get that∫
X

lim
N→∞

SNf(x) dν =

∫
X

(∫
X

f dµ

)
dν =

∫
X

f dµ

and by the Dominated Convergence Theorem we have∫
X

lim
N→∞

SNf(x) dν = lim
N→∞

∫
X

SNf(x) dν(x) = lim
N→∞

1

N

(
N

∫
X

f dν

)
=

∫
X

f dν =

∫
X

f dµ.

This holds for all f in C(X) and hence by the Riesz Representation Theorem

1.8.1 we have ν = µ, as required. We now prove 2) implies 4). Set

k(f) = lim
N→∞

1

N

N−1∑
j=0

f(T kjx).

Observe that k is a linear operator and is continuous since∣∣∣∣∣ 1

N

N−1∑
j=0

f(T kjx)

∣∣∣∣∣ ≤ 1

N

N−1∑
j=0

∣∣f(T kjx)
∣∣ ≤ 1

N
·N sup

x∈X
|f(x)| = ‖f‖.

Also as k(1) = 1 and k(f) ≥ 0 if f ≥ 0 we have k(f) ≥ 0. Thus by the
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Riesz Representation Theorem 1.8.1 k(f) =
∫
X
fdµ with respect to a Borel

probability measure µ. Also note k(f ◦ T ) = k(f) which one can see from the

proof of Theorem 3.2.6. So
∫
X
f ◦ T dµ =

∫
X
f dµ. Thus µ ∈M(X,T ).

We now show how 1) implies 3). Let us assume that M(X,T ) = {µ}. Then

by the Dominated Convergence Theorem we have that Cf =
∫
X
f dµ because

Cf =

∫
X

Cf dµ =

∫
X

lim
N→∞

1

N

N−1∑
n=0

f(T knx) dµ = lim
N→∞

1

N

N−1∑
n=0

∫
X

f(T knx) dµ

=

∫
X

f dµ.

Now suppose 3) does not hold. Then there exists an ε > 0, a function g in

C(X) and a sequence (xn)∞n=1 in X such that

|Sng(xn)−
∫
X

g dµ| ≥ ε.

Let

µn =
1

n

n−1∑
i=0

δTki (xn) =
1

n

n−1∑
i=0

T ki∗ δxn , (n = 1, 2, . . .)

where δy denotes the Dirac measure at y. Using Lemma 1.8.2 and the fact

that
∫
X
f dδx = f(x) we get

∫
X

g dµn =

∫
X

g d

(
1

n

n−1∑
i=0

T ki∗ δxn

)
=

1

n

∫
X

g d(T k0∗ δxn) +
1

n

∫
X

g d(T k1∗ δxn) + · · ·+ 1

n

∫
X

g d(T kn−1
∗ δxn)

=
1

n

∫
X

g ◦ T k0 dδxn +
1

n

∫
X

g ◦ T k1 dδxn + · · ·+ 1

n

∫
X

g ◦ T kn−1 dδxn

=
1

n

n−1∑
i=0

g(T kixn) = Sng(xn).

So, we have ∣∣∣∣∫
X

g dµn −
∫
X

g dµ

∣∣∣∣ ≥ ε.
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As the set of measures M(X) is compact, we can choose a subsequence (µnj)

convergent to µ∞. The next step is to prove that µ∞ is T -invariant which will

lead to conclusion that µ∞ 6= µ and so 1) would imply 3) as required. We have∫
X

g dµ∞ −
∫
X

g ◦ T dµ∞ =

∫
X

(g − g ◦ T ) dµ∞

= lim
j→∞

∫
X

(g − g(T )) dµnj

= lim
j→∞

∫
X

(g − g(T )) d

(
1

nj

nj−1∑
i=0

T ki∗ δxnj

)
,

= lim
j→∞

∫
X

(
1

nj

nj−1∑
i=0

g(T kixnj)−
1

nj

nj−1∑
i=0

g(T ki+1xnj)

)
dδxnj .

This means that∣∣∣∣∫
X

(g − g(T )) dµ∞

∣∣∣∣ ≤ lim
j→∞

∫
X

∣∣∣∣∣ 1

nj

nj−1∑
i=0

g(T kixnj)−
1

nj

nj−1∑
i=0

g(T ki+1xnj)

∣∣∣∣∣ dδxnj .
Since

∫
X
f dδx = f(x), we get that

∣∣∣∣∫
X

(g − g(T )) dµ∞

∣∣∣∣ ≤ lim
j→∞

∣∣∣∣∣ 1

nj

nj−1∑
i=0

g(T kixnj)−
1

nj

nj−1∑
i=0

g(T ki+1xnj)

∣∣∣∣∣ .
Integrating both sides of this inequality with respect to µ and noting the left

hand side is a constant, we have that

∣∣∣∣∫
X

(g − g(T )) dµ∞

∣∣∣∣ ≤ ∫
X

(
lim
j→∞

∣∣∣∣∣ 1

nj

nj−1∑
i=0

g(T kixnj)−
1

nj

nj−1∑
i=0

g(T ki+1xnj)

∣∣∣∣∣
)
dµ.

Using the Dominated Convergence Theorem, this gives

∣∣∣∣∫
X

(g − g(T )) dµ∞

∣∣∣∣ ≤ lim
j→∞

∫
X

∣∣∣∣∣ 1

nj

nj−1∑
i=0

g(T kixnj)−
1

nj

nj−1∑
i=0

g(T ki+1xnj)

∣∣∣∣∣ dµ.
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Using the Cauchy-Schwarz Inequality (for L2-functions), we get

∣∣∣∣∫
X

(g − g(T )) dµ∞

∣∣∣∣ ≤ lim
j→∞

∥∥∥∥∥ 1

nj

nj−1∑
i=0

g(T kixnj)−
1

nj

nj−1∑
i=0

g(T ki+1xnj)

∥∥∥∥∥
2

.

Using the Bochner-Herglotz Theorem, there is a spectral measure ωg attached

to the function g and implicitly to the map T . Performing the same calculation

as in the proof of Theorem 3.2.6, we obtain

∣∣∣∣∫
X

(g − g(T )) dµ∞

∣∣∣∣ ≤ lim
j→∞

∫
T
(2− z − z2)

∣∣∣∣∣ 1

nj

nj−1∑
i=0

zki

∣∣∣∣∣
2

dωg

 1
2

.

If we write z = e2πiθ on T, then this is

∣∣∣∣∫
X

(g − g(T )) dµ∞

∣∣∣∣ ≤ 4 lim
j→∞

∫
T

sin2 (θπ)

∣∣∣∣∣ 1

nj

nj−1∑
i=0

zki

∣∣∣∣∣
2

dωg

 1
2

.

When θ = 0, the inner integrand is zero. When θ 6= 0, we use the assumption

that (kn)n≥0 is Hartman uniformly distributed and so, by Remark 3.2.3, the

integrand tends to zero as j →∞. This implies that
∫
X
g dµ∞ =

∫
X
g ◦T dµ∞

and thus µ∞ is in M(X,T ). Because we have that
∣∣∫
X
g dµ∞ −

∫
X
g dµ

∣∣ ≥ ε

and so, µ∞ 6= µ. This contradicts the unique ergodicity of T . Thus 1) implies

3) as required. �

Remark 3.2.9. We can see from Theorems 1.5.2 and 3.2.8 that if a dynamical

system (X,B, T, µ) is uniquely ergodic and if (kn)n∈N is Hartman uniformly

distributed and L2-good universal, then the sequence (xkn)n∈N = (T knx)n∈N is

uniformly distributed modulo 1.
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3.3 Examples of Hartman Uniformly Distri-

buted Sequences

In this section, a list of constructions of Hartman uniformly distributed se-

quences is given. The first five are also examples of Lp-good universal se-

quences for some p ≥ 1. The examples 6–13 also appear in [43]. The list of

examples can be also found in [21] and [30].

1. The positive integers: The sequence (n)∞n=1 is L1-good universal and

Hartman uniformly distributed.

2. Sequences satisfying condition H: Let g : [1,∞)→ [1,∞) be a differen-

tiable function whose derivative increases with its argument. Set kn = [g(n)]

(n = 1, 2, . . .) where [y] denotes the integer part of a real number y. Let AM

denote the cardinality of the set {n : kn ≤ M}. Suppose for some function

a : [1,∞)→ [1,∞) increasing to infinity as its argument does, that we set

b(M) = sup
{z}∈[ 1

a(M)
, 1
2)

∣∣∣∣∣ ∑
n: kn≤M

e2πizkn

∣∣∣∣∣ .
For some decreasing function c : [1,∞) → [1,∞) and some positive constant

K > 0, suppose that

b(M) + A[a(M)] + M
a(M)

AM
≤ Kc(M).

Then if we have
∞∑
s=1

c(θs) <∞

for θ > 1, we say that (kn)∞n=1 satisfies condition H [44].

Specific examples of sequences of integers satisfying condition H are kn =

[g(n)] (n = 1, 2, . . .) where

I. g(n) = nω if ω > 1 and ω /∈ N.

II. g(n) = elogγ n for γ ∈ (1, 3
2
).
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III. g(n) = P (n) = bkn
k+. . .+b1n+b0 for bk, . . . , b1 not all rational multiplies

of the same real number.

IV. Hardy fields: Hardy field is a closed field (under differentiation) of germs

at +∞ of continuous real-valued functions with addition and multiplica-

tion taken to be pointwise. Let H denote the union of all Hardy fields.

Let a ∈ H and suppose that for some k ∈ Z, k ≥ 2 we have that

lim
x→∞

a(x)

xk−1
=∞ and lim

x→∞

a(x)

xk
= 0;

then (kn)∞n=1 = ([a(n)])∞n=1 satisfies condition H. This example is ob-

served in [6].

3. A random example: Suppose S = (cn)∞n=1 ⊆ N is a strictly increasing

sequence of natural numbers. By identifying S with its characteristic function

IS, we may view it as a point in Λ = {0, 1}N, the set of maps from N to

{0, 1}. We endow Λ with a probability measure by viewing it as a Cartesian

product Λ =
∏∞

n=1Xn where for each natural number n we have Xn = {0, 1}.
We specify the probability πn on Xn by πn({1}) = qn with 0 ≤ qn ≤ 1 and

πn({0}) = 1− qn such that limn→∞ qnn =∞. The desired probability measure

on Λ is the corresponding product measure π =
∏∞

n=1 πn. The underlying

σ-algebra A is generated by the ‘cylinders’

{λ = (λn)∞n=1 ∈ Λ : λi1 = αi1 , . . . , λir = αir}

for all possible choices of i1, . . . , ir and αi1 , . . . , αir . Then if (kn)∞n=1 is almost

every point in Λ with respect to the measure π, it is Hartman uniformly dis-

tributed [7].

4. Block sequences: These are sequences of the form (kn)n≥1 =
⋃∞
n=1[dn, en]

ordered by absolute value for disjoint ([dn, en])n≥1 with dn−1 = O(en) as n tends

to infinity. Note that this allows the possibility that (kn)n≥1 is zero density.

This example is an immediate consequence of Templeman’s semigroup ergodic

theorem [67].
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5. Random perturbation of good sequences: Let (kn)n≥1 be an Lp-good

universal sequence of integers that is also Hartman uniformly distributed. Let

us suppose that θ = {θn, n ≥ 1} denotes a sequence of N-valued independent,

identically distributed random variables with basic probability space (Ω,A,P),

and a P-complete σ-algebra A. Assume that there exist 0 < α < 1 and

B > 1/α such that

kn = O(en
α

) and E logB+ |θ1| <∞.

Here E denotes expectation with respect to the probability space (Ω,A,P).

Then (kn+θn(ω))n≥1 is Lp-good universal and Hartman uniformly distributed,

see [46].

6. Sequences kn = [P (n)] (n = 1, 2, . . .) where P (x) = akx
k + · · ·+a1x+a0

such that the numbers ak, . . . , a1 are not all rational multiples of the same real

number, see [43].

7. Sequences kn = [P (pn)] (n = 1, 2, . . .) where (pn)∞n=1 denotes the se-

quence of rational primes and P (z) is as in 6), see [43].

8. Sequences kn = [f(n)] (n = 1, 2, . . .) where f(z) denotes a non-polyno-

mial entire function which is real on the real numbers and such that |f(z)| �
e(log z)α with α < 4

3
, see [43].

9. Sequences kn = [f(pn)] (n = 1, 2, . . .) where f(z) is as in 8) and pn

denotes the nth rational prime, see [43].

10. Sequences kn = [an cos(anx)] (n = 1, 2, . . .) for a strictly increasing

sequence of integers (an)∞n=1 and almost all x with respect to Lebesgue measure,

see [43].

11. Sequences kn = [an cos(anx)] (n = 1, 2, . . .) for a strictly increasing

sequence of integers (an)∞n=1 such that an � np and p > 1 and all x outside a

set of Hausdorff dimension not greater than 1− 1
4p+ 1

2

, see [43].

12. Sequences kn = [gn(x)] (n = 1, 2, . . .) for almost all x with respect

to Lebesgue measure in [a, b] where (gn(x))∞n=1 is a sequence of continuously

differentiable functions defined on [a, b] satisfying the following hypothesis. For

each pair of distinct natural numbers m and n we have:

(a) g′n(x)− g′m(x) is monotonic on [a, b],
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(b) there is an absolute constant λ such that |g′n(x)−g′m(x)| ≥ λ > 0. See [43].

13. Sequences kn = [gn(x)] (n = 1, 2, . . .) for all x lying outside a set of

Hausdorff dimension at most 1 − 1
p

in [a, b] where (gn(x))∞n=1 is a sequence of

continuously differentiable functions defined on [a, b] which satisfies the hy-

pothesis (a), (b) of 12) and additional two conditions:

(c) for all x in [a, b] we have

sup
x∈[a,b]

|g′n(x)| � np

for some p > 1 and with an implied constant independent of x,

(d) for each pair of distinct positive integers m and n the function

g′n(x)g′m(x)

g′m(x)− g′n(x)

is monotonic on [a, b]. See [43].

3.4 Uniform Distribution of β-adic Halton Sub-

sequences

To introduce the concept of the β-adic Halton sequence, first we need to set

the relevant background which can be also found in [19] and [26].

Let (Gn)n≥0 be an increasing sequence of positive integers with G0 = 1.

Then every non-negative integer n can be written as

n =
∞∑
k=0

gk(n)Gk, (3.3)

where gk(n) ∈ {0, . . . , [Gk+1/Gk]} and [x] denotes the integral part of x. This

expansion is called the G-expansion. Provided that for every finite K > 0 such

that

n =
K∑
k=0

gk(n)Gk < GK+1, (3.4)
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the expansion is unique and finite. We call gk the k-digit of the G-expansion.

The digits (gk)k≥0 can be calculated using the greedy algorithm and G =

(Gn)n≥0 is called a numeration system.

Let Ej = {k ∈ N0 : 0 ≤ k ≤ [Gj+1/Gj]}. There is a natural injective map

from N to the infinite product space E =
∏

j≥0Ej given by n→ n where

n = g0(n) . . . gK(n)0∞

is determined by the G-expansion of n = g0(n)G0 + · · ·+gK(n)GK . The closure

of the image N in E is the subset of sequences satisfying (3.4) and is denoted

by KG, that is

KG = {x = (x0x1x2 . . .) ∈ E : ∀j ≥ 0, x0G0 + · · ·+ xjGj < Gj+1}.

The elements of KG are said to be G-admissible. A finite sequence x0 . . . xn is

then G-admissible if x0 . . . xn0∞ is G-admissible. To extend the addition-by-1

map from N to KG we introduce the set

K0
G = {x ∈ KG : ∃Mx,∀j ≥Mx, x0G0 + · · ·+ xjGj < Gj+1 − 1} ⊆ KG. (3.5)

Put x(j) =
∑j

k=0 xkGk and set

τ(x) = (g0(x(j) + 1) . . . gj(x(j) + 1))xj+1xj+2 . . . , (3.6)

for every x ∈ K0
G and j ≥ Mx. This definition does not depend on the choice

of j ≥ Mx and can be extended to x in KG\K0
G by setting τ(x) = 0 = (0)∞.

Thus, we have defined the map τ on KG and we call τ the G-odometer or

G-adding machine.

In the sequel of this chapter we restrict attention to numeration systems

where G = (Gn)n≥0 is a linear recurrence, i.e. we require that G0 = 1 and

Gk = a0Gk−1 + · · · + ak−1G0 + 1 for k < d. Then for each n ≥ d, Gn is given

by a recurrence of order d ≥ 1 which is

Gn+d = a0Gn+d−1 + · · ·+ ad−1Gn. (3.7)
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To this linear recurrence we can associate the characteristic equation

xd = a0x
d−1 + · · ·+ ad−1. (3.8)

We further confine attention to numeration systems with a characteristic equa-

tion (3.8) having a Pisot-Vijayragahavan number (PV-number), say β, as a

root. In [8] it was shown that this is always the case when

a0 ≥ a1 ≥ . . . ≥ ad−1 ≥ 1.

Under this assumption, W. Parry [50] showed that the β-expansion of β is

finite, that is

β = a0 +
a1

β
+ · · ·+ ad−1

βd−1
, (3.9)

where a0 = [β].

To numeration systems, whose characteristic root β is a PV-number satis-

fying (3.9), a sum
∑M

k=0 gkGk for finite M is the expansion of an integer if and

only if for the digits gk of the G-expansion we have

(gk, gk−1, . . . , g0, 0
∞) ≺ (a0, a1, . . . , ad−1)∞,

for each k with ≺ denoting the lexicographic order [50]. Representations

(gk, . . . , g0) satisfying this condition are said to be admissible representations

and thus belong to KG.

Let Z denote a cylinder of length K with digits g0, . . . , gK−1 for the dy-

namical system (KG, τ) and let FK,r = #{n < GK+r : (g0(n), g1(n), . . .) ∈ Z}.
We can define the measure µ on KG by

µ(Z) =

FK,0β
d−1 + (FK,1 − a0FK,0)βd−2 + · · ·+ (FK,d−1 − a0FK,d−2 − · · · − ad−2FK,0)

βK(βd−1 + βd−2 + · · ·+ 1)
.

In [19] it was showed that (KG, τ), i.e. the odometer on an admissible numer-

ation system G, is uniquely ergodic with respect to the measure µ.

In [26] the following theorem was proved.
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Theorem 3.4.1. Let G1, . . . , Gs be numeration systems defined by linear recur-

rences (3.7) where the coefficients are given by aij = bi where j = 0, . . . , (di−1)

and i = 1, . . . , s with pairwise coprime positive integers bi, i = 1, . . . , s. Fur-

ther, suppose
βki
βlj
/∈ Q for all positive integers k, l with β1, . . . , βs being the roots

of the characteristic equations (3.8). Then the dynamical system

((KG1 , τ1)× (KG2 , τ2)× · · · × (KGs , τs)),

that is s-dimensional Cartesian product of the corresponding odometers, is

uniquely ergodic.

We now define the Monna map φβ for irrational bases β > 1 as follows.

Definition 3.4.2. Let n =
∑

j≥0 gj(n)Gj be theG-expansion of a non-negative

integer n. Then the transformation φβ : KG → R+
0 defined by

φβ(n) = φβ

(∑
j≥0

gj(n)Gj

)
=
∑
j≥0

gj(n)β−j−1

is called the β-adic Monna map.

The restriction of φβ to K0
G has a well defined inverse which is called pseudo-

inverse φ+
β : R+

0 → K0
G defined by

φ+
β

(∑
j≥0

gj(n)β−j−1

)
=
∑
j≥0

gj(n)Gj.

In this context, we have the following definition of the β-adic Halton sequence.

Definition 3.4.3. The β-adic Halton sequence is defined by

(φβ(n))n≥0 = (φβ1(n), . . . , φβs(n))n≥0,

where β = (β1, . . . , βs), and βi is the solution of the corresponding character-

istic equation of a numeration system Gi.

Note that it is not evident that the image of K0
G under φβ is contained
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in [0, 1) or dense in [0, 1) even if the solution of (3.8) is a PV-number. The

following proposition gives conditions for this to hold [26].

Proposition 3.4.4. Let a = (a0, . . . , ad−1) where a0, . . . , ad−1 ≥ 0 are the co-

efficients defining the numeration system G and suppose that the corresponding

characteristic root β satisfying (3.8) is a PV-number. Then φβ(N) ⊂ [0, 1) and

φβ(N) is not contained in [0, x) for all x ∈ (0, 1) if and only if a can be written

either as a = (a0, . . . , a0) or as a = (a0, a0 − 1 . . . , a0 − 1, a0) where a0 > 0.

Proof: The proof can be found in [26]. �

Proposition 3.4.5. Let G be a numeration system given by (3.7) where the

coefficients of linear recurrences are of the form aj = a where a is a positive

integer and j = 0, 1, . . . , (d − 1). Let β be a solution of the corresponding

characteristic equation. Then µ(Z) = λ(φβ(Z)) for every cylinder set Z.

Proof: The proof can be found in [26]. �

Next, we will be interested in the more general case of β-adic Halton se-

quences and that is the sequence (φβ(kj))j≥1 where (kj)j≥1 is a sequence of

non-negative integers. In the sequel, we will also assume that the sequence

(kj)j≥1 is Hartman uniformly distributed and L2-good universal. The follow-

ing result can be also found in [30].

Theorem 3.4.6. Let G1, . . . , Gs be numeration systems defined by linear recur-

rences (3.7) where the coefficients are given by aij = bi where j = 0, . . . , (di−1)

and i = 1, . . . , s with pairwise coprime positive integers bi, i = 1, . . . , s. Fur-

ther, suppose
βki
βlj
/∈ Q for all positive integers k, l with β1, . . . , βs being the roots

of the characteristic equations (3.8). Then if (kj)j≥1 is Hartman uniformly

distributed and L2-good universal, the sequence (φβ(kj))j≥1 is uniformly dis-

tributed on [0, 1)s.

Proof: Using Proposition 3.4.5 and the definition of the Monna map, we get

an isomorphism between the dynamical systems ((KG1 , τ1) × · · · × (KGs , τs))
and (([0, 1), T1)× · · · × ([0, 1), Ts)) with Ti : [0, 1)→ [0, 1) given by

Ti(x) = φβi ◦ τi ◦ φ+
βi

(x).
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We can see this in the diagram below illustrating the isomorphism.

KGi
τi−−−→ KGi

φβi

y φβi

y
[0, 1)

Ti−−−→ [0, 1)

Let Tx = (T1x1, . . . , Tsxs) where x = (x1, . . . , xs) is in [0, 1)s. Since by

Theorem 3.4.1, the dynamical system ((KG1 , τ1)× · · · × (KGs , τs)) is uniquely

ergodic and also it is isomorphic to (([0, 1), T1) × · · · × ([0, 1), Ts)), then also

(([0, 1), T1)×· · ·× ([0, 1), Ts)) or equivalently T is uniquely ergodic. Moreover,

since (kj)j≥1 is Hartman uniformly distributed and L2-good universal, by Re-

mark 3.2.9, we obtain that (Tkjx)j≥1 is uniformly distributed in [0, 1)s for all

x ∈ [0, 1)s. In particular, (Tkj0)j≥1 is uniformly distributed in [0, 1)s.

Now, we want to show that (Tkj0)j≥1 = (φβ(kj))j≥1. For any i = 1, . . . , s

we have

Ti(0) = φβi ◦ τi ◦ φ+
βi

(0) = φβi ◦ τi(0∞)

where τi(0
∞) = (g0(1) . . . gj(1))0∞. So, we obtain

Ti(0) = φβi((g0(1) . . . gj(1))0∞).

Since we can write (g0(1) . . . gj(1))0∞) as g0(1)G0 + · · ·+ gj(1)Gj = 1, we get

Ti(0) = φβi(1).

Now, we have

T 2
i (0) = φβi ◦ τi ◦ φ+

βi
(φβi(1)) = φβi ◦ τi(1) = φβi ◦ τi((g0(1) . . . gj(1))0∞).

We use again the fact that one can write (g0(1) . . . gj(1))0∞) as g0(1)G0 + · · ·+
gj(1)Gj = 1 and we get

τi((g0(1) . . . gj(1))0∞) = (g0(1 + 1) . . . gj(1 + 1))0∞ = (g0(2) . . . gj(2))0∞
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and so

T 2
i (0) = φβi((g0(2) . . . gj(2))0∞) = φβi(2).

Proceeding inductively, we get T ni (0) = φβi(n) or T
kj
i (0) = φβi(kj) for all

kj ∈ N0, j = 1, 2, . . . . So, we have

(Tkj0)j≥1 = (T
kj
1 0, . . . , T kjs 0)j≥1 = (φβ1(kj), . . . , φβs(kj))j≥1 = (φβ(kj))j≥1.

Thus we can conclude that (φβ(kj))j≥1 is uniformly distributed in [0, 1)s. �

Example 3.4.7. Let us have numerations systems G1 and G2 defined as fol-

lows.

G1 : G0 = 1, G1 = G0 + 1 = 2 and Gn+2 = Gn+1 +Gn

G2 : G0 = 1, G1 = 2G0 + 1 = 3 and Gn+2 = 2Gn+1 + 2Gn

Solving characteristic equations of corresponding numerations systems, we get

solutions which are PV-numbers and these are β1 = 1+
√

5
2

and β2 = 1 +
√

3.

Let (kj)j≥1 be given by

([n
3
2 ])∞n=1 = 1, 2, 5, 8, 11, 14, 18, 22, 27, 31, 36, 41, 46, 52, 58, 64, 70, 76, . . . .

Then the corresponding β-adic Halton sequence is of the form

(φβ1([n
3/2]), φβ2([n

3/2]))∞n=1.

The values for terms of this β-adic Halton sequence were computed using

algorithm in Maple which can be found in the Appendix. The algorithm is

based on definitions introduced in this section. First few values of the β-adic

Halton sequence are (rounded to 4 decimal places):

0.6180, 0.3660, 0.3820, 0.7321, 0.1459, 0.8660, 0.0902, 0.0490, 0.3262, 0.1830,

0.6738, 0.3170, 0.2016, 0.8301, 0.6525, 0.0179, 0.7984, 0.8840, 0.5066, 0.4330, . . .

Since we know that ([n
3
2 ])∞n=1 is Hartman uniformly distributed and Lp-good

106



universal and moreover, the conditions for the coefficients of linear recurrences

and for β1, β2 are satisfied, by Theorem 3.4.6 (φβ1([n
3/2]), φβ2([n

3/2]))∞n=1 is

uniformly distributed in [0, 1)s.
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Chapter 4

Conclusion and Future Research

The first main outcome of this thesis is proving ergodic and metric properties

of Schneider’s continued fraction map in non-Archimedean settings. It was

shown that the natural extension of this map is isomorphic to a Bernoulli shift

with the entropy #(k)
#(k)−1

log(#(k)) which was also calculated. Since the natural

extension of the map is Bernoulli, this implies a number of strictly weaker

properties which are exactness, strong-mixing, weak-mixing and ergodicity.

Further, interesting results about various averages and moving averages of

partial quotients of the generalised Schneider’s continued fraction expansion

are proved applying subsequence pointwise ergodic theorems and the moving

average ergodic theorem.

There are many other results for the regular continued fraction on the real

numbers which one can try to recover for Schneider’s continued fraction expan-

sion in non-Archimedean settings. For example, an adaptation of the original

Gauss-Kuzmin theorem ([16], [36], [37]) to our continued fraction expansion in

non-Archimedean settings could yield an interesting result. Another thing one

might try to do is to prove quantitative versions of metrical theorems about

averages and moving averages of partial quotients of the generalised Schnei-

der’s continued fraction expansions. Specifically, we would like to find error

terms in the theorems in Sections 2.6 and 2.7. To determine the error terms

one can use I. S. Gál and J. F. Koksma’s method [15] or to get slightly better

results, one can try to adapt the method introduced in [23].
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Another interesting problem in non-Archimedean settings in general is to

recover the p-adic analogue of Rudolph’s Theorem [60] which is the partial re-

sult to a well known problem due to H. Furstenberg who asks whether Lebesgue

measure is the only non-atomic measure preserved by multiplication by both

a and b where a, b are coprime natural numbers. Rudolph used symbolic dy-

namics to give a proof of this problem under the assumptions that a, b are

coprime, the joint action is ergodic and that one of the multiplications has

positive entropy. A. Johnson then proved Rudolph’s Theorem assuming only

that a divides no power of b instead of requiring coprimality of a, b [31]. The

analogue of Rudolph’s result in positive characteristic was proved in [20] and

the proof of Johnson’s result in positive characteristic was given in [22]. How-

ever, to prove these results in the p-adic case is not so straightforward as there

are complications with the assumption of ergodicity of the joint action which

need to be addressed.

Another main result proved in this thesis is that under certain assumptions

a subsequence of β-adic Halton sequences is uniformly distributed in [0, 1)s.

Specifically, if a sequence of non-negative integers (kj)
∞
j=1 is Hartman uniformly

distributed and L2-good universal and the bases β = (β1, . . . , βs) are special

PV-numbers then (φβ(kj))j≥1 is uniformly distributed in [0, 1)s.

For one-dimensional Halton sequences, that is for van der Corput sequences,

one might try to extend the result proved in [39] to β-adic van der Corput

sequences. Specifically, we would like to prove the following. If (kj)
∞
j=1 is

Hartman uniformly distributed, (m1, . . . ,ms) is an s-tuple of non-negative

integers and if β > 1 is a PV-number then the asymptotic distribution function

of the sequence

(φβ(kj +m1), . . . , φβ(kj +ms))j≥1

exists and is a copula.
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Appendix

Maple Code of Program for Calculating Terms

in β-adic Halton sequence

### Setup

## Calculate up to this term of the sequence

highest_order:=120:

## Start output at this term of sequence

min_out:=1:

## End output at this term of sequence, must be

less than highest_order

max_out:=40:

## Number of digits in approximation

decimal_approx:=6:

### Solve Characteristic Equation

i:=’i’:

## Input coefficients of equations

a:=[1,1]:

d:=nops(a):

eq:=x^d=sum(a[i]*x^(d-i),i=1..d):

sols:={solve(eq)}:

### Get real solution greater than 1

solarray:={}:
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i:=’i’:

for i from 1 to nops(a) do

if evalf(sols[i]-1)>0 then

solarray:=solarray union {sols[i]}:

fi:

od:

## Visual check that there is only one element

solarray;

## Set solution

X:=solarray[1]:

### Initialise sequence

i:=’i’:

g:=[1,2]: ### Input first terms

for i from 1 to nops(g) do

G[i-1]:=g[i]:

od:

### Generate G sequence

i:=’i’:

for i from 1 to highest_order-d+1 do

G[i+d-1]:=sum(a[j]*G[i+d-j-1],j=1..nops(a)):

od:

### Linear equation with coefficients from G sequence

i:=’i’:

lin_eq:=sum(x[i]*G[i],i=0..10):

### Output terms in Halton sequence using greedy algorithm

i:=’i’:

for n from 1 to highest_order do

max_i:=0:

while(n>=G[max_i]) do

111



max_i:=max_i+1:

od:

max_i:=max_i-1:

r:=n:

for i from 0 to max_i do

j:=max_i-i:

y[n,j]:=min(floor(r/G[j]),floor(G[j+1]/G[j])):

r:=r-y[n,j]*G[j]:

od:

j:=’j’:

ans:=simplify(expand(rationalize(sum(y[n,j]*X^(-j-1),

j=0..max_i)))):

## Output term, including position and approximation

print(n,ans,evalf[decimal_approx+1](ans));

od:
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[23] J. Hančl, A. Jaššová, P. Lertchoosakul, R. Nair: On the Quantitative

Metric Theory of Continued Fractions. Preprint, 2014.

[24] J. Hirsh and L. C. Washington: P -adic continued fractions. Ramanujan

J. Math., 2011, 389–403.

[25] E. Hlawka: Funktionen von beschränkter Variation in der Theorie der

Gleichverteilung. Ann. Math. Pura Appl. 54, no. 4, 1961, 325–333.

[26] M. Hofer, M. R. Iaco, R. Tichy: Ergodic properties of β-adic Halton se-

quences. Ergodic Theory and Dynam. Systems, 2014 (to appear).

[27] M. Iosifescu, C. Kraaikamp: Metrical Theory of Continued Fractions. In:

Mathematics and its Applications, vol. 547, Kluwer Academic Publishers,

Dordrecht, 2002.

[28] S. Ito, H. Murata, H. Totoki: Remarks on the isomorphism theorems for

weak Bernoulli transformations in general case. Publ. Res. Inst. Math.

Sci. 7, 1971/1972, 541–580.
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