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Abstract  
The Amaryllidaceae have characteristic isoquinoline alkaloids including galanthamine that is 

approved for treatment of Alzheimer’s disease. The daffodil (Narcissus pseudonarcissus) is an 

industrial source of this alkaloid. This project undertook analysis of the daffodil transcriptome as 

an approach to understanding this alkaloid biosynthetic pathway.  

Material from the basal plate of var. Carlton was analysed using the Roche 454 GS FLX Titanium 

and Illumina HiSeq platforms to assemble reference transcripts (45324 transcripts from 454, 

165065 from Illumina). Annotation was via a bespoke BLAST pipeline utilizing UniProt, TAIR, 

Rfam and RefSeq. Further functional annotation and enrichment studies were carried out using 

the DAVID platform encompassing KEGG, GO and EC annotations. Illumina HiSeq sequencing of a 

second variety, Andrew’s Choice, was used alongside the reference transcripts to identify SNPs 

and transcript level differences. A bioinformatics method to determine ploidy indicated both 

varieties were triploid, in agreement with microscopy results. The level of selected transcripts was 

also assessed using qPCR. 

Several transcripts putatively involved in alkaloid biosynthesis were identified. Comp75950_c0_s1 

showed homology to a C4H gene from peppers and could be involve in protocatechuic acid 

biosynthesis in daffodils. Two transcripts, Daff106212 and Contig1404, were predicted to catalyse 

the synthesis of norbelladine from protocatechuic acid and tyramine, and its subsequence 

conversion to 4’-O-methylnorbelladine. Finally, transcripts HDA57HA0AK3FX and Daff88927 were 

suggested for the final step in galanthamine biosynthesis, an intermolecular phenol coupling.  

This is the first transcriptomic comparison of two daffodil varieties and is an important resource 

for further investigation into genes involved in Amaryllidaceae alkaloid biosynthesis.  
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1 Chapter one: The use of Second-generation 
sequencing technologies for the study of medicinally 
important alkaloids - a case study in galanthamine 
production in daffodils  

 

1.1 Introduction 
 

Galanthamine is a specialized plant secondary metabolite currently extracted 

from snowdrops and daffodils for use in the pharmaceutical industry as the 

active ingredient in a drug that slows the progression of Alzheimer’s disease 1. 

Plant secondary metabolites such as this have been exploited throughout 

history as flavours, pigments, medicines and as industrial raw materials 2. The 

compounds themselves are often species-specific and are thought to be involved 

in plant defense and in the attraction of pollinators 2. Galanthamine is a member 

of a group of metabolites known as alkaloids that also includes other 

compounds with potent biological activity such as codeine and morphine 3. The 

plants often remain the main source of these compounds as the chemical 

synthesis is difficult due to the chiral nature of the compounds 4. The direct 

extraction from plants, however still produces low yields as the levels of 

alkaloids in plants vary greatly between species and individuals as well as in 

response to environmental conditions and therefore they are considered trace 

compounds 5. Although methods of metabolic engineering and biosynthesis via 

microbial systems have been successful for compounds of this type, these 

methods rely heavily on knowledge on the biosynthesis of the compounds 

within the source species 6.  

 

As secondary metabolite biosynthesis often involves diversions from primary 

metabolism and complex non-linear pathways it is difficult to predict the 

enzymes involved 7. Although studies have shown that the enzymes involved 

come from a small number of gene families, these families have large variation 
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of function within them and it is often not possible to predict function using 

sequence analysis alone 8.  

 

One method of investigating the biosynthesis of alkaloids is functional 

genomics. Major advances in DNA sequencing technology have made genomic 

sequencing a relatively cheap and quick way of obtaining vast quantities of data, 

even from non-model plants 9-11. With the rapid development and 

corresponding reduction in cost of second-generation sequencing technologies, 

transcriptomics has become the go-to method of functional genomic studies in 

previously unexploited non-model plants 12,13.  In particular the massively 

parallel sequencing of RNA, “RNA-Seq”, has revolutionized plant research, from 

the initial uses of transcriptomics for EST library production, mapping of short 

reads to reference genomes to the development of de novo assembly of the 

improved read lengths of second-generation techniques, transcriptomics has led 

the way to the discovery of genes involved in alkaloid biosynthesis in several 

plants 5,14,15.  

 

Two key transcriptomic analyses in the discovery of putative alkaloid 

biosynthetic genes are similarity searches and functional annotation of the 

transcriptome. Functional annotation via BLAST searches against public 

databases of Gene Ontology, KEGG and EC classification have been used to 

predict genes involved in other alkaloid producing pathways 2,5,16. Also, with the 

enzymes involved in alkaloid production predicted to be from a small number of 

large gene families, homology studies into specific gene types has been 

successful in predicting alkaloid biosynthetic genes in some plants 17,18. These 

predicted genes can then be used in further downstream analysis to aid in the 

discovery of plants and systems with higher alkaloid producing properties. 

 

One valuable tool in the analysis of these predicted genes is transcript level 

differences or differential expression (DE) 13,16,19,20. By combining DE studies 

with transcriptome sequencing it is possible to assess key steps in alkaloid 

production 21. As a transcriptome shows all the transcribed elements (exonic 



 

3 

regions) at a given time point, comparisons of daffodil individuals with differing 

levels of galanthamine from the same time point in growth may predict genes 

that are up or down regulated within the galanthamine pathway.  

 

The rapid development of functional genomics has also lead to the revolution of 

DNA markers used in plant research and breeding programs 22. The first and 

second generation of markers such as RFLPs, RAPDs, SSRs and AFLPS rely on 

costly gel based assays and are time consuming 22. The development of SNPs, a 

third generation marker system, not only avoids the gel-based methods but 

SNPs are also considered functional markers, linking traits with alleles23. They 

are the most abundant marker system and have the potential to lead to 

agronomically important alleles 24.  SNPs have been used in agriculturally and 

medicinally important plants as cost effective marker-associated selection in 

fingerprinting, association studies and population analysis 25. In this project it is 

hoped that by discovering SNPs between two varieties of daffodil with known 

differences in galanthamine levels (see appendix section 6.3) it will be possible 

to predict SNP markers linked to galanthamine production.  

 

This project aims to produce a reference transcriptome of a high galanthamine 

producing variety of daffodil, Carlton, at a time point known to correlate with 

high galanthamine levels. By comparing this reference to short reads from both 

Carlton and a low producing variety, Andrew’s Choice, it is hoped that both non-

synonymous SNPs and differences in transcript levels can be determined in 

putative genes involved in the production of galanthamine.  
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1.2 Daffodil- Narcissus pseudonarcissus  

 
Figure 1-1 Daffodil variety Carlton. 

The Narcissus genus is among the 80 genera of the monocotyledon 

Amaryllidaceae family, and includes all daffodils 26. They originate from the 

Mediterranean area, from lowland pastures to rocky hillsides 27,28. The plants 

undergo hybridization easily in both the wild and cultivation, resulting in over 

25,000 distinct cultivars 26. All species are summer-dormant bulbs that grow 

throughout the autumn/winter with most flowering in the spring, and are insect 

pollinated 28.   

The taxonomy of the family is highly contested with Narcissus pseudonarcissus 

being one of the most controversial groups due to the ease of hybridization and 

varying DNA content and polyploidism 29. The genus has been shown through 

several cytogenetic and flow cytometry studies to have diverse DNA content and 

ploidy levels, with genome size and ploidy differing within seven of the most 

studied species,  (N. asturiensis, N. bulbocodium, N. broussonetii, N. cantabricus, 

N. poeticus, N. pseudonarcissus and N. tazetta) 30. One of the most extensive 

cytometry studies is the 2008 study of 355 accessions by Zonneveld. He 

identified highly variable DNA content within varieties with the same ploidy 

level. For example, in diploids the somatic nuclear DNA content (2C) varied 

from 14 to 38 pg 30.  As for polyploids the largest polyploid reported was the 

nonoploid N. dubius, which had a DNA content of 96.3 pg.  

The varieties studied in this project are N. pseudonarcissus cv. Carlton and N. 
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pseudonarcissus cv Andrew’s Choice. In his study Zonneveld did not look at 

either of these varieties, although he did measure the DNA content of 46 

Narcissus pseudonarcissus samples with DNA content ranging from a diploid 

(2n=14) ssp pseudonarcissus L with 22.7pg to a tetraploid (2n=28) ssp nobilis 

with a DNA content of 45.9pg 30. The majority of the samples were diploid apart 

from N nobilis and two triploid samples of ssp major (Curtis) Baker also known 

as N. hispanicus that had DNA contents of 36.5 and 36.1pg respectively 30. 

Carlton was investigated in 1993 in a study looking at only 16 varieties of 

Narcissus and was found to be a tetraploid; Andrews Choice has not been 

investigated for DNA content or ploidy level 31.  This diversity within the genus 

has been exploited in the ornamental industry to produce a wide variety of 

interesting phenotypes 32. As well as interest from the ornamental breeders 

daffodils have become an important medicinal plant due to their production of 

biologically active alkaloids such a galanthamine 33.  

 

1.3 Amaryllidaceae alkaloids – History of their 
medicinal properties 

There are 500 structurally diverse Amaryllidaceae alkaloids which have been 

identified by progressive chemical analysis since the 1950s 34. Within the 

Narcissus genus alone there are over 100 known alkaloids with varying 

bioactivity 35.  The earliest record of the use of galanthamine, the most widely 

studied Amaryllidaceae alkaloid, is possibly from ancient Greece. It has been 

suggested that symptoms matching that of acetylcholine syndrome are 

described by Homer in the Odyssey and were alleviated by a plant extract 

known as “moly” thought to be from the snowdrop (Galanthus spp.) which was 

known to grow in Greece 36. Snowdrops have been used in Russia and Eastern 

Europe for centuries in traditional medicine. Although their endogenous role is 

relatively unknown, extracts of Narcissus have been used for centuries to treat a 

wide variety of ailments 36. Through second hand accounts and unconfirmed 

reports extracts have been linked to the treatment of post-polio paralysis and 

myasthenia gravis via the reversal of neuromuscular blockade, as well the ease 
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of nerve pain and other neuromuscular or central nervous system disturbances 
1. 

 

Galanthamine is a member of one of the nine distinct groups of Amaryllidaceae 

alkaloids 37. These are grouped based on their skeletal characterization, as 

shown in Figure 1.2.  The bioactivities of these alkaloids are varied but include 

analgesic properties, acetylcholine esterase inhibition, hypotensive properties, 

anticonvulsive properties, anti-inflammatory properties, cytotoxic properties 

and antimalarial properties 37.  

 

 
Figure 1-2 The nine distinct types of amaryllidaceae alkaloids 

The alkaloids shown are the representative alkaloid for that type 37.  
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1.3.1 Galanthamine – as a folk medicine   
Galanthamine is the most widely studied Amaryllidaceae alkaloid and is 

currently approved for use in the treatment of Alzheimer’s disease and is the 

main focus of this thesis 38. In the 1950s the active ingredient galanthamine was 

first characterized after a Bulgarian pharmacologist witnessed snowdrop 

extracts being used to alleviate headaches 1. The structure was determined in 

1953 and its acetylcholine esterase inhibiting properties discovered shortly 

thereafter 39,40.  It was also implicated as a treatment for poliomyelitis in 

Eastern Europe in the 1960s when extracts from Caucasian snowdrop bulbs 

were effective on two children showing early symptoms 1.  It is however 

because of its acetylcholine esterase (AChE) inhibiting properties that 

galanthamine is of pharmacological interest.  

 

1.3.2 Other Amaryllidaceae alkaloids with potential medical uses: 
Narciclasine and Lycorine  

Most of the work on amaryllidaceae alkaloids has focused on the chemical 

structure of the pharmacophores and functional groups to look for possible new 

lead compounds for structural based drug design. Lycorine has shown activity 

against several cancer lines as it is shown to induce apoptosis via the 

mitochondria of cancerous cells 41,42.  This is of particular interest as lycorine 

shows cytostatic activity in those cells resistant to apoptosis, since 90% of 

cancer patients die from metastases, which are intrinsically resistant to 

apoptosis 43.  Derivatives of lycorine have shown anti-plasmodial action against 

sleeping sickness, malaria, and also against the viral diseases poliomyelitis and 

SARS 44-46. Derivatives of this alkaloid are also currently being explored for anti-

dengue virus activity and as a broad spectrum anti pathogenic fungi agent with 

a study looking at 24 crop pathogenic fungi 47,48. 

 

Narciclasine has also shown anti-cancerous properties against those cells 

resistant to apoptosis stimuli. It is thought to target cEFIA elongation factor 

causing cyto-skeletal disorganization 49. More recently it has been shown to 

impair actin cytoskeleton organization in experimental models of brain cancers 
50.  
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1.4 Galanthamine  
1.4.1 As a proven drug in Alzheimer’s disease  
Galanthamine is a centrally acting competitive and reversible ACHE inhibitor 

approved by the National Institute for Health and Clinical Excellence (NICE) for 

the treatment of mild to moderately severe cases of Alzheimer’s disease 38,51.  It 

is currently extracted for this purpose from snowdrops (Galanthus spp), red 

spider lily (Lycorus radiate) and daffodils (Narcissus spp) with varying intra and 

inter-species yields 52.  

 

Alzheimer’s disease is the main cause of dementia in the elderly with over 20 

million sufferers worldwide; in 2009 there were 500,000 sufferers in the UK 

alone, reaching almost 800,000 by 2012 38,51,53.  There is no known cure for the 

disease and due to prolonged life expectancy the worldwide cost is predicted to 

double every five years with the worldwide cost in 2005 alone estimated at 

US$315 billion. Within the UK, in 2012 it was predicted to cost £23 billion a year 

with a predicted increase to £27 billion by 2018 53,54. Alzheimer’s disease is a 

progressive neurodegenerative disease resulting in serious cognitive 

dysfunction with symptoms including memory loss, language deficits, 

depression, behavioral issues, psychosis and can lead to motor dysfunction and 

Parkinson-like symptoms 52,55.  The pathology of the disease is relatively 

unknown but the major causative factors are known to be deficiency of 

acetylcholine (Ach), a neurotransmitter linked to cognitive function, along with 

plaque build-up and inflammation in the brain 55.  Therefore it is very important 

that drugs used to treat the disease, like galanthamine, can pass through the 

blood brain barrier.  

 

Galanthamine has a dual mechanism against Alzheimer’s disease. Firstly it has 

been shown to inhibit the enzymatic activity of AChE in the brain resulting in 

increased levels of ACh and secondly it allosterically modulates nicotinic ACh 

receptors, increasing the stimulatory effect of ACh 1. This second mode of action 

is attributed to galanthamine’s ability to bind at both the pre and post-synaptic 
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nicotinic receptors at a different site to ACh allowing the response to be 

increased as both bind simultaneously 56,57.  This dual action makes 

galanthamine a more attractive treatment than other currently available drugs 

such as donepezil and rivastigmine as they do not affect the nicotinic receptors 
35.  Due to the complex structure of galanthamine the main source of the 

compound remains plants as chemical synthesis produces very low yields at 

high cost.  
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1.4.2 Chemical synthesis  

 
Figure 1-3 Guillou et al synthetic pathway of galanthamine (adapted from Guillou et al., 2001). 

Synthesis was achieved via oxonarwedine (H) in an eight-step Heck reaction leading to a 12% yield of 
galanthamine 58.  
 

Total synthesis of galanthamine is possible but it is not commercially viable due 

to the intrinsic complexity of the chiral centres. The main limiting step is the 
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unfavorable intramolecular oxidative para-ortho coupling of the phenolic ring 
4,59.   Barton and Kirby carried out the initial chemical synthetic work on 

galanthamine and in 1962 they successfully synthesized galanthamine. This was 

achieved at a 1% yield via biomimetic and intramolecular phenol coupling to 

simultaneously give the quaternary carbon centre and tetracyclic framework 60.  

In more recent years the yield has been improved to levels of about 12% by 

Guillou et al in 2001 and Tanimoto et al in 2007. Guillou based the synthesis on 

that of +- oxonarwedine using an eight-step process (see Fig 1.3) involving a 

Heck reaction resulting in a 12% yield 58. Tanimoto et al utilized an 11-step 

process starting from D glucose to give a yield of 12.8%. The stereo specific 

quaternary carbon is created using a Claisen rearrangement on the chiral 

cyclohexanol derived from the D-glucose 61. The low yields and complicated 

synthesis of galanthamine results in the continued use of the plant for 

commercial production.  

 

1.4.3 Biosynthesis  
As is proven with other alkaloids, studying the biosynthetic pathway can lead to 

valuable information that can be used to increase biotechnological production 
62. It could eventually lead to the cloning and expression of the rate limiting 

enzymes responsible for phenol oxidative coupling reaction 4.  Limited work has 

been carried out to try and elude the biosynthetic pathway of galanthamine. 

Barton and Cohen in 1957 suggested that all amaryllidaceae alkaloids are 

derivatives of norbelladine via intra-molecular oxidative phenol coupling after a 

radiolabelling experiment using α 14C-labelled norbelladine derivatives as 

precursors in N. pseudonarcissus cv. King Alfred. 63.  It was predicted that a 

dienone was the first intermediate but the ether bridge formation mechanism 

was unknown. In 1969 work by Fuganti suggested the precursor was 4’-O-

methylnorbelladine (R = CH3 in figure 1.4) via the incorporation of this 

compound into galanthamine while studying the biosynthesis of 

haemanthamine 64. In 1970 Bhandark and Kirby suggested it was narwedine 

(R=H in figure 1.4) following an experiment that incorporated 3H narwedine 

into galanthamine 64,65.  The work carried out by Eichhorn set out to test these 
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theories as the previous experiments had poor incorporation rates. He used 

carrier free radioactive labeled precursors to achieve up to 27% incorporation 

rate, proving 4’-O-methylnorbelladine to be the primary universal precursor 4.   

 
Figure 1-4 Enzymatic synthesis of norbelladine derivatives as shown by Eichhorn in Leucojum 
vernum (adapted from Eichhorn., 1998). 

The experiments showed that N-methylnorbelladine was the primary precursor 4.  
 

The key step in galanthamine production is the phenol oxidative para-ortho’ 

coupling of 4’-O-methylnorbelladine to yield a hypothetical dienone. These 

reactions involve the oxidation of phenols by one-electron transfers, producing 

radicals that pair to form new C-C or C-O bonds 66. From other studies on similar 

pathways it can be predicted that this step is carried out via a highly specific 

P450 dependent oxidase without introducing oxygen in the final product 4,67,68. 

P450s are a class of haem protein-dependent mixed function oxidase that use 

NADPH or NADH to produce an organic compound and a molecule of water 69. 

In BIA (Benzylisoquinoline alkaloids) production a very similar step involving 

intra-molecular para-ortho’ coupling of (R)-reticuline to the dienone 

salutaridine (Fig 1.5) is catalyzed via a P450 linked NADPH and O2 dependent 

microsomal bound plant specific enzyme 70.  

 
Figure 1-5 Intramolecular para-ortho coupling reaction catalysed by a microsomal cytochrome 
P450 enzyme.66.  
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The role of P450 enzymes in phenol coupling reactions in alkaloid biosynthesis 

and other enzymes characterized in similar pathways is further discussed in 

chapter four.  

 

1.5 The use of functional genomics in plant science 
As discussed the rapid development of this area has lead to a cheap and efficient 

method of data collection on non-model plants such as daffodils. The main 

turning point came with the release of second-generation sequencing 

technologies.  

 

1.5.1 The development of Second-generation sequencing technologies  
Sanger sequencing was the most widely used DNA sequencing method from its 

widespread introduction in the 1980s until the early 21st century71. Within the 

plant community reference genomes were sequenced using this method, 

starting with the landmark Arabidopsis genome in 2000, providing the first 

plant genome sequence, followed by important crop plants such as rice, 

sorghum and soybean 71-75. Sanger sequencing is time consuming, costly and 

requires detailed sample preparation. It often requires DNA cloning in bacteria 

which can result in host bias 72. Due to the high cost and amount of time taken to 

produce the data, large and complex genomes of important plants such as wheat 

(~16GB genome size) could not be determined using this method. Furthermore, 

most plants with specialized metabolites of medicinal interest such as daffodils 

are of interest to small communities of researchers and therefore are likely to 

have few genomic resources 2. New technologies that could produce more data 

at a lower cost were required for larger genomes and non-model organisms, 

resulting in development of a new generation of sequencing techniques known 

as “second-generation sequencing”. 

  

Prior to the development of second-generation sequencing technologies the 

standard method for collecting genomic information on non-model plants was 

the generation of random expressed sequence tags (ESTs) via Sanger 
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sequencing 73. Second-generation methods set out to confront the intrinsic 

problems associated with Sanger sequencing, by using a “sequencing by 

synthesis” approach as a quicker and cheaper process 74 that resulted in 3-4 

times the magnitude of DNA sequence compared to Sanger, making it a viable 

method for understanding complex genomes and non-model organisms 71. 

  

The key characteristics of second-generation technologies that made them 

fundamentally different were the introduction of in vitro cloning and in situ 

amplification as well as the use of chain extension chemistry as opposed to 

chain termination. The three main commercial products, 454-pyrosequencing, 

Illumina and Ion Torrent all share similar methodologies, with individual clonal 

DNA templates being sequenced in parallel via cycles of base additions and 

imaging 76. They differ in their methods for detecting incorporation. Each 

platform is briefly described below. 

 

1.5.1.1 454 pyrosequencing 

Roche’s 454 pyrosequencing is a “sequence by synthesis” method and is centred 

around pyrophosphate chemistry using beads containing sulfurylase and 

luciferase 77. A single-stranded template DNA library is created via shearing the 

DNA into fragments that are ligated to two adaptors that allow the 

immobilization of the strands onto the beads 78.  The DNA fragments are 

amplified independently via emulsion-based amplification and sequencing 

occurs with one nucleotide being used per cycle 79. The incorporation of this 

nucleotide results in the release of pyrophosphate that is converted via the 

sulfurylase to ATP.  It is the hydrolysis of this  ATP by luciferase, releasing 

oxyluciferin and light, that is measured followed by a wash and the next cycle 77. 

The 454 chemistry results in indel sequencing errors, in part due to the lack of 

terminating moieties resulting in multiple incorporations in any one cycle 77. 

This is particularly evident in sequences with regions of homopolymers as it is 

difficult to distinguish between high numbers of the same nucleotide such as 4 
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As instead of 5 As. 

 

1.5.1.2 Illumina sequencing 

Illumina sequencing technology (Illumina Inc.) is also a “sequencing by 

synthesis” method. The DNA in this case is also amplified in situ via bridge PCR 

to result in clusters of around 1000 copies 77. Unlike other methods Illumina 

uses nucleotides labeled both with a fluorescent dye and a terminating moiety 

allowing for the use of all four nucleotides at once 80. After a nucleotide is 

incorporated it is detected and identified according to its dye, the dye and 

termination group is removed and the next cycle occurs 77. Due to the use of all 

four nucleotides at once and the termination group preventing numerous 

incorporations per cycle Illumina does not suffer the same indel sequencing 

errors as seen in 454 and Ion torrent. The main error in Illumina sequencing is 

substitution, that is identification of the wrong nucleotide caused by incomplete 

or missing blocking groups or residual interference from incomplete cleavage of 

the fluorescent label in previous cycles 81.  Illumina sequencing and its 

comparison to 454 are further explained in chapters two and three. 

1.5.1.3 Ion Torrent  

Ion Torrent (Life Technologies Corporation) was first implemented in 2010, and 

is a semiconductor sequencing technology. Unlike the 454 and Illumina 

methods it does not rely on enzymatic reactions, fluorescence or chemical 

luminescence 82. It exploits the biochemical reactions that occur during 

nucleotide incorporation leading to the release of hydrogen ions that in turn 

cause a change in pH 82. The technology involves the use of a micro-array chip 

which is flooded with one nucleotide at a time. If the nucleotide is incorporated 

a change in pH is recorded via an ion-sensitive layer under the wells 10. This 

method was intended to be high speed and relative low cost with a run time of 

around two hours and a capacity for >1GB of data in 2012 82. However, as of 

2011 its read length capabilities were only around 200bp and so it was 

considered more suitable for use in microbial studies, re-sequencing and was 

not widely used in plant transcriptome projects 82.  A further limitation to Ion 
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Torrent was its poor ability to handle homopolymers. The error associated with 

Ion Torrent was predominately indel based (error rate of 1% per base) 81. 

However, unlike the other methods, its use of native nucleotides avoided the 

noise seen in both 454 and Illumina from the use of fluorescence or blocking 

groups. 

 

The second-generation technologies of Roche 454 (e.g. GS FLX Titanium) and 

the Illumina platforms (such as HiSeq) were therefore considered high-

throughput techniques 75,76 appropriate for non-model plant genomic studies 

and from 2010 to 2013 were the most widely adopted methods. The Roche 454 

produced over a million reads at lengths of up to 700 bp in a 10 hour run with 

total amounts of 400-600 megabases of sequencing. Illumina HiSeq 2000 had a 

raw base accuracy of over 99.5%, producing on average over 1 billion high 

quality reads during an 11 day run, resulting in gigabites of data 71. 

 

1.5.2 From genome to transcriptome  
One of the most discussed and studied areas surrounding second-generation 

sequencing is its use in transcriptomics, otherwise known as “RNA-Seq” 11,83,84. 

RNA-Seq involves the sequencing of the transcribed regions of DNA (mRNA that 

is converted to cDNA). Through focused studies on the coding regions the 

amount of repetitive regions sampled within the sequence data is reduced, 

increasing the informative content and easing assembly. It is possible using this 

method to look at the complete repertoire of transcribed events occurring in a 

specific tissue at any one time and is therefore of particular use in non-model 

large genome plants with limited genomic data. This method can be used to 

characterize genes, look for novel transcripts, compare mutations and gene 

expression between individuals and produce de-novo assemblies of reference 

transcriptomes 84.  
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1.5.3 The use of second-generation sequencing in plant science  
Since the introduction of second-generation sequencing techniques in 2005, 

research into non-model plants with large genomes has developed rapidly. 

Transcriptomic projects are becoming the norm for research into non-model 

plant species. The first commercially available platform, Roche’s 454 pyro-

sequencing was in 2010/2011 the system of choice for de novo assembly of 

transcriptomes due to its longer read lengths as can be seen in Table 1.1 11. 

 
Table 1-1 The state of second-generation sequencing in 2009. 

The three commercially available technologies vary greatly in run time, read length and number. (All data 

taken from Deschamps and Campbell, 2009) 25 

 

 

When these platforms first emerged de novo assembly was thought to be 

impossible due to the short read lengths first achieved by these technologies (in 

2008 454 reached read lengths approaching 300bp whereas Illumina and SOLiD 

were close to 35bp) 85-88. The data from the sequencers of this new generation 

were therefore originally used for sequence consensus applications, gene 

expression analysis, genome annotation, EST library production, discovery of 

small RNA molecules and SNP profiling 77,89. As of the end of February 2010, 

four of the seven hundred and forty eukaryotic genome projects involved 

second-generation sequencing 77. Other second-generation projects looking at 

plants included 454 EST library constructions for Arabidopsis thaliana, 

Medicago truncatula (a model legume) and Zea mays (maize). However, 

following the first fully second-generation de novo genome assembly of the giant 

panda in 2010, the use of second-generation sequencing for de novo projects has 

rapidly increased 90.  

 

Sequencing platform Run time  Read length (bp) Reads per run (million) 

Roche 454 FLX 10 hours 400-500 ~1 

Illumina GAIIx 5.5 days 100 160 

ABI SOLiD 6-7 days 50 500 
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De novo transcript assembly has become a rapid and viable approach for plants 

with large genomes and 454 rapidly became the technique of choice for de novo 

assembly, with Illumina’s short reads being used alongside these reference 

transcriptomes for SNP discovery and transcript differences to investigate 

numerous biological pathways 77. This was in part due to the increased coverage 

seen with Illumina over 454, due to its capacity to produce 100 fold more reads 

with a 5 fold increased read depth on assembled contigs 2. With the introduction 

of the Illumina HiSeq2000 in mid 2010 with a 2-5 fold rate increase in data 

acquisition over the GA series, Illumina sequencing became the choice for short 

read mapping back to references 91. The increased coverage seen with Illumina 

compared to 454 allows for investigation into rare transcripts.  

 

1.5.4 Transcriptomic studies on non-model plants  
Between 2007, with the proof of concept transcriptome study of Arabidopsis 

thaliana seedlings, and 2012, there were over 50 plant transcriptomic studies 

involving RNA-Seq via either 454 or Illumina 13,83,92. As read lengths improved 

(454 in 2005 100bp to 700bp in 2014, Illumina 25bp in 2006 to 300 in 2013) 

the second-generation technologies overtook traditional sequencing methods 

for a variety of studies including EST library creation, de novo transcriptome, 

genome annotation, discovery of markers (SNPs and SSRs) and a wide variety of 

studies looking as specific traits and relationships 13,83. De novo transcriptome 

assembly has been carried out on non-model plants including certain species of 

fern and eucalyptus as well as garlic, pea, chestnut and chickpea 93-98, as well as 

being used in larger collaborative efforts such as the 1KP project, aiming to 

sequence over 1000 plants. To date this latter project has generated data on 

over 1300 samples of which 111 are monocots and 6 from the Amaryllidaceae 

family 99. So far the project has not released its main publication but a list of 

companion papers can be found at: 

https://pods.iplantcollaborative.org/wiki/display/iptol/OneKP+companion+pa

pers 99.   

As well as de novo assembly, second-generation sequencing has been used to 
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analyse primary and secondary metabolism, traits such as C4 photosynthesis 

and response to biotic and abiotic stress 15,96,97,100-103. Even with the rapidly 

growing number of transcriptomic projects on plant species only a fraction of 

the plant world has so far been explored.  

1.5.5 The future of sequencing technologies  
Study of transcriptomics in plants is continuing to grow with the ever-changing 

state of sequencing technologies. A new era of third-generation technologies has 

now been ushered in. Second-generation technologies such as 454 that were at 

the forefront of non-model transcriptome studies only a few years ago are now 

giving way to the newer technologies with the growing desire for longer reads, 

reduced computational requirements and cheaper sequencing driving the 

technology forward. In fact Roche has decided to no longer support the 454 

platform and it is set for full decommission by mid 2016 104. The development of 

the new generation of sequencers is, as in the past with the second generation 

platforms, being pushed forward by human genetics with the aim of producing a 

whole genome sequence for less than $1000 9.   

The third-generation sequencers include the commercially available SMRT 

(single molecule real time) sequencer by Pacific Biosciences and Oxford’s 

nanopore sequencers 105,106. Both methods allow for the removal of PCR in the 

preparation steps, not only rapidly decreasing DNA preparation time but also 

removing the risk of bias and error introduced via PCR (LIN 2012). Although the 

two methods differ on the signal used to detect nucleotide incorporation (SMRT 

uses fluorescence whereas nanopore use electric current), both methods collect 

the signals in real-time 10. The average read length produced by SMRT is 

1300bp and the potential is there for nanopore technologies to reach lengths of 

>5kbp and speeds of 1bp/ns 107.  

There are also fourth-generation sequencing techniques, which are still in the 

experimental stage but are aimed at producing contextual sequencing, zooming 

in on individual transcripts within a cell or specific tissue 9. These ideas are very 

much at a proof of concept phase, one such project referred to as “in Situ” 

involved the detection and genotyping of individual mRNA molecules in human 
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and mouse cells resulting in the detection of a somatic point mutation and 

differentiation between members of a gene family 108.As human research forces 

these technological advancements, the plant science community will reap the 

benefit, making sequencing of large genome non-model plants more affordable 

and increasing the ability for de novo assembly.  

1.5.6 Transcriptomics in the study of the biosynthesis of plant alkaloids 
and other high value compounds 

With the rapid developments in sequencing technology, large collaborative 

efforts are now being made to study plants with secondary metabolites of 

biotechnological importance 2,6,109,110. The objective is to discover metabolic 

pathways, compare genes in known gene families implicated in secondary 

metabolism and discover key genes/enzymes for production of valuable 

compounds.  

 

Alkaloids is the term given to a diverse group of compounds containing nitrogen 

in a heterocyclic ring. Several key types of alkaloids have been used medicinally 

for centuries including benzylisoquinoline, monoterpene indole and 

amaryllidaceae alkaloids 1,8,110. This includes the Monoterpene indole alkaloids 

(MIAs) vinblastine and vincristine (Catharanthus roseus) with anti-cancer 

properties, the BIA opiates including codeine (poppy) and the tropine and 

purine alkaloids nicotine and caffeine from tobacco (Nicotiana tabacum) and 

coffee (Coffea arabica) respectively 32 (see fig 1.6).  
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Figure 1-6 Chemical structure of widely used alkaloids (adapted from Takos et al., 2013). 

 The compounds themselves are often species-specific but there is evidence that 

similar gene families are involved in the production of several compounds 5,111.  

The opium poppy is one of the most widely studied alkaloid producing plants. A 

study in 2010 by Desgagne-Penix and colleagues produced a transcriptome 

using 454 sequencing that identified 427,369 ESTs (average length 462bp). The 

resulting assembly produced over 90,000 transcripts that were annotated using 

a BLAST database pipeline against well known databases such as UNIPROT 112. 

This, along with proteomic data, resulted in the identification of genes involved 

in secondary metabolism 112.  Work specifically aimed at secondary metabolites 

has also been carried out in smaller projects in other non-model plants. For 

example, the work carried out by Guo et al (2013) on the traditional Chinese 

medicine plant Dendrobium officinale employed the 454 GS FLX titanium 

platform to produce 553,054 ESTs with an average length of 417bp. These were 

assembled into 36,907 unique contigs with 69.7% being annotated.  The work 

carried out on this plant led to the annotation of 69 unique sequences relating 

to 25 genes in alkaloid backbone biosynthesis as seen in the KEGG database 5. 

This study also reaffirmed the fact that key enzyme classes needed in the 

production of most secondary metabolites are cytochrome P450s, 

aminotransferases and methyltransferases and suggested that these may be co-

expressed 5. These will be discussed further in Chapter four. 
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One of the biggest collaborative transcriptomic plant projects is the 

PhytoMetaSyn collaboration 2,6 that has brought together thirteen research 

groups from seven Canadian institutes to produce genomic/metabolic resources 

for 75 plants known to produce high-value compounds. The project has 

discovered genes involved in biosynthesis of codeine and morphine, enzymes in 

diterpenoid biosynthesis for fragrances, undertaken de novo synthesis of 

sesquiterpenoids in yeast and characterized an enzyme involved in the 

biosynthesis of the bioactive compound thapsigargin 113-117.  

A further large-scale project on 14 medicinally important plants has included 

investigation into the biosynthesis of MIAs by studying transcriptomes of 

pooled samples from different tissues of three MIAs producing plants, 

Camtotheca acuminate, Catharanthus roseus and Rauvolfia serpentina 110.  

 

1.5.7 Transcript expression analysis in the search for agronomically and 
medicinally important compounds  

Secondary metabolism, like primary metabolism, is a highly regulated process, 

with the most important mechanism in regulation suggested to be the amount 

of mRNA present 118. Therefore, by looking at the differing levels of mRNA 

between individuals, or at different time points alongside metabolite profiling, it 

may be possible to predict individual genes involved in target pathways 119. This 

can be particularly valuable in the study of alkaloid biosynthesis as alkaloids are 

often produced in specific tissue or at certain time points in development or 

under certain conditions.  

Transcript level differences have been used in several projects for this purpose. 

One such study was carried out by Fridman et al in wild varieties of tomato. 

Differential expression studies on two varieties with clear differences in levels 

of methylketones led to the discovery of methylketone synthase 1. The EST was 

shown to be highly expressed in the variety PI126449 known to produce 

methylketones compared to LA1777 that did not produce the compounds 120.  
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As the gene families linked to secondary metabolism can contain numerous 

members that often use similar substrates and produce similar products it is 

difficult to determine which carry out specific reactions in alkaloid production 
119. By carrying out correlation studies looking at both mRNA expression and 

metabolite levels it is possible to predict links. This has been success in the 

study of BIA biosynthesis identifying and validating four NMTs in three 

species121.   

By comparing transcript level differences between Carlton and Andrew’s Choice 

it may be possible to predict genes involved in amaryllidaceae alkaloid 

biosynthesis in this way.  

 

 

1.5.8 SNP analysis in the search for high value compounds  
As already discussed, the rapid development of DNA and specifically functional 

markers such as SNPs has revolutionized plant research and molecular breeding 

programs. Markers were originally used for genetic mapping but are now used 

in a variety of studies including characterizing germplasm, gene isolation, 

marker-assisted breeding and interrogation of target alleles 23. DNA markers 

are composed of small regions of DNA that show polymorphism between 

individuals of the same species. They can be random (RDMs) phenotypic neutral 

markers or functional markers that show polymorphism in coding regions that 

affects the phenotype 23. RDMs have been used in biodiversity studies such as 

the 1001 genome project in Arabidopsis but recombination can break the link 

between RDMs and target loci on alleles and so are limited in their diagnostic 

uses 122.  A more suitable method for representation of genetic variation is the 

use of functional markers as they are developed from coding regions that affect 

the phenotype. SNPs are the most abundant marker system, predicted to be an 

order of magnitude higher than that of SSRs, with a predicted average frequency 

of 1 SNP per 100-300bp 22. Plant SNP studies have shown homologous SNPs to 

be more frequent. In wheat the frequency is about 1 per 20bp and 1 per 70bp in 

maize 22. SNPs have been used in numerous plant studies to predict genes of 
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agronomical value including the discovery of a SNP next to a waxy gene 

involved in amylose production in rice, a semi-dwarfing gene in rice as well as 

in a marker assisted breeding study into soybean resistance to cyst nematode 
123-126. It is hoped that similar SNP discovery methods can be used in daffodils to 

look for putative genes in alkaloid biosynthesis.  
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1.6 Conclusion and Hypothesis 
1.6.1 Conclusion  
Alkaloids are a large group of compounds with diverse medicinal uses and 

research into their biosynthesis is imperative to allow for further exploitation of 

their varied bioactivities.  The use of RNA-Seq allows for a project of this scope. 

With the huge increase in transcriptomic data providing high sequence depth of 

coverage it is hoped that novel biosynthetic genes (and rare transcripts) for the 

unique compounds specific to alkaloid production in daffodils can be discovered 
2.  

1.6.2 Hypothesis  

The biosynthesis of galanthamine and other alkaloids depends on controlled 

expression of genes for proteins that catalyse synthesis and sequestration of the 

alkaloids.  Candidate genes can be identified following assembly and annotation 

of a de novo daffodil transcriptome.  Annotation will rely on information in 

public databases from relatively distantly related species, including plants that 

also synthesise alkaloids.  However, genes for secondary metabolism are known 

to fall into multi-membered families so additional information will be required 

to support candidates within gene families.  A comparison will therefore also be 

made between two daffodil varieties that differ in galanthamine content, 

focusing on differences in transcript levels and identification of SNPs in 

homologs of genes that are predicted to be involved in alkaloid metabolism in 

other plants with the hypothesis that these differences may underlie the 

differences in secondary metabolites.   
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2 Chapter two - Construction of a reference 
transcriptome  

2.1 Introduction  
2.1.1 The use of Second-generation sequencing for de-novo assembly of 

transcriptomes in plants that produce medicinally important 
metabolites  

One of the fundamental aspects of looking at the transcriptomes of plants of this 

nature is the need for de novo assembly of second-generation data due to the 

lack of genomic references. One of the most widely used technologies in 2010 to 

generate data for de-novo assembly was Roche 454 GS FLX titanium 

pyrosequencing. This method was advantageous since it produced longer reads 

than several of the other possible platforms making assembly more accurate 5 

Several research groups have used 454 sequencing to produce a reference that 

can then be used alongside shorter reads from platforms that produce great 

number of reads to identify mutations and gene expression differences 2,12,127.  

 

2.1.2 454 Sequencing technology 
The 454 sequencing technology is explained in section 1.5.1.1. The resulting 

reads can then be used to create reference transcripts via de novo assembly.   

 

2.1.3 Assemblers for de novo assembly of second-generation 
transcriptome data  

There are two main strategies for assembling sequence data of this type, 

depending on whether the data is first mapped or assembled de novo. Mapping 

involves matching reads to a reference genome or transcriptome then merging 

overlapping reads into transcripts. However, for projects where no reference 

genome or closely related species is available (as for many plants at present) 

the sequence must be assembled using de novo methods. In theory de novo 

assembly should result in the complete reconstruction of the transcriptome 

allowing for the identification of all expressed genes, separate isoforms and 

expression levels. However, there are two main issues to be addressed when 

assembling transcript data. First, the second-generation techniques result in 
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large numbers of short reads (20-100 million reads per sample in plants and 

animals) that increase assembly difficulty 128. There is a high computational and 

memory cost involved in the assembly of these short reads, further increased 

with paired-end alignment and assemblies that can involve TBs of data (input 

and intermediate).  Secondly, alternative splicing can result in shared exons 

between genes resulting in misassembled and concatenated sequences 128. The 

454 platform has its own mapping and assembly program known as GS de novo 

assembler more commonly called “Newbler” this program utilizes an modified 

version of overlap assembly.  

 

2.1.4 Overlap assembly methods  
This method was introduced with shotgun sequencing during the 1990s and has 

limited use with second-generation sequencing techniques due to the high 

computation costs of pairwise alignment on short reads and the overall increase 

of reads produced by the new methods 83. Alongside the initial release of 

second-generation techniques the overlap method was altered to incorporate a 

clustering step that would allow it to be used with the higher number of long 

reads seen with 454 data 83. The original process involved the creation of nodes, 

where each read represents a node, and edges are formed between two nodes 

when they overlap, followed by simplification steps to confirm overlap across 

both read orientations to remove transitive (false or redundant) nodes and 

edges resulting in a chain of nodes or “contig” 128.  As read number increased the 

computation time became too great to compare every read and so the reads 

were clustered into similar groups and overlap looked for within the clusters, 

current programs that use this improved overlap method include Mira, Phusion 

and Newbler as well as the Sanger assembler CAP3 85,129-131. 

 

2.1.5 Analysing transcriptome de novo assemblies 
There are several key statistics that can be used to assess the assembly of de 

novo assemblies, these are explained briefly below.  

Number of contigs assembled: This can only be compared when the number 

of contigs is known either through the use of simulated data or a genome 
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reference. This is further complicated as contigs are often fragments of 

transcripts and so without a full reference this is not useful as an analysis of 

transcriptome assemblies.   

N50: This is a measurement related to contig length; it is defined as the size of 

the smallest contig so that 50% of the total length of all contigs is represented in 

the contigs of size N50 or above. Although this has some use in transcriptomics, 

it is more insightful in genomic assembly as a higher N50 suggests less breaks in 

the genome, whereas transcriptomes are necessarily fragmented 128.  

Reads mapped back to transcripts (RMBT): This is the number of raw or 

filtered reads that map back to the assembled transcripts, often given as a 

percentage 132.  

Contigs mapped back to reference transcriptome or genome (CMBR):  This 

is similar to RMBT but involves the mapping of the assembled contigs back to a 

reference transcriptome or genome. This is not possible in de novo assemblies 

without a reference but can be used with simulated data or known references to 

test the accuracy of the assemblers.  

 

2.1.6 Annotation of de novo assemblies – The use of BLAST searches 
against known databases 

Without an annotated genome in daffodils or closely related species it is 

important that the assembled transcripts are annotated. A method used by 

several projects is the use of BLAST to align transcripts to sequences from 

publically available databases. The use of databases such as UniProt, SwissProt, 

RefSeq, Interpro and Rfam have been used to produce annotations in plants 

such as olive, chili pepper and Dendrobium officinale with percentage of 

transcripts annotated ranging between 47 and 69%2,5,14,101,133. It is hoped that a 

similar pathway involving UniProt, TAIR, Rfam and RefSeq can be used to 

annotate the daffodil transcripts.  
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2.1.7 RNA extraction from plants with high phenol, sugar and secondary 
metabolite levels  

The initial step in sequencing a transcriptome is the extraction of RNA for the 

production of a cDNA library. RNA extraction from plants is made difficult due 

to the varying levels and varieties of storage compounds and secondary 

products contained in plants 134.  There is currently no standard method of 

isolation that works for all plant species. Plant tissues that have high levels of 

polysaccharides, polyphenols and lipids have proven to be problematic when 

attempting to extract RNA with the widely used guanidium-phenol-chloroform 

extraction method 135.   Chang and colleagues addressed fundamental issues in 

RNA extraction using these methods and proposed an alternative method for 

the extraction of RNA from pine trees in 1993 136. One of the main problems 

associated with RNA extraction from many plants is the oxidation of the 

phenolic compounds that then bind irreversibly to nucleic acids and so 

precipitate with or degrade the RNA 135,136.  To combat this issue the use of PVP 

(polyvinylpyrrolidone), a strong polyphenolic compound binding agent that 

reduces nucleic acid degradation and β-mercaptoethanol as a reducing agent 

were introduced 135. The methods also utilize CTAB 

(hexadecyltrimethylammonium bromide) instead of phenol to remove proteins 

thus minimizing the damage to poly A (+)-RNA that can occur in phenol 

extractions 136. This CTAB method has since been modified by numerous groups 

to isolate RNA successfully from difficult plants such as bilberry (Vaccinium 

myrtillus L.) and peanuts (Arachis hypogaea L.) 134,135. One additional 

modification by Dang and Chen was the introduction of a lithium chloride 

precipitation step that forms an RNA pellet leaving any DNA in the supernatant 
135.  RNA extracted via these modified methods has proven to be suitable for 

cDNA preparation and RT-PCR reactions. Since daffodils have high levels of such 

problematic compounds a modified version of the 1993 method was used to 

extract RNA 134,135.  

 

2.1.8 cDNA library preparation  
A transcriptome consists of sequence data derived from mRNA, resulting in the 

analysis of only transcribed genes as previously discussed.  The total RNA 
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within the cell consists of >80% rRNA and, so that its three molecules do not 

dominate, this must be removed, or the mRNA fraction isolated, before cDNA 

can be prepared. Two recommended methods to isolate mRNA are mRNA 

selection and rRNA depletion. The poly (A) tail of most mRNAs can be used to 

select for mRNA by utilizing their interaction with poly(T) oligomers. This 

property is exploited in kits, such as the Invitrogen Dynabeads® mRNA 

purification kit, where the poly(T) is covalently bound to magnetic beads. Other 

RNA molecules, which lack the poly (A) tail will not bind to the beads and wash 

away (life-technologies, 2008).  The rRNA depletion strategy is independent of 

polyadenylation or presence of a 5’-cap structure on the RNA and so offers a 

fuller isolation of the transcriptome 137.  The depletion method in Invitrogen’s 

RiboMinus ™ plant kit for RNA-Seq removes rRNAs derived from cytoplasm 

(25/26S and 17/18S), chloroplast (23S and 16S), and mitochondrion (18S) from 

the total RNA. Both methods show high efficiency in the preparation of mRNA 

and therefore for a project of this type it would be beneficial to test both 

methods since neither method had been used with the Carlton variety 

previously.   
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2.2 Aims and Objectives  
 

2.2.1 Overview of aims and objectives  
Currently there is limited genomic or transcriptomic data available for daffodils, 

with no reference genome for daffodils or for any closely related plant. This 

project aimed to create an annotated transcriptome. In order to do this, a 

suitable method of RNA extraction, a modified CTAB method, was used to avoid 

contamination from oxidization of phenols. A cDNA library was then created for 

454 pyrosequencing. This used two different methods of mRNA purification to 

determine which produced the greatest depletion in rRNA.  

 

2.2.2 Data assembly and annotation 
The sequenced library was assembled de-novo using the Newbler software 

supplied with the Roche/454 platform, which has been specifically developed to 

deal with 454 sequencing data. Finally, a BLAST database pipeline was created 

to annotate the assembly against several key public databases, UNIPROT, TAIR, 

RefSeq and Rfam. Several groups working on non-model plants, since it is 

possible to infer annotations from well-known plants from public databases 

have used this strategy. As discussed in section 2.1.6 strategies likes this have 

resulted in transcriptomes with over 60% of the contigs being annotated 5,111. 

The annotated assembly has then been used for downstream analysis as a 

reference for read mapping, SNP discovery and gene expression profiling.  
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2.3 Methods 
2.3.1 Plant material for reference transcriptome  
Bulbs of Narcissus pseudonarcissus L. var. Carlton were obtained from Alzeim 

Ltd. The supplier to Alzeim was New Generation Daffodils 

(http://www.newgenerationdaffodils.com). Thirty bulbs of Carlton were 

planted in pots (36 cm diameter, 27.5 cm depth), 15 bulbs per pot on 

14/12/2010. The bulbs were grown in a mixture of John Innes number 3 soil 

(Keith Singleton Horticulture, Cumbria, UK) and 3.0-6.0 mm Perlite supercoarse 

(William Sinclair horticulture Ltd, Lincoln.). Bulbs were planted at a depth of 

15.2 cm.  The pots were placed on the Institute roof thus experiencing normal 

weather conditions and inspected regularly, watering as necessary.  

 

2.3.2 Basal plate extraction 
Whole plants were dug up in mid April 2011 after the foliage had died back as 

this is the time predicted to show the highest level of galanthamine in the bulbs 

(personal communication with Dr X Chang). Four plants were washed in cold 

water and any remaining foliage removed. The roots were then removed and 

the basal plate cut from the bulb. This was then cut into small pieces of 1-2 mm 

thick, frozen in liquid nitrogen and stored at -80 °C until required. The basal 

plate was used in order to avoid the high levels of chloroplast transcripts 

expected in the bulb tissue causing rare or lowly expressed transcripts to be 

missed in the resulting sequencing.  

 

2.3.3 Production of cDNA library  

2.3.3.1 Total RNA extraction – CTAB method  
The method was modified from Chang et al, (1993). The frozen basal plate 

tissue was ground in a pestle and mortar under liquid nitrogen. Extraction 

buffer (2% CTAB, 2% PVP40, 100mM Tris-HCl, 25mM EDTA, 2M NaCl, 0.5g l-1, 

2% β-mercaptoethanol) was warmed to 65°C and 2g powdered frozen tissue 

added before vortexing until homogeneous. The solutions were then incubated 

for 20 min at 65°C then placed on ice. The solutions were extracted 3 times in 

10ml chloroform:isoamylalcohol (24:1).  The phases were separated via 
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centrifugation at 3696 g (Sorvall Legend RT with round buckets 75006533) at 

4°C for 15 min carrying the supernatant (top layer) through between each 

extraction. Then 2.5 ml 10M lithium chloride was added to the supernatant and 

vortexed. The nucleic acid precipitate was allowed to form overnight at 4°C 

followed by centrifugation at 3696 g (Sorvall Legend RT with round buckets 

75006533) for 30 min at 4°C. At this stage the RNA was purified using the 

RNeasy Plant mini kit (Qiagen) following the manufacturers RNA clean up 

protocol and dissolved in RNAse free water.   

 

To determine the quality and quantity of RNA, 1µl was analyzed 

spectrophotometrically (Labtech NanoDrop® ND-1000 spectrophotometer). 

This determined concentration and OD ratios 260:280 and 260:230. The RNA 

was then analysed for degradation using formaldehyde gels following the 

method of Chang et al., (1993). 

 

2.3.3.2 mRNA isolation  
Two different protocols were used to isolate mRNA from the total RNA 

preparation to determine whether mRNA depletion or rRNA selection produced 

the higher yield and quality of mRNA for cDNA library preparation.  

 

2.3.3.3 rRNA depletion  
Sample 1 (concentration 10 µg total RNA in 1.1 µl) was rRNA depleted using the 

Ribominus kit (Invitrogen) according to the manufacturer’s protocol. The 

method works by hybridizing rRNA molecules to locked nucleic acid probes for 

known rRNA molecules 138.  

 

2.3.3.4 mRNA selection   
Sample 2 (45 µg total RNA in 5 µl) was mRNA selected using the Dynabeads 

mRNA purification kit (Invitrogen) according to manufacturers protocol. This 

method involves the pairing of the poly A chains on the 3’ end of mRNA to the 

oligo (dT)25 residues on the surface of the beads 137.  
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2.3.3.5 cDNA Library preparation  
Following rRNA depletion (sample 1) or mRNA selection (sample 2), both were 

used to construct cDNA libraries following the manufacturer’s 

recommendations for the GS FLX titanium series cDNA Rapid Library 

Preparation Method (Roche). Both preparations started with 200 ng RNA. Since 

the samples would be pooled for sequencing, adaptor ligation was carried out to 

barcode the separate samples. Sample 1 was ligated to RL MID6, ATATCGCGAG, 

(Roche) and sample two to RL MID7, CGTGTCTCTA, (Roche).  

The libraries were analyzed to check that the rRNA had been removed and that 

the fragmentation had been successful after depletion, fragmentation and at the 

end of the preparation using Agilent RNA 6000 Nano Kits. The resulting 

libraries were stored at -80°C until sequencing.  

 

2.3.4 Creation of a reference transcriptome 

2.3.4.1 454 Pyrosequencing  
Both libraries were sequenced at the Centre for Genomic Research (CGR) at the 

University of Liverpool. This was carried out on the Roche 454 Pyrosequencing 

Titanium FLX series instrument. The libraries were amplified independently 

then pooled on half a plate for sequencing.   

 

 

2.3.4.2 Assembly of reads from sequencing of barcoded libraries  
The resulting sff files from the 454-pyrosequencing runs were assembled using 

the GS De Novo Assembler Newbler program (version 2.5). The program was 

run using the default settings. The two sff files corresponding to the barcoded 

libraries were first assembled independently and then assembled together.  

 

2.3.4.3 Re-sequencing of sample 2 and full assembly from all GS FLX data 
Sample 2 was re-sequenced at the CGR to give a greater coverage of the 

transcriptome due to the low read number of the original sequencing run.  
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A further assembly was carried out using the GS De Novo Assembler Newbler 

program (version 2.5). This assembly will be known as the full assembly from 

here on. 

  

2.3.4.4 Manual annotation and the creation of an automated annotation 
pipeline for the joint and full assemblies using “full_annotation.pl” 

The two assemblies were annotated separately using the same methodology as 

described below. The annotation was implemented using a variety of custom-

built perl scripts and command line.  The steps involved are shown in figure 2.1. 

The individual steps in the pipeline were combined to produce a single script 

that ran the whole pipeline from the command line in one step.  
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Figure 2-1 Annotation pipeline using "full_annotation.pl". 

The steps were implemented using perl scripts and command line prompts. The eventual aim would be to 
have this as a simple pipeline that can be used by non-bioinformaticians for future analysis. The script 
“full_annotation.pl” can be seen on appendix disc.  The steps in blue were carried out using the command 
line version of BLAST 2.2.27+, using BLASTX for steps 2,4 and 6 and BLASTN for step 3 with the –m 8 
tabulated output option and –b 1 and –v 1 options for upper limits on number of database sequences to 
show alignments for and number of one-line descriptions to show. The steps in red were carried out via a 
perl script created by Richard Gregory of the CGR at the University of Liverpool that removes high scoring 
pair results so that each transcript has only one hit. The steps in green were implemented using a variety 
of UNIX commands and perl hashes to pull out the sequences from the fasta file that had no hits.  
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2.4 Results  
2.4.1 Creation of a cDNA library  

2.4.1.1 RNA extraction – CTAB Method  
Analysis for total RNA quality after extraction and purification is shown in 

Figures 2.2 and 2.3.  

 
Figure 2-2 Total RNA electropherogram for sample 1 

The rRNA ratio (28S/18S) was 1.4 with an RNA integrity number (RIN) of 7.3 and a final concentration of 
9.25 µg µl-1. FU = fluorescence units.  
 

 
Figure 2-3 Total RNA electropherogram for sample 2 



 

38 

The rRNA ratio (28S/18S) was 1.5 with an RNA integrity number of 7.3 and a final concentration of 9.30 µg 
µl-1. 
 

The RNA integrity (RIN) number was above the degradation threshold of 6. At 

this point the 28S/18S ratio remains close to 2 and the baseline signal is 

relatively low. The 28S peak is clearly more intense than the 18S peak (ideal 

theoretical ratio is 2:1 based on the observed ratio in mammalian RNA). The 

18S and 28S are the small and large subunits of the ribosomal RNA.  It is rare to 

see ratios of exactly 2 or higher due to the relative instability of the 28S RNA 

compared to the 18S RNA. Therefore both samples were deemed to be of a high 

enough yield and quality to continue with the mRNA isolation step prior to 

cDNA library preparation. 

 

2.4.1.2 mRNA isolation   

2.4.1.2.1 rRNA depletion of sample 1  
Sample 1 was rRNA depleted using the Ribominus kit (Invitrogen).  The method 

required a starting amount of 10 µg of total RNA. The depletion was carried out 

and the sample was then fragmented to the required range for sequencing (600-

1200bp) at a final concentration of 40 ng µl-1. The recovery at this step was 4% 

(optimum range 1-10%). As no 28S or 18S peaks could be seen on the Agilent 

gel and 28S/18S ratio was 0.0, (Figs 2.4, 2.5) it suggested over 95% rRNA 

depletion and the lack of obvious peaks suggested successful fragmentation.  

 

 
Figure 2-4 Depleted sample 1 electropherogram 

The lack of obvious peaks except for the marker peak at 25nt suggests successful depletion.  
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Figure 2-5 Fragmented sample 1 electropherogram 

The lack of any obvious peaks suggests fragmentation was successful.  
 

2.4.1.2.2 mRNA selection of sample 2  
The second sample of total RNA was subjected to mRNA selection using the 

Dynabeads mRNA purification kit (Invitrogen). The starting amount was 45 µg 

total RNA in 5 µl. The resulting 28s:18s ratio of 0.7 suggested an 80% depletion 

rate with a recovery of 0.8% total RNA. This is below the optimum level of 2-4% 

but was considered acceptable at this stage due to the limited availability of the 

sample material.  

 
Figure 2-6 Fragmented sample 2 electropherogram 

28s/18s ratio suggests good fragmentation with 80% depletion.  The marker peak is clearly visible at 25nt. 
The small 18s and 28s peaks suggest less depletion than that seen for sample 1. This is reflected in the 
calculated depletion of 80%.   
 

Both fragmented samples were used to produce cDNA libraries for sequencing.  
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2.4.1.3 cDNA library preparation  

2.4.1.3.1 Sample 1  
A fragmented cDNA library was constructed using the GS FLX titanium series 

cDNA Rapid Library Preparation protocol. The final concentration was 6 x 108 . 

The resulting cDNA library fragments ranged between 500-2000 bp with an 

average size of 820 bp. This is well within the working range of the 454 

platform. 

 

 
Figure 2-7 High sensitivity DNA assay electropherogram for cDNA library from sample 1 

The two peaks at 35 and 10380 are marker peaks.  
 

2.4.1.3.2 Sample 2  
A cDNA library was then constructed in the same way as sample 1 with MID7 

adaptors (CGTGTCTCTA). The final library concentration was 6.5 x 108. The 

fragments ranged from 476-1983 bp with an average of 825 bp, within the 

working range of 454 sequencing.  
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Figure 2-8 High sensitivity DNA assay electropherogram for cDNA library from sample 2 

Library consisted of fragments in the range of 476-1983 bp with an average length of 825 bp. The two 

dominant peaks at 35 and 10380 are marker peaks.  

 

 

2.4.2 Production of a reference transcriptome 

2.4.2.1 Assembly of reads from sequencing of the barcoded libraries  
The initial (joint) assembly of the 454 -pyrosequencing data of sample 1 and 2 

via Newbler (v.2.5) resulted in 226,848 ESTs of which 189,297 were assembled. 

The assembled reads produced 32,853 transcripts consisting of 1728 (5%) 

contigs and 31,224 (95%) singletons. The average contig size was 733bp with 

an average trimmed raw read length of 397.858bp and the largest contig was 

6849bp.  

 

2.4.2.2 Mapping of barcoded libraries to the joint assembly 
The two separately barcoded libraries were assembled independently and 

mapped back to the joint assembly. This was used to test the coverage of the 

transcriptome by each library. The results of assembly and mapping to joint 

assembly are shown in tables 2.1 and 2.2.  
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Table 2-1 Assembly comparisons of  the two samples 

 
Table 2-2 Comparison of the two samples mapping to joint assembly 

 

From tables 2.1 and 2.2 it can be seen that both samples produced similar 

assemblies and mapping. The contigs were annotated using the UNIPROT 

retrieve program (http://www.uniprot.org/?tab=mapping&tab=batch). This 

was implemented to look for ribosomal hits to make sure that rRNA depletion 

had been successful and only mRNA had been sequenced. Neither method 

revealed any ribosomal RNA sequences suggesting that both methods of mRNA 

isolation were successful. Sample 2 was sent for further sequencing to increase 

coverage due to a sequencing error in the initial run leading to lower read 

numbers than seen for sample 1.  

 

 Sample 1  Sample 2 

Total number of reads 150708 76190 

Number of aligned reads to joint 

assembly 

132064 (88%) 55290 (73%) 

Number of assembled reads 116607 (77%) 49752 (65%) 

Number of singletons  14465 18750 

Number of contigs 463 1111 

Number of reads too short to assemble 3760 1703 

Average contig length  780bp 719bp 

N50  714bp 700bp 

Largest contig 6669bp 5328bp 

Average Length of trimmed reads 405.1bp 383.389bp 

 Sample 1  Sample 2  

Total number of reads mapped to joint 

assembly  

77980 (97%)  

Inferred read error = 

0.96% 

55087(98%) 

inferred read 

error = 1.06% 

Number of contigs and singletons partially 

mapped  

7653 (51%) 10606 (53%) 

Percentage of reads fully mapped  21.49% 32.74% 

Percentage of reads not mapped  0.02% 0.08% 
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2.4.2.3 Re-sequencing of the sample 2  
The re-sequencing of the sample resulted in 87763 reads with an average 

(trimmed) read length of 385bp. This shows only a small improvement on read 

number over the initial sequencing and could suggest an error in the cDNA 

library preparation. It was initially assembled alone to give 1082 contigs with 

an average length of 862bp. It was decided that a full assembly involving the 

trimmed reads from all three sequencing runs (Sample 1 and Sample 2 the 

Sample 2 repeat) should be carried out to build a consensus reference.  

 

2.4.2.4 Assembly of the re-sequenced data with the initial barcoded data 
(full assembly) 

The initial samples along with the re-sequenced Sample 2 data were assembled 

using Newbler (v2.6) that resulted in the assembly of 161,739 of the 314,591 

ESTs produced. The assembled reads produced 41,302 (91%) singletons and 

4022 (9%) contigs. The average contig size was 755bp with an average trimmed 

raw read length of 395bp and the largest contig was 6932bp.  

 

2.4.2.5 Mapping of thee sequencing samples to full assembly  

 
Table 2-3 Mapping of the three separate sequencing samples to the full assembly. 

  
 Sample 1 Sample 2 Sample 2 

repeat 

Total number of reads 

mapped to joint assembly  

134676 (89.37%)  

 

61028(80.15%)  66037 

(75.26%)) 

Inferred read error (%)  0.52 0.72 1.23 
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2.4.3 Annotation and creation of an automated annotation pipeline for 
the joint and full assemblies  

2.4.3.1 Joint assembly  

 
Figure 2-9 Pipeline to show the steps of the annotation of the joint assembly. 

The pipeline resulted in the annotation of 27479 of the 32852 singletons and contigs (84%). 
 

Figure 2.9 shows the steps involved and the results of the annotation pipeline. 

The number of hits shown for each BLAST search is post clean up (removal of 

high scoring pairs and low scoring results). The further investigation of this 

annotation into functionality and possible putative genes involved in secondary 

metabolism is described in chapter four. 
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2.4.3.2 Full assembly  

 
Figure 2-10 Pipeline to show the steps involved in the annotation of the full assembly. 

The pipeline resulted in the annotation of 67% of the singletons and contigs assembled. 
 

Figure 2.10 shows the steps involved and the results of the annotation pipeline. 

The number of hits shown for each BLAST search is post clean up (removal of 

high scoring pairs and low scoring results so that only the top hit for each contig 

is used for annotation). The next step is further investigation of the annotated 

hits (see Chapter four).  
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2.5 Discussion  

RNA extraction from plants with high levels of phenols, sugars and secondary 

metabolites such as N. pseudonarcissus Carlton is a difficult process. The use of 

the CTAB method with the modified LiCl step 127 followed by RNA clean up 

produced high yields of RNA from this specific variety. This was tested using the 

Labtech NanoDrop® ND-1000 spectrophotometer and an Agilent RNA 6000 

Nano Kit. The results were comparable to similar extractions in other plants in 

that sample 1 had an RIN of 7.3 and 28S/18S ratio of 1.4 with an A260/A280  ratio 

of 1.97 whereas sample 2 had a RIN of 7.3, 28S/18S ratio of 1.5 and an 

A260/A280  ratio of 1.98. These are similar to the ranges found in peanut 

(A260/A280  1.99-2.06) and soybean, sunflower, oil seed and canola 

(A260/A280  2.06-2.17) 126. The ratios were also similar to the original 

methodology paper by Chang et al in 1993 on pine trees (A260/A280  1.7-2.0). The 

final concentrations of RNA of sample 1 (9.25µg µl-1) and sample 2 (9.30 µg µl-1) 

along with the A260/A280  ratios were considered suitable for cDNA library 

preparation as the minimum amount of RNA required is 200ng with an OD 

(A260/A280 ) of ≥1.8 139.  The method however, is not consistent, with variation in 

yield and RNA degradation level observed (not shown). Further evaluation of 

RNA extraction methods and kits would be beneficial and therefore further 

trials were carried out for RNA extraction for a second variety of Narcissus 

pseudonarcissus var. Andrew’s Choice.  

 The two methods of mRNA isolation (rRNA depletion and mRNA selection) 

used standard methods and kits, and both gave acceptable levels of rRNA 

depletion, (95% and 80% respectively). The mRNA recovery step for sample 

one was within range (1-10%). The second sample was below the normally 

accepted level (2-4%) but after discussion with the sequencing team at the 

University of Liverpool Centre for Genomic Research it was decided that the 

sample was still viable and would be used to produce a sequencing library. This 

was in part due to the fact that it was of great importance and there was very 

little tissue available at the time from the basal plate of Carlton in the right 

growth phase. Two similarly sized cDNA libraries were finally produced 
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(sample 1= 6x108, 500-2000bp with an average fragment length of 820bp; 

sample 2 = 6.5x108, 476-1983bp with an average fragment length of 820bp).  

 The reads resulting from the sequencing of the two samples were combined 

and assembled. The initial assembly resulted in 226898 ESTs of which 189,297 

(average trimmed read length of ~398bp) were assembled into 32,853 

transcripts with an average contig length of 733bp.  The raw reads from the two 

samples were mapped back to the joint assembly and both resulted in over 97% 

RMBT which suggests a good assembly of raw reads 140. However the majority 

of assembled transcripts were singletons and so this may suggest poor overlap 

between the two samples, as they are both from the same variety and the same 

tissue type you would expect some overlap of reads. The project would benefit 

from further sequencing or perhaps assembly of the separate samples using 

Newbler and a second assembly of the transcripts produced via a program such 

as Cap3 131. This would allow for the collapsing of singletons and contigs into 

bigger transcripts and has been used in other similar projects, it would also 

make repeats or chimeric sequences more apparent as the original references 

could be mapped to each other and any reads that do not map could then be 

used alongside the assembled transcripts in a second assembly 110.  

Some additional sequencing was carried out on sample 2 as the CGR noted there 

was an error during sequencing that might explain the much lower number of 

raw reads produced for this sample. However the re-sequencing resulted in 

similar numbers of reads and a separate assembly of this run showed similar 

contig numbers (1082, average length 862bp) and average raw read lengths 

(385bp). The lower number of reads was therefore not attributable to 

sequencing error but was possibly caused by a poor cDNA library preparation 

as suggested by the lower than ideal mRNA recovery step of sample 2 (section 

2.4.1.1.2).  

The final full assembly encompassing all three sequencing sets (sample 1 and 

the two runs of sample 2 resulted in just under 100,000 reads of which 161,739 

were assembled to give just over 45,000 transcripts.  The mapping of the three 
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samples showed that sample 2 mapped back to the reference better than the 

two sample 2 runs (89% compared with 80 and 70%) suggesting that more of 

the sample 1 reads were used in the assembly, again suggesting that sample 2 

may not have provided a good quality cDNA library.  Overall however, these 

results are comparable to those seen in similar projects such as that previously 

discussed in Dendrobium officinale where the 454 sequencing resulted in 

553,054 reads assembled to 36,907 transcripts with an average length of 417 5.  

 In order to gain any further understanding of this transcriptome, the 

transcripts must be annotated. No reference genome is available for N. 

pseudonarcissus or related species, so this transcriptome must be annotated de 

novo Several projects involved in the production of de novo assemblies of 

transcriptomes use widely available public databases to assign annotations to 

the novel transcriptomes. BLAST searches against TAIR, UNIPROT, RefSeq and 

Rfam were therefore carried out resulting in 67% of the transcripts being 

annotated; similar to other projects of this nature 5,100.  

 The reference created in this chapter (known as the 454 reference or assembly 

throughout later chapters) is a building block for the investigation into alkaloid 

biosynthesis in daffodils. In order to identify transcripts linked to alkaloid 

production, it is vital that this reference and its annotation are built upon. It is 

not only useful to annotation de novo assemblies via homology such as BLAST 

searches but also to confer functionality and compare to other alkaloid 

producing systems. This is carried out in the following chapters. 
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3 Chapter three: Implementing Second-generation 
sequencing data for discovering polymorphic and 
transcript level differences between two varieties of 
Narcissus pseudonarcissus with distinct differences 
in galanthamine levels.  

3.1 Introduction  
As discussed in Chapter One the development of second-generation sequencing 

techniques such as the Roche 454 pyrosequencing and Illumina platforms have 

allowed investigation of transcriptomes and genomes of non-model organisms 

with large genomes. With the influx of data from non-model plants, research is 

shifting towards specific areas of interest. One area, which is rapidly developing, 

is the use of second-generation sequencing to investigate the biosynthesis of 

medicinally important secondary metabolites 2. 

 

This project initially employed 454-pyrosequencing to produce a reference 

transcriptome for the Narcissus pseudonarcissus variety Carlton, as described in 

Chapter Two. The resulting reference transcriptome could then be used to look 

for genes linked to galanthamine production.  

 

3.1.1 Illumina Sequencing  
Illumina, like 454 sequencing, is a “sequencing by synthesis” method. 

Sequencing templates are clustered on flow cell surfaces and fluorescently 

labeled dNTPS are added one at a time. Incorporation bias is avoided and raw 

error rates are reduced by having all 4 dNTPs in equal amounts, adding only one 

nucleotide per cycle and measuring fluorescence at the end of each cycle 80. The 

desire to fully utilize the large amounts of data created by Illumina to capture 

the full transcript profile has led to the creation of de novo assemblers 

developed specifically to assemble these shorter reads.  
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3.1.2 Assembly of Illumina reads  
With the introduction of Illumina sequencing technologies and the vastly 

increased read number (~160x that of 454 in 2010) the overlap method of 

assembly (section 2.1.4) became increasingly redundant and so a novel method 

using de Bruijn graphs was developed 25.  

 

3.1.2.1 Assemblers that use de Bruijn graphs  
For de Bruijn graphs, reads are broken down into nodes of a chosen length “k” 

(known as k-mers) connected by edges if nodes overlap by k-1 nucleotides.  

This results in all solutions by which linear sequence can be reconstructed and 

in the case of transcriptomes each path in the graph is a possible transcript 140. 

A scoring algorithm can then be used with the original sequence and any mate 

pair information to remove nonsensical solutions 132. The basis of these aligners 

is the identification of overlap between “k-mers” if there are differences the 

graphs branch, forming split ends if no further identity is seen or bubbles in the 

case of single nucleotide differences or INDELs 83.  One issue of these bubbles is 

the difficulty in distinguishing whether they are caused by natural variation of 

sequencing error. Further deviation from the linear graphs can occur due to 

alternative splicing or improper trimming or filtering of low quality reads, this 

makes aligning reads more difficult especially for transcriptomes 83. Within 

genome assemblies issues such as sequencing error can be resolved by looking 

at the coverage of each base and removing k-mers with low coverage, however 

in transcriptomes the coverage is intrinsically uneven 83. Coverage is altered by 

SNPs, alternative splicing and transcripts that have naturally low expression 

meaning real transcripts or SNPs can be lost if using a traditional coverage cut-

off 83. It is possible to use a normalized library for transcriptomes but 

quantification is lost and so for a project of this nature looking at gene 

expression cannot used such a strategy. In order to confront these issues, add-

ons, software looking at quality per base prior to assembly to remove erroneous 

reads and novel assemblers specifically designed for de novo transcriptome 

assemblies have been introduced. Several comparisons have been carried out 

on the performance of these assemblers and the findings will be briefly 
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described below. Trinity and SOAPdenovo-Trans will then be explained in 

further detail.  

 

3.1.2.2 Comparison of assemblers 
In the construction of de Bruijn graphs there are clear differences between 

genomes and transcriptomes. In genomes only a relatively small number of 

large connected sequence graphs are constructed to show read connections 

across the entire chromosome 132. For transcriptions however, due to the 

complexity of non-overlapping loci caused by non-transcription of intergenic 

sequence, large numbers of individual graphs are generated thus greatly 

increasing computation time132. A balance is needed that allows for the removal 

of variation caused by sequencing error and other technical issues while 

retaining true biological variation. Along with memory usage and computational 

time the key statistics discussed in 2.1.5 are used to compare de novo 

transcriptome assemblers (number of contigs assembled, N50, RMBT and 

CMBR).  

 

Several assemblers have been compared using these statistics; the most widely 

compared are Trinity, a program developed specifically for de novo 

transcriptome assembly, Oases (Velvet) originally developed to resolve pre-

existing errors and repeats in short read genome assembly, SOAPdenovo, 

designed as part of the SOAP suite from the Beijing Genomics Institute for 

human genome de novo assembly, ABySS, designed to speed up short read 

assembly by assembling the reads in parallel, Scripture, designed for ab initio 

reconstruction of mammalian cell RNA genome and Cufflinks an open source 

algorithm designed to discover transcripts and estimate abundance in one 
132,141-145. Of these only Trinity was specifically designed for de novo 

transcriptome assembly although SOAPdenovo now has a transcriptome 

assembler available called SOAPdenovo-Trans. (This has not been extensively 

compared to the others and so is not discussed here but see section 3.1.2.4 for 

more details).  Clarke and colleagues carried out comparisons of Trinity, ABySS, 

Velvet and its transcriptome algorithm Oases using simulated and real RNA-Seq 
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data on artificial RNA templates and human transcripts 128. The study found that 

no method was superior to all others.  Trinity performed well across all tests 

but was not consistent in assembling full-length transcripts, although it had an 

N50 just above the average transcript length, 90% RMBT but only 46% CMBR 
128. Grabherr et al compared their assembler, Trinity, to ABySS (and its modified 

transcriptome assembler TRANS-ABySS), SOAPdenovo, Scripture and Cufflinks. 

The study showed that Trinity out-performed the other de novo assemblers and 

was comparable to genome assemblers when looking at fission yeast, mice and 

whitefly (Bemisia tabaci) 132. It showed higher sensitivity (number of reference 

transcripts successfully reconstructed to full length) than the other assemblers 

tested and was comparable for both transcriptome coverage and RMBT rates 
132. Zhao et al also compared the assemblers Trinity, SOAPdenovo, Oases and 

ABySS. Trinity resulted in the best RMBT percentage and performed well across 

the tests but had a long run-time (Oases had the longest). The shortest run-time 

was that of SOAPdenovo but this performed poorly in other aspects. ABySS 

showed a balance between run-time and performance but Trinity was 

nevertheless considered the best single k-mer method 140. 

 

Trinity was specifically designed for de novo assembly of transcriptomes and 

has performed well compared to other assemblers. It was therefore decided to 

assemble the Narcissus data using Trinity.  However, there has been little 

assessment of the 2013 SOAPdenovo-Trans transcriptome assembler so this 

was compared with Trinity.  

 

3.1.2.3 Trinity  
Trinity uses de Bruijn graphs and an enumeration algorithm for scoring all 

possible paths, along with actual read and paired-end information to remove 

nonsensical edges to leave plausible transcripts or isoforms 140. The use of 

paired-end read data allows for better resolution of miss-assemblies as it 

increases the distance that Trinity can look for ambiguities 132. Trinity is made 

up of three modules; Inchworm assembles the reads into a unique set of 

transcripts employing a ‘greedy’ k-mer approach, only choosing the ‘best’ 
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representation for a set of alternative variants that share k-mers (due to 

alternate splicing, gene duplication or allelic variation). Chrysalis examines the 

complexity of overlap between variants, which was ignored by Inchworm. It 

clusters related contigs and constructs a graph for each cluster. Then, Butterfly 

is the final step that analyses all the graphs, and paths within them, taking into 

consideration read-pairs. This step reports all possible transcripts, theoretically 

resolving alternative splicing isoforms, and those transcripts representing 

paralogous genes 132. 

 

3.1.2.4 SOAPdenovo-Trans  
This modified version of SOAPdenovo2 was created for use with the 1000 Plants  

project (www.onekp.com) and combines the de Bruijn graph method with a 

local error removal method similar to that from Trinity and the graph traversal 

method from Oases 146. The graph traversal method is an algorithm that 

analyses the clustered sub-graphs after graph simplification to generate all 

possible transcripts from linear, fork and bubble paths 146. In initial testing 

SOAPdenovo-Trans showed slightly higher but comparable performance to 

Trinity on small and large rice datasets with 91.8% and 89.5% correct 

transcript assembly (Trinity-84.6% and 81.5%) 146. The assembler consists of 

two main modules. Firstly, Contig assembly uses the same de Bruijn graph 

technique as SOAPdenovo but carries out the sequence error removal step in 

two ways. Initially low-frequency k-mers and edges are removed using the same 

global removal step as SOAPdenovo 146. However, transcriptomes intrinsically 

show varying levels of expression and if a sequencing error occurs in highly 

expressed genes this will be missed via the global threshold. Since these 

erroneous k-mers in highly expressed transcripts may be above the error 

threshold, they are removed locally as in Trinity. By using a non-constant 

threshold ≤ 5% of the total or maximum depth of adjacent graph elements it is 

possible to remove these highly expressed sequence errors and account for 

variable expression seen in transcriptomes.  
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Transcript assembly is carried out in four steps and incorporates scaffolding 

methods from SOAPdenovo and graph traversal from Oases. Scaffold 

construction uses paired-ends and maps reads back to the contigs to form 

linkages. Graph simplification then removes sequence errors and short repeated 

regions. There is also more stringent linearization of the transcripts to account 

for alternative splicing. Short contigs (≤ 100bp) are removed but this results in 

gaps that must be filled later. Graph traversal then clusters contigs using the 

Oases algorithm to predict possible transcripts.  Finally the gap filling method 

from SOAPdenovo is carried out with paired-end information to create a 

consensus.  

 

3.1.3 Aligning short reads back to reference transcriptomes – 
comparison of available tools  

The increase in data available through second and third-generation sequencing 

requires efficient mapping programs to map the relatively short reads back to 

references. Mapping of short reads is used in genome re-sequencing, DNA 

methylation studies, RNA-Seq, ChIP-Seq, studies into structural variants, SNP 

discovery, differential expression studies and metagenomics 147. As with de novo 

transcriptome assemblers there is no industry standard; programs are often 

used as a personal preference since each has advantages and disadvantages. The 

process can be computationally costly and so there is often a compromise 

between quality and time when setting parameters to neglect quality scores, 

limit the number of mismatches, disable gapped alignments or limit the gap 

length as well as ignoring available SNP data 147. 

 

Several studies have compared mapping programs, especially those most widely 

used, Bowtie, created by Langmead at the centre for bioinformatics and 

Computational biology at the University of Maryland and BWA devised by Li and 

Durbin from the Sanger institute, both of which use the Burrows-Wheeler 

Transformation indexing methodology 148,149. These will be explained in greater 

detail in the following section, after a discussion of the key features of mapping 

with respect to the nature of sequencing data and current methodologies 

(Hatem et al, 2013).  
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The chemistry of sequencing reactions, in both first and second-generation 

technologies, means that the ends of reads are less likely to contain errors and 

so are used in seeding to improve accuracy 147.  The increased length of reads as 

second-generation technologies developed, as well as making de novo assembly 

of transcriptomes practical, has also meant that algorithms for seeding and 

assessing errors in reads have needed development. Mapping tools for Illumina 

data can use a base quality score, Q, for each base to decide mismatch locations 

and accept/reject reads based on the sum of these scores at mismatch locations. 

Q is defined as -10log10(e), where e is the probability a base being called 

incorrectly, and was developed from the Phred quality scoring method used 

with automated Sanger sequencing 147. Inserting or deleting gaps (INDELS), 

within limits set by the user, can be used to maximize sequence alignment, but 

with a penalty of increasing computational time.  Computation time is also 

increased by using paired-end reads, but this increases mapping confidence as 

the distance between the two ends can be more accurately predicted as well as 

reducing miss-assemblies 147. With alternative splicing leading to transcripts 

that share sequence and the removal of non-coding regions (introns) and 

joining of the coding regions (exons) the mapping process is further 

complicated. This is amplified if the sequence covers the exon-exon junction, as 

the intron length is therefore unknown (can range from 250-65130 nucleotides 

in model eukaryotic organisms) 150. Finally as mismatches are often only one 

nucleotide it is difficult to distinguish if they are genuine mismatches or SNPs 

and so knowing the location of SNPS helps resolves true mismatches as well as 

coverage depending on the overall coverage profile of the assembly as discussed 

earlier. 147.  

 

The first step in any mapping program is the indexing of either the reference or 

the raw reads using either a hash table or Burrows-Wheeler Transform 

indexing. The latter is used in the widely adopted alignment programs Bowtie 

and BWA.  
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3.1.4 Hash Tables 
A hash table is made with the sequence as the key and a list of positions where 

the sequence is found as the value 147. Several currently available alignment 

programs use this method, differing in whether they index the reference or the 

reads.  Four of the most well-known programs that index the reference genome 

are FANGS (designed to map 454 reads to a reference), NOVOalign (commercial 

aligner from Novocraft), Mr and MrsFAST (both designed for prediction of copy 

number variation in duplicated sequences that index k-mers and provide all 

mapping loci, but without allowing gaps in the case of MrsFAST) and GSNAP 

(designed by GenenTech Inc) where the genome is split into overlapping 12nt 

oligomers, sampled every 3 nts so that the location of these substrings can be 

found and combined 151-155. 

 

Two programs that use a read index are RMAP, (Cold Spring Harbor’s Solexa 

read aligner) and MAQ, (a Sanger Institute and BGI joint project to align shotgun 

reads to a reference genome) that can be used to scan a genome through 

multiple hashes of reads 149,156. 

 

3.1.5 Burrows Wheeler Transformation (BWT) aligners  
The BWT is a reversible permutation of characters in a text and is used for 

compression and indexing 157. It was first created by Burrows and Wheeler in 

1994 and is now used alongside the FM index proposed by Ferragina and 

Manzini in 2000 158,159. BWA, Bowtie and SOAP2 (designed by Li et al to improve 

computer memory usage and improve alignment of the SOAP platform) all use 

BWT 148,149,160. See figure 3.1. They differ in their approaches to exact and 

inexact matching. For exact matching (seeds match reference exactly) both 

Bowtie and BWA use FM indexes of the reference and a modified FM matching 

algorithm 147. SOAP2 combines both BWT and hashes to index, to speed up exact 

matching 147. BWA has a specific inexact matching algorithm that uses a 

backtracking method to search for matches between the substrings of the 

reference and the query sequence within a defined distance 149.  SOAP2 however 

carries out inexact matching by splitting reads into fragments related to the 

number of mismatches 160. 
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Figure 3-1 Schematic of a BWT. 

a) Sequence to be transformed has $ attached to it ($ is a terminator that is not in the sequence and 
is considered lexicographically prior to all other characters ($<A<C<G<T)) 

b) All possible permutations of the sequence are stacked vertically starting with $sequence (shown 
highlighted in red) 

c) The rows are then ordered alphabetically  
d) The BWT is the final column of the ordered matrix  

148 
 

3.1.6 Comparison of available aligners  
The key considerations when comparing aligners are throughput, memory 

footprint, and the percentage of mapped reads (both correct and incorrectly 

mapped) 147. Aligners such as MAQ and SOAP have a very high computation 

cost; in order to align the 140 billion bases for the human genome project MAQ 

would take >5 CPU months and SOAP >3 CPU years 148. Therefore aligners with 

this high level of computation cost are not advisable for second-generation 

projects due to the high number of short reads. Bowtie and BWA are much 

faster, with Bowtie showing alignment to the human genome at >25 million 

35bp reads per hour due to the reduced memory usage required for BWT 

methods 161.  The memory footprint for the human genome project using Bowtie 

was only 1.3Gb 148. Most users keep the default settings on the aligners, which 

are as follows, along with any user options for both Bowtie and BWA.  

 

Bowtie:  the maximum number of mismatches in the seed is set as a default of 2 

but can be 0, 1, 2 or 3 with the seed length set to 28. The maximum number of 

mismatches in the read is based on the read length.  These can clearly affect the 

percentage of mapped reads. The quality threshold is set at 70. Paired-end reads 

and gapped alignments are allowed in Bowtie analysis and the minimum and 
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maximum insert size for paired-end reads is set to 0 and 250 in Bowtie, or 0 and 

500 in the newer version Bowtie2 147. 

 

BWA: BWA disables seeding. Its maximum number of mismatches per read is 

also set according to the length of the read. Gapped alignment is allowed, as are 

paired-end reads, with the minimum and maximum insertion being the same as 

Bowtie2 147.  

 

3.1.6.1 Bowtie or BWA  
Several studies have been carried out to compare the two methods without 

either being clearly superior to the other, so the choice of which to use is really 

a case of personal preference. Bowtie was shown to be more accurate in 

mismatch experiments carried out by Hatem et al., (2013) while Medina-Medina 

et al., (2012) recommended both, stating that Bowtie was faster but BWA was 

more sensitive on the human data tested. In SNP calling, Wong et al., (2012) 

found that Bowtie mapped more and detected more SNPs than MAQ (BWA’s 

successor) with more false negatives reported for BWA. A study by le Roex et al., 

(2012) on SNPs in African Buffalo showed similar levels of positive polymorphic 

determination (Bowtie 43-54% and BWA 57-58% were shown to be real 

polymorphisms) but fewer reads were mapped overall with BWA.  As for data 

with high level of repeats, Yu et al., (2012) showed that both methods 

performed equally well with similar false positive rates in repeated regions. 

 

Therefore it was decided that Bowtie would be used in the project since it 

performs similarly to BWA and can be used alongside VarScan (SNP finding 

program used in this project).  

 

3.1.7 Analysis of polymorphic differences  
The increase in available data and extensive sequence depth with second and 

third-generation sequencing technologies has caused a shift away from 

tradition capillary methods for SNP discovery towards aligners and sequence-

based SNP callers 162. The extensive read depth allows for detection of rare 
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variants and rare transcripts, making it possible to look for transcripts involved 

in the production of relatively lowly produced molecules such as alkaloids and 

other secondary metabolites.  

 

The use of transcriptome based molecular markers has the potential to make a 

great impact on trait linkage studies 111. The use of transcriptomes can decrease 

the cost of SNP discovery by allowing for the analysis of the intermediate step 

between gene and protein linking functionality, by focusing in on the 

transcribed elements it is possible to look for markers directly linked to 

phenotypes of interest in areas more likely to undergo recombination 163. In this 

project it is hoped that by looking for polymorphic differences between two 

closely related varieties of Narcissus pseudonarcissus, possible SNP markers 

could be determined linked to galanthamine production. The first step in the 

process is the analysis of the whole transcriptome before narrowing the search 

to possible alkaloid biosynthesis related genes (Chapter four).  

 

As with the other techniques discussed in this chapter, the rapid increase in 

sequence data and methodologies has resulted in a rapid growth and 

development of novel SNP calling programs, and there is no one method 

preferred or endorsed by the bioinformatics community 164. However most 

current SNP “callers” are developed for use with diploid species and rely on 

base-calling and mapping quality for sources of error 165. The methodologies 

currently employed detect single locus differences in diploids. However due to 

the genomic nature of polyploids this is not viable 166. Seventy percent of 

angiosperms are known to be polyploids so as studies on non-model organisms 

increase, the need for SNP callers that can deal with varying levels of polyploidy 

is becoming more apparent 167.  

 

3.1.7.1 Identification of SNPs in polyploids 
There are several fundamental biological issues involved in SNP discovery in 

polyploids. Firstly the difficulty in resolving auto and allopolyploid makes 

predicting the expected allelic frequencies extremely difficult 167,168. Ideally, in 
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an allopolyploid if the progenitor diploid species are known for an even 

numbered polyploid then they can be treated as separate genomes 167.  However 

the progenitor species are often not known or complicated due to duplication 

events making SNP/orthologous allelic copies difficult to resolve 167. The 

determination of allelic frequency or copy number is also affected by 

recombination, highly repetitive sequences, in or out breeding and asexual or 

sexual reproduction 167,168. Ninety nine percent of apomictic plants are 

polyploids and often have uneven polyploidy (e.g. triploids). The subgenomic 

makeup of polyploids also gives rise to distorted frequency and dominance as 

well as the existence of partial heterozygotes (see figure 3.2) 168. 

 

 
Figure 3-2 differences between polyploids and diploids that alters copy number prediction. 

(Example shown is tetraploid, not all possible variations or states of heterozygosity are shown)  
A) One mutation within a subgenome can distort the distribution of allelic frequency 

1) A quadriplex T configuration 
2) A simplex T configuration  
3) A duplex T configuration  

B) Partial heterozygotes give rise to varying levels of allelic frequencies  
168 
 

Current SNP detection programs give only one alternative allele; often even 

those that are capable of dealing with polyploid data still only consider the true 

SNP frequency as 0.5 in heterozygotes and so miss true SNPs in polyploids 168. 

Therefore to gain full understanding of the polymorphic differences between 

the two varieties, a bespoke perl script pileup_parser.pl was designed to parse 

the pileup output from the SAMtools mpileup tool that is used by some SNP 

callers. This could be used alongside VarScan, another SNP caller, to look at the 
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exact differences between the varieties. VarScan was chosen because it could 

take the same input file as pileup_parser.pl and was compatible with several 

aligners such as Newbler, Bowtie and Novalign unlike most SNP calling 

programs that only work with one specific aligner 162. More over the most 

recent version of VarScan (version 2) allows for SAM/BAM inputs making it a 

more universal caller 169. The VarScan output can easily be compared with the 

output from the bespoke perl script and has been shown to perform well on 

both 454 and Illumina data, allowing for easy determination of polymorphic 

differences from both the 454 and Illumina datasets acquired for Narcissus 

pseudonarcissus 162.  

 

3.1.7.2 VarScan  
VarScan can be used on both individual and pooled samples and has been tried 

and tested on both 454 and Illumina data. It is widely used as it takes the direct 

output of many read aligning programs 170. The pileup format output from 

SAMtools is analysed and the alignments scored and sorted on a per read basis 
162. It is able to report SNPs and INDELs with their corresponding 

chromosome/contig co-ordinates, alleles, flanking sequence and read counts 162. 

The best alignment for each read is screened for sequence differences after the 

removal of low identity and/or ambiguous alignments. It takes into 

consideration coverage, quality, variant frequency and the number of reads that 

support each alignment and the user can adjust these parameters. In a study of 

454 data comparing VarScan and Newbler, VarScan was able to correctly 

predict over twice the number of SNPs (59.78% compared with 22.28%). It 

showed comparable results in a comparison with MAQ using Illumina data 

(97.21% compared to 94.71%, although only 3 of the SNPS passed the MAQ 

SNPfilter)162. This study shows a clear difference in using 454 or Illumina reads, 

a large number of the SNPS (60% compared to 97%) were not found in the 454 

data, this might have been due to the pooled nature of the Illumina data as well 

as the improved coverage (70X compared to 125X). The new version of VarScan, 

version 2, has several key improvements including:  
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1. Input can now be in the SAM or BAM file format allowing for 

compatibility with the pileup formatted output from the mpileup 

program of the SAMtools suite that uses Bowtie as an aligner.  

2. Increased performance and ease of use since it now runs in Java and 

so can be used with any operating system. 

3. In addition to detecting variants, VarScan 2 can call consensus 

genotypes based on real counts and allele frequencies.  

4. Detects exome-based copy number alteration.  
169 

 

3.1.7.3 Pileup_parser.pl perl script for determining all possible allele 
variation  

Both VarScan and the pileup_parser.pl script quantify the variation between the 

reference and the short Illumina reads by using the pileup file from SAMtools 

mpileup. SAMtools mpileup uses the output from Bowtie in a sorted BAM file 

format and the reference as a fasta file; an example pileup output format can be 

seen in figure 3.3. 
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Figure 3-3 Example of SAMtools pileup output format. 

The tab-separated values represent the contig, base co-ordinate, reference base, number of reads, read 
bases and base qualities.  
. match to reference on forward strand  
, match on reverse strand  
A/C/G/T/N/a/c/g/t/n show alternative nucleotide “mismatch”  
+ followed by a number and letters indicates an insertion  
- followed by a number and letters indicates a deletion  
^ start of read segment  
$ end of a read segment  
 

For simplicity, as no open reading frame information was available and only 

SNP information was required, the script was written to discount $, ^ as well as 

comp32869_c0_seq1       7       G       624     
.................................................................................
.................................................................................
...........................+1A...................................................
.................................................................................
......................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......
.................................................................................
....................,,,,,,,,,,,................................................,,
,,,,,......,,................,,,...................,,,^K.^K.^K.^K.^K.^K, 
FBFFFFFFDFFFFFFFFFDFFDFDA@FFFFFF0FFFDFDFFFFFFFFFFFFFDDFFJFFDFFFFFFFFFFFFDDFDFFFFD
FFDFFFFFFDFDFFFFFFDFFDFFFFF;FFFFFFFFFFFDDFDFFADFFFDFFFFFFFJDFFFFFFF?DFFF=FFDFDFBF
BBFFFF=FFFFFFFFFF<?FFFFFFFFFFFDAFDFDFFFFFFFFFFFDDDFFFFDDFFDFFFFDFFFFFFFFFDFFFFFFF
FFFFJFFFD;FFFFFDFFFFFFFFFFFF6AFFFFFDDFFFF@FFFAFFFFFBFFFFFFFFFDFFDFFDFFF:FDFFFFDHD
FFFFFFFFFFFFDFFFFDFDDDBDDIADADDBDDDBAB<DBHJDDDBDBDDDDDDADDDID?D<DBDJBJJF0.@/:13:<
;B<0>=;5/@;8=10;<18=?/FE2=>>>;=>./9F?.:6C<?<;;<?B...<;></<?8<;@<;;?<;;<9F<1;4=<0>
/F;;<.<::0;8<;<=></1:D/.<;/;:A==1<1<9111../=14<=@<.=515111@.=>1;3/.111=../1;:BD11
@31>10>1>9>>7>>>>>1>>1>>1>>1>>>>>4<4>>>>>>>>>>>>>>3CCCCCB 
comp32869_c0_seq1       8       T       647     
.................................................................................
.........................................................-
1G............................................A..................................
.................................................................................
...............................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,...............................................................................
.................................................,,,,,,,,,,,,,,,,,,,,............
................C........................,,,,,,,.........,,................,,,...
...............,,,.....,^I.    
:2<@HAF0D<DBAD<<DC0DAAD==ABBA<<FA<D=C:DD@CC=<<ADDAD=AD<J@D?AFD2=@AHADA@D00C<DDD<<
BEA<@A=D<DD@F@@ADAD?F?0DBD<F<AD@=FAHA=A<DD<F?AD@DAFAF:DBD@EEA@0D<A2AF6D0A3DB2DF=D
0AHC==<A2F<00A<A<2A<HD=D<2DD@BEA0D@<FA<D<<D<@B<ADF0<A@?ABADF?A0<DD@C@<=@8FA2@FG<2
=DBDB@AADB8AAAFD<ABB220DH0DD=AA=8@ADDAA@AA?DFD@DDFAAD@D=0D<D<@D=A8D@FAAAB==<AD@8A
@DDDBDDCDDDG9DGDDDDCD??DCD?HJDDDDC?DDDDDD:DDDGDDD9D<DJDJJ@=BD@2D=AAA=A@<@A><=@A<D
AFDF?3<AA<F@AB=A2A@A==AB<D<B0DB<D<D5.B<4F@B@A012<621A?=A222A=A<A@0=@AA@A@<D?A>0DD
@@CA>@AA=1<A<D0<=?7<032CDD>D5DDDCDD56CAD50AA<AD>F?:@.;>A=10=BH2BBA@1<5C/@>>A.1ABD
AD3/1=>/;<112=AACDCDDDFB==20B=AGDBA64ABABADBDABABC;DB8?=@@BB??==?B:=BBCD2CCC@@D@ 
comp32869_c0_seq1       9       G       672     
.................................................................................
.............................................................*...................
.................................................................................
.................................................................................
..................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.............
.................................................................................
........................................,,,,,,,,,,,,,,,,,,,......................
................................,,,,,,,,,..........,,..................,,,.......
............,,t.....,.^).^K.    
A@CFHDH@H?HFDHCCFF@HFAHA@FFFFCCH7DCBCFCHHFFFCCCFFFDHC?H@JCH?FHHCCDDHFHDDH<CCFCFH<
CC0FHDCFCCFCHDDHDDCFD@F?HD@DFHCHCFDDCHF<BDAFDHDCFFDHDCDHFHCHFHDHHF@@FCDADH:H@D7FF
<HHCG0FHFCCCF<H@@0DCFCAFCHHDHCAFHDFHC@8?CHFAFCDFCFFDFFFCCFCFFFFHHFF?CHHD7FFDCD@HD
CDFGCCCD6FFFDDDHDCDFDHFCFFFA<@HH@HD<CDDCCFDH6HFDDF0FFFH@FDDHHDFHFHD@HD0HCDHCDC@AF
HFFDFDDCFHF<FDHHBFDDADDDGDCDDDBDDB9D9D8HIDDBBD8DDDDDDBDDFDDD=D8BJDGJDAFHD5FBFDDCD
CBFFA@BCDCFDHDDB6CFDCHBCDCF<DDDDADDCDDD1FFCGACF80F>5FDADDG@D=A74A<D@AD5A7<ADCF@DD
AADFHCFD=HDDH@DFD@HDADDFD>CFCD3CBD2D<@@C?DDAD7DDDBDB78DDD39DDFH?HADD1=AB>>3>.DHAD
FDD2D=H5AA?D/2HDDDHA22A@3=DA>5AFDADB.DBDDFDAB55DADDGDD6D5=DD<DDDDDDBDFDB?CDDDDF=F
DDDDDDDDBDDD@D0CCCCCDC1C 
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INDELS as these should be relatively rare in transcriptomes due to the frame 

shifts caused by INDELs that could prevent the transcription of the genes. The 

script parses the pileup output to give information on the contig ID, position, 

reference, number of reads that support an A,T,C,G,N,a,c,t,g or n nucleotide, the 

total number of reads, the percentage of reads that hit A,T,C,G,N,a,c,t,g or n, the 

total percentage and total percentage of SNP if present. An example output is 

shown in figure 3.4. The implementation of the script and its results are 

discussed in sections 3.3.2, 3.4.2.6 and 3.4.2.7. The script pileup_parser.pl can be 

found in the folder “scripts” on the Appendix disc.  

 
Figure 3-4 Example of output from pileup_parser.pl script. 

Parses the pileup file to give contig ID, position, reference, number of reads to support A, T , C, G or N, total 

number of reads, percentage of reads for A, T, C, G or N, total percentage  and percentage of SNP if present.  

3.1.7.4 The use of pileup_parser.pl to predict ploidy levels at the nucleotide 
level 

 The perl script is also used to predict ploidy level within the data. Sequential 

examination of the percentage of every nucleotide at every position within a 

sequence can be used to identify alternative alleles and their percentages of 

reads will determine the ploidy level at each locus. For example, in an “ideal” 

tetraploid, at any locus each alternative allele would have 25% of the total 

reads, while there would be 33.3% for triploids. The perl script takes 

percentages at each position and predicts “triploid” if three nucleotides are 

represented at over 20% with the final nucleotide representing less than 10%. 

Tetraploid is predicted if all four nucleotides represent over 20%. Those loci 

that have no alternative allele are labeled “same” as well as those with 

nucleotides representing less than 15% each. This is an estimation as it does not 

take into account any quality data or total number of reads and so is only used 

as a guide. 

 

comp32869_c0_seq1       8       T       1       645     1       1       2       
650     0.153846153846154       99.2307692307692        0.153846153846154       
0.153846153846154       0.307692307692308       100     0.461538461538462 
comp32869_c0_seq1       9       G       0       1       0       670     1       
672     0       0.148809523809524       0       99.7023809523809        
0.148809523809524       100     0.148809523809524 
comp32869_c0_seq1       10      T       4       670     3       5       6       
688     0.581395348837209       97.3837209302326        0.436046511627907       
0.726744186046512       0.872093023255814       100     1.74418604651163 
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3.1.8 Analysis of transcript level differences between individuals from 
two varieties of Narcissus pseudonarcissus  

A further tool available for investigating secondary metabolite production in 

plants is the analysis of transcript expression. Differential expression (DE) is 

used in a wide variety of studies including identifying differences between 

tissues, studying developmental changes and microRNA target prediction. This 

is discussed in detail in the introduction chapter section 1.5.7. The first step is a 

transcriptome wide analysis of differential expression. In order to look at 

differential expression it is important to acquire accurate estimates of 

expression while taking into account both technical and biological variation 171.  

However due to both financial constraints in this study, as well as sample 

availability, it was not possible to carry out repeats on the Illumina sequencing 

and so in this project the difference between two individuals from the two 

varieties will be compared and used to predict variation that can be analysed 

further using qPCR in numerous samples from different individuals of each 

variety.  

 

It was decided that since the project aimed to discover putative genes involved 

in galanthamine production, and variation within this subset of data, an initial 

bioinformatics analysis would be used. The method must be able to 

accommodate two different varieties (conditions) and RNA-Seq data and 

therefore Bayesian inference of transcripts from sequencing data (BitSeq) was 

chosen. This approach is also compatible with Bowtie, which was the aligner of 

choice in this project.  

 

3.1.8.1 BitSeq 
In theory, with correct sample preparation the number of reads aligned to a 

given gene is proportionate to the abundance of fragments or transcripts for 

that gene. However splicing occurs during transcription resulting in multiple 

transcript sequences that share the same genic sequence 171,172.  Since the origin 

of these shared sequences can be difficult to determine, expression must be 

estimated in a probabilistic way. BitSeq uses a Bayesian approach 171, improving 

on previous methods by combining a probabilistic model of read generation 
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with a MCMC (Markov Chain Monte Carlo) algorithm for Bayesian inference 

over the model. This allows for the consideration of uncertainty unlike previous 

methods such as the expectation-maximization approach that only resulted in a 

point estimate of transcript abundance. Other methods using MCMC and 

Bayesian approaches do not allow for the multi-alignment of transcripts 

permitted within BitSeq, which thus gives a better representation of the 

transcriptome 171. Overall, BitSeq incorporates read and alignment quality, 

adjusts for non-uniform distribution and can handle paired-end reads for DE 

between two conditions, or plant varieties171. 

  

3.1.9 Transposon element variation within plants  
Initial work on the assembly of the raw Illumina data in this chapter showed 

unusually long contigs for de novo assembly (>5000bp, with maximum length 

30656bp and a range of coverage from 1.93 to 7432.51X) suggesting further 

filtering was required. A personal communication with the Trinity group 

suggested that the longer sequences might be due to transposon contamination, 

or concatenated sequences.  

 

As discussed in section 1.5.2 of chapter one, plants show great diversity in 

genome size ranging from 64 Mbp (Genlisea margaratae) to 150 Gbp (Paris 

japonica) 173. The difference is not only caused by polyploidy events but also the 

amplification of transposons and related sequences 173. Transposable elements 

(TEs) make up 15-84% of plant genomes and influence evolution via increasing 

genome size and altering gene function 174. Examples of this influence can be 

seen throughout the plant world; in maize genome size changes are linked to 

long terminal repeat (LTR) TEs, the sunflower (Helianthus annuus) genome 

contains 81% TEs (77% LTR) and the genome of wild rice (Zizania palustris) 

has doubled without a ploidy change due to expansion of Copia and Gypsy TEs. 

TEs are also linked to the varied genome size seen in species of grass 173,175.  

 

There are two main classes of TE in plants, those that transpose through an RNA 

intermediate such as LTR/Copia and LTR/Gypsy and those that move through a 
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DNA intermediate 174. TEs vary greatly in copy number and sequence between 

closely related species and within the same species as well as varying in 

heterogeneity. The reverse transcriptase domain has been shown to be between 

5-75% heterogenic 174.  These repeated sequences could cause issues with de 

novo assembly since the sequence can cause branches in de Bruijn graphs and 

lead to the assembly of chimeric sequence. Therefore, as the number and the 

level of activity of TEs in daffodils is unknown, and the genes of interest are 

likely to be rarer transcripts, the removal of such repeated TE reads would be 

beneficial 173.  

 

There are several methods available that could be suited for this purpose; 

 

3.1.9.1 TransposonPSI 
TransposonPSI is a PSI-BLAST application from the Broad Institute used to 

identify homologues of protein or nucleic acid sequences from diverse families 

of TEs 176. It contains a database of TEs that include gypsy and Copia 

polyproteins, cryptons, helitrons, numerous DNA transposon families and LINE 

retrotransposon orfs 176. It produces two output files, allHits that contains all 

possible PSIBLASTP matches and topHIts that gives the best hit. As this covers a 

wide diversity of TEs it was used since no TE information is currently available 

for Narcissus.  

 

3.1.9.2 TREP 
Another database with potential for identifying TEs is the TREP database of the 

International Triticeae Mapping Initiative (ITMI) 177. This is an extensive 

database that contains repetitive DNA sequences from different Triticeae 

species. As this is well annotated and Triticeae well studied it is hoped that this 

database will be extensive and could lead to TE discovery in Narcissus. This 

database could simply be used to create a BLAST database and the Narcissus 

sequences compared for homologues, although to run BLAST on raw reads is 

inefficient.  
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3.1.9.3 BMTagger 
An alternative method would be to use the program BMTagger (Best Match 

Tagger), developed as part of the NCBI Human microbiome project to remove 

human sequence contamination 178. As the program requires an indexed 

reference of the human genome to match against it is possible to submit any 

indexed reference such as the TREP database. BMTagger has two key steps. 

First, bmfilter classifies reads as contaminants by looking for 18mers that match 

the reference. This step does not require alignment and so it much faster than 

BLAST or BWA 178. If sequences are not classified during this step an alignment 

to the reference with up to two errors allowed is attempted, Any alignments 

found in the 1st mate (of paired end reads) also results in the removal of the 2nd 

mate 178.  

 

As there is no precedent for this sort of work in Narcissus TEs will be identified 

using TransposonPSI, BLAST against TREP and BMTagger against TREP and the 

results compared to find the most stringent method. (See sections 3.3.5 and 

3.4.2.10) 
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3.2 Aims and Objectives  
To produce and analyse high depth short-read sequence data of two daffodil 

varieties with known differences in alkaloid levels, RNA from the basal plate of 

one individual from each variety was sequenced on the Illumina Hi-Seq platform 

for comparison to the 454 references created in Chapter two.  

 

The reads were assembled de novo  to account for any transcripts missed by the 

lower coverage 454 reference as well as mapped back to the reference and back 

to the assembled Illumina data to evaluate transcriptome wide variation 

between the varieties. Differences were determined in both SNP calling and DE 

analysis.  
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3.3 Methodology  
3.3.1 Illumina library preparation, sequencing, assembly and annotation  

3.3.1.1 Extraction of RNA from N. pseudonarcissus var Andrew’s Choice 
The CTAB method  (Chang et al., 1993) followed by Qiagen RNeasy Plant kit 

RNA clean up was tested for the Andrew’s Choice variety. Unfortunately this 

method showed varying results and so a trial was conducted of alternative 

methods of RNA extraction.  Several RNA extraction kits from commercial 

sources were compared with each other and the CTAB method (see Table 3.1).  

All methods were tested using frozen tissue of Andrew’s Choice from 2011 field 

trial replicates that were not otherwise needed for downstream processing. 
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Table 3-1 Methods used in RNA extraction trial for Andrew's choice. 

All kits were used as per manufacturer’s instructions unless stated in the methodology column. 
 

 

3.3.1.2 Illumina cDNA library preparation for N. pseudonarcissus var. 
Carlton and N. pseudonarcissus var. Andrew's Choice 

RNA from two different Basal plate samples of Andrew's Choice and two 

different basal plate samples of Carlton were utilized to produce RNA-Seq 

libraries. The initial RNA samples were analyzed using an Agilent RNA 6000 

Nano Chip (see section 3.4.2.1). The rRNA from the four samples was then 

removed using the Epibio Ribo-Zero™ rRNA removal kit (plant seed and root) 

following the manufacturer’s instructions with step 3.d, being carried out using 

the Agencourt RNACleanup up kit.  

 

The four samples were then used to produce four ScriptSeq™ RNA-Seq libraries 

using the Epibio® ScriptSeq™ v2 RNA-Seq Library Preparation Kit following the 

manufacturer’s protocol.  In order to sequence all samples in one pool, ScriptSeq 

Methodology Manufacturer Catalogue 
Number 

CTAB followed by Qiagen RNeasy clean up CTAB Chang et 
al., 1993, Qiagen 

74903 

MoBio Power Plant RNA extraction kit followed 
by RNeasy clean up with optional DNase on 
column step. Optional step during MoBio 
protocol of adding 50μl of PSS (phenol 
separation solution) was included 

MoBio and 
Qiagen 

MoBio: 13500-50, 
Qiagen: 74903 and 
79254 

MoBio Power Plant RNA extraction kit with 
optional PSS usage. 

MoBio 13500-50 

MoBio Power Plant RNA extraction kit with 
optional PSS usage. Followed by Mo bio RTS 
DNase. 

MoBio 13500-50 and 
15200-50 

MoBio Power Plant RNA extraction kit with 
optional PSS usage. Followed by Qiagen RNeasy 
clean up. 

MoBio and 
Qiagen 

MoBio: 13500-50, 
Qiagen: 74903 

InnuSPEED Plant RNA kit using Mo biolyzer for 
homogenisation (two 45 second cycles at 
4200rpm)  [using MoBio Powerlyzer™ 24 bench 
top bead-bead homogenizer cat no- 13155] and 
PL lysis solution. 

Analytik-Jena Supplied by Web 
Scientific to test. 
No current 
catalogue number 

InnuPREP Plant RNA kit using PL lysis solution. 
Lysis (20 min, room temperature) vortexed 
every 2-3 min. 

Analytik-Jena Supplied by Web 
Scientific to test. 
No current 
catalogue number 
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Index PCR Primers were used at step 4.e. (see table 3.2). Step 4.f of the protocol 

was carried out using the Agencourt AMPure XP kit. The four resulting libraries 

were analyzed using both a Quibit fluorometer with RNA assay kit and an 

Agilent Bioanalyser Nano High Sensitivity DNA chip (see section 3.4.2.2).  

Table 3-2 ScriptSeq Index PCR primers used in library preparation. 

 Sample  ScriptSeq Index PCR Primer  Primer sequence  

Andrew’s Choice 1 Index 3  GCCTAA 

Andrew’s Choice 2 Index 4 TGGTCA 

Carlton 1 Index 5 CACTGT 

Carlton 2  Index 6  ATTGGC 
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3.3.1.3 Analysis of Sequence data  
 

 
Figure 3-5 Schematic of Illumina data analysis. 

The above steps were implemented using a variety of RNA-Seq analysis tools and custom scripts. The steps 

are described in detail in the following sections.  
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3.3.1.4 Basic script and program running  
All perl scripts and programs were run via the command line on an 8 core (dual 

4-core 2.13GHz E5506) Intel Xeon machine with 48 GB RAM and 1TB scratch 

(2x 1TB disks, RAID1)) unless otherwise stated. The command line prompts can 

be seen in appendix section 6.10.  

 

3.3.1.5 Trimming and Filtering of raw reads 
The raw Illumina reads were trimmed to remove the ScriptSeq Index PCR 

Primers used for library preparation. The Centre for Genomic Research at the 

University of Liverpool removed the primers using Cutadapt, an open source 

program that removes adapter sequences from high-throughput sequencing 

data 179. Cutadapt was implemented using the default settings.    

 

The reads were then filtered and trimmed depending on quality scores. The NGS 

QC Toolbox version 2.3 (http://59.163.192.90:8080/ngsqctoolkit/) was used to 

both filter and trim the reads. The first filtering step was carried out using the 

illuQC.pl script in NGSQCToolkit_v2.3/QC that filters reads on the percentage of 

bases that have a given quality score. The script was run with the paired end 

option so that both reads were removed if one fell below the given parameters. 

The filter for adapters and primers was turned off as the adapters were already 

removed. The percentage of bases that were required to be above the set quality 

score (20, default setting) was also used at the default setting of 70%.   

 

The filtered reads were then trimmed using Trimming.pl in 

NGSQCToolkit_v2.3/Trimming. This script trims low quality bases from the 3’ 

end of reads and removes reads below a set read length. The script was run as 

with the default settings except the minimum quality score was increased from 

20 to 30 in order to have a more stringent removal of low quality reads.  
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3.3.1.6 Comparison of de novo assembly using Trinity and SOAPdenovo-
Trans 

Two methods of de novo assembly were used the first method was Trinity and it 

was run as a paired end assembly with the system memory usage for the 

jellyfish step set at 54G as this was the highest accepted level for the system 

used. The number of CPUs was set as the suggested default of 16.  

 

 

The second method was SOAPdenovo-Trans-127kmer version run as a paired 

end assembly using the default settings for both read and scaffold assembly 

with the average insert size set to 215 as this was the average for the raw reads.  

 

 

3.3.1.7 Mapping of trimmed Illumina reads to the Trinity assembly, 
SOAPdenovo-Trans and the 454 references  

Bowtie2 was used to align the raw Illumina reads of both Carlton and Andrew’s 

Choice to the three assemblies. Bowtie2 was run on all assemblies using the 

following command line prompts. The default settings of an end-to-end 

alignment with the default minimum score threshold of -0.6 + 0.6 * L, where L is 

the read length. The default alignment mode is also used that searches for 

multiple alignments and reports the best one.  

 

A comparison of the resulting alignments was carried out by analyzing the 

percentage of reads aligned compared to the percentage of the reference hit by 

the reads, and the coverage of these alignments. In order to do this a script, 

coverageStatsSplitByChr_v2.pl (written by Kevin Ashelford and modified by 

Laura Gardiner at the University of Liverpool CGI), was used to work out the 

coverage of each read and the percentage of the reference hit. This script 

requires a sorted BAM file as input and so SAMtools was used to convert the 

SAM files from Bowtie to sorted BAM files. An average of these were then 

determined to compare the three assemblies.  
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The coverageStatsSplitByChr_v2.pl script was run and the results analysed to 

give the percentage of reference hit and average depth of coverage using awk 

commands. See appendix section 6.10 .  

 

3.3.2 SNP calling using custom SNP caller for polyploid samples and the 
prediction of ploidy level  

As discussed in section 3.1.7.1 and 3.1.7.2, the version of VarScan used only 

considers SNPs with 0.5% heterozygosity and so does not give full details on 

polyploids. It also does not take into account a second or third alternative allele 

when determining the percentage of total reads that represent each allele, for 

example if at a single loci the reference is C and 30 reads are C, 30 are A and 30 

are T the percentage is only worked out for each allele as a percentage of 60 not 

90. Therefore the pileup_parser.pl script was used along side the VarScan 

results to pull out the true percentage of reads for each possible allele. This 

information was then used to analysis possible non-synonymous SNPs as is 

shown in chapter four. VarScan was run with a minimum read depth of 20, a 

minimum of 100 supporting reads to call a variant and an average read quality 

cut off of 20  

The perl script was also used to look at polyploidal variation at the individual 

loci level and so after it was run the results were parsed to count the number of 

“triploid” and “tetraploid” labels for each loci.  

 

In order to determine if the SNPs found were seen in both varieties, between the 

varieties or only in Carlton the results were compared on position of SNP, 

reference and alternative allele suggested. The main analysis to look for non-

synonymous SNPS in putative genes (chapter four) was only carried out on 

SNPs thought to be between varieties.  
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3.3.3 Transcript level differences determined using BitSeq  
BitSeq was used to determine differential expression of transcripts between the 

two varieties of daffodil. The program requires a SAM file, which is generated 

via mapping to the reference transcriptome using Bowtie. An index was first 

creating using the reference transcripts from the Carlton data. The default 

setting for the step were altered from 5 to 2 for the number of Burrows-

Wheeler rows marked and from 10 to 12 for the number of characters to use to 

create the look up table for the initial Burrows-Wheeler range determination. 

These were changed as the BitSeq example analysis suggests that these settings 

work better for data of this nature.   

After this step, Bowtie is used to map the reads to the reference index with a 

maximum number of mismatches of 3 without trimming the low-quality end of 

each read pre alignment as this was already carried out during filtering and 

trimming and would increase computational time. At this stage BitSeq can then 

be run following the example from the BitSeq wiki, 

http://code.google.com/p/bitseq/wiki/BitSeq. 

The resulting files from the BitSeq analysis consist of a file with the PPLR data 

and a separate file with the contig IDs. Using a simple combination of command 

line prompts, the first 8 lines (headers and description of data) were removed 

and the data matched up with the contig IDs. The file was then altered to make 

any tabs spaces for ease of use in later steps. The perl script tabtospace.pl can 

be found in the appendix section. The resulting .pplr file could be used alongside 

a simple split script that pulls out those contigs with significant differences 

between the two conditions (varieties), that is to say those with a PPLR of >0.95 

and <0.05. The testsplit_bitseq.pl script can be found in the scripts folder on the 

appendix disc.  

 

3.3.4 Annotation of Trinity assembly 
The assembled Illumina data was annotated using the same pipeline used for 

the 454 data (section 2.3.4.5). 
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3.3.5 Removal of transposon elements from raw reads – comparison of 
three methods  

Three methods were tested to determine which removed the greatest number 

of raw reads.  

 

3.3.5.1 BMTagger  
This program is described in the introduction of this chapter. The program was 

run using the default settings. The resulting files were then used with a perl 

script (Dr J Kelly, University of Liverpool) to extract the reads that matched 

TREP from the original reads ready to re-assemble the reads without 

transposon contamination. The script is in the appendix section.  

The resulting assembly can be compared to the assemblies from the other 

methods. 

 

3.3.5.2 TransposonPSI 
TransposonPSI.pl is a perl script and so was run as written.  Only the top hit file 

was used in the analysis. The output file was filtered and the used alongside the 

script by Dr Kelly to remove the transposon elements from the filtered and 

trimmed reads ready for assembly.  

 

3.3.5.3 BLAST against TREP  
The format converter FastqtoFasta.pl from NGStoolkit was used to convert the 

raw files to fasta files then the BLAST (version 2.2.27+, scoring matrix 

Blosum62) search was run against the 2008 TREP database with the output set 

to tabulated for ease of comparison and annotation with the search limited to 

one hit per transcript. The resulting BLAST output was parsed using a bespoke 

perl script for an e-value cut off of e-). The perl script 

remove_low_scoring_blast.pl can be found in the scripts folder on appendix disc. 

 

3.3.6 Re-assembly of reads post TE removal  
 BMTagger results were used for re-assembly using Trinity version 2012-10-05 

using the same settings as the original assembly for comparison.   
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3.3.7 Annotation of the re-assembled data 
The new Trinity assembly was annotated using the same pipeline as described 

in section 2.3.4.5. 

 

3.3.8 SNP and transcript level differences re-evaluated post transposon 
removal  

The SNP and transcript level differences were re-analysed using the new 

assembly as described in sections 3.3.2 and 3.3.3 and compared to the original 

analysis.   
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3.4 Results  
3.4.1 Extraction of RNA  

3.4.1.1 Andrew’s Choice  
The results of the trial can be seen in the Appendix, table x. It was clear that the 

best method was the Analytik-Jena InnuPREP plant RNA Kit with the PL lysis 

solution. The kit gave consistent high yields and consistent 260/280 ratios.  

Therefore this method was used alongside a DNase step (Qiagen DNase kit) for 

the Andrew’s Choice variety. The two samples from two different bulbs grown 

in the same conditions had total concentrations of 696 ng µl-1and 474 ng µl-1 pre 

DNase clean up. Both samples had 260/280 ratios within the range (1.8-2.3) 

suggesting pure RNA and 260/230 ratios indicating no protein contamination. 

The samples were stored at -80°C until needed for cDNA library preparation.  

 

3.4.1.2 Carlton   
The same method as for Andrew’s Choice was used to prepare two samples of 

Carlton RNA from two different bulbs grown under the same conditions as the 

Andrew’s Choice. The resulting concentrations pre DNase clean up were 997 ng 

µl-1 and 687 ng µl-1. These were also stored at -80 °C until needed for cDNA 

library preparation. 

 

3.4.2 RNA-Seq library preparation  

3.4.2.1 Total RNA analysis  
The four samples were analyzed for total RNA concentration using the Agilent 

RNA 6000 Nano Chip. The results can be seen in table 3.3.  

 
Table 3-3 Total RNA Nano Chip results for the four total RNA samples for consideration for library 
preparation. 

 

 

 

 

Sample  Concentration (ng µl-1) 28S/18S ratio RIN  
Andrew’s Choice 1 416.69 1.80 8.1 
Andrews’ Choice 2 465.16 1.99 8.6 
Carlton 1 398.58 1.61 8.6 
Carlton 2 466.81 1.74 8.6 
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From table 3.3 it is can be seen that all four samples have RIN > 6, which is the 

degradation threshold, suggesting good quality RNA. The 28S/18S ratio 

confirms this because they are all close to the optimum of 2.0 obtained in non-

degraded RNA.  This is further demonstrated in figures 3.6-3.9 by the clear 

single peaks at 18s and 28s and the relatively smooth graphs. All four samples 

were carried forward to library preparation.  

 
Figure 3-6 Total RNA electropherogram from Andrew's Choice sample 1 

The rRNA ratio (28S/18S) was 1.8 with a RIN of 8.1 and a final concentration of 416.69 ng µl-1.  
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Figure 3-7 Total RNA electropherogram from Andrew's Choice sample 2 

The rRNA ratio (28S/18S) was 1.99 with a RIN of 8.6 and a final concentration of 465.16 ng µl-1. 

 
Figure 3-8 Total RNA electropherogram from Carlton sample 1. 

The rRNA ratio (28S/18S) was 1.61 with a RIN of 8.6 and a final concentration of 398.58 ng µl-1.  
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Figure 3-9 Total RNA electropherogram from Carlton sample 2 

The rRNA ratio (28S/18S) was 1.75 with a RIN of 8.6 and a final concentration of 466.81 ng µl-1.  
 

 

 

 

3.4.2.2 cDNA library preparation  
 

The four samples were used to prepare RNA-Seq libraries as described in 

3.3.1.2. The resulting libraries were analyzed for quality using a Quibit 

fluorometer and an Agilent High Sensitivity DNA chip. The results can be seen in 

table 3.4.  

 
 
Table 3-4 cDNA library final analysis. 

The concentration was determined by the Quibit analysis and the average fragment size from 
the High Sensitivity DNA Chip.  

Sample Concentration (µg 
µl-1) 

Molarity 
(nM) 

Average Fragment size 
(bp)  

Andrew’s Choice 1 0.24 1.04 355 
Andrew’s Choice 2 0.26 0.86 468 
Carlton 1 0.68 3.2 328 
Carlton 2  0.90 3.4 405 
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Electropherograms of the resulting libraries can be seen in Figures 3.10 to 3.13. 

Ideally for Illumina sequencing a molarity of over 1nM is required and therefore 

Andrew’s Choice sample 1 was selected for sequencing. Of the two Carlton 

samples it was decided that sample 2 should be used for sequencing as it has a 

higher molarity and higher average bp size of fragments.  

 

 
Figure 3-10 cDNA library electropherogram for Andrew's Choice sample 1. 

The marker peaks are clearly visible at 35 and 10380 bp. The library is evenly fragmented, as no large 
peaks are visible. Ideally the fragmented area should show more distinct peaks but as this is a valuable 
sample it will still be sequenced as the molarity is above 1nM and the average fragment size is 355.  
 
 

 
Figure 3-11 cDNA library electropherogram for Andrew's Choice sample 2. 
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The marker peaks are clear at 35 and 10380 bp. The fragmented area is more widely dispersed 
and of lower molarity than that of sample 1 and therefore will not be used for sequencing.  
 

 

 
Figure 3-12 cDNA library electropherogram for Carlton sample 1. 

The marker peaks are clear at 35 and 10380 bp. The fragmented region is of a much higher molarity than 
that seen for Andrew’s Choice, however the average fragment size for this library was the lowest of the 
four, 328bp.  
 

 
Figure 3-13 cDNA library electropherogram for Carlton sample 2. 

The marker peaks are clearly visible at 35 and 10380 bp. The fragmented region is comparable 
in molarity and spread to that of Carlton sample 1. However the average fragment size is much 
larger, 405bp, therefore this sample was selected for sequencing.  
 

3.4.2.3 Trimming and Filtering of raw reads  
The results of the adaptor trimming and quality filtering and trimming can be 

seen in tables 3.5 and 3.6. Both varieties showed high percentages of high 

quality reads after the final trimming step (96.6% forward and 95.4% reverse 
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reads for Carlton and 96.56% forward and 95.21% reverse reads for Andrew’s 

Choice) with clearly reduced levels of non-ATCG bases (0.01% forward and 

0.11% reverse reads for both varieties). The reverse reads from both varieties 

showed higher levels of non-ATGC bases and therefore slightly lower levels of 

high quality reads.  
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Table 3-5 Comparison of Carlton Illumina reads after adaptor trimming, quality filtering and quality trimming. 

The percentage of reads with non-ATGC bases is significantly reduced without significantly reducing the number of high quality reads.  
 
 
  

Sample name  
Carlton forward 
post Cutadapt  

Carlton reverse 
post Cutadapt 

Carlton forward 
post filtering 

Carlton reverse 
post filtering 

Carlton forward 
post trimming  

Carlton reverse post 
trimming  

Minimum read length 1 1 1 1 20 20 
Maximum read length 100 100 100 100 100 100 
Average read length 94.52 94.68 94.42 94.48 94.17 94.05 
Total number of 
reads 15575323 15575323 14825941 14825941 14806569 14806569 
Total number of 
reads with non-ATGC 
bases 246413 1234958 206265 1101884 189590 1063571 

Percentage of reads 
with non-ATGC bases 1.58% 7.93% 1.39% 7.43% 1.28% 7.18% 
Total number of 
bases 1472165118 1474613644 1399937253 1400746087 1394344344 1392555397 

Total number of high 
quality bases 1443938440 1410384386 1383593690 1377280745 1346885430 1328459060 

Percentage of high 
quality bases 98.08% 95.64% 98.83% 98.32% 96.60% 95.40% 

Total number of non-
ATGC bases 291377 5274180 235489 1600297 205235 1556979 

Percentage of non-
ATGC bases 0.02% 0.36% 0.02% 0.11% 0.01% 0.11% 
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Table 3-6 Comparison of Andrew's Choice Illumina reads after adaptor trimming, quality filtering and quality trimming. 

The results are very similar to those of Carlton suggesting that both varieties were sequenced equally effectively.   

Sample name 
Andrew’s choice 
forward post 
Cutadapt  

Andrew’s choice 
reverse post 
Cutadapt 

Andrew's choice 
forward post 
filtering 

Andrew's choice 
reverse post 
filtering 

Andrew's choice 
forward post 
trimming  

Andrew's choice 
reverse post 
trimming  

Minimum read 
length 1 1 1 1 20 20 

Maximum read 
length 100 100 100 100 100 100 

Average read length 93.19 93.43 93.11 93.15 94.99 94.86 
Total number of 

reads 13945808 13945808 13187964 13187964 12853764 12853764 
Total number of 
reads with non-

ATGC bases 215968 1098861 178954 973819 164889 943026 
Percentage of reads 

with non-ATGC 
bases 1.55% 7.88% 1.36% 7.38% 1.28% 7.34% 

Total number of 
bases 1299547169 1302946984 1227939145 1228479921 1221023045 1219308786 

Total number of HQ 
bases 1273925396 1237555422 1213408193 1207208031 1179003144 1160861352 

Percentage of HQ 
bases 98.03% 94.98% 98.82% 98.27% 96.56% 95.21% 

Total number of 
non-ATGC bases 255426 4638930 204560 1408963 178537 1373991 

Percentage of non-
ATGC bases 0.02% 0.36% 0.02% 0.11% 0.01% 0.11% 
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3.4.2.4 Comparison of de novo assembly using Trinity and SOAPdenovo-
Trans 

The results of both assemblies are shown in table 3.7. Trinity produced much 

longer contigs than SOAPdenovo-Trans. The latter assembly’s shortest length is 

the same as the maximum length of the raw reads. The average read length 

(183bp) in SOAPdenovo-Trans is also low compared to the Trinity 511bp. The 

longest length seen by Trinity (30656 bp) is unlikely to be a true transcript due 

to the difficulty of assembling short reads into transcripts of this size and could 

be caused by repetitive sequences or contamination. (See section 3.4.2.10) 
 
Table 3-7 Comparison of de novo assemblers. 

 

3.4.2.5 Mapping of trimmed Illumina reads to the Trinity, SOAPdenovo-
Trans and 454 assemblies 

The results can be seen in table 3.8.  It is clear that for both varieties the 454 

reference and SOAPdenovo-Trans assembly had much higher depth of coverage 

and lower number of total transcripts. By mapping the Illumina reads back to 

both the 454 and the SOAPdenovo-Trans reference it was clear that a large 

proportion of the reads were not mapping, suggesting that both references did 

not cover the entire transcriptome (only about 30% of the Illumina reads were 

accounted for in this mapping back to both the 454 reference and SOAPdenovo-

Trans assembly (See section 3.5.2). The Trinity assembly gave better overall 

representation of the transcriptome.  

 

 

 

 

 
 

Assembler Trinity SOAPdenovo-Trans 

Number of contigs and 
singletons  165905 

17429  
(3458 contigs and 13971 

singletons) 
Average length (bp) 511 183 
Shortest length (bp) 201 100 
Longest length 30656 6864 
N50  679 236 
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Table 3-8 Comparison of mapping to the 454, Trinity and SOAPdenovo-Trans assemblies.  

 

The 454 reference has much higher coverage and the percentage of the 

reference hit is more similar for the two varieties. All three assemblies involve 

only Carlton reads and so a lower level of mapping would be expected for the 

Andrew’s Choice reads, however the high levels of mapping seen with Andrew’s 

choice agree with the idea that the two varieties are closely related.  

 

3.4.2.6 SNP calling using custom SNP caller and VarScan 
The full VarScan and pileup_parser.pl outputs can be found on the appendix disc 

(pileup_parser is in the scripts folder on the appendix disc). A basic comparison 

of the number of SNPs found in both assemblies can be seen in table 3.8.  

Only the varietal differences are shown.   For full inter and intra varietal SNP 

data see table 3.15 in the SNP calling in both the original and TE removed 

assembly section of this chapter.  

A more in-depth study into these SNPs and the transcripts is described in 

chapter four.  

Variety Carlton Andrew’s Choice  
Carlton 
Reference 
used to 
map to  

454 
reference  

 
 
Trinity 
assembly 

 
SOAPdeno
vo-Trans 
assembly 

 454 
reference  

 Trinity 
assembly  

SOAPdeno
vo-Trans 
assembly  

Percentag
e of 
reference 
hit by 
Illumina 
reads 86.45% 

 
 
 
95.42% 

 
 
 

99.72% 

82.85% 73.42% 97.24% 
Percentag
e of 
Illumina 
reads that 
could be 
mapped 
back to 
the 
reference  30.84% 

 
 
 
75.65% 

 
 
 

39.91% 

26.02% 56.38% 24.58% 

Depth of 
coverage  72 X 

 
 
12X 

 
 
     111X 61X 12 X     92X 



 

91 

Table 3-8 Intervarietal SNPs called using the two references. 

 

 

 

 

 

 

The parsing script pulls out every alternative allele but has no constraints. 

VarScan has stringent cut offs but only shows one alternative allele. Combining 

the two methods results in the discovery of the true allelic variation in triploid 

species.  

3.4.2.7 The prediction of ploidy level in Carlton and Andrew’s Choice 

The pileup_parser.pl results were parsed and the percentage of loci that showed 

more than one nucleotide at a specific loci were analysed. Out of the 23949 loci 

predicted to differ from the reference 98.09% were labeled “triploid” for 

Carlton and 98.54% were labeled “triploid” for Andrew’s Choice.  To be 

considered triploid the alternative alleles and the reference allele had to have an 

overall read percentage of 20 % or higher with the forth allele having a 

percentage of less than 10%. The remaining ~2% in both were labeled as 

tetraploids. To be considered tetraploid all four alleles had to be represented by 

20% or more of the total number of reads.  

3.4.2.8 Transcript level differences determined using BitSeq  
Table 3.10 shows the number of contigs or singletons that are predicted to have 

significant transcript level differences between the two varieties and the 

percentage of the total number of transcripts this represents. The 454 data set 

resulted in 0.25% with a PPLR >0.95 (suggest a significant probability that the 

transcripts are up-regulated in the Andrew’s Choice individual) and 1.34% with 

a PPLR <0.05 (suggesting down-regulation in the Andrew’s Choice individual). 

The Illumina Trinity data resulted in 0.23% >0.95 and 0.29% <0.05. These 

transcripts are investigated in chapter four. The data shown is a summary of the 

results, showing only the PPLR values, the full BitSeq output containing PPLR, 

Reference mapped No of SNPs 
discovered  

454 4032 
Trinity 5766 
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mean log2 fold change, confidence intervals and mean condition and mean 

expressions are shown in on the appendix disc. Only PPLR values are shown in 

table 3.10 as BitSeq suggests that these values can be used to “rank transcripts 

based on DE belief”. Although PPLR and p values are not interchangeable PPLR 

is still considered a viable method for predicting differences and can be used 

like p-values with a user defined cutoff.  
Table 3-9 BitSeq results for both the 454 and Trinity assemblies. 

 Showing the difference in transcript levels between two individuals from two varieties of 
Narcissus pseudonarcissus (Carlton and Andrew’s Choice).  
 

3.4.2.9 Annotation of Trinity assembly  
The annotation pipeline described in chapter 2.3.4.5 was used on the Trinity 

assembly. It resulted in the annotation of 63826 transcripts (38.47%). The four 

databases searched and the number of unique hits found in each can be found in 

table 3.17 compared to the annotation of the post TE removal assembly.  

3.4.2.10 Removal of transposon elements from raw reads – comparison of 
three methods  

 

Table 3-10 Comparison of three methods of TE discovery. 

The reads that hit TEs were removed from the raw and trimmed and filtered reads using all 
three methods to compare the resulting assemblies.   
 
 

Assembly  454 Trinity 
Total number of 
contigs/singletons  

20349 165905 
 

Transcripts with PPLR of >0.95 50 378 

Transcripts with PPLR of <0.05 272 475 
 

Percentage >0.95 0.25 0.23 
Percentage <0.05  1.34 0.29 

Method Variety Number of reads 
removed 

Total number of 
reads 

Percentage of 
reads removed  

  Raw 
reads 

Trimme
d and 
filtered 
reads 

Raw 
reads 

Trimmed 
and 
filtered 
reads 

Raw 
read
s 

Trimme
d and 
filtered 
reads 

BMTagger Carlton 3944
6 

41133 1557532
3 

1480656
9 

0.253 0.278 

Andrew’ 4474 54113 1394580 1285376 0.321 0.421 
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It is clear from table 3.12 that the BLAST search against TREP gave the lowest 

number of predicted TE transcripts; both BMTagger and TransposonPSI 

resulted in greater but similar numbers. The main difference between these two 

methods was the run time. BMTagger runs in a matter of hours whereas 

TransposonPSI took several weeks to run. All three methods were carried 

forward to assembly for further analysis.  

 

s choice  5 8 4 
BLAST Carlton 1428 1158 1557532

3 
1480656
9 

0.009 0.008 

Andrew’
s choice  

1174 917 1394580
8 

1285376
4 

0.008 0.007 

TransposonPS
I 

Carlton 6078
8 

Not ran 1557532
3 

1480656
9 

0.390 Na 

Andrew’
s choice  

3679
0 

Not ran 1394580
8 

1285376
4 

0.264 Na 
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3.4.2.11 Assembly comparison of the three TE removal methods  
 

Table 3-11 Comparison of Trinity assemblies of the three TE removal methods. 

Statistics were determined using the NGStoolkit statistical program N50stats.pl  
 
  BLAST BMTagger TransposonPSI 

 Raw 
reads 

Trimmed 
and 
filtered 
reads 

Raw 
reads 

Trimmed 
and 
filtered 
reads 

Raw reads  

Total 
sequences 

169689 165176 169518 165065 169191 

Total 
bases 

84360430 82035348 84014952 81805100 84698744 

Min 
sequence 
length 

201 201 201 201 201 

Max 
sequence 
length 

21617 30656 21617 30656 30656 

Average 
sequence 
length 

497.15 496.65 495.61 495.59 500.61 

Median 
sequence 
length 

294 294 294 294 295 

N25 
length 

1526 1513 1511 1511 1543 

N50 
length 

634 630 629 626 644 

N75 
length 

301 300 300 300 302 

N90 
length 

231 231 231 231 231 

N95 
length 

215 215 214 215 215 
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As can be seen in table 3.13 all three methods gave very similar assemblies. The 

filtering and trimming step removed ~4000 sequences in each method. 

Therefore it was decided that filtering and trimming should be carried out prior 

to TE removal. As the BLAST and BMTagger produced a similar number of 

sequences and the same max sequence length, it was decided to carry the 

BMTagger removal forward since it was quicker than BLAST and removed the 

most raw reads. TransposonPSI was deemed too time consuming compared to 

the other methods with no clear advantage. 

 

3.4.2.12 Mapping of TE removed reads to both the 454 reference and the TE 
removed Trinity assembly  

The differences between the above results and those seen in table 3.14 are 

minimal, the results suggest that the removal of TE only improves mapping by 

<1% for all varieties and references. This is consistent with the <1% of raw 

reads removed via these methods.  
 
Table 3-12 Comparison of raw reads mapped back to the 454 reference and the Trinity Illumina de 
novo assembly. 

Percentage of reference hit is determined using the coverageStatsSplitByChr_v2.pl script to determine the 
percentage of the reference hit by the raw reads. Percentage of Illumina reads mapped is the alignment 
percentage given by Bowtie2 representing the percentage of raw reads that were successfully mapped to 
the reference. The depth of coverage is the average read coverage seen from the mapping.  
 

 

 

 

 

 

Variety  Carlton  Andrew’s choice  

Reference 
Assembly   

454 
reference  

Post-TE 
Trinity 
assembly  454 reference  

Post-TE  
Trinity 
assembly  

Percentage of 
reference hit  86.49% 95.59% 82.78% 73.62% 
Percentage of 
Illumina reads 
mapped  30.74% 75.27% 25.92% 56.31% 

Depth of coverage  72 X 12 X 60 X 12 X 
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3.4.2.13 SNP calling in both the Original and Post-TE removal assembly  
 

 
Figure 3-14 Venn Diagram showing SNP cross over between varieties 

A shows the SNP cross over between Carlton and Andrew’s choice in the original (no TE removal) 454 
results. B shows the same cross over for the post TE removal results. C shows the original results for the 
Illumina data. D shows the cross over for the post TE removal Illumina results.  
 
The inter-varietal SNPs range from 4032-8383 depending on the reference and 

if the raw reads have had the TEs removed or not. Transcripts that show the 

same intra-varietal and inter-varietal SNPs, and SNPs found in transcripts 

predicted to be involved in galanthamine production are discussed further in 

chapter four.   

 

3.4.2.14 Transcript level differences   
 
Table 3-15 BitSeq results for 454 reference, Original and Post-TE assemblies. 

The 454 post-transposon removal represents the mapping of the filtered, trimmed and TE 
removed Illumina reads mapped to the initial 454 reference.  
 

Reference  454 Original 454 post TE Trinity post 
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Table 3.15 shows the transcript levels in the two varieties are very similar with 

less than 1% showing PPLR of >0.95 and less than 2% showing PPLR of <0.05. 

The full BitSeq results including fold change differences can be seen in on the 

appendix disc.  

 

3.4.2.15 Annotation post TE removal  
The Assembly from section 3.3.6 was annotated using the same pipeline as 

section 2.3.4.5. The pipeline annotated 62852 (38.1%) of the transcripts. The 

annotations from the four databases, TAIR, UNIPROT, Rfam and RefSeq were 

compared to those produced in 3.3.4 to evaluate any differences seen. The 

comparison is show in table 3.16.  
Table 3-16 Comparison of assembly annotation of Original and Post-TE removal assemblies. 

The annotation pipeline only allows each transcript to be annotated once, starting with TAIR. Those that 
are not annotated can then move onto the next database in the order of UniProt, Rfam and then RefSeq. 
The numbers shown represent the unique hits.  

 
 

 

Trinity  removal TE removal 
Total number 
of transcripts 

20349 165905 20349 165065 

Transcripts 
with PPLR of 
>0.95 

50 378 86 169 

Transcripts 
with PPLR of 
<0.05 

272 475 321 145 

Percentage 
>0.95 

0.25 0.23 0.42 0.1 

Percentage 
<0.05 

1.34 0.29 1.58 0.09 

Database Number of transcripts annotated Percentage of transcripts 
annotated 

 Original 
Trinity 
assembly 

Post TE 
removal 
Trinity 
assembly 

Original 
Trinity 
assembly 

Post TE 
removal 
Trinity 
assembly 

TAIR 53827 52861 32.4 32 
UniProt 2315 2270 1.4 1.4 
Rfam 209 204 0.1 0.1 
RefSeq 7475 7517 4.5 4.6 
Total 63826 62852 38.5 38.1 
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3.5 Discussion  
3.5.1 Production of cDNA libraries and read quality control 
As discussed in section 2.1.7, extraction of RNA from plants with high levels of 

phenols, sugars and secondary metabolites is difficult. The CTAB method used 

in the production of the 454 reference was not suitable for extraction from 

Andrew’s Choice. The Analytik-Jena InnuPREP plant RNA kit with the PL lysis 

buffer (specifically designed for high phenolic plants) was found to be a suitable 

method and was used for both varieties. From these samples four cDNA 

libraries were prepared and then one from each variety was carried forward to 

sequencing, sample 1 for Andrew’s Choice as its molarity was over 1nM 

(recommended limit for Illumina) and sample 2 from Carlton as its molarity was 

3.4 compared to sample 1 at 3.2nM.  The sequencing of these samples resulted 

in two paired-end data sets with similar numbers of reads (average read lengths 

100bp)(Andrew’s Choice 13945808 pairs and Carlton 15575323 pairs). The 

raw reads were first trimmed using Cutadapt to remove the index primers and 

then filtered and trimmed to remove any reads shorter than 20bp, then those 

with less than 70% of bases having a quality score of 20 or more and finally 

bases from the end of reads that had a quality score of below 30. This resulted 

in the removal of ~5% of reads from each set with the reverse reads showing 

slightly higher levels of non ATGC bases. This could be due to several factors; 

base content can affect quality, also, if the forward and reverse reads do not 

overlap they can have different levels of quality and, finally, longer molecules 

can result in lower quality sequencing 180. By trimming reads that had less than 

70% bases with a quality score higher than 20 it was possible to produce high 

quality reads that could then be assembled with more confidence. As de novo 

assembly was required it was very important to remove bases and reads of low 

quality that could result in a non-representative assembly. It was also important 

to remove smaller reads (<20bp) that could again interfere with the assembly 

as both Trinity and SOAPdenovo-Trans work best on longer reads (~100bp).  
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3.5.2 Assembly of Illumina reads  
Determining accuracy and coverage of an assembled transcriptome is much 

more difficult than that of a genome. It is further complicated if the 

transcriptome is from a non-model plant with no reference genome or closely 

related reference. There are several methods for assessing the quality of an 

assembly and they are discussed below in relationship to the daffodil data. 

  

Initial results showed that Trinity produced much longer contigs, possibly 

suggesting a better assembly of the short reads. In transcriptomic de novo 

assemblies the use of N50 or the length of a transcript as a statistic for assessing 

an assembly is limited as unlike genomes where the longer the N50 the better, 

the assemblies of transcriptomes are intrinsically fragmented 132. A higher N50 

does not always relate to a better assembly and often those seen in 

transcriptome studies are higher than the actual N50 which could be linked to 

misassembly and concatenation of reads. However the short lengths of the 

SOAPdenovo-Trans assembly suggested a poor assembly, as the shortest length 

was the same as the maximum length of the raw reads. The average read length 

of 183bp from SOAPdenovo is also very low compared to average lengths in 

other transcriptomic projects. For example, the Trinity assembly result is much 

closer to the lengths seen in other Illumina assemblies such as Pelargonium x 

hortorum, (850bp Trinity) maritime pine (Pinus pinaster) (495bp) and Centella 

asialica (474bp) 111,127,181.  

 

It is possible if a closely related species has been sequenced to produce a 

genome reference, or if there is a reference genome for the plant of interest that 

a Fermi estimation of the number of transcripts expected can be carried out 83. 

Major plants have been predicted to have 20,000 to 40,000 genes, however not 

all of these will be present in the transcriptome and so an estimate can be made 

using micro array data along with a reference genome, for example it was 

predicted that the Arabidopsis leaf transcriptome would contain around 15,000 
83. Polyploids and transcriptomes with a recent duplication event may have 

more but the overall number of contigs assembled can still be compared to 

other plant species. In the project by Xiao et al assembly from 75 species 
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resulted in transcriptomes containing between 31000 and 70000 contigs 2. 

While the diploid Centella asiatica transcriptome had 79041 tentative unique 

transcripts while both the diploid maritime pine (P. pinaster) and the allo-

tetraploid Nicotiana benthamiana had much higher numbers of contigs (210513 

and 235000 contigs) these are similar to those seen in Illumina.  

One method of ascertaining the quality of an assembly is short read mapping, 

firstly the raw reads back to the assembly and also back to a reference genome 

if available 182.  The raw reads were mapped back to the 454, Trinity and 

SOAPdenovo-Trans assemblies. From the results it was clear that by using only 

the 454 assembly over 60% of the raw Illumina reads were not being exploited 

as only 30.84% (Carlton) and 26.02% (Andrew’s Choice) of the Illumina reads 

mapped back to the 454 reference. Leaving out 60% of the Illumina reads would 

omit exploration of a significant data-set and so it was decided that a de novo 

assembly of the Illumina reads should be used alongside the 454 reference for 

further investigation such as SNP and transcript level analysis. Illumina 

sequencing has been shown to result in much deeper coverage of a 

transcriptome, as seen in this marked difference in coverage in this data set. A 

project by Zhang et al looking at two Geraniaceae transcriptomes showed that 

Illumina produced greater coverage 127. This is not surprising as the Illumina 

sequencing produced almost 40 times the amount of data as that seen in 454, 

(similarly in this project the 454 produced around 150000 reads and the 

Illumina produced close to 15000000) however when they reduced the number 

of Illumina reads to match that of the 454 the resulting assemblies still showed 

a marked increase in coverage 127. When the two techniques first appeared 454 

had much longer read lengths and so was the platform of choice for de novo 

assembly, however as read length increased with Illumina and the improvement 

of de novo assemblers, Illumina is now more widely used. As is evident by the 

decommissioning of 454 104.  

 

No standard method currently exists for the combination of the two sequencing 

methods to produce one reference 2,181. Of the two methods of Illumina de novo 

assembly, the SOAPdenovo-Trans reference had a much higher depth of 
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coverage (111X and 92X compared to 12X for Trinity) for the section of the 

transcriptome it represented. However only ~30% of the raw reads were able 

to map back to the SOAPdenovo-Trans reference. This is similar to the 

percentage of raw reads that mapped back to the 454 assembly. The Trinity 

assembly resulted in a much higher use of the raw reads (75.65% and 56.38% 

compared to 26.02% and 24.58%) suggesting better overall representation of 

the sub-genomes of the transcriptome. This, and the low average transcript 

length seen with SOAPdenovo-Trans, resulted in the use of the Trinity assembly 

for further analysis as looking at any SNP differences between the homologous 

copies would be required to also assess the variation between the two varieties.  

In plants with closely related reference genomes it is possible to compare the 

assembly to a reference and look at the transcripts ortholog hit ratio, that is the 

number of bases in a matched region divided by the length of the best matched 

sequence. An OHT of 1.0 suggested complete transcripts, however this assumes 

that the best match is indeed an ortholog with conserved length 182. This is 

obviously linked to evolutionary distance, duplication events, loss of genes or 

silencing of one genome by another in polyploids can greatly affect this statistic 

as novel or significantly different transcripts may not map or may map poorly 
182. As no closely related genome exists for daffodils a more useful statistic may 

be the percentage of transcripts with unique hits to known plant proteins 

(specifically those known to be well conserved) this is discussed in section 3.5.4.  

3.5.3 Removal of TEs  
As de novo assembly of short reads is very difficult, longer contigs such as those 

seen in genome assemblies often suggest repetitive regions, TEs or 

concatenated transcripts. Although these repetitive regions are not thought to 

be transcribed the large maximum contig length of 30656bp in the Trinity 

assembly could be caused by concatenated transcripts, contamination or as 

suggested by a personal communication with the Trinity developers TEs. 

Therefore investigation into TEs was carried out on the Trinity data after the 

initial annotation step. This was originally carried out on the raw reads and then 

on the trimmed and filtered reads.  Since these latter steps removed almost 5% 

of the raw reads, it would be beneficial to carry out filtering and trimming prior 
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to the TE removal as leaving in this 5% of unfiltered reads could affect the 

assembly.  

 

The method with the most stringent cut off was used to remove TEs as this 

would reduce the amount of data and should also reduce the number of false 

transcripts analysed. The BLAST search against TREP gave the lowest number 

of possible TE transcripts and so was not used for further investigation as the 

aim of this step was to remove as many erroneous reads as possible. The other 

two methods gave very similar results (0.2-0.4% reads removed) but took very 

different lengths of time (BMTagger took less than 2 hours whereas 

TransposonPSI took over a month). Therefore BMTagger was considered the 

most suitable method. Even then, the relatively low number of reads removed 

did not result in the removal of the longer transcripts. Although the use of basal 

plate was in part to avoid chloroplast contamination it may be that some of 

these longer transcripts are chloroplast associated. More over as there was no 

way of sterilizing the bulbs prior to RNA extraction it is possible that there was 

some bacterial contamination. It would be beneficial to a project of this nature 

to remove any transcripts that are linked to bacteria or chloroplasts if the 

overall aim was to produce a full-annotated transcriptome. However as only one 

tissue at one time point was used in the creation of the library the whole 

transcript is unlikely to be represented. The annotation pipeline did not 

annotate these longer transcripts, essentially excluding them from the putative 

gene search and due to time constraints and as the aim of the project was to 

look for putative genes involved in galanthamine production, no further analysis 

was carried out on the longer transcripts.  

 

3.5.4 Annotation of Transcripts 
To look for putative genes involved in alkaloid production the original 454 

reference and Trinity assembly were used for transcriptome annotation, 

transcriptome wide SNP discovery and transcript level analysis and the results 

were compared to those gained for the data sets with the TE associated 

transcripts removed. Annotation was carried out on both Trinity assemblies in 
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the same way as that for the 454 reference in chapter two. The results in table 

3.17 show very little difference between the two assemblies with both resulting 

in ~38% annotation. This is comparable to other transcriptomic projects in 

plants; in the diploid P. hortorum and Geranium maderense (2n=68) Zhang et al 

reported an annotation rate of 37% and 49% using a number of assemblers 

including Trinity and SOAPdenovo-Trans 127. Similar annotation levels were 

seen in a velvet assembly in  Centella asiatica, a combined assembly of Pinus 

pinaster  (using MIRA, CAP3 and ABySS) and a slightly higher average was seen 

in Xiao’s 75 plant project (using MIRA for 454 and Velvet-OASES for Illumina 

reads) (53.04%, 46.6% and 68%) 2,111,181. The exact breakdown of the 

annotations and further investigation such as Gene Ontology annotations to 

look for GO enrichment and functional information between the two assemblies 

and their use in the discovery of putative genes involved in galanthamine 

production is described in detail in chapter four.  

 

3.5.5 SNP and transcript level difference analysis 
Transcriptome wide SNP discovery and transcript level differences were also 

carried out on both data sets (Original and post TE removal). This was carried 

out to look for differences between the two varieties as they are closely related 

but there is very little to no data available on their genetic similarities. As they 

were grown under the same conditions and are known to produce different 

levels of galanthamine it was hoped that any difference seen in their 

transcriptomes could lead to the discovery of putative transcript differences 

linked to the biosynthesis of galanthamine. The results suggest that they have 

similar transcriptomes.  Not only were Andrew’s Choice raw reads mapped back 

to both the 454 and Trinity Carlton assemblies well (>70%) but their transcript 

levels show very few differences. In the 454 data the proportion of transcripts 

that showed significant differences between the two varieties were 0.25% in the 

original and 0.42% post TE removal for those with a PPLR above 0.95 (up-

regulated in the Andrew’s Choice individual) and 1.34% and 1.58% for those 

with a PPLR <0.05% (down-regulated in the Andrew’s Choice individual).  The 

change in number following the TE removal could be due to the improved 
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mapping of quality raw reads to the 454 reference. The Illumina assembly also 

showed low levels of difference, 0.23% and 0.1% with PPLR >0.95 and 0.29% 

and 0.09% with PPLR <0.05%. The change in percentage seen here could be a 

direct result of TE removal producing a more accurate assembly for transcript 

level analysis. The next step in the analysis of these results is the investigation 

into transcripts that show different levels and the identification of any that 

could be involved in alkaloid production. Ideally for studies of this kind 

involving differential expression analysis the most accurate estimates are 

required, therefore it is standard practice and often a requirement of widely 

used differential expression methods to have replicates. In a study of this kind it 

is important to account for all sources of variation and so both technical and 

biological replicates are best practice 171. Replicates can be used to normalize 

data and to account for changes in transcriptomic expression at different time 

points. However due to financial constraints repeating of the sequencing runs 

were not possible in this project. The data shown only compared one Carlton 

plant to one Andrew’s choice plant at one time point, therefore this can only be 

used as a guide for further investigation. In order to look more closely at the 

differences between the varieties qPCR will be carried out involving both 

technical and biological replicates to look at transcripts that show significant 

differences in the sequence based differential expression analysis. This is 

described in chapter four.  

 

SNP markers are a useful method of determining differences between varieties 

linked to phenotypes such as alkaloid production. As discussed in the 

introduction of this chapter (section 3.1.7.2) VarScan is capable of discovering 

SNPs in polyploids but only considers them true SNPs if the frequency of the 

minor allele is >0.5. Therefore by using VarScan to determine the loci of SNPs 

alongside the pileup_parser.pl script that gives raw values for each alternative 

allele it is possible to look for SNPs with frequencies below 0.5 as would be 

predicted in polyploids. The results of the transcriptome wide SNP discovery 

resulted in a range of inter-varietal SNPs (4032-8363) depending on the 

assembly used. The relatively low number of transcripts with inter-varietal 
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polymorphisms compared to the total number of transcripts suggests that the 

two varieties are very similar; this is of particular interest when looking for 

differences in transcripts linked to secondary metabolites. Further investigation 

into inter-varietal SNPs in genes predicted to be involved in alkaloid production 

was the next step, as discussed in chapter four.  

 

3.5.6 Bioinformatics approach to predicting ploidy level of Carlton and 
Andrew’s Choice 

The pileup_parser.pl script predicted ploidy level at individual loci to give a 

transcriptome wide view of ploidy within the sub-transcriptomes. It does not 

however take in to account any quality of reads and so sequence errors are not 

removed from the analysis. This script allows for further confirmation of ploidy   

alongside chromosome counting for an overall view. It also gives information on 

the heterozygosity of the sub-transcriptomes. Both Carlton and Andrew’s 

Choice showed ~98% of loci with variation to be triploid. The majority of loci 

were the same as the reference with ~86000-88000 loci labeled “same” (the 

three nucleotides different from the reference having 0 reads) and ~1800000-

2005000 labeled “nothing” (the reference nucleotide is represented by 25% or 

more of total reads with the three other alleles representing less than 15%). The 

SNP percentage was 1.2% in Carlton and 1.01% in Andrew’s Choice which is 

comparable to a predicted SNP frequency of 1 per 100-300 bp, this is lower than 

that seen in the wheat and maize genomes (1 in 20bp and 1 in 70bp) 22. A lower 

frequency would be expected in a transcriptome as only the transcribed region 

is analysed and so any SNPs present in introns or non-transcribed regions 

would be lost.  The rate of variation seen in Andrew’s Choice (1.01%) when 

mapped to the Carlton reference suggests that the two varieties are closely 

related, in agreement with the limited information available on the pedigree of 

Andrew’s Choice (personal communication, Alzeim Ltd). This script could be 

developed further to incorporate quality and total read numbers as well as any 

available ratios on ploidy level at an individual level in allo or auto polyploids to 

predict ploidy level in any organism. This is discussed in Chapter 5 section 5.6.5.  
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4 Chapter Four: Analysis of transcriptome data to determine 
putative transcripts linked to Amaryllidaceae alkaloid 
biosynthesis  

4.1 Introduction 
4.1.1 Methods of annotation for gene function prediction in non-model de 

novo transcriptomes  
The analysis in chapter three gave a generalized annotation based on similarity 

to sequences from a wide variety of databases. Assigning genes an annotation 

based on sequence similarity alone can lead to incorrect predictions of 

biological functions. Although secondary metabolite biosynthesis has been 

shown to involve only a relatively small number of gene families, these families 

contain large numbers of enzymatic isoforms (paralogs) that may or may not 

share the same or similar function. If these new paralogs have a different 

substrate specificity or altered kinetic characteristics they could also have a new 

biological role 183. This emergence of paralogs is caused by gene duplication 

(one of the major sources of evolution) and has in turn generated the large 

number (>200 000) and diversity seen in plant secondary metabolites 183. In 

order to identify genes involved in secondary metabolism it is therefore 

important to accurately predict the function of the genes as well as give an 

annotation based around sequence similarity. Numerous databases are now 

available that try to link the metabolite or gene to its biological function and 

these can be used to create an annotated backdrop for pathway analysis known 

as enrichment studies 184.  

 

Three key databases that can be used for this purpose and that have been 

successful in other alkaloid biosynthesis studies are the Kyoto Encyclopedia of 

Genes and Genomes (KEGG), Gene Ontology (GO) and Enzyme Commission 

number (EC number) 2,185-187 and  these are discussed below.  
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4.1.1.1 Gene Ontology (GO)  
GO is one of the most successful examples of ‘systematic description of biology’ 

and is widely used in whole genome/transcriptome annotation projects 188. The 

Gene Ontology consortium began as a collaboration between the model 

organism databases of Flybase, Mouse Genome Informatics (MGI) and 

Saccharomyces Genome Database (SGD) 185. The goal of the project was to create 

a universal nomenclature to aid in the knowledge transfer of biological roles of 

genes or gene products recorded in studies to date. The ontologies were created 

utilizing several databases including SwissPROT 

(http://www.ebi.ac.uk/uniprot), Genbank 

(http://www.ncbi.nlm.nih.gov/genbank/), PIR (http://pir.georgetown.edu), 

MIPS (http://mips.helmholtz-muenchen.de/proj/ppi/), YPD and wormPD 

(https://portal.biobase-international.com/cgi-bin/portal/login.cgi), Pfam 

(http://pfam.xfam.org), SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/) and 

ENZYME (http://enzyme.expasy.org). The Ontology system is split into three 

modules:  

Biological Process: Terms in this group include cell growth and 

maintenance as well as more specific terms such as translation. They 

represent the biological “objective” of the gene or gene product, 

accomplished by one or more molecular processes 185. 

Molecular Process:  This includes terms such as enzyme or more 

specific terms such as adenylate cyclase.  These describe the biochemical 

activity of the gene product but not where or when the activity occurs 185. 

Cellular Component:  This final module describes the location of the 

gene product activity, such as ribosome or Golgi apparatus 185. 

Genes are associated with numerous terms and any linked terms are also 

inferred, so a very specific term will also be intrinsically linked back to the most 

basic term available 188. The annotations are both manually curated and 

computationally assigned based on current biological knowledge 189. The 

evidence used ranges from experimental (the most reliable annotation method) 

to indirectly derived information from computational studies. Although the 

latter allows for the annotation of genes from non-model organisms lacking 

experimental evidence, it also increases the risk of false positives 188,190. 
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Computational annotations such as sequence similarity predictions of paralogs 

or orthologs can cause false positives as gene duplication and speciation can 

result in a change of function 188-190.  
 

4.1.1.2 Kyoto Encyclopedia of Genes and Genomes (KEGG) 
KEGG was developed in 1995 as part of the Human Genome Program of the 

Ministry of Education, Science, Sport and Culture in Japan 186. This database 

links genomic data with higher order functional information. It is often used in 

investigation into biosynthetic pathways as it is one of the largest and most 

comprehensive databases linking metabolism to gene available 184. Its two main 

databases are:   

Gene Database:  catalog of genes and annotations from complete and 

partial genomes 186. 

Pathway Database: graphical representations of cellular processes, 

representing higher order functional information 186. An example would 

be the phenylpropanoid pathway, which is the starting point for 

numerous larger pathways such as Amaryllidaceae alkaloid biosynthesis.  

 

KEGG has been used in numerous studies on secondary metabolites. However, it 

is important to review the results of this or any other functional database 

carefully 2,5,111. KEGG contains a generalized set of pathways that are conserved 

throughout the plant, microbial and animal world as well as more specific 

pathways that stem from these. As part of this, there are sets of broad terms 

such as ‘metabolism pathway’ that have little meaning when assigned function 
184. Further complications can arise if a pathway contains either very many or 

very few enzymes or intermediates, since such pathways can bias downstream 

analysis such as enrichment studies. A final point to consider when scrutinizing 

the results of database searches is that many pathways are species specific and 

it is possible that a pathway that does not exist in a certain species or organism 

can be predicted to be present or show enrichment in later enrichment studies 
184.  

 



 

109 

4.1.1.3 The Enzyme Commission (EC number) 
The Enzyme Commission number is a numerical classification system for 

enzymes based upon the chemical reactions that they catalyze 191. The original 

list was created in 1992 and has been updated periodically ever since 192. It is a 

unified classification system that may help with annotation of unknown 

transcripts or genes.  

The use of KEGG, EC and GO annotation gives important information on the 

functionality of genes but without analysing the relationship between genes 

within the transcriptome. As primary and secondary metabolism involved a 

very complex network of genes and pathways, with very similar genes carrying 

out different roles, it is imperative that the overall relationship between the 

predicted genes and their relative abundance as well as metabolite levels are 

analysed. The databases discussed above offer a backdrop for enrichment 

studies, also known as pathway analysis studies, that examine gene to gene 

interactions and relationships 184.  

 

4.1.1.4 Enrichment analysis  
Enrichment studies involve looking for genes that are represented by 

significantly larger or smaller numbers of reads within a transcriptome by 

comparing a list of genes that could potentially be involved in the pathway of 

interest to a background (often the whole transcriptome) 193. It requires the 

genes of interest to be associated with the metabolites of interest and annotated 

with as much information as possible such as chemical family, metabolic 

pathway and gene family 184. It is important when using GO, KEGG, EC or any 

other annotation, that enrichment alone is not considered conclusive. To be 

confident that a higher proportion of genes annotated with a specific term exist 

among the genes of interest compared against the whole data set, it is important 

that the enrichment score is compared to the probability of occurrence by 

chance.  For example, if within a gene set of 100 secondary metabolism genes, 5 

genes are annotated as PAL but there are only 6 PAL genes in the whole data, 

set this must be taken into account 188. 
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With an increase in sequencing data from second and third-generation 

techniques, methods for annotation enrichment have also grown rapidly and 

there is no current “gold standard” method. From 2005 to 2010 the number of 

tools available increased from 14 to 68 193. These tools have been classified into 

3 types:  

Singular enrichment analysis (SEA): this method looks at a list of 

genes deemed interesting or important and one gene at a time. It 

therefore does not take relationships into account 193. By only utilizing 

GO terms, its analytical abilities are limited as, although rapidly 

increasing, the number of GO terms is still limited and often too broad to 

infer functionality.  

Gene set enrichment analysis (GSEA): Although this looks at all genes 

in a data set, it examines each independently, thus missing important 

relationship details 194. In addition, it is not well suited to the daffodil 

dataset since GSEA requires a quantitative biological value for each gene, 

such as fold change and differential expression 194. Although a DE study 

was carried out on the daffodil data, it originated from only two 

individuals and so would not have the reproducibility required for a 

GSEA method.  

Modular Enrichment Analysis (MEA): This method looks for 

relationships between terms leading to a reduction in redundancy 

although several MEA tools rely on only one source of annotation such as 

GO 193. However some, such as the Database for Annotation, Visualization 

and Integrated Discovery (DAVID), has functional classification tools that 

use a range of sources to determine enrichment 194.  

 

4.1.2 DAVID enrichment analysis 
David is a “module-centric approach for functional analysis of large gene sets” 

that highlights over-represented biological terms 195. DAVID compares 

annotation profile similarities between genes and so gives broader functionality 

groupings than methods relying on only, for example, sequence similarity or 

gene family determination 195. It is necessary to combine as many annotation 
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methods and characterisations as possible to infer functionality linked to 

secondary metabolite production. DAVID’s knowledgebase brings together 

clusters of over 40 publicly available functional annotation databases 196. By 

linking all available identifiers for a given gene to a single DAVID ID the data is 

centralized, speeding up analysis and functional annotation 196.   

The analysis is carried out using EASE (Expression Analysis Systematic 

Explorer) scores with all individual EASE scores for all members of a group 

counting towards the overall group score, not just those genes on a list of 

interest 195.  EASE scores are a modified version of a one-tailed Fischer exact 

probability test 197. These calculate the probability of random sampling of genes 

in a population in relation to the whole data set. For example if 10 genes in a 

sample list of 100 were annotated as methyltransferases and the background 

list of 1000 contained 12, the test would estimate the probability of finding the 

methyltransferases in both the background and sample set and compare the 

probabilities 197.  The EASE scoring takes into account the distribution of gene 

types and so adjusts for rarer or more common genes using a jackknife method 
197. This is particularly useful in biological studies since the Fischer exact test 

would make a rare category with just one gene significant if that gene was 

present in the list of interest rather than a category with a large number of 

genes in the main population and relatively few in the interest list 197.  EASE 

scores offer a compromise between the two extremes making more biological 

relevant probability predictions. DAVID utilizes EASE scores to group together 

clusters of genes with similar functions and looks for patterns of enrichment for 

the clusters containing the genes of interest.  

 

Therefore, in order to carry out enrichment analysis, it is first important to 

create a suitable background and list of genes that are of interest (known as the 

GOI list in this project). The background must be appropriate to the gene of 

interest list. The full transcriptome could be used but the analysis often requires 

GO terms or UniProt IDs and only those transcripts that can be annotated can be 

used. A large number of transcripts are often not annotated in non-model plants 

and this can cause bias in an enrichment study 188. A compromise must be made 
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when annotating the background list. Although using a closely related species 

may lead to more accurate annotations, if this species has few annotations it will 

produce few annotations for the species of interest and so a better-described 

species, such as Arabidopsis thaliana in plant research, would be more 

appropriate 189. For the gene of interest list database searches such as KEGG, GO 

and EC can be used as a starting point to find genes in similar pathways or 

families 5,111,198. However alongside this it is useful to look at the research 

literature on genes and enzymes that have been identified in the biosynthetic 

pathways in other alkaloid producing plants to limit the number of predicted 

genes 18,199.  
 

4.1.3 Alkaloid biosynthesis studies 
Three of the most studied pathways, for economic and pharmacological reasons, 

are those involved in the production of codeine and morphine in Papaver 

somniferum, capsaicin and other capsaicinoids in Capsicum annuum and 

compounds such as rosmarinic acid from Lamiaceae herbs 15,200,201. These and 

many other secondary metabolite pathways involve only a small collection of 

gene families that are used to create and modify a key precursor sometimes 

referred to as a scaffold (see tables 4.1, 4.2 and 4.3 for details of enzymes linked 

to secondary metabolites in poppies, Capsicum and Lamiaceae)202. The 

generation of these precursors involves the use of primary metabolite 

substrates as building blocks for several precursors generated through a small 

set of enzymatic reactions 202. These precursor, such as strictosidine for terpene 

indole alkaloids and norcoclaurine for BIAs, are then modified to create the 

large and diverse number of metabolites seen within these secondary 

metabolite families 110,203,204.   

 

Modification of the key precursor can occur either via redox chemistry such as 

oxidation or through group transfers such as alkylation, acylation and 

glycosylation 202. The enzymes involved in these modifications can often be 

related but with different substrate specificity, or can be part of a pathway 

involving several different enzyme classes 202.  
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The following discussion focuses in on two classes of enzymes that are involved 

in alkaloid production in several plant systems and could be suggested for the 

galanthamine pathway, namely P450 monooxidases and Pictet-Spenglerases 
17,203,205,206. These will be discussed in relation to their involvement in secondary 

metabolism and the pathways chosen for investigation to create a database of 

predicted gene homologs.  

 

4.1.3.1 P450 subfamilies linked to secondary metabolism  
Cytochrome P450s are a class of haem enzymes named for their maximum 

optical absorbance at 450 nm (in a reduced state complex with carbon 

monoxide) 207. They are found in numerous plant organelles including the 

endoplasmic reticulum, mitochondria, plastids and Golgi bodies 208. The first 

plant P450 was identified in 1969 in cotton and the first to be sequenced was 

CYP71A1 from avocado 209,210. Amino acid similarity is used in the classification 

of P450s. If the similarity between two is over 40% they belong to the same 

family. Within a family, a similarity above 55% classifies the proteins within the 

same subfamily 208. 

 

P450s are involved in many processes in both primary and secondary 

metabolism and are predicted to account for up to 1% of plant genome 

annotations. For example there are 246 P450s annotated in Arabidopsis, 356 in 

rice, 312 in poplar and 457 in grape 211. Within secondary metabolism P450s 

catalyse a variety of monooxygenation and hydroxylation reactions. They also 

catalyse four types of unusual reactions, specifically methylenedeoxy bridge 

formation, phenol coupling, oxidative rearrangement of carbon skeletons and 

oxidative C-C bond cleavage 211. The first two types of reaction are now 

discussed in greater detail due to their involvement in alkaloid biosynthesis 
211,212.  
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4.1.3.2 Methylenedeoxy-bridge formation  
This reaction involves the formation of a bridge via oxidative cyclisation of an 

ortho-hydroxymethoxy-substituted aromatic ring 211. Within isoquinoline 

alkaloid biosynthesis these reactions are catalysed by P450s. These reactions 

are deemed unusual since they do not involve the stereotypical hydroxylation 

step of inserting an oxygen molecule 213.  

 

Figure 4-1 A simplified methylenedeoxy-bridge formation. 

The clan responsible for bridge formation in isoquinoline alkaloid biosynthesis 

is CYP719A in a reaction where a hemiacetal intermediate of formaldehyde 

(formed via a P450-dependent hydroxylation of a methoxy group) is cyclized via 

an ionic mechanism to produce the methylenedeoxy-bridge 214-216. These 

enzymes are all substrate specific and so several different CYP719As are 

responsible for similar reactions throughout alkaloid biosynthesis. CYP719A1 

converts tetrahydrocolumbamine to (S)- tetrahydroberberine in canadine 

synthesis in Japanese goldthread (Coptis trifolia) 217. In Eschscholzia californica 

two CYP719As are involved in stylopine synthesis but show differing substrate 

specificity. CPY719A2 has high affinity for (R, S)-cheilanthifoline alone, while 

CYP719A3 has affinity for three similar substrates, (R, S)-cheilanthifoline, (S)-

scoulerine and (S)-tetrahydrocolumbamine 218.  

4.1.3.3 Phenol coupling  
The final step in the biosynthesis of galanthamine is an intramolecular para-

ortho phenol coupling reaction. Reactions like this are seen in numerous 

alkaloid biosynthesis pathways and are often catalysed by CYP80 or CYP719 

enzymes 205,212. Intramolecular C-C phenol coupling is required in BIA synthesis 

and is catalysed by both CYP80G2 and CYP719B1 depending on the substrate. In 

C. japonica CYP80G2 converts (S)-reticuline to (S)-corytuberine whereas in the 

synthesis of salutaridine as part of the morphine biosynthetic pathway in P. 
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somniferum, CYP719B1 converts (R)-reticuline to salutaridine 205,219. In contrast 

both the S and R configurations of N-methylcoclaurine in bisbenzylisoquinoline 

alkaloid biosynthesis can be converted by the same P450, CYP80A1, catalyzing 

an intermolecular C-O phenol coupling reaction to form berbamunine 220.  

Both CYP719B1 and CYP80G2 show high levels of sequence similarity to other 

P450s but different substrate specificity and therefore catalyse different 

reactions (CYP719B1 shares 51% amino acid similarity with CYP719A1 and 

CYP80G2 shares 52% amino acid similarity with CYP80A1)205,219. It is therefore 

important to examine function as well as sequence similarity when predicting 

possible homologs in daffodils and this is particularly important in P450s. The 

fact that some P450s are highly substrate specific and others have broader 

substrate specificity makes it difficult to predict which family or subfamily will 

be involved in galanthamine biosynthesis and several will therefore be included 

in the predicted database.  

 

4.1.3.4 PSRs role in secondary metabolism  
Pictet Spengler reactions are condensation reactions employed in the synthesis 

of alkaloids, named after Amé Pictet and Theodor Spengler who discovered 

them 221. They synthesised the alkaloid 1,2,3,4, tetrahydroisoquinoline via a 

cyclo-addition reaction between β-phenylethylamine and formaldehyde 221. The 

first plant enzyme that catalysed this type of reaction was found in 

Catharanthus roseus. The Pictet Spenglerase (PSR) strictosidine synthase is 

involved in the biosynthesis of strictosidine, the key precursor of 

monoterpenoid indole alkaloids 222,223. Strictosidine synthase was first purified 

in 1979 and since then has been used as a biomimetric synthase in the synthesis 

of novel alkaloids 206. Although strictosidine synthase is a member of the 6-

bladed β propeller protein family, not all PSRs are from this protein family 
203,206,224.  
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Figure 4-2 STR catalyzing a PSR reaction.(adapted from Stockigt et al., 2011) 206. 

 
PSRs are an example where several gene/enzyme families catalyse the same 

type of reaction. In BIA biosynthesis a similar reaction is carried out via a Bet 

v1/PR10 family protein known as norcoclaurine synthase (NCS) 204. NCS 

catalyses an asymmetric PS condensation of dopamine and 4-

hydroxyphenylacetaldehyde to synthesize (S)-norcoclaurine in the first 

dedicated step of morphine and codeine biosynthesis 18. NCS has been isolated 

from several plants including P. somniferum and Thalictrum flavum 203,204. Work 

has also been carried out to see if PSRs have similar ancestry or share sequence 

similarity. NCS and do not share any homology and so it is predicted that they 

evolved to carry out similar reactions from different ancestral proteins 225. 

 

The study of both P450s and PSRs involved in secondary metabolism shows the 

need for analysis of sequence similarity, gene families, enzymatic reaction types 

and metabolite and transcript levels in the search for putative genes. In the 

search for possible genes involved in galanthamine production, all of the above 

methods will be utilized.  
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4.1.4 Well-studied alkaloid biosynthetic pathways in plants 

4.1.4.1 Benzylisoquinoline alkaloids in Papaver somniferum 

 

Figure 4-3 Biosynthesis of several BIA subtypes (Modified from Desgagne 2012).  

The enzymes that as of 2012 had been isolated or characterized from BIA producing plants are shown in 
blue.  This pathway was used to predict similar steps in the proposed galanthamine pathway. The enzymes 
that have been isolated or characterized are shown in table 4.1.  
 
The benzylisoquinoline alkaloid (BIA) pathway of the opium poppy has been 

studied extensively and therefore the majority of the enzymes, or at least those 

involved in the production of morphine and codeine, have been characterized. 

Figure 4.3 shows the pathway with characterized enzymes in blue. Despite the 

variety seen within benzylisoquinoline alkaloids only a small set of protein 

families are responsible for their biosynthesis, namely cytochrome P450s, S-

adenosylmethionine- dependent O- and N- methyltransferases, four distinct 

groups of NADPH dependent dehydrogenases/reductases, FAD-linked 
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oxidoreductases, certain acetyl-CoA-dependent O-acetyltransferases, 2-

oxoglutate/Fe(II)-dependent dioxygenases and carboxylesterases 8.  
Table 4-1 The enzymes involved in the biosynthesis of codeine, morphine and sanguinarine that 
have been isolated or characterized. 

  
Enzyme 
abbreviation  Full name  Source  

TYDC Tyrosine/dopa decarboxylase 226 

TyrAT Tyrosine aminotransferase 114 

NCS Norcoclaurine synthase 18,204,227 

6OMT 
(S)-norcoclaurine 6-O-
methyltransferase 228,229 

CNMT (S)-Coclaurine N-methyltransferase 230 

NMCH 
(S)-N-methylcoclaurine 3'-
hydroxylase 231,232 

4OMT 
(S)-3'-hydroxy-N-methylcoclaurine 4'-
O-methyltransferase 229 

N7OMT Norreticuline 7-O-methyltransferase 233 

7OMT Reticuline 7-O-methyltransferase 228 

SalSyn Salutaridine synthase 205 

SalR Salutaridine reductase 234 

SalAT Salutaridinol 7-O-acetyltransferase  235,236 

T60DM Thebaine 6-O-demethylase 113 

COR Codeinone reductase 237 

CODM Codeine O-demethylase 237 

BBE Berberine bridge enzyme  238-241 

CheSyn Cheilanthifoline synthase 216,242 

StySyn Stylopine synthase 218,242 

TNMT 
Tetrahydroprotoberberine N-
methyltransferase 243 

P6H Protopine 6-hydroxylase 244 
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4.1.4.2 Capsaicinoids in Capsicum annuum  
The current state of research on this biosynthetic pathway is not as extensive as 

in poppies, but the biosynthetic pathway has been established and is shown in 

figure 4.4.  

 

 
Figure 4-4 Biosynthesis of capsaicin (Modified from Aza Gonzalez et al., 2010)  

 

The enzymes involved in the pathway have not been studied extensively 200. 

Capsaicinoids are derived from two precursors synthesised in separate 

pathways that come together at the point when a molecule of vanillylamine 

(from phenylalanine in a phenylpropanoid pathway) is condensed to a short 

branched unsaturated fatty acid 200. The main enzymes involved in the 

production of capsaicin are shown in table 4.2 with a source for the discovery, 

isolation or prediction of them in Capsicum.  
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Table 4-2 The enzymes involved in the biosynthesis of capsaicin. 

The full name and relevant references related to their study in varieties of pepper is also given.  

 

Study of this pathway may lead to a greater understanding of certain steps 

within the galanthamine pathway since PAL is known to be the first enzyme 

involved in both pathways 4,200. The conversion of phenylalanine to 

protocatechuic acid is carried out via an acidic intermediate and is achieved via 

several steps involving enzymes including PAL (see figure 4.6 for a predicted 

pathway) 4. 3,4-dihydroxybenzaldehyde (protocatechuic aldehyde) is 

structurally similar to vanillin, an intermediate in the phenylpropanoid pathway 

of capsaicin biosynthesis, as is show in figure 4.5.  

 

Figure 4-5 Chemical structure of protocatechuic acid and vanillin intermediates in the production 
of galanthamine and capsaicin. 

The methyl group of the vanillin is highlighted to show that it is simply a methylated protocatechuic acid.  
 

The only difference is a methyl group in vanillin, as highlighted in figure 4.5. A 

predicted pathway for the production of protocatechuic acid could be based on 

Enzyme abbreviation  Full name  Source  

PAL Phenylalanine ammonia lyase 21,245,246 

C4H Cinnamate 4-hydroxylase 21,245,246 

4CL 4-coumaroyl-CoA ligase 247 

HCT Hydroxycinnamoyl transferase 247,248 

C3H Coumaroyl shikimate/quinate 3-hydroxylase 245,246 

CCoAOMT Caffeoyl-CoA 3-O-methyltransferase 247 

HCHL Hydroxycinnamoyl-CoA hydratase/lyase 247,248 

pAMT Putative aminotransferase 21 

BCAT Branched-chain amino acid transferase 
 

KAS Ketoacyl-ACP synthase 21,249 

ACL Acyl carrier protein 249 

FAT Acyl-ACP thioesterase 249 

ACS Acyl-CoA synthetase 250 

CS Capsaicin or capsaicinoid synthase 248,251,252 
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the production of vanillin. Biosynthesis could follow a similar path until the 

production of caffeoyl-CoA, with omission of the COMT/CCoAOMT catalyzed 

step resulting in a non-methylated structure. A prediction of this process is 

shown in figure 4.6.   

 

Figure 4-6 Possible pathway for the production of protocatechuic acid in galanthamine 
biosynthesis. 

The pathway was predicted using the production of vanillin in capsaicin biosynthesis as a guide 200. 
 

4.1.4.3 Rosmarinic acid (RA) in Lamiaceae herbs  
Although rosmarinic acid is not an alkaloid but an ester, its biosynthesis 

involves several of the same steps or enzymes seen in poppies and peppers 
15,200,253. It is synthesized from a product of the phenylpropanoid pathway 

(caffeic acid) and 4-dihydoxyphenyllactic acid (HPLA), derived from tyrosine-
253.  
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Figure 4-7 Biosynthesis of rosmarinic acid in Lamiaceae species (Modified from Xiao 2011)20. 

 
The pathway can be seen in figure 4.7 and the enzymes involved with associated 

references can be found in table 4.3.  Not unlike the capsaicin pathway, RA 

biosynthesis involves the phenylalanine pathway, and offers homologs of the 

same enzymes seen in Capsicum that may or may not share more sequence 

similarity to putative genes in daffodils.  
 
Table 4-3 The enzymes involved in rosmarinic acid biosynthesis. 

Relevant sources are cited that discuss the study of these enzymes with RA biosynthesis.  

 

  

Enzyme abbreviation  Full name  Source  

PAL Phenylalanine ammonia lyase 213 

C4H Cinnamate 4-hydroxylase 254 

4CL 4-coumaroyl-CoA ligase 255 

TAT Tyrosine aminotransferase 253 

HPPR Hydroxyphenylpyruvate reductase 20 

RAS Rosmarinic acid synthase 256 
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4.1.5 Investigating the galanthamine pathway   

 

Figure 4-8 Proposed biosynthetic pathway of galanthamine. 

(Modified from the isoquinoline alkaloid biosynthesis pathway of KEGG (http://www.kegg.jp/kegg-
bin/show_pathway?rn00950+R08441). TYDC and PAL have been shown to catalyze the first steps of the 
reaction prior to this study and so are shown on the pathway in blue 199,257.  The reactions with solid lines 
have been experimentally proven; those with dotted lines are predicted steps. 
 

The pathway (see figure 4.8) is understood to begin with L-phenylalanine and L-

tyrosine and the first steps are known to involve the enzymes PAL and TYDC 

resulting in cinnamic acid and ammonia from the PAL pathway and tyramine 

from the TYDC route 199,257. The cinnamic acid is then degraded to give 

protocatechuic aldehyde (3,4-dihydroxybenzaldehyde) and this, along with 

tyramine, is condensed via a Schiff base condensation reaction to give 

norbelladine, that is methylated to the precursor 4-O-methylnorbelladine 4. 
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From this precursor the variety of Amaryllidaceae alkaloid types are 

synthesized via three methods of C-C phenol coupling. The para-ortho coupling 

results in galanthamine-like alkaloids, ortho-para coupling in the lycorine like 

alkaloids and the para-para coupling results in crinine like alkaloids 258. The 

enzymes that catalyze these reactions are currently unknown.  

  

The aim of this chapter is to bring together the whole transcriptome annotation, 

SNP and transcript level profiles from chapter three with information on 

alkaloid/secondary metabolite production in other, better studied plant 

systems to produce a list of transcripts putatively involved in galanthamine 

biosynthesis in N. pseudonarcissus.  
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4.2 Methodology 

 

Figure 4-9 Workflow of data analysis. 

The steps are described in detail in sections 4.2.1 to 4.2.5.5 only the main steps are shown as a guide.  
 

4.2.1 GO annotation  
A conversion table of UniProt accessions and corresponding GO terms was 

produced using the UniProt retrieval program via the web interface following 

the steps laid out in figures 4.10 to 4.12. The UniProt accessions assigned to the 

three assemblies during the BLASTx annotation pipeline from chapters two and 

three were used as input.  
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Figure 4-10 Screen shot of UniProt web interface for the retrieval program. 

The UniProt IDs assigned to the three assemblies were used as input as a text file using the choose file 
option (red box) and then the retrieve button (purple box) was used to pull out the corresponding entries 
from the database. (www.uniprot.org accessed in 2013). 
 

 

Figure 4-11 The initial results page from the UniProt retrieval program. 

The UniProtKB button (red box) is clicked to give the results table.  
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Figure 4-12 The final output needed to assign GO terms to the transcripts. 

The table shown is the output for the 454 assembly for reference, the output can be customized to show 
different results such as IDs, GO terms, descriptions etc. via the customize button (red box). The table can 
be downloaded in several formats using the download button (red box).  
 

The table was then used as a hash reference in a Perl script to add the GO terms 

to the annotation files from sections 2.4.3 and 3.4.2.15. To compare assemblies, 

GO terms were used to functionally categorize all transcripts on molecular 

function, cellular component and biological process by browsing the results by 

gene ontology.  

 

4.2.2 Creation of the GOI (gene of interest) database from genes involved 
in secondary metabolite production in selected medicinally 
important plants to search for orthologs in daffodils  

This was carried out following a scientific literature analysis (section 4.13 and 

4.14). In addition to the plant systems discussed in section 4.14 it was decided 

to also examine Arabidopsis thaliana, as although it does not synthesize 

alkaloids, it is the model organism for plant study and was used for the 

annotation of the Narcissus pseudonarcissus var. Carlton reference. The 

literature search resulted in fourteen enzyme types linked to alkaloid 

biosynthesis for further investigation (see table 4.4). The FASTA sequences of 
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these enzyme types from 18 plants were collected from the UniProt database 

(www.UniProt.org). A total of 159 fasta sequences were extracted from UniProt 

(see appendix section 6.6) and used to produce a BLAST database. 
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Table 4-4 The fourteen enzymes of interest used in the GOI database. 

Pathways these enzymes have been associated with and plant sources. 

Enzyme  Pathways Plants with similar or exact enzyme References  
Tyrosine aminotransferase 
(TyrAT) 

Ubiquinone and other terpenoid-quinone 
biosynthesis, cysteine and methionine 
metabolism, tyrosine metabolism, 
phenylalanine metabolism, phenylalanine, 
tyrosine and tryptophan biosynthesis and 
biosynthesis of amino acids.  

Papaver somniferum, Arabidopsis, 
Amaranthus caudatus, Chenopodium quinoa, 
Anchusa offinalis, Coleus blumei, Salvia 
miltiorrhiza and Capsicum annuum. 

114,253,259-261 

Tyrosine decarboxylase 
(TDC) 

Tyrosine metabolism, Isoquinoline 
alkaloid biosynthesis, metabolic pathways 
and secondary metabolite biosynthesis. 

Arabidopsis thaliana, Papaver somniferum. 262-265 

Norcoclaurine synthase 
(NCS) 

Isoquinoline alkaloid biosynthesis, 
metabolic pathways, secondary 
metabolite biosynthesis.  

Arabidopsis thaliana, Papaver somniferum, 
Coptis japonica and Thalictrum flavum.  

18,203,266-270 

6-O-methyltransferase 
(6OMT) 

Isoquinoline alkaloid biosynthesis, 
metabolic pathways and secondary 
metabolite biosynthesis.  

Papaver somniferum, Thalictrum flavum, 
Coptis japonica. 

228,229,271 

Coclaurine N-
methyltransferase (CNMT) 

Isoquinoline alkaloid biosynthesis, 
metabolic pathways and secondary 
metabolite biosynthesis. 

Papaver somniferum, Coptis japonica, 
Thalictrum flavum.  

121,272,273 

(S)-N-methylcoclaurine-3’-
hydroxylase (NMCH) 
(CYP80B) 

Isoquinoline alkaloid biosynthesis, 
metabolic pathways and secondary 
metabolite biosynthesis. 

Papaver somniferum, Eschscholzia 
californica, Coptis chinensis, Papaver 
nudicaule, Papaver bracteatum,  

217,231,274-276 

4’-O-methyltransferase 
(4OMT) 

Isoquinoline alkaloid biosynthesis, 
metabolic pathways and secondary 
metabolite biosynthesis. 

Papaver somniferum, Eschscholzia 
californica, Coptis japonica. 

277,278 

Hydroxycinnamoyl-CoA: 
Tyramine N-
(hydroxycinnamoyl)transf
erase (THT) 

Hydroxycinnamoyl-amine biosynthesis, 
phenylpropanoid biosynthesis, flavonoid 
biosynthesis and secondary metabolite 
biosynthesis.  

Papaver somniferum, Nicotiana tabacum, 
Solanum tuberosum, Capsicun annuum, 
Arabidopsis thaliana.  

279-281 

Phenylalanine ammonia-
lyase (PAL) 

Phenylalanine metabolism, 
phenylpropanoid biosynthesis, metabolic 
pathways, secondary metabolite 
biosynthesis.  

Arabidopsis thaliana, Papaver somniferum 
and Capsicum annuum.  

247,260,282,283 

4-hydroxyphenylpyruvate 
reductase (HPPR) 

Ubiquinone and other terpenoid-quinone 
biosynthesis, tyrosine metabolism, 
phenylalanine metabolism and metabolic 

Papaver somniferum and Coleus blumei. 114,284 
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pathways. 
Cinnamic acid 4-
hydroxylase (C4H) 

Phenylalanine metabolism, 
phenylpropanoid biosynthesis, flavonoid 
biosynthesis, metabolic pathways and 
biosynthesis of secondary metabolites. 

Arabidopsis thaliana, Capsicum annuum and 
Salvia miltiorrhiza. 

20,254,285 

4-coumarate CoA ligase 
(4CL) 

Ubiquinone and other terpenoid-quinone 
biosynthesis, phenylalanine metabolism, 
phenylpropanoid biosynthesis, metabolic 
pathways and secondary metabolite 
biosynthesis.  

Arabidopsis thaliana and Capsicum annuum. 247,286 

Chalcone synthase (CHS)  Flavonoid and secondary metabolite 
biosynthesis. 

Arabidopsis thaliana, Capsicum annuum, 
Coleus blumei. 

287-289 

Catechol-O-
methyltransferase (COMT) 

Steroid hormone biosynthesis, tyrosine 
metabolism, betalain biosynthesis, 
metabolic pathways.  

Capsicum annuum, Papaver somniferum, 
Arabidopsis thaliana and numerous 
Lamiaceae herbs (Ocimum basillicum, Salvia 
miltiorrhiza and Mentha piperita). 

228,265,290 
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4.2.3 BLASTx search against GOI database for the 454 and post TE 
removal Trinity assemblies for putative transcripts involved in 
alkaloid production  

The fasta files from all three assemblies were used in a BLASTX search against 

the GOI database and only the top hit for each transcript was carried through to 

the next step of the analysis. The BLAST search was carried out using the same 

settings as those used in chapter three, with the output set to tabulated and one 

hit per transcript.  

 

4.2.4 GO enrichment studies for the GOI predicted transcripts  

4.2.4.1 DAVID prediction of enrichment, EC and KEGG annotation 
DAVID v6.7 was used with the 454 and both Trinity (Original and Post-TE 

removal) assemblies to look for enrichment within the genes predicted to be 

daffodil orthologs of those in the GOI database (section 4.2.2). The functional 

annotation tool within DAVID was used via its web interface (figure 4.13). This 

tool requires UniProt accessions and the BLAST results from the UniProt 

annotation (2.3.4.5 and 3.4.2.15) were used as background lists for both 

assemblies (figure 4.13). The transcripts that matched those in the GOI database 

were used as the gene list for the analysis. Within the annotation summary 

results the default settings were used, with addition of the EC number.  
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Figure 4-13 A screen shot of the DAVID web interface for the functional annotation tool. 

The background is set as UniProt accessions from the UniProt BLAST results from the annotation step and 
the gene list is UniProt accessions from the predicted gene BLAST results. 
(http://david.abcc.ncifcrf.gov/summary.jsp) 
 

From this stage onwards, only results from mapping the post TE removal 

Illumina reads to both the 454 and Post-TE removal assemblies were used for 

further analysis.  

 

4.2.5 The determination of non-synonymous SNPS within the putative 
transcripts- Prediction of ORF and non-synonymous SNPs  

To identify SNPs within the predicted transcripts, the whole transcriptome SNP 

profiling results from chapter three (section 3.4.2.13) were cross-referenced 

with the contigs that resulted in a BLAST hit against the GOI database. Using the 

BLASTX alignment output format (-m 0) against the GOI database it is possible 

to predict the reading frame for the section of the transcript that hits the protein 

sequence of the gene of interest. Such polymorphisms could then be examined 
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to determine whether the SNP was non-synonymous or synonymous.  Any 

contigs predicted to have non-synonymous SNPs were then taken forward for 

Sanger sequencing validation (section 4.2.6.4).  
 

4.2.6 The determination of putative transcripts with significant 
differences in transcript levels between daffodil varieties 

4.2.6.1 BitSeq  
The whole transcriptome transcript level profiling results from chapter three 

were cross-referenced with the transcript IDs that produced a hit against the 

GOI database. Any transcripts that showed significant transcript level 

differences (PPLR of ≤0.05 ≥ 0.95) were then taken forward to the validation 

stage of Sanger sequencing and qPCR (sections 4.2.6.4 and 4.2.6.5).  

 

4.2.6.2 Confirmation of transcripts via RT-PCR and transcript level 
differences via RT-qPCR 

Template cDNA was prepared from three different basal plates for each variety; 

the RNA was extracted as described in section 3.3.1.1. The RNA was converted 

to cDNA using the Qiagen Quantitech Reverse Transcription Kit following the 

manufacturer’s instructions and then diluted to 100µl (x5 dilution). Transcript 

specific primers were designed according to the Carlton assembled reads using 

Primer3. (http://primer3.ut.ee) (See section 6.7 of appendix). 

4.2.6.3 Confirmation of predicted transcripts  
PCR was carried out on one biological sample (3 technical replicates) per 

variety using Bioline MyTaq ™ Red Mix in 10μl reactions according to the 

manufacturer’s protocol. The PCR program was as follows: 94°C for 1 minute 

followed by 35 cycles of amplification (20s denaturing at 94°C, 20s at annealing 

temperature, and 30s extension at 72°C) and a final extension for 5 minutes at 

72°C.   

Initial results showed two or more bands for some transcripts and so nested 

primers were designed (see section 6.7 of appendix) and used under the same 

PCR conditions as above. 

Some primer pairs (see section 6.7 of appendix) had dissimilar annealing 

temperatures and so touchdown PCR was carried out as follows: 95°C for 3 
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minutes, 95°C for 30s followed by 9 cycles starting at 70°C for 45s, annealing 

temperature for 60s then 70°C for 45s. In the first cycle the annealing 

temperature was 70°C, and in each following cycle the annealing temperature 

was lowered by 2°C until a final cycle at 52°C. After this there were 25 cycles of 

amplification (95°C for 30s, 50°C for 45s and 72°C for 1 minute) followed by 

72°C for 5 minutes. The PCR products were separated on 1% agarose gels to 

confirm size and those that were predicted to have non-synonymous SNPs were 

sent for Sanger sequencing confirmation.  

4.2.6.4 Sanger sequencing to confirm SNPs  
DNA amplified from selected transcripts with predicted non-synonymous SNPs 

was sent for Sanger sequencing. Each PCR product was used for one sequencing 

reaction using the forward primer and one using the reverse. The PCR product 

clean up and sequencing was carried out by the Source Bioscience Life Sciences 

Sanger Sequencing services. 

 (http://www.lifesciences.sourcebioscience.com/genomic-services/sanger-

sequencing-service/). 

 

 

4.2.6.5 Real time qPCR of those transcripts predicted to have significant 
transcript level differences  

In order to quantify the transcript level differences further, RT-qPCR was 

carried out, using actin as a control as it showed no significant difference in 

BitSeq analysis between varieties. The relative actin response for each variety 

was used to standardize the transcript level differences of the transcripts of 

interest. For each transcript, three biological and three technical replicates were 

measured for each replication a negative control from the cDNA preparation 

without the reverse transcriptase was used as well as using a control with 

nuclease free water instead of the template cDNA. These controls were used to 

check for genomic DNA contamination. (See section 6.7 in appendix for plate 

layout).  

The RT-qPCR was carried out using the Bioline SensiFast™ SYBR® Hi-ROX Kit 

and an Agilent Technologies Stratagene MX3005P PCR machine. The conditions 
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were as follows: 95°C for 2 minutes followed by 40 cycles of 95°C for 5 seconds, 

annealing temperature for 22 seconds and 72°C for 15 seconds.  

 

To work out a fold change (relative to actin) the following is determined for 

each biological rep: 

         

Where S= average sample CT (threshold cycle) from three technical reps and A= 

average actin CT from three technical reps.  

The average of the three biological reps is then worked out and used to calculate 

fold change:  

            
                

  

             
  

 

Where AC1, AC2 and AC3 are the three biological replicates for Andrew’s choice 

and C1, C2 and C3 are the three biological replicates for Carlton. 
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4.3 Results 
4.3.1 Whole transcriptome functional annotation 

4.3.1.1 Functional categorization of the 454 assembly 
The GO annotation via UniProt resulted in 4147 transcripts being assigned to 

molecular function, with the top three categories being binding (73%), catalytic 

activity (62%) and transporter activity (8%). A total of 4118 were assigned a 

cellular component category with the top three being cell (92%), cell part 

(92%) and organelle (72%). Finally, 4421 were assigned a biological process 

category and the top three categories were metabolic processes (81%), cellular 

processes (80%) and single-organism processes (61%). The percentage given is 

the percentage of the total assigned IDs linked to this category. An overview of 

the assignments of the three annotation modules can be seen in figures 4.14, 

4.17 and 4.20.  

4.3.1.2 Functional categorization of the Original Trinity assembly  
The GO annotation via UniProt resulted in 9965 transcripts being assigned to 

molecular function, with the top three categories being binding (74%), catalytic 

activity (63%) and transporter activity (7%). A total of 10066 were assigned a 

cellular component category with the top three being cell or cell part (91%), 

organelle (71%) and organelle part (39%). Finally, 10797 were assigned a 

biological process category and the top three categories were cellular processes 

(81%), metabolic processes (80%) and single-organism processes (61%). The 

breakdown of the three annotation modules can be seen in figures 4.15, 4.18 

and 4.21.  

4.3.1.3 Functional categorization of the Post-TE removal Trinity assembly  
The GO annotation via UniProt resulted in 10023 transcripts being assigned to 

molecular function, with the top three categories being binding (74%), catalytic 

activity (63%) and transporter activity (7%). A total of 10098 were assigned to 

a cellular component category with the top three being cell or cell part (91%), 

organelle (71%) and organelle part (39%). Finally 10845 were assigned a 

biological process category, the top three categories were cellular processes 

(81%), metabolic processes (80%) and single-organism processes (61%). The 
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breakdown of the three annotation modules can be seen in figures 4.16, 4.19 

and 4.22.   
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Figure 4-14 Molecular function assignment for the UniProt GO analysis of the 454 assembly. 

 
 

 
Figure 4-15 Molecular function assignment for the UniProt GO analysis for the Original Trinity 
assembly. 

 
Figure 4-16 Molecular function assignment for the UniProt GO analysis of the Post-TE removal 
Trinity assembly. 
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Figure 4-17 Cellular Component assignment from the UniProt GO categorization for the 454 
assembly. 

 
Figure 4-18 Cellular component assignment from the UniProt GO analysis for the Original Trinity 
assembly. 

 

 
Figure 4-19 Cellular Component assignment for the UniProt GO analysis of the Post-TE removal 
Trinity Assembly. 
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Figure 4-20 Biological Process assignment from the UniProt GO analysis for the 454 assembly. 

 

 
Figure 4-21 Biological Process assignment for the UniProt GO analysis for the Original Trinity 
assembly. 

 
Figure 4-22 Biological Process assignment for the UniProt GO analysis of the Post-TE removal 
assembly. 
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4.3.1.4 The assignment of GO terms to transcripts 
The UniProt GO annotation resulted in 5383 transcripts (68% of the 7729 

transcripts that were annotated with UniProt IDs (section 4.2.1)) being assigned 

GO IDs.  A larger number of transcripts (12377) from the Original Trinity 

assembly with UniProt IDs were assigned GO annotation. However, they 

comprised a smaller proportion of the total number of transcripts in this 

assembly (29% of the 42335 assigned UniProt IDs) than for the 454 assembly. A 

slightly higher number (15808) and proportion (38%) of the Post-TE removal 

Trinity assembly were assigned GO terms. Of these 9556 matched transcripts 

from the Original assembly and 6252 were new transcripts annotated after the 

TE removal.  The first five entries, arranged in random order, in each of these 

annotation lists are shown in tables 4.5-4.7 the whole data sets can be viewed 

on the appendix disc.   
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Table 4-5 GO annotation results for the 454 assembly. 

 

Table 4-6 The GO annotation results for the Original Trinity assembly. 

 
Table 4-7 The GO annotation for the Post-TE removal Trinity assembly. 

 
 

Uniprot ID  GO ID Daffodil transcript ID  

Q5PQL3 

GO:0030660; GO:0042500; GO:0010008; GO:0071458; 
GO:0071556; GO:0005765; GO:0006509; GO:0031293; 
GO:0005886; GO:0042803; GO:0050776  

HDA57HA01ANGJN 
HDA57HA01ARE2O 

Q7Q161 GO:0050662; GO:0006098; GO:0004616  Contig03905 

Q9JKB1 

GO:0007628; GO:0032869; GO:0005737; GO:0042755; 
GO:0008233; GO:0045600; GO:0030163; GO:0016579; 
GO:0060041; GO:0006511; GO:0004843   HDA57HA01A0EC7 

Q6DEU9 

GO:0016593; GO:0001711; GO:0080182; GO:0045638; 
GO:0000122; GO:0051571; GO: 2001162; GO:0032968; 
GO:0045944; GO:0019827; GO:0006351; GO:0035327  HDA57HA01A2Q1V 

O64629  

GO:0005524; GO:0000775; GO:0043987; GO:0043988; 
GO:0035175; GO:0044022; GO:0016572; GO:0005634; 
GO:0048471; GO:0005819 HDA57HA01BLCDO 

Uniprot Id  GO ID  Daffodil Transcript ID 

Q9LZB8 

GO:0005524; GO:0006200; GO:0042626; GO:0010541; 
GO:0010315; GO:0010329; GO:0010540; GO:0009507; 
GO:0009941; GO:0031969; GO:0016021; GO:0005886; 
GO:0055085; GO:0005215  

Daff105662      Daff107641      
Daff46405       Daff46406 

Q9JKB1 

GO:0007628; GO:0032869; GO:0005737; GO:0042755; 
GO:0008233; GO:0045600; GO:0030163; GO:0016579; 
GO:0060041; GO:0006511; GO:0004843 Daff106157 

Q9CK84  GO:0006354; GO:0006353; GO:0032784; GO:0031564 Daff139665 

O64629 

GO:0005524; GO:0000775; GO:0043987; GO:0043988; 
GO:0035175; GO:0044022; GO:0016572; GO:0005634; 
GO:0048471; GO:0005819 Daff109922      Daff131772 

Q94BM7 
GO:0005524; GO:0080008; GO:0042802; GO:0005634; 
GO:0005515; GO:0004672; GO:0009585 

Daff113015      Daff117266      
Daff23517       Daff48165       
Daff48166 

Uniprot ID GO ID Daffodil transcript ID 

Q5PQL3 

GO:0030660; GO:0042500; GO:0010008; GO:0071458; 
GO:0071556; GO:0005765; GO:0006509; GO:0031293; 
GO:0005886; GO:0042803; GO:0050776 Daff93414 

Q9LZB8 

GO:0005524; GO:0006200; GO:0042626; GO:0010541; 
GO:0010315; GO:0010329; GO:0010540; GO:0009507; 
GO:0009941; GO:0031969; GO:0016021; GO:0005886; 
GO:0055085; GO:0005215 

Daff105662      Daff107641      
Daff46405       Daff46406 

Q9JKB1 

 GO:0007628; GO:0032869; GO:0005737; GO:0042755; 
GO:0008233; GO:0045600; GO:0030163; GO:0016579; 
GO:0060041; GO:0006511; GO:0004843 Daff106157 

Q9CK84 GO:0006354; GO:0006353; GO:0032784; GO:0031564 Daff139665 

Q1GFB5 GO:0005524; GO:0050567; GO:0006412  Daff58758 
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4.3.2 BLASTx search against the GOI database for the 454 and pre/Post-
TE removal Trinity assembled transcripts for putative transcripts 
involved in alkaloid production  

 
The total number of transcripts predicted to be orthologs of known secondary 

metabolite biosynthesis genes is 111 for the 454 data and 461 for the Original 

Trinity assembly. A similar number (448) were predicted as orthologs in the 

Post-TE removal Trinity assembly of which 281 matched to the pre–TE removal 

assembly and 166 were previously unseen transcripts.  

4.3.3 Pathway analysis: the use of DAVID to predict enrichment from EC 
and KEGG annotation 

4.3.3.1 DAVID analysis for gene enrichment 
All three assemblies resulted in very similar DAVID annotation clustering and 

an overview showing the enrichment scores and most common ID terms are 

given in tables 4.8, 4.9 and 4.10. The 454 assembly had considerably fewer 

clusters (14 compared to 27 in the Trinity assemblies) but this is to be expected 

with its lower number of transcripts (77 submitted as the GOI list compared to 

200 and 201 for the pre- and Post-TE Trinity assemblies). The clustering tables 

for the full functional annotation for all three assemblies can be seen on the 

appendix disc. All three assemblies show the highest enrichment score for a 

cluster of CYP450s, specifically those linked to oxidoreductase. In all three 

assemblies this term has the highest percentage of genes in the gene of interest 

list, ~50% for each assembly (454 54%, Original 51% and Post-TE 48.7%) and a 

fold enrichment score of ~8 for each assembly (454 7.4, Original 8 and post TE 

8.5).    

 

The other clusters are also similar for all three assemblies. Interesting, a cluster 

linked to PAL (an enzyme known to be involved in galanthamine production) is 

present in all three with a significant enrichment score (454 2.71, Original 6.08, 

Post-TE 6.1). The term “phenylalanine ammonia-lyase” is linked to 6% of the 

total number of genes but has a FE of 65 for the 454 assembly, where as for both 
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the Original and Post-TE removal assemblies it contains 3.8% of the total 

number of genes with a FE of 67 for the pre- and 71 for the Post-TE assembly.  

Finally, in all three assemblies the term “secondary metabolism” is associated 

with both a high percentage of total genes and a significant fold enrichment 

score (454 23 % and 9.58 FE, Original 25% and 12 FE and Post-TE 25% and 12 

FE).  

Support for these assignments must also come from the EC, KEGG pathways and 

the relative representation of the genes showing high scores.  These will be 

brought together in the Discussion (section 4.4.3).  

 

 
 
Table 4-08 Summary of DAVID analysis for 454 assembly. 

The enrichment score of each cluster is shown along with the key GO terms. An enrichment score is 
considered above 1.3. The full functional clustering can be seen on appendix disc. 

 

Table 4-09 Summary of DAVID results for the Original Trinity assembly. 

The enrichment score of each cluster is shown along with the key GO terms. An enrichment score is 
considered above 1.3.  The full functional clustering can be seen on the appendix disc.  

Cluster Number  Enrichment score Key terms 
1 14.74 Cytochrome P450, oxidation reduction 

2 8.79 Oxidoreductase 

3 5.29 Methyltransferase 

4 5.04 

Secondary metabolism process, 
phenylpropanoid metabolism and biosynthesis, 
aromatic compound biosynthesis 

5 4.22 Aminotransferase 

6 2.91 Alkene biosynthesis 

7 2.72 Phenylpropanoid metabolism 

8 2.28 
Lipid biosynthesis, organic/carbonic/fatty acid 
synthesis 

9 1.86 
Isopropenoid, terpenoid, diterpenoid 
metabolism 

10 1.65 Ligase, ATP binding, nucleotide binding 

11 1.58 Co-enzyme binding, nucleotide binding 

12 1.3 Reproductive development 

13 0.41 Response to stimuli 

14 0.11 Chloroplast 

Cluster 
Number  

Enrichment 
score Key terms 

1 38.82 Cytochrome P450, oxidoreductase, ion-binding 
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Table 4-10 Summary of DAVID analysis for the Post-TE Trinity assembly. 

2 28.8 
Secondary metabolism, phenylpropanoid metabolism and biosynthesis, 
amino acid biosynthesis 

3 15.1 Methyltransferase 

4 14.89 Oxidoreductase 

5 14.89 Oxygen binding 

6 11.03 Vitamin binding, aminotransferase 

7 10.94 Fatty/organic/carboxylic/lipid acid metabolism 

8 7.75 Methyltransferase 

9 6.72 Fatty/lipid acid ligase 

10 6.1 Phenylpropanoid metabolism 

11 5.44 Co-A ligase, lipid/secondary metabolite metabolism 

12 5.06 Ethylene biosynthesis/metabolism, reproductive development 

13 3.84 Iso/di/terpenoid metabolism/biosynthesis 

14 3.19 Glycosylate reductase activity, NAD/NADH binding, co-enzyme binding 

15 2.89 Trans-cinnamate-4-monooxygenase activity 

16 2.44 Microbody/peroxisome 

17 2.24 Acyltransferase 

18 1.85 Hormone biosynthesis/metabolism 

19 1.79 Carboxylase activity 

20 1.58 Vesicular, membrane, cell fraction 

21 1.02 Homeostatic process 

22 0.73 Fatty acid metabolism 

23 0.51 Response to stimuli 

24 0.43 Development, growth 

25 0.09 Amino acid biosynthesis, chloroplast 

26 0.02 Response to stimuli 

27 0.002 Lumen 

Cluster Number  Enrichment score Key terms 

1 35.13 Cytochrome P450, oxidoreductase, ion-binding 

2 24.57 
Secondary metabolism, phenylpropanoid metabolism and 
biosynthesis, amino acid biosynthesis 

3 15.27 Methyltransferase 

4 14.85 Oxidoreductase 

5 10.25 Fatty/organic/carboxylic/lipid acid metabolism 

6 9.57 Oxygen binding 

7 8.04 Vitamin binding, aminotransferase, co-factor binding 

8 7.7 Ligase activity, co-enzyme activity 

9 7.56 Lignin biosynthesis/metabolism, O-methyltransferase 

10 6.08 
L-phenylalanine metabolism, aromatic compound catabolic 
process, aromatic amino acid family metabolism 
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The enrichment score of each cluster is shown along with the key GO. An enrichment score is considered 
above 1.3. The full functional clustering results are on appendix disc. 

11 5.07 Alkene biosynthesis, reproductive process 

12 4.74 Co-A ligase activity, ATP/nucleotide binding 

13 3.91 Iso/di/terpenoid metabolism/biosynthesis 

14 3.13 
Glycosylate reductase activity, NAD/NADH binding, co-enzyme 
binding 

15 2.94 Trans-cinnamate-4-monooxygenase activity 

16 2.51 Microbody/peroxisome 

17 2.28 Acyltransferase 

18 1.71 Carboxylase activity 

19 1.14 Microsome, vesicular, cell fraction 

20 1.06 Hormone biosynthesis 

21 1.04 Homeostatic process 

22 0.72 Mitochondrion 

23 0.55 Response to stimuli 

24 0.42 Development, growth 

25 0.1 Amino acid biosynthesis, chloroplast 

26 0.02 Response to stimuli 

27 0.002 Lumen 
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4.3.3.2 KEGG pathway annotation of GOI daffodil transcripts  
Since the KEGG pathway data is used within the DAVID analysis, the annotation 

terms will mirror those in the enrichment score annotation. These are 

summarized in tables 4.14-4.16 below. Similar pathways from the GOI list will 

be represented in all three assemblies. The 454 assembly contained transcripts 

linked to phenylalanine and tyrosine metabolism (both 2) and also to the 

biosynthesis of plant hormones (4). The Original assembly predicted one 

transcript associated with the pathway “isoquinoline alkaloid biosynthesis” 

(DAVID ID 3291284, UniProt ID Q7XHL3, tyrosine decarboxylase 1). It also 

showed the highest number of transcripts linked to plant hormone biosynthesis 

(9) and also the two similar terms “biosynthesis of phenylpropanoids” (6) and 

“phenylpropanoid biosynthesis” (4). These differ only in that the biosynthesis of 

phenylpropanoids includes the DAVID IDs 3497234 (UniProt ID Q96330, 

flavonol synthase from Arabidopsis) and 2941875 (UniProt ID P51090 Vitis 

vinifera Chalcone synthase) in addition to the four located within 

phenylpropanoid biosynthesis. This will be discussed further in section 4.4.3. An 

unexpected result is the association of a transcript to pathways linked to cancer, 

“pathways in cancer” and “chronic myeloid leukemia” (DAVID ID 588768, 

UniProt ID Q0VCQ1, C-terminal binding protein in Bos taurus) which will also be 

discussed in section 4.4.3.  

The Post-TE assembly showed very similar results to the Original assembly.  
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Table 4-8 Summary of KEGG results for the 454 data. 

Pathways from different species with the same pathway name were grouped together.  
 

 

  

KEGG pathway   UniProt IDs 
Number of unique IDs 

assigned to it 

Alpha-Linolenic acid metabolism Q10S72 1 

Fatty acid metabolism Q9T0A0 1 

Alanine, aspartate and glutamate metabolism Q56232 1 

Steroid biosynthesis Q6ZIX2 1 

Limonene and pinene degradation Q9FG65 1 

Biosynthesis of terpenoids and steroids 

Q6ZIX2  
Q42569  
Q9C5Y2 3 

Glycine, serine and threonine metabolism O04130 1 

Diterpenoid biosynthesis 
Q9C5Y2 
Q9XFR9 2 

Glyoxylate and dicarboxylate metabolism Q9SXP2 1 

Lysine biosynthesis Q93ZN9 1 

Flavone and flavonol biosynthesis Q9FK25 1 

Ubiquinone and other terpenoid-quinone biosynthesis 
Q9ZSK1 
P04694 2 

Arachidonic acid metabolism Q2KIG5 1 

Biosynthesis of plant hormones  

Q10S72  
Q6ZIX2  
Q42569 
Q9C5Y2 4 

Phenylalanine metabolism 
Q56232 
P04694 2 

Cysteine and methionine metabolism 
Q56232 
P04694 2 

Stilbenoid, diarylheptanoid and gingerol biosynthesis Q9FG65 1 

Phenylalanine, tyrosine and tryptophan biosynthesis 
Q56232 
P04694 2 

Methane metabolism Q9SXP2 1 

Novobiocin biosynthesis Q56232 1 

Biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid Q93ZN9 1 

Arginine and proline metabolism Q56232 1 

Endocytosis Q93ZN9 1 

Tyrosine metabolism 
Q56232 
P04694 2 
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Table 4-9 KEGG summary for the Original Trinity assembly. 

Those pathways with the same name but from different species were grouped together.  
 

KEGG pathway  IDs 
Number of unique 

IDs assigned to it 

Biosynthesis of alkaloids derived from shikimate pathway 

3510236 
3491601 
3264871 
3291284 4 

Biosynthesis of alkaloids derived from ornithine, lysine and nicotinic acid 
3512745 
3491601 2 

Biosynthesis of phenylpropanoids 

3510236 
3511325 
3497234 
3491601 
3264871 
2941875 6 

Flavone and flavonol biosynthesis 3284426 1 
Histidine metabolism 3291284 1 

Tyrosine metabolism 

4000758 
3291284 

384445 3 

Phenylalanine metabolism 

4000758 
3491601 
3291284 

384445 4 

Tryptophan metabolism 
3516231 
3291284 2 

Isoquinoline alkaloid biosynthesis 3291284 1 

Fatty acid metabolism 

3491824 
817215 

3503787 
3489853 
3493055 5 

PPAR signalling pathway 817215 1 

Adipocytokine signalling pathway 817215 1 

Glycolysis / Gluconeogenesis 
5636578 

825753  2 

Pyruvate metabolism 
5636578 

825753  2 

Propanoate metabolism 
5636578 

825753  2 

Flavonoid biosynthesis 
3497234 
2941875 2 

Circadian rhythm 2941875 1 

Arachidonic acid metabolism 
615542    
597566 2 

Ubiquinone and other terpenoid-quinone biosynthesis 

3510236 
3264871 

384445 3 

Cysteine and methionine metabolism 

3274554 
4000758 

384445 3 

Phenylalanine, tyrosine and tryptophan biosynthesis 
4000758 

384445 2 

Biosynthesis of plant hormones 

3274554 
3266521 
3490600 
3277060 
3511307 
3286309 
3499037 
3509334 
3491601 9 
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Phenylpropanoid biosynthesis 

3510236 
3511325 
3491601 
3264871 4 

Alpha-Linolenic acid metabolism 
3266521 
3490600 2 

Brassinosteroid biosynthesis 

3499627 
3271088 
3501700 
3286309  4 

Limonene and pinene degradation 

3507363 
3496243  
3500475  
3506487  
3503663  
3502969  
3494348  
3497859  8 

Stilbenoid, diarylheptanoid and gingerol biosynthesis 

3507363 
3496243  
3500475  
3506487  
3503663  
3502969  
3494348  
3497859  8 

Carotenoid biosynthesis 

3284113 
3286008 
3493449 3 

Alanine, aspartate and glutamate metabolism 
5636578 
4000758  2 

Arginine and proline metabolism 4000758 1 

Glycine, serine and threonine metabolism 
3948583 
3498205 2 

Diterpenoid biosynthesis 

3499037 
3509334 
3493541 
3517679  4 

Biosynthesis of terpenoids and steroids 

3511307 
3499037 
3509334 3 

Glyoxylate and dicarboxylate metabolism 
3218943 
3929207 2 

Lysine biosynthesis 3512745 1 

Endocytosis 3512745 1 

Nitrogen metabolism 3491601 1 

Tropane, piperidine and pyridine alkaloid biosynthesis 3491601 1 

Novobiocin biosynthesis 4000758 1 

Wnt signaling pathway 588768 1 

Notch signaling pathway 588768 1 

Pathways in cancer 588768 1 

Chronic myeloid leukaemia 588768 1 

Steroid biosynthesis 3277060 1 

Biosynthesis of terpenoids and steroids 
3277060 
3286309  2 
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Table 4-10 KEGG summary for the Post-TE removal assembly. 

KEGG pathways that share the same name but are linked to different organisms are grouped together.  
 

KEGG pathway   IDs 
Number of unique 

IDs assigned to it 

Alanine, aspartate and glutamate metabolism 4000758 1 

Cysteine and methionine metabolism 
3274554 4000758 
384445 3 

Arginine and proline metabolism 4000758  1 

Phenylalanine metabolism 
4000758 3491601 
3291284 384445  4 

Phenylalanine, tyrosine and tryptophan biosynthesis 4000758 384445 2 

Novobiocin biosynthesis 4000758 1 

Glycine, serine and threonine metabolism 3948583 3498205  2 

Fatty acid metabolism 

3491824 817215 
3503787 3489853 
3499627 3493055 6 

Ubiquinone and other terpenoid-quinone biosynthesis 
3510236 3264871 
384445 3 

Lysine biosynthesis 3512745 1 

Tryptophan metabolism 3291284 3516231  2 

Alpha-Linolenic acid metabolism 3266521 3490600   2 

Limonene and pinene degradation 

3507363 3496243 
3500475 3506487 
3503663 3502969 
3494348 3497859 8 

Diterpenoid biosynthesis 
3499037 3493541 
3517679 3509334  4 

Brassinosteroid biosynthesis 
3499627 3271088 
3501700 3286309  4 

Carotenoid biosynthesis 
3284113 3286008 
3493449 3 

Nitrogen metabolism 3491601 1 

Phenylpropanoid biosynthesis 
3510236 3511325 
3491601 3264871 4 

Flavonoid biosynthesis 3497234 2941875  2 

Stilbenoid, diarylheptanoid and gingerol biosynthesis 

3507363 3496243 
3500475 3506487 
3503663 3502969 
3494348 3497859 8 

Tropane, piperidine and pyridine alkaloid biosynthesis 3491601 1 

Biosynthesis of phenylpropanoids 

3510236 3511325 
3497234 3491601 
3264871 2941875 6 

Biosynthesis of terpenoids and steroids 

3277060 3271088 
3286309 3499037 
3509334 5 

Biosynthesis of alkaloids derived from shikimate pathway 
3510236 3491601 
3264871 3291284 4 

Biosynthesis of alkaloids derived from ornithine, lysine and nicotinic 
acid 3512745 3491601  2 

Biosynthesis of plant hormones 

  3274554 3266521 
3490600 3277060 
3286309 3271088 
3499037 3491601 
3509334 9 

Endocytosis 3512745 1 

Wnt signaling pathway 588768 1 

Notch signaling pathway 588768 1 
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4.3.3.3 EC annotation of GOI daffodil transcripts  
As well as the KEGG results, the EC assignments were also used within the 

DAVID enrichment analysis and so reflect the same results. The most 

represented enzyme type is cytochrome P450s in all three assemblies (11 

DAVID IDs within the 454 and 28 in the post and pre-TE), the most abundant 

being from the CYP71 clan. Further analysis showed that three DAVID IDs 

linked to Catharanthus roseus were also CYP450s (UniProt IDs Q05047 

secologanin synthase, P98183 tabersonine 16-hydroxylase and P48522 Trans-

cinnamate-4-monooxygenase). Enzymes already linked to galanthamine 

biosynthesis are represented in all three assemblies. They include PAL (3 

DAVID IDs for the 454, 6 for both Original and Post-TE) and a tyrosine 

decarboxylase can be seen in both Original (2 IDs) and Post-TE (3 IDs) Trinity 

assemblies but not the 454.  Finally, a transcript linked to NCS can be seen in all 

three assemblies.   

 

 

Pathways in cancer 588768 1 

Chronic myeloid leukaemia 588768 1 

Glycolysis / Gluconeogenesis 5636578 825753 2 

Pyruvate metabolism 5636578 825753  2 

Propanoate metabolism 5636578 825753  2 

PPAR signaling pathway 817215 1 

Adipocytokine signaling pathway 817215 1 

Steroid biosynthesis 3277060  1 

Histidine metabolism 3291284 1 

Flavone and flavonol biosynthesis 3284426 1 

Isoquinoline alkaloid biosynthesis 3291284 1 

Glyoxylate and dicarboxylate metabolism 3218943 3929207  2 

Tyrosine metabolism 
4000758 3291284 
384445 3 

Arachidonic acid metabolism 615542 597566 2 

Circadian rhythm 2941875  1 
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4.3.4 The determination of non-synonymous SNPs within the putative 
GOI transcripts - Prediction of ORFs and non-synonymous SNPs, 
confirmation of transcripts via PCR and Sanger sequencing 
confirmation of SNPs.  

(For ease of reference this section is arranged by transcript, with all relevant 

information for each transcript together on one data sheet. One transcript from 

the 454 and one from the post transposon removal Trinity data is shown for 

reference. The whole data set for both 454 and the post TE Trinity assemblies can 

be seen in the data_sheets folder of the appendix disc. A summary is given in table 

4.17). 

 

The information on each transcript data sheet encompasses the original fasta 

sequence of the transcript for reference. The BLASTx results from the GOI 

database search is shown as it was used to predict the ORF for SNP discovery 

between Andrew’s Choice and Carlton. The original UniProt BLAST hit from the 

annotation pipeline (sections 2.3.4.5 and 3.4.2.15) is given as it may differ from 

the hit from the GOI but may have higher homology or show the same class of 

enzyme. All GO terms linked to the transcript as well as the EC number are 

shown to since they infer function. Finally the non-synonymous SNPs found 

between the two varieties are shown as an amino acid alignment with the SNP 

location, predicted amino acid change and whether sequence was confirmed via 

PCR are included.  
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4.3.4.1 4.4.5.1 HDA57HA01AOVJD 
Fasta sequence:  

> HDA57HA01AOVJD length=456  
ACGTACACACTGTAATCTTAGAGATCATTAAGTCTACTTGCTCCTTCCGAATATGCCCAAAAGATTGCACCAATTTGGAACTCAA
GAGATGAGCAACACCAAGCTTCCTGGCCTGTCTCCAGCCCTCACCATAGGGTGACAATTGGGAATGGGTGTTTCCGTAGCACAGCA
GCCCGGCCATCTTCGAAGATGGCCTGCCGGCGAAGATGAGATCCTGAGTTTTCAGTATCTCTCGAGCCATCTCTGGTGATGAGATG
ATGAGGGTTGGGACGCAGCCTAGTTGAAGAAGCACCAGACCAGGTGATCCATACTTGTTGGATAATGCACGCAGAGAGCGAGGAG
AGAGGGAGCCGTCGAGCTGGTGGAGGTTGCCTATGATTGGAAGCTTTGGTGGAGATGGTGGGAGGACCTTTGCATCCCAAGATTT
CCTCATGCTTTTTGCAAGAGTGTGTGCGT 
 

BLASTx result against the predicted gene database:  
 
tr|O64901|O64901_ESCCA (S)-N-methylcoclaurine 3'-hydroxylase 
OS=Eschscholzia californica GN=CYP82B1 PE=2 SV=1 
Length = 560 
Score = 73.9 bits (180), Expect = 3e-16 
Identities = 41/125 (32%), Positives = 68/125 (54%), Gaps = 2/125 (1%) 
Frame = -3 
 
Query: 403   PPSPPKLPIIGNLHQLDGSLSP--RSLRALSNKYGSPGLVLLQLGCVPTLIISSPEMARE 230 
             P +    PI+G+L QL GS  P  R L  +++K+G   + +++ G  PTL++S+ EMA+E 
Subject: 44  PEAAGSWPIVGHLPQLVGSGKPLFRVLGDMADKFGP--IFMVRFGVYPTLVVSTWEMAKE 101 
 
Query: 229    ILKTQDLIFAGRPSSKMAGLLCYGNTHSQLSPYGEGWRQARKLGVAHLLSSKLVQSFGHI 50 
                 + D   A RP S  +  + Y +     S YG  WR+ RK+   HLLS + ++   H+ 
Subject: 102  CFTSNDKFLASRPPSAASSYMTYDHAMFGFSFYGPYWREIRKISTLHLLSHRRLELLKHV 161 
 
Query: 49    RKEQV 35 
              ++ 
Subject: 162 PHTEI 166 
 

 
UniProt ID from BLAST search against whole UniProt database: P24465 
EC number: 1.14 
GO IDs: GO:0009835- fruit ripening 

GO:0055114- oxidation-reduction process 
GO:0004497- monooxygenase activity 
GO:0005506- iron ion binding 
GO:0016491- oxidoreductase activity 
GO:0016705-oxidoreductase activity, acting on paired donors, with 
incorporation or reduction of molecular oxygen 
GO:0020037- heme binding 
GO:0046872- metal ion binding 
GO:0005783- endoplasmic reticulum 
GO:0005789- endoplasmic reticulum membrane 
GO:0016020- membrane 
GO:0016021- integral component of membrane 
GO:0031090- organelle membrane 
GO:0043231- intracellular membrane-bounded organelle 

 
Non-synonymous SNPs between Narcissus pseudonarcissus var Carlton and var 
Andrew’s Choice: 
 
Carlton:     PPSPPKLPIIGNLHQLDGSLSPRSLRALSNKYGSPGLVLLQLGCVPTLIISSPEMAREIL 
 
Andrew's choice: PPSPPKLPIIGNLHQLDGSLSPRSLRALSNKYGSPGLVLLQLGCVPTLIISSPEMAREIL 
 
Carlton:     KTQDLIFAGRPSSKMAGLLCYGNTHSQLSPYGEGWRQARKLGVAHLLSSKLVQSFGHIRK 
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Andrew's choice: KTQDLIFAGRPSSKMAGLLCYGNTHSQLSPYGEGWKQARKLGVAHLLSSKLVQSFGHIRK 
 
Carlton:     EQV 
 
Andrew's choice: EQV 
 
Nucleotide changes that caused the protein changes: 

 

 

Confirmation of transcript and SNP:  

The Transcript was confirmed in both species via RT-PCR and the polymorphism at 

position 117 was confirmed using Sanger sequencing.  

 

  

Position in 
nucleotide 
sequence  

Reference 
nucleotide 
seen in 
Carlton  

Alternative 
nucleotide 
seen in 
Andrew’s 
Choice 

Number of 
Andrew’s 
choice reads 
same as 
reference  

Number of 
Andrew’s 
choice reads 
with 
alternative 
nucleotide 

Protein 
change 
predicted  

117 C T 5 112 R to K 
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4.3.4.2 4.4.5.2 Daff88927 
Fasta sequence:  

>Daff88927 
AGACAGCAGTGTGAAGGTTTCTTTCAAGAGGCCTCGGTTTCAAGGCTAATTTAGATTAAGAAGATCAGAACCAAAATAGATATCA
GGAAAGAAGAAAAAAAGGAAACAAATAGAGTGACTATGAAATTTATATTCAGTTGGTTTAATTCATCTCTGCTTCCTCTCCTCTT
GTTTTTATCCCTCATATTTCTAATCATCAGAAGGCAAATCTCTAAAAATATCAAGCTTCCACCTTCTCCTCCAAAGCTTCCTTTCA
TTGGAAACCTGCACCAACTCCTAAGCAGCTCACTACCCCATCATTCACTCCATGCTCTTTCCAAGAAGTATGGCCCCCTCATGCTT
CTTCAACTTGGTCAGATTCCGACACTTGTAGTCTCATCTCCATATTTTGCCCAAGAAATCCTGAGAACCCATGATGCAGTATTTGC
AAGCAGGCCTTCTAACAAAGCTGCTAGAATTCTGTCATATGGAGGCAGTGACATAACTTTTGCACCTTATGGCGAATATTGGAAG
CAATTGAGAAAGCTTTGCGTTAACCACCTCTTGGGTCCGAAATTGGTGCCATCTTTCCGACGAGTGCGAGAAGAGGAAGTGGCAT
TTATGATTAACGAGATTTCAACAACAAGTTTGTCAACGGGTTCTATAGATCTGACCAAAGTTTTGAACCTGTTCACCAACAACGT
ATTATGTAGAACTGTACTGGGAAAATCATATAGAGGAGAAGAGAAGAATAAAATCTTCTGCGAACTGACGGAGGAGGTTGGTAT
CCTTTTAGGGAAATTATGTGTTGCGGATTACTTTCCTTCCCTCGGATGGTTAGACATGTTTACGGGATTTGAAAGGAGGGCCAGA
AAATGTTCTAAGAGACGGGGTGCTGTTCTTGATGAAGTAATTGATGATTATGTGAGAAATATTAAAGATCCGGATTATAAATCC
GAAAACAGACATTTTGTGGAAGCTCTGCTTGATCCTCGGAATGATACTAGTGCAGAATTTCCAGTAAACAGAGAGATGATCAAGA
TACTCATACAGGATATGATCGGAGCAGGGACCGACACGTCATTTGTAACCTTAGAATGGGGAATGGCAGAGCTTATTCGCAACCC
AAAAGTGATGAAAAAACTGCAAGACGAAACAAGAGGTGGTGCCAACAAAGAGTATTCCATGATTATGGAGGAAGATTTAAGCAA
AATGACCTACCTGAAAGCTGTTATAAAGGAGATCCTGAGATTGCATCCTCCGGCTCCTTTGATGATTCCTCATGAATCAATGGAA
GATTGCAAGATACAGGGCTACGAAATTCCAAAGAAAACAAGAGTTGTTGTCAATGCTTGGGCAATCGGTAGGGACCCTGGATTTT
GGGATGCACCAGAGGAGTTCCGACCTGAGAGATTTCTGAATAGCTCGGTTGATTTCGCTGGGCATGATTTCGAATTCATTCCATT
TGGAGCAGGTCGAAGAATTTGTCCTGGAATGCAGTTTGCAATAGCGACTTTGAAGCTTGCTTTAGCAAATCTCGTCCTTCGGTTT
GACTGGAAATTATCTGAAGAGATTGAATCTAAGAGTATAGACATGAGTGAAGTTCCCGGATTGACCAGTCATAAGAAGGAGAAG
CTAAACTTGGTCGCCAAACCAGCTTTTATCATGTAAATTCAGGGGATTATAGTCTGAGAGCATATGTGTTGTCTATATTAATGTA
TTTCTATTTGTGTTGAACTCTAGGAATTTGAATTTGATATTTTCTACATAAGATTGTTGATGGATCTTGTGGTGACAGAGAAGAA
AGTAATTTTGTGTTGTTCTTCCAGTGCCAGGGAAAG 
 

BLASTx result against the predicted gene database:  

tr|C3SBT0|C3SBT0_PAPBR Putative (S)-N-methylcoclaurine 3'-hydroxylase(Fragment)  
OS=Papaver bracteatum  
PE=2  
SV=1 
Length = 486 
Score =  276 bits (706), Expect = 2e-76 
Identities = 168/474 (35%), Positives = 245/474 (51%), Gaps = 5/474 (1%) 
Frame = +1 
 
Query: 226    LPPSPPKLPFIGNXXXXXXXXXXXXXXXXXXKKYGPLMLLQLGQIPTLVVSSPYFAQEIL 405 
              LPP P   P +GN                  K YG L  L+LG    +V S+P  A EIL 
Subject: 28   LPPGPKPWPIVGNLLQLGEKPHSQFAELA--KTYGDLFTLKLGSETVVVASTPLAASEIL 85 
 
Query: 406    RTHDAVFASRPSNKAARILSYGGSDITFAPYGEYWKQLRKLCVNHLLGPKLVPSFRRVRE 585 
              +THD V + R   ++ R+  +  + I ++   E WK+LRK+C   L   K++ S   +RE 
Subject: 86   KTHDRVLSGRYVFQSFRVKEHVENSIVWSECNETWKKLRKVCRAELFTQKMIESQAEIRE 145 
 
Query: 586    EEVAFMINEIST---TSLSTGSIDLTKVLNLFTNNVLCRTV--LGKSYRGEEKNKIFCEL 750 
               +   M+  +     + +    +    ++N+F N +  + +  LG    G  + K      
Subject: 146  SKAMEMVEFLKRNQGSEVKIVEVVFGTLVNIFGNLIFSQNIFKLGDESSGSVEMKEHLWR 205 
 
Query: 751    TEEVGILLGKLCVADYFPSLGWLDMFTGFERRARKCSKRRGAVLDEVIDDYVRNIKDPDY 930 
                E+G        ADYFP LG  D+F G  +    C +   +V   ++ +  R I      
Subject: 206  MLELG---NSTNPADYFPFLGRFDLF-GQRKDVADCLQGIYSVWGAMLKE--RKIAKLHN 259 
 
Query: 931    KSENRHFVEALLDPRNDTSAEFPVNREMIKILIQDMIGAGTDTSFVTLEWGMAELIRNPK 1110 
               S+   FVE LLD   D         + I  L+ ++ GAGT+TS  T+EW ++EL +NP+ 
Subject: 260  NSKKNDFVEILLDSGLDD--------QQINALLMEIFGAGTETSASTIEWALSELTKNPE 311 
 
Query: 1111   VMKKLQDETRGGANKEYSMIMEEDLSKMTYLKAVIKEILRLHPPAPLMIPHESMEDCKIQ 1290 
              V   ++ E      K    + E D+  M YL+A +KE LRLHP  PL++P  ++E CK+  
Subject: 312  VTANMRSELLSVVGKR--PVKESDIPNMPYLQAFVKETLRLHPATPLLLPRRALETCKVL 369 
 
Query: 1291   GYEIPKKTRVVVNAWAIGRDPGFWDAPEEFRPERFLNSSVDFAGHDFEFIPFGAGRRICP 1470 
               Y IPK+ +++VNAW IGRDP  W  P +F PERFLNSS+DF G+DFE IPFGAGRRICP 
Subject: 370  NYTIPKECQIMVNAWGIGRDPKRWTDPLKFAPERFLNSSIDFKGNDFELIPFGAGRRICP 429 
 
Query: 1471   GMQFAIATLKLALANLVLRFDWKLSEEIESKSIDMSEVPGLTSHKKEKLNLVAK 1632 
              G+  A   + L +  LV  FDW L + ++   + M E  GLT  K+  L +V K 
Subject: 430  GVPLATQFISLIVPTLVQNFDWGLPKGMDPSQLIMEEKFGLTLQKEPPLYIVPK 483 
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UniProt ID from BLAST search against whole UniProt database: P24465 
EC number: 1.14.-.- 
GO IDs: GO:0009835- fruit ripening 

GO:0055114- oxidation-reduction process 
GO:0004497- monooxygenase activity 
GO:0005506- iron ion binding 
GO:0016491- oxidoreductase activity 
GO:0016705-oxidoreductase activity, acting on paired donors, with 
incorporation or reduction of molecular oxygen 
GO:0020037- heme binding 
GO:0046872- metal ion binding 
GO:0005783- endoplasmic reticulum 
GO:0005789- endoplasmic reticulum membrane 
GO:0016020- membrane 
GO:0016021- integral component of membrane 
GO:0031090- organelle membrane 
GO:0043231- intracellular membrane-bounded organelle 

 
 
Non-synonymous SNPs between Narcissus pseudonarcissus var Carlton and var 
Andrew’s Choice: 
Carlton:    LPPSPPKLPFIGNLHQLLSSSLPHHSLHALSKKYGPLMLLQLGQIPTLVVSSPYFAQEIL 
 
Andrew's choice: LPPSPPNLPFIGNLHQLLSSSLPHHSLHALSKKYGPLMLLQLGQIPTLVVSSPYFAQEIL 
 
Carlton:    RTHDAVFASRPSNKAARILSYGGSDITFAPYGEYWKQLRKLCVNHLLGPKLVPSFRRVRE 
 
Andrew's choice: RTHDAVFASRPSNKAARILSYGGSDITFAPYGEYWKQLRKLCVNHLLGPKLVPSFRRVRE 
 
Carlton:    EEVAFMINEISTTSLSTGSIDLTKVLNLFTNNVLCRTVLGKSYRGEEKNKIFCELTEEVG 
 
Andrew's choice: EEVAFMINEISTTSLSTGSIDLTKVLNLFTNNVLCRTVLGKSYRGEEKNKIFCELTEEVG 
 
Carlton:    ILLGKLCVADYFPSLGWLDMFTGFERRARKCSKRRGAVLDEVIDDYVRNIKDPDYKSENR 
 
Andrew's choice: ILLGKLCVADYFPSLGWLDMFTGFERRARKCSKRRGAVLDEVIDDYVRNIKDPDYKSENR 
 
Carlton:    HFVEALLDPRNDTSAEFPVNREMIKILIQDMIGAGTDTSFVTLEWGMAELIRNPKVMKKL 
 
Andrew's choice: HFVEALLDPRNDTSAEFPVNREMIKILIQDMIGAGTDTSFVTLEWGMAELIRNPKVMKKL 
 
Carlton:    QDETRGGANKEYSMIMEEDLSKMTYLKAVIKEILRLHPPAPLMIPHESMEDCKIQGYEIP 
 
Andrew's choice: QDETRGGANKEYSMIMEEDLSKMTYLKAVIKEILRLHPPAPLMIPHESMEDCKIQGYEIP 
 
Carlton:    KKTRVVVNAWAIGRDPGFWDAPEEFRPERFLNSSVDFAGHDFEFIPFGAGRRICPGMQFA 
 
Andrew's choice: KKTRVVVNAWAIGRDPGFWDAPEEFRPERFLNSSVDFAGHDFEFIPFGAGRRICPGMQFA 
 
Carlton:    IATLKLALANLVLRFDWKLSEEIESKSIDMSEVPGLTSHKKEKLNLVAK 
 
Andrew's choice: IATLKLALANLVLRFDWKLSEEIESKSIDMSEVPGLTSHKKEKLNLVAK 
 
 
 

 

 



 

158 

Nucleotide changes that caused the protein changes: 

 

 

Confirmation of transcript and SNP:  

Transcript was confirmed in both varieties via PCR. The SNP was confirmed via Sanger 

sequencing. With both Andrew’s Choice sequences assigned C and Carlton forward 

assigned as G.  

 

  

Position in 
nucleotide 
sequence  

Reference 
nucleotide 
seen in 
Carlton  

Alternative 
nucleotide 
seen in 
Andrew’s 
Choice 

Number of 
Andrew’s  
choice reads 
same as 
reference  

Number of 
Andrew’s 
choice reads 
with 
alternative 
nucleotide 

Protein 
change 
predicted  

246 G C 171 176 K to N  
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4.3.4.3 Non-synonymous SNP verification 
Any of the transcripts that were predicted to have non-synonymous SNPs using the 

ORF predicted by the BLASTx search against the GOI were analysed via Sanger 

sequencing for confirmation. The results are shown in table 4.17.  

 
Table 4-11 Summary of SNP mining of GOI transcripts. 

SNPs were considered confirmed if Andrew’s Choice showed the alternative nucleotide only or if both 
nucleotides were present in Andrew’s Choice. It was unconfirmed if the reference was only seen in both or 
if both the reference and the alternative were seen in Carlton.  
 

 
 

4.3.5 The determination of significant differences in transcript levels for 
transcripts selected from the GOI database 

4.3.5.1 BitSeq  
The BitSeq analysis of transcripts from the GOI database search resulted in a 

total of 13 transcripts being predicted to show differential expression between 

the two daffodil cultivars (see a summary in table 4.18). Six were at a 

significantly lower level in Andrew’s Choice, comprising 4 from the total of 77 

transcripts within the 454 data and 2 from the total of 201 transcripts within 

the Post-TE removal Trinity data. The number of transcripts predicted to show 

Transcript 
ID UniProt ID hit Name 

SNP confirmed via 
Sanger sequencing 

Contig 01152 
tr|Q7XB10|Q7XB
10_PAPSO 

S-adenosyl-L-methionine: 3’-hydroxy-N-
methylcoclaurine 4'-O-methyltransferase 2  Unconfirmed 

contig01153  
sp|Q9LEL6|6OMT
_COPJA  (RS)-norcoclaurine 6-O-methyltransferase confirmed  

Contig02456 
sp|Q39224|SRG1_
ARATH  Protein SRG1 

confirmed (both 
nucleotides present) 

HDA57HA01
BEL8O 

O64900|C80B2_E
SCCA CYP80B2 no Sanger sequencing 

HDA57HA01
OVJD 

tr|O64901|O6490
1_ESCCA 

S)-N-methylcoclaurine 3'-hydroxylase 
 Confirmed 

Daff62300 
sp|Q39224|SRG1_
ARATH Protein SRG1 

confirmed (both 
nucleotides present) 

DAff74804 
tr|Q7XB10|Q7XB
10_PAPSO 

S-adenosyl-L-methionine:3'-hydroxy-N-
methylcoclaurine4'-O-methyltransferase 2 

confirmed (both 
nucleotides present) 

Daff106212 
sp|Q9LEL6|6OMT
_COPJA  (RS)-norcoclaurine 6-O-methyltransferase confirmed 

Daff88927 
tr|C3SBT0|C3SBT
0_PAPBR Putative (S)-N-methylcoclaurine 3'-hydroxylase Confirmed 

comp97312_
c0_seq1 

sp|O64899|C80B
1_ESCCA  (S)-N-methylcoclaurine 3'-hydroxylase isozyme 1 

confirmed (both 
nucleotides present) 

comp99544_
c0_seq1 

tr|O64901|O6490
1_ESCCA  (S)-N-methylcoclaurine 3'-hydroxylase confirmed 

comp100406
_c1_seq2 

tr|Q6WUC2|Q6W
UC2_PAPSO  (R,S)-reticuline 7-O-methyltransferase confirmed 

comp100760
_c0_seq2 

tr|Q9FQY6|Q9FQ
Y6_CAPAN  Cinnamic acid 4-hydroxylase  confirmed (both 

nucleotides present) 



 

160 

significantly higher expression in Andrew’s Choice was 7 with 3 from the 454 

and 4 from the Illumina data. Full results can be seen on appendix disc.  
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4.3.5.2 Confirmation of levels via comparative qPCR  
Of the 13 transcripts with an indication of differential expression using BitSeq, 

only 9, were carried forward to qPCR for confirmation of expression differences. 

The results are shown in table 4.18 below. This indicated that the expression 

differences proposed via BitSeq were confirmed for seven of the 9 transcripts. 

This is shown in figure 4-23, the two transcripts that showed contradicting 

qPCR results to the BitSeq predictions are HDA57HA01AW38A and 

HDA57HA01AK3FX from the 454 data. This difference could be linked to the 

lower coverage seen for the 454 data, both transcripts are singletons and so the 

sequencing data may not have been of high enough quality or coverage to 

accurately predict a transcript level difference. The qPCR was run on three 

biological samples with three technical replicates and so is likely to give a better 

insight into the transcript level differences. Both singletons showed relatively 

low fold changes (<2) and so it may be that these transcripts do not show a 

significant difference between the two cultivars. Overall the qPCR results 

confirmed the BitSeq results suggesting BitSeq as a suitable method for 

predicting transcript level differences between cultivars lacking replicated 

sequence data. 
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Figure 4-23 Graph to show fold change in transcript level seen in Andrew's Choice compared to 
Carlton 

The graph shows the actual fold changes seen via qPCR using actin as a control and the 
predicted direction of fold change from the BitSeq results. A PPLR value of over 0.95 suggesting 
a significant positive fold change and below 0.05 as a significant negative fold change.  
 
 
As an example, the trace produced for Daff88927 is shown in figure 4-23. For 

simplicity one biological replicate is pulled out and shown in the trace in figure 

4-24. It is clear from both traces that a clear difference between the two 

varieties is seen with Andrew’s Choice showing a fold change of 10.44 (s.d. 0.32) 

corresponding to a PPLR value of 0.978. It is also clear that actin is very similar 

in both varieties and is therefore a suitable candidate for a control gene. 

 
Figure 4-24 Amplification trace for Daff88927 

The trace clearly shows grouping for both the Andrews Choice (E7-F9, F7-F9 and G7-G9) and 
Carlton samples (A1-A3, B1-B3 and C1-C3) as well as the actin samples for both varieties 
(Andrews Choice A7-A9, B7-B9 and C7-C9, Carlton E1-E3, F1-F3 and G1-G3). The actin traces 
are all similar suggesting it is a good candidate for a control gene, the Andrews Choice traces are 
all to the left of the actin and the Carlton to the right showing a clear difference in expression. All 
negative controls are close to the base line suggesting no interference from genomic DNA or 
contaminants.  
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Figure 4-25 Simplified Trace for Daff88927 showing one biological replication 

The simplified trace shows the three technical replicates for one biological replicate. It clearly 
shows the difference between the two varieties for gene expression of Daff88927 compared to 
actin. The traces are labeled Actin, Carlton and Andrew’s Choice to show the groupings.  
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Table 4-12 Transcript level result summary. 

Shows observed fold change via qPCR, BitSeq PPLR values and the results of both the UniProt wide BLASTx search from the annotation pipeline (sections 2.3.4.5 and 3.4.2.15) and the 
BLASTx search against GOI. Both results are shown for comparison and further evidence for predicted function within galanthamine biosynthesis.  
 

 

Transcript ID qPCR 
Fold 

Change 

qPCR 
Standard 
deviation 

BitSeq 
PPLR 
value 

Whole 
UniProt 

BLAST result 

Description of UniProt ID Homology 
Shown to 
UniProt 

result (%) 

GOI 
database 

BLAST 
result 

Description of GOI ID Homology 
shown to 

GOI result 
(%) 

Daff74484 1.26 0.27 0.978 Q8GSN1 MOMT_CATRO 
Myricetin O-

methyltransferase 

40.89 Q9LEL6 6OMT_COPJA 
(RS)-norcoclaurine 6-O-

methyltransferase 

37.70 

Contig01885 -10.16 2.40 0.016 B6YWH0 GYAR_THEON 
Glyoxylate reductase 

45.39 Q65CJ7 Q65CJ7_SOLSC 
Hydroxyphenylpyruvate 

reductase 

72.85 

Contig01404 1.57 2.08 0.996 Q05736 PR1_ASPOF 
Pathogenesis-related protein 

1 

62.00 C3SBV5 C3SBV5_9MAGN Norcoclaurine 
synthase 

33.70 

Daff88927 10.44 0.32 0.978 P24465 C71A1_PERAE 
Cytochrome P450 71A1 

48.63 C3SBT0 C3SBT0_PAPBR 
Putative (S)-N-methylcoclaurine 

3'-hydroxylase 

36.29 

HDA57HA01AW38A 1.16 0.11 0.05 O04130 SERA_ARATH 
D-3-phosphoglycerate 

dehydrogenase 2 

78.36 Q65CJ7 Q65CJ7_SOLSC 
Hydroxyphenylpyruvate 

reductase 

33.1 

HDA57HA01B3O58 2.18  
0.51 

0.984 P28002 COMT1_MEDSA 
Caffeic acid 3-O-

methlytransferase 

57.36 G3FDY0 3FDY0_SALMI 
Caffeic acid O-methyltransferase 

60.47 

HDA57HA01AK3FX -2.37 0.33 0.972 P37119 C71A3_SOLME 
Cytochrome P450 71A3 

42.00  
 

O64900 

C80B2_ESCCA 
(S)-N-methylcoclaurine 3'-

hydroxylase isozyme 
2/Cytochrome P450 80B2 

29.29 

Daff106212 5.39 0.37 0.98 Q8GSN1 MOMT_CATRO 
Myricetin-methyltransferase 

52.11 Q9LEL6 6OMT_COPJA 
(RS)-norcoclaurine 6-O-

methyltransferase 

44.44 

Comp75950_c0_s1 6.22 0.67 0.98 P47787 THAS_PIG 
Thromboxane-A-synthases 

CYP5A1 

24.47 Q9FQY6 Q9FQY6_CAPAN 
Cinnamic acid 4-hydroxylase 

22.09 
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4.4 Discussion  
4.4.1 GO annotation and categorization of the whole transcriptome  
The GO ID assignments and subsequent categorization using the UniProt gene 

ontology option within its retrieval program provided a rapid method of 

putative functional annotation of the transcriptome. This representation of a 

transcriptome has been used in many other non-model plant projects but 

requires further information to infer functionality with confidence 5,93,97,110.  

 

There are no GO annotations for species closely related to daffodils but it is 

important that the suggested functionalities are further scrutinized since 

paralogs may have acquired different functionality, especially since more 

distantly related species have been used to confer UniProt and GO IDs 189. An 

example of this is seen with NCS in Coptis japonica that is involved in BIA 

biosynthesis but shows high protein homology (42%) with the SRG1 protein in 

Arabidopsis thaliana that totally lacks norcoclaurine synthase activity but may 

be involved in amine or aldehyde detoxification 268.  

 

The results of the GO analysis in this project contained both expected and 

unexpected annotations. All three assemblies show similar profiles with the 

most highly represented molecular functions being binding and catalytic 

activity in all three. As the plant tissue used was basal plate containing 

meristematic tissue harvested at a time of active growth and when the plant 

was known to have its highest level of alkaloids (Dr X. Chang, personal 

communication) it would be reasonable to assume that substantial catalytic 

activity was occurring within the samples.  

 

Within the biological processes category all three assemblies showed a high 

number of IDs associated with single-organism processes (a process that only 

involves one organism). Closer inspection of the UniProt IDs associated with 

this term shows that many of these IDs are from plants, (in the 454 data 1062 of 

the 2710 IDs were linked to Arabidopsis thaliana, 356 to rice and 41 to tobacco) 

but rat IDs accounted for 1125 and a few associated with single-celled 
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organisms such as E. coli (7) and Pseudomonas (4). This is a further example of 

the need to complement GO functionality predictions with other methods of 

analysis as this GO term encompasses a broad spectrum of processes and so 

cannot confer any specific functionality. It has 28 child terms, the biggest being 

single-organism developmental processes that itself has 446 child terms.  

 

GO terms are often quite broad and so without going further down the layers of 

categorization it is impossible to determine function from broad terms such as 

single-organism processes. Also there is a substantial knowledgebase for model 

organisms such as Arabidopsis and rat and it is possible that these could cause 

bias and lead to incorrect annotation.  

4.4.2 BLASTx results  
A literature search (sections 4.1.3 and 4.2.2) was used to produce a list of genes 

already known to be involved in alkaloid biosynthesis, as well as homologs of 

such genes from non-alkaloid producing plants and this was used to search for 

orthologs in daffodils. The BLASTx search against this database (section 4.2.3) 

resulted in the prediction of over 600 transcripts from the three assemblies. 

This list was then used as the gene of interest list for the DAVID enrichment 

analysis as well as for further investigation into putative genes via SNP and DE 

studies. This sort of comparison, against transcripts strongly linked to the 

desired function (alkaloid production in this case), frequently from 

experimental data, is an important further screen to determine putative 

transcripts with these functions in daffodil. 

4.4.3 DAVID analysis, EC and KEGG annotation  
By focusing in on the transcripts predicted via the BLASTx search against the 

GOI database it was possible to carry out functional profiling to answer 

questions relating to the enrichment of specific pathways such as alkaloid 

production 189.  

 

The DAVID program predicted enrichment scores as well as annotating 

transcripts with corresponding KEGG and EC numbers (user defined options in 

analysis). The results showed both expected and unexpected results (as 
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indicated in section 4.33). Enrichment of P450s linked to oxidoreductase and 

secondary metabolism would be expected in samples of this type when looking 

at specific genes thought to be involved in alkaloid production. However, even 

when looking at clusters with enrichment score as high as those seen with the 

P450s (14.74 for the 454 data, 38.82 and 35.13 for the Original and Post-TE 

removal assemblies) it is important to also look at the P-values (EASE scores) 

and the fold enrichment scores 193,291. More specific terms that may only have a 

few genes associated to them may appear enriched when they are not 197 and 

likewise terms with high numbers of genes can be missed.  

 

The daffodil data suggest that P450s, methyltransferases, phenylpropanoid 

biosynthesis and PAL are all enriched as they have a high percentage of 

representation in the GOI list, low p-values, high enrichment scores and FE 

scores above 1.3 (ranging from12 to 74). Enrichment analysis of transcripts of 

particular interest such as those annotated as P450, PSRs, PAL and tyrosine 

decarboxylase is all discussed in sections 4.4.5.1to 4.4.5.7. 

 

The DAVID results showed enrichment for these genes in the Carlton variety of 

daffodil. However, one aim of this project is to compare Carlton with Andrew’s 

Choice as a further strategy to identify putative genes involved in galanthamine 

production and so the GOI was taken forward to SNP and transcript level 

analysis to discover whether any of the enriched clusters also had differences in 

these characters (see section 4.3.4 and 4.3.5).  

 

As already discussed in section 4.1.1.2, KEGG has similar pitfalls in its ability to 

accurately predict function of orthologs in non-model organisms due to broad 

or very specific pathways that may or may not be present 184. This can be seen 

in the daffodil data with the ID 588768 (UniProt Q0VCQ1) association to the 

“pathways in cancer” and “chronic myeloid leukemia” pathway terms.  Further 

inspection of this ID show that it is a C-terminal binding protein in Bos taurus 

(CtBP2), targeting transcriptional regulators in brown fat and neural tissues. 

This protein is a transcription repressor domain attached to an N-terminal 
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domain of a protein known as RIBEYE. Both CtBP2 and RIBEYE are encoded in 

the same gene but due to alternative splicing have different functions (CTBP2 is 

used for transcriptional control, RIBEYE is used for synaptic vesicle transport 

and exocytosis) but both are derived from a member of the dehydrogenase 

family 292.  

 

This is an example where inappropriate annotation from sequence similarity 

searches may predict pathways that are not present in the species of interest 

(daffodil).  However, the daffodil transcript daff66090 shows 36.46% homology 

to Q0VCQ1 with an e-value of 2e-24 and so could have a very different function. 

Q0VCQ1 is a member of the d isomer specific 2-hydroxyacid dehydrogenase 

families that has 84,710 hits on UniProt. Therefore it is very likely that this 

transcript is not involved in the pathway suggested in KEGG. In other plants, 

such as Arabidopsis, enzymes of this type are involved in the controlling of the 

equilibrium between tubular and stacked structure in the Golgi complex among 

other functions and do not possess the amino acids known to be involved in the 

dehydrogenase activity 293. The bovine protein does contain the conserved 

residues involved in dehydrogenase including the four residues involved in 

NAD+ binding and the amino acids linked to catalytic function 294.  

 

Another area of difficulty within KEGG annotations is the similarity seen 

between some terms. For example, the two terms “biosynthesis of 

phenylpropanoids” and “phenylpropanoid biosynthesis” are very similar, so 

could be expected to relate to the same transcripts. However, this is not the 

case. There is a slight difference between these pathways in KEGG.  The 

phenylpropanoid biosynthesis map00940 only involves pathways directly 

linked to their production from phenylalanine whereas map01061 

(biosynthesis of phenylpropanoids) shows a wider view including connected 

pathways involving lignans and flavonoids.  

 

It is also possible that pathways known to exist in species can also be missed. An 

example is the case of isoquinoline alkaloid biosynthesis in the daffodil data, 
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since although PAL is known to be involved, and is found in all three assemblies, 

the term “isoquinoline alkaloid biosynthesis” was only shown in the Illumina 

data for transcripts linked to TYDC.  

4.4.4 Transcript level and SNP analysis  
The transcript level and SNP analysis was used to look for differences in 

transcripts predicted to be involved in galanthamine production and are 

therefore discussed alongside the discussion of specific gene types (section 

4.4.5). The BitSeq analysis produced some results that differ from the 

corresponding qPCR results and that are worth noting. Both 

HDA57HA01AW38A and HDA57HA01AK3FX showed opposite results to those 

predicted. The first was given a PPLR value of 0.05 that should have resulted in 

lower expression in Andrew’s Choice but a 1.16 ± 0.11 fold change increase was 

seen via qPCR. The second transcript had a PPLR value of 0.972 that should 

have resulted in a higher level of expression in Andrew’s Choice but a 2.37 ± 

0.33 fold change decline in expression was observed. PPLR values of 0.05 and 

0.095 are the suggested thresholds for significance so it is possible that the 

levels of these two transcripts are indeed not significantly different between the 

two cultivars. The qPCR results also suggest only a slight fold change. The qPCR 

results are from three technical and biological replicates while the BitSeq 

analysis is from one sequenced sample for each variety. This is an argument for 

replication in the BitSeq analysis, whenever possible.  

4.4.5 Transcripts linked to alkaloid biosynthesis  

4.4.5.1 PAL and TYDC  
Both PAL and TYDC have been shown to be involved in the first step of 

galanthamine production as well as other isoquinoline and benzylisoquinoline 

alkaloids 4,7. However, although both were found in the Original and post- TE 

assemblies, and PAL in the 454 assembly, EC identified only one transcript 

associated with the KEGG term “isoquinoline alkaloid biosynthesis” namely 

UniProt ID Q7XHL3 from rice. Although rice does not produce alkaloids, the 

conversion of tyrosine to tyramine is involved in a large number of metabolic 

pathways and is in no way specific to alkaloid biosynthesis. The Original 

assembly assigned tyrosine decarboxylase related EC numbers to 2 transcripts 
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in the GOI and 3 were assigned in the Post-TE assembly.  The three IDs were 

Q7XHL3, Q8RY79 (tyrosine decarboxylase 1 from Arabidopsis thaliana) and 

P54769 (tyrosine/DOPA decarboxylase 2 from Papaver somniferum). Although 

Arabidopsis thaliana and rice do not produce isoquinoline alkaloids, Papaver 

somniferum produces BIA but neither BIA or isoquinoline alkaloid biosynthesis 

pathways were predicted to involve homologs of P54769 via KEGG.  

 

Likewise several transcripts were associated to PAL (3 for 454 and 6 for both 

Original and Post-TE) none of which were associated in KEGG with alkaloid 

biosynthesis. The six IDs are shown in table 4.19. A ClustalO alignment of these 

proteins via UniProt showed a 61.05% identity among the sequences and, as can 

be seen in the table 4.19, the daffodil transcripts also show close homology to all 

six PAL sequences (70-90%) (See appendix section 6.9 for ClustalO alignment). 

Although none of the IDs are linked to organisms that produce isoquinoline 

alkaloids, they all involve PAL in the conversion of phenylalanine to trans-

cinnamate and ammonia and so were investigated further through SNP profiling 

and transcript levels. However none of the transcripts linked to TYDC or PAL 

from the GOI showed non-synonymous SNPS or transcript level difference 

between the two daffodil varieties, suggesting that this step is preserved 

between as both enzymes are important to plant metabolism.  
Table 4-13 Combined results from the ClustalO alignment in UniProt with the BLASTx results 
against the GOI for daffodil transcripts. 

UniProt ID Entry name  Protein name  Organism Family  Daffodil 
transcript 
homology 
(%) (Post 
–TM) 

E-value  Gene 
name  

P45724 PAL2_ARATH Phenylalanine 
ammonia-lyase 
2 

Arabidopsis 
thaliana  

Brassicaceae 73.15 1e-62 PAL2 

P45727 PALY_PERAE Phenylalanine 
ammonia-lyase 

Persea 
americana 
(avocado) 

Lauraceae 86.76 1e-27 PAL 

P45729 PAL3_PETCR Phenylalanine 
ammonia-lyase 
3 

Petroselinum 
crispum 
(parsley) 

Apiaceae 90.51 5e-167 PAL3 
 

P45726 PALY_CAMSI Phenylalanine 
ammonia-lyase 

Camellia 
sinensis (tea) 

Theaceae 71.74 2e-29 PAL 

Q42609 PALY_BROFI Phenylalanine 
ammonia-lyase 

Bromheadia 
finlaysoniana 
(pale reed 
orchid) 

Orchidaceae 79.72 1e-62 PAL 

O64963 PAL1_PRUAV Phenylalanine 
ammonia-lyase 
1 

Prunus avium 
(bird cherry) 

Rosaceae 85.62 4e-147 PAL1 
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4.4.5.2 CYP450s 
P450s are predicted to account for up to 1% of plant genome annotations and 

5100 P450 associated sequences in plants had been annotated and named by 

2011 295. The most widely represented clan of P450 in the enrichment analysis 

was that of CYP71 (see section 4.3.3) This could be anticipated since this clan 

represents over 50% of all CYPs in higher plants 295. Members of this clan have 

been linked to many reactions including metabolism of aromatic and aliphatic 

amino acid derivatives such as phenylpropanoids, indole derivatives, small 

isoprenoids and some alkaloids 295. Five daffodil transcripts showed homology 

to P450s and also had transcript level differences or non-synonymous SNPS 

between the two daffodils varieties as discussed below.  

4.4.5.3 HDA57HA0AK3FX  
This transcript from the 454 data showed 42% homology to a CYP71A3 in the 

whole UniProt blast search and 20% to the GOI CYP80B2. CYP80 enzymes are 

responsible for phenyl coupling in other alkaloid biosynthetic pathways such as 

morphine biosynthesis in Papaver somniferum and in Coptis japonica and 

Eschscholzia californica 62,217,231.  Both CYP80 and CYP719 enzymes have been 

shown to be involved in C-C intermolecular coupling and so it is important that 

not only sequence similarity is taken into account but also evolution and known 

functions 295. This transcript could be investigated further for a possible link to 

the final coupling step in galanthamine production as it showed a transcript 

level difference (-2.37 ± 0.33) between the two varieties via qPCR (not 

confirmed via PPLR) indicating a higher level in Carlton (the higher 

galanthamine producer).  

4.4.5.4 Daff88927 
This transcript was found in both the Original and post-TM assembly and shows 

homology to CYP71A1 in the whole UniProt BLASTx search (48.63%) and a 

P450 NMT in the GOI search (36%). The sequence homology of over 40% and 

below 50% suggest that it is from the same family but is a member of a different 

sub family 208. This transcript showed a 10 fold increase in transcript levels in 

Andrew’s Choice compared to Carlton (10.44 ± 0.32). Evidence of involvement 

in alkaloid production is supported by the fact that the NMT in Papaver 



 

172 

bracteatum has been showed to be involved in phenol coupling in BIA 

biosynthesis and so could be involved in the final step of galanthamine 

biosynthesis 121.  This is a prime candidate for further functionality testing.  

4.4.5.5 Comp75950_c0_s1 
This transcript was found in only the Post-TE assembly and again showed 

homology to P450s, specifically to CYP5A1 from pig and a P450 C4H in 

Capsicum. This transcript shows the second highest fold change seen in the GOI 

(6.22 ± 0.67) and should be investigated further to look at its functionality 

compared to C4H which is known to catalyse steps in vanillin biosynthesis in 

Capsicum and so could be involved in the production of protocatechuic acid in 

galanthamine biosynthesis 21,245.  

4.4.5.6 Comp97312_c0_s1 and Comp99544_c0_s1  
These two transcripts from the post-TM assembly showed homology to 

CYP71A1 and CYP81E1 respectively. Although they did not show any transcript 

level differences they both had a non-synonymous SNP between the two 

varieties.   

4.4.5.7 Other transcripts of interest  
Two other enzymes that could be involved in galanthamine biosynthesis that 

showed both transcript level differences and SNPs are (R,S) norcoclaurine 

6OMT and NCS (Daff106212 and Contig 01404). Both enzymes are involved in 

BIA biosynthesis and could perform similar roles in daffodils. 6OMT coverts (S)-

norcoclaurine to (S)-coclaurine and NCS is a PSR involved in the reaction of 4-

HPAA and dopamine to give (S)-norcoclaurine 18,204,227-229. These could be 

involved in the sequential conversion of protocatechuic acid and tyramine to 

norbelladine, and subsequently to 4’-O-methylnorbelladine steps within 

galanthamine biosynthesis. Both show non-synonymous SNPs between the two 

daffodil varieties. Interestingly, Daff106212 also shows a high fold increase in 

transcript levels in Andrew’s Choice (5.39 ± 0.37) and therefore could be 

suggested for further investigation linked to metabolite profiling in both 

varieties as a point in divergence in the alkaloid pathway.  
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5 Chapter 5 – Overall Conclusions and Future work  
 

5.1 Transcriptomic reference for the daffodil 
With the continuing developments in functional genomics specifically towards 

sequencing and assembling de novo transcriptomes, projects about non-model 

plants from families with limited to no genomic data are now possible 12,83. The 

use of the now out dated 454 platform resulted in a reference transcriptome 

that could then be used successfully to map Illumina reads from two varieties of 

daffodil to search for SNP and transcript level differences linked to 

galanthamine biosynthesis. The Illumina sequencing for the Carlton variety was 

also successfully assembled, increasing the reference data for daffodils. The 454 

assembly resulted in 45,324 transcripts of which 67% were annotated via a 

BLASTx search pipeline while the Illumina reads produced a total of 165,065 

transcripts of which 38% was annotated.  Both the 454 and Illumina transcripts 

have been deposited in the short read archive and will be released along with 

any publication from this work (http://www.ncbi.nlm.nih.gov/sra).  

 

5.2 The uses of currently available Ontologies and 
Functional Annotations –bias towards model 
organisms  

As with all aspects of functional genomics, ontologies and databases such as 

KEGG were developed alongside the data that started being produced for model 

organisms in the late twentieth century 184,186. GO started with the model 

organism databases of Flybase, MGI and SGD, whereas KEGG was initiated for 

the Human Genome Project 186. Although intended to be non species-specific, 

the sheer amount of data available for model organisms inevitably causes some 

bias in annotation, or incorrect annotations 184. In the daffodil data this was 

seen with the appearance of both the GO category of “singular organisms” and 

KEGG “pathways of cancer”. Further investigation into these terms showed clear 

links to plant genes such as the Arabidopsis thaliana CtBP gene, a member of the 

D-isomer specific 2 hydroxyacid dehydrogenase family as with Q0VCQ1 in 

“pathways in cancer” as discussed in chapter 4 293.  As annotations are often 
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linked to the first gene reported it can lead to mis-annotation as is shown with 

the Arabidopsis CtBP gene, as although it shares homology to dehydrogenases 

such as that seen in bovine it is missing the vital amino acids required to 

dehydrogenase activity292-294. 

 

Although some incorrect annotations were suggested, the use of GO and KEGG 

resulted in a suitable background for enrichment studies using DAVID. The 

DAVID enrichment study resulted in clusters with high enrichment scores for 

those genes predicted to be involved in secondary metabolite biosynthesis, 

specifically cytochrome P450s that could be implicated in phenol coupling 

reactions in the final step of galanthamine biosynthesis.  

 

5.3 Determination of ploidy level of Carlton and 
Andrew’s choice  

Both varieties were shown via chromosome counting and the use of 

pileup_parser.pl to be triploids, this does not agree with the current data on 

Carlton being tetraploid. However as both varieties used in the project are 

clonally propagated for the ornamental industry the uneven ploidy level, which 

is often linked to poor fertility rates would be overlooked in asexual 

reproduction, as many plants that are bred in this way are triploids 296. One 

major example being the cultivated triploid desert bananas of the Cavendish 

and Gros Michel subgroups 297. Within narcissus cultivars the original varieties 

were diploid with only few triploids recorded before 1885, in 1887 the first 

tetraploid was recorded and now the most popular varieties are triploid and 

tetraploid 296. A study by Brandham looked at the high frequency of low fertility 

triploids within the genus and found that in cultivar divisions 5,6 and 7 the 

majority were triploids (83.9%, 49% and 72.4%) 298. Zonneveld also noted that 

several groups showed both triploid and tetraploids such as N. poeticus and 

N.tortifolius30. 
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5.4 The effect of polyploidism on gene expression 
studies 

 
Polyploid events such as genome duplication often result in increased diversity 

in hybrids allowing them to inhabit novel environments compared to their 

parents 299. This “hybrid vigor” results in increased biomass, size, yield and 

disease resistance 300. Changes in the new polyploid genomes compared to the 

parents may allow for evolutionary success via the ‘transgressive segregation’ 

of parental alleles (recombination of important alleles in new hybrid) but may 

also effect gene regulation and therefore expression  299-301. 

If multiple genetic or epigenetic changes occur in the master cellular regulators 

such as promoter or enhancer regions gene expression can be greatly altered 
300. Although gene regulation is dose dependent and therefore these new 

hybrids have more control over imprinted genes in developing seeds gene 

expression does not follow the same pattern 299,301. That is to say that gene 

expression is not additive, the expression of an allele in a tetraploid for example 

is not double that seen for the same transcript in a diploid parent 302. 

There are several factors that can effect gene expression, transcriptomic shock 

can occur where there is complete suppression of a transcriptome from one 

parental genome, tissues specific silencing and up and down regulation can also 

all effect gene expression patterns in polyploids 299. The first recognized 

phenomena of epigenetic changes resulting in expression differences was the 

silencing of one parental set of rRNA genes while the other parent produced the 

nucleolus 300. Normally one parent is considered expression dominant that is to 

say that on an allelic level it is frequently more dominant 301.  

The non-additive expression is linked to regulation, it can be considered to be 

linked to either trans or cis regulation. If both parental alleles show similar 

responses to regulatory environmental changes in the hybrid compared to the 

parental regulatory environment it is considered a trans regulatory effect 300. A 

difference in the cis regulatory regions such as promoters and enhancers is 

often seen with up or down regulation of only one parental allele in the new 

hybrid 300.   
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5.5   Prediction of genes involved in galanthamine 
production  

The use of KEGG, GO, EC and BLASTx searches against a GOI database of alkaloid 

and other key secondary metabolite biosynthetic genes implicated of several 

homologs in daffodil in the biosynthesis of galanthamine. These are briefly 

discussed below (see section 4.4.5 for full discussion).  

 

5.5.1 PAL and TYDC  
These two enzymes have already been shown to be involved in galanthamine 

biosynthesis 199,257. Several transcripts within the daffodil data showed 

homology to PAL and TYDC, with TYDC being implicated in the enrichment 

studies as part of “isoquinoline alkaloid biosynthesis”. However, none of these 

transcripts showed SNP or transcript level differences between the two 

varieties of daffodil and so it is predicted that this step of the pathways does not 

differ between the two varieties and so is not a point of diversion.  

 

5.5.2 Comp75950_c0_s1 a homolog of C4H in vanillin biosynthesis as a 
putative transcript involved in the biosynthesis of protocatechuic 
acid in galanthamine biosynthesis  

This transcript showed 22% homology to Q9FQY6_CAP with a fold change of 

6.22 (s.d 0.67) in Andrew’s Choice. C4H in Capsicum is known to catalyse the 

reaction of cinnamate to coumarate in the production of vanillin and a similar 

reaction is seen in galanthamine in the biosynthesis of protocatechuic acid (as 

discussed in section 4.4) 20. This is a transcript that needs further investigation 

to confirm a predicted role in the galanthamine pathway; this and other 

transcripts for further investigation were discussed in section 5.6.1.  

 

5.5.3 Contig01404 as a homolog for NCS in the biosynthesis of 
norbelladine 

NCS is involved in the production of (S)-norcoclaurine via the addition of 4-

HPAA and dopamine in BIA biosynthesis 204,227,268. The transcript showed 

homology to C3SBV5_9MAGN in Thalictrum flavum (33.7%) and could carry out 



 

177 

a similar reaction as that seen for BIA in the conversion of protocatechuic acid 

and tyramine to norbelladine in galanthamine biosynthesis.  

 

5.5.4 Daff106212 as a homolog for OMTs could be involved in the O-
methyltransferase catalysed step of norbelladine to 4-O-
methylnorbelladine 

Homology is seen to two members of the COMT subfamily of the OMTs, 

6OMT_COPJA in Coptis japonica (44%), the (RS)-norcoclaurine synthase 

implicated in BIA biosynthesis converting (S)-norcoclaurine to (S)-reticuline, 

and also to Q8GSN1 MOMT_CATRO (52%) from Catharanthus roseus. Although 

OMTs are a large family, the close homology to the enzymes in BIA biosynthesis 

suggests that this transcript is involved in the conversion of norbelladine to 4-O-

methylnorbelladine in daffodils. Interestingly, this transcript showed a high fold 

difference (5.39 ± 0.39) in Andrew’s Choice and so could predict a site of 

diversion or difference in galanthamine biosynthesis between the two varieties 

linked to their differences in galanthamine levels. However, as discussed in 

section 5.6.1, predictions like this require experimental confirmations beyond 

the scope of this work.  

 

5.5.5 HDA57HA0AK3FX and Daff88927 as possible transcripts involved 
in C-C intermolecular phenol coupling in the final step of 
galanthamine biosynthesis  

HDA57HA0AK3FX shows homology to CYP80 and CYP71A enzymes, both 

known to be involved in phenol coupling in BIA biosynthesis in Papaver 

somniferum, Coptis japonica and Eschscholzia californica 62,217,231. Daff88927 also 

shows homology to a CYP71A (48.63%) and a P450 NMT C3SBT0_PAPBR (36%) 

from Papaver bracteatum with a 10-fold increase in Andrew’s Choice again 

suggesting a possible site of diversion in the pathway that requires 

experimental confirmation.  
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5.6 Predicted pathway for galanthamine biosynthesis  
The analysis of transcriptome data from two varieties of daffodils has led to the 

prediction of putative transcripts involved in galanthamine biosynthesis and 

these are shown in a putative pathway in figure 5.1.  
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Figure 5-1 Putative pathway for the biosynthesis of galanthamine in daffodils. 

The IDs of transcripts predicted in daffodil are shown alongside the predicted enzymes.  
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5.7 Future Work 
The data presented here resulted in the prediction of transcripts that could be 

involved in alkaloid biosynthesis in daffodils but had several limitations. There 

is often a compromise between cost and the need to acquire appropriate 

coverage of the transcriptome, irrespective of the methodologies used 84. For 

example, when looking to detect differential expression, inclusion of both 

biological and technical replicates are considered best practice 303. Limitations 

in this project did not allow for repeat sequencing of the samples and although 

the 454 pyro-sequencing full assembly was made from two different basal plate 

samples from Carlton, the Illumina sequencing was carried out on only one 

sample from each variety. However, as can be seen from the results of the 

transcript level analysis, the predicted fold changes were shown in both sets of 

sequence data, and in three biological and technical replicates in the qPCR and 

so the method used can be considered suitable for the scientific question at 

hand. Comparisons between two cultivars has been used in other studies to 

predict transcript level differences such as the study by Alagna et al on ripening 

in olives 101. 

 

5.7.1 Expression of candidate genes and subsequent functional analysis 
on the protein  

Enzymes in classes predicted in this project (such as C4H and NMTs) have been 

confirmed using experimental methods in other plants. Huang et al 

characterized a C4H in Salvia miltiorrhiza, through cloning the gene, predicting 

the protein sequence and identifying conserved domains and structural 

similarity to previously known C4H genes 254. Several projects have used both E. 

coli and S. cerevisiae to express genes and carry out protein catalysis analysis. 

Methylenedeoxy bridge-forming CP450s involved in alkaloid production in the 

Papaveraceae family were analysed using 27 potential substrates 242. TYDC from 

Papaver somniferum was expressed within E. coli and tested for substrate 

specificity 263. This could be of particular use with the predicted transcripts in 

this project as it could confirm their position in the galanthamine pathway. 

Testing a range of substrates with daffodil enzymes expressed from microbial 

systems, the chemical products would provide information on which of the 
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Amaryllidaceae alkaloids were produced. This could, for example, help 

determine which of HDA57HA0AK3FX and Daff88927 if either is involved in the 

final phenol-coupling step or if they produce a different alkaloid via one of the 

other coupling routes.  

 

5.7.2 Microbial engineering to create a galanthamine cell factory  
As the levels of alkaloids in daffodils and other medicinally important plants are 

relatively low, and chemical synthesis is not cost effective, it would be beneficial 

to reconstruct the galanthamine pathway in a microbial host to meet the 

demand for the drug 4,26,32. This strategy has been used for the semi-synthetic 

commercial production of the anti-malaria drug precursor artemisinin and also 

for development of a platform for the production of BIAs from simple carbon 

sources and there is obvious potential to produce other alkaloids such as 

galanthamine in this way 304,305. This would first require further 

characterisation of the enzymes of the pathway way, but could lead to the semi-

synthetic production of galanthamine on a commercial scale as is seen with 

current production of the anticancer terpenoid indole alkaloid vincristine by Eli 

Lilly 32,306. 

 

5.7.3 Sequencing of genomic DNA to identify regulatory DNA motifs  
As sequencing the entire daffodil genome would not be cost effective at the 

moment, the transcripts predicted in this study could be used as guides to 

sequence the upstream and downstream regulatory regions. Both 

computational and experimentally derived sequence motifs in these regions 

would substantially increase understanding of the regulation of biosynthesis 307. 

The interaction of transcription factors with cis-acting elements in gene 

promoter regions is considered an important aspect of regulation and has been 

studied in another alkaloid producing plant, Catharanthus roseus. Two studies 

isolated and characterized the promoters of the strictosidine synthase and 

deacetylvindoline-4-O-acetyltransferase genes involved in terpenoid indole 

alkaloid biosynthesis in this species 308,309.  A similar project would be beneficial 
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to daffodils and could lead to the determination of important regulatory motifs 

in the alkaloid biosynthesis pathway.  

 

 

5.7.4 Further investigation into the biological system in daffodil 
Transcriptome data from other tissues and under a range of environmental 

conditions could be used alongside expression data and more extensive alkaloid 

and other chemical analysis to investigate the compartmentalization of alkaloid 

production. Galanthamine has been shown to be found in most tissues of 

daffodils but no information is available of the location of its synthesis26. By 

comparing expression levels in different tissues it may be possible to predict the 

cellular localization and transport of the alkaloids. This has been extensively 

studied in poppies. In BIA biosynthesis, gene expression is linked to companion 

cells and the enzymes are translocated to sieve elements where the alkaloids 

are synthesised and then stored in laticifers 8. 

 

5.7.5 The development of bioinformatics tools to further evaluate ploidy 
level in plants  

The pileup_parser.pl script in this project predicts ploidy at a nucleotide level. 

However, it was developed specifically for this project to look for either triploid 

or tetraploid loci. In order for it to be applicable to other levels of ploidy, several 

key aspects need to be addressed. Firstly, it does not take into account any 

sequencing error, quality scores or minimum reads assigned to each locus. 

Programs used for SNP calling currently use stringent settings to account for 

these. Developing a similar algorithm in this script would result in more 

accurate prediction of ploidy level 155,162. Also, it could be developed alongside 

experimental SNP frequency data to look at all possible ploidy levels.  

 

5.7.6 The use of SNPs as biomarkers for daffodil breeding linked to 
alkaloid production  

The SNPs found in putative transcripts in galanthamine biosynthesis can be 

used for future marker development, QTL analysis and genetic linkage. Marker 

development would be highly beneficial to the commercial extraction of 
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galanthamine as all pharmaceutical grade galanthamine is currently extracted 

from plants. Daffodils take several years to multiply and so the use of genetic 

markers linked to alkaloid production could rapidly improve breeding 

programs for special cultivars. Another plant where this strategy would be 

beneficial is in cultivars currently being developed for opium poppies to 

produce the pharmaceutically important precursor thebaine 32. 

 

5.8 Conclusion  
In conclusion, this is the first transcriptome comparison study between two 

varieties of Narcissus pseudonarcissus via second-generation sequencing 

techniques. It provides a platform for the discovery of genes involved in 

biosynthesis of Amaryllidaceae alkaloids as well as molecular breeding 

research.  The overall aim of this project was to create a reference set of 

transcripts that could be used to elucidate putative transcripts involved in 

galanthamine production, to this end the work has resulted in the prediction of 

several transcripts via numerous methods that should be investigated further 

to.  

However as only one tissue at a specific time point was analysed, albeit one 

linked to high levels galanthamine production, further investigation is still 

required to ascertain the localisation of galanthamine production and its 

pathway. With the rapidly decreasing cost of sequencing and increase in 

developed techniques for projects of this type if this project was to be carried 

out again there are several key aspects that could be improved.  

Firstly a pooled library from several time points and tissues could be used to 

give greater insight into whether the pathway is more prevalent in one tissue 

type or another. Further time points in the life-cycle of the daffodils could also 

be used to look for changes linked to galanthamine production. Alongside these 

sample changes it would be beneficial to test the same tissues and time points 

for galanthamine content so that a co-expression study could be carried out.  

Although Carlton and Andrew’s choice are related and the comparison of their 

transcriptomes resulted in the prediction of several gene involved in 

galanthamine production it would be beneficial to a project of this nature to 



 

184 

compare transcript levels to galanthamine levels to look for patterns of co-

expression. If a transcript showed both high expression in a specific tissue and 

time point that was also linked to high levels of galanthamine it would further 

the evidence for that genes involvement. This is particularly important in a 

project of this nature as biosynthesis of alkaloids and other secondary 

metabolites are known to involve from a small number of gene families and 

have numerous branched pathways.  

However, this body of work is an excellent starting point for the elucidation of 

the enzymes of the galanthamine biosynthetic pathway and shows the validity 

of similarity searches for the determination of putative genes in non-model 

plants. 
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6 Appendix  
PLEASE NOTE: the majority of the Appendix such as perl scripts and large data tables are 

supplied on disc. See table 6.1 for description of table and file names on disc.  

6.1 List of perl scripts on appendix disc  
All scripts written as part of this project are in a folder labeled “Scripts” on 
appendix disc all others that were written by other member of Liverpool 
University are listed but not available on disc. Only the main scripts are shown.  
 
Table 6-1 Perl Scripts. 

  

Script name  Written by  
Contigs.pl J Pulman 
Full_annotation.pl J Pulman 
ID_to_FASTA.pl J Pulman 
Joiningfiles.pl J Pulman 
Match_singleton_ID_to_fasta.pl J Pulman 
Pileup_parser.pl J Pulman 
Remove_low_scoring_blast.pl J Pulman 
Removestartinglinesrfam.pl J Pulman 
Singletons.pl J Pulman 
Tabtospace.pl J Pulman 
split_bitseq.pl J Pulman 
split.pl J Pulman 
Annotation_pipeline.pl Prof. A Hall 
Blast_to_hash_search_with_AGI.pl Prof. A Hall 
Extract_nonhuman_reads_fastq.pl Dr J. Kelly 
Unique_agi_ids.pl Prof. A Hall 
coverageStatsSplitByChr_v2.pl K Ashelford (modified by Laura Gardiner) 
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6.2 List of data files available on appendix disc  
 
Table 6-2 Data files on appendix disc. 

Files can be found in corresponding folders for the section of the thesis denoted in the table.  
 

  

File name  Relevant section in main thesis  
454_Varscan_results 3.4.2.6 
Post_TE_Varscan_results 3.4.2.6 
454_Andrews_choice_parsing_output  3.4.2.6 
454_Carlton_parsing_output   3.4.2.6 
Post_TE_Andrews_Choice_parsing_output   3.4.2.6 
Post_TE_Carlton_parsing_output 3.4.2.6 
454_BitSeq_results   3.4.2.14 
Post_TE_BitSeq_results 3.4.2.14 
454_GO_annotations 4.3.1.4 
Original_GO_annotations   4.3.1.4 
Post_TE_removal_GO_annotations 4.3.1.4 
454_to_GOI_blast_results  4.3.2 
Original_to_GOI_blast_results   4.3.2 
Post_TE_removal_to_GOI_blast_results 4.3.2 
454_DAVID_EC_GOI_results   4.3.3.3 
454_DAVID_Functional_clustering_GOI_results   4.3.3.1 
454_DAVID_KEGG_GOI_results  4.3.3.2 
Original_DAVID_EC_GOI_results  4.3.3.3 
Original_DAVID_KEGG_GOI_results   4.3.3.1 
Post_TE_removal_DAVID_EC_GOI_results   4.3.3.2 
Post_TE_removal_DAVID_Functional_clustering_GOI_results   4.3.3.3 
Post_TE_removal_DAVID_KEGG_GOI_results 4.3.3.1 
Data_sheets_for_transcripts_of_interest_from_GOI_search 4.3.3.2 
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6.3  Galanthamine level data  
All data was produced by Dr Xianming Chang formerly of the University of Liverpool and 

now the Royal Agricultural University.  

6.3.1 Introduction 
Narcissus pseudonarcissus. Var. Carlton is known to contain levels of 

galanthamine suitable for extraction for drug production and as such is widely 

used for this purpose 26. Andrew’s Choice however is a relatively new N. 

jonquilla and N. cinel hybrid that has not been widely studied. It is thought to 

have much lower levels of galanthamine and was therefore selected as the 

second variety for this study to compare the transcriptomes of a high producer 

and a low producer. It is important that the levels of galanthamine produced by 

this second variety are investigated to support its claim as a low producer. An 

experiment was designed by Dr X. Chang at the University of Liverpool to 

determine the alkaloid content of both varieties using a GC-MS method.  

 

6.3.1.1 Experiment 1: Comparison of Andrew’s choice and Carlton from 
three different sites  

Eight individuals of each variety were planted at three different sites, one in 

Newmarket and a high and low altitude plot in Humberside, four individuals of 

each variety from each plot was harvested on two separate occasions (9 April 

2013 and 9 May 2013). 09/04/2013 was at the development stage of goose-

necked stage (yellow not open), and 09/05/2013 was at flower dying growth 

stage (flower not completely dead). 

 

6.3.1.2 Experiment 2: Comparison of the two varieties in the flowering 
stage of development  

Plants grown as described in section 2.3.1 of chapter two. Three plants of each 

variety were dug up just after flowering and the basal plate sampled in 

triplicate.  
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6.3.2 Methodology 
The same methodology was carried out for the samples from 6.3.1.1 and 6.3.1.2.  

6.3.2.1 Galanthamine extraction for Experiment 1 
100mg of frozen tissue was added to 1ml of methanol and adjusted to pH8 with 

25% ammonia. The samples are then extracted in an ultrasonic bath for five 

hours (15minutes on 15 minutes off) and then centrifuged at 10,000rpm for 1 

minute. 500ul was removed to a new tube and 10ug of codeine was added as an 

internal standard. 

6.3.2.2 Galanthamine extraction for Experiment 2 
100mg of frozen tissue was added to 1ml of methanol and adjusted to pH8 with 

25% ammonia. 50ug (10ul) of codeine was added as an internal standard. The 

samples are then extracted in an ultrasonic bath for two hours (15minutes on 

15 minutes off) and then centrifuged at 10,000rpm for 1 minute. 500ul was then 

transferred to a new tube and 500ul of 2% sulfuric acid added. The neutral 

compounds were eliminated by duplicate extraction with 500ul chloroform. The 

organic solvent was evaporated off and the dry extract dissolved in 300ul 

methanol.  

6.3.2.3 Chromatographic techniques  
The same methodology was carried out for the samples from 6.3.2.1 and 6.3.2.2.  

The GC–MS spectra were recorded on a ThermoQuest Trace GC 2000 + PolarisQ 

MSD operating in EI modeat70eV. ADB-5MS column (30m×0.25mm×0.25µm) 

was used. The temperature program was: 100–180◦C at 15◦C min−1, 1min hold 

at 180◦C and 180–300◦C at 5◦C min−1 and 1min hold at 300 ◦ C. The flow rate of 

carrier gas (Helium) was 0.8 mL min−1. Injector temperature was 280◦C. 1 µL of 

solutions was injected and a splitless injection was used. 
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6.3.3 Results  

6.3.3.1 Experiment 1 
Table 6-3. Comparison of levels of galanthamine for experiment 6.3.2.1 April samples. 

 
 
 
Table 6-4 Comparison of levels of galanthamine for experiment 6.3.2.1 May samples. 

 

6.3.3.2 Experiment 2  
 
 
Table 6-5 Comparison of levels of galanthamine from experiment 6.3.2.2. 

 

6.3.4 Discussion  
Both experiments showed clear differences between the two varieties of 

daffodil suggesting that Carlton produces significantly higher levels of 

galanthamine. As the method of extraction was different the two experiments 

could not be directly compared for galanthamine levels but do both show a clear 

significant difference between the two varieties.  Therefore the two cultivars 

chosen are suitable candidates as the aim of this project is to compare the 

transcriptome of two cultivars with significant differences in galanthamine level 

to look for putative transcripts involved in its biosynthesis.  

  

Site  Mean Galanthamine % FW 
in Carlton (standard 

deviation/standard error) 

Mean Galanthamine % FW in 
Andrew’s choice (standard 
deviation/standard error) 

T- value  P-value 
(two tailed) 

Newmarket 0.06067(0.021/0.010) 0.01193 (0.004/0.002) 4.54 0.0039 
Humberside 
H 

0.08528(0.013/0.007) 0.01343(0.001/0.001) 10.88 3.6x10-5 

Humberside 
L 

0.06470(0.022/0.011) 0.00659(0.006/0.003) 5.15 0.0021 

Site  Mean Galanthamine % FW in 
Carlton (standard 

deviation/standard error) 

Mean Galanthamine % FW in 
Andrew’s choice (standard 
deviation/standard error) 

T- value  P-
value 
(two 
tailed) 

Newmarket 0.04860(0.013/0.006) 0.00833(0.004/0.002) 5.916 0.001 
Humberside H 0.05049(0.016/0.008) 0.00908(0.003/0.002) 5.06 0.002 

Humberside L 0.04503(0.012/0.006) 0.00664(0.003/0.001) 6.39 0.001 

Mean Galanthamine % FW in 
Carlton (standard 
deviation/standard error) 

Mean Galanthamine % FW in Andrew’s 
choice (standard deviation/standard 
error) 

T- value  P-value 
(two 
tailed) 

0.01300 (0.004/0.002) 0.03983(0.008/0.003) 6.48 0.0002 
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6.4 Chromosome counting for Carlton and Andrew’s 
choice varieties of daffodil  

6.4.1 Introduction  
As the ploidy level of Narcissus pseudonarcissus varieties can range from diploid 

to nonoploid is important that the ploidy level of the varieties used in this 

project were known 30. Unfortunately neither variety was included in 

Zonneveld’s 2008 study and so the amount of DNA is unknown. An estimation of 

the ploidy level can be determined via chromosome counting. Although Carlton 

has been investigated before and shown to be tetraploid (2n=28), the number of 

cultivars in daffodils and the lack of pedigree information available for Carlton it 

was decided that the ploidy level of the particular individuals used in this study 

should be confirmed 31.  

 

6.4.2 Method  
Bulbs of both varieties were grown as described in section 2.3.1.  

Root removal, preparation and chromosome counting was carried out under the 

supervision and instruction of Dr Hugh McAllister from Ness Gardens. The 

method he produced was based on numerous publications and is as follows.  

6.4.2.1 Reagents 
Supplied by Dr Hugh McAllister, University of Liverpool. 

 Pretreatment solution: Saturated aqueous solution of 1-bromo-naphthalein 

(supernatant over small quantity of reagent - keep topped up with tap water). 

Fixative: Freshly mixed 3 : 1, 95% ethanol  (industrial): glacial acetic acid. 

Hydrolyzing solution: 1M hydrochloric acid. 

Storage medium: 70% ethanol. 

Mountant: 2 : 1 lactic acid : propionic acid. 

6.4.2.2 Pretreatment 
Rapidly growing roots of each variety (cleaned in water to remove soil) were 

placed in separate screw top glass vials with pretreatment solution (roots 

covered) and left in the cold room (4°C) overnight.  
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6.4.2.3 Fixation 
The roots were removed from the pretreatment solution and added to vials 

containing freshly mixed fixative and stored for overnight in cold room (4°C). 

Root tips can be stored at this stage for many months if not years. 

6.4.2.4 Hydrolysis 
Root tips were removed from fixative and place in screw top plastic 1.5ml 

eppendorfs of 1M HCl at 60°C on a heat block for 5 min, then transferred to 70% 

ethanol for storage. 

6.4.2.5 Slide preparation 
A dissecting microscope was used and the cytoplasmic region of the root tip was 

removed with needles and then the remaining section cut in to small pieces on a 

glass slide. A drop of mountant was added and the sample tapped out to a 

monolayer under a cover slip and then squashed with medium force (glass 

cover slip shouldn't break but enough force is needed to flatten out cells but not 

burst them). The resulting slide was then examined by phase contrast 

microscopy and any whole cells with chromosomes in the appropriate phase 

(dividing) for a viable count were counted by three different individuals.  

 

6.4.3 Results and discussion  

6.4.3.1 Carlton:  
Three slides produced cells that were suitable for counting, although the 

counting could not be performed to a degree of + or – 1 the chromosome 

number was clearly over 14 and less than 28. All three members of the team 

counted each slide several time, the number ranged from 18-22 and so Carlton 

is predicted to be triploid.  It was not possible to get a suitable photo showing 

the individual chromosomes.  

6.4.3.2 Andrew’s choice: 
Only two slides produced cells that were suitable for counting, it is clear in 

figure 6.1 that the cells used were whole and that the chromosomes were very 

elongated. This elongation and large size of daffodil chromosomes makes 

carrying out a count to a degree of + or – 1 very difficult. As with the Carlton 
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slides the count was estimated to be well above 14 and below 28 again 

suggesting a triploid. (3n=21).  

 
   

Figure 6-1 Phase contract microscope image of Andrew's Choice cells. 

The cells show individual chromosomes that can be counted to estimate ploidy. A is a chromosome and B 

shows the outline of the cell wall.  
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6.5 Andrew’s Choice RNA extraction trial results and 
discussion 

The results of the trial can be seen in table 6.6. It is clear that the best method of 

extraction is using the Analytik-Jena InnuPREP plant RNA Kit with the PL lysis 

solution. The kit gives high consistent yields and consistent 260/280 ratios.  

Therefore this method was used alongside a DNase step (Qiagen DNase kit) to 

extract the RNA to be used to create a cDNA library for the Andrew’s Choice 

variety. The extraction resulted in two samples with yields of 696 ng/μl and 740 

ng/μl. Both samples had 260/280 ratios within the range (1.8-2.3) suggesting 

pure RNA and 260/230 ratios suggesting no protein contamination. The 

samples were frozen and stored at -80°C until needed for cDNA library 

preparation. 
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Table 6-6 RNA extraction trial results. 

Date   Experiment  Sample  Method  ng ml-

1 
260/28
0 

260/23
0 

Gel results  Comments  

07/12/201
1 

1 Andrew's Choice, 
Liverpool, April 
2011  

CTAB followed by 
RNeasy clean up  

920 2.2 2.3 Ran on Qubit ® 2.0 
fluorometer looked 
intact and 
concentration 
700ngul-1 

Carried forward to mRNA selection using 
Dynabeads method. Failed to show any rRNA 
depletion and yield too low to continue  

 07/12/20
11 

2 Andrew's Choice, 
Liverpool,  April 
2011 

CTAB followed by 
RNeasy clean up  

564 2.2 1.6 ND 260/230 value below 2, which suggests 
impure RNA. Not used for further work  

07/02/201
2 

3  Andrew's Choice, 
Liverpool,  April 
2011 

CTAB followed by 
RNeasy clean up  

2116 2.2 2.3 Mostly intact some 
degradation  

This was a practise run to show Xianming the 
methodology. Good yield but shows that CTAB 
method is not consistent.  

 07/02/20
12 

4  Andrew's Choice, 
Liverpool,  April 
2011 

CTAB followed by 
RNeasy clean up  

2750 2.2 2 Mostly intact some 
degradation  

This was a practise run to show Xianming the 
methodology. Good yield but shows that CTAB 
method is not consistent.  

14/02/201
2 

5 Harvest 3 high field 
replicate 2 
Andrew’s choice  

MoBio Power Plant 
RNA extraction kit 
followed by RNeasy 
clean up with 
optional DNase on 
column step  

23 2 0.5 Yield too low to 
visualise. 

260/230 value suggested very poor degraded 
RNA with numerous contaminants. Could be 
caused by DNase step. Future plan to test Mo 
Bio kit without any DNase or clean up.  

 14/02/20
12 

6 Harvest 3 high field 
replicate 2 
Andrew’s choice  

MoBio Power Plant 
RNA extraction kit 
followed by RNeasy 
clean up with 
optional DNase on 
column step  

64 2.1 0.5 Yield too low to 
visualise 

260/230 value suggested very poor degraded 
RNA with numerous contaminants. Could be 
caused by DNase step. Future plan to test Mo 
Bio kit without any DNase or clean up.  

17/02/201
2 

7 Harvest 3 high field 
replicate 2 
Andrew’s choice  

MoBio Power Plant 
RNA extraction kit  

120 2 2.2 ND Graphs and 260/230 suggest quality RNA but 
low yields. Also DNA contamination is still 
present (221.72 ng ml-1) 
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 17/02/20
12 

8 Harvest 3 high field 
replicate 2 
Andrew’s choice  

MoBio Power Plant 
RNA extraction kit  

124 1.9 1.5 ND More contamination poorer quality than 
sample 7. Also DNA contamination 
(162.96ngul-1 ) 

 17/02/20
12 

9 RNA extracted in 
experiment 7 

MoBio RTS DNase  141 1.8 1.6 Highly degraded and 
DNA contamination  

Contaminated and still DNA Present 
(178.41ngul-1) 

 17/02/20
12 

10 RNA extracted in 
experiment 8  

MoBio RTS DNase  120 1.7 1.3 Highly degraded and 
DNA contamination  

Contaminated and still DNA Present 
(127.60ngul-1) 

 17/02/20
12 

11 RNA extracted in 
experiment 7  

RNeasy clean up  141 2 2.1 Better quality than 
experiment 9 and 10 
but still degraded  

DNA present (176.57ngul-1) 

 17/02/20
12 

12 RNA extracted in 
experiment 

RNeasy clean up  110 1.4 2 Better quality than 
experiment 9 and 10 
but still degraded  

DNA present (137.43ngul-1) 

28/02/201
2 

13 Harvest 3 high field 
replicate 3 AC  

CTAB followed by 
RNeasy clean up  

553 2.2 2.4 Reasonable quality. 
Too low a yield  

Continues to show inconsistent results.  

 28/02/20
12 

14 Harvest 3 high field 
replicate 3 AC  

CTAB followed by 
RNeasy clean up  

99 2.1 1 Too low to show up 
poor quality  

260/230 suggests poor quality and very low 
yield.  

29/02/201
2 

15 Harvest 3 low field 
replicate 2 AC  

InnuSPEED Plant 
RNA kit  

221 1.8 1.3 Too low a yield to 
show up  

260/230 too low suggests contaminants  

 29/02/20
12 

16 Harvest 3 low field 
replicate 2 AC  

InnuSPEED Plant 
RNA kit  

182 1.8 1.3 Too low a yield to 
visualise 

260/230 too low. However experiment 15 and 
16 are more consistent yields than other 
experiments.  

29/02/201
2 

17 Harvest 3 low field 
replicate 2 AC  

InnuPREP Plant 
RNA kit  

864 2.2 2.3 Higher yields, 
consistent, good 
quality. 

Shows promise. Good quality RNA on gel.  

 29/02/20
12 

18 Harvest 3 low field 
replicate 2 AC  

InnuPREP Plant 
RNA kit  

1452 2.2 2.3 Higher yields, 
consistent, good 
quality. 

Quality good.  
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6.6 List of Plants and Genes in GOI database 
 
Table 6-7 Plants and Genes included in GOI database. 

UNIPROT ID Enzyme  Species  
Q9LVY1 Tyrosine aminotransferase Arabidopsis thaliana 
Q9FN30 Probable aminotransferase TAT2 Arabidopsis thaliana 
Q9SK47 Probable aminotransferase TAT3 Arabidopsis thaliana 
D3K4J1 Tyrosine aminotransferase Papaver somniferum 
G8HAA8 PLP-dependent aminotransferase Papaver somniferum 
G8HAB3 PLP-dependent aminotransferase Papaver somniferum 
G8HAB0 PLP-dependent aminotransferase Papaver somniferum 
G8HAB2 PLP-dependent aminotransferase Papaver somniferum 
G8HAA9 PLP-dependent aminotransferase Papaver somniferum 
G8HAB1 PLP-dependent aminotransferase Papaver somniferum 
Q8GUE9 Tyrosine aminotransferase Solenostemon scutellarioides 
Q8RY79 Tyrosine decarboxylase 1 Arabidopsis thaliana 
P54770 Tyrosine/DOPA decarboxylase 3 Papaver somniferum 
P54768 Tyrosine/DOPA decarboxylase 1 Papaver somniferum 
P54769 Tyrosine/DOPA decarboxylase 2 Papaver somniferum 
P54771 Tyrosine/DOPA decarboxylase 5 Papaver somniferum 
B6E2Z2 Norcoclaurine synthase Papaver somniferum 
C3SBV6 Norcoclaurine synthase Thalictrum flavum 
C3SBV5 Norcoclaurine synthase (Fragment) Thalictrum flavum  
A2A1A0 S-norcoclaurine synthase 1 Coptis japonica 
A2A1A1 S-norcoclaurine synthase 2 Coptis japonica 
C3SBU1 Putative norcoclaurine synthase Papaver bracteatum 
C3SBT7 Putative norcoclaurine synthase Papaver bracteatum 
Q4QTJ1 S-norcoclaurine synthase 2 Papaver somniferum 
Q4QTJ2 S-norcoclaurine synthase 1 Papaver somniferum 
D2SMN3 S-norcoclaurine synthase 2 Argemone mexicana 

C3SBS5 
Pathogenesis-related (PR)-10-related 
norcoclaurine synthase-like protein Eschscholzia californica 

C3SBS4 
Pathogenesis-related (PR)-10-related 
norcoclaurine synthase-like protein Eschscholzia californica 

D2SMN1 S-norcoclaurine synthase 1 Argemone mexicana 
Q39224 Protein SRG1 Arabidopsis thaliana 
Q42393 Sn-1 protein Capsicum annuum  
Q9LEL6 (RS)-norcoclaurine 6-O-methyltransferase Coptis japonica  
Q9FK25 Flavone 3'-O-methyltransferase 1 Arabidopsis thaliana 
Q9FQY8 Caffeic acid 3-O-methyltransferase Capsicum annuum 
O81646 Caffeic acid 3-O-methyltransferase Capsicum chinense 

B5LAT9 
Putative caffeoyl-CoA 3-O-
methyltransferase Capsicum annuum 

Q6WUC0 Catechol O-methyltransferase Papaver somniferum 
I3PLQ7 O-methyltransferase Papaver somniferum 
I3PLQ5 O-methyltransferase 1 Papaver somniferum 
Q6WUC1 (R,S)-norcoclaurine 6-O-methyltransferase Papaver somniferum 
Q6WUC2 (R,S)-reticuline 7-O-methyltransferase Papaver somniferum 
C7SDN9 Norreticuline-7-O-methyltransferase Papaver somniferum 

C3SBT1 
Putative norcoclaurine 6-O-
methyltransferase (Fragment) Papaver bracteatum 

C3SBT9 
Putative norcoclaurine 6-O-
methyltransferase Papaver bracteatum 

I3PLQ6 O-methyltransferase 2 Papaver somniferum 
I3V6A7 Scoulerine-9-O-methyltransferase Papaver somniferum 

Q7XB09 
S-adenosyl-L-methionine:norcoclaurine 6-
O-methyltransferase Papaver somniferum 

Q7XB11 
S-adenosyl-L-methionine:3'-hydroxy-N-
methylcoclaurine 4'-O-methyltransferase 1 Papaver somniferum 

Q7XB10 
S-adenosyl-L-methionine:3'-hydroxy-N-
methylcoclaurine 4'-O-methyltransferase 2 Papaver somniferum 

C3SBT3 
Reticuline 7-O-methyltransferase-like 
protein Papaver bracteatum 

I3V6A8 Narcotoline-O-methyltransferase Papaver somniferum 

C3SBW1 
Reticuline 7-O-methyltransferase-like 
protein Papaver bracteatum 
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Q7XB08 
S-adenosyl-L-methionine:coclaurine N-
methyltransferase Papaver somniferum 

Q8L9U0 Coclaurine N-methyltransferase Arabidopsis thaliana 

Q5C9L6 (S)-coclaurine N-methyltransferase 
Thalictrum flavum subsp. 
glaucum 

Q948P7 Coclaurine N-methyltransferase Coptis japonica 
C3SBU8 Coclaurine N-methyltransferase (Fragment) Thalictrum flavum 

C3SBV3 
Coclaurine N-methyltransferase-like protein 
(Fragment) Thalictrum flavum 

O64899 
(S)-N-methylcoclaurine 3'-hydroxylase 
isozyme 1 (Fragment) Eschscholzia californica 

O64900 
(S)-N-methylcoclaurine 3'-hydroxylase 
isozyme 2 Eschscholzia californica 

Q9FXW4 
Probable (S)-N-methylcoclaurine 3'-
hydroxylase isozyme 2 Coptis japonica 

O64901 (S)-N-methylcoclaurine 3'-hydroxylase Eschscholzia californica 

B9VRK4 
(S)-N-methylcoclaurine 3'-hydroxylase 
(Fragment) Papaver orientale 

B9VRK5 
(S)-N-methylcoclaurine 3'-hydroxylase 
(Fragment) Papaver rhoeas 

C3SBS0 
(S)-N-methylcoclaurine 3'-hydroxylase 
(Fragment) Eschscholzia californica 

Q9M7I3 
(S)-N-methylcoclaurine 3'-hydroxylase 
(Fragment) Papaver somniferum 

B9VRK1 
(S)-N-methylcoclaurine 3'-hydroxylase 
(Fragment) Papaver somniferum 

Q9SP06 
(S)-N-methylcoclaurine 3'-hydroxylase 
(Fragment) Papaver somniferum 

B9VRK3 
(S)-N-methylcoclaurine 3'-hydroxylase 
(Fragment) Papaver nudicaule 

B9VRK2 
(S)-N-methylcoclaurine 3'-hydroxylase 
(Fragment) Papaver bracteatum 

C3SBT0 
Putative (S)-N-methylcoclaurine 3'-
hydroxylase (Fragment) Papaver bracteatum 

Q5C9L5 (S)-N-methylcoclaurine 3'-hydroxylase 
Thalictrum flavum subsp. 
glaucum 

P80969 Tyramine N-feruloyltransferase 10/30 Nicotiana tabacum  
Q9SMB8 Tyramine N-feruloyltransferase 4/11 Nicotiana tabacum 

Q9ATJ3 
Hydroxycinnamoyl-CoA: serotonin N-
(Hydroxycinnamoyl)transferase Capsicum annuum 

Q9ZV06 At2g39020 Arabidopsis thaliana 
P35510 Phenylalanine ammonia-lyase 1 Arabidopsis thaliana 
P45725 Phenylalanine ammonia-lyase 3 Arabidopsis thaliana 
Q9SS45 Phenylalanine ammonia-lyase 4 Arabidopsis thaliana 
Q65CJ7 Hydroxyphenylpyruvate reductase (HPPR) Solenostemon scutellarioides 
B1GV49 Cinnamate-4-hydroxylase Arabidopsis thaliana 
B1GV39 Cinnamate-4-hydroxylase  Arabidopsis thaliana 
B1GV36 Cinnamate-4-hydroxylase Arabidopsis thaliana 
B1GV37 Cinnamate-4-hydroxylase Arabidopsis thaliana 
B1GV38 Cinnamate-4-hydroxylase Arabidopsis thaliana 
B1GV55 Cinnamate-4-hydroxylase (Fragment) Arabidopsis thaliana 
B1GV56 Cinnamate-4-hydroxylase (Fragment) Arabidopsis lyrata 
Q9FQY6 Cinnamic acid 4-hydroxylase Capsicum annuum  
Q9S725 4-coumarate--CoA ligase 2 Arabidopsis thaliana 
Q9LU36 4-coumarate--CoA ligase 4 Arabidopsis thaliana 
Q42524 4-coumarate--CoA ligase 1 Arabidopsis thaliana 
Q9S777 4-coumarate--CoA ligase 3 Arabidopsis thaliana 
B1GUZ3 Cinnamyl alcohol dehydrogenase Arabidopsis thaliana 
B1GUZ2 Cinnamyl alcohol dehydrogenase Arabidopsis thaliana 
B1GUV7 4-cumarate-COA-ligase (Fragment) Arabidopsis thaliana 
B1GUV0 4-cumarate-COA-ligase (Fragment) Arabidopsis thaliana 
B1GUW8 4-cumarate-COA-ligase (Fragment) Arabidopsis thaliana 
B1GV02 Cinnamyl alcohol dehydrogenase Arabidopsis thaliana  
B1GUZ8 Cinnamyl alcohol dehydrogenase Arabidopsis thaliana  
B1GUV5 4-cumarate-COA-ligase (Fragment) Arabidopsis thaliana 
B1GUW5 4-cumarate-COA-ligase (Fragment) Arabidopsis thaliana 
B1GUZ6 Cinnamyl alcohol dehydrogenase Arabidopsis thaliana 
B1GUW0 4-cumarate-COA-ligase (Fragment) Arabidopsis thaliana 
B1GUZ7 Cinnamyl alcohol dehydrogenase Arabidopsis thaliana 
B1GV07 Cinnamyl alcohol dehydrogenase Arabidopsis thaliana 
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B1GV10 Cinnamyl alcohol dehydrogenase Arabidopsis thaliana 
A8MS69 4-coumarate--CoA ligase 1 Arabidopsis thaliana  
F4I9T8 4-coumarate--CoA ligase 3 Arabidopsis thaliana  
Q9FQY7 4-coumarate:coenzyme A ligase Capsicum annuum 
P13114 Chalcone synthase Arabidopsis thaliana 
Q460R0 Chalcone synthase family protein Arabidopsis thaliana  
Q705N7 Chalcone synthase (Fragment) Arabidopsis thaliana  
Q64HU3 Chalcone synthase (Fragment) Arabidopsis thaliana  

Q4JNW5 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana  

Q4JNW9 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana  

Q705N9 Chalcone synthase (Fragment)  Arabidopsis thaliana  
Q460R2 Chalcone synthase family protein Arabidopsis thaliana 
Q460R8 Chalcone synthase family protein Arabidopsis thaliana  
Q460Q4 Chalcone synthase family protein Arabidopsis thaliana 
Q460S8 Chalcone synthase family protein Arabidopsis thaliana 
Q460S2 Chalcone synthase family protein Arabidopsis thaliana  
Q460R3 Chalcone synthase family protein  Arabidopsis thaliana  
Q460T2 Chalcone synthase family protein Arabidopsis thaliana  
Q460Q3 Chalcone synthase family protein Arabidopsis thaliana  
Q5NDK6 Chalcone synthase Arabidopsis croatica 
Q5FBU9 Mutant protein of Chalcone synthase Arabidopsis thaliana  
Q5FBU5 Mutant protein of Chalcone synthase Arabidopsis thaliana 
Q5FBU6 Mutant protein of Chalcone synthase Arabidopsis thaliana  
Q460V1 Chalcone synthase family protein Arabidopsis thaliana  
Q460V0 Chalcone synthase family protein Arabidopsis thaliana  

Q4JNU5 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana 

Q4JNU1 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana 

Q460T8 Chalcone synthase family protein Arabidopsis thaliana 
Q460V5 Chalcone synthase family protein Arabidopsis thaliana 

Q4JNW8 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana 

Q4JNT9 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana 

Q4JNU6 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana 

Q4JNU2 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana 

Q4JNW2 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana 

Q4JNW6 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana  

Q460U2 Chalcone synthase family protein Arabidopsis thaliana 
Q460W0 Chalcone synthase family protein Arabidopsis thaliana 

Q4JNW4 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana 

Q4JNV9 
Chalcone synthase family protein 
(Fragment) Arabidopsis thaliana 

I3WWC8 Chalcone synthase Capsicum annuum 
C0LF60 Chalcone synthase (Fragment) Capsicum annuum 
A5A369 Chalcone synthase Solenostemon scutellarioides 
C9VWQ6 CHS (Fragment) Solenostemon scutellarioides  
Q9FQY8 Caffeic acid 3-O-methyltransferase Capsicum annuum 
O81646 Caffeic acid 3-O-methyltransferase Capsicum chinense 
Q9FK25 Flavone 3'-O-methyltransferase 1 Arabidopsis thaliana 
O49499 Caffeoyl-CoA O-methyltransferase 1 Arabidopsis thaliana 
Q6WUC0 Catechol O-methyltransferase Papaver somniferum 
Q6WUC1 (R,S)-norcoclaurine 6-O-methyltransferase Papaver somniferum 
C7SDN9 Norreticuline-7-O-methyltransferase Papaver somniferum 
Q6WUC2 (R,S)-reticuline 7-O-methyltransferase Papaver somniferum 
I3PLQ7 O-methyltransferase Papaver somniferum 
G3FDY1 Caffeic acid O-methyltransferase Salvia miltiorrhiza 
G3FDY0 Caffeic acid O-methyltransferase Salvia miltiorrhiza 
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6.7 Primers for RT-PCR, Sanger sequencing and qPCR 
 
Table 6-8 Primers for RT-PCR, Sanger sequencing and qPCR. 

 

  

Contig id  Forward Primer TM Reverse Primer TM Product 
length 
(bp) 

Original 
or nested  

Sent for 
Sanger 
sequencing 

Used in 
qPCR 

Contig01152 CGAGTCTATAAAACCATTCATCGAG 59.7 TTCAATTATCACTTTGGCAACTACA 56.5 223 original Yes No 
HDA57HA01BEL8O CTGATCTCCTTTATAACAGCTTCCA 59.7 ATCGGCATTATAAATCTGAAAACAG 56.4 310 Original No no 

TTCCAGGTAGCTCATTTTGC 55.3 GATTTTTGTGGAAGCTCTGC 55.3 264 nested No No 
HDA57HA010VJD TTGCACCAATTTGGAACTCA 53.2 GTGCTACGGAAACACCCATT 57.3 103 Original yes no 
Daff74484 AGCTACGTAGTCAATCTCATTGGTC 60 ATGTCTGTAATTCCATTCGTAGAGC 59 402 Original Yes yes 
Daff88927 CAGTTGGTTTAATTCATCTCTGCTT 58.1 ATGACAGAATTCTAGCAGCTTTGTT 58.1 332 Original Yes yes 
Daff106212 ATTCCAGCTAAAGAAAAAGGAGGTA 58.1 TCTTGAACTCATTCTCAGTTCTCTG 58.1 163 original Yes yes 
COMP75950_C0_S1 GATTGTGGCAGACCCAGAGT 59.4 CGGAGATCCAGACGTAGGAG 61.4 97 original No No 
COMP97312_C0_S1 ATCGACCAACGAAGCTAGGA 57.3 AATTTGCTTCCCCCTCACAT 55.3 145 original Yes No 
COMP99544_C0_S1 TGCTCTCCTCCAACAGTTCA 57.3 CCGAGGATTACTTGCCATTC 57.3 126 original Yes No 
COMP100406_C1_S2 AATTGAGCGCAATCCAAGAG 55.3 TTCACACAACTGGGAAGCAG 57.3 107 original Yes No 
COMP100760_C0_S2 CAAGCTTCCACCTTCTCCTC 59.4 ATGAGGGGGCCATACTTCTT 57.3 117 original Yes No 
Comp101410c0s3 AGATCGGGGACTTCGAAAAT 55.3 GGCGACGAGCTAGATACGAG 61.4 92 original No  Yes 
Contig01404 GAGATGGAGCACTTGGAAGC 59.4 CCACgAAATCAAGACGTTCC 57.3 87 original No Yes 
HDA57HA01B3O58 CTTTGCTGTGACTGGGATGA 57.3 ATCACCTTTCCGTTGTCAGG 57.3 83 original No Yes 
HDA57HA01AK3FX ACCATGCCAAGAAATTGGAG 57.3 TCTGTCATGCTCCGTTCAAG 55.3 190 original No Yes 
Contig01885 TTTGGAGATCGACCTTGTCC 59.4 CGAAACTCGCATGGACTACA 57.3 83 original No Yes 
Contig02587 CCAGATTCaGGTGTTGAGCA 57.3 GGAGAATCGCTCGCTAGATG 59.4 82 original No Yes 
Contig03502 TGCCATCAAGTTTGTTCGAG 55.3 TTCCTgAGCTCGTGaAAgGT 57.3 93 original No Yes 
HDA57HA01AW38A TTACACCTCCACGAGCAACA 57.3 CCTCACACCTACCACAGCAA 59.4 95 original no Yes 
ACTIN  GATAGAACCTCCAATCCAAACACTA 59.7 GTGTGATGTGGATATTAGGAAGGAC 61.3 184 original yes yes 
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6.8 qPCR Plate set up  
One transcript of interest was run on each plate alongside actin for comparison.  

 

Table 6-9 qPCR plate layout. 

C = Carlton cDNA  
1, 2 or 3= biological replicate  
+ve= cDNA 
-ve= reaction mix from cDNA synthesis without Reverse Transcriptase  
H2O= RO water instead of cDNA in PCR reaction 

 
= PCR ran with actin primers             = PCR ran with transcript specific primers of interest primers

C1+ve C1+ve C1+ve C1-ve C1-ve C1-ve C1+ve C1+ve C1+ve C1-ve C1-ve C1-ve 

C2+ve C2+ve C2+ve C2-ve C2-ve C2-ve C2+ve C2+ve C2+ve C2-ve C2-ve C2-ve 

C3+ve C3+ve C3+ve C3-ve C3-ve C3-ve C3+ve C3+ve C3+ve C3-ve C3-ve C3-ve 

AC1+ve AC1+ve AC1+ve AC1-ve AC1-ve AC1-ve AC1+ve AC1+ve AC1+ve AC1-ve AC1-ve AC1-ve 

AC2+ve AC2+ve AC2+ve AC2-ve AC2-ve AC2-ve C2+ve AC2+ve AC2+ve AC2-ve AC2-ve AC2-ve 

AC3+ve AC3+ve AC3+ve AC3-ve AC3-ve AC3-ve C3+ve AC3+ve AC3+ve AC3-ve AC3-ve AC3-ve 

H2O H2O H2O    H2O H2O H2O    
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6.9 ClustalO Alignment from UniProt Alignment 
program  

CLUSTAL O(1.2.1) multiple sequence alignment 
 
SP|P45724|PAL2_ARATH MDQIEAMLC----GGGEKTKVAVTTKTLADPLNWGLAADQMKGSHLDEVKKMVEEYRRPV 56 
SP|P45727|PALY_PERAE ------------------------------------------------------------ 
SP|P45729|PAL3_PETCR MAYVNGTTNGH--ANGNGL---DLCMKKEDPLNWGVAAEALTGSHLDEVKRMVAEYRKPV 55 
SP|P45726|PALY_CAMSI MDSTTAIGNGV--GSGGSP---GFCL--KDPLNWGVAAEAMKGSHLEEVKGMVEEFRKPV 53 
SP|Q42609|PALY_BROFI ---------------MEVSKENGLCLQGRDPLNWGAAAAELQGSHLDEVKKMVEEFRRPV 45 
SP|O64963|PAL1_PRUAV MATNSIKQNGHKNGSVELP---ELCIK-KDPLNWGVAAETLKGSHLDEVKRMVAEYRKPV 56 
                                                                                  
 
SP|P45724|PAL2_ARATH VNLGGETLTIGQVAAISTVG-GSVKVELAETSRAGVKASSDWVMESMNKGTDSYGVTTGF 115 
SP|P45727|PALY_PERAE -------------------------------------------MESMDKGTDSYGVTTGF 17 
SP|P45729|PAL3_PETCR VKLEGETLTISQVAAISARDDSGVKVELSEEARAGVKASSDWVMDSMNKGTDSYGVTTGF 115 
SP|P45726|PALY_CAMSI VRLGGETLTISQVAAIAVRG-SEVAVELSESAREGVKASSDWVMESMNKGTDSYGVTTGF 112 
SP|Q42609|PALY_BROFI VKLEGVKLKISQVAAVAFGG-GASAVELAESARAGVKASSDWVLESVDKGTDSYGVTTGF 104 
SP|O64963|PAL1_PRUAV VKLGGESLTISQVAAIATH-DSGVKVELSESARAGVKASSDWVMDSMSKGTDSYGVTTGF 115 
                                                                ::*:.************ 
 
SP|P45724|PAL2_ARATH GATSHRRTKNGTALQTELIRFLNAGIFGNTKET-CHTLPQSATRAAMLVRVNTLLQGYSG 174 
SP|P45727|PALY_PERAE GATSHRRTKQGGALHKELIRFLNAGIFGTNGESG-HTLAPSATRAAMLVRINTLLQGYSG 76 
SP|P45729|PAL3_PETCR GATSHRRTKQGGALQKELIRFLNAGIFGSGAEAGNNTLPHSATRAAMLVRINTLLQGYSG 175 
SP|P45726|PALY_CAMSI GATSHRRTKEGGALQKELIRFLNAGIFGNGTES-CHTLPQSATRAAMLVRINTLLQGYSG 171 
SP|Q42609|PALY_BROFI GATSHRRTKQGGALQKELIKFLNAGIFGSGN---SNTLPSAATRAAMLVRINTLLQGYSG 161 
SP|O64963|PAL1_PRUAV GATSHRRTKQGAALQKELIRFLNAGVFGSTKESG-HTLPHQATRAAMLVRINTLLQGYSG 174 
                     *********:* **:.***:*****:**.      .**   *********:********* 
 
SP|P45724|PAL2_ARATH IRFEILEAITSLLNHNISPSLPLRGTITASGDLVPLSYIAGLLTGRPNSKATGPDGESLT 234 
SP|P45727|PALY_PERAE IRFEILEAITSLLNHSITPCLPLRGTITASGDLVPLSYIAGMLTGRPNSKGDWPDGKEID 136 
SP|P45729|PAL3_PETCR IRFEILEAITKFLNHNITPCLPLRGTITASGDLVPLSYIAGLLTGRPNSKAVGPTGVTLS 235 
SP|P45726|PALY_CAMSI IRFEILEAISKFLNNNITPCLPLRGTITASGDLVPLSYIAGLLTGRHNSKAVGPTGEILH 231 
SP|Q42609|PALY_BROFI IRFEILKAIATLLNKNITPCLPLRGTITASGDLVPLSYLAGILTGRPNSKARTPNGSTVD 221 
SP|O64963|PAL1_PRUAV IRFEILEVITKFLNNNVTPCLPLRGTITASGDLVPLSYIAGMLTGRPNSKAVGPDGQTLS 234 
                     ******:.*:.:**..::*.******************:**:**** ***.  * *  :  
 
SP|P45724|PAL2_ARATH AKEAFEKAGISTGFFDLQPKEGLALVNGTAVGSGMASMVLFEANVQAVLAEVLSAIFAEV 294 
SP|P45727|PALY_PERAE AGEAFRLAGIPSGFFELQPKEGLALVNGTAVGSGLASMVLFEANVLSVLSEVISAIFCEV 196 
SP|P45729|PAL3_PETCR PEEAFKLAGVEGGFFELQPKEGLALVNGTAVGSGMASMVLFEANILAVLAEVMSAIFAEV 295 
SP|P45726|PALY_CAMSI PKEAFRLAGVEGGFFELQPKEGLALVNGTAVGSGLASMVLFEANILAVLSEVLSAIFAEV 291 
SP|Q42609|PALY_BROFI ATTAFRLAGISSGFFDLQPKEGLALVNGTAVGSGVASIVLFETNILAVMAELLSALFCEV 281 
SP|O64963|PAL1_PRUAV AAEAFEFVGINSGFFELQPKEGLALVNGTAVGSGLASTVLFDTNILALLSEILSAIFAEV 294 
                        **. .*:  ***:******************:** ***::*: ::::*::**:*.** 
 
SP|P45724|PAL2_ARATH MSGKPEFTDHLTHRLKHHPGQIEAAAIMEHILDGSSYMKLAQKVHEMDPLQKPKQDRYA- 353 
SP|P45727|PALY_PERAE MQGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSYMKVAKKLHELDPLQKPKQDPYAA 256 
SP|P45729|PAL3_PETCR MQGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSAYVKAAQKLHEMDPLQKPKQDRYA- 354 
SP|P45726|PALY_CAMSI MQGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSYVKAAQKLHEMDPLQKPKQDRYA- 350 
SP|Q42609|PALY_BROFI MQGKPEFTDHLTHKLKHHPGQIEAAAVMEHILEGSSYMKMAKKLHEMDPLQKPKQDRYA- 340 
SP|O64963|PAL1_PRUAV MQGKPEFTDHLTHKLKHHPGQIEAAAIMEHILDGSSYVKAAKKLHEQDPLQKPKQDRYA- 353 
                     *.***********:************:*****:**:*:* *:*:** ********* **  
 
SP|P45724|PAL2_ARATH LRTSPQWLGPQIEVIRQATKSIEREINSVNDNPLIDVSRNKAIHGGNFQGTPIGVSMDNT 413 
SP|P45727|PALY_PERAE LRTSPQWLGPQIEVIRNATLSIEREINSVNDNPLIDVSRNKALHGRNFQGTPIGVSMDNT 316 
SP|P45729|PAL3_PETCR LRTSPQWLGPQIEVIRSSTKMIEREINSVNDNPLIDVSRNKAIHGGNFQGSPIGVSMDNT 414 
SP|P45726|PALY_CAMSI LRTSPQWLGPLIEVIRSSTKSIEREINSVNDNPLINVSRNKALHGGNFQGTPIGVSMDNT 410 
SP|Q42609|PALY_BROFI LRTSPQWLGPQIEVIRAATKSIEREINSVNDNPLIDVSRNKALHGGNFQGTPIGVSMDNT 400 
SP|O64963|PAL1_PRUAV LRTSPQWLGPQIEVIRYSTKSIEREIDSVNDNPLIDVSRNKALHGGNFQGTPIGVSMDNT 413 
                     ********** ***** :*  *****:********:******:** ****:********* 
 
SP|P45724|PAL2_ARATH RLAIAAIGKLMFAQFSELVNDFYNNGLPSNLTASSNPSLDYGFKGAEIAMASYCSELQYL 473 
SP|P45727|PALY_PERAE RLAIAAIGKLMFAQFSELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMAAYCSELQFL 376 
SP|P45729|PAL3_PETCR RLAIAAIGKLMFAQFSELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMASYCSELQFL 474 
SP|P45726|PALY_CAMSI RLAVASIGKLMFAQFSELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMAAYCSELQFL 470 
SP|Q42609|PALY_BROFI RLAIAAIGKLMFAQFSELVNDFYNNGLPSNLSSGRNPSLDYGFKGAEIAMASYCSELQAL 460 
SP|O64963|PAL1_PRUAV RLAIASIGKLMFAQFSELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMASYCSELQFL 473 
                     ***:*:*************************:.. ****************:****** * 
 
SP|P45724|PAL2_ARATH ANPVTSHVQSAEQHNQDVNSLGLISSRKTSEAVDILKLMSTTFLVGICQAVDLRHLEENL 533 
SP|P45727|PALY_PERAE ANPVTNHVQSAEQHNQDVNSLGLISSRKTAEAVEILKLMSSTFLVGLCQAIDLRHLEENL 436 
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SP|P45729|PAL3_PETCR ANPVTNHVQSAEQHNQDVNSLGLISSRKTSEAVEILKLMSTTFLVGLCQAIDLRHLEENL 534 
SP|P45726|PALY_CAMSI ANPVTNHVQSAEQHNQDVNSLGLISSRKTAEAVDILKLMSSTYLVALCQAVDLRHFEENL 530 
SP|Q42609|PALY_BROFI ANPVTNHVQSAEQHNQDVNSLGLISSRKTAEAVDILKLMSTTFLVGLCQAVDLRHLEENL 520 
SP|O64963|PAL1_PRUAV ANPVTNHVQSAEQHNQDVNSLGLISSRKTAEAVDILKLMSSTFLVALCQAIDLRHLEENL 533 
                     *****.***********************:***:******:*:**.:***:****:**** 
 
SP|P45724|PAL2_ARATH RQTVKNTVSQVAKKVLTTGINGELHPSRFCEKDLLKVVDREQVFTYVDDPCSATYPLMQR 593 
SP|P45727|PALY_PERAE KSTVKNTVSQVAKRVLTIGVNGELHPSRFCEKDLIKVVDGEHLFAYIDDPCSCTYPLMQK 496 
SP|P45729|PAL3_PETCR KSTVKNTVSQVAKRVLTMGVNGELHPSRFCEKDLLRVVDREYIFAYIDDPCSATYPLMQK 594 
SP|P45726|PALY_CAMSI RNTVKSTVSQVAKRVLTMGVNGELHPSRFCEKDLLRVVDREYIFAYIDDPCSATYPLMQK 590 
SP|Q42609|PALY_BROFI KNAVKNTVSQVAKRVLTMGVNGELHPSRFCEKDLIKVIDREYVFAYADDPCSSTYPLMQK 580 
SP|O64963|PAL1_PRUAV RNTVKNTVSQVAKRTLTTGVNGELHPSRFCEKDLLKVVDREYVFAYIDDPCSATYPLMQK 593 
                     :.:**.*******:.** *:**************::*:* * :*:* *****.******: 
 
SP|P45724|PAL2_ARATH LRQVIVDHALSNGETEKNAVTSIFQKIGAFEEELKAVLPKEVEAARAAYGNGTAPIPNRI 653 
SP|P45727|PALY_PERAE LRQVLVEHALINGEKEKDSSTSIFQKIGAFEEELKTHLPKEVESARIELERGNSAIPNRI 556 
SP|P45729|PAL3_PETCR LRETLVEHALNNGDKERNLSTSIFQKIAAFEDELKALLPKEVETARAALESGNPAIPNRI 654 
SP|P45726|PALY_CAMSI LRQVLVEHALKNGESEKNLSTSIFQKIRAFEEEIKTLLPKEVESTRAAIENGNSAIPNRI 650 
SP|Q42609|PALY_BROFI LRAVIVEHALNNGVKEKDSNTSIFQKISSFENELKAALPKEVEAARAEFENGSPAIENRI 640 
SP|O64963|PAL1_PRUAV LRQVLVEHALTNGENEKNASTSIFQKIVAFEEELKVLLPKEVDSARAALDSGSAGVPNRI 653 
                     ** .:*:*** ** .*::  ******* :**:*:*. *****:::*     *.  : *** 
 
SP|P45724|PAL2_ARATH KECRSYPLYRFVREELGTKLLTGEKVVSPGEEFDKVFTAMCEGKLIDPLMDCLKEWNGAP 713 
SP|P45727|PALY_PERAE KECRSYPLYKFVREELKTSLLTGEKVRSPGEEFDKVFSAICQGKVIDPLLECLREWNGAP 616 
SP|P45729|PAL3_PETCR KECRSYPLYKFVREELGTEYLTGEKVRSPGEEFEKVFTAMSKGEIIDPLLECLESWNGAP 714 
SP|P45726|PALY_CAMSI KECRSYPLYKFVREELGTELLTGEKVRSPGEEFDKVFTALCKGEMIDPLMDCLKEWNGAP 710 
SP|Q42609|PALY_BROFI KDCRSYPLYKFVK-EVGSGFLTGEKVVSPGEEFDKVFNAICEGKAIDPMLDCLKEWNGAP 699 
SP|O64963|PAL1_PRUAV TECRSYPLYKFVREELGAEYLTGEKVRSPGEECDKVFTAICEGKIIDPILDCLEGWNGAP 713 
                     .:*******:**: *: :  ****** ***** :***.*:.:*: ***:::**. ***** 
 
SP|P45724|PAL2_ARATH IPIC 717 
SP|P45727|PALY_PERAE IPIC 620 
SP|P45729|PAL3_PETCR LPIC 718 
SP|P45726|PALY_CAMSI LPIC 714 
SP|Q42609|PALY_BROFI LPIC 703 
SP|O64963|PAL1_PRUAV LPIC 717 
                     :*** 
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6.10 Command line prompts  
 
Cutadapt and filtering and trimming of raw reads- (Section 3.3.1.5)  

Cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -O 3 
Andrewschoice_R1_001.fastq.gz -o Andrewschoice_R1_noadap_001.fastq.gz 
 
Cutadapt -a AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT -O 3 
Andrewschoice_R2_001.fastq.gz -o Andrewschoice_R2_noadap_001.fastq.gz 
 
Cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -O 3 Carlton_R1_001.fastq.gz -
o Carlton_R1_noadap_001.fastq.gz 
 
Cutadapt -a AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT-O 3 Carlton_R2_001.fastq.gz -o 
Carlton_R2_noadap_001.fastq.gz 
 
perl IlluQC.pl -pe Carlton_R1_noadap_001.fastq Calrton_R2_noadap_001.fastq N A -l 70 -s 
20 -o Carlton_illuQC_out 
 
 
perl IlluQC.pl -pe Andrewschoice_R1_noadap_001.fastq 
Andrewschoice_R2_noadap_001.fastq N A -l 70 -s 20 -o Andrewschoice_illuQC_out 
 
perl TrimmingReads.pl -i Carlton_R1_noadap_001.fastq_filtered -irev 
Calrton_R2_noadap_001.fastq_filtered -q 30 -n 20  
 
perl TrimmingReads.pl -i Andrewschoice_R1_noadap_001.fastq_filtered -irev 
Andrewschoice_R2_noadap_001.fastq_filtered -q 30 -n 20  
 

6.10.1 Trinity assembly and Soapdenovo-Trans assembly –(Section 
3.3.1.6 ) 

perl Trinity.pl --seqType fq --JM 54G --CPU 16 --left 
Carlton_R1_noadap_001_Asssss.fastq_filtered_trimmed --right 
Carlton_R2_noadap_001_Asssss.fastq_filtered_trimmed  --output 
Carlton_trimmed_trinity_out.fasta 
 
./SOAPdenovo-Trans all -s config_file -o soap_out 1> soap_stdout 
 
configuration file:  
 
[LIB] 

max_rd_len=100 

avg_ins=215 

reverse_seq=1 

asm_flags=3 

rank=1 

q1=JaneD_GCCAAT_L006_R1_noadap_001_Asssss.fastq_filtered_trimmed.fq 

q2=JaneD_GCCAAT_L006_R2_noadap_001_Asssss.fastq_filtered_trimmed.fq 
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6.10.2 Mapping Analysis –( Section 3.3.1.7) 
Build a reference:  
 
bowtie2-build contig_sings_MID7_2_forblast 454_reference_ 
 
bowtie2-build  Trinity.fasta carlton_reference_ 
 
bowtie2-build Soap_denovo_trans.fasta soap_reference  
 
map Illumina reads:  
 
 
bowtie2  454_reference_ -1 Carlton_forward_trim_filt.fastq -2 
Carlton_reverse_trin_filt.fastq Carlton_aligned_454_reads.sam 
 
bowtie2  454_reference_ -1 Andrewschoice_forward_trim_filt.fastq -2 
andrewschoice_reverse_trin_filt.fastq andrewschoice_aligned_454_reads.sam 
 
bowtie2  carlton_reference_ -1 Carlton_forward_trim_filt.fastq -2 
Carlton_reverse_trin_filt.fastq Carlton_aligned_trin_reads.sam 
 
bowtie2  carlton_reference_ -1 Andrewschoice_forward_trim_filt.fastq -2 
andrewschoice_reverse_trin_filt.fastq andrewschoice_aligned_trin_reads.sam 
 
bowtie2  soap_reference_ -1 Carlton_forward_trim_filt.fastq -2 
Carlton_reverse_trin_filt.fastq Carlton_aligned_soap_reads.sam 
 
bowtie2  soap_reference_ -1 Andrewschoice_forward_trim_filt.fastq -2 
andrewschoice_reverse_trin_filt.fastq andrewschoice_aligned_soap_reads.sam 
 
(The following steps were carried out on all three assemblies, only the 454 assembly is shown for 
reference) 
 
Index references:  
samtools faidx contig_sings_MID_2_for blast 
 
convert to bam file: 
samtools import contig_sings_MID7_2_forblast.fai Carlton_aligned_to_454_reads.sam 
Carlton_aligned_to_454_reads.bam 
samtools import contig_sings_MID7_2_forblast.fai 
Andrewschoice_aligned_to_454_reads.sam Andrewschoice_aligned_to_454_reads.bam 
 
sort bam files:  
samtools sort Carlton_aligned_to_454_reads.bam 
Carlton_aligned_to_454_reads.sorted.bam 
samtools sort Andrewschoice_aligned_to_454_reads.bam 
Andrewschoice_aligned_to_454_reads.sorted.bam 
 
index sorted bam files:  
 
samtools index Carlton_aligned_to_454_reads.sorted.bam 
samtools index Andrewschoice_aligned_to_454_reads.sorted.bam 
 
(the following steps were carried out for both varieties with reads mapped to all three assemblies 
using the same options. For reference, only the Trinity reference steps are shown) 
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Run the perl script:  
perl coverageStatsSplitByChr_v2.pl -i Carlton_aligned_reads_to_trinity.sorted.bam.bam 
>Carlton_map_to_trinity_coverage.out 
perl /pub16/jpulman/My_scripts/coverageStatsSplitByChr_v2.pl -i 
Andrewschoice_aligned_reads_to_trinity.sorted.bam.bam 
>Andrewschoice_map_to_trinity_coverage.out 
 
pull out % mapped (testsplit.pl script set to pull out column 4): 
perl  testsplit.pl Carlton_map_to_trinity_coverage.out >%mapped_Carlton_trinity 
perl testsplit.pl Andrewschoice_map_to_trinity_coverage.out 
>%mapped_Andrewschoice_trinity 
 
calculate average:  
awk 'BEGIN{s=0;}{s+=$1;}END{print s/NR;}' mapped_%_Carlton_trinity 
awk 'BEGIN{s=0;}{s+=$1;}END{print s/NR;}' mapped_%_Andrewschoice_trinity 
 
pull out coverage (testsplit.pl set to pull out column 5) : 
 
perl testsplit.pl Carlton_map_to_trinity_coverage.out >Carlton_mean_depth_trinity 
perl testsplit.pl Andrewschoice_map_to_trinity_coverage.out 
>Andrewschoice_mean_depth_trinity 
 
calculate average:  
awk 'BEGIN{s=0;}{s+=$1;}END{print s/NR;}' mean_depth_Carlton_trinity 
 
 
awk 'BEGIN{s=0;}{s+=$1;}END{print s/NR;}' mean_depth_Andrewschoice_trinity 
 
 

6.10.3 VarScan and pileup_parser.pl –( Section 3.3.2) 
 
java -jar VarScan.v2.3.4.jar pileup2snp Carlton_to_454_pileup --min-coverage 20 --min-
reads2 100 --min-avg-qual 20 --p-value 0.05 >varscanoptions_Carlton_out 
 
java -jar VarScan.v2.3.4.jar pileup2snp Andrews_choice_to_454_pileup --min-coverage 20 
--min-reads2 100 --min-avg-qual 20 --p-value 0.05 >varscanoptions_Andrewschoice_out 
 
java -jar VarScan.v2.3.4.jar pileup2snp Carlton_to_trinity_pileup --min-coverage 20 --min-
reads2 100 --min-avg-qual 20 --p-value 0.05 >varscanoptions_Carlton_trinity_out 
 
java -jar VarScan.v2.3.4.jar pileup2snp Andrews_choice_to_trinity_pileup --min-coverage 
20 --min-reads2 100 --min-avg-qual 20 --p-value 0.05 
>varscanoptions_Andrewschoice_trinity_out 
 
Perl pileup_parser.pl Carlton_to454_pileup Calrton_454_pileup_parse_out 
 
Perl pileup_parser.pl Andrewschoice__to454_pileup Andrews 
choice_454_pileup_parse_out 
 
Perl pileup_parser.pl Carlton_trinity_pileup Calrton_pileup_trinity_parse_out 
 
Perl pileup_parser.pl Andrewschoice_trinity_pileup Andrews 
choice_pileup__trinityparse_out 
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6.10.4 BitSeq Analysis – (section 3.3.2) 
(All the steps shown in this section were carried out on both assemblies, for 

reference the steps are shown on a generic set of files) 
bowtie-build -f -o 2 -t 12 --ntoa reference.fasta reference_index 

bowtie -q -v 3 -3 0 -p 4 -a -m 100 --sam reference_index -1 condition1_forward.fastq -2 
condition1_reverse.fastq condition1_trin_bitseq2.sam 
 

bowtie -q -v 3 -3 0 -p 4 -a -m 100 --sam reference_index -1 condition2_forward.fastq -2 
condition2_reverse.fastq condition2_trin_bitseq.sam 
 
Step1: Pre-processing 

./parseAlignment condition1_trin_bitseq.sam -o condition1.prob --trSeqFile 

reference.fasta --trInfoFile reference.fasta.tr --uniform --verbose 

 

./parseAlignment condition_2_trin_bitseq.sam -o condition2.prob --trSeqFile 

reference.fasta --trInfoFile reference.fasta.tr --uniform –verbose 

Step2: Sampling  

./estimateExpression condition1.prob -o condition1 --outType RPKM -p parameters1.txt -

t reference.fasta.tr -P 4 

./estimateExpression conditon2.prob -o condition2 --outType RPKM -p parameters1.txt -t 

reference.fasta.tr -P 4 

./getVariance -o conditon1.mean condition1.rpkm  

./getVariance -o condition2.mean condition2.rpkm  

Step 3:  

./getVariance --log –o both_to_Trinity_ref.Lmean condition1.rpkm  condition2.rpkm  

 

Hyper parameters:  

./estimateHyperPar --meanFile both_to_Trinity_ref.Lmean -o both_to_Trinity_ref.param 

condition1.rpkm C condition2.rpkm   

Step4: Condition specific expression  

./estimateDE -o both_to_Trinity_ref -p both_to_Trinity_ref.param condition1.rpkm C 

condition2.rpkm   
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awk 'NR>8' both_to_Trinity.pplr > both_to_Trinity _noheader.pplr 

  

 paste trin_contigs both_to_Trinity _noheader.pplr > both_to_Trinity _final.pplr 

   

 perl tabtospace.pl both_to_Trinity _final.pplr both_to_Trinity _notab.pplr 

perl testsplit_bitseq.pl both_to_Trinity_notab.pplr trinity_up trinity_down 

6.10.5 BMtagger –( Section 3.3.2) 
./bmtool -d TREP.complete.fas -o TREP.bitmask -A 0 -w 18 

  ./srprism mkindex -i TREP.complete.fas -o TREP.srprism -M 7168 

  makeblastdb -in TREP.complete.fas -dbtype nucl 

  ./bmtagger.sh -b TREP.bitmask -x TREP.srprism -T tmpjane -q1 -1 

Carlton_forward.fastq -2 Carlton_reverse.fastq -o Carlton_bmtagger_output  

 
perl extract_nonhuman_reads_fastq.pl Carlton_bmtagger_output 
Carlton_trimmed_filtered_forward.fastq Carlton_trimmed_filtered_reverse.fastq 
 
perl extract_nonhuman_reads_fastq.pl Andrews_choice_bmtagger_output 
Andrews_choice_trimmed_filtered_forward.fastq 
Andrews_choice_trimmed_filtered_reverse.fastq 
 

6.10.6 TransposonPSI.pl –( Section 3.3.5.2) 
perl transposonPSI.pl Carlton_R1_filt_trim.fasta nuc 

perl transponsonPSI.pl Carlton_R2_filt_trim.fasta nuc 

perl transposonPSI.pl Andrews_choice_R1_filt_trim.fasta nuc 

perl transposonPSI.pl Andrews_choice_R2_filt_trim.fasta nuc 

 

6.10.7 BLAST against TREP- (Section 3.3.5.3)  
time pblastall Andrews_choice_forward.fasta -p blastx id TREP.complete.fas -F T -m 8 -b 1 
-v 1 >JaneA_R1_blast_out.gz 
time pblastall Andrews_choice_reverse.fasta -p blastx id TREP.complete.fas -F T -m 8 -b 1 
-v 1 >JaneA_R2_blast_out.gz 
 
time pblastall Carlton_forward.fasta -p blastx id TREP.complete.fas -F T -m 8 -b 1 -v 1 
>JaneD_R1_blast_out.gz 
time pblastall Carlton_reverse.fasta -p blastx id TREP.complete.fas -F T -m 8 -b 1 -v 1 
>JaneD_R2_blast_out.gz 
 
perl extract_nonhuman_reads_fastq.pl  blast_against_TREP_e5_ids Carlton_forward.fastq 
Carlton_reverse.fastq 
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perl extract_nonhuman_reads_fastq.pl  blast_against_TREP_e5_ids 
Andrews_choice_forward.fastq Andrews_choice_reverse.fastq 
 

6.10.8 Trinity re-assembly- (Section 3.3.6) 
perl Trinity.pl --seqType fq --JM 54G --left Carlton_forward_BM_trimmed_filtered.fastq --
right Calrton_reverse_BM_trimmed_filtered.fastq --CPU 6 
 

6.10.9 BLAST against genes of interest database- (Section 4.2.3) 
time pblastall 454_reference.fasta -p blastx -d predicted_genes.fasta -F T -m 8 -b 1 -v 1 
>Predicted_gene_454_blast_out.gz 
 
gunzip Predicted_gene_454_blast_out.gz 
 
perl remove_low_scoring_blast.pl Predicted_gene_454_blast_out_rlsb  
 
cat Predicted_gene_454_blast_out_rlsb  | firstm8hsp.sh > 
Predicted_gene_454_blast_out_rlsb_nhsp 
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