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Abstract 

Malaria is one of the most prevalent and deadliest parasitic diseases affecting 

various systems of the body and leading to death. Resistance against antimalarial treatment 

is a major threat in controlling and eliminating malaria. New drugs are urgently needed 

especially when artemisinin resistance has emerged. The mitochondrial electron transport 

chain of Plasmodium falciparum is an attractive target for chemotherapy. Two enzymes in 

the pathway - Pfbc1 and PfNDH2 - are druggable target enzymes. The dual inhibition of both 

enzymes can be seen in 2-aryl quinolone pharmacophore giving added therapeutic benefit. 

The development from this series leads to the potent lead compounds including SL-2-25 

and PG227. 

In Chapter III, following the hit-to-lead optimisation of SL-2-25, a 5-7 step synthesis 

of a library of 2-aryl quinolones has been described. In vitro antimalarial assessment of 

these quinolones revealed the advantages of the 7-methoxy moiety. The potency increases 

3-8 folds when the 7-OMe group is attached.  Further lead modification led to a more 

flexible quinolone 61i retaining high potency against the 3D7 strain of P. falciparum. This 

structure also possesses no cross resistance, greater aqueous solubility and low potential 

for cardiotoxicity. Following a similar study on related quinolones, 3,4-dichlorophenyl 

analogues were briefly investigated. This led to the discovery of 61o possessing an 

outstanding potency against 3D7 strain of P. falciparum of 18 nM. It also shows low 

cardiotoxicity when compare to other quinolones. 61u featuring 6-Cl and 7-OMe 

substitution was identified with an in vitro IC50 potency of 9 nM against Plasmodium. In 

silico molecular modelling based on the yeast bc1 protein complex shows that all quinolones 

bind tightly to the target protein with essential interactions in place. 

PG227 (69) exhibits outstanding pharmacological properties amongst the series of 

quinolones. Its original synthesis suffers from reproducibility and low overall yields. 69 can 

be made in a multi-gram scale using an alternative method for cyclisation. The 5-step 

synthesis of PG227 can be achieved from commercially available starting materials involving 

the synthesis of β-keto ester intermediate, the Conrad-Limpach cyclisation and chlorination 

using NCS. The overall yield was 7%.  

Artemisinin combination therapy (ACT) is used as the first line treatment in most of 

the malarial endemic areas. The emerged artemisinin resistance requires greater 

understanding of drug action.  In Chapter V, activity-based protein profiling (ABPP) was 

employed to identify the molecular target of artemisinin for the first time. The novel “tag-

free” ABPP proteomic technique is introduced based on the click chemistry between a 

chemical probe and a reporter tag. The synthesis of the artemisinin-based ABPP chemical 

probes was achieved. The peroxide-containing probes show an excellent in vitro potency 

against the 3D7 malaria parasite. The preliminary result reveals that active probe 99 can 

perform well in protein pull down resulting in 45 different proteins being identified.  
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Malaria Overview 

1.1 Malaria: Biology and Pathology 

 Malaria remains a massive global health challenge and is still one of the 

most prevalent and deadliest parasitic diseases. It is caused by the eukaryotic 

parasite Plasmodium (Phylum Apicomplexa) widespread in tropical and subtropical 

regions of the world. Malaria is transmitted from person to person through the bite 

of female parasite-carrying mosquito vector Anopheles which requires human blood 

to cultivate her eggs. In 2012 the World Health Organization (WHO) estimates 

around 200 million malarial infection cases and almost 627,000 deaths. Although 

nearly half the world’s populations are exposed to malaria, it was estimated that 

90% of deaths due to malaria occur in sub-Saharan Africa and 77% of deaths occur 

in children less than five years old1. An independent study estimated that malaria 

costs Africa $12 billion/year in term of economic burden2. The rest of the malaria 

endemic areas include central and southern America, south and Southeast Asia and 

the western Pacific. This makes malaria a disease of poor and developing countries. 

  

 

Figure 1.1 World’s Malaria distribution and control1. 

Malaria is a complex disease affecting various systems of the body. 

Symptoms of malaria infection in humans are caused by the activities of asexual 
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blood stage of the parasites. In humans, these general and uncomplicated 

symptoms include fever, headache, myalgia, coughing, shaking chills, and paroxysm 

of fever while severe infection shows in nausea, vomiting, and diarrhoea. Mortality 

can be attributed to coma, anaemia, respiratory distress, acidosis, hypoglycaemia or 

renal failure3. The symptoms can be different between children and adults.  

Several species of Plasmodium are responsible for malaria in human 

including Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, 

Plasmodium ovale and the recently reported simian Plasmodium knowlesi which has 

been found in Southeast Asia forest regions4. Although P. falciparum causes almost 

all severe malaria including cerebral malaria, leading to coma and eventually death5, 

P. vivax is responsible for almost 80 million cases each year6. Both of them are 

becoming difficult to treat and control due to the emergence of drug resistance 

during the past three decades. However, there is an increased number of evidence 

reported that the lethality of P. vivax is underestimated7. 

The malaria parasite itself has a complex life cycle and in order to eradicate 

the disease, each stage should be well considered for treatment. Its life cycle is 

composed of 3 main stages. 

1. Liver stage. Once an infected female mosquito feeds and transfers the 

parasite (sporozoites) into the host’s blood stream, the plasmodial parasites then 

migrate to the liver within half an hour via blood circulation. The asexual parasites, 

liver schizonts, rapidly multiply and form thousands of merozoites. 

2. Blood stage (sometimes called erythrocytic stage). After 5 -10 days, 

infected red blood cells burst and release merozoites which then readily invade 

other red blood cells where they rapidly grow and proliferate causing the illness 

symptoms. This is referred as an asexual blood stage. During this development 

phase, the merozoites go through various stages – rings, trophozoites, schizonts – 

to produce around 20 daughter merozoites which are then released to the blood 

stream and infect other red blood cells. Most drugs target parasites at this blood 

stage. 
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After several propagation cycles, some merozoites differentiate into male 

and female gametocytes which are then ingested by the mosquito when it bites and 

takes infected blood.  

3. Mosquito stage. In the mosquito gut, after ingestion, the gametocytes 

develop into gametes which then fuse and form a zygote. The zygote transforms 

into an ookinete and becomes an oocyst in the mosquito stomach. The oocyst 

divides to produce sporozoites, which move to the salivary gland and ready for the 

next human host. 

 

Figure 1.2 Plasmodium life cycle8 

1.2 Malaria: the prevention and treatment 

As with other infectious diseases, the fight against malaria is challenging and 

several attempts to control the malaria endemic have been used. These include 

vector control, vaccine, and chemotherapy. Vector control is based on two main 

activities: indoor residual spray (IRS) and insecticide-treated nets (ITN). Although 

the use of insecticidal dichlorodiphenyltrichloroethane (DDT) (1) introduced in 

1950s as the first IRS had successfully reduced malaria in many parts of the world, 

its undesirable environmental effects and human health risk led to the end of its era 

around 1970s due to public concern. Other IRS alternatives, such as pyrethroid (2), 

have been introduced even they are more expensive than DDT. Several trials to 
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control the mosquito vector including the use of ITNs have shown positive results in 

decreasing child mortality in many African countries9. Currently, both IRS and ITN 

are mainly dependent on pyrethroid class due to its low toxicity to humans. New 

insecticides are consequently needed to retain the effectiveness of the malaria 

control programmes10. 

 

   DDT (1)        pyrethroids (2) 

Figure 1.3 Chemical structures of DDT and pyrethroid insecticides 

Although tremendous efforts are currently invested in vaccine development, 

malaria vaccines are still not yet in the market. Unfortunately, due to the 

Plasmodium complicated life cycle, it may take another 5- 10 years before it will be 

introduced and widely used. The most advanced of vaccine candidate – RTS,S/AS01 

– is currently in phase III11 and the preliminary experiment conducted in sub-

Saharan Africa showed promising efficacy and a reduction in malaria by 55%12. 

While malaria vaccines complete their development, it is clear that the fight against 

malaria will involve chemotherapy as a vital tool. Unfortunately, clinical resistance 

has emerged for most established therapeutic treatments. 

1.3 Drug resistant Malaria 

Parasite resistance against antimalarial treatment is a major threat in 

controlling and eliminating malaria. This is continuing to reduce the efficiency of 

available chemotherapies13. Resistance spreads when parasites are exposed to sub-

lethal drug concentrations through poor antimalarial drug management. Drug 

resistant plasmodia are transformed into gametocytes and picked up when 

uninfected mosquitoes bite leading to transmission of resistance. The problem of 

emerged drug resistance means that new drugs are required.  
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The best example of drug resistance problem can be depicted by one of the 

well-known antimalarial drugs called chloroquine (CQ) (3) which is proven to be an 

effective and successful drug against malaria. CQ has an outstanding efficacy 

combined with a low price and this makes CQ affordable in poor developing 

countries where malaria is a massive economic and health burden. Unfortunately, 

resistance to CQ has emerged after decades of introduction, and today it is 

widespread throughout the malaria-endemic countries leading to its reduced 

efficacy and clinical failure14. Mefloquine (MF) (4) emerged as a successor of CQ in 

the 1980s; however, cases of resistance appeared within a few years15. 

Combining drugs can limit the emergence of resistance but this technique is 

still fallible. A once effective combination of antifolates pyrimethamine (5) and 

sulphadoxine (7)  (S/P) is another example. S/P was a widely used treatment, and it 

has been a relatively cheap and highly effective drug combination. Unluckily, 

resistance owing to point mutations in target enzymes rapidly emerged after its 

introduction resulting in ineffective treatment.  

 

Figure 1.4 Comparative year of introduction of new antimalarial therapies versus 

the emergence of clinical resistance15 

In the scenario described above, artemisinin-combination therapies (ACTs) 

stand as the last frontline treatment against the increase in drug resistant malaria. 

They are widely used as national policies for the first-line treatment in most 

endemic countries. Artemether-lumefantrine (AL) is the first fixed-dose and most 
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widely used ACT recommended and pre-qualified by WHO. It has been shown to be 

effective in sub-Saharan Africa and in Southeast Asia where the multi-drug resistant 

P.falciparum is endemic. Following the success of AL, artesunate-amodiaquine was 

launched in 2007, even though other combinations are also clinically explored16. 

While ACTs remain clinically effective and there are no absolute cases of 

treatment failure, it is evident that the resistance to the artemisinin component has 

emerged17. In Pailin, the western province of Cambodia, where the WHO malaria 

centre is located, clinical recrudescence occurs in almost 30% of the patients when 

treated with artesunate monotherapy and only 5% when a combination of 

artesunate-mefloquine is used18.  

Consequently, due to resistance, the discovery of novel drug candidates 

remains a top priority to provide new medicine to back up current ACT therapies. 

There are several ongoing drug discovery projects focusing on antimalarials. Some 

are structurally distinct from available drugs and possibly possess a novel 

mechanism of action that exhibit excellent efficacy against drug resistant parasites. 

Not only showing no cross resistance, but the new drugs should be (i) fast acting, (ii) 

safe to children and pregnant women, and (iii) ideally used as a single dose.  

1.4 Antimalarial Chemotherapy 

 As stated earlier, antimalarial chemotherapy is still the most effective way to 

treat and control malaria. New drugs are urgently needed especially since 

artemisinin resistant parasites have emerged. Over the last decade, there has been 

an increased investment in antimalarial research and development through the 

Medicines for Malaria Venture (MMV) and their partners19. New molecules with 

novel modes of action are entering into preclinical development; some are in early 

clinical trial stages. In this chapter, some highlights of the MMV portfolio are briefly 

summarised and categorised according to their modes of action to demonstrate 

how these molecules were discovered and developed. However, antibiotics will not 

be discussed since this class were discovered following repurposing against malaria 

parasites. 
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Table 1.1 Representative antimalarials from the different structural classes.  
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Table 1.1 Representative antimalarials from the different structural classes (cont.) 
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1.4.1 Antimalarials interfering the heme polymerisation  

Quinine (11), a major chemical component in the bark of cinchona (quina-

quina) tree, is the first described antimalarial treatment and has retained its efficacy 

for almost 400 years after it was first reported20. Quinine was the main malaria 

treatment until the 1920s when more effective antimalarial quinoline became 

available. The synthetic 4-aminoquinoline, chloroquine (CQ) (3), was the most 

important developed21, and, doubtlessly, it has been widely used since World War II 

due to its outstanding efficacy and low cost of production.  

The antimalarial mode of action of both CQ and quinine relies on disruption 

of the formation of hemozoin within the parasite’s digestive vacuole22. During the 

asexual blood stage, the malaria parasite digests haemoglobin leading to the 

production of “free heme”. As heme is toxic to the parasite, heme is detoxified by 

forming a non-toxic dimer β-hematin which crystallises to produce hemozoin 

crystals (also known as malaria pigment). CQ is thought to form a complex with 

toxic heme preventing its crystallisation, which leads to disruption of the 

detoxification process.  

 

   Quinine (11)                       Chloroquine (3) 

It took decades for resistance to CQ to emerge, but now it is widespread14. 

The most widely accepted explanation of the CQ resistance mechanism has been 

derived from the investigation of P. falciparum chloroquine resistance transporter 

(PfCRT). This gene encodes a protein which is believed to connect the digestive 

vacuolar lumen to the parasite’s cytoplasm. Mutations in this transporter protein 

facilitate protonated CQ leaving the vacuole back to the cytoplasm, and even away 

from the cellular compartment where the lethal β-hematin binding effect takes 

place23.  
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The introduction of aromatic group into the amine side chain of CQ has led 

to the discovery of new derivatives which have overcome the resistance problem. 

The incorporation of 4-hydroxyaniline, for instance, into the amine linker formed 

amodiaquine (AQ) (12) which is active against most CQ-resistant strains; however, 

its oxidised metabolites are found to cause hepatotoxicity and agranulocytosis 

which restrict its use24. Nonetheless, AQ is used as a part of ACTs especially in a 

fixed combination with artesunate and more than 10 million doses were used in 

20101. 

 

        Amodiaquine (12)     Quinone imine metabolite        Aldehyde metabolite 

Scheme 1.1 Chemical structures of amodiaquine and its metabolite. 

To avoid the formation of reactive toxic metabolites, Isoquine (13) was 

discovered by swapping the regiochemistry of hydroxyl and diethylaminomethylene 

groups25. Isoquine contains the aminomethylene moiety at para position. By 

replacing the metabolically susceptible N-ethyl with N-t-butyl, N-tert-butyl isoquine 

(GSK369796) (14) was discovered by O’Neill et al26. N-tert-butyl isoquine is potent in 

vitro against K1 (EC50 = 13 nM) and eventually entered Phase I studies. It also shows 

relatively good in vivo efficacy (ED50 = 3.8 mg/kg/day) following oral administration 

in mouse model. Despite its excellent activity, its development was discontinued 

due to the inability to demonstrate an improved safety window over AQ and CQ and 

lower than expected human exposure27.  

 

       Isoquine (13)                N-tert-butyl isoquine (14) 
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Unlike CQ, ferroquine (15) was found to be highly active in vivo against CQ-

resistant strains, and after preclinical development entered clinical trials. 

Ferroquine in a combination with OZ439 (29) is now in Phase II studies (MMV 

portfolio). By replacing the unusual ferrocene with a simple phenyl ring, 15a and 

15b retains activity against CQ-resistant strains K1 and W228. 

 

      Ferroquine (15)  15a; R = H : EC50 = 6.9 nM (K1) 

          EC50 = 6.6 ± 0.9 nM (W2) 15b; R= Ph : EC50 = 23 ± 2 nM (W2) 

The preparation of compounds linking two quinoline cores with an aliphatic 

or aromatic ring led to the discovery of piperaquine (16). Piperaquine has an 

outstanding in vivo efficacy and has been widely used clinically in China29; however, 

resistance has developed in the areas where piperaquine used. A combination of 

piperaquine and dihydroartemisinin (83) has shown high efficacy in clinical trials 

and has been approved relatively recently by the European Medicines Agency 

(EMA) despite being widely used for over 10 years30.  

            

     Piperaquine (16)                     (+)-(11S,12R)-mefloquine (4)       (-)-mefloquine            

Quinolinealcohols are another class of antimalarials that interfere with 

haemoglobin metabolism. Research started in 1970s when CQ began to fail due to 

the resistance resulted in the quinine-like molecule, mefloquine (MF) (4)31. Both 

share the same aryl aminoalcohol core. Due to the urgency, MF is sold as a 

racemate. Even though both enantiomers are active32, (-)-mefloquine is believed to 
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associate with adverse effects in CNS and GI tract33. It has been widely used in a 

combination with artesunate due to its long half-life (2-4 weeks in human).  

1.4.2 Inhibitors of Plasmodium DHFR 

Classical dihydrofolate reductase (DHFR) inhibitors such as pyrimethamine 

(PYR)(5) and cycloguanil have been widely used as antimalarials. PYR was one of the 

most subscribed antimalarial, typically in a fixed-dose combination with 

sulphadoxine (7) (S/P). It is well known that malaria parasites require de novo 

synthesis of folate cofactors to survive and DHFR is the key enzyme in the folate 

biosynthetic pathway34. DHFR converts dihydrofolate to tetrahydrofolate, a cofactor 

that is essential for one-carbon transfer reaction and in the biosynthesis of nucleic 

acid. Inhibiting DHFR consequently leads to the collapse of DNA replication35. 

Antifolates are extremely safe drugs even for children and pregnant women thanks 

to the structural difference between human and plasmodial DHFR36. However, PYR 

and sulphadoxine both have long half-lives: this means parasites are undoubtedly 

exposed to drugs at sub-inhibitory concentrations. Under pressure from S/P, 

resistance is widespread due to mutations of the enzyme. 

In DHFR mutants, it is well studied that a single S108 mutation is sufficient to 

reduce the sensitivity to PYR around 10-fold due to a repulsive interaction caused 

by the mutated amino acid residues and PYR. Yuthavong et al. showed that by 

moving p-Cl atom present in PYR to the meta position, the steric clash can be 

avoided and the modified PYR retains good activity37.  

Importantly WR99210 (17) discovered at the Walter-Reed Institute with a 

flexible dioxypropylene linker are described as being active against the mutant 

parasites; however, it shows low bioavailability in animal models15. Due to the 

potential of this feature in resolving the DHFR resistance problem, using structure-

based drug design strategies combining with the X-ray structure of PfDHFR, 

Yuthavong et al. have identified P218 (18) which is active against all clinical-related 

DHFR mutants38.  
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PYR (5)     WR99210 (17)   P218 (18) 

Scheme 1.2 The discovery of P218  

P218 brings back potency at both wild-type TM4 strain and quadruple 

mutant V1/S with IC50 values of 4.6 and 56 nM, respectively, and it also shows a 

good pharmacokinetics profile and a good safety margin39. P218 is being progressed 

further as a clinical candidate and has a potential to become a new generation 

inhibitor targeting the folate pathway38. 

1.4.3 Inhibitors of Plasmodium DHODH 

Unlike its human host, Plasmodia are unable to salvage pyrimidines and 

therefore rely on their de novo biosynthesis40. Dihydroorotate dehydrogenase 

(DHODH) is a flavoenzyme which catalyses the rate-determining oxidisation of L-

dihydroorotate to orotate41. DHODH activity also links to the parasite’s electron 

transport chain as it uses mitochondrial ubiquinone as the electron acceptor. 

Plasmodium DHODH has not been clinically validated as an antimalarial target, 

although X-ray structure shows significant differences in the binding regions 

between human and PfDHODH.  

To identify parasite DHODH inhibitors, two independent high-throughput 

enzyme screens were performed. A team led by Phillips screened over 200,000 

compounds and the most promising candidate DSM1 (19) was identified. 

Triazolopyrimidine-based DSM1 had potency in the whole cell assay (PfIC50 = 0.079 

uM); however, it later was inactive in vivo due to its poor pharmacokinetics 

profile42.  
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 DSM1 (19)          DSM191 (20)      DSM265 (21) 

Scheme 1.3 DSM265 development 

A systematic SAR and X-ray structure demonstrated that, by substitution of 

naphthalene with electron-withdrawing phenyl ring, analogues with improved 

potency and better stability were found. This successfully led to the identification of 

DSM265 (21) which has a good potency and safety profile from preclinical studies43. 

This makes it a promising candidate for human use. If successful, DSM265 would be 

the first antimalarial chemotherapy to target DHODH38. The compound entered 

Phase I clinical trials in 2013 and the team is preparing a Phase IIa (so called proof-

of-concept) clinical trial in Peru to begin in late 2014 (MMV portfolio).  

Clardy et al. from Harvard also reported the most attractive benzimidazole 

hit as a potential drug candidate from their screens within the Genzyme 

collection44. Following a further optimisation, Genz-667348 (22) and Genz-669178 

(23) were identified. The latter was selected as the lead from this programme as it 

showed moderate bioavailability in both rat and dog (%F = 49 and 19, respectively), 

and good activity in vivo (PfED90 = 27 mg/kg/day)45. 

 

Genz-667348 (22)      Genz-669178 (23) 
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1.4.4 Antimalarials targeting mitochondrial respiration 

As part of the cytochrome bc1 complex, cytochrome b is an essential 

component of the mitochondrial electron transport chain (ETC). Interrupting the 

parasite ETC through inhibition of cytochrome bc1 enzyme has been clinically 

validated through the use of atovaquone (ATQ). ATQ (8) is currently used in a 

combination with proguanil (6) as Malarone. However, cases of clinical resistance to 

Malarone have been reported. Currently a number of new compounds targeting 

ETC are at preclinical development stage. The most advanced is ELQ-300 (24) which 

is a quinolone with an ether linkage side chain46. The discovery of ELQ-300 is based 

on a quinolone central scaffold that resembles the structural characteristic in the 

side-chain present in related pyridone GW844520 (42). ELQ-300 is now in preclinical 

studies progressing to phase I studies and it retains potency against atovaquone-

resistant parasites with a high metabolic stability47. The detail will be discussed 

extensively in the next chapter since it is the main target being focused in this 

thesis. 

 

Atovaquone (8)                                                
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1.4.5 Endoperoxides 

Artemisinin (ART) (9), a sesquiterpene lactone from Chinese herb Artemisia 

annua, has long been used as antimalarials. The main drawback of ART and its first 

generation derivative is the short half-life of the active metabolite 

dihydroartemisinin (83) thus efforts have been made to identify a new stable 

chemotype. The most notable development of second generation inhibitors has 

been the discovery of ozonide (1,2,4-trioxolane) as potent antimalarial agents48.  As 

a starting point, Vennerstrom et al. developed a synthetic trioxolane substituted 

with two cyclohexyl groups (25) which was potent but lacked stability. The di-

adamantyl derivative (26) had improved stability due to the fact that O-O bond is 

protected by bulky adamantyl groups; however its efficacy dropped. A hybrid 

analogue (27) has been made and it exhibited good potency and stability. The 

addition of acetamide group improved physicochemical property and delivered the 

desired ADMET profile49. OZ277 (Arterolane) (28) went into Phase II clinical trials 

and has been considered as a combination therapy with piperaquine phosphate50. 

This combination was approved in India in 2012 as a 3-day treatment and it had 

widely been used for a short period. Unfortunately, it showed lower exposure in 

patients than expected due to its unstable interaction with ferrous ion38.  

 

 

       25           26    OZ03 (27) 

IC50 = 470 nM                        IC50 = 3144 nM                       IC50 = 3.7 nM 

 

OZ277 (28) 

IC50 = 0.47 nM 

 

Following the discovery of OZ277, the Vennerstrom group then focused on 

replacing the amide with a stable phenyl ring and an ether linkage. OZ439 (29) 
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which possesses a longer half-life has also progressed through Phase I clinical trials 

and show a good safety profile51. The clinical half-life of OZ439 is 25-30 h (1 h for 

OZ277) and it also shows a potential to deliver a 20mg/kg single-dose cure in 

mice52. OZ439 is now in Phase II studies and its combination with ferroquine is also 

being explored (MMV portfolio). 

 

  

OZ439 (29) 

Another way of stabilising O-O bond is to form tetraoxanes, O’Neill et al. 

have discovered RKA182 (30) based on a similar strategy used in OZ439 

development. RKA182 displays good potency against both CQ-sensitive and -

resistant strains. It inhibits parasite growth with an ED50 of 1.8mg/kg/day with a 

good bioavailability in rodents53. Unfortunately, RKA182 is not curative as a single 

dose. Further work is underway to enhance the half-life of tetraoxane analogues. 

 

RKA182 (30) 

1.4.6 Antimalarials targeting exoerythrocytic stage Plasmodium 

Currently, most antimalarial agents target only the blood stage of the 

parasite life cycle. Two exceptions are the combination of atovaquone/proguanil 

and primaquine54.  Primaquine (10) can cure not only liver schizonts but also 

hypnozoites, the dormant liver-stage parasites found in P.vivax and P.ovale 

infection55. The search for liver stage drugs is difficult due to the lack of culture 

technique.  

Primaquine, an 8-aminoquinoline, is a slow-acting drug56 and is 

consequently given in a combination with other drugs like chloroquine. Even its 

mechanism of action is unclear; its main drawback is the adverse side effect 
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including haemolytic anaemia found in patient deficient glucose-6-phosphate 

dehydrogenase (G6PD) which occurs in approximately 10% of the population57. This 

has driven the search for alternative agents that can prevent relapsing P.vivax 

malaria. 

Tafenoquine (TF) (31), in development with GSK, is the lead compound 

towards the treatment and radical cure of P.vivax malaria. TF is generally well 

tolerated, has a long pharmacokinetic half-life and has completed Phase II studies58. 

These studies recruited more than 300 patients with confirmed P.vivax malaria from 

seven centres in Brazil, Peru, India and Thailand – some of the countries severely 

affected by relapsing malaria. TF has the same G6PD patient problem with 

primaquine, but has the advantage of being a single-dose cure. The studies 

suggested a 300-mg dose of TF as the optimal dose to take forward, as this dose 

was found to have an acceptable overall safety profile. Plans are now underway to 

start Phase III studies in 2014 (MMV portfolio). 

 

Primaquine (10)    Tafenoquine (31) 

To provide novel non-8-aminoquinoline drugs59, a Novartis-led research 

consortium has identified the imidazolopiperazines hit as a new class of antimalarial 

drugs by whole-cell screening techniques. The lead GNF-Pf-5069 (32) was then 

optimised to provide GNF179 (33) and GNF 156 (34). The latter, also known as 

KAF156, exhibits in vitro and in vivo potency against blood and liver stages of 

Plasmodium with an ED99 in the P.berghei mouse of 1.1mg/kg60. GNF156 is well 

tolerated in Phase I safety studies and is currently in Phase IIa clinical trials (MMV 

portfolio). It is noteworthy that GNF156 not only inhibits the liver stage parasite but 

also transmission61.  
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GNF-Pf-5069 (32); EC50(3D7) = 460 nM GNF179 (33) (R = Cl); EC50(3D7) = 6 nM 

    GNF156 (34) (R = F); EC50(3D7) = 6 nM, %F > 40 

1.4.7 Novel antimalarials from whole-cell screens 

During the past few decades, target-based screening has been the major 

route towards the discovery of novel antimalarials, but this approach has not 

proven successful as it is shown in the low number of new chemical entities 

currently under development15. Recently three different teams from St. Jude 

Hospital62, GSK,63 and Novartis64 have extensively reported their hits from whole-

cell screens. The most advanced development belongs to the Novartis where 

spiroindolones (35) was reported as a novel hit with moderate potency against both 

the sensitive NF54 and the CQ-resistant K1 P.falciparum strain65.  Replacing the 7-

memberd ring with a 6-membered piperidyl led to the increase in potency. 

However, its metabolic stability is not optimal, and this was improved by the 

introduction of halogens onto the tetrahydro-β-carboline core. The resulting 

compound NITD609 (37), also known as KAE609, has demonstrated even greater 

potency, excellent pharmacokinetics, and safety profile in humans. Its mode of 

action is believed to be the sodium transporter ATPase4 (PfATP4) inhibitor65, and 

this causes an increase in the concentration of sodium ions in the parasite, which is 

toxic to the cell. 
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35; EC50 90 nM         36; EC50 9.2 nM           NITD609 (37); EC50 0.7 nM 

Just under 5 years after the initial screen, NITD609 was the first molecule 

with a novel mechanism of action to successfully complete Phase IIa studies for 

malaria in the last 20 years (MMV portfolio).  

 

1.5 Conclusion 

Malaria is still one of the most prevalent and deadliest parasitic diseases 

affecting various systems of the body and leading to death. Resistance against 

antimalarial treatment is a major threat in controlling and eliminating malaria. New 

drugs are urgently needed especially when artemisinin resistant parasites has 

emerged. Over the last decade, there has been an increased investment in 

antimalarial research. As a result of this work, an unprecedented amount of new 

chemicals are entering into preclinical development; some are structurally distinct 

and in early clinical trials.  
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Antimalarial quinolone targeting Pf electron transport chain 

2.1 Plasmodium Electron transport chain 

 Mitochondrion is generally known as a power plant of any cell. Like humans, 

the plasmodial mitochondria play a critical and essential role in its life cycle. The 

mitochondrial electron transport chain of Plasmodium falciparum (PfETC) is an 

attractive target for chemotherapy due to several molecular and functional 

differences between the parasite’s and human’s mitochondria1. For instance, in 

contrast to eukaryotic cell, Plasmodiums harvest most energy they need from 

glycolysis rather than their mitochondrial oxidative phosphorylation. Rather, the 

parasites mitochondria act as an electron sink for the electrons produced in other 

processes such as de novo pyrimidine biosynthesis2. 

 

Figure 2.1 Mitochondrial Plasmodium Electron transport chain3 

The PfETC of blood stage parasites is believed to contain five 

dehydrogenases, namely glycerol-3-phosphate dehydrogenase, malate quinone 

oxidoreductase, type II NADH:ubiquinone oxidoreductase (PfNDH2), dihydroorotate 

dehydrogenase (DHODH) ,and succinate dehydrogenase (complex II or SDH), 

respectively. Although the functions of these enzymes are not completely 
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understood, one of their activities is to provide electrons to the downstream 

complexes such as cytochrome bc1 (complex III) and cytochrome c oxidase (complex 

IV) with ubiquinone (CoQ) and cytochrome c acting as electron carriers between the 

complexes4. It is noteworthy that the Pf ATP synthase (complex V) is not reported to 

generate any ATP, unlike its mammalian counterpart5. Only complex III has been 

clinically validated as an antimalarial drug target through the use of atovaquone (8). 

As previously described, DSM265 (21) is now under Phase IIa studies and if 

successful, it would be the first compound targeting DHODH. 

2.2 Plasmodium falciparum cytochrome bc1 complex 

2.2.1 The mechanism of cytochrome bc1  

 The cytochrome bc1 complex is a key enzyme catalysing the transfer of 

electron from ubiquinol to cytochrome c6. The catalytic core is composed of three 

main subunits; cytochrome b (43 kDa), cytochrome c1 (27 kDa), and the Reiske iron-

sulfur protein ([2Fe2S] ISP, 21 kDa) with these subunits participating directly in 

electron transfer pathway. The function of the remaining residues is not well 

understood, but they seem to contribute to complex stability and the assembly 

process7.  

The protonmotive mechanism of bc1 complex was reviewed elsewhere6b, 8 

but initially described by Mitchell’s Q-cycle hypothesis9. In summary, the bc1 

complex contains two distinct quinone-binding sites namely the quinone oxidation 

site Qo and the quinone reduction site Qi. They are located on the opposite sides of 

the mitochondrial membrane and linked by a transmembrane electron-transfer 

pathway containing two hemes with different redox potentials (low potential bl and 

high potential bh). Quinol antagonists such as naturally occurring stigmatellin (38) 

can bind to oxidation site (Qo) and are oxidised to release two protons and two 

electrons into the intermembrane space. One electron reduces the ISP whilst the 

other reduces heme bl. The electron from bl is then transfer to bh and to a quinone 

bound at the reduction site (Qi) converting quinone back to quinol. Meanwhile, the 

reduced ISP undergoes a conformational change enabling the close contact and an 

electron transfer between ISP and cytochrome c1. Electron carrying cytochrome c1 is 
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oxidised by a soluble cytochrome c, an electron donor to cytochrome c oxidase 

(complex IV). Overall, two protons are translocated per one quinol bound at Qo 

from the negative (n, matrix) to the positive side (p, intermembrane space) of 

mitochondrial membrane10. 

 

Figure 2.2 The cytochrome bc1 complex. Cytochrome b, cytochrome c1 and 

the Rieske ISP protein are represented in green, cyan and orange, respectively. 

Hemes of cytochrome b and cytochrome c1 are shown in red wireframe, with the 

iron (pink) and sulphur (yellow) atoms of the Rieske [2Fe2S] cluster represented in 

spacefill. (A) Ribbon model (gray) of the homodimeric structure of the yeast 

cytochrome bc1 complex (PDB code 3CX5). (B) The structure and Q-cycle mechanism 

of the catalytic core of the bc1 complex. Electron transfers to and from ubiquinol 

(QH2) and ubiquinone (Q) are represented by yellow arrows. Proton movements 

are indicated by white arrows3. 

 2.2.2 The inhibitors of Pf cytochrome bc1  

There are several quinol antagonists serving as inhibitors to the cytochrome 

bc1 Qo site such as aforementioned stigmatellin (38) and myxothiazol (39). Some 

bind at Qi site such as naturally occurring antibiotic antimycin A (40). These 

compounds potentially abolish the bc1 protonmotive activity leading to the collapse 
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of the mitochondrial membrane potential and cell death11; however, they are not 

species selective, and therefore, their toxicity limits its therapeutic uses12.  

 

Figure 2.3 Inhibitors of Pf cytochrome bc1 

Atovaquone 

 The Plasmodium bc1 is the only component of the ETC that clinically served 

as an antimalarial target13. Atovaquone (ATQ)(8) is the only established 

chemotherapy targeting Pfbc1
14. The discovery and development of ATQ is 

described in detail elsewhere15. In brief, it began after the outbreak of World War II 

due to a shortage of quinine16. A large number of hydroxynapthoquinones were 

discovered with modest antimalarial activity in duck models, but were inactive in 

malaria patients due to their poor absorption and rapid metabolism17. The 

programme was revisited in 1960s and it led to the discovery of intravenously 

administered lapinone18. The Wellcome Research Laboratories reinvestigated the 

potential of quinones as antimalarial agents in 1980s. The study was designed to 

develop a quinone with a good metabolic stability combined with good antimalarial 

activity. Several quinones from this programme demonstrated an excellent potency 

of nanomolar concentration against P.falciparum19, but only ATQ was found to be 

inert to human liver microsomes20.  

Due to its rapid emergence of resistance during its clinical development, the 

use of ATQ as monotherapy is discouraged. ATQ is consequently used as a fixed-

dose combination with proguanil (marketed as Malarone)21 for treating children 
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and adults with uncomplicated malaria22, or as chemoprophylaxis for preventing 

malaria in travellers23. Despite its excellent activity and good metabolic stability, the 

high cost of production and its poor absorption limit its widespread use. The search 

for cheaper alternatives demonstrating a little cross resistance and better 

pharmacokinetics properties has led to the discovery of several active chemotypes, 

for example, pyridones, acridone analogues, and quinolones3, 10.  

 

Figure 2.4 The discovery and development of atovaquone6a 

 Pyridones 

 Discovered in 1960s, clopidol, one of the well-known anticoccidal agents 

acting as an inhibitor of parasite mitochondrial respiration, was the starting point 

for the research in this class. Clopidol (41) also maintains activity against 

atovaquone-resistant strains suggesting that pyridones may bind at the different 

site in the Qo pocket10.  

 

Figure 2.5 Antimalarial pyridones 

In 2006, GSK reported the preclinical SAR of a new class 4-pyridones24. In 

collaboration with Yeates et al., a series of substituted clopidol were developed25. It 
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was found that GW844520, with a flexible phenoxyphenyl side chain, is well 

tolerated with an IC50 (3D7) of 7 nM. However, its development was terminated 

owing to unexpected cardiotoxicity26. This adverse effect may be related to off-

target binding of human bc1 function. Further investigation led to the discovery of 

another candidate GSK932121 which was found to be highly potent against 

multidrug resistant Pf in a murine model27. GSK932121 went into clinical trials in 

December 2008, but it was later suspended by the MMV due to its toxicity issues3. 

Acridine related compounds 

 A number of acridinediones as potent bc1 inhibitors were developed by the 

Walter Reed Army Institute of Research. Moreover, their mode of action has also 

been proved to be heme-binding and prevention of detoxifying crystallisation28. A 

small change in their structures affects not only the potency but also the 

mechanism of action. Highly potent floxacrine and WR249685 show in vitro 

antimalarial IC50 activity of 140 and 15 nM, respectively. It was found that floxacrine 

is active through heme-binding processes whilst the latter acts as a selective 

inhibitor of Pfbc1
29. 

 

Figure 2.6 Antimalarial acridinediones 

Quinolones 

  There are a large number of recent publications based on the development 

of antimalarial quinolones30. The most advance development amongst this class is 

ELQ-300. Starting from endochin which possesses prophylactic and therapeutic 

property in avian Plasmodia31, the related quinolone ICI56780 were discovered in 

the 1960s with in vivo activity in rodent models30a. The Manetsch group reported a 

similar compound with a phenyl substitution at C3 and it shows an EC50 = 28 nM 
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against W2 strain and of 31 nM against the atovaquone-resistant strain TM90-

C2B32. Winter el al. has also developed a series of highly potent endochin-like 

quinolones (ELQ) with an aim of improving potency and metabolic stability33. The 

optimisation of aryl substituent has led to the discovery of multiple potent 

derivatives that are active against drug-resistant strains. Replacement of the phenyl 

side chain with the side chain from aforesaid GW844520 gave ELQ-271 which 

possessed an improved metabolic stability.  Most recently, a diarylether quinolone 

ELQ-300 was identified and selected as a preclinical candidate by MMV. The back-

up compound P4Q-391 containing a fluorine atom in the diarylether side chain has 

also been fully investigated for its biological activity30c. 

 

Scheme 2.1 Rational development of endochin-like quinolones 
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 ELQ-300 is a selective potent Plasmodium bc1 inhibitor and shows a superior 

antiplasmodial activity in vitro and in vivo against blood stage and liver stage of 

malaria. This class of compound, however, does have limitation due to its poor 

aqueous solubility, and this has an effect on its pharmacokinetics. Formulation 

approaches are currently in progress to resolve this30c.   

2.3 Plasmodium falciparum type II NADH:ubiquinone oxidoreductase (PfNDH2) 

2.3.1 The introduction to PfNDH2 

Due to the fact that the parasite lacks the NADH dehydrogenase which 

converts NADH to NAD+, it instead uses type II NADH:ubiquinone oxidoreductase 

(PfNDH2)5a. PfNDH2 is a single subunit (52 kDa) mitochondrial enzyme catalysing an 

electron transfer from NADH to ubiquinone or CoQ34. PfNDH2 is a principal electron 

donor linking the fermentative glycolysis where NADHs are produced to the 

generation of mitochondrial membrane potential. Thanks to the absence of NDH2 

in humans, PfNDH2 is therefore an attractive promising target in the development 

of antimalarials. 

 

Figure 2.7 PfNDH21 

2.3.2 The discovery and development of PfNDH2 inhibitors 

PfNDH2 has only one known inhibitor, HDQ or hydroxyl-2-dodecyl-4-(1H)-

quinolone. A high-throughput screening against PfNDH2 was set up using 

recombinant PfNDH2 expressed in an Escherichia Coli model35. The focused library 
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was selected from a commercial library of ∼750,000 compounds (BioFocus DPI), 

and compounds were predicted to possess favourable absorption, distribution, 

metabolism, excretion, and toxicity characteristics36. Following a preliminary 

screening, 419 actives (>30% inhibition at 20 μM) were retested in triplicate, and 

from these, 150 compounds were progressed for potency determination (10-point 

concentration curves, 1:3 dilution). From the active compounds tested for potency, 

22 compounds had IC50 values falling between 11–40 μM, and 24 compounds had 

IC50 values <10 μM and purity >70%. Several distinct chemotypes were obtained 

from the screen. The quinolone core was selected as the key template for further 

SAR development37.  

 

 

 

 

 

 

 

Scheme 2.2 The development of selective PfNDH2 inhibitors 

Initial studies have focused on 2-monoaryl quinolones; however, it was 

impossible to achieve activity below 500 nM against the 3D7 strain of P.falciparum. 

Replacing the metabolically vulnerable HDQ side chain with a longer bisaryl or 

phenoxy aryl has provided derivatives with improved both antimalarial and PfNDH2 

activity. Introduction of a methyl substituent at position 3 manipulates the twists of 

the 2-aryl side chain, alters the torsion angle (presumably leading to a reduction in 

aggregation) and results in better overall solubility and greatly enhanced activity. 

This medicinal chemistry strategy generated more than 60 compounds, as 

exemplified by CK-2–68 with activity of 31 nM against the P. falciparum 3D7 strain 

and 16 nM against PfNDH2. Preliminary animal studies of CK-2-68 reveals that a 
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reduction of ClogP and enhancement in aqueous solubility are required in order to 

orally administer the drug without any need of prodrug approach37. 

Heterocycle incorporation into the quinolone side chain gave a series of 

compounds containing a pyridine group. Introduction of a pyridyl group reduces 

ClogP; improves aqueous solubility, and allows the possibility of salt formation. 

These structural changes led to the identification of SL-2-25 with an IC50 in the 

nanomolar range versus both the enzyme and whole-cell Pf38. Further detail on its 

development will be extensively discussed in the following chapter. 

2.4 2-Aryl quinolones targeting both PfNDH2 and Pfbc1: the dual inhibition 

Although the initial studies on 2-ary quinolones were focused on 

optimization of activity versus PfNDH2, during hit-to-lead development, it was 

found that optimized compounds with nanomolar activity versus PfNDH2 were also 

active at the parasite bc1 complex. This dual inhibitory effect is also seen with the 

starting compound for this program, HDQ, suggesting that the quinolone 

pharmacophore is a privileged scaffold for inhibition of both targets. Such multiple-

target drugs are seen increasingly as having added therapeutic benefit over drugs 

acting exclusively at one site39. 

Manipulation of quinolone core to impart some selectivity is possible. When 

comparing the 2-aryl and 3-aryl series of compounds, 2-aryl quinolones provide 

PfNDH2 inhibition levels of less than 20 nM, whereas the 3-aryl counterparts have 

PfNDH2 inhibition levels greater than 200 nM. However, 3-aryl quinolones 

demonstrate high levels of bc1 inhibition30b. As a result of the potential of this 

template, the potent lead compound from this series is currently in the MMV 

pipeline. 
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Figure 2.8 The 2-aryl quinolones provide greater levels of PfNDH2 inhibition, 

whereas 3-aryl counterparts possess high levels of bc1 inhibition 

 

2.5 Chemistry of 4-quinolones 

 As 4-quinolones are the main target being focused in the next few chapters, 

a literature search shows that there are several ways to construct and modify the 4-

quinolone skeleton. Those synthetic methods were well examined and discussed40; 

some are widely used; however, in this part, the method based on the annulation of 

quinolone B-ring will be discussed and summarised.  

Many cyclisation methods are well known for the production of 4-quinolone. 

All the reactions can be categorised into five strategies depending on the formation 

of which bond (a, b, c, d or e) leading to ring closure. In this thesis, these methods 

were used and applied towards the synthesis of corresponding targeted 4-

quinolones. 
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Scheme 2.3 Quinolone cyclisation  

2.5.1 Cyclisation of bond a 

 Ring closure of bond a requires the corresponding o-carbonyl-aniline starting 

material bearing an electrophilic group at β-position which can be either vinyl or 

carbonyl. This method was successfully proved by the synthesis of 2,3-

unsubstituted quinolones. The starting enamine a1 produced by reacting o-

nitroacetophenone with dimethyl formamide dimethyl acetal in DMF underwent 

cyclisation under reducing environment with 10% Pd-C as catalyst41.  

 

 

Scheme 2.4  Cyclisation of bond a 

2.5.2 Cyclisation of bond b 

 This type of closure needs the synthesis of intermediate b1 which its 

cyclisation of bond b leads to the formation of a 4-quinolone ring.  
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Scheme 2.5 Camps cyclisation 

To begin with, the aniline of choices can be acetylated with various reagents 

by the Friedel-Craft’s mechanism. The resulting acetophenone then reacts with 

corresponding acyl chlorides to form amides. After treated with base, the amides 

compounds undergo cyclisation with the formation of 4-quinolones. The ring 

closure takes place in the presence of strong bases such as NaOEt42, t-BuOK in t-

BuOH43 , NaOH44, or LDA in THF45. This process is also known as the Camps 

cyclisation46. With this method, 2-aryl-4-quinolones containing various substituents 

on the benzene ring can be obtained. The successful example from these strategies 

includes the original synthesis of highly potent quinolone lead - PG227 shown in the 

later chapter in this thesis.  

 

Scheme 2.6 The original PG227 synthesis 
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2.5.3 Cyclisation of bond c 

 The ring closure at bond c requires enamine derivatives of benzoic acid as a 

starting material. The reaction of methyl anthranilate and aryl vinyl ketones under 

various conditions gives the enamine in moderate yields. The cyclisation takes place 

in the presence of base such as NaOMe to obtain the desired 4-quinolone47. 

 

Scheme 2.7 Cyclisation of bond c 

The Niementowski reaction is also known to produce 4-quinolones through 

the cyclisation at bond c. Niementowski found 2-phenyl-4-hydroxyquinoline product 

which later tautomerise to quinolone from the reaction of anthranilic acids and 

acetophenones at 120–130 °C. The reaction is thought to begin with the formation 

of a Schiff base, and then proceed via an intra-molecular condensation to make an 

imine intermediate. There is then a loss of water that leads to a ring closing and 

formation of the quinoline derivative48. 

 

Scheme 2.8 Niementowski reaction 

The alternative and rather unusual method published in 2006 by Luo et al.49 

involves the reaction between propiophenones and o-oxazoline-substituted anilines 

in boiling absolute butanol in the presence of catalytic tosic acid under inert 

atmosphere. The reaction proceeds through the formation of enamine adduct. The 

detailed mechanism was discussed in the original paper49. Shown in the next 

chapter, this method is extensively used to synthesise a library of 2-ary-4-
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quinolones as the synthesis gives promising yields. It is also easy to handle and 

suitable to use in divergent synthesis. 

 

Scheme 2.9 Synthesis of 4-quinolones described by Luo et al.  

2.5.4 Cyclisation of bond d 

 The synthesis of 4-quinolone mainly relies on this bond d cyclisation as seen 

in a large number of publications.  

As with other methods, the enamines required for the synthesis are 

produced by a condensation of substituted anilines with various electron-

withdrawing alkenes such as methylenemalonate derivatives. The cyclisation of the 

enamines also known as the Gould-Jacobs reaction50 occurs in relatively high 

temperature in such high-boiling-point solvents as biphenyl ether47, 51, biphenyl5c, 

and Dowtherm A52, or by using polyphosphoric acid40. The yields of the targeted 

quinolones are generally moderate to good, and the product purification is rather 

easy. As an example, this method is also used in the synthesis towards quinolone 

esters described in relevant publication52b.  

 

Scheme 2.10. Gould-Jacobs reaction 

An alternative approach to construct the quinolone core is described by the 

Conrad-Limpach reaction. The Conrad–Limpach synthesis is the condensation of 
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anilines with β-ketoesters to form 4-quinolones via a Schiff base. The mechanism is 

based on the thermocyclisation at such high temperature as the Gould-Jacobs 

reaction53.  The advantage of this reaction is that the 3-ester is not required in the 

final product and 2-substituent can be varied. This synthetic strategy is also used in 

the alternative synthetic route towards PG227. 

 

Scheme 2.11 Conrad–Limpach synthesis 

2.5.5 Cyclisation of bond e 

Several publications reporting the use of this approach towards the 

synthesis of quinolones includes the ring closure of aminovinyl phenyl ketones. The 

reaction involves the replacement of halogen atom at the ortho position of aryl ring. 

The derivatives e1 was hydrolysed and decarboxylated, and the product was 

then reacted further to obtain aminovinyl phenyl ketones. The cyclisation leading to 

the formation of quinolones can be accomplished by the use of various basic 

reagents such as NaOEt in EtOH, KF in DMF, carbonate salts in DMF, or 

triethylamine in DMF40.  

  

Scheme 2.12 Cyclisation of bond e 

2.6 Conclusion 

 The mitochondrial electron transport chain of Plasmodium falciparum is an 

attractive target for chemotherapy. Two enzymes in the pathway - Pfbc1 and 

PfNDH2 - are druggable target enzymes. The dual inhibition of both enzymes can be 
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seen in 2-aryl quinolone pharmacophore giving added therapeutic benefit. The 

development from this series leading to the discovery of potent lead compound is 

currently in the MMV pipeline. Several cyclisation methods are well used and 

applied towards the synthesis of corresponding targeted 4-quinolones. 
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Lead optimisation of antimalarial 2-aryl quinolones 

3.1 From CK-2-67 and SL-2-25 to next generation lead compounds 

 As previously described in Chapter II and relevant publications1, the 2-aryl 

quinolone template is a privileged drug scaffold that can inhibit both Pfbc1 and 

PfNDH2 resulting in potent antimalarial activity. Initial studies within our group 

showed that CK-2-67 and SL-2-25, lead compounds from this programme, possess 

IC50s in the nanomolar range against the blood stage of P.falciparum malaria and 

have the capacity to inhibit two key enzymes in the respiratory pathway with 

potent activity in whole-cell assays1. Preliminary in vivo studies confirm these 

inhibitors as drug-like with properties consistent with a potential role in malaria 

control and eradication2. 

 

Figure 3.1 Two lead compounds at the starting point of this research 

 Despite these findings, the problem found within this class is that they 

generally have poor aqueous solubility due to the planar aggregation via π-π 

stacking of their ring systems, a phenomena that results in tight crystal packing and 

a high melting point3. To deliver a molecule with improved drug-like properties, it 

was apparent that the partition coefficient (ClogP) needed to be reduced and 

aqueous solubility needed to be increased. There are several regions within the lead 

structures that can be optimised to improve their solubility whilst activity is 

maintained (Figure 3.2). 

(i) Incorporation of a hydroxyl group into the A-ring at one of the available 

positions. The additional benefit of the hydroxyl group is that it offered the option 
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of exploring prodrugs for this series by derivatisation to provide either phosphate or 

carbamate pro-drugs as demonstrated in a relevant publication1b. Since the 

corresponding methoxy analogues were prepared en route, these compounds were 

also screened against P.falciparum.  

(ii) In case of pyridyl side chain (SL-2-25’s side chain), the pyridyl 

regiochemistry can also be altered. Any changes in pyridyl regiochemistry affect not 

only the pKa of pyridyl nitrogen but also the side chain flexibility which could lead to 

an increase in solubility by disruption of π-π stacking interactions.  

(iii) From previous studies4, the p-OCF3 substituent on the D-ring had been 

identified to provide excellent antimalarial. Recent studies on related quinolone 

series revealed some advantages in 3,4-dichloro substitution and for this reason this 

substitution pattern was also planned.   

 

Figure 3.2 Rationale of lead optimisation 

3.2 Results and discussion 

3.2.1 General synthesis towards 2-aryl quinolones 

Following the programme on antimalarial 2-aryl quinolones, the 2-aryl 

quinolone core can be synthesised according to the relevant publications by O’Neill 

et al.1 The synthesis of 2-aryl quinolones series was accomplished in 5-7 steps from 

commercially available starting materials. The synthesis started from a well-

renowned Suzuki reaction constructing C-C bond between aromatic halides and 

boronic acids or ester to obtain aldehyde 56 in excellent yields. A solution of EtMgBr 

was utilised in a Grignard reaction extending two more carbon atoms and the 
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carbonyl was simultaneously transformed to alcohols 57 in 32-83% yields. Alcohol 

57 was then oxidised using a mild oxidant, which can be either PCC or DMP5, to 

yield corresponding ketone 58 in good yields.  

 

 

 

 

 

 

 

Scheme 3.1 Reagents : (a) EtMgBr, THF, 0 oC, under N2, 1 h (b) DMP, wet 

DCM, 15 mins or PCC, DCM, 2 h (c) 2-amino-2-methyl-propanol, ZnCl2, PhCl, 135 oC 

(d) CF3SO3H, n-BuOH, under N2 ,130 oC, 1 day. 

Oxazole 60 was prepared in yields of 31-98% from the respective isatoic 

anhydride 59 which was synthesised by adding diphosgene into methoxy-

substituted anthranilic acid. Reaction of oxazole 60 and ketone 58 in the presence 

of zinc chloride and trifluoromethane sulfonic acid gave the desired quinolones 61 

in 4-62% yields6.  

Synthesis of bisaryl and pyridyl side chain analogues 

The Suzuki coupling reaction involves the reaction between an aryl or vinyl 

boronic acid and aryl or vinyl halide catalysed by a palladium (0) complex in the 

presence of a base. The mechanism of the Suzuki reaction is best viewed from the 

perspective of the palladium catalyst. The first step is the oxidative addition of 

palladium to the less hindered halide to form the palladium (II) species. Reaction 

with base and transmetallation with the boronate complex forms the 

organopalladium species. Reductive elimination of the desired product restores the 

original palladium (0) catalyst which completes the catalytic cycle. 

X = H, OMe 
R = 
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Scheme 3.2 Suzuki coupling 

Several types of side chain were prepared via Suzuki coupling; however, the 

pyridyl side chain later gained more attention due to the fact that a salt could be 

readily produced by a protonation of the pyridyl nitrogen. 

Synthesis of o-oxazoline-substituted aniline 

 (a)  

(b) 

 

Scheme 3.3 (a) Reaction of diphosgene with methoxy-substituted anthranilic 

acid and (b) the mechanism of the synthesis of o-oxazoline-substituted aniline 

The synthesis of o-oxazoline-substituted aniline from isatoic anhydride was 

reported by Giri7. The mechanism is shown in Scheme 3.3.  Substituted isatoic 
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anhydrides were not commercially available from any sources thus they were 

prepared from the corresponding substituted anthranilic acid by reacting with 

diphosgene.  

Instead of phosgene, diphosgene was employed in this synthesis as it is 

more conveniently handled. The reaction of diphosgene with amino group gives 

isocyanates which further react with intramolecular carboxylic acid to finally yield 

anhydrides according to Scheme 3.3. The anhydrides were poorly soluble in any 

solvents resulting in poorly defined NMR spectra. 

Cyclisation of bond c  

  

 

 

 

 

 

 

 

 

Scheme 3.4 The reaction mechanism between ketones and o-oxazoline-substituted 

aniline. 

The original method published in 2006 involves the reaction of 

propiophenone and o-oxazoline-substituted aniline in boiling butanol in the 

presence of a strong acid under an inert atmosphere6. Though there are slight 

modifications over times1-2, a library of 2-aryl quinolones were prepared from a 

reaction between oxazole 60 and ketone 58 in the presence of triflic acid. The 

reaction mechanism illustrated in Scheme 3.4. 

61 60 58 

R = 
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3.2.2 Lead optimisation I: incorporation of a polar head group 

As noted earlier, the first focus of this investigation was the incorporation of 

a polar head group. Firstly, a library of methoxy-substituted 2-aryl quinolones with 

either a bisaryl or pyridyl side chain was investigated and synthesised according to 

Scheme 3.1 and the yields can be summarised in Table 3.1.  

 

 

Compound R X 
No. of 
steps 

% Yield 57 % Yield 58 % Yield 60 % Yield 61 

61a -PhpCH2PhpOCF3 5-OMe 6 42 89 98 8 

61b -PhpCH2PhpOCF3 6-OMe 6 42 89 48 28 

61c -PhpCH2PhpOCF3 7-OMe 6 42 89 73 29 

61d -PhpCH2PhpOCF3 8-OMe 6 42 89 30 27 

61e 
 

5-OMe 6 67 69 98 4 

61f  6-OMe 6 67 69 48 22 

61g  7-OMe 6 67 69 73 51 

61h  8-OMe 6 67 69 30 25 

 

Table 3.1 Yields for the synthesis of compounds 61a-61h 

All methoxy derivatives were tested against Pf3D7, and antimalarial in vitro 

data shown in the Table 3.2 below reveals that optimal activity can be achieved by 

the introduction of a methoxy group to the 7-position (see entries 61c and 61g). The 

potency obviously increases 3-8 folds when 7-OMe attached.  A clear trend is seen 

in pyridyl series where 7-methoxylation provides optimal activity (see 61g). It is 

noteworthy that 7-OMe is also present in stigmatellin (38) and endochin (46) both 

of which possess good antimalarial activity through the inhibition of bc1 complex 

(see chapter II). 

6 

7 

5 

8 
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Compound R X IC50 (nM) 3D7 ± SD 

CK-2-67 
-PhpCH2PhpOCF3 

7-H 117 

SL-2-25  7-H 54 ± 6 

61a -PhpCH2PhpOCF3 5-OMe 664 ± 80  

61b -PhpCH2PhpOCF3 6-OMe 465 ± 39  

61c -PhpCH2PhpOCF3 7-OMe 13 ± 2  

61d -PhpCH2PhpOCF3 8-OMe 381 ± 45  

61e 
 

5-OMe > 1000 

61f 
 

6-OMe > 1000 

61g 
 

7-OMe 14 ± 2 

61h 
 

8-OMe > 1000 

 

Table 3.2 In vitro antimalarial activity of methoxy-substituted quinolones 

Some selected quinolones were demethylated using BBr3 in 

dichloromethane8 to obtain hydroxyl analogues 62b-h in 10-69 % yields and their 

antimalarial activities were assessed and displayed in the Table 3.3 below. It was 

found that the OH-substituted quinolones showed moderate activity. When 

compared to their methoxylated products, OH substitution is less favourable.  

 

 

 

Scheme 3.5 Demethylation of methoxy quinolone; Reagent: BBr3, DCM, rt, overnight, 

10-69 %. 

6 

7 

5 

8 

R = 
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Compound R X IC50 (nM) 3D7 ± SD 

CK-2-67 
-PhpCH2PhpOCF3 

7-H 117 

SL-2-25  7-H 54 ± 6 

62b -PhpCH2PhpOCF3 6-OH 465 ± 39 

62c -PhpCH2PhpOCF3 7-OH 139 ± 20 

62d -PhpCH2PhpOCF3 8- OH 819 ± 50 

62f 
 

6-OH 280 ± 50 

62g  
7-OH 202 ± 79 

62h 
 

8-OH > 1000 

 

Table 3.3 In vitro antimalarial activity of hydroxy-substituted quinolones 

Acetylation can be used to prepare a prodrug with better pharmacokinetics 

property as exemplified by the development of antiviral famciclovir.  Famciclovir is 

the diacetate ester prodrug of penciclovir9. The oral bioavailability increased from 

4% for penciclovir to 75% for famciclovir10. Acetate prodrug 63 was also 

preliminarily investigated to find any advantages in physico-chemical properties 

when the acetate moiety is attached. Acetylation can be achieved using acetyl 

chloride in the presence of triethylamine in DCM. When an excess amount of acetyl 

chloride is used, diacetate quinolone 64 was found and, in this case, both 63 and 64 

were submitted for antimalarial assessment. They show moderate antiplasmodial 

properties and, therefore, were not pursued further. 
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Scheme 3.6 Acetylation of hydroxyl quinolones; Reagent: AcCl, DMF, DCM, rt. 

 

Conclusion I: The methoxy substitution at 7-position provides the best activity. 

 

 

 

 

 

 

 

The presence of an OMe group on the A ring is tolerated with substitution at 

the 7-position greatly enhancing activity. 61c has activity of 13 nM while CK-2-67 

devoid of 7-OMe moiety shows an IC50 of 117 nM. Comparing to SL-2-25, 61d 

exhibits antimalarial activity of 14 nM. 

 

 

 

methoxylation 

SL-2-25  
IC

50
(3D7) = 54 nM 

 

 SCR-02-06 
(7g) 
IC

50
(3D7) = 

14 nM 

IC
50

(3D7) =  13 nM 

 SCR-03-
01(7c) 

CK-2-67 
IC

50
(3D7) = 117 nM 

 

61c 
IC

50
(3D7) = 13 nM 

 

61d 
IC

50
(3D7) = 14 nM 
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3.2.3 Lead optimisation II: pyridyl side chain regiochemistry 

After it was found that 7-OMe provides the most active derivative, the 

research aim then shifts into the investigation of side chain’s regiochemistry. The 

pyridyl side chain gains more attraction as the pyridyl moiety contains an ionisable 

nitrogen atom which could further improve solubility by forming a protonated salt.  

 

Figure 3.3 Rationale of lead optimisation (continued) 

It was documented that meta-substituted bisaryl quinolone 108 possessing a 

more flexible linker is well tolerated as demonstrated an improved in vitro 

antimalarial activity against drug-sensitive and –resistant parasites1a. The result 

suggests that flexibility of a particular side chain may affect compound activity. 

(Figure 3.5) 

 

Figure 3.4 The effect of flexible aryl side chain towards antimalarial activity 

Looking in detail at pyridyl regiochemistry in the lead molecule, it was found 

that several types of substitution could be investigated. When two substituents 

located on the opposite side of pyridyl ring (para-substitution) i.e. 2,5-disubstituted 
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pyridine, the resulting straight-type side chains are rigid, lack flexibility resulting in 

poor aqueous solubility. On the other hand, another disubstitution pattern (meta-

substitution) will provide more flexible and rotatable molecule (i.e. 3,5-

disubstituted pyridine). The flexible side chain also resembles the structural 

characteristics observed in substrates like endochin (46) and stigmatellin (38). In 

addition to flexibility enhancement, it was well documented that desymmetrisationi 

by changing the substitution pattern on an aromatic ring can enhance aqueous 

solubility3 thus it was hypothesised that the incorporation of meta-disubstituted 

pyridine will provide more water-soluble quinolones. 

 

 

 

 

 

Scheme 3.7 Brief synthetic route towards pyridyl regioisomers; Reagents : 

(a) Pd(PPh3)4, K2CO3, THF, H2O, under N2, 80 oC, overnight (b) CF3SO3H, n-BuOH, 

under N2 ,130 oC, 1 day. 

Based on similar chemistry (Scheme 3.1 and 3.7), the synthesis of more 

flexible side chain was accomplished from commercially available starting materials 

apart from 61l for which the precursor aldehyde could not be purchased. The 

aldehyde 65 was made from the oxidation of respective alcohol in the presence of 

DMP in 66% yield5 (Scheme 3.8). 

                                                             
i Desymmetrisation in stereochemistry is the modification of a molecule that results in the 
loss of one or more symmetry elements. 
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Scheme 3.8 Alcohol oxidation; Reagent: (a) wet DMP, DCM, rt., 30 min, 66%. 

Analogues 61i – 61s with a flexible pyridyl side chain at the 2-position were 

synthesised according to Scheme 3.1, and the yields can be summarised in Table 

3.4. In this case, both 7-H and 7-OMe analogues were synthesised and submitted 

for antimalarial assessment to attest the previous hypothesis claiming that 7-

methoxylation provides highly active derivatives. 

 

 

Compound R X 
No. of 
steps 

% Yield 58 % Yield 59 % Yield 60 % Yield 61 

61i 

 

7-OMe 6 32 92 73 34 

61j 

 

7-OMe 6 73 47 73 40 

61k 

 

7-OMe 6 55 99 73 34 

61l 

 

7-OMe 7 32 66 73 42 

61m 

 

7-OMe 6 37 97 73 62 

61p 
 

7-H 5 32 92 31 54 

61q 
 

7-H 5 73 47 31 55 

61r  7-H 5 55 99 31 56 

61s  7-H 5 37 97 31 62 

 

Table 3.4 Yields for the synthesis of compounds 61i-61s 
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7 

5 

8 



Chapter III : Lead optimisation of antimalarial 2-aryl quinolones 

66 

 

The resulting compounds were assayed against P.falciparum malaria and the 

in vitro data is shown in Table 3.5.  It was found that some pyridyl regioisomers of 

61g (eg. 61i and 61k) exhibit potent activity against the 3D7 parasite. Although 7-

methoxylation provides the best activity, it is noteworthy that analogues 61p and 

61r, which lack this substituent, are also potent nanomolar active antimalarials.  

 

 

Compound R X IC50 (nM) 3D7 ± SD 

61g  7-OMe 14 ± 2 

61i 
 

7-OMe 12 ± 3 

61j 
 

7-OMe 149 ± 5 

61k 
 

7-OMe 12 ± 3 

61l 
 

7-OMe 150 ± 10 

61m 
 

7-OMe > 1000 

61p 

 

7-H 41 ± 2 

61q 

 

7-H 390 ± 30 

61r 
 

7-H 21 ± 5 

61s  7-H > 1000 

 

Table 3.5 In vitro antimalarial activity of quinolones 61i-61s. 

 

Looking in details at their molecular structures, 61m and 61s which possess 

a 7-OMe and a rigid side chain (para- substitution) devoid of flexibility show poor 

antimalarial activities. On the other hand, 61i – 61l and 61p - 61r containing more 

6 

7 

5 

8 
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flexible side chains (meta- substitution) exhibit good to outstanding efficacy against 

the 3D7 parasite. The pyridyl nitrogen position also plays a role in activity. 

Compounds containing a nitrogen atom located away from a quinolone core (61i, 

61k, 61p and 61r) seem to exhibit greater potency. It is possibly due to the fact that 

N-H of quinolone is important in target protein binding as demonstrated in 

molecular modelling studies described later in this chapter. Any disruption from 

pyridyl nitrogen towards this moiety (i.e. steric clash between pyridyl N and N-H) 

may abolish potency. 

These compounds were also screened for aqueous solubility and any 

potential toxicity which will be discussed in later sections. It was apparent that 3,5-

stereoisomers (61i and 61p) show a good safety profile and an increase in solubility 

comparing to  other stereoisomers.  

 

Conclusion II: 3,5-stereoisomers maintain the potency and show an increase in 

solubility. 

 

 

 

 

 

 

 

 

 

 

 SCR-02-06 
(7g) 
IC

50
(3D7) = 

14 nM 

IC
50

(3D7) =  13 nM 

 SCR-03-
01(7c) 

Modification of C ring 

61g 
IC

50
(3D7) = 14 nM 

Max solubility (pH 1) = 2.6 uM 
 
 

61i 
IC

50
(3D7) =  12 nM 

Max solubility (pH 1) = 7.8 uM 

3,5-stereoisomer  

4,6-stereoisomer 61k 
IC

50
(3D7) = 12 nM 

Max solubility (pH 1) = 120 uM 
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3.2.4 Lead optimisation III: end-capped substituents 

Following previous studies, the p-OCF3 substituent on the D-ring has been 

identified to provide excellent antimalarial activity. More recent works on a related 

quinolones series revealed some advantages in 3,4-dichloro substitution4 and for 

this reason this substitution pattern was investigated within the quinolone D-ring 

side-chain in analogues 61n - o. 

 

Figure 3.5 Rationale of lead optimisation (continued) 

 Bearing in mind that 7-OMe and 3,5-disubstituted pyridyl were found to 

provide analogues which possess an outstanding potency and a good physico-

chemical property profile, within this scope, three 3,4-dichlorophenyl analogues 

were investigated. The synthesis towards 3,4-dichloro analogues can be done using 

aforementioned chemistry starting from commercially available 3,4-

dichlorophenylboronic acid (Scheme 3.1 and 3.7). The yields are summarised in the 

Table 3.6 and these compounds submitted for antimalarial in vitro assay. 
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Compound R X 
No. of 
steps 

% Yield 
57 

% Yield 
58 

% Yield 
60 

% Yield 
61 

IC50 (nM) 3D7 ± SD 

61n 

 

7-OMe 6 83 69 73 23 200 ± 10 

61o 

 

7-OMe 6 65 33 73 17 18 ± 3 

61t 
 

7-H 5 65 33 31 25 40 

 

Table 3.6 Yields and in vitro antimalarial activity of 3,4-dichlorophenyl quinolones 

The in vitro assay revealed that 3,4-dichlorophenyl substitution is tolerated 

as seen in 61o and 61t both of which show excellent antimalarial efficacy. 61o 

expresses an activity as low as 18 nM against 3D7 parasite with improved toxicity, 

solubility and stability profiles as described later.  Further biological experiments 

regarding this compound are in progress.  

 

 Conclusion III: 3,4-dichloro substitution is tolerated. 
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3.2.5 6-Cl-7-OMe-2-aryl quinolone analogue 

During the course of this project, the related quinolone ELQ-300 (24) 

featuring 6-Cl and 7-OMe substituents on the A-ring was identified. ELQ-300 is a 

selective potent Plasmodium bc1 inhibitor and shows a superior antiplasmodial 

activity in vitro and in vivo against blood stage and liver stages of malaria11. It is 

evident that, by replacing a H atom with a halogen atom at the 6-position on the 

quinolone core, more potent derivatives were found. With this strategy combining 

with the fact that 7-methoxylation provide the most active derivative, 61u was 

synthesised following a general synthetic route used for 2-aryl quinolone.  

 

 

 

 

 

 

Figure 3.6 The chemical structure of 61u based on a quinolone scaffold that 

resembles the structural characteristic of ELQ-300 and 61g 

Unfortunately, 5-chloro-4-methoxyanthranilic acid was not commercially 

available at that time, therefore, the synthesis of this anthranilic acid was then 

required. Starting from 4-methoxyanthranilic acid, the reaction of the carboxylic 

acid with methyl iodide in the presence of potassium carbonate gave methyl ester 

66 in good yield12. 

 

Scheme 3.9 Reagent: MeI, K2CO3, DMF, 2 h, rt, 81%. 
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 A chlorine atom was then added by using sulfuryl chloride in chloroform12. 

The sulfur dioxide produced was passed through a water trap. Once there was no 

gas bubbling out from the reaction, the intermediate methyl ester was saponified 

with 1 M NaOH solution to give the desire anthranilic acid 67 in 19% yield. The 

product can be purified by column chromatography. The total yield for this 

synthetic route was poor and therefore an alternative approach was investigated. 

  

Scheme 3.10 Reagent: (a) SO2Cl2, CHCl3, 0 oC, 30 min (b) 1 M aq. NaOH, 1 h, 

19% over 2 steps. 

A literature search shows that anthranilic acid can be made from the 

corresponding starting aniline via isatin formation13. The Sandmeyer isatin synthesis 

discovered in 1919 is known to produce isatin through the cyclisation of the 

condensation product of chloral hydrate, aniline and hydroxylamine in sulfuric acid. 

Isatin can be oxidised to give a corresponding anthranilic acid13a. 

 According to the known reaction above, the synthesis begins with the 

reaction between the 4-chloro-3-methoxyaniline and chloral hydrate under acidic 

condition13c, d. The oxime product appeared as a dark brown solid was formed in 

excellent yield. Due to the fact that this compound has poor solubility in organic 

solvent, only its 1H-NMR was obtained.  

 

Scheme 3.11 Reagent: (a) Na2SO4, chloral hydrate, concentrated HCl, 

NH2OH.HCl, water, 100 oC, 3 h, 94%. (b) H2SO4, 90-105 oC, 25 min, 79%. 
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The cyclisation of this oxime in warm sulfuric acid yields isatin 68 or 

indolinedione in 79% conversion13c, d. The solid was collected and dried. Without 

any purification its 1H-NMR showed high purity. The oxidation of isatin 68 in a 

diluted solution of hydrogen peroxide under basic condition gave the corresponding 

anthranilic acid 67 in good yield13c, d. The spectroscopic and elemental analysis data 

were consistent to the pure sample obtained from a different synthetic route.  

 

Scheme 3.12 Reagent: (a) aq. 4 M NaOH, 3% H2O2, ice bath, 45 min, 83% (b) 

CCl3COCl, THF, H2O, 0oC, 2 h, 47% 

The synthesis then follows the general synthesis described in Scheme 3.1 

and 3.13 starting from anthranilic acid 59e which was made from 67 using 

diphosgene. Yields were reported in the experimental section in this chapter. 

Compound 61u with 6-Cl and 7-OMe substituents were obtained and it was assayed 

for antimalarial activity. The in vitro data shows high potency against Plasmodium 

3D7 parasite with an IC50 of 9 nM. With this promising activity, this compound is 

now under further biological experiments. 

 

 

 

 

 

 

Scheme 3.13 Reagents: (a) 2-amino-2-methyl-propanol, ZnCl2, PhCl, 135 oC, 

19% (b) CF3SO3H, n-BuOH, under N2, 130 oC, 1 day, 19%. 
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3.2.6 Drug resistant parasite inhibition profiles 

 Drug resistance is a major threat in malaria control and elimination as noted 

in the first chapter. New drugs should provide a better safety profile and show no 

cross resistanceii with current drugs14. In addition to the Pf3D7 testing, some 

selected compounds were tested against drug resistant strains of P. falciparum 

including chloroquine resistant W2 and atovaquone resistant TM90C2B (Table 3.7). 

61i and 61k, both contain flexible side chains, showed excellent activitites against 

both W2 and TM90C2B strains which are comparable to marketed drugs and our 

current lead - SL-2-25. Notably, against the atovaquone resistant strain TM90C2B 

both 61i and 61k express excellent activity and show no cross resistance with 

atovaquone. It suggests that flexible 61i and 61k bind to the target in a different 

manner to atovaquone. 

Compound IC50 (nM) W2 
IC50 (nM) 
TM90C2B 

chloroquine 12.3 14.5 

atovaquone 0.30 9908 

SL-2-25 48 156 

61i 4.0 8.2 

61k 4.2 7.0 

 

Table 3.7 Drug resistant parasites inhibition profiles of selected quinolones 

  

3.2.7 Aqueous solubility profiles 

Aqueous solubility is important for drug candidates. A literature search 

showed that aqueous solubility can be inferred by changes to ClogP, melting point, 

and HPLC retention time3. Previous research indicates that quinolones generally 

                                                             
ii Cross resistance is a resistance to a particular drug that often results in resistance to other 
drugs, usually from a similar chemical class, to which the pathogen may not have been 
exposed.  
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have poor aqueous solubility due to the planar aggregation via π-π stacking of their 

ring system1. Several strategies can be used to improve their solubility. Here, the 

incorporation of and modification of pyridyl side chain was explored with an aim of 

solubility enhancement. Some derivatives exhibited higher potency and those 

compounds were subjected to 96-well plate aqueous solubility assessment. The 

experiment was run in three different solutions according to their acidity.  

 Compound 
Max Solubility (µM) 

pKa Melting Point ◦C 
pH1 pH7.4 Media 

SL-2-25 (55) 3.2 <1 48 < 1.5  277-278 

61i 7.8 <1 64 < 2.0 255-258 

61g 2.6 <1 44 < 1.5 324-325 

61k 120 <1 98 < 2.5 245-247 

61p 140 3.6 59 < 2.5 217-220 

61r 79 2.1 92 ND 244-246 

61o 15 14 100 < 2.0 290-292 

*Media = culture media (10% serum-based culture medium (RPMI-1640 supplemented with 

25 mM HEPES and 4 μg/ml gentamicin))  

Table 3.8 Aqueous solubility profiles of selected quinolones  

The results are shown in Table 3.8. At pH1, where the nitrogen lone pair can 

be protonated, 61p has the best aqueous solubility amongst the selected 

quinolones which correlated with its low melting point. Although 61g gave excellent 

activity, it is worth noting that a high melting point is observed which possibly 

reflects a decrease in aqueous solubility. Looking in detail at the side chain, 

substitution on pyridyl exclusively affected both antimalarial activity and solubility. 

The presence of the meta-pyridyl substitution (3,5-disubstituted pyridyl) seems to 

provide potent derivatives and also a good range of solubility (61i and 61k). The 

relationship between melting point and solubility can be used within the 

pharmacophore to preliminarily compare their solubility. 
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3.2.8 Metabolic stability profiles 

Selected potent quinolones were also submitted for their in vitro metabolic 

stability. Drug metabolism is a chemical transformation of pharmaceutical 

substances into more hydrophilic products which can be readily excreted by living 

organisms. The human liver is the most important site of drug metabolism in the 

body. Approximately 60 % of marketed compounds are cleared by hepatic CYP-

mediated metabolism15. Subcellular fractions such as liver microsomes are useful in 

vitro models of hepatic clearance as they contain many of the drug metabolising 

enzymes found in the liver16. On the other hand, hepatocytes contain the full 

complement of hepatic drug metabolising enzymes (both phase I and phase II) 

maintained within the intact cell17. They are used as primary screens in the early 

drug discovery process. High clearance compounds are generally considered to be 

unfavourable as they are likely to be rapidly cleared in vivo resulting in a short half-

life18.  

Compound 
Human Mics CLint 

(µL/min/mg) 
Rat Heps CLint 
(µL/min/106) 

SL-2-25 (55) 20.6 ND 

61i 25.9 1.2 

61o 14 4.9 

61p 12.5 1.8 

61r 7.7 2.5 

61t 5.6 9.9 

   

Table 3.9 Selected compounds solubility and metabolic stability profiles 

Human microsomal stability assessment shows how stable the drug is when 

enters CYP450 oxidation stage, while rat hepatocytic clearance shows the 

compound stability in both phase I and phase II metabolism. The result shows that 

61r and 61t show very low intrinsic clearance in human microsomal assay (<< 20 

µL/min/mg protein)16, 18, whereas 61i, 61o, 61p and 61r exhibit low hepatocytic 

clearance in the assay (< 7 µL/min/106 cell)17-18.  
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61i, 61o, and 61p are likely to be metabolised in human microsome as 

moderate clearances found. It is possibly due to the fact that their pyridyl nitrogen 

atoms are more exposed to the oxidative enzyme resulting in the N-oxidation 

products. Comparing between 7-OMe (61i and 61o) and 7-H (61p, 61r, 61t) 

analogues, 7-OMe compounds are more sensitive to metabolism as a possible result 

of 7-O-demethylation. 3,4-dichlorophenyl compounds (61o, 61t) are more stable in 

human microsomal media than theirs p-OCF3 counterparts. It is likely due to the fact 

that the ortho oxidation is prohibited by this substituent. 61r would be expected to 

be subject to very slow clearance in vivo18. 

3.2.9 Potential off-target toxicity 

Previous antimalarial projects that have focused on the development of bc1 

inhibitors have had to be terminated because of safety concerns regarding drug 

cardiotoxicity19. Therefore, a bovine heart bc1 counterscreen was established to 

investigate any potential mammalian mitochondrial toxicity20. Some highly potent 

compounds were assessed in vitro, using bovine heart bc1 inhibition as displayed in 

Table 3.10. 

Compound IC50 (3D7)(nM)  
Bovine heart bc1 

(% inhibition at 100 nM) 
Bovine heart bc1 

(% inhibition at 1 μM) 

SL-2-25 54 ND 60 

61g 14 55 98 

61i 12 19 81 

61k 12 63 85 

61o 18 13 20 

61p 41 20 25 

61r 21 52 81 

Bovine heart bc1 inhibition, IC50 for SL-2-25 (55) = 890 nM and atovaquone = 83 nM 

Table 3.10 Enzyme and parasite inhibition profiles of selected quinolones. 

The single-point inhibition experiments were run at two different 

concentrations of select compounds – 100 nM and 1 uM. A low % inhibition 
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represents that the compound is less active in the bovine heart bc1 screen. The 

general trend when 7-H compounds are compared to the 7-OMe counterparts is a 

reduction in inhibition of the bovine heart bc1 complex. It is evident that the 7-OMe 

group plays a role in parasitic activity but it shows the drawback of the bovine heart 

bc1 inhibition. Generally, the substitutions on pyridyl ring as in 61i, 61o and 61p 

provide less toxic derivatives. In cases of 61o and 61p, given the preliminary data 

above, it is expected that their IC50 values are greater than 1 μM making these 

compounds even safer than SL-2-25. 

 

3.2.10 Molecular modelling studies 

In addition to the chemical synthesis and antimalarial assessment of 

analogues, molecular modelling studies also performed to predict the way which a 

molecule is likely to interact with potential protein targets. The approach can be 

used either as a method to forecast those compounds most likely to give good 

results when synthesised, or to rationalise the observed results for existing 

compounds and suggest further development. 

There are a number of docking software available either free, online or via 

licence needed. GOLD (Generic Optimisation for Ligand Docking) was chosen for this 

study21 as it has been used by relevant publications regarding the molecular docking 

at Qo site of the bc1 complex22. The molecular docking performed by GOLD is scored 

according to factors such as hydrogen bonding, van der Waals interaction, ligand 

strain, and steric clashes generating a term called GoldScore. 

Although the protein crystal structure for P.falciparum bc1 is not available, 

details of ATQ binding to cytochrome b have been elucidated based on studies 

performed on model organism and molecular modelling. The studies including EPR 

spectroscopy of the Rieske [2Fe2S] cluster, site-directed mutagenesis of model 

organism cytochrome b and gene sequencing of ATQ resistant Plasmodium species 

have demonstrated that ATQ is most likely a competitive inhibitor of the parasite's 

cytochrome b at quinol oxidation (Qo) site23. After ATQ monotherapy was 
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introduced to the market, subsequent P.falciparum parasites with a point mutation 

at Y268 were found in infected patients and it leads to 9,000-fold increase in IC50
24. 

Position 268 in cytochrome b is highly conserved across all phyla and is located in 

the ‘ef’ helix component of the Qo site, which is involved in quinol binding19, 23a. It 

can be inferred that mutations at Y268 in Qo site connect to the ATQ resistance24-25. 

Recently the X-ray structure of mitochondrial cytochrome bc1 from yeast 

(Saccharomyces cerevisiae) with ATQ reveals that ATQ bound in the catalytic Qo site 

(3.0-Å resolution) (PDB code 4PD4)26. 

Even though the crystallographic structure of P.falciparum bc1 is not 

available, known bc1 inhibitors were re-docked in silico using the high resolution 

crystal structure of yeast bc1 protein (1.9-Å resolution) (PDB code 3CX5). The 

rationale for using the yeast protein is that it shares 40% homology with 

P.falciparum and the Qo region is well conserved between the two proteins2, 23b. The 

yeast bc1 complex was originally co-crystallised with natural occurring stigmatellin 

binding at the Qo site. Using the GOLD docking programme, stigmatellin can be 

removed and other compounds then docked into the same binding site.  

Docking Solution Goldscore Reference.RMSD 

1 88.5148 1.9451 

2 104.7243 1.2493 

3 79.3534 3.7428 

4 94.5962 1.1509 

5 91.8883 1.3194 

6 97.6777 1.8039 

7 96.4232 1.7432 

8 97.5787 2.0191 

9 84.7930 1.3627 

10 107.2751 0.7892 

 

Table 3.11 3CX5 protein validation results by stigmatellin re-docking mode 
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Figure 3.7 In silico re-docking mode for 3CX5 Qo site with stigmatellin. The 

crystallographic ligand was shown in cyan and the highest scoring result was shown 

in yellow 

Therefore, in order to validate the chosen protein configuration, stigmatellin 

was docked into the Qo active site and the docking result shows that the highest 

score docking pose for stigmatellin, entry 10 in Table 3.11, has an RMSD of less than 

1 Å with an average RMSD of 1.71 Å which is within 2 Å standard for a successful 

docking. In fact only two poses, entry 2 and 8, have RMSD values of greater than 2 

Å. With an average Goldscore of 94.2, these results can be considered as a 

validation of ligand orientation and the docking method, meaning that any docking 

for other ligands using this approach are likely to be accurate. A simple outlying 

image also shows that the re-docking pose aligns in a similar way to the 

crystallographic ligand (Figure 3.7). 

 

E272 

H181 

Stigmatellin 
H2O 
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Figure 3.8 4-Quinolones employed in molecular docking 

Having established the method, some highly active quinolones were 

selected for docking. To prepare quinolones for docking into the active site, their 

three dimensional structures were constructed and their minimal energy optimised 

using the Spartan’08 molecular mechanics programme. The files were then 

imported to GOLD and those molecules were docked into the Qo site using the 

configuration previously validated by a successful re-docking of stigmatellin. For 

each quinolone, ten docking poses including its Goldscore were obtained for 

comparison and analysis. The quinolones used in molecular docking experiments 

are depicted below. 

SL-2-25 (55), the initial lead compound in the programme, has very good 

potency and was the starting point of this research; therefore, it was selected as the 

benchmark for comparison. The compound did not score highest in the Goldscore 

amongst synthesised quinolones; the average score was only 57.07. It was found 

that there are a few poses where the compound did not locate in the correct 
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binding position. It is probably due to the fact that this compound contains a rigid 

side chain and lacks flexibility in some orientations.  

Docking solution Goldscore 

1 55.7294 

2 58.9367 

3 53.0100 

4 58.1072 

5 57.2962 

6 57.5820 

7 56.2343 

8 56.8088 

9 57.4782 

10 59.5537 

 

Table 3.12 Docking results for SL-2-25 on 3CX5 protein.  

 

Figure 3.9 In silico docking mode for 3CX5 Qo site with SL-2-25. The selected 

SL-2-25 pose is depicted with carbons shown in yellow. 

E272 
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SL-2-25 
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Using the same technique, quinolone analogues 61g, 61i, 61k, 61l, 61m, 61o, 

61p, 61t, and 61u were selected and their dockings were performed. A Goldscore 

for each quinolones was generated and presented in the Table 3.13 with measured 

antimalarial IC50s.  

The best fit docking pose can be presented as the quinolone core inside the 

binding pocket and the 2-aryl side chain in the hydrophobic tunnel. In general, it 

was found that all quinolone bind tightly to the protein (average Goldscore > 60 in 

most cases). The essential interactions for strong binding are the hydrogen bond 

between H181 linked to Rieske protein and quinolone’s carbonyl, the water-

mediated hydrogen bond between E272 and N-H of quinolone, and surprisingly the 

interaction of 7-methoxy with a methionine residue. This binding mode not only 

results in a collapse of mitochondrial membrane potential but also impacts on 

metabolic enzymes that depend on the electron transport chain such as DHODH27.  

 

Figure 3.10 In silico docking mode for 3CX5 Qo site with 61g. The highest 

scoring pose is depicted with carbons shown in yellow. 
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Compound Structure IC50 (nM) Average Goldscore 

SL-2-25 (55) 

 

54 57.07 

61g 

 

14 62.86 

61i 

 

12 78.38 

61k 

 

12 72.10 

61l 

 

150 73.13 

61m 

 

>1000 68.48 

61o 

 

18 79.77 

61p 

 

41 67.97 

61t 

 

40 72.34 

61u 

 

9 56.10 

 

Table 3.13 IC50s and Goldscores of quinolone analogue (3CX5) 
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There is a rather clear trend we can observe that quinolones containing a 

flexible side chain and a 7-OMe (61i, 61k, 61l, and 61o) seem to possess a higher 

Goldscore indicating that these structural features are important in bc1 Qo site 

binding.  

The 7-OMe group can form a H-bond with a methionine residue at the end 

of the Qo pocket which may act to tether the compound into the active site. This 

combined with strong H181 and water-mediated E272 interaction makes a more 

potent inhibitor. This is reflected by the higher GoldScore values for 61g over SL-2-

25. Similar relationships were found which 61i, 61o (7-OMe) possess higher 

Goldscores than 61p and 61t (7-H), respectively.  

As described earlier, a long chain at C2 appears to be crucial for good 

antimalarial activity and physico-chemical properties. Obviously the meta-

substituted analogues (61i, 61k, 61l, 61o, 61p, and 61t) fit well into the Qo pocket, 

much more easily than the para-substituted analogue (61g, 61m, and 61u) as 

demonstrated by higher Goldscores observed. For example, going from 61m to 61l 

the activity was restored. This can be supported by the large increase in the 

GoldScore value for 61l suggesting the preferential binding of the meta-analogue. 

Also, a simple understanding and inspection of the Qo site and the ligands in the 

pocket shows that the meta-analogue simply fits better, with less strain, as in 61m 

the p-OCF3 appears to sit in a little pocket which may bring about a strong steric 

clash, and given the compounds rigid nature there would be no way to circumvent 

this interaction without the compounds falling out of the pocket.  

The difference in pyridyl regiochemistry as demonstrated in 61i, 61k and 61l 

doesn’t seem to have major negative effects on Goldscores which disagrees with 

the observed antimalarial activity. Comparison of the docking results between 3,4-

dichloro substitution and p-OCF3 on D ring shows a little advantage of a 3,4-dichloro 

moiety as demonstrated by greater Goldscores observed for 61o, 61t (3,4-dichloro 

substitution) than 61i and 61p (p-OCF3), respectively.  
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Figure 3.11 In silico docking mode for 3CX5 Qo site with 61m. The highest 

scoring pose is depicted with carbons shown in yellow. 

 

Figure 3.12 In silico docking mode for 3CX5 Qo site with 61l. The highest 

scoring pose is depicted with carbons shown in yellow. 
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Figure 3.13 In silico docking mode for 3CX5 Qo site with 61o. The highest 

scoring pose is depicted with carbons shown in yellow. 

Another homology model of cytochrome bc1 based on the primary sequence 

Q02768 and the 1KYO S. cerevisiae bc1 complex template was created with the 

PHYRE online homology modelling tool28. 1KYO is a 2.97 Å resolution crystal 

structure of cytochrome bc1 complex co-crystallised with the ligand stigmatellin. 

After validation and structural refinement using the WHATIF web interface and 

SYBYL-X 1.1 Biopolymer module, respectively29, the model was used to explore the 

binding mode of quinolone analogues within the Qo active site. 

Using GOLD and the methods described earlier, stigmatellin was removed 

from the crystal and the model was validated by the re-docking mode of 

stigmatellin. The re-docking result shows that stigmatellin has an average Goldscore 

of 94.6 with an RMSD of 2.53 suggesting a rather successful method. Quinolone 

compounds were then docked into to binding site and their Goldscores were 

summarised in the Table 3.14. 

 

 

E272 

H181 

H2O 

61o 

Methionine 
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Compound Structure IC50 (nM) Average Goldscore 

SL-2-25 (55) 

 

54 76.73 

61g 

 

14 83.85 

61i 

 

12 85.06 

61k 

 

12 83.62 

61l 

 

150 84.16 

61m 

 

>1000 84.25 

61o 

 

18 84.18 

61p 

 

41 84.30 

61t 

 

40 76.12 

61u 

 

9 79.03 

 

Table 3.14  IC50s and Goldscores of quinolone analogue (1KYO) 
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Similar to 3CX5 model, tight bindings between quinolones and the 1KYO 

model were found with an average Goldscore > 75 in all case. A clear trend was also 

observed that quinolones containing a 7-OMe possess a higher Goldscore 

demonstrating that the methoxy moiety is critical in both in vitro activity and in 

silico docking.  

Using this model, all molecular docking provides a similar range of 

Goldscores suggesting that the procedure used is not suitable to differentiate or 

predict the antimalarial activity from in silico modeling. On the other hand, with all 

Goldscore higher > 75, it can be proposed that all quinolone tightly binds to the bc1 

target in this model giving the nanomolar potency except for inactive 61m. 

 

3.3 Conclusion 

To conclude, a 5-7 step synthesis of a library of 2-aryl quinolones with 

potent antimalarial activity has been prepared. In vitro antimalarial assessment of 

these quinolone revealed the advantages of the 7-methoxy moiety. The potency 

increases 3-8 folds when the 7-OMe group is attached.  Further lead optimisation 

led to the identification of a more flexible quinolone 61i retaining high potency 

against the 3D7 strain of P. falciparum. The structure also possesses greater 

aqueous solubility and low potential for off-target toxicity.  

 

 

 

 

 

Figure 3.14 Lead optimisation of 2-aryl quinolones based on SL-2-25 

 Following a similar study on related quinolones, 3,4-dichloro analogues were 

briefly investigated and it shows the advantage of 3,4-dichloro moiety over p-OCF3. 

Lead optimisation 

SL-2-25  
IC

50 
(3D7) = 54 nM  

 

61g 
IC

50 
(3D7) = 14 nM 

61o 
IC

50 
(3D7) = 18nM  

 

methoxylation 
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This led to the discovery of 61o possessing an outstanding potency against 3D7 

strain of P. falciparum of 18 nM. It shows even lower bovine bc1 inhibition potency 

when compare to other quinolones. In vivo assessment and DMPK studies are also 

currently ongoing. 

Featuring 6-Cl and 7-OMe substituents, 61u was identified with an in vitro 

IC50 potency of 9 nM against Plasmodium. With respect to SAR, it would be 

interesting to synthesise some quinolone analogues based on the structural 

characteristics of 61u and 61o, for example, 61v which resembles flexible side 

chain, 3,4-dichlorophenyl and 6-Cl-7-OMe features (Figure 3.15). 61v is expected to 

possess high potency with good solubility and safety profiles. 

 

 

 

 

 

 

Figure 3.15 61v resembles the structural characteristics of 61u and 61o 

Molecular modelling was employed to predict the way in which quinolone 

molecules bind to the target bc1 protein. Several models based on the yeast bc1 

protein complex were generated, validated and used. In silico molecular modelling 

shows that all quinolones bind tightly to the protein. The essential interactions for 

strong binding are the hydrogen bond between histidine residue linked to the 

Rieske protein and the quinolone carbonyl, and the water-mediated hydrogen bond 

between glutamate and N-H of quinolone as demonstrated earlier.  
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3.4 Experimental  

3.4.1 General  

 Air- and moisture-sensitive reactions were carried out in oven-dried 

glassware sealed with rubber septa under nitrogen from a balloon. Sensitive liquids 

and reagents were transferred via syringe. Reactions were stirred using Teflon-

coated magnetic stir bars. All commercial reagents were used without further 

purifications. Organic solutions were concentrated under vacuum using Buchi rotary 

evaporator. 

 Anhydrous solvents were either purchased from reliable commercial sources 

or distilled from a still prior to use under inert gas atmosphere. THF was distilled 

from Na with benzophenone as an indicator. DCM was distilled from CaH2. All 

reagents were purchased from reliable commercial sources and were used without 

any purification unless otherwise indicated. TLC analysis was performed to confirm 

the reagents purity. 

TLC was performed on 0.25 mm thickness Merck silica gel 60 with 

fluorescent indicator at 254 nm and visualised under UV light. UV inactive 

compounds were stained and visualised using iodine, p-anisaldehyde, or potassium 

permanganate solution followed by gentle heating. Flash column chromatography 

was performed using normal phase silica gel purchased from Sigma-Aldrich.   

NMR spectra were recorded in a solution of CDCl3 or DMSO-d6 on a Brucker 

AMX400 spectrometer (1H 400 MHz, 13C 100 MHz). Chemical shifts (δ) were 

expressed in ppm relative to tetramethylsilane (TMS) used as an internal standard. J 

coupling constants are in hertz (Hz) and the multiplicities were designed as follows: 

s, singlet; d, doublet; t, triplet; q, quartet; dd, double of doublet; m, multiplet. Mass 

spectra were recorded on either a Micromass LCT Mass Spectrometer using 

electrospray ionisation (ESI) or Trio-1000 Mass Spectrometer using chemical 

ionisation (CI). Reported mass values are within error limits of ±5 ppm. Elemental 

analysis (%C, %H, %N) was performed in the University of Liverpool microanalysis 
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laboratory. All melting points were determined with Gallenkamp melting point 

apparatus and were uncorrected. 

3.4.2 Synthesis  

Preparation of 4-(4-(trifluoromethoxy)benzyl)benzaldehyde, 56a 

 
56a 

To a solution of 1-(bromomethyl)-4-(trifluoromethoxy)benzene (1.03 g, 1.1 

eq), Pd(PPh3)4 (180 mg, 0.025 eq) ,and potassium carbonate (2.84 g, 3.3 eq) in THF 

(35 mL) and H2O (15 mL) under an N2 atmosphere was added 4-

formylphenylboronic acid (1.59 g, 1.0 eq).The reaction was allowed to stir and 

heated to reflux condition (80 oC) overnight. After that the mixture was allowed to 

cool to room temperature and evaporated to remove solvent. The residue was 

redissolved in EtOAc, passed through a silica pad to obtain a dark brown oil after 

solvent removal. Purification by column chromatography (eluting with 10% 

EtOAc/n-Hexane) gave 56a (1.65 g, 94%) as a white solid.  1H NMR (400 MHz, CDCl3) 

δ 9.99 (s, 1H, COH), 7.83 (d, J = 8.2 Hz, 2H, Ar), 7.34 (d, J = 8.1 Hz, 2H, Ar), 7.20 (d, J = 

8.8 Hz, 2H, Ar), 7.15 (d, J = 8.4 Hz, 2H, Ar), 4.06 (s, 2H, ArCH2Ar);13C NMR (100 MHz, 

CDCl3) δ 192.3, 148.0, 138.8, 135.3, 130.6, 130.6, 129.9, 121.6, 41.7. MS (CI) : m/z 

calculated for C15H11O2F3 ([M]+) 280.1, found 280.3. 

General procedure 1 

 

 

 

To a solution of selected aromatic aldehyde (1.0 eq), Pd(PPh3)4 (0.08 eq) and 

potassium carbonate (3.3 eq) in THF (25 mL) and H2O (10 mL) under N2 atmosphere 

was added  phenylboronic acids (1.1 eq). The reaction was allowed to stir and 
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heated to reflux condition (80 oC) overnight. After the mixture was allowed to cool 

to room temperature, water (20 mL) was poured into the mixture. Extraction with 

EtOAc (3 x 30 mL), washing with brine and drying over MgSO4 gave the crude after 

solvent evaporation. Purification was performed by column chromatography 

(eluting with 10-30% EtOAc/n-Hexane). 

Preparation of 6-(4-(trifluoromethoxy)phenyl)nicotinaldehyde, 56b 

 

                                             56b 

 6-Bromonicotinaldehyde (835 mg, 5 mmol) was treated following the 

General procedure 1 gave 56b (1.06 g, 88%) as a pale yellow solid. 1H NMR (400 

MHz, CDCl3) δ 10.16 (s, 1H,COH), 9.14 (d, J = 1.5 Hz, 1H), 8.26 (dd, J = 8.2, 2.2 Hz, 

1H), 8.14 (d, J = 8.9 Hz, 2H), 7.90 (d, J = 8.3 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H);13C NMR 

(100 MHz, CDCl3) δ 190.78, 161.07, 152.82, 137.17, 136.88, 130.43, 129.57, 121.60, 

120.91. ESI-HRMS: m/z calculated for C14H13NO3F3 ([M+MeOH+H]+) 300.0848, found 

300.0849. 

Preparation of 5-(4-(trifluoromethoxy)phenyl)picolinaldehyde, 56c 

 
        56c 

5-Bromopicolinaldehyde (930 mg, 5 mmol) was treated following the 

General procedure 1 gave 56c (1.30 g, 98%) as a pale yellow solid. 1H NMR (400 

MHz, CDCl3) δ 10.14 (s, 1H), 9.00 (dd, J = 1.9, 1.0 Hz, 1H), 8.09 – 8.00 (m, 2H), 7.68 

(d, J = 8.7 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 193.31, 

152.23, 148.98, 139.74, 135.64, 129.36, 128.09, 122.26, 122.14. ESI-HRMS: m/z 

calculated for C13H9NO2F3 ([M+H]+) 268.0585, found 268.0587. 
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Preparation of 6-(4-(trifluoromethoxy)phenyl)picolinaldehyde, 56d 

 
 

                     56d 

6-Bromopicolinaldehyde (930 mg, 5 mmol) was treated following the 

General procedure 1 gave 56d (1.20 g, 89%) as yellow needles. 1H NMR (400 MHz, 

CDCl3) δ 10.16 (d, J = 0.6 Hz, 1H), 8.18 – 8.10 (m, 2H), 7.97 – 7.90 (m, 3H), 7.36 (dd, J 

= 8.9, 0.9 Hz, 2H).13C NMR (101 MHz, CDCl3) δ 194.03, 156.90, 153.22, 150.79, 

150.77, 138.41, 137.10, 128.96, 124.68, 121.61, 120.45.  ESI-HRMS: m/z calculated 

for C13H8NO2F3Na ([M+Na]+) 290.0405, found 290.0406. 

Preparation of 5-(4-(trifluoromethoxy)phenyl)nicotinaldehyde, 56e 

 

                         56e 

5-Bromonicotinaldehyde (2.4 g, 13 mmol) was treated following the General 

procedure 1 gave 56e (3.4 g, 99%) as a white solid.  1H NMR (400 MHz, CDCl3) δ 

10.21 (s, 1H), 9.09 (d, J = 1.7 Hz, 1H), 9.07 (d, J = 2.2 Hz, 1H), 8.34 (t, J = 2.1 Hz, 1H), 

7.67 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 190.92, 

153.38, 151.41, 150.24, 136.48, 135.40, 134.04, 131.82, 129.17, 122.18.ESI-HRMS: 

m/z calculated for C14H13NO3F3 ([(M+MeOH)+H]+) 300.0848, found 300.0847. 
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Preparation of 2-(4-(trifluoromethoxy)phenyl)isonicotinaldehyde, 56f 

 

                         56f 

2-Bromoisonicotinaldehyde (2.6 g, 14 mmol) was treated following the 

General procedure 1 gave 56f (3.52 g, 94%) as a colourless oil.  1H NMR (400 MHz, 

CDCl3) δ 10.14 (s, 1H), 8.94 (dd, J = 4.9, 0.6 Hz, 1H), 8.17 – 8.02 (m, 3H), 7.65 (dd, J = 

4.9, 1.4 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 191.74, 158.01, 

151.60, 150.82, 150.81, 143.00, 137.13, 128.95, 121.55, 121.44, 118.94. ESI-HRMS: 

m/z calculated for C14H13NO3F3 ([(M+MeOH)+H]+) 300.0848, found 300.0853. 

 

Preparation of 4-bromopicolinaldehyde, 65  

 

 

                        65 

Wet DCM (10 mL) was added slowly to the stirring solution of (4-

bromopyridin-2-yl)methanol (658 g, 3.5 mmol) and DMP (1.5 eq) in DCM (15 mL). 

The cloudy mixture was left for an hour then diluted with ether, concentrated on 

rotavap. The residue was then taken up in 30 mL of ether and then washed with 20 

mL of 1:1 mixture of 10% Na2S2O3 and sat.NaHCO3, followed by water and brine. 

The aqueous washings were back-extracted with ether. The combined organic 

layers were dried over MgSO4 and evaporated to dryness. Purification was achieved 

by column chromatography (eluting with 40% EtOAc/n-Hexane) to afford 4-

bromopicolinaldehyde (432 mg, 66%) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 

10.04 (s, 1H), 8.61 (dd, J = 5.2, 0.4 Hz, 1H), 8.12 (dd, J = 1.9, 0.5 Hz, 1H), 7.69 (dd, J = 

5.2, 2.0 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 192.42, 154.06, 151.27, 134.57, 

131.31, 125.52.    
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Preparation of 4-(4-(trifluoromethoxy)phenyl)picolinaldehyde, 56g 

 

                         56g 

4-Bromopicolinaldehyde, 65 (550 mg, 2.96 mmol) was treated following the 

General procedure 1 gave 56g (610 mg, 83%) as a yellow solid. 1H NMR (400 MHz, 

CDCl3) δ 10.15 (s, 1H), 8.85 (dd, J = 5.1, 0.7 Hz, 1H), 8.17 (dd, J = 1.9, 0.7 Hz, 1H), 

7.75 – 7.67 (m, 3H), 7.37 (d, J = 8.0 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 193.73, 

151.23, 148.68, 129.06, 125.76, 122.03, 119.70, 117.74.  ESI-HRMS: m/z calculated 

for C13H8NO2F3Na ([M+Na]+) 290.0405, found 290.0409. 

Preparation of 6-(3,4-dichlorophenyl)nicotinaldehyde, 56h 

 

                         56h 

6-Bromonicotinaldehyde (986 mg, 5.3 mmol) and 3,4-

dichlorobenzeneboronic acid (1.09 g, 5.7 mmol) was treated following the General 

procedure 1 gave 56h (1.04 g, 78%) as a white solid. 1H NMR (400 MHz, CDCl3) δ 

10.15 (s, 1H), 9.13 (d, J = 2.1 Hz, 1H), 8.28 – 8.21 (m, 2H), 7.93 (dd, J = 8.4, 2.1 Hz, 

1H), 7.88 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 

190.54, 159.94, 152.72, 138.20, 137.28, 135.16, 133.89, 131.36, 130.74, 129.85, 

126.89, 120.81. MS (CI): m/z calculated for C12H8
35Cl2NO ([M+H]+) 252.0, found 

252.1(100%), 254.0(79), 256.2(11). 
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Preparation of 5-(3,4-dichlorophenyl)nicotinaldehyde, 56i 

 

                         56i 

5-Bromonicotinaldehyde (930 mg, 5 mmol) and 3,4-dichlorobenzeneboronic 

acid (1.07 g, 5.5 mmol) was treated following the General procedure 1 gave 56i 

(987 mg, 78%) as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 10.21 (s, 1H), 9.09 (d, J 

= 0.8 Hz, 1H), 9.05 (d, J = 1.6 Hz, 1H), 8.31 (t, J = 2.2 Hz, 1H), 7.73 (d, J = 2.1 Hz, 1H), 

7.60 (d, J = 8.3 Hz, 1H), 7.47 (dd, J = 8.3, 2.2 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 

190.73, 179.85, 153.27, 151.83, 136.72, 134.14, 133.89, 133.85, 131.76, 129.48, 

128.08, 126.78. MS (CI): m/z calculated for C12H8Cl2NO ([M+H]+) 252.0, found 

252.2(100%), 254.2(66), 256.2(11). 

 

General procedure 2. 

 

56                        57 

Aldehyde 56 (1.0 eq) was dissolved in THF (30 mL) and cooled down to 0 oC 

under N2 atmosphere. 1.0 M Ethylmagnesium bromide solution (1.5 eq) was added 

dropwise to the mixture and the reaction was allowed to stir at 0 oC for 1 hour. The 

solution was then quenched with 1M HCl (30 mL) and extracted with ether (3 x 30 

mL). The combined organic layer was washed with brine and dried over MgSO4. The 

solution was then evaporated under vacuum. The purification was performed using 

column chromatography eluted with 10% increasing to 40% EtOAc/n-Hexane. 
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Preparation of 1-(4-(4-(trifluoromethoxy)benzyl)phenyl)propan-1-ol, 57a 

 

                                      56a                      57a        

 56a (1.59 g, 5.67 mmol) was treated following the General procedure 2 to 

give 57a as a pale yellow oil (734 mg, 42%). 1H NMR (400 MHz, CDCl3) δ 7.27 (d, J = 

8.0 Hz, 2H), 7.18 (s, J = 8.8 Hz, 2H), 7.17 – 7.09 (m, 4H), 4.57 (t, J = 6.6 Hz, 1H), 3.96 

(s, 2H), 1.85 – 1.66 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H);13C NMR (100 MHz, CDCl3) δ 

142.71, 139.84, 139.69, 130.11, 128.93, 126.28, 121.03, 75.79, 40.88, 31.86, 10.19. 

ESI-HRMS: m/z calculated for C17H17O2F3Na ([M+Na]+) 333.1078, found 333.1066. 

Preparation of 1-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-yl)propan-1-ol, 57b  

 

                                            56b              57b                                                                             

 56b (1.28 g, 4.8 mmol) was treated following the General procedure 2 to 

give 57b as a white solid (954 mg, 67%). 1H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 2.1 

Hz, 1H), 8.02 (d, J = 9.0 Hz, 2H), 7.79 (ddd, J = 8.2, 2.3, 0.5 Hz, 1H), 7.71 (dd, J = 8.2, 

0.6 Hz, 1H), 7.32 (dd, J = 8.9, 0.9 Hz, 2H), 4.73 (td, J = 6.8, 3.0 Hz, 1H), 1.93 – 1.75 (m, 

2H), 0.97 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 155.76, 148.37, 138.17, 

134.97, 128.72, 121.49, 120.62, 73.89, 32.35, 10.32. ESI-HRMS: m/z calculated for 

C15H15NO2F3 ([M+H]+) 298.1055, found 298.1060. 
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Preparation of 1-(5-(4-(trifluoromethoxy)phenyl)pyridin-2-yl)propan-1-ol, 57c 

 

                                            56c              57c                                                                             

 56c (1.20 g, 4.49 mmol) was treated following the General procedure 2 to 

give 57c as a yellow oil (503 mg, 38%). 1H NMR (400 MHz, CDCl3) δ 8.75 (d, J = 1.8 

Hz, 1H), 7.86 (dd, J = 8.1, 2.3 Hz, 1H), 7.60 (d, J = 8.8 Hz, 2H), 7.39 – 7.29 (m, 3H), 

4.76 (s, 1H), 4.03 (d, J = 4.6 Hz, 1H), 1.94 (dqd, J = 14.8, 7.4, 4.6 Hz, 1H), 1.83 – 1.70 

(m, 1H), 0.99 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 161.70, 146.92, 136.74, 

135.51, 134.47, 128.93, 121.99, 120.78, 74.14, 31.76, 9.84. ESI-HRMS: m/z 

calculated for C15H15NO2F3 ([M+H]+) 298.1055, found 298.1053. 

Preparation of 1-(6-(4-(trifluoromethoxy)phenyl)pyridin-2-yl)propan-1-ol, 57d 

 

56d             57d                   

 

56d (1.0 g, 3.74 mmol) was treated following the General procedure 2 to 

give 57d as a yellow oil (816 mg, 73%). 1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 8.8 

Hz, 2H), 7.78 (t, J = 7.8 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 8.0 Hz, 2H), 7.21 

(d, J = 7.7 Hz, 1H), 4.76 (dd, J = 11.7, 5.0 Hz, 1H), 4.46 (d, J = 5.5 Hz, 1H), 1.95 (dqd, J 

= 14.8, 7.4, 4.6 Hz, 1H), 1.82 – 1.69 (m, 1H), 0.98 (t, J = 7.4 Hz, 3H). 13C NMR (101 

MHz, CDCl3) δ 162.21, 154.70, 150.36, 138.03, 137.85, 128.77, 121.49, 119.58, 

119.24, 73.89, 31.80, 9.77. ESI-HRMS: m/z calculated for C15H14NO2F3Na ([M+Na]+) 

320.0874, found 320.0877. 
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Preparation of 1-(5-(4-(trifluoromethoxy)phenyl)pyridin-3-yl)propan-1-ol, 57e 

 

56e             57e                   

56e (4.0 g, 15.0 mmol) was treated following the General procedure 2 to 

give 57e as a yellow oil (3.11 g, 77%). 1H NMR (400 MHz, CDCl3) δ 8.73 (s, 1H), 8.57 

(s, 1H), 7.88 (s, 1H), 7.62 (d, J = 8.8 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 4.77 (t, J = 6.2 Hz, 

1H), 2.11 (s, 1H), 1.96 – 1.76 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, 

CDCl3) δ 149.68, 147.70, 147.47, 140.20, 136.90, 135.62, 132.34, 129.05, 121.97, 

73.92, 32.52, 10.35. ESI HRMS: m/z calculated for C15H15NO2F3 ([M+H]+) 298.1055, 

found 298.1051. 

 

Preparation of 1-(2-(4-(trifluoromethoxy)phenyl)pyridin-4-yl)propan-1-ol, 57f 

 

56f             57f                   

56f (3.62 g, 13.5 mmol) was treated following the General procedure 2 to 

give 57f as a yellow oil (2.17 g, 54%).1H NMR (400 MHz, CDCl3) δ 8.57 (dd, J = 5.1, 

0.7 Hz, 1H), 7.97 (d, J = 8.9 Hz, 2H), 7.68 – 7.62 (m, 1H), 7.28 (dd, J = 8.9, 0.9 Hz, 2H), 

7.17 (ddd, J = 5.1, 1.5, 0.5 Hz, 1H), 4.65 (t, J = 6.3 Hz, 1H), 2.83 (s, 1H), 1.85 – 1.70 

(m, 2H), 0.95 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 156.59, 155.08, 150.29, 

149.99, 138.33, 128.86, 121.39, 120.22, 118.14, 74.72, 32.18, 10.11. ESI HRMS: m/z 

calculated for C15H15NO2F3 ([M+H]+) 298.1055, found 298.1056. 
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Preparation of 1-(4-(4-(trifluoromethoxy)phenyl)pyridin-2-yl)propan-1-ol, 57g 

 

56g             57g                   

56g (640 mg, 2.39 mmol) was treated following the General procedure 2 to 

give 57g as a yellow oil (221 mg, 31%).1H NMR (400 MHz, CDCl3) δ 8.61 (d, J = 5.2 

Hz, 1H), 7.66 (d, J = 8.8 Hz, 2H), 7.44 (s, 1H), 7.39 (dd, J = 5.2, 1.6 Hz, 1H), 7.34 (d, J = 

8.1 Hz, 2H), 4.84 – 4.70 (m, 1H), 4.01 (s, 1H), 1.94 (dqd, J = 14.8, 7.5, 4.8 Hz, 1H), 

1.85 – 1.71 (m, 1H), 0.99 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 163.35, 

149.21, 148.15, 137.31, 129.03, 121.88, 120.73, 118.61, 117.74, 74.47, 31.84, 9.86. 

ESI HRMS: m/z calculated for C15H15NO2F3 ([M+H]+) 298.1055, found 298.1064. 

 

Preparation of 1-(6-(3,4-dichlorophenyl)pyridin-3-yl)propan-1-ol, 57h  

 

                                            56h              57h                                                                            

 56h (1.0 g, 3.97 mmol) was treated following the General procedure 2 to 

give 57h as a colourless oil (934 mg, 83%). 1H NMR (400 MHz, CDCl3) δ 8.63 (d, J = 

2.2 Hz, 1H), 8.13 (d, J = 2.1 Hz, 1H), 7.83 (dd, J = 8.4, 2.1 Hz, 1H), 7.79 (ddd, J = 8.2, 

2.3, 0.4 Hz, 1H), 7.69 (dd, J = 8.2, 0.6 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 4.73 (td, J = 

6.6, 3.6 Hz, 1H), 1.96 (d, J = 3.6 Hz, 1H), 1.85 (qd, J = 13.7, 7.4 Hz, 2H), 0.97 (t, J = 7.4 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 154.60, 148.43, 139.46, 139.32, 135.02, 

133.48, 131.08, 129.15, 126.28, 120.49, 117.73, 73.82, 32.36, 10.25. ESI-HRMS: m/z 

calculated for C14H14NO35Cl2 ([M+H]+) 282.0452, found 282.0445. 
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Preparation of 1-(5-(3,4-dichlorophenyl)phenyl)pyridin-3-yl)propan-1-ol, 57i 

 

56i             57i                   

56i (673 mg, 2.67 mmol) was treated following the General procedure 2 to 

give 57i as a yellow oil (490 mg, 65%). 1H NMR (400 MHz, CDCl3) δ 8.71 (d, J = 2.2 

Hz, 1H), 8.58 (d, J = 2.0 Hz, 1H), 7.86 (t, J = 1.9 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.56 

(d, J = 8.3 Hz, 1H), 7.43 (dd, J = 8.3, 2.2 Hz, 1H), 4.77 (td, J = 6.7, 2.7 Hz, 1H), 2.02 (d, 

J = 3.1 Hz, 1H), 1.93 – 1.78 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, 

CDCl3) δ 147.48, 147.11, 134.24, 133.35, 131.76, 131.07, 129.03, 127.69, 126.39, 

73.45, 32.16, 9.89. ESI-HRMS: m/z calculated for C14H14NO35Cl2 ([M+H]+) 282.0452, 

found 282.0447. 

 

General procedure 3. 

 

57                              58 

To a stirred solution of alcohol 57 (1.0 eq) in DCM (30 mL), PCC (1.5 eq) was 

added and the mixture was allowed to stir under N2 atmosphere for 2 hours at 

ambient temperature. The reaction was then quenched and diluted by adding ether 

(60 mL). The solution was passed through a silica pad to get rid of any precipitate. 

The filtrate was concentrated under vacuum to yield the crude product as clear 

yellow oil which was further purified by column chromatography (eluting with 10% 

EtOAc/n-Hexane) to give the product. 
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Preparation of 1-(4-(4-(trifluoromethoxy)benzyl)phenyl)propan-1-one, 58a 

 

                                    57a                           58a                                                                             

  57a (734 mg, 2.36 mmol) was oxidised according to the General procedure 3 

to give 58a as a white solid (649 mg, 89%). 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 

8.3 Hz, 2H), 7.26 (d, J = 8.4 Hz, 3H), 7.19 (d, J = 8.8 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 

2.98 (q, J = 7.2 Hz, 2H), 1.22 (t, J = 7.3 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 200.81, 

148.20, 146.13, 139.25, 135.64, 130.58, 129.48, 128.83, 121.58, 41.53, 32.15, 8.67. 

ESI-HRMS: m/z calculated for C17H15O2F3Na ([M+Na]+) 331.0922, found 331.0928. 

 

Preparation of 1-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-yl)propan-1-one, 58b 

 

                                         57b                58b                                                                             

  57b (954 mg, 3.21 mmol) was oxidised according to the General procedure 3 

to give 58b as a pale yellow solid (654 mg, 69%). 1H NMR (400 MHz, CDCl3) δ 9.24 

(d, J = 1.4 Hz, 1H), 8.32 (dd, J = 8.3, 2.0 Hz, 1H), 8.11 (d, J = 8.8 Hz, 2H), 7.82 (d, J = 

8.3 Hz, 1H), 7.35 (d, J = 8.1 Hz, 2H), 3.06 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H); 

13C NMR (100 MHz, CDCl3) δ 199.55, 159.62, 151.00, 150.16, 137.14, 136.81, 130.97, 

129.30, 122.12, 121.54, 120.47, 32.60, 8.35. ESI-HRMS: m/z calculated for 

C15H13NO2F3 ([M+H]+) 296.0898, found 296.0899. 
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Preparation of 1-(5-(4-(trifluoromethoxy)phenyl)pyridin-2-yl)propan-1-one, 58c 

 

                                         57c                58c                                                                             

  57c (474 mg, 1.59 mmol) was oxidised according to the General procedure 3 

to give 58c as a pale yellow solid (457 mg, 97 %). 1H NMR (400 MHz, CDCl3) δ 8.88 

(dd, J = 2.3, 0.6 Hz, 1H), 8.14 (dd, J = 8.1, 0.7 Hz, 1H), 7.99 (dd, J = 8.1, 2.3 Hz, 1H), 

7.66 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 3.28 (q, J = 7.3 Hz, 2H), 1.25 (t, J = 7.3 

Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 202.55, 152.77, 150.16, 147.67, 138.79, 

136.06, 135.47, 129.21, 122.32, 122.09, 31.62, 8.40. ESI-HRMS: m/z calculated for 

C15H12NO2F3Na ([M+Na]+) 318.0718, found 318.0718. 

 

Preparation of 1-(5-(4-(trifluoromethoxy)phenyl)pyridin-2-yl)propan-1-one, 58d 

 

                                         57d                58d                                                                             

  57d (815 mg, 2.74 mmol) was oxidised according to the General procedure 3 

to give 58d as a pale yellow solid (767 mg, 95 %). 1H NMR (400 MHz, CDCl3) δ 8.14 

(d, J = 8.9 Hz, 2H), 8.00 (dd, J = 6.1, 2.7 Hz, 1H), 7.94 – 7.89 (m, 2H), 7.36 (dd, J = 8.9, 

0.9 Hz, 2H), 3.37 (q, J = 7.3 Hz, 2H), 1.26 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) 

δ 200.56, 153.68, 138.29, 128.81, 123.67, 121.58, 120.60, 31.56, 8.40. ESI-HRMS: 

m/z calculated for C15H12NO2F3Na ([M+Na]+) 318.0718, found 318.0722. 
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Preparation of 1-(5-(4-(trifluoromethoxy)phenyl)pyridin-3-yl)propan-1-one, 58e 

 

                                         57e                58e                                                                             

  57e (963 mg, 3.24 mmol) was oxidised according to the General procedure 3 

to give 58e as a pale yellow solid (725 mg, 76 %). 1H NMR (400 MHz, CDCl3) δ 9.17 

(d, J = 2.0 Hz, 1H), 8.98 (d, J = 2.3 Hz, 1H), 8.41 (t, J = 2.2 Hz, 1H), 7.65 (d, J = 8.8 Hz, 

2H), 7.37 (d, J = 8.0 Hz, 2H), 3.10 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 199.73, 152.00, 150.05, 148.85, 135.97, 135.91, 133.88, 132.48, 

129.14, 122.11, 32.84, 8.32. ESI HRMS: m/z calculated for C15H13NO2F3 ([M+H]+) 

296.0898, found 296.0899. 

 

Preparation of 1-(2-(4-(trifluoromethoxy)phenyl)pyridin-4-yl)propan-1-one, 58f 

 

                                         57f                58f                                                                             

  57f (2.0 g, 6.73 mmol) was oxidised according to the General procedure 3 to 

give 58f as a pale yellow solid (1.21 g, 61 %). 1H NMR (400 MHz, CDCl3) δ 8.86 (dd, J 

= 5.0, 0.8 Hz, 1H), 8.18 – 8.15 (m, 1H), 8.09 (d, J = 8.9 Hz, 2H), 7.68 (dd, J = 5.0, 1.5 

Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 3.07 (q, J = 7.2 Hz, 2H), 1.27 (t, J = 7.2 Hz, 3H). 13C 

NMR (101 MHz, CDCl3) δ 200.43, 157.77, 151.29, 144.23, 137.65, 128.95, 121.56, 

120.23, 118.07, 32.75, 8.21. ESI HRMS: m/z calculated for C15H13NO2F3 ([M+H]+) 

296.0898, found 296.0895. 
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Preparation of 1-(4-(4-(trifluoromethoxy)phenyl)pyridin-2-yl)propan-1-one, 58g 

 

                                         57g                58g                                                                             

  57g (280 mg, 0.94 mmol) was oxidised according to the General procedure 3 

to give 58g as a pale yellow solid (184 mg, 66 %). 1H NMR (400 MHz, CDCl3) δ 8.73 

(dd, J = 5.1, 0.7 Hz, 1H), 8.25 (dd, J = 1.9, 0.7 Hz, 1H), 7.72 (d, J = 8.9 Hz, 2H), 7.65 

(dd, J = 5.1, 1.9 Hz, 1H), 7.36 (dd, J = 8.8, 0.9 Hz, 2H), 3.29 (q, J = 7.3 Hz, 2H), 1.25 (t, 

J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 202.94, 169.50, 154.52, 150.01, 148.37, 

136.57, 129.02, 124.89, 121.95, 119.87, 117.73, 31.69, 8.39.ESI HRMS: m/z 

calculated for C15H12NO2F3Na ([M+Na]+) 318.0718, found 318.0724. 

 

Preparation of 1-(6-(3,4-dichlorophenyl)pyridin-2-yl)propan-1-one, 58h 

 

                                         57h                58h                                                                             

  57h (512 mg, 2.13 mmol) was oxidised according to the General procedure 3 

to give 58h as a pale yellow solid (354 mg, 69 %). 1H NMR (400 MHz, CDCl3) δ 9.23 

(dd, J = 2.2, 0.8 Hz, 1H), 8.31 (dd, J = 8.3, 2.3 Hz, 1H), 8.21 (d, J = 2.1 Hz, 1H), 7.90 

(dd, J = 8.4, 2.1 Hz, 1H), 7.81 (dd, J = 8.3, 0.8 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), 3.06 (q, 

J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 199.01, 169.12, 

158.13, 149.78, 138.08, 136.50, 133.39, 130.93, 130.89, 129.25, 126.31, 120.00, 

32.25, 7.95. ESI-HRMS: m/z calculated for C14H12NO35Cl2 ([M+H]+) 280.0296, found 

280.0290. 
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Preparation of 1-(5-(3,4-dichlorophenyl)pyridin-2-yl)propan-1-one, 58i 

 

57i             58i                   

57i (490 mg, 1.73 mmol) was treated following the General procedure 3 to 

give 58i as a brown solid (160 mg, 33%). 1H NMR (400 MHz, CDCl3) δ 9.17 (s, 1H), 

8.97 (s, 1H), 8.38 (s, 1H), 7.71 (d, J = 2.1 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.46 (dd, J = 

8.3, 2.1 Hz, 1H), 3.09 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, 

CDCl3) δ 199.17, 169.12, 151.41, 148.82, 136.82, 133.62, 133.36, 133.20, 131.27, 

129.09, 126.42, 32.46, 7.92. ESI-HRMS: m/z calculated for C14H12NO35Cl2 ([M+H]+) 

280.0296, found 282.0294. 

 
General procedure 4. 

 

                                         59                                                                             

To a stirred solution of substituted anthranilic acid (1.0 eq) in THF (20 mL) 

and H2O (20 mL), CCl3COCl (1.5 eq) was added dropwisely at o0 C. After the addition, 

the reaction was then allowed to raise the temperature to room temperature and 

stirred for 2 hours. The reaction mixture was evaporated to remove THF. The 

precipitate was filtered, washed successively with water, collected and dried under 

vacuum to give the desire product 59.  
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Preparation of 5-methoxy-1H-benzo[d][1,3]oxazine-2,4-dione, 59a 

 

                                                                           59a 

  2-Amino-6-methoxybenzoic acid (2.50 g, 15 mmol) was reacted as in the 

General procedure 4 to give 59a as pale brown crystal (1.78 g, 61%). 1H NMR (400 

MHz, CDCl3) δ 8.01 (s, 1H), 7.59 (t, J = 8.3 Hz, 1H), 6.74 (d, J = 8.5 Hz, 1H), 6.56 (dd, J 

= 8.1, 0.8 Hz, 1H), 4.01 (s, 3H). 

Preparation of 6-methoxy-1H-benzo[d][1,3]oxazine-2,4-dione, 59b 

 

                                                                                                              59b      

2-Amino-5-methoxybenzoic acid (2.50 g, 15 mmol) was treated as the 

General procedure 4 to give 59b as pale yellow solid (1.92 g, 66%). 1H NMR (400 

MHz, CDCl3) δ 7.76 (s, 1H), 7.51 (d, J = 2.9 Hz, 1H), 7.29 (dd, J = 8.9, 2.9 Hz, 1H), 6.96 

(d, J = 8.8 Hz, 1H), 3.87 (s, 3H). 

Preparation of 7-methoxy-1H-benzo[d][1,3]oxazine-2,4-dione, 59c 

 

                                                                                                            59c           

  2-Amino-4-methoxybenzoic acid (2.50 g, 15 mmol) was reacted as in the 

General procedure 4 to give 59c as a pale brown solid (2.03 g, 70%). 1H NMR (400 

MHz, CDCl3) δ 8.67 (s, 1H), 8.01 (d, J = 8.9 Hz, 1H), 6.82 (dd, J = 8.9, 2.3 Hz, 1H), 6.46 
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(d, J = 2.3 Hz, 1H), 3.92 (s, 3H). Elemental Analysis Calculated for C9H7NO4: C, 55.96; 

H, 3.65; N, 7.25. Found: C, 53.36; H, 3.92; N, 6.88. 

Preparation of 8-methoxy-1H-benzo[d][1,3]oxazine-2,4-dione, 59d 

 

                                                                                                   59d           

  2-Amino-3-methoxybenzoic acid (2.50 g, 15 mmol) was reacted as in the 

General procedure 4 to give 59d as an off-white solid (2.12 g, 73%). 1H NMR (400 

MHz, CDCl3) δ 8.02 (s, 1H), 7.67 (ddd, J = 7.2, 2.0, 0.6 Hz, 1H), 7.24 – 7.15 (m, 2H), 

3.98 (s, 3H). 

Preparation of methyl 2-amino-4-methoxybenzoate, 6630 

 

                                                                                               66           

 2-Amino-4-methoxybenzoic acid (3.34 g, 20 mmol, 1.0 eq) was dissolved in 

DMF (40 mL) then K2CO3 (8.3 g, 60 mmol, 3.0 eq) was added. Iodomethane was 

then added and the reaction’s colour was changed to brown. Being stirred for 2 h, 

5% citric acid solution (50 mL) was poured into and extracted with EtOAc. The 

aqueous layer was extracted several times with EtOAc. The combined organic layer 

was washed with water, bicarb, brine and dried over MgSO4. The crude was purified 

by column chromatography (20-30% EtOAc/Hexane) to give methyl 2-amino-4-

methoxybenzoate as a white solid (2.96g, 81%); mp = 72 -75 oC; 1H NMR (400 MHz, 

CDCl3) δ 7.80 (d, J = 8.9 Hz, 1H), 6.26 (dd, J = 9.0, 2.5 Hz, 1H), 6.16 (d, J = 2.5 Hz, 1H), 

3.84 (s, 3H), 3.80 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 168.68, 164.67, 152.00, 
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133.48, 105.41, 100.35, 55.63, 51.75, 31.34. Elemental Analysis Calculated for 

C9H11NO3: C, 59.66; H, 6.12; N, 7.73. Found: C, 59.54; H, 6.18; N, 7.68. 

Preparation of 2-amino-5-chloro-4-methoxybenzoic acid12 

          

66             67      

Sulfuryl chloride (1.46 mL, 18 mmol, 1.2 eq) was added dropwise to a cooled 

solution of methyl 2-amino-4-methoxybenzoate, 66 (2.72 g, 15 mmol, 1.0 eq) in 30 

mL of chloroform at 0 oC. The sulfur dioxide produced was passes through a water 

trap. After being stirred for 30 min, the reaction was refluxed for 2 h. The darken 

solution was evaporated. The crude methyl ester was saponified with 40 mL of 1 M 

NaOH solution for an hour. After cooling, acidification, the brown precipitate was 

extracted into EtOAc and purified on column chromatography (gradually increase 

polarity from 40% EtOAc/Hexane to 100% EtOAc then 5% MeOH/EtOAc) to give 2-

amino-5-chloro-4-methoxybenzoic acid as a yellow solid (582 mg, 19%); mp = 209 - 

210 oC; 1H NMR (400 MHz, MeOD) δ 7.69 (s, 1H), 6.33 (s, 1H), 3.82 (s, 3H). 13C NMR 

(101 MHz, MeOD) δ 175.40, 165.68, 158.91, 138.46, 115.29, 109.79, 104.69, 61.41. 

Elemental Analysis Calculated for C8H8ClNO3: C, 47.66; H, 4.00; N, 6.95. Found: C, 

47.79; H, 4.03; N, 6.86.  

Preparation of N-(4-chloro-3-methoxyphenyl)-2-(hydroxyimino)acetamide 

  

To a suspension of 4-chloro-3-methoxyaniline (4.73 g, 30 mmol) and conc. 

HCl (6 mL) in 23 mL of water was added a mixture of Na2SO4 (32 g) and chloral 

hydrate (5.11 g, 30.9 mmol) in 100 mL of water, followed by a solution of 

NH2OH.HCl (6.32 g, 90.9 mmol) in 25 mL of water. The suspension was then heated 
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to 100 oC for 3 h. The reaction was allowed to cool overnight. The solid was filtered 

off, washed with water, and re-dissolved in 1% NaOH solution (700 mL). The alkaline 

solution was then acidified with 20 mL conc. HCl and diluted with water (100 mL). 

The solid was collected, washed with water and dried to obtain N-(4-chloro-3-

methoxyphenyl)-2-(hydroxyimino)acetamide as a dark brown solid (6.45 g, 94%); 1H 

NMR (400 MHz, CDCl3) δ 7.58 (d, J = 2.2 Hz, 1H), 7.54 (s, 1H), 7.29 (d, J = 8.5 Hz, 1H), 

6.95 (dd, J = 8.5, 2.3 Hz, 1H), 3.92 (s, 3H). 

Preparation of 5-chloro-6-methoxyindoline-2,3-dione 

 

                                                                                                   68           

Sulfuric acid (18 mL) was heated to 90 oC. N-(4-chloro-3-methoxyphenyl)-2-

(hydroxyimino)acetamide (4.0 g, 17.5 mmol) was added slowly in 10 mins. The 

resulting brown solution was heated to 105 oC for a further 15 min. The reaction 

was cooled and poured in to 150 mL iced cold water. The solid was collected by 

filtration, washed with water and dried to give 5-chloro-6-methoxyindoline-2,3-

dione as a dark brown solid (2.93 g, 79%); 1H NMR (400 MHz, CDCl3) δ 7.60 (s, 1H), 

6.50 (s, 1H), 4.02 (s, 3H). 

Preparation of 2-amino-5-chloro-4-methoxybenzoic acid 

 

                                            68                                               67           

5-Chloro-6-methoxyindoline-2,3-dione (2.93 g, 13.8 mmol) was suspended in 

aq. NaOH (4 M, 25 mL). 3% H2O2 (25 mL) was added slowly while stirring. After 

cooling down in cold water for 45 min., the dark mixture was treated with 40 mL of 
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4 N sulfuric acid. The precipitate was collected, washed with water, then re-

dissolved in 2% NaHCO3 solution (150 mL). The brown insoluble material was 

removed by filtration, and the filtrate was acidified with 4 N sulfuric acid (10 mL). 

The product was collected, washed with water, and dried at 100 oC to give 2-amino-

5-chloro-4-methoxybenzoic acid as a yellow solid (2.33 g, 83%). 

Preparation of 6-chloro-7-methoxy-1H-benzo[d][1,3]oxazine-2,4-dione, 59e 

 

                                              67                                                     59e           

  2-Amino-5-chloro-4-methoxybenzoic acid (2.22 g, 11 mmol) was reacted as 

in the General procedure 4 to give 59e as a yellow solid (1.17 g, 47%). 1H NMR (400 

MHz, MeOD) δ 7.91 (s, 1H), 6.66 (s, 1H), 3.96 (s, 3H). Elemental Analysis Calculated 

for C9H6ClNO4: C, 47.49; H, 2.66; N, 6.15. Found: C, 47.47; H, 2.72; N, 6.09. 

 

General procedure 5. 

 

59       60 

  The isatoic anhydride 59 (1.0 eq) was dissolved in chlorobenzene under 

nitrogen and stirred for 5 minutes.  2-amino-2-methylpropan-1-ol (1.5 eq) was 

added to the mixture, followed by addition of anhydrous zinc chloride (20 mol%). 

The resulting mixture was slowly heated to remove gas and then to reflux at 130 oC 

for 24 hours. The mixture was allowed to cool to room temperature and the solvent 

was removed under vacuum. EtOAc (30 mL) was added to the residue and washed 

with brine. The aqueous layer was then extracted with EtOAc thrice. The combined 

organic layer was dried over MgSO4, and the solvent was evaporated to yield dark 
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brown oil which was further purified by column chromatography (eluting with 20% 

EtOAc/n-Hexane) 

Preparation of 2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3-methoxyaniline, 60a 

                                         

59a                                                                                     60a 

  59a (1.28 g, 4.8 mmol) was treated following the General procedure 5 but 

eluted the column with 50% EtOAc in n-Hexane to give 60a as a yellow oil (1.66 g, 

98%). 1H NMR (400 MHz, CDCl3) δ 7.76 (s, 2H), 7.08 (t, J = 8.2 Hz, 1H), 6.32 (dd, J = 

8.2, 1.0 Hz, 1H), 6.21 (dd, J = 8.2, 0.7 Hz, 1H), 3.86 (s, 3H), 3.66 (s, 2H), 1.37 (s, 6H); 

13C NMR (100 MHz, CDCl3) δ 169.22, 159.02, 151.61, 132.21, 111.46, 105.74, 99.72, 

71.39, 56.58, 56.42, 25.38. 

Preparation of 2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-4-methoxyaniline, 60b 

                                      

59b                                                                                     60b     

59b (1.93 g, 9.9 mmol) was treated following the General procedure 5 to 

afford 60b as pale-yellow solid (1.06 g, 48.4%). 1H NMR (400 MHz, CDCl3) δ 7.21 (d, J 

= 3.0 Hz, 1H), 6.86 (dd, J = 8.8, 3.0 Hz, 1H), 6.66 (d, J = 8.8 Hz, 1H), 5.76 (s, 2H), 4.00 

(s, 2H), 3.76 (s, 3H), 1.37 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 162.22, 150.98, 

143.41, 120.80, 117.60, 112.71, 109.86, 68.37, 56.32, 29.13. Elemental Analysis 

Calculated for C12H16N2O2: C, 65.43; H, 7.32; N, 12.72. Found: C, 65.45; H, 7.46; N, 

12.65. 
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Preparation of 2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-5-methoxyaniline, 60c 

 

                           59c                                                                                     60c      

  59c (2.0 g, 10.3 mmol) was treated as in the General procedure 5 to give 60c 

as a white solid (454 mg, 19.9%). 1H NMR (400 MHz, CDCl3) δ 1H NMR (400 MHz, 

CDCl3) δ 7.59 (d, J = 8.8 Hz, 1H), 6.25 (dd, J = 8.8, 2.5 Hz, 1H), 6.18 (d, J = 2.4 Hz, 1H), 

6.14 (s, 2H), 3.96 (s, 2H), 3.78 (s, 3H), 1.35 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 

162.94, 162.29, 150.57, 131.39, 103.87, 103.49, 99.63, 68.02, 55.54, 29.19. ESI-

HRMS: m/z calculated for C12H17N2O2 ([M+H]+) 221.1285, found 221.1285. 

 

Preparation of 2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-6-methoxyaniline, 60d 

                                                

59d                                                                                     60d 

  59d (2.13 g, 11.0 mmol) was treated as in the General procedure 5 to give 

60d as a yellow solid (740 mg, 30.5%). 1H NMR (400 MHz, CDCl3) δ 7.30 (dd, J = 8.1, 

1.3 Hz, 1H), 6.81 (dd, J = 7.9, 1.2 Hz, 1H), 6.59 (t, J = 8.0 Hz, 1H), 6.31 (s, 2H), 3.99 (s, 

2H), 3.87 (s, 3H), 1.37 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 162.56, 147.16, 139.84, 

121.44, 114.99, 111.91, 109.15, 68.21, 56.15, 29.17. Elemental Analysis Calculated 

for C12H16N2O2: C, 65.43; H, 7.32; N, 12.72. Found: C, 65.46; H, 7.42; N, 12.63. 
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Preparation of 4-chloro-2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-5-methoxyaniline, 

60e 

 

59e                                                                                   60e 

  59e (1.02 g, 4.5 mmol) was treated as in the General procedure 5 to give 

60e as a yellow solid (221 mg, 19%). 1H NMR (400 MHz, CDCl3) δ 7.67 (s, 1H), 6.28 

(s, 2H), 6.20 (s, 1H), 3.99 (s, 2H), 3.87 (s, 3H), 1.36 (s, 6H); Elemental Analysis 

calculated for C12H15ClN2O2: C, 56.58; H, 5.94; N, 11.00. Found: C, 56.29; H, 6.10; N, 

10.56. 

 

Preparation of 2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)aniline, 60f 

 

                                                                      60f 

  Isatoic anhydride (10 g, 61 mmol) which is commercially available was 

treated as in the General procedure 5 to give 60f as an off-white solid (3.62 g, 

31.2%) 1H NMR (400 MHz, CDCl3) δ 7.67 (dd, J = 7.9, 1.6 Hz, 1H), 7.22 – 7.15 (m, 1H), 

6.69 (dd, J = 8.2, 1.0 Hz, 1H), 6.65 (ddd, J = 8.0, 7.2, 1.1 Hz, 1H), 6.08 (s, 2H), 3.99 (s, 

2H), 1.36 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 162.44, 148.88, 132.25, 129.85, 

116.41, 116.00, 109.73, 68.23, 29.15. Elemental Analysis calculated for C11H14N2O: 

C, 69.45; H, 7.42; N, 14.73. Found: C, 69.49; H, 7.42; N, 14.77. 

 

 

 



Chapter III : Lead optimisation of antimalarial 2-aryl quinolones 

115 

 

General procedure 6. 

 

       60            58   61 

   To a solution of o-oxazoline-substituted anilines 60 (1.1 eq, 1.1 mmol) and 

ketones 58 (1.0 eq, 1.0 mmol) in dry n-butanol (15 mL) was added trifluoromethane 

sulfonic acid (20 mol %) and the mixture was allowed to stir under reflux (135 oC) 

for 24 hours. The reaction was cooled to room temperature and the solvent 

evaporated under vacuum. Saturated sodium carbonate solution (20 mL) was 

added. The aqueous solution was extracted with EtOAc (3 x 20 mL), washed with 

brine, dried over MgSO4, and concentrated under vacuum. The crude mixture was 

purified either trituration with EtOAC or by column chromatography to give 

quinolones 61. 

Preparation of 5-methoxy-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl) 

quinolin-4(1H)-one, 61a 

 

             58a               60a      61a 

58a  (308 mg, 1.0 mmol) was reacted with 60a (235 mg, 1.2 mmol) as in the 

General procedure 6 eluted with 2-5% MeOH in DCM to give 61a as a light brown 

powder (20 mg, 8%). 1H NMR (400 MHz, DMSO) δ 11.17 (s, 1H), 7.48 – 7.36 (m, 7H), 

7.32 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 7.8 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 4.08 (s, 2H), 

3.79 (s, 3H), 1.78 (s, 3H). ES HRMS: m/z calculated for C25H21NO3F3 ([M+H]+) 

440.1474, found 440.1473 
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Preparation of 6-methoxy-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl) 

quinolin-4(1H)-one, 61b 

 

             58a               60b      61b 

58a  (462 mg, 1.5 mmol) was reacted with 60b (396 mg, 1.8 mmol) as in the 

General procedure 6 eluted with 50-80% EtOAc in DCM to give 61b as a pale yellow 

powder (185 mg, 28%). mp = 238 - 240 oC. 1H NMR (400 MHz, DMSO) δ 11.51 (s, 

1H), 7.53 (d, J = 9.1 Hz, 1H), 7.50 (d, J = 3.0 Hz, 1H), 7.45 (m, 6H), 7.32 (d, J = 7.9 Hz, 

2H), 7.26 (dd, J = 9.0, 3.0 Hz, 1H), 4.09 (s, 2H), 3.83 (s, 3H), 1.89 (s, 3H). ES HRMS: 

m/z calculated for C25H21NO3F3 ([M+H]+) 440.1474, found 440.1479 

Preparation of 7-methoxy-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl) 

quinolin-4(1H)-one, 61c 

                         

               58a               60b      61b 

  58a  (397 mg, 1.29 mmol) was reacted with 60c (190 mg, 0.86 mmol)as in 

the General procedure 6 eluted with 20-50% EtOAc in DCM to give 61c as a white 

solid (110 mg, 29%). mp = 225 - 228 oC.  1H 1H NMR (400 MHz, DMSO) δ 11.34 (s, 

1H), 8.01 (d, J = 9.0 Hz, 1H), 7.51 – 7.42 (m, 6H), 7.33 (d, J = 7.9 Hz, 2H), 6.99 (d, J = 

2.4 Hz, 1H), 6.89 (dd, J = 9.0, 2.4 Hz, 1H), 4.10 (s, 2H), 3.81 (s, 3H), 1.86 (s, 3H).  13C 

NMR (101 MHz, DMSO) δ 176.61, 161.89, 147.36, 142.60, 141.52, 141.01, 133.44, 

130.89, 129.52, 129.18, 127.15, 121.56, 117.93, 115.03, 114.21, 113.24, 99.09, 

83.96, 55.64, 12.44. ES HRMS: m/z calculated for C25H21NO3F3 ([M+H]+) 440.1474, 

found 440.1492. 
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Preparation of 8-methoxy-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl) 

quinolin-4(1H)-one, 61d 

 

         58a               60d      61d 

  58a  (370 mg, 1.2 mmol) was reacted with 60d (317 mg, 1.4 mmol)as in the 

General procedure 6 eluted with 80% EtOAc in DCM to give 61d as a pale yellow 

powder (128 mg, 27%). mp = 131 - 133 oC.  1H NMR (400 MHz, DMSO) δ 10.66 (s, 

1H), 7.68 (dd, J = 7.9, 1.5 Hz, 1H), 7.45 (d, J = 8.7 Hz, 2H), 7.42 (s, 4H), 7.32 (d, J = 7.9 

Hz, 2H), 7.23 (t, J = 7.8 Hz, 1H), 7.18 (dd, J = 7.8, 1.5 Hz, 1H), 4.08 (s, 2H), 3.90 (s, 

3H), 1.84 (s, 3H). ES HRMS: m/z calculated for C25H21NO3F3 ([M+H]+) 440.1474, 

found 440.1490. 

Preparation of 5-methoxy-3-methyl-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, 61e 

                   58b               60a      61e 

  58b  (309 mg, 1.04 mmol) was reacted with 60a (235 mg, 1.2 mmol) as in the 

General procedure 6 eluted with 10% MeOH in DCM to give 61e as a light brown 

powder (18 mg, 4%). 1H NMR (400 MHz, DMSO) δ 11.40 (s, 1H), 8.86 (s, 1H), 8.33 (d, 

J = 8.8 Hz, 2H), 8.22 (d, J = 8.1 Hz, 1H), 8.12 (dd, J = 8.1, 2.1 Hz, 1H), 7.54 (d, J = 8.0 

Hz, 2H), 7.48 (t, J = 8.1 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 6.73 (d, J = 7.9 Hz, 1H), 3.82 

(s, 3H), 1.86 (s, 3H). ES HRMS: m/z calculated for C23H18N2O3F3 ([M+H]+) 427.1270, 

found 427.1271 



Chapter III : Lead optimisation of antimalarial 2-aryl quinolones 

118 

 

Preparation of 6-methoxy-3-methyl-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, 61f 

   

                   58b               60b      61f 

  58b  (309 mg, 1.04 mmol) was reacted with 60b (235 mg, 1.2 mmol) as in the 

General procedure 6 eluted with 5% MeOH in DCM to give 61f as a white solid (119 

mg, 22%). mp = 312 - 314 oC. 1H NMR (400 MHz, DMSO) δ 11.77 (s, 1H), 8.89 (s, 1H), 

8.34 (d, J = 8.9 Hz, 2H), 8.24 (d, J = 8.1 Hz, 1H), 8.16 (dd, J = 8.1, 2.3 Hz, 1H), 7.56 (m, 

4H), 7.31 (dd, J = 9.0, 3.0 Hz, 1H), 3.86 (s, 3H), 1.97 (s, 3H); 13C NMR (100 MHz, 

DMSO) δ 176.24, 155.70, 155.44, 149.77, 149.70, 143.99, 138.52, 137.47, 134.71, 

130.37, 129.16, 124.43, 122.59, 121.73, 120.34, 114.45, 104.26, 55.69, 12.54. ES 

HRMS: m/z calculated for C23H18N2O3F3 [M+H]+ requires 427.1270, found 427.1248. 

Preparation of 7-methoxy-3-methyl-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, 61g 

                   58b               60c      61g 

 58b  (253 mg, 0.86 mmol) was reacted with 60c (126 mg, 0.57 mmol) as in 

the General procedure 6 eluted with 50-80% EtOAc in DCM to give 61g as a pale 

yellow solid (126 mg, 52%). mp = 324 - 325 oC.  1H NMR (400 MHz, DMSO) δ 11.60 

(s, 1H), 8.88 (d, J = 1.9 Hz, 1H), 8.34 (d, J = 8.8 Hz, 2H), 8.24 (d, J = 8.2 Hz, 1H), 8.15 

(dd, J = 8.2, 2.2 Hz, 1H), 8.04 (d, J = 8.9 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 6.99 (d, J = 

2.3 Hz, 1H), 6.93 (dd, J = 9.0, 2.3 Hz, 1H), 3.84 (s, 3H), 1.93 (s, 3H). 13C NMR (101 
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MHz, DMSO) δ 162.06, 155.43, 149.75, 138.46, 130.34, 129.16, 129.16, 121.74, 

121.74, 120.36, 118.03, 115.22, 113.59, 99.02, 55.72, 12.32. ES HRMS: m/z 

calculated for C23H18N2O3F3 ([M+H]+) 427.1270, found 427.1287. 

Preparation of 8-methoxy-3-methyl-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, 61h 

                   58b         60d    61h 

 58b  (350 mg, 1.2 mmol) was reacted with 60d (317 mg, 1.4 mmol) as in the 

General procedure 6 eluted with 80% EtOAc in DCM to give 61h as a pale yellow 

solid (124 mg, 25%). mp = 182 - 185 oC.  1H NMR (400 MHz, DMSO) δ 11.11 (s, 1H), 

8.78 (d, J = 1.6 Hz, 1H), 8.33 (d, J = 8.9 Hz, 2H), 8.18 (dd, J = 8.2, 0.5 Hz, 1H), 8.05 

(dd, J = 8.2, 2.3 Hz, 1H), 7.72 (dd, J = 7.8, 1.6 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 7.27 (t, 

J = 7.8 Hz, 1H), 7.23 (dd, J = 7.9, 1.6 Hz, 1H), 3.94 (s, 3H), 1.89 (s, 3H). ES HRMS: m/z 

calculated for C23H18N2O3F3 ([M+H]+) 427.1270, found 427.1268 

Preparation of 7-methoxy-3-methyl-2-(5-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, 61i 

 

                   58e               60c      61i 

58e  (295 mg, 1.0 mmol) was reacted with 60c (242 mg, 1.1 mmol) as in the 

General procedure 6 eluted with 5% MeOH in DCM to give 61i as a pale yellow solid 

(145 mg, 34%).; mp = 255 - 258 oC; 1H NMR (400 MHz, DMSO) δ 11.57 (s, 1H), 9.10 

(d, J = 2.2 Hz, 1H), 8.80 (d, J = 2.0 Hz, 1H), 8.35 (t, J = 2.2 Hz, 1H), 8.05 (d, J = 9.0 Hz, 
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1H), 8.01 (d, J = 8.9 Hz, 2H), 7.55 (d, J = 7.9 Hz, 2H), 6.97 (d, J = 2.3 Hz, 1H), 6.93 (dd, 

J = 8.9, 2.4 Hz, 1H), 3.84 (s, 3H), 1.94 (s, 3H). 13C NMR (101 MHz, DMSO) δ 176.55, 

162.10, 148.91, 148.65, 144.18, 141.70, 136.05, 135.12, 134.25, 131.44, 129.57, 

127.30, 122.10, 118.06, 115.27, 113.58, 99.03, 55.73, 12.31. ESI HRMS: m/z 

calculated for C23H18N2O3F3 ([M+H]+) 427.1270, found 427.1272. 

 

Preparation of 7-methoxy-3-methyl-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-2-

yl)quinolin-4(1H)-one, 61j 

 

                 58d               60c      61j 

58d  (205 mg, 0.69 mmol) was reacted with 60c (205 mg, 0.93 mmol) as in 

the General procedure 6 eluted with 100% EtOAc to give 61j as an off-white solid 

(118 mg, 40%).; mp = 200 - 204 oC;  1H NMR (400 MHz, DMSO) δ 11.51 (s, 1H), 8.34 

(d, J = 8.9 Hz, 2H), 8.21 – 8.13 (m, 2H), 8.05 (d, J = 9.0 Hz, 1H), 7.76 (dd, J = 7.2, 1.2 

Hz, 1H), 7.55 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 2.4 Hz, 1H), 6.93 (dd, J = 9.0, 2.4 Hz, 1H), 

3.85 (s, 3H), 2.03 (s, 3H). 13C NMR (101 MHz, DMSO) δ 162.12, 155.14, 153.17, 

148.43, 145.48, 142.92, 141.59, 138.72, 137.69, 129.37, 127.24, 121.65, 121.29, 

113.66, 99.20, 55.73, 12.22. ESI HRMS: m/z calculated for C23H18N2O3F3 ([M+H]+) 

427.1270, found 427.1282. 

Preparation of 7-methoxy-3-methyl-2-(2-(4-(trifluoromethoxy)phenyl)pyridin-4-

yl)quinolin-4(1H)-one, 61k 

 

                58f           60c       61k 
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58f  (295 mg, 1.0 mmol) was reacted with 60c (242 mg, 1.1 mmol) as in the 

General procedure 6 eluted with 100% EtOAc to give 61l as a white solid (147 mg, 

34%).; mp = 245 - 247 oC;  1H NMR (400 MHz, DMSO) δ 11.56 (s, 1H), 8.89 (d, J = 5.0 

Hz, 1H), 8.34 (d, J = 8.9 Hz, 2H), 8.22 (s, 1H), 8.06 (d, J = 9.0 Hz, 1H), 7.60 (dd, J = 5.0, 

1.5 Hz, 1H), 7.53 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 2.4 Hz, 1H), 6.94 (dd, J = 9.0, 2.4 Hz, 

1H), 3.85 (s, 4H), 1.93 (s, 3H). 13C NMR (101 MHz, DMSO) δ 176.55, 162.14, 155.48, 

150.40, 144.93, 144.15, 141.66, 137.67, 129.18, 127.29, 123.24, 121.61, 120.71, 

118.07, 114.70, 113.66, 111.41, 99.11, 55.74, 12.18. ESI HRMS: m/z calculated for 

C23H18N2O3F3 ([M+H]+) 427.1270, found 427.1266. 

 

Preparation of 7-methoxy-3-methyl-2-(4-(4-(trifluoromethoxy)phenyl)pyridin-2-

yl)quinolin-4(1H)-one, 61l 

 

                 58g               60c      61l 

58g  (184 mg, 0.62 mmol) was reacted with 60c (151 mg, 0.68 mmol) as in 

the General procedure 6 eluted with 100% EtOAc to give 61l as a white solid (113 

mg, 42%).; mp = 188 - 190 oC;  1H NMR (400 MHz, DMSO) δ 11.51 (s, 1H), 8.89 (d, J = 

4.9 Hz, 1H), 8.12 – 8.03 (m, 4H), 7.93 (dd, J = 5.2, 1.8 Hz, 1H), 7.57 (d, J = 8.1 Hz, 2H), 

7.13 (d, J = 2.4 Hz, 1H), 6.93 (dd, J = 9.0, 2.4 Hz, 1H), 3.85 (s, 3H), 2.03 (s, 3H). 13C 

NMR (101 MHz, DMSO) δ 176.96, 154.22, 150.65, 146.84, 145.47, 141.58, 136.32, 

129.68, 127.25, 122.74, 122.09, 118.04, 115.03, 113.52, 99.27, 55.72, 12.17. ESI 

HRMS: m/z calculated for C23H18N2O3F3 ([M+H]+) 427.1270, found 427.1284. 
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Preparation of 7-methoxy-3-methyl-2-(5-(4-(trifluoromethoxy)phenyl)pyridin-2-

yl)quinolin-4(1H)-one, 61m 

                58c                 60c     61m 

 58c  (265 mg, 0.90 mmol) was reacted with 60c (268 mg, 1.22 mmol) as in 

the General procedure 6 eluted with 100% EtOAc to give 61m as a pale yellow solid 

(237 mg, 62%).; mp = 255 - 258 oC;  1H NMR (400 MHz, DMSO) δ 11.52 (s, 1H), 9.16 

(dd, J = 2.4, 0.7 Hz, 1H), 8.36 (dd, J = 8.2, 2.4 Hz, 1H), 8.05 (d, J = 9.0 Hz, 1H), 8.01 (d, 

J = 8.8 Hz, 2H), 7.89 (dd, J = 8.2, 0.7 Hz, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 2.4 

Hz, 1H), 6.93 (dd, J = 9.0, 2.4 Hz, 1H), 3.85 (s, 3H), 2.04 (s, 3H). 13C NMR (101 MHz, 

DMSO) δ 176.94, 162.12, 160.44, 152.40, 148.00, 145.09, 141.61, 136.03, 135.40, 

134.83, 129.55, 127.22, 125.48, 122.17, 118.00, 114.96, 113.51, 99.35, 55.72, 12.27. 

ES HRMS: m/z calculated for C23H18N2O3F3 ([M+H]+) 427.1270, found 427.1281. 

 

Preparation of 7-methoxy-3-methyl-2-(6-(3,4-dichlorophenyl)pyridin-3-yl)quinolin-

4(1H)-one, 61n 

                   58h          60c     61n 

 58h  (195 mg, 0.70 mmol) was reacted with 60c (126 mg, 0.66 mmol) as in 

the General procedure 6 eluted with EtOAc to give 61n as a pale yellow solid (63 

mg, 23%).; mp = 268 - 270 oC;  1H NMR (400 MHz, DMSO) δ 11.56 (s, 1H), 8.89 (d, J = 

1.7 Hz, 1H), 8.47 (d, J = 2.1 Hz, 1H), 8.31 (d, J = 8.0 Hz, 1H), 8.22 (dd, J = 8.5, 2.1 Hz, 

1H), 8.15 (dd, J = 8.2, 2.3 Hz, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 
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6.99 (d, J = 2.2 Hz, 1H), 6.94 (dd, J = 9.0, 2.4 Hz, 1H), 3.85 (s, 3H), 1.93 (s, 3H). ES 

HRMS: m/z calculated for C22H17N2O2
35Cl2 ([M+H]+) 411.0667, found 411.0683. 

Preparation of 7-methoxy-3-methyl-2-(5-(3,4-dichlorophenyl)pyridin-3-yl)quinolin-

4(1H)-one, 61o 

 

                    58i               60c      61o 

58i  (168 mg, 0.60 mmol) was reacted with 60c (146 mg, 0.66 mmol) as in 

the General procedure 6 washed with EtOAc to give 61o as a pale yellow solid (90 

mg, 36%).; mp = 290 - 292 oC; 1H NMR (400 MHz, DMSO) δ 11.59 (s, 1H), 9.15 (d, J = 

2.2 Hz, 1H), 8.81 (d, J = 1.9 Hz, 1H), 8.43 (t, J = 2.1 Hz, 1H), 8.22 (d, J = 2.2 Hz, 1H), 

8.05 (d, J = 8.9 Hz, 1H), 7.91 (dd, J = 8.4, 2.2 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 6.98 (d, 

J = 2.3 Hz, 1H), 6.94 (dd, J = 8.9, 2.4 Hz, 1H), 3.85 (s, 3H), 1.93 (s, 3H). ESI HRMS: m/z 

calculated for C22H17N2O2
35Cl2 ([M+H]+) 411.0667, found 411.0668. 

 

Preparation of 3-methyl-2-(5-(4-(trifluoromethoxy)phenyl)pyridin-3-yl)quinolin-

4(1H)-one, 61p 

 

                    58e         60f      61p 

58e  (238 mg, 0.81 mmol) was reacted with 60c (217 mg, 1.14 mmol) as in 

the General procedure 6 eluted with 100% EtOAc and 5% MeOH in EtOAc to give 

61p as a pale yellow solid (172 mg, 54%).; mp = 217 - 220 oC;  1H NMR (400 MHz, 

DMSO) δ 11.77 (s, 1H), 9.12 (d, J = 2.3 Hz, 1H), 8.82 (d, J = 2.0 Hz, 1H), 8.38 (t, J = 2.1 
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Hz, 1H), 8.16 (dd, J = 8.1, 1.2 Hz, 1H), 8.01 (d, J = 8.8 Hz, 2H), 7.66 (ddd, J = 8.3, 6.9, 

1.5 Hz, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.34 (ddd, J = 8.1, 6.9, 1.1 

Hz, 1H), 1.96 (s, 3H). 13C NMR (101 MHz, DMSO) δ 176.99, 148.91, 148.72, 144.73, 

139.94, 136.04, 135.18, 134.24, 131.88, 131.39, 129.59, 125.39, 123.50, 123.25, 

122.13, 118.48, 115.63, 12.44. ES HRMS: m/z calculated for C22H16N2O2F3 ([M+H]+) 

397.1164, found 397.1169. 

 

Preparation of 3-methyl-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-2-yl)quinolin-

4(1H)-one, 61q 

 

                    58d              60f      61q 

58d (303 mg, 1.0 mmol) was reacted with 60f (224 mg, 1.1 mmol) as in the 

General procedure 6 eluted with 100% EtOAc and 5% MeOH in EtOAc to give 61q as 

an off-white solid (225 mg, 55%).; mp = 187 - 192 oC;  1H NMR (400 MHz, DMSO) δ 

11.74 (s, 1H), 8.33 (d, J = 8.9 Hz, 2H), 8.21 (dd, J = 8.0, 1.1 Hz, 1H), 8.19 – 8.13 (m, 

2H), 7.78 (dd, J = 7.3, 1.1 Hz, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.66 (ddd, J = 8.3, 6.7, 1.5 

Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 7.33 (ddd, J = 8.1, 6.7, 1.3 Hz, 1H), 2.03 (s, 3H). 13C 

NMR (101 MHz, DMSO) δ 177.40, 155.13, 153.18, 146.02, 139.81, 138.77, 137.65, 

131.88, 129.35, 125.37, 124.41, 123.47, 123.19, 121.67, 121.34, 118.72, 115.13, 

12.27. ES HRMS: m/z calculated for C22H16N2O2F3 ([M+H]+) 397.1164, found 

397.1179. 
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Preparation of 3-methyl-2-(2-(4-(trifluoromethoxy)phenyl)pyridin-4-yl)quinolin-

4(1H)-one, 61r 

 

                    58f               60f      61r 

58f  (135 mg, 0.56 mmol) was reacted with 60f (121 mg, 0.64 mmol) as in 

the General procedure 6 eluted with 100% EtOAc to give 61r as a white solid (101 

mg, 56%).; mp = 244 - 246 oC;  1H NMR (400 MHz, DMSO) δ 11.78 (s, 1H), 8.90 (dd, J 

= 4.9, 0.7 Hz, 1H), 8.35 (d, J = 8.9 Hz, 2H), 8.26 (s, 1H), 8.16 (dd, J = 8.2, 1.1 Hz, 1H), 

7.67 (ddd, J = 8.3, 6.8, 1.5 Hz, 1H), 7.63 (dd, J = 5.0, 1.5 Hz, 1H), 7.60 (d, J = 7.8 Hz, 

1H), 7.53 (d, J = 8.1 Hz, 2H), 7.34 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 1.95 (s, 3H). 13C NMR 

(101 MHz, DMSO) δ 150.42, 144.11, 139.89, 131.93, 129.18, 125.38, 123.52, 123.32, 

123.28, 123.24, 121.64, 120.74, 118.56, 114.98, 12.30. ES HRMS: m/z calculated for 

C22H16N2O2F3 ([M+H]+) 397.1164, found 397.1171. 

 

Preparation of 3-methyl-2-(5-(4-(trifluoromethoxy)phenyl)pyridin-2-yl)quinolin-

4(1H)-one, 61s 

 

                    58c               60f      61s 

 58c (298 mg, 1.0 mmol) was reacted with 60f (213 mg, 1.1 mmol) as in the 

General procedure 6 eluted with 100% EtOAc to give 61s as a pale yellow solid (248 

mg, 62%).; mp = 239 - 241 oC;  1H NMR (400 MHz, DMSO) δ 11.74 (s, 1H), 9.18 (d, J = 

1.7 Hz, 1H), 8.37 (dd, J = 8.2, 2.4 Hz, 1H), 8.15 (dd, J = 8.1, 1.3 Hz, 1H), 8.01 (d, J = 8.8 
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Hz, 2H), 7.91 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.65 (ddd, J = 8.4, 6.9, 1.5 Hz, 

1H), 7.58 (d, J = 8.0 Hz, 2H), 7.33 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H), 2.05 (s, 3H). 13C NMR 

(101 MHz, DMSO) δ 152.42, 148.07, 145.65, 139.86, 136.04, 135.44, 134.90, 131.88, 

129.57, 125.56, 125.34, 123.43, 123.17, 122.21, 118.74, 115.25, 12.36. ES HRMS: 

m/z calculated for C22H16N2O2F3 ([M+H]+) 397.1164, found 397.1178. 

 

Preparation of 3-methyl-2-(5-(3,4-dichlorophenyl)pyridin-3-yl)quinolin-4(1H)-one, 

61t 

 

                    58i               60f      61t 

58i  (168 mg, 0.60 mmol) was reacted with 60e (126 mg, 0.66 mmol) as in 

the General procedure 6 washed with EtOAc to give 61t as a pale yellow solid (58 

mg, 25%).; mp = 270 - 272 oC; 1H NMR (400 MHz, DMSO) δ 11.75 (s, 1H), 9.15 (d, J = 

2.3 Hz, 1H), 8.82 (d, J = 2.0 Hz, 1H), 8.45 (t, J = 2.1 Hz, 1H), 8.22 (d, J = 2.1 Hz, 1H), 

8.15 (dd, J = 8.0, 0.8 Hz, 1H), 7.91 (dd, J = 8.4, 2.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 

7.66 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.33 (ddd, J = 8.0, 6.9, 1.1 

Hz, 1H), 1.95 (s, 3H). HRMS (CI): m/z calculated for C21H14N2O35Cl2 ([M+H]+) 

381.0556, found 381.0553. 

 

Preparation of 6-chloro-7-methoxy-3-methyl-2-(6-(4-(trifluoromethoxy)phenyl) 

pyridin-3-yl)quinolin-4(1H)-one, 61u 

               58b               60e      61u 
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 58b (127 mg, 0.43 mmol) was reacted with 60e (100 mg, 0.39 mmol) as in 

the General procedure 6 washed with EtOAc to give 61u as a white solid (35 mg, 

19%).; mp = 294 - 295 oC; 1H NMR (400 MHz, DMSO) δ 11.85 (s, 1H), 8.89 (d, J = 1.8 

Hz, 1H), 8.34 (d, J = 8.9 Hz, 2H), 8.25 (d, J = 8.4 Hz, 1H), 8.16 (dd, J = 8.2, 2.3 Hz, 1H), 

8.07 (s, 1H), 7.55 (d, J = 8.1 Hz, 2H), 7.18 (s, 1H), 3.94 (s, 3H), 1.95 (s, 3H). ES HRMS: 

m/z calculated for C23H17N2O3F3
35Cl ([M+H]+) 461.0880, found 461.0884. 

General procedure 7 

 

 61                                                      62 

 To a solution of 61 (1.0 eq) in anhydrous DCM at 0 oC was added 1M solution 

of BBr3 in DCM (0.6 ml, 3.0 eq), the reaction mixture was allowed to warm to room 

temp and continued stirring for 24 hr. The reaction mixture was quenched with cold 

water and extracted with ethyl acetate. The combined organic extracts were 

washed with brine and dried over MgSO4 and concentrated in vacuo to yield a 

brown solid which was purified by column chromatography (5% to 10% MeOH in 

DCM) to give 62. 

Preparation of 6-hydroxy-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl) 

quinolin-4(1H)-one, 62b 

 

     61b                                                                               62b 

61b  (120 mg, 0.27 mmol) was treated as in the General procedure 7 to give 

62b as a light brown solid (78 mg, 67%). mp = 245 - 248 oC 1H NMR (400 MHz, 

DMSO) δ 11.40 (s, 1H), 9.58 (s, 1H), 7.49 – 7.40 (m, 8H), 7.32 (d, J = 7.9 Hz, 2H), 7.11 

(dd, J = 8.9, 2.8 Hz, 1H), 4.09 (s, 2H), 1.86 (s, 3H). 13C NMR (101 MHz, DMSO) δ 
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176.31, 153.51, 146.96, 142.48, 141.01, 133.62, 133.54, 130.88, 129.53, 129.13, 

124.75, 122.05, 121.55, 119.99, 112.89, 107.46, 12.61. ES HRMS: m/z calculated for 

C24H19NO3F3 ([M+H]+) 426.1317, found 426.1308.  

Preparation of 7-hydroxy-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl) 

quinolin-4(1H)-one, 62c 

 

     61c                                                                               62c 

61c  (80 mg, 0.18 mmol) was treated as in the General procedure 7 to give 

62c as a light brown solid (40 mg, 51%). mp = 258 - 260 oC 1H NMR (400 MHz, 

DMSO) δ 11.15 (s, 1H), 10.11 (s, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.46 – 7.41 (m, 6H), 

7.35 – 7.29 (m, 2H), 6.85 (d, J = 2.2 Hz, 1H), 6.74 (dd, J = 8.8, 2.3 Hz, 1H), 4.08 (s, 

2H), 1.83 (s, 3H). ES HRMS: m/z calculated for C24H19NO3F3 ([M+H]+) 426.1317, 

found 426.1333. 

 

Preparation of 8-hydroxy-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl) 

quinolin-4(1H)-one, 62d 

 

     61d                                                                               62d 

61d  (90 mg, 0.2 mmol) was treated as in the General procedure 7 to give 

62d as a light brown solid (60 mg, 69%). mp = 226 - 230 oC 1H NMR (400 MHz, 

DMSO) δ 10.38 (s, 2H), 7.56 (dd, J = 8.1, 1.3 Hz, 1H), 7.48 – 7.37 (m, 6H), 7.32 (d, J = 

7.9 Hz, 2H), 7.10 (t, J = 7.8 Hz, 1H), 7.01 (dd, J = 7.6, 1.3 Hz, 1H), 4.08 (s, 2H), 1.85 (s, 

3H). ES HRMS: m/z calculated for C24H19NO3F3 ([M+H]+) 426.1317, found 426.1309. 
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Preparation of 6-hydroxy-3-methyl-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, 62f 

 

       61f                                                               62f 

61f (79 mg, 0.18 mmol) was treated as in the General procedure 7 to give 

62f as a white solid (10 mg, 10%). mp = decomposed at > 250 oC. 1H NMR (400 MHz, 

DMSO) δ 11.61 (s, 1H), 9.62 (s, 1H), 8.87 (dd, J = 2.3, 0.8 Hz, 1H), 8.33 (d, J = 8.9 Hz, 

2H), 8.22 (d, J = 7.6 Hz, 1H), 8.13 (dd, J = 8.2, 2.3 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 

7.48 (d, J = 8.9 Hz, 1H), 7.46 (d, J = 2.8 Hz, 1H), 7.16 (dd, J = 8.9, 2.8 Hz, 1H), 1.93 (s, 

3H). ES HRMS: m/z calculated for C22H16N2O3F3 ([M+H]+) 413.1113, found 413.1117. 

 

Preparation of 7-hydroxy-3-methyl-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, 62g 

 

        61g                                                   62g 

61g (82 mg, 0.18 mmol) was treated as in the General procedure 7 to give 

62g as a white solid (55 mg, 68%). 1H NMR (400 MHz, MeOD) δ 8.81 (dd, J = 2.2, 1.0 

Hz, 1H), 8.33 – 8.20 (m, 3H), 8.17 – 8.13 (m, 1H), 8.11 (dd, J = 8.2, 1.0 Hz, 1H), 8.08 

(dd, J = 8.2, 2.2 Hz, 1H), 7.45 (dd, J = 8.9, 0.9 Hz, 2H), 6.92 (dd, J = 8.9, 2.3 Hz, 1H), 

6.89 (m, 1H), 2.06 (s, 3H); 13C NMR (101 MHz, MeOD) δ 199.27, 178.62, 161.39, 

156.56, 155.27, 150.26, 149.03, 145.49, 141.82, 137.97, 137.26, 130.10, 128.66, 
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126.87, 120.95, 120.26, 117.19, 115.18, 114.82, 112.86, 100.31, 11.01; ES HRMS: 

m/z calculated for C22H16N2O3F3 ([M+H]+) 413.1113, found 413.1102. 

Preparation of 8-hydroxy-3-methyl-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, 62h 

 

        61h                                                   62h 

61h (90 mg, 0.18 mmol) was treated as in the General procedure 7 to give 

62h as a light brown solid (35 mg, 40%). mp = 154 - 156 oC 1H NMR (400 MHz, 

DMSO) δ 11.00 (s, 1H), 10.53 (s, 1H), 8.79 (d, J = 1.8 Hz, 1H), 8.33 (d, J = 8.8 Hz, 2H), 

8.17 (d, J = 7.8 Hz, 1H), 8.06 (dd, J = 8.1, 2.2 Hz, 1H), 7.59 (dd, J = 8.2, 1.2 Hz, 1H), 

7.54 (d, J = 8.1 Hz, 2H), 7.14 (t, J = 7.8 Hz, 1H), 7.05 (dd, J = 7.7, 1.4 Hz, 1H), 1.89 (s, 

3H). ES HRMS: m/z calculated for C22H16N2O3F3 ([M+H]+) 413.1113, found 413.1109 

 

Preparation of 3-methyl-4-oxo-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)-1,4-

dihydroquinolin-6-yl acetate, 63 

 

      62b                                                                63 

 To a stirred solution of 62b (42.7 mg, 0.10 mmol) in dry DCM was added 

Et3N (0.12 mmol) and the mixture was stirred for 15 min at room temp. Acetyl 

Chloride (0.12 mmol) was then added and reacted for an hour. The reaction was 

quenched with water and extracted with ethyl acetate. The combined organic layer 
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was washed with brine ,dried over MgSO4 and concentrated under vacuum  to yield 

a crude which was further purified by column chromatography (5% MeOH in DCM) 

to give 63 (33 mg, 70%) as a pale brown solid. 1H NMR (400 MHz, DMSO) δ 11.65 (s, 

1H), 7.78 (d, J = 2.7 Hz, 1H), 7.61 (d, J = 9.0 Hz, 1H), 7.51 – 7.42 (m, 6H), 7.40 (dd, J = 

9.0, 2.7 Hz, 1H), 7.32 (d, J = 7.9 Hz, 2H), 4.10 (s, 2H), 2.30 (s, 3H), 1.89 (s, 3H). ES 

HRMS: m/z calculated for C26H21NO4F3 ([M+H]+) 468.1423, found 468.1434 and m/z 

calculated for C26H20NO4F3Na ([M+Na]+) 490.1242, found 490.1248 . 

 

3.4.3 Biology 

This part of work was done in collaboration with the Liverpool School of 

Tropical Medicine. Biological-related experiments were carried out by Dr Alison 

(Shone) Crowther, Dr Paul Bedingfield, and Dr Gemma Nixon under a supervision of 

Professor Giancarlo Biagini and Professor Stephen Ward. 

Parasite culture 

Laboratory strains of P. falciparum were cultured in human erythrocytes 

following Trager and Jensen method31 with modifications32. The parasites were 

retrieved from cryopreserved stock by thawing in water bath at 37°C until 

completion. 1 ml of 3.5% NaCl solution was gently added to thawed blood. The 

solution was centrifuged at slow speed and supernatant was removed. The culture 

was then initialised by adding 10 mL of 10% serum-based culture medium (RPMI-

1640 supplemented with 25 mM HEPES and 4 μg/ml gentamicin). The parasites 

were maintained in fresh human erythrocytes at 37°C under a low oxygen 

atmosphere (3% CO2, 4% O2, and 93% N2). The culture was daily evaluated for 

parasitemia and parasite stages using Giemsa-stained microscopy method.  

Drug sensitivity assay 

Drug-sensitivity phenotypes of P. falciparum strains 3D7, W2, and TM90C2B 

(Thailand) have been described previously2, 33.  In vitro antimalarial activity of 

quinolones was assessed by the SYBR Green I fluorescence-based method32. The 

assay was set up in 96-well plates by Hamilton Star robotic platform with two-fold 
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dilutions of each drug across the plate at a final concentration of 2% parasitemia at 

0.5% haematocrit (v/v). The dilution series was initiated at a concentration of 1 μM 

ranging to 0.61 nM. ATQ and CQ were used as positive control (IC50 (3D7) = 0.9 and 

11 nM, respectively). The plates were incubated for 48 hours under a culture 

condition. The assay was terminated by frozen at -20°C overnight. Growth 

proliferation was determined by SYBR Green method. The half maximal inhibitory 

concentration (IC50) was calculated using ‘ic50’ package in R programming software. 

Solubility assay 

Test compounds   

The compounds have so far been tested in pH 7.4 (phosphats) and pH 1 

(FIXANAL) buffers and in culture media. 20µl of 10mM stock compound in DMSO 

was added to 980 µl of each medium in Eppendorf’s. This gives a final concentration 

of 200µM compound and 2% DMSO. Blanks were also made using 20µl of DMSO in 

980µl media. For best results the experiment carries out in triplicate. The samples 

were rotated at room temperature over night to allow equilibration. 

Using a needle the compounds were drawn up into a small syringe and 

passed through a 0.22 µm MILLEX GP PES membrane syringe end filter. The PES 

membrane in the filter is important to reduce the binding of the test compound. 

200 µl of the resulting solution was transferred to a well in a UV 96 well plate (see 

materials).The spectrum was then read every 2nM between 200 and 400nM and 

the blank for each buffer was deducted. 

Calibration curve 

Two calibration curves of the test compounds were made using 50% DMSO 

and 50% buffer. pH 1 buffer was used for the pH1 samples and pH 7.4 buffer was 

used for the pH 7.4 and the media samples. (NB- once the DMSO was added the pH 

was readjusted using HCl and NaOH to counteract any variation from the dilution.) 

In a UV 96 well plate a dilution series was made up for each compound using 

200µM as the top concentration with 1 in 3 dilutions i.e. 200µm, 66.66µM, 

22.22µM, 7.41µM, 2.50µM, 0.82µM, 0.27µM, 0.091µM, 0µM. The final volume in 
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each well was 200µl. This was again read on the speck between 200 and 400nM 

every 2nM. The blank was deducted and a peak was selected from the graph.  The 

absorbances at the peak’s wavelength were plotted against concentration to 

produce a calibration curve. The maximum concentration of the compounds in the 

media and buffer solutions was read off the off the calibration curve using the 

absorbance at the corresponding wavelength. 

pKa determination protocol 

Using FIXANAL® buffer concentrates from Sigma-Aldrich buffers 10 buffers 

were made at pH 1-10. Test compounds were made up at 100 µM in DMSO. 30 µL 

of 100 µM stock was added to 270 µL buffer in a UV 96 well plate to give 300µl of 

10µM compound in 10% DMSO pH buffer. Control wells were also made up with 

buffer and just 10% DMSO. 

A spectrum scan was carried out on the plate reader every 2 nM between 

200 and 400 nM. The control absorbance was deducted from the readings and 

graphs of wavelength against absorbance were plotted for each pH. Where the 

spectrum changes from one profile to another determines the pKa. The pKa value 

was determined by plotting the pH at key wavelengths and determining the ‘IC50’ 

(bearing in mind that pH is already a logarithmic scale). 

Metabolic stability  

Pooled human liver microsomes (pooled male and female) were purchased 

from a reputable commercial supplier. Alternative species and strains are available 

upon request. Microsomes are stored at -80°C prior to use.  

Microsomes (final protein concentration 0.5mg/mL), 0.1M phosphate buffer 

pH7.4 and test compound (final substrate concentration = 3μM; final DMSO 

concentration = 0.25%) are pre-incubated at 37°C prior to the addition of NADPH 

(final concentration = 1mM) to initiate the reaction. The final incubation volume is 

25μL. A control incubation is included for each compound tested where 0.1M 

phosphate buffer pH7.4 is added instead of NADPH (minus NADPH). Two control 
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compounds are included with each species. All incubations are performed singularly 

for each test compound.  

Each compound is incubated for 0, 5, 15, 30 and 45min. The control (minus 

NADPH) is incubated for 45min only. The reactions are stopped by the addition of 

50μL methanol containing internal standard at the appropriate time points. The 

incubation plates are centrifuged at 2,500rpm for 20min at 4 °C to precipitate the 

protein. Following protein precipitation, the sample supernatants are combined in 

cassettes of up to 4 compounds and analysed using LC-MS/MS conditions.  

From a plot of ln peak area ratio (compound peak area/internal standard 

peak area) against time, the gradient of the line is determined. Subsequently, half-

life and intrinsic clearance are calculated using the equations below:  

Elimination rate constant (k) = (- gradient)  

Half-life (t1/2) (min) = 0.693/k 

Intrinsic Clearance (CLint) (μL/min/mg protein) = V x 0.693/t1/2 where 

V=Incubation volume μL/mg microsomal protein. 

Bovine bc1 counterscreen34  

Cytochrome bc1 complex from bovine heart was isolated from mitochondrial 

membranes as described previously35. Cytochrome c reductase activity 

measurements were assayed in 50 mM potassium phosphate, pH 7.5, 2 mM EDTA, 

10 mM KCN, and 30 μM equine cytochrome c (Sigma Chemical, Poole, Dorset, UK) 

at room temperature36. Cytochrome c reductase activity was initiated by the 

addition of decylubiquinol (50 μM). Reduction of cytochrome c was monitored in a 

Cary 4000 UV-visible spectrophotometer (Varian, Inc., Palo Alto, CA) at 550 versus 

542 nm. Initial rates (computer-fitted as zero-order kinetics) were measured as a 

function of decylubiquinol concentration. The cytochrome b content of membranes 

was determined from the dithionite-reduced minus ferricyanide-oxidized difference 

spectra, using ϵ562-575 = 28.5 mM-1 cm-1.37 Turnover rates of cytochrome c reduction 

were determined using ϵ550-542 = 18.1 mM-1 cm-1. Inhibitors of bc1 activity were 

added without prior incubation. DMSO in the assays did not exceed 0.3% (v/v). Data 
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were collected and analyzed using an Online Instrument Systems Inc. computer 

interface and software. 

3.4.4 Molecular Modeling 

 A homology model of P. falciparum cytochrome bc1 complex was 

constructed using the PHYRE online homology modelling program28. The P. 

falciparum cytochrome b primary sequence Q02768 was obtained from UNIPROT29a 

used as the query sequence. A number of protein alignments and homology models 

were constructed by PHYRE and the model with the highest confidence (lowest E-

value) was selected. The highest scoring Pf cytochrome b homology model was 

based on a S. cerevisiae cytochrome bc1 complex template (PDB accession code: 

1KYO). 1KYO is a 2.97 Å resolution crystal structure of cytochrome bc1 complex co-

crystallised with the ligand Stigmatellin A which is bound within the Qo active site.  

The structure of the model was validated using WHATIF web interface29b. 

 

 

 

 

 

 

Figure 3.15 The above figure shows that Pf Rieske ISP homology model and 

the 1KYO Rieske are identical at the active site residues. The homology model ISP 

histidine equivalents to His161 and His181 are conserved from the 1KYO template. 

Given the homology model is primarily for docking purposes the accuracy Qo site is 

a priority.  It was easier to keep the original Rieske ISP from 1KYO than to use the Pf 

Rieske ISP homology model which contained long loop regions which could be 

inaccurate and cause more clashes with the cytochrome b homology model when 

orientated. 
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The resultant homology model of Pf cytochrome b was aligned with the 

original 1KYO structure with SYBYL using the alignment functions within Biopolymer 

module of SYBYL-X version 1.1. This enabled the P. falciparum cytochrome b to be 

combined with the S. cerevisiae Rieske iron-sulfur protein in the correct orientation 

as the Rieske ISP residues that constitute the bc1 Qo active site are invariant 

between the S. cerevisiae template and the Plasmodium falciparum sequences 

when aligned. This combined model was then checked, refined and minimised using 

the protein refinement modules with SYBYL’s protein preparation tools. 

 The selected compounds were modelled in silico using either 3CX5 model or 

the modified 1KYO model described above in order to visualise the interactions 

between each analogue and the active site. Using GOLD, stigmatellin can be 

removed, protons were added and all crystallographic water molecules were 

removed, except for a specific water which has been described as key to the 

hydrogen bonding. The docking poses were optimised for the histidine and 

glutamate hydrogen bond interactions with quinolones. To prepare our quinolones 

ready to be docked into the model, three dimensional structures were constructed 

and their minimal energy optimised using the Spartan molecular mechanics 

programme. The files were then imported to GOLD and those molecules were 

docked into the Qo site using the configuration previously validated by successful re-

docking of stigmatellin. The key water was allowed to spin and translate from its 

original place with a radius of 2 Å. The docking was performed using the standard 

procedure and, for each quinolones, ten docking poses including its GoldScore were 

obtained for comparison and analysis.  
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Alternative synthetic route towards PG227 

4.1 Background 

 Shortly after the discovery of SL-2-25 (55), it became evident that the 

physico-chemical properties of this lead needed to be improved1. The poor aqueous 

solubility of 55 impacts on the pharmacokinetic profile by limiting drug exposure 

making safety margin assessments in preclinical toxicological evaluations extremely 

difficult; this problem also occurred for the GSK pyridone programme and continues 

to hamper the development of the ELQ-300 series of quinolones. To resolve the 

insolubility problem, formulations of 55 including phosphate salt and morpholine 

prodrug were investigated, and they showed excellent in vitro activity and PK 

profiles in rodent models1. However, to avoid the necessity of using a pro-drug 

approach, it was clear that further lead optimisation of the SL-2-25 scaffold was 

required. By increasing inherent drug potency, the possibility of reducing the oral 

dose to sub mg/kg levels, was considered as a possible development route for the 

quinolone series. 

 

It is evident that the incorporation of halogen onto the pyridone or 

quinolone core can enhance the antimalarial activity. In the pyridone  case (70), the 

work done by Yeates et al. showed that halogenation at C-3 increased in vitro 

activity about 5-fold and there was a little difference between 3-Br and 3-Cl (Figure 

4.1)2.  
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Figure 4.1 Comparison between 3-halogen and 3-H substitution on pyridone and 

quinolone 

There are a few examples of 3-halogenated quinolones previously identified 

from the Manetsch group. While the 2-methyl-4-quinolone (71a) is completely 

devoid of antimalarial activity, introduction of a 3-bromo substituent brought the 

activity back to the quinolone 713. Comparing bisaryl quinolones 107 and 108, the 

presence of chlorine atom at C-3 greatly enhances the in vitro whole-cell activity4. It 

is noteworthy that the reduction in PfNDH2 inhibition is observed suggesting a 

possible change in molecular target such as the bc1 complex. 

 

In the on-going programme focusing on antimalarial quinolones, PG227 (69) 

was first synthesised in the O’Neill group at the University of Liverpool. It exhibits 

high antiparasitic properties against both in vivo and in vitro, and also possesses 

good pharmacokinetics and bioavailability in rat model. 
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4.1.1 Pharmacological, physicochemical and pharmacokinetics profiles of PG227 

 Compared to SL-2-25, PG227 shows superior properties in many respects. 

PG227 is active against Pfbc1 with an IC50 of ~10 nM and against PfNDH2, with an 

IC50 of ~150 nM. Addition to the standard testing, PG227 was assayed against drug 

resistant strains of P. falciparum including chloroquine resistant W2 and 

atovaquone resistant TM90C2B. PG227 shows excellent activities against both W2 

and TM90C2B with an IC50 of 4 and 5 nM, respectively, which are greater than SL-2-

25’s (IC50 (W2) = 48 nM, IC50 (TM90C2B) = 56 nM). 

Compound Vehicle ED50 (mg/kg) ED90 (mg/kg) 

SL-2-25 PEG400 4.45 8.95 

PG227 PEG400 0.13 0.26 

ELQ300* unknown ~0.25 ~0.45 

* estimated from a graph from presentation 

Table 4.1 In vivo activity of the quinolones using Peter’s Standard 4-Day test. 

Note  : PG227 in PEG400, top dose cured the mice of infection (mice inspected 7 days after final 
dose) 

: GSK Vehicle: 01% Hydroxypropyl cyclodextrin, 10% EtOH, 10% propylene glycol, 40% PEG-
400, 39% PBS.   

 

Table 4.2 In vivo activity of the quinolones in the Berghei model –Using the 

modified Peter’s Standard Four Day test (infect day 0 and begin dosing on day 3) 

According to Peter’s standard four-day test5 (Table 4.1), PG227 had an 

ED50/ED90 of 0.13 mg/kg and 0.26 mg/kg indicating far superior in vivo potency than 

SL-2-25 and ELQ-300. The choice of vehicle in the in vivo efficacy studies has a 

significant effect on PG227 efficacy. PEG400 vehicle appears to deliver the drug 

more efficiently than GSK vehicle resulting in lower ED50 and ED90 values.  This 

vehicle effect is probably the result of the low solubility of PG227 with PEG400 

Drug Vehicle ED50 (mg/Kg) ED90 (mg/Kg) 

PG227 PEG400 0.46 0.59 

PG227 GSK Vehicle 4.2 5.4 

PG227 acetate Prodrug PEG400 0.75 1.1 

PG227 acetate Prodrug GSK Vehicle 4.3 5.5 

PG227 (standard four day test) PEG400 0.13 0.26 
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providing an improved solubilisation for oral administration. Drug dosing on the day 

(standard Peter’s) vs 3-day post infection has a two-fold effect on efficacy (entry 1 

and 5 in Table 4.2).   

The lead optimisation that led to PG227 included an assessment of the 

physicochemical, metabolic and pharmacokinetic properties to identify features 

that would limit oral bioavailability and exposure profiles. Early in this programme, 

it was realised that the most important limitation was very poor aqueous solubility. 

It was hoped that the pyridyl heterocycle would aid solubility since the nitrogen 

lone-pair can be protonated in an acidic environment; as can be seen in the Table 

4.3, even at pH1, PG227 still has lower than expected solubility suggesting that the 

pka of the pyridyl nitrogen <<5. 

 

Compound 
Max Solubility (uM) 

pKa Melting Point ◦  C 
Caco-2 

Permeability 
(cm x 10-6 s-1) pH1 pH7.4 Media 

PG227 <1 <1 >150 LS* 345 (decomposed) 2.2 

SL-2-25 3.2 <1 48 <1.5 277-278 14.8 

ELQ300 <1 <1 40 ND ND ND 

Atovaquone <1 <1 >150 8.6 ND ND 

*LS = low solubility, ND = not determined 

Table 4.3 Comparison between PG227, SL-2-25 ELQ-300 and atovaquone. 

In addition to low aqueous solubility, PG227 exhibited very high binding 

(range: 99.7 to >99.9%) to proteins in human, dog, rat and mouse plasma and high 

binding (95.9%) to components in human liver microsomes at 0.5 mg/mL protein 

concentration. PG227 was stable in human, rat and mouse plasma and whole blood, 

and the apparent whole blood to plasma partitioning ratios across the three species 
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ranged from 0.59 to 0.71. PG227 exhibited low degradation in human, rat and 

mouse cryopreserved hepatocytes (Table 4.4) and therefore would be expected to 

be subject to low hepatic metabolic clearance in vivo. 

 
% Plasma 

Protein Bound 
B/P ratio 

Microsomal stability 
CLint (μL/min/mg) 

Hepatocytes 
degradation CLint 
(μL/min/10

6
 cell) 

Human 99.9 0.63 (S) 5.33 (t1/2 = 260 min) <3.4 

Dog 99.7 - - - 

Rat > 99.9 0.60 (S) 1.06 <1.8 

Mouse 99.8 0.68 (S) - <1.9 

Human Microsomes 95.9 - - - 

*B:P = blood/plasma partition, S = stable in both blood and plasma 

Table 4.4 Plasma Protein Binding, blood/plasma partitioning, microsomal 

stability and hepatocyte degradation of PG227  

 

Cytochrome P450 IC50 (µM) 

CYP1A2 > 20 

CYP2C9 17.6 

CYP2C19 > 20 

CYP2D6 > 20 

CYP3A4/5 > 20 

Testosterone > 20 

Midazolam >20 

 

Table 4.5 A) Cytochrome P450 inhibition and Figure 4.2 Percent inhibition plot for 

PG227 against CYP2C9-mediated tolbutamide methylhydroxylation in human liver 

microsomes. 

PG227 exhibited low inhibition against the five CYP isoforms with IC50 values 

in the majority of cases being greater than the highest concentration tested in this 

assay (i.e. 20 µM; Table 4.5). Since there was no evidence of compound 

precipitation following spiking of PG227 into incubation buffer (in the absence of 
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microsomes) and since there was a concentration dependent increase in inhibition 

noted against CYP2C9 (Figure 4.2), the high IC50 values observed for PG227 are likely 

to be due to lack of inhibitory effect rather than an artefact of limited solubility 

under the assay conditions. 

In summary, PG227 is active against P.falciparum malaria with a greater 

potency in vitro and in vivo but still suffers from poor aqueous solubility. Based on 

the profile, MMV selected PG227 for further studies including an assessment of the 

in vivo activity in the PfSCID model of infection. The original synthesis of PG227 gave 

a poor overall yield, and for this reason a new synthetic approach was required. 

 

4.1.2 The synthesis of PG227 

The original synthesis of PG227 includes the synthesis of two intermediates 

which were then coupled and cyclised. The first compound, 1-(2-amino-4-

methoxyphenyl)ethanone, 65, was successfully made by the Friedel-Crafts acylation 

of m-anisidine in the presence of boron trichloride. The carboxylic acid 66 was 

synthesised from the aldehyde 56b by reacting with selenium dioxide in a solution 

of hydrogen peroxide. The coupling reaction between 65 and 66 gives the amide 

intermediate 67. The cyclisation of 67 proceeds in a basic solution of t-BuOK in t-

BuOH. The 3-chlorine atom was then added using sodium dichloroisocyanurate in 

NaOH as a chlorinating agent. The overall yield was low and unpredictable and was 

unsuitable for scale-up purposes. 
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Scheme 4.1 Original synthesis of PG227 Reagents : (a) AcCl, BCl3, DCM (b) 

SeO2, H2O2, 2 h, 75 oC. (c) (COCl)2, cat. DMF, DCM, 2 h, rt. then 65, triethylamine, 

THF, overnight, rt. (d) t-BuOK, t-BuOH, overnight, 75 oC. (e) sodium 

dichloroisocyanurate, 1 M NaOH, MeOH, overnight, rt. 

The key disadvantages of this route highlighted in red are (i) the Friedel-

Crafts acylation, (ii) base-mediated cyclisation, and (iii) 3-chlorination. With respect 

to the Friedel-Crafts acylation, this chemistry gave variable yields with mixtures of 

products being obtained. The harsh condition used in the cyclisation step (d) was 

not suitable in a large-scale synthesis. For step (e), the 3-chlorination can only be 

done on a small-scale batch (less than 500-mg scale).  
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4.2 Result and discussion 

In searching for an alternative approach towards compound 69, a literature 

review showed that one of the intermediates can be made by another route 

involving cheaper starting materials and simpler chemistry6. The intermediate 65 

which was previously made by the Friedel-Crafts acylation can also be prepared 

from its corresponding nitrobenzoic acid. The conversion of commercially available 

4-methoxy-2-nitrobenzoic acid to its methyl ketone can be accomplished by 

transforming to its acyl chloride and reacted with a malonate ester carbanion.  

The resulting yellow oil of β-keto malonate 72 was then subjected to a 

double-decarboxylation procedure using a mixture of acetic acid and 4 N sulfuric 

acid solution to obtain the corresponding methyl ketone in good yield. The nitro 

moiety of 73 was then hydrogenated to the aniline 65 using iron dust in acetic acid. 

This alternative route can be used to prepare the intermediate in gram scale6. The 

overall yield from commercially available material is 34%. 

 

Scheme 4.2 Reagents: (a) (COCl)2, cat. DMF, DCM, 2 h, rt. (b) diethyl 

malonate, NaOEt, THF, 1 h, 110 oC (c) AcOH, 4 N sulfuric acid, 4 h, 130 oC, 51% (over 

3 steps). (d)  iron dust, AcOH, EtOH, 1 h, 125 oC, 67%. 

The pyridyl carboxylic acid 66 was made from the corresponding aldehyde 

56b according to the original method involving the use of SeO2 in a solution of 

H2O2
7. The amide coupling can be done by reaction of the acid chloride derived 
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from 66 with amine 65. These two reactions worked well and gave good yields 

without any difficulties in purification.   

 

Scheme 4.4 Reagents: (a) SeO2, H2O2, 2 h, 75 oC, 77 %. (b) (COCl)2, cat. DMF, 

DCM, 2 h, rt. then 11, triethylamine, THF, overnight, rt, 95%. 

Several attempts were made to optimise the cyclisation step. A choice of 

bases, including NaOH and NaOEt, were used. Unfortunately, due to the insolubility 

and polarity of quinolones, it was difficult to purify and quantify the product using 

column chromatography. The cyclisation was found to proceed best with t-BuOK 

confirming earlier parallel work performed in the group. However, it was difficult to 

quantify the product as was contaminated with the base residue left from the 

reaction. As a result, spectroscopic spectra were poor and it was impossible to 

obtain a clean 13C NMR spectrum due to insolubility even in DMSO; however, MS 

and 1H NMR spectrum were identical to the previous work. 

 

 Scheme 4.5 Reagents: (a) t-BuOK, t-BuOH, overnight, 75 oC. (b) sodium 

dichloroisocyanurate, 1 M NaOH, MeOH, overnight, rt. 

The 3-chlorination was accomplished by using sodium dichloroisocyanurate 

in 1 M NaOH as a chlorinating agent4. The yield of this step was acceptable with the 

product 69 seems the major product in the crude reaction mixture and the product 

could be purified by standard column chromatography. The HPLC trace and 
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elemental analysis also show that the product purity is more than 95%. The 

synthesis can be summarised in the scheme below. 

 

Scheme 4.6 Route A: Synthesis of PG227 via amide coupling. Reagents: (a) 

iron dust, AcOH, EtOH, 1 h, 125 oC. (b) SeO2, H2O2, 2 h, 75 oC. (c) (COCl)2, cat. DMF, 

DCM, 2 h, rt. then 65, triethylamine, THF, overnight, rt. (d) t-BuOK, t-BuOH, 

overnight, 75 oC. (e) sodium dichloroisocyanurate, 1 M NaOH, MeOH, overnight, rt. 

Overall, Route A still mainly relies on the original synthetic steps and 

attempts to optimise were met with moderate success. The aim of this research 

then turned to finding a novel synthetic approach towards PG227. A brief literature 

revisit in Chapter II showed that the quinolone can be successfully made by other 

approaches, for example, the Conrad-Limpach reaction. The Conrad-Limpach 

reaction involves the condensation of anilines with β-keto esters to form 4-

quinolones via a Schiff base8. Based on this chemistry, the retrosynthetic analysis of 

PG227 can be drawn as below. 
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Scheme 4.7 The retrosynthetic analysis of PG227 - Route B 

This synthesis requires the enamine intermediate whose cyclisation leads to 

the formation of quinolone core9. The enamine 75 can be made of m-anisidine and 

β-keto ester 74 which was synthesised from the corresponding aldehyde.  

 

Scheme 4.8 Reagents: ethyl diazoacetate, cat. NbCl5, DCM, 3 days, rt., 43%. 

The aldehyde 56b was made from commercially available boronic acid and 

nicotinaldehyde and it was previously reported in the Chapter III which is an 

excellent starting material for this synthesis as it can be prepared in multi-gram 

scale. Following a similar procedure described in a relevant publication1, 10, the 

aldehyde reacts readily with ethyl diazoacetate in the presence of 5 mol% of NbCl5 

in dichloromethane to produce the corresponding β-keto esters in good yield with 

high selectivity. The chromatographic purification can be difficult as the product and 

starting material share a similar Rf in a range of 0.4-0.5 on TLC when eluted twice 

with 10% EtOAc in hexane. The conversion yield can be improved by adding a same 

proportion of ethyl diazoacetate to the reaction after a course of every 24 h. With 

this method, β-keto ester 74 can be prepared, and, according to the corresponding 

1H-NMR peaks at 12.61 and 5.75, its structure should be described as an enol 
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tautomer. The mechanism was also explained in the original work published in 

200510.  

The reaction proceeds through the activated complexation between 

aldehyde and Nb(V). The nucleophilic diazoacetate then added to carbonyl carbon, 

the C=O bond was cleaved followed by 1,2-hydride shift with loss of N2 resulting in 

the formation of β-keto ester.  

 

Scheme 4.9 Mechanism of Nb(V)-mediated synthesis of β-keto esters  

 

Scheme 4.10 Reagents: (a) acetic acid, ethanol, 2 h, reflux, 50%. (b) 

Dowtherm A, 1 h, 240 oC, 64 % 

The Conrad-Limpach enamine intermediate 75 can be prepared from β-keto 

esters 74 and aniline in a solution of acetic acid in ethanol under a reflux condition9. 

The ring closure reaction of 75 then readily takes place in such a high-boiling-point 

solvent as Dowtherm A4. The advantage of this reaction is that the conversion yield 

is generally good and the product purification is easy. In this case, the resulting 

precipitate was collected and washed with hexane and ethyl acetate to give an off-
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white solid of 68 without any further purification. Spectroscopic data were identical 

to previously reported. The mechanism can be depicted below. 

 

Scheme 4.11 Mechanism of the Conrad-Limpach cyclisation 

N-Chlorosuccinimide (NCS) is used for chlorinations and as a mild oxidant. 

This reagent was reported to be able to replace sodium dichloroisocyanurate in 3-

chlorination11. 68 and NCS dissolved in warm acetic acid were left to react for 18 h. 

The reaction proceeded well with high conversion yield. 

 

Scheme 4.12 Reagents: NCS, AcOH, DCM, 18 h, 35 oC, 60%. 

The alternative synthesis towards PG227 can be accomplished in 5 steps 

from commercially available and cheap starting materials using alternative 

chemistries with the benefit of being able to enlarge the batch size. The summary of 

Route B synthesis via β-keto ester intermediate and the Conrad-Limpach cyclisation 

is displayed below. The overall yield was 7% over 5 steps starting from commercially 

available chemicals.  



Chapter IV: Alternative synthetic route towards PG227 

155 
 

 

Scheme 4.13 Route B: Synthesis of PG227 via β-keto ester and the Conrad-

Limpach cyclisation. Reagents: (a) ethyl diazoacetate, cat. NbCl5, DCM, 3 days, rt., 

43%. (b) m-anisidine, acetic acid, ethanol, 2 h, reflux, 50%. (c) Dowtherm A, 1 h, 240 

oC, 64 %. (d) NCS, AcOH, DCM, 18 h, 35 oC, 60%. 

4.3 Conclusion 

 PG227 (69) exhibits an outstanding pharmacological properties amongst a 

series of quinolones made within the O’Neill group. Its original synthesis suffers 

from reproducibility and low overall yields. A literature search as described in 

Chapter II shows several synthetic preparations towards quinolone core and this 

provided the impetus for a new approach. PG227 now can be successfully made in a 

large-scale batch (multi-gram scale) using an alternative method for cyclisation. The 

5-step synthesis of PG227 can be achieved from commercially available starting 

materials and the synthesis includes the synthesis of β-keto ester intermediate 

made from the corresponding aldehyde reacting with ethyl diazoacetate in the 

presence of NbCl5. The Conrad-Limpach cyclisation reaction was used to construct 

the quinolone core and the chlorination was done using NCS. The overall yield was 

7%. This approach can also be used as a general scale-up synthetic route towards 2-

aryl-3-chloro quinolone template. 
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4.4 Experimental 

Route A: Synthesis of PG227 via amide coupling (see Scheme 4.6) 

Preparation of 1-(4-methoxy-2-nitrophenyl)ethanone, 736 

 

To a solution of 4-methoxy-2-nitrobenzoic acid (8.0 g, 40.8 mmol) in 

anhydrous DCM (60 mL) was added oxalyl chloride (5.2 mL, 7.77 g, 61 mmol) and a 

few drops of DMF. The reaction was left for 2 hours at room temperature and the 

progress was followed by TLC. Once the reaction completed, all solvent was 

evaporated to obtain corresponding benzoyl chloride which was used as such in the 

following step.  

To a THF solution (50 mL) of diethyl malonate (6.8 mL, 7.2 g, 45 mmol) in an 

oven-dried two-neck flask equipped with a water condenser, NaOEt (3.06 g, 45 

mmol) was added and the mixture was allowed to reflux at 110 oC for half an hour. 

The crude benzoyl chloride dissolved in THF (30 mL) was added to the stirred 

solution via septum. After being allowed to reflux for another half an hour, 4 N 

sulfuric acid solution was added until all solid disappeared. Extraction with ether, 

drying and removal of solvent gave crude yellow oil of diethyl 2-(4-methoxy-2-

nitrobenzoyl)malonate, 72. 

The oil from previous step was allowed to reflux at 130 oC in acetic acid (50 

mL) and 4 N sulfuric acid (25 mL) for 4 hours. Cooling, basification, extraction with 

ether yielded sticky oil which was purified by column chromatography over silica gel 

(40% EtOAc/Hexane) to yield 1-(4-methoxy-2-nitrophenyl)ethanone as pale yellow 

crystal (4.09 g, 51% over 2 steps).1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 8.5 Hz, 1H), 

7.43 (d, J = 2.5 Hz, 1H), 7.17 (dd, J = 8.5, 2.5 Hz, 1H), 3.92 (s, 3H), 2.52 (s, 3H).13C 

NMR (101 MHz, CDCl3) δ 198.57, 161.96, 148.72, 130.22, 128.27, 118.78, 109.91, 



Chapter IV: Alternative synthetic route towards PG227 

157 
 

56.50, 29.52. Elemental Analysis calculated for C9H9NO4: C, 55.39; H, 4.65; N, 7.18. 

Found: C, 54.95; H, 4.48; N, 7.05. 

Preparation of 1-(2-amino-4-methoxyphenyl)ethanone, 656
 

 

1-(4-Methoxy-2-nitrophenyl)ethanone, 73 (3.9 g, 20 mmol) was added 

during one hour to a stirred solution of iron dust (3.3 g, 60 mmol), acetic acid (30 

mL), and ethanol (30 mL). After being allowed to reflux at 125 oC for another hour, 

the mixture was filtered, concentrated, and dissolved in EtOAc. The organic layer 

was washed with bicarb., brine, dried over MgSO4 and concentrated to give a crude. 

Purification was performed using column chromatography over silica gel (40% 

EtOAc/Hexane) to obtain 1-(2-amino-4-methoxyphenyl)ethanone (2.2 g, 67%); mp = 

118.0 – 118.5 oC;1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 9.0 Hz, 1H), 6.24 (dd, J = 

9.0, 2.5 Hz, 1H), 6.09 (d, J = 2.5 Hz, 1H), 3.81 (s, 3H), 2.52 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 199.44, 164.74, 152.72, 134.51, 113.50, 105.02, 99.86, 55.64, 28.03.  

Elemental Analysis calculated for C9H9NO4: C, 65.44; H, 6.71; N, 8.48. Found: C, 

65.15; H, 6.69; N, 8.25. 

Preparation of 6-(4-(trifluoromethoxy)phenyl)nicotinic acid, 66 

 

To the THF solution (40 mL) of aldehyde 56b (4.0 g, 15 mmol) was added 

SeO2 (832 mg, 7.5 mmol) and H2O2 (3.8 mL of 27 % solution, 1.02 g, 30 mmol) and 

the mixture was refluxed for 2 hours at 75 oC. After that, the reaction was allowed 

to cool before a spatula of Pd/C (10%) was added to quench the excess H2O2. The 

mixture was filtered and the solvent removed. 2.5% NaHCO3 solution was added 
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and extracted with EtOAc. The aqueous layer was acidified with 10% HCl and 

extracted with EtOAc. The organic layer was dried over MgSO4, filtered and 

concentrated to yield a white solid. Purification was done using column 

chromatography over silica gel (50% EtOAc/Hexane) to obtain 6-(4-

(trifluoromethoxy)phenyl)nicotinic acid (3.25 g, 77%) as white solid. 1H NMR (400 

MHz, CDCl3) δ 9.34 (d, J = 1.5 Hz, 1H), 8.45 (dd, J = 8.3, 2.1 Hz, 1H), 8.13 (d, J = 8.9 

Hz, 2H), 7.85 (d, J = 8.3 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H). ESI HRMS: m/z calculated for 

C13H9NO3F3 ([M+H]+) 284.0535 ,found 284.0547. 

Preparation of N-(2-acetyl-5-methoxyphenyl)-6-(4-(trifluoromethoxy)phenyl) 

nicotinamide, 67 

 

 To a solution of 6-(4-(trifluoromethoxy)phenyl)nicotinic acid, 66 (1.7 g, 6 

mmol) in anhydrous DCM (40 mL) was add thionyl chloride (0.7 mL, 1.14 g, 9 mmol) 

and a few drops of DMF. The reaction was left for 2 hours at room temperature. 

After the reaction was completed (TLC), all solvent was evaporated to obtain a 

crude product that was used in the next step without any further purification. 

 To a solution of the crude acyl chloride from previous step in THF (40 mL) 

was added 1-(2-amino-4-methoxyphenyl)ethanone, 67 (991 mg, 6 mmol) and 

triethylamine (0.9 mL, 668 mg, 6.6 mmol) The reaction was stirred overnight. After 

the reaction was completed, brine (40 mL) was added and the mixture was 

extracted with EtOAc (3 x 40 mL). The combined organic layer was washed with 

bicarb., brine, dried over MgSO4 and evaporated to yield a crude which was purified 

by column chromatography (40% EtOAc/Hexane) to obtain the product as white 

solid (2.46 g, 95% over 2 steps). 
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1H NMR (400 MHz, CDCl3) δ 13.31 (s, 1H), 9.40 (d, J = 2.2 Hz, 1H), 8.63 (d, J = 

2.6 Hz, 1H), 8.45 (dd, J = 8.3, 2.3 Hz, 1H), 8.19 – 8.11 (m, 2H), 7.94 – 7.86 (m, 2H), 

7.37 (d, J = 8.2 Hz, 2H), 6.71 (dd, J = 8.9, 2.6 Hz, 1H), 3.96 (s, 3H), 2.68 (s, 3H). 13C 

NMR (101 MHz, CDCl3) δ 202.22, 165.51, 164.41, 158.61, 149.30, 144.12, 136.88, 

136.47, 134.29, 129.45, 121.59, 120.72, 115.89, 110.76, 104.60, 56.16, 28.69. ESI 

HRMS: m/z calculated for C22H17N2O4F3Na ([M+Na]+) 453.1038 ,found 453.1043. 

Preparation of 7-methoxy-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-yl)quinolin-

4(1H)-one, PG226 or 68. 

 

67 (1.59 g, 3.7 mmol) was dissolved in t-butanol (25 mL) and allowed to stir. 

t-BuOK (1.45 g, 12.5 mmol) was added and the mixture was heated at 75oC 

overnight. The reaction mixture was allowed to cool before 2 M HCl was added until 

the solution turn acidic. The yellow precipitate crashed out and it was filtered to 

yield a solid which was washed with water to obtain 68.  

1H NMR (400 MHz, DMSO) δ 11.74 (s, 1H), 9.15 (s, 1H), 8.40 – 8.32 (m, 3H), 

8.25 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.18 (d, J = 1.8 

Hz, 1H), 6.97 (dd, J = 8.8, 1.7 Hz, 1H), 6.45 (s, 1H), 3.89 (s, 3H). ESI HRMS: m/z 

calculated for C22H16N2O3F3 ([M+H]+) 413.1113 ,found 413.1127. 
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Preparation of 3-chloro-7-methoxy-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, PG227 or 69. 

 

 68 was dissolved in MeOH (60 mL) and 1 M NaOH (40 mL) was added. 

Sodium dichloroisocyanurate was added to yield a yellow solution after heating 

with a heat gun to aid the dissolving of the starting material. The mixture was 

allowed to stir at room temperature overnight. After this time, MeOH was removed 

in vacuo to yield a yellow solid which was then dissolved in EtOAc and washed with 

water. The organic layer was dried over MgSO4 and purified by column 

chromatography eluting with EtOAc to obtain the desired product 69.  

1H NMR (400 MHz, DMSO) δ 12.25 (s, 1H), 8.97 (s, 1H), 8.34 (d, J = 8.9 Hz, 

2H), 8.29 – 8.23 (m, 2H), 8.09 (d, J = 9.7 Hz, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.07 – 7.01 

(m, 2H), 3.87 (s, 3H). ESI HRMS: m/z calculated for C22H14N2O3F3
35ClNa ([M+Na]+) 

469.0543 ,found 469.0538. Elemental Analysis calculated for C22H14N2O3F3Cl: C, 

59.14; H, 3.16; N, 6.27. Found: C, 58.85; H, 3.09; N, 5.78. 
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Route B: Synthesis of PG227 via β-keto ester and the Conrad-Limpach cyclisation 

(see Scheme 4.13) 

Preparation of ethyl 3-hydroxy-3-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)acrylate, 74 

 

 Aldehyde 56b (5.78 g, 21.6 mmol) and NbCl5 (238 mg, 1.08 mmol) were 

dissolved in dry DCM (150 mL) under N2. Ethyl diazoacetate (2.7 mL, 2.95 g, 25.9 

mmol) was added dropwise and the reaction allowed to stir at room temperature 

for 3 days. Water (150 mL) was added and the layers separated. The aqueous layer 

was extracted with DCM (3 x 150 mL) and the combined organic layer was dried 

over MgSO4, filtered, and the solvent was evaporated. The crude was purified by 

column chromatography (10% EtOAc/Hexane) to give ethyl 3-hydroxy-3-(6-(4-

(trifluoromethoxy)phenyl)pyridin-3-yl)acrylate as white solid (3.34 g, 43%).  

1H NMR (400 MHz, CDCl3) δ 12.61 (s, 1H, enol OH), 9.06 (dd, J = 2.2, 0.6 Hz, 

1H), 8.14 (dd, J = 8.4, 2.3 Hz, 1H), 8.09 (d, J = 8.9 Hz, 2H), 7.78 (dd, J = 8.4, 0.7 Hz, 

1H), 7.34 (d, J = 8.0 Hz, 2H), 5.75 (s, 1H, CO-CH=CO), 4.30 (q, J = 7.1 Hz, 2H), 1.36 (t, J 

= 7.1 Hz, 3H). ESI HRMS: m/z calculated for C17H14NO4F3Na ([M+Na]+) 376.0773 

,found 376.0774. 
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Preparation of ethyl 3-((3-methoxyphenyl)amino)-3-(6-(4-

(trifluoromethoxy)phenyl)pyridin-3-yl)acrylate, 75 

 

 β-keto ester 74, ethyl 3-oxo-3-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)propanoate (3.34 g, 9.45 mmol), and m-anisidine (5.3 mL, 5.8 g, 47 mmol) were 

heated in a solution of acetic acid (2.7 mL, 2.82 g, 47 mmol) and ethanol (10 mL) at 

reflux for 2 hours. The reaction was cooled down to r.t. and the solvent evaporated. 

The resulting residue was dissolved in DCM (30 mL) and washed with 2 M HCl and 

water. The organic layer was dried over MgSO4, filtered, and concentrated under 

vacuum. The crude was chromatographed (20% EtOAc/Hexane) to yield the desired 

product as light yellow oil (2.16 g, 50%).  

1H NMR (400 MHz, CDCl3) δ 10.23 (s, 1H), 8.74 (s, 1H), 8.06 (d, J = 8.7 Hz, 

2H), 7.75 (d, J = 8.6 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.33 (d, J = 8.5 Hz, 2H), 7.01 (t, J 

= 8.1 Hz, 1H), 6.52 (dd, J = 8.3, 2.4 Hz, 1H), 6.31 (t, J = 2.0 Hz, 1H), 6.28 (dd, J = 8.1, 

1.7 Hz, 1H), 5.09 (s, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.63 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H). 

ESI HRMS: m/z calculated for C24H21N2O4F3Na ([M+Na]+) 481.1351 ,found 481.1361. 

Preparation of 7-methoxy-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-yl)quinolin-

4(1H)-one, PG226 or 68. 

 

 75 (2.42 g, 5.28 mmol) was dissolved in Dowtherm A (10 mL) and heated to 

240 oC for an hour. The reaction was cooled, and diluted with hexane. The resulting 
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precipitate was collected and washed with hexane and ethyl acetate to give the 

product (1.4 g, 64%) as off-white solid without any further purification. 

Spectroscopic data were consistent with previously reported data. 

 

Preparation of 3-chloro-7-methoxy-2-(6-(4-(trifluoromethoxy)phenyl)pyridin-3-

yl)quinolin-4(1H)-one, PG227 or 69. 

 

 68 (1.4 g, 3.4 mmol) in acetic acid (7 mL) was sonicated and allowed to warm 

until all had dissolved, then NCS (498 mg, 3.73 mmol) was added and the mixture 

was allowed to warm  to 35oC for 18 hours. After cooling down, the solid was 

filtered off. The filtrate was concentrated and purified by column chromatography 

(80% EtOAc/Hexane) to give 69 (910 mg, 60%). Spectroscopic data were consistent 

with previously reported data. 
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Design, synthesis and in vitro evaluation of activity-based protein profiling probes 

to investigate the targets of artemisinin 

5.1 Introduction to artemisinin 

Artemisinin (ART), a sesquiterpene lactone natural product from the leaves 

of sweet woodwarm - Artemisia annua, has been used in Chinese folk medicine for 

thousand years to treat fever and illness. Its structure was first determined in 1979 

by x-ray analysis showing a unique peroxide bridge in its molecule1, and it is well 

documented that this functional group is critical to its antimalarial activity2. 

 

Figure 5.1 Artemisinin and its first generation derivatives. 

Although ART is toxic to malaria parasites at low nanomolar concentrations 

and is relatively safe in humans, its poor physicochemical property limits its 

effectiveness. This led to the development of semi-synthetic first generation 

artemisinin derivatives including dihydroartemisinin (DHA) (83), artemether (84), 

arteether (85), and carboxyl-containing artesunate(86). The main drawback of early 

ART derivatives is the short half-life of the active metabolite dihydroartemisinin 

(DHA) (83) which is rapidly eliminated by metabolic transformation leading to a 

half-life of less than 1 hour3. Several fully synthetic follow-up agents to ART are 

summarised in the Chapter I.  
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Use of ART derivatives alone as monotherapies is discouraged by WHO as 

there has been a sign that parasites are developing resistance to the drug. As a 

result, ART derivatives are used in a combination with a longer half-life drug such as 

amodiaquine (12), mefloquine (4), lumefantrine, sulfadoxine/pyrimethamine or 

piperaquine. Artemisinin-based combination therapy (ACT) features several 

improvements over monotherapy administration. The slow-acting partner drug not 

only possesses a longer half-life, but it generally operates through a different 

mechanism of action. Therefore, when ACT is taken, the endoperoxide rapidly kills 

most of the parasites before it is metabolised and excreted, and the non-peroxidic 

drug slowly clears the rest4. ACT is still used as the first line treatment in most of the 

malarial endemic areas5 and is recommended by the WHO for uncomplicated 

falciparum malaria6. To ensure that both active ingredients in ACTs are taken, 

combining an artemisinin derivative with a slower-acting partner drug in one tablet 

is preferred (a fixed-dose combination). Unfortunately, a single-dose cure is not 

possible with current ACTs. 

Combination Description 

Artesunate and amodiaquine  

(Coarsucam or ASAQ) 

A potential disadvantage is a suggested 

link with neutropenia.  

Artesunate and mefloquine  

(Artequin or ASMQ) 

This has been used as a first-line 

treatment in areas of Thailand for many 

years. Mefloquine is known to cause some 

side effects; interestingly these adverse 

reactions seem to be reduced when the 

drug is combined with artesunate.  

Artemether and lumefantrine  

(Coartem Riamet, Faverid, Amatem, 

Lonart or AL) 

This combination has been extensively 

tested proving effective in children under 

5 and has been shown to be better 

tolerated than artesunate-mefloquine 

combinations. There are no serious side 

effects. This is the most viable option for 

widespread use.  
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Combination Description 

Artesunate and 

sulfadoxine/pyrimethamine (Ariplus 

or Amalar plus) 

This is a well-tolerated combination but 

the overall level of efficacy still depends on 

the level of resistance to sulfadoxine and 

pyrimethamine thus limiting is usage.  

Dihydroartemisinin and piperaquine  

(Duo-Cotecxin, or Artekin) 

Has been studied mainly in China, Vietnam 

and other countries in Southeast Asia. The 

drug has been shown to be highly 

efficacious (greater than 90%).  

 

Table 5.1 Table of available ACTs6 

5.2 Proposed mechanism of action7 

In terms of the mechanism of action of the artemisinins, several proposals 

have been published over years, but the exact mechanism has yet to be clarified. 

Understanding the mechanism will allow us to predict any potential resistance 

mechanisms and aid the design of future antimalarial agents within this class. It is 

now well known that the peroxide bridge is essential for activity of these 

antimalarials. Reduction of the endoperoxide bridge of artemisinin gives an 

analogue, deoxyartemisinin (87), which lacks pharmacological activity. 

5.2.1 Activation of artemisinin 

During the trophozoite stage of Plasmodium parasite, host haemoglobin is 

digested by parasite’s protease enzymes to release small peptides and amino acids 

which are necessary as nutrients for the parasite. Free heme is also produced and is 

highly toxic to the parasite. To circumvent this toxicity, the parasite has developed a 

detoxifying mechanism where heme undergoes biocrystallisation to form an 

insoluble non-toxic hemozoin8.  
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Scheme 5.1 Representation of hemozoin formation within a host red blood 

cell9. 

One of the first studies completed by the Meshnick group10 showed that the 

activation of 1,2,4-trioxanes is triggered by iron (II) produced during haemoglobin 

degradation and it generates toxic activated oxygen products. Early works done by 

Posner11 and Jefford12 also proposed that these oxygen centred radicals 

subsequently rearrange to form carbon centred radicals. Since these findings, it has 

been suggested that the interaction between artemisinin and iron plays a role in the 

activation of artemisinin.  

There are two different type of reductive activation of artemisinin 

depending on the role of iron in the activation of artemisinin and its capability to 

interact with artemisinin to produce a range of reactive intermediates. 

Reductive scission model suggests that low valent irons (ferrous or Fe2+ ion) 

were found to bind to artemisinin and, after a single-electron transfer (SET), the 

reductive cleavage of peroxide bridge was induced to produce oxygen centred 

radicals where rearrangement occurs to give carbon radicals (Scheme 5.2A). Due to 

the unsymmetrical structure of artemisinin, iron was found to react with the 

endoperoxide in different ways to form either a primary or secondary carbon 



Chapter V : Design, synthesis and in vitro evaluation of activity-based protein profiling probes  

171 

 

centred radical13. Both of them have been characterised by EPR trapping 

techniques14. 

(B)                                                                                                           (A) 

Scheme 5.2 Reductive bioactivation of artemisinin. (A) Reductive scission 

model shows the homolytic activation in red. (B) Open peroxide model shows 

heterolytic bioactivation in blue7. 

Alternatively, Haynes has proposed the open peroxide model that the ring 

opening can be facilitated by protonation of the peroxide or by complexation with 

Fe2+ which, in this case, acts as a Lewis acid initiating the ionic-type heterolytic 

cleavage of artemisinin endoperoxide15 (Scheme 5.2B). It has also been suggested 

that non-peroxidic oxygen plays a role in the ring opening to generate the open 

hydroperoxide16. The oxygen atom can stabilise the positive charge, and lower the 

activating energy required for the ring opening. The cleavage of endoperoxide 

bridge and subsequent reactions lead to the formation of an unsaturated 

hydroperoxide which can directly oxidise protein residues. This mechanism has the 

potential to produce reactive oxygen species that may infer the antimalarial activity 

of these compounds. 
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5.2.2 Potential molecular targets of the artemisinins 

5.2.2.1 Heme 

The identification of heme-drug adducts by mass spectrometry first reported 

by Meshnick is a solid evidence of heme alkylation10, 17. The further experiments on 

artemisinin and heme show that artemisinin can alkylate a heme model at different 

positions18. Studies with synthetic peroxides also support this mechanism as 

elucidated by LC-MS19.  

  

Figure 5.2 Alkylation of a heme model by a carbon-centred radical derived 

from artemisinin18. 

The heme-artemisinin adducts were also found in the urine of mice infected 

with malaria and treated with artemisinin20. While these results suggest that the 

interference with hemozoin formation is a possible mechanism, it has also been 

attested since the in vivo result can be doubted. In the studies with infected mice 

model, it was found that the heme-drug adducts possibly came from ex vivo process 

occurring in liver and spleen of infected mice21.  
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5.2.2.2 PfATP6ase 

SERCA or sarco/endoplasmic reticulum membrane calcium ATPase is a Ca2+ 

transporting enzyme. SERCA and its homologues are critical for calcium homeostasis 

in eukaryotic cells and their dysregulation has important consequences for cell 

signalling and functions. P.falciparum has only one enzyme homologous to SERCA - 

PfATP6ase22.  

 

Thapsigargin, a sesquiterpene lactone, is a selective inhibitor of a 

mammalian SERCA. Because artemisinin is structurally similar to thapsigargin, it was 

hypothesised that artemisinins specifically inhibit PfATP623. Devoid of endoperoxide 

moiety and antimalarial activity, it is well documented that thapsigargin can inhibit 

PfATP6 enzyme irreversibly in a similar manner as artemisinin while 

deoxyartemisinin, quinine and chloroquine provided no activities23. 

Desferrioxamine (DFO), an iron chelator, in combination with either thapsigargin or 

artemisinin was added to infected red blood cells to examine the effect on PfATP6. 

DFO demolishes the inhibitory effects of artemisinin on PfATP6 but doesn’t alter the 

inhibition by thapsigargin suggesting that artemisinins act by inhibiting PfATP6 after 

activation by iron23. Several following studies and debates from this hypothesis 

were published24. Interestingly, one docking studies of antimalarials on the PfATP6 

model shows no correlation between affinity of the compounds for PfATP6 and in 

vitro antimalarial activity25. More detailed studies with accuracy are required to 

resolve the point at which PfATP6 plays a role. 
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5.2.2.3 Parasite’s proteins and other macromolecules 

A number of studies show that radiolabeled artemisinin can react covalently 

with several parasitic proteins26. Autoradiograms of SDS-PAGE showed six malarial 

proteins radiolabelled by three different endoperoxides; arteether, 

dihydroartemisinin (DHA) and arteflene. The labelling occurred at physiological 

concentration of the drug and was not stage or strain specific27.  

In a different study, artemisinin also alkylated various proteins in vitro. 

Between 5–18% of added drug bound to hemoproteins such as catalase, 

cytochrome c and hemoglobin, however the drug did not react with heme-free 

globin. In addition, the in vitro alkylation of human albumin by artemisinin is well 

documented and is shown to react on both the thiol and amino moieties via iron 

dependent and independent reactions26a. Further work in this area has identified 

cysteine adducts of artemisinin-derived radicals suggesting that general alkylation 

of cysteine residues may be involved in the mechanism of action by interfering with 

protein function28. Artemisinins have also been shown to inhibit the falcipains, a 

papain-family cysteine protease that aid hemoglobin degradation. This mechanism 

of protease inhibition was shown to increase in the presence of heme29. Recently 

artemisinin was shown to accumulate with neutral lipids and cause parasite 

membrane damage. This effect was due to the endoperoxide moiety since 

analogues lacking the O-O bridge failed to cause oxidative membrane damage30. 
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5.3 Activity-based proteomics or activity-based protein profiling (ABPP) 

Activity-based protein profiling (ABPP) was first reported in 1990s and is a 

functional proteomic technique that uses chemical probes reacting with related 

classes of enzymes31. The technique was summarised in several reviews32. The 

Cravatt laboratory is a recognised pioneer having demonstrated profiling across a 

remarkably broad range of enzymes31. The most important part of ABPP is the 

chemical probe, which typically comprises two elements - a reactive group 

(sometimes called a "warhead") and a tag. The reactive group usually contains a 

specifically designed electrophile that can covalently bind to a nucleophilic residue 

within the active site of a target enzyme. To allow the identification of the complex 

sample, the probe should contain a tag which can be either a reporter tag such as a 

fluorophore or an affinity label such as biotin or an alkyne-azide coupling pair for 

use with the 1,3-dipolar cycloaddition (also known as click chemistry).  

 

Figure 5.4 ABPP chemical probe 

A major advantage of ABPP is the ability to monitor the availability of the 

enzyme active site directly, rather than being limited to protein or mRNA 

abundance. Classes of enzymes such as the serine proteases and metalloproteases 

often interact with endogenous inhibitors or that exist as inactive zymogens, this 

technique offers a valuable advantage over traditional techniques that rely on 

abundance rather than activity32a. 

Finally, in recent years ABPP has been combined with tandem mass 

spectrometry enabling the identification of hundreds of active enzymes from a 

single sample. This technique is very useful especially for selectivity profiling as the 

potency of an inhibitor can be tested against multiple targets at the same time32a. 
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5.4 Aim 

Although it is widely accepted that the reductive bioactivation of artemisinin 

with ferrous ion leads to the generation of toxic carbon-centred free radicals, their 

interaction with target proteins is poorly understood. The formal identification of 

target proteins and their interacting partners is a key to probe and predict any 

potential in drug resistance development and aid the systematic drug design for this 

class of antimalarials. In this chapter, the objective is to identify, for the first time, 

the protein targets of the artemisinin class using a proteomic strategy. The research 

includes different components - synthesis of the probe molecules, protein tagging 

and identification.  

 

Scheme 5.3 Tag-free ABPP method for proteomic analysis of drug target32b   

At the beginning of this research, several chemical probes based on 

artemisinin and endoperoxide derivatives as a warhead have already been prepared 

including biotin-tagged and fluorescent active probes.  They demonstrate in vitro 
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antimalarial activity in nanomolar concentration33. This is solid evidence that a tag 

can be introduced into the peroxide structure without a negative effect on activity. 

Unfortunately, the direct biotinylation tag method requires harsh condition and it is 

not suitable for further proteomic techniques making the protein identification 

extremely difficult33. The novel “tag-free” strategy relies on the click chemistry of 

the azide-alkyne Huisgen cycloaddition (click chemistry) between a chemical probe 

and a reporter tag due to its high efficiency in terms of yield and regiochemistry. By 

using this method, proteins are labelled by small alkynes (or azides) attached to the 

drug. Addition of a reporter tag containing a fluorescent biotin group and an azide 

(or alkyne) arm using click chemistry leads to the formation of tagged-proteins. The 

protein identification and analysis can be done using streptavidin affinity pull down 

of covalently tagged proteins followed by the isolation of the protein through 

biotin-streptavidin binding and LC-MS analysis. Four chemical probes were designed 

including two control probes containing non-peroxidic moiety. The linker length 

between a warhead and a tag is required and, based on previous work a linkage of 

four carbon atoms was inserted between the warhead and the affinity tag (Figure 

5.5). 

 

Figure 5.5 Rationale of chemical probes 

As this work is now being progressed in collaboration with the Liverpool 

School of Tropical Medicine, the synthesis of chemical ABPP probes and related 

preliminary in vitro results will be summarised in this chapter. The complete 

proteomic analysis will be published elsewhere since at the time of writing it is still 

not complete. 
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5.5 Results and discussion 

5.5.1 The synthesis of artemisinin-based ABPP chemical probes 

The synthetic route towards the 10β-(2-carboxyethyl)deoxoartemisinin 93, 

an important intermediate used in this studies, was well documented, though slight 

modifications have been made over time33-34. 

 

Scheme 5.4 Synthesis of 10β-(2-carboxyethyl)deoxoartemisinin 93 ; 

Reagents: (a) PhCOCl, pyridine, DCM, 0 oC, overnight, 90%. (b) allyltrimethylsilane, 

ZnCl2, DCE, 4 Å molecular sieve, under N2, 4 h, 76%. (c) O3, MeOH, -78 oC, 1 h then 

PPh3, r.t., overnight, 53%. (d) NaClO2, 2-methyl-2-butene, NaH2PO4, t-BuOH/water 

(5:1), r.t., 2 h, 89%. 

The synthesis begins with a commercially available dihydroartemisinin (DHA) 

83. DHA normally appears as a mixture of two epimers according to the 

stereochemistry of 10-OH; α- and β-epimer. Any synthesis starting from DHA often 

suffers from a mixture of C10-epimer products. The Ziffer group reported a 

stereoselective preparation of 10β-allyldeoxoartemisinin 91 from DHA using a Lewis 

acid-mediated reaction to provide a series of C10-alkyl derivatives35. The additional 
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methodology studies developed in the O’Neill group showed the advantage of using 

dihydroartemisinyl C10-benzoate 90 over DHA34a.  

 

10β-DHA                              10α-DHA                                     90 

Scheme 5.5 Synthesis of dihydroartemisinyl 10α-benzoate 90; Reagents: (a) 

PhCOCl, pyridine, DCM, 0 oC, overnight, 90%. 

The acylation of DHA 83 with benzoyl chloride using pyridine as a 

nucleophilic catalyst stereoselectively provided dihydroartemisinyl 10α-benzoate 90 

in high yield. The stereochemistry at C10 can be determined by 1H-NMR 

spectroscopy through the use of 3J coupling constant between H10 and H9. The 

doublet signal at 6.02 ppm represents the H10 with a 3J H9-H10 of 9.8 Hz. According to 

the Karplus curve, this value suggests the dihedral angle of 180o between H10 and 

H9 indicating the 10β-H (the trans-trans diaxial relationship). This stereoselective 

manner can be rationalised through the neighbouring methyl at C-9. The steric 

effect due to this methyl group allows only 10α-DHA to react with acyl pyridinium 

intermediate. Any 10β-DHA left can equilibrate to give the 10α-DHA ready to react 

with the acyl chloride. 

 

Figure 5.6 The dihedral angle of 180o between H10 and H9 
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The synthesis towards 10β-allyldeoxoartemisinin 91 was well documented. 

The drawback in the procedure is the harsh nature of the Lewis acid resulting in the 

generation of substantial amount of anhydroartemisinin (AHA) 94 via the proton 

loss from the oxonium intermediate34a. This makes the purification extremely 

difficult as both 10β-allyldeoxoartemisinin 91 and AHA 94 share very similar Rfs on 

TLC when eluted with 10% EtOAc in hexane. In considering the choice of Lewis acid, 

it is noted that hard Lewis acid such as BF3.Et2O, has the ability to rearrange the 

oxonium intermediate resulting in the formation of AHA. Trimethylsilyl 

trifluoromethanesulfonate (TMSOTf) was first explored as it was employed in a 

similar reaction. The reaction of 10α-DHA benzoate with excess allyltrimethylsilane 

in the presence of TMSOTf provided unwanted AHA in good yield suggesting that 

TMSOTf is far too strong for this reaction. The spectroscopic data is consistent to 

the literature.  

 

Scheme 5.6 Synthesis of 10β-allyldeoxoartemisinin 91; Reagents: (a) 

TMSOTf, ZnCl2, DCE, 4 Å molecular sieve, under N2, 4 h, 76%. (b) allyltrimethylsilane, 

ZnCl2, DCE, 4 Å molecular sieve, under N2, 4 h, 76%. 

Considering the use of a milder Lewis acid, ZnCl2 was chosen. The reaction of 

dihydroartemisinyl 10α-benzoate 90 with excess allyl trimethylsilane in the 

presence of ZnCl2 as a Lewis-acid additive at 0 oC for 4 h under anhydrous condition 

gave desired 10β-allyldeoxoartemisinin 91 in 76% yield. The reaction proceeds via 
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SN1 mechanism with the inversion of configuration at C10 through the favourable 

axial attack of allyltrimethylsilane on the intermediate oxonium ion via a chair-like 

transition state. It is noteworthy that the reaction only gives minor quantities of 

AHA. The formation of AHA was minimised by using a weaker Lewis acid allowing 

the controlled formation of the oxonium ion and subsequent reaction with a large 

excess of allyltrimethylsilane34a. 

 

Scheme 5.7 The allylation mechanism of dihydroartemisinyl 10α-benzoate 

 The required carboxylic acid 93 has been previously prepared directly from 

the allyl derivative 91 by oxidation of the terminal alkene with sodium periodate 

and potassium permanganate. However, the product obtained was shown to 

degrade rapidly. Therefore, the two-step synthesis of the carboxylic via the 

corresponding aldehyde was employed34c.  
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Scheme 5.8  Two-step oxidation of 10β-allyldeoxoartemisinin 91; Reagents: 

(a) O3, MeOH, -78 oC, 1 h then PPh3, r.t., overnight, 53%. (b) NaClO2, 2-methyl-2-

butene, NaH2PO4, t-BuOH/water (5:1), r.t., 2 h, 89%. 

 The aldehyde 92 can be made directly from the ozonolysis of alkenes 

followed by a reductive quenching. The reaction went successfully when methanol 

is used as a solvent. Described by Criegee in 1953, the alkene and ozone form an 

intermediate molozonide in a 1,3-dipolar cycloaddition. The molozonide then 

reverts to its corresponding carbonyl oxide (also called the Criegee zwitterion) and 

aldehyde or ketone in a retro-1,3-dipolar cycloaddition fashion36. The resulting 

carbonyl oxide is trapped by the solvent giving peroxide ether which can be 

subsequently degraded by triphenyl phosphine. The ozonolysis of allyl 91 in 

methanol at -78 oC yielded the aldehyde 92 in 53% after a chromatographic 

purification. The oxidation of aldehyde 92 with sodium chlorite gave the acid 93 in 

near quantitative yield. 

 

Scheme 5.9 Mechanism of ozonolysis and the Criegee zwitterion 

 The 4-azidobutan-1-amine 96 was synthesised according to the procedure 

published in 200137. The group led by Kim has successfully prepared a series of α,ω-

diaminoalkanes from the corresponding dibromo starting materials. 1,4-
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Diazidobutane 95 is easily prepared from the 1,4-dibromobutane using sodium 

azide in a solution of DMF and water without any purification required.  

 

 Scheme 5.10 Synthesis of azidobutanamine 96; Reagents: NaN3, DMF, 80 oC, 

20 h, 89%. (b) PPh3, 1 M HCl (9 mL), Et2O, EtOAc, 0 oC – r.t., overnight, 82%. 

1,4-Diazidobutane 95 is reacted with triphenylphosphine in a mixture of 

ether/ethyl acetate in the presence of 5% HCl. Once the azidoamine is formed, it is 

protonated by the acid and migrates into the aqueous layer preventing the over-

reduction to diamine. This azide reduction is also known as the Staudinger reaction 

discovered by and named after Hermann Staudinger38. The reaction mechanism was 

shown below involving the formation of an iminophosphorane through nucleophilic 

addition of the phosphine at the terminal nitrogen atom of the azide followed by 

liberation of molecular nitrogen. This intermediate is then hydrolysed in later step 

to obtain the amine and triphenylphosphine oxide.  

 

Scheme 5.11 Staudinger reaction mechanism 

When the reduction completes, the organic layer is discarded and the 

aqueous layer is washed with DCM to get rid of the remaining triphenylphosphine 

oxide by-product and non-ionic components. Addition of a base to the aqueous 

layer followed by extraction with DCM gives azidoamine 96 in 82% yield without any 

further purification. 
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Hex-5-yn-1-aminium chloride salt 97 can be prepared from the 

corresponding phthalimide. N-protected phthalimide was treated in the ethereal 

solution of hydrazine which is normally used to release a free amino group. Due to 

the fact that a low-molecular-weight free amine is volatile, one mL of concentrated 

HCl was added upon the workup procedure allowing the formation of stable 

aminium chloride salt appeared as white solid39.  

 

Scheme 5.12 Synthesis of hex-5-yn-1-aminium chloride 97; Reagents: (a) 

hydrazine hydrate, THF (20 mL), reflux, 6 h then conc. HCl, reflux, 2 h then cool 

overnight, 75%.  

 

Scheme 5.13 Synthesis of the artemisinin-based ABPP active probes; 

Reagents: (a) EDCI, DCM, under nitrogen, 5 min then 96, DMAP, r.t., overnight, 50%. 

(b) EDCI, DCM, under nitrogen, 5 min then 97, DMAP, Et3N, r.t., overnight, 40%. 

Coupling reactions between the warhead and an azide/alkyne arm can be 

done by a usual condition using EDCI followed by DMAP and a choice of amine40. In 

cases of an alkyne arm, triethylamine was also added to liberate a free amine from 
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its salt form. The coupling between 93 and either 96 or 97 was achieved in good 

yield. 

 Since the pharmacophore for artemisinin is the endoperoxide moiety, the 

control probes were designed to include the framework of artemisinin without the 

peroxide part. This strategy allows us to investigate the possible off-target bindings 

which may bias the target identification. 

 The synthesis of analogous deoxyartemisinin 87 devoid of endoperoxide 

moiety was well documented and can be achieved in good yield from DHA using 

triethylamine in ethanol under a reflux condition. The plan was to reduce the six-

membered-ring lactone into hemiacetal deoxydihydroartemisinin 101. Several 

attempts had been invested including the use of NaBH4 and it was not possible to 

get the deoxyDHA 101 in an isolatable yields. 

 

Scheme 5.14 Synthesis of deoxydihydroartemisinin 101; Reagents: (a) 

triethylamine, EtOH, 90 oC, under nitrogen, 21 h, 60%. 

The multi-step synthesis towards deoxyartemisinin probes was eventually 

made from the deoxoartemisinin carboxylic acid 104. The protection of carboxylic 

group using ethyl ester was done using ethanol as a nucleophile in a presence of 

EDCI and DMAP. 
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Scheme 5.15 Synthesis of the deoxoartemisinin carboxylic acid 104; 

Reagents: (a) EDCI, DCM, under nitrogen, 5 min then ethanol, DMAP, r.t., overnight, 

63%. (b) activated Zn dust, acetic acid, r.t., 72 h, 41%. (c) 15% NaOH (aq.), EtOH, 3 h, 

93% 

The reduction of the endoperoxide moiety of the ethyl ester 102 was 

achieved by activated zinc powder in acetic acid. 13C-NMR was used to identify the 

change in chemical shift of C3 atom from 107.1 to 103.2 ppm suggesting a 

deshielded effect from losing one oxygen atom. The deoxyartemisinin acid 104 was 

then made by the saponification of ethyl ester 103 in an ethanolic solution of 

aqueous 15% NaOH in excellent yield. Coupling reactions between the 

deoxyartemisinin warhead and an azide/alkyne arm can be done in a similar 

manner using EDCI followed by DMAP and a choice of amine. The coupling between 

104 and either 96 or 97 was achieved in good yield. 
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Scheme 5.16. Synthesis of the artemisinin-based ABPP control probes; 

Reagents: (a) EDCI, DCM, under nitrogen, 5 min then 96, DMAP, r.t., overnight, 75%. 

(b) EDCI, DCM, under nitrogen, 5 min then 97, DMAP, Et3N, r.t., overnight, 50%. 

 

5.5.2 Biological experiments 

5.5.2.1 Antimalarial activity 

Four synthetic ABPP artemisinin probes were deposited and submitted for 

antimalarial assessment against the 3D7 strain of P. falciparum at the Liverpool 

School of Tropical Medicine (Table 5.2). Drug IC50’s were calculated from the 

logarithm of the dose/response relationship. It is clear that peroxide-containing 

probes 98 and 99 show an excellent activity against malaria parasite which is 

comparable to ART and DHA. The control probes 105 and 106 undoubtedly provide 

no activity in this assay due to the absence of endoperoxide moiety in their 

molecules. Further biological works including protein tagging and identification are 

currently ongoing. The preliminary result shows that 99 performs well in 

streptavidin pull down technique providing protein samples for LC-MS/MS analysis 

and this will briefly be described in the following section. 
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Compound Chemical structure IC50 (nM) ± SE 

98 

 

17.86 ± 0.14 

99 

 

14.26 ± 0.21 

105 

 

inactive 

106 

 

inactive 

 

Table 5.2 In vitro antimalarial activity of synthetic ABPP chemical probes 

against P. falciparum 3D7 strain. ART and DHA were used as standard with an IC50 of 

20.9 ± 2 nM and 3.12 ± 0.03 nM, respectively. 
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5.5.2.2 Protein profiling 

This part of work was carried out in collaboration with the Liverpool School 

of Tropical Medicine and as mentioned is still ongoing. More details of this work will 

be published elsewhere. Parasite proteins were tagged in vitro using ABPP 

artemisinin probe and click chemistry can be done following the method found in 

the experimental section at the end of this chapter. Instead of using traditional SDS-

gel electrophoresis for protein analysis (Scheme 5.3), protein-probe-biotin 

complexes were pulled out using streptavidin-agarose beads and proteins were 

digested to peptide fragments ready for sequencing using mass spectrometry.  

Peptide sequences obtained from the MS were subjected to database search 

for corresponding proteins. A fully automated protocol, Multidimensional Protein 

Identification Technology (MudPIT) using solely LC-MS/MS techniques was used to 

identify the protein targets of the artemisinin probes. MudPIT has many advantages 

over gel-based methodologies i.e. samples can be repeated and validated in quick 

succession to effectively analyze and identify not only abundant targets but also 

minor target proteins. Protein matrix were identified using the Mascot search 

algorithm and semi quantified by the exponentially modified protein abundance 

index (emPAI), based on protein coverage by the peptide matches in a database 

search, allowing approximate, label-free, relative quantitation of proteins in a 

mixture41. 

Active endoperoxide probe 99 pulled out approximately 45 different 

proteins of which 23 proteins belong to Plasmodium. 24 proteins were pulled down 

using control probe 106 of which 2 proteins belong to the parasite. DMSO control 

treatments were acceptable. These proteins are involved in pathogenesis, 

membrane transport, pyrimidine biosynthetic pathway and catalytic processes.  
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 Figure 5.6 Pulled down proteins catagorised by their biological process 

(Note: some proteins were involved in more than one biological process) 

 

Figure 5.7 Pulled down proteins catagorised by their molecular function 

(Note: some proteins have more than one molecular function)  

A number of valuable proteins that are essential to parasite life are 

identified with artemisinin ABPP probe 99 including ornithine δ-aminotransferase 

(OAT), L-lactate dehydrogenase, enolase, V-type proton ATPase catalytic subunit, 
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which are redox-active proteins that play a crucial role in the maintenance and 

control of redox reactions. For example, Trx-mediated control of OAT activity for 

coordinating ornithine homeostasis, polyamine synthesis, proline synthesis, and 

mitotic cell division in rapidly growing cells, represents a new potential target for 

chemotherapeutic intervention42. Additionally OAT of P. falciparum catalyzes the 

reversible conversion of ornithine into glutamate-5-semialdehyde and glutamate 

and is in contrast to its human counterpart is activated by thioredoxin (Trx) by 10 

fold42. Calcium-transporting ATPase was also found in the pulled down protein 

sample which corresponds to the early proposal described in the section 5.2.2. 

Interestingly, the majority of the proteins identified with endoperoxide 

probe 99 were absence with control probe 106 devoid of peroxide moiety. This 

implies that proteins pulled down by 99 may well be essential to the survival of the 

parasite.  

5.6 Conclusion 

 Artemisinin combination therapy (ACT) is still used as the first line treatment 

in most of the malarial endemic areas. The emergence of drug resistance requires 

greater understanding of drug action.  Several ABPP probes including biotin-tagged 

and fluorescent probes have previously been prepared. The “tag-free” ABPP 

proteomic technique is introduced based on the click chemistry of the azide-alkyne 

Huisgen cycloaddition between a chemical probe and a reporter tag.  

The synthesis of the artemisinin ABPP probes was fairly uncomplicated. The 

peroxide-containing probes demonstrate excellent in vitro activity against malaria 

parasite which is consistent to the previous work. The control deoxy probes provide 

no activity in the assay. The preliminary result reveals that active probe 99 can 

perform well in streptavidin pull down resulting in 45 proteins being identified. A 

number of key proteins that are essential to parasite life have been identified with 

artemisinin-based ABPP chemical probes and future work will complete this 

proteomic analysis to provide a unified mechanism of action for this most important 

class of antimalarial. 
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5.7 Experimental 

Anhydrous solvents were either purchased from reliable commercial sources 

or distilled from a still prior to use under inert gas atmosphere. THF was distilled 

from Na with benzophenone as an indicator. DCM was distilled from CaH2. All 

reagents were purchased from reliable commercial sources and were used without 

any purification unless otherwise indicated. TLC analysis was performed to confirm 

the reagents purity. 

TLC was performed on 0.25 mm thickness Merck silica gel 60 with 

fluorescent indicator at 254 nm and visualised under UV light. UV inactive 

compounds were stained and visualised using iodine, p-anisaldehyde, or potassium 

permanganate solution followed by gentle heating. Flash column chromatography 

was performed using normal phase silica gel purchased from Sigma-Aldrich.   

NMR spectra were recorded in a solution of CDCl3 or DMSO-d6 on a Brucker 

AMX400 spectrometer (1H 400 MHz, 13C 100 MHz). Chemical shifts (δ) were 

expressed in ppm relative to tetramethylsilane (TMS) used as an internal standard. J 

coupling constants are in hertz (Hz) and the multiplicities were designed as follows: 

s, singlet; d, doublet; t, triplet; q, quartet; dd, double of doublet; m, multiplet. Mass 

spectra were recorded on either a Micromass LCT Mass Spectrometer using 

electrospray ionisation (ESI) or Trio-1000 Mass Spectrometer using chemical 

ionisation (CI). Reported mass values are within error limits of ±5 ppm. Elemental 

analysis (%C, %H, %N) was performed in the University of Liverpool microanalysis 

laboratory. All melting points were determined with Gallenkamp melting point 

apparatus and were uncorrected. 

Biological experiments were performed in collaboration with the Liverpool 

School of Tropical Medicine by Matthew Panchana and Dr Hanafy M. Ismail under a 

supervision of Professor Stephen A. Ward. 
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5.7.1 Synthesis 

Preparation of Dihydroartemisinyl 10α-benzoate, 9034b 

 

DHA (83)                                                  90  

Benzoyl chloride (7.7 mL, 54.5 mmol) was added to a stirring solution of 

dihydroartemisinin (DHA) (10.0 g, 35.2 mmol) in anhydrous DCM (120 mL) and 

anhydrous pyridine (18 mL) at 0 oC. After being allowed to stir at room temperature 

overnight, 7% aq. citric acid solution (100 mL) was added. The organic layer was 

separated and the aqueous layer was extracted with EtOAc (3 x 100 mL). The 

combined organic layers were washed with 7% aq. citric acid solution, sat. NaHCO3, 

and dried over MgSO4. After filtration and evaporation, the obtained crude solid 

was recrystallised from a small amount of 50% Et2O/Hexane mixture to give the 

product as a white crystalline solid (12.23 g, 90%). Alternatively, the crude mixture 

can be purified by column chromatography (10% EtOAc/Hexane) 

1H NMR (400 MHz, CDCl3) δ 8.13 (dd, J = 8.4, 1.3 Hz, 2H), 7.57 (t, J = 7.4 Hz, 

1H), 7.45 (t, J = 7.7 Hz, 2H), 6.02 (d, J = 9.8 Hz, 1H), 5.53 (s, 1H), 2.76 (dqd, J = 14.2, 

7.1, 4.6 Hz, 1H), 2.39 (ddd, J = 14.5, 13.4, 4.0 Hz, 1H), 2.05 (ddd, J = 14.6, 4.8, 3.0 Hz, 

1H), 1.96 – 1.87 (m, 1H), 1.83 (ddd, J = 13.2, 7.6, 3.5 Hz, 1H), 1.75 (ddd, J = 13.4, 6.5, 

3.3 Hz, 1H), 1.69 (dt, J = 13.7, 4.5 Hz, 1H), 1.58 – 1.44 (m, 2H), 1.43 (s, 3H), 1.41 – 

1.26 (m, 2H), 1.05 (ddd, J = 11.7, 8.3, 2.8 Hz, 1H), 0.99 (d, J = 6.1 Hz, 3H), 0.93 (d, J = 

7.2 Hz, 3H).13C NMR (101 MHz, CDCl3) δ 165.72, 133.71, 130.54, 130.04, 128.70, 

104.85, 92.93, 92.01, 80.61, 52.07, 45.76, 37.70, 36.67, 34.54, 32.41, 26.38, 25.00, 

22.48, 20.66, 12.65. ESI HRMS: m/z calculated for C22H28O6Na ([M+Na]+) 411.1784 

,found 411.1776. Elemental Analysis calculated for C22H28O6 : C, 68.02; H, 7.27; N, 

0.0. Found: C, 67.55; H, 7.25; N, 0.0. 
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Preparation of 10β-allyldeoxoartemisinin, 9134b 

 

90                                                   91 

To a solution of allyltrimethylsilane (7.1 mL, 44.7 mmol, 4.8 eq.) in 

anhydrous DCE (40 mL) was added ZnCl2 (1.53 g, 11.2 mmol, 1.2 eq.) and a spatula 

of 4 Å molecular sieve under N2. The mixture was allowed to stir and cooled to 0 oC 

before slowly added a solution of dihydroartemisinyl 10α-benzoate (3.62 g, 9.32 

mmol) in DCE (40 mL). After stirring at 0 oC for 4 hours, the solvent was removed in 

vacuo. The reaction mixture was diluted with EtOAc (50 mL), washed with 7% aq. 

citric acid solution, saturated aq. NaHCO3 and brine. The organic extract was dried 

over MgSO4, filtered, and concentrated to give a crude oil which was purified by 

column chromatography (10% EtOAc/Hexane) to obtain the product as a white solid 

(2.19 g, 76%)  

1H NMR (400 MHz, CDCl3) δ 5.93 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.33 (s, 1H), 

5.12 (dd, J = 17.2, 1.7 Hz, 1H), 5.06 (dd, J = 10.2, 1.3 Hz, 1H), 4.30 (ddd, J = 10.0, 6.1, 

3.7 Hz, 1H), 2.75 – 2.63 (m, 1H), 2.46 – 2.27 (m, 3H), 2.25 – 2.17 (m, 1H), 2.07 – 2.00 

(m, 1H), 1.96 – 1.87 (m, 1H), 1.81 (ddd, J = 13.4, 7.5, 3.6 Hz, 1H), 1.71 – 1.56 (m, 4H), 

1.42 (s, 3H), 1.36 (dd, J = 13.4, 3.4 Hz, 1H), 1.27 (dd, J = 11.2, 5.9 Hz, 1H), 0.97 (d, J = 

5.9 Hz, 3H), 0.89 (d, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 136.88, 116.48, 

103.54, 89.50, 81.48, 75.12, 52.75, 44.73, 37.88, 37.00, 34.89, 34.63, 30.60, 26.50, 

25.30, 25.11, 20.60, 13.39. ESI HRMS: m/z calculated for C18H28O4Na ([M+Na]+) 

331.1885, found 331.1877. Elemental Analysis calculated for C18H28O4 : C, 70.10; H, 

9.15. Found: C, 69.53; H, 9.23.  
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Preparation of anhydroartemisinin, 94 

 

90                                                     94 

1H NMR (400 MHz, CDCl3) δ 6.19 (q, J = 1.4 Hz, 1H), 5.54 (s, 1H), 2.41 (ddd, J 

= 14.6, 13.1, 4.0 Hz, 1H), 2.10 – 2.00 (m, 2H), 1.92 (ddt, J = 9.8, 9.0, 3.4 Hz, 1H), 1.71 

(dd, J = 12.4, 4.5 Hz, 1H), 1.66 (dd, J = 12.9, 3.0 Hz, 1H), 1.59 (d, J = 1.3 Hz, 3H), 1.58 

– 1.40 (m, 3H), 1.43 (s, 3H), 1.29 – 1.03 (m, 2H), 0.98 (d, J = 6.0 Hz, 3H). CI-HRMS: 

m/z calculated for C15H23O4 ([M+H]+) 267.1596, found 267.1583. Elemental Analysis 

calculated for C15H22O4 : C, 67.64; H, 8.33. Found: C, 67.71; H, 8.42. 

Preparation of 10β-(2-oxoethyl)deoxoartemisinin, 9234c 

 

91                                                    92 

10β-Allyldeoxoartemisinin (5.55 g, 18 mmol) was dissolved in anhydrous 

MeOH (50 mL) under nitrogen at -78 oC. Ozone was bubbled through the solution 

for an hour until the solution became saturated with ozone and turned blue. The 

ozone was removed and replaced by nitrogen. The solution became clear. PPh3 

(9.44 g, 36 mmol) was added to the solution at -78 oC and stirred overnight. The 

reaction was concentrated under reduced pressure and purified by column 

chromatography (10% EtOAc/Hexane) to yield a white solid (2.94 g, 53%) 
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1H NMR (400 MHz, CDCl3) δ 9.79 (dd, J = 3.2, 1.5 Hz, 1H), 5.32 (s, 1H), 4.95 

(ddd, J = 10.2, 6.2, 3.6 Hz, 1H), 2.77 – 2.64 (m, 2H), 2.45 (ddd, J = 16.3, 3.5, 1.4 Hz, 

1H), 2.33 (ddd, J = 14.5, 13.5, 4.0 Hz, 1H), 2.04 (ddd, J = 14.0, 4.7, 3.2 Hz, 1H), 1.97 – 

1.89 (m, 1H), 1.80 (ddd, J = 13.3, 7.4, 3.5 Hz, 1H), 1.73 – 1.64 (m, 3H), 1.41 (s, 3H), 

1.35 – 1.22 (m, 4H), 0.97 (d, J = 5.9 Hz, 3H), 0.87 (d, J = 7.5 Hz, 3H). 13C NMR (101 

MHz, CDCl3) δ 202.26, 103.59, 89.68, 81.28, 69.83, 52.50, 44.77, 44.35, 37.87, 36.85, 

34.73, 30.13, 26.35, 25.11, 25.03, 20.51, 13.40. HRMS (ESI): m/z calculated for 

C17H26O5Na ([M+Na]+) 333.1678 ,found 333.1674. Elemental Analysis calculated for 

C17H26O5 : C, 65.78; H, 8.44. Found: C, 65.68; H, 8.54. 

Preparation of 10β-(2-carboxyethyl)deoxoartemisinin, 9334c 

 

92                                                    93 

NaH2PO4 (2.2 g, 14.2 mmol) was added to a stirred solution of 10β-(2-

oxoethyl)deoxoartemisinin (2.94 g, 9.47 mmol) in t-BuOH (50 mL) and water (10 mL) 

followed by 2-methyl-2-butene (52 mL, 2.0 M in THF, 104 mmol) and NaClO2 (2.5 g, 

28.4 mmol). The resulting pale yellow solution was stirred at room temperature for 

2 hours, and then concentrated under reduced pressure. 1 M NaOH (40 mL) was 

added and the resulting solution was washed with DCM (3 x 50 mL). The aqueous 

layer was acidified with 1 M HCl and extracted with DCM (3 x 50 mL). The combined 

organic layers were dried over MgSO4, filtered and concentrated to give the desired 

product as a colourless oil (2.77 g, 89%). 

1H NMR (400 MHz, CDCl3) δ 5.39 (s, 1H), 4.89 (ddd, J = 10.5, 6.2, 3.2 Hz, 1H), 

2.72 – 2.62 (m, 2H), 2.51 (dd, J = 15.9, 3.2 Hz, 1H), 2.33 (ddd, J = 14.4, 13.4, 4.0 Hz, 

1H), 2.01 – 1.20 (m, 13H), 0.97 (d, J = 5.8 Hz, 3H), 0.88 (d, J = 7.6 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 176.97, 103.70, 89.53, 81.21, 71.72, 52.52, 44.38, 37.77, 36.82, 
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36.14, 34.74, 30.03, 26.20, 25.05, 25.00, 20.51, 13.28. ESI HRMS: m/z calculated for 

C17H26O6Na ([M+Na]+) 349.1627 ,found 349.1628. 

 

Preparation of ethyl 10β-(2-carboxyethyl)deoxoartemisinin, 102 

 

93                                             102 

10β-(2-carboxyethyl)deoxoartemisinin (2.1 g, 6.43 mmol) was dissolved in 

DCM (50 mL) under nitrogen. EDCI (1.50 g, 9.65 mmol) was added and the reaction 

was allowed to stir for 5 minutes. Ethanol (1.3 mL, 7.72 mmol) and DMAP (1.18 g, 

9.65 mmol) was then added to the reaction and the mixture was left overnight at 

room temperature. When completed, the reaction was diluted with EtOAc and 

washed with sat. NH4Cl (aq.), water, brine, and dried over MgSO4. The organic 

portion was filtered and concentrated to give a crude product. Purification was 

performed using CC over silica gel (10% EtOAc/Hexane) to obtain a white solid 

product (1.44 g, 63%). 

1H NMR (400 MHz, CDCl3) δ 5.33 (s, 1H), 4.81 (ddd, J = 10.1, 6.2, 4.1 Hz, 1H), 

4.26 – 4.09 (m, 3H), 2.82 – 2.71 (m, 1H), 2.65 (dd, J = 15.2, 9.9 Hz, 1H), 2.45 (dd, J = 

15.2, 4.0 Hz, 1H), 2.38 – 2.28 (m, 1H), 2.03 (dt, J = 14.6, 4.0 Hz, 1H), 1.95 – 1.87 (m, 

1H), 1.80 (ddd, J = 13.3, 7.5, 3.5 Hz, 1H), 1.71 – 1.59 (m, 3H), 1.42 (s, 3H), 1.31 – 1.23 

(m, 6H), 0.98 – 0.95 (m, 3H), 0.87 (d, J = 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 

171.65, 103.25, 89.08, 80.88, 71.63, 60.66, 52.26, 44.22, 37.46, 36.51, 36.05, 34.43, 

29.72, 25.98, 24.71, 24.64, 20.17, 14.21, 13.04. ESI HRMS: m/z calculated for 

C19H30O6Na ([M+Na]+) 377.1940 ,found 377.1928. 
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Preparation of ethyl 10β-(2-carboxyethyl)deoxo-2-deoxyartemisinin, 103 

 

102                                             103 

Activated Zn dust (300 mg) (prepared by washing Zn dust with 5% HCl (aq.), 

water, and Et2O (3 x 15 mL each wash), then thoroughly dried in vacuo) was added 

to a stirring solution of ethyl 10β-(2-carboxyethyl)deoxoartemisinin in glacial acetic 

acid (100 mL). The reaction mixture was allowed to stir at room temperature for 72 

hours with the same amount of Zn added every 24 hours. After that period, DCM 

(80 mL) was added and the mixture was filtered through a sinter glass funnel and 

washed with DCM (3 x 15 mL). The organic portions were combined and neutralized 

with sat. NaHCO3 (aq.). The organic layer separated and washed with sat. 

NaHCO3(aq.), water, brine, and dried over MgSO4, filtered and concentrated. 

Purification was performed using CC over silica gel (10% EtOAc/Hexane) to yield the 

desired product as colourless oil (560 mg, 41%). 

1H NMR (400 MHz, CDCl3) δ 5.24 (s, 1H), 4.70 – 4.57 (m, 1H), 4.27 – 4.07 (m, 

2H), 2.52 – 2.38 (m, 2H), 2.37 – 2.25 (m, 1H), 1.96 (ddd, J = 12.9, 8.5, 4.1 Hz, 1H), 

1.89 – 1.82 (m, 1H), 1.77 (ddd, J = 13.2, 7.3, 3.5 Hz, 1H), 1.70 (dt, J = 9.1, 4.3 Hz, 2H), 

1.64 – 1.58 (m, 1H), 1.56 (s, J = 4.9 Hz, 3H), 1.28 (d, J = 7.1 Hz, 3H), 1.33 – 1.15 (m, 

4H), 1.01 – 0.91 (m, 1H), 0.89 (d, J = 5.8 Hz, 3H), 0.86 (d, J = 7.6 Hz, 3H). 13C NMR 

(101 MHz, CDCl3) δ 171.69, 107.15, 96.99, 82.44, 65.86, 60.48, 45.30, 40.27, 37.57, 

35.54, 34.52, 34.46, 29.00, 25.03, 23.63, 22.17, 18.78, 14.23, 12.41. 
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Preparation of 10β-(2-carboxyethyl)deoxo-2-deoxyartemisinin, 104 

 

103                                             104 

Ethyl 10β-(2-carboxyethyl)deoxo-2-deoxyartemisinin (540 mg, 1.60 mmol) 

was dissolved in EtOH (50 mL) and 15% NaOH (aq.) (50 mL) was added to the 

reaction and left for 3 hours. The reaction was acidified with 1 M HCl (aq.) and 

ethanol was removed. The aqueous layer was washed with DCM (3 x 50 mL). The 

combined organic portion was dried over MgSO4 and evaporated to dryness to yield 

a product as a colourless liquid (460 mg, 93%). 

1H NMR (400 MHz, CDCl3) δ 5.27 (s, 1H), 4.62 (dd, J = 14.3, 7.3 Hz, 1H), 2.52 

(d, J = 3.0 Hz, 1H), 2.50 (s, 1H), 2.40 – 2.28 (m, 1H), 1.97 (ddd, J = 12.9, 8.5, 4.1 Hz, 

1H), 1.86 (dd, J = 9.8, 5.3 Hz, 1H), 1.78 (ddd, J = 13.2, 7.2, 3.5 Hz, 1H), 1.75 – 1.65 (m, 

2H), 1.64 – 1.56 (m, 1H), 1.55 (s, 3H), 1.32 – 1.13 (m, 4H), 1.02 – 0.92 (m, 1H), 0.92 – 

0.85 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 176.57, 107.42, 96.90, 82.51, 65.62, 

45.23, 40.18, 37.19, 35.54, 34.47, 34.40, 28.94, 25.03, 23.57, 22.15, 18.76, 12.35. 

HRMS (ESI): m/z calculated for C17H26O5Na ([M+Na]+) 333.1678 ,found 333.1679. 
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Preparation of 2-deoxyartemisinin, 87 

 

93                                            87 

To a solution of DHA (5.0 g, 17.6 mmol) in EtOH (120 mL) was added 

triethylamine (6.2 mL, 44 mmol) and it was heated at gentle reflux 90 oC under 

nitrogen for 21 hours. After this period, the solution was treated with saturated aq. 

NH4Cl and extracted with EtOAc (3 x 50mL). The combined organic layer was dried 

over MgSO4. Filtration and concentration under a reduced pressure gave a pale 

yellow residue which was chromatographed over a silica gel (30% EtOAc/Hexane) to 

obtain an off-white solid (2.8 g, 60%). 

1H NMR (400 MHz, CDCl3) δ 5.70 (s, 1H), 3.19 (qd, J = 7.2, 4.6 Hz, 1H), 2.01 

(dt, J = 12.9, 4.4 Hz, 1H), 1.96 – 1.87 (m, 2H), 1.84 – 1.74 (m, 2H), 1.67 – 1.57 (m, 

1H), 1.53 (s, 3H), 1.32 – 1.23 (m, 3H), 1.20 (d, J = 7.2 Hz, 3H), 1.15 – 0.97 (m, 2H), 

0.94 (d, J = 5.8 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 172.25, 109.61, 100.04, 82.81, 

45.02, 42.82, 35.76, 34.37, 33.85, 33.16, 24.37, 23.92, 22.42, 18.98, 13.02. ESI 

HRMS: m/z calculated for C15H23O4 ([M+H]+) 267.1596 ,found 267.1589. 

Preparation of 1,4-diazidobutane, 9537. 

 

                                            95 

 1,4-Dibromobutane (0.59 mL, 5 mmol) was dissolved in DMF (5 mL) and 

treated with a solution of NaN3 (975 mg, 15 mmol) in 4 mL of water. The mixture 

was stirred and heated at 80oC for 20 hours. The reaction was washed with brine 

and extracted with hexane (3 x 15 mL). The combined organic layer was dried over 

MgSO4 and concentrated to yield the product as a colourless liquid (621 mg, 89%).;  
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1H NMR (400 MHz, CDCl3) δ 3.39 – 3.27 (m, 2H), 1.74 – 1.63 (m, 2H).13C NMR (101 

MHz, CDCl3) δ 51.33, 26.58. 

Preparation of 4-azidobutan-1-amine, 9637 

 

95                                             96 

 To a solution of 1,4-diazidobutane (684 mg, 4.88 mmol) in 1 M HCl (9 mL), 

Et2O (3 mL) and EtOAc (3 mL) cooled to 0oC was added PPh3 (1.28 g, 4.88 mmol) in a 

small portion during 1 h. The mixture was warmed to room temperature and stirred 

overnight. The organic layer was separated and discarded. The aqueous layer was 

washed with Et2O (2 x 30 mL) to remove triphenylphosphine oxide residue. The 

resulting aqueous layer was basified to pH 13 by 1 M aq.NaOH and extracted with 

DCM (3 x 30 mL). The combined extracts were dried with MgSO4 and concentrated 

to yield the desired product as colourless liquid with a distinct smell (458 mg, 82%).; 

1H NMR (400 MHz, CDCl3) δ 3.30 (t, J = 6.8 Hz, 2H), 2.74 (t, J = 7.0 Hz, 2H), 1.71 – 

1.60 (m, 2H), 1.58 – 1.48 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 51.75, 42.08, 31.19, 

26.71.  

Preparation of hex-5-yn-1-aminium chloride, 9739 

 

                                                               97 

To a solution of N-(5-hexynyl)pthalimide (1.39 g, 6.11 mmol) in THF (20 mL), 

hydrazine hydrate (1 mL, 19.3 mmol) was added, and the resulting solution was 

heated at reflux for 6 hours. The solution was allowed to cool to room temperature, 

and concentrated HCl (1 mL) was added slowly. The solution was refluxed for 

another 2 hours then allowed to cool and stirred overnight. The white precipitate 

was removed by filtration, and the solvent was evaporated. The white residue was 
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then dissolved in water (25 mL) and washed with DCM (3 x 25 mL). The aqueous 

layer was concentrated to give a product as an off-white solid (612 mg, 75%). 

1H NMR (400 MHz, MeOD) δ 3.02 – 2.93 (m, 2H), 2.36 – 2.23 (m, 3H), 1.89 – 

1.74 (m, 2H), 1.68 – 1.57 (m, 2H). 13C NMR (101 MHz, MeOD) δ 82.61, 68.98, 38.95, 

26.34, 24.99, 17.16. Elemental Analysis calculated for C6H12ClN : C, 53.93; H, 9.05; 

N,10.48. Found: C, 53.18; H, 8.47; N, 11.52. 

Preparation of 10β-(N-(4-azidobutyl)acetamido)deoxoartemisinin, 98 

 

93                                                  98 

10β-(2-Carboxyethyl)deoxoartemisinin (200 mg, 0.61 mmol) was dissolved in 

DCM (30 mL) under nitrogen. EDCI (143 mg, 0.92 mmol) was added and the reaction 

was allowed to stir for 5 minutes. 4-Azidobutylamine (84 mg, 0.74 mmol) and DMAP 

(112 mg, 0.92 mmol) were then added to the reaction and the mixture was left 

overnight at room temperature. When completed, the reaction was diluted with 

EtOAc and washed with sat. NH4Cl (aq.), water, brine, and dried over MgSO4. The 

organic portion was filtered and concentrated to give a crude. Purification was 

performed using CC over silica gel (gradient from 40% EtOAc/Hexane to 100% 

EtOAc) to obtain a white solid product (130 mg, 50%). 

1H NMR (400 MHz, CDCl3) δ 7.13 – 7.00 (m, 1H), 5.38 (s, 1H), 4.77 (ddd, J = 

11.4, 6.2, 1.6 Hz, 1H), 3.41 (td, J = 13.3, 6.6 Hz, 1H), 3.34 – 3.26 (m, 3H), 3.21 – 3.10 

(m, 1H), 2.60 – 2.47 (m, 2H), 2.38 – 2.27 (m, 2H), 2.10 – 1.94 (m, 2H), 1.83 – 1.54 (m, 

6H), 1.40 (s, 3H), 1.33 – 1.18 (m, 4H), 0.98 (d, J = 5.8 Hz, 4H), 0.87 (d, J = 7.6 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 172.14, 103.31, 90.58, 81.24, 77.63, 70.05, 52.17, 

51.49, 43.79, 39.13, 37.95, 37.75, 36.90, 34.59, 30.82, 27.16, 26.71, 26.20, 25.19, 
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20.39, 12.45. HRMS (ESI): m/z calculated for C21H34N4O5Na ([M+Na]+) 445.2427 

,found 445.2430. Elemental Analysis calculated for C21H34N4O5 : C, 59.70; H, 8.11; N, 

13.26. Found: C, 58.97; H, 8.12; N, 13.19. 

Preparation of 10β-(N-(Hex-5-yn-1-yl)acetamido)deoxoartemisinin, 99 

 

93                                                  99 

10β-(2-Carboxyethyl)deoxoartemisinin (260 mg, 0.80 mmol) was dissolved in 

DCM (30 mL) under nitrogen. EDCI (186 mg, 1.2 mmol) was added and the reaction 

was allowed to stir for 5 minutes. Hex-5-yn-1-aminium chloride (128 mg, 0.96 

mmol), triethylamine (0.13 mL, 0.96 mmol) and DMAP (146 mg, 1.2 mmol) were 

then added to the reaction and the mixture was left overnight at room 

temperature. When completed, the reaction was diluted with EtOAc and washed 

with sat. NH4Cl (aq.), water, brine, and dried over MgSO4. The organic portion was 

filtered and concentrated to give a crude. Purification was performed using CC over 

silica gel (60% EtOAc/Hexane) to obtain an off-white solid product (129 mg, 40%). 

1H NMR (400 MHz, CDCl3) δ 7.05 (s, J = 18.9 Hz, 1H), 5.38 (s, 1H), 4.76 (dd, J = 

10.1, 6.2 Hz, 1H), 3.38 (td, J = 13.3, 6.6 Hz, 1H), 3.24 – 3.12 (m, 1H), 2.63 – 2.47 (m, 

2H), 2.38 – 2.27 (m, 2H), 2.26 – 2.18 (m, 2H), 2.10 – 1.90 (m, 4H), 1.83 – 1.52 (m, 

7H), 1.40 (s, 3H), 1.33 – 1.15 (m, 4H), 0.98 (d, J = 5.5 Hz, 3H), 0.87 (d, J = 7.6 Hz, 

3H).13C NMR (101 MHz, CDCl3) δ 171.68, 102.94, 90.09, 84.12, 80.84, 77.24, 69.79, 

68.58, 51.79, 43.44, 38.87, 37.56, 37.29, 36.50, 34.21, 30.41, 28.57, 25.85, 25.77, 

24.80, 20.01, 18.12, 12.11. HRMS (ESI): m/z calculated for C23H35NO5Na ([M+Na]+) 

428.2413 ,found 428.2406. Elemental Analysis calculated for C23H35NO5 : C, 68.12; H, 

8.70; N, 3.45. Found: C, 67.88; H, 8.88; N, 3.34. 
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Preparation of 10β-(2-(4-azidobutyl)acetamido)deoxo-2-deoxyartemisinin, 105 

 

104                                                  105 

10β-(2-Carboxyethyl)deoxo-2-deoxyartemisinin (172 mg, 0.55 mmol) was 

dissolved in DCM (30 mL) under nitrogen. EDCI (129 mg, 0.83 mmol) was added and 

the reaction was allowed to stir for 5 minutes. 4-Azidobutylamine (76 mg, 0.66 

mmol) and DMAP (102 mg, 0.83 mmol) were then added to the reaction and the 

mixture was left overnight at room temperature. When completed, the reaction 

was diluted with EtOAc and washed with sat. NH4Cl (aq.), water, brine, and dried 

over MgSO4. The organic portion was filtered and concentrated to give a crude. 

Purification was performed using CC over silica gel (gradient from 40% 

EtOAc/Hexane to 100% EtOAc) to obtain a white solid product (168 mg, 75%). 

1H NMR (400 MHz, CDCl3) δ 6.80 (s, 1H), 5.31 (s, 1H), 4.57 – 4.42 (m, 1H), 

3.41 – 3.26 (m, 3H), 3.26 – 3.16 (m, 1H), 2.45 – 2.29 (m, 2H), 2.29 – 2.18 (m, 1H), 

1.98 (ddd, J = 13.0, 8.6, 4.0 Hz, 1H), 1.94 – 1.86 (m, 1H), 1.81 (dd, J = 13.5, 3.4 Hz, 

1H), 1.76 – 1.56 (m, 8H), 1.52 (s, 3H), 1.24 – 1.10 (m, 4H), 0.91 (d, J = 5.3 Hz, 3H), 

0.87 (d, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 171.82, 107.71, 97.17, 82.59, 

65.38, 60.42, 51.12, 45.19, 39.78, 38.65, 38.17, 35.62, 34.42, 34.38, 29.64, 26.76, 

26.28, 25.26, 23.61, 22.14, 21.09, 18.76, 14.21, 11.84. HRMS (ESI): m/z calculated 

for C21H34N4O4Na ([M+Na]+) 429.2478 ,found 429.2489. Elemental Analysis 

calculated for C21H34N4O4 : C, 62.04; H, 8.43; N, 13.78. Found: C, 60.79; H, 8.47; N, 

13.45. 
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Preparation of 10β-(N-(Hex-5-yn-1-yl)acetamido)deoxo-2-deoxyartemisinin, 106 

 

104                                                  106 

10β-(2-Carboxyethyl)deoxo-2-deoxyartemisinin (207 mg, 0.67 mmol) was 

dissolved in DCM (30 mL) under nitrogen. EDCI (155 mg, 1.0 mmol) was added and 

the reaction was allowed to stir for 5 minutes. Hex-5-yn-1-aminium chloride (107 

mg, 0.80 mmol), triethylamine (0.11 mL, 0.80 mmol) and DMAP (122 mg, 1.0 mmol) 

were then added to the reaction and the mixture was left overnight at room 

temperature. When completed, the reaction was diluted with EtOAc and washed 

with sat. NH4Cl (aq.), water, brine, and dried over MgSO4. The organic portion was 

filtered and concentrated to give a crude. Purification was performed using CC over 

silica gel (60% EtOAc/Hexane) to obtain a pale yellow oil product (130 mg, 50%). 

1H NMR (250 MHz, CDCl3) δ 6.78 (s, 1H), 4.50 (ddd, J = 10.0, 6.9, 3.2 Hz, 1H), 

3.43 – 3.27 (m, 1H), 3.27 – 3.10 (m, 1H), 2.50 – 2.15 (m, 5H), 2.07 – 1.96 (m, 2H), 

1.91 – 1.57 (m, 10H), 1.53 (s, 3H), 1.32 – 1.10 (m, 5H), 0.91 (d, J = 5.6 Hz, 3H), 0.87 

(d, J = 7.6 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 171.70, 107.68, 97.15, 84.16, 82.56, 

68.49, 65.36, 45.20, 39.79, 38.75, 38.18, 35.62, 34.42, 34.40, 29.64, 28.61, 25.72, 

25.25, 23.62, 22.16, 18.76, 18.12, 11.84. HRMS (ESI): m/z calculated for 

C23H35NO4Na ([M+Na]+) 412.2461 ,found 412.2475. 
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5.7.2 Protein tagging and identification 

Biological experiments were performed by Matthew Panchana and Dr 

Hanafy M. Ismail at the Liverpool School of Tropical Medicine. The following is a 

standard protocol adapted from Speers and Cravatt work published in 200443 with 

slight modifications. 

Protein labelling  

Parasites were treated in vitro with 1 μM probes for 6 hours under the 

culture condition. Each experiment consists of 10 flasks of 50 mL culture. After 6-

hour incubation, parasites were harvested by centrifugation and released from RBC 

using 0.15% saponin solution and stored at -80°C until further process.  

Bradford protein quantitation assay 

Protein concentration in samples was quantified by Bradford protein assay 

which were performed in micro-well plates. Standard calibration curve was 

prepared from bovine serum albumin (BSA) ranging from 1 mg/mL to 0.1 mg/mL. 

Samples were 10-fold diluted by adding Dulbecco’s phosphate buffered saline (D-

PBS, Invitrogen, Mg and Ca-free) prior to quantitation. Each well contains 5 μL 

protein sample, 45 μL D-PBS, and 250 μL Bradford reagent (Sigma). Protein 

quantitation was performed by absorbance measurement at 595 nm. Protein 

concentration in sample was estimated from calibration curve. Samples analysed in 

same batch were adjusted to same concentration using D-PBS prior to further 

process. 

Biotin-azide conjugation via click chemistry (tagged protein) 

The alkyne-labelled proteome was reacted with azide-biotin conjugate 

(Invitrogen) in the presence of copper catalyst. To a 500 μL solution of 2 mg/mL 

labeled protein sample, 5.65 μL solution of 5 mM azide-biotin conjugate, 11.3 μL of 

50 mM TCEP (tris(2-carboxyethyl)phosphine) solution, , 34 μL of 1.7 mM TBTA  

(Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine) solution, and 11.3 μL 50 mM 

CuSO4 were added in order. The reaction was mixed using vortex mixer after each 
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component added. The mixture was then incubated for 1 h at room temperature 

under a dark condition with a gentle mix every 15 min.  

After 1 h, the majority of proteins precipitated and the excess reagents were 

removed as follow. The reaction mixture was combined and centrifuged at 6,500 G 

for 4 min at 4°C to pellet protein. 750 μL of cold methanol was added to the pellet 

and it was sonicated for 3 to 4 seconds. The methanol wash was repeated two 

times. 650 μL of 2.5% SDS in D-PBS was added to the protein sample and it was 

sonicated for 3 to 4 seconds to dissolve all remaining pellet.  The sample was then 

heated at 95°C for 5 min in a heating block and sonicated twice for 3 to 4 seconds 

afterwards to dissolve pellet. The sample was centrifuged and its supernatant was 

collected and adjusted to 3.5 mL with D-PBS. The sample was frozen at -20°C until 

further process. 

Protein processing for mass spectrometry analysis 

This part describes the pull down procedure of tagged protein using 

streptavidin-agarose beads and the protein digestion. Tagged proteins were 

processed as follow; to the 3.5 mL sample was added D-PBS to adjust the volume to 

8.3 mL. 150 μL of streptavidin-agarose beads solution containing 50 μL streptavidin-

agarose bead (pre-washed 3 times with 1 mL D-PBS) was added to the sample and 

the mixture was rotated on an end-over rotator for 1.5 hours. The sample was then 

centrifuged at 1,400G for 2 min at room temperature to pellet the beads. Most 

supernatant was removed. The beads were transferred to Micro Bio-Spin column 

(Bio-Rad) and washed (3 times each) with 1 mL of 1% SDS, 1 mL of 6 M urea, and 1 

mL of D-PBS. The washed beads were then transferred to a low-adhesion screw cap 

tube with 200 μL D-PBS and centrifuged for 2 min at 1,400g to pellet the beads and 

removed supernatant.  

On-bead reduction, alkylation and digestion were performed as follow. 

Beads were re-suspended in 500 μL of 6 M urea. 25 μL of 200 mM DL-dithiothreitol 

(DTT) was then added to the beads and the mixture was incubated at 65°C in a 

heating block for 15 min. 25 μL of 500 mM 3-indoleacetic acid (IAA) was added to 

the mixture and it was rotated for 30 min at r.t. under dark condition. The mixture 
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was centrifuged at 1,400g for 2 min to pellet beads and its supernatant was 

removed. The collected beads were washed with 1 mL D-PBS and they were re-

suspended in 200 μL of 2 M urea in D-PBS. 2 μL of 100 mM CaCl2, and 4 μL of 0.5 

mg/ml sequencing grade modified trypsin were added to the solution and the 

mixture was incubated overnight at 37°C in an orbital shaker incubator to allow 

agitation. After the incubation, the sample was centrifuged at 1,400g for 2 min. The 

beads and supernatant were transferred to Micro Bio-Spin column. 100 μL of D-PBS 

was added to the column to assist an elution giving a total volume of 300 μL. 17 μL 

of 90% formic acid was then added to the eluents. 

Mass Spectrometry  

Peptide sequencing was performed on ultra-high-performance liquid 

chromatography coupled with tandem mass spectrometry system (UHPLC-MS/MS). 

The UHPLC used in the study was the Thermo Scientific UltiMate 3000LC 

chromatography system. Mass spectrometry was run using Themo Scietific LTQ 

Orbitrap Velos equipped with the Xcalibur software v2.1 (Thermo Scientific). The 

peptide sample was injected to the analytical column (Dionex Acclaim PepMap RSLC 

C18, 2 μm, 100 Å, 75 µm i.d. x 15 cm, nanoViper.), which was maintained at 35°C 

and at a flow rate of 0.3 µl/min. Peptides were separated over linear 

chromatographic gradients using buffer A (2.5 % ACN: 0.1% formic acid) and buffer 

B (90% ACN: 0.1 % formic acid).  Two gradients, 60 minutes (3-50 % buffer B in 40 

min) and 120 minutes (3-60 % buffer B in 90 min), were employed for analysis.  Full 

scan MS spectra were acquired over the m/z in a range of 350-2000 in positive 

mode by the Orbitrap at a resolution of 30,000.  A data-dependent Top20 collision 

induced dissociation (CID) data acquisition method was used.  The ion-trap 

operated with CID MS/MS on the 20 most intense ions (above the minimum MS 

signal threshold of 500 counts). 

Protein Identification 

Protein identification was performed on MASCOT search engine via Thermo 

Scientific Proteome Discoverer v1.2. Spectrum files from mass spectrometer were 

imported to the software and processed with following MASCOT parameters: 
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precursor mass tolerance of 10 ppm, fragment ion tolerance 0.8 Da with one tryptic 

missed cleavage permitted. Carbamidomethyl (C) was set as a static modification 

with oxidation of methionine (M) and deamidation (N,Q) set as dynamic 

modifications.    A decoy database was searched and relaxed peptide confidence 

filters applied to the dataset (ion scores p < 0.05 / FDR 5%).   
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