
 

 

 

 

 

Effects of pain catastrophising on 

behavioural and cortical responses to 

pain-related stimuli 

 

 

 

Thesis submitted in accordance with the requirements of the University 

of Liverpool for the degree of Doctor in Philosophy by Xiaoyun Li 

 

May 2014 



ii 
 

 

List of abbreviations 

___________________________________________________________________ 

 

In order of use: 

fMRI  Functional magnetic resonance imaging 

CSQ  Coping Strategies Questionnaire 

PCS   Pain Catastrophizing Scale 

SI/SII  Primary/ Secondary somatosensory cortex 

PCC  Posterior cingulate cortex 

PFC  Prefrontal cortex  

rACC  Rostral anterior cingulate cortex 

EEG  Electroencephalograph 

VBM   Voxel based morphometry 

DLPFC Dorsolateral prefrontal cortex 

CBT   Cognitive-behavioural therapy 

MCC  Mid-cingulate cortex 

PET  Positron emission tomography 

ERP  Event-related potential  

LPP             Late positive potential 

DARTEL Diffeomorphic anatomical registration using exponentiated lie algebra  

EOG  Electrooculagraphic 

EKG  Electrocardiographic 

EMG   Electromyogram 

VEP  Visual-evoked potential 

AEP  Auditory-evoked potential 

SEP  Somatosensory-evoked potential 

LEP                 Laser-evoked potential 

MEG  Magnetoencephalography 

GA  Genetic algorithm 

MUSIC Multiple signal classification algorithm 

LORETA Low resolution brain electromagnetic tomography algorithm  

LAURA Local autoregressive average algorithm  



iii 
 

CLARA Classical LORETA analysis recursively applied algorithm 

RF  Radio frequency 

TR   Time to repeat 

TE  Time to echo 

High-Cat  High pain catastrophisers 

Low-Cat Low pain catastrophisers 

FPQ-III           Fear of Pain Questionnaire - III 

STAI-S State anxiety 

STAI-T Trait anxiety 

ANOVA  Analysis of variance 

IAPS              International Affective Picture System 

IRI  Interpersonal Reactivity Index 

SD                   Standard deviation 

GM             Grey matter 

WM  White matter 

MNI  Montreal Neurological Institute 

CSF                 Cerebrospinal fluid 

TIV                 Total intracranial volume 

GLM  General linear model 

FDR  False discovery rate 

EM             Eye movement 

RT                   Reaction time 

PHGL   Left parahippocampal gyrus 

PHGR  Right parahippocampal gyrus  

IPL  Inferior parietal lobule  

 

 

 

 

 

 

 

 



iv 
 

Contents 

___________________________________________________________________ 

Page 

List of abbreviations         ii 

Contents           iv 

List of figures          x 

List of tables          xii 

Abstract                       xiii 

Declaration                      xv 

Acknowledgements                    xvi 

 

Chapter One: General introduction              

 

1.1. Pain and antecedents of pain                                       1 

1.1.1. Antecedents of pain 

1.1.2. Attitudes toward pain       

1.2. Pain catastrophising       3 

1.2.1. The definition of catastrophising 

1.2.2. The concept of pain catastrophising 

1.2.2.1.       Assessment of pain catastrophising     

1.2.3. Pain catastrophising and the pain-related outcomes  

1.2.3.1.       Experimental induced pain 

1.2.3.2.       Clinical pain 

1.2.3.3.       Fear-avoidance model   

1.2.4. Theories of pain catastrophising 

1.2.4.1.       Appraisal model 

1.2.4.2.       Attentional model 

1.2.4.3.       Communal coping model 

1.2.5. Individual differences of pain catastrophising – effects of gender 

1.2.6. Neural correlates of pain catastrophising 

1.2.6.1. Functional differences of pain catastrophising 

1.2.6.2. Structural brain characteristics of pain catastrophising 

1.2.7.          Interim integrative summary 



v 
 

1.2.8.          Attentional factors 

1.2.8.1.       Attentional processing and pain 

1.2.8.2.       Alterations in attentional processing in high pain catastrophisers  

1.2.9.          Empathy for pain 

1.2.9.1.       Neural basis of pain empathy 

1.2.9.2.       Viewing pain in others and pain catastrophising 

1.3. Problems and hypotheses      26 

1.3.1. Effects of pain catastrophising on the classification of ambiguous pain 

1.3.2. Effects of pain catastrophising on attention to pain in others 

1.3.3. Pain catastrophising effects on the cortical responses to viewing pain in 

others 

1.3.4. Pain catastrophising effects on the cortical responses to laser stimulation 

during viewing of comforting hand postures  

1.3.5. Pain catastrophising and structural features of cortical and subcortical 

brain regions in healthy people 

 

Chapter Two: Theoretical basis of methods       

2.1. Principles of electroencephalography     34 

2.1.1. Physiological basis of EEG  

2.1.2. EEG signal acquisition and processing 

2.1.2.1.       Volume conduction problem 

2.1.2.2.       Filtering 

2.1.3. Quantitative analyses of EEG 

2.1.3.1.       Event-related potential analysis 

2.1.3.2.       Visual event-related potential 

2.1.3.3.       Laser evoked potential 

2.1.4. EEG source localisation 

2.1.4.1.       Basis of source localisation methods 

2.1.4.2.       Equivalent current dipole approaches 

2.1.4.2.1.    Genetic algorithm (GA) 

2.1.4.2.2.    Multiple signal classification (MUSIC) algorithm 

2.1.4.3.       Linear distributed approaches 

2.1.4.3.1.    Low resolution brain electromagnetic tomography (LORETA) algorithm 



vi 
 

2.1.4.3.2.    Local autoregressive average (LAURA) algorithm 

2.1.4.3.3.    Classical LORETA analysis recursively applied (CLARA) algorithm 

2.2. Principles of magnetic resonance imaging          48 

2.2.1. Basic principles and physics of MRI 

2.2.2. High-resolution T1-weighted structural images 

2.3. Eye tracking technique       51 

2.3.1.          Principles of eye tracking 

2.3.2.          Eye tracker 

 

Chapter Three: Methods and materials       

3.1. Experiment 1: Effects of pain catastrophising on the classification of 

ambiguous pain        54 

3.1.1. Subjects 

3.1.2. Materials 

3.1.3. Procedure 

3.1.4. Data analysis 

3.2. Experiment 2: Effects of pain catastrophising on attention to pain in 

others: an eye movement study                                                            58 

3.2.1. Subjects 

3.2.2. Materials and equipment 

3.2.3. Procedure 

3.2.4. Data reduction and analysis     

3.3. Experiment 3: Effects of pain catastrophising on attention to pain in 

others: a second eye movement study                                                  63 

3.3.1. Subjects 

3.3.2. Materials and equipment 

3.3.3. Procedure 

3.3.4. Data reduction and analysis     

3.4. Experiment 4: Pain catastrophising effects on the cortical responses 

to viewing pain in others                                                                       67 

3.4.1. Subjects 

3.4.2. Procedure 

3.4.3. Data recordings 



vii 
 

3.4.4. Data pre-processing 

3.4.5. Source dipole analysis 

3.4.6. Statistical analysis     

3.5. Experiment 5: Pain catastrophising effects on the cortical responses 

to laser stimulation during viewing of comforting hand postures    73 

3.5.1. Subjects 

3.5.2. Procedure 

3.5.3. Data recordings 

3.5.4. Data pre-processing 

3.5.5. Source dipole analysis of ERPs to picture stimuli    

3.5.6. Source dipole analysis of LEPs 

3.5.7. Statistical analysis 

3.6. Experiment 6: Pain catastrophising and structural features of 

cortical and subcortical brain regions in healthy people                    81 

3.6.1. Subjects 

3.6.2. MRI data acquisition 

3.6.3. Pre-processing and voxel based morphological analysis 

3.6.4. Subcortical shape analysis                  

Chapter Four: Results  

4.1. Experiment 1: Effects of pain catastrophising on the classification of 

ambiguous pain                                                                          86   

4.1.1. Demographic characteristics 

4.1.2. Picture ratings 

4.1.3. Error rate 

4.1.4. Target detection 

4.2. Experiment 2: Effects of pain catastrophising on attention to pain in 

others: an eye movement study                                                           91                                              

4.2.1. Participant characteristics 

4.2.2. Direction of initial fixation 

4.2.3. First fixation latency 

4.2.4. First fixation duration 

4.2.5. Average fixation duration 



viii 
 

4.2.6. Correlations between EM data and subjective ratings 

4.2.7. Reaction time (RT) to probes  

4.3. Experiment 3: Effects of pain catastrophising on attention to pain in 

others: a second eye movement study                                                  99 

4.3.1. Participant characteristics 

4.3.2. EM bias in attentional orientation 

4.3.3. EM bias in attentional maintenance 

4.3.4. EM bias in attentional re-engagement 

4.3.5. Correlations between EM and subjective ratings 

4.3.6. Reaction time (RT) to probes 

4.4. Experiment 4: Pain catastrophising effects on the cortical responses 

to viewing pain in others                                                                     110  

4.4.1. Behavioural data 

4.4.2. Source dipole model 

4.4.3. Effects of pain catastrophising on source dipole waveforms 

4.4.4. Correlations between source components and subjective responses to 

photographs 

4.5. Experiment 5: Pain catastrophising effects on the cortical responses 

to laser stimulation during viewing of comforting hand postures   118                         

4.5.1. Behavioural data 

4.5.2. Source dipole model for visual-related potentials 

4.5.3. Effects of pain catastrophising on source dipole waveforms of picture 

viewing with a filter of 0.1-30 Hz 

4.5.4. Effects of pain catastrophising on source dipole waveforms of picture 

viewing with a filter of 2-40 Hz 

4.5.5. Source dipole model for LEPs 

4.5.6. Effects of pain catastrophising on source dipole waveforms of LEPs 

4.5.7. Correlations between source components and subjective pain ratings to 

laser stimulation 

4.6. Experiment 6: Pain catastrophising and structural features of 

cortical and subcortical brain regions in healthy people                  136 

4.6.1. Demographic characteristics 

4.6.2. Correlations between total volumes and psychometrical variables  

4.6.3. Voxel-based morphometry (VBM) 



ix 
 

4.6.4. Shape analysis 

 

Chapter Five: Study discussions   

5.1. Experiment 1: Effects of pain catastrophising on the classification of 

ambiguous pain                                                                                     144 

5.2. Experiment 2 & 3: Effects of pain catastrophising on attention to pain in 

others: two eye movement studies                                    148 

5.3. Experiment 4: Pain catastrophising effects on the cortical responses to 

viewing pain in others                                                             156  

5.4. Experiment 5: Pain catastrophising effects on the cortical responses to 

laser stimulation during viewing of comforting hand postures             163                                     

5.5. Experiment 6: Pain catastrophising and structural features of cortical and 

subcortical brain regions in healthy people                                           169 

Chapter Six: General discussion 

6.1. Appraisal model                            175 

6.2. Attentional model                                                                       177 

6.3. Communal coping model                                                                      179 

6.4. Brain structure and pain catastrophising                                               181 

6.5. Clinical applications of findings                                                           184 

6.6. Limitations                                                  186 

6.7. Future research                                                                                      187 

6.8. Conclusion                                               189 

 

References                               191 

 

 

 

 

 

 

 

 



x 
 

 

List of figures 

 

1.1  Cognitive-behavioural model of fear of movement or (re)injury            9  

2.1  The isopotential maps and potentials at select electrodes of grand 

average of LEPs at six time points                                            43 

2.2              Corneal reflection and bright pupil as seen in the infrared camera image            
                                                                                                                                   53                            

3.1  Sample stimuli scrambled at 80%, 45%, or 0%                                    53  

3.2              Flowchart of the eye movement experiment                                          61 

3.3              Flowchart of the second eye movement experiment                              65 

3.4              Flowchart of the pain observation experiment                                       69 

3.5              Flowchart of the comfort-giving experiment                                         75 

4.1  Detection threshold and confidence for the scrambled pictures            90 

4.2  Fixation time (in milliseconds) to Pain and Non-Pain pictures             96             

4.3  Correlations between fixation time to pictures and subjective ratings  97 

4.4  Fixation time (in milliseconds) to Pain and Negative pictures paired 

with Non-Pain pictures in high and low pain catastrophising groups  104 

4.5  Correlations between first fixation time to Pain and Non-Pain pictures 
                                                                                                                                 107 

4.6  Source dipole model and source waveforms during observation of 

pictures                                                                                                 114 

4.7  Correlations between the posterior cingulate source dipole and 

subjective ratings to pictures                                                                117 

4.8  Mean subjective pain ratings to hand postures pictures                       119 

4.9 The grand averaged waveforms of six equivalent source dipoles and 

their isopotential line maps for visual-evoked potentials                     122 

4.10  Source waveforms for visual-evoked potentials with different bandpass 

filters                                                                                                    124 



xi 
 

4.11  Source dipoles and source waveforms for laser evoked potentials      129 

4.12  Source waveforms for laser evoked potentials with significant intervals 

of interest                                                                                              134 

4.13  Correlations between rostral anterior cingulate source dipole and 

subjective pain ratings to laser stimulation                                          135 

4.14            Demographic characteristics of participants                                        138 

4.15            Design matrix: Contrasts between pain catastrophising scores and 

regional grey matter volumes among 52 subjects                                139 

4.16            Correlations between grey matter (GM) volume and PCS scores       141 

4.17            Shape alterations positively correlated with PCS scores in the left 

caudate and bilateral putamen                                                              143 

 

 

 

 

 

 

 

 

 

 



xii 
 

List of tables  

___________________________________________________________________ 

 

4.1  Participant characteristics during observation of scrambled pictures  

                                                                                                                               87  

4.2  Subjective ratings of valence, arousal and complexity for observed 

pictures                                                                                               88 

4.3  Error rate of observed pictures                                                           89 

4.4  Participant characteristics in the eye movement study                      93 

4.5  Subjective ratings to observed pictures in the eye movement study 
                                                                                                                              93 

4.6              Eye movement data in the eye movement study                               95        

4.7  Participant characteristics in the second eye movement study        100  

4.8  Subjective ratings to observed pictures in the second eye movement 

study                                                                                                 101 

4.9 Eye movement data in the second eye movement study                  105 

4.10   Reaction time to probes in the second eye movement study            109 

4.11  Subjective ratings to pictures during observation of pictures           112 

4.12  Source activation showing significant intervals of interest during 

observation of pictures                                                                      116 

4.13  Effects of emotional pictures on subjective measures                      120 

4.14            Source activation showing significant intervals of interest during laser 

stimulation                                                                                         133 

4.15            Mean ± standard deviation (SD) of demographic characteristics and 

brain volumes                                                                                    137 

4.16            Local grey matter volume in healthy people                                     140 

  



xiii 
 

Effects of pain catastrophising on behavioural and 

cortical responses to pain-related stimuli 

Xiaoyun Li 

Abstract 

Pain catastrophising is an exaggerated negative mental set brought to bear 

during actual or anticipated pain experience (Sullivan et al., 2001b). People with 

high pain catastrophising were reported to perceive stronger pain intensity, attribute 

more pain to others, and solicit higher levels of social support from others when 

exposed to pain, relative to low pain catastrophisers (Sullivan et al., 2001b, Quartana 

et al., 2009). Three important models of pain catastrophising, the appraisal model, 

the attentional model, and the communal coping model, have been proposed to 

investigate the influence of pain catastrophising on pain-related outcomes. However, 

the neural basis of pain catastrophising in the social-emotional context among 

healthy people is poorly understood. This thesis utilised neuroimaging methods and 

novel experimental paradigms to explore effects of pain catastrophising on 

behavioural and cortical responses to pain-related stimuli in healthy people. It also 

investigates the associations between pain catastrophising and structural brain 

features. A comprehensive review of previous experimental findings was performed 

to identify novel research questions. Behavioural, eye movement, EEG and MRI data 

for 6 unique studies were collected.  

Chapter One features a review of relevant theories, studies, and findings 

pertaining to pain catastrophising. The specific research problems and hypotheses 

investigated in the thesis are explicitly described. Chapter Two describes the theory 

of the EEG, MRI and eye tracking methods used in the experimental chapters of the 
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thesis. Chapter Three outlines the methods and materials used for each individual 

study.  

Chapter Four describes the experimental findings of the thesis. In the first 

study, a paradigm using a varying level of background noise was applied to evaluate 

the sensitivity to pain cues in high and low pain catastrophisers. No significant 

differences were found. In the second and third study, the eye tracking method and a 

dot-probe paradigm were used to measure the attentional processing to pain-related 

stimuli. High pain catastrophisers responded to probes after pain scenes slower 

compared to low pain catastrophisers. In the fourth study, ERP data revealed that 

high pain catastrophisers exhibited differences in ERP components and source 

activation patterns during the observation of pain pictures. The first four studies of 

this thesis reported that high pain catastrophisers attributed stronger pain to pain in 

others. In the fifth study, LEP data showed that high pain catastrophisers reduced 

perceived pain during viewing of comforting hand postures, and displayed enhanced 

ipsilateral operculo- insular activation to pictures not showing comforting gestures. In 

the final study of the thesis, a morphological analysis of cortical and subcortical 

structures was performed using high-resolution T1-weighted MR images. It 

demonstrated that alterations to the morphology of selected cortical regions and the 

dorsal striatum were associated with pain catastrophising.  

Chapter Five discusses the findings of each individual study in light of 

previous research and the implications and inferences that can be drawn from the 

data. Chapter Six represents a general discussion of the main findings of the thesis. 

This chapter examines how the findings of each individual study relate to the 

theories of pain catastrophising. The limitations of the thesis and the implications of 

the findings for future research are also discussed.  
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Chapter One 

General Introduction 

1.1 Pain and antecedents of pain 

1.1.1 Antecedents of pain 

The International Association for the Study of Pain defined pain as ‗‗an 

unpleasant sensory and emotional experience associated with actual or potential 

tissue damage, or described in terms of such damage‘‘ (International Association for 

the Study of Pain Task Force on Taxonomy, 1994, p. 210). This definition takes into 

consideration that pain is always subjective, a body sensation, and an unpleasant 

affective experience, and has no absolute relation with tissue damage. 

It has been emphasised that the perception of pain is not only related to the 

noxious input, but also is critically influenced by psychological variables (Wiech and 

Tracey, 2009). For example, the majority of studies using mood induction on 

experimentally- induced pain, such as cold pressor pain, report that positive mood 

attenuates the perception of pain (Weisenberg et al., 1998, Meagher et al., 2001), 

whereas negative mood heightens pain perception (Wunsch et al., 2003, Kenntner-

Mabiala and Pauli, 2005). Experimental data also addresses the influence of 

emotions/ moods on pain perception. Ploghaus et al. (2001) performed a functional 

magnetic resonance imaging (fMRI) study using noxious thermal stimulations, and 

found that high anxiety could elicit stronger pain when a low thermal intensity 

stimulation was conducted. In addition, clinical studies suggested that increased pain 

sensitivity was associated with the high co-morbidity between pain and mood 

disorders, such as post-traumatic stress disorders (Lang et al., 2013, Takeda et al., 
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2013) or major depressive disorder (Bair et al., 2003). Recently, a clinical 

longitudinal study found that the onset of depression and anxiety had the probability 

to increase the number of pain locations and heighten chronic pain severity (Gerrits 

et al., 2013). In conclusion, negative moods, such as anxiety and depression, may 

play an important role in pain perception.    

1.1.2 Attitudes toward pain 

An attitude is an expression of favour or disfavour towards a person, a place, 

an object, or an event (Banaji and Heiphetz, 2010). It can be formed from an 

individual past and present. Allport (1935) defined the attitude as ‗‗a mental and 

neural state of readiness, organised through experience, exerting a d irective or 

dynamic influence upon the individual‘s response to all objects and situations with 

which it is related‘‘ (p. 810). The attitude was the most distinctive and indispensable 

concept in contemporary social psychology (Allport, 1935). Social psychologists 

conceive that attitudes consist of cognitive, affective, and behavioural components 

(Forgas et al., 2011). Particularly, the term ‗affect‘ commonly refers to a broader 

concept of general mood. Also, affect can influence attitudes (Ajzen, 2001). For 

instance, a study about mood effects found that attitudes influenced intentions to eat 

low-fat food in the context of negative mood (Armitage et al., 1999). Moreover, self-

esteem is considered as a primary attitude for self evaluation. Evidence suggests that 

low self-esteem could prospectively predict depressive symptoms and induce more 

anxiety during a confrontational interview (Banaji and Heiphetz, 2010). 

Indeed, Jensen et al. (1999) proposed that pain attitudes played a central role 

in predicting pain behaviour and pain perception. Negative pain attitudes, such as 

attitudes toward pain-related harm, have been associated with increased pain 
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intensity, pain behaviour (Shen et al., 2013), pain catastrophising, heightened 

depression and pain disability (Turner et al., 2000, Wong et al., 2011). Pain 

catastrophising is one of psychological factors mediating pain experiences. In the last 

two decades, pain catastrophising has received great attention as an important factor 

of pain experience (Sullivan et al., 1995, Sullivan and Neish, 1999, Sullivan et al., 

2001b, Turner and Aaron, 2001, Quartana et al., 2009). The overall aim of the thesis 

is to investigate effects of pain catastrophising on behavioural and cortical responses 

to pain-related events in healthy people. It also looks into the correlations between 

the structural brain alterations and pain catastrophising.       

1.2 Pain catastrophising 

1.2.1 The definition of catastrophising 

The term catastrophising was formally introduced by Ellis (1962), a founder 

of rational-emotional therapy. An example of a catastrophising attitude is: ―How 

terrible the situation is; I positively cannot stand it!‖ Subsequently, Beck (1976) 

incorporated the concept of catastrophising into the cognitive theory of depression. 

According to Beck‘s theory, catastrophising was described as a maladaptive 

cognitive style, in which information was misinterpreted so that negative outcomes 

were expected (Beck, 1976, 1979, Beck and Emery, 1985). Here are two examples. 

(1) A teenage is too afraid to start driving training, due to he believes he would get 

himself into an accident. (2) A staff made a mistake at work and corrected since 

noticed. However, he worried that someone might find out and he might got fired. 

Such thoughts are tied to the perception of oneself as vulnerable and as being subject 

to danger over which one has insufficient control. It also has been suggested that 



4 
 

catastrophising is a risk factor for anxiety. For example, social anxiety disorder was 

related to catastrophic thinking about the consequences (Hofmann et al., 2005).  

1.2.2 The concept of pain catastrophising 

Historically, a few fundamental sources have outlined the concept of pain 

catastrophising (Spanos et al., 1979, Rosenstiel and Keefe, 1983, Chaves and Brown, 

1987, Sullivan et al., 2001b). The early work of Chaves and Brown (1987) addressed 

catastrophising as a tendency to magnify pain information or exaggerate the threat 

value of pain. Spanos et al. (1979) employed a cold pressor task to measure 

catastrophising and classified high pain catastrophisers as individuals who expressed 

more worries about pain and excessively focused on pain stimuli. Finally, Rosenstiel 

and Keefe (1983) discussed catastrophising in terms of helplessness and the 

maladaptive coping approach with pain. On the basis of the previous 

conceptualisations of pain catastrophising, Sullivan et al. (2001b) defined the 

concept of pain catastrophising as ―an exaggerated negative mental set brought to 

bear during actual or anticipated pain experience‖. 

1.2.2.1 Assessment of pain catastrophising 

To quantify pain catastrophising, Rosenstiel and Keefe (1983) developed a 

self-report instrument - the Coping Strategies Questionnaire (CSQ) with seven 

subscales, including a catastrophising subscale. The catastrophising subscale 

reflected helplessness and pessimism in the context of failure to cope with pain-

related events. However, this instrument has not fully addressed catastrophising in 

both aspects of cognition and affectivity. Therefore, Sullivan et al. (1995) postulated 

a three-dimensional model of pain catastrophising. The Pain Catastrophizing Scale 

(PCS) has 13- items focusing on factors of magnification, rumination, and 
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helplessness. Magnification is a tendency to magnify the pain-related events. 

Rumination is related to inability to constrain pain-related thoughts. Helplessness 

indicates a failure to cope with negative events. A number of studies utilised 

confirmatory factor analysis to assess the validity of the PCS in healthy, pain-free 

volunteers (Sullivan et al., 1995, Osman et al., 1997, Sullivan and Neish, 1999, 

Sullivan et al., 2001a), chronic pain patients (Sullivan et al., 1998, Van Damme et al., 

2002a), gender (Sullivan et al., 2000b), diverse culture groups, and non-English 

speakers (Severeijns et al., 2002, Van Damme et al., 2002a, Yap et al., 2008). 

Subsequently, various versions of Pain Catastrophizing Scale have been developed to 

evaluate pain catastrophising in different populations, such as  children (Crombez et 

al., 2003, Goubert et al., 2006), adolescents (Tremblay et al., 2008), and significant 

others (Cano et al., 2005). Relative to CSQ which primarily focused on the 

helplessness component (Rosenstiel and Keefe, 1983), the PCS evaluates broader 

dimensions of pain catastrophising (Sullivan et al., 1995).  

1.2.3 Pain catastrophising and the pain-related outcomes 

1.2.3.1 Experimental induced pain 

It has been well documented that pain catastrophising correlates with pain 

intensity, pain related interference and disability, and emotional distress (Sullivan et 

al., 2001b, Quartana et al., 2009). Sullivan et al. (1995) conducted a laboratory study 

using a cold pressor test and found that high, compared to low, pain catastrophisers 

reported stronger pain intensity. In addition, high, compared to low, pain 

catastrophisers experienced more thought intrusions during cold presser tests, 

especially when required to suppress their thoughts about pain (Sullivan et al., 1997). 

Sullivan et al. (1999) has also found that people with high pain catastrophising 
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reported less pain when they were required to disclose worries about dental pain 

rather than to suppress the distress during the dental hygiene treatment. A study in 

chronic musculoskeletal pain patients revealed that patients with high pain 

catastrophising scores showed little changes in pain threshold and tolerance from 

first to second cold pressor test when focusing on sensory words, whereas their pain 

threshold and tolerance showed reductions during focusing on emotional words 

(Michael and Burns, 2004). It was also reported that children with frequent 

catastrophic thoughts expressed higher pain during a pressure pain procedure, 

regardless of the observer was a stranger or their parent (Vervoort et al., 2008).     

1.2.3.2 Clinical pain 

The relationship between catastrophising and clinical pain has been reported 

in diverse patient groups, such as, chronic pain associated with spinal cord injury 

(Turner et al., 2002), musculoskeletal injury (Martel et al., 2008, Wideman et al., 

2009), osteoarthritis (Keogh and Eccleston, 2006, Sullivan et al., 2009), whiplash 

injury (Vangronsveld et al., 2007, Vangronsveld et al., 2008), rheumatoid arthritis 

(Lefebvre and Keefe, 2002), low back pain (Van Damme et al., 2002a, Goubert et 

al., 2004a, Peters et al., 2005, Swinkels-Meewisse et al., 2006), postsurgical pain 

(Pavlin et al., 2005), and fibromyalgia (Van Damme et al., 2002a, Geisser et al., 

2003). 

Pain catastrophising has been associated with a wide range of pain responses, 

such as, greater consumption of analgesics (Jacobsen and Butler, 1996), longer 

hospitalisation (Gil et al., 1992), and higher frequency of pain behaviour 

performance (Keefe et al., 2000). In clinical studies, catastrophising has been 

suggested to be related to stronger pain severity among patients with fibromyalgia 
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(Burgmer et al., 2011), osteoarthritis (Sullivan et al., 2009), and low back pain 

(Peters et al., 2005). Longitudinal studies also suggest that pain catastrophising may 

influence long-term effects of pain. For example, high levels of pain catastrophising 

have been suggested to predict enhanced pain intensity at a 12-month follow-up after 

total knee replacement (Edwards et al., 2009). 

Previous studies also indicated that pain catastrophising, together with 

depression, affected the long-term pain-related outcomes, such as pain severity and 

disability (Keefe et al., 2003, Edwards et al., 2006). Pain catastrophising is strongly 

associated with self-reported physical limitations, reduced likelihood of returning to 

work, and physical impairment in chronic pain patients (Evers et al., 2003, Goubert 

et al., 2004a, Gauthier et al., 2006). Pain catastrophising also has an association with 

heightened disability (Sullivan et al., 2002a). In addition, long-term work disability 

can be predicted by pain catastrophising in patients with musculoskeletal injuries 

over timeframes of up to 1 year (Wideman and Sullivan, 2011). The magnification 

subscale of PCS was strongly correlated with post-surgery pain and functional 

limitations in patients with osteoarthritis six weeks after a total knee arthroplasty 

(Sullivan et al., 2009).   

1.2.3.3 Fear-avoidance model 

The beliefs and attitudes toward pain can affect the experiences of both acute 

and chronic pain. These beliefs and attitudes also may increase the likelihood of 

acute pain becoming chronic. Lethem et al. (1983) first proposed the fear-avoidance 

model to explain the relationship between fear/anxiety and chronic pain. Based on 

Lethem et al.‘s model, Vlaeyen et al. (1995, 2000) suggested a cognitive-behavioural 

model of fear of movement/(re)injury (Fig. 1.1) to explain how acute low back pain 
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patients develop a chronic pain problem with a chain of events. The fear of 

movement/(re)injury model states that when pain is perceived  individuals typically 

can employ two different coping responses to pain based on their previous pain 

experiences - acceptance or avoidance (Lethem et al., 1983, Vlaeyen et al., 1995, 

Leeuw et al., 2007, Haythornthwaite, 2013). For majority of individuals, pain is 

considered as temporary, undesirable and unpleasant, but not catastrophic. In this 

case, individuals are more likely to confront their pain (acceptance of pain) and have 

strong motivation to return to normal life. Such a positive response has been reported 

to be associated with lower pain intensity, less pain-related distress and avoidance, 

and less disability (McCracken, 1998, Thompson and McCracken, 2011).  

On the other hand, in a significant minority of individuals, catastrophising 

enters the chain of events. Pain catastrophising leads to pain-related fear, such as fear 

of pain or fear of movement/(re)injury, and thereafter initiates a fear-avoidance cycle 

that promotes and maintains depression, activity limitations and disability. The fear 

avoidance model addresses the role of pain catastrophic interpretations following the 

pain experience, and subsequent fear and hypervigilance to pain. Previous studies 

have already found associations between fear-avoidance model and pain 

catastrophising (Crombez et al., 1999, Sullivan et al., 2002b, Boersma et al., 2004, 

Goubert et al., 2004b, Smeets et al., 2006, Vangronsveld et al., 2008, Woods and 

Asmundson, 2008). Healthy people with high pain catastrophising avoided strenuous 

muscle exercises (Sullivan et al., 2002b). Studies of chronic musculoskeletal pain 

suggested that reduction of fear of movements via graduated performance of feared 

movements had successfully reduced activity avoidance (Boersma et al., 2004, 

Woods and Asmundson, 2008). Crombez et al. (1999) also reported a correlation 

between disability and fear of pain in low back pain patients. In general, reduced fear 



9 
 

of pain and pain catastrophising has been suggested to be associated with less 

disability (Smeets et al., 2006, Vangronsveld et al., 2008).   

 

Fig.1.1 Cognitive-behavioural model of fear o f movement or (re)injury. Adapted from ‗‗ Fear o f 

movement/(re)injury in chronic low back pain and its relat ion to behavioural performance‘‘ by 

Vlaeyen et al., 1995, Pain, 62, 363-372, Fig. 1. 

1.2.4 Theories of pain catastrophising 

1.2.4.1 Appraisal model 

Jensen et al. (1991) have pointed out that pain catastrophising may be related 

to the concept of appraisal. Appraisal has been framed in the context of the 

transactional stress and coping model (Lazarus and Folkman, 1984). Lazarus and 

Folkman (1984) stated that primary appraisal concerns judgements about whether a 

potential stressor was irrelevant, benign-positive or stressful, whereas secondary 

appraisals involved in the beliefs about coping opinions and the possible 

effectiveness. According to this model, Severejins et al. (2004) proposed the 

appraisal model of pain catastrophising. In this model, magnification and rumination 

may reflect attention towards and evaluation of a threatening painful stimulus 
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(primary appraisal), whereas helplessness may reflect a maladaptive ability to cope 

with pain (secondary appraisal). In support of appraisal model of pain 

catastrophising, Williams et al. (2011) found a positive correlation between threat 

appraisal of pain and catastrophising in children suffering induced visceral 

discomfort. Of particular interest was that children with high pain catastrophising 

level showed more symptom complaints when the parents verbally expressed their 

child‘s symptoms. Other studies suggested that pain catastrophising was associated 

with other appraisal constructs, like self-efficacy (Sullivan et al., 2001b).        

1.2.4.2 Attentional model 

Excessive attention to pain is one of the key features of pain catastrophising. 

Researchers proposed that pain catastrophisers amplify the pain experience through 

exaggerating a threat value of pain stimuli or pain sensations (Eccleston and 

Crombez, 1999, Sullivan et al., 2001b, Quartana et al., 2009). Indeed, the attentional 

model of pain catastrophising is rooted in the cognitive-affective model elaborated 

by Eccleston and Crombez (1999), which addressed selected attention for pain. The 

authors suggest that when attention is interrupted by noxious stimuli, a current action 

is shifted towards an escape from a noxious stimulus. In support of this hypothesis, a 

study of a tone discrimination task during salient pain stimulation suggested that 

pain catastrophising may be involved in the process of attentional interruption 

(Crombez et al., 1998a).  

Van Damme et al. (2002b, 2004) used a cueing paradigm to investigate the 

attentional effects on pain among high and low pain catastrophisers. Results showed 

that individuals with high pain catastrophising had difficulty disengaging from pain-

related events, and showed increased attentional bias towards pain-related 
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information. In addition, their findings also suggested that high pain catastrophisers 

had difficulty utilising uncertain information about the occurrence of pain, indicating 

that high pain catastrophisers may overestimate the probability to experience pain 

(Van Damme et al., 2004). Clinical findings contributed to this suggestion by 

demonstrating that chronic back pain patients with high pain catastrophising may 

habitually overpredict the intensity of forthcoming experienced pain before exposure 

to a potentially stressing movement (Goubert et al., 2002).   

To address the role of attention in pain catastrophising, previous studies 

showed that pain catastrophising enhanced attentional bias towards pain-related 

events (Sullivan et al., 1997, Crombez et al., 1998a, Sullivan and Neish, 1999, 

Goubert et al., 2004b, Michael and Burns, 2004, Vancleef and Peters, 2006). 

Laboratory data reported that high pain catastrophisers experienced more pain when 

suppressing distress (Sullivan et al., 1997, Sullivan and Neish, 1999), and showed 

more vigilance to threatening information (Crombez et al., 1998a, Goubert et al., 

2004b). In addition, pain catastrophisers decreased their threshold and tolerance of 

cold pain sensitivity when attention was distracted by negative affective information 

(Michael and Burns, 2004), and enhanced attentional interference on the auditory 

discrimination task during electrocutaneous stimulation (Vancleef and Peters, 2006). 

Pain catastrophising has also been shown to be associated with enhanced attention to 

pain in low back pain patients (Quartana et al., 2007).  

1.2.4.3 Communal coping model 

Sullivan et al. (2001b) proposed that pain catastrophising represented an 

interpersonal manner of coping with pain. The communal coping model (Keefe et 

al., 1989, Sullivan et al., 2001b, Turner and Aaron, 2001, Turner et al., 2002) has 
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been suggested as an explanatory framework of pain catastrophising. According to 

this model, people with strong pain catastrophising are likely to minimise their 

pain-related emotional distress through maximising social proximity, or seeking 

supports or empathic responses from solicitous partners and their social 

environment. Hence, in order to maximise the probability of drawing others‘ 

attention, pain catastrophisers might subconsciously engage in a high frequency of 

pain behaviours, and amplify pain experience and negative outcomes, such as 

emotional distress and disability. In turn, pain catastrophisers, inadvertently 

accelerate and aggravate pain severity and pain-related disability. 

In support of the communal coping model, Sullivan and Neish (1999) 

recruited a group of undergraduate students and investigated them using a dental 

hygiene procedure. They found that high pain catastrophisers could benefit from 

disclosure of pain-related emotions. Several studies reported that high, compared 

to, low pain catastrophisers displayed exaggerated pain behaviours, such as facial 

expression of pain, in the presence of an observer during experimental pain 

(Sullivan et al., 2004, Vervoort et al., 2008), or in the presence of a physician 

during the medical examination (Tsui et al., 2012).  

A study of patients with a spinal cord injury reported that chronic pain 

patients living with a spouse or partner have a higher probability of catastrophising 

(Giardino et al., 2003). In a study of patients with gastrointestinal cancer pain, 

caregivers of patients who catastrophised perceived greater levels of pain and 

provided higher levels of instrumental support (Keefe et al., 2003). Cano et al. 

(2009a) suggested that pain catastrophising was associated with perceived 

entitlement to pain-related support. However, the relationship between pain 
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catastrophising and social support may also feature, in addition to supportive 

behaviour, punishing and critical responses from spouses or partners of pain 

catastrophisers (Keefe et al., 2003, Boothby et al., 2004, Cano, 2004, Buenaver et 

al., 2007). For example, Boothby et al (2004) examined the relationship between 

pain catastrophising and spouse‘s responses to pain in chronic pain patients. They 

found that pain catastrophising did not correlate with solicitous support from 

partners, rather with punishing responses from spouses. Further, Cano (2004) 

performed a hierarchical regression analysis to test the interaction between pain 

duration and catastrophising in chronic pain patients. Their study showed that pain 

catastrophising was associated with positive spouse responses during 

comparatively short period of pain, whereas it was associated with punishing 

spouse responses in the long term. In addition, Lackner and Gurtman (2004) used a 

circumplex model of interpersonal behaviour and showed that pain catastrophising 

was associated with a submissive interaction style with a high dependency and 

demand for support.  

1.2.5 Individual differences of pain catastrophising – effects of gender 

A number of studies have reported gender differences in pain 

catastrophising. Females score higher than males in pain catastrophising in both 

clinical (Jensen et al., 1994, Keefe et al., 2000) and healthy (Sullivan et al., 1995, 

Sullivan et al., 2000a, Sullivan et al., 2000b, Edwards et al., 2004) populations. 

Gender differences among healthy volunteers were also observed in the subscales 

of rumination and helplessness, with females reporting higher scores than males 

(Sullivan et al., 1995, Osman et al., 2000). Similar findings were reported in 

another two studies using a cold pressor test (Sullivan et al., 2000a, Sullivan et al., 
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2000b). In a patient population, Osman et al. (2000) found that females only 

scored higher on the rumination subscale than males.  

It has been suggested that pain catastrophising could partially mediate 

gender differences in pain intensity. Sullivan et al. (2000b) examined the gender 

differences in pain and catastrophising and found that gender effects on pain or 

pain behaviour no longer existed when pain catastrophising was statistically 

controlled. Similar findings were reported by Weissmann-Fogel et al. (2008) who 

showed that statistically significant effects of gender on diffuse noxious inhibitory 

controls disappeared after controlling for pain catastrophising. Goodin et al. (2009) 

suggested that females may reduce efficacy of diffuse noxious inhibitory controls 

due to catastrophising on pain-related events. However, results of hierarchical 

regression analyses indicated that pain threshold, tolerance, and intensity were 

consistently predicted by fear of pain rather than catastrophising after controlling 

for gender before and after a cold pressor test (Hirsh et al., 2008). Thorn et al. 

(2004) employed the path-analytic model to demonstrate that gender differences in 

catastrophising and pain responses to cold pressor pain were partially mediated by 

the Masculinity-Femininity personality trait. In accordance with Thorn et al. 

(2004), path analysis by Dixon et al. (2004) revealed that gender differences in 

pain perception were largely attributable to emotional vulnerability through 

catastrophise thinking during a cold pressor test.  

A recent literature review of 10 years of laboratory research in healthy 

people addressed the relationship between pain and gender (Racine et al., 2012a). 

They concluded that females compared to males have lower pressure pain 

thresholds and less thermal and pressure pain tolerances. In line with these 
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findings, numerous studies have shown that in comparison with males, females 

reported enhanced pain intensity (Sullivan et al., 2000a, Sullivan et al., 2000b, 

Keogh and Herdenfeldt, 2002, Edwards et al., 2004, Thorn et al., 2004), reduced 

pain threshold and tolerance (Keogh and Herdenfeldt, 2002, Edwards et al., 2004, 

Thorn et al., 2004), and greater overt pain behaviour (Sullivan et al., 2000a, 

Edwards et al., 2004). In addition, gender differences in the application of coping 

strategies have been found in both adults (Keogh and Herdenfeldt, 2002) and 

adolescents (Keogh and Eccleston, 2006). Data suggested that females benefited 

from emotional focusing, such as relying on more social support and positive self-

statements, whereas males employed behavioural distraction to cope with pain 

(Jensen et al., 1994).    

Findings on gender differences in pain perception (Racine et al., 2012a) 

shed light on the greater proneness to catastrophising in females than males. 

Racine et al. (2012b) summarised the gender effects on pain experience in four 

aspects: biological, psychological, social, and the past history. Firstly, the 

experimental evidence suggests those biological factors including hormonal 

(estrogens, stress hormones, etc.) and physiological (blood pressure regulation, 

heart rate, etc.) factors may contribute to gender differences in pain intensity 

(al'Absi et al., 2000, 2002, Aloisi, 2003, Dixon et al., 2004, Aslaksen et al., 2007). 

For instance, stress hormones may attenuate pain perception (al'Absi et al., 2000, 

2002). Compared to males, females reported higher pain intensity and lower levels 

of stress hormones during a cold pressor test (al'Absi et al., 2000, 2002). Secondly, 

pain catastrophising rather than depression and anxiety has been shown to mediate 

gender differences in pain (Sullivan et al., 2000b, Dixon et al., 2004, Thorn et al., 

2004, Hirsh et al., 2008, Weissman-Fogel et al., 2008, Racine et al., 2012b). 
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Thirdly, the role of gender expectancies on pain is an important determinant of 

pain responses between genders (Bartley and Fillingim, 2013). The female role is 

stereotypically associated with a greater perception of pain. Previous studies 

suggested that both genders believed that females were willing to report pain more 

than males (Robinson et al., 2001), and that such gender expectancies may 

influence pain perception (Fillingim et al., 2002, Robinson et al., 2003). Finally, 

only a limited number of studies indicated that past pain-related experiences may 

influence pain sensitivity in females but not in males (Fillingim et al., 1999, 2000, 

Fillingim and Edwards, 2005). Taken together, aforementioned studies suggest 

that females report greater pain intensity and engage in catastrophising more than 

males.  

1.2.6 Neural correlates of pain catastrophising 

1.2.6.1 Functional differences of pain catastrophising 

The advent of non- invasive functional neuroimaging techniques such as 

functional magnetic resonance imaging opened the possibility for evaluation of the 

neural circuits involved in the experience of pain, including the sensation of pain and 

pain-related psychological variables (Tracey, 2008, Lee and Tracey, 2013). Over the 

past ten years, only a few studies have addressed the neural correlates of pain 

catastrophising during experimental pain (Gracely et al., 2004, Seminowicz and 

Davis, 2006, Lloyd et al., 2008, Jensen et al., 2010, Burgmer et al., 2011, Vase et al., 

2012, Lin et al., 2013). In a study of fibromyalgia patients employing blunt pressure 

pain, Gracely et al. (2004) found that pain catastrophising was associated with a 

range of cortical activation in the regions of somatosensory cortex (SI/SII), inferior 

parietal cortex, thalamus, posterior cingulate cortex (PCC), prefrontal cortex (PFC), 
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and cerebellum. Especially, activations in the rostral anterior cingulate cortex 

(rACC) and left lentiform were found in patients with high pain catastrophising. 

Moreover, a study of chronic low back pain patients during intense tactile 

stimulation reported that the magnitude of PCC and parietal cortex activations 

negatively correlated with catastrophising scores in a group of patients not 

displaying pain behaviour (Lloyd et al., 2008). However, other studies in 

fibromyalgia patients showed that greater cortical activation during experimental 

pain was modulated independently of pain catastrophising (Jensen et al., 2010, 

Burgmer et al., 2011). 

  As far as healthy people are concerned, Seminowicz and Davis (2006) 

reported that pain catastrophising positively correlated with pain-related brain 

responses in the rACC, insula, PFC, putamen, and hippocampus/parahippocampal 

gyrus during mild pain. In contrast, a different pattern emerged during intense pain 

with lower pain catastrophising scores being associated with greater cortical 

activations in the prefrontal regions, posterior parietal cortex and amygdala. A recent 

study showed a similar pattern of correlations using functional neuroimaging with 

electrical stimulation of tooth pulp (Lin et al., 2013). The authors found augmented 

hippocampus activation in people with high levels of catastrophising.  

Vase et al. (2012) reported in an electroencephalography (EEG) study 

associations between pain catastrophising scores and the amplitude of the mid-

latency somatosensory evoked potential originating in the secondary somatosensory 

cortex. Taken together, previous neuroimaging and electrophysiological studies 

highlight the role of pain catastrophising in amplification of cortical activation 

during noxious stimulation.              
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1.2.6.2 Structural brain characteristics of pain catastrophising 

Voxel-based morphometry (VBM) can be used to analyse anatomical MR 

images in order to quantify macroscopic alterations in the grey and white matter of 

the brain (Ashburner and Friston, 2000). Three VBM studies have illustrated 

associations between pain catastrophising and structures of grey matter in chronic 

pain patients (Schweinhardt et al., 2008, Blankstein et al., 2010, Seminowicz et al., 

2013). Female patients with chronic vulvar pain have demonstrated local grey matter 

density increases paralleling PCS scores in the left hippocampus/ parahippocampal 

gyrus (Schweinhardt et al., 2008). A reduced volume of the dorsolateral prefrontal 

cortex (DLPFC) was found in the irritable bowel syndrome patients with high levels 

of pain catastrophising (Blankstein et al., 2010). A recent study in chronic pain 

patients following cognitive-behavioural therapy (CBT) demonstrated associations 

between grey matter density and pain catastrophising in the right hippocampus and 

right DLPFC (Seminowicz et al., 2013). Conversely, this study also reported grey 

matter volume expansions with decreased pain catastrophising in the right 

SII/SI/posterior parietal cortex, left DLPFC, left inferior frontal gyrus and pregenual 

anterior cingulate cortex after CBT (Seminowicz et al., 2013). Furthermore, a 

diffusion tensor imaging study involving patients with irritable bowel syndrome 

reported negative correlations between PCS scores and fractional anisotrophy in 

white matter in the right mid-anterior cingulum (Chen et al., 2011).   

1.2.7 Interim integrative summary 

Previous studies suggested that pain catastrophising was associated with pain 

and pain-related outcomes in both healthy and clinical populations. According to the 

attentional model, high pain catastrophisers may over-react to pain and augment their 



19 
 

attentional bias towards pain-related events. The communal coping model states that 

catastrophisers communicate their pain experiences to solicit emotional and social 

support, or empathic responses from others to minimise their emotional distress, 

although the probability of achievement of coping goals might be limited. Pain 

catastrophisers have been also shown to report stronger pain and higher demands of 

social support from others. Furthermore, several neuroimaging studies suggested that 

pain catastrophising may regulate cortical activity in regions involved in sensory, 

attentional, and affective processing of pain.  

However, cognitive and neural mechanisms underlying pain catastrophising 

still remain poorly understood. Firstly, it is unclear whether high pain catastrophisers 

would show greater sensitivity to pain cues in the absence of physical pain, such as 

vicarious pain or pain in others. Secondly, previous studies usually examined 

attentional processing indirectly by measuring the manual reaction times. Therefore, 

the entire course of attentional process has not been addressed in previous pain 

catastrophising studies. Thirdly, the neural basis of pain empathy in pain 

catastrophisers is not understood well. Further, the neural network of enhanced 

soliciting of social support in high pain catastrophisers has not been unveiled. Last 

but not least, previous studies focused on the structural brain alterations associated 

with pain catastrophising in the clinical population. It is not known whether such 

correlations exist in healthy people. Therefore, the present thesis also addressed 

associations between the brain structure and pain catastrophising in healthy people. 

1.2.8 Attentional factors 

1.2.8.1 Attentional processing and pain 
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It is largely accepted that pain can be modulated by the sensory and affective 

aspects of attention. The allocation of attentional resources to perceptual processes is 

based on the relevant information for internal goals as well as the stimulus salience 

(Legrain et al., 2009a). Two models of attentional processing have been proposed to 

illustrate the role for attention on pain: top-down and bottom-up processes (Legrain 

et al., 2009a). Top-down modulation of attention by pain is an intentional and goal-

directed process. Attention modulates perception and cognition by allocating 

attention to relevant events. Thereby, it may amplify behavioural and physiological 

responses to relevant events and attenuate responses to irrelevant events (Corbetta 

and Shulman, 2002). The bottom-up model corresponds to an involuntary capturing 

of attention by pain. Independent of intentional control, attentional capturing is often 

imposed by salient stimuli (Yantis, 2000). The salience of stimuli refers to their 

novelty, intensity and their potential threat value (Yantis, 2008).  

Top-down attention is also referred to as endogenous or sustained attention, 

whereas bottom-up attention is commonly typified as exogenous or transient 

attention (Carrasco, 2011). However, there are important differences between both 

types of attention. Endogenous attention is under clear voluntary control. Although 

exogenous cues might orient attention to their spatial location automatically, the 

action of orienting (exogenous) attention can be endogenously modulated in accord 

with task demands (Lupiáñez  et al., 2001). In addition, top-down attention is called 

sustained, since subjects typically direct their top-down attention at objects, features, 

or regions in space for sustained periods of time, whereas bottom-up attention is 

transiently captured (Hein et al., 2006). In accordance with the cognitive-affective 

model (Eccleston and Crombez, 1999), pain-related events may automatically 
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capture attention and interrupt the current action. Then, an individual may 

preferentially cope with pain in order to escape from the bodily threat.    

Neuroimaging studies have suggested that insular cortex and mid-cingulate 

cortex (MCC) are involved in the bottom-up attentional processes (Peyron et al., 

2000). Accumulating neuroimaging studies have supported the attentional function 

of MCC (Davis et al., 1997, Derbyshire et al., 1998, Peyron et al., 1999, Downar et 

al., 2002). A PET study using a factorial design to investigate the attentional 

component of pain response found that MCC was activated as a part of attention 

network involving the prefrontal and posterior parietal cortices (Peyron et al., 1999). 

The MCC was also activated in other attentional studies requiring sustained attention 

in the absence of pain, such as the Stroop test (Peyron et al., 2000). Laser-evoked 

potential studies showed that the P2 component, likely to be generated in MCC, was 

engaged in attention to pain, with novel and salient stimuli eliciting larger P2 

amplitudes (Garcia-Larrea et al., 1997, Garcia-Larrea et al., 2003, Legrain et al., 

2009b). The early N1 nociceptive-evoked responses, generated in the operculo-

insular cortex (Garcia-Larrea et al., 2003), have been related to bottom-up capturing 

of attention by pain (Iannetti et al., 2008, Legrain et al., 2009b).      

It has been suggested that top-down model can modulate the bottom-up 

mechanism of attention for pain (Legrain et al., 2009a, Legrain et al., 2012). EEG 

studies found decreased P2 amplitudes of laser evoked potentials during a distraction 

task (Legrain et al., 2005). When participants were required to direct more attention 

to the visual task, the novelty effect on P2 was reduced. Neuroimaging studies 

complemented the results by showing a reduction of activation to painful stimuli in 
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the regions of MCC and operculo- insular cortex when attention was highly 

demanded in the primary visual task (Seminowicz et al., 2004, Bingel et al., 2007).  

1.2.8.2 Alterations in attentional processing in high pain catastrophisers 

Previous studies have employed the attentional model to explain effects of 

pain catastrophising on pain perception. Van Damme et al. (2002b, 2004) carried out 

two typical attentional experiments involving pain catastrophising, and indicated that 

high, compared to low, pain catastrophisers showed an attentional bias to pain itself 

or to the threat of pain. Attentional bias, defined as selective attention towards 

concern-related information in an individual‘s environment (Roelofs et al., 2002, 

Schoth et al., 2012), has been well documented in different clinical groups, such as, 

anxiety (Bar-Haim et al., 2007), depression (Donaldson et al., 2007), heavy alcohol 

drinkers (Miller and Fillmore, 2010), and smokers (Wertz and Sayette, 2001). 

Attentional bias to pain has also been addressed in studies with experimentally 

induced pain (Van Damme et al., 2007, Van Damme et al., 2010), as well as the 

absence of pain (Pincus et al., 1998, Keogh et al., 2001, Khatibi et al., 2009, Beck et 

al., 2011, Asmundson, 2012, Crombez et al., 2013). Evidence for the role of 

attentional bias has also been demonstrated in the context of pain catastrophising 

(Sullivan et al., 1997, Crombez et al., 1998b, Michael and Burns, 2004, Vancleef and 

Peters, 2006). Michael and Burns (2004) used the cold pressor test and an 

information focus manipulation, and found that high pain catastrophisers paid more 

attention to pain-related affective words.  

It has been suggested that the prolonged experience of inescapable pain may 

lead to a high level of bodily awareness and high levels of symptom reporting in 

chronic pain (Aldrich et al., 2000). Laboratory data found that high pain 



23 
 

catastrophisers displayed hypervigilance to pain-related threat (Crombez et al., 

1998a, Goubert et al., 2004b). A study of fibromyalgia patients also suggested that 

they reported heightened vigilance to pain than patients with low back pain 

according to the self-report instruments (Crombez et al., 2004). They found that 

catastrophic thinking about pain positively correlated with vigilance to pain.   

1.2.9 Empathy for pain 

1.2.9.1 Neural basis of pain empathy 

Empathy is a capability to perceive and respond to other‘s feelings, which are 

induced by observing or imagining another person‘s affective state (Goubert et al., 

2005, de Vignemont and Singer, 2006, Singer and Lamm, 2009, Decety, 2011, 

Bernhardt and Singer, 2012). Preston and de Waal (2002) proposed an integrative 

Perception-Action Model of empathy, which suggested that observation or 

imagination of another person in a particular emotional state automatically activates 

a representation of that state in the observer, with its associated autonomic and 

somatic responses. In support of the Perception-Action Model of empathy (Preston 

and de Waal, 2002), the discovery of mirror neuron systems provided a neural 

mechanism for action observation. Neurons in the ventral premotor and parietal 

cortices were activated during execution and observation of actions in monkeys 

(Gallese et al., 1996). Growing evidence suggests that a similar neural system exists 

in the human brain (Grafton et al., 1996, Gallese et al., 2004). Subsequent 

neuroimaging studies demonstrated that similar networks of brain regions are 

activated by observing a variety of states including pain (Singer et al., 2004, Jackson 

et al., 2006), disgust (Phillips et al., 1997, Wicker et al., 2003), touch (Keysers et al., 
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2004, Blakemore et al., 2005, Ebisch et al., 2008), fear (de Gelder et al., 2004), and 

emotional facial expression (Carr et al., 2003).  

Pain is a highly complex and subjective experience influenced by memories, 

emotional, pathological and cognitive factors. Pain, of course, can be shared with 

others. Furthermore, observing vicarious pain can induce supportive behaviour or 

unpleasant feelings, and can even be perceived as painful by observers themselves 

(Bernhardt and Singer, 2012). Two fMRI studies investigated the cortical responses 

to self-experienced pain and pain observed in others (Singer et al., 2004, Singer et 

al., 2006). One of the studies found that shared neural circuits in the regions of ACC, 

anterior insula, brainstem, and cerebellum were activated in both ‗self‘ and ‗others‘ 

conditions during the noxious pain stimulation (Singer et al., 2004). Similar 

activations were reported in fair players observing others in pain (Singer et al., 

2006). Viewing human hands or feet in the painful situation has been shown to 

activate the pain empathy network (Jackson et al., 2005, Jackson et al., 2006, Cheng 

et al., 2007, Gu and Han, 2007, Morrison et al., 2007). A recent meta-analysis on 32 

fMRI studies of empathy for pain concluded that the most consistent activated 

regions were bilateral anterior insula and anterior mid-cingulate cortex (Lamm et al., 

2011). The consistency of activations in the neural networks elicited by both the 

experience of pain to oneself and the knowledge of vicarious pain supports the 

Perception-Action model that empathy for pain involves shared representations, with 

experience of pain. 

 Event-related potential (ERP) studies of empathy for pain also suggest that 

empathic response can be modulated by affective and cognitive processes (Fan and 

Han, 2008, Han et al., 2008, Decety et al., 2010, Li and Han, 2010, Ibáñez et al., 
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2011). The ERP results illustrated the temporal dynamics of empathy for pain with 

an early automatic processing component (110‒ 160 ms) over the frontal area and a 

late cognitive evaluative component, such as P3, over the centro-parietal regions 

during a pain judgement task presenting painful and non-painful picture stimuli. A 

recent ERP study also proposed that the long-lasting and late ERP positivity (late 

positive potential, LPP) engaged in the processes of empathy-related self-regulation 

with larger LPPs to painful pictures (Ikezawa et al., 2013). 

1.2.9.2 Viewing pain in others and pain catastrophising 

Goubert et al. (2005) proposed that empathy was profoundly affected by 

top-down processes driven by the observer‘s knowledge and other dispositions, 

like the observer‘s pain catastrophising. The role of observer judgement of pain 

has been well documented (Prkachin et al., 1994, Martel et al., 2011). In support 

of the communal coping model, young adults with high pain catastrophising, 

compared to those with low pain catastrophising, attributed stronger pain to 

people exposed to a cold pressor test (Sullivan et al., 2006b). Similar findings 

have been reported by Martel et al. (2008) showing healthy people viewing 

chronic pain patients lifting canisters. Their results suggested that pain estimates 

were influenced by the observer‘s level of catastrophising, with high pain 

catastrophisers estimating more intense pain in others and having a higher 

accuracy of pain judgements. In addition, parents‘ catastrophising about 

children‘s pain has been associated with overestimation of their children‘s pain 

(Goubert et al., 2009a, Esteve et al., 2013) and expression of greater negative 

feelings (Goubert et al., 2008). For parents with high pain catastrophising, 

viewing their children in pain may lead them to elicit discouragement and 
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solicitousness responses (Caes et al., 2012b, Vervoort et al., 2012, Esteve et al., 

2013).    

1.3 Problems and hypotheses  

1.3.1 Effects of pain catastrophising on the classification of ambiguous pain 

Previous studies suggested that pain catastrophising was involved in 

attentional bias towards pain-related events (Chapter 1.2.3.2 and 1.2.7.2). Pain 

catastrophising has been suggested to be associated with vigilance to a pain threat 

(Crombez et al., 1998a, Goubert et al., 2004b). Hypervigilance to pain cues and 

increased pain catastrophising were previously identified in fibromyalgia patients 

(Crombez et al., 2004). In addition, van Damme et al. (2004) suggested that high 

pain catastrophisers were struggling to employ uncertain information about 

occurrence of pain. These studies suggested that high pain catastrophisers might be 

particularly sensitive to pain cues in the presence of noise. Therefore, I have 

designed a study presenting information about pain cues masking with a varying 

level of background noise. 

 Research question 1: Does pain catastrophising influence the detection 

threshold for pain cues presented in a noisy background?  

My thesis investigated the sensitivity to initial pain cues in high and low pain 

catastrophisers during viewing of scrambled pictures containing pain, negative 

emotional scenes, and neutral objects. The following hypothesis was tested:  

 High-, compared to low, pain catastrophisers will identify pain scenes in 

scrambled pictures at a higher scrambling level (i.e., high level of 

background noise). 
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1.3.2 Effects of pain catastrophising on attention to pain in others 

Studies reviewed in Chapter 1.2.7.2 suggest that pain catastrophising is 

associated with attentional bias to pain-related stimuli and to hypervigilance to pain. 

The visual probe task has been frequently adopted for the investigation of attentional 

bias (Asmundson, 2012, Crombez et al., 2013). In a visual probe paradigm, pairs of 

visual stimuli are presented simultaneously and compete for attention. Response 

times to a series of probes are measured. Typically, a shift of attention towards the 

location of pain-related stimuli relative to neutral stimuli can be observed, indicating 

attentional bias towards pain (Keogh et al., 2001, Boston and Sharpe, 2005, Khatibi 

et al., 2009, Schoth and Liossi, 2010, Beck et al., 2011). Vervoort et al. (2011a, 2012) 

used dot-probe and visual search paradigms, and found that parents who 

catastrophised about children‘s pain strongly attended to child‘s pain more strongly 

than non-catastrophising parents. Recent studies using the dot-probe paradigm 

showed that chronic pain patients and their caregivers with high levels of fear 

selectively shifted attention towards pain faces (Khatibi et al., 2009, Mohammadi et 

al., 2012). 

Eye-tracking allows for the recording of the pattern, orientation and duration 

of eye movements (Kimble et al., 2010). It has the advantage of distinguishing 

spatial and temporal patterns of visual attention (Derakshan et al., 2009), and 

provides a continuous and non-invasive measurement of attention to visual stimuli. 

Recently, Yang et al. (2012) utilised eye tracking in a dot-probe paradigm to 

investigate the visual attention to pain in people showing high and low fear of pain. 

Their findings suggested that attentional bias towards pain words in high pain-fearful 

people occurred during the very early stages of visual information processing. Using 

the same paradigm, Vervoort et al. (2013a) investigated effects of pain 
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catastrophising on attention to facial expression of pain. Low pain catastrophisers 

initially directed their attention more quickly to pain rather than to neutral faces. 

Healthy volunteers with high pain catastrophising showed decreased tendency for an 

initial orienting to pain faces, and did not show preference for pain faces during the 

first fixation period. Interestingly, people reporting high catastrophising and pain 

sensitivity demonstrated longer fixation durations for both neutral and pain facial 

expressions. 

The knowledge about how pain catastrophising regulates attentional bias to 

others‘ pain is limited. The methodology employed in previous studies did not 

evaluate the entire duration of attentional processing, such as the initial attention 

allocation and attentional maintenance. The present thesis explores the attentional 

processing and bias towards pain in others in high and low pain catastrophisers using 

the eye tracking method.    

 Research question 2: Does pain catastrophising modulate attentional bias for 

pain in others? 

The present study utilised the visual probe task to analyse the attentional 

effects in high and low pain catastrophising people during viewing pictures depicting 

imminent (e.g. a syringe tip in contact with the skin) or highly probable pain (e.g. a 

knife cutting a cucumber while thumb likely to be cut as well) and graphically 

matched pictures with less likelihood of pain being inflicted. The following 

hypothesis was tested:  

 High-, compared to low, pain catastrophisers will attribute stronger pain to 

pain scenes, will allocate attention more quickly, and dwell on visual pain 

stimuli longer. 
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It has been suggested that attention can be captured by emotional information 

(Browning et al., 2010). Attentional bias towards negative stimuli has been 

demonstrated in previous studies involving anxiety and depression (Fox et al., 2005, 

Mathews and MacLeod, 2005). Pain-related stimuli can also capture attention due to 

their negative emotional value rather than specifically due to pain information itself. 

Therefore, to identify whether attentional processing specifically for pain or 

generally to negative affective information in high pain catastrophisers, negative 

emotional stimuli those not containing pain were employed in the second eye 

tracking study. The following hypothesis was tested:  

 High-, compared to low, pain catastrophisers will show attentional bias 

towards pain scenes and not towards negative emotional stimuli. 

1.3.3 Pain catastrophising effects on the cortical responses to viewing pain in others  

Chapter 1.2.8.2 reviewed behavioural responses to pain in others in high and 

low pain catastrophisers. High pain catastrophisers attributed stronger pain to people 

exposed to a cold pressor task (Sullivan et al., 2006b). It has also been shown that 

the level of pain catastrophising may influence estimation of other people‘s pain and 

manifest in soliciting social support (Goubert et al., 2009a, Caes et al., 2012b, 

Vervoort et al., 2012, Esteve et al., 2013). Event-related potential (ERP) technique 

has been shown to be effective for evaluating neurophysiological responses to 

emotional stimuli (Lopes da Silva, 2005). As mentioned in Chapter 1.2.8.1, ERPs 

have differentiated pictures depicting scenes with high risk of pain and those 

involving comparatively low risk of pain in healthy people (Fan and Han, 2008, 

Decety et al., 2010, Li and Han, 2010, Ibáñez et al., 2011). This type of pictures has 

been also shown in fMRI studies to activate bilateral insula and anterior cingulate 



30 
 

cortex and other regions of the brain (Singer et al., 2004, Jackson et al., 2005, 

Jackson et al., 2006, Singer et al., 2006, Cheng et al., 2007, Gu and Han, 2007, 

Akitsuki and Decety, 2009, Lamm et al., 2011).  

The neural basis of viewing greater pain in others in context of pain 

catastrophising is poorly understood. 

 Research question 3: Are the cortical processes associated with observation 

of pain in others affected by pain catastrophising? 

In this thesis, ERPs were recorded to analyse the cortical activation processes 

underlying viewing pain in others in groups of high- and low-pain catastrophisers 

during passive viewing of pain and non-pain pictures. The following hypothesis was 

tested: 

 High-, compared to low, pain catastrophisers will attribute stronger pain to 

pain scenes, and manifest stronger activation in cortical regions mediating 

emotional processing and attention. 

 

1.3.4 Pain catastrophising effects on the cortical responses to laser stimulation 

during viewing of comforting hand postures 

The communal coping model postulates that pain catastrophisers are likely to 

mitigate their pain and pain-related emotional distress through soliciting social 

support by communicating their pain to others (Chapter 1.2.3.3). It has been 

suggested that chronic pain patients with high pain catastrophising perceived greater 

levels of support from their spouse or partner (Keefe et al., 2003, Boothby et al., 

2004, Cano, 2004, Buenaver et al., 2007). Previous research showed that several pain 
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processing regions, such as anterior cingulate cortex and insula, responded to 

physical pain and vicarious pain, such as viewing pictures depicting pain in others 

(Peyron et al., 2000, Ploner et al., 2002, Garcia-Larrea et al., 2003, Singer et al., 

2004, Jackson et al., 2005, Jackson et al., 2006, Singer et al., 2006). Affective touch 

can modulate behavioural and neural responses to observed human tactile 

interactions (Bufalari and Ionta, 2013). Skin-to-skin contact is crucial for social-

interaction sub-serving non-verbal communication of intentions and emotions. A 

study of patients with heritable disorders suggested patients reported similar 

subjective pleasantness ratings to physical touch and vicarious touch (Morrison et 

al., 2011b).  

In the context of the communal coping model, high pain catastrophisers are 

more dependent on soliciting social support (Keefe et al., 1989, Sullivan et al., 

2001b, Turner et al., 2002). Therefore, it is likely that high, compared to low, pain 

catastrophisers will show reduced cortical activity to pain when viewing comforting 

hand postures compared to non-comforting hand gestures.  

 Research question 4: Are the cortical responses to noxious stimulation during 

observation of comfort-giving scenes affected by pain catastrophising? 

EEG recordings and noxious laser stimulation were used in the present thesis 

to investigate the cortical responses to experimental pain during viewing hand 

postures depicting a comforting touch, touch, and non-touch in high and low pain 

catastrophisers. The following hypothesis was tested: 

 High-, compared to low, pain catastrophisers will report smaller pain and 

manifest diminished cortical activation during viewing of comfort-giving 

hand postures. 
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1.3.5 Pain catastrophising and structural features of cortical and subcortical brain 

regions in healthy people 

VBM studies have reported a reduced grey matter volume in rACC, insular 

cortex, orbitofrontal cortex, DLPFC, temporal cortex, thalamus, and 

parahippocampal gyrus in chronic pain patients (Apkarian et al., 2004, Schmidt-

Wilcke et al., 2005, Schmidt-Wilcke et al., 2006, Kuchinad et al., 2007, Schmidt-

Wilcke et al., 2007, Davis et al., 2008, May, 2008, Valfrè et al., 2008). May (2008) 

suggested that the decreases of grey matter volume in these brain areas may refer to 

a failing inhibition of pain in chronic pain populations. The morphological findings 

associated with pain catastrophising in chronic pain patients (described in Chapter 

1.2.5.2) are partially consistent with the aforementioned studies. Methodological 

issues surrounding tissue classification or arbitrary smoothing could also affect the 

validity of VBM findings (Jones et al., 2005, Smith et al., 2006, Patenaude et al., 

2011). VBM is not suited for the study of deeper regions such as basal ganglia 

structures. Alternative methods, such as geometric shape analysis of subcortical 

structures may be preferable to VBM in identification of subtle morphological 

alterations (Patenaude et al., 2011). This method can identify the location and 

direction of complex morphological alterations through direct measurement of 

geometric shape in selected subcortial regions more precisely than VBM (Patenaude 

et al., 2011).  

Further, knowledge of structural brain features associated with pain 

catastrophising in healthy people is limited. Therefore, my thesis also focused on 

relationships between volume and shape of cortical and subcortical structures and 

pain catastrophising in healthy people.  
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 Research question 5: Is pain catastrophising in healthy people associated with 

volume and shape changes in specific brain regions? 

The method of VBM based on Diffeomorphic Anatomical Registration using 

Exponentiated Lie algebra (DARTEL) (Ashburner, 2007), and a novel technique of 

geometric shape analysis of subcortical structures have been employed. The 

following hypothesis was tested:  

 Pain catastrophising scores in healthy people will correlate with volume and 

shape changes in pain processing regions.  
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Chapter Two 

Theoretical basis of methods 

2.1. Principles of electroencephalography 

2.1.1. Physiological basis of EEG 

The human cerebral cortex contains about 100 billion neurons (Sanei and 

Chambers, 2009). Each neuron consists of cell body, axon, and dendrites. Neurons 

respond to stimuli and transmit information along the axons and dendrites. The 

neuronal electrical activation mainly includes two forms – action potentials and 

postsynaptic potentials (Luck, 2005, Mulert and Lemieux, 2010, Lopes da Silva and 

Van Rotterdam, 2011). An action potential, mediated by the sodium and potassium 

voltage - gated ion channels, is a temporary change in the membrane potential such 

that the intracellular potential suddenly decreases (depolarisation), producing a 

spike, and then quickly returns to the resting membrane potential (repolarisation) 

(Sanei and Chambers, 2009). However, action potentials mostly last between 1 and 2 

milliseconds. Scalp electrodes cannot detect action potentials as EEG signals due to 

the short latency (Koester, 1991). Instead, postsynaptic potentials, originating from 

the extracellular current flow, make up the EEG potentials. This kind of neural 

activity stems from the summation of extracellular currents from numerous 

individual neurons. To allow the potential summation to take place, the events need 

to be relatively slow, lasting tens or even hundreds of milliseconds. After an action 

potential travels along the fibre, excitatory or inhibitory neurotransmitters release 

into the synaptic cleft and act on corresponding receptors on the postsynaptic 

membrane, causing the changes of ion channels and leading to a build-up of 
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electrical potentials across the cell membrane. The summation of electrical currents 

that flow through the extracellular space is directly responsible for the generation of 

field potentials attributing to scalp potentials (Buzsáki et al., 2003, Luck, 2005, 

Mulert and Lemieux, 2010). Especially, there is a large number of similarly oriented 

pyramidal cells in the cortex. The main neurons which generated the synaptic 

potentials, fire in synchrony to produce currents in the long apical dendrites to form 

coherent magnetic fields. In this way, the voltage fluctuations of these neurons can 

be detected by EEG systems (Lorente de No, 1947, Sanei and Chambers, 2009, 

Mulert and Lemieux, 2010). 

2.1.2. EEG signal acquisition and processing 

Generally, an EEG recording consists of the measurement and amplification 

of fluctuating electrical potentials over time (Maus et al., 2011). Acquiring EEG 

signals from the brain has become vital for diagnosis and monitoring of a variety of 

diseases, such as epilepsy (Thompson and Ebersole, 1999), depression with 

cognitive impairment (Brenner, 1999), delirium (Jacobson and Jerrier, 2000, Onoe 

and Nishigaki, 2004), and Alzheimer‘s disease (Koenig et al., 2005).  

In a conventional EEG, electrodes are placed on the scalp with a conductive 

gel, paste or liquid. To allow comparisons among clinical and research studies, the 

International 10–20 system for standardised electrode placement has been widely 

utilised, which is based on relative distance measurements using internationally 

recognised anatomical landmarks (nasion, inion, left, and right mastoids) on the skull 

(Jasper, 1958, Pizzagalli, 2007). This system ensures that labelling the positions of 

individual electrode is consistent across laboratories. EEG data mainly contains three 

components: event-related potentials, EEG background signals, and artifacts. EEG 
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amplifiers amplify the EEG signal and attenuate noise. The resulting amplified EEG 

signals are digitised, and the digital recording is used for display and analysis 

purposes. EEG signals represent the potential differences between two electrodes, 

usually an active electrode and a reference electrode, meaning that the scalp 

potentials are reference-dependent (Luck, 2005). Reference electrodes can be placed 

on different sites of scalp. For instance, the average mastoids reference creates a 

zero-resistance electrical bridge between the hemispheres and references the active 

site to the average of bilateral mastoid electrodes. However, the drawback of this 

method is that it may drift away effective reference from the midline if the electrical 

resistance at each electrode differs (Luck, 2005). Therefore, the common average 

reference has been proposed as a reference- independent option (Lehmann, 1987). 

This method relies on the principle that electrical events produce both positive and 

negative poles. The integral of these potential fields in a conducting sphere sums to 

zero. Therefore, subtracting the common average reference from each channel will 

result in a reference-free EEG signals (Nunez et al., 1997, Michel et al., 2004). 

2.1.2.1. Volume conduction problem 

EEG signals can be detected due to the process of current flow between a 

generator dipole in the brain and a scalp EEG electrode. The flowing currents in the 

electrically conductive medium of the brain are called volume conduction. The 

voltage difference depends on the localisation and orientation of the dipole and the 

conductivity and resistance of the scalp, skull, cerebrospinal fluid layer and brain, 

referred to as volume conductor (Luck, 2005). Mathematical rules can be employed 

to understand the influence of volume conduction on the measures from the scalp. 

For example, as electricity spreads out through the conductor, the deeper the source 

dipole is located, the more difficult it is to detect (Klein and Thorne, 2007). 
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However, various algorithms have been developed and improved to eliminate or 

reduce effects of volume conduction (Michel et al., 2004). For instance, realistic 

head shaped volume conductor models have been shown to improve the accuracy of 

the source localisation (Fuchs et al., 2007). In realistic head models using a boundary 

element method or finite element method, the segmentation of an anatomical MRI 

scan including the interfaces is taken into account to restrict the solution space to 

structures where putative EEG sources can actually arise (Gonçalves et al., 2000, 

Michel et al., 2004, Fuchs et al., 2007). 

2.1.2.2. Filtering 

Filtering is necessary during EEG data acquisition and before or after 

averaging of event-related potentials (Luck, 2005). In terms of the ability to suppress 

or pass various different frequencies, four most common filters can be classified. The 

high-pass filters pass high frequencies and attenuate low frequencies; the low-pass 

filters remove high frequencies and pass the low frequencies. The bandpass filters 

constitute the combination of the high-pass and low-pass filters, which suppress both 

frequencies and only pass the intermediate range of frequencies. A special type of 

filter is the notch filter having a frequency of 50/60 Hz, this is employed to remove 

the narrow range of frequencies generated by line currents (Litt and Cranstoun, 2003, 

Edgar et al., 2005, Luck, 2005). Filter settings can help to enhance or attenuate brain 

activity above and below selected frequencies. Of particular importance is that high-

frequency artifacts are mainly from muscle and low-frequency artifacts from 

movement rather than brain activity (Litt and Cranstoun, 2003). In addition, filters 

can distort EEG signals and event-related potential waveforms (Luck, 2005). 

Therefore, a well-designed filter setting should be applied during EEG data 

acquisition and during processing of EEG signals.  



38 
 

2.1.2.3. Artifact rejection in EEG analysis 

During the EEG signal acquisition, various artifacts are recorded by EEG 

equipment, which do not originate from brain activity and which can contaminate 

EEG recordings. Artifacts are generally classified into two types: physiological and 

non-physiological artifacts (Klem, 2003, Luck, 2005). Physiological artifacts usually 

arise from sources within the body but not the brain, such as electrooculographic 

activity (EOG), electrocardiographic activity (ECG), electromyographic activity 

(EMG) and respiration. For instance, the EOG is a steady potential (approximately 

0.40‒ 1 mV) difference with the positive pole localised to the cornea and the 

negative pole to the retina. This electrical potential is detected by the electrodes 

surrounding the eyeball, and its voltage is greater than the cerebral potentials. When 

the eye movement occurs, the artifact generated by the EOG is detected (Klem, 

2003). Another type of artifact may originate from poor electrode-to-skin contact, or 

electronic noise from alternating current electrical appliance (causing a 50 Hz 

artifact in the recording). Such issues can be solved by manually discarding the 

contaminated trails following visual inspection. Alternatively, independent 

component analysis approach can by employed (Jung et al., 2000). With this 

approach, EOG or ECG artifacts, for instance, can be separated and extracted from 

the EEG signal in order to clean the data (Luck, 2005).  

2.1.3. Quantitative analyses of EEG 

2.1.3.1. Event-related potential analysis  

Event-related brain potentials (ERPs) are time-locked voltage fluctuations 

induced within the brain during specific sensory, motor, and cognitive processes. 

ERPs are typically triggered by an internal or external event or stimulus, and appear 
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as brain potentials, such as, visual, auditory, or somatosensory evoked potentials. 

They are utilised to investigate cognitive processing by measuring brain activity 

(Friedman and Johnson, 2000, Curran et al., 2006, Fabiani et al., 2007, Sanei and 

Chambers, 2009). ERP analysis has been employed for evaluation of brain functions 

and the clinical diagnosis of neuropsychiatric disorders, such as, depression 

(Hansenne et al., 1996), phobia (Miltner et al., 2005), and generalised anxiety 

disorder (Turan et al., 2002).  

Although ERPs are small voltages (1-30 µV) relative to spontaneous EEG 

activity, ERP waveforms can be isolated by means of averaging techniques to 

generate a robust averaged waveform. A mean ERP waveform contains positive and 

negative voltage deflections, which reflect relatively independent underlying or 

latent components (Luck, 2005). The ERP waveform can be quantitatively measured 

in terms of amplitude (i.e., how the component responds in terms of the size of the 

deflection to experimental variables), latency (i.e., the time point at which peak 

occurs), and scalp distribution (i.e., the pattern of voltage gradient of a component 

over scalp and time) (Johnson, 1992). Compared to fMRI and PET, ERP technique is 

considered to be a non- invasive and comparably inexpensive means of evaluating 

neuronal activity. ERP technique provides excellent temporal resolution and can 

detect electrical changes over the course of milliseconds (Schneider and Strüder, 

2009). However, due to the small amplitude of an ERP, it requires a large number of 

trials for averaging. Another disadvantage of ERP technique is its poor spatial 

resolution relative to hemodynamic measures. Because a given pattern of ERP data 

can be explained by infinite internal ERP generator configurations, it is difficult to 

localise exactly where ERPs are generated (Luck, 2005). Fortunately, the scalp 

distribution of the ERP components can provide complementary information to 
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amplitude and latencies for solving the problems of source localisation (Friedman 

and Johnson, 2000, Michel et al., 2004). ERPs, hence, are typically qualified with 

spatiotemporal voltage patterns to identify the temporal and spatial alternations of 

different sources (Handy, 2005). 

ERPs can be classified with regard to the sensory modality as visual-evoked 

potentials (VEP), auditory-evoked potentials (AEP), and somatosensory-evoked 

potentials (SEP). Also, they can be classified according to the latency at which their 

components occur after the onset of stimulus. The short latency components (< 100 

ms) usually are generated during early information processing stages and highly 

sensitive to physical properties, such as stimulus modality, intensity, duration, or 

repetition rate. Evoked potential components displaying predominantly sensory 

information are called exogenous components. In contrast, the long latency (> 100 

ms) components usually depend on complex tasks involving psychological stimuli, 

such as novelty and memory recall. They are considered as the endogenous 

components, and engage higher-order functional processing (Luck, 2005). Since 

ERPs generation is a continuous process, ERPs are widely used to examine both 

exogenous and endogenous components.   

2.1.3.2. Visual event-related potential 

A visual evoked potential is an evoked potential caused by a visual stimulus, 

such as the checkerboard pattern on a computer screen. There are a few typical VEP 

components, such as P1, N1 and P300. P1 component typically appears around the 

lateral occipital electrodes at 60–90 ms after the onset of stimulus peaking at 100–

150 ms (Luck, 2005). P1 wave likely originates in the extrastriate visual cortex 

(Clark and Hillyard, 1996), and is sensitive to the allocation of spatial attention 
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(Mangun and Hillyard, 1988, Fu et al., 2001), and to the subject‘s state of arousal 

(Vogel and Luck, 2000). The P1 component is followed by N1, originating in 

parietal and lateral occipital cortex, and typically peaking at 150-200 ms (Luck, 

2005).The enhancement of N1 relates to the processes of discrimination (Vogel and 

Luck, 2000). The P300 component at the central-parietal area is thought to involve 

the higher-order processes associated with memory and decision-making (Hopfinger 

and West, 2006).    

2.1.3.3. Laser evoked potential 

Pain is a complex sensory, cognitive and affective phenomenon, hence, it 

intrinsically involves both physical and psychological stimulus attributes. Laser-

evoked potentials (LEPs) have been introduced as a non- invasive tool for evaluating 

the function of central nociceptive pathways, by firing cutaneous Aδ and C-fiber 

without eliciting responses from Aβ mechanoreceptors (Bromm and Treede, 1987, 

Bromm et al., 1991, Treede and Kunde, 1995). LEPs are frequently applied in both 

basic and clinical research (Bromm et al., 1991, Kakigi et al., 1991, Treede et al., 

1991, Garcí-Larrea et al., 1997, Garcia-Larrea et al., 2002, Iannetti et al., 2003, 

Mouraux and Iannetti, 2009).  

The majority of the LEP response is formed by a negative-positive biphasic 

deflection (N2-P2), peaking at ~200–350 ms after stimulating the dorsum of the 

hand, and maximal at the scalp vertex (Bromm and Treede, 1987). A majority of 

laser-evoked potential studies reported the time window of the N2-P2 component 

(see Fig. 2.1) was consistent with the latency times of ACC activation, although 

slightly variable across studies (Tarkka and Treede, 1993, Bromm and Chen, 1995, 

Valeriani et al., 1996, Lenz et al., 1998a, Lenz et al., 1998b, Valeriani et al., 2000, 
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Bentley et al., 2002, Bentley et al., 2003, Lorenz and Garcia-Larrea, 2003). The 

generator of the N2-P2 dipole is remarkably located in the mid-portion of ACC 

(caudal anterior cingulate cortex), corresponding to Brodman‘s area 24 (BA 24) 

(Garcia-Larrea et al., 2003).  

The N2-P2 complex is preceded by an earlier N1 component around the 

temporal region contralateral to the stimulated side, peaking at ~150–160 ms (Treede 

et al., 1988). It has been suggested that this smaller negative wave overlaps with the 

larger subsequent N2 component in time and space (Treede et al., 1988, Kunde and 

Treede, 1993). Both EEG and MEG studies have proposed that the N1 component 

was generated in the parietal operculum (SII) or posterior insular region (Tarkka and 

Treede, 1993, Bromm and Chen, 1995, Kakigi et al., 1995, Valeriani et al., 1996, 

Frot and Mauguière, 1999, Ploner et al., 1999, Kakigi et al., 2000, Kanda et al., 

2000, Ploner et al., 2002, Frot and Mauguière, 2003). In accordance with 

electrophysiological studies, most imaging studies with laser stimulation reported 

bilateral distribution of increased cerebral blood flow in opercular- insular cortex (see 

(Peyron et al., 2000) for a review). Frot et al. (1999) used intracortical recordings 

and found a time lag of about 15 ms for ipsilateral N1 LEP component compared 

with the contralateral side, and concluded that bilateral opercular activation did 

engage into the early phase processing of LEPs.  
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Fig.2.1 The isopotential maps and potentials at select electrodes of grand average of LEPs at six t ime 

points: 150 ms (N1 potential, top row), 161 ms, 190 ms (N2 potential), 220 ms (N220 potential), 290 

ms (N3 potential), and 360 ms (P3 potential, bottom panel). The global field power is also shown. The 

vertical line crossing all panels indicates the peak latency of the N220 potential. Adapted from 

‗‗Emotional modulation of experimental pain: a source imaging study of laser evoked potentials‘‘ by 

Stancak and Fallon, 2013, Frontiers in Human Neuroscience, 7, Fig. 1A. 

 

In a spatial discrimination task using a laser oddball paradigm, a posterior 

distributed laser evoked P3 component (360–600 ms) is separated from P2 

component, according to the latency and topographical dissimilarities (Towell and 

Boyd, 1993, Kanda et al., 1996, Siedenberg and Treede, 1996, Legrain et al., 2002, 

Legrain et al., 2003). This component is functioning as similar to the cognitive P300 

wave, as known for the auditory P3 (Donchin and Coles, 1988) or somatosensory P3 
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(Becker et al., 1993). For instance, Kanda et al. (1996) observed stronger amplitudes 

of P3 component elicited by the rare stimuli in different modalities, such as, 

nociceptive, somatosensory, and auditory. Both EEG (Valeriani et al., 1996) and 

MEG (Watanabe et al., 1998) data suggested the P3 component was generated in the 

medial temporal region, which was located around the amygdala and hippocampi. 

Indeed, an fMRI study with laser stimulation showed evidence that bilateral 

amygdala and hippocampus where involved in pain processing (Bingel et al., 2002), 

while greater hippocampal activation is found during an unexpected pain stimulation 

(Ploghaus et al., 2000), or during painful stimulation associated with anxiety 

(Ploghaus et al., 2001). A recent EEG study with laser evoked potentials during 

affective sounds supports these results and the N3 component, peaking at 419 ms, 

was generated in the medial temporal cortex (Stancak et al., 2013).         

2.1.4. EEG source localisation 

2.1.4.1. Basis of source localisation methods 

Brain activity contains both temporal and spatial characteristics. Although 

EEG shows excellent temporal resolution, the spatial resolution of EEG is limited 

due to blurring effects of the volume conduction. To improve the spatial resolution 

of EEG, source localisation has been employed. To identify localised sources the 

voltage potential distribution over the cortices is measured to estimate the current 

sources inside the brain that best fit the EEG data (Luck, 2005, Grech et al., 2008). 

The procedure of EEG source localisation works by estimating the positions and 

orientations of the underlying source dipoles on the basis of the specified electric 

potential or magnetic field recordings from the scalp, which is called inverse 

(Hämäläinen et al., 1993, Luck, 2005) or  ‗‗underdetermined‘‘ problem. As for 
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source localisation, two main approaches are overdetermined/ equivalent dipole 

models (Scherg, 1990, Scherg and Buchner, 1993) and underdetermined/ linear 

distributed source models (Hämäläinen and Ilmoniemi, 1994, Fuchs et al., 2001). In 

the equivalent current dipole model, it is assumed that scalp EEG potentials are 

generated by one or few focal sources. Depending on a priori knowledge, the best 

source location can be found by computing the surface electric potentials, using a 

forward solution. However, during dipole modelling it is difficult to determine the a 

priori exact number of dipole sources. Considering this intrinsic limitation, the 

distributed model has received increased attention. In the linear distributed model, all 

possible source locations are considered simultaneously. Thus, there is no priori 

assumption on the number of the dipoles in the brain (Michel et al., 2004, Pizzagalli, 

2007). When using source models, regularised solutions are required to solve the ill-

posed inverse problem with many possible solutions. EEG source localisation is not 

only used in cognitive neuroscience research (Keeser et al., 2011, Valentini et al., 

2012a), but also applied in clinical neuroscience (Park et al., 2002, Paquette et al., 

2009). In the next subsections, three common approaches are introduced.  

2.1.4.2. Equivalent current dipole approaches 

2.1.4.2.1. Genetic algorithm (GA) 

GA is an optimisation algorithm based on the mechanics of natural evolution. 

It is effective in rapidly searching the global solution. In GA, an initial population of 

individuals represents a possible solution to an optimisation problem. The process is 

governed by selection, mutation and crossover. According to the principle of fitness 

function, the GA obtains the optimal solution after a series of iterative computations. 

In this case dipoles are modelled as a set of parameters that determine the orientation 
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and the location of the dipole and the error between the projected potential and the 

measured potentials is minimised by GA techniques (McNay et al., 1996, Grech et 

al., 2008).  

2.1.4.2.1. Multiple signal classification (MUSIC) algorithm 

MUSIC aims to estimate the possible number of underlying sources. The 

principle of MUSIC is to decompose the signal in order to identify underlying 

components in the time series data (Mosher and Leahy, 1998, Michel et al., 2004). In 

MUSIC, a single-dipole model within a three-dimensional head volume conductive 

model is scanned and projections onto an estimated signal subspace are computed. 

This method can solve the generalized eigenvalue problem in a way that the solution 

offers the best-fitting orientation of the dipole. However, a major problem of MUSIC 

is to choose the correct location of the source projecting to the signal subspace. To 

solve this problem, Mosher and Leahy (1999) improved the MUSIC algorithm to a 

recursively applied and projected MUSIC (RAP-MUSIC). This method uses each 

successively located source to form an intermediate array gain matrix, and projects 

both the array manifold and the signal subspace estimate into its orthogonal 

component, and thus additional fictitious source will not be found.     

2.1.4.3. Linear distributed approaches 

2.1.4.3.1. Low resolution brain electromagnetic tomography (LORETA) algorithm 

LORETA is one of the inverse solutions for localising the electrical activity 

in the brain based on scalp potentials from EEG recordings. It computes a unique 

three-dimensional distribution of the generating electrical neuronal activity based on 

the maximum smoothness of the solution (Pascual-Marqui et al., 1994, Pascual-



47 
 

Marqui, 1999). In LORETA, the solution space is restricted to cortical gray matter 

and hippocampus, as determined in the digitized Talariach atlas provide by the 

Montreal Neurological Institute (MNI; Brain Imaging Centre) standard brain 

template (Pascual-Marqui, 2002). LORETA is based on the electrophysiological and 

neuroanatomical constraints, and shares a good validation with numerous studies 

(Pascual-Marqui, 2002, Yao and Dewald, 2005), thus it is widely accepted for the 

application of source modelling. However, because of the potential for an over-

smoothed function, LORETA method has been criticised as not suitable for focal 

source estimation (Michel et al., 1999, Grave de Peralta Menendez and Gonzalez 

Andino, 2000).     

2.1.4.3.2. Local autoregressive average (LAURA) algorithm 

LAURA attempts to incorporate biophysical laws as constraints in the norm 

minimisation approach (Michel et al., 2004, Grech et al., 2008). According to the 

Maxwell equations of electromagnetic theory, the strength of each source decreases 

with the inverse of the cubic distance for vector fields and with the inverse of the 

squared distance for potential fields. Thus, this method assumes that the activity will 

decrease (or regress) according to these laws when the source is away from the 

measuring point. LAURA incorporates these biophysical laws in terms of a local 

autoregressive average with coefficients depending on the power and the distance 

from the point (Grave de Peralta Menendez et al., 2001, Grave de Peralta Menendez 

and Gonzalez Andino, 2002, Grave de Peralta Menendez et al., 2004). Consequently, 

two attributes determine the activity at any solution point: one is fixed by the 

biophysical laws, and the other is free and is determined from the data. The 

advantage of LAURA is that it makes no a priori assumptions regarding the number 

of sources and their localisations, and can deal with multiple simultaneously active 
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sources (Michel et al., 2001). It estimates 3D current density distributions using a 

realistic head model with a solution space equally distributed within the grey matter 

of the MNI standard brain. LAURA algorithm has been utilised for localising the 

cortical activity in clinical studies, such as, epilepsy (Groening et al., 2009, Elshoff 

et al., 2012), and neuroscience studies, such as, multisensory processing (Senkowski 

et al., 2007), or pain (Stancak and Fallon, 2013).  

2.1.4.3.3. Classical LORETA analysis recursively applied (CLARA) algorithm 

CLARA is an iterative application of the LORETA algorithm with an 

implicit reduction of the source space in each iteration to make distributed source 

images more focal (Hoechstetter et al., 2010). It benefits from the combination of 

discrete and distributed source analysis by employing distributed source analysis 

with a shrinking of the source space. Compared to the LORETA method (Pascual-

Marqui et al., 1994), CLARA is better suited to detect the hidden sources of neural 

activity with deblurred images (Hämäläinen et al., 2011a, Ortiz-Mantilla et al., 2012, 

Valentini et al., 2012a, Valentini et al., 2012b, Wang et al., 2013).   

2.2 Principles of magnetic resonance imaging 

2.2.1. Basic principles and physics of MRI 

          Magnetic resonance imaging (MRI) is a non-invasive medical imaging 

technique contributing to research and clinical applications. MRI signals are 

acquired by measuring the activity of protons, which most commonly uses the 

hydrogen atom, because it contains a solitary proton and processes a significant 

magnetic moment. An abundance of hydrogen protons exists in the human body. 

They spin along their axis, yielding a large aggregate magnetic moment, which is 
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referred to as a net magnetic field caused by the spinning angular momentum of H+ 

hydrogen ions (Narasimhan and Jacobs, 2002, Westbrook et al., 2005). When a 

participant is placed in a strong magnetic field, the protons spin, and align in parallel 

to the static external magnetic field (longitudinal magnetisation) (Hendee and 

Morgan, 1984). In the MR scan, a radio-frequency (RF) pulse with the precessional 

frequency, called the Larmor frequency, is applied perpendicular to the static 

magnetic field, which phenomenon is termed as resonance. The energy of the 

hydrogen, arisen from the RF pulse, causes the magnetic moment of protons to tilt in 

the main magnetic field, and induces magnetisation that  converts into a transverse 

plane (transverse magnetisation) (Hendee and Morgan, 1984, Deichmann et al., 

2010).  

Due to the limited duration of precession, once the RF pulse is removed, the 

tilted magnetisation vector tends to realign with the static magnetic field. This 

recovery process of longitudinal magnetisation is associated with the release of 

energy of hydrogen nuclei and is termed spin- lattice or longitudinal relaxation 

(Hendee and Morgan, 1984, Westbrook et al., 2005, Deichmann et al., 2010). The 

time required for the magnetic moment of the nuclei to return to equilibrium is 

known as T1 (Hendee and Morgan, 1984). Simultaneously, but independently, the 

precessing tilted magnetic moment tends to break apart through a spin dephasing 

process. This decay of coherent transverse magnetisation is due to the energy 

exchange of adjacent nuclei, named spin-spin or transverse relaxation. The time of 

the dephasing process is known as T2 (Hendee and Morgan, 1984, Narasimhan and 

Jacobs, 2002). Both relaxations are separate processes, however, T2 never exceed T1 

(Hendee and Morgan, 1984). T1 and T2 relaxation times vary in different tissues. As 

the Larmor frequency of hydrogen in lipids is lower than that of hydrogen in water, 
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lipids, relative to water, have a shorter T1 and T2 (Hendee and Morgan, 1984, 

Westbrook et al., 2005). Therefore, MR images of soft-tissue contrast can be 

manipulated widely depending on the timing parameters. By altering the repetition 

time (i.e. the interval of the entire pulse sequence, TR) or echo time (i.e., the time 

between RF pulse and response signal, TE), it is possible to alter or weight the image 

contrast for particular tissues. Short TRs and TEs produce T1-weighted images, in 

which substances with a short T1 (i.e., lipids) appear brighter. Alternatively, T2-

weighted images are obtained by long TRs and TEs. 

Spatial information about the presence of protons from the MR signal is 

captured by superimposing the magnetic field gradients, which can alter the 

magnetic field resulting in a change in resonance frequency or phase (Narasimhan 

and Jacobs, 2002). This causes a distribution of the proton‘s Larmor frequency in a 

horizontal direction throughout the time mapped onto a frequency spectrum, known 

as frequency encoding. Alternatively, the gradient field causes spins with different 

Larmor frequencies to dephase and further spatial information is encoded into a 

specific sequence of phase accumulation. This is known as phase encoding 

(Narasimhan and Jacobs, 2002, McRobbie et al., 2007, Deichmann et al., 2010). By 

tailoring the RF pulse with a same frequency used to excite proton spins, the gradient 

duration and magnitude, and combining frequency and phase encoding, pulse 

frequencies are designed to focus on selective space of the image (Narasimhan and 

Jacobs, 2002). This process of reconstruction is similar to that used in computerised 

tomography. Mathematically, MR signal is decomposed by performing a Fast 

Fourier Transformation, which permits signal to be decomposed into a sum of sine 

waves each of different frequency, phases and amplitudes, to identify the proton 

intensities across the image (McRobbie et al., 2007). The frequency and phase 
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encoding also undergo the process of Fast Fourier Transformation, resulting in the 

computation of an image by considering the intensity and location of MR signal 

(Narasimhan and Jacobs, 2002). 

2.2.2. High-resolution T1-weighted structural images 

T1-weighted anatomical magnetic resonance images display higher spatial 

resolution and are routinely acquired in neuroimaging studies. The contrast of a T1-

weighted image depends on the differences in the T1 time between lipids and water 

(Westbrook et al., 2005). A short TE and TR can enhance the T1 contrasts between 

tissues. For instance, lipid-based tissues with a short T1 generate stronger proton 

density and brighter signals than water-based tissues with a long T1. Due to the 

excellent display of boundaries between tissues, T1-weighted images are known as 

anatomical scans (McRobbie et al., 2007). In addition, T1-weighted images show a 

high contrast between grey and white matter. Thus, T1-weighted images can be used 

for tissue classification and bias correction (Ashburner and Friston, 2005). It also can 

be employed to evaluate the change in the density of grey matter, e.g.,  in voxel-

based morphometry studies of alterations of grey and white matter brain structures 

(Ashburner and Friston, 2000), or to assess subcortical alterations to geometric shape 

(Patenaude et al., 2011).  

2.3. Eye tracking technique 

2.3.1. Principles of eye tracking 

Eye tracking is an approach for measuring the eye positions at a given time, 

and/ or the pathway in which eyes are shifting from one location to another (Poole 

and Ball, 2005). According to the ‗‗eye-mind‘‘ hypothesis, proposing a relationship 
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between what the eyes are gazing at and what the mind is engaged with (Just and 

Carpenter, 1980), eye movements can provide a dynamic trace of where individual‘s 

attention is focusing on in relation to the visual display. In general, there are two 

types of eye tracking techniques: one type measuring the position of the eye relative 

to the head, and another measuring the direction of visual attention (so-called 

‗‗point-of-regard‘‘) (Duchowski, 2007). The first analytical techniques were 

proposed for the detection of eye movement through direct contact with the cornea, 

which were considered an invasive tool (Andreassi, 1989). Later, electrooculography 

(EOG) became one of the most common technologies for eye movements recording 

(Oster and Stern, 1980). This technique relied on the indirect measurement of the 

corneo-fundal potential with electrodes mounted on the skin around the eye. In the 

twentieth century, such as the eye gaze tracking techniques (e.g. the corneal 

reflection technique), more accurate and less intrusive techniques have been 

developed (Poole and Ball, 2005). Measuring eye movement metrics, such as 

fixations, saccades, gazes, and pupil size, can unveil the amount of processing being 

applied to targets at the point-of-regard. Fixations are defined as the moments when 

the eyes are relatively stationary, which moments corresponding to visual 

information encoding. Saccades are the quick eye movement between fixations. 

Gaze is the measurement of the amount of fixation durations within the area of 

interest (Poole and Ball, 2005). Eye tracking approaches have been used in a wide 

variety of disciplines, such as cognitive science (Jones et al., 2012), linguistics 

(Dickey et al., 2007) and clinical research (Kimble et al., 2010).   

2.3.2. Eye tracker 

An eye tracker is a non- invasive electronic device allowing accurate tracking 

of eye positions and pupil diameters relative to a flat surface. The most popular used 
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design for measurement of the point-of-regard is the video-based eye tracker. This 

method employs the pupil-centre corneal-reflection method to extract the eye 

position from video images (Duchowski, 2007, Hansen and Ji, 2010). The apparatus 

typically consists of a desktop computer and a table-mounted infrared camera next to 

or beneath a display monitor. In operation, infrared light firstly illuminate the eye to 

generate strong corneal reflections, causing the bright pupil effect which enhances 

the camera‘s image of the pupil (Fig. 2.2). Once the image processing software 

identifies and locates both the centres of the pupil and the corneal reflection, the 

vector between them is measured. A simple calibration procedure is routinely needed 

before any eye tracker recording, in order to relate individual‘s point-of-regard to 

locations in the computer screen (Goldberg and Wichansky, 2003, Poole and Ball, 

2005). Eye tracking techniques attribute detailed, quantitative data to the entire 

testing procedure, rather than are limited to general measurement. It also can be 

utilised with different cognitive techniques, like EEG and fMRI, for cross-discipline 

research (Holsen et al., 2008, Fan et al., 2013). However, due to strong individual 

differences (i.e. eye colour), such disadvantages can cause the failure of calibration 

and the reduction of contaminated data (Goldberg and Wichansky, 2003).   

 

Fig.2.2 Corneal reflection and bright pupil as seen in the infrared camera image. Adopted from ‗‗Eye 

tracking in human -computer interaction and usability research: current status and future prospects‘‘ 

by Poole and Ball, 2005, Encyclopedia of human computer interaction (Ghaoui, C., ed) , pp 211-219, 

Fig. 1. 
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Chapter Three 

Methods & Materials 

3.1. Experiment 1: Effects of pain catastrophising on the classification of ambiguous 

pain 

3.1.1. Subjects 

One hundred and forty nine female students of Psychology at the University 

of Liverpool were screened using the Pain Catastrophizing Scale (PCS, mean ± SD = 

19.8 ± 8.9, Med = 19 (Sullivan et al., 1995)). Subjects were excluded if they reported 

a history of neurological or psychiatric diseases or chronic pain. This study 

employed the cut-off points of upper and lower third PCS scores (Sullivan et al., 

1995) for grouping subjects as high or low pain catastrophisers. A score of > 24 

indicates high pain catastrophisers (High-Cat), and a score of < 15 indicates low pain 

catastrophisers (Low-Cat). A total of 85 healthy students with 42 High-Cat and 43 

Low-Cat people participated in this study in exchange for course credit after giving 

informed consent. The study was approved by the Research Ethics Committee of the 

University of Liverpool. All subjects had normal or corrected-to-normal vision. All 

but 4 subjects had right-hand dominance according to self-report. 

3.1.2. Materials  

Three sets of 15 grey photographs of Pain, Negative, and Neutral were used 

(Fig. 3.1). Pain pictures were similar to those used in previous studies (Jackson et al., 

2005, Jackson et al., 2006, Gu and Han, 2007, Lamm et al., 2007a, Akitsuki and 

Decety, 2009), displaying hands or feet in a situation which may cause physical pain 

(e.g., a knife slicing a cucumber and threatening to also cut a finger, or a hand 
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trapped in a door). Both Negative emotional and Neutral pictures were selected from 

the International Affective Picture System (IAPS) (Lang et al., 2008).Negative 

emotional pictures, abbreviated as Negative pictures, showed human being 

displaying sadness (e.g., crying or attending a funeral). Neutral pictures showed 

objects (e.g. a cup of coffee or a clock). It is known that the emotional state and 

arousal of the observer may be affected by hue, brightness and saturation of the 

picture colours (Valdez and Mehrabian, 1994). Therefore, all selected pictures were 

transformed into grey images (8-bit), by means of Corel PHOTO-PAINT X6 (Corel 

Corporation, Ottawa, Canada). Pictures in the three categories (Pain, Negative, 

Neutral) were graphically equivalent in terms of colour, contrasts, objects shown and 

view angles. The luminance of pictures in the three categories were equal according 

to an one-way ANOVA for repeated measures (F(2,44) = 0.04, p = 0.996. All 

pictorial stimuli were sized at 425 × 319 pixels (72 dpi). 

 

Fig. 3.1 Sample stimuli scrambled at 80%, 45%, or 0%. 
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3.1.3. Procedure 

Upon arrival at the laboratory, subjects were required to complete the Fear of 

Pain Questionnaire – III (FPQ-III (McNeil and Rainwater, 1998)), and State-Trait 

Anxiety Inventory (STAI (Spielberger et al., 1983)). 

Subjects sat in a sound and light attenuated room and viewed a 19 inch LCD 

computer monitor (60 Hz refresh rate) placed 0.7 m in front of them. At the 

beginning of each trial, a grey picture scrambled initially at 80% was centrally 

presented against a black background. Pictures were presented with the scrambling 

effect decreasing 2% per step, and each picture was displayed for 1.5 s. Subjects 

pressed the button when the original unscrambled picture emerged, or when they 

were able to identify the stimulus category. Subjects were required to select one from 

four options (‗Not sure‘, ‗Object‘, ‗Pain‘, and ‗Emotion‘) to classify the picture 

appropriately. Next, a nine-point rating scale with anchors, ‗‗not certain at all‘‘ (1) 

and ‗‗very certain‘‘ (9) was presented to evaluate the certainty of the subject‘s 

decision, in form of nine horizontally aligned white rectangles appearing on light 

yellow background. If the ‗Pain‘ option was selected, subjects were required to 

evaluate the pain contained in the picture (1 = ‗no pain at all‘, 9 = ‗worst possible 

pain‘). If the ‗Object‘ or ‗Emotion‘ options were selected, subjects were instructed to 

rate the valence of the picture content with 1 representing ‗neutral‘ and 9 

representing ‗very unpleasant‘. Each scale was presented till perceived a response or 

till a 10-second period elapsed. Fifteen pictures per block consisting of five Pain, 

five Negative, and five Neutral pictures, with a total of three blocks, were presented 

in randomised order. Before the experiment, subjects performed six practice trials, 

with two pictures of each category, to familiarise themselves with the task. These six 
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trials were contained different pictures to the experimental trials, and were excluded 

from the data analysis. 

 At the end of the experiment, subjects rated the photographs in terms of 

emotional valence and arousal using the 9-point Likert-style Self Assessment 

Manikin scales (Bradley and Lang, 1994). In addition, subjects rated the complexity 

of the picture content using a 9-point numeric scale ranging from 1 (not complex at 

all) to 9 (very complex). Another Pain Catastrophizing Scale was required to fill up 

in order to evaluate subject‘s pain catastrophising after the experiment.  

3.1.4. Data analysis 

The detection threshold, error rate, and decision confidence for Pain, 

Negative and Neutral pictures were tested for differences between pain 

catastrophising groups, measured in a two-way ANOVA for repeated measures with 

the between-subject factor of group (high vs. low pain catastrophisers), and the 

within-subject factor of picture type. Subjective ratings of valence, arousal, and 

picture complexity were also analysed using mixed 2×3 repeated measures 

ANOVAs. The P-values from the ANOVA analyses were adjusted with Greenhouse-

Geisser correction to avoid violation of the sphericity assumption, due to the picture 

factor including more than 2 levels. Student‘s paired-sample t-test was used to 

compute the contrasts between two picture conditions. Student‘s independent 

samples t-test was used to evaluate the group differences in questionnaires. In order 

to reduce the risk of type one error in multiple comparisons, Bonferroni-Šidák‘s 

adjustments of P values were applied. A 95% confidence level was employed 

throughout. Statistical analyses were carried out in SPSS 20.0 (SPSS Inc., New 

York, USA). 
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3.2. Experiment 2: Effects of pain catastrophising on attention to pain in others: an 

eye movement study 

3.2.1. Subjects  

Seventy female students of Psychology at the University of Liverpool were 

screened using the Pain Catastrophizing Scale (PCS (Sullivan et al., 1995)) 

approximately 1 week prior to the experiment. Subjects were excluded if they 

reported a history of neurological or psychiatric diseases or chronic pain, or who 

required prescription eye glasses and could not wear contact lenses instead. Nineteen 

subjects scoring greater than 24 of the Pain Catastrophizing Scale and seventeen 

subjects scoring below 15 were selected and grouped as high and low pain 

catastrophising groups, respectively. The upper and lower thirds of the distribution 

of PCS scores were used as the cut-off points. Thus, thirty-six female subjects aged 

18.9 ± 2.0 years (mean ± SD, High-Cat: 19.3 ± 2.8, Low-Cat: 18.6 ± 0.7) 

participated in the study for course credit exchange after giving their informed 

consent. The study was approved by the Research Ethics Committee of the 

University of Liverpool. All but five subjects had right-hand dominance according to 

self-report. 

3.2.2. Materials and equipment 

Visual stimuli consisted of 20 pairs of photographs with one photograph 

displaying hands or feet in situations implying pain (Pain, e.g., a knife slicing a 

cucumber and threatening to also cut a finger, or a hand trapped in a door), and one 

graphically matched control photograph not implying any pain (Non-Pain, e.g., a 

knife slicing a cumber with a knife safely away from the finger), similar to those 

used in previous studies (Jackson et al., 2005, Jackson et al., 2006, Gu and Han, 
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2007, Lamm et al., 2007a, Akitsuki and Decety, 2009). All pairs of Pain and Non-

Pain photographs were graphically equivalent in terms of colour, contrasts, objects 

shown and view angles. Visual stimuli were presented using Inquisit version 3.0 

software (Millisecond Software, Seattle, USA) on a 23- inch computer. The EYE-

TRAC D6 Desktop mounted camera (Applied Science Laboratories, Bedford, MA, 

USA), which was used to record horizontal eye movements during the task, was 

employed simultaneously with the presentation of visual stimuli.  

3.2.3. Procedure 

Upon arrival at the eye tracking lab subjects provided their informed consent 

and completed a battery of questionnaires including Interpersonal Reactivity Index 

(IRI (Davis, 1980)), Fear of Pain Questionnaire – III (FPQ-III (McNeil and 

Rainwater, 1998)), and State-Trait Anxiety Inventory (STAI (Spielberger et al., 

1983)). These questionnaires were used to evaluate any differences in empathic 

concern, fear to pain, and anxiety trait between high and low pain catastrophisers.  

Subjects sat in the sound and light attenuated room and viewed the computer 

screen placed about 1 m in front of them. The remote camera for eye tracker was 

underneath the computer screen. Subjects were required to rest the chin and forehead 

on the brace and keep their heads as still as possible during the experiment. Their 

hands were rested on a table placing on the keyboard. The eye position was 

calibrated by displaying nine white dots on the screen in a 3×3 array (with the first 

one dot at the top left and the last one at the bottom right), and participants were 

required to look at each dot in turn while their gaze direction was recorded.  

This experiment was organized into four blocks. The experiment started with 

the presentation of instruction, which illustrated the whole procedure and the 
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judgment task (e.g., pain judgment). In the visual probe task, each trial (Fig. 3.2) 

began with a 500 ms resting interval with a black fixation cross on a grey 

background. Then, a pair of matched images implying Pain and Non-Pain scenes was 

presented on the left and right sides of the grey background for 2000 ms. Subjects‘ 

eye movements were recorded during this period. After a 500 ms break, one of the 

Pain or Non-Pain images was displayed on the middle of the screen randomly for 

1000 ms until the subject gave a manual response. During the response interval, the 

following instruction was presented in the centre of the screen ―Press A if the picture 

was pain related, L if non-pain related‖, indicating participants were required to 

identify the single picture by pressing the button ‗‗A‘‘ if the picture implied pain or 

the button ‗‗L‘‘ if the picture implied non-pain. Once the key was pressed or after 

3000 ms picture onset, the probe image was removed from the screen and next trial 

was started. Between blocks, subjects were allowed to rest for one minute. The total 

of 20 pairs was presented repeatedly in random order in each of four blocks totalling 

80 trials. Pain scenes were present on the left and right sides of the screen in 

counterbalance during the whole experiment.  

At the end of the experiment, subjects rated the photographs in terms of 

emotional valence and arousal using 9-point Likert-style Self Assessment Manikin 

scales (Bradley and Lang, 1994). In addition, subjects rated the pain attributed to 

each scene using a 9-point numeric scale ranging from 1 (no pain at all) to 9 (worst 

possible pain).  
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Fig. 3.2 Flowchart of the eye movement experiment. The figure d isplays one trial of the visual probe 

task, starting with a 0.5 s rest and continuing with a pair of pictures (Pain vs. Non-Pain) for 2 s. After 

half second break, a pictorial probe (Pain or Non-Pain picture) presents for 1 s and was followed by a 

response period of 2 s during which participants pressed the keyboard button ‗A‘ or ‗L‘ to identify 

whether the probe picture implicating a Pain o r Non-Pain scene.    

3.2.4. Data reduction and analysis 

Eye movement data were analysed using ASL Results software (Applied 

Science Laboratories, Bedford, MA, USA). For each trial, gaze position was 

recorded at a sampling rate of 120 Hz during the 2000 ms in which the Pain and 

Non-Pain picture pairs were presented.  Three regions of interest were occupied in 

Pain photographs, Non-Pain photographs, and the region in between the pictures. 

Eye movement data were excluded if fixations did not direct to any of these three 

regions of interest. If eye movements were stable within 1˚ of visual angle for 100 

ms or longer, this was classified as a fixation to that position, the duration of which 

was recorded. The fixation latency was computed as the interval between the onset 

of the pictorial stimuli and the first fixation onset. Fixation was defined as being 

gazing at the left or right pictures if they were 1˚ wide of the central position on the 

horizontal plan.  
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Fixations on either picture in each pair were identified when the following 3 

conditions were satisfied: (1) subjects gazed in the central region before the picture 

onset, (2) saccades occurred at least 100 ms after picture onset (fixations with shorter 

latencies are unlikely to be related to the pictures, and may instead reflect express 

saccades or anticipatory eye movements) (Fischer and Weber, 1993), (3) subjects 

fixated on either picture rather than the central position during the picture 

presentation (Mogg et al., 2003, Field et al., 2004, Yang et al., 2012). Due to 

calibrated failure, eye movement data of eight subjects were missing (≥ 50%) and 

excluded. Therefore, data from 28 subjects (13 High-Cat and 15 Low-Cat subjects) 

were retained for data analysis.  

A 2×2 between-groups design evaluated effects of group (High-Cat vs. Low-

Cat) and picture type (Pain vs. Non-Pain) on five eye movement indices (direction 

bias of initial gaze, first fixation latency, first fixation duration, and average fixation 

duration). Subjective ratings of valence, arousal, and pain were analysed using mixed 

2×2 repeated measures ANOVAs. Student‘s independent samples t-test were used to 

evaluate the group differences in the questionnaires. In order to reduce the risk of 

type one error in multiple correlations, Bonferroni-Šidák‘s adjustments of P values 

were applied. A 95% confidence level was employed throughout, using the 

Greenhouse-Geisser correction. Statistical analyses were carried out in SPSS 20.0 

statistical analysis package (SPSS Inc., New York, USA).  

 

 

 



63 
 

3.3. Experiment 3: Effects of pain catastrophising on attention to pain in others: a 

second eye movement study  

3.3.1. Subjects  

Eighty-three female students of Psychology at the University of Liverpool 

were screened using the Pain Catastrophizing Scale (PCS, mean ± SD = 20.2 ± 9.0, 

Med = 19 (Sullivan et al., 1995)). Subjects were excluded if they reported a history 

of neurological or psychiatric diseases or chronic pain, or who required prescription 

eye glasses and could not wear contact lenses instead. Following the criteria of 

grouping in Study 1, twenty subjects scoring greater than 24 of the Pain 

Catastrophizing Scale and eighteen participants scoring below 15 were selected and 

grouped as high (High-Cat) and low pain catastrophising groups, respectively. Thus, 

thirty-eight female subjects aged 20.9 ± 3.3 years (mean ± SD, High-Cat: 19.7 ± 2.6, 

Low-Cat: 22.2 ± 3.5) participated in the study for course credit exchange after giving 

their informed consent. The study was approved by the Research Ethics Committee 

of the University of Liverpool. All but one subject had right-hand dominance 

according to self-report. 

3.3.2. Materials and equipment 

Twenty Pain and 20 graphically matching Non-Pain pictures and 20 Negative 

emotional pictures were used to create 20 Pain‒ Non-Pain picture pairs, 20 

Pain‒ Negative picture pairs, and 20 Negative‒ Non-Pain picture pairs. Pain and 

Non-Pain pictures were used as same as those in Experiment 2. Negative emotional 

pictures (abbreviated as ‗Negative‘) were selected from the International Affec tive 

Picture System (IAPS) (Lang et al., 2008). Compared to Pain pictures, Negative 

pictures did not contain bodies, injuries and wounds (e.g. a sinking ship). All 
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pictures were graphically equivalent in terms of colour, contrasts, objects shown and 

view angles. Visual stimuli were presented with the same equipment that was 

employed in Experiment 2.  

3.3.3. Procedure 

Upon arrival at the eye tracking lab subjects provided their informed consent 

and completed questionnaires the same as those in Experiment 2. Experimental 

settings for subjects, such as, eye position calibrations, were the same as the 

Experiment 2 (See Section 3.2.3 for details). 

This experiment was organized into 4 blocks. The experiment started with the 

presentation of instruction, which illustrated the whole procedure and the judgment 

task (e.g. pain judgment). In the dot-probe task, each trial (Fig. 3.3) began with a 

black fixation cross on a grey background for 1 s, which was replaced by the display 

of a pair of pictures, side by side, for 2 s. Immediately after the offset of the picture 

pair, a black dot probe (‗•‘) was presented in the position of one of the preceding 

pictures, until participants responded via a key press. Subjects were instructed to 

press the button ‗‗A‘‘ if dot probe appeared on the left side or the button ‗‗L‘‘ if on 

the right side, as quickly as possible. Each probe appeared until a response or for 1.5-

second maximum. Eye movement data were recorded during each trial, beginning 

immediately before the onset of fixation cross and terminating immediately after 

participants made a response.  

In the whole experiment, the total of 60 pairs was presented repeatedly in 

each of four blocks totalling 240 trials. Within each block the trials were presented in 

a new random order for each participant, so that the picture type position varied over 

trials. Four different presenting combinations were using the target pictorial stimuli 
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and dot probe appearing in the left or right positions of the computer screen. Two 

combinations included the target picture and the probe in the same position of the 

computer screen (i.e. once in the left side of the computer screen and once in the 

right side of the screen), which were considered as the congruent trials. Another two 

combinations were comprised of the target stimuli and the probe in the opposite 

position of the computer screen (i.e. one in the left side and the other in the right 

side), considered as the incongruent trials (MacLeod et al., 1986, Haggman et al., 

2010).  

At the end of the experiment, subjects rated the photographs in terms of 

emotional valence and arousal using 9-point Likert-style Self Assessment Manikin 

scales (Bradley and Lang, 1994). In addition, subjects rated the pain attributed to 

each scene using a 9-point numeric scale ranging from 1 (no pain at all) to 9 (worst 

possible pain).  

 

Fig. 3.3 Flowchart of the second eye movement experiment. The figure displays one trial of the visual 

probe task, starting with a 1 s rest and continuing with the presentation of a picture pair (i.e . Pain vs. 

Non-Pain) for 2 s, and followed by a dot-probe response period of 1.5 s during which participants 

pressed the keyboard button ‗A‘ or ‗L‘ to identify whether the black dot probe appeared on the left or 

right side. 
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3.3.4. Data reduction and analysis 

Eye movement data were analysed with a same protocol and procedure as 

Experimental 2 (See Section 4.2.4 for details). Data from 32 subjects (17 High-Cat 

and 15 Low-Cat subjects) were retained for data analysis.  

Based on the previous studies (Mogg et al., 2003, Gao et al., 2011, Yang et 

al., 2012), a 2×3 between-groups design evaluated effects of group (High-Cat vs. 

Low-Cat) and types of picture pair (Pain‒ Non-Pain vs. Pain‒ Negative vs. 

Negative‒ Non-Pain) on eye movement bias in attention orientation (initial gaze 

direction bias and first fixation latency bias), attention maintenance (first fixation 

duration bias and average fixation duration bias), and attention re-engagement. 

Subjective ratings of valence, arousal, and pain were analysed using mixed 2×3 

repeated measures ANOVAs. All p-values from ANOVA analyses were adjusted 

with Greenhouse-Geisser correction to avoid violation of the sphericity assumption. 

Student‘s independent samples t-test were used to evaluate the group differences in 

the questionnaires. In order to reduce the risk of type one error in multiple 

correlations, Bonferroni-Šidák‘s adjustments of P values were applied. A 95% 

confidence level was employed throughout. Statistical analyses were carried out in 

SPSS 20.0 statistical analysis package (SPSS Inc., New York, USA).  
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3.4. Experiment 4: Pain catastrophising effects on the cortical responses to viewing 

pain in others  

3.4.1. Subjects  

Ninety-nine female students of psychology from the University of Liverpool 

were initially screened using the Pain Catastrophizing Scale (PCS, mean ± SD = 19.1 

± 9.8) (Sullivan et al., 1995) approximately 2 weeks prior to the experiment. All 

students were informed that this questionnaire concerned their thoughts and feelings 

when they were experiencing pain. Students were excluded if they reported a 

medical condition associated with pain or any neurological or psychiatric disease, or 

had abnormal visual ability. Subjects having PCS scores greater than 24 or lower 

than 15 were classified as high- (High-Cat) and low (Low-Cat) pain catastrophisers, 

respectively. The cut-off points were the 66.7% and the 33.3% percentiles of PCS 

scores. Thirty females (15 High-Cat vs. 15 Low Cat) aged 20.3 ± 2.7 years (mean ± 

SD, Low-Cat: 21.1 ± 3.5, High-Cat: 19.4 ± 1.1) participated in the EEG experiment 

for course credits. All participants gave their informed consent according to 

Declaration of Helsinki. The study was approved by the Research Ethics Committee 

of the University of Liverpool. All but three subjects had right-hand dominance 

according to self-report. 

3.4 2. Procedure 

Subjects sat in a sound and light attenuated room and viewed a 19 inch LCD 

computer screen placed 0.7 m in front of them whilst holding a response keypad in 

both hands. Subjects were informed to picture the pain which they may observe in 

photographs to be presented on a computer screen. The experiment was organised 

into 4 blocks each lasting 7.3 min. Each trial (Fig. 3.4) began with a 4 s resting 
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interval during which subjects viewed a black fixation cross on a grey background. 

In each trial, a picture was presented on the grey background for 3 s followed by a 

resting interval of 2 s and a 2 s response epoch. During the response epoch, a black 

question mark was displayed prompting the participant to press one of two buttons if 

the picture was implying pain and the other button if pain was not implied in the 

scene. The side of the button associated with pain was balanced across subjects. In 

each of four blocks, 20 pain and 20 graphically matching non-pain scenes were 

presented. The scenes were similar to those used in previous studies (Jackson et al., 

2005, Jackson et al., 2006, Gu and Han, 2007, Lamm et al., 2007a, Akitsuki and 

Decety, 2009), and displayed hands or feet in the situations representing implied pain, 

such as a knife slicing a cucumber and threatening to also cut a finger, or a tip of a 

syringe needle placed on the forearm. The non-pain scenes were graphically matched 

to pain scenes but contained no potential pain threat, such as a tip of a pen placed on 

the forearm, as illustrated in Fig. 3.4. Pairs of pain and non-pain pictures were 

graphically equivalent in terms of colour, contrast, objects, and viewing angles. The 

sets of 20 pain and 20 non-pain pictures were presented at random in each of four 

blocks totalling 80 trials for each picture type. At the end of the experiment, subjects 

were instructed to rate the valence (‗‗neutral‘‘ - ‗‗very unpleasant‘‘) and arousal 

(‗‗neutral‘‘ – ‗‗very arousing‘‘) of every picture using 9-point Likert-style Self 

Assessment Manikin scales (Bradley and Lang, 1994). In addition, participants rated 

the pain attributed to each scene using a 9-point numeric scale ranging from 1 (no 

pain at all) to 9 (worst possible pain). Participants also completed the Interpersonal 

Reactivity Index (IRI) (Davis, 1980) to evaluate any differences in empathic concern 

between high and low pain catastrophisers. The IRI measures four scales of empathic 

behaviour such as empathic concerns or perspective taking.  
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Fig. 3.4 Flowchart of the pain observation experiment. The figure illustrates one trial of the 

experiment, beginning with rest (4 s) and continuing with visual presentation of a pain or non -pain 

scene for 3 s, fo llowed by another rest period of 2 s, and a response period of 2 s during which 

subjects pressed left or right button on a response pad to indicate whether the photograph depicted a 

pain or non-pain scene. 

3.4.3. Data recordings 

EEG was recorded continuously using the 128-channel Geodesics EGI 

System (Electrical Geodesics, Inc., Eugene, Oregon, USA) with the sponge-based 

Geodesic Sensor Net. The sensor net was aligned with respect to three anatomical 

landmarks including two pre-auricular points and the nasion. The electrode-to-skin 

impedances were kept below 50 kΩ and at equal levels in all electrodes. The 

recording bandpass filter was 0.1−100 Hz, and the sampling rate was 250 Hz. The 

electrode Cz was used as the reference.  

3.4.4. Data pre-processing 

EEG data was processed using BESA (Brain Electric Source Analysis) v. 6.0 

program (MEGIS GmbH, Munich, Germany). Data was spatially transformed into 

reference-free data using common average reference method (Lehmann, 1987). The 

oculographic and, when necessary, electrocardiographic artifacts were removed by 

principal component analysis (Berg and Scherg, 1994). Data was visually inspected 

for the presence of any movement or muscle artifacts, and epochs contaminated with 
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artifacts were excluded. Event related potentials (ERPs) were computed separately 

for high- and low-pain catastrophisers responses to pain- and non-pain- trials by 

averaging respective epochs in the interval ranging from 200 ms before stimulus 

onset to 1400 ms after stimulus onset. The baseline period ranged from -200 ms to 0 

ms relative to the onset of visual stimulus. ERP signals were bandpass- filtered from 

0.5 to 40 Hz. Evoked potentials from four blocks were averaged. The average 

number of epochs used was 58.4 ± 10.7 during pain scenes and 59.1 ± 11.2 during 

non-pain scenes. 

3.4.5. Source dipole analysis 

To evaluate the differences in event-related potentials between High-cat and 

Low-Cat groups during two conditions  (i.e. viewing pain vs. non-pain pictures) and 

to localise the cortical regions potentially showing significant differences related to 

pain catastrophising, the source localisations were estimated using CLARA 

(Classical LORETA Analysis Recursively Applied) (Hoechstetter et al., 2010), as 

implemented in BESA v. 6.0 program. CLARA is a novel iterative source analysis 

method which operates by performing a weighted LORETA (Low Resolution 

Electromagnetic Tomography Analysis) on each iteration, followed by source space 

reduction. Compared to the standard LORETA method (Pascual-Marqui et al., 

1994), CLARA reduces the blurring of the estimated sources while maintaining the 

advantages of a predefined distributed source model, thus making it easier to obtain a 

relative focal distribution of source activation (Hämäläinen et al., 2011b, Valentini et 

al., 2012a, Valentini et al., 2012b). It combines the advantages of discrete and 

distributed source analysis by employing distributed source analysis with a shrinking 

of the source space. A default minimum regularisation cut-off parameter was used. 
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The source image was expressed as current density within a standard MRI image 

(nAm/cm3). The ellipsoid head model was used, and the conductivities were set as 

follows: skin = 0.33 S/m, skull = 0.0042 S/m, cerebrospinal fluid = 1.0 S/m, and 

brain parenchyma = 0.33 S/m. 

The source dipole model was built by applying CLARA to grand average 

EEG waveforms comprising all subjects and both conditions. Here employed the 

iterative application of the LORETA algorithm to explain the potential changes 

occurring in the time epoch of -200 ms to 1400 ms. Four clusters have been detected 

to operate during this interval. One equivalent source dipole was placed to the spatial 

maximum of each CLARA cluster and orientation was fitted at the fixed dipole 

location. The four dipole solution accounted for 96% of variance in ERP data, and 

proved to be stable across conditions and subjects. Source locations were 

transformed to approximate Talairach coordinates using BESA v. 6.0 program.   

To evaluate statistically the effects of pain catastrophising on ERPs, the 

grand average source dipole model was used to compute individual source 

waveforms during viewing of pain and non-pain pictures in High-Cat and Low-Cat 

groups. The source waveforms were exported by fixating the source dipole locations 

and refitting the orientations of all four dipoles in each subject and condition, similar 

to previous studies (Tarkka and Treede, 1993, Schlereth et al., 2003, Gutschalk et al., 

2005, Stancák et al., 2011). 

A MATLAB v. R2011a program (The MathWorks, Inc., USA) was 

employed to analyse the average source waveforms in each of four source dipoles for 

pain and non-pain pictures in High-Cat and Low-Cat groups. In each source, 

intervals of interest have been determined by identifying the latencies in which the 
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source dipole activation displayed significant main effects (i.e. group or picture type 

effect) or interactions (i.e. group × picture type) with a P ≤ 0.05 using nonparametric 

permutation-based two-way mixed-effect model ANOVAs (Maris and Oostenveld, 

2007). Mean source activations were extracted for all participants and both 

conditions in each interval of interest per each source. A two-way mixed-effect 

measures ANOVA, involving one within-subject factor (pain vs. non-pain pictures) 

and one between-subject factor (High-Cat vs. Low-Cat groups), was performed in 

each interval of interest in SPSS 20.0 (SPSS Inc., New York, USA). 

3.4.6. Statistical analysis 

Subjective ratings of valence, arousal and pain were analysed using mixed 

2×2 mixed-effect measures ANOVAs. Scale values obtained from IRI in High-Cat 

and Low-Cat groups were compared using a Student‘s independent samples t-test. 

Pearson‘s correlation coefficients were computed to evaluate associations between 

the differences between pain and non-pain pictures in source dipole components and 

the differences in subjective scales. In order to reduce the risk of type one error in 

multiple correlations, Bonferroni-Šidák‘s adjustments of P values were applied. A 95% 

confidence level was employed throughout. Statistical analyses were carried out in 

SPSS 20.0 statistical analysis package.  
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3.5. Experiment 5: Pain catastrophising effects on the cortical responses to laser 

stimulation during viewing of comforting hand postures 

3.5.1. Subjects  

Eighty female students of Psychology at the University of Liverpool were 

initially screened using the Pain Catastrophizing Scales (PCS, mean ± SD = 16.7 ± 

10.0, Med = 19 (Sullivan et al., 1995)). All students were informed that this 

questionnaire was concerned the thoughts and feelings when they were in pain. 

Students were excluded if they reported a medical condition associated with pain or 

neurological and psychiatry diseases. The study followed the cut-off scores for 

catastrophisers proposed by Sullivan et al. (1995) to classify participants (> 24 high 

pain catastrophisers (High-Cat) and < 15 low pain catastrophisers (Low-Cat)). A 

total of 24 healthy students with 12 subjects per each group aged 20.5 ± 3.3 years 

(mean ± SD, High-Cat: 19.8 ± 3.0, Low-Cat: 21.1 ± 3.5) were selected to participate 

in the study in exchange for course credit, after giving informed consent. The study 

was approved by the Research Ethics Committee of the University of Liverpool. All 

subjects had normal or corrected-to-normal vision. All but 5 subjects had right-hand 

dominance according to self- report. 

3.5.2. Procedure 

Upon arrival at the EEG laboratory subjects were required to complete the 

Interpersonal Reactivity Index (IRI (Davis, 1980)) and State-Trait Anxiety Inventory 

(STAI (Spielberger et al., 1983)).  

Subjects sat in a sound and light attenuated room and viewed a 19 inch LCD 

computer monitor placed 0.7 m in front of them. Both of the subject‘s hands rested 
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on a wooden desk. The right hand was enclosed in a black box, and a circle of 3 cm 

in diameter was drawn on the dorsolateral part of the hand. The left hand was 

holding the mouse. The experimenter held the hand piece of the laser stimulator and 

orientated the laser beam by changing pseudo-randomly the target spot within the 

defined area on the hand, in order to avoid sensation or fatigue of primary 

nociceptive afferents. The experimenter and the participant were required to wear 

goggles to protect their eyes away from the laser beam.  

The experiment was organized into four blocks each lasting seven minutes. 

Each trial (Fig. 3.5) began with a 4 s resting interval during which subjects viewed a 

black fixation cross on a grey background. In each trial, a photograph was presented 

on the grey background for 4 s. After a 1s onset of the photograph, a laser 

stimulation was given randomly on the right hand. Each photograph was followed by 

a resting interval of 2 s and a 4 s evaluation period during which the subject was 

required to evaluate the pain perceived from the laser stimulation. An eight-point 

rating scale with anchors ‚‗‗no pain at all‖ (0) and ―worst possible pain‖ (7) was 

presented in form of eight horizontally aligned dark grey rectangles appearing on a 

light grey background. Subjects rated the intensity of their pain by repeatedly 

clicking a computer mouse with their left hand.  Three different types of images with 

40 photographs per type were presented in random order in four blocks, totalling 120 

trials. Before the experiment, subjects were informed that there were three types of 

photographs, with three hands shown in each. The single right hand (painful hand) 

was in the same uncomfortable situation as subject‘s painful hand. A pair of hands 

(comfort hands) offered different degrees of comfort-giving. In the Non-Touch 

condition, the comforting hands did not touch the painful hand; in the Touch 

condition, the comforting hands only touched the dorsolateral part of the painful 
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hand; and in the Comfort condition, the comforting hands were fully holding the 

painful hand. 

At the end of the experiment, subjects rated the photographs in terms of 

comforting, empathy and pleasantness using a 9-point numeric scale ranging from 1 

(‗neutral‘ or ‗no empathy displayed‘) to 9 (‗highly comforting‘, ‗high empathy 

displayed‘, or ‗very pleasant‘).  

Laser stimuli were applied using an Nd-YAP laser stimulator (Stim1324, 

El.En., Italy). The pulse duration was 2 ms, and the beam diameter was 4 mm. The 

intensity of the laser stimuli was adjusted individually, prior to the first block by 

incrementing the stimulus intensity from 1.25 to 1.75 J. The intensity which 

produced a moderate pain sensation, rated 3−4 on an 8-point rating scale, was used 

throughout. To ensure the stimulation intensity was as close as possible to the 

beginning intensity, the calibration procedure was repeated between blocks if 

necessary. These stimulus parameters were optimised to produce a sharp pricking 

pain mediated by Aδ fibres.  

 

Fig. 3.5 Flowchart of the comfort-g iving experiment. The figure illustrates one trial of the experiment, 

beginning with a 4 s rest and continuing with a visual display of a Non-Touch, Touch or Comfort 

photograph for 4 s, fo llowed by another 2 s rest period, and a response period of 4 s during which 

subjects repeatedly clicking the computer mouse for evaluating their pain intensity with their left 

hand. Laser stimulation was given after 1 s onset of the visual stimuli.  
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3.5.3. Data recordings 

EEG was recorded continuously using the 128-channel Geodesics EGI 

System (Electrical Geodesics, Inc., Eugene, Oregon, USA) with the sponge-based 

Geodesic Sensor Net. The sensor net was aligned with respect to three anatomical 

landmarks including two pre-auricular points and the nasion. The electrode-to-skin 

impedances were kept below 50 kΩ and at equal levels in all electrodes. The 

recording bandpass filter was 0.1−400 Hz, and the sampling rate was 1000 Hz. 

Electrode Cz was used as the reference.  

3.5.4. Data pre-processing 

EEG data was processed using BESA v. 6.0 (MEGIS, Germany). Data were 

spatially transformed into reference-free data using the common average reference 

method (Lehmann, 1987). The oculographic and, when necessary, 

electrocardiographic artifacts were removed by principal component analysis (Berg 

and Scherg, 1994). Data were visually inspected for the presence of any movement 

or muscle artifacts, and epochs contaminated with artifacts were excluded. Evoked 

related potentials (ERPs) were computed separately for high- and low-pain 

catastrophisers responses to Comfort-, Touch- and Non-Touch trials by averaging 

their respective epochs. Then, grand averaged EEG waveforms comprised of all 

subjects and all three types of pictures were constructed.  

For the analysis of ERPs to picture stimuli, each epoch started 300 ms before 

and ended 1700 ms after the pictorial stimuli, with the baseline ranging from -300 

ms to 0 ms relative to the onset of pictorial stimulus. Evoked potentials from four 

blocks were averaged. The average number of trials used was 28.1 ± 7.7 (mean ± SD) 

for Comfort photographs, 29.3 ± 6.9 for Touch photographs, and 26.3 ± 8.2 for Non-
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Touch photographs. It has been known for a high-pass filter to remove the slow 

wave activity (i.e. LPP) from the data. Studies with emotional visual stimuli 

recommended a 0.1 Hz high-pass filter for obtaining a sustained LPP (Hajcak et al., 

2007, Schupp et al., 2007, Hajcak and Olvet, 2008, Foti et al., 2009, Hajcak and 

Dennis, 2009). Therefore, in order to detect the early fast components and the slower 

frequency activity, two bandpass filters were employed for the ERP analysis – 0.1 - 

30 Hz and 2 - 40 Hz.    

For LEPs, each epoch started 200 ms before and ended 1000 ms after the 

laser stimulus onset, with the baseline ranging from -200 ms to 0 ms relative to the 

onset of laser stimulus. ERP signals were bandpass-filtered from 1 to 40 Hz. Evoked 

potentials from the four blocks were averaged. The average number of trials used 

was 33.2 ± 4.5 (mean ± SD) for Comfort photographs, 33.8 ± 4.5 for Touch 

photographs, and 31.1 ± 5.7 for Non-Touch photographs. 

3.5.5. Source dipole analysis of ERPs to picture stimuli 

To evaluate the differences in event-related potentials between High-cat and 

Low-Cat groups during three conditions (i.e. viewing Comfort, Touch, and Non-

Touch pictures) and to localise the cortical regions potentially showing significant 

differences related to pain catastrophising, the source localisations were estimated 

using the Multiple Source Probe Scan (MSPS) for model validation and the Local 

Auto-Regressive Average (LAURA) toolbox for source localization (Grave de 

Peralta Menendez et al., 2001, Michel et al., 2004), as implemented in BESA v. 6.0. 

LAURA is a method for distributed linear inverse solutions comprising biophysical 

laws as constraints, and contains a depth weighting term and a representation of a 

local autoregressive function (Grave de Peralta Menendez et al., 2001, Grave de 
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Peralta Menendez et al., 2004, Michel et al., 2004). It estimates 3D current density 

distributions using a realistic head models with the Montreal Neurological Institute‘s 

(MNI) template brain. LAURA deals with multiple simultaneously active sources 

and makes no a priori assumption about the number of activated sources and their 

locations. A default minimum regularisation cut-off parameter was used. The source 

image was expressed as current density within a standard MRI image (nAm/cm3).  

The source dipole model was built by applying MSPS and LAURA to grand 

averaged EEG waveforms comprising all subjects and all three conditions. This 

study employed the spatial weighting of the LORETA algorithm to explain the 

potential changes occurring in the time epoch of -300 ms to 1000 ms. Six clusters 

were found to operate during this interval. One equivalent source dipole was placed 

in the spatial maximum of each LAURA cluster, and orientation was fitted at the 

fixed dipole location. The six dipole solution accounted for 95.1% of variance in the 

ERP data, and proved to be stable across conditions and subjects. Source locations 

were transformed to approximate Talairach coordinates using BESA v. 6.0. For 

source localization, the ellipsoid head model was used, and the conductivities were 

set as follows: skin = 0.33 S/m, skull = 0.0042 S/m, cerebrospinal fluid = 1.0 S/m, 

and brain parenchyma = 0.33 S/m. 

3.5.6. Source dipole analysis of LEPs 

Laser evoked potentials (LEPs) were analysed using multiple source dipole 

analysis (Scherg and von Cramon, 1986). This method requires building a model 

encompassing several equivalent source dipoles placed into different cortical 

regions. As there are many alternative solutions of the inverse problem (Hämäläinen 

et al., 1993), CLARA (Classical LORETA Analysis Recursively Applied 
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(Hoechstetter et al., 2010)), as implemented in BESA v. 6.0, was employed for the 

estimation of the source localizations. It combines the advantages of discrete and 

distributed source analysis by employing distributed source analysis with a shrinking 

of the source space (Hämäläinen et al., 2011b, Valentini et al., 2012a, Valentini et 

al., 2012b). A default minimum regularisation cut-off parameter was used. The 

source image was expressed as current density within a standard MRI image 

(nAm/cm3).  

The source dipole model was built by applying CLARA to grand averaged 

EEG waveforms comprising all subjects and all three conditions. Here it employed 

the iterative application of the LORETA algorithm to explain the potential changes 

occurring in the time epoch of -200 ms to 1000 ms. Six clusters were found to 

operate during this interval. One equivalent source dipole was placed in the spatial 

maximum of each CLARA cluster and orientation was fitted at the fixed dipole 

location. The six dipole solution accounted for 92.9% of variance in LEP data, and 

proved to be stable across conditions and subjects. Source locations were 

transformed to approximate Talairach coordinates using BESA v. 6.0.  

3.5.7. Statistical analysis 

To evaluate effects of pain catastrophising on ERPs and LEPs, the grand 

average source dipole model was used to compute individual source waveforms 

during viewing of Comfort, Touch, and Non-Touch pictures in High-Cat and Low-

Cat groups. The source waveforms were exported by fixing the source dipole 

locations and refitting the orientations of all six dipoles in each subject and 

condition, similar to previous studies (Tarkka and Treede, 1993, Schlereth et al., 

2003, Gutschalk et al., 2005, Stancák et al., 2011). 
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A MATLAB v. R2011a program (The MathWorks, Inc., USA) was 

employed to analyse the average source waveforms in each of six source dipoles for 

three picture types in High-Cat and Low-Cat groups. In each source, intervals of 

interest were determined by identifying the latencies in which the source dipole 

activation displayed significant main effects (i.e. group or picture type effect) or 

interactions (i.e. group × picture type) with a p ≤ 0.05 using nonparametric 

permutation-based 2×3 mixed-effect model ANOVAs (Maris and Oostenveld, 2007). 

Mean source activations were extracted for all participants and three conditions in 

each interval of interest in each source. A two-way mixed-effect measures ANOVA, 

involving one within-subject factor (Comfort, Touch, and Non-Touch pictures) and 

one between-subject factor (High-Cat vs. Low-Cat groups), was performed in each 

interval of interest in SPSS 20.0 (SPSS Inc., New York, USA). 

Subjective ratings of pain, comforting, empathy, and pleasantness were 

analysed using mixed 2×3 mixed-effect measures ANOVAs. All p-values from 

ANOVA analyses were adjusted with the Greenhouse-Geisser correction to avoid 

violation of the sphericity assumption. Student‘s paired-sample t-test was used to 

compute the contrasts between two picture conditions. Pearson‘s correlation 

coefficients were computed to evaluate associations between the source dipole 

components of each condition and the corresponding subjective pain ratings to laser 

stimulation. A Student‘s independent samples t-test was used to evaluate the group 

differences in IRI and STAI scales. In order to reduce the risk of type one error in 

multiple correlations, Bonferroni-Šidák‘s adjustments of P values were applied. A 95% 

confidence level was employed throughout. Statistical analyses were carried out in 

SPSS 20.0 (SPSS Inc., New York, USA). 
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3.6. Experiment 6: Pain catastrophising and structural features of cortical and 

subcortical brain regions in healthy people 

3.6.1. Subjects 

Fifty-two individuals (37 females) between the ages of 19 and 51 were 

recruited through a campus advertisement. Subjects were excluded if they reported a 

history of major disease, neurological or psychiatric diseases, or chronic pain. 

Informed consent was obtained from all subjects in accordance with the Declaration 

of Helsinki. The study was approved by the Research Ethics Committee of the 

University of Liverpool. All subjects were compensated for time and travel 

expenses. 

3.6.2. MRI data acquisition 

Subjects attended the Magnetic Resonance and Image Analysis Research 

Centre (MARIARC) at the University of Liverpool. Before their MR scan, all 

subjects underwent a safety screening, interviewed by a senior radiologist to confirm 

their suitability for the session. They were also required to complete several 

questionnaires: Pain Catastrophizing Scale (PCS (Sullivan et al., 1995)), Fear of Pain 

Questionnaire – III (FPQ-III (McNeil and Rainwater, 1998)), and State-Trait Anxiety 

Inventory (STAI (Spielberger et al., 1983)).  

Magnetic resonance imaging was performed with a 3-Tesla Trio whole body 

scanner (Siemens, Magnetom, Erlangern Germany) and an 8-channel head coil. A 

high-resolution three-dimensional structural T1-weighted image was acquired for 

each subject using a modified driven equilibrium Fourier transform (MDEFT) 

sequence with the following parameters: TR = 7.92 ms, TE = 2.48 ms, flip angle = 
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16°, 176 sagittal slices, slice thickness = 1mm, matrix = 256 × 256, in-plane voxel 

size = 1 mm × 1 mm, total acquisition time = 12:51 mins. The same scanner and the 

same scanning protocol were used for all subjects.  

3.6.3. Pre-processing and voxel based morphometry analysis 

Voxel-based morphometry (VBM) analysis was used to investigate the 

correlations between pain catastrophising and grey matter (GM) and white matter 

(WM) volumes, using the Statistical Parametric Mapping 8 package (SPM8, 

Welcome Trust Centre for Neuroimaging, University College London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/) implemented in Matlab R2011a (The Mathworks 

Inc, USA). The pre-processing was based on the Diffeomorphic Anatomical 

Registration using Exponentiated Lie algebra (DARTEL (Ashburner, 2007)) for 

diffeomorphic image registration. DARTEL has been formulated to include an 

option for estimating inverse consistent deformations. Nonlinear registration is 

considered as a local optimisation problem, which is solved using the Levenberg-

Marquardt strategy. A constant Eulerian velocity framework is used, which allows a 

rapid scaling and squaring method to be used in the computers. Such a technique 

improves the inter-subject registration. As DARTEL produces more accurate 

registration (Klein et al., 2009), it allows improved sensitivity such as that needed to 

evaluate the relationship between the regional GM volume and pain catastrophising.  

DARTEL processing included several steps, as follows. (1) Setting the T1-

weighted MR image origin to the anterior commissure. (2) Segmenting the adjusted 

images using the New Segmentation algorithm in SPM8 toolbox (Ashburner and 

Friston, 2005). The resulting GM and WM images were rigidly registered onto their 

common mean image. (3) Estimating the deformations from each subject‘s data to a 
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common, average template using an iterative procedure. (4) Matching the custom 

template created in the previous step to Montreal Neurological Institute (MNI) space, 

using an affine registration to map the custom coordinate space to the more standard 

MNI space. (5) Applying the modulation with the Jacobian determinants to preserve 

the amount volume of grey or white matter in the images, so that they were the same 

as those in the original images. (6) Finally, Smoothing the images using an isotropic 

Gaussian kernel of 10 mm full width at half maximum.  

Correlations between pain catastrophising scores and GM, WM, 

cerebrospinal fluid (CSF) volumes, and the total intracranial volume (TIV), obtained 

in the brain segmentation step of the image pre-processing, were evaluated, using 

Pearson‘s correlation analysis. TIV was calculated as the sum of the GM, WM, and 

CSF volumes. The distributions of age, PCS, FPQ-III, and STAI scores were tested 

using the normality test. All statistical comparisons were performed in SPSS v.20 

(SPSS Inc, Chicago, USA), with a Bonferroni correction of p < 0.05. 

A multiple regression analysis was performed to investigate the correlations 

between grey matter alterations and pain catastrophising after adjusting for age, 

gender, fear of pain and anxiety. Pain catastrophising scores were used as the 

independent variable, regional GM volume was used as the dependent variable, and 

age, gender, scores of FPQ-III and STAI were used as the covaiates. Clinical VBM 

studies have reported that it is too conservative to obtain results with the rigorous 

statistical family-wise error (FWE) correction thresholds used in the statistical 

parametric mapping voxel-wise analysis of the whole brain, since pain-related grey 

matter alterations may be small (Schmidt-Wilcke et al., 2005, Rocca et al., 2006, 

Schmidt-Wilcke et al., 2006, Valfrè et al., 2008, Schmidt-Wilcke et al., 2010). 
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Alternatively, as in a previous paper (Schmidt-Wilcke et al., 2006), an uncorrected 

threshold of p < 0.001 (with a cluster extent of 50 contiguous voxels) for multiple 

comparisons at a voxel level throughout the whole brain was employed in the 

conventional VBM analysis. A brain mask was employed on both the GM and WM 

to avoid possible edge effects around the border between the two.  

3.6.4. Subcortical shape analysis  

All high-resolution T1-weighted images were processed and analysed with 

FSL version 4.1.9 (FMRIB Software Library, Oxford, UK, 

http://www.fmrib.ox.ac.uk/fsl). After extracting the brain of the T1-weighted MR 

images (to exclude the skull and other tissues) using brain extraction tool (BET), 

FMRIB‘s integrated registration and segmentation tool (FIRST) was applied for the 

evaluation of deep subcortical structures (Patenaude, 2007). FIRST performs both 

registration and segmentation of 15 subcortical structures (brainstem, left and r ight 

of nucleus accumbens, amygdala, caudate, hippocampus, palladium, putamen and 

thalamus). This method is based on multivariate Gaussian shape/appearance models, 

using a large, manually labelled data set as a training template wherein the 

subcortical structures are parameterised as surface meshes with established vertices 

(Patenaude et al., 2011). During registration, T1-weighted MR images were 

transformed to the MNI 152 standard space, by means of 12 degrees of freedom 

affine registration (i.e. three translations, three rotations, three scaling and three 

skews). Subsequently, a subcortical mask template was applied, followed by 

segmentation based on shape and voxel intensities. In an automated process, the 

extracted images are affine registered (12 degrees of freedom) to the training 

template and subsequently to the MNI 152 standard space subcortical mask template. 
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Finally, shape and intensity models in the images are used to automatically segment 

the structures. This method of shape analysis was recently validated and shown to be 

consistent over a variety of magnetic field strengths and acquisition systems (Goodro 

et al., 2012). 

Correlations between shape alternations and PCS scores were assessed on a 

per-vertex basis. FIRST generates a surface mesh for each structure in each subject 

with a deformable mesh model. The vertex number and its correspondence are fixed 

so that corresponding vertices can be compared across subjects in standard MNI 

space, using a multivariate GLM with Pillai‘s trace as the test statistic. Regional 

changes in the vertices across all subjects were examined with F-statistics using PCS 

scores as a continual regressor and gender as a covariate (Patenaude et al., 2011). 

The results were corrected for multiple comparisons using the false discovery rate 

method (FDR, p < 0.05) (Benjamini and Hochberg, 1995). The statistic was rendered 

on the shape surface, providing a map of the regions where the structure changed 

significantly with the changing of PCS scores.   

The subcortical surfaces generated for each subject are transformed back to 

the original space and boundary correction before the volume of each structure is 

measured in cubic millimetres (mm3). For each subcortical structure, a linear 

regression model was designed, in which the PCS scores were included as the 

dependent variables and the volume of each structure as independent variables in 

SPSS v. 20 (SPSS Inc, Chicago, USA), with the Bonferroni correction of p < 0.05.  
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Chapter Four 

Results 

4.1. Experiment 1: Effects of pain catastrophising on the classification of ambiguous 

pain 

Hypothesis:  

High-, compared to low, pain catastrophisers will identify pain scenes in 

scrambled pictures at a higher scrambling level (i.e., high level of background noise).  

4.1.1. Demographic characteristics 

Age and scores (mean ± SD) of the Pain Catastrophizing Scales, Fear of Pain 

Questionnaire – III, and State-Trait Anxiety Inventory in high and low pain 

catastrophising groups are shown in Table 4.1. Pain catastrophising scores showed 

statistically significant differences between subjects with high and low pain 

catastrophising traits, before (t(83) = 23.6, P < 0.0001) and after (t(83) = 21.6, P < 

0.0001) the experiment. Paired t-tests illustrated that there was no significant 

difference within groups between the PCS scores before and after the experiment 

(t(84) = -1.6, P > 0.05), suggesting the recruited participants were fit to their pain 

catastrophising traits. The High-Cat group compared to the Low-Cat group scored 

significantly higher in FPQ-III (t(83) = 4.6, P < 0.0001). No further significant group 

differences were found in STAI. 

4.1.2. Picture ratings 

Table 4.2 shows the mean values of valence, arousal and complexity for the 

three types of pictures in High-Cat and Low-Cat groups. A significant main effect of 
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picture type appeared differently in terms of valence (F(2,166) = 695.0, P < 0.0001), 

arousal (F(2,166) = 420.6, P < 0.0001), and complexity (F(2,166) = 195.7, P < 

0.0001) which was due to the fact that, Negative pictures compared to Pain and 

Neutral pictures were considered as the most negatively affective, the strongest 

arousal, and the most complex to recognise. In addition, high pain catastrophisers 

attributed stronger negative emotion (F(1,83) = 7.8, P = 0.007) and arousal (F(1,83) 

= 6.4, P = 0.013) to all three picture types, relative to low pain catastrophisers. There 

were also significant interactions between pain catastrophising and picture type for 

valence (F(2,166) = 5.5, P = 0.005) and arousal (F(2,166) = 6.2, P = 0.007). Pairwise 

comparisons revealed that High-Cat subjects reported statistically significant 

stronger negative affect (F(1,83) = 10.4, P = 0.002) and arousal (F(1,83) = 10.1, P = 

0.002) to Pain pictures, compared with Low-Cat participants, but not to Negative and 

Neutral pictures (P > 0.05). No further significant main effect of pain 

catastrophising, or interaction, were found for complexity (P > 0.05). 

Table 4.1 Participant characteristics during the observation of scrambled pictures. 

Values are mean ± standard deviation (SD).   

 High pain catastrophisers Low pain catastrophisers 

Age 20.0 ± 2.3 21.3 ± 3.1 

Pain Catastrophizing Scale 

(Before) 

31.0 ± 5.3 8.1 ± 3.5 

Pain Catastrophizing Scale 

(After) 

31.8 ± 6.2 8.8 ± 3.2 

Fear of Pain Questionnaire-III 94.1 ± 14.2 78.4 ± 17.4 

State-Trait Anxiety Inventory 

(State) 

44.5 ± 5.4 44.7 ± 4.2 

State-Trait Anxiety Inventory 

(Trait) 

46.1 ± 5.4 45.4 ± 4.3 
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Table 4.2 Subjective ratings of valence, arousal and complexity for observed 

pictures. Mean ± standard errors of picture valence, arousal and complexity 

attributed to Negative, Neutral and Pain pictures in high and low pain catastrophising 

groups. 

 High pain catastrophisers  Low pain catastrophisers 

 Negative Neutral Pain Negative Neutral Pain 

Valence 6.7 ± 0.2 1.0 ± 0.0 5.4 ± 0.2 6.3 ± 0.2 1.0 ± 0.0 4.4 ±0.2 

Arousal 6.1 ± 0.2 1.0 ± 0.0 4.5 ± 0.2 5.7 ± 0.2 1.0 ± 0.0 3.4 ± 0.2 

Complexity 4.4 ± 0.3 1.3 ± 0.1 2.5 ± 0.2 4.6 ± 0.3 1.6 ± 0.1 2.7 ± 0.2 

 

4.1.3. Error rate 

Error rate was defined as the percentage of incorrect responses. Incorrect 

responses were considered as the target stimulus being reported as one of the other 

two categories. For example, if a subject reported a Negative picture (Target 

stimulus) as belonging to the Pain category, it was defined as an incorrect response. 

The mean percentages of total error rate were 4.2 ± 4.7 (%, mean ± SD) in High-Cat 

and 3.6 ± 3.6 (%) in Low-Cat groups (t(83) = 0.7, P > 0.05). A 2 × 3 ANOVA for 

repeated measures demonstrated that Negative pictures had the highest error rates in 

comparison with Neutral and Pain pictures (F(2,166) = 26.8, P < 0.0001). No 

significant group differences and interactions between pain catastrophising and 

picture type were found (P > 0.05). Table 4.3 shows mean values of the error rate for 

these three picture types in high and low pain catastrophising groups. 
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Table 4.3 Error rates of observed pictures. Mean ± standard errors of the error rate 

(%) for Negative, Neutral, and Pain pictures in high and low pain catastrophisers  

Target Negative Neutral Pain 

Response Neutral Pain Negative Pain Negative Neutral 

High-Cat 0.1 ± 0.0 3.2 ± 0.6 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.2 

Low-Cat 0.1 ± 0.0 2.1 ± 0.5 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.1 ± 0.2 

Notes: High-Cat = high pain catastrophisers, Low-Cat = low pain catastrophisers.  

4.1.4. Target detection 

Of particular interest was whether the high, compared to the low, pain 

catastrophising group would detect pictures with pain content at a higher scrambling 

level and with stronger confidence. Fig. 4.1 shows the detection threshold and 

confidence ratings for high and low pain catastrophisers for Negative, Neutral, and 

Pain pictures. A 2 × 3 ANOVA for repeated measures revealed a statistically 

significant main effect of picture types with a large effect size (F(2,166) = 68.9, P < 

0.0001, ηp
2 = 0.45). Paired-sample t-tests showed that Pain pictures were detected at 

a higher level of detection threshold compared to Negative pictures (t(84) = 8.0, P < 

0.0001), but at a lower level of detection threshold relative to Neutral pictures (t(84) 

= -2.8, P = 0.007). The main effect of pain catastrophising was statistically non-

significant (F(1,83) = 1.5, P = 0.225, ηp
2 = 0.018), although mean thresholds 

indicated that High-Cat subjects (44.5% ± 1.3%) detected all pictures at a higher 

scrambling percentage than Low-Cat subjects (42.3% ± 1.2%). There was no 

statistically significant interaction of pain catastrophising group by picture type 

(F(2,166) = 1.8, P = 0.176, ηp
2 = 0.021).  

As far as decision confidence is concerned, a statistically significant main 

effect of picture types (F(2,166) = 17.5, P < 0.0001, ηp
2 = 0.174) was found. Subjects 
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had less confidence in their decision when detecting Negative compared to Pain 

(t(84) = -3.3, P = 0.001) or Neutral (t(84) = -5.3, P < 0.0001) pictures. However, 

neither the main effect of group (F(1,83) = 2.0, P = 0.162, ηp
2 = 0.02) nor the 

interaction between group and picture types (F(2,166) = 0.3, P = 0.759, ηp
2 = 0.003) 

was statistically significant.  

In addition, Student‘s independent t-test confirmed that subjects with high 

pain catastrophising (5.0 ± 0.9, mean ± SD) attributed significantly stronger pain to 

Pain pictures (t(83) = 2.4, P = 0.02) during detecting the scrambled pictures, 

compared to low pain catastrophising group (4.4 ± 1.3). A 2 × 2 repeated measures 

ANOVA of valence with the two groups and two picture types (Negative vs. Neutral 

pictures) showed a significant effect of picture type (F(1,83) = 848.7, P < 0.0001, ηp
2 

= 0.911). Results indicated Negative, relative to Neutral pictures, were considered as 

more negatively affective while subjects were detecting the scrambled pictures. No 

further significant group main effect or interaction was found (P > 0.05).  

 

Fig. 4.1 Detection threshold and confidence for the scrambled pictures. Detection threshold and 

confidence ratings on Negative, Neutral, and Pain p ictures, are shown separately for high and low 

pain catastrophisers. A. Detection threshold. B. Confidence ratings. Error bars: 95% confidence 

intervals.  
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4.2. Experiment 2: Effects of pain catastrophising on attention to pain in others: an 

eye movement study  

Hypothesis: 

High-, compared to low, pain catastrophisers will attribute stronger pain to 

pain scenes, will allocate attention more quickly, and dwell on visual pain stimuli 

longer. 

4.2.1. Participant characteristics 

Age and scores of the Pain Catastrophizing Scales, Fear of Pain 

Questionnaire-III, State-Trait Anxiety Inventory and Interpersonal Reactivity Index 

and its subscales are shown in Table 4.4. A significant difference in pain 

catastrophising scores between High-Cat and Low-Cat groups was shown (t(26) = 

13.5, p < 0.0001). The pain catastrophising scores in both groups were comparable 

with previous studies involving grouping of subjects into high- and low pain 

catastrophising groups based on Pain Catastrophizing Scales (Sullivan et al., 1995, 

Sullivan and Neish, 1999, Crombez et al., 2004, Van Damme et al., 2004). The 

High-Cat group, compared with the Low-Cat group, scored significantly higher in 

FPQ-III (t(26) = 2.6, p = 0.017) and STAI Y-1 (right now feeling) (t(26) = 2.5, p = 

0.018), but not in  STAI Y-2 (general feeling), IRI and its subscales (p > 0.05). A 

positive significant correlation between Fear of Pain and STAI Y-1 was found (r(28) 

= 0.467, p = 0.012). These results suggest that High-Cat subjects displayed stronger 

characteristics of pain catastrophising (i.e. fear of pain and emotional distress), 

relative to Low-Cat subjects. 
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Table 4.5 shows the mean values and standard error of affective valence, 

arousal and pain for both types of photographs in High-Cat and Low-Cat groups. 

The 2 × 3 ANOVAs for repeated measures revealed that the two types of pictures 

were perceived differently in term of valence (F(1,26) = 246.6, p < 0.0001), arousal 

(F(1,26) = 94.9, P < 0.0001), and pain (F(1,26) = 403.8, p < 0.0001). Subjects 

considered Pain, compared to Non-Pain, pictures as more negative affective, eliciting 

stronger arousal, and containing greater pain. A main effect of group was found in 

valence (F(1,26) = 9.1, p = 0.006) and pain (F(1,26) = 7.9, p = 0.009). The effect was 

due to stronger negative emotion and stronger pain attributed by High-Cat people to 

both types of pictures compared to Low-Cat group. There were also significant 

group × picture type interactions for valence (F(1,26) = 4.2, p = 0.05) and pain 

(F(1,26) = 7.6, p = 0.011). Pairwise comparisons implicated that high pain 

catastrophisers, relative to low pain catastrophisers, reported statistically significant 

stronger negative emotion to both Pain (F(1,26) = 7.8, p = 0.01) and Non-Pain 

pictures (F(1,26) = 5.6, p = 0.025). High pain catastrophisers reported much more 

pain to Pain pictures (F(1,26) = 8.1, p = 0.008), relative to low pain catastrophisers, 

but not Non-Pain pictures (p > 0.05).  
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Table 4.4 Participant characteristics in the eye movement study. Mean ± standard 

deviation of participant characteristics in all and both high- and low pain 

catastrophisers.  

 All High-Cat  Low-Cat 

Age 18.9 ± 2.0 19.3 ± 2.8 18.6 ± 0.7 

PCS 18.5 ± 12.0 30.3 ± 4.0 8.2 ± 4.6 

Fear of Pain 80.2 ± 20.0 89.7 ± 18.5 72.0 ± 17.9 

STAI Y-1 44.8 ± 5.2 47.2 ± 5.0 42.7 ± 5.7 

STAI Y-2 45.4 ± 6.9 45.1 ± 8.2 45.6 ± 5.7 

IRI 68.8 ± 13.1 70.3 ± 17.2 67.5 ± 8.5 

Perspective Taking 17.1 ± 4.9 16.3 ± 5.5 17.7 ± 4.4 

Fantasy  16.8 ± 6.1 18.7 ± 4.5 15.1 ± 6.9 

Empathic Concern 20.3 ± 4.4 18.9 ± 5.8 21.4 ± 2.3 

Personal Distress 14.6 ± 6.0 16.4 ± 6.0 13.1 ± 5.6 

Note: PCS = Pain Catastrophizing Scale, STAI Y-1 = State-Trait Anxiety Inventory (right now 

feeling), STAI Y-2 = State-Trait Anxiety Inventory (general feeling), IRI = Interpersonal Reactivity 

Index, High-Cat = high pain catastrophisers, Low-Cat = low pain catastrophisers. 

Table 4.5 Subjective ratings to the observed pictures in the eye movement study. 

Mean ± standard error of valence, arousal and pain attributed to visual scenes 

implying or not implying pain in groups of high- and low pain catastrophisers.  

 High pain catastrophisers Low pain catastrophisers 

 Pain scenes Non-pain Scenes Pain scenes Non-pain Scenes 

Valence 5.8 ± 0.4 1.8 ± 0.2 4.3 ± 0.3 1.3 ± 0.1 

Arousal 5.0 ± 0.5 1.7 ± 0.1 4.0 ± 0.5 1.3 ± 0.1 

Pain 6.1 ± 0.4 1.4 ± 0.1 4.7 ± 0.3 1.2 ± 0.1 

 

4.2.2. Direction of initial fixation 

Eye movement (EM) direction bias scores were obtained for each participant 

by calculating the number of trials when first gaze was directed at the Pain picture as 

a percentage of total trials in which a fixation was made on either the Pain or Non-
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Pain picture. Scores greater than 50% reflect a bias in initial orienting towards Pain 

pictures, relative to Non-Pain pictures (50% indicates no bias). High and low pain 

catastrophisers directed their first fixations at Pain pictures on 49.3% (SD = 3.8) and 

50.3% (SD = 5.9) trials, respectively, and there was no significant different between 

groups (t(24) = -0.5, p > 0.05). To examine whether participants preferentially 

oriented their first fixation towards Pain, rather than Non-Pain, pictures, their bias 

scores were compared with 50%. The percentage of first fixation directed at Pain 

pictures was not statistically significant in High-Cat (t(10) = -0.6, p > 0.05) and 

Low-Cat (t(14) = 0.2, p > 0.05) groups. Results indicate that groups directed their 

attention towards Pain or Non-Pain pictures without differences. 

4.2.3. First fixation latency 

The mean first fixation latency of Pain and Non-Pain pictures is shown in 

Fig. 4.2A and Table 4.6. A repeated measures ANOVA with group (High- vs. Low-

Cat participants) as a between-subject variable and picture type (Pain vs. Non-Pain) 

as a within-subject variable reported that neither main effects of group (F(1,26) = 

0.029, p > 0.05, ηp
2 = 0.001) and picture type (F(1,26) = 1.02, p > 0.05, ηp

2 = 0.038), 

nor group × picture type interaction (F(1,26) = 0.899, p > 0.05, ηp
2 = 0.033) were of 

significance. Bias in first fixation latencies for Pain and Non-Pain picture pairs was 

evaluated by subtracting the first fixation latency of the Non-Pain picture from the 

first fixation latency of the Pain picture in each trial. An independent-samples t-test 

revealed that high pain catastrophisers did not differ with the low pain 

catastrophising group in the bias of their initial fixation latency towards Pain pictures 

(t(26) = -1.0, p > 0.05).  
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Table 4.6 Eye movement data in the eye movement study. Mean ± standard error of 

eye movement data (in milliseconds) in high and low pain catastrophisers for Pain 

and Non-Pain pictures. 

  High-Cat Low-Cat 

First fixation latency (ms)    

 Pain 539.0 ± 39.6 540.5 ± 34.4 

 Non-Pain 560.0 ± 43.1 541.2 ± 30.7 

First fixation duration (ms)    

 Pain 283.7 ± 31.5 271.5 ± 20.7 

 Non-Pain 257.7 ± 20.8 248.7 ± 16.2 

Average fixation duration 

(ms) 

   

 Pain 715.6 ± 82.5 691.5 ± 73.8 

 Non-Pain 492.4 ± 50.0 490.8 ± 49.8 

 

4.2.4. First fixation duration 

Initial fixation duration bias scores for Pain vs. Non-Pain picture pair was 

obtained by subtracting the first fixation duration of each Non-Pain picture from the 

fixation duration of the corresponding Pain picture in each trial. Pain catastrophising 

group differences in first fixation duration towards Pain pictures (t(26) = 0.2, p > 

0.05) were not significant. The ANOVAs of first fixation duration showed a 

statistically significant main effect of picture type (F(1,26) = 7.5, p = 0.011, ηp
2 = 

0.225), indicating that subjects spent more time of their initial gaze on Pain, 

compared to Non-Pain, pictures (Fig. 5.2B, Table 5.6). No further group main effect 

(F(1,26) = 0.12, p > 0.05, ηp
2 = 0.005) or interaction (F(1,26) = 0.031, p > 0.05, ηp

2 = 

0.001) was found.  

4.2.5. Average fixation duration 
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Average fixation duration bias scores were calculating by subtracting the 

gaze duration of Non-Pain picture from the gaze duration of Pain picture per trial. 

The comparison between groups did not yeild the significance (t(26) = 0.3, p > 0.05). 

The ANOVA for repeated measures found that Pain, compared to Non-Pain, pictures 

obtained significantly more attention over the course of each trial (F(1,26) = 39.1, p 

< 0.0001, ηp
2 = 0.601) (Fig. 4.2C, Table 4.6). Pain catastrophising group differences 

in gaze duration were not significant (F(1,26) = 0.022, p > 0.05, ηp
2 = 0.001), nor 

was the group × picture type interaction (F(1,26) = 0.1, p > 0.05, ηp
2 = 0.004).  

 

Fig. 4.2 Fixation time (in milliseconds) to Pain and Non-Pain p ictures. Mean first fixat ion latency 

(A), mean first fixation duration (B), and mean gaze duration (C) on Pain and Non-Pain pictures for 

high and low pain catastrophisers. Pain = Pain p ictures, Non-pain = Non-Pain p ictures. High-Cat = 

high pain catastrophisers, dark rectangle bars. Low-Cat = low pain catastrophisers, grey rectangle 

bars. Error bars: 95% confidence intervals.  

 

4.2.6. Correlations between EM data and subjective ratings  

Pearson‘s correlations were performed between EM data (i.e. first fixation 

latency, first fixation duration, and gaze duration) and subjective ratings of valence, 

arousal and pain in High-Cat and Low-Cat groups for Pain and Non-Pain pictures. In 

order to reduce the risk of type one error in multiple correlations, Bonferroni‘s 

adjustments of P values were applied. A 95% confidence level was employed 

throughout. Two statistically significant corrections were found. First fixation 
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latencies of Pain pictures were significantly positively correlated with arousal (r(13) 

= 0.6, p = 0.017) in people with high pain catastrophising. In addition, a statistically 

significant negative correlation between gaze duration of Non-Pain pictures and the 

corresponding subjective pain ratings was found in High-Cat group (r(13) = -0.6, p = 

0.026). Fig. 4.3 illustrates the scatter plots and linear regression lines for the valence, 

arousal and pain ratings and first fixation latency for Pain pictures and gaze duration 

for Non-Pain pictures in High-Cat and Low-Cat groups, respectively. Results 

indicate that high pain catastrophisers initially engaged with Pain pictures later if 

considered as stronger subjective arousal, and maintained attention on Non-Pain 

pictures when considered as containing less pain.  

 

Fig. 4.3 Correlat ions between fixation time of pictures and subjective ratings. Scatter plots and the 

linear regression lines illustrating the associations between subjective ratings of valence, arousal, and 

pain during viewing Pain (A) and Non-Pain (B) pictures, and the corresponding fixat ion time (in 

milliseconds) between high and low pain catastrophisers. A. Relationships between first fixation 

latency to Pain pictures and subjective ratings. B. Correlations between gaze duration to Non -Pain 

pictures and subjective ratings. High-Cat = h igh pain catastrophisers, dark circles, solid lines. Low-

Cat = low pain catastrophisers, white circles, dashed lines. 
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4.2.7. Reaction time (RT) to probes  

Mean and standard deviation (mean ± SD) of RTs to probes replacing Pain 

and Non-Pain pictures were 1401 ± 321 ms and 1458 ± 297 ms in the High-Cat 

group, and 1393 ± 367 ms and 1386 ± 352 ms in the Low-Cat group. A 2× 2 

repeated measures ANOVA with group and RT to probe (Pain vs. Non-Pain 

pictures) did not show any significant main effects (picture type: F(1,26) = 0.671, p 

> 0.05, ηp
2 = 0.025; group: F(1,26) = 0.107, p > 0.05, ηp

2 = 0.004) or interaction 

effect (F(1,26) = 1.07, p > 0.05, ηp
2 = 0.04). Results suggest that subjects did not 

perform differently when detecting Pain and Non-Pain pictures. 

To evaluate the degree of correct discrimination between Pain and Non-Pain 

pictures, a two-way ANOVA for repeated measures with groups and correct 

responses to the pictures was employed. No significant main effects or interactions 

were found (p > 0.05), indicating subjects were capable to respond correctly to Pain 

and Non-Pain pictures behaviourally, and both groups performed similarly in 

discrimination of both picture types.  
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4.3. Experiment 3: Effects of pain catastrophising on attention to pain in others: a 

second eye movement study 

Hypothesis: 

High-, compared to low, pain catastrophisers will show attentional bias 

towards pain scenes and not towards negative emotional stimuli. 

4.3.1. Participant characteristics 

Table 4.7 summarises subjects‘ characteristics, including age and scores 

(mean ± SD) of the Pain Catastrophizing Scales, Fear of Pain Questionnaire – III,  

State-Trait Anxiety Inventory, and Interpersonal Reactivity Index and its subscales. 

Statistically significant pain catastrophising group differences were found in PCS 

(t(30) = 14.9, p < 0.001), FPQ-III (t(30) = 3.6, p = 0.001), IRI (t(30) = 2.4, p = 

0.023), and Fantasy scale (t(30) = 2.1, p = 0.05). Results implicate that high pain 

catastrophisers displayed stronger characteristics of pain catastrophising, such as fear 

of pain and dispositional empathy, compared with low pain catastrophisers. No 

further significant group differences were observed in STAI.  

Table 4.8 shows the mean values and standard error of affective valence, 

arousal and pain for Negative, Pain, and Non-Pain pictures in the groups with high 

and low pain catastrophising traits. A significant main effect of picture type showed 

differently in terms of valence and arousal which was due to the fact that, Negative 

pictures compared to Pain and Non-Pain pictures were considered as the most 

negative affective (F(2,60) = 211.4, p < 0.0001) and the strongest arousal (F(2,60) = 

176.0, p < 0.0001). In addition, High-Cat, compared with Low-Cat, groups attributed 

greater negative emotion (F(1,30) = 5.3, p = 0.028) to all three types of pictures. The 
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interaction of group by picture type for valence (F(2,60) = 2.0, p = 0.145) was not 

significant. However, pairwise comparisons revealed that high, relative to low, pain 

catastrophisers reported statistically significant stronger negative emotion to Pain 

pictures (F(1,30) = 6.6, p = 0.016), but not the other two types of pictures (p > 0.05). 

Subjects with high, compared with low, pain catastrophising scored Pain and Non-

Pain pictures containing more pain with marginal significance (F(1,30) = 3.6, p = 

0.068). A significant main effect of picture type (Pain vs. Non-Pain) was also found 

indicating that subjects attributed more pain to Pain than Non-Pain pictures (F(1,30) 

= 401.6, p < 0.0001). The interaction between group and picture type (Pain vs. Non-

Pain) was not significant (F(1,30) = 0.7, p > 0.05).  

Table 4.7 Participant characteristics in the second eye movement study. Mean ± 

standard deviation of participant characteristics in all and both high- and low pain 

catastrophisers.  

 High pain catastrophisers 

(N = 17) 

Low pain catastrophisers 

(N = 15) 

Age 19.9 ± 2.8 22.3 ± 3.8 

PCS 32.3 ± 5.1 9.0 ± 3.8 

Fear of Pain 93.5 ± 16.9 69.9 ± 20.2 

STAI Y-1 44.1 ± 6.8 44.5 ± 4.0 

STAI Y-2 46.6 ± 4.6 44.9 ± 3.2 

IRI 69.7 ± 8.1 60.6 ± 12.4 

Perspective Taking 17.1 ± 3.6 15.9 ± 5.2 

Fantasy  19.9 ± 4.5 15.7 ± 6.7 

Empathic Concern 19.6 ± 3.0 17.6 ± 3.0 

Personal Distress 13.2 ± 4.6 11.4 ± 4.2 

Note: PCS = Pain Catastrophizing Scale, STAI Y-1 = State-Trait Anxiety Inventory (right now 

feeling), STAI Y-2 = State-Trait Anxiety Inventory (general feeling), IRI = Interpersonal Reactivity 

Index, High-Cat = high pain catastrophisers, Low-Cat = low pain catastrophisers. 
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Table 4.8 Subjective ratings to observed pictures in the second eye movement study. 

Mean ± standard error of valence, arousal and pain attributed to Negative, Pain, and 

Non-Pain pictures in groups of high- and low pain catastrophisers.  

 High pain catastrophisers Low pain catastrophisers 

 Negative Pain Non-Pain Negative Pain Non-Pain 

Valence 6.0 ± 0.3 5.1 ± 0.2 1.5 ± 0.2 5.6 ± 0.3 4.0 ± 0.4 1.3 ± 0.1 

Arousal 5.7 ± 0.3 4.8 ± 0.2 1.6 ± 0.1 5.4 ± 0.3 4.0 ± 0.4 1.3 ± 0.1 

Pain _ 5.1 ± 0.2 1.4 ± 0.1 _ 4.6 ± 0.3 1.2 ± 0.1 

 

4.3.2. EM bias in attentional orientation  

Eye movement (EM) direction bias scores were obtained for each subject by 

calculating the number of trials when first gaze was directed at the target picture as a 

percentage of total trials in which a fixation was made on the paired-match picture. 

Target pictures were Pain pictures in Pain‒ Non-Pain pair, Negative pictures in 

Negative‒ Non-Pain pair, and Pain pictures in Pain‒ Negative pair. The ANOVAs 

reported null effects of group (F(1,30) = 0.5, p > 0.05), picture pair (F(2,60) = 1.1, p 

> 0.05), and group × picture pair (F(2,60) = 0.1, p > 0.05). On average, the 

proportions of first fixations to Pain (High-Cat: 49.7% ± 5.7%, M ± SD, Low-Cat: 

49.5% ± 4.1%) and Negative (High-Cat: 51.6% ± 7.6%, Low-Cat: 51.1% ± 10.9%) 

pictures that were paired with Non-Pain pictures were not significantly larger than 

50% that reflects a bias in initial orienting towards Pain pictures in high (Pain: t(15) 

= -0.2, p > 0.05, Negative: t(14) = 0.8, p > 0.05) and low (Pain: t(14) = -0.4, p > 

0.05, Negative: t(14) = 0.4, p > 0.05) pain catastrophisers. Thus, subjects with high 

and low pain catastrophising scores did not show preferential patterns of first 

fixation orientation on Pain, Non-Pain, and Negative pictures. 
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Bias in initial gaze latencies for three picture pairs were evaluated by 

subtracting the first fixation latency of the control picture from the first fixation 

latency of the target picture in each trial. Neither significant main effects of group 

(F(1,30) = 0.3, p > 0.05, ηp
2 = 0.009) or picture pair (F(2,60) = 0.7, p > 0.05, ηp

2 = 

0.01), nor interaction of group by picture pair (F(2,60) = 0.2, p > 0.05, ηp
2 = 0.006) 

emerged (Fig. 4.4A, Table 4.9). Repeated measures ANOVAs for each picture pair 

were also performed. Only Pain‒ Non-Pain pair showed a significant main effect of 

picture type (F(1,30) = 5.2, p = 0.029, ηp
2 = 0.148), suggesting that subjects showed 

shorter initial fixation latencies toward Non-Pain pictures than those of Pain pictures. 

No further main effects or interactions were found (p > 0.05).  

4.3.3. EM bias in attentional maintenance 

First fixation duration bias scores for three picture pairs were obtained by 

subtracting the first fixation duration of the paired-match picture from the first 

fixation duration of the target picture in each trial. The repeated measures ANOVAs 

did not yeild any significant main effects of group (F(1,30) = 0.1, p > 0.05, ηp
2 = 

0.003) or picture pair (F(2,60) = 2.5, p > 0.05, ηp
2 = 0.078), or group × picture pair 

interaction (F(2,60) = 0.7, p > 0.05, ηp
2 = 0.025) (Fig. 4.4B, Table 4.9).  

Average fixation duration bias scores were calculated by subtracting the gaze 

duration of control picture from the gaze duration of target picture per trial. Null 

effects of group (F(1,30) = 0.006, p > 0.05, ηp
2 < 0.0001), picture pair (F(2,60) = 0.9, 

p > 0.05, ηp
2 = 0.028), and interaction by group × picture pair (F(2,60) = 0.1, p > 

0.05, ηp
2 = 0.003) were found (Fig. 4.4C, Table 4.9). Another repeated measures 

ANOVA with a between-subject variable (group) and two with-subject variables 

(bias scores for Pain‒ Non-Pain pair vs. Negative‒ Non-Pain pair) was performed. 
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Although neither the main effect for pain catastrophising (F(1,30) < 0.0001, p > 

0.05, ηp
2 < 0.0001), nor interaction (F(1,30) = 0.6, p > 0.05, ηp

2 = 0.019) was 

significant, a main effect emerged for picture pair (F(1,30) = 5.5, p = 0.026, ηp
2 = 

0.155). ANOVAs for these two picture pairs revealed that the significant main effect 

of picture type emerged in the Pain‒ Non-Pain pair (F(1,30) = 15.0, p = 0.001, ηp
2 = 

0.333), but not the Negative‒ Non-Pain pair (F(1,30) = 0.1, p > 0.05, ηp
2 = 0.002). 

Interestingly, according to the figure, longer gaze durations for Pain pictures and 

shorter gaze durations for Negative pictures when competing with Non-Pain pictures 

were observed in High-Cat subjects. No further significant effects were found (p > 

0.05). Results indicated that participants spent significantly longer time gazing at 

Pain pictures than Negative pictures.  

4.3.4. EM bias in attentional re-engagement 

The index of fixation frequencies was employed to evaluate the pattern of 

disengagement from particular stimulus types followed by re-engagement toward 

these stimuli. Fixation frequency bias score was calculated by subtracting the total 

number of gazes on each paired match picture from the corresponding target picture 

in each trial. Neither differences of pain catastrophising groups or picture types, nor 

interaction were significant. However, ANOVAs for repeated measures showed 

significant main effects of picture type in Pain‒ Non-Pain (F(2,60) = 6.6, p = 0.016) 

and Negative‒ Non-Pain (F(2,60) = 7.6, p = 0.01) picture pairs. Results suggest 

participants made more frequent fixations on Pain and Negative pictures than Non-

Pain pictures.   
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Fig. 4.4 Fixation time (in milliseconds) to Pain and Negative pictures paired with Non-Pain pictures 

in high and low pain catastrophising groups.  

 (1) The first column shows fixation time fo r Pain‒ Non-Pain and Negative‒ Non-Pain picture pairs in 

both groups. First four rectangle bars represent the fixation time to Pain and Non-Pain pictures, while, 

the rest four represent those of Negative and Non-Pain p ictures, respectively. (2) The second column 

illustrates fixation time for Pain‒ Non-Pain pair in two groups, respectively. (3) The last column 

indicates fixat ion bias scores toward Pain and Negative pictures for high and low pain catastrophisers. 

Fixation bias scores were calculated by subtracting fixation time for Non-Pain p ictures from fixation 

time fo r Pain or Negative pictures in each trial. A. First fixation latency. B. First fixat ion duration. C. 

Gaze duration. Pain = Pain pictures, Nopain = Non-Pain pictures, Neg = Negative pictures. High-Cat 

= high pain catastrophisers, dark rectangle bars. Low-Cat = low pain catastrophisers, grey rectangle 

bars. Error bars: 95% confidence intervals.  
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Table 4.9 Eye movement data in the second eye movement study. Mean ± standard 

error of eye movement data in high and low pain catastrophisers for Pain, Non-Pain, 

and Negative pictures. 

  High-Cat Low-Cat 

First fixation latency (ms)    

Pain‒ Non-Pain Pain 637.1 ± 39.9 654.8 ± 32.7 

 Non-Pain 609.3 ± 32.2 605.7 ± 40.4 

Negative‒ Non-Pain Negative 619.9 ± 28.8 661.0 ± 36.0 

 Non-Pain 586.5 ± 18.5 639.7 ± 32.8 

Pain‒ Negative Pain 621.6 ± 30.5 673.2 ± 35.2 

 Negative 624.0 ± 34.7 647.3 ± 31.0 

First fixation duration (ms)    

Pain‒ Non-Pain Pain 254.0 ± 15.8  263.0 ± 16.8 

 Non-Pain 243.4 ± 13.7 266.2 ± 16.6 

Negative‒ Non-Pain Negative 257.5 ± 12.7 277.5 ± 14.2 

 Non-Pain 242.8 ± 14.0 259.2 ± 16.0 

Pain‒ Negative Pain 245.1 ± 12.7 273.8 ± 20.3 

 Negative 268.4 ± 12.9 277.7 ± 17.1  

Average fixation duration 

(ms) 

   

Pain‒ Non-Pain Pain 354.4 ± 43.3  391.3 ± 48.3 

 Non-Pain 283.1 ± 35.2 338.0 ± 47.1 

Negative‒ Non-Pain Negative 322.6 ± 34.4 371.0 ± 57.4 

 Non-Pain 323.8 ± 41.3 354.5 ± 54.1 

Pain‒ Negative Pain 333.1 ± 45.0 380.3 ± 52.5 

 Negative 311.9 ± 36.4 353.8 ± 54.5 

Total fixation counts (N)    

Pain‒ Non-Pain Pain 11.4 ± 0.5 11.0 ± 0.3 

 Non-Pain 10.8 ± 0.4 10.6 ± 0.5 

Negative‒ Non-Pain Negative 11.2 ± 0.5 11.5 ± 0.5 

 Non-Pain 10.6 ± 0.6 10.6 ± 0.3 

Pain‒ Negative Pain 11.1 ± 0.6 10.9 ± 0.4 

 Negative 11.1 ± 0.6 10.6 ± 0.4 
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4.3.5. Correlations between EM data and subjective ratings 

Pearson‘s correlations between EM data (i.e. first fixation latency, first 

fixation duration, and fixation duration) and subjective ratings of valence and arousal 

for three picture types, and pain for Pain and Non-Pain pictures in groups of high and 

low pain catastrophising were carried out. Three statistically significant correlations 

were found. For Negative‒ Non-Pain pair, first fixation latencies of Non-Pain 

pictures significantly negatively correlated with subjective ratings of valence (r(15) 

= -0.6, p = 0.02), arousal (r(15) = -0.7, p = 0.006), and pain (r(15) = -0.6, p = 0.02) in 

the Low-Cat group only. In addition, the correlations between initial gaze duration of 

Pain pictures and valence were statistically significant for Pain‒ Non-Pain (r(17) = -

0.6, p = 0.011) and Pain‒ Negative (r(17) = -0.5, p = 0.033) pairs in high pain 

catastrophisers. Fig. 4.5 demonstrates the scatter plots and linear regression lines for 

the valence, arousal and pain ratings and first fixation latency in Negative‒ Non-Pain 

pair, first fixation duration in Pain‒ Non-Pain and Pain‒ Negative pairs for groups of 

high and low pain catastrophising, respectively. Results implicate that greater 

negative emotion, stronger arousal, and more subjective pain to Non-Pain pictures 

for Negative‒ Non-Pain pair was related to faster initial attention in the Low-Cat 

group, and High-Cat subjects spent less time initially gazing at Pain pictures if 

considered as containing greater negative affect.  
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Fig. 4.5 Correlat ions between first fixation time to Pain and Non-Pain pictures. Scatter plots and the 

linear regression lines demonstrating relationships between subjective ratings of valence, arousal, and 

pain during view Non-Pain (A) and Pain (B and C) pictures, and the corresponding first fixation time 

(in milliseconds) between participants with high and low pain catastrophising scores. A. Relationships 

between first fixat ion latency to Non-Pain p ictures in Negative‒ Non-Pain picture pair and subjective 

ratings. B. Correlations between first fixat ion duration to Pain pictures in Pain‒ Non-Pain picture pair 

and subjective ratings. C. Associations between firs fixation duration to Pain p ictures in 

Pain‒ Negative pair and subjective ratings. High-Cat = h igh pain catastrophisers, dark circles, solid 

lines. Low-Cat = low pain catastrophisers, white circles, dashed lines. 

 

4.3.6. Reaction time (RT) to probes 

Attentional bias scores in RT were calculated with the formula [(PlDr – PrDr) 

+ (PlDl – PrDl)]/2 (Macleod and Mathew, 1988), where P = Pain or Negative 

pictures, D = dot probe, l = left, and r = right. Positive values were indicative of 

vigilance (i.e. faster RT to probes after Pain pictures than probes after Non-Pain 

pictures), zero scores reflected no attentional bias, and negative scores suggested 

avoidance (e.g. slower RT to probes following Pain pictures) than probes after Non-
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Pain pictures). Results indicated that Low-Cat subjects reacted more quickly to 

probes after target pictures in all three picture pairs. However, High-Cat people 

showed slower RT to probes after Pain/Negative pictures in Pain‒ Non-Pain and 

Negative‒ Non-Pain pairs, but had almost the same RT in Pain‒ Negative pair. For 

RT data, a 2 × 3 repeated measures ANOVA with a between subject factor (groups) 

and three within-subject factors (attention bias scores: Pain‒ Non-Pain, 

Negative‒ Non-Pain, and Pain‒ Negative) revealed a statistically significant main 

effect of pain catastrophising (F(1,30) = 9.2, p = 0.005, ηp
2 = 0.234), but null effects 

for picture pair (F(2,60) = 1.2, p > 0.05, ηp
2 = 0.039) and interaction of group × 

picture pair (F(2,60) = 0.008, p > 0.05, ηp
2 < 0.0001). Another three ANOVAs for 

repeated measures were conducted between picture pairs. The significant effect of 

pain catastrophising was only found in Pain‒ Non-Pain vs. Pain‒ Negative picture 

pairs (F(1,30) = 8.5, p = 0.007, ηp
2 = 0.221), indicating that High-Cat subjects 

responded slower to Pain scenes (target pictures) than Low-Cat people did. Results 

suggest that high pain catastrophisers are motivated to avoid the threatening content, 

especially the content containing physical pain.  

Subsequently, a 2 (group) × 2 (congruence) × 3 (picture pair) ANOVA with 

repeated measures was performed, in order to investigate the impact of congruence 

of target-probe location combinations on reaction time (Table 4.10). Null effects 

appeared for group (F(1,30) = 0.2, p > 0.05), congruence (F(1,30) = 0.5, p > 0.05), 

picture pair (F(2,60) = 0.1, p > 0.05), group × picture pair (F(2,60) = 0.2, p > 0.05), 

congruence × picture pair (F(2,60) = 1.2, p > 0.05), and group × congruence × 

picture pair (F(2,60) = 0.08, p > 0.05). However, the interaction of group × 

congruence (F(1,30) = 9.2, p = 0.005) was statistically significant. Pairwise 

comparisons implicated that Low-Cat subjects responded to congruent target-probe 
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location significantly faster than incongruent combinations (F(1,30) = 6.5, p = 

0.016). 

Table 4.10 Reaction time to probes in the second eye movement study. 

Mean ± standard error of reaction time to probes (ms) in high and low pain 

catastrophising groups. 

Target picture position Probe position High-Cat Low-Cat 

Pain‒ Non-Pain    

Left Left 474.4 ± 18.0 477.4 ± 18.3 

Left Right 464.2 ± 17.0 488.1 ± 16.0 

Right Left 460.2  ± 19.6 476.4 ± 18.0 

Right Right 470.5 ± 18.3 471.4 ± 22.0 

Negative‒ Non-Pain    

Left Left 472.2 ± 19.5 474.0 ± 15.8 

Left Right 459.1 ± 17.2 484.9 ± 15.8 

Right Left 467.1 ± 17.8 472.3 ± 62.4 

Right Right 473.2 ± 17.2 469.9 ± 21.2 

Pain‒ Negative    

Left Left 471.6 ± 21.2 470.0 ± 15.9 

Left Right 468.5 ± 18.9  481.6 ± 16.3 

Right Left 465.0 ± 19.1 490.7 ± 19.2 

Right Right 461.9 ± 19.2 467.0 ± 17.4 
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4.4. Experiment 4: Pain catastrophising effects on the cortical responses to viewing 

pain in others  

Hypothesis: 

High-, compared to low, pain catastrophisers will attribute stronger pain to 

pain scenes, and manifest stronger activation in cortical regions mediating emotional 

processing and attention. 

4.4.1. Behavioural data  

The mean pain catastrophising scores were 20.6 ± 12.3 (mean ± SD) in all 

subjects, 31.8 ± 5.7 in High-Cat and 9.4 ± 3.8 in Low-Cat groups (t(28) =12.8, P < 

0.0001). These mean pain catastrophising scores are comparable with those reported 

in previous studies that grouped subjects into high and low- pain catastrophising 

groups based on the Pain Catastrophizing Scale (Sullivan et al., 1995, Sullivan and 

Neish, 1999, Sullivan et al., 2002b, Sullivan et al., 2004, Van Damme et al., 2004, 

Wideman et al., 2009). The High-Cat and Low-Cat groups did not differ in total IRI 

scores (41.0 ± 12.1, mean ± SD; High-Cat: 47.0 ± 11.7; Low-Cat: 41.0 ± 12.0) or in 

any of the four IRI subscales (P > 0.05).  

Table 4.11 shows the mean values of affective valence, arousal and pain for 

both types of pictures in High-Cat and Low-Cat groups.  For valence, a two-way 

ANOVA for repeated measures revealed statistically significant main effects of pain 

catastrophising (F(1,28)  = 4.8, P = 0.038)  and picture type (F(1,28) = 196.6, P < 

0.0001). The interaction between group and picture type was not statistically 

significant (F(1,28) = 0.7, P >0.05). These effects pointed to a stronger negative 

affective evaluation of both pain and non-pain pictures in High-Cat than Low-Cat 
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group, and to a stronger negative affect during viewing pain than non-pain pictures 

in both groups. The arousal associated with viewing pictures was stronger when 

viewing pain than non-pain scenes (F(1,28) = 206.5, P < 0.001) but similar across 

High-Cat and Low-Cat groups (P > 0.05). The interaction of group × picture type 

was not statistically significant (F(1,28) = 0.03, P > 0.05). 

Subjects attributed stronger pain to pain than non-pain pictures (F(1,28) = 

378.6, P < 0.0001). High-Cat group compared to Low-Cat group rated both the pain- 

and non-pain scenes as containing greater pain (F(1,28) = 4.9, P = 0.036) (Table 1). 

The interaction between groups and picture types was not statistically significant 

(F(1,28) = 1.8, P = 0.187).  

To evaluate the degree of discrimination between pain and non-pain pictures 

in High-Cat and Low-Cat groups, the sensitivity index (d’) and response bias were 

computed. These measures are derived from the signal detection theory (DeCarlo, 

1998), and allowed for evaluation of whether pain and non-pain visual scenes are 

discriminated correctly and equally in both catastrophising groups. The mean scores 

± SD of d’ were 2.9 ± 0.6 in High-Cat and 2.8 ± 0.7 in Low-Cat group, respectively 

(P > 0.05). There were no statistical differences in d’ or response bias between the 

two groups (P > 0.05). Thus, subjects were able to discriminate pain and non-pain 

scenes behaviourally, and the High-Cat and Low-Cat groups performed similarly in 

discrimination of pain and non-pain scenes. 
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Table 4.11 Subjective ratings to pictures during observation of pictures. Means ± 

standard errors of the mean of picture valence and arousal, and pain attributed to 

pain and non-pain pictures in high and low pain catastrophisers.  

 High pain catastrophisers Low pain catastrophisers 

 Pain  Non-pain  Pain  Non-pain 

Valence  5.6 ± 0.4 1.6 ± 0.1 4.7 ± 0.3 1.2 ± 0.1 

Arousal 5.0 ± 0.4 1.5 ± 0.2 4.8 ± 0.4 1.4 ± 0.2 

Pain 5.7 ± 0.3 1.3 ± 0.1 4.9 ± 0.3 1.1 ± 0.1 

 

5.4.2. Source dipole model 

Fig. 4.6A shows the source dipole waveforms and isopotential scalp maps of 

the four source dipoles across subjects and conditions. Fig. 4.6B shows the cluster 

maxima and CLARA maps for each of four source dipoles.  Source dipoles are 

numbered from 1 to 4 in Fig. 4.6 (A-C).   

Source 1 showed a maximum at 496 ms following the onset of visual stimuli. 

The isopotential lines, mapped at the peak of 496 ms in Fig. 5.6A, suggested a 

positive maximum at the lower forehead and a negative maximum in the medial 

frontal region. CLARA indicated the presence of a source in the rostral anterior 

cingulate cortex (rACC; Brodmann area 24/32; approximate Talairach coordinates: x 

= 2 mm, y = 43 mm, z = 2 mm) (Fig. 4.6B). Source dipole 2 peaked at 544 ms, and 

was accounted for the negative potential maximum in the left lower face and a 

positive potential maximum in the left posterior parietal region. This source was 

fitted in the left medial temporal cortex involving the parahippocampal gyrus (PHGL; 

Brodmann area 36; approximate Talairach coordinates: x = -34 mm, y = -37 mm, z = 

-13 mm). Source 3 peaked approximately 8 ms later than source 1, and was 

accounted for a maximal negativity in the lower right face and a positive potential 
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maximum in the right posterior parietal region suggesting a dipole operating in the 

right medial temporal cortex. Source 3 was denoted as the right parahippocampal 

gyrus (PHGR; Brodmann area 35; approximate Talairach coordinates: x = 30 mm, y 

= -26 mm, z = 13 mm). Finally, source dipole 4 explained the positive vertex 

potential maximum at 580 ms and 760 ms. This source showed a negativity around 

the chin and the neck, and the isopotential lines pointed to the presence of a dipole 

located deep in the medial parietal cortex. The approximate Talairach coordinates of 

source 4 (x = 0 mm, y = -27 mm, z = 34 mm) were consistent with a source dipole 

located in the posterior cingulate cortex (PCC; Brodmann area 23/31).  
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Fig. 4.6   Source d ipole model and source waveforms  during observation of pictures.  

A. The grand average waveforms of four equivalent source dipoles and their isopotential line maps. 

The isopotential maps were p lotted at the temporal maxima, highlighted with an arrow and labelled 

with the latency value. The source dipoles are numbered fro m 1 to 4.  

B. CLARA source activation maps  and source dipole locations of four cortical sources. The peak 

latency of each source corresponds to that in panel A. A = anterio r, P = posterior, L = left, R = right. 

The numbering of dipoles corresponds to that in A. 1 = b lue dipole, 2 = g reen dipole, 3 = ice b lue 

dipole, 4 = magenta dipole.  

C. The grand average waveforms of four equivalent source dipoles, numbered from 1 to 4, in high and 

low pain catastrophising groups during viewing pain and non-pain scenes.  Red line = pain 

photographs in High-Cat group (HP), blue line = non-pain photographs in High-Cat group (HN), 

black line = pain photographs in Low-Cat group (LP), green line = non-pain photographs in Low-Cat 

group (LN). The grey-filled rectangles indicate epochs used in statistical analyses. 
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4.4.3. Effects of pain catastrophising on source dipole waveforms  

Fig. 4.6C shows the average source waveforms in each of four source dipoles 

for pain and non-pain pictures in High-Cat and Low-Cat groups. Intervals 

manifesting statistically significant effects of group or type of pictures or their 

interaction, according to the permutation analysis involving all four sources and all 

time points, are indicated with grey rectangles in Fig. 4.6C. Table 4.12 gives the 

intervals used in the statistical analysis, and the mean and standard error of source 

dipole components in pain and non-pain pictures in each group of subjects.  

In source 1, located in the rACC, the source activity was stronger in the Low-

Cat than the High-Cat groups for both types of pictures (F(1,28) = 7.2, P = 0.012) 

during the time epoch of 280–336 ms (Fig. 4.6C and Table 4.12).  

In source 2, located in PHGL, two intervals showed statistically significant 

ANOVA effects. In the epoch of 284–308 ms, the ANOVA disclosed a significant 

interaction of group × picture type (F(1,28) = 9.7, P = 0.004). The interaction effect 

was due to greater source activity during viewing pain than non-pain pictures in the 

Low-Cat group (F(1,28) = 5.85, P = 0.022), whilst the difference between pain and 

non-pain pictures in High-Cat group was not statistically significant (F(1,28) = 3.94, 

P = 0.066). In the late latency of 596–828 ms, a statistically significant main effect 

of group (F(1,28) = 6.4, P = 0.017) was observed. The effect was due to stronger 

source activity in the High-Cat, compared to Low-Cat, group.  

In the interval 308–336 ms of the right medial temporal source waveform 

(source 3), there was a statistically significant main effect of group (F(1,28) = 4.3, P 

= 0.046) with low pain catastrophisers displaying stronger source activity than high 

pain catastrophisers during viewing both types of pictures. In addition, a main effect 
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of picture type was statistically significant (F(1,28) = 5.6, P = 0.025) in this epoch, 

with non-pain pictures inducing stronger cortical activity than pain pictures. In the 

late interval (580–664 ms), amplitude of source 3 was stronger during viewing non-

pain than pain pictures (F(1,28) = 5.7, P = 0.024).  

In source 4, fitted in the PCC, a statistically significant effect of pain 

catastrophising (F(1,28) = 6.4, P = 0.017) was shown in the latency epoch of 384 ms 

to 452 ms, which was caused by a larger source amplitude in Low-Cat than High-Cat 

group. In contrast, source activation in the late interval (756–1144 ms) was stronger 

in High-Cat than Low-Cat group (F(1,28) = 5.8, P = 0.022). The main effect of 

picture type was significant in this time interval with pain pictures eliciting stronger 

source activity relative to non-pain pictures (F(1,28) = 15.6, P < 0.001).  

Table 4.12 Source activation showing significant intervals of interest during 

observation of pictures. Mean ± standard error of the mean of source dipole moments 

(in nAm) in select time epochs in high and low pain catastrophisers during viewing 

pain or non-pain pictures. Source 1 = rostral anterior cingulated cortex; Source 2 = 

left paraphippocampal gyrus; Source 3 = right parahippocampal gyrus; Source 4 = 

posterior cingulate cortex. 

Source 

Epoch 

(ms) 

High pain catastrophisers  Low pain catastrophisers  

Pain  Non-pain  Pain  Non-pain 

Source 1 280–336 3.8 ± 4.0 -0.5 ± 3.7 11.7 ± 4.0 16.0 ± 3.7 

Source 2 284–308 1.1 ± 4.6 6.6  ± 4.3 15.9 ± 4.6 9.2 ± 4.3 

Source 2 596–828 36.6 ± 5.0 37.9 ± 5.5 16.9 ± 5.0 20.6 ± 5.0 

Source 3 308–336 6.8 ± 5.8 11.5 ± 5.9 18.8 ± 5.8 30.8 ± 5.9 

Source 3 580–664 44.0 ± 7.3 50.4 ± 7.6 23.4 ± 7.3 30.7 ± 7.6 

Source 4 384–452 3.6 ± 4.5 6.0 ± 4.7 21.3 ± 4.5 18.9 ± 4.7 

Source 4 756–1144 36.0 ± 4.6 24.8 ± 3.6 21.0 ± 4.6 13.8 ± 3.6 
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4.4.4. Correlations between source components and subjective responses to 

photographs 

Pearson‘s correlation coefficients were calculated between the source 

activation differences [Pain – Non-Pain pictures] in sources and intervals 

manifesting statistically significant effects of group (Table 4.12) and the [Pain – 

Non-Pain pictures] differences in subjective ratings of valence, arousal and pain. It 

found two statistically significant correlation coefficients surpassing Bonferroni-

Šidák corrected P values. There were statistically significant correlations between 

the amplitude of the long latency (756–1144 ms) PCC source (source 4) and arousal 

(r(15) = 0.7, P = 0.002), and pain (r(15) = 0.7, P = 0.002) in the Low-Cat group only. 

Fig. 4.7 illustrates the scatter plots and linear regression lines for the valence, arousal 

and pain rating scales and the source amplitude differences of the late PCC 

activation in High-Cat and Low-Cat groups. Results suggest that the activation of the 

PCC in the late epoch was related to stronger subjective arousal and observed pain 

elicited by visual stimuli in the Low-Cat group but not in the High-Cat group.  

Fig. 4.7 Correlat ions between the posterior cingulate source dipole and subjective ratings to pictures . 

Scatter plots and the linear regression lines illustrating relat ionships between subjective ratings of 

valence, arousal and pain attributed to visual stimuli and the source amplitude differences between 

two conditions of the posterior cingulate source dipole in the interval of from 756 to 1144 ms. A. 

Valence. B. Arousal. C. Pain. High-Cat = high pain catastrophisers, dark circles, solid line. Low-Cat = 

low pain catastrophisers, white circles, dashed line.  
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4.5. Experiment 5: Pain catastrophising effects on the cortical responses to laser 

stimulation during viewing of comforting hand postures 

Hypothesis: 

High-, compared to low, pain catastrophisers will report smaller pain and 

manifest diminished cortical activation during viewing of comfort-giving hand 

postures. 

4.5.1. Behavioural data 

The mean pain catastrophising scores were 29.8 ± 4.4 (mean ± SD) in High-

Cat and 6.8 ± 4.1 in Low-Cat groups (t(22) = 13.2, P < 0.0001). These mean pain 

catastrophising scores are comparable with previous studies that grouped subjects 

into high- and low pain catastrophising groups according to the Pain Catastrophizing 

Scale (Sullivan et al., 1995, Sullivan and Neish, 1999, Crombez et al., 2004, Van 

Damme et al., 2004, Wideman et al., 2009). Independent t-tests also revealed that 

High-Cat, compared to Low-Cat, subjects scored higher in STAI-State (right now 

feeling) scale (t(22) = -3.5, P = 0.006). No further significant differences in the 

STAI-Trait, IRI scales, or its subscales between two groups (P > 0.05) were found.  

The average laser intensity provoking pain was 1.5 ± 0.2 J for all subjects, 

1.5 ± 0.2 J for High-Cat group and 1.5 ± 0.1 J for Low-Cat group (t(22) = -0.2, P > 

0.05). 

The mean value and standard deviation (SD) of pain, comforting, empathy 

and pleasantness in each experimental condition are listed in Tab le 4.13. Subjects 

reported a moderate pain sensation similar to a pricking pain during laser 

stimulation. Fig. 4.8 shows the subjective pain rating for each condition in the High- 
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and Low-Cat groups. A 2 × 3 ANOVA for repeated measures revealed subjective 

pain, evaluated after each laser stimulus, was statistically significantly affected by 

picture types (F(2,44) = 10.5, P < 0.0001). Paired-sample t-tests showed that laser 

stimuli were perceived as less painful during viewing Comfort pictures than Touch 

or Non-Touch pictures. This indicated that viewing Comfort pictures significantly 

attenuated the pain intensity. Results also showed a significant interaction between 

group and pictures (F(2,44) = 3.8, P = 0.041). Pairwise comparisons showed that 

high pain catastrophisers rated the pain as less intense while viewing Comfort 

pictures than while viewing Touch (P = 0.002) or Non-Touch (P = 0.001) pictures. 

However, the main effect of pain catastrophising group did not show significance 

(F(1,22) = 1.2, P > 0.05). 

 

Fig. 4.8 Mean subjective pain ratings to hand postures pictures . Mean subjective pain ratings for 

Comfort , Touch, and Non-Touch pictures in high and low pain catastrophisers. High-Cat = h igh pain 

catastrophisers, Low-Cat = low pain catastrophisers.  
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Table 4.13 Effects of emotional pictures on subjective measures.  

A. Mean ± standard error of mean of subjective pain and picture comforting, 

empathy and pleasantness attributed to Comfort, Touch and Non-Touch pictures in 

high and low pain catastrophisers. 

 High pain catastrophisers Low pain catastrophisers 

 Comfort Touch Non-Touch Comfort Touch Non-Touch 

Pain 3.5±0.2 3.8±0.2 4.0±0.2 3.4±0.2 3.5±0.2 3.6±0.2 

Comforting 7.2±0.3 4.0±0.5 2.9±0.4 6.1±0.3 3.9±0.5 2.4±0.4 

Empathy 7.5±0.3 3.6±0.5 2.6±0.4 6.3±0.3 3.8±0.5 2.6±0.4 

Pleasantness 7.2±0.4 3.9±0.5 2.7±0.4 5.6±0.4 3.4±0.5 2.4±0.4 

B. Paired-sample t-tests of pain, comforting, empathy and pleasantness associated 

with Comfort, Touch and Non-Touch pictures. 

 Comfort – Touch Comfort – Non-Touch Touch – Non-Touch  

Pain t(23) = -3.2, P = 0.004 t(23) = -3.5, P = 0.002 t(23) = -2.0, P = 0.062 

Comforting t(23) = 7.0, P < 0.0001 t(23) = 9.0, P < 0.0001 t(23) = 3.3, P = 0.003 

Empathy t(23) = 8.0, P < 0.0001 t(23) = 9.6, P < 0.0001 t(23) = 3.0, P = 0.006 

Pleasantness t(23) = 6.1, P < 0.0001 t(23) = 8.6, P < 0.0001 t(23) = 3.1, P = 0.005 

 

The 2 × 3 ANOVAs for repeated measures revealed that the three types of 

pictures were perceived differently in term of comforting (F(2,44) = 50.4, P < 

0.0001), empathy (F(2,44) = 61.3, P < 0.0001), and pleasantness (F(2,44) = 45.3, P < 

0.0001). Comfort pictures were perceived as more comforting, empathetic, and 

pleasant, compared with the other two picture types. The main effects of pain 

catastrophising and the interactions between group and picture types for these three 

subjective ratings were not statistically significant (P > 0.05). High-Cat people, 

though, attributed more pleasantness to all three pictures than Low-Cat people did 

(F(1,22) = 4.4, P = 0.047). The effects suggested that the three types of pictures 

differed from each other in term of comforting, empathy and pleasantness.  
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4.5.2. Source dipole model for visual-evoked potentials 

Fig. 4.9 shows the source dipole waveforms and isopotential scalp maps of 

the six source dipoles across subjects and conditions. Source dipoles are numbered 

from 1 to 6 in Fig. 4.9 and Fig. 4.10 (A-D). 

Source 1 shows a maximum at 133 ms following the onset of visual stimuli. 

The scalp maps, mapped at the peak of 133 ms in Fig. 4.9, demonstrated a positive 

potential at the midline of parietal-occipital region. LAURA indicated that the 

location of a source was in the medial surface of the occipital lobe, involving 

calcarine gyrus and cuneus (Brodmann area 17/31; approximate Talairach 

coordinates: x = 0 mm, y = -62 mm, z = 10 mm). Source dipole 2 showed one 

maximum at 311 ms and another smaller maximum at 193 ms around the vertex. The 

isopotential lines mapped at the peak of 193 ms pointed to the presence of a dipole 

located in the medial parietal region, suggesting a source operating in the mid-

cingulate cortex (MCC; Brodmann area 31; approximate Talairach coordinates: x = 1 

mm, y = -33 mm, z = 35 mm). Source 3 was fitted to the left medial temporal region, 

with the most likely origin in the parahippocampal gryus (PHGL; Brodmann area 35; 

approximate Talairach coordinates: x = -18 mm, y = -18 mm, z = -13 mm). Source 3 

accounted for the maximal negativity in the lower left face, peaking at 376 ms, and a 

positive maximum in the left posterior parietal region. Source dipole 4 located 

almost symmetrically to source 3 in the right medial temporal gyrus, peaking at 132 

ms and 305 ms, and corresponded to the parahippocampal gyrus (PHGR; Brodmann 

area 35; approximate Talairach coordinates: x = 23 mm, y = -26 mm, z = -23 mm). 

This source explained a strong maximal negativity that was detected by the right 

suborbital electrodes, and pointed to a positive potential maximum in the right 

posterior parietal region. Source 5 peaked at 126 ms and 317 ms, and accounted for 
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the negative potential in the medial frontal region and a maximal positivity at the 

lower forehead. This source was fitted in rostral anterior cingulate cortex (rACC; 

Brodmann area 32; approximate Talairach coordinates: x = -2 mm, y = 43 mm, z = 5 

mm). Finally, source 6 peaked approximately 14 ms later than source 2. A relative ly 

weak negative potential was seem around the vertex at 207 ms. This source was 

located in the medial part of superior frontal gryus, purportedly involving left 

paracentral lobule (Brodmann area 5/6; approximate Talairach coordinates: x = -3 

mm, y = -32 mm, z = 63 mm).  

 

Fig. 4.9 The grand averaged waveforms of six equivalent source dipoles and their isopotential line 

maps for v isual-evoked potentials. The isopotential maps were p lotted at the selected time point, 

highlighted with an arrow and labelled with the latency value. The source dipoles are numbered from 

1 to 6. 
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4.5.3. Effects of pain catastrophising on source dipole waveforms of picture viewing 

with a filter of 0.1-30 Hz 

Fig. 4.10A shows the average source waveforms in each of six source dipoles 

in High-Cat and Low-Cat subjects with the bandpass filter of 0.1-30 Hz. Intervals 

illustrating statistically significant effects of group, accord ing to the permutation 

analysis involving all six sources and all time points, are displayed with grey-filled 

rectangles.  

In source 1, corresponding to the primary visual cortex, a repeated measure 

ANOVA of mean amplitudes found a significant main effect of group at 101–216 ms 

(F(1,22) = 5.8, P = 0.025), with the High-Cat group showing stronger source 

activation to the pictures than the Low-Cat group (Fig. 4.10A).  

In source 2 (MCC), a statistically significant main effect of group was found 

(822–865 ms), with Low-Cat subjects showing stronger source activity than High-

Cat people during picture viewing (F(1,22) = 4.4, P = 0.048). 

In the interval 83–146 ms of the PHGL source waveform (source 3), a main 

effect of group was significant (F(1,22) = 9.8, P = 0.005). Results indicated 

attenuated amplitude in High-Cat people compared with Low-Cat people, during 

picture viewing. 

In source 4 (PHGR), the ANOVA revealed a significant group effect (F(1,22) 

= 6.4, P = 0.019), with low pain catastrophisers exhibiting stronger source activation 

to the pictures than High-Cat people, during the period between 78 to 97 ms.  
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Fig. 4.10 Source waveforms for visual-evoked potentials with d ifferent bandpass filters. 

A. The average waveforms of six equivalent source dipoles in high and low pain catastrophisers with 

the bandpass filter of 0.1-30 Hz, numbered from 1 to 6, during viewing of pictures in high and low 

pain catastrophisers. Red line = High-Cat group, blue line = Low-Cat group. The grey-filled 

rectangles show epochs with significant group effects. 

B. The average waveforms of six equivalent source dipoles in high and low pain catastrophisers with 

the bandpass filter of 2-40 Hz. 

C. The average waveforms of Source 2 (MCC) for Comfort, Touch, and Non-Touch pictures, using 

the 2-40 Hz filter. Red line = Comfort p ictures, Blue line = Touch pictures, Green line = Non -Touch 

pictures. The blue-filled rectangle indicates epoch with significant picture effect. 

D. The average waveforms of Source 5 (rACC), with a filter of 2-40 Hz, during viewing of Comfort , 

Touch, and Non-Touch pictures in high and low pain catastrophisers. Red line = Comfort p ictures in 

High-Cat group (HC), blue line = Touch pictures in High-Cat group (HT), g reen line = Non-Touch in 

High-Cat group (HN), b lack line = Comfort p ictures in Low-Cat group (LC), magenta line = Touch 

pictures in Low-Cat group (LT), orange line = Non-Touch pictures in Low-Cat group (LN). The 

yellow-filled rectangle shows the epoch with significant interaction between group and picture type. 

 

4.5.4. Effects of pain catastrophising on source dipole waveforms of picture viewing 

with a filter of 2-40 Hz 

For the ERP analysis with the filter of 2-40 Hz, intervals illustrating 

statistically significant effects of group (Fig. 4.10B), or picture type (Fig. 4.10C) or 

their interaction (Fig. 4.10D), according to the permutation analysis involving all six 

sources and all time points, are displayed with colour filled rectangles.   

In source 1, the interval of 99–173 ms displayed a statistically significant 

ANOVA effect of group (Fig. 4.10B). Results found that in this latency stronger 

source activation in High-Cat, compared to Low-Cat, subjects (F(1,22) = 4.6, P = 

0.043). 

In the interval 289–332 ms of source 2 (MCC), a statistically significant main 

effect of picture type was found (F(1,22) = 4.7, P = 0.015). A paired sample t-test 

suggested that Non-Touch elicited stronger source amplitude across subjects (t(1,23) 

= -3.1, P = 0.005) in comparison to Comfort pictures(Fig. 4.10C). 



126 
 

In the interval of 381–426 ms (F(1,22) = 5.0, P = 0.026) and 605–634 ms 

(F(1,22) = 7.8, P = 0.011) of the left temporal region (source 3), statistically 

significant group effects were found. Low-Cat people showed larger source 

amplitude than the High-Cat group during viewing pictures.  

In source 4 (PHGR), High-Cat participants showed significantly stronger 

cortical activation to pictures than low pain catastrophisers during the epoch of 248–

312 ms (F(1,22) = 4.4, P = 0.047). 

In source 5 (rACC), a significant main effect of group (F(1,22) = 5.1, P = 

0.033) and a significant interaction of group by picture type (F(2,44) = 5.9, P = 

0.013) were found during the epoch from 326 to 366 ms. In this period, people with 

high pain catastrophising exhibited larger amplitude to picture stimuli, compared to 

Low-Cat people (Fig. 4.10B). High-Cat people also displayed stronger cortical 

responses to Non-Touch pictures than Low-Cat people did (P = 0.005) (Fig. 4.10D). 

4.5.5. Source dipole model for LEPs 

Fig. 4.11A shows the source dipole waveforms and isopotential scalp maps 

of the six source dipoles across subjects and conditions. Fig. 4.11B shows the cluster 

and CLARA maps for each of six source dipoles at selected time point. Source 

dipoles are numbered from 1 to 6 in Fig. 4.11 (A-C) and Fig. 4.12 (A-C). 

Source 1 shows a maximum at 170 ms following the onset of laser stimuli. 

The scalp maps, mapped at 150 ms in Fig. 4.11A, illustrated a negative potential at 

the temporal region contralateral to the stimulated side, consistent with previous 

studies suggesting the location of laser-evoked N1 component (Treede et al., 1988, 

Garcia-Larrea et al., 1997, Hu et al., 2010). CLARA indicated that the location of a 
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source was in the left operculo- insular region, involving posterior insula and parietal 

operculum (approximate Talairach coordinates: x = -35 mm, y = -15 mm, z = -6 mm) 

(Fig. 4.11B). Source dipole 2 peaked approximately 30 ms later than source 1. A 

relatively weak negative potential was seen in the right temporal region at 160 ms. 

This source was located almost symmetrically to source 1 in the right operculo-

insula region, purportedly involving posterior insula and parietal operculum 

(approximate Talairach coordinates: x = 38 mm, y = -10 mm, z = -3 mm). Source 3 

explained a negative potential maximum at 185 ms and a maximal positivity at 280 

ms around the vertex electrodes. The isopotential lines, peaking at 185 ms, pointed to 

the presence of a dipole located deep in the medial parietal cortex. This is indicative 

of a source operating in the mid-cingulate cortex (MCC; Brodmann area 24/31; 

approximate Talairach coordinates: x = 0 mm, y = -22 mm, z = 43 mm). 

Collaborating with previous studies (Bromm and Treede, 1987, Garcia-Larrea et al., 

2003, Mouraux and Iannetti, 2009), this source suggested a classical LEP component 

– a negative-positive biphasic deflection (N2-P2). Source dipole 4 peaked at 227 ms 

and 316 ms, and accounted for the negative potential in the medial frontal region and 

a maximal positivity at the lower forehead. This source was fitted in the rostral 

anterior cingulate cortex (rACC; Brodmann area 24/32; approximate Talairach 

coordinates: x = 4 mm, y = 46 mm, z = 10 mm). Source 5 was located in the left 

medial temporal cortex, peaking at 221 ms and 325 ms, and corresponding to the 

parahippocampal gyrus (PHGL; Brodmann area 34/28; approximate Talairach 

coordinates: x = -20 mm, y = -8 mm, z = -19 mm). This source explained a strong 

maximal negativity that was detected by the left suborbital electrodes, and pointed to 

a positive potential maximum in the left posterior parietal region. Finally, source 6 

was almost symmetrically located to source 5 in the right medial temporal gyrus, 
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with the most likely origin in the parahippocampal gyrus (PHGR; Brodmann area 

36/28; approximate Talairach coordinates: x = 32 mm, y = -6 mm, z = -18 mm). 

Source 6 accounted for the maximal negativity in the lower right face, peaking at 

312 ms, and a positive maximum in the right posterior parietal region. 
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Fig. 4.11 Source d ipoles and source waveforms for laser evoked potentials . 

A. The grand averaged waveforms of six equivalent source dipoles and their isopotential line maps. 

The isopotential maps were p lotted at the selected time point, highlighted with an arrow and labelled 

with the latency value. The source dipoles are numbered from 1 to 6.  

B. CLARA source activation maps and locations of six source dipoles. The selected time point of 

each source corresponds to that in panel A. A = anterior, P = posterior, L = left, R = right. The 

numbering of dipoles corresponds to that in A. 1 = red dipole, 2 = b lue dipole, 3 = green dipole, 4 = 

magenta dipole, 5 = o range dipole, 6 = ice blue dipo le.  

C. The grand averaged waveforms of six equivalent source dipoles, numbered from 1 to 6, during 

viewing Comfort, Touch, and Non-Touch pictures in high and low pain catastrophisers. Red line = 

Comfort  pictures in High-Cat group (HC), b lue line = Touch pictures in High-Cat group (HT), green 

line = Non-Touch in High-Cat group (HN), black line = Comfort pictures in Low-Cat group (LC), 

magenta line = Touch pictures in Low-Cat group (LT), o range line = Non-Touch pictures in Low-Cat 

group (LN). 

 

4.5.6. Effects of pain catastrophising on source dipole waveforms 

Fig. 4.11C shows the averaged source waveforms in each of six source 

dipoles for Comfort, Touch, and Non-Touch pictures in High-Cat and Low-Cat 

subjects. Intervals illustrating statistically significant effects of group (Fig. 4.12A), 

or pictures type (Fig. 4.12B), or their interaction (Fig. 4.12C), according to the 

permutation analysis involving all six sources and all time points, are displayed with 

colour filled rectangles in Fig. 4.12. Table 4.14 shows the intervals employed in the 

statistical analysis, and the mean and standard error of source dipoles in the three 

types of pictures for each group of subjects.   

In source 1, located in the left operculo-insular cortex, the source activity was 

stronger in the High-Cat group than the Low-Cat group in all types of pictures in the 

time epochs of 223–404 ms (F(1,22) = 9.1, P = 0.006) and 414–492 ms (F(1,22) = 

6.1, P = 0.021) (Fig. 4.12A and Table 4.14).  

In source 2, located in the right operculo-insular cortex, three intervals 

showed statistically significant effects. In the latency of 353–472 ms, a statistically 

significant main effect of group was observed (F(1,22) = 4.8, P = 0.04), indicating a 
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larger amplitude in the High-Cat, compared to the Low-Cat, groups. In particular, in 

the epoch of 459–472 ms, the ANOVA revealed a significant main effect of group 

(F(1,22) = 4.7, P = 0.042) (Fig. 4.12A) and a significant interaction of group × 

picture type (F(2,44) = 3.8, P = 0.035) (Fig. 4.12C). Pairwise comparison tests 

suggested that the High-Cat, compared to Low-Cat, subjects under noxious laser 

stimulation displayed greater source activity during viewing of Non-Touch pictures 

(F(1,22) = 11.5, P = 0.003), whilst the group differences for viewing Comfort 

(F(1,22) = 0.1, P > 0.05) and Touch (F(1,22) = 1.2, P > 0.05) pictures were not 

statistically significant. In the late interval of 705–738 ms, there was a significant 

main effect of picture type (F(2,44) = 6.3, P = 0.005). Paired-sample t-tests 

suggested a statistically significant decrease in source strength during viewing 

Comfort pictures, compared to Touch (t(23) = -3.4, P = 0.002) or Non-Touch (t(23) 

= -3.2, P = 0.004) pictures among all subjects (Fig. 4.12B). 

In the interval 210–392 ms of the MCC source waveform (source 3), there 

was a statistically significant main effect of group (F(1,22) = 5.8, P = 0.025) with 

high pain catastrophisers displaying stronger source activity to the laser stimuli than 

the low pain catastrophisers during viewing three types of pictures.  

In source 4, fitted in the rACC, repeated measure ANOVAs of mean 

amplitudes showed a significant main effect of group at 169–192 ms (F(1,22) = 4.7, 

P = 0.042) and 363–517 ms (F(1,22) = 16.9, P < 0.0001). In both latency windows, 

relative to the Low-Cat group, the High-Cat group displayed larger source 

amplitudes to the pictorial stimuli.  

In source 5, located in the PHGL, only a main effect of picture type was 

significant (F(2,44) = 10.8, P < 0.0001) in the window of 714–735 ms. Paired-
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sample t-tests illustrated that Comfort pictures elicited less source activity in this 

time window, relative to Touch (t(23) = -4.3, P < 0.0001) and Non-Touch (t(23) = -

3.9, P = 0.001) pictures (Fig. 4.12B). 

In the epoch 438–506 ms of the right medial temporal source waveform 

(source 6), there was a significant main effect of group (F(1,22) = 4.6, P = 0.043), 

suggesting a stronger source activation in the Low-Cat, compared with High-Cat, 

subjects. 

4.5.7. Correlations between source components and subjective pain ratings 

Pearson‘s correlation coefficients were calculated between source dipole 

components and intervals manifesting statistically significant effects of group (Table 

4.14), and the subjective pain ratings in High-Cat and Low-Cat groups for the three 

picture types. Only one statistically significant correlation with Bonferroni corrected 

P values was found. The amplitude of the early epoch (169–192 ms) of the anterior 

cingulate cortex (source 4) for Comfort pictures was significantly correlated with 

subjective pain ratings (r(12) = 0.6, P = 0.027) in the Low-Cat group only. Fig. 4.13 

shows the scatter plots and linear regression lines for the subjective pain rating scales 

and the source amplitudes of the early rACC component in High-Cat and Low-Cat 

groups for Comfort, Touch, and Non-Touch pictures. Results suggest that stronger 

subjective perceived pain elicited by the noxious laser stimuli was related to greater 

cortical activity of the rACC in the early time window in the Low-Cat group but not 

in the High-Cat group, when viewing Comfort pictures.  
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Table 4.14 Source activation showing significant intervals of interest during laser stimulation. Mean ± standard error of mean of source dipole 

moments (in nAm) in selected time epochs in high and low pain catastrophisers during viewing of Comfort, Touch, and Non-Touch pictures. 

Source 1 = left operculo- insular cortex, Source 2 = right operculo- insular cortex, Source 3 = mid-cingulate cortex, Source 4 = rostral anterior 

cingulate cortex, Source 5 = left parahippocampal gyrus, Source 6 = right parahippocampal gyrus.  

 

 Epoch High pain catastrophisers Low pain catastrophisers 

Source (ms) Comfort Touch Non-Touch Comfort Touch Non-Touch 

Source 1 223–404 -8.5 ± 3.6 -8.6 ± 3.8 -10.8 ± 3.9 5.9 ± 3.6 6.5 ± 3.8 3.8 ± 3.9 

 414–492 -8.0 ± 3.7 -4.9 ± 2.5 -10.1 ± 3.2 -1.9 ± 3.7 3.2 ± 2.5 1.9 ± 3.2 

Source 2 353–472 -12.2 ± 3.7 -14.4 ± 4.1 -16.5 ± 4.4 -4.8 ± 3.7 -3.6 ± 4.1 0.1 ± 4.4 

 459–472 -7.1 ± 3.0 -9.3 ± 3.1 -12.9 ± 3.0 -5.6 ± 3.0 -4.4 ± 3.1 1.7 ± 3.0 

 705–738 -1.7 ± 1.7 4.9 ± 2.7 7.8 ± 3.0 1.5 ± 1.7 8.6 ± 2.7 7.3 ± 3.0 

Source 3 210–392 -33.9 ± 5.1 -28.8 ± 4.7 -32.2 ± 5.6 -14.7 ± 5.1 -13.9 ± 4.7 -15.6 ± 5.6 

Source 4 169–192 9.2 ± 8.0 10.4 ± 6.1 6.4 ± 6.4 -8.3 ± 8.0 -6.1 ± 6.1 -15.9 ± 6.4 

 363–517 -8.1 ± 2.6 -6.7 ± 2.9 -9.7 ± 3.0 3.9 ± 2.6 6.3 ± 2.9 4.2 ± 3.0 

Source 5 714–735 -6.5 ± 6.3 14.5 ± 6.2 20.6 ± 8.7 -0.1 ± 6.3 13.3 ± 6.2 17.1 ± 8.7 

Source 6 438–506 1.9 ± 3.8 -1.7 ± 4.8 -1.6 ± 4.7 11.4 ± 3.8 12.0 ± 4.8 8.9 ± 4.7 
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Fig. 4.12 Source waveforms for laser evoked potentials with significant intervals of interest. 

A. The averaged waveforms of six equivalent source dipoles in high and low pain catastrophisers, 

numbered from 1 to 6, during v iewing pictures in high and low pain catastrophisers. Red line = High -

Cat group, blue line = Low-Cat group. The grey-filled rectangles suggest epochs with significant 

group effects.  

B. The averaged waveforms of six equivalent source dipoles for Comfort, Touch, and Non-Touch 

pictures. Red line = Comfort p ictures, Blue line = Touch pictures, Green line = Non-Touch pictures. 

The blue-filled rectangles indicate epochs with a significant effect of p icture type. 

C. Left: The averaged waveforms of Source 2, the right operculo-insular cortex, during viewing of 

Comfort , Touch, and Non-Touch pictures in high and low pain catastrophisers. Red line = Comfort 

pictures in High-Cat group (HC), blue line = Touch pictures in High-Cat group (HT), green line = 

Non-Touch in High-Cat group (HN), black line = Comfort pictures in Low-Cat group (LC), magenta 

line = Touch pictures in Low-Cat group (LT), orange line = Non-Touch pictures in Low-Cat group 

(LN). The yellow-filled rectangle shows the epoch with a significant interaction between group and 

picture type. Right: The bar chart of Source 2 amplitudes for the three conditions between the two 

groups. Red line = Comfort pictures, Blue line = Touch pictures, Green line = Non-Touch pictures, 

High-Cat = high pain catastrophisers, Low-Cat = low pain catastrophisers. * P < 0.05. Error bars: 

95% confidence intervals.   

 

 

Fig. 4.13 Correlations between rostral anterior cingulate source dipole and subjective pain ratings to 

laser stimulation. Scatter plots and the linear regression lines illustrating relationships between 

subjective pain ratings attributed to laser stimuli during viewing Comfort, Touch and Non -Touch 

pictures, and the corresponding source amplitude of rostral anterior cingulate cortex (source 4) 

between high and low pain catastrophisers in the time epoch of 169–192 ms. A. Comfort. B. Touch. 

C. Non-Touch. High-Cat = high pain catastrophising group, dark circles, solid line. Low-Cat = low 

pain catastrophising group, white circles, dashed line. 
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4.6. Experiment 6: Pain catastrophising and structural features of cortical and 

subcortical brain regions in healthy people 

Hypothesis: 

Pain catastrophising scores in healthy people will correlate with volume and 

shape changes in pain processing region.  

4.6.1. Demographic characteristics 

The demographic data are presented in Table 4.15. The mean age was 29.6 

years (SD = 8.8), with a range of 19 – 51 years. PCS scores had an average of 12.9 

(SD = 9.1, Median = 11.0), with a range of 0 – 34. PCS scores were negatively 

correlated with age (r(52) = -0.5, P < 0.0001), indicating that younger subjects were 

more affected by pain catastrophising. Age, PCS scores, fear of pain, anxiety trait for 

both genders and anxiety state for males distributed normally according to the 

Kolmogorov-Smirnov test (p > 0.05). Anxiety state for female (Z = 0.2, p = 0.014) 

was not. The distributions of subjects‘ demographic characteristics are illustrated in 

Fig. 4.14. PCS scores were also positively correlated with STAI-State (r(52) = 0.3, P 

= 0.025), suggesting that subjects with high pain catastrophising trait may feel more 

emotional distress before their MR scan.  

4.6.2. Correlations between total intracranial volumes and psychometrical variables  

There were no statistically significant Peason‘s coefficient correlations 

between psychometrical variables (i.e. PCS, FPQ-III, STAI) and global GM, WM, 

CSF and total intracranial volumes (P > 0.05).  
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Table 4.15 Mean ± standard deviation (SD) of demographic characteristics and brain 

volumes. 

 Mean SD 

Age 29.6 8.8 

Pain Catastrophizing Scale 12.9 9.1 

Fear of Pain Questionnaire - III 77.3 15.8 

State-Trait Anxiety Inventory – State 34.3 10.2 

State-Trait Anxiety Inventory – Trait 38.0 9.5 

Grey matter volumes (ml)  69505 61.5 

Whit matter volumes (ml)  491.1 43.6 

Cerebrospinal fluid volumes (ml)  291.7 29.0 

Total intra-cranial volumes (ml) 1478.3 129.2 
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Fig. 4.14 Demographic characteristics of participants . Histogram of age, fear of pain, pain 

catastrophising scores, anxiety state and trait distribution of the subjects in the study. The normal 

distribution curves are also shown. Female = g rey rectangle bars. Male = white rectangle bars. 

4.6.3. Voxel-based morphometry (VBM) 

After controlling for age, gender, fear of pain, and anxiety, the VBM 

correlation analyses (uncorrected P < 0.001, k = 50 voxels) were performed with the 

PCS scores as the predictor (Fig. 4.15). Results revealed positive correlations 

between regional GM volumes and PCS scores in right parahippocampal gyrus 
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(PHG), right angular gyrus, right paracentral lobule, posterior cingulate cortex 

(PCC), and left middle temporal gyrus, suggesting an increase in grey matter with 

increasing PCS scores (Table 4.16, Fig. 4.16). The reversed correlation analysis 

demonstrated GM volume reductions with increasing PCS scores in the left superior 

frontal gyrus (Table 4.16, Fig. 4.16). Pearson‘s correlation analyses showed that GM 

volumes of ROIs were significantly correlated with PCS scores (P < 0.05), but not 

with FPQ-III scores (P > 0.05). The significant correlations between GM volumes of 

the six regions and PCS scores are shown in Fig. 4.16 and Table 4.16. 

 

 

Fig. 4.15 Design matrix: Contrasts between pain catastrophising scores and regional grey matter 

volumes among 52 subjects. Top left panel represents the positive correlat ions. Top right panel 

indicates the negative relationships. Bottom panels demonstrates  the default contrasts between the 

scans (first column) and six covaritates of age, fear of pain, PCS, anxiety state and trait (from the 

second to sixth columns, respectively). PCS = pain catastrophising scores, STAI2 = State-Trait 

Anxiety Inventory – Trait.    
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Table 4.16 Local grey matter volume in healthy people. Coordinates of grey matter 

volume regions controlled for multiple comparisons with uncorrected P < 0.001, and 

a cluster extent of 50 voxels. 

Location Brodmann 

Area 

Coordinate 

MNI 

k T Z P 

Grey matter: positive correlation 

Right parahippocampal gyrus 36 39 -31 -19 255 4.6 4.2 < 0.0001 

Right angular gyrus 39 46 -65 32 505 4.3 3.9 < 0.0001 

Right paracentral lobule 5 1 -44 54 346 3.9 3.6 < 0.0001 

Posterior cingulate cortex 31 3 -35 46 346 3.6 3.3 < 0.0001 

Left middle temporal gyrus 39 -41 -51 7 76 3.6 3.4 < 0.0001 

Grey matter: negative correlation 

Left superior frontal gyrus 8 -14 41 40 1065 4.0 3.7 < 0.0001 

Left superior frontal gyrus 8 -14 48 28 1065 3.4 3.2 0.001 
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Fig. 4.16 Correlations between grey matter (GM) volume and PCS scores. Upper: The rendering of 

the cortical reg ions in which PCS scores were positively (top left panel) and negatively (top right 

panel) correlated with GM volume (uncorrected P < 0.001 with a cluster extent of 50 voxels, fo r all 

shown effects), while controlling for age, gender, fear of pain, and anxiety. Lower: Saggittal and 

horizontal v iews and the corresponding scatter-plot and regression line of the relat ionship between 

PCS scores and GM volume alternations in each region of significant results on the averaged T1-

weighted MR image of 52 subjects. Yellow clusters show the locations of the significant clusters in 

the rendering and anatomical views. The co lour bars represent voxel-level T statistical values. The 

mean cluster GM volumes are ext racted from the spherical ROI with a 5 mm radius at the peak voxel. 

The regression lines and Pearson‘s correlation coefficient (P < 0.05) are shown in the graphs. The 

ROIs are numbered from 1 to 6. 1 = right parahippocampal gyrus (sphere at [39 -31 -19], 220 voxels), 

2 = right angular gyrus (sphere at [46 -65 32], 353 voxels), 3 = right paracentral lobule (sphere at [1 -

44 54], 241 voxels), 4 = posterior cingulate cortex (sphere at [3 -35 46], 83 voxels), 5 = left middle 

temporal gyrus (sphere at [-41 -51 7], 76 voxels), 6 = left superior frontal gyrus (sphere at [-14 41 40], 

417 voxels). Pos = positive correlat ions, Neg = negative correlations, A = anterior, P = posterior, L = 

left, R = right. 

 

4.6.4. Shape analysis 

Vertex analysis was performed to investigate the correlations between the 

vertex locations of 15 subcortical structures and PCS scores, adjusted for gender. 

The left caudate and bilateral putamen showed significant positive correlations with 

PCS scores following FDR correction (p < 0.05, corrected, Fig. 4.17). The left 

caudate demonstrated an outward movement of the vectors on the ventral medial 

surfaces (P < 0.001). The caudal dorsal and ventral medial surfaces of left putamen 

showed outward movements of the vectors (P = 0.02). Also, the vectors showed 

outward movements on the ventral medial and dorsal lateral aspects of right putamen 

(P = 0.01). Results suggested volume expansions in these regions, indicating that 

subjects with higher pain catastrophising trait may have a larger size of these three 

sub-cortical structures. Fig. 4.17 shows the significant locations and F-statistics of 
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the shape change of the left caudate and bilateral putamen positively correlated with 

PCS scores.  

Linear regression analysis was performed to evaluate the relationships 

between the volumes of left caudate and bilateral putamen and PCS scores. No 

significant correlations between PCS scores and left caudate (B = -0.1, p > 0.05), 

between PCS scores and left putamen (B = 0.2, p > 0.05), or between PCS scores 

right putamen (B = 0.2, p > 0.05) were found. 

 

 

Fig. 4.17 Shape alterations positively correlated with PCS scores in the left caudate and bilateral 

putamen. A. The local regions exh ibit shape changes in the left caudate and bilateral putamen 

following FDR correction. B. The locations of shape alterations and the corresponding semi-

transparent images following FDR correction. Outward directions of vectors represent the outward 

position of vertices indicative of shape expansion. Arrow colour and surface colour indicate the F-

statistic of the change in the specific vert ices (see colour bar). Red colour indicates areas which did 

not differ significantly following FDR correct ion. 1 = left caudate, 2 = left putamen, 3 = right 

putamen, L = left, R = right.   
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Chapter Five 

Study Discussions 

5.1. Experiment 1: Effects of pain catastrophising on the classification of ambiguous 

pain 

Since high pain catastrophisers are continuously ready to respond to pain 

cues, they become experts at recognising pain in others. Experiment 1 was the first 

behavioural study using visual scrambled stimuli to investigate attentional sensitivity 

to pain cues in high and low pain catastrophisers. The main findings of this study 

were as follows.  

 High- compared to low pain catastrophising individuals attributed greater 

pain, stronger negative emotion, and more arousal to pictures depicting pain 

in others.  

 All participants identified pain pictures with a higher level of background 

noise than negative emotional pictures, and with a lower level than neutral 

pictures.  

 High- and low pain catastrophisers did not differ in detection threshold or 

confidence during viewing of scrambled pain, neutral, and negative 

emotional pictures.  
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The present data confirms that individuals with high pain catastrophising 

report stronger pain to pain scenes compared to low pain catastrophisers, even 

though the information was buried in an ambiguous background. The present 

findings accorded with previous studies (Sullivan et al., 2006b, Martel et al., 2008), 

showing that high pain catastrophisers predict greater pain in others compared with 

low pain catastrophisers. An increased sensitivity to pain in others may explain the 

different pain rating patterns between groups when processing ambiguous visual pain 

stimuli. This hypothesis fits the features of pain catastrophising, in that pain 

catastrophising is associated with excessive attention to pain and with greater pain 

intensity (Sullivan et al., 2001b, Quartana et al., 2009). 

In this study, all participants identified pain scenes at a medium scrambling 

level, compared with negative emotional and neutral pictures. However, pain 

catastrophising has not modulated the detection of pain cues. Interestingly, high pain 

catastrophisers demonstrated a slightly better capability to identify all stimulus types, 

compared to low pain catastrophising group. Especially, high pain catastrophisers 

identified pain scenes (45.4%) from the noisy background slightly faster than low 

pain catastrophising group (43.2%). Previous studies of pain catastrophising support 

this view (Crombez et al., 1998a, Goubert et al., 2004b), showing that pain 

catastrophising is associated with excessive attention to a pain threat. Although 
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current data showed a slightly increased sensitivity to pain cues in high pain 

catastrophisers, the hypothesis that high, compared to low, pain catastrophisers 

would identify pain cues at a higher scrambling level was not confirmed.  

Furthermore, the present study found that high- compared to low pain 

catastrophisers mistakenly classified negative emotional scenes as pain scenes with a 

slightly higher frequency, even though the error rate did not reach significance. The 

results extend the findings by van Damme et al. (2004) who demonstrated that high 

pain catastrophisers had difficulty in using uncertain information about the 

occurrence of pain. The present findings suggest that high pain catastrophisers may 

overestimate the occurrence probability of pain-related information, although the 

impending stimuli contained only negative affect. This conclusion is supported by 

the study of Crombez et al. (1998b), which reported that disruption of a primary task 

by low-intensity pain stimuli was more pronounced in pain-free students with a high 

level of catastrophic thinking about pain.  

The non-significant findings in the detection task may be attributed to 

methodological issues. A similar scrambling technique was also employed in 

previous studies using EEG or fMRI (Cano et al., 2009b, Esterman and Yantis, 2010, 

Hindi Attar et al., 2010). Compared with previous studies, the total number of 

stimuli in this experiment was relatively small, with a total of 45 trials. Therefore, 
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the current data was not sufficiently powered to detect moderate / small effects. In 

addition, the image coherence rate may be too slow in current study (1% per 750 ms), 

compared to the study by Eserman and Yantis (2010) with a rate of 1% per 75 ms. 

Such a slow coherence rate may lead to two consequences. One is increasing the 

detection accuracy. The slower the coherence rate employed, the longer the display 

time; therefore the lower error rates may occur. The other is subject fatigue, which 

may lower their attentional sensitivity and divert attention to elsewhere, due to the 

long experiment duration. Therefore, future research needs to be careful with the 

experimental design.       

In summary, the current study demonstrated that high pain catastrophisers 

attributed greater pain to others, in comparison to low pain catastrophisers. No 

reliable group differences or any interactions between group and the type of 

scrambled stimuli were found. Therefore, this study suggested that high pain 

catastrophisers did not show greater sensitivity to pain cues in a noisy background.          
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5.2. Experiment 2 & 3: Effects of pain catastrophising on attention to pain in others: 

two eye movement studies 

The two eye tracking studies in this thesis explored the role of observer‘s 

pain catastrophising modulating attention towards pain in others. It has been 

hypothesised that high levels of pain catastrophising would be associated with 

stronger pain estimation and greater attention towards pain scenes. In addition, the 

present two studies investigated whether high pain catastrophisers‘ attention towards 

others‘ pain was characterised by initial orienting or maintained attention to pain 

scenes.  

The first eye tracking study (Experiment 2) employed pain and graphically 

matched non-pain pictures, and reported the main findings as follows.  

 People with high pain catastrophising scores reported greater pain to pain 

scenes than low pain catastrophisers.  

 Both catastrophising groups maintained longer attention to pain scenes than 

non-pain scenes.  

 The present eye movement data failed to prove that people reporting high, 

compared to low, pain catastrophising paid more attention particularly to pain 

scenes, regardless of initial orientation or maintenance of attention indices.  
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 In high pain catastrophisers, but not in low pain catastrophisers, first fixation 

latencies to pain scenes were positively correlated with arousal, whereas gaze 

durations to non-pain scenes were negatively associated with subjective pain 

ratings. 

In Experiment 2, the non-significant group differences in eye movement data 

during viewing of scenes depicting pain and non-pain could be attributed to several 

causes. First, due to the small sample size (13 High-Cat vs. 15 Low-Cat participants) 

in this study, statistical power was limited to detect only large effects (.80). Second, 

eye movement is not the sole index of attention measurements, even though the eye 

tracking technique allows for more precisely measuring temporal attentional 

dynamics. For instance, it has been shown that pain-related information was covertly 

processed, while neutral stimuli obtained overt gaze attention (Weierich et al., 2008). 

The dot-probe tasks are often used to measure attentional processing. A meta-

analysis of visual-probe task study indicated that the chronic pain population showed 

significant attentional bias towards pain-related information during the early stage of 

attention orientation (Schoth et al., 2012). Therefore, the utilisation of a dot-probe 

task has been recommended to complement eye movement measurement in future 

studies (Yang et al., 2012). Last but not least, it has been addressed that emotional 

information can capture attention (Browning et al., 2010, Lautenbacher et al., 2010). 
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Attentional bias towards pain can be driven not only by pain information itself, but 

also by negative emotional value (Asmundson, 2012, Crombez et al., 2013). Thus, to 

clarify whether attentional processes differ specifically to pain stimuli or also to 

general negative emotional information in high and low pain catastrophisers, 

negative emotional stimuli those not containing pain should be employed in future 

studies involving pain catastrophising.            

The second eye tracking study (Experiment 3) in this thesis modified the 

design of Experiment 2 by adding negative emotional pictures and by employing a 

dot-probe task. The main findings of Experiment 3 were as follows. 

 High- compared to low pain catastrophisers reported greater negative affect 

to all picture types, including negative emotional pictures.   

 Both pain catastrophising groups showed shorter first fixation latencies, and 

maintained longer gaze durations, to pain scenes during viewing a pair of 

Pain and Non-Pain pictures.  

 All participants showed a cycle of disengagement followed by re-engagement 

towards pain and negative affective scenes, relative to non-pain scenes. 

 High-Cat, but not Low-Cat, individuals showed statistically significant 

negative correlations between initial fixation durations to pain pictures and 

valence ratings.   
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 In the dot-probe task, a significant interaction between group and congruency 

was found, with Low-Cat subjects responding to congruent target-probe 

location significantly faster than to incongruent combinations. In addition, 

high pain catastrophisers were slower to respond to probes after pain scenes 

than low pain catastrophisers.    

In these two studies, high- compared to low pain catastrophisers reported 

stronger pain to pain and non-pain scenes. The main effect of pain catastrophising in 

Experiment 3 approached significance (P = 0.068). Data from the two eye tracking 

studies has confirmed the results in Experiment 1 of viewing pictorial stimuli, 

showing greater sensitivity to pain in others in high pain catastrophisers. These 

findings were consistent with the previous finding that high pain catastrophisers 

reported more intense pain during viewing of others in a cold pressor test (Sullivan et 

al., 2006b). Collaborating with previous studies, the results of Experiment 1, 2, and 3 

support the communal coping model of pain catastrophising (Keefe et al., 1989, 

Sullivan et al., 2001b, Turner et al., 2002), suggesting that high pain catastrophisers 

can share other‘s pain during the observation of pain in others.  

Although eye movement data failed to provide significant results, these two 

studies revealed several statistically significant correlations between eye movement 

data and subjective picture ratings in the high pain catastrophising group.  
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With respect to initial attentional allocation, High-Cat individuals directed 

their initial attention more slowly towards pain scenes, which contained stronger 

arousal (Experiment 2). Data partially confirmed previous findings by (Vervoort et 

al., 2013a) who found that high pain catastrophising people showed decreased 

tendency to initially orient to pain faces. The present studies and previous data 

indicated that high pain catastrophisers displayed attentional avoidance to pain 

scenes. It has been suggested that the initial orientation pattern in high pain 

catastrophisers may be associated with pre-attentive processing accompanied by 

different emotional or behavioural consequences, which has been addressed 

extensively in the emotion literature (Robinson, 1998, Yao et al., 2011, 

Spreckelmeyer et al., 2013). Pre-attentive processing is known to facilitate stimuli 

detection and emotional reaction when stimuli are relevant to one‘s existing 

cognitive-affective state. In High-Cat participants, pain-related information may 

facilitate pre-attentive processing of Pain pictures, and trigger negative emotional 

responses and avoidance behaviour. In support of this view, previous studies have 

demonstrated that high levels of pain catastrophising may elicit personal emotional 

distress and associated avoidance behaviour during the viewing of pain in others 

(Robinson et al., 2001, Goubert et al., 2009b, Yamada and Decety, 2009, Caes et al., 

2011, Caes et al., 2012a, Caes et al., 2012c).      
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With regards to the attentional maintenance, High-Cat participants 

maintained shorter initial attention towards pain scenes when stimuli were 

considered as more negative affective (Experiment 3), and demonstrated longer gaze 

durations toward non-pain stimuli with less perceived pain (Experiment 2). A 

previous eye movement study found that chronic pain patients reporting high fear of 

pain showed shorter initial fixation durations to health catastrophe words, compared 

with those with low fear of pain. This study indicated that explore of threat can 

manifest attentional avoidance to negative information (Yang et al., 2013). Therefore, 

the shorter first fixation durations to pain scenes in high pain catastrophisers may 

reflect a strategic escape tendency to minimise emotional discomfort. This tendency 

may last for the entire attentional processing.     

In the dot-probe task, the present study found a significant interaction effect 

between group and congruency, indicating that selective attention to target stimuli 

(i.e. Pain pictures) was dependent upon the levels of pain catastrophising. The trend 

of attentional bias towards pain/ negative emotional stimuli was observed in Low-

Cat subjects only. In addition, high- compared to low pain catastrophising 

individuals showed prolonged responses to probes after pain scenes. Results 

contribute to the view that pain catastrophising is associated with increased 

avoidance behaviour. Similar findings were found in a  recent dot-probe study 
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involving pain catastrophising (Vervoort et al., 2013b). Vervoort et al. (2013b) 

revealed that children increasingly shifted attention away from pain faces with 

increasing levels of children‘s magnification and greater parental rumination and 

helplessness. People with high pain catastrophising alleviate emotional distress 

through attentional avoidance. The emotional regulatory function of attentional 

avoidance towards pain-threat information has been demonstrated in high pain 

catastrophisers (Caes et al., 2011, Vervoort et al., 2011a, Caes et al., 2012b, Vervoort 

et al., 2012). In the present study, attentional avoidance may serve a similar 

emotional regulatory function in High-Cat participants during viewing of pain scenes, 

although this strategy has been considered as maladaptive in pain catastrophisers 

(Vlaeyen and Linton, 2000).  

The small sample size in both eye tracking studies may be one of the 

explanations for the non-significance of group differences. Despite limitations, the 

current findings concluded that high pain catastrophising individuals attributed 

greater pain to pain scenes, compared to low pain catastrophisers. High pain 

catastrophisers showed a tendency of attentional avoidance to pain scenes in the 

early and late stages of attention processing during viewing pain in others. The 

present studies supported the cognitive-affective model (Eccleston and Crombez, 

1999), and proposed that pain imposed an overriding attentional priority that 
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motivated avoidance behaviour, particularly in the context of pain catastrophising 

(Sullivan et al., 2001b, Quartana et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 



156 
 

5.3. Experiment 4: Pain catastrophising effects on the cortical responses to viewing 

pain in others  

Experiment 4 utilised ERP analyses to investigate the neural basis of viewing 

pain in others in high and low pain catastrophisers during viewing of pain and non-

pain scenes. The main findings were as follows. 

 High-Cat individuals reported stronger pain and unpleasantness to pain 

scenes than Low-Cat people. They also attributed stronger pain to non-pain 

scenes. 

 Low-Cat compared to High-Cat subjects manifested stronger cortical 

responses in the early latency window (280–450 ms) in the rACC, PHGR, and 

PCC, whereas High-Cat participants showed greater activations in the late 

latency period (600–1100 ms) in PHGL and PCC. 

 In Low-Cat subjects, only the activation in PHGL in the early latency period 

(284–308 ms) differentiated between pain and non-pain pictures, with pain 

pictures showing greater source activity than non-pain pictures. 

 Only the Low-Cat group showed statistically significant correlations between 

cortical activity in PCC in the late latency epoch and pain and arousal ratings. 
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Participants with high pain catastrophising scores attributed stronger pain and 

unpleasantness to visual scenes depicting potential somatic pain in others than 

participants with low pain catastrophising scores. Interestingly, the high pain 

catastrophising group also attributed pain to pictures depicting low risk of pain, 

suggesting that high pain catastrophising subjects would likely interpret scenes and 

stimuli as painful based on a remote, indirect and small possibility of pain being 

inflicted. Such generalisation in processing visual pain stimuli may be one of the 

cognitive distortions leading high pain catastrophisers to attribute pain to a large 

variety of cues with pain connotations. The present findings corroborated previous 

experimental data suggesting that high-pain catastrophisers attribute stronger pain to 

people undergoing the cold pressor test compared to low-pain catastrophisers 

(Sullivan et al., 2001a, Sullivan et al., 2006a). 

The early latency window (280‒ 450 ms) corresponding to the P300 

(300‒ 500 ms) component, displayed a spatial maxima in parietal electrodes (Hajcak 

et al., 2011, Fan and Han, 2008; Han and Li, 2010; Han et al., 2008). Previous 

studies have indicated that P300 may reflect semantic content evaluation of pictures 

(Schupp et al., 2003b, Schupp et al., 2004a, Hajcak et al., 2011). The current study 

revealed that Low-Cat, but not High-Cat, participants exhibited an augmented P300 

activation to pain pictures in the early time window of PHGL. Similar findings were 
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shown in a pain empathy study in which pain pictures elicited greater P300 

activations in comparison to non-pain pictures in healthy individuals (Decety et al., 

2010). The present findings also showed that High-Cat, compared to Low-Cat, 

people displayed smaller P300 amplitudes in rACC, PHGR and PCC. It has been 

suggested that rACC, PHG, and PCC are involved in the pain processing (Peyron et 

al., 2000, Tracey, 2008). An alternative explanation is that the weaker source 

activations in high pain catastrophisers may reflect an implicit bias of interpreting 

graphically matching non-pain pictures as containing threatening pain information 

(Duckworth et al., 2002, Tran et al., 2011). This bias may lead to an incline of 

negative interpretation of innocuous stimuli (Carroll et al., 2011, Liossi et al., 2012), 

and weaken the differentiating ability of pain in high pain catastrophisers. This 

account is complemented by behavioural data with high pain catastrophisers 

attributing pain to non-pain stimuli. An eye tracking study also supported this 

explanation with high pain catastrophisers initially fixating equally on pain and non-

pain faces (Vervoort et al., 2013a). Therefore, corresponding with previous data 

(Singer et al., 2004, Jackson et al., 2005, Jackson et al., 2006, Singer et al., 2006, Gu 

and Han, 2007, Lamm et al., 2007b, Fan and Han, 2008), this study proposed that the 

neural structures of rACC, PHG and PCC modulated the semantic decoding and 
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discriminative functions in the early time window of emotional picture evaluation in 

high pain catastrophisers. 

 The long latency window (600‒ 1100 ms), in contrast, showed a stronger 

cortical activity in High-Cat, compared to Low-Cat, subjects in PHGL and PCC. The 

long- latency window corresponds to the late positive potential (LPP) evoked by 

emotional pictures (Schupp et al., 2003a, Schupp et al., 2004a, Schupp et al., 2004b, 

Hajcak et al., 2011), affective faces (Werheid et al., 2007), and emotional facial 

expressions (Eimer and Holmes, 2007). This positive potential usually operates from 

500 ms following picture onset, identified at the centro-parietal regions, and is 

associated with less semantic processing and more emotional processing. The 

present findings were consistent with a previous ERP study that found that negative 

pictures elicited stronger activations of PCC and PHG in the late positivity 

component in females (Proverbio et al., 2009). In addition, it has been postulated that 

the LPP is indicative of increasing influence of top-down processes (Olofsson et al., 

2008, Foti et al., 2009, Weinberg and Hajcak, 2010). ERP studies suggested that 

phobic participants with successful cognitive-behavioural therapy engaged in less 

avoidance of their feared stimuli in order to regulate their emotional responses by 

showing enhanced LPPs (Leutgeb et al., 2009, Leutgeb et al., 2012). A recent ERP 

study also reported larger LPPs were elicited when people with high empathic trait 



160 
 

were viewing pain and non-pain pictures (Ikezawa et al., 2013). In the present study, 

stronger cortical activation to pain and non-pain pictures in high pain catastrophisers 

complemented the suggestion of retarded disengagement from pain in high pain 

catastrophisers (Van Damme et al., 2002b, Van Damme et al., 2004). Furthermore, 

the current results showed significant associations between augmented PCC 

activation to pain pictures in the late time window and arousal and pain ratings in 

Low-Cat subjects only. It indicated the overt responses to scenes implying even a 

remote possibility of bodily harm in high pain catastrophisers. Thus, high pain 

catastrophising appears to affect empathy disposition and emotion contagion during 

viewing of pain pictures. 

Increased source activity in bilateral medial temporal cortices was reported 

during viewing emotional pictures. It has been suggested that the hippocampus is 

involved in emotional regulation of pain (Ploghaus et al., 2001, Stancak et al., 2012, 

Stancak et al., 2013). The parahippocampal gyrus is also well known for its 

involvement of the retrieval of emotional memory (Goosens, 2011). A meta-analysis 

review of emotion suggested that the right hippocampus was more likely to be 

activated by any instance of emotion in a face, body or voice, whereas the left side 

was more likely to link with the encoding of salient stimuli in memory (Lindquist et 

al., 2012). Therefore, the converse patterns of right and left parahippocampal 
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activations mediated by pain catastrophising in different time frames may suggest 

that people with high pain catastrophising performed blunted semantic analysis of 

pain and non-pain scenes in the beginning, then recalled their memory for emotion 

sharing in the late stage of empathy processing.  

Taken together, observation of pain in others during passive viewing of 

photographs depicting high or low probability of pain being inflicted shows 

substantial differences in spatio-temporal patterns of cortical activation between 

High-Cat and Low-Cat individuals. High-Cat participants show a blunted cortical 

response in the latency from 280 to 450 ms corresponding to the period of semantic 

decoding of picture content (Schupp et al., 2003a, Schupp et al., 2003b, Schupp et 

al., 2004a, Schupp et al., 2004b, Schupp et al., 2007, Hajcak et al., 2011). The 

cortical activity in PHGL in High-Cat subjects fails to disentangle pain and non-pain 

pictures suggesting a reduced capacity to evaluate the degree of threat in a visually 

presented scene depicting a certain risk of pain being inflicted. Further, high pain 

catastrophisers show stronger cortical responses in the late latency window (> 600 

ms) in PHGL and PCC. The lack of statistically significant correlations between 

source strength of the PCC dipole and pain and arousal ratings in High-Cat subjects 

suggest their undifferentiated and amplified response during this latency period, 

which has been shown to be associated with emotional processing of pictures. It thus 
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seems that attribution of comparatively high level of pain to others in high pain 

catastrophisers rests with their limited capacity for semantic decoding of visual 

stimuli involving a risk of pain being inflicted in the early latency period, and their 

enhanced and undifferentiated cortical activation in the later, emotional processing 

stage. 
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5.4. Experiment 5: Pain catastrophising effects on the cortical responses to laser 

stimulation during viewing of comforting hand postures 

Experiment 5 used EEG recordings and laser stimulation to investigate the 

cortical responses to perceived pain during viewing of hand postures depicting a 

comforting touch, touch, and non-touch in high and low pain catastrophisers. The 

main findings were as follows.  

 Subjects with high pain catastrophising scores reported less pain intensity 

during the observation of Comfort scenes, compared to Touch and Non-

Touch conditions.  

 A statistically significant interaction between group and picture type was 

found, with high- compared to low pain catastrophisers showing greater 

source activity in the right operculo- insular cortex (459–472 ms) when 

viewing Non-Touch pictures.  

 High- compared to low pain catastrophisers manifested stronger cortical 

responses to noxious stimuli in the bilateral opercular- insular cortices, MCC 

and rACC, whereas low pain catastrophisers displayed stronger co rtical 

activation in the PHGR.  
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 Only subjects reporting low pain catastrophising scores demonstrated a 

significant positive correlation between source activation in the rACC in the 

early latency and perceived pain ratings during viewing of Comfort pictures. 

High pain catastrophisers perceived less pain when observing the Comfort 

pictures, compared with the other two conditions. Previous studies have suggested 

that chronic pain patients with high pain catastrophising have a high demand for 

support from their spouse or partner (Keefe et al., 2003, Boothby et al., 2004, Cano, 

2004, Buenaver et al., 2007). Cano (2004) also suggested pain catastrophising was 

associated with positive support during a short period of pain. Consistent with 

previous data, the present findings support the communal coping model of pain 

catastrophising (Sullivan et al., 2001b, Quartana et al., 2009), suggesting high pain 

catastrophisers can mitigate their pain through soliciting social support, such as 

viewing comforting hand postures.   

Compared to the low pain catastrophising group, people with high pain 

catastrophising showed stronger cortical activation to laser evoked pain in the right 

operculo- insular cortex (459–472 ms) during viewing of Non-Touch pictures. 

Posterior insula is considered as one of the major pain processing regions (Peyron 

et al., 2000, Apkarian et al., 2005), and shows an early activation during noxious 

stimulation (Tarkka and Treede, 1993, Bromm and Chen, 1995, Iannetti et al., 
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2005). This region has been universally reported as the generator of N1 LEP 

component (Ploner et al., 2002, Garcia-Larrea et al., 2003, Iannetti et al., 2008). 

Posterior insula and the adjacent secondary somatosensory cortex (SII) receive the 

majority of afferent fibres from the spino-thalamic tract (Dum et al., 2009), 

specialising in conveying emotional information, such as pain (Craig, 2002). 

Lesions in the region of posterior insula are associated with chronic pain and 

disturbances in thermoception (Garcia-Larrea et al., 2010). Moreover, activity in 

the posterior insula correlated with subjective reports of pain intensity (Stancák et 

al., 2011) suggesting its involvement in the evaluation of the sensory component of 

pain. Further, a placebo study implicated the role of insula in pain exacerbation, 

with suppressed insula activation in the pain placebo condition (Wager et al., 2004). 

In addition, the sensation of pleasant touch is produced by the activation of C-

tactile afferents (Olausson et al., 2002, Loken et al., 2009), which project to insular 

cortex (Björnsdotter et al., 2010). Previous studies have showed posterior insular 

activation during C-tactile stimulation (McCabe et al., 2008, Liljencrantz et al., 

2013). Similar activation in the posterior insula was also found in studies of 

observing touch (Keysers et al., 2004, Keysers et al., 2010, Morrison et al., 2011a). 

Therefore, the long lasting activation in the posterior insula suggested that high pain 

catastrophisers may prolong and amplify their cortical responses to perceived pain, 
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especially, when perceived support was not available. This finding is in accord with 

the communal coping model of pain catastrophising; catastrophisers are prone to 

reduce their pain perception and pain-related distress via seeking social-emotional 

support (Keefe et al., 1989, Sullivan et al., 2001b, Turner and Aaron, 2001, Turner 

et al., 2002).  

Passive viewing comforting pictures also enhanced pain responses in 

operculo- insular cortices, MCC and rACC in high, compared to low, pain 

catastrophisers. All these structures have been proposed as core regions engaging in 

pain processing (Peyron et al., 2000, Tracey and Mantyh, 2007, Tracey, 2008). The 

significant group differences in these areas indicated that cortical responses to 

noxious pain were independent of the levels of observed comfort-giving pictures in 

high pain catastrophisers. Furthermore, previous studies involving pain 

catastrophising have reported that high pain catastrophisers exhibited augmented 

cortical responses to painful stimuli in the rACC in both chronic pain patients and 

healthy population (Gracely et al., 2004, Seminowicz and Davis, 2006). The ACC 

activity is associated with the affective dimension of pain (Rainville et al., 1997) 

and pain empathy (Singer et al., 2004), and is correlated with subjective ratings of 

other‘s pain (Jackson et al., 2005). The current study found that increased rACC 

activation in the early time window (169‒ 192 ms) was significantly correlated with 
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perceived pain while viewing Comfort pictures in low pain catastrophisers only. 

The non-significant correlation in high pain catastrophisers may indirectly support 

the hypothesis that viewing comforting hand postures may diminish the perceived 

pain in people with high pain catastrophising. This suggestion was also supported 

by the behavioural data that high pain catastrophisers rated less pain intensity when 

attending to Comfort pictures.  

Finally, suppressed activation in right parahippocampal gyrus (438‒ 506 ms) 

was observed in high pain catastrophising group, during viewing of comfort-giving 

pictures. Activation of PHGR corresponds to the P3 LEP component (Legrain et al., 

2002, Legrain et al., 2003, Stancak et al., 2013). This component can be modulated 

by attending to emotional sounds (Stancak et al., 2013) and pictures (Stancak and 

Fallon, 2013), and rare stimuli (Kanda et al., 1996). In addition, studies of pain 

empathy demonstrated that the augmented P3 amplitudes were elicited by viewing 

pain-related pictures in the absence of physical pain (Fan and Han, 2008, Decety et 

al., 2010, Li and Han, 2010, Ibáñez et al., 2011, Meng et al., 2012). 

Parahippocampal gyrus has been shown to be activated by noxious stimuli 

(Valeriani et al., 1996, Valeriani et al., 2000, Ploghaus et al., 2001, Fairhurst et al., 

2007, Piche et al., 2010). Moreover, as the part of the entorhinal cortex (Insausti 

and Amaral, 2004), the parahippocampal gyrus is proposed to be a part of the 
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emotion processing network (Lindquist et al., 2012). The decreased activity in the 

PHGR may implicate that top-down attention was drawn away from the painful 

stimuli in high pain catastrophisers during the observation of social-emotional 

gestures, such as support. Therefore, viewing comfort-giving hand postures may 

attenuate the affective dimension of pain in high pain catastrophisers.  

In conclusion, high-pain catastrophising people showed a reduction in pain 

while viewing comforting hand postures compared to non-comforting scenes. The 

present study also provides ERP evidence for effects of comfort-giving on the 

cortical responses to pain in the context of pain catastrophising. It suggests 

enhanced cortical activations in regions belonging to the pain network among high 

pain catastrophising individuals, implying that such populations over-react to pain-

related stimuli. Only the long- latency activation in the ipsilateral operculo- insular 

cortex showed a modulation by picture type and pain catastrophising matching the 

pattern of perceived pain intensity. The current data suggests that pain in high-pain 

catastrophising individuals is modulated by the context of social-emotional cues, 

and that such modulation appears to be related to activation changes in the 

ipsilateral operculo- insular cortex.     
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5.5. Experiment 6: Pain catastrophising and structural features of cortical and 

subcortical brain regions in healthy people 

Experiment 6 aimed to investigate the relationship between pain 

catastrophising scores and shape and volume changes of the brain in healthy people. 

The main findings were as follows.  

 Shape analysis revealed significant positive associations between shape 

alterations in the left caudate and bilateral putamen and pain catastrophising, 

after controlling for gender.  

 VBM analysis found significant positive correlations between the PCS scores 

and grey matter volumes in the right PHG, right angular gyrus, right 

paracentral lobule, PCC, and left middle temporal gyrus, and significant 

negative correlations in the left superior frontal volumes, after controlling for 

age, gender, fear of pain and anxiety.  

In individuals with high PCS scores, expansions of shape were observed in 

the left caudate and bilateral putamen. The caudate and putamen constitute the dorsal 

striatum (Grahn et al., 2008). The striatum is commonly activated by noxious stimuli, 

including thermal (Tracey et al., 2000, Oshiro et al., 2009), pressure (Gracely et al., 

2004), electrical (Downar et al., 2003, Freund et al., 2009) and laser (Bingel et al., 
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2004) pain. Interestingly, Starr et al. (2011) reported that lesions in putamen caused 

reductions in pain perception. Chronic pain has also been shown to increase GM in 

the putamen (Schmidt-Wilcke et al., 2007, Younger et al., 2010) and caudate 

(Schweinhardt et al., 2008, DeSouza et al., 2013). These structural alterations in the 

dorsal striatum may be a compensatory action against nociceptive inputs. Dorsal 

striatum has been suggested as a key region in motor processing (Grahn et al., 2008, 

Knutson et al., 2009). Primate studies suggest dorsal striatum is sensitive to habit 

forming in the putamen (Deffains et al., 2010) and to dynamically changing reward 

outcomes in the caudate (Hikosaka et al., 1989). A meta-analysis study indicated that 

dorsal striatal lesions were more likely to compromise motor execution (Bhatia and 

Marsden, 1994). In addition, it should be noted that an fMRI study of fibromyalgia 

reported that pain activated the lentiform nuclei (i.e., the putamen and globus 

pallidus) bilaterally only in high pain catastrophisers (Gracely et al., 2004). The 

authors postulated that this unique activation may reflect that pain catastrophising is 

associated with dysfunctional motor control, such as greater pain behaviour and 

increased pain-related emotional expressions.    

Dopamine release in the striatum in response to noxious stimuli leading to 

endogenous antinociception has been reported in healthy people (Scott et al., 2006, 

Wood et al., 2007). Furthermore, increased GM in the striatum may be caused by a 
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lack of dopamine in clinical pain conditions (Schmidt-Wilcke, 2008). Supporting 

this view, a dopaminergic alteration in the dorsal striatum has been previously 

reported in chronic pain patients (Jääskeläinen et al., 2001, Hagelberg et al., 2003, 

Wood et al., 2007). Therefore, expansions of the striatum shape in this study may be 

related to a defence mechanism in high pain catastrophisers. Catastrophisers may 

inhibit their pain via the dopaminergic activation of the striatum.  

The functional role of hippocampus/parahippocampal gyrus has been 

suggested to involve pain modulation (Ploghaus et al., 2001, Bingel and Tracey, 

2008, Berna et al., 2010) and regulation of negative affective (Hobin et al., 2006, 

Herry et al., 2008, Barkus et al., 2010, Goosens, 2011, Stancak and Fallon, 2013, 

Stancak et al., 2013). Augmented hippocampal activation was triggered by anxiety 

induced by the uncertainty of the occurrence of painful stimuli (Ploghaus et al., 

2001), indicating that hippocampus reflects the activation of the pain-related anxiety 

(McHugh et al., 2004). Recent VBM studies have suggested that anxiety is 

associated with increased parahippocampal volume in patients with social anxiety 

disorder (Talati et al., 2013), and in the general healthy population (Wei et al., 2014). 

In an fMRI study using electrical stimulation on tooth pulp, hippocampal activation 

correlated positively with PCS scores only in the stressful context modulated by 

unpredictability (Lin et al., 2013). Consistent with the findings in a VBM study of 
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chronic vulvar pain patients (Schweinhardt et al., 2008), the present study revealed a 

similar positive relationship between pain catastrophising and the volume of 

parahippocampal gyrus. Thus, the present findings and those of previous studies 

suggest that a larger parahippocampal volume is associated with a vulnerability o f 

social-psychological stress to healthy subjects with high pain catastrophising.  

Previous papers have suggested the role of hippocampus in the regulation of 

stress hormones (such as, cortisol) secretion (Goosens, 2011). Cortisol levels in 

healthy people have been reported to negatively correlate with pain threshold during 

stress (Choi et al., 2012), and positively associate with pain severity during a cold 

pressor task (Goodin et al., 2012). Studies have shown that hippocampal deactivation 

was associated with an increase in cortisol secretion in a psychosocial stress task 

(Pruessner et al., 2008). In addition, Pruessner et al. (2005) reported that larger 

hippocampal volumes were associated with lower cortisol secretion in response to a 

stressor. Pain catastrophising has been associated with corticol decline in pain 

patients (Edwards et al., 2008, Johansson et al., 2008). Collectively, larger 

hippocampal/parahippocampal volumes in healthy people with high pain 

catastrophising may indicate a stronger control over stress hormone secretion. Pain 

catastrophising may be associated with abnormal hypothalamic-pituitary-adrenal 

axis activity in the healthy population.  
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In the present study, other regions showing positive correlations between GM 

and PCS scores were the right angular gyrus, PCC, right paracentral lobule, and left 

middle temporal gyrus. The brain regions of inferior parietal cortex (IPL; mainly 

angular gyrus) and PCC are structures of the default mode network, which may 

reflect the neuronal baseline activity of the human brain in the absence of external 

stimulation (Gusnard et al., 2001, Raichle et al., 2001, Laird et al., 2009). 

Deactivation of the PCC has been shown during experimental pain (Seminowicz and 

Davis, 2007, Kong et al., 2010). A recent neuroimaging study by Kucyi et al. (2013) 

found that the mind wandering away from pain enhanced cortical activation in the 

PCC. Increased IPL volume associated with reduced pain sensitivity in healthy 

people was reported in a VBM study (Emerson et al., 2014). The IPL is associated 

with spatial attention processing of pain (Yantis et al., 2002, Oshiro et al., 2007, 

Lobanov et al., 2013). Thus, high pain catastrophisers with increased GM in PCC 

and IPL may be more likely to maintain top-down attention to pain-related stimuli. 

In addition, activity in the paracentral lobule, corresponding to the supplementary 

motor areas, has also been associated with pain processing (Peyron et al., 2000, 

Oshiro et al., 2009).   

 Individuals with high PCS scores exhibited decreases in GM in left superior 

frontal gyrus, including the dorsolateral prefrontal cortex (DLPFC). The DLPFC has 
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been implicated in the descending modulation of pain (Lorenz, 2003). Pain 

catastrophising has been described as a maladaptive cognitive ability to cope with 

pain (Sullivan et al., 2001a, Quartana et al., 2009). Together with previous VBM 

findings of chronic pain patients (Blankstein et al., 2010, Seminowicz et al., 2013), 

the decreased volumes of DLPFC in current study may suggest a lack of control of 

pain processing in normal people with high pain catastrophising. Consistent with this 

view, healthy volunteers with high PCS scores showed a stronger negative 

correlation with activity in DLPFC during moderate intense pain stimulation 

(Seminowicz and Davis, 2006).    

In summary, the present study provides evidence for a relationship between 

pain catastrophising and volume and shape alterations in a healthy population. 

Results suggest that increased volumes in regions participating in emotional 

processing (parahippocampal gyrus), pain (PCC), and frontal and temporal 

association cortices may predispose to a heighted level of pain catastrophising. Also, 

morphological changes in dorsal striatum contribute to the alteration of pain 

processing. 
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Chapter Six 

General Discussion 

Pain catastrophising, an exaggerated negative orientation towards actual and 

anticipated pain, is increasingly considered as an important factor in the experience 

of pain (Sullivan et al., 2001b). This thesis addressed behavioural, cognitive, and 

neural aspects of pain catastrophising in healthy people. The findings are relevant for 

the evaluation of three key models of pain catastrophising, the appraisal model, the 

attentional model, and the communal coping model (Sullivan et al., 2001b, Quartana 

et al., 2009). 

6.1. Appraisal model 

Pain catastrophising has been referred to as an appraisal problem (Jensen et 

al., 1991). The appraisal model of pain catastrophising suggests that individuals 

initially assess and evaluate the threat of pain during the primary appraisal stage , 

and cope with pain threat maladaptively during the secondary appraisal stage 

(Severeijns et al., 2004). Pain catastrophising, according to the appraisal model, is a 

distorted cognitive characteristic of potentially painful situation, similar to 

depression. In the cognitive model of depression, pain catastrophising is considered 

as a cognitive distortion that might contribute to the maintenance of symptoms of 
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depression (Beck, 1976, 1979, Beck and Emery, 1985). In this model, cognitive 

errors are expected to bias information associated with depression, and thus increase 

the likelihood of the development of depression symptoms. In the context of pain 

catastrophising, high pain catastrophisers may misinterpret pain-related information 

so that negative outcomes are expected.  

Several findings of the present thesis are in support of the appraisal model. 

Firstly, high- compared to low pain catastrophisers attributed greater pain not only to 

pain scenes, but also to non-pain scenes (Experiment 2 & 4). This finding suggests 

over-generalisation and poor evaluation of pain-related events in high pain 

catastrophisers, consistent with the appraisal model.  

Secondly, only low pain catastrophisers but not people with high pain 

catastrophising showed correlations between late posterior cingulate activation and 

subjective pain ratings during observation of pain pictures (Experiment 4). Along 

similar lines, only low pain catastrophisers showed correlations between rostral 

anterior cingulate activity and perceived pain ratings during viewing of comfort ing 

hand postures (Experiment 5). Moreover, low, but not high, pain catastrophisers 

responded faster to congruent target-probe location than to incongruent pairs 

(Experiment 3). This finding collaborates with neural evidence, suggesting an 

undifferentiated response to pain cues in high pain catastrophisers. The inaccurate 
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processing of pain stimuli in high pain catastrophisers may lead to the allocation of 

greater distorted processing of pain which would not be proportionate to the amount 

of pain.  

6.2. Attentional model 

The attentional model of pain catastrophising postulates the allocation of 

excessive attentional responses to pain stimuli in high pain catastrophisers (Crombez 

et al., 1999, Sullivan et al., 2001b, Quartana et al., 2009). Catastrophising may 

enhance an individual‘s attention to pain, resulting in difficulty disengaging from 

pain-related events, and increased vigilance to external stimuli (Sullivan et al., 

2001b, Goubert et al., 2004b, Van Damme et al., 2004). 

Event-related potential data (Experiment 4) revealed longer activation in 

cingulate cortex in high- compared to low pain catastrophisers while viewing pain 

pictures. Middle anterior cingulate cortex is involved in detecting novelty and 

orienting attention (Davis et al., 1997, Derbyshire et al., 1998, Peyron et al., 1999, 

Davidson et al., 2002, Downar et al., 2002, Legrain et al., 2009a). Anterior cingulate 

cortex is also activated during an attention-demanding task (Davis et al., 2000) and 

in studies requiring sustained attention in the absence of pain, such as the Stroop test 

(Peyron et al., 2000). An fMRI study of fibromyalgia patients reported that anterior 
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cingulate activation to the blunt pressure pain was found in high pain catastrophisers 

(Gracely et al., 2004). In line with these studies, the longer activation of cingulate 

cortex in high pain catastrophisers may provide a neurophysiological underpinning 

for the attentional model of pain catastrophising, and particularly to the findings of a 

longer duration to pain cues in high pain catastrophisers (Van Damme et al., 2002b, 

Van Damme et al., 2004).     

In the dot-probe task (Experiment 3), high pain catastrophisers responded to 

probes after pain scenes slower than low pain catastrophisers did. Although high and 

low pain catastrophisers did not differ in their fixation time to pain scenes, 

significant correlations between fixation time and subjective ratings of pain pictures 

were found. This finding may suggest attentional avoidance of pain scenes in high 

pain catastrophisers.  

The absence of effects of pain catastrophising on sensitivity to pain cues in a 

noisy background (Experiment 1) is inconsistent with the attentional model of pain 

catastrophising (Crombez et al., 1998a, Goubert et al., 2004b). One possible 

explanation might be that high sensitivity may reflect a tendency to be receptive of 

sensations, independently of a catastrophising mode of attention. A recent study 

revealed that low anxiety people reported high sensitivity to bodily signals and low 

levels of monitoring and pain catastrophising, whereas high anxiety people reported 



179 
 

low sensitivity and high levels of monitoring and pain catastrophising (Ginzburg et 

al., 2013). Future research should focus on effects of pain catastrophising on 

sensitivity to pain cues. 

6.3. Communal coping model 

Sullivan et al. (2000b) and Keefe et al. (1989) proposed a communal coping 

model of pain catastrophising. In this model, high pain catastrophisers are likely to 

diminish their pain and emotional discomfort by soliciting social support (Keefe et 

al., 1989, Sullivan et al., 2001b, Turner et al., 2002). Therefore, in order to attract the 

attention of others, high pain catastrophisers may show a high frequency of pain 

behaviours, stronger emotional distress, and heightened pain perception.  

The thesis provides strong support for the communal coping model. Firstly, 

subjective pain ratings of pain in others correlated with pain catastrophising scores 

(Experiment 1- 4) high pain catastrophisers attributing stronger pain to pain in others, 

confirming the communal coping model (Keefe et al., 1989, Sullivan et al., 2001b, 

Turner et al., 2002). This finding accords with previous studies (Sullivan et al., 

2006b, Martel et al., 2008) suggesting a systematic tendency in high pain 

catastrophisers to overestimate others‘ pain.  
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Secondly, event-related potential analysis of EEG data recorded during 

viewing of pain and non-pain pictures (Experiment 4) revealed different patterns of 

cortical activation in high- and low pain catastrophisers, with high pain 

catastrophisers showing a blunted cortical response in the early stage and enhanced 

cortical activation in the later stage of processing. Specific regions of rostral anterior 

cingulate cortex, posterior cingulate cortex, and parahippocampal gyrus were 

involved in pain processing in high pain catastrophisers. In line with the communal 

coping model (Keefe et al., 1989, Sullivan et al., 2001b, Turner et al., 2002), 

enhanced cortical activity in high pain catastrophisers may suggest that pain 

catastrophising is associated with stronger dispositional empathy for pain.  

Thirdly, laser-evoked potential data (Experiment 5) during viewing of 

comforting hand postures showed that high, compared to low, pain catastrophisers 

reported less pain while viewing of comforting hand postures but not while viewing 

hands of those not providing positive support. Previous studies have suggested that 

pain catastrophising is strongly associated with greater solicitation of support by pain 

patients during short period of pain (Cano, 2004, Buenaver et al., 2007). Therefore, 

high pain catastrophisers are likely to seek support to minimise their pain. Greater 

source activations to pictures not showing comforting gestures were observed in the 

right operculo- insular cortex in high- compared to low pain catastrophisers. Posterior 
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insula is involved in pain processing (Peyron et al., 2000, Apkarian et al., 2005) and 

the activation of C-tactile afferents (Olausson et al., 2002, Loken et al., 2009). The 

matching patterns of perceived pain intensity and source activation in posterior 

insula suggested that high pain catastrophisers may attenuate their pain intensity 

during viewing of comforting hand postures. These findings are consistent with the 

communal coping model (Keefe et al., 1989, Sullivan et al., 2001b, Quartana et al., 

2009), showing that high pain catastrophisers could benefit from social support.  

6.4. Brain structure and pain catastrophising 

This thesis identified morphological changes in the cortical grey matter and 

subcortical structures of healthy people that were correlated with pain 

catastrophising scores (Experiment 6). The shape alterations seen in the dorsal 

striatum, identified using a novel shape analysis technique, is of particular interest. 

Moreover, significant correlations were found between pain catastrophising scores 

and the grey matter volume in parahippocampal gyrus, angular gyrus, paracentral 

lobule, posterior cingulate cortex, and temporal and frontal associated cortices.  

The associations between pain catastrophising and structural brain features 

may be explained by either plasticity or by genetic predisposition. As far as plasticity 

is concerned, it is likely that high pain catastrophisers activate pain centre more than 
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low pain catastrophisers, providing the grounds for plasticity effects to occur. The 

frequent employment of a relevant cognitive function may lead to the structural brain 

alterations allowing adjustments to environmental demands. For example, the 

posterior hippocampus volumes of London taxi drivers are larger than those of age-

matched controls (Maguire et al., 2000), and the enlargement of posterior 

hippocampus correlated with the amount of time spent in this job. Male symphony 

orchestra musicians manifest increased grey matter volume in Broca‘s area than 

those of gender and IQ-matched non-musicians (Sluming et al., 2002). In addition, a 

study of fibromyalgia patients reported that beta-band event related 

desynchronisation in the ipsilateral central-parietal region during mechanic-tactile 

stimulation correlated with the clinical manual tender point scale (Fallon et al., 

2013) , suggesting abnormal processing of somatosensory input which may 

contribute to clinical symptom severity. Therefore, a high frequency exposure to 

pain-related events may contribute to plastic changes of brain structure in healthy 

people with high pain catastrophising. Moreover, maternal pain behaviour impacts 

directly on children‘s pain experiences (Chambers et al., 2002), suggesting that 

parental influences can influence the formation of their children‘s pain behaviour 

and possibly pain catastrophising. Parent symptom-related talk is strongly associated 

with pain symptom complains in high pain catastrophising children (Williams et al., 
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2011). Parent catastrophising about their children‘s pain is also positively correlated 

with children‘s fear of pain (Vervoort et al., 2011b) and children‘s pain intensity 

(Vervoort et al., 2013b). A longitudinal study revealed that parental pain 

catastrophising after the surgery can predict children‘s postsurgical pain (Pagé et al., 

2013).  

The association between pain catastrophising and brain structural features 

may be related to genetic predisposition. A twin study has revealed that genetic 

factors determine individual brain structure and function. For example, cognitive 

performance is linked with the frontal regions where the structures were under 

greater genetic control (Thompson et al., 2001). A number of genes have been 

identified for prefrontal and hippocampal grey matter densities (Peper et al., 2007). 

Recent studies found that a few candidate genes are associated with pain 

catastrophising. For example, pain catastrophising scores are negatively correlated 

with the serotonin receptor 3B gene, which is involved in pain modulation (Horjales-

Araujo et al., 2013). The catechol-O-methyltransferase gene interacts with individual 

differences in pain catastrophising to predict long-term pain-related outcomes 

(George et al., 2008b, George et al., 2014). In addition, fear conditioned stimuli 

evoked greater cortical activation in rostral anterior cingulate cortex/ dorsomedial 

prefrontal cortex in the individuals with the NPSR1 (neuropeptide S receptor gene) T 
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allele (Raczka et al., 2010), suggesting a gene for catastrophising over- interpreted 

fear reactions.  

The present findings did not provide any data to conclusively prove whether 

the brain structural features associated with individual pain catastrophising were 

influenced by plasticity or genetic predisposition. Therefore, future research should 

look for whether environmental factors, or genetic predisposition, or the interaction 

of these two factors, may influence the brain structure in pain catastrophisers.  

6.5 Clinical applications of the findings 

The finding of high pain catastrophisers benefiting from viewing of comfort-

giving postures during noxious laser stimulation highlights the potential of social-

emotional contexts to be utilised as a therapy tool to alter pain catastrophising in 

chronic pain patients. Previously, it was proposed that treatment-associated 

reductions in pain catastrophising (such as cognitive-behavioural therapy or 

behavioural intervention), perhaps helpless dimension in particular, were associated 

with improvement in pain intensity in patients with chronic pain (Turner et al., 2005, 

Smeets et al., 2006, Turner et al., 2006, George et al., 2008a, Quartana et al., 2009). 

This thesis demonstrated that cortical activations to painful stimuli associated with 

the observation of comforting postures are altered in healthy people with high pain 
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catastrophising. This finding suggests that the context of social-emotional cues is a 

psychological method that could assist to improve pain intensity in high pain 

catastrophisers, to better target psychological therapeutic interventions. Such 

application is not only applied in chronic pain patients, but also applied in population 

with other forms of catastrophising, such as, social phobia and panic disorder.  

The morphological findings in the current thesis revealed morphological 

alterations of cortical and subcortical structures in healthy people associated with 

pain catastrophising. This result accords with previous data which suggests a 

potential relationship between pain catastrophising and dysfunctional motor control, 

such as the ACC and putamen alterations only in fibromyalgia patients with high 

pain catastrophising (Gracely et al., 2004). This could be important for future 

diagnosis and treatment methods. If it was possible to identify high pain 

catastrophisers with potential structural brain alterations among chronic pain patients, 

they would likely require an individual targeted treatment plan. For example, 

recently, it was shown that patients with chronic pain exhibit reduced pain 

catastrophising associated with increased grey matter volume in pain processing 

regions following cognitive-behavioural therapy (Seminowicz et al., 2013). The 

structural brain alterations may be affected by specific current therapeutic 

interventions. A longitudinal investigation of cortical and subcortical morphology 



186 
 

could improve understanding of the neural basis of pain catastrophising, or the 

mechanisms of suitable interventions. 

6.6. Limitations 

There are a number of limitations of this thesis. Firstly, the age range of the 

subjects was limited. All subjects were young adults in their early-twenties. However, 

pain catastrophising is an important factor in pain outcomes not only in young adults 

(Sullivan et al., 1995, Sullivan and Neish, 1999) but also in children (Crombez et al., 

2003, Vervoort et al., 2006) and older people (Wood et al., 2013). Children‘s pain 

catastrophising has been found to be strongly associated with parental responses 

(Goubert et al., 2009a, Vervoort et al., 2009, Esteve et al., 2014). The relationship 

between pain catastrophising and pain could be mediated by depressed mood in older 

adults with persistent pain (Wood et al., 2013). However, these studies also only 

focused on specific age groups; and there are no longitudinal studies of pain 

catastrophising. Therefore, future research should address the development o f pain 

catastrophising across the life span.  

Secondly, the research subjects in this thesis were predominant to females, 

except for Experiment 6 which used both genders. Pain catastrophising has been 

suggested to partially mediate the gender differences in pain intensity (Keefe et al., 
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2000, Sullivan et al., 2000b, Edwards et al., 2004). Females reported more frequent 

catastrophic thinking about pain than men (Sullivan et al., 1995), although, male 

patients with acute whiplash injury reported more pain catastrophising than did 

female patients with the same injury (Rivest et al., 2010). Previous neuroscience 

studies of pain catastrophising did not mention the gender differences in the 

experimental pain perception (Gracely et al., 2004, Seminowicz and Davis, 2006, 

Lloyd et al., 2008, Jensen et al., 2010, Burgmer et al., 2011, Vase et al., 2012, Lin et 

al., 2013). The knowledge of males with high pain catastrophising is limited. Future 

research should investigate whether male subjects exhibit similar or different neural 

mechanisms to females.  

Last but not least, this thesis focused only on healthy people. However, pain 

catastrophising has been considered to be maladaptive coping mechanism which 

heightens severe pain and other aversive outcomes in chronic pain patients (Sullivan 

et al., 2001b, Quartana et al., 2009). Due to the relevance of pain catastrophising to 

clinical symptoms of chronic pain patients, it is necessary to explore the behavioural 

and cognitive mechanisms of pain catastrophising in chronic pain patients when 

under the same experimental setups.  

6.7. Further Research 
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Considering the failure findings of the eye tracking studies of this thesis, 

future research should be considered to use the clinical population. For example, 

attentional effects on pain catastrophising could be evaluated by the attentional 

differences in healthy people and chronic pain patients. Future eye tracking studies 

also should combine with EEG or fMRI technique to investigate the differences of 

cortical activations between high and how pain catastrophisers during viewing pain 

cues, and whether brain activations in high pain catastrophisers may correlate with 

eye movement data, such as, attentional orientation and attentional maintenance.  

Relative to low pain catastrophisers, high pain catastrophisers demonstrated 

augmented aversion and arousal, and attributed more pain when observing pain 

pictures. This finding was accompanied with alterations in ERP components and 

source activation patterns. High pain catastrophisers also reported a reduced pain 

during viewing of comforting postures, and manifested altered cortical responses to 

physical pain, which was modulated by the context of social-emotional cues. The 

results enhance the current understanding of the psychological aspects of pain 

catastrophising, and particularly the pain processing regions which may exhibit 

altered functions in high pain catastrophisers during observation of comforting 

postures. The role of pain processing regions (such as, the operculo- insular cortex) in 

alteration to noxious pain in the context of comfort-giving in healthy people with 
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high pain catastrophising is interesting. The original paradigm could be expanded to 

include patients with chronic pain, in order to explore whether such pain-reducing 

effects seen in the clinical population. Alternatively, to further investigate the 

broader catastrophising, it would be useful to utilise the original paradigm with 

targeted stimuli to the specific groups of catastrophising, such as, anxiety.  

 With regards to the structural findings of this thesis, future functional and 

anatomical imaging research should prioritise subcortial alterations in high pain 

catastrophisers, especially the dorsal striatum. In addition, the influenced factors of 

brain structural alterations associated with pain catastrophising are not clear. 

Therefore, future research should employ genetic and neuroimaging techniques to 

evaluate the potential anatomical changes associated with pain catastrophising. Also, 

future studies should look for the longitudinal effects on pain catastrophising, in 

order to investigate the process of brain structural changes across the life span. 

6.8. Conclusion 

The thesis employed new experimental paradigms and methods to explore the 

behavioural responses and cortical activation patterns to pain-related stimuli in 

healthy people scoring high or low pain catastrophising. Novel findings of this thesis 

included reporting greater pain to pain and non-pain scenes, reduced capability to 
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differentiate pain and non-pain events, alterations to processing of pain viewed in 

others, pain modulation by the context of emotional-social cues, and morphological 

alterations of brain structures in people with high pain catastrophising. The findings 

of this thesis added to theories of pain catastrophising such as the appraisal model, 

the attentional model, and the communal coping model. These data suggest that pain 

catastrophising is associated with affective and attentional aspects of pain. It also 

advocates new areas for further research in pain catastrophising. For example, the 

interactional effects of genotype and environment on structural brain changes 

associated with pain catastrophising still remains to be investigated. As pain 

catastrophising plays a role in the development of certain types of chronic pain and 

contributes to clinical outcomes of pain therapy, the findings of this thesis may be 

used in behavioural interventions involving modification of catastrophising attitudes 

towards pain 
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