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Abstract

This thesis is a contribution to some fields of the metrical theory of numbers in non-

Archimedean settings. This is a branch of number theory that studies and characterizes

sets of numbers, which occur in a locally compact topological field endowed with a non-

Archimedean absolute value. This is done from a probabilistic or measure-theoretic

point of view. In particular, we develop new formulations of ergodicity and unique

ergodicity based on certain subsequences of the natural numbers, called Hartman

uniformly distributed sequences. We use subsequence ergodic theory to establish a

generalised metrical theory of continued fractions in both the settings of the p-adic

numbers and the formal Laurent series over a finite field. We introduce the a-adic

van der Corput sequence which significantly generalises the classical van der Corput

sequence. We show that it provides a wealth of examples of low-discrepancy sequences

which are very useful in the quasi-Monte Carlo method. We use our subsequential

characterization of unique ergodicity to solve the generalised version of an open problem

asked by O. Strauch on the distribution of the sequence of consecutive van der Corput

sequences. In addition to these problems in ergodic methods and number theory, we

employ some geometric measure theory to settle the positive characteristic analogue of

an open problem asked by R.D. Mauldin on the complexity of the Liouville numbers in

the field of formal Laurent series over a finite field by giving a complete characterization

of all Hausdorff measures of the set of Liouville numbers.
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Introduction

Metric number theory is a branch of number theory which studies and characterizes sets

of numbers with fixed arithmetic properties from a probabilistic or measure-theoretic

point of view. The central theme of this theory is to determine whether or not a given

property holds everywhere except on an exceptional set of measure zero. In addition,

the metric theory of numbers includes the study of the complexity of those exceptional

sets in terms of Hausdorff dimension. Nowadays, the theory is deeply intertwined with

measure theory, ergodic theory, dynamical systems, fractal geometry and other areas

of mathematics. This thesis emphasizes the study of non-Archimedean settings, such

as the a-adic integers, the p-adic numbers and the formal Laurent series over a finite

field, which possess a different geometric nature from the classical real numbers. It

also aims to make contributions to other fields, including subsequence ergodic theory,

continued fractions, diophantine approximation and uniform distribution theory, of the

non-standard metric number theory.

To begin with, we consider a locally compact topological field X endowed with

a non-Archimedean absolute value | · | defined on it. This is a map of X into the

nonnegative real numbers with the following three properties:

(1) |x| = 0 if and only if x = 0;

(2) |xy| = |x||y|;

(3) |x + y| ≤ max(|x|, |y|).

The a-adic integers, the p-adic numbers and the formal Laurent series over a finite field

are some examples of a non-Archimedean space.

The familiar triangle inequality |x+y| ≤ |x|+ |y| can be thought of as an expression

of the Euclidean axiom that the shortest distance between two points is a straight

line. In our non-Archimedean setting, the absolute value however satisfies a stronger

inequality, called the ultrametric triangle inequality: |x+y| ≤ max(|x|, |y|). It produces

a geometry that is quite different from that produced by the ordinary triangle inequality.

Some of the ways in which it differs is relevant to this thesis.

Any locally compact topological group X is endowed with a translation invariant

Haar measure. This makes the space interesting for the study of the metrical theory of
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numbers. We refer to elements of the field X as numbers because their elements in a

very precise sense are like the integers, the rational numbers and the irrational numbers

in the real numbers.

In spite of their strange structure, the non-Archimedean spaces turn out to be of

particular interest and importance in number theory and other areas of mathematics.

We shall see some motivation and applications to several topics in the beginning part

of each chapter. We omit them here to make the thesis a reasonable size.

This thesis is a product of the following publications:

[A] J. Hančl, A. Jaššová, P. Lertchoosakul and R. Nair. On the metric theory of

p-adic continued fractions. Indag. Math. (N.S.), 24(1):42–56, 2013.

[B] J. Hančl, A. Jaššová, P. Lertchoosakul and R. Nair. Polynomial actions in positive

characteristic. Proc. Steklov Inst. Math., 280(suppl.2):37–42, 2013.

[C] J. Hančl, A. Jaššová, P. Lertchoosakul and R. Nair. On the quantitative metric

theory of continued fractions. Preprint 2014.

[D] J. Hančl, A. Jaššová, P. Lertchoosakul and R. Nair. Polynomial actions in positive

characteristic II. Preprint 2014.

[E] A. Jaššová, S. Kristensen, P. Lertchoosakul and R. Nair. On recurrence in positive

characteristic. Preprint 2014.

[F] A. Jaššová, P. Lertchoosakul and R. Nair. On variants of the Halton sequence.

Preprint 2014.

[G] P. Lertchoosakul and R. Nair. Distribution functions for subsequences of the van

der Corput sequence. Indag. Math. (N.S.), 24(3):593–601, 2013.

[H] P. Lertchoosakul and R. Nair. On the complexity of the Liouville numbers in

positive characteristic. Q.J. Math., 65(2):439–457, 2014.

[I] P. Lertchoosakul and R. Nair. On the metric theory of continued fractions in

positive characteristic. Mathematika, 60(2):307–320, 2014.

[J] P. Lertchoosakul an R. Nair. Quantitative metric theory of continued fractions

in positive characteristic. Preprint, 2014.

Of necessity only a part of this work appears in this thesis. A summary of the

excluded work can be found in the appendix.

In this thesis, we refer to work of the author by a capital letter in brackets [A]–[J].

The results without any reference are new and have not appeared in other publications.
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To make the thesis relatively self-contained, we put in Chapter 1 a concise review

of background material necessary for understanding the metrical theory of numbers in

non-Archimedean settings. This preliminary chapter is also meant to collect all the

definitions and results which will be referred to in the sequel. It includes basic notions

and well-known results from measure theory, ergodic theory, uniform distribution theory

of sequences and non-Archimedean spaces.

In Chapter 2, we learn some subsequence ergodic theory. In particular, we develop

new formulations of ergodicity and unique ergodicity based on certain subsequences

of the natural numbers, called Hartman uniformly distributed sequences. These new

ideas appear in Theorem 2.3.2 and Theorem 2.5.1. They will prove fruitful later in

our metrical studies of continued fractions in the positive characteristic setting and the

p-adic setting and of the distribution of some low-discrepancy sequences.

In Chapter 3, we introduce the Liouville numbers in positive characteristic which

play an important role in Diophantine approximation in this setting. We investigate the

complexity of the Liouville numbers in terms of measure and dimension. Particularly,

we show that the set of Liouville numbers is large in the sense that it is uncountable and

dense in the field of formal Laurent series; nevertheless, we show further that the set

of Liouville numbers is small in the sense that it has Haar measure zero and Hausdorff

dimension zero. By using some geometric measure theory, we prove Theorem 3.5.1

which gives a complete characterization of all Hausdorff measures of the set of Liouville

numbers in positive characteristic. This settles the positive characteristic analogue of

an open problem raised by R.D. Mauldin.

In Chapter 4, we introduce the theory of continued fractions in the field of formal

Laurent series. In Theorem 4.4.1, we prove that the continued fraction map is exact

with respect to Haar measure. This fact of exactness implies a number of strictly weaker

properties. In particular, we then use the weak-mixing property and ergodicity, together

with some subsequence and moving average ergodic theory, to establish Theorem 4.6.1

and Theorem 4.7.1 which provide a generalised metric theory of continued fractions in

positive characteristic. We add further to the theory by employing Gál and Koksma’s

method to establish Theorem 4.9.1 which gives a quantitative metric theory of continued

fractions in positive characteristic.

In Chapter 5, we study an analogue of the regular continued fraction expansion

for the p-adic numbers which was given by T. Schneider. In Theorem 5.4.1, we prove

that Schneider’s continued fraction map is exact with respect to Haar measure. This

fact of exactness implies a number of strictly weaker properties. Again, we use the

weak-mixing property and ergodicity, together with some machinery from subsequence

ergodic theory, to establish Theorem 5.6.1 and Theorem 5.7.1 which give a generalised

metric theory of p-adic continued fractions.

3



In Chapter 6, we generalise the classical notion of van der Corput sequences to

the a-adic van der Corput sequence. In Theorem 6.3.2, we prove that this newly

defined sequence provides a wealth of low-discrepancy sequences which are very useful in

numerical integration. Then we give another construction of the a-adic van der Corput

sequence using a generalization of the Kakutani-von Neumann odometer. Moreover,

we show that the generalised Kakutani-von Neumann odometer is uniquely ergodic.

Finally, we use our subsequential characterization of unique ergodicity to establish

Theorem 6.4.1 which solves the generalised version of an open problem asked by O.

Strauch on the distribution of the sequence of consecutive van der Corput sequences.

4



Chapter 1

Preliminaries

This chapter is meant to provide a concise review of background materials necessary

for understanding the metrical theory of numbers in non-Archimedean settings. More

importantly, it aims to collect together in one place all the definitions and results

which will be referred to in the sequel. The first four Sections 1.1–1.4 develop the

basic notions of measure theory, which include measure spaces, examples of measures,

integration and function spaces. They are what is needed to introduce the concepts

of measure-preserving dynamical system and ergodicity in Section 1.5. Then we in-

vestigate two further specialized subfields of ergodic theory in the next two sections.

In fact, Section 1.6 introduces the spectral study of the Koopman operator induced

by a measure-preserving transformation. Section 1.7 specializes the study of invariant

measures to continuous transformations. In Section 1.8, we summarize the basic ideas

of the classical theory of uniform distribution. In the last two sections, we discuss

the non-Archimedean spaces on which this thesis is based. In particular, Section 1.9

introduces the a-adic integers, and Section 1.10 introduces the p-adic numbers and the

fields of formal Laurent series.

We shall refer to the following textbooks [10], [14], [20], [27], [54] and [58] as standard

references. All well-known results we quote can be found in these references.

We now list some notation which will be used repeatedly throughout the thesis:

• We use the notation N0 and N>1 to denote the set of non-negative integers and

the set of natural numbers greater than 1, respectively.

• Given a set E, we denote by #E its cardinality, and we define the characteristic

function of E by 1E(x) = 1 if x ∈ E and 1E(x) = 0 if x /∈ E.

• For any real number α, we define e(α) = e2πiα.

• Given two real-valued functions f and g, we write f = O(g) or f ≪ g if |f | < c|g|

for some positive constant c. We write f = o(g) if limx→∞ f(x)/g(x) = 0, and

we say that f and g are comparable if f = O(g) and g = O(f).

5



1.1 Measure spaces

Definition 1.1.1. Let X be a non-empty set. A collection B of subsets of X is called

a σ-algebra if it has the following three properties:

(1) ∅ ∈ B;

(2) for any E ∈ B, we have X \ E ∈ B;

(3) for any countable collection {En}∞n=1 of sets in B, we have
⋃∞

n=1 En ∈ B.

We call (X,B) a measurable space.

Clearly, if B is a σ-algebra of subsets of X, then it is easy to see that X ∈ B and

that B is also closed under taking countable intersections. If X is a compact metric

space, the Borel σ-algebra of subsets of X is the smallest σ-algebra that contains every

open subset of X. An element of the Borel σ-algebra is called a Borel set .

Definition 1.1.2. Let (X,B) be a measurable space. A function µ : B → [0,∞] is said

to be a measure if it satisfies the following two conditions:

(1) µ(∅) = 0;

(2) for any countable collection {En}∞n=1 of pairwise disjoint sets in B, we have

µ

( ∞
⋃

n=1

En

)

=

∞
∑

n=1

µ(En).

We call (X,B, µ) a measure space.

It is an immediate consequence of the condition (2) in Definition 1.1.2 that, for any

E,F ∈ B such that E ⊆ F, we have µ(E) ≤ µ(F ).

Definition 1.1.3. Let (X,B, µ) be a measure space. Whenever µ(X) = 1, we call µ a

probability measure and refer to (X,B, µ) as a probability space.

Definition 1.1.4. Let (X,B, µ) be a measure space. The space X is said to be σ-finite

if there exist countably many sets En ∈ B such that X =
⋃∞

n=1En and µ(En) < ∞.

Definition 1.1.5. We shall say that a property holds almost everywhere if the set of

points on which the property fails to hold has measure zero.

In order to define a measure, it is necessary to define the measure of every set in the

σ-algebra under consideration. This is usually impractical; instead, we seek a method

that allows us to define a measure on an easily managed subcollection of subsets and

then extend it to the required σ-algebra.
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Definition 1.1.6. Let X be a nonempty set. A collection A of subsets of X is called

an algebra if it has the following three properties:

(1) ∅ ∈ A;

(2) for any E ∈ A, we have X \ E ∈ A;

(3) for any two sets E1 and E2 in A, we have E1 ∪ E2 ∈ A.

We define the σ-algebra generated by A to be the smallest σ-algebra containing A and

denote it by B(A).

Theorem 1.1.7 (Kolmogorov Extension Theorem). Let X be a set, and let A be an

algebra of subsets of X. Suppose µ∗ : A → [0,∞] satisfies the following three properties:

(1) µ∗(∅) = 0;

(2) for any countable collection {En}
∞
n=1 of pairwise disjoint sets in A such that

⋃∞
n=1 En ∈ A, we have

µ∗

( ∞
⋃

n=1

En

)

=
∞
∑

n=1

µ∗(En);

(3) there are countably many sets En ∈ A such that X =
⋃∞

n=1En and µ∗(En) < ∞.

Then there exists a unique measure µ : B(A) → [0,∞] which is an extension of µ∗.

The Kolmogorov extension theorem says that if we have a function that looks like a

measure on an algebra A, then it is indeed a measure when it is extended to B(A). The

important hypotheses are (1) and (2), while the hypothesis (3) is a technical assumption

saying the space X is σ-finite. Note that we shall often use the Kolmogorov extension

theorem with the algebra of finite unions of cylinder sets which we define presently.

For each i ∈ N, let (Xi,Bi, µi) be a probability space. Let X =
∏∞

i=1Xi, so that a

point of X is a sequence (xi)
∞
i=1 with xi ∈ Xi for each i. We now define a σ-algebra B

of subsets of X as follows. Let n ∈ N, let Ej ∈ Bj (1 ≤ j ≤ n), and consider the set

n
∏

j=1

Ej ×
∞
∏

i=n+1

Xi = {(xi)
∞
i=1 ∈ X : xj ∈ Ej, 1 ≤ j ≤ n}.

Let A denote the algebra of finite unions of all such subsets of X. The σ-algebra B is the

σ-algebra generated by A. We write (X,B) =
∏∞

i=1(Xi,Bi). If we define µ∗ : A → [0,∞]

by giving the above rectangle the value
∏n

j=1 µj(Ej), then we can use the Kolmogorov

extension theorem to extend µ∗ to a probability measure µ, called the product measure,

on (X,B). The probability space (X,B, µ) is called the product space of the (Xi,Bi, µi).

7



A special type of product space will be important for us. Here each space (Xi,Bi, µi)

is the same space (Y, C, ν), where Y is a countable set {yk}
∞
k=1 and ν is given by a

probability sequence (pk)∞k=1 with pk = ν({yk}). We now take elementary rectangles

where each Ej , in the description above, is taken to be one point of Y. That is, for each

n ∈ N and aj ∈ Y (1 ≤ j ≤ n), we consider the set

∆a1,...,an = {(xi)
∞
i=1 ∈ X : xj = aj, 1 ≤ j ≤ n}

and call it a cylinder set of length n. The algebra of finite unions of all cylinder sets

generates the product σ-algebra B. We have µ(∆a1,...,an) =
∏n

j=1 pj .

1.2 Examples of measures

Lebesgue measure: Take X = [0, 1], and let A denote the algebra of all finite unions

of subintervals of [0, 1]. For an interval [a, b], define λ∗([a, b]) = b − a and extend this

to A. Then this satisfies the hypotheses of the Kolmogorov extension theorem, and so

it defines a Borel probability measure. This is the Lebesgue measure on [0, 1].

In a similar way, we can define Lebesgue measure on [0, 1]n. An n-dimensional cube

is a set of the form [a1, b1] × · · · × [an, bn], where 0 ≤ aj ≤ bj ≤ 1 for each 1 ≤ j ≤ n.

Let A denote the algebra of all finite unions of n-dimensional cubes. Define

λ∗
n([a1, b1] × · · · × [an, bn]) =

n
∏

j=1

(bj − aj)

and extend this to A. Again, this satisfies the hypotheses of the Kolmogorov extension

theorem and defines the n-dimensional Lebesgue measure on [0, 1]n.

Throughout this thesis, we shall reserve λn for the n-dimensional Lebesgue measure.

Stieltjes measure: Take X = [0, 1], let A denote the algebra of finite unions of

subintervals of [0, 1], and let ν : [0, 1] → [0,∞] be a non-decreasing function. For an

interval [a, b] ⊆ [0, 1], define µ∗
ν([a, b]) = ν(b) − ν(a) and extend this to A. Then the

Kolmogorov extension theorem extends µ∗
ν to a Borel measure.

A wide range of measures can be constructed using this method. Lebesgue measure

can also be viewed as a special example of this construction, that is, by taking ν(x) = x.

A more interesting example that will prove useful when we study continued fractions

is given by taking

ν(x) =
1

log 2

∫ x

0

dx

1 + x
.

This measure µν is called the Gauss measure. It is worth noting that Gauss measure

and Lebesgue measure are comparable in the sense that they have the same null sets.
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Dirac measure: Let (X,B) be any measurable space, and let x ∈ X. For any E ∈ B,

we define the measure

δx(E) =

{

1 if x ∈ E,
0 otherwise.

We call δx the Dirac δ-measure supported at x.

Haar measure: Let X be a locally compact topological group. There exists a way

to assign a probability measure to subsets of X, which ties in with its group structure,

and subsequently to define an integral for functions on X.

Theorem 1.2.1 (Haar Theorem). Let X be a locally compact topological group. There

is a unique, up to a positive multiplicative constant, measure µ on the Borel σ-algebra

B of subsets of X satisfying the following four properties:

(1) for any x ∈ X and E ∈ B, we have µ(x + E) = µ(E);

(2) for any compact set K ⊆ X, we have µ(K) < ∞;

(3) for any E ∈ B, we have µ(E) = inf{µ(U) : E ⊆ U, U open};

(4) for any open set E ⊆ X, we have µ(E) = sup{µ(K) : K ⊆ E, K compact}.

This unique measure µ is called Haar measure on X.

Hausdorff measure and dimension: Let (X, d) be a metric space, and let s ≥ 0.

The s-dimensional Hausdorff measure of any set E ⊆ X is defined by

Hs(E) = lim
δ→0+

(

inf

{ ∞
∑

j=1

(diamBj)
s : E ⊆

∞
⋃

j=1

Bj, diamBj < δ

})

∈ [0,∞],

where the infimum is taken over all countable covers of E by balls with diameter less

than or equal to δ. Here, diamBj = sup{d(x, y) : x, y ∈ Bj}. It is worth noting that if

X = Rn, then λn and Hn are comparable, and noting that if X is a compact topological

group with Haar measure µ, then µ and H1 are comparable.

We define here the Hausdorff dimension of any set E ⊆ X to be

dimHE = inf{s ≥ 0: Hs(E) = 0} = sup{s ≥ 0: Hs(E) > 0}.

The notion of Hausdorff dimension will be useful for the study of fractal sets; i.e., it is

used to investigate the complexity of sets with non-integer dimension in the sense that

the more complicated sets have bigger Hausdorff dimension. For an introduction to the

subject of Hausdorff measure and dimension, the reader is referred to [12] and [47].

9



1.3 Integration

Let (X,B, µ) be a measure space. We give a brief introduction to integration on X.

Definition 1.3.1. A function f : X → R is said to be measurable if f−1(E) ∈ B for

every Borel subset E of R, or equivalently, if f−1((c,∞)) ∈ B for all c ∈ R. A function

f : X → C is said to be measurable if both its real and imaginary parts are measurable.

We now define integration via simple functions.

Definition 1.3.2. A function f : X → R is said to be simple if it can be written as a

linear combination of characteristic functions of sets in B :

f =
r

∑

i=1

ai1Ei

for some ai ∈ R and Ei ∈ B, where Ei are pairwise disjoint, and 1Ei
denotes the

characteristic function of Ei.

Simple functions are measurable. We define the integral for simple functions by

∫

X
f dµ =

r
∑

i=1

aiµ(Ei).

This value can be shown to be independent of the representation of f as a simple

function. Thus, for simple functions, the integral can be thought of as being defined to

be the area underneath the graph.

Suppose that f : X → R is measurable and f ≥ 0. Then there exists an increasing

sequence of simple functions (fn)∞n=1 which converges pointwise to f. We define

∫

X
f dµ = lim

n→∞

∫

X
fn dµ.

Note that this definition is independent of the choice of sequence (fn)∞n=1.

For an arbitrary measurable function f : X → R, we write f = f+ − f−, where

f+ = max(f, 0) ≥ 0 and f− = max(−f, 0) ≥ 0. Define
∫

X
f dµ =

∫

X
f+ dµ−

∫

X
f− dµ.

Finally, for a measurable complex-valued function f : X → C, we define
∫

X
f dµ =

∫

X
Re(f) dµ + i

∫

X
Im(f) dµ,

where Re(f) and Im(f) denote the real part and the imaginary part of f, respectively.

Definition 1.3.3. A real-valued or complex-valued function f defined on X is said to

be integrable if
∫

X |f | dµ < ∞.
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Observe that f is integrable if and only if |f | is integrable. If f = g µ-almost

everywhere, then one is integrable if the other is and
∫

X f dµ =
∫

X g dµ. The space of

integrable functions is defined to be

L1(µ) =

{

f : X → C : f measurable,

∫

X
|f | dµ < ∞

}

,

where two integrable functions are identified if they are equal µ-almost everywhere.

The following three basic theorems will be useful later. The first result establishes

an inequality relating the integral of the limit inferior of a sequence of functions to the

limit inferior of integrals of these functions, the second one is a generalised version of

the dominated convergence theorem, which basically justifies the passage of the limit

under the integral sign when p = 1, and the last one allows the order of integration to

be changed in iterated integrals.

Theorem 1.3.4 (Fatou’s Lemma). Let (X,B, µ) be a measure space, and let (fn)∞n=1

be a sequence of measurable real-valued functions on X which is bounded below by an

integrable function. If lim infn→∞

∫

X fn dµ < ∞, then lim infn→∞ fn is integrable and
∫

X lim infn→∞ fn dµ ≤ lim infn→∞

∫

X fn dµ.

Theorem 1.3.5 (Dominated Convergence Theorem). Let (X,B, µ) be a measure space,

let 1 ≤ p < ∞ be a real number, and let (fn)∞n=1 be a sequence of measurable real-valued

functions on X converging µ-almost everywhere to a measurable function f : X → R.

Suppose there is a function g : X → R in Lp(µ) such that |fn(x)| ≤ g(x) for µ-almost

everywhere x ∈ X. Then f ∈ Lp(µ) and limn→∞ ‖fn − f‖p = 0.

Theorem 1.3.6 (Fubini’s Theorem). Let (X,BX , µX) and (Y,BY , µY ) be two σ-finite

measure spaces. Suppose that f : X × Y → R is an integrable function with respect to

the product measure µX × µY . Then we have
∫

X×Y
f d(µX × µY ) =

∫

X

∫

Y
f(x, y) dµY (y) dµX(x) =

∫

Y

∫

X
f(x, y) dµX(x) dµY (y).

1.4 Function Spaces

Let (X,B, µ) be a measure space, and let p ∈ R with p ≥ 1. Consider the set of all

measurable functions f : X → C with |f |p integrable. This space is a vector space under

the usual addition and scalar multiplication of functions. If we define an equivalence

relation on this set by identifying two such functions when they are equal µ-almost

everywhere, then the space of equivalence classes is also a vector space. Let Lp(µ)

denote the space of these equivalence classes of functions f such that |f |p is integrable.

This is called the Lp space. We write f ∈ Lp(µ) to mean that the function f : X → C

has |f |p integrable. The expression ‖f‖p = (
∫

X |f |p dµ)1/p defines a norm on Lp(µ), and

11



this norm is complete. Therefore, Lp(µ) is a Banach space. The bounded measurable

functions are dense in Lp(µ). It is worth mentioning that if µ(X) < ∞ and 1 ≤ p < q,

then we have Lq(µ) ⊆ Lp(µ).

The Banach space Lp(µ) is a Hilbert space if and only if p = 2. The inner product

in L2(µ) is given by 〈f, g〉 =
∫

X fg dµ. We note the Schwarz inequality , which says that

|〈f, g〉| ≤ ‖f‖2‖g‖2

for all f, g ∈ L2(µ).

1.5 Ergodic theory

Let (X,B, µ) be a probability space, and let T : X → X be a transformation on X. We

shall call (X,B, µ, T ) a dynamical system.

Definition 1.5.1. The dynamical system (X,B, µ, T ) is said to be measure-preserving

if, for every E ∈ B, we have µ(T−1E) = µ(E). If the transformation T : X → X has

the further property that, whenever E ∈ B satisfies T−1E = E, we have µ(E) = 0 or

µ(E) = 1, then T is called ergodic.

Ergodicity can be viewed as an indecomposability condition. If ergodicity does not

hold, then there exists a set E ∈ B such that T−1E = E and 0 < µ(E) < 1. We can

then split T : X → X into T : E → E and T : X \E → X \E with invariant probability

measures 1
µ(E)µ(A1∩E) and 1

1−µ(E)µ(A2∩ (X \E)) for A1 ∈ B(E) and A2 ∈ B(X \E),

respectively.

There are several ways of stating the ergodicity condition, the reader can consult

[10], [53] and [58]. The following result from [58, Theorem 1.6] characterizes ergodicity

in terms of an operator UT f = f ◦ T.

Lemma 1.5.2. [58] Let (X,B, µ, T ) be a measure-preserving dynamical system. Then

the following statements are equivalent:

(1) T is ergodic.

(2) Whenever f is measurable and (f ◦ T )(x) = f(x) for all x ∈ X, we have f is

constant µ-almost everywhere.

(3) Whenever f is measurable and (f ◦T )(x) = f(x) for µ-almost everywhere x ∈ X,

we have f is constant µ-almost everywhere.

(4) Whenever f is in L2(µ) and (f ◦T )(x) = f(x) for all x ∈ X, we have f is constant

µ-almost everywhere.
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(5) Whenever f is in L2(µ) and (f ◦ T )(x) = f(x) for µ-almost everywhere x ∈ X,

we have f is constant µ-almost everywhere.

A similar characterization in terms of Lp(µ) functions is true for any p ≥ 1.

We now introduce the following famous ergodic theorem which is a consequence of

measure preservation and ergodicity.

Theorem 1.5.3 (Birkhoff Ergodic Theorem). Let (X,B, µ, T ) be a measure-preserving

dynamical system, and let f ∈ L1(µ). Then the limit

lim
N→∞

1

N

N
∑

n=1

f(T nα)

exists µ-almost everywhere α ∈ X. If (X,B, µ, T ) is an ergodic dynamical system, then

the limit equals
∫

X f dµ for µ-almost everywhere α ∈ X.

It is worth mentioning a way to further analyze the properties of a dynamical system

is to find an isomorphism with a well-understood ergodic or uniquely ergodic system.

Definition 1.5.4. Let (X1,B1, µ1, T1) and (X2,B2, µ2, T2) be two measure-preserving

dynamical systems. We say that (X1,B1, µ1, T1) and (X2,B2, µ2, T2) are metrically

isomorphic if there exist two sets E1 ∈ B1 and E2 ∈ B2, with µ1(E1) = 1, µ2(E2) = 1,

T1(E1) ⊆ E1 and T2(E2) ⊆ E2, and if there exists an invertible measure-preserving

transformation ϕ : (E1,B1, µ1) → (E2,B2, µ2) such that (T2 ◦ ϕ)(x) = (ϕ ◦ T1)(x) for

all x ∈ E1.

The ergodicity, all mixing properties and unique ergodicity are preserved under a

metrical isomorphism. See [10, p 9–11] and [58, p 57–67] for more details.

1.6 Associated isometries and spectral theory

Let (X,B, µ, T ) be a measure-preserving dynamical system. For each p ≥ 1, T : X → X

induces the Koopman operator UT : Lp(µ) → Lp(µ) defined by

(UT f)(x) = f(Tx)

for f ∈ Lp(µ) and x ∈ X. Because T is measure-preserving, for each function f ∈ L1(µ),

we have
∫

X f ◦ T dµ =
∫

X f dµ and so in particular ‖UT f‖p = ‖f‖p. This means that

UT is a linear isometry1 on the Hilbert space L2(µ). The study of UT is usually called

the spectral study of T, and we shall see later how this is useful in proving some results

relating to ergodicity.

1An isometry of a Hilbert space H is a linear operator U such that 〈Uv,Uw〉 = 〈v, w〉 for all
v, w ∈ H. We say that U is unitary if, in addition, it is invertible. Recall that L2(µ) is a Hilbert space
with respect to the inner product 〈f, g〉 =

∫

X
fg dµ.
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Definition 1.6.1. A sequence of complex numbers (an)∞n=−∞ is called positive definite

if, for any sequence (zn)∞n=−∞ in C with only a finite number of non-zero terms,

∑

n, m

an−mznzm ≥ 0.

Theorem 1.6.2 (Bochner-Herglotz Theorem). A sequence (an)∞n=−∞ in C is positive

definite if and only if there exists a finite measure ω on the torus T = R/Z such that

an =

∫

T

zn dω(z).

If we consider UT : L2(µ) → L2(µ), and if we denote the adjoint of UT by U−1
T , then

the sequence (〈Un
T f, f〉)

∞
n=−∞ is positive definite, see e.g. [10, p 26–29]. Therefore, by

the Bochner-Herglotz theorem, there is a measure ωf satisfying

〈Un
T f, f〉 =

∫

T

zn dωf (z).

The measure ωf is called the spectral measure. It is worth noting another consequence

of measure preservation of T that 〈Un
T f, U

m
T f〉 = 〈Un−m

T f, f〉 for all n,m ∈ Z.

1.7 Invariant measures for continuous transformations

Let X be a compact metric space equipped with the Borel σ-algebra B. We denote

by M(X) the collection of all probability measures defined on X. It is well-known

that M(X) is convex2 and compact in the weak∗ topology3, see [58, p 146–150]. Let

T : X → X be a continuous transformation. It is clear that T is measurable. Recall that

a probability measure µ ∈ M(X) is preserved by T if, for each E ∈ B, µ(T−1E) = µ(E).

Let M(X,T ) denote the set of probability measures defined on X and preserved by T.

Again, M(X,T ) is a convex non-empty compact subset of M(X) in the weak∗ topology,

see [58, p 152]. Furthermore, the set of all probability measures on which T is ergodic

is precisely the set of extremal points of M(X,T ).

Definition 1.7.1. Let M(X,T ) be the set of probability measures defined on X and

preserved by T. We shall call T uniquely ergodic if M(X,T ) is a singleton.

In other words, T is uniquely ergodic if there exists only one probability measure

preserved by T .

The following theorem relates elements of M(X) to linear functionals on the space

C(X) of all complex-valued continuous functions defined on X. Indeed, if we have a

map J : C(X) → C that is continuous, linear, positive and normalized, then J must

be given by integrating with respect to a Borel probability measure.

2If µ1, µ2 ∈ M(X) and 0 ≤ c ≤ 1, then cµ1 + (1− c)µ2 ∈ M(X).
3The weak∗ topology on M(X) is the smallest topology such that, for every continuous function

f : X → C, the map µ 7→
∫

X
f dµ is continuous.
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Theorem 1.7.2 (Riesz Representation Theorem). Let X be a compact metric space.

Suppose that J : C(X) → C is a continuous linear map satisfying two conditions:

(1) J(1) = 1, where 1 : X → C is defined by 1(x) = 1 for all x;

(2) f ≥ 0 implies J(f) ≥ 0.

Then there exists µ ∈ M(X) such that J(f) =
∫

X f dµ for all f ∈ C(X).

The following result from [58, Theorem 6.2] says that each µ ∈ M(X) is determined

by how it integrates continuous functions.

Lemma 1.7.3. [58] Let X be a compact metric space, and let µ and ν be two Borel

probability measures on X. If
∫

X f dµ =
∫

X f dν for every f ∈ C(X), then µ = ν.

The following result from [58, Theorem 6.8] gives a useful criterion for checking

whether a measure is preserved by the transformation T.

Lemma 1.7.4. [58] Let X be a compact metric space, and let µ ∈ M(X). Suppose

T : X → X is a continuous transformation of X. Then µ ∈ M(X,T ) if and only if
∫

X f ◦ T dµ =
∫

X f dµ for every f ∈ C(X).

The last result in this section is a well-known characterization of unique ergodicity.

Theorem 1.7.5 (Characterization Theorem of Unique Ergodicity). Let X be a compact

metric space, and let T : X → X be a continuous transformation. Then the following

statements are equivalent:

(1) For every f ∈ C(X), (1/N)
∑N

n=1 f(T nα) converges uniformly to a constant.

(2) For every f ∈ C(X), (1/N)
∑N

n=1 f(T nα) converges pointwise to a constant.

(3) There exists µ ∈ M(X,T ) such that, for all f ∈ C(X) and all α ∈ X,

lim
N→∞

1

N

N
∑

n=1

f(T nα) =

∫

X
f dµ.

(4) T is uniquely ergodic.

1.8 Uniform distribution

A sequence of real numbers is uniformly distributed if the proportion of terms falling in

a subinterval is proportional to the length of that interval. Such sequences are studied

in Diophantine approximation and dynamical systems and have applications to Monte

Carlo integration. For a general reference on this subject, we refer the reader to [27].
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Definition 1.8.1. Let (xn)∞n=1 be a sequence of real numbers. We say that the sequence

(xn)∞n=1 is uniformly distributed on an interval I ⊆ R if, for any subinterval [a, b] ⊆ I,

we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : xn ∈ [a, b]} =

b− a

|I|
.

In this thesis, we shall restrict our attention to the interval [0, 1], and we shall denote

by {xn} the fractional part of xn.

Definition 1.8.2. Let (xn)∞n=1 be a sequence of real numbers. We say that the sequence

(xn)∞n=1 is uniformly distributed mod 1 if4, for any Jordan-measurable subset B ⊆ [0, 1],

we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : {xn} ∈ B} = λ(B),

where λ denotes the Lebesgue measure on [0, 1].

We note that the requirement of any Jordan-measurable subset B in Definition 1.8.2

can be replaced by any subinterval [a, b], [a, b), (a, b] or (a, b) of [0, 1] without changing

the definition. The condition is saying that the frequency with which the sequence {xn}

lies in [a, b] converges to b−a, the length of the subinterval. In a multi-dimensional space

[0, 1]s, the definition of uniform distribution can be established in a similar fashion.

The following famous result gives a necessary and sufficient condition for (xn)∞n=1 to be

uniformly distributed mod 1.

Theorem 1.8.3 (Weyl Criterion). The following statements are equivalent:

(1) The sequence (xn)∞n=1 is uniformly distributed mod 1.

(2) For any continuous function f : [0, 1] → R with f(0) = f(1), we have

lim
N→∞

1

N

N
∑

n=1

f({xn}) =

∫ 1

0
f(x) dx.

(3) For each α ∈ Z \ {0}, we have

lim
N→∞

1

N

N
∑

n=1

e2πiαxn = 0.

From the Weyl criterion, we can extend the definition of uniform distribution to a

more general setting.

4A set in the Euclidean space is Jordan-measurable if it can be well approximated by polyrectangles
or a finite unions of rectangles. Such sets include all rectangles, balls, and simplexes. Also, any finite
union and intersection of Jordan-measurable sets is Jordan-measurable, and so is the set difference of
any two Jordan-measurable sets. For a precise definition of Jordan-measurable sets, see [2, p 396–397].
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Definition 1.8.4. Let X be a locally compact topological group equipped with the Haar

measure µ. Suppose that (xn)∞n=1 is a sequence in X. We say that the sequence (xn)∞n=1

is uniformly distributed on X if, for any f ∈ C(X), we have

lim
N→∞

1

N

N
∑

n=1

f(xn) =

∫

X
f dµ.

Another related concept of uniform distribution is discrepancy. Let ω = (xn)∞n=1 be

a sequence in [0, 1]s.

Definition 1.8.5. For each N ∈ N, define the discrepancy DN (ω) of x1, . . . , xN by

DN (ω) = sup
B∈I

∣

∣

∣

∣

1

N
· #{1 ≤ n ≤ N : xn ∈ B} − λs(B)

∣

∣

∣

∣

,

where I = {
∏s

i=1[0, ui) : 0 < ui ≤ 1}, and λs denotes the s-dimensional Lebesgue

measure on [0, 1]s.

The discrepancy is nothing other than a quantitative measure of uniformity of

distribution. In particular, the sequence ω is uniformly distributed on [0, 1]s if and

only if DN (ω) → 0 as N → ∞. In a sense, the faster DN (ω) decays as a function of N ,

the better uniformly distributed the sequence ω is. One of the fundamental obstructions

in nature in this subject is that there is a limit to how well distributed any sequence

can be. Precisely, it is one of the most famous conjectures in the theory of uniform

distribution that, for any sequence ω in [0, 1]s, the inequality DN (ω) > N−1(logN)s

holds for infinitely many N ∈ N.

Definition 1.8.6. We call ω a low-discrepancy sequence if DN (ω) = O(N−1(logN)s),

where the constant depends only on the dimension s.

The following theorem illustrates the importance of low discrepancy in the quasi-

Monte Carlo method.

Theorem 1.8.7 (Koksma-Hlawka Inequality). Let ω = (xn)∞n=1 be a sequence in [0, 1]s.

Suppose f : [0, 1]s → R is a function of bounded variation V (f). Then, for each N ∈ N,

∣

∣

∣

∣

1

N

N
∑

n=1

f(xn) −

∫

[0,1]s
f(x) dx

∣

∣

∣

∣

≤ V (f)DN (ω),

where DN (ω) is the discrepancy of x1, . . . , xN .

In the theory of uniform distribution, we are usually interested in the distribution

of a given sequence. Let ω = (xn)∞n=1 be a sequence in [0, 1]s, and let J denote the set

of all Jordan-measurable subsets of [0, 1]s.
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Definition 1.8.8. A function ν : J → [0, 1] is said to be a distribution function of the

sequence ω if there is an increasing sequence (Nk)∞k=1 of natural numbers such that, for

every B ∈ J, we have

ν(B) = lim
k→∞

1

Nk
· #{1 ≤ n ≤ Nk : xn ∈ B}.

Let G(ω) be the set of all distribution functions of ω. If G(ω) = {ν} is a singleton, then

ν is called an asymptotic distribution function of the sequence ω.

For each 1 ≤ i ≤ s, let xn,i denote the ith coordinate of xn. If (xn,i)
∞
n=1 is uniformly

distributed mod 1 for every i = 1, . . . , s, then every distribution function ν of ω satisfies

two further properties:

(1) for every B = I1 × I2 × · · · × [0, 0] × · · · × Is ∈ J, we have ν(B) = 0;

(2) for every B = [0, 1] × [0, 1] × · · · × [0, x] × · · · × [0, 1] ∈ J, we have ν(B) = x.

The distribution function which satisfies the conditions (1) and (2) is called a copula.

For a full treatment of the theory of copulas, we refer the reader to [39].

1.9 a-adic integers

If b ≥ 2 is an integer, then every nonnegative integer has a b-adic representation of the

form n0+n1b+n2b
2 + · · ·+nkb

k for some k ∈ N0 with ni ∈ {0, 1, . . . , b−1} (0 ≤ i ≤ k).

This idea of expressing an integer is an extension of the decimal numeral system. We

now describe a class of locally compact groups, called the a-adic integers, which can

be seen as a general framework of a numeral system. For more details, the reader is

referred to [20, p 106–117].

Let a = (an)∞n=1 be a sequence of natural numbers greater than 1. We define the

a-adic integers ∆a to be the set of infinite sequences in
∏∞

n=1{0, 1, . . . , an − 1}.

For two a-adic integers x = (xn)∞n=1 and y = (yn)∞n=1, let z = (zn)∞n=1 be defined

as follows. Write x1 + y1 = t1a1 + z1, where z1 ∈ {0, 1, . . . , a1 − 1} and t1 ∈ N0. Write

x2 + y2 + t1 = t2a2 + z2, where z2 ∈ {0, 1, . . . , a2 − 1} and t2 ∈ N0. Suppose z0, . . . , zk

and t0, . . . , tk have been defined. Then write xk+1 + yk+1 + tk = tk+1ak+1 + zk+1,

where zk+1 ∈ {0, 1, . . . , ak+1 − 1} and tk+1 ∈ N0. We have thus inductively defined the

sequence z = (zn)∞n=1, which we deem to be x + y. The binary operation + which we

call addition makes ∆a an Abelian group.

For each nonnegative integer k, let

Λk =
{

(xn)∞n=1 ∈ ∆a : xj = 0, j ≤ k
}

.

These sets Λk form a basis at 0 = (0)∞n=1 for a topology on ∆a. With respect to this

topology, ∆a is compact and the group operations are continuous, making ∆a a compact
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Abelian topological group. A second binary operation called multiplication, denoted

by × and compatible with addition, is defined as follows. Let u = (1, 0, 0, 0, . . . ).

Note that {nu}∞n=0 is dense in ∆a. First on {nu}∞n=0, define n1u× n2u to be (n1n2)u.

Deeming multiplication to be continuous on ∆a defines it off {nu}∞n=0. The two binary

operations, addition and multiplication, make ∆a a topological ring.

It is worth mentioning the non-Archimedean structure of ∆a which can be derived

from the topology. Let x = (xn)∞n=1 and y = (yn)∞n=1 be two arbitrary elements in ∆a.

We can define an absolute value on ∆a by |x| = 2−m, where m is the least integer for

which xm 6= 0, and |0| = 0. Then it is not hard to check that the absolute value satisfies

the ultrametric triangle inequality |x + y| ≤ max(|x|, |y|).

For each n ∈ N and E ⊆ {0, 1, . . . , an − 1}, let µn(E) denote the measure on the

finite set {0, 1, . . . , an − 1} given by

µn(E) =
1

an
· #E.

The Haar measure µ is the corresponding product measure on ∆a.

The dual group5 of ∆a, which we denote as Z(a∞), consists of all rational numbers

t = ℓ/Ar, where Ar = a1 · · · ar and 0 ≤ ℓ ≤ Ar for some natural number r. To evaluate

a character χt at x = (xn)∞n=1 in ∆a, we write

χt(x) = e

(

ℓ

Ar
(x1 + a1x2 + a1a2x3 + · · · + a1 · · · ar−1xr)

)

,

where e(α) denotes e2πiα for a real number α.

1.10 Non-Archimedean local fields

A local field is a locally compact topological field with respect to a non-discrete topology.

Given such a field, an absolute value can be defined on it. There are two basic types of

local fields: those local fields with Archimedean absolute values and those local fields

with non-Archimedean absolute values. Every local field is isomorphic, as a topological

field, to one of the following fields: the real numbers, the complex numbers, the finite

extension of the p-adic numbers and the field of formal Laurent series over a finite field.

For a full account of local fields, we refer to [52]. We now deal with the non-Archimedean

local fields: the p-adic numbers and the field of formal Laurent series.

5For a locally compact Abelian group, a character of G is a continuous group homomorphism from
G with values in the torus T. The set of all characters on G can be made into a locally compact
Abelian group, called the dual group of G. The group operation on the dual group is given by pointwise
multiplication of characters, the inverse of a character is its complex conjugate, and the topology on
the space of characters is that of uniform convergence on compact sets.
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p-adic numbers: The p-adic number system, for any prime number p, extends the

ordinary arithmetic of the rational numbers in a way different from the extension of

the rational number system to the real number system. The extension is achieved by

an alternative interpretation of the concept of closeness or absolute value. It turns out

that the extended fields are of particular interest and importance in number theory.

Let p be a prime number. For any rational number r, we can write

r = pv(r)
u

v

with u and v coprime to p and to each other. Let |r|p = p−v(r). Then dp(r, r′) = |r−r′|p

defines a metric on Q. The completion of Q with respect to the metric dp is denoted

by Qp and referred to as the p-adic numbers. We use Zp to denote {x ∈ Qp : |x|p ≤ 1}

– the ring of p-adic integers. We shall be interested in the open unit ball

pZp = {px : x ∈ Zp} = {x ∈ Qp : |x|p < 1}.

It is worth keeping in mind that the metric dp has the ultrametric property, i.e.,

dp(r, r′′) ≤ max(dp(r, r′), dp(r′, r′′)) for all r, r′, r′′ ∈ Qp. A basic and easily-verified

property of Qp is that each element α of Qp has a unique p-adic expansion of the form

α =
∑∞

n=n0
knp

n, where n0 ∈ Z, kn ∈ {0, 1, . . . , p − 1} for all n, and ak0 6= 0. From

this, we note that |α|p = p−n0 . The main characteristics of Qp that distinguish it from

R stem from the non-Archimedean property. It turns out that Qp is a locally compact

field, and hence it is endowed with the Haar measure µ characterized by µ(pZp) = 1.

See [9, Ch 4] or [26, Ch 1] for a clear and succinct introduction to the p-adic numbers.

Fields of formal Laurent series: The field of formal Laurent series over a finite

field is considered the positive characteristic analogue of the real numbers. Many issues

in number theory which have been studied in the setting of the real numbers can be

addressed in the setting of the formal Laurent series. We refer the reader to [54, Part II]

and [29] for the construction and structure of this field and for a survey of Diophantine

approximation in this setting, respectively.

Let Fq be the finite field of q elements, where q is a power of a prime p. If Z is

an indeterminate, we denote by Fq[Z] and Fq(Z) the ring of polynomials in Z with

coefficients in Fq and the quotient field of Fq[Z], respectively. For each P,Q ∈ Fq[Z]

with Q 6= 0, define |P/Q| = qdeg(P )−deg(Q) and |0| = 0. The field Fq((Z
−1)) of formal

Laurent series6 is the completion of Fq(Z) with respect to the valuation | · |. That is,

Fq((Z
−1)) =

{

anZ
n + an−1Z

n−1 + · · · + a0 + a−1Z
−1 + · · · : n ∈ Z, ai ∈ Fq

}

6The field of formal Laurent series over a finite field, or the non-Archimedean local field of positive
characteristic, is usually referred to as “positive characteristic”. This distinguishes it from the p-adic
numbers which is the non-Archimedean local field of characteristic zero.
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and we have |anZ
n +an−1Z

n−1 + · · · | = qn (an 6= 0) and |0| = 0, where q is the number

of elements of Fq. It is worth keeping in mind that | · | is a non-Archimedean norm,

since |α + β| ≤ max(|α|, |β|). Moreover, every ball in the field of formal Laurent series

of finite radius is compact. In fact, Fq((Z
−1)) is the non-Archimedean local field of

positive characteristic p. As a result, up to a positive multiplicative constant, there

exists a unique countably additive Haar measure µ on the Borel subsets of Fq((Z
−1)).

In [54, p 65–70], Sprindžuk finds a characterization of Haar measure on Fq((Z
−1)) by

its value on the balls B(α; qn) = {β ∈ Fq((Z
−1)) : |α− β| < qn}. Indeed, it was shown

that the equation µ(B(α; qn)) = qn completely characterizes Haar measure.

It is worth noting that the sequence of the coefficients of a formal Laurent series

can be considered analogous to the sequence of the digits in the decimal expansion of

a real number. In [29], Lasjaunias pointed out that if α =
∑∞

n=−n0
a−nZ

−n (n0 ∈ Z) is

an element of Fq((Z
−1)), then we have α ∈ Fq(Z) if and only if the sequence (a−n)∞n=1

is ultimately periodic.
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Chapter 2

On subsequence ergodic theory

In this chapter, we make some contributions to subsequence ergodic theory and we

describe some ideas which will be employed in succeeding chapters. Given a Hartman

uniformly distributed sequence (an)∞n=1 of natural numbers, we are able to show that

if, for each p > 1 and f ∈ Lp(µ), the limit

lim
N→∞

1

N

N
∑

n=1

f(T anα)

exists µ-almost everywhere α ∈ X, then only the ergodicity of the dynamical system

(X,B, µ, T ) implies that the limit is equal to
∫

X f dµ for µ-almost everywhere. This is

not only interesting in and of itself but also useful in applications. Moreover, we can give

a new formulation of unique ergodicity, which generalises the classical characterization

theorem of unique ergodicity, using this property of (an)∞n=1 being Hartman uniformly

distributed. Finally, we give a remark on moving average ergodic theory which will be

useful with regard to our applications.

2.1 Introduction

A topic of classical interest in ergodic theory is extending the Birkhoff ergodic theorem

to various classes of subsequential ergodic averages. Indeed, we are interested in the

conditions on a dynamical system (X,B, µ, T ) and a subsequence (an)∞n=1 of the natural

numbers such that, for each f ∈ Lp(µ), the limit

lim
N→∞

1

N

N
∑

n=1

f(T anα)

exists and converges to the expectation
∫

X f dµ for µ-almost everywhere α ∈ X. When

the dynamical system (X,B, µ, T ) is ergodic, with (an)∞n=1 = (n)∞n=1 and p = 1, this is

the Birkhoff ergodic theorem.
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One of the first fundamental achievements in subsequence ergodic theory appear in

a series of papers of J. Bourgain, e.g. [6] and [7]. These showed that, for each ergodic

dynamical system (X,B, µ, T ) and f ∈ L2(µ), we have

lim
N→∞

1

N

N
∑

n=1

f(T n2
α)

exists µ-almost everywhere α ∈ X. More generally, he showed the existence of the limit

lim
N→∞

1

N

N
∑

n=1

f(TP (n)α),

where P (n) is a polynomial with integer coefficients, for an L2 function f.

Another profound advance in the theory, due to Nair e.g. [33]–[37], was an elaborate

extension of the work of Bourgain to a broad class of subsequences of the natural

numbers. These include the cases an = pn and an = P (pn), where P is a polynomial

with integer coefficients, and pn denotes the nth prime number.

The purpose of this chapter is to make some contributions to subsequence ergodic

theory by considering a class of Hartman uniformly distributed sequences of natural

numbers. In addition, this chapter is meant to provide some machinery which makes

it possible for the calculations in Chapters 4, 5 and 6.

The outline of this chapter is as follows. We first introduce in Section 2.2 the

arithmetic framework on which our subsequence ergodic theory is based. This includes

the notions of Lp-good universality and Hartman uniformly distribution. In Section 2.3,

we provide two subsequence ergodic theorems. In Section 2.4, we supply a wealth of

examples of Lp-good universal sequences and Hartman uniformly distributed sequences.

In Section 2.5, we give a new formulation of unique ergodicity in the framework of

subsequence ergodic theory. In Section 2.6, we give a moving average ergodic theorem.

2.2 Preliminary arithmetic context

In this section, we describe the arithmetic and analytic framework on which our sub-

sequence ergodic theory is based.

Definition 2.2.1. A sequence of natural numbers (an)∞n=1 is called Lp-good universal

if, for each dynamical system (X,B, µ, T ) and f ∈ Lp(µ), the limit

lim
N→∞

1

N

N
∑

n=1

f(T anα)

exists µ-almost everywhere α ∈ X.
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It is an immediate consequence of the Birkhoff ergodic theorem that the sequence

of natural numbers, an = n, is L1-good universal.

Recall that a sequence of real numbers (xn)∞n=1 is uniformly distributed mod 1 if,

for each interval I ⊆ [0, 1), we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : {xn} ∈ I} = |I|,

where |I| denotes the length of I, and {xn} denotes the fractional part of xn. In addition,

we say that a sequence of natural numbers (an)∞n=1 is uniformly distributed on Z if, for

each m ∈ N>1 and k ∈ {0, 1, . . . ,m− 1}, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : an ≡ k mod m} =

1

m
.

That is, a sequence is uniformly distributed on Z if and only if it is uniformly distributed

among the residue classes mod m for every natural number m > 1.

Definition 2.2.2. A sequence of natural numbers (an)∞n=1 is called Hartman uniformly

distributed if it is uniformly distributed on Z and if (γan)∞n=1 is uniformly distributed

mod 1 for each irrational number γ.

A sequence being Hartman uniformly distributed has a couple of equivalent for-

mulations. Firstly, (an)∞n=1 is a Hartman uniformly distributed sequence if and only

if, for each θ /∈ Z, we have limN→∞
1
N

∑N
n=1 e

2πianθ = 0. In other words, (an)∞n=1 is a

Hartman uniformly distributed sequence if and only if, for each z ∈ T \ {1},

lim
N→∞

1

N

N
∑

n=1

zan = 0.

Secondly, a sequence of natural numbers is Hartman uniformly distributed if and only

if it is uniformly distributed on the Bohr compactification of the integers. For further

background on Hartman uniform distribution, see [19] and [27].

2.3 Some subsequence ergodic theorems

We now introduce the following two pointwise subsequence ergodic theorems. The first

result, due to Nair [34], enables us to calculate the limit of the ergodic averages for

an Lp-good universal sequence with the requirement of weak mixing. For Hartman

uniformly distributed sequences of natural numbers, it is nonetheless possible to prove

a second version of subsequence ergodic theorem using only ergodicity. Note that a

sketch proof of the second theorem can be found in [36].

24



Theorem 2.3.1. [34] Let (X,B, µ, T ) be a weak-mixing dynamical system, and let

(an)∞n=1 be an L2-good universal sequence. Suppose that, for any irrational number γ,

the sequence (γan)∞n=1 is uniformly distributed mod 1. Then, for any f ∈ L2(µ),

lim
N→∞

1

N

N
∑

n=1

f(T anα) =

∫

X
f dµ

µ-almost everywhere α ∈ X.

We note that L2 is dense in Lp for every p in (1, 2]. Hence, this theorem extends

readily to the case p > 1 by approximation by L2 functions, and so do other results

in this chapter. However, it is still an important open problem in subsequence ergodic

theory for the case p = 1. We forego the details as we do not need this degree of

generality in our applications.

Theorem 2.3.2. [A] Let (X,B, µ, T ) be an ergodic dynamical system, and let (an)∞n=1

be a Hartman uniformly distributed sequence which is also L2-good universal. Then,

for any f ∈ L2(µ),

lim
N→∞

1

N

N
∑

n=1

f(T anα) =

∫

X
f dµ

µ-almost everywhere α ∈ X.

Proof of Theorem 2.3.2. Let f ∈ L2(µ), and set

Mf(α) = sup
N≥1

∣

∣

∣

∣

1

N

N
∑

n=1

f(T anα)

∣

∣

∣

∣

.

Plainly, we have | 1N
∑N

n=1 f(T anα)| ≤ Mf(α) (N ∈ N) and Mf ∈ L2(µ). It follows

from the dominated convergence theorem that the limit

g(α) = lim
N→∞

1

N

N
∑

n=1

f(T anα)

exists in L2 norm. Our next order of business is to show that g(Tα) = g(α). We have

lim
N→∞

∥

∥

∥

∥

1

N

N
∑

n=1

f ◦ T an+1 −
1

N

N
∑

n=1

f ◦ T an

∥

∥

∥

∥

2

2

= lim
N→∞

1

N2

(
∫

X

∣

∣

∣

∣

N
∑

n=1

(f ◦ T an+1 − f ◦ T an)

∣

∣

∣

∣

2

dµ

)

= lim
N→∞

1

N2

(

∑

1≤n,m≤N

∫

X
(f ◦ T an+1 − f ◦ T an)(f ◦ T am+1 − f ◦ T am) dµ

)

.
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By arranging the terms using the Koopman operator, we have

lim
N→∞

∥

∥

∥

∥

1

N

N
∑

n=1

f ◦ T an+1 −
1

N

N
∑

n=1

f ◦ T an

∥

∥

∥

∥

2

2

= lim
N→∞

1

N2

(

∑

1≤n,m≤N

〈Uan−am
T f, f〉 − 〈Uan+1−am

T f, f〉 − 〈Uan−am−1
T f, f〉 + 〈Uan−am

T f, f〉

)

.

It now follows from the Bochner-Herglotz theorem that there is a spectral measure ωf

attached to the function f such that 〈Un
T f, f〉 =

∫

T
zn dωf (z). This is

lim
N→∞

∥

∥

∥

∥

1

N

N
∑

n=1

f ◦ T an+1 −
1

N

N
∑

n=1

f ◦ T an

∥

∥

∥

∥

2

2

= lim
N→∞

1

N2

(

∑

1≤n,m≤N

∫

T

(2zan−am − zan−am+1 − zan−am−1) dωf (z)

)

= lim
N→∞

1

N2

(

∑

1≤n,m≤N

∫

T

(2 − z − z−1)zan−am dωf (z)

)

.

We now have

lim
N→∞

∥

∥

∥

∥

1

N

N
∑

n=1

f ◦ T an+1 −
1

N

N
∑

n=1

f ◦ T an

∥

∥

∥

∥

2

2

= lim
N→∞

∫

T

(2 − z − z−1)

(

1

N

N
∑

n=1

zan
)(

1

N

N
∑

m=1

z−am

)

dωf (z).

If z = 1, the right hand side vanishes. In addition, when z 6= 1, this tends to zero as

j → ∞ because (an) is Hartman uniformly distributed. This shows that g ◦T = g. Now

it follows from Lemma 1.5.2 that if T is ergodic and g(Tα) = g(α) for a measurable

function g, then g(α) must be
∫

X f dµ.

All we have to do now is to show the pointwise limit is the same as the norm limit.

We consider an increasing sequence of natural numbers (Nt)
∞
t=1 such that

∥

∥

∥

∥

1

Nt

Nt
∑

n=1

f(T anα) −

∫

X
f dµ

∥

∥

∥

∥

2

≤
1

t
.

We have

∞
∑

t=1

(
∫

X

∣

∣

∣

∣

1

Nt

Nt
∑

n=1

f(T anα) −

∫

X
f dµ

∣

∣

∣

∣

2

dµ(α)

)

≤
∞
∑

t=1

1

t2
< ∞.

The Fatou’s lemma tells us that

∫

X

( ∞
∑

t=1

∣

∣

∣

∣

1

Nt

Nt
∑

n=1

f(T anα) −

∫

X
f dµ

∣

∣

∣

∣

2)

dµ(α) < ∞,
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which implies that
∞
∑

t=1

∣

∣

∣

∣

1

Nt

Nt
∑

n=1

f(T anα) −

∫

X
f dµ

∣

∣

∣

∣

2

< ∞

µ-almost everywhere α ∈ X. This means that

∣

∣

∣

∣

1

Nt

Nt
∑

n=1

f(T anα) −

∫

X
f dµ

∣

∣

∣

∣

= o(1)

µ-almost everywhere α ∈ X. As (an)∞n=1 is L2-good universal, we must have

lim
N→∞

1

N

N
∑

n=1

f(T anα) =

∫

X
f dµ

µ-almost everywhere α ∈ X. This completes the proof of Theorem 2.3.2. �

2.4 Examples of Hartman uniformly distributed and good

universal sequences

The following is a list of constructions of Hartman uniformly distributed sequences. The

first six are also examples of Lp-good universal sequences for some p ≥ 1. The other

examples appear in [35]. Note that the second example is not in general Hartman

uniformly distributed but it provides a wealth of sequences satisfying Theorem 2.3.1.

(1) The sequence (n)∞n=1 is L1-good universal. This is Birkhoff ergodic theorem.

(2) Polynomial like sequences: Let P (x) be a polynomial mapping N into itself, and

let (pn)∞n=1 denote the sequence of prime numbers. Then the sequences (P (n))∞n=1

and (P (pn))∞n=1 are Lp-good universal sequences (p > 1). See [6], [7] and [33].

Note that if n ∈ N, then n2 6≡ 3 mod 4, so in general the sequences (P (n))∞n=1 and

(P (pn))∞n=1 are not Hartman uniformly distributed. We do, however, know from

[59] that if γ is an irrational number, then both (γP (n))∞n=1 and (γP (pn))∞n=1 are

uniformly distributed mod 1.

(3) Condition H: Sequences (an)∞n=1 that are both Lp-good universal and Hartman

uniformly distributed can be constructed as follows. Denote by [x] and {x} the

integer part and the fractional part of real number x, respectively. Set an = [g(n)]

(n = 1, 2, . . . ) where g : [1,∞) → [1,∞) is a differentiable function whose derivative

increases with its argument. Let AN denote the cardinality of the set {n : an ≤ N},

and suppose, for some function a : [1,∞) → [1,∞) increasing to infinity as its

argument does, that we set

b(N) = sup
{z}∈

[

1
a(N)

, 1
2

)

∣

∣

∣

∣

∣

∑

n : an≤N

e2πizan

∣

∣

∣

∣

∣

.
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Suppose also, for some decreasing function c : [1,∞) → [1,∞) and some positive

constant C > 0, that

b(N) + A[a(N)] + N
a(N)

AN
≤ Cc(N).

Then if we have
∞
∑

n=1

c(θn) < ∞

for all θ > 1, we say that (an)∞n=1 satisfies condition H, see [37].

Sequences which satisfy condition H are both Hartman uniformly distributed and

Lp-good universal (p > 1). Specific sequences of integers satisfying condition H

include an = [g(n)] (n = 1, 2, . . . ) where:

(a) g(n) = nω if ω > 1 and ω /∈ N.

(b) g(n) = elog
γ n for γ ∈ (1, 32).

(c) g(n) = bkn
k + · · · + b1n + b0, where bk, . . . , b1 are not all rational multiples of

the same real number.

(d) Hardy fields: By a Hardy field, we mean a closed subfield (under differenti-

ation) of the ring of germs at +∞ of continuous real-valued functions with

addition and multiplication taken to be pointwise. Let H denote the union of

all Hardy fields. If (an)∞n=1 = ([h(n)])∞n=1, where h ∈ H satisfies the conditions

that, for some k ∈ N>1,

lim
x→∞

h(x)

xk−1
= ∞ and lim

x→∞

h(x)

xk
= 0,

then (an)∞n=1 satisfies condition H. This example is observed in [5].

(4) A random example: Suppose that (bn)∞n=1 is a strictly increasing sequence in N,

and let B = {bn}
∞
n=1. By identifying B with its characteristic function 1B, we may

view it as a point in Λ = {0, 1}N, the set of maps from N to {0, 1}. We may endow

Λ with a probability measure by viewing it as a Cartesian product Λ =
∏∞

n=1Xn,

where, for each natural number n, we have Xn = {0, 1} and specify the probability

measure νn on Xn by νn({1}) = ωn with 0 ≤ ωn ≤ 1 and νn({0}) = 1 − ωn such

that limn→∞ ωnn = ∞. The desired probability measure on Λ is the corresponding

product measure ν =
∏∞

n=1 νn. The underlying σ-algebra A is that generated by

the cylinder sets

{(∆n)∞n=1 ∈ Λ: ∆n1 = αn1 , . . . ,∆nk
= αnk

}

for all possible choices of n1, . . . , nk and αn1 , . . . , αnk
. Then almost every point

(an)∞n=1 in Λ, with respect to the measure ν, is Hartman uniformly distributed, [6].
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(5) Block sequences: Suppose that (an)∞n=1 =
⋃∞

n=1[dn, en] is ordered by absolute value

for disjoint ([dn, en])∞n=1 with dn−1 = O(en) as n tends to infinity. Note that this

allows the possibility that (an)∞n=1 is zero density. This example is an immediate

consequence of Tempelman’s semigroup ergodic theorem, [56, p 218].

(6) Random perturbation of good sequences: Suppose (an)∞n=1 is an Lp-good universal

sequence which is also Hartman uniformly distributed. Let θ = (θn)∞n=1 be a

sequence of N-valued independent, identically distributed random variables with

basic probability space (Y,A,P), and a P-complete σ-field A. Let E denote the

expectation with respect to the basic probability space (Y,A,P). Assume that

there exist 0 < α < 1 and β > 1/α such that

an = O
(

en
α)

and E logβ+ |θ1| < ∞.

Then (an + θn(ω))∞n=1 is also an Lp-good universal sequence which is Hartman

uniformly distributed, [38].

(7) an = [P (n)] (n = 1, 2, . . . ), where P (x) = bkx
k + · · · + b1x + b0 and bk, . . . , b1 are

not all rational multiples of the same real number.

(8) an = [P (pn)] (n = 1, 2, . . . ), where (pn)∞n=1 denotes the sequence of prime numbers

and P (x) is as in (7).

(9) an = [f(n)] (n = 1, 2, . . . ), where f(z) denotes a non-polynomial entire function

which is real on the real numbers and such that |f(z)| ≪ e(log z)
α

with α < 4
3 .

(10) an = [f(pn)] (n = 1, 2, . . . ), where (pn)∞n=1 denotes the sequence of prime numbers

and f(z) is as in (9).

(11) an = [bn cos(bnx)] (n = 1, 2, . . . ) for a strictly increasing sequence of integers

(bn)∞n=1 and almost all x with respect to Lebesgue measure.

(12) an = [bn cos(bnx)] (n = 1, 2, . . . ) for a strictly increasing sequence of integers

(bn)∞n=1 such that an ≪ np, for some p > 1, and all x outside a set of Hausdorff

dimension not greater than 1 − 1
4p+ 1

2

.

(13) an = [gn(x)] (n = 1, 2, . . . ) for almost all x ∈ [a, b] with respect to Lebesgue

measure, where (gn(x))∞n=1 is a sequence of continuously differentiable functions

defined on [a, b] satisfying the following hypotheses. For each pair of distinct natural

numbers n and m, we have:

(a) g′n(x) − g′m(x) is monotonic on [a, b].

(b) There is an absolute constant λ such that |g′n(x) − g′m(x)| ≥ λ > 0.
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(14) an = [gn(x)] (n = 1, 2, . . . ) for all x lying outside a set of Hausdorff dimension at

most 1 − 1
p in [a, b], where (gn(x))∞n=1 is a sequence of continuously differentiable

functions defined on [a, b] satisfying the hypotheses (a) and (b) of (13) and also

meeting the further two requirements:

(c) For all x ∈ [a, b], we have

sup
x∈[a,b]

|g′n(x)| ≪ np

for some p > 1 and with an implied constant independent of x.

(d) For each pair of distinct natural numbers n and m, the function

g′n(x)g′m(x)

g′n(x) − g′m(x)

is monotonic on [a, b].

2.5 Hartman uniform distribution and unique ergodicity

In this section, we give a new and much more powerful formulation of unique ergodicity.

Indeed, we consider some kind of subsequential ergodic average rather than the normal

ergodic average over the natural numbers as appeared in the classical characterization

theorem of unique ergodicity. The reader may find some partial proof from [36].

Theorem 2.5.1. [F] Let T : X → X be a continuous transformation of a compact

metric space X, and let (an)∞n=1 be a Hartman uniformly distributed sequence which is

also L2-good universal. Then the following are equivalent:

(1) For every f ∈ C(X), (1/N)
∑N

n=1 f(T anα) converges uniformly to a constant.

(2) For every f ∈ C(X), (1/N)
∑N

n=1 f(T anα) converges pointwise to a constant.

(3) There exists µ ∈ M(X,T ) such that, for all f ∈ C(X) and all α ∈ X,

lim
N→∞

1

N

N
∑

n=1

f(T anα) =

∫

X
f dµ.

(4) T is uniquely ergodic.

Proof of Theorem 2.5.1.

(1) ⇒ (2): This holds trivially. �

(2) ⇒ (3): Define a linear operator J : C(X) → C by

J(f) = lim
N→∞

1

N

N
∑

n=1

f(T anα).
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Observe that J is continuous since

∣

∣

∣

∣

1

N

N
∑

n=1

f(T anα)

∣

∣

∣

∣

≤ sup
α∈X

|f(α)|.

In addition, we have J(1) = 1 and the fact that f ≥ 0 implies J(f) ≥ 0. Hence, by the

Riesz representation theorem, there exists µ ∈ M(X) such that J(f) =
∫

X f dµ. Also,

we note that J(f ◦ T ) = J(f), so
∫

X f ◦ T dµ =
∫

X f dµ. Thus, we have µ ∈ M(X,T )

by Lemma 1.7.4. �

(3) ⇒ (4): Suppose that ν ∈ M(X,T ). We have, for all α ∈ X,

lim
N→∞

1

N

N
∑

n=1

f(T anα) =

∫

X
f dµ.

Integrating with respect to ν and using the dominated convergence theorem, we obtain

∫

X
f dµ =

∫

X

(
∫

X
f dµ

)

dν = lim
N→∞

∫

X

1

N

N
∑

n=1

f(T anα) dν(α)

= lim
N→∞

∫

X
f dν =

∫

X
f dν

for all f ∈ C(X). We have ν = µ by Lemma 1.7.3, and hence T is uniquely ergodic. �

(4) ⇒ (1): By Theorem 2.3.2, if (1/N)
∑∞

n=1 f(T anα) converges uniformly to a

constant, then this constant must be
∫

X f dµ, where M(X,T ) = {µ}. Suppose to the

contrary that (1) does not hold. Then there exist a function g ∈ C(X), an ǫ > 0 and a

sequence (αN )∞N=1 in X such that

∣

∣

∣

∣

1

N

N
∑

n=1

g(T anαN ) −

∫

X
g dµ

∣

∣

∣

∣

≥ ǫ.

For each N ∈ N, set

µN =
1

N

N
∑

n=1

δTanαN
,

where δx denotes the Dirac δ-measure supported at x. This means that

∣

∣

∣

∣

∫

X
g dµN −

∫

X
g dµ

∣

∣

∣

∣

≥ ǫ. (2.5.1)

Since M(X) is compact, we can pick a convergent subsequence (µNj
)∞j=1 of (µN )∞N=1,

say to µ∞. By the inequality (2.5.1), we see that µ∞ 6= µ. To show the contradiction,
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it suffices to prove that µ∞ ∈ M(X,T ). Let f ∈ C(X). Then we have

∣

∣

∣

∣

∫

X
f dµ∞ −

∫

X
f ◦ T dµ∞

∣

∣

∣

∣

= lim
j→∞

∣

∣

∣

∣

∫

X
(f − f ◦ T ) d

(

1

Nj

Nj
∑

n=1

δTanαNj

)
∣

∣

∣

∣

= lim
j→∞

∣

∣

∣

∣

1

Nj

∫

X

Nj
∑

n=1

(f ◦ T an − f ◦ T an+1) dδαNj

∣

∣

∣

∣

≤ lim
j→∞

1

Nj

∫

X

∣

∣

∣

∣

Nj
∑

n=1

(f ◦ T an − f ◦ T an+1)

∣

∣

∣

∣

dδαNj

Integrating both sides of this inequality with respect to µ and noting that the left hand

side is a constant, we have

∣

∣

∣

∣

∫

X
f dµ∞ −

∫

X
f ◦ T dµ∞

∣

∣

∣

∣

≤

∫

X

(

lim
j→∞

1

Nj

∫

X

∣

∣

∣

∣

Nj
∑

n=1

(f ◦ T an − f ◦ T an+1)

∣

∣

∣

∣

dδαNj

)

dµ

By using the dominated convergence theorem, the Fubini’s theorem, and the fact that
∫

X dδαNj
= 1, we obtain

∣

∣

∣

∣

∫

X
f dµ∞ −

∫

X
f ◦ T dµ∞

∣

∣

∣

∣

≤ lim
j→∞

1

Nj

∫

X

∣

∣

∣

∣

Nj
∑

n=1

(f ◦ T an − f ◦ T an+1)

∣

∣

∣

∣

dµ

By using the Schwarz inequality, this is

∣

∣

∣

∣

∫

X
f dµ∞ −

∫

X
f ◦ T dµ∞

∣

∣

∣

∣

≤ lim
j→∞

1

Nj

∥

∥

∥

∥

Nj
∑

n=1

(f ◦ T an − f ◦ T an+1)

∥

∥

∥

∥

2

. (2.5.2)

Next we can calculate the right hand side of (2.5.2) in terms of the Koopman operator.

lim
j→∞

1

Nj

∥

∥

∥

∥

Nj
∑

n=1

(f ◦ T an − f ◦ T an+1)

∥

∥

∥

∥

2

= lim
j→∞

1

Nj

(
∫

X

∣

∣

∣

∣

Nj
∑

n=1

(f ◦ T an − f ◦ T an+1)

∣

∣

∣

∣

2

dµ

)
1
2

= lim
j→∞

1

Nj

(

∑

1≤n,m≤Nj

∫

X
(f ◦ T an − f ◦ T an+1)(f ◦ T am − f ◦ T am+1) dµ

)
1
2

= lim
j→∞

1

Nj

(

∑

1≤n,m≤Nj

〈Uan−am
T f, f〉 − 〈Uan+1−am

T f, f〉 − 〈Uan−am−1
T f, f〉 + 〈Uan−am

T f, f〉

)
1
2

.

By the Bochner-Herglotz theorem, there exists a spectral measure ωf attached to the

function f such that 〈Un
T f, f〉 =

∫

T
zn dωf (z). This is

lim
j→∞

1

Nj

∥

∥

∥

∥

Nj
∑

n=1

(f ◦ T an − f ◦ T an+1)

∥

∥

∥

∥

2

= lim
j→∞

1

Nj

(

∑

1≤n,m≤Nj

∫

T

(2zan−am − zan−am+1 − zan−am−1) dωf (z)

)
1
2

= lim
j→∞

1

Nj

(

∑

1≤n,m≤Nj

∫

T

(2 − z − z−1)zan−am dωf (z)

)
1
2

.
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Finally, we have

lim
j→∞

1

Nj

∥

∥

∥

∥

Nj
∑

n=1

(f ◦ T an − f ◦ T an+1)

∥

∥

∥

∥

2

= lim
j→∞

(
∫

T

(2 − z − z−1)

(

1

Nj

Nj
∑

n=1

zan
)(

1

Nj

Nj
∑

m=1

z−am

)

dωf (z)

)
1
2

.

If z = 1, the right hand side vanishes. In addition, when z 6= 1, this tends to zero as

j → ∞ because (an)∞n=1 is Hartman uniformly distributed. From the inequality (2.5.2),

we see that
∫

X f dµ∞ =
∫

X f ◦ T dµ∞ for every f ∈ C(X). By Lemma 1.7.4, we must

have µ∞ ∈ M(X,T ), and this contradicts the unique ergodicity of T. �

This completes the proof of Theorem 2.5.1. �

2.6 Moving ergodic averages

We begin by introducing some notation. Let Z be a collection of points in Z× N, and

let

Zh = {(m,n) ∈ Z : n ≥ h},

Zh
c = {(x, y) ∈ Z2 : |x−m| < c(y − n) for some (m,n) ∈ Zh},

Zh
c (k) = {x : (x, k) ∈ Zh

c } (k ∈ N).

Geometrically, we can think of Z1
c as the lattice points contained in the union of all

solid cones with aperture c and vertex contained in Z1 = Z.

Definition 2.6.1. A sequence of pairs of natural numbers (an, bn)∞n=1 is Stoltz if there

exist a collection of points Z in Z×N and a function h = h(t) tending to infinity with

t such that (an, bn)∞n=t ∈ Zh(t), and if there exist h0, c0 and d > 0 such that, for all

k ∈ N, we have the cardinality #Zh0
c0 (k) ≤ dk.

This technical condition is interesting because of the following lemma.

Lemma 2.6.2. [3] Let (X,B, µ, T ) be an ergodic dynamical system, and let (an, bn)∞n=1

be a Stoltz sequence. Then, for any f ∈ L1(µ), the limit

lim
n→∞

1

bn

bn
∑

j=1

f(T an+jα)

exists µ-almost everywhere α ∈ X.

Note that if we set

Mf (α) = lim
n→∞

1

bn

bn
∑

j=1

f(T an+jα) and Mn,f (α) =
1

bn

bn
∑

j=1

f(T an+jα)
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and observe that

Mn,f (Tα) −Mn,f (α) =
1

bn

(

f(T an+bn+1α) − f(T an+1α)
)

,

then we can see that Mf (Tα) = Mf (α) for µ-almost everywhere α ∈ X. A standard

fact in ergodic theory is that if (X,B, µ, T ) is ergodic and if Mf (Tα) = Mf (α) for

µ-almost everywhere α ∈ X, then Mf (α) =
∫

X f dµ for µ-almost everywhere α ∈ X.

Therefore, we have the following result.

Theorem 2.6.3. [A] Let (X,B, µ, T ) be an ergodic dynamical system, and let (an, bn)∞n=1

be a Stoltz sequence. Then, for any f ∈ L1(µ),

lim
n→∞

1

bn

bn
∑

j=1

f(T an+jα) =

∫

X
f dµ

µ-almost everywhere α ∈ X.

We note that the term “Stoltz” is used here because the condition on (an, bn)∞n=1

is analogous to the condition required in the classical non-radical limit theorem for

harmonic functions, also called a Stoltz condition, which suggested Lemma 2.6.2 to the

authors of [3]. Averages where an = 1 for all n will be called non-moving. This is as

opposed the more general moving averages which are averages along intervals whose

initial element, i.e. an, may not be 1. Moving averages satisfying the above hypothesis

can be constructed by taking, for instance, an = 22
n

and bn = 22
n−1

.
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Chapter 3

Complexity of the Liouville

numbers in positive characteristic

A Liouville number in the field of formal Laurent series over the finite field Fq can be

defined analogously as in the real case. That is, the set L of Liouville numbers consists

of irrational elements of Fq((Z
−1)) that can be very well approximated by a sequence

of rational functions from Fq(Z). Our main aim is to investigate the complexity of L

in terms of size and dimension. Indeed, we show that L has Haar measure zero and

Hausdorff dimension zero. We locate the exact cut-point at which the h-dimensional

Hausdorff measure of L drops from infinity to zero for any dimension function h. Our

results also include the fact that if L has infinite h-dimensional Hausdorff measure,

then it does not have σ-finite h-dimensional Hausdorff measure.

3.1 Introduction

A Liouville number is an irrational number α ∈ R with the property that, for every

natural number n, there exist integers p and q with q > 1 and such that

0 <

∣

∣

∣

∣

α−
p

q

∣

∣

∣

∣

<
1

qn
.

Therefore, Liouville numbers are real numbers that can be very well approximated by

a sequence of rational numbers. They were of significance in establishing the first proof

of the existence of transcendental numbers, and they initiated the study of Diophantine

approximation of algebraic real numbers.

From the point of view of measure theory, almost all real numbers are transcenden-

tal. Also, the Liouville numbers are uncountable. However, the set of Liouville numbers

is quite small. More precisely, Oxtoby showed that its Lebesgue measure and Hausdorff

dimension are both zero, [45, p 8–9]. It had been asked further by R.D. Mauldin what

the exact cut-point at which the Hausdorff measure of the Liouville numbers drops from

infinity to zero is. Recently, Olsen and Renfro solved this 20 plus year open question by
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giving a complete characterization of all Hausdorff measures of the Liouville numbers,

[42] and [43].

This chapter aims to extend this study of the complexity of the Liouville numbers

to the setting of the fields of formal Laurent series. We now summarize the contents

of this chapter. First of all, we introduce in Section 3.2 the Liouville numbers in the

positive characteristic setting. We show that the set of Liouville numbers is dense in

this setting and that there are uncountably many of them. In Section 3.3, we look

into the complexity of the Liouville numbers in terms of size and dimension, and we

arrive at the conclusion that the set of Liouville numbers is so small that it has both

Haar measure and Hausdorff dimension zero. We then introduce the concept of exact

Hausdorff dimension in Section 3.4 which is used to provide a further indication of the

complexity of the Liouville numbers. Finally, we give a complete characterization of all

Hausdorff measures of the Liouville numbers in Section 3.5; however, the proof appears

in Section 3.8 as we need several preliminary results which come along in Section 3.6

and Section 3.7.

3.2 Liouville numbers

Definition 3.2.1. A Liouville number in positive characteristic can be defined to be

an irrational element α ∈ Fq((Z
−1)) \ Fq(Z) with the property that, for every natural

numbers n, there exist polynomials P,Q ∈ Fq[Z] with |Q| > 1 and such that
∣

∣

∣

∣

α−
P

Q

∣

∣

∣

∣

<
1

|Q|n
.

The set L of Liouville numbers is

L =

{

α ∈ Fq((Z
−1)) \ Fq(Z) : ∀n ∈ N,∃P,Q ∈ Fq[Z] with |Q| > 1,

∣

∣

∣

∣

α−
P

Q

∣

∣

∣

∣

<
1

|Q|n

}

.

It is worth noting that the set of Liouville numbers can also be expressed as

L =
(

Fq((Z
−1)) \ Fq(Z)

)

∩

( ∞
⋂

n=1

⋃

Q∈Fq[Z]
|Q|>1

⋃

P∈Fq[Z]

B

(

P

Q
;

1

|Q|n

))

. (3.2.1)

To describe the importance of the Liouville numbers in positive characteristic, we

begin with some definitions.

Definition 3.2.2. An element α ∈ Fq((Z
−1)) is called an algebraic number if there

exists a polynomial

f(x) = Anx
n + An−1x

n−1 + · · · + A1x + A0,

where An, . . . , A0 ∈ Fq[Z] are not all zero, such that f(α) = 0. An element in Fq((Z
−1))

which is not algebraic is said to be a transcendental number.
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It follows easily from the definition of algebraic numbers that almost all elements

in Fq((Z
−1)) are transcendental. The following theorem characterizes transcendence in

this space.

Theorem 3.2.3 (Liouville Theorem in Positive Characteristic). [31] Let α ∈ Fq((Z
−1))

be an algebraic number of degree n > 1. Then there exists a constant c(α) > 0 such that
∣

∣

∣

∣

α−
P

Q

∣

∣

∣

∣

>
c(α)

|Q|n

for all P,Q ∈ Fq[Z] with Q 6= 0.

It follows immediately from the Liouville theorem that all Liouville numbers are

transcendental; that is, Liouville numbers are examples of elements in Fq((Z
−1)) which

are not a root of any nonzero polynomial equation with coefficients from Fq[Z]. Typical

examples of Liouville numbers are
∑∞

n=1 a−nZ
−n!, where a−n ∈ Fq with infinitely many

a−n 6= 0, and it follows easily from these examples that the set of Liouville numbers is

uncountable. Therefore, we have the following results.

Lemma 3.2.4. Let (a−n)∞n=1 be a sequence in Fq with infinitely many a−n 6= 0. Then
∑∞

n=1 a−nZ
−n! is a Liouville number.

Proof of Lemma 3.2.4. Let α =
∑∞

n=1 a−nZ
−n!. It is clear that the sequence of the

coefficients of the formal Laurent series representing α is not ultimately periodic, so it

follows that α /∈ Fq(Z).

Now, for any n ∈ N, define Pn and Qn in Fq[Z] with |Qn| > 1 as follows:

Qn = Zn! and Pn = Qn

n
∑

j=1

a−jZ
−j!.

Then we have
∣

∣

∣

∣

α−
Pn

Qn

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

j=n+1

a−jZ
−j!

∣

∣

∣

∣

= q−(n+1)! = |Qn|
−(n+1) < |Qn|

−n.

Therefore, we conclude that any such α is a Liouville number. �

Theorem 3.2.5. The set of Liouville numbers L is uncountable.

Proof of Theorem 3.2.5. It is an immediate consequence of the fact that there are

uncountably many
∑∞

n=1 a−nZ
−n!, where a−n ∈ Fq with infinitely many a−n 6= 0. �

We can investigate a little further the complexity of the Liouville numbers, and we

end this section by showing that the set of Liouville numbers is dense in Fq((Z
−1)). This

unsurprising fact is a consequence of the Baire category theorem and the observation in

(3.2.1). A Baire space is a topological space X with the property that the intersection

of any countable collection of open dense sets in X is dense in X.
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Lemma 3.2.6 (Baire Category Theorem). A complete metric space is a Baire space.

Theorem 3.2.7. The set of Liouville numbers L is dense in Fq((Z
−1)).

Proof of Theorem 3.2.7. Note that the field of formal Laurent series is a complete

metric space, so, by the Baire category theorem, Fq((Z
−1)) is a Baire space. Then we

consider the definition of Liouville numbers in (3.2.1) and observe that, for each n ∈ N,

the countable union of balls containing all the rational functions in Fq(Z)

⋃

Q∈Fq[Z]
|Q|>1

⋃

P∈Fq[Z]

B

(

P

Q
;

1

|Q|n

)

is dense in Fq((Z
−1)). Since Fq((Z

−1)) is a Baire space, it follows immediately that L

is dense in Fq((Z
−1)). �

Before proceeding to the next section, we give here some comment on the quality

of rational approximation relating to Theorem 3.2.3. Let α ∈ Fq((Z
−1)) \ Fq(Z).

For each positive real number ε > 0, define

κ(α, ε) = lim inf
|Q|→∞

|Q|ε
∣

∣

∣

∣

α−
P

Q

∣

∣

∣

∣

,

where P and Q run over polynomials in Fq[Z] with Q 6= 0. The approximation exponent

of α is defined by

η(α) = sup{ε > 0: κ(α, ε) < ∞}.

It is clear that κ(α, ε) = ∞ if ε > η(α), that κ(α, ε) = 0 if ε < η(α), and that

0 ≤ κ(α, η(α)) ≤ ∞. By using some knowledge of the continued fraction algorithm in

positive characteristic, which will be developed in Chapter 4, it is true as in the real

case that, for every ε ∈ [2,∞], there exists α ∈ Fq((Z
−1)) \ Fq(Z) such that η(α) = ε.

Moreover, the Liouville theorem in positive characteristic says that if α is an algebraic

number of degree n > 1, then κ(α, n) > 0, and therefore η(α) ∈ [2, n]. For a detailed

survey on this subject, the reader is referred to [29].

Definition 3.2.8. Let α ∈ Fq((Z
−1)) \ Fq(Z) be an irrational element. We call α a

badly approximable number if η(α) = 2 and κ(α, 2) > 0.

The definition of a badly approximable number α is equivalent to saying that the

partial quotients in the continued fraction expansion for α are bounded. Clearly, by

the Liouville theorem in positive characteristic, all quadratic power series are badly

approximable. This fact is also a consequence of their particular continued fraction

expansion. It is worth underlining that Lasjaunias successfully described in [28] the

explicit continued fraction expansion for each algebraic number of degree greater than

2 that is known to be badly approximable. This is still a very important open question

in the classical real case.
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When α is badly approximable, we are usually interested in the best possible value

of c(α) in Theorem 3.2.3. In the field of formal Laurent series, Fuchs proved in [16] an

analogous result of the Hurwitz theorem.

Theorem 3.2.9 (Hurwitz Theorem in Positive Characteristic). [16] Let 0 < q′ < q.

Then, for all irrational element α ∈ Fq((Z
−1)) \ Fq(Z), the inequality

∣

∣

∣

∣

α−
P

Q

∣

∣

∣

∣

<
1

q′|Q|2

has infinitely many solutions P,Q ∈ Fq[Z] with Q 6= 0.

Note that, in the Hurwitz theorem in positive characteristic, if q′ ≥ q, then the

inequality is not true in general. Consider for example α = [0;Z,Z,Z, . . . ]. For more

references of the research in this direction, the reader should consult [16].

3.3 On the complexity of the Liouville numbers

In the previous section, we see that there are uncountably many Liouville numbers and

that they are dense in Fq((Z
−1)). However, we shall show in this section that the set

of Liouville numbers is very small in the sense of measure and dimension. In fact, we

employ and adapt Oxtoby’s method to prove that it has Hausdorff dimension zero and

Haar measure zero.

Theorem 3.3.1. [H] For all s > 0, Hs(L ) = 0. In particular, dimH L = 0.

Proof of Theorem 3.3.1. Note that we can write the field of formal Laurent series as a

countable disjoint union of balls; that is, Fq((Z
−1)) =

⋃

A∈Fq[Z]B(A; 1). Since Hausdorff

measure satisfies the countably additive property, it suffices to show, for each s > 0,

that we have Hs(L ∩B(A; 1)) = 0 for all A ∈ Fq[Z].

Let s > 0, and let A ∈ Fq[Z]. To prove that Hs(L ∩B(A; 1)) = 0, we need to find,

for each δ > 0, a countable cover {Bj}
∞
j=1 of L ∩ B(A; 1) such that diamBj < δ and

∑∞
j=1(diamBj)

s < δ. From identity (3.2.1), it follows that

L ∩B(A; 1) ⊆
∞
⋂

n=1

⋃

Q∈Fq[Z]
|Q|>1

⋃

P∈Fq[Z]
|P |<|Q|

B

(

A +
P

Q
;

1

|Q|n

)

.

That is, for each n ∈ N,
⋃

Q∈Fq[Z]
|Q|>1

⋃

P∈Fq[Z]
|P |<|Q|

B

(

A +
P

Q
;

1

|Q|n

)

(3.3.1)

is a countable cover of L ∩B(A; 1) by balls. We can choose n so large that it satisfies

simultaneously the following three conditions:

1

qn
< δ, ns > 2,

q − 1

(ns− 2)qns−2 log q
< δ.
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Then each of the balls in (3.3.1) has diameter

diamB

(

A +
P

Q
;

1

|Q|n

)

= sup

{

|α− β| : α, β ∈ B

(

A +
P

Q
;

1

|Q|n

)}

<
1

|Q|n
≤

1

qn
< δ.

We note two basic combinatorial results:

#
{

P ∈ Fq[Z] : |P | < |Q|
}

= |Q| and #
{

Q ∈ Fq[Z] : |Q| = qr
}

= (q − 1)qr.

We now have

∑

Q∈Fq[Z]
|Q|>1

∑

P∈Fq[Z]
|P |<|Q|

(

1

|Q|n

)s

=
∑

Q∈Fq[Z]
|Q|>1

|Q|

|Q|ns
=

∑

Q∈Fq[Z]
|Q|>1

1

|Q|ns−1

=

∞
∑

r=1

(q − 1)qr

qr(ns−1)
= (q − 1)

∞
∑

r=1

1

qr(ns−2)

≤ (q − 1)

∫ ∞

1

1

qr(ns−2)
dr

= (q − 1)

(

1

(ns− 2) log q

)(

1

qns−2

)

< δ.

This completes the proof of Theorem 3.3.1. �

Corollary 3.3.2. [H] µ(L ) = H1(L ) = 0.

Proof of Corollary 3.3.2. This follows from the fact that µ and H1 are comparable. �

3.4 Exact Hausdorff dimension

In order to investigate sets with Hausdorff dimension zero, it is useful to introduce a

finer notion of dimension that allows more discrimination than power functions.

Definition 3.4.1. A dimension function, or a gauge function, is a non-decreasing and

right continuous function h : [0,∞) → [0,∞) with h(0) = 0.

For a dimension function h, define the h-dimensional Hausdorff measure Hh(E) of

E ⊆ Fq((Z
−1)) by

Hh(E) = lim
δ→0+

(

inf

{ ∞
∑

j=1

h(diamBj) : E ⊆
∞
⋃

j=1

Bj , diamBj < δ

})

∈ [0,∞],

where the infimum is taken over all countable covers of E by balls with diameter less

than δ. Note that if s ≥ 0 and h(r) = rs, then, by a transparent abuse of notation

Hs = Hh. For a comprehensive treatment of the Hausdorff measure Hh, the reader

should consult [47]. We shall say that h is an exact Hausdorff dimension for E if

0 < Hh(E) < ∞.
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It follows from Theorem 3.3.1 that no power function h(r) = rs gives the set of

Liouville numbers finite positive h-dimensional Hausdorff measure. In this view, it is

natural to ask whether the set of Liouville numbers has an exact Hausdorff dimension

or not. This question can be answered by using the translation invariance property of

L ; for related results, see [8], [41] and [42].

Lemma 3.4.2. [H] Let E ⊆ Fq((Z
−1)) be a set such that E +A = E for all A ∈ Fq[Z],

and let λ be a translation invariant measure on Fq((Z
−1)). Then λ(E) ∈ {0,∞}.

Proof of Lemma 3.4.2. Suppose that λ(E) > 0. We claim that λ(E) = ∞. Since

we have
∑

A∈Fq[Z] λ(E ∩ B(A; 1)) = λ(E) > 0, there exists A0 ∈ Fq[Z] such that

λ(E ∩B(A0; 1)) > 0. Then, for all A ∈ Fq[Z], we obtain

λ(E ∩B(A; 1)) = λ((E ∩B(A; 1)) + (A0 −A))

= λ((E + (A0 −A)) ∩ (B(A; 1) + (A0 −A)))

= λ(E ∩B(A0; 1)).

Therefore, λ(E) =
∑

A∈Fq[Z] λ(E ∩ B(A; 1)) =
∑

A∈Fq[Z] λ(E ∩ B(A0; 1)) = ∞. This

completes the proof of Lemma 3.4.2. �

Theorem 3.4.3. [H] For any dimension function h, we have Hh(L ) ∈ {0,∞}.

Proof of Theorem 3.4.3. It is clear that Hh is a translation invariant measure for any

dimension function h. Moreover, the set L of Liouville numbers satisfies the condition

that L + A = L for all A ∈ Fq[Z]. It is an immediate consequence of Lemma 3.4.2

that Hh(L ) ∈ {0,∞}. �

3.5 On the exact Hausdorff dimension of the Liouville

numbers

Due to Theorem 3.4.3, it is clearly of interest to ask two further questions about the

complexity of the Liouville numbers:

(1) For which dimension function h is Hh(L ) = 0, and for which dimension function

h is Hh(L ) = ∞?

(2) Does there exist a dimension function h such that Hh(L ) > 0 and the set L of

Liouville numbers has σ-finite Hh measure?

The first question asks one to locate the exact cut-point at which the Hausdorff measure

of L drops from infinity to zero. The second question asks, in the case Hh(L ) = ∞,

whether the h-dimensional Hausdorff measure is truly infinite, i.e. L is a countable

union of sets with finite h-dimension Hausdorff measure or not.
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To answer these two questions, we begin with a definition. For a dimension function

h, define the function Φh by

Φh(r) = inf
0<t≤r

r
h(t)

r
.

Theorem 3.5.1. [H] Let h be an arbitrary dimension function.

(1) If lim supqω→0, ω∈Z Φh(qω)/qωs = 0 for some s > 0, then we have Hh(L ) = 0.

(2) If lim supqω→0, ω∈Z Φh(qω)/qωs > 0 for all s > 0, then we have Hh(L ) = ∞ and

the set L does not have σ-finite Hh measure.

This result gives a complete characterization of all Hausdorff measures Hh(L ) on

the set of Liouville numbers, and thus answers the last two questions. Indeed, firstly, it

locates the exact cut-point at which the Hausdorff measure of L drops from infinity to

zero. If h is a dimension function for which the function Φh(qω) increases more slowly

than a particular power function of qω near 0, then Hh(L ) = 0, and if h is a dimension

function for which the function Φh(qω) increases faster than any power function of qω

near 0, then Hh(L ) = ∞. Also, it shows that if the h-dimensional Hausdorff measure

of L is infinite, then L does not have σ-finite h-dimensional Hausdorff measure. Note

that Theorem 3.5.1 considers only r = qω (ω ∈ Z) rather than arbitrary nonnegative

r ∈ R as in the real case, and this theorem is an analogue of Olsen and Renfro’s result

in [43]. To prove this theorem, we need several lemmas, so we postpone the proof of

Theorem 3.5.1 until the last section of this chapter.

3.6 Preliminary results I

To prove Theorem 3.5.1, we need some preliminary results, which are divided into two

sections. In Preliminary results I, we prove a special case about the exact cut-point

at which the Hausdorff measure of L drops from infinity to zero. In fact, we shall

make a requirement in Lemma 3.6.1 that the function r 7→ h(r)/r is decreasing in a

neighborhood of 0. In Preliminary results II, we collect some properties of the function

Φh. Then we use these properties to extend the results in Lemma 3.6.1 to a complete

characterization of all Hausdorff measures Hh(L ) of the set of Liouville numbers.

Lemma 3.6.1. [H] Let h be a dimension function.

(1) If lim supqω→0, ω∈Z h(qω)/qωs = 0 for some s > 0, then we have Hh(L ) = 0.

(2) If lim supqω→0, ω∈Z h(qω)/qωs > 0 for all s > 0, and if r 7→ h(r)/r is a decreasing

function in a neighborhood of 0, then we have Hh(L ) = ∞.
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Proof of Lemma 3.6.1(1). This result is simply a rephrasing of Theorem 3.3.1 that the

Hausdorff dimension of L equals 0. �

Proof of Lemma 3.6.1(2). Let h be a dimension function such that, for all s > 0,

lim sup
qω→0
ω∈Z

h(qω)

qωs
> 0,

and suppose that the function r 7→ h(r)/r is decreasing in a neighborhood of 0. Observe

that, for all s > 0, we have

lim sup
qω→0
ω∈Z

h(qω)

qωs
= lim sup

qω→0
ω∈Z

1

(qω)s/2
h(qω)

(qω)s/2
= ∞. (3.6.1)

To prove the result, we suppose to the contrary that Hh(L ) < ∞. Since h is continuous

from the right with h(0) = 0, it follows easily that Hh(Fq(Z)) = 0, and thus we have

Hh(L ∪Fq(Z)) < ∞. Then there is a real number c0 > 1 such that Hh(L ∪Fq(Z)) < c0.

Moreover, it follows from (3.6.1) that there exists a natural number ω0 such that

h(q−ω0)

q−ω0
≥ q2c0. (3.6.2)

Since Hh(L ∪ Fq(Z)) < c0, there exists a countable cover {Bj}
∞
j=1 of L ∪ Fq(Z) by

balls with diamBj < q−ω0 such that
∑∞

j=1 h(diamBj) ≤ c0.

We shall now construct a sequence (En)∞n=1 of sets such that

∞
⋂

n=1

En 6= ∅; (3.6.3)

∞
⋂

n=1

En ⊆ L ∪ Fq(Z); (3.6.4)

( ∞
⋂

n=1

En

)

∩

( ∞
⋃

j=1

Bj

)

= ∅. (3.6.5)

Since L ∪ Fq(Z) ⊆
⋃∞

j=1Bj , this will give the desired contradiction.

The construction of the sets En is divided into four steps. We begin by giving some

notation. For a natural number n, we write Fq[Z]n for the family of strings P1 . . . Pn

of length n with entries Pi ∈ Fq[Z], i.e.

Fq[Z]n =
{

P1 . . . Pn : Pi ∈ Fq[Z]
}

.

First, we construct an auxiliary sequence (Qn)∞n=1 in Fq[Z]. Next, by using this sequence

(Qn)∞n=1, we construct a sequence of sets (Πn)∞n=1 and IP for P ∈ Πn with Πn ⊆ Fq[Z]n

and IP ⊆ L . Then we construct a sequence of sets (Γn)∞n=1 with Γn ⊆ Πn. Finally, we

construct the sequence (En)∞n=1. �
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Construction of (Qn)∞n=1: Let c = q8c0. It follows from (3.6.1) that there exists an

increasing sequence (ωn)∞n=1 of natural numbers such that

h(q−ωn)

(q−ωn)1/2n
≥ 1; (3.6.6)

q−ωn ≤
1

qn

(

q−ωn−1

cqn−1

)2n

. (3.6.7)

Now we can construct inductively a sequence (Qn)∞n=1 in Fq[Z] so that the following

two conditions are satisfied for all n ≥ 2 :

(I.1) we have

|Qn| ≥ (cqn−1|Qn−1|
n−1)2;

(I.2) we have
1

qn|Qn|n
≤ q−ωn ≤

1

|Qn|n
.

The start of the induction. We simply put

Q1 = 1.

The inductive step. Assume that n ≥ 2 and that Q1, Q2, . . . , Qn−1 have been con-

structed such that (I.1) and (I.2) are satisfied. Observe that

(qωn)1/n −

(

qωn

qn

)1/n

= q(ωn/n)−1(q − 1).

This implies without difficulty that there exists a Qn in Fq[Z] with

(

qωn

qn

)1/n

≤ |Qn| ≤ (qωn)1/n. (3.6.8)

Then it follows immediately that Qn satisfies condition (I.2). To see that Qn satisfies

condition (I.1), we use (3.6.7) and (3.6.8) to obtain

|Qn| ≥

(

qωn

qn

)1/n

≥

(

cqn−1

q−ωn−1

)2

≥ (cqn−1|Qn−1|
n−1)2.

This completes the inductive step in the construction of the sequence (Qn)∞n=1.

Construction of (Πn)∞n=1 and IP: For each n ∈ N and P ∈ Fq[Z], we define sets

Σn,P ⊆ Fq[Z], Σn ⊆ Fq[Z], Πn ⊆ Fq[Z]n and IP ⊆ L for P ∈ Πn inductively as follows.
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Put

Σ1,1 = {1},

Σ1 = Σ1,1,

Π1 = Σ1,

I1 = B

(

1

Q1
;

1

|Q1|1

)

.

Next, assume that n ≥ 2 and that the sets Σn−1,P , Σn−1, Πn−1 and IP for P ∈ Πn−1

have been defined. Now put

Σn,P = Fq[Z] ∩B

(

Qn
P

Qn−1
;

|Qn|

|Qn−1|n−1

)

for P ∈ Σn−1,

Σn =
⋃

P∈Σn−1

Σn,P ,

Πn =
{

P1P2 . . . Pn ∈ Fq[Z]n : P1 ∈ Σ1,1, P2 ∈ Σ2,P1 , . . . , Pn ∈ Σn,Pn−1

}

,

IP = B

(

Pn

Qn
;

1

|Qn|n

)

for P = P1P2 . . . Pn ∈ Πn.

Below we collect some of the main properties of the balls IP. We shall denote the

distance between two sets X,Y ⊆ Fq((Z
−1)) by dist(X,Y ) = infx∈X, y∈Y |x− y|.

Proposition 3.6.2. [H] We have the following.

(1) If PP ∈ Πn+1 with P ∈ Πn, then we have

IPP ⊆ IP.

(2) If P1,P2 ∈ Πn are distinct, then we have

dist(IP1 , IP2) ≥
1

|Qn|
> 0.

(3) We have
∞
⋂

n=1

⋃

P∈Πn

IP ⊆ L ∪ Fq(Z).

Proof of Proposition 3.6.2. Statement (1) is obvious by an easy calculation. Next,

we observe the fact that if P1,P2 ∈ Πn are distinct, and if P1 = P1,1P1,2 . . . P1,n and

P2 = P2,1P2,2 . . . P2,n, then we must have P1,n 6= P2,n. Now statement (2) follows by

an easy calculation. Finally, we prove statement (3). Let α ∈
⋂∞

n=1

⋃

P∈Πn
IP. For

each n ∈ N, we have α ∈
⋃

P∈Πn
IP, so there exists P = P1P2 . . . Pn ∈ Πn such that

α ∈ IP = B(Pn/Qn; |Qn|
−n), whence |α − Pn/Qn| < |Qn|

−n. It now follows from the

definition of a Liouville number that α ∈ L ∪ Fq(Z). �
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Construction of (Γn)∞n=1: We now construct sets Γ1 ⊆ Π1, Γ2 ⊆ Π2, . . . inductively

such that the following three conditions are satisfied for all n ≥ 2 :

(II.1) if diamBj ≥ 1/(q|Qn|)
n, then we have

Bj ∩ IP = ∅

for all P ∈ Γn;

(II.2) we have

#Γn ≥
|Qn|

q2|Qn−1|n−1
· #Γn−1;

(II.3) we have

Γn ⊆
{

PP ∈ Πn : P ∈ Γn−1

}

.

The start of the induction. We simply put

Γ1 = Π1.

The inductive step. Assume that n ≥ 2 and that the sets Γ1 ⊆ Π1, Γ2 ⊆ Π2, . . . ,

Γn−1 ⊆ Πn−1 have been constructed such that conditions (II.1)–(II.3) are satisfied.

Put

Γn =

{

PP ∈ Πn : P ∈ Γn−1, ∀j ∈ N, diam(Bj ∩ IPP ) <
1

qn−1
(diamIPP )

}

.

We shall now prove that the set Γn satisfies all the conditions (II.1)–(II.3). Write

Xn = {PP ∈ Πn : P ∈ Γn=1} \ Γn, i.e.

Xn =

{

PP ∈ Πn : P ∈ Γn−1, ∃j ∈ N, diam(Bj ∩ IPP ) ≥
1

qn−1
(diamIPP )

}

,

and write, for each j ∈ N,

Xn,j =

{

PP ∈ Πn : P ∈ Γn−1, diam(Bj ∩ IPP ) ≥
1

qn−1
(diamIPP )

}

.

We clearly have Xn =
⋃∞

j=1Xn,j, and we note that this union may not be disjoint.

We now prove the following four propositions. To avoid confusion, we emphasize that

these propositions are part of the inductive step. In particular, the variable n should

be interpreted as it is used in the inductive step.

Proposition 3.6.3. [H] We have

#
{

PP ∈ Πn : P ∈ Γn−1

}

=
|Qn|

|Qn−1|n−1
· #Γn−1.
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Proposition 3.6.4. [H] For each j ∈ N, we have

#Xn,j ≤ q|Qn|(diamBj) +
h(diamBj)

h(1/qn|Qn|n)
.

Proposition 3.6.5. [H] If 2 ≤ m ≤ n, then #Γm−1 ≥ 1 and

h(1/qm|Qm|m)

1/qm|Qm|m
≥ cqm−1|Qm|m−1|Qm−1|

m−1 1

#Γm−1
.

Proposition 3.6.6. [H] We have

#Xn ≤

(

1 −
1

q2

)

· #
{

PP ∈ Πn : P ∈ Γn−1

}

.

Proof of Proposition 3.6.3. By the construction of (Qn)∞n=1, we note from (I.1) that

|Qn| > |Qn−1|
n−1. We now have

#
{

PP ∈ Πn : P ∈ Γn−1

}

=
∑

P=P1...Pn−1∈Γn−1

#

(

Fq[Z] ∩B

(

Qn
Pn−1

Qn−1
;

|Qn|

|Qn−1|n−1

))

=
∑

P=P1...Pn−1∈Γn−1

µ

(

B

(

Qn
Pn−1

Qn−1
;

|Qn|

|Qn−1|n−1

))

=
∑

P∈Γn−1

|Qn|

|Qn−1|n−1

=
|Qn|

|Qn−1|n−1
· #Γn−1,

as required. �

Proof of Proposition 3.6.4. We divide the proof into two cases. First, we assume that

#Xn,j = 1. In this case, Xn,j = {P} for some P ∈ Πn, whence

diamBj ≥ diam(Bj ∩ IP) ≥
1

qn−1
(diamIP) =

1

qn|Qn|n
.

This implies that h(diamBj) ≥ h(1/qn|Qn|
n), and so

#Xn,j = 1 ≤
h(diamBj)

h(1/qn|Qn|n)
≤ q|Qn|(diamBj) +

h(diamBj)

h(1/qn|Qn|n)
.

This proves Proposition 3.6.4 when #Xn,j = 1. Next, we assume that #Xn,j ≥ 2.

In this case, Xn,j = {P1, . . . ,Pm} for some distinct Pi ∈ Πn and m ≥ 2. Observe

that Bj ∩ IPi
6= ∅ for all 1 ≤ i ≤ m. Moreover, by Proposition 3.6.2(2), we see that

the balls IPi
are pairwise disjoint. It follows that Bj must contain every ball IPi

.

Since Bj is a ball, we deduce that Bj must contain the gaps between the balls IPi
.

By Proposition 3.6.2(2), we see that the length of each gap is greater than or equal

to 1/|Qn|. Now let ω be the unique nonnegative integer such that qω ≤ m < qω+1. It
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follows that there exist i1 and i2 with 1 ≤ i1 < i2 ≤ m such that the distance between

IPi1
and IPi2

is greater than or equal to qω/|Qn|. This implies that

diamBj ≥ dist
(

IPi1
, IPi2

)

≥
qω

|Qn|
>

m

q|Qn|
,

and so we obtain

#Xn,j = m ≤ q|Qn|(diamBj) ≤ q|Qn|(diamBj) +
h(diamBj)

h(1/qn|Qn|n)
.

This completes the proof of Proposition 3.6.4. �

Proof of Proposition 3.6.5. We first show that #Γm−1 ≥ 1. For 2 ≤ i ≤ n − 1, the

inductive hypothesis (II.2) and the fact from (I.1) that |Qi| ≥ (cqi−1|Qi−1|
i−1)2 imply

#Γi ≥
|Qi|

q2|Qi−1|i−1
· #Γi−1 ≥ #Γi−1.

Repeated application of this inequality gives

#Γm−1 ≥ #Γm−2 ≥ · · · ≥ #Γ2 ≥ #Γ1 = 1.

Next, we prove that

h(1/qm|Qm|m)

1/qm|Qm|m
≥ cqm−1|Qm|m−1|Qm−1|

m−1 1

#Γm−1
.

By (3.6.6), the inequality in (I.2) that 1/qm|Qm|m ≤ q−ωm ≤ 1/|Qm|m and the fact

that h(r)/r is non-decreasing near 0, we have

h(1/qm|Qm|m)

1/qm|Qm|m
≥

h(q−ωm)

q−ωm
=

1

(q−ωm)1−1/2m
≥

1

(1/|Qm|m)1−1/2m
= |Qm|m−1/2.

(3.6.9)

Also, since |Qm| ≥ (cqm−1|Qm−1|
m−1)2 and #Γm−1 ≥ 1, we deduce that

1

cqm−1
|Qm|m−1/2 ≥ |Qm|m−1|Qm−1|

m−1 ≥ |Qm|m−1|Qm−1|
m−1 1

#Γm−1
. (3.6.10)

Combining (3.6.9) and (3.6.10) gives the desired result. �

Proof of Proposition 3.6.6. We divide the proof into two cases. First, we prove the case

n = 2. By Proposition 3.6.4, we have

#X2 ≤
∞
∑

j=1

#X2,j ≤ q|Q2|
∞
∑

j=1

diamBj +
1

h(1/q2|Q2|2)

∞
∑

j=1

h(diamBj). (3.6.11)

Since diamBj < q−ω0 , we now use the fact that the map r 7→ h(r)/r is decreasing in a

neighborhood of 0, together with (3.6.2), to obtain

h(diamBj)

diamBj
>

h(q−ω0)

q−ω0
≥ q2c0.
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We therefore conclude from (3.6.11) that

#X2 ≤
q|Q2|

q2c0

∞
∑

j=1

h(diamBj) +
1

h(1/q2|Q2|2)

∞
∑

j=1

h(diamBj)

≤
|Q2|

q
+

1

h(1/q2|Q2|2)
c0.

By Proposition 3.6.5, we obtain

h(1/q2|Q2|
2)

1/q2|Q2|2
≥ cq|Q2|

1|Q1|
1 1

#Γ1
= cq|Q2|.

Hence,

#X2 ≤
|Q2|

q
+

q|Q2|

c
c0 =

|Q2|

q
+

|Q2|

q7
.

Also, Proposition 3.6.3 implies that

#
{

PP ∈ Π2 : P ∈ Γ1

}

=
|Q2|

|Q1|1
· #Γ1 = |Q2|.

This equation and the previous inequality give

#X2 ≤

(

1

q
+

1

q7

)

· #
{

PP ∈ Π2 : P ∈ Γ1

}

≤

(

1 −
1

q2

)

· #
{

PP ∈ Π2 : P ∈ Γ1

}

.

This completes the proof of Proposition 3.6.6 for n = 2.

Next, we prove the case n ≥ 3. We have

#Xn ≤
∞
∑

j=1

#Xn,j. (3.6.12)

Now observe that

if j satisfies diamBj ≥
1

qn−1|Qn−1|n−1
, then Xn,j = ∅. (3.6.13)

We now prove (3.6.13). Indeed, if (3.6.13) were not satisfied, then there would exist

PP ∈ Πn with P ∈ Γn−1 such that diam(Bj ∩IPP ) ≥ (1/qn−1)(diamIPP ). Particularly,

this would imply that Bj ∩ IPP 6= ∅, and thus Bj ∩ IP 6= ∅ by Proposition 3.6.2(1). But

this would contradict the inductive hypothesis (II.1) since diamBj ≥ 1/qn−1|Qn−1|
n−1.

This proves (3.6.13).

It follows from (3.6.12), (3.6.13) and Proposition 3.6.4 that

#Xn ≤
∞
∑

j=1
diamBj<1/qn−1|Qn−1|n−1

#Xn,j

≤ q|Qn|
∞
∑

j=1
diamBj<1/qn−1|Qn−1|n−1

diamBj +
1

h(1/qn|Qn|n)

∞
∑

j=1

h(diamBj).

(3.6.14)
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For each j with diamBj < 1/qn−1|Qn−1|
n−1, Proposition 3.6.5 implies that

h(diamBj)

diamBj
≥

h(1/qn−1|Qn−1|
n−1)

1/qn−1|Qn−1|n−1
≥ cqn−2|Qn−1|

n−2|Qn−2|
n−2 1

#Γn−2
.

We therefore conclude from (3.6.14) that

#Xn ≤
q|Qn| · #Γn−2

cqn−2|Qn−1|n−2|Qn−2|n−2

∞
∑

j=1
diamBj<1/qn−1|Qn−1|n−1

h(diamBj)

+
1

h(1/qn|Qn|n)

∞
∑

j=1

h(diamBj)

≤
|Qn| · #Γn−2

cqn−3|Qn−1|n−2|Qn−2|n−2
c0 +

1

h(1/qn|Qn|n)
c0.

By using the inductive hypothesis (II.2), we have

#Γn−1 ≥
|Qn−1|

q2|Qn−2|n−2
· #Γn−2.

Hence, we obtain

#Xn ≤
|Qn| · #Γn−1

cqn−5|Qn−1|n−1
c0 +

1

h(1/qn|Qn|n)
c0.

By Proposition 3.6.5, we know that

h(1/qn|Qn|
n)

1/qn|Qn|n
≥ cqn−1|Qn|

n−1|Qn−1|
n−1 1

#Γn−1
.

This and the previous inequalities imply that

#Xn ≤
|Qn| · #Γn−1

cqn−5|Qn−1|n−1
c0 +

q|Qn| · #Γn−1

c|Qn−1|n−1
c0 =

|Qn| · #Γn−1

qn+3|Qn−1|n−1
+

|Qn| · #Γn−1

q7|Qn−1|n−1
.

Finally, using Proposition 3.6.3, we obtain

#Xn ≤

(

1

qn+3
+

1

q7

)

· #
{

PP ∈ Πn : P ∈ Γn−1

}

≤

(

1 −
1

q2

)

· #
{

PP ∈ Πn : P ∈ Γn−1

}

.

This completes the proof of Proposition 3.6.6 for n ≥ 3. �

We are now ready to prove that the set Γn satisfies (II.1)–(II.3).

Proof that Γn satisfies condition (II.1). It is immediate from the definition of the set

Γn that it satisfies (II.1). Indeed, suppose to the contrary that there exist a j with

diamBj ≥ 1/qn|Qn|
n and a P ∈ Γn such that Bj ∩ IP 6= ∅. This implies that

diam(Bj ∩ IP) ≥
1

qn|Qn|n
=

1

qn−1
(diamIP).
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However, this inequality contradicts the fact that P ∈ Γn. This proves that the set Γn

satisfies condition (II.1). �

Proof that Γn satisfies condition (II.2). Since we have Xn = {PP ∈ Πn : P ∈ Γn−1}\Γn,

it follows from Proposition 3.6.3 and 3.6.6 that

#Γn = #
({

PP ∈ Πn : P ∈ Γn−1

}

\Xn

)

≥
1

q2
· #

{

PP ∈ Πn : P ∈ Γn−1

}

=
|Qn|

q2|Qn−1|n−1
· #Γn−1.

This proves that the set Γn satisfies condition (II.2). �

Proof that Γn satisfies condition (II.3). This is obvious. �

This completes the inductive step in the construction of the sequence (Γn)∞n=1.

Construction of (En)∞n=1: We simply put

En =
⋃

P∈Γn

IP.

We can now complete the proof of Lemma 3.6.1(2) by showing that the sequence

(En)∞n=1 satisfies all the conditions (3.6.3)–(3.6.5).

Proof of (3.6.3). Clearly, it follows from the induction that En 6= ∅ for every n ∈ N.

Now we observe that condition (II.3) implies that En+1 ⊆ En for each n ∈ N. Using the

fact that every ball in Fq((Z
−1)) is compact, we can see that the sequence (En)∞n=1 is a

decreasing sequence of nonempty compact sets, and we thus conclude that
⋂∞

n=1 En 6= ∅.

This proves (3.6.3). �

Proof of (3.6.4). It follows from Proposition 3.6.2(3) that

∞
⋂

n=1

En ⊆
∞
⋂

n=1

⋃

P∈Πn

IP ⊆ L ∪ Fq(Z),

as required. �

Proof of (3.6.5). It follows from (II.1) that (
⋂∞

n=1En) ∩ (
⋃∞

j=1Bj) = ∅. �

This completes the proof of Lemma 3.6.1(2). �

3.7 Preliminary results II

In this section, we collect some properties of the function Φh which will be useful

for extending the results in Lemma 3.6.1 to Theorem 3.5.1. The first lemma is an

adapted result from [43, Lemma 2.1] which says that, for each dimension function
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with some specified properties, we can always find another dimension function with the

same specified properties such that it gives much less value than the original one does.

The second lemma is taken from [43, Lemma 2.2]. This says that Φh is a dimension

function with the property that r 7→ Φh(r)/r is decreasing in a neighborhood of 0.

Finally, our third is analogue of [43, Lemma 2.2(3)] which says that the h-dimensional

Hausdorff measure and the Φh-dimensional Hausdorff measure of a set in Fq((Z
−1))

are comparable.

Lemma 3.7.1. [H] Let h be a dimension function such that the function r 7→ h(r)/r is

decreasing in a neighborhood of 0. Suppose that lim supqω→0, ω∈Z h(qω)/qωs > 0 for all

s > 0. Then there is another dimension function g such that the function r 7→ g(r)/r

is decreasing in a neighborhood of 0 and such that

(1) lim supqω→0, ω∈Z g(qω)/qωs > 0 for all s > 0;

(2) limqω→0, ω∈Z g(qω)/h(qω) = 0.

Proof of Lemma 3.7.1. First, we note that, for all s > 0,

lim sup
qω→0
ω∈Z

h(qω)

qωs
= ∞. (3.7.1)

This was proved in (3.6.1). Next, observe that

lim
qω→0
ω∈Z

h(qω)

qω
= ∞. (3.7.2)

This follows from the fact that the function r 7→ h(r)/r is decreasing near 0 so that

the limit limqω→0, ω∈Z h(qω)/qω exists, and we therefore conclude from (3.7.1) that

limqω→0, ω∈Z h(qω)/qω = lim supqω→0, ω∈Z h(qω)/qω = ∞. This proves (3.7.2).

By (3.7.1) and (3.7.2), there is an increasing sequence (ωn)∞n=1 of natural numbers

such that the following two conditions are satisfied for all n ∈ N :

h(q−ωn)

(q−ωn)1/n
≥ n2; (3.7.3)

h(q−ωn+1)

q−ωn+1
≥

(

n + 1

n

)

h(q−ωn)

q−ωn
. (3.7.4)

For each n ∈ N, put

ρn = q−ωn

(

n

n + 1

)

h(q−ωn+1)

h(q−ωn)
.

Note that it follows from (3.7.4) that q−ωn+1 ≤ ρn ≤ q−ωn . Now we can define the

function g : [0,∞) → [0,∞) by

g(r) =



















0 for r = 0,
h(q−ωn+1 )

n+1 for q−ωn+1 < r ≤ ρn,

rh(q−ωn )
nq−ωn for ρn < r ≤ q−ωn ,

h(q−ω1) for r > q−ω1 .
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It is not hard to check that g is increasing and right continuous with g(0) = 0.

In particular, this says that g is a dimension function. We must now show that the

function r 7→ g(r)/r is decreasing in a neighborhood of 0 and that g satisfies conditions

(1) and (2).

We first prove that the function r 7→ g(r)/r is decreasing near 0. Note that

g(r)

r
=

{

h(q−ωn+1 )
n+1

1
r for q−ωn+1 < r ≤ ρn,

h(q−ωn )
n

1
q−ωn

for ρn < r ≤ q−ωn .
(3.7.5)

For q−ωn+1 < r ≤ ρn, we have

g(r)

r
=

h(q−ωn+1)

n + 1

1

r
≥

h(q−ωn+1)

n + 1

1

ρn
=

g(ρn)

ρn
.

We conclude from (3.7.5) that the function r 7→ g(r)/r is decreasing on (q−ωn+1 , q−ωn ].

For q−ωn < r ≤ ρn−1, we have

g(q−ωn)

q−ωn
=

h(q−ωn)

n

1

q−ωn
≥

h(q−ωn)

n

1

r
=

g(r)

r
.

Now we can also conclude from (3.7.5) that the function r 7→ g(r)/r is decreasing on

(ρn, ρn−1]. Thus, we have proved that the function r 7→ g(r)/r is decreasing.

Next, we prove that g satisfies condition (1). For all s > 0, we use (3.7.3) to obtain

lim sup
qω→0
ω∈Z

g(qω)

qωs
≥ lim sup

n→∞

g(q−ωn)

(q−ωn)s

= lim sup
n→∞

h(q−ωn)

n(q−ωn)s

≥ lim sup
n→∞
n≥1/s

h(q−ωn)

n(q−ωn)1/n

≥ lim sup
n→∞
n≥1/s

n2

n

= ∞.

This shows that condition (1) is satisfied.

Finally, we prove that g satisfies condition (2). Since the function r 7→ h(r)/r is

decreasing, we conclude that h(qω)/qω ≥ h(q−ωn)/q−ωn for all qω ∈ [q−ωn+1 , q−ωn ],

whence we obtain

h(qω) ≥

{

h(q−ωn+1) ≥ ng(qω) for q−ωn+1 < qω ≤ ρn,
h(q−ωn)
q−ωn

qω = ng(qω) for ρn < qω ≤ q−ωn .

It now follows that g(qω)/h(qω) ≤ 1/n for q−ωn+1 ≤ qω ≤ q−ωn , and hence we have

limqω→0, ω∈Z g(qω)/h(qω) = 0. This shows that condition (2) is satisfied. �
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Lemma 3.7.2. [43] Let h be a dimension function.

(1) The function Φh is a dimension function. In particular, the Φh-dimensional Haus-

dorff measure HΦh is well defined.

(2) The function r 7→ Φh(r)/r is decreasing in a neighborhood of 0.

Lemma 3.7.3. [H] Let h be a dimension function. We have

HΦh(E) ≤ Hh(E) ≤ qHΦh(E)

for all E ⊆ Fq((Z
−1)).

Proof of Lemma 3.7.3. First we claim that HΦh(E) ≤ Hh(E) for all E ⊆ Fq((Z
−1)).

This is an easy consequence of the fact that

Φh(r) = inf
0<t≤r

r

(

h(t)

t

)

≤ r

(

h(r)

r

)

= h(r).

Next, we show that Hh(E) ≤ qHΦh(E) for all E ⊆ Fq((Z
−1)). Let δ > 0, and define

Hh
δ (E) = inf

{ ∞
∑

j=1

h(diamBj) : E ⊆
∞
⋃

j=1

Bj , diamBj < δ

}

;

HΦh

δ (E) = inf

{ ∞
∑

j=1

Φh(diamBj) : E ⊆
∞
⋃

j=1

Bj , diamBj < δ

}

.

Note that Hh(E) = limδ→0 H
h
δ (E) and HΦh(E) = limδ→0 H

Φh

δ (E). Now it suffices to

prove that (1/q)Hh
δ (E) ≤ HΦh

δ (E) + δ. Let {Bj}
∞
j=1 be a countable cover of E by balls

with diamBj < δ. For each j ∈ N, we have

Φh(diamBj) +
δ

2j
> Φh(diamBj) = inf

0<t≤diamBj

(diamBj)
h(t)

t
.

It follows that, for each j ∈ N, there is a tj with 0 < tj ≤ diamBj such that

Φh(diamBj) +
δ

2j
≥ (diamBj)

h(tj)

tj
. (3.7.6)

For each j ∈ N, let ωj denote the unique nonnegative integer with

qωj−1 <
diamBj

tj
≤ qωj ,

and let qω
′

j = max{qω ≤ tj : ω ∈ Z}. Then it is easy to check that diamBj = qω
′

jqωj

for all j ∈ N. Observe that the set Bj can be covered by qωj balls Bj,1, . . . , Bj,qωj with
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diamBj,i = qω
′

j for all i = 1, . . . , qωj . Since E ⊆
⋃∞

j=1Bj ⊆
⋃∞

j=1

⋃qωj

i=1 Bj,i and h is an

increasing function, we conclude from (3.7.6) and (3.7) that

∞
∑

j=1

Φh(diamBj) + δ =

∞
∑

j=1

(

Φh(diamBj) +
δ

2j

)

≥
∞
∑

j=1

diamBj

tj
h(tj)

≥
1

q

∞
∑

j=1

qωjh(tj)

≥
1

q

∞
∑

j=1

qωjh(qω
′

j )

=
1

q

∞
∑

j=1

qωj
∑

i=1

h(diamBj,i)

≥
1

q
Hh

δ (E).

This implies that HΦh

δ (E) + δ ≥ (1/q)Hh
δ (E) for every δ > 0. Finally, letting δ → 0

gives the desired result. �

3.8 Proof of Theorem 3.5.1

Proof of Theorem 3.5.1(1). Let h be a dimension function such that

lim sup
qω→0
ω∈Z

Φh(qω)

qωs
= 0

for some s > 0. It now follows from Lemma 3.6.1 that HΦh(L ) = 0. In addition,

by Lemma 3.7.3, we see that Hh(L ) and HΦh(L ) are comparable. Thus, we have

Hh(L ) = 0, and this proves Theorem 3.5.1(1). �

Proof of Theorem 3.5.1(2). Suppose to the contrary that there exists a dimension

function h, with the property that

lim sup
qω→0
ω∈Z

Φh(qω)

qωs
> 0

for every s > 0, such that L has σ-finite h-dimensional Hausdorff measure. That is,

we have L =
⋃∞

j=1Ej , where Ej ⊆ Fq((Z
−1)) with Hh(Ej) < ∞ for all j ∈ N. Since

lim supqω→0, ω∈Z Φh(qω)/qωs > 0 for every s > 0 and, by Lemma 3.7.2, the function

r 7→ Φh(r)/r is decreasing in a neighborhood of 0, it now follows from Lemma 3.7.1

that we can find a further dimension function g such that the function r 7→ g(r)/r is

decreasing in a neighborhood of 0 and such that
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(1) lim supqω→0, ω∈Z g(qω)/qωs > 0 for all s > 0;

(2) limqω→0, ω∈Z g(qω)/Φh(qω) = 0.

It follows from (1) and Lemma 3.6.1 that

Hg(L ) = ∞. (3.8.1)

Since Hh(Ej) < ∞ for all j ∈ N, we conclude from Lemma 3.7.3 that HΦh(Ej) < ∞

for all j ∈ N. It then follows from (2) that Hg(Ej) = 0 for all j ∈ N. Hence, we obtain

Hg(L ) = Hg

( ∞
⋃

j=1

Ej

)

≤
∞
∑

j=1

Hg(Ej) = 0. (3.8.2)

The desired contradiction now follows from (3.8.1) and (3.8.2). This completes the

proof of Theorem 3.5.1(2). �

This completes the proof of Theorem 3.5.1. �
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Chapter 4

Metric theory of continued

fractions in positive characteristic

Let Fq be the finite field of q elements. An analogue of the regular continued fraction

expansion for an irrational element α in the field of formal Laurent series over Fq is

given uniquely by

α = A0(α) +
1

A1(α) +
1

A2(α) +
1

A3(α) +
. . .

,

where (An(α))∞n=0 is a sequence of polynomials with coefficients in Fq such that, for

each n ≥ 1, deg(An(α)) ≥ 1. In this chapter, we shall first prove the exactness of the

continued fraction map in positive characteristic. This fact implies a number of strictly

weaker properties. Particularly, we then use the weak-mixing property and ergodicity to

establish various metrical results regarding the averages of partial quotients of continued

fraction expansions. A sample result that we prove is that if (pn)∞n=1 denotes the

sequence of prime numbers, we have

lim
N→∞

1

N

N
∑

n=1

deg(Apn(α)) =
q

q − 1

for almost everywhere α with respect to Haar measure. Also, we prove a quantitative

version of the metrical results regarding the averages of partial quotients. By using Gál

and Koksma’s method, we prove for instance that, given any ǫ > 0, we have

|A1(α) · · ·AN (α)|
1
N = q

q
q−1 + o

(

N− 1
2 (logN)

3
2
+ǫ
)

for almost every α with respect to Haar measure.
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4.1 Introduction

Extending the idea of the Euclidean algorithm, for a real number α, let

α = c0 +
1

c1 +
1

c2 +
1

c3 +
.. .

= [c0; c1, c2, c3, . . . ] (cn ∈ N)

denote its regular continued fraction expansion. The terms c0, c1, c2, . . . are called

the partial quotients of the continued fraction expansion, and the sequence of rational

truncates

[c0; c1, . . . , cn] =
pn
qn

(n = 0, 1, 2, . . . )

are called the convergents of the continued fraction expansion.

For a real number α, let {α} denote its fractional part. We now consider the

particular ergodic properties of the Gauss transformation T : [0, 1) → [0, 1) defined by

Tα =

{

1

α

}

and T0 = 0.

Notice that cn(α) = c1(T n−1α) for all natural numbers n. The dynamical system

([0, 1),B, ν, T ), where B is the Borel σ-algebra of subsets of [0, 1) and ν is the Gauss

measure defined, for any E ∈ B, by

ν(E) =
1

log 2

∫

E

dα

α + 1
,

is ergodic. See [10, p 165–177], [24, Ch 4] or [49] for more details. This point of view

can be used to prove the following result.

Suppose F : R≥0 → R is a continuous increasing function such that

∫ 1

0
|F (c1(x))| dν(x) < ∞.

Then we have

lim
N→∞

1

N

N
∑

n=1

F (c1(T nα)) =

∫ 1

0
F (c1(x)) dν(x)

almost everywhere α with respect to the Lebesgue measure on [0, 1). Specializing for

instance to the case where F (x) = log x, we recover Khinchin’s famous result that

lim
N→∞

(c1(α) · · · cN (α))
1
N =

∞
∏

n=1

(

1 +
1

n(n + 2)

)
log n

log 2

almost everywhere α ∈ [0, 1) with respect to Lebesgue measure, [25]. Results for means

other than the geometric mean can be obtained by making different choices of F. See

also [24, p 230–232] for more details.
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A second well-known result giving a quantitative version of the metrical theory of

continued fractions, due to de Vroedt [11], is the following. Suppose f : N → R≥0 is

a nonnegative function such that f(n) ≤ Kn
1
2
−ω for all n ∈ N, where K and ω are

positive constants. Then, given any ǫ > 0,

1

N

N
∑

n=1

f(c1(T nα)) =
1

log 2

∞
∑

n=1

f(n) log

(

1 +
1

n(n + 2)

)

+ o
(

N− 1
2 (logN)

3
2
+ǫ
)

,

as N tends to infinity, for almost everywhere α ∈ [0, 1) with respect to Lebesgue

measure. Again, by adopting f(x) = log x, this theorem refines Khinchin’s result.

A beautiful result, due to Nair [34], generalises the work of Khinchin to include a

broad class of the subsequential ergodic averages of the partial quotients. For instance,

let (an)∞n=1 be an L2-good universal sequence of natural numbers such that, for any

irrational number γ, the sequence (γan)∞n=1 is uniformly distributed mod 1, and let

G : R≥0 → R be a continuous increasing function such that
∫ 1
0 |G(c1(x))|2 dν(x) < ∞.

Then we have

lim
N→∞

N
∑

n=1

G(c1(T anα)) =

∫ 1

0
G(c1(x)) dν(x)

almost everywhere α with respect to the Lebesgue measure on [0, 1). Note that the

sequence of natural numbers satisfies the conditions on (an)∞n=1. If we set an = n and

G(x) = log x, then this is Khinchin’s result.

The purpose of this chapter is to extend these classical studies on the metric theory

of continued fractions to the setting of the fields of formal Laurent series. In Section 4.2,

we introduce the continued fraction algorithm in the positive characteristic setting.

Then we define a cylinder set in Section 4.3 and use it to prove in Section 4.4 the

exactness of the continued fraction map in positive characteristic. In Section 4.5, we

use the ergodicity of the continued fraction map to establish the metric theory of

continued fractions in positive characteristic. In Section 4.6 and Section 4.7, we further

investigate the metric theory of continued fractions by employing some subsequence and

moving average ergodic theorems. Finally, we introduce Gál and Koksma’s method in

Section 4.8 and use it to establish the quantitative metric theory of continued fractions

in positive characteristic in Section 4.9.

We make a final note from [30] that questions in positive characteristic are not only

of mathematical interest, but can be motivated by the study of pseudorandom sequences

over finite fields. Any sequence may be encoded as a formal Laurent series. The linear

complexity of profile of a sequence reveals how easy or difficult it is to generate initial

segments of the sequence by short linear recurrences. The profile of a given sequence

may be read off from the continued fraction expansion of the formal Laurent series which

encodes it. Sequences with desirable linear complexity profiles form a cryptographic

point of view correspond to formal Laurent series which are difficult to approximate.
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4.2 Continued fraction algorithm

As in the classical context of real numbers, we have a continued fraction algorithm for

Fq((Z
−1)). Note that, in the case of the field of formal Laurent series, the roles of [0, 1),

Z, Q and R in the classical theory of continued fractions are played by B(0; 1), Fq[Z],

Fq(Z) and Fq((Z
−1)), respectively.

For each α ∈ Fq((Z
−1)), we can write

α = A0 +
1

A1 +
1

A2 +
1

A3 +
.. .

= [A0;A1, A2, A3, . . . ],

where (An)∞n=0 is a sequence of polynomials in Fq[Z] with |An| > 1 for all n ≥ 1. Here,

the sequence (An)∞n=0 is uniquely determined by α, and it is clear that the sequence is

infinite if and only if α /∈ Fq(Z). Note that, in the context of continued fractions, we

often deal with the set Fq[Z]∗ = {A ∈ Fq[Z] : |A| > 1}. As in the classical theory, we

define recursively the two sequences of polynomials (Pn)∞n=0 and (Qn)∞n=0 in Fq[Z] by

Pn = AnPn−1 + Pn−2 and Qn = AnQn−1 + Qn−2,

with the initial conditions P0 = A0, Q0 = 1, P1 = A1A0 + 1 and Q1 = A1. Then we

have QnPn−1 −Qn−1Pn = (−1)n, and whence Pn and Qn are coprime. Also, we have

Pn

Qn
= [A0;A1, . . . , An].

In addition, it is worth noting an easily verified property that, for any β ∈ Fq((Z
−1)),

[A0;A1, . . . , An, β] =
βPn + Pn−1

βQn + Qn−1
.

For a general reference on this subject, the reader should consult [25] and [50].

The continued fraction map, or the Gauss transformation, T on the unit ball

B(0; 1) = {a−1Z
−1 + a−2Z

−2 + · · · : ai ∈ Fq} is defined by

Tα =

{

1

α

}

and T0 = 0,

where {anZ
n + · · ·+ a0 + a−1Z

−1 + · · · } = a−1Z
−1 + a−2Z

−2 + · · · is its fraction part.

We note that if α = [0;A1(α), A2(α), . . . ], then we have

T nα = [0;An+1(α), An+2(α), . . . ] and Am(T nα) = An+m(α)

for all m ≥ 1 and n ≥ 0.
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4.3 Cylinder sets

When we have to prove some properties which hold for every set in a σ-algebra, it

suffices to show that the properties hold on an easily managed subcollection of subsets

which can be extended to the required σ-algebra by using the Kolmogorov extension

theorem. Cylinder sets are those mentioned subsets which are usually employed to

prove some metrical properties relating to continued fractions.

Recall that Fq[Z]∗ = {A ∈ Fq[Z] : |A| > 1}. Let n ∈ N, and let A1, . . . , An ∈ Fq[Z]∗.

The cylinder set ∆A1,...,An of length n is defined to be the set of all points in B(0; 1)

whose continued fraction expansions are of the form [0;A1, . . . , An, . . . ]. That is,

∆A1,...,An = {[0;A1, . . . , An−1, An + β] : β ∈ B(0; 1)}.

The relationship between a cylinder set and a ball appears in the following lemma.

This is crucial for calculating the measure of each cylinder set.

Lemma 4.3.1. [I] Let n be a natural number, and let A1, . . . , An ∈ Fq[Z]∗. Then

∆A1,...,An = B
(

[0;A1, . . . , An]; |A1 · · ·An|
−2

)

.

Proof of Lemma 4.3.1. First, we show that the cylinder set ∆A1,...,An belongs to the ball

B
(

[0;A1, . . . , An]; |A1 · · ·An|
−2

)

. Let α = [0;A1, . . . , An−1, An + β], where β ∈ B(0; 1),

and let Pn/Qn = [0;A1, . . . , An]. Then we have

∣

∣

∣

∣

α−
Pn

Qn

∣

∣

∣

∣

=

∣

∣

∣

∣

(An + β)Pn−1 + Pn−2

(An + β)Qn−1 + Qn−2
−

Pn

Qn

∣

∣

∣

∣

=

∣

∣

∣

∣

β(Pn−1Qn − PnQn−1)

Qn(Qn + βQn−1)

∣

∣

∣

∣

=
|β|

|Qn||Qn + βQn−1|
<

1

|Qn|2
=

1

|A1 · · ·An|2
.

This shows that α ∈ B
(

[0;A1, . . . , An]; |A1 · · ·An|
−2

)

.

To prove the converse, suppose that α /∈ ∆A1,...,An . Then we can write α as

the continued fraction [0;B1, . . . , Bn−1, Bn + γ], where γ ∈ B(0; 1) and Bi 6= Ai

for some i = 1, . . . , n. Let j be the first position where Bj 6= Aj , so that we have

α = [0;A1, . . . , Aj−1, Bj , . . . , Bn−1, Bn + γ]. If Pj/Qj = [0;A1, . . . , Aj ], then

∣

∣[0;A1, . . . , Aj−1, Bj , . . . , Bn−1, Bn + γ] − [0;A1, . . . , Aj−1, Aj , . . . , An]
∣

∣

=

∣

∣

∣

∣

[Bj ; . . . , Bn−1, Bn + γ]Pj−1 + Pj−2

[Bj ; . . . , Bn−1, Bn + γ]Qj−1 + Qj−2
−

[Aj ; . . . , An]Pj−1 + Pj−2

[Aj ; . . . , An]Qj−1 + Qj−2

∣

∣

∣

∣

=

∣

∣[Bj ; . . . , Bn−1, Bn + γ] − [Aj ; . . . , An]
∣

∣

∣

∣[Bj ; . . . , Bn−1, Bn + γ]Qj−1

∣

∣

∣

∣[Aj ; . . . , An]Qj−1

∣

∣

=
|Aj −Bj |

|Aj ||Bj ||Qj−1|2

=
1

min(|Aj |, |Bj |)|Qj−1|2
≥

1

|Qn|2
.

This shows that α /∈ B
(

[0;A1, . . . , An]; |A1 · · ·An|
−2

)

, as required. �
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From Lemma 4.3.1, it follows immediately that µ(∆A1,...,An) = |A1 · · ·An|
−2. We

note also that two cylinder sets ∆A1,...,An and ∆B1,...,Bn are disjoint if and only if

Aj 6= Bj for some 1 ≤ j ≤ n.

Let A denote the algebra of finite unions of cylinder sets. Then A generates the

Borel σ-algebra of subsets of B(0; 1). This follows from the fact that the cylinder sets

are clearly Borel sets themselves and that they separate points, that is, if α 6= β, then

there exist two disjoint cylinder sets ∆1 and ∆2 such that α ∈ ∆1 and β ∈ ∆2.

4.4 Exactness and weak mixing

In [23], Houndonougbo proved that the dynamical system (B(0; 1),B, µ, T ) is measure-

preserving and ergodic. Nevertheless, in order to calculate the more general averages of

convergents of continued fraction expansions, we need subsequence ergodic theory which

requires a stronger property of the dynamical system, called weak mixing. Indeed, we

shall systematically prove that the continued fraction map in positive characteristic is

exact with respect to Haar measure. This fact of exactness implies all mixing properties

and ergodicity.

Let

N =
{

E ∈ B : µ(E) ∈ {0, 1}
}

denote the trivial σ-algebra of subsets of B of either null or full measure. We say that

a measure-preserving dynamical system (X,B, µ, T ) is exact if

∞
⋂

n=0

T−nB = N ,

where T−nB = {T−nE : E ∈ B}.

Theorem 4.4.1. [I] The dynamical system (B(0; 1),B, µ, T ) is exact.

In order to prove the exactness, we need the following three lemmas. Note that the

first two lemmas appear in [23] in slightly different language.

Lemma 4.4.2. [I] The dynamical system (B(0; 1),B, µ, T ) is measure-preserving.

Proof of Lemma 4.4.2. By the Kolmogorov extension theorem, it suffices to show that,

for any cylinder set ∆A1,...,An , we have µ(T−1∆A1,...,An) = µ(∆A1,...,An). First, we note

that µ(∆A1,...,An) = |A1 · · ·An|
−2. Then we notice that

T−1∆A1,...,An =
⋃

A∈Fq[Z]∗

∆A,A1,...,An . (4.4.1)
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Note also that, for each j ≥ 1, we have #{A ∈ Fq[Z]∗ : |A| = qj} = (q − 1)qj . Now, by

the disjointness of cylinder sets, it follows from (4.4.1) that

µ(T−1∆A1,...,An) =
∑

A∈Fq[Z]∗

|AA1 · · ·An|
−2 = |A1 · · ·An|

−2
∑

A∈Fq[Z]∗

|A|−2

= |A1 · · ·An|
−2

∞
∑

j=1

(q − 1)qj

q2j
= |A1 · · ·An|

−2
∞
∑

j=1

q − 1

qj

= |A1 · · ·An|
−2 = µ(∆A1,...,An).

This shows that the continued fraction map preserves Haar measure. �

Lemma 4.4.3. [I] For the dynamical system (B(0; 1),B, µ, T ), suppose that E ∈ B.

Then, for any natural number n and any cylinder set ∆A1,...,An , we have

µ(∆A1,...,An ∩ T−nE) = µ(∆A1,...,An)µ(E).

Proof of Lemma 4.4.3. By the Kolmogorov extension theorem, we need only to prove

the case that E = ∆B1,...,Bm is any cylinder set. We first observe that

T−n∆B1,...,Bm =
⋃

C1,...,Cn∈Fq[Z]∗

∆C1,...,Cn,B1,...,Bm .

By the disjointness of cylinder sets, it follows immediately that

∆A1,...,An ∩ T−n∆B1,...,Bm = ∆A1,...,An,B1,...,Bm .

Therefore, we conclude that

µ(∆A1,...,An ∩ T−n∆B1,...,Bm) = |A1 · · ·AnB1 · · ·Bm|−2 = µ(∆A1,...,An)µ(∆B1,...,Bm).

This completes the proof of Lemma 4.4.3. �

Lemma 4.4.4. [I] Let (X,B, µ) be a probability space, and let E ∈ B. Let A ⊆ B be an

algebra that generates B. Suppose that there exists an ω > 0 such that

µ(E ∩ ∆) ≥ ωµ(E)µ(∆)

for all ∆ ∈ A. Then either µ(E) = 0 or µ(E) = 1.

Proof of Lemma 4.4.4. Let ǫ > 0. As A generates B, there exists a ∆ ∈ A such

that µ
(

(Ec \ ∆) ∪ (∆ \ Ec)
)

< ǫ. Therefore, we have |µ(Ec) − µ(∆)| < ǫ. Note that

E ∩ ∆ ⊆ (Ec \ ∆) ∪ (∆ \Ec) so that µ(E ∩ ∆) < ǫ. It now follows that

µ(E)µ(Ec) < µ(E)(µ(∆) + ǫ) ≤ µ(E)µ(∆) + ǫ ≤
1

ω
µ(E ∩ ∆) + ǫ <

(

1

ω
+ 1

)

ǫ.

As ǫ > 0 is arbitrary, we have µ(E)µ(Ec) = 0. Thus, either µ(E) = 0 or µ(E) = 1, and

this completes the proof of Lemma 4.4.4. �
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We are now in a position to prove that the continued fraction map T on B(0; 1) is

exact with respect to Haar measure.

Proof of Theorem 4.4.1. It is not hard to check that we need only to prove the inclusion
⋂∞

n=1 T
−nB ⊆ N . Let E ∈

⋂∞
n=1 T

−nB. It follows immediately that, for each n ≥ 1,

there exists an En ∈ B such that E = T−nEn and µ(En) = µ(E). Then, for each

cylinder set ∆A1,...,An of length n, we always have

µ(E ∩ ∆A1,...,An) = µ(T−nEn ∩ ∆A1,...,An) = µ(E)µ(∆A1,...,An).

It follows that µ(E) ∈ {0, 1}, so E ∈ N . This proves the exactness. �

If (X,B, µ, T ) is exact, then a number of strictly weaker properties follow. Firstly,

for any natural number n and any E0, E1, . . . , En ∈ B, we have

lim
j1,...,jn→∞

µ
(

E0 ∩ T−j1E1 ∩ · · · ∩ T−(j1+···+jn)En

)

= µ(E0)µ(E1) · · · µ(En).

This is called mixing of order n. Mixing of order n = 1 is

lim
j→∞

µ(E0 ∩ T−jE1) = µ(E0)µ(E1),

and this is called strong mixing, which in turn implies

lim
N→∞

1

N

N
∑

j=1

∣

∣µ(E0 ∩ T−jE1) − µ(E0)µ(E1)
∣

∣ = 0

which is called weak mixing . Weak-mixing property implies the condition that if E ∈ B

and if T−1E = E, then either µ(E) = 0 or µ(E) = 1. This last property is referred to

as ergodicity in measurable dynamics. All these implications are known to be strict in

general, see [10, p 22–26].

4.5 Metric theory of continued fractions in positive char-

acteristic

The most basic implication of exactness is ergodicity. In this section, we shall use the

fact that the continued fraction map is ergodic to give the answers to Gauss’ metrical

problems concerning the averages of partial quotients of continued fraction expansions.

Indeed, for a typical point α = [A0(α);A1(α), A2(α), . . . ] ∈ Fq((Z
−1)), we would like

to identify for instance the limits:

(1) limN→∞
1
N

∑N
n=1 deg(An(α));

(2) for each A ∈ Fq[Z]∗, limN→∞
1
N · #{1 ≤ n ≤ N : An(α) = A};

(3) for each m ∈ N, limN→∞
1
N · #{1 ≤ n ≤ N : deg(An(α)) = m}.
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Theorem 4.5.1. Let F : R≥0 → R be a function such that
∫

B(0;1)
|F (|A1(x)|)| dµ(x) < ∞.

Then we have

lim
N→∞

1

N

N
∑

n=1

F (|An(α)|) = (q − 1)
∞
∑

n=1

F (qn)

qn

µ-almost everywhere α ∈ B(0; 1).

Proof of Theorem 4.5.1. Note that An+1(x) = A1(T
nx). Apply the Birkhoff ergodic

theorem with f(x) = F (|A1(x)|). By using the fact that µ(∆A1) = |A1|
−2, it is a little

of combinatorial work to see that
∫

B(0;1)
F (|A1(x)|) dµ(x) = (q − 1)qq−2F (q) + (q − 1)q2q−4F (q2) + · · ·

= (q − 1)

∞
∑

n=1

F (qn)

qn
.

This completes the proof of Theorem 4.5.1. �

Theorem 4.5.2. Let H : Nm → R be a function such that
∫

B(0;1)
|H(|A1(x)|, . . . , |Am(x)|)| dµ(x) < ∞.

Then we have

lim
N→∞

1

N

N
∑

n=1

H(|An(α)|, . . . , |An+m−1(α)|) =
∑

i1,...,im∈N

H(qi1 , . . . , qim)

(

(q − 1)m

qi1+···+im

)

µ-almost everywhere α ∈ B(0; 1).

Proof of Theorem 4.5.2. Note that An+m(x) = Am(T nx). In view of the Birkhoff

ergodic theorem, we consider f(x) = H(|A1(x)|, . . . , |Am(x)|). By using the fact that

µ(∆A1,...,Am) = |A1 · · ·Am|−2, it is a little of combinatorial work to see that

∫

B(0;1)
H(|A1(x)|, . . . , |Am(x)|) dµ(x) =

∑

i1,...,im∈N

H(qi1 , . . . , qim)

(

(q − 1)mqi1+···+im

(qi1+···+im)2

)

=
∑

i1,...,im∈N

H(qi1 , . . . , qim)

(

(q − 1)m

qi1+···+im

)

This proves Theorem 4.5.2. �

Theorems 4.5.1 and 4.5.2 are general results for calculating means. Specializing for

instance to the case F (x) = logq x, we establish the positive characteristic analogue of

Khinchin’s constant

lim
N→∞

|A1(α) · · ·AN (α)|
1
N = q

q

q−1
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µ-almost everywhere α ∈ B(0; 1), also proved [4] and [25]. Results for means other

than the geometric mean can be obtained by making different choices of F and H, see

[24, p 230–232] for more details. In addition, the following three results, which were

proved in [23] and rediscovered in [4], can be viewed as corollaries of Theorem 4.5.1.

Corollary 4.5.3. [23] We have

lim
N→∞

1

N

N
∑

n=1

deg(An(α)) =
q

q − 1

µ-almost everywhere α ∈ B(0; 1).

Proof of Corollary 4.5.3. Apply Theorem 4.5.1 with F (x) = logq x. Indeed, we have

∫

B(0;1)
| logq(|A1(x)|)| dµ(x) = (q − 1)

∞
∑

n=1

logq(q
n)

qn
= (q − 1)

∞
∑

n=1

n

qn
=

q

q − 1
< ∞.

This shows that the hypothesis of Theorem 4.5.1 is satisfied when we set F (x) = logq x.

It now follows that

lim
N→∞

1

N

N
∑

n=1

deg(An(α)) = lim
N→∞

1

N

N
∑

n=1

logq(|An(α)|) = (q − 1)

∞
∑

n=1

logq(q
n)

qn
=

q

q − 1

µ-almost everywhere α ∈ B(0; 1), as required. �

Corollary 4.5.4. [23] Given any A ∈ Fq[Z]∗, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : An(α) = A} = |A|−2

µ-almost everywhere α ∈ B(0; 1).

Proof of Corollary 4.5.4. Observe the fact that 1
(q−1)|A|1{|A|}(|A1(x)|) = 1{A}(A1(x))

for µ-almost everywhere x ∈ B(0; 1). Apply Theorem 4.5.1 with F (x) = 1
(q−1)|A|1{|A|}(x),

where 1E(x) is the characteristic function of a set E. Indeed, we have

∫

B(0;1)

∣

∣

∣

∣

1

(q − 1)|A|
1{|A|}(|A1(x)|)

∣

∣

∣

∣

dµ(x) = (q − 1)

∞
∑

n=1

1
(q−1)|A|1{|A|}(q

n)

qn
= |A|−2 < ∞.

This shows that the hypothesis of Theorem 4.5.1 is satisfied. It now follows that

lim
N→∞

1

N
· #{1 ≤ n ≤ N : An(α) = A} = lim

N→∞

1

N

N
∑

n=1

1{A}(An(α))

=

∫

B(0;1)
1{A}(A1(x)) dµ(x) =

∫

B(0;1)

1

(q − 1)|A|
1{|A|}(|A1(x)|) dµ(x) = |A|−2

µ-almost everywhere α ∈ B(0; 1), as required. �
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Corollary 4.5.5. [23] Given any two natural numbers k < l, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : deg(An(α)) = l} =

q − 1

ql
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : deg(An(α)) ≥ l} =

1

ql−1
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : k ≤ deg(An(α)) < l} =

1

qk−1

(

1 −
1

ql−k

)

µ-almost everywhere α ∈ B(0; 1).

Proof of Corollary 4.5.5. In view of Theorem 4.5.1, we consider F1(x) = 1{ql}(x),

F2(x) = 1[ql,∞)(x) and F3(x) = 1[qk,ql)(x), respectively. �

Now we would like ask some further questions in two more general directions. First,

given any sequence (an)∞n=1 of natural numbers, we wish to identify, for a typical point

α = [A0(α);A1(α), A2(α), . . . ] ∈ Fq((Z
−1)), the subsequential limits:

(1) limN→∞
1
N

∑N
n=1 deg(Aan(α));

(2) for each A ∈ Fq[Z]∗, limN→∞
1
N · #{1 ≤ n ≤ N : Aan(α) = A};

(3) for each m ∈ N, limN→∞
1
N · #{1 ≤ n ≤ N : deg(Aan(α)) = m};

(4) given another sequence (bn)∞n=1 of natural numbers, we would like to calculate

the moving averages of the same quantities as in (1)–(3), for instance, the limit

lim
n→∞

1

bn

bn
∑

j=1

deg(Aan+j(α)).

We shall answer these questions in Sections 4.6 and 4.7 for a large class of the sequences

(an)∞n=1 and (bn)∞n=1 by employing the subsequence and moving average ergodic theory.

For the second direction, we wish to investigate some quantitative version of the metrical

results regarding the ergodic averages. In particular, we shall find the error terms of

the ergodic averages in Theorem 4.5.1–Corollary 4.5.5 as functions of N. For example,

we shall see in Section 4.9 how the geometric mean of |An(α)| (n = 1, . . . , N) deviates

from the Khinchin’s constant qq/(q−1) for µ-almost everywhere α ∈ B(0; 1).

4.6 On the metric theory of continued fractions in positive

characteristic I

In this section, we assume that the sequence (an)∞n=1 of natural numbers is L2-good

universal. We also suppose, for any irrational number γ, that the sequence (γan)∞n=1 is

uniformly distributed mod 1. Some examples of the sequences (an)∞n=1 can be found in
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Section 2.4. These include the sequences (P (n))∞n=1 and (P (pn))∞n=1, where P (x) is a

polynomial mapping N into itself and pn denotes the nth prime number.

Recall the elementary identities
∑∞

n=1 nx
n = x

(1−x)2
and

∑∞
n=1 n

2xn = x(1+x)
(1−x)3

for

|x| < 1. Also, as is easily verified, a simple computation shows that

∫

B(0;1)
F (|A1(x)|) dµ(x) = (q − 1)

∞
∑

n=1

F (qn)

qn
;

∫

B(0;1)
F (|A1(x)|)2 dµ(x) = (q − 1)

∞
∑

n=1

F (qn)2

qn

for every function F defined as in Theorem 4.6.1. These two identities, in the light of

the results in this section, indicate the relation between the expectation of the variable

|α| and the frequency with which it takes a specific value for µ-almost everywhere α in

B(0; 1). Analogous observations hold for other variables in this section. Particularly,

the valuation | · | is in L2(µ), and so we can now employ the subsequence ergodic theory.

Theorem 4.6.1. [I] Let F : R≥0 → R be a function such that

∫

B(0;1)
|F (|A1(x)|)|2 dµ(x) < ∞.

Then we have

lim
N→∞

1

N

N
∑

n=1

F (|Aan(α)|) = (q − 1)
∞
∑

n=1

F (qn)

qn

µ-almost everywhere α ∈ B(0; 1).

Proof of Theorem 4.6.1. Note that Aan+1(x) = A1(T
anx). Apply Theorem 2.3.1 with

f(x) = F (|A1(x)|). �

Theorem 4.6.2. [I] Let H : Nm → R be a function such that

∫

B(0;1)
|H(|A1(x)|, . . . , |Am(x)|)|2 dµ(x) < ∞.

Then we have

lim
N→∞

1

N

N
∑

n=1

H(|Aan(α)|, . . . , |Aan+m−1(α)|) =
∑

i1,...,im∈N

H(qi1 , . . . , qim)

(

(q − 1)m

qi1+···+im

)

µ-almost everywhere α ∈ B(0; 1).

Proof of Theorem 4.6.2. Note that Aan+m(x) = Am(T anx). Apply Theorem 2.3.1 with

f(x) = H(|A1(x)|, . . . , |Am(x)|). �

Theorems 4.6.1 and 4.6.2 are general results for calculating means. They both

readily extend from L2 to Lp (p > 1), though this is primarily of technical interest.
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Specializing for instance to the case F (x) = logq x, we establish the subsequential

Khinchin’s constant in the positive characteristic setting:

lim
N→∞

|Aa1(α) · · ·AaN (α)|
1
N = q

q

q−1

µ-almost everywhere α ∈ B(0; 1). Results for means other than the geometric mean can

be obtained by making different choices of F and H, see [24, p 230–232] for more details.

In addition, the following three results can be viewed as corollaries of Theorem 4.6.1.

Corollary 4.6.3. [I] We have

lim
N→∞

1

N

N
∑

n=1

deg(Aan(α)) =
q

q − 1

µ-almost everywhere α ∈ B(0; 1).

Proof of Corollary 4.6.3. Apply Theorem 4.6.1 with F (x) = logq x. �

Corollary 4.6.4. [I] Given any A ∈ Fq[Z]∗, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : Aan(α) = A} = |A|−2

µ-almost everywhere α ∈ B(0; 1).

Proof of Corollary 4.6.4. Apply Theorem 4.6.1 with F (x) = 1
(q−1)|A|1{|A|}(x). See also

the proof of Corollary 4.5.4. �

Corollary 4.6.5. [I] Given any two natural numbers k < l, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : deg(Aan(α)) = l} =

q − 1

ql
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : deg(Aan(α)) ≥ l} =

1

ql−1
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : k ≤ deg(Aan(α)) < l} =

1

qk−1

(

1 −
1

ql−k

)

µ-almost everywhere α ∈ B(0; 1).

Proof of Corollary 4.6.5. In view of Theorem 4.6.1, we consider F1(x) = 1{ql}(x),

F2(x) = 1[ql,∞)(x) and F3(x) = 1[qk,ql)(x), respectively. �

4.7 On the metric theory of continued fractions in positive

characteristic II

In this section, we state the moving average variants of those results in Section 4.6.

The proofs, which are very similar to those in the previous section, are foregone. Note

that we use Theorem 2.6.3 for the calculations in this section, and we assume that

(an, bn)∞n=1 is a Stoltz sequence.
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Theorem 4.7.1. [I] Let F : R≥0 → R be a function such that

∫

B(0;1)
|F (|A1(x)|)| dµ(x) < ∞.

Then we have

lim
n→∞

1

bn

bn
∑

j=1

F (|Aan+j(α)|) = (q − 1)
∞
∑

n=1

F (qn)

qn

µ-almost everywhere α ∈ B(0; 1).

Theorem 4.7.2. [I] Let H : Nm → R be a function such that

∫

B(0;1)
|H(|A1(x)|, . . . , |Am(x)|)| dµ(x) < ∞.

Then we have

lim
n→∞

1

bn

bn
∑

j=1

H(|Aan+j(α)|, . . . , |Aan+j+m−1(α)|) =
∑

i1,...,im∈N

H(qi1 , . . . , qim)

(

(q − 1)m

qi1+···+im

)

µ-almost everywhere α ∈ B(0; 1).

Corollary 4.7.3. [I] We have

lim
n→∞

1

bn

bn
∑

j=1

deg(Aan+j(α)) =
q

q − 1

µ-almost everywhere α ∈ B(0; 1).

Corollary 4.7.4. [I] Given any A ∈ Fq[Z]∗, we have

lim
n→∞

1

bn
· #{1 ≤ j ≤ bn : Aan+j(α) = A} = |A|−2

µ-almost everywhere α ∈ B(0; 1).

Corollary 4.7.5. [I] Given any two natural numbers k < l, we have

lim
n→∞

1

bn
· #{1 ≤ j ≤ bn : deg(Aan+j(α)) = l} =

q − 1

ql
,

lim
n→∞

1

bn
· #{1 ≤ j ≤ bn : deg(Aan+j(α)) ≥ l} =

1

ql−1
,

lim
n→∞

1

bn
· #{1 ≤ j ≤ bn : k ≤ deg(Aan+j(α)) < l} =

1

qk−1

(

1 −
1

ql−k

)

µ-almost everywhere α ∈ B(0; 1).
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4.8 Gál and Koksma’s method

In this section, we introduce Gál and Koksma’s method on determining the error term of

ergodic averages. The method is slightly technical but it is very useful for establishing

our quantitative metric theory of continued fractions in positive characteristic. The

following lemma appears in [17, Théorèm 3] in slightly different language.

Lemma 4.8.1 (Gál and Koksma’s Method). [17] Let S be a measurable subset of a

Euclidean space. For any non-negative integers M and N, let ϕ(M,N ;x) ≥ 0 be a

function defined on S such that

(1) ϕ(M, 0;x) = 0 for every non-negative integer M ≥ 0;

(2) ϕ(M,N ;x) ≤ ϕ(M,N ′;x)+ϕ(M +N ′, N−N ′;x) for every non-negative integers

M,N ≥ 0 and 0 ≤ N ′ ≤ N.

Suppose that, for all M ≥ 0,
∫

S
ϕ(M,N ;x)p dx = O(φ(N)),

where φ(N)/N is a non-decreasing function. Then, given any ǫ > 0, we have

ϕ(0, N ;x) = o
(

φ(N)
1
p (logN)1+

1
p
+ǫ
)

almost everywhere x ∈ S with respect to Lebesgue measure.

Before proceeding, we give the following two remarks on Lemma 4.8.1. First, Gál

and Koksma stated their results in the setting where the set S is a measurable subset

of a Euclidean space. However, none of the proofs in [17] depend on the Euclidean

setting. In fact, their results are true more generally. We are interested in the case

where S = B(0; 1), for which the result is also true. Second, the function ϕ can be

viewed as a generalization of the difference of two functions in a sequence:

ϕ(M,N ;x) = |ϕM+N (x) − ϕM (x)|,

where the condition (2) is just a generalization of the triangle inequality

|ϕM+N (x) − ϕM (x)| ≤ |ϕM+N ′(x) − ϕM (x)| + |ϕM+N (x) − ϕM+N ′(x)|.

Particularly, we focus on the case where ϕN (x) =
∑N

n=1 Fn(x), that is,

ϕ(M,N ;x) =

M+N
∑

n=M+1

Fn(x).

The next lemma is useful when we would like to change variables in an integration.

This result is an immediate consequence of Lemma 4.4.2 that the dynamical system

(B(0; 1),B, µ, T ) is measure-preserving.

Lemma 4.8.2. [J] For every n ∈ N, we have dµ(T−nα) = dµ(α).
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4.9 Quantitative metric theory of continued fractions in

positive characteristic

In this final section, we give a quantitative version of the metrical results appeared

in Section 4.5 by employing Gál and Koksma’s method. We start with two general

theorems for calculating the quantitative ergodic averages.

Theorem 4.9.1. [J] Let F : R≥0 → R be a function such that

∫

B(0;1)
|F (|A1(x)|)|2 dµ(x) < ∞.

Then, given any ǫ > 0, we have

lim
N→∞

1

N

N
∑

n=1

F (|An(α)|) = (q − 1)
∞
∑

n=1

F (qn)

qn
+ o

(

N− 1
2 (logN)

3
2
+ǫ
)

µ-almost everywhere α ∈ B(0; 1).

Proof of Theorem 4.9.1. Apply Gál and Koksma’s method with S = B(0; 1),

ϕ(M,N ;α) =

∣

∣

∣

∣

M+N
∑

n=M+1

(

F (|A1(T nα)|) −

∫

B(0;1)
F (|A1(x)|) dµ(x)

)∣

∣

∣

∣

,

φ(N) = N and p = 2. Then the proof is reduced to showing that, for any pair of

integers M ≥ 0 and N ≥ 1, we have

I =

∫

B(0;1)

∣

∣

∣

∣

M+N
∑

n=M+1

(

F (|A1(T nα)|) −

∫

B(0;1)
F (|A1(x)|) dµ(x)

)
∣

∣

∣

∣

2

dµ(α) ≤ KN,

where K is a constant depending only on F (x).

Put

P1 =

∫

B(0;1)
F (|A1(x)|) dµ(x) andP2 =

∫

B(0;1)
F (|A1(x)|)2 dµ(x).

Then it is not hard to calculate P1 and P2 explicitly:

P1 = (q − 1)qq−2F (q) + (q − 1)q2q−4F (q2) + (q − 1)q3q−6F (q3) + · · ·

= (q − 1)

∞
∑

n=1

F (qn)

qn
;

(4.9.1)

and

P2 = (q − 1)q−1F (q)2 + (q − 1)q−2F (q2)2 + (q − 1)q−3F (q3)2 + · · ·

= (q − 1)
∞
∑

n=1

F (qn)2

qn
.

(4.9.2)
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Working out I =
∫

B(0;1)

(
∑M+N

n=M+1(F (|A1(T nα)|) − P1)
)2

dµ(α), we get

I =

M+N
∑

n=M+1

∫

B(0;1)
(F (|A1(T nα)|) − P1)2 dµ(α)

+ 2

M+N−1
∑

n=M+1

M+N
∑

m=M+2
m>n

∫

B(0;1)
(F (|A1(T nα)|) − P1)(F (|A1(Tmα)|) − P1) dµ(α).

(4.9.3)

By Lemma 4.8.2, we can use the change of variables formula to obtain

M+N
∑

n=M+1

∫

B(0;1)
(F (|A1(T nα)|) − P1)2 dµ(α)

=
M+N
∑

n=M+1

(
∫

B(0;1)
F (|A1(T nα)|)2 dµ(α) − 2P1

∫

B(0;1)
F (|A1(T nα)|) dµ(α) + P 2

1

)

=

M+N
∑

n=M+1

(
∫

B(0;1)
F (|A1(α)|)2 dµ(T−nα) − 2P1

∫

B(0;1)
F (|A1(α)|) dµ(T−nα) + P 2

1

)

=

M+N
∑

n=M+1

(
∫

B(0;1)
F (|A1(α)|)2 dµ(α) − 2P1

∫

B(0;1)
F (|A1(α)|) dµ(α) + P 2

1

)

=

M+N
∑

n=M+1

(P2 − 2P 2
1 + P 2

1 ) = N(P2 − P 2
1 ),

(4.9.4)

and

M+N−1
∑

n=M+1

M+N
∑

m=M+2
m>n

∫

B(0;1)
(F (|A1(T nα)|) − P1)(F (|A1(Tmα)|) − P1) dµ(α)

=

M+N−1
∑

n=M+1

M+N
∑

m=M+2
m>n

(
∫

B(0;1)
F (|A1(T nα)|)F (|A1(Tmα)|) dµ(α)

− P1

∫

B(0;1)
F (|A1(T nα)|) dµ(α) − P1

∫

B(0;1)
F (|A1(Tmα)|) dµ(α) + P 2

1

)

=
M+N−1
∑

n=M+1

M+N
∑

m=M+2
m>n

(
∫

B(0;1)
F (|A1(α)|)F (|A1(Tm−nα)|) dµ(α) − P 2

1

)

=

N−1
∑

n=1

(N − n)

(
∫

B(0;1)
F (|A1(α)|)F (|A1(T nα)|) dµ(α) − P 2

1

)

.

(4.9.5)

Combining (4.9.3), (4.9.4) and (4.9.5), we now have

I = N(P2−P 2
1 )+2

N−1
∑

n=1

(N−n)

(
∫

B(0;1)
F (|A1(α)|)F (|A1(T nα)|) dµ(α)−P 2

1

)

. (4.9.6)
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We can calculate
∫

B(0;1) F (|A1(α)|)F (|A1(T nα)|) dµ(α) explicitly as follows:

∫

B(0;1)
F (|A1(α)|)F (|A1(T nα)|) dµ(α)

=
∑

A2,...,An∈Fq[Z]∗

|A2 · · ·An|
−2

( ∞
∑

i=1

(

q − 1

qi

)

F (qi)

)( ∞
∑

j=1

(

q − 1

qj

)

F (qj)

)

= (q − 1)2
( ∞
∑

i=1

F (qi)

qi

)( ∞
∑

j=1

F (qj)

qj

)

.

(4.9.7)

By (4.9.1) and (4.9.7), we see that
∫

B(0;1) F (|A1(α)|)F (|A1(T nα)|) dµ(α) = P 2
1 . Thus,

by (4.9.6), we arrive at the hypothesis of Lemma 4.8.1 that I = O(N), and hence this

completes the proof of Theorem 4.9.1. �

Theorem 4.9.2. [J] Let H : Nm → R be a function such that

∫

B(0;1)
|H(|A1(x)|, . . . , |Am(x)|)|2 dµ(x) < ∞.

Then, given any ǫ > 0, we have

lim
N→∞

1

N

N
∑

n=1

H(|An(α)|, . . . , |An+m−1(α)|)

=
∑

i1,...,im∈N

H(qi1 , . . . , qim)

(

(q − 1)m

qi1+···+im

)

+ o
(

N− 1
2 (logN)

3
2
+ǫ
)

µ-almost everywhere α ∈ B(0; 1).

Proof of Theorem 4.9.2. The proof is similar to that of Theorem 4.9.1, so we shall give

only an outline. First of all, we apply Lemma 4.8.1 with S = B(0; 1),

ϕ(M,N ;α)

=

∣

∣

∣

∣

M+N
∑

n=M+1

(

H(|A1(T nα)|, . . . , |Am(T nα)|) −
∑

i1,...,im∈N

H(qi1 , . . . , qim)

(

(q − 1)m

qi1+···+im

))
∣

∣

∣

∣

,

φ(N) = N and p = 2. Next, it is not hard to show that

∫

B(0;1)
H(|A1(x)|, . . . , |Am(x)|) dµ(x) =

∑

i1,...,im∈N

H(qi1 , . . . , qim)

(

(q − 1)m

qi1+···+im

)

.

Finally, if we put P =
∫

B(0;1) H(|A1(x)|, . . . , |Am(x)|) dµ(x), then

∫

B(0;1)
H(|A1(α)|, . . . , |Am(α)|)H(|A1(T nα)|, . . . , |Am(T nα)|) dµ(α) = P 2.

These observations lead to Theorem 4.9.2. �
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Again, Theorems 4.9.1 and 4.9.2 are general results for calculating means. When

F (x) = logq x, we establish the positive characteristic analogue of the quantitative

version of Khinchin’s famous result namely that

|A1(α) · · ·AN (α)|
1
N = q

q
q−1 + o

(

N− 1
2 (logN)

3
2
+ǫ
)

µ-almost everywhere α ∈ B(0; 1), [11]. In addition, the following three results can be

viewed as corollaries of Theorem 4.9.1.

Corollary 4.9.3. [J] Given any ǫ > 0, we have

lim
N→∞

1

N

N
∑

n=1

deg(An(α)) =
q

q − 1
+ o

(

N− 1
2 (logN)

3
2
+ǫ
)

µ-almost everywhere α ∈ B(0; 1).

Proof of Theorem 4.9.3. Apply Theorem 4.9.1 with F (x) = logq x. �

Corollary 4.9.4. [J] Given any A ∈ Fq[Z]∗ and ǫ > 0, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : An(α) = A} = |A|−2 + o

(

N− 1
2 (logN)

3
2
+ǫ
)

µ-almost everywhere α ∈ B(0; 1).

Proof of Theorem 4.9.4. Apply Theorem 4.9.1 with F (x) = 1
(q−1)|A|1{|A|}(x). See also

the proof of Corollary 4.5.4. �

Corollary 4.9.5. [J] Given any two natural numbers k < l and ǫ > 0, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : deg(An(α)) = l} =

q − 1

ql
+ o

(

N− 1
2 (logN)

3
2
+ǫ
)

,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : deg(An(α)) ≥ l} =

q − 1

ql−1
+ o

(

N− 1
2 (logN)

3
2
+ǫ
)

,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : k ≤ deg(An(α)) < l} =

1

qk−1

(

1 −
1

ql−k

)

+ o
(

N− 1
2 (logN)

3
2
+ǫ
)

µ-almost everywhere α ∈ B(0; 1).

Proof of Theorem 4.9.5. In view of Theorem 4.9.1, we consider F1(x) = 1{ql}(x),

F2(x) = 1[ql,∞)(x) and F3(x) = 1[qk,ql)(x), respectively. �
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Chapter 5

Metric theory of p-adic continued

fractions

Let p be a prime number. An analogue of the regular continued fraction expansion for

the p-adic numbers was given by T. Schneider such that, for each α ∈ pZp, outside a

countable set of the p-adic numbers with finite continued fraction expansion, we have

uniquely determined two sequences (an(α) ∈ N)∞n=0 and (bn(α) ∈ {1, 2, . . . , p − 1})∞n=1

such that

α =
pa1(α)

b1(α) +
pa2(α)

b2(α) +
pa3(α)

b3(α) +
. . .

.

In this chapter, we shall first prove the exactness of the p-adic continued fraction map.

This fact implies a number of strictly weaker properties. Particularly, we then use

the weak-mixing property and ergodicity, together with some subsequence and moving

average ergodic theorems, to establish various metrical results regarding the averages

of partial quotients of p-adic continued fraction expansions. A sample result that we

prove is that if (pn)∞n=1 denotes the sequence of prime numbers, we have

lim
N→∞

1

N

N
∑

n=1

apn(α) =
p

p− 1
and lim

N→∞

1

N

N
∑

n=1

bpn(α) =
p

2

for almost everywhere α with respect to Haar measure.

5.1 Introduction

The theory of continued fractions is one of the most important tools in number theory,

analysis, probability theory and other areas of mathematics. It provides a powerful

apparatus not only in the classical real numbers but also in the p-adic numbers. In this
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chapter, we shall investigate the metrical theory of p-adic continued fractions. Some

motivation of the metrical study of continued fractions can be found in Chapter 4.

In this case of p-adic numbers, a couple of candidate algorithms that might play

the role of the role of the regular continued fraction expansion on Qp are known to the

author. The first one is Ruban’s algorithm whose metric theory was studied in [48].

The algorithm studied in [48] is formally similar to the Gauss continued fraction map

and analogues are given of the results of Khinchin for this map. A deficiency of this

algorithm however, arising in part from the fact that Qp is not a Euclidean domain,

is that the sequence of rational approximations to a p-adic number arising from this

algorithm is not in general convergent. This limits the arithmetic usefulness of Ruban’s

algorithm. In this paper, we instead study Schneider’s algorithm [51] which does not

suffer from this deficiency and, in our view, is more arithmetically useful. The metric

theory of this algorithm was initiated in [22]. The form of the algorithm is however

quite different from that of the Gauss transformation.

We now summarize the contents of this chapter. In Section 5.2, we introduce the

Schneider’s continued fraction algorithm. Then we define a cylinder set in Section 5.3

and use it to prove in Section 5.4 the exactness of the Schneider’s continued fraction

map. In Section 5.5, we use the ergodicity of the p-adic continued fraction map to

establish the metric theory of p-adic continued fractions. In Section 5.6 and Section 5.7,

we further investigate the metric theory of p-adic continued fractions by employing

subsequence and moving average ergodic theorems.

5.2 Continued fraction algorithm

To study the regular continued fraction expansion on Qp, we use Schneider’s algorithm

[51] which can be described as follows. Let α ∈ pZp with |α|p = p−v(α). By ignoring

a countable set, we may assume that the p-adic continued fraction expansion of α is

non-terminating. The Schneider’s continued fraction map Tp : pZp → pZp is defined by

Tpα =
pa

α
− b =

pv(α)

α
−

(

pv(α)

α
mod p

)

,

where a = v(α) ∈ N and b ∈ {1, . . . , p − 1} is uniquely chosen such that |p
a

α − b|p < 1.

Applying the Schneider’s map Tp repeatedly, we see that

α =
pa1

b1 +
pa2

b2 +
pa3

b3 +
.. .

.

Therefore, the algorithm outputs a sequence of pairs (an, bn)∞n=1 in N× {1, . . . , p− 1}.

The convergents of α arise in a manner similar to that in the case of the real numbers.
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In particular, we define two integer sequences (Pn)∞n=0 and (Qn)∞n=0 by

Pn = bnPn−1 + panPn−2 and Qn = bnQn−1 + panQn−2,

with the initial conditions P0 = 0, Q0 = 1, P1 = pa1 and Q1 = b1. A simple inductive

argument gives that QnPn−1 −Qn−1Pn = (−1)npa1+···+an . Since p does not divide Qn,

it follows that Pn and Qn are coprime. Also, we have

Pn

Qn
=

pa1

b1 +
pa2

b2 +
pa3

b3 +
.. . +

pan

bn

.

A more thorough account of p-adic continued fraction algorithms can be found in [32].

We note that if we represent the regular continued fraction expansion of α ∈ pZp by

the sequence (an(α), bn(α))∞n=1 in N× {1, . . . , p− 1}, then the iteration of Tp produces

T n
p α = (an+1(α), bn+1(α))∞n=1.

This implies that an(α) = a1(T n−1
p α) and bn(α) = b1(T n−1

p α) for all n ≥ 1.

5.3 Cylinder sets

To prove some properties which hold for every set in a σ-algebra, it is enough to show

that the properties hold on an easily managed sub-collection of subsets which can

be extended to the required σ-algebra by using the Kolmogorov extension theorem.

Cylinder sets are those subsets mentioned earlier which are employed to prove some

metrical properties regarding continued fractions.

Let n ∈ N, and let xj = (aj , bj) ∈ N× {1, . . . , p− 1} for each 1 ≤ j ≤ n. Define

∆x1 =

{

α ∈ pZp : v(α) = a1,

(

pv(α)

α
mod p

)

= b1

}

.

Also, we define

∆x1,x2 = {α ∈ pZp : α ∈ ∆x1 , Tpα ∈ ∆x2}.

Proceeding inductively, we define

∆x1,...,xn = {α ∈ pZp : α ∈ ∆x1 , Tpα ∈ ∆x2 , . . . , T
n−1
p α ∈ ∆xn}.

In other words, the cylinder set ∆x1,...,xn of length n is defined to be the set

∆x1,...,xn =







































pa1

b1 +
pa2

b2 +
.. . +

pan

bn + β

: β ∈ pZp







































.
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We note an easily verified fact that two cylinder sets ∆x1,...,xn and ∆y1,...,yn are

disjoint if and only if xj 6= yj for some 1 ≤ j ≤ n. Let A denote the algebra of finite

unions of cylinder sets. Then A generates the Borel σ-algebra of subsets of pZp. This

follows from the fact that the cylinder sets are clear Borel sets themselves and that

they separate points, i.e., if α 6= β, then there are two disjoint cylinder sets ∆1 and ∆2

such that α ∈ ∆1 and β ∈ ∆2.

Now we define a measure µ∗ on A by setting

µ∗(∆x1,...,xn) = p−(a1+···+an).

It is not hard to check that this measure coincides with the Haar measure µ on A.

In addition, it is plain that pZp =
⋃

x∈N×{1,...,p−1} ∆x. By the Kolmogorov extension

theorem, the extension of measure µ∗ is exactly the Haar measure µ on pZp.

5.4 Exactness and weak mixing

In [22], Hirsh and Washington proved that the dynamical system (pZp,B, µ, Tp) is

measure-preserving and ergodic. Nevertheless, in order to calculate the more general

averages of convergents of p-adic continued fraction expansions, we need subsequence

ergodic theory which requires a stronger property of the dynamical system, called weak

mixing. Indeed, we shall prove that the Schneider’s continued fraction map is exact

with respect to Haar measure. This fact of exactness implies all mixing properties and

ergodicity as mentioned in the end of Section 4.4.

Recall that a measure-preserving dynamical system (X,B, µ, T ) is exact if we have

∞
⋂

n=0

T−nB = N =
{

E ∈ B : µ(E) ∈ {0, 1}
}

,

where T−nB = {T−nE : E ∈ B}.

Theorem 5.4.1. [A] The dynamical system (pZp,B, µ, Tp) is exact.

In order to prove the exactness, we need the following two lemmas. Note that this

proof is different from the one presented in [A].

Lemma 5.4.2. [22] The dynamical system (pZp,B, µ, Tp) is measure-preserving.

Lemma 5.4.3. For the dynamical system (pZp,B, µ, Tp), let E ∈ B. Suppose that n is

a natural number and ∆x1,...,xn is a cylinder set with xj = (aj , bj) ∈ N× {1, . . . , p− 1}

for each 1 ≤ j ≤ n. Then we have

µ(∆x1,...,xn ∩ T−n
p E) = µ(∆x1,...,xn)µ(E).
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Proof of Lemma 5.4.3. By the Kolmogorov extension theorem, we need only to prove

the this lemma for the case that E = ∆y1,...,ym , where yj = (a′j , b
′
j) ∈ N×{1, . . . , p− 1}

for each 1 ≤ j ≤ m, is an arbitrary cylinder set. We first observe that

T−n
p ∆y1,...,ym =

⋃

z1,...,zn∈N×{1,...,p−1}

∆z1,...,zn,y1,...,ym .

By the disjointness of cylinder sets, it follows immediately that

∆x1,...,xn ∩ T−n
p ∆y1,...,ym = ∆x1,...,xn,y1,...,ym .

Therefore, we conclude that

µ(∆x1,...,xn ∩ T−n
p ∆y1,...,ym) = p−(a1+···+an+a′1+···+a′m) = µ(∆x1,...,xn)µ(∆y1,...,ym).

This completes the proof of Lemma 5.4.3. �

We are now in a position to prove that the Schneider’s continued fraction map Tp

on pZp is exact with respect to Haar measure.

Proof of Theorem 5.4.1. Clearly, it suffices to prove only the inclusion
⋂∞

n=1 T
−n
p B ⊆ N .

Let E ∈ ∩∞
n=1T

−n
p B. It follows immediately that, for each n ≥ 1, there exists an En ∈ B

such that E = T−n
p En and µ(En) = µ(E). Then, for each cylinder set ∆x1,...,xn ,

µ(E ∩ ∆x1,...,xn) = µ(T−n
p En ∩ ∆x1,...,xn) = µ(E)µ(∆x1,...,xn).

It now follows from Lemma 4.4.4 that µ(E) ∈ {0, 1}, and whence E ∈ N . This shows

the exactness of Tp. �

5.5 Metric theory of p-adic continued fractions

The most basic implication of exactness is ergodicity. In this section, we shall use the

fact that the continued fraction map is ergodic to give the answers to Gauss’ metrical

problems concerning the averages of partial quotients of continued fraction expansions.

Indeed, for all α = (an(α), bn(α))∞n=1 ∈ pZp outside a set of measure zero, we would

like to identify for instance the limits:

(1) limN→∞
1
N

∑N
n=1 an(α);

(2) limN→∞
1
N

∑N
n=1 bn(α);

(3) for each a ∈ N, limN→∞
1
N · #{1 ≤ n ≤ N : an(α) = a};

(4) for each b ∈ {1, . . . , p− 1}, limN→∞
1
N · #{1 ≤ n ≤ N : bn(α) = b}.
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Theorem 5.5.1. Let FA : R≥0 → R and FB : R≥0 → R be two functions such that

∫

pZp

|FA(a1(x))| dµ(x) < ∞ and

∫

pZp

|FB(b1(x))| dµ(x) < ∞.

Then we have

lim
N→∞

1

N

N
∑

n=1

FA(an(α)) = (p− 1)
∞
∑

n=1

FA(n)

pn
,

lim
N→∞

1

N

N
∑

n=1

FB(bn(α)) =
1

p− 1

p−1
∑

n=1

FB(n)

µ-almost everywhere α ∈ pZp.

Proof of Theorem 5.5.1. Note that an(x) = a1(T n−1
p x) and bn(x) = b1(T n−1

p x). Apply

Birkhoff’s ergodic theorem with fA(x) = FA(a1(x)) and fB(x) = FB(b1(x)). Also, it is

plain that, for each n ∈ N and m ∈ {1, . . . , p− 1}, we have

µ({x ∈ pZp : v(x) = n}) =

(

1

pn−1

)(

p− 1

p

)

=
p− 1

pn
,

µ({x ∈ pZp : b1(x) = m}) =
1

p− 1
.

Then it follows that

∫

pZp

FA(a1(x)) dµ(x) =
∞
∑

n=1

FA(n)

(

p− 1

pn

)

= (p − 1)
∞
∑

n=1

FA(n)

pn
,

∫

pZp

FB(b1(x)) dµ(x) =

p−1
∑

n=1

FB(n)

p− 1
=

1

p− 1

p−1
∑

n=1

FB(n).

This completes the proof of Theorem 5.5.1. �

Theorem 5.5.2. Let HA : Nm → R and HB : Nm → R be two functions such that

∫

pZp

|HA(a1(x), . . . , am(x))| dµ(x) < ∞ and

∫

pZp

|HB(b1(x), . . . , bm(x))| dµ(x) < ∞.

Then we have

lim
N→∞

1

N

N
∑

n=1

HA(an(α), . . . , an+m−1(α)) = (p− 1)m
∑

i1,...,im∈N

HA(i1, . . . , im)

pi1+···+im
,

lim
N→∞

1

N

N
∑

n=1

HB(bn(α), . . . , bn+m−1(α)) =
1

(p− 1)m

∑

i1,...,im∈{1,...,p−1}

HB(i1, . . . , im)

µ-almost everywhere α ∈ pZp.
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Proof of Theorem 5.5.2. It is plain that an+m(x) = am(T n
p x) and bn+m(x) = bm(T n

p x).

In view of the Birkhoff ergodic theorem, we consider fA(x) = HA(a1(x), . . . , am(x))

and fB(x) = HB(b1(x), . . . , bm(x)). Then the results follow. �

Theorems 5.5.1 and 5.5.2 are general results for calculating means. Note that, in the

p-adic case, the set of values for bn is restricted, but the numerators pan determine the

rate of convergence to α = (an(α), bn(α))∞n=1 ∈ pZp. Specializing to the case FA(x) = x,

we establish the p-adic analogue of Khinchin’s constant

lim
N→∞

(

pa1(α) · · · paN (α)
)

1
N = p

p

p−1

µ-almost everywhere α ∈ pZp. Results for means other than the geometric mean can be

obtained by making different choices of F and H, see [24, p 230–232] for more details.

In addition, the following three results can be viewed as corollaries of Theorem 5.5.1.

Corollary 5.5.3. [22] We have

lim
N→∞

1

N

N
∑

n=1

an(α) =
p

p− 1
and lim

N→∞

1

N

N
∑

n=1

bn(α) =
p

2

µ-almost everywhere α ∈ pZp.

Proof of Corollary 5.5.3. Apply Theorem 5.5.1 with FA(x) = x and FB(x) = x. �

Corollary 5.5.4. Given any two natural numbers a < a′, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : an(α) = a} =

p− 1

pa
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : an(α) ≥ a} =

1

pa−1
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : a ≤ an(α) < a′} =

1

pa−1

(

1 −
1

pa′−a

)

µ-almost everywhere α ∈ pZp.

Proof of Corollary 5.5.4. In view of Theorem 5.5.1, we can consider F 1
A(x) = 1{a}(x),

F 2
A(x) = 1[a,∞)(x) and F 3

A(x) = 1[a,a′)(x), respectively. �

Corollary 5.5.5. Given any b, b′ ∈ {1, . . . , p− 1} with b < b′, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : bn(α) = b} =

1

p− 1
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : bn(α) ≥ b} =

p− b

p− 1
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : b ≤ bn(α) < b′} =

b′ − b

p− 1

µ-almost everywhere α ∈ pZp.
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Proof of Corollary 5.5.5. In view of Theorem 5.5.1, we can consider F 1
B(x) = 1{b}(x),

F 2
B(x) = 1[b,p−1](x) and F 3

B(x) = 1[b,b′)(x), respectively. �

Now we would like ask some further general questions. Given any sequence (kn)∞n=1

of natural numbers, we wish to identify, for a typical point α = (an(α), bn(α))∞n=1 ∈ pZp,

the subsequential limits:

(1) limN→∞
1
N

∑N
n=1 akn(α);

(2) limN→∞
1
N

∑N
n=1 bkn(α);

(3) for each a ∈ N, limN→∞
1
N · #{1 ≤ n ≤ N : akn(α) = a};

(4) for each b ∈ {1, . . . , p− 1}, limN→∞
1
N · #{1 ≤ n ≤ N : bkn(α) = b};

(5) given another sequence (ln)∞n=1 of natural numbers, we would like to calculate the

moving averages of the same quantities as in (1)–(4), for instance, the limit

lim
n→∞

1

ln

ln
∑

j=1

akn+j(α) and lim
n→∞

1

ln

ln
∑

j=1

bkn+j(α).

We shall answer these questions in Sections 5.6 and 5.7 for a large class of the sequences

(kn)∞n=1 and (ln)∞n=1 by employing the subsequence and moving average ergodic theory.

5.6 On the metric theory of p-adic continued fractions I

In this section, we assume that the sequence (kn)∞n=1 of natural numbers is L2-good

universal. We also suppose, for any irrational number γ, that the sequence (γkn)∞n=1 is

uniformly distributed mod 1. Some examples of the sequences (kn)∞n=1 can be found in

Section 2.4. These include the sequences (P (n))∞n=1 and (P (pn))∞n=1, where P (x) is a

polynomial mapping N into itself and pn denotes the nth prime number.

Recall the elementary identities
∑∞

n=1 nx
n = x

(1−x)2 and
∑∞

n=1 n
2xn = x(1+x)

(1−x)3 for

|x| < 1. Also, as is easily verified, a simple computation shows that

∫

pZp

FA(a1(x)) dµ(x) = (p− 1)

∞
∑

n=1

FA(n)

pn
;

∫

pZp

FA(a1(x))2 dµ(x) = (p− 1)

∞
∑

n=1

FA(n)2

pn
,

for every function FA defined as in Theorem 5.6.1. These two identities, in the light of

the results in this section, indicate the relation between the expectation of the variable

v(α) and the frequency with which it takes a specific value for µ-almost everywhere α

in pZp. Analogous observations hold for other variables in this section. Particularly, the

valuation v(·) is in L2(µ), and so we can now employ the subsequence ergodic theory.
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Theorem 5.6.1. [A] Let FA : R≥0 → R and FB : R≥0 → R be two functions such that

∫

pZp

|FA(a1(x))|2 dµ(x) < ∞ and

∫

pZp

|FB(b1(x))|2 dµ(x) < ∞.

Then we have

lim
N→∞

1

N

N
∑

n=1

FA(akn(α)) = (p − 1)
∞
∑

n=1

FA(n)

pn
,

lim
N→∞

1

N

N
∑

n=1

FB(bkn(α)) =
1

p− 1

p−1
∑

n=1

FB(n)

µ-almost everywhere α ∈ pZp.

Proof of Theorem 5.6.1. Note that akn(x) = a1(T
kn−1
p x) and bkn(x) = b1(T

kn−1
p x).

Apply Theorem 2.3.1 with fA(x) = FA(a1(x)) and fB(x) = FB(b1(x)). �

Theorem 5.6.2. [A] Let HA : Nm → R and HB : Nm → R be two functions such that

∫

pZp

HA(a1(x), . . . , am(x))2 dµ(x) < ∞ and

∫

pZp

HB(b1(x), . . . , bm(x))2 dµ(x) < ∞.

Then we have

lim
N→∞

1

N

N
∑

n=1

HA(akn(α), . . . , akn+m−1(α)) = (p− 1)m
∑

i1,...,im∈N

HA(i1, . . . , im)

pi1+···+im
,

lim
N→∞

1

N

N
∑

n=1

HB(bkn(α), . . . , bkn+m−1(α)) =
1

(p− 1)m

∑

i1,...,im∈{1,...,p−1}

HB(i1, . . . , im)

µ-almost everywhere α ∈ pZp.

Proof of Theorem 5.6.2. Note that akn+m(x) = am(T kn
p x) and bkn+m(x) = bm(T kn

p x).

In view of Theorem 2.3.1, we can now consider fA(x) = HA(a1(x), . . . , am(x)) and

fB(x) = HB(b1(x), . . . , bm(x)). �

Theorems 5.6.1 and 5.6.2 are general results for calculating means. They both

readily extend to Lp (p > 1) whenever (kn)∞n=1 is an Lp-good universal sequence, though

this is primarily of technical interest. Specializing for instance to the case FA(x) = x,

we establish the positive characteristic subsequential Khinchin’s constant

lim
N→∞

(

pak1 (α) · · · pakN (α)
)

1
N = p

p

p−1

µ-almost everywhere α ∈ pZp. Results for means other than the geometric mean can be

obtained by making different choices of F and H, see [24, p 230–232] for more details.

In addition, the following three results can be viewed as corollaries of Theorem 5.6.1.
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Corollary 5.6.3. [A] We have

lim
N→∞

1

N

N
∑

n=1

akn(α) =
p

p− 1
and lim

N→∞

1

N

N
∑

n=1

bkn(α) =
p

2

µ-almost everywhere α ∈ pZp.

Proof of Corollary 5.6.3. Apply Theorem 5.6.1 with FA(x) = x and FB(x) = x. �

Corollary 5.6.4. [A] Given any two natural numbers a < a′, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : akn(α) = a} =

p− 1

pa
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : akn(α) ≥ a} =

1

pa−1
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : a ≤ akn(α) < a′} =

1

pa−1

(

1 −
1

pa′−a

)

µ-almost everywhere α ∈ pZp.

Proof of Corollary 5.6.4. In view of Theorem 5.6.1, we can consider F 1
A(x) = 1{a}(x),

F 2
A(x) = 1[a,∞)(x) and F 3

A(x) = 1[a,a′)(x), respectively. �

Corollary 5.6.5. Given any b, b′ ∈ {1, . . . , p− 1} with b < b′, we have

lim
N→∞

1

N
· #{1 ≤ n ≤ N : bkn(α) = b} =

1

p− 1
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : bkn(α) ≥ b} =

p− b

p− 1
,

lim
N→∞

1

N
· #{1 ≤ n ≤ N : b ≤ bkn(α) < b′} =

b′ − b

p− 1

µ-almost everywhere α ∈ pZp.

Proof of Corollary 5.6.5. In view of Theorem 5.6.1, we can consider F 1
B(x) = 1{b}(x),

F 2
B(x) = 1[b,p−1](x) and F 3

B(x) = 1[b,b′)(x), respectively. �

5.7 On the metric theory of p-adic continued fractions II

In this section, we state the moving average variants of those results in Section 5.6.

The proofs, which are very similar to those in the previous section, are foregone. Note

that we use Theorem 2.6.3 for the calculations in this section, and we assume that

(kn, ln)∞n=1 is a Stoltz sequence.

Theorem 5.7.1. [A] Let FA : R≥0 → R and FB : R≥0 → R be two functions such that

∫

pZp

|FA(a1(x))| dµ(x) < ∞ and

∫

pZp

|FB(b1(x))| dµ(x) < ∞.
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Then we have

lim
n→∞

1

ln

ln
∑

j=1

FA(akn+j(α)) = (p− 1)
∞
∑

n=1

FA(n)

pn
,

lim
n→∞

1

ln

ln
∑

j=1

FB(bkn+j(α)) =
1

p− 1

p−1
∑

n=1

FB(n)

µ-almost everywhere α ∈ pZp.

Theorem 5.7.2. [A] Let HA : Nm → R and HB : Nm → R be two functions such that
∫

pZp

|HA(a1(x), . . . , am(x))| dµ(x) < ∞ and

∫

pZp

|HB(b1(x), . . . , bm(x))| dµ(x) < ∞.

Then we have

lim
n→∞

1

ln

ln
∑

j=1

HA(akn+j(α), . . . , akn+j+m−1(α)) = (p− 1)m
∑

i1,...,im∈N

HA(i1, . . . , im)

pi1+···+im
,

lim
n→∞

1

ln

ln
∑

j=1

HB(bkn+j(α), . . . , bkn+j+m−1(α)) =
1

(p− 1)m

∑

i1,...,im∈{1,...,p−1}

HB(i1, . . . , im)

µ-almost everywhere α ∈ pZp.

Corollary 5.7.3. [A] We have

lim
n→∞

1

ln

ln
∑

j=1

akn+j(α) =
p

p− 1
and lim

n→∞

1

ln

ln
∑

j=1

bkn+j(α) =
p

2

µ-almost everywhere α ∈ pZp.

Corollary 5.7.4. [A] Given any two natural numbers a < a′, we have

lim
n→∞

1

ln
· #{1 ≤ j ≤ ln : akn+j(α) = a} =

p− 1

pa
,

lim
n→∞

1

ln
· #{1 ≤ j ≤ ln : akn+j(α) ≥ a} =

1

pa−1
,

lim
n→∞

1

ln
· #{1 ≤ j ≤ ln : a ≤ akn+j(α) < a′} =

1

pa−1

(

1 −
1

pa′−a

)

µ-almost everywhere α ∈ pZp.

Corollary 5.7.5. Given any b, b′ ∈ {1, . . . , p− 1} with b < b′, we have

lim
n→∞

1

ln
· #{1 ≤ j ≤ ln : bkn+j(α) = b} =

1

p− 1
,

lim
n→∞

1

ln
· #{1 ≤ j ≤ ln : bkn+j(α) ≥ b} =

p− b

p− 1
,

lim
n→∞

1

ln
· #{1 ≤ j ≤ ln : b ≤ bkn+j(α) < b′} =

b′ − b

p− 1

µ-almost everywhere α ∈ pZp.
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Chapter 6

Distribution functions for the

a-adic van der Corput sequence

For an integer b > 1, let (φb(n))∞n=1 denote the base b van der Corput sequence in [0, 1).

Answering a question of O. Strauch, Aistleitner and Hofer calculated the asymptotic

distribution function of (φb(n), φb(n + 1), . . . , φb(n + s − 1))∞n=1 on [0, 1)s and showed

that it is a copula. In this chapter, we introduce a generalised version of a van der

Corput sequence, called the a-adic van der Corput sequence, which provides a wealth

of low-discrepancy sequences. Then we shall see that the phenomenon extends not only

to a broad class of subsequences of the van der Corput sequences but also to a more

general setting in the a-adic integers. Indeed, we use the subsequence characterization

of unique ergodicity, together with the fact that the van der Corput sequence can be

seen as the orbit of the origin under the ergodic Kakutani-von Neumann transformation.

6.1 Introduction

In 1935, van der Corput introduced a procedure to generate low-discrepancy sequences

on [0, 1), see [57]. These sequences are considered the best distributed over [0, 1), since

no sequence has yet been found with discrepancy of smaller order of magnitude than

the van der Corput sequences, and hence the van der Corput sequences are considered

very important in the quasi-Monte Carlo method. The technique of van der Corput

is based on a very simple idea. Let b > 1 be a natural number. The van der Corput

sequence (φb(n))∞n=1 in base b is constructed by reversing the base b representation of

the sequence of natural numbers.

In a collection of unsolved problems in uniform distribution theory1, Strauch asked

a question on the limit distribution of consecutive elements of the van der Corput

sequence. Precisely, the question asked us to find all the distribution functions for the

sequence (φb(n), φb(n + 1), . . . , φb(n + s− 1))∞n=1 on [0, 1)s.

1Problem 1.12 in [55] as of 11 December 2011.
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The case s = 2 was solved by Fialová and Strauch in [13]. They showed that every

point (φb(n), φb(n + 1))∞n=1 lies on the line segment

y = x− 1 + b−k + b−k−1 for x ∈ [1 − b−k, 1 − b−k−1) (k = 0, 1, 2, . . . ).

Then they gave an explicit formula for the asymptotic distribution function ν(x, y) of

(φb(n), φb(n + 1))∞n=1 to calculate for instance the limit

lim
N→∞

1

N

N
∑

n=1

|φb(n) − φb(n + 1)| =

∫ 1

0

∫ 1

0
|x− y| dxν(x, y) dyν(x, y) =

2(b− 1)

b2
,

which was previously demonstrated by Pillichshammer and Steinerberger in [46]. They

also noted that the limit distribution ν(x, y) is a copula.

Recently, Aistleitner and Hofer [1] solved the general problem for s > 2 and showed

that the asymptotic distribution function of (φb(n), φb(n + 1), . . . , φb(n + s− 1))∞n=1 is

also a copula. They employed some ergodic properties of low-discrepancy sequences;

in particular, they used the fact that the van der Corput sequence can be seen as the

orbit of the origin under the ergodic Kakutani-von Neumann odometer.

In this chapter, we introduce a generalization of van der Corput sequences, called

the a-adic van der Corput sequence. These generalised van der Corput sequences also

belong to the class of low-discrepancy sequences. It is natural to ask whether the

question of Strauch is still true in this general setting or not. Indeed, we demonstrate

that this phenomenon holds in general and extends to a broad class of subsequences of

the a-adic van der Corput sequence by utilizing the subsequential characterization of

unique ergodicity, together with the fact that the a-adic van der Corput sequence can

also be seen as the orbit of the origin under the generalised Kakutani-von Neumann

odometer.

The outline of this chapter is as follows. In Section 6.2, we give an overview of

the classical van der Corput sequences. We first provide a primitive definition of van

der Corput sequences using the radical-inverse function, and then we introduce the

Kakutani-von Neumann odometer and use it to give a modern definition of van der

Corput sequences. In Section 6.3, we extend the classical van der Corput sequence with

fixed base b to a more general setting with the base from the a-adic integers. Also, we

prove that the newly defined a-adic van der Corput sequence satisfies the condition of

low discrepancy and exhibit that it can be constructed by using a generalization of the

Kakutani-von Neumann odometer, which possesses unique ergodicity. In Section 6.4,

we answer the question of Strauch in this setting of the a-adic van der Corput sequence

and show that this phenomenon also holds for a broad class of subsequences of the

a-adic van der Corput sequence.

In this chapter, we reserve b for a natural number greater than 1 and a = (an)∞n=1

for a sequence of natural numbers greater than 1.
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6.2 van der Corput sequence and Kakutani-von Neumann

odometer

Every nonnegative integer n has a unique b-adic representation of the form

n =

∞
∑

i=0

nib
i,

where ni ∈ {0, 1, . . . , b − 1} and at most a finite number of ni are non-zero. We note

also that every real number x ∈ [0, 1) has a b-adic representation of the form

x =

∞
∑

i=0

xib
−i−1,

where xi ∈ {0, 1, . . . , b− 1}; however, this representation is not unique. More precisely,

there are exactly two b-adic representations for each x ∈ (0, 1), one with xi = 0 (i ≥ i0)

and one with xi = b − 1 (i ≥ i0) for some sufficiently large number i0. If we restrict

ourselves to the representations with xi 6= b−1 for infinitely many i, then the coefficients

xi are uniquely determined for every x ∈ [0, 1). Define the radical-inverse function

φb : N0 → [0, 1) by

φb(n) = φb

( ∞
∑

i=0

nib
i

)

=
∞
∑

i=0

nib
−i−1.

The van der Corput sequence in base b is defined as (φb(n))∞n=1. It is a classical

result that the van der Corput sequence ω = (φb(n))∞n=1 is uniformly distributed on

[0, 1) and has extremely low discrepancy such that

NDN (ω) ≤
logN

3 log 2
+ 1 and lim sup

N→∞

(

NDN (ω) −
logN

3 log 2

)

≥
4

9
+

log 3

3 log 2
,

see [27, p 127–130] for more details. Its s-dimensional extension is the Halton sequence

given by (φb1(n), . . . , φbs(n))∞n=1 for pairwise coprime natural numbers b1, . . . , bs ∈ N>1.

Properties of the van der Corput sequence and the Halton sequence are well-understood

and they are examples of low-discrepancy sequences valuable in numerical integration.

A second approach to obtain the van der Corput sequence is to consider the orbit

of the origin under the Kakutani-von Neumann odometer Tb : [0, 1) → [0, 1), which is

a piecewise translation map given by

Tbx = x− 1 + b−k + b−k−1 for x ∈ [1 − b−k, 1 − b−k−1) (k = 0, 1, 2, . . . ).

That is, the base b van der Corput sequence is (φb(n))∞n=1 = (T n
b 0)∞n=1. The name arises

from the fact that Tb is a “Euclidean model” for the map τ(x) = x + 1 on the ring of

b-adic integers; in other words, it is a b-adic adding machine transformation.

The second construction provides a wealth of new constructions of low-discrepancy

sequences, see e.g. [18]. In [15], Friedman proved the ergodicity and measure-preserving
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(a) T2 (b) T3

Figure 6.1: The graphs of the Kakutani-von Neumann odometer for b = 2 and b = 3

property of the Kakutani-von Neumann odometer. It follows from the ergodicity of the

Kakutani-von Neumann odometer and the Weyl criterion that (T n
b x)∞n=1 is uniformly

distributed for almost everywhere x ∈ [0, 1). Furthermore, it can be shown that the

Kakutani-von Neumann odometer is uniquely ergodic, which implies that (T n
b x)∞n=1

is uniformly distributed for every x ∈ [0, 1), see [18]. The sequence (T n
b x)∞n=1 for an

arbitrary x ∈ [0, 1) is called the generalised van der Corput sequence, and it can be

seen as an example of randomized low-discrepancy sequences, see [21].

6.3 a-adic van der Corput sequence

In this section, we extend the definition of van der Corput sequences mentioned in

the previous section to the most possible general setting, and we show that this new

construction provides a broad class of low-discrepancy sequences.

Let a = (an)∞n=1 be a sequence of natural numbers greater than 1, and let ∆a denote

the a-adic integers. Define the Monna map φa : ∆a → [0, 1) by

φa(x) =
∞
∑

n=1

xn
a1 · · · an

for every x = (xn)∞n=1 ∈ ∆a. We identify each natural number n with the element nu

of ∆a and have therefore defined φa(n). The Monna map is continuous and surjective,

but not injective. We shall call the maximal subset of ∆a on which φa is injective its

regular set , and we shall call the sequence a = (an)∞n=1 useful if the regular set contains

all natural numbers. The a-adic van der Corput sequence is defined as (φa(n))∞n=1 for

a useful sequence a. In the case where an = b for all n ∈ N, the sequence (φa(n))∞n=1
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coincides with the base b van der Corput sequence; that is, the Monna map can be

seen as a generalization of the radical-inverse function. One checks readily that, on the

regular set, the map φa is a bijection and that the image of a uniformly distributed

sequence on ∆a is uniformly distributed on [0, 1). More generally, if a sequence is

asymptotically distributed on ∆a with respect to a measure ρ, then the image of the

sequence is asymptotically distributed on [0, 1) with respect to the push forward of the

measure ρ onto [0, 1). Now we show that this generalised version of van der Corput

sequences gives us a wealth of low-discrepancy sequences. The aim of the following

lemma is to show that the a-adic van der Corput sequence satisfies the low-discrepancy

criterion, though it is not a sharp result and it can be further improved. We note also

that the idea of the proof is developed from the classical dyadic case in [27, p 127–128].

Lemma 6.3.1. Let ω = (φa(n))∞n=1 be the a-adic van der Corput sequence. Then the

discrepancy DN (ω) of the a-adic van der Corput sequence satisfies

NDN (ω) ≤
logN

log 2
+ 1.

Proof of Lemma 6.3.1. We can always represent a given N ∈ N by its a-adic expansion

N = Nka1 · · · ak−1 + Nk−1a1 · · · ak−2 + · · · + N2a1 + N1, (6.3.1)

where k ∈ N and Nj ∈ {0, 1, . . . , aj − 1} (1 ≤ j ≤ k). Partition the interval [0, N ] of

integers into k subintervals M1, . . . ,Mk as follows. First, put M1 = [0, Nka1 · · · ak−1].

Then, for each 1 < j ≤ k, we define Mj as the interval

[Nka1 · · · ak−1 + · · · + Nk−j+2a1 · · · ak−j+1 + 1, Nka1 · · · ak−1 + · · · + Nk−j+1a1 · · · ak−j]

An integer n ∈ Mj can be written in the form

n = Nka1 · · · ak−1 + · · · + Nk−j+2a1 · · · ak−j+1 + 1 +

k−j+1
∑

i=1

nia0 · · · ai−1, (6.3.2)

where a0 = 1 and ni ∈ {0, 1, . . . , ai−1} (1 ≤ i ≤ k− j+1) such that nk−j+1 < Nk−j+1.

In fact, we get all Nk−j+1a1 · · · ak−j integers in Mj if we let the ni run through all

possible combinations. Also, we can combine the last part on the right side of (6.3.2):

n = Nka1 · · · ak−1 + · · · + Nk−j+2a1 · · · ak−j+1 +

k−j+1
∑

i=1

nia0 · · · ai−1,

where a0 = 1 and ni ∈ {0, 1, . . . , ai−1} (1 ≤ i ≤ k− j+1) such that nk−j+1 ≤ Nk−j+1.

It now follows that

φa(n) =
Nk

a1 · · · ak
+ · · · +

Nk−j+2

a1 · · · ak−j+2
+

k−j+1
∑

i=1

ni

a1 · · · ai
= xj +

k−j+1
∑

i=1

ni

a1 · · · ai
,
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where xj only depends on j, and not on n. If n runs through Mj , then
∑k−j+1

i=1
ni

a1···ai
runs

through all fractions 0, 1
a1
, . . . , a1−1

a1
, 1
a1a2

, . . . ,
∑k−j

i=1
ai−1
a1···ai

+
Nk−j+1

a1···ak−j+1
in some order.

Moreover, we note that

0 ≤ xj =
Nk

a1 · · · ak
+ · · · +

Nk−j+2

a1 · · · ak−j+2
≤

ak · · · ak−j+2 − 1

a1 · · · ak
≤

1

a1 · · · ak−j+1

We deduce that if the φa(n) (n ∈ Mj) are ordered according to their magnitude, then

we obtain a sequence ωj of Nk−j+1a1 · · · ak−j elements that is an almost-arithmetic

progression2 with parameters δj = 0 and ηj = 1
a1···ak−j+1

. It now follows immediately

from [40, Theorem 2.1]3 that the discrepancy of each ωj, multiplied by the number of

elements in ωj, is at most 1. Combining this with [27, Theorem 2.6, Ch 2]4 and the fact

that φa(1), . . . , φa(N) is decomposed into k sequences ωj, we obtain NDN (ω) ≤ k.

It remains to estimate k in terms of N. By (6.3.1), we have N ≥ a1 · · · ak−1 ≥ 2s−1,

and so we obtain k ≤ (logN/ log 2) + 1. This completes the proof of Lemma 6.3.1. �

It is an immediate consequence of Lemma 6.3.1 that DN (ω) = O(N−1 logN), where

ω denotes any a-adic van der Corput sequence, and we have the following result.

Theorem 6.3.2. The a-adic van der Corput sequence is a low-discrepancy sequence.

We now give another construction of the a-adic van der Corput sequence using a

generalization of the Kakutani-von Neumann odometer. Define Ta : [0, 1) → [0, 1) by

Tax = x− 1 +
1

a0 · · · ak−1
+

1

a0 · · · ak
for x ∈

[

1 −
1

a0 · · · ak−1
, 1 −

1

a0 · · · ak

)

,

2For δ ≥ 0 and ǫ > 0, a sequence c1 < c2 < · · · < cL of points from the interval [0, 1] is called an
almost-arithmetic progression-(δ, ǫ) if there exists an η, with 0 < η ≤ ǫ, such that

(1) 0 ≤ c1 ≤ η + δη;

(2) η − δη ≤ ci+1 − ci ≤ η + δη for 1 ≤ i ≤ L− 1;

(3) 1− η − δη ≤ cL ≤ 1.

Almost-arithmetic progressions were introduced by O’Neil in [44]. Their theoretical importance stems
from the following criterion. The sequence (cn)

∞

n=1 of points in [0, 1] is uniformly distributed mod 1
if and only if the following condition holds: given δ ≥ 0, ǫ > 0 and ǫ′ > 0, there exists L̄ = L̄(δ, ǫ, ǫ′)
such that, for all L > L̄, the initial segment c1, . . . , cL can be decomposed into almost-arithmetic
progressions-(δ, ǫ) with at most L0 elements left over, where L0 < ǫ′L.

3For an arbitrary almost-arithmetic progression-(δ, ǫ) sequence c1, . . . , cL, we have

DL(c1, . . . , cL) ≤
{

1/L + δ/(1 +
√
1− δ2) for δ > 0,

min(η, 1/L) for δ = 0.

4For 1 ≤ j ≤ m, let ωj be a sequence of Nj elements from R with discrepancy DNj
(ωj). Let ω be a

superposition of ω1, . . . , ωm, that is, a sequence obtained by listing in some order the terms of the ωj .
We set N = N1 + · · ·+Nm, which will be the number of elements of ω. Then we have

DN (ω) ≤
m
∑

j=1

Nj

N
DNj

(ωj).

92



where k ∈ N and a0 = 1. Observe that, under the transformation Ta,

0 7→
1

a1
7→ · · · 7→

a1 − 1

a1
7→

1

a1a2
7→

1

a1
+

1

a1a2
7→ · · · 7→

a1 − 1

a1
+

1

a1a2
7→

2

a1a2
7→ · · · .

We see that the orbit of 0 under the generalised Kakutani-von Neumann odometer Ta

is precisely the a-adic van der Corput sequence, so we have (φa(n))∞n=1 = (T n
a 0)∞n=1.

Figure 6.2: The graph of the Kakutani-von Neumann odometer for a = (243)

One readily checks that the generalised Kakutani-von Neumann odometer preserves

the Lebesgue measure λ on [0, 1). Moreover, the Monna map defines an isomorphism

between the dynamical system (∆a,B, µ, τ), where µ denotes the Haar measure and

τ(x) = x + u (x ∈ ∆a) is the a-adic adding machine, and the dynamical system

([0, 1),B, λ, Ta). Because of the density of the natural numbers in ∆a, it follows that

the dynamical system (∆a,B, µ, τ) is a uniquely ergodic group rotation, see [18, p 27]

and [58, p 162–163]. Moreover, via the Monna map, the two dynamical systems are

metrically isomorphic. This means that ([0, 1),B, λ, Ta) is a uniquely ergodic dynamical

system, and whence we have the following result.

Theorem 6.3.3. [G] Suppose that a = (an)∞n=1 is a useful sequence of natural numbers

greater than 1. Then the dynamical system ([0, 1),B, λ, Ta) is uniquely ergodic.
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6.4 Asymptotic distribution of the a-adic van der Corput

sequence

In this final section, we return to the question of Strauch in a more general setting.

Indeed, given m1, . . . ,ms ∈ N0 and a Hartman uniformly distributed sequence (kn)∞n=1,

we find all the distribution functions for the sequence (φa(kn+m1), . . . , φa(kn+ms))
∞
n=1.

This result includes the case kn = n and m1 = 0, m2 = 1, . . . , ms = s− 1; i.e., we can

calculate the asymptotic distribution function for (φa(n), φa(n+1), . . . , φa(n+s−1))∞n=1.

Define a map γ : [0, 1) → [0, 1)s : x 7→ (Tm1
a x, . . . , Tms

a x), and let

Γ = {γ(x) : x ∈ [0, 1)}.

The Lebesgue measure λ on [0, 1) induces a measure ℓ on Γ by setting

ℓ(E) = λ({x ∈ [0, 1): γ(x) ∈ E})

for each E ⊆ Γ. Moreover, ℓ induces a measure ν on [0, 1)s by embedding Γ into [0, 1)s.

More precisely, for every Jordan-measurable set B ⊆ [0, 1)s, we set

ν(B) = ℓ(B ∩ Γ).

Theorem 6.4.1. [G] Let a = (an)∞n=1 be a useful sequence of natural numbers greater

than 1, and let m1, . . . ,ms ∈ N0. Suppose (kn)∞n=1 is a Hartman uniformly distributed

sequence. Then the following are true:

(1) The asymptotic distribution of (φa(kn + m1), . . . , φa(kn + ms))
∞
n=1 is ν.

(2) The measure ν is a copula on [0, 1)s.

(3) The sequence (φa(kn + m1), . . . , φa(kn + ms))
∞
n=1 is uniformly distributed on Γ.

Proof of Theorem 6.4.1(1). We first note that

(φa(kn + m1), . . . , φa(kn + ms))
∞
n=1 = (T kn+m1

a 0, . . . , T kn+ms
a 0)∞n=1.

Also, we know by the construction that, for each n ∈ N,

(T kn+m1
a 0, . . . , T kn+ms

a 0) = (Tm1
a (T kn

a 0), . . . , Tms
a (T kn

a 0)) ∈ Γ.

Now consider a Jordan measurable set B ⊆ [0, 1)s. We define the empirical measure of

the first N points of (T kn+m1
a 0, . . . , T kn+ms

a 0)∞n=1 by

νN (B) =
1

N
· #

{

1 ≤ n ≤ N : (T kn+m1
a 0, . . . , T kn+ms

a 0) ∈ B
}

.
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To prove that ν is the unique asymptotic distribution of the sequence, it suffices to

show that νN converges to ν as N tends to infinity.

lim
N→∞

νN (B) = lim
N→∞

1

N
· #

{

1 ≤ n ≤ N : (T kn+m1
a 0, . . . , T kn+ms

a 0) ∈ B
}

= lim
N→∞

1

N
· #

{

1 ≤ n ≤ N : (T kn+m1
a 0, . . . , T kn+ms

a 0) ∈ B ∩ Γ
}

= lim
N→∞

1

N
· #

{

1 ≤ n ≤ N : T kn
a (Tm1

a 0) ∈ proj1(B ∩ Γ)
}

,

where proj1 denotes the projection onto the first coordinate of [0, 1)s. By Theorem 6.3.3,

Ta is uniquely ergodic. It now follows from Theorem 2.5.1 and the Weyl criterion that

(T kn
a (Tm1

a 0))∞n=1 is uniformly distributed mod 1. Furthermore, the fact that a is a useful

sequence indicates the bijection of the map x 7→ Ta(x). Therefore, we have

lim
N→∞

νN (B) = λ(proj1(B ∩ Γ)) = ℓ(B ∩ Γ) = ν(B).

This shows ν is the asymptotic distribution of (φa(kn + m1), . . . , φa(kn + ms))
∞
n=1. �

Proof of Theorem 6.4.1(2). To show that the measure ν is a copula on [0, 1)s, we argue

that the sequence (φa(kn +mj))
∞
n=1 is uniformly distributed mod 1 for every 1 ≤ j ≤ s.

We know that φa(kn + mj) = T kn
a (T

mj
a 0) for each n ∈ N. Since Ta is uniquely ergodic,

it follows from Theorem 2.5.1 and the Weyl criterion that (T kn
a (T

mj
a 0))∞n=1 is uniformly

distributed mod 1, as required. �

Proof of Theorem 6.4.1(3). This is an immediate consequence of Theorem 6.4.1(1). �

Theorem 6.4.1 is a more general answer to the question of Strauch. In particular,

when an = b for all n ∈ N, this result refines the work of Aistleitner and Hofer [1] for

a broad class of subsequences of the classical van der Corput sequence in base b.

Corollary 6.4.2. [G] Let b > 1 be a natural number, and let m1, . . . ,ms ∈ N0. Suppose

(kn)∞n=1 is a Hartman uniformly distribution sequence. Then the following are true:

(1) The asymptotic distribution of (φb(kn + m1), . . . , φb(kn + ms))
∞
n=1 is ν.

(2) The measure ν is a copula on [0, 1)s.

(3) The sequence (φb(kn + m1), . . . , φb(kn + ms))
∞
n=1 is uniformly distributed on Γ.

Proof of Corollary 6.4.2. Apply Theorem 6.4.1 with an = b for all n ∈ N. �
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Appendix A

Summary of excluded papers

In this appendix, we give a summary of each excluded paper.

[B] J. Hančl, A. Jaššová, P. Lertchoosakul and R. Nair. Polynomial actions in positive

characteristic. Proc. Steklov Inst. Math., 280(suppl.2):37–42, 2013.

Summary: We prove the positive characteristic analogue of D.J. Rudolph’s result

regarding the famous H. Furstenberg’s conjecture 2× and 3× invariant measure. Indeed,

we show that either the entropy of the maps is zero or the non-atomic measure is Haar

measure.

[C] J. Hančl, A. Jaššová, P. Lertchoosakul and R. Nair. On the quantitative metric

theory of continued fractions. Preprint 2014.

Summary: Quantitative versions of the central results of the metric theory of con-

tinued fractions were given primarily by C. de Vroedt. We give improvements of the

bounds involved by using a quantitative L2 ergodic theorem.

[D] J. Hančl, A. Jaššová, P. Lertchoosakul and R. Nair. Polynomial actions in positive

characteristic II. Preprint 2014.

Summary: We prove the positive characteristic analogue of E. Lindenstrauss’ result

regarding the famous H. Furstenberg’s conjecture 2× and 3× invariant measure. Indeed,

we improve our previous result in [B] by adjusting the condition that p and q are coprime

to the condition that p does not divide any positive power of q.

[E] A. Jaššová, S. Kristensen, P. Lertchoosakul and R. Nair. On recurrence in positive

characteristic. Preprint 2014.

Summary: Let P − 1 denote the set of primes minus 1. A classical theorem of A.

Sárközy says that any set of natural numbers of positive density contains a pair of

elements whose difference belongs to the set P − 1. We investigate the positive charac-

teristic analogue of questions of this type, building on work of H. Furstenberg, by using

an ergodic approach.
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[F] A. Jaššová, P. Lertchoosakul and R. Nair. On variants of the Halton sequence.

Preprint 2014.

Summary: We use some ergodic methods to prove the uniform distribution of a large

class of subsequences of a generalization of the classical Halton sequences. This builds

on earlier work of M. Hofer, M.R. Iacò and R. Tichy in the case of a generalization of

the classical Halton sequences.
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Boston, Boston, MA, 1998.

[37] R. Nair. On uniformly distributed sequences of integers and Poincaré recurrence.

II. Indag. Math. (N.S.), 9(3):405–415, 1998.

[38] R. Nair and M. Weber. On random perturbation of some intersective sets. Indag.

Math. (N.S.), 15(3):373–381, 2004.

[39] R.B. Nelsen. An Introduction to Copulas. Springer Series in Statistics. Springer

Science+Business Media Inc., 2006.

[40] H. Niederreiter. Almost-arithmetic progressions and uniform distribution. Trans.

Amer. Math. Soc., 161:283–292, 1971.

[41] L. Olsen. On the dimensionlessness of invariant sets. Glasg. Math. J., 45:539–543,

2003.

[42] L. Olsen. On the exact Hausdorff dimension of the set of Liouville numbers.

Manuscripta Math., 116:157–172, 2005.

[43] L. Olsen and D.L. Renfro. On the exact Hausdorff dimension of the set of Liouville

numbers. II. Manuscripta Math., 119:217–224, 2006.

[44] P.E. O’Neil. A new criterion for uniform distribution. Proc. Amer. Math. Soc.,

24:1–5, 1970.

[45] J.C. Oxtoby. Measure and Category: A Survey of the Analogies between Topological

and Measure Spaces. Graduate Texts in Mathematics, 2. Springer-Verlag, New

York, 1971.

101



[46] F. Pillichshammer and S. Steinerberger. Average distance between consecutive

points of uniformly distributed sequences. Unif. Distrib. Theory, 4(1):51–67, 2009.

[47] C.A. Rogers. Hausdorff Measures. Cambridge University Press, London, 1970.

[48] A.A. Ruban. Certain metric properties of the p-adic numbers. Sib. Math. J.,

11:176–180, 1970.

[49] C. Ryll-Nardzewski. On the ergodic theorems II: Ergodic theory of continued frac-

tions. Stud. Math., 12:74–79, 1951.

[50] W.M. Schmidt. On continued fractions and Diophantine approximation in power

series fields. Acta Arith., 95(2):139–166, 2000.
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