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ABSTRACT 

 

THE EPIDEMIOLOGY AND MOLECULAR EPIDEMIOLOGY OF 

GIARDIASIS IN NORTH WEST ENGLAND 

Corrado Minetti 

 

Giardiasis, cause by the parasitic protozoan Giardia duodenalis, is one of the most 

common infectious gastrointestinal diseases in humans worldwide. However, its true 

population burden and epidemiology and in particular its zoonotic transmission 

potential are still poorly understood. Furthermore, G. duodenalis is not a uniform 

parasite but a complex of seven genetic assemblages or cryptic species (named A to 

G) that infect humans and a variety of domesticated and wild animals, and that can 

only be distinguished using molecular genotyping methods. Although there is some 

evidence that the two Giardia assemblages infecting humans (namely A and B) may 

differ in their virulence and major transmission routes, data are still scarce. In the 

UK, several studies suggested that giardiasis is considerably under-diagnosed and a 

few data are available on the genetic diversity of the parasite causing infection and 

disease in this country. We investigated the burden, clinical outcomes, risk factors 

and molecular diversity of giardiasis in North West England using both a descriptive 

and analytical approach.  

In Chapter 2, we analysed the self-reported clinical and exposure data collected over 

four years from clinical cases of giardiasis in Central Lancashire, as part of an 

enhanced surveillance program on the illness. The resulting average disease rate of 

22.5 cases/100,000 population was high when compared to the available national 

figures. Giardiasis was particularly abundant in adults in their 30s and children under 

five, and the disease rate in males was significantly higher than in females. 

Furthermore, the clinical picture of the cases confirmed the high morbidity 

associated with this infection particularly in terms of the length of illness and 

severity of symptoms. Only 32% of the cases reported foreign travel during the 

exposure window. The results suggested the presence of a hidden burden of disease 

in adults and males, and indicated that local transmission of Giardia can be more 

common than expected.  

In Chapter 3, we performed a case-control study to determine the significant risk 

factors for symptomatic giardiasis in North West England, by recruiting clinical 

cases of Giardia and age and sex matched controls from Central and East Lancashire 

and Greater Manchester. The multivariable logistic regression analysis done on 118 

cases and 226 controls revealed that overall travelling abroad (particularly to 

developing countries) was an important risk factor for the illness (OR 9.59). 

Following the exclusion of participants that reported foreign travel, four risk factors 

were significant for the acquisition of giardiasis: going to a swimming pool (OR 

2.67), changing nappies (OR 3.38), suffering irritable bowel syndrome (OR 3.66) 

and drinking un-boiled water from the tap (OR 8.17). The results indicated the 

important role of swimming pools and contact with children in nappies for the 

transmission of the parasite.  
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In Chapter 4, whole faecal DNA was extracted from the faecal samples of the cases 

part of the surveillance and case-control studies and the Giardia assemblages and 

sub-assemblages causing infection were determined using PCR amplification and 

DNA sequencing of up to four parasite genes (beta-giardin, glutamate 

dehydrogenase, triose-phosphate isomerase and small-subunit ribosomal RNA). The 

majority of infections (64%) were caused by assemblage B, followed by assemblage 

A (33%), whereas mixed-assemblage infections were rare (3%). The majority of the 

assemblage A isolates belonged to the sub-assemblage AII and showed completed 

identity with previously described isolates, and six multi-locus genotypes were 

identified. The level of genetic sub-structuring as revealed by phylogenetic analysis 

was significantly higher in assemblage B isolates compared with A isolates: a higher 

proportion of novel assemblage B sequences was detected compared to what was 

observed in assemblage A isolates. A high number of assemblage B sequences 

showed heterogeneous nucleotide positions that prevented the unambiguous 

assignment to a specific sub-assemblage. Up to 17 different assemblage B multi-

locus genotypes were found. The molecular genotyping results showed that Giardia 

assemblage B was responsible for the majority of the clinical infections and 

confirmed the occurrence of a high diversity of parasite multi-locus genotypes.  

In Chapter 5, we integrated the epidemiological and the molecular data generated by 

the enhanced surveillance and case-control studies and we studied the clinico-

epidemiological differences between cases infected with Giardia assemblage A or B. 

Our results showed a difference in the age prevalence between the two assemblages, 

with assemblage A being more common in older cases. Cases infected with 

assemblage B reported a series of symptoms more frequently than cases infected 

with assemblage A, as well as reporting a longer illness. Although the exposure 

profile of the cases largely overlapped between the two assemblages, two different 

types of exposures were reported more frequently in the two groups of cases: keeping 

a dog in assemblage A cases and the presence in the household of children and 

children at nursery in assemblage B cases. The results suggested that assemblage A 

could have a major zoonotic reservoir, whereas assemblage B could be transmitted 

more commonly via the human-to-human route.  
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1.1 INTRODUCTION TO GIARDIA PARASITES 

The genus Giardia (order Giardiida, subclass Diplozoa, class Trepomonadea, 

superclass Eopharyngia, subphylum Trichozoa, phylum Metamonada) (Cavalier-

Smith, 2003) is a group of flagellated protozoa inhabiting the intestine of numerous 

vertebrate animals (Roberts et al., 2009). These organisms exist in two distinct 

forms. The motile trophozoite stage reproduces in the host intestinal tract, whereas 

the dormant and environmentally resistant cyst stage is disseminated in the 

environment through the host faeces and is responsible for transmission. 

Trophozoites possess two identical nuclei, a ventral adhesive disk used to attach to 

the intestinal epithelial cells and two dark-staining median bodies of unknown 

function, but they completely lack mitochondria, peroxisomes and the Golgi 

apparatus. Due to these peculiar characteristics, Giardia parasites have been long 

considered primitive organisms that diverged from the ancestral eukaryotes prior to 

their acquisition of mitochondria. However molecular data recently confirmed that 

these parasites are highly derived organisms, and that the loss or alternative evolution 

of organelles occurred multiple times probably as an adaptation to the parasitic 

lifestyle (Thompson & Monis, 2012).  

 

The nomenclature and taxonomy of the genus Giardia underwent several changes 

throughout the first half of the 20
th

 century (Thompson & Monis, 2004). Six species 

are currently recognized based on both morphological and molecular evidences: G. 

agilis is found in amphibians, G. muris in mice and other rodents, G. ardeae and 

psittaci in birds, G. microti in voles and muskrats and G. duodenalis in a wide range 

of mammalian hosts including humans, dogs, cats, livestock and wildlife (Feng & 

Xiao, 2011). A potentially new Giardia species was found in an Australian 

marsupial, the quenda (Isoodon obesulus) (Adams et al., 2004), but its taxonomic 

status has not been confirmed yet.  

 

The first species to be described and also the most known due to its both medical and 

veterinary importance is G. duodenalis (synonyms lamblia/intestinalis). Unless 

otherwise stated, the term Giardia used from this point onwards will refer to G. 

duodenalis.  
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1.2 BIOLOGY OF GIARDIA 

 

1.2.1 Morphology and life cycle 

The parasite occurs in two developmental stages: the trophozoite and the cyst 

(Figure 1.1).  Trophozoites are usually 12-15 μm long and 5-15 μm wide, with two 

identical diploid nuclei with a deeply-stained karyosome. The cell has a convex 

dorsal side and an enlarged anterior and a narrower posterior, giving the trophozoite 

a peculiar pear-like shape. Cytoskeletal structures include eight posteriorly-oriented 

flagella arranged in four pairs (anterior, ventral, posterior-lateral and caudal), a pair 

of claw-shaped median bodies (microtubular structures of unknown function) and a 

rigid bilobed adhesive disk located at the anterior part of the ventral side of the cell.  

The trophozoite lacks a typical Golgi apparatus, peroxysomes and mitochondria. A 

variable number of double-membraned structures called mitosomes are located in the 

centre and the periphery of the cell, as well as lysosome-like vesicles scattered 

beneath the cell plasma membrane. The parasite cyst is transparent and ovoid, 

smooth-walled, 8-12 μm by 7-10 μm in size. When mature and excreted in the host 

faeces, the cyst contains four tetraploid nuclei and the disassembled components of 

the flagella and adhesive disk. 

 

 

Figure 1.1: Morphological characteristics of the trophozoite (A) and the cyst (B) of 

Giardia. AF=anterior flagella; VF=ventral flagella; PLF: posterior/lateral flagella; 

CF=caudal flagella (taken from Ankarklev et al., 2010).  
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Giardia has a direct and simple life cycle (Figure 1.2).  Infection in the host is 

caused by the ingestion of the cystic stage. Ingestion of the cyst can occur directly 

via faeco-oral contact, or indirectly through contaminated drinking water or food. 

The infectious dose of Giardia is low (25-100 cysts), but even ten cysts are sufficient 

to establish the infection in a human (Rendtorff, 1954). The swallowed cysts pass 

through the stomach and hatch in the host duodenum. The excystation process is 

triggered by the host stomach acidic pH (Ankarklev et al., 2010) and gives rise to a 

short-lived stage of the parasite called the excyzoite, which then divides twice 

generating four trophozoites. Trophozoites live in the duodenum, jejunum and upper 

ileum, where they attach to the epithelium and reproduce by binary fission. Giardia 

is an aerotolerant anaerobe, and it uses glucose as the primary substrate for 

respiration (Adam, 2001). In the host colon when passing faeces start to dehydrate, 

trophozoites differentiate to form the cystic stage. The encystation process seems to 

be induced by an alkaline pH and by the presence of high levels of bile and low 

levels of cholesterol (Lauwaet et al., 2007). The cysts are immediately infectious 

upon excretion, and up to 300 million cysts can be shed in the stools from an infected 

person (Roberts et al., 2009). Trophozoites can also be excreted in loose stools 

(Roberts & Zeibig, 2013), but they cannot survive long outside the host.  

While in the environment, Giardia cysts are resistant to various stresses and their 

persistence seems to be affected primarily by temperature, a factor that appeared 

consistently across different studies and environmental matrices (Table 1.1). Most 

researchers have used G. muris in their inactivation studies, and the cysts’ viability 

has been usually assayed either by mice infectivity tests or success of excystation (% 

cysts hatched) in vitro. Cysts tend to retain infectivity for longer in damp and cool 

environments, particularly if they are in freshwater. On the other side, in matrices 

that are subject to desiccation (like soil or faeces) the viability can be drastically 

reduced (Olson et al., 1999). The same study also confirmed that extremely low (i.e. 

freezing) or warm (25
o
C) temperatures have a strongly negative effect on cysts 

infectivity. No data are available about the viability of Giardia cysts on dry fomites 

(like toilet surfaces). 

 

 



 

5 

 

 
 

Figure 1.2: Life cycle of Giardia. (1) The cyst is ingested by the host; (2) In the 

small intestine the trophozoite hatches from the cyst and multiplies; (3) In the large 

intestine the trophozoite encysts; (4) The cysts (and occasionally trophozoites) are 

shed in faeces and contaminate the environment. Adapted from: 

http://www.cdc.gov/dpdx/giardiasis. 

 

Table 1.1: Effect of different environmental matrices and parameters on the viability of 

Giardia cysts. 

*species tested: G. muris; #species tested: G. duodenalis 

 

Matrix(ices) Tested parameter(s) Giardia cyst viability Reference 

Lake/river/tap 

water 

Temperature and water 

turbidity, hardness, 

dissolved oxygen 

Prolonged (up to 84 days) if 

temperature <10
o
C (*) 

(DeRegnier 

et al., 1989) 

Seawater Water salinity, sunlight Up to 60 days,  reduced by increasing 

salinity and exposure to light (*) 

(Johnson et 

al., 1997) 

Distilled 

water, soil, 

cattle faeces 

Temperature Reduced in soil and faeces compared to 

water, longest at 4
o
C (*) 

(Olson et al., 

1999) 

Cattle slurry Storage at constant 

temperature, no light 

Reduced after 45 days, nearly complete 

inactivation at 90 days (#) 

(Grit et al., 

2012) 
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The combination of the high numbers of parasites excreted in stools and the 

resilience of the cysts in the environment leads to high levels of environmental 

contamination, particularly in fresh waters where Giardia cysts can survive for 

several weeks. The recovery of Giardia is common in fresh waters, where this 

parasite is usually observed more frequently than Cryptosporidium (Smith et al., 

2006a). The contamination of both surface or ground waters is commonly reported 

(Castro-Hermida et al., 2014) and it can be the result of either direct faecal pollution 

from humans and animals, or the result of the input of untreated wastewaters or 

agricultural runoff from manure-fertilized fields (Plutzer et al., 2010). Giardia cysts 

are commonly recovered in large numbers in untreated wastewaters worldwide 

(Nasser et al., 2012).  In water treatment plants the parasite cysts can be removed 

from water through flocculation/coagulation and sedimentation followed by 

filtration, but disinfection by chlorination is also necessary (Betancourt & Rose, 

2004). It has been shown that Giardia cysts can still be recovered in treated waters 

(Lobo et al., 2009; Castro-Hermida et al., 2014). Other effective water treatment 

methods include the use of monochloramine, chlorine dioxide, ozonation and UV 

light (World Health Organisation, 2008). Boiling water effectively kills the parasite, 

and portable kits using iodine or chlorine are available to disinfect water for personal 

use (Hill, 2001). 

 

1.2.2 Host-parasite interactions in Giardia infection and disease 

The biology of Giardia infection in the intestine and the interactions between the 

parasite and the host have been characterised mostly in rodent models and in vitro 

cell culture systems (Thompson & Monis, 2012) 

 

The pathophysiology of giardiasis is influenced by the interaction between both 

parasite and host factors (Cotton et al., 2011). These include the parasite genetic 

makeup, the host age, gender, nutritional and immune status, and the presence of 

other infections or chronic conditions.  The different mechanisms by which Giardia 

causes disease still remain poorly understood. Differently from other gut parasites 

like Entamoeba spp., Giardia is not invasive and apparently does not secrete any 

known toxins (Ankarklev et al., 2010). During infection, the intestinal permeability 

is increased via both parasite-induced apoptosis of enterocytes (Panaro et al., 2007) 
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and/or disruption of the junctions between these cells (Maia-Brigagão et al., 2012). 

Also the shortening of the epithelial brush border microvilli has been observed 

(Cotton et al., 2011). All these morphological alterations of the gut epithelium 

modify the mechanisms of water and nutrients absorption, resulting in increased 

intestinal motility rates, anionic hypersecretion, malabsorption and maldigestion. The 

malabsorptive syndrome associated with Giardia infection has been shown to 

determine deficiencies of various vitamins (Robertson et al., 2010), as well as of iron 

and zinc (Abou-Shady et al., 2011). The trophozoite adhesive disk, flagella and 

variant surface proteins (VSPs) have all been hypothesized as potential virulence 

factors (Ankarklev et al., 2010). VSPs are glycoproteins that constitute an important 

mechanism of evasion of the host immune responses (Prucca et al., 2011): by 

changing their expression on the cell surface some parasites are able to escape from 

complete clearance by immune cells. When incubated with intestinal cells, Giardia 

trophozoites have been shown to secrete several metabolic enzymes (Ringqvist et al., 

2008). Some of these enzymes either exert an anti-inflammatory effect or down-

regulate the production of nitric oxide in the epithelium (Ankarklev et al., 2010).   

 

During Giardia infection both innate (in the intestinal mucosa) and acquired (in 

mucosal secretions and serum) immune responses are activated (Roxström-Lindquist 

et al., 2006). Cellular-based mechanisms play a prominent role in fighting infection, 

with the involvement of both T-cells and mast cells (Solaymani-Mohammadi & 

Singer, 2010). The host immune defences play a major role in the severity of disease 

as well. For example, chronic and prolonged giardiasis is more frequently observed 

in immunosuppressed rather than immunocompetent patients (John & Petri, 2006; 

Robertson et al., 2010). Data on the presence of long-term immunity to Giardia 

following infection are scarce. During a waterborne outbreak of Giardia at a ski 

resort in Colorado, people that lived in the area for more than two years had a lower 

incidence rate of disease compared with short-term residents (Istre et al., 1984). This 

finding may suggest that repeated exposure to the parasite (for example through 

drinking water) can lead to some kind of protection against re-infection. In another 

study, peripheral blood mononuclear cells were isolated from patients that got 

Giardia during a waterborne outbreak five years before and they were exposed to a 

variety of parasite antigens: the observed proliferation and activation of CD4 T-cells 
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were significantly higher in the patients group compared to a group of unexposed 

people (Hanevik et al., 2011). 

 

1.3 GIARDIA IN HUMANS 

Giardia duodenalis is the most frequently reported enteric parasite in humans in 

many countries (Olson et al., 2000). Giardiasis is one of the most common infectious 

gastrointestinal diseases worldwide and it has also been included in the Neglected 

Disease Initiative by the World Health Organisation since 2004 (Savioli et al., 2006). 

 

1.3.1 Clinical manifestations  

Giardiasis typically shows a variable symptomatology, and completely asymptomatic 

infections are a common occurrence. According to Hill (2001) between 25 and 50% 

of the exposed individuals develop a clinical diarrhoeal syndrome, whereas the 

percentage of those expected to become asymptomatic cyst passers is estimated 

between five and 15%.  

 

The incubation period for clinical giardiasis is usually between six and 15 days 

following infection (Roxström-Lindquist et al., 2006), and the usual duration of 

illness (seven to ten days) is relatively long if compared to other etiologic agents of 

diarrhoea (Hill, 2001). The most commonly reported symptom is always diarrhoea 

(in nearly 90% of cases) associated with foul-smelling and greasy stools. In non-

outbreak cases of giardiasis, intermittent rather than continuous diarrhoea was 

reported (Cantey et al., 2012). Other frequent symptoms include flatulence, 

abdominal pain with cramps and anorexia with weight loss (up to four kilograms on 

average) (John & Petri, 2006). Vomiting and fever can also be associated with 

giardiasis but less frequently. Furthermore, intestinal malabsorption syndrome is 

frequently observed in chronic infections (Robertson et al., 2010). Although they are 

thought to be rare, extra-intestinal manifestations (including eye, skin and joints 

symptoms) were also reported in nearly 34% of the cases in a study from the United 

States (Cantey et al., 2012).   
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Chronic giardiasis produces a symptomatology that is also consistent with irritable 

bowel syndrome (IBS) (Stark et al., 2007). Such overlap in symptomatology may 

lead to the misdiagnosis of cases of giardiasis as cases of IBS. A study from Italy 

showed that 6% of the 137 patients in a clinic and presenting with IBS and dyspepsia 

were positive for Giardia in their stools (Grazioli et al., 2006), with the authors 

suggesting that some patients diagnosed with IBS may represent actual cases of 

giardiasis (and so the presence of Giardia should be assessed in these patients). 

However, this study did not include appropriate control patients without IBS to 

verify whether the prevalence of infection was actually higher in patients with IBS 

compared to the general population.  

The appearance of IBS-like symptoms following infection has been reported in 

several intestinal pathogens (Stark et al., 2007). A recent study from Norway seemed 

to suggest an association between acute giardiasis and the development of IBS (and 

chronic fatigue) following the clearing of infection (Wensaas et al., 2012). In this 

study the relative risk of developing IBS and chronic fatigue was determined over 

three years in a cohort of patients that suffered from acute giardiasis during an 

outbreak, in comparison with a group of unexposed control patients. Results showed 

that the risk of both IBS and chronic fatigue was significantly higher in the exposed 

(46.1% frequency of IBS and fatigue) compared to the control group (14% and 12%, 

respectively) (adjusted relative risk 3.4 for IBS and 4 for chronic fatigue) (Wensaas 

et al., 2012). Although the study included an appropriately selected control group it 

is possible that people with a history of giardiasis were more aware of the symptoms 

and more prone to find them abnormal, resulting in an overestimation of reported 

IBS and fatigue in this group. Nevertheless, the prevalence of reported IBS in the 

control group overlapped the frequency of report of this condition in the general 

population reported in other studies.  

Despite the suggestive evidence from the above study, more data are then needed to 

confirm whether acute giardiasis is a significant risk factor for the development of 

post-infectious IBS. The pathogenesis of post-infectious IBS in relation to the 

exposure to the parasite should be evaluated in future studies, as well as the potential 

role played by co-infections and by the patients’ psychological elements. 

Furthermore, a strong association of previous Giardia infection with both IBS and 

chronic fatigue was shown in a cohort of patients that were infected during an 

outbreak in Norway (Wensaas et al., 2012).  
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1.3.2 Laboratory diagnosis and treatment 

The diagnosis of Giardia in both humans and animals is traditionally made following 

the microscopic examination of the stools for ova and parasites (O&P) (Hill, 2001), 

and is based on the identification of the parasites trophozoites or cysts in wet or 

stained faecal smears. Since cysts are often excreted sporadically, examination of at 

least three stool samples from the same patient collected at regular time intervals is 

recommended (John & Petri, 2006; Manser et al., 2014). When diagnosis is based on 

microscopy, the examination of multiple stool samples can return a parasite recovery 

yield of up to 90% compared to 50-70% observed when only one sample is checked 

(Hill, 2001). Alternatively, trophozoites can be found in the duodenal fluid collected 

from the patient through intubation or via the string test (Enterotest) (Roberts & 

Zeibig, 2013). Examination of faeces by direct fluorescence antibody (DFA) 

microscopy (Figure 1.3a) is a good alternative to wet microscopy and can increase 

the chances of detection of low burdens of infection. This approach has been shown 

to be more sensitive than traditional microscopy (Garcia et al., 1992).  

 

Various enzyme immunoassays (EIA, ELISA) and non-enzymatic 

immunochromatographic assays that detect the parasite antigens in the faeces are 

available (Aldeen et al., 1998) (Figure 1.3b). These approaches are more sensitive 

than microscopy (Mank et al., 1997), and their use is recommended either for routine 

screening of large number of samples or if low levels of infection or asymptomatic 

carriage are suspected. In recent years, several real-time PCR assays for the 

amplification of parasite DNA directly from stools have been developed (Amar et 

al., 2002; Verweij et al., 2003; Almeida et al., 2010; Calderaro et al., 2010). Real-

time PCR assays have been shown to be at least as sensitive as the antigen-detection 

methods (Verweij et al., 2003) and significantly more sensitive than microscopy 

(sensitivity 100% compared with 86.7% in microscopy) (Calderaro et al., 2010). 

These molecular assays recently started to be implemented in clinical laboratories 

and they have been incorporated into multiplex PCR assays capable of detecting a 

wide array of intestinal pathogens (not exclusively parasites) in stools (Verweij, 

2014). 

 



 

11 

 

Treatment of giardiasis relies on the use of nitroimidazolic compounds.  

Metronidazole is usually considered the drug of choice  (John & Petri, 2006), but 

also other 5-nitroimidazole compounds such as tinidazole, ornidazole or secnidazole 

are effective (Robertson et al., 2010). Other drugs including benzimidazoles 

(albendazole, mebendazole), quinacrine, paromomycin or nitazoxanide can be used 

in the treatment of refractory cases to nitroimidazolic compounds (Robertson et al., 

2010).   

   

Figure 1.3: Two sensitive methods for the laboratory diagnosis of giardiasis. The 

direct fluorescence antibody (DFA) microscopy (MERIFLUOR
® 

Cryptosporidium/Giardia, Meridian Diagnostics Inc.) (A) and the faecal antigen 

enzyme immunoassay (GIARDIA/CRYPTOSPORIDIUM CHEK
®

, Techlab
®

) (B) 

(pictures by Corrado Minetti). 

 

1.3.3 Epidemiology 

 

1.3.3.1 Infection rates and disease burden 

The burden of Giardia in human populations is still poorly understood, and any 

direct comparison between the results of different studies must take into account 

whether the presence of the parasite is determined in people with or without 

symptoms of intestinal disease and also the sensitivity of the diagnostic method(s) 

used. 

 

The estimated overall prevalence of Giardia in human populations is ~20% (4-43%) 

and 5% (3-7%) in developing and developed countries, respectively (Roxström-

Lindquist et al., 2006), and in terms of clinical disease Giardia contributes to an 

a b 
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estimated 280 million new symptomatic infections per year worldwide (Ankarklev et 

al., 2010). In developing countries subclinical infections are frequent. In 274 

asymptomatic children aged 5-15 years in Bangkok the prevalence of Giardia by 

microscopy was 12.41% (Popruk et al., 2011), also with peaks of 33% (Laishram et 

al., 2012). Using real-time PCR, 40.7% of the 108 inhabitants sampled in three 

villages in Uganda tested positive for Giardia (Johnston et al., 2010). 

 

A few studies have investigated the rate of asymptomatic carriage of Giardia in 

developed countries. In 857 symptomatic and 574 asymptomatic patients from the 

Netherlands the prevalence of Giardia determined by microscopy was 5.4% and 

3.3%, respectively (de Wit et al., 2001). Another study done in Portugal reported a 

microscopy prevalence of 3.9% in 177 asymptomatic children below 12 years of age 

(Almeida et al., 2006). In Melbourne, Giardia was found as the most prevalent 

pathogen (1.6% of 1091 faecal specimens by microscopy) in asymptomatic people 

randomly selected from the community (Hellard et al., 2000). In the United 

Kingdom, in the infectious intestinal disease (IID) study the faecal samples from 

symptomatic cases and asymptomatic controls were screened for various pathogens, 

and the prevalence of Giardia as determined by microscopy and PCR was 1.8% and 

1.4% in symptomatic and asymptomatic people, respectively (Amar et al., 2007). 

The aforementioned studies and the non significant difference in the prevalence of 

the parasite between symptomatic and asymptomatic patients revealed in the UK IID 

study suggest that sub-clinical infections may be more common than previously 

thought. Furthermore the presence of Giardia in some cases of symptomatic 

intestinal disease may not be the direct cause of the symptoms, with the parasite 

acting only as a transient colonizer of the intestine. 

 

Cases of giardiasis can be significantly underreported. The second infectious 

intestinal disease (IID2) study estimated a total of 52,434 cases of giardiasis in the 

UK community only in 2008-2009 (Tam et al., 2012): as a comparison, the estimated 

number of cases of cryptosporidiosis in the same period was 43,834. Using a capture-

recapture technique it was estimated that only half of the actual cases were notified 

in Auckland (Hoque et al., 2005). Using a meta-analytic approach, it was estimated 

that in Nordic countries for each Giardia case registered in the national registers 

there are 254-867 undetected cases (Hörman et al., 2004). Several factors can 
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contribute to the underestimation of the true burden of disease, including the severity 

of illness, the educational level and behaviour of the patients and the choices of 

general practitioners (GPs) (Tam et al., 2003). Cases presenting with a mild illness or 

with a lower educational level are less likely to refer to their GP, and the general 

practitioner may require Giardia testing mostly for cases with a history of foreign 

travel.  

 

1.3.3.2 Transmission routes and population at-risk 

In humans Giardia can be transmitted through both direct and indirect routes (Table 

1.2). These routes are not mutually exclusive, since the spreading of the disease can 

follow different paths within the same setting or during an outbreak (Katz et al., 

2006). As for other enteric infections, factors like poor sanitation, overcrowding and 

poor water quality are all known to favour the transmission of Giardia, particularly 

in developing countries (Younas et al., 2008). 

 

Table 1.2: Major routes for Giardia transmission in humans. 

 

Direct, person-to-person poor fecal-oral hygiene settings (developing countries, child-care 

centres, custodial institutions, anal-oral sexual practices) 

Indirect, waterborne untreated drinking water, exposure to recreational waters (lakes, 

rivers, swimming and wading pools) 

Indirect, foodborne fresh products contaminated by run-off or irrigation water, infected 

food handler 

 

At temperate latitudes the occurrence of giardiasis usually shows seasonal variability, 

with the number of cases increasing during summer and early autumn (Gray et al., 

1994; Rodríguez-Hernández et al., 1996; Yoder et al., 2010). In some circumstances 

seasonality is probably due to an increased frequency of outdoor activities during the 

warm season, with the consequent exposure to contaminated waters. In a study 

conducted in the United States, a significantly higher proportion of cases were 

reported from the northern states compared to the south of the country (Yoder et al., 

2010). It is possible that the increased cyst viability in colder climates may partially 

explain the above findings, but differences in the efficacy of case reporting among 

states cannot be excluded.  
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Giardiasis also shows a bimodal age-related distribution, with most cases occurring 

in children under ten (and in particularly in those under four) and adults between 25 

and 44 years of age (Gray et al., 1994; Hoque et al., 2002a; Stuart et al., 2003; Ellam 

et al., 2008; Yoder et al., 2010). This trend may reflect differences in the immune 

status or in the frequency of exposure to the parasite among different age groups.  

Giardia infections are known to be a very common occurrence in day care centres 

(Steketee et al., 1989; Rauch et al., 1990). In these settings two high-risk groups 

have been identified, namely children under five years of age and childbearing 

women (John & Petri, 2006). 

 

Person-to-person transmission has been shown to be favoured also in custodial 

institutions (Naiman et al., 1980). Sexual transmission of several intestinal parasites 

is also possible (Abdolrasouli et al., 2009), and Giardia can be commonly 

transmitted in this way particularly among people used to anal-oral sexual practices 

like homosexual men (Keystone et al., 1980).  Interestingly, in several studies the 

majority of reported cases of giardiasis were males rather than females (Espelage et 

al., 2010; Yoder et al., 2010). 

 

1.3.3.3 Risk factors for giardiasis  

In epidemiology, factors that are associated with an increased risk for a particular 

disease are usually determined through the implementation of case-control (or 

cohort) studies. The findings of some major case-control (or cohort) studies done on 

giardiasis so far are summarized in Table 1.3. These studies mostly included only 

cases of clinical disease, and controls were selected without being checked for the 

presence of asymptomatic infection. Asymptomatic carriers of the parasite are then 

either missed or miss-classified as controls.  As stated by Espelage et al. (2010) 

regarding their own study, risk factor analysis should be then more appropriately 

referred to symptomatic giardiasis and not necessarily to parasite transmission.  

Furthermore, both the significance and the effect size of exposure factors can vary 

among different studies. Although this may indicate that different populations and 

communities are exposed to the parasite in different ways, a lack of consistency in 

published results can also be due to the presence of bias and differences in the study 

design. 
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Travel abroad, and in particular to developing countries, is usually one of the most 

consistent risk factors found (Gray et al., 1994; Hoque et al., 2002b; Faustini et al., 

2006; Gagnon et al., 2006). Giardia is well-known as one of the major causes of 

travellers’ diarrhoea, being the most common enteric pathogen isolated from tourists 

showing signs of gastrointestinal disorders at their return (Swaminathan et al., 2009). 

Almost 85% of the cases of giardiasis reported between 1997 and 2003 in Sweden 

were not Swedish and they were mainly immigrants, refugees and internationally 

adopted children (Ekdahl & Andersson, 2005). Geographical regions considered to 

be at high-risk for Giardia are in particular Asia and Africa (Hoque et al., 2002b) 

and Central and South America (Espelage et al., 2010). In a comprehensive analysis 

of more than 25,000 cases of travel-related GI infection, the highest rate of giardiasis 

was found in people returning from South Asia, Middle East and South America 

(Swaminathan et al., 2009).   
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Table 1.3: Overview and findings of major Giardia case-control studies. 

 
Country and study 

type 

Case selection (no. 

cases) 

Control selection (no. controls) Significant risk factors by multivariate 

analysis 

(OR, 95% CI)* 

Reference 

United Kingdom, 

case-control 

All ages, with  diarrhoea 

and Giardia by 

microscopy, primary 

cases only, no travel 

abroad during exposure 

window  (N=33) 

Age/sex matched, from same GP 

register and living within five miles 

of the case, no diarrhoea or travel 

abroad during exposure window  

(five controls/case,  N=112) 

Having contact with pets (14.55, 4.18-50.62) and 

with farm animals (4.77, 1.31-17.38) 

(Warburton et al., 1994) 

United Kingdom, 

case-control 

All ages, with diarrhoea 

and Giardia by 

microscopy, primary 

cases only (N=74) 

Age/sex matched, from same GP 

register of the case (two 

controls/case, N=108) 

Swimming (2.4, 1-6.1), travelling to developing 

countries (7.6, 0.8-70.1) camping or caravanning 

(8.4, 0.8-70.1)  

 

(Gray et al., 1994) 

United Kingdom, 

case-control 

All ages, with diarrhoea 

and Giardia by 

microscopy, primary 

cases and residents only, 

no travel abroad during 

exposure window 

(N=192) 

Age/sex matched, from same GP 

register of the case, no diarrhoea or 

travel abroad during exposure 

window (three controls/case, 

N=492) 

Swallowing water while swimming (6.2, 2.3-

16.6), having contact with fresh waters (5.5, 1.9-

15.9), drinking any additional glass of tap 

water/day (1.3, 1.1-1.5), eating lettuce (2.2, 1.2-

4.3) 

(Stuart et al., 2003) 

New Zealand (NZ), 

case-control 

Only 15-64 years of age, 

with diarrhoea and 

Giardia by microscopy, 

only residents in 

Auckland (N=183) 

Age matched, randomly selected 

from phone book (two controls/case, 

N=336) 

Drinking water outside NZ (8.78, 3.82-20.16) or 

from non-mains in NZ (2.1, 1.26-3.49), exposure 

to child’s nappy (7.03, 4.31-11.48), occupational 

contact with human wastes (5.26, 2.27-12.20), 

non occupational contact with human wastes 

(3.33, 1.14-9.74) 

(Hoque et al., 2002b) 

Canada, case-

control 

Only ≥1 year of age, 

with diarrhoea and 

Giardia by microscopy, 

residents in Quebec only 

(N=139) 

Matched by administrative region and 

exposure window (plus age matched 

but only with cases ≤13 years), no 

diarrhoea and not living in healthcare 

facilities during study period 

In cases 1-13 years: drinking filtered or 

unfiltered surface or well water (6.13, 1.61-

23.32).  

In cases 14-64 years: drinking  untreated water 

from natural environment (2.46, 1.21-5.02), 

camping (2.10, 1.06-4.15), travelling to an at-

risk country (other than Canada, USA or 

(Gagnon et al., 2006) 
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Western Europe) (28.68, 9.05-90.85), changing 

diapers (3.19, 1.61-6.30) 

Germany, case-

control 

All ages, with 

diarrhoea/abdominal 

cramps/bloating and 

Giardia by 

microscopy/ELISA, only 

primary cases and no 

travel abroad  (N=120) 

Age and county of residence 

matched, no diarrhoea or travel 

abroad (two controls/case,  

N=240) 

 

Male sex (2.5, 1.4-4.4), impaired immunity (15.3, 

1.8-127) and eating green salad daily (2.9, 1.2-

7.2) 

(Espelage et al., 2010) 

Cuba, case-control Only <17 years of age, 

admitted to hospital and 

presenting or not 

diarrhoea and  Giardia 

by microscopy (N=94) 

Same hospital and admission window 

matching, without Giardia (N=257) 

Biting  nails (3.2, 1.8-5.7) and eating unwashed 

vegetables raw (2.9, 1.4-6.2) 

(Bello et al., 2011) 

Israel, cohort Children weighing 

>2500 grams at birth, 

without conditions 

affecting normal 

feeding/growth, 

enrolled at three months 

of age and followed up 

to 18 months 

(N= 247) 

Not applicable Spring or summer season (5.43, 2.77-10.70), 

household exposure to cattle/chickens (4.36, 1.62-

11.70), having a prior infection with entero-

aggregative E. coli (1.11), each unit of increase in 

weight at six months of age 

(Coles et al., 2009) 

*odds ratio with 95% confidence intervals 
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Risk factors analysis demonstrated that exposure to human wastes (both occupational 

and not) and related factors play a major role in the person-to-person and household 

transmission of the disease. An increased risk of giardiasis has been associated in 

particular to the presence of children in nappies at home (Hoque et al., 2003) as well 

as to changing nappies and being a nursing mother (Hoque et al., 2001; Hoque et al., 

2002b; Gagnon et al., 2006). These data are indicative that children in nappies are 

likely to be the major vector for transmission among family members. Occupational 

exposure to human wastes too has been shown to be a risk factor (Hoque et al., 

2002b).  

  

Giardiasis is a typical waterborne infection. This is confirmed by the fact that both 

drinking or having recreational contact (swimming above all) with potentially 

contaminated water consistently appear as significant risk factors (Table 1.3). 

Giardia, along with Cryptosporidium spp., accounts for the majority of parasitic 

waterborne outbreaks worldwide (Karanis et al., 2007). In developed countries 

waterborne transmission mainly occurs because of disruptions in the water supply 

systems, contamination of aquifers with sewage spillages or insufficient water 

treatment.  Contaminated drinking water has been incriminated as the cause of some 

large community outbreaks in North America (Daly et al., 2010) and Europe 

(Rimhanen-Finne et al., 2010). For example, during a severe outbreak in Norway a 

leakage from the sewage system into the lake serving the city centre water supply 

was incriminated as the possible contaminating source (Nygård et al., 2006). The 

occurrence of Giardia outbreaks related to contaminated municipal waters varies 

among different countries, probably reflecting differences in the procedures of water 

treatment and distribution. An increased risk of contamination is also expected to be 

associated with private rather than public water supplies (Smith et al., 2006b).                                                                                                                                  

Outbreaks of giardiasis due to contaminated water in swimming pools have been 

frequently reported in the United States (Harter et al., 1984; Porter et al., 1988; Levy 

et al., 1998) and the UK (Smith et al., 2006b).  Transmission in swimming or wading 

pools is caused by accidental faecal releases coupled with insufficient filtration or 

disinfection of the pool water. Swimming or bathing in surface waters (like rivers or 

lakes) also showed to be an important exposure factor (Hoque et al., 2002b; Faustini 

et al., 2006). Surface waters can be easily contaminated by animal or human faeces. 

Indeed, the unintentional ingestion of water in these settings has been correlated to 
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small outbreaks in the United States (Kramer et al., 1996). The risk of Giardia 

transmission in marine settings is still an open question, mainly due to a lack of 

information (Fayer et al., 2004), although significant amounts of Giardia cysts have 

been sometimes reported in beach waters (Johnson et al., 1995). 

 

Transmission of Giardia through contaminated food has been reported too. More 

precisely, eating raw vegetables (and in particular salad) appeared sometimes as a 

risk factor (Stuart et al., 2003; Faustini et al., 2006; Mohammed Mahdy et al., 2008; 

Espelage et al., 2010). Crops can be easily contaminated with Giardia cysts through 

both water runoff from contaminated soils or by the use of unsafe irrigation water 

(Smith et al., 2007). The presence of parasites has been confirmed in a variety of 

fresh products (Cook et al., 2007; Robertson et al., 2014). Also shellfish has been 

hypothesized as a possible transmission vehicle for foodborne protozoa including 

Giardia, especially if the molluscs are eaten raw (Robertson, 2007b). Bivalve 

molluscs are able to accumulate Giardia parasites from water and viable cysts were 

found in oysters up to two weeks post-exposure (Graczyk et al., 2006). Foodborne 

outbreaks have also been reported (Smith et al., 2007), and the contamination of food 

is usually caused by an infected food handler (Mintz et al., 1993). Cases of 

foodborne giardiasis have been associated to either rodent faeces contaminating a 

pudding (Conroy, 1960) or to the offal from an infected sheep used to prepare a soup 

(Karabiber & Aktas, 1991). 

 

Other risk factors associated to giardiasis can be found in the published literature, 

although less consistently. Outdoor activities like camping or caravanning have been 

associated to giardiasis (Gray et al., 1994; Gagnon et al., 2006), but they are 

probably indirectly related to exposure to contaminated water or food.  

 

1.3.3.4 Zoonotic transmission of Giardia 

The fact that G. duodenalis circulates in both domestic and wild animals populations 

is crucial in respect of the possibility of zoonotic transmission. This parasite has been 

considered to have zoonotic potential for 30 years (World Health Organisation, 

1979). However, the occurrence and frequency of animal-to-human transmission 

have been largely debated. 
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The ability of this parasite to infect different hosts has been tested through cross-

transmission experiments. These experiments consisted in feeding different animals 

cysts isolated from patients, to test if they were able to establish an infection. Human 

parasites have shown the ability of infecting a wide array of mammals in the 

laboratory (Thompson & Monis, 2004). Furthermore, in the only one experiment of 

its kind a human volunteer developed infection after swallowing cysts from a rat 

(Majewska, 1994). Although sometimes the results are not consistent among 

laboratories and the parasites were not genetically characterized (Thompson & 

Monis, 2004), these results show that G. duodenalis (or at least certain genotypes) 

can circulate between humans and animals. For example, the possible implication of 

infected beavers in the spread of waterborne giardiasis has been often hypothesized 

(Dykes et al., 1980). However, most of the epidemiological reports involved only the 

finding of infected beavers in source watersheds without any concrete evidence of 

their involvement in human infections (Xiao & Fayer, 2008).  

Some epidemiological evidence of zoonotic transmission is available, but the results 

are not consistent among different studies or areas. In New Zealand, no correlation 

between the incidence rate of giardiasis and farm animals density was found (Snel et 

al., 2009b). However, in a study from Quebec the incidence rate of giardiasis in 

children below five years of age showed a significant increase with increasing cattle 

density (Kaboré et al., 2010). Children in a rural village in Thailand were at nearly 

five time greater risk of getting giardiasis if they had cats at home (Boontanom et al., 

2011). A study in a rural area of England found that having contact with pets and 

farm animals was a significant risk factor for the disease (Warburton et al., 1994), 

and the presence of cattle and chickens in or nearby the household was associated 

with higher rates of giardiasis in infants from Israel (Coles et al., 2009). Another 

study done in temple communities in Bangkok reported the presence of genetically 

related parasites in humans and dogs (Traub et al., 2009). So far, the only study 

reporting a more consistent evidence of zoonotic transmission supported by both 

molecular and epidemiological data is the one by Traub et al. (2004) from a tea-

growing community in India. In this setting, genetically similar (although not 

identical) parasites were recovered in dogs and humans living in the same household. 

Furthermore a highly significant association was found between dog ownership, the 

presence of an infected dog in the household and the prevalence of Giardia in 

humans.  
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1.4 GIARDIA IN DOMESTICATED ANIMALS 

 

G. duodenalis is a parasite found in a large variety of domestic and wild animals and 

is usually considered one of the most common intestinal parasites of pets and 

livestock (Thompson et al., 2008). However, compared to our knowledge of human 

disease, data about the epidemiology and health impact of Giardia infections in 

animals are relatively scarce. Furthermore, most of the available information comes 

only from domesticated mammals.  

 

1.4.1 Giardia in pets 

Giardia infections are usually asymptomatic in dogs and cats (Thompson et al., 

2008). Clinical disease is mainly manifested in young animals and in those living in 

overcrowded kennel or cattery situations (Robertson et al., 2000). The reported 

disease pre-patent period in dogs and cats varies between 5-16 days, and the most 

frequently observed symptom is small bowel diarrhoea (Thompson et al., 2008). 

 

Giardia is one of the most commonly reported enteric protozoa in dogs. The 

prevalence varies greatly among different populations, but most studies showed that 

it is usually higher in puppies and in kennel or stray dogs (Batchelor et al., 2008; 

Scaramozzino et al., 2009; Ballweber et al., 2010). In a study from Belgium Giardia 

was found in only 9.3% of household dogs, but in 43.9% of kennel dogs (Claerebout 

et al., 2009). Results from an extensive study in Europe showed that the prevalence 

of Giardia among owned symptomatic dogs can be up to 24.8%, with significant 

association between being positive for the parasite and presenting diarrhoea (Epe et 

al., 2010). In another study a higher prevalence of Giardia was observed in 

diarrhoeic dogs compared to asymptomatic animals, but approximately 12% of 

screened animals were revealed to be asymptomatic carriers (Scaramozzino et al., 

2009).  

 

The prevalence of Giardia in cats is usually lower than that observed in dogs, as has 

been reported in some large surveys (Carlin et al., 2006; Palmer et al., 2008; Tzannes 

et al., 2008). In a Europe-wide study Epe et al. (2010) reported the presence of 

Giardia in approximately 20% of symptomatic owned cats. As observed in dogs, a 
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significantly higher prevalence of Giardia in cats is observed in younger animals 

(Ballweber et al., 2010). 

 

1.4.2 Giardia in livestock 

Giardia in cattle is usually considered pathogenic (Taylor et al., 2007), although 

asymptomatic infected animals are commonly reported. The disease pre-patent 

period in calves is normally 7-8 days (Thompson et al., 2008). It has been observed 

that infections in cattle occur more commonly at the end of the neonatal period, and 

they are often chronic (O'Handley & Olson, 2006). The association of Giardia 

infection with diarrhoea in cattle has been under debate for a long time, mainly due 

to the largely multifactorial aetiology of this symptom (O'Handley & Olson, 2006). 

However, the pathogenic power of Giardia in cattle has been recently demonstrated 

since morphological alterations have been recently described in the intestinal 

epithelium of scouring calves with giardiasis (Barigye et al., 2008). Furthermore, a 

significant difference in weight gain has been reported in calves treated for giardiasis 

compared to untreated infected animals (Geurden et al., 2010). The last finding 

suggests that Giardia infection may have important detrimental effects on cattle 

productivity. Giardia is a very common intestinal protozoan in cattle worldwide, 

with reported prevalences up to 100% in both dairy and beef calves (Thompson et 

al., 2008). Several studies showed that the average infection prevalence tends to be 

higher in both pre- (40%) and post-weaned (52%) calves (Trout et al., 2004; Trout et 

al., 2005) compared to adult cows (~27%) (Trout et al., 2007; Castro-Hermida et al., 

2007a).  

 

In sheep and goats Giardia is commonly considered non-pathogenic (Taylor et al., 

2007), but clinical cases of disease in these animals are reported. The pre-patent 

period seems to be 6-10 days and 10-21 days for goats and sheep, respectively 

(Thompson et al., 2008). In goat kids the disease has been associated with apathy, 

decrease in voluntary food intake and softening of the faeces (Castro-Hermida et al., 

2005). Also severe weight loss was recorded in infected lambs during a confirmed 

Giardia outbreak (Aloisio et al., 2006). A study from Spain showed that the 

prevalence of Giardia in sheep and goats (33%) was comparable between the two 

ruminants (Castro-Hermida et al., 2007b).  
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The impact of giardiasis in pigs is poorly understood, and affected animals are 

usually asymptomatic. Few studies have been carried out to evaluate the prevalence 

of Giardia in these animals. It has been shown that weaner pigs tend to be more 

commonly infected (Maddox-Hyttel et al., 2006) and that prevalence varies among 

farms with different management systems (Xiao et al., 1994).  

The presence of Giardia has been reported in horses too (Xiao & Herd, 1994; Olson 

et al., 1997; Atwill et al., 2000). 

 

 

1.5 THE BIOLOGICAL AND MOLECULAR VARIATION OF GIARDIA 

DUODENALIS 

In the past 20 years it has become apparent that G. duodenalis is not a uniform 

parasite, and it is now recognized that it actually a group of at least seven so called 

genetic assemblages (Feng & Xiao, 2011). These assemblages (named A to G) are 

morphologically indistinguishable at both the trophozoite and cyst level, but they 

differ in terms of host occurrence and for a series of phenotypic and molecular traits. 

There has been increasing consensus between authors that the assemblages are in fact 

different (cryptic) species, and the traditional assemblage nomenclature should now 

be abandoned in favour of a more appropriate classification at the species level 

(Monis et al., 2009; Thompson & Monis, 2012). However, since the species status of 

the G. duodenalis assemblages has not yet been recognised officially the assemblage 

nomenclature will still be used throughout this thesis for clarity. 

 

1.5.1 Phenotypic and genomic variation between Giardia assemblages 

The phenotypic variability present among the parasites classified as G. duodenalis 

was already evident more than 50 years ago, with preliminary experiments showing 

that different isolates of the parasite greatly differed in both their infectivity and host 

specificity (Thompson & Monis, 2004). The existence of genetically distinct groups 

within G. duodenalis was then officially demonstrated by using allozyme 

electrophoresis in the 80s (Andrews et al., 1989), and subsequent studies showed that 

human isolates belonged to two groups, that were named assemblage A and B 

(Mayrhofer et al., 1995). Following the analysis of protein polymorphisms at 23 
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different loci in Giardia isolates from humans and animals, the seven assemblages 

(A-G) were confirmed as well as the genetic sub-structuring of assemblage A and B 

(both representing a group of four sub-assemblages, named AI-IV and BI-IV) and E 

(with three sub-assemblages) (Monis et al., 2003 Throughout the years, a large 

amount of information has been collected about the phenotypic characteristics of 

Giardia assemblages in vitro and in vivo. However, the studies have been limited so 

far to a few isolates and assemblages (A, B and E). The major findings from some of 

these studies are summarised in Table 1.4. Also other differences have been reported 

throughout the years between the assemblages in the trophozoites metabolism, drug 

sensitivity and susceptibility to a double-stranded RNA virus (Thompson & Monis, 

2004).  

 

Table 1.4: Summary of the major phenotypic and genomic differences observed between 

Giardia assemblages 

 

Trait(s) investigated Finding(s) Reference 

Infectivity of human 

volunteers 

Infection successfully established only by the 

GS/M (assemblage B) isolate and not by the Isr 

(assemblage A) isolate 

(Nash et al., 

1987) 

Trophozoites multiplication 

and virulence in the gerbil 

intestine 

Higher parasite load and pathogenicity (e.g. 

increased intestinal mucosa damage and 

inflammation) caused by AI and B compared to 

AII and E 

(Bénéré et al., 

2012a) 

In vitro susceptibility of 

trophozoites to nitric oxide 

(NO) 

Higher susceptibility showed by B and E 

compared to AI and AII  

(Bénéré et al., 

2012b) 

Genomic organisation and 

gene content  

<80% nucleotidic and amino-acidic identity 

between A and B; differences in Giardia-specific 

gene families (VSPs, NEK kinases and high-

cysteine rich membrane proteins) between A, B 

and E; higher frequency of allelic sequence 

heterozygosity  in B compared to A and E 

(Jerlström-

Hultqvist et al., 

2010a; 

Jerlström-

Hultqvist et al., 

2010b)  

 

The genomes of assemblage A (Morrison et al., 2007), B (Franzén et al., 2009) and 

E (Jerlström-Hultqvist et al., 2010a) have now been fully sequenced. There is 

significant variation between these three genomes, with important differences 

observed in terms of chromosomal arrangements, gene content and polymorphisms. 

As a comparison with other protozoa, the genomic divergence between the 

assemblages A and B is similar to what is observed between Theileria parva and 

annulata and the difference between A and E is very close to what has been detected 

between Leishmania major and Leishmania infantum (Jerlström-Hultqvist et al., 
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2010a). The differences observed in certain gene repertoires, particularly those 

coding for the trophozoite variant surface proteins (VSPs), are particularly interesting 

since these molecules are considered as potential virulence factors (Ankarklev et al., 

2010) and they are involved in the host immune system evasion (Prucca et al., 2011).  

It has also been proposed that differences in VSPs expression could expand the 

infectivity towards new species and so the parasite’s host range (Singer et al., 2001). 

Overall, these findings suggest that the assemblages may interact differently with 

their hosts and these differences may be the basis of the variation in host occurrence 

or clinical outcome of infection. 

 

1.5.2 Giardia molecular genotyping methods: current status and limitations  

 

In recent years, the use of PCR and DNA sequencing showed that the Giardia 

assemblages show extensive and consistent genetic variation across multiple genes.  

PCR-based methods exploiting this sequence variation now allow the determination 

of the assemblage and sub-assemblage of Giardia isolates directly from faeces or 

environmental samples (Ryan & Cacciò, 2013). Several molecular assays based on 

PCR amplification and DNA sequencing targeting a wide array of genetic loci have 

been developed. The molecular markers most commonly used by different authors 

include the small subunit (18S) ribosomal DNA (ssu-rDNA) (Hopkins et al., 1997), 

the beta giardin (bg) (Cacciò et al., 2002), the triose phosphate isomerase (tpi) 

(Sulaiman et al., 2003) and the glutamate dehydrogenase (gdh) (Read et al., 2004) 

genes. For the same markers, also restriction fragment length polymorphism (RFLP) 

assays have been developed, particularly for the bg locus (Cacciò et al., 2002). More 

recently, assays based on the tpi gene that allow a more sensitive detection of mixed-

assemblage infections have been developed and successfully applied to both human 

(Geurden et al., 2009) and animal (Geurden et al., 2008) samples.  

Overall, the differentiation of the assemblages using sequence data can be readily 

achieved across all the aforementioned markers due to the relatively large amount of 

nucleotidic differences between them, whereas the univocal identification of the sub-

assemblages and the subtypes is more difficult due to the low number of variant 

nucleotides.   
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There are some important issues that must be considered related to our incomplete 

knowledge of the genetics of the parasite, the methods employed for genotyping and 

the nomenclature used to identify the genetic variants found in different studies.  

The reliable genetic discrimination between strains or genotypes of a pathogen is a 

fundamental requisite in order to elucidate its actual host occurrence and 

transmission routes. As stated by Monis and Andrews (1998), the reliability of a 

diagnostic marker can be undermined by the inaccuracy of the systematics of the 

pathogen and by a lack of information on the parasite genetic sub-structuring at the 

population level. The extent of variability (and rate of evolution) of the chosen 

marker(s) has a profound influence on the level of genetic heterogeneity that can be 

detected (Traub et al., 2005a). Although the segregation of the Giardia assemblages 

is clear by comparing the sequence of different genes as shown by phylogenetic 

analysis, different loci can be informative or not depending on the level of genetic 

sub-structuring that has to be studied. For example, the ssu-rDNA is a highly 

conserved and slow-evolving locus suitable for studying the phylogenetic 

relationships between Giardia species and assemblages and its multi-copy nature 

favours its applicability for the sensitive detection of the parasite DNA from faeces 

or environmental samples (Wielinga & Thompson, 2007). However, it is not 

applicable as a sub-typing marker due to the absence of sequence variation at this 

locus between the sub-assemblages (Sprong et al., 2009). Conversely, more variable 

loci like the bg, gdh and tpi have a higher discriminatory power and they allow the 

genotyping at the within-assemblage level (Wielinga & Thompson, 2007). However, 

the level of genetic variability and sub-structuring differ among the assemblages and 

different loci show a different ability in resolving these differences (Feng & Xiao, 

2011): for example, the three major assemblage A sub-assemblages (AI-III) are 

easily distinguished based on the gdh sequence, whereas the AI and AII subgroups 

do not show the same robust clustering using the bg or tpi gene sequence. As 

consistently shown across different loci, the level of genetic sub-structuring is 

significantly higher within assemblage B than within A. However, there are no DNA 

sequence polymorphisms that are either specific for the subgroups BIII/IV or 

consistent across the bg, tpi and gdh loci (Feng & Xiao, 2011). As a result sub-typing 

assemblage B isolates is usually more complicated and the assignment of an isolate 

to a particular sub-assemblage is inconsistent in most cases.  
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Also the use of an imprecise terminology in identifying the parasite isolates 

identified from an individual host is a common occurrence in the Giardia literature 

(Ryan & Cacciò, 2013), with the term sub-assemblage used sometimes to indicate 

sequence variants that should be indicated more appropriately as subtypes within a 

particular sub-assemblage.    

 

Another issue is the reliability of assigning a parasite isolate to a specific 

assemblage. An unambiguous classification is absolutely essential if the molecular 

evidence has to be used to support epidemiological data, especially in the 

discrimination between potentially host-specific and zoonotic genotypes. It has been 

shown sometimes that different markers assign the same isolate to different 

assemblages, a phenomenon known as ‘assemblage swapping’ (Wielinga & 

Thompson, 2007). Relying on a single locus approach can then lead to different 

conclusions depending on the gene that has been targeted, and the concomitant 

presence of multiple parasite assemblages in the sample can be partly responsible for 

the assemblage swapping phenomenon. The actual prevalence of mixed-assemblage 

infections can be highly underestimated by the conventional PCR assays that tend to 

amplify the most abundant parasite population (Ryan & Cacciò, 2013). The use of 

either assemblage-specific primers (Geurden et al., 2008; Geurden et al., 2009; 

Levecke et al., 2011) or a sensitive quantitative real-time PCR assay (Almeida et al., 

2010) has shown that mixed assemblage infections are more common than 

previously expected. 

 

It is evident that a multi-locus sequence typing (MLST) approach is more appropriate 

for Giardia molecular epidemiology. The loci that are commonly used for Giardia 

genotyping are all unlinked, making them suitable for a MLST approach (Cacciò et 

al., 2008). The development of a standardized multi-locus protocol is essential to 

permit the comparison of sequence data obtained from different studies around the 

world (Sprong et al., 2009). For this purpose, whenever a MLST protocol for 

assemblage A isolates is implemented the Giardia isolates should be always named 

using the nomenclature proposed by Cacciò et al. (2008): capital letter for the 

assemblage (A), roman number for the sub-assemblage (AI), and number for the 

specific sequence type (genotype) (AI-1). In recent years, an increasing number of 

studies adopting a MLST approach have been published (Geurden et al., 2009; 
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Lebbad et al., 2010; Beck et al., 2012). However, a consistent nomenclature for 

assemblage B multi-locus genotypes is still lacking.  

 

The occurrence of heterogeneous templates is commonly reported in Giardia 

genotyping, particularly in assemblage B parasites. Heterogeneous templates consist 

in sequences containing ambiguous nucleotide positions in their chromatograms 

(sometimes referred to as sequences with double peaks in the Giardia literature).  

The detection of mixed templates can be due to the presence of either mixed-

assemblage infections (with DNA amplification from genetically distinct cysts in the 

same sample) or allele sequence heterozygosity (ASH). Allele sequence 

heterozygosity (i.e. the difference in sequence between alleles of the same gene) is 

expected to be high in Giardia. This is due to the presence of two distinct diploid 

nuclei accumulating mutations and evolving separately (Adam, 2000; Cacciò & 

Sprong, 2010). Curiously, ASH at the sequence level has been found to be far lower 

than expected in the genome of assemblage A (Morrison et al., 2007). On the 

contrary, a significantly higher level of ASH has been estimated in the assemblage B 

(Franzén et al., 2009). Allele sequence heterozygosity commonly occurs at the single 

cell level in assemblage B parasites, as recently demonstrated through genotyping of 

individual cysts (Ankarklev et al., 2012a).  

 

The occurrence of genetic recombination in Giardia has always been largely 

debated, since the asexual multiplication of Giardia should suggest a clonal 

population structure. However, there are some indirect evidences suggesting the 

possibility of some sort of sexual recombination in this parasite (Birky, 2010). It is 

clear that the proven occurrence of recombination would directly impact the current 

taxonomy of G. duodenalis, and more importantly our understanding of its molecular 

epidemiology (Cacciò & Sprong, 2010). Currently there are no genotyping methods 

able to consistently discriminate between true recombinants and mixed-assemblage 

infections, despite the fact that a recent population-based analysis based on an 

extensive collection of isolates showed that recombination between assemblages is 

either very rare or absent (Takumi et al., 2012).  

 

To sum up, the results emerging coming from molecular epidemiological studies 

should be critically evaluated following the limitations described above. The 
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development of new and more powerful molecular markers to better understand the 

population genetics of Giardia is nevertheless needed. The use of highly variable 

markers as microsatellites has been increasingly applied to different parasites to 

understand their population genetic structure (Traub et al., 2005a). For example, this 

approach has been crucial in understanding the population genetics structure of 

Cryptosporidium spp. (Mallon et al., 2003). A microsatellite assay for Giardia 

genotyping has never been developed so far, probably because these repeated 

sequences are rarely found in the genome of this parasite (Ryan & Cacciò, 2013). 

 

1.5.3 The molecular epidemiology of G. duodenalis 

In recent years, more insights in the genetic diversity and host occurrence of G. 

duodenalis assemblages in humans and animals from all around the world have been 

obtained. These data have been recently and comprehensively reviewed by Feng and 

Xiao (2011) and Ryan and Cacciò (2013). The host occurrence of the assemblages 

and major sub-assemblages are reported in Table 1.5. Overall, it is clear that some 

assemblages (e.g. A and B) have a wide host range (encompassing both humans and 

a variety of animal species) and show zoonotic transmission potential. Conversely, 

other assemblages (e.g. C to G) seem to be predominantly associated to particular 

animal taxa although occasional spill-overs to other species may occur.   

 

1.5.3.1 Humans 

Worldwide, humans are infected by both assemblage A and B. Overall assemblage B 

seems to be more prevalent than A worldwide (Sprong et al., 2009; Feng & Xiao, 

2011), particularly in symptomatic patients from European countries such as 

Belgium (Geurden et al., 2009), Germany (Broglia et al., 2013), Sweden (Lebbad et 

al., 2011) and the UK (Amar et al., 2002; Breathnach et al., 2010; Elwin et al., 

2013). However, some studies from both developing and developed countries 

showed a different picture. For example, assemblage A was found in the majority of 

the samples of symptomatic children in Saudi Arabia (Al-Mohammed, 2011), 

asymptomatic people of various ages from both urban and rural areas in Ethiopia 

(Gelanew et al., 2007) and symptomatic patients from Italy (Cacciò et al., 2002) and 

Portugal (Sousa et al., 2006). Mixed infections with both assemblage A and B have 
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been reported but the prevalence greatly varies between studies, ranging from 32.4% 

in a study from Belgium (Geurden et al., 2009) to only 3% in a study from the UK 

(Elwin et al., 2013). As highlighted in the previous section, these differences likely 

reflect the heterogeneity in the molecular typing methods used between studies so the 

actual prevalence of mixed assemblage infections in humans is likely to be highly 

underestimated (Ryan & Cacciò, 2013).  

 

Within assemblage A the sub-assemblage AII is the most frequently observed in 

humans followed by sub-assemblage AI (Feng & Xiao, 2011). The occurrence of 

these two sub-assemblages has been confirmed also by studies using a multi-locus 

genotyping approach: it was shown that humans can be infected by a variety of 

assemblage A multi-locus genotypes but these genotypes mostly belong to the sub-

assemblage AII, whereas the occurrence of AI-type genotypes seems limited (Cacciò 

et al., 2008; Lebbad et al., 2011). Sub-assemblage AIII has not been reported in 

human samples so far.   

 

Sub-typing of assemblage B isolates revealed a much more complicated picture. The 

two major sub-assemblages (BIII and BIV) have both been consistently reported 

amongst humans worldwide (Feng & Xiao, 2011). However, the high level of genetic 

sub-structuring of assemblage B, the lack of resolution of the current markers and the 

absence of a clear nomenclature for the multi-locus genotypes of this assemblage do 

not allow to draw consistent conclusions about the distribution of B sub-assemblages 

amongst human populations.       

 

Supposedly animal-specific assemblages have been sporadically reported in humans. 

Assemblage C was found in a human from Egypt by RFLP and sequencing of the bg 

gene (Soliman et al., 2011). Seven people from Ethiopia were found harbouring a 

mixed assemblage A and F infection by RFLP of the bg locus (Gelanew et al., 2007). 

Also, assemblage E as found in three people from Egypt following sequencing of the 

tpi gene (Foronda et al., 2008). These results may suggest that assemblages other 

than A or B can occasionally infect humans in certain circumstances (e.g. in areas 

with either high levels of contact between people and animals or environmental 

contamination with animal faeces). However in the aforementioned studies the 

presence of these unusual assemblages was never confirmed following the analysis 
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of multiple loci, or the genotyping was based on the use of markers showing poor 

resolution in distinguishing related assemblages such as A and F (Foronda et al., 

2008).  

 

1.5.3.2 Domesticated animals 

Molecular epidemiological studies on companion animals mostly involved dogs and 

cats, and in a lesser extent pet rodents and horses. Assemblage C and D are the only 

or the most commonly found in dogs (Ballweber et al., 2010) and they are often 

found in combination (Claerebout et al., 2009; Lebbad et al., 2010). Dogs are also 

infected with assemblage A parasites, and most notably by sub-assemblage AI: in 

dog specimens from Europe that were diagnosed with assemblage A, AI was found 

in 73% of the samples compared to AII (27%) (Sprong et al., 2009). Also 

assemblage B has been occasionally reported in dogs (Ryan & Cacciò, 2013).  

Assemblage F is the most frequently isolated assemblage from cats (Ballweber et al., 

2010), and cats are also commonly infected with both sub-assemblage AI and AII 

(Cacciò et al., 2008; Sprong et al., 2009; Lebbad et al., 2011).  

 

Assemblage B appear to be common in pet rodents such as guinea pigs (Lebbad et 

al., 2010), rabbits (Sulaiman et al., 2003; Lebbad et al., 2010) and chinchillas 

(Levecke et al., 2011). Horses have been found to be infected with sub-assemblages 

AI and AII and assemblage B (Traub et al., 2005b; Santín et al., 2013) and also with 

assemblage E (Veronesi et al., 2010). 

 

Assemblage E is the most prevalent assemblage found in livestock, including cattle, 

sheep and goats (Trout et al., 2007; Castro-Hermida et al., 2007a; Geurden et al., 

2008) and pigs (Armson et al., 2009). The same animals are also commonly infected 

with assemblage A but predominantly with sub-assemblage AI, and also assemblage 

B infections have been reported in livestock worldwide (Ryan & Cacciò, 2013). 

Mixed infections with both assemblage E and A appear to be common in cattle 

(Geurden et al., 2008), and unusual assemblages including C, D and F have been 

recently reported in UK livestock (Minetti et al., 2014). 
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1.5.3.3 Wildlife and non-mammalian species 

Although Giardia is a common parasite in wildlife (Thompson et al., 2010), a 

complete picture of the actual host range of Giardia assemblages in wild animals is 

still lacking. Data so far indicate that both assemblage A and B occur in a variety of 

wild ungulates, wild canids and non-human primates, as well as in marine mammals, 

rodents and marsupials (Ryan & Cacciò, 2013). Despite the repeated findings of G. 

duodenalis assemblage A, B and also and D in non-mammal vertebrates like aquatic 

birds or freshwater and fish (Lasek-Nesselquist et al., 2010; Yang et al., 2010; 

Soares et al., 2011; Ghoneim et al., 2012) there is still disagreement whether these 

species are natural hosts for the parasite or they simply act as mechanical vectors for 

the cyst. A new assemblage (named H) was apparently identified in a seal and a gull  

(Lasek-Nesselquist et al., 2010), but the identification was based on a single locus 

approach and so it awaits confirmation by sequencing at multiple loci. 

 

 
Table 1.5: Overview of the host occurrence of G. duodenalis assemblages and sub-

assemblages as summarized from Feng and Xiao (2011) and Ryan and Cacciò (2013). 

 
Assemblage 

name 

Species name Major sub-assemblages      

(if available) and host 

occurrence 

Other host occurrences 

(sporadic or controversial 

findings/isolates not typed at 

the sub-assemblage level) 

A G. duodenalis 

 

AI: frequent in cattle and 

other hoofed livestock (pigs, 

sheep, goats, buffalos), dogs, 

cats, wildlife; less common in 

humans  

Rodents (mouse, beaver, 

chinchilla), horses, non-human 

primates, wild canids (wolf, 

coyote, red fox), alpacas, 

ferrets, marsupials, marine 

mammals (dolphin, seal), birds 

(gull, eider), fish  
AII: the most frequent sub-

assemblage in humans – also 

reported in cats, livestock, 

dogs 

AIII: almost exclusively in 

wild ungulates (deer, moose); 

sporadic in cats and cattle 

B G. enterica The most frequent in humans 

and non-human primates. Also 

reported in dogs and both wild 

(beaver) and pet rodents 

(guinea pig, rabbit, chinchilla) 

Cats, horses, aquatic rodents 

(nutria, muskrat), hoofed 

livestock (cattle, pig),  wild 

canids, marine mammals, birds 

(ostrich), fish (sharks, various 

freshwater species) 

C, D G. canis The most frequent in dogs and 

other canids (wolf, coyote) 

Mice, cats, marsupials, 

chinchillas, humans 

E G. bovis The most frequent in cattle 

and other hoofed livestock 

(water buffalo, yak) and wild 

ruminants  

Cats, dogs, chinchillas, 

marsupials, freshwater fish 

F G. cati The most frequent in cats Pigs, bush rats, humans 

G G. simondi Rat - 
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1.6 AIMS OF THE THESIS 

 

Compared to other communicable intestinal diseases, giardiasis has received 

relatively little public health attention in the United Kingdom. This is largely due to 

the fact that it is considered a predominantly travel-acquired infection and associated 

with a low socio-economic burden. More data are needed in order to determine the 

actual population burden of this infection, particularly in terms of the infections not 

acquired through travel abroad. Also the assemblages and sub-assemblages of G. 

duodenalis circulating in the UK population have not been characterized extensively: 

in particular, no data are available on the parasite multi-locus genotypes in the UK 

population. Furthermore, the existence of preferential transmission routes for the 

different Giardia assemblages has not been tested before in developed countries like 

the UK. 

For these reasons, we decided to investigate the burden, epidemiology and molecular 

diversity of giardiasis in North West England using both a descriptive and analytical 

approach.  

In this project, we aimed to investigate in particular three aspects. First, we 

determined the population burden, clinical outcomes and risk factors for giardiasis in 

North West England through the analysis of surveillance data and by implementing a 

case-control study. Second, we studied the prevalence and diversity of the G. 

duodenalis assemblages in symptomatic patients and the multi-locus genotypes of 

the parasite. Third, we explored the presence of potential differences between the 

parasite assemblages in terms of clinical outcome of infection and transmission 

routes. 
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CHAPTER TWO: ENHANCED SURVEILLANCE 

STUDY ON THE BURDEN OF GIARDIASIS IN 

CENTRAL LANCASHIRE 
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2.1 INTRODUCTION 

The burden of giardiasis in the United Kingdom is not well understood. Between 

2000 and 2010 a total of 37,121 Giardia laboratory identifications were reported to 

the Health Protection Agency in England and Wales (Health Protection Agency, 

2011a): most cases were reported in the month of September and were children under 

the age of five. The incidence of disease seems also to vary geographically within the 

UK, with the south of England showing the highest rate (Health Protection Agency, 

2011a). However, these numbers likely represent only a portion of the actual cases of 

disease (Tam et al., 2012). 

 

In the UK, faecal specimens are usually tested for Giardia on the basis of selective 

criteria, like age and reported travel, and these criteria may vary between laboratories 

(Ellam et al., 2008). The presence of travel history in particular is a very common 

criterion for Giardia testing (Health Protection Agency, 2013). As a result not all 

faecal samples from cases of gastroenteritis in the community are normally tested for 

Giardia, leading to an underestimation of the actual burden of infection in certain 

age groups (particularly adults) and of infections acquired in the UK and not through 

foreign travel.   Furthermore, diagnosis of Giardia in stool samples still relies on the 

use of relatively insensitive microscopy methods: a recent survey done on 18 

diagnostic laboratories the UK and Europe showed that the majority (78%) of them 

still use light microscopy for the identification of this parasite in stool specimens 

(Manser et al., 2014). 

 

The impact of using selective criteria for specimen testing and insensitive diagnostic 

methods on the estimation of the burden of Giardia is well depicted by the recent 

case of the Royal Preston Hospital microbiology laboratory serving the Central 

Lancashire area, in North West England. In 2002, the hospital replaced conventional 

microscopy with an enzyme immunoassay (EIA) test for assaying for Giardia any 

faecal specimen submitted by diarrhoeic patients following request of their general 

practitioner. Following this change, the reported incidence of giardiasis in Central 

Lancashire showed a significant increase, going from 10.1 cases in 2002 to 33.6 

cases/100,000 population in 2006 (Ellam et al., 2008). The increase in the number of 

Giardia cases could not be clearly explained by factors other than improved 
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detection, since during the same period no variation in the number of reports was 

observed in North Lancashire and Cumbria where specimens were examined by light 

microscopy following selective criteria for age and history of travel.  

 

Following these findings, in 2007 an enhanced Giardia surveillance program was 

established in Central Lancashire with the purpose to collect more information on the 

actual burden and potential transmission routes for giardiasis in the area. The 

program was established by the Cumbria and Lancashire Health Protection Unit 

(CLHPU), and undertaken with the collaboration of the three Environmental Health 

Departments in Central Lancashire (CLEHDs) and the microbiology laboratory of 

the Royal Preston Hospital. It involved the collection via questionnaire of self-

reported clinical and exposure information from laboratory-confirmed clinical cases 

of giardiasis notified in Central Lancashire and surrounding areas.   

 

2.2 AIMS OF THE STUDY 

 

The aim of this chapter was to analyse the socio-demographic, self-reported clinical 

and exposure data collected during the enhanced surveillance study to describe the 

population burden, epidemiological trends and clinical outcome of giardiasis from 

Central Lancashire, and to generate hypotheses about the major transmission routes 

for the parasite in the area.   
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2.3 MATERIALS AND METHODS  

 

2.3.1 Study duration and catchment area  

 

The study started in mid-September 2007 and finished in mid-February 2012 

spanning a period of slightly over four years, and it included patients with diarrhoea 

referring to the Royal Preston Hospital for diagnosis and with a confirmed Giardia 

infection. Patients were mostly resident in Central Lancashire (e.g. local authorities 

of Preston, South Ribble and Chorley), but occasionally also those coming from 

other Lancashire LAs and referrals to the Royal Preston hospital for diagnosis were 

included. 

 

2.3.2 Cases identification and inclusion  

For the entire duration of the study, all the diarrhoeal samples submitted by family 

doctors to the Royal Preston Hospital were screened for Giardia. Faecal specimens 

were first assayed using a monoclonal EIA antigen detection method for the 

simultaneous detection of Giardia and Cryptosporidium 

(GIARDIA/CRYPTOSPORIDIUM CHEK
®

, Techlab). Positive samples (indicating 

the presence of either of the two parasites) were then confirmed with a Giardia-

specific immunochromatographic assay (RIDA
®

QUICK Giardia, R-Biopharm). 

Faecal specimens were tested also for the presence of other intestinal pathogens 

including Salmonella, Shigella, Campylobacter, Escherichia coli 0157 and Vibrio 

spp. (the latter only in case of reported foreign travel). The diagnostic workflow is 

summarised in Figure 2.1. Patients that were found co-infected with either 

Cryptosporidium or at least one of the aforementioned bacterial pathogens were 

excluded from the study. All the laboratory-confirmed cases of giardiasis were then 

reported by the hospital microbiology department to both the Central Lancashire 

Health Protection Unit (CLHPU) and their local Environmental Health Department, 

as part of routine communicable disease surveillance.  
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Figure 2.1: Diagnostic workflow implemented at the Royal Preston Hospital for the 

diagnosis and subsequent inclusion of Giardia cases in the enhanced surveillance 

study. 

 

2.3.3 Clinico-epidemiological data collection 

Information about age, gender and postcode was recorded for all the cases. 

Additionally, an epidemiological questionnaire was administered to the Central 

Lancashire cases to collect information about experienced symptoms and potential 

exposure factors.  The questionnaire included questions about socio-demographic 

details (e.g. ethnicity, household composition), self-reported clinical outcomes (e.g. 

experienced symptoms, illness duration, days of normal activity prevented due to 

illness etc.) and potential exposures experienced in the month prior to illness 
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(exposure window) (e.g. travel abroad, water and food consumption, outdoor 

recreational activities, pet ownership, visits to animal premises etc.). Cases were 

either sent the questionnaire through post by the CLHPU, or directly contacted by the 

Environmental Health Department and interviewed face-to-face. Reminders were not 

sent to the cases that didn’t reply. Completed questionnaires were then returned to 

the CLHPU, and the data were entered by the Unit staff onto the study database on a 

regular basis. At the end of the study period an Excel copy of the completed study 

database was sent to the Department of Infection Biology at University of Liverpool 

for data analysis. 

 

2.3.4 Data cleaning and analysis 

Before analysis, data held in the surveillance database were checked for duplicate 

records (which were deleted) and entry errors and discrepancies (that were identified 

by checking the questionnaire fields for unusual values and/or comparing related 

fields in the same section). Wrong values or missing fields were then corrected 

whenever possible by accessing the original questionnaire (done by the CLHPU staff 

following request) or by using the information from a related question in the same 

section.  No multiple imputation methods were used.  

Statistical analyses were done using both Epi Info™ version 7 (Centre for Disease 

Control and Prevention, USA) or IBM
®

 SPSS
®
 Statistics 20 (IBM, USA). For 

disease rates calculation, regional population (mid-2011 resident population 

estimates) and local authority data were obtained by accessing the website of the 

Office for National Statistics (Office for National Statistics, 2013a). To check for a 

potential association between giardiasis and area deprivation, the cases’ postcode 

information was entered onto the Office for National Statistics website (Office for 

National Statistics, 2013b) to obtain the lower super output area (LSOA) Index of 

Multiple Deprivation (IMD) 2010. This index is calculated considering 37 different 

indicators related to seven different dimensions (income, employment, health 

deprivation and disability, education skills and training, barriers to housing and 

services, crime and living environment) and it is used to generate an IMD rank. Each 

of the 32,482 LSOAs within England is classified by level of deprivation according 

to the IMD rank, spanning from 1 (for the most deprived area) to 32,482 (for the 
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least deprived). Neighbourhoods were then classified into four categories of 

deprivation based on the quartiles of distribution: high (IMD rank ≤ 8,120), moderate 

(8,121≤ IMD rank ≤ 16,241), low (16,242 ≤ IMD rank ≤ 24,362) and very low 

(24,363 ≤ IMD rank ≤ 32,482). 

Descriptive statistics were calculated for all the socio-demographic, clinical and 

exposure variables. Correlations between continuous or ordinal variables were tested 

with the Spearman’s rank (rho) correlation coefficient, whereas cross-tabulations 

were used to explore associations between categorical variables. Case-case analysis 

was performed to compare the characteristics and exposures between different 

categories of cases. Tests of significance used included the Pearson’s Chi-Square (χ
2
) 

(or Fisher’s Exact when data were sparse) and the Mann-Whitney’s U test, for 

categorical and continuous variables respectively. Trend analysis was performed 

using the Chi-Square test for trend. In the analysis some variables were treated both 

as continuous and categorical, and the results from both were compared and reported. 

All tests were two-sided and p-values of less than 5% were considered to be 

statistically significant. 
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2.4 RESULTS 

 

2.4.1 Notified Giardia cases 

From September 2007 to February 2012, a total of 423 Giardia cases were diagnosed 

at the Royal Preston Hospital and notified to the CLHPU. Thirty-six cases were 

notified from September to December 2007, 120 in 2008, 91 in 2009, 101 in 2010, 

67 in 2011 and eight in the first two months of 2012. Of the 423 cases notified, 358 

(84.6 %) were resident in Central Lancashire, with 163 cases from Preston, 120 from 

South Ribble and 75 from Chorley. The remaining 65 cases (15.4 %) came from 

other local authorities in Lancashire including Wyre (32 cases), Ribble Valley (21), 

Fylde (seven), Blackburn with Darwen (two) and Pendle, Lancaster and West 

Lancashire (one each). No outbreaks were detected during the study period (Ken 

Lamden, personal communication). 

Of the 423 cases, males were significantly more frequent than females (255 males, 

60% and 168 females, 40%) (Pearson’s χ
2
, p<0.001). The age distribution of the 

cases was bimodal (Figure 2.2), with the higher number in adults 30 to 40 years of 

age. Children below five represented around 10% of the cases. Young people from 

five to 19 years of age had the lowest proportion of cases. 

 

 

Figure 2.2: Age distribution of the 423 cases notified during the enhanced 

surveillance period. The number of cases is reported above the bars. 
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By considering the neighbourhood deprivation, the median neighbourhood IMD rank 

of the 423 cases was 19,819 (range 79 to 31,828). The cases were not equally 

distributed in terms of their neighbourhood deprivation level (Pearson’s χ
2
, p<0.001), 

with cases living in the least deprived areas being more frequent (143 over 423, 

33.8%) (Figure 2.3). 

 

 

Figure 2.3: Distribution by level of neighbourhood deprivation of the 423 cases 

notified during the enhanced surveillance period. The number of cases is reported 

above the bars. 

 

2.4.2 Population rates and seasonality of giardiasis in Central Lancashire 

The population rates and seasonality of giardiasis were determined only for Central 

Lancashire since faecal specimens from this area were exclusively referred to the 

Royal Preston Hospital, whereas those from other areas were not and so they did not 

represent the total number of cases in their respective LAs. Data were also available 

on 86 Giardia cases resident in Central Lancashire and notified during 2012. These 

cases were included in the disease rates analysis to cover a time period of five full 

years (2008-2012). The estimated rates of giardiasis in Central Lancashire for the 

period 2008-2012 are shown in Table 2.1.   
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Table 2.1: Rates of giardiasis in Central Lancashire 2008-12. Rates were calculated using as 

denominator the estimated resident population (in thousands) at mid-2011 (Preston: 139,800; 

South Ribble: 109,200; Chorley: 107,800; Central Lancashire: 356,800) (Office for National 

Statistics, 2013a). 

 

 
Rate/100,000 population (no. cases) 

Year Preston South Ribble Chorley Central Lancashire 

2008 35.8 (50) 32.1 (35) 16.7 (18) 28.9 (103) 

2009 30 (42) 19.2 (21) 13 (14) 21.6 (77) 

2010 26.5 (37) 31.1 (34) 13 (14) 23.8 (85) 

2011 17.9 (25) 16.5 (18) 12.1 (13) 15.7 (56) 

2012 18.6 (26) 30.2 (33) 19.5 (21) 22.4 (80) 

Cumulative rate 128.8 (180) 129.1 (141) 74.2 (80) 112.4 (401) 

Mean annual rate 

(±sd) 
25.8 (±7.6) 25.8 (±7.4) 14.8 (±3.1) 22.5 (±4.7) 

 

 

Overall the rate of giardiasis in Central Lancashire varied between years and 

generally decreased over time, although not reaching levels of conventional 

statistical significance (χ
2
 for trend 3.79, p=0.052) (Figure 2.4). Considering each 

local authority separately, the disease rate significantly decreased over time only in 

Preston (χ
2
 for trend 10.39, p=0.001) but in neither South Ribble (χ

2
 for trend 0.20, 

p=0.655) nor Chorley (χ
2
 for trend 0.93, p=0.335). 

 

 

Figure 2.4: Rates of giardiasis in Central Lancashire and its respective local 

authorities, 2008-2012. 
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In order to verify whether the observed variation in the rates of giardiasis followed a 

pattern similar to other intestinal pathogens diagnosed in the area within the same 

diagnostic workflow, available data on the number of cases of cryptosporidiosis and 

campylobacteriosis in Central Lancashire residents diagnosed by the Royal Preston 

Hospital in the years 2008-2012 were analysed. The rate of cryptosporidiosis showed 

a significant increase over time in the whole Central Lancashire (χ
2
 for trend 6.36, 

p=0.012). Considering the three local authorities separately, the increasing trend in 

the rate from 2008 to 2012 was significant in Chorley (χ
2
 for trend 14.97, p<0.001) 

and marginally significant in South Ribble (χ
2
 for trend 3.66, p=0.056), but there was 

no significant trend in Preston (χ
2
 for trend 1.93, p=0.164). The rate of 

campylobacteriosis significantly increased in the whole Central Lancashire from 

2008 to 2012 (χ
2
 for trend 10.15, p=0.001), but the increasing trend was significant in 

South Ribble (χ
2
 for trend 5.40, p=0.020), marginally significant in Chorley (χ

2
 for 

trend 3.43, p=0.064) and there was no significant trend in Preston (χ
2
 for trend 1.94, 

p=0.164).  

 

The rate of giardiasis varied between the three local authorities within Central 

Lancashire, with the highest and the lowest disease rates observed in Preston and 

Chorley respectively (Table 2.1). The rate of disease was significantly higher in 

Preston compared to Chorley (Risk ratio RR 1.53, 95% CI 1.19-1.97, Mantel-

Haenszel χ
2 

corrected for study year: p=0.001) and in South Ribble compared to 

Chorley (RR 1.93, 95% CI 1.35-2.75, Mantel-Haenszel χ
2 

corrected for study year: 

p<0.001), whereas it was not significantly higher in Preston than South Ribble (RR 

1.28, 95% CI 0.92-1.79, Mantel-Haenszel χ
2 

corrected for study year: p=0.164). For 

comparison, the rates of cryptosporidiosis and campylobacteriosis in the three local 

authorities of Central Lancashire for the years 2008-2012 were also calculated. The 

rate of cryptosporidiosis was significantly higher in Chorley than in Preston, whereas 

the opposite was observed for the rate of campylobacteriosis (Table 2.2).  
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Table 2.2: Rates of cryptosporidiosis and campylobacteriosis in Central Lancashire, 2008-

2012.  Rates were calculated using as denominator the estimated resident population (in 

thousands) at mid-2011 (Preston: 139,800; South Ribble: 109,200; Chorley: 107,800; Central 

Lancashire: 356,800) (Office for National Statistics, 2013a). 

 

 Cumulative rate/100,000 population (no. cases) 

Pathogen 
Preston 

PR 

South 

Ribble SR 

Chorley 

CH 

LA vs LA risk ratio (95%CI, p-

value)* 

Cryptosporidium 
100.9 

(141) 

101.6 

(111) 

128.9 

(139) 

PR vs SR: 0.922 (0.77-1.27, p=1.000) 

SR vs CH: 0.79 (0.61-1.01, p=0.070) 

PR vs CH: 0.78 (0.62-0.99, p=0.045) 

Campylobacter 
595.1 

(832) 

584.2 

(638) 

554.7 

(598) 

PR vs SR: 1.06 (0.94-1.20, p=0.359) 

SR vs CH: 1.09 (0.92-1.29, p=0.361) 

PR vs CH: 1.18 (1.01-1.38, p=0.041) 

*Mantel-Haenszel χ
2 
corrected for study year 

 

The rate of giardiasis in Central Lancashire was significantly higher in the male 

population (141.8 cases/100,000 males) compared to the female population (86.5 

cases/100,000 females) (RR 1.64, 95% CI 1.34-2.00, Mantel-Haenszel χ
2 

corrected 

for local authority: p<0.001). Rates were consistently and significantly higher in 

males in all the three local authorities (Table 2.3). 

 

Table 2.3: Rates of giardiasis by gender and male to female risk ratios in Preston, South 

Ribble and Chorley, 2008-12. Rates were calculated using as denominator the estimated 

resident male and female populations (in thousands) at mid-2011 (Preston: 70,200 males, 

69,600 females; South Ribble: 53,400 males, 55,800 females; Chorley: 54,100 males, 53,700 

females) (Office for National Statistics, 2013a).  

 
Local 

authority 

Rate/100,000 male 

population (no. cases) 

Rate/100,000 female 

population (no. cases) 

Male to female risk ratio 

(95% CI, p-value) 

Preston 152.4 (107) 107.8 (75) 1.41 (1.05-1.90, p=0.021) 

South Ribble 170.4 (91) 89.6 (50) 1.90 (1.35-2.68, p<0.001) 

Chorley 99.8 (54) 55.9 (30) 1.79 (1.14-2.79, p=0.012) 

 

 

The rate of giardiasis in Central Lancashire showed a bimodal distribution in relation 

to age, with the largest rate observed in children below five years and another one in 

people in their 30s (Figure 2.4). The lowest rates were observed from five to 19 

years of age. In adults 30 years of age or older the rate decreased with increasing age. 

Although case males were more frequent than females across all age groups, the rate 

of giardiasis was significantly higher in males in those aged 10-19y (RR 4.16, 95% 

CI 1.18-14.58,
 
p=0.022) and in adults in their 40s (RR 2.43, 95% CI 1.48-3.98, 

p<0.001) and 50s (RR 2.32, 95% CI 1.24-4.34, p=0.008) (Figure 2.5). There was 
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only weak evidence to suggest that the rate in males was higher than the rate in 

females in children below five years (RR 1.89, 95% CI 1.02-3.52, p=0.051). 

 

 

Figure 2.5: Rates of giardiasis by age and gender, Central Lancashire 2008-2012. 

The male to female risk ratio (in italics) is reported above the bars representing the 

rates by age group, with the asterisks indicating the presence of a significant 

difference in the rates between genders (*p<0.05; **p<0.01; ***p<0.001). 

 

The seasonality of giardiasis was explored by using both the month of report of the 

cases and the estimated month of exposure, which was calculated as the month of 

report minus one month (e.g. taking into account the disease incubation period, the 

time passed from the start of illness to the consultation of the GP and the subsequent 

specimen testing).  By considering the total number of cases reported in Central 

Lancashire from 2008 to 2012,  the proportion of cases did not significantly differ 

between months (Pearson’s χ
2
, df=11, p=0.338) and no trend in the number of 

reported cases was observed from January to December (correlation between number 

of cases and month of report: Spearman’s rho=0.415, p=0.180).  The number of 

reported cases peaked in the month of September (corresponding to August month of 

exposure) and also in November (October month of exposure), and a smaller peak 

was observed in April (March month of exposure) (Figure 2.6a).  

By grouping the cases in four seasons, a significant trend with an increasing number 

of cases reported from Winter to Autumn was observed (correlation between number 

of cases and season of report: Spearman’s rho=0.994, p=0.006). The trend was less 
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apparent when the season of exposure was considered (Spearman’s rho=0.602, 

p=0.398), with the number of cases peaking during the Summer (Figure 2.6b). 

 

 

 

Figure 2.6: Cumulative number of cases of giardiasis reported per month of 

report (and estimated month of exposure) (a) and by season of report (and 

estimated season of exposure) (b) in Central Lancashire, 2008-12 (n=407).  

 

2.4.3 Clinical and exposure profile of the cases 

Of the 423 cases that were notified and contacted during the surveillance study 

period (September 2007-February 2012), 246 (58.1% response rate) returned the 

study questionnaire. Response rates varied according to both gender and age, with 

males having a significantly lower response rate (138 returned over 255 male cases, 

54.1%) compared to females (108 returned over 168 female cases, 64.3%) (Pearson’s 

χ
2
, p=0.038). Response rates significantly varied between age groups (Fisher’s Exact 

χ
2
, p=0.003): the highest response rate was observed in cases over 60 years of age 
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(69 out of 90, 76.7%) and the lowest in young adults from 20 to 39 years (65 out of 

138, 47.1%), with similar response rates observed in the 40-59 years age group (72 

out of 124, 58.1%), 5 to 19 age group (15 out of 26, 57.7%) and in children below 

five (25 out of 45, 55.6%). The reported clinical and exposure profile of the cases 

was described. The number of responders to each question varied and only those 

responding have been used in the analysis. The denominator of the percentages 

presented provides the number of responders. 

 

Self-reported clinical outcomes  

Diarrhoea was the most commonly reported symptom, followed by abdominal pain, 

vomiting and fever (Figure 2.7). The presence of blood in the stools was reported by 

only 10.5% of the cases. 

 

 

Figure 2.7: Self-reported symptoms in 238 symptomatic cases that answered the 

surveillance questionnaire and reporting at least one symptom. The number of cases 

is reported over the bars. 

 

There were no significant differences in the reported symptoms between males and 

females. The median age of cases that reported experiencing vomiting or fever was 

significantly lower than the age of those that did not (38 vs 46 years for vomiting, 

Mann-Whitney U, p=0.026; 40 vs 44.5 years for fever, Mann-Whitney U, p=0.032). 

The median number of different symptoms experienced at the same time was three 

(range one to five). By looking at symptoms that were reported at the same time, 
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reporting fever was found to be significantly and positively associated with both 

reporting diarrhoea (Fisher’s Exact, p=0.046) and vomiting (Pearson’s χ
2
, p=0.009). 

The number of reported symptoms was not correlated to the age of the cases 

(Spearman’s rho=-0.110, p=0.091), and there was no significant difference in the 

number of reported symptoms between males and females (Mann-Whitney U, 

p=0.473). 

Of the 234 cases that answered the question, 69 (29.5%) reported that they still felt ill 

when they filled the questionnaire. Of the 148 cases that reported they were no 

longer ill, the median length of illness was 17.5 days (range one to 180).  There was 

no correlation between the length of illness and the age of the cases (Spearman’s Rho 

= -0.140, p=0.074), but the median length of illness was higher in females compared 

to males (21 days in females and 14 days in males, Mann-Whitney U, p=0.003).  

Information about the number of days of normal activity prevented due to illness was 

available from 117 cases, which reported a median of seven days (range none to 90). 

There was no correlation between the number of days of normal activity prevented 

and the age of the cases (Spearman’s rho = -0.011, p=0.907), but the median number 

of days of activity prevented was higher in females compared to males (10 days in 

females and five days in males, Mann-Whitney U, p=0.015).  

Out of 219 cases that answered the question, 23 (10.5%) reported being admitted to 

hospital as a result of their illness. Their median age was 63 years (range one to 89) 

and 18 of them (78.3%) were males. In 15 cases that specified also the duration of 

hospitalisation, the median number of days was five (range one to 47). Both 

reporting fever and blood in stools were significantly and positively associated with 

being hospitalised due to illness (Fisher’s Exact, p=0.014 and 0.006 for fever and 

blood in stools respectively). 

Eight cases were reported more than once during the study period, due to either 

recurrent or relapsing infection. Six cases suffered a second episode of giardiasis less 

than one year from the first one. Seven cases were males and the median age was 38 

years (range one to 63). 

 

Ethnicity 

Out of 205 cases that answered the question about their ethnicity, 188 (91.7%) were 

Whites, followed by 15 (7.3%) that were Asians, one White/Indian and one Black-

Caribbean. 



 

48 

 

Travel history 

Of the 238 cases answering the question on their travel history in the month prior to 

illness, 138 (58%) reported that they did not travel. Of the 100 cases that travelled, 

76 travelled outside the UK and 74 reported the countries they travelled to: of these, 

46 (62.2%) travelled to one or more potentially at-risk countries for giardiasis such 

as Middle East and Asia (including Turkey) (32 cases, 69.6%), Africa (including 

Canary Islands) (ten cases, 21.7%) or Central and South America (two cases). The 

remaining 28 cases that travelled abroad reported travelling to Europe (25 cases) or 

North America (three cases). 

 

Water and food consumption  

A total of 237 cases reported the source(s) from which they drank un-boiled water in 

the month prior to illness: 85.2% (202/237) reported drinking from the mains water 

supply, 1.3% (3/237) drank water from a private supply, 17.7% (42/237) from a 

water filter, 60.8% (144/237) drank bottled water and 1.3% (3/237) potentially 

unsafe water from a river, a spring or a pond.  The median number of glasses of un-

boiled water (e.g. taken straight from the tap or mixed with cordial or squash) 

consumed daily by the cases was three (range zero to 20).  

Out of 225 cases answering the question 207 (92%) reporting eating fresh fruit in the 

month prior to illness and 144 (64%) ate it at least three times a week, with most 

cases purchasing it at a supermarket (178 cases out of 207 reporting the provenience, 

86%). A total of 227 cases answered the question on salad items (e.g. lettuce, 

tomatoes, ready-made or homemade salads, or salad items in sandwiches), of which 

86.3% (199/227) ate any salad item in the month prior to illness, with 99 cases 

(43.6%) reporting eating them at least three times a week.  Salad items were 

purchased mainly at a supermarket (167/197 reporting the provenience, 84.8%). 

Uncooked vegetables other than salad items were eaten at least once only by 101 

(46.3%) of the 218 responding cases, most being purchased at a supermarket (88/143 

reporting the provenience, 85.4%). A total of 166 (75.1%) of the 221 responding 

cases drank fruit or vegetable juice in the month prior to illness, with 39.8% (88/221) 

reporting drinking juice at least three times a week and juice mostly purchased at a 

supermarket (146/166, 88%). A total of 31 cases also reported eating any of the 

aforementioned food items from a place different from those specified (supermarket, 
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greengrocers, market or home-grown), and these mostly including hotel restaurants 

and farm shops. 

 

Outdoor recreational activities  

A total of 246 cases answered the questions regarding outdoor recreational activities 

practised in the month prior to illness: 35.4% (87/246) went to the swimming pool at 

least once, for a median of three times (range one to 30) in the 60 cases that reported 

the information, 7.3% (18/246) swam in a lake, pond or river, 10.9% (27/246) 

practised water sports in freshwater or at sea, 32.9% (81/246) walked in the 

countryside and 10.2% (25/246) went picnicking,  5.7% (14/246) practised 

fieldsports, 5.7% (14/246) went caravanning, 4.9% (12/246) went camping and 3.3% 

(8/246) went fishing. 

 

Animal contact  

Out of 232 cases answering the question about pet ownership, 113 (48.7%) reported 

either owning a pet (110) or having pets at the workplace (three cases, of which two 

working at a kennel and a cattery). For the pet owners, dogs were most frequently 

reported (66 cases, 60%), followed by cats (44 cases, 40%), birds (including 

chickens) (16 cases, 14.5%), rabbits (12 cases, 10.9%) and horses (two cases, 1.8%). 

Other reported pets included fish (seven cases) and hamsters or guinea pigs (five 

cases). Of the 91 pet owners that responded, only 6 (6.6%) reported any of their pets 

having diarrhoea in the exposure window. A total of 215 cases responded to the 

question of visiting a premise with animals in the exposure window, of which 61 

(28.4%) reported having do so including a farm, stable or a horse riding school (28 

cases) and a wildlife park or a zoo (nine). Of 54 responders, 38 (70.4%) reported 

touching at least one animal during the visit. Most commonly touched animals were 

sheep and goats (20 cases, 52.6%), horses (12, 31.6%) and cattle (ten, 26.3%), 

followed by chickens (nine, 23.7%) and pigs (four, 10.5%). Other types of animal 

touched included birds (parrot, starling, owlet) (four cases), dogs and cats (three), 

elephants (three), rabbits and guinea pigs (two), reptiles (tortoise, snake, lizard) 

(two), deer and camels (two). 
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Household composition and human contact 

In 235 cases reporting this information the median number of adults (i.e. 16 years of 

age or more) in the household was two (range one to 10), and 112 (47.7%) reported 

at least one child below 16 years of age. The median number of children was two 

(range one to five). The median number of people living in the same household was 

three (range one to ten). Of 106 cases with children in the household and reporting 

this information, 59 (55.7%) reported at least one child being in nappies. Of the 226 

cases answering the question, 41 (18.1%) reported changing nappies (not only of 

their own children) at least once in the exposure window. A total of 30 (13%) of the 

230 that responded reported the presence in the household of at least another person 

ill with symptoms similar to those experienced the case. A total of 24 (11.1%) of 216 

responders reported also they had contact with a person ill with similar symptoms 

outside the household.  

 

2.4.4 Comparison of cases with and without a history of travel abroad 

 

The socio-demographics, clinical outcome and exposure history were compared 

between and the cases that either did not report any travel or that only travelled 

within the UK (defined as indigenous) and those reporting travelling abroad in the 

month prior to illness. The two groups of cases did not differ in terms of their gender 

distribution (Pearson’s χ
2
, p=0.895), but significant differences between travel-

related and indigenous cases were found in relation to age (Fisher’s Exact, p=0.020): 

travelling abroad was reported significantly more frequently in adults in their 50s, 

whereas the significant majority of people aged 70+ years did not report any travel 

abroad. Indigenous and travel-related cases did not differ in terms of their 

neighbourhood level of deprivation (Fisher’s Exact, p=0.117). The significant 

differences (p<0.05) found in the clinical and exposure profile of the two groups of 

cases are reported in Table 2.4, whereas non-significant comparisons (p≥0.05) are 

reported in Table 2.4.1, Appendix 1.  
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Table 2.4: Significant differences (p<0.05) in the clinico-epidemiological characteristics of Giardia cases that did not travel abroad (n=162) and cases that 

travelled abroad (n=76) in the month prior to illness and that returned the surveillance questionnaire. 

 
   Travel abroad (outside the UK)  

Variable No. valid 

(% missing)* 

Category No  

n (%)** 

Yes  

n (%)** 

p-value 

Admitted to hospital due to the illness 219 (7.8) No 130 (86.1) 65 (95.6) 0.037 

Yes 21 (13.9) 3 (4.4) 

Drinking un-boiled tap water from a mains water supply 231 (2.9) No 16 (10.1) 18 (24.7) 0.004 

Yes 142 (89.9) 55 (75.3) 

Drinking bottled water  231 (2.9) No 73 (46.2) 16 (21.9) <0.001 

Yes 85 (53.8) 57 (78.1) 

Going to the swimming pool 238  No 124 (76.5) 30 (39.5) <0.001 

Yes 38 (23.5) 46 (60.5) 

Frequency of going to the swimming pool (no. times) 212 (10.9) 0 124 (81) 30 (50.8) <0.001
M

 

1-2 19 (12.4) 6 (10.2) 

3-4 5 (3.3) 10 (16.9) 

5-6 5 (3.3) 2 (3.4) 

7+ 0 (0) 11 (18.6) 

Swimming in a  lake, pond or river 238 No 155 (95.7) 65 (85.5) 0.006 

Yes 7 (4.3) 11 (14.5) 

Practising watersports in freshwater 238 No 161 (99.4) 71 (93.4) 0.014 

Yes 1 (0.6) 5 (6.6) 

Practising watersports at sea 238 No 157 (96.9) 60 (78.9) <0.001 

Yes 5 (3.1) 16 (21.1) 

Went fishing 238 No 160 (98.8) 70 (92.1) 0.014 

Yes 2 (1.2) 6 (7.9) 

Eating fresh fruit purchased from a market 221 (7.1) No 145 (95.4) 59 (85.5) 0.011 

Yes 7 (4.6) 10 (14.5) 

Eating fresh fruit from a place other than market supermarket, 

greengrocers or homegrown 

221 (7.1) No 147 (96.7) 57 (82.6) <0.001 

Yes 5 (3.3) 12 (17.4) 

Eating salad items purchased from a market 223 (6.3) No 151 (98.1) 63 (91.3) 0.027 

Yes 3 (1.9) 6 (8.7) 

Eating salad items from a place other than market supermarket, 223 (6.3) No 148 (96.1) 58 (84.1) 0.002 
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greengrocers or homegrown Yes 6 (3.9) 11 (15.9) 

Eating uncooked vegetables from a place other than market, 

supermarket, greengrocers or homegrown 

214 (10.1) No 145 (98.6) 61 (91) 0.013 

Yes 2 (1.4) 6 (9) 

Drinking juice purchased from a market 216 (9.2) No 147 (99.3) 63 (92.6) 0.013 

Yes 1 (0.7) 5 (7.4) 

Drinking juice from a place other than market supermarket, 

greengrocers or homegrown 

216 (9.2) No 142 (95.9) 60 (88.2) 0.041 

Yes 6 (4.1) 8 (11.8) 

*percentages refer to the proportion of participants with missing information for the variable; **percentages refer to the proportion among cases that answered the question; 
M

Mann-Whitney U test 
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The seasonality of the cases reported in the period 2008-2011 in relation to their 

reported travel history was also compared. There was no significant association 

between the cases travel history and their distribution by either month (Fisher’s 

Exact, p=0.188) or season (Pearson’s χ
2
, p=0.107). Cases reporting travel abroad 

exhibited a larger peak in August, September and an upswing in December (Figure 

2.8), their numbers significantly increasing in the second half of the year (e.g. 

Summer and Autumn) (correlation between number of cases and month of report: 

Spearman’s rho=0.685, p=0.014 by month and Spearman’s rho=0.655, p=0.345 by 

season). On the other hand, cases that did not travel abroad showed a major peak 

during September and a minor peak in May-June, but their distribution did not show 

any significant trend throughout the year (Spearman’s rho=0.00, p=1.000 by month 

and Spearman’s rho=0.880, p=0.120 by season). 

 

 

 

Figure 2.8: Monthly (a) and seasonal (b) distribution of cases that did not travel 

abroad (n=140) and those that travelled abroad (n=63) in the month prior to illness, 

2008-11.  
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2.4.5 Comparison of male and female cases exposure history 

The exposure history reported in the month prior to illness was also compared 

between genders. The significant differences (p<0.05) found in the exposure profile 

of male and female cases are reported in Table 2.5, whereas non-significant 

comparisons (p≥0.05) are reported in Table 2.5.1 in Appendix 1.  

 

Table 2.5: Significant differences (p<0.05) in the exposure history reported in the month 

prior to illness by male (n=138) and female (n=108) Giardia cases that returned the 

surveillance questionnaire.  

 
Variable No. valid 

(% missing) 

Category Males 

n (%)* 

Females 

n (%)* 

p-value 

Eating salad items 

purchased from a market 

228 (7.3) No 118 (93.7) 101 (99) 0.045 

Yes 8 (6.3) 1 (1) 

Keeping a cat 229 (6.9) No 109 (86.5) 76 (73.8) 0.015 

Yes 17 (13.5) 27 (26.2) 

Changing nappies 226 (8.1) No 112 (87.5) 73 (74.5) 0.012 

Yes 16 (12.5) 25 (25.5) 

*percentages refer to the proportion among cases that answered the question 
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2.5 DISCUSSION 

We explored the burden of giardiasis and its major clinico-epidemiological features 

in Central Lancashire, using data collected during an enhanced surveillance program 

in the area. 

 

Results showed that giardiasis commonly occurs in Central Lancashire, with an 

average rate of 22.5 cases/100,000 population in the period 2008-2012. This rate was 

four times higher than the average rate reported in either North West England (5.5 

cases/100,000) or in England and Wales (6.2/100,000) in the period 2008-2009 

(Health Protection Agency, 2011a) and also higher than the one reported in Europe 

in 2009 (5.6/100,000) by the European Centre for Disease Prevention and Control 

(European Center for Disease Prevention and Control, 2011).  

It is not possible to tell if the incidence of disease was actually higher in Central 

Lancashire compared to other regions of England or Europe. Incidence rates cannot 

be directly compared across countries (or regions within the same country) if 

different surveillance systems or diagnostic procedures are being used (Yoder et al., 

2010). The procedure currently in place at the Royal Preston Hospital, based on 

testing all diarrhoeal samples submitted from the community with a highly sensitive 

diagnostic method, allowed the detection of infections that would normally be 

missed in other contexts: under this light, the rates of giardiasis observed in Central 

Lancashire can be considered reliable. It is important to note that in this study mostly 

symptomatic infections were taken into account, whereas asymptomatic infections 

were occasionally found only when the household members of the index case were 

tested for Giardia too.  Not many data on the prevalence of asymptomatic Giardia 

infection in the UK population are available. In a study on preschool children at day 

care facilities, the parasite prevalence in this group of subjects was found to be only 

1.3% (Davies et al., 2009). The application of a PCR assay on faecal samples 

collected from asymptomatic controls during the English case-control Infectious 

Intestinal Disease Study revealed the presence of Giardia DNA in 1.4% of the 

specimens (Amar et al., 2007). It is evident that more data on the asymptomatic 

carriage of this parasite in the general population are needed in order to understand 

its true burden.  
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Rates of giardiasis varied considerably over time and between the three local 

authorities of Central Lancashire. Spatio-temporal variation was also observed in the 

rates of cryptosporidiosis and campylobacteriosis. Neither the way faecal samples 

were tested by the hospital lab nor the way cases were notified to the CLHPU 

changed during the study period, and the sample submission rate (i.e the number of 

faecal samples submitted per local resident population) did not vary between the 

local authorities (John Cheesbrough, personal communication). Variations in disease 

rates observed at such a small scale must not be over-interpreted since they could be 

the result of variations in the population exposure levels to the specific pathogen (i.e. 

changes in travel habits or likelihood of outdoor activities) or they may be the result 

of small outbreaks going unnoticed.  

 

Giardiasis did not show a pronounced seasonality in the area under study, but the 

case reports increased in the warm season and in particular they peaked in the month 

of September. Results confirm the data available from England and Wales, where the 

majority of cases of disease are usually reported in August and September (Gray et 

al., 1994; Health Protection Agency, 2011a). A peak in the number of cases of 

giardiasis is usually observed in the warm season in other developed countries like 

the United States (Yoder et al., 2010) and Finland (Rimhanen-Finne et al., 2011). 

The increase in the number of cases at the end of the summer is commonly observed 

in cryptosporidiosis as well (Chalmers et al., 2011; European Center for Disease 

Prevention and Control, 2011). Travelling increases over the Summer, and hot 

weather is associated with increased water consumption and recreational water use. It 

has also been proposed that parasite transmission can also be amplified by person-to-

person transmission due to the close quarters and low levels of hygiene of activities 

like camping and swimming (Naumova et al., 2007).  A different tendency in 

monthly reporting was observed when cases were compared according to their 

history of foreign travel, with most cases reporting travelling abroad being reported 

at the end of Summer and beginning of Autumn. The late-summer peak (and partially 

also in December) in cases reporting travel abroad supports the role of exposure by 

increased foreign travel as observed also in cryptosporidiosis (Chalmers et al., 2011). 

The tendency of an increased number of reports from April to June observed in cases 

that did not travel abroad could be an indication of increased local environmental 

exposure during that period of the year. 
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Children under five and adults in their 30s were the most affected by giardiasis. 

Available nationwide data show that young children (below ten years) are usually the 

most represented age group for giardiasis (Yoder et al., 2010; HPA, 2011a). 

Nevertheless, our finding of high rates of disease in adults is in accordance with 

some previous studies from England (Stuart et al., 2003; Ellam et al., 2008), but not 

from other studies (Rimhanen-Finne et al., 2011). Interestingly, by considering other 

enteric pathogens a bimodal age distribution (i.e a major peak in infancy, followed 

by a decrease and a second increase in rates in young adults) has also been observed 

for campylobacteriosis in the UK (Gillespie et al., 2008) (Health Protection Agency, 

2011b). Secondary transmission from the infected child to the other members of the 

household (through nappy changing, shared toilet etc.) is thought to play a major role 

in this (Gillespie et al., 2008), and this scenario is applicable to giardiasis as well.  

 

The most striking result was the overall excess of male compared to female cases. A 

disproportion between genders in the number of samples submitted for diagnosis 

may have biased our result. However, the majority (54%) of specimens received by 

the Royal Preston Hospital lab during 2011 actually came from females, and only 

46% from males (John Cheesbrough, personal communication). It has also been 

shown that males over a wide range of ages (in particular from 15 to 60 years) tend 

to have lower GP consultation rates compared to females (Hippisley-Cox & 

Vinogradova, 2009).  Both the aforementioned situations should have then caused 

males to be underrepresented.  Although previous studies done in England did not 

show it (Gray et al., 1994; Stuart et al., 2003; Breathnach et al., 2010), a slight 

preponderance of male cases can be nevertheless observed in the giardiasis 

surveillance data from Europe (European Center for Disease Prevention and Control, 

2011), United States (Yoder et al., 2010) and New Zealand (Snel, 2009a).  Male sex 

is a highly significant risk factor for symptomatic giardiasis in Germany (Espelage et 

al., 2010), and men were found to be at a higher risk for infection in other two 

studies (Ekdahl & Andersson, 2005; Laupland & Church, 2005). It is important to 

consider that in our study, as in those mentioned above, only symptomatic cases were 

included. Whether the prevalence of Giardia infection in the asymptomatic general 

population tends also to be higher in males or is equally distributed between genders 

has to be verified.  

 



 

58 

 

Interestingly, male-biased infection rates and higher infection intensities in males 

have been shown in 84% of the 58 parasite species in which gender differences are 

reported (Klein, 2004), and  male mice experimentally infected with Giardia muris 

tend to suffer from higher trophozoite burdens compared to female mice (Daniels & 

Belosevic, 1995). Gender-specific differences in the immune responses play a major 

role in host-parasite interactions and disease severity in several bacterial and fungal 

diseases (McClelland & Smith, 2011). Males and females differ in both their innate 

and acquired immune responses and sex hormones are known to influence the 

inflammation process, with testosterone having depressive effects on the immune 

system (Klein, 2004). If the progression of giardiasis differs between genders in 

humans as well, then men may tend to develop symptomatic infection or more severe 

disease more easily than females resulting in higher GP consultation rates. 

Contrasting evidence came from the fact that in cases from Central Lancashire 

females reported a longer illness than males, but most of the hospitalised cases were 

males. However, the severity of disease is by itself difficult to define and express 

quantitatively. Furthermore, differences in illness progression between genders may 

be subtle and the self-reporting of symptoms may not be the most appropriate 

method to ascertain them. 

In addition to immunological differences, also gender specific behaviours that may 

favour the exposure to the parasite must be considered (Bundy, 1988).  However, no 

available study on giardiasis has ever shown any gender- specific risk factors. Our 

results seem to suggest that males and females may be exposed to the parasite 

differently. Overall females reported a higher frequency of nappy changing, which is 

a well-known risk factor for giardiasis (Hoque et al., 2001; Hoque et al., 2002a). The 

high frequency of going swimming we observed in women in their 30s and over 60 

years may also be related to this aspect, potentially by accompanying their children 

or grandchildren to the pool. A study from Ivory Coast reported girls being 

significantly more infected with Giardia than boys and infection was positively 

associated with the use of pond water (Ouattara et al., 2010). Higher frequencies of 

foreign travel (and consequently eating food in places such as restaurants) were 

noticed in males between 40 and 60 years of age. It is possible that a more 

adventurous behaviour while travelling abroad may expose men to a higher risk of 

transmission from contaminated water or food. Other behavioural factors may play a 

role in the excess of male cases. For example, anal-oral practices are common 
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amongst gay men and can favour the transmission of various intestinal parasites like 

Giardia (Keystone et al., 1980; Abdolrasouli et al., 2009). Also the presence of 

differences in the level of personal hygiene between males and females cannot be 

excluded.   

 

The majority (57.7%) of the cases of disease lived in areas of moderate to low 

deprivation. Our results match what has been reported in New Zealand, where higher 

notification rates for both giardiasis and cryptosporidiosis were observed in least 

deprived areas (Snel et al., 2009b). It is important to stress that due to the complexity 

of the IMD rank (that takes into account more than 30 different indicators) it may be 

difficult to observe a direct relationship between the overall level of deprivation and 

risk factors for giardiasis, like poor levels of hygiene or overcrowding.  

 

The analysis of self-reported clinical data confirmed that giardiasis is associated to 

high morbidity in humans. Illness duration well exceeded two weeks on average 

(possibly even more considering that nearly 30% of the cases declared feeling still ill 

when they filled the questionnaire), and it interfered with the normal daily activities 

for several days. More severe and usually rarer outcomes like fever and vomiting 

were quite commonly reported.  Since patients with more severe intestinal illness 

show higher rates of GP presentation (Tam et al., 2003), it is possible that the 

morbidity has been slightly overestimated in our study since cases with mild 

symptoms may have been missed. The presence of blood in faeces was reported by a 

number of cases. This finding is surprising since Giardia is not an invasive pathogen 

like Entamoeba spp., and blood shouldn’t be present in the stools (Hill, 2001). 

However, this feature was previously reported by a few patients with giardiasis in 

England (Breathnach et al., 2010). It cannot be excluded that the presence of blood in 

stools could have been the result of other underlying medical conditions:  in our 

study the cases reporting blood in faeces also showed a higher rate of hospitalisation. 

So the relevance of blood in stools must be considered cautiously. Females seemed 

to suffer from a comparatively longer illness than males, but the latter were more 

frequently hospitalised as a result of giardiasis. Since the clinical outcomes were 

reported by the cases themselves, the presence of gender specific bias cannot be 

excluded completely. The perception of illness varies between genders and females 

tend to report more physical symptoms than males (Barsky et al., 2001), although no 
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difference was found between the genders in the number or type of symptoms 

experienced.  

 

The analysis of the exposures reported by the cases in the month prior to illness led 

to some interesting findings.  

 

Cases reporting foreign travel during the exposure window were only a relatively 

small proportion (32%), suggesting that transmission of Giardia may occur locally 

(or at least within the UK) more often than expected. Giardia is one of the most 

common etiologic agents of travellers’ diarrhoea, and travelling abroad consistently 

emerged as a highly significant risk factor in several studies (Gray et al., 1994; 

Hoque et al., 2002b; Gagnon et al., 2006). However, the actual number of cases of 

disease acquired locally is likely to be underestimated if faecal samples mostly 

coming from patients with recent travel are selectively tested for Giardia. In our 

study, the non-selective testing of community diarrhoeal specimens allowed the 

inclusion of a significantly higher number of cases without a foreign travel history. 

Both people behaviours (like water and food consumption) and so potentially the 

exposure levels to the parasite (for example due to different environments and levels 

of hygiene) are likely to change when travelling to another country. Our results 

confirmed this hypothesis and suggested that during travel abroad the transmission of 

giardiasis may have an important waterborne and foodborne component: water-

related recreational activities (including swimming, water sports etc.) and the 

consumption of fresh products from markets or restaurants where reported 

significantly more frequently in cases that travelled abroad. Giardiasis can be 

associated with swimming (Gray et al., 1994; Stuart et al., 2003) or other activities 

involving contact with water (Karanis et al., 2007). Also transmission of Giardia 

through contaminated fresh products is possible (Smith et al., 2007), and in several 

studies their consumption stood up as significant risk factors for the disease (Stuart et 

al., 2003; Espelage et al., 2010; Bello et al., 2011). The provenience of the products 

is probably an important aspect, with the risk of infection from products sold in 

supermarkets likely to be reduced due to more strict food safety measures, if 

compared to food coming from markets, farmers or eaten abroad. Cases that did not 

travel abroad prior to illness were hospitalised more frequently than those that did. 

The same finding was reported in a study from Germany (Espelage et al., 2010). 
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There is no clear explanation for this result. Cases that did not travel abroad appeared 

to be slightly older than the others. Older age and weakened immune responses have 

been proposed as a potential explanation for increased hospitalisation (Espelage et 

al., 2010). Furthermore, people experiencing recent travel abroad are more prone to 

consult their GP in the case of diarrhoea (Tam et al., 2003). It is possible that 

indigenous cases may tend to delay visiting their GP, worsening their condition and 

ending up requiring hospitalisation. However, it was not possible to draw ultimate 

conclusions due to the very small number of hospitalised cases.  

 

Only a very small proportion of cases reported drinking water from a private supply 

source. The use of private water supplies is extremely limited in England and Wales, 

with nearly all households (99.5%) receiving their drinking water from public 

supplies (Smith et al., 2006b). It seems then unlikely that transmission through 

drinking water is of any importance in the area. Contact with animals during the 

exposure window was commonly reported by the cases, with nearly half of them 

reporting owning at least one pet. Pet ownership is common in the UK, involving at 

least 45% of households in 2011 (Pet Food Manufacturers Association, 2013). Most 

reported pets were dogs and cats, but also pet rodents were well represented. All 

these animals are commonly infected with Giardia, and they can harbour potentially 

zoonotic genotypes of the parasite (Sprong et al., 2009). A quarter of the cases also 

reported visiting animal premises (mostly farms) and touching various animals on 

site, in particular horses.  We found that indigenous cases touched horses 

significantly more often than travel-related cases.  This difference could be due to the 

fact that horses usually have closer contact with people on farm settings compared to 

other species, and our analysis was done on a very small number of valid cases. 

Curiously, contact with these particular animals on farms was more frequently 

reported by cases of giardiasis compared to other enteric cases in Canada according 

to the Public Health Agency of Canada (Public Health Agency of Canada, 2009). 

The role of farm animals in the zoonotic transmission of Giardia is debated, although 

some indication of it was found in the UK (Warburton et al., 1994) and molecular 

epidemiological studies seem to suggest it (Winkworth et al., 2008; Khan et al., 

2011).  
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The presence of children in the household was reported by nearly a half (48%) of the 

cases, and the majority (56%) reported at least one of their children to be in nappies. 

Transmission of Giardia within the household through person-to-person contact is 

highly facilitated by the low infectious dose of this parasite (Rendtorff, 1954), and 

both the presence of children in nappies and the act of changing nappies has been 

reported as significant risk factors for giardiasis (Hoque et al., 2001; Hoque et al., 

2002b; Gagnon et al., 2006). The presence of household members with diarrhoea is 

also commonly reported by people infected with Cryptosporidium hominis 

(Chalmers et al., 2011), and the same has been observed in patients with 

campylobacteriosis (Gillespie et al., 2008). Furthermore, the majority of outbreaks of 

giardiasis reported in a study in South West London were in fact small household 

clusters (Breathnach et al., 2010).  

To sum up our results confirmed that using a non-selective approach to community 

stool specimens testing allows the detection of a larger number of cases of giardiasis, 

while revealing at the same time a hidden burden of disease in males, in adults and 

people without a history of foreign travel. The self-reported clinical outcomes also 

indicated a high morbidity associated with giardiasis. This study was only descriptive 

and due to the lack of a control population no inferences about the risk factors for 

infection in the area could be made. Nevertheless, the analysis of the cases’ exposure 

history prior to illness and the comparison between cases with and without a history 

of travel abroad highlighted the possible role played by water-related recreational 

activities and household contacts for the transmission of the parasite, and at the same 

time the need for more data to assess the presence and importance of zoonotic 

transmission. Our results provided then a starting point for a more thorough 

investigation of the risk factors for giardiasis in the area, and in particular for 

infections not related to foreign travel.  
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CHAPTER THREE: CASE-CONTROL STUDY OF 

RISK FACTORS FOR GIARDIASIS IN NORTH 

WEST ENGLAND 
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3.1 INTRODUCTION 

As the results of the surveillance study presented in the previous chapter had shown, 

the burden of giardiasis in Central Lancashire was considerable compared with the 

official figures available for the rest of the UK. In particular, the high proportion of 

adult cases and cases without a history of foreign travel highlighted the need for 

more data on the determinants of infection acquired within the UK. Various 

exposures potentially linked to the acquisition of Giardia in the area (including 

swimming and contact with animals or other ill people) were reported in high 

frequencies in the cases, but their assessment as actual risk factors for the disease 

was prevented by the lack of a proper control population. The implementation of 

case-control (or cohort) studies is the most appropriate strategy to determine which 

factors are significantly associated with an increased risk for the acquisition of 

particular disease in a population. 

 

So far, the risk factors for giardiasis in the UK have been investigated in only three 

case-control studies (Gray et al., 1994; Warburton et al., 1994; Stuart et al., 2003). 

Gray et al. (1994) investigated the general risk factors for giardiasis in patients from 

Avon and Somerset (South West England),. Major hypotheses included the role of 

foreign travel, drinking potential contaminated water and recreational water use. 

When exposures were considered separately, four of them were significantly 

associated with giardiasis: travelling to a developing country, camping, caravanning, 

or use of holiday chalets, swimming (in swimming pools, in freshwater or in the sea) 

and drinking potentially contaminated water (from rivers, streams or wells, ice cubes 

or tap water when outside the UK). Multivariable analysis confirmed that both 

travelling to developing countries (Odds ratio OR 7.6, p<0.001) and camping, 

caravanning or use of holiday chalets (OR 8.4, p=0.017) were strong independent 

risk factors for giardiasis, whereas swimming was only marginally associated with it 

(OR 2.4, p=0.05).  

The study by Stuart et al. (2003) analysed the risk factors for giardiasis specifically 

in people from South West England who had not recently travelled outside the UK. 

Contact with recreational waters (both chlorinated and untreated, including 

swallowing water during the activities), drinking water and food consumption (salad, 

fruit and dairy products), and contact with farms, animals and day nurseries were all 
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tested as potential risk factors. In univariable analysis, giardiasis was found to be 

associated with the consumption of tap water and the number of glasses of tap water 

consumed per day, eating lettuce, visiting a farm, having contact with a nursery, and 

various recreational water exposures (including swimming in chlorinated or fresh 

water, frequency of swimming and head immersion or swallowing water during 

swimming). Recreational contact with fresh water (OR 5.5, p=0.001), swallowing 

water while swimming (in either chlorinated or fresh water) (OR 6.2, p<0.001), 

eating lettuce (OR 2.2, p=0.01) and each additional glass of tap water consumed 

daily (OR 1.3, p<0.001) were all confirmed as independent risk factors for the 

disease following multivariable analysis.  

The study of Warburton et al. (1994) focused specifically on the local risk factors for 

disease in a rural district of East Anglia, by excluding all cases with a history of 

travel either abroad or outside the study area. The major hypothesis of zoonotic 

transmission was tested by analysing the contacts of the cases with pets (dogs and 

cats) and livestock (such as pigs). Also water consumption and swimming habits 

were tested as potential risk fators. Only exposures related to contact with animals 

were associated with an increased risk of giardiasis in univariable analysis: in 

particular, multivariable analysis confirmed that both having contact with pets (OR 

14.55, p<0.001) and having contact with farm animals (OR 4.77, p=0.01) were 

strongly associated with the disease.   

To sum up, the aforementioned case-control studies highlighted three major 

components in the acquisition of giardiasis in the UK. First, travelling abroad to a 

developed country is an important route for infection, confirming what has been 

reported by other studies from developed countries. Second, waterborne transmission 

(through contact with either fresh or chlorinated recreational waters either, or via 

drinking water) seems to be important in people without a foreign travel history. 

Third, it is not clear whether either zoonotic or human-to-human transmission (e.g. 

exposure to human wastes, changing nappies etc.) play any role for Giardia 

transmission in the country.  

More data are then needed from other parts of the country in order to obtain a clearer 

picture of the major risk factors for giardiasis in the UK, focusing in particular on the 

transmission of the disease within the country.   
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3.2 AIMS OF THE STUDY 

 

The aim of the study was to determine the risk factors for giardiasis in people from 

North West England using a case-control study design.  

We first tested the hypothesis of foreign travel (and particularly travelling to 

developing countries, considered more at-risk for giardiasis) as a prominent risk 

factor for the disease. Secondly, the studied the risk factors for giardiasis not 

acquired through foreign travel (e.g. indigenous disease acquired within the UK). 

Our major hypotheses revolved around the role of zoonotic transmission (through 

contact with various pet species, livestock and also wildlife) and person-to-person 

transmission (through contact with young children and their nappies or with other 

sick people in the household). In order to get a comprehensive picture of the 

epidemiology of the disease in this area, we also tested the role of potential 

occupational exposures (through contact with animal or human wastes or 

freshwaters), swimming (either in swimming pools, lakes or rivers, or at sea) and 

other outdoor recreational activities (including picnicking, camping or caravanning), 

drinking water consumption (including also the occurrence of unusual changes in the 

characteristics of tap water) and food consumption (focusing in particular on fresh 

products). 
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3.3 MATERIALS AND METHODS 

 

3.3.1 Study duration and catchment area  

The study involved data collection within the North West of England. The total 

duration of the study was 17 months, with recruitment starting on the 21/02/2012 and 

finishing on the 27/08/13. Participants were recruited from three selected study areas 

based on the catchment population of three hospital microbiology departments with 

participants defined by their local authority (LA) of residence, namely Central 

Lancashire (LAs of Preston, South Ribble and Chorley), East Lancashire (LAs of 

Blackburn with Darwen, Burnley, Hyndburn, Pendle, Ribble Valley and Rossendale) 

and Central Manchester. The inclusion of these three areas was motivated by the 

need of having a reasonable sample size within the planned study time frame (e.g. 

one and a half years at maximum) and because all community diarrhoeal specimens 

in these areas were tested for Giardia using the same enzyme immunoassay. 

Originally, at the start of the study only the areas of Central Lancashire and Central 

Manchester were included. However, due to a low case response rate observed in the 

first few months of recruitment it was decided to include East Lancashire as a third 

catchment area. East Lancashire had become eligible for inclusion after having 

introduced the enzyme immunoassay test after the start of the study. As a result the 

timing of recruitment of participants differed between the three areas. Participants 

from Central Lancashire were included for the whole duration of the study. 

Recruitment from East Lancashire started in November 2012 and continued until the 

end of the study. Due to the addition of East Lancashire and the very low recruitment 

rates from Central Manchester, recruitment from this area was prematurely stopped 

in March 2013. 

 

3.3.2 Ethical approval, study conduct and registration 

Ethical approval for the study was sought through the National Research Ethics 

Service of England (NRES) and it was obtained from the NRES Committee North 

West in Lancaster. The study was conducted in accordance with the principles of 

Good Clinical Practice as laid out in the Committee for Proprietary Medicinal 

Products guidelines (CPMP, 1990).  The study was registered in the UK Clinical 
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Research Network under the following name: Study 11259 - Case-control Study of 

Risk Factors for Giardiasis in Northwest England       (a brief outline of the study is 

available online at the following address: 

http://england.ukcrn.org.uk/StudyDetail.aspx?StudyID=11259) 

 

3.3.3 Study sample size  

The minimum sample size required for the study was estimated using the Sampsize 

program in GLIM 4.0 (Generalized Linear Interactive Modelling) (Royal Statistical 

Society). Since transmission of giardiasis can be associated with a range of exposure 

factors and appropriate estimates of exposures prevalence in the general population 

were lacking, a range of potential sample sizes was explored. A decision was made 

to recruit between 90 (minimum) and 140 (maximum) cases to detect an odds ratio of 

at least two or more for a range of variables, with 80% power and 95% confidence, 

considering a five to 75% exposure range in the control group and a case/control 

ratio of 1:3. In order to take into account potential drop outs, it was decided to recruit 

five controls for each case. 

 

3.3.4 Case definition and inclusion  

To be eligible for the study, a case was defined as any person resident within the 

study areas suffering from gastroenteritis and with an antigen-confirmed Giardia 

infection. Hospitals involved in the study were the Royal Preston Hospital (Central 

Lancashire), the Royal Blackburn Hospitals (East Lancashire) and the Manchester 

Royal Infirmary (Central Manchester). The presence of Giardia infection in the cases 

was confirmed at all three hospitals with the same procedure used in the enhanced 

surveillance study presented in Chapter 2. As for the aforementioned study, cases 

found to be co-infected with any other major gastrointestinal pathogen for which 

faecal samples were screened were excluded. The laboratory-confirmed cases were 

reported by the hospitals microbiology departments either to the Central Lancashire 

Health Protection Unit (CLHPU) (Central and East Lancashire) or the Greater 

Manchester Health Protection Unit (GMHPU) (Central Manchester). Each case was 

allocated a unique six digit identity number (e.g. 123456). Faecal specimens from the 

cases were sent by the hospital laboratories to the Department of Infection Biology at 
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the University of Liverpool for parasite DNA extraction and molecular typing (see 

Chapter 3). 

 

3.3.5 Control definition and selection  

Controls were defined as subjects that were resident within the study areas and who 

had not had diarrhoea in the previous two weeks. Whenever a case of Giardia was 

reported, the HPUs transmitted the details about the case ID number, gender and age 

to either the Lancashire and South Cumbria Agency (LaSCA) or NHS Manchester 

(for Central/East Lancashire and Central Manchester areas, respectively). Controls 

were then selected at random using the “randomise” function in Microsoft Access 

(Microsoft Corporation, Redmond, WA, USA) from the respective areas’ General 

Practitioner lists by the Information Departments holding the GP registration 

database. Controls were selected using a frequency matching design: five controls 

were selected for each case and they were matched to them for both gender and age 

(within the age ranges of 0-4, 5-14, 15-44, 45-64 and 65 years and above). Each 

control was also allocated a unique ID number linking it to the respective case 

(e.g.123456/L1 to L5 sequentially). 

 

3.3.6 Recruitment and questionnaire data collection 

All eligible participants were contacted by post from the respective area HPUs 

(cases) or LaSCA and NHS Manchester (controls) through a reply paid envelope 

containing: an invitation letter to invite them to take part in the study, a participant 

information leaflet providing a detailed overview of the background, purpose and 

implications of the study, an informed consent form and a copy of the study 

questionnaire that was created specifically for the study. All the forms are reported in 

Figures A to D in Appendix 2.  

The questionnaire included questions about various socio-demographic, 

occupational, self-reported clinical details and a range of exposures experienced in 

the three weeks prior to illness onset (including history of travel, outdoor recreational 

activities, water and food consumption, pet ownership and contact with animals, 

household composition). The control questionnaire differed from the case 

questionnaire in only two aspects: the questions were referred to the three weeks 
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prior to completion of the questionnaire, and the health details section enquired about 

experiencing diarrhoea in the two weeks prior to compiling the questionnaire in order 

to identify ineligible controls. It also included questions about a history of previous 

or either long-lasting diarrhoeal illness or Giardia infection. Both the study 

questionnaire and the information leaflet were reviewed by the Liverpool Medicines 

for Children Research Network in order to make it comprehensible and child-

friendly. 

Participation in the study was voluntary and participants were asked to indicate their 

willingness to take part by signing the informed consent form to return along with 

the compiled questionnaire. For participants under 16 years of age the consent to take 

part was sought from a parent or guardian. The consent for the use of faecal 

specimens for Giardia molecular typing was sought from cases. Cases who did not 

respond to the initial invitation within one week were approached via telephone or 

via personal contact by either an environmental health officer (Central and East 

Lancashire) or a HPU health protection practitioner (Central Manchester). Cases that 

did not respond after two weeks were not contacted again. Controls who did not 

respond to the initial invitation within two weeks were sent a reminder letter (Figure 

E, Appendix 2) and a new copy of the questionnaire, information leaflet and consent 

form.  

The questionnaires and consent forms were returned to either their respective area 

HPUs (for cases) or to either LaSCA or NHS Manchester (for controls), and they 

were then forwarded to the CLHPU where all the personal identifiable information 

(e.g. name, surname and address) was removed and retained along with the consent 

forms. The study questionnaires minus the personal identifiable information were 

then posted in batches on a monthly basis to the Department of Infection Biology at 

the University of Liverpool for data entry. 

 

The whole case-control study design and implementation is summarised in Figure 

3.1.
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Figure 3.1: Flowchart illustrating the case-control study design and implementation.
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3.3.7 Data management and quality control 

Questionnaire information was manually entered onto the study database created 

with EpiData 3.1 (EpiData Association, Odense, Denmark). In order to minimise the 

occurrence of errors during data entry, data were double-entered by both the research 

student at Liverpool University and by two administrative staff at the CLHPU. The 

two copies of the database were then compared using the validate function in 

EpiData to identify discrepancies between the two datasets. Discrepancies were used 

to identify data entry errors that were then manually corrected in the dataset used for 

analysis by accessing the original paper questionnaires. Duplicated records were 

identified and deleted. All questionnaire fields were checked for unusual (i.e. out of 

range) values and related fields in the same section were compared. Incorrect values 

or missing fields, whenever it was possible, were corrected or inferred from the 

related questions in the same section.  

 

3.3.8 Data analysis 

All analyses were done using either EpiInfo
™

7 (Centre for Disease Control and 

Prevention, USA) or IBM
®
 SPSS

®
 Statistics 20 (IBM, USA). In order to study the 

risk factors for giardiasis in the area both in general and specifically in people 

without a history of foreign travel, two separate analyses were performed and 

compared: one including all participants and another one including only the 

participants that did not report travelling abroad in the exposure window (e.g. 

indigenous).  

 

3.3.8.1 Univariable analysis 

Each variable was first assessed singly as a potential risk factor by calculating its 

odds ratio (OR) estimate and 95% confidence interval (CI). Cross tabulations were 

produced and two-sided Pearson’s Chi-Square test (or Fisher’s Exact test when data 

were sparse) was used to test the null hypothesis of no association. Categorical 

variables with more than two categories were analysed using univariable logistic 

regression. Dose-response variables were analysed in their both categorical form 

(using the Chi-Square test for trend) and continuous form (using binary logistic 
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regression), and the results from both approaches were compared and reported. A p-

value of less than 5% was considered to be statistically significant.  

 

3.3.8.2 Multivariable analysis and modelling 

Multivariable binary logistic regression modelling was used to determine which 

variables were independently associated with being a case with symptomatic 

giardiasis. Variables that had returned a p-value of ≤ 0.2 in the previous univariable 

analysis were selected for inclusion in the model. Variables were entered manually 

one-by-one, starting from those showing the highest significance by univariable 

analysis, and the importance of each factor was assessed by its effect on the overall 

model fit using likelihood ratio tests. Factors that had no significant effect on the 

model fit were dropped. The only variables that were retained in the final model 

regardless of their significance were gender and age, and interaction terms of these 

two variables were included to allow for potential confounding. Potential 

confounding or effect-measure modification of ethnicity, type of area of living (city, 

town or village), study area (Central Lancashire, East Lancashire, Greater 

Manchester) and season on the variables retained in the final model were also tested. 

Models were fitted to the data and after multiple imputation of missing values the 

results compared to evaluate the robustness of the model results to data quality. 

Furthermore the models were fitted following the exclusion of either all the un-

matched participants or the suspected secondary household cases.  
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3.4 RESULTS 

 

3.4.1 Notified Giardia cases  

A total of 236 Giardia cases were reported during the study period. Out of 114 cases 

from Central Lancashire, 42 (36.8%) were from South Ribble, 41 (36%) from 

Preston and 31 (27.2%) from Chorley. Out of 79 cases from East Lancashire, 21 

(26.6%) were from Blackburn with Darwen, 17 (21.5%) from Hyndburn, 14 (17.7%) 

from Pendle, 11 (13.9%) from Ribble Valley, nine (11.4%) from Rossendale and 

seven (8.9%) from Burnley. Of the 34 cases from the Greater Manchester area, 33 

(97.1%) were from Manchester and one (2.9%) from Rochdale. The remaining nine 

cases came from Wyre (six cases), Fylde (two) and Lancaster (one). Although these 

nine cases were not resident within the study areas, since they suffered from 

gastroenteritis and were diagnosed with giardiasis at the Royal Preston Hospital they 

were included within the study.  

Overall, 144 cases (61%) were males and 92 (39%) females. People from 15 to 44 

years of age were the most frequent (94 cases, 39.8%) followed by adults from 45 to 

64 years (56, 23.7%), adults with 65 or more years (34, 14.4%), children below five 

(30, 12.7%) and young people (5-14y) (22, 9.3%). 

 

3.4.2 Recruited cases 

Out of 236 cases originally contacted for the study, 123 returned the questionnaire 

(52.1% response rate) and were recruited as potentially eligible. The response rate 

was lower in males (68 questionnaires returned over 144, 47.2%) than in females (55 

returned over 92, 59.8%) (Pearson’s χ
2
,
 
p=0.060). Variation in response rates were 

observed in the different age groups (Pearson’s χ
2
,
  

p=0.052): the highest response 

rate was observed in the elderly (65+y) (25 questionnaires returned over 34, 73.5%), 

followed by children below five (17 over 30, 56.7%), people from 15 to 44 years of 

age (46 over 94, 48.9%), adults from 45 to 64 years (27 over 56, 48.2%) and young 

people (5-14y) (eight over 22, 36.4%).  Overall, recruited and notified cases did not 

differ significantly in either their gender (Pearson’s χ
2
, p=0.294) or age distribution 

(Pearson’s χ
2
, p=0.289) (Figure 3.2). 
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Figure 3.2: Gender (a) and age (b) distribution of the recruited (n=123) and the total 

notified cases (n=236). The number of cases in each category is reported above the 

bars. 

 

Excluding the nine cases resident outside the study catchment areas, a higher case 

response rate was observed from Central (63 responders over 114 notified, 55.3%) 

and East (41 over 79, 51.9%) Lancashire compared to Greater Manchester (12 over 

34, 35.3%), although overall the differences were not significant (Pearson’s χ
2
, 

p=0.122). 

Three cases were mistakenly sent a wrong questionnaire and they did not return the 

correct one after it was sent a second time. 
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3.4.3 Cases self-reported clinical outcomes 

Self-reported clinical information was analysed in the 120 cases that were sent and 

returned the correct questionnaire. Two cases were asymptomatic and they were 

tested for Giardia because at least another person in the same house was a case.  The 

frequency of the self-reported symptoms in the 118 symptomatic cases is shown in 

Figure 3.3.  

 

 

Figure 3.3: Frequency of self-reported symptoms in the 118 symptomatic cases. The 

number of cases in each category is reported above the bars. 

 

Diarrhoea was reported in nearly all cases. In 106 diarrhoeic cases specifying also 

the type of diarrhoea, 60 (56.6%) reported it was persistent whereas 46 (43.4%) 

stated it was intermittent. In 91 cases also reporting the daily number of visits to the 

toilet due to diarrhoea, the median was four visits (range one to 50). Frequently 

reported symptoms included flatulence, abdominal pain, tiredness and loss of 

appetite. Also weight loss was reported by more than half of the cases and in 56 

cases that experienced it and reported the information the loss consisted in a median 

of 3.2 kg (range 0.4-10). Overall, the cases experienced a median of six symptoms 

(range one to nine). The median duration (in days) of the symptoms in cases that 

reported this information is shown in Table 3.1. 
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Table 3.1: Reported duration (median number of days) of the symptoms reported in the 118 

symptomatic cases. Blood in stools was excluded due to the low number of cases reporting it 

(n=3). 

 
Symptom No. valid (% missing)* Median no. days (range) 

diarrhoea 55 (51.7) 9 (1-73) 

flatulence 41 (52.3) 14 (1-73) 

abdominal pain 39 12 (2-73) 

tiredness 34 13 (2-73) 

loss of appetite 32 12.5 (5-30) 

weight loss 18 14 (2-73) 

swollen stomach 22 11 (2-73) 

vomiting 25 4 (1-16) 

fever 23 6 (1-28) 

*percentage of cases that did not report the duration over the number of cases reporting the symptom 

 

Out of 113 cases answering the question, 37 (32.7%) felt still ill at the moment of 

filling the questionnaire. In 62 cases that were no longer ill and that reported the 

length of illness, the median was 16 days (range 4-73). In 30 cases that reported to 

still feel ill when they filled the questionnaire and in which the length of illness could 

be estimated as the number of days from the date of reported illness onset to the date 

the questionnaire was signed, the median was 27 days (range seven to 75). 

Hospitalisation due to the illness was reported by 11 cases out of 115 answering the 

question (9.6%), and in nine cases reporting also this information hospitalisation 

lasted for a median of four days (range 0-16).  Out of 107 cases answering the 

question, 11 (10.3%) reported suffering from irritable bowel syndrome (IBS) and one 

(0.9%) from inflammatory bowel disease (IBD). Six cases declared having suffered 

from giardiasis in the past: one case was a one year old male, whereas five were 

females (ranging in age from two to 75 years). A 35 years old female reported she 

suffered from giardiasis three times.     

 

3.4.4 Household clusters description 

In total, five distinct household clusters were identified involving 13 cases. By 

considering the date of reported illness (whenever available), nine out of 13 cases 

were identified to be either primary or co-primary cases. The household clusters are 

described in detail in Table 3.2. 
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Table 3.2: Characteristics and exposure profile of the 13 cases that were part of the five household clusters identified in the case-control study. The suspected 

primary or co-primary cases are highlighted in bold. 

 
Cluster 

(no. cases involved) 

Age, gender 

(family role) 

Reported date of 

illness onset 

Suspected reported exposure(s) Other suspicious exposures or information 

reported by the case(s) 

1 (3) 1y, male (son)  

6y, male (son) 

08/03/2012 

asymptomatic 

Went to the same swimming pool Other two family members  (mother and the 

sister) were tested for Giardia but were negative; 

the 1y old son was reported suffering from 

Giardia first 

33y, male (father) missing 

information 

Changed nappies to the youngest son 

2 (2) 31y, female 

(mother)  

3y, male (son) 

24/07/12 

27/08/12 

Went to swimming pool together; the mother 

changed nappies to the son 

The mother reported she suffered from Giardia 

first 

3 (4) 1y, male (son)  

3y, male (son) 

15/10/2012 

16/10/2012 

Went to the same swimming pool The two sons and the father reported touching the 

brother-in-law dog, that was also reported being 

sick at the time; tap water reported having an 

unusual taste of chlorine two weeks before illness 

33y, male (father) 14/10/2012 Went to swimming pool with the sons; changed 

nappies to the son 

34y, female 

(mother) 

8/11/2012 Changed nappies to the son 

4 (2) 1y, male (son)  

30y,  female 

(mother) 

08/01/2013 

7/01/2013 

Went to the swimming pool and used a Jacuzzi; 

the household tap water was reported going off 

and was cloudy when it came back. 

Another group of people was at swimming pool 

but nobody got ill (unclear how the mother got 

this information) 

5 (2) 42y, female (wife)  

64y, male 

(husband) 

31/12/2012 

30/12/2012 

Travelled to India from 27/12 to 7/01; drank tap 

water and ate in restaurants while in India. 

Symptoms reported to have started while the 

cases were still in India 



 

79 

 

3.4.5 Recruited controls and health details  

Out of a total of 1180 controls that were contacted, 253 returned the questionnaire 

(21.4% control response rate) and were recruited as potentially eligible. Of these, 115 

(45.4%) were recruited from Central Lancashire, 77 (30.4%) from East Lancashire 

and 19 (7.5%) from Greater Manchester. Two other controls (0.8%) were from West 

Lancashire. Health details were available from 250 controls. A total of 24 (9.6%) 

reported suffering from diarrhoea in the two weeks before filling the questionnaire. 

Blood in stools, vomiting and abdominal pain were reported by four (1.6%), eight 

(3.2%) and 34 (13.6%) controls respectively. Furthermore 21 controls (8.4%) 

reported suffering from a diarrhoeal illness lasting more than three days in the 

previous year, and four (1.6%) stated they suffered from a Giardia infection 

previously. Of these four controls two reported that it happened more than six 

months before, whereas one reported it was between three and six months. 

 

3.4.6 Case-control matching 

Out of a total 376 recruited participants, 139 (37%) were not matched (e.g. they 

lacked an associated participant matched by gender and age). The lack of matched 

participants involved 30.9% of the cases (38 out of 123) and 39.9% of the controls 

(101 out of 253).  

 

3.4.7 Eligibility for risk factor analysis  

A total of 32 records (five cases and 27 controls) were considered not eligible and 

excluded from the analysis (Figure 3.4). Five cases were excluded from the risk 

factor analysis because they mistakenly sent and returned the wrong questionnaire 

(three cases) or because they were asymptomatic (two cases). Twenty four controls 

reporting suffering from diarrhoea in the previous two weeks and three controls with 

the entire health details section of the questionnaire missing were excluded.  

Six cases (four from Wyre, one from Fylde and one from Lancaster) were resident 

outside the study areas. Of the four cases from Wyre, one had three matched controls 

from South Ribble, one had two matched controls from South Ribble and Preston 

respectively and two had no matched controls. The case from Fylde had two matched 
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controls from Chorley and Burnley respectively, whereas the case from Lancaster 

had three matched controls from Chorley, South Ribble and Preston respectively. 

The six cases resident outside the study areas were considered eligible for the 

analysis since they were symptomatic, they were correctly diagnosed at the Royal 

Preston Hospital and they were matched with controls that were correctly recruited 

from Central and East Lancashire. Two controls were recruited from outside the 

study areas (both from West Lancashire). They were considered eligible for the 

analysis because they were matched with two cases from South Ribble and Preston, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Flowchart illustrating the eligibility of case and control records for the 

inclusion in the risk factor analysis. 

 

A total of 344 questionnaires were considered valid for the risk factors analysis, 

corresponding to a case-control ratio of 1 case per 1.9 controls. Due to the high 

number of un-matched questionnaires and the potential negative effect on the study 

statistical power associated with the exclusion of such records, it was decided to 

include all of them and to use statistical methods suitable for an unmatched analysis. 

The multivariable logistic regression models were tested both including and 

excluding the un-matched records to evaluate the effect of the exclusion on the 

model statistical power and significance of the predictor variables. 

Exclusion of two 

asymptomatic 

secondary household 

cases and three cases 

that were sent the 

wrong questionnaire 

Exclusion of 27 

controls reporting 

diarrhoea in the 

previous two weeks or 

with missing clinical 

information 

376 questionnaires received 

(123 cases and 253 controls) 

 

344 questionnaires eligible for risk 

factor analysis 

(118 cases and 226 controls) 

controls) 
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3.4.8 Risk factors for giardiasis  

The risk factors for giardiasis were investigated at two levels: in all study participants 

and in the subgroup of those that did not travel abroad in the three weeks prior to 

illness (e.g. indigenous).  

 

3.4.8.1 Univariable analysis  

Socio-demographic, clinical and exposure variables that showed an association with 

giardiasis with a p-value≤0.2 in either all participants or the indigenous subgroup 

following univariable analysis are reported in Table 3.3. The results of the remaining 

variables (p>0.2) are shown in Table 3.3.1, Appendix 3. 

 

Socio-demographics, area variables and season  

 

The socio-demographic characteristics of cases and controls, as well as their 

distribution in relation to the study catchment areas and season, were comparable 

(Table 3.3.1, Appendix 3). No association was found between the risk of illness and 

either age (age as a categorical variable with 0-4y as reference: p=0.230 and 0.330 

for all participants and indigenous only, respectively) or gender (p=0.508 and 0.191 

for all participants and indigenous only, respectively), although a slightly higher 

proportion of male cases was observed in the group that did not travel abroad. No 

association was found between the risk of giardiasis and being of white ethnicity 

(p=0.231 and 0.993 for all participants and indigenous only respectively, with whites 

being the most represented ethnic group), occupation (p=0.908 and 0.965 for all 

participants and indigenous only, respectively), educational status (p=0.358 and 

0.595 for all participants and indigenous only, respectively) or the level of 

neighbourhood deprivation (deprivation as categorical variable with Very low 

deprivation as reference: p=0.876 and 0.817 for all participants and indigenous only, 

respectively). Furthermore, giardiasis was not found to be associated with either the 

reported type of area of living (City as reference category: p=0.373 and 0.737 for all 

participants and indigenous only, respectively) or with any of the three study areas 

(Central Lancashire as reference category: p=0.738 and 0.162 for all participants and 

indigenous only, respectively) or with season (Winter as reference category: p=0.753 

and 0.786 for all participants and indigenous only, respectively).  
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Clinical variables 

 

A higher frequency of using medicines for indigestion in the exposure window was 

observed in the cases (31-32%) compared to controls (22-23%) (OR 1.64, p=0.052 

and OR 1.52, p=0.148 for all participants and indigenous only, respectively). 

Although not significantly, irritable bowel syndrome (IBS) was reported slightly 

more frequently by the cases (10-11% compared with around 6% in controls) (OR 

1.64, p=0.244 and OR 1.99, p=0.131 for all participants and indigenous only, 

respectively). Further analysis done amongst the cases showed that reporting irritable 

bowel syndrome was significantly and positively associated with reporting taking 

medicines for indigestion (all participants: OR 3.13, 95% CI 1.36-7.18, p=0.005; 

indigenous only: OR 7.86, 95% CI 1.74-35.39, p=0.007).  

 

Exposure variables 

 

None of the occupations potentially at-risk for giardiasis was reported more 

frequently in either the cases or controls, but a detailed analysis was prevented by the 

fact that a negligible number of participants reported any of the occupational 

exposures investigated (Table 3.3.1, Appendix 3). 

 

Although overall cases reported owning a pet slightly less frequently (38%) than 

controls (47%) (OR 0.69, p=0.113), cases and controls did not differ in the number 

or type of pets they owned. No difference between cases and controls was found in 

the frequency of touching or cleaning the pets’ faeces or in reporting pets with 

diarrhoea in the household (Table 3.3.1, Appendix 3). Overall, cases reported less 

frequently touching pets (49%) than controls (63%) (OR 0.56, p=0.016) and visiting 

a premise with animals other than a farm, wildlife park or zoo (reported by 1.2-1.8% 

of cases and by more than 6% of controls) (OR 0.27, p=0.067 and OR 0.16, p=0.075 

for all participants and indigenous only, respectively). No cases reporting touching 

any animal while visiting these premises. In all participants, visiting or working at a 

wildlife park or zoo was more frequently reported by the cases (8.6% compared to 

3.6% of the controls) (OR 2.56, p=0.048). No difference between cases and controls 

was found in the frequency of visiting or working at a farm (and touching animals 
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while at this type of premise), or in the frequency of touching animals in the wild 

(Table 3.3.1, Appendix 3). 

 

The frequency of travelling abroad was significantly higher in the cases (25% 

compared to 8% of the controls) (OR 3.67, p<0.001), and the positive association 

with giardiasis was even stronger when considering travel to an at-risk destination 

(e.g. Middle East and Asia including Turkey, Africa including Canary Islands, 

Central and South America) (OR 22.87, p<0.001).  

 

A significant positive association was found between giardiasis and reporting 

swimming at a swimming pool (reported by the 35-33% of the cases compared with 

19-22% of the controls) (OR 1.93, p=0.009 and OR 2.08, p=0.011 for all participants 

and indigenous only, respectively). However, neither a dose-response effect in 

relation to the frequency of swimming nor a significant effect of immersing the head 

while swimming per se was found. Using a Jacuzzi or a hot tub too was associated 

with an increased risk of giardiasis (reported by the 13-16% of the cases compared 

with 6% of the controls) (OR 2.09, p=0.064 and OR 2.91, p=0.011 for all participants 

and indigenous only, respectively). Further analysis done amongst the cases showed 

that reporting using a Jacuzzi or a hot tub was significantly and positively associated 

with reporting going to a swimming pool (OR 24.76, 95% CI 8.05-76.16, p<0.001). 

Although the frequency of swimming in a lake, river or pond or swimming at sea 

were both not significantly different between cases and controls per se (Table 3.3.1, 

Appendix 3), all the cases and none of the controls reported immersing their head 

during swimming. Practising watersports in fresh water or at sea were reported by 

none and only one of the cases, respectively.   

Several outdoor activities were reported less frequently in the cases than in controls, 

including going picnicking in indigenous cases (4% compared with 10% of the 

indigenous controls) (OR 0.35, p=0.084), practising fieldsports (5-6% of cases and 

12-13% of controls) (OR 0.50, p=0.113 and OR 0.35, p=0.052 for all participants 

and indigenous only, respectively) and particularly doing gardening (26-31% of 

cases and 48-47% of controls) (OR 0.38, p<0.001 and OR 0.51, p=0.015 for all 

participants and indigenous only, respectively).  No difference was found between 

the cases and the controls in the frequency of reporting going camping or 

caravanning.  
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No cases and only two controls reported getting their drinking water from a private 

supply, with the vast majority having a mains water supply. Although not 

significantly, indigenous cases reported drinking slightly more frequently un-boiled 

water from the tap (95%) than indigenous controls (90%) (OR 2.27, p=0.135 

compared with OR 1.06, p=0.870 when all participants were analysed). There was no 

evidence of a dose-response relationship between the number of glasses of tap water 

and the risk of giardiasis. A nearly significant positive association was found 

between the risk of illness and drinking bottled water but only when all participants 

were included (OR 1.54, p=0.066 and OR 1.09, p=0.754 for all participants and 

indigenous only, respectively). Further analysis done amongst the cases showed that 

drinking bottled water was significantly and positively associated with travelling 

abroad (OR 3.82, 95% CI 1.86-7.83, p<0.001).  A tendency towards a positive 

association between giardiasis and reporting the discoloured water coming from the 

tap was found but it was nearly significant only when all participants were included 

(OR 3.01, p=0.095 and OR 2.51, p=0.237 for all participants and indigenous only, 

respectively). A similar tendency was observed also for reporting the water from the 

tap having an unusual taste (OR 3.33, p=0.127 and OR 3.36, p=0.199 for all 

participants and indigenous only, respectively). Further analysis done amongst the 

cases showed that reporting the water from the tap having an unusual taste was 

significantly and positively associated with reporting the tap water being discoloured 

(OR 27.43, 95% CI 5.45-137.96, p=0.001).  Drinking un-boiled water from a lake, 

river or stream was not associated with an increased risk of giardiasis (Table 3.3.1, 

Appendix 3).  

 

The potential for foodborne transmission was investigated for the consumption of 

fresh products (e.g. food items more at risk as vehicles of parasite cysts) at two 

levels. Participants were asked about both their food consumption habits and the food 

eaten specifically during the exposure window in order to test separately the effect of 

continuous (habitual consumption) and point exposure (consumption specifically in 

the exposure window). The risk of giardiasis was significantly and negatively 

associated with the weekly frequency of consumption of either salad or raw 

vegetables (OR 0.90, p=0.038 and OR 0.87, p=0.026 for all participants and 

indigenous only, respectively) and raw fruit (OR 0.91, p=0.008 and OR 0.87, 

p=0.002 for all participants and indigenous only, respectively). Conversely, no 
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association was found in the weekly frequency of consumption of cooked vegetables. 

Cases and controls did not differ significantly in their habit of either peeling or 

washing raw fruit before consumption. Amongst the food items consumed in the 

three weeks prior to illness, cases showed a significantly lower frequency of 

consumption of salad or raw vegetables (81%) compared to controls (91%) (OR 

0.41, p=0.008 and OR 0.41, p=0.015 for all participants and indigenous only, 

respectively). Also the consumption of shellfish was significantly and negatively 

associated with illness (OR 0.51, p=0.035 and OR 0.32, p=0.007 for all participants 

and indigenous only, respectively). Cases and controls did not differ in the 

consumption of cooked vegetables, fruit juice, chicken or fish. Consumption of meat 

items as beef, lamb and pork seemed to be slightly more frequently reported by cases 

but none of these differences was significant.  Differences in the provenience of the 

food items consumed in the three weeks prior to illness were observed between cases 

and controls. Overall, cases reported less frequently than controls eating salad, raw or 

cooked vegetables and fruit juice purchased from a supermarket, and conversely they 

reported more frequently than controls eating the same food items and some meat 

items (lamb, pork and chicken) from other places (nearly all restaurants while being 

abroad) (Table 3.3). In indigenous participants, a tendency towards a negative 

association between illness and the number of times eating at a pub or a restaurant 

(OR 0.84, 95% CI 0.70-1.01, p=0.066) or at a barbecue (OR 0.40, 95% CI 0.14-1.12, 

p=0.081). Eating at a barbecue per se was marginally negatively associated with 

illness in indigenous participants (OR 0.32, 95% CI 0.09-1.12, p=0.062). No 

differences were found between cases and controls in their habits of eating at a 

canteen, take-away of fast food. 

 

In the cases’ households the number of children was significantly higher than in 

controls’ households (OR 1.26, 95% CI 1.05-1.51, p=0.013 and OR 1.28, 95% CI 

1.05-1.56, p=0.014 for all participants and indigenous only, respectively). An 

association was consistently found between the risk of illness and the presence in the 

household of children below five years of age and associated exposures, consistently 

in both all participants and in indigenous only although differences were more 

pronounced in the latter group. Cases reported more frequently than controls having 

children attending a nursery or a playgroup in the household, having children in 

nappies and changing nappies (Table 3.3). 
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Table 3.3: Variables showing an association with giardiasis with a p-value ≤0.2 in univariable analysis. Results of both the general risk factor analysis (e.g. 

including all the eligible118 cases and 226 controls) and the indigenous risk factor analysis (e.g. including only the 86 cases and 207 controls that did not 

report travelling abroad in the exposure window) are shown for comparison. 

 
Variable Data subset No. valid 

(% missing)* 

Category Cases 

n (%)** 

Controls 

n (%)** 

OR (95% CI)*** p-value 

HEALTH DETAILS 

Taking any medicine 

for indigestion   

All 341 (0.9) No 79 (68.1) 175 (77.8) Ref. 0.052 

Yes 37 (31.9) 50 (22.2) 1.64 (0.99-2.71) 

Indigenous 290 (1) No 58 (69) 159 (77.2) Ref. 0.148 

Yes 26 (31) 47 (22.8) 1.52 (0.86-2.67) 

Suffering from  

irritable bowel 

syndrome (IBS) 

All 320 (7) No 96 (89.7) 199 (93.4) Ref. 0.244 

Yes 11 (10.3) 14 (6.6) 1.63 (0.71-3.72) 

Indigenous 273 (6.8) No 69 (88.5) 183 (93.8) 1.00 0.131 

Yes 9 (11.5) 12 (6.2) 1.99 (0.80-4.93) 

ANIMAL CONTACT 

Keeping a pet (any 

type) 

All 342 (0.6) No 72 (62.1) 120 (53.1) Ref. 0.113 

Yes 44 (37.9) 106 (46.9) 0.69 (0.44-1.09) 

Indigenous 291 (0.7) No 50 (59.5) 108 (52.2) Ref. 0.254 

Yes 34 (40.5) 99 (47.8) 0.74 (0.44-1.24) 

No. of cats kept 

 

 

 

 

 

 

 

All 339 (1.5) 0 103 (88.7) 182 (81.2) Ref. 0.106
T
/0.135

C
 

1 9 (7.8) 30 (13.4) 0.53 (0.24-1.16) 

2 3 (2.6) 10 (4.5) 0.53 (0.14-1.97) 

3+ 1 (0.9) 2 (0.9) 0.88 (0.08-9.86) 

Indigenous 289 (1.4) 0 73 (86.9) 167 (81.5) 1.00 0.325
T
/0.389

C
 

1 8 (9.5) 28 (13.7) 0.65 (0.28-1.50) 

2 2 (2.4) 9 (4.4) 0.51 (0.11-2.41) 

3+ 1 (1.2) 1 (0.5) 2.28 (0.14-37.07) 

Touching any pet 

(either own or other 

people’s) 

All 314 (8.7) No 55 (51.4) 77 (37.2) Ref. 0.016 

Yes 52 (48.6) 130 (62.8) 0.56 (0.35-0.90) 

Indigenous 269 (8.2) No 36 (45.6) 74 (38.9) Ref. 0.314 

Yes 43 (54.4) 116 (61.1) 0.76 (0.45-1.29) 

Visiting or working 

at a wildlife park or 

All 341 (0.9) No 106 (91.4) 217 (96.4) Ref. 0.048 

Yes 10 (8.6) 8 (3.6) 2.56 (0.98-6.67) 
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zoo Indigenous 291 (0.7) No 79 (92.9) 198 (96.1) Ref. 0.245 

Yes 6 (7.1) 8 (3.9) 1.88 (0.63-5.59) 

Visiting any other 

premise(s) with 

animals 

 

All 339 (1.5) No 112 (98.2) 211 (93.8) Ref. 0.067 

Yes 2 (1.8) 14 (6.2) 0.27 (0.06-1.20) 

Indigenous 290 (1) No 83 (98.8) 192 (93.2) Ref. 0.075 

Yes 1 (1.2) 14 (6.8) 0.16 (0.02-1.28) 

Touching animals 

while on any other 

premise(s)  

All 339 (1.5) Not visiting any other premise(s) 112 (98.2) 212 (94.2) Ref. 0.034 

Visiting but not touching any animal 2 (1.8) 5 (2.2) 0.76 (0.14-3.96) 

Visiting and touching an animal 0 (0) 8 (3.6) n/a**** 

Indigenous 

 

290 (1) Not visiting any other premise(s) 83 (98.8) 193 (93.7) Ref. 0.047 

Visiting but not touching any animal 1 (1.2) 5 (2.4) 0.46 (0.05-4.04) 

Visiting and touching an animal 0 (0) 8 (3.9) n/a**** 

TRAVEL DETAILS 

Travelling abroad 

(outside the UK) 

All 341 (0.9) No 86 (74.8) 207 (91.6) Ref. <0.001 

Yes 29 (25.2) 19 (8.4) 3.67 (1.95-6.90) 

Travelling abroad to 

an at-risk destination  

All 341 (0.9) Not travelling abroad 86 (74.8) 207 (91.6) Ref. <0.001 

Travelling abroad to a not at-risk destination 10 (8.7) 17 (7.5) 1.41 (0.62-3.22) 

Travelling abroad to any at-risk destination 

(e.g. Middle East and Asia including Turkey, 

Africa including Canary Islands, Central and 

South America) 

19 (16.5) 2 (0.9) 22.87 (5.21-

100.31) 

Travelling in the UK 

(England, Wales, 

Scotland) 

All 337 (2) No 90 (79.6) 155 (69.2) Ref. 0.042 

Yes 23 (20.4) 69 (30.8) 0.57 (0.33-0.98) 

Travelling only in the 

UK, only abroad or 

both  

All 335 (2.9) Not travelling at all 64 (57.7) 146 (65.2) Ref. <0.001 

Only travelling in the UK 20 (18) 60 (26.8) 0.76 (0.42-1.36) 

Only travelling abroad 24 (21.6) 9 (4) 6.08 (2.68-13.82) 

Travelling both in the UK and abroad 3 (2.7) 9 (4) 0.76 (0.20-2.90) 

RECREATIONAL ACTIVITIES 

Swimming or 

paddling in a 

swimming pool 

All 341 (0.9) No 75 (65.2) 177 (78.3) Ref. 0.009 

Yes 40 (34.8) 49 (21.7) 1.93 (1.17-3.17) 

Indigenous 293 No 58 (67.4) 168 (81.2) Ref. 0.011 

Yes 28 (32.6) 39 (18.8) 2.08 (1.18-3.68) 

Immersing the head All 320 (7) Not going to swimming pool 75 (72.1) 177 (81.9) Ref. 0.025 
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underwater while 

swimming or 

paddling in a 

swimming pool 

Swimming or paddling without immersing the 

head 

8 (7.7) 4 (1.9) 4.72 (1.38-16.15)  

 

 Swimming or paddling immersing the head 21 (20.2) 35 (16.2) 1.42 (0.77-2.59) 

Indigenous 276 (5.8) Not going to swimming pool 58 (75.3) 168 (84.4) Ref. 0.033 

Swimming or paddling without immersing the 

head 

7 (9.1) 4 (2) 5.07 (1.43-17.95) 

Swimming or paddling immersing the head 12 (15.6) 27 (13.6) 1.29 (0.61-2.70) 

Using a Jacuzzi or a 

hot tub 

All 320 (7) No 90 (87.4) 203 (93.5) Ref. 0.064 

Yes 13 (12.6) 14 (6.5) 2.09 (0.95-4.64) 

Indigenous 274 (6.5) No 64 (84.2) 186 (93.9) Ref. 0.011 

Yes 12 (15.8) 12 (6.1) 2.91 (1.24-6.79) 

Immersing the head 

underwater while 

swimming in a lake, 

pond or river  

All 314 (8.7) Not swimming in a lake, pond or river 99 (97.1) 209 (98.6) Ref. 0.010 

Swimming without immersing the head 0 (0) 3 (1.4) n/a**** 

Swimming immersing the head 3 (2.9) 0 (0) n/a**** 

Indigenous 271 (7.5) Not swimming in a lake, pond or river 75 (98.7) 192 (98.5) Ref. 0.104 

Swimming without immersing the head 0 (0) 3 (1.5) n/a**** 

Swimming immersing the head 1 (1.3) 0 (0) n/a**** 

Immersing the head 

underwater while 

swimming in the sea 

All 316 (8.1) Not swimming in the sea 95 (95) 206 (95.4) Ref. 0.034 

Swimming without immersing the head 0 (0) 6 (2.8) n/a**** 

Swimming immersing the head 5 (5) 4 (1.9) 2.71 (0.71-10.32) 

Indigenous 275 (6.1) Not swimming in the sea 74 (98.7) 197 (98.5) 1.00 0.420 

Swimming without immersing the head 0 (0) 2 (1) n/a**** 

Swimming immersing the head 1 (1.3) 1 (0.5) 2.66 (0.16-43.11) 

Going picnicking 

 

All 318 (7.6) No 102 (93.6) 188 (90) Ref. 0.279 

Yes 7 (6.4) 21 (10) 0.61 (0.25-1.49) 

Indigenous 272 (7.2) No 78 (96.3) 172 (90.1) Ref. 0.084 

Yes 3 (3.7) 19 (9.9) 0.35 (0.10-1.21) 

Frequency of  going 

picnicking (no. times) 

 

All 

 

312 (9.3) 0 102 (96.2) 188 (91.3) Ref. 0.060
T
/0.145

C
 

1-2 4 (3.8) 17 (8.3) 0.43 (0.14-1.32) 

3+ 0 (0) 1 (0.5) n/a**** 

Indigenous 268 (8.5) 0 78 (97.5) 172 (91.5) 1.00 0.040
T
/0.152

C
 

1-2 2 (2.5) 15 (8) 0.29 (0.07-1.32) 

3+ 0 (0) 1 (0.5) n/a**** 

Practising fieldsports All 319 (7.3) No 100 (93.5) 186 (87.7) Ref.  
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(e.g. football, golf 

etc) 

Yes 7 (6.5) 26 (12.3) 0.50 (0.21-1.19) 0.113 

Indigenous 273 (6.8) No 76 (95) 168 (87) Ref. 0.052 

Yes 4 (5) 25 (13) 0.35 (0.12-1.05) 

Frequency of 

practising fieldsports 

(no. times) 

All 316 (8.1) 0 100 (94.3) 186 (88.6) Ref. 0.102
T
/0.117

C
 

1-2 1 (0.9) 8 (3.8) 0.23 (0.03-1.88) 

3-4 3 (2.8) 6 (2.9) 0.93 (0.23-3.80) 

5-6 2 (1.9) 6 (2.9) 0.62 (0.12-3.13) 

7+ 0 (0) 4 (1.9) n/a**** 

Indigenous 270 (7.8) 0 76 (96.2) 168 (88) 1.00 0.080
T
/0.131

C
 

1-2 0 (0) 8 (4.2) n/a**** 

3-4 1 (1.3) 6 (3.1) 0.37 (0.04-3.11) 

5-6 2 (2.5) 5 (2.6) 0.88 (0.17-4.66) 

7+ 0 (0) 4 (2.1) n/a**** 

Frequency of walking 

in the countryside 

(no. times) 

All 293 (14.8) 0 69 (77.5) 128 (62.7) Ref. 0.076
T
/0.081

C
 

1-2 7 (7.9) 38 (18.6) 0.34 (0.14-0.81) 

3-4 7 (7.9) 19 (9.3) 0.68 (0.27-1.71) 

5-6 3 (3.4) 6 (2.9) 0.93 (0.22-3.82) 

7+ 3 (3.4) 13 (6.4) 0.43 (0.12-1.55) 

Indigenous 250 (14.7) 0 50 (78.1) 120 (64.5) Ref. 0.088
T
/0.102

C
 

1-2 4 (6.3) 30 (16.1) 0.32 (0.107-0.96) 

3-4 7 (10.9) 19 (10.2) 0.88 (0.35-2.23) 

5-6 2 (3.1) 6 (3.2) 0.80 (0.16-4.10) 

7+ 1 (1.6) 11 (5.9) 0.22 (0.03-1.73) 

Doing gardening All 324 (5.8) No 79 (73.8) 112 (51.6) Ref. <0.001 

Yes 28 (26.2) 105 (48.4) 0.38 (0.23-0.63) 

Indigenous 280 (4.4) No 56 (69.1) 106 (53.3) Ref. 0.015 

Yes 25 (30.9) 93 (46.7) 0.51 (0.29-0.88) 

Frequency of doing 

gardening (no.times) 

All 283 (17.7) 0 79 (87.8) 112 (58) Ref. <0.001
T
/0.032

C
 1-2 5 (5.6) 31 (16.1) 0.23 (0.08-0.61) 

3-4 1 (1.1) 27 (14) 0.05 (0.01-0.39) 

5-6 2 (2.2) 11 (5.7) 0.26 (0.06-1.19) 

7+ 3 (3.3) 12 (6.2) 0.35 (0.10-1.30) 

Indigenous 240 (18.1) 0 56 (87.5) 106 (60.2) 1.00 0.001
T
/0.163

C 

 
1-2 4 (6.3) 26 (14.8) 0.29 (0.10-0.88) 
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3-4 1 (1.6) 26 (14.8) 0.07 (0.01-0.55) 
 

 

 
5-6 0 (0) 9 (5.1) n/a**** 

7+ 3 (4.7) 9 (5.1) 0.63 (0.16-2.42) 

WATER CONSUMPTION 

Household water 

supply 

All 342 (0.6) Mains water supply 115 (98.3) 223 (99.1) Ref. 0.051 

Private supply (e.g. spring or well) 0 (0) 2 (0.9) n/a**** 

Mixed 2 (1.7) 0 (0) n/a**** 

Drinking un-boiled 

water straight from 

the tap 

All 339 (1.5) No 12 (10.5) 25 (11.1) Ref. 0.870 

Yes 102 (89.5) 200 (88.9) 1.06 (0.51-2.20) 

Indigenous 290 (1) No 4 (4.8) 21 (10.2) Ref. 0.135 

Yes 80 (95.2) 185 (89.8) 2.27 (0.75-6.83) 

Drinking bottled 

water 

All 324 (5.8) No 48 (43.2) 115 (54) Ref. 0.066 

Yes 63 (56.8) 98 (46) 1.54 (0.97-2.44) 

Indigenous 275 (6.1) No 43 (53.1) 107 (55.2) Ref. 0.754 

Yes 38 (46.9) 87 (44.8) 1.09 (0.65-1.83) 

Water from the tap 

reported having an 

unusual taste 

All 335 (2.6) No 109 (95.6) 218 (98.6) Ref. 0.127 

Yes 5 (4.4) 3 (1.4) 3.33 (0.78-14.21) 

Indigenous 285 (2.7) No 79 (95.2) 199 (98.5) Ref. 0.199 

Yes 4 (4.8) 3 (1.5) 3.36 (0.73-15.35) 

Water from the tap 

reported being 

discoloured 

All 335 (2.6) No 108 (94.7) 217 (98.2) Ref. 0.095 

Yes 6 (5.3) 4 (1.8) 3.01 (0.83-10.90) 

Indigenous 285 (2.7) No 79 (95.2) 198 (98) Ref. 0.237 

Yes 4 (4.8) 4 (2) 2.51 (0.61-10.27) 

FOOD CONSUMPTION 

FOOD CONSUMPTION HABITS 

No. times per week 

eating salads or raw 

vegetables 

All 

 

 

 

329 (4.4) 0 22 (19.8) 34 (15.6) Ref. 0.062
T
/0.038

C
 

1-2 41 (36.9) 71 (32.6) 0.89 (0.46-1.73) 

3-4 28 (25.2) 54 (24.8) 0.80 (0.39-1.62) 

5+ 20 (18) 59 (27.1) 0.52 (0.25-1.10) 

Indigenous 280 (4.4) 0 18 (22.2) 32 (16.1) Ref. 0.060
T
/0.026

C
 

1-2 31 (38.3) 68 (34.2) 0.81 (0.40-1.66) 

3-4 19 (23.5) 51 (25.6) 0.66 (0.30-1.45) 

5+ 13 (16) 48 (24.1) 0.48 (0.21-1.12) 

No. times per week All 328 (4.7) 0 14 (12.6) 15 (6.9) Ref. 0.011
T
/0.008

C 
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eating raw fruit  1-2 16 (14.4) 27 (12.4) 0.63 (0.24-1.65) 
 

 

 
3-4 24 (21.6) 29 (13.4) 0.89 (0.36-2.20) 

5+ 57 (51.4) 146 (67.3) 0.42 (0.19-0.92) 

Indigenous 280 (4.4) 0 13 (15.9) 15 (7.6) Ref. 0.007
T
/0.002

C
 

1-2 12 (14.6) 27 (13.6) 0.51 (0.19-1.40) 

3-4 19 (23.2) 28 (14.1) 0.78 (0.30-2.01) 

5+ 38 (46.3) 128 (64.6) 0.34 (0.15-0.78) 

FOOD CONSUMPTION DURING THE EXPOSURE WINDOW 

Eating salads or raw 

vegetables 

 

 

All 333 (3.2) No 21 (18.6) 19 (8.6) Ref. 0.008 

Yes 92 (81.4) 201 (91.4) 0.41 (0.21-0.81) 

Indigenous 284 (3.1) No 16 (19.3) 18 (9) Ref. 0.015 

Yes 67 (80.7) 183 (91) 0.41 (0.20-0.85) 

Provenience of salads 

or raw vegetables 

All 327 (4.9) Did not eat salad or raw vegetables 21 (19.3) 19 (8.7) Ref. <0.001 

Market 7 (6.4) 8 (3.7) 0.79 (0.24-2.60) 

Greengrocers 4 (3.7) 7 (3.2) 0.52 (0.13-2.05) 

Supermarket 63 (57.8) 141 (64.7) 0.40 (0.20-0.80) 

Homegrown 0 (0) 2 (0.9) n/a**** 

Other place (e.g. restaurant etc.) 7 (6.4) 1 (0.5) 6.33 (0.71-56.32) 

Multiple proveniences (at least two different) 7 (6.4) 40 (18.3) 0.16 (0.06-0.44) 

Indigenous 280 (4.4) Did not eat salad or raw vegetables 16 (19.8) 18 (9) Ref. 0.044 

Market 2 (2.5) 8 (4) 0.28 (0.05-1.52) 

Greengrocers 4 (4.9) 7 (3.5) 0.64 (0.16-2.61) 

Supermarket 50 (61.7) 135 (67.8) 0.42 (0.20-0.88) 

Homegrown 0 (0) 1 (0.5) n/a**** 

Other place (e.g. restaurant etc.) 3 (3.7) 1 (0.5) 3.37 (0.32-35.79) 

Multiple proveniences (at least two different) 6 (7.4) 29 (14.6) 0.23 (0.08-0.70) 

Provenience of 

cooked vegetables 

 

 

 

 

 

 

All 320 (7) Did not eat cooked vegetables 8 (7.6) 14 (6.5) Ref. 0.030 

Market 6 (5.7) 11 (5.1) 0.95 (0.25-3.57) 

Greengrocers 6 (5.7) 8 (3.7) 1.31 (0.33-5.16) 

Supermarket 65 (61.9) 142 (66) 0.80 (0.32-2.00) 

Homegrown 0 (0) 3 (1.4) n/a**** 

Other place (e.g. restaurant etc.) 8 (7.6) 2 (0.9) 7.00 (1.18-41.36) 

Multiple proveniences (at least two different) 12 (11.4) 35 (16.3) 0.60 (0.20-1.78) 

Indigenous 274 (6.5) Did not eat cooked vegetables 5 (6.4) 13 (6.6) Ref. 0.247 
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Market 2 (2.6) 10 (5.1) 0.52 (0.08-3.26)  

 

 
Greengrocers 6 (7.7) 8 (4.1) 1.95 (0.44-8.55) 

Supermarket 54 (69.2) 137 (69.9) 1.02 (0.35-3.01) 

Homegrown 0 (0) 2 (1) n/a**** 

Other place (e.g. restaurant etc.) 4 (5.1) 2 (1) 5.20 (0.71-37.89) 

Multiple proveniences (at least two different) 7 (9) 24 (12.2) 0.76 (0.20-2.87) 

Provenience of fruit 

juice 

All 323 (6.1) Did not drink fruit juice 33 (30.3) 58 (27.1) Ref. 0.088 

Market 1 (0.9) 1 (0.5) 1.76 (0.11-29.03) 

Greengrocers 1 (0.9) 0 (0) n/a**** 

Supermarket 68 (62.4) 145 (67.8) 0.82 (0.49-1.38) 

Other place (e.g. restaurant etc.) 5 (4.6) 2 (0.9) 4.39 (0.81-23.9) 

Multiple proveniences (at least two different) 1 (0.9) 8 (3.7) 0.22 (0.03-1.83) 

Indigenous 276 (5.8) Did not drink fruit juice 26 (32.1) 54 (27.7) Ref. 0.552 

Market 1 (1.2) 1 (0.5) 2.08 (0.12-34.53) 

Greengrocers 1 (1.2) 0 (0) n/a**** 

Supermarket 51 (63) 133 (68.2) 0.80 (0.45-1.41) 

Other place (e.g. restaurant etc.) 1 (1.2) 2 (1) 1.04 (0.09-11.98) 

Multiple proveniences (at least two different) 1 (1.2) 5 (2.6) 0.41 (0.05-3.74) 

Eating beef 

 

All 327 (4.9) No 21 (19.6) 56 (25.5) Ref. 0.244 

Yes 86 (80.4) 164 (74.5) 1.40 (0.79-2.46) 

Indigenous 281 (4.1) No 14 (17.7) 54 (26.7) Ref. 0.113 

Yes 65 (82.3) 148 (73.3) 1.69 (0.88-3.26) 

Provenience of beef All 326 (5.2) Did not eat beef 21 (19.8) 56 (25.5) Ref. 0.184 

Market stall 0 (0) 4 (1.8) n/a**** 

Butcher 14 (13.2) 28 (12.7) 1.33 (0.59-3.01) 

Supermarket 54 (50.9) 104 (47.3) 1.38 (0.76-2.52) 

Other place (e.g. restaurant etc.) 6 (5.7) 4 (1.8) 4.00 (1.03-15.60) 

Multiple proveniences (at least two different) 11 (10.4) 24 (10.9) 1.22 (0.51-2.92) 

Indigenous 

 

280 (4.4) Did not eat beef 14 (17.9) 54 (26.7) Ref. 0.075 

Market stall 0 (0) 4 (2) n/a**** 

Butcher 9 (11.5) 26 (12.9) 1.33 (0.51-3.48) 

Supermarket 49 (62.8) 95 (47) 1.99 (1.01-3.93) 

Other place (e.g. restaurant etc.) 0 (0) 4 (2) n/a**** 

Multiple proveniences (at least two different) 6 (7.7) 19 (9.4) 1.22 (0.41-3.62) 
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Eating lamb All 305 (11.3) No 43 (42.6) 100 (49) Ref. 0.288 

Yes 58 (57.4) 104 (51) 1.30 (0.80-2.10) 

Indigenous 264 (9.9) No 32 (41.6) 94 (50.3) 1.00 0.198 

Yes 45 (58.4) 93 (49.7) 1.42 (0.83-2.43) 

Provenience of lamb All 302 (12.2) Did not eat lamb 43 (43.9) 100 (49) Ref. 0.185 

Market stall 0 (0) 4 (2) n/a**** 

Butcher 14 (14.3) 22 (10.8) 1.48 (0.69-3.16) 

Supermarket 31 (31.6) 67 (32.8) 1.07 (0.62-1.88) 

Other place (e.g. restaurant etc.) 4 (4.1) 2 (1) 4.65 (0.82-26.36) 

Multiple proveniences (at least two different) 6 (6.1) 9 (4.4) 1.55 (0.52-4.62) 

Indigenous 261 (10.9) Did not eat lamb 32 (43.2) 94 (50.3) Ref. 0.453 

Market stall 0 (0) 3 (1.6) n/a**** 

Butcher 11 (14.9) 20 (10.7) 1.62 (0.70-3.73) 

Supermarket 27 (36.5) 63 (33.7) 1.26 (0.69-2.30) 

Other place (e.g. restaurant etc.) 0 (0) 1 (0.5) n/a**** 

Multiple proveniences (at least two different) 4 (5.4) 6 (3.2) 1.96 (0.52-7.38) 

Eating pork All 311 (9.6) No 38 (36.9) 84 (40.4) Ref. 0.553 

Yes 65 (63.1) 124 (59.6) 1.16 (0.71-1.88) 

Indigenous 264 (9.9) No 32 (41.6) 94 (50.3) Ref. 0.198 

Yes 45 (58.4) 93 (49.7) 1.42 (0.83-2.43) 

Provenience of pork 

 

 

 

 

 

 

 

 

 

 

All 308 (10.5) Did not eat pork 38 (38) 84 (40.4) Ref. 0.807 

Market stall 1 (1) 4 (1.9) 0.55 (0.06-5.11) 

Butcher 7 (7) 15 (7.2) 1.03 (0.39-2.74) 

Supermarket 45 (45) 92 (44.2) 1.08 (0.64-1.82) 

Other place (e.g. restaurant etc.) 4 (4) 3 (1.4) 2.94 (0.63-13.8) 

Multiple proveniences (at least two different) 5 (5) 10 (4.8) 1.10 (0.35-3.45) 

Indigenous 264 (9.9) Did not eat pork 27 (36) 80 (42.3) Ref. 0.195 

Market stall 0 (0) 4 (2.1) n/a**** 

Butcher 4 (5.3) 13 (6.9) 0.91 (0.27-3.03) 

Supermarket 42 (56) 82 (43.4) 1.52 (0.85-2.69) 

Other place (e.g. restaurant etc.) 0 (0) 3 (1.6) n/a**** 

Multiple proveniences (at least two different) 2 (2.7) 7 (3.7) 0.85 (0.17-4.32) 

Provenience of 

chicken 

All 326 (5.2) Did not eat chicken 5 (4.8) 18 (8.1) Ref.  0.076 

 Market stall 2 (1.9) 4 (1.8) 1.80 (0.25-12.85) 
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Butcher 14 (13.5) 29 (13.1) 1.74 (0.53-5.65)  

 

 
Supermarket 64 (61.5) 149 (67.1) 1.55 (0.55-4.34) 

Other place (e.g. restaurant etc.) 7 (6.7)  2 (0.9) 12.6 (1.97-80.76) 

Multiple proveniences (at least two different) 12 (11.5) 20 (9) 2.16 (0.64-7.33) 

Indigenous 279 (4.8) Did not eat chicken 4 (5.3) 17 (8.4) Ref. 0.704 

Market stall 0 (0) 3 (1.5) n/a**** 

Butcher 11 (14.5) 27 (13.3) 1.73 (0.47-6.32) 

Supermarket 54 (71.1) 136 (67) 1.69 (0.54-5.24) 

Other place (e.g. restaurant etc.) 1 (1.3) 2 (1) 2.12 (0.15-29.66) 

Multiple proveniences (at least two different) 6 (7.9) 18 (8.9) 1.42 (0.34-5.91) 

Eating shellfish All 285 (17.2) No 79 (84) 139 (72.8) Ref. 0.035 

Yes 15 (16) 52 (27.2) 0.51 (0.27-0.96) 

Indigenous 245 (16.4) No 64 (90.1) 130 (74.7) Ref. 0.007 

Yes 7 (9.9) 44 (25.3) 0.32 (0.14-0.76) 

Provenience of 

shellfish 

All 285 (17.2) Did not eat shellfish 79 (84) 139 (72.8) Ref. 0.010 

Fishmonger 1 (1.1) 3 (1.6) 0.59 (0.06-5.73) 

Supermarket 11 (11.7) 41 (21.5) 0.47 (0.23-0.97) 

Other place (e.g. restaurant etc.) 3 (3.2) 1 (0.5) 5.28 (0.54-51.60) 

Multiple proveniences (at least two different) 0 (0) 7 (2.5) n/a**** 

Indigenous 245 (16.4) Did not eat shellfish 64 (90.1) 130 (74.7) Ref. 0.013 

Fishmonger 0 (0) 3 (1.7) n/a**** 

Supermarket 7 (9.9) 36 (20.7) 0.39 (0.17-0.94) 

Multiple proveniences (at least two different) 0 (0 ) 5 (2.9) n/a**** 

No. times eating at a 

pub or a restaurant 

All 326 (5.2) 0 46 (43.4) 81 (36.8) Ref. 0.143
T
/0.437

C
 

1-2 44 (41.5) 83 (37.7) 0.93 (0.56-1.56) 

3-4 5 (4.7) 36 (16.4) 0.24 (0.09-0.67) 

5+ 11 (10.4) 20 (9.1) 0.97 (0.43-2.20) 

Indigenous 283 (3.4) 0 37 (45.7) 80 (39.6) 1.00 0.043
T
/0.066

C
 

1-2 38 (46.9) 79 (39.1) 1.04 (0.60-1.80) 

3-4 3 (3.7) 32 (15.8) 0.20 (0.06-0.70) 

5+ 3 (3.7) 11 (5.4) 0.59 (0.15-2.24) 

Eating at a barbecue All 305 (11.3) No 91 (90.1) 180 (88.2) Ref. 0.626 

Yes 10 (9.9) 24 (11.8) 0.82 (0.38-1.80) 

Indigenous 262 (10.6) No 73 (96.1) 165 (88.7) Ref.  
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Yes 3 (3.9) 21 (11.3) 0.32 (0.09-1.12) 0.062 

No. times eating at a 

barbecue 

All 302 (12.2) 0 91 (91.9) 180 (88.7) Ref. 0.157
 T

/0.198
C
 

1-2 8 (8.1) 18 (8.9) 0.88 (0.37-2.10) 

3-4 0 (0) 5 (2.5) n/a**** 

Indigenous  261 (10.9) 0 73 (96.1) 165 (89.2) 1.00 0.036
T
/0.081

C
 

1-2 3 (3.9) 15 (8.1) 0.45 (0.13-1.61) 

3-4 0 (0) 5 (2.7) n/a**** 

GENERAL HOUSEHOLD DETAILS 

No. of children 

(<16y) in the house 

All 342 (0.6) 0 60 (51.7) 134 (59.3) Ref. 0.015
 T

/0.013
C
 

1 19 (16.4) 43 (19) 0.99 (0.53-1.83) 

2 19 (16.4) 34 (15) 1.25 (0.66-2.36) 

3 10 (8.6) 11 (4.9) 2.03 (0.82-5.04) 

4+ 8 (6.9) 4 (1.8) 4.47 (1.29-15.41) 

Indigenous 293 0 42 (48.8) 121 (58.5) Ref. 0.017
T
/0.014

C
 

1 16 (18.6) 40 (19.3) 1.15 (0.58-2.27) 

2 14 (16.3) 31 (15) 1.30 (0.63-2.68) 

3 7 (8.1) 11 (5.3) 1.83 (0.67-5.04) 

4+ 7 (8.1) 4 (1.9) 5.04 (1.40-18.09) 

Any child attending a 

childcare nursery or a 

playgroup 

All 339 (1.5) No children in the house 60 (53.1) 134 (59.3) Ref. 0.054 

Children not attending nursery or playgroup 19 (16.8) 50 (22.1) 0.85 (0.46-1.56) 

At least one child attending nursery or 

playgroup 

34 (30.1) 42 (18.6) 1.81 (1.05-3.12) 

Indigenous 292 (0.3) No children in the house 42 (49.4) 121 (58.5) Ref. 0.038 

Children not attending nursery or playgroup 15 (17.6) 47 (22.7) 0.92 (0.47-1.81) 

At least one child attending nursery or 

playgroup 

28 (32.9) 39 (18.8) 2.07 (1.14-3.76) 

Any child in nappies  All 338 (1.7) No children in the house 60 (52.6) 134 (59.8) Ref. 0.095 

At least one child but not in nappies 23 (20.2) 52 (23.2) 0.99 (0.55-1.76) 

At least one child in nappies 31 (27.2) 38 (17) 1.82 (1.04-3.20) 

Indigenous 291 (0.7) No children in the house 42 (49.4) 121 (58.7) Ref. 0.123 

At least one child but not in nappies 19 (22.4) 49 (23.8) 1.12 (0.59-2.11) 

At least one child in nappies 24 (28.2) 36 (17.5) 1.92 (1.03-3.59) 

Changing nappies All 335 (2.6) No children in the house or children not in 

nappies 

83 (74.1) 186 (83.4) Ref. 0.064 
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Child in nappies but not changing nappies 9 (8) 17 (7.6) 1.19 (0.51-2.77)  

 Child in nappies and changing nappies 20 (17.9) 20 (9) 2.24 (1.14-4.39) 

Indigenous 290 (1) No children in the house or children not in 

nappies 

61 (71.8) 170 (82.9) Ref. 0.029 

Child in nappies but not changing nappies 6 (7.1) 16 (7.8) 1.04 (0.39-2.79) 

Child in nappies and changing nappies 18 (21.2) 19 (9.3) 2.64 (1.30-5.36) 

Any other person 

with diarrhoea in the 

house 

All 321 (6.7) No 92 (83.6) 188 (89.1) Ref. 0.164 

Yes 18 (16.4) 23 (10.9) 1.60 (0.82-3.11) 

Indigenous 276 (5.8) No 66 (81.5) 175 (89.7) Ref. 0.060 

Yes 15 (18.5) 20 (10.3) 1.99 (0.96-4.11) 

*percentages refer to the proportion of participants with missing information for the variable; **percentages refer to the proportion among cases and controls that answered 

the question; ***Odds ratio with 95% confidence interval; **** Odds ratio not calculated because no variation present in the data; 
T 

Chi-Square for trend; 
C
 logistic regression 

on the continuous form of the variable 
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3.4.8.2 Multivariable analysis of general risk factors for giardiasis 

The constructed multivariable model for the general risk factors for giardiasis is 

reported in Table 3.4. A significantly increased risk for giardiasis was associated 

with travelling abroad and swimming in a swimming pool, whereas doing gardening, 

eating salad or raw vegetables in the exposure window and the weekly frequency of 

raw fruit consumption were all independently associated with a decreased risk. A 

significant interaction between gender and both travelling abroad and gardening was 

found. Travelling abroad was more significantly associated with an increased risk of 

giardiasis in females than in males. Similarly, gardening was significantly associated 

with a decreased risk of giardiasis in females only.  

 

Table 3.4: Constructed multivariable model for the general risk factors for giardiasis based 

on 303 valid (e.g. without missing data) observations (99 cases and 204 controls). Estimates 

following missing data multiple imputation (100 imputed datasets) are reported in 

parentheses. 

 
Variables included B* Adjusted OR** 95% CI*** p-value 

Travelling abroad (outside 

the UK) 
2.26  9.59 (10.53)  

2.75-33.51 

(3.28-33.80) 

0.001 

(<0.001) 

Swimming or paddling in a 

swimming pool 

1.03  2.79 (2.52) 1.40-5.54 

(1.33-4.79) 

0.002 

(0.005) 

Doing gardening -1.54  0.21 (0.25) 0.09-0.54 

(0.10-0.61) 

0.001 

(0.002) 

Weekly frequency of raw 

fruit consumption (per event) 

-0.16  0.85 (0.87) 0.78-0.93 

(0.81-0.94) 

0.001 

(0.001) 

Eating salad or raw 

vegetables 

-1.04  0.35 (0.45) 0.16-0.79 

(0.21-0.97) 

0.009 

(0.041) 

Male gender -0.25  0.78 (0.87) 0.38-1.58 

(0.44-1.72) 

0.539 

(0.695) 

Age 0-4y  Reference  0.196 

5-14y -0.30  0.74 (1.03) 0.18-3.03 

(0.27-3.83) 

0.689 

(0.965) 

15-44y 0.84  2.32 (2.38) 0.88-6.12 

(0.97-5.85) 

0.121 

(0.059) 

45-64y 0.20  1.22 (1.25) 0.45-3.32 

(0.49-3.17) 

0.723 

(0.640) 

65+y 0.58  1.79 (2.02) 0.59-5.42 

(0.75-5.41) 

0.346 

(0.164) 

Interaction Gender x 

Travelling abroad# 

-1.67  Males  OR 2.06, 95% CI 0.89-4.77, p=0.087 

Females OR 7.70, 95% CI 2.80-21.19, p<0.001 

Interaction Gender x 

Gardening## 

1.26  Males OR 0.59, 95% CI 0.30-1.15, p=0.120 

Females OR 0.22, 95% CI 0.10-0.49, p<0.001 

Constant 0.52   

*logistic regression coefficient; ** Odds ratio; ***95% confidence interval; #p=0.028 (0.044); 

##p=0.029 (0.090). Model statistics: model χ
2
 (12) = 60.49, p<0.001; Nagelkerke R

2
 = 0.25; Hosmer 

and Lemeshow χ
2
 (8) = 13.24, p=0.104. 
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After the exclusion of 32 cases and 83 controls that were un-matched, the odds ratio 

of swimming in a swimming pool decreased from 2.79 to 2.13 (p-value from 0.002 to 

0.097). No noticeable change in the ORs or significance levels was observed for the 

other variables. After the exclusion of the suspected secondary household cases, no 

loss of significance was observed for any of the predictors.  

 

3.4.8.3 Multivariable analysis of risk factors for indigenous giardiasis 

The constructed multivariable model for the risk factors for indigenous giardiasis is 

reported in Table 3.5. A significantly increased risk for giardiasis was associated 

with swimming in a swimming pool and changing nappies. Also drinking un-boiled 

water straight from the tap and reporting irritable bowel syndrome were associated 

with an increased risk of illness. The weekly frequency of consumption of raw fruit, 

visiting a premise with animals other than a farm, wildlife park or zoo and practising 

fieldsports were independently associated with a decreased risk of giardiasis. After 

the exclusion of 16 cases and 66 controls that were un-matched, only two predictors 

held their significance: changing nappies (OR 4.28, 95% CI 1.32-13.96, p=0.016) 

and the weekly frequency of consumption of raw fruit (OR 0.82, 95% CI 0.70-0.95, 

p=0.007). After the exclusion of the suspected secondary household cases the odds 

ratio of swimming in a swimming pool slightly decreased from 2.67 to 2.38 (p-value 

from 0.023 to 0.047), the odds ratio of changing nappies from 3.38 to 2.83 (p-value 

from 0.016 to 0.046), whereas visiting an animal premise other than a farm, wildlife 

park or zoo lost entirely its significance (OR from 0.77 to 0.00, p-value from 0.040 to 

0.998).  
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Table 3.5: Constructed multivariable model for the risk factors for indigenous giardiasis 

based on 241 valid (e.g. without missing data) observations (69 cases and 172 controls). 

Estimates following missing data multiple imputation (100 imputed datasets) are reported in 

parentheses. 

 
Variables included B* Adjusted OR** 95% CI*** p-value 

Swimming or paddling in a 

swimming pool 
0.98 2.67 (2.63) 

1.14-6.25 

(1.16-5.93) 

0.023 

(0.020) 

Changing  

nappies 

No children or children 

not in nappies 
 Reference  0.051 

Children in nappies but 

not changing nappies 
0.14 1.14 (1.14) 

0.22-6.07 

(0.27-4.77) 

0.874 

(0.859) 

Changing nappies 1.22 3.38 (2.80) 
1.25-9.16 

(1.04-7.52) 

0.016 

(0.041) 

Reporting irritable bowel syndrome 

(IBS) 
1.30 3.66 (5.06) 

1.18-11.37 

(1.29-19.80) 

0.025 

(0.020) 

Drinking un-boiled water straight 

from the tap 
2.10 8.17 (3.15) 

1.45-46.03 

(0.79-12.59) 

0.017 

(0.104) 

Weekly frequency of raw fruit 

consumption (per event) 
-0.26 0.77 (0.82) 

0.68-0.87 

(0.73-0.91) 

<0.00 

(<0.001) 

Practising fieldsports -1.55 0.21 (0.25) 
0.05-0.89 

(0.06-1.01) 

0.035 

(0.052) 

Visiting a premise with animals (other 

than a farm, wildlife park or zoo) 
-2.34 0.10 (0.11) 

0.01-0.89 

(0.01-1.05) 

0.040 

(0.055) 

Male gender 0.64 1.90 (1.71) 
0.98-3.69 

(0.93-3.14) 

0.057 

(0.085) 

Age 

0-4y  Reference  0.813 

5-14y -0.51 0.60 (1.85) 
0.08-4.23 

(0.32-10.64) 

0.606 

(0.492) 

15-44y -0.17 0.84 (2.33) 
0.21-3.37 

(0.66-8.13) 

0.810 

(0.185) 

45-64y -0.61 0.54 (0.74) 
0.13-2.33 

(0.20-2.75) 

0.412 

(0.650) 

65+y -0.51 0.60 (1.40) 
0.13-2.82 

(0.36-5.49) 

0.518 

(0.630) 

Constant -1.99    

*logistic regression coefficient; ** Odds ratio; ***95% confidence interval; Model statistics: model χ
2
 

(13) = 55.18, p<0.001; Nagelkerke R
2
 = 0.293; Hosmer and Lemeshow χ

2
 (8) = 5.66, p=0.686. 
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3.5 DISCUSSION 

 

The risk factors for symptomatic giardiasis in people from North West England were 

investigated using a typical case-control study design, with cases and controls 

coming from the same area and matched by gender and age.   

 

Some limitations of this study should be considered.  

 

This study included only clinical cases of disease. The risk factors identified in this 

study can then be considered related to the acquisition of symptomatic Giardia 

infection, and not necessarily to the transmission of the parasite per se: this would 

have required the inclusion of asymptomatic carriers as well (Espelage et al., 2010). 

Furthermore, no information was available on the infection status of the cases before 

their inclusion in the study following the onset of symptoms. If some cases became 

infected before the study defined exposure period, the significance of certain 

exposures could have been underestimated.  Although the cases were also checked 

for the presence of other major GI pathogens, we were not able to completely 

exclude other potential aetiological causes of diarrhoea (including chronic conditions 

resembling giardiasis, such as IBS). Due to the common occurrence of asymptomatic 

carriage of Giardia, the parasite itself may have not been directly responsible for the 

illness onset. As a consequence following our case eligibility criteria some non-

Giardia cases may have been included in the study, resulting in a reduction of the 

strength of certain associations.    

Similarly, it is also important to note that controls were included in the analysis on 

the basis of the absence of diarrhoea in the two weeks prior to recruitment, but they 

were not specifically tested for Giardia. Misclassification may have then happened, 

with asymptomatic carriers of the parasite being included as controls. By assuming a 

prevalence of asymptomatic carriage of 1.4% as the one reported by Amar et al. 

(2007) in our sample of 226 controls, it could be estimated that three controls could 

have had a subclinical Giardia infection. It is unlikely that the inclusion of this 

minimal amount of asymptomatic controls would have had any significant effect on 

the risk factors estimates. Response rates to recruitment were low: nearly half of the 

original notified and contacted cases were lost and only one fifth of the total 

contacted controls returned the study questionnaire. The recruited cases were 
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nevertheless representative of the case population in terms of both age and gender 

distribution.  

The consistent loss of participants prevented reaching the original case-control ratio. 

This could have resulted in a lack of statistical power, particularly in the under-

estimation of the importance of exposures occurring at low frequencies in the 

population. The defined exposure period from which information was collected 

retrospectively did not completely correspond between cases and controls. In 

controls the exposure period dated back from the moment the questionnaire was 

filled, resulting in a delay in time compared to the cases. This could have resulted in 

bias in assessing the importance of exposures that are likely to be dependent on the 

month or season. However, no effect of season was observed on the risk factors 

estimates following multivariable analysis. 

 

The results of the analysis of the clinical information collected from the cases 

overlapped the findings presented in the previous chapter in terms of reported 

symptoms, length of illness and hospitalisation rates, and confirmed the high 

morbidity associated with giardiasis. The additional data collected with the case-

control study questionnaire showed that flatulence, tiredness and loss of appetite 

were also frequently associated with the illness. Weight loss was also common.  

 

Despite the presence of potential bias in terms of comparability of exposure periods 

between cases and controls and the reduced statistical power due to a consistent 

drop-out of participants, risk factor analysis successfully identified a series of 

significant risk factors for giardiasis in North West England.  

 

As previously reported by Gray et al. (1994) in the UK and by other case-control 

studies in developed countries (Hoque et al., 2002b; Gagnon et al., 2006), travelling 

abroad in the exposure period was overall the most important risk factor for illness. 

This result confirms Giardia as one of the major pathogens causing traveller’s 

diarrhoea (Swaminathan et al., 2009). The type of destination had an important role 

too, since the strongest association with giardiasis was found for travelling to 

countries considered at high risk for the illness, including Africa and Asia (Hoque et 

al., 2002b) and Central and South America (Espelage et al., 2010). Transmission of 

Giardia is likely to occur through drinking contaminated water or eating 
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contaminated food during travel, since conditions favouring the spread on intestinal 

pathogens such as poor sanitation and water quality are highly prevalent in 

developing countries (Younas et al., 2008). Although participants were not asked 

specifically about exposures they experienced while travelling abroad, the 

information collected from a couple in one of the household clusters seemed to 

support such scenario. Both the wife and the husband travelled together to India, and 

reported drinking tap water and eating at restaurants repeatedly while there. The 

absence of other potential exposures (including owning pets or touching animals, 

going swimming or having children in nappies in the household) and the same date 

of start of illness reported were both consistent with a common source of infection 

related to contaminated tap water or food.  

 

Swimming or paddling in a swimming pool as an independent risk factor for 

giardiasis was confirmed both overall (regardless of travel abroad) and in the 

indigenous subgroup. The same association was observed with the use of a Jacuzzi or 

a hot tub. Swimming in fresh water bodies as lakes, ponds or rivers did not appear as 

a risk factor for the disease: the importance of this exposure may have been 

underestimated though due to the small sample size, since a very small number of 

participants reported this exposure. Swimming (and associated exposures like 

swallowing water) in either chlorinated or fresh water has been reported as a risk 

factor for giardiasis in the UK (Gray et al., 1994; Stuart et al., 2003) and New 

Zealand (Hoque et al., 2002b), but neither in Germany (Espelage et al., 2010) or 

Canada (Gagnon et al., 2006). In the study by Gray et al. (1994), there was no 

distinction between swimming in a swimming pool or in fresh water so the relative 

importance of the former compared to the latter was not properly assessed. Stuart et 

al. (2003) confirmed that exposure to recreational fresh water was more important 

than exposure to chlorinated water for the acquisition of indigenous giardiasis in the 

UK.  Our results suggest that transmission of Giardia in swimming pool settings can 

occur of North West England. Furthermore, the significance of using a Jacuzzi could 

be the indication that transmission could be favoured by close contact between 

people too. A Few outbreaks of giardiasis in swimming pools have been described 

previously in the UK (Smith et al., 2006b) and United States (Harter et al., 1984; 

Porter et al., 1988). Outbreaks are usually associated with the accidental faecal 

contamination of the pool water coupled with insufficient water disinfection. No 
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large swimming pool-related outbreaks were notified during the study period or were 

apparent from the study dataset. However such outbreaks may remain unnoticed 

since cases can be asymptomatic, as it has been shown in an outbreak involving the 

participants of swim class in the United States (Harter et al., 1984). Information 

collected from the cases part of two household clusters seemed to suggest that 

transmission may have occurred at a swimming pool. In one cluster, all the three 

primary or co-primary cases (the father and the two sons) reported going to the 

swimming pool, and the same exposure was reported by two children in another 

cluster too.  

 

Drinking un-boiled water from the tap appeared as a significant risk factor for 

indigenous giardiasis, but no dose-response effect of the number of glasses drank per 

day was found. The association between Giardia infection and drinking chlorinated 

water from the tap has not been reported consistently in the literature, with the 

exception of the study by Stuart et al. (2003) from South West England. Waterborne 

transmission of Giardia in developed countries through drinking water normally 

occurs following a disruption in the mains water system, and is usually accompanied 

by large community outbreaks as observed in the United States (O'Reilly et al., 2007; 

Daly et al., 2010) and Europe (Nygård et al., 2006; Rimhanen-Finne et al., 2010).  

Very few outbreaks of Giardia related to a drinking water source have been reported 

in the UK: in one case a private source was involved (Smith et al., 2006b), whereas 

in another occasion the contamination was likely to be associated with the mains 

water source (Jephcott et al., 1986). There was no evidence of any waterborne 

outbreak in our study, and the household of nearly all cases (with the exclusion of 

two reporting a mixed water source) were supplied by the mains water system. 

Although the difference did not reach statistical significance, univariable analysis 

revealed that cases also reported more frequently than controls that they observed 

changes in their tap water (particularly an unusual chlorine taste, or water was 

reported cloudy). Whether these changes were the results of a disruption in the water 

system leading to infection could not be concluded.  Drinking unsafe surface water 

directly from the environment (e.g. water taken from a lake, pond or a river) is a 

well-known risk factor for giardiasis (Hoque et al., 2002b; Gagnon et al., 2006), but 

no evidence of this route of transmission was found in our study. 
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The important role of young children for the parasite transmission in the household 

was confirmed by the fact that cases reported more frequently than controls having 

children, and particularly children going to a nursery or playgroup or being in 

nappies. However only changing nappies was independently associated with an 

increased risk of indigenous giardiasis, highlighting the importance of having actual 

contact with infected children faeces for the acquisition of Giardia. Although this 

particular risk factor did not appear to be important in the acquisition of indigenous 

giardiasis in a previous study in the UK (Stuart et al., 2003), the significance of 

changing nappies (and associated exposures such as the presence in the household of 

children attending childcare or being a nursing mother) has been reported in other 

studies (Hoque et al., 2001; Hoque et al., 2002b; Hoque et al., 2003; Gagnon et al., 

2006). In two distinct household clusters identified in our study, the two secondary 

cases (a father and a mother, respectively) reported changing nappies to the youngest 

primary case. Overall our results confirm that person-to-person transmission of 

Giardia between family members can be common, and it probably explains a 

significant proportion of the observed household clusters and secondary cases of 

infection.  

 

In our sample we found that reporting irritable bowel syndrome (IBS) was 

significantly associated with giardiasis in indigenous cases. No previous case-control 

study on giardiasis has investigated this aspect. Chronic Giardia infections can 

closely resemble IBS, presenting with abdominal pain that can be continuous and 

accompanied with intermittent episodes of diarrhoea or loose stools (Stark et al., 

2007). The presence of an association between IBS and giardiasis in our study may 

then be spurious and due to the misclassification of patients with IBS, in which 

Giardia was diagnosed by chance due to the similarity of the symptoms between the 

two conditions. Furthermore, in our study the presence of IBS was self-reported by 

the cases, and we couldn’t verify whether this condition was officially confirmed by 

their GP following the appropriate diagnostic criteria. The possibility that some cases 

in our study may had actually represented chronic infections misdiagnosed as cases 

of irritable bowel syndrome cannot be ruled out, since in Italy 6% of the 137 patients 

with IBS and dyspepsia attending a clinic was found to be infected with Giardia 

(Grazioli et al., 2006). In our study there was a nearly significant association 

between giardiasis and reported using medicines for indigestion (antacids) in the 
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exposure period, and the use of these medicines was in turn associated with reporting 

IBS in the cases. An association between giardiasis and being on antacid therapy has 

been reported previously from Germany, but only when the variable was tested on its 

own (Espelage et al., 2010). Recent studies also showed that infection with 

Helicobacter pylori was significantly associated with Giardia infection (Grazioli et 

al., 2006; Ankarklev et al., 2012b; Júlio et al., 2012). Whether being on an antacid 

therapy is associated with the presence of a Helicobacter infection and plays a role in 

causing a major predisposition of patients to Giardia infection could not be 

concluded and requires further investigation.   

 

No evidence of zoonotic transmission appeared from our results. The significance of 

visiting a wildlife park or a zoo appearing in a higher frequency in cases when 

analysed on its own was not confirmed by multivariable analysis. There is 

controversy about the relevance of animals as reservoirs for human Giardia infection 

and the extent of zoonotic transmission risk, since results from different studies are 

inconsistent. While in some instances having contact with pets and farm animals 

(Warburton et al., 1994) or having cats at home (Boontanom et al., 2011) appeared 

to be significantly associated with Giardia infection, most case-control studies in 

developed countries did not find any association between an increased risk of disease 

and any type of potential animal contact (Hoque et al., 2002b; Stuart et al., 2003; 

Gagnon et al., 2006). It is possible that appreciable levels of zoonotic transmission 

are more commonly present in rural contexts as those specifically studied by 

Warburton et al. (1994) and Boontanom et al. (2011). Also, the presence of different 

species and genotypes of Giardia which are infective for humans may differ in 

different populations accounting for the inconsistencies observed between studies. It 

is important to note that in our study, although not significantly, the frequency of 

exposures related to pet animals was overall lower in cases compared to controls. A 

similar finding was reported from Portugal, where the presence of pets and 

particularly dogs was associated to a decreased risk of Giardia infection (Júlio et al., 

2012). A similar finding was described in sporadic cryptosporidiosis in Australia, 

where having animal contact at home appeared protective for the illness (Robertson 

et al., 2002). The authors of this study proposed that if companion animals are 

commonly infected with the pathogen and they shed it frequently, then the owners 

would be constantly exposed to it eventually developing immunity to infection. 
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Although this scenario can be applied to Giardia as well due to its high prevalence in 

dogs and cats (Ballweber et al., 2010), the presence of bias leading to a higher 

frequency of pet ownership and animal contact in controls cannot be excluded and 

further studies are needed to determine the carriage of Giardia in owned pet animals. 

 

The apparent protective effect given by certain exposures (e.g. practising fieldsports, 

visiting premises with animals and doing gardening) could not be easily explained, 

and it may reflect the presence of bias resulting in a higher frequency of these 

exposures in controls by chance. Similarly, the consumption of salad and raw 

vegetables (along with the consumption of shellfish) and the frequency of 

consumption of raw fruit were significantly associated with a decreased risk of 

giardiasis. This finding was unexpected, since the consumption of lettuce or other 

salad items has been reported as a significant risk factor for giardiasis previously 

(Stuart et al., 2003; Faustini et al., 2006; Espelage et al., 2010; Bello et al., 2011). 

However, similarly to our study a negative association between the consumption of 

raw vegetables and the risk of sporadic cryptosporidiosis was observed (Robertson et 

al., 2002; Hunter et al., 2004). As proposed by Hunter et al. (2004), it is possible that 

repeated exposure to the parasite via contaminated fresh products could lead to 

immunity. This protective effect would be particularly evident in people consuming 

fresh products more frequently.  

 

To sum up, with our case-control study we managed to find significant risk factors 

for giardiasis in North West England. While confirming the important role played by 

travelling to foreign countries, our results highlighted the importance of transmission 

of this parasite within the household between family members and in swimming 

pools (although no outbreaks associated with this type of venue were evident). The 

role of tap water in the transmission of Giardia was not completely clear, and 

seemed to be associated more with sudden changes in the quality of the water rather 

than to continuous exposure. Animal contact did not appear to be associated with 

giardiasis in our study, but more data are needed to assess the zoonotic risk taking 

into account the genotypic diversity within Giardia parasites. 
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CHAPTER FOUR: THE MOLECULAR 

DIVERSITY OF GIARDIA IN SYMPTOMATIC 

PATIENTS IN NORTH WEST ENGLAND 
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4.1 INTRODUCTION 

In the past decade, the molecular diversity of Giardia parasites circulating in human 

populations has been investigated using PCR-based molecular typing methods. Data 

have shown that the majority of human infections (either asymptomatic or clinical) 

are caused by assemblage B and in a lower proportion by assemblage A or both 

assemblages (Sprong et al., 2009; Laishram et al., 2012). However, there is a lack of 

information on the distribution and diversity of multi-locus genotypes of Giardia in 

humans from developed countries, since only a few studies implemented a multi-

locus genotyping approach based on the sequencing of the bg, gdh and tpi loci 

(Cacciò et al., 2008; Geurden et al., 2009; Lebbad et al., 2011).  

 

Little information is available on the molecular diversity of Giardia in the human 

population of the United Kingdom, particularly in terms of the sub-assemblages and 

multi-locus genotypes of the parasite. Previous studies involved only a relatively 

small number of samples and mostly relied on the use of a single locus for 

genotyping. In 33 microscopically-confirmed sporadic cases of giardiasis from 

London analysed using the tpi RFLP assay assemblage B was found in 63.6% of 

them, followed by assemblage A (27.3%) and mixed-assemblage infections (9.1%) 

(Amar et al., 2002). The same study found that all the 21 cases involved in a Giardia 

outbreak taking place in a nursery were infected with assemblage B. Another study 

based on the sequencing of the tpi and ssu-rRNA loci and involving 199 symptomatic 

cases from South-West London found a prevalence of 24%, 73% and 3% for 

assemblage A, B and mixed-assemblage infections respectively (Breathnach et al., 

2010). In 78 symptomatic patients from England and Wales genotyped with a newly 

developed real-time tpi PCR assay assemblage B accounted for 72% of the infections 

the prevalence of mixed-assemblage infections determined was very low (3%) 

(Elwin et al., 2013). A different picture has been recently reported from Scotland, 

where the majority (72%) of the 29 cases genotyped at the bg locus were infected 

with assemblage A and the prevalence of mixed-assemblage infections was 10% 

(Alexander et al., 2014). The authors also reported the presence of an unusual 

assemblage in one patient that visited Ghana before illness onset, but no information 

regarding the type of assemblage or sub-assemblage was available. Information on 

the Giardia sub-assemblages infecting the patients was available from two studies 
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and was based on the sequencing of the tpi locus only (Amar et al., 2002; Breathnach 

et al., 2010): all assemblage A parasites belonged to the sub-assemblage AII, and the 

BIII and BIV sub-assemblages were identified in assemblage B isolates. No study 

from the UK so far has used a multi-locus sequence typing method to investigate the 

molecular diversity of Giardia at multiple loci in a large number of patients. 

 

4.2 AIMS OF THE STUDY 

The aim of this study was to determine the prevalence and diversity of Giardia 

assemblages, sub-assemblages and multi-locus genotypes in the faecal specimens of 

symptomatic patients diagnosed with giardiasis in North West England. The standard 

multi-locus sequence typing approach based on the sequencing of the bg, gdh and tpi 

loci (including an assemblage-specific PCR assay to improve the detection of mixed-

assemblage infections) was used to generate data comparable with other studies.   
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4.3 MATERIALS AND METHODS 

 

4.3.1 Collection and storage of faecal specimens 

Aliquots of the faecal specimens from 406 Giardia-positive patients included in both 

the enhanced surveillance (Chapter 2) and the case-control (Chapter 3) studies were 

included (Table 4.1). Aliquots collected up to November 2010 were first stored 

unpreserved at 4°C at the Royal Preston Hospital microbiology laboratory; after 

November 2010, 70% ethanol was added to them in an attempt to stop the 

degradation of parasite cysts and DNA. Ethanol was also added shortly after 

collection to 28 specimens collected in the first half of 2011, whereas specimens 

collected from July 2011 onwards were stored unpreserved. 

 

Table 4.1: Number of Giardia-positive faecal specimens by study, collection timeframe and 

preservation method. 

 

Collection timeframe Study No.  No. in 70% EtOH 

January 2008 - February 2012 Enhanced surveillance 214 178 

March 2012 - August 2013 Case-control 192 0 

 

Specimens were sent by the Royal Preston Hospital and the Manchester Royal 

Infirmary microbiology laboratories to the Department of Infection Biology at 

University of Liverpool on a monthly basis. On arrival, unpreserved specimens were 

classified as formed, semi-formed or liquid based on their physical appearance 

(Figure 4.1). Out of 221 unpreserved specimens for which it was possible to assess 

the consistency, 81 (36.7%) were formed, 110 (49.8%) semi-formed and 30 (13.6%) 

liquid. Specimens were stored at 4°C in the dark before DNA extraction. 

 

 

Figure 4.1: Examples of a formed (A), semi-formed (B) and liquid (C) stool 

specimen.  

 

A B C 
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4.3.2 Faecal DNA extraction  

Total genomic DNA was extracted directly from the specimens using the QIAamp
® 

DNA Stool Mini Kit (QIAGEN
®
) following the manufacturer’s instructions with 

only minor modifications. Ethanol-preserved aliquots were prepared for DNA 

extraction following a user-developed protocol for the isolation of DNA from 

formalin-preserved stool samples (available on the QIAGEN website at the following 

address:  http://www.qiagen.com/resources/resourcedetail?id=7b341dd2-8e24-4e3a-

9b35-4d2e28e46656&lang=en), with only minor modifications. Briefly, 1.6 ml of 

stool-ethanol suspension was transferred into a 2 ml microcentrifuge tube and 

centrifuged at 20,000 x g for 5 min to pellet the stools. After discarding the 

supernatant, 0.2 ml of the stool sediment was transferred into a new 2 ml tube with 

1.6 ml of 1X PBS (containing 37 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4 and 2 

mM KH2PO4) (Ambion
® 

) and vortexed for 15 s, followed by centrifugation at 

20,000 x g for 5 min. After discarding the supernatant, 1.6 ml of 1X PBS was added 

again and the whole process repeated two more times. Unpreserved aliquots were 

first mixed thoroughly, then 200 mg of formed (or 200 μl of semi-formed or liquid) 

stools were transferred into a 2 ml microcentrifuge tube. After adding 1.4 ml of stool 

lysis buffer (buffer ASL), the suspension was vortexed for 1 min and heated for 10 

min at 95°C in a heating block (instead of 5 min at 70°C as per the manufacturer’s 

instructions). After incubation the sample was vortexed and centrifuged at 20,000 x g 

for 1 min, and 1.2 ml of the supernatant was transferred into a new 2 ml tube with an 

InhibitEX tablet. The sample was vortexed until the tablet was completely 

suspended, incubated for 3 min at room temperature and centrifuged at 20,000 x g 

for 3 min. The whole supernatant was transferred into a new 1.5 ml tube and 

centrifuged again at 20,000 x g for 3 min. Then 200 μl of supernatant was transferred 

into another 1.5 ml tube containing 15 μl of proteinase K enzyme and 200 μl of 

buffer AL, and mixed thoroughly. After incubation for 10 min at 70
o
C in a water 

bath, 200 μl of 96-100% ethanol was added to the lysate and mixed by vortexing. 

The lysate was then loaded onto a QIAamp spin column and centrifuged at 20,000 x 

g for 1 min. The spin column was then washed by adding 500 μl of washing buffer 1 

(AW1) and centrifuging at 20,000 x g for 1 min, followed by adding 500 μl of 

washing buffer 2 (AW2) to the column and centrifuging it at 20,000 x g for 3 min. 

To ensure the elimination of remaining traces of the washing buffer, the column was 
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placed into another 2 ml collection tube and centrifuged for an additional 1 min. The 

column was then placed into a 1.5 ml tube and 100 μl of elution buffer (buffer AE) 

added directly onto the column membrane. The column was left at room temperature 

for 5 min and centrifuged for 1 min to elute the DNA. The eluted DNA was stored at 

-20
o
C.  

 

4.3.3 Molecular genotyping of G. duodenalis 

The extracted DNA was used in a series of nested PCR reactions targeting the beta-

giardin (bg), glutamate dehydrogenase (gdh) and triose-phosphate isomerase (tpi) 

genes. For the tpi gene, assemblage A and B-specific protocols were first used to 

improve the detection of mixed-assemblage infections. This was followed by re-

amplification of the generic fragment of the same gene. Either the assemblage-

specific or the generic tpi gene products were sequenced, depending on their 

amplification success to ensure genotyping at this locus. The small-subunit ribosomal 

RNA (ssu-rRNA) was further amplified from specimens that failed to amplify at the 

other three loci to ensure assemblage typing of most of the isolates. The molecular 

genotyping process is represented in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Giardia molecular genotyping flowchart. 
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4.3.3.1 General PCR reactions protocol 

PCR reactions were prepared in a final volume of 25 µl, each containing 2 µl of 

genomic DNA, 1X PCR buffer (with Tris-Cl, KCl, (NH4)2SO4 and 15 mM MgCl2, 

pH 8.7) (QIAGEN
®
), 200 µM of each deoxynucleotide (Sigma-Aldrich

®
), 250 nM of 

each primer (Eurofins MWG Operon), 2.5 units of Taq DNA polymerase 

(QIAGEN
®

) and nuclease-free water (QIAGEN
®
) up to the final reaction volume. 

Positive (genomic DNA from G. duodenalis assemblage A isolate WBC6 

trophozoites and from an assemblage B confirmed clinical isolate) and negative 

(nuclease-free water) control samples were included in each PCR reaction. The 

optimal annealing temperature and MgCl2 concentration were determined separately 

for each set of primers and stage of reaction. All reactions were performed in a DNA 

Engine Dyad
®
 Peltier Thermal Cycler (MJ Research Inc.). To confirm the successful 

amplification and the size of the products, 5 µl of PCR products were 

electrophoresed (30 min, 110 V) onto a 1.5% agarose gel stained with SYBR
®
 Safe 

DNA gel stain (Invitrogen™) along with 5 µl of 100 bp DNA ladder (Thermo Fisher 

Scientific Inc.).  

A list of all the primer sequences and conditions used for the amplification of each 

locus are summarised in Table 4.2. 

 

4.3.3.2 Amplification of the beta-giardin (bg) gene 

The beta-giardin gene was amplified using a nested PCR protocol. First, a 753 bp 

fragment of the gene was amplified using the primers G7 and G759 (Cacciò et al., 

2002). Then 1 µl of PCR product from the first reaction was used in a nested PCR 

reaction that amplified a 511 bp fragment using the primers BGf  and BGr (Lalle et 

al., 2005). PCR conditions were as follows: an initial denaturation step (94
o
C, 3 

min), followed by a set of 35 cycles each consisting of denaturation (94
o
C, 20 s), 

annealing for 30 s (at 65
o
C for the primary reaction and 64

o
C for the nested reaction) 

and extension (72
o
C, 1 min), and concluded with a final extension step (72

o
C, 10 

min). In the primary reaction the concentration of MgCl2 was increased to 2.5 mM. 
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4.3.3.3 Amplification of the glutamate dehydrogenase (gdh) gene 

A 754 bp fragment of the glutamate dehydrogenase gene was first amplified using 

the GDH1 (forward) and GDH2 (reverse) primers followed by the amplification, 

from 1 µl of PCR product from the first reaction, of a 530 bp fragment in the nested 

reaction using the GDH3 (forward) and GDH4 (reverse) primers (Cacciò et al., 

2008). PCR conditions were as follows: an initial denaturation step (94
o
C, 3 min), 

followed by a set of 35 cycles each consisting of denaturation (94
o
C, 20 s), annealing 

for 30 s (at 58
o
C for the primary reaction and 68

o
C for the nested reaction) and 

extension (72
o
C, 1 min), and concluded with a final extension step (72

o
C, 10 min). 

In both the primary and secondary reaction the concentration of MgCl2 was increased 

to 2.5 mM. 

 

4.3.3.4 Amplification of the triose-phosphate isomerase (tpi) gene 

The triose-phosphate isomerase gene was amplified using two different PCR assays. 

In the assemblage-specific PCR assay, samples first underwent the amplification of a 

605 bp fragment of the gene using the AL3543 (forward) and AL3546 (reverse) 

primers (Sulaiman et al., 2003). Then 1 µl of PCR product from the first reaction was 

used in two nested reactions. One involved the amplification of a 332 bp fragment of 

the gene from G. duodenalis assemblage A using the Af (forward) and Ar (reverse) 

primers (Geurden et al., 2008). The other consisted of amplifying a 400 bp fragment 

of the gene from G. duodenalis assemblage B with the Bf (forward) and Br (reverse) 

primers (Geurden et al., 2009). PCR conditions included an initial denaturation step 

(94
o
C, 3 min), followed by a set of 35 cycles each consisting of denaturation (94

o
C, 

45 s), annealing for 45 s (at 58
o
C for the primary reaction and 68 and 62

o
C for the 

assemblage A- and B-specific secondary reactions, respectively) and extension 

(72
o
C, 1 min), followed by a final extension step (72

o
C, 10 min). The concentration 

of MgCl2 was increased to 2.5 mM in both the primary and the assemblage A-

specific secondary reactions.  

Samples that successfully amplified a product with the assemblage-specific assay 

were re-amplified for the 605 bp fragment of the gene (using the AL3543 and 

AL3546 primers as above), and then 1 µl of PCR product from the first reaction was 

used to amplify a 530 bp fragment of the tpi gene using the AL3544 (forward) and 
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AL3545 (reverse) primers (Sulaiman et al., 2003). PCR conditions were the same as 

those described above for the tpi primary reaction.  

The sequencing of the 530 bp product took priority over the assemblage-specific 

332-400 bp fragments. Whenever the sequencing of the former failed, the latter was 

sequenced instead. 

 

4.3.3.5 Amplification of the small-subunit ribosomal RNA (ssu-rRNA) gene 

Samples that failed to amplify at any of the above loci were additionally amplified 

for the small-subunit ribosomal RNA gene. A 292 bp fragment of the gene was 

amplified with the primers RH11 (forward) and RH4 (reverse) (Hopkins et al., 

1997). PCR conditions were as follows: started with a denaturation step (94
o
C, 3 

min) followed by 35 cycles each consisting of denaturation (94
o
C, 20 s), annealing 

(59
o
C, 20 s) and extension (72

o
C, 30 s), and concluded with a final extension step 

(72
o
C, 10 min). 
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Table 4.2: Genes used for the Giardia molecular genotyping and PCR reactions conditions. 

 

Gene PCR 

type 

Primer sequence (5’- 3’) (f/r)* Annealing 

temperature and time 

MgCl2 

(mM) 

Reference 

Beta-giardin (bg) nested G7 (AAGCCCGACGACCTCACCCGCAGTGC) (f) 

G759 (GAGGCCGCCCTGGATCTTCGAGACGAC) (r) 

BGf (GAACGAACGAGATCGAGGTCCG) (f) 

BGr (CTCGACGAGCTTCGTGTT) (r) 

65°C for 30 s 

 

64°C for 30 s 

2.5 

 

1.5 

(Cacciò et al., 2002) 

 

(Lalle et al., 2005) 

Glutamate dehydrogenase 

(gdh) 

nested GDH1 (TTCCGTRTYCAGTACAACTC) (f) 

GDH2 (ACCTCGTTCTGRGTGGCGCA) (r) 

GDH3 (ATGACYGAGCTYCAGAGGCACGT) (f) 

GDH4 (GTGGCGCARGGCATGATGCA) (r) 

58°C for 30 s 

 

68°C for 30 s 

2.5 

 

 

(Cacciò et al., 2008) 

Triose-phosphate 

isomerase (tpi) 

nested AL3543 (AAATIATGCCTGCTCGTCG) (f) 

AL3546 (CAAACCTTITCCGCAAACC) (r) 

AL3544 (CCCTTCATCGGIGGTAACTT) (f) 

AL3545 (GTGGCCACCACICCCGTGCC) (r) 

Af (CGCCGTACACCTGTCA) (f) 

Ar (AGCAATGACAACCTCCTTCC) (r) 

Bf (GTTGTTGTTGCTCCCTCCTTT) (f) 

Br (CCGGCTCATAGGCAATTACA) (r) 

58°C for 45 s 

 

58°C for 45 s 

 

68°C for 45 s 

 

62°C for 45 s 

2.5 

 

2.5 

 

2.5 

 

1.5 

(Sulaiman et al., 2003) 

 

 

 

(Geurden et al., 2008) 

 

(Geurden et al., 2009) 

Small-subunit ribosomal 

RNA (ssu-rRNA) 

single-

step 

RH11 (CATCCGGTCGATCCTGCC) (f) 

RH4 (AGTCGAACCCTGATTCTCCGCCAGG) (r) 

59°C for 20 s  1.5 (Hopkins et al., 1997) 

*f = forward primer; r = reverse primer 
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4.3.3.6 DNA sequencing 

PCR products were purified using the QIAquick
®

 PCR Purification kit (QIAGEN
®
) 

as per the manufacturer’s instructions, and were sent for sequencing to the Core 

Genomic Facility, Medical School, University of Sheffield, UK. Products were 

sequenced in both directions (forward and reverse) using an Applied Biosystems
®

 

3730 DNA Analyser. The chromatograms were edited and assembled in sequence 

contigs using BioEdit ver. 7.2.0 (http://www.mbio.ncsu.edu/bioedit/bioedit.html).  

Contigs were first checked in GenBank to confirm they belonged to G. duodenalis 

using the Basic Local Alignment Search Tool (BLAST) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

 

4.3.3.7 Genotypic and phylogenetic analysis 

Sequences were imported into the Molecular Evolutionary Genetics Analysis 

(MEGA) program ver. 6.06 (Tamura et al., 2013) and aligned using ClustalW, and 

were made the same length by trimming the excess nucleotides at the extremities.  

Sequences successfully sequenced in both directions and without overlapping 

nucleotides at any position were identified by aligning them with representative 

sequences from the major G. duodenalis sub-assemblages AI-III and BIII-IV 

downloaded from GenBank. Also representative sequences from the animal 

assemblages (C-G) and other species of Giardia (either G. muris or G. ardeae 

depending on the availability of a sequence of the gene examined) were included. 

The full list of the reference sequences used is reported in Table 4A, Appendix 4. 

Maximum likelihood (ML) trees were built using MEGA ver. 6.06 after determining 

the optimal nucleotide substitution model (i.e. the best combination of evolutionary 

model and rate variation among sites). Sequences showing at least one difference 

compared with the references were checked with BLAST in GenBank to determine 

whether they matched other deposited sequences. The best matching sequences 

where then retrieved and included in the final ML tree, which was built including one 

representative sequence from each different genotype found and using 500 

replications. Sequences that were only successfully sequenced in one direction were 

aligned and identified in the same way but separately from the sequences confirmed 
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in both directions. For clarity and consistency with the other previous Giardia 

studies, the following terminology was used for the description of gene sequences. 

Single nucleotide polymorphisms (SNPs) observed in the sequences were 

distinguished between novel polymorphisms (e.g. an unambiguously determined 

nucleotide position not reported in previously described sequences) and 

heterogeneous positions (e.g. a nucleotide position that could not be ambiguously 

determined due to the presence of two overlapping nucleotides). Sequences with 

heterogeneous positions were aligned directly with the representative sequences of 

the genotypes confirmed by sequencing in both directions, and the heterogeneous 

positions in the sequence were indicated using the IUPAC nucleotide ambiguity 

codes. Locus–specific subtypes were named after their closest reference sequence or 

isolate found in GenBank (e.g. AI, A2, Sweh198), followed by a lower case letter 

(e.g. AIa) if the sequence showed at least one novel polymorphism. Assemblage A 

multi-locus genotypes (MLGs) were named following the nomenclature proposed by 

Cacciò et al. (2008): capital letter to indicate the assemblage followed by a Roman 

numeral for the sub-assemblage and an Arabic numeral for the MLG (e.g. AI-1, AI-

2). 

 

4.3.4 Relationship between Giardia cyst load and PCR success 

In order to check whether the parasite cyst load in the stools had any effect on the 

PCR amplification success, a subset of 25 specimens were checked for the presence 

of Giardia cysts using a commercial direct fluorescence antibody (DFA) assay 

(MERIFLUOR
® 

Cryptosporidium/Giardia, Meridian Bioscience
®
 Europe, London, 

UK). A drop of faecal material from each sample was transferred and spread on the 

slide wells, and left to dry at room temperature for 30 min. A positive (formalinized 

stool with Giardia and Cryptosporidium cysts/oocysts) and a negative control 

(parasite-free formalinized stool) were included. A drop of both detection reagent 

and counterstain were added to the wells and mixed with an applicator stick, and 

slides were incubated in a humidified chamber at room temperature in the dark for 30 

minutes. Reagents were then gently washed away with 1X washing buffer, removing 

the excess of buffer by tapping the slides edge on a clean paper towel. A drop of 

mounting medium was added to the wells and the slides covered with a 22x64 

coverslip. Slides were then scanned at 40X with a microscope equipped with a QBC
® 
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ParaLens LED apparatus (wavelength 410-511 nm) (QBC
® 

Diagnostics Inc., Port 

Matilda, Pennsylvania). Parasite cysts were counted in 10 randomly selected fields, 

and the average number of cysts per field calculated. Since only a very low or very 

high number of cysts were observed in the slides, specimens were classified in only 

two categories: low (average ≤10 cysts/field) and high (average ≥10 cysts/field) 

parasite load. All specimens were analysed within two months of collection, and 

DNA was extracted as described in Section 4.2.2 at the same time of microscopic 

examination to avoid DNA degradation. Extracted DNA was visualised onto gel as 

described in Section 4.3.3.1. DNA bands were assessed visually from the gel and 

their intensity coded as weak, moderate or strong. All specimens were amplified at 

the four loci as described in Sections 4.3.3.2-5. 

 

4.3.5 Statistical analysis of overall and locus-specific PCR success 

The overall and locus-specific PCR success were analysed in relation to the 

specimens’ year of collection, preservation status and age (e.g. the number of months 

from collection to DNA extraction). Descriptive statistics were calculated using 

cross-tabulations, and the Fisher’s Exact test was used to test for differences in the 

PCR success between groups of specimens of different age and preservation status. 

Multivariable logistic regression analysis was also performed to determine the 

factors that were independently associated with the overall and locus-specific PCR 

success. All tests were two-sided and a p-value of less than 5% was considered to be 

statistically significant.  
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4.4 RESULTS 

 

4.4.1 PCR amplification success 

Of the 406 extracted specimens tested for the bg, gdh or tpi loci, 218 (53.7%) 

amplified at least one: the tpi assemblage A/B-specific product amplified in 86.2% 

(188/218) of the specimens, followed by the bg product in 76.1% (166/218) and the 

gdh product in 70.2% (153/218). Of the remaining 188 specimens that were negative 

at all the three loci and that were further amplified for the ssu-rRNA locus, 77 (41%) 

amplified for this locus and 111 (59%) were negative.    

To sum up, in total 72.7% (295/406) of the extracted specimens successfully 

amplified at least one of the four loci. Of these, 42% (124/295) amplified only one 

locus whereas 40.7% (120/295) and 17.3% (51/295) amplified three and two loci, 

respectively. 

Differences in the overall PCR success rate were observed in relation to the 

specimens’ year of collection, preservation status and age (Table 4.3). Following 

multivariable analysis (excluding year of collection because it was redundant due to 

being indistinguishable from specimen age) only ethanol preservation was 

significantly associated with the overall PCR success (Table 4.4): preservation 

reduced the odds of successful amplification from the specimens by 73%, and there 

was no significant interaction between the specimen age and preservation.  

 

Table 4.3: Number and percentage of PCR-positive specimens at any of the four loci by year 

of collection, preservation status and age (e.g. the number of months from collection to DNA 

extraction). 

 

Year  EtOH 

preserved 

No. 

samples 

No. PCR 

positive 

% PCR 

positive 

Median specimen age in 

months (range) 

2008  yes 45 25 55.6 42.7 (27.4-49) 

2009  yes 22 11 50 27.9 (24.6-36.3) 
2010  yes 83 49 59 13.5 (4.3-25.7) 
2011  yes 28 16 39 8.2 (3-17.1) 

2011  no 29 25 61 2.3 (1.2-5.4) 

2012  no 120 101 84.2 1.10 (0.1-6.2) 

2013  no 79 68 86.1 1.10 (0.2-2.3) 

 total 406 295  72.7 2.3 (0.1-49) 
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Table 4.4: Multivariable logistic regression model of the variables independently associated 

with the overall PCR amplification success in 406 extracted faecal specimens. 

 

Variables included B* OR (95% CI)** p-value 

Specimen age -0.01 0.99 (0.97-1.01) 0.510 

Ethanol preservation -1.32 0.27 (0.14-0.50) <0.001 

Constant 2.11   

*regression coefficient; **adjusted odds ratio with 95% confidence intervals 

 

The effect of stool consistency on the PCR success was also tested in the 228 

unpreserved specimens, but it was not significant (Fisher’s Exact, p=1.000).   

 

When the locus-specific PCR amplification success was considered, both the ethanol 

preservation and age of the specimens were significantly associated with the PCR 

amplification success of all the three MLST loci but the effect was different for non-

preserved and preserved specimens (Table 4.5). In unpreserved specimens the odds 

of amplification success was significantly reduced with the increasing specimen age 

whereas in preserved specimens the amplification success did not change with 

sample age, but the ethanol preservation reduced the odds of successful amplification 

by 88%. Stool consistency did not affect any of the MLST loci amplification success 

when tested in unpreserved specimens (Fisher’s Exact, p>0.05 for all three loci).  

 

Table 4.5: Multivariable logistic regression model of the variables independently associated 

with the PCR amplification success at the bg, gdh and tpi loci in 406 extracted faecal 

specimens. 

 

Variables included B* OR (95% CI)** p-value 

bg 

Specimen age (months) -0.64 0.53 (0.38-0.74) <0.001 

EtOH preservation -2.08 0.12 (0.05-0.29) <0.001 
Interaction age and preservation 0.61 1.83 (1.30-2.57) <0.001 

Constant 1.23   

gdh 

Specimen age (months) -0.54 0.58 (0.42-0.81) 0.001 

EtOH preservation -2.53 0.08 (0.03-0.20) <0.001 

Interaction age and preservation 0.52 1.69 (1.22-2.34) 0.002 

Constant 0.99   

tpi assemblage A/B-specific 

Specimen age (months) -0.33 0.72 (0.53-0.97) 0.030 

EtOH preservation -1.67 0.19 (0.08-0.42) <0.001 

Interaction age and preservation 0.30 1.36 (1.00-1.83) 0.046 

Constant 1.01   

*regression coefficient; **adjusted odds ratio with 95% confidence intervals 
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4.4.2 Relationship between Giardia cyst load and PCR success 

The majority of the microscopically-examined specimens (17 out of 25, 68%) 

showed a high cyst load (average ≥10 cysts/field). Stool consistency was 

intermediate (semi-formed) in the majority of the specimens (14 out of 25, 56%) and 

formed or liquid in six (24%) and five (20%) specimens, respectively. There was 

high variability in the extracted whole faecal DNA yield as visualised by agarose gel: 

half of the samples (13 out of 25, 52%) gave a band of moderate intensity, followed 

by specimens returning a band of strong (7 out of 25, 28%) or weak to very weak (5 

out of 25, 20%) intensity.   

 

Consistency of the stool was not significantly associated with the observed cyst load 

(Fisher’s Exact, p=0.182), although all formed specimens showed a high cyst load. 

Consistency was not associated with the observed extracted DNA band intensity 

(Fisher’s Exact, p=0.129), but the majority of formed specimens (four out of six, 

66.7%) and none of the liquid specimens showed a band of strong intensity on gel. 

The cyst load was only weakly associated with the DNA band intensity (Fisher’s 

Exact, p=0.095): bands of strong intensity were never observed from specimens with 

a low cyst load, whereas the majority of those with a high cyst load (14 out of 17, 

82.3%) returned bands of moderate to high intensity.  

 

A total of 23 out of 25 (92%) specimens amplified at least one locus. The ssu-rRNA 

gene successfully amplified in 21 (84%) samples, followed by the tpi in 19 (76%), 

the bg in 15 (60%) and gdh in 14 (56%). Of the two samples that did not amplify at 

any of the loci tested one was of formed consistency and had a very high cyst load, 

whereas the other was semi-formed and had a low cyst load. No association was 

found between stool consistency, cyst load or extracted DNA band intensity and the 

number of loci successfully amplified (Fisher’s Exact, p=0.215, 0.336 and 0.411 for 

consistency, cyst load and DNA band respectively).  The cyst load was marginally 

significantly associated with the amplification of the ssu-rRNA locus (Fisher’s Exact, 

p=0.081): 94.1% of specimens with a high load amplified this locus against 62.5% of 

the samples with a low cyst load. This trend for association was not observed in the 

other markers (Fisher’s Exact, p=0.194, 0.389 and 0.344 for bg, gdh and tpi 

respectively). 
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4.4.3 Overall Giardia assemblages prevalence 

Overall, the G. duodenalis assemblage was determined in 247 of the 295 specimens 

(83.7%) either by successful sequencing of any of the loci amplified (239 specimens) 

or by on-gel visualization of the tpi assemblage-specific products (eight specimens 

for which DNA sequencing failed). Assemblage B was found in the majority of the 

specimens, and only less than five percent showed a mixed assemblage infection 

(defined as a specimen showing the sequences of two different assemblages at 

different loci or amplifying the products of both assemblages following the tpi 

assemblage-specific PCRs) (Figure 4.3). Of the seven specimens showing a mixed 

infection (Table 4.6), three were diagnosed by the tpi assemblage A and B-specific 

PCR (whereas they were typed as B at both the bg and gdh loci), three were typed as 

B at the tpi locus but as A at the gdh locus (two specimens) or at the bg locus (one 

specimen), and one was typed as A at the bg locus but as B at the gdh locus. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Prevalence of Giardia assemblages determined in 247 samples. 

 

 

Table 4.6: Assemblage typing results in the seven specimens with a mixed assemblage A 

and B infection. 

  

Isolate ID Bg Gdh Tpi A/B specific Tpi generic 

13/C155, 13/CF, 12/C11 B B A+B B 

10/24 A B negative negative 

11/34 negative A B B 

10/3 A negative B negative 

8/11 negative A B negative 
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4.4.5 Giardia sub-assemblages and genotypes by locus 

 

4.4.5.1 Beta-giardin 

Out of 166 samples amplifying at the bg locus, 157 (94.6%) were successfully 

sequenced. One isolate sequenced only in one direction showed complete identity 

with two references sequences (AI and AII), and the sequence of one isolate 

(12/C71) showed 17 heterogeneous positions possibly compatible with a mixed 

assemblage A and B template. The full list of isolates genotyped at the bg locus is 

reported in Table 4B and the detailed description of the SNPs found in the bg 

sequences is reported in Tables 4C-F, Appendix 4.  Of 155 isolates that could be 

assigned to a specific assemblage, 131 (of which 118 were confirmed by sequencing 

in both directions and 13 in only one direction) had sequences without heterogeneous 

positions and were unambiguously typed at the sub-assemblage level. The overall 

typing results obtained at the bg locus are shown in Figure 4.4, and the diversity of 

the bg sequences of the 118 isolates sequenced in both directions and without 

heterogeneous positions as determined by phylogenetic analysis is reported in Figure 

4.5.  

 

 

Figure 4.4: Overall sub-assemblage typing results at the bg locus in 47 assemblage 

A (a) and 108 assemblage B isolates (b). Isolates (with number and percentage 

reported) are grouped by sub-assemblage similarity or whether their sequence 

showed heterogeneous positions. 
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Figure 4.5: Maximum likelihood tree of the bg gene sequence of 118 isolates 

without heterogeneous positions. One representative sequence from each identified 

genotype (in bold) is shown and it is indicated by its assigned study ID (with the total 

number of isolates sharing the same sequence reported in parentheses). The major 

assemblage and sub-assemblage reference sequences along with the sequences from 

previously described isolates (in red for assemblage A, in blue for assemblage B and 

in black for the other assemblages) are indicated by their GenBank accession 

number.  Optimal nucleotide substitution model: Tamura-Nei with Gamma 

distribution. Only bootstrap values ≥70% for bipartitions are reported.  
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Out of the 47 assemblage A isolates, 42 (87.5%) did not show heterogeneous 

positions along the sequence and were unambiguously identified. Only two isolates 

(11/13 and 10/H12) were of sub-assemblage AI (of which 10/H12 showing a novel 

polymorphism compared to the AI reference sequence and was confirmed by 

sequencing in both directions). The vast majority of assemblage A isolates belonged 

to two previously described sub-assemblage AII subtypes. Subtype A2  was found in 

17 isolates (of which 13/C146 showing a novel polymorphism compared to the AII 

reference sequence and confirmed by sequencing in both directions) and subtype A3 

in 23 isolates.  Five assemblage A isolates showed at least one heterogeneous 

position in their chromatogram. Of the three isolates that were confirmed by 

sequencing in both directions (10/20, 12/C89, 10/H8), heterogeneous positions were 

observed at one (two isolates) or two (one isolate) different positions along the bg 

gene sequence. The isolate showing two heterogeneous positions were hypothesized 

to represent a mixed A2/A3 subtype since the polymorphisms were observed at the 

two positions (383 and 391) corresponding to the nucleotide substitutions 

differentiating between the subtypes A2 and A3.  

Out of 108 isolates identified as belonging to assemblage B, 89 (82.4%) did not show 

heterogeneous positions in their bg sequence and were unambiguously identified. 

Overall, 16 different subtypes were identified. The majority of the isolates (70 out of 

89, 77.5%) were identical to five previously reported B1 subtypes. Among them, the 

most represented subtype was B1-3 (48 isolates), followed by B1-2 (11 isolates), B1-

5 (six isolates), B1-1 (three isolates) and B1 (one isolate). The sequence of the isolate 

13/CO (confirmed by sequencing in both directions) showed a novel polymorphism 

compared to the B1-2 subtype. Eight isolates were identified as belonging to sub-

assemblage BIII: seven showed complete identity with the BIII reference sequence, 

whereas the sequence of the isolate 12/C75 showed a novel polymorphism compared 

to the same reference. The sequence of one isolate was identical to the sub-

assemblage BIV reference sequence whereas the isolates 13/C151 and 12/C19 

(confirmed by sequencing in both directions) showed one and two nucleotide 

substitutions compared to the same reference, respectively. The sequence of two 

isolates showed complete identity to the one of two previously described BIV-type 

isolates (Sweh198 and GU417).  The sequences of six isolates were identical to those 

of three previously described subtypes (BG-Ber) (with four identical to BG-Ber2 and 

two identical to BG-Ber1 and BG-Ber6, respectively).  
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At least one heterogeneous position was found in the bg sequences of 19 assemblage 

B isolates (of which 18 were confirmed by sequencing in both directions). Overall 

SNPs occurred at 29 different positions along the bg gene sequence (Table 4E, 

Appendix 4), and the maximum number of SNPs observed per sequence was five 

(average 2.4). Two particular positions (497 and 623) showed a high frequency of 

SNPs occurrence, which were observed in six and five sequences respectively, 

however no sequences with the same pattern of SNPs were observed and some 

sequences also showed novel polymorphisms.  

 

4.4.5.2 Glutamate dehydrogenase  

Out of 153 samples amplifying at the gdh locus, 146 (95.4%) were successfully 

sequenced and typed at the assemblage level. The full list of isolates genotyped at the 

gdh locus is reported in Table 4G, and the detailed description of the SNPs found in 

the gdh sequences is reported in Tables 4H-I, Appendix 4. A total of 119 isolates 

(of which 115 were confirmed by sequencing in both directions and four in only one 

direction) were unambiguously genotyped at the sub-assemblage level because they 

did not show any heterogeneous position. The overall typing results obtained at the 

gdh locus are shown in Figure 4.6, and the diversity of the gdh sequences of the 115 

isolates sequenced in both directions without heterogeneous positions as determined 

by phylogenetic analysis is reported in Figure 4.7.  

 

 

Figure 4.6: Overall sub-assemblage typing results at the gdh locus in 51 assemblage 

A (a) and 95 assemblage B isolates (b). Isolates (with number and percentage 

reported) are grouped by sub-assemblage similarity or whether their sequence 

showed heterogeneous positions. 
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Figure 4.7: Maximum likelihood tree of the gdh gene sequence of 115 isolates 

without heterogeneous positions. One representative sequence from each identified 

genotype (in bold) is shown and it is indicated by its assigned study ID (with the total 

number of isolates sharing the same sequence reported in parentheses). The major 

assemblage and sub-assemblage reference sequences along with the sequences from 

previously described isolates (in red for assemblage A, in blue for assemblage B and 

in black for the other assemblages) are indicated by their GenBank accession 

number.  Optimal nucleotide substitution model: Tamura 3 parameter with Gamma 

distribution. Only bootstrap values ≥70% for bipartitions are reported.  

 

All the 49 assemblage A isolates which gdh sequence did not show any 

heterogeneous position belonged to three previously described sub-assemblage AII 

subtypes, namely A2 (the reference AII subtype) (27 isolates), ECUST2196 (18 

isolates) and ISSGd198 (three isolates). The sequence of one isolate (12/C41) 
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showed a novel polymorphism compared to the ECUST2196 subtype sequence. Two 

isolates confirmed by sequencing in both directions (8/11 and 12/C56) each showed 

a single heterogeneous position in their chromatograms (Table 4H, Appendix 4).  

 

Out of 95 assemblage B isolates, 70 (73.7%) did not show any heterogeneous 

position in their gdh sequence and belonged to 13 different subtypes. A total of 45 

isolates (64.3%) belonged to the reference BIV subtype, 13 (18.6%) to the previously 

described ISSGd167 subtype, and two isolates (2.8%) to the previously described 

Ad-158 subtype. With the exclusion of one isolate (13/C155) that was not confirmed 

by sequencing in both directions, nine isolates sequenced in both directions 

represented subtypes that differed from a minimum of two up to eight positions from 

either the reference sequences or any other sequence deposited in GenBank.  The gdh 

sequence of these isolates showed from a minimum of one up to four novel 

polymorphisms (Table 4I, Appendix 4). Heterogeneous positions were found in the 

chromatograms of 25 assemblage B isolates confirmed by sequencing in both 

directions.  Up to 41 different heterogeneous positions were observed along the gdh 

sequence, with a maximum of nine SNPs observed per sequence (average 4.6) 

(Table 4L, Appendix 4). Three positions (644, 746, 857 and 929) showed a high 

frequency of overlapping nucleotides occurrence, which were observed in eight, 

eight, eight and nine sequences respectively. The nucleotide substitutions 

differentiating between the sub-assemblages BIII and BIV along the gdh gene 

occurred at these positions (Table 4L, Appendix 4). However, only three sequences 

shared the same pattern of SNPs (at six different positions) and no isolate could be 

unambiguously identified as a genuine mixed sub-assemblage infection due to the 

occurrence of both heterogeneous positions and novel polymorphisms.    
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4.4.5.3 Triose phosphate isomerase  

 

Out of 186 tpi-positive specimens that were re-amplified for the 530 bp fragment of 

the gene, 150 (80.6%) successfully amplified and 139 samples were successfully 

sequenced. In addition, 24 products amplified using the assemblage-specific PCR 

assays were successfully sequenced. In order to identify all the isolates sequenced at 

this locus in a consistent way, the 530 bp sequences were in the end trimmed down to 

the length of the shorter products amplified with the assemblage-specific PCR assay. 

In summary, 163 isolates were successfully sequenced and typed at the assemblage 

level.  The full list of isolates genotyped at the tpi locus is reported in Table 4M, and 

the detailed description of the SNPs found in the tpi sequences is reported in Tables 

4N-P, Appendix 4. In total 138 isolates (of which 124 were confirmed by 

sequencing in both directions and 14 in only one direction) did not show 

heterogeneous positions along the gene sequence and they were unambiguously 

genotyped at the sub-assemblage level. The overall typing results at the tpi locus are 

shown in Figure 4.8. The diversity of the tpi sequences of the 124 isolates 

successfully sequenced in both directions and without heterogeneous positions as 

determined by phylogenetic analysis is reported in Figure 4.9.  

 

Figure 4.8: Overall sub-assemblage typing results at the tpi locus in 52 assemblage 

A (a) and 111 assemblage B isolates (b). Isolates (with number and percentage 

reported) are grouped by sub-assemblage similarity or whether their sequence 

showed heterogeneous positions. 
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Figure 4.9: Maximum likelihood tree of the tpi gene sequence of 124 isolates 

without heterogeneous positions. One representative sequence from each identified 

genotype (in bold) is shown and it is indicated by its assigned study ID (with the total 

number of isolates sharing the same sequence reported in parentheses). The major 

assemblage and sub-assemblage reference sequences along with the sequences from 

previously described isolates (in red for assemblage A, in blue for assemblage B and 

in black for the other assemblages) are indicated by their GenBank accession 

number.  Optimal nucleotide substitution model: Kimura 2 parameter with gamma 

distribution and invariant sites. Only bootstrap values ≥70% for bipartitions are 

reported.  

 

None of the 52 isolates identified as belonging to assemblage A showed any SNP in 

their tpi sequences. With the exception of one isolate (11/13) which sequence was 
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identical to the one of a previously described AI subtype, the tpi sequence of all the 

assemblage A isolates was identical to the sub-assemblage AII reference subtype.  

 

Out of 111 isolates identified as belonging to assemblage B, 86 (77.5%) did not show 

any heterogeneous position in their tpi sequence. Overall, 13 different subtypes were 

found. The majority (50/86 isolates, 58.1%) were identical to the sub-assemblage 

BIV reference subtype, and 13 (16.2%) were identical to another previously 

described BIV-type subtype (VB906855). The sequences of two isolates (11/25 and 

12/C18) each showed a novel polymorphism compared to the BIV subtype reference. 

A total of eleven isolates (12.8%) were identical to the sub-assemblage BIII 

reference subtype. Three isolates were identical to three different BIII subtypes 

previously described (HS29, Sweh060 and HS114). The sequences of two isolates 

(10/H35 and 10/H43) each showed a novel polymorphism compared to the BIII 

subtype reference. Four isolates all sequenced in both directions did not clearly group 

with either of the two major sub-assemblages reference sequences. Two isolates 

(10/H14 and 13/C149) showed complete sequence identity with a previously 

described isolate (Sweh171). One isolate (13/CG) showed two novel polymorphisms 

compared to the isolate Sweh171, whereas another one (12/C64) showed two novel 

polymorphisms compared with a previously described isolate (RM1).  Another 

isolate (12/C50) produced a potentially novel sequence but the PCR product was 

successfully sequenced in only one direction so it could not be confirmed.  

 

A total of 25 assemblage B isolates could not be unambiguously identified because 

their chromatograms showed heterogeneous positions along the tpi gene sequence. 

Overall, in 23 isolates confirmed by sequencing in both directions overlapping 

nucleotides occurred at 14 different positions along the tpi gene sequence (Table 4P, 

Appendix 4). The maximum number of heterogeneous positions observed per 

sequence was four (average 2.1). Four particular positions (628, 847, 889 and 892) 

showed a high frequency of SNPs occurrence, which were observed in five, eight, 

nine and nine sequences respectively. Four isolates (12/C21, 12/C30, 12/C77 and 

13/C140) showed the same SNPs at these four positions and were hypothesized to 

represent a mixed BIII/BIV subtypes infection, since these particular positions 

corresponded to the nucleotide substitutions differentiating between the sub-
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assemblages BIII and BIV (Table 4P, Appendix 4). No other sequences with the 

same pattern of SNPs were observed. 

 

4.4.5.4 Small subunit ribosomal RNA  

Out of 77 samples that amplified the ssu-rRNA gene, 34 were successfully sequenced 

(of which 32 in both directions).  Overall, assemblage A was found in 12 samples 

(35.3%) and B in 22 (64.7%). All isolates showed complete sequence identity with 

the relative reference sequences, and no distinction between the major sub-

assemblages was possible (Figure 4.10). The two isolates that were successfully 

sequenced only in one direction were identical to the others. None of the ssu-rRNA 

sequences showed heterogeneous positions. 

 

Figure 4.10: Maximum likelihood tree of the ssu-rRNA gene sequence of 32 isolates. 

One representative sequence from each identified genotype (in bold) is shown and it 

is indicated by its assigned study ID (with the total number of isolates sharing the 

same sequence reported in parentheses). The major assemblage and sub-assemblage 

reference sequences along with the sequences from previously described isolates (in 

red for assemblage A, in blue for assemblage B and in black for the other 

assemblages) are indicated by their GenBank accession number.  Optimal nucleotide 

substitution model: Tamura 3-parameter. Only bootstrap values ≥70% for 

bipartitions are reported.  

 

 



 

134 

 

4.4.6 Multi-locus genotypes 

A total of 34 assemblage A and 76 assemblage B isolates were successfully 

genotyped at all the three MLST loci.  

 

4.4.6.1 Assemblage A multi-locus genotypes 

A total of 31 assemblage A isolates showed sequences without heterogeneous 

positions and their multi-locus genotype (MLG) was unambiguously identified 

(Table 4.7). All MLGs belonged to the sub-assemblage AII. Two previously 

identified MLGs (AII-1 and AII-2) (Cacciò et al., 2008) were found in nine (29% of 

the total) and four isolates (12.9% of the total), respectively. Four novel MLGs were 

also identified, with one of them accounting for nine isolates (29% of the total). 

Amongst the three isolates showing SNPs in the sequence of at least one of the three 

loci, one isolate showed a potentially mixed AII-1/AII-2 MLG whereas the other two 

were not clearly identifiable. 

 

Table 4.7: Assemblage A multi-locus genotypes in 31 isolates unambiguously genotyped at 

the bg, gdh and tpi loci. 

 

No. isolates  %* Bg Gdh Tpi MLG 

9  29 A2 AII AII AII-1** 

9  29 A3 ECUST2196 AII AII-novel 

6  19.3 A2 ECUST2196 AII AII-novel 

4  12.9 A3 AII AII AII-2** 

2  6.4 A3 ISSGd198 AII AII-novel 

1  3.2 A2 ECUST2196a AII AII-novel 

*percentage of the 31 isolates;**same MLGs reported by Cacciò et al. (2008) 

 

 

4.4.6.2 Assemblage B multi-locus genotypes 

The Giardia multi-locus genotype was unambiguously identified in a total of 45 

assemblage B isolates which sequences did not show any heterogeneous position 

(Table 4.8). Two previously identified MLGs (MLG 1 and 7) (Lebbad et al., 2011) 

were found in 21 (46.7%) and one (2.2%) isolates, respectively. Up to 15 novel 

assemblage B MLGs were identified, each one accounting for one to three isolates 

only. 
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Table 4.8: Assemblage B multi-locus genotypes in 45 isolates unambiguously genotyped at 

the bg, gdh and tpi loci. 

 

No. isolates % * Bg Gdh Tpi MLG 

21 46.7 B1-3 BIV BIV 1** 

3 6.7 B1-2 BIV BIV B novel 

3 6.7 B1-5 BIV VB906855 B novel 

3 6.7 B1-5 ISSGd167 VB906856 B novel 

2 4.4 B1-2 BIV VB906855 B novel 

2 4.4 B1-2 ISSGd167 BIV B novel 

1 2.2 B1-1 BIV BIV 7** 

1 2.2 B1-1 ISSGd167 BIV B novel 

1 2.2 B1-2a BIV BIV B novel 

1 2.2 B1-2 Ad-158 Sweh171 B novel 

1 2.2 B1-2 Ad-158 VB906855 B novel 

1 2.2 B1-3 Bb BIV  B novel 

1 2.2 B1-3 ISSGd167 BIV B novel 

1 2.2 B1 ISSGd167 BIV B novel 

1 2.2 BIII Bc VB906855 B novel 

1 2.2 BIII BIV BIV B novel 

1 2.2 BIVb Bg BIII B novel 

*percentage of the 45 isolates;**same MLGs reported by Lebbad et al. (2011) 
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4.5 DISCUSSION 

 

We extracted the DNA from faecal specimens collected from patients diagnosed with 

giardiasis in North West England and we used PCR-based genotyping methods to 

characterise the molecular diversity of the Giardia parasites causing infection.  

 

Overall, the combined use of the four different loci allowed the successful PCR 

amplification in more than 70% of the extracted specimens. In particular, the use of 

the ssu-rRNA locus ensured the amplification in specimens that were negative 

following PCRs at the bg, gdh and tpi loci. A greater success rate of amplification of 

the ssu-rRNA locus compared to the other three was also confirmed in the specimens 

with Giardia cysts confirmed by immunofluorescence microscopy. The small-

subunit ribosomal RNA gene has a high copy number in the Giardia genome: this 

increased availability of starting DNA template determines an increased success of 

PCR amplification, particularly in specimens (like faeces or environmental samples) 

with a low quantity of target DNA or a higher quantity of PCR inhibitors (Wielinga 

& Thompson, 2007). The other loci also showed differences in their amplification 

success: the highest was observed for the tpi assemblage-specific product whereas it 

was lower and comparable between the bg and gdh loci. The differential 

amplification success of these loci has been commonly reported in studies using the 

same primers, although results vary. The use of the tpi assemblage A and B specific 

PCR assay allowed the successful amplification in 67 out of the 72 (93%) extracted 

human specimens (including also 13 that did not amplify with the tpi generic product 

PCR assay), and all the specimens successfully amplified at the bg locus (Geurden et 

al., 2009). The amplification success rate reported by a study including 66 

symptomatic patients from Germany was 92.4% for the bg locus, 44% for the generic 

tpi product and only 25.7% for the gdh locus (Broglia et al., 2013). Failure of 

amplification of assemblage B at multiple loci including those used in this study was 

also extensively observed in dog samples (Beck et al., 2012), with the phenomenon 

involving also the two canine assemblages C and D. Since the effect of a difference 

in the gene copy number between the bg, gdh and tpi markers could be reasonably 

excluded (all of them being single-copy genes), it has been proposed that the lack of 

amplification of particular loci could be due to the presence of nucleotide 

mismatches between the PCR primers and the genomic sequences (Broglia et al., 
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2013). The presence of mismatches could then lead to the inability of certain primers 

to amplify particular sub-genotypes, as recently suggested the beta-giardin primers in 

respect to certain assemblage B sub-types (Robertson et al., 2007a).  

 

In order to check for the potential effect of PCR inhibition, samples that did not 

amplify at any of the four loci were spiked with Giardia DNA and re-amplified for 

both the ssu-rRNA and bg loci. All samples successfully amplified (data not shown).  

The inhibition of PCR was also tested and ruled out in a study from Peru, where 

spiking samples positive by microscopy but negative by PCR with low amounts of 

parasite DNA resulted in successful amplification (Lebbad et al., 2008).  

 

The parasite load and the extent of cyst and DNA degradation due to the storage of 

the specimens could have influenced the PCR amplification success too. The 

specimens originated from patients where Giardia infection was confirmed using a 

commercially available enzyme-linked immunoassay method (GIARDIA/ 

CRYPTOSPORIDIUM CHEK
®

, Techlab). It has been shown that this assay detects 

the presence of the cyst wall protein 1 (CWP1), a soluble antigen that is released in 

large quantities during the encystation of Giardia trophozoites in vitro (Boone et al., 

1999). It is then possible that in some of the specimens only the soluble antigen but 

either no cysts (or a very little amount of them) was present, resulting in the absence 

of Giardia DNA available for PCR amplification. However, although the analysis 

involved only a small number of samples, the presence of cysts was verified in all the 

specimens that were checked by immunofluorescence microscopy and the PCR 

success rate was not correlated with the parasite load. Furthermore, the two samples 

that tested negative at all the four loci contained parasite cysts.  

 

The time passed from sample collection to DNA extraction seemed to significantly 

and negatively influence the amplification success in unpreserved specimens. This 

effect was  likely due to the degradation of cysts and parasite DNA over time, 

particularly in samples collected in the years 2008-2010 that were stored unpreserved 

for several months or even years before being extracted. The effect of ethanol 

preservation on the PCR success could not be clearly explained. The preservative 

was added to the oldest specimens by the hospital laboratory only a few months 

before DNA was extracted, so it was not possible to assess its actual effect on the 
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preservation of DNA in samples that likely were already degraded when ethanol was 

added. Nevertheless, a certain number of specimens that were a few years old still 

amplified successfully at multiple loci. 

 

The prevalence of the two assemblages found in the specimens reflected what has 

been reported in symptomatic patients from Europe (Geurden et al., 2009; Lebbad et 

al., 2011; Broglia et al., 2013) and corresponded to what has been previously 

published from the UK (Amar et al., 2002; Breathnach et al., 2010; Elwin et al., 

2013). Assemblage B was responsible for the majority of infections, and the 

prevalence of mixed assemblage A and B infections was low (<5%), whereas none of 

the other assemblage (C-F) was found.  

 

The molecular diversity of assemblage A isolates at the sub-assemblage level was 

successfully characterised in the majority of cases. Sequences with heterogeneous 

positions were observed only in a small proportion of isolates (and they were mostly 

observed at the bg locus), confirming the rare occurrence of sequences with 

overlapping nucleotides consistently reported in assemblage A parasites (Sprong et 

al., 2009). Regardless of the gene analysed, the vast majority of the sequences 

matched those of previously described isolates and sequences showing novel 

polymorphisms were observed in very few cases. The vast majority of assemblage A 

isolates were assigned to the sub-assemblage AII consistently across the three loci, 

whereas sequences belonging to the sub-assemblage AI were found only in two (at 

the bg locus) and one (at the tpi locus) cases. The results confirmed the 

preponderance of sub-assemblage AII in humans compared to sub-assemblage AI, as 

previously shown in other studies using multi-locus sequence typing (Cacciò et al., 

2008; Geurden et al., 2009; Lebbad et al., 2011).  

The degree of polymorphism (e.g the number of different sub-types identified) 

differed between the loci and showed remarkable similarities with other studies. At 

the bg locus the subtype A3 was found in the majority of isolates followed by A2, as 

reported from symptomatic patients in Belgium (Geurden et al., 2009) and Germany 

(Broglia et al., 2013). Two subtypes were found at the gdh locus, with AII being the 

most frequent as observed in both Sweden (Lebbad et al., 2011) and Belgium 

(Geurden et al., 2009), whereas only one AII sub-type was identified at the tpi locus.  

Several patients were infected with two previously described sub-assemblage AII 
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multi-locus genotypes (AII-1 and AII-2). These MLGs have been commonly 

reported in symptomatic patients from Italy (Cacciò et al., 2008), Belgium (Geurden 

et al., 2009) and Sweden (Lebbad et al., 2011). As reported in the aforementioned 

studies, also novel MLGs showing different combinations of bg, gdh and tpi were 

observed suggesting that humans can be infected with an array of very diverse 

assemblage A genotypes.  

 

The sub-assemblage diversity of assemblage B isolates was much more complex 

compared to assemblage A isolates. The analysis was complicated by the high 

frequency of occurrence of sequences with heterogeneous positions, with 

overlapping nucleotides observed on average in 20% of the sequences across the 

three loci. A few assemblage B isolates showing heterogeneous templates potentially 

represented mixed sub-assemblage infections but the identification could not be 

unequivocally resolved. Mixed templates are a common occurrence in assemblage B 

parasites (Sprong et al., 2009), and their presence has been observed following DNA 

extraction and DNA sequencing even from single Giardia cysts and between 

different cysts isolated from the same patient (Ankarklev et al., 2012).  

The assignment to a particular B sub-assemblage of isolates that were 

unambiguously identified was not immediate due to discrepancies between the 

different markers. At the bg locus the majority of the isolates belonged to subtypes 

that were part of the previously identified B1 group (Geurden et al., 2009), as it has 

also been observed in human isolates from Sweden (Lebbad et al., 2011). The B1 

group clustered nearby the sub-assemblage BIII by phylogenetic analysis, but 

whether it represents an actual sub-assemblage other than BIII and BIV has to be 

verified.  Conversely, the analysis of the gdh and tpi markers assigned the majority 

of isolates to the sub-assemblage BIV. The genotypic diversity observed in 

assemblage B isolates was much higher compared with the one observed within 

assemblage A, consisting in 21 novel sub-types (the majority of which at the gdh and 

tpi loci). Similar levels of diversity at the three markers were reported in assemblage 

B parasites in human patients from Europe (Lebbad et al., 2011; Broglia et al., 

2013). Following multi-locus analysis of isolates successfully characterised at all the 

three markers, the majority of patients were infected with the same multi-locus 

genotype (ML-1) previously reported in the majority of patients of a study in Sweden 

(Lebbad et al., 2011). Similarly to what was observed for assemblage A, a high 
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number of assemblage B MLGs showing different combinations of bg, gdh and tpi 

never reported before were found.  

Our results confirmed the need for a novel DNA sequence-based classification 

system applicable for the genotyping of Giardia parasites below the assemblage 

level. Although the use of the bg, gdh and tpi loci seems to produce relatively 

consistent typing results for assemblage A sub-assemblages (supported by both 

phylogenetic and multi-locus analysis), it is clearly limited in its applicability for the 

assemblage B sub-typing. The extremely high sequence variation often observed in 

assemblage B parasites (often involving a single nucleotidic difference between 

isolates) and the poor resolution of phylogenetic analyses complicate enormously the 

assignment of isolates to a specific sub-assemblage. Furthermore, the sub-groups 

BIII and BIV identified by allozyme electrophoretic studies are not supported by 

DNA sequence analysis (Feng & Xiao, 2011). The existence of several sub-

assemblages within B (as suggested by the high levels of genetic variation) should be 

re-evaluated and confirmed following a more comprehensive biochemical and 

genetic characterization, in order to determine whether these subgroups are 

consistent and discrete. There is also the need of increasing the number of loci in 

order to improve the reliability and resolution of the multi-locus typing scheme. The 

use of next generation sequencing (NGS) technologies may help in determining the 

extent of genetic sub-structuring within both assemblage A and B at a whole-genome 

level: these data would be crucial in the identification of sub-assemblage specific 

genes or DNA sequence polymorphisms that could then be used as diagnostic 

markers. The comparison of a large set of clinical samples from different parts of the 

world would be pivotal in order to validate the reliability and stability of the new 

markers across different parasite populations.  

 

To sum up, the molecular diversity of Giardia in symptomatic patients from North 

West England showed evident similarities with other areas of Europe. The majority 

of infections were caused by assemblage B alone, followed by infections with sub-

assemblage AII. Molecular analysis at both the single-locus and multi-locus level 

revealed the occurrence of both novel and already described sub-types and multi-

locus genotypes, with assemblage B parasites showing a significantly higher 

genotypic diversity and occurrence of heterogeneous templates compared with 

assemblage A parasites.  
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CHAPTER FIVE: DIFFERENCES IN THE 

CLINICAL OUTCOME AND TRANSMISSION 

ROUTES BETWEEN G. DUODENALIS 

ASSEMBLAGES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

142 

 

5.1 INTRODUCTION 

An increasing amount of experimental evidences suggest that the two Giardia 

assemblages causing infection and disease in humans are truly different species 

(Thompson & Monis, 2012). However, the biological characteristics of Giardia 

assemblage A and B in terms of host-parasite interactions have been mostly 

investigated at the molecular or phenotypic level in vitro. Robust population data are 

lacking on whether the clinical course of infection in humans with one or the other 

assemblage significantly differ, or whether the two assemblages are transmitted 

preferentially via different routes.  

 

The correlation between the infecting Giardia assemblage and the observed clinical 

outcome in the patients has been evaluated previously, but results are not consistent. 

A significant association between infection with assemblage A and the presence of 

diarrhoea in people of various ages has been reported in numerous studies (Read et 

al., 2002; Aydin et al., 2004; Haque et al., 2005; Sahagún et al., 2008), but the 

opposite finding (with infection with assemblage B being associated with diarrhoea 

and other intestinal symptoms) has also been shown in other occasions (Gelanew et 

al., 2007; Al-Mohammed, 2011; Puebla et al., 2014). In studies that included only 

symptomatic cases of giardiasis, the type and severity of symptoms reported by 

patients infected with the two assemblages have been described. Assemblage A 

appeared to be associated with intermittent diarrhoea and B with persistent diarrhoea 

in two studies (Homan & Mank, 2001; Helmy et al., 2009). In the UK study by 

Breathnach et al. (2010) cases infected with the two assemblages showed a largely 

comparable clinical picture, although those infected with assemblage A reported 

suffering from fever more frequently.  In a study from Sweden, infection with 

assemblage B was significantly associated with flatulence in children (Lebbad et al., 

2011).  Data are lacking regarding the presence of epidemiological differences 

between the two Giardia assemblages. No differences in the socio-demographics 

(gender or age distribution) or in the travel history of patients infected with 

assemblage A or B was found in two studies involving the genotyping of a large 

number of samples from the UK (Breathnach et al., 2010) and Sweden (Lebbad et 

al., 2011). In these two studies information about other exposures (such as contact 

with recreational waters or with animals) was not collected from the patients, and the 
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comparison was made between cases and not against a control group (e.g. people 

without giardiasis). So far, the only study that attempted to determine the Giardia 

assemblage-specific risk factors using people that tested negative for the parasite as 

controls is the study of Anuar et al. (2014) performed in the Orang Asli community 

in Malaysia. The study revealed that infection with assemblage A was significantly 

associated with having close contact with pets in the household, whereas assemblage 

B infection was associated with the presence in the household of children below 15 

years of age and other family members with Giardia infection, other than with 

consuming raw vegetables.  

 

More data are needed in order to understand the biological and epidemiological 

differences between assemblage A and B in a developed country context. The 

presence of assemblage-related differences may have practical consequences for the 

clinical management and prevention of giardiasis. A precise diagnosis at the 

assemblage level would be required if a differential response of the parasites to drug 

treatment is suspected, or whether a different propensity of the two assemblages 

towards the development of either chronic infections or post-infectious 

gastrointestinal syndromes has been observed. The identification of assemblage-

specific risk factors could lead to more specific insights into the epidemiology of 

Giardia, particularly in assessing the actual importance of zoonotic transmission, as 

it has been successfully shown for the two parasite species responsible for 

cryptosporidiosis (Hunter et al., 2004). 

 

5.2 AIMS OF THE STUDY 

The aim of this analysis was to compare the reported clinical outcomes and exposure 

histories between patients found to be infected with Giardia assemblage A or B, in 

order to test whether the two parasite assemblages significantly differ in terms of 

their interaction with the human host or in their transmission routes. In particular, the 

epidemiological and molecular data generated in the previous two chapters were 

combined to investigate the assemblage-specific risk factors following an appropriate 

case-control study design.  

 

 



 

144 

 

5.3 MATERIALS AND METHODS 

 

5.3.1 General statistical methods 

Statistical analyses were performed using IBM
®

 SPSS
®
 Statistics 20 (IBM, USA).  

Cross-tabulations, odds ratio (OR) estimates and 95% confidence interval (CI) and 

the Pearson’s Chi-Square (or Fisher’s Exact when data were sparse) test were used to 

explore associations between categorical variables in univariable analysis. The 

Mann-Whitney’s U test (and univariable logistic regression whenever appropriate) 

was used as tests of significance for continuous variables. Whenever variables were 

treated both as continuous and categorical the results from both were reported. All 

tests were two-sided and p-values of less than 5% were considered to be statistically 

significant. Multivariable logistic regression models were built by entering manually 

the variables returning a p≤0.2 in the univariable analysis.  The importance of each 

factor and its effect on the overall model fit were assessed using likelihood ratio 

tests, and factors without a significant effect on the model fit were dropped. Gender 

and age were always retained in the models regardless of their significance and 

interaction terms including these two variables were included to control for 

confounding.  

 

5.3.2 Analysis outline 

The socio-demographic, clinical and epidemiological characteristics of the patients 

infected with either assemblage A or B were described and compared at different 

levels using distinct datasets as specified below. Only cases with a single-assemblage 

infection (e.g. either assemblage A or B) were included in the analyses. 

 

5.3.2.1 Gender, age and spatio-temporal distribution of assemblage A and B 

Differences in the distribution of the two Giardia assemblages in relation to the 

gender and age of the cases were explored first. This analysis included all the 240 

cases that were genotyped and described in the previous chapter and that were part of 

the surveillance (Chapter 2) and case-control study (Chapter 3) datasets.  

Additionally, 56 cases that were genotyped at the assemblage level using the ssu-



 

145 

 

rRNA gene in a previous study (Weerapol Taweenan, PhD thesis) were also included 

in this analysis because they were also part of the surveillance study. In total, 296 

genotyped cases were included in the analysis on the gender and age distribution of 

the two assemblages. Differences in the distribution of the two Giardia assemblages 

in relation to the cases’ month of report and local authority were specifically 

explored in the area of Central Lancashire in the timeframe of the five years with 

complete data from each month. This analysis was restricted to 179 genotyped cases 

resident in Central Lancashire and reported from 2008 to 2012.  

 

5.3.2.2 Clinical outcomes of patients infected with assemblage A or B  

The self-reported clinical outcomes reported by the patients infected with Giardia 

assemblage A and B were described and compared. Cases that were asymptomatic 

were excluded. The data collected in the enhanced surveillance study and in the case-

control study were analysed separately since the questionnaires used differed in 

terms of the questions asked. In total, this analysis included 197 genotyped cases that 

returned the respective study questionnaire and with clinical information reported, of 

which 103 from the enhanced surveillance study (36 assemblage A and 76 

assemblage B) and 85 from the case-control study (28 assemblage A and 57 

assemblage B). The clinical outcomes of cases infected with assemblage A were 

compared to those reported by cases infected with B (chosen as the baseline 

category) by calculating the odds ratio (OR) estimate and 95% confidence interval 

(CI), and multivariable analysis was then used to assess which outcomes were 

independently associated with infection with either assemblage A or B. 

 

5.3.2.3 Exposure profile of patients with assemblage A or B infection and 

assemblage-specific risk factors 

Differences in the reported exposures between cases infected with assemblage A and 

B were analysed at two levels and separately in the enhanced surveillance and case-

control study datasets. Due to the absence of exposure information collected from 

control subjects in the surveillance study, only case-case analysis was performed in 

this dataset to compare the exposures of the 36 assemblage A cases with those 
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reported by the 76 assemblage B cases. The group of cases infected with assemblage 

B was chosen as the baseline category for comparisons.   

The risk factors associated to the infection with a specific Giardia assemblage were 

explored using the genotyped cases from the case-control study. The exposures 

reported by the cases (28 infected with assemblage A and 57 infected with B) were 

analysed and compared with those of the 226 control subjects. Comparisons were 

made separately for the two assemblages in univariable analysis, and the assemblage-

specific multivariable models were built. The multivariable models were fitted before 

and after multiple imputation of missing values.  
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5.4 RESULTS 

  

5.4.1 Gender and age distribution of Giardia assemblages  

In the 296 cases typed at the assemblage level and included in the gender and age 

analysis, there was no difference in the prevalence of the two assemblages between 

males and females (Pearson’s χ
2
, p=0.722). Assemblage B was more prevalent than 

A in both genders (in 180 males: 119 B, 66.1% and 61 A, 33.9%; in 116 females: 79 

B, 68.1% and 37 A, 31.9%).  

The median age of the cases infected with A was significantly higher (49 years, 

range 11 months to 94 years) than the one of the cases infected with B (38.5 years, 

range one to 83 years) (Mann-Whitney U, p=0.002). The different age pattern of the 

two assemblages was confirmed when cases were grouped in 10 years age bands 

(Fisher’s Exact, p<0.001): the prevalence of assemblage A was at its lowest in people 

from their 20s to their 40s and peaked in people in their 70s and over, whereas the 

prevalence of B was higher in people from their 20s to their 40s and decreased in the 

elderly (Figure 5.1). 

 

 

Figure 5.1: Age prevalence of assemblage A and B cases (n=296). The number of 

cases is reported above the bars. The last two age categories (80-89y and 90-99y) 

were merged because in people over 90 years of age only one assemblage A and 

none assemblage B cases were found. 
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5.4.2 Giardia assemblages distribution in Central Lancashire by month of report 

and local authority 

By considering the 179 genotyped cases reported from 2008 to 2012 and resident in 

Central Lancashire, there was no significant difference in the distribution of the two 

assemblages by month of report (Fisher’s Exact, p=0.200), and considerable 

variation was observed in the proportion of cases reported by month in both 

assemblage A and B (Figure 5.2a). The distribution of cases in the four seasons did 

not significantly differ between the two assemblages (Pearson’s χ
2
, p=0.276), 

although assemblage B cases seemed to occur more frequently in Winter and 

assemblage A in the other seasons (Figure 5.2b). 

 

 

 

Figure 5.2: Distribution by month (A) and season (B) of report of assemblage A and 

B in 179 genotyped cases resident in Central Lancashire, 2008-2012. The number of 

cases is reported above the bars.  
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Within Central Lancashire, a significant difference in the prevalence of the two 

assemblages was found between the three local authorities (Pearson’s χ
2
, p=0.014): 

although overall assemblage B was more prevalent than A, in South Ribble the 

prevalence of assemblage A was higher and the prevalence of B lower if compared 

with both Preston and Chorley (Figure 5.3). 

 

 

Figure 5.3: Distribution by local authority of assemblage A and B in 179 genotyped 

cases resident in Central Lancashire, 2008-2012. The raw number of cases is 

reported above the bars.  

 

5.4.3 Clinical outcomes of patients infected with assemblage A or B  

In the 103 symptomatic cases genotyped from the enhanced surveillance study, 

assemblage B cases reported more frequently vomiting and a higher number of 

symptoms, a longer illness and more days of normal activity prevented compared 

with assemblage A cases but the differences were not significant (Table 5.1). 

Assemblage A cases reported being admitted to hospital due to illness significantly 

more frequently than those infected with assemblage B (OR 4.38, 95% CI 1.02-

18.91, p=0.034) (Table 5.1). The association between assemblage A and 

hospitalisation was confounded by the age of the cases (multivariable logistic 

regression model with age entered as predictor: admitted to hospital OR 3.59, 95% 

CI 0.79-16.27, p=0.097): amongst hospitalised cases, those infected with assemblage 

A were older (median 71.5 years, range 33 to 79) than those infected with 

assemblage B (median 13 years, range six to 75). 
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In the 85 symptomatic cases genotyped from the case-control study, assemblage B 

cases reported significantly more symptoms (including vomiting, abdominal pain, 

swollen stomach and loss of appetite) compared with assemblage A cases (Table 

5.2). Assemblage B cases seemed to experience weight loss more frequently than 

assemblage A cases also, but the difference was only marginally significant 

(p=0.088). As observed in enhanced surveillance cases, hospitalisation due to illness 

was observed more frequently in assemblage A cases (18% compared to 7% in 

assemblage B cases) but the difference was not statistically significant (p=0.157). 

Following multivariable analysis, only swollen stomach was significantly and 

independently associated with infection with assemblage B (multivariable logistic 

regression model adjusted for age and gender: swollen stomach OR 0.26, 95% CI 

0.09-0.77, p=0.015). 
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Table 5.1: Comparison of the self-reported clinical outcomes between symptomatic patients infected with assemblage A (n=36) and with assemblage B 

(n=67) from the enhanced surveillance study. Odds ratios were calculated using assemblage B as the baseline category.  

 
 Assemblage n (%)**   

Variable Valid 

(% missing)* 

Category A  B  OR (95% CI)*** p-value 

Diarrhoea 103 No 3 (8.3) 4 (6) Ref. 0.693 

Yes 33 (91.7) 63 (94) 0.70 (1.15-3.31) 

Blood in stools 103 No 34 (94.4) 63 (94) Ref. 1.000 

Yes 2 (5.6) 4 (6) 0.93 (0.16-5.32) 

Vomiting 103 No 23 (63.9) 33 (49.3) Ref. 0.155 

Yes 13 (36.1) 34 (50.7) 0.55 (0.24-1.26) 

Abdominal pain (cramps) 103 No 8 (22.2) 19 (28.4) Ref. 0.500 

Yes 28 (77.8) 48 (71.6) 1.38 (0.54-3.58) 

Fever 103 No 20 (55.6) 39 (58.2) Ref. 0.795 

Yes 16 (44.4) 28 (41.8) 1.11 (0.49-2.52) 

Median number of symptoms 103 Median (range) 2 (1-5) 3 (1-4) 0.91 (0.60-1.39) 0.667
C
/0.593

M
 

Feeling still ill when filling the questionnaire 102 (1) No 24 (66.7) 46 (69.7) Ref. 0.753 

Yes 12 (33.3) 20 (30.3) 1.15 (0.48-2.74) 

Median length of illness (no. days) in patients 

no longer ill 

68 Median (range) 14 (1-180) 15 (4-80) 1.00 (0.98-1.02) 0.810
C
/0.183

M
 

Median normal activity prevented (no. days) 48 (53.4) Median (range) 2 (0-90) 5 (0-40) 1.02 (0.98-1.06) 0.444
C
/0.261

M
 

Admitted to hospital due to illness 92 (10.7) No 26 (81.3) 57 (95) Ref. 0.034 

Yes 6 (18.8) 3 (5) 4.38 (1.02-18.91) 

*percentages refer to the proportion of participants with missing information for the variable; **number of cases genotyped as assemblage A or B with percentages indicating 

the proportion among cases that answered the question; ***Odds ratio with 95% confidence interval; 
C
 logistic regression on the continuous variable; 

M
Mann-Whitney U-test
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Table 5.2: Comparison of the self-reported clinical outcomes between symptomatic patients infected with assemblage A (n=28) and with assemblage B 

(n=57) in the case-control study. Odds ratios were calculated using assemblage B as the baseline category.  

 

   Assemblage n (%)*   

Variable No. valid 

(% missing) 

Category A  B  OR  (95% CI)*** p-value 

Diarrhoea 83 (2.4) No 0 (0) 1 (1.8) Ref. 1.000 

Yes 28 (100) 54 (98.2) n/a**** 

Type of diarrhoea 75 (11.8) Persistent 13 (46.4) 26 (55.3) Ref. 0.456 

Intermittent 15 (53.6) 21 (44.7) 1.43 (0.56-3.66) 

Blood in stools 71 (16.5) No 19 (86.4) 49 (100) Ref. 0.027 

Yes 3 (13.6) 0 (0) n/a**** 

Vomiting 72 (15.3) No 14 (63.6) 18 (36) Ref. 0.030 

Yes 8 (36.4) 32 (64) 0.32 (0.11-0.91) 

Abdominal pain  77 (9.4) No 9 (36) 8 (15.4) Ref. 0.041 

Yes 16 (64) 44 (84.6) 0.32 (0.11-0.98) 

Fever 68 (20) No 12 (63.2) 23 (46.9) Ref. 0.230 

Yes 7 (36.8) 26 (53.1) 0.52 (0.17-1.53) 

Flatulence 72 (15.3) No 5 (22.7) 6 (12) Ref. 0.293 

Yes 17 (77.3) 44 (88) 0.46 (0.12-1.72) 

Swollen stomach 72 (15.3) No 16 (66.7) 17 (35.4) Ref. 0.012 

Yes 8 (33.3) 31 (64.9) 0.27 (0.10-0.77) 

Tiredness 77 (9.4) No 7 (26.9) 13 (25.5) Ref. 0.892 

Yes 19 (73.1) 38 (74.5) 0.93 (0.32-2.71) 

Loss of appetite 77 (9.4) No 10 (41.7) 9 (17) Ref. 0.020 

Yes 14 (58.3) 44 (83) 0.29 (0.10-0.85) 

Loss of weight 74 (12.9) No 12 (52.2) 16 (31.4) Ref. 0.088 

Yes 11 (47.8) 35 (68.6) 0.42 (0.15-1.15) 

Amount of weight loss (kilograms) in patients reporting it 38  Median (range) 5 (1- 9.5) 3.6 (1.8-10) 1.00 (0.75-1.32) 0.987
C
/0.899

M
 

Median number of symptoms 83 (2.4)  Median (range) 5 (1-9) 7 (1-9) 0.70 (0.56-0.88) 0.003
C
/0.001

M
 

Feeling still ill when filling the questionnaire 81 (4.7) No 17 (63) 35 (64.8) Ref. 0.870 

Yes 10 (37) 19 (35.2) 1.08 (0.41-2.83) 
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Median length of illness (no. days) in patients no longer ill 41  Median (range) 11 (4-50) 20.5 (6-73) 0.95 (0.88-1.02) 0.160
C
/0.043

M
 

Admitted to hospital due to illness 83 (2.4) No 23 (82.1) 51 (92.7) Ref. 0.157 

Yes 5 (17.9) 4 (7.3) 2.77 (0.68-11.28) 

*percentages refer to the proportion of participants with missing information for the variable; **number of cases genotyped as assemblage A or B with percentages indicating 

the proportion among cases that answered the question; ***Odds ratio with 95% confidence interval; ****Odds ratio not calculated because no variation present in the data; 
C
Logistic regression on the continuous variable; 

M
Mann-Whitney U-test. 
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5.4.4 Comparison of reported exposures of Giardia assemblage A and B cases 

from the surveillance dataset 

The exposures reported in the month prior to illness by cases from the enhanced 

surveillance study were compared by case-case analysis between the 39 cases 

infected with assemblage A and 69 cases infected with assemblage B that returned 

the study questionnaire. Exposures that were found to be different between the two 

groups of cases with a significance level of p≤0.2 are shown in Table 5.3, whereas 

all the remaining comparisons (p>0.2) are reported in Table 5A, Appendix 5. The 

only strictly significant differences (p<0.05) were found in two variables: assemblage 

B cases reported more frequently both touching animals other than livestock, horses, 

birds or a deer while visiting a premise with animals (exposure that was not reported 

by any of the assemblage A cases), and drinking fruit juice. The majority (85%, 17 

out of 20) assemblage B cases that reported travel outside the UK travelled to a 

destination potentially at-risk for Giardia, whereas the assemblage A cases that 

travelled abroad were more evenly distributed between destinations at-risk (53.8%, 

seven out of 13) and destination not at-risk (46.1%, six out of 13). Amongst the cases 

answering the question, 44% of assemblage B cases (28 out of 63) had a child in the 

household against the 27% (10 out of 37) of assemblage A cases.   
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Table 5.3: Exposure variables different at p≤0.2 in single variable analysis between cases infected with assemblage A (n=39) and B (n=69) that returned the 

surveillance study questionnaire. Odds ratios were calculated using assemblage B as the baseline category.  

 

   Assemblage n (%)**   

Variable No. valid 

(% missing)* 

Category A 

 

B 

 

OR (95% CI)*** p-value 

Travelling abroad to an at-risk 

destination 

105 (2.8) Not travelling abroad 25 (65.8) 47 (70.1) Ref. 0.133 

Travelling abroad to a not at-risk destination 6 (15.8) 3 (4.5) 3.76 (0.87-16.33) 

Travelling abroad to any at-risk destination  7 (18.4) 17 (25.4) 0.77 (0.28-2.11) 

Practised fieldsports 108  No 35 (89.7) 67 (97.1) Ref. 0.186 

Yes  4 (10.3) 2 (2.9) 3.83 (0.67-21.94) 

Went caravanning 108  No 35 (89.7) 67 (97.1) Ref. 0.186 

Yes  4 (10.3) 2 (2.9) 3.83 (0.67-21.94) 

Keeping any other pet  102 (5.5) No 36 (100) 61 (92.4) Ref. 0.158 

Yes  0 (0) 5 (7.6) n/a**** 

Touching any other animal while 

visiting a premise with animals 

91 (15.7) No 32 (100) 51 (86.4) Ref. 0.047 

Yes  0 (0) 8 (13.6) n/a**** 

Eating any uncooked vegetables 94 (13) No 36 (60) 25 (73.5) Ref. 0.187 

Yes  24 (40) 9 (26.5) 0.54 (0.21-1.36) 

Drinking any fruit or vegetable 

juice 

97 (10.2) No 13 (37.1) 10 (16.1) Ref. 0.019 

Yes  22 (62.9) 52 (83.9) 0.32 (0.12-0.85) 

No. of children (<16y) in the 

house 

104 (3.7) 0 27 (73) 35 (52.2) Ref. 0.146
CT

/0.012
C
 

1 5 (13.5) 9 (13.4) 0.72 (0.22-2.40) 

2 4 (10.8) 16 (23.9) 0.32 (0.10-1.08) 

3 1 (2.7) 5 (7.5) 0.26 (0.03-2.35) 

4+ 0 (0) 2 (3) n/a**** 

Any child in nappies 100 (7.4) No children in the house 27 (73) 35 (55.6) Ref. 0.164 

At least one child but not in nappies 4 (10.8) 15 (23.8) 0.35 (0.10-1.16) 

At least one child in nappies 6 (16.2) 13 (20.6) 0.60 (0.20-1.78) 

*percentage refers to the proportion of participants with missing information for the variable; **percentages refer to the proportion among the cases that answered the 

question; ***Odds ratio with 95% confidence interval; **** Odds ratio not calculated because no variation present in the data; 
C
Logistic regression on the continuous 

variable; 
CT 

Logistic regression on the categorized variable
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5.4.5 Risk factors for Giardia assemblage A and B infection 

The risk factors for infection with the two assemblages were explored using the case-

control study dataset. Socio-demographic and exposure variables that showed an 

association with infection with either assemblage A or B with a p-value ≤0.2 in 

univariable analysis are reported in Table 5.4. The results of the remaining variables 

(p>0.2) are shown in Table 5B, Appendix 5.  

Taking medicines for indigestion was positively associated with assemblage B 

infection (OR 2.44, 95% CI 1.31-4.53, p=0.004).  

A negative association between keeping a pet and assemblage B infection was found 

(OR 0.49, 95% CI 0.26-0.92, p=0.025). By considering the type of pet owned, dogs 

were the animals most frequently reported by both assemblage A (22.2%) and B 

(10.7%). However, owning a dog was positively associated with assemblage A 

infection only (OR 2.47, 95% CI 1.08-5.66, p=0.029). Similarly to pet ownership, 

touching pets was negatively associated with assemblage B infection (OR 0.47, 95% 

CI 0.25-0.87, p=0.015). Visiting a wildlife park or zoo was reported more frequently 

in both assemblage A and B cases (10.7%) compared to controls (3.6%), however the 

association was significant only for assemblage B (OR 3.25, 95% CI 1.08-9.80, 

p=0.039). Travelling abroad was reported more frequently in both assemblage A and 

B cases compared to controls, although the association was significant for 

assemblage B only (OR 2.97, 95% CI 1.34-6.56, p=0.005). All the assemblage B 

cases travelled to at-risk countries (e.g. Middle East and Asia including Turkey, 

Africa including Canary Islands, Central and South America).  

Swimming in a swimming pool was significantly and positively associated with 

infection with both assemblage A (OR 2.89, 95% CI 1.27-6.58, p=0.009) and B (OR 

2.23, 95% CI 1.19-4.19, p=0.011). Using a Jacuzzi or a hot tub was significantly and 

positively associated with assemblage B infection (OR 4.70, 95% CI 2.02-10.97, 

p<0.001). A negative association between practising fieldsports and infection with 

assemblage B was found (OR 0.14, 95% CI 0.02-1.08, p=0.030). A negative 

association between walking in the countryside and infection with assemblage A was 

found (OR 0.34, 95% CI 0.12-0.95, p=0.033). Doing gardening was reported more 

frequently in controls (48.4%) than in both assemblage A (32%) or B (25.5%) cases 

but the association was significant for assemblage B only (OR 0.36, 95% CI 0.18-

0.72, p=0.003).  
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Assemblage B cases reported significantly more frequently drinking bottled water 

than controls (OR 1.84, 95% CI 1.00-3.39, p=0.047). A positive association was 

found between assemblage B infection and reporting household tap water both 

having unusual taste (OR 5.70, 95% CI 1.24-26.26, p=0.031) or being discoloured 

(OR 5.42, 95% CI 1.41-20.93, p=0.018).  

Eating salad or raw vegetables was more frequently reported by controls compared 

with both assemblage A and B cases, but the negative association was significant for 

assemblage B only (OR 0.43, 95% CI 0.19-1.00, p=0.045). .  

A significant association was found between assemblage B infection and having a 

child attending nursery or a playgroup in the household (OR 2.70, 95% CI 1.39-5.25, 

p=0.004). A significant association was found only between assemblage B infection 

and nappy changing (OR 2.93, 95% CI 1.32-6.51, p=0.034) and between assemblage 

B infection and reporting having another person ill with similar symptoms in the 

household (OR 2.19, 95% CI 0.99-4.85, p=0.048). 
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Table 5.4: Variables showing an association with a p≤0.2 in single variable analysis with infection with either assemblage A (n=28 cases) or assemblage B 

(n=57 cases) compared with healthy controls (n=226) that returned the case-control study questionnaire. 

 

Variable Assemblage 

subset 

No. valid 

(% missing)* 

Category Cases 

n (%)** 

Controls 

n (%)** 

OR (95% CI)*** p-value 

SOCIODEMOGRAPHICS AND AREA AND SEASON VARIABLES 

Age (years)  

 

A 

 

254 0-4y 5 (17.9) 26 (11.5) Ref. 0.167
CT

/0.733
C
 

5-14y 2 (7.1) 12 (5.3) 0.87 (0.15-5.12) 

15-44y 5 (17.9) 62 (27.4) 0.42 (0.11-1.57) 

45-64y 5 (17.9) 75 (33.2) 0.35 (0.09-1.29) 

65+y 11 (39.3) 51 (22.6) 1.12 (0.35-3.57) 

B  283 0-4y 8 (14) 26 (11.5) Ref. 0.017
CT

/0.047
C
 

5-14y 2 (3.5) 12 (5.3) 0.54 (0.10-2.94) 

15-44y 28 (49.1) 62 (27.4) 1.47 (0.59-3.64) 

45-64y 13 (22.8) 75 (33.2) 0.56 (0.21-1.51) 

65+y 6 (10.5) 51 (22.6) 0.38 (0.12-1.22) 

HEALTH DETAILS 

Taking any medicine 

for indigestion   

A 252 (0.8) No 21 (77.8) 175 (77.8) Ref. 1.000 

Yes 6 (22.2) 50 (22.2) 1.00 (0.38-2.61) 

B 281 (0.7) No 33 (58.9) 175 (77.8) Ref. 0.004 

Yes 23 (41.1) 50 (22.2) 2.44 (1.31-4.53) 

ANIMAL CONTACT 

Keeping a pet (any 

type) 

A 253 (0.4) No 12 (44.4) 120 (53.1) Ref. 0.395 

Yes 15 (55.6) 106 (46.9) 1.41 (0.63-3.16) 

B 282 (0.4) No 39 (69.6) 120 (53.1) Ref. 0.025 

Yes 17 (30.4) 106 (46.9) 0.49 (0.26-0.92) 

Keeping a pet by 

species  

A 
 

 

252 (0.8) Not keeping pets 12 (44.4) 120 (53.3) Ref. 0.347 

 Keeping dogs 6 (22.2) 34 (15.1) 1.76 (0.62-5.05) 

Keeping cats 3 (11.1) 25 (11.1) 1.20 (0.31-4.57) 

Keeping birds 0 (0) 7 (3.1) n/a**** 
Keeping horses 0 (0) 2 (0.9) n/a**** 
Keeping rodents 0 (0) 7 (3.1) n/a**** 
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Keeping a pet other than those above (fish, 

amphibians, stick insects, spiders) 
0 (0) 5 (2.2) n/a**** 

Keeping more than one type of pet 6 (22.2) 25 (11.1) 2.40 (0.82-7.00) 

B 281 (0.7) Not keeping pets 39 (69.6) 120 (53.3) Ref. 0.224 

Keeping dogs 6 (10.7) 34 (15.1) 0.54 (0.21-1.39) 

Keeping cats 2 (3.6) 25 (11.1) 0.25 (0.06-1.09) 

Keeping birds 2 (3.6) 7 (3.1) 0.88 (0.17-4.41) 

Keeping horses 0 (0) 2 (0.9) n/a**** 

Keeping rodents 1 (1.8) 7 (3.1) 0.44 (0.05-3.68) 

Keeping a pet other than those above (fish, 

amphibians, stick insects, spiders) 
0 (0) 5 (2.2) n/a**** 

Keeping more than one type of pet 6 (10.7) 25 (11.1) 0.74 (0.28-1.93) 

Keeping a dog A 252 (0.8) No 16 (59.3) 176 (78.2) Ref. 0.029 

Yes 11 (40.7) 49 (21.8) 2.47 (1.08-5.66) 

B 281 (0.7) No 45 (80.4) 176 (78.2) Ref. 0.727 

Yes 11 (19.6) 49 (21.8) 0.88 (0.42-1.82) 

No. of dogs kept 

 

A 
 

252 (0.8) 0 16 (59.3) 176 (78.2) Ref. 0.054
CT

/0.067
C
 

1 9 (33.3) 44 (19.6) 2.25 (0.93-5.43) 

2 2 (7.4) 2 (0.9) 11.00 (1.45-

83.39) 

3+ 0 (0) 3 (1.3) n/a**** 

B 
 

280 (1.1) 0 45 (81.8) 176 (78.2) Ref. 0.021
CT

/0.970
C
 

1 6 (10.9) 44 (19.6) 0.53 (0.21-1.33) 

2 4 (7.3) 2 (0.9) 7.82 (1.39-44.06) 

3+ 0 (0) 3 (1.3) n/a**** 

No. of cats kept 

 

 

 

 

 

 

 

A 
 

252 (0.8) 0 22 (78.6) 182 (81.2) Ref. 0.840
CT

/0.758
C
 

1 4 (14.3) 30 (13.4) 1.10 (0.35-3.43) 

2 2 (7.1) 10 (4.5) 1.65 (0.34-8.04) 

3+ 0 (0) 2 (0.9) n/a**** 

B 
 

279 (1.4) 0 51 (92.7) 182 (81.2) Ref. 0.058
CT

/0.011
C 

 

 

 

1 4 (7.3) 30 (13.4) 0.48 (0.16-1.41) 

2 0 (0) 10 (4.5) n/a**** 
3+ 0 (0) 2 (0.9) n/a**** 
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No. of different pet 

species owned  

A 
 

252 (0.8) 0 12 (44.4) 120 (53.3) Ref. 0.067
CT

/0.027
C
 

1 9 (33.3) 79 (35.1) 1.14 (0.46-2.83) 

2 2 (7.4) 21 (9.3) 0.95 (0.20-4.56) 

3+ 4 (14.8) 5 (2.2) 8.00 (1.89-33.85) 

 B 
 

281 (0.7) 0 39 (69.6) 120 (53.3) Ref. 0.121
CT

/0.146
C
 

1 11 (19.6) 79 (35.1) 0.43 (0.21-0.89) 

2 5 (8.9) 21 (9.3) 0.73 (0.26-2.07) 

3+ 1 (1.8) 5 (2.2) 0.61 (0.07-5.43) 

Cleaning up (touching) 

pets’ faeces  

A 
 

252 (0.8) Not keeping pets 12 (44.4) 120 (53.3) Ref. 0.532 

Keeping pets but not cleaning up their 

faeces 

10 (37) 60 (26.7) 1.67 (0.68-4.08) 

Keeping pets and cleaning up their faeces 5 (18.5) 45 (20) 1.11 (0.37-3.33) 

B 
 

281 (0.7) Not keeping pets 39 (69.6) 120 (53.3) Ref. 0.039 

Keeping pets but not cleaning up their 

faeces 

7 (12.5) 60 (26.7) 0.36 (0.15-0.85) 

Keeping pets and cleaning up their faeces 10 (17.9) 45 (20) 0.68 (0.31-1.48) 

Any pet with diarrhoea 

in the house 

A 
 

252 (0.8) Not keeping pets 12 (44.4) 120 (53.3) Ref. 0.345 

Keeping pets but none with diarrhoea 15 (55.6) 100 (44.4) 1.50 (0.67-3.35) 

Keeping pets and at least one with 

diarrhoea 

0 (0) 5 (2.2) n/a**** 

B 
 

281 (0.7) Not keeping pets 39 (69.6) 120 (53.3) Ref. 0.081 

Keeping pets but none with diarrhoea 16 (28.6) 100 (44.4) 0.49 (0.26-0.93) 

Keeping pets and at least one with 

diarrhoea 

1 (1.8) 5 (2.2) 0.61 (0.07-5.43) 

Touching any pet 

(either own or other 

people’s) 

A 
 

234 (7.9) No 12 (44.4) 77 (37.2) Ref. 0.466 

Yes 15 (55.6) 130 (62.8) 0.74 (0.33-1.66) 

B 259 (8.5) No 29 (55.8) 77 (37.2) Ref. 0.015 

Yes 23 (44.2) 130 (62.8) 0.47 (0.25-0.87) 

Visiting or working at a 

wildlife park or zoo 

A  253 (0.4) No 25 (89.3) 217 (96.4) Ref. 0.080 

Yes 3 (10.7) 8 (3.6) 3.25 (0.81-13.07) 

B  
 

281 (0.7) No 50 (89.3) 217 (96.4) Ref. 0.039 

Yes 6 (10.7) 8 (3.6) 3.25 (1.08-9.80) 

Visiting any other A  252 (0.8) No 25 (92.6) 211 (93.8) Ref. 0.684 



 

161 

 

premise(s) with 

animals 

 

Yes 2 (7.4) 14 (6.2) 1.21 (0.26-5.62) 

B 280 (1.1) No 55 (100) 211 (93.8) Ref. 0.080 

Yes 0 (0) 14 (6.2) n/a**** 

Touching animals in 

the wild 

A 213 (16.1) No 26 (100) 182 (97.3) Ref. 1.000 

Yes 0 (0) 5 (2.7) n/a**** 

B 
 

239 (15.5) No 48 (92.3) 182 (97.3) Ref. 0.107 

Yes 4 (7.7) 5 (2.7) 3.03 (0.78-11.73) 

TRAVEL DETAILS 

Travelling abroad 

(outside the UK) 

A  252 (0.8) No 21 (80.8) 207 (91.6) Ref. 0.084 

Yes 5 (19.2) 19 (8.4) 2.59 (0.88-7.66) 

B 
 

282 (0.4) No 44 (78.6) 207 (91.6) Ref. 0.005 

Yes 12 (21.4) 19 (8.4) 2.97 (1.34-6.56) 

Travelling abroad to an 

at-risk destination 

A 252 (0.8) Not travelling abroad 21 (80.8) 207 (91.6) Ref. 0.167 

Travelling abroad to a not at-risk 

destination 

5 (19.2) 17 (7.5) 2.90 (0.97-8.65) 

Travelling abroad to any at-risk 

destination (e.g. Middle East and Asia 

including Turkey, Africa including Canary 

Islands, Central and South America) 

0 (0) 2 (0.9) n/a**** 

B 282 (0.4) Not travelling abroad 44 (78.6) 207 (91.6) Ref. <0.001 

Travelling abroad to a not at-risk 

destination 

0 (0) 17 (7.5) n/a**** 

Travelling abroad to any at-risk 

destination (e.g. Middle East and Asia 

including Turkey, Africa including Canary 

Islands, Central and South America) 

12 (21.4) 2 (0.9) 28.23 (6.1-

130.61) 

Travelling in the UK 

(England, Wales, 

Scotland) 

A 251 (1.2) No 19 (70.4) 155 (69.2) Ref. 0.901 

Yes 8 (29.6) 69 (30.8) 0.95 (0.39-2.26) 

B 278 (1.8) No 44 (81.5) 155 (69.2) Ref. 0.072 

Yes 10 (18.5) 69 (30.8) 0.51 (0.24-1.07) 

RECREATIONAL ACTIVITIES 

Swimming or paddling 

in a swimming pool 

A 253 (0.4) No 15 (55.6) 177 (78.3) Ref. 0.009 

Yes 12 (44.4) 49 (21.7) 2.89 (1.27-6.58) 
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B 281 (0.7) No 34 (61.8) 177 (78.3) Ref. 0.011 

Yes 21 (38.2) 49 (21.7) 2.23 (1.19-4.19) 

Immersing the head 

underwater while 

swimming or paddling 

in a swimming pool 

A 

 

240 (5.5) Not going to swimming pool 15 (62.5) 177 (81.9) Ref. 0.109
CT 

 

 
Swimming or paddling without immersing 

the head 

1 (4.2) 4 (1.9) 2.95 (0.31-28.09) 

Swimming or paddling immersing the 

head 

8 (33.3) 35 (16.2) 2.70 (1.06-6.85) 

B 265 (6.4) Not going to swimming pool 34 (69.4) 177 (81.9) Ref. 0.025 

Swimming or paddling without immersing 

the head 

5 (10.2) 4 (1.9) 6.51 (1.66-25.48) 

Swimming or paddling immersing the 

head 

10 (20.4) 35 (16.2) 1.49 (0.67-3.29) 

Using a Jacuzzi or a 

hot tub 

A 241 (5.1) No 24 (100) 203 (93.5) Ref. 1.000 

Yes 0 (0) 14 (6.5) n/a**** 

B 266 (6) No 37 (75.5) 203 (93.5) Ref.  <0.001 

Yes 12 (24.5) 14 (6.5) 4.70 (2.02-10.97) 

Practising fieldsports 

(e.g. football, golf etc) 

A 238 (6.3) No 23 (88.5) 186 (87.7) Ref. 1.000 

Yes 3 (11.5) 26 (12.3) 0.93 (0.26-3.33) 

B 263 (7.1) No 50 (98) 186 (87.7) Ref. 0.030 

Yes 1 (2) 26 (12.3) 0.14 (0.02-1.08) 

Walking in the 

countryside 

A 246 (3.1) No 20 (80) 128 (57.9) Ref. 0.033 

Yes 5 (20) 93 (42.1) 0.34 (0.12-0.95) 

B 272 (3.9) No 28 (54.9) 128 (57.9) Ref. 0.695 

Yes 23 (45.1) 93 (42.1) 1.13 (0.61-2.09) 

Frequency of walking 

in the countryside (no. 

times) 

B 

 

243 (14.1) 0 28 (71.8) 128 (62.7) Ref. 0.087
CT

/0.234
C
 

1-2 2 (5.1) 38 (18.6) 0.24 (0.05-1.06) 

3-4 7 (17.9) 19 (9.3) 1.68 (0.65-4.39) 

5-6 1 (2.6) 6 (2.9) 0.76 (0.09-6.58) 

7+ 1 (2.6) 13 (6.4) 0.35 (0.04-2.80) 

Doing gardening A 242 (4.7) No 17 (68) 112 (51.6) Ref. 0.120 

Yes 8 (32) 105 (48.4) 0.50 (0.21-1.21) 

B 268 (5.3) No 38 (74.5) 112 (51.6) Ref. 0.003 

Yes 13 (25.5) 105 (48.4) 0.36 (0.18-0.72) 
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Frequency of doing 

gardening (no.times) 

B 

 

 

235 (17) 0 38 (90.5) 112 (58) Ref. <0.001
CT,C

 

1-2 3 (7.1) 31 (16.1) 0.28 (0.08-0.99) 

3-4 0 (0) 27 (14) n/a**** 

5-6 0 (0) 11 (5.7) n/a**** 

7+ 1 (2.4) 12 (6.2) 0.25 (0.03-1.95) 

WATER CONSUMPTION 

Drinking bottled water A 239 (5.9) No 15 (57.7) 115 (54) Ref. 0.721 

Yes 11 (42.3) 98 (46) 0.86 (0.38-1.96) 

B 267 (5.7) No 21 (38.9) 115 (54) Ref. 0.047 

Yes 33 (61.1) 98 (46) 1.84 (1.00-3.39) 

Water from the tap 

reported having an 

unusual taste 

A 247 (2.8) No 26 (100) 218 (98.6) Ref. 1.000 

Yes 0 (0) 3 (1.4) n/a**** 

B 276 (2.5) No 51 (92.7) 218 (98.6) Ref. 0.031 

Yes 4 (7.3) 3 (1.4) 5.70 (1.24-26.26) 

Water from the tap 

reported being 

discoloured 

A 247 (2.8) No 26 (100) 217 (98.2) Ref. 1.000 

Yes 0 (0) 4 (1.8) n/a**** 

B 276 (2.5) No 50 (90.9) 217 (98.2) Ref. 0.018 

Yes 5 (9.1) 4 (1.8) 5.42 (1.41-20.93) 

FOOD CONSUMPTION 

FOOD CONSUMPTION HABITS 

No. times per week 

eating raw fruit 

A 

 

244 (3.9) 0 4 (14.8) 15 (6.9) Ref. 0.063
CT

/0.095
C
 

1-2 5 (18.5) 27 (12.4) 0.69 (0.16-2.99) 

3-4 7 (25.9) 29 (13.4) 0.90 (0.23-3.59) 

5+ 11 (40.7) 146 (67.3) 0.28 (0.08-0.99) 

 B  273 (3.5) 0 6 (10.7) 15 (6.9) Ref. 0.318
CT

/0.101
C
 

1-2 5 (8.9) 27 (12.4) 0.46 (0.12-1.78) 

3-4 12 (21.4) 29 (13.4) 1.03 (0.32-3.30) 

5+ 33 (58.9) 146 (67.3) 0.56 (0.20-1.57) 

FOOD CONSUMPTION DURING THE EXPOSURE WINDOW 

Eating salads or raw 

vegetables 

 

A 

 

247 (2.8) No 5 (18.5) 19 (8.6) Ref. 0.157 

Yes 22 (81.5) 201 (91.4) 0.42 (0.14-1.22) 

B 276 (2.5) No 10 (17.9) 19 (8.6) Ref. 0.045 
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 Yes 46 (82.1) 201 (91.4) 0.43 (0.19-1.00) 

Provenience of salads 

or raw vegetables 

A 245 (3.5) Did not eat salad or raw vegetables 5 (18.5) 19 (8.7) Ref. 0.532 

Market 1 (3.7) 8 (3.7) 0.47 (0.05-4.74) 

Greengrocers 0 (0) 7 (3.2) n/a**** 

Supermarket 18 (66.7) 141 (64.7) 0.48 (0.16-1.46) 

Homegrown 0 (0) 2 (0.9) n/a**** 
Other place (e.g. restaurant etc.) 0 (0) 1 (0.5) n/a**** 

Multiple proveniences (at least two 

different) 

3 (11.1) 40 (18.3) 0.28 (0.06-1.32) 

B 270 (4.6) Did not eat salad or raw vegetables 10 (19.2) 19 (8.7) Ref. 0.001 

Market 5 (9.6) 8 (3.7) 1.19 (0.31-4.60) 

Greengrocers 2 (3.8) 7 (3.2) 0.54 (0.09-3.12) 

Supermarket 28 (53.8) 141 (64.7) 0.38 (0.16-0.90) 

Homegrown 0 (0) 2 (0.9) n/a**** 

Other place (e.g. restaurant etc.) 4 (7.7) 1 (0.5) 7.60 (0.75-77.43) 

Multiple proveniences (at least two 

different) 

3 (5.8) 40 (18.3) 014 (0.03-0.58) 

Provenience of cooked 

vegetables 

 

 

 

 

 

 

A 

 

242 (4.7) Did not eat cooked vegetables 1 (3.7) 14 (6.5) Ref. 0.877 

Market 2 (7.4) 11 (5.1) 2.54 (0.20-31.86) 

Greengrocers 1 (3.7) 8 (3.7) 1.75 (0.10-31.96) 

Supermarket 20 (74.1) 142 (66) 1.97 (0.25-15.82) 

Homegrown 0 (0) 3 (1.4) n/a**** 

Other place (e.g. restaurant etc.) 0 (0) 2 (0.9) n/a**** 

Multiple proveniences (at least two 

different) 

3 (11.1) 35 (16.3) 1.20 (0.11-12.54) 

B 264 (6.7) Did not eat cooked vegetables 4 (8.2) 14 (6.5) Ref. 0.117 

Market 3 (6.1) 11 (5.1) 0.95 (0.18-5.19) 

Greengrocers 2 (4.1) 8 (3.7) 0.87 (0.13-5.90) 

Supermarket 32 (65.3) 142 (66) 0.79 (0.24-2.56) 

Homegrown 0 (0) 3 (1.4) n/a**** 

Other place (e.g. restaurant etc.) 4 (8.2) 2 (0.9) 7.00 (0.92-53.23) 

Multiple proveniences (at least two 

different) 

4 (8.2) 35 (16.3) 0.40 (0.09-1.83) 
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Provenience of fruit 

juice 

A 

 

241 (5.1) Did not drink fruit juice 8 (29.6) 58 (27.1) Ref. 0.217 

Market 0 (0) 1 (0.5) n/a**** 

Greengrocers 1 (3.7) 0 (0) n/a**** 

Supermarket 18 (66.7) 145 (67.8) 0.90 (0.37-2.18) 

Other place (e.g. restaurant etc.) 0 (0) 2 (0.9) n/a**** 

Multiple proveniences (at least two 

different) 

0 (0) 8 (3.7) n/a**** 

B 266 (6) Did not drink fruit juice 14 (26.9) 58 (27.1) Ref. 0.079 

 

 

 

 

Market 1 (1.9) 1 (0.5) 4.14 (0.24-70.38) 

Supermarket 34 (65.4) 145 (67.8) 0.97 (0.49-1.94) 

Other place (e.g. restaurant etc.) 3 (5.8) 2 (0.9) 6.21 (0.95-40.81) 

Multiple proveniences (at least two 

different) 

0 (0) 8 (3.7) n/a**** 

Eating beef 

 

A 

 

245 (3.5) No 3 (12) 56 (25.5) Ref. 0.136 

Yes 22 (88) 164 (74.5) 2.50 (0.72-8.69) 

B 273 (3.5) No 9 (17) 56 (25.5) Ref. 0.194 

Yes 44 (83) 164 (74.5) 1.67 (0.77-3.64) 

Provenience of chicken A 

 

247 (2.8) Did not eat chicken 2 (8) 18 (8.1) Ref. 0.736 

Market stall 0 (0) 4 (1.8) n/a**** 

Butcher 2 (8) 29 (13.1) 0.62 (0.08-4.80) 

Supermarket 17 (68) 149 (67.1) 1.03 (0.22-4.81) 

Other place (e.g. restaurant etc.) 0 (0) 2 (0.9) n/a**** 

Multiple proveniences (at least two 

different) 

4 (16) 20 (9) 1.80 (0.29-11.03) 

B 271 (4.2) Did not eat chicken 2 (4.1) 18 (8.1) Ref. 0.054 

Market stall 1 (2) 4 (1.8) 2.25 (0.16-31.33) 

Butcher 6 (12.2) 29 (13.1) 1.86 (0.34-10.24) 

Supermarket 30 (61.2) 149 (67.1) 1.81 (0.40-8.22) 

Other place (e.g. restaurant etc.) 5 (10.2) 2 (0.9) 22.50 (2.50-

202.29) 

Multiple proveniences (at least two 

different) 

5 (10.2) 20 (9) 2.25 (0.39-13.07) 

Eating shellfish A 212 (16.5) No 17 (81) 139 (72.8) Ref. 0.420 
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Yes 4 (19) 52 (27.2) 0.63 (0.20-1.96) 

B 237 (16.3) No 39 (84.8) 139 (72.8) Ref. 0.091 

Yes 7 (15.2) 52 (27.2) 0.48 (0.20-1.14) 

Provenience of 

shellfish 

A 

 

212 (16.5) Did not eat shellfish 17 (81) 139 (72.8) Ref. 0.194 

Fishmonger 1 (4.8) 3 (1.6) 2.72 (0.27-27.69) 

Supermarket 2 (9.5) 41 (21.5) 0.40 (0.09-1.80) 

Other place (e.g. restaurant etc.) 1 (4.8) 1 (0.5) 8.18 (0.49-

136.79) 

Multiple proveniences (at least two 

different) 

0 (0) 7 (2.5) n/a**** 

B 237 (16.3) Did not eat shellfish 39 (84.8) 139 (72.8) Ref. 0.031 

 

 

 

 

 

Fishmonger 0 (0) 3 (1.6) n/a**** 

Supermarket 5 (10.9) 41 (21.5) 0.43 (0.16-1.17) 

Other place (e.g. restaurant etc.) 2 (4.3) 1 (0.5) 7.13 (0.63-80.69) 

Multiple proveniences (at least two 

different) 

0 (0) 7 (2.5) n/a**** 

GENERAL HOUSEHOLD DETAILS 

No. of children (<16y) 

in the house 

A 

 

254 0 16 (57.1) 134 (59.3) Ref. 0.317
CT

/0.223
C
 

1 5 (17.9) 43 (19) 0.97 (0.34-2.81) 

2 2 (7.1) 34 (15) 0.49 (0.11-2.25) 

3 3 (10.7) 11 (4.9) 2.28 (0.58-9.06) 

4+ 2 (7.1) 4 (1.8) 4.19 (0.71-24.70) 

B 282 (0.4) 0 26 (46.4) 134 (59.3) Ref. 0.177
CT

/0.021
C
 

1 9 (16.1) 43 (19) 1.08 (0.47-2.48) 

2 13 (23.2) 34 (15) 1.97 (0.92-4.23) 

3 5 (8.9) 11 (4.9) 2.34 (0.75-7.31) 

4+ 3 (5.4) 4 (1.8) 3.86 (0.82-18.30) 

Any child attending a 

childcare nursery or a 

playgroup 

A 

 

254 No children in the house 16 (57.1) 134 (59.3) Ref. 0.938 

Children not attending nursery or 

playgroup 

6 (21.4) 50 (22.1) 1.00 (0.37-2.71) 

At least one child attending nursery or 

playgroup 

6 (21.4) 42 (18.6) 1.19 (0.44-3.25) 

B 280 (1.1) No children in the house 26 (48.1) 134 (59.3) Ref. 0.002 
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Children not attending nursery or 

playgroup 

6 (11.1) 50 (22.1) 0.62 (0.24-1.59) 

At least one child attending nursery or 

playgroup 

22 (40.7) 42 (18.6) 2.70 (1.39-5.25) 

Any child in nappies  A 

 

252 (0.8) No children in the house 16 (57.1) 134 (59.8) Ref. 0.092 

At least one child but not in nappies 3 (10.7) 52 (23.2) 0.48 (0.13-1.73) 

At least one child in nappies 9 (32.1) 38 (17) 1.98 (0.81-4.84) 

B 278 (1.8) No children in the house 26 (48.1) 134 (59.8) Ref. 0.116 

At least one child but not in nappies 12 (22.2) 52 (23.2) 1.19 (056-2.53) 

At least one child in nappies 16 (29.6) 38 (17) 2.17 (1.06-4.46) 

Changing nappies A 

 

250 (1.6) No children in the house or children not in 

nappies 

19 (70.4) 186 (83.4) Ref. 0.285 

Child in nappies but not changing nappies 4 (14.8) 17 (7.6) 2.30 (0.70-7.55) 

Child in nappies and changing nappies 4 (14.8) 20 (9) 1.96 (0.61-6.33) 

B 276 (2.5) No children in the house or children not in 

nappies 

38 (71.7) 186 (83.4) Ref. 0.034 

Child in nappies but not changing nappies 3 (5.7) 17 (7.6) 0.86 (0.24-3.09) 

Child in nappies and changing nappies 12 (22.6) 20 (9) 2.93 (1.32-6.51) 

Any other person with 

diarrhoea in the house 

A 

 

236 (7.1) No 21 (84) 188 (89.1) Ref. 0.502 

Yes 4 (16) 23 (10.9) 1.56 (0.49-4.93) 

B 263 (7.1) No 41 (78.8) 188 (89.1) Ref. 0.048 

Yes 11 (21.2) 23 (10.9) 2.19 (0.99-4.85) 

*percentages refer to the proportion of participants with missing information for the variable in the specific dataset; **percentages refer to the proportion among cases and 

controls that answered the question; ***Odds ratio with 95% confidence interval; *** *Odds ratio not calculated because no variation present in the data; 
CT 

logistic 

regression on the categorized variable; 
C
 logistic regression on the continuous variable 
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Following multivariable logistic regression analysis, both keeping a dog and 

swimming at a swimming pool were found to be independently associated with 

assemblage A infection (Table 5.5). After the exclusion of two suspected secondary 

household cases, the odds ratio of swimming in a swimming pool showed a reduction 

from 4.36 (95% CI 1.34-9.52, p=0.011) to 3.20 (95% CI 0.87-11.78, p=0.080).  

 

Table 5.5: Constructed multivariable model for the risk factors for Giardia assemblage A 

infection based on 243 valid (e.g. without missing data) observations (23 assemblage A cases 

and 220 controls). Estimates following missing data multiple imputation (100 imputed 

datasets) are reported in parentheses. 

 
Variables included B Adjusted OR 95% CI p-value 

Keeping a dog 1.27 (1.15) 3.57 (3.15) 
1.34-9.52 

(1.25-7.97) 

0.011 

(0.015) 

Swimming or paddling in a 

swimming pool 

1.47 (1.88) 4.36 (6.57) 1.24-15.36 

(2.07-20.84) 

0.022 

(0.001) 

Walking in the countryside -1.52  (-1.34) 0.22 (0.26) 
0.07-0.69 

(0.09-0.79) 

0.010 

(0.017) 

Travelling abroad (outside the 

UK) 
0.75 (0.49) 2.12 (1.63) 

0.59-7.63 

(0.46-5.77) 

0.250 

(0.444) 

Male gender 0.26 1.30 0.49-3.49 0.598 

Age 0-4y  Reference   0.662 

5-14y 0.28 1.32 0.18-9.49 0.784 

15-44y -0.22 0.80 0.16-4.09 0.793 

45-64y -0.01 0.99 0.21-4.67 0.986 

65+y 0.79 2.20 0.41-11.66 0.356 

Constant -3.14     

Model χ
2
 (12) = 23.82, p=0.005; Nagelkerke R

2
 = 0.20; Hosmer and Lemeshow χ

2
 (8) = 7.03, p=0.533 

 

Following multivariable logistic regression analysis both taking medicines for 

indigestion prior to illness and using a Jacuzzi or a hot tub were found to be 

significantly and independently associated with assemblage B infection (Table 5.6), 

and a positive association was also found for having children attending a nursery or 

playgroup in the household and reporting the water from the tap as being 

discoloured. After the exclusion of one suspected secondary household case, no 

relevant changes were observed in the odds ratios of any of the variables.  
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Table 5.6: Constructed multivariable model for the risk factors for Giardia assemblage B 

based on 257 valid (e.g. without missing data) observations (44 assemblage B cases and 213 

controls). Estimates following missing data multiple imputation (100 imputed datasets) are 

reported in parentheses. 

 
Variables included B Adjusted OR 95% CI p-value 

Taking medicines for indigestion 
1.22 

(0.45) 
3.40 (1.57) 

1.46-7.90 

(0.67-3.70) 

0.005 

(0.104) 

Using a Jacuzzi or hot tub 1.42 

(0.76) 

4.12 (2.13) 1.46-11.67 

(0.90-5.06) 

0.008 

(0.086) 

Water coming from the tap reported 

discoloured 

1.63 

(0.49) 

5.13 (1.63) 0.84-31.35 

(0.47-5.68) 

0.077 

(0.439) 

Any child at 

nursery of  

playgroup in 

the household 

No children in the 

house 

 Reference  0.055 

Children not 

attending nursery or 

playgroup 

-0.72   

(-0.21) 

0.49 (0.81) 0.15-1.61 

(0.39-1.68) 

0.238 

(0.577) 

At least one child 

attending nursery or 

playgroup 

0.77 

(0.58) 

2.17 (1.79) 0.80-5.92 

(0.87-3.72) 

0.129 

(0.116) 

Travelling abroad (outside the UK) 0.88 

(1.28) 

2.42 (3.58) 0.81-7.25 

(1.91-6.73) 

0.114 

(<0.001) 

Male gender 0.19 1.21 0.57-2.56 0.624 

Age 0-4y  Reference   0.045 

5-14y -18.76 n/a*** n/a*** 1.000 

15-44y 0.77 2.15 0.59-7.81 0.244 

45-64y -0.40 0.67 0.15-2.89 0.589 

65+y -0.78 0.46 0.08-2.70 0.389 

Constant -2.59     

***Odds ratio not calculated because no variation present in the data; Model χ
2
 (11) = 48.79, p<0.001; 

Nagelkerke R
2
 = 0.29; Hosmer and Lemeshow χ

2
 (8) = 12.88, p=0.116 

 

 

5.4.6 Giardia assemblages and multi-locus genotypes in household clusters 

Of the 13 patients part of the five distinct household clusters identified in the case-

control study, 12 had the infecting Giardia assemblage successfully determined 

(Table 5.7). Assemblage A was found in two clusters, and in one of the two (cluster 

1) where at least two family members were successfully genotyped the Giardia MLG 

causing infection was the same. Assemblage B was found in three clusters. In the 

cluster involving four people (cluster 3), the same Giardia assemblage B MLG was 

found in all the cases. In another cluster (cluster 4), the mother and the son were 

presumably infected with the same MLG (MLG-1) although in the son the tpi locus 

was not successfully amplified and the comparison was possible only at the bg and 

gdh locus. 
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Table 5.7: Giardia assemblages and multi-locus genotypes found in 13 cases part of five 

household clusters. 

 
Cluster Number of 

cases involved 

Age, gender (family 

role) 

Giardia MLG 

1 3 1y, male (son)  Assemblage A (tpi) – sub-type and MLG not 

available (bg and gdh failed) 

6y, male (son) AII-1 (bg A2, gdh AII, tpi AII) 

33y, male (father) AII-1 (bg A2, gdh AII, tpi AII) 

2 2 3y, male (son) AII-novel (bg A3, gdh ECUST2196, tpi AII) 

31y, female (mother) Faecal specimen not available 

3 4  1y, male (son)  B-novel (bg B1-5, gdh BIV, tpi VB906855) 

3y, male (son) B-novel (bg B1-5, gdh BIV, tpi VB906855) 

33y, male (father) B-novel (bg B1-5, gdh BIV, tpi VB906855) 

34y, female (mother) B-novel (bg B1-5, gdh BIV, tpi VB906855) 

4 2 30y,  female (mother) B MLG 1 (bg B1-3, gdh BIV, tpi BIV) 

1y, male (son) Full MLG not available (bg B1-3, gdh BIV, 

tpi failed) 

5 2 42y, female (wife)  Assemblage B, MLG not available only bg 

amplified and with heterogeneous positions  

64y, male (husband) Assemblage B, MLG not available all three 

loci  with heterogeneous positions 
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5.5 DISCUSSION 

 

We examined potential differences between the Giardia assemblages A and B in the 

clinical outcome of infection or transmission routes. The epidemiological 

information collected from the cases of giardiasis and the information on the Giardia 

assemblage responsible for infection obtained following molecular typing of the 

parasite from stools were integrated.  

 

No association between the infecting assemblages and gender was found. Although 

the gender distribution of assemblage A and B has been rarely compared, our results 

correspond to those reported in other large surveys of symptomatic patients from 

developed countries involving genotyping of the parasites (Breathnach et al., 2010; 

Lebbad et al., 2011). The two assemblages showed a different distribution in relation 

with the patients’ age: the age of the cases infected with B was lower than in 

assemblage A cases. In particular, following the analysis of specific age groups 

assemblage B seemed to be more common in young adults, whereas the occurrence 

of assemblage A was comparatively lower in this group and increased with the 

patient age (particularly in people 70 years old and over). Although the analysis was 

done on a relatively small amount of data and the number of genotyped cases was 

uneven between age groups, this was nevertheless an interesting finding. The age 

prevalence of Giardia assemblages in humans has not been investigated thoroughly 

in large samples, so no direct comparison of our results with other studies was 

possible. In the study by Breathnach et al. (2010) although both assemblages showed 

a bimodal age distribution (with a major peak in adults and in children below ten 

years of age), assemblage B was more prevalent than A in children and adults in their 

30s whereas the opposite was seen in people in their forties and particularly in the 

elderly (60+ years of age). Whether this pattern is related to differences between the 

age groups in either the frequency of exposure to one or the other assemblage or the 

development of immunity to one or the other requires further investigation.  

 

No relationship between infection with one of the two assemblages and the month in 

which the cases were reported was apparent. The variation observed could due to the 

relatively small numbers of genotyped cases in certain months, and more data are 
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needed for comparison since the seasonality of occurrence of the two Giardia 

assemblages has never been explored before.  An apparent seasonal pattern was 

observed though: assemblage A infections were lower in the Winter months and 

increased in the other seasons, whereas assemblage B infections peaked during 

winter. The significance of this pattern should be confirmed on a larger sample size 

and in different populations, and whether this pattern reflects true differences in the 

transmission of the two parasite assemblages remain to be seen. 

 

The self-reported clinical outcomes of infection differed between cases infected with 

the two assemblages. At least five symptoms were reported more frequently by the 

cases infected with assemblage B, which also reported a higher number of 

experienced symptoms at the same time and a longer duration of illness compared to 

cases infected with assemblage A. Conversely, hospitalisation and the presence of 

blood in the stools were reported more frequently by assemblage A cases. This 

finding was probably due to an effect of age: overall assemblage A cases were older 

than B cases, and cases reporting blood in stools and hospitalisation were older than 

those not reporting these two outcomes as previously shown in Chapters 2 and 3. 

Differently from what has been previously reported by Helmy et al. (2009) and 

Homan and Mank (2001), no association between the infecting assemblage and the 

type of diarrhoea (intermittent or persistent) was observed in our sample. Overall, 

our results suggest that infection with assemblage B may be associated with a more 

severe illness. In children from Cuba assemblage B was associated with a higher 

frequency of diarrhoea, flatulence and abdominal pain (Puebla et al., 2014), and an 

association between assemblage B infection and flatulence was also observed in 

children from Sweden (Lebbad et al., 2011). Only symptomatic cases of infection 

were included in our study. If assemblage B causes a more severe illness in humans, 

then people infected with this assemblage will refer to their general practitioner more 

frequently and they will then represent the majority of notified cases. This may 

explain the higher prevalence of assemblage B infections compared to those caused 

by assemblage A observed in symptomatic patients from the UK and other developed 

countries. More data are needed to determine whether assemblage A commonly 

occurs in people that are asymptomatic or show a relatively mild symptomatology in 

developed countries, as it has been reported in a few occasions from Ethiopia 
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(Gelanew et al., 2007), Saudi Arabia (Al-Mohammed, 2011) and Cuba (Puebla et al., 

2014).  

 

The successful multi-locus molecular typing of the parasites from the cases part of 

two household clusters confirmed that the same multi-locus genotype of Giardia was 

responsible for infection amongst the family members. This result confirms that 

these cases were infected either from the same original source or by person-to-person 

transmission within the household. Our results confirmed that both assemblages can 

be implicated in household outbreaks, as shown in previous studies (Breathnach et 

al., 2010; Lebbad et al., 2011). 

 

The analysis of the exposures reported by the cases infected with the two 

assemblages revealed both similarities and differences between the two groups. With 

the exception of the study by Anuar et al. (2014) from Malaysia, the epidemiology of 

the two assemblages has never been thoroughly investigated before. We first used 

case-case analysis to compare directly the exposure of the cases infected with the two 

assemblages, but no major differences were found.   

Although case-case analysis has been shown to be able to highlight the major risk 

factors for infection without the need for enrolling proper controls in some instances 

(Gillespie et al., 2012), the applicability of this approach to detect differences when 

comparing directly two groups of patients infected with two or more variants of the 

same pathogens must be considered carefully. It is important to note that using a 

group of patients infected with a similar pathogen as a “control” group can obscure 

certain associations with infection: this is due to the fact that the “controls” may 

share several exposures with the “cases” (Gillespie et al., 2002). If the two Giardia 

assemblages have largely overlapping epidemiological characteristics, then a simple 

case-case analysis between assemblages can fail to detect differences.  

Our findings following the case-control analysis further confirmed the importance of 

using a proper control group for the evaluation of risk factors associated to a 

particular variant of the pathogen. It is important to note that the statistical power of 

the case-control analysis was reduced by a drop in the number of cases successfully 

genotyped compared to the overall risk factor analysis, by the lower number of 

assemblage A cases compared to B cases and by the necessity of performing the 
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analysis using two subsets of cases. Nevertheless, despite these limitations important 

associations between reported exposures and the infecting assemblage were found.  

 

Travelling abroad was associated with the acquisition of giardiasis regardless the 

parasite assemblage considered. The significance of travel was stronger for 

assemblage B infections though. Foreign travel was a highly significant risk factor 

for giardiasis in general (see Chapter 3). No differences in the travel history of 

assemblage A and B cases were found by Breathnach et al. (2010) either.  

 

An association was observed between swimming in a swimming pool and infection 

in both assemblages, but following multivariable analysis this exposure was 

independently associated only with assemblage A infection. Similarly, assemblage B 

infection was associated with using a Jacuzzi or a hot tub but the exposure lost 

significance following multivariable analysis.  

 

In case-control analysis, exposures related to the contact with children or other 

people were consistently and more frequently reported by assemblage B cases. 

Having children going to a nursery, changing nappies and the presence of another 

person ill with diarrhoea in the household were all associated with assemblage B 

infection. No association of these variables with assemblage A infection was 

apparent. Despite the fact that only having children going to a nursery was retained 

in the multivariable analysis and was only marginally significant, overall these 

results suggest that the transmission of assemblage B is predominantly human-to-

human and that children play a major role in this. Our findings are in line with those 

of Anuar et al. (2014), which reported the presence of children and other family 

members infected with giardiasis as significant risk factors for assemblage B 

infection. In a nursery outbreak in North Wales, all the 21 children, child care 

workers and parents involved and successfully genotyped were infected with 

assemblage B (Amar et al., 2002). The age prevalence of assemblage B in our 

sample was clearly bimodal, with adults and children representing most of B cases. 

Our data collectively support the hypothesis of assemblage B transmission from the 

children to their parents or relatives, which is likely to occur via contact with 

contaminated nappies.    
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Another important finding was that in our sample dog ownership was significantly 

and independently associated with assemblage A infection. Close contact with pets 

as dogs and cats was the only significant predictor for assemblage A infection in the 

study by Anuar et al. (2014). These finding seems to confirm the zoonotic potential 

of this assemblage compared to B, a hypothesis supported ted by the fact that 

assemblage A is the most frequent non-host-specific assemblage (Feng & Xiao, 

2011).  With the exception of one case, all people in our sample were infected with 

the sub-assemblage AII. Although dogs are more commonly infected by sub-

assemblage AI  (Sprong et al., 2009; Ryan & Cacciò, 2013), infections with sub-

assemblage AII have also been reported in these pets (Ponce-Macotela et al., 2002; 

Traub et al., 2004; Claerebout et al., 2009). The analysis of the Giardia assemblage 

A multi-locus genotypes in the cases reporting owning a dog failed to find a common 

MLG between them. Furthermore, faecal samples were not collected from the pets of 

the Giardia cases and so no information on either presence of infection or the 

parasite genotype was available. No association was found between assemblage A 

infection and exposure to other animal species. However, one case (a male 53 years 

old) was found to be infected with sub-assemblage AI that was confirmed at two loci 

(bg and tpi) (isolate code 11/13). The bg AI sequence of this isolate was identified 

previously in a series of hosts including horses. Interestingly, the case reported 

visiting ten times a horse riding school and touching horses in the exposure window, 

whereas it lacked all the major significant exposures (e.g. travelling abroad, 

swimming, children in nappies). These results may indicate a zoonotic transmission 

event from horses. Sub-assemblage AI is not common in humans, and in our study 

was found only in this particular case. However, in a study from New Zealand the 

same sub-assemblage AI was found in both calves and farmers from the same area 

(Winkworth et al., 2008).  

 

To sum up, the results that emerged from integration of molecular and clinico-

epidemiological information showed that the two Giardia assemblages partially 

differ in terms of their epidemiology and the clinical outcome of illness they cause in 

humans. Confirming the findings reported by some previous studies done in 

developed countries, assemblage B appeared to be slightly more virulent than A. The 

different age prevalence observed in the two assemblages is an interesting and new 

finding and it requires further investigation. More importantly, although the 
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epidemiological profile mostly overlapped between infection with the two 

assemblages, our analysis seemed to confirm the zoonotic transmission potential of 

assemblage A and the existence of a mostly human reservoir for assemblage B.  
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CHAPTER SIX: FINAL CONCLUSIONS 
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This study was the first of this kind describing the epidemiology and molecular 

epidemiology of symptomatic giardiasis in the UK, integrating clinico-

epidemiological data from cases of disease with the information about the molecular 

diversity of the parasite. Such comprehensive approach is important to understand 

the true burden of disease and to highlight important epidemiological differences 

associated with the biological and genetic variability of the pathogen. The latter 

aspect, in particular, has not been systematically investigated in the case of giardiasis 

in developed countries.  

 

We confirmed that the burden of giardiasis can be greatly underestimated if 

community faecal specimens are not screened systematically using a sensitive 

method. We detected high rates of disease in adults and the majority of the cases did 

not report foreign travel: these findings challenged the common view that Giardia 

affects children and is mostly associated with travel abroad. Using a case-control 

study design we revealed that transmission of Giardia within the UK is likely to 

occur mostly through the human-to-human route in two contexts: swimming pools 

and households. We confirmed the importance of young children and changing 

nappies in the transmission of the parasite, particularly within households. Our data 

have important public health implications, since they revealed that the burden of 

disease can be higher than expected and that control of this parasitic infection should 

be focused on swimming pools and in avoiding transmission within the household. 

Using a multi-locus genotyping approach, we also described for the first time the 

genetic diversity of Giardia in a large number of UK patients, showing that the 

prevalence and levels of molecular diversity of parasite assemblages in patients from 

North West England correspond to what has been observed both worldwide. Our 

most important finding was the association between infection with the two 

assemblages and two distinct exposures, namely the presence of children and 

changing nappies for assemblage B and dog ownership for assemblage A. These 

results seemed to confirm that the two assemblages may have a preferential 

reservoir: animal for assemblage A and human for assemblage B. The presence of 

assemblage-specific risk factors has important implications for the biology and 

control of Giardia. First, the infecting Giardia assemblage should be determined and 

considered in all future epidemiological and risk factors studies on giardiasis to 

account for variation in exposure and to highlight other potential assemblage-specific 
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exposures Second, our findings give a stronger support to the notion of assemblages 

as truly separate species and so they are important for the whole Giardia and 

scientific community. 

 

Our work is not without weaknesses, mostly due to the logistical limitations that are 

inherent to case-control studies. Although our patients were checked for co-infection 

with other major pathogens, not all the potential aetiological causes of diarrhoea 

(including chronic conditions such as IBS) were taken into account. Although the 

presence of Giardia was confirmed in all of them, it is possible that in some 

instances the parasite was not the direct cause of gastroenteritis. This aspect could 

have caused a certain degree of case misclassification resulting in both the reduction 

of the strength of certain associations or in the appearance of spurious associations, 

such as the one we observed between giardiasis and IBS. The case-control study 

recruitment also suffered from a low response rate. This may have had an effect on 

our ability to detect additional risk factors for disease due to a reduced study power. 

If this study had to be repeated, this limitation could be resolved by including 

additional areas in the study, extending the period of recruitment or contacting the 

participants through phone in an attempt to increase the response rates. Regarding the 

genotyping of the parasites, the PCR success rate was not optimal resulting in the 

loss of several samples and in the reduction of the number of the genotyped cases 

available for statistical comparisons. The optimization of DNA extraction and a full 

re-evaluation of the currently available primers (in terms of both their sensitivity and 

specificity) could allow a better genotyping success at the multi-locus level. As a 

consequence of the loss of some samples, the analysis of the Giardia assemblage-

specific risk factors (although it was able to highlight the zoonotic transmission 

potential of assemblage A) was based on a relative small number of genotyped cases. 

This may have had an impact on our ability to detect other significant exposures 

associated with the two assemblages. If the samples collected and genotyped in our 

study will be re-evaluated in the near future, the use of a more sensitive real-time 

PCR assay and the inclusion of more loci in the multi-locus typing scheme could be 

beneficial in both increasing the sample size of successfully genotyped cases in and 

assigning parasite isolates to specific sub-assemblages and subtypes with increased 

confidence. Due to logistical limitations, we were not able to determine the presence 

and the genotypes of Giardia in the pets of the case patients. In future studies, 
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sampling both people and their pets in the household to check for shared parasite 

genotypes should be attempted to obtain a better picture of the zoonotic transmission 

dynamics of Giardia.   

Based on the limitations described above, future work on giardiasis should be 

focused on some key aspects that are pivotal for our better understanding of both the 

epidemiology and host-parasite interactions of this pathogen assuming the 

availability of funds. In public health terms, more extensive prevalence studies 

(including also the adult population) are needed to determine the actual burden of 

asymptomatic infections: these may represent a significant public health risk leading 

to sustained transmission in the community and re-infection within households. As 

part of this approach, the characteristics of asymptomatic and symptomatic cases 

should be compared to highlight host factors that may be related to a different 

clinical course of infection. These data could potentially help explaining the excess 

of giardiasis that we observed in the male population, and whether immunological 

and/or epidemiological factors are involved in this (Klein, 2004). More data are also 

needed to determine the levels of exposure to the parasite at the population level, 

whether short-term or long-term immunity to re-infection can develop and how these 

two aspects affect in turn the clinical course of infection (particularly in relation to 

the type of parasite assemblage causing infection). Large population–based 

serological studies can help in the elucidation of these aspects, but more data and 

more reliable antibody-detection methods are needed (Casemore, 2006). The 

presumptive association between IBS and the presence of Giardia also warrants 

further investigation: more data are needed in assessing the prevalence of Giardia 

infection in people diagnosed with IBS in the UK and detailed studies on the 

pathophysiology of giardiasis may help in determining whether this parasite can act 

as a trigger for the development of IBS.   

We desperately need a better understanding of the genetics of Giardia in order to 

exploit this information for the development of more powerful molecular markers for 

studying its molecular epidemiology. The application of new methods is particularly 

crucial for the accurate genotyping of assemblage B parasites and to overcome the 

problem of the common occurrence of mixed templates in the analysis of DNA 

sequences.  This goal could be achieved by using genes that are less affected by 

allele sequence heterozygosity or genes that are unique to particular sub-

assemblages: these markers could then be incorporated in multiplex real-time PCR 
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assays allowing the sensitive and univocal identification of assemblage B sub-

assemblages in faecal DNA samples. The comparative analysis of Giardia genomes 

is crucial for the identification of such markers (Ryan & Cacciò, 2013). More 

assemblage B isolates need to be sequenced to allow for a comprehensive 

comparative genomics analyses. In order to achieve this, we should focus on the 

optimization and application of whole-genome sequencing (WGS) tecniques of 

parasites isolated directly from faeces. This approach would allow the study of the 

actual genetic variability of Giardia in large numbers of specimens (representative of 

different hosts and geographic areas), overcoming at the same time the need for 

culturing the parasites and so the selection of particular genotypes. Although this 

approach is still in its infancy in parasitology, it has already been used extensively on 

bacterial and viral pathogens showing great potential in the detection and tracking of 

outbreaks in a public health microbiology context (Köser et al., 2012).  
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APPENDIX 1: Surveillance study case-case comparisons  

 
Table 2.4.1: Comparisons (p≥0.05) of the clinical and exposure characteristics between the Giardia cases that did not travel abroad (n=162) and those that 

travelled abroad (n=76) in the month prior to illness and that returned the surveillance questionnaire.  

 

Variable No. valid 

(% missing) 

Category No travel abroad 

n (%)* 

Travel abroad 

n (%)* 

p-value 

Median length of illness (days) 165 (30.7) - 16.5 (1-180) 21 (4-362) 0.330
M

 

Median days of normal activity prevented 118 (50.4) - 7 (0-42) 5 (0-90) 0.421
M

 

Feeling still ill when filling the questionnaire 232 (2.5) No 114 (72.6) 53 (70.7) 0.758 

Yes 43 (27.4) 22 (29.3) 

Median number of symptoms reported 236 (0.8) - 3 (0-5 3 (0-5) 0.680
M

 

Reported diarrhoea 236 (0.8) No 10 (6.3) 4 (5.3) 1.000 

Yes 150 (93.8) 72 (94.7) 

Reported blood in stools 236 (0.8) No 142 (88.8) 69 (90.8) 0.634 

Yes 18 (11.3) 7 (9.2) 

Reported vomiting 236 (0.8) No 82 (51.3) 48 (63.2) 0.086 

Yes 78 (48.8) 28 (36.8) 

Reported abdominal pain 236 (0.8) No 41 (25.6) 14 (18.4) 0.221 

Yes 119 (74.4) 62 (81.6) 

Reported fever 236 (0.8) No 90 (56.3) 44 (57.9) 0.812 

Yes 70 (43.8) 32 (42.1) 

Median number of glasses of un-boiled tap water drank per day 206 (13.5) - 3 (0-20) 3 (0-10) 0.173
M

 

Drinking from a private water source 231 (2.9) No 157 (99.4) 72 (98.6) 0.533 

Yes 1 (0.6) 1 (1.4) 

Drinking from a river, spring or pond 231 (2.9) No 155 (98.1) 73 (100) 0.553 

Yes 3 (1.9) 0 (0) 

Drinking from a water filter 231 (2.9) No 133 (84.2) 57 (78.1) 0.260 

Yes 25 (15.8) 16 (21.9) 

Walking in the countryside 238  No 108 (66.7) 49 (64.5) 0.739 

Yes 54 (33.3) 27 (35.5) 
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Going picnicking 238 No 146 (90.1) 67 (88.2) 0.645 

Yes 16 (9.9) 9 (11.8) 

Practising fieldsports 238 No 150 (92.6) 74 (97.4) 0.236 

Yes 12 (7.4) 2 (2.6) 

Going camping 238 No 154 (95.1) 72 (94.7) 1.000 

Yes 8 (4.9) 4 (5.3) 

Going caravanning 238 No 155 (95.7) 69 (90.8) 0.148 

Yes 7 (4.3) 7 (9.2) 

Keeping a pet 224 (5.9) No 72 (47.4) 44 (61.1) 0.055 

Yes 80 (52.6) 28 (38.9) 

Keeping dogs 224 (5.9) No 104 (68.4) 56 (77.8) 0.148 

Yes 48 (31.6) 16 (22.2) 

Keeping cats 224 (5.9) No 117 (77) 63 (87.5) 0.064 

Yes 35 (23) 9 (12.5) 

Keeping rabbits 224 (5.9) No 146 (96.1) 66 (91.7) 0.207 

Yes 6 (3.9) 6 (8.3) 

Keeping birds 224 (5.9) No 141 (92.8) 67 (93.1) 0.937 

Yes 11 (7.2) 5 (6.9) 

Keeping horses 224 (5.9) No 151 (99.3) 71 (98.6) 0.541 

Yes 1 (0.7) 1 (1.4) 

Visiting a premise with animals  211 (11.3) No 103 (73.6) 49 (69) 0.518 

Yes 37 (26.4) 22 (31) 

Touching cattle 205 (13.9) No 131 (96.3) 65 (94.2) 0.489 

Yes 5 (3.7) 4 (5.8) 

Touching pigs 205 (13.9) No 134 (98.5) 68 (98.6) 1.000
 
 

Yes 2 (1.5) 1 (1.4) 

Touching sheep 205 (13.9) No 129 (94.9) 66 (95.7) 1.000
 
 

Yes 7 (5.1) 3 (4.3) 

Touching horses 205 (13.9) No 126 (92.6) 68 (98.6) 0.103
 
 

Yes 10 (7.4) 1 (1.4) 

Touching goats 205 (13.9) No 132 (97.1) 65 (94.2) 0.446
 
 

Yes 4 (2.9) 4 (5.8) 
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Touching chickens 205 (13.9) No 131 (96.3) 65 (94.2) 0.489
 
 

Yes 5 (3.7) 4 (5.8) 

Touching any other animal 202 (15.1) No 129 (96.3) 61 (89.7) 0.110 

Yes 5 (3.7) 7 (10.3) 

Eating any fresh fruit 221 (7.1) No 14 (9.2) 3 (4.3) 0.209 

Yes 138 (90.8) 66 (95.7) 

Eating any salad item 223 (6.3) No 25 (16.2) 6 (8.7) 0.133 

Yes 129 (83.8) 63 (91.3) 

Eating any uncooked vegetable 213 (10.5) No 81 (55.5) 34 (50.7) 0.520 

Yes 65 (44.5) 33 (49.3) 

Drinking any fruit or vegetable juice 216 (9.2) No 40 (27) 14 (20.6) 0.310 

Yes 108 (73) 54 (79.4) 

Frequency of eating fresh fruit 221 (7.1) Not at all 14 (9.2) 3 (4.3) 0.559 

Less than once a week 13 (8.6) 5 (7.2) 

Once or twice a week 32 (21.1) 12 (17.4) 

Between three and six times a 

week 

29 (19.1) 15 (21.7) 

Once a day 30 (19.7) 20 (29) 

More than once a day 34 (22.4) 14 (20.3) 

Frequency of eating salad items 223 (6.3) Not at all 25 (16.2) 6 (8.7) 0.167 

Less than once a week 17 (11) 8 (11.6) 

Once or twice a week 51 (33.1) 18 (26.1) 

Between three and six times a 

week 

39 (25.3) 23 (33.3) 

Once a day 17 (11) 7 (10.1) 

More than once a day 5 (3.2) 7 (10.1) 

Frequency of eating uncooked vegetables 213 (10.5) Not at all 81 (55.5) 34 (50.7) 0.332 

Less than once a week 24 (16.4) 11 (16.4) 

Once or twice a week 22 (15.1) 18 (26.9) 

Between three and six times a 

week 

11 (7.5) 2 (3) 

Once a day 7 (4.8) 2 (3) 

More than once a day 1 (0.7) 0 (0) 
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Frequency of drinking fruit or vegetable juice 

 

 

 

 

216 (9.2) 

 

Not at all 40 (27) 14 (20.6) 0.509 

 

 

 

 

 

 

Less than once a week 14 (9.5) 6 (8.8) 

Once or twice a week 37 (25) 19 (27.9) 

Between three and six times a 

week 

24 (16.2) 11 (16.2) 

Once a day 22 (14.9) 16 (23.5) 

More than once a day 11 (7.4) 2 (2.9) 

Eating fresh fruit from a greengrocer 221 (7.1) No 142 (93.4) 64 (92.8) 1.000 

Yes 10 (6.6) 5 (7.2) 

Eating fresh fruit from a supermarket 221 (7.1) No 27 (17.8) 18 (26.1) 0.154 

Yes 125 (82.2) 51 (73.9) 

Eating homegrown fresh fruit 221 (7.1) No 150 (98.7) 67 (97.1) 0.591
 
 

Yes 2 (1.3) 2 (2.9) 

Eating salad items from a greengrocer 223 (6.3) No 144 (93.5) 65 (94.2) 1.000 

Yes 10 (6.5) 4 (5.8) 

Eating salad items from a supermarket 223 (6.3) No 39 (25.3) 19 (27.5) 0.728 

Yes 115 (74.7) 50 (72.5) 

Eating homegrown  salad items  223 (6.3) No 148 (96.1) 67 (97.1) 1.000 

Yes 6 (3.9) 2 (2.9) 

Eating uncooked vegetables from a market 214 (10.1) No 146 (99.3) 65 (97) 0.232 

Yes 1 (0.7) 2 (3) 

Eating uncooked vegetables from a greengrocer 214 (10.1) No 140 (95.2) 63 (94) 0.743 

Yes 7 (4.8) 4 (6) 

Eating uncooked vegetables from supermarket 214 (10.1) No 87 (59.2) 40 (59.7) 0.943 

Yes 60 (40.8) 27 (40.3) 

Eating homegrown uncooked vegetables  214 (10.1) No 145 (98.6) 67 (100) 1.000 

Yes 2 (1.4) 0 (0) 

Drinking juice from a greengrocer 216 (9.2) No 145 (98) 66 (97.1) 0.651 

Yes 3 (2) 2 (2.9) 

Drinking juice from a supermarket 216 (9.2) No 49 (33.1) 25 (36.8) 0.599 

Yes 99 (66.9) 43 (63.2) 

Drinking homemade juice  216 (9.2) No 148 (100) 66 (97.1) 0.098 
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Yes 0 (0) 2 (2.9) 

Any child in the household 227 (4.6) No 86 (55.5) 34 (47.2) 0.246 

Yes 69 (44.5) 38 (52.8) 

Median number of children 227 (4.6) - 0 (0-5) 1 (0-4) 0.413
M

 

Any child in nappies 225 (5.5) No 113 (74.3) 56 (76.7) 0.700 

Yes 39 (25.7) 17 (23.3) 

Changing nappies 218 (8.4) No 121 (82.3) 58 (81.7) 0.910 

Yes 26 (17.7) 13 (18.3) 

Any other person ill in the household with similar symptoms 222 (6.7) No 136 (88.9) 56 (81.2) 0.119 

Yes 17 (11.1) 13 (18.8) 

Any contact outside the household with someone ill with similar 

symptoms 

208 (12.6) No 126 (88.1) 58 (89.2) 0.815 

Yes 17 (11.9) 7 (10.8) 

*percentages refer to the proportion among cases that answered the question; 
M 

Mann-Whitney U test 

 

Table 2.5.1: Comparisons (p≥0.05) of the exposure history reported in the month prior to illness between male (n=138) and female (n=108) Giardia cases 

than returned the surveillance questionnaire.  

 

Variable No. valid 

(% missing) 

Category Males 

n (%)* 

Females 

n (%)* 

p-value 

Median number of glasses of un-boiled tap water drank per day 212 (13.8) - 3 (0-12) 3 (0-20) 0.589
 M

 

Drinking un-boiled tap water from a mains water supply 237 (3.6) No 19 (14.4) 16 (15.2) 0.856 

Yes 113 (85.6) 89 (84.8) 

Drinking from a private water source 237 (3.6) No 132 (100) 102 (97.1) 0.086 

Yes 0 (0) 3 (2.9) 

Drinking bottled water 237 (3.6) No 56 (42.4) 37 (35.2) 0.260 

Yes 76 (57.6) 68 (64.8) 

Drinking from a river/spring/pond 237 (3.6) No 131 (99.2) 103 (98.1) 0.586 

Yes 1 (0.8) 2 (1.9) 

Drinking from a water filter 237 (3.6) No 108 (81.8) 87 (82.9) 0.835 

Yes 24 (18.2) 18 (17.1) 
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Eating any fresh fruit 225 (8.5) No 11 (8.8) 7 (7) 0.621 

Yes 114 (91.2) 93 (93) 

Eating any salad item 227 (7.7) No 21 (16.8) 10 (9.8) 0.127 

Yes 104 (83.2) 92 (90.2) 

Eating any uncooked vegetable 218 (11.4) No 66 (54.5) 51 (52.6) 0.772 

Yes 55 (45.5) 46 (47.4) 

Drinking any fruit or vegetable juice 221 (10.2) No 28 (22.8) 27 (27.6) 0.414 

Yes 95 (77.2) 71 (72.4) 

Eating fresh fruit from a market 225 (8.5) No 112 (89.6) 95 (95) 0.138 

Yes 13 (10.4) 5 (5) 

Eating fresh fruit from a greengrocer 225 (8.5) No 116 (92.8) 94 (94) 0.720 

Yes 9 (7.2) 6 (6) 

Eating fresh fruit from supermarket 225 (8.5) No 27 (21.6) 20 (20) 0.769 

Yes 98 (78.4) 80 (80) 

Eating homegrown fresh fruit 225 (8.5) No 122 (97.6) 99 (99) 0.631 

Yes 3 (2.4) 1 (1) 

Eating fresh fruit from a place other than market supermarket, 

greengrocers or homegrown 

225 (8.5) No 115 (92) 93 (93) 0.778 

Yes 10 (8) 7 (7) 

Eating salad items from a greengrocer 228 (7.3) No 118 (93.7) 95 (93.1) 1.000 

Yes 8 (6.3) 7 (6.9) 

Eating salad items from supermarket 228 (7.3) No 40 (31.7) 21 (20.6) 0.058 

Yes 86 (68.3) 81 (79.4) 

Eating homegrown salad items 228 (7.3) No 120 (95.2) 100 (98) 0.302 

Yes 6 (4.8) 2 (2) 

Eating salad items from a place other than market supermarket, 

greengrocers or homegrown 

228 (7.3) No 117 (92.9) 93 (91.2) 0.640 

Yes 9 (7.1) 9 (8.8) 

Eating uncooked vegetables from a market 219 (11) No 119 (98.3) 97 (99) 1.000 

Yes 2 (1.7) 1 (1) 

Eating uncooked vegetables from a greengrocer 219 (11) No 115 (95) 93 (94.9) 1.000 

Yes 6 (5) 5 (5.1) 

Eating uncooked vegetables from supermarket 219 (11) No 75 (62) 56 (57.1) 0.468 

Yes 46 (38) 42 (42.9) 
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Eating homegrown uncooked vegetables 219 (11) No 119 (98.3) 98 (100) 0.503 

Yes 2 (1.7) 0 (0) 

Eating uncooked vegetables from a place other than market 

supermarket, greengrocers or homegrown 

219 (11) No 116 (95.9) 95 (96.9) 0.734 

Yes 5 (4.1) 3 (3.1) 

Drinking juice from a market 221 (10.2) No 118 (95.9) 97 (99) 0.230 

Yes 5 (4.1) 1 (1) 

Drinking juice from a greengrocer 221 (10.2) No 118 (95.9) 97 (99) 0.230 

Yes 5 (4.1) 1 (1) 

Drinking juice from supermarket 221 (10.2) No 38 (30.9) 37 (37.8) 0.285 

Yes 85 (69.1) 61 (62.2) 

Drinking homemade juice 221 (10.2) No 121 (98.4) 98 (100) 0.504 

Yes 2 (1.6) 0 (0) 

Drinking juice from a place other than market supermarket, 

greengrocers or homegrown 

221 (10.2) No 115 (93.5) 92 (93.9) 0.908 

Yes 8 (6.5) 6 (6.1) 

Frequency of eating fresh fruit 225 (8.5) Not at all 11 (8.8) 7 (7) 0.573 

Less than once a week 11 (8.8) 7 (7) 

Once or twice a week 21 (16.8) 24 (24) 

Between three and six times a week 25 (20) 19 (19) 

Once a day 33 (26.4) 19 (19) 

More than once a day 24 (19.2) 24 (24) 

Frequency of eating salad items 227 (7.7) Not at all 21 (16.8) 10 (9.8) 0.328 

Less than once a week 12 (9.6) 14 (13.7) 

Once or twice a week 34 (27.2) 37 (36.3) 

Between three and six times a week 34 (27.2) 28 (27.5) 

Once a day 16 (12.8) 9 (8.8) 

More than once a day 8 (6.4) 4 (3.9) 

Frequency of eating uncooked vegetables 218 (11.4) Not at all 66 (54.5) 51 (52.6) 0.463 

Less than once a week 16 (13.2) 21 (21.6) 

Once or twice a week 25 (20.7) 16 (16.5) 

Between three and six times a week 8 (6.6) 5 (5.2) 

Once a day 6 (5) 3 (3.1) 

More than once a day 0 (0) 1 (1) 
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Frequency of drinking fruit or vegetable juice 

 

221 (10.2) 

 

 

Not at all 28 (22.8) 27 (27.6) 0.417 

Less than once a week 8 (6.5) 12 (12.2) 

Once or twice a week 35 (28.5) 23 (23.5) 

Between three and six times a week 18 (14.6) 17 (17.3) 

Once a day 25 (20.3) 15 (15.3) 

More than once a day 9 (7.3) 4 (4.1) 

Going swimming at a swimming pool 246 No 94 (68.1) 65 (60.2) 0.197 

Yes 44 (31.9) 43 (39.8) 

Swimming in a  lake, pond or river 246 No 129 (93.5) 99 (91.7) 0.588 

Yes 9 (6.5) 9 (8.3) 

Practising watersports in freshwater 246 No 136 (98.6) 104 (96.3) 0.409 

Yes 2 (1.4) 4 (3.7) 

Practising watersports at sea 246 No 127 (92) 98 (90.7) 0.720 

Yes 11 (8) 10 (9.3) 

Went fishing 246 No 132 (95.7) 106 (98.1) 0.472 

Yes 6 (4.3) 2 (1.9) 

Walking in the countryside 246 No 95 (68.8) 70 (64.8) 0.505 

Yes 43 (31.2) 38 (35.2) 

Going picnicking 246 No 123 (89.1) 98 (90.7) 0.678 

Yes 15 (10.9) 10 (9.3) 

Practising fieldsports 246 No 127 (92) 105 (97.2) 0.081 

Yes 11 (8) 3 (2.8) 

Going camping 246 No 132 (95.7) 102 (94.4) 0.663 

Yes 6 (4.3) 6 (5.6) 

Going caravanning 246 No 129 (93.5) 103 (95.4) 0.525 

Yes 9 (6.5) 5 (4.6) 

Keeping a pet 229 (6.9) No 65 (51.6) 54 (52.4) 0.899 

Yes 61 (48.4) 49 (47.6) 

Keeping dogs 229 (6.9) No 85 (67.5) 78 (75.7) 0.169 

Yes 41 (32.5) 25 (24.3) 

Keeping rabbits 229 (6.9) No 118 (93.7) 99 (96.1) 0.405 

Yes 8 (6.3) 4 (3.9) 
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Keeping birds 229 (6.9) No 115 (91.3) 97 (94.2) 0.404 

Yes 11 (8.7) 6 (5.8) 

Keeping horses 229 (6.9) No 124 (98.4) 103 (100) 0.503 

Yes 2 (1.6) 0 (0) 

Visiting a premise with animals  215 (12.6) No 87 (73.1) 67 (69.8) 0.592 

Yes 32 (26.9) 29 (30.2) 

Touching cattle 209 (15) No 109 (93.2) 90 (97.8) 0.191 

Yes 8 (6.8) 2 (2.2) 

Touching pigs 209 (15) No 114 (97.4) 91 (98.9) 0.632 

Yes 3 (2.6) 1 (1.1) 

Touching sheep 209 (15) No 110 (94) 88 (95.7) 0.759 

Yes 7 (6) 4 (4.3) 

Touching horses 209 (15) No 109 (93.2) 88 (95.7) 0.442 

Yes 8 (6.8) 4 (4.3) 

Touching goats 209 (15) No 111 (94.9) 89 (96.7) 0.734 

Yes 6 (5.1) 3 (3.3) 

Touching chickens 209 (15) No 111 (94.9) 89 (96.7) 0.734 

Yes 6 (5.1) 3 (3.3) 

Touching any other animal 206 (16.3) No 110 (94.8) 82 (91.1) 0.293 

Yes 6 (5.2) 8 (8.9) 

Any child in the household 235 (4.5) No 71 (53) 52 (51.5) 0.820 

Yes 63 (47) 49 (48.5) 

Median number of children 235 (4.5) - 0 (0-5) 0 (0-4) 0.902
M

 

Any child in nappies 233 (5.3) No 103 (78) 71 (70.3) 0.179 

Yes 29 (22) 30 (29.7) 

Any other person ill in the household with similar symptoms 230 (6.5) No 111 (86) 89 (88.1) 0.643 

Yes 18 (14) 12 (11.9) 

Any contact outside the household with someone ill with similar 

symptoms 

216 (12.2) No 109 (87.9) 83 (90.2) 0.593 

Yes 15 (12.1) 9 (9.8) 

*percentages refer to the proportion among cases that answered the question; 
M 

Mann-Whitney U test 
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APPENDIX 2: Case-control study forms 

 

Figure A: Case-control study invitation letter. 
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Figure B: Case-control study participant information leaflet. 
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Figure C: Case-control study consent form and case questionnaire. 
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Figure D: Case-control study control questionnaire health details section. 
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Figure E: Case-control study control reminder letter. 
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APPENDIX 3: Case-control study univariable analysis (variables with p>0.2) 

 

Table 3.3.1: List of variables that returned a p-value>0.2 in univariable analysis. Results of both the general risk factor analysis (e.g. including all the 

eligible118 cases and 226 controls) and the indigenous risk factor analysis (e.g. including only the 86 cases and 207 controls that did not report travelling 

abroad in the exposure window) are shown for comparison.  

 

Variable Data subset No. valid 

(% missing)* 

Category Cases 

n (%)** 

Controls 

n (%)** 

OR (95% CI)*** p-value 

SOCIODEMOGRAPHICS, AREA AND SEASON VARIABLES 

Gender All 344 Female 53 (44.9) 110 (48.7) Ref. 0.508 

Male 65 (55.1) 116 (51.3) 1.16 (0.61-2.32) 

Indigenous  293 Female 36 (41.9) 104 (50.2) Ref. 0.191 

Male 50 (58.1) 103 (49.8) 1.40 (0.84-2.33) 

Age (years)  

 

All 344 0-4y 16 (13.5) 26 (11.5) Ref. 0.230
CT

/0.272
C
 

5-14y 6 (5.1) 12 (5.3) 0.81 (0.25-2.59) 

15-44y 44 (37.3) 62 (27.4) 1.15 (0.55-2.40) 

45-64y 27 (22.9) 75 (33.2) 0.58 (0.27-1.25) 

65+y 25 (21.2) 51 (22.6) 0.80 (0.36-1.75) 

Indigenous  293 0-4y 10 (11.6) 23 (11.1) Ref. 0.330
CT

/0.422
C
 

5-14y 5 (5.8) 12 (5.8) 0.96 (0.27-3.45) 

15-44y 34 (39.5) 59 (28.5) 1.32 (0.56-3.11) 

45-64y 19 (22.1) 67 (32.4) 0.65 (0.26-1.60) 

65+y 18 (20.9) 46 (22.2) 0.90 (0.36-2.26) 

Ethnicity  All 340 (1.2) 

 

Non-white (e.g. Asian, Chinese, Black 

African or Caribbean or other) 

16 (13.7) 21 (9.4) Ref. 0.231 

White 101 (86.3) 202 (90.6) 0.66 (0.33-1.31) 

Indigenous 291 (0.7) 

 

Non-white (e.g. Asian, Chinese, Black 

African or Caribbean or other) 

8 (9.3) 19 (9.3) Ref. 0.993 

White 78 (90.7) 186 (90.7) 1.00 (0.42-2.37) 

Occupational status  All 342 (0.6) Currently in work 50 (42.7) 96 (42.7) Ref. 0.908 

 Student 5 (4.3) 11 (4.9) 0.87 (0.29-2.65) 
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Unemployed 9 (7.7) 12 (5.3) 1.44 (0.57-3.65)  

 

 
Retired 33 (28.2) 70 (31.1) 0.90 (0.53-1.55) 

Child below working age 20 (17.1) 36 (16) 1.07 (0.56-2.03) 

Indigenous 292 (0.3) 

 

 

 

 

Currently in work 36 (41.9) 87 (42.2) Ref. 0.965 

Student 5 (5.8) 11 (5.3) 1.10 (0.36-3.39) 

Unemployed 7 (8.1) 12 (5.8) 1.41 (0.51-3.87) 

Retired 25 (29.1) 63 (30.6) 0.96 (0.52-1.76) 

Child below working age 13 (15.1) 33 (16) 0.95 (0.45-2.02) 

Educational 

status 

  

All 340 (1.2) Left full-time education 90 (78.3) 174 (77.3) Ref. 0.358 

Still in full-time education 8 (7) 25 (11.1) 0.62 (0.27-1.43) 

Pre-school child 17 (14.8) 26 (11.6) 1.26 (0.65-2.45) 

Indigenous 290 (1) Left full-time education 66 (78.6) 158 (76.7) 1.00 0.595 

Still in full-time education 7 (8.3) 25 (12.1) 0.67 (0.28-1.63) 

Pre-school child 11 (13.1) 23 (11.2) 1.14 (0.53-2.48) 

Level of 

neighbourhood 

deprivation (IMD rank) 

All 343 (0.3) Very low (24,363-32,482) 26 (22) 58 (25.8) Ref. 0.876
CT

 / 0.712
C
 

Low (16,242-24,362) 32 (27.1) 58 (25.8) 1.23 (0.65-2.32) 

Moderate (8,121-16,241) 24 (20.3) 41 (18.2) 1.31 (0.66-2.59) 

Very high (1-8,120) 36 (30.5) 68 (30.2) 1.18 (0.64-2.18) 

Indigenous 292 (0.3) Very low (24,363-32,482) 18 (20.9) 50 (24.3) Ref. 0.817
CT

/0.932
C
 

Low (16,242-24,362) 26 (30.2) 52 (25.2) 1.39 (0.68-2.84) 

Moderate (8,121-16,241) 17 (19.8) 40 (19.4) 1.18 (0.54-2.58) 

Very high (1-8,120) 25 (29.1) 64 (31.1) 1.08 (0.53-2.21) 

Reported area of living All 337 (2) City 20 (17.5) 42 (18.8) Ref. 0.373 

Town 62 (54.4) 104 (46.6) 1.25 (0.67-2.32) 

Village 32 (28.1) 77 (34.5) 0.87 (0.44-1.71) 

Indigenous 287 (2) City 15 (18.3) 38 (18.5) Ref. 0.737 

Town 43 (52.4) 98 (47.8) 1.11 (0.55-2.23) 

Village 24 (29.3) 69 (33.7) 0.88 (0.41-1.88) 

Study catchment area All 344 Central Lancashire 67 (56.8) 136 (60.2) Ref. 0.738 

East Lancashire 39 (33.1) 72 (31.9) 1.10 (0.67-1.79) 

Greater Manchester 12 (10.2) 18 (8) 1.35 (0.62-2.97) 

Indigenous 293 Central Lancashire 55 (64) 126 (60.9) Ref. 0.162 
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East Lancashire 21 (24.4) 68 (32.9) 0.71 (0.39-1.27)  

Greater Manchester 10 (11.6) 13 (6.3) 1.76 (0.73-4.26) 

Season All 344 Winter (December-February) 24 (20.3) 48 (21.2) Ref. 0.753 

Spring (March-May) 35 (29.7) 70 (31) 1.00 (0.53-1.89) 

Summer (June-August) 30 (25.4) 46 (20.4) 1.30 (0.67-2.55) 

Autumn (September-November) 29 (24.6) 62 (27.4) 0.93 (0.48-1.81) 

Indigenous 

 

 

 

293 Winter (December-February) 15 (17.4) 44 (21.3) Ref. 0.786 

Spring (March-May) 27 (31.4) 67 (32.4) 1.18 (0.57-2.47) 

Summer (June-August) 21 (24.4) 41 (19.8) 1.50 (0.68-3.30) 

Autumn (September-November) 23 (26.7) 55 (26.6) 1.23 (0.57-2.63) 

HEALTH DETAILS 

Suffering from  

inflammatory bowel 

disease (IBD) 

All 326 (5.2) No 106 (99.1) 217 (99.1) Ref. 1.000 

Yes 1 (0.9) 2 (0.9) 1.02 (0.09-11.42) 

Indigenous 279 (4.8) No 78 (98.7) 198 (99) Ref. 1.000 

Yes 1 (1.3) 2 (1) 1.27 (0.11-14.20) 

OCCUPATIONAL DETAILS 

Having a potentially at-

risk occupation 

All 341 (0.9) Not currently working 67 (57.8) 129 (57.3) Ref. 0.864 

Working but not with any at-risk 

occupation 

43 (37.1) 83 (36.9) 1.00 (0.62-1.60) 

Working with animals 0 (0) 1 (0.4) n/a*** 

Working with manure/slurry 0 (0) 1 (0.4) n/a*** 

Working with human faeces 3 (2.6) 7 (3.1) 0.82 (0.21-3.29) 

Contact with sewage 0 (0) 1 (0.4) n/a*** 

Contact with freshwaters 1 (0.9) 1 (0.4) 1.92 (0.12-31.27) 

More than one at-risk occupation 2 (1.7) 2 (0.9) 1.92 (0.26-13.97) 

Indigenous 292 (0.3) Not currently working 50 (58.1) 119 (57.8) Ref. 0.748 

 

 

 

 

 

 

Working but not with any at-risk 

occupation 

30 (34.9) 75 (36.4) 0.95 (0.56-1.63) 

Working with animals 0 (0) 1 (0.5) n/a*** 

Working with manure/slurry 0 (0) 1 (0.5) n/a*** 

Working with human faeces 3 (3.5) 7 (3.4) 1.02 (0.25-4.10) 

Contact with sewage 0 (0) 1 (0.5) n/a*** 
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Contact with freshwaters 1 (1.2) 1 (0.5) 2.38 (0.15-38.80)  

More than one at-risk occupation 2 (2.3) 1 (0.5) 4.76 (0.42-53.69) 

ANIMAL CONTACT 

Keeping a pet by type  All 341 (0.9) Not keeping pets 72 (62.1) 120 (53.3) Ref. 0.229 

Keeping dogs 17 (14.7) 34 (15.1) 0.83 (0.43-1.60) 

Keeping cats 6 (5.2) 25 (11.1) 0.40 (0.16-1.02) 

Keeping birds 3 (2.6) 7 (3.1) 0.71 (0.18-2.85) 

Keeping horses 0 (0) 2 (0.9) n/a*** 

Keeping rodents 1 (0.9) 7 (3.1) 0.24 (0.03-1.97) 

Keeping a pet other than those above (fish, 

amphibians, stick insects, spiders) 
1 (0.9) 5 (2.2) 0.33 (0.04-2.91) 

Keeping more than one type of pet 16 (13.8) 25 (11.1) 1.07 (0.53-2.13) 

Indigenous 290 (1) Not keeping pets 50 (59.5) 108 (52.4) Ref. 0.253 

Keeping dogs 10 (11.9) 33 (16) 0.65 (0.30-1.43) 

Keeping cats 4 (4.8) 22 (10.7) 0.39 (0.13-1.20) 

Keeping birds 3 (3.6) 6 (2.9) 1.08 (0.26-4.49) 

Keeping horses 0 (0) 2 (1) n/a*** 

Keeping rodents 1 (1.2) 7 (3.4) 0.31 (0.04-2.58) 

Keeping a pet other than those above (fish, 

amphibians, stick insects, spiders) 
1 (1.2) 5 (2.4) 0.43 (0.05-3.79) 

Keeping more than one type of pet 15 (17.9) 23 (11.2) 1.41 (0.68-2.93) 

No. of dogs kept 

 

All 340 (1.2) 0 86 (74.8) 176 (78.2) Ref. 0.478
T
/0.471

C
 

1 23 (20) 44 (19.6) 1.07 (0.61-1.88) 

2 6 (5.2) 2 (0.9) 6.14 (1.21-31.05) 

3+ 0 (0) 3 (1.3) n/a*** 

Indigenous 289 (1.4) 0 62 (74.7) 160 (77.7) 1.00 0.557
T
/0.539

C
 

1 16 (19.3) 41 (19.9) 1.00 (0.53-1.92) 

2 5 (6) 2 (1) 6.45 (1.22-34.13) 

3+ 0 (0) 3 (1.5) n/a*** 

No. of different pet 

species owned  

All 341 (0.9) 0 72 (62.1) 120 (53.3) Ref. 0.713
T
/0.955

C 

 

 
1 28 (24.1) 79 (35.1) 0.59 (0.35-0.99) 

2 9 (7.8) 21 (9.3) 0.71 (0.31-1.64) 
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3+ 7 (6) 5 (2.2) 2.33 (0.71-7.63)  

Indigenous 290 (1) 0 50 (59.5) 108 (52.4) 1.00 0.693
T
/0.472

C
 

1 19 (22.6) 74 (35.9) 0.55 (0.30-1.02) 

2 8 (9.5) 19 (9.2) 0.91 (0.37-2.22) 

3+ 7 (8.3) 5 (2.4) 3.02 (0.91-10.00) 

Cleaning up (touching) 

pets’ faeces  

All 341 (0.9) Not keeping pets 72 (62.1) 120 (53.3) Ref. 0.290 

Keeping pets but not cleaning up their 

faeces 

24 (20.7) 60 (26.7) 0.67 (0.38-1.16) 

Keeping pets and cleaning up their faeces 20 (17.2) 45 (20) 0.74 (0.41-1.35) 

Indigenous 290 (1) Not keeping pets 50 (59.5) 108 (52.4) Ref. 0.540 

Keeping pets but not cleaning up their 

faeces 

19 (22.6) 56 (27.2) 0.73 (0.39-1.36) 

Keeping pets and cleaning up their faeces 15 (17.9) 42 (20.4) 0.77 (0.39-1.52) 

Any pet with diarrhoea 

in the house 

All 340 (1.2) Not keeping pets 72 (62.6) 120 (53.3) Ref. 0.202 

Keeping pets but none with diarrhoea 42 (36.5) 100 (44.4) 0.70 (0.44-1.11) 

Keeping pets and at least one with 

diarrhoea 

1 (0.9) 5 (2.2) 0.33 (0.04-2.91) 

Indigenous 289 (1.4) Not keeping pets 50 (60.2) 108 (52.4) Ref. 0.421 

Keeping pets but none with diarrhoea 32 (38.6) 93 (45.1) 0.74 (0.44-1.25) 

Keeping pets and at least one with 

diarrhoea 

1 (1.2) 5 (2.4) 0.43 (0.05-3.79) 

Visiting or working at a 

farm 

All 340 (1.2) No 101 (88.6) 192 (85) Ref. 0.358 

Yes 13 (11.4) 34 (15) 0.73 (0.37-1.44) 

Indigenous 292 (0.3) No 74 (87.1) 176 (85) Ref. 0.653 

Yes 11 (12.9) 31 (15) 0.84 (0.40-1.77) 

Touching animals 

while visiting or 

working at a farm 

All 339 (1.5) Neither visiting nor working at a farm 101 (88.6) 192 (85.3) Ref. 0.659 

Not touching animals while at a farm 4 (3.5) 12 (5.3) 0.63 (0.20-2.01) 

Touching animals while at a farm 9 (7.9) 21 (9.3) 0.81 (0.36-1.84) 

Indigenous 291 (0.7) Neither visiting nor working at a farm 74 (87.1) 176 (85.4) 1.00 0.936 

Not touching animals while at a farm 4 (4.7) 12 (5.3) 0.86 (0.27-2.80) 

Touching animals while at a farm 7 (8.2) 19 (9.2) 0.88 (0.35-2.17) 

Touching animals 

while at a farm by type 

All 339 (1.5) Neither visiting nor working at a farm 101 (88.6) 192 (85.3) Ref. 0.261 

 Not touching animals while at a farm 4 (3.5) 12 (5.8) 0.58 (0.19-1.84) 
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of animal Touching pigs 1 (0.9) 0 (0) n/a***  

 

 

 

Touching sheep or goats 0 (0) 3 (1.3) n/a*** 

Touching horses or ponies 1 (0.9) 4 (1.8) 0.47 (0.05-4.31) 

Touching chickens or poultry 0 (0) 1 (0.4) n/a*** 

Touching any other animal 0 (0) 2 (0.9) n/a*** 

Touching more than one type of animal 

(cattle included) 

7 (6.1) 10 (4.4) 1.33 (0.49-3.60) 

Indigenous 291 (0.7) Neither visiting nor working at a farm 74 (87.1) 176 (85.4) Ref. 0.592 

Not touching animals while at a farm 4 (4.7) 12 (5.8) 0.79 (0.25-2.54) 

Touching sheep or goats 0 (0) 2 (1) n/a*** 

Touching horses or ponies 1 (1.2) 4 (1.9) 0.58 (0.06-5.41) 

Touching chickens or poultry 0 (0) 1 (0.5) n/a*** 

Touching any other animal 0 (0) 2 (1) n/a*** 

Touching more than one type of animal 

(cattle included) 

6 (7.1) 9 (4.4) 1.59 (0.54-4.61) 

Touching animals at a 

wildlife park or zoo  

All 340 (1.2) 

 

 

Not visiting a wildlife park or zoo 106 (92.2) 217 (96.4) Ref. 0.235 

Visiting but not touching any animal 6 (5.2) 6 (2.7) 2.05 (0.64-6.50) 

Visiting and touching an animal 3 (2.6) 2 (0.9) 3.07 (0.50-18.65) 

Indigenous 290 (1) Not visiting a wildlife park or zoo 79 (94) 198 (96.1) Ref. 0.339 

Visiting but not touching any animal 2 (2.4) 6 (2.9) 0.83 (0.16-4.23) 

Visiting and touching an animal 3 (3.6) 2 (1) 3.76 (0.62-22.93) 

Touching animals in 

the wild 

All 293 (14.8) No 100 (94.3) 182 (97.3) Ref. 0.214 

Yes 6 (5.7) 5 (2.7) 2.18 (0.65-7.34) 

Indigenous 253 (13.7) No 78 (97.5) 170 (98.3) Ref. 0.653 

Yes 2 (2.5) 3 (1.7) 1.45 (0.24-8.87) 

RECREATIONAL ACTIVITIES 

Frequency of 

swimming or paddling 

in a swimming pool 

(no. times) 

All 324 (5.8) 0 75 (70.8) 177 (81.2) Ref. 0.106
T
/0.413

C
 

1-2 15 (14.2) 17 (7.8) 2.08 (0.99-4.39) 

3-4 7 (6.6) 12 (5.5) 1.38 (0.52-3.63) 

5-6 4 (3.8) 6 (2.8) 1.57 (0.43-5.74) 

7+ 5 (4.7) 6 (2.8) 1.97 (0.58-6.64) 

Indigenous 279 (4.8) 0 58 (72.5) 168 (84.4) Ref. 0.106
T
/0.438

C 
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1-2 12 (15) 14 (7) 2.48 (1.09-5.68) 
 

 

 

 

3-4 7 (8.8) 12 (6) 1.69 (0.63-4.50) 

5-6 2 (2.5) 3 (1.5) 1.93 (0.31-11.85) 

7+ 1 (1.3) 2 (1) 1.45 (0.13-16.27) 

Frequency of using a 

Jacuzzi or a hot tub 

(no. times) 

All 307 (10.8) 0 90 (94.7) 203 (95.8) Ref. 0.976
 T

/0.672
C
 

1-2 4 (4.2) 6 (2.8) 1.50 (0.41-5.46) 

3+ 1 (1.1) 3 (1.4) 0.75 (0.07-7.33) 

Indigenous 261 (10.9) 0 64 (94.1) 186 (96.4) Ref. 0.775
T
/0.554

C
 

1-2 3 (4.4) 4 (2.1) 2.18 (0.47-10.00) 

3+ 1 (1.5) 3 (1.6) 0.97 (0.10-9.48) 

Immersing the head 

underwater while using 

a Jacuzzi or hot tub  

All 304 (11.6) Not using a Jacuzzi or a hot tub 90 (96.8) 203 (96.2) Ref. 0.935 

Using a Jacuzzi or a hot tub without 

immersing the head 

2 (2.2) 6 (2.8) 0.75 (0.15-3.80) 

Using Jacuzzi or a hot tub immersing the 

head 

1 (1.1) 2 (0.9) 1.13 (0.10-12.60) 

Indigenous 258 (11.9) Not using a Jacuzzi or a hot tub 64 (97) 186 (96.9) 1.00 0.506 

Using a Jacuzzi or a hot tub without 

immersing the head 

2 (3) 4 (2.1) 1.45 (0.26-8.12) 

Using Jacuzzi or a hot tub immersing the 

head 

0 (0) 2 (1) n/a*** 

Swimming in a lake, 

pond or river 

 

 

All 316 (8.1) No 99 (97.1) 209 (97.7) Ref. 0.716 

Yes 3 (2.9) 5 (2.3) 1.27 (0.30-5.41) 

Indigenous 272 (7.2) No 75 (98.7) 192 (98) Ref. 1.000 

Yes 1 (1.3) 4 (2) 0.64 (0.07-5.82) 

Swimming in the sea 

 

All 321 (6.7) No 93 (91.2) 206 (94.1) Ref. 0.340 

Yes 9 (8.8) 13 (5.9) 1.53 (0.63-3.71) 

Indigenous 276 (5.8) No 74 (98.7) 197 (98) Ref. 1.000 

Yes 1 (1.3) 4 (2) 0.67 (0.07-6.05) 

Frequency of 

swimming in the sea 

(no. times) 

All 318 (7.6) 0 95 (94) 206 (94.1) Ref. 0.622
 T

/0.243
C
 

1-2 2 (2) 10 (4.6) 0.44 (0.09-2.06) 

3+ 4 (4) 3 (1.4) 2.95 (0.65-13.46) 

Indigenous 276 (5.8) 0 74 (98.7) 197 (98) Ref. 0.917
T
/0.464

C 

 
1-2 0 (0) 4 (2) n/a*** 
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3+ 1 (1.3) 0 (0) n/a***  

Practising watersports 

in freshwater 

All 324 (5.8) No 104 (100) 219 (99.5) Ref. 1.000 

Yes 0 (0) 1 (0.5) n/a*** 

Indigenous 277 (5.5) No 76 (100) 200 (99.5) Ref. 1.000 

Yes 0 (0) 1 (0.5) n/a*** 

Practising watersports 

in the sea 

All 324 (5.8) No 103 (99) 219 (99.5) Ref. 0.540 

Yes 1 (1) 1 (0.5) 2.13 (0.13-34.33) 

Indigenous 277 (5.5) No 76 (100) 200 (99.5) Ref. 1.000 

Yes 0 (0) 1 (0.5) n/a*** 

Going fishing All 319 (7.3) 

 

No 110 (100) 206 (98.6) Ref. 0.554 

Yes 0 (0) 3 (1.4) n/a*** 

Indigenous 273 (6.8) No 82 (100) 188 (98.4) Ref. 0.556 

Yes 0 (0) 3 (1.6) n/a 

Going hunting  Exposure not reported in either cases or controls 

Going camping All 318 (7.6) No 107 (98.2) 206 (98.6) Ref. 1.000 

Yes 2 (1.8) 3 (1.4) 1.28 (0.21-7.80) 

Indigenous 272 (7.2) No 81 (100) 188 (98.4) Ref. 0.557 

Yes 0 (0) 3 (1.6) n/a*** 

Going caravanning All 320 (7) No 106 (97.2) 199 (94.3) Ref. 0.239 

Yes 3 (2.8) 12 (5.7) 0.47 (0.13-1.70) 

Indigenous 274 (6.5) No 79 (97.5) 181 (93.8) Ref. 0.244 

Yes 2 (2.5) 12 (6.2) 0.38 (0.08-1.75) 

Walking in the 

countryside 

All 329 (4.4) No 69 (63.9) 128 (57.9) Ref. 0.300 

Yes 39 (36.1) 93 (42.1) 0.78 (0.48-1.25) 

Indigenous 282 (3.8) No 50 (62.5) 120 (59.4) Ref. 0.632 

Yes 30 (37.5) 82 (40.6) 0.88 (0.51-1.50) 

WATER CONSUMPTION 

No. glasses of un-

boiled tap water per 

day 

All 321 (6.7) 0 10 (9.6) 22 (10.1) Ref. 0.958
T
/0.496

C
 

1-2 46 (44.2) 98 (45.2) 1.03 (0.45-2.36) 

3-4 31 (29.8) 60 (27.6) 1.14 (0.48-2.70) 

5+ 17 (16.3) 37 (17.1) 1.01 (0.39-2.59) 

Indigenous 277 (5.5) 0 4 (5.2) 21 (10.5) Ref. 0.548
T
/0.341

C 
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1-2 36 (46.8) 91 (45.5) 2.08 (0.67-6.47) 
 

 3-4 25 (32.5) 54 (27) 2.43 (0.76-7.83) 

5+ 12 (15.6) 34 (17) 1.85 (0.53-6.50) 

Drinking un-boiled 

water from a lake, river 

or stream 

All 307 (10.8) No 104 (98.1) 199 (99) Ref. 0.611 

Yes 2 (1.9) 2 (1) 1.91 (0.27-13.78) 

Indigenous 263 (10.2) No 77 (98.7) 183 (98.9) Ref. 1.000 

Yes 1 (1.3) 2 (1.1) 1.19 (0.11-13.30) 

Water from the tap 

reported having an 

unusual smell 

All 334 (2.9) No 112 (98.2) 215 (97.7) Ref. 1.000 

Yes 2 (1.8) 5 (2.3) 0.77 (0.15-4.02) 

Indigenous 284 (3.1) No 83 (100) 196 (97.5) Ref. 0.326 

Yes 0 (0) 5 (2.5) n/a*** 

FOOD CONSUMPTION 

FOOD CONSUMPTION HABITS 

No. times per week 

eating cooked 

vegetables 

All 329 (4.4) 0 3 (2.7) 6 (2.7) Ref. 0.926
T
/0.156

C
 

1-2 12 (10.9) 26 (11.9) 0.92 (0.20-4.33) 

3-4 34 (30.9) 63 (28.8) 1.08 (0.25-4.59) 

5+ 61 (55.5) 124 (56.6) 0.98 (0.24-4.07) 

Indigenous 281 (4.1) 0 1 (1.2) 6 (3) Ref. 0.442
T
/0.551

C
 

1-2 9 (11.1) 26 (13) 2.08 (0.22-19.68) 

3-4 24 (29.6) 59 (29.5) 2.44 (0.28-21.37) 

5+ 47 (58) 109 (54.5) 2.59 (0.30-22.09) 

Peeling raw fruit before 

eating  

All 333 (3.2) No 81 (73) 173 (77.9) Ref. 0.316 

Yes 30 (27) 49 (22.1) 1.31 (0.77-2.21) 

Indigenous 284 (3.1) No 59 (72.8) 157 (77.3) Ref. 0.422 

Yes 22 (27.2) 46 (22.7) 1.27 (0.71-2.29) 

Washing raw fruit 

before eating 

All 330 (4.1) No 36 (33.3) 70 (31.5) Ref. 0.742 

Yes 72 (66.7) 152 (68.5) 0.92 (0.56-1.50) 

Indigenous 281 (4.1) No 26 (33.3) 65 (32) Ref. 0.833 

Yes 52 (66.7) 138 (68) 0.94 (0.54-1.64) 

FOOD CONSUMPTION DURING THE EXPOSURE WINDOW 

Eating cooked 

vegetables 

All 333 (3.2) No 8 (7.1) 14 (6.3) Ref. 0.779 

Yes 104 (92.9) 207 (93.7) 0.88 (0.36-2.16) 
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Indigenous 284 (3.1) No 5 (6.1) 13 (6.4) Ref. 0.916 

Yes 77 (93.9) 189 (93.6) 1.06 (0.36-3.07) 

Drinking fruit juice All 331 (3.8) No 33 (29.5) 58 (26.5) Ref. 0.566 

Yes 79 (70.5) 161 (73.5) 0.86 (0.52-1.43) 

Indigenous 283 (3.4) No 26 (31.3) 54 (27) Ref. 0.462 

Yes 57 (68.7) 146 (73) 0.81 (0.46-1.42) 

Provenience of fruit 

juice 

All 323 (6.1) Did not drink fruit juice 33 (30.3) 58 (27.1) Ref. 0.088 

Market 1 (0.9) 1 (0.5) 1.76 (0.11-29.03) 

Greengrocers 1 (0.9) 0 (0) n/a*** 

Supermarket 68 (62.4) 145 (67.8) 0.82 (0.49-1.38) 

Other place (e.g. restaurant etc.) 5 (4.6) 2 (0.9) 4.39 (0.81-23.9) 

Multiple proveniences (at least two 

different) 

1 (0.9) 8 (3.7) 0.22 (0.03-1.83) 

Indigenous 276 (5.8) Did not drink fruit juice 26 (32.1) 54 (27.7) Ref. 0.552 

Market 1 (1.2) 1 (0.5) 2.08 (0.12-34.53) 

Greengrocers 1 (1.2) 0 (0) n/a*** 

Supermarket 51 (63) 133 (68.2) 0.80 (0.45-1.41) 

Other place (e.g. restaurant etc.) 1 (1.2) 2 (1) 1.04 (0.09-11.98) 

Multiple proveniences (at least two 

different) 

1 (1.2) 5 (2.6) 0.41 (0.05-3.74) 

Eating pre-packed 

sandwiches 

All 321 (6.7) No 74 (66.7) 144 (68.6) Ref. 0.728 

Yes 37 (33.3) 66 (31.4) 1.09 (0.67-1.78) 

Indigenous 275 (6.1) No 56 (68.3) 134 (69.4) Ref. 0.852 

Yes 26 (31.7) 59 (30.6) 1.05 (0.60-1.84) 

Provenience of pre-

packed sandwiches 

All 317 (7.8) Did not eat pre-packed sandwiches 74 (67.9) 144 (69.2) Ref. 0.318 

Greengrocers 0 (0) 1 (0.5) n/a*** 

Supermarket 30 (27.5) 60 (28.8) 0.97 (0.58-1.64) 

Other place (e.g. restaurant etc.) 5 (4.6) 3 (1.4) 3.24 (0.75-13.94) 

Indigenous 272 (7.2) Did not eat pre-packed sandwiches 56 (69.1) 134 (70.2) Ref. 0.441 

Greengrocers 0 (0) 1 (0.5) n/a*** 

Supermarket 22 (27.2) 54 (28.3) 0.97 (0.54-1.75) 

Other place (e.g. restaurant etc.) 3 (3.7) 2 (1) 3.59 (0.58-22.07) 
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Eating lamb All 305 (11.3) No 43 (42.6) 100 (49) Ref. 0.288 

Yes 58 (57.4) 104 (51) 1.30 (0.80-2.10) 

Indigenous 264 (9.9) No 32 (41.6) 94 (50.3) 1.00 0.198 

Yes 45 (58.4) 93 (49.7) 1.42 (0.83-2.43) 

Provenience of lamb All 302 (12.2) Did not eat lamb 43 (43.9) 100 (49) Ref. 0.185 

Market stall 0 (0) 4 (2) n/a*** 

Butcher 14 (14.3) 22 (10.8) 1.48 (0.69-3.16) 

Supermarket 31 (31.6) 67 (32.8) 1.07 (0.62-1.88) 

Other place (e.g. restaurant etc.) 4 (4.1) 2 (1) 4.65 (0.82-26.36) 

Multiple proveniences (at least two 

different) 

6 (6.1) 9 (4.4) 1.55 (0.52-4.62) 

Indigenous 261 (10.9) Did not eat lamb 32 (43.2) 94 (50.3) Ref. 0.453 

Market stall 0 (0) 3 (1.6) n/a*** 

Butcher 11 (14.9) 20 (10.7) 1.62 (0.70-3.73) 

Supermarket 27 (36.5) 63 (33.7) 1.26 (0.69-2.30) 

Other place (e.g. restaurant etc.) 0 (0) 1 (0.5) n/a*** 

Multiple proveniences (at least two 

different) 

4 (5.4) 6 (3.2) 1.96 (0.52-7.38) 

Eating chicken All 331 (3.8) No 5 (4.6) 18 (8.1) Ref. 0.236 

Yes 104 (95.4) 204 (91.9) 1.83 (0.66-5.08) 

Indigenous 283 (3.4) No 4 (5) 17 (8.4) Ref. 0.329 

Yes 76 (95) 186 (91.6) 1.74 (0.57-5.33) 

Eating fish All 319 (7.3) No 33 (31.4) 60 (28) Ref. 0.531 

Yes 72 (68.6) 154 (72) 0.85 (0.51-1.41) 

Indigenous 275 (6.1) No 26 (32.9) 59 (30.1) Ref. 0.648 

Yes 53 (67.1) 137 (69.9) 0.88 (0.50-1.54) 

Provenience of fish All 317 (7.8) Did not eat fish 33 (32) 60 (28) Ref. 0.325 

Market stall 2 (1.9) 6 (2.8) 0.61 (0.12-3.17) 

Fishmonger 11 (10.7) 14 (6.5) 1.43 (0.58-3.50) 

Supermarket 51 (49.5) 116 (54.2) 0.80 (0.47-1.37) 

Other place (e.g. restaurant etc.) 4 (3.9) 5 (2.3) 1.45 (0.36-5.79) 

Multiple proveniences (at least two 

different) 

2 (1.9) 13 (6.1) 0.28 (0.06-1.31) 
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Indigenous 273 (6.8) Did not eat fish 26 (33.8) 59 (30.1) Ref. 0.613 

Market stall 1 (1.3) 5 (2.6) 0.45 (0.05-4.08) 

Fishmonger 7 (9.1) 14 (7.1) 1.13 (0.41-3.14) 

Supermarket 41 (53.2) 104 (53.1) 0.89 (0.50-1.61) 

Other place (e.g. restaurant etc.) 1 (1.3) 4 (2) 0.57 (0.06-5.32) 

Multiple proveniences (at least two 

different) 

1 (1.3) 4 (2) 0.23 (0.03-1.87) 

Eating at a pub or a 

restaurant 

All 337 (2) No 46 (40.4) 81 (36.3) Ref. 0.470 

Yes 68 (59.6) 142 (63.7) 0.84 (0.53-1.34) 

Indigenous 289 (1.4) No 37 (44) 80 (39) Ref. 0.430 

Yes 47 (56) 125 (61) 0.81 (0.49-1.36) 

No. times eating at a 

pub or a restaurant 

All 326 (5.2) 0 46 (43.4) 81 (36.8) Ref. 0.143
T
/0.437

C
 

1-2 44 (41.5) 83 (37.7) 0.93 (0.56-1.56) 

3-4 5 (4.7) 36 (16.4) 0.24 (0.09-0.67) 

5+ 11 (10.4) 20 (9.1) 0.97 (0.43-2.20) 

Indigenous 283 (3.4) 0 37 (45.7) 80 (39.6) 1.00 0.043
T
/0.066

C
 

1-2 38 (46.9) 79 (39.1) 1.04 (0.60-1.80) 

3-4 3 (3.7) 32 (15.8) 0.20 (0.06-0.70) 

5+ 3 (3.7) 11 (5.4) 0.59 (0.15-2.24) 

Eating at a canteen All 305 (11.3) No 86 (85.1) 182 (89.2) Ref. 0.306 

Yes 15 (14.9) 22 (10.8) 1.44 (0.71-2.92) 

Indigenous 263 (10.2) No 65 (84.4) 166 (89.2) Ref. 0.275 

Yes 12 (15.6) 20 (10.8) 1.53 (0.71-3.31) 

No. times eating at a 

canteen 

All 301 (12.5) 0 86 (86.9) 182 (90.1) Ref. 0.559
 T

/0.978
C
 

1-2 5 (5.1) 7 (3.5) 1.51 (0.47-4.90) 

3-4 2 (2) 3 (1.5) 1.41 (0.23-8.60) 

5+ 6 (6.1) 10 (5) 1.27 (0.45-3.61) 

Indigenous 259 (11.6) 0 65 (86.7) 166 (90.2) Ref. 0.477
T
/0.919

C
 

1-2 3 (4) 6 (3.3) 1.28 (0.31-5.26) 

3-4 2 (2.7) 3 (1.6) 1.70 (0.28-10.42) 

5+ 5 (6.7) 9 (4.9) 1.42 (0.46-4.39) 

Eating at a takeaway or All 324 (5.8) No 46 (41.8) 94 (43.9) Ref. 0.717 
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fast food Yes 64 (58.2) 120 (56.1) 1.09 (0.68-1.73) 

Indigenous 277 (5.5) No 35 (42.7) 86 (44.1) Ref. 0.828 

Yes 47 (57.3) 109 (55.9) 1.06 (0.63-1.78) 

No. times eating at a 

takeaway or fast food 

All 307 (10.8) 0 46 (46.5) 94 (45.2) Ref. 0.917
 T

/0.670
C
 

1-2 32 (32.3) 81 (38.9) 0.81 (0.47-1.39) 

3-4 18 (18.2) 22 (10.6) 1.67 (0.82-3.42) 

5+ 3 (3) 11 (5.3) 0.56 (0.15-2.09) 

Indigenous 264 (9.9) 0 35 (46.7) 86 (45.5) Ref. 0.714
T
/0.558

C
 

1-2 23 (30.7) 72 (38.1) 0.78 (0.43-1.45) 

3-4 16 (21.3) 20 (10.6) 1.97 (0.91-4.23) 

5+ 1 (1.3) 11 (5.8) 0.22 (0.03-1.80) 

GENERAL HOUSEHOLD DETAILS 

No. of adults (≥16y) in 

the house 

 

 

 

 

 

All 

 

 

343 (0.3) 1 15 (12.8) 52 (23) Ref. 0.419
 T

/0.868
C
 

2 80 (68.4) 128 (56.6) 2.17 (1.14-4.10) 

3 16 (13.7) 32 (14.2) 1.73 (0.75-3.98) 

4+ 6 (5.1) 14 (6.2) 1.49 (0.49-4.53) 

Indigenous 293 1 13 (15.1) 50 (24.2) Ref. 0.963
T
/0.703

C
 

2 60 (69.8) 113 (54.6) 2.04 (1.03-4.05) 

3 9 (10.5) 31 (15) 1.12 (0.43-2.92) 

4+ 4 (4.7) 13 (6.3) 1.18 (0.33-4.24) 

Any contact with a 

person with diarrhoea 

outside the house 

All 315 (8.4) No 94 (87) 187 (90.3) Ref. 0.370 

Yes 14 (13) 20 (9.7) 1.39 (0.67-2.88) 

Indigenous 271 (7.5) No 75 (93.8) 172 (90.1) Ref. 0.328 

Yes 5 (6.3) 19 (9.9) 0.60 (0.22-1.68) 

*percentages refer to the proportion of participants with missing information for the variable; **percentages refer to the proportion among cases and controls that answered 

the question; ***Odds ratio with 95% confidence interval; *** Odds ratio not calculated because no variation present in the data; 
T 

Chi-Square for trend; 
CT 

logistic regression 

on the categorized variable; 
C
 logistic regression on the continuous form of the variable 
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APPENDIX 4: Giardia molecular genotyping results  

 

Table 4A: Giardia reference sequences used for sub-assemblage genotyping. Sequences are indicated by their GenBank accession number and host of origin. 

 

 Gene 

Species Assemblage bg gdh tpi ssu-rRNA 

G. duodenalis AI X85958 human M84604 human L02120 human M54878 human 

AII AY072723 human AY178737 human U57897 human AF199446  human 

AIII EU216429 red deer EU637582  fallow deer DQ650648 fallow deer DQ100287 roe deer 

BIII AY072726 human EF685684 human AF069561 human AF199447 human 

BIV AY072728 human AY178738 human AF069560 human AF113898 human 

C AY545646 dog U60983 dog AY228641 dog AF199449 dog 

D AY545647 dog U60986 dog DQ246216 dog AF199443 dog 

E AY072729 pig AY178741 pig KF891311 water 

buffalo 

AF199448 goat 

F AY647264 cat AF069057 cat AF069558 cat AF199444 cat 

G EU769221 rat AY178746 rat EU781013 rat AF199450 rat 

G. muris - EF455599 mouse Not available Not available M73682 mouse 

G. ardeae - Not available AF069060 blue heron AF069564 blue heron Not available 
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Table 4B: List of the 157 isolates successfully sequenced at the bg gene ordered by sub-assemblage and genotype.  

 

Sub-assemblage Subtype Identity (ID) to closest reference or 

previously described isolate (GenBank 

Acc. No.) (no. of differences) 

Host(s) or environmental 

sample of isolation of matching 

sequences in GenBank 

No. 

isolates 

Isolates ID (sequenced in only one 

direction) 

AII A2 100%ID Reference AII (AY072723) Human, sheep, bison, wastewater 

treatment plant, reclaimed 

wastewater 

16 13/CT, 13/C161, 13/C133, 13/C123, 12/G, 

12/C88, 12/C46, 08/H3, 10/H21, 11/11, 

11/12, 11/27, 12/C14, 12/C15, 12/C16, 

12/C41  

A2a* 99%ID Reference AII (1)  1 13/C146 

A3 100%ID A3 isolate ECUST13495 

(JX898210) 

Human, dog, bison, oryx, 

wastewater treatment plant, 

reclaimed wastewater 

23 12/C70, 09/10, 13/C164, 09/22, 13/C144, 

13/C122, 13/C117, 12/C105, 12/C101, 

12/C91, 12/C74,  12/C65, 12/C56, 

12/C31, 11/67, 11/29, 10/H51, 10/30, 

08/13 (10/3, 12/C98, 13/C127, 13/C162) 

AI AI 100%ID Reference AI (X85958) Human, dog, cat, cattle, goat, 

horse, moose, planigale, dolphin 

1 11/13 

AIa* 99%ID Reference AI (1)  1 10/H12 

AI/II ? AI/2 100% ID References AI and AII   1 (13/DA) 

A  

heterogeneous** 

n/a /  5 10/20, 12/C89, 10/H8  (10/24, 09/15) 

BIII BIII 100%ID Reference BIII (AY072726) Human 7 10/28, 11/1, 12/C20, 12/C28, 12/C110, 

13/CC, 13/CM 

BIIIa* 99%ID Reference BIII (1)  1 12/C75 

BIV BIV 100%ID Reference BIV (AY072728) Human 1 12/C23 

BIVa* 99%ID Reference BIV (1)  1 13/C151 

BIVb* 99%ID Reference BIV (2)  1 12/C19 

Sweh198 100%ID Sweh198 isolate (HM165226) Human 1 11/69 

GU417 100%ID GU417 isolate (JQ303245)  1 13/C137 

Other B  

 

 

B1 100%ID B1 isolate Nij5 (AY072725) Human 1 11/28 

B1-1 100% ID B1-1  isolate Sweh042 

(HM165214) 

Human, macaque, gazelle, 

tamandua 

3 11/71, 12/C95, 11/3 



 

220 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B1-2 100% ID B1-2 isolate Sweh033 

(HM165213) 

Human, dog, lemur catta 11 13/C160, 13/CF, 13/C149, 13/C147, 

13/C145, 12/D, 12/C80, 12/C11, 12/C9, 

12/C7 (12/C84) 

B1-2a* 99% ID B1-2 isolate Sweh033 (1)  1 13/CO 

B1-3 100%ID B1-3 isolate Sweh001 

(HM165208) 

Human, cattle 48 13/CH, 13/C118, 13/C126, 12/C106, 

12/C102, 12/C93, 12/C85, 12/C83, 

12/C79, 12/C77, 12/C73, 12/C72, 12/C61, 

12/C59, 12/C45, 12/C44, 12/C43, 12/C37, 

12/C35, 12/C26, 12/C21, 12/C18, 12/C5, 

12/C1, 12/A, 11/50, 11/24, 11/10, 10/H9, 

10/H6, 08/20, 08/8, 13/C130, 13/C132, 

13/C140, 13/C155, 13/CI, 13/CP, 12/C2, 

12/C3, 13/C131 (09/11, 10/13, 10/15, 

10/21, 12/C25, 13/C113, 13/C115) 

B1-5 100%ID B1-5 isolate Sweh047 

(HM165216) 

Human 6 12/C87, 12/C92, 12/C96, 13/C152, 

13/C165, 13/CE 

BG-Ber2 100% ID BG-Ber2 isolate (DQ090523) Human 4 12/C81, 13/C157, 11/58 (11/36) 

BG-Ber6 100% ID BG-Ber6 isolate (DQ090527) Human 1 12/C99 

BG-Ber1 100% ID BG-Ber1 isolate (DQ090522) Human 1 13/CG 

B heterogeneous 

** 

n/a /  19 13/C129, 11/44, 12/C24, 12/C30, 13/CL, 

11/35, 12/C17, 12/C6, 12/C27, 13/C124, 

13/C125, 13/C119, 13/C148, 12/C34, 

10/H43, 12/C39, 11/59, 12/C114 (10/7) 

Unsure A+B SNPs at 17 position along the gene 

sequence compatible with a mixed A and 

B template 

 1 12/C71 

*sequence with at least one novel nucleotide polymorphism; **sequence with at least one heterogeneous position 

 

 

 



 

221 

 

Table 4C: Nucleotide polymorphisms at the bg locus in the assemblage A isolates successfully sequenced in both directions. The sequence of one 

representative isolate from each genotype is shown in comparison with the relative most similar reference or isolate retrieved in GenBank. 
 Isolate             

(GenBank 

Acc.No.) 

2
4
2
 

2
4
5
 

2
4
8
 

2
7
8
 

3
3
5
 

3
5
0
 

3
5
3
 

3
6
4
 

3
6
8
 

3
8
3
 

3
9
1
 

4
0
2
 

4
1
6
 

4
1
9
 

4
3
4
 

4
5
8
 

4
6
1
 

4
6
7
 

4
7
9
 

4
9
7
 

5
0
1
 

5
5
7
 

5
6
3
 

5
7
6
 

5
7
8
 

6
1
0
 

6
2
3
 

6
3
5
 

6
4
7
 

AI (X85958) a g a c g t t t a a g g a c a a t a t a g g g a c g c c t 

11/13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10/H12 . . . . . . . . . . . . . . . . . . . . . . . G* . . . . . 

AII (AY072723) . A . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13/CT . A . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13/C146 . A . . . . . A* . . . . . . . . . . . . . . . . . . . . . 

ECUST13495 

(JX898210) . A . . . . . . . G A . . . . . . . . . . . . . . . . . . 

12/C70 . A . . . . . . . G A . . . . . . . . . . . . . . . . . . 

AIII (EU216429) . . G T . C . . G G . . . . G G . . . . . A . . . . . . . 

10/20 . A . . . . . . . . . . . . . . . . . . . . R . . . . . . 

12/C89 . A . . . . . . . R R . . . . . . . . . . . . . . . . . . 

10/H8 . A . . . . . . . . . . . . . . . . . . . . . . . R . . . 

Nucleotide polymorphisms (in capitals) are numbered from the beginning of the AI reference sequence; novel polymorphisms are indicate with an asterisk; dots indicate 

identity to the AI reference sequence; IUPAC nucleotide ambiguity codes: R=AG 

 

Table 4D: Heterogeneous positions in the isolate 12/C71 bg sequence. 

Isolate             

(GenBank 

Acc.No.) 

2
4
2

 

2
4
5

 

2
4
8

 

2
7
8

 

2
8
4

 

2
8
7

 

3
1
7

 

3
3
5

 

3
5
0

 

3
5
3

 

3
6
8

 

3
7
4

 

3
8
3

 

4
0
2

 

4
1
6

 

4
1
9

 

4
3
4

 

4
5
8

 

4
6
1

 

4
6
7

 

4
7
9

 

4
9
4

 

4
9
7

 

5
0
0

 

5
0
1

 

5
1
8

 

5
4
8

 

5
5
7

 

5
6
6

 

5
7
8

 

6
2
3

 

6
3
5

 

6
4
7

 

AI (X85958) A G A C C G C G T T A C A G A C A A T A T C A G G A T G G C C C T 

AII (AY072723) . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

AIII (EU216429) . . G T . . . . C . G . G . . . G G . . . . . . . . . A . . . . . 

BIII (AY072727) G . G . G A T A C G G T G . G T G G C G C A G A . G C . A T T T C 

BIV (AY072728) . . G . G . T A C G G T G . G T G G C G C A . A . G C . A T . T C 

12/C71 R R R . . . . R Y K R . R R R Y R . Y R Y . R . R . . . . Y Y Y Y 

Nucleotide polymorphisms (in capitals) are numbered from the beginning of the AI reference sequence; dots indicate identity to the AI reference sequence; IUPAC nucleotide 

ambiguity codes: R=AG, Y=CT, K=GT
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Table 4E: Nucleotide polymorphisms at the bg locus in assemblage B isolates successfully 

sequenced in both directions and without heterogeneous positions. The sequence of one 

representative isolate from each identified genotype is shown in comparison with the relative 

most similar reference or isolate retrieved in GenBank. 

 

Isolate (GenBank 

Acc.No.) 

Nucleotidic position 

2
2
7
 

2
4
2
 

2
8
7
 

3
3
5
 

3
8
0
 

3
8
6
 

4
1
3
 

4
8
2
 

4
9
7
 

5
2
4
 

5
2
7
 

5
8
7
 

6
2
3
 

6
4
1
 

6
4
7
 

BIII (AY072726) g g a a g g g g g g g g t g c 

10/28 . . . . . . . . . . . . . . . 

12/C75 . . . . A* . . . . . . . . . . 

BIV (AY072728) . A G . . . . . A . . . C . . 

12/C23 . A G . . . . . A . . . C . . 

13/C151 . A G . . A* . . A . . . C . . 

12/C19 . A G . . . . . . . A* . C . . 

Sweh198 (M165226) A A G . . . . . A . . A C . . 

11/69 A A G . . . . . A . . A C . . 

GU417 (JQ303245) . A G . . . . . A . . . G . . 

13/C137 . A G . . . . . A . . . G . . 

B1 (AY072725) . . . . . . A . A A . . . A . 

11/28 . . . . . . A . A A . . . A . 

B1-1 (HM165214) . . . . . . A . A . . . . A . 

11/71 . . . . . . A . A . . . . A . 

B1-2 (HM165213) . . . . . . . . A . . . . A . 

13/C160 . . . . . . . . A . . . . A . 

13/CO . . . . . . . . A . . . C* A . 

B1-3 (HM165208) . . . G . . A A A . . . . A T 

13/CH . . . G . . A A A . . . . A T 

B1-5 (HM165216) . . . G . . A A A . . . . A . 

12/C87 . . . G . . A A A . . . . A . 

BG-Ber6 (DQ090527) . . . . . . . . A . . . C . . 

12/C99 . . . . . . . . A . . . C . . 

BG-Ber1 (DQ090522) . . . . . . . . . . . . C . . 

13/CG . . . . . . . . . . . . C . . 

BG-Ber2 (DQ090523) . . . . . . . . A . . . . . . 

12/C81 . . . . . . . . A . . . . . . 

Nucleotide polymorphisms (in capitals) are numbered from the beginning of the AI reference 

sequence; novel polymorphisms are indicate with an asterisk; dots indicate identity to the BIII 

reference sequence 

 

 

 

 

 

 



 

223 

 

Table 4F: Nucleotide polymorphisms at the bg locus in assemblage B isolates successfully sequenced in both directions and showing heterogeneous positions. 

The sequence without heterogeneous positions of one representative isolate from each genotype is also shown. 

 

Isolate 

(GenBank 

Acc.No.) 

2
4
2
 

2
4
5
 

2
6
3
 

2
8
7
 

3
2
7
 

3
3
5
 

3
4
3
 

3
5
9
 

3
7
1
 

3
7
4
 

3
7
7
 

3
8
0
 

3
8
1
 

3
8
6
 

3
8
9
 

4
0
5
 

4
1
3
 

4
4
4
 

4
5
8
 

4
7
1
 

4
7
3
 

4
7
9
 

4
8
2
 

4
9
0
 

4
9
7
 

5
1
5
 

5
2
4
 

5
2
7
 

5
6
6
 

5
6
9
 

5
8
7
 

6
0
5
 

6
1
7
 

6
2
3
 

6
4
1
 

6
4
7
 

6
5
0
 

 BIII 

(AY072726) g g g a a a t c g t c g a g c t g a g t g c g t g t g g a c g c c t g c g 

12/C75 . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . 

BIV 

(AY072728) A . . G . . . . . . . . . . . . . . . . . . . . A . . . . . . . . C . . . 

13/C151 A . . G . . . . . . . . . A . . . . . . . . . . A . . . . . . . . C . . . 

12/C19 A . . G . . . . . . . . . . . . . . . . . . . . . . . A . . . . . C . . . 

Sweh198 

(M165226) A . . G . . . . . . . . . . . . . . . . . . . . A . . . . . A . . C . . . 

GU417 
(JQ303245) A . . G . . . . . . . . . . . . . . . . . . . . A . . . . . . . . G . . . 

B1 

(AY072725) . . . . . . . . . . . . . . . . A . . . . . . . A . A . . . . . . . A . . 

B1-1 
(HM165214) . . . . . . . . . . . . . . . . A . . . . . . . A . . . . . . . . . A . . 

B1-2 

(HM165213) . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . A . . 

13/CO . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . C A . . 

B1-3 

(HM165208) . . . . . G . . . . . . . . . . A . . . . . A . A . . . . . . . . . A T . 

B1-5 
(HM165216) . . . . . G . . . . . . . . . . A . . . . . A . A . . . . . . . . . A . . 

BG-Ber6 

(DQ090527) . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . C . . . 

BG-Ber1 

(DQ090522) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . 

BG-Ber2 

(DQ090523) . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . 

10/H43 . . . . . . . . . . . . . . . . . . . . . . . . R Y . . . Y . . . . . . . 

11/35 . . . G . . . . . . . . . . . Y . . . . . . . . A . . . . . . . . . . . . 

11/44 . . . . . G . . . . . . . . . . A . . . . . A . A . . . . . . . . . A Y . 

11/59 . . . . . . . . . . . . R . . . . . . . . . . . A . . . . . . . . . A . . 
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12/C6 . . . . . . . . . . . . . . . . R . . . . . . . A . . . . . . . . . A . . 

12/C17 . . . . . . . . . . . . . . . . . . . Y . . . . R . . . R . . . . Y R . . 

12/C24 . . . . R G . . . . . . . . . . A . . . . . A . A . . . . . . . . . A T . 

12/C27 . . . . . . . . . . . . . . . . . . . . . . . . R . . . . . . . . . R . . 

12/C30 . . . R . R . . . . . . . . . . R . . . . . R . A . . . . . . . . Y A T . 

12/C34 . . . R . . . . . . . . . . . . . . . . . . . . . . . . . . . Y Y Y . . R 

12/C39 . . A . . . . . . . . . . . . . . . R . . . . . . . . . . . . . . . . . . 

13/C114 . . . . . . Y . . C T . . . S . . . . . . . . . . . . . . . . . . . . . . 

13/C119 . . . . . . . . . . . . . . . . . . . . . . . Y . . . . . . . . . . . . . 

13/C124 . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . Y . Y . . . 

13/C125 . R . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . Y . . . 

13/C129 . . . . . . . . . . . R . . . . . R . . R Y . . R . . . . . . . . . . . . 

13/C148 . . . . . . . Y S . . . . . . . . . . . . . . . R . . . . . . . . . . . . 

13/CL . . . . . . . . . . . . . . . . . . . . . . . . R . . . R . . . . . R . . 

Nucleotide polymorphisms (in capitals) are numbered from the beginning of the AI reference sequence; dots indicate identity to the AI reference sequence; IUPAC nucleotide 

ambiguity codes: R=AG, Y=CT, K=GT 
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Table 4G: List of the 146 isolates successfully sequenced at the gdh gene ordered by sub-assemblage and genotype.  

 

Sub-assemblage Subtype Identity (ID) to closest reference or 

previously described isolate (GenBank 

Acc. No.) (no. of differences) 

Host(s) or environmental 

sample of isolation of matching 

sequences in GenBank 

No. 

isolates 

Isolates ID (sequenced in only one 

direction) 

AII AII 100%ID Reference AII (AY178737) Human, cattle, dolphin, porpoise, 

gull 

27 12/C91, 11/34, 10/8, 10/H21, 10/H51, 

11/12, 11/37, 11/8, 12/C105, 12/C14, 

12/C15, 12/C32, 12/C71, 12/C88, 

12/C89, 12/C94, 13/C120, 13/C121, 

13/C127, 13/C133, 13/C135, 13/C161, 

13/CT, 08/22, 09/16 (11/43, 12/C46) 

ECUST2196 100%ID ECUST2196 isolate 

(JX994237) 

99%ID Reference AII (1) 

Human 18 08/H3, 11/27, 11/29, 11/67, 12/C101, 

12/C16, 12/C65, 12/C68, 12/C70, 

12/C74, 12/G, 13/C117, 13/C122, 

13/C123, 13/C134, 13/C162, 13/DA, 

09/10 

ECUST2196a* 99%ID ECUST2196 isolate (1)  1 12/C41 

ISSGd198 100%ID ISSGd198 isolate (EU278608) Human 3 10/H8, 12/C31, 13/C164 

A 

heterogeneous** 

n/a   2 12/C56, 08/11 

BIV BIV 100%ID Reference BIV (AY178738) Human, chinchilla 45 13/CO, 10/24, 10/H43, 10/H6, 11/10, 

11/24, 11/58, 11/71, 12/C1, 12/C106, 

12/C113, 12/C20, 12/C21, 12/C24, 

12/C25, 12/C26, 12/C3, 12/C35, 

12/C37, 12/C43, 12/C44, 12/C45, 

12/C59, 12/C7, 12/C72, 12/C73, 

12/C75, 12/C79, 12/C84, 12/C85, 

12/C87, 12/C9, 12/C92, 12/C93, 

12/C96, 12/E, 13/C115, 13/C130, 

13/C131, 13/C132, 13/C147, 13/CF, 

13/CP, 08/20, 08/8  

Other B 

 

ISSGd167 100%ID ISSGd167 isolate (EU637587) 

 

Human 13 08/25, 11/35, 11/2, 11/28, 11/66, 

12/C83, 12/C95, 13/C152, 13/C160, 
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13/C165, 13/CE, 13/DH (12/C80) 

Ad-158 100% ID Ad-158 isolate (AY178753) Marmoset 

 

2 13/C145, 13/C149 

Ba* 99%ID Ad-158 isolate (2) 

99%ID Reference BIV (3) 

 1 13/CM 

Bb* 99%ID B0 isolate (AY178738) (2) 

99%ID Reference BIV (2) 

 1 (13/C155) 

Bc* 99%ID B4 isolate (EF507682) (2) 

99%ID Reference BIV (3) 

 1 10/28 

Bd* 99%ID B isolate (AY178756) (2) 

99%ID Reference BIII (3) 

 1 12/C77 

Be* 

 

99%ID B isolate (EU637588) (5) 

99%ID Reference BIII (6) 

 1 11/38 

Bf* 99%ID B isolate (EU637588) (2) 

99%ID Reference BIII (7) 

 1 13/C118 

Bg* 99% B isolate (EF507654) (4) 

99%ID Reference BIII (6) 

 1 12/C19 

Bh* 99% ID B isolate  (EU362955) (5) 

99%ID Reference BIII (5) 

 1 12/C53 

Bi* 99%ID B  isolate (HM134212) (5) 

99%ID Reference BIV (6) 

 1 12/C11 

Bl* 
 

99%ID B  isolate (HM134216) (7) 

99%ID Reference BIV (8) 

 1 11/36 

B 

heterogeneous** 

n/a /  25 13/C154, 13/CL, 13/C148, 13/C140, 

13/C125, 13/C124, 12/C81, 12/C39, 

12/C30, 12/C6, 12/C2, 11/69, 11/44, 

11/3, 12/C17, 12/C99, 13/C151, 13/CG, 

12/C18, 13/CN, 13/C126, 11/1, 

13/C157, 13/C119, 13/CC 

*sequence with at least one novel nucleotide polymorphism; **sequence with at least one heterogeneous position 
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Table 4H: Nucleotide polymorphisms at the gdh locus in the assemblage A isolates successfully sequenced in both directions. The sequence of one 

representative isolate from each genotype is shown in comparison with the relative most similar reference or isolate retrieved in GenBank. 

 

Isolate (GenBank 

Acc.No.) 

5
5
4
 

5
5
7
 

5
6
0
 

5
6
7
 

5
7
5
 

5
8
4
 

5
9
9
 

6
0
2
 

6
0
8
 

6
3
8
 

6
6
2
 

6
8
3
 

7
1
6
 

7
4
6
 

7
4
9
 

7
5
0
 

7
7
0
 

7
7
6
 

7
8
2
 

7
8
4
 

7
9
4
 

7
9
7
 

8
3
3
 

8
3
6
 

8
4
2
 

8
4
8
 

8
6
6
 

8
9
9
 

9
0
5
 

Reference AI (M84604) g c g g g g a a a g g g g g a a a g a c a g a g g g a g t 

Reference AIII 

(EU637582) A T A . A A G G . . . A . A G . G A G . G A G A . . G A . 

Reference AII (AY178737) . . . A A . G G G A A . A . . . G . . . . . . . . A G . . 

12/C91 . . . A A . G G G A A . A . . . G . . . . . . . . A G . . 

ECUST2196 (JX994237) . . . A A . G G G A A . A . . . . . . . . . . . . A G . . 

08/H3 . . . A A . G G G A A . A . . . . . . . . . . . . A G . . 

12/C41 . . . A A . G G G A A . A . . . . . . . . . . . T* A G . . 

ISSGd198 (EU278608) . . . A A . G G G A A . A . . . . . . T . . . . . A G . . 

10/H8 . . . A A . G G G A A . A . . . . . . T . . . . . A G . . 

08/11 . . . A A . G G G A A . A . . . G . . . . . . . . A G . Y 

12/C56 . . . A A . G G G A A . A . . W . . . . . . . . . A G . . 

Nucleotide polymorphisms (in capitals) are numbered from the beginning of the AI reference sequence; novel polymorphisms are indicate with an asterisk; dots indicate 

identity to the AI reference sequence; IUPAC nucleotide ambiguity codes: Y=CT, W=AT 
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Table 4I: Nucleotide polymorphisms at the gdh locus in assemblage B isolates successfully sequenced in both directions and without heterogeneous positions. 

The sequence of one representative isolate from each identified genotype is shown in comparison with the relative most similar reference or isolate retrieved 

in GenBank. 

 

Isolate (GenBank 

Acc.No.) 

5
7
2
 

5
7
8
 

6
0
2
 

6
3
5
 

6
4
4
 

6
6
2
 

6
7
6
 

7
1
3
 

7
3
1
 

7
3
7
 

7
4
6
 

7
6
4
 

7
7
0
 

7
7
9
 

7
9
4
 

8
0
3
 

8
4
2
 

8
4
5
 

8
5
7
 

8
6
3
 

8
7
2
 

8
9
9
 

9
0
8
 

9
1
7
 

9
2
3
 

9
2
9
 

9
3
5
 

9
5
0
 

9
8
3
 

9
8
9
 

Reference BIII 

(EF685684) g a g g t c t a c c g a a c g a c t c g g g g c g g t g a g 

Reference BIV 
(AY178738) . . . . C A . . . . A . G . . . . . T . . . A . . A . . . . 

13/CO . . . . C A . . . . A . G . . . . . T . . . A . . A . . . . 

ISSGd167 

(EU637587) . . . . C A . G . . A G G T . . . . T . A A . . . A . . . . 

08/25 . . . . C A . G . . A G G T . . . . T . A A . . . A . . . . 

Ad-158 (AY178753) . . . . C A . G . . A . G . . . . . T . A . . . . A . . . . 

13/C145 . . . . C A . G . . A . G . . . . . T . A . . . . A . . . . 

13/CM . . . . C A . . . . A . G . . . . C* T . A . . . . A . . . . 

10/28 . . . . C A . . . . A . G . . . . . T A* . . . . . . . . . . 

12/C77 . . . . . . . . . . . . G . . . . . . . . . . . . . . A* . . 

11/36 . G* . . C A C* . . . A . G . A* . . . . . . . . T* . A . . . A* 

11/38 . . A* A* . A . . . . . . G . . . T* . . . . . . . . A . . . . 

12/C11 A* . . . C A . . . . . . G . . . . . T . . . A . . . C* . . . 

12/C19 . . . . . A . . T* . . . . . . G* . . . . . . . . A* . . A* . . 

12/C53 . . . . . . . . . T* . . . . . . . . . . . . . . A* . . A* . . 

13/C118 . . . A* . A . . . . . . G . . . . . . . . . . . A* . . A* G* . 

Nucleotide polymorphisms (in capitals) are numbered from the beginning of the AI reference sequence; novel polymorphisms are indicate with an asterisk; dots indicate 

identity to the BIII reference sequence. 
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Table 4L: Nucleotide polymorphisms at the gdh locus in assemblage B isolates successfully sequenced in both directions and showing heterogeneous 

positions. The sequence without heterogeneous positions of one representative isolate from each genotype is also shown. 

 

Isolate 

(GenBa

nk 

Acc.No.

) 

5
7
2
 

5
7
8
 

6
0
2
 

6
3
5
 

6
4
1
 

6
4
4
 

6
5
3
 

6
6
2
 

6
7
6
 

6
8
5
 

7
0
1
 

7
0
4
 

7
1
3
 

7
3
1
 

7
3
7
 

7
4
0
 

7
4
6
 

7
6
4
 

7
7
0
 

7
7
9
 

8
0
3
 

8
1
5
 

8
2
7
 

8
3
3
 

8
4
2
 

8
4
5
 

8
5
7
 

8
6
3
 

8
7
2
 

8
8
2
 

8
9
6
 

8
9
9
 

9
0
7
 

9
0
8
 

9
1
7
 

9
2
3
 

9
2
9
 

9
5
0
 

9
8
3
 

9
8
9
 

1
0
0
1
 

1
0
0
4
 

 BIII 

(EF6856

84) g a g g c t g c t t g g a c c g g a a c a c g a c t c g g a g g t g c g g g a g c g 

BIV 

(AY178

738) . . . . . C . A . . . . . . . . A . G . . . . . . . T . . . . . . A . . A . . . . . 

ISSGd1

67  . . . . . C . A . . . . G . . . A G G T . . . . . . T . A . . A . . . . A . . . . . 

Ad-158  . . . . . C . A . . . . G . . . A . G . . . . . . . T . A . . . . . . . A . . . . . 

13/CM . . . . . C . A . . . . . . . . A . G . . . . . . C T . A . . . . . . . A . . . . . 

10/28 . . . . . C . A . . . . . . . . A . G . . . . . . . T A . . . . . . . . . . . . . . 

12/C77 . . . . . . . . . . . . . . . . . . G . . . . . . . . . . . . . . . . . . A . . . . 

11/36 . G . . . C . A C . . . . . . . A . G . . . . . . . . . . . . . . . T . A . . A . . 

11/38 . . A A . . . A . . . . . . . . . . G . . . . . T . . . . . . . . . . . A . . . . . 

12/C11 A . . . . C . A . . . . . . . . . . G . . . . . . . T . . . . . . A . . . . . . . . 

12/C19 . . . . . . . A . . . . . T . . . . . . G . . . . . . . . . . . . . . A . A . . . . 

12/C53 . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . A . A . . . . 

13/C118 . . . A . . . A . . . . . . . . . . G . . . . . . . . . . . . . . . . A . A G . . . 

11/1 . . . . Y Y . M . . . . . . . R R . G . . . . . . . Y . . . . . . . . . A . . R Y . 

11/3 . . . . . C . A . . . K G . . . A G G T . . . . . . T . A . . A . . . . A . . . . . 

11/44 . . . . . C . A . . . . R . . . A R G Y . . . . . . T . R . . R . R . . A . . . . . 

11/69 . . . R . Y . A . . . . . . . . . . G . . . . . . . . . . . . . . . . . . A . . . . 

12/C2 . . . . . C . A . . . . R . . . A R G T . . . . . . T . R . . R . R . . A . . . . . 

12/C6 . . . . . C . A . . . . R . . . A R G Y . . . . . . T . R . . R . R . . A . . . . . 

12/C17 . . . . . C . A . . . . . . . . A . G . . . . . Y Y T R R . . . . R . . R A . . Y . 
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12/C18 . . . . . C . A . . . . . . . . A . G . . . . . . . T . . . . . R A . . A . . . . . 

12/C30 . . . . . C . A . . . . R . . . A R G Y . . . . . . T . R . . R . R . . A . . . . . 

12/C39 . . . . . C . A . . . . . . . . A . G . . . . . . . T R . . . . . . . . R A . . . . 

12/C81 R . . . . C . A . . . . . . . . A . G . . . . . . . T . . . . . . A . . A . . . . . 

12/C99 . . R A . . . A . . . . . Y . . . . R . R . . . . . . . . . . . . . . A . A R . . . 

13/C119 . . . . . . R . . . . . . . . . . . G . . . R . . . Y . R . . . . . . R . R . . . R 

13/C124 . . . . . Y . M . . . . . . . R R . R . . . . . . . Y . . . . . . . . . . . . . . . 

13/C125 . . . R . Y . A . . . . . . . . R . G . . . . . Y . Y . . . . . . . . R R A R . Y . 

13/C126 . . . . . C . A . . . . . . . . A . G . . . . . . . T . . R . . . A . . A . . . . . 

13/C140 . . R A . . . A . . . . . Y . . . . G . . . . . . . . . . . . . . . . A . A R . . . 

13/C148 . . . . . Y . A . . . . . . . . R . G . . . . . . . Y . . . . . . . . . R R . . . . 

13/C151 . . . A . . . A . . R . . . Y . R . G . . . . R . . . . . . R . . . . A . A R . . . 

13/C154 . . . R . Y . A . . . . . . . . R . G . . . . . . . Y . . . . . . R . R R R G . . . 

13/C157 . R . R . Y . A . . . . . . . . R . G . . . . . . . Y . . . . . . . Y . R R . . . . 

13/CC . . . . . Y . M . Y . . . . . . . . R . . Y . . . . Y . . . . . . . . . R . . . . . 

13/CG . . . . . C . A C . . . . . . . . . G . . . . . . . . . . . . . . . . . R A . . . . 

13/CL . . . . . . . M . . . . . . . . R . G . . . . . . . T . . . . . . . . . R . . . . . 

13/CN . . . . . C . A . . . . . . . . A . G . . . . . C . . . . . . . . . . . . R . . . . 

Nucleotide polymorphisms (in capitals) are numbered from the beginning of the AI reference sequence; novel polymorphisms are indicate with an asterisk; dots indicate 

identity to the BIII reference sequence. IUPAC nucleotide ambiguity codes: R=AG, Y=CT, K=GT, M=AC 
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Table 4M: List of the 163 isolates successfully sequenced at the tpi gene ordered by sub-assemblage and genotype  

 

Sub-assemblage Subtype Identity (ID) to closest reference or 

previously described isolate (GenBank 

Acc. No.) (no. of differences) 

Host(s) or environmental 

sample of isolation of matching 

sequences in GenBank 

No. 

isolates 

Isolates ID (sequenced in only one 

direction) 

AII AII 100%ID Reference AII (U57897) Human, cattle, sheep, dog, spider 

monkey, seal, dolphin, gull 

51 12/C89, 13/CT, 13/DA, 13/C164, 13/C162, 

13/C161, 13/C135, 13/C133, 13/C127, 

13/C123, 13/C122, 13/C117, 12/G, 12/C105, 

12/C88, 12/C74, 12/C70, 12/C68, 12/C65, 

12/C56, 12/C32, 12/C31, 12/C15, 11/67, 

11/43, 11/29, 11/8, 10/H51, 10/H21, 10/H19, 

10/H8, 08/22, 08/H3, 09/10, 09/16, 09/22, 

10/8, 10/20, 12/C16 (11/12, 11/27, 12/C14, 

12/C41, 12/C91, 12/C94).  Short product: 

12/C46, 12/C57, 12/C71, 12/C97 (11/37, 

13/C120) 

AI Martha 100%ID Martha isolate (KJ776589)  

99%ID Reference AI (L02120) 

Human, dog, cat,  sheep, alpaca 1 11/13 

BIII BIII 100%ID Reference BIII (AF069561) 

 

Human, dog, macaque, seal, 

wastewater 

11 12/C23, 12/C99, 13/C119, 13/C151, 

13/C154, 13/DB, 13/CN (11/30). Short 

product: 11/70, 12/C19, 13/CB 

HS29 100%ID HS29 isolate (KC632557) 

99%ID Reference BIII (1) 

Human  1 Short product 13/C163 

Sweh060 100%ID Sweh060 isolate (HM140714) 

99%ID Reference BIII (2) 

Human 1 Short product 13/C137 

HS114 100% ID HS114 isolate (KC632558) 

99%ID Reference BIII (1) 

Human 1 Short product 11/15 

BIIIa* 99%ID Reference BIII (1)  1 10/H43 

BIIIb* 99%ID Reference BIII (1)  1 10/H35 

BIV BIV 100%ID Reference BIV (AF069560) Human, dog, seal, dolphin, gull, 

eider, urban wastewater  

50 13/C160, 13/CF, 13/C155, 13/C147, 

13/C131, 13/C130, 13/C126, 13/C115, 

12/C113, 12/D, 12/C106, 12/C95, 12/C83, 

12/C82, 12/C79, 12/C72, 12/C59, 12/C45, 

12/C44, 12/C43, 12/C37, 12/C26, 12/C25, 
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12/C20, 12/C7, 12/C6, 12/C3, 11/71, 11/34, 

11/24, 11/10, 11/3, 10/H20, 10/H18, 10/H9, 

10/H6, 09/11, 08/8, 13/CO, 08/25, 13/CP 

(10/H44, 13/CS, 8/20). Short product: 

12/C63, 12/C80, 12/C61, 11/44, 11/28, 10/3 

VB906855 

 

100%ID VB906855 isolate (KF843920) 

99%ID Reference BIV (1) 

Human, macaque, dog, beaver, 

gazelle, seal, dolphin, gull, 

tamandua, urban wastewater 

13 10/H25, 12/A, 12/C9, 12/C84, 12/C87, 

12/C92, 12/C96, 13/C145, 13/C152, 

13/C165, 13/DH (13/CE). Short product: 

10/28 

BIVa* 99%ID Reference BIV (1)  1 12/C18 

BIVb* 99%ID Reference BIV (1)  1 Short product 11/25 

BIVc* 99%ID Reference BIV (1)  1 (12/C50) 

Other B 

 

 

 

 

 

Sweh171  100%ID Sweh171 isolate (HM140722) 

99%ID Reference BIII (3) 

Human 2 10/H14, 13/C149 

Ba* 99%ID RM1 isolate (GU564279) (2) 

99%ID Reference BIV (6) 

 1 12/C64 

Bb* 99%ID Sweh171 isolate (HM140722) 

(3) 

99%ID Ref. BIII (4) 

 1 13/CG 

B  

heterogeneous** 

n/a   25 13/C125, 13/C140, 13/C124, 12/C77, 

12/C35, 12/C30, 12/C27, 12/C21, 12/C1, 

11/1, 13/C148, 11/36, 11/69, 13/CL, 13/CM, 

12/C17, 13/C157, 11/35 (12/C11, 12/C2, 

13/CC). Short product: 12/C108, 12/C85, 

13/CD, 8/11 

*sequence with at least one novel nucleotide polymorphism; **sequence with at least one heterogeneous position 
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Table 4N: Nucleotide polymorphisms at the tpi locus in the assemblage A isolates 

successfully sequenced in both directions. The sequence of one representative isolate from 

each genotype is shown in comparison with the relative most similar reference or isolate 

retrieved in GenBank. 

 

Isolate (GenBank Acc.No.)  

6
5
8
 

6
6
3
 

7
0
5
 

8
2
0
 

8
2
6
 

8
6
8
 

8
8
3
 

8
9
5
 

9
1
3
 

AI (L02120) g a g t g t t t c 

Martha (KJ776589) . . . C . . . . . 

11/13 . . . C . . . . . 

AII (U57897) A . . . . . . . . 

12/C89 A . . . . . . . . 

AIII (DQ650648) . G A . A C C C T 

Nucleotide polymorphisms (capitals) are numbered from the beginning of the AI reference sequence; 

novel polymorphisms are indicate with an asterisk; dots indicate identity to the AI reference sequence 

 

 

Table 4O: Nucleotide polymorphisms at the tpi locus in assemblage B isolates successfully 

sequenced in both directions without heterogeneous positions. The sequence of one 

representative isolate from each genotype is shown in comparison with the relative most 

similar reference or isolate retrieved in GenBank. 

 

 Isolate 

(GenBank 

Acc.No.)  

5
7
4
 

5
8
6
 

6
1
6
 

6
2
8
 

6
4
6
 

6
5
5
 

6
6
4
 

7
5
0
 

7
5
3
 

7
7
7
 

8
0
2
 

8
4
7
 

8
5
9
 

8
8
9
 

8
9
2
 

8
9
5
 

9
1
3
 

BIII 

(AF069561) t t c c g t g t t t c c g g g c a 

12/C23 . . . . . . . . . . . . . . . . . 

10/H35 . . T* . . . . . . . . . . . . . . 

10/H43 . . . . . . . . . . T* . . . . . . 

HS29 

(KC632557) . . . . . . . . . . . . . . . T . 

13/C163 . . . . . . . . . . . . . . . T . 

Sweh060 
(HM140714) . . . . . . A . C . . . . . . . . 

13/C137 . . . . . . A . C . . . . . . . . 

HS114 
(KC632558) . . . . . . . . . . . . . . A . . 

11/15 . . . . . . . . . . . . . . A . . 

BIV 
(AF069560) . . . T . . . . . . . T . A A . . 

13/C160 . . . T . . . . . . . T . A A . . 

VB906855 

(KF843920) . . . . . . . . . . . T . A A . . 

10/H25 . . . . . . . . . . . T . A A . . 

12/C18 . . . T A* . . . . . . T . A A . . 

11/25 . . . T . . . . . . . T . A A . T* 

Sweh171 

(HM140722) . . . . . . . . . . . . A . A . . 

10/H14 . . . . . . . . . . . . A . A . . 

RM1 

(GU564279) C . . . . C . . . . . . . A A . . 

12/C64 C G* . . . C . . . . T* . . A A . . 

13/CG . . . . . . . C* . C* . . A . A . . 

Nucleotide polymorphisms (capital letters) are numbered from the beginning of the AI reference 

sequence; novel polymorphisms are indicate with an asterisk; dots indicate identity to the BIII 

reference sequence.
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Table 4P: Nucleotide polymorphisms at the tpi locus in assemblage B isolates successfully sequenced in both directions and showing heterogeneous positions. 

The sequence without heterogeneous positions of one representative isolate from each genotype is also shown. 

 

  Isolate 

(GenBank 

Acc.No.)  

5
7
4
 

5
8
6
 

6
1
5
 

6
1
6
 

6
2
8
 

6
2
9
 

6
3
4
 

6
4
6
 

6
5
5
 

6
6
4
 

7
0
0
 

7
1
4
 

7
4
5
 

7
5
0
 

7
5
3
 

7
6
0
 

7
7
7
 

7
9
0
 

8
0
2
 

8
2
1
 

8
4
3
 

8
4
7
 

8
5
2
 

8
5
9
 

8
6
8
 

8
8
7
 

8
8
9
 

8
9
0
 

8
9
2
 

8
9
5
 

9
1
3
 

BIII 

(AF069561) t t g c c a c g t g g t g t t t t c c g t c g g t g g g g c a 

10/H35 . . . T* . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10/H43 . . . . . . . . . . . . . . . . . . T* . . . . . . . . . . . . 

13/C163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . 

Sweh060 
(HM140714) . . . . . . . . . A . . . . C . . . . . . . . . . . . . . . . 

HS114 

(KC632558) . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . 

BIV 
(AF069560) . . . . T . . . . . . . . . . . . . . . . T . . . . A . A . . 

VB906855 

(KF843920) . . . . . . . . . . . . . . . . . . . . . T . . . . A . A . . 

12/C18 . . . . T . . A* . . . . . . . . . . . . . T . . . . A . A . . 

11/25 . . . . T . . . . . . . . . . . . . . . . T . . . . A . A . T* 

Sweh171 
(HM140722) . . . . . . . . . . . . . . . . . . . . . . . A . . . . A . . 

RM1 

(GU564279) C . . . . . . . C . . . . . . . . . . . . . . . . . A . A . . 

12/C64 C G* . . . . . . C . . . . . . . . . T* . . . . . . . A . A . . 

13/CG . . . . . . . . . . . . . C* . . C* . . . . . . A . . . . A . . 

11/1 . . . . . . . . . . . . . . . . . . . . . Y . . . . R . R . . 

11/35 . . T . . . . . . . A . . . . Y . . . . . . . . . . . . . . . 

11/36 . . . . . . . . . . . . . . . . . . . . . Y . . Y . R . R . . 

11/69 . . . . . . . . . . . . R . . . . . . . . . . . . . . . . . . 

12/C1  . . . . Y . . . . . . . . . . . . . . . . T . . . . A . R . . 

12/C17 . . . . . . . . . . . . . . . . . . . . . . . . . . . R . Y . 

12/C21 . . . . Y . . . . . . . . . . . . . . . . Y . . . . R . R . . 

12/C27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . R Y . 
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12/C30 . . . . Y . . . . . . . . . . . . . . . . Y . . . . R . R . . 

12/C35 . . . . . . . . . . . . . . . . . . . . . Y . . . . A . A . . 

12/C77 . . . . Y . . . . . . . . . . . . . . . . Y . . . . R . R . . 

13/C124 . . . . . . . . . . . . . . . . . . . . . . . . . . R . A . . 

13/C125 . . . . . . . . . . . . . . . Y . . . . . . . . . . R . R Y . 

13/C140 . . . . Y . . . . . . . . . . . . . . . . Y . . . . R . R . . 

13/C148 . . . . . . . . . . . . . . . . . . . . . Y . . . . A . A . . 

13/C157 . . . . . R . . . . . . . . . . . . . . . . . R . . . . . . . 

13/CL . . . . . . . . . . . . . . . . . . . . . . . . . . R . A . . 

13/CM . . . . . . . . . . . . . . . . . . . R . . . . . . . . . Y . 

08/11 . . . . . . . . . . . . . . . . . . . . . Y . . . . . . . . . 

12/C85 . . . . T . . . . . . . . . . . . . . . Y T . . . . A . A . . 

12/C108 . . . . . . T . . . . . . . . . . S . . . . A A . . A . A . . 

13/CD . . . . . . . . . . . W . . . . . . . . . . . . . . . . . . . 

Nucleotide polymorphisms (capital letters) are numbered from the beginning of the AI reference sequence; novel polymorphisms are indicate with an asterisk; dots indicate 

identity to the BIII reference sequence. IUPAC nucleotide ambiguity codes: R=AG, Y=CT, W=AT, S=GC 
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APPENDIX 5: Univariable comparisons between assemblage A and B cases 

 

Table 5A: List of exposure variables that returned a p>0.2 in the comparison between cases infected with assemblage A (n=39) and B (n=69) that returned the 

enhanced surveillance study questionnaire. Odds ratios were calculated using assemblage B as the baseline category.  

 
   Assemblage n (%)**   

Variable No. valid 

(% missing)* 

Category A 

 

B 

 

OR (95% CI)*** p-value 

Travelling abroad (outside the UK) 105 (2.8) No 25 (65.8) 47 (70.1) Ref. 0.644 

Yes 13 (34.2) 20 (29.9) 1.22 (0.52-2.86) 

No. glasses of un-boiled tap water per 

day 

94 (13) 0 3 (9.1) 5 (8.2) Ref. 0.674 

1-2 13 (39.4) 17 (27.9) 1.27 (0.26-6.33) 

3-4 8 (24.2) 20 (32.8) 0.67 (0.13-3.47) 

5+ 9 (27.3) 19 (31.1) 0.79 (0.15-4.05) 

Drinking from the mains water 

supply  

103 (4.6) No  7 (18.9) 12 (18.2) Ref. 0.926 

Yes 30 (81.1) 54 (81.8) 0.95 (0.34-2.68) 

Drinking from a private water supply  103 (4.6) No  36 (97.3) 66 (100) Ref. 0.359 

Yes 1 (2.7) 0 (0) n/a**** 

Drinking bottled water 103 (4.6) No  17 (45.9) 26 (39.4) Ref. 0.518 

Yes 20 (54.1) 40 (60.6) 0.76 (0.34-1.72) 

Drinking un-boiled water from a lake, 

river or stream  

103 (4.6) No  37 (100) 64 (97) Ref. 0.535 

Yes 0 (0) 2 (3) n/a**** 

Swimming or paddling in a 

swimming pool 

108 No  23 (59) 48 (69.6) Ref. 0.265 

Yes 16 (41) 21 (30.4) 1.59 (0.70-3.60) 

Frequency of swimming or paddling 

in a swimming pool (no. times) 

96 (11.1) 0 23 (71.9) 48 (75) Ref. 0.371
CT

/0.548
C
 

1-2 6 (18.8) 9 (14.1) 1.39 (0.44-4.38) 

3-4 3 (9.4) 3 (4.7) 2.09 (0.39-11.15) 

5-6 0 (0) 2 (3.1) n/a**** 

7+ 0 (0) 2 (3.1) n/a**** 

Swimming in a lake, pond or river 108  No 35 (89.7) 64 (92.8) Ref. 0.720 

Yes  4 (10.3) 5 (7.2) 1.46 (0.37-5.80) 

Practising watersports in freshwater 108  No 38 (97.4) 68 (98.6) Ref. 1.000 
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Yes  1 (2.6) 1 (1.4) 1.79 (0.11-29.43) 

Practising watersports in the sea 108  No 35 (89.7) 66 (95.7) Ref. 0.250 

Yes  4 (10.3) 3 (4.3) 2.51 (0.53-11.87) 

Fishing 108  No 37 (94.9) 68 (98.6) Ref. 0.295 

Yes  2 (5.1) 1 (1.4) 3.68 (0.32-41.90) 

Walking in the countryside 108  No 29 (74.4) 44 (63.8) Ref. 0.259 

Yes  10 (25.6) 25 (36.2) 0.61 (0.25-1.45) 

Picnicking 108  No 37 (94.9) 63 (91.3) Ref. 0.708 

Yes  2 (5.1) 6 (8.7) 0.57 (0.11-2.96) 

Went camping 108 No 38 (97.4) 67 (97.1) Ref. 1.000 

Yes  1 (2.6) 2 (2.9) 0.88 (0.08-10.05) 

Keeping a pet 102 (5.5) No 22 (61.1) 32 (48.5) Ref. 0.300 

Yes 14 (38.9) 34 (51.5) 0.60 (0.26-1.37) 

Keeping dogs 102 (5.5) No 27 (75) 49 (74.2) Ref. 0.933 

Yes  9 (25) 17 (25.8) 0.96 (0.38-2.45) 

Keeping cats 102 (5.5) No 30 (83.3) 50 (75.8) Ref. 0.374 

Yes  6 (16.7) 16 (24.2) 0.62 (0.22-1.77) 

Keeping rabbits 102 (5.5) No 35 (97.2) 61 (92.4) Ref. 0.420 

Yes  1 (2.8) 5 (7.6) 0.35 (0.04-3.10) 

Keeping birds 102 (5.5) No 34 (94.4) 60 (90.9) Ref. 0.709 

Yes  2 (5.6) 6 (9.1) 0.59 (0.11-3.08) 

Keeping horses 102 (5.5) No 36 (100) 65 (98.5) Ref. 1.000 

Yes  0 (0) 1 (1.5) n/a**** 

No. of different pet species owned 102 (5.5) 0 22 (61.1) 32 (48.5) Ref. 0.337
CT

/0.135
C
 

1 10 (27.8) 23 (34.8) 0.63 (0.25-1.59) 

2 4 (11.1) 7 (10.6) 0.83 (0.22-3.18) 

3+ 0 (0) 4 (6.1) n/a**** 

Visited a premise with animals 92 (14.8) No 20 (62.5) 45 (75) Ref. 0.210 

Yes  12 (37.5) 15 (25) 1.80 (0.71-4.53) 

Visited a farm, stable or horse riding 

schools 

92 (14.8) No 29 (90.6) 54 (90) Ref. 1.000 

Yes  3 (9.4) 6 (10) 0.93 (0.22-3.40) 

Visited a wildlife park or zoo 92 (14.8) No 31 (96.9) 59 (98.3) Ref. 1.000 

Yes  1 (3.1) 1 (1.7) 1.90 (0.11-31.48) 

Touching cattle while on the premise 91 (15.7) No 29 (90.6) 55 (93.2) Ref. 0.657 
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Yes  3 (9.4) 4 (6.8) 1.42 (0.30-6.79) 

Touching pigs while on the premise 91 (15.7) No 32 (100) 58 (98.3) Ref. 1.000 

Yes  0 (0) 1 (1.7) n/a**** 

Touching sheep while on the premise 91 (15.7) No 31 (96.9) 56 (94.9) Ref. 1.000 

Yes  1 (3.1) 3 (5.1) 0.60 (0.06-6.04) 

Touching horses while on the 

premise 

91 (15.7) No 31 (96.9) 53 (89.8) Ref. 0.414 

Yes  1 (3.1) 6 (10.2) 0.28 (0.03-2.48) 

Touching goats while on the premise 91 (15.7) No 32 (100) 58 (98.3) Ref. 1.000 

Yes  0 (0) 1 (1.7) n/a**** 

Touching chickens while on the 

premise 

91 (15.7) No 31 (96.9) 58 (98.3) Ref. 1.000 

Yes  1 (3.1) 1 (1.7) 1.87 (0.11-30.95) 

Touching deers while on the premise 91 (15.7) No 32 (100) 58 (98.3) Ref. 1.000 

Yes  0 (0) 1 (1.7) n/a**** 

Eating any fruit  97 (10.2) No 4 (11.8) 3 (4.8) Ref. 0.236 

Yes  30 (88.2) 60 (95.2) 0.37 (0.08-1.78) 

Eating any salad items 96 (11.1) No 5 (14.7) 12 (19.4) Ref. 0.568 

Yes  29 (85.3) 50 (80.6) 1.39 (0.45-4.35) 

No. of adults (≥16y) in the house 

 

104 (3.7) 1 12 (32.4) 14 (20.9) Ref. 0.493
CT

/0.603
C
 

2 18 (48.6) 40 (59.7) 0.52 (0.20-1.36) 

3 3 (8.1) 8 (11.9) 0.44 (0.09-2.03) 

4+ 4 (10.8) 5 (7.5) 0.93 (0.20-4.28) 

Changing nappies 98 (9.2) No children in the house or children not in 

nappies 

30 (85.7) 50 (79.4) Ref. 0.522 

Child in nappies but not changing nappies 3 (8.6) 5 (7.9) 1.00 (0.22-4.49) 

Child in nappies and changing nappies 2 (5.7) 8 (12.7) 0.42 (0.08-2.09) 

Any other person with diarrhoea in 

the house 

99 (8.3) No 32 (91.4) 56 (87.5) Ref. 0.742 

Yes 3 (8.6) 8 (12.5) 0.66 (0.16-2.65) 

Any contact with a person with 

diarrhoea outside the house 

92 (14.8) No 29 (85.3) 53 (91.4) Ref. 0.490 

Yes 5 (14.7) 5 (8.6) 1.83 (0.49-6.84) 

*percentage refers to the proportion of participants with missing information for the variable; **percentages refer to the proportion among the cases that answered the 

question; ***Odds ratio with 95% confidence interval; **** Odds ratio not calculated because no variation present in the data; 
C
Logistic regression on the continuous 

variable; 
CT 

Logistic regression on the categorized variable. 
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Table 5B: List of variables that returned a p-value>0.2 in univariable analysis of Giardia assemblage A cases (n=28), assemblage B cases (n=57) and healthy 

controls (n=226) that returned the case-control study questionnaire.  

 
Variable Data subset No. valid 

(% missing)* 

Category Cases 

n (%)** 

Controls 

n (%)** 

OR (95% CI)*** p-value 

SOCIODEMOGRAPHICS AND AREA AND SEASON VARIABLES 

Gender Assemblage 

A 

254 Female 11 (39.3) 110 (48.7) Ref. 0.348 

Male 17 (60.7) 116 (51.3) 1.47 (0.66-3.27) 

Assemblage 

B 

283 Female 25 (43.9) 110 (48.7) Ref. 0.516 

Male 32 (56.1) 116 (51.3) 1.21 (0.68-2.18) 

Ethnicity  Assemblage 

A 

 

251 (1.2) Non-white (e.g. Asian, Chinese, Black African 

or Caribbean or other) 

2 (7.1) 21 (9.4) Ref. 1.000 

White 26 (92.9) 202 (90.6) 1.35 (0.30-6.10) 

Assemblage 

B 

279 (1.4) Non-white (e.g. Asian, Chinese, Black African 

or Caribbean or other) 

6 (10.7) 21 (9.4) Ref. 0.769 

White 50 (89.3) 202 (90.6) 0.87 (0.33-2.26) 

Level of 

neighbourhood 

deprivation (IMD 

rank) 

Assemblage 

A 

 

253 (0.4) Very low (24,363-32,482) 9 (32.1) 58 (25.8) Ref. 0.598
CT

/0.212
C
 

Low (16,242-24,362) 9 (32.1) 58 (25.8) 1.00 (0.37-2.70) 

Moderate (8,121-16,241) 3 (10.7) 41 (18.2) 0.47 (0.12-1.85) 

Very high (1-8,120) 7 (25) 68 (30.2) 0.66 (0.23-1.89) 

Assemblage 

B 

282 (1) Very low (24,363-32,482) 12 (21.1) 58 (25.8) Ref. 0.551
CT

/0.794
C
 

Low (16,242-24,362) 17 (29.8) 58 (25.8) 1.42 (0.52-3.23) 

Moderate (8,121-16,241) 14 (24.6) 41 (18.2) 1.65 (0.69-3.93) 

Very high (1-8,120) 14 (24.6) 68 (30.2) 0.99 (0.43-2.32) 

Reported area of 

living 

Assemblage 

A 

 

249 (2) City 5 (19.2) 42 (18.8) Ref. 0.998 

Town 12 (46.2) 104 (46.6) 0.97 (0.32-2.92) 

Village 9 (34.6) 77 (34.5) 0.98 (0.31-3.12) 

Assemblage 

B 

279 (1.4) City 11 (19.6) 42 (18.8) Ref. 0.363 

Town 31 (55.4) 104 (46.6) 1.14 (0.52-2.47) 

Village 14 (25) 77 (34.5) 0.69 (0.29-1.66) 

Season Assemblage 

A 

 

254 Winter (December-February) 4 (14.3) 48 (21.2) Ref. 0.593 

Spring (March-May) 10 (35.7) 70 (31) 1.71 (0.51-5.78) 

Summer (June-August) 8 (28.6) 46 (20.4) 2.08 (0.59-7.41) 

Autumn (September-November) 6 (21.4) 62 (27.4) 1.16 (0.31-4.35) 
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Assemblage 

B  

 

 

283  Winter (December-February) 15 (26.3) 48 (21.2) Ref. 0.790 

Spring (March-May) 18 (31.6) 70 (31) 0.82 (0.38-1.79) 

Summer (June-August) 9 (15.8) 46 (20.4) 0.63 (0.25-1.57) 

Autumn (September-November) 15 (26.3) 62 (27.4) 0.77 (0.34-1.74) 

HEALTH DETAILS 

Suffering from  

irritable bowel 

syndrome (IBS) 

Assemblage 

A 
238 (6.3) No 23 (92) 199 (93.4) Ref. 0.678 

Yes 2 (8) 14 (6.6) 0.81 (0.17-3.79) 

Assemblage 

B 
264 (6.7) No 47 (92.2) 199 (93.4) Ref. 0.758 

Yes 4 (7.8) 14 (6.6) 1.21 (0.38-3.84) 

OCCUPATIONAL DETAILS 

Having a 

potentially at-risk 

occupation 

Assemblage 

A 

253 (0.4) Not currently working 21 (75) 129 (57.3) Ref. 0.451 

Working but not with any at-risk occupation 6 (21.4) 83 (36.9) 0.44 (0.17-1.15) 

Working with animals 0 (0) 1 (0.4) n/a*** 

Working with manure/slurry 0 (0) 1 (0.4) n/a*** 

Working with human faeces 0 (0) 7 (3.1) n/a*** 

Contact with sewage 0 (0) 1 (0.4) n/a*** 

Contact with freshwaters 0 (0) 1 (0.4) n/a*** 

More than one at-risk occupation 1 (3.6) 2 (0.9) 3.07 (0.27-35.39) 

Assemblage 

B 

281 (0.7) Not currently working 27 (48.2) 129 (57.3) Ref. 0.652 

Working but not with any at-risk occupation 25 (44.6) 83 (36.9) 1.44 (0.78-2.65) 

Working with animals 0 (0) 1 (0.4) n/a*** 

Working with manure/slurry 0 (0) 1 (0.4) n/a*** 

Working with human faeces 3 (5.4) 7 (3.1) 2.05 (0.50-8.43)  

Contact with sewage 0 (0) 1 (0.4) n/a*** 

Contact with freshwaters 1 (1.8) 1 (0.4) 4.78 (0.29-78.78) 

More than one at-risk occupation 0 (0) 2 (0.9) n/a*** 

ANIMAL CONTACT 

Visiting or 

working at a farm 

Assemblage 

A  

253 (0.4) No 25 (92.6) 192 (85) Ref. 0.389 

Yes 2 (7.4) 34 (15) 0.45 (0.10-2.00) 

Assemblage 

B 
280 (1.1) No 49 (90.7) 192 (85) Ref. 0.270 

Yes 5 (9.3) 34 (15) 0.58 (0.21-1.55) 

Touching animals 

while visiting or 

working at a farm 

Assemblage 

B  

279 (1.4) Neither visiting nor working at a farm 49 (90.7) 192 (85.3) Ref. 0.550 

Not touching animals while at a farm 2 (3.7) 12 (5.3) 0.65 (0.14-3.01) 

Touching animals while at a farm 3 (5.6) 21 (9.3) 0.56 (0.16-1.95) 
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Touching animals 

at a wildlife park 

or zoo  

Assemblage 

B 
 

280 (1.1) Not visiting a wildlife park or zoo 50 (90.9) 217 (96.4) Ref. 0.233 

Visiting but not touching any animal 3 (5.5) 6 (2.7) 2.17 (0.52-8.97) 

Visiting and touching an animal 2 (3.6) 2 (0.9) 4.34 (0.60-31.56) 

RECREATIONAL ACTIVITIES 

Frequency of 

swimming or 

paddling in a 

swimming pool 

(no. times) 

Assemblage 

A 

 

242 (4.7) 0 15 (55.6) 177 (81.2) Ref. 0.340
CT

/0.344
C
 

1-2 3 (12.5) 17 (7.8) 2.08 (0.55-7.92) 

3-4 3 (12.5) 12 (5.5) 2.95 (0.75-11.62)  

5-6 2 (8.3) 6 (2.8) 3.93 (0.73-21.21) 

7+ 1 (4.2) 6 (2.8) 1.97 (0.22-17.43) 

Assemblage 

B 

 

268 (5.3) 0 34 (68) 177 (81.2) Ref.  0.256
CT

/0.669
C
 

1-2 9 (18) 17 (7.8) 2.76 (1.13-6.69) 

3-4 4 (8) 12 (5.5) 1.73 (0.53-5.70) 

5-6 1 (2) 6 (2.8) 0.87 (0.10-7.44) 

7+ 2 (4) 6 (2.8) 1.73 (0.34-8.96) 

Frequency of 

using a Jacuzzi or 

a hot tub (no. 

times) 

Assemblage 

B 

253 (10.6) 0 37 (90.2) 203 (95.8) Ref. 0.387
CT

/0.258
C
 

1-2 3 (7.3) 6 (2.8) 2.74 (0.66-11.46) 

3+ 1 (2.4) 3 (1.4) 1.83 (0.18-18.06) 

Immersing the 

head underwater 

while using a 

Jacuzzi or hot tub  

Assemblage 

B 

250 (11.7) Not using a Jacuzzi or a hot tub 37 (94.9) 203 (96.2) Ref. 0.562 

Using a Jacuzzi or a hot tub without 

immersing the head 

2 (5.1) 6 (2.8) 1.83 (0.35-9.41) 

Using Jacuzzi or a hot tub immersing the head 0 (0) 2 (0.9) n/a*** 

Swimming in a 

lake, pond or river 

 

 

Assemblage 

A   

238 (6.3) No 23 (95.8) 209 (97.7) Ref. 0.475 

Yes 1 (4.2) 5 (2.3) 1.82 (0.20-16.23) 

Assemblage 

B 

266 (6) No 52 (100) 209 (97.7) Ref. 0.587 

Yes 0 (0) 5 (2.3) n/a*** 

Swimming in the 

sea 

 

Assemblage 

A  

243 (4.3) No 22 (91.7) 206 (94.1) Ref. 0.649 

Yes 2 (8.3) 13 (5.9) 1.44 (0.30-6.80) 

Assemblage 

B  

272 (3.9) No 50 (94.3) 206 (94.1) Ref. 1.000 

Yes 3 (5.7) 13 (5.9) 0.95 (0.26-3.46) 

Practising 

watersports in 

freshwater 

Assemblage 

A 

244 (3.9) No 24 (100) 219 (99.5) Ref. 1.000 

Yes 0 (0) 1 (0.5) n/a*** 

Assemblage 

B 

273 (3.5) No 53 (100) 219 (99.5) Ref. 1.000 

Yes 0 (0) 1 (0.5) n/a*** 



 

242 

 

Practising 

watersports in the 

sea 

Assemblage 

A 

244 (3.9) No 24 (100) 219 (99.5) Ref. 1.000 

Yes 0 (0) 1 (0.5) n/a*** 

Assemblage 

B 

273 (3.5) No 53 (100) 219 (99.5) Ref. 1.000 

Yes 0 (0) 1 (0.5) n/a*** 

Going fishing Assemblage 

A 

235 (7.5) No 26 (100) 206 (98.6) Ref. 1.000 

Yes 0 (0) 3 (1.4) n/a*** 

Assemblage 

B 

263 (7.1) No 54 (100) 206 (98.6) Ref. 1.000 

Yes 0 (0) 3 (1.4) n/a*** 

Going hunting  Exposure not reported in either cases or controls 

Going picnicking 

 

Assemblage 

A  

235 (7.5) No 25 (96.2) 188 (90) Ref. 0.482 

Yes 1 (3.8) 21 (10) 0.36 (0.05-2.78) 

Assemblage 

B 

262 (7.4) No 49 (92.5) 188 (90) Ref. 0.580 

Yes 4 (7.5) 21 (10) 0.73 (0.24-2.23) 

Going camping Assemblage 

A 

235 (7.5) No 26 (100) 206 (98.6) Ref. 1.000 

Yes 0 (0) 3 (1.4) n/a*** 

Assemblage 

B 

262 (7.4) No 52 (98.1) 206 (98.6) Ref. 1.000 

Yes 1 (1.9) 3 (1.4) 1.32 (0.13-12.96) 

Going 

caravanning 

Assemblage 

A 

235 (7.5) No 24 (92.3) 199 (94.3) Ref. 0.656 

Yes 2 (7.7) 12 (5.7) 1.38 (0.29-6.55) 

Assemblage 

B 

264 (6.7) No 52 (98.1) 199 (94.3) Ref. 0.476 

Yes 1 (1.9) 12 (5.7) 0.32 (0.04-2.51) 

WATER CONSUMPTION 

Drinking un-

boiled water 

straight from the 

tap 

Assemblage 

A 

251 (1.2) No 1 (3.8) 23 (10.2) Ref. 0.485 

Yes 25 (96.2) 202 (89.8) 2.85 (0.37-22) 

Assemblage 

B 

281 (0.7) No 4 (7.1) 23 (10.2) Ref. 0.484 

Yes 52 (92.9) 202 (89.8) 1.48 (0.49-4.46) 

No. glasses of un-

boiled tap water 

per day 

Assemblage 

A 

 

241 (5.1) 0 1 (4.2) 22 (10.1) Ref.  0.532
CT

/0.195
C
 

1-2 12 (50) 98 (45.2) 2.69 (0.33-21.82) 

3-4 5 (20.8) 60 (27.6) 1.83 (0.20-16.58) 

5+ 6 (25) 37 (17.1) 3.57 (0.40-31.62) 

Assemblage 

B 

267 (5.7) 0 4 (8 ) 22 (10.1) Ref. 0.500
CT

/0.738
C
 

1-2 21 (42) 98 (45.2) 1.18 (0.37-3.78) 

3-4 19 (38) 60 (27.6) 1.74 (0.53-5.69) 

5+ 6 (12) 37 (17.1) 0.89 (0.23-3.51) 
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Drinking un-

boiled water from 

a lake, river or 

stream 

Assemblage 

A 

226 (11) No 24 (96) 199 (99) Ref. 0.298 

Yes 1 (4) 2 (1) 4.15 (0.36-47.45) 

Assemblage 

B 

252 (11) No 50 (98) 199 (99) Ref. 0.494 

Yes 1 (2) 2 (1) 1.99 (0.18-22.39) 

Water from the 

tap reported 

having an unusual 

smell 

Assemblage 

A 

246 (3.1) No 26 (100) 215 (97.7) Ref. 1.000 

Yes 0 (0) 5 (2.3) n/a*** 

Assemblage 

B 

275 (2.8) No 53 (96.4) 215 (97.7) Ref. 0.630 

Yes 2 (3.6) 5 (2.3) 1.62 (0.31-8.59) 

FOOD CONSUMPTION 

FOOD CONSUMPTION HABITS 

No. times per 

week eating 

salads or raw 

vegetables 

Assemblage 

A 

 

244 (3.9) 0 7 (26.9) 34 (15.6) Ref. 0.392
CT

/0.106
C
 

1-2 9 (34.6) 71 (32.6) 0.62 (0.21-1.79) 

3-4 6 (23.1) 54 (24.8) 0.54 (0.17-1.74) 

5+ 4 (15.4) 59 (27.1) 0.33 (0.09-1.21) 

Assemblage 

B 

274 (3.2) 0 9 (16.1) 34 (15.6) Ref. 0.704
CT

/0.192
C
 

1-2 20 (35.7) 71 (32.6) 1.06 (0.44-2.58) 

3-4 16 (28.6) 54 (24.8) 1.12 (0.44-2.82) 

5+ 11 (19.6) 59 (27.1) 0.70 (0.26-1.87) 

No. times per 

week eating 

cooked vegetables 

Assemblage 

A 

 

246 (3.1) 0 0 (0) 6 (2.7) Ref. 0.392
CT

/0.095
C
 

1-2 5 (18.5) 26 (11.9) 1.12 (0.21-1.79) 

3-4 10 (37) 63 (28.8) 1.54 (0.17-1.90) 

5+ 12 (44.4) 124 (56.6) 0.33 (0.09-1.21) 

 Assemblage 

B  

274 (3.2) 0 2 (3.6) 6 (2.7) Ref. 0.669
CT

/0.271
C
 

1-2 4 (7.3) 26 (11.9) 0.46 (0.07-3.13) 

3-4 19 (34.5) 63 (28.8) 0.90 (0.17-4.86) 

5+ 30 (54.5) 124 (56.6) 0.73 (0.14-3.78) 

Peeling raw fruit 

before eating  

Assemblage 

A 

 

248 (2.4) No 18 (69.2) 173 (77.9) Ref. 0.319 

Yes 8 (30.8) 49 (22.1) 1.57 (0.64-3.83) 

Assemblage 

B 

277 (2.1) No 43 (78.2) 173 (77.9) Ref.  

 

0.968 
Yes 12 (21.8) 49 (22.1) 0.98 (0.48-2.01) 

Washing raw fruit 

before eating 

Assemblage 

A 

246 (3.1) No 8 (33.3) 70 (31.5) Ref. 0.857 

Yes 16 (66.7) 152 (68.5) 0.92 (0.38-2.25) 
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Assemblage 

B 

276 (2.5) No 22 (40.7) 70 (31.5) Ref. 0.198 

Yes 32 (59.3) 152 (68.5) 0.67 (0.36-1.24) 

FOOD CONSUMPTION DURING THE EXPOSURE WINDOW 

Eating cooked 

vegetables 

Assemblage 

A 

 

248 (2.4) No 1 (3.7) 14 (6.3) Ref. 1.000 

Yes 26 (96.3) 207 (93.7) 1.76 (0.22-13.93) 

Assemblage 

B 

276 (2.5) No 4 (7.3) 14 (6.3) Ref. 0.764 

Yes 51 (92.7) 207 (93.7) 0.86 (0.27-2.73) 

Provenience of 

cooked vegetables 

 

 

 

 

 

 

Assemblage 

A 

 

242 (4.7) Did not eat cooked vegetables 1 (3.7) 14 (6.5) Ref. 0.877 

Market 2 (7.4) 11 (5.1) 2.54 (0.20-31.86) 

Greengrocers 1 (3.7) 8 (3.7) 1.75 (0.10-31.96) 

Supermarket 20 (74.1) 142 (66) 1.97 (0.25-15.82) 

Homegrown 0 (0) 3 (1.4) n/a*** 

Other place (e.g. restaurant etc.) 0 (0) 2 (0.9) n/a*** 

Multiple proveniences (at least two different) 3 (11.1) 35 (16.3) 1.20 (0.11-12.54) 

Assemblage 

B 

264 (6.7) Did not eat cooked vegetables 4 (8.2) 14 (6.5) Ref. 0.117 

Market 3 (6.1) 11 (5.1) 0.95 (0.18-5.19) 

Greengrocers 2 (4.1) 8 (3.7) 0.87 (0.13-5.90) 

Supermarket 32 (65.3) 142 (66) 0.79 (0.24-2.56) 

Homegrown 0 (0) 3 (1.4) n/a*** 

Other place (e.g. restaurant etc.) 4 (8.2) 2 (0.9) 7.00 (092-53.23) 

Multiple proveniences (at least two different) 4 (8.2) 35 (16.3) 0.40 (0.09-1.83) 

Drinking fruit 

juice 

Assemblage 

A 

246 (3.1) No 8 (29.6) 58 (26.5) Ref. 0.728 

Yes 19 (70.4) 161 (73.5) 0.86 (0.35-2.06) 

Assemblage 

B 

274 (3.2) No 14 (25.5) 58 (26.5) Ref. 0.877 

Yes 41 (74.5) 161 (73.5) 1.05 (0.54-2.08) 

Eating pre-packed 

sandwiches 

Assemblage 

A 

 

235 (7.5) No 18 (72) 144 (68.6) Ref. 0.726 

Yes 7 (28) 66 (31.4) 0.85 (0.34-2.13) 

Assemblage 

B 

266 (6) No 36 (64.3) 144 (68.6) Ref. 0.542 

Yes 20 (35.7) 66 (31.4) 1.21 (0.65-2.25) 

Provenience of 

pre-packed 

Assemblage 

A 

233 (8.3) Did not eat pre-packed sandwiches 18 (72) 144 (69.2) Ref. 0.816 

Greengrocers 0 (0) 1 (0.5) n/a*** 
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sandwiches  Supermarket 7 (28) 60 (28.8) 0.93 (0.37-2.35) 

Other place (e.g. restaurant etc.) 0 (0) 3 (1.4) n/a*** 

Assemblage 

B 

262 (7.4) Did not eat pre-packed sandwiches 36 (66.7) 144 (69.2) Ref. 0.686 

Greengrocers 0 (0) 1 (0.5) n/a*** 

Supermarket 16 (29.6) 60 (28.8) 1.07 (0.55-2.07) 

Other place (e.g. restaurant etc.) 2 (3.7) 3 (1.4) 2.67 (0.43-16.56) 

Provenience of 

beef 

Assemblage 

A 

 

245 (3.5) Did not eat beef 3 (12) 56 (25.5) Ref. 0.542 

Market stall 0 (0) 4 (1.8) n/a*** 

Butcher 3 (12) 28 (12.7) 2.00 (0.38-10.55) 

Supermarket 15 (60) 104 (47.3) 2.69 (0.75-9.70) 

Other place (e.g. restaurant etc.) 1 (4) 4 (1.8) 4.67 (0.39-55.73) 

Multiple proveniences (at least two different) 3 (12) 24 (10.9) 2.33 (0.44-12.40) 

Assemblage 

B 

272 (3.9) Did not eat beef 9 (17.3) 56 (25.5) Ref. 0.215 

Market stall 0 (0) 4 (1.8) n/a*** 

Butcher 7 (13.5) 28 (12.7) 1.56 (0.52-4.61) 

Supermarket 27 (51.9) 104 (47.3) 1.61 (0.71-3.67) 

Other place (e.g. restaurant etc.) 4 (7.7) 4 (1.8) 6.22 (1.31-29.44) 

Multiple proveniences (at least two different) 5 (9.6) 24 (10.9) 1.30 (0.39-4.27) 

Eating lamb Assemblage 

A 

226 (11) No 11 (50) 100 (49) Ref. 1.000 

Yes 11 (50) 104 (51) 0.96 (0.40-2.32) 

Assemblage 

B 

255 (9.9) No 23 (45.1) 100 (49) Ref. 0.616 

Yes 28 (54.9) 104 (51) 1.17 (0.63-2.17) 

Provenience of 

lamb 

Assemblage 

A 

 

 

225 (11.4) Did not eat lamb 11 (49) 100 (49) Ref. 0.910 

Market stall 0 (0) 4 (2) n/a*** 

Butcher 3 (14.3) 22 (10.8) 1.24 (0.32-4.82) 

Supermarket 6 (28.6) 67 (32.8) 0.81 (0.29-2.31) 

Other place (e.g. restaurant etc.) 0 (0) 2 (1) n/a*** 

Multiple proveniences (at least two different) 1 (4.8) 9 (4.4) 1.01 (0.12-8.74) 

Assemblage 

B 

253 (10.6) Did not eat lamb 23 (46.9) 100 (49) Ref. 0.225 

Market stall 0 (0) 4 (2) n/a*** 

Butcher 5 (10.2) 22 (10.8) 0.99 (0.34-2.88) 

Supermarket 14 (28.6) 67 (32.8) 0.91 (0.44-1.89) 

Other place (e.g. restaurant etc.) 3 (6.1) 2 (1) 6.52 (1.03-41.3) 

Multiple proveniences (at least two different) 4 (8.2) 9 (4.4) 1.93 (0.55-6.83) 
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Eating pork Assemblage 

A 

 

231 (9.1) No 9 (39.1) 84 (40.4) Ref. 1.000 

Yes 14 (60.9) 124 (59.6) 1.05 (0.44-2.55) 

Assemblage 

B 

259 (8.5) No 16 (31.4) 84 (40.4) Ref. 0.236 

Yes 35 (68.6) 124 (59.6) 1.48 (0.77-2.85) 

Provenience of 

pork 

 

 

 

 

 

 

 

 

 

 

Assemblage 

A 

 

231 (9.1) Did not eat pork 9 (39.1) 84 (40.4) Ref. 0.901 

Market stall 0 (0) 4 (1.9) n/a*** 

Butcher 2 (8.7) 15 (7.2) 1.24 (0.24-6.34) 

Supermarket 11 (47.8) 92 (44.2) 1.12 (0.44-2.83) 

Other place (e.g. restaurant etc.) 0 (0) 3 (1.4) n/a*** 

Multiple proveniences (at least two different) 1 (4.3) 10 (4.8) 0.93 (0.11-8.15) 

Assemblage 

B 

256 (9.5) Did not eat pork 16 (33.3) 84 (40.4) Ref. 0.842 

Market stall 1 (2.1) 4 (1.9) 1.31 (0.14-12.52) 

Butcher 3 (6.3) 15 (7.2) 1.05 (0.27-4.05) 

Supermarket 23 (47.9) 92 (44.2) 1.31 (0.65-2.65) 

Other place (e.g. restaurant etc.) 2 (4.2) 3 (1.4) 3.50 (0.54-22.65) 

Multiple proveniences (at least two different) 3 (6.3) 10 (4.8) 1.57 (0.39-6.36) 

Eating chicken Assemblage 

A 

249 (2) No 2 (7.4) 18 (8.1) Ref. 1.000 

Yes 25 (92.6) 204 (91.9) 1.10 (024-5.04) 

Assemblage 

B 

274 (3.2) No 2 (3.8) 18 (8.1) Ref. 0.288 

Yes 50 (96.2) 204 (91.9) 2.21 (0.50-9.82) 

Eating fish Assemblage 

A 

 

240 (5.5) No 6 (23.1) 60 (28) Ref. 0.593 

Yes 20 (76.9) 154 (72) 1.30 (0.50-3.39) 

Assemblage 

B 

263 (7.1) No 17 (34.7) 60 (28) Ref. 0.356 

Yes 32 (65.3) 154 (72) 0.73 (0.38-1.42) 

Provenience of 

fish 

Assemblage 

A 

 

240 (5.5) Did not eat fish 6 (23.1) 60 (28) Ref. 0.412 

Market stall 1 (3.8) 6 (2.8) 1.67 (0.17-16.25) 

Fishmonger 2 (7.7) 14 (6.5) 1.43 (0.26-7.84) 

Supermarket 15 (57.7) 116 (54.2) 1.29 (0.48-3.50) 

Other place (e.g. restaurant etc.) 2 (7.7) 5 (2.3) 4.00 (0.63-25.24) 

Multiple proveniences (at least two different) 0 (0) 13 (6.1) n/a*** 

Assemblage 

B 

261 (7.8) Did not eat fish 17 (36.2) 60 (28) Ref. 0.516 

Market stall 1 (2.1) 6 (2.8) 0.59 (0.07-5.23) 
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Fishmonger 5 (10.6) 14 (6.5) 1.26 (0.40-3.40) 

Supermarket 21 (44.7) 116 (54.2) 0.64 (0.31-1.30) 

Other place (e.g. restaurant etc.) 2 (4.3) 5 (2.3) 1.41 (0.25-7.93) 

Multiple proveniences (at least two different) 1 (2.1) 13 (6.1) 0.27 (0.03-2.23) 

Eating at a pub or 

a restaurant 

Assemblage 

A 

 

251 (1.2) No 13 (46.4) 81 (36.3) Ref. 0.298 

Yes 15 (53.6) 142 (63.7) 0.66 (0.30-1.45) 

Assemblage 

B 

279 (1.4) No 23 (41.1) 81 (36.3) Ref. 0.511 

Yes 33 (58.9) 142 (63.7) 0.82 (0.45-1.49) 

No. times eating 

at a pub or a 

restaurant 

Assemblage 

A 

 

246 (3.1) 0 13 (50) 81 (36.8) Ref. 0.224
CT

/0.116
C
 

1-2 10 (38.5) 83 (37.7) 0.75 (031-1.81) 

3-4 1 (3.8) 36 (16.4) 0.17 (0.02-1.37) 

5+ 2 (7.7) 20 (9.1) 0.62 (0.13-2.99) 

Assemblage 

B 

272 (3.9) 0 23 (44.2) 81 (36.8) Ref. 0.353
CT

/0.313
C
 

1-2 21 (40.4) 83 (37.7) 0.89 (0.46-1.73) 

3-4 4 (7.7) 36 (16.4) 0.39 (0.13-1.21) 

5+ 4 (7.7) 20 (9.1) 0.70 (0.22-2.27)  

Eating at a 

canteen 

Assemblage 

A 

226 (11) No 20 (90.9) 182 (89.2) Ref. 1.000 

Yes 2 (9.1) 22 (10.8) 0.83 (0.18-3.78) 

Assemblage 

B 

255 (9.9) No 42 (82.4) 182 (89.2) Ref. 0.180 

Yes 9 (17.6) 22 (10.8) 1.77 (0.76-4.13) 

No. times eating 

at a canteen 

Assemblage 

A 

 

223 (12.2) 0 20 (95.2) 182 (90.1) Ref. 0.237/0.464
C
 

1-2 0 (0) 7 (3.5) n/a*** 

3-4 1 (4.8) 3 (1.5) 3.03 (0.30-30.5) 

5+ 0 (0) 10 (5) n/a*** 

Assemblage 

B 

253 (10.6) 0 42 (82.4) 182 (90.1) Ref. 0.486
CT

/0.583
C
 

1-2 4 (7.8) 7 (3.5) 2.48 (0.69-8.85) 

3-4 1 (2) 3 (1.5) 1.44 (0.15-14.23) 

5+ 4 (7.8) 10 (5) 1.73 (0.52-5.80) 

Eating at a 

takeaway or fast 

food 

Assemblage 

A 

 

240 (5.5) No 10 (38.5) 94 (43.9) Ref. 0.595 

Yes 16 (61.5) 120 (56.1) 1.25 (0.54-2.89) 

Assemblage 

B 

268 (5.3) No 19 (35.2) 94 (43.9) Ref. 0.245 

Yes 35 (64.8) 120 (56.1) 1.44 (0.78-2.68) 
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No. times eating 

at a takeaway or 

fast food 

Assemblage 

A 

 

231 (9.1) 0 10 (43.5) 94 (45.2) Ref. 0.381 

1-2 9 (39.1) 81 (38.9) 1.04 (0.40-2.70) 

3-4 4 (17.4) 22 (10.6) 1.71 (0.49-5.96) 

5+ 0 (0) 11 (5.3) n/a*** 

Assemblage 

B 

255 (9.9) 0 19 (40.4) 94 (45.2) Ref. 0.491
CT

/0.626
C
 

1-2 17 (36.2) 81 (38.9) 1.04 (0.51-2.13) 

3-4 9 (19.1) 22 (10.6) 2.02 (0.81-5.07) 

5+ 2 (4.3) 11 (5.3) 0.90 (0.18-4.39) 

Eating at a 

barbecue 

Assemblage 

A 

226 (11) No 21 (95.5) 180 (88.2) Ref. 0.481 

Yes 1 (4.5) 24 (11.8) 0.36 (0.05-2.78) 

Assemblage 

B 

255 (9.9) No 45 (88.2) 180 (88.2) Ref. 1.000 

Yes 6 (11.8) 24 (11.8) 1.00 (0.39-2.59) 

No. times eating 

at a barbecue 

Assemblage 

A 

 

225 (11.4) 0 21 (95.5) 180 (88.7) Ref. 0.439 

1-2 1 (5.3) 18 (8.9) 0.48 (0.06-3.75) 

3-4 0 (0) 5 (2.5) n/a*** 

Assemblage 

B 

253 (10.6) 0 45 (90) 180 (88.7) Ref. 0.322
CT

/0.568
C
 

1-2 5 (10) 18 (8.9) 1.11 (0.39-3.15) 

3-4 0 (0) 5 (2.5) n/a*** 

GENERAL HOUSEHOLD DETAILS 

No. of adults 

(≥16y) in the 

house 

 

 

 

 

 

Assemblage 

A 

 

254 1 6 (21.4) 52 (23) Ref. 0.581
CT

/0.501
C
 

2 19 (67.9) 128 (56.6) 1.29 (0.49-3.40) 

3 2 (7.1) 32 (14.2) 0.54 (0.10-2.85) 

4+ 1 (3.6) 14 (6.2) 0.62 (0.07-5.57) 

Assemblage 

B 

283 1 6 (10.5) 52 (23) Ref. 0.100
CT

/0.793
C
 

2 41 (71.9) 128 (56.6) 2.78 (1.11-6.93) 

3 6 (10.5 32 (14.2) 1.62 (0.48-5.47) 

4+ 4 (7) 14 (6.2) 2.47 (0.61-10.00) 

Any contact with 

a person with 

diarrhoea outside 

the house 

Assemblage 

A 

231 (9.1) No 22 (91.7) 187 (90.3) Ref. 1.000 

Yes 2 (8.3) 20 (9.7) 0.85 (0.19-3.88) 

Assemblage 

B 

260 (8.1) No 45 (84.9) 187 (90.3) Ref. 0.255 

Yes 8 (15.1) 20 (9.7) 1.66 (0.69-4.02) 

*percentages refer to the proportion of participants with missing information for the variable in the specific dataset; **percentages refer to the proportion among cases and 

controls that answered the question; ***Odds ratio with 95% confidence interval; *** Odds ratio not calculated because no variation present in the data; 
CT 

logistic regression 

on the categorized variable; 
C
 logistic regression on the continuous variable 
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