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ABSTRACT 

Malaria is a major public heath disease with over 3.4 billion people at risk globally. High 

coverage of pyrethroid-treated long-lasting insecticide treated nets (LLINs) and indoor 

residual spraying (IRS) have played a key role in reducing transmission over the last decade. 

Unfortunately, resistance to pyrethroids is now widespread and increasingly being reported to 

the few other WHO-approved alternative insecticides. The problem might be critical in Côte 

d’Ivoire, especially in the southern rice-growing area of Tiassalé where mosquitoes have 

been found to be resistant to pyrethroids and DDT. In this thesis, I aimed to investigate the 

profile of resistance to WHO-approved insecticide classes in Anopheles gambiae from Côte 

d’Ivoire, with a particular emphasis on Tiassalé, where I conducted in-depth investigation 

resistance characterisation and investigation of the genetic basis of extreme and multiple 

insecticide resistance. 
 

I first demonstrated the presence of resistance to all four WHO-approved classes of 

insecticide in wild population of in An. coluzzii from Tiassalé. This was the first 

demonstration of such unprecedented multiple insecticide resistance, representing a real 

concern for implementation of control measures based on current insecticide classes. Target 

site mutations in the voltage-gated sodium channel were significantly associated with DDT, 

but not pyrethroids, yet a meta-analysis of published and unpublished data spanning twenty 

years of testing in Côte d’Ivoire suggested that significant increases in DDT and pyrethroid 

resistance have occurred, more strongly in the South, and are likely linked to increase in the 

kdr 1014F mutation in A. coluzzii. Nevertheless contemporary data suggest that 

overexpression of metabolic genes might be more important in pyrethroid resistance; a 

speculation supported by significant PBO-enhancement of Tiassalé A. coluzzii mortality to 

pyrethroids and other insecticides tested, suggested primary importance of P450s 

detoxification enzymes. In addition, using dose-response assays, females were found to 

exhibit an extreme level of bendiocarb resistance, with some surviving even at 8h exposure. 

Whole genome microarrays were used to investigate the genes potentially responsible for this 

extreme resistance in a stringent, multiply-replicated design, detecting overexpression of 

several CYP6 P450s and the ACE-1 target site genes as resistance linked. The latter 

association arises via duplication of ACE-1 119S resistant alleles, providing the first direct 

evidence in Anopheles for a link between target site duplication and insecticide resistance. 

Synthesis of the results from several experiments suggests that the ACE-1 G119S substitution 

is the primary determinant of variation in survival at 60 minutes (WHO standard) exposure to 

bendiocarb, whereas overexpression of ACE-1 is the primary determinant of survival at an 

exposure duration corresponding to the population LT50. However, at an LT80 level elevated 

expression of both ACE-1 (resistant alleles) and CYP6 P450s enable survival. Interestingly, 

this work also highlighted how specific mosquito genes such as CYP6M2 and CYP6P3 were 

able to contribute to resistance across insecticide classes with contrasting modes of action, 

providing a key novel insight into how metabolic mechanisms can lead to cross-resistance in 

mosquitoes. Unfortunately, results from wider testing and meta-analysis suggest that multiple 

resistance may be present across Southern Côte d’Ivoire. 
 

The results presented in this thesis have shed new light on the extent of multiple and cross-

resistance in Anopheles and the underlying mechanisms and should help national malaria 

control programmes, health departments and decision-making stakeholders to better plan the 

resistance surveillance programmes in order to combat multiple insecticide resistant vectors 

in African countries. 
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1. Introduction 

1.1. Malaria Vector Control 

Malaria is a disease caused by a parasitic protozoon named Plasmodium transmitted by the 

female mosquito Anopheles. Four species of the parasite are responsible for this disease in 

human: P. falciparum, P. malariae, P. ovale and P. vivax (CDC, 2013). Among these species, 

Plasmodium falciparum is responsible for 80 % of all the cases of malaria and 90 % of deaths 

(WHO, 2013; 2012). In general, the disease symptoms appear between 9 and 14 days after the 

bite of an infected mosquito. The first symptoms are non-specific and can be compared with 

the symptoms of a minor viral disease. In case of ineffective treatment, these symptoms can be 

quickly transformed into severe malaria, particularly in children less than 5 years old. In 

children, the most widespread symptom is fever (UNICEF, 2007; Peter et al, 2011). Severe 

malaria can be identified by one of the following signs: coma, metabolic acidosis, severe 

anaemia, and hypoglycemia. In adults, the acute renal insufficiency or acute oedema of the 

lung can be observed (WHO, 2007). 

Over 3.4 billion people were at risk of malaria in 2012 and the numbers of malaria cases were 

estimated at 219 million. Malaria transmission currently occurs in 99 countries (WHO, 2013) 

(Figure 1.1). The African region remains the most affected with 80% of all malaria 

cases reported, with the Democratic Republic of Congo and Nigeria accounting for half cases 

(40%) (WHO, 2013).  In West Africa, 313 million people (92% of total population) were 

estimated at risk (WHO malaria report 2013). Nearly, 650 000 among malaria dead cases 

involved children under five in sub-Saharan African countries (WHO malaria report, 2012). In 

Côte d'Ivoire, approximately 63,000 children under 5 years die of malaria every year, and the 

disease represents 33% of all causes of hospital mortality in the country (HPHM, 2010).  

Malaria does not only affect human health it also seriously hampers the economic 

development of most affected countries (Sachs et al, 2002; Chima et al, 2003). Malaria 

is therefore both a public health and economic development problem (RBM, 2012).  

A 25 % reduction in the overall malaria mortality has occured since 2000 (RBM, 2013). High 

coverage of adult mosquito vector control tools such as long-lasting insecticide treated nets 

(LLINs) and indoor residual spraying (IRS) using WHO-approved insecticides played the key 

role in this reduction in transmission. Indoor residual spraying protected 135 million people in 

the world and particularly 77 million in Africa in 2012. In 2012, 70 million LLINs delivered 
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by manufacturers were distributed free of charge in 88 countries across the world including 39 

countries in Africa. In the sub-Saharan African region, LLIN coverage increased from 3% in 

2000 to 56% in 2012 and then slightly decreased to 54 % in 2013 (WHO, 2013). The use of 

LLINs in households also yields additional benefits, such as prevention of Bancroftian 

filariasis and other diseases transmitted by mosquitoes (Banda et al, 2012). However, increase 

of resistance to WHO-approved insecticides for LLINS and IRS in populations of malaria 

vectors represents a serious challenge for vector control programmes (Hemingway et al, 2002; 

WHO GPIRM, 2012). Resistance to pyrethroids, the only class approved for LLINs, is 

spreading across Africa (Figure 1.2). No new insecticide has been developed for vector control 

in the past 30 years (Table 1.1), and none is expected in the near future (Hemingway et al, 

2006; Hemingway et al, 2014). Therefore, strategies for reducing malaria transmission remain 

largely dependent on existing insecticides and it is therefore critical to attempt to preserve their 

efficacy. Currently four insecticide classes are used in malaria vector control (WHO, 2013). 

Within organochlorine, deldrin is also recommended for research purpose. Exposure to 

dieldrin at 0.4% was reported to kill susceptible (ss) individuals but not resistant heterozygotes 

(Rs), while at 4%, heterozygotes (Rs) were killed (WHO, 2013). Chlorfenapyr (2%) 

(Raghavendra et al, 2011) and Fipronil (5%) (Kolaczinski & Curtis, 2001; Brooke et al, 2000) 

belonging to two additional new classes (Pyrroles and Phenyl pyrazoles, respectively) were 

tested but remained to by approved by WHOPES (WHO, 2013). Fipronil is broad-spectrum 

phenylpyrazole insecticide used in agriculture to control ants, beetles, cockroaches, fleas, 

ticks, termites, mole crickets, thrips, rootworms, weevils, and other insects. Fipronil acts as 

inhibitor to GABA A receptor, which means the insecticide blocks GABAA-gated chloride 

channels in the central nervous system, preventing the uptake of chloride ions and thus 

resulting in excess neuronal stimulation and death of the target insect (NPIC, 2009). 

Chlorfenapyr is known as a pro-insecticide, which means that the biological activity depends 

on its activation to another chemical. Oxidative removal of the N-ethoxymethyl group of 

chlorfenapyr by mixed function oxidases forms the compound CL 303268. CL 303268 

uncouples oxidative phosphorylation at the mitochondria, resulting in disruption of production 

of ATP, cellular death, and ultimately organism mortality (EPA, 2001).With no cross 

resistance demonstrated either with pyrethroid and organophosphate, Chlorfenapyr has 

potential for malaria control in treated-net or residual spraying applications in regions where 

mosquitoes are pyrethroid resistant (N’Guessan et al, 2007). 
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Table 1.1. Overview of WHO insecticides for adult malaria mosquito control  

Years 
WHO approved Insecticides‡ 

Organochlorine Organophosphate Bendiocarb Pyrethroids * 

1940-1945 DDT 
  

  

  

1946-1950 Lindane 

1951-1955 

  

Malathion 

1956-1960   

1961-1965 Fenitrothion Propoxur 

1966-1970 Chlorpyrifos-methyl   

1971-1975 Pirimiphos-methyl Bendiocarb Permethrin 

1976-1980     Cypermethrin 

1981-1985       

Alpha-cypermethrin 

Cyfluthrin 

Lambda-cyhalothrin 

Deltamethrin 

Bifenthrin 

1986-1990 
      

Etofenprox 

1991-2012   

‡ from Nauen R, 2007;  * Only class approved for ITNs, Whin Organochrlorine, Deldrin recommended 
at 0.4 and 4.0% only for research purpose in 2013 (WHO, 2013). Moreover Chlorfenapyr and Fipronil, 
belonging to two additional classes (Pyrroles and Phenyl pyrazoles) need to be approved by WHO. 

 

 

Figure 1.1. Countries with ongoing transmission where insecticide resistance has been 

identified to at least one major vector (WHO malaria report 2012)                                                                                                                                
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1.2. Insecticide resistance in malaria vectors  

1.2.1. Sources of selection for insecticide resistance in Anopheles mosquitoes 

Understanding the major selection pressures leading to resistance in mosquitoes is of 

fundamental importance for managing resistance, as recognised by the Global Plan for 

Insecticide Resistance Management (GPIRM) (WHO GPIRM, 2012). Three potential sources 

of selection pressure, agricultural insecticide use, public health use of insecticide and other 

sources of pollution, are discussed below. The role of each of these factors will vary between 

sites, and in many cases, the primary source of selection pressure is still unclear.  Migration of 

resistance alleles from neighbouring regions also needs to be considered (Barbosa et al, 2011). 

 

1.2.1.1. Intensive use of insecticides in agriculture 

Insecticide classes used in public health are also intensively used in agriculture, which is 

widely attributed to increasing resistance in malaria vectors (Curtis et al, 1978; Baleta et al, 

2009).  

 

Figure 1.2. Distribution of pyrethroid resistance in African vector An. gambiae           

(Source: IR Mapper (www.irmapper.com) 12/03/2014) 

 

http://www.irmapper.com/
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There are three groups of study that aim to elucidate the role of agriculture insecticide use in 

selecting for resistance in mosquitoes. In the first type of study, authors compare resistance in 

mosquitoes from agricultural versus non-agricultural areas. Here, the hypothesis being tested 

is that resistance is higher in vectors found in areas where insecticides are widely used in 

agriculture rather than in areas with little intensive agriculture activity. For example, in Sri 

Lanka malaria vectors prevalent in agricultural areas (An. nigerrimus) showed strong 

resistance to organophosphates and carbamates compared to the non-agricultural area vector 

An. culicifacies, both at larval and adult stages (Hemingway et al. 1986). Recently, a 

correlation between adult deltamethrin resistance and agriculture activity was found in 

Tanzania (Nkya et al, 2014). Increase in pyrethroid resistance in An. gambiae was also 

observed in cotton fields from Benin, following insecticide treatments by local farmers 

(Yadouleton et al, 2011).  

 A second group of studies attempt to quantify agricultural insecticide use in different areas 

and look for correlations with resistance. In this group of studies, correlation in timing of 

insecticide use are considered to provide further evidence that resistance is correlated with 

areas or periods of insecticides spraying in agricultural zones. In 2002, enhanced pyrethroid 

resistance during the rainy period was detected in Burkina Faso, especially when farmers 

used increased amounts of insecticides in cotton field to avoid losses of yield (Diabaté et al, 

2002). Similarly, an increase in DDT and permethrin resistance was observed between the 

beginning and end of the cotton growing season in Gaschiga in Camerooon  (Chouaibou et al, 

2008). 

The third group concern those studies that looked at the influence of xenobiotics found in 

breeding sites on the resistance in the mosquitoes. The occurrence of a correlation between 

some characteristics from the breeding sites and larval tolerance to pyrethroids was reported 

from Cameroon, where larvae originating from agricultural sites showed more tolerance to 

insecticides than both larvae from polluted or non-polluted sites (Tene Fossog  et al, 2012).  

Questions remain as to whether the levels of resistance seen in larval breeding sites are 

sufficient to select for resistance.  Indeed, this may select for minor resistance genes but then 

more intensive selection pressure could occur from use of high concentrations of these 

insecticides in public health.  
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1.2.1.2. High coverage of insecticide based malaria control intervention 

There are several cases where intensive vector control interventions have been incriminated 

in selecting for insecticide resistance with both indoor residual spraying (IRS) and wide scale 

use of bednets (ITNs) incriminated in increasing levels of resistance in malaria vectors  

(Lines et al,  1988 ; Mathias et al, 2011).  

Since the WHO’s global malaria eradication campaign launched in 1955 (IDAB, 1956; 

Najera et al, 1999; Sadasivaiah et al, 2007; Mendis et al, 2007), several programmes used 

residual insecticides DDT and dieldrin for IRS (Clark and Shamaan, 1984; Nauen, 2007; 

Takken et al, 2009). Soon after it was discovered that malaria mosquitoes developed 

resistance against the insecticides directed against them, and before long insecticidal spraying 

was abandoned in many countries (Georghiou et al, 1990; Takken et al, 2002). 

The increase in prevalence and strength of pyrethroid resistance seen in malaria vectors 

seems to have coincided with the scale up of malaria vector control (especially ITN use) 

(Takken et al, 2009). For instance, in Kenya elevated oxidase and esterase levels associated 

with permethrin tolerance in An. gambiae were detected following the introduction of bednets 

(Vulule et al, 1999). In Niger increased pyrethroid resistance, attributed to the kdr mutation, 

was detected following nationwide implementation of long-lasting insecticide nets (Czeher et 

al, 2008). However, the lack of clear baseline data before implementation of vector control 

interventions, and inadequate study longevities, both frequently hinder studies into the impact 

of scale up of interventions on resistance levels.  

 

1.2.1.3. Environment pollution 

 

Xenobiotic pollution has also been suggested to accelerate the selection for insecticide 

resistance in malaria vectors (Djouaka et al, 2008; Nkya et al, 2012). One potential mechanism 

may be a selection for reduced uptake of pollutants, including insecticides, in highly polluted 

sites (Jones et al, 2012).  It also appears that insect chemical environments can shape the long-

term selection of metabolic mechanisms leading to insecticide resistance (Poupardin et al, 

2012). 
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1.2.2. Insecticide resistance mechanisms in Anopheles gambiae 

Multiple mechanisms can contribute to insecticide resistance and a single mechanism alone 

may not be sufficient to result in control failure.  Potential resistance in Anopheles mosquitoes 

include reduced penetration, behavioural resistance, target site modification and enhanced 

activity of insecticide detoxifying enzymes (metabolic resistance). Among these, target site 

and metabolic resistance are the best studied.  

 

1.2.2.1. Reduced penetration 

The reduced penetration of insecticide can occur either by increased cuticle thickness or 

modification of its chemical composition (Karunaratne, 1998). Reduced uptake of insecticide 

has been reported in housefly (Musca domestica) (Golenda and Forgash, 1989). In mosquitoes, 

reduce penetration of insecticide occurs through the cuticle after tarsal contact with insecticide 

treated materials (e.g ITNs or treated surfaces following IRS) (Corbel et al, 2013). Cuticle 

structure is very complex (Hamodrakas et al, 2002). In An. gambiae, cuticular proteins 

belonging to CPL (e.g. CPLCG3, CPLCG4, CPLC8 and CPLC#), CPF (e.g CPF3) and CPFL 

families have been associated with cuticle thickness (Togawa et al, 2007; Awolala et al, 2009; 

Vannini et al, 2014;). Electron microscopy has also been used to show thicker cuticle in 

resistant strains which has been proposed to reduce the insecticide penetration within mosquito 

(Wood et al, 2010).  

 

1.2.2.2. Behavioural resistance 

Behavioural resistance occurs when mosquitoes avoid insecticide treated material or areas 

(Roberts et al, 1997). Generally, behavioural resistance appears as a potential factor enabling 

insecticide circumvention or avoidance in mosquitoes (Corbel et al, 2013), with could either 

be stimulus dependent or stimulus independent (Chareonviriyaphap et al, 2013). In the first 

type, sensory receptors within mosquitoes are excited following repellency or contact with 

irritant compounds (Chareonviriyaphap et al, 1997). Stimulus independent resistance in 

contrast means no contact with insecticide can occur through change in trophic behavior, such 

as increased outdoor biting to avoid indoor control strategies (IRS or ITNs) and/or increase 

zoophilic rate (Reddy et al, 2011; Russell et al, 2011; Dabire et al, 2006). Behavioural 

resistance can negatively impact the existing control measures. Indeed, recent mathematical 
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modelling of physiological and behavioural resistance parameters in response to adult vector 

control measures (LLINs and IRS) in mosquito An. gambiae, demonstrated potentially severe 

negative impacts of behavioural resistance on control strategies as physiological resistance 

(Gatton et al, 2013).  

As with physiological resistance, behavioural resistance could have a molecular link (i.e could 

be linked to genes expression), as observed in beetles Diabrotica virgifera virgifera, in which 

positive expression between candidate named D (no matched to known proteins) and 

locomotor activity was reported (Knolhoff et al, 2010). Generally, insecticide resistance 

remains a heritable trait; however, the molecular basis of behavioural resistance remains 

poorly documented in Anopheles mosquito, and requires more investigations.  

 

1.2.2.3. Target-site resistance  

The four main insecticide classes used in public health have just two major target sites.  DDT 

and pyrethroids target the voltage gated sodium channel (VGSC) on the nerve axons and 

organophosphates and carbamates target acetylcholinesterase at the nerve synapses (IRAC, 

2011) (Figure 1.3).  Target site resistance can be caused by single amino acid substitutions in 

the target protein which reduce the binding of insecticides. 

 

1.2.2.3.1. Voltage gated sodium channel (VGSC) mutation 

Voltage gated sodium channel represents a transmembrane protein involved in the transfer of 

the sodium ions inside the cell in order to achieve the depolarizing phase of action potential, 

an essential phase of nervous impulses (Catterall, 2014). Mutations in the VGSC cause a 

phenotype known as knock down resistance or (kdr).  The most common kdr mutations are 

substitutions at the 1014 leucine codon to either phenylalanine (Martinez Torres et al, 1998) or 

serine (Ranson et al, 2000).  These 1014 kdr mutations are widely distributed across Africa 

(Figure 1.4). They co-occur in some populations (Tripet et al, 2007; Fryxell et al, 2012; 

Nwane et al, 2011; Pinto et al, 2006) but could counter different strength of resistance and be 

at different frequency in different locations, such as in Cameroon, where resistance to 

permethrin was conferred by 1014S relatively to 1014F (Reimer et al, 2008). Additionally, 

a mutation, N1575Y, within the linker between domains III-IV of the Voltage gate sodium 

channel has also been documented in An. gambiae (Jones et al, 2012) and recently found in 
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DDT-resistant An. gambiae from Cameroon (Tene Fossog et al, 2013). The N1575Y mutation 

is likely to provide a synergistic effect by enhancing the sensitivity of the sodium channel gate 

produced by the 1014F and 1014S mutations (Wang, 2013; Rinkevich et al, 2013).  

 

 

 

 

 

 

 

Figure 1.3. Target sites of pyrethroid, DDT, carbamate and organophosphate insecticides 

(David et al, 2013). Pyrethroids and DDT exert their toxic effect by blocking the voltage-gated sodium 

channels, which generally produces fast knock-down properties (kdr). Organophosphate (OP) and carbamate 

insecticides inhibit acetylcholinesterase (AChE) which plays an important role in terminating nerve impulses. 

Reduced sensitivity of AChE as a result of a gene mutation (MACE) causes resistance to OP and carbamate 

insecticides. ACh, acetylcholine; AchT, Ach transporter; AcOH, acetic acid; ChT, choline transporter; MACE, 

modified acetylcholinesterase; Vg-Na
+
 channel, voltage-gated sodium channel; kdr, knock-down resistance 

 

 

 

 

 

 

 

  

 

 

  

Figure 1.4. Detection of kdr 1014F (A) and 1014S (B) in An. gambiae (Source: IR 

Mapper (www.irmapper.com) 12/03/2014) 
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http://www.irmapper.com/
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1.2.2.3.2. Acetylcholinesterase (ACE-1) mutation  

Acetylcholinesterase (AChE) is a neurotransmettor involved in the transmission of nervious 

impulses. In general, it terminates the neurotransmission at cholinergic synapses by splitting 

the neurotransmitter acetylcholine into choline and acetate.  The role of organophosphate and 

carbamate insecticides, consist in binding the active site of the enzyme leading to its 

inactivation and the death of the insect. The acetylcholinesterase (ACE-1) mutation is due to a 

single nucleotide substitution of glycine to serine at codon position 119 (Torpedo 

nomenclature; G119S) in the ACE-1 gene that drastically reduces the affinity of 

acetylcholinesterase for insecticides, by a major conformational change in AChE in Culex 

and Anopheline mosquitoes (Weill et al, 2004; (Djogbenou et al, 2009; 2010). In Drosophilia 

melanogaster, five point mutations (Phe-115 (78) to Ser, Ileu-199 (Val-129) to Val, Ileu-199 

(Val-129) to Thr, Gly-303 (227) to Ala, and Phe-368(288) to Tyr associated with reduced 

sensitivities to organophosphates and carbamates insecticides have been detected  (Mutero et 

al, 1994). In Anopheles, the point mutation G119S was associated with reduced sensitivities 

to organophosphates and carbamates (Djogbenou et al, 2009; 2010). In West Africa, ACE-1 

mutation was found in Burkina Faso (Dabiré et al, 2009), Côte d’Ivoire (Ahou et al, 2010), 

Ghana (Essandoh et al, 2013) and Benin (Djogbenou et al, 2010; 2011) and Gabon for 

Central Africa (Mourou et al, 2010) (Figure 1.5). Moreover, duplicated alleles of ACE-1 have 

also been reported in African An. gambiae, even if the consequences of copy number 

variation for fitness in the presence or absence of insecticide are not yet known in Anopheles 

(Djogbenou et al, 2008; 2009). ACE-1 duplication in Culex pipiens creates linked serine and 

glycine alleles, which, when combined with an unduplicated serine allele, creates highly 

insecticide resistant genotypes with near-full wild-type functionality, thus providing a 

mechanism that can compensate for fitness costs (Labbé et al, 2007a, 2007b, Djogbenou et al, 

2010). Up to date, the exact level of duplicated 119G and 119S alleles that correlates with 

resistance in mosquitoes remains unclear and need more investigation, thus duplication 

appears as a complex process potentially challenging for vector control management.   
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1.2.2.4. Metabolic resistance in Anopheles  

Gluthathione S-transferases (GST) (Ranson et al, 2005), carboxylesterases (COE) 

(Hemingway, 1982) and cytochrome P450 monooxygenases (P450s) (Feyereisen et al, 1999) 

have all been implicated in insecticide metabolism in mosquitoes under different phases of 

metabolism.  

 

1.2.2.4.1. Phase I of metabolism resistance 

Glutathione transferases (GSTs) are a diverse family of enzymes found ubiquitously in aerobic 

organisms. They are involved in detoxification of endogenous and xenobiotic compounds, 

intracellular transport, biosynthesis of hormones and protection against oxidative stress 

(Enayati et al, 2005). The GST-based detoxification of both endogenous and xenobiotic 

compounds can be in a direct way (phase I metabolism) (Ranson et al, 2005). The primary 

reaction catalysed by the GSTs is the conjugation of hydrophobic components with the 

tripeptide glutathione. In this reaction, the thiol group of glutathione reacts with an 

electrophilic place in the target compound to form a conjugate which can be metabolized or 

excreted (Vannini et al, 2013).  

 

Figure 1.5. Detection of ACE-1 (G119S) mutation in African vector An. gambiae 

(Source: IR Mapper (www.irmapper.com) 27/03/2014) 

 

http://www.irmapper.com/
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Cytochrome P450 enzymes are some of the most versatile redox proteins known that catalyze 

a variety of oxidation and some reduction reactions, collectively involving thousands of 

substrates  (Guengerich, 2007). Several studies have also associated the role of mosquito 

P450s members such as CYP6Ps, CYP6Zs and CYP6Ms with pyrethroid and DDT resistance 

(Nikou et al, 2003, Djouaka et al, 2008; David et al, 2014; Muller et al, 2007). Initially, P450-

mediated resistance was considered to be Phase I reaction (Ionescu et al, 2005). Within phase I 

reaction, some metabolic P450 genes associated to resistance have been functionally validated. 

Among them, P450 CYP6P3 in An. gambiae s.s and its orthologue CYP6P9 in An. funestus 

were identified as pyrethroids metabolizer (Muller et al, 2008, Stevenson et al, 2011, Riveron 

et al, 2013) and CYP6M2 as both pyrethroids and DDT metabolizer (Mitchell et al, 2012). 

CYP6Z1 is also able to metabolize DDT (Chiu et al, 2008), but pyrethroid metabolism still 

unclear and requires further validation. Metabolic resistance is conferred via increased levels 

of P450 activity (Stevenson et al, 2011) complex, Several P450 genes belonging to 11 families 

(CYP4G, CYP4H, CYP6N, CYP6M, CYP6P, CYP6Z, CYP9K, CYP12F, CYP314A, CYP325A 

and CYP325D) have repeatedly been overexpressed in either DDT or pyrethroid resistant 

mosquitoes relatively to susceptible (David et al, 2005; Vontas et al, 2005; Djouaka et al, 

2008; Muller et al, 2008a; Chiu et al, 2008; Mitchell et al, 2012;  Stevenson et al, 2011; 

Fossog et al, 2013). Among them, CYP6M2, CYP6P3 (Muller et al, 2008) were validated as 

pyrethroid and DDT metabolizers and CYP6Z1 for DDT (Chiu et al, 2008) (Table 1.2). 

Within phase I reaction, carboxylesterases enzymes can sequester insecticides or catalyze their 

hydrolysis (Ranson et al, 2002; Claudianos et al, 2006). Esterases are enzymes that catalyze 

hydrolysis reactions over carboxylic esters (carboxiesterases), amides (amidases), phosphate 

esters (phosphatases), etc. (Etang et al, 2007). In the reaction catalyzed by esterases, 

hydrolysis of a wide range of ester substrates occurs in their alcohol and acid components. 

Mutations altering the amino acid sequence of esterases and amplification of esterase genes 

have been shown to contribute to carboxylesterase-based metabolic resistance to 

organophosphates in insects (Cui et al, 2007). COEs can also confer resistance to carbamates 

and pyrethroids which are rich with ester-bonds (Chouaibou et al, 2013). In An. arabiensis 

from Sudan, an alteration in esterase activity conferred malathion resistance (Hemingway et al, 

1998; Hemingway 1982; Corbel et al, 2013). Carboxylesterases have been implicated in 

organophosphate, carbamate, and pyrethroid resistance in several Anopheles species involving 

An. gambiae (IRAC, 2011; Hemingway and Ranson 2000; Vulule et al., 1999; Chang et al, 
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2014; Corbel et al, 2007; Nanountougou et al 2012; Vezenegho et al, 2009) by biochemical 

assays.  

 

1.2.2.4.2. Phase II of metabolism resistance 

The GST-based detoxification of both endogenous and xenobiotic compounds can also be 

achieved by the catalysis of reactive products formed by other enzymatic detoxification 

systems (phase II metabolism) (Ranson et al, 2005). Elevated activity of GST has been 

associated with DDT, pyrethroid, and organophosphate resistance in insects including 

mosquitoes (Che-Mendoza et al, 2009), cockroaches Blattella germanica and houseflies Musca 

domestica (Hemingway et al, 1993). Among them, the delta and epsilon classes of GST were 

repeatedly reported as resistance-linked in An. gambiae (Ding et al, 2003; Ortelli et al, 2003; 

Ranson et al, 1998; Ranson et al, 2002; Ranson et al, 2001; Djouaka et al, 2011) and also in 

An. arabiensis (Ding et al, 200; Nardini et al, 2012; Fossog et al, 2013). 

Initially, P450-mediated resistance was considered to be Phase I reaction (Ionescu et al, 2005). 

However, recent functional validation study revealed that P450-mediated resistance can be 

induced by effect on secondary metabolisms (Phase II) (CHANDOR-PROUST et al, 2013). 

This was the first evidence that secondary metabolisms of insecticide pyrethroids by P450s 

can be linked to resistance (CHANDOR-PROUST et al, 2013). In this study, An. gambiae 

CYP6Z2 was found to metabolize PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-

phenoxybenzaldehyde), two common pyrethroid metabolites produced by carboxylesterases in 

the same way as did its orthologue CYP6Z8 in Aedes aegypti (Figure 6). Beside, P450s can be 

divided into 4 classes of enzymes, depending on how electrons from NADPH are delivered to 

the catalytic site. The class 1 of P450 requires both a FAD-containing reductase and an iron 

sulphur redoxin, and catalyzes several steps in the biosynthesis of steroid, and are associated 

with mitochondrial membrane in Eukaryotes. The class II covering various functions from 

biosynthesis and catabolism of signalling molecules to steroid hormones are found in the 

endoplasmic reticulum and only need an FAD/FMN-containing P450 reductase to transfer the 

electrons (Feyereisen, 1999). Both classes are involved in detoxification or rarely in activation 

of xenobiotics (Felix et al, 2012). Class II enzymes are the most common in eukaryotes and 

are found in the endoplasmic reticulum. These enzymes only require an FAD/FMN-containing 

P450 reductase for transfer of electrons. Their functions are extremely diverse and, in 
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eukaryotes, include aspects of the biosynthesis and catabolism of signalling molecules and 

steroid hormones (Feyereisen, 1999). For Class 3, no electron donor is required, while for the 

class 4 enzymes, electron is received from NADPH. Moreover, both classes may be involved 

in detoxification of damaging activated oxygen species (Felix et al, 2012) and are considered 

as empiric form of P450 (Werck-Reichhart & Feyereisen, 2000).  

 

1.2.2.4.3. Phase III of metabolism resistance 

The phase III of metabolism resistance is characterized by insecticide excretion out of insects 

and can serve as an early and basic tolerance mechanism (Pittendrigh et al, 2014). The ATP-

binding cassette (ABC) transporters that form one of the largest known protein families, 

couple ATP hydrolysis to active transport of a wide variety of substrates such as ions, sugars, 

lipids, sterols, peptides, proteins, and drugs (Toyoda et al, 2008). ABC transporters can thus, 

extrude toxic molecules modified by phase II enzymes from the cells (Epis et al, 2014). An 

ABC-transporter (ABCG4) is over-transcribed in DDT-resistant Anopheles arabiensis from 

Dioulassoba (Jones et al, 2012). ABC-transporters have also been (ABCH, AGAP002060) 

associated with permethrin resistance in Anopheles arabiensis from Northern Tanzania (Lower 

Moshi strain) (Matowo et al, 2014). However, functional investigation is needed.  Moreover, 

up to date, Very little work has been carried on insecticide excretion and also very less on the 

excretion carried out by ABC transporters (Pittendrigh et al, 2014). 

 

Table 1.2. Cytochrome P450 genes involved in insecticide resistance in An. gambiae and An. 

arabiensis mosquitoes 

GeneName Species Strain Country Insecticides References 

CYP12F1 An. gambiae  
ZAN/U  

Zanzibar, 
Tanzania 

DDT 
David et al, 

2005 

CYP314A1  An. gambiae   ZAN/U  
Zanzibar, 
Tanzania DDT 

Vontas et al, 
2005 

CYP325A3  
An.gambiae  

RSP (Kisumu 
region) 

Kenya  permethrin 
David et al, 

2005 

An. gambiae   Ipokia Nigeria Permethrin 
Awolola et al, 

2009 

CYP325D2 
An. gambiae  Akron  Benin permethrin 

Djouaka et al, 
2008 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Toyoda%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18668432
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CYP4H19             An gambiae Dodowa 
Ghana 

permethrin Muller et al, 
2008a 

CYP4H24 An gambiae Dodowa 
Ghana 

permethrin Muller et al, 
2008a 

CYP6AG2  
An. gambiae  Ojoo site  Nigeria permethrin 

Djouaka et al, 
2008 

CYP6M2 

An. gambiae  Akron  Benin permethrin 
Djouaka et al, 

2008 

An. gambiae  Ojoo site  Nigeria permethrin 
Djouaka et al, 

2008 

An. gambiae  Gbedjromede  Benin permethrin 
Djouaka et al, 

2008 

An gambiae Ghana 
Ghana 
(Accra) 

DDT 
Mitchell et al, 

2012 

An. gambiae  RSP (MRA-334) 
Western 

Kenya  
permethrin & 
deltamethrin 

Stevenson et 
al, 2011 

An gambiae Nkolondom 
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

An gambiae Gare (Yaounde 
city) 

Cameroon DDT 
Fossog et al, 

2013 

An gambiae Messa  
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

 An. gambiae 
Akron and 

Gbedjromede  Benin 
Deltamethrin and 

DDT 
Djouaka et al, 

2008 

 An. gambiae 
Orogun Nigeria 

Deltamethrin  and 
DDT 

Djouaka et al, 
2008 

 An. gambiae 

Odumasy and 
Dodowa; Great 

Accra Ghana  
Deltamethrin and 

DDT 
Stevenson et 

al, 2011 

 An. gambiae 
Akron and 

Gbedjromede 
Benin 

Deltamethrin and 
DDT 

Stevenson et 
al, 2011 

 An. gambiae 

Odumasy and 
Dodowa; Great 

Accra  Ghana 
Deltamethrin and 

DDT 
Mitchell et al, 

2012 

CYP6N1  
An. gambiae  Ojoo site  Nigeria permethrin 

Djouaka et al, 
2008 

CYP6P3 

An. gambiae  Akron  Benin permethrin 
Djouaka et al, 

2008 

An. gambiae  Ojoo site  Nigeria permethrin 
Djouaka et al, 

2008 

An. gambiae  Gbedjromede  Benin permethrin 
Djouaka et al, 

2008 

An. gambiae Dodowa, 
Ghana 

Ghana permethrin Muller et al, 
2008a 

An. gambiae Nkolondom 
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Gare (Yaounde 
city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Messa  
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 
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An. gambiae  
Akron and 

Gbedjromede  Benin 
Permethrin and 

Deltamethrin  
Djouaka et al, 

2008 

An. gambiae  
Orogun Nigeria 

Permethrin and 
Deltamethrin  

Djouaka et al, 
2008 

An. gambiae  Dodowa Ghana  
Permethrin and 

Deltamethrin  
Muller et al, 

2008a 

An. gambiae  Dodowa Ghana  
Permethrin and 

Deltamethrin  
Muller et al, 

2008b 

CYP6P4 

An. gambiae Nkolondom 
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Gare (Yaounde 
city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Messa  
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

CYP6Z1 

An. gambiae  RSP strain  Kenya permethrin 
Nikou et 
al,2013 

An. gambiae  RSP Kenya  permethrin 
David et al, 

2005 

An. gambiae  
ZAN/U  

Zanzibar, 
Tanzania 

DDT 
David et al, 

2005 

An. gambiae 
 Kisumu ZANU Kenya DDT 

Chiu et al, 
2008 

An. gambiae Kisumu ZANU  Kenya  DDT 
David et al, 

2005 

An. gambiae Kisumu ZANU  Kenya  DDT 
Chiu et al, 

2008 

CYP6Z2 

An. gambiae Nkolondom 
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Gare  (Yaounde 
city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Messa  
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

CYP6Z3 

An. gambiae Nkolondom 
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Gare (Yaounde 
city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Messa  
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Odumasy  Ghana Permethrin 
Muller et al, 

2008a 

CYP9K1 

An. gambiae Nkolondom 
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Gare (Yaounde 
city) 

Cameroon DDT 
Fossog et al, 

2013 

An. gambiae Messa  
(Yaounde city) 

Cameroon DDT 
Fossog et al, 

2013 

 
CYP4G16  

An. arabiensis Pitoa Cameroon   deltamethrin Muller et al, 
2007 

CYP12f2  
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 
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CYP12F4 
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 

CYP325C2   An. arabiensis  Pitoa 
Northern 

Cameroon  Deltamethrin 
Muller et al, 

2007 

CYP4G16  An. arabiensis  Pitoa 
Northern 

Cameroon  Deltamethrin 
Muller et al, 

2007 

CYP4H24  
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 

CYP4H24  An. arabiensis  Pitoa 
Northern 

Cameroon  Deltamethrin 
Muller et al, 

2007 

CYP6AG1   An. arabiensis  Pitoa 
Northern 

Cameroon  Deltamethrin 
Muller et al, 

2007 

CYP6AG2  
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 

CYP6AK1  
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 

CYP6M2  
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 

An. arabiensis KWAG  South Africa permethrin Munhenga et 
al, 2011 

CYP6M3  
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 

CYP6P1  
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 

CYP6P3  
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 

CYP6Z1 An. arabiensis KWAG  South Africa permethrin Munhenga et 
al, 2011 

CYP6Z2 
An. arabiensis KWAG  South Africa permethrin Munhenga et 

al, 2011 

CYP9J5  
An. arabiensis 

South Africa 
(MBN) 

South Africa DDT 
Nardini et al, 

2012 

CYP9L1 An. arabiensis 
 Sennar  
(SENN) 

Sudan DDT 
Nardini et al, 

2012 

CYP6P4  An. arabiensis  
N'djamena Chad permethrin 

Witzig et al, 
2013 

CYP4G16  An. arabiensis  Pemba 
Zanzibar, 
Tanzania lambdacyhalothrin 

Jones et al, 
2013 

(*) CYP6P3, CYP6M2 and CYP6Z1 involved in insecticide metabolism 
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1.3. Rationale for the study 

 

The current study was carried out in Tiassalé, Southern Côte d’Ivoire. Indeed, one of the 

earliest reports of pyrethroid resistance in Anopheles gambiae was from Southern Côte 

d’Ivoire (Chandre et al, 1999a, 1999b) and resistance to this insecticide class is now well 

documented throughout the country (Konan et al, 2011), with  anecdotal reports of bednet 

failure (Koudou et al, 2011). OP, carbamates and DDT are currently considered as a 

promising alternative to pyrethroids (Akogbeto et al, 2010). Therefore any report of 

resistance to these alternative chemicals would present challenges to malaria control.  

1.3.1. Study site 

Tiassalé (5.89839 latitude, -4.82293 longitudes and 72 m Elevation) is a department of Côte 

d'Ivoire, located in the evergreen forest zone (Figure 1.6), at equidistance of the main 

capitals: 120 km away from Abidjan, the economic capital of Côte d’Ivoire and 120 km away 

from Yamoussoukro, the politic capital. The department belongs to the region of Agneby-

Tiassa. The population of Tiassalé district was estimated to increase from 41 316 in 2010 to 

72,000 in 2012. 

Agriculture, including production of bananas and other fruits, cocoa, coffee, palm tree, 

rubber, rice field and vegetables, is the major economic activity. Additionally, farms of 

poultry breeding, cattle, sheep, goats and fish breeding have been introduced recently in 

Tiassalé (Konan et al, 2011).  

  The average temperature ranges between 25 and 30 °C (Kouassi et al, 2012). The climate is 

equatorial with annual rainfall between 1 300 and 2 400 mm and four seasons: warm and dry 

(November to March), hot and dry (March to May), hot and wet (June to October) (Goula et 

al, 2007). The average humidity varies from 80 to 90% (Kouassi et al, 2012).  

 

1.3.2. Malaria prevalence  

Malaria is responsible for 40% of causes of absenteeism in schools and the workplace, and 

50% loss of farm income in Côte d’Ivoire. Overall, about 25% of incomes are spent for 

prevention and treatment of malaria which accounts for 43% of all consultation in health 

centers (WHO Côte d’Ivoire report 2012). The average rate of reported incidence cases in the 
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general population is 104 cases per 1000 inhabitants. At district level, this rate is 113 per 1000 

for Tiassalé (WHO Côte d’Ivoire report 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A)  

Figure 16. Vegetation map of Côte d’Ivoire showing the study area (Tiassalé), irrigated by the 

bandaman river, main irrigation source of main rice field of the region (B)  

 

 

 

  
(A)  

Figure 1.6. Vegetation map of Côte d’Ivoire showing the study area (Tiassalé), irrigated by the 

bandaman river, main irrigation source of main rice field of the region (B)  
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1.3.3. Malaria vectors  

Ninteeten species of mosquito belonging to four genera (Anopheles, Culex, Aedes and 

Mansonia) were collected inside houses in Tiassalé (Loukou, 2010). Among them, An. 

gambiae s.s. was the most dominant with other malaria vectors including An. funestus 

(0.43%), An. nili (0.19%) and An. pharoensis (0.02%) (Table 1.3) (Loukou, 2010). The 

average man biting for An. gambiae was estimated to 216 bites per man per night and activity 

peaked between 8 pm and 6 am (Konan et al, 2009). 

 

Table 1.3: Distribution of mosquito genera and species in Tiassalé from window trap and 

indoor spraying collection (Loukou, 2010) 

 

Genus Species 
Window traps Indoor spray caught 

Total Percentage  Total Percentage  

Anopheles 

An. gambiae  119 412        85.69 817 76.14 

An. funestus 596 0.43 0 0 

Other Anopheles species 305 0.22 1 0.09 

Total 120 313      86.34 818 76.23 

Other 

Culicinae 

Culex species    17 212       12.35 239 22.27 

Aedes species 70 0.05 2 0.19 

Mansonia species    1 754      1.25 14 1.3 

  Overall 139 349       100 1 073     100 

 

 

1.3.4. Sources of selection for insecticide resistance in An. gambiae from Tiassalé  

Anopheles gambiae from Tiassalé are highly resistant to insecticides (Chapter 2).  Pesticides 

are widely applied in rice cultivation, vegetable and fruit farming (Soro et al, 2013; Ahoua et 

al, 2010). Pyrethroids are typically used in vegetable and fruit farming with Decis 12 EC 

(deltamethrin), Cypercal (cypermethrin) and K-optimal (a mixture of lambdacyalothrin and 

acetaminpride (neonicotinoid)). In the irrigated rice fields, carbamate and pyrethroid 

insecticides such as Furadan (carbosulfan), Bastion 5G (carbofuran) and Decis protech 

(deltamethrin) have been used since 1966 (Soro et al, 2013).  Insecticides have been used in 

public health in the region to control onchocerciasis and trypanosomiasis, particularly 

between 1966 and 1983 (WHO, 1985). Today, malaria vector control is mainly based on high 

coverage of insecticide treated nets. There is no IRS in the region.  Three important industrial 

activities involving the transformation of pineapple, the production of wood and the 
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transformation of solid rubber take place in this district (Bessalel, 1990) but there has been no 

assessment on the quantity and quality of wastes produced by these factories and their 

potential impact on selecting for insecticide resistance in mosquitoes. 

Thus, the aim of this PhD is to investigate the status of resistance to insecticides in southern 

Côte d’Ivoire. To achieve this goal, four specific objectives have been defined: 

i- To use a variety of bioassay techniques to obtain a complete profile of the 

resistance/susceptibility status of malaria vectors in Tiassalé to all insecticide classes 

currently approved for IRS or LLINs. 

ii- To identify the genes associated with resistance to carbamates in Tiassalé  

iii- To study the contribution of contrasting mechanisms to carbamate resistance in Tiassalé 

iv- To determine trends in insecticide resistance in An. gambiae from across Côte d’Ivoire 
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Chapter 2.  

Resistance in Anopheles and Culex 

mosquitoes in Tiassalé to WHO-

approved classes of insecticides 
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2.1. Introduction  

The extensive use of a limited number of insecticide classes in agriculture and public health 

in Africa has led to rapid emergence of resistant populations of Anopheles gambiae (IRAC, 

2011) and Culex quinquefaciatus say, 1823 (Jones et al, 2012; Chandre et al, 1997a). In West 

Africa, resistance of Cu. quinquefaciatus to DDT and permethrin has been reported in several 

countries including Benin, Burkina Faso, Mali, Côte d’Ivoire and Ghana (Wilding et al. 2012; 

Corbel et al, 2007; Chandre et al, 1997b).   

As Cu. quinquefaciatus is an important disease vector and frequently the major source of 

nuisance biting, resistance to insecticides used in ITNs in Culex may reduce user acceptance 

of nets (Kulkarni et al, 2007). It is therefore important to be aware of potential resistance 

issues in Culex mosquitoes, also responsible for other disease transmission in the region (e.g. 

Lymphatic filariasis). 

Resistance of An. gambiae, the main malaria vector of sub-Saharan African region to WHO-

approved insecticides is also now widespread (IR mapper, www.irmapper.com, 2014). 

Increasingly, populations of mosquitoes that are resistant to more than one class of 

insecticides are being reported (Maxmen, 2012).  This can be caused by a single resistance 

mechanism that confers cross resistance to more than one insecticide class (e.g kdr).  

“Multiple insecticide resistance” generally refers to the presence of more than one resistance 

mechanism in a population and has emerged in both Anopheles and Culex (Corbel et al, 2007; 

Berticat et al, 2008).  

In 2009, a population of An. arabiensis in Ethiopia was reported to be resistant to three 

insecticide classes (pyrethroids, DDT and organophosphates) (Yewhalaw et al, 2011). An. 

gambiae S-form from Pointe Noire Congo was found resistant to three insecticide classes but 

susceptible to organophosphates (Koekemoer et al, 2011).  

Occurrence of multiple insecticide resistance in malaria vectors is a major concern for 

implementing rational resistance management strategies and in Africa (WHO GPIRM, 2012). 

The first report of pyrethroid resistance in An. gambiae was in mosquitoes collected from 

Côte d’Ivoire in 1993. Resistance to organochlorine, carbamate and organophosphate, has 

also been reported in different parts of the country (Ahoua et al, 2010; Tia et al, 2006). In this 

chapter, the susceptibility of the local Anopheles and Culex populations to all classes of 

insecticides was assessed. 

http://www.irmapper.com/
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2.2. Material and methods  

2.2.1. Study site 

All collections were carried out in Tiassalé, southern Côte d’Ivoire (5° 52' 47" N; 4° 49' 48" 

W). The study site is located in the evergreen forest zone (see in Chapter 1). The primary 

activity of the rural population is agriculture with mainly irrigated rice fields. Malaria 

transmission occurs during the rainy seasons, between May and November.  

 

2.2.2. Larval collections 

An. gambiae s.s. and Culex sp. adults were obtained from larval collections from natural 

breeding sites in Tiassalé during the peak malaria transmission periods (May- September) in 

2011 and 2012 (Figure 2.1A and 2.1B). All larvae were provided a diet of Tetra Mikromin 

fish food until adult emergence. All mosquitos rearing were performed under ambient 

environmental conditions (25°C±2°C, 80% ±4% Relative Humidity). Adult mosquitoes were 

given access to 10% sucrose solution. 

 

2.2.3. WHO diagnostic bioassays and dose-response assays 

Adult female non-blood fed mosquitoes, three to five days old, were exposed for one hour to 

insecticides (Figure 2.1C), using WHO tubes and criteria (WHO 2013), with the exception of 

fenitrothion (one hour exposure was used, rather than two). Six insecticides were used for the 

bioassays: 0.1% Bendiocarb, 1.0% Fenitrothion, 0.75% Permethrin, 0.05% Deltamethrin, 4% 

DDT and 0.2% pirimiphos methyl. After one hour exposure, live mosquitoes were given 

access to 10% sucrose solution in WHO holding tubes. Mortality was assessed after 24 hours. 

For each insecticide, additional batches of 25 mosquitoes were exposed to non-treated filter 

papers as a control.  

To determine the time required to reach 50 % of mortality (LT50), An. gambiae s.s. 

mosquitoes were exposed at seven time points to 0.05% Deltamethrin (from 60 to 720 min) 

and 0.1% Bendiocarb (60 to 480 min). A total of 100 adult mosquitoes (batches of 25 

mosquitoes per tube) were exposed to each insecticide for each time point. Mortality in each 

case was recorded after 24 hours. For each time point, 25 mosquitoes were used as control. 
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2.2.4. Synergist bioassays 

The effect of the insecticide synergist 4% piperonyl butoxide (PBO), which a primary action is 

to inhibit P450 monooxygenase enzymes (Young et al, 2005), was evaluated using WHO 

bioassays, in 2012 during both dry and wet seasons. Eight replicates of 25 adult female An. 

gambiae were exposed to five insecticides (permethrin, deltamethrin, DDT, bendiocarb and 

fenitrothion). Immediately prior to each 60 min insecticide exposure, mosquitoes were 

exposed to 4% PBO paper for 60 min. 100 females were exposed to PBO alone as control.  

 

2.2.5. DNA extraction  

Genomic DNA was extracted from 927 individual An. gambiae mosquitoes between 2011 

and 2012 according to the LIVAK method (Livak, 1984) using LIVAK grind buffer (1.6 ml 

5M Nacl, 5.48 g sucrose, 1.57g Tris, 10.16 ml 0.5M EDTA, 2.5 ml 20% SDS). Each 

individual mosquito was ground in 100µl of preheated LIVAK grind buffer and incubated at 

65°C for 30 minutes. 14 µl 8M K-acetate was added and gently mixed. After 30 min 

incubation on ice, the thicker mixture was centrifuged at 13,000 rpm for 20 min (4°C). 200 µl 

100% EtOH was added to the supernatant (transferred in new eppendorf tube 1.5 ml) and the 

mixture was subjected to a new centrifugation at 13,000 rpm for 15 min (4°C). After 

discarding the supernatant, the pellet was rinsed with 100 µl ice cold 70% EtOH. Dried 

pellets were re-suspended in 100 µl TAE buffer.  The DNA was used for species ID and 

target site genotyping as shown in Figure 2.2. 

 

2.2.6. Species and molecular form identification 

 The species and molecular form of An. gambiae s.l. were identified using SINE-PCR 

according to Santolamazza et al, (2008).  A total volume 24.75 µl was used per reaction for 

the master mix containing 18.83 µl DNase free water, 2.5 µl Buffer 10X, 0.75 µl MgCl2 

(25mM), 1 µl dNTP (10mM), 1 µl Sine 6.1a (10 µM) 5’-CGCTTCAAGAATTCGAG ATAC-

3’, 1 µl Sine 6.1b (10 µM) 5’-TCGCCTTAGA CCTTGCGTTA-3’and 0.17 µl Kappa Taq. 

Each PCR product contained 23 µl of mix and 2 µl of genomic DNA. The PCR product was 

amplified at 94°C for 3 min followed by 35 cycles of 94°C, 62°C, and 72°C for 30 s 

respectively, and a last cycle of 5 min at 72°C. Products were then run on 1.5% agarose gels. 
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Two species of Culex were found in Tiassalé rice field; Cu. tigripes and Cu. quinquefasciatus. 

Cu. tigripes were identified at larvae stage based on their ability to devour other larvae and 

were removed from collection. Moreover, those escaping removal at larval stage, were 

discarded later at adult stage based on features described in Edward’s identification’s key 

(1941) including tarsi devoid of pale rings, tibiae and femorae with longitudinal rows of 10-15 

rectangular white spots, wings length  (5.0-6.0 mm) and apical abdominal bands. Only Cu. 

quinquefasciatus female adults were considered for bioassays. In general, Cu. 

quinquefasciatus were characterized by similar length between the antennae and the proboscis 

(but often the proboscis appears slightly longer than the antennae), tarsi darker than the other 

components of body and the flagellum including 13 segments (Sirivanakarn et al. 1987). 

Moreover, a light brown head, a brown and curved narrow thorax, the brown wings and a 

brown proboscis were observed, as well as pale and narrow abdomen (Edward et al, 1941). 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

C 

 

 

B 

Figure 2.1: Illustration of field collections and susceptibility assays showing (A) Larval collection in 

Tiassalé rice field, (B) Larval-rearing and (C) Exposure to insecticides using WHO bioassay tubes 
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2.2.7. Genotyping assays                                                                                                                                                                                                            

Four genotyping assays (kdr L1014 F and S, N1575Y and ACE-1 G119S genotyping) were 

carried out (Figure 2.2). 

 

2.2.7.1. Kdr genotyping 

TaqMan assays described by Bass et al. (2007) were used to screen for the 1014F and 1014S 

kdr mutations. A total of 250 individuals exposed to 4% DDT, 0.05% Deltamethrin and 

0.75% Permethrin were screened for 1014F and 1014S kdr genotyping respectively. 

Mosquitoes exposed to deltamethrin (n=130) were also screened for the N1575Y mutation 

(Jones et al, 2012).  A total volume 9 µl per reaction was used for the mix, containing DNase 

free water (3.875 µl), sensimix (5 µl) and specific primer/Probe (0.125 µl) for kdr 1014F or 

1014S. The mix was centrifuged at 2000 rpm for approximately 10 seconds. 9 µl of the mix 

with 1 µl of each gDNA were added to each TaqMan PCR, and centrifuged at 2000 rpm for 

15 seconds. Reactions performed on the Agilent MX3005P qPCR system (Agilent 

Technologies). The genotype was determined from the fluorescence profiles and bi-

directional scatter plots generated in the MX3005P software. The PCR condition was 95°C 

for 10 minutes (1 cycle) following by 40 cycles of 95°C at 10 seconds and 60°C at 45 

seconds respectively. 

 

2.2.7.2. ACE-1 genotyping  

Genomic DNA from 275 mosquitoes exposed to 0.1% bendiocarb, 1.0% fenitrothion and 

0.2% pirimiphos methyl was screened for the presence of the Ace-1
R
 (G119S mutation) 

according to Restriction Fragment Length Polymorphism (RFLP) assay by Weill et al (2004). 

Genotypes were scored according to the band sizes on the agarose gel with resistant 

homozygous (RR) characterized by two fragments (150 bp and 253 bp), susceptible 

homozygous (SS) represented by a single fragment (403 bp) and heterozygous individuals 

(RS) with all three fragments. A TaqMan assay (Bass et al, 2010) was used to validate the 

diagnostic ACE-1 results from the RFLP assay carried out according to published protocol-

(Weill et al, 2004).  
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 2.2.8. Statistical analysis 

The prevalence of resistance was determined according to WHO procedures (WHO, 1998). 

The exposure time to reach 50% of mortality (LT50) in mosquitoes exposed to bendiocarb and 

deltamethrin was calculated with Sigmaplot version 11.0 software (www.sigmaplot.com). Chi-

square tests were used to check the variation of mortality between seasons and years, and to 

test association between alleles and genotypes, with odds ratios (OR) used to measure effect 

size and to compare the mortality with and without PBO. In general, the OR represents the 

odds that an association will occurs between the survival genotypes and resistance phenotype 

following exposure to insecticides or between mortality and exposure to PBO, compared to the 

odds of the association occurring in the absence of that exposure (in case genotyping 

association or symergist PBO association). An OR of 1 means that exposure does not affect 

odds of association, while exposure was considered associated with higher or lower odds of 

association when OR<1 or OR>1 respectively. Significance of level of association was defined 

by P-value at 5% confidence intervals. A generalised linear model (GLM) was used to test the 

effects of insecticide type, season and PBO on bioassay mortality.  
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Figure 2.2: Genotyping study design performed with Tiassalé An. gambiae mosquitoes 
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2.3. Results 

2.3.1. Prevalence of insecticides resistance  

To monitor the resistance level of insecticides available for malaria control in Tiassalé in 2011 

a total of 2912 females An. gambiae (54 %, n= 1571) or Culex quinquefasciatus (46%, n= 

1341) mosquitoes were exposed for 1 hour to bendiocarb, permethrin, deltamethrin, DDT, 

pirimiphos methyl and fenitrothion, in standard WHO susceptibility tests. The recorded 

mortality rates (24 hours later) in Culex sp indicated resistance to DDT (59.3%) only and 

suspected resistance to deltamethrin (90.9%) (Table 2.1). In An. gambiae, very low mortalities 

were recorded after exposure to DDT (8.2 %) and Bendiocarb (12.4 %). Mortality ranged from 

24 % to 31.9 % for the pyrethroids permethrin and deltamethrin respectively, 74 % for 

fenitrothion and 64% with pirimiphos methyl (Table 2.2).  Using the same insecticides, we 

repeated the bioassay experiments in 2012, to check any variation in resistance level between 

consecutive periods in An. gambiae (Figure 2.3). No difference in resistance to DDT (
2
= 

0.05, df= 2, p= 0.83), permethrin (
2
= 0.02, df= 2, p= 0.89), deltamethrin (

2
= 0.02, df= 2, p= 

0.92), bendiocarb (
2
= 0.08, df= 2, p= 0.78), fenitrothion (

2
= 0.02, df= 2, p= 0.88) or 

pirimiphos methyl (
2
= 0.01, df= 2, p= 0.95) was observed between 2011 and 2012.  

Variations in resistance between mosquitoes collected in the dry and rainy season were also 

investigated for insecticides except pirimiphos methyl (Figure 2.4). No seasonal variation was 

noted for any insecticide (DDT (
2
= 0.21, df= 2, p= 0.64), permethrin (

2
= 0.17, df= 2, p= 

0.68), deltamethrin (
2
= 0.28, df= 2, p= 0.60), bendiocarb (

2
= 0.25, df= 2, p= 0.62) and 

fenitrothion (
2
= 0.02, df= 2, p= 0.90) between  the seasons.  
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Table 2.1. Prevalence of insecticide resistance in Culex sp. from Tiassalé, Côte 

d’Ivoire, 2011 

Insecticides No. tested* No. Dead % Dead (95%CI) Status 

Permethrin 288 69 98.3 (96-99.4) S 

Deltamethrin 286 90 90.9 (86.6-94) SR 

DDT 194 25 59.3 (52.-66.3) R 

Fenitrothion 293 37 97.6 (95-99) S 

Bendiocarb 280 219 99.6 (98-100) S 

*Measured by death within 24 h, after 1h exposure to each insecticide. Culex 

mosquitoes were resistant (R) to DDT according to World Health Organization 

classification (<90% dead) but susceptible (S) to permethrin, fenitrothion and 

bendiocarb (98-100%). Resistance is suspected (SR) with deltamethrin according to 

World Health Organization classification (90-97% dead). 

 

 

Table 2.2. Prevalence of insecticide resistance in An. gambiae M form from Tiassalé, 

Côte d’Ivoire, 2011 

Insecticides No. tested* No.Dead % Dead (95%CI) Status 

Permethrin 288 69 24.0 (19.1-29.3) R 

Deltamethrin 282 90 31.9 (26.5-37.7) R 

DDT 306 25 8.2 (5.4-11.8) R 

Fenitrothion 296 37 74.0 (68.6-78.9) R 

Bendiocarb 299 219 12.4 (8.9-16.6) R 

Pirimiphos-methyl 100 64 64 (53.8- 73.4) R 

*Measured by death within 24 h, after 1h exposure to each insecticide. All 

mosquitoes were resistant (R) to all insecticides tested according to World Health 

Organization classification (<90% dead).  

 

http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm#r7
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm#r7
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm#r7
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm#r7
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm#r7
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm#r7
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm#r7
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Figure 2.3. Prevalence of insecticide resistance in An. gambiae from Tiassalé between 2011 

and 2012 during wet season. 

 

 

Figure 2.4. Prevalence of insecticide resistance in An. gambiae from Tiassalé between dry 

(March 2012) and wet season (June 2012) 
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2.3.2. Resistance ratio for bendiocarb and deltamethrin  

To evaluate the level of resistance to bendiocarb and deltamethrin, the Tiassalé population 

of An. gambiae, and the standard laboratory susceptible strain Kisumu were exposed to 

these insecticides for a range of exposure times and mortality was assessed 24 hours later.  

For the Tiassalé population, 50% mortality was observed after 248 minutes exposure to 

deltamethrin and 286 minutes for bendiocarb (Figures 2.5A and 2.6A). For Kisumu, the 

exposure times to reach 50% mortality were 12 and 1.8 minutes for bendiocarb and 

deltamethrin, respectively (Figures 2.5B and 2.6B). These resistance phenotypes equate to 

resistance ratios (calculated from the LT50s) of 24 for bendiocarb and 124 for deltamethrin 

for the Tiassalé population. 
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Figure 2.5. Time-mortality curve for (A) wild-caught An. gambiae mosquitoes from 

Tiassalé, Southern Côte d’Ivoire, exposed to deltamethrin (median time to death = 246 

minutes) compared to (B) Kisumu (median time to death = 1.8 minutes) and equating to a resistance 

ratio = 138. Logistic regression line was fitted to time-response data by using SigmaPlot version 11.0 

(www.sigmaplot.com). R2 = 0.88. Error bars indicate SEM. 
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2.3.3. Synergist PBO bioassays 

Overall, the synergist PBO exerted a significant influence on bioassay mortality for four of 

the five insecticides tested, with only DDT not significantly impacted (Figure 2.7). The 

synergising effect of PBO was strongest for bendiocarb, with a near five-fold increase in 

mortality, equivalent to an odds ratio for PBO-induced insecticidal mortality exceeding ten. 

However, for all of the insecticides, apart from fenitrothion, over 20% of the population 

survived even with PBO pre-exposure.  

 

Figure 2.6. Time-mortality curve for (A) wild-caught An.mosquitoes from Tiassalé, 

Southern Côte d’Ivoire, exposed to bendiocarb (median time to death = 286 minutes) compared 

to (B) Kisumu (median time to death = 12 minutes) and equating to a resistance ratio = 24. Logistic 

regression line was fitted to time-response data by using SigmaPlot version 11.0 (www.sigmaplot.com). 

R2 = 0.88. Error bars indicate SEM. 
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2.3.4. Species identification  

Five hundred An. gambiae mosquitoes collected in 2011 and 208 in 2012 were identified to 

molecular form and all found to be An. gambiae M form. A subset (100) of Culex mosquitoes 

has been morphologically identified prior bioassay and all were found to be Cu. 

quinquefasciatus. 

 

 

 

 

 

Figure 2.7. Insecticide resistance phenotypes from dry (blue) and wet (red) seasons 

with and without the synergist PBO. Bars are mean mortalities from four replicate bioassays (N=25 

each), with 95% binomial confidence limits. Odds ratios are shown above bars and represent the odds of mortality 

with PBO pre-exposure, compared to the odds of mortality with insecticide alone (data from the two seasons are 

pooled).*P<<0.001; NSnot significant (Χ2-test).  
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2.3.4.1. Target site mutations and phenotypic association 

2.3.4.1.1. Target site kdr mutation and phenotypic association  

Of the two potential substitutions at L1014, only the 1014F kdr allele was detected with the 

resistant allele present at very high frequency (83%) in 2011. The kdr 1014F allele was 

significantly association with survival to DDT, but not permethrin or deltamethrin (Table 

2.3). A total of 124 mosquitoes exposed to deltamethrin (45 survivors, 45 dead) and DDT 

(17 survivors, 17 dead) were genotyped for the N1575Y locus but the resistance-associated 

1575Y allele was not detected.  

 

2.3.4.1.2. Target site ACE-1 mutation and phenotypic association  

A total of 172 An. gambiae mosquitoes exposed to bendiocarb and fenitrothion in 2011 were 

analysed for ACE-1
 
mutation using RFLP (unique molecular tool available at local institute 

CSRS in 2011) and a subset of 48 were also screened using the TaqMan assay (at LSTM). 100 

% congruence between the two methods was obtained. Overall, no resistant homozygotes were 

found among the individuals genotyped. Moreover, no resistant homozygotes were found for 

the 89 individuals tested with TaqMan assay (in LSTM, but not screened using RFLP in local 

institute), following exposure to pirimiphos methyl in 2011. A significant association between 

the ACE-1 alleles and survival following exposure to bendiocarb, fenitrothion and pirimiphos 

methyl was detected (Table 2.4). Normally, the odd ratios were infinity for these three 

insecticides, which mean very extremely high association of survival genotypes and these 

insecticides following exposure. To quantify a lower limit estimate of odd ratios, respectively 

one individual from survivor genotype (GS) has been removed and attributed a dead genotype 

(GG) for each insecticide. The odd ratios became 100 for bendiocarb, 9.1 for fenitrothion and 

10.5 for pirimiphos methyl. The association level for the two organophosphates is relatively 

similar but both were low compared to bendiocarb (Table 2.4) 
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Table 2.3. Association between kdr genotype and mosquito survival after insecticide 

exposure 

Insecticides 
No.  

tested 
Status No. 

No. per 
Genotypes 

Frequencies Odds 
ratios 

 
P-

value 
LL LF FF 1014F 

DDT 73 Alive 48 2 7 39 88.5 4  
(1.4-
11.6) 

0.01 
  

 
Dead 25 2 10 13 72 

Permethrin 88 Alive 44 1 12 31 84.1 1.2  
(0.5-3) 

0.82 
  

 
Dead 44 3 12 29 79.5 

Deltamethrin 89 Alive 45 1 12 32 84.4 0.8 
(0.3-2.1) 

0.86 
  

 
Dead 44 2 9 33 85.2 

The frequencies were calculated for each insecticide and mosquito status (alive/dead) 

after exposure. F and L represent mutant resistant alleles (phenylalanine) and wild-type 

alleles (leucine), respectively. Genotypic (recessive) odd ratio is non-significant for 

permethrin and deltamethrin, except DDT. Significant Odd ratio exceeding 1 also means 

significant association (see material and methods).  

 

 

 

Table 2.4. Association between genotype and mosquito survival after insecticide exposure* 

Insecticides 
No.  

tested 
Status No. 

No. per 
Genotypes 

Frequencies Odds 
ratios 

P-value 

GG GS SS 119S 

Bendiocarb 
86 
  

Alive 49 0 49 0 50 100 
(12.3-
813.8) 

1.3 x 
10-

11
 Dead 37 25 12 0 16.2 

Fenitrothion 
86 
  

Alive 45 0 45 0 50 9.1 
(1.1-77.2) 

0.02 
Dead 41 7 34 0 41.5 

Pirimiphos 
methyl  

89 
  

Alive 41 0 41 0 50 
10.5  

(1.2-86.2) 
0.01 

Dead 48 10 38 0 39.6 

 The frequencies were calculated for each insecticide and mosquito status (alive/dead) after 

exposure. S and G represent mutant resistant alleles (serine) and wild-type alleles (glycine), 

respectively. No resistant homozygotes GG were found among the 261 mosquitoes from 

bendiocarb, fenitrothion and pirimiphos methyl exposure and genotyped for ACE-1. Lower 

limit estimate of genotypic (recessive) odd ratio reported with confidence intervals in 

parentheses. Significant Odd ratio exceeding 1 also means significant association (see 

material and methods). 
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2.4. Discussion 

The prevalence of resistance to the six insecticides tested remained stable between 2011 and 

2012 and between seasons in 2012. This could be linked to insecticide pressure that remained 

fairly constant throughout this period. Indeed, the main rice field of Tiassalé is cultivated all 

year by farmers association with insecticides such as Decis 60EC (deltamethrin), furadan 

(carbosulfan), Bastion 5G (organophosphate) cypercal (cypermethrin) applied throughout the 

year. Other publications from Eastern Côte d’Ivoire (Tia et al, 2006) and Burkina Faso 

(Diabate et al, 2002) and Cameroon (Chouaibou et al, 2008) have reported temporal shifts in 

resistance levels observed at the end of the rainy season. 

PBO synergised bendiocarb, fenitrothion, deltamethrin and permethrin, but not DDT. The 

lack of PBO effect on DDT mortality has been reported in other Anopheles populations 

(Koffi et al, 2013 M’Be; Nwane et al, 2013) suggesting that P450s may not be the major 

resistance mechanism to this insecticide even if CYP6M2 was linked in Ghanaian M forms 

(Mitchell et al. 2012) . GSTs, notably GSTe2, have also been associated with DDT resistance 

in multiple An. gambiae populations (Ranson et al., 2001; Ortelli et al., 2003; Ding et al, 

2003). Additional synergist such diethyl maleate (DEM) will be tested in near future. In 

Tiassalé, a significant association between DDT resistance and the presence of the 1014F kdr 

allele was observed.  A similar association was not observed between 1014F and pyrethroid 

resistance which was surprising given the large number of previous studies which have 

shown a clear causative link between this kdr mutation and pyrethroid resistance (Donnelly et 

al, 2009).  With the presence of 1575Y mutation in neighbouring country Burkina Faso, its 

absence is unexpected in Tiassalé where high level of deltamethrin and DDT resistance, was 

noted. The N1575Y mutation was recently reported to induce a synergism effect by enhancing 

the sensitivity of the sodium channel gate produced by kdr 1014 mutations (Lingxin Wang, 

2013; Rinkevich et al, 2013; Jones et al, 2012).  

The impact of PBO in increasing carbamate and organophosphate mortality suggests a 

potential role for P450s in conferring resistance to these insecticide classes in Tiassalé. 

Increased mortality to bendiocarb has already been reported following exposure to Diethyl 

maleate (DEM) carbamate selected An. arabiensis from South Africa (Mouatcho et al, 2010). 

However, the presence of the ACE-1 allele was also associated with organophosphate and 

carbamate resistance as shown previously (Alou et al, 2010). The absence of 119S 
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homozygotes might be attributable to the high fitness cost of the ACE-1 allele in the absence 

of insecticide (Labbé et al, 2007; Chi et al, 2004) but could also be indicative of gene 

duplications at this locus as investigated in chapter 3. 

Since An gambiae and Culex larvae are found sympatrically within the same breeding site of 

Tiassalé’s rice field and based on previous studies that reported evidence of Culex resistance to 

insecticides (Chandre et al, 1999b; Konan et al, 2003; Guillet et al, 2001), we also check the 

susceptibility status of Culex sp originated from rice field. Surprisingly, Culex 

quinquefasciatus was only resistant to DDT and susceptible to pyrethroids, carbamates and 

organophosphates. This was unexpected as both resistant An. gambiae population and Culex 

were collected from the same breeding site and raises questions about the relative importance 

of insecticides in the larval environment for selecting for resistance in adults in this location.   

The An. gambiae mosquitoes collected from the rice fields of Tiassalé are resistant to all four 

of the insecticide classes available for mosquito control (Edi et al, 2012, Appendix 2.1). This 

was the first wild population of Anopheles to display, such extreme multiple resistance. 

Furthermore, the levels of resistance in Tiassalé were very high with 50% of mosquitoes 

having survived over four hour exposure to deltamethrin and bendiocarb (Appendix 2.1). Data 

on the strength of resistance in field populations of An. gambiae is scarce. However, the LT50 

for An. gambiae from Jinja, Uganda exposed to deltamethrin (estimated LT50 = 292 min) 

exceeded that detected in Tiassalé (estimated LT50 = 246 min) (Mawejje et al, 2013) and as 

that of Vallee du Kou (LT50 = 254 minutes) in 2012 (Toe et al, 2014). Nevertheless, resistance 

levels such as those reported in Tiassalé, combined with continual selection pressure, will 

inevitably lead to sub optimal control via both ITNs and IRS.  If unchecked this resistance 

could spread very rapidly, and threaten the fragile gains that have been made in reducing the 

malaria burden across Africa.  
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Identification of genes and 

mutations associated with 

carbamate resistance in Tiassalé 
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3.1 Introduction  

No new insecticide classes have been developed for disease vector control in the past 40 

years, and, despite current efforts it will be several years before insecticides with novel 

modes of action are available for public health (IVCC, 2013). Therefore, strategies for 

vector-targeted malaria control remain dependent upon existing insecticides. 

Unfortunately, an increasing number of populations of African malaria vectors have 

developed multiple resistance mechanisms (Corbel et al, 2007; Namountougou et al, 2012). 

Resistance to all classes of insecticides available has recently been reported in Tiassalé, 

southern Côte d’Ivoire (Chapter 2 (Edi et al, 2012)), compromising the use of 

organophosphates (OP) and carbamates (CX) as alternatives to control the pyrethroid-

resistant populations (Akogbeto et al, 2010). 

Today it is clear that all vector control programs need to be implemented using the 

principles of insecticide resistance management (WHO, 2012).  A major concern in 

resistance management is the lack of knowledge of the range of resistance mechanisms 

which can contribute to multiple resistance in field populations of malaria vectors (WHO, 

2012). Phenotypic multiple insecticide resistance could be cross-resistance, based on 

common mechanisms acting across insecticides, or the presence of multiple, independent 

resistance mutations (Ranson et al, 2011). Thus, studies are needed to explore all patterns 

of cross-resistance, to generate information useful to the manufacturer of new compounds 

and programs involved in the management of resistance. In this study the potential role of 

elevated gene expression and target site mutations in bendiocarb-resistant, field-collected 

Anopheles gambiae s.s. from Tiassalé (Côte d’Ivoire) is explored.  

 

3.2. Material and methods  

3.2.1. Mosquito samples and Microarray design 

Details of samples used in this chapter are listed in Table 3.1. Two groups of experiment were 

completed. The first group involved wild (unexposed) Tiassalé females held for 360 min with 

control paper, which did not induce mortality. The second group involved Tiassalé females 

selected by exposure to 0.1% bendiocarb (using WHO tubes and papers) for 360 min which 

induces approximately 80% mortality after 24 h. Both Tiassalé strains were compared to two 



 

 
58 

bendiocarb susceptible strains (the Cameroonian-NGousso strain and Malian-NIH strain) and a 

field population from Ghana (Ghanaian-Okyereko).  Three biological replicates of each strain 

were used, except Ngousso where there were N=2 replicates in microarray experiments due to 

limited samples.  

 

3.2.2. Target preparation 

3.2.2.1. RNA extraction 

After scoring the bioassay, batches of five or ten surviving mosquitoes were killed by dipping 

into 100% ethanol and then placed into 1.5ml eppendorf tubes containing a 1 mlof RNAlater 

solution. The tubes were stored at 4°C overnight and then at -80°C the following day for 

longer-term storage until RNA extraction. Total RNA was extracted using the Ambion RNA 

Isolation Kit (RNAquerous®-4PCR Kit). Batches of ten mosquitoes were crushed in 200 µl 

of Lysis buffer and centrifuged at RCF 15000 g for 1 min (after adding an equal volume of 

64% Ethanol). DNase Inactivation Reagent (0.1 volume) was added and incubated for 1 min 

at room temperature to remove contaminating DNA. The sample was centrifuged and the 

supernatant containing the RNA was transferred to a new collection tube and stored at -80°C.  

 

 



 

 

 

 

Table 3.1. Details of An. gambiae samples used in experiments  
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Côte 
d'Ivoire 

Tiassalé 
5.898 N, 
4.823 W 

May and 
Nov 
2011 

R R n/a R R n/a R n/a n/a R 1 

Mali NIH 
14.267 N, 
5.833 W 

2005 n/a (S) n/a (S) 
n/a 
(S) 

n/a 
(S) 

S 
n/a 
(S) 

n/a (S) n/a (S) n/a (S) n/a (S) 2 

Cameroon Ngousso 
3.867 N, 
11.517 E 

2006 n/a (S) n/a (S) 
n/a 
(S) 

low n/a (S) 
n/a 
(S) 

n/a (S) n/a (S) n/a (S) n/a (S) 3,4 

Ghana Okyereko 
5.417 N, 
0.600 W 

May-10 R R R R S n/a S S n/a n/a 5 

Resistance data (60 min WHO bioassays)       References           

R: resistant (<90% mortality ) 

    

1. Edi et al. 2012 Emerging Infectious Diseases 
18:1508-1511 

 
  

S: susceptible (>97% mortality) 

    

2. Edi et al, 2014a 

   
  

low: near-susceptible (>90% mortality) 

   

3. Fossog Tene et al. 2013. PLoS ONE 
8: e61408 

   
  

N/A: no data available 

     

4. Mitchell et al. 2012. Proc Natl Acad Sci USA 109: 
6147-52 

 
  

N'A (S): source of data unclear but generally considered susceptible to 
insecticides 

5. Mawejje et al,  2010 MSc thesis Liverpool School of 
Tropical Medicine 
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3.2.2.2. RNA quantity and quality  

One microliter of each RNA sample was analysed on a NanoDrop spectrophotometer (Thermo 

Fisher Scientific). The yield (ng/µg) and the absorbance (260/280) were recorded. Only RNA 

samples with quantity greater or equal to 100 ng/µg and absorbance value between 2 and 2.2 

were used in subsequent steps.  

An additional microliter of RNA from each sample was assessed for quality using a 2100 

Bioanalyzer (Agilent Technologies). Only RNA samples with clear  triple peaks around the 

18 S region and a relatively flat line between 200 and 1500 nt - indicating little degradation 

of the sample - were retained (Figure 3.1). 

 

 

Figure 3.1. Example of typical trace for good quality total RNA from a Tiassalé’s mosquito 

pool. 

 

3.2.2.3. cRNA labelling 

Prior to hybridization, RNA was labelled using the Aligent microarray protocol (as described 

in Mitchell. 2012). Fluorescent nucleotides cyanine 3-CTP (Cy3) or Cyanine 5-CTP (Cy5) 

(GeneBeam, Enzo) were incorporated into the first-strand cDNA. Transcription of cDNA to 

cRNA was performed with a total of 6 µl per reaction containing Nuclease-free water, 5X 

First strand Buffer, 0.1 M DTT, NTP mix, T7 RNA polymerase Blend and Cyanine 3-CTP or 

cyanine 5-CTP. Amplified cRNA was purified using Qiagen RNeasy mini spin columns. 84 

µl of nuclease free water (SIGMA/GIBCO), 350 µl of RTL buffer and 250 µl of molecular 

grade ethanol (96-100% purity) were added to 16 µl of amplified cRNA.  700 µl of cRNA 

sample were then transferred to an RNeasy spin column in 2 ml collection tube and 
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centrifuged at 13,000 rpm for 30 seconds (4°C). After a series of washes (with buffer RPE) 

and centrifugation, cRNA was quantified, as described above, and stored at -80°C after.  

 

3.2.2.4. Microarray fragmentation 

cRNA samples were fragmented in 25 µl reactions containing cyanine 3-labelled cyanine 5-

labelled cRNA (300 ng of each) 5 µl of 10X Blocking Agent, an appropriate volume of 

nuclease-free water and 1 µl of 25X Fragmentation Buffer. The reaction was incubated at 60° 

C for 30 minutes and then terminated by placing the reaction tubes two minutes on ice. Then 

25 µl of 2x Gex Hybridization Buffer HI-RPM were added to each reaction tube, mixed, 

briefly centrifuged  and stored on ice. 

 

3.2.2.5. Microarray hybridization 

Hybridization was carried out overnight (17 hours) at 65°C, 14 g. 40 µl of each hybridization 

mixture were dispensed into the centre of the hybridisation chamber, avoiding air bubbles. The 

microarray slide was lowered onto the gasket slide and the chamber cover sealed using a 

clamp was used to firmly tighten them.  

 

3.2.2.6. Microarray washes 

Gene Expression wash buffer, containing Triton X-102, and pre-warmed to 37°C, were used to 

wash the slides. The microarray wash conditions was one minute (Wash buffer one) followed 

by one minute wash in Wash buffer 2, 10 seconds in Acetonitrile and 30 seconds in fixative 

solution. Arrays were then placed into a protective box ready for scanning. 

 

3.2.2.7. Scan and feature extraction  

Arrays were scanned using an Agilent G2505C/G2539A series microarray scanner utilising 

the ‘default’ profile and settings according to the system user manual (v7.0). 
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Both the H (High PMT, 100%) and L (Low PMT, 10%).tif images were combined and 

extracted using Feature Extraction Software GE2_10.5_Dec08 (Agilent) and the custom array 

grid template. Each array dataset containing Quality Control (QC) reports and result files 

were exported for further analysis. QC report PDF files were check for the quality of the 

array. QC score of 10-11 was retained as good quality and results files were checked using 

Genespring GX v9.0 software (Agilent) (see below). 

 

3.2.3. Validation of microarray results 

  

3.2.3.1. Primer design  

The primer-blast software (http://www.ncbi.nlm.nih.gov/ tools/primer-blast/) was used to 

design primers for quantitative PCR. Primers that spanned an exon-exon junction and 

satisfied the PCR product size (Minimum: 100 and Maximum: 250) were selected (Table 

3.2).  

 

3.2.3.2. Assessment of quantitative RT-PCR primer performance 

Extracted RNA used for microarray experiments was also used for quantitative PCR (qPCR). 

Complementary DNA (cDNA) was synthesized from each RNA using oligo(dT)20  

(Invitrogen) and Superscript III according to the manufacturer's instructions and purified with 

QIAquick® PCR Purification Kit. Relative expression levels for each gene of interest were 

calculated by the ΔΔCT method following correction for variable PCR efficiency (Livak and 

Schmittgen, 2001). All qRT-PCR reactions were run on an Agilent Stratagene thermal cycler, 

with analysis by Agilent’s MXPro software (Mx3005P). The PCR conditions were 30 min for 

95°C, 40 cycles of 10 s at 95°C and 60°C respectively, 1 min for 95°C, 30 s for 55°C and 

95°C respectively. A dilution series from a single cDNA sample (10ng, 5ng, 1ng, 0.2ng, 

0.1ng, 0.04ng and 0.01ng) was used to generate standard curves.  Two stably-expressed genes 

(RS7 and Elongation Factor 1) were used for normalisation (Table 3.2). 

 

 

http://www.ncbi.nlm.nih.gov/%20tools/primer-blast/
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Table 3.2.  qRT-PCR primer details for gene expression analysis 

Gene 
name 

VectorBase 
Accession 
Number 

Primer name Primer sequence (5’ to 3’) 
Efficiency 

(%) 

Rps7 AGAP010592 
S7qf1 AGAACCAGCAGACCACCATC 

106.4 
S7qR1 GCTGCAAACTTCGGCTATTC 

Elongatio
n Factor 

AGAP005128 
EFf1 

GGCAAGAGGCATAACGATCAATGC
G 91.1 

EFr1 GTCCATCTGCGACGCTCCGG 

ACE-1 AGAP001356 
ACE-1_q3_F CACGGCGACGAGATCAACTA 

106.3 
ACE-1_q3_R TGGGATTTGGATTGCCGGTT 

CYP6M2 AGAP008212 
M2qf1 TACGATGACAACAAGGGCAAG 

104.4 
M2qr1 GCGATCGTGGAAGTACTGG 

CYP6P3 AGAP002865 
P3qf2 

TGTGATTGACGAAACCCTTCGGAA
G 105.4 

P3qr2 ATAGTCCACAGACGGTACGCGGG 

CYP6P5 AGAP002866 

CYP6P5_q3_
F 

AACCCGGACATTCAGGATCG 

90.7 
CYP6P5_q3_
R 

TGCGTAACGTTTCGTTGATTACG 

CYP6P4 AGAP002867 

CYP6P4_9b_
F 

GTCTGCGGGAGGAAATCGAG 

102.3 
CYP6P4_9b_
R TACTTGCGCAGGGTTTCATTG 

 

 

3.2.4. ACE-1 G119S copy number analysis  

A TaqMan qPCR assay (Bass et al, 2011) run on an Agilent Stratagene real-time thermal 

cycler was used to genotype PBO-exposed samples for the ACE-1 G119S polymorphism, 

with qualitative calling of genotypes based on clustering in endpoint scatterplots.  G119S 

genotype call data for samples not exposed to PBO was extracted from data described in 

Chapter 2. To quantify the copy number variation suggested by the TaqMan genotyping 

results, an qRT-PCR assay was applied to amplify fragments from three different exons of 

the ACE-1 gene, with normalisation (for varying gDNA concentration among samples) 

provided via comparison with amplification of a fragment from each of two single-copy 

genes CYP4G16 and Elongation Factor. Primer details are given in Table 3.3 and qRT-PCR 

conditions are the same as listed above for gene expression analysis with the exception that 

gDNA, not cDNA was used as the template. 
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Table 3.3.  qRT-PCR primer details for copy number variation analysis 

Gene name 
Vectorbase 
Accession 
Number primer name primer sequence (5’ to 3’) 

Efficiency 
(%) 

Elongation 
Factor 

AGAP005128 EF_gq_1F AGCAGCTGTTCAGCAAAACG 
93.5 

 

EF_gq_1R TCTCCCGCACAGTGAAAGAC 

CYP4G16 
AGAP001076 CYP4G16gq_5F ATTGCGCATACAGATGGCCT 

95.5 

 
CYP4G16gq_5R CGGTCCAGGTATCCGTTCAG 

ACE-1 
AGAP001356 ACE-1_gq_5F CCATGTGGAACCCGAACACG 

93.8 

 

ACE-1_gq_5R GTCGTACACGTCCAGGGTG 

ACE-1 
AGAP001356 Ace1_gq_12_F TATCTGTACACGCACCGCAG 

97.2 

 

Ace1_gq_12_R TTCGCCGAACACGTAGTTGA 

ACE-1 
AGAP001356 Ace1_gq_1bF CGGCGACCGTCAGATTCATA 

96.9 

 

Ace1_gq_1bR GTCCGCCACCACTTGTTTTC 

 

 

3.2.5. Statistical analysis 

Microarray experiment files were imported into GeneSpring GX v9.0 software (Agilent), and 

analysis performed according to Agilent-recommended procedures. Once dye swaps were 

defined, the distribution of log ratio intensity values of the probes within the sample was 

checked via a BoxWhisker Plot. To avoid any systematic variation that could be linked to any 

differences in hybridization between chips and affected statistics, baseline transformation was 

conducted in order to rescale all gene intensities to the same relative abundance level 

centering around zero (Baseline to median of all samples). All entities were filtered based on 

a q value <0.05 (false-discovery rate (FDR) corrected p-value). Up-regulated genes emerging 

from microarray experiments were studied at the functional level using David Bioinformatics 

resources 6.7 (Huang et al, 2007; 2009). Terms that satisfied both the enrichment score ≥ 1.3 

and FDR-corrected P≤ 0.05, were considered enriched.  

Relative copy number levels for ACE-1 were estimated relative to two pools of samples (N=4 

each) from the Kisumu laboratory strain by the ΔΔCT method (Livak et Schmittgen, 2001). 

ΔΔCT values for each test sample are the mean for the three ACE-1 amplicons following 

normalisation to both single copy genes and subtraction of the average normalised Kisumu 

values. Test samples were 16 ACE-1 G119S heterozygote survivors and 16 dead, chosen at 
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random from those genotyped by the TaqMan assay. ΔΔCT values were compared between 

survivors and dead using an unequal variance t-test, computed in Excel. 

 

3.3. Results 

 

3.3.1. Genes differentially expressed between Tiassalé resistant and control groups 

Microarray analysis was first performed by directly comparing Tiassalé samples that had 

survived bendiocarb exposure (approximate LT80) with unexposed mosquitoes from the 

same site. q value <0.05 (false-discovery rate (FDR) corrected p-value) did identify 1237 

significant hits with 5 exceeding a value log qvalue of 1.3 (Figure 3.2) but the analytical 

power was limited and there were many borderline-significant probes, including for 

detoxification genes.  

 

 

 

 

Figure 3.2. Microarray results for Tiassalé selected vs unexposed controls. Arbitrary 

cut-offs of log2FC=0.6 and –log q=1 are used to determine points to label. (n) within data point label 

represents the number of replicate probes for a gene. 
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3.3.2. Genes differentially expressed between Tiassalé and bendiocarb susceptible populations 

To increase the power of the study, and identify genes potentially involved in the extreme 

bendiocarb resistance observed in Tiassalé, field-collected samples were compared to 

bendiocarb susceptible populations from Ghana, Cameroon and Mali (Okyereko, NGousso 

and Mali-NIH respectively). Two Tiassalé groups were used: either without insecticide 

exposure, or the survivors of bendiocarb exposure selecting for the 20% most resistant 

females in the population (Figure 3.3). Within each experiment, the total number of over-

expressed entities is shown in Figures 3.4 and 3.5. Microarray data are deposited with 

ArrayExpress under accession number E-MTAB-1903. 

 

 

carb: carbamate;    res: resistant,   sus: susceptible 

 

Figure 3.3. Microarray experimental design. Arrows indicate pairwise comparisons with direction 

indicating an increasing level of bendiocarb resistance, which was used to predict the expected direction of 

differential gene expression (only solid arrows were used to determine significance). Coloured boxes indicate 

samples resistant to bendiocarb; the red box indicates the only bendiocarb-selected sample. An additional 

criterion for significance was applied to increase specificity of results to the bendiocarb phenotype: fold-change 

for each Tiassalé-selected vs. sus comparison must be more extreme than the corresponding Tiassalé vs. sus 

comparison.  
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Entity List 1: T Test 

against Zero [[RS]] P≤ 

0.05 FC ≥ 2.0 Tiassalé 

resistant vs Ghana 

822 entities 

 

 

Entity List 1: T Test 

against Zero [[RS]] 

P≤ 0.05 FC ≥ 2.0 

Tiassalé resistant vs 

Ngousso 2414 

entities 

 

 

Entity List 1: T Test 

against Zero [[RS]] 

P≤ 0.05 FC ≥ 2.0 

Tiassalé resistant vs 

Mali     1254 entities 

 

 

Figure 3.4. Venn diagram showing total entities differentially over-expressed in Tiassalé  

 resistant versus Ghana, Mali and Ngousso. 

 

 

 

Entity List 1: T Test 

against Zero [[RS]] P≤ 

0.05 FC ≥ 2.0 Tiassalé 

control vs Ngousso 

2349 entities 

 

 

Entity List 1: T Test 

against Zero [[RS]] P≤ 

0.05 FC ≥ 2.0 Tiassalé 

control vs Mali     

1362 entities 

 

 

Entity List 1: T Test 

against Zero [[RS]] P≤ 

0.05 FC ≥ 2.0 Tiassalé 

control vs Ghana   

657 entities 

 

 

Figure 3.5. Venn diagram showing total entities differentially over-expressed in 

Tiassalé control versus Ghana, Mali and Ngousso. 
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A stringent filtering process was applied to determine significant differential expression 

(detailed in the legend to Figure 3.3 above), which included criteria on both the probability 

and consistency of direction of differential expression, and also required a more extreme level 

of differential expression in the Tiassalé-selected than Tiassalé -unexposed vs. susceptible 

comparisons. Inclusion of this third criterion enhanced the likelihood that genes exhibiting 

differential expression are associated with bendiocarb resistance, rather than implicated via 

indirect association with another insecticide. Moreover, the requirement for significance in 

comparisons involving both bendiocarb-exposed and unexposed Tiassalé samples negates the 

possibility that any differential expression identified was a result solely of induction of gene 

expression by insecticide exposure.  

Overall, out of a total of 14 914 non-control probes, 145 probes were significant, with almost 

all (143/145) expressed at a higher level in the resistant samples (see Appendix 3.1). Of these, 

CYP6P3, CYP6P4, CYP6M2 and cytochrome b5 are amongst the most significant and/or over-

expressed genes (Figure 3.6). Of the five physically-adjacent CYP6P subfamily genes in An. 

gambiae, CYP6P1 and CYP6P2 were also significant (Appendix 3.1), and CYP6P5 only 

marginally non-significant according to our strict criteria (five out of the six comparisons 

q<0.05). The four probes for the ACE-1 target site gene exhibited the strongest statistical 

support (lowest q-values) for resistance-associated overexpression in this dataset (Figure 3.6). 
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3.3.3. David functional annotation 

Functional annotation clustering analysis detected two significant clusters (of 2.3 and 1.4 

Enrichment score respectively) within the significantly over-expressed genes (Table 3.4). The 

larger cluster was enriched for several P450s and the functionally-related genes cytochrome b5 

and cytochrome P450 reductase, while the second cluster was enriched by metal ion binding. 

 

 

 

 

Figure 3.6. Genes significantly overexpressed (relative to susceptible samples) in 

Tiassalé bendiocarb resistant samples. Plots show log2-transformed fold-changes (FC) plotted 

against -log10 transformed q-values (multiple-testing-corrected probabilities) for bendiocarb-selected 

Tiassalé samples versus the average of the three susceptible populations. For genes represented by 

multiple probes, numbers in parentheses indicate the number of probes significant/total.  
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Table 3.4. David functional annotation clusters 

Cluster 1. Enrichment Score: 2.302 

Category Term Count % P-value 
Fold 

Enrichment FDR 

SP_PIR_KEYWORDS Heme 6 5.6 0.001 7.6 1.1 

SP_PIR_KEYWORDS Monooxygenase 5 4.6 0.003 8 3.3 

INTERPRO 
IPR002401:Cytochrome 
P450, E-class, group I 5 4.6 0.003 7.9 4.1 

SP_PIR_KEYWORDS Iron 6 5.6 0.003 5.9 3.3 

INTERPRO 
IPR017972:Cytochrome 
P450, conserved site 5 4.6 0.004 7.4 5.3 

GOTERM_MF_FAT 
GO:0046906~tetrapyrrole 
binding 6 5.6 0.005 5.3 5 

GOTERM_MF_FAT 
GO:0020037~heme 
binding 6 5.6 0.005 5.3 5 

INTERPRO 
IPR017973:Cytochrome 
P450, C-terminal region 5 4.6 0.005 7.3 5.5 

GOTERM_MF_FAT 
GO:0005506~iron ion 
binding 7 6.5 0.006 4.1 6.5 

INTERPRO 
IPR001128:Cytochrome 
P450 5 4.6 0.008 6.3 9 

GOTERM_MF_FAT 
GO:0009055~electron 
carrier activity 6 5.6 0.02 3.9 15.9 

COG_ONTOLOGY 

Secondary metabolites 
biosynthesis, transport, 
and catabolism 5 4.6 0.02 4.3 8.6 

Cluster 2. Enrichment Score: 1.393 

Category Term Count % P-value 
Fold 

Enrichment FDR 

GOTERM_MF_FAT 
GO:0046914~transition 
metal ion binding 16 14.8 0.03 1.7 25.4 

GOTERM_MF_FAT 
GO:0046872~metal ion 
binding 18 16.7 0.04 1.6 33.8 

GOTERM_MF_FAT GO:0043167~ion binding 18 16.7 0.05 1.5 45.7 

GOTERM_MF_FAT 
GO:0043169~cation 
binding 18 16.7 0.05 1.5 45.7 
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3.3.4. Quantitative PCR analysis  

Quantitative real-time PCR was used to validate the microarray analysis. Overexpressed P450 

candidate genes ACE-1, CYP6P3, CYP6M2, CYP6P4 and CYP6P5 were used in the qPCR 

experiments. Overall the analysis showed significant agreement between microarray and 

qPCR. ACE-1 and CYP6P3 were overexpressed in both Tiassalé control and Tiassalé 

resistant populations relative to Ghanaian Okyereko susceptible population (all p< 0.001). 

CYP6M2, CYP6P4 and CYP6P5 were significantly expressed only in Tiassalé resistant 

relative to Okyereko (p< 0.01, respectively). High variability was observed between 

replicates, especially for CYP6M2, meaning relatively few pairwise comparisons were 

significant, however, it is notable that for every gene, expression of Tiassalé resistant was 

higher than Tiassalé control (Figure 3.7). Highest overexpression levels were observed for 

CYP6M2 (8.2 fold) and CYP6P4 (6.1 fold), though the level for the latter was much less than 

observed in the microarray analysis. 

 

 

Figure 3.7: qRT-PCR normalised expression analysis of candidate genes 

Bars show mean fold changes relative to the bendiocarb and organophosphate susceptible Okyereko population. 
Asterisks indicate significant over-expression. Expression differences between pairs of populations are 

significant where error bars do not overlap. N = 5 biological replicates for Tia and 3 for Tia_sel.  
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3.3.5. Independence of ACE-1 and P450 mediated resistance 

To examine the independence of putatively P450-mediated resistance and AChE target site 

insensitivity, we typed the G119S locus in females from the diagnostic (60 min) bendiocarb 

assays with and without pre-exposure to PBO. The  ACE-1G119S substitution is the only non-

synonymous target site mutation in ACE-1 known in An. gambiae, and the resistant (serine) 

allele is common in Tiassalé with an estimated frequency of 0.46 (N = 306) (Chapter 2). 

Absence of the 119 serine allele appears to almost guarantee mortality with bendiocarb (Table 

3.5). However, the strong bendiocarb resistance association of G119S was reduced 

significantly by PBO pre-exposure (homogeneity χ
2
 = 8.3, P = 0.004) with the probability of 

survival for heterozygotes reduced to approximately 50% (Table 3.5). 

 

 

Table 3.5. Resistance association of the G119S target site mutation, in the presence and 

absence of PBO following 60 min bendiocarb exposure.  

 

Treatment Phenotype 

ACE-1 G119S genotype 

χ
2
 P 

S/S G/S G/G 

Bendiocarb 

Alive 0 49 0 

43.46 10
-12

 

Dead 0 12 25 

bendiocarb + PBO 

Alive 0 38 1 

3.07 0.08 

Dead 0 35 7 

Homogeneity test 8.28 0.004 
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3.3.6. Relationship between ACE-1 G119S genotyping and copy number variation  

Two approaches were used to investigate the relationship between ACE-1 G119S genotyping 

and copy number variation in bendiocarb resistance. First, we investigate whether 

heterozygote survivorship might be linked to copy number variation, via a difference in 

numbers of serine and glycine alleles, and second, we investigate copy number more directly 

in a portion of the surviving and dead individuals typed as G119S heterozygotes. 

 In the first case, we examined the qPCR dye balance ratio for survivor and dead individuals 

within the heterozygote genotype call cluster (Figure 3.8). In many individuals called as 

heterozygotes, a markedly higher ratio of 119S: 119G dye label than the 1:1 expected for a 

true heterozygote was evident (Figure 3.8), and surviving heterozygotes exhibited a 

significantly higher serine: glycine dye signal ratio than those killed (t-test, P = 1.5×10
−5

).  

 

 

 

Figure 3.8. ACE-1 G119S TaqMan genotyping scatterplot of females exposed to bendiocarb, 

following PBO synergist exposure. Filled dots are genotypes called, unfilled are those excluded owing to 

ambiguous position. Blue color is used for survivor genotypes and red for dead genotypes. The line illustrates a 

1:1 Glycine (G): Serine (S) allele balance. Triangles are controls: S/S = mutant (resistant) allele homozygote; 

G/G = wild type (susceptible) allele homozygote. The dashed circle illustrates heterozygous genotypes.  
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Copy number variation was investigated directly in relation to proportion of survivors and 

dead, using an additional qRT-PCR diagnostic. The difference in copy number was highly 

significant between survivors and dead, with 15/16 survivors but only 5/16 dead females 

exhibiting a copy number ratio in excess of 1.5 (Figure 3.9), consistent with possession of an 

additional allele. These results show that independent of the enzymes inhibited by PBO 

survival, females heterozygous for the G119S mutation (i.e. most individuals in Tiassalé) 

depends upon ACE-1 copy number variation and possession of additional resistant serine 

alleles. 

 

Figure 3.9. ACE-1 G119S genomic DNA copy number variation in bendiocarb resistance from 

survivors and dead (N = 16 each) from the heterozygote genotype cluster. Bars show mean ΔΔCT values relative 

to a standard susceptible laboratory strain (Kisumu) following normalisation against reference genes; error bars 

are 95% confidence intervals. In both plots blue denotes bioassay survivors and red denotes dead. 
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3.4. Discussion 

This chapter examined the molecular basis of carbamate resistance in Tiassalé. Prior to this 

very little was known about the mechanisms involved in carbamate resistance in wild An. 

gambiae, beyond association of the ACE-1 G119S mutation. It was recently shown that 

possession of the serine mutation at the ACE-1 G119S locus is a necessary prerequisite for 

mosquitoes for surviving exposure to bendiocarb (Essandoh et al. 2013). In this chapter, over-

expression of ACE-1 was detected in resistant females; a transcription profile that resulted in 

the lowest test probability for any gene in the microarray analysis. It was also shown that 

the ACE-1 gene was duplicated in some individuals, with those resistant to carbamate much 

more likely to have additional, duplicated copies of the resistant ACE-1 allele (Edi et al, 

2014a; Appendix 3.2). ACE-1 duplication was previously described in An. gambiae 

populations of Côte d’Ivoire and Burkina Faso in West Africa (Djogbenou et al, 2009). 

Evidence for metabolic resistance to carbamates was relatively weak prior to this study.  PBO 

has occasionally been reported to increase carbamate mortality in insects: in resistant strains 

of houseflies (Liu and Yue 2000) and cockroaches Blatella germanica (Scott et al. 1990); a 

susceptible strain of Aedes aegyptii (Bonnet et al. 2009); and southern African An. funestus, 

exhibiting marginal resistance to propoxur (Brooke et al, 2001). Microarray results also 

implicated members of the P450 gene superfamily in bendiocarb resistance. Esterase-

mediated metabolism of carbamates has also been proposed (IRAC 2011). In chapter two, it 

was shown that PBO partially restores bendiocarb susceptibility in Tiassalé.  The microarray 

data support a role for P450 catalysed carbamate metabolism in this strain.  CYP6P3, 

CYP6P4 and CYP6M2 are highly expressed in resistant Tiassalé mosquitoes: CYP6P3 has 

been previously associated with pyrethroid resistance in West African An. gambiae (Djouaka 

et al, 2008, Müller et al, 2008) and has been verified as a pyrethroid-metaboliser (Müller et 

al, 2008). CYP6P4 expression was associated with DDT resistannce in Douala city of 

Cameroon, as well as CYP6P3 (Fossog et al, 2013), suggesting potential for these genes to 

act across three insecticide classes.  

Functional validation of CYP6P3 and CYP6M2 in bendiocarb resistance through transgenic 

expression in D. melanogaster was carried out in a recent collaborative study between 

researchers from Liverpool School of Tropical Medicine (LSTM) and other institutions in 

America and Africa (Edi et al, 2014a). Performed in Boston college and further analysed at 

LSTM, functional experiment UAS-(CYP6M2 or CYP6P3) /ACT5C-GAL4 experimental 
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class flies was compared to that of flies carrying the UAS-CYP6M2 or CYP6P3 responder, 

but lacking the ACT5C-GAL4 driver: UAS-(CYP6M2 or CYP6P3)/CyO control class flies), 

revealed similar relative expression level in the experimental flies (4.0 for CYP6M2 and 4.3 

for CYP6P3) (Edi et al, 2014a). Moreover, overexpression of both genes also was associated 

to pyrethroids deltamethrin, permethrin and CYP6M2 to organochlorine DDT resistance (Edi 

et al, 2014a). Thus, suggesting that each P450 can confer resistance to more than one 

insecticide class. CYP6M2 expression generated Drosophila phenotypes significantly 

resistant to carbamate bendiocarb, organochlorine DDT, and class I and II pyrethroids, 

providing strong evidence for involvement in resistance to three classes of insecticide.  

The involvement of CYP6P3 and CYP6M2 in resistance to multiple insecticide classes 

parallels the cross resistance engendered by CYP6 genes in other insect taxa (Daborn et al, 

2001; Lin et al, 2011) and is extremely concerning because resilience to standard resistance 

management strategies is likely to be increased greatly. It is also interesting to note that both 

cytochrome b5 and cytochrome P450 reductase, both important for P450-mediated 

insecticidal detoxification (Lui et Scott, 1996) are overexpressed in Tiassalé, suggesting a 

possible role in resistance for co-expression of these genes with the CYP6 P450s. Effects of 

P450 reductase and cytochrome b5 interactions with cytochrome P450 was reported on house 

fly CYP6A1, where inclusion of cytochrome b5 in the reconstituted system improved 

efficiency of oxygen consumption and electron utilization from NADPH, or coupling of the 

P450 reaction (Murataliev et al, 2008). Cytochrome b5 and NADPH-cytochrome P450 

oxidoreductase (CPR) are requires for optimum metabolism for P450, but little is known 

about the specific requirements for b5 and CPR to produce optimal activities in most 

enzymes (Su-Jun et al, 2012). In Tiassale, the possible mechanisms that might allow b5 and 

CPR genes to be co-expressed remains unknown and may be related to cluster of genes, 

within what, genes may have the same sequence promotor; thus need further investigation. 

Importantly, other P450s, in the CYP6P group are also over expressed and are being 

functionally characterised. 

The work has given a detailed insight into the varied mechanisms through which mosquitoes 

can become resistant to carbamate insecticides. Controlling populations like Tiassalé which 

are resistant to multiple classes of insecticide will be particularly challenging, but 

understanding of their resistance mechanisms provides tools for monitoring in other West 

African populations, to help maintain the effectiveness of vector control programme. 
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4.1. Introduction 

The control of pyrethroid-resistant populations based on employment of alternative 

insecticides, such as organophosphates and carbamates can become challenging in areas of 

multiple insecticide resistance (WHO GPIRM, 2012). In the wild Tiassalé population, the 

presence of multiple insecticide resistance from a rice field biotope was demonstrated in 

chapter 2 (Edi et al. 2012). The genetic basis of this unusual resistance phenotype was 

investigated in chapter 3, implicating P450 metabolic resistance and target resistance 

mechanisms, via bendiocarb microarray experiments and genotyping (Edi et al. 2014). P450 

resistance was detected in the 20% of mosquitoes surviving a long bendiocarb exposure time 

(360 minutes). However, the relative roles of P450 metabolic resistance and target site 

mutation and overexpression across families of An. gambiae mosquitoes from Tiassalé 

remains unknown. The aim of the work in this chapter was to investigate the expression 

profiles of the key resistance genes identified earlier - ACE-1 and CYP6 P450s – and their 

contribution to median bendiocarb survival in the population, i.e. at an exposure time causing 

50% mortality. 

 

4.2. Material and methods 

4.2.1. Blood fed mosquito collection and bioassays 

This study was carrying out in the village bordering Tiassalé named Petit Ouaga, located less 

than 1 km from the rice field where larvae were collected previously (chapters 2,3; Edi et al. 

2012). Blood-fed females of An. gambiae s.l. were collected in randomly selected houses 

between June and September 2013. Females collected were provided 10% sugar solution 

until fully gravid. Each female was then reared separately in a 1.5 ml Eppendorf tube, as 

described by Morgan et al. (2010) until eggs were deposited. Eggs were then transferred into 

plastic container and each family line was clearly labelled (Figure 4.1) and raised individually 

with 10% sugar solution daily provided. Batches of 10 adults (3-5 days old) from each family 

were exposed to 0.1% bendiocarb for 286 min (equating to the time predicted to cause 50% 

mortality, based on work in chapter 2, Edi et al 2012). Mortality was recorded 24 hours later 

in accordance with standard protocols (WHO, 2013). Moreover, five control (unexposed) 
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mosquitoes from each family were killed and kept in RNALater (as described in chapter 3) 

for RNA extraction and qPCR experiments. 

 

4.2.2. Quantitative PCR experiments 

4.2.2.1. RNA extraction, quality and quantity assessment  

Total RNA was extracted from batches of five mosquitoes per family (unexposed to 

insecticide). Extraction was carried out using Ambion RNA Isolation Kit (RNAqueous®-

4PCR Kit) and following procedure described in chapter 3. Prior to cDNA synthesis, RNA 

quantity and quality were assessed on a NanoDrop spectrophotometer (Thermo Fisher 

Scientific) and a Bioanalyzer 2100 (Agilent Technologies) respectively, as described 

previously (chapter 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.1. Experimental design of mosquito families study carried out in Tiassalé between 

June and September 2013 (supplied by D. Weetman; based on design in Wilding et al. 2014). 

 

bendiocarb (0.1%) 286 

mins exposure 

3-5 day old females 

Female Eggs 

Adults 

Larvae 
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4.2.2.2. cDNA synthesis and qPCR experiments 

Complementary DNA (cDNA) was synthesized from each RNA using oligo(dT)20  

(Invitrogen) and Superscript III according to the manufacturer's instructions and purified with 

QIAquick® PCR Purification Kit as described in chapter 3. All qRT-PCR reactions with four 

genes (ACE-1, CYP6P4, CYP6M2 and CYP6P3) were run on an Agilent Stratagene thermal 

cycler, with analysis by Agilent’s MXPro software (Mx3005P). As in chapter 3, two stably-

expressed control genes (RS7 and Elongation Factor 1) were used for normalisation. The 

PCR conditions were identical to those described in chapter 3. 

 

4.2.3. Statistical analysis 

Level of resistance was determined according to modified WHO criteria (WHO, 2013), such 

that 286 minutes exposure was used rather than 60 minutes. Normalised expression level for 

each gene of interest were calculated by the delta CT (dCT) method characterized by the Ct 

of gene of interest subtracted of Ct of  mean of normalising genes (Schmittgen et al. 2008). 

Stepwise logistic regression with mortality as the dependent variable was conducted to 

identify the genes explaining the most variance.  

 

4.3. Results 

4.3.1. Bioassays 

Overall, a total of 690 blood-fed females of An. gambiae were collected, yielding 52 families 

(13.3% of overall collection), of which 10 from each family were assayed with 0.1% 

bendiocarb for 286 minutes, >4 times the standard diagnostic time. All mosquito families 

showed some level of resistance to this long exposure to bendiocarb with mortalities ranging 

from 10 to 87.5% (Figure 4.2) and median mortality across families 59.2%, close to the 50% 

predicted target.  

 



 

 
81 

 

 

 

 

 

4.3.2. Gene expression in bendiocarb resistant families 

Quantitative PCR was carried out for 44 families using four candidate genes. Overall 

Normalised expression levels (dCT) ranged from 1.9 to 11.1 for ACE-1, 1.7 to 9.6 for 

CYP6M2, 1 to 13.6 for CYP6P3 and 2.2 to 11.8 for CYP6P4 (Figure 4.3). Normalized 

expression of CYP6M2 (r = -0.28, p = 0.08), CYP6P3 (r= 0.0406, p= 0.794) and CYP6P4 (r= -

0.106, p = 0.494 were not correlated with bendiocarb mortality. In contrast, ACE-1 exhibited 

very significant and positive correlation with mortality across families (r= 0.55, p < 0.0001). 

Thus, elevated expression of ACE-1 is the primary determinant of ability of mosquitoes from 

Tiassalé to survive the LT50 exposure in this experiment.  

Prior to stepwise logistic regression analysis, data were checked for normality using a 

Kolmogrov-Smirnov test, and overall mortality and gene expression data were normally 

distributed. Stepwise logistic regression with mortality as the independent variable confirmed 

ACE-1 as the variable explaining the most variance (46%) in the first step of the model (Table 

4.1). In subsequent steps only CYP6P4 explained significant additional variance among the 

P450 genes tested. Inclusion at model step 2 was marginally significant, but with a partial 

Figure 4.2. Prevalence of bendiocarb resistance in An. gambiae families from Tiassalé in 

2013. Data are mortality following 286 minutes exposure to 0.1 % bendiocarb for female offspring of adult 

females collected in Petit Ouaga, a rural village near Tiassalé. Error bars are 95% binomial confidence 

intervals. 

 



 

 
82 

correlation of opposite sign to ACE-1, i.e. the CYP6P4 expression was negatively related to 

mortality, when considered alongside ACE-1 (Table 4.1). Neither CYP6M2 nor CYP6P3 

explained significant variation (Table 4.1). 

 

Table 4.1. Stepwise logistic regression showing level of correlation between 

normalised expression (dCT) of each gene and mortality following 286 min exposure 

to bendiocarb 

Model 
step 

Variables 

Unstandardized 
Coefficients Partial Correlation P-value 

Beta In 

1 
(Constant) 0.31   0.001 

ACE-1_ dCT  0.05 0.461 0.002 

2 

(Constant) 0.43   0 

ACE-1_ dCT  0.06 0.528 0 

CYP6P4_dCT -0.03 -0.307 0.045 

3 
CYP6M2_dCT -0.24 -0.27 0.082* 

CYP6P3_ dCT -0.17 -0.18 0.255* 

4 
CYP6M2_ dCT -0.13 -0.13 0.421* 

CYP6P3_ dCT 0.2 0.13 0.417* 

Dependent Variable: mortality; (*): Normalised expression (dCT) non-significant for 

CYP6P3 and CYP6M2 at 5%. 

 



 

 

 

 

 
Figure 4.3. Scatter plot showing normalized expression of candidate genes relative to mortality following 286 min exposure 

to 0.1 % bendiocarb. Mosquito families from figure 4.2 were assigned consecutive numbers from 1 (equating to family 257 with lowest mortality) to 

44 (representing family 2 with highest mortality).  
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4.4. Discussion 

Previously the G119S mutation was found to be linked to  bendiocarb (Odd ratio (OR)= 100), 

fenitrothion (OR= 9) and pirimiphos methyl (OR= 10.5) resistance in An. gambiae from 

Tiassalé (chapter 2) and the microarray experiments in chapter 3 showed that expression of 

ACE-1, and multiple cytochrome P450s were elevated in the most bendiocarb resistant 

individuals. Before this study, point mutation in ACE-1 was the primary resistance 

mechanism demonstrated for mosquito acetylcholinesterase.  In this chapter, elevated 

expression of ACE-1 is demonstrated to be an important additional resistance mechanism. 

Thus, the primary determinant of variation in survival at an LT50 level is ACE-1 expression 

(and potentially elevated expression of G119S resistant alleles, though this remains to be 

confirmed) (Figure 4.4). In contrast, no correlation between expression of the P450s CYP6M2 

and CYP6P3, and a very marginal negative correlation in CYP6P4 expression and mortality 

following exposure to bendiocarb was detected. The negative correlation of CYP6P4 

expression relatively to mortality, when considered alongside ACE-1, supported the evidence 

that this gene is not involved in bendiocarb resistance at an LT50 and confirm evidence of it 

implication only in extreme resistant population, surviving the LT80 and described in 

microarray experiment (see Chapter 3). The lack of correlation for CYP6M2 and CYP6P3 

may also mean that expression of these CYP6 P450 genes is only associated with extreme 

bendiocarb resistance phenotypes, as the cut-off for defining resistance was survival of  the 

LT80 exposure in the microarray experiments  (chapter 3) whereas here, the LT50 value was 

used. Another difference is that mosquitoes used for the microarrays were adults reared from 

larval collections. Here, blood-fed females were collected directly from houses. It is notable 

that mosquitoes collected inside households in a region may derive from various breeding 

sites (Fillinger et al. 2009; Khawling et al. 2014). In fact, during the rainy season, mosquitoes 

found in households could be originated from temporary breeding sites developed around any 

village. For instance, the migration has been reported in valley du Kou in Burkina Faso, 

where temporal shifts in resistance levels were linked to the seasonal immigration of 

mosquitoes carrying the kdr mutation (Diabate et al. 2002a; 2002b). However, even if not 

derived from exactly the same breeding sites, blood-fed mosquitoes caught inside households 

showed a very similar resistance profile to the Tiassalé rice field population described in 

chapter 2, with median mortality across families close to 50%.  Moreover, another difference 

between experiments can be induction of genes expression by insecticide exposure, which 
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can mean that in Tiassalé, the longer exposure to bendiocarb (LT80) has resulted more 

induced expression of genes relatively to LT50.   

Expression of more enzymes is a mechanism which prior this thesis, had not been shown for 

ACE-1 in Anopheles, which arises (at least partially) from presence of duplicated copies. 

ACE-1 duplication was discovered in Anopheles by Djogbenou et al (2008), but a link 

between duplication and expression has never been shown in Anopheles nor a link between 

expression and resistance. If the overexpression is not completely a result of duplication 

level, then this would suggest the existence of a third mechanism, which could perhaps be a 

mutation in a promoter or regulator as documented for CYP6G1 in D. melanogaster (Schmidt 

et al. 2010). However, this is not yet known. The coexistence of several resistance 

mechanisms, as observed in Tiassalé, leading to multiple insecticide resistance has also been 

reported in populations of Myzus persicae (Panini et al. 2013). Insecticide resistance appears 

as an evolutionary phenomenon, which can undergo complex changes over years. In Myzus 

persicae, seven different resistance mechanisms were detected over 40 years, including target 

site mechanisms for pyrethroids and carbamates (mutations of the voltage-gated soduim 

channel and acetylcholinesterase), overproduction of carboxylesterase for organophosphate 

and carbamate, and overexpression of CYP6CY3 for nicotine and neonicotinoid resistance, 

which also involves cuticular resistance and mutation in the nicotinic acetylcholine receptor 

(nAChR). Finally duplication and mutation of the gamma amino-butyric (GABA) receptor 

subunit gene yields cyclodiene resistance in M. persicae (Bass et al. 2014). Resistance in 

mosquitoes can evidently range from single (either target-site or metabolic) to multiple 

mechanisms with can either act independently (Edi et al. 2014) or in association as for DDT 

in An. gambiae (Mitchell et al. 2014).  

 

 

 

 

 

 



 

 
86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5.  

Geographical distribution of multiple 

insecticide resistance in Anopheles 
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5.1. Introduction 

 

In Côte d’Ivoire, the strategy of the National Malaria Control Programme towards decreasing 

and eliminating malaria following the recent civil war period is to integrate approaches 

targeting both malaria parasites and vectors. This strategy includes malaria diagnostic testing 

and treatment with artemisinin combination therapy (ACT), increased coverage of and 

accessibility to LLINs, treatment of larval breeding sites, and more regular monitoring and 

surveillance of insecticide resistance. In Côte d’Ivoire, where IRS is not currently 

implemented, ITNs and more recently LLINs remain the main control measure. In 2012, 

estimated coverage of LLINs had risen to approximately 60% from near-zero just six years 

earlier (WHO, 2013).  

Côte d’Ivoire has a relatively long history of insecticide resistance studies. Indeed the first 

cases of pyrethroid and carbamate resistance in wild malaria vectors were reported from 

Central Côte d’Ivoire in the early 1990s and early 2000s, respectively (Chandre et al, 1999 a; 

N'Guessan et al, 2003). Recent studies have reported resistance to other insecticide classes 

across the country (Bagayoko et al, 2005; Koffi et al, 2012)  and even to all WHO-approved 

classes (Edi et al, 2012). Such observations can give the perception that resistance is 

increasing ubiquitously across insecticides and regions, and effects of temporal variation in 

research effort and reporting biases are rarely considered. In this chapter the relatively 

extensive historical published and unpublished literature, and recent field tests on insecticide 

resistance in Anopheles gambiae, were reviewed to investigate whether over the last 20 years 

in Côte d’Ivoire: (1) insecticide resistance has increased; (2) whether any trends are 

consistent across insecticides and ecological zones; (3) multiple insecticide resistance (across 

insecticide classes) has increased. 

 

5.2. Methods 

 

5.2.1. Study sites 

 

Côte d’Ivoire is a West African country of 322,462 square kilometres and 22 million 

inhabitants. It is bordered by Burkina Faso and Mali in the North, Liberia and Guinea in 

the West, Ghana in the East and the Atlantic Ocean in the South. Seasons are 

http://www.biomedcentral.com/bmcpublichealth/authors/instructions/researcharticle#formatting-methods
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distinguishable by rainfall and temperature. The average temperature increases from 25 °C 

in the South to 30 °C in the North (Aregheore et al, 2009). The average humidity increases 

from 71% in the North to 85% in the South. The climate is equatorial in the southern coasts 

and tropical in the centre to semi-arid in the far north and there are three seasons: warm 

and dry (November to March), hot and dry (March to May), hot and wet (June to October). 

The country is divided into four ecological zones (Figure 5.1) based on climate data (Goula 

et al, 2007). The first ecological zone (involving all of the southern region) is characterized 

by equatorial transition climate (Guinean or Attiéan climate) with annual rainfall between 

1,300 and 2,400 mm. Dense moist forest is the characteristic vegetation found in this zone. 

In ecological zone 2 (the centre, and central north), there is an attenuated equatorial 

transition climate (Baoulean climate). The annual rainfall ranges between 1,500 and 2,200 

mm. Vegetation is characterized by Guinean forest-savannah mosaic belt (forest and 

southern part of the savannah). The third ecological zone (the North) belongs to tropical 

transition climate (Sudanian climate) with annual rainfall between 1,100 and 1,700 mm. 

Vegetation is represented by savannah. In the fourth ecological zone (the West), there is a 

mountain climate (a subequatorial climate) with two seasons and annual rainfall between 

1,500 and 2,200 mm. Vegetation is characterized by evergreen forest.  

 

5.2.2.  Literature review 

 

A systematic search of all published and non-published papers on insecticide resistance in 

Côte d'Ivoire was carried out. All studies performed within the period covering 1993 to 2013 

in which insecticide resistance was monitored using WHO tube assays in An. gambiae s.s 

(WHO, 2013) were selected for analysis. Various sources including IR mapper, PubMed, 

MSc and PhD theses from libraries of research institutes and national universities were used. 

Data were obtained from 52 published materials and 1 MSc thesis. The following variables 

were recorded from each source: collection sites; latitude and longitude; collection date; 

insecticides tested; An. gambiae molecular forms; target–site mutation frequencies; 

temperature and relative humidity data. 
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5.2.3.  Bioassay data 

 

An. gambiae mosquitoes were collected as larvae and reared to adults as described previously 

(see chapter 2). Mosquitoes were exposed to five insecticides representing three insecticide 

classes used for ITN and IRS control (the carbamate bendiocarb, the organophosphates 

fenitrothion and pirimiphos methyl and the pyrethroid deltamethrin) using the standard WHO 

insecticide susceptibility test (WHO, 2013). However, for fenitrothion the WHO protocol has 

very recently been changed to a two hour rather than the one hour exposure applied in this 

study (WHO, 2013). Mortality was recorded 24 hours after insecticide exposure at 25°C and 

70-80 % relative humidity. For each insecticide the target was 100 (in batches of 25 

mosquitoes per cylinder) females of the age between 2 and 5 days and 50 (in batches of 25 

Figure 5.1. Map of Côte d’Ivoire showing the distribution of main ecological zones. Modified 

from “Ecoregions of Côte d'Ivoire”. Source: World Wildlife Fund. Encyclopaedia of earth: 

http://www.eoearth.org/view/article/151626/ 

 

 

http://www.eoearth.org/view/article/151626/
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mosquitoes per cylinder) mosquitoes were exposed to non-treated papers as a negative 

control alongside the test exposures.  

 

5.2.4.  Environmental data 

 

To investigate the environmental factors that could play a role in distribution of Anopheles 

gambiae M and S molecular forms, sources elevation (in meters), normalized vegetation 

difference index (NDVI), the specific humidity (qa), rainfall and temperature (°C) data from 

best available sources were recorded. Elevation was obtained at a spatial resolution of 1 km 

from USGS EROS data centre digital elevation model (DEM).  NDVI satellite data covering 

the period from 2000 to 2013 were obtained from the USGS LandDAAC MODIS version 005 

West Africa at a spatial resolution of 1 km (USGS 2013). Rainfall data were obtained at a 

spatial resolution of 8 km from National Oceanic and Atmospheric Administration (NOAA) 

satellite data (http://www.ncdc.noaa.gov/IPS/). Temperature (°C), and specific humidity (qa) 

which is the ratio of the mass of water vapour in air to the total mass of the mixture of air and 

water vapour, were extracted from the same source, based on monthly mean readings at 2 

meters above the ground. 

 

5.2.5.  Data analysis 

 

Geographic coordinates provided in publications were double-checked through the Directory 

of Cities and Towns in the World (1996-2010) website (Directory, 2010). Data was imported 

into ArcGIS (ESRI, Redlands, CA) software version 10.2. Generalized Linear Models with a 

binary logistic link function were run in SPSS 20 to test the effect of year of sample, 

ecological zone and their interaction on bioassay mortalities. For permethrin and carbamates 

insecticide concentration and formulation, respectively, were recorded as additional factors 

(see below). For each model only data from ecological zones 1 and 2 were included because 

of a paucity of temporal variance in data points in zones 3 and 4. For DDT all studies used 

the standard WHO diagnostic dose of 4% and for deltamethrin only those studies using the 

standard concentration of 0.05% were included for analysis. For permethrin older studies 

tended to use a 1% concentration whereas newer studies used the WHO standard of 0.75%. 

Therefore bioassay data using each of these two concentrations were included but when 

analysing permethrin alone concentration was included as an additional factor in the model. 

http://www.ncdc.noaa.gov/IPS/
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Data were more limited for carbamates and organophosphates, and for the former both 

bendiocarb and propoxur were included, but carbosulfan excluded owing to much lower 

mortality, and insecticide formulation was included as a factor in the carbamates model. For 

organophosphates both fenitrothion and malathion were included owing to comparable 

mortalities, though inclusion of malathion had little impact on results because of very few 

data points. SPSS 20 was used to calculate Pearson correlation coefficients to illustrate plots 

of mortality vs. time for each ecological zone. As Pearson benchmarks linear relationship, 

while Spearman benchmarks monotonic relationship (few infinities more general case, but for 

some power tradeoff), Spearman rank correlations were also calculated but are only reported 

if they provided a better fit to the data. In general, the difference between the Pearson 

correlation and the Spearman correlation is that the Pearson is most appropriate for 

measurements taken from an interval scale, while the Spearman is more appropriate for 

measurements taken from ordinal scales. Statistics for kdr data are based on unweighted 

frequencies from each study site, with t-tests used to compare frequencies.  

Principal Component Analysis based on Kendall rank correlation was used to study the 

relationship between the distribution of An. gambiae M and S molecular forms and 

environmental factors. 

 

5.3. Results  

 

5.3.1. New bioassay data generated for this study  

 

A total of 1429 female adult An. gambiae were exposed to insecticides in standard WHO 

susceptibility tests. Mortality rates ranged from 51.8 for deltamethrin to 89.2 % for 

fenitrothion in Sikensi, 16 % for pirimiphos methyl (0.25%) to 62.9 % for deltamethrin in 

Agboville, 64.6% for deltamethrin to 98 % for fenitrothion in Divo and 63 to 66% for 

pirimiphos methyl 0.2% and 0.25% respectively in Tiassalé (Table 5.1). Mosquitoes were 

considered resistant (confirmed resistant) and susceptible when mortality rates were 

respectively lower than 90% and higher than 97%.  Between both values, resistance was 

suspected (WHO, 2013). Overall, An. gambiae from Tiassalé, Sikensi and Agboville are 

resistant to insecticides tested except fenitrothion in Divo, where no resistance is detected 

(Table 5.1).   
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Table 5.1. Prevalence of insecticide resistance in An. gambiae s.s from Tiassalé, Sikensi, 

Divo and Agboville in 2013 in Côte d'Ivoire. 
 

Strains Insecticides No. tested Dead Mortality (%) Status 

Sikensi 

bendiocarb (0.1%) 108 61 56.5 (46.6-66.0) R 

fenitrothion (1.0%) 111 99 89.2 (81.9-94.3) R 

Deltamethrin (0.05%) 81 42 51.8 (40.5-63.1) R 

Divo 

bendiocarb (0.1%) 199 155 77.9 (71.5-83.4) R 

fenitrothion (1.0%) 196 192 98.0 (94.9-99.4) S 

Deltamethrin (0.05%) 99 64 64.6 (54.4-74.0) R 

Agboville 

bendiocarb (0.1%) 116 8 6.9 (3.0-13.1) R 

fenitrothion (1.0%) 103 64 62.1 (52.0-71.5) R 

Deltamethrin (0.05%) 116 73 62.9 (53.5-71.7) R 

Pirimiphos methyl (0.25%) 94 15 16.0 (9.2-24.9) R 

Tiassalé 
primiphos methyl (0.2%) 100 63 63.0 (52.8-72.4) R 

primiphos methyl (0.25%) 106 70 66.0 (56.2-74.9) R 

These data were collected by the AvecNet research programme between May 2012 and March 
2013. All percentages are calculated from total mosquito tested (No. tested) with 95% 
confidences intervals for resistant population (R) and suspected resistant population (R/S) 

 

 

5.3.2.  Literature review data 

 

A total of 324 data points were obtained from 24 studies (Elissa et al, 1993 to Darriet et al, 

1997; IR mapper) conducting insecticide resistance bioassays using WHO tubes (WHO, 

2013), originating from 57 collection sites covering the period from 1993 to 2012. 

However, owing to absence of numbers of mosquito tested, 18 data points belonging to 

two studies were excluded from analysis (Table 5.2). Data were stratified according to the 

four ecological zones of the country (see Figure 5.1), with the majority of records from 

zones 1 (32%) and 2 (49%). Pyrethroid and organochlorine susceptibility was tested in 56 

sites (Figure 5.2 and 5.3) (Appendix 5.1 and 5.2); organophosphates and carbamates in 24 

sites (Figure 5.4 and 5.5) (Appendix 5.3 and 5.4) almost entirely located in ecological 

zones 1 and 2.  

Bioassays were performed using a total of 16 insecticide formulations of which the 

pyrethroids permethrin and deltamethrin and the organochlorine DDT were most 

frequently tested (Table 5.2). 
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 No resistance  Suspected resistance  Confirmed resistance  Sentinel sites 

 
 

Figure 5.2. Distribution of pyrethroid resistance in Côte d’Ivoire between 1993-2002 (A) 

and 2003-2012 (B). 

 

(A) (B) 

 

Figure 5.3. Distribution of DDT resistance in Côte d’Ivoire between 1993-2002 (A)            

and 2003-2012 (B). 

 

(B) 
 

 No resistance  Suspected resistance  Confirmed resistance  Sentinel sites 

 

Figure 5.3. Distribution of DDT resistance in Côte d’Ivoire between 1993-2002 (A)            

and 2003-2012 (B). 

 

(A) (B) 
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Figure 5.4. Distribution of carbamate resistance in Côte d’Ivoire between 1993-2002 (A) 

and 2003-2012 (B) 

 

 

Figure 5.5. Distribution of organophosphate resistance in Côte d’Ivoire between 1993-2002 (A) 

and 2003-2012 (B). 

 

(A) 
(B) 
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Table 5.2. Summary of bioassay data points for each insecticide in each decade 
   

Insecticide 

Total 
number of 
data points 

Number of data 
points  

1993-2002 

Number of 
data points  
2003-2012 class 

DDT 51 37 14 OC 

Dieldrin 5 1 4 OC 

permethrin 66 49 17 PYR 

bifenthrin 2 2 0 PYR 

Cyfluthrin 5 5 0 PYR 

etofenprox 11 5 6 PYR 

fenitrothion 19 7 12 OP 

lambdacyhalothrin 14 11 3 PYR 

alphacypermethrin 13 4 9 PYR 

deltamethrin 57 39 18 PYR 

bendiocarb 11 6 5 CARB 

carbosulfan 18 4 14 CARB 

Propoxur 16 7 9 CARB 

chlorpyrifos methyl 5 0 5 OP 

malathion 2 0 2 OP 

pirimiphos methyl 11 0 11 OP 

Total 306* 177 (57.8 %) 129 (42.2%) 
 * 18 data points excluded from overall 324 data pointed recorded, owing to absence 

of numbers of mosquito tested.  

 

 

5.3.3.  Spatio-temporal analysis of resistance across insecticides 

 

A binomial generalized linear model (GLiM) was used to investigate temporal variation in 

bioassay mortality across insecticides and ecological zones. All main effect and interaction 

terms in the model were highly significant, suggesting inconsistencies in temporal trends 

among insecticides and zones (Table 5.3). A three-way interaction term could not be fitted to 

the model owing to insufficient variance in one of the combinations. Therefore each 

insecticide was analysed separately, including additional terms in the models where necessary 

(see Methods). 
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Table 5.3. Generalized linear model testing the effects of sampling year (1993-2012), 

insecticide (DDT, permethrin, deltamethrin, bendiocarb & propoxur, fenitrothion & 

malathion), ecological zone (zones 1 and 2) and their interactions on bioassay mortality.  

 

Model term Wald χ
2
 d.f. P-value 

Intercept 157.498 1 <0.0001  

year (covariate) 154.101 1 <0.0001 

Insecticide 90.866 4 <0.0001 

ecological zone 30.381 1 <0.0001 

insecticide x year 92.643 4 <0.0001 

ecological zone x insecticide 31.005 1 <0.0001 

insecticide x ecological zone 223.041 4 <0.0001 

 

5.3.3.1. Spatio-temporal analysis of resistance to organochlorine and pyrethroids 

Mortality to DDT was very variable across sampling years but with resistance ubiquitous in 

bioassays conducted after the break in studies between 2003 and 2007 due to the political 

crisis in the country (Figure 5.6). This temporal decline was highly significant as was the 

interaction between year and ecological zone (Table 5.4), evident from a significant negative 

correlation for zone 1 (r= -0.56, P=0.025, n=16) but not zone 2 (r= -0.17, P=0.42, n=24). 

Deltamethrin typically yielded far higher mortality than DDT, with some susceptibility, or at 

least low-prevalence resistance detected in all ecological zones in recent bioassays (Figure 

5.7). Again there was a highly significant temporal decline, albeit representing a more modest 

decrease in resistance, with the same trend in variation between zones; significant as an 

interaction in the GLiM but not as a correlation across samples (ecozone 1: r= -0.34, P=0.15, 

n=20; ecozone 2: r= -0.11, P=0.65, n=20). Similarly for permethrin, there was a significant 

interaction between year and ecological zone (Table 5.4), manifested again as a far more 

pronounced temporal decrease in mortality in ecological zone 1 (Figure 5.8). However, 

insecticide concentration (0.75% vs. 1%) explained the most variance in the model (Table 

5.4), with higher concentration yielding higher mortality as expected, and a possible 

interaction with time could not be evaluated because higher concentrations were only used in 

earlier studies. Although both bioassay concentrations were applied in each ecological zone, 

we cannot rule out some confounding effect of concentration on the apparent difference 

between zones in temporal trends.  
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Table 5.4. Generalized linear model testing the effects of sampling year (1993-2012), 

ecological zone (zones 1 and 2)  and their interaction on bioassay mortality for DDT, 

permethrin, deltamethrin 

Parameters 

  
DDT 

  
Deltamethrin 

  
Permethrin 

Wald χ
2
 d.f. P-value 

Wald 
χ

2
 

d.f. 
P-

value 
Wald χ

2
 d.f. P-value 

intercept 337.471 1 <0.0001 56.854 1 0 6.848 1 0.009 

year 
(covariate) 

337.866 1 <0.0001 55.615 1 0 7.001 1 0.008 

ecological 
zone 

68.178 1 <0.0001 4.833 1 0.028 33.974 1 <0.0001 

year x 
ecological 
zone 

68.062 1 <0.0001 4.926 1 0.026 33.889 1 <0.0001 

insecticide 
concentration 

N/A N/A N/A N/A N/A  N/A 63.232 1 <0.0001 

N/A: not determined because only 4% diagnostic dose tested across zones and over years 

Figure 5.6. Temporal trends in mortality to DDT in the four ecological zones of 

Côte d’Ivoire. Solid lines indicate significant correlations, dashed lines are non-

significant. In all plots quantitative analysis was performed only on ecozones 1 and 2. In 

all analyses there was a significant effect of year and year x ecozone on mortality. 
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Figure 5.8. Temporal trends in mortality to permethrin in the four ecological 

zones of Côte d’Ivoire. Solid lines indicate significant correlations, dashed lines are 

non-significant. In all plots quantitative analysis was performed only on ecozones 1 and 

2. In all analyses there was a significant effect of year and year x ecozone on mortality. 

Open symbols show data for bioassays with a concentration of 1% and filled symbols 

with the current WHO standard of 0.75%. 

Figure 5.7. Temporal trends in mortality to deltamethrin in the four ecological 

zones of Côte d’Ivoire. Solid lines indicate significant correlations, dashed lines are non-

significant. In all plots quantitative analysis was performed only on ecozones 1 and 2. In 

all analyses there was a significant effect of year and year x ecozone on mortality.  
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5.3.3.2. Spatio-temporal analysis of resistance to carbamate and organophosphate 

 

Analysis of carbamates, for which the difference between propoxur and bendiocarb was 

significant but small, and of organophosphate bioassay mortality must be treated with caution 

owing to more limited data, especially with respect to the lack of early studies in ecological 

zone 1 (Table 5.5). Nevertheless, results appear similar for each class (Figure 5.9 and 5.10) 

with a significant decline only in ecological zone 2 for carbamates (ecozone 1: r= -0.08, 

P=0.85, n=9; ecozone 2: r= -0.59, P=0.014, n=17) and organophosphates (ecozone 1: r= 0.16, 

P=0.73, n=7; ecozone 2: ρ=-0.63, P=0.027, n=12), and therefore effectively opposite to those 

for DDT and pyrethroids. 

 

 

Table 5.5. Generalized linear model testing the effects of sampling year (1993-2012), 

ecological zone (zones 1 and 2)  and their interaction on bioassay mortality for carbamate 

and organophosphate 

 

Parameters 

 
Carbamate 

 

 
Organophosphate 

 

Wald χ
2
 d.f. P-value Wald χ

2
 d.f. P-value 

intercept 1.205 1 0.272 1.517 1 0.218 

year (covariate) 1.193 1 0.275 1.693 1 0.193 

insecticide type 5.922 1 0.015 N/A  N/A N/A 

ecological zone 72.697 1 0 59.664 1 0 

year x ecological zone 72.311 1 0 59.063 1 0 

N/A: Not determined 
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Figure 5.10. Temporal trends in mortality to organophosphate (fenitrothion, barring two 

open symbols for malathion) in the southern and central ecological zones of Côte 

d’Ivoire. Solid lines indicate significant correlations, dashed lines are non-significant. There was 

a significant effect of year x ecozone on mortality. 

Figure 5.9. Temporal trends in mortality to carbamates (propoxur and bendiocarb) 

in the southern and central ecological zones of Côte d’Ivoire. Solid lines indicate 

significant correlations, dashed lines are non-significant. There was a significant effect of 

year x ecozone on mortality. 
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5.3.4. Multiple resistance 

 

Casual observation of records of resistance to single and multiple insecticide classes (Figure 

5.11) might suggest a temporal increase in the prevalence of multiple resistance, with more 

records of resistance to two, and especially three or more classes in the second decade (26% 

vs. 64% of studies in 1993-2002 and 2003-2012, respectively, represented by violet and red 

colours in Figure 35. However, even without considering geographical variation in sample 

sites between decades, closer examination  reveals differences in bioassay effort (symbol 

shapes in Figure 35), with a significant shift toward testing of more insecticide classes in 

more recent studies (χ
2
=8.1, 3 d.f., P=0.04). Consequently, it is not possible to conclude that 

there has been a significant overall increase in multiple resistance. Moreover, whilst the first 

record of resistance to all classes emerged in recent years, resistance to three classes was 

already present in ecological zone 2 prior to 2003. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1993-2002 
2003-2012 

Figure 5.11. Records of resistance to different insecticides classes in relation to the number of 

classes tested in the two decades spanning 1993 to 2012.  
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5.3.5.  Interspecific (interform) variation in distribution and insecticide resistance 

 

The frequency of the M and S molecular forms (i.e. An. coluzzii and An. gambiae s.s.) 

varied sharply across the ecological zones of Côte d’Ivoire (Figure 5.12A) with a 

predominance of M forms in zone 1 and often high frequencies in zone 2, but a majority of 

S forms in zones 3 and 4.  Relatively few studies recorded insecticide susceptibility data 

separately for each molecular form, and data were insufficient for any single insecticide to 

conduct any quantitative analysis of possible differences in phenotypic resistance between 

the molecular forms (Appendix 5.5). However, molecular resistance diagnostic data for the 

kdr L1014F polymorphism (Table 5.6), originating primarily from two geographically 

wide-ranging studies (Koffi et al, 2013b; Chandre et al, 1999c ) highlight a temporal 

discordance between the molecular forms (Figure 5.12B). For S forms average frequencies 

recorded in 1998 and 2004-2012 were similarly high (t-test, P=0.41). For M forms kdr 

1014F was entirely absent from the six sites surveyed in 1998 (N=122 genotyped), but in 

later collections (from 2004-2012) present at an equivalent frequency to both the early and 

late collections of S forms (t-tests, P>0.5 for both comparisons). Therefore any resistance 

phenotype mediated by kdr 1014F would be expected to have increased more sharply in M 

than S forms. 
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Figure 5.12. Distribution of An. gambiae M (black) and S (red) molecular forms across the 

four ecological zones of Côte d’Ivoire (A). Mean kdr 1014F frequency across sample sites in 

each form in early samples (from 1998) and more recent samples (2004-2012); and total numbers 

genotyped are shown at the top of the plot (B).  
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Table 5.6. Summary of studies recording kdr 1014F separately for each molecular form 

Sites 
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M'Be 2 1998 67 63 4 67 4 63 0 25 

Kafiné 3 1998 19 3 16 77 94 90 0 25 

Yaokoffikro 2 1998 56 0 56 56 96 96 n/a 25 

Korhogo 3 1998 65 0 65 91 84 82 n/a 25 

Kabolo 2 1998 29 16 13 29 31 69 0 25 

Tioroniaradougou 3 1998 29 0 29 29 83 83 n/a 25 

Nombolo 3 1998 29 3 26 29 81 90 0 25 

Nambekaha 3 1998 30 0 30 30 88 88 n/a 25 

Fapaha 3 1998 28 0 28 28 73 73 n/a 25 

Danané 4 1998 24 4 20 24 21 25 0 25 

Guiglo 4 1998 82 33 49 85 10 17 0 25 

Abidjan 1 1998 n/a n/a n/a 27 39 n/a n/a 25 

Toliak 2 1998 23 0 23 23 100 100 n/a 49 

Abidjan (Port-
Bouet) 

1 2004 103 103 0 103 70 n/a 70 48 

Bouaké 2 1994 53 52 1 53 58 n/a n/a 24 

Adzopé (Port-
Bouët )  

1 2007 56 56 0 56 67 n/a n/a 36 

Adzopé 
(Tsassodji) 

1 2007 34 34 0 34 68 n/a n/a 36 

Tiassalé 1 2011 500 500 0 250 83 n/a 83 40 

M'Be 2 2012 226 223 3 226 33 n/a n/a 31 

Taabo 1 2012 79 15 64 79 56.3 n/a n/a 42 

Divo 1 2012 18 18 0 78 80.7 n/a 80.7 41 

Korhogo 3 2012 32 9 23 32 75 76.1 72.2 43 

Kaforo 3 2012 32 11 21 30 81.7 82.5 80 43 

Yamoussoukro 2 2012 31 26 5 31 48.4 50 47.9 43 

Man 4 2012 32 18 14 26 48.1 54.5 43.3 43 

Zele 4 2012 32 7 25 30 50 50 50 43 

Abengourou 2 2012 32 29 3 32 53.1 66.6 51.7 43 

San Pedro 1 2012 31 31 0 32 71.9 n/a 71.9 43 

Bingerville 1 2012 32 21 11 32 81.3 68.2 88.1 43 

Abidjan (Port-
Bouet)  

1 2012 32 32 0 31 85.5 n/a 85.5 43 

Abidjan 
(Yopougon) 

1 2012 32 32 0 31 46.8 n/a 46.8 43 

 

 

 

 



 

 
105 

5.3.6. Relationship between molecular forms and environmental factors 

 

Principal Component Analysis based on Kendall rank correlation described in Appendix 5.6 

allowed accessing the relationship between each molecular form and ecological variables 

(Figure 5.13). Overall, An. gambiae S molecular form was positively associated with 

elevation (r= 0.31) and latitude (r= 0.32). An. gambiae M form positively correlation to 

precipitation (r= 0.23). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Principal component analysis showing the relationship between 

molecular forms and environmental factors 
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5.4. Discussion 

 

In this study the relatively long history of WHO bioassay testing in Côte d’Ivoire was used to 

investigate three questions concerning temporal trends in insecticide resistance. Although as 

discussed below, some important caveats must be considered, the analyses suggest that: the 

prevalence of resistance to each insecticide class has increased over time (question 1); but 

that this change is not uniform across insecticides and ecological zones (question 2); and, that 

whilst records of multiple resistance across insecticide classes do appear to have increased, 

this might be explained by an increase in the number of classes typically tested (question 3).  

 

Striking differences in temporal trends among insecticides were observed between the two 

largest ecological zones, with a significantly stronger decline in bioassay mortality for DDT 

and each of the class I and II pyrethroids in ecological zone 1, but the reverse pattern for 

carbamates and organophosphates. This zonal effect might potentially be linked to 

differences in the use of insecticide in agriculture. Indeed, with the rank of first worldwide 

cocoa producer, third coffee producer and first rubber producer in Africa, and extensive rice 

cultivation across the country, agriculture remains the key component of the national 

economy. The distribution of agricultural areas was previously mapped in the country (Koffi 

et al, 2013b) and is particularly well developed in ecological zone 1 where insecticides are 

applied extensively (Koffi et al, 2013b). However data on which insecticide classes have 

been most commonly used in agriculture are unavailable, and so it is not possible to evaluate 

whether zonal shifts in the relative usage of different classes has occurred.  

 

Whilst widespread use of insecticide-treated bednets in Côte d’Ivoire has only occurred in the 

last five years (WHO report, 2013), extensive use of insecticides in the past for public health 

purposes may be another factor contributing to resistance trends. Indeed, successful control 

targeting onchocerciasis and trypanosomiasis vectors (Glossina) from 1966 to 1983 

eliminated onchocerciasis as a public health problem from the region crossed by the 

Bandaman River (from ecological zone 3 to 1). For this purpose, high amounts of DDT, 

pyrethroids, carbamates, and organophosphates were sprayed on a large geographical scale 

(WHO, 1985; Le Berre René et al, 1967/ J. H. Koeman et al, 1981) and may have played a 

role in selecting for the resistance in malaria vectors currently seen today. Unfortunately, no 

systematic monitoring programme based on insecticide accumulation in water and soil, 
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(perhaps particularly pertinent for DDT) has been conducted and hence the longer-term 

selection pressure exerted by these activities is unknown.  

 

One clear factor potentially linked to the difference in resistance trends is sharing of target 

sites, with pyrethroids and DDT both targeting the para voltage-gated sodium and 

carbamates and organophosphates targeting acetylcholinesterase. In general, An. gambiae M 

and S forms were sympatric in all ecological zones but with varying relative frequencies. M 

form An. gambiae are particularly common in ecological zone 1 characterized by abundant 

rainy season occasioning permanent breeding areas , and which showed the stronger declines 

in pyrethroid and especially DDT mortality; resistance to the latter being more strongly 

linked to kdr 1014F in M forms in Côte d’Ivoire (Edi et al, 2012). It thus seems plausible that 

the dramatic rise in kdr 1014F frequency in M forms in Côte d’Ivoire, also documented in 

surrounding countries (Dabire et al, 2008; Lynd et al, 2010) could be at least a partial 

contributory factor. The results highlight the critical importance of separating resistance 

testing results even between these closely related forms (now known as species). The 

apparent difference in trends between ecological zones for carbamates and organophosphates 

must be treated with considerable caution because it is evident that the decline in zone 2 is 

driven largely by high mortality in collections from the 1990s, which were not performed in 

zone 1. An. gambiae S molecular form was more prevalent in Northern Savannah area 

characterized by high latitude and elevation, and particularly the lowest precipitation level. 

The difference in the distribution and adaption of both species in response to ecological 

factors has already been reported (Gimonneau et al, 2010; Simar et al, 2009; De souza et al, 

2010). In general, the distribution of An. gambiae S molecular form occurs in temporal 

breeding areas, especially in Savanna region of Sub-Saharan African countries; in contrast to 

M form which breeds in permanent breeding sites. (Simar et al, 2009; Costantini et al, 2009).  

 

Relatively few studies recorded insecticide susceptibility data separately for each molecular 

form and data were also insufficient for any single insecticide to conduct any quantitative 

analysis of possible relationship between phenotypic resistance, the molecular forms and 

environmental covariates. 

 

Characterisation of spatial variance according to ecological zones is extremely coarse, with 

many areas under-represented or all-but unexplored. The analysis also ignored smaller scale 
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spatial variation in resistance testing over time. Two reasons could explain the highly uneven 

distribution of bioassay data. The first reason could be the existence of experimental huts and 

the proximity to research institutes. During the first decade, the main experimental huts 

available in the country were located in ecological zone 2 in Bouake area. The huts were 

supervised by the Pierre Richet Institute, where several projects targeting malaria control 

have been conducted. Theses experimental huts are still in use and additional new huts in the 

Tiassalé area were built by the Swiss Centre of Scientific Research (Centre Suisse de 

Recherches Scientifiques, CSRS) in ecological zone 1 during the second decade. Overall in 

this and any other studies of temporal trends in insecticide resistance, sample-site specific 

biases are difficult to control and represent a major limiting factor.  

Another extremely important source of bias when evaluating temporal trends in insecticide 

resistance is apparent from the analysis of multiple resistance. Typically maps representing 

insecticide resistance simply record presence or absence of resistance according to WHO 

criteria and do not explicitly consider spatial temporal variations in investigation effort. Yet 

this may explain much of the apparent pattern of increasing multiple resistance in Côte 

d’Ivoire; studies testing more classes are clearly more likely to detect multiple resistance. 

This does not in any way downplay the important consequences implied by detection of 

multiple resistance (Edi et al, 2012; Edi et al, 2014a). However, given that causation will 

inevitably be linked to correlation because of the limited temporal and spatial scale of 

properly controlled studies, it does highlight the importance of objective evaluation of 

available data. 
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General Discussion 
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Principal findings and novelty of data 

 

The work presented in this thesis revealed unprecedentedly high prevalence of phenotypic 

resistance across the four  insecticide classes approved for malaria control in the population 

of Anopheles gambiae s.s. from Tiassalé, Southern Côte d’Ivoire (chapter 2; Edi et al, 2012). 

The ACE-1 G119S substitution was shown to be an important mutation for fenitrothion and 

bendiocarb survival at 60 minutes exposure, corresponding to almost LT13 with a 

particularly high odds ratio for the latter (chapter 2; Edi et al, 2012). G119S is probably also 

involved in variation in resistance at the higher LT50 levels (chapter 4; and predicted in 

Figure 6.1) as an integral component of the ACE-1 overexpression identified as a major 

determinant of resistance. Moreover, from the microarray studies, overexpression of both 

ACE-1 and CYP6 P450s (discussed below) appear to be important determinants of survival at 

high doses of bendiocarb, as evidenced for those surviving an LT80 exposure level (Chapter 

3; Edi et al. 2014a). The insights into the genetic basis of carbamate resistance are probably 

the most comprehensive to date in Anopheles, via implication of cytochrome P450s, 

especially CYP6P3, CYP6P4 and CYP6M2 and overexpression via duplication of ACE-1 

which appears to be a previously undocumented mechanism in Anopheles. Moreover 

functional validation in Drosophila and E. coli demonstrated cross-insecticide action for the 

P450s CYP6M2 and CYP6P3 in Edi et al. 2014a (and discussed in chapter 3). 

Results in Chapter 5 (Edi et al, 2014b) also revealed that multiple resistance was not 

restricted to Tiassalé, although an increase in the number of insecticide classes tested in the 

country between 1993 and 2013 precludes conclusion that there is an increasing trend toward 

multiple resistance, though this might be the case. Moreover, spatio-temporal variation in 

resistance was reported with a significantly greater increase for DDT and pyrethroids in the 

southern ecological zone than in the central zone. An apparently greater increase in resistance 

for carbamates and organophosphates in the central zone than southern zone is suggestive of 

negative cross-resistance – a mechanism potentially precluding multiple resistance, but must 

be interpreted with caution owing to a relatively limited number of data points. 

The combination of distinct mechanisms provides the Anopheles population of Tiassalé with 

both high levels of resistance, and resistance across insecticides. Prior to the work presented 

herein, no population of An. gambiae resistant to all four WHO-approved insecticide classes 
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had been reported previously in Côte d’Ivoire. However, such multiply resistant vectors seem 

not to be confined to this Côte d’Ivoire, since it was reported just a few months later, that at 

least one of the ten An. gambiae populations studied (at least two if the current WHO (2013) 

threshold is applied from neighbouring country Burkina Faso were resistant to bendiocarb, 

fenitrothion, DDT, permethrin and deltamethrin (Namountougou et al, 2012). Interestingly, 

these two populations were entirely S molecular form, in contrast to Tiassalé, in which only 

M forms are found. Interestingly neither P450 levels nor ACE-1 119S frequency were found 

to be particularly high in these multiply-resistant Burkina populations, perhaps consistent 

with the relatively low prevalence of bendiocarb resistance. 

 

Broader implication for the future of vector control 

Spread of extremely resistant vectors is a major concern and might be enhanced by human-

aided migration (Diabate et al, 2002a). Indeed, multiple insecticide resistant vectors are 

typically reported in regions bordering the main roads connecting Economic Community of 

West African States (ECOWAS) regions, particularly those leading from southern Côte 

d’Ivoire to northern neighbours (e.g. road A3, becoming N7 in Burkina Faso). Though 

requiring more investigation, cross-border transport between the ECOWAS countries could 

be a potential factor that could facilitate the dissemination or propagation of insecticide 

resistance across countries, if extremely resistant mosquitoes take refuge inside vehicles and 

the goods conveyed. 

Malaria vector control in Côte d’Ivoire is solely based on ITNs and LLINs, since the country 

has yet to adopt IRS, and the first IRS pilot project is starting in October 2014 in Sikensi, still 

in Tiassalé district. In 2012, 60% of households were protected following the last nationwide 

distribution by the national malaria control programme (WHO 2013). Following a first report 

in 1993, pyrethroid resistance is now widespread in Côte d’Ivoire (Chapter 5; Edi et al, 2014b) 

with a significant decrease in mortality evident to the main pyrethroids used for ITNs/ LLINs 

(deltamethrin and permethrin). Bednets are intended to ensure a strong physical barrier to 

protect against mosquitoes biting, and pyrethroid-treated nets have additional roles via impacts 

on entomological parameters (e.g. deterrence, exophily, blood feeding, time to knock down 

and mortality). However in the presence of pyrethroid resistance, good physical integrity (i.e. 

proper usage and minimal damage) of nets is crucial (Okumu et al, 2013) and without this, 
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efficacy may be severely compromised, as demonstrated in studies in Benin (N’Guesssan et al, 

2007; Asidi et al, 2012). Similarly, using laboratory assays, a recent report revealed that 

extreme resistance levels in Burkina Faso can produce dramatic reductions in efficacy of 

insecticides used to treat bednets (Toé et al, 2014). In areas like Tiassalé, the high prevalence 

of resistance (as measured by the one hour bioassay exposure) does also signify high 

individual resistance levels, at least for deltamethrin and bendiocarb (Chapter 2; Edi el al, 

2012).  

Controlling a mosquito population like An. gambiae from Tiassalé will be particularly 

challenging, but having now highlighted their resistance mechanisms provides two major 

advances: (i) a clearer understanding of the basis of cross resistance, which, in turn suggests 

(ii) directions for new tools and strategies to help maintain the effectiveness of vector control 

programmes.  

Since it will still take 6-9 years for new insecticides to reach the market (Hemingway et al, 

2014), options for control at present reside in existing tools. Vector control might switch from 

one insecticide to another depending on resistance profile or history (Hemingway et al, 2013), 

or might combine insecticides with synergists (Chouaibou et al, 2014) or different compounds 

such the mixture of alphacypermethrin (pyrethroid) and chlorfenapyr (Pyrrole) described in 

N’Guessan et al, 2014). For instance, the combination of the synergist PBO and pyrethroid on 

nets, even if more expensive were shown to enhance the efficacy of insecticides such 

deltamethrin (Koudou et al, 2011; Adeogoun et al, 2012).  An alternative option is combining 

ITNs with IRS with insecticides, or using IRS rotations or mosaics of insecticide in IRS as 

described in the WHO global plan for insecticide resistance management (GPIRM WHO, 

2012). But, since chapter 5 revealed spatial heterogeneity in resistance at local level (Edi et al, 

2014b), more investigation is needed in order to adopt the prominent IRS formulations.  

IRS can potentially be based on different dosage of organophosphate insecticides as a 

preliminary ingredient, as this seems to be the only insecticide class for which Tiassalé vector 

An. gambiae showed relative low level of resistance (Chouaibou et al, 2012). The 

organophosphate pyrimiphos methyl (ACTELLIC 50 EC) showed efficacy on pyrethroid and 

DDT resistant An. gambiae s.l mosquitoes from Ghana, after 15 weeks of trials on painted 

cement surfaces and this insecticide is therefore an option for control in this country (Fuseini 

et al, 2011). In Bouaké, located in ecological zone 2 (described in chapter 5), pirimiphos-

methyl exhibited prolonged insecticidal effect coupled with residual activity (Tchicaya et al, 
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2014). However, it remains to be tested whether microencapsulated pyrimiphos is as viable 

option in Tiassalé. PBO did not provide complete synergy for bendiocarb or pyrethroids, 

however since CYP6 P450s that are involved in pyrethroid resistance are also involved in the 

highest levels of bendiocarb resistance, PBO on nets could knock out the most resistant 

mosquitoes in the population, which are potentially the biggest threat, particularly since recent 

studies suggest that resistant mosquitoes may have more Plasmodium, because of the costs of 

resistance (Alout et al, 2013). Additionally, control measure must target larvae as discussed 

below.  

 

Limitations of the study and suggestions for further work 

 

The predicted role of different resistance mechanisms in conferring bendiocarb resistance is 

summarised in Figure 6.1. The target site mutation, ACE-1 G119S appears to be an important 

determinant of resistance to the LT50 whereas survival to longer exposure times is linked to 

over expression of both the target site and a CYP6 P450s.  Further studies using different 

synergist assays such as 4% piperonil butoxide (PBO), an inhibitor of oxidases and 0.25% S.S.S-

tributyl phosphotritioate (DEF), an inhibitor of esterases will be used with bendiocarb will be 

necessary to provide confirmation to the result.  This study will be based on prediction with 

synergist pre-exposure, no mosquito will survive a 360 mins exposure (the estimated LT80) to 

bendiocarb, in contrast to the 286 mins exposure (the estimated LT50). 

Another limitation described in chapter 5 was the missing of data for various sites when 

addressing temporal trend in insecticide resistance. In specific cases, sites facility access, 

financial and logistic means could be the cornerstone. The missing of data could lead to data 

misinterpretation such as apparent pattern of increasing resistance, and thus requires objective 

evaluation of available data. 

Identifying the main road transport companies that carry passengers between countries, 

collecting mosquitoes inside vehicles at each arrival point in countries and conducting 

population genetic analysis, might shed light on the importance of migration in the dispersal of 

insecticide resistance alleles. Today, multiple insecticide resistance could become a global 

problem if urgent action is not taken at country, regional and global level (WHO GPIRM, 

2012).   
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Study aiming to use RNA interference (RNAi) silencing technique to cause significant 

increase of susceptibility to carbamate in extreme resistant population known to express CYP 

P450s need to be conducted. RNAi will be used to inhibit the activities of P450s in extreme 

resistant population surviving 360 minutes exposure. The experiment will be carried out by 

injecting double stranded RNA (dsRNA) to new emerged adult according to Garver, & 

Dimopoulos (2007), followed by later exposure of adult (3-5 days old) to carbamate 

according to WHO procedures (WHO, 2013).  

Moreover, the possibility of developing diagnostic sample assay for copy number variation 

appears as necessary to monitor the duplication in field, and thus requires urgent study.    

Finally, the potential of integrated vector control management (IVM) should be used as an 

opportunity to control the extremely resistant An. gambiae mosquitoes from Tiassalé. Such 

IVM could target larvae from Tiassalé rice fields using biological control agents such as 

Bacillus sphaericus firstly and then Bacillus thuringiensis israelenis (Bti) used successfully in 

a study carried out in Tiemelekro central Côte d’Ivoire (Tchicaya et al, 2009). Both biological 

larvicides could be applied alternatively periodically to treat the rice fields in order to reduce 

the number of larvae reaching the adult stage (Fillinger et al, 2009), coupled with the 

destruction of temporary breeding sites, community-based cleaning of environment and 

sensitization. IVM studies should also target adult mosquitoes using new active products (if 

available in the market) or combination of LLINs and IRS (for which a new trial will soon 

start in the country with recent agreement of national malaria control programme (NMCP) 

under the supervision of the ministry of health department and Bayer CropScience). However, 

prior to IVM, a feasibility study using experimental huts and bioassays needs to be conducted 

to check what cocktail of IRS experiments (rotation or mixture of insecticide classes) and 

types of LLINs (e.g. appropriate ingredients, e.g. including or not synergists) will be suitable 

and probably capable to generate satisfactory results when taken together with the larval 

management studies. 
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Figure 6.1. P450 and ACE-1 expression profile in bendiocarb resistance in An. gambiae from 

Tiassalé following microarray (chapter 3) and family study (Chapter 4). The primary determinant 

of variation in survival at an LT80 level is expression of ACE-1 and CYP6 P450s. At 60 minutes, 

the ACE-1 G119S mutation appears to be the primary resistance determinant. Between both limits, 

overexpression of ACE-1 is the primary variant at an LT50. 
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Abstract 

Malaria control depends on mosquito susceptibility to insecticides. We tested Anopheles 

gambiae mosquitoes from Côte d’Ivoire for resistance and screened a subset for target site 

mutations. Mosquitoes were resistant to insecticides of all approved classes. Such complete 

resistance, which includes exceptionally strong phenotypes, presents a major threat to malaria 

control. 

Targeting the mosquito vector is the most effective way to prevent malaria transmission; 

worldwide, this method accounts for more than half of malaria control expenditures (1,2). During 

the past decade, increased use of insecticide-treated bed nets and indoor residual spraying have 

made a pivotal contribution toward decreasing the number of malaria cases (1). However, these 

gains are threatened by the rapid development and spread of insecticide resistance among major 

malaria vectors in Africa (3). To keep vector resistance from undermining control programs, 
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insecticide-resistance management strategies must reduce the current overreliance on pyrethroids. 

These compounds are used widely for indoor residual spraying and uniquely for insecticide-treated 

bed nets. However, having a limited number of insecticides available for malaria vector control 

restricts options for effective insecticide resistance management. Only 4 classes of insecticide, 

which share 2 modes of action, are approved by the World Health Organization (WHO). 

A mutation at a single target site can result in mosquito resistance to DDT and pyrethroids or to 

organophosphates and carbamates. Furthermore, mosquitoes can express multiple insecticide-

resistance mechanisms (4). For example, in several populations of the major malaria vector in 

Africa, Anopheles gambiae s.l. mosquitoes, mutations in the DDT/pyrethroid target site, known as 

knockdown resistance (kdr) alleles, have been found in conjunction with resistance alleles of the 

acetylcholinesterase gene (Ace-1R), the target site of organophosphates and carbamates (5). To 

date, however, these cases of multiple-insecticide resistance have been restricted by the relatively 

low prevalence of organophosphate/carbamate resistance and the limited effect thatkdr mutations 

alone have on pyrethroid-based interventions (6). We report a population of An. 

gambiae mosquitoes from a rice-growing area of southern Côte d’Ivoire that have high frequencies 

of kdr and Ace-1R alleles and unprecedentedly high levels of phenotypic resistance to all insecticide 

classes available for malaria control. 

 

The Study 

During May–September 2011, mosquito larvae were collected in irrigated rice fields surrounding 

Tiassalé, southern Côte d’Ivoire (5°52′47′′N; 4°49′48′′W) and reared to adults in insectaries on a 

diet of MikroMin (Tetra, Melle, Germany) fish food. A total of 1,571 adult female An. gambiae s.l. 

mosquitoes, 3–5 days of age, were exposed to 1 of 5 insecticides (0.1% bendiocarb, 1.0% 

fenitrothion, 0.75% permethrin, 0.05% deltamethrin, 4% DDT) or a control papers for 1 hour, 

according to standard WHO procedures (7). Mosquito deaths were recorded 24 hours later. DNA 

was extracted from individual mosquitoes according to the LIVAK method (8), and a subsample of 

500 mosquitoes were all found to be the M molecular form of An. gambiae s.s. by using the SINE-

PCR method (9). The target site mutation G119S in the Ace-1 gene (Ace-1R) and L1014F and 

L1014S kdr mutations were screened by using restriction fragment length polymorphism (10) or 

TaqMan assays (11), respectively. 

 

Figure 1 
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Figure 1. . . Time-mortality curve for wild-caught Anopheles gambiaemosquitoes from Tiassalé, southern Côte d’Ivoire, 

exposed to deltamethrin (median time to death = 248 minutes). Logistic regression line was fitted to time-response data... 

Figure 2 

 

Figure 2. . . Time-mortality curve for wild-caught Anopheles gambiaemosquitoes from Tiassalé, southern Côte d’Ivoire, 

exposed to bendiocarb (median time to death = 286 minutes). Logistic regression line was fitted to time-response data by... 

 

According to WHO criteria, An. gambiae mosquitoes from Tiassalé are resistant to all insecticide 

classes, and resistance is extremely prevalent; more than two thirds of mosquitoes survived the 

diagnostic dose for 4 of the 5 insecticides tested (Table 1). To assess the level of resistance, we 

exposed the Tiassalé population and a susceptible laboratory population of An. gambiae (Kisumu) 

mosquitoes to the pyrethroid deltamethrin or the carbamate bendiocarb for a range of exposure 

times and assessed deaths 24 hours later (Technical Appendix  [PDF - 75 KB - 2 pages]). We 

found an unexpectedly strong resistance phenotype to the 2 insecticides (Figure 1, Figure 2). For 

deltamethrin, 4 hours of exposure were required to kill 50% (median lethal time, [LT50]); in 

comparison, the LT50 for the susceptible Kisumu strain was <2 minutes (resistance ratio = 138) 

(Technical Appendix  [PDF - 75 KB - 2 pages]). Similarly, the LT50 for bendiocarb was nearly 5 

hours for the Tiassalé strain yet <12 minutes for the susceptible strain (resistance ratio = 24) 

(Technical Appendix  [PDF - 75 KB - 2 pages]). 

To investigate the causes of this resistance, we screened a subset of mosquitoes for the target site 

mutations, kdr 1014F and 1014S. Only the 1014F kdr mutation was detected, and this resistance 

allele was found at high frequency (83%). There was a significant association between presence of 

the 1014F kdr allele and ability to survive exposure to DDT but not to either pyrethroid (Table 2). 

In contrast, the Ace-1R allele was strongly associated with survival after exposure to bendiocarb 

and fenitrothion (Table 2). 

 

Conclusions 

Pyrethroid resistance in An. gambiae mosquitoes was first reported from Côte d’Ivoire in 1993 

(12); carbamate resistance was detected in the 1990s (13). Nevertheless, ≈2 decades later, it is 

surprising and worrying to find complete resistance to all insecticides tested, particularly—for 
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deltamethrin and bendiocarb—at such high levels. Resistance mechanisms seem to be varied. Ace-

1R is strongly associated with organophosphate and carbamate resistance, and the absence of 

119S homozygotes might be attributable to the high fitness cost of the Ace-1R allele in the absence 

of insecticide (14). Presence of the 1014F kdr allele alone does not confer the ability to survive 

diagnostic doses of pyrethroids; thus, alternative mechanisms must be responsible for the high-

level pyrethroid resistance in this population. 

The selective pressures responsible for this intense multiple-insecticide resistance in Tiassalé 

mosquitoes are unclear. There is a high coverage of insecticide-treated bed nets, but this coverage 

does not differ from that in other parts of the continent, and indoor residual spraying has not been 

conducted in this region. Use of insecticides in agriculture has been linked to resistance in malaria 

vectors. This use is perhaps the most likely explanation in this district of intense commercial 

production of rice, cocoa, and coffee. 

Whatever the cause, the implications of this resistance scenario for malaria control are severe. 

With no new classes of insecticides for malaria control anticipated until 2020 at the earliest (15), 

program managers have few options available when confronted with multiple-insecticide 

resistance. Assessing the effect of pyrethroid resistance on the efficacy of insecticide-treated bed 

nets is complex because of the poorly understood associations between net integrity, insecticide 

content, net usage, and net efficacy. Nevertheless, resistance levels, such as those reported here, 

combined with continual selection pressure will inevitably lead to suboptimal mosquito control by 

use of insecticide-treated bed nets and indoor residual spraying. If unchecked, this resistance 

could spread rapidly and threaten the fragile gains that have been made in reducing malaria 

across Africa. 

Mr Edi is a PhD student at the Liverpool School of Tropical Medicine. His research interests are the 

causes and consequences of insecticide resistance in malaria vectors. 
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Tables 

 Table 1. Prevalence of insecticide resistance in Anopheles gambiae mosquitoes, M form, 
from Tiassalé, Côte d’Ivoire, 2011 
 

 Table 2. Association between genotype and mosquito survival after insecticide exposure 

 
 
 
 

 
 
 
 
 
 
 

 

 
 
 

Table 2. Association between genotype and mosquito survival after insecticide exposure* 

        No. per Genotypes Frequencies†     

Insecticides 

No.  

tested Mo. status No. LL LF FF 1014F‡ Odds ratios P-value 

DDT 73 Alive 48 2 7 39 88.5 
4 0.02 

 
Dead 25 2 10 13 72 

Permethrin 88 Alive 44 1 12 31 84.1 
1.23 0.82 

 
Dead 44 3 12 29 79.5 

Deltamethrin 89 Alive 45 1 12 32 84.4 
0.82 0.86 

 
Dead 44 2 9 33 85.2 

Table 1. Prevalence of insecticide resistance in Anopheles gambiae M form from Tiassalé, Côte 

d’Ivoire, 2011 

Insecticides No. tested* No.Dead % Dead (95%CI) 

Permethrin 288 69 24.0 (19.1-29.3) 

Deltamethrin 282 90 31.9 (26.5-37.7) 

DDT 306 25 8.2 (5.4-11.8) 

Fenitrothion 296 37 74.0 (68.6-78.9) 

Bendiocarb 299 219 12.4 (8.9-16.6) 

*Measured by death within 24 h, after 1h exposure to each insecticide. All mosquitoes were resistant according to World Health 

Organization classification (<80% dead) (7).  

http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t2.htm
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm#r7
http://wwwnc.cdc.gov/eid/article/18/9/12-0262-t1.htm#r7
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GG GS SS 119S¶ 

  
Bendiocarb 86 Alive 49 0 49 0 50 

100 
0.40 x 10-

12 

 
Dead 37 25 12 0 16.2 

Fenitrothion 100 Alive 50 0 50 0 50 

1,176 0 

  Dead 50 48 2 0 2 

*F and L represent mutant resistant alleles (phenylalanine) and wild-type alleles (leucine), respectively; S and G represent 

mutant resistant alleles (serine) and wild-type alleles (glycine), respectively. No resistant homozygotes GG were found 

among the 186 mosquitoes genotyped for Ace-1R by restriction fragment length polymorphism (a subset of 48 was further 

screened by using the TaqMan assay; congruence between the 2 methods was 100%). †The frequencies were calculated for 

each insecticide and mosquito status (alive/dead) after exposure.§Genotypic odds ratios (ORs) are shown because these 

exceed allelic ORs for DDT (recessive model), bendiocarb, and fenitrothion (both overdominant models), and are similar for 

permethrin and deltamethrin. For bendiocarb and fenitrothion absence of GG genotypes in the “Alive” group means that ORs 

are infinity, therefore ORs are shown if one GG was present. F and L represent mutant resistant alleles (phenylalanine) and 

wild-type alleles (leucine), respectively; S and G represent mutant resistant alleles (serine) and wild-type alleles.¶119S 

represents the Ace-1R frequencies. 
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Figure. Time-death curve for Anopheles gambiae mosquitoes, Kisumu strain, exposed to 

(top) deltamethrin (median time to death = 1.8 minutes, R2= 0.93) and (bottom) 

bendiocarb (median time to death = 12 minutes, R2= 0.99). 
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Appendix 3.1. Genes differentially overexpressed in Tiassalé microarrays 
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Appendix 3.2. Published paper in PLoS Genetics 

 

 

 

 

 

 

 

 

 

 

Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining 

inAnopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is 

advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence 

of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, 

West Africa, is therefore a potentially major operational challenge, particularly because these malaria 

vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of 

resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. 

Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme 

expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. 

P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality 

to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of 

pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb 

resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, 

and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct 

classes of insecticide although the biochemical mechanism for carbamates is unclear because, in 

contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarbin vitro. Strongly 

bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-

1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of 

additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria 

control. Extreme carbamate resistance in TiassaléAn. gambiae results from coupling of over-

expressed target site allelic variants with heightened CYP6 P450 expression, which also provides 

resistance across contrasting insecticides. Mosquito populations displaying such a diverse basis of 

extreme and cross-resistance are likely to be unresponsive to standard insecticide resistance 

management practices. 
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Author Summary 

Malaria control depends heavily on only four classes of insecticide to which Anophelesmosquitoes are 

increasingly resistant. It is important to manage insecticide application carefully to minimise increases 

in resistance, for example by using different compounds in combination or rotation. Recently, 

mosquitoes resistant to all available insecticides have been found in Tiassalé, West Africa, which 

could be problematic for resistance management, particularly if common genetic mechanisms are 

responsible (‘cross-resistance’). Tiassalé mosquitoes also exhibit extreme levels of resistance to the 

two most important classes, pyrethroids and carbamates. We investigated the genetic basis of 

extreme carbamate resistance and cross-resistance in Tiassalé, and the applicability of results in an 

additional population from Togo. We find that specific P450 enzymes are involved in both extreme 

and cross-resistance, including one, CYP6M2, which can cause resistance to three insecticide 

classes. However, amplification of a mutated version of the gene which codes for 

acetycholinesterase, the target site of both the carbamate and organophosphate insecticides, also 

plays an important role. Mechanisms involved in both extreme resistance and cross resistance are 

likely to be very resilient to insecticide management practices, and represent an alarming scenario for 

mosquito-targeted malaria control. 

 

Introduction 

Malaria mortality has decreased substantially in sub-Saharan Africa over the last decade, attributed in 

part to a massive scale-up in insecticide-based vector control interventions [1]. As the only insecticide 

class approved for treatment of bednets (ITNs) and the most widely used for indoor residual spraying 

(IRS), pyrethroids are by far the most important class of insecticides for control of malaria vectors [2]. 

Unfortunately pyrethroid resistance is now widespread and increasing in the most important malaria-

transmitting Anopheles species[3]–[5] and catastrophic consequences are predicted for disease 

control if major pyrethroid failure occurs [6]. With no entirely new insecticide classes for public health 

anticipated for several years [5], [6] preservation of pyrethroid efficacy is critically dependent upon 

strategies such as rotation or combination of pyrethroids with just three other insecticide classes, 

organochlorines, carbamates and organophosphates [6], [7]. In addition to logistical and financial 

issues, insecticide resistance management suffers from knowledge-gaps concerning mechanisms 

causing cross-resistance between available alternative insecticides, and more, generally how high-

level resistance arises [8]. With strongly- and multiply-resistant phenotypes documented increasingly 

in populations of the major malaria vector Anopheles gambiae in West Africa [9]–[13] such information 

is urgently required. 

Of the four classes of conventional insecticide licensed by the World Health Organisation (WHO), 

pyrethroids and DDT (the only organochlorine) both target the same para-type voltage-gated sodium 

channel (VGSC). This creates an inherent vulnerability to cross-resistance via mutations in 

the VGSC target site gene [14]–[16], which are now widespread in An. gambiae[5]. In contrast, 

carbamates and organophosphates cause insect death by blocking synaptic neurotransmission via 

inhibition of acetylcholinesterase (AChE), encoded by the ACE-1 gene inAn. gambiae. Consequently, 

target site mutations in the VGSC gene producing resistance to pyrethroids and DDT will not cause 

cross-resistance to carbamates and organophosphates. The carbamate bendiocarb is being used 

increasingly for IRS [17], [18], and has proved effective in malaria control programs across Africa 

targeting pyrethroid- or DDT-resistant An. gambiae [18]–[20]. A single nucleotide substitution of 

glycine to serine at codon position 119 (Torpedo nomenclature; G119S) in the ACE-1 gene, which 

causes a major conformational change in AChE, has arisen multiple times in culicid 
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mosquitoes [21], [22], and is found in An. gambiae throughout West Africa [23]–[25]. The G119S 

mutation can produce carbamate or organophosphate resistance [26] but typically entails 

considerable fitness costs [27]–[30]. This is beneficial for resistance management because in the 

absence of carbamates or organophosphates, serine frequencies should fall rapidly [29], [31]. 

In Culex pipiens, duplications of ACE-1 create linked serine and glycine alleles, which, when 

combined with an unduplicated serine allele, creates highly insecticide resistant genotypes with near-

full wild-type functionality, thus providing a mechanism that can compensate for fitness 

costs [28], [31]. Worryingly, duplication has also been found in An. gambiae [23] though the 

consequences of copy number variation for fitness in the presence or absence of insecticide are not 

yet known inAnopheles. Though far from complete, information is available for metabolic resistance 

mechanisms to pyrethroids and DDT in wild populations of An. gambiae [5], [6], [32]–[34]. Indeed, a 

specific P450 enzyme, CYP6M2, has been demonstrated to metabolize both of these insecticide 

classes, suggesting the potential to cause cross-resistance in An. gambiae [32],[35]. By contrast little 

is known about metabolic mechanisms of carbamate resistance in mosquitoes and, as a 

consequence, potential for mechanisms of cross-resistance are unknown. 

A particularly striking and potentially problematic example of insecticide resistance has been found in 

one of the two morphologically identical, but ecologically and genetically divergent molecular forms 

comprising the An. gambiae s.s. species pair (M molecular form, recently renamed as An. 

coluzzii [36]) in Tiassalé, southern Côte d'Ivoire. The Tiassalé population is resistant to all available 

insecticide classes, and displays extreme levels of resistance to pyrethroids and carbamates [11]. 

The VGSC 1014F (‘kdr’) and ACE-1 G119S mutations are both found in Tiassalé [11], [25]. 

Yet kdr shows little association with pyrethroid resistance in adult females in this 

population [11]. ACE-1 G119S is associated with both carbamate and organophosphate 

survivorship [11], but this mutation alone cannot fully explain the range of resistant phenotypes, 

suggesting that additional mechanisms must be involved. Here we apply whole genome microarrays, 

transgenic functional validation of candidates, insecticide synergist bioassays, target-site genotyping 

and copy number variant analysis to investigate the genetic basis of (1) extreme bendiocarb 

resistance and (2) cross-insecticide resistance in An. gambiaefrom Tiassalé. Our results indicate that 

bendiocarb resistance in Tiassalé is caused by a combination of target site gene mutation and 

duplication, and by specific P450 enzymes which produce resistance across other insecticide classes. 

 

Results 

Whole genome transcription analysis 

Our study involved two microarray experiments (hereafter referred to as Exp1 and Exp2), involving 

solely M molecular form An. gambiae (Table S1), to identify candidate genes involved in bendiocarb 

resistance (full microarray results for Exp1 and Exp2 are given in Table S2A). In Exp1 gene 

expression profiles of female mosquitoes from bendiocarb-susceptible laboratory strains (NGousso 

and Mali-NIH) and a bendiocarb-susceptible field population (Okyereko, Ghana), none of which were 

exposed to insecticide, were compared to those of Tiassalé females. Two Tiassalé groups were used: 

either without insecticide exposure (Figure 1A), or the survivors of bendiocarb exposure selecting for 

the 20% most resistant females in the population [11] (Figure 1B). We used a stringent filtering 

process to determine significant differential expression (detailed in the legend to Figure 1), which 

included criteria on both the probability and consistency of direction of differential expression, and 

also required a more extreme level of differential expression in the Tiassalé-selected than Tiassalé 
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(unexposed) vs.susceptible comparisons. Inclusion of this third criterion enhanced the likelihood that 

genes exhibiting differential expression are associated with bendiocarb resistance, rather than 

implicated via indirect association with another insecticide. Moreover, the requirement for significance 

in comparisons involving both bendiocarb-exposed and unexposed Tiassalé samples (Figure 1A, B) 

negates the possibility that any differential expression identified was a result solely of induction of 

gene expression by insecticide exposure. 

 

 

 

 

Figure 1. Microarray experimental design. 

Arrows indicate pairwise comparisons with direction indicating an increasing level of bendiocarb 

resistance, which was used to predict the expected direction of differential gene expression (only solid 

arrows were used to determine significance). Coloured boxes indicate samples resistant to 

bendiocarb; the red box indicates the only bendiocarb-selected sample. In Exp2 (C) microarray 

probes were considered significantly differentially expressed in resistant samples if: (i) each 

sus vs. res comparisons showed a consistent direction of expression as predicted by arrow direction; 

and (ii) each sus vs. res comparison yielded corrected P<0.05. In Exp1 (A, B) an additional criteria for 

significance was applied to increase specificity of results to the bendiocarb phenotype: (iii) fold-

change for each Tiassalé-selected vs. sus comparison must be more extreme than the corresponding 

Tiassalé vs. sus comparison. Overall significance required significance in both Exp1 and Exp2. 

doi:10.1371/journal.pgen.1004236.g001 

 

 

In Exp1 145 probes were significant, out of a total of 14 914 non-control probes, with almost all 

(143/145) expressed at a higher level in the resistant samples (Table S2B). Functional annotation 

clustering analysis detected two significant clusters within the significantly over-expressed genes 

(Table S2C). The larger cluster was enriched for several P450s and the functionally-related genes 

cytochrome b5 and cytochrome P450 reductase. Of these, CYP6P3,CYP6P4, CYP6M2 and 

cytochrome b5 are evident amongst the most significant and/or over-expressed probes in Figure 2A. 

Of the five physically-adjacent CYP6P subfamily genes in An. gambiae, CYP6P1 and CYP6P2 were 

also significant (Table S2B), and CYP6P5 only marginally non-significant according to our strict 

criteria (five out of the six comparisons q<0.05). The four probes for the ACE-1 target site gene 

exhibited the strongest statistical support (lowest q-values) for resistance-associated overexpression 

in the Exp1 dataset (Figure 2A). 
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Figure 2. Genes significantly overexpressed (relative to susceptible samples) in (A) Tiassalé 

bendiocarb resistant samples in Exp1, and (B). both Tiassalé and Kovié samples. 

Plots show: (A). Log2-transformed fold-changes (FC) plotted against -log10 transformed q-values 

(multiple-testing-corrected probabilities) for bendiocarb-selected Tiassalé samples versus the average 

of the three susceptible populations; (B) Comparison of Kovié FC against Tiassalé-selected FC for 

probes significant in both experiments. For genes represented by multiple probes, numbers in 

parentheses indicate the number of probes significant/total. 

doi:10.1371/journal.pgen.1004236.g002 

 

 

 

Experiment 2 employed a simpler design in which bendiocarb resistant samples from Kovié (Togo) 

were compared to the same Okyereko field samples used in Exp1 and to a second field population 

from Malanville (Benin). Significant differential expression was determined according to the first two 

criteria employed for analysis of Exp1 (Figure 1). The likelihood of specificity of results to the 

bendiocarb resistance phenotype was enhanced because all three populations used in Exp2 exhibit 

resistance to pyrethroids and DDT, all are susceptible to organophosphates, but only the Kovié 

population is resistant to bendiocarb. In Exp2 2453 probes were significantly differentially expressed 

(Table S2D); likely reflecting the lower number of pairwise comparisons available for stringent filtering 

than in Exp1. Consequently we do not consider results from Exp2 alone in detail. Nevertheless it is 

interesting to note that the lowest q-values and highest fold-changes were both for alcohol 

dehydrogenase genes (Figure S1), and the latter is the physical neighbour and closest paralogue of 

the highly overexpressed alcohol dehydrogenase in Exp1 (Figure 2A). Sixteen probes, representing 

only seven genes, were significant in both Exp1 and Exp2 (Figure 2B), including all replicate probes 

for three of the CYP6 P450 genes highlighted previously. Of these, CYP6M2 was most highly over-

expressed, second only to Ribonuclease t2. However, results for Ribonuclease t2 were much more 

variable, with differential expression dramatically high compared to lab strains, but moderate or low 

compared to wild populations (Table S2E). Evidence for specific involvement in bendiocarb resistance 

is suggested by significance of two of the CYP6M2 probes in the (relatively low-powered) direct 

comparison of bendiocarb selected vs. unselected samples within Exp1; the other 

two CYP6M2 probes and two of those for ACE-1 were marginally non-significant (0.05<q<0.10; Figure 

S2). 
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qRT-PCR expression of candidate genes 

Five genes were chosen for further analysis: ACE-1 and CYP6P3 from 

Exp1; CYP6M2 andCYP6P4 from Exp1+Exp2; and CYP6P5, which we included because of a 

suspected type II error in the microarray analysis (see above). qRT-PCR estimates of expression, 

relative to the susceptible Okyereko population, showed reasonable agreement with microarray 

estimates albeit with some lower estimates (Figure S3). CYP6M2 and CYP6P4 exhibited up to eight 

and nine-fold overexpression, and ACE-1 six-fold compared to Okyereko, though high variability 

among biological replicates for the P450 genes resulted in relatively few significant pairwise 

comparisons (Figure 3). Nevertheless the hypothesis that fold-changes should follow the rank order 

predicted by the level of bendiocarb resistance in each comparison (i.e. Tiassalé selected>Tiassalé 

unexposed>Kovié) was met qualitatively for all genes (Figure 3). 

 

 

Figure 3. qRT-PCR expression analysis of candidate genes. 

Bars show mean fold changes relative to the bendiocarb and organophosphate susceptible Okyereko 

population. Asterisks indicate significant over-expression. Expression differences between pairs of 

populations are significant where error bars do not overlap. N = 5 biological replicates except for 

Tia_sel (N = 3). 

doi:10.1371/journal.pgen.1004236.g003 

 

 

Insecticide resistance phenotypes of CYP6 genes in Drosophila 

For functional validation via transgenic expression in D. melanogaster, we 

chose CYP6P3 andCYP6M2; both of which have been shown to metabolize pyrethroids [34], [35], 

and CYP6M2also DDT [32]. The capacity of each gene to confer resistance to bendiocarb, to the 

class I and II pyrethroids permethrin and deltamethrin, respectively, and to DDT and was assessed by 

comparing survival of transgenic D. melanogaster, exhibiting ubiquitous expression 

of CYP6M2or CYP6P3 (e.g. UAS-CYP6M2/ACT5C-GAL4 experimental class flies), to that of flies 

carrying the UAS-CYP6M2 or CYP6P3 responder, but lacking the ACT5C-GAL4 driver (e.g. UAS-

CYP6M2/CyO control class flies). For CYP6M2 the relative expression level of the experimental flies 

was 4.0 and for CYP6P3 4.3 (Table S3). As indicated by elevated LC50 values (Figure S4), expression 

of either CYP6M2 or CYP6P3 produced pyrethroid resistant phenotypes, andCYP6M2 expression 

also induced significant DDT resistance (Table 1). Assays for CYP6P3with DDT did not produce 
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reproducible results (data not shown). Flies expressing the candidate genes exhibited greater survival 

across a narrow range of bendiocarb concentrations (Figure S4). However, at a discriminating dosage 

of 0.1 µg/vial [37] a resistance ratio of approximately seven was exhibited 

for CYP6M2/ACT5C: CYP6M2/CyO flies (Mann-Whitney, P = 0.0002;Figure 4) with a much smaller, 

but still significant, ratio of approximately 1.4 (Mann-Whitney, P = 0.019) 

for CYP6P3/ACT5C: CYP6P3/CyO flies. Caution is required in quantitative interpretation of the 

resistance levels generated, both because of the non-native genetic background and also ubiquitous 

expression of genes that may be expressed in a tissue-specific manner [38]. Nevertheless, the 

bioassays on transgenic Drosophila show that each P450s can confer resistance to more than one 

insecticide class. 

 

. 

 

 

Figure 4. Survival of transgenic Drosophila expressing An. gambiae Cyp6M2 orCYP6P3 in the 

presence of bendiocarb. 

Boxes show interquartile ranges with median lines and whiskers (error bars) show 95
th
percentiles for 

test (Act5C driver) or control (CyO) lines following exposure to 0.1 µg bendiocarb. Note that whiskers 

and median lines coincident with interquartile limits are not visible. Individual points falling outside 

percentiles are marked as dots. Mann-Whitney tests: ***P<0.001; *P<0.05. 

doi:10.1371/journal.pgen.1004236.g004 
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Table 1. Survival of transformed D. melanogaster expressing CYP6M2 andCYP6P3 exposed to 

the pyrethroids permethrin and deltamethrin, and forCYP6M2 also DDT. 

doi:10.1371/journal.pgen.1004236.t001 

 

In vitro metabolism assays 

Recombinant CYP6M2 and CYP6P3 were expressed in E. coli with An. gambiae NADPH P450 

reductase and cytochrome b5. An initial experiment, using 0.1 µM P450 and 2 hour incubation with 

bendiocarb, demonstrated metabolism of bendiocarb by CYP6P3 (64.2% mean depletion ±4.0% 

st.dev) but no metabolic activity of CYP6M2 (0±11.0%). Further investigation of CYP6P3 activity 

across a range of incubation times (Figure 5a) and enzyme concentrations (Figure 5b) supported the 

initial observation, with metabolism plateauing at a maximum of 50%. 

 

 

Download: 

Figure 5. In vitro metabolism of bendiocarb by recombinant CYP6P3 expressed in E. coli. 

In both plots, which show the effect of (A) incubation time and (B) enzyme concentration, points show 

the mean of three replicates (following subtraction of no-NADPH negative control values) ± one 

standard error. 

doi:10.1371/journal.pgen.1004236.g005 
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Resistance phenotypes and inhibition 

An. gambiae from Tiassalé are classified as resistant to all classes of WHO-approved insecticides 

(<90% bioassay mortality 24 hours after a 60 min exposure), with resistance phenotypes stable 

across wet and dry seasons (Figure 6, Table S4). Nevertheless, resistance varies markedly among 

insecticides (Table S4), with notably higher prevalence for bendiocarb and DDT than the 

organophosphate fenitrothion. The synergist PBO, which is primarily considered an inhibitor of P450 

enzymes, exerted a significant influence on bioassay mortality (Table S4) for four of the five 

insecticides tested, with only DDT not significantly impacted (Figure 6). The synergising effect of PBO 

was strongest for bendiocarb, with a near five-fold increase in mortality, equivalent to an odds ratio for 

PBO-induced insecticidal mortality exceeding ten (Figure 6). However, for all of the insecticides, apart 

from fenitrothion, over 20% of the population survived even with PBO pre-exposure. 

 

 

Figure 6. Insecticide resistance phenotypes from dry (blue) and wet (red) seasons with and 

without the synergist PBO. 

Bars are mean mortalities from four replicate bioassays (N = 25 each), with 95% binomial confidence 

limits. Odds ratios are shown above bars and represent the odds of mortality with PBO pre-exposure, 

compared to the odds of mortality with insecticide alone (data from the two seasons are pooled). 

*P≪0.001; 
NS

not significant (×
2
-test). 

doi:10.1371/journal.pgen.1004236.g006 

 

AChE target site resistance 

The ACE-1 G119S substitution is the only non-synonymous target site mutation known in An. 

gambiae [23], and the resistant (serine) allele is common in Tiassalé with an estimated frequency of 

0.46 (N = 306). All occurrences of serine are in heterozygotes (95% confidence limits for heterozygote 

frequency: 0.87–0.94), which underlies a dramatic deviation of genotype frequencies from Hardy-

Weinberg equilibrium (÷
2
 = 135.5, P≈0). To examine the independence of putatively P450-mediated 

resistance and AChE target site insensitivity, we typed the G119S locus in females from the 

diagnostic (60 min) bendiocarb assays with and without pre-exposure to PBO. In either case absence 

of the 119 serine allele appears to almost guarantee mortality to bendiocarb (Table S5), as previously 

observed for fenitrothion bioassays in Tiassalé [11]. However, the strong bendiocarb resistance 
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association of G119S was reduced significantly by PBO pre-exposure (homogeneity ÷
2
 = 8.3, P = 

0.004) with the probability of survival for heterozygotes reduced to approximately 50% (Table S5). To 

investigate whether heterozygote survivorship might be linked to copy number variation, via a 

difference in numbers of serine and glycine alleles, we examined the qPCR dye balance ratio for live 

and dead individuals within the heterozygote genotype call cluster (Figure 7A). In many individuals 

called as heterozygotes, a markedly higher ratio of 119S: 119G dye label than the 1:1 expected for a 

true heterozygote is evident (Figure 7A), and surviving heterozygotes exhibited a significantly higher 

serine: glycine dye signal ratio than those killed (t-test, P = 1.5×10
−5

). We designed an additional qRT-

PCR diagnostic to investigate copy number more directly in a portion of the surviving and dead 

individuals typed as G119S heterozygotes. The difference in copy number was highly significant 

between survivors and dead (Figure 7B), with 15/16 survivors but only 5/16 dead females exhibiting a 

copy number ratio in excess of 1.5 (Table S5), consistent with possession of an additional allele. 

These results show that independent of the enzymes inhibited by PBO survival, females 

heterozygous for the G119S mutation (i.e. most individuals in Tiassalé) depends upon Ace-1 copy 

number variation and possession of additional resistant serine alleles. 

 

 

Figure 7. Role of target site allelic variation and copy number variation in bendiocarb 

resistance. 

A. ACE-1 G119S TaqMan genotyping scatterplot of females exposed to bendiocarb, following PBO 

synergist exposure. Filled dots are genotypes called, unfilled are those excluded owing to ambiguous 

position. The line illustrates a 1:1 Glycine (G): Serine (S) allele balance. Triangles are controls: S/S = 

mutant (resistant) allele homozygote; G/G = wild type (susceptible) allele homozygote. The line 

illustrates a 1:1 Gly:Ser allele balance. The dashed circle illustrates heterozygous genotypes. B. Ace-

1 genomic DNA copy number ratio of survivors and dead (N = 16 each) from the heterozygote 

genotype cluster. Bars show mean ΔΔCT values relative to a standard susceptible laboratory strain 

(Kisumu) following normalisation against reference genes; error bars are 95% confidence intervals. In 

both plots blue denotes bioassay survivors and red denotes dead. 

doi:10.1371/journal.pgen.1004236.g007 

 

 

 

Discussion 

Bendiocarb is an increasingly important alternative to pyrethroids for IRS, but with carbamate 

resistant malaria vectors now established in West Africa [9]–[13] detailed understanding of the 

underlying mechanisms is urgently required to combat resistance and avoid cross-resistance[6]. 

Exhibiting the most extreme carbamate resistance and multiple insecticide resistance phenotypes 

documented to date in An. gambiae [11], the Tiassalé population represents an especially suitable 
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model to address this question. Our results show how P450s contribute to multiple resistance in 

Tiassalé, and couple with overexpression of ACE-1 resistant alleles to produce extreme bendiocarb 

resistance. 

P450s in carbamate resistance and cross-resistance 

The major biochemical mechanisms of carbamate resistance in mosquitoes have previously been 

identified as modified AChE (via point substitutions, most notably G119S) and less frequently 

esterase-mediated metabolism [7]. PBO-induced increases in carbamate mortality have been 

reported in wild mosquito populations exhibiting low to moderate resistance levels, including M 

form An. gambiae from West Africa [12], [39],[40]. The significant synergizing effect of PBO in the 

present work and these previous studies is consistent with a role of P450s in carbamate resistance, 

but should not be taken alone as direct proof [41] because PBO exposure can also inhibit some 

esterases [42], [43]. However, our microarray data clearly identified over-expression of 

multiple CYP6 P450 genes, whereas only a single carboxylesterase gene (COEAE6G) was 

significant, and expressed at a lower level (Table S2B). Taken together, the synergist data and 

transcriptional profiles indicate that a substantial proportion of the Tiassalé population is dependent 

upon the action of P450s for resistance to bendiocarb. Near-equivalent synergism of permethrin and 

deltamethrin, coupled with identification and functional validation of shared candidate genes, suggests 

the same conclusion for pyrethroids. For fenitrothion, the effect of PBO is also consistent with P450 

involvement, but in the absence of specific candidate genes, additional supporting evidence will be 

required to confirm this hypothesis. 

Genes from the CYP6P cluster emerged as strong candidates for involvement in P450-mediated 

detoxification. CYP6P3 overexpression has been linked repeatedly with pyrethroid resistance in An. 

gambiae [33], [34], as has its orthologue in An. funestus CYP6P9 [44], [45]and both enzymes can 

metabolise class I and II pyrethroids [34], [35], [45]. We demonstrate that CYP6P3 can produce 

significant resistance to both classes of pyrethroid and, to a lesser extent bendiocarb, in D. 

melanogaster. We also show that recombinant CYP6P3 can metabolise bendiocarb in vitro; the third 

mosquito P450 to metabolise a carbamates, after An. gambiae CYP6Z1 and CYP6Z2 which have 

been demonstrated to metabolise the insecticide carbaryl [46]. Interestingly CYP6P4, which, in 

contrast to CYP6P3, was also significantly overexpressed in the Togolese Kovié population, is the 

orthologue of the resistance-associatedCYP6P4 gene in An. funestus [44], and along 

with CYP6P3 was recently found to be overexpressed in DDT-resistant samples of both M and S 

molecular forms of An. gambiae from Cameroon [47]. Although we were unable to obtain data for the 

impact of CYP6P3 expression on survival with DDT exposure in D. melanogaster, the potential of 

CYP6P genes to act on DDT merits further investigation. It is also interesting to note that both 

cytochrome b5 and cytochrome P450 reductase, both important for P450-mediated insecticidal 

detoxification [48]are overexpressed in Tiassalé, suggesting a possible role in resistance for co-

expression of these genes with the CYP6 P450s. 

CYP6M2 was overexpressed in Tiassalé, Kovié, and also in the Tiassalé bendiocarb-

selectedvs. control comparison. CYP6M2 expression generated Drosophila phenotypes significantly 

resistant to bendiocarb, DDT, and class I and II pyrethroids. Overexpression of CYP6M2 has been 

linked repeatedly to pyrethroid [33], [34] and DDT resistance [32], [47] in An. gambiae, and is known 

to metabolise both these classes of insecticide [32], [35]. Our data now suggest a role in bendiocarb 

resistance, and overall provide strong evidence for involvement in resistance to three classes of 

insecticide. The biochemical mechanism of involvement remains unclear however because CYP6M2 

did not metabolise bendiocarb in vitro, though we cannot rule out the possibility that some unknown, 

and thus currently, absent co-factor might be required. Sequestration also seems unlikely since 
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CYP6M2 does not appear to bind bendiocarb. A role in breakdown of secondary bendiocarb 

metabolites certainly remains plausible, though at present knowledge of such mechanisms for any 

insecticide in mosquitoes is very limited [49],[50]. High variability in CYP6M2 expression among 

biological replicates, especially evident in qRT-PCR, suggests that the regulatory mechanism(s) 

generating overexpression is far from fixation in Tiassalé. Further work is required to determine 

whether the cause of overexpression might be gene amplification, as seen for insecticide-linked 

CYP6P genes in An. funestus [44]and CYP6Y3 in the aphid Myzus persicae [51] or a cis regulatory 

variant, or both, as documented for CYP6G1 in D. melanogaster [52]. In either case, the actual level 

of expression in individuals possessing causal regulatory variant(s) may be much higher than we 

detected from pooled biological replicates. As a consequence, it is possible that CYP6M2 (and other 

key P450s) might be expressed at too high a level for PBO to fully inhibit at the dosage applied, 

resulting in only partial synergy. Indeed it is interesting that CYP6M2 generated significant DDT 

resistance in transformed Drosophila in our study and has been shown metabolise DDT [32] yet PBO 

provided only very slight and non-significant synergy for DDT-exposed Tiassalé females. An 

inadequate concentration of PBO might be important, but it is worth noting that levels of DDT 

resistance in West African An. gambiae can be extreme and are likely to be underpinned by additional 

mechanisms [32] such as the significantly resistance-associated kdr L1014F target site mutation in 

Tiassalé [11]. Whilst incomplete synergy of highly expressed P450 enzymes might be a partial 

explanation, our results point to target site mechanisms as a key factor underpinning survival 

following PBO and bendiocarb exposure. 

Target site insensitivity and amplification 

Possession of the ACE-1 119 serine variant appears to be a near-prerequisite for bendiocarb-survival 

in Tiassalé, as documented previously for fenitrothion [11]. This is apparently not the case in all An. 

gambiae populations, with some individuals lacking the serine mutation surviving a standard 60 min 

exposure [12], [39]. Over 90% of Tiassalé mosquitoes are heterozygous for G119S, which could be 

consistent with fitness costs for individuals lacking a fully-functional wild-type allele since the serine 

allele exhibits lowered activity [28]. It is apparent though that possession of the ACE-1 G119S 

mutation represents only a portion of the target site mediated resistance mechanism. Tiassalé 

females generally showed much higher expression of ACE-1than all other populations in our 

experiments, reaching approximately six-fold in the highly resistant bendiocarb-selected group 

compared to the Okyereko susceptible group. Following PBO-mediated P450 inhibition, survival of 

G119S heterozygotes was reduced to approximately 50% and our results show that individuals 

exhibiting a higher ACE-1 copy number and more copies of the serine allele had a significant survival 

advantage. Together these results indicate that the primary explanation for the ubiquitous 

heterozygosity found in Tiassalé is an elevated copy number of expressed ACE-1 alleles. At least in 

individuals possessing additional serine alleles, this enhances carbamate resistance, and can 

apparently generate resistance independently of P450 activity. 

Extra copies of ACE-1 alleles have been found in West African An. gambiae, and lack of sequence 

variation suggests that duplication is a very recent event [23]. Consequences ofACE-1 duplication 

have not been documented previously in Anopheles but Cx. pipienspossessing two G119S resistant 

alleles and a wild type susceptible allele can exhibit near maximal fitness in the presence and 

absence of organophosphate treatment [30]. If this fitness scenario is similar in An. gambiae ACE-

1 duplicates could spread rapidly, or may have already done so but have been largely undetected by 

available diagnostics. The estimated copy numbers we detected in some individuals suggests that 

more ACE-1 copies may be present inAn. gambiae than are known in Cx. pipiens, perhaps more akin 

to the high level of amplification found in spider mites Tetranychus evansi [53]. This raises the 

possibility of a potentially multifarious set of resistant phenotypes dependent upon the number and 
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G119S genotype of the copies possessed by an individual, understanding of which will benefit from 

further application of the DNA-based qPCR diagnostic we have developed. 

Conclusion 

Extreme levels of resistance to single insecticides, and multiple resistance across different insecticidal 

classes represent major problems for control of disease vectors, and pest insects generally. 

Tiassalé An. gambiae show exceptionally high-level carbamate resistance and the broadest 

insecticide resistance profile documented to date. Our results indicate that overexpression of specific 

CYP6 enzymes and duplicated resistant ACE-1 alleles are major factors contributing to this resistance 

profile. Results from the less resistant Kovié population show that at least some of the mechanisms 

are not restricted to Tiassalé and could be quite widespread in West Africa. The involvement 

of CYP6P3 and CYP6M2 in resistance to multiple insecticide classes parallels the cross resistance 

engendered by CYP6 genes in other insect taxa [54], [55] and is extremely concerning because 

resilience to standard resistance management strategies is likely to be increased greatly. Further 

work is now required to understand the biochemical role of CYP6M2 in detoxification of bendiocarb 

and also to better understand any associated fitness costs of elevated CYP6P gene expression. In 

addition, whilst we have demonstrated involvement of elevated expression of the CYP6 P450s in 

insecticide resistance, the impact of structural variants within these genes remains to be investigated 

and is very poorly understood for P450-mediated insecticide resistance in mosquitoes. In spite of a 

major impact of PBO on three distinct insecticide classes, too many females remained alive to 

suggest that PBO provides a resistance-breaking solution. Nevertheless, we suggest that this 

preliminary conclusion may be worth further testing: (i) using higher PBO concentrations; (ii) in 

females old enough to transmit malaria, which are usually less insecticide resistant [56]–[58]; or (iii) in 

less resistant populations. Monitoring the spread of ACE-1 duplications should be an immediate 

priority, whereas modification of AChE-targeting insecticides to reduce sensitivity to the G119S 

substitution [59], [60] represents an important longer-term goal. 

Materials and Methods 

Study design and samples 

Our study involved Anopheles gambiae samples for bioassays coupled with target site genotyping 

and copy number analysis, and two microarray experiments. The first (Exp1; seeFigure 1A, B) 

compared samples from laboratory strains or field populations entirely susceptible to carbamates, with 

bendiocarb-resistant females from Tiassalé, which were also the subject of bioassays. Exp2 

(see Figure 1C) involved a comparison of a population moderately resistant to bendiocarb (Kovié) 

with two fully carbamate susceptible field populations. Sample site details and resistance profiles for 

each population or strain used in the microarrays are given in Table S1. For field populations, larvae 

were collected and provided with ground TetraMin fish food. Emerged adults were provided 10% 

sugar solution. All 3–5 day old females for subsequent gene expression analysis were preserved in 

RNALater (Sigma). With the exception of a selected group from the Tiassalé population (below), all 

samples were preserved without exposure to insecticide. The Tiassalé selected group were survivors 

of exposure to 0.1% bendiocarb (using WHO tubes and papers) for 360 min which induces 

approximately 80% mortality after 24 h (11); unexposed controls were held for 360 min with control 

paper, which did not induce mortality. All mosquitoes used in the study were identified as An. 

gambiae s.s. M molecular form using the SINE-PCR method [61]. 
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Synergist bioassays, ACE-1 G119S genotyping and copy number analysis 

The effect of the insecticide synergist piperonyl butoxide (PBO), a primary action of which is to inhibit 

P450 monooxygenase enzymes [41], was evaluated using WHO bioassays. Eight replicates of 25 

adult female An. gambiae emerging from larvae obtained from an irrigated rice field in Tiassalé were 

exposed to five insecticides (permethrin, deltamethrin, DDT, bendiocarb and fenitrothion). 

Immediately prior to each 60 min insecticide exposure, mosquitoes were exposed to 4% PBO paper 

for 60 min. 100 females were exposed to PBO alone as control. Chi-squared tests were used to 

compare the mortality with and without PBO. A TaqMan qPCR assay [62] run on an Agilent 

Stratagene real-time thermal cycler was used to genotype PBO-exposed samples for the ACE-

1 G119S polymorphism, with qualitative calling of genotypes based on clustering in endpoint 

scatterplots. G119S genotype call data for samples not exposed to PBO was taken from a prior 

publication [11]. Following qualitative genotype calling, endpoint dR values for each dye were 

exported, and the data from individuals called as heterozygotes was analyzed quantitatively to 

investigate the possibility of sub-grouping within this genotype cluster. Specifically we tested whether 

surviving and dead mosquitoes, heterozygous for G119S, might possess different numbers of serine 

and alleles by comparing FAM (serine label)/VIC (glycine label) dye ratios using an unequal variance 

t-test. To further quantify the copy number variation suggested by the TaqMan genotyping results we 

designed a qRT-PCR to amplify fragments from three different exons of the ACE-1 gene, with 

normalisation (for varying gDNA concentration among samples) provided via comparison with 

amplification of a fragment from each of two single-copy genes CYP4G16 and Elongation Factor. 

Primer details are given in Table S6 and qRT-PCR conditions are the same as listed below for gene 

expression analysis. Relative copy number levels for Ace-1 were estimated relative to two pools of 

samples (N = 4 each) from the Kisumu laboratory strain by the ΔΔCT method [63]. ΔΔCT values for 

each test sample are the mean for the three ACE-1 amplicons following normalisation to both single 

copy genes and subtraction of the average normalised Kisumu values. Test samples were 16 ACE-

1 G119S heterozygote survivors and 16 dead, chosen at random from those genotyped by the 

TaqMan assay. ΔΔCT values were compared between survivors and dead using an unequal variance 

t-test. 

Microarrays 

Total RNA was extracted from batches of 10 mosquitoes using the Ambion RNAqueous-4PCR Kit. 

RNA quantity and quality was assessed using a NanoDrop spectrophotometer (Thermo Fisher 

Scientific) and a 2100 Bioanalyzer (Agilent Technologies) before further use. Three biological 

replicate extractions of total RNA from batches of 10 mosquitoes for each sample population or 

colony (except Ngousso where there were N = 2 replicates) were labelled and hybridised 

to Anopheles gambiae 8×15 k whole genome microarrays using previously described protocols [32]. 

Exp 2 employed a fully-interwoven loop design (Figure S6), optimal for study power [64] whilst, owing 

to the large number of comparisons and unbalanced replication, a pairwise full dye-swap design was 

used for Exp1 with indirect connection through the (resistant) Tiassalé groups (Fig. 1 A, B). Exp1 was 

analysed using GeneSpring GX v9.0 software (Agilent), which is readily applied to dye swap 

experiments, while the R program MAANOVA [65], with LIMMA [66] for normalisation prior to ANOVA, 

was used to analyse the interwoven loop in Exp2, using previously-described custom R-scripts [32]. 

For both experiments, the basic significance threshold for any single pairwise comparison was a q-

value with false discovery rate (FDR) set at 0.05 (i.e. an FDR-corrected threshold for multiple testing). 

Full details of the criteria applied to determine overall significance within and across Exp1 and 2 are 

given in Figure 1. Within Exp1, the direct comparison of Tiassalé bendiocarb-selected vs.Tiassalé 

control comparison was analysed separately and not used to determine overall significance, owing to 

the lower power expected for a within-population experiment involving the same level of replication as 
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the cross-population comparisons [34]. Significantly over-expressed genes emerging from Exp1 were 

studied at functional level using the software DAVID Bioinformatics resources 6.7 [67]. Microarray 

data are deposited with ArrayExpress under accession numbers E-MTAB-1903 (Exp1) and E-MTAB-

1889 (Exp2). 

 

qRT-PCR 

Quantitative real-time PCR was used to provide technical replication of results from the microarray 

experiments for a subset of significantly over-expressed genes. Samples were converted to cDNA 

using oligo(dT)20 (Invitrogen) and Superscript III (Invitrogen) according to the manufacturer's 

instructions and purified with the QIAquick PCR Purification Kit. Three pairs of exon-spanning primers 

were designed for each gene of interest and from each triplicate a pair was chosen that produced a 

single peak from melt cure analysis, and PCR efficiency closest to 100%, determined using a cDNA 

dilution series obtained from a single sample. Primers details are listed in Table S7. All qRT-PCR 

reactions were run on an Agilent Stratagene real-time thermal cycler and analysed using Agilent's 

MXPro software (Mx3005P). The PCR conditions used throughout were 10 min for 95°C, 40 cycles of 

10 s at 95°C and 60°C respectively, with melting curves run after each end point amplification at 1 min 

for 95°C, followed by 30 s increments of 1°C from 55°C to 95°C. The same RNA samples used for 

microarrays from Tiassalé (selected and unexposed), Kovié and Okyereko plus an additional two 

replicates (N = 5 for all but the Tiassalé selected group where N = 3) were used. Expression levels for 

each gene of interest were estimated relative to the Okyereko population (chosen as the reference 

bendiocarb susceptible group because it was present in both microarray experiments) by the ΔΔCT 

method following correction for variable PCR efficiency[63], and normalisation using two stably-

expressed genes (Rsp7 and Elongation Factor); primers and efficiencies are listed in Table S7. 

Statistical significance of over-expression of each group relative to Okyereko was assessed using 

equal or unequal variance t-tests as appropriate, depending on results of F-tests for 

homoscedasticity. 

Production of transgenic Drosophila melanogaster 

cDNA clones containing the open reading frames for CYP6M2 and CYP6P3 (sequences from the An. 

gambiae Kisumu laboratory strain) were PCR-amplified using high fidelity AccuPrime Pfx polymerase 

(Invitrogen). PCR primers contained EcoRI and NotI restriction sites within the forward and reverse 

primers, respectively. PCR products were gel-purified using the GenElute Gel Extraction Kit (Sigma) 

and subsequently digested with the aforementioned restriction enzymes (New England Biolabs). The 

pUAST-attB plasmid (obtained from Dr. Konrad Basler, University of Zurich) digested with EcoRI 

and NotI was gel purified, as noted above, and incubated with PCR-amplified, restriction enzyme-

digested products of the CYP6M2 orCYP6P3 clone and T4 DNA ligase (New England Biolabs). 

Ligation mixtures were transformed into competent DH5α cells, and individual colonies were verified 

using PCR. The EndoFree Plasmid Maxi Kit (Qiagen) was utilized to obtain large amounts of plasmids 

for subsequent steps. pUAST-attB clones containing the CYP6M2 or CYP6P3 insertion were sent to 

Rainbow Transgenic Flies, Inc. (Camarillo, CA, USA) for injection into Bloomington Stock #9750 

(y
1
w

1118
; PBac{y

+
-attP-3B}VK00033) embryos. The PhiC31 integration system in this stock enables 

site-specific recombination between the integration vector (pUAST-attB) and a landing platform in the 

fly stock (attP) [68]. Upon receiving the injected embryos, survivors were kept at 25°C, and Go flies 

that eclosed were sorted by sex prior to mating. To establish families of homozygous transgenic flies, 

Go flies were crossed with w
1118

 flies, and G1 flies were sorted based on w
+
 eye color (as a marker for 

http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004236#pgen.1004236-Mller1
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004236#pgen.1004236-Huangda1
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004236#pgen.1004236.s013
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004236#pgen.1004236-Schmittgen1
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004236#pgen.1004236.s013
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004236#pgen.1004236-Wang1
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insertion events). G1 w
+
 flies were crossed inter se to obtain homozygous insertion lines. The 

following D. melanogaster stocks were obtained from the Bloomington Drosophila Stock Center 

(Bloomington, IN, USA): y
1
 w

1
; P{Act5C-GAL4}25FO1/CyO, y

+
, w

*
 (BL4414); P{GawB}Aph-4c232 

(BL30828), and w
1118

 (BL3605). Virgin females from CYP6M2 or CYP6P3 insertion stocks were 

crossed with Act5C-GAL4/CyO (ubiquitous Actin5C driver) flies for expression studies. 

Transcript expression analysis 

For each class within a cross (control and experimental), 8–10 two-day-old flies were obtained and 

flash-frozen in liquid nitrogen, and then stored at −80°C in triplicate. Total RNA was extracted using 

TRI Reagent (Sigma), and 1 µg of RNA was treated with RNase-Free DNaseI (Fisher Scientific). For 

each synthesis, a 10 µL reaction was created using 1 µL DNase-treated RNA; three technical 

replicates were performed for each biological replicate. Primers for amplification of cDNA product, 

used at a concentration of 0.75 µM, were: Cyp6M2_Forward: 5′-ACGAGTTCGAGCTGAAGGAT-3′, 

Cyp6M2_Reverse: 5′-GTTACACTCAATGCCGAACG-3′,Cyp6P3_Forward: 5′-TATTGCAGAGAACG 

GTGGAG-3′, Cyp6P3_Reverse:5′TACTTCCGAAGGGTTTCGTC-3′. Relative expression was 

compared using Actin primers [69]at a concentration of 0.50 µM. qRT-PCR reactions were performed 

using USB VeriQuest SYBR Green One-Step qRT-PCR Master Mix (2X) on a 7500 Fast Real-Time 

PCR System (Applied Biosystems). Cycling conditions used were 50°C for 10 minutes and 95°C for 

10 minutes, followed by 40 cycles of 90°C for 15 seconds and 56°C for 30 seconds, with the 

fluorescence measured at the end of each cycle. 

Bendiocarb metabolism assays 

Recombinant CYP6M2 and CYP6P3 were commercially co-expressed with An. gambiaeNADPH 

P450 reductase and cytochrome b5 in an E. coli system by Cypex (Dundee, UK). Using previously 

described methodologies [35] a first experiment showed that CYP6M2 was unable to metabolise 

bendiocarb (10 µM) after a 2 hour incubation and thus only CYP6P3 was investigated in subsequent 

experiments. For time course measurements, reactions were performed in 200 µL with 10 µM 

insecticide, 0.1 µM CYP6P3 membrane in 200 mM Tris-HCl pH 7.4 and started by adding the NADPH 

regenerating system (1 mM glucose-6-phosphate (G6P), 0.25 mM MgCl2, 0.1 mM NADP
+
, and 1 

U/mL glucose-6-phosphate dehydrogenase (G6PDH)). Reactions were incubated for a specified time 

at 30°C with 1200 rpm orbital shaking and stopped by adding 0.2 mL of acetonitrile. Shaking was 

carried for an additional 10 min before centrifuging the reactions at 20000 g for 20 min. 200 µl of 

supernatant was used for HPLC analysis. Reactions were performed in triplicate and compared 

against a negative control with no NADPH regenerating system to calculate substrate depletion. An 

additional experiment with different enzyme concentrations was performed, using the methods above, 

for 20 mins with P450 concentrations of: 0.2, 0.1, 0.075, 0.05, 0.025 and 0.0125 µM. The reactions 

were performed in parallel against a negative control (−NADPH). 

In each experiment the supernatants were analyzed by reverse-phase HPLC with a 250 mm C18 

column (Acclaim 120, Dionex) and a mobile phase consisting of 35% acetonitrile and 65% water. The 

system was run at a controlled temperature of 42°C with 1 ml/min flow rate. Bendiocarb insecticide 

was monitored at 205 nm and quantified by measuring peak areas using OpenLab CDS (Agilent 

Technologies). Retention time was around 14.9 minutes. 

Insecticide exposure assays 

An appropriate amount of insecticide was added to 100 µl of acetone and placed into individual 

16×200 mm glass disposable culture tubes (VWR Scientific). Tubes were then placed on their sides 

http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004236#pgen.1004236-Ponton1
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004236#pgen.1004236-Stevenson1
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and rotated continuously, coating the entire interior of the tube, until all acetone was evaporated. A 

total of 8–12 control and 8–12 experimental transgenic flies, aged 3–5 days post-eclosion, were 

added to each tube. Flies from experimental and control classes were mixed in single insecticide-

coated vials for assays, to ensure equivalent exposure to insecticide. The tubes were capped with 

cotton balls saturated with a 10% (w/v) glucose/water solution. Tubes were then incubated at 25°C for 

24 h, after which mortality was assessed. Linear regression models were used to fit dose-response 

curves, from which LC50 values (and confidence intervals) were estimated using Prism v5.0. 

However, for bendiocarb this was not possible owing to a very sharp inflection in the dose-response 

profile. Instead differences between lines were assessed at a diagnostic dose of 0.1 µg 

bendiocarb/vial, applied previously to Apis mellifera [37], [70], using Mann-Whitney U tests. 

Supporting Information  

Available at http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004236 
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Appendix 5.1. Distribution of organochlorine data tested, between 1993 and 2013 in all ecological 

zones of Côte d’Ivoire 
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Tolakouadiokro 
(TOLA) 2 Y DDT 4 1994 100 64.0 24 

Air-France 
III/SOPIM 
(SOP) 2 Y DDT 4 1994 100 42.0 24 

Kennedy (KEN) 2 Y DDT 4 1994 100 30.0 24 

industrielle 
(ZONE) 2 Y DDT 4 1994 100 40.0 24 

Camp penal 
(CP) 2 Y DDT 4 1994 100 30.0 24 

Broukro (BR) 2 Y DDT 4 1994 100 25.0 24 

Katiola 2 Y DDT 4 1994 100 80.0 24 

Yaokoffikro 2 Y DDT 4 1995 102 17.6 25 

M'Be 2 Y DDT 4 1995 202 98.5 25 

Abidjan 1 Y DDT 4 1995 95 75.8 25 

Korhogo 3 Y DDT 4 1995 97 7.2 25 

Korhogo  3 Y DDT 4 1995 84 7.1 26 

Yaokoffikro 2 Y DDT 4 1998 102 17.6 26 

Abidjan  1 Y DDT 4 1995 N/A 0.0 26 

M'Be 2 Y DDT 4 1999 200 99.0 28 

M'Be 2 Y deldrin 0.4 1999 92 33.7 28 

Bouaké 2 Y DDT 4 1999 80 6.3 29 

Bouaké 2 Y DDT 4 2002 110 36.4 29 

Toumbokro 2 Y DDT 4 2000 96 26.0 29 

Toumbokro 2 Y DDT 4 2002 194 72.2 29 

Nieky 1 Y DDT 4 2000 62 40.3 29 

Nieky 1 Y DDT 4 2001 96 79.2 29 

Raviart 2 Y DDT 4 2000 81 75.3 29 

Raviart 2 Y DDT 4 2001 113 87.6 29 

Raviart 2 Y DDT 4 2001 106 97.2 29 

Gansé 3 N DDT 4 1999 62 46.8 29 

Gansé 3 N DDT 4 2001 82 73.2 29 

M'Be 2 Y DDT 4 2012 193 3.1 31 

M'Be 2 Y deldrin 4 2012 297 27.3 31 

Kaforo 4 3 Y DDT 4 2000 104 12.5 32 

Kaforo 3 3 Y DDT 4 2000 69 30.4 32 

Gbahouakaha 3 Y DDT 4 2000 91 11.0 32 
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4 

Gbahouakaha 
3 3 Y DDT 4 2000 52 7.7 32 

Bouaké 2 Y DDT 4 2002 110 36.4 33 

Grand Bassam 
2 1 Y DDT 4 2001 40 30.0 33 

Grand Lahou 1 Y DDT 4 2001 23 100.0 33 

Sassandra 1 Y DDT 4 2001 99 80.8 33 

San Pedro 1  1 Y DDT 4 2001 102 92.2 33 

Grand Bereby 1 Y DDT 4 2001 39 66.7 33 

San Pedro 2 1 Y DDT 4 2001 82 26.8 33 

Yaokoffikro 2 Y DDT 4 2008 99 12.1 37 

Tiassalé 1 Y DDT 4 2010 170 3.5 38 

Tiassalé 1 Y DDT 4 2011 284 81.7 39 

Tiassalé 1 Y DDT 4 2011 306 8.2 40 

Taabo 1 Y DDT 4 2012 324 7.7 42 

Korhogo 3 Y DDT 4 2012 105 9.5 43 

Yamoussoukro 2 Y DDT 4 2012 101 34.7 43 

Man 4 Y DDT 4 2012 101 41.6 43 

Zele 4 Y DDT 4 2012 53 45.3 43 

Abengourou 2 Y DDT 4 2012 106 69.8 43 

San Pedro 1 Y DDT 4 2012 53 58.5 43 

Abidjan (Port-
Bouet) 1 Y DDT 4 2012 101 8.9 43 

Abidjan 
(Yopougon) 1 Y DDT 4 2012 102 30.4 43 

Yamoussoukro 3 Y deldrin 4 2012 100 37.0 43 

Kaforo 3 Y deldrin 4 2012 53 37.7 43 

Abidjan 
(Yopougon) 1 Y deldrin 4 2012 75 52.0 43 

Korhogo 3 Y DDT 4 1998 N/A 0.0 45 

Yaokoffikro 2 Y DDT 4 1998 N/A 0.0 45 

M'Be 2 Y DDT 4 1998 N/A 0.0 45 

Tolakouadiokro 
(TOLA) 2 Y DDT 4 1994 58 87.9 46 
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Appendix 5.2. Distribution of pyrethroids data tested, between 1993 and 2013 in all ecological 

zones of Côte d’Ivoire 
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Tolakouadiokro 
(TOLA) 

2 Y permethrin 0.25 1993 100 51 23 

Broukro (BR) 2 Y permethrin 0.25 1993 100 18 23 

Camp Penal (CP) 2 Y permethrin 0.25 1993 100 45 23 

Katiola 2 N permethrin 0.25 1993 100 83 23 

ADRAO 2 Y permethrin 0.25 1993 100 92 23 

Tolakouadiokro 
(TOLA) 

2 Y deltamethrin 0.025 1993 100 95 23 

Broukro (BR) 2 Y deltamethrin 0.025 1993 100 95 23 

Camp Penal (CP) 2 Y deltamethrin 0.025 1993 100 95 23 

ADRAO 2 Y deltamethrin 0.025 1993 100 100 23 

Katiola 2 N deltamethrin 0.025 1993 100 100 23 

Tolakouadiokro 
(TOLA) 

2 Y lambdacyhalothrin 0.1 1993 100 94 23 

Broukro (BR) 2 Y lambdacyhalothrin 0.1 1993 100 94 23 

Camp Penal (CP) 2 Y lambdacyhalothrin 0.1 1993 100 94 23 

ADRAO 2 Y lambdacyhalothrin 0.1 1993 100 100 23 

Zaïpobly 4 Y permethrin 0.25 1995 94 87.2 25 

Kafiné 3 Y permethrin 0.25 1995 100 5 25 

Abidjan 1 Y permethrin 1 1995 100 78 25 

Yaokoffikro 2 Y permethrin 1 1995 99 29.3 25 

Yaokoffikro 2 Y permethrin 0.25 1995 176 15.9 25 

Yaokoffikro 2 Y deltamethrin 0.025 1995 97 67 25 

Zaïpobly 4 Y deltamethrin 0.025 1995 102 98 25 

M'Be 2 Y permethrin 1 1995 200 84 25 

M'Be 2 Y permethrin 0.25 1995 193 51.3 25 

M'Be 2 Y deltamethrin 0.025 1995 188 89.4 25 

Abidjan 1 Y deltamethrin 0.025 1995 95 87.4 25 

Kafiné 3 Y deltamethrin 0.025 1995 105 61.9 25 

Korhogo 3 Y permethrin 1 1995 101 16.8 25 

Korhogo 3 Y permethrin 0.25 1995 84 3.6 25 

Korhogo 3 Y deltamethrin 0.025 1995 98 36.7 25 

Yaokoffikro 2 Y lambdacyhalothrin 0.1 1995 100 69 25 

Zaïpobly 4 Y lambdacyhalothrin 0.1 1995 100 100 25 
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M'Be 2 Y lambdacyhalothrin 0.1 1995 103 100 25 

Abidjan 1 Y lambdacyhalothrin 0.1 1995 94 87.2 25 

Kafiné 3 Y lambdacyhalothrin 0.1 1995 269 90 25 

Korhogo 3 Y lambdacyhalothrin 0.1 1995 97 60.8 25 

Yaokoffikro 2 Y etofenprox 0.25 1995 99 20.2 25 

M'Be 2 Y etofenprox 0.25 1995 100 78 25 

Abidjan 1 Y etofenprox 0.25 1995 96 64.6 25 

Kafiné 3 Y etofenprox 0.25 1995 94 42.6 25 

Korhogo 3 Y etofenprox 0.25 1995 99 22.2 25 

Yaokoffikro 2 Y alphacypermethrin 0.0025 1995 102 2.9 25 

M'Be 2 Y alphacypermethrin 0.0025 1995 113 31 25 

Kafiné 3 Y alphacypermethrin 0.0025 1995 95 5.3 25 

Korhogo 3 Y alphacypermethrin 0.0025 1995 94 3.2 25 

Yaokoffikro 2 Y cyfluthrin 0.05 1995 98 16.3 25 

M'Be 2 Y cyfluthrin 0.05 1995 95 68.4 25 

Abidjan 1 Y cyfluthrin 0.05 1995 100 51 25 

Kafiné 3 Y cyfluthrin 0.05 1995 95 68.4 25 

Korhogo 3 Y cyfluthrin 0.05 1995 96 17.7 25 

Abidjan  1 Y permethrin 0.25 1995 57 75.4 26 

Bouaké 2 Y permethrin 0.25 1995 102 48 26 

Odienné 3 Y permethrin 0.25 1995 110 61.8 26 

Kafiné 3 Y permethrin 0.25 1995 99 54.5 26 

Taï  4 Y permethrin 0.25 1995 60 26.7 26 

Korhogo  3 Y permethrin 0.25 1995 55 7.3 26 

Daloa 2 Y permethrin 0.25 1995 104 50 26 

Katiola 2 N permethrin 0.25 1993 104 69.2 26 

Bouaké 2 Y deltamethrin 0.25 1995 60 98.3 26 

Taï  4 Y deltamethrin 0.25 1995 58 36.2 26 

Korhogo  3 Y deltamethrin 0.25 1995 62 30.6 26 

Yaokoffikro 2 Y permethrin 0.25 1998 120 10 26 

Yaokoffikro 2 Y deltamethrin 0.25 1998 117 28.2 26 

Yaokoffikro 2 Y deltamethrin 0.05 1998 96 79.2 27 

M'Be 2 Y deltamethrin 0.05 1998 96 96.9 27 

M'Be 2 Y deltamethrin 0.05 1999 96 96.9 28 

M'Be 2 Y lambdacyhalothrin 0.05 1999 100 99 28 

Bouaké 2 Y permethrin 1 1999 89 60.7 29 

Bouaké 2 Y permethrin 1 2002 131 90.1 29 

Toumbokro 2 Y permethrin 1 2000 60 55 29 

Toumbokro 2 Y permethrin 1 2002 112 88.4 29 

Nieky 1 Y permethrin 1 2000 64 60.9 29 

Nieky 1 Y permethrin 1 2001 93 92.5 29 

Nieky 1 Y permethrin 1 2002 65 96.9 29 

Raviart 2 Y permethrin 1 2000 66 87.9 29 
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Raviart 2 Y permethrin 1 2001 110 89.1 29 

Raviart 2 Y permethrin 1 2001 103 98.1 29 

Gansé 3 N permethrin 1 1999 62 95.2 29 

Gansé 3 N permethrin 1 2001 110 96.4 29 

Bouaké 2 Y deltamethrin 0.05 1999 70 84.3 29 

Bouaké 2 Y deltamethrin 0.05 2002 155 94.2 29 

Toumbokro 2 Y deltamethrin 0.05 2000 98 73.5 29 

Toumbokro 2 Y deltamethrin 0.05 2002 308 91.9 29 

Nieky 1 Y deltamethrin 0.05 2000 64 65.6 29 

Nieky 1 Y deltamethrin 0.05 2002 76 93.4 29 

Nieky 1 Y deltamethrin 0.05 2002 65 98.5 29 

Raviart 2 Y deltamethrin 0.05 2000 64 92.2 29 

Raviart 2 Y deltamethrin 0.05 2001 118 94.9 29 

Raviart 2 Y deltamethrin 0.05 2001 82 97.6 29 

Gansé 3 N deltamethrin 0.05 2000 72 98.6 29 

Gansé 3 N deltamethrin 0.05 2001 95 100 29 

M'Be 2 Y permethrin 0.75 2012 201 51.2 31 

M'Be 2 Y deltamethrin 0.05 2012 264 75.8 31 

M'Be 2 Y etofenprox 0.5 2012 200 34 31 

M'Be 2 Y alphacypermethrin 0.05 2012 240 67.9 31 

Kaforo 4 3 Y permethrin 1 2000 104 76 32 

Adiaké 1 Y permethrin 1 2001 25 88 33 

Grand Bassam 1 1 Y permethrin 1 2001 106 100 33 

Grand Lahou 1 Y permethrin 1 2001 90 97.8 33 

Sassandra 1 Y permethrin 1 2001 106 100 33 

San Pedro 1  1 Y permethrin 1 2001 106 79.2 33 

Grand Bereby 1 Y permethrin 1 2001 47 100 33 

San Pedro 2 1 Y permethrin 1 2001 87 100 33 

Bouaké 2 Y permethrin 1 2002 131 90.1 33 

Bouenneu 4 Y deltamethrin 0.05 2002 88 100 33 

Grand Bassam 1 1 Y deltamethrin 0.05 2001 41 90.2 33 

Sassandra 1 Y deltamethrin 0.05 2001 88 100 33 

San Pedro 1 1 Y deltamethrin 0.05 2001 39 61.5 33 

Grand Bereby 1 Y deltamethrin 0.05 2001 41 100 33 

San Pedro 2 1 Y deltamethrin 0.05 2001 51 100 33 

Bouaké 2 Y deltamethrin 0.05 2002 155 94.2 33 

Grand Bassam 2 1 Y permethrin 1 2001 50 82 33 

M'Be 2 Y bifenthrin 0.25 2002 103 96.1 34 

Yaokoffikro 2 Y bifenthrin 0.25 2002 104 78.8 34 

Adzopé (Port-
Bouët ) 

1 Y permethrin 1 2007 95 68.4 36 

Adzopé(Tsassodji) 1 N permethrin 1 2007 100 42 36 

Adzopé (Port-
Bouët ) 

1 Y deltamethrin 0.05 2007 92 96.7 36 
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Adzopé(Tsassodji) 1 N deltamethrin 0.05 2007 102 58.8 36 

Adzopé (Port-
Bouët ) 

1 Y lambdacyhalothrin 0.05 2007 89 84.3 36 

Adzopé(Tsassodji) 1 N lambdacyhalothrin 0.05 2007 102 67.6 36 

Yaokoffikro 2 Y permethrin 1 2008 106 68.9 37 

Yaokoffikro 2 Y lambdacyhalothrin 0.05 2008 97 68 37 

Yaokoffikro 2 Y etofenprox 0.05 2008 100 36 37 

Tiassalé 1 Y permethrin 0.75 2010 168 24.4 38 

Tiassalé 1 Y deltamethrin 0.05 2010 165 18.8 38 

Tiassalé 1 Y permethrin 0.75 2011 292 66.1 39 

Tiassalé 1 Y deltamethrin 0.05 2011 295 83.7 39 

Tiassalé 1 Y alphacypermethrin 0.1 2011 295 75.3 39 

Tiassalé 1 Y permethrin 0.75 2011 288 24 40 

Tiassalé 1 Y deltamethrin 0.05 2011 282 31.9 40 

Agboville 1 Y deltamethrin 0.05 2012 116 62.9 41 

Divo 1 Y deltamethrin 0.05 2012 99 64.6 41 

Sikensi 1 Y deltamethrin 0.05 2012 81 51.9 41 

Taabo 1 Y permethrin 0.75 2012 308 80.5 42 

Taabo 1 Y deltamethrin 0.05 2012 317 88.6 42 

Korhogo 3 Y permethrin 0.75 2012 97 39.2 43 

Kaforo 3 Y permethrin 0.75 2012 78 43.6 43 

Yamoussoukro 2 Y permethrin 0.75 2012 124 75 43 

Man 4 Y permethrin 0.75 2012 94 94.7 43 

Zele 4 Y permethrin 0.75 2012 77 75.3 43 

Abengourou 2 Y permethrin 0.75 2012 101 62.4 43 

San Pedro 1 Y permethrin 0.75 2012 89 85.4 43 

Abidjan (Port-
Bouet) 

1 Y permethrin 0.75 2012 98 50 43 

Abidjan 
(Yopougon) 

1 Y permethrin 0.75 2012 98 93.9 43 

Korhogo 3 Y deltamethrin 0.05 2012 101 97 43 

Kaforo 3 Y deltamethrin 0.05 2012 51 100 43 

Yamoussoukro 2 Y deltamethrin 0.05 2012 123 89.4 43 

Man 4 Y deltamethrin 0.05 2012 88 75 43 

Abengourou 2 Y deltamethrin 0.05 2012 101 98 43 

San Pedro 1 Y deltamethrin 0.05 2012 98 96.9 43 

Abidjan 
(Yopougon) 

1 Y deltamethrin 0.05 2012 104 90.4 43 

Abidjan (Port-
Bouet) 

1 Y deltamethrin 0.05 2012 96 93.8 43 

Yamoussoukro 2 Y etofenprox 0.5 2012 101 19.8 43 

Man 4 Y etofenprox 0.5 2012 100 48 43 

Abidjan (Port-
Bouet) 

1 Y etofenprox 0.5 2012 102 35.3 43 

Abidjan 
(Yopougon) 

1 Y etofenprox 0.5 2012 103 89.3 43 

Korhogo 3 Y alphacypermethrin 0.05 2012 70 70 43 
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Yamoussoukro 2 Y alphacypermethrin 0.05 2012 100 50 43 

Man 4 Y alphacypermethrin 0.05 2012 99 74.7 43 

Zele 4 Y alphacypermethrin 0.05 2012 25 84 43 

Abengourou 2 Y alphacypermethrin 0.05 2012 105 84.8 43 

Abidjan (Port-
Bouet) 

1 Y alphacypermethrin 0.05 2012 97 75.3 43 

Abidjan 
(Yopougon) 

1 Y alphacypermethrin 0.05 2012 99 100 43 

YaoKoffikro  2 Y permethrin 0.25 1997 176 15.9 44 

YaoKoffikro  2 Y permethrin 1 1997 99 29.3 44 

YaoKoffikro  2 Y deltamethrin 0.025 1997 97 67 44 

Korhogo 3 Y permethrin 0.25 1998 N/A 0 45 

Kafiné 3 Y permethrin 0.25 1998 N/A 0 45 

Yaokoffikro 2 Y permethrin 0.25 1998 N/A 0 45 

M'Be 2 Y deltamethrin 0.025 1998 N/A 0 45 

Korhogo 3 Y deltamethrin 0.025 1998 N/A 0 45 

Kafiné 3 Y deltamethrin 0.025 1998 N/A 0 45 

Yaokoffikro 2 Y deltamethrin 0.025 1998 N/A 0 45 

M'Be 2 Y alphacypermethrin 0.0025 1998 N/A 0 45 

Korhogo 3 Y alphacypermethrin 0.0025 1998 N/A 0 45 

Kafiné 3 Y alphacypermethrin 0.0025 1998 N/A 0 45 

Yaokoffikro 2 Y alphacypermethrin 0.0025 1998 N/A 0 45 

Daloa  2 Y deltamethrin 0.025 1995 N/A 0 45 

M'Be 2 Y permethrin 0.25 1998 N/A 0 45 

Daloa  2 Y alphacypermethrin 0.0025 1995 N/A 0 45 

Tolakouadiokro 
(TOLA) 

2 Y permethrin 2.5 1994 61 98.4 46 

Tolakouadiokro 
(TOLA) 

2 Y permethrin 0.25 1994 57 63.2 46 

Tolakouadiokro 
(TOLA) 

2 Y deltamethrin 0.025 1994 58 94.8 46 
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Appendix 5.3. Distribution of carbamate data tested, between 1993 and 2013 in all ecological 

zones of Côte d’Ivoire 
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Tolakouadiokro 
(TOLA) 

2 Y bendiocarb 0.1 1994 100 95 24 

Air-France 
III/SOPIM 
(SOP) 

2 Y bendiocarb 0.1 1994 100 100 24 

Kennedy 
(KEN) 

2 Y bendiocarb 0.1 1994 100 95 24 

industrielle 
(ZONE) 

2 Y bendiocarb 0.1 1994 100 95 24 

Camp penal 
(CP) 

2 Y bendiocarb 0.1 1994 100 95 24 

Broukro (BR) 2 Y bendiocarb 0.1 1994 100 95 24 

Tolakouadiokro 
(TOLA) 

2 Y propoxur 0.1 1994 100 70 24 

Air-France 
III/SOPIM 
(SOP) 

2 Y propoxur 0.1 1994 100 97 24 

Kennedy 
(KEN) 

2 Y propoxur 0.1 1994 100 60 24 

industrielle 
(ZONE) 

2 Y propoxur 0.1 1994 100 80 24 

Camp penal 
(CP) 

2 Y propoxur 0.1 1994 100 65 24 

Broukro (BR) 2 Y propoxur 0.1 1994 100 70 24 

M'Be 2 Y propoxur 0.1 1999 100 96 28 

M'be 2 Y carbosulfan 0.4 2000 95 62.1 30 

Yaokoffikro 2 Y carbosulfan 0.4 2000 99 29.3 30 

M'Be 2 Y bendiocarb 0.1 2012 206 79.6 31 

M'Be 2 Y carbosulfan 0.4 2012 200 6.5 31 

M'Be 2 Y carbosulfan 0.4 2002 103 63.1 34 

Yaokoffikro 2 Y carbosulfan 0.4 2002 112 52.7 34 

Toumbokro 2 Y propoxur 0.1 2004 88 40.9 35 

Yamoussoukro 2 Y propoxur 0.1 2004 99 69.7 35 

Toumodi 2 Y propoxur 0.1 2004 96 56.3 35 

Tiassalé 1 Y propoxur 0.1 2004 224 11.6 35 

Nieky 1 Y propoxur 0.1 2004 99 82.8 35 

Abidjan 1 Y propoxur 0.1 2004 101 58.4 35 

Toumbokro 2 Y carbosulfan 4 2004 98 21.4 35 
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Yamoussoukro 2 Y carbosulfan 4 2004 104 42.3 35 

Toumodi 2 Y carbosulfan 4 2004 95 28.4 35 

Tiassalé 1 Y carbosulfan 4 2004 217 2.8 35 

Nieky 1 Y carbosulfan 4 2004 103 28.2 35 

Abidjan 1 Y carbosulfan 4 2004 100 39 35 

Yaokoffikro 2 Y propoxur 0.1 2008 113 22.1 37 

Yaokoffikro 2 Y carbosulfan 0.4 2008 79 13.9 37 

Tiassalé 1 Y propoxur 0.1 2010 163 17.8 38 

Tiassalé 1 Y bendiocarb 0.1 2011 299 12.4 40 

Agboville 1 Y bendiocarb 0.1 2012 116 6.9 41 

Divo 1 Y bendiocarb 0.1 2012 199 77.9 41 

Sikensi 1 Y bendiocarb 0.1 2012 108 56.5 41 

Taabo 1 Y propoxur 0.1 2012 431 74.7 42 

Korhogo 3 Y carbosulfan 0.4 2012 54 16.7 43 

Yamoussoukro 2 Y carbosulfan 0.4 2012 106 28.3 43 

Man 4 Y carbosulfan 0.4 2012 100 53 43 

Abengourou 2 Y carbosulfan 0.4 2012 98 15.3 43 

San Pedro 1 Y carbosulfan 0.4 2012 78 34.6 43 

Abidjan 
(Yopougon) 

1 Y carbosulfan 0.4 2012 100 25 43 
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Appendix 5.4. Distribution of organophosphate data tested, between 1993 and 2013 in all 

ecological zones of Côte d’Ivoire 
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Tolakouadiokro 
(TOLA) 

2 Y fenitrothion 1 1994 100 100 24 

Air-France 
III/SOPIM (SOP) 

2 Y fenitrothion 1 1994 100 100 24 

Kennedy (KEN) 2 Y fenitrothion 1 1994 100 100 24 

industrielle 
(ZONE) 

2 Y fenitrothion 1 1994 100 100 24 

Camp penal (CP) 2 Y fenitrothion 1 1994 100 100 24 

Broukro (BR) 2 Y fenitrothion 1 1994 100 93 24 

M'Be 2 Y fenitrothion 1 1999 107 100 28 

M'Be 2 Y fenitrothion 1 2012 209 95.2 31 

M'Be 2 Y 
pirimiphos 
methyl 

1 2012 209 98.1 31 

Toumbokro 2 Y fenitrothion 1 2004 105 89.5 35 

Yamoussoukro 2 Y fenitrothion 1 2004 98 99 35 

Toumodi 2 Y fenitrothion 1 2004 95 81.1 35 

Tiassalé 1 Y fenitrothion 1 2004 207 29.5 35 

Nieky 1 Y fenitrothion 1 2004 92 95.7 35 

Abidjan 1 Y fenitrothion 1 2004 99 96 35 

Toumbokro 2 Y 
chlorpyrifos 
methyl 

0.4 2004 97 96.9 35 

Toumodi 2 Y 
chlorpyrifos 
methyl 

0.4 2004 89 93.3 35 

Tiassalé 1 Y 
chlorpyrifos 
methyl 

0.4 2004 192 82.8 35 

Nieky 1 Y 
chlorpyrifos 
methyl 

0.4 2004 102 100 35 

Abidjan 1 Y 
chlorpyrifos 
methyl 

0.4 2004 102 100 35 

Yaokoffikro 2 Y fenitrothion 1 2008 97 94.8 37 

Tiassalé 1 Y malathion 5 2010 167 99.4 38 

Tiassalé 1 Y fenitrothion 1 2011 296 74 40 

Agboville 1 Y fenitrothion 1 2012 103 62.1 41 

Divo 1 Y fenitrothion 1 2012 196 98 41 

Sikensi 1 Y fenitrothion 1 2012 111 89.2 41 

Agboville 1 Y 
pirimiphos 
methyl 

0.25 2012 94 16 41 

Divo 1 Y 
pirimiphos 
methyl 

0.25 2012 48 43.8 41 

Tiassalé 1 Y pirimiphos 0.25 2012 100 68 41 
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methyl 

Tiassalé 1 Y 
pirimiphos 
methyl 

0.2 2011 100 64 41 

Taabo 1 Y malathion 5 2012 436 73.9 42 

Korhogo 3 Y 
pirimiphos 
methyl 

1 2012 52 84.6 43 

Yamoussoukro 2 Y 
pirimiphos 
methyl 

1 2012 102 88.2 43 

Man 4 Y 
pirimiphos 
methyl 

1 2012 100 99 43 

Abengourou 2 Y 
pirimiphos 
methyl 

1 2012 75 100 43 

Abidjan (Port-
Bouet) 

1 Y 
pirimiphos 
methyl 

1 2012 98 70.4 43 

Abidjan 
(Yopougon) 

1 Y 
pirimiphos 
methyl 

1 2012 98 66.3 43 
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Appendix 5.5. Summary of studies recording frequencies of molecular forms and insecticide 

resistance data 
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Yaokoffikro 2 1995 56 0 100 DDT 102 17.6 25 

Yaokoffikro 2 1995 56 0 100 permethrin 176 15.9 25 

Yaokoffikro 2 1995 56 0 100 permethrin 99 29.3 25 

Yaokoffikro 2 1995 56 0 100 deltamethrin 97 67 25 

Yaokoffikro 2 1995 56 0 100 lambdacyhalothrin 100 69 25 

Yaokoffikro 2 1995 56 0 100 etofenprox 99 20.2 25 

Yaokoffikro 2 1995 56 0 100 alphacypermethrin 102 2.9 25 

Yaokoffikro 2 1995 56 0 100 cyfluthrin 98 16.3 25 

Tiassalé 1 2011 500 100 0 DDT 306 8.2 41 

M'Be 2 2012 226 98.7 1.3 DDT 193 3.1 43 

Taabo 1 2012 79 19 81 DDT 324 7.7 42 

Adzopé (Port-Bouët ) 1 2007 56 100 0 permethrin 95 68.4 36 

Adzopé(Tsassodji) 1 2007 56 100 0 permethrin 100 42 36 

Tiassalé 1 2011 500 100 0 permethrin 288 24 41 

M'Be 2 2012 226 98.7 1.3 permethrin 201 51.2 43 

Taabo 1 2012 79 19 81 permethrin 308 80.5 42 

Adzopé (Port-Bouët ) 1 2007 56 100 0 deltamethrin 92 96.7 36 

Adzopé(Tsassodji) 1 2007 56 100 0 deltamethrin 102 58.8 36 

Tiassalé 1 2011 500 100 0 deltamethrin 282 31.9 41 

M'Be 2 2012 226 98.7 1.3 deltamethrin 264 75.8 43 

Taabo 1 2012 79 19 81 deltamethrin 317 88.6 42 

Agboville 1 2012 15 100 0 deltamethrin 116 62.9 41 

Divo 1 2012 18 100 0 deltamethrin 99 64.6 41 

Sikensi 1 2012 18 100 0 deltamethrin 81 51.9 41 

Adzopé (Port-Bouët ) 1 2007 56 100 0 lambdacyhalothrin 89 84.3 36 

Adzopé(Tsassodji) 1 2007 56 100 0 lambdacyhalothrin 102 67.6 36 

M'Be 2 2012 226 98.7 1.3 etofenprox 200 34 43 

M'Be 2 2012 226 98.7 1.3 alphacypermethrin 240 67.9 43 

Tiassalé 1 2011 500 100 0 bendiocarb 299 12.4 41 

M'Be 2 2012 226 98.7 1.3 bendiocarb 206 79.6 43 

Tiassalé 1 2011 500 100 0 fenitrothion 296 74 41 

Agboville 1 2012 15 100 0 bendiocarb 116 6.9 41 

Divo 1 2012 18 100 0 bendiocarb 199 77.9 41 
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Sikensi 1 2012 18 100 0 bendiocarb 108 56.5 41 

Toumbokro 2 2004 62 58.1 41.9 propoxur 88 40.9 35 

Yamoussoukro 2 2004 31 100 0 propoxur 99 69.7 35 

Toumodi 2 2004 76 98.7 1.3 propoxur 96 56.3 35 

Tiassalé 1 2004 82 100 0 propoxur 224 11.6 35 

Nieky 1 2004 30 100 0 propoxur 99 82.8 35 

Abidjan 1 2004 47 100 0 propoxur 101 58.4 35 

Taabo 1 2012 79 19 81 propoxur 431 74.7 42 

Toumbokro 2 2004 62 58.1 41.9 carbosulfan 98 21.4 35 

Yamoussoukro 2 2004 31 100 0 carbosulfan 104 42.3 35 

Toumodi 2 2004 76 98.7 1.3 carbosulfan 95 28.4 35 

Tiassalé 1 2004 82 100 0 carbosulfan 217 2.8 35 

Nieky 1 2004 30 100 0 carbosulfan 103 28.2 35 

Abidjan 1 2004 47 100 0 carbosulfan 100 39 35 

M'Be 2 2012 226 98.7 1.3 carbosulfan 200 6.5 43 

Toumbokro 2 2004 62 58.1 41.9 fenitrothion 105 89.5 35 

Yamoussoukro 2 2004 31 100 0 fenitrothion 98 99 35 

Toumodi 2 2004 76 98.7 1.3 fenitrothion 95 81.1 35 

Tiassalé 1 2004 82 100 0 fenitrothion 207 29.5 35 

Nieky 1 2004 30 100 0 fenitrothion 92 95.7 35 

Abidjan 1 2004 47 100 0 fenitrothion 99 96 35 

M'Be 2 2012 226 98.7 1.3 fenitrothion 209 95.2 43 

Agboville 1 2012 15 100 0 fenitrothion 103 62.1 41 

Divo 1 2012 18 100 0 fenitrothion 196 98 41 

Sikensi 1 2012 18 100 0 fenitrothion 111 89.2 41 

Toumbokro 2 2004 62 58.1 41.9 chlorpyrifos methyl 97 96.9 35 

Toumodi 2 2004 76 98.7 1.3 chlorpyrifos methyl 89 93.3 35 

Tiassalé 1 2004 82 100 0 chlorpyrifos methyl 192 82.8 35 

Nieky 1 2004 30 100 0 chlorpyrifos methyl 102 100 35 

Abidjan 1 2004 47 100 0 chlorpyrifos methyl 102 100 35 

M'Be 2 2012 226 98.7 1.3 pirimiphos methyl 209 98.1 43 

Agboville 1 2012 15 100 0 pirimiphos methyl 94 16 41 

Taabo 1 2012 79 19 81 malathion 436 73.9 42 

M'Be 2 2012 226 98.7 1.3 deldrin 297 27.3 43 

Korhogo 3 2012 32 28.1 71.9 DDT 105 92.4 43 

Yamoussoukro 2 2012 31 83.9 16.1 DDT 101 65.3 43 

Man 4 2012 32 56.3 43.8 DDT 101 60.4 43 

Zele 4 2012 32 21.9 78.1 DDT 53 45.3 43 

Abengourou 2 2012 32 90.6 9.4 DDT 106 30.2 43 

San Pedro 1 2012 31 100 0 DDT 53 41.5 43 

Abidjan (Port-Bouet) 1 2012 32 100 0 DDT 101 91.1 43 

Abidjan (Yopougon) 1 2012 32 100 0 DDT 102 69.6 43 

Korhogo 3 2012 32 28.1 71.9 deldrin 100 70 43 
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Kaforo 3 2012 32 34.4 65.6 deldrin 53 66 43 

Abidjan (Yopougon) 1 2012 32 100 0 deldrin 75 48 43 

Korhogo 3 2012 32 28.1 71.9 permethrin 97 60.8 43 

Kaforo 3 2012 32 34.4 65.6 permethrin 78 57.7 43 

Yamoussoukro 2 2012 31 83.9 16.1 permethrin 124 25 43 

Man 4 2012 32 56.3 43.8 permethrin 94 5.3 43 

Zele 4 2012 32 21.9 78.1 permethrin 77 24.7 43 

Abengourou 2 2012 32 90.6 9.4 permethrin 101 37.6 43 

San Pedro 1 2012 31 100 0 permethrin 89 14.6 43 

Abidjan (Port-Bouet) 1 2012 32 100 0 permethrin 98 50 43 

Abidjan (Yopougon) 1 2012 32 100 0 permethrin 98 6.1 43 

Korhogo 3 2012 32 28.1 71.9 deltamethrin 101 3 43 

Kaforo 3 2012 32 34.4 65.6 deltamethrin 51 0 43 

Yamoussoukro 2 2012 31 83.9 16.1 deltamethrin 123 13 43 

Man 4 2012 32 56.3 43.8 deltamethrin 88 25 43 

Abengourou 2 2012 32 90.6 9.4 deltamethrin 101 2 43 

San Pedro 1 2012 31 100 0 deltamethrin 98 5.1 43 

Abidjan (Port-Bouet) 1 2012 32 100 0 deltamethrin 104 7.7 43 

Abidjan (Yopougon) 1 2012 32 100 0 deltamethrin 96 10.4 43 

Yamoussoukro 2 2012 31 83.9 16.1 etofenprox 101 80.2 43 

Man 4 2012 32 56.3 43.8 etofenprox 100 55 43 

Abidjan (Port-Bouet) 1 2012 32 100 0 etofenprox 102 64.7 43 

Abidjan (Yopougon) 1 2012 32 100 0 etofenprox 103 11.7 43 

Korhogo 3 2012 32 28.1 71.9 alphacypermethrin 70 30 43 

Yamoussoukro 2 2012 31 83.9 16.1 alphacypermethrin 100 50 43 

Man 4 2012 32 56.3 43.8 alphacypermethrin 99 26.3 43 

Zele 4 2012 32 21.9 78.1 alphacypermethrin 25 16 43 

Abengourou 2 2012 32 90.6 9.4 alphacypermethrin 105 15.2 43 

Abidjan (Port-Bouet) 1 2012 32 100 0 alphacypermethrin 97 24.7 43 

Abidjan (Yopougon) 1 2012 32 100 0 alphacypermethrin 99 0 43 

Korhogo 3 2012 32 28.1 71.9 carbosulfan 54 83.3 43 

Yamoussoukro 2 2012 31 83.9 16.1 carbosulfan 106 77.4 43 

Man 4 2012 32 56.3 43.8 carbosulfan 100 47 43 

Abengourou 2 2012 32 90.6 9.4 carbosulfan 98 84.7 43 

San Pedro 1 2012 31 100 0 carbosulfan 78 65.4 43 

Abidjan (Yopougon) 1 2012 32 100 0 carbosulfan 100 75 43 

Korhogo 3 2012 32 28.1 71.9 pirimiphos methyl 52 15.4 43 

Yamoussoukro 2 2012 31 83.9 16.1 pirimiphos methyl 102 9.8 43 

Man 4 2012 32 56.3 43.8 pirimiphos methyl 100 2 43 

Abengourou 2 2012 32 90.6 9.4 pirimiphos methyl 75 0 43 

Abidjan (Port-Bouet) 1 2012 32 100 0 pirimiphos methyl 98 29.6 43 

Abidjan (Yopougon) 1 2012 32 100 0 pirimiphos methyl 98 33.7 43 
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Appendix 5.6. Kendall Correlation matrix describing the relationship between covariates 
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latitude 1 0.012 0.693 -0.249 -0.009 0.419 -0.414 -0.227 0.323 

longitude 0.012 1 -0.112 0.514 0.354 -0.086 0.349 0.021 -0.392 

elevation 0.693 -0.112 1 -0.19 0.032 0.294 -0.344 -0.212 0.307 

temperature -0.249 0.514 -0.19 1 0.498 -0.117 0.567 0.095 -0.34 

precipitation -0.009 0.354 0.032 0.498 1 -0.333 0.717 0.233 -0.335 

humidity 0.419 -0.086 0.294 -0.117 -0.333 1 -0.601 -0.125 0.038 

NDVI -0.414 0.349 -0.344 0.567 0.717 -0.601 1 0.151 -0.446 

M -0.227 0.021 -0.212 0.095 0.233 -0.125 0.151 1 -0.237 

S 0.323 -0.392 0.307 -0.34 -0.335 0.038 -0.446 -0.237 1 

Values in bold are different from 0 with a significance level alpha=0.05 




