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Abstract 

Neuroblastoma (NB) commonly presents as high risk disease which despite intensive 

multimodal therapies is often fatal. Preclinical models are required to aid the development 

of novel therapeutics for this challenging childhood malignancy, however current systems 

are complex and inherently costly. We aimed to explore the ability of the chick embryo to 

act as a new tool for NB therapeutic research.  

"High risk"- MYCN amplified human neuroblastoma cells were xenografted on to the surface 

of the chick embryo chorioallantoic membrane (CAM) and tumours allowed to form over a 7 

day period. qPCR was used to detect the effects of a differentiation agent, retinoic acid (RA), 

firstly on NB cells in culture, and then on NB tumours in the chick embryo model.  

Tumours formed in the chick embryo model 4 days after the introduction of NB cells on to 

the CAM. After 7 days, analysis of fully formed tumours demonstrated active proliferation 

and vascular recruitment from the surrounding CAM. In culture, RA induced morphological 

changes consistent with the differentiation of NB cells. RT-qPCR identified reproducible 

changes in gene expression in response to RA. Increased expression of differentiation 

markers ROBO2 and STMN4 and decreased expression of the stem cell marker KLF4 was 

observed in cell culture. Similar changes in the expression of these genes were also seen 

during in vivo chick embryo experiments. Against expectations, levels of the MYCN 

transcription factor did not fall significantly following 3 days of RA treatment during in vitro 

or in vivo experimentation. These results suggest that other targets may also be involved in 

the RA induced differentiation of these cells. 

We have observed the ability of the chick embryo to act as an in vivo model system for NB 

therapeutic research. Reproducible changes in gene expression induced by the 

administration of retinoic acid have been detected using this model. 
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1.Introduction;  

1.1.Neuroblastoma 

 

Neuroblastoma (NB) is a malignancy found almost exclusively in children. It is thought to 

originate from primordial neural crest cells that normally give rise to the adrenal medulla 

and sympathetic neural ganglia (Park, Bagatell et al. 2013). Neuroblastoma is an interesting 

and heterogeneous disease which remains a significant cause of childhood mortality. 

 

1.1.1.Epidemiology 

 

In the UK, the annual incidence of neuroblastoma is between 6 and 8 per million children 

under the age of 15 (Hildebrandt and Traunecker 2005, Fisher and Tweddle 2012). 

Neuroblastomas are the most common malignancies in children under 1 year, and account 

of 14% of all cancers in children under 5 years (Izbicki, Mazur et al. 2003, Heck, Ritz et al. 

2009). In the context of all paediatric cancers it is the fourth most frequent malignancy, 

following leukaemia, tumours of the central nervous system and the lymphomas (Izbicki, 

Mazur et al. 2003, Heck, Ritz et al. 2009).  

Age at diagnosis represents a key prognostic factor in neuroblastoma, with the oldest 

patients experiencing the worst mortality statistics (Park, Bagatell et al. 2013). A North 

American review of 3059 neuroblastoma cases, found that 40% of patients were diagnosed 

in infancy, 89% by age 5 and 98% by age 10 (Heck, Ritz et al. 2009). 19 months represents 

the median age at diagnosis for children with neuroblastoma. Despite this, patients from a 

broad spectrum of age ranges have been diagnosed with the disease and both neonatal and 

adult cases have been reported (Izbicki, Mazur et al. 2003, Fisher and Tweddle 2012).  

 

The National Registry of Childhood Tumours found that between 1991 and 2000, 22.6% of 

neonatal cancer cases registered in Great Britain were neuroblastomas and “foetal 

neuroblastomas” have been identified on ultrasound scans as early as 23 weeks (Fisher and 
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Tweddle 2012). Neonatal cases tend to display favourable tumour biology and generally 

have an excellent prognosis. Many cases undergo spontaneous regression under only 

supportive therapy (Fisher and Tweddle 2012). 

 

Adult neuroblastoma is extremely rare, and often lacks features such as MYCN amplification, 

elevated urinary catecholamimes, and MIBG avidity found paediatric cases (Esiashvili, 

Goodman et al. 2007). In medical literature there are several small reports on cases of 

neuroblastoma diagnosed among adults (Miranda Soares, Quirino Filho et al. 2010, Ohtaki, 

Ishii et al. 2011, Bayrak, Seckiner et al. 2012). Outcomes, though highly variable, are 

generally significantly worse in this population (Smith, Minter et al. 2013).  

 

Evidence from international cancer registries suggests that neuroblastoma is more common 

in Caucasian patients, however it is unclear as to whether this is primarily due to increased 

disease surveillance in this population (Heck, Ritz et al. 2009). In terms of gender, it is 

generally thought to affect both sexes equally although a slight predisposition in males has 

been identified in some studies (Izbicki, Mazur et al. 2003, Heck, Ritz et al. 2009).  

 

Neuroblastoma, like retinoblastoma and Wilms’ tumour, is an embryonal malignancy that is 

notable for having both sporadic and hereditary forms (D'Orazio 2010). Familial 

neuroblastomas account for less than 5% of all cases, with the majority being due to germ 

line mutations in ALK and PHOX2B (Heck, Ritz et al. 2009). Analysis of pedigree structures 

has indicated an autosomal dominant mode of inheritance with incomplete penetrance, 

similar to that seen in other paediatric malignancies (Maris and Matthay 1999). Familial 

cases have traditionally been thought to occur in those that are younger, and have multiple 

lesions at diagnosis, however some more recent evidence has disputed this claim (Claviez, 

Lakomek et al. 2004, Heck, Ritz et al. 2009). 

1.1.2.Aetiology 

 

In contrast to adult cancers, very few causative factors have been identified in paediatric 

malignancies. Studies have examined links between several lifestyle, familial and 

environmental factors and neuroblastoma. However due to the rarity of the condition, such 
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studies are often subject to biases and have small sample sizes. Despite limitations, 

consistencies between certain studies have implicated several aetiological factors which 

appear to warrant further investigation. Maternal alcohol consumption, paternal 

occupational exposure to hydrocarbons, dusts and solders, the use of diuretics, pain 

medications and low birth weight have all been implicated with increased risk. In contrast, 

vitamin supplementation and asthma seem to be protective (Heck, Ritz et al. 2009). 

However in both cases stronger evidence is required to verify these findings.  

1.1.3.Neural Crest 

 

The neural crest is an embryonic cell type unique to vertebrates. It was first identified in the 

developing chick embryo by Wilhelm His in 1868 (Bronner and LeDouarin 2012). It can be 

defined as a cell population which: arises at the neural plate border (figure 1); expresses a 

combination of neural crest markers; and migrates away from the neural tube along defined 

pathways, to form multiple derivatives (figure 2) (Bronner and LeDouarin 2012). Neural 

crest derived cell lineages are diverse and include melanocytes, sympathetic ganglia, enteric 

ganglion cells, Schwann cells and sensory neurons.   

Some neural crest cells differentiate to sympathoadrenal lineage (Figure 2). These cells first 

migrate towards the dorsal aorta. At the dorsal aorta, the migrating neural crest progenitor 

cells committed to the sympathoadrenal lineage initiate their differentiation programme. 

From that point, the cells commit to either becoming adrenal chromaffin cells or 

sympathetic ganglia. At this stage of differentiation enzymes involved in catecholamine 

biosynthesis are up regulated (Cheung and Dyer 2013). The anatomical locations in which 

neuroblastomas are found, as well as the cellular and neurochemical features of the 

disease, have led to the assertion that it arises from neural crest derived elements of the 

sympathetic nervous system. 
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Figure 2 - Neurulation  

The neural crest is first induced at the 
region of the neural plate boarder 
(green). After neural tube closure, the 
neural crest delaminates from the 
region between the dorsal neural tube 
and overlying ectoderm and migrates 
out towards the periphery. Adapted 
from (Gammill and Bronner-Fraser 
2003) 

 

Figure 1 - - Development of the sympathoadrenal lineage of 
the neural crest  

This diagram describes the path of the subset of neural crest 
cells giving rise to the adrenal gland and sympathetic ganglia as 
they migrate and undergo differentiation. BMP; bone 
morphogenetic protein, CXCR4; CXC chemokine receptor 4, 
DBH; dopamine β-hydroxylase, EMT epithelial–mesenchymal 
transition, HAND2; heart and neural crest derivatives-expressed 
protein 2, INSM1; insulinoma-associated protein , PHOX; paired-
like homeobox, SOX; sex-determining region Y-box, TH; tyrosine 
hydroxylase. Adapted from (Cheung and Dyer 2013) 
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The first signals believed to initiate neural crest cell differentiation are the bone 

morphogenetic proteins (BMPs) (Huber, Combs et al. 2002). Other key transcription factors 

coordinating the direction of differentiation into sympathetic neurons include; mammalian 

achaete scute homolog-1 (MASH1), Neuroblastoma-derived v-myc avian myelocytomatosis 

viral related oncogene (MYCN), hypoxia inducible factor 1α (HIF1α), HuD - the human 

homolog of Drosophila embryonic lethal abnormal vision protein, paired-like homeobox 2a 

and 2b (PHOX2a, PHOX2b), and p73 (a member of the p53 family) (Figure 2) (Nakagawara 

2004). Further downstream, terminal differentiation of sympathetic neurons is strongly 

regulated by the signalling of neurotrophin family members and their receptors 

(Nakagawara 2001, Nakagawara 2004). The regulation of such genes is essential to normal 

differentiation of these cells. Neuroblastoma is thought to be an aberration of normal 

development in which differentiation has not occurred. It is not therefore surprising that 

defects in these pathways have been identified in many patients with the disease, blocking 

differentiation and apoptosis. 

 

1.1.4.Genetics 

 

The basis of genetic predisposition to neuroblastoma is emerging via genome-wide 

association and whole-genome sequencing analyses (Molenaar, Koster et al. 2012). 

However, in contrast to adult cancers, there is a general scarcity of recurrent somatic 

mutations in neuroblastoma (Molenaar, Koster et al. 2012). Major efforts over the years 

have been focused on discovering somatic mutations in human tumours. Numerous studies 

have demonstrated that genomic and transcriptomic profiles can be predictive of clinical 

disease course, so that a combination of messenger RNA (mRNA), microRNA (miRNA) and 

array comparative genomic hybridization (arrayCGH) are now being used to better define 

prognostic characteristics and provide insight into the molecular basis of clinical 

heterogeneity (Asgharzadeh, Pique-Regi et al. 2006, Vermeulen, De Preter et al. 2009, De 

Preter, Vermeulen et al. 2010, Domingo-Fernandez, Watters et al. 2013). 

Many believe that target based therapy tailored towards tumour-specific mutations holds 

the key to precision therapy, and ultimately to eradicating cancer (Morgenstern, Baruchel et 
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al. 2013). Investigations into the genetics of neuroblastoma have identified a wide variety of 

genetic abnormalities. Interestingly different genetic aberrations are often observed in age 

dependent manor (Vandesompele, Baudis et al. 2005). 

Abnormalities involving the amplification or mutation of genes such as MYCN, paired 

PHOX2B,  anaplastic lymphoma receptor tyrosine kinase (ALK) and the Aurora kinases have 

been identified in neuroblastoma (Sridhar, Al-Moallem et al. 2013).  

PHOX2B was the first gene found to possess inherited mutations in familial cases of 

neuroblastoma (Trochet, Bourdeaut et al. 2004). PHOX2B is a homeobox transcription factor 

and plays a critical role in the normal development of neural crest cell derived structures. It 

consists of three exons encoding a highly conserved 314–amino-acid protein with two 

polyalanine repeats. In most instances, individuals affected by constitutional PHOX2B 

mutations also have phenotypic characteristics of other neural crest-derived disorders, 

mainly congenital central hypoventilation syndrome (CCHS) and/or Hirschsprung disease 

(Mosse, Laudenslager et al. 2004, Bourdeaut, Trochet et al. 2005, Sridhar, Al-Moallem et al. 

2013). In neuroblastoma germline PHOX2B mutations tend to be either missense alterations 

in highly conserved regions or  mutations that result in a frameshift, giving rise to an altered 

or truncated protein lacking the second polyalanine motif (Pei, Luther et al. 2013). Mutated 

Phox2b protein has been shown increase proliferation and block differentiation of neuronal 

cells in culture. However the exact mechanism which leads a Phox2b mutation to result in 

neuroblastoma remains unknown (Thorner 2014). 

Similarly, mutations of anaplastic lymphoma kinase  are the leading cause of hereditary 

neuroblastoma as well as being present in around 8 – 12% of sporadic cases (George, Sanda 

et al. 2008, Kumar, Zhong et al. , Carpenter and Mossé 2012). Anaplastic lymphoma kinase 

was first described in 1994 as the nucleophosmin-ALK fusion protein that is expressed in the 

majority of anaplastic large-cell lymphomas (Kumar, Zhong et al. , Kruczynski, Delsol et al. 

2012). It is a member of the insulin receptor protein-tyrosine kinase superfamily, most 

closely related to leukocyte tyrosine kinase (Ltk) (Mossé, Wood et al. 2009, Kruczynski, 

Delsol et al. 2012, Roskoski Jr 2013).   

ALK is expressed transiently in specific regions of the central and peripheral nervous system, 

mostly in neuronal cells. It is essential for normal development. ALK expression persists at a 



17 
 

lower level in the adult brain but not in other tissues (Kruczynski, Delsol et al. 2012). 

However, ALK activity has been found in an expanding number of tumour types including, 

lymphomas, inflammatory myofibroblastic tumour, small cell lung cancer and 

neuroblastoma (Kruczynski, Delsol et al. 2012).  It is one of the few oncogenes activated in 

both hematopoietic and non-hematopoietic malignancies. 

The most frequent ALK aberration neuroblastoma is the R1275Q mutation in which there is 

a substitution at position 1275 in ALK, from an arginine (R) to a glutamine (Q). It occurs in 

the germline of patients with hereditary predisposition, and is detected in almost 50% of 

tumours with ALK mutation. The other most common ALK mutations in sporadic cases of 

neuroblastoma are found at positions F1174, and F1245. All of these mutations activate 

ALK, are located in key regulatory regions of the receptor thyrosine kinase domain. Each has 

been demonstrated to have transformation capabilities in vitro and in vivo. Furthermore, a 

comparison of the ALK mutation frequency in relation to genomic subtype has revealed that 

F1174L mutants are observed in a higher frequency of MYCN-amplified tumours, correlating 

with a poor clinical outcome (Schönherr, Ruuth et al. 2012). 

The most widely researched gene associated with neuroblastoma is MYCN. Approximately 

25% of neuroblastomas are characterized by amplification and consequent over expression 

of the MYCN transcription factor. MYCN amplification is considered one of the most robust 

independent prognostic factors for unfavourable outcome in this disease (Brodeur, Seeger 

et al. 1984). 

MYCN was first discovered in 1983 by Schwab et al as a paralog of c-Myc. The Myc family of 

transcription factors is composed by three elements: c-MYC, L-MYC, and MYCN. MYC, 

MYCN, and MYCL are helix-loop-helix/leucine zipper (HLH/LZ) proteins that form a 

heterodimer complex with MAX causing transcriptional activation of target genes (Kamijo 

and Nakagawara 2012, Gherardi, Valli et al. 2013). MYCN can also repress gene expression 

by binding to other transcription factors such as Myc-interacting zinc-finger protein-1 (MIZ-

1) and  specific protein 1 (SP-1)  and thereby inhibiting transcription of their down-stream 

targets (Westermark, Wilhelm et al. 2011). In neuroblastoma MYCN amplification occurs as 

part of a segmental chromosomal imbalance in which a variable portion of chromosome 2, 

always containing the MYCN gene, is amplified. Amplified copies of MYCN can be present 
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either extra-chromosomally as double minutes (DMs) or intrachromosomally as 

homogeneously staining regions (HSRs). HSRs are generally located on different 

chromosomes, not at the resident site, 2p24, of MYCN (Corvi, Amler et al. 1994, Kamijo and 

Nakagawara 2012) .  

The Aurora kinases are a family of serine/threonine kinases that are integral to the 

regulation of mitosis and cytokinesis. There are three known members 

of the Aurora family expressed in mammalian cells: Aurora A, B, and C. The first Aurora 

kinase discovered, Aurora A, derived its name from a mutant form of the protein found in 

Drosophila melanogaster that caused the formation of monopolar spindles reminiscent of 

the aurora borealis due to failure of centrosome separation (Kelly, Ecsedy et al. 2011). 

Amplification of Aurora kinase A (AURKA) has been reported in breast (Kallioniemi, 

Kallioniemi et al. 1994), and colon (Schlegel, Stumm et al. 1995) cancers, as well as in 

neuroblastoma cell lines (Zhou, Kuang et al. 1998). In neuroblastoma, AURKA 

overexpression is associated with highrisk group of tumors, MYCN amplification, disease-

relapse and decreased progression free survival (Shang, Burlingame et al. 2009). 

Furthermore, AURKA has been shown to stabilize MYCN protein levels in neuroblastoma 

(Otto, Horn et al. 2009) making it an exciting therapeutic target in this disease and 

consequently several compounds are currently under development which aim to act on this 

target (Kelly, Ecsedy et al. 2011, Health 2014). 

 

In addition, numerous recurrent large scale genomic imbalances have been observed in 

neuroblastoma. Loss of heterozygosity (LOH) of chromosome regions 1p, 3p, and 11q, along 

with gain of chromosome 1q and 17q material, are associated with poor patient survival 

(Sridhar, Al-Moallem et al. 2013). It is also notable that the presence of any segmental 

chromosomal imbalance, is its self, indicative of poor patient survival (Janoueix-Lerosey, 

Schleiermacher et al. 2009). In contrast, tumours with hyperdiploid or near-triploid 

chromosome complements, with whole-chromosome gains and losses and few, segmental 

imbalances, have favourable clinical outcomes (Vandesompele, Baudis et al. 2005). 

1.1.5.Histopathology 
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Neuroblastomas are one of several tumours arising from the neural crest. Such neural crest 

derived tumours display various stages of neuronal differentiation. Of these tumours, 

ganglioneuromas are the most differentiated and consist of mature neurons which form 

clusters, surrounded by a dense stroma of Schwann cells. Ganglioneuroblastomas are 

characterized by a mixture of mature and maturing ganglion cells as well as undifferentiated 

neuroblasts. Neuroblastomas represent the most undifferentiated and aggressive of neural 

crest derived tumours. They consist of small round blue cells with hyperchromatic nuclei 

and scant cytoplasm. Pseudorosettes surrounding eosinophilic material in the interstitial 

space are a common finding (Alexander 2000, Carachi 2002, Hildebrandt and Traunecker 

2005, Kim and Chung 2006). 

Neuroblastic tumors consist of two cell populations: neuroblastic/ganglionic cells and 

Schwann cells. Based on the maturation sequence of the neuroblastic cells and the volume 

of the Schwannian stroma, these tumors have been morphologically classified(Du, Hozumi 

et al. 2008). The International Neuroblastoma Pathology Committee Classification was 

originally proposed in 1988, and revised in 1993. It ranks neuroblastoma histology as 

favourable or unfavourable according to several key features. The classification system 

builds on the Shimada classification, a system which considers patient age along with 

histological features such as degree of schwannian stroma (Figure 3), cellular differentiation, 

and the mitosis-karyorrhexis index (Joshi 2000, Ikeda, Iehara et al. 2002). Cells may be 

divided into three histological subtypes depending on the different grades of neuroblastic 

differentiation observed; undifferentiated, poorely differentiated and differentiating. 

Unfavourable histology has been shown to confer a worse prognosis in patients with the 

disease. The ability to stratify patients according to risk is vital in all cancers however, this 

ability undoubtedly holds greater importance in diseases such as neuroblastoma, where 

outcomes are so highly variable, and intense multimodal therapies often hold serious 

consequences. 
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Figure 3– Neuroblastoma pathological classification. 

Diagram displaying the 3 grades of  neuroblastoma differentiation observed and the two levels of 
stromal development. Undifferentiated neuroblastoma is characterised by small / medium cells with 
thin rim of cytoplasm, indistinct cell borders, round / oval nuclei with salt and pepper (coarsely 
granular) chromatin and indistinct nucleoli; no neuropil; 5% or less of tumour has features of 
differentiation towards ganglion cells; no / minimal ganglioneuromatous stroma. Poorly differentiated 
neuroblastoma has the same appearance as undifferentiated neuroblastoma but with neuropil. 
Differentiating neuroblastoma: 6-49% of tumour cells show ganglionic differentiation (abundant 
eosinophilic or amphophilic cytoplasm, large eccentric nuclei with vesicular chromatin and single 
prominent nucleoli), often at periphery of tumor; if 50% or more, call ganglioneuroblastoma, 
intermixed; usually abundant neuropil. The degree of differentiation and stromal development in 
used in the International pathological classification system for neuroblastoma and has prognostic 
significance. Undifferentiated neuroblastoma which is stroma poor has the worst prognosis. Adapted 
from (Gurcan) 

 

 

This text box is where the unabridged thesis included the following third party copyrighted material: 

Gurcan, M. "Neuroblastoma."   Retrieved 23rd April, 2014, from 
http://bmi.osu.edu/~gurcan/neuroblastoma.php 
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1.1.6.Clinical Features 

 

Neuroblastoma may arise from any neural crest element of the sympathetic nervous system 

(Sridhar, Al-Moallem et al. 2013). The clinical features of the disease reflect both the 

anatomical location of the tumour, as well as the extent of the disease (Young, Toretsky et 

al. 2000). The diverse range of neural crest derived sympathetoadrenal structures means 

that the location of the primary tumour can be anywhere along the sympathetic chain from 

the neck to the groin (Maris, Hogarty et al. 2007). This variation in location, as well as the 

varying degree of histopathological differentiation, results in an array of enigmatic tumours 

demonstrating diverse clinical and biological characteristics.   

Neuroblastomas most commonly present in the adrenals (32%) or the (extra-adrenal) 

abdomen (28.4%)  followed by the thorax (15%), pelvis (5.6%) and neck (2%) (Mazur 2010). 

The first symptoms can often be vague and nonspecific; loss of appetite or fatigue is 

common. Intra-abdominal neuroblastoma often presents as an asymptomatic mass that is 

detected incidentally by parents or a paediatrician during a routine clinic visit (Kim and 

Chung 2006). Symptoms are often due to the mass effect of tumours and give varying 

complaints depending on their anatomic location. Abdominal masses may compress the 

renal vessels, activate the renin-angiotensin axis, and cause hypertension. Rarely, 

hypertension is from the direct effect of catecholamine-secreting tumours (Davenport, 

Blanco et al. 2012). 

When neuroblastoma is located paraspinally with intraforaminal invasion, children may 

develop peripheral neurologic deficits, including paralysis and urinary or faecal incontinence 

(Sandberg, Bilsky et al. 2003). Horner’s syndrome and superior vena cava syndrome are 

described in patients with high mediastinal lesions (Alejandro Cruz 2013). These tumours, 

when extending into the neck, could also cause airway compression (Davenport, Blanco et 

al. 2012). Opsoclonus-myoclonus syndrome is manifested as ataxia and random eye 

movements, or “dancing eyes”. It is a rare immune phenomenon with cross reactivity of 

neuroblastoma antibodies with cerebella or brain stem neuronal tissue (Davenport, Blanco 

et al. 2012). 
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Metastasis is present in 50% of neuroblastoma patients at the time of diagnosis. Frequent 

spread to bone marrow (70%), bone (55%), lymph nodes (30%), liver (30%), and brain (18%) 

is observed (DuBois, Kalika et al. 1999, Maris, Hogarty et al. 2007). Metastasis is often 

manifested by hepatomegaly, subcutaneous nodules (“blueberry muffin baby”), and bone 

pain. The characteristic bilateral periorbital ecchymosis, which is a sign of metastatic 

disease, is typically caused by intraorbital masses (Davenport, Blanco et al. 2012). In infants 

with stage 4S neuroblastoma abdominal distension resulting from massive liver infiltration 

and subcutaneous nodules are often features. In some cases the massive hepatomegaly can 

lead to respiratory distress, and kidney or bowel function can be impaired due to 

obstruction by the tumour. Their medical condition of such patients can rapidly deteriorate 

within hours or days. 

1.1.7.Screening and Diagnosis 

 

Attempts at screening for neuroblastoma have been trialled in countries such as Germany, 

Japan and Canada using elevated urinary catecholmines as the method of detection 

(Schilling, Spix et al. 2002, Woods, Gao et al. 2002). The studies were successful in 

identifying previously unrecognised patients, with the incidence of neuroblastoma 

increasing in these areas. However despite an increase in incidence of the disease, changes 

in the mortality associated with neuroblastoma did not follow (Tsubono and Hisamichi 

2004). Screening is therefore believed to only identify a greater number of patients with 

favourable tumour biology who would undergo spontaneous regression and therefore did 

not require medical intervention (Yamamoto, Hanada et al. 1998). It has been subsequently 

abandoned in these areas. 

Tools such as metaiodobenzylguanidine (mIBG) scanning, tumour imaging modalities, 

biopsies and urinary catecholamine metabolite detection aid both the diagnosis and staging 

of neuroblastoma (NCI). However, ultimately an unequivocal pathologic diagnosis of 

neuroblastoma must be made from tumour tissue by light microscopy (with or without 

immunohistology, electron microscopy, increased urine, or serum catecholamine 

metabolites), or bone marrow aspirate or trephine biopsy contain unequivocal tumour cells 
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(e.g., syncytia or immunocytologically positive clumps of cells) and increased urine or serum 

catecholamine metabolites (Brodeur, Pritchard et al. 1994). 

1.1.8.Staging 

 

Given the diversity of neuroblastoma as a disease, accurate staging and risk stratification is 

vital to ensuring the appropriate management of patients. Over time there have been many 

systems developed for staging neuroblastoma. The International Neuroblastoma Staging 

System  was developed in 1988 and represented the first step in developing consistent 

staging worldwide (Schönherr, Ruuth et al.). It is a postoperative system using the extent of 

surgical resection to categorise patients (see Table 1)and much of the published literature 

refers to this system.  

The International Neuroblastoma Risk Group Staging System (INRGSS) is a preoperative 

staging system. Here staging is determined by the presence or absence of image-defined 

risk factors (IDRFs) and/or metastatic tumour at the time of diagnosis (see Table 2). IDRFs 

are surgical risk factors, detected by imaging, that increase the risk or difficulty of complete 

tumour excision (Monclair, Brodeur et al. 2009). 
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Table 1 - The International Neuroblastoma Staging System 

Stage Description 

1 Localised tumour with complete gross excision, with or without microscopic residual 
disease; representative ipsilateral lymph nodes negative for tumour microscopically. 

2A Localised tumour with incomplete gross excision; representative ipsilateral non-
adherent lymph nodes negative for tumour microscopically¹. 

2B Localised tumour with or without complete gross excision, with ipsilateral non-adherent 
lymph nodes positive for tumour. Enlarged contralateral lymph nodes must be negative 
microscopically 

3 Unresectable unilateral tumour infiltrating across the midline, with or without regional 
lymph node involvement;  

or localised unilateral tumour with contralateral regional lymph node involvement; 

or midline tumour with bilateral extension by infiltration (unresectable) or by lymph 
node involvement.²  

4 Any primary tumour with dissemination to distant lymph nodes, bone, bone marrow, 
liver, skin, and/or other organs, except as defined for stage 4S. 

4S (By definition patients must be <1 year of age). Localized primary tumour, as defined for 
stage 1, 2A, or 2B, with dissemination limited to skin, liver, and/or bone marrow³.  

¹ lymph nodes attached to and removed with the primary tumour may be positive 
² The midline is defined as the vertebral column. Tumors originating on one side and crossing the midline must 
infiltrate to or beyond the opposite side of the vertebral column. 
³Marrow involvement should involve <10% of total nucleated cells identified as malignant by bone biopsy or by 
bone marrow aspirate. More extensive bone marrow involvement would be considered stage 4 disease. The 
results of the mIBG scan, if performed, should be negative for disease in the bone marrow. 
Adapted from (Institute 2014) 

Table 2: International Neuroblastoma Risk Group Staging System 

Stage Description 

L1 Localised tumour not involving vital structures as defined by the list of image-defined 
risk factors and confined to one body compartment.  
 

L2 Locoregional tumour with presence of one or more image-defined risk factors.  
 

M Distant metastatic disease (except stage MS)  
 

MS Metastatic disease in children younger than 18 months with metastases confined to 
skin, liver, and/or bone marrow.  
 

The International Neuroblastoma Risk Group Staging System - based on image defined risk factors L1 and L2 
refer to localized disease where as M and MS refer to those with metastatic spread. Adapted from (Monclair, 
Brodeur et al. 2009) 
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Table 3- International Neuroblastoma Risk Group  classification 

 

International Neuroblastoma Risk Group  classification  - a system designed to provide overall risk stratification 
based on a wide variety of patient derived and disease based features. Adapted from  (Monclair, Brodeur et al. 
2009) 

Overall risk stratification is achieved by the International Neuroblastoma Risk Group  

classification (Table 3) (Monclair, Brodeur et al.). This system combines information 

regarding patient age at diagnosis, International Neuroblastoma Staging System clinical 

stage, MYCN status, DNA index, and the International Neuroblastoma Pathology 

Classification (INPC) category (Schönherr, Ruuth et al.). The output is categorization into 

very low, low, intermediate or high risk. It is on the bases of this classification that most 

treatment protocols are directed.  

1.1.9.Management 

 

Management of patients with neuroblastoma is clearly defined according to stage-based 

protocols. This enigmatic disease with a diverse range of clinical behaviours has a 

correspondingly diverse range of management options. Treatment ranges from watchful 

waiting to surgical resection with radiotherapy, myloablative chemotherapy with analogous 



26 
 

stem cell transplant, differentiation therapy and immunotherapy (Mullassery, Dominici et al. 

2009). 

 

Surgery 

Surgical resection of the primary tumour is standard treatment for all but the lowest risk 

tumours; patients under 6 months old that have adrenal masses under 3 cm may not 

require it. In other low-risk patients surgery may not need to be complete for treatment to 

be successful. In intermediate and high risk patients surgical resection represents a corner 

stone of treatment (Mullassery, Dominici et al. 2009). 

Lower-stage neuroblastoma is often encapsulated and can be surgically excised. However 

higher-stage disease often infiltrates adjacent organs, surround critical nerves and vessels, 

and may therefore be largely unresectable at the time of diagnosis (Mullassery, Dominici et 

al. 2009). Many forms of treatment have consequently evolved to aid in the management of 

these difficult patients. 

Chemotherapy 

Chemotheraputic agents often employed in the treatment of intermediate risk 

neuroblastoma include carboplatin, cyclophosphamide, doxorubicin, and etoposide. 

Patients usually receive 4-8 cycles depending on the biology of the tumour (Mullassery, 

Dominici et al. 2009). 

 

In high risk disease, high dose chemotherapy is commonly employed. Induction therapy may 

include dose-intensive cycles of cisplatin and etoposide alternating with vincristine, 

cyclophosphamide, and doxorubicin prior to surgery. These regimes are used to try and 

reduce the tumour burden and facilitate surgery. Post-surgical high-dose myeloablative 

chemotherapy is often employed with peripheral blood stem cell support (Castel, Segura et 

al. 2013). Agents include carboplatin/etoposide/melphalan or busulfan/melphalan. 
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Radiation therapy 

 

In high risk patients radiotherapy may be used where complete excision of the primary 

tumour was not achieved. Some patients may also receive radiotherapy to metastatic sites. 

 

Differentiation therapies  

Differentiation status is a key prognostic factor in neuroblastoma with the least 

differentiated phenotypes displaying the worst prognosis for patients. In fact many view 

neuroblastoma its self as an aberration of normal development and 4S tumours may 

spontaneously regress to leave more differentiated benign ganglioneuromas (Park, Bagatell 

et al. 2013). It therefore follows that any drug which may drive differentiation may also offer 

therapeutic potential in neuroblastoma.  

Retinoic acid is a retinoid compound known to cause differentiation. Retinoic acid induces 

neurite outgrowth and differentiation of human neuroblastoma cells in vitro and in vivo, 

and is part of standard therapy for high risk neuroblastomas  (Reynolds, Kane et al. 1991, 

Matthay, Villablanca et al. 1999, Shimada, Ambros et al. 1999, Matthay, Reynolds et al. 

2009). High risk patients commonly receive 6 months of treatment with oral isotretinoin. 

Immunotherapy 

GD2 is a disialoganglioside found on the surface of the majority of neuroblastoma cells. It 

has limited distribution in other human tissues making anti-GD2 monoclonal antibodies 

suitable for immunotherapy (Castel, Segura et al. 2013). After binding to neuroblastoma 

cells the antibody induces complement-dependent and antibody-dependent cytotoxic lysis 

of tumour cells (Cheung and Dyer 2013). Anti-GD2 antibodies are given in cases of high risk 

neuroblastoma alongside differentiation therapies. 
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Overview of high risk treatment protocol: 

 

1.INDUCTION 

Rapid COJEC chemotherapy (cisplatin, vincristine, carboplatin, etoposide, and 

cyclophosphamide) 

Response criteria positive? 

   YES  - move to 2. 

   NO - TVD (topotecan, vincristine, doxorubicin) rescue strategy  

2.SURGERY 

Aim; gross total resection 

3. MYELOABLATIVE CHEMOTHERAPY 

Peripheral blood stem cells harvested and returned to the patient after myeloablative 

therapy is completed using busulphan and melphalan 

4. RANDOMISATION FOR IMMUNOTHERAPY 

Patients either receive: 

a – GD2 antibody or 

b – GD2 antibody + IL2 

5. 13-CIS ISORETINOIC ACID 

Patients from both 4a and 4b receive 13-cis retinoic acid treatment 

 

*Information derived from (Mullassery, Dominici et al. 2009) 

 

1.1.10.Prognosis 

 

Based on the International Neuroblastoma Risk Group  classification very low risk patients 

have a 5-year event free survival (EFS) of over 85%; low risk 5-year EFS > 75% to ≤ 85%; 

intermediate risk 5-year EFS ≥ 50% to ≤ 75%. Over 50% of patients with neuroblastoma are 

categorised as high risk at the time of diagnosis. In high risk patients, despite the aggressive 

multimodal therapy employed in their treatment, 5-year EFS remains less than 50% 

(Monclair, Brodeur et al. 2009).  
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More than half of the children diagnosed with high-risk neuroblastoma either do not 

respond to conventional therapies, or relapse after treatment.  Furthermore, current 

therapies such as intensive chemo-radiotherapy are associated with substantial acute and 

late toxicities. These facts coupled with the lack of clear aetiological factors and failure of 

screening programmes means the need to identify treatments which are more effective and 

have fewer adverse effects is great (Laverdiere, Liu et al. 2009, London, Castel et al. 2011). 

 

1.2.Drug Discovery and Model Systems 

 

The process of drug discovery is both lengthy and costly. Potential targets must first be 

identified and validated before compounds interacting with these targets are designed. 

From here a lead compound must demonstrate significant reproducible effects on their 

intended target, first in cell culture and later in preclinical models. Compounds must be 

deemed safe, effective and have a suitable a therapeutic window before reaching human 

subjects in phase I, II and III clinical trials (Hughes, Rees et al. 2011). As our understanding of 

human biology and disease processes is increasing, the number of potential therapeutic 

targets is rising exponentially (Kurosawa, Akahori et al. 2008, Yang, Adelstein et al. 2012). 

However for every 5,000-10,000 compounds that enter the research and development 

pipeline only 1, on average, is ultimately licensed for patient use (Azmi 2014). It is not 

surprising therefore that pharmaceutical companies report the costs of launching a new 

medicine as approaching several billion dollars and that the process may take up to 15 years 

to complete (Paul, Mytelka et al. 2010, Hughes, Rees et al. 2011, Jorge Mestre-Ferrandiz 

2012). The process of evaluating these compounds and recognising the 1 in 10,000 leads 

which has the potential to be successful in clinical trials requires cost-efficient, 

pharmacologically relevant preclinical animal models. 
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Figure 4– timeline for drug development 
This diagram highlights the lengthy process of drug development in particular the vast amount of time and 
work that occurs prior to the implementation of clinical trials. Image adapted from (Fishman and Porter 2005) 

 

 

 

In recent years a major effort to uncover new therapeutic strategies for all childhood 

cancers has begun. Legislative changes both in the US and Europe, as well as initiatives such 

as Europe’s Innovative Therapies for Children with Cancer consortium and the USA’s the 

Paediatric Preclinical Testing Program (PPTP), have driven this effort (EMA , ITCC , OLPA , 

Houghton, Morton et al. 2007, Zwaan, Kearns et al. 2010). A shift in methodology utilizing 

hypothesis-driven biologically targeted approaches, as well as major energies into 

establishing effective pre-clinical models have been key focuses of these projects (Kearns 

and Morland 2014). 

 

Animal models are critical to the development of novel anti-cancer agents. They are even 

more vital in the field of paediatric cancer, where low numbers of patients may significantly 

hinder clinical trials (Moreno, Chesler et al. 2011, Kumar, Mokhtari et al. 2012). Previous 

decisions to implement clinical trials in paediatric patients have been based on the 

therapeutic effects observed in adult cancer patients (Moreno, Chesler et al. 2011, Kumar, 

Mokhtari et al. 2012). There are multiple examples throughout childhood malignancies that 

this approach does not produce valuable results. Paediatric cancers, even those of the same 

type as adult cancers, represent an entirely separate disease entity and therefore must be 

modelled as such (Sultan, Qaddoumi et al. 2009, Korshunov, Remke et al. 2010, Paugh, Qu 

et al. 2010, Faria and Almeida 2012).  

This text box is where the unabridged thesis included the following third party copyrighted 

material: 

Fishman, M. C. and J. A. Porter (2005). "Pharmaceuticals: a new grammar for drug 
discovery." Nature 437(7058): 491-493. 
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Over time the animal models used in therapeutic research have evolved and are now 

capable of providing far more than insight into the dose limiting toxicity, distribution and 

metabolism of drugs. Our understanding of many areas of cancer medicine and therapeutics 

has increased, and so has knowledge of those organisms used in research. It is now possible 

not only to observe, but to manipulate the complex disease processes involved in 

malignancy in a manner that would be impossible in patients. Animal models involving 

various species, genetic aberrations, cell lines and exposures are used in the development of 

potential therapeutic compounds (Khleif SN 2000, Kelland 2004, Richmond and Su 2008, 

Moreno, Chesler et al. 2011). However each model, as an approximation of reality, has 

inherent limitations, and with greater complexity often comes increased time, and cost as 

well as other hindrances (Khleif SN 2000).  

1.2.1.Mouse Models 

 

Of the species used in therapeutic research, the mouse is undoubtedly the most common. 

Several factors including the small size, propensity to breed in captivity, lifespan, extensive 

physiological and molecular similarities to humans, as well as an entirely sequenced genome 

have made the mouse an attractive organism for use in laboratory research (Frese and 

Tuveson 2007). Laboratory experiments involving mice date back to as early at 1664 and 

mice models have been used for over a century (NCI). Some models such as those 

employing inbreeding techniques have remained relatively consistent over time. However 

others involving manipulation of the genome are constantly evolving with current 

knowledge and techniques (NCI).  

Inbred mice allow genetic homogeneity to be established and certain characteristics to be 

selectively bred in or out. They are produced using at least 20 consecutive generations of 

sister-brother or parent-offspring matings, or are traceable to a single ancestral pair in the 

20th or subsequent generation (TJL). Inbred mouse strains are homogeneous at almost all 

gene loci and each strain has a unique set of characteristics setting it apart from others (TJL). 

Several inbred strains have undergone whole genome sequencing and sources such as the 

mouse phenome database provide a vast amount of valuable data regarding each 

strain(TJL).  
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Similarly, the mouse genome is manipulated for research purposes in genetically engineered 

murine models (GEMM). In 1981 researchers discovered that the mouse germline could be 

changed to accept the delivery and consistent expression of foreign genes (Gordon and 

Ruddle 1981). These techniques were used to the explore oncogenes and their role in 

tumourigenesis. Later the role of tumour suppressor genes was also explored using "knock 

out" studies (Capecchi 1989). The genetic profile of these mice is altered so that one or 

several genes believed to be involved in transformation or malignancy are mutated, deleted 

or over expressed. The effect of altering these genes is then studied over time and the 

therapeutic responses of these tumours may be followed in vivo (Richmond and Su 2008).   

The appropriate DNA segment is first prepared, then injected or introduced into suitable 

recipient eggs or embryos (NCI). The resultant animals may be characterised and used for 

further experimentation. The gene of interest may be newly added giving "knock-in" mice; 

be artificially silenced giving "knock-out" mice; or be subject to conditional transgenics, in 

which the altered components are under the control of some  kind of regulatory switch to 

turn on or off the gene with various chemical, developmental stage, or tissue-specific 

mechanisms(Chesler and Weiss 2011). Regardless of the type of mouse produced the same 

basic method of DNA preparation, introduction and characterisation is always employed 

(NCI). 

Improvements in many technological aspects relating to GEMM have led to a significant 

increase in the use of these models over the past 20 years(8). Furthermore the degree of 

manipulation in terms of the timing and location of gene expression is ever evolving and 

complex. New models that utilize latent, conditional and inducible alleles are able mimic 

the in vivo setting in which sporadic human cancers occur in an increasingly realistic fashion. 

In neuroblastoma the well-characterized TH-MYCN GEMM is used for a variety of molecular-

genetic, developmental and pre-clinical therapeutics applications (Chesler, Goldenberg et al. 

2007, Hogarty, Norris et al. 2008, Rounbehler, Li et al. 2009). As the single best predictor of 

poor outcome in those with neuroblastoma MYCN provides an attractive target for use in 

the GEMM setting. The TH-MYCN mouse created in 1997 acts as a model for high risk, MYCN 

amplified neuroblastoma (Chesler and Weiss 2011).  
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TH-MYCN mice are constructed using a first-generation transgenic approach. Exogenous 

DNA is introduced into the nucleus of fertilized murine oocytes resulting in random 

integration of the transgenic construct into genomic DNA. The construct used incorporates 

the cDNA of the human MYCN, ligated downstream of the rat tyrosine hydroxylase 

promotor. The rabbit b-globin enhancer enhances expression, and a herpes simplex virus 

thymidine kinase gene sequence is used as a transcription terminator (Weiss, Aldape et al. 

1997).The use of rat tyrosine hydroxylase targets expression of the MYCN gene to the neural 

crest - the cells from which neuroblastoma is derived. The model has been subsequently 

used in a wide variety of research disciplines involving molecular genetics, developmental 

biology, imaging technology, gene interactions and therapeutics (Chesler and Weiss 2011). 

Examples include the angiogenesis inhibitor HPMA copolymer-TNP-470 conjugate 

(caplostatin) and  ornithine decaroboxylase inhibitor adifluoromethylornithine (Chesler, 

Goldenberg et al. 2008, Rounbehler, Li et al. 2009, Teitz, Stanke et al. 2011). 

 

More recently a mouse model over expressing ALKF1174L in the neural crest has also been 

generated. The ALKF1174L mutation is associated with intrinsic and acquired resistance to ALK 

targeted therapies such as crizotinib, and co-segregates with MYCN in neuroblastoma 

(Sasaki, Okuda et al. 2010). Patients with the ALKF1174L mutation and MYCN amplification 

represent a subgroup of extremely high risk neuroblastoma patients (Azarova, Gautam et al. 

2011).  Compared to ALKF1174L and MYCN alone, co-expression of these two oncogenes led 

to the development of neuroblastoma at onset, higher penetrance, and with enhanced 

lethality in this model. Although these ALK mutations only affect a small proportion of 

neuroblastoma patients, this model may still provide valuable in testing therapies aimed to 

target such high risk patients (Berry, Luther et al. 2012). 

 

GEMM have many strengths. Tumours arise spontaneously, in an immunocompetent host 

and in an appropriate tissue and microenvironment (Chesler and Weiss 2011). Our 

understanding of the interactions between tumour and host has expanded massively in 

recent years, and is now well recognised as an important aspect of tumour biology (Gadea, 

Joyce et al. 2006). GEMM may therefore give better representation of normal cancer 

biology and therefore provide meaningful therapeutic research which better translates into 

patient benefit in a clinical setting.  
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Despite these strengths there are many criticisms of the GEMM. It is difficult to reproduce 

the heterogeneity of gene mutations and expression patterns seen throughout primary 

tumours in this model (Ruggeri, Camp et al. 2014). Although work is being undertaken to 

reproduce these patterns it still remains a key shortcoming. This difference may account for 

the increased sensitivity to certain therapeutic agents designed to act on a gene of interest 

which have observed in compounds tested in these models (Tuveson and Jacks 2002).  

 

Another problem associated with these models is that they often fail to recapitulate the 

metastatic patterns observed in patients. Neuroblastoma is a highly metastatic paediatric 

malignancy with metastases located in the bone morrow in around 70% of cases. However 

the TH-MYCN model fails to reproduce this pattern and exhibits only a very limited capacity 

for metastasis to the bone marrow (<5% incidence) (Teitz, Inoue et al. 2013). This presents a 

significant limitation, and the extent to which therapeutic effects can be modelled 

successfully using the TH-MYCN mouse. Whether this represents an artefact of murine 

physiology or a definitive difference between TH-MYCN tumourigenesis and human 

counterparts is as yet unclear. However more recently cross-breeding between TH-MYCN 

mice and strains deficient in caspase-8 have been shown to give rise to a significantly higher 

degree of bone metastases suggesting other candidate genes may enhance metastasis 

(Teitz, Inoue et al. 2013). 

 

In addition, as a therapeutic model GEMM may also have other limitations. Several practical 

issues such as cost, patents, long latencies to tumour development, low tumour penetrance 

as well as the difficulty in monitoring tumour development and therapeutic response limit 

the use of these models in routine pre-clinical drug screening (Chesler and Weiss 2011). 

Furthermore,  many feel strongly that conducting therapeutic research on mouse cells is 

unlikely to provide valuable results. 
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1.2.2.Transplantation models 

 

Transplantation models are another commonly used cancer research tool.  Here various 

systems and techniques are used to propagate tumour tissues in different hosts, allowing 

controlled studies in vivo. Allograft mouse tumour models involve the transplantation of 

tissues derived from the same species as the host. Similar to GEMM, the tumours generated 

by these mice are not human, which may limit the value of results obtained from their 

study.  In contrast, Xenograft models involve the transplantation of human tissues into 

mouse models and are widely used in therapeutic research.  

 

Xenograft tumour models have been explored since the mid 1960s, however only became 

frequently used after the identification of the athymic nude mutant mouse which were 

deficient in T cells (Peterson and Houghton 2004). Due to the exogenic nature of the tissue 

transplanted into xenograft models, host immune rejection of the tissue represents a major 

barrier and hosts must therefore be immune-deficient. The more recent discovery of other 

immune-deficient mouse strains such as (SCID) mice has further expanded the options for 

host transplantation in these models (Zhou, Facciponte et al. 2014).  

 

Xenografts are most commonly subcutaneous, where cells are injected beneath the hosts 

skin, or orthotopic, whereby the tissue is transplanted into the tissue from which it would 

have originated. Subcutaneous xenografts permit the monitoring of tumour growth and 

drug response without requiring sophisticated techniques (Kumar, Mokhtari et al. 2012). 

However othotopic models are thought to better recapitulate the intricacies and cell-cell 

interactions of the local microenvironment in which a primary tumour grows, invades and 

disseminates (Ruggeri, Camp et al. 2014). Orthotopic models of neuroblastoma commonly 

involve the injection of cells into the adrenal gland of mice (Teitz, Stanke et al. 2011). Such 

models require precise implantation skill, are time consuming, and do not allow direct visual 

monitoring of tumour. With improvements in non-invasive imaging techniques, lack of 

direct tumour visualisation can be overcome, though still adds additional complexity and 

cost to the model (Albanese, Rodriguez et al. 2013). 
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Experimental metastases models have also been developed. Here tumour cells are injected 

directly into the host’s blood stream. Such models allow modelling of therapies designed to 

target disseminated disease. In neuroblastoma the injection of cancer cells into the aorta of 

mice has been shown to produce large adrenal tumours with micrometastases observed in 

the liver and femur - a pattern closely reflecting that seen in patients with the disease 

(Engler, Thiel et al. 2001). Neuroblastoma cells injected into the tail vein of mice have been 

observed to produce smaller adrenal tumours with far fewer micrometastses indicating the 

site of injection may be of importance (Engler, Thiel et al. 2001). 

 

In all xenograft models transplanted cells may originate from established human cancer cell 

lines or primary tumour samples. The use of cancer cell lines is convenient but means that 

the resultant tumours fail to recapitulate the many of the features of primary tumours and 

display limited clinical predictability in the therapeutic setting. With increasing passage 

number cells are predisposed to genetic drift and loss of heterogeneity. The transplantation 

of freshly excised human tumour tissue preserves the genetic, histological and phenotypic 

features of the tumour providing a more realistic model system. It is however, labour 

intensive and costly (Ruggeri, Camp et al. 2014).   

 

A large number of studies have been conducted using xenograft models to evaluate 

potential compounds for the treatment of neuroblastoma (Chanthery, Gustafson et al. 

2012). The NCI’s paediatric preclinical testing programme has led to better characterisation 

of these models and a more systematic approach to therapeutic screening in general. 

Neuroblastoma is routinely used here as part of a panel of xenograft tumour models used to 

screen new compounds for significant antitumour activity (NCI). These models have 

identified multiple compounds which have gone on for further trials. For example MLN8237, 

a small molecule inhibitor of Aurora Kinase A was first identified in this way and is currently 

under Phase I/II Study in Combination with Irinotecan and Temozolomide for Patients with 

Relapsed or Refractory Neuroblastoma (Health 2014). 

 

The main disadvantage of xenograft models is the need for immune compromise. Immune 

cells have a significant effect on therapeutic response and therefore it is difficult to reliably 

predict a novel agents therapeutic effect from these models (Schreiber, Old et al. 2011).  



37 
 

 

Although mice are the most commonly utilized organism, several others have been used in 

cancer research. Rats and dogs are among the other organisms more commonly employed, 

the larger size of these organisms can makes them amiable for exploring metastases(Kumar, 

Mokhtari et al. 2012).  

 

All of the models discussed here have both strengths and limitations to their use in 

therapeutic research (Table 4). It is evident that no one model can answer all of the 

questions posed in the search for novel compounds, but the correct use of carefully selected 

models is most appropriate. One factor common to all of these models is the growing 

complexity and cost associated with their use. In the context of the rapidly increasing 

number of potential targets new models are required which can help to discern which drugs 

should be used in these more complex systems.  
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Table 4 - A comparison of xenograft and GEMM 

Model type Use in NB Advantages Disadvantages References 

GEMM TH-MYCN mouse 

 

TH-MYCN;Casp8 

 

ALK
F1174L

  mouse 

 

Tumours arise 
spontaneously 

 

Immunocompetant host 

 

Correct 
microenvironment 

 

Genetic changes can be 
targeted to specific cells, 
and at specific times 

Lack of heterogeneity of 
tumours 

 

Mouse tumour cells, not 
human 

 

Failure to reproduce 
metastatic patterns 

 

Expensive 

 

(Weiss, 

Aldape et al. 

1997, Berry, 

Luther et al. 

2012, Teitz, 

Inoue et al. 

2013) 

Xenograft 
(subcutaneous) 

PPTP Tumour growth can be 
monitored easily 

 

Tumours grow rapidly 
and uniformly so less 
animals are needed 

 

Human cells are used 

 

 

Tumours do not form in a 
native microenviroment - 
lack of tumour-host 
interation 

 

Immune compromise 

 

 

 

 

(Houghton, 

Morton et al. 

2007) 

Xenograft 
(orthotopic) 

 Reproduce the organ 
microenviroment 

Human cells are used 

 

 

 

Required precise 
implantation skill  

 

More difficult to monitor 
tumour growth 

 

Immune compromise 

 

(Khanna, 

Jaboin et al. 

2002) 

PPTP - pediatric preclinical testing program  
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1.3.The Chick Embryo Model 

 

Both the chicken and the egg have remained of great interest throughout human history. 

Aristotle conducted the first recorded experiments with chicken eggs as early as 330BC 

(Mason 2008). The subsequent centuries of experimentation using chick embryos has 

resulted in a wealth of information regarding the development of this species, as well as 

informing us on diverse aspects of development and disease in humans. Avian embryos such 

as the chicks have been instrumental not only to the field of developmental biology, but 

have also made significant contributions to research in cancer biology, virology, 

immunology, cell biology and neuroscience (Kain, Miller et al. 2014). The discovery of NGF 

by Rita Levi-Montalcini is just one example of several Nobel Prize winning discoveries made 

using the chick embryo model (Vergara and Canto-Soler 2012). 

In 1889 the first attempts at a comprehensive morphological atlas of chick development 

were produced. These first works provided the bases for Viktor Hamburger and Howard 

Hamilton's later published 46 stages of development which provide consistency between 

various disciplines utilising the chick embryo (Hamburger and Hamilton 1951). At the point 

the egg is laid the chick embryo is at the blastula stage. In 2 to 3 days it undergoes 

gastrulation, neurulation and histogenesis, completing its entire development by the time of 

hatching in just 21 days (Vergara and Canto-Soler 2012). The early work of those such as 

Hamburger and Hamilton has been further built upon making the chick embryo a well 

characterised model with a fully sequenced genome (Vergara and Canto-Soler 2012). 

 

 

 

 

 

Figure 5 - The stages of chick development 
Image displaying the 46 Hamburger and Hamilton (HH) stages of chick development, and how they relate to 
the length of incubation (E). Adapted from Kristin et al (Kain, Miller et al. 2014) 
 

This text box is where the unabridged thesis included the following third party copyrighted 

material: 

Kain, K. H., J. W. Miller, C. R. Jones-Paris, R. T. Thomason, J. D. Lewis, D. M. Bader, J. 
V. Barnett and A. Zijlstra (2014). "The chick embryo as an expanding experimental 
model for cancer and cardiovascular research." Dev Dyn 243(2): 216-228. 
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Several key characteristics of the chick embryo have been crucial in establishing its role 

within various research modalities. The significant similarity of the chick to the human 

embryo at the molecular, cellular and anatomical levels; its rapid development; the 

accessibility of the developing embryo for visualization and experimental manipulation; and 

its comparatively large size and planar structure during early developmental stages 

represent several of this models key advantages (Vergara and Canto-Soler 2012).   

There are also many practical and economical advantages of the this model which should 

not be overlooked. Current UK regulations do not require researchers to possess a home 

office licence when working with chick embryos up to 14 days of incubation. Eggs are 

available year round almost anywhere in the world. They can be purchased in specific 

quantities and may be stored easily for several days prior to incubation, allowing 

researchers to easily obtain embryos at the specific developmental stage that suits their 

need. Furthermore in the context of the increasingly costly model systems available in 

modern research the low cost of the eggs and their housing is extremely relevant and makes 

their use feasible in a wide range of laboratories (Vergara and Canto-Soler 2012).  

Ethical considerations relating to animal research are also important to consider. The 3 r's: 

replace; reduce; refine pertaining to this field highlight the need to consider other means of 

conducting research wherever possible. Work with chick embryos may offer the ability to 

reduce the number of animals used in various research fields. 

While much of the research involving the chick has involved the embryo its self, studies 

have also been conducted on the extra-embryonic membranes surrounding the developing 

embryo. 

1.3.1.The Chorioallantoic membrane 

 

The chick has three extra-embryonic membranes surrounding it during development. The 

chorioallantoic membrane (CAM)  is one such membrane serving multiple functions. The 

CAM is involved in the exchange of respiratory gases, calcium transport from the eggshell, 
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acid-base homeostasis in the embryo, and ion and water reabsorption from the allantoic 

fluid (Gabrielli and Accili 2010). 

The CAM is formed by the fusion of the allantoic membrane and the chorion around days 5 

to 6 of incubation. It develops, progressively adhering to the acellular inner membrane just 

inside the eggs shell and surrounds the embryo by days 11 and 12. By day 10 of incubation, 

the CAM comprises the fully developed capillary plexus, an extensive capillary network 

which gradually comes to lie in a plane on the outer surface of the chorion (Ribatti, Nico et 

al. 2001, Gabrielli and Accili 2010).  

Structurally, the CAM consists of three layers derived from distinct embryonic tissues; the 

ectodermal chorionic epithelium; an intermediate mesoderm; and the endodermal allantoic 

epithelium (Ribatti, Nico et al. 2001, Gabrielli and Accili 2010). 
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Figure 6 - Diagram of the chick embryo highlighting the extraembryonic membranes. The chorion and allantosis (labelled in 
grey) fuse to form the chorioallantoic membrane at day 5-6 of embryonic development. Adapted from (Mccartney 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CAM is most widely known for its role in angiogenesis research however it has also been 

used in cancer research for decades (Sommers, Sullivan et al. 1952). The work of James 

Murphy in 1916 demonstrated the natural immunodeficiency of the chick embryo until 

around 2 weeks into its development making it amenable to tumour xenografting (Murphy 

1916). In 1982 Armstrong et al published a paper describing the ability of several different 

types of tumour cells to invade the CAMs epithelial layer. The authors demonstrated that 

following light trauma to the CAMs surface, tumour cells readily invade the superficial 

epithelial layer and form tumours beneath it (Armstrong, Quigley et al. 1982).  

Figure 8 - The chick chorioallantoic membrane (CAM) - this image, taken 8 
days after incubation (E8) demonstrates the highly vascular CAM 

 

Figure 7 - A section through the CAM 
demonstrating the three tissue layers 
(B-D). A: shell membrane. B:chorionic 
epithelium. C: mesoderm layer. D 
allantoic epithelium E: allantoic cavity. 
Adapted from Gabrielli et al 

 

This text box is where the unabridged thesis included the following third party copyrighted 

material: 

Mccartney, A. (2013). "From Amphibians to Amniotes."   Retrieved 19th October, 
2014, from http://annmccartneyblog.com/2013/01/23/from-amphibians-to-
amniotes/. 
 

This text box is where the 

unabridged thesis included the 

following third party copyrighted 

material: 

Gabrielli, M. G. and D. Accili 
(2010). "The chick 
chorioallantoic membrane: a 
model of molecular, structural, 
and functional adaptation to 
transepithelial ion transport and 
barrier function during 

embryonic development." J 
Biomed Biotechnol 2010: 
940741. 
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Within this field, growing recognition of the chick embryo models advantages  means 

interest in the CAM is increasing rapidly, and consequently it is being used to explore the 

invasive and  metastatic properties of an expanding number of malignancies. To date, works 

describing the use of  the CAM model in relation to Burkitt  lymphoma, osteosarcoma, 

ovarian cancer, colon cancer, prostate cancer, glioma, melanoma, breast cancer, anaplastic 

thyroid cancer and leukaemia have been published (Kobayashi, Koshida et al. 1998, 

Carrodeguas, Rodolosse et al. 2005, Hagedorn, Javerzat et al. 2005, Taizi, Deutsch et al. 

2006, Balciuniene, Tamasauskas et al. 2009, Subauste, Kupriyanova et al. 2009, Strojnik, 

Kavalar et al. 2010, Palmer, Lewis et al. 2011, Klingenberg 2014, Yang 2014). Studies have 

generally used these techniques as a means of describing and quantifying the 

invasive/metastatic capabilities of these malignancies, however others have sectioned and 

characterised the tumours that they formed. These studies found the morphology and 

expression of cell markers to be similar to that of primary samples (Klingenberg 2014, Yang 

2014).  

There have been a limited number of studies utilizing the chick xenograft model for 

therapeutic research. Due to the highly vascular nature of the CAM the majority of these 

have been related to angiogenesis (Lin, Chen et al. 2013, Ozcetin, Aigner et al. 

2013).  Similarly in the context of neuroblastoma research, work with the CAM has been 

limited and published works largely relate to  angiogenesis and its inhibition (Marimpietri, 

Brignole et al. 2007, Mangieri, Nico et al. 2009, Azar, Azar et al. 2011). Here we aim to 

demonstrate that CAM xenograft model represents a high through-put, economically viable 

yet highly informative model system in the context of neuroblastoma drug discovery. 
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2.Project Aims 

Given the growing number of malignancies shown to successfully form tumours on the chick 

CAM we hypothesised that neuroblastoma cells would also demonstrate this ability. 

Furthermore, as others have also suggested we hypothesised that cells growing in this 

system would provide an highly practical means of preclinical therapeutic testing. 

In order to explore the ability of the chick embryo to act as a new pre-clinical therapeutic 

model system for neuroblastoma, this project aimed to: 

  Establish and optimise a protocol for the xenografting of different neuroblastoma 

cells on to the surface of the CAM, focusing on "high risk" MYCN amplified cell lines. 

 

 Determine a suitable mode of drug delivery to tumours forming beneath the CAMs 

surface. 

 

 Determine a suitable time window during which drugs may be delivered to tumours 

and allowed to exert their effects. 

 

 Establish a suitable means of measuring the effects exerted by therapeutic 

compounds on neuroblastoma tumours formed in the model. 

 

 Test therapeutic compounds within the chick embryo model focusing on elements of 

standard neuroblastoma therapy 

 

 

 

 

 



45 
 

3.Materials and Methods 

3.1.Cell Culture 

Several different neuroblastoma cell lines were cultured and introduced into the chick 

embryo environment during this project. Cell lines are established from samples of primary 

or metastatic tumours which are obtained from patients during surgical resection, bone 

marrow aspiration, and occasionally from peripheral blood. Each has different 

characteristics which can be seen here - Table 5. 

Cell line Fluorescent label Culture 
medium 

Source Characteristics 

SKNAS GFP when used 
alone 

Red tomato 
when mixed with 
GFP labelled cells 

FCS - 10% 

Pen Strep - 1% 

NEAA - 1% 
DMEM  

Metastatic site: bone marrow Single copy MYCN  

Chromosome 1p 
deletion 

BE(2)-C GFP FCS - 10% 

Pen Strep - 1% 

NEAA - 1% 
DMEM 

 

BE(2)-C is a clone of the SK-N-
BE(2) neuroblastoma cell line 
that was established from a 
bone marrow biopsy taken 
from a child with 
disseminated neuroblastoma 
after repeated courses of 
chemotherapy and 
radiotherapy. 

MYCN amplified  

Chromosome 1p 
deletion 

Chromosome 17 
translocation; 

t(3;17)(p21;q21) 

KELLY GFP FCS - 10% 

Pen Strep - 1% 
RPMI  

 

Isolated from a metastatic 
brain lesion in a 1.1 year old 
boy 

MYCN amplified 

ALK  

IMR-32 GFP FCS - 10% 

Pen Strep - 1% 

NEAA - 1% 
RPMI 

Isolated from an abdominal 
NB in a 13-month-old boy  

MYCN amplified  

1p deletion  

47 + XY karyotype 

Table 5 - neuroblastoma cell lines 
This table outlines the key features of the cell lines used in the project as well as the conditions in which they 
were cultured. DMEM - Dulbecco's modified eagle medium; FCS - fetal calf serum; GFP - green fluorescent 
protein; Pen Strep - Penicillin Streptomycin.  
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To aid the identification of NB cells used in the chick model cell lines were transduced with 

lentiviral particles containing eGFP or dTomato (carried out by Dr. Sokratis Theocharatos  at 

the University of Liverpool). eGFP and dTomato provided these cells with a stable 

fluorescent label and therefore allowed visualisation of the cells under UV light. Where 

different cell lines were used together one GFP and one red Tomato cell line was used so 

that the distribution of differing cells could be identified. 

Cells were cultured in T75cm² tissue culture flasks (Corning, UK) containing 10ml of 

appropriate culture media (see Table 5). Flasks were incubated in a humidified environment 

at 37°C, 5% CO2. 

In order to continually supply the NB cells with the nutrients they needed, media was 

removed every 2-3 days and replaced with 10mL of fresh, pre-warmed media.  When 

culture dishes reached 80 – 90% confluence cells were passaged. During passaging old 

media was removed and cells were washed once with 5mL of PBS (Dulbecco‘s Phosphate 

Buffered Saline, Life Technologies). 1mL of 0.05%Trypsin EDTA 1x Solution (Sigma Aldrich) 

was added and cells were incubated for 1 minute at 37°C. Detached cells were transferred 

to a falcon tube and centrifuged (5min, 101×g). The pellet was resuspended in 1mL of 

culture medium and seeded at a density of 1-3x106.   

3.1.1.Culturing NB cells with retinoic acid 

9 - cis retinoic acid (RA) (Sigma) was diluted in D S  to make 0.1 m  ali uots and stored 

at -80   C. A  final 10µM concentration of RA was obtained by diluting the stock solution with 

the appropriate cell culture medium (see Table 5). 

Cells were seeded at a density of 2x106 and left to settle for 24hours. After 24hours old 

medium was discarded and 10µL of the appropriate medium containing retinoic acid was 

used to replace it. Controls were cultured with medium supplemented with DMSO at the 

same concentration. Every 48 hours the medium was again replaced with fresh RA or DMSO 

containing medium. Cells were incubated with RA for a either 3 or 6 days prior to RNA 

extraction. 
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3.1.2.Culturing NB cells with MLN8237 

MLN8237 powder (Sigma) was reconstituted in DMSO to make 0.1  ali uots and then 

stored at -80   C according to the manufacturer's instructions. Final concentrations of 

MLN8237 were reached using the appropriate cell medium.  

Cells were seeded as for RA experiments and again left to settle for 24 hours. After 24 hours 

cell culture medium was discarded and replaced with 1µM, 4µM and 10µM concentrations 

of MLN8237 containing medium. Medium was changed every 48 hours and cells were 

cultured for a total of 3 or 6 days. 

3.1.3.Culturing chick embryonic heart fibroblasts 

Eggs were incubated under physiological conditions until E8. At E8 embryonic hearts were 

dissected and shredded into approximately 10 pieces per heart. The shredded tissue was 

then transferred into a cell culture Petri dish and 5mL of L15 medium (Sigma) was added. 

Hearts were incubated for 3 days at 37°C, 5% CO2.  

3.2.Incubation and fenestration of chick embryos 

Chick embryo experiments were carefully performed in accordance with the current UK 

Home Office  guidance. 

Fertilised white leghorn chicken eggs were obtained from Lees Lane Poultry, Wirral, U . The 

eggs were placed into an incubator ( ul hatch  ark II  and maintained at approximately 

37   C and 40% relative humidity. Eggs were not rolled as they would be in normal 

physiological settings, in order to ensure easy access to the embryo at later stages in 

development.  

To prevent the extraembryonic membranes from fusing to the inner surface of the shell, 

albumin was removed from the egg. 48-72 hours after incubation the eggs were removed 

from the incubator and gently cleaned using 70% ethanol. A pin was used to gently puncture 

the base of the egg allowing access. 3 - 4mL of albumin was then removed by inserting a 

(19G Terumo) needle connected to (5mL Terumo) syringe into the puncture site. The 

puncture was then sealed using a small square of adhesive tape to prevent any further 

leakage from the site.  
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Following the removal of albumin from the egg, a small window was cut into the shell 

allowing access to the underlying embryo and membranes. A 1cm² window was carefully cut 

into the shell using a hand held circular drill. The window was then resealed using adhesive 

tape. Eggs were again incubated under the same conditions until E7. 

3.2.1.Implanting NB cells on to the CAM 

At E7 windowed eggs were removed from the incubator and assessed for survival. In the 

surviving eggs, cells were implanted topically on to the newly developed CAM. 

The appropriate NB cell line was selected. Flasks containing the cells had their medium 

removed and cells were washed once with DPBS (Dulbecco‘s Phosphate Buffered Saline, Life 

Technologies), and then trypsinised and pelleted as described previously for passaging. Cells 

were then resuspended in 1mL of medium and the density of cells was counted using a 

haemocytometer. Approximately 2x106 cells were used per egg. These cells were placed 

into separate epedorf tubes and again centrifuged to form a pellet. The remaining medium 

was then removed leaving only 5uL of medium per 2x106 cells. The cells and medium were 

mixed prior to implantation on to the surface of the CAM. 

The eggs were removed from the incubator individually and the surface of the CAM was 

lightly  traumatized. A 1cm² piece of sterilized lens tissue was applied to the surface of the 

CAM and immediately removed to lightly traumatise the surface. The appropriate NB cell 

line was then placed on to this area of the CAM before resealing the egg with adhesive tape 

and returning it to the incubator.          

3.2.2.Implantation enhanced with and transforming growth factor-β, trypsin and 

cancer associated fibroblasts 

Whilst investigating methods of enhancing NB cell invasion of the CAM several adjustments 

to the above method were trialled.  

Trypsin and TGF-β 

In the case of trypsin and transforming growth factor-β (TGF-β  cells were pelleted and 

counted according to the previous method. Immediately prior to implantation on to the 

CAM each 2x106 cells had 5µL of either trypsin, TGF-β (10 ng/mL concentration) or a 50:50 
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mixture of both added to the cells. The cells were mixed as previously described and 

implanted on to the CAM surface. 

Cancer associated fibroblasts (CAFs) 

Fibroblasts were cultured from the shredded E8 chick heart tissue as previously described. 

After 3 days the cells were trypsinised and centrifuged to form a pellet. The number of cells 

was counted. These cells were then mixed with BE(2)-C cells at a 5:1 BE(2)-C to fibroblast 

cell ratio. The cell mixture was resuspended in 1mL medium and returned to a 75cm² 

culture flask. Cells were incubated together for 2 days prior to implantation onto the CAM. 

3.3.Dissection  and analysis of tumours 

At E14 eggs were once again removed from the incubator individually and assessed under 

florescent light on a Leica M165 FC fully apochromatic corrected stereo microscope with 

16.5:1 zoom optics. The visual field was maximized by breaking away shell surrounding the 

egg "window". Eggs were examined thoroughly for the presence of tumour formation and 

fluorescently labelled cells. Fluorescence was GFP and dsRed and images were captured 

using a Leica DFC425 C microscope camera alongside the computer software package, Leica 

V4.0. 

Dissection of any resultant tumours was achieved using size 5 dissection tweezers and 

dissection scissors. Tumours were placed into PBS before being weighed and stored in 

RNAlater, or fixed. 
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Figure 9 - a visual display of the steps taken in chick embryo experimentation. Eggs were initially 
incubated for 48 hours prior to the removal of albumin, and subsequent "windowing" of the shell. 
After 7 days the CAM was lightly traumatised using lens tissue and NB cells were placed on to this 
portion of the CAM. Visualisation and dissection of any resultant tumours occurred at day 14. 
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3.3.1.Predicting tumour formation 

In order to test therapeutic compounds in the model tumour formation must be predicted 

prior to E14 tumour dissection. In order to assess this, eggs were prepared, incubated and 

cells were implanted as previously described. Each egg was then numbered and at E8, E10, 

E11, E13 and finally E14 eggs were reopened and assessed for the presence of tumour 

formation. The results were recorded at each stage. 

3.3.2.Frozen sections 

A er dissec on,  ssues were fixed in  % PFA at     C for 20 minutes. Tissue was then washed 

3 times with DPBS and placed in a 20% sucrose solution overnight. Tissues were then 

mounted on labelled 2cm diameter cork discs in Cryo- -Bed embedding compound (Bright  

and stored at -80   C. 12 µm sections were cut using a cryostat and collected on Menzel 

Gläser Superfrost Plus glass slides (Thermo Scientific). Slides were stored at -80   C prior to 

staining. 

3.3.3.Paraffin sections 

Paraffin embedding was carried out by Halleh Shahidipour, University of Liverpool. Samples 

were fixed in 10% Formalin up to 12 hours prior to dehydration for 48 hours in a plastic 

cassette. Later samples were aligned appropriately within a metal mould which rested upon 

a cold surface while hot paraffin wax was poured in using a Thermo SHANDON 

HISTOCENTRE. Once the sample was fully covered in wax it was left to cool down and set 

over 24 hours. Samples were stored at room temperature until sectioning.  

 
Prior to sectioning, samples were cooled on a block of ice. After approximately 40mins, 

samples were fitted onto a microtome (SHANDON) equipped with S35 Feather microtome 

blade (JDA-0100-00A). Sections were trimmed at 20μm until the sample was uncovered at 

which point  μm sections were cut in continuous  ribbons‘ consisting of   – 8 sections. 

Ribbons were placed upon the surface of a waterbath (Fisher Scientific) preheated at 35 – 

40°C and individual sections were then separated using 125mm fine point curved forceps. 

Sections were subsequently transferred to microscope slides (APES coated slides, Leica) 

which were stored upright in wooden racks and placed in a small oven to dry for at least 24 

hours. 
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3.3.4.Immunofluorescence in pre-fixed samples 

Frozen sections 

12µm frozen tumour sections were prepared and collected on to Menzel Gläser Superfrost 

Plus glass slides as described in section 3.3.2. Slides were removed from - 80   C and placed 

with tissue sections facing up. Slides were then washed once with DPBS before 0.1% Triton 

X-100 was added and left at room temperature for 10 minutes to permeabilize the cell 

membrane. Slides were then washed 3 times with DPBS. DPBS was removed and a 

hydrophobic ring was drawn around each tissue sample using a Dako pen. 2% BSA was then 

added to each ring and left for 1 hour at room temperature. BSA was removed and the 

primary antibody added to each slide at the appropriate concentration (see Table 6 . Primary 

an bodies were le  on slides overnight protected from light at     C. Secondary antibodies 

were left for 1 hour at room temperature. A drop of Dako fluorescent mounting medium 

was applied to each sample before the addition of a cover slip to each slide. Slides were 

again stored at     C and protected from light until analysis. 

Cell Culture 

Cells to be stained were grown on 13mm glass cover slips in 24 well plates. For IMR-32 

(which adhere less readily) cover slips were first coated with a 1:100 dilution of Matrigel and 

left to dry for 1 hour. Cells were seeded at 40-60% density 24 hours prior to staining.  

Cover slips were removed from medium and cells were fixed using 100µL of 4% PFA for 10 

minutes. PFA was then removed and cells were washed 3x with DPBS. 100µL of 2% BSA was 

then added to each slide and left for 1 hour at room temperature. Following the removal of 

the BSA primary an bodies were added at the appropriate concentra on and le , protected 

from light, at     C overnight. The application of secondary antibodies and mounting was 

carried out as for frozen sections. 

Controls 

For each experiment a negative control in which the primary antibody was omitted from the staining 

proceedure was included. Due to difficulty in obtaining material to act as a positive control these 

were not included in experiments. 
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Table 6 - antibodies used during immunostaining and their respective dilutions. 

 

Antibody  Dilution  Source  

Goat anti-mouse  
Alexa Fluor 488 (green)  

1:500  Invitrogen, A11001  

Goat anti-mouse  
Alexa Fluor 568 (red)  

1:500  Invitrogen, A11004  

Goat anti-rabbit  
Alexa Fluor 488 (green)  

1:500  Invitrogen, A11034  

Goat anti-rabbit  
Alexa Fluor 594 (red)  

1:500  Invitrogen, A11012  

Table 7 = secondary antibodies used during this project. 

 

3.3.5.EdU administration 

EdU is a novel thiamine analogue incorporated into dividing cells. It was used during the 

project to assess drug delivery in the chick embryo.  

Topical administration 

Eggs were incubated and prepared as described previously and cells were applied to the 

CAM at E7. At E13 the eggs were taken from the incubator and the adhesive tape covering 

the pre-cut window was removed. 200µL of 2mM or 4mM EdU was dripped on the surface 

of the CAM. The eggs were gently rotated 20-30     to allow the liquid to spread over the 

Target Name Host species Primary Antibody 
Dilution  

Clonity Manufacturer 

GFP Rabbit 1:500 Polyclonal Abcam (Ab290) 

MYCN Mouse 1:20 Monoclonal Abcam (Ab16898) 

Ki67 Mouse 1:100 Monoclonal Dako (F0788) 

NSE Rabbit 1:500 Polyclonal Abcam (ab53025) 

NF70 Mouse 1:500 Polyclonal Chemicon 
(MAB5294) 

GAP43 Rabbit 1:250 Monoclonal Abcam (ab75810) 

Robo2 Rabbit 1:250 Polyclonal Abcam (ab85278) 
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surface of the CAM. The eggs were then resealed with adhesive tape and returned to the 

incubator for a further 24hours. 

IV administration 

IV administration of EdU was completed by Rachel Carter (University of Liverpool). 

Borosilicate glass capillary tubing (thin wall with filament, Warner Instruments) was pulled 

under heat to a thin taper (settings: heat 580, velocity 15, pull 130, time 15, pressure 20; 

Sutter Instrument Co.), and the resulting needles snapped using dissecting forceps to an 

appropriate diameter. At E13 8µL of 10mM EdU was injected into the CAM vasculature 

under a stereo microscope.  

3.3.6.EdU detection 

EdU was detected in tissue dissected from the chick at E14. Tissue was frozen and sectioned 

as previously described. A Click-iT® EdU Alexa Fluor® 488 Imaging Kit (Life Technologies) was 

then used according to the manufacturers protocol.  

3.4.Retinoic Acid 

3.4.1.Administering Retinoic Acid to the chick embryo model 

A selection of eggs were weighed and an average of 50g per egg was calculated. 10% of this 

value was deduced to allow for the weight of the shell giving 45grams as the final value . 

Retinoic acid doses of 30mg/kg were used throughout experiments.  

9 - cis re noic acid (sigma  was diluted in D S  to make 0.1   ali uots and stored at -

80   C. The  final concentration of RA was obtained by diluting the stock solution first in a 1x 

volume of DMSO and then in PBS to make up a final volume of 200µL/egg. 

Eggs were taken from the incubator and the adhesive tape covering the window in the shell 

was removed. 200µL of RA was carefully administered topically to the surface of the CAM 

using a micropipette. Fresh adhesive tape was again placed over the window and the eggs 

were returned to the incubator. This procedure was repeated at approximately the same 

time each day for 3 days. 
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3.4.2.RNA Extraction 

RNA extraction was completed using the RNeasy Mini Kit (QIAGEN). All reagents were 

stored in a dedicated RNase-free area and experiments were carried out in a dedicated area 

of the lab.  

Cells 

Cells were first trypisinised and pelleted as for passaging. The supernatant was then 

removed and the pellet disrupted by gentle tapping of the tube. 350µL of the buffer RLT was 

then added to the cells. The cells were repeatedly drawn up and down using a 19G needle 

and 1mL syringe to simultaneously disrupt and homogenise the cells. A 1x volume of 70% 

ethanol was subsequently added to the lysate and mixed by pipetting. 700µL of the 

resultant liquid and precipitate was transferred to an RNeasy spin column and spun for 15s 

at 8000 x g. The flow through was then discarded and 700µL of buffer RW1 was added to 

the column. The column was spun again at 8000 x g for 15s. 500µL of the buffer RPE was 

then added to the column and spun as before. Finally a new collection tube was used and 

40µL of RNase free water was applied directly to the columns membrane before spinning 

for 1 minute at 8000 x g.  

RNA was immediately stored on ice and analysed using a luminometer.  NA was then 

ali uoted and stored at -80   C. 

Tumours 

Tumours dissected from the chick model were placed in  NAlater ( IAGEN  and stored at 

    C for up to 2 weeks prior to RNA extraction.  

The tissue was first removed from the RNAlater and transferred to a clean RNase free falcon 

tube. Liquid nitrogen was used to freeze the tissue before a pestle and mortar was used to 

disrupt it. RNA was then extracted as per the above protocol. 

3.4.3.Reverse transcription 

First strand cDNA synthesis was completed using a GoScript reverse transcription system 

(Promega) according to the manufacturers protocol. A total of 1µg of RNA was used per 

reaction. Where the addition, or the volume, of a reagent was optional details can be seen 

below (Table 8). 
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Reagent  Volume per reaction (µL) 

Oligo(dT)15 primers 1 

MgCl2 2 

Recombinant RNasin® Ribonuclease 
Inhibitor 

 

0.5 

Table 8 - Reagents and corresponding volumes used during reverse transcriptase that were not 
already stated in the manufacturers protocol. 

3.5.qPCR  

3.5.1.Reference gene selection 

Reference genes were incorporated into the experiment to allow the normalised relative 

quantification of target genes to be calculated. A literature search was conducted which 

yielded a paper by Vandesompele et al examining the reliability of several commonly used 

reference genes in neuroblastoma cells. From this paper we chose ubiquitin C (UBC), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) as the most suitable candidates and therefore primers 

were sought for these genes (Vandesompele, Baudis et al. 2005). 

3.5.2.Target gene selection 

In a paper published in 2012 Sung et al described the effects of retinoic acid on several 

neuroblastoma cell lines in culture. We selected the three genes having the largest fold 

increase/decrease from this paper; Kruppel-like factor 4 (KLF4), roundabout, axon guidance 

receptor, homolog 2 (ROBO2), stathmin-like 4 (STMN4). We also included MYCN due to its 

significance in neuroblastoma differentiation. 

3.5.3.Designing primers 

An initial search for suitable primers was conducted. Primer sequences were identified in 

published papers using the same target or reference genes in qPCR experiments. Any 

sequences found were located within the FASTA gene sequence and only primers spanning 

introns were considered. The size of the intron and the PCR product was calculated. Primer 

sequences were entered into the NCI primer basic local alignment search tool (BLAST) in 

order to determine their melting temperature and to ascertain the presence and strength of 
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secondary structures. Where suitable published sequences were not available primers were 

designed using the NCI primer-BLAST tool. Data relating to the selected primers can be seen 

in Table 9. 

 

 

 

Table 9 - details of the primers used in qPCR experiments. Tm is the melting temperature of the 
primer, secondary refers to the presence and strength of primer secondary structures, GC is the 
number of G's and C's in the primer as a percentage of the total bases. Data was obtained from  the 
NCI primer-BLAST tool. *Primer sequences were obtained through direct contact with authors. 

 

After suitable primer se uences were iden fied, primers were ordered from Sigma Aldrich. 

 nce the primers were received they were recons tuted in PBS, and stored at -20   C in small 

10mM aliquots to avoid freeze-thawing.  

3.5.4.Primer optimisation 

Temperature  

Temperature gradients were used to determine a suitable range of temperatures for  PC . 

Primers were ranked according to their mel ng temperature and then paired. Each pair was 

tested on a single plate at a temperature gradient   -  5   C from the mean melting 

temperature of the two primers. A PCR protocol was designed to incorporate the 

temperature gradient (Table 10), before the individual primer pairs were tested (example 

can be seen in Figure 10). 
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qPCR Protocol design 

Protocols were designed according to the recommendations of the ITaq SYBER green 

mastermix manufacturer (BioRad) specifically for the CFX Connect system (details seen in 

Table 12). The steps of the protocol used can be seen in Table 10 and an example used 

during primer optimisation of KLF4 and STMN4 can be seen in Figure 10. 

. 

Step  Details 

1 Polymerase activation and DNA denaturation  5   C  

30 seconds 

2 Amplification (Denaturation)   5   C  

5 seconds 

3 Amplification (Annealing/Extension + plate read) Gradient or 

 0   C after optimization 

30 seconds 

4 Amplifiaction (Cycles) 40 

5 Melt curve  65   C to 95   C   

0.5   C increment 

5 seconds/step 

Table 10- details of qPCR protocol 

 

 

Table 11 - The CFX Connect qPCR system details - table highlighting the specifications of the BioRad 
CFX Connect system used throughout qPCR experiments. Adapted from www.biorad.com 
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Example:  KLF4 and STMN4 

 ean primer mel ng temperature of  0   C. Gradient 55   C to  5   C 

 

 

 

Figure 10 - An example PC  protocol with a temperature gradient of 55   C to  5   C. Numbers 1 - 5 
across the top of A correspond to the stages displayed in B. The actual temperatures in the 8 rows 
(A-H) of the plate can be seen under the heading "Gradient" in B. 

 

Controls 

During primer optimization, and whenever new RNA/cDNA was used, a non-reverse 

transcriptase control added to the plate. For all experiments a no-template control was 

included. 

Plate design 

96 well plates (BioRad) were used throughout the qPCR experiments. The plate below 

demonstrates a generic plate used in primer optimization (Figure 11). Two primers and their 

controls were used in duplicate per plate. 

B 

A 

B 
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Figure 11  - Plate design for optimization of primers NRT; no reverse transcriptase NTC; no template 
control. T1 - 8 refer to a temperature gradient. 

 

3.5.5.qPCR Reaction Mix 

The components of the qPCR reaction can be seen here (Table 12) and remained constant 

between experiments. 

 

Reagent Final concentrations Volumes/well 

ITaq Universal SYBER 

Green supermix (2x) 

1x 5uL 

Primers 500nM each 0.5uL each 

cDNA 100ng variable 

Water - variable 

Final Volume per well 10uL 10uL 

Table 12 - table displaying the components of the reaction mix for qPCR experiments. 
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3.5.6.Retinoic Acid Experiments 

 

Experimental design 

Each experiment was carried out using 3 biological and 3 technical repeats. The plate design 
for experiments can be seen below (Figure 12) 
 

 

Figure 12- Plate design in qPCR experiments NTC; no template control, RA; cDNA from cells treated 
with retinoic acid, Control; cDNA from cells cultured with control medium 

 

The reagents were prepared using the same concentrations as stated in Table 12. All 

reagents were thawed to room temperature prior to use. Master mixes were prepared 

wherever possible and great care was taken to ensure accurate pipetting. 10uL of each mix 

was pipetted into each well prior to the application of a clear seal. A CFX Connect (BioRad) 

thermocycler was used for all experiments (Table 11).  

Analysis 

An initial inspection of both the amplification plot and melt curve ensured that there were 

no obvious anomalous results. Fold change in target gene expression was calculated relative 

to the control. Results were normalised to three housekeeping genes (GAPDH, HPRT1 and 

UBC) to allow for differences in the quantity of starting material and reaction kinetics.  

After initially checking data subsequent qPCR data analysis was carried out using Bio-Rad 

CFX Manager 3.0 software. Normalised relative expression of target genes was calculated 

using the ΔΔC  analysis mode. Data from 3 biological replicates was used in each instance. 

Error was calculated using standard deviation. 
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P values were also calculated using the CFX Manager software. The formulas used by the 

software are displayed below: 

 

 

 

 

3.6.MLN8237 

Cells cultured with MLN8237 had RNA extracted, cDNA synthesised and qPCR performed 

according to the same protocol as retinoic acid based experiments. 
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4.Results 

This project aimed to investigate the chick embryo as a potential in vivo model for 

therapeutic research. Many factors such as its degree of natural immunodeficiency and ease 

of access make the chick embryo amenable to this form of cancer research. Exploration of 

the chick embryo as a potential xenograft model for a wide variety of cancers is already 

underway. We hypothesised that the chick embryo and its chorioallantoic membrane could 

provide an informative and practical model for neuroblastoma research. We investigated 

the potential of this model to provide a novel means to test therapeutic compounds on 

neuroblastoma cells in an in vivo setting.  

 

4.1.Aims: 

To establish the chick embryo as a new model system for therapeutic research in 

neuroblastoma.  

 To establish and optimise a protocol for the xenografting of different neuroblastoma 

cells on to the surface of the CAM, focusing on "high risk" MYCN amplified cell lines. 

 To determine a suitable mode of drug delivery to tumours forming beneath the 

CAMs surface. 

 To determine a suitable time window during which drugs may be delivered to 

tumours and allowed to exert their effects. 

 To establish a suitable means of measuring the effects exerted by therapeutic 

compounds on neuroblastoma tumours formed in the model. 

 To test therapeutic compounds within the chick embryo model. 

 

 

4.2.Growing tumours on the CAM 

Previous studies have demonstrated the suitability of the CAM for tumour xenografting 

(Balciuniene, Tamasauskas et al. 2009, Balke, Neumann et al. 2010, Klingenberg 2014, Yang 

2014). In the context of neuroblastoma, work by others within our laboratory has 
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demonstrated that the SKNAS cell line could form tumours within this environment (Rice 

2013). However, SKNAS is a non-MYCN amplified neuroblastoma cell line. MYCN 

amplification is the most robust independent prognostic factor for unfavourable outcome in 

neuroblastoma (Rubie, Hartmann et al. 1997). Cells with amplification therefore represent 

much of the high risk disease for which new treatments are needed. Thus in addition to the 

SKNAS cell line, we set out to investigate the ability of several MYCN amplified lines to form 

tumours within the model.  

Fluorescently labelled Kelly, BE2C (MYCN amplified) and SKNAS (non-MYCN amplified) cells 

were placed on to the surface of the lightly trauma sed CA  and then incubated at 38   C, 

40% relative humidity for 7 days. After 7 days the eggs were examined under UV light and 

the findings were recorded.  

Upon examination one of three outcomes was observed. In a large proportion of the 

experiments carried out with MYCN amplified cell lines the neuroblastoma cells could be 

seen as a flat mass on the surface of the CAM (Figure 13A). Here it appeared as though the 

cells had failed to invade the CAM, remaining on its surface. This observation was also made 

with the SKNAS cells, however at a much lower frequency. In rare instances no cells were 

identifiable on the surface of the CAM or beneath it. Where cells had formed tumours, the 

CAM often had an area of dried blood on its surface suggesting that blood vessel trauma 

may be integral to the invasion of these cells (Figure 13B).  

Tumours formed in the model were identifiable just under the surface of the CAM as 

distinct masses of variable size (~100µm - 5mm in diameter) and morphology (Figure 14). 

Large tumours were occasionally distinguishable without fluorescence however the vast 

majority of tumours were only identifiable under UV light. In most instances one tumour 

had formed however in rare cases multiple smaller masses could be seen (Figure 14b-ii). 

Tumours were highly vascular with blood vessels clearly identifiable on their surface (Figure 

14b-iii). 
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4.2.1.Characterising tumours 

In order to further characterise tumours forming in the model the masses were dissected 

out of the egg. After an initial inspection the tumours were put into paraffin sections and 

haematoxylin and eosin (H&E) staining was performed so that the histological appearance 

of the tumour could be observed. 

Dissection was simple to perform and tumours remained intact during the procedure. 

Dissected tumours were observed as discrete masses which had a smooth outer surface 

(Figure 15). An intricate network of blood vessels typically covered the tumours (Figure 15-

i). Paraffin sections demonstrated that the tumours were solid masses made up of densely 

packed tumour cells (Figure 16). 

 

4.2.2.Quantifying Tumour Formation 

In order to quantify the efficiency of tumour formation in the model the outcome (tumour 

formation or no tumour formation) was recorded for each cell line during dissection. In each 

case the number of eggs with tumours identified at E14 was divided by the number of eggs 

surviving until this time giving the "success rate" of the cell line.  

The initial success rates for individual cell lines ranged from 23 - 66% (Figure 17) with 

reproducible levels of efficiency seen for each cell line during repeated experiments. The 

MYCN amplified cell lines were significantly less successful that the non-amplified SKNAS 

line with success rates averaging half that of the SKNAS. 
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. 

 

Figure 13 -  Neuroblastoma cells on the CAM. A: A patch of flat BE(2)-C cells seen on the surface of 
the CAM at E14. i - bright field ii - GFP. Here we hypothesised that these cells have failed to invade 
the CAM and consequently remained on its surface B; Images demonstrating the presence of the 
blood spot (highlighted by the white arrows) on the surface of the CAM of eggs with tumours 
forming within them. The blood spot was rarely seen on the surface of CAMs where tumours had not 
formed and therefore may suggest that blood vessel trauma is key to promoting invasion. 

i ii 

i ii 

iii iv 

B 

A 
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Figure 14 - Tumours formed in the model. A: Bright-field and GFP images of 4 tumours beneath the 
surface of the CAM at E14. Images A - i,ii, vii and viii are BE(2)-C tumours, iii and iv are Kelly and v 
and vi are SKNAS. B: GFP images displaying the variable size and morphology of tumours forming 
within the model. i and ii are IMR-32 tumours, iii, iv and v are BE(2)-C,  vi and vii  are SKNAS and viii 
and ix are Kelly. Image B-iii highlights the blood vessels seen on the surface of tumours (white 
arrows) 

 

 

A 

B 
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Figure 15 - Tumours after dissection. Paired bright-field and GFP images of tumours after dissection 
(a-h). a,b, c, d, g and h are BE(2)-C tumours. e and f are kelly. Image I is a large BE(2)-C tumour.  

 

 

Figure 16 - H&E staining of an SKNAS tumour formed in the model. The large cells of the tumour 
are seen to be densely packed. A - Image demonstrating the relationship between the tumour (right) 
and the CAM (left). (red arrow highlights the boarder) B - Image showing the histology of the 
tumour. 

 

 

a b 

a 

d 

e f 

g h 

i 

b 

c 



69 
 

 

Figure 17 - The success of neuroblastoma cell lines at forming tumours in the chick embryo. 
Percentage success was calculated by dividing the number of eggs with tumours at E14 by the 
number of embryos surviving until that time. The fractions above the bars represent the actual 
number of tumours formed/the actual number of eggs surviving until E14. 
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4.3.Increasing Tumour Formation 

4.3.1.Mixing Cell Lines 

Due to the high yield of tumours forming from SKNAS cell line, and the low yields observed 

in the MYCN amplified ones, we explored the effect that mixing cell lines might have on 

tumour formation. We hypothesised that combining the MYCN amplified cells with the 

SKNAS cells prior to implantation on to the CAM may improve the rate of tumour formation 

in the MYCN amplified lines. Cells were applied to the CAM as for previous experiments 

however in this instance a 50:50 mixture of either Kelly:SKNAS or BE(2)-C:SKNAS cells was 

placed on to the surface of the CAM. In order to allow the distribution of the different cell 

lines to be observed after implantation one GFP and one dTomato labelled cell line was 

used. 

Mixing lower yield cell lines with the higher yield SKNAS line aided tumour formation (Figure 

18). The rate of formation for both the MYCN cell lines doubled reaching that of the SKNAS 

cells alone. Tumours forming from mixed cell populations were seen to contain both cell 

lines (Figure 19). However for the purposes of future experiments single cell lines were 

required and so this approach was not investigated further. 

4.3.2.Trypsin, TGF-β and Fibroblast Culture 

In order to increase the yield of tumours formed from the low success MYCN amplified cell 

lines further methodological variances were investigated. We hypothesised that lack of 

tumour formation was the result of failure of some tumour cells to invade the CAM. In an 

attempt to overcome this, four experimental conditions were generated. One group of 

neuroblastoma cells was co-cultured with chick fibroblast cells for 3 days prior to 

implantation on to the CAM (Figure 20). In the other three conditions neuroblastoma cells 

were placed on to the CAM with either trypsin, TGF-β or a combination of both.   

TGF-β has been shown to modulate of the immune system and tumour microenvironment 

promoting tumour cell invasiveness and metastasis (Katz, Li et al. 2013). Trypsin is a 

protease which cleaves peptides on the C-terminal side of lysine and arginine amino acid 

residues and therefore we asserted that it may aid the penetration of xenografted tumour 

cells through the superficial epithelial cell surface of the CAM (Sigma). CAFs form an 

essential part of the tumour microenvironment and are reported to increase the invasive 
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potential of malignant cells (Choi, Lee et al. 2014).  We therefore hypothesised that each of 

these conditions might aid the neuroblastoma cells in invading the CAM. 

TGF-β alone or in conjunction with trypsin did not increase the yield of tumours further than 

trypsin alone. All of the eggs in which the neuroblastoma-fibroblast co-culture cells were 

used did not survive until E14 and therefore this line of investigation was not pursued 

further. The addition of trypsin to cells was the most successful variation of the method 

resulting in a two fold increase in the yield of tumours (Figure 21). Using Fishers exact test 

this result was demonstrated to be statistically significant (p value <0,05).This method was 

therefore adopted for future experiments. 

 

 

 

 

Figure 18 - The success of mixed and single neuroblastoma cell lines at forming tumours in the chick embryo. 
Percentage success was calculated by dividing the number of tumours with tumours at E14 by the number of 
embryos surviving until that time. The fractions above the bars represent the actual number of tumours 
formed/the actual number of eggs surviving until E14. 

3/10 
8/34 

10/15 
12/20 

5/7 

0.00 

20.00 

40.00 

60.00 

80.00 

100.00 

%
 s

u
cc

e
ss

 

Cell Line 

Percentage of Successful Tumour 
Formation  

D C 

B 



72 
 

 

Figure 19 - Mixed cell line tumours. GFP and dTomato images of tumours formed using mixed cell lines 

showing the distribution of the different cell lines within the tumour. A and B are images of an SKNAS-Kelly 
tumour. Kelly is GFP labelled (A) and SKNAS is dTomato labelled (B). C and D are images of an SKNAS-BE2C 
tumour. BE2C is GFP labelled (A) and SKNAS is dTomato labelled (D). 

A 
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Figure 20 - Fibroblasts (seen peripherally) growing from a piece of dissected chick embryo heart 
(dissected at E8) in culture. Fibroblasts were then co-cultured with BE2C cells for 3 days prior to 
implantation on the CAM. 

 

 

Figure 21 - The success of BE2C tumour formation before and after the addition of trypsin. Fractions above 

the bars represent the actual number of tumours dissected to date (numerator) and the number of embryos 
surviving until E14 (denominator). The Fishers exact test statistic is 0.0496. The result is significant at p<0.05.  
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4.4.Drug Delivery 

For the chick embryo to be effective as a therapeutic model drugs must be delivered to 

tumour cells successfully. One key advantage of the chick model is its simplicity, and so a 

delivery method would ideally not compromise this feature. We therefore sought a method 

that would be easy to perform and not compromise embryo survival whilst effectively 

delivering compounds throughout tumours.  

An initial literature search into potential drug delivery methods for the model yielded an 

interesting and informative paper by Vargas et al. In this paper various methods of drug 

delivery were discussed (Figure 22).  

In order to retain the simplicity of the model we decided to explore topical administration of 

compounds on to the surface of the CAM. We hypothesised that compounds applied in this 

manner would diffuse into the CAM vasculature and therefore penetrate throughout the 

tumour. In order to investigate this hypothesis we used EdU. EdU is a novel thiamine 

analogue incorporated into dividing cells and therefore should be seen throughout the 

rapidly dividing tumour.  

200µL of either 4mM or 2mM  EdU was added  to the surface of the CAM 24hrs prior to 

dissection of the underlying tumour. As a positive control EdU was also injected into the 

vasculature of the CAM (carried out by Rachel Carter, University of Liverpool). If, as we 

hypothesised, EdU diffused into the embryonic circulation, we would also expect it to be 

incorporated into the rapidly dividing cells of the chick embryo. Therefore during dissection 

embryonic liver was also removed for EdU testing.  

Following EdU detection 3 samples from slides representing the centre of the tumour were 

visualised. A total of nine tumours were assessed. For both topical and IV administration of 

EdU, 70-90% of GFP cells were found to be EdU labelled (Table 13). EdU staining was 

observed throughout the tumour with no noticeable absent areas (Figure 23). T- tests were 

performed on the values obtained from cell counting and there was no significant difference 

in drug penetration between the two modalities (P value 0.73). Similarly reducing the 

concentration of EdU did not appear to significantly hinder delivery of the drug (P value 

0.16). 
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EdU was also detected throughout the embryo's liver further supporting our hypothesis that 

substances applied to the surface of the CAM diffused into the embryo's circulation (Figure 

24).We therefore concluded that topical administration was an effective mode of drug 

delivery in this model. 

 

 

 

 

Figure 22  - The different approaches to drug delivery in the chick embryo model. IV - intravenous  IP - 

intraperitoneal. This diagram displays the various methods that can be used to deliver drugs to the chick 
embryo model as well as outlining the expected diffusion pathways of these drugs. Topical administration on 
to the CAM can be seen to diffuse into the blood stream. Adapted from Vargas et al, 2007. 
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Figure 23 - EdU staining following topical application. EdU staining in an SKNAS tumour dissected from 

beneath the CAM 24 hours after topical EdU application. A - phase image showing the densely packed cells of 
the tumour. B - GFP antibody staining showing human neuroblastoma cells. C - EdU detection. Images shown 
are representative.  

Tumour 
Mode of 
administration 

EdU 
Concentration 

Volume 
of EdU 

Mean 
EdU cell 
count 

Mean 
GFP cell 
count 

Percentage of 
GFP cells also 
EdU labelled (%) 

1 Topical  4µM 200µL 272 366 90.8 

2 Topical  4µM 200µL 248 260 87.5 

3 Topical  2µM 200µL 241 259 85.1 

4 Topical  2µM 200µL 300 322 89.2 

5 Topical  2µM 200µL 243 276 82.7 

6 Topical  2µM 200µL 196 213 84.2 

7 IV 10µM 8µL 164 175 81.3 

8 IV 10µM 8µL 205 208 86.2 

9 IV 10µM 8µL 199 228 79.8 
Table 13 - table displaying the results of EdU and GFP counts performed 24 hours after 
administration.  

 

Figure 24 - EdU detected in the chick embryo liver. EdU staining performed on sections of the chick 
embryo liver 24 hours after topical application of EdU on to the CAM. Staining can be seen clearly 
throughout the liver. 
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4.5.Detecting a Suitable Time Window 

In order for compounds to be tested within the model there must be a suitable time 

window for them to be applied to the CAM and allowed to take effect. In order to ascertain 

whether tumour growth at E14 could be predicted at an earlier stage, eggs were reopened 

and evaluated at E9, E10, E11 and E12. Eggs were marked as positive (tumour) or negative 

(no tumour) and correlation between early predictions and E14 results were evaluated.  

Tumours were found to be visible in 90% of cases by E11 (Table 14) allowing a 72 hour 

window for the application of therapeutic compounds to the CAM. Tumours that were 

missed at this stage were either due to a large blood spot obscuring the tumour, or a 

peripherally located tumour that was difficult to see. Earlier on, the main challenge to 

prediction was differentiating between cells beneath the CAM and those cells forming a 

flattened mass on its surface. 

 

 

Embryonic Day Correct Prediction (%) 

E9 30 

E10 50 

E11 90 

E12 90 

Table 14 - The reliability of predicting tumour formation from E9-12. Embryonic day refers to the 
number of days since initial egg incubation. Correct prediction refers to the percentage of tumours 
correctly identified in eggs by visual inspection under UV light prior to the day of dissection. 
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4.6.Detecting therapeutic effects 

We had now established that neuroblastoma cells were able to invade the CAM and form 

tumours beneath its surface. That this growth could be reliably predicted to provide a 72 

hour window for potential drugs to be administered and take effect, and that drugs applied 

topically to the CAM would penetrate throughout these tumours.  We now sought a suitable 

method of detecting and quantifying the effects of drugs to be used in the model.  

Tumours were grown on the CAM and either frozen or paraffin sections were prepared. 

Immunostaining for several differentiation and proliferation markers was conducted (Table 

15).   

We encountered several problems with the use of frozen sections. The heterogeneity of 

malignant cells means that expression of mature neuronal markers might be expected in 

some of the tumour cells. However expression of these markers was not observed at all in 

sections. A lack of availability of tissues to act as a positive control in experiments meant 

that determining whether these observations represented a failure of the immunostaining 

process or a lack of expression was not possible. Furthermore markers such as ki67, did not 

appear to consistently represent the expected cellular location when used in frozen 

sections. Paraffin sections were therefore investigated as a potential alternative method. 

However, here again similar problems were encountered with several of the markers. 

Further research into these difficulties indicated that others had failed to identify reliable 

antibodies for several of these genes. Some had therefore used qPCR as an alternative and 

more reliable method of quantifying changes in gene expression and we therefore decided 

to utilize it. 

4.6.1.qPCR 

The next stage in the development of this model was to use qPCR to examine the effects of 

a well-established therapeutic compound. Retinoic acid (RA) is a differentiation agent 

causing neuroblastoma cells to display a more mature neuronal phenotype. It has been 

extensively researched and is currently employed in the standard treatment of patients with 

high risk neuroblastoma. 



79 
 

13-cis-retinoic acid is a derivative of vitamin A (retinol). It is a naturally occurring substance 

of which levels are tightly controlled during development. RA binds to heterodimers of 

retinoic acid receptors (RAR) or the retinoid X receptor (RXR), which in turn bind to retinoic 

acid response elements ( A E  located in the 5′ upstream regions of target genes. RA is 

recognised to modulate the expression of many protein coding genes and non-coding RNA 

sequences in this fashion and it is these changes that are believed to initiate the process of 

differentiation in neuroblastoma cells (Marill, Idres et al. 2003). 

In a paper published in 2012 Sung et al demonstrate several changes in gene expression in 

IMR-32 cells following the culture with retinoic acid (RA). We identified 3 genes from this 

paper which demonstrated the greatest fold change; krupel like factor 4 (KLF4), stathmin-

like 4 (STMN4) and roundabout, axon guidance receptor, homolog 2 (robo2). KLF4 is a 

member of the KLF zinc-finger-containing transcription factor family. High expression of 

KLF4 has been associated with a less differentiated phenotype and therefore levels would 

be expected to decline during retinoic acid treatment. ROBO2 and STMN4 are both 

associated with axon guidance. During differentiation their levels would therefore be 

expected to rise. In addition to these genes Sung et al reported a decrease in MYCN 

expression. Others have shown previously that down-regulation of MYCN precedes retinoic 

acid induced differentiation and it has been suggested that retinoic acid can directly 

regulate MYCN expression at the transcriptional level (Westermark, Wilhelm et al. 2011). 

The MYCN protein is its self a transcription factor believed to be a key regulator of 

differentiation in neuroblastoma and therefore we also chose to include it in our research. 

We hypothesised that changes in MYCN expression may be responsible for the changes 

observed in other genes. 

A literature search indicated that UBC, HPRT1 and GAPDH were the three most stably 

expressed housekeeping genes in neuroblastoma cell lines and therefore these were the 

reference genes used in all experiments to allow for accurate normalisation of gene 

expression (Vandesompele, Baudis et al. 2005).  

  

 



80 
 

Marker Type of marker Expected 
Levels 

Observed 
Levels 

Expected 
Location 

Observed 
Location 

Ki67 Proliferation 
marker 

High  High nuclear Mixed  

NSE Differentiation 
marker 

Low absent Cytoplasm 
and cell 
membrane 

- 

NF70 Differentiation 
marker 

Low  absent cytoplasmic - 

GAP43 Differentiation 
marker 

Low High  cytoplasmic cytoplasmic 

Robo2 Differentiation 
marker 

Low  absent Cell 
membrane 

- 

Table 15 - Table outlining the different markers explored in frozen sections of tumours grown in 
the chick model.  Levels refer to the levels in the cells of the tumour, location refers to the sub-
cellular location of the marker. NSE; neuron specific enolase, NF70; Neurofilament 70, GAP43; 
growth associated protein 43, Robo2; Roundabout, axon guidance receptor, homolog 2.  

 

 

 

Table 16 - details of the primers used in qPCR experiments. Tm is the melting temperature of the primer, 

secondary refers to the presence and strength of primer secondary structures; GC is the number of G's and C's 
in the primer as a percentage of the total bases. Data was obtained from the NCI primer-BLAST tool.(Malakho, 
Korshunov et al. 2008)*Primer sequences were obtained by directly contacting the authors of (Sung, Boulos et 
al. 2013). 
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4.6.2.Optimising qPCR 

Before experiments could be conducted primers for the four target genes and three 

reference genes were designed and optimised.  

Primer sequences were identified in published papers using the same target or reference 

genes in qPCR experiments. Where suitable published sequences were not available primers 

were designed using the NCI primer-BLAST tool. 

 

In order to optimise the temperature of the qPCR reaction a temperature gradient spanning 

10  C was used to evaluate each primer. This evaluation was also aided by the inclusion of 

no-reverse transcriptase (NRT) and no-template (NT) controls in the experimental design. As 

a result, an amplification curve and melt curve for each primer at the given range of 

temperatures was obtained.  An example plot is shown for KLF4 (Figure 25). 

 

Initially examining the appearance of this plot demonstrated a smooth amplification curve 

with no obvious anomalous results (Figure 25a). Further analyses identified the line (and 

corresponding temperature) from which the lowest Ct value of 15.4 was obtained. The melt 

curve demonstrated the presence of a single product (Figure 25b). This plot also allowed the 

presence of products in the control wells to be excluded (Figure 25c). In cases where there 

were products within, or close to the intended target primers were redesigned and tested.  

 

From these observations overall impression of the best temperature and the range of 

acceptable temperatures for the primer was made. Once the process had been repeated for 

each primer an overall temperature for the qPCR reaction was calculated (Figure 26). 

 

Suitable temperatures ranges spanned 4-10   C with the lowest acceptable temperature for 

any primer being 50   C and the highest reaching  3   C (Figure 26). The single temperature of 

 0   C was chosen as a suitable universal temperature for future experiments.  

In order to ensure the suitability of the chosen temperature a single plate containing all of 

the primers was run at  0   C. Each primer displayed a single clear melt curve peak which was 

not seen in the NRT control confirming the suitability of this temperature (Figure 27). 
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4.6.3.Primer efficiency 

To ensure the qPCR reaction was adequately optimised the efficiency of primers was 

assessed using both sample and control cDNA. A five point dilution scale of cDNA 

concentrations was generated spanning the range used throughout experiments. Each 

primer was subsequently assessed using this scale. The results were plotted on individual 

graphs where the y axis was the log to base 10 of the dilution factor (Figure 28).  The m 

value (y = mx+c) of these plots was used to calculate the efficiency (E) of the primer 

according to Equation 1. This process was repeated for each primer using both sample and 

control cDNA (Table 17). 

Efficiencies ranged from 94.7% to 99.1% (Table 17) indicating that the qPCR reactions were 

suitably optimised. No significant difference was observed between the control and sample 

cDNA and therefore would not need to be accounted for later on during analysis of qPCR 

data. 
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Figure 25 - Optimisation of qPCR. An example of primer optimisation using KLF4. A : KLF4 amplification plot 

showing the smooth curve. Highlighted is the amplification curve with the lowest Ct value. B:  melt curve for 
KLF4 showing one clear product. Highlighted is the amplification curve with the highest peak. C: Melt curve of 
the NRT control wells. The green line above the plot indicates the threshold for detection. The melt curves do 
not cross this indicating that the KLF4 primer is not amplifying the genomic DNA at a level that is significant.  

A 

B 

C 
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HPRT1 UBC GAPDH MYCN (2) ROBO2 STMN4 KLF4 (4) 

highest  63 65.5 63.3 61.5 60 60 65 

lowest 57 57 55 55 56 50 55 

optimum 61 59 59 57 58 59.4 63 

48 

50 

52 

54 

56 

58 

60 

62 

64 

66 

68 

Primer Temperature Ranges 

  

Figure 26 - Primer Optimisation. A graph showing the range of acceptable temperatures (brown  and 
op mum temperature (blue  for each primer. The green line indicates the temperature of  0   C 
which was used in future experiments.. The table below indicates the actual temperature values 
recorded from temperature gradients.  

 

 

Figure 27 - Amplifica on curve for all 7 primers at  0   C showing smooth reaction and the clear melt 
curve peaks. 
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Figure 28  - GAPDH dilution series. A curve showing the Ct values (Y axis) obtained at different 
dilutions of cDNA (X axis) for the GAPDH primer. A logarithmic scale is used for the X axis values 
allowing a linear relationship to be observed. The equation of the line can be seen on the graph. 

 

E = (10[–1/m]-1)x100 

Equation 1 - equation for calculating the efficiency (E) of primers. The m value (y = mx+c) was taken 
from plots of 5 point dilution series. 

 

Primer Equation m value 1/m Efficiency (%) 

GAPDH y = -3.3442x + 17.847 -3.34 0.299 99.1 

HPRT1 y = -3.4566x + 23.484  -3.46 0.289 94.7 

KLF4 y = -3.4261x + 31.35  -3.43 0.292 95.8 

MYCN y = -3.3925x + 17.858  -3.39 0.295 97.1 

ROBO2 y = -3.3847x + 25.831  -3.39 0.295 97.4 

STMN4 y = -3.3705x + 21.584  -3.37 0.297 98.0 

UBC y = -3.3842x + 18.236  -3.38 0.296 97.5 

Table 17 : Primer efficiency. A table displaying the reaction efficiency (E) of each primer. The equation for 

each primer was derived from graphs of the 5 point dilution series'. The efficiency was calculated according to 
the formula E = (10

[–1/m]
-1)x100 

y = -3.3442x + 17.847 
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Log(DF) 

GAPDH 

Dilution Factor 0.125 0.25 0.5 1 2 

Log10(DF) -1.11 -0.602 -0.301 0 0.301 
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4.7.Retinoic Acid in Cell Culture 

Experiments using retinoic acid were initially conducted in culture with both IMR-32 and 

BE(2)-C cells. Both of these cell lines display MYCN amplification and therefore represent 

high risk disease. IMR-32 was the cell line used in the paper by Sung et al which was the 

basis of our gene selection. BE(2)-C cells are a well characterised cell line with which our lab 

has experience and therefore were also included.  

4.7.1.Morphology 

Cells were cultured with medium containing 10µM RA for 3 days. Cells were observed daily 

and the morphological appearance of the cells was noted. The results were compared with 

control cells cultured with DMSO.  

Morphological changes in both cell lines were observed after 24hrs of retinoic acid 

treatment. Neurite outgrowth (defined as a process whose length equals or exceeds the cell 

body diameter) the appearance of axonal processes continued to increase throughout the 

72 hour period of observation (Figure 29).  

4.7.2qPCR 

After 3 days the RNA was extracted from control and RA treated cells and cDNA was 

subsequently synthesised. qPCR was performed to detect changes in target gene 

expression. Results were normalised using 3 housekeeping genes (GAPDH, HPRT1 and UBC) 

in order to account for differences in RNA quantity and variability of reaction kinetics. 

Expression levels of target genes were calculated relative to controls. Each experiment was 

conducted using 3 technical repeats. Similarly 3 biological repeats were used for both IMR-

32 and BE2C cell lines. 

In each experiment results were initially examined for any obvious anomalous results before 

relative normalised expression was calculated. For each gene the mean of the three 

technical replicates was calculated ( 

Table 18). The difference in the Ct value (ΔCt  for treated and control cells was calculated by 

subtracting the mean Ct for the treated cells from the mean Ct for the control cells for each 

gene ( 
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Table 18). Relative expression was then calculated using 2ΔCt.  In order to normalise 

expression according to the change observed in the reference genes (GAPDH, HPRT1 and 

UBC) the geometric mean of their 2ΔCt values was calculated. The 2ΔCt values of the target 

genes were then divided by this number to give normalised relative quantification (NRQ). 

Where expression was less than 1 (representing a negative change)  the reciprocal was 

calculated to make the values easier to interpret ( 

Table 18). 

In order to plot values graphically a log to base 2 of the unadjusted NRQ values was 

calculated making the positive and negative changes in gene expression symmetrical and 

converting the NRQ value of 1 (1 fold change - no change) to zero. Error bars were added 

showing the standard deviation (SD) (Figure 30). For all experiments this process was carried 

out for each biological replicate (see appendix for individual results of all RA experiments) 

before results were combined (Figure 31) 

 

 

Figure 29 - Changes in cell morphology after three days of RA treatment. A and B are IMR-32 cells, C and D 

are BE(2)-C cells. A and C are images taken of the control cells and B and D are the treatment groups. 
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Morphological changes indicative of differentiation are seen in both cell lines. Neurite outgrowth and axonal 
processed can be seen. E highlights some of these features in IMR-32 cells. The white scale bar is represents 
250µm. The black scale bar is 125µm. 

 

 

 

 

 

  GAPDH HPRT1 UBC MYCN KLF4 ROBO2 STMN4 

Control               

replicate 1 19.0 24.6 19.9 18.8 31.5 25.5 23.3 

replicate 2 18.5 24.1 19.8 18.8 32.2 25.3 23.0 

replicate 3 18.1 23.6 19.6 18.7 32.5 24.8 22.8 

Mean 18.5 24.1 19.7 18.8 32.1 25.2 23.1 

          GAPDH HPRT1 UBC MYCN KLF4 ROBO2 STMN4 

RA               

replicate 1 18.5 24.6 19.5 20.2 33.4 23.9 19.8 

replicate 2 18.7 24.4 19.6 20.1 34.5 24.2 19.7 

replicate 3 18.1 24.1 19.6 18.1 33.1 23.1 19.6 

Mean 18.5 24.3 19.6 19.5 33.7 23.7 19.7 

                

  GAPDH HPRT1 UBC MYCN KLF4 ROBO2 STMN4 

ΔCt 0.0833 -0.260 0.130 -0.673 -1.59 1.48 3.35 

2ΔCt 1.06 0.845 1.09 0.627 0.332 2.78 10.2 

Geomean   0.989 
 

        

                

NRQ       0.634 0.336 2.81 10.3 

Adjusted NRQ       -1.58 -2.98 2.81 10.3 

 

Table 18 - Calculating normalised relative expression using qPCR data. Initially the mean Ct value of 
three technical repeats was calculated for each gene, both in treated and control groups. The ΔCt 
was then generated by calculating the differences between the control and treated Ct mean for each 
gene. Relative quantification was calculated using the formula 2ΔCt before normalisation using the 
geometric mean of the housekeeping genes (GAPDH, HPRT1, UBC) 2ΔCt values. The reciprocal of any 
negative changes was calculated to give the Adjusted NRQ. GEOMEAN; geometric mean, NRQ, 
normalised relative quantification.   
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  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -2.98 -1.58 2.82 10.3 

SD 0.175 0.517 0.542 2.92 

Regulation No change No change No change Up regulated 
 

Figure 30 - Results of a single qPCR experiment. A; a graph displaying the results of a single qPCR experiment 

in IMR-32 cells following 3 days of RA treatment. The error bars display the standard deviation (SD). B: a table 
providing a summary of the values obtained from the experiment.  The adjusted normalised quantification (Adj 
NRQ) describes the actual change in the gene expression relative to the control. Regulation describes the 
overall statistically significant change in gene regulation. The error bars of the control are displayed to the left. 
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  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -5.53 -1.28 3.41 6.52 

SD 0.152 0.446 1.512 2.42 

Regulation Down regulated No change No change Up regulated 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -4.89 -1.17 3.37 14.6 

SD 0.152 0.410 2.52 3.93 

Regulation Down regulated No change No Change Up Regulated 
 

Figure 31 - Graphs showing the level of target gene expression in IMR-32 (A) and BE2C (C) cells after 
3 days of RA treatment. Graphs display the results of three biological repeats. Results are displayed 
relative to control. Error bars were calculated using standard deviation (SD). Tables give a summary 
of the QPCR data for the 4 target genes for IMR-32 (B) and BE2C (D). 
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In both BE2C and IMR-32 cell lines the expression of KLF4 was reduced following 3 days of 

retinoic acid treatment (-5.53 fold change in IMR-32, -4.89 fold change in BE2C). In both 

cases down regulation of KLF4 was statistically significant (P-Values; IMR-32 <0.001, BE2C  

<0.05)(Figure 31). MYCN expression, which was also expected to fall, showed no overall 

significant change. Within the biological replicates for each cell line MYCN appeared to fall 

slightly or remain at a similar level as the control (Figure 31).  

ROBO2 expression was 3.41 fold and 3.37 fold higher in the retinoic acid treated cells in 

IMR-32 and BE2C cells respectively. However due to error present in both the sample and 

the control (example Figure 30) this result was not found to be statistically significant after 

analysis. Within the biological repeats of each cell line one the three experiments carried 

out showed statically significant up regulation of the ROBO2 gene. STMN4 consistently 

showed the greatest level of change in both cell lines. In IMR-32 cells the change in STMN4 

expression was 6.70 fold higher than in the control. Overall analysis determined that this 

gene was significantly up regulated (P-Value <0.01). This result was mirrored in the BE2C 

cells with significant up regulation observed (P-Value <0.0001) and an average fold change 

of 14.60 after RA treatment (Figure 31). 

 

 

4.8.RA in the chick embryo model 

After completing RA experiments in cell culture the same cell lines were used to generate 

tumours in the chick embryo. Where tumours were evident at E11 RA was administered 

topically to the surface of the CAM every 24hrs at the dose of 30mg/kg. Control tumours 

were treated with DMSO at the same final concentration. At E14 tumours were dissected 

and stored in RNAlater until RNA extraction and cDNA synthesis. qPCR was performed to 

detect and change in expression of the target genes in this model.  

The application of retinoic acid to the chick embryos did not significantly alter the survival 

rate and on inspection no gross defects were observed in the embryos. Normalized relative 
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expression from 3 biological replicates showed a decrease KLF4 in both IMR-32 and BE2C (-

4.22 and -3.44 fold respectively) (Figure 32). This down regulation was statistically 

significant in the IMR-32 tumours (p value <0.05) but not in the BE(2)-C cell line. MYCN 

showed a modest decrease in expression (BE(2)-C -2.17, IMR-32 -2.93 fold change) however 

similar to the results observed in culture these results did not reach statistical significance 

and therefore no overall change could be determined. In the BE(2)C cells both ROBO2 and 

STMN4 were both significantly unregulated in response to RA treatment (ROBO2 5.91, 

STMN4 5.02 fold increase, p values <0.05). However in IMR-32 cells ROBO2 showed a 

modest (2.09 fold change) increase which was not significant enough to distinguish up 

regulation of this gene. Within the biologic repeats up regulation of ROBO2 did reach 

statistical significance in one of the three experiments. STMN4 showed an overall 4.40 fold 

increase in expression (p value <0.05). These data are summarised in Figure 32. 
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  KLF4  MYCN ROBO2 STMN4 

Adj NRQ -4.22 -2.93 2.09 4.40 

SD 0.107 0.0828 0.781 2.27 

Regulation Down regulated No change No change Up regulated 

 

 

 

  KLF4  MYCN ROBO2 STMN4 

Adj NRQ -3.44 -2.17 5.91 5.02 

SD 0.373 0.546 2.09 1.46 

Regulation No change No change Up regulated Up regulated 
 

Figure 32  - Graphs showing the level of target gene expression in IMR-32 (A) and BE2C (C) tumours after 3 

days of RA treatment. Graphs display the results of three biological repeats. Results are displayed relative to 
control. Error bars were calculated using standard deviation (SD). Tables give a summary of the QPCR data for 
the 4 target genes for IMR-32 (B) and BE2C (D). 
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4.9.Further Investigation of RA 

Due to the limited significance of the changes observed in the expression of some target 

genes further experimentation with RA was conducted in cell culture. We hypothesised that 

increasing the length of time the cells were cultured with RA would increase the level of 

differentiation and therefore changes observed in the target genes. 

The same procedure was implemented as described previously, however in this instance cell 

culture experiments were extended to last 6 days. Cell morphology was observed daily over 

the 6 day period before RNA extraction, cDNA synthesised and qPCR performed. 

A similar pattern of morphological change was observed in both of the neuroblastoma cell 

lines however these changes became more pronounced over the 6 day period. A much more 

dramatic effect was seen in the IMR-32 cells where a higher number of longer processes 

could be seen (Figure 33). 

Following cell culture with RA for 6 days significant down regulation of KLF4 was observed 

(IMR-32 p-value <0.01, BE(2)-C p-value <0.05). A 5.88 fold decrease was seen in the IMR-32 

to cells and an 8.15 fold decrease in the BE(2)-C. Similarly a decrease in MYCN expression 

was also observed (-4.63 and -4.22 in the IMR-32 and BE(2)-C cells respectively). After 

analysis the down regulation of MYCN was statistically significant (p values <0.01). ROBO2 

and STMN4 were up regulated in both of the cell lines with greater change seen in the IMR-

32 cell line with 6.41 and 9.46 fold increases in these two genes respectively compared to a 

5.06 and 7.64 fold change in the BE(2)-C. Up regulation of the two genes was statistically 

significant in each instance (ROBO2 p-value <0.05, STMN4 p-values <0.01) (Figure 34). 
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Figure 33 - Appearance of cells after 6 days of RA treatment. IMR-32 are on the top row, BE(2)-C 
are on the bottom row. Images A and C are control cells. B and D are cells treated with 10µM RA. 
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  KLF4  MYCN ROBO2 STMN4 

Adj NRQ -5.88 -4.63 6.41 9.46 

SD 0.074 0.115 2.90 3.39 

Regulation Down regulated Down Regulated Up regulated Up regulated 

 

 

  KLF4  MYCN ROBO2 STMN4 

Adj NRQ -8.15 -4.22 5.06 7.64 

SD 0.179 0.116 2.47 3.29 

Regulation Down regulated Down Regulated Up regulated Up regulated 
 

Figure 34 - Graphs showing the level of target gene expression in IMR-32 (A) and BE2C (C) cells after 
6 days of RA treatment. Graphs display the results of three biological repeats. Results are displayed 
relative to control. Error bars were calculated using standard deviation (SD). Tables give a summary 
of the QPCR data for the 4 target genes for IMR-32 (B) and BE2C (D). 
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4.10.Future directions 

Following experimentation with RA, investigation into the effects of another compound, 

MLN8237, was initiated.  

Aurora kinases are key regulators of cell cycle progression and over expression of Aurora 

kinase A and B is seen in a wide variety of human cancers. Several small molecule inhibitors 

of Aurora kinases have entered clinical trials. MLN8237 is a second generation Aurora kinase 

A inhibitor. Aurora kinase A has been shown to stabilise the MYCN protean by direct 

physical interaction with MYCN and the E3 ubiquitin ligase FBXW7 (Otto, Horn et al. 2009). 

The role of the MYCN transcription factor in regulating many genes in neuroblastoma cells, 

and its consequent role as a key prognostic factor for this malignancy, makes it an important 

therapeutic target.  Furthermore, if as we and others have hypothesised, down regulation of 

the MYCN gene is the initiating factor in the differentiation of neuroblastoma cells, 

destabilisation of the N-Myc protein would similarly be expected to result in differentiation 

of these cells.  

4.10.1.Preliminary work with MLN8237 

In order to investigate the effects of MLN8237 IMR-32 and BE(2)-C cells were cultured with 

1µM, 4µM and 10µM concentrations of the compound for 3 days. Cells were examined daily 

for changes in cell morphology and growth.   

After 3 days the cells at the10µM concentration displayed evidence of toxicity and cell 

death. In the 1 µM medium no morphological changes were apparent. At 4µM some minor 

evidence of differentiation  was present in cells in the form of small spike like processes 

(Figure 35). However due to the limited response observed we decided to extend the length 

culture up to 6 days. After 6 days a more pronounced effect on cellular morphology was 

seen (Figure 35).  

Cell proliferation appeared to be reduced in the treated cells relative to control. We 

therefore performed Ki67 staining on these cells to quantify this effect. Cell counts were 

performed comparing the number of Ki67 stained cells to the number of DAPI stained cells 

in the treated and control cells (Figure 36). Overall a 14% decrease was observed in the level 

of Ki67 staining in the BE(2)-C cell line and a 20% decrease in IMR-32 cell line. 
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In order to determine if MLN8237 caused changes in gene expression associated with 

differentiation, cells cultured with the compound had their RNA extracted and cDNA 

synthesised. qPCR was performed using the same target and housekeeping genes as 

previous experiments. 

Similar to the low degree of change in cellular morphology which was observed after 3 days 

of MLN8237 treatment, changes in the expression of target genes were also limited. In both 

cell lines the changes in gene expression were not statistically significant. STMN4 showed 

the largest change of any gene with a 2.51 fold increase observed seen in the IMR-32 cell 

line, however as previously stated this change was not statistically significant and no overall 

change could be determined (Figure 37). 

 

 

 

 

 

 

 

 

G 

Figure 35 - Morphological changes after 
treatment with MLN8237. Top row are IMR-
32 cells, bottom row are BE(2)-C. B and E 
represent cells after 3 days of treatments with 
MLN8237. C and E represent 6 days. A and D 
are control cells (DMSO) after 7 days. Scale 
bar represents 250µm. G: Image highlighting 
the presence of small processes protruding 
from neuroblastoma cells (black arrows) after 
3 days of MLN8237 treatment. Scale bar 
represents 250µm. 
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Figure 36 - Changes in proliferation after MLN8237 treatment. Ki67 staining in BE(2)-C (A-D) and IMR-32 (E-F) 

cells treated with MLN8237 for 3 days.  A, B, E and F are control cells treated with DMSO alone. A reduction in 
the amount of Ki67 staining was observed in both cell lines. I: graph representing the percentage of ki67 
stained cells in both IMR-32 and BE(2)-C cell lines comparing untreated and treated cells. Error bars show the 
standard deviation. 
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  KLF4  MYCN ROBO2 STMN4 

Adj NRQ 1.27 -1.37 1.61 2.51 

SD 1.14 0.181 1.46 0.854 

Regulation No change No change No change No change 

 

 

 

 

 

 

Figure 37 - Graphs showing the level of target gene expression in IMR-32 (A) and BE2C (C) cells after 3 days of 

treatment with MLN8237. Graphs display the results of three biological repeats. Results are displayed relative 
to control. Error bars were calculated using standard deviation (SD). Tables give a summary of the QPCR data 
for the 4 target genes for IMR-32 (B) and BE2C (D). 

 

  KLF4  MYCN ROBO2 STMN4 

Adj NRQ -1.25 1.18 1.39 1.89 

SD 0.202 0.241 0.391 0.504 

Regulation No change No change No change No change 
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5.Discussion 

During this project we aimed to establish the ability of the chick embryo to act as a 

therapeutic model system for neuroblastoma research. We endeavoured to build on the 

work of others using the CAM, to demonstrate the ability of neuroblastoma cells to 

successfully form tumours within the model. We hoped to show that we could deliver drugs 

effectively to tumour cells in this system, and then detect the effects exerted by these drugs 

in a quantifiable way. Ultimately we hoped to validate the model by confirming the efficacy 

of existing standard therapy on neuroblastoma tumours within chick embryo model. 

5.1.1.Growing tumours on the chick CAM 

We used an in ovo shell-window technique throughout chick embryo experiments which has 

been used by others for similar means (Ribatti, Vacca et al. 1996, Wang, Wang et al. 2009). 

This method allows the CAM to be visualised and manipulated throughout embryonic 

development. Although ex-ovo techniques allow continual monitoring of the embryo and 

access to a greater area of the CAM, they can also greatly compromise survival (Lokman, 

Elder et al. 2012) and were deemed unnecessary. We were able to establish the presence of 

a tumour just 4 days after cells were placed on to the CAM, as well as being able to monitor 

tumours throughout treatments. The ability to perform continuous visual monitoring in this 

manner confers significant advantage over murine models where tumours must be 

palpable, or complex imaging modalities must be employed to detect and monitor tumour 

growth (Young, Ileva et al. 2009, Puaux, Ong et al. 2011).  

Various methods, such as collagen inplants (Deryugina and Quigley 2008), plastic rings 

(Balke, Neumann et al. 2010), and matrigel grafts (Klingenberg 2014) have been used by 

others to graft cells onto the chick CAM. Here we simply applied the cells directly on to 

CAMs surface demonstrating that, in the case of NB cells, this added manipulation and 

complexity may not be necessary. We applied cells to the CAM at E7, allowing 7 days for 

tumour growth. Others using this model generally applied cells or tumour explants to the 

CAM at a later stage, around E9 or E10. This is largely due to the high degree of new vessel 

formation occurring prior to this stage, which may have confounded the results of those 

conducting research into angiogenesis itself. However some found that this period did 

provide them with greater embryo survival and tumour formation (Wang, Wang et al. 2009, 
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Yang 2014).  Our work demonstrates that good levels of tumour formation can achieved at 

this earlier stage. It allows completion of embryo studies can be carried out prior to E14 

which under current UK regulation is the deadline for keeping embryos without appropriate 

licensing. This may make the model more accessible to a wider range of laboratories, 

however greater rates of tumour formation may be observed at a later date. In the context 

of the embryo's 21 day developmental time frame, earlier tumour formation provides the 

potential for a longer window of compound administration and the consequent effects to be 

realised in tumours within the model. In either case the short time frame of the experiments 

carried out in this model allows results to be obtained at a much quicker rate than other 

more commonly used murine models. 

Implantation of several neuroblastoma cell lines on to the surface of the chick 

chorioallantoic membrane allowed us observe the ability of the cells to form tumours in this 

environment. We observed variable rates of successful of tumour formation. The SK-N-AS 

cell line consistently formed tumours in the model, however the Kelly and BE(2)-C cells had 

much lower yields. These results were in keeping with other studies that also observed 

variable levels of cell line specific success when investigating the propensity of malignant 

cell lines to form tumours in the chick embryo model (Balke, Neumann et al. 2010).  

Interestingly, of the neuroblastoma cell lines used in experiments, the MYCN amplified Kelly 

and BE(2)-C cells showed lowest rates of tumour formation. Clinically the presence of MYCN 

amplification denotes high risk disease (Westermark, Wilhelm et al. 2011). Thus these are 

the cells that are known to be more aggressive and therefore would be expected to form 

tumours more readily. Moreover in representing high risk disease these are the cells that 

new therapies are required to treat, thus not being able to include them in the model would 

represent a serious disadvantage.  

Mixing the low yield Kelly or BE(2)-C cells with the SKNAS cells prior to implantation of the 

cells on to the CAM increased their rate of tumour formation. Furthermore, the use of 

different florescent labels allowed us to observe that both the SK-N-AS and the BE(2)-C/Kelly 

cells were present beneath the surface of the CAM in the resultant tumours. Although this 

methodology was unsuitable for future experimental analysis, it did demonstrate that 
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beneath the surface of the CAM the low yield cell lines were in fact able to survive and grow 

as tumours within model. 

Where tumours did not form in the model, cells were seen on the surface of the CAM rather 

than beneath it as mass. This observation, along with the success of the mixed cell lines, led 

us to hypothesise that the lack of tumour formation displayed by these cells may represent 

their failure to invade the superficial epithelial layer of the CAM. Degradation and 

penetration of basement membranes and their underlying stroma are hallmarks of tumour 

invasion and metastasis (Stetler-Stevenson, Aznavoorian et al. 1993).  Matrix 

metalloproteases (MMPs) are a large family of Zn2 +-dependent neutral endopeptidases. 

MMPs show proteolytic activity for many components of the extra-cellular membrane and 

are among the proteases believed to be involved in tumour invasion and metastases.  

The levels of MMPs and their regulators have been studied in a several neuroblastoma cell 

lines (Sugiura, Shimada et al. 1998, Bjornland, Bratland et al. 2001, Noujaim, van Golen et al. 

2002, Waheed Roomi, Kalinovsky et al. 2013). A paper by Sugiura et al identified that a high 

levels of certain MMPs are found to be secreted by a number of NB cell lines (LA-N-I. LA-N-2, 

LA-N-5, LA-N-6, IMR-32, SK-N-BE(2) SK-N-SH and HT1080). However it was also found that 

these enzymes are almost exclusively found in an inactive proform (Sugiura, Shimada et al. 

1998). Interestingly in another study, Bjornland et al reported that the SKNAS cell line had 

the highest expression of MMPs of all the cell lines in the study (SK-N-AS, IMR-32, SK-N-DZ, 

SK-N-FI) (Bjornland, Bratland et al. 2001). In line with this finding, this group also showed 

that, of the cell lines studied, SKNAS was the only cell line with mRNA detected for the 

biological activator of the MMP. These results were further supported by a display of 

increased motility and invasiveness of the SKNAS cell line in in vivo experiments. Others 

have reported correlation between the results of in vitro motility and invasiveness studies, 

and tumour formation on the chick embryo CAM (Lokman, Elder et al. 2012). These findings 

may therefore explain why the SKNAS cell line was consistently the most successful in 

forming tumours in the chick embryo.  

The above findings may also explain why the addition of trypsin, which is also a proteolytic 

enzyme, to the low yield NB cell lines significantly aided them in tumour formation. In 

general tumours forming in the chick embryo model were observed to be highly vascular. 
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After the addition of trypsin the MYCN amplified BE(2)-C cell line consistently formed very 

large, highly vascularised tumours. This suggests that once aided in invading the surface of 

the CAM the aggressive phenotype of these cells was more accurately reflected. The BE(2)-C 

tumours were often haemorrhagic in nature. In a similar fashion neuroblastoma commonly 

presents in patients as haemorrhagic tumours or tumours surrounded by haematoma (EE 

1997, EE 2007). Other studies utilising the chick embryo as a xenograft model have also 

demonstrated that human malignancies implanted on the CAM reproduce many 

characteristics of primary disease (Hagedorn, Javerzat et al. 2005, Wang, Wang et al. 2009, 

Sys, Van Bockstal et al. 2012, Klingenberg 2014). Our data may also suggest that NB cell lines 

used in the model faithfully reproduce characteristics of the primary disease.  

These results demonstrate that human neuroblastoma cells, like many other malignancies 

(Khanna, Jaboin et al. 2002, Hagedorn, Javerzat et al. 2005, Subauste, Kupriyanova et al. 

2009, Wang, Wang et al. 2009, Balke, Neumann et al. 2010, Sys, Lapeire et al. 2013, Yang 

2014), are able form tumours in this model. We have also shown that with the addition of 

trypsin the success of neuroblastoma cells in forming tumours can be greatly enhanced. This 

finding may have significance, not only in establishing the chick embryo as a suitable in vivo 

model system for neuroblastoma, but may aid research into other malignancies being used 

in the model. 

5.1.2.Drug Delivery 

EdU administered topically to the surface of the CAM could be detected throughout 

underlying tumour as well as being observed throughout the chick embryo's liver. There was 

no obvious gradient observed (as might be seen with simple diffusion) and no areas where 

EdU was absent. We inferred from these observations that substances applied topically had 

the capacity to reach the blood stream of the chick embryo. Although not accounting for 

differences in the physicochemical properties of drugs such as in molecular weight, shape, 

charge and aqueous solubility which determine the rate of diffusion through tissue, this 

result allowed us to feel confident that compounds administered in this way could reach 

cells throughout the tumours growing in the model. As a practical and simplistic method, 

topical administration has been the most widely utilised mode of administering compounds 

to the CAM to date (Hagedorn, Javerzat et al. 2005, Vargas, Zeisser-Labouebe et al. 2007). 

However up until now, compounds administered in this model have been designed to affect 
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angiogenesis which may therefore exhibit a much more localised effect on the CAM 

vasculature. Here we expanded the context in which topical administration can be deemed 

appropriate.  

Upon analysis of the tumours dissected after EdU administration there were no areas where 

EdU staining was obviously absent, however 10-30% of cells were not EdU labelled. Within 

the 3D tumour environment the presence of pockets of poorly perfused tumour cells which 

are consequently hypoxic, poorly nourished, express a more aggressive phenotype and also 

proliferate at a slower rate, has been widely reported (Minchinton and Tannock 2006). The 

presence of non-EdU labelled cells upon analysis may therefore reflect the more realistic 3D 

in vivo tumour cell environment which is not seen in cell culture experiments.  

5.1.3.Retinoic Acid.  

After 3 days of culture with RA both IMR-32 and BE(2)-C cells displayed morphological 

changes such as neurite formation. Such changes have been widely reported within the 

literature (Sidell 1982, Sidell, Altman et al. 1983, Wu, Fang et al. 1998) and are characteristic 

of differentiation. Changes in the level of target gene expression after exposure to RA were 

detected using qPCR. Against our expectations, the level of MYCN expression remained 

largely unchanged after 3 days of RA treatment in culture. However, after 6 days MYCN 

expression in both IMR-32 and BE(2)-C cells in culture fell by around 4 times relative to that 

of the control.   

MYCN is a transcription factor known to regulate expression of many target genes 

(Gherardi, Valli et al. 2013). It is thought to be directly affected by RA and has been 

implicated as a regulator of differentiation in neuroblastoma (Wada, Seeger et al. 1992, 

Westermark, Wilhelm et al. 2011). Therefore to observe morphological characteristics of 

differentiation prior to the down regulation of this gene is somewhat unexpected. One 

explanation for these observations may come from a paper by Guglielmi et al in which the 

authors suggest that the presence of MYCN is necessary for differentiation to occur 

(Guglielmi, Cinnella et al. 2014). In contrast to several previous studies (Amatruda, Sidell et 

al. 1985, Thiele, Reynolds et al. 1985) , the authors describe a transient rise in the 

expression of MYCN in the first few days of RA induced differentiation before levels later 

decrease. They propose that MYCN, as a transcription factor, is necessary at the onset of 
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neuronal differentiation to establish the expression of a set of genes essential for 

subsequent phases. MYCN is known to play a role in normal development and has been 

implicated in the control of early differentiation steps in some tissues, including the nervous 

system (Guglielmi, Cinnella et al. 2014, !!! INVALID CITATION !!!). Consequently there may 

be some biological foundation for these findings. Our observations did not support a rise in 

the level of MYCN expression, however as we observed expression at 3 and 6 days alone it is 

possible that a rise in MYCN could have occurred prior day 3 and levels may have begun to 

fall again at this stage leading limited changes to be observed overall. As different cell lines 

were used in these works it may also be possible that different levels of MYCN expression 

are observed during differentiation in these cells. Clearly further work is needed to clarify 

the pattern of MYCN expression during this period before any such conclusions can be 

made. 

Another explanation for these findings may be that MYCN is not initiating differentiation in 

these neuroblastoma cells. Transcriptional profiling has demonstrated that retinoic acid 

influences the expression of a large number of transcription factors (Korecka, van Kesteren 

et al. 2013). Many of these genes are also known to affect differentiation and therefore the 

changes observed in this study may represent influences exerted by other transcription 

factors (Korecka, van Kesteren et al. 2013). Kaplan et al reported induction of the TrkB 

neurotrophin receptor by RA. They suggested that this induction mediated biologic 

responsiveness to the TrkB ligands BDNF and NT-3 and the differentiation of human NB cells 

(Kaplan, Matsumoto et al. 1993). Unlike some NB cell lines both BE(2)-C and IMR-32 cells do 

express full length TrkB and therefore it is possible that differentiation is being mediated by 

this pathway (Scala, Wosikowski et al. 1996, Chu, Cheung et al. 2003) although TrkB 

expression is typically associated with a more aggressive phenotype (Scala, Wosikowski et 

al. 1996) (Brodeur, Minturn et al. 2009). Other studies have identified changes in key 

regulators of normal neural crest differentiation in response of RA treatment. Prompt down 

regulation of hASH-1, an early element of the differentiation pathway has been reported 

following RA treatment in SH-SY5Y cells (Lopez-Carballo, Moreno et al. 2002).  

The key significance of the MYCN gene in neuroblastoma means that understanding the 

relationship between its expression and differentiation is extremely important in this field. 

Therefore these findings, in potentially challenging previously accepted patterns of MYCN 
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expression, could be highly significant. Differentiation therapy itself is integral to the 

treatment of patients with high risk neuroblastoma, and therefore understanding the 

pathways involved in mediating its effects may provide means of aiding problems such as 

resistance to therapy. Further work is needed to fully understand these pathways. 

Following retinoic acid treatment, expression levels of KLF4 fell consistently in culture. As 

might be expected, the fold decrease was greater after 6 days of RA treatment than that at 

3. This gene was selected for inclusion in this research based on the work of Sung et al who 

observed a ~10 fold decrease in the expression of the gene in IMR-32 cells following 

exposure to RA (Sung, Boulos et al. 2013). Our results further support this observation and 

extend it to show similar changes in the BE(2)-C cell line. 

 KLF4 has a key role in the regulation of many aspects of cell biology and has been 

implicated in the expression of stem-like properties. Using retroviral transduction it has 

been demonstrated that, in conjunction with other genes, KLF4 is capable of inducing 

mouse embryonic fibroblasts to be reprogrammed to a pluripotent state similar to that 

observed in ES cells (Hima Vangapandu 2009). Others have found that KLF4 is in turn 

regulated by N-Myc, in both tumours and stem cells. This suggests that N-Myc may enforce 

expression of stem-like characteristics and contribute to the  undifferentiated phenotype of 

neuroblastoma (Cotterman and Knoepfler 2009). In keeping with this theory our results 

display a marked decrease in KLF4 expression in conjunction with a visibly more 

differentiated cell phenotype, however the relationship between these observations and 

MYCN expression is less clear. 

Expression of ROBO2 was increased throughout all of the RA experiments, however changes 

only reached statistical significance after 6 days in cell culture. Again our results supported 

those of the Sung et al and extended them to demonstrate similar changes in the BE(2)-C 

cell line.  Extensive research has been conducted on the role of Robo genes in axon guidance 

(Brose, Bland et al. 1999, Guthrie 2004, Long, Sabatier et al. 2004, Devine and Key 2008). 

Specifically, Robo2 is reported to be involved in the regulation of actin cytoskeleton and 

axonogenesis pathways (Sung, Boulos et al. 2013). Increased expression of this gene is in 

keeping with the observed morphological changes of cells under the influence of RA.  
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In a similar fashion STMN4 was up regulated in all of the cell culture experiments involving 

RA. Again this result was very similar to that published by Sung et al. Less is known about 

the role of STMN4, however it has been implicated in the destabilisation of microtubules. 

This is essential in the regulation of dynamic microtubules which are known to be aid 

growth cone advance and responses to guidance cues (Grenningloh, Soehrman et al. 2004).  

Changes observed in the expression of KLF4, ROBO2 and STMN4 were largely reproducible 

between experiments. The plausible biological rationale behind these changes, and their 

correlation with the changes in morphological appearance of the cells over time, supports 

their significance.  Furthermore as these changes have been recognised in other published 

works this indicates that they may provide good markers of differentiation in 

neuroblastoma cells.  

5.1.4.Retinoic acid in the chick embryo 

In order to demonstrate the suitability of the chick embryo xenograft model for therapeutic 

research, the model was assessed using RA.  

The dose of 30mg/kg was used throughout chick embryo experiments conducted with RA. 

This figure was deduced from papers using the drug in xenograft mouse models where the 

maximum tolerated dose was approximately 60mg/kg and 50-60% of this value was 

observed in order to observe therapeutic effects (Shalinsky, Bischoff et al. 1995).  Dose 

calculations used the weight of an average egg less the weight of its shell. As tumours in the 

model exist outside of the embryo itself it seemed logical to include the entire extra-

embryonic weight in drug dose calculations. Although extrapolating drug dosing from 

different species is unlikely to provide optimal therapeutic levels this method does provide a 

bench mark for future experiments. Where new compounds are tested in panels of mouse 

xenograft models the maximum tolerated dose is administered in order to first establish the 

presence of a drug effect, before a physiologically acceptable range of doses is later 

determined (NCI). The high throughput nature of the chick embryo model would make it 

amenable to this form of therapeutic research and therefore this approach could also be 

adapted for future research. 

As with cell culture experiments, qPCR was used to detect changes in gene expression 

signifying differentiation of cells. Retinoic acid administered to tumours in the chick embryo 
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model showed a very similar pattern of results to those of cell culture. The general pattern 

of positive and negative fold change was exactly the same as for culture experiments. Sight 

differences in the magnitude of these changes, variability and consequent statistical 

significance between genes were noted which may reflect the differences in the cells in vitro 

and in vivo environment. 

The consistency of these results along with their similarity to those seen in cell culture 

suggests that RA was being delivered effectively to a high proportion of cells. As might be 

expected a small increase in the variability of results was observed in the in vivo studies 

perhaps reflecting the more variable drug exposure cells would be expected to receive in 

this environment. However the changes in gene expression that were observed do suggest 

that NB cells within the model were differentiating in response to retinoic acid exposure. 

Furthermore analysis of primary neuroblastoma samples has shown previously that higher 

levels of Robo2 and STMN4 are commonly identified in lower stage (typically more 

differentiated) disease and are associated with better patient survival (Sung, Boulos et al. 

2013) adding to the robustness of this finding. Others have attempted to use to analyse 

gene expression changes in cancer cells implanted on the chick embryo CAM (Hagedorn, 

Javerzat et al. 2005). During tumour formation on the CAM Hagedorn et al identified up 

regulation of several genes known to be involved in human glioma tumour progression 

(Hagedorn, Javerzat et al. 2005). Here we have identified the inverse,  that changes in genes 

associated with cell differentiation, can also be observed. 

Many others have suggested the suitability of the chick embryo model for therapeutic 

research  however this is the first time, outside the field of angiogenesis, that the efficacy of 

a known compound has been reproduced in the chick embryo model. These results are 

highly promising in confirming our hypothesis that the chick embryo can provide an 

effective therapeutic model system. 

5.1.5.MLN8237 

MLN8237 is a small molecule inhibitor of Aurora Kinase A (AURKA) that is currently in early 

phase clinical testing. AURKA plays a pivotal role in centrosome maturation and spindle 

formation during mitosis but has also been shown to aid the stabilisation of the N-Myc 

protein making MLN8237 a potentially powerful tool in the treatment of NB (Brockmann, 
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Poon et al. 2013). In order to expand the number of compounds explored in the chick 

embryo model, as well as to further investigate the role of MYCN in differentiation, we 

began experimentation with MLN8237.  

In order to optimise and characterise the effects of this compound, experiments were 

conducted in vitro with both BE(2)-C and IMR-32 cell lines using several drug concentrations. 

At 4µM MLN8237 showed limited toxicity and some morphological changes to cells were 

visible. Small processes were visible extending from cells, suggesting some influence of the 

drug on differentiation. However these changes were far less pronounced than those 

observed with RA, even after 6 days of treatment.  

Other works investigating MLN8237 have described evidence of differentiation in vitro. 

However rather than discussing the effects on cell morphology, the authors state that levels 

of neurofilament protein L mRNA (NF-L) rose demonstrating differentiation (Brockmann, 

Poon et al. 2013). Previous studies have found variable levels of NF-L mRNA, but not 

protein, are expressed in both differentiation induced and control cells. Furthermore NF-L 

mRNA, and some protein, has been seen to be expressed in both RA-treated and control 

cells within 6 h of plating, but down-regulated to baseline level thereafter in both 

populations (Shea, Sihag et al. 1988, Chiu, Feng et al. 1995). Others have reported the 

absence of this protein altogether in both cell populations (Andres, Keyser et al. 

2013).Therefore the reliability of this marker as an indicator of differentiation is somewhat 

questionable. Although evidence of differentiation appears less prominent in vitro,  in vivo 

studies with MLN8237 have been conducted in the Th-MYCN mouse model of NB where 

partial maturation of tumours was observed. This could suggest other factors such as the 

tumour-host interactions impact on the response of cells to this compound. 

In support of the lack of morphological changes we observed in cell culture, qPCR results 

failed to show any significant changes in target gene expression. The largest change was 

observed in STMN4 expression which was 2.51 and 1.89 fold higher in the treated IMR-32 

and BE(2)-C cells respectively. However, as stated these changes did not reach statistical 

significance.  

The limited nature of these changes when compared to those observed after 6 days of RA 

treatment may be explained somewhat by the gene selection process. We chose genes 
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based on data published by Sung et al showing significant changes in expression following 

RA administration (Sung, Boulos et al. 2013). Further experiments involving the siRNA 

mediated knock down of MYCN and chromosome 1p transfer as means of causing 

differentiation of NB cells were also conducted by these authors. Each of these methods 

caused similar patterns of target gene expression, (as seen by up regulation, or down 

regulation of genes) however the magnitude of these changes was highly variable. It is 

therefore not surprising that a degree of variation between the two treatments used in our 

research should be observed. Having selected the genes observed to respond to RA with the 

greatest fold change, it is also not surprising that these genes show greater change following 

its administration here.  

Our results could be interpreted to suggest that these genes are effective indicators of RA 

mediated differentiation alone. However, as previously stated although Sung et al saw 

differing magnitudes of change, they still demonstrated statistically significant differences in 

expression and observed morphological changes in these cells during each experimental 

condition. The lack of morphological changes observed after MLN8237 administration, 

coupled with the lack of statistically significant change observed in gene expression suggests 

that the differentiation process had not truly begun here. Despite being a negative result 

these findings are useful in further supporting the reliability of our target gene selection in 

detecting differentiation in NB cells. The lack of differentiation observed here could support 

the theory that MYCN levels must rise to initiate the differentiation programme or that 

other targets of RA are initiating in this process.  

MLN8237 did produce a noticeable reduction in cell proliferation which was quantified using 

Ki67 staining. Overall a 14% decrease in Ki67 staining in the BE(2)-C cells and a 20% decrease 

in the IMR-32 cells was observed compared to controls. This result was in keeping with 

published results on the effects of MLN8237 where similar effects were observed over this 

timescale, although a much greater effect was reported in this paper after 6 days 

(Brockmann, Poon et al. 2013). Others have also reported that down regulation of MYCN 

can reduce proliferation (Shang, Burlingame et al. 2009). It is hypothesised that this effect 

may be mediated by MYCN induced down regulation of cell-cycle 

inhibitor CDKN1A (encoding p21Cip1)(Brockmann, Poon et al. 2013).  
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Despite consistent results in relation to this compound effects on neuroblastoma 

proliferation further work is required to optimise the effects of this molecule before it is 

utilised in the chick model. 

5.2.Limitation of the CAM model 

All in vivo models as approximations of reality have inherent strengths and limitations. An 

appreciation of these limitations is important in interpreting results obtained through their 

use and aids decisions about which model is appropriate in which context. As a xenograft 

model the chick embryo involves the addition of human neuroblastoma cells into the chick 

embryo environment. This non-human environment may have affect on aspects of cell 

behaviour and interactions between tumour cells and the local microenvironment may not 

be faithfully recreated. The natural immunodeficiency of the chick embryo, though aiding 

xenografting, prevents the investigation of compounds acting in an immune mediated 

fashion and does not recreate the interaction between host immune system and the 

tumour. 

The short 21 day period of chick development may also confer limitations. Firstly this limits 

the length of time compounds can be administered in the model. We have demonstrated 

that a 3 day window can be used to test compounds whilst others have grown tumours in 

the model until day 18 theoretically allowing 7 days of tumour treatment. Whilst this time 

frame may be appropriate for the more rapid screening of compounds, this makes this 

model unsuitable for the longer term study of therapeutic effect. Secondly the rapidly 

changing nature of the embryonic environment may affect factors such as diffusion across 

the CAM as well as the distribution of fluid within the egg (Stephanie Li Mei Tay 2011). 

These changes may have implications for the rate of diffusion and distribution of 

therapeutic compounds within the model.  

The use of cell lines in this model, which although well characterised, are subject to genetic 

drift and may not represent primary disease accurately. They may also fail to reproduce the 

heterogeneity of genetic changes characteristic of primary tumours and therefore 

exaggerate the therapeutic effect of targeted therapies.  
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5.3.Future directions 

The majority of work carried out in these experiments used the IMR-32 and BE(2)-C cell 

lines. It would be useful to extend the number and variety of cell lines used in experiments 

to represent a wider spectrum of disease. Others have demonstrated the successful 

xenografting of tissue derived from primary tumour samples on the chick embryo CAM (Sys, 

Van Bockstal et al. 2012, Fergelot, Bernhard et al. 2013, Sys, Lapeire et al. 2013). This opens 

up the exciting possibility of including both neuroblastoma cell lines and primary tumour 

samples in this model system and would provide an excellent means providing more robust 

findings on the activity of therapeutic compounds.  

We identified that the addition of trypsin to cells aided them in tumour formation and 

hypothesised that this addition supplemented a lack of activated MMPs in these cells. 

Although in vivo activation of pro-MMPs is complex, in vitro activation can be achieved 

simply using destabilizing agents such as the organomercurial 4-aminophenyl mercuric 

acetate (APMA) which initiate an autocatalytic cleavage of the prodomain(Sugiura, Shimada 

et al. 1998). Further examination of the hypothesis that MMP inactivation is responsible for 

the low tumour yield of certain NB cell lines could be accomplished by activating MMPs in 

culture immediately before implantation of cells on to the CAM.  

Tumours developing in the model shared morphological characteristics of primary 

neuroblastoma however further characterisation of these tumours would give a better idea 

of how well they represent primary disease. Sys et al blinded a pathologist as to the identity 

of tumours, and compared CAM derived and primary sarcomas to establish the level of 

similarity. Work has already begun to complete a similar evaluation of NB tumours from this 

model. When characterising tumours in the Th-MYCN transgenic murine model of 

neuroblastoma, staining for synaptophysin and neuron-specific enolase was conducted and 

this method could be reproduced here (Weiss, Aldape et al. 1997). 

We saw correlation between cell morphology and the expression of target genes in cells 

treated with RA in culture. Histological analysis of tumours treated with RA in the model 

would also allow this form of comparison, and would increase confidence in these genes as 

markers of differentiation. Other forms of analysis such as ki67 staining and excision 

clonogenic assays could be used to assess the retention of proliferative potential in treated 
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tumours (Khleif SN 2000), whereas techniques such as tunel staining could also be 

employed to detect apoptosis. 

Further validation of this model must be completed using other therapeutic compounds. 

Works with MLN8237 have begun in order to further investigate the effects of MYCN 

reduction on differentiation in NB cells. In respect to this drug, continued optimisation in 

culture is required before work in the chick embryo can begin. So far work has focused on 

differentiation therapies for NB however exploring other forms of cancer therapy would also 

be important in producing a robust well characterised model system. In order to carry out 

such experiments using qPCR suitable candidate genes must first be identified and 

validated. Commercially available, optimised qPCR arrays capable of quantifying changes in 

large numbers of genes relating to known phenotype have been developed. This technology 

could provide the ability for large scale gene expression analysis following administration of 

compounds.  

The rapid time frame, practical nature and low cost of this model system means that it could 

potentially provide an excellent means of in vivo high through-put screening of therapeutic 

compounds. Ultimately this model may offer the potential to replace much of the early in 

vivo screening completed in more costly xenograft murine models in initiatives such as the 

PPTP. Before the chick embryo is able to replace the use of xenograft models, results 

obtained from its use must be validated. Here we have shown that the effects of RA are 

reproduced in the model. However in order to replace existing models a wider degree of 

correlation must be demonstrated between results derived from the chick, and those from 

mouse xenograft models and later clinical studies.  

5.4.Conclusions 

Neuroblastoma is a childhood malignancy displaying a diverse range of clinical behaviours. 

For high risk patients mortality remains tragically, and unacceptably, very high. Thus new 

treatments able to target the distinct biological and molecular features of these patient's 

disease are urgently required. In the field of paediatric therapeutic research, preclinical 

models are vital. With an increasing number of potential therapeutic targets being 

identified, the need for economically viable, high through put in vivo models is escalating. 
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The chick embryo is low cost, highly practical and well characterised by centuries of 

research, and may provide a suitable xenograft model for work in this field. 

We have demonstrated that human neuroblastoma cell lines can be grafted on to the chick 

CAM and form tumours. We have seen that topical administration provides a simple and 

effective way to deliver compounds in this model. Using elements of standard therapy we 

have identified three genes which reproducibility change in line with NB cell differentiation 

in both in vitro and using the in vivo chick embryo model. 

In conclusion this project adds to existing works which highlight the suitability of the chick 

embryo as a model for cancer research. In addition we have created a system by which the 

effects of  differentiation agents can be tested on human neuroblastoma tumours in this 

model. We hope this research may serve as blueprint for future works allowing the full 

spectrum of drug effects to be investigated. We hope that further development and 

characterisation of this model may eventually lead to its use in preclinical therapeutic 

research, and ultimately in helping to identify compounds offering new treatment for 

patients with neuroblastoma. 
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6.Appendix 

Figure 38: IMR-32 + RA in culture 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -5.42 -1.57 2.67 1.97 

SD 0.183 0.0888 0.676 0.461 

Regulation Down regulated No change Up regulated No change 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -8.97 1.71 8.01 8.15 

SD 0.116 0.151 1.35 2.29 

Regulation Down regulated No change Up regulated Up regulated 
 

Figure 38 - RA in cell culture: A and C; graphs displaying the results of single qPCR experiment in IMR-32 cells following 3 
days of RA treatment. The error bars display the standard deviation (SD). B and D: tables providing a summary of the values 
obtained from the experiments.  The adjusted  normalised quantification (Adj NRQ) describes the actual change in the gene 
expression relative to the control. Regulation describes the overall statistically significant change in gene regulation. 
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Figure 39: BE(2)-C + RA in culture 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -1.93 -3.43 1.45 19.5 

SD 0.165 0.112 0.715 0.992 

Regulation No change No change No  change Up regulated 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -4.52 -1.28 3.41 9.43 

SD 1.57 2.10 1.15 1.63 

Regulation No change No change No  change Up regulated 
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  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -4.02 -1.29 3.14 10.9 

SD 0.07 0.22 1.04 1.35 

Regulation Down regulated No change No  change Up regulated 
 

Figure 39 - RA in cell culture: a,c and e; graphs displaying the results of single qPCR experiment in BE(2)-C cells following 3 days of RA 

treatment. The error bars display the standard deviation (SD). B, D and F: tables providing a summary of the values obtained from the 
experiments.  The adjusted  normalised quantification (Adj NRQ) describes the actual change in the gene expression relative to the control. 

Regulation describes the overall statistically significant change in gene regulation. 

Figure 40: IMR-32 + RA for 6 days in cell culture 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -8.52 -7.68 3.50 4.10 

SD 0.0157 0.0195 0.0161 0.0146 

Regulation Down regulated Down regulated Up regulated Up regulated 
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  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -4.95 -5.32 4.90 6.39 

SD 0.0765 0.0902 0.245 0.0231 

Regulation Down regulated Down regulated Up regulated Up regulated 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -5.64 -2.80 8.89 10.9 

SD 0.0961 0.201 0.885 0.783 

Regulation Down regulated Down regulated Up regulated Up regulated 
 

Figure 40 - RA in cell culture: a,c and e; graphs displaying the results of single qPCR experiment in IMR-32 cells following 6 
days of RA treatment. The error bars display the standard deviation (SD). B, D and F: tables providing a summary of the 
values obtained from the experiments.  The adjusted  normalised quantification (Adj NRQ) describes the actual change in 
the gene expression relative to the control. Regulation describes the overall statistically significant change in gene 
regulation. 
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Figure 41: BE(2)-C + 6 days of RA in culture 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -4.52 -3.42 3.41 9.43 

SD 0.0713 0.102 1.15 3.23 

Regulation Down regulated Down regulated Up regulated Up regulated 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -6.04 -3.41 7.04 3.79 

SD 0.193 0.0812 1.55 2.48 

Regulation Down regulated Down regulated Up regulated Up regulated 

 

a 

b 

c 

d 



121 
 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -10.20 -4.57 6.36 13.50 

SEM 2.83 0.0532 1.04 1.23 

Regulation Down regulated Down regulated Up regulated Up regulated 
 

Figure 41 - RA in cell culture: a,c and e; graphs displaying the results of single qPCR experiment in BE(2)-C cells following 6 
days of RA treatment. The error bars display the standard error of the mean (SEM). B, D and F: tables providing a summary 
of the values obtained from the experiments.  The adjusted  normalised quantification (Adj NRQ) describes the actual 
change in the gene expression relative to the control. Regulation describes the overall statistically significant change in 
gene regulation. 

Figure 42: IMR-32 tumours treated with RA 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -8.58 -2.26 2.16 3.58 

SD 0.987 0.814 1.54 1.69 

Regulation Down regulated No change No change No change 
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  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -5.15 -3.36 1.76 2.72 

SD 1.25 0.0888 0.676 1.63 

Regulation Down regulated Down regulated No change No change 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -1.49 -2.53 3.79 6.00 

SD 0.464 1.98 0.453 0.822 

Regulation No change No change Up regulated Up regulated 
 

Figure 42 - RA in the chick embryo: a,c and e; graphs displaying the results of single qPCR experiment in IMR-32 tumours 
following 3 days of RA treatment. The error bars display the standard deviation (SD). B, D and F: tables providing a 
summary of the values obtained from the experiments.  The adjusted  normalised quantification (Adj NRQ) describes the 
actual change in the gene expression relative to the control. Regulation describes the overall statistically significant change 
in gene regulation. 
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Figure 43: BE(2)-C tumours treated with RA 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -3.85 -2.11 6.82 3.94 

SD 0.315 0.473 2.17 2.70 

Regulation No change No change Up regulated No change 

 

 

  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -3.15 -1.79 5.02 5.34 

SD 1.08 0.75 1.72 1.73 

Regulation No change No change Up regulated Up regulated 
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  KLF4 MYCN ROBO2 STMN4 

Adj NRQ -3.26 -2.24 5.64 5.24 

SD 0.279 0.198 1.92 1.63 

Regulation No change No change Up regulated Up regulated 
 

Figure 43 - RA in the chick embryo: a,c and e; graphs displaying the results of single qPCR experiment in IMR-32 tumours 
following 3 days of RA treatment. The error bars display the standard deviation (SD). B, D and F: tables providing a 
summary of the values obtained from the experiments.  The adjusted  normalised quantification (Adj NRQ) describes the 
actual change in the gene expression relative to the control. Regulation describes the overall statistically significant change 
in gene regulation. 
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