
Nonnegative Matrix Analysis for Data

Clustering and Compression

THESIS SUBMITTED

IN ACCORDANCE WITH THE REQUIREMENTS OF

THE UNIVERSITY OF LIVERPOOL

FOR THE DEGREE OF

DOCTOR IN PHILOSOPHY

BY

Liyun Gong

Department of Electrical Engineering and Electronics

The University of Liverpool

Liverpool, United Kingdom

February 9, 2015

Abstract

Nonnegative matrix factorization (NMF) has becoming an increasingly popular data

processing tool these years, widely used by various communities including computer

vision, text mining and bioinformatics. It is able to approximate each data sample in

a data collection by a linear combination of a set of nonnegative basis vectors weighted

by nonnegative weights. This often enables meaningful interpretation of the data, mo-

tivates useful insights and facilitates tasks such as data compression, clustering and

classification. These subsequently lead to various active roles of NMF in data analysis,

e.g., dimensionality reduction tool [11, 75], clustering tool[94, 82, 13, 39], feature engine

[40], source separation tool [38], etc.

Different methods based on NMF are proposed in this thesis: The modification of k-

means clustering is chosen as one of the initialisation methods for NMF. Experimental

results demonstrate the excellence of this method with improved compression perfor-

mance. Independent principal component analysis (IPCA) which combines the advan-

tage of both principal component analysis (PCA) and independent component analysis

(ICA) has been chosen as the significant initialisation method for NMF with improved

clustering accuracy. We have proposed the new evolutionary optimization strategy for

NMF driven by three proposed update schemes in the solution space, saying NMF

rule (or original movement), firefly rule (or beta movement) and survival of the fittest

rule (or best movement). This proposed update strategy facilitates both the clustering

and compression problems by using the different system objective functions that make

use of the clustering and compression quality measurements. A hybrid initialisation

approach is used by including the state-of-the-art NMF initialization methods as seed

knowledge to increase the rate of convergence. There is no limitation for the number

and the type of the initialization methods used for the proposed optimisation approach.

Numerous computer experiments using the benchmark datasets verify the theoretical

results, make comparisons among the techniques in measures of clustering/compression

accuracy. Experimental results demonstrate the excellence of these methods with im-

proved clustering/compression performance.

In the application of EEG dataset, we employed several standard algorithms to provide

clustering on preprocessed EEG data. We also explored ensemble clustering to obtain

some tight clusters. We can make some statements based on the results we have got:

i

firstly, normalization is necessary for this EEG brain dataset to obtain reasonable clus-

tering; secondly, k-means, k-medoids and HC-Ward provide relatively better clustering

results; thirdly, ensemble clustering enables us to tune the tightness of the clusters so

that the research can be focused.

ii

Contents

Abstract i

Contents v

List of Figures xi

Acknowledgement xii

Nomenclature xiv

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Original Contribution . 2

1.3 Publications . 3

2 Clustering Analysis 5

2.1 Machine Learning . 5

2.2 Clustering Algorithms . 7

2.2.1 Problem setting . 8

2.2.2 Popular Clustering Algorithms 10

2.2.3 Fuzzy clustering . 13

2.2.4 Kernel-based clustering . 14

2.2.5 Self Organizing Clustering . 15

2.2.6 Self Splitting and Merging Clustering 17

2.2.7 Ensemble Consensus Clustering 18

2.3 Clustering validation . 20

2.3.1 Internal Evaluation . 20

2.3.2 External Evaluation . 22

2.4 Summary . 24

3 Nonnegative Matrix Factorization 25

3.1 Introduction . 25

3.2 NMF optimization strategies . 27

iii

3.2.1 Multiplicative update rule . 27

3.2.2 Other update rules . 28

3.3 NMF Initialization . 29

3.3.1 Random initialization . 29

3.3.2 Cluster-based Initialization . 30

3.3.3 Dimensionality reduction-based initialization 34

3.3.3.1 Standard Dimensionality Reduction Methods 34

3.3.3.2 PCA and ICA based Initialization 38

3.3.4 Why initialization . 40

3.4 Summary . 41

4 Proposed NMF Initialization Strategy 42

4.1 Introduction . 42

4.2 Clustering Based Initialization . 43

4.2.1 Method . 44

4.2.2 Results . 44

4.2.3 Conclusion . 53

4.3 Dimensionality Reduction Based Initialization 54

4.3.1 IPCA Based NMF . 54

4.3.2 Results . 55

4.3.3 Conclusion . 66

5 Proposed NMF Updating Strategy for Data Clustering 68

5.1 Introduction . 68

5.2 Proposed Method . 69

5.2.1 Seed Matrix Generation . 69

5.2.2 Evolving Strategy . 70

5.2.2.1 Multiplicative rule . 70

5.2.2.2 Firefly Rule . 70

5.2.2.3 Survival of the Fittest Rule 73

5.2.3 Score Function . 74

5.3 Experimental results and analysis . 74

5.3.1 Experimental Setup . 75

5.3.2 Results and Analysis . 76

5.4 Conclusion . 87

6 Proposed NMF Updating Strategy for Data Compression 89

6.1 Introduction . 89

6.2 Proposed evolutionary optimization strategy on data compression 91

6.2.1 Original movement for W . 93

iv

6.2.2 Beta movement for W . 94

6.2.3 Best movement for W . 94

6.2.4 Objective function . 96

6.3 Experimental results and analysis . 97

6.3.1 Datasets and preprocessing . 97

6.3.2 Experiment process . 97

6.3.3 Yale image dataset . 98

6.3.4 ORL image dataset . 105

6.4 Conclusions . 112

7 Application of EEG Dataset 117

7.1 Introduction . 117

7.2 Clustering methods . 117

7.3 Experimental Results . 118

7.3.1 EEG data structure . 118

7.3.2 Results . 119

7.4 Conclusions . 133

8 Summary 134

8.1 Summary and conclusions . 134

8.2 Future Works . 135

Bibliography 146

v

List of Figures

2.1 The single linkage (nearest neighbour) distance), from [30] 12

2.2 The complete linkage distance, from [30] 12

2.3 The average linkage distance, from [30] 13

3.1 Description of NMF and SVD basis vectors on face dataset, from [23] . 26

3.2 Error using different initializations, from [122] 32

3.3 Comparison of initialisation methods in terms of sparsity and orthogo-

nality. (a) Comparison of initialisation methods in term of orthogonality

and (b) Comparison of initialisation methods in term of sparsity 33

3.4 Comparison of initialisation methods in terms of error 33

3.5 Prostate cancer study: sample representation using the first two or three

components from PCA, ICA and IPCA, from [118] 38

4.1 The average D log values of each of the five initialization methods

(Dataset 1) . 47

4.2 The average D log values of each of the five initialization methods

(Dataset 2) . 48

4.3 The average D log values of each of the five initialization methods

(Dataset 3) . 48

4.4 The average D log values of each of the five initialization methods

(Dataset 4) . 49

4.5 The average D log values of each of the five initialization methods

(Dataset 5) . 49

4.6 The average D log values of each of the five initialization methods

(Dataset 6) . 50

4.7 The average D log values of each of the five initialization methods

(Dataset 7) . 50

4.8 The average D log values of each of the five initialization methods

(Dataset 8) . 51

4.9 The average D values of each of the five initialization methods with the

increasing dimensionality number on Dataset 1-4 52

vi

4.10 The average D values of each of the five initialization methods with the

increasing dimensionality number on Dataset 5-8 53

4.11 The clustering performance of random, PCA-based, ICA-based and IPCA-

based initialization for balance dataset 58

4.12 The clustering performance of random, PCA-based, ICA-based and IPCA-

based initialization for cancer-int dataset 59

4.13 The clustering performance of random, PCA-based, ICA-based and IPCA-

based initialization for credit dataset . 60

4.14 The clustering performance of random, PCA-based, ICA-based and IPCA-

based initialization for dermatology dataset 61

4.15 The clustering performance of random, PCA-based, ICA-based and IPCA-

based initialization for diabetes dataset 62

4.16 The clustering performance of random, PCA-based, ICA-based and IPCA-

based initialization for iris dataset . 63

4.17 The clustering performance of random, PCA-based, ICA-based and IPCA-

based initialization for thyroid dataset 64

4.18 The clustering performance of random, PCA-based, ICA-based and IPCA-

based initialization for wdbc dataset . 65

4.19 The clustering performance of random, PCA-based, ICA-based and IPCA-

based initialization for wine dataset . 66

5.1 Data flow of the proposed ENMF. The circle, triangle and rectangle

symbols represent candidates derived during the generation of the S
(M)
t ,

S
(F)
t and S

(S)
t subsets, respectively. 71

5.2 The accuracies of the corresponding testing dataset for balance (ENMF-

MIX) . 79

5.3 The accuracies of the corresponding testing dataset for breasttissue (ENMF-

MIX) . 80

5.4 The accuracies of the corresponding testing dataset for cancer (ENMF-

MIX) . 81

5.5 The accuracies of the corresponding testing dataset for cancerint (ENMF-

MIX) . 82

5.6 The accuracies of the corresponding testing dataset for dermatology

(ENMF-MIX) . 83

5.7 The accuracies of the corresponding testing dataset for glass (ENMF-MIX) 84

5.8 The accuracies of the corresponding testing dataset for haberman (ENMF-

MIX) . 85

5.9 The accuracies of the corresponding testing dataset for iris (ENMF-MIX) 86

5.10 The accuracies of the corresponding testing dataset for thyroid (ENMF-

MIX) . 87

vii

6.1 The general process of the proposed evolutionary optimization strategy 92

6.2 The flow chart of the proposed evolutionary optimization strategy . . . 93

6.3 The structure of the experimental process 98

6.4 The summary results for Yale face dataset under the different data com-

pression methods with the sparsity measure 100

6.5 The summary results for Yale face dataset under the different data com-

pression methods with the orthogonality measure 101

6.6 The summary results for Yale face dataset under the different data com-

pression methods with both the sparsity and orthogonality measures . . 102

6.7 The basis images obtained from different methods for Yale with the

sparsity measure. (1) 1st row represents the basis images obtained from

random initialized NMF at the increasing iterations (iter=1, 50, 100, 200,

500) (2) 2nd row represents the basis images obtained from random acol

initialized NMF at the increasing iterations (iter=1, 50, 100, 200, 500)

(3) 3rd row represents the basis images obtained from k-means based

initialized NMF at the increasing iterations (iter=1, 50, 100, 200, 500) (4)

4th row represents the basis images obtained from FCM-based initialized

NMF at the increasing iterations (iter=1, 50, 100, 200, 500) (5) 5th row

represents the basis images obtained from the proposed evolutionary

optimization strategy at the increasing iterations (iter=1, 50, 100, 200,

500) . 103

6.8 The basis images obtained from different methods for Yale with the

orthogonality measure which is similar with figure6.7. 104

6.9 The basis images obtained from different methods for Yale with both the

sparsity and orthogonality measures which is similar with figure6.7. . . 105

6.10 The summary results for ORL face dataset under the different data com-

pression methods with the sparsity measure 107

6.11 The summary results for ORL face dataset under the different data com-

pression methods with the orthogonality measure 108

6.12 The summary results for ORL face dataset under the different data com-

pression methods with both the sparsity and orthogonality measures . . 109

viii

6.13 The basis images obtained from different methods for ORL with the

sparsity measure. (1) 1st row represents the basis images obtained from

random initialized NMF at the increasing iterations (iter=1, 100, 200,

500, 1000) (2) 2nd row represents the basis images obtained from random

acol initialized NMF at the increasing iterations (iter=1, 100, 200, 500,

1000) (3) 3rd row represents the basis images obtained from k-means

based initialized NMF at the increasing iterations (iter=1, 100, 200,

500, 1000) (4) 4th row represents the basis images obtained from FCM-

based initialized NMF at the increasing iterations (iter=1, 100, 200, 500,

1000) (5) 5th row represents the basis images obtained from the proposed

evolutionary optimization strategy at the increasing iterations (iter=1,

100, 200, 500, 1000) . 110

6.14 The basis images obtained from different methods for ORL with the

orthogonality measure which is similar with figure6.13. 111

6.15 The basis images obtained from different methods for ORL with both

the sparsity and orthogonality measures which is similar with figure6.13. 112

7.1 The independent component matrix . 119

7.2 Histogram of k-means clustering result with K = 64 from the unnormal-

ized data . 120

7.3 The largest cluster (No 33 cluster) in the k-means clustering result with

K = 64 from the unnormalized data . 121

7.4 One of single-member clusters, No 31 cluster, in the k-means clustering

result with K = 64 from the unnormalized data 122

7.5 Histogram of k-means clustering result with K = 64 from the normalized

data . 123

7.6 The profiles of the members in No.40 cluster in normalized data 124

7.7 The profiles of the members in No.40 cluster in unnormalized data . . . 125

7.8 The profiles of the members in No.18 cluster in normalized data 126

7.9 The profiles of the members in No.18 cluster in unnormalized data . . . 127

7.10 The profiles of the members in No.19 cluster in normalized data 128

7.11 The profiles of the members in No.19 cluster in unnormalized data . . . 129

7.12 The list of clustering results we have got 130

7.13 The mean and standard deviation of the numbers of memberships . . . 130

7.14 Number of clusters which contains ICs from more than seven (> 7) subjects131

7.15 The clusters containing more than seven subjects in the ensemble clus-

tering results: K = 64 . 132

7.16 The clusters containing more than seven subjects in the ensemble clus-

tering results: K = 24 . 133

ix

List of Tables

2.1 Kaufman Approach (KA) initialization method 11

2.2 The procedure of FCM . 14

2.3 The procedure of kernel k-means and kernel FCM 15

2.4 The procedure of SOON-2 . 17

3.1 The comparison between random and random acol intialization 41

4.1 The parameters for the preprocessing . 45

4.2 The properties of the final datasets . 45

4.3 The range of the standard deviation for log2(D) 46

4.4 The properties of the datasets . 55

4.5 The mean and standard deviation of inital RAND values of different

intialization methods (iters=1, runs=20) 56

4.6 The mean and standard deviation of final RAND values of different in-

tialization methods (iters=500, runs=20) 56

5.1 Details of the datasets used. 75

5.2 Performance comparison for different datasets in RAND, which is re-

ported in percentage (%). The best performance is highlighted in bold,

and the second best is underlined. 75

5.3 Performance improvement of ENFM over NMF under different initial-

ization approaches. 76

6.1 The procedure for finding the best solution Wt∗ 95

6.2 The summary results for Yale face dataset under the different data com-

pression methods with the five measurements saying sparsity, orthog-

onality, objective value, error and RAND index at the final iteration

(iter=500) . 114

6.3 Statistical significance test (t-test) for the average ENMF and NMF after

5 runs shown in table 6.2 . 115

6.4 Statistical significance test (t-test) for the average ENMF and NMF after

5 runs shown in table 6.5 . 115

x

6.5 The summary results for ORL face dataset under the different data com-

pression methods with the five measurements saying sparsity, orthog-

onality, objective value, error and RAND index at the final iteration

(iter=500) . 116

xi

Acknowledgement

I would like to express my deep gratitude to Dr. Tingting Mu, Prof.Nandi Asoke and

Dr. Al-Nuaimy Waleed, my research supervisors, for their patient guidance, enhusiastic

encouragement and useful critiques of this research work.

xii

Nomenclature

KA Kaufman Approach

FCM fuzzy c-means

FSOM fuzzy self-organizing map

FART fuzzy adaptive resonance theory

FSVM fuzzy support vector machine

SVM support vector machines

SOM self-organizing map

SOON self-organizing oscillator networks

OPTOC one-prototype-take-one-cluster

SSMCL self-splitting-merging competitive learning

CSM cohesion-based self-merging

APV asymptotic property vector

PVI parametric validity index

MST mining spanning tree

NMF Nonnegative Matrix factorization

SVD singular value decomposition

HC hierarchical clustering

RI random initialization

RAI random acol initialization

RCI random c initialization

PCA principal component analysis

xiii

ICA independent component analysis

IPCA independent principal component analysis

FA firefly algorithm

xiv

Chapter 1

Introduction

1.1 Motivation and Objectives

Machine learning is a subfield of computer science and artificial intelligences that deals

with the design and development of systems. Over the last few decades, there have been

many significant advances in machine learning. More and more applications of machine

learning are found in many different fields like biomedical engineering and communi-

cations. Machine learning is very important not only because that the achievement

of learning in machines might help us understand how animal and humans learn, but

also the following engineering reasons [76]. We might be able to specify input/output

pairs but not a concise relationship between inputs and desired outputs. We would like

machines to be able to adjust their internal structure to produce correct outputs for a

large number of sample inputs and, thus, suitably constrain their input/output func-

tion to approximate the relationship implicit in the examples. Also, machine learning

can be used to reach on-the-job improvement of existing machine designs, to capture

more knowledge than what humans would want to write down, to adapt to a chang-

ing environment to reduce the need for constant redesign, and to track as much new

knowledge as possible.

Clustering is one of the most useful tools for the large data analysis and is my first re-

search topic. It is known as unsupervised learning which is to group individual objects

or samples in a population within which the objects are more similar to each other

than those in other clusters. It has been used for decades in many fields, such as image

processing, data mining, artificial intelligence [113] and the microarray gene expression

data analysis in genomic research [48].

Compression is another useful tool for machine learning. It involves encoding informa-

tion using fewer bits than the original representation [77]. Compression can be either

lossy or lossless. Lossless compression reduces bits by identifying and eliminating sta-

tistical redundancy. No information is lost in lossless compression. Lossy compression

reduces bits by identifying unnecessary information and removing it [46]. The process

of reducing the size of a data file is popularly referred to as data compression and is

1

also one of my research topics. Data compression is also widely used in backup utilities,

spreadsheet applications, and database management systems.

The objectives of this thesis are developing machine learning algorithms for clustering,

classification and compression, emphasis on nonnegative matrix factorization (NMF).

Nonnegative matrix factorization (NMF) has becoming an increasingly popular data

processing tool these years, widely used by various communities including computer

vision, text mining and bioinformatics. It is able to approximate each data sample in

a data collection by a linear combination of a set of nonnegative basis vectors weighted

by nonnegative weights. This often enables meaningful interpretation of the data, mo-

tivates useful insights and facilitates tasks such as data compression, clustering and

classification. These subsequently lead to various active roles of NMF in data analy-

sis, e.g., dimensionality reduction tool [11, 75], clustering tool[94, 82, 13, 39], feature

engine [40], source separation tool [38], etc. In this research work, the NMF algorithm

is explored, emphasis being laid on the topic of the initialization methods as well as

the optimization rule for NMF, to solve some data analysis problems. We propose two

initialization methods for NMF based on the clustering algorithm and dimensionality

reduction algorithm. We also propose two NMF updating strategies, which take ad-

vantage of the hybrid of different NMF initialization setups and evolves along different

directions to produce NMF approximations that suits better the accuracy purposes (i.e.

data clustering/classification and compression). Effectiveness of the proposed methods

is demonstrated thoroughly through benchmark testing and comparison with existing

approaches.

1.2 Original Contribution

A summary of the the main original contributions of this work are shown below on a

chapter-by-chapter basis.

Chapter 2

We review five clustering families representing five clustering concepts including fuzzy

clustering, kernel-based clustering, self-organizing clustering, self-splitting and merging

clustering and ensemble clustering.

Chapter 4

We propose two initialization methods for NMF based on the clustering algorithm and

dimensionality reduction algorithm. The modification of k-means clustering and inde-

pendent principal component analysis (IPCA) are chosen as the initialisation methods

for NMF.

2

Chapter 5

We propose the new evolutionary optimization strategy for NMF driven by three pro-

posed update schemes in the solution space, saying NMF rule, firefly rule and survival

of the fittest rule. This proposed update strategy facilitates the clustering problem by

using the system objective functions that make use of the clustering quality measure-

ments.

Chapter 6

We propose the new evolutionary optimization strategy for NMF by modifying the

proposed optimization strategy in chapter 5 to solve the image datasets compression

problem.

Chapter 7

we employ several standard algorithms to provide clustering on the application of pre-

processed EEG data. We also explore ensemble clustering to obtain some tight clusters.

1.3 Publications

Papers arisen from the this PhD work are listed as follows:

Journal Papers

1. Liyun Gong, Tingting Mu, Meng Wang, Hengchang Liu and John Y. Gouler-

mas, A robust nonnegative matrix factorization strategy with adaptive quality

control of data clusters, Pattern Recognition, 2014. (IF=2.632, under review)

2. FY Cong, V Alluri, AK Nandi, P Toiviainen, Rui Fa, Basel Abu-Jamous, Liyun

Gong, BGW Craenen, H Poikonen, M Huotilainen, T Ristaniemi, Linking Brain

Responses to Naturalistic Music through Analysis of Ongoing EEG and Stimulus

Features, IEEE Transactions on Multimedia, 15(5):1060-1069, 2013. (IF=1.776)

Conference Papers

1. Liyun Gong, T. Mu and Al-Nuaimy Waleed, Evolutionary nonnegative matrix

factorization for data compression, European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases, 2015. (to be

submitted)

2. Liyun Gong and Asoke K. Nandi, Clustering by Non-negative Matrix Factor-

ization with Independent Principal Component Initialization. European Signal

Processing Conference, EUSIPCO, 2013.(acceptance rate=62.5%)

3

3. Liyun Gong and Asoke K. Nandi, An Enhanced Initialization Method for Non-

negative Matrix Factorization, IEEE International Workshop on Machine Learn-

ing for Signal Processing, MLSP, 2013. (acceptance rate=51%)

4. Rui Fa, Asoke K Nandi and Liyun Gong, Clustering analysis for gene expression

data: a methodological review, 5th international symposium on communication,

control, and signal processing, ISCCSP, 2012. (acceptance rate=48%)

4

Chapter 2

Clustering Analysis

This chapter describes the basis knowledge of clustering analysis and also reviews

some common clustering algorithms. Firstly section 2.1 provides a brief introduction

to machine learning, including supervised learning, unsupervised learning and semi-

supervised learning. Section 2.2 provides the comprehensive review of some popular

clustering algorithms in addition with the five clustering families representing five clus-

tering concepts. Since clustering is one of the most widely used unsupervised learning

technique, the task of assessing the results of clustering algorithms can be as important

as the clustering algorithms themselves. So several clustering validations are reviewed

including internal and external evaluations as well in section 2.3. The reason for this

chapter is that some methods described here have been selected to solve the brain appli-

cation in chapter 7 and also some of them were treated as the initialisation methods for

nonnegative matrix factorisation in chapter 5 and 6. Work of this chapter is published

in:

Rui Fa, Asoke K Nandi and Liyun Gong, Clustering analysis for gene expression data:

a methodological review, 5th international symposium on communication, control, and

signal processing, ISCCSP, 2012. (acceptance rate=48%)

2.1 Machine Learning

Machine learning is a subfield of computer science and artificial intelligences that deals

with the design and development of systems. It has been defined formally by Mitchel

[71] as ”A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure M, if its performance at tasks in T, as

measured by M, improves with experience E.” Over the past 50 years, the study of

machine learning has grown from the efforts of a handful of computer engineers explor-

ing whether computers could learn to play games, and a field of statistics that largely

ignored computational considerations, to a broad discipline that has produced funda-

mental statistical-computational theories of learning processes; has designed learning

algorithms that are routinely used in commercial systems from speech recognition to

5

computer vision; and has spun off an industry in data mining to discover hidden reg-

ularities in the growing volume of online data [72]. A number of choices are involved

in designing a machine learning approach, including choosing the type of training ex-

perience, the target function to be learned, a representation for this target function,

and an algorithm for learning the target function from training samples [71]. Machine

learning is inherently a multidisciplinary field, which draws on results from artificial

intelligence, probability and statistics, optimization theory, computational complexity

theory, control theory, information theory, philosophy, and other fields.

Machine learning has been used in many applications including natural language pro-

cessing [22, 68, 74], handwriting recognition [60, 79, 80, 84], face and fingerprint recogni-

tion [47, 79, 80, 116], bioinformatics and cheminformatics [8, 42, 110], object recognition

in computer vision [102], image compression [114].

Types of Algorithms

Machine learning algorithms are organised into several forms including supervised learn-

ing, unsupervised learning and semi-supervised learning.

Supervised learning is the machine learning task of inferring a function from labeled

training data. The training data consist of a set of training examples. Each sample

consists of a pair of an input object (typically feature vector) and a desired output (tar-

get). The output of the function can be used for calculating new examples (regression),

or can determine the class labels for unseen input objects (classification). In order to

solve a given problem of supervised learning, one has to consider six issues.

1. Determine the type of training samples.

2. Gathering a training set that contains information of problem. Thus, a set of

input objects and the corresponding outputs are gathered, either from human

experts or from measurements.

3. Determine the input feature representation of the learned function (feature ex-

traction). The accuracy of the learned function depends strongly on how the

input object is represented. Typically, the input object is transformed into a

feature vector, which contains a number of features that are descriptive of the

object. The number of features should not be too large, because of the curse of

dimensionality; but should be large enough to predict the output accurately.

4. Determine the structure of the learned function and corresponding learning al-

gorithm.

5. Complete the design. The engineer then runs the learning algorithm on the

6

gathered training set. Parameters of the learning algorithm may be adjusted by

optimizing performance on a subset of the training set (called a validation set)

or via cross-validation. After parameter adjustment and learning, the perfor-

mance of the algorithm may be measured on a test set that is separate from the

training set.

6. Evaluate the accuracy of the learned function. After parameter adjustment and

learning, the performance of the resulting function should be measured on a test

set that is separate from the training set.

Unsupervised learning is the other form of machine learning which tries to find hidden

structure in unlabelled data. It is distinguished from supervised learning by the fact

that there is no a priori output. In unsupervised learning, a data set of input objects

is gathered, and treated as a set of random variables. A joint density model is then

built for the data set. Unsupervised learning can be used in conjunction with Bayesian

inference to produce conditional probabilities for any of the random variables given

the others. A holy grail of unsupervised learning is the creation of a factorial code of

the data, which may make the later supervised learning method work better when the

raw input data is first translated into a factorial code. Unsupervised learning is also

useful for data compression. Another form of unsupervised learning is clustering which

is introduced in details later.

Semi-supervised learning is a class of supervised learning tasks and techniques that also

make use of unlabeled data for training–typically a small amount of labeled data with

a large amount of unlabeled data. Semi-supervised learning falls between unsupervised

learning (without any labeled training data) and supervised learning (with completely

labeled training data). Many machine-learning researchers have found that unlabelled

data, when used in conjunction with a small amount of labeled data, can produce

considerable improvement in learning accuracy. The acquisition of labeled data for a

learning problem often requires a skilled human agent. The cost associated with the

labelling process thus may render a fully labeled training set infeasible, whereas acqui-

sition of unlabelled data is relatively inexpensive. In such situations, semi-supervised

learning can be of great practical value.

2.2 Clustering Algorithms

Clustering is one of the most useful tools for the large data analysis and is the one

of my research topics. It is known as unsupervised learning and has been used for

decades in many fields, such as image processing, data mining, artificial intelligence

[113] and the microarray gene expression data analysis in genomic research [48]. The

goal of the clustering analysis is to group individual objects or samples in a population

7

within which the objects are more similar to each other than those in other clusters.

Generally speaking, to study or design a clustering analysis for an application, one has

to consider three issues:

1. the measurements of the dissimilarity (or similarity)

2. the clustering algorithms

3. the clustering validations

There has been a rich literature on clustering analysis over the past decades and all these

three issues have been comprehensively discussed in [48] and [113]. However, as it has

been a few years since those two comprehensive review papers [48, 113] were published,

many new and effective algorithms have been proposed but were not reviewed. Both

the clustering algorithms and validations have grown beyond the horizon of [48, 113].

The following sections can be viewed as a complementary counterpart to make the

literature review in this field some-how up-to-data.

In section 2.2.2, we review some popular clustering algorithms, saying k-means, k-

medoids and hierarchical clustering. Besides some popular clustering algorithms, we

will also discuss five different families of clustering algorithms including fuzzy clustering,

kernel-based clustering, self-organizing clustering, self-splitting and merging clustering

and ensemble clustering in section 2.2.3-2.2.7.

2.2.1 Problem setting

There were seven similarity and dissimilarity measures listed in [113], namely, Minkowski

distance, Euclidean distance, City-block distance, Mahalanobis distance, Pearson cor-

relation, Point symmetry distance, Cosine similarity, which have been widely used in

various applications. In [48], Euclidean distance and Pearson correlation were claimed

to be effective similarity measures for gene expression data. Pearson correlation mea-

sures the similarity between two genes, and provides a very informative visualisation of

the clustering results. Based on a sample of paired genes (X,Y), the pearson correlation

is:

PC =
1

n− 1

n∑
i=1

(
Xi − X̄
SX

)(
Yi − Ȳ
SY

) (2.1)

where

X̄ =
1

n

n∑
i=1

Xi; (2.2)

SX =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2 (2.3)

are the mean and the standard deviation for X and n is the number of dimensions for

X. (The terms for Y are similar.)

Minkowski distance and City-block distance (also called Manhattan distance) are the

8

metrics on Euclidean space which can be considered as the generalization of the Eu-

clidean distance. The Minkowski distance of order p between two pointsX = (x1, x2, ..., xn)

and Y = (y1, y2, ..., yn) is defined as:

MinD = (
n∑
i=1

|xi − yi|p)
1
p (2.4)

Minkowski distance is typically used with p being 1 or 2. The latter is the Euclidean

distance, while the former is known as City-block distance.

Mahalanobis distance is equated to the euclidean distance in a transformed whitened

space. Given an sample x = (x1, x2, x3, ..., xN)T from a group of samples with mean

µ = (µ1, µ2, µ3, ..., µN), this distance is defines as:

MahD(x) =
√

(x− µ)TS−1(x− µ) (2.5)

where S is the covariance matrix of this group of samples. If S is the identity matrix,

Mahalanobis distance reduces to euclidean distance.

Point symmetry distance is the distance which incorporates both the Euclidean distance

as well as a measure of symmetry. Given N samples xi, i = 1, ..., N and a reference

sample c, the distance between a sample xj and the reference sample c is defined as:

PD(xj , c) = minj=1,...,N ;i 6=j
||(xj − c) + (xi − c)||
||xj − c||+ ||xi − c||

(2.6)

where the denominator term is used to normalize the point symmetry distance so as to

make the point symmetry distance insensible to the Euclidean distances ||xj − c|| and

||xi − c||.
Cosine similarity is a measure of similarity between two vectors of an inner product

space that measures the cosine of the angle between them. Given two samples/vectors

X and Y , the cosine similarity, cos(θ), is calculated using the dot product and magni-

tudes of X and Y as

CosS = cos(θ) =
X · Y
||X||||Y ||

(2.7)

The resulting similarity ranges from -1 meaning exactly opposite, to 1 meaning exactly

the same, with 0 usually indicating independence, and in-between values indicating

intermediate similarity or dissimilarity.

Furthermore, two additional measures, namely Jackknife correlation and Spearman’s

rank-order correlation, were discussed to cope with the situations of outliers and non-

Gaussian distributions, respectively. In the following sections of this chapter, we will

not discuss the dissimilarity and similarity measures but use the operators D(·) for dis-

similarity and S(·) for similarity instead of a specific measure when we study clustering

algorithms. Readers who are interested in more details are advised to refer to [113, 48]

and the references therein.

9

Here we suppose that we are going to partition the dataset X = {xn|1 ≤ n ≤ N},
where xn ∈ RM×1 denotes the n-th object, M is the number of samples (features or

dimensions) and N is the number of objects. Consider that there are K clusters in a

given dataset and each clustering algorithm provides a partition matrix UK×N , where

the entry uk,n ∈ [0, 1] represents the membership coefficient of n-th object in the k-th

cluster.

2.2.2 Popular Clustering Algorithms

K-means Clustering

The k-means clustering algorithm is one of the simplest and most common partitioning

methods.[64, 66]. For the traditional k-means, it starts with the k cluster centers chosen

randomly, where k is the cluster number. Using distance methods such as Euclidean

distance to measure the similarity between data objects and the cluster centers. Thus,

it leads to the following objective function:

E =
K∑
j=1

∑
xi∈Cj

||xi − uj ||2 (2.8)

where Cj denotes the j-th cluster, uj is the center of the cluster j which is the mean of

objects in Cj and xi is the observations to be clustered. Each object is then assigned to

one of the cluster groups with the closest center. Then the cluster centers are redefined

by finding the mean vector of all objects belonging to each cluster group and the objects

are reassigned according to their distance to these new cluster centers. This iterative

process repeats until there are no changes in the assignment of objects to cluster groups.

The algorithm is often presented as assigning objects to the nearest cluster by distance.

The standard algorithm aims at minimizing the Euclidean objective, and thus assigns

by ”least sum of squares”. Using a different distance function other than the squared

Euclidean distance may stop the algorithm from converging. Various modifications of

k-means such as spherical k-means [89] and k-medoids [52] have been proposed to allow

using other distance measures. For example, k-medoids chooses objects as centers and

works with an arbitrary matrix of distances between objects instead of L2. This method

was proposed in [52] for the work with L1 norm and other distances.

Since different starting points can result in the different cluster results, it may be

advisable to run the algorithm several times and select the best solution among them.

Also in literature, some initialization algorithms have been proposed to the traditional

k-means clustering to avoid the influence of the randomness [83]. Here we review

the Kaufman Approach (KA) proposed by Kaufman and Rousseeuw [53] which is the

famous initialization method for k-means. The details are shown in table 2.1.

10

Table 2.1: Kaufman Approach (KA) initialization method
STEP1: Select the first center so that it has the minimum distance to the other
objects.
STEP2: For every nonselected object wj : Calculate Cji = max(Dj − dji, 0),
where dji is the absolute distance between wi and wj . wi is the second randomly
selected center.
Dj is the minimum distance between the pre-selected centers and wj .
STEP3: Calculate

∑
j Cji for the current wi.

STEP4: Repeat STEP2 and STEP3 and select the second center wi which maximizes∑
j Cji.

STEP5: Iterative process continues until k initial centers are selected.

The main disadvantage of the k-means clustering algorithm is the predefined cluster

number. It is difficult to set the number of cluster since most of the real datasets are

unknown.

K-medoids

The k-medoids is one of many partitioning algorithms, which is an extension of the

k-means. The k-medoids is designed to handle the outliers efficiently. Instead of using

the means, it chooses the medoids to represent the cluster centers. A medoid is the

most centrally located object within a cluster, whose total distance to all other objects

intra-cluster is the shortest. Similar to the k-means, the k-medoids keeps updating the

medoids if cluster membership changes until the process converges.

Hierarchical Clustering (HC)

In contrast to partition-based clustering, which directly divides the data set into dis-

connected parts, HC is path-based clustering algorithm, which generates a hierarchical

series of nested and connected clusters. This nested cluster structure can be graphically

represented in a tree by dendrogram. There are two approaches to implement the HC:

one is called agglomerative which initially regards each data object as an individual

cluster and merges the closest pair of clusters at each step, until all the groups are

merged into one cluster; The other is called divisive, which starts with one cluster con-

taining all the data objects and splits singleton clusters at each step. In this thesis,

we employ agglomerative clustering. HC provides different clustering results when em-

ploying different linkage criteria. The linkage criteria determine the distance between

clusters as a function of the pairwise distances between objects.

Single Linkage uses the distance between the nearest neighbours. For example, if we

have two clusters A and B, the single linkage distance is defined as

d(A,B) = min
α=1,...,nAβ=1,...,nB

d(aα, aβ) (2.9)

nA and nB are the number of points in cluster A and B respectively. d(·) is the distance

11

between two points.

Figure 2.1: The single linkage (nearest neighbour) distance), from [30]

Complete linkage uses the maximum distance between objects.

d(A,B) = max
α=1,...,nAβ=1,...,nB

d(aα, aβ) (2.10)

Figure 2.2: The complete linkage distance, from [30]

Average linkage uses average distance of objects.

d(A,B) =
1

nAnB

nA∑
α=1

nB∑
β=1

d(aα, aβ) (2.11)

12

Figure 2.3: The average linkage distance, from [30]

Ward Linkage: In ward linkage, the distance between two clusters is the ANOVA

sum of squares between the two clusters added up over all the objects.

There are other linkage such as centroid linkage which uses the variance of the merging

clusters.

2.2.3 Fuzzy clustering

Fuzzy clustering is a concept that relaxes the restriction of crisp clustering, which

assigns every object exactly in one clusters, by characterizing the membership of each

sample point in all the clusters with a membership function which ranges between zero

and one. Additionally, the sum of the memberships for each sample point must be

unity [9]. The properties of the partition matrix is mathematically expressed by

1. uk,n ∈ [0, 1], 1 ≤ n ≤ N, 1 ≤ k ≤ K

2.
∑K

k=1 uk,n = 1, 1 ≤ n ≤ N

3. 0 <
∑N

n=1 uk,n < N, 1 ≤ k ≤ K

An example of fuzzy clustering is the fuzzy c-means (FCM) [10], which is fuzzy

counterpart of the k-means. FCM aims to minimize the cost function, which is math-

ematically expressed by

φ(U,X) =

K∑
k=1

N∑
n=1

(uk,n)mD(xn, ck) (2.12)

where m ∈ [1,∞) is the fuzzification parameter. D(xn, ck) is the dissimilarity mea-

sure between the nth object, xn, and the center of the kth cluster, ck. Similar to k-means,

the cost function 2.12 can be minimised with an iterative procedure that updates the

partition matrix and the centers of clusters alternately. Since many objects may par-

ticipate in more than one function in the process, the fuzzy clustering has obvious

advantage to identify some objects co-regulating with more than one cluster of objects.

The procedure of FCM is summarized in Table 2.2. There are also many other fuzzy

clustering approaches, for example, fuzzy self-organizing map (FSOM) [81], fuzzy adap-

tive resonance theory (FART) [101] and fuzzy support vector machine (FSVM) [67].

13

Table 2.2: The procedure of FCM
STEP1: Initialize the centers of clusters {ck|k = 1, ...,K} randomly or based on
some prior knowledge if available;

STEP2: Update the membership matrix U by uk,n = 1/
[∑K

k′=1(
D(xn,ck′)
D(xn,ck))2/(1−m)

]
,

k = 1, ...,K and n = 1, ..., N.

STEP3: Update the centroids of clusters {ck|k = 1, ...,K} by ck(t) =
∑N

n=1 umk,nxn∑N
n=1 umk,n

for

k = 1, ...,K.
STEP4: Repeat STEP2 and 3 until ||C(t) − C(t − 1)|| < ε, where ε is a small
positive number.

2.2.4 Kernel-based clustering

Kernel-based clustering, which shares similar idea with support vector machines (SVM),

constructs a hyperplane to separate the patterns. These patterns are nonlinearly trans-

formed from a set of nonlinearly separable patterns into a higher-dimensional feature

space to be linear separable. At the core of the kernel-based clustering lies the difficulty

of explicitly constructing the nonlinear mapping, Φ(·), which is sometime infeasible; but

now it can be overcome by a kernel trick. The kernel trick is a way of mapping pat-

terns from a input space into a feature space without having to compute the mapping

explicitly, in the hope that the patterns will gain meaningful linear structure in the

feature space, mathematically expressed as

k(xi, xj) = Φ(xi)
TΦ(xj) (2.13)

where (·)T is the transpose operator. Thus, a straightforward way to transform the

calculation of Euclidean distance in the feature space into the kernel version is to use

the kernel trick as follows.

Dk
E(Φ(xi),Φ(xj)) = ||Φ(xi)− Φ(xj)||2

= ||Φ(xi)||2 + ||Φ(xj)||2 − 2Φ(xi)
TΦ(xj)

= k(xi, xi) + k(xj , xj)− 2k(xi, xj) (2.14)

Correlation between sets of data is a measure of how well they are related. The

most common measure of correlation in stats is the Pearson Correlation. It shows the

linear relationship between two sets of data. The kernel version of modified Pearson

correlation is given by [86].

SkP (Φ(xi),Φ(xj)) =
Φ(xi)

TΦ(xj)√
Φ(xi)TΦ(xi)

√
Φ(xj)TΦ(xj)

=
k(xi, xj)√

k(xi, xi)
√
k(xj , xj)

(2.15)

14

Kernel k-means (or kernel FCM) is kernel counterpart of the k-means (or FCM)

[26], whose core part is to calculate the distance between the objects and the centroids

of clusters in the feature space.

Dk
E(Φ(xi), c

Φ
k) = ||Φ(xi)−

1

Nk

N∑
l=1

umk,lΦ(xl)||2 = k(xi, xi)−
1

Nk

N∑
l=1

umk,lk(xi, xl)

+
1

N2
k

N∑
l=1

N∑
n=1

umk,lu
m
k,nk(xl, xn) (2.16)

where Nk =
∑N

l=1 u
m
k,l. For crisp kernel k-means, the elements in partition matrix

are either zero or one and m = 1; for the kernel FCM, the partition matrix is the

one described in Section 2.2.3 and m ∈ [1,∞). The procedure of kernel k-means and

kernel FCM is summarised in Table 2.3. Other kernel-based algorithms including kernel

hierarchical and kernel principle component analysis can be found in [86, 63]

Table 2.3: The procedure of kernel k-means and kernel FCM
STEP1: Initialize a K-partition in the feature space;
STEP2: Calculate Dk

E

(
Φ(xn), cΦ

k

)
for n = 1, ..., N and k = 1, ...,K.

STEP3: Update the membership matrix U(t) by

uk,n =

{
1 Dk

E

(
Φ(xn), cΦ

k

)
< Dk

E

(
Φ(xn), cΦ

k′
)

0 otherwise
(2.17)

for kernel k-means;

uk,n = 1/

[∑K
k′=1(

Dk
E(Φ(xn),cΦ

k′)

Dk
E(Φ(xn),cΦk)

)2/(1−m)

]
, for kernel FCM.

STEP4: Repeat STEP2 and 3 until
∑K

k=1D
k
E

(
cΦ
k (t), cΦ

k (t− 1)
)
< ε, where ε is a

small positive number.

2.2.5 Self Organizing Clustering

The Kohonen self-organising map (SOM) is one of the most popular unsupervised clus-

tering algorithms [51, 100] and has been reviewed in many references [113, 48]. There

is another algorithm, called self-organizing oscillator networks (SOON) [91], which also

belongs to self-organizing clustering family. The so-called self-organizing means that

all the prototypes are attracted to the input patterns in an adaptive fashion. Here, we

focus on the SOON algorithm, which makes use of a biological fact that fireflies flash

together exhibiting a synchronised firing in groups that physically close to each other.

The basic unit of clustering in SOON is an integrate and fire (IF) oscillator representing

each object in the dataset.

Suppose that O = {O1, ...,ON} is a set of N oscillators, where each oscillator Oi is

characterised by a phase φi and a state variable si, given by

si = fi(φi), i = 1, ...,K, (2.18)

15

where each function fi : [0, 1]→ [0, 1] is smooth. In [91], the function f(φ) was

f(φ) =
1

b
In
[
1 + (eb − 1)φ

]
. (2.19)

whenever si reaches a threshold at si = 1, the i -th oscillator fires and instantaneously

reset to zero, following which the cycle repeats. The firing of all other oscillators

Oj(j 6= i) can be affected by i -th oscillator by

sj(t
+) = B(sj(t) + εi(φj)), (2.20)

where B(·) is a limiting function to guarantee that sj(t) is confined to [0, 1], math-

ematically expressed by

B(s) =

s if 0 ≤ s ≤ 1
0 if s < 0
1 if s > 1

(2.21)

The coupling strength of the i -th oscillator at a given phase φj , εi(φj), is the most

important concept of the SOON algorithm, mathematically expressed by

εi(φj) =

CE

[
1− (

D(Oi,Oj)
δ0

)2
]

if D(Oi,Oj) ≤ δ0

−CI
[
(
D(Oi,Oj)−δ0

δ1−δ0)2
]

if δ0 < D(Oi,Oj) ≤ δ1

−CI otherwise

(2.22)

where δ0 and δ1 are limit distances and δ1 is set to be five times δ0. CE and CI are

the maximum excitatory coupling and the maximum inhibitory coupling, respectively.

To avoid the need to compute and store the pairwise distances between any pair of

objects, prototypes β = {β1, ..., βK} are used to represent clusters of the object in

SOON-2, which is summarized in Table 2.4.

16

Table 2.4: The procedure of SOON-2
STEP1:
Initialize a phases φi randomly for i = 1, ..., N ;
Set K , and initialize the Prototypes βk randomly for k = 1, ...,K;
STEP2:
Identify the next oscillator to fire, {Oi : φi = maxjφj};
Identify the close prototype to the oscillator Oi 7→ βk;
Compute D(βk,Oi) for ∀j ∈ [1, N];
Bring φi to threshold, and adjust other phases φj = φj + (1− φi) for ∀j ∈ [1, N];
STEP3:
for all oscillators Oj(j 6= i) do

Compute state variable sj ;
Compute coupling strength εi(φj);
Adjust state variable sj using (2.20);
Compute compute new phase using φj = f−1(sj);

end for
Identify synchronized oscillators and reset their phases;
Update prototype βk;
STEP4:
Repeat STEP 2 and 3 until synchronized group stabilize.

2.2.6 Self Splitting and Merging Clustering

Self-splitting and merging clustering is an idea in which without setting the number of

clusters a priori, the algorithm will converge to a partitioning which reveals the true

number of clusters and provides fairly accurate clustering results. Recently, some self

splitting-merging clustering algorithms have been developed for both general purpose

clustering [120, 59] and gene expression data analysis [111]. A competitive learning

paradigm, called one-prototype-take-one-cluster (OPTOC) [120], was proposed in the

self-splitting clustering algorithm. There are two advantages of the OPTOC that,

firstly, it is not sensitive to initialization, and secondly, in many cases, it is able to find

natural clusters. However, its ability to find the natural clusters depends on the deter-

mination of suitable threshold, which is difficult [111]. Being aware of the shortcom-

ing of the OPTOC, a self-splitting-merging competitive learning (SSMCL) algorithm

[111] based on the OPTOC paradigm was developed for gene expression analysis. The

SSMCL initially over-clusters the whole dataset using the OPTOC principle and then

merge the groups based on the second order statistical characteristics. However, al-

though the number of clusters can be initially set to any value lager than the number

of natural clusters, the SSMCL still needs to set it as close to the number of natural

clusters as possible, otherwise, too much computing power will be wasted due to the

unnecessary over-clustering and merging. With the similar principle as the SSMCL,

over-clustering and merging, a cohesion-based self-merging (CSM) algorithm, which

was reported in [59] to combine the k-means and hierarchical clustering, also faces the

17

same problem of setting the initial number of clusters. Here, we briefly introduce the

OPTOC competitive learning paradigm. For each prototype, an online learning vecoter

called asymptotic property vector (APV), Ak, is assigned to guide the learning the k -th

prototype Pk. The APV is adapted according to

Ak = Ak +
1

nkA
· δk · (xn −Ak)Θ(Pk, Ak, xn) (2.23)

where

nkA = nkA + δk ·Θ(Pk, Ak, xn),Θ(a, b, c) =

{
1 if D(a, b) ≤ D(a, c)
0 otherwise

(2.24)

and

δ =

[
D(Pk, Ak)

D(Pk, xn) +D(Pk, Ak)

]
(2.25)

The learning process for Pk is given by

Pk = Pk + αk · (xn − Pk)Θ(Pk, Ak, xn) (2.26)

where

αk =

[
1 +

D(Pk, xn)

D(Pk, Ak)

]−2

(2.27)

The above OPTOC competitive learning paradigm is an effective technique to im-

plement the self splitting and merging clustering.

2.2.7 Ensemble Consensus Clustering

Robustness is one of the desired properties of clustering algorithms, However, there

is no perfect method which always gives the best results for all types of datasets. In

order to enhance the robustness of clustering, the idea of ensemble consensus clustering

has been proposed where the partitioning results of many clustering experiments are

combined [97, 73, 34, 98, 5, 103, 106, 6]. These partitioning results may come from

different clustering algorithms, or same clustering algorithm with different parameters

and initializations, or same clustering algorithm to different re-sampled permutations

of the target dataset. Although cluster ensembles have been regarded as promising

methods, many obstacles have been found while combining results from different ex-

periments. Due to the fact that clustering is unsupervised, one main problem is that

it is not a straightforward task to map a specific cluster from one of the clustering

results to its corresponding cluster from another clustering result. Another problem is

that different clustering results may give different numbers of clusters while the correct

number of clusters in unknown. Consensus function method has been employed as an

essential step in cluster ensembles. For R partitions {U1, ..., UR}, the optimal consensus

partition U∗ is the one which is the most similar to all of them and is mathematically

given by

U∗ = argmax∀P
R∑
j=1

Γ(U,Uj) (2.28)

18

where Γ(·, ·) measures the similarity between any two partitions. This optimization

problem has been noted as an NP-complete problem. There are many methods for

consensus function, including relabelling and voting [6], co-association matrix [37],

hyper- graph methods [97], weighted kernel consensus functions [103], non-negative

matrix factorization [106], greedy algorithms [34], etc. In all of the aforementioned

methods, there are at least three steps to implement the ensemble consensus clustering

as follows:

• Partitions generation: R different clustering experiments are carried out to

generate R partitions. The results of these partitions are all presented in a con-

sistent form known as the partition matrix.

• Relabelling: The clusters in the generated partitions are relabelled such that

the corresponding clusters from different partitions are aligned.

• Final consensus partition matrix generation: The relabelled partition ma-

trices are ”assembled” to generate the final consensus partition matrix.

Among these three steps, Relabelling and Final consensus partition matrix gener-

ation are the most essential parts. An example of relabelling is detailed in the steps

below:

1. A dissimilarity distance matrix SK×K is constructed by calculating the pairwise

distance between the rows (clusters) of the matrix U and the rows of the refer-

ence matrix Uref .

2. The minimum value in each of the columns is found.

3. The maximum value of these minima is identified then the rows (clusters) from

U and Uref which correspond to this similarity value are mapped.

4. The row and the column which show the aforementioned value are deleted from

the similarity matrix.

5. If all of the K rows from U and Uref are mapped, the algorithm terminates,

otherwise it goes back to step (2) with the reduced similarity matrix.

It is suggested that an intermediate consensus partition matrix Uint(k) is initialized

with the values of the first partition U1, and then the other partitions are relabelled

and fused with this intermediate matrix one by one while considering it as the reference

at each step. Mathematically, let Û
r

be the relabelled partition matrix of the partition

Ur and let Uint(k) be the intermediate partition matrix after the k-th stage, i.e. after

19

relabelling and fusing the partitions {U1, ...,Uk}. Let the function Relabel(U, Uref)

denote relabelling the partition matrix U by considering Uref as the reference partition.

Equation 2.14 shows how the intermediate partition matrix can be calculated by the

normal approach and the recursive approach:

Uint(k) =
1

k

k∑
r=1

Û
r

=
1

k
Û
k

+
(k − 1)

k
Uint(k−1) (2.29)

An example of generating the final consensus partition matrix is achieved by fol-

lowing the algorithm shown in the following steps:

1. Uint(1) = U1

2. For k = 2 to R

a.Û
k

= Relabel(Uk,Uint(k−1))

b.Uint(k) = 1
k Û

k
+ (k−1)

k Uint(k−1)

3. U∗ = Uint(R)

2.3 Clustering validation

Since clustering is unsupervised classification, it is more difficult to assess than a su-

pervised approach. Thus, the task of assessing the results of clustering algorithms can

be as important as the clustering algorithms themselves. There are two functional

advantages of employing the clustering validations: firstly, they can validate a clus-

tering algorithm by comparing with other algorithms; secondly, some validity indices

can provide an estimate of the number of clusters, which is crucial information for the

clustering analysis. In this section, we will review two types of the existing clustering

validations including internal evaluating and external evaluating. When internal eval-

uation is used, the assessment is based on the data matrix itself. The cluster structure

possessing higher within-cluster similarity and lower between-cluster similarity is of

better quality. When external evaluation is used, the assessment compares the cluster-

ing results with the ground truth partition of the dataset. The cluster structure that

better matches the ground truth partition is of higher quality.

2.3.1 Internal Evaluation

Bayesian information criterion index (BIC)

The Bayesian information criterion (BIC) has been proposed in [3] and is defined as:

BIC = −ln(L) + vln(n) (2.30)

20

Where n is the number of objects, L is the likelihood of the parameters to generate

the data in the model, and v is the number of free parameters in the Gaussian model.

Smaller BIC value means better clustering performance.

Davies-Bouldin index (DB)

This index DB [21] is defined as:

BD =
1

c

c∑
i=1

Maxi≤j

[
d(Xi) + d(Xj)

d(ci, cj)

]
(2.31)

Were c denotes the number of clusters, i,j are cluster labels, then d(Xi) and d(Xj) are

all samples in clusters i and j to their respective cluster centroids, d(ci, cj) is the dis-

tance between these centroid. Smaller DB value means better clustering performance.

Parametric Validity Index

A parametric validity index (PVI), which employs two tunable parameters α and β to

to control the proportions of objects that are involved in the calculation of the intra-

cluster dissimilarities and the inter-cluster dissimilarities, was proposed in [33]. For

each cluster, three spaces are defined, namely the inner space, the intra outer space

and the inter outer space, representing the objects inside the cluster chosen for the

calculation of both the intra-cluster dissimilarities and the inter-cluster dissimilarities,

the objects inside the cluster chosen for the calculation of only the intra-cluster dis-

similarities, and the objects outside the cluster chosen for the calculation of only the

inter-cluster dissimilarities, respectively. Let N i
k , Naok

, Neok
denote the numbers of

objects in the inner space, the intra outer space and the inter outer space, respectively,

for the kith cluster. The fractions, α and β, are used to control N i
k , Naok

, Neok
, which

can be expressed as

N i
k = dαNke;Naok

= dβNke;Neok
= dβ(N −Nk)e; (2.32)

where Nk is the number of the objects in the kith cluster, N is the number of all

objects in the dataset and d·e is the ceiling operator. Both α and β can be chosen

from the range of (0, 1]. Thus, the inner space is Ak = {aak|a = 1, ..., N i
k}, the intra

outer space is Ba
k = {ba,bk |b = 1, ..., Naok

}, and the inner outer space is Cak = {ca,ck |c =

1, ..., Neok
}. The PVI is obtained by

PV I(K,α, β) =

K∑
k=1

N i
k∑

a=1

(
Deak

Daak

) (2.33)

where

Daak
=

∑Nao
k

b=1 D(aak, b
a,b
k)

Naok

;Deak
=

∑Neo
k

c=1 D(aak, c
a,c
k)

Neok

(2.34)

21

Other Indices

Here we also list five other existing validity indices. The first is the VI [92]. The validity

index VI is the ratio of the inter-cluster separation measures and the intra-cluster scatter

measures, which is mathematically expressed as

VI(K) =

∑K
i=1 Iei∑K
i=1 Iai

(2.35)

where K is the number of clusters. The VI employs Iai , the largest dissimilarity of

the minimum spanning tree (MST) for cluster i, as the intra-cluster scatter and Iei =

minKj=1,j 6=iIeij , where Ieij is the the largest dissimilarity of the MST for cluster i and

cluster j, as the inter-cluster separation.

The second is the DI [29], which is written as

DI(K) = min1≤i≤K [min1≤i≤K [
δ(Ci, Cj)

max1≤k≤K [∆(Ck)]
]] (2.36)

where δ(Ci, Cj) = min||xi − xj ||2 is the maximum distance between cluster i and

cluster j, ∆(Ck) is the largest intra-cluster separation of cluster k. The third is the II

[70], which is written as

II(K) = (
1

K
× E1

EK
×DK)P (2.37)

where E1 =
∑

j ||xj − c||2 where c is the centroid of the whole dataset, EK =∑K
k=1

∑
j∈Ck

||xj − ck||2, DK = maxKi,j ||ci − cj ||2 and power P is constant, which is 2

in our experiments. The fourth is the GI [54], which is expressed as

GI(K) = max1≤k≤K [
(2
∑M

m=1

√
λmk)

2

min1≤j≤K ||ui − uj ||2
] (2.38)

where M is the number of dimensions, λmk are the eigenvalues of the covariance

matrix of the k-th cluster. Note that the closest GI value to zero suggests the best

number of clusters. The fifth is the CH [16] which is given by

CH(K) =
[
∑K

k=1 nk||ck−u||2
K−1]

[
∑K

k=1

∑nk
i=1 ||xi−ck||2
n−K]

(2.39)

where nk is the number of memberships in the cluster k and n is the total number of

the objects.

2.3.2 External Evaluation

RAND

RAND [87] is defined as the probability of correction for the cluster results. It handles

two partition matrices defined as T and Q of the same dataset. T encodes the k known

22

cluster labels and Q records the cluster labels obtained from the algorithms. So the

RAND index w ∈ [0, 1] is then defined as

w =
a + d

a + b + c + d
× 100% (2.40)

where a represents the number of pairs of data points belonging to the same cluster

both in T and in Q, b represents the number of pairs of data points belonging to the

same cluster in T but different clusters in Q, c represents the number of pairs of data

points belonging to different clusters in T but the same cluster in Q, and d represents

the number of pairs of data points belonging to different clusters both in T and in Q.

Note that a RAND value closer to one suggests the better cluster result.

Normalized Mutual Information (NMI)

The NMI of two labeled objects can be measured as:

NMI(X,Y) =
I(X,Y)√
H(X)H(Y)

(2.41)

Where, I(X,Y) denotes the mutual information between two random variables X and

Y and H(X)denotes the entropy of X. X is clustering result while Y will be the true

labels.

Purity

The purity of the clustering solution is obtained as:

Purity =
m∑
j=1

nj
n
Pj (2.42)

were nj is the size of cluster j, m is the number of clusters and n is the total number

of objects. Pj is the purity in cluster j and computed as follows.

Pj =
1

nj
Maxi(n

i
j) (2.43)

The equation is the number of objects in j with class label i.

Entropy

Entropy measures the purity of the clusters class labels. Thus, if all clusters consist of

objects with only a single class label, the entropy is 0. However, as the class labels of

objects in a cluster become more varied, the entropy increases. To compute the entropy

of a dataset, we need to calculate the class distribution of the objects in each cluster

as follows:

Ej =
∑
i

Pijlog(Pij) (2.44)

23

Where the sum is taken over all classes. The total entropy for a set of clusters is

calculated as the weighted sum of the entropies of all clusters, as shown in the next

equation.

E =
m∑
j=1

nj
n
Ej (2.45)

Were nj is the size of cluster j, m is the number of clusters, and n is the total number

of data points.

2.4 Summary

In this chapter, we reviewed some popular clustering algorithms including k-means,

k-medoids and HC. Also five families of cpustering algorithms are summarised and

discussed in one of our conference papers. All these clustering methods here can be

used as the clustering based initialisation for NMF. In chapter 4, 5 and 6, we selected

k-means and FCM as the examples for NMF initialisation and chose RAND as the

measure of the clustering performance. Future works can be done using other clustering

methods and clustering validations. In chapter 7, k-means, k-medoids and HC were used

to analyse the clustering performance of EEG dataset. Also the ensemble clustering

described in section 2.2.7 was applied to get the tight clusters.

24

Chapter 3

Nonnegative Matrix
Factorization

This chapter describes the knowledge of Nonnegative matrix factorisation (NMF), em-

phasis on the topic of both NMF optimization strategies and NMF initialization meth-

ods. Section 3.1 provides a brief concept of NMF and its usages. Section 3.2 reviews

some NMF optimization strategies. Section 3.3 introduces three types of NMF initial-

ization methods saying randomisation-based initialisation, cluster-based initialization

and dimensionality reduction-based initialiszation.

3.1 Introduction

NMF, proposed by [24], is an algorithm based on decomposition by parts that can

reduce the dimensionality of the datasets while keeping the most information about

the datasets. It is different from principal component analysis (PCA) and independent

component analysis (ICA) with the added non-negative constraints. Researchers have

proposed several different algorithms based on the traditional NMF to make improve-

ments such as Least squares-NMF [105], Weighted-NMF [41], Local-NMF [56], and so

on. Here we briefly review the idea of NMF as follows. Given a nonnegative matrix

X = [xij] with m rows and n columns, the NMF algorithm seeks to find nonnegative

factors W = [wij] and H = [hij] such that

X ≈ WH (3.1)

where W is an m× k matrix and H is a k×n matrix. Each column of W is considered

as the basic vectors while each column of H contains the encoding coefficient. k here

is the rank of dimensionality and normally smaller than m and n for the aim of the

dimensionality reduction. All the elements in W and H represent non-negative values.

NMF method has been found to be useful tool in both data compression and data

clustering.

25

Data compression

NMF is distinguished from the other dimensionality reduction methods by its non neg-

ativity constraints. These constraints can lead to a part-based representation rather

than whole-based representation because they only additive rather than subtractive

and combinations. This is the good performance in the applicable fields such as image

compression, text compression and so on. For example, in the image compression, the

figure 3.1 from [23] shows the comparison between NMF basis images and singular value

decomposition (SVD) basis images on the face dataset.

Figure 3.1: Description of NMF and SVD basis vectors on face dataset, from [23]

Both W and its corresponding weights in H are sparse while SVD factors are nearly

whole-based representation which show the whole faces and therefore needs more com-

putations. NMF basis images W can be visualised as the parts of faces and have the

nice interpretation which shows the individual components of the faces clearly (e.g.

ears, noses,mouths and so on). To reach the good compression performance, some

properties including sparsity, orthogonality and error are evaluated.

Also NMF can be used for text mining applications. In this process, a document-

term matrix is constructed with the weights of various terms (typically weighted word

26

frequency information) from a set of documents. This matrix is factored into a term-

feature and a feature-document matrix.

Data clustering

NMF is similar to the traditional vector quantisation and k-means clustering [23]. Also

recently, the equivalence of NMF and spectral clustering has been proved in [14]. NMF

then can be used to facilitate cluster exploration. Brunet et al. compare its clustering

performance with self-organizing map (SOM) and hierarchical clustering (HC) [49] and

concludes that NMF is an efficient method on identifying the gene expression dataset

patterns. After that, a large body of researches has been published to address the anal-

ysis extension and application of clustering performance of NMF in image processing,

signal processing and data mining during the last decade.

Assume that each column in X represents the data points to be analyzed and k ≤
min(m,n) is often assumed as the number of clusters. Each element of H indicates

the confidence value a data point belonging a data cluster. The ith data point is as-

signed to the jth cluster when j = argmaxkl=1hli. On the dual view, an element of W,

Wia(1 ≤ a ≤ k), describes the degree of the point i belonging to the cluster a and

point i is assigned to cluster a of a = argmaxka=1Wia [49]. According to this property

of NMF, we can obtain the cluster label for a given dataset from the W or H value.

3.2 NMF optimization strategies

An important group of NMF research is focused on its optimization strategy, studying

how to find accurate NMF approximations fast for large data size. Typical NMF

approximation approaches are reviewed in [7], for example, alternating least square

algorithms [78], gradient descent algorithms [58], and Lee and Seung’s multiplicative

update rules based on the creation of an auxiliary function for solving the constrained

optimization problem [24, 57]. Among these approaches, the multiplicative update is

perhaps the most popular NMF solver. In section 3.2.1, we review the three standard

algorithms of multiplicative update rule proposed by Lee et.al. which are based on the

different objective functions. In section 3.2.2, we review some other common update

rules including alternating non-negative least squares (ANLS) and gradient descent.

3.2.1 Multiplicative update rule

The first objective function is commonly used which is the euclidean distance between

the dataset X and its approximation X̂ = WH. Here we use the frobenius norm of

the difference ‖X−WH‖F to factorize X into the product of these two non-negative

matrix above. That is, the objective function (difference) of ‖X−WH‖F is minimized,

subject to the constraints of Wia ≥ 0 and Haµ ≥ 0, where 0 ≤ i ≤ m, 0 ≤ a ≤ k and

27

0 ≤ µ ≤ n. The details of the difference F1 is given as follows.

F1 =

√∑
ij (Xij − (WH)ij)

2

m× n
(3.2)

As such, the most popular heuristic solution to the above objective function of NMF

is to use the multiplicative update rule.

Haµ ← Haµ
(WTX)aµ

(WTWH)aµ
; Wia ←Wia

(XHT)ia

(WHHT)ia
(3.3)

where (·)T is the transpose operator. Different setups of W0 and H0 may lead to the

different factorisation results. One traditional strategy is random initialization (RI)

that generates elements of W0 and H0 in a completely random manner [24].

The second objective function is called the divergence or entropy which is given as

follows [24].

F2 =
∑
ij

(
Xijlog

Xij

X̂ij

−Xij + X̂ij

)
(3.4)

To minimise the F2 with respect to the nonnegative factors W and H, the corresponding

multiplicative update rule is introduced [24].

Haµ ← Haµ

∑
iWiaXiµ/(WH)iµ∑

kWka
; Wia ←Wia

∑
µHaµXiµ/(WH)iµ∑

ν Haν
(3.5)

The third objective function is called local nonnegative matrix factorisation (LNMF)

proposed by Li et al. [56]. It adds some constraints on the divergence algorithm. The

details of its objective function are as follows.

F3 =
∑
ij

(
Xijlog

Xij

X̂ij

−Xij + X̂ij

)
+ α

∑
ij

uij − β
∑
i

vii (3.6)

where α and β are some positive constants and u = W TW , v = HHT . The term

”α
∑

ij uij − β
∑

i vii” is added into the objective function in order to minimize the

sparsity and orthogonality of the factors. The update rule of the LNMF for W is

identical to that in equation 3.5 and H is

Haµ ←
√

Haµ

∑
i

Xiµ
Wia

WiaHaµ
(3.7)

The convergence rate of LNMF is slower than NMF but the achieved factors W and H

by LNMF are more localised.

3.2.2 Other update rules

Alternating non-negative least squares (ANLS)

Some successful algorithms are based on alternating non-negative least squares: in

each step of such an algorithm, first H is fixed and W is found by a non-negative least

squares solver, then W is fixed and H is found analogously.

28

Find Wk+1 such that F1(Wk+1,Hk) ≤ F1(Wk,Hk) and

Find Hk+1 such that F1(Wk+1,Hk+1) ≤ F1(Wk+1,Hk)

F1 here is the objective function stated in equation 3.2. The procedures used to solve

for W and H may be the same [18] or different, as some NMF variants regularize one

of W and H. The non-negative least squares solver for W is as follows.

Wia = max
(

0,X
(
Haµ

THaµ

)−1
Haµ

T
)

(3.8)

There are four advantages for ANLS: it is fast, works well in practice, has speedy

convergence and only need to initialize W0.

Gradient descent

The gradient descent is another update rule for NMF to minimise the objective func-

tions. In [18, 17], several gradient-type approaches have been mentioned. The simple

additive update for H that reduces the euclidean distance is as follows.

Haµ ← Haµ + ηaµ
[
(WTX)aµ − (WTWH)aµ

]
(3.9)

where

ηaµ =
Haµ

(WTWH)aµ
(3.10)

As long as ηaµ is sufficiently small, the update rule can converge.

For the divergence F2 in the equation 3.4, the gradient descent for H is as follows.

Haµ ← Haµ + ηaµ

[∑
i

Wia
Xiµ

(WH)iµ
−
∑
i

Wia

]
(3.11)

where

ηaµ =
Haµ∑
i Wia

(3.12)

Again, if ηaµ is small and positive, this update can converge.

3.3 NMF Initialization

3.3.1 Random initialization

Random initialization

The traditional initialization method for NMF is random initialization that generates

elements of the initial factors (W0 and H0) in a completely random manner [24]. This

method is inexpensive and sometimes provides a good first estimation for NMF algo-

rithm. For example, random initialization can achieve a lower error than the other ini-

tialization methods saying PCA-based initialization, fuzzy c-means and Gabor wavelets

[122].

29

Random acol initialization (RAI)

Instead of forming completely random basis vectors of W0, the RAI method [55] forms

each column of W0 by averaging p randomly selected columns of the data matrix X.

For example,

[W0]i =
1

p

∑
j∈Np

[X]j (3.13)

where Np denotes a set of p random integers between 1 and n which is the number of

data points, and [·]i denotes the i-th column of an input matrix. Then, H0 is recorded

randomly. RAI makes more sense to choose the basis vectors from the given dataset

than the random initialization which forms completely random basis vectors. This

method is also inexpensive and sometimes may be better than random initialisation.

Random c initialization (RCI)

This method is similar to random acol initialisation, it forms each column of W0

by averaging p randomly selected columns from the longest columns (2-norm) of the

datasets.

[W0]i =
1

p

∑
j∈Np

max(||[X]j ||2) (3.14)

3.3.2 Cluster-based Initialization

When the output of NMF is used to facilitate cluster exploration, it is natural to con-

duct the initialisation by linking to a clustering algorithm. In this section, we review

the two common cluster-based initialization for NMF saying kmeans-based initializa-

tion and fuzzy c-means-based initialization.

kmeans-based initialisation

k-means based initialization is a member of the clustering-based initialization family for

NMF. It selects the cluster result from k-means clustering algorithm as the initial seed

for NMF. Here we briefly summarize the process of the k-means based NMF algorithm

as follows.

Given the m×n nonnegative matrix X and each column of X represents the data points

which need to be clustered. A is the transpose of the matrix X. In order to avoid the

influence of the initial random values of k-means, we apply k-means clustering on the

matrix A for q times and select the cluster result from q times which has the lowest

within-cluster sums of point-to-centroid distances. The cluster result includes the k

cluster centroids in the k -by-m matrix C and the cluster labels for the data points

(examples) in the n-by-1 vector Idx. The initial values W0 and H0 of NMF then can

be described below.

• The initial basis matrix of NMF W0 is constructed by transposing the cluster

centroids C (i.e. CT).

30

• The initial matrix of NMF H is the k×n matrix which can be obtained from Idx

by the following equation.

Hjl =

{
1 if Idx = j
0 otherwise

(3.15)

where 0 ≤ l ≤ n and 0 ≤ j ≤ k.

Finally, we apply NMF algorithm to X with the initial matrices W0 and H0 obtained

above and calculate the results. The traditional k-means clustering sometimes may not

be suitable for a variety of classification application [109] and certainly is not satisfac-

tory to the domain scientists. Some extensions of the k-means initialization have been

proposed such as spherical k-means initialization [109]. Wild et.al. take advantage of

the spherical k-means because of not only its efficiency and robustness but also the

independent centroids. In [115], Yun et.al also have proposed divergence k-means ini-

tialization which achieves faster convergence for the face recognition task.

FCM-based initialisation

Different with k-means clustering, fuzzy clustering is a concept which characterises the

membership of each data point in all the clusters with a membership function. The

details of FCM algorithm have been discussed in section 2.2.3. We can then obtain the

cluster centroids C = [cij] and the cluster membership U = [uij] from FCM. Similar

to the k-means-based initialization, the initial W0 is constructed by transposing the

cluster centroids C (i.e. CT). The initial H0, proposed by Zheng.et.al [122], is obtained

from the membership U by

Hij =

{
1 if i = argmaxi(Uij)
0 otherwise

(3.16)

That is, the maximum value in each column of U corresponds to 1 in that column of

H0.

Figure 3.2 [122] recorded the error (equation 3.2) during the iterations for each NMF

initialisation methods. The experiment result shows that the error of FCM-based

initialization (i.e. Clustering-based Init) is small and does not change dramatically.

However, in the long-term, the random initialization performs better than FCM-based

initialization. To overcome this problem, M.Rezaei.et.al have also proposed the novel

FCM-based initialisation in which both the initial W0 and H0 are constructed si-

multaneously [88]. Here the initial H0 is directly equal to the membership U . This

FCM-based initialization method gets the better performance compared with the old

FCM initialization [122] and some standard initialisations [88]. As shown in figure 3.3

and 3.4 obtained from [88], the proposed FCM-based intialization outperformed the

old FCM-based initialisation as it can get the lower orthogonality, sparsity and error

at the final iteration.

31

Figure 3.2: Error using different initializations, from [122]

32

Figure 3.3: Comparison of initialisation methods in terms of sparsity and orthogonality.
(a) Comparison of initialisation methods in term of orthogonality and (b) Comparison
of initialisation methods in term of sparsity

Figure 3.4: Comparison of initialisation methods in terms of error

33

3.3.3 Dimensionality reduction-based initialization

3.3.3.1 Standard Dimensionality Reduction Methods

Besides NMF, there are many other dimensionality reduction algorithms proposed

in literatures [35]. With the help of the dimensionality reduction algorithms, high-

dimensional dataset can be efficienty brought down to a small number of dimensions

without a significant loss of information. The main process of the dimensionality re-

duction is to keep the most relevant variables from the original dataset and exploit the

redundancy of the dataset by finding a smaller set of new variables. Here we introduce

the basis idea of three standard dimensionality reduction algorithms saying principal

component analysis (PCA), independent component analysis (ICA) and independent

principal component analysis (IPCA).

Principal Component Analysis (PCA)

PCA is one of the dimensionality reduction method in which the low-dimensional rep-

resentation of the dataset preserves as much of its variation as possible to highlight its

similarities and differences. Since patterns in datasets can not be easily read in terms

of the high dimensions, PCA is also a powerful tool for analyzing dataset clearly. It can

compress the dataset by removing the useless information. This technique has been

used in many fields such as data compression, image compression and so on. Also the

pattern of the dataset can be visualisable when the dimensions are reduced to 1D, 2D

or 3D. Here we review the steps for PCA in details.

STEP1: Dataset for PCA

Given a n× d matrix X = [xij], each row represents the corresponding data point and

each column represents the dimension to be reduced by PCA.

STEP2: Mean subtracted from the dataset

In order to reduce the complexity, the mean obtained from each of the columns (di-

mensions) is subtracted from the elements in X

[Xadjust]i = [X]i − [X̂]i (3.17)

where [X̂]i is the mean across i-th column (dimension). [X]i is the original dataset at

the i-th column. The adjusted dataset Xadjust is the matrix with the zero mean.

STEP3: Obtain the covariance matrix of Xadjust

The formula for the computation of the coveriance between [Xadjust]i1 and [Xadjust]i2

is as follows.

cov([Xadjust]i1 , [Xadjust]i2) =

∑n
j=1[Xadjust]i1j [Xadjust]i2j

n− 1
(3.18)

34

where n is the number of data points. [Xadjust]i1j is the value at i1 − th column

and j-th data point in Xadjust. If the value cov(·) is positive, it indicates that both

dimensions [Xadjust]i1 and [Xadjust]i2 increase together. If the value is negative, then as

one dimension increases, the other decreases. And if the covariance is zero, it indicates

that the two dimensions are independent of each other. The covariance in equation

3.18 is measured between any two dimensions (columns). For the dataset with more

than two dimensions, the d × d covariance matrix CM = [cm]ij is then calculated by

putting all the covariance values between all the different dimensions together. The

formula of the covariance matrix is as follows.

CMd×d = [cm]ij = cov([Xadjust]i, [Xadjust]j) (3.19)

where d is the goal number of column in dataset and there are totally d!
(n−2)!×2 covari-

ance values in the CM . Because of cov(x, y) = cov(y, x) according to the equation

3.18, the covariance matrix CM is symmetrical by the diagonal.

STEP4: Obtain the eigenvectors and eigenvalues of the covariance matrix

As mentioned before, the covariance matrix CM is always symmetric, SVD can be used

to find its eigenvalues and eigenvectors [85]. So we have d normalised eigenvectors:

ek = [e1k; e2k; ...; edk], k = 1, ..., d (3.20)

and their corresponding d eigenvalues:

λ1 ≥ λ2 ≥, ...,≥ λd (3.21)

Here d eigenvectors ek are perpendicular to each other and sorted in the decreasing

order by their corresponding eigenvalues. The first eigenvector e1 which has the largest

eigenvalue identifies the direction with the most variation in the dataset. The second

eigenvector e2 is perpendicular to the first one and captures the direction with the

greatest remaining variation. The third eigenvector e3 is perpendicular to both e1 and

e2 and still captures the direction with the greatest remaining variation and so on. So

with the help of the eigenvectors Ê = (e1, e2, ..., ed) and eigenvalues of the covariance

matrix, we can extract the lines that characterise the dataset.

STEP5: The selection of the dimensionality

One main advantage of PCA is that it can compress the dataset without much loss of

information. Here some eigenvectors with lesser significance can be removed and the

significance of the k-th eigenvector ek can be evaluated as follows.

γk =
λk∑d
i=1 λi

; k = 1, 2, ..., d (3.22)

35

Assume that the dimension is reduced to be m(m ≤ d) (i.e. the first m eigenvectors are

kept as E = [e1, e2, ..., em]), the proportion of the total variance of the these eigenvectors

are

γ̂m =
m∑
h=1

γh =

∑m
h=1 λh∑d
i=1 λi

(3.23)

Then the most significant eigenvectors can be kept and the final dataset will have less

dimensions than the original dataset. For visualisation, normally two or three eigen-

vectors are retained.

STEP6: Calculate the new dataset in terms of the eigenvectors

Xnew = ET [Xadjust]
T (3.24)

(·)T is the transpose of the matrix and each column of Xnew represents the data point.

Xnew we obtained here is the new dataset in terms of our selected eigenvectors and it

has reduced the dimensionality.

The principal components found in PCA are uncorrelated variables constructed as lin-

ear combinations of the original variables and have some desirable properties. But

sometimes that do not necessarily correspond to the meaningful information and may

loss the interpretation.

Independent Component Analysis (ICA)

ICA is another dimensionality reduction method in which the goal is to find a linear

representation of non-gaussian signal so that the components are statistically indepen-

dent. ICA can be treated as the method to remove most of the noise from the signal

(when the noise has a Gaussian distribution). Similar to PCA, ICA [15, 90, 50, 43] will

find the new components in which to represent the dataset. However, different with

PCA, the components in ICA are chosen to be as statistically independent as possible.

Several algorithm such as FastICA [1, 2], kernel-ICA [32] and ProDenICA [99] were

proposed to realise the independent components. Among them, FastICA is the most

popular ICA algorithm which maximises the non-gaussianity to recover all ICs with

low computational load. Here we review the basis knowledge of ICA. Given the n× p
matrix X = [x]ij which is a linear mixture of the independent components, saying

X = AS (3.25)

where S ∈ Rn×p contains the independent components and A is the mixing matrix with

n×n size. The matrix A states the relationship between the independent components S

and the mixture signal X. In order to find the estimated n×p independent components

Y = [y]ij by the recorded matrix X using ICA, the equation 3.25 is re-arranged as

follows.

Y = WX (3.26)

36

where W ∈ Rn×n is the unmixing matrix for which ICA is seeking. The matrix W is

the transpose of A when A is a square and orthonormal matrix. In the FastICA al-

gorithm, PCA is used to pre-whiten the dataset to make the matrix A to be orthogonal.

Independent Principal Component Analysis (IPCA)

Sometimes, PCA and ICA may not be able to extract the significant information from

the internal structure of the dataset and therefore provide meaningless components that

do not correctly describe the dataset characteristics. Yao.et.al. [118] recently proposed

an approach called IPCA which combines the advantage of both PCA and ICA. ICA

used in IPCA is a de-noising process of the eigenvectors produced by PCA. Once the

eigenvectors is denoised, we expect it to be non-gaussianity with no noises included.

The details of IPCA is reviewed as follows [118].

STEP1: Calculate the eigenvectors from PCA

Given the n × p matrix X, PCA is then applied to it to obtain the p × p matrix

Ê = [e1, e2, ..., ep] as described in PCA method. Each column of Ê contains one

eigenvector and in most of the cases, a small number of eigenvectors is chosen to

summarise the information of the dataset. Assume that the first m eigenvectors

E = [e1, e2, ..., em], E ∈ Rp×m are chosen at the first step.

STEP2: Apply ICA on the eigenvectors

The non-gaussianity of E can be maximised by FastICA using equation 3.26 in ICA

method

S = WE (3.27)

where W is the p×p unmixing matrix. The estimated independent components S with

p rows and m columns is then obtained. Each column of S represents the independent

eigenvectors which has the less noise than E.

STEP3: Order the independent eigenvectors S

Different with PCA, the independent components after ICA is unordered. To solve

this problem, there are two classical measurements for ordering, saying kurtosis and

negentropy. In the fastica algorithm, negentropy is used to measure non-gaussianity.

Negentropy equals zero if the estimated independent components are gaussian and is

positive if the independent components are non-gaussian. Here the kurtosis measure-

ment [65] is chosen to order the independent eigenvectors S. All the kurtosis values of

the independent eigenvectors in S are calculated

Kurtosis =
s̃4

σ4
− 3 (3.28)

37

and ordered in the decreasing way to form the ordered independent eigenvectors Ŝ

STEP4: Calculate the new dataset in terms of the independent eigenvectors.

Xnew = ŜT [Xadjust]
T (3.29)

where Xnew is a m× n matrix.

As analysed in [118], it showed that IPCA offers a better visualisation of the datasets

than ICA and with a smaller number of components than PCA. For example, as shown

in figure 3.5 [118], it seems that the first independent principal component of IPCA has

already separate the groups while three principal components are necessary for PCA

to separate ”normal” from ”tumor” on prostate cancer dataset.

Figure 3.5: Prostate cancer study: sample representation using the first two or three
components from PCA, ICA and IPCA, from [118]

3.3.3.2 PCA and ICA based Initialization

PCA-based initialisation

PCA as mentioned in section 3.3.3.1 is one of the common dimensionality reduction

methods and it also has been proved in [122] that it can be used as the initialization

38

method for NMF. Here we review the PCA based initialization method for NMF as

follows [122].

STEP1: Given a n× d matrix X = [x]ij and its transpose A = [a]ij

STEP2: We apply PCA to the matrix A and obtain the n eigenvectors and their

corresponding eigenvalues Ê = [e1, e2, ..., en] and λ1 > λ2 > ... > λn.

STEP3: Assume the rank of dimensionality for NMF is k, then the initial matrix

W0 of NMF is constructed by keeping the first k eigenvectors (corresponding to the k

largest eigenvalues) obtained from PCA as the column vectors. (i.e. W = [e1, e2, ..., ek])

STEP4: The initial H0 is formed by the new dataset in terms of the selected eigen-

vectors W0.

H0 = W T [Aadjust]
T (3.30)

where Aadjust is the centred d×n matrix (the mean of each column has been subtracted).

STEP5: Obtain the nonnegative values of W0 and H0

The sign of W0 and H0 from STEP3 and STEP4 is arbitrary. In order to satisfy the

nonnegative constraint of NMF, all the negative elements in W0 and H0 are converted

to be zero.

W+ = max(0, wij);H+ = max(0, hij) (3.31)

where wij and hij are the elements in W0 and H0 respectively.

STEP6: Apply NMF with the initial values W+ and H+

The reason for using the PCA-based initialization is that PCA gives a proper approxi-

mation to the matrix factorization. Also the equation 3.31 enhances the sparsity of W0

and H0 which can reduce the computational complexity. Zheng.et.al have showed that

PCA-based initialization has the slightly higher error than random initialisation in the

long-term [122]. But its basis images are more sparse and orthogonal. Similar with the

PCA-based initialisation, ICA-based initialization selects the independent components

as the initial W0 and the projections (’coefficients’) as the initial H0.

ICA-based initialization:

ICA is also one of the initialisation methods for NMF. However, before initialization,

the components of ICA need to be considered. Different with PCA, ICA does not

order its components by ’relevance’. Therefore, some authors proposed to order them

either with respect to their kurtosis values, or with respect to their I2 norm, or by

39

using Bayesian frameworks to select the number of components. Here we compare the

kurtosis values of the independent components S obtained from ICA to order the ICs.

The formula is:

K =
s̃4

σ4
− 3 (3.32)

where s̃ is the centered vector (the mean of each column has been subtracted) for one

of the independent components s and σ is the standard deviation for s. The initial

factors W0 and H0 of NMF based on ICA initialization then can be described below.

• The initial matrix W of NMF is constructed by keeping the first k ordered inde-

pendent components (corresponding to the k largest kurtosis values) as column

vectors.

• The initial matrix H of NMF is computed by H = W \X .

With this basis concept, other dimensionality reduction based initialisation methods

have been proposed such as SVD-based initialisation [55] and NNDSVD [12] and so on.

3.3.4 Why initialization

NMF is non convex programming in the iteration process, thus it may lead to the differ-

ent results with the different initial values of W0 and H0. A good initialization method

can improve the speed and accuracy of NMF, as it can produce faster convergence to an

improved local minimum [95]. In this section, we compare two initialisation procedures

(random and random acol initialisations) by testing them on the multipliertive update

algorithm presented in section 3.2.1 to illustrate the importance of NMF initialisation.

Given a 3× 3 matrix as follows: 1 2 3
4 5 6
7 8 9

Random initialisation

The final matrices W under random initialisation after 500 iterations is: 3.5 0.4
6.3 3.3
9.1 6.3

and the final H is: (

0.2 0.5 0.8
0.8 0.5 0.2

)
Random acol initialisation

The final matrices W under random initialisation after 500 iterations is: 0.7 3.2
4.5 4.9
8.3 6.7

40

and the final H is: (
0.7 0.6 0.4
0.1 0.5 0.9

)
The table below shows the comparison between random and random acol initialisation.

Here the error was calculated by equation 3.2 and the sparsity of the matrix W was

obtained according to the equation 6.4. Although the final errors are the same, the

initial error of random acol initialisation is much smaller than that of random initial-

isation. Also the lower sparsity means the lower computational complexity. So the

table 3.1 illustrated that the NMF with random acol initialisation has the better per-

formance than the NMF with no initialisation. This is the simple example to illustrate

the importance of NMF initialisation.

Table 3.1: The comparison between random and random acol intialization

Intializations Intial error Final error Sparsity (W)

random 0.8 0 14.5
random acol 0.4 0 14.2

3.4 Summary

This chapter reviews the knowledge of Nonnegative matrix factorisation, emphasis on

the topic of both NMF optimization strategies and NMF initialization methods. We

reviewed the NMF optimization strategies including multiplicative update rule, alter-

nating nonnegative least squares and gradient descent. Also we reviewed several stan-

dard initialization methods for NMF based on the randomisation, clustering algorithms

and the dimensionality reduction methods. The reason for reviewing is that our pro-

posed research works are based on the NMF initialisation and optimization methods.

We proposed the novelty initialisation methods and optimization strategy for NMF to

improve its performance. The details of the proposed methods are introduced in the

following chapters.

41

Chapter 4

Proposed NMF Initialization
Strategy

This chapter describes two proposed initialization methods for NMF which are based

on clustering and dimensionality reduction algorithms. Section 4.1 introduces the mo-

tivation and contribution summary of our proposed initialisation methods. Section 4.2

and 4.3 introduce the details of two proposed initialisation methods respectively. Works

of this chapter are published in:

Liyun Gong and Asoke K. Nandi, Clustering by Non-negative Matrix Factorization with

Independent Principal Component Initialization. European Signal Processing Confer-

ence, EUSIPCO, 2013. (acceptance rate=62.5%)

Liyun Gong and Asoke K. Nandi, An Enhanced Initialization Method for Non-negative

Matrix Factorization, IEEE International Workshop on Machine Learning for Signal

Processing, MLSP, 2013. (acceptance rate=51%)

4.1 Introduction

Non-negative matrix factorization (NMF) is one of the widely used tools for dimension-

ality reduction, and has been applied to many areas such as bioinformatics, face image

classification, etc. However, it sometimes converges to some local optima because of

its random initial NMF factors (W and H matrices). To solve this problem, some re-

searchers have paid much attention to the NMF initialization problem. Wild proposed

the initialization method based on spherical k-means clustering to initialize W matrix

and apply Nonnegative Least Square (NNLS) to calculate H matrix [109]. Langville

et al. compared the six initialization methods, including random initialization, cen-

troid initialization, SVD-centroid initialization, random acol initialization, random C

initialization, and co-occurrence initialization [55]. Zheng et al. proposed PCA-based

initialization method and, after obtaining W and H, all the negative elements in these

two matrices are changed to zero [122]. For fuzzy c-means clustering (FCM) initializa-

tion in [122], the initial matrix W is obtained by taking the final cluster centroids after

42

FCM algorithm and the initial matrix H is determined by the membership degrees of

FCM in which the largest membership degree of each data point is set to one and the

others to zero. This method was followed by Rezaei et al. who used the membership

degrees of FCM to determine the initial H matrix directly [88]. Zhao et al. used the

absolute value for all elements in the initial matrices W and H after PCA initialization

[121] in contrast to the method in [122]. Boutsidis et al. proposed the initialization

method based on singular value decomposition [12].There are other initialization meth-

ods such as divergence-based k-means clustering initialization, subtractive clustering

initialization and ICA-based initialization and so on. With these initialization meth-

ods, enhanced convergence rates as well as better accuracy can be achieved. Here we

also proposed two initialization methods for NMF which get the better performance

compared with some standard methods.

In section 4.2, we propose an initialization methods for NMF based on the modified

k-means clustering and explore the reconstructive error of the initialised NMF. Since

there are two ways for the FCM-based initialization methods mentioned in section 3.3.2,

k-means initialisation methods can have the different types as well. Here we first apply

the k-means clustering to initialize the factor W0, and then we calculate the initial fac-

tor H0 using four different initialization methods (three standard and one new). The

experiments were carried out on the eight real datasets and the results showed that the

proposed method (EIn-NMF) achieved less error and faster convergence compared with

both random initialization based NMF and the three standard methods for k-means

based NMF.

In section 4.3, we propose an initialization method based on independent principal

component analysis (IPCA) for NMF and explore the clustering performance of the

initialized NMF. As there are some papers for PCA-based and ICA-based initialisa-

tions [122, 119], IPCA-based initialisation for NMF is the new concept in this area.

In the conference, the experiments were carried out on the four real datasets and the

results showed that the IPCA-based initialization of NMF gets better clustering of the

datasets compared with both random and PCA-based initializations. After this publi-

cation, we made some improvements on this conference paper by adding another five

datasets and IPCA-based initialization is compared with ICA-based initialisation as

well. The results show the IPCA-based initialization still can get the best clustering

performance among the standard methods.

4.2 Clustering Based Initialization

In this section, we propose a method to calculate the nonnegative initial matrix H

efficiently in order to enhance the performance of NMF algorithm based on k-means

clustering initialization. We first apply k-means clustering to initialize the matrix W

[109] and use the proposed method to initialize the H matrix (EIn-NMF). These initial

43

matrices are then passed through NMF algorithm and the result will be compared with

both random initialization based NMF and the three standard methods for k-means

based NMF. The experiments were carried out on the eight real datasets from [61] and

the results showed that the proposed method (EIn-NMF) achieved less error and faster

convergence while maintaining the main data structure.

The rest of the section is organized as follows. In Section 4.2.1 we describe the details

of the proposed initialization method (EIn-NMF). The experimental results based on

the five initialization methods (four standards and one new) are evaluated and analysed

in Section 4.2.2. Finally, conclusion is drawn in Section 4.2.3.

Contribution of this section: we propose a new initialization method (EIn-NMF)

for NMF to improve its performance. We also compare four standard initialization

methods which have not been compared and contrasted in the previous literatures.

4.2.1 Method

There are two ways for FCM-based initialisation introduced in section 3.3.2. One uses

FCM for computing matrix H, largest membership degree of each sample is set to one

and others assign to zero. The other one uses FCM for calculating matrix H, the

membership degrees of each sample directly. As FCM-based initialisation has two ways

for computing the initial H, k-means initialisation can also have the different types as

well. Here we propose to use the k-means clustering initialization of W incorporated

with our proposed initialization of H to improve the performance of k-means based

NMF. This initial H is obtained by computing the FCM membership function for each

sample so that each sample can assign to all clusters which increases the clustering

accuracy as well as the accuracy of H. The details of this method are shown below.

Proposed: The initial basis matrix W is constructed by using the cluster centroids

obtained from k-means clustering as described in section 3.3.2. Then we calculate the

membership degrees of each data point by the following equation.

hkq = 1/

[
k∑

k′=1

(
d(xq, ck′)

d(xq, ck)
)2/(1−m)

]
(4.1)

where d(·) represents the Euclidean distance between the two points, xq represents

the q-th data point and ck represents the k-th cluster centroid which is obtained from

k-means. Also, m is the fuzzification parameter which is set to 2 here. hkq is the

membership degree of data point xq assigning to the cluster k. The initial matrix H

is then obtained by using the membership degrees above. This proposed enhanced

initialization method for NMF is termed as EIn-NMF.

4.2.2 Results

Eight datasets used here are from [61] and they are gene expression datasets. Columns

of the datasets corresponding to diagosis (1st column) and genes, and rows correspond-

44

ing to samples. Based on the similar preprocessing method as in [61], we removed the

genes (columns) which vary little across samples (rows) to reduce the computational

complexity. Table 4.1 shows some parameters for preprocessing. ’N ’ represents no op-

eration performed and ’inf ’ represents the infinite value. ’Ratio’, ’Diff.’ and ’Std.’ are

the ratio, difference and standard values between maximum and minimum values of a

gene (column) across samples (rows). We first set all the expression levels within the

defined range. For each dataset, elements below the minimum value of the range were

assigned this minimum value, and those exceeding the maximum value of the range

were assigned this maximum value. Then some genes varying little across samples were

removed according to the three parameters (Ratio, Difference and Standard), that is,

we remove the columns which have the smaller values on Ratio, Difference and Stan-

dard. After preprocessing, the properties of these dataset are presented in Table 4.2.

For simplicity, we use the ’Dataset No.’ shown in Table 4.2 instead of its gene name

for the following discussion.

Table 4.1: The parameters for the preprocessing
Name Range Ratio Diff. Std.

9-Tumors [100,16000] N N N

Brain-Tumors1 [20, 16000] 3 500 N

Brain-Tumors2 [20, 16000] 3 500 N

Leukemia1 [20, 16000] 3 500 N

Lung-Cancer [0, inf] N N 50

SRBCT N N N N

Prostate-Tumor [20, 16000] 5 N N

DLBCL [20, 16000] 3 500 N

Table 4.2: The properties of the final datasets
Dataset No. Name Rows Columns Cluster

1 9-Tumors 60 5726 9

2 Brain-Tumors1 90 4922 5

3 Brain-Tumors2 50 1013 4

4 Leukemia1 72 3621 3

5 Lung-Cancer 203 3312 5

6 SRBCT 83 2308 4

7 Prostate-Tumor 102 3722 2

8 DLBCL 77 4204 2

The experiments were carried out by using above eight datasets, we applied five

different initialization methods denoted by (H1 − −H5) to improve the performance

of NMF. H5 represents the proposed methods. (H1 − −H4) represent four standard

initialisations stated below.

• H1: This is the common method for initializing both the two NMF factors W

45

and H randomly.

• H2: The initial basis matrix W is constructed by using the cluster centroids

obtained from k-means clustering and the initial matrix H is selected randomly.

• H3: The initial basis matrix W is constructed by using the cluster centroids ob-

tained from k-means clustering. The initial matrix H is denoted by H = WTX

and then we get the absolute value for all elements in H in order to satisfy the

initial constraint of NMF.

• H4: The initial basis matrix W is constructed by using the cluster centroids ob-

tained from k-means clustering. The initial matrix H is denoted by H = WTX

and then we set all the negative elements in H to zero in order to satisfy the

initial constraint of NMF.

Each initialization method was run 20 times and the total number of iterations for

each run of NMF was set to 500 in this experiment. Here we calculate the range of

the standard deviation among the total 500 iterations after 20 rounds in table 4.3. It

shows that the standard deviation values are all small enough so that 20 rounds are

sufficient to avoid the influence of randomness. The rank (dimensionality) k for each

dataset here is set to the number of cluster of the corresponding dataset which is shown

in Table 4.2.

Table 4.3: The range of the standard deviation for log2(D)
Dataset No. H1 H2 H3 H4 Proposed

1 [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2]

2 [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2]

3 [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2]

4 [10−3, 10−2] [10−4, 10−2] [10−4, 10−2] [10−5, 10−2] [10−5, 10−2]

5 [10−3, 10−2] [10−3, 10−2] [10−4, 10−2] [10−4, 10−2] ≈ 10−3

6 [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2]

7 [10−7, 10−1] [10−9, 10−2] [0, 10−15] [0, 10−15] [0, 10−15]

8 [10−5, 10−2] [10−5, 10−2] [10−9, 10−4] [10−9, 10−4] [10−8, 10−4]

Figure 4.1-4.8 shows the average log2 value of root-mean-squared residual D (i.e.

reconstructive error D) from these 20 runs of five different initialization methods with

the increasing iteration number. D is the error which is equal to the F1 shown in

equation 3.2 and the lower D log value suggests the better performance for NMF. It is

seen from the eight figures that all the D log values decrease fast in the early iterations

of NMF and become stable at the end. The proposed initialization method H5 always

gets the lower D log values compared with the other four methods on the eight datasets

46

in the short-term. It shows that the D log values in the early iterations obtained by the

five initialization methods always satisfy the inequality D(H1) > D(H2) > D(H3) =

D(H4) > D(H5). The method H1 which initializes both the two NMF factors W and

H randomly has the worst performance of NMF as we expect. The reason is that the

random initialization has nothing to do with the initial factors W and H while the

other four initialization methods already works for NMF algorithm with predefined

factor W (e.g. : H2) or both the two factors (e.g. : H3,H4,H5). So the D log value for

random initialization is the largest. The methods H3,H4 and H5 adds the initiation

process of the factor H, so their D log values are smaller than H2. The methods H2,H3

and H4 start at the similar D log value, however, H3 and H4 need far fewer iterations

to converge than H2 on these eight datasets. From figure 4.1-4.8, we summarize that

the proposed method H5 achieves less error and faster convergence at the beginning of

the NMF iterations compared with the other four standard initialization methods.

Figure 4.1: The average D log values of each of the five initialization methods (Dataset
1)

47

Figure 4.2: The average D log values of each of the five initialization methods (Dataset
2)

Figure 4.3: The average D log values of each of the five initialization methods (Dataset
3)

48

Figure 4.4: The average D log values of each of the five initialization methods (Dataset
4)

Figure 4.5: The average D log values of each of the five initialization methods (Dataset
5)

49

Figure 4.6: The average D log values of each of the five initialization methods (Dataset
6)

Figure 4.7: The average D log values of each of the five initialization methods (Dataset
7)

50

Figure 4.8: The average D log values of each of the five initialization methods (Dataset
8)

We have seen from the previous results that in the short-term, our proposed method

(EIn-NMF) results in the better performance of NMF than the other four standard

initialization methods. This property provides an idea to seek to benefit from the

short-term behaviour for our proposed method (EIn-NMF). We have used the eight

real datasets which already have the predefined rank k (the cluster number). However,

the cluster number is unknown for most of the datasets in reality. For this reason,

we analyze the RMS Residual D under the different dimensionality for each dataset.

Here we calculate the NMF algorithm by using one iteration, because we expect to

investigate the properties of the five methods at the start point of the NMF algorithm

with the different dimensionality. The values of dimensionality for each dataset are

set to {5, 10, 15, ..., [q], q} where q is the row number of the dataset and [q] means the

maximum integer which can be divided by 5 and smaller than q. In order to avoid the

influence of the randomness, each dimensionality value under one initialization method

was run 20 times and the number of iterations for each run of NMF was set to 1. The

two figures below (figure 4.9 and 4.10) show the average RMS residual D values from

these 20 runs of each of the five different initialization methods with the increasing

number of dimensionality.

In these two figures, it can be easily seen that the four standard initialization methods

(H1 − H4) are almost stay at the higher D values while the proposed method H5

keeps deceasing with the increasing dimensionality. For Dataset 1- 3, the last values of

dimensionality are 60, 90 and 50 separately which are the same as their row numbers.

51

This means there is no change on the datasets after NMF algorithm. Only H1 and the

proposed H5 can recognize this at the early iteration of NMF which have the zero D

values at these dimensionality values. For Dataset 4-8 which the last dimensionality

values are not the same as their row numbers, the proposed H5 can still achieve the

relative low D values while the four standard methods cannot. So we conclude the

proposed H5 always outperforms the other four standard initialization methods.

Figure 4.9: The average D values of each of the five initialization methods with the
increasing dimensionality number on Dataset 1-4

52

Figure 4.10: The average D values of each of the five initialization methods with the
increasing dimensionality number on Dataset 5-8

4.2.3 Conclusion

In this section, we have proposed EIn-NMF, an initialization method of the factor H

for k-means based on NMF. Altogether, we also have compared our method with the

other four different standard initialization methods—random initialization based NMF

and three standard initialization methods for k-means based NMF. The experiments

53

were carried out on the eight real datasets from [61] and we assessed the NMF perfor-

mance by the root-mean-squared residual D. The results demonstrate that the proposed

initialization method, EIn-NMF, gets better performance of NMF compared with the

other four standard initialization methods.

4.3 Dimensionality Reduction Based Initialization

Principal component analysis (PCA) and Independent component analysis (ICA) are

two of the most popular dimensionality reduction methods used for visualizing high-

throughput dataset in two or three dimensions. They keep the most information about

dataset in the lower dimensional space so that the similarities within the dataset can be

easily visualized (shown in section 3.3.3.1). Also Yao et al. has proposed independent

principal component analysis (IPCA) which combines the advantages of both PCA and

ICA [117]. It uses ICA as a de-noising process of the basic matrix produced by PCA

to highlight the important structure of the dataset [117].

In this section, we explore the clustering performance of the NMF algorithm, with

emphasis on the dimensionality reduction-based initialization problem. We propose an

initialization method based on independent principal component analysis (IPCA) for

NMF and results are compared with PCA-based initialization [122], ICA-based initial-

ization and random initialization, using the RAND index [87]. The experiments were

carried out on the several real datasets from UCI machine learning repository and the

results showed that the IPCA-based initialization of NMF gets better clustering of the

datasets compared with the other three methods.

The rest of the section is organized as follows. In Section 4.3.1 we describe the proposed

IPCA-based initialization for NMF. Experimental results based on the four initializa-

tion methods (three standard and one new) are evaluated and analysed in Section 4.3.2.

Finally, conclusion is drawn in Section 4.3.3.

4.3.1 IPCA Based NMF

Yao et al. recently proposed an approach called IPCA which combines the advantage of

both PCA and ICA [117]. ICA used in IPCA is a de-noising process of the basic matrix

W produced by PCA. Once the basic matrix W is denoised, we expect it to be non-

gaussian with no noise included. The research in [117] shows that IPCA outperforms

PCA and ICA for solving some real datasets such as prostate cancer and yeast datasets.

Also PCA and ICA have been successfully applied as the NMF initialization [122, 119].

So it is the way to thinking to use IPCA method as the initialization to furthermore de-

noise the initial W and improve the performance of NMF. The details of IPCA-based

initialization method is described as follows.

1. Given the matrix X as that of in NMF, and its transpose is set as A. Apply

54

PCA on the matrix A to generate the basic matrix W (the same as PCA-based

NMF).

2. Implement FastICA algorithm on this matrix W and obtain the independent

basic matrix (independent components) W∗.

3. obtain the matrix H∗ which is calculated by

H∗ = (W∗)−1X (4.2)

4. We take the absolute value for all elements in W∗ and H∗.

5. Apply NMF algorithm with these two initial values and obtain the cluster label

of the given dataset from the final factor H.

4.3.2 Results

The experiments were carried out by using the several datasets shown in Table 4.4. We

applied four different initialization methods — random, PCA-based, ICA-based and

IPCA-based initialization to improve the clustering performance of NMF. In order to

avoid the influence of the randomness, each initialization method was run 20 times and

the total number of iterations for each run of NMF was set to 500 in this experiment.

The rank (dimensionality) k for each dataset is set to be the number of cluster of the

corresponding dataset which is shown in Table 4.4.

Table 4.4: The properties of the datasets
Name Rows Columns Cluster

Balance 625 4 3

Cancer-int 683 9 2

Credit 690 14 2

Dermatology 358 34 6

Diabetes 768 8 2

Iris 150 4 3

Thyroid 215 5 3

Wdbc 569 30 2

Wine 178 13 3

55

Table 4.5: The mean and standard deviation of inital RAND values of different intial-
ization methods (iters=1, runs=20)
Name Random PCA-based ICA-based IPCA-based

Balance 53.0± 1.0 57.1± 0 52.7± 0.8 62.9± 1.4

Cancer-int 50.4± 0.5 58.8± 0 57.1± 5.9 61.6± 0

Credit 50.7± 0.7 52.8± 0 53.0± 2.5 53.6± 0.8

Dermatology 70.4± 0.2 75.8± 0 76.3± 3.8 81.3± 2.4

Diabetes 50.2± 0.3 53.0± 0 51.6± 1.6 53.0± 0.1

Iris 56.4± 0.7 73.5± 0 78.4± 0 78.3± 0

Thyroid 50.2± 1.5 58.7± 0 64.9± 7.2 69.3± 6.2

Wdbc 50.2± 0.2 62.2± 0 55.0± 6.6 61.6± 1.1

Wine 56.2± 0.8 72.5± 0 67.0± 3.0 72.9± 0.9

Table 4.6: The mean and standard deviation of final RAND values of different intial-
ization methods (iters=500, runs=20)
Name Random PCA-based ICA-based IPCA-based

Balance 59.4± 4.4 57.1± 0 59.7± 4.3 63.2± 0.2

Cancer-int 63.5± 4.1 68.5± 0 61.5± 7.0 69.1± 0.1

Credit 51.6± 0.7 53.0± 0 52.3± 0.4 53.0± 0

Dermatology 83.5± 1.7 88.4± 0 87.4± 1.7 89.1± 2.5

Diabetes 53.1± 0.1 53.1± 0 53.2± 0.2 53.2± 0.2

Iris 77.4± 5.3 77.1± 0 80.4± 0 80.6± 0

Thyroid 74.5± 0.9 73.2± 0 73.4± 2.3 75.7± 0.4

Wdbc 67.6± 0.1 67.5± 0 67.5± 0.4 67.7± 0.1

Wine 64.7± 1.1 72.5± 0 68.5± 2.8 72.6± 0.6

Table 4.5 and 4.6 show the mean and the standard deviation of the initial and final

RAND values from the 20 runs respectively. The bold values in the tables represent

the best RAND value for each given dataset. We summarize that:

• IPCA-based initialization achieves the highest average RAND value in the short

term and still remain the highest in the long term on most of the datasets.

• The standard deviation of the RAND values for PCA-based initialization is zero

all times. This is because this initialization method computes the same initial

values of W and H each time.

• The random initialization has nothing to do with the initial values of W and H

while the PCA-based, ICA-based and IPCA-based initialization already works

for clustering with predefined values of W and H, so the initial average RAND

value of random initialization is the smallest on most of the datasets.

• IPCA-based initialization adds the advantage of both PCA and ICA, so its RAND

values are larger than PCA-based and ICA-based initialization.

• Sometimes the random initialization achieves the higher final RAND values than

the PCA-based initialization. This is because NMF algorithm with PCA-based

56

initialization using Euclidean distance measure cannot pull the factorization out

of local minima in these datasets. However, IPCA-based initialization can per-

form well which has the even higher RAND value than random initialization.

Figure 4.11 to 4.19 show the initial and final RAND values at the 1st iteration and

500th iteration from the 20 runs respectively. Also the whole RAND values with the

increasing iterations are recorded.

• We can see that the most of the final RAND values of the random initialization

in credit, dermatology and wine are lower than the other methods.

• In balance and iris datasets, although the PCA-based initialization enhances the

initial values of W and H, it still gets the lower RAND values than the random

initialization after number of iterations. However, the IPCA-based initialization

can solve this problem which has the higher clustering performance than the

random initialization all the time.

• In wdbc dataset, the IPCA-based initialization keeps the highest RAND values

at the head start and maintains this advantage at the end. In this case, IPCA-

based initialization can be used in the short term with the less computational

complexity.

57

0 5 10 15 20
50

55

60

65
balance

Runs

In
it
ia

l
R

A
N

D
 (

%
)

0 5 10 15 20
50

60

70

80
balance

Runs

F
in

a
l
R

A
N

D
 (

%
)

0 200 400 600
50

55

60

65
balance

Iterations

R
A

N
D

 (
%

)

Random Init

PCA−based Init

ICA−based Init

IPCA−based Init

Figure 4.11: The clustering performance of random, PCA-based, ICA-based and IPCA-
based initialization for balance dataset

58

0 5 10 15 20
50

60

70

80
cancer−int

Runs

In
it
ia

l
R

A
N

D
 (

%
)

0 5 10 15 20
50

60

70

80
cancer−int

Runs
F

in
a

l
R

A
N

D
 (

%
)

0 200 400 600
50

55

60

65

70
cancer−int

Iterations

R
A

N
D

 (
%

)

Random Init

PCA−based Init

ICA−based Init

IPCA−based Init

Figure 4.12: The clustering performance of random, PCA-based, ICA-based and IPCA-
based initialization for cancer-int dataset

59

0 5 10 15 20
50

52

54

56

58
credit

Runs

In
it
ia

l
R

A
N

D
 (

%
)

0 5 10 15 20
50

51

52

53

54
credit

Runs
F

in
a

l
R

A
N

D
 (

%
)

0 200 400 600
50

51

52

53

54
credit

Iterations

R
A

N
D

 (
%

)

Random Init

PCA−based Init

ICA−based Init

IPCA−based Init

Figure 4.13: The clustering performance of random, PCA-based, ICA-based and IPCA-
based initialization for credit dataset

60

0 5 10 15 20
65

70

75

80

85
dermatology

Runs

In
it
ia

l
R

A
N

D
 (

%
)

0 5 10 15 20
75

80

85

90

95
dermatology

Runs
F

in
a

l
R

A
N

D
 (

%
)

0 200 400 600
60

70

80

90
dermatology

Iterations

R
A

N
D

 (
%

)

Random Init

PCA−based Init

ICA−based Init

IPCA−based Init

Figure 4.14: The clustering performance of random, PCA-based, ICA-based and IPCA-
based initialization for dermatology dataset

61

0 5 10 15 20
50

52

54

56
diabetes

Runs

In
it
ia

l
R

A
N

D
 (

%
)

0 5 10 15 20
52.8

53

53.2

53.4

53.6
diabetes

Runs
F

in
a

l
R

A
N

D
 (

%
)

0 200 400 600
50

51

52

53

54
diabetes

Iterations

R
A

N
D

 (
%

)

Random Init

PCA−based Init

ICA−based Init

IPCA−based Init

Figure 4.15: The clustering performance of random, PCA-based, ICA-based and IPCA-
based initialization for diabetes dataset

62

0 5 10 15 20
50

60

70

80
iris

Runs

In
it
ia

l
R

A
N

D
 (

%
)

0 5 10 15 20
65

70

75

80

85
iris

Runs
F

in
a

l
R

A
N

D
 (

%
)

0 200 400 600
50

60

70

80

90
iris

Iterations

R
A

N
D

 (
%

)

Random Init

PCA−based Init

ICA−based Init

IPCA−based Init

Figure 4.16: The clustering performance of random, PCA-based, ICA-based and IPCA-
based initialization for iris dataset

63

0 5 10 15 20
40

60

80

100
thyroid

Runs

In
it
ia

l
R

A
N

D
 (

%
)

0 5 10 15 20
65

70

75

80
thyroid

Runs
F

in
a

l
R

A
N

D
 (

%
)

0 200 400 600
50

60

70

80

90
thyroid

Iterations

R
A

N
D

 (
%

)

Random Init

PCA−based Init

ICA−based Init

IPCA−based Init

Figure 4.17: The clustering performance of random, PCA-based, ICA-based and IPCA-
based initialization for thyroid dataset

64

0 5 10 15 20
50

60

70

80
wdbc

Runs

In
it
ia

l
R

A
N

D
 (

%
)

0 5 10 15 20
66.5

67

67.5

68

68.5
wdbc

Runs
F

in
a

l
R

A
N

D
 (

%
)

0 200 400 600
50

55

60

65

70
wdbc

Iterations

R
A

N
D

 (
%

)

Random Init

PCA−based Init

ICA−based Init

IPCA−based Init

Figure 4.18: The clustering performance of random, PCA-based, ICA-based and IPCA-
based initialization for wdbc dataset

65

0 5 10 15 20
55

60

65

70

75
wine

Runs

In
it
ia

l
R

A
N

D
 (

%
)

0 5 10 15 20
60

65

70

75
wine

Runs
F

in
a

l
R

A
N

D
 (

%
)

0 200 400 600
50

60

70

80
wine

Iterations

R
A

N
D

 (
%

)

Random Init

PCA−based Init

ICA−based Init

IPCA−based Init

Figure 4.19: The clustering performance of random, PCA-based, ICA-based and IPCA-
based initialization for wine dataset

4.3.3 Conclusion

Researchers often use random initializations when utilizing NMF. To improve the per-

formance of NMF, we have proposed an initialization method based on IPCA for NMF

in this section. Altogether, we also have explored the NMF algorithm with the three

different initialization methods. The initialization methods are based on random, PCA,

66

and ICA. The experiments were carried out on several real datasets from UCI machine

learning repository and we assessed the clustering performance using the RAND index

[87]. From the experimental results, we see that the IPCA-based NMF can achieve

faster convergence in the datasets. Also we conclude that the proposed IPCA-based

initialization of NMF gets better clustering of the datasets compared with the random,

PCA-based and ICA-based initialization. Here we only compared the four initialization

methods (three standard and one new) together. As there are other good initialization

methods in the literature, comparing these initialization methods would be considered

in the future work.

67

Chapter 5

Proposed NMF Updating
Strategy for Data Clustering

This chapter propose the new evolutionary optimization strategy for NMF driven by

three proposed evolving rules in the solution space, saying NMF rule, firefly rule and

survival of the fittest rule. This proposed update strategy facilitates the clustering

problem by using the system objective functions that make use of the clustering quality

measurement. Work of this chapter is prepared as the following paper.

Liyun Gong, Tingting Mu, Meng Wang, Hengchang Liu and John Y. Goulermas, A

robust nonnegative matrix factorization strategy with adaptive quality control of data

clusters, Pattern Recognition, 2014. (IF=2.632, under review)

5.1 Introduction

Nonnegative matrix factorization (NMF) enables approximation of data vectors by

linear combinations of a small set of nonnegative basis vectors weighted by nonnegative

coefficients. A common approach of clustering analysis is to group the data vectors

based on the resulting coefficients. However, these coefficients are not necessarily to

always present an improved cluster structure. To achieve better use of NMF for data

clustering, this chapter proposes a novel evolutionary strategy to improve the iterative

updating procedure of NMF, aiming at producing higher-quality coefficients that offer

more accurate and sharpened cluster structure. Hybridization of multiple initialization

approaches is enabled to improve the robustness of the solution. Three evolving rules

are designed so that the cluster quality and reconstruction error are simultaneously

improved during the updates. Any measure of clustering performance, e.g., either an

internal one totally replying on the original data or an external one with the assist of

extra information on ground truth partition, is allowed to drive the evolving procedure.

Effectiveness of the proposed method is demonstrated via careful experimental design

and thorough comparatively analysis using nine benchmark datasets.

The rest of the chapter is organized as follows: Section 5.2, the proposed method is

68

described. Experimental results and analysis are provided in Section 5.3.

5.2 Proposed Method

In this work, we propose an evolutionary strategy to improve the iterative updating

procedure of NMF, which is named as ENMF and is aiming at producing higher-quality

basis and encoding coefficient matrices W and H to facilitate the data clustering task.

The algorithm starts from multiple pairs of initialization matrices for the basis and

encoding coefficient matrices, which form an initial candidate set denoted as S0 ={(
Wi

0,H
i
0

)}m
i=1

where
{
Wi

0

}m
i=1

and
{
Hi

0

}m
i=1

are referred as the seed matrices. The

algorithm then evolves, creating an updated candidate set at each iteration, denoted as

St =
{(

Wi
t,H

i
t

)}mt

i=1
for the tth iteration with mt denoting the new candidate number.

In the end, the optimal encoding coefficient matrix and its corresponding basis matrix

are selected from the finally evolved candidate set based on a score function formulated

to suit the data clustering task.

5.2.1 Seed Matrix Generation

To take advantage of the state-of-the-art NMF initialization strategies and to achieve

local improvement of the optimal solution, multiple NMF initialization approaches are

utilized to construct the initial candidate set, which contains various seed matrices of

the basis and encoding coefficient ones:

• The CI approach is first conducted via performing k-means clustering [36]. The

resulting binary cluster membership matrix M is used as H1
0, and the resulting

clustering centroid matrix C as W1
0.

• Similar CI appoaroach is conducted again but via fuzzy c-means (FCM) clustering

[10]. The obtained cluster membership and centroid matrices M and C are used

as H2
0 and W2

0, respectively. In addition, one more candidate is generated by

setting the n× k member degree matrix U = [uij] of FCM as H3
0 and the same

centroid matrix C as W3
0. Here, the degree value uij represents the confidence

value the ith data point belonging to the jthe cluster and satisfies the conditions

of 0 ≤ uij ≤ 1 and
∑k

j=1 uij = 1.

• The RI and RAI approaches are used to generate the two candidates of
(
W4

0,H
4
0

)
and

(
W5

0,H
5
0

)
.

It is worth to note that the proposed NMF updating algorithm is a general method.

The users can freely choose any type and any number of initial candidates to suit their

needs apart from the above ones.

69

5.2.2 Evolving Strategy

In each iteration, three new subsets of candidates S
(M)
t+1 , S

(F)
t+1 and S

(S)
t+1 are generated

from the previous set St, according to three types of evolving rules proposed, namely

the NMF rule, firefly rule and the survival of the fittest rule, respectively. The three

subsets together constitute the updated set St+1 = S
(M)
t+1 ∪ S

(F)
t+1 ∪ S

(S)
t+1 at the (t+ 1)th

iteration. In the following, we explain these rules in detail.

5.2.2.1 Multiplicative rule

This rule is constructed to take advantage of the classical multiplicative update rules

for NMF approximation. It generates the new candidate subset by

S
(M)
1 = Φ1 (S0,X) , (5.1)

for the first iteration and

S
(M)
t+1 = Φ1

(
S

(M)
t ,X

)
, (5.2)

for the (t+ 1)th iteration (t ≥ 1). The operation S′ = Φ1(S,X) takes one set of matrix

pairs S = {(Wi,Hi)}mi=1 and one d×n data matrix X as the input, where each matrix

pair includes one d×k matrix Wi and one n×k matrix Hi, and outputs a set of matrix

pairs denoted as S′ = {(W′
i,H

′
i)}

m
i=1. It is formulated based on Eqs. 3.3 such as

H′i = Hi ◦
(
XTWi

)
�
(
HiW

T
i Wi

)
, (5.3)

W′
i = Wi ◦ (XHi)�

(
WiH

T
i Hi

)
. (5.4)

where ◦ denotes the Hadamard product and � the Hadamard division of two matrices of

the same size, Wi and Hi denote the computed basis and encoding coefficient matrices

for the ith candidate. This rule enables the inclusion of multiple NMF solutions obtained

by the multiplicative update rules, which are driven by the same reconstruction error

minimization but initialized through different ways, e.g., the random and clustering-

based ones, to the final evolved candidate set.

5.2.2.2 Firefly Rule

This rule encourages the generation of new candidate matrix pairs that may contain

higher quality of encoding coefficient matrix than those obtained by the previous mul-

tiplicative rule, in order to facilitate the data clustering task more effectively.

In the first iteration, the firefly rule operates on the candidate subset S
(M)
1 generated

by the multiplicative rule, and further creates another candidate subset by

S
(F)
1 = Φ2

(
S

(M)
1 ,H∗1

)
. (5.5)

The operation S′ = Φ2(S,A) takes a set S = {(Wi,Hi)}mi=1 and an n × k matrix A

as input, while outputs a new set S′ = {(W′
i,H

′
i)}

m
i=1. The corresponding relationship

70

x
x
…
x

o
o
…
o

o
o
…
o

△
△
…
△

☐
☐
…
☐

S0 S1
(M) S1

(M)

S1
(F)

S1
(S)

H1
*

Φ1

Φ3

Initialization! 1st Iteration!

Φ2

Score-based !
selection!

Score-based !
selection!

Φ1

Φ1

Φ1

2nd Iteration!

S2
(M)

Φ1 S1
(F),X()

Φ1 S1
(S),X()

H2
*

o
o
…
o

△
△
…
△

☐
☐
…
☐

S2
(M)

Φ2

Φ3

S2
(F)

S2
(S)

o
o
…
o

△
△
…
△

☐
☐
…
☐

…

Score-based !
selection!

(t+1)th Iteration!

St+1
(M)

Φ1 St
(F),X()

Φ1 St
(S),X()

Ht+1
*

o
o
…
o

△
△
…
△

☐
☐
…
☐

St+1
(M)

Φ2
St+1
(F)

St+1
(S)

o
o
…
o

△
△
…
△

☐
☐
…
☐

Φ3

Φ1

Φ1

Φ1
St
(M)

Φ1 St−1
(F),X()

Φ1 St−1
(S),X()

Ht
*

o
o
…
o

△
△
…
△

☐
☐
…
☐

St
(M)

Φ2
St
(F)

St
(S)

o
o
…
o

△
△
…
△

☐
☐
…
☐

Φ3

tth Iteration!

Figure 5.1: Data flow of the proposed ENMF. The circle, triangle and rectangle symbols

represent candidates derived during the generation of the S
(M)
t , S

(F)
t and S

(S)
t subsets,

respectively.

between its input and output is defined by

H′i = Hi + β exp−γ‖A−Hi‖2F (A−Hi) , (5.6)

W′
i =

{
W̃i, if

∥∥∥X− W̃iH
′
i
T
∥∥∥2

F
<
∥∥∥X−WiH

′
i
T
∥∥∥2

F
Wi, otherwise.

(5.7)

In the above equations, 0 < β ≤ 1 and γ > 0 are parameters set by the user, and the

matrix W̃i is computed by

W̃i = max

(
0,X

(
H′iH

′
i
T
)−1

H′i

)
, (5.8)

where the operation max(0, ·) sets all the negative elements of the input matrix to

zero. The n × k matrix H∗1 used in Eq. (5.5) is selected through searching within the

71

combined set of S
(M)
1 ∪ S0 based on a predefined score function O(·) for assessing the

cluster quality according to the corresponding encoding coefficient matrices. This is

given as

H∗1 = arg max
(W,H)∈S0∪S(M)

1

O(H). (5.9)

Letting u = β exp−γ‖A−Hi‖2F , Eq. (5.6) becomes

H′i = (1− u)Hi + uA. (5.10)

Since 0 < u ≤ 1, it is obvious that, when Hi and A are both non-negative, H′i is

non-negative. Also, W̃i is always nonnegative according to its design. These guarantee

that the generated matrix pairs (W′
i,H

′
i) are eligible to be used as NMF candidates.

Eq. (5.6) drives those encoding coefficient matrices {Hi}mi=1 generated by the mul-

tiplicative rule to move towards a pre-selected one H∗1 that can best serve the clustering

task. This design is motivated by a recent evolutionary optimization algorithm inspired

by the flashing behaviour of firefly, known as firefly algorithm [112]. The algorithm as-

sumes that attractiveness between fireflies is proportional to their brightness, thus,

given any two fireflies, one will move towards the other that glows brighter. However,

such attractiveness decreases when the distance between two fireflies increases. Fol-

lowing Eq. (5.6), each candidate in S
(M)
1 is viewed as a firefly. The quality of the

encoding coefficient matrix for each candidate, evaluated by the score function O(·),
represents the brightness degree of the firefly. The evolving rule is constructed by let-

ting all the fireflies move towards the brightest one in each iteration. The exponential

term β exp−γ‖H
∗
1−Hi‖2F forces the attentiveness towards the brightest firefly to decrease

as the relative distance increases. This procedure offers opportunity to evolve higher

quality of encoding coefficient matrices to better serve the data clustering task.

Eq. (5.7) computes the basis matrix W′
i from the updated encoding coefficient

matrix H′i. The design is based on the alternating least squares algorithm for NMF [19,

55, 93], which updates the basis matrix based on the current encoding coefficient matrix

through first solving the unconstrained reconstruction error minimization problem of

min
W

∥∥∥X−WH′i
T
∥∥∥2

F
, (5.11)

by setting its derivative equal to zero, and then modifying the resulting matrix by

converting all its negative elements to zero. This procedure gives the matrix W̃i.

However, the modification step of converting the negative elements to zero potentially

raises the risk of obtaining undesired reconstruction error. An alternative setup of W′
i

is to employ the original one Wi as generated by the multiplicative rule, given the fact

that the basis matrix does not affect directly the data cluster structure. In Eq. (5.7),

we choose between W′
i and Wi the one possessing the smaller reconstruction error to

prevent the proposed evolving procedure from heavy sacrifice of data representation

accuracy to compensate the cluster quality.

72

From the second iteration, the firefly rule starts to create new candidate subset S
(F)
t+1

by operating on its previously generated subset S
(F)
t . The operation includes two steps,

which first modifies S
(F)
t by the multiplicative rule Φ1, and then updates the resulting

set based on the firefly updating procedure Φ2. This gives the following new candidate

subset for the (t+ 1)th iteration (t ≥ 0):

S
(F)
t+1 = Φ2

(
Φ1

(
S

(F)
t ,X

)
,H∗t

)
, (5.12)

where

H∗t = arg max
(W,H)∈St∪Φ1(St X)

O(H). (5.13)

Here, instead of directly updating S
(F)
t with Φ2, the multiplicative rule is used to

smoothen out the given candidates, which may potentially reduce the reconstruction

error. To select the best H∗t matrix, a combined set of the previous candidates St

and their modified version of Φ1 (St X) by the multiplicative rule is used. The used

of a mixture of Φ1 and Φ2 attempts to evolve matrix paris offering good quality of

encoding coefficient matrix while alternatively ensuring the joint quality of the basis

and encoding coefficient matrices.

5.2.2.3 Survival of the Fittest Rule

This rule ensures the candidates containing the best encoding coefficient matrix are

always included in the evolved set. At the first iteration, the candidate subset S
(S)
1 is

generated by

S
(S)
1 = Φ3

(
S

(M)
1 ,H∗1

)
, (5.14)

After that, it modifies its previously generated subset S
(S)
t by

S
(S)
t+1 = Φ3

(
Φ1

(
S

(S)
t ,X

)
,H∗t

)
. (5.15)

Here, the operation S′ = Φ3(S,A) creates m+1 matrix paris S′ = {(W′
i,H

′
i)}

m+1
i=1 from

the input set S = {(Wi,Hi)}mi=1. It generates the first m pairs by

H′i = A, (5.16)

W′
i = Wi. (5.17)

For the last pair, its encoding coefficient matrix is generated by Eq. (5.16), while its

basis matrix by

W′
m+1 = max

(
0,X

(
AAT

)−1
A
)
. (5.18)

This rule combines the best encoding coefficient matrix H∗t selected in each iteration

with various basis matrices. Eq. (5.16) can be viewed as a special case of Eq. (5.6)

with the fixed parameter u = 1. This is equivalent to forcing all the weaker fireflies

to eliminate themselves but let the brightest one to survive, thus the rule is named as

73

the survival of the fittest. To combine H∗t with all the possible basis matrices by Eqs.

(5.17,5.18), instead of only ones providing smaller reconstruction errors by Eq. (5.7),

acts under a similar motivation as that of the genetic operator mutation in evolutionary

optimization. It attempts to introduce new candidates by altering the basis matrix of

the strongest one to avoid being trapped in a local optimum.

5.2.3 Score Function

Since the primary goal of this work is to improve NMF so that it can serve better the

data clustering task, it is natural to formulate the score function as a cluster validity

measure [25, 62] that assesses the cluster quality. When internal evaluation is used,

the assessment is based on the data matrix X itself. The cluster structure possessing

higher within-cluster similarity and lower between-cluster similarity is of better quality.

In this case, the Davies-Bouldin index [21] for example can be directly used as the score

function. When external evaluation is used, the assessment compares the clustering

results with the ground truth partition of the data, for which the cluster structure that

better matches the ground truth partition is of higher quality. Correspondingly, the

RAND index [87] for example can be used as the score function, which computes the

percentage of the correct data partition offered by the clustering result as compared to

the ground truth partition.

The overall data flow of the proposed ENMF is shown in Fig. 5.1. Assuming q pairs

of seed matrices are included in the initial candidate set S0, there will be q, q and q+ 1

candidates generated respectively in S
(M)
t , S

(F)
t , and S

(S)
t at each iteration, leading to

in total no more than 3q + 1 candidates in each iteration as S
(M)
t ∪ S

(F)
t ∪ S

(S)
t . It can

be seen from Fig. 5.1 that the operation Φ1 based on the multiplicative rule is used

to bridge between iterations aiming at generating candidates that are able to converge

to an NMF solution driven by the reconstruction error minimization. Additionally, the

operations of Φ2 and Φ3 based on the firefly and survival of the fittest rules aim at the

local improvement of the candidates to produce better quality of data clusters within

each iteration. Specifically, Φ2 moves the the encoding coefficient matrices generated

by the multiplicative rule towards a best one selected based on a pre-defined score

function, while Φ3 ensures the best selected encoding coefficient matrix is included in

the updated candidate set. The score function assesses the cluster quality so that the

output of NMF is able to serve better the data clustering task.

5.3 Experimental results and analysis

Experimental evaluation is conducted with nine benchmark classification datasets from

UCI machine learning repository, including balance scale, breast tissue, breast cancer

Wisconsin diagnostic (WDBC or cancer), breast cancer Wisconsin original (BCWO

74

Table 5.1: Details of the datasets used.
Datasets Instances (n) Features(d) Classes (k)

Balance 625 4 3
Breast 106 9 6
WDBC 569 30 2
BCWO 683 9 2
Dermatology 358 34 6
Glass 214 9 6
Haberman 306 3 2
Iris 150 4 3
Thyroid 215 5 3

Table 5.2: Performance comparison for different datasets in RAND, which is reported
in percentage (%). The best performance is highlighted in bold, and the second best is
underlined.

Method BalanceBreastWDBCBCWODermatologyGlassHaberman Iris Thyroid

K-means 59.7 71.9 75.2 92.4 70.5 69.0 50.5 83.3 74.1
FCM 58.6 66.3 75.2 91.6 70.8 71.8 50.7 88.3 72.6

NMF-CI1 63.8 72.0 75.2 92.4 71.1 70.4 50.4 88.2 78.1
NMF-CI2 65.9 68.7 75.2 91.6 70.8 71.8 50.7 88.3 73.6
NMF-CI3 65.6 69.6 72.7 63.9 80.7 72.5 50.9 93.5 76.4
NMF-RI 65.7 64.5 71.1 68.3 85.6 69.5 50.4 81.5 76.2
NMF-RAI 64.8 57.6 69.2 68.0 86.1 69.4 51.9 81.1 74.6
NMF-MIX 65.9 71.4 75.2 92.4 85.9 72.5 51.8 93.5 78.2

ENMF-CI1 66.0 72.0 75.2 92.4 73.3 70.7 50.4 88.2 78.1
ENMF-CI2 67.3 68.7 75.2 91.6 70.8 71.8 50.7 88.3 73.6
ENMF-CI3 81.2 67.9 76.7 93.5 82.0 72.3 50.5 93.5 83.5
ENMF-RI 73.9 75.2 74.3 71.1 85.5 69.7 54.7 86.2 79.5
ENMF-RAI 73.2 73.9 69.3 70.1 86.9 69.3 54.0 85.6 77.5
ENMF-MIX 76.0 72.9 77.1 93.5 86.2 72.7 55.0 95.6 83.5

or cancer-int), dermatology, glass identification, Haberman’s survival, iris and thyroid

disease. The characteristics of all the datasets are summarised in Table 5.1, where

the first word or the abbreviation of the data name are used to refer each dataset.

The clustering performance is assessed through external evaluation, comparing the

computed cluster partition with the ground truth class partition based on the RAND

index. For data preprocessing, a scalar ‖minxij‖ is added to the input data matrix X

when it contains negative elements.

5.3.1 Experimental Setup

In order to thoroughly and fairly compare our proposed NMF updating strategy with

the state-of-the-art one, meanwhile to investigate effects of different NMF initialization

approaches, the following experiments are conducted.

To compare the proposed ENMF with the classical multiplicative update [24], the

75

Table 5.3: Performance improvement of ENFM over NMF under different initialization
approaches.

Balance Breast WDBCBCWODermatology Glass Haberman Iris Thyroid t-test

CI1 +2.2% 0% 0% 0% +2.2% +0.3% 0% 0% 0% 0.0898
CI2 +1.4% 0% 0% 0% 0% 0% 0% 0% 0% 0.0275
CI3 +15.6% −1.7% +4.0% +29.6% +1.3% −0.2% −0.4% 0% +7.1% 1.0336
RI +8.2% +10.7% +3.2% +2.8% −0.1% +0.2% +4.3% +4.7% +3.3% 0.8901

RAI +8.4% +16.3% +0.1% +2.1% +0.8% −0.1% +2.1% +4.5% +2.9% 0.8534
MIX+10.1% +1.5% +1.9% +1.1% +0.3% +0.2% +3.2% +2.1% +5.3% 0.4732

results are examined under each of the five initialization approaches including RI, RAI

and three types of CI based on the membership matrix of k-means (CI1), the mem-

bership matrix of FCM (CI2) and the member degree matrix of FCM (CI3). Every

initialization approach is run five times, generating five pairs of encoding coefficient

and basis matrices. For ENMF, these five pairs are used as the initial candidates to

start the algorithm. By splitting the dataset into two separate sets for training and

test purposes, the RAND index computed with the training set is used as the the score

function to drive the evolving of ENMF, while the RAND index computed with the

test set is used to report the performance. For standard NMF based on multiplicative

update, the same five matrix pairs are used to initialize the updating procedure, leading

to five solutions of NMF. The one possessing the highest RAND index computed with

the training data is selected to report the RAND performance with the test data. In

order to compare the general performance, five runs of k-fold (k = 4) cross validation

(CV) has be performed, which repeats the aforementioned procedure 4× 5 = 20 times

based on different random training-test partitions of the data. In the end, an average

RAND index is computed over the 20 sets of test data and is reported as the final

performance. In the end, the results are also examined using a mixture of all the five

initialization approaches (MIX). Five pairs of initial coefficient and basis matrices are

generated by running each of the five initialization approaches once. Then, the same

procedure as described above is used to evaluate the ENMF and NMF. The number

of basis vectors k is set as the cluster number for both NMF and ENMF. The ENMF

parameters are set as γ = 1
maxi ‖A−Hi‖2F

and β = 1. The iteration numbers for NMF

and ENMF updates are both fixed as 500 in all experiments.

5.3.2 Results and Analysis

Table 5.2 compares the NMF with multiplicative update and the ENMF with the

proposed evolutionary update, under different initialisation setups of CI1, CI2, CI3,

RI, RAI and MIX as explained in previous section. It can be seen that the best

performance for each dataset is always obtained by ENMF. For more clear identification

of performance improvement of ENMF over NMF, we summarize in Table 5.3 the

76

performance difference of ENMF−NMF under different initialization setups. It can be

seen that, in Table 5.3, out of the 60 entries, there are 5 negative ones, 16 zeros and

39 positive ones. For 65% of the cases, ENMF performs better than NMF by between

0.2% and 29.6%, for 27% of the cases, the two methods achieve the same performance,

while for 8% of the cases, ENMF performs worse than NMF by between 1.7% and 0.1%.

For some cases, ENMF significantly improves NMF by over 8%. We also calculated

the t-test values to illustrate the significant difference between NMF and ENMF with

CI1-3, RI, RAI and MIX. It shows that ENMF with CI3, RI, RAI and MIX have the

significant difference according to the large t-test. Among them, ENMF with MIX has

the positive performance improvement for all the datasets. Therefore, we can conclude

that ENMF with MIX significantly outperforms the NMF with MIX for these datasets.

As shown in Table 5.2, performance of ENMF and NMF initialized with one single

approach is often affected by the used approach. There is no superiority of one initial-

ization approach over the other given different datasets. This leaves extra effort to the

user in terms of choosing an appropriate initialization setup. A mixed initialization

that automatically takes advantage of different approaches is used for ENMF, which

leads to better performance for most datasets. This shows the advantages of hybridiza-

tion. When ENMF employes similar seed matrices, e.g., those obtained by CI1 and

CI2, they do not motivate the evolving procedure to generate better candidates than

NMF, exemplified by those zero improvements in Table 5.3. Differently, random ini-

tialization, such as RAI and RI, offers solutions of varying quality. They help to avoid

the local optimum by preventing the generation of candidates that are too similar to

each other, however, may lead to unsatisfactory convergence without sufficient number

of iterations due to its weakness at seed quality control. By initialize the ENMF with

a mixture of different types of seed matrices, their quality and diversity are balanced,

thus are able to evolve solutions possessing more significant performance improvement,

as shown in the last row of Table 5.3.

In Figure 5.2–5.10, we compare convergence of ENMF based on the mixed initial-

ization using RI, RAI, CI1, CI2 and CI3 and the NMF multiplicative update initialized

by different approaches of RI, RAI, and the best one from CI1 to CI3 (referred as CI

in the figure), for different datasets. The RAND performance is computed with the

test data. It can be seen that ENMF always provides the best clustering performance,

meanwhile it offers significantly faster convergence rate than NMF with RI and RAI for

many datasets. It is observed that, for NMF initialized with the output of a clustering

algorithm, the quality of the clusters indicated by the encoding coefficient matrix H

never improves over the update for almost all the datasets apart from balance and der-

matology. The combination of NMF and clustering based initialization is only worthy

when the later NMF update is able to improve the cluster quality. Otherwise, one can

just directly apply the clustering algorithm on its own to save the extra computational

77

cost consumed in the NMF update. Differently, ENMF initialized by a mixture of dif-

ferent approaches significantly improves the clustering performance over iterations and

also converges fast for almost all the datasets.

Given the input data, ENMF evolves the factorization matrices that best serve the

clustering task, by considering both the reconstruction error and cluster quality within

its update. Starting from q pairs of seed matrices, no more than 3q + 1 candidates

are generated by ENMF in each iteration. Correspondingly, NMF with multiplicative

update that selects the best solution given q different initialization matrices requires

the generation of q pairs of W and H matrices in each iteration. Among the ENMF

candidates, the q candidates generated by the multiplicative rule consumes exactly the

same cost as that by NMF. The additional cost of ENMF is consumed by the those

candidates generated by the firefly and survival of the fittest rules.

78

0 50 100 150 200 250 300 350 400 450 500
50

55

60

65

70

75

80

85

90

Iterations

R
A

N
D

 (
%

)

ENMF

CI

RI

RAI

Figure 5.2: The accuracies of the corresponding testing dataset for balance (ENMF-
MIX)

79

0 50 100 150 200 250 300 350 400 450 500
45

50

55

60

65

70

75

80

85

90

Iterations

R
A

N
D

 (
%

)

ENMF

CI

RI

RAI

Figure 5.3: The accuracies of the corresponding testing dataset for breasttissue (ENMF-
MIX)

80

0 50 100 150 200 250 300 350 400 450 500
50

55

60

65

70

75

80

85

Iterations

R
A

N
D

 (
%

)

ENMF

CI

RI

RAI

Figure 5.4: The accuracies of the corresponding testing dataset for cancer (ENMF-
MIX)

81

0 50 100 150 200 250 300 350 400 450 500
50

60

70

80

90

100

110

Iterations

R
A

N
D

 (
%

)

ENMF

CI

RI

RAI

Figure 5.5: The accuracies of the corresponding testing dataset for cancerint (ENMF-
MIX)

82

0 50 100 150 200 250 300 350 400 450 500
70

72

74

76

78

80

82

84

86

88

90

Iterations

R
A

N
D

 (
%

)

ENMF

CI

RI

RAI

Figure 5.6: The accuracies of the corresponding testing dataset for dermatology
(ENMF-MIX)

83

0 50 100 150 200 250 300 350 400 450 500
65

66

67

68

69

70

71

72

73

74

Iterations

R
A

N
D

 (
%

)

ENMF

CI

RI

RAI

Figure 5.7: The accuracies of the corresponding testing dataset for glass (ENMF-MIX)

84

0 50 100 150 200 250 300 350 400 450 500
50

51

52

53

54

55

56

57

58

Iterations

R
A

N
D

 (
%

)

ENMF

CI

RI

RAI

Figure 5.8: The accuracies of the corresponding testing dataset for haberman (ENMF-
MIX)

85

0 50 100 150 200 250 300 350 400 450 500
55

60

65

70

75

80

85

90

95

100

105

110

Iterations

R
A

N
D

 (
%

)

ENMF

CI

RI

RAI

Figure 5.9: The accuracies of the corresponding testing dataset for iris (ENMF-MIX)

86

0 50 100 150 200 250 300 350 400 450 500
45

50

55

60

65

70

75

80

85

90

95

Iterations

R
A

N
D

 (
%

)

ENMF

CI

RI

RAI

Figure 5.10: The accuracies of the corresponding testing dataset for thyroid (ENMF-
MIX)

5.4 Conclusion

We have proposed a new strategy for conducting NMF so that the resulting encoding

coefficient matrix H is capable of representing better quality of data cluster structure.

Three rules have been designed, of which the first rule inherits the classical multiplica-

tive update, while the other two rules are driven by preserving stronger candidates

87

offering higher quality of clusters and meanwhile incorporating their altered versions

to avoid local optimum, inspired by the evolutionary optimization algorithm of firefly.

Any measure for assessing clustering performance can be used as the score function to

drive the evolving procedure. The proposed framework is a very general one, which

can also be applied to improve NMF applications to other data analysis task by setting

appropriate score function. For example, measures of compression rate, data sparsity

and reconstruction error can be used for data compression task. Experimental results

have demonstrated the superior performance of the proposed method over the existing

ones for data clustering evaluated with nine benchmark datasets.

88

Chapter 6

Proposed NMF Updating
Strategy for Data Compression

This chapter propose an evolutionary optimization strategy for NMF to the image

datasets driven by three proposed movement schemes in the solution space, saying

original movement, beta movement and best movement. Since we aim at producing

NMF output that facilitates data compression, these movements are guided by the

objective functions that makes use of the compression quality measurements saying

sparsity, orthogonality and error. To increase the rate of convergence, a hybrid initial-

isation approach is used by including the state-of-the-art NMF initialization methods

as seed knowledge, such as k-means based initialization and fuzzy c-means based ini-

tialization. These are to be combined with multiple types of random initialization.

There is no limitation for the number and the type of the initialization methods used

for the proposed optimisation approach. Experiments were carried out using Yale and

ORL image datasets and the results have shown that the proposed NMF evolutionary

optimization strategy significantly improves the data compression performance as com-

pared to the other existing initialized NMF methods. Work of this chapter is prepared

as the following paper.

Liyun Gong, T. Mu and Al-Nuaimy Waleed, Evolutionary nonnegative matrix factor-

ization for data compression, European Conference on Machine Learning and Principles

and Practice of Knowledge Discovery in Databases, 2015. (to be submitted)

6.1 Introduction

In this chapter, an evolutionary optimization strategy based on NMF is proposed as

the main core to solve the data compression problem. Based on the traditional NMF,

the initial values of the parameter of NMF are set as random values. However, this is

not the most effective setup. Many algorithms have been proposed to obtain the initial

values of W and H in a more sophisticated way to improve the rate of convergence.

With these initialization methods, enhanced convergence rates as well as better accu-

89

racy can be achieved.

Due to the sensitivity to the initial values of parameters of NMF from the different ini-

tialization methods, different compression results may be obtained for a given dataset.

It is challenging to choose an appropriate NMF initialization scheme for a given data

compression task. Instead of choosing one particular initialization scheme, we propose

a different NMF algorithm that allows an evolutionary optimisation procedure, starting

from different initialization candidates in the solution space and effectively converging

along multiple directions, in order to obtain better quality of data compression.The

proposed evolutionary optimisation strategy is general, and there is no limitation for

the number and the type of the initialization methods used in the optimization. About

evolutionary optimisation, there has been a rich literature over the past decades. One

classical method is genetic algorithm (GA) [96, 108] that solves search and optimization

problem by the principles of natural evolution. It starts with a random population of

solutions. The solution evolution is then processed through successive iterations by the

fitness evaluation such as crossover and mutation operation. At the end of the evolu-

tion, the algorithms converge to the best solution, which may represent the optimal

solution to the given problem. Firefly algorithm (FA) is another method which has

been proposed by Yang et al ([112]). recently. Different with GA, this algorithm is to

find the optimal solution of the problem based on the behaviour of fireflies. Each firefly

represents a solution to a specific optimization problem, and it is attracted by the other

brighter neighbouring fireflies at each iteration step. The brightness is defined by the

objective function and the attractiveness decreases as their distance increases.

The proposed evolutionary optimization strategy takes advantages of properties of both

GA and FA. It selects the superior and eliminates the inferior as that of GA, while al-

lows each candidate solution to move along a specific direction by following the FA rule.

In each iteration, the candidate updating rules are mainly driven by the classical NMF

updates with the consideration of data compression quality measure. Such a design

leads to not only good convergence of NMF but also good quality of data compression.

The experiments were carried out on Yale and ORL image datasets and we compare

our proposed optimization strategy with some standard initialized NMF methods by

sparsity, orthogonality, error and RAND index.

The rest of the chapter is organized as follows. In Section 6.2, the proposed optimiza-

tion strategy in the field of data compression is described. Experimental results based

on these methods are evaluated and analyzed in Section 6.3. Finally, Conclusion is

drawn at the end of this chapter.

90

6.2 Proposed evolutionary optimization strategy on data
compression

Here we proposed an evolutionary optimization strategy to improve the data compres-

sion performance of the initialized NMF methods. Each pair of initial factors (W, H)

obtained from each initialization method is updated through successive iterations (gen-

erations) under the support of NMF method and three proposed movement methods,

saying original movement, beta movement and best movement. After several genera-

tions of evolution, the algorithm converges to the best solution which has the best data

compression performance. The general structure of the proposed methods is shown in

figure 6.1.

Assume that q initialization methods as the seeds are applied to our proposed method

evolutionary optimization strategy. ”x” here represents one pair of the initial factors

(W, H) obtained from one of q initialization methods. ”o”, ”4” and ”�” repre-

sents the pairs of the factors (W, H) moved under original movement, best movement

and beta movement process separately. We first obtain q pairs of the initial factors

(W, H) from q different initialization methods. Then there are two main processes

at each iteration for the proposed evolutionary optimization strategy. One process is

to apply multiplication update rule once to all the factors by equation 3.3. That is,

to update each factor once by NMF method and it is followed by applying the three

proposed movement methods to the factors to update the current W solutions. Our

proposed method is different from GA with the fitness evolution which is designed to

be more suitable for NMF update in data compression area compared with crossover

and mutation in GA. Also the property of the movement method in FA is inducted

and re-designed to be available for the beta movement method. The flow chart of our

proposed evolutionary optimization method is shown in figure 6.2. In this chapter, we

explore the data compression performance of the initialized NMF which is associated

to the factor W. So the movement methods are applied to W value while keeping the

same value for H during the process. We describe each proposed movement method

for W in details in the following sections.

91

Figure 6.1: The general process of the proposed evolutionary optimization strategy

92

Figure 6.2: The flow chart of the proposed evolutionary optimization strategy

6.2.1 Original movement for W

The original movement is the basic movement which just keeps the original factors

from the previous step. That is, there is mathematically no movement for the factors

during this movement. The process is supervised by ”o” in figure 6.1. It starts with q

pairs of the initialized factors (W,H) from q initialization methods. At each iteration,

NMF update rule is applied once to all these pairs according to the equation 3.3 and

then no movement after that. This process is the same as the NMF method which

starts by the same pairs of initializing factors (W,H) and these pairs are iteratively

updated to minimize the equation 3.2. For each step, we find one best W solution which

has the highest compression performance according to the objective function from three

proposed movement methods. The original movement is added in the process so that the

basic initialized NMF is always taken into the consideration. That is, the compression

performance of the initialized NMF is kept by the original movement while the other

two movements are applied to re-arrange the factors. The best W solution will be

93

found at each iteration which is always equal or even better than the solutions from

the basic initialized NMF. As many initialization methods for NMF has been proposed

in literature, choosing the best one for a given dataset would be the challenging task.

Our proposed original movement can solve the problem by automatically selecting the

best solution among several initialization methods.

6.2.2 Beta movement for W

During each step of FA, for any two solutions, one solution will move towards to the

other solution that has the better objective value. Here we select this property and

make modification on it to match our evolutionary optimization strategy method. The

proposed beta movement is shown as follows.

Wtbeta
s = Wt

s + β(Wt∗ −Wt
s) (6.1)

where β ∈ [0, 1] and s ∈ [0, q]. Here Wt
s is the W factor from sth initialization method

after tth NMF update during beta movement process. Wt∗ is the best W solution found

at tth iteration which is described in section 6.2.3. In order to reduce the computation

complexity, the previous W factors Wt
s are collected only from the previous beta

movement process. That is, the symbol ”�” after tth NMF update and just before the

movement process. According to this formula, the new factor Wtbeta
s is computed by

moving the previous value Wt
s towards the current best solution Wt∗ with the certain

distance determined by the coefficient β. The selection of the value β here depends on

the experience. As shown in equation 6.2, the W value always keep the same value as

the previous one when β is set to be zero which is equivalent to the original movement.

However, when β is one, the W value changes directly to the current best W which is

the same as the best movement described later. The value β that is too high may lead

to premature convergence of the algorithm and loss of good solutions. Here we test the

datasets at β = 0.1 to observe the performance.

Wtbeta
s =

{
Wt

s if β = 0
Wt∗ if β = 1

(6.2)

With original and best movement included, we can only choose the best W solution

from a number of the initialized NMF. It makes no difference to apply initialization

methods to NMF separately and select the best solution among them for a given dataset.

However, with the addition of the beta movement, we move the factor W by 10 per-

centage (β = 0.1) of the distance between the W value and the current best W position

to search more significant position which may has the good or even better compression

performance.

6.2.3 Best movement for W

Best movement is to move the W values directly to the current best W∗ while keep-

ing the same values for H. The best W∗ in this chapter is determined by the dif-

94

Table 6.1: The procedure for finding the best solution Wt∗

STEP1: We have (Wrank1,Wrank2, ...,Wrankh, ...,Wrank(2qor6q))

STEP2: Apply non-negative least square (NNLS) to Wrank1 and calculate the
Hrank1 value according to the values of Wrank1 and the image dataset.

STEP3: Calculate the error for the pair (Wrank1,Hrank1).

error =
||A−Wrank1Hrank1||

||A||
× 100% (6.3)

STEP4: Compare the error value obtained in equation 6.3 with terror which is
predefined by user. If error ≤ terror, the best solution Wt∗ is equal to Wrank1.
However, if error > terror, repeat STEP2 to STEP4 for Wrankh, h = 1, 2, ..., 2qor6q

STEP5: If the error of the last W value Wrank(2q/6q) is still bigger than terror,
then Wt∗ = Wrank1

ferent objective functions which are the set of the data compression quality measure-

ments and described in section 6.2.4. We first collect all the W values not only af-

ter but also before each NMF update process. It can be seen in figure 6.1 that 2q

W values are collected at the first iteration while 6q W values are taken into ac-

count starting from the second iteration. Then the objective values of these W fac-

tors are calculated so that W factors are recorded in the increasing order shown as

(Wrank1,Wrank2, ...,Wrankh, ...,Wrank(2q/6q)). Here Wrankh, h = 1, 2, ..., 2q/6q is the

factor W which has the top hth objective value. In order to obtain the best solution

Wt∗ which has the best data compression performance and also whose error is within

the range predefined by users, we create the process as shown in table 6.1. Nonnegative

least square (NNLS) in this table has been proposed by Lawsona and Hanson ([?]). It

gives the least squares solution to ‖WH − X||2F subject to the additional constraint

Hi,j ≥ 0. Here we only concerned the least squares solution H which also satisfies the

NMF nonnegative constraints.

In order to match the fast convergence and the best data compression performance,

the changing of W is made during each movement process which may lead to the

unexpected error. Here the parameter terror is added in the best movement process

to satisfy the user’s predefined error range. We also have considered the situation that

the error of all the factor W may be still bigger than terror at some iterations. For

this situation, we choose the best W value which has the best objective value without

considering the error value (shown in STEP5). Here we introduce a parameter called

minterror. It is possible that the error can exceed the the predefined error range because

of STEP5 in table 6.1. So the minterror is defined as the minimum terror value that

makes the error within the predefined error range. The main goal of the NMF update

rule is to minimize the difference (equation 3.2) and the compression performance may

reduced after each NMF update process. So we also consider the W values before each

95

NMF update to make sure that the compression performance of W always keeping

the same or increasing during each iteration of the proposed evolutionary optimisation

strategy. There is one best solution W∗ and q different values of H factors at each

step. So we obtain q different pairs of ”�” for each step shown in figure 6.1. Using the

best movement, not only one new root is added to search the best solution, but also

the current best solution W∗ is found and recorded during the iterations.

6.2.4 Objective function

Objective function is an important core in our proposed method which can decide

what kind of the performance can be improved. Here we analyze our method with

emphasis on the data compression performance including sparsity and orthogonality.

In order to improve their performance, there are three types of the objective functions

including sparsity, orthogonality and their combination. Here each basis image in W

is normalised to have elements with the length value 1 to reduce the computational

complexity.

1. Sparsity: For the sparsity of the factor W, we define the measure as

S(W) =

∑m
i2=1

∑k
i1=1 |wi1i2 |
k

(6.4)

where i1 = 1, 2, ..., k and i2 = 1, 2, ...,m. wi1i2 is the element value in ith2 row

and ith1 column. The sparsity equation here is equal to the average of the sum

of all the elements in each basis image wi1 . Note that the less sparsity lead to

the less computation which suggests the better data compression result.

2. Orthogonality: In literature, the orthogonality of W is often defined as the

sum of the inner products of the basis images in W. Here we make the slightly

modification on it in order to match the same range as sparsity. The function

is as follows.

O(W) =

√
m
∑k

j1=1,i1 6=j1 w
T
i1
wj1

k(k − 1)/2
(6.5)

where wi1 and wj1 are both the basis images in ith1 and ith2 column of W respec-

tively. With the less orthogonality value, the basis images in W would be more

spatially localized. The sparsity and orthogonality in W are closely related.

That is, the orthogonality here further enhances the sparsity of W.

Combination: This is the objective function which combines both sparsity and orthog-

onality and the equation is as follows.

C(W) =
S(W) +O(W)

2
(6.6)

It is equal to the average of the sparsity and orthogonality, so the less C(W) value lead

to the better data compression performance.

96

6.3 Experimental results and analysis

6.3.1 Datasets and preprocessing

Two image datasets were used in this chapter which are two common face image

datasets called Yale and ORL. The details of the datasets are described below.

Yale: This dataset contains 165 grayscale images with 32× 32 for each image. There

are totally 15 subjects and 11 images per subject which include center-light, w/glasses,

happy, left-light, w/no glasses, normal, right-light, sad, sleepy, surprised, and wink.

ORL: This dataset contains 400 images with 32× 32 for each image. There are totally

40 distinct subjects and 10 images per subject which were taken at different times,

varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and

facial details (glasses / no glasses). All the images were taken against a dark homoge-

neous background with the subjects in an upright, frontal position.

In all the experiments here, images are preprocessed so that all the elements (pixel

values) inside the dataset are less than 1. It is achieved by dividing the maximum

value in this dataset for each element.

6.3.2 Experiment process

As shown in the figure 6.3, we first apply four standard initialization methods to a

given dataset and then collect the four different results of pairs of (W,H) together.

These four pairs of (W,H) are inputed into the proposed evolutionary optimization

strategy system simultaneously with the different objective function saying sparsity,

orthogonality and their combination. This process was run 5 times in order to reduce

the influence of the randomness. The dimension of both the two image datasets is

reduced to be 25 here. That is, there are totally 25 basis images in each W.

97

Figure 6.3: The structure of the experimental process

6.3.3 Yale image dataset

Figure 6.4 to 6.9 as well as table 6.2 are some results for Yale dataset with the different

objective functions. We tested this dataset under minterror = 0.3 and iterations = 500.

minterror was decided with the one decimal place. Figure 6.4-6.6 shows the perfor-

mance of sparsity, orthogonality and objective value of the proposed method gets the

faster convergence and better data compression performance than the other standard

initialized NMF methods during the iterations. In figure 6.4, we only choose the sparsity

as the objective function shown in section 6.2.4, so the objective values recorded here

is equal to the sparsity values. As shown in the error subplot, the error of the proposed

method is always less than 0.3 which satisfies the user’s demand of minterror = 0.3.

Figure 6.7 to 6.9 shows the basis images obtained from the different methods for Yale

with the different objective functions. There are totally 25 basis images for each sub-

plot. The rows represent the different methods saying random initialized NMF, random

acol initialized NMF, kmeans-based initialized NMF, FCM-based initialized NMF and

the proposed evolutionary optimization method from top to bottom. The columns rep-

resent the increasing iterations saying 1, 50, 100, 200 and 500 from left to right. We

can see from these figures, the proposed method has already gotten the lower spar-

sity and orthogonality than the other methods after 50 iterations and keeps the stable

after about 200 iterations. There are no dramatically change of the basis image for

98

kmeans-based initialized NMF with the increasing iterations. It gets the raw structure

of 25 basis images for random acol initialized NMF, kmeans-based initialized NMF,

FCM-based initialized NMF and the proposed evolutionary optimization method at

iteration = 1. However for random initialized NMF, there are too much noises there in

its basis images at the beginning of the iterations. The main reason is that the random

initialization has nothing to do with the initial values of W and H while the other

methods already works for data compression with predefined values of W and H.

We have run the experiment process shown in figure6.3 for 5 times and recorded some

measurements saying sparsity, orthogonality, error and RAND index each time which

is shown in table 6.2. ”proposedS”, ”proposedO” and ”proposedC” represent the pro-

posed method with sparsity objective function, orthogonality objective function and

their combination objective function respectively. RI, RAI, CI1 (the same as CI1 in

chapter 5)and CI2 (the same as CI3 in chapter 5) represent the random initialisation,

random acol initialisation, k-mean based initialisation and FCM-based initialisation re-

spectively. All the values are collected from the final iteration with one decimal place.

It is clearly shown that the proposed evolutionary optimization strategy always has the

less final sparsity, orthogonality and objective function values than the other methods

and also its final error is within the predefined range for each run. Here we calculated

the RAND index which measures the cluster quality of the factor W. Although the

RAND value of the proposed method is slightly less than the others, it is still the

meaningful RAND value because of its very low decreasing rate. Table 6.3 illustrated

the t-test between NMF and ENMF with the different objective functions saying spar-

sity, orthogonality and their combination. And it showed that the ENMF and NMF

with CI1 has the larger difference according to the higher t-test.

99

Figure 6.4: The summary results for Yale face dataset under the different data com-
pression methods with the sparsity measure

100

Figure 6.5: The summary results for Yale face dataset under the different data com-
pression methods with the orthogonality measure

101

Figure 6.6: The summary results for Yale face dataset under the different data com-
pression methods with both the sparsity and orthogonality measures

102

Figure 6.7: The basis images obtained from different methods for Yale with the sparsity
measure. (1) 1st row represents the basis images obtained from random initialized
NMF at the increasing iterations (iter=1, 50, 100, 200, 500) (2) 2nd row represents the
basis images obtained from random acol initialized NMF at the increasing iterations
(iter=1, 50, 100, 200, 500) (3) 3rd row represents the basis images obtained from k-
means based initialized NMF at the increasing iterations (iter=1, 50, 100, 200, 500)
(4) 4th row represents the basis images obtained from FCM-based initialized NMF at
the increasing iterations (iter=1, 50, 100, 200, 500) (5) 5th row represents the basis
images obtained from the proposed evolutionary optimization strategy at the increasing
iterations (iter=1, 50, 100, 200, 500)

103

Figure 6.8: The basis images obtained from different methods for Yale with the orthog-
onality measure which is similar with figure6.7.

104

Figure 6.9: The basis images obtained from different methods for Yale with both the
sparsity and orthogonality measures which is similar with figure6.7.

6.3.4 ORL image dataset

Figure 6.10 to 6.15 as well as table 6.5 are some results for ORL dataset with the

different objective functions. Different with Yale’s results above, here we tested the

minterror value to be 0.15 so that the error during the iterations is always less than 0.15

shown in figures 6.10-6.12. The maximum iteration for this dataset is set to be 1000.

105

The proposed method has already gotten the lower sparsity and orthogonality than the

other methods after 100 iterations and keeps the stable after about 500 iterations. In

figures 6.13 to 6.15, the columns represent the different iterations saying 1, 100, 200,

500 and 1000 from left to right and the rows represent the different methods as the same

as that in figure 6.7. Table 6.4 illustrated the t-test between NMF and ENMF with

the different objective functions saying sparsity, orthogonality and their combination.

And it showed that the ENMF and NMF with CI1 has the larger difference according

to the higher t-test.

106

Figure 6.10: The summary results for ORL face dataset under the different data com-
pression methods with the sparsity measure

107

Figure 6.11: The summary results for ORL face dataset under the different data com-
pression methods with the orthogonality measure

108

Figure 6.12: The summary results for ORL face dataset under the different data com-
pression methods with both the sparsity and orthogonality measures

109

Figure 6.13: The basis images obtained from different methods for ORL with the spar-
sity measure. (1) 1st row represents the basis images obtained from random initialized
NMF at the increasing iterations (iter=1, 100, 200, 500, 1000) (2) 2nd row represents
the basis images obtained from random acol initialized NMF at the increasing itera-
tions (iter=1, 100, 200, 500, 1000) (3) 3rd row represents the basis images obtained
from k-means based initialized NMF at the increasing iterations (iter=1, 100, 200, 500,
1000) (4) 4th row represents the basis images obtained from FCM-based initialized
NMF at the increasing iterations (iter=1, 100, 200, 500, 1000) (5) 5th row represents
the basis images obtained from the proposed evolutionary optimization strategy at the
increasing iterations (iter=1, 100, 200, 500, 1000)

110

Figure 6.14: The basis images obtained from different methods for ORL with the
orthogonality measure which is similar with figure6.13.

111

Figure 6.15: The basis images obtained from different methods for ORL with both the
sparsity and orthogonality measures which is similar with figure6.13.

6.4 Conclusions

In this chapter, we proposed a novel evolutionary optimization strategy for NMF to

solve the data compression problem. Four types of the intialization methods are used

as the seed knowledge for the proposed method to increase the rate of convergence.

The experiments were carried out using two image datasets saying Yale and ORL

112

and the results show that the proposed evolutionary optimization strategy gets better

data compression performance and faster convergence compared with some standard

initialized NMF methods. The main contributions of this chapter are listed as follows.

• We proposed a novel evolutionary optimization strategy to solve the different

data mining problems by replacing the objective function with a set of measures.

• We proposed three different movements in our system saying original movement,

beta movement and best movement to add the new roots of finding the best

solution during the iterations.

• The hybrid initialization approach can be used by including the state-of-the-

art NMF initialization methods as seed knowledge of our proposed evolutionary

optimization strategy and there is no limitation for the number and the type of

the initialization methods.

• Our proposed evolutionary optimization strategy is suitable for NMF method

and also combines the advantages of some standard optimization methods.

• In Yale and ORL face datasets, our evolutionary optimization strategy outper-

forms the other standard initialized NMF methods according to a data compres-

sion quality measure of sparsity and orthogonality.

113

Table 6.2: The summary results for Yale face dataset under the different data com-
pression methods with the five measurements saying sparsity, orthogonality, objective
value, error and RAND index at the final iteration (iter=500)

Runs Sparsity Orthogonality Error RAND

1 RI:18.9 RI:19.2 RI:0.2 RI:91.9
RAI:19.2 RAI:19.6 RAI:0.2 RAI:91.6
CI1:28.0 CI1:29.7 CI1:0.3 CI1:93.2
CI2:18.9 CI2:19.3 CI2:0.2 CI2:91.9

proposedS:15.4 proposedS:15.8 proposedS:0.2 proposedS:89.6
proposedO:16.0 proposedO:16.1 proposedO:0.2 proposedO:91.8
proposedC:15.6 proposedC:15.6 proposedC:0.2 proposedC:92.3

2 RI:19.3 RI:19.7 RI:0.2 RI:92.4
RAI:19.5 RAI:20.0 RAI:0.2 RAI:91.5
CI1:28.3 CI1:30.1 CI1:0.3 CI1:93.3
CI2:18.7 CI2:19.1 CI2:0.2 CI2:91.6

proposedS:14.9 proposedS:15.6 proposedS:0.2 proposedS:90.7
proposedO:15.3 proposedO:15.0 proposedO:0.2 proposedO:91.1
proposedC:15.0 proposedC:15.2 proposedC:0.2 proposedC:90.6

3 RI:18.7 RI:19.1 RI:0.2 RI:92.1
RAI:19.2 RAI:19.6 RAI:0.2 RAI:92.0
CI1:28.2 CI1:29.8 CI1:0.3 CI1:93.3
CI2:18.4 CI2:18.9 CI2:0.2 CI2:91.4

proposedS:15.3 proposedS:15.6 proposedS:0.2 proposedS:90.8
proposedO:15.9 proposedO:15.8 proposedO:0.2 proposedO:91.6
proposedC:15.6 proposedC:15.6 proposedC:0.2 proposedC:90.2

4 RI:18.4 RI:18.7 RI:0.2 RI:91.4
RAI:19.5 RAI:19.9 RAI:0.2 RAI:92.2
CI1:28.0 CI1:29.5 CI1:0.3 CI1:92.7
CI2:18.2 CI2:18.6 CI2:0.2 CI2:91.6

proposedS:14.3 proposedS:14.3 proposedS:.2 proposedS:90.9
proposedO:16.2 proposedO:16.2 proposedO:0.2 proposedO:91.6
proposedC:15.7 proposedC:15.6 proposedC:0.2 proposedC:90.6

5 RI: 18.8 RI:19.3 RI:0.2 RI:91.8
RAI:19.2 RAI:19.7 RAI:0.2 RAI:91.6
CI1:28.2 CI1:29.9 CI1:0.3 CI1:93.1
CI2:18.7 CI2:19.0 CI2:0.2 CI2:91.6

proposedS:16.4 proposedS:16.5 proposedS:0.2 proposedS:91.5
proposedO:15.7 proposedO:15.8 proposedO:0.2 proposedO:91.1
proposedC:14.8 proposedC:15.1 proposedC:0.2 proposedC:90.5

Average RI: 18.8 RI:19.2 RI:0.2 RI:91.9
RAI:19.3 RAI:19.8 RAI:0.2 RAI:91.8
CI1:28.1 CI1:29.8 CI1:0.3 CI1:93.1
CI2:18.6 CI2:19.0 CI2:0.2 CI2:91.6

proposedS:15.3 proposedS:15.6 proposedS:0.2 proposedS:90.7
proposedO:15.8 proposedO:15.8 proposedO:0.2 proposedO:91.4
proposedC:15.3 proposedC:15.4 proposedC:0.2 proposedC:90.8

114

Table 6.3: Statistical significance test (t-test) for the average ENMF and NMF after 5
runs shown in table 6.2
Init. Sparsity Orthogonality Combination

RI 0.07 0.06 0.07
RAI 0.08 0.07 0.08
CI1 0.26 0.25 0.26
CI2 0.07 0.05 0.07

Table 6.4: Statistical significance test (t-test) for the average ENMF and NMF after 5
runs shown in table 6.5
Init. Sparsity Orthogonality Combination

RI 0.05 0.05 0.05
RAI 0.08 0.07 0.07
CI1 0.2 0.19 0.20
CI2 0.05 0.04 0.04

115

Table 6.5: The summary results for ORL face dataset under the different data com-
pression methods with the five measurements saying sparsity, orthogonality, objective
value, error and RAND index at the final iteration (iter=500)

Runs Sparsity Orthogonality Error RAND

1 RI: 22.8 RI:22.8 RI:0.1 RI:95.1
RAI:24.1 RAI:24.2 RAI:0.1 RAI:95.0
CI1:31.1 CI1:31.5 CI1:0.2 CI1:95.2
CI2:22.4 CI2:22.5 CI2:0.1 CI2:94.8

proposedS:20.6 proposedS:20.4 proposedS:0.1 proposedS:94.4
proposedO:20.5 proposedO:20.4 proposedO:0.1 proposedO:94.7
proposedC:20.8 proposedC:20.7 proposedC:0.1 proposedC:94.1

2 RI: 23.0 RI:22.9 RI:0.1 RI:94.9
RAI:23.9 RAI:24.0 RAI:0.1 RAI:95.1
CI1:31.0 CI1:31.5 CI1:0.2 CI1:94.9
CI2:22.5 CI2:22.6 CI2:0.1 CI2:95.0

proposedS:20.1 proposedS:19.9 proposedS:0.1 proposedS:94.0
proposedO:20.4 proposedO:20.3 proposedO:0.1 proposedO:93.6
proposedC:20.0 proposedC:19.8 proposedC:0.1 proposedC:94.0

3 RI: 23.1 RI:23.1 RI:0.1 RI:95.1
RAI:24.1 RAI:24.2 RAI:0.1 RAI:94.9
CI1:31.0 CI1:31.5 CI1:0.2 CI1:94.8
CI2:22.8 CI2:22.9 CI2:0.1 CI2:94.9

proposedS:19.8 proposedS:19.5 proposedS:0.1 proposedS:94.1
proposedO:20.7 proposedO:20.5 proposedO:0.1 proposedO:95.0
proposedC:20.5 proposedC:20.3 proposedC:0.1 proposedC:94.5

4 RI: 22.8 RI:22.8 RI:0.1 RI:94.9
RAI:24.3 RAI:24.4 RAI:0.1 RAI:95.3
CI1:31.1 CI1:31.6 CI1:0.2 CI1:95.4
CI2:22.4 CI2:22.6 CI2:0.1 CI2:94.8

proposedS:20.9 proposedS:20.8 proposedS:0.1 proposedS:94.1
proposedO:20.7 proposedO:20.6 proposedO:0.1 proposedO:94.4
proposedC:20.9 proposedC:20.8 proposedC:0.1 proposedC:94.2

5 RI: 22.8 RI:22.8 RI:0.1 RI:94.9
RAI:24.1 RAI:24.2 RAI:0.1 RAI:95.0
CI1:31.0 CI1:31.5 CI1:0.2 CI1:95.0
CI2:22.4 CI2:22.5 CI2:0.1 CI2:94.9

proposedS:19.9 proposedS:19.7 proposedS:0.1 proposedS:94.3
proposedO:20.8 proposedO:20.6 proposedO:0.1 proposedO:94.5
proposedC:20.6 proposedC:20.4 proposedC:0.1 proposedC:93.7

Average RI: 22.9 RI:22.9 RI:0.1 RI:95.0
RAI:24.1 RAI:24.2 RAI:0.1 RAI:95.1
CI1:31.0 CI1:31.5 CI1:0.2 CI1:95.1
CI2:22.5 CI2:22.6 CI2:0.1 CI2:94.9

proposedS:20.3 proposedS:20.1 proposedS:0.1 proposedS:94.2
proposedO:20.6 proposedO:20.5 proposedO:0.1 proposedO:94.4
proposedC:20.6 proposedC:20.4 proposedC:0.1 proposedC:94.1

116

Chapter 7

Application of EEG Dataset

This chapter is the report for the work in [20] which is about linking brain responses to

naturalistic music through analysis of ongoing EEG and stimulus features. Our work

in this chapter is the clustering analysis of EEG dataset. Three clustering algorithms–

k-means, k-medoids, and hierarchical clustering as well as ensemble clustering were

applied for this work. Work of this chapter is published in:

FY Cong, V Alluri, AK Nandi, P Toiviainen, Rui Fa, Basel Abu-Jamous, Liyun Gong,

BGW Craenen, H Poikonen, M Huotilainen, T Ristaniemi, Linking Brain Responses

to Naturalistic Music through Analysis of Ongoing EEG and Stimulus Features, IEEE

Transactions on Multimedia, 15(5):1060-1069, 2013. (IF=1.776)

7.1 Introduction

In this chapter, we provide the clustering analysis to the preprocessed EEG data. The

EEG signal was collected using 64 electrodes from 14 individual subjects. Afterwards,

the signal from each electrode and each subject was processed and 64 independent

components (ICs) were extracted. Thus in this case, the data matrix is in the form of

896 rows by 64 columns, where each row represents each IC of each subject and each

column represents each electrode. The rest of this chapter is organized as follows: Sec.

7.2 states our clustering algorithms of EEG data and the results are given in Sec. 7.3.

Finally, conclusions are made in Sec. 7.4.

7.2 Clustering methods

Clustering algorithms play a central part in the analysis of EEG data. There are num-

bers of clustering algorithms in the literature [113, 51, 28, 27, 69, 45, 31, 70, 44]. We

investigated many clustering algorithms in the EEG data. Considering the effectiveness

of the clustering algorithms, here we present five clustering algorithms and their results

here, namely k-means [28, 27], k-medoids [69, 70], hierarchical clustering (HC) [45, 31]

with ward linkage, HC with complete linkage and HC with average linkage. The gen-

117

eral clustering algorithms were reviewed in chapter 2. We also applied the ensemble

clustering in this work as follows.

Ensemble Clustering

By scrutinising the results generated by each of the individual clustering methods, en-

semble clustering generates a consensus clustering result which collectively summarises

all of the individual results [53, 83, 104]. The method we used, consensus fuzzy partition

matrix binarisation (CFPMB) [4] starts by fusing the individual partitions (clustering

results) into a single fuzzy consensus partition matrix (CFPM) which is then binarised

to generate a consensus binary partition matrix (CBPM). This binarisation step con-

siders how often any group of elements were included in the same cluster by each of the

individual results. Binarisation can be tuned to result in tight clusters that only in-

clude the elements that are included in the same cluster by all or most of the individual

clustering methods. This means that at these tightly tuned cases, many clusters will be

empty and many elements will not be included in any of the clusters. The method can

also be tuned to generate wide overlapping clusters that assign any doubtful element

to all of its possible clusters. At this stage of this work, tuning the binarisation step

to generate tight clusters seems more beneficial such that only pure clusters’ cores are

generated and the research can then be focused. Two of the proposed binarisation tech-

niques are of interest in this research currently; value thresholding binarisation (VTB)

and difference thresholding binarisation (DTB). Each of these techniques can be tuned

through a parameter that ranges from zero to one. When the parameter is zero, VTB

produces the absolute widest possible clusters and then as the parameter is increased,

the clustered are tightened up to the absolute tightest clusters at the value of one.

DTB generates complementary clusters when the parameter is zero and tightens them

as the parameter is increased but in a different way than VTB. When the parameter

of DTB reaches one then it is the absolute tightest case and is equivalent to VTB with

a unity parameter. To get tighter clusters than the conventional complementary case,

we use VTB with parameter values larger than 0.5 and DTB with parameter values

larger than zero.

7.3 Experimental Results

7.3.1 EEG data structure

The dataset called EEG data has been made available to us. It represents essentially

the result of Fengyu Cong’s independent component analysis (ICA) on the ’raw’ EEG.

It is stored in a data format suitable to be loaded into Matlab as a matrix, in the case

named X. Below I explain in some detail how the data is structured, it can be described

as being an N ×M matrix with N the number of rows and M the number of columns.

The N ×M = 896× 64 matrix for the EEG dataset is structured as follows:

118

1. Each row represents the ICA representation of a sequence of electrode values,

with each cell along the row representing a single electrode. There are M = 64

electrodes/columns.

2. The order for the rows is as follows: there were 14 participants in the experiment,

and 64 independent components were selected/generated. For each independent

component (row) all participants are listed first. As such, working down the

rows we first get the first independent component for all 14 participants, then

the second independent component for all 14 participants, etc. In all there are

14× 64 = 896 rows in the matrix

More explicit: Where ICij = {v1, v2, ..., v64} is the j = 1, 2, ..., 64 independent com-

ponent for participant i = 1, 2, ..., 14 with {v1, v2, ..., v64} the independent component

value vector, the independent component matrix ICMEEG is then:

Figure 7.1: The independent component matrix

7.3.2 Results

K-Means with random initialization to the raw data

This is a preliminary experiment to help us to know more about the data. We look for

K = 64 clusters in the dataset. The histogram of the clustering result, which shows

the number of memberships for each cluster, is shown in Figure 7.2. The results show

that the difference between the largest and the smallest clusters is dramatic, namely 83

vs. 1. We show all profiles of the members in the largest cluster, (No. 33 cluster), in

Figure 7.3. Surprisingly, the patterns in this cluster are quite different and they should

119

not really belong to one cluster. We also show one of single-member clusters, (No. 31

cluster) in Figure 7.4.

Figure 7.2: Histogram of k-means clustering result with K = 64 from the unnormalized
data

120

Figure 7.3: The largest cluster (No 33 cluster) in the k-means clustering result with
K = 64 from the unnormalized data

121

Figure 7.4: One of single-member clusters, No 31 cluster, in the k-means clustering
result with K = 64 from the unnormalized data

K-Means with deterministic initialization to the normalized data

In order to achieve stable and reasonable clustering results, we make two changes to

the above experiment. Firstly, we employ deterministic initialization algorithm to avoid

providing different clustering results for every experiment. Kaufman approach (KA)

[70] (shown in section 2.2.2), which was reported to be superior to other initialization

approaches [44], is employed in this work. Secondly, we normalize (standardize) the

data to make each row zero mean and unit standard deviation. Now we also look for

K = 64 clusters and find that the results are much different with the previous ones.

The histogram of the clustering result is shown in Figure 7.5. It is worth noting that

all the numbers of memberships in this case are more similar. We find the cluster

containing the member in single-member cluster in the last experiment, which was

122

shown in Figure 7.4 and plot its memberships in Figure 7.6. The patterns of the same

cluster in unnormalized data are shown in Figure 7.7.

It reflects that some objects with similar patterns are grouped into different clusters

when clustering the unnormalized data.

Figure 7.5: Histogram of k-means clustering result with K = 64 from the normalized
data

123

Figure 7.6: The profiles of the members in No.40 cluster in normalized data

124

Figure 7.7: The profiles of the members in No.40 cluster in unnormalized data

We also show the largest cluster and the second largest cluster in the normalized

data in Figure 7.8 and Figure 7.10, respectively. For reference, we plot the profiles of

the members in these two clusters from unnormalized data in Figure 7.9 and Figure

7.11, respectively. These figures support that the normalization helps to reveal some

reasonable clustering.

125

Figure 7.8: The profiles of the members in No.18 cluster in normalized data

126

Figure 7.9: The profiles of the members in No.18 cluster in unnormalized data

127

Figure 7.10: The profiles of the members in No.19 cluster in normalized data

128

Figure 7.11: The profiles of the members in No.19 cluster in unnormalized data

Besides k-means, we apply k-medoids, HC with ward linkage, HC with complete

linkage and HC with average linkage to look for K = 64 clusters and K = 24 clusters,

as depicted in figure 7.12.

129

Figure 7.12: The list of clustering results we have got

The profiles of the members in each of these clustering for each value of K and each

algorithm will be supplied separately. Furthermore, we evaluate the statistics of the

number of members in the clusters for different algorithms. In figure 7.13, we show the

means and standard deviations (STDs) of the number of members in the clusters for

K = 64 and K = 24, respectively. Apparently, the means for K = 64 are same for

different algorithms, which is 14 (896/64); while the STDs are variable. Small STD

represents small differences among numbers of clusters. It is the same case for K = 24.

Figure 7.13: The mean and standard deviation of the numbers of memberships

We also investigate in details how many clusters contain members (ICs) belonging

to more than half subjects. As shown in figure 7.14, the results suggest nearly two

thirds of clusters in both k-means and k-medoids contain members (ICs) belonging

to more than seven subjects when K = 64. All of the clusters in both k-means and

HC Ward linkage contain members (ICs) belonging to more than seven subjects when

K = 24.

130

Figure 7.14: Number of clusters which contains ICs from more than seven (> 7) subjects

Results of ensemble Clustering

We applied both VTB and DTB binarisation techniques over the clustering results at

K = 64 and K = 24 while varying the binarisation parameter from zero to one with

0.1 steps. For K = 64, the results of the clustering methods HC-ward, HC-average,

HC-complete, k-means and k-medoids were used. For K = 24, the same five clus-

tering methods were used in addition to the self-organising maps (SOMs) [51] and

self-organising oscillator networks (SOON) [107, 6] methods. From the binarisation re-

sults produced, we have chosen a representative subset of them which shows the most

reasonable results.

For K = 64, we show the results for VTB at the parameter values of 1.0, 0.8 and 0.6.

Note that at the absolute tightest case (VTB 1.0), only 24 non-empty clusters out of 64

survive while including only 132 elements out of the full set of 896 elements. Although

some of these clusters only have one or two elements, most of them have significant

number of elements that are extremely tight and pure. It can be seen that most of these

pure clusters show clear peaks at different electrodes (out of the 64 electrodes avail-

able). When widened to VTB 0.8, 36 non-empty clusters were generated including 228

elements and when widened further to VTB 0.6, 58 non-empty clusters were generated

including 481 elements. It is clear that the level of tightness decreases while decreasing

the VTB parameter such that some clusters at VTB 0.6 show slightly untight profiles.

Though, most of the clusters at VTB 0.6 are still tight enough.

These interesting results help in focusing the research on the most useful clusters with

the most useful elements instead of studying the entire set of 64 clusters with 896 ele-

ments which might include many noisy parts. Depending on the needs of the researcher,

he can choose to focus at any degree of the provided tightness degrees.

For K = 24, because more clustering methods were used, the tightest cases showed

completely empty clusters. The tightest useful not empty cases are provided here,

which are at VTB 0.6, DTB 0.2 and DTB 0.3. One can notice that the results at

K = 24 are less interesting because the clusters are in general less pure than in the

K = 64 case. For example, at DTB 0.3, 18 non-empty clusters are generated out of 24

ones including only 102 elements. Many of the generated clusters have only one or two

131

elements and many of the ones that have large number of elements are not very pure.

If the results of K = 64 were considered for comparison for example, one can find more

than 24 useful, tight and distinct clusters that collectively include only a subset of the

896 elements. This indicates that although the number of useful clusters is less than

64, a larger number of clusters must be used in order to be able to exclude the noisier

elements when binarisation is tightened. Above results will be supplied separately.

The case of VTB 0.6 for K = 64 and the case of DTB 0.2 for K = 24 were consid-

ered for further analysis as they are the least strict cases out of the three discussed

cases for each of the two values of K while still being strict enough with tight clusters.

A filtering process was applied over these results’ clusters such that only the clusters

whose individual members represent components from more than seven subjects (at

least eight subjects) are kept. The profiles for the individuals in these clusters are

plotted in Figure 7.15 and Figure 7.16, for K = 64 and K = 24 respectively. It can

be seen that under these conditions, 22 clusters including 287 elements are kept for

K = 64 and 15 clusters including 268 elements are kept for K = 24. Further analysis

can be focused within these subsets of results.

Figure 7.15: The clusters containing more than seven subjects in the ensemble clustering
results: K = 64

132

Figure 7.16: The clusters containing more than seven subjects in the ensemble clustering
results: K = 24

7.4 Conclusions

In this chapter, we outlined three clustering algorithms, namely k-means, k-medoids,

and hierarchical clustering. We employed these algorithms to provide clustering on pre-

processed EEG data from 14 subjects. We also explored ensemble clustering to obtain

some tight clusters. Based on the results we have got, we can make some statements:

firstly, normalization is necessary for this study to obtain reasonable clustering; sec-

ondly, k-means, k-medoids and HC-Ward provide relatively better clustering results;

thirdly, ensemble clustering enables us to tune the tightness of the clusters so that the

research can be focused.

133

Chapter 8

Summary

8.1 Summary and conclusions

This thesis has been devoted to the core problem of clustering and compression. Non-

negative matrix factorisation (NMF) as the tool for both clustering and compression

links the chapters together. Three stages of NMF have been studied throughout: NMF

initialization, NMF updating strategy, NMF clustering/compression results.

Before NMF updating stage, NMF intialization is used to improve the convergence

speed of the updating and the accuracy of NMF algorithm. In some cases, newly gen-

erated initial factors of NMF based on the different types of initialisation methods could

be more informative than the random initial factors, and may also speed up the NMF

updating. Section 3.3 has reviewed some popular NMF initialization methods based

on the randomisation, clustering algorithms and the dimensionality reduction methods

respectively. The random initialization among them is the most inexpensive and some-

times provides a good first estimation for NMF algorithm. Researchers also conduct

the initialisation by linking to the clustering algorithms. Five clustering families rather

than five clustering algorithms have been reviewed in section 2.2. Among them, k-

means and Fuzzy c-means as the two common examples for cluster-based initialization

have been introduced in section 3.3.2. Dimensionality reduction-based initializations

based on PCA and ICA have also been reviewed in section 3.3.3. Besides these exit-

ing initializations, chapter 4 has proposed another two NMF intializations by linking

NMF with the modified k-means and IPCA respectively. To some extent, these novelty

initialization methods can be employed to achieve the faster convergence and better

accuracy.

For the NMF updating stage, several standard updating rules of NMF have been re-

viewed in section 3.2 and two novelty evolutionary optimization strategies have been

proposed in chapter 5 and 6. These two proposed methods improved the iterative

updating procedure of NMF by three evolving rules, aiming at producing the better

cluster/compression structure. These three evolving rules have been designed, of which

the first rule inherits the classical multiplicative update, while the other two rules are

134

driven by preserving stronger solutions offering higher quality of clusters/compression

and meanwhile incorporating their altered versions to avoid local optimum, inspired by

the evolutionary optimization algorithm of firefly. The proposed framework is a very

general one, which can also be applied to improve NMF applications to other data

analysis task by setting appropriate score function.

Effectiveness of the proposed methods in the thesis are demonstrated via careful exper-

imental design and thorough comparatively analysis using several benchmark datasets.

Chapter 5 conducted the experimental evaluation with nine benchmark classification

datasets from UCI machine learning repository. The NMF with the proposed evo-

lutionary optimization strategy has been compared with the NMF with the classical

multiplicative update under the different types of NMF initialisation methods. The

comparison has been evaluated by the measure of the clustering performance since the

goal of this chapter is to improve NMF so that it can serve better the data clustering

task. Some standard cluster measures including internal evaluation and external evalu-

ation have been previously reviewed in section 2.3 and RAND index was selected among

them as an example for the cluster measure in this chapter. Experimental results have

demonstrated the superior performance of the proposed method over the existing ones

for data clustering evaluated with these nine benchmark datasets. Chapter 6 com-

pressed two face image datasets saying Yale and ORL by the NMF with the proposed

evolutionary optimization strategy. The proposed method has been compared with

the standard one using the different measures of compression rate saying data sparsity,

data orthogonality and reconstruction error. The results have shown that the proposed

NMF evolutionary optimization strategy significantly improves the data compression

as evaluated with these two image datasets.

Chapter 7 explored the clustering analysis of EEG dataset which is the brain response

dataset. The clustering algorithms used here including k-means, k-medoids, hierarchi-

cal clustering (HC) and ensemble clustering have been previously reviewed in section

2.2. And the results show that k-means, k-medoids and HC with ward linkage pro-

vide relatively better clustering results and ensemble clustering enables us to tune the

tightenss of the clusters so that the research can be focused.

8.2 Future Works

The following is a list of possible points which could lead the continuation of the present

investigation:

• Nearly all the NMF initialisations that have been developed in this thesis are

based on the randomisation, clustering algorithms and the dimensionality reduc-

tion methods. Research on different types of the initialisation methods would be

interesting, as these initialisations can be also embedded into our proposed NMF

evolutionary optimization strategy descried in chapter 5 and 6 to improve the

135

NMF performance.

• The evaluation of the clustering performance used in the thesis is RAND index

which computes the percentage of the correct data partition offered by the clus-

tering result as compared to the ground truth partition. However, it is not the

comprehensive analysis for the cluster results and more clustering evaluations

should be explored.

• In chapter 6, compression performance of the NMF with the multiplicative up-

date has been improved by using our proposed evolutionary optimization strategy

with original movement, beta movement and best movement. However, in reality,

it is difficult to pre-determine the parameter β in beta movement for the different

datasets as we do not know which β value can provide the better compression

performance. The optimization of the parameter β is an important issue to be

explored.

• The proposed evolutionary optimization strategies developed in chapter 5 and 6

are limited to the NMF multiplicative rule. Another NMF approximation ap-

proaches should be explored, such as alternating least square algorithms and

gradient descent algorithms.

• The proposed method in chapter 6 has been developed to help the image com-

pression task. This method could be extended to solve the image recognition

task by some further studies.

• The computational cost should be considered in all the proposed methods. It

would be beneficial to exploit methods with low computational complexity to

obtain the significant results.

136

Bibliography

[1] Hyvarinen A. Fast and robust fixed-point algorithms for independent component

analysis. Neural Networks, IEEE Transactions on 10, pages 626–634, 1999.

[2] Hyvarinen A and Oja E. A fast fixed-point algorithm for independent component

analysis. Neural computation 9, pages 1483–1492, 1997.

[3] Raftery A. A note on bayes factors for log-linear contingency table models with

vague prior information. Journal of the Royal Statistical Society, 48(2):249–250,

1986.

[4] Basel Abu-Jamous, Rui Fa, David J. Roberts, and Asoke K. Nandi. Paradigm of

tunable clustering using binarization of consensus partition matrices (bi-copam)

for gene discovery. PLOS ONE Journal, 8(2):1–14, 2013.

[5] R. Avogadri and G. Valentini. Ensemble clustering with a fuzzy approach. Studies

in Comput. Intell. Superv. and Unsuperv. Ensemble Methods their Appl., 126:49–

69, 2008.

[6] H. G. Ayad and M. S. Kamel. On voting-based consensus of cluster ensembles.

Pattern Recognition, 43:1943–C1953, 2010.

[7] M. W. Berrya, M. B. Amy, N. Langvilleb, V. Paul Paucac, and R. J. Plemmonsc.

Algorithms and applications for approximate nonnegative matrix factorization.

Computational Statistics and Data Analysis, 52:155–173, 2007.

[8] P. Bertone and M. Gerstein. Integrative data mining: the new direction in bioin-

formatics. Engineering in Medicine and Biology Magazine,IEEE, 20(4):33–40,

2001.

[9] Bezdek. Pattern recognition with fuzzy objective function algorithms. New York:

Plenum, 1981.

[10] James C. Bezdek, Robert Ehrlich, and William Full. Fcm: The fuzzy c-means

clustering algorithm. Comput. Geosoci, 10(2-3):191–203, 1984.

137

[11] G. Bin, W. L. Woo, and B. W. K. Ling. Improving pomdp tractability via

belief compression and clustering. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, 40(1):125–136, 2010.

[12] C. Boutsidisa and E. Gallopoulos. Svd based initialization: A head start for

nonnegative matrix factorization. Pattern Recognition, 41:1350–1362, 2008.

[13] J P Brunet, P Tamayo, T R Golub, and J P Mesirov. Metagenes and molecular

pattern discovery using matrix factorization. Proceedings of the National Academy

of Sciences of the United States of America (PNAS), vol. 101(12), pp. 4164- 4173,

2004.

[14] Ding C, He XF, and Simon HD. On the equivalence of nonnegative matrix

factorization and spectral clustering. In: Kargupta H, Srivastava J, Kamath

C, Goodman A, editors. Proceedings of the SIAM international conference data

mining (SDM05). Philadelphia: Society for Industrial and Applied Mathematics,

pages 606–616, 2005.

[15] Jutten C and Herault J. Blind separation of sources, part i: An adaptive algo-

rithm based on neuromimetic architecture. Signal Process 24, pages 1–10, 1991.

[16] T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communi-

cations in Statistics - Theory and Methods, 3(1):1–27, 1974.

[17] Lin Chih-Jen. On the convergence of multiplicative update algorithms for non-

negative matrix factorization. IEEE Transactions on Neural Networks, 18(6),

2007.

[18] Lin Chih-Jen. Projected gradient methods for nonnegative matrix factorization.

Neural Computation, 19(10):2756–2779, 2007.

[19] A. Cichocki, R. Zdunek, A. H. Phan, and S. I. Amari. Nonnegative Matrix and

Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and

Blind Source Separation. John Wiley, 2009.

[20] FY Cong, V Alluri, AK Nandi, P Toiviainen, Rui Fa, Basel Abu-Jamous, Liyun

Gong, BGW Craenen, H Poikonen, M Huotilainen, and T Ristaniemi. Linking

brain responses to naturalistic music through analysis of ongoing eeg and stimulus

features. IEEE Transactions on Multimedia, 15(5):1060–1069, 2013.

[21] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 1(2):224227, 1979.

[22] P. Day and A. K. Nandi. Robust text-independent speaker verification using

genetic programming. IEEE Transaction on Audio, Speech and Language Pro-

cessing, 15:285–295, 2007.

138

[23] Lee DD and Seung HS. Learning the parts of objects by non- negative matrix

factorization. Nature, 401:788–791, 1999.

[24] H.S. Seung D.D. Lee. Algorithms for non-negative matrix factorization. In Adv.

Neural Inf. Process. Systems 13 (2000), pages 556–562, 2000.

[25] M. A. de L. Balaguer and C. M. Williams. A cluster validity framework based on

induced partition dissimilarity. IEEE Transactions on Cybernetics, 43:308–320,

2013.

[26] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral

clustering and normalized cuts. in Proc. Tenth ACM SIGKDD Int. Conf. Know.

disc. data mining, New York, NY, USA, KDD 04,ACM, pages 551–556, 2004.

[27] E. Diday and J. C. Simon. Cluster analysis. in Digital Pattern Recognition,

Berlin, Springer-Verlag, 1976.

[28] R. Dubes and A. K. Jain. Cluster methodologies in exploratory data analysis.

Advances in Comput., 19:113–228, 1980.

[29] J. C. Dunn. A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters. J. Cyber., 3(3):32–57, 1973.

[30] Darius M. Dziuda. Data Mining for Genomics and Proteomics: Analysis of Gene

and Protein Expression Data. Wiley, 2010.

[31] B. Everitt. Cluster analysis. Heinemann Eduction, 1974.

[32] Bach F and Jordan M. Kernel independent component analysis. journal of

Machine Learning Research, 3:1–48, 2002.

[33] R. Fa and A. K. Nandi. Parametric validity index of clustering for microarray

gene expression data. in IEEE Int. Workshop Machine Learning for Sig. Process,

2011.

[34] V. Filkov and S. Skiena. Integrating microarray data by consensus clustering. in

Proc. Int. Conf. Tools with Art. Intell., pages 418–426, 2003.

[35] Imola K. Fodor. A survey of dimension reduction techniques. Center for Applied

Scientific Computing, Lawrence Livermore National Laboratory P.O. Box 808,

L-560, Livermore, CA 94551, 2002.

[36] E. W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretabil-

ity of classifications. Biometrics, 21:768–769, 1965.

[37] A. Fred and A. K. Jain. Data clustering using evidence accumulation. in Proc.

Sixteenth Int. Conf. Pattern Recognition (ICPR), pages 276–280, 2002.

139

[38] Bin Gao, W.L. Woo, and B.W.-K. Ling. Machine learning source separation using

maximum a posteriori nonnegative matrix factorization. IEEE Transactions on

Cybernetics, 44:1169–1179, 2014.

[39] Y Gao and G Church. Improving molecular cancer class discovery through sparse

non-negative matrix factorization. Bioinformatics, vol. 21, pp. 3970-3975, 2005.

[40] B. Gokberk, H. Dutagaci, A. Ulas, and L. Akarun. Representation plurality

and fusion for 3-d face recognition. IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, 38(1):155–173, 2008.

[41] D Guillamet, J Vitria, and B Scheile. Introducing a weighted nonnegative matrix

factorization for image classification. Pattern Recognition Letters, 24:2447–2454,

2003.

[42] H. Hae-Jin, P. Yi, R. Harrison, and P. C. Tai. Improved protein secondary

structure prediction using support vector machine with a new encoding scheme

and an advanced tertiary classifier. IEEE Trans. on NanoBioscience, 3(4):265–

271, 2004.

[43] Oja E Hyvarinen A. Independent component analysis: Algorithms and applica-

tions. Neural Networks, 13(4-5):411–430, 2000.

[44] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Englewood Cliffs,

NJ: Prentice-Hall, 1988.

[45] M. Jambu. Fortran iv computer program for rapid hierarchical classification of

large data sets. Computers and Geosciences, 7(3):297–310, 1981.

[46] Pujar J.H. and Kadlaskar L.M. A new lossless method of image compression

and decompression using huffman coding techniques. Journal of Theoretical and

Applied Information Technology, 15(1):18–23, 2010.

[47] Y. Jian, A. F. Frangi, J.-Y. Yang, D. Zhang, and Z. Jin. Kpca plus lda: a complete

kernel fisher discriminant framework for feature extraction and recognition. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 27(2):230–244, 2005.

[48] D. X. Jiang, C. Tang, and A. D. Zhang. Cluster analysis for gene expression data:

A survey. IEEE Trans. Know. and Data Eng., 16(11):1370–1386, 2004.

[49] Brunet JP, Tamayo P, Golub TR, and Mesirov JP. Metagenes and molecular

pattern discovery using matrix factorization. Proceedings of the national academy

of sciences, 101(12):4164–4173, 2004.

[50] Du K-L and Swamy MNS. Independent component analysis. neural networks and

statistical learning. Springer London., pages 419–450, 2014.

140

[51] T. E. Kohonen. Self-organizing maps. New York: Springer-Verlag, 1997.

[52] Kaufman L. and Rousseeuw P.J. Clustering by means of medoids, in statistical

data analysis based on the l1-norm and related methods. edited by Y. Dodge,

North-Holland, pages 405–416, 1987.

[53] Kaufman L. and Rousseeuw P.J. Finding groups in data: An introduction to

cluster analysis. Wiley, Canada, 1990.

[54] Benson S. Y. Lam and Hong Yan. Assessment of microarray data clustering

results based on a new geometrical index for cluster validity. Soft Computing,

11(4):341–348, 2007.

[55] A N Langville, C D Meyer, and R Albright. Initializations for the nonnegative

matrix factorization. Proceeding of the Twelfth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2006.

[56] S.Z. Li, X.W. Hou, H.J. Zhang, and Q.S Cheng. Learning spatially localized

parts-based representation. In: Proceedings of IEEE Con- ference on Computer

Vision and Pattern Recognition, pages 207–212, 2001.

[57] C. Lin. On the convergence of multiplicative update algorithms for nonnegative

matrix factorization. IEEE Transactions on Neural Networks, 18(6):1589–1596,

2007.

[58] C. Lin. Projected gradient methods for nonnegative matrix factorization. Neural

Computation, 19(10):2756–2779, 2007.

[59] Cheng-Ru Lin and Ming-Syan Chen. Combining partitional and hierarchical

algorithms for robust and efficient data clustering with cohesion self-merging.

IEEE Trans. Know. Data Eng., 17(2):145–159, 2005.

[60] C.-L. Liu, S. Jaeger, and M. Nakagawa. Online recognition of chinese characters:

the state-of-the-art. IEEE Trans. on Pattern Analysis and Machine Intelligence,

26(2):198–213, 2004.

[61] W Liu, K Yuan, and D Ye. Reducing microarray data via nonnegative matrix

factorization for visualization and clustering analysis. Journal of Biomedical In-

formatics, 41:602–606, 2008.

[62] Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, and S. Wu. Understanding and en-

hancement of internal clustering validation measures. IEEE Transactions on

Cybernetics, 43:982–994, 2013.

[63] Z. G. Liu, D. C. Chen, and H. Bensmail. Gene expression data classification with

kernel principal component analysis. J. Biomed. Biotech., 2005(2):155–159, 2005.

141

[64] S. P. Lloyd. Least squares quantization in pcm, technical report, bell laboratories.

IEEE Transactions on Information Theory 28, pages 129–137, 1957.

[65] Scholz M, Gatzek S, Sterling A, Fiehn O, and Selbig J:. Metabolite fingerprinting:

detecting biological features by independent component analysis. Bioinformatics

2004, 20(15):2447–2454, 2004.

[66] J. MacQueen. Some methods for classification and analysis of multivariate ob-

servations. Berkeley, CA: University of California Press, pages 281–297, 1967.

[67] Y. Mao, X. B. Zhou, D. Y. Pi, Y. X. Sun, and Stephen T. C. Wong. Multiclass

cancer classification by using fuzzy support vector machine and binary decision

tree with gene selection. J. Biomed. Biotech., (2):160–171, 2005.

[68] Llus Marquez. Machine learning and natural language processing. Technical

Report LSI-00-45-R, Department de Llenguatges i Sistemes Informatics (LSI),

University Politecnica de Catalunya (UPC), 2000.

[69] D. L. Massart, F. Plastria, and L. Kaufman. Non-hierarchical clustering with

masloc. Pattern Recognition, 16:507–516, 1983.

[70] U Maulik and S Bandyopadhyay. Performance evaluation of some cluster-

ing algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell.,

24(12):1650–1654, 2002.

[71] T. M. Mitchell. Machine learning. McGraw Hill, 1997.

[72] T. M. Mitchell. The discipline and future of machine learning. machine learning.

Department, School of Computer Science, Carnegie Mellon University, 2007.

[73] Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Consensus clus-

tering: A resampling-based method for class discovery and visualization of gene

expression microarray data. Machine Learning, 52:91–118, 2003.

[74] R. Navigli, P. Velardi, and A. Gangemi. Ontology learning and its application to

automated terminology translation. Intelligent Systems, IEEE, 18(1):1541–1672,

2003.

[75] S. Nikitidis, A. Tefas, and I. Pitas. Projected gradients for subclass discriminant

nonnegative subspace learning. IEEE Transactions on Cybernetics, 2014. In

press, DOI: 10.1109/TCYB.2014.2317174.

[76] Nils J. Nilsson. Introduction to machine learning. Artificial Intelligence Labora-

tory, Department of Computer Science, Stanford University, 2005.

142

[77] Mahdi O.A., Mohammed M.A., and Mohamed A.J. Implementing a novel ap-

proach an convert audio compression to text coding via hybrid technique. Inter-

national Journal of Computer Science, 9(6):53–59, 2013.

[78] P. Paatero and U. Tapper. Positive matrix factorization: a non-negative factor

model with optimal utilization of error estimates of data values. Environmetrics,

5:111–126, 1994.

[79] A. D. Parkins and A. K. Nandi. Genetic programming techniques for hand written

digit recognition. Signal Processing, 84(12):2345–2365, 2004.

[80] A. D. Parkins and A. K. Nandi. Method for calculating first-order derivative based

feature saliency information in a trained neural network and its application to

handwritten digit recognition. IEE Proceedings - Part VIS, 152(2):137–147, 2005.

[81] R.D. Pascual-Marqui, A.D. Pascual-Montano, K. Kochi, and J.M. Carazo.

Smoothly distributed fuzzy c-means: a new self-organizing map. Pattern Recog-

nition, 34(12):2395–2402, 2001.

[82] A Pascual-Montano, P Carmona-Saez, M Chagoyen, F Tirado, J M Carazo, and

R D Pascual-Marqui. bionmf: a versatile tool for nonnegative matrix factorization

in biology. BMC Bioinformatics, vol. 7(1), pp. 366-374, 2006.

[83] J. M. Pena, J. A. Lozano, and P. Larranaga. An empirical comparison of four

initialization methods for k-means algorithm. Elsevier Science B. V, Pattern

Recognition Letters 20, 20(10):1027–1040, 1999.

[84] R. Plamondon and S. N. Srihari. Online and off-line handwriting recognition:

a comprehensive survey. IEEE Trans. on Pattern Analysis and Machine Intelli-

gence, 22(1):63–84, 2000.

[85] Press, W.H., S.A.Teukolsky, W.T. Vetterling, and B.P.Flannery. Numerical

recipes: the art of scientific computing. New York: Cambridge University Press,

2007.

[86] Jie Qin, Darrin P.Lewis, and William Stafford Noble. Kernel hierarchical gene

clustering from microarray expression data. Bioinformat., 19(16):2097–2104,

2003.

[87] W M Rand. Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association, Theory and Methods Section, 66:846–850,

1971.

[88] M Rezaei and R Boostani. An efficient initialization method for nonnegative

matrix factorization. Journal of Applied Sciences, 11:354–359, 2011.

143

[89] Dhillon I. S. and Modha D. M. Concept decompositions for large sparse text data

using clustering. Machine Learning, 42(1):143–175, 2001.

[90] Cruces-Alvarez SA and Amari S Cichocki A. From blind signal extraction to blind

instantaneous signal separation: criteria, algorithms, and stability. IEEE trans-

actions on neural networks/a publication of the IEEE Neural Networks Council

15, pages 859–873, 2004.

[91] Sameh A. Salem, Lindsay B. Jack, and Asoke K. Nandi. Investigation of self-

organizing oscillator networks for use in clustering microarray data. IEEE Trans.

NanoBio., 7(1):65–79, 2008.

[92] Sameh A. Salem and Asoke K. Nandi. Development of assessment criteria for

clustering algorithms. Pattern Anal. and Appl., 12(1):79–98, 2009.

[93] R. Schachtner. Extensions of non-negative matrix factorization and their appli-

cation to the analysis of wafer test data. PhD thesis, University of Regensburg,

2010.

[94] F. Shahnaza, M. W. Berrya, V. P. Paucab, and R. J. Plemmonsb. Document

clustering using nonnegative matrix factorization. Information Processing and

Management, 42(2):373–386, 2006.

[95] Age Smilde, Rasmus Bro, and Paul Geladi. Multi-way Analysis. Wiley, West

Sussex, England, 2004.

[96] M. Srinivas and L.M. Patnaik. Genetic algorithms: a survey. IEEE Computer,

27(6):17–26, 1994.

[97] A. Strehl and J. Ghosh. Cluster ensembles c a knowledge reuse framework for

combining multiple partitions. J. Machine Learning Research, 3:583–617, 2002.

[98] Stephen Swift, Allan Tucker, Veronica Vinciotti, Nigel Martin, Chris tine Orengo,

Xiaohui Liu, and Paul Kellam. Consensus clustering and functional interpretation

of gene-expression data. Genome Biology, 5(11):R94, 2004.

[99] Hastie T and Tibshirani R. Independent components analysis through product

density estimation. Neural Information Processing Systems (NIPS), 2002.

[100] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitro-vsky, E. S.

Lander, and T. R. Golub. Interpreting patterns of gene expression with self-

organizing maps: Methods and application to hematopoietic differentiation. Proc.

Nat. Academy Sci. USA, 96(6):2907–2912, 1999.

144

[101] Shuta Tomida, Taizo Hanai, Hiroyuki Honda, and Takeshi Kobayashi. Anal-

ysis of expression profile using fuzzy adaptive resonance theory. Bioinformat.,

18(8):1073–1083, 2002.

[102] H. Tong-Cheng and D. You-Dong. Generic object recognition via integrating

distinct features with svm. In Proc. of the Int?l Conf. on Machine Learning and

Cybernetics, pages 3897–3902, 2006.

[103] S. Vega-Pons, J. Correa-Morris, and J. Ruiz-Shulcloper. Weighted cluster en-

semble using a kernel consensus function. Lecture Notes in Computer Science,

Heidelberg: Springer., 5197:195–202, 2008.

[104] S. Vega-Pons and J. Ruiz-Shulcloper. A survey of clustering ensemble algorithms.

International Journal of Pattern Recognition and Artifcial Intelligence, 25:337–

372, 2011.

[105] G Wang, A V Kossenkov, and M F Ochs. Ls-nmf: a modified nonnegative ma-

trix factorization algorithm utilizing uncertainty estimates. BMC Bioinformatics,

7:175, 2006.

[106] W. Wang. An improved non-negative matrix factorization algorithm for com-

bining multiple clusterings. in 2010 Int. Conf. Machine Vision Human-machine

Interface, pages 604–607, 2010.

[107] A. Weingessel, E. Dimitriadou, and K. Hornik. An ensemble method for cluster-

ing. in Distributed Statistical Computing, Vienna, 2003.

[108] Darrell Whitley and Andrew M. Sutton. Genetic algorithms - a survey of models

and methods. Springer Berlin Heidelberg, 21:637–671, 2012.

[109] S Wild. Seeding non-negative matrix factorizations with the spherical k-means

clustering. Master of Science Thesis, University of Colorado, 2003.

[110] S. Winters-Hilt, M. Landry, M. Akeson, M. Tanase, I. Amin, A. Coombs,

E. Morales, J. Millet, C. Baribault, and S. Sendamangalam. Cheminformatics

methods for novel nanopore analysis of hiv dna termini. BMC Bioinformatics,7

Suppl 2: S22, 2006.

[111] Shuanhu Wu, A.W.-C. Liew, Hong Yan, and Mengsu Yang. Cluster analysis of

gene expression data based on self-splitting and merging competitive learning.

IEEE Trans. Inf. Tech. Biomed., 8(1):5–15, 2004.

[112] Yang X.S. Firefly algorithm, stochastic test functions and design optimization.

Int. J. bio-inspired computation, 2010.

145

[113] R. Xu and D. II Wunsch. Survey of clustering algorithms. IEEE Trans. Neural

Networks, 16(3):645–678, 2005.

[114] W. Xu, A. K. Nandi, and J. Zhang. Novel fuzzy reinforced learning vector quan-

tisation algorithm and its application in image compression. IIEE Proceedings -

Part VIS, 150(5):292–298, 2003.

[115] Yun Xue, Chong Sze Tong, Ying Chen, and Wen-Sheng Chen. Clustering-based

initialization for non-negative matrix factorization. Applied Mathematics and

Computation 205, pages 525–536, 2008.

[116] S. Yang, J. Song, H. Rajamani, C. Taewon, Y. Zhang, and R. Mooney. Fast and

effective worm fingerprinting via machine learning. In Proc. of the Int?l Conf. on

Autonomic Computing, ICAC,TX,US, pages 311–313, 2006.

[117] F Z Yao, J Coquery, and K A Le Cao. Independent principal component analysis

for biologically meaningful dimension reduction of large biological data sets. BMC

Bioinformatics, 13:24:1471–2105, 2012.

[118] Fangzhou Yao, Jeff Coquery, and Kim-Anh L Cao. Independent principal compo-

nent analysis for biologically meaningful dimension reduction of large biological

data sets. BMC Bioinformatics, 13:24:1471–2105, 2012.

[119] Shaohui Yu, Yujun Zhang, Wenqing Liu, Nanjing Zhao, Xue Xiao, and Gaofang

Yin. A novel initialization method for nonnegative matrix factorization and its

application in component recognition with three-dimensional fluorescence spectra.

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86:315–

319, 2012.

[120] Ya-Jun Zhang and Zhi-Qiang Liu. Self-splitting competitive learning: a new

online clustering paradigm. IEEE Trans. Neural Networks, 13(2):369–380, 2002.

[121] L Zhao, G Zhuang, and X Xu. Facial expression recognition based on pca and nmf.

Proceedings of the 7th World Congress on Intelligent Control and Automation,

pages 6826–6829, 2008.

[122] Z Zheng, J Yang, and Y Zhu. Initialization enhancer for non-negative matrix fac-

torization. Engineering Applications of Artificial Intelligence, 20:101–110, 2007.

146

147

