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Extended Abstract

Local polynomial regression has received a great deal of attention in the past. It is a highly

adaptable regression method when the true response model is not known. However, estimates

obtained in this way are not guaranteed to be monotone. In some situations the response is

known to depend monotonically upon some variables. Various methods have been suggested

for constraining nonparametric local polynomial regression to be monotone. The earliest of

these is known as the Pool Adjacent Violators algorithm (PAVA) and was first suggested by

Brunk [4]. Kappenman [29] suggested that a non-parametric estimate could be made monotone

by simply increasing the bandwidth used until the estimate was monotone. Dette et al. [9]

have suggested a monotonicity constraint which they call the DNP method. Their method

involves calculating a density estimate of the unconstrained regression estimate, and using this

to calculate an estimate of the inverse of the regression function.

Fan, Heckman and Wand [17] generalized local polynomial regression to quasi-likelihood

based settings. Obviously such estimates are not guaranteed to be monotone, whilst in many

practical situations monotonicity of response is required. In this thesis I discuss how the above

mentioned monotonicity constraint methods can be adapted to the quasi-likelihood setting. I

am particularly interested in the estimation of monotone psychometric functions and, more

generally, biological transducer functions, for which the response is often known to follow a

distribution which belongs to the exponential family.

I consider some of the key theoretical properties of the monotonised local linear estimators

in the quasi-likelihood setting. I establish asymptotic expressions for the bias and variance for

my adaptation of the DNP method (called the LDNP method) and show that this estimate
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is asymptotically normally distributed and first-order equivalent to competing methods. I

demonstrate that this adaptation overcomes some of the problems with using the DNP method

in likelihood based settings. I also investigate the choice of second bandwidth for use in the

density estimation step.

I compare the LDNP method, the PAVA method and the bandwidth method by means

of a simulation study. I investigate a variety of response models, including binary, Poisson

and exponential. In each study I calculate monotone estimates of the response curve using

each method and compare their bias, variance, MSE and MISE. I also apply these methods

to analysis of data from various hearing and vision studies. I show some of the deficiencies of

using local polynomial estimates, as opposed to local likelihood estimates.
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Chapter 1

Introduction

This thesis considers the estimation of monotone Transducer functions and Psychometric func-

tions using non-parametric regression methods. In this introduction I will give a brief descrip-

tion of non-parametric regression and issues involved with this. I will then describe transducer

functions and psychometric functions and explain typical methods of estimation. After this

I will explain how non-parametric methods can be used to estimate these functions. Finally

I will discuss the issue of monotonicity, the methods that currently exists and the benefits of

them.

1.1 Transducer functions

In this thesis I consider transducer functions. These are functions that measure the response of

a subject to some stimulus. Perhaps the most common example of a transducer function is a

psychometric function which is a transducer function with a binomial response model. For this

reason, most of the following discussion is focused on psychometric functions. The response

of a transducer function does not have to be binomial however. In this thesis I also consider

Poisson responses and Exponential responses. In the following I will consider a psychometric

function P (x) although I could equally have considered a transducer function T (x). Clearly

the type of response considered will affect the range of values the transducer function can take.

A psychometric function is a probability and hence takes values in [0, 1]. If the responses were
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Poisson, the transducer function would take values in (0,∞).

Psychometric functions model the dependence of a subject’s performance upon some phys-

ical stimulus. They are used in a wide variety of psychophysical experiments. A psycho-

metrician/physchophysicist, is usually interested in measuring how an observer’s performance

improves with increasing stimulus level. Examples of such studies come from a wide range

of fields including vision, hearing and brain function tests. For example, in a vision study a

patient may have a light flashed in their eye repeatedly and they are asked if they can see it.

The probability of successfully detecting the light signal as the intensity increases is recorded.

In an auditory test, a noise of varying duration may be presented to the subject in one of

two time intervals. The subject is required to state which of the two time intervals the noise

occurred in and the probability of correctly identifying the noise as the length of signal changes

is calculated.

A psychometric function, P (x), measures the probability of a correct response at a given

level of stimulus x. Psychophysical data is collected by testing an observer’s response, r, at n

different stimulus levels. In a typical psychometric study each of r individual observers will be

tested in this way. Both here, and for the rest of this thesis, the stimulus level will be labelled

x, the number of stimulus levels, n and the number of repeats r. Notice also that for any

particular patient, responses at different stimulus levels will clearly be correlated. However,

this is not considered in this thesis where I make the assumption that individual responses are

independent.

The clinician is usually interested in two summary statistics. The response threshold is

the stimulus intensity required to produce a given level of performance. For example, in the

vision example mentioned above, a clinician may be interested in the light intensity required

to allow 90% of observers to detect it. The slope of the psychometric function describes the

rate at which the performance increases with an increasing stimulus intensity.

The most widely used method of estimating psychometric functions is a parametric one. The

method is based on maximum likelihood and is described in detail in two papers by Wichmann

and Hill ([48] and [49]). More recently Żychaluk and Foster have suggested a nonparametric
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method of estimating the psychometric function and they describe some of the benefits of

adopting this approach ([18] and [19]). A brief overview of these methods is provided in this

introduction. I then explain the issue of monotonicity and present some of the existing methods

described in the literature. Following this I give a brief overview of the chapters in this thesis.

1.2 Parametric estimation of a psychometric function

The general form of a psychometric function is often given as

P (x) = γ + (1− γ − λ)F (x),

where γ, λ ≥ 0, P (x) is the proportion of correct responses at a stimulus level, x. The function,

F (x), is usually taken to be a smooth monotonic function with values in [0, 1]. Important

features of the psychometric function are the asymptotes γ and λ. The lower asymptote,

γ, is the base level of performance in the absence of any stimulus. In some situations this

is described as the “guessing rate”, i.e the probability that an observer guesses the correct

response by chance. The upper asymptote, λ, is often called a “lapsing rate” and is interpreted

as the rate at which an incorrect response is given regardless of the stimulus intensity. For

example, in the vision study previously mentioned, an observer may blink and miss the light

signal.

The function F (x) takes the form of the inverse link function when the psychometric function

is modelled as a generalized linear model (GLM). Most common choices of F are sigmoid

functions such as the cumulative Gaussian, Weibull and logistic distributions. The definition

of these distributions is given in Table 1.1.

A psychometric function is commonly estimated parametrically by fitting a specific GLM.

A GLM consists of three parts. The first part is a random component. This component is a

member of the exponential family. That is, it satisfies the form

fY (y; θ, φ) = exp (yθ − b(θ))/a(φ) + c(y, φ),

for some specific functions a(·), b(·) and c(·). Here θ is the parameter to be estimated, often

related to the mean of the distribution, whilst φ is a dispersion parameter (or sometimes called

7



Table 1.1: Some common F (x) distributions

Distribution F (x)

Gaussian 1√
2π
∫ x
−∞ exp (−z2/2)dz

Weibull 0, −∞ < x ≤ 0

1− exp (−xβ), 0 < x <∞ and β > 0

Logistic [1 + exp (−x)]−1, −∞ < x <∞

nuisance parameter), and is often related to the variance of the distribution. More information

about generalised linear models can be found in McCullagh and Nelder [33]. In the case of a

psychometric function this is usually taken to be a binomial distribution with mean µ.

The second component, the systematic component, is a function η which is a linear predictor

of the explanatory variables x. The final component is a link function, g. The link function

describes the link between the systematic component and the random component. That is to

say, it describes how the outcome, P , is influenced by the stimulus level x. The psychometric

function, P (x), is modelled as

η(x) = g[P (x)].

The choice of link function can ensure that the estimated response is within the correct

bounds. In this case, that means constraining the estimates of the psychometric function to

be in [0, 1], which is, of course, an obvious requirement of a probability. The estimate of the

psychometric function is then obtained by using the inverse of the link function, g−1. The

systematic component is almost always a first degree polynomial. That is,

η(x) = a0 + a1x.

When psychometric data are collected, there are mi trials at each of n stimulus levels xi

with 1 ≤ i ≤ n. The responses yi are typically assumed to have a binomial distribution with

parameters (mi, p(xi)). This is the random component of the GLM. The log-likelihood is then

given by
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l(a0, a1) =
n∑
i=1

ln[P ri(xi)(1− P (xi))mi−ri ]

=
n∑
i=1

ri lnP (xi) + (mi − ri) ln[1− P (xi)]

=
n∑
i=1

ri ln[g−1(a0 + a1xi)] + (mi − ri) ln[1− g−1(a0 + a1xi)].

The coefficients a0 and a1 are then estimated using the iteratively reweighted least squares

method outlined by McCullagh and Nelder [33] (page 40). This method is often referred to as the

Fisher’s scoring method and is a variant of the Newton-Raphson method. This is a numerical

method that approximates the values of the parameters by successive weighted iterations of

the likelihood function. Typically a few iterations are sufficient to obtain good estimates of the

required parameters.

For this method the guessing and lapsing rates must be stated in the first place. Obviously,

in many cases these will not be known and so must be estimated. It is possible to create an

estimating procedure where the values for the guessing and lapsing rates, γ and λ, are estimated

as well (see [51]).

Parametric modelling, as described above, is very commonly used in estimating psychome-

tric functions but it is not without its problems. The correct form of the link function is rarely

known and the use of an incorrect link function will lead to results that are not consistent.

The specification of the guessing and lapsing rates can cause similar problems (see discussion

in Foster and Żychaluk [18]).

1.3 Non-parametric regression

I first give a brief outline of some of the developments in the field of non-parametric regression.

This gives the setting to the later discussion regarding psychometric and transducer functions.

There are a number of methods of non-parametric regression including spline based methods

(see for example the book by Green and Silverman [23]), kernel based methods (see the books

by Fan and Gijbels [16] and Wand and Jones [44]) and wavelet transforms (see the overview
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by Donoho, Johnstone, Kerkyacharian and Picard [12]). This thesis is only concerned with the

kernel based methods. Kernel regression has been dealt with in many books, two of the most

popular being those of Fan and Gijbels, [16] and Wand and Jones [44]. The very basic problem

is to model a response Yi and its dependence on some variable Xi. A realisation of the random

variable Xi is denoted xi. The response, Yi is modelled as a smooth function, m depending on

the variable , x,

Yi = m(xi) + v1/2(xi)εi, i = 1, . . . , n,

where ε1, . . . , εn are independent random variables for which

E(εi) = 0 and V ar(εi) = 1.

The function, m is the regression function, whilst v is the variance function. If v(xi) = σ2

for all i then the model is said to be homoscedastic. If this is not the case the model is

heteroscedastic.

Parametric methods of modelling are extensively described in the book by McCullagh and

Nelder [33] on generalised linear models. In many cases a parametric regression estimate may be

suitable for use in describing the data. However, parametric methods require the specification

of a model and the parameters to be used in a model. In practice these are often not known. If

a wrong model is chosen then any conclusions drawn from it may be spurious. For a generalised

linear model, a link function must be specified. But there is often insufficient information to

make a correct choice (See Foster and Żychaluk [18]). One way to overcome this problem

associated with parametric fitting methods is to consider local smoothing. In practice in this

method we fit a local regression at each point in a grid covering the range of x values. This

local fit is used to provide an estimate of the true regression function in that locality.

1.3.1 Local constant estimates

Perhaps the simplest form of this is a local constant estimate. This is in some sense like a

weighted average of the points in a locality. There are three common forms of a local constant

estimator.
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• Nadaraya-Watson estimator ([45] and [35])

The Nadaraya-Watson estimator takes the form

m̂h(x) =
∑n
i=1 Kh(Xi − x)Yi∑n
i=1 Kh(Xi − x) ,

where K is a real valued function that assigns weights, usually taken to be a symmetric

probability density function. Here and for the remainder of this thesis, Kh(·) = K(·/h)/h

and h is a bandwidth which controls how much weight is applied to each point.

• Gasser-Müller estimator [21] Here the data have been ordered according theX variable

m̂h(x) =
n∑
i=1

∫ si

si−1
Kh(u− x)du Yi,

with si = (X(i) +X(i+1))/2, X0 = −∞ and Xn+1 = +∞.

• Priestly-Chao estimator [38]

m̂h(x) =
n∑
i=1
{X(i) −X(i−1)}Kh(X(i) − x)Yi,

where X(i) are the ordered X variables X1, . . . Xn.

The Nadaraya-Watson estimator has an increased asymptotic bias compared to the other

two methods, although it has a smaller asymptotic variance. The disadvantage of the Gasser-

Müller and Priestly-Chao estimators is that they have boundary bias problems. Some of these

problems lead to the use of local linear regression methods described later. Discussions in Wand

and Jones [44] (page 131) and Fan and Gijbels [16] (page 17) explain some of the properties of

these estimators.

Two obvious questions arise from these estimators. The first is as to which kernel should

be chosen, whilst the second is as to which bandwidth, h, should be chosen. The question

of bandwidth choice is discussed in Section 1.4. Here the discussion focusses on the choice of

kernel. More comprehensive detail and discussion, along with a list of some kernels is given in

Wand and Jones [44] (page 31) and Silverman [42] (page 43). A list of some commonly used

kernels and their properties is provided in this thesis in Chapter 3.
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The first kernel to be suggested was the Epanechnikov kernel. This is the kernel that

minimises the asymptotic mean integrated square error (AMISE) for kernel density estimation.

The AMISE is a large sample approximation to the MISE. (See Wand [44] page 30). Other

kernels are not much less efficient than the Epanechnikov kernel and may be easier to compute

in practice (see Silverman [42]). Hence other kernels, such as the Gaussian kernel may be more

commonly used in reality. The point is that there is not much loss in efficiency.

1.3.2 Local Polynomial estimates

One of the most commonly used forms of non-parametric regression is the local linear regression

method. This is a type of local polynomial regression, and has many desirable properties. For

example, since the modelling takes place locally, only a small degree of polynomial is required

to achieve a small bias, whereas for parametric regression a much higher degree of polynomial

would be required. This is obviously problematic as it can result in overparametisation. The

properties of local polynomial regression can be found in Fan and Gijbels [16] and also articles by

Fan [13][14]. The idea here is to estimate a locally linear regression within a local neighbourhood

about a data point xi. This linear regression estimate is then used to calculate an estimate of

the value of the function at the point x. The form of the local linear estimate is given as

m̂h(x) = n−1
n∑
i=1

ŝ2(x;h)− ŝ1(x;h)(xi − x)Kh(xi − x)Yi
ŝ2(x;h)ŝ0(x;h)− ŝ1(x;h)2 (1.1)

where

ŝr(x;h) = n−1
n∑
i=1

(xi − x)rKh(xi − x).

Fan and Gijbels [16] demonstrate that there is an advantage in terms of the asymptotic bias

and variance of the estimates if the local linear method is used instead of either the Nadaraya-

Watson or Gasser-Müller estimates. This is because the local linear method is design adaptive.

The weighting scheme of the local linear method manages to maintain smooth weights in the

same way as the Nadaraya-Watson estimator and to keep a smaller variance but also keeps
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the smaller bias of the Gasser-Müller estimate. The local linear estimate adapts readily to

boundary points whilst the other methods do not.

A more detailed discussion of these properties can be found on page 22 of Fan and Gijbels

[16]. They show that there is an advantage to using odd degree polynomials in kernel polynomial

regression. Clearly fitting higher order polynomials leads to a possible reduction of the bias.

But another result of increasing the degree of polynomial used is that the variability increases.

Fan and Gijbels [16] state that an odd degree polynomial of degree 2q + 1 reduces the bias

compared to a model of degree 2q but with no additional increase in variability. This reduction

in bias, along with no increase in variability makes it desirable to use odd degree polynomials.

Fan [14] also explains that even degree polynomial fits suffer from low efficiency and boundary

effects, whereas odd degree polynomial fits do not have these problems. Fan and Gijbels [16]

gives a comprehensive overview of local linear methods and explains the advantages of using

them.

1.3.3 Non-Parametric density estimation

Before leaving this section on non-parametric methods I first give a brief overview of a related

topic, that of density estimation. This is so as so give background to a later discussion of

monotonicity constraint methods. Good overviews of kernel density estimation can be found

in Silverman [42] and in Wand and Jones [44]. The challenge is to calculate an estimate of a

density f(x) without making distributional assumptions. The standard kernel density estimator

is given by

f̂(x;h) = 1
nh

n∑
i=1

K
(
x−Xi

h

)
, (1.2)

where K is a kernel function applying weights to data points depending on their closeness to

x, and h is a bandwidth. Since a kernel is assumed to be a continuous function kernel methods

have problems at the boundary of the range of x. This is a result of the fact that some of

the neighbourhood created by the bandwidth h falls outside of the boundary. There will be

no observations in this area, and hence bias is introduced in boundary regions. Methods have

been suggested to compensate for this boundary bias. For and overview see Fan and Gijbels
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(page 69, [16]) or Wand and Jones (46-48 [44]). In this thesis the boundary effects have been

ignored and the results presented assume we are considering a region away from the boundary.

1.4 Bandwidth selection

Each of the regression estimates outlined so far have been dependent upon a choice of band-

width, h. The bandwidth essentially determines how much weight is added to each point in

the estimation procedure. Whilst the choice of kernel used is relatively unimportant, the choice

of bandwidth can very significantly influence the estimate obtained. If the bandwidth chosen

is too large then the estimate will be oversmoothed. This may mean that important features

of the data are lost and the regression estimate will tend towards a simple linear regression.

Conversely, if the bandwidth chosen is too small we may significantly under-smooth the data.

We then risk drawing conclusion based upon spurious peaks and the regression estimate corre-

sponds to little more than linear interpolation between the data points. The challenge, then,

is to choose a bandwidth that is neither too large nor too small.

In an ideal situation we would choose a bandwidth, h that was optimal in terms in some

metric such as the mean square error (MSE see (3.3)), or the mean integrated square error

(MISE see (3.10)). However, the expression for the asymptotic MSE and MISE depends on

unknown quantities. In practice these will be unknown since the precise form of the response

function is not known. As a result approximation methods are needed in order to estimate

the unknown quantities and calculate a suitable bandwidth. There are many ways in which to

choose the bandwidth, with the two main families of method being cross-validation bandwidths

and plug-in bandwidths. The plug-in methods provide ways of estimating the unknown terms

in the MSE or MISE expressions. I will discuss only two methods in detail.

• The plug in bandwidth method (Ruppert, Sheather and Wand [40])

We will assume that the errors are homoscedastic, with common variance σ2, and also

that the Xi’s are from a compactly supported density on [0, 1]. The mean integrated

square error (MISE) is the expected value of the integral of the squared distance between
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a non-parametric regression estimate (of any of the common kernel methods) m̂(x;h) and

the true function m(x) (this is the L2 risk funtion). That is to say,

MISE{m̂(·;h)} = E[
∫
{m̂(x;h)−m(x)}2dx].

Ruppert, Sheather and Wand [40] propose weighting the MISE by a density f(x) which

puts more emphasis on regions where there are more data. They give the weighted MISE

MISE{m̂(·;h)|X1, . . . , Xn} = E[
∫
{m̂(x;h)−m(x)}2f(x)dx|X1, . . . , Xn].

They show that the asymptotically optimal bandwidth, which minimises the asymptotic

MISE is given by

hAMISE = C1(K)
[
σ2

θ22n

]1/5

where C1(K) = {R(K)/µ2(K)2}1/5 with R(K) =
∫
K(u)2du and µ2(K) =

∫
u2K(u)du.

The term θ22 is a special case of the notation

θrs =
∫
m(r)(x)m(s)(x)f(x)dx

Wand and Jones [44] and Ruppert, Sheather and Wand [40] state that a natural estimator

for θ22 is

θ̂22(g) = n−1
n∑
i=1

m̂(2)(Xi; 3, g)2

where m̂(2)(Xi; 3, g) is a third degree polynomial estimate of the second derivative of m(x)

with a bandwidth g, whilst a natural estimator for σ2 is

σ̂2(λ) = ν−1
n∑
i=1
{Yi − m̂(Xi; 1, λ)}2

where

ν = n− 2
n∑
i=1

wii +
n∑
i=1

n∑
j=1

w2
ij

and

wij = eT1 (XXiWXiXXi)−1XT
Xi

WXiej,
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and λ is a bandwidth. In this notation ej refers to a vector of length (p+1) (where p is the

degree of the local polynomial used) with 1 in the j’th entry and zeros everywhere else.

The matrix W is a diagonal matrix with diagonal entries Kh(x1 − x), . . . , Kh(xn − x).

The design matrix X is an (n× 2) matrix with the first column entries being 1, and the

second column entries being (x1− x), . . . , (xn− x). The direct plug in bandwidth is then

calculated using

ĥDPI = C1(K)
[
σ̂2

1(λ)
θ̂22(g)n

]1/5

Wand and Jones [44] (page 139) give more details on this method of bandwidth estimation

as well as details on selecting auxiliary bandwidths g and λ. Ruppert, Sheather and Wand

[40] describe some of the properties of this direct plug-in bandwidth. In particular they

show that this estimate has a good convergence rate to the MISE optimal bandwidth

hMISE.

• Cross Validation methods (See Fan and Gijbels [16])

Recall that m̂h(x) is an estimate of the regression function m at x using a particular

bandwidth h. The idea for cross validation is to leave out the ith observation and calculate

an estimate of the regression function using the remaining data, (Xj, Yj), j 6= i, and then

validate (or check) this using the prediction error Yi − m̂h,−i(Xi). This can be repeated

at each i. We want to find the bandwidth hCV which minimises the weighted average of

the squared errors,

ĥCV = arg min
h

n−1
n∑
i=1
{Yi − m̂h,−i(Xi)}2w(Xi).

Wand and Jones [44] (page 85) discuss the relative performance of various bandwidth selection

procedures. They conclude that direct plug in methods provide a good compromise between

the bias and variance of the resulting estimate. However for some distributions the asymptotic

results that this method relies upon may be less accurate. This is because the plug in methods

attempt to approximate terms in the asymptotic mean integrated square error. This expression

is only correct for large samples and may not be true for smaller samples, leading to poor

estimates of a suitable bandwidth. The cross-validation methods do not rely on asymptotic
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results since they approximate the integrated square error and so depend only upon the given

sample. In this sense they can adapt easily to any sample and large samples are not required

to provide a good estimate of a bandwidth. However cross validation methods can result in

high sample variability and can sometimes be less useful then in practice.

As an aside, it should be noted that these methods all provide a constant bandwidth to be

used across the range of x values. This need not necessarily be the case, although we confine our

investigations to this situation in this thesis. A variable bandwidth could be used for example,

which varies depending on how dense the stimulus values were in a region. More details and

explanation of variable bandwidths may be found in Fan and Gijbels [15].

1.5 Local linear regression in exponential family models

As was described in Section 1.2, a psychometric function is usually estimated as a GLM, which

allows the responses to follow any distribution in the exponential family. The use of a link

function constrains the resulting estimates to lie within the correct range. Non-parametric

modelling methods can also be adapted to a setting where the variance of the response is

dependent upon its mean. This method has been proposed by Fan, Heckman and Wand, [17]

and has been applied specifically to the psychometric function by Foster and Żychaluk [18].

1.5.1 Modelling the psychometric function

The procedure for obtaining a non-parametric estimate of a psychometric function is in many

ways broadly similar to the parametric method. However, we now estimate the η function

locally. We can accept any given link function and we estimate the η function, which in

contrast to the parametric version we no longer assume to be a linear function. For any given

point x we can estimate the value of the η function at any point close to x using a Taylor

expansion,

η(u) ≈ η(x) + (u− x)η′(x),

where η′(x) is the derivative of η. This estimation is obviously better the closer u is to x.
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As in the parametric case, the responses come from a binomial distribution with mean P (x).

The canonical link for a binomial distribution is the logit link,

g(P (x)) = ln
{

P (x)
1− P (x)

}
.

We can use this information to express the local log-likelihood, which is very similar to the

parametric log-likelihood function with the exception that we now have a weighting term.

l(α0, α1;x) =
n∑
i=1

ln[P ri(xi)(1− P (xi))mi−ri ]Kh(x− xi)

=
n∑
i=1

[ri lnP (xi) + (mi − ri) ln[1− P (xi)]]Kh(x− xi)

=
n∑
i=1

[
ri ln[g−1(α0 + α1xi)] + (mi − ri) ln[1− g−1(α0 + α1xi)]

]
Kh(x− xi)

=
n∑
i=1

[
ri ln{(1 + exp(−(α0 + α1xi)))−1}

+(mi − ri) ln{1− (1 + exp(−(α0 + α1xi)))−1}
]
Kh(x− xi)

= −
n∑
i=1

[ri ln{1 + exp(−(α0 + α1xi))}+ (mi − ri) ln{1 + exp(α0 + α1xi)}]Kh(x− xi).

We can maximise this local log-likelihood using the Fisher scoring method (as with the

parametric case and explained in [33] and [16]). This is a numerical approximation method

since an exact solution is often not possible. This will give us the values of α0 and α1 that

maximise the local log-likelihood. These values are then used to obtain the maximum likelihood

estimate for η(x) as η̂(x) = α̂0. We can use the link function to transform this in order to get

an estimate for the psychometric function,

P̂ (x) = g−1(α̂0). (1.3)

Fan and Gijbels [16], Wand and Jones [44] state that the influence of the weight function

depends less on the kernel, K, chosen than on the bandwidth h.

This method has been applied to psychometric functions by Foster and Żychaluk [18] who

discuss the properties of using this method for psychometric functions. They say that it is best if

K has unbounded support which would be obtained if a Gaussian kernel was used for example.
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They give various discussion of methods of bandwidth choice and say that cross-validation

techniques performed no worse than other methods.

One of the advantages of the non-parametric method outlined above is that there is no need

to specify guessing and lapsing rates of the psychometric function. This is desirable since often

these values are not known and it can be costly to choose wrong values. By this, I mean that

choosing wrong values can lead to inaccurate estimates of the psychometric function. The rest

of their paper introduces seven data sets from psychometric studies in vision and hearing. They

compare commonly used methods of parametric fitting and the non-parametric method they

have outlined. Through various plots and discussions they demonstrate that the non-parametric

estimate performs well in all of the examples. They conclude

“As a matter of principle, a correct parametric model will always do better than a

nonparametric one, simply because the parametric model assumes more about the

data, but given an experimenter’s ignorance of the correct model, the local linear

method provides an impartial and consistent way of addressing this uncertainty.”

One of the examples that they provide is taken from a study by Schofield et al. [41]. In their

study they showed a subject a moving adaptation stimulus, followed by a test stimulus. The

images moved either up or down. The subjects were asked whether the adapting stimulus and

the test stimulus moved in the same direction. The number of correct responses was recorded

at seven different relative modulation depths, with 10 trials conducted at each depth level.

The results are shown in Figure 1.1. Various methods of estimating a psychometric function

have been calculated and are also shown in the figure. The simplest regression method, that

of simple linear regression is shown to demonstrate how unsatisfactory it is. Three different

parametric fits with logit, probit and Weibull links are shown. These provide reasonable, though

not exceptional, fit to the data. It is clear that the non-parametric fit of Żychaluk and Foster

performs at least as well as the parametric methods.

To compare the methods more I calculated the deviance of each of these estimated models,

following Foster and Żychaluk [18] . This is said to be a good way of comparing models
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(McCullagh and Nelder [33]). The deviance for each model (with a binomial response) is given

by

D = 2
n∑
i=1

ri ln
ri

miP̂ (xi)
+ (mi − ri) ln mi − ri

mi −miP̂ (xi)
(1.4)

The larger the value of D, the larger the discrepancy between the data and the fitted values. It

is unclear as to exactly what form the distribution of D takes. Asymptotically it is χ2(n− k)

where k is the number of fitted parameters.

The assumptions required for this asymptotic results may not hold in the small sample

size psychometric experiments we consider here. All this being said, the deviance is still a

useful means of comparing the various fits. The degrees of freedom for the non-parametric fit

is calculated by using the trace of the Hat matrix (see Hastie and Tibshirani [28] for more

details). It will be non integer in most cases. For the parametric fits, the degrees of freedom is

given by the number of points, n, minus the number of parameters, k.

The comparison of deviance statistics is given for each model in Table 1.2. Bearing in mind

that this is merely an indication of model suitability and not an exact result, the indication is

still that the linear model performs very poorly and models the data badly. The parametric fits

all give unsatisfactory fits indicated by the low significance values, whilst the non-parametric

estimate, performs considerably better than the alternatives with a much lower deviance and

corresponding significance value.

Table 1.2: A comparison of the deviances of various estimates of the psychometric function.

Deviance DoF p

Logit 14.46 5.00 0.01

Probit 17.33 5.00 0.004

Weibull 10.64 4.00 0.031

Linear 25.17 5.00 0.00

Non-Parametric 4.75 4.24 0.34
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Figure 1.1: Psychometric function estimates obtained using various parametric methods and a non-parametric

estimate.

1.5.2 Modelling Transducer functions

The method outlined by Foster and Żychaluk is not limited to psychometric functions. They

have also discussed how it can be used for transducer functions [19]. A psychometric function

is a particular kind of transducer function. Transducer functions measure the dependence of a

response on the stimulus level. The difference in this case is that the response function is now

not necessarily binary or binomial. This means that the link function used will be different.

In addition the limits of the response function will be different. For binomial responses the

response is constrained to lie in [0, 1] since it is a probability and the logit link is used since
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this is the canonical link for binomial responses. If the response follows a Poisson distribution

then the log link would be the canonical link and the responses would lie in [0,∞). Any other

response belonging to the exponential family could in theory be used with this method.

1.5.3 Wider Applications

There are many situations in clinical studies where dose-response curves are used. These test

how a patient responds to a treatment as the dosage increases. A dose-response curve is used

to determine the effective dose, that is, the dosage required to produce a positive response in

100α% of patients. In this sense it is comparable to the threshold that psychometricians are

interested in. Dose-response curves are essentially similar to psychometric functions and so the

method of Żychaluk and Foster could be used for them too. A survey of methods of estimating

dose-response curves is given by Dette and Scheder [11]. This paper will be discussed in more

detail later in this thesis. Closely related is the study of toxicity levels in environmental studies.

Often scientists are interested in the level of chemicals required for a particular environment to

become toxic and hazardous. This can be of interest with regards to chemical waste etc. and

the method of Żychaluk and Foster could also be used in this setting.

Guidi et al. [24] have used the method of Żychaluk and Foster [18] in a study of visual

illusions. They use the method to estimate psychometric functions for each subject from which

they determine distance thresholds. Zhang et al. [52] use the model free method to estimate

psychometric functions in a study of brain abnormality detection using magnetic resonance

imaging (MRI). Lee and Noppeney [30] conduct a study of how long term music training

(such as playing the piano) affects a person’s perception. They use the model free method

to estimate psychometric functions so as to avoid making distributional assumptions. In a

study by Whitmal and DeRoy [46], investigating the role of importance functions in speech

intelligibility, they say that the parametric method of estimating psychometric functions using

Weibull or logistic functions (as in Wichmann and Hill [48]) provided poor fits to the data. To

overcome this they use the model free method of Żychaluk and Foster. In a subsequent paper

[47], the same authors discuss how the importance functions can develop the use of cochlear
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implants.

1.6 Estimating monotone psychometric functions

In many situations scientific knowledge suggests that there should be a monotone relationship

between the stimulus levels, xi, and the psychometric function, P (x). In the example considered

in Figure 1.1, it makes sense that as the modulation depth increases so does the probability of

correctly identifying the motion direction. It is difficult to think of reason why this would not be

the case. Yet by observing Figure 1.1, you can see that there is a departure from monotonicity

at areas with low stimulus levels in the nonparametric estimate. Granted, in this example the

departure from monotonicity is hardly big enough to be considered significant, and appears

unlikely to dramatically affect any inferences drawn. However, later in this thesis we will give

examples of more serious departures from monotonicity.

The non-parametric method has no way of ensuring that the resulting estimate is monotone.

The purpose of this thesis is to investigate methods of constraining an estimate of the psycho-

metric function to be monotone. Various methods have been suggested for non-parametric

regression estimators. I give a brief outline of these methods now and provide references to

sources of more information on them. To the best of my knowledge, not all of these methods

have been been applied to estimation of psychometric functions, or, more generally, likelihood

based methods.

Throughout this thesis it is assumed that all mention of monotone implies monotone in-

creasing. For ease of presentation and discussion I only consider the case when the response

is monotone increasing. However, the methods described in this thesis are easily adapted to

monotone decreasing settings and all the results still remain valid.
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1.6.1 Methods of monotonicity constraint

Pool Adjacent Violators Algorithm (PAVA)

This method requires first ordering the responses Yi according to the order statistic X(1) <

. . . < X(n) of {Xi}ni=1. Brunk [4] suggested using

Y ∗i = max
s≤i

min
t≥i

1
t− s+ 1

t∑
j=s

Y[j]

as an estimate of the regression function at the point X(i). Here Y[j] is the Y value corresponding

to the ordered X variables. This process is known as the Pool-Adjacent-Violators-Algorithm,

(PAVA) and is described by Härdle [27]. This procedure removes any dips in the data set

and a monotone regression estimate can be obtained by linear interpolation between the Y ∗i
points. Obviously this curve may well not be very smooth. So it is possible to apply one of the

various non-parametric regression procedures outlined previously to the ‘new’ data (Xi, Y
∗
i ).

We denote the estimate produced using this method as m̂IS(x) since we first isotonize the data

and then smooth it.

The main motivation for this method is to ‘smooth’ out any points within the set of responses

that violate the monotonicity condition. The algorithm proceeds across the range of x values

ensuring at each step that the adjusted ‘data point’ Y ∗i is greater than or equal to the previous

data points. Hence the resulting responses essentially form a kind of step function. This is

obviously not ideal for a realistic model of the response and hence these monotonised data

points can be smoothed using any nonparametric regression method.

Alternatively we could first smooth the data and then isotonize the result as suggested in

[20]. We denote the estimate obtained using that method as m̂SI(x). Mammen [32] considers

both of these estimates. He concludes that these estimates are asymptotically similar, but that

their differences cannot be neglected in moderate sample sizes. Dette and Pilz [10] state that

the MSE of an estimate obtained by smoothing a monotonised data set is usually smaller than

the MSE of an estimate obtained by monotonising a smooth curve estimate and in this sense

it is better to use in many cases. Mammen [32] concludes that the choice of which method to

use depends mainly on the choice of kernel used, and specifically how smooth it is.
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This method can obviously be easily adapted to likelihood based settings since the PAVA

step is separate to the smoothing step. This has been done by Park and Park [37] for exam-

ple. They use a likelihood based unconstrained regression estimate, calculated using a method

similar to Fan, Heckman and Wand [17], and then apply the PAVA algorithm to this estimate

to obtain a monotone regression estimate. Within this paper they also compare the estimate

with the bandwidth monotone estimate described in 1.6.1. The paper does not contain any

theoretical results and simply performs a simulation analysis comparing various methods of

monotonicity constraint. They conclude that the estimate calculated by adjusting the band-

width generally performs better than the PAVA estimate.

Bandwidth adjustment

A very simple way of obtaining a monotone regression estimate is to increase the bandwidth

used. Obviously, the larger the bandwidth used, the more the data is smoothed and the closer

to linear regression the estimate becomes. So a simple method of calculating a monotone

regression estimate would be to select the smallest bandwidth h0 such that for all h ≥ h0, m̂(x)

is monotone.

Incidentally, the test for monotonicity suggested by Bowman et al. uses a similar idea to

this. They select the first bandwidth hc, for which m̂(x) is monotone and use it in their test.

One issue is whether the regression estimate is then monotone for all h ≥ hc. They show

that for some estimation methods this is true. For the local linear estimate, however, it is

not true. They mention that through simulation studies only 2 out of 90,000 cases violated

this condition. This suggests that simply selecting the first bandwidth for which the resulting

estimate is monotone would be sufficient in most cases. More details are found in Section 1.6.2.

The first mention of this idea when using likelihood based regression comes from Kappen-

man [29] who is trying to calculate monotone estimates of dose-response curves. It is also

discussed by Park and Park [37]. One advantage to this method is that the monotone estimate

retains any desirable features from the unconstrained estimate, which is not always true when

constraints are added. However, one obvious problem of this technique is that simply increasing
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the bandwidth could often lead to oversmoothing which may mask important features of the

response curve. This may lead to this method being inaccurate in practice.

In practice I calculate this estimate as follows. It is assumed that a first bandwidth, hinit,

was selected and the regression estimate obtained using this bandwidth was not monotone. I

then set up a grid of points from hinit to the maximum value of the range of the design points.

I then proceed through this grid, fitting a regression estimate using each bandwidth. I continue

until the regression estimate is monotone. In order to increase the speed of this calculation I

test the first bandwidth in the grid first. If this is not monotone, I select the middle bandwidth

in the grid and fit a regression estimate. If this estimate is not monotone I then select the

grid value halfway in between the middle value and the final value. If the middle bandwidth

did produce a monotone estimate then I choose the bandwidth halfway in between the first

bandwidth and the middle bandwidth. I proceed in a similar manner until I find the first

bandwidth for which monotonicity is achieved. This method of determining the appropriate

bandwidth attempts to minimise the amount of calculations necessary and hence works fairly

quickly.

A ‘tilting’ method

Hall and Huang [26] have suggested a weight modifying method for obtaining a monotone

regression estimate. We require the unconstrained estimate to be such that it can be written

in the form

m̂(x) = 1
n

n∑
i=1

Ai(x)Yi,

where the weights Ai(x) depend only on the explanatory variables Xi but not on the responses

Yi. (Most common estimates can be written in this form.) They suggest replacing this estimate

with the estimate

m̂(x|p) =
n∑
i=1

piAi(x)Yi,

and selecting the probability vector p = (p1, . . . , pn) in such a way that it is as close as possible

to the uniform vector pu = ((1/n), . . . , (1/n)) whilst making the resulting estimate monotone.

This requires some way of measuring the ‘distance’ between p and pu. Hall and Huang [26]
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suggest various measures (as well as pointing to more options in Cressie and Read [7]) such as

the Kullback-Leibler divergence

d0(p, q) = −
n∑
i=1

qi log
(
pi
qi

)
.

The value of p that minimises d0 (where q = pu) is used in the calculation of m̂(x|p). These

measures are a way of comparing the monotone fit to the unconstrained fit. The resulting esti-

mate will have the same smoothness properties as the unconstrained estimate and, in intervals

where the regression function is strictly increasing, if the sample is large enough, m̂(x) and

m̂(x|p) coincide with probability one.

As far as I know, this method has not been applied to likelihood based situations. In theory

I believe that this method should be adaptable to likelihood based settings. This has not been

considered in this thesis. One of the difficulties of adapting this method to exponential family

settings is that there is no closed form for the term Ai(x). However, it should be possible to

extract a vector pu from an unconstrained regression estimate. I think this would mean that

these weights could then be altered so as to obtain a monotone regression estimate.

DNP method

Dette et al. [9] have proposed a method that combines density estimation and regression

estimation techniques. Their method is motivated by considering N independent and identically

distributed uniform random variables U1, . . . , UN . The uniform random variable U has the

following cumulative distribution function F (u),

F (u) =


0 if u < 0;

u if 0 ≤ u ≤ 1;

1 if u > 1.

(1.5)

and the corresponding probability density function is given by

f(u) =


0 if u < 0;

1 if 0 ≤ u ≤ 1;

0 if u > 1.

(1.6)
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If we then consider a transformation of the uniform random variables m(Ui), it is clear

that this transformed random variable has the following cumulative distribution function and

probability density function

F (m(u)) =


0 if u < m(0);

m−1(u) if m(0) ≤ u ≤ m(1);

1 if u > m(1).

(1.7)

f(m(u)) =


0 if u < m(0);

(m−1)′(u) if m(0) ≤ u ≤ m(1);

0 if u > m(1).

(1.8)

Recalling (1.2) it is possible to construct a non-parametric kernel density estimate of m(U1).

This would take the form,
1

Nhd

N∑
i=1

Kd

(
m(Ui)− u

hd

)
. (1.9)

It is clear then that this kernel density estimate is an estimate of the density (m−1)′(u)I[m(0),m(1)](u).

If we then integrate this density estimate we would have a consistent estimate of the function

m−1(t), namely
1

Nhd

∫ t

−∞

N∑
i=1

Kd

(
m(Ui)− u

hd

)
du. (1.10)

Finally, to obtain an estimate of the function m, we simply invert the estimate of m−1(t). The

resulting estimate, m̂(t) is a strictly increasing function.

To develop this idea to a more general setting Dette et al. [9] propose taking an uncon-

strained regression estimate m̂(i/n) and then using a classical kernel density estimate

m̂−1
I := 1

N
hd

N∑
i=1

∫ t

−∞
Kd

(
m̂(i/N)− u

hd

)
du

as an estimate of the inverse of the true regression function, m−1(t). I use the subscript

‘I’ here to denote that the estimate is isotonic. Technically isotonic would imply monotone

increasing. However, for the remainder of this thesis it is assumed that monotone implies

monotone increasing. The results would still be applicable if the required function was monotone

decreasing. Here, hd is a bandwidth to be used in the density estimation step. A bandwidth

28



hr would be used in the initial regression step. This estimate can then be inverted to obtain a

monotone estimate of m, which we denote m̂DNP .

The important difference between this case to the case described motivated by uniform

random variables is the presence of the term (i/N) in place of Ui as the stimulus level in the

regression estimate. Instead of using uniform random variables we now assume that the design

points are equally spread across the region (0, 1). The idea is that this will behave similarly

to the uniform random variable case. It is also important to notice that the term N does not

necessarily correspond to the number of stimulus levels (or sample size) n. In fact, if there is

a small sample, or few stimulus levels are tested, then it is desirable that N is not equal to n.

This would result in a very rough estimate, only calculated at a few points. It is desirable that

N is reasonably large, or at least, assuming computational speed is not much of a problem, the

larger N the better.

The motivation for this method is to consider the function

m−1
N (t) = 1

Nhd

∫ t

−∞

N∑
i=1

Kd

(
m(i/N)− u

hd

)
du =

∫ 1

0
I{m(x) ≤ t}dx+ o(1).

Dette et al. [9] show that m̂−1
I (t) is a consistent estimate of m−1

n (t) which in turn approaches

m−1(t) as n → ∞. They give the precise order of this approximation. Hence, by estimating

m̂−1
I and inverting the result one obtains an estimate of m(t).

Dette et al. [9] show that for sufficiently large N and small hd, m̂DNP and m̂ coincide in

regions where the unconstrained estimate is already monotone. They also show that if the

Nadaraya-Watson or local linear methods are used to calculate the unconstrained estimate, m̂,

then m̂DNP is asymptotically normally distributed. A comparison of this method for a local

linear m̂, the PAVA method and tilting method can be found in Dette and Pilz [10].

This method has been applied to dose-response curve estimation in Dette, Neumeyer and

Pilz [8]. This approach uses the local linear method to calculate an estimate of the effective

dose curve. I outline some problems with this approach in Chapter 2 of this thesis and suggest

some modifications to overcome them.

In summary then, the DNP method proceeds as follows. First calculate a non-parametric

regression estimate m̂(i/N) using a bandwidth for the regression hr. Using this we then calcu-
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late a classical kernel density estimate, m̂−1
I (t) using a bandwidth for the density estimate hd.

Finally this estimate is inverted to obtain an estimate m̂I(t). In this method, the subscript r

refers to terms involved in the regression step of the procedure where as the subscript d refers

to terms involved in the density estimation step of the procedure.

1.6.2 Testing for monotonicity

The question may arise as to how we justify applying a monotonicity constraint. How can we

determine whether the model should be monotone or not? In many cases scientific knowledge

determines this. However, various tests have been suggested to test for the presence of mono-

tonicity in a data set. Details of three commonly used methods can be found in Bowman, Jones

and Gijbels [2], Gijbels et al. [22] and Hall and Heckman [25].

It must be said that I have not come across many situations in which I have seen monotonic-

ity tests used. In many cases the decision to enforce monotonicity is based on some scientific

or clinical insight that suggests the response must be monotone. I have not come across many

cases of a study that first tests for monotonicity and then enforces it. However, in some cases

this may be a useful analysis and so in the proceeding sections I describe three possible tests

to see if a response is monotone.

A “bandwidth” test

This method was suggested by Bowman, Jones and Gijbels [2]. Their method is very simple

and leads to a conservative test of whether or not the regression function is monotone. They

outline their method in four steps.

1. Find the critical bandwidth hc which is the smallest bandwidth for which the regression

function m̂(x;hc) is monotone.

2. Calculate the error in the model at an initial bandwidth h0. They give this to be the

plug in bandwidth suggested by Ruppert, Sheather and Wand [40]. That is, calculate

ε̂i = Yi − m̂(Xi;h0) for i = 1, . . . , n.
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3. Generate a bootstrap sample, ε̂∗i from these errors and hence generate a bootstrap data

set Y ∗i = m̂(Xi;hc) + ε̂∗i , i = 1, . . . , n.

4. Apply m̂ using hc to {(Xi, Y
∗
i ), i = 1, . . . , n} and observe whether or not the result is

monotone.

5. Repeat steps 3 and 4 a large number of times and determine the proportion of estimates

that are not monotonic.

The rationale behind this test is that we want to see how large (in some sense) the bandwidth

must be for the data to appear monotone. If the data are truly monotone then we would expect

this to be clear for a very small h, and for all h above this. However, if the data were not

monotone then we would expect the data to appear monotone only for larger bandwidths when

too much oversmoothing had occurred and any dips in the regression function had been masked.

Hence, in the method proposed above, if we are correct in our assumption that the regression

function is monotone then we would expect a large proportion of the bootstrap samples to

appear non-monotone. This is because we have a relatively small critical bandwidth. As a

result we would obtain a high p-value and hence accept the null hypothesis that the data were

monotone.

A “gradient” test

This method has been proposed by Hall and Heckman [25]. They have suggested this method

in an attempt to overcome a difficulty in the method suggested by Bowman et al. [2]. The

problem is that the bandwidth method can fail to detect “flat points” or small dips within the

regression function. If there is a dip in the data that is smaller in width than the bandwidth

being used then when using the bootstrap samples this may be undetected and we may falsely

believe that the regression function is monotone. The general idea of this method is to use

“local”gradients to test for the presence of flat points or dips in the regression curve. They

suggest using a test statistic as follows. Let 0 ≤ r ≤ s − 2 ≤ n − 2 be integers, let a, b be
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constants and put

S(a, b|r, s) =
s∑

i=r+1
{Yi − (a+ bxi)}2.

For each choice of (r, s), define â = â(r, s) and b̂ = b̂(r, s) by (â, b̂) = arg min(a,b) S(a, b|r, s),

and let

Q(r, s)2 =
s∑

i=r+1

xi − (s− r)−1
s∑

j=r+1
xj


2

,

and use the test statistic

Tm = max{−b̂(r, s)Q(r, s) : 0 ≤ r ≤ s−m ≤ n−m},

where m, satisfying 2 ≤ m ≤ n, is an integer.

Effectively we are calculating a set of local gradients and standardising them using the

variance within the locality. We select as a test statistic the most negative of these local

gradients. This value is then compared with the value of a test of a flat function. This is

stated by Hall and Heckman [25] to be the most difficult non-decreasing form of m for which

to test. In practice we would calculate an unconstrained regression estimate from the data and

then calculate the error between this estimate and the given data points. We then obtain a

bootstrap sample of these errors, ε∗1, . . . , ε∗n and use

S(a, b|r, s) =
s∑

i=r+1
{ε∗i − (a+ bxi)}2

in the previously described method. The proportion of samples in which the T ∗m value is greater

than the original calculated value, Tm is then calculated. If this proportion is greater than some

predetermined value α then the hypothesis that the data is monotone is rejected.

A “count” method

Gijbels et al. [22] state that both the gradient method and the bandwidth method cannot

guarantee the actual significance level of the test. To overcome this they have proposed a test

for monotonicity with a guaranteed level. Their test is based on the signs of the differences

Yi+k−Yi. They propose two test statistics. The first is simply a count of the number of + signs

in a given sequence of differences. The second looks at strings of consecutive − signs. The idea
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is that if the true regression really is increasing then we would expect mainly + signs whereas

if there were dips in the curve then in some localities there would be a high proportion of −

signs.

1. Count Statistic. Define Si,k ≡ sgn(Yi+k − Yi) for 1 ≤ i ≤ n − k. Let `r = `r(j, k),

denote the sequence Sj+1,k, . . . , Sj+r,k. Let N(`r) equal the number of + signs it contains

and define

Tcount = Tcount(k, r1, r2) = max
r1≤r≤r2

max
0≤j≤n−r−k

r−1/2
[1
2r −N{`r(j, k)}

]
.

Under the hypothesis that the data are monotone the signs have no particular tendency

toward negativity. However if there are dips in the curve then we would expect more of

the signs to be negative. This value is larger under the alternative hypothesis that there

are dips in the curve.

2. Run Statistic. DefineR(j, k) to be the supremum of integers r such that Sj+1,k, . . . , Sj+r,k

is a sequence solely of −1’s and we define a test statistic,

Trun = Trun(k) = max
0≤j≤n−k

R(j, k).

Again we would expect a larger run of negative signs, and hence a larger Trun if the data

truly did contain a dip than if the data were monotone.

Irrespective of whether we use Trun or Tcount, the algorithm suggested by Gijbels et al. [22]

is as follows. Generate a large number of samples, Y ∗ = (Y ∗1 , . . . , Y ∗n ) and calculate T ∗ for each

sample. We could, for example generate these samples using bootstrap resampling of the signs

Si,k. Count the proportion of samples where T ∗ is greater than or equal to T . If this proportion

is less than or equal to the significance level α then reject the hypothesis that the regression

function is non decreasing.

1.7 Outline of thesis

In this thesis, I discuss the estimation of monotone psychometric functions and transducer

functions. In Chapter 2 I explore the DNP method when applied to estimation of transducer
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functions. I show that it has various problems. For example it does not constrain the estimate

to lie within the correct range. I propose a change to this method which involves using the

likelihood based local linear regression and estimating a monotone version of the η function

which can then be transformed by the inverse link function to obtain a monotone estimate of a

transducer function. I call this method the LDNP method since it is a likelihood based adapta-

tion of the DNP method. I develop the asymptotic theory of the LDNP method. In particular,

I show that an estimate produced using these methods is asymptotically normally distributed

with a bias that is of order O(h2
r) where hr is the bandwidth used in the unconstrained regres-

sion step (See Chapter 2). In this sense I show that my estimate is asymptotically first order

equivalent to other competing methods. The LDNP estimate has a variance that is of order

O(1/nhr) which is again equivalent to other competing methods.

In Chapter 3 I explore the choice of the bandwidth hd to be used in the density estimation

step of the LDNP procedure. In particular, I explore the relationship between the choice of

bandwidth hd and the choice of bandwidth hr and show that in most cases it is best to choose

a bandwidth hd = o(hr). I investigate this through a study of asymptotic properties and also

through a simulation study.

Chapter 4 and Chapter 5 compare the performance of various competing monotonicity

constraints described in Section 1.6.1. Chapter 4 considers the estimation of monotone psycho-

metric functions whilst Chapter 5 considers estimating monotone transducer functions, where

the responses are either Poisson or Exponential response functions. I compare a variety of

different factors that may affect the estimation such as the number of stimulus levels used,

the number of repeats used and the choice of bandwidth hr. I compare the methods by using

metrics such as the bias, variance, MSE and MISE.

Finally, in Chapter 6 I give a summary of my research and suggest possible future work.
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Chapter 2

The LDNP method

2.1 Introduction

In the introduction I have outlined some of the commonly used methods of monotonising

nonparametric estimators of a regression function. Dette and Scheder [11] compared the per-

formance of some of these methods when applied to the estimation of the effective dose (thresh-

old/lethal concentration). They conclude that their method is probably the most effective of

the methods considered. They come to this conclusion as a result of many simulations of re-

sponse functions, after which they calculate the square bias, variance, MSE and MISE for the

estimates obtained using the various methods.

Despite the fact that this paper is only concerned with estimating the effective dose, it is still

reasonable to assume that this method would be useful in estimating monotone psychometric

functions. Nevertheless, we have tried using this method on the data sets found in Żychaluk

and Foster [18], and have found that in some cases, the DNP method is not good for estimating

psychometric functions which are effectively the inverse of the effective dose, as they result

in estimates taking values outside the interval [0, 1]. This is explained in Section 2.2. In

Section 2.3, I propose a modification to the method proposed by Dette, Neumeyer and Pilz [8]

which overcomes the problems we encountered, by applying a link function. The new approach

also takes into account the changing variance of the responses. We demonstrate, with the use
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of the examples in Żychaluk and Foster [18], that this new method performs well. We also offer

theoretical justifications for the new method.

2.2 Initial investigations from psychometric studies

Żychaluk and Foster [18] propose using non-parametric methods to estimate psychometric func-

tions. This method has been described in the introduction, along with some justification for

its use. They also introduce six data sets which they use in comparing the non-parametric and

parametric methods of estimating psychometric functions. These data sets come from studies

of vision and hearing. More details about the sets can be found in Żychaluk and Foster [18],

and also in the papers concerning the original studies.

Levi and Tripathy [31] study path deviation from a moving visual stimulus. A patient was

presented with the image of a dot that moved on a linear path to the right until it reached

the middle of the display. It then moved either up or down and the subject had to indicate

which way the dot had moved. The proportion of correct responses from 30 trials is shown in

Figure 2.1(a).

Figure 2.1(b) shows data from an unpublished study by S. Carcagno of the University of

Lancaster in which the discrimination of pitch was studied. A patient was presented with three

intervals during which a tone was played. In one of the three intervals the tone was of a different

frequency to the other two and the patient was asked to identify this interval.

Xie and Griffin [50] studied the visual perception of fragmented images. A display was split

into two parts, one containing a pair of patches from the same image and the other with patches

from two different images. The patient had to identify which pair of patches came from the

same image. This data is shown in Figure 2.1(c).

Schofield et al. [41] have studied visual motion aftereffect.The subject was presented with a

moving adaptation stimulus, followed by a test stimulus. The patient was required to indicate

whether the adapting stimulus moved in the same direction as the test stimulus. The proportion

of correct responses is shown in Figure 2.1(d).
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Nasciemento et al. [36] studied visual discrimination. A patient was shown an image of a

natural scene and then an approximation of this scene based on a principal component analysis.

The patient was required to distinguish between the two responses and the proportion of correct

responses is shown in Figure 2.1(e).

Finally, Baker et al. [1] have studied the detection of a gap in noise. A 300-msec noise burst

containing a gap of 2-8 msec duration or no gap was presented to the subject. The subject

was required to say whether they noticed a gap or not. The proportion of correct responses is

shown in Figure 2.1(f).

When I estimated a monotone psychometric function for each data set, using the DNP

method, along with an direct plug in bandwidth of Ruppert, Sheather and Wand [40] I found

that in some cases the estimates contained values that were greater than one.

In addition, I examined 485 data sets from the studies of Baker et al. [1], Levi and Tripathy

[31], Nascimento et al. [36] and Schofield et al. [41] and found this to be the case in many sets,

whilst some values were also less than zero. As a simple demonstration of this, I looked at 485

psychometric data sets from the studies cited above. For each of these data sets I calculated a

cross validation bandwidth and then an estimate using the DNP method. Of the 485 data sets,

370 had points which were below 0 or above 1. That is approximately 76% of the data sets. This

highlights the fact that the DNP method regularly gives estimates of psychometric functions

taking impossible values. This obviously makes no sense when considering a psychometric

function (which is a probability) and hence for these situations the DNP method provides an

estimate that does not really accurately reflect scientific knowledge about the model. This

problem has been highlighted previously by Chu and Cheng [5]. They note that the local linear

regression method is not really appropriate in binary response models since it often leads to

estimates that are less than 0 or greater than 1.

Figure 2.1 shows these six data sets with a monotone estimate plotted using the DNP

method. The data sets and fitted psychometric functions, (a) - (f) are presented in the order in

which they occur in [18]. For functions (b), (c) and (e) this method produces a very reasonable

estimate of the psychometric function. However, function (d) in particular, and also function
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Figure 2.1: Psychometric function estimates obtained using DNP method. Data taken from Żychaluk and

Foster [18]

(f) show that the DNP method fails to recognise the asymptotes at 0 or 1. The reason that

this happens is because the local linear method does not make use of a link function. Using

an appropriate link function ensures that the resulting estimates lie within the correct bounds.

In the case demonstrated here using a logit link function constrains the responses to be in

(0,1). The local linear estimating procedure uses no link function whereas maximum likelihood

procedures can use this extra information. This obviously contravenes the fact that P (x) is

supposed to be a probability. Function (a) provides a reasonable fit but it does look as if the

estimate is not recognising what seems to be a lapsing rate of about P = 0.8.

It must be noted that in many cases the DNP method will produce a good estimate of the

psychometric function that will be suitable for practical purposes. But the examples presented

above show that in some cases the DNP method produces an estimate of the psychometric func-

tion that is not correct and may produce misleading conclusions. It should also be noted that
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not all of the above examples required a monotonicity constraint. Some of the unconstrained

estimates were already monotone. This emphasises that the problem is with the unconstrained

estimation procedure used in the initial regression step of the DNP method, rather than the

monotonicity constraint in itself. I have therefore proposed a modification to the method to

enable monotone psychometric functions to be estimated easily and in a way that does not

violate any range constraints. This method is outlined in the next section.

2.3 A proposed modification of the DNP method

Dette, Neumeyer and Pilz [8] propose using a local polynomial regression to estimate the

effective dose in quantal bioassay. They use the local polynomial regression estimate as the

unconstrained regression step of the DNP method. I propose that the psychometric function

(or indeed any function for which the response is a member of the exponential family) would be

better modelled using local log-likelihood as explained in Section 1.5 (based on the work of Fan,

Heckman and Wand [17] and Foster and Żychaluk [18]) and then applying the monotonising

step to the η function. This method ensures that the psychometric function lies within the

correct bounds of [0, 1] through the use of the canonical link, the logit function. It also takes

into account the fact that the variance of the response varies with its mean, a fact that is not

considered in the local polynomial method.

The concept of local likelihood smoothing was first introduced by Tibshirani and Hastie

[43]. They proposed smoothing the local likelihood by using a running lines smoother. This

meant that essentially they only use a set number of points to calculate estimates at each value

of x. Further, they use no method of weighting observations depending on their distance from

x. In contrast Fan Heckman and Wand [17] and consequently Foster and Żychaluk [18] weight

observations using a kernel function. As I have already discussed, a kernel function gives most

weight to observations closest to the value x. In addition then allow for situations where the

variance is only expressed in terms of the mean and a quasi-likelihood would need to be used.

Denote by p̂LL the local linear unconstrained estimate used in the first step of the DNP
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method. At this point in the thesis I change notation. Instead of calling a regression function

m(x), I now call it p(x) This is to emphasise that I am estimating a psychometric function. The

subscript LL serves to remind the reader that this estimate is simply a local linear regression

estimate. At this point no account has been taken of the likelihood information. Recall that

the DNP method estimates the inverse of the response curve p−1,

p̂−1(α) = 1
Nhd

N∑
i=1

∫ α

−∞
Kd

(
p̂LL(i/N)− u

hd

)
du.

In Foster and Żychaluk [18]), an estimate of η(x) is obtained by maximizing the local

log-likelihood. This method is described in Section 1.5 and involves maximising the local log-

likelihood,

l(α0, α1;x) =
n∑
i=1

ln[P ri(xi)(1− P (xi))mi−ri ]Kh(x− xi)

=
n∑
i=1

[ri lnP (xi) + (mi − ri) ln[1− P (xi)]]Kh(x− xi)

=
n∑
i=1

[
ri ln[g−1(α0 + α1xi)] + (mi − ri) ln[1− g−1(α0 + α1xi)]

]
Kh(x− xi)

=
n∑
i=1

[
ri ln{(1 + exp(−(α0 + α1xi)))−1}

+(mi − ri) ln{1− (1 + exp(−(α0 + α1xi)))−1}
]
Kh(x− xi)

= −
n∑
i=1

[ri ln{1 + exp(−(α0 + α1xi))}

+ (mi − ri) ln{1 + exp(α0 + α1xi)}]Kh(x− xi).

This log-likelihood expresses the fact that in a local area, the size of which depends on a

bandwidth h, the function η is locally linear, and an estimate of the value at x is given by the

value α̂0. This value will change at each different x value. This procedure is also explained in

Section 1.5. I approximate values around x by a linear function and then interpolate from this

linear function the value of η(x), which is given by α0. This is repeated for each value of x,

where a new local neighbourhood is created each time.

This is then maximised using the Fisher scoring method (as with the parametric case and

explained in [33] and [16]). This is a numerical approximation method since an exact solution
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is often not possible. This will give us the values of α0 and α1 that maximise the local log-

likelihood. These values are then used to obtain the maximum likelihood estimate for η(x) as

η̂(x) = α̂0. This estimate, η̂(x) is then transformed using the inverse link function to obtain an

estimate of the psychometric function,

P̂ (x) = g−1(η̂(x)).

We propose that, prior to this final transformation we apply the monotonicity constraint of

Dette et al. [9] to the systematic component. That is to say we obtain a monotone estimate of

the inverse of the systematic component

η̂−1
M (x) = 1

Nhd

N∑
i=1

∫ x

−∞
Kd

(
η̂L(i/N)− u

hd

)
du, (2.1)

and then invert this estimate. In the above equation the subscript M simply indicates that this

estimate is monotone. The subscript L in η̂L is used to denote that this estimate comes from

a local likelihood based estimate as opposed to the local linear estimate that had was used by

Dette et al. [8] Two bandwidths are used, hr, which is used in the unconstrained regression

step, and hd, which is used in the density estimation section of the monotonicity constraint.

Finally the inverse link transformation is applied and a monotone estimate of the psychometric

function is obtained.

P̂M(x) = g−1(η̂M(x)).

This method of estimating a psychometric function has the advantage of constraining the

estimates to lie within the range [0, 1] and hence avoid some of the irregularities discussed

previously in Section 2.2. This method also will guarantee monotonicity of the estimate so long

as the link function is monotonicity preserving. We shall refer to this method as the LDNP

method since we are incorporating likelihood information into the DNP method.

In this adaptation I have monotonised the η function before the final transformation to

obtain P̂ (x). This is so as to ensure that the estimate P̂ (x) is definitely monotone. This is

a result of the fact that the link function is monotonicity preserving. When I investigated

the possibility of simply apply the monotonicity step after the inverse link transformation I
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found that in some cases the numerical methods of the DNP method did not always keep the

final estimates less than 1. The breach of this condition was never severe and to all practical

purposes the final estimates could be considered to be 1 in cases where they exceed 1. However,

for the sake of accuracy it seemed better to apply the monotonicity step to the η function and

then apply the inverse link, thus avoiding any problems.

Initial investigations into the suitability of this method involved estimating psychometric

functions using the data in [18]. We repeat the plots shown in Figure 2.1 and this time also

add an estimate of the psychometric function obtained by using the LDNP method. This is

shown in Figure 2.2. A visual inspection of the plots shows that in the cases where the DNP fit

already provided a reasonable fit (functions (b), (c) and (e)) the LDNP fit is at least as good

and certainly no worse a fit. In the case of function (a) the LDNP method seems to capture

a lapsing rate more effectively. In functions (d) and (f), for which the DNP method had some

problems, by returning estimates outside the correct bounds, the LDNP method has corrected

these problems and ensured that the estimates lie within the correct range.

In the remainder of this chapter we offer some theoretical justifications of the use of the

LDNP method, by examining its asymptotic behaviour.

2.4 Aysmptotic Behaviour

For the remainder of this chapter I will be considering transducer functions in general. The

motivation for this chapter comes from the study of psychometric functions. I have already

discussed in this chapter the problems associated with the DNP method when using it to

estimate psychometric functions. The key problem is that the resulting estimates are not

necessarily within the required bounds for a psychometric function. I have already explained

that a psychometric function is a type of transducer function, specifically, a transducer function

for which the responses are binomially distributed. In the rest of this chapter, I generalise the

adaptation to the DNP method, which I have called the LDNP method to allow its use in

estimating transducer functions with any transducer function where the responses come from
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Figure 2.2: Psychometric function estimates obtained using DNP method (red lines) and LDNP method (Blue

lines). Data taken from Żychaluk and Foster [18]

the exponential family.

Dette et al. [9] demonstrate that the DNP estimate is asymptotically normal if kernel type

or local polynomial estimators are used for the preliminary estimation of the regression func-

tion. They also state that their estimator is asymptotically first-order equivalent to the PAVA

estimates and the tilting estimate of Hall and Huang [26]. In this section I show that the LDNP

method also performs well asymptotically. I show that the LDNP estimate is asymptotically

normal and, like the DNP method, first order asymptotically equivalent to competing methods

of monotonicity constraint.

In this section we consider a pair of n i.i.d observations {(Xi, Yi)}ni=1 and a mean function

µ(x) and variance V {µ(x)}, for a given function V (·). These are the mean and variance of Y

given X = x. We are interested in estimating η(x) = g(µ(x)) for some link function g. In this

section I move from using P (x) to denote a psychometric function to using µ(x) to denote any
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response from the exponential family model. Even though the setting of psychometric functions

is the motivation for this thesis the asymptotic results I present hold true for any exponential

family responses and so the LDNP method is more widely applicable. So then, µ(x) in these

asymptotic results may represent a binomial response such as the psychometric function, P (x),

or a Poisson response such as the Transducer function T (x) considered in Chapter 5.

In the following asymptotic results I assume that the number of design points N is equal

to the sample size n. This need not be the case but is assumed from here on simply to

simplify the notation and make the following results more easy to follow. Define ql(x, y) =

(∂l/∂xl)Q{g−1(x), y} following Fan and Gijbels [16] (page 211), Here, Q is the quasi-likelihood

function that satisfies
∂

∂µ
= y − µ
V (µ) (2.2)

Notice that ql is linear in y for fixed x. It can also be seen that

q1{η(x), µ(x)} = 0 (2.3)

q2{η(x), µ(x)} = −ρ(x) (2.4)

where

ρ(x) = ([g′{P (x)}]2V {P (x)})−1. (2.5)

In the remainder of this chapter I need to make various assumptions. These assumptions fall

largely into three categories.

The first set of assumptions, (A1)-(A6), are requirements for the unconstrained regression

step. These are largely taken from Fan and Gijbels [16] (page 211) and ensure that the asymp-

totic distribution of η̂(x), is normal (see Section 2.5). They are fairly standard regularity

conditions and are not especially restrictive.

A1 The functions η′′(·), (η−1)′′′(·), V ar(Y |X = x), V ′(·) and g′′′(·) are continuous.

A2 The function q2(x, y) < 0 for x ∈ R and y in the range of the response variable.

A3 ρ(x) 6= 0, V ar(Y |X = x) 6= 0, g′{µ(x) 6= 0}.
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A4 E(Y 4|X = ·) is bounded in a neighborhood of x.

A5 The kernel, K is a symmetric probability density function with compact support.

A6 Yi is a member of the exponential family and has density f .

The second set of assumptions, (B1)-(B6) are conditions required for the monotonicity

constraint and are similar to those in Dette, Neumeyer and Pilz [9]. They control the rate

of convergence of the bandwidths hd and hr relative to the sample size n as well as imposing

regularity conditions on the density of Xi and the regression function µ(x).

B1 Xi has a positive, twice continuously differentiable density fX with compact support, say

[0, 1].

B2 fX(x) ≥ 0, and has three continuous derivatives.

B3 The mean function µ(x) is assumed to be twice continuously differentiable.

B4 hr → 0, hd → 0, nhr →∞, nhd →∞.

B5 nh5
r = O(1).

B6
∫ 1

0 |K ′′d (t)|dt is finite.

The final set of assumptions, (C1)-(C6) are additional requirements due to the fact that

I am incorporating likelihood information into the monotonicity constraint procedure. These

assumptions are required in the proof of Theorem 2.

C1 logn
hr
√
nhd

= o(1)

C2 logn
nhrh2

d
= o(1)

C3 h2
r

hd
= o(1)

C4 h4
r log(n) = o(1)

C5 h3
d log(n)
hr

= o(1)
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C6 h2
d log(n) = o(1)

Firstly, I demonstrate that the monotone estimate, or η̂−1
M (x) provides a good approximation

for the function

η−1
n (t) = 1

nhd

∫ t

−∞

n∑
i=1

Kd

(
η(i/n)− u

hd

)
du, (2.6)

which in turn approaches the true value η−1(x). Theorem 1 shows that the estimate, or η̂−1
M (x)−

η−1
n (x), is asymptotically normally distibuted, with a known bias that is of order O(h2

r) and a

known variance that is of order O((nhr)−1). Theorem 1 is proved at the end of this chapter in

section 2.5.

Theorem 1. If the assumptions (A1)-(A6) and (B1)-(B5) are satisfied, limn→∞ hr/hd = c ∈

[0,∞) exists and η is strictly increasing, then it follows that for all t ∈ (η(0), η(1)) with

η′(η−1(t)) > 0,

√
nhd

(
η̂−1
M (t)− η−1

n (t) + κ2(Kr)h2
r

η′′(η−1(t))
η′(η−1(t))

)
D−→ N(0, r2(t)),

where κ2(K) = 1
2
∫ 1
−1 ν

2K(ν)dν, and the asymptotic variance is given by

r2(t) = [g′(g−1(t)]2V ar[Y |X = η−1(t)]
η′(η−1(t))f(η−1(t))

×
∫ ∫ ∫

Kd

(
u+ hr

hd
η′(η−1(t))(ν − w)

)
Kd(u)Kr(w)Kr(ν)dudwdν (2.7)

If limn→∞ hr/hd = ∞, then we have, for all t ∈ (η(0), η(1)) with η′(η−1(t)) > 0, and the

assumptions (A1)-(A4) and (B1)-(B5) are satisfied

√
nhr

(
η̂−1
M (t)− η−1

n + κ2(Kr)h2
r

η′′(η−1(t))
η′(η−1(t))

)
D−→ N(0, r̃2(t)),

where the asymptotic variance is given by

r̃2(t) = [g′(g−1(t)]2V ar[Y |X = η−1(t)]
(η′(η−1(t)))2f(η−1(t))

×
∫
Kr (u) du (2.8)

In order to establish the relationship the relationship between ηM(t)−ηn(t) three preliminary

lemmas are required. Lemma 1 considers the precise order of the difference between η−1
n (t) and
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the true value η−1(t). It is clear that if η̂−1
M (t) is an approximation of η−1(t) then the inverse

η̂M(t) is an approximation of η(t). Lemma 2 gives the precise relationship and is adapted from

Dette, Neumeyer and Pilz [9]. The proofs of these two lemmas are provided at the end of this

chapter in section 2.5, for the sake of completeness although they are largely adapted from the

proofs in Dette, Neumeyer and Pilz [9].

Lemma 1. If the regression function, η(t) is strictly increasing and the assumptions(A1)-(A6)

and (B1)-(B4) are satisfied, then we have for any tε(η(0), η(1)) with η′(η−1(t)) > 0,

η−1
n (t) = η−1(t) + κ2(Kd)h2

d(η−1)′′(t) + o(h2
d) +O

( 1
nhd

)
where the constant, κ2(K) = 1

2
∫ 1
−1 ν

2K(ν)dν.

In Lemma 1 I have stated a result about η−1
n (t). In the following lemma I consider the

inverse of this function, ηn(t). This is again analogous to Lemma 2.2 of Dette et al. [9]

Lemma 2. If the assumptions (A1)-(A6), (B1)-(B5) hold and η is a strictly increasing func-

tion, then for any t ∈ (0, 1) with η′(t) > 0,

ηn(t) = η(t) + κ2(Kd)h2
d

η′′(t)
(η′(t))2 + o(h2

d) +O
( 1
nhd

)
. (2.9)

I am finally in a position to state a theorem regarding the asymptotic behavior of η̂M(t).

I will show that it is asymptotically normal, in a similar way to that of Theorem 3.1 in Dette

et al. [9]. I have shown that the bias of η̂M(x) is of order O(h2
r) and known variance of order

O((nhr)−1). The precise statement of the theorem is as follows.

Theorem 2. Assume (A1)-(A6), (B1)-(B6) and (C1)-(C3) and (C5) stated at the begin-

ning of section 2.4 hold. Define η̂M as the inverse of η̂−1
M and ηn as the inverse of η−1

n . If

limn→∞ hr/hd = c ∈ [0,∞) exists, then for every t ∈ (0, 1) with η(t) > 0,√
nhd

(
η̂M(t)− ηn(t)− κ2(Kr)h2

rη
′′(t)

)
D−→ N(0, s2(t)) (2.10)

where the asymptotic variance is given by

s2(t) = η′(t)[g′(g−1(η(t)))]2V ar[Y |X = t]
f(t)

×
∫ ∫ ∫

Kd

(
u+ hr

hd
η′(t)(v − w)

)
Kd(u)Kr(w)Kr(v)dudwdv (2.11)
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If limn→∞ hr/hd = ∞, then for every t ∈ (0, 1) with η(t) > 0, and assumptions (A1)-(A4),

(B1)-(B5) and (C4)-(C6) hold,√
nhd

(
η̂M(t)− ηn(t)− κ2(Kr)h2

rη
′′(t)

)
D−→ N(0, s̃2(t)) (2.12)

where the asymptotic variance is given by

s̃2(t) = [g′(g−1(η(t)))]2V ar[Y |X = t]
f(t)

∫
K2
d (u) du (2.13)

Up until this point I have been focusing on η(x). Finally I will present a theorem that

is a corollary of the two theorems presented so far. Fan and Gijbels [16] (Theorem 5.3, page

197) state a theorem regarding the behavior of ˆµ(x) − µ(x). They state that the asymptotic

behaviour is the same as for η̂(x)− η(x) except that the asymptotic bias is divided by g′{µ(x)}

and the asymptotic variance is divided by [g′{µ(x)}]2. So far, I have shown in Theorem 2

that η̂(x) − ηn(x) is asymptotically normally distributed with a known mean and variance.

In Lemma 2, I have also shown a relationship between ηn(x) and η(x). The expression in

Lemma 2 is deterministic and so incorporating this into Theorem 2, will affect the mean, but

not the variance. Therefore, as a result of Theorem 5.3 of Fan and Gijbels [16], Theorem 2 and

Lemma 2, I have a corollary regarding the behavior of µ̂(x)− µ(x).

Corollary 1. Assume that the conditions for Theorems 2 and 2 hold. Define η̂M as the inverse

of η̂−1
M and ηn as the inverse of η−1

n . If limn→∞ hr/hd = c ∈ [0,∞) exists, then for every

t ∈ (0, 1) with η(t) > 0,√
nhd

(
η̂M(t)− η(t) + η′′(t)

(
κ2(Kd)h2

d

(η′(t))2 − κ2(Kr)h2
r

))
D−→ N(0, s2(t)) (2.14)

where the asymptotic variance is given by

s2
1(t) = η′(t)[g′(g−1(η(t)))]2V ar[Y |X = t]

f(t)

×
∫ ∫ ∫

Kd

(
u+ hr

hd
η′(t)(v − w)

)
Kd(u)Kr(w)Kr(v)dudwdv (2.15)

If limn→∞ hr/hd = ∞, then for every t ∈ (0, 1) with η(t) > 0, and assumptions (A1)-(A4),

(B1)-(B5) and (C4)-(C5) hold,√
nhr

(
η̂M(t)− η(t) + η′′(t)

(
κ2(Kd)h2

d

(η′(t))2 − κ2(Kr)h2
r

))
D−→ N(0, s̃2(t)) (2.16)
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where the asymptotic variance is given by

s̃2
1(t) = [g′(g−1(η(t)))]2V ar[Y |X = t]

f(t)

∫
K2
d (u) du. (2.17)

Corollary 2. Assume that the conditions for Theorems 1 and 2 hold. Noting that µ̂(·) =

g−1(η̂(·)), then we have that if limn→∞ hr/hd = c ∈ [0,∞) exists, then for every t ∈ (0, 1) with

η(t) > 0,

√
nhd

(
µ̂M(t)− µ(t)− η′′(t)

g′{µ(x)}

[
κ2(Kr)h2

r + h2
dκ2(Kd)
(η′(t))2

])
D−→ N(0, c2(t)) (2.18)

where

c2(t) = η′(t)V ar[Y |X = t]
f(t) ×

∫ ∫ ∫
Kd

(
u+ hr

hd
η′(t)(v − w)

)
Kd(u)Kr(w)Kr(v)dudwdv

(2.19)

If limn→∞ hr/hd =∞, then for every t ∈ (0, 1) with η(t) > 0,

√
nhr

(
µ̂M(t)− µ(t)− η′′(t)

g′{µ(x)}

[
κ2(Kr)h2

r + h2
dκ2(Kd)
(η′(t))2

])
D−→ N(0, c̃2(t)) (2.20)

where the asymptotic variance is given by

c̃2(t) = V ar[Y |X = t]
f(t)

∫
K2
d (u) du. (2.21)
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2.5 Proof of Theorems and Lemmas

2.5.1 Proof of Theorem 1

The proof of Theorem 1 requires a theorem given by Fan and Gijbels [16]. I state it here so as

not to interrupt the flow of the proof later on. The reader is referred to the above mentioned

book for details of the proof of the theorem. Fan and Gijbels [16] (Theorem 5.2, pages 196,197)

state that

Theorem 3. If x is an interior point of the design density, we have

{η̂(x)− η(x)} D−→ N(b(x)h2
r, σ

2(x) 1
nhr

) (2.22)

provided that hr → 0 and nhr →∞, where

ϕ(x) = κ2(Kr)η′′(x)

and

σ2(x) =
∫
K2(ν)dν [g′{µ(x)}]2V ar[Y |X = x]

f(x) .

Proof. The majority of this proof follows closely the proof in Dette et al. [9]. Adaptations

have been made where necessary to allow for the use of likelihood. I have also used results from

Fan and Gijbels [16].

First, recall the definition,

η−1
n (t) = 1

nhd

∫ t

−∞

n∑
i=1

Kd

(
η(i/n)− u

hd

)
du.

and notice that

η̂−1
M = 1

nhd

∫ t

−∞

n∑
i=1

Kd

(
η̂(i/n)− u

hd

)
du = η−1

n (t) + ∆n(t),

where

∆n(t) = η̂−1
M (t)− η−1

n (t)

= 1
nhd

n∑
i=1

∫ t

−∞

{
Kd

(
η̂(i/n)− u

hd

)
−Kd

(
η(i/n)− u

hd

)}
du (2.23)
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Then use a Taylor expansion,

Kd

(
η̂(i/n)− u

hd

)
= Kd

(
η(i/n)− u

hd

)
+K ′d

(
η(i/n)− u

hd

){
η̂(i/n)− η(i/n)

hd

}

+1
2K

′′
d

(
ξi − u
hd

){
η̂(i/n)− η(i/n)

hd

}2

with |ξi − η(i/n)| < |η̂(i/n)− η(i/n)| and ∆n(t) can be expressed as

∆n(t) = ∆(1)
n (t) + 1

2∆(2)
n (t), (2.24)

where

∆(1)
n (t) = 1

nh2
d

n∑
i=1

∫ t

−∞
K ′d

(
η(i/n)− u

hd

)
{η̂(i/n)− η(i/n)} du

∆(2)
n (t) = 1

nh3
d

n∑
i=1

∫ t

−∞
K ′′d

(
ξi − u
hd

)
{η̂(i/n)− η(i/n)}2 du.

First I focus attention on the second term ∆(2)
n (t) and show that it is negligible compared to

∆(1)
n (t). It is clear that by integrating out the derivative and replacing the sum by a Riemann

integral one obtains

∆(2)
n (t) = 1

h2
d

∫ 1

0
K ′d

(
η(x)− t
hd

)
{η̂(x)− η(x)}2dx(1 + o(1)). (2.25)

Making the substitution u = (η(x)− t)/hd and using a Taylor expansion for the resulting terms

involving t+ uhd gives

∆(2)
n (t) = 1

hd
{η̂(η−1(t))− η(η−1(t))}2(η−1)′(t)

∫ (η(1)−t)/hd

(η(0)−t)/hd
K ′d(u)du(1 + o(1)).

= C(t)
hd
{η̂(η−1(t))− η(η−1(t))}2(1 + o(1))

where C(t) = (η−1)′(t)
∫
K ′d(u)du. For the theorem there are two cases to consider. The first is

the case when limn→∞ hr/hd = c ∈ [0,∞). In this case one has

√
nhd∆(2)

n (t) = C(t)
√
nhd

hd
{η̂(η−1(t))− η(η−1(t))}2

= C(t)
√
n

hd
{η̂(η−1(t))− η(η−1(t))}2

= { 4

√
n

hd

√
C(t)(η̂(η−1(t))− η(η−1(t)))}2. (2.26)
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Theorem 3 implies that{
4

√
n

hd

√
C(t)(η̂(η−1(t))− η(η−1(t)))

}
D−→ N(ϕ(η−1(t))h2

r
4

√
n

hd

√
C(t), σ2(η−1(t)) C(t)

hr
√
nhd

)

(2.27)

If a normal random variable has mean υ and variance τ 2, then the sum of squares of the random

variable has a non central χ2 distribution with two parameters, k the degrees of freedom, and

λ = υ2/τ 2. The mean of such a χ2 distribution is k+λ whilst the variance is equal to 2(k+2λ).

Applying this here, I have one random variable and hence k = 1. Combining (2.26) and (2.27)

I have in this case that

nhrhd∆(2)
n (t)

σ2(η−1(t))C(t)
D−→ χ2

1(λ) (2.28)

with

λ = ϕ2(η−1(t))nh5
r

σ2(η−1(t)) . (2.29)

The expected value and variance of this chi-squared distribution are

E

[
nhrhd∆(2)

n (t)
σ2(η−1(t))C(t)

]
= 1 + ϕ2(η−1(t))nh5

r

σ2(η−1(t)) (2.30)

V ar

[
nhrhd∆(2)

n (t)
σ2(η−1(t))C(t)

]
= 2 + 2ϕ2(η−1(t))nh5

r

σ2(η−1(t)) . (2.31)

Recalling assumption (B5), it is clear that the expected value is 1 + O(1), whilst the variance

is 2 +O(1). The variance τ 2 has order

σ2(η−1(t))C(t)
hr
√
nhd

= O

 1√
nhdh2

r

 = O

√h3
r

hd

 = O(hr) = o(1), (2.32)

we can now see that √
nhd∆(2)

n (t) = o(1) (2.33)

in distribution.

In the case where limn→∞ hr/hd =∞, I need to calculate
√
nhr∆(2)

n (t) = C(t)
√
nhr

hd
{η̂(η−1(t))− η(η−1(t))}2

=
{

4

√
nhr
h2
d

√
C(t)(η̂(η−1(t))− η(η−1(t)))

}2

. (2.34)
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Proceeding as before I now have that

nhrhd∆(2)
n (t)

σ2(η−1(t))C(t)
D−→ χ2

1(λ). (2.35)

The term λ is the same as in (2.29), although the asymptotic mean and variance of (2.34) are

different than in (2.27). This gives the expected value of this distribution being 1 + O(1) and

the variance being 2 +O(1). In this case the variance τ 2 is given by

σ2(η−1(t))C(t)√
nh2

dhr
= O

 1√
nh2

dhr

 = O


√√√√h4

r

h2
d

 = O

(
h2
r

hd

)
. (2.36)

Using the assumption (C3), I can say that
√
nhr∆(2)

n (t) = o(1), as required.

Using (2.33) we now can prove the first assertion of Theorem 1 if it can be shown that
√
nhd

(
∆(1)
n + µ2(K)h2

r

2 η′′(η−1(t))(η−1)′(t)
)

=⇒D N(0, r2(t)). (2.37)

I firstly consider the asymptotic expected value and variance of ∆(1)
n (t). After this I will show

the asymptotic normality step. Consider ∆(1)
n (t),

∆(1)
n (t) = 1

nh2
d

n∑
i=1

∫ t

−∞
K ′d

(
η(i/n)− u

hd

)
{η̂(i/n)− η(i/n)} du

= 1
nhd

n∑
i=1

Kd

(
η(i/n)− t

hd

)
{η̂(i/n)− η(i/n)}

= 1
nhd

n∑
i=1

Kd

(
η(i/n)− t

hd

)

×

 −1
nhrρ(i/n)f(i/n)

n∑
j=1

q1{η̄(i/n,Xj), Yj}Kr

(
Xj − i/n

hr

) (1 + op((nhr)−1/2))

(2.38)

where η̄(x, z) = η(x) + η′(x)(z − x), and q1(x, y) and ρ(x) are as defined in (2.3) and (2.5)

respectively. The last line above comes from the results in Fan and Gijbels ([16] page 212).

Throughout the proof I will make use of the identities
∫∞
−∞K(z) = 1, and

∫∞
−∞ zK(z) = 0,

which follow from the assumption that K is a symmetric bounded probability density function

with finite fourth moment. Now consider

∆(1)
n (t) = 1

nhd

n∑
i=1

Kd

(
η(i/n)− t

hd

) −1
nhrρ(i/n)f(i/n)

n∑
j=1

q1{η̄(i/n,Xj), Yj}Kr

(
Xj − i/n

hr

) .
(2.39)
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The next task is to calculate the asymptotic expectation of ∆(1)
n (t).

E[∆(1)
n (t)] = E

 n∑
j=1

−1
n2hrhd

n∑
i=1

Kd

(
η(i/n)− t

hd

){
q1{η̄(i/n,Xj), Yj}
ρ(i/n)f(i/n) Kr

(
Xj − i/n

hr

)}
= −1
n2hrhd

n∑
j=1

E

[
n∑
i=1

Kd

(
η(i/n)− t

hd

){
q1{η̄(i/n,Xj), Yj}
ρ(i/n)f(i/n) Kr

(
Xj − i/n

hr

)}]

= −1
nhrhd

n∑
j=1

E

[∫ 1

0
Kd

(
η(x)− t
hd

){
q1{η̄(x,Xj), Yj}

ρ(x)f(x) Kr

(
Xj − x
hr

)}
dx

]
(1 + o(1))

= −1
hrhd

E

[∫ 1

0
Kd

(
η(x)− t
hd

){
q1{η̄(x,X1), µ(X1)}

ρ(x)f(x) Kr

(
X1 − x
hr

)}
dx

]
(1 + o(1))

= −1
hrhd

∫ 1

0

∫ 1

0
Kd

(
η(x)− t
hd

){
q1{η̄(x, z), µ(z)}

ρ(x)f(x) Kr

(
z − x
hr

)}
f(z)dzdx(1 + o(1))

= −1
hd

∫ 1

0

∫ (1−x)/hr

−x/hr
Kd

(
η(x)− t
hd

)

×
{
q1{η̄(x, x+ uhr), µ(x+ uhr)}

ρ(x)f(x) Kr(u)
}
f(x+ uhr)dudx(1 + o(1)) (2.40)

where we have used the substitution u = (z− x)/hr, and the fact that q1 is linear in y for fixed

x. Fan and Gijbels ([16] page 213, section 5.6) state that

q1{η̄(x, x+ uhr), µ(x+ uhr)} = ρ(x+ uhr)(uhr)2η
′′(x)
2 + o(h2

r). (2.41)

To show (2.41), recall (2.3) and notice that η̄(x, x + uhr) = η(x) + η′(x)uhr, and consider

the Taylor expansion,

η(x+ uhr) = η(x) + η′(x)uhr + η′′(x)(uhr)2

2 + η(3)(x̃)(uhr)3

6 = η̄(x, x+ uhr) + ∆η,

where x ≤ x̃ ≤ x+ uhr. Then, using (2.4)

q1{η̄(x, x+ uhr), µ(x+ uhr)} = q1{(η(x+ uhr)−∆η), µ(x+ uhr)}

= q1{η(x+ uhr), µ(x+ uhr)} −∆ηq2{η(x+ uhr), µ(x+ uhr)}+O(h4
r)

=
(
η′′(x)(uhr)2

2 + η(3)(x̃)(uhr)3

6

)
ρ(x+ uhr) +O(h4

r)

= η′′(x)(uhr)2

2 ρ(x+ uhr) + o(h2
r)

as required. Here, the O(h4
r) term stems from the fact that all further terms of the Taylor

expansion will have a term involving (∆η)2, or a greater power.

54



The leading term of this expression is (η′′(x))2(uhr)4/4 = O(h4
r). Before returning to (2.40)

consider the following Taylor expansions,

η′′(η−1(t+ uhd)) = η′′(η−1(t)) + η(3)(η−1(t))(η−1)′(t)uhd

+ u2h2
d

2
{
η(4)(η−1(t̃))(η−1)′2(t̃) + η(3)(η−1(t))(η−1)′′(t̃)

}
(2.42)

for t < t̃ < t+ uhd, and

(η−1)′(t+ uhd) = (η−1)′(t) + (η−1)′′(t)uhd + (η−1)(3)(t∗)u
2h2

d

2 (2.43)

for t < t∗ < t+uhd, are also required. Define b(x) = ρ(x)f(x), and then using Taylor expansions

it can be seen that,

b(x+ uhr) = b(x) + b′(x)uhr + b′′(x̃)u
2h2

r

2 (2.44)

for x < x̃ < x + uhr. It is then clear that b(x + uhr)/b(x) = 1 + O(hr). Using equation

(2.41) and the additional substitution v = (η(x)− t)/hd, followed by expansions (2.42)-(2.44),

equation (2.40) becomes

E[∆(1)
n (t)] = −

∫ (η(1)−t)/hd

(η(0)−t)/hd

∫ (1−η−1(t+vhd))/hr

(−η−1(t+vhd))/hr
Kd(v)(uhr)2η

′′(η−1(t+ vhd))
2

×Kr(u)η−1(t+ vhd)dudv(1 +O(hr))

= −h
2
r

2

∫ (η(1)−t)/hd

(η(0)−t)/hd

∫ (1−η−1(t+vhd))/hr

(−η−1(t+vhd))/hr
u2Kr(u)Kd(v)(η′′(η−1(t)) +O(hd))

×((η−1)′(t) +O(hd))dudv(1 +O(hr))

= η′′(η−1(t))(η−1)′(t)−h
2
r

2

∫ (η(1)−t)/hd

(η(0)−t)/hd
Kd(v)

∫ (1−η−1(t+vhd))/hr

(−η−1(t+vhd))/hr
u2Kr(u)dudv{1 + o(1)}

= η′′(η−1(t))(η−1)′(t)κ2(Kr)
−h2

r

2

∫ (η(1)−t)/hd

(η(0)−t)/hd
Kd(v)dv{1 + o(1)}

= −h2
rη
′′(η−1(t))(η−1)′(t)κ2(Kr){1 + o(1)}

Notice that the expectation is of order O(h2
r). The next task is to calculate the asymptotic
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variance of ∆(1)
n (t).

V ar[∆(1)
n (t)] = V ar

 n∑
j=1

−1
n2hrhd

n∑
i=1

Kd

(
η(i/n)− t

hd

){
q1{η̄(i/n,Xj), Yj}

b(i/n) Kr

(
Xj − i/n

hr

)}
=

n∑
j=1

1
n4h2

rh
2
d

V ar [Zj]

= 1
n3h2

rh
2
d

V ar [Zj]

= 1
n3h2

rh
2
d

{
E
[
Z2
j

]
− E [Zj]2

}
. (2.45)

I will first consider the first term of this expression.

E[Z2
j ] = n2E

(∫ 1

0
Kd

(
η(x)− t
hd

){
q1{η̄(x,X1), Y1}

b(x) Kr

(
X1 − x
hr

)}
dx

)2
 {1 + o(1)}

= n2
∫ 1

0

∫ 1

0

(∫ 1

0
Kd

(
η(x)− t
hd

){
q1{η̄(x, z), y}

b(x) Kr

(
z − x
hr

)
dx

})2

×f(z, y)dzdy{1 + o(1)}

= n2
[∫ 1

0

∫ 1

0

∫ 1

0
Kd

(
η(x)− t
hd

){
q1{η̄(x, z), y}

b(x) Kr

(
z − x
hr

)
dx

}

×
∫ 1

0
Kd

(
η(a)− t
hd

){
q1{η̄(a, z), y}

b(a) Kr

(
z − a
hr

)
da

}
f(z, y)dzdy

]
{1 + o(1)}

= n2
[∫ 1

0
Kd

(
η(a)− t
hd

)
1
b(a)

∫ 1

0
Kd

(
η(x)− t
hd

)
1
b(x)

∫ 1

0

∫ 1

0
q1{η̄(a, z), y}

× q1{η̄(x, z), y}Kr

(
z − a
hr

)
Kr

(
z − x
hr

)
f(z, y)dydzdxda

]
{1 + o(1)}. (2.46)

Now it is necessary to recall the definitions of q1(x, y) = (∂/∂x)Q{g−1(x), y}, and (∂/∂ν)Q(ν, y) =

(y − ν)/V (ν). Using these definitions and the chain rule it can be seen that

q1(x, y) = ∂

∂g−1(x)Q(g−1(x), y)∂g
−1(x)
∂x

= y − g−1(x)
V (g−1(x))

∂g−1(x)
∂x

= y − g−1(x)
V (g−1(x))

1
g′(g−1(x))

= y − g−1(x)
G(x)

where G(x) = V (g−1(x))g′(g−1(x)), and hence

q1(η̄(x, z), y) = y − g−1(η̄(x, z))
G(η̄(x, z))) . (2.47)
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To proceed, recall that η̄(x, z) = η(x) + η′(x)(z− x), and also make use of the following Taylor

expansions.

G(η̄(x, z)) = G(η(x) + η′(x)(z − x))

= G(η(x)) +G′(η(x̃))η′(x)(z − x) (2.48)

where η(x) < η(x̃) < η(x) + η′(x)(z − x), and

g−1(η̄(x, z)) = g−1(η(x)) + (g−1)′(η(x̌))η′(x)(z − x) (2.49)

with η(x) < η(x̌) < η(x) + η′(x)(z − x).

I’m now in a position to return to (2.46) and will use the substitutions, u = (η(a)− t)/hd,

v = (η(x)− t)/hd and w = (z − η−1(t+ vhd))/hr.

E[Z2
j ] = n2

[∫ 1

0
Kd

(
η(a)− t
hd

)
1
b(a)

∫ 1

0
Kd

(
η(x)− t
hd

)
1
b(x)

∫ 1

0

∫ 1

0

× {y − g
−1(η(x)) + (g−1)′(η(x̌))(z − x)η′(x)}
G(η(x)) +G′(η(x̃))η′(x)(z − x)

{y − g−1(η(a)) + (g−1)′(η(ǎ))(z − a)η′(a)}
G(η(a)) +G′(η(ã))η′(a)(z − a)

× Kr

(
z − a
hr

)
Kr

(
z − x
hr

)
f(z, y)dydzdxda

]
{1 + o(1)}

= n2h2
d

[∫ (η(1)−t)/hd

(η(0)−t)/hd

Kd(u)
b(η−1(t+ uhd))

∫ (η(1)−t)/hd

(η(0)−t)/hd

Kd(v)
b(η−1(t+ vhd))

×
∫ 1

0

∫ 1

0

{y − g−1(η(η−1(t+ vhd))) + (g−1)′(η(x̌))(z − η−1(t+ vhd))η′(η−1(t+ vhd))}
G(η(η−1(t+ vhd))) +G′(η(x̃))η′(η−1(t+ vhd))(z − η−1(t+ vhd))

× {y − g
−1(η(η−1(t+ uhd))) + (g−1)′(η(ǎ))(z − η−1(t+ uhd))η′(η−1(t+ uhd))}
G(η(η−1(t+ uhd))) +G′(η(ã))η′(η−1(t+ uhd))(z − η−1(t+ uhd))

× Kr

(
z − η−1(t+ uhd)

hr

)
Kr

(
z − η−1(t+ vhd)

hr

)
f(z, y)dydz

× (η−1)′(t+ vhd)dv(η−1)′(t+ uhd)du
]
{1 + o(1)}
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E[Z2
j ] = n2h2

dhr

[∫ (η(1)−t)/hd

(η(0)−t)/hd

Kd(u)
b(η−1(t+ uhd))

∫ (η(1)−t)/hd

(η(0)−t)/hd

Kd(v)
b(η−1(t+ vhd))

×
∫ (1−η−1(t+vhd))/hr

(−η−1(t+vhd))/hr

∫ 1

0

{y − g−1(t+ vhd) + whr(g−1)′(η(x̌))η′(η−1(t+ vhd))}
G(t+ vhd) + whrG′(η(x̃))η′(η−1(t+ vhd))

× {y − g
−1(t+ uhd) + (g−1)′(η(ǎ))(whr + η−1(t+ vhd)− η−1(t+ uhd))η′(η−1(t+ uhd))}
G(t+ uhd) +G′(η(ã))η′(η−1(t+ uhd))(whr + η−1(t+ vhd)− η−1(t+ uhd))

× Kr(w)Kr

(
w + η−1(t+ vhd)− η−1(t+ uhd)

hr

)
f(whr + η−1(t+ vhd), y)dydw

×(η−1)′(t+ vhd)dv(η−1)′(t+ uhd)du
]
{1 + o(1)} (2.50)

To finish calculating this asymptotic variance I will make use of the Taylor expansions (2.51)

to (2.55).

η−1(t+ uhd) = η−1(t) + uhd(η−1)′(t̃u), for t ≤ t̃u ≤ t+ uhd (2.51)

g−1(t+ uhd) = g−1(t) + uhd(g−1)′(t∗u), for t ≤ t∗u ≤ t+ uhd (2.52)

(η−1)′(t+ uhd) = (η−1)′(t) + uhd(η−1)′′(ťu), for t ≤ ťu ≤ t+ uhd (2.53)

b(η−1(t+ uhd)) = b(η−1(t) + uhd(η−1)′(t̃))

= b(η−1(t)) + b′(η−1(t̆u))uhd(η−1)′(t̃), for η−1(t) ≤ η−1(t̆) ≤ η−1(t) + uhd(η−1)′(t̃)

(2.54)

G(t+ uhd) = G(t) + uhdG
′(t́), for t ≤ t́u ≤ t+ uhd. (2.55)

Returning to (2.50) and noticing that g−1(t) = g−1(η(η−1(t))) = µ(η−1(t)), I show the expres-
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sion for the asymptotic variance.

E[Z2
j ] = n2h2

dhr

[∫ (η(1)−t)/hd

(η(0)−t)/hd

Kd(u)
b(η−1(t))

∫ (η(1)−t)/hd

(η(0)−t)/hd

Kd(v)
b(η−1(t))

∫ (1−η−1(t+vhd))/hr

(−η−1(t+vhd))/hr

×
∫ 1

0

(
y − g−1(t)
G(t)

)2

Kr(w)Kr

(
w + η−1(t+ vhd)− η−1(t+ uhd)

hr

)
×f(η−1(t), y)dydw(η−1)′2(t)dvdu

]
{1 + o(1)}

= n2h2
dhr(η−1)′2(t)

b2(η−1(t))G2(t)

[∫ (η(1)−t)/hd

(η(0)−t)/hd
Kd(u)

∫ (η(1)−t)/hd

(η(0)−t)/hd
Kd(v)

×
∫ (1−η−1(t+vhd))/hr

(−η−1(t+vhd))/hr

∫ 1

0
(y − g−1(t))2fY |X(y|x = η−1(t))fX(η−1(t))dy

×Kr(w)Kr

(
w + η−1(t+ vhd)− η−1(t+ uhd)

hr

)
dwdvdu

]
{1 + o(1)}

= n2h2
dhr(η−1)′2(t)[g′(g−1(t)]2V ar[Y |X = η−1(t)]

f(η−1(t))

×
∫ (η(1)−t)/hd

(η(0)−t)/hd

∫ (η(1)−t)/hd

(η(0)−t)/hd

∫ (1−η−1(t+vhd))/hr

(−η−1(t+vhd))/hr
Kd(u)Kd(v)Kr(w)

×Kr

(
w + η−1(t+ vhd)− η−1(t+ uhd)

hr

)
dwdvdu{1 + o(1)}. (2.56)

Recalling (2.45) it is now clear then that the first term of this is

1
n3h2

rh
2
d

E[Z2
j ] = (η−1)′2(t)[g′(g−1(t)]2V ar[Y |X = η−1(t)]

nhrf(η−1(t))

×
∫ (η(1)−t)/hd

(η(0)−t)/hd

∫ (η(1)−t)/hd

(η(0)−t)/hd

∫ (1−η−1(t+vhd))/hr

(−η−1(t+vhd))/hr
Kd(u)Kd(v)Kr(w)

×Kr

(
w + η−1(t+ vhd)− η−1(t+ uhd)

hr

)
dwdvdu{1 + o(1)}. (2.57)

I now need to consider the second term of (2.45).

−1
n3h2

rh
2
d

E [Zj]2 = E

[
1

n3h2
rh

2
d

(nhrhd∆(1)
n (t))2

]

= E

[
(∆(1)

n (t))2

n

]
. (2.58)

It is clear that, since the expectation of ∆(1)
n (t)) has O(h2

r), the term (2.58) is O(h4
r/n) and the

order of (2.59) is O(1/(nhr)). I can say then that (2.58) is o((nhr)−1). The dominant part of
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the variance is given by (2.59). The variance of ∆(1)
n (t)) is given by

V ar[∆(1)
n (t))] = (η−1)′2(t)[g′(g−1(t)]2V ar[Y |X = η−1(t)]

nhrf(η−1(t))

×
∫ (η(1)−t)/hd

(η(0)−t)/hd

∫ (η(1)−t)/hd

(η(0)−t)/hd

∫ (1−η−1(t+vhd))/hr

(−η−1(t+vhd))/hr
Kd(u)Kd(v)Kr(w)

×Kr

(
w + η−1(t+ vhd)− η−1(t+ uhd)

hr

)
dwdvdu{1 + o(1)}. (2.59)

I now consider the case where limn→∞ hr/hd → c ∈ [0,∞). Dette, Neumeyer and Pilz [9]

state the following relation

lim
hr→0,hd→0,hr/hd→c

Kd

(
η(η−1(t+ hdw) + hr(v − u))− t

hd

)
= Kd(w + cη′(η−1(t))(v − u)). (2.60)

At this point, making the substitution ν = {η(η−1(t+ hdw) + hr(v − u))− t}/hd in (2.56),

and using the identity (2.60) yields

V ar[∆(1)
n (t)] = [g′(g−1(t)]2V ar[Y |X = η−1(t)]

η′(η−1(t)nhdf(η−1(t))

×
∫ ∫ ∫

Kd

(
u+ hr

hd
η′(η−1(t))(ν − w)

)
Kd(u)Kr(w)Kr(ν)dudwdν

since (η−1)′(t) = 1/η′(η−1(t)). Hence
√
nhdV ar[∆(1)

n (t)] = r(t) as required (see (2.7)).

Now consider the second case. For the second part of the theorem, (2.8) is obtained when

the factor of
√
nhr is considered. This factor cancels with the nhr in the denominator of (2.56)

to give the required variance.

Now considering the second case, when limn→∞ hr/hd →∞

Kr

(
w + η−1(t+ vhd)− η−1(t+ uhd)

hr

)
→ Kr(w).

Remembering that
∫
K(ν)dν = 1, gives the required results. Hence

√
nhrV ar[∆(1)

n (t)] = r̃(t)

as required (see (2.8)).

The final task is to show the asymptotic normality of ∆(1)
n (t) . Consider the first case of
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Theorem 1.
√
nhd

(
∆(1)
n (t) + κ2(Kr)h2

rη
′′(η−1(t))(η−1)′(t)

)
=
√
nhd

 n∑
j=1

−1
n2hrhd

n∑
i=1

Kd

(
η(i/n)− t

hd

){
q1{η̄(i/n,Xj), Yj}

b(i/n) Kr

(
Xj − i/n

hr

)}

+κ2(K)h2
rη
′′(η−1(t))(η−1)′(t)

)
=

n∑
j=1

{
−
√
nhd

n2hrhd

n∑
i=1

Kd

(
η(i/n)− t

hd

){
q1{η̄(i/n,Xj), Yj}

b(i/n) Kr

(
Xj − i/n

hr

)}}

+
√
nhdκ2(K)h2

rη
′′(η−1(t))(η−1)′(t)

=
n∑
j=1

{
−
√
nhd

n2hrhd

n∑
i=1

Kd

(
η(i/n)− t

hd

){
q1{η̄(i/n,Xj), Yj}

b(i/n) Kr

(
Xj − i/n

hr

)}

+ h2
r

√
nhd
n

κ2(K)η′′(η−1(t))(η−1)′(t)
}

=
n∑
j=1

(Zj − µj). (2.61)

Here,

Zj = −
√
nhd

n2hrhd

n∑
i=1

Kd

(
η(i/n)− t

hd

){
q1{η̄(i/n,Xj), Yj}

b(i/n) Kr

(
Xj − i/n

hr

)}
(2.62)

is a random variable with mean,

µj = h2
r

√
nhd
n

κ2(K)η′′(η−1(t))(η−1)′(t)

=
√
hd
n
E[∆(1)

n (t)] (2.63)

and variance

σ2
j = V ar[Zj] = hdV ar[∆(1)

n (t)]. (2.64)

The Lyapunov central limit theorem states that for a series of independent identically dis-

tributed random variables X1, . . . Xn, with finite expected value µi and variance σ2
i , if for some

δ > 0

lim
n→∞

1
s2+δ
n

n∑
j=1

E[|Xj − µj|δ] = 0 (2.65)

is satisfied, where s2
n = ∑n

i=1 σ
2
i , then

n∑
j=1

(Zj − µj) D−→ N(0, r2(t)).
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I use the Lyapunov central limit theorem to prove asymptotic normality of ∆(1)
n (t), setting

δ = 2. First notice that since V ar[∆(1)
n (t)] = O(1/(nhd)), σ2

i = O(1/n). Hence s2
n = ∑n

i=1 σ
2
i =

O(1) and s4
n = O(1).

I next want to calculate the value of E[Zk
1 ] for k = 1, 2, 3, 4.

E[Zk
1 ] = E

(−√nhd
n2hrhd

n∑
i=1

Kd

(
η(i/n)− t

hd

){
q1{η̄(i/n,X1), Y1}

b(i/n) Kr

(
X1 − i/n

hr

)})k
=
(
−
√
nhd

nhrhd

)k
E

( 1
n

n∑
i=1

Kd

(
η(i/n)− t

hd

){
q1{η̄(i/n,X1), Y1}

b(i/n) Kr

(
X1 − i/n

hr

)})k
=
(
−
√
nhd

nhrhd

)k
E

(∫ 1

0
Kd

(
η(x)− t
hd

){
q1{η̄(x,X1), Y1}

b(x) Kr

(
X1 − x
hr

)}
dx(1 + o(1))

)k
=
(
−
√
nhd

nhrhd

)k ∫ 1

0

∫ 1

0

(∫ 1

0
Kd

(
η(x)− t
hd

){
q1{η̄(x, z), y}

b(x) Kr

(
z − x
hr

)}
dx

)k
×f(z, y)dzdy(1 + o(1))

=
(
−
√
nhd

nhrhd

)k ∫ 1

0

∫ 1

0

{
k∏
i=1

∫ 1

0
Kd

(
η(x)− t
hd

){
q1{η̄(xi, z), y}

b(xi)
Kr

(
z − xi
hr

)}
dxi

}
×f(z, y)dzdy(1 + o(1)). (2.66)

At this point I need to use two substitutions, yi = (z− xi)/hr, and u = (η(z− hry1)− t)/hd

in turn. In addition, I use the Taylor expansions (2.47)-(2.49) and (2.51)-(2.55). The following

calculations proceed very similarly to the calculations for the variance case which I have already

considered here and so only the main steps are shown. To continue then from (2.66),

E[Zk
1 ] =

(
1√
nhd

)k ∫ 1

0

∫ 1

0

{
k∏
i=1

∫ (z−1)/hr

z/hr
Kd

(
η(z − hryi)− t

hd

)
q1{η̄(z − hryi, z), y}

b(z − hryi)
Kr(yi)dyi

}
×f(z, y)dzdy(1 + o(1))
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= hd

(
1√
nhd

)k ∫ 1

0

∫ (η(1−hry1)−t)/hd

(η(−hry1)−t)/hd

×
{

k∏
i=2

∫ 1

0
Kd

(
η−1(t+ uhd) + hry1 − hryi

hd

)

× q1{η̄(η−1(t+ uhd) + hry1 − hryi, η−1(t+ uhd) + hry1), y}
b(η−1(t+ uhd) + hry1 − hryi)

Kr(yi)dyi
}

×
{∫ (η−1(t+uhd)+hry1−1)/hr

(η−1(t+uhd)+hry1)/hr
Kd(u)q1{η̄(η−1(t+ uhd), η−1(t+ uhd) + hry1), y}

b(η−1(t+ uhd))
Kr(y1)dy1

}
×f(η−1(t+ uhd), y)(η−1)′(t+ uhd)dudy(1 + o(1))

E[Zk
1 ] = hd

(
1√
nhd

)k (η−1)′(t)f(η−1(t)
bk(η−1(t))Gk(t)

∫ ∫
(y − g−1(t))kfY |X(y|x = η−1(t))dy

×
{

k∏
i=1

∫
Kd

(
u+ hr

hd
(η′(η−1(t))(η−1)′(t)(y1 − yi))

)
Kr(yi)dyi

}

×
∫
Kd(u)Kr(y1)dy1du(1 + o(1))

= O

h(2−k)/2
d

nk/2

 .
It is clear from (2.63) that µj = O(h2

rh
1/2
d n−1/2). The next step is to consider the expression

(Zj − µj)4. Obviously,

(Zj − µj)4 = Z4
j − 4Z3

j µj + 6Z2
j µ

2
j − 4Zjµ3

j + µ4
j (2.67)

and then considering each term in turn I have

E[Z4
j ] = O

( 1
n2hd

)
= o(1) (2.68)

E[Z3
j µj] = O

h1/2
d

n3/2

×O (h2
rh

1/2
d n−1/2

)
= O

(
h2
r

n2

)
= o(1) (2.69)

E[Z2
j µ

2
j ] = O

(
n−1

)
×O

(
h4
rhd
n

)
= O

(
h4
rhd
n2

)
= o(1) (2.70)

E[Zjµ3
j ] = O

h1/2
d

n1/2

×O
h6

rh
3/2
d

n3/2

 =
(
h6
rh

2
d

n2

)
= o(1) (2.71)

E[µ4
j ] = O

(
h8
rh

2
d

n2

)
= o(1). (2.72)
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From (2.68)-(2.72) it is clear that E[(Zj − µj)4] = o(1). Taking the sum over j results in

obtaining ∑n
j=1 E[(Zj − µj)4] = o(1). Recalling that s4

n = O(1), the Lyapunov condition is

satisfied and so I can say that asymptotic normality is proved by the Lyapunov Central Limit

theorem.

64



2.5.2 Proof of Lemma 1

Proof. This follows the proof given in Dette et al. [9]. Recall the definition,

η−1
n (t) = 1

nhd

∫ t

−∞

n∑
i=1

Kd

(
η(i/n)− u

hd

)
du.

We can approximate this as a Riemann integral,

η−1
n (t) =

∫ 1

0

∫ t

−∞
Kd

(
η(x)− u

hd

)
1
hd
dudx

(
1 +O

( 1
nhd

))
.

Recall that t ∈ (η(0), η(1)) is fixed, and observing that the kernel, Kd has compact support,

[−1, 1] we know that η(x) − hd ≤ u ≤ η(x) + hd and so we integrate with respect to u from

η(x)− hd to t. Also η−1(u− hd) ≤ x ≤ η−1(u+ hd) and so we integrate with respect to x from

0 to η−1(t+ hd). So the leading term of the right hand side becomes

A(hd) =
∫ 1

0

∫ t

−∞
Kd

(
η(x)− u

hd

)
1
hd
dudx

=
∫ η−1(t+hd)

0

∫ t

η(x)−hd
Kd

(
η(x)− u

hd

)
du

hd
dx

=
∫ η−1(t−hd)

0

∫ η(x)+hd

η(x)−hd
Kd

(
η(x)− u

hd

)
du

hd
dx+

∫ η−1(t+hd)

η−1(t−hd)

∫ t

η(x)−hd
Kd

(
η(x)− u

hd

)
du

hd
dx

= η−1(t− hd) +
∫ η−1(t+hd)

η−1(t−hd)

∫ t

η(x)−hd
Kd

(
η(x)− u

hd

)
du

hd
dx.

Now we make the substitutions z = (η(x)− t)/hd and v = (zhd + t− u)/hd and obtain,

A(hd) = η−1(t− hd) + hd

∫ 1

−1
(η−1)′(t+ zhd)

∫ 1

z
Kd(v)dvdz.

Using the Taylor expansions

η−1(t− hd) = η−1(t)− hd(η−1)′(t) + h2
d(η−1)′′(t)

2 − h3
d(η−1)(3)(t̃)

6 , (2.73)

for t− hd < t̃ < t, and

(η−1)′(t+ zhd) = (η−1)′(t) + (η−1)′′(t)zhd + (η−1)(3)(t∗)z2h2
d

2 (2.74)
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for t < t∗ < t+ zhd, it can be seen that

A(hd) = η−1(t)− hd(η−1)′(t) + h2
d(η−1)′′(t)

2 − h3
d(η−1)(3)(t̃)

6

+hd
∫ 1

−1

(
(η−1)′(t) + (η−1)′′(t)zhd + (η−1)(3)(t∗)z2h2

d

2

)∫ 1

z
Kd(v)dvdz

= η−1(t)− hd(η−1)′(t) + h2
d(η−1)′′(t)

2 − h3
d(η−1)(3)(t̃)

6
+hd(η−1)′(t)

∫ 1

−1

∫ 1

z
Kd(v)dvdz + +(η−1)′′(t)h2

d

∫ 1

−1
z
∫ 1

z
Kd(v)dvdz

+(η−1)(3)(t̃)h3
d

∫ 1

−1
z2
∫ 1

z
Kd(v)dvdz

= η−1(t) + h2
d(η−1)′′(t)κ2(Kd) + o(h2

d)

where we have used the two identities,

∫ 1

−1

∫ 1

z
Kd(v)dvdz = 1

∫ 1

−1
z
∫ 1

z
Kd(v)dvdz = 1

2

∫ 1

−1
v2Kd(v)dv − 1

2 .

Hence,

η−1
n (t) = η−1(t) + κ2(Kd)h2

d(η−1)′′(t) + o(h2
d) +O

( 1
nhd

)
,

as required.
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Lemma 3 gives details of how an operator maps a non-decreasing function η to its ‘quantile’

η−1(t), is taken from Dette, Neumeyer and Pilz [9] and is stated here, without proof. The

interested reader is referred to [9] for details. I now need to consider the operator which maps

a non-decreasing function η to its quantile η−1(t). Lemma 3 and the surrounding discussion

are taken from Dette et al. [9] although I have replaced their m with η to emphasise that I

consider this in a likelihood setting. First I consider a fixed t, and a set M which is the set

of all twice continuously differentiable functions H ∈ C2[0, 1], with positive derivative on the

interval [0, 1], for which t is an interior point of their image. Then consider the functional,

Φ :


M 7→ [0, 1]

H 7→ H−1(t)

and define H1, H2 ∈M the function

Q :


[0, 1] 7→ R

λ 7→ Φ(H1 + λ(H2 −H1)).
(2.75)

Lemma 3 demonstrates that the derivative of Q exists.

Lemma 3. The mapping Q : [0, 1] → R defined by (2.75) is twice continuously differentiable

with

Q′(λ) = − H2 −H1

h1 + λ(h2 − h1) ◦ (H1 + λ(H2 −H1))−1(t), (2.76)

Q′′(λ) = Q′(λ)
{
−2(h2 − h1)

h1 + λ(h2 − h1) + (H2 −H1)(h′1 + λ(h′2 − h′1))
{h1 + λ(h2 − h1)}2

}
◦Q(λ), (2.77)

where h1, h2 denote the derivatives of H1 and H2 respectively.
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2.5.3 Proof of Lemma 2

Proof. To prove Lemma 2, I follow the proof of Dette et al. [9], and use Lemma 3, with

H1 = η−1 and H2 = η−1
n . Then, with the use of a Taylor expansion for Q, it is clear to see that

ηn(t)− η(t) = Φ(η−1
n )− Φ(η−1) = Q(1)−Q(0) = Q′(λ∗) for some λ∗ ∈ [0, 1] and

Q′(λ∗) = − η−1
n − η−1

(η−1 + λ∗(η−1
n − η−1))′ ◦ (η−1 + λ∗(η−1

n − η−1))−1(t). (2.78)

Using Lemma 1 it can be seen that (η−1 + λ∗(η−1
n − η−1)) → η−1 as n → ∞. In addition it is

clear that setting tn = (η−1 +λ∗(η−1
n − η−1))−1(t), then tn → η(t). Next, by the use of a Taylor

expansion, it can be shown that

(η−1
n − η−1)(tn)− (η−1

n − η−1)(η(t)) = (η−1
n − η−1)′(ξn)(tn − η(t)) (2.79)

where tn ≤ ξn ≤ η(t). Taking the first factor on the right hand side of (2.79) gives,

(η−1
n − η−1)′(ξn) =

(
1
nhd

∫ ξn

∞

n∑
i=1

Kd

(
η(i/n)− u

hd

)
du

)′
− (η−1)′(ξn)

= 1
nhd

n∑
i=1

Kd

(
η(i/n)− ξn

hd

)
− (η−1)′(ξn)

=
∫ 1

0
Kd

(
η(x)− ξn

hd

)
dx

hd
+O

( 1
nhd

)
− (η−1)′(ξn)

=
∫ η(1)−ξn

hd

η(0)−ξn
hd

Kd(v)(η−1)′(ξn + vhd)dv − (η−1)′(ξn) +O
( 1
nhd

)

=
∫ η(1)−ξn

hd

η(0)−ξn
hd

Kd(v)(η−1)′(ξn)dv +
∫ η(1)−ξn

hd

η(0)−ξn
hd

Kd(v)(η−1)′′(ξn)vhddv

+
∫ η(1)−ξn

hd

η(0)−ξn
hd

Kd(v)(η−1)(3)(ξ̃n)v
2h2

d

2 dv − (η−1)′(ξn) +O
( 1
nhd

)

= (η−1)(3)(ξ̃n)h2
d

2

∫
v2Kd(v)dv +O

( 1
nhd

)
= O(h2

d) +O
( 1
nhd

)
. (2.80)

To obtain (2.80) I have used the substitution v = (η(x)− ξn)/hd and also the Taylor expansion,

(η−1)′(ξn + vhd) = (η−1)′(ξn) + (η−1)′′(ξn)vhd + (η−1)(3)(ξ̃n)v
2h2

d

2 (2.81)

for ξn ≤ ξ̃n ≤ ξn + vhd. From (2.80) and (2.79) it’s clear that

(η−1
n − η−1)(tn) = (η−1

n − η−1)(η(t)) + o(h2
d) + o

( 1
nhd

)
, (2.82)
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and hence it is obvious that

Q′(λ∗) = −(η−1
n − η−1) ◦ η(t)
(η−1)′(η(t)) + o(h2

d) + o
( 1
nhd

)

= −
κ2(Kd)h2

d(η−1)′′(η(t)) + o(h2
d) +O

(
1
nhd

)
(η−1)′(η(t)) + o(h2

d) + o
( 1
nhd

)
(2.83)

where we have used Lemma 1. Lemma 2 follows from a rearrangement of (2.83), using the

identity (η−1)′′(η(t)) = −η′′(t)/{η′(t)}3.
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2.5.4 Proof of Theorem 2

Proof. The proof of this theorem follows similar lines to that of Lemma 2, and is also similar to

the proof for Theorem 3.2 in Dette et al. [9]. The key differences for my method will be noted.

I begin by using Lemma 3, and setting H2 = η̂−1
M and H1 = η−1

n . Using a Taylor expansion

it can be seen that

H−1
2 (t)−H−1

1 (t) = Q(1)−Q(0) = Q′(0) + 1
2Q
′′(λ∗)

for some λ∗ ∈ [0, 1]. This means that

η̂M(t)− ηn(t) = An + 1
2Bn (2.84)

where

An = − η̂
−1
M − η−1

n

(η−1
n )′ ◦ ηn(t) (2.85)

Bn = 2(η̂−1
M − η−1

n )(η̂−1
M − η−1

n )′

{(η−1
n + λ∗(η̂−1

M − η−1
n ))′}2 ◦ (η−1

n + λ∗(η̂−1
M − η−1

n ))−1(t)

−(η̂−1
M − η−1

n )2(η−1
n + λ∗(η̂−1

M − η−1
n ))′′

{(η−1
n + λ∗(η̂−1

M − η−1
n ))′}3 ◦ (η−1

n + λ∗(η̂−1
M − η−1

n ))−1(t). (2.86)

First consider (2.85) and consider the Taylor expansion,

(η̂−1
M − η−1

n ) ◦ ηn(t)− (η̂−1
M − η−1

n ) ◦ η(t) = (η̂−1
M − η−1

n )′(ξn)(ηn(t)− η(t)), (2.87)

where |ξn − η(t)| ≤ |ηn(t)− η(t)|. Now consider (2.23) and using a Taylor expansion,

(η̂−1
M − η−1

n )′(ξn) = 1
nhd

n∑
i=1

{
Kd

(
η̂(i/n)− ξn

hd

)
−Kd

(
η(i/n)− ξn

hd

)}

= 1
nhd

n∑
i=1

K ′d
(
η(i/n)− ξn

hd

) η̂
(
i
n

)
− η

(
i
n

)
hd


+ K ′′d

(
ζi,n − ξn
hd

) {
η̂
(
i
n

)
− η

(
i
n

)}2

2h2
d

 (2.88)

where |ζi,n − η(i/n)| ≤ |η̂(i/n)− η(i/n)| = O(Rn), almost surely, where

Rn =
(

log n
nhr

)1/2

+ h2
r. (2.89)
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This result comes from Claeskens and Van Keilegom [6] (Theorem 2.1). This is a uniform

bound on the difference |η̂(x)− η(x)| for all values of x. It is clear that this is different to the

bound, for m̂(t)−m(t) given in Dette et al. [9]

Rn =
(

log h−1
r

nhr

)1/2

. (2.90)

The difference in our case is due to the use of likelihood information. It is clear from considering

the bound (2.89) that the first term dominates the second due to assumption (B5). This means

that the rate of convergence is mainly dependent on the first term. Comparing the first term

of (2.89) with the bound of Dette et al. [9], given in (2.90, using assumption (B5) it can be

seen that the only difference is that the bound in (2.89) depends on a term log n whilst the

bound in (2.90) depends on a term logn1/5. Notice that this second term can also be written

as 1/5 log n as so the rate of convergence is roughly the same. This goes to show that the two

bounds convergence at the same rate and the main result is not affected.

Returning to (2.88) with the above Taylor expansion gives

(η̂−1
M − η−1

n )′(ξn) = 1
nhd

n∑
i=1

K ′d
(
η(i/n)− ξn

hd

) η̂
(
i
n

)
− η

(
i
n

)
hd

+K ′′d

(
ζi,n − ξn
hd

) {
η̂
(
i
n

)
− η

(
i
n

)}2

2h2
d


= 1
nh2

d

n∑
i=1

K ′d

(
η(i/n)− ξn

hd

){
η̂
(
i

n

)
− η

(
i

n

)}
+O

(
R2
n

h3
d

)
a.s. (2.91)

This can be seen by considering the term
∣∣∣∣∣ 1
2nh3

d

n∑
i=1

K ′′d

(
ζi,n − ξn
hd

){
η̂
(
i

n

)
− η

(
i

n

)}2∣∣∣∣∣
≤ 1

2h3
d

R2
n

1
n

n∑
i=1

∣∣∣∣∣K ′′d
(
ζi,n − ξn
hd

)∣∣∣∣∣
= O

(
R2
n

h2
d

)
.

To proceed I state a further Taylor expansion,

K ′d

(
η(x)− ηn(t)

hd

)
= K ′d

(
η(x)− η(t)

hd

)
+K ′′d

(
η(x)− ψt

hd

)
η(t)− ηn(t)

hd
(2.92)

for some η(t) < ψt < ηn(t), and then returning to (2.91) and using a Riemann Integral it can
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be seen that

∣∣∣(η̂−1
M − η−1

n )′(ξn)
∣∣∣ ≤ 1

h2
d

∫ ∣∣∣∣∣K ′d
(
η(x)− ηn(t)

hd

)
{η̂(x)− η(x)}

∣∣∣∣∣ dx(1 +O(n−1)) +O

(
R2
n

h2
d

)

= 1
h2
d

∫ ∣∣∣∣∣
{
K ′d

(
η(x)− η(t)

hd

)
+K ′′d

(
η(x)− ψt

hd

)
η(t)− ηn(t)

hd

}∣∣∣∣∣
× |{η̂(x)− η(x)}| dx(1 +O(n−1)) +O

(
R2
n

h2
d

)

= 1
h2
d

∫ ∣∣∣∣∣K ′d
(
η(x)− η(t)

hd

)
{η̂(x)− η(x)}

∣∣∣∣∣ dx(1 +O(n−1))

+O
(
Rn + R2

n

h2
d

)
a.s

(2.93)

since

1
h2
d

∫ ∣∣∣∣∣K ′′d
(
η(x)− ψt

hd

)
η(t)− ηn(t)

hd
{η̂(x)− η(x)}

∣∣∣∣∣ dx
=
∣∣∣∣∣η(t)− ηn(t)

h3
d

∣∣∣∣∣
∫ ∣∣∣∣∣K ′′d

(
η(x)− ψt

hd

)
{η̂(x)− η(x)}

∣∣∣∣∣ dx
=
∣∣∣∣∣η(t)− ηn(t)

h2
d

∣∣∣∣∣
∫ ∣∣∣K ′′d (u){η̂(η−1(ψt + uhd))− η(η−1(ψt + uhd))}(η−1)′(ψt + uhd)

∣∣∣ du
=
∣∣∣∣∣η(t)− ηn(t)

h2
d

∣∣∣∣∣
∫ ∣∣∣K ′′d (u){η̂(η−1(ψt))− η(η−1(ψt))}(η−1)′(ψt)

∣∣∣ du{1 + o(1)}

=
∣∣∣∣∣(η(t)− ηn(t)){η̂(η−1(ψt))− η(η−1(ψt))}(η−1)′(ψt)

h2
d

∣∣∣∣∣
∫
|K ′′d (u)| du

≤ Rn(η(t)− ηn(t))(η−1)′(ψt)
h2
d

∫
|K ′′d (u)| du

= O(Rn)

due to the fact that η(t)−ηn(t) = O(h2
d) by Lemma 2. In the above I have used the substitution

u = (η(x) − ψt)/hd. The next step is to return to (2.93) and consider a substitution v =
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(η(x)− η(t))/hd.

|(η̂−1
M − η−1

n )′(ξn)| = 1
hd

∫ ∣∣∣K ′d(v){η̂(η−1(η(t) + vhd))− η(η−1(η(t) + vhd))}

(η−1)′(η(t) + vhd)
∣∣∣ dv{1 +O(n−1)} +O

(
Rn + R2

n

h2
d

)

= 1
hd

∫ ∣∣∣K ′d(v){η̂(η−1(η(t)))− η(η−1(η(t)))}(η−1)′(η(t))
∣∣∣ dv{1 + o(1)}

+O
(
Rn + R2

n

h2
d

+ 1
nhd

)

≤ Rn(η−1)′(η(t))
hd

∫
|K ′d(v)| dv{1 + o(1)}+O

(
Rn + R2

n

h3
d

+ 1
nhd

)

= O

(
Rn

hd
+ R2

n

h2
d

+ 1
nhd

)
a.s. (2.94)

The O(1/nhr) term in the second line comes from the h−1
d O(n−1) in the previous line. Now

recalling Lemma 2 and returning to (2.87) we have

(η̂−1
M − η−1

n ) ◦ ηn(t)− (η̂−1
M − η−1

n ) ◦ η(t) = O

(
Rnhd +R2

n + hd
n

)
. (2.95)

In the case, limn→∞ hr/hd = c ∈ [0,∞), it can be shown that this term is o(1/
√
nhd) almost

surely as follows, using assumption (B4), (B5), and then assumption (C5) for (2.97), and (C2)

for (2.98).
√
nhdhd
n

=
√
h3
d

n
= o(1) (2.96)

√
nhdRnhd =

√
nhd


(

log n
nhr

)1/2

+ h2
r

hd
=

√
h3
d

log n
hr

+
√
nh3

dh
4
r = o(1) (2.97)

√
nhdR

2
n =

√
nhd


(

log n
nhr

)1/2

+ h2
r


2

=
√
nhd

 log n
nhr

+ 2h2
r

(
log n
nhr

)1/2

+ h4
r


=
√
nhd

(
log n
nhr

)
+
√
h3
rhd log n+

√
nhdh8

r

= o(1). (2.98)
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Using lemma 1, (2.85) and (2.95), it is clear to see that

An = − η̂
−1
M − η−1

n

(η−1)′ ◦ η(t) + op

(
1√
nhd

)
. (2.99)

In the case where limn→∞ hr/hd = ∞, (2.95) is of order o(1/
√
nhr) by calculations which are

analagous to those presented above, and also use assumptions (B4) and (B5). Assumption (C4)

is required for (2.102) and (C6) is required for (2.101). Here it is the case that
√
nhrhd
n

=
√
hrh2

d

n
= o(1) (2.100)

√
nhdRnhd =

√
nhr

( log n
nhr

)1/2

+ h2
r

hd
=
√
h2
d log n+

√
nh5

rh
2
d

= o(1) (2.101)

√
nhrR

2
n =

√
nhr

 log n
nhr

+ 2h2
r

(
log n
nhr

)1/2

+ h4
r


= log n√

nhr
+
√
h4
r log n+

√
nh9

r

= o(1).

Combining these results gives

An = − η̂
−1
M − η−1

n

(η−1)′ ◦ η(t) + op

(
1√
nhr

)
. (2.102)

I now need to consider the estimate Bn and, following Dette et al. want to show that it is

op(1/
√
nhd), or op

(
1√
nhr

)
, in the case where limn→∞ hr/hd =∞. The calculations for this run

in a similar way to those I have just shown for An and so I just show the main steps. First

notice that Bn = 2Bn1 −Bn2, where

Bn1 = (η̂−1
M − η−1

n )(η̂−1
M − η−1

n )′(tn)
{(η−1

n + λ∗(η̂−1
M − η−1

n ))′}2(tn)
(2.103)

Bn2 = (η̂−1
M − η−1

n )2(η−1
n + λ∗(η̂−1

M − η−1
n ))′′(tn)

{(η−1
n + λ∗(η̂−1

M − η−1
n ))′}3(tn)

(2.104)
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where tn = (η−1
n + λ∗(η̂−1

M − η−1
n ))−1(t). Notice that tn → η(t), (η−1

n + λ∗(η̂−1
M − η−1

n )) P−→ η−1.

Recall that

∆′n(tn) = (η̂−1
M − η−1

n )′(tn)

= 1
nhd

n∑
i=1

{
Kd

(
η̂(i/n)− tn

hd

)
−Kd

(
η(i/n)− tn

hd

)}

= 1
nhd

n∑
i=1

{
K ′d

(
η(i/n)− tn

hd

)
{η̂(i/n)− η(i/n)}

hd

+K ′′d
(

Λi,n − tn
hd

)
{η̂(i/n)− η(i/n)}2

2h2
d

}
(2.105)

for some |Λi,n − η(i/n)| ≤ |η̂(i/n) − η(i/n)| = O(Rn). Considering first the second term it is

clear that∣∣∣∣∣ 1
nh3

d

n∑
i=1

K ′′d

(
Ψi,n − tn

hd

)
{η̂(i/n)− η(i/n)}2

∣∣∣∣∣ ≤ 1
nh3

d

R2
n

n∑
i=1

∣∣∣∣∣K ′′d
(

Ψi,n − tn
hd

)∣∣∣∣∣
= O

(
R2
n

h2
d

)
. (2.106)

Returning to (2.105) gives

|∆′n(tn)| =
∣∣∣∣∣ 1
nh2

d

n∑
i=1

K ′d

(
η(i/n)− tn

hd

)
{η̂(i/n)− η(i/n)}+O

(
R2
n

h2
d

)∣∣∣∣∣
=
∣∣∣∣∣ 1
h2
d

∫
K ′d

(
η(x)− η(t)

hd

)
{η̂(x)− η(x)}dx(1 +O(n−1))

∣∣∣∣∣+O

(
R2
n

h2
d

)

=
∣∣∣∣ 1
hd

∫
K ′d(u){η̂(η−1(η(t) + uhd))− η(η−1(η(t) + uhd))}(η−1)′(η(t) + uhd)du(1 + o(1))

∣∣∣∣
+O

(
R2
n

h2
d

)

=
∣∣∣∣∣{η̂(t)− η(t)}(η−1)′(η(t))

hd

∫
K ′d(u)du(1 + o(1))

∣∣∣∣∣+O

(
R2
n

h2
d

)

≤
∣∣∣∣∣Rn(η−1)′(η(t))

hd

∫
K ′d(u)du(1 + o(1))

∣∣∣∣∣+O

(
R2
n

h2
d

)

= O
(
Rn

hd

)
+O

(
R2
n

h2
d

)

= O

(
Rn

hd
+ R2

n

h2
d

)
. (2.107)

Now, consider Theorem 1. Since the bias of η̂(·)− η(·) is of order O(h2
r) = o(1) and its variance

is of order O(1) it is clear that (η̂−1
M − η−1

n )(tn) = O(
√
nhd). Thus we have

Bn1 = O

(
1√
nhd

(
Rn

hd
+ R2

n

h2
d

))
= o

(
1√
nhd

)
. (2.108)
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which can be shown using assumptions (C2) and (C3) as follows

Rn

hd
= 1
hd


(

log n
nhr

)1/2

+ h2
r


=
√

log n
nhrh2

d

+ h2
r

hd

= o(1).

In the case where limn→∞ hr/hd = ∞, it can be shown that Bn1 = o(1/
√
nhr) in exactly the

same way.

The next step is to consider the term Bn2. From the above discussion it can be seen that

Bn2 → (η̂−1
M − η−1

n )2(tn) (η−1)′′(η(t))
(η−1)′3(η(t))

= O
( 1
nhd

)
.

I am now in a position to finish the proof of the theorem. Recall Theorem 1 and (2.84).

Theorem 1 implies that when limn→∞ hr/hd = c ∈ [0,∞),

√
nhd

(
η̂M(η(t))− η−1

n (η(t)) + κ2(Kr)h2
r

η′′(t)
η′(t)

)
D−→ N(0, r2(η(t))) (2.109)

From here it is clear that

−η′(t)
√
nhd

(
η̂−1
M (η(t))− η−1

n (η(t)) + κ2(Kr)h2
r

η′′(t)
η′(t)

)
D−→ N(0, (η′(t))2r2(η(t)))

−
√
nhd

 η̂−1
M (η(t))− η−1

n (η(t)) + κ2(Kr)h2
r
η′′(t)
η′(t)

(η−1)′(η(t))

 D−→ N(0, (η′(t))2r2(η(t)))

√
nhd

(
− η̂
−1
M − η−1

n

(η−1)′ ◦ (η(t))− κ2(Kr)h2
rη
′′(t)

)
D−→ N(0, (η′(t))2r2(η(t)))√

nhd
(
η̂M(t)− ηn(t)− κ2(Kr)h2

rη
′′(t)

)
D−→ N(0, (η′(t))2r2(η(t))) (2.110)

which gives Theorem 2 as required. In the alternative case, where limn→∞ hr/hd = ∞, the

proof is analogous.
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Chapter 3

Choosing the bandwidths for the

LDNP method

3.1 Introduction

The bandwidths chosen for nonparametric regression estimates have a significant effect on the

performance of an estimate. In an ideal situation we would choose a bandwidth, hr that was

optimal in terms of some metric such as the MSE (see (3.3)), or the MISE (see (3.10)). However,

the expression for the asymptotic MSE and MISE, for estimating η(x), depends on quantities

which are unknown in practice since the precise form of the response function is not known. As

a result, approximation methods are needed in order to estimate the unknown quantities and

calculate a suitable bandwidth. There are many ways in which to choose the bandwidth, with

the two main families of methods being cross-validation bandwidths and plug-in bandwidths.

These methods are briefly described in Chapter 1.

For the LDNP method, clearly two bandwidths must be chosen, one for the unconstrained

regression step, hr and a second for the density estimation step hd. Dette et al. [9] state that

any standard method may be used to choose the bandwidth for the initial regression and then

explore the effect of the choice of hd. The choice of bandwidth for the unconstrained regression,

hr can affect the resulting estimate. This choice is explored in detail in a simulation study
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in Chapter 4. In this chapter, I concentrate on studying the effect of the choice of a second

bandwidth, hd, to be used in the density estimation procedure in the monotonisation step.

3.2 MSE optimal bandwidth

In this section, I will concentrate on MSE optimal bandwidth and assume that it varies with

location t in a similar way as Dette et al. [9]. For the regression estimate I will use the

bandwidth that minimises the Mean Square Error (MSE). For a quasi-likelihood method as

described in Fan and Gijbels ([16] pages 196-198) the bias and the variance of the estimator η̂

are given by (3.1) and (3.2) respectively.

b(x) = κ2(Kr)η′′(x)h2
r (3.1)

where κ2(Kr) = (1/2)
∫
z2Kr(z)dz.

σ2(x) =
∫
K2
r (z)dz [g′{µ(x)}]2V ar[Y |X = x]

f(x)nhr
. (3.2)

The MSE is the sum of the square bias and the variance, and hence a bandwidth hr that

minimises the MSE can be calculated resulting in the following asymptotically MSE optimal

bandwidth

hr,OPT =
[∫

K2
r (z)dz[g′{µ(x)}]2V ar[Y |X = x]

4nf(x)κ2
2(Kr)(η′′(x))2

]1/5

. (3.3)

From Chapter 2 it is clear that for the LDNP method the leading terms of the bias and the

variance can be obtained from Theorem 2 and Corollary 1. The leading term of the bias is

Bias(t) = κ2(Kd)h2
d

η′′(t)
(η′(t))2 + κ2(Kr)η′′(t)h2

r (3.4)

and the variance is given by

V ar(t) = η′(t)[g′{µ(t)}]2V ar[Y |X = t]
nhdf(t)

∫ ∫ ∫
Kd

(
u+ hr

hd
η′(t)(v − w)

)
= ×Kd(u)Kr(w)Kr(v)dudwdv.

Equations (3.4) and (3.5) are true in the case where limn→∞ hr/hd = c ∈ [0,∞). In

this section I will explore the relationship of hd to hr. Following Dette et al. [9], I will set
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hd = γη′(t)hr for some constant γ > 0. Using this substitution it is evident that the leading

term of the bias now becomes

Bias(t) = η′′(t)h2
r

[
κ2(Kr) + γ2κ2(Kd)

]
. (3.5)

The variance term becomes

V ar(t) = [g′{µ(t)}]2V ar[Y |X = t]
nγhrf(t)

∫ ∫ ∫
Kd

(
u+ v − w

γ

)
Kd(u)Kr(w)Kr(v)dudwdv. (3.6)

Making the substitution s = (v − w)/γ gives

V ar(t) = [g′{µ(t)}]2V ar[Y |X = t]
nhrf(t)

∫ (∫
Kd(u+ s)Kd(u)du

)(∫
Kr(w)Kr(w + sγ)dw

)
ds

= [g′{µ(t)}]2V ar[Y |X = t]
nhrf(t) D2

K(γ). (3.7)

The second part of Theorem 2 considers the case where limn→∞ hr/hd =∞. We can include

this by assuming this is what is meant by allowing γ = 0. In this case it can be seen that when

γ = 0, the integrals in D2
K(γ) simplify and D2

K(0) =
∫
K2
r (w)dw.

It is clear that the bias term, (3.5) is increasing with γ. It is less clear how the variance

behaves with increasing γ. To investigate this I have considered some commonly used kernels

which are listed, along with several key properties in Table 3.1. A plot of these kernels is shown

in Figure 3.1.

For each of these six kernels I have calculated the function D2
K(γ) for a range of γ values.

I have here assumed that the two kernel used are the same, i.e. Kd = Kr. I then plotted these

functions in Figure 3.2. It is clear to see that the function D2
K is decreasing with γ for these

kernels. This implies that the variance of η̂ decreases with γ, for the kernels listed here.

These investigations have shown that the bias increases with increasing γ whilst the variance

decreases with increasing γ. The question that now needs to be considered is how much the

choice of γ affects the performance of the estimate. I can consider this by thinking about the

value of the asymptotic MSE function when an MSE optimal bandwidth, (3.3), is chosen for

the unconstrained regression. In this case a first order approximation of the asymptotic MSE
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Table 3.1: Some commonly used kernels

Kernel K(z)
∫
z2K(z)dz

∫
K2(z)dz

Uniform 1
21|z|≤1

1
3

1
2

Epanechnikov 3
4(1− z2)1|z|≤1

1
5

3
5

Biweight 15
16(1− u2)21|z|≤1

1
7

5
7

Triangular (1− |z|)1|z|≤1
1
6

2
3

Gaussian 1√
2π exp (−z2/2) 1 1

2
√
π

Tricube 70
81(1− |z|3)31|z|≤1

35
243

175
247

is

MSE(γ) =
(
η′′(t)h2

r

[
κ2(Kr) + γ2κ2(Kd)

])2
+ [g′{µ(t)}]2V ar[Y |X = t]

nhrf(t) D2
K(γ)

= (η′′(t))2
[
κ2(Kr) + γ2κ2(Kd)

]2 {D2
K(0)[g′{µ(x)}]2V ar[Y |X = x]

4nf(x)κ2
2(Kr)(η′′(x))2

}4/5

× [g′{µ(t)}]2V ar[Y |X = t]
nf(t) D2

K(γ)
{
D2
K(0)[g′{µ(x)}]2V ar[Y |X = x]

4nf(x)κ2
2(Kr)(η′′(x))2

}−1/5

=
[
D2
K(0)[g′{µ(x)}]2V ar[Y |X = x]

4nf(t)

]4/5

{η′′(t)κ2(Kr)}2/5

×

(κ2(Kd)
κ2(Kr)

γ2 + 1
)2

+ 4D2
K(γ)

D2
K(0)

 . (3.8)

Following Dette et al. [9] I consider the ratio of the MSE for the monotone estimate and

the MSE of the unconstrained estimate. The purpose of this is to see how well the monotone

estimate performs in comparison to the unconstrained version. Setting γ = 0 would imply

that hd = 0. This is equivalent to not doing the monotonisation step and so MSE(0) can be

considered as the MSE of the unconstrained estimate. Consider the function

e(γ) = MSE(γ)
MSE(0) = (1 + γ2κ2(Kd)/κ2(Kr))2 + (4/D2

K(0))D2
K(γ)

5 . (3.9)

In the case where Kd = Kr, the effect of γ on e(γ) is shown in Figure 3.3 for the kernels

considered in Table 3.1. It is not easy to distinguish all of the six kernels in this plot due
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Figure 3.1: Some commonly used kernels

to similarities in the results, but the overall pattern is plain to see. It is clear that for all

kernels except the uniform kernel, the value of e(γ) is minimal when γ = 0. This suggests

that an optimal choice of bandwidth, hd, would be one for which limn→∞ hr/hd = ∞. From

an asymptotic point of view then, a bandwidth which satisfies hd = o(hr) is desirable for the

monotone estimate. In the case of the uniform kernel the minimum occurs at approximately

γ = 0.306. For this kernel then, it is asymptotically optimal, in terms of the MSE, to choose a

bandwidth hd of the same order as that of the regression bandwidth hr. These results are in

agreement with those in Dette et al. [9] for the DNP method.

3.3 MISE optimal bandwidth

In the previous section I have followed the analysis of Dette et al. [9] and considered a choice of

bandwidth for the monotonisation step of the form hd = γη′(t)hr. In this case the MSE optimal
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Figure 3.2: The effect of γ on D2
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bandwdith was used for my analysis. It should be noticed that in this case the bandwidth

changes with t. In practice, a global bandwidth is often used for the monotonisation step. I

want to explore in this section how γ should be chosen in the case where a global bandwidth is

used instead of a variable bandwidth. In this case it may be more appropriate to use a mean

integrated square error (MISE) optimal bandwidth for the unconstrained regression hr, since

this is a global measure of performance.

Now I use a bandwidth of the form hd = γhr, with a similar understanding of the case when

γ = 0 to that of section 3.2. The bandwidth that minimises the asypmtotic MISE is given by

Fan and Gijbels ([16] page 198)

hr,opt =
[
D2
K1(0)

∫
[g′(g−1(η(x)))]2V ar[Y |X = x]w(x)dx

4nκ2
2(Kr)

∫
(η′′(x))2f(x)w(x)dx

]1/5

. (3.10)

In this equation there are obviously a number of unknown terms. A link function g must be

specified, as must a variance term V ar[Y |X = x]. The function f describes the design density
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Figure 3.3: The function e(γ) for the six kernels in Table 3.1 Kd = Kr.

of the stimulus levels, w is a weighting function. In practice, plug in values of the η′′(x) would

need to be provided in order to estimate the asymptotically optimal bandwidth. This optimal

bandwidth is for the regression step is then used to determine the value of γ that would give

the best MISE performance. As I show in what follows the optimum value would be situation

dependent and will require plug in values of a number of unknown values. This limits the

usefulness of the approach. It is included here with a number of known functions so as to

indicate the relationship between hd and hr. Here D2
K1 is similar, though not identical to the

value of D2
K in the previous section. This is due to the different relationship between hd and

hr. In this case this constant depends upon t.

D2
K1(γ, t) =

∫ ∫ ∫
Kd(u+ s)Kd(u)Kr(w)Kr

(
w + sγ

η′(t)

)
dudwds. (3.11)

I then use the bias and variance expressions (3.4) and (3.5) and calculate an expression for the

asymptotic MISE when using the optimal bandwidth (3.10).
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MISE(γ) =
∫

(Bias2 + V ar)w(t)f(t)dt

= h4
r,opt

∫
(η′′(t))2

[
κ2(Kd)γ2

η′(t) + κ2(Kr)
]2

f(t)w(t)dt

+ 1
nhr,opt

∫
[g′(g−1(η(t)))]2V ar[Y |X = t]D2

K1(γ, t)w(t)dt. (3.12)

As in the previous section I will consider the ratio of the MISE for the monotonised ver-

sion and the unconstrained version. I denote by MISE(0) the MISE for the unconstrained

regression, and then, following simplification of the expression I consider the function

e1(γ) = MISE(γ)
MISE(0)

= 4
5


∫

(η′′(t))2
(

γ2

η′(t) + 1
)2
w(t)f(t)dt

4
∫

(η′′(t))2f(t)w(t)dt +
∫

[g′(g−1(η(t)))]2V ar[Y |X = t]D2
K1(γ, t)w(t)dt

D2
K1(0)

∫
[g′(g−1(η(t)))]2V ar[Y |X = t]w(t)dt


= 4

5 [E1(γ) + E2(γ)] (3.13)

Clearly now the situation differs from that of the previous case. When I considered the

function e(γ) there were no unknown terms in the expression, whereas now, for e1(γ) there

are. The main consequence of this is that e1(γ) depends on the (unknown) function η, and

potentially, the efficiency e1(γ) varies with γ in different ways for different functions η. For

example for some functions it might be decreasing, but for others it might increase or have a

minimum/maximum.

The term of E1(γ) in 3.13 is an increasing function of γ since it is a polynomial of order

4 with positive coefficients. For a fixed value of t, D2
K1(γ, t) = D2

K(γ̃), where γ̃ = γ/η′(t).

In Figure 3.2 I showed that for commonly used kernels, D2
K(γ) was a decreasing function,

and hence, for fixed t, D2
K1(γ, t) is a decreasing function of γ. However, this does not tell

us how the function E2(γ) behaves with changing γ, and its behaviour might be different for

different functions η. Therefore, in the following section I will present some simulation studies to

investigate the effect of the choice of bandwidth hd on the performance of the LDNP estimator.

I will focus the investigations on psychometric functions only in this section. I will use six

functions as a basis for my investigations. These functions will be considered again in Chapter 4
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as part of a more extensive simulation study of the monotone estimation of psychometric

functions. The functions are discussed in more detail in Section 5.2. The functions are

p1(x) = (1 + exp(5− 15x))−1

p2(x) = (1 + exp(−(20x2 + 1)))−1

p3(x) = Φ
(
x− µ
σ

)
, µ = .5, σ = .5

p4(x) = Φ
(
x− µ
σ

)
, µ = .5, σ = .1

p5(x) = 1− exp(−xγ), γ = .52876

p6(x) = ηΦ
(
x− µ1

τ

)
+ (1− η)Φ

(
x− µ2

τ

)
µ1 = 0.4, µ2 = 1, η = .64946, τ = .13546

I will not consider the function p1(x) in this analysis since for this function η′′(x) = 0 and

hence the expression for bias in 3.12 is zero. Notice that this doesn’t necessary mean that the

estimator is unbiased.

For a psychometric function the canonical link, g is the logistic link and thus η is defined as

η(x) = log

(
p(x)

1− p(x)

)
.

For the purpose of this study I assume that Y is Bernoulli distributed and hence V ar[Y |X =

x] = p(x)(1−p(x)), and now have all the information I need to be able to calculate the function

e1(γ). I will define f = w ≡ 1. If a canonical link is used then [g′(g−1(η(t)))] = 1/V ar[Y |X = t]

which means that E2(γ) can be simplified to∫
[g′(g−1(η(t)))]D2

K1(γ, t)dt
D2
K1(0)

∫
[g′(g−1(η(t)))]dt . (3.14)

Since I define the functions p2(x)-p6(x) I am able to calculate the value of e1(γ) for each

model. By considering the function e1(γ) for each of these functions I will give an indication

of how the two parts of the integral, (E1(γ) and E2(γ)), affect the value of e1(γ).
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Figure 3.4: The functions E1(γ) and E2(γ) for the six kernels in Table 3.1 Kd = Kr and functions p2(x)-

p6(x). The Uniform Kernel is shown by the black curves, the triangular by the red, the tricube by orange,

Epanechnikov by blue, Gaussian by purple and biweight by green.
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Figure 3.5: The function e1(γ) for the six kernels in Table 3.1 Kd = Kr and functions p2(x)-p6(x). The

Uniform Kernel is shown by the black curves, the triangular by the red, the tricube by orange, Epanechnikov

by blue, Gaussian by purple and biweight by green.
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I have plotted the two functions E1(γ) and E2(γ) for each of the models in Figure 3.4. The

function E1(γ) doesn’t depend on a kernel, and for all psychometric functions p2(x)−p6(x) is

an increasing function with γ since the terms are all squared and hence positive. The function

E2(γ) is a decreasing function for each of the commonly used kernels. However the magnitude

of E1(γ) is much larger and so this dominates E2(γ). This is made even more clear when the

function e1(γ) is plotted in Figure 3.5. Clearly for this function the value e1(γ) is minimal when

γ = 0 and so we should choose a bandwidth which satisfies hd = o(hr). This is in agreement

with the results for MSE optimal bandwidth choices in Section 3.2.

An analytical solution for the value of e1(γ) is not easily obtained. It is not clear how the

value of e1(γ) changes from function to function. Furthermore, in practical situations the true

function would not be known and so this method would not be very useful in determining the

relationship of hd to hr.

3.4 Simulations

3.4.1 Design of Simulations

In this section I present a small simulation study in order to investigate the effect of the choice

of hd on the performance of the LDNP estimator. For all of the simulations in this section

I have used the Gaussian kernel for Kr and the Epanechnikov kernel for Kd since this is the

built in kernel for the monoproc procedure in the R package monoProc that calulates the DNP

estimate. I use the four functions that I introduced in section 3.3, p2(x)-p5(x). I do not use the

function p6(x) for reasons described in Chapter 4. Essentially the MISE optimal bandwidth

for this function was so small that it caused computational problems when trying to calculate

estimates of the psychometric function. I use these four functions to generate binomial samples

assuming a binomial distribution with mean pi(x) and r repeats at each of n equally spaced

stimulus levels in (0, 1), x1, . . . xn.

I considered the effect of varying values of both r and n. I considered n = 5, 10, 20, 50

stimulus levels and r = 1, 5, 10, 20 repeats at each stimulus level. In total I generated 10000
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samples for each model, and for each combination of r and n. A more detailed description of

the setup of these simulations can be found in Chapter 4.

For each sample I fitted an unconstrained regression estimate described in Section 1.5 and

a bandwidth that minimised the asymptotic MISE of each psychometric function pi(x). If

the estimate was not monotone then I used the LDNP monotonicity constraint described in

this thesis to fit monotone regression estimates. If the unconstrained regression estimate was

already monotone then this sample was discarded and excluded from any further analysis.

I used four different choices of the second bandwidth hd =
√
hr, hr, h

2
r, h

3
r. In total then for

each non monotone sample I created four monotone estimates. I then compared these estimates

to see which choice of hd produced the best results. I compared the square bias, the variance,

the MSE and the MISE for each of the methods.

3.4.2 Results of Simulations

The numbers of samples that required monotonisation are recorded in Tables 4.1-4.6 in Chap-

ter 4 (See the discussion there for details). For each model, and each combination of r and n

I have compared the square bias, variance and MSE for the LDNP estimates with each of the

four possible choices for the value of hd.

Figures (3.6)-(3.9) show the results for the models p2(x)-p5(x) when comparing the effect

of changing the value of n. In each of these plots the value of r is kept constant at r = 5. For

the function p2(x) it is clear that the four choices of bandwidth hd have almost no effect on the

performance of the LNDP estimate except for very small values of x. All four estimates result

in comparable estimates of the psychometric function. This is also true for functions p4(x) and

p5(x). In all three cases the choice of bandwidth hd makes little difference to the final estimate.

This suggests that for these models the sample sizes are not large enough for the asymptotic

theory of section 3.3 to come into effect.

Function p3(x) is a little more interesting. When n = 5 the performance of the bandwidth

hd =
√
hr seems to perform better than the competing choices in terms of the square bias,

variance and MSE. This is true as the value of n increases but it is obvious that by the time
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n = 50 the four estimates are largely the same. This agrees with the asymptotic theory that as

n→∞ it is desirable to choose a bandwidth such that hd = o(hr). However, these simulation

results suggest that the asymptotic theory does not hold for small sample sizes and for small

samples the choice of hd is less crucial.

Figures (3.10)-(3.13) show the results for the models p2(x)-p5(x) when comparing the effect

of changing the value of r. In these plots the sample size is kept constant at n = 10. Functions

p2(x), p4(x) and p5(x) all seem to show that for small sample sizes the choice of hd has no

noticeable affect on the MSE performance of the LDNP method. Any of the values of hd

studied would provide similar estimates of the psychometric function. For the function p3(x)

there again seems to be a slight advantage in choosing hd =
√
hr although this advantage was

not huge compared to the other options.

The main conclusion from these simulations was that the asymptotic results stated in this

chapter do not hold for small sample sizes. We have a hint from the function p3(x) that as the

sample size increases the best choice of bandwidth would be one such that hd = o(hr), but the

asymptotic results stated in this chapter seem to need sample sizes larger than n = 50 to be of

much use. This is not a common case in psychometric studies. However, the simulation study

has shown that there is no disadvantage in choosing a bandwidth hd such that hd = o(hr).

Bandwidths of this sort performed just as well as other choices.

I would conclude, then, that since the asymptotic theory shows that for large sample sizes

it is best to choose hd such that hd = o(hr), and the simulation study shows that this choice

of bandwidth is not a bad choice in small samples sizes it makes sense to choose hd = h3
r or

hd = h2
r for the denstity estimation step of the LDNP procedure.
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3.5 Figures and Plots
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Figure 3.6: A comparison of the square bias, variance and MSE of the LDNP estimate of p2(x), with four

choices of bandwith hd with r = 5 and hr set as hP,MISE and n = 5, 10, 20, 50 respectively for each row of the

plot. The orange curve represents the bandwidth hd =
√
hr, the blue curve represents the bandwidth hd = hr,

the green curve, hd = h2
r and the red curve hd = h3

r.
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Figure 3.7: A comparison of the square bias, variance and MSE of the LDNP estimate of p3(x), with four

choices of bandwidth hd with r = 5 and hr set as hP,MISE and n = 5, 10, 20, 50 respectively for each row of the

plot. The orange curve represents the bandwidth hd =
√
hr, the blue curve represents the bandwidth hd = hr,

the green curve, hd = h2
r and the red curve hd = h3

r.
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Figure 3.8: A comparison of the square bias, variance and MSE of the LDNP estimate of p4(x), with four

choices of bandwidth hd with r = 5 and hr set as hP,MISE and n = 5, 10, 20, 50 respectively for each row of the

plot. The orange curve represents the bandwidth hd =
√
hr, the blue curve represents the bandwidth hd = hr,

the green curve, hd = h2
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Figure 3.9: A comparison of the square bias, variance and MSE of the LDNP estimate of p5(x), with four

choices of bandwidth hd with r = 5 and hr set as hP,MISE and n = 5, 10, 20, 50 respectively for each row of the

plot. The orange curve represents the bandwidth hd =
√
hr, the blue curve represents the bandwidth hd = hr,

the green curve, hd = h2
r and the red curve hd = h3

r.
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Figure 3.10: A comparison of the square bias, variance and MSE of the LDNP estimate of p2(x), with four

choices of bandwidth hd with n = 10 and hr set as hP,MISE and r = 1, 5, 10, 20 respectively for each row of the

plot. The orange curve represents the bandwidth hd =
√
hr, the blue curve represents the bandwidth hd = hr,

the green curve, hd = h2
r and the red curve hd = h3

r.
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Figure 3.11: A comparison of the square bias, variance and MSE of the LDNP estimate of p3(x), with four

choices of bandwidth hd with n = 10 and hr set as hP,MISE and r = 1, 5, 10, 20 respectively for each row of the

plot. The orange curve represents the bandwidth hd =
√
hr, the blue curve represents the bandwidth hd = hr,

the green curve, hd = h2
r and the red curve hd = h3

r.
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Figure 3.12: A comparison of the square bias, variance and MSE of the LDNP estimate of p4(x), with four

choices of bandwidth hd with n = 10 and hr set as hP,MISE and r = 1, 5, 10, 20 respectively for each row of the

plot. The orange curve represents the bandwidth hd =
√
hr, the blue curve represents the bandwidth hd = hr,

the green curve, hd = h2
r and the red curve hd = h3

r.
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Figure 3.13: A comparison of the square bias, variance and MSE of the LDNP estimate of p5(x), with four

choices of bandwidth hd with n = 10 and hr set as hP,MISE and r = 1, 5, 10, 20 respectively for each row of the

plot. The orange curve represents the bandwidth hd =
√
hr, the blue curve represents the bandwidth hd = hr,

the green curve, hd = h2
r and the red curve hd = h3
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Chapter 4

A comparison of monotone estimates of

psychometric functions

4.1 Introduction

In Chapter 1 of this thesis I have outlined various methods of estimating monotone psychometric

functions. I have considered the bandwidth method of Kappenman [29] which consists of grad-

ually increasing the bandwidth used in the regression until the resulting estimate is monotone,

the PAVA method (Brunk [4] and [3], Mammen [32] and Mukerjee [34]), which ‘averages’ out

any points causing bumps in the response estimate, and the DNP method (see Dette Neumeyer

and Pilz [9] and [8]) which is a combination of non-parametric regression and non-parametric

density estimation. All three methods are widely used to obtain monotone non-parametric

regression estimates. All three methods are explained in more detail in Chapters 1 and 2.

In this thesis I have developed an alteration to the DNP method which I have labelled

the LDNP method and takes into account the likelihood. Without this adaptation, the DNP

method has problems in estimating monotone psychometric functions. In particular, the main

problem was that the DNP method does not constrain the resulting monotone estimate to lie in

the region [0, 1], which is a requirement of a psychometric function, since it is a probability. This

is largely due to the fact that a link function is not used and information about the changing
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variance is not used in the DNP estimation procedure. This problem has been overcome in the

LDNP method. I have developed some of the asymptotic properties of the LDNP estimator in

Chapter 2 and have shown that it is first order asymptotically equivalent to the other methods

I have outlined above.

However, in psychometric studies there is rarely a large sample size. This can be due to

a number of factors, such as the cost of obtaining data, ethical issues and time constraints.

Typically psychometric studies are carried out with small sample sizes. In this chapter, I

compare the performance of monotone estimates of finite sample psychometric functions.

It should be noted that various authors have compared performance of monotonicity con-

straints before. In a general setting, for the Nadaraya-Watson estimator with normal responses,

Dette and Pilz [10] compare the performance of the tilting method, the DNP method and the

PAVA method. They use six functions and simulate data samples from each of these func-

tions. They calculate monotone regression estimates for each sample using the DNP method,

the PAVA method and the ‘tilting method’ and then compare these estimates with the true

function. They then calculate the square bias, variance and Mean Square Error (MSE) for

each sample and use these to compare the performance of each of the three methods under

consideration. They conclude that the PAVA method is the worst performing method. The

DNP method and ‘tilting method’ perform comparably but the DNP method has the advantage

of being computationally more simple.

In a setting closer to that of this thesis, Dette and Scheder [11] compare methods of cal-

culating a monotone estimate of the effective dose in quantal bioassay. The effective dose

is equivalent to the study of the threshold in psychometric studies. They perform a similar

analysis to that described above in Dette and Pilz [10] although this time using eight model

functions. The ‘tilting method’ is no longer considered in this setting, whilst a number of

additional methods are also considered, including the bandwidth method of Kappenman [29]

described in Chapter 1. They consider the case where there are no repeats at each stimulus

level and also the case where there are five repeated measurements at each stimulus level. They

fix a bandwidth choice of hr = 0.1 for all of their calculations.
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Interestingly, in Dette and Scheder [11], they use quasi-likelihood versions of the PAVA

method and the bandwidth method in their comparisons but not for the DNP method. As I

have mentioned, this can cause problems in the estimation of psychometric functions (or any

other bounded functions). Park and Park [37] performed similar simulations focusing on the

small sample properties of various monotonicity constraints. They concluded that the DNP

method performs at least as well as other estimates in terms of MSE. The purpose of this

chapter is to analyse the performance of the LDNP method in comparison to other methods of

monotonicity constraint.

There are a number of factors that affect the final estimate of the psychometric function. In

a typical psychometric study, a clinician will examine n stimulus levels. Clearly as the number

of stimulus levels increases we have more information about the response and so should be able

to estimate the true function more accurately. At each stimulus level there may be r trials,

either by testing r people once or repeated observations on fewer individuals. As the value of

r is increased we again would have more information about the response and would hope to

estimate the true function more accurately.

In addition, when estimating the psychometric function, a bandwidth, hr, must be chosen

to be used in the unconstrained step. For the LDNP estimate there is also a second bandwidth,

hd, used in the density estimation step. Changing the value of hr will clearly affect the ability

of the estimating procedure to correctly estimate the true function. Too small a choice of

bandwidth would give too much significance to individual points which may pull the estimate

away from the true value. Too large a choice of hr would result in oversmoothing and we may

miss important features of the true response since the resulting estimate had been flattened

too much. The choice of hd has been considered in a previous chapter and is not dealt with in

this chapter. We will alter the other three factors in turn.
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Figure 4.1: Psychometric functions, p1(x)-p6(x) used in simulations

4.2 Design of Simulation Study

In this chapter I will use five of the functions which were used by Dette and Scheder [11] in

their simulations. I used these functions in simulations in Chapter 3. A plot of these functions

is shown in Figure 4.1, whilst a plot of the the corresponding η functions (obtained with logit

link) is shown in Figure 4.2.

p1(x) = (1 + exp(5− 15x))−1

p2(x) = (1 + exp(−(20x2 + 1)))−1

p3(x) = Φ
(
x− µ
σ

)
, µ = .5, σ = .5

p4(x) = Φ
(
x− µ
σ

)
, µ = .5, σ = .1

p5(x) = 1− exp(−xγ), γ = .52876

p6(x) = ηΦ
(
x− µ1

τ

)
+ (1− η)Φ

(
x− µ2

τ

)
µ1 = 0.4, µ2 = 1, η = .64946, τ = .13546

In all of the following simulations I will generate n equally spaced stimulus levels, x1 . . . xn,
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Figure 4.2: The functions η1(x)-η6(x) corresponding to the functions p1(x)-p6(x) (see Fig 4.1) after transfor-

mation by the logit link.

in the interval [0, 1]. For each model in turn, at each stimulus level I will simulate results from

a binomial distribution with r repeats and based on the probability of success pj(xi). For each

of these data sets I will calculate a regression estimate and then, if not monotone, monotinise

using the PAVA method, the bandwidth method and the LDNP method. I will calculate the

LDNP estimate using four different options for the choice of hd, as described in Section 3.4. I

calculate the MISE for each of these options and use the option that produces the lowest MISE

for comparison with the PAVA and bandwidth methods. In all simulations, the Gaussian kernel

defined in Table 3.1 is used for Kr and the Epanechnikov kernel for Kd. In theory any kernel

could be used and the choice of kernel does not really affect the final results and so the choice

is not crucial here.

For the unconstrained estimate I will use three different types of bandwidth: MISE-optimal,

ISE-optimal and cross-validation. The MISE optimal bandwidth will be dependent upon the

psychometric function pj(x), the number of stimulus levels n and the number of repeats r,
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but not upon the individual samples. So for a fixed value of r and n this bandwidth will be

kept constant for all samples from a psychometric function pj(x). I will consider a bandwidth

hP,MISE, given in (4.1), which optimises the MISE in terms of the psychometric function P (x),

and also a bandwidth hη,MISE, given in (4.2), which is the optimal bandwidth for the MISE in

terms of η(x).

hP,MISE =
[

1
2mn
√
π

∫ 1
0 P (x)(1− P (x))dx∫ 1

0 (η′′(x))2P 2(x)(1− P (x))2dx

]1/5

(4.1)

hη,MISE =
 1

2mn
√
π

∫ 1
0

1
P (x)(1−P (x))dx∫ 1
0 (η′′(x))2dx

1/5

. (4.2)

At this point I must note two exceptions. When considering the function p1(x) it is clear

that for this function η′′(x) = 0. Clearly the formulas (4.1) and (4.2) cannot be used here.

The two formulas would suggest though that the MISE would be minimised by selecting a

very large bandwidth hr for use in the unconstrained regression. This does make sense as the

function η(x) is in this case a linear function and a local linear regression, (1.3), with a large

bandwidth becomes close to logistic regression. A logistic regression would be most suitable in

this case to estimate a monotone η̂(x) as it is the correct model. For this reason I have not

considered the MISE optimal bandwidth for the function p1(x). In my simulations I did try

using a large bandwidth of hr = 10 just to check what happened and, as expected, in each case

the unconstrained estimate was monotone. It should be noted that this was also the case for

hr = 1.

For the function p6(x) the MISE optimal bandwidths calculated using (4.1) and (4.2) were

very small. These very small bandwidths caused computational problems when trying to cal-

culate an estimate of the psychometric function. For this reason I have not included the MISE

optimal bandwidths for the model p6(x) and just use the remaining four bandwidth choices for

this model.

The second type of bandwidth I will use is an ISE optimal bandwidth. This bandwidth

is the best possible bandwidth that could be used for each individual sample. I will use a P

optimal ISE bandwidth, hP,ISE and also an η optimal bandwidth, hη,ISE. These bandwidths
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are obtained by minimising the integrated square errors (4.3) and (4.4) respectively.

ISEP =
∫ 1

0
(P (x)− P̂ (x))2dx (4.3)

ISEη =
∫ 1

0
(η(x)− η̂(x))2dx. (4.4)

Finally, I will use cross-validation bandwidths, denoted hP,cv and hη,cv that are calculated

using formulas (4.5) and (4.6) given in Fan and Gijbels ([16] page 150)

CVP (h) =
∫
P̂ 2(x)dx− 2

n

n∑
i=1

P̂−i(Xi) (4.5)

CVη(h) =
∫
η̂2(x)dx− 2

n

n∑
i=1

η̂−i(Xi). (4.6)

where P̂−i(Xi) and η̂−i(Xi) are the estimates obtained by leaving out the ith observation and

calculating a regression estimate using the remaining observations. The effect of the bandwidth

choice is discussed in section 4.3.3. MISE and ISE optimal bandwidths can be calculated here

because the true psychometric functions are known. In practice, one needs to estimate the

optimal bandwidth, as discussed in Section 1.4. One of the methods is the cross-validation

method which is recommended by Żychaluk and Foster [18]. I use it here since it is a commonly

used bandwidth selection method.

I will compare the methods for a range of different values of n. I will use the values n =

5, 10, 20, 50. It should be said that 50 stimulus levels would be larger than usually experienced

in psychometric studies with the other three values much more common. Each of the methods

I am comparing are first order asymptotically equivalent. The point of this investigation is to

investigate their finite sample performance.

I will also compare the effect of changing the number of repeats at each level. As the value

of r increases then we have much more information and would expect better performance for

the estimates. But many psychometric studies only consider a small number of repeats, if any.

So I want to investigate which method performs the best when there are only small numbers

of repeats at each stimulus level. The values that I have considered are r = 1, 5, 10, 20. I did

not consider the case of r = 1 with only 5 stimulus levels as this is a very small amount of data
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and non-monotone samples are very unlikely. It is clear that the situation of r = 1 corresponds

to non repeated measurements. In this case the responses are Bernoulli.

For each model and values of r and n I generated 10,000 samples. In the following analysis

of these simulations, I will report how many of the simulated samples required monotonicity

constraints to be used. Only unconstrained estimates that required monotonisation were kept

and analysed. This is so as to avoid confusing the analysis. I am interested in comparing

how good each of the three methods are at estimating monotone psychometric functions. If

the unconstrained regression is already monotone then no constraint is required and so these

samples are not considered in my analysis. To the best of my knowledge other studies (see

Dette and Pilz [10] and Dette and Scheder [11]) do not remove monotone samples from their

comparisons, but I feel this is a more clear and fairer comparison.

Once I have obtained the simulated samples I will follow the example of Dette and Scheder

[11], and estimate the square bias, variance and mean square error (MSE) for each of the models

where the MISE optimal bandwidth was used. The other bandwidth choices vary between

samples and so I can’t take averages over samples in this case and hence this kind of analysis

would be inappropriate. In the cases where a P optimal bandwidth is used, I will compare the

MSE in terms of estimating P (x) and, in the case where I use an η optimal bandwidth, I will

compare the MSE in terms of the estimation of η(x).

MSEP = E
[
(P̂ (x)− P (x))2

]
MSEη = E

[
(η̂(x)− η(x))2

]
These are standard ways of comparing the performance of the estimates and will give a good

idea of whether any of the estimates are consistently better than others. Obviously, the closer

to 0 each of these values is, the better the model. The MSE assesses the performance of an

estimator at individual points within the range. I will also compare the mean integrated square

error (MISE), to give an idea of the performance of the estimator over the whole range. The

square bias, variance and MSE were calculated on a grid of 50 equally spaced points between

0 and 1. They were averaged across all the samples. The MISE was calculated by numerical

integration of the MSE in R [39].
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When a different bandwidth has been used for each sample this kind of analysis is no longer

appropriate as results cannot be averaged over samples in this case. In these cases, where ISE

optimal bandwidths, or cross validation bandwidths have been used, then I will compare the

methods in a different way. I will calculate the ISE for both the unconstrained fit and the

monotone fit for each sample and then calculate the ratio,

R = ISEmonotone
ISEunconstrained

. (4.7)

I will plot density estimates of the ratios for each of the methods of monotonisation. and show

these plots as a means of comparing the performance of each of the three estimators. Obviously

the method with the smallest R values will be the best method. In general, I expect R > 1 and

that the density with most of its mass close to 1 indicates better performance. However, in some

cases R < 1, indicating that the monotonised estimate has lower ISE than the unconstrained

fit. In these cases, density concentrated near 0 indicates better performance.

In all the simulations in this chapter and in Chapter 5 I have used R version 2.12.2 [39].

I particular I have used the code for the DNP method found in the R package ‘monoProc’

produced by Dette et al. [9] which I have adapted for use in the LDNP method. I have also

adapted the code local linear regression estimates of exponential family models found in the

package ‘modelfree’, produced by Żychaluk and Foster [18]. I have used the University of

Liverpool Condor system to run the simulations.

4.3 Results

4.3.1 Number of samples requiring monotonisation

The numbers of samples out of the original 10,000 that required monotonisation for each of the

six possible bandwidth choices are shown in Tables 4.1-4.6. It should be mentioned that not all

of the 10,000 samples will be unique. Inevitably some samples will be repeated. This is because

there is a finite number of possible samples. I record the number of unique samples for the sake

of interest and completeness. This figure is recorded in brackets in Tables 4.1-4.6. Recall that
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only samples which required monotonisation were considered in the following analysis. Clearly

as the values of r and n increase, the possibility of repeated samples decreases and more of the

samples are unique.

I can see no definitive pattern in the number of samples that required monotonisation.

However it would seem to be generally true that as the number of repeats r and the number of

stimulus levels, n, increases the number of samples requiring monotonisation increases, although

clearly this is not always true (see functions p2(x) and p4(x) for example). In many cases, for a

fixed n, as r increases the number of samples requiring monotonisation decreases (see functions

p1(x) and p3(x) with n = 10, for example). For a lot of the samples most of the P optimal

bandwidth methods produced a lot more samples that required monotonisation than the η

optimal bandwidths (see functions p1(x) and p2(x) for example).

4.3.2 Mean Integrated Square Error

For each of the sets of investigations that involved MISE optimal bandwidths, I calculated the

MISE values. I calculated these using numerical integration of the Mean Square Error. These

are given in Tables 4.7-4.10. In each table the best performing method has been highlighted in

red. An entry of NA records the fact that for this model there were no samples that required

monotonisation. LDNP represents the LDNP estimate with hd =
√
hr, LDNP1 represents the

LDNP estimate with hd = hr, LDNP2 represents the LDNP estimate with hd = h2
r and LDNP3

represents the LDNP estimate with hd = h3
r. See Chapter 3 for more detailed discussion on the

choice of the bandwidth hd.

In Table 4.7 a number of the cells also show the standard error of the MISE estimate. This

has been included to show that the values of these standard errors are very small and also to

give a more complete picture of the MISE results. I omit the standard errors from all of the

other calculations. They could just as easily be calculated but have been omitted to avoid

cluttering the results.

It is clear from these tables that a general pattern, as the number of repeats increases, the

MISE values decreases, indicating that the estimate is closer to the true values when more
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repeats are used. This is to be expected. A similar pattern is observed as the number of

stimulus levels is increased.

In general, the values of MISE are of similar order for all of the methods, although for

p5(x) with small sample sizes, the bandwidth adjustment performs considerably better. For

the function p2(x), in general the bandwidth adjustment method performs best in terms of the

MISE values. But as the sample size increases, then usually at least one of the LDNP estimates

is better. Most often the choice of hd = h2
r or hd = h3

r is the best choice for the LDNP method

which supports the asymptotic theory of Chapter 3.

For function p3(x), the bandwidth adjustment method consistently performs better than

the rest of the methods. For the LDNP method the choice of bandwidth hd =
√
hr seems to

be the best here. The bandwidth adjustment method and the LDNP method both do well for

function p4(x) although in general the bandwidth method is better. Finally for the function

p5(x), the bandwidth adjustment method does considerably better at small sample sizes but as

the sample size increases at least one of the LDNP estimates performs better than it.

4.3.3 Choice of bandwidth hr

In these comparisons I have used six different bandwidths, as described section 5.2 which were

used for the unconstrained regression step.

In my initial investigations, I had fixed the bandwidth hr as 0.1, 0.2 and 0.3. The sim-

ulations ran analogously to those described in this chapter. The results indicated that for a

bandwidth choice of 0.1, as used in Dette and Scheder [11], the bandwidth method performed

much better than both the LDNP method and the PAVA method, whose performances were

broadly comparable.

For hr = 0.2 the bandwidth method was still better than the other two, although less clearly

than before, whilst for hr = 0.3 the bandwidth method no longer performed as well as the other

two methods. This was a surprising result initially. But in reality the bandwidth method was

performing well in these simulations precisely because it was the method that was able to

increase the bandwidth when required. The LDNP method and the PAVA method were stuck
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with a bandwidth that was much smaller than the optimal one and the bandwidth method was

able to increase it to be closer to the optimal bandwidth. This was an unfair comparison. The

good performance of the bandwidth method was not due to the fact that it was better than

the other methods but simply due to the fact that it could change bandwidth.

The results of these simulation caused me to consider only the optimal bandwidths to be

used in the unconstrained regression so as to provide a fair comparison. The results to these

initial investigations are not shown here for the sake of space and are only mentioned so as to

highlight the effect bandwidth choice can make.

In the general pattern seems to be that for MISE optimal bandwidths and for cross-

validations bandwidths as the bandwidth for the unconstrained regression, the bandwidth ad-

justment method performs the best. If the ISE optimal bandwidth is used for the unconstrained

regression then the LNDP method consistantly performs well compared to the other methods.

4.3.4 Changing the number of stimulus levels

The next factor that I considered was the effect the number of stimulus levels had on the

monotone estimate. I considered the cases when n = 5, 10, 20, 50. In each of the simulations

that I report in this section I fix the value of r = 5. I also only consider the versions of the

MISE, ISE and cross-validation bandwidths that were optimal for P (x) although mention here

that results for the other bandwidths followed a similar pattern. It is clear that the magnitude

of the square bias, variance and MSE decreases as n increases.

Figures 4.3-4.6 show the comparison of square bias variance and MSE for each of the func-

tions p2(x)-p5(x) respectively. Recall that I do not consider the MISE optimal bandwidth for

functions p1(x) and p6(x). A general pattern in all of these plots was that as the number of

stimulus levels increases the three methods became more similar.

For function p2(x) the square bias values are generally higher for lower values of x with much

higher bias at the boundary. There is little to distinguish between the three models although it

is clear that as the number of stimulus levels increases the bandwidth method performs less well

compared to the other methods. As the value of n increases the square bias of the bandwidth
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method remains far higher than the other two methods. This results in higher MSE values for

this method.

The bandwidth adjustment method is clearly performs the best in terms of MSE perfor-

mance for estimating p3(x) as can be seen from Figure 4.4. The square bias of the PAVA

estimate and the bandwidth estimate are very high at both boundaries compared to the LDNP

estimate but are broadly similar over the rest of the values of x. The variance of the PAVA

estimate is always higher than that of the other two estimates suggesting that this method is

not very good for estimating p3(x).

The bandwidth adjustment method also performs the best in terms of MSE performance

for estimating p4(x) as can be seen from Figure 4.5. This seems to be largely due to the fact

that the variance for this estimate is significantly lower than for the other methods with the

bias values being reasonably similar.

Figure 4.6, shows that the bandwidth adjustment method again performs well for estimating

p5(x). The LDNP method seems to perform better than the PAVA method. For this model it

is clear that the methods become more similar as the number of stimulus levels increases. As

the value of n increases the bias performance of the LDNP method and PAVA method becomes

much better in comparison to the bandwidth method but the variance remains higher. In

general then, as the value of n increases there is less of a difference between the three methods.

A comparison of the ISE ratios for the ISE optimal and cross validation bandwidths can be

seen in Figures 4.7-4.12 for functions p1(x)-p6(x) respectively. By comparing the first column

we can see that as the number of stimulus levels increases the PAVA method and the LDNP

method become more and more similar. They also become more tightly bound around 1. This

indicates that as the value of n increases the LDNP estimate and the PAVA estimate approach

the unconstrained estimate. In general the LDNP method performs the best when the ISE

optimal bandwidth is used for the unconstrained regression. The bandwidth method performs

poorly in this case. In addition the density estimate for this method becomes much more flat as

the number of stimulus levels increases. This mean that this method is becoming progressively

worse at obtianing a monotone estimate and in many cases produces very bad estimates. A
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flatter denstiy estimate indicates a lot of variation in ISE ratio.

By considering the second column of Figures 4.7-4.12 it can be seen what affect increasing

the sample size has on the estimates when a cross-validation estimate has been used for the

unconstrained regression. At low values of n the bandwidth adjustment method performs well

in comparison to the others. However as the number of stimulus levels increases the density

estimates for this method become more flat suggesting more variability in this method and

hence poorer performance. The PAVA estimates and the LDNP methods perform comparably

to each other although the LDNP method is usually a little bit better. This suggests that

for small values of n the cross-validation bandwidth estimate is too small and hence the best

way to calculate a monotone estimate is to simply increase the bandwidth. As the value of n

increases the cross-validation bandwidth is closer to the optimal one and the bandwidth method

performs less well.

In summary, then, it seems that when a good bandwidth is used (ISE optimal) then the

bandwidth adjustment method does not work well in terms of ISE. The other two methods are

similar but the LDNP is usually better. As n increases the performance of the methods is more

similar but there are still noticeable differences for n = 50. If a poor bandwidth is chosen then

the best method is to simply increase the bandwidth.

4.3.5 Changing the number of trials

In this section I compare the effect of changing the number of trials at each stimulus level. I

keep the number of stimulus levels constant at n = 10. As when comparing the change in n in

section 4.3.4 I compare only the P optimal bandwidths. I consider the values r = 1, 5, 10, 20.

Figures 4.13-4.16 show a comparison of the square bias, variance and MSE for functions

p2(x)-p5(x) when an MISE optimal bandwidth is used for the unconstrained regression. Fig-

ure 4.13 shows that for p2(x) with the MISE optimal bandwidth the LDNP method performs

well at all values of r. The bandwidth method gets progressively worse whilst the PAVA method

becomes more similar to the LDNP method with and increase in r. The bandwidth method

has a much larger bias than the other two methods, although generally smaller variance.
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Figure 4.14 shows that for p3(x) with the MISE optimal bandwidth, for small values of r

the LDNP method performs well. As n increases the bandwidth adjustment method performs

well, largely due to its lower variance. The PAVA estimate has high bias and variance at

the boundaries causing poor performance in this case. For p4(x) Figure 4.15 shows that the

bandwidth method is the best to choose from when the MISE optimal bandwidth is used in the

unconstrained regressions step. Both the PAVA and LDNP methods have large peaks in the

bias plots at approximately x = 0.4 and x = 0.6 and a peak in the variance at approximately

x = 0.5. This is largely the reason for their poor performance for this function. For p5(x)

Figure 4.16 shows that the bandwidth method is the best to choose from when the MISE

optimal bandwidth is used in the unconstrained regressions step although this becomes less

clear as r increases as the methods become more similar.

The ISE ratios when using an ISE optimal bandwidth for the unconstrained regression

can be compared in the first column of Figures 4.17-4.22. These show that the bandwidth

adjustment method performs poorly when a good bandwidth is chosen. The density estimates

for the bandwidth method get flatter as the number of trials increases indicating increased

variability and poorer performance. When the number of trials is low then the LDNP estimate

is often clearly the best method. As the number of trials increases the PAVA estimate and the

LDNP method become much more similar and tightly bound about 1.

The second column of Figures 4.17-4.22 compare the ISE ratios when using a cross-validation

bandwidth for the unconstrained regression. Although the bandwidth method generally does

well for this choice of unconstrained bandwidth it is noticeable that as the number of trials

increases the density estimate often gets very flat indicating poor performance. When the

number of trials is low the cross-validation bandwidth is too small and so the best monotonicity

method is to increase the bandwidth. This is as was seen in comparing the effect of changing

n in section 4.3.4. The LDNP method and PAVA method are broadly similar although the

LDNP method is often slightly better.

In this chapter I have investigated various methods of enforcing monotonicity on a nonpara-

metric regression estimate. In general it has been seen that if a poor choice of initial bandwidth
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has been chosen then the simplest thing to do is simply to increase the bandwidth. However,

if a good initial bandwidth has been chosen then this is no longer a good option. In this case

I recommend the use of the LDNP bandwidth since it has been shown in the simulations in

this chapter to work well in a variety of conditions. The LDNP method produces a smooth

estimate (as opposed to a stepwise function in the case of the PAVA method), and is easy to

compute. These reasons make the LDNP method attractive for use in practical situations.
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4.4 Figures and Tables

Table 4.1: Number of samples requiring monotonisation for p1(x) for each of four different

bandwidths. The number of unique samples is given in brackets. In this table, and also in

Tables 4.2-4.6, a P in the subscript of the bandwidth refers to the fact that the bandwidth is

chosen for the estimation of P (x), whilst η in the subscript refers to the fact that the bandwidth

is chosen for estimating η(x).

Model hP,cv hη,cv hP,ISEP hη,ISE

p1(x) {n=5, r=5} 28 (4) 1 (1) 4 (4) 0

p1(x) {n=5, r=10} 39 (5) 0 63 (9) 0

p1(x) {n=5, r=20} 47 (15) 0 40 (14) 0

p1(x) {n=10, r=1} 522 (23) 5 (5) 41 (6) 1 (1)

p1(x) {n=10, r=5} 331 (82) 0 91 (47) 0

p1(x) {n=10, r=10} 191 (111) 0 133 (77) 0

p1(x) {n=10, r=20} 118 (115) 2 (2) 75 (58) 0

p1(x) {n=20, r=1} 1946 (98) 0 66 (36) 0

p1(x) {n=20, r=5} 627 (533) 0 131 (127) 0

p1(x) {n=20, r=10} 480 (480) 7 (7) 124 (124) 0

p1(x) {n=20, r=20} 448 (448) 20 (20) 99 (99) 0

p1(x) {n=50, r=1} 636 (467) 3 (3) 132 (124) 0

p1(x) {n=50, r=5} 503 (503) 9 (9) 75 (75) 0

p1(x) {n=50, r=10} 546 (546) 16 (16) 73 (73) 0

p1(x) {n=50, r=20} 482 (482) 42 (42) 70 (70) 0
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Table 4.2: Number of samples requiring monotonisation for p2(x) for each of six different

bandwidths. The number of unique samples is given in brackets.

Model hP,MISE hηMISE hP,cv hη,cv hP,ISE hη,ISE

p2(x) {n=5 r=5} 878 (24) 0 69 (11) 0 326 (2) 0

p2(x) {n=5 r=10} 556 (62) 0 84 (19) 0 181 (11) 0

p2(x) {n=5 r=20} 362 (69) 0 54 (23) 0 66 (19) 0

p2(x) {n=10 r=1} 2656 (35) 5 (2) 1487 (19) 28 (3) 703 (5) 28 (3)

p2(x) {n=10 r=5} 3410 (656) 0 1805 (258) 0 613 (66) 0

p2(x) {n=10 r=10} 3179 (1428) 0 1478 (586) 0 1136 (393) 0

p2(x) {n=10 r=20} 2817 (2224) 0 1347 (1023) 0 1395 (1051) 0

p2(x) {n=20 r=1} 3343 (392) 1 (1) 2386 (190) 1 (1) 279 (12) 1 (1)

p2(x) {n=20 r=5} 3791 (3630) 0 2118 (1991) 0 1259 (1177) 0

p2(x) {n=20 r=10} 3734 (3729) 0 2225 (2221) 0 1905 (1901) 0

p2(x) {n=20 r=20} 3681 (3681) 0 2486 (2486) 0 2550 (2550) 0

p2(x) {n=50 r=1} 3737 (3635) 0 1640 (1596) 0 986 (938) 0

p2(x) {n=50 r=5} 3848 (3848) 0 2393 (2393) 0 2089 (2089) 0

p2(x) {n=50 r=10} 3943 (3943) 0 2819 (2819) 0 2771 (2771) 0

p2(x) {n=50 r=20} 4012 (4012) 0 3315 (3315) 0 3236 (3236) 0
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Table 4.3: Number of samples requiring monotonisation for p3(x) for each of six different

bandwidths. The number of unique samples is given in brackets.

Model hP,MISE hηMISE hP,cv hη,cv hP,ISE hη,ISE

p3(x) {n=5 r=5} 3497 (841) 3528 (856) 1137 (290) 614 (205) 286 (143) 69 (58)

p3(x) {n=5 r=10} 2602 (1570) 2651 (1608) 578 (345) 302 (199) 136 (103) 6 (6)

p3(x) {n=5 r=20} 1574 (1413) 1595 (1431) 256 (220) 129 (107) 60 (53) 0

p3(x) {n=10 r=1} 3892 (642) 3924 (646) 3702 (491) 1583 (426) 1438 (457) 946 (389)

p3(x) {n=10 r=5} 3523 (3498) 3699 (3673) 1390 (1379) 678 (675) 87 (87) 10 (10)

p3(x) {n=10 r=10} 2756 (2756) 2933 (2933) 959 (959) 506 (506) 15 (15) 0

p3(x) {n=10 r=20} 1937 (1937) 2077 (2077) 503 (503) 260 (260) 11 (11) 0

p3(x) {n=20 r=1} 4440 (4259) 4556 (4370) 2110 (1942) 712 (707) 798 (796) 345 (345)

p3(x) {n=20 r=5} 3071 (3071) 3249 (3249) 1020 (1020) 468 (468) 11 (11) 0

p3(x) {n=20 r=10} 2457 (2457) 2621 (2621) 788 (788) 469 (469) 4 (4) 0

p3(x) {n=20 r=20} 1854 (1854) 1989 (1989) 557 (557) 361 (361) 2 (2) 0

p3(x) {n=50 r=1} 3794 (3794) 3972 (3972) 1343 (1343) 235 (235) 177 (177) 20 (20)

p3(x) {n=50 r=5} 2484 (2484) 2623 (2623) 709 (709) 396 (396) 6 (6) 0

p3(x) {n=50 r=10} 1862 (1862) 2009 (2009) 513 (513) 348 (348) 0 0

p3(x) {n=50 r=20} 1256 (1256) 1396 (1396) 329 (329) 216 (216) 0 0
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Table 4.4: Number of samples requiring monotonisation for p4(x) for each of six different

bandwidths. The number of unique samples is given in brackets.

Model hP,MISE hηMISE hP,cv hη,cv hP,ISE hη,ISE

p4(x) {n=5 r=5} 114 (5) 0 0 0 0 0

p4(x) {n=5 r=10} 9 (2) 0 0 0 0 0

p4(x) {n=5 r=20} 1 (1) 1 (1) 0 0 0 0

p4(x) {n=10 r=1} 1517 (21) 1 (1) 297 (12) 0 0 0

p4(x) {n=10 r=5} 1387 (185) 1 (1) 181 (30) 0 43 (10) 0

p4(x) {n=10 r=10} 1506 (408) 4 (4) 42 (29) 0 19 (8) 0

p4(x) {n=10 r=20} 1126 (755) 3 (3) 14 (13) 0 3 (3) 0

p4(x) {n=20 r=1} 1645 (183) 0 1452 (67) 0 22 (9) 0

p4(x) {n=20 r=5} 2279 (1813) 0 558 (368) 0 19 (18) 0

p4(x) {n=20 r=10} 2547 (2489) 7 (7) 282 (275) 0 19 (18) 0

p4(x) {n=20 r=20} 2820 (2812) 15 (15) 254 (251) 0 16 (16) 0

p4(x) {n=50 r=1} 2374 (1949) 10 (10) 728 (397) 0 70 (67) 0

p4(x) {n=50 r=5} 2440 (2440) 14 (14) 636 (636) 0 18 (18) 0

p4(x) {n=50 r=10} 2681 (2681) 17 (17) 562 (562) 0 14 (14) 0

p4(x) {n=50 r=20} 3075 (3075) 25 (25) 574 (574) 0 64 (64) 0
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Table 4.5: Number of samples requiring monotonisation for p5(x) for each of six different

bandwidths. The number of unique samples is given in brackets.

Model hP,MISE hηMISE hP,cv hη,cv hP,ISE hη,ISE

p5(x) {n=5 r=5} 9499 (1162) 9499 (1162) 2453 (364) 2041 (301) 2014 (357) 529 (170)

p5(x) {n=5 r=10} 8789 (2924) 8789 (2924) 2119 (754) 1990 (682) 2046 (779) 229 (136)

p5(x) {n=5 r=20} 7770 (5249) 7770 (5249) 1677 (1196) 1714 (1230) 1851 (1363) 72 (65)

p5(x) {n=10 r=1} 9484 (673) 9484 (673) 4450 (411) 2735 (353) 3115 (391) 2105 (324)

p5(x) {n=10 r=5} 9896 (9749) 9896 (9749) 3029 (2990) 2446 (2408) 3160 (3110) 450 (448)

p5(x) {n=10 r=10} 9871 (9866) 9917 (9912) 3004 (3004) 2849 (2849) 3590 (3587) 153 (153)

p5(x) {n=10 r=20} 9682 (9682) 9743 (9743) 2714 (2714) 3045 (3045) 3803 (3803) 35 (35)

p5(x) {n=20 r=1} 9916 (9661) 9967 (9706) 3430 (3357) 2140 (2116) 3202 (3166) 1554 (1546)

p5(x) {n=20 r=5} 9990 (9990) 9992 (9992) 3042 (3042) 2383 (2383) 3610 (3610) 206 (206)

p5(x) {n=20 r=10} 9984 (9984) 9984 (9984) 3318 (3318) 3277 (3277) 3979 (3979) 55 (55)

p5(x) {n=20 r=20} 9937 (9937) 9937 (9937) 3480 (3480) 4221 (4221) 4307 (4307) 3 (3)

p5(x) {n=50 r=1} 9963 (9963) 9969 (9969) 2910 (2910) 1252 (1252) 3414 (3414) 706 (706)

p5(x) {n=50 r=5} 9971 (9971) 9971 (9971) 3195 (3195) 2485 (2485) 4191 (4191) 32 (32)

p5(x) {n=50 r=10} 9947 (9947) 9947 (9947) 3808 (3808) 4034 (4034) 4618 (4618) 3 (3)

p5(x) {n=50 r=20} 9950 (9950) 9950 (9950) 4349 (4349) 5604 (5604) 5012 (5012) 0
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Table 4.6: Number of samples requiring monotonisation for p6(x) for each of four different

bandwidths. The number of unique samples is given in brackets.

Model hP,cv hη,cv hP,ISE hη,ISE

p6(x) {n=5 r=5} 1330 (97) 260 (56) 1029 (103) 42 (20)

p6(x) {n=5 r=10} 890 (233) 241 (98) 678 (213) 4 (4)

p6(x) {n=5 r=20} 583 (328) 190 (119) 457 (297) 0

p6(x) {n=10 r=1} 3312 (126) 709 (82) 1229 (117) 295 (65)

p6(x) {n=10 r=5} 2047 (1677) 147 (146) 2102 (1751) 1 (1)

p6(x) {n=10 r=10} 1944 (1916) 88 (88) 2302 (2273) 0

p6(x) {n=10 r=20} 2022 (2021) 84 (84) 1990 (1989) 0

p6(x) {n=20 r=1} 2620 (1453) 135 (129) 1717 (1296) 51 (47)

p6(x) {n=20 r=5} 2849 (2849) 30 (30) 2899 (2899) 0

p6(x) {n=20 r=10} 3096 (3096) 21 (21) 2755 (2755) 0

p6(x) {n=20 r=20} 3121 (3121) 12 (12) 2387 (2387) 0

p6(x) {n=50 r=1} 2425 (2425) 3 (3) 2414 (2414) 3 (3)

p6(x) {n=50 r=5} 3424 (3424) 2 (2) 3074 (3074) 0

p6(x) {n=50 r=10} 3529 (3529) 0 2760 (2760) 0

p6(x) {n=50 r=20} 3412 (3412) 1 (1) 2325 (2325) 0

122



Table 4.7: MISE values for model p2(x) for various monotonicity constraints with the two

MISE optimal unconstrained bandwidths. Here addthe column MISEP represents the MISE

value when the MISE optimal bandwidth for P (x) was chosen, whilst the column MISEETA

represents the MISE value when the MISE optimal bandwidth for η(x) was chosen. The number

of stimulus levels is denoted n and the number of trials was denoted r.

p2(x) {n=5 r=5} p2(x) {n=5 r=10} p2(x) {n=5 r=20} p2(x) {n=10 r=1} p2(x) {n=10 r=5}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.016097 (0.0149) NA 0.012485 NA 0.006574 NA 0.034801 0.085037 0.008438 NA

Band 0.013638 ( 0.0115) NA 0.009452 NA 0.004573 NA 0.026906 0.097307 0.007013 NA

LDNP 0.011711 (0.0131) NA 0.010275 NA 0.007326 NA 0.022016 0.05541 0.007581 NA

LDNP1 0.012162 (0.0136) NA 0.010358 NA 0.00708 NA 0.02318 0.041466 0.0076 NA

LDNP2 0.012477 (0.0139) NA 0.010491 NA 0.006243 NA 0.024318 0.003469 0.007751 NA

LDNP3 0.01253 (0.0139) NA 0.010519 NA 0.00584 NA 0.024541 0.042055 0.00779 NA

p2(x) {n=10 r=10} p2(x) {n=10 r=20} p2(x) {n=20 r=1} p2(x) {n=20 r=5} p2(x) {n=20 r=10}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.004361 (0.0039) NA 0.00227 NA 0.020621 0.097103 0.004415 NA 0.002359 NA

Band 0.00412 (0.0040) NA 0.002583 NA 0.016132 0.100265 0.003925 NA 0.00247 NA

LDNP 0.004296 (0.0034) NA 0.00258 NA 0.015443 0.08179 0.004105 NA 0.00246 NA

LDNP1 0.004074 (0.0036) NA 0.002219 NA 0.016193 0.073788 0.003971 NA 0.002206 NA

LDNP2 0.004106 (0.0038) NA 0.002167 NA 0.01691 0.039872 0.004065 NA 0.002216 NA

LDNP3 0.00412 (0.0038) NA 0.00217 NA 0.017049 0.001515 0.004087 NA 0.002224 NA

p2(x) {n=20 r=20} p2(x) {n=50 r=1} p2(x) {n=50 r=5} p2(x) {n=50 r=10} p2(x) {n=50 r=20}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.001242 (0.00102) NA 0.008682 NA 0.002021 NA 0.001095 NA 0.000603 NA

Band 0.001695 (0.00115) NA 0.007224 NA 0.002139 NA 0.001555 NA 0.001213 NA

LDNP 0.001549 (0.00089) NA 0.007324 NA 0.002104 NA 0.001338 NA 0.000933 NA

LDNP1 0.001222 (0.00092) NA 0.007445 NA 0.001869 NA 0.001057 NA 0.000624 NA

LDNP2 0.001188 (0.00098) NA 0.007679 NA 0.001887 NA 0.00104 NA 0.000587 NA

LDNP3 0.00119 (0.00099) NA 0.007725 NA 0.001895 NA 0.001042 NA 0.000587 NA
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Table 4.8: MISE values for model p3(x) for various monotonicity constraints with the two MISE

optimal unconstrained bandwidths. Notation is as in 4.7.

p3(x) {n=5 r=5} p3(x) {n=5 r=10} p3(x) {n=5 r=20} p3(x) {n=10 r=1} p3(x) {n=10 r=5}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.020617 0.020825 0.010666 0.010818 0.005918 0.006029 0.044744 0.045426 0.011018 0.011047

Band 0.016405 0.01644 0.00821 0.008246 0.004145 0.004151 0.042492 0.042654 0.008461 0.008475

LDNP 0.017308 0.017475 0.008998 0.009107 0.005059 0.005131 0.031615 0.032063 0.008902 0.008958

LDNP1 0.018323 0.01849 0.00968 0.009807 0.005481 0.00557 0.033382 0.033824 0.009688 0.009734

LDNP2 0.019098 0.019237 0.010138 0.010261 0.005735 0.005828 0.035107 0.035508 0.01023 0.010248

LDNP3 0.019324 0.019454 0.010232 0.010351 0.005758 0.005852 0.035773 0.036167 0.010336 0.010346

p3(x) {n=10 r=10} p3(x) {n=10 r=20} p3(x) {n=20 r=1} p3(x) {n=20 r=5} p3(x) {n=20 r=10}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.006094 0.006094 0.003023 0.003042 0.024369 0.024433 0.00607 0.006069 0.00322 0.003227

Band 0.004455 0.004446 0.002033 0.00204 0.021022 0.020944 0.00438 0.00436 0.002133 0.002134

LDNP 0.00503 0.005033 0.002515 0.002541 0.01867 0.018708 0.004988 0.004998 0.002634 0.002648

LDNP1 0.005514 0.005519 0.00279 0.002815 0.019949 0.019972 0.005466 0.005473 0.002939 0.002952

LDNP2 0.005809 0.005801 0.002924 0.00294 0.020975 0.020968 0.005747 0.005737 0.00309 0.003093

LDNP3 0.005847 0.005838 0.00293 0.002946 0.021296 0.021278 0.00578 0.005768 0.003103 0.003105

p3(x) {n=20 r=20} p3(x) {n=50 r=1} p3(x) {n=50 r=5} p3(x) {n=50 r=10} p3(x) {n=50 r=20}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.001784 0.00179 0.011351 0.011344 0.002769 0.002777 0.001527 0.001526 0.000828 0.000834

Band 0.001077 0.00108 0.008643 0.008617 0.001764 0.001762 0.000889 0.000885 0.000447 0.000451

LDNP 0.001462 0.001472 0.009013 0.009023 0.002238 0.00225 0.001251 0.001254 0.000688 0.000696

LDNP1 0.001654 0.001664 0.009805 0.009805 0.002518 0.002529 0.001423 0.001424 0.000791 0.000799

LDNP2 0.001726 0.001731 0.010338 0.010309 0.002649 0.002651 0.001477 0.001474 0.000807 0.000813

LDNP3 0.001731 0.001735 0.010437 0.0104 0.002661 0.002663 0.001481 0.001478 0.000809 0.000815
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Table 4.9: MISE values for model p4(x) for various monotonicity constraints with the two MISE

optimal unconstrained bandwidths. Notation is as in 4.7.

p4(x) {n=5 r=5} p4(x) {n=5 r=10} p4(x) {n=5 r=20} p4(x) {n=10 r=1} p4(x) {n=10 r=5}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.015518 NA 0.014365 NA 0.014334 0.006209 0.027572 0.03887 0.013162 0.066862

Band 0.009858 NA 0.016049 NA 0.001762 0.001879 0.015859 0.039088 0.004178 0.045614

LDNP 0.014019 NA 0.013658 NA 0.013748 0.006262 0.018374 0.030068 0.011015 0.063876

LDNP1 0.015069 NA 0.014141 NA 0.013725 0.006231 0.018945 0.030848 0.011312 0.065624

LDNP2 0.0154 NA 0.014287 NA 0.013718 0.006215 0.019155 0.03517 0.011374 0.066542

LDNP3 0.015415 NA 0.014293 NA 0.013717 0.006216 0.019176 0.03747 0.011378 0.06668

p4(x) {n=10 r=10} p4(x) {n=10 r=20} p4(x) {n=20 r=1} p4(x) {n=20 r=5} p4(x) {n=20 r=10}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.007612 0.01031 0.003399 0.001477 0.021494 NA 0.005801 NA 0.002906 0.002096

Band 0.002438 0.005746 0.001513 0.000895 0.009113 NA 0.002464 NA 0.001349 0.001457

LDNP 0.006753 0.010103 0.003133 0.001486 0.015968 NA 0.005248 NA 0.002739 0.002127

LDNP1 0.006877 0.010223 0.003192 0.001464 0.016516 NA 0.005432 NA 0.00281 0.002103

LDNP2 0.006896 0.010264 0.003203 0.001473 0.016668 NA 0.005466 NA 0.002822 0.002094

LDNP3 0.006896 0.010269 0.003204 0.001474 0.016679 NA 0.005467 NA 0.002822 0.002093

p4(x) {n=20 r=20} p4(x) {n=50 r=1} p4(x) {n=50 r=5} p4(x) {n=50 r=10} p4(x) {n=50 r=20}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.001498 0.001597 0.010982 0.012817 0.002251 0.001518 0.001176 0.001052 0.00061 0.000295

Band 0.000725 0.001186 0.004971 0.006806 0.001108 0.001077 0.000573 0.000865 0.000306 0.000285

LDNP 0.001446 0.001643 0.009424 0.012441 0.002141 0.001536 0.001138 0.001081 0.0006 0.000325

LDNP1 0.001471 0.001611 0.009752 0.012649 0.002187 0.001522 0.001156 0.00106 0.000605 0.000303

LDNP2 0.001474 0.001597 0.009821 0.012753 0.002194 0.001517 0.001158 0.001052 0.000605 0.000295

LDNP3 0.001474 0.001595 0.009825 0.012779 0.002194 0.001517 0.001158 0.001052 0.000605 0.000295
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Table 4.10: MISE values for model p5(x) for various monotonicity constraints with the two

MISE optimal unconstrained bandwidths. Notation is as in 4.7.

p5(x) {n=5 r=5} p5(x) {n=5 r=10} p5(x) {n=5 r=20} p5(x) {n=10 r=1} p5(x) {n=10 r=5}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.046493 0.049657 0.021652 0.023426 0.014785 0.016301 0.118549 0.152174 0.016991 0.024408

Band 0.019054 0.019354 0.011356 0.011492 0.007528 0.007614 0.041165 0.041675 0.01018 0.010335

LDNP 0.042705 0.046251 0.023661 0.025148 0.016409 0.01752 0.086457 0.114652 0.01648 0.023643

LDNP1 0.041377 0.044907 0.022619 0.024287 0.01544 0.016739 0.086171 0.114493 0.016085 0.023125

LDNP2 0.039634 0.043219 0.021293 0.022776 0.014554 0.015752 0.086139 0.114429 0.015809 0.022598

LDNP3 0.03963 0.043217 0.021272 0.022773 0.014533 0.015728 0.086134 0.114427 0.015762 0.022507

p5(x) {n=10 r=10} p5(x) {n=10 r=20} p5(x) {n=20 r=1} p5(x) {n=20 r=5} p5(x) {n=20 r=10}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.00897 0.010818 0.005288 0.00589 0.055141 0.088327 0.008459 0.009982 0.004727 0.005305

Band 0.005872 0.005948 0.003686 0.00371 0.023524 0.024059 0.005781 0.005879 0.003377 0.003409

LDNP 0.009044 0.011283 0.00554 0.006236 0.041538 0.060328 0.007882 0.009829 0.004293 0.005055

LDNP1 0.008611 0.010918 0.005148 0.005949 0.041138 0.059952 0.007752 0.009609 0.004234 0.004936

LDNP2 0.008364 0.010476 0.004965 0.005736 0.04094 0.059798 0.007625 0.009445 0.004156 0.004836

LDNP3 0.008326 0.010369 0.004942 0.005732 0.040916 0.059787 0.007611 0.009433 0.004149 0.00483

p5(x) {n=20 r=20} p5(x) {n=50 r=1} p5(x) {n=50 r=5} p5(x) {n=50 r=10} p5(x) {n=50 r=20}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 0.002756 0.003052 0.016957 0.023975 0.00396 0.004391 0.002301 0.002527 0.001356 0.001485

Band 0.002128 0.002124 0.010849 0.011027 0.002903 0.002934 0.001816 0.001808 0.001219 0.001192

LDNP 0.002482 0.002814 0.015456 0.020654 0.003506 0.004053 0.002011 0.00224 0.001192 0.001303

LDNP1 0.002466 0.002758 0.015206 0.020327 0.003487 0.003975 0.002017 0.002209 0.001208 0.001299

LDNP2 0.002421 0.002702 0.015031 0.020129 0.003431 0.003899 0.001984 0.002167 0.001191 0.001278

LDNP3 0.002417 0.002699 0.01501 0.020114 0.003426 0.003895 0.001982 0.002165 0.00119 0.001277
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Figure 4.3: A comparison of the square bias, variance and MSE of the three monotone estimates of p2(x) with

r = 5 and hr set as hP,MISE and n = 5, 10, 20, 50 respectively for each row of the plot. The PAVA estimate is

shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.4: A comparison of the square bias, variance and MSE of the three monotone estimates of p3(x) with

r = 5 and hr set as hP,MISE and n = 5, 10, 20, 50 respectively for each row of the plot. The PAVA estimate is

shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.5: A comparison of the square bias, variance and MSE of the three monotone estimates of p4(x) with

r = 5 and hr set as hP,MISE and n = 5, 10, 20, 50 respectively for each row of the plot. The PAVA estimate is

shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.6: A comparison of the square bias, variance and MSE of the three monotone estimates of p5(x) with

r = 5 and hr set as hP,MISE and n = 5, 10, 20, 50 respectively for each row of the plot. The PAVA estimate is

shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.7: A comparison of the ISE ratio statistics for each of the three monotone estimates of p1(x) with

r = 5 and hr set as hP,ISE , hP,cv for each column respectively and n = 5, 10, 20, 50 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.8: A comparison of the ISE ratio statistics for each of the three monotone estimates of p2(x) with

r = 5 and hr set as hP,ISE , hP,cv for each column respectively and n = 5, 10, 20, 50 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.9: A comparison of the ISE ratio statistics for each of the three monotone estimates of p3(x) with

r = 5 and hr set as hP,ISE , hP,cv for each column respectively and n = 5, 10, 20, 50 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.10: A comparison of the ISE ratio statistics for each of the three monotone estimates of p4(x) with

r = 5 and hr set as hP,ISE , hP,cv for each column respectively and n = 10, 20, 50 for each row respectively. The

PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.11: A comparison of the ISE ratio statistics for each of the three monotone estimates of p5(x) with

r = 5 and hr set as hP,ISE , hP,cv for each column respectively and n = 5, 10, 20, 50 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.12: A comparison of the ISE ratio statistics for each of the three monotone estimates of p6(x) with

r = 5 and hr set as hP,ISE , hP,cv for each column respectively and n = 5, 10, 20, 50 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.13: A comparison of the square bias, variance and MSE of the three monotone estimates of p2(x)

with n = 10 and hr set as hP,MISE and r = 1, 5, 10, 20 respectively for each row of the plot. The PAVA estimate

is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.14: A comparison of the square bias, variance and MSE of the three monotone estimates of p3(x)

with n = 10 and hr set as hP,MISE and r = 1, 5, 10, 20 respectively for each row of the plot. The PAVA estimate

is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.15: A comparison of the square bias, variance and MSE of the three monotone estimates of p4(x)

with n = 10 and hr set as hP,MISE and r = 1, 5, 10, 20 respectively for each row of the plot. The PAVA estimate

is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.16: A comparison of the square bias, variance and MSE of the three monotone estimates of p5(x)

with n = 10 and hr set as hP,MISE and r = 1, 5, 10, 20 respectively for each row of the plot. The PAVA estimate

is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.

140



0.8 0.9 1.0 1.1 1.2 1.3

0
50

10
0

15
0

hISEP

ISE Ratio

r=
1

0.0 0.5 1.0 1.5

0
1

2
3

4

hcvP

ISE Ratio

0.5 1.0 1.5 2.0

0
2

4
6

ISE Ratio

r=
5

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8
10

12
14

ISE Ratio

0.5 1.0 1.5 2.0

0
2

4
6

8

ISE Ratio

r=
10

0.0 0.5 1.0 1.5 2.0

0
5

10
15

ISE Ratio

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0
5

10
15

20
25

30

ISE Ratio

r=
20

0.0 0.5 1.0 1.5 2.0

0
5

10
15

20
25

ISE Ratio

Figure 4.17: A comparison of the ISE ratio statistics for each of the three monotone estimates of p1(x) with

n = 10 and hr set as hP,ISE , hP,cv for each column respectively and r = 1, 5, 10, 20 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.18: A comparison of the ISE ratio statistics for each of the three monotone estimates of p2(x) with

n = 10 and hr set as hP,ISE , hP,cv for each column respectively and r = 1, 5, 10, 20 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.19: A comparison of the ISE ratio statistics for each of the three monotone estimates of p3(x) with

n = 10 and hr set as hP,ISE , hP,cv for each column respectively and r = 1, 5, 10, 20 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.20: A comparison of the ISE ratio statistics for each of the three monotone estimates of p4(x) with

n = 10 and hr set as hP,ISE , hP,cv for each column respectively and r = 5, 10, 20 for each row respectively. The

PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.21: A comparison of the ISE ratio statistics for each of the three monotone estimates of p5(x) with

n = 10 and hr set as hP,ISE , hP,cv for each column respectively and r = 1, 5, 10, 20 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 4.22: A comparison of the ISE ratio statistics for each of the three monotone estimates of p6(x) with

n = 10 and hr set as hP,ISE , hP,cv for each column respectively and r = 1, 5, 10, 20 for each row respectively.

The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Chapter 5

A comparison of monotone estimates of

Transducer functions

5.1 Introduction

In Chapter 4 I have considered the estimation of monotone psychometric functions and com-

pared the LDNP method with the PAVA method and the bandwidth method. In this chapter,

I will generalise this study and investigate how well the LDNP method estimates a monotone

transducer function when the response function is no longer binomial. In particular, I will

consider Poisson response models and Exponential response models. This means that I will

then have considered the performance of the LDNP method on both discrete response models

(binomial and Poisson) and continuous response models (exponential).

In the Chapter 1 of this thesis, I have outlined various methods of estimating monotone

transducer functions. I have considered the bandwidth method of Kappenman [29] which

consists of gradually increasing the bandwidth used in the regression until the resulting estimate

is monotone, the PAVA method (see Brunk [4] and [3], Mammen [32] and Mukerjee [34]), which

‘averages’ out any points causing bumps in the response estimate, and the DNP method (see

Dette, Neumeyer and Pilz [9] and [8]) which is a combination of non-parametric regression

and non-parametric density estimation. All three methods are widely used to obtain monotone
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non-parametric regression estimates. All three methods are explained in more detail in previous

chapters.

In this thesis, I have developed an alteration to the DNP method which I have labelled the

LDNP method, which takes into account the likelihood. Without this adaptation the DNP

method has problems in estimating monotone psychometric functions. In particular, the main

problem was that the DNP method does not constrain the resulting monotone estimate to lie in

the region [0, 1], which is a requirement of a psychometric function, since it is a probability. This

is largely due to the fact that a link function is not used and information about the changing

variance is not used in the DNP estimation procedure. This problem has been overcome in the

LDNP method. I have developed some of the asymptotic properties of the LDNP estimator and

have shown that it is first order asymptotically equivalent to the other methods I have outlined

above. More generally, a problem of the DNP method was that the resulting estimates were

not constrained to lie within the correct bounds. This need not necessarily be the region [0, 1]

as is the case for psychometric functions. If the responses were from the Poisson distribution

then the estimates would need to be in the region [0,∞). The correct link function used in

this case would enforce that this would be the case. This is why the LDNP method has an

advantage over the DNP method.

However, in many studies of transducer functions there is rarely a large sample size. This

can be due to a number of factors, such as the cost of obtaining data, ethical issues and time

constraints. Typically transducer function studies are carried out with small sample sizes. In

this chapter, I compare the performance of monotone estimates of finite sample transducer

functions.

There are a number of factors that affect the final estimate of the transducer function. In

a typical study, a scientist will examine n stimulus levels. Clearly as the number of stimulus

levels increases we have more information about the response and so should be able to estimate

the true function more accurately.

In addition, when estimating the transducer function, a bandwidth, hr, must be chosen to

be used in the unconstrained step. For the LDNP estimate there is also a second bandwidth,
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hd, used in the density estimation step. Changing the value of hr will clearly affect the ability

of the estimating procedure to correctly estimate the true function. Too small a choice of

bandwidth would give too much significance to individual points which may pull the estimate

away from the true value. Too large a choice of hr would result in oversmoothing and we may

miss important features of the true response since the resulting estimate had been flattened too

much. The choice of hd has been considered in Chapter 3 and is not dealt with in this chapter.

A final factor to consider is the effect of the initial magnitude of the mean response. If a

larger mean response is used then, with a Poisson response function for example, the variance

will increase. I will investigate how this affects the final estimate of the transducer function.

We will alter the other three factors in turn.

5.2 Design of Simulation Study

In this chapter I will consider four basic transducer functions. These will be the functions for

both the Poisson response studies and the Exponential response studies. The term r in each

of these functions is included as a means of controlling the size of the mean response. I will

investigate what effect increasing this has on the performance of each monotonicity constraint.

A plot of these functions is shown in Figure 5.2, whilst a plot of the the corresponding η

functions is shown in Figure 5.1. These functions were chosen so that, for x ∈ [0, 1], they take

values in the range (0,∞),

T1(x) = r(1 + 0.2x)

T2(x) = 5 + rx6

T3(x) = 1
10 + rx1/5

T4(x) = 1
10 + r

2

(
Φ
(
x− µ1

τ

)
+ Φ

(
x− µ2

τ

))
µ1 = 0.2, µ2 = 0.8, τ = .05

The function T1(x) is linear, T2(x) is concave with a flatter section on the left, T3(x) is
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Figure 5.1: Transducer functions used in simulations

convex with a flatter section on the right. Finally, T4(x) is close to a step function. It should

be noted that although in Figure 5.1, the function η1(x) looks linear it is not. This is a result

of the scale of the plot. The function η2(x) looks very similar to the function T2(x) but this is

only because of the range of x values. For x > 1, the shape of η(x) becomes more ‘S-shaped’.

In all of the following simulations I will generate n equally spaced stimulus levels, x1 . . . xn.

For each model in turn, at each stimulus level I will simulate results from a Poisson distribution

with mean response Tj(xi). For each of these data sets I will calculate a regression estimate

using the PAVA method, the bandwidth method and the LDNP method. I will calculate the

LDNP estimate using four different options for the choice of hd, as described in section 3.4. I

calculate the MISE for each of these options and use the option that produces the lowest MISE
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Figure 5.2: The functions η(x) used in simulations obtained using the canonical log link.
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for comparison with the PAVA and bandwidth methods. I will do the same for each model but

generate results from an exponential distribution with rate 1/Tj(xi). In all simulations, the

Gaussian kernel defined in Table 3.1 is used for Kr and the Epanechnikov kernel for Kd.

For the unconstrained estimate I will use three different types of bandwidth as in Chapter 4.

The first type of bandwidth is an MISE optimal bandwidth. This bandwidth will be dependent

upon the number of stimulus levels n, but not upon the individual samples. So for a fixed value

of n this bandwidth will be kept constant for all samples. I will consider a bandwidth hT,MISE,

given in (5.1), which optimises the MISE in terms of the transducer function T (x), and also a

bandwidth hη,MISE, given in (5.2), which is the optimal bandwidth for the MISE in terms of

η(x).

hT,MISE =
[

1
2n
√
π

∫ 1
0 V ar[Y |X = x]dx∫ 1

0 (η′′(x))2/[g′{T (x)}]2dx

]1/5

(5.1)

hη,MISE =
 1

2n
√
π

∫ 1
0

1
[g′{T (x)}]2V ar[Y |X=x]dx∫ 1

0 (η′′(x))2dx

1/5

. (5.2)

The second type of bandwidth I will use is an ISE optimal bandwidth. This bandwidth

is the best possible bandwidth that could be used for each individual sample. I will use a T

optimal ISE bandwidth, hT,ISE and also an η optimal bandwidth, hη,ISE. These bandwidths

are obtained by minimising the integrated square errors (5.3) and (5.4) respectively.

ISET =
∫ 1

0
(T (x)− T̂ (x))2dx (5.3)

ISEη =
∫ 1

0
(η(x)− η̂(x))2dx. (5.4)

Finally I will use cross-validation bandwidths denoted hT,cv, and hη,cv. These are calculated

using formulas (5.5) and (5.6) given in Fan and Gijbels ([16] page 150)

CVT (h) =
∫
T̂ 2(x)dx− 2

n

n∑
i=1

T̂−i(Xi) (5.5)

CVη(h) =
∫
η̂2(x)dx− 2

n

n∑
i=1

η̂−i(Xi). (5.6)

where T̂−i(Xi) and η̂−i(Xi) are the estimates obtained by leaving out the ith observation and

calculating a regression estimate using the remaining observations. The effect of the bandwidth

choice is discussed in section 4.3.3.
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I will compare the methods for a range of different values of n. I will use the values

n = 5, 10, 20, 50. As for the psychometric experiments discussed in Chapter 4, 50 stimulus

levels would be larger than usually experienced in studies with the other three values much

more common. Each of the methods I am comparing are first order asymptotically equivalent.

The point of this investigation is to compare how well each method does for smaller numbers

of data points. I will also compare the effect of changing the value of r. The values that I have

considered are r = 5, 10, 50.

For each model and values of r and n we generated 10,000 samples. In the following analysis

of these simulations I will report how many of the simulated samples required monotonicity

constraints to be used. Only unconstrained estimates that required monotonisation were kept

and analysed, for the reasons explained in Chapter 4.

Once I have obtained the simulated samples, I will follow the example of Dette and Scheder

[11], and compare the square bias, variance and mean square error (MSE) for each of the models

where a constant bandwidth has been used for all of the samples. This means that I will use

this method for the MISE optimal bandwidths. In the cases where a T optimal bandwidth

is used, I will compare the MSE in terms of estimating T (x) and in the case where I use an

η optimal bandwidth, I will compare the MSE in terms of the estimation of η(x). These are

standard ways of comparing the performance of the estimates and will give a good idea of

whether any of the estimates are consistently better than others. Obviously, the closer to 0

each of these values is, the better the estimator. I will also compare the mean integrated square

error (MISE), to give an idea of the performance of the estimator over the whole range (as

compared to at individual points within the range).

When a different bandwidth has been used for each sample, this kind of analysis is no longer

appropriate as all the results cannot really be combined in this way. In these cases, where ISE

optimal bandwidths, or cross validation bandwidths have been used, then I will compare the

methods in a different way. In this case, as in Chapter 4, I will calculate the ISE for both the

unconstrained fit and the monotone fit for each sample and then calculate the ratio,

R = ISEmonotone
ISEunconstrained

(5.7)
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and report this value for each of the methods. I will plot these values as density estimates

and show these plots as a means of comparing the performance of each of the three values.

Obviously the method with the smallest R values will be the best method.

5.3 Results

5.3.1 Number of samples requiring monotonisation

The numbers of samples out of the original 10000 that required monotonisation for each of the

six possible bandwidth choices for Poisson responses, are shown in Tables 5.1-5.4. It should

be mentioned that not all of the 10000 samples will be unique. Inevitably some samples will

be repeated. I record the number of unique samples for each trial for the sake of interest

and completeness. In contrast to the binomial cases, most samples are unique and only for

very small r and n there are some repeated samples. Recall that only samples which required

monotonisation were considered in the following analysis.

There is no common pattern for the effect that n and r have on the number of samples

requiring monotonisation. For the function T1(x), as n and r increase, the number of samples

requiring monotonisation decrease. For the function T2(x), the number of samples requiring

monotonisation increases with increasing n and decreases with increasing r. For the function

T3(x) the number of samples requiring monotonisation increases with n in general (although

not for η optimal ISE bandwidths). It is less clear what happens with an increase in r. This

pattern is also true for function T4(x). I think the uniqueness of the function T1(x) maybe due

to the shape of this function and the fact that it is virtually a flat line but I discuss this more

in the coming analysis.

The numbers of samples requiring monotonisation for exponential responses are shown in

Tables 5.5-5.8. For the exponential responses there were no repeated samples due to the fact

that the response was continuous. It is less easy to distinguish a pattern in these table but it

seems that as the value of n increases the number of samples requiring monotonisation increases.
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5.3.2 Mean Integrated Square Error

For each of the sets of investigations that involved MISE optimal bandwidths, I calculated the

MISE values. I calculated these using numerical integration of the Mean Square Error. These

values for the Poisson responses are given in Tables 5.9-5.12. In each table the best performing

method has been highlighted in red. In general it can be seen from these tables that as the

value of n increases the MISE values decrease. This is to be expected. As the sample size

increases we would expect a more accurate estimate. As the value of r increases then the MISE

values also increase. This is because the larger values of T (x) mean there is more variability in

the Poisson responses that are generated.

For the function T1(x) the MISE values for the LDNP method are always very poor and the

best values are always achieved by the PAVA estimates. For the function T2(x), the best MISE

values are achieved by the LDNP estimate with choice of hd = h3
r initially and then as the value

of r increases, the PAVA estimate does better. The bandwidth adjustment method seems to

consistently achieve the best MISE values for the function T3(x). Finally for the function T4(x)

the LDNP method with either hd = h2
r or hd = h3

r generally achieves the best MISE values.

When it comes to the exponential responses, the MISE values are given in Tables 5.13-5.16.

It is clear that for function T1(x) all of the LDNP estimates perform badly. The best method

in terms of MISE performance is always the PAVA estimate. For function T2(x), the PAVA

method again does well for most combinations of n and r. As n increases the LDNP estimates

with hd = h3
r do very well. It is clear from these tables that the choice of hd does have a

large effect on the performance of the estimator in these cases, which is in contrast to the

investigations on psychometric functions in Chapter 3. However, the principle that one should

choose hd = o(hr) is backed up by these findings. That is to say that these investigations into

transducer functions support the asymptotic findings of Chapter 3. For function T3(x) there

is no difference produced by change of hd choice. The PAVA method is best here. Finally for

T4(x), the LDNP estimates with hd = h3
r do well for high values of n but the PAVA estimate is

best at low values of n.
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5.4 Poisson response models

5.4.1 Changing the number of stimulus levels

In this section, I investigate the effect that the number of stimulus levels has on the estimation

of monotone transducer functions. I keep the value of r fixed at r = 5. I considered the cases

when n = 5, 10, 20, 50. I also only consider the T optimal versions of the MISE, ISE and cross-

validation bandwidths although mention here that results for the other bandwidths followed a

similar pattern. It is clear that the magnitude of the square bias, variance and MSE decreases

as n increases. I also consider in this section the density plots of ISE ratios.

The results for the comparison of changing n for function T1(x) can be seen in Figure 5.3 and

Figure 5.7, whilst the results for comparing the effect of changing r can be seen in Figure 5.11

and Figure 5.15. It is clear from these plots that the LDNP method performs badly for the

function T1(x). The MISE values are clearly a lot higher as well which reinforces this point. I

think that the reason for this is due to the shape of the function. The function T1(x) gives a

line that is close to being horizontal. When the Poisson samples were generated in many cases

there was not a lot of difference between the magnitude of the first point (corresponding to the

value at x1) and the last point (corresponding to the value at xn). In fact in some cases the

value of y1 was greater than the value of yn. This led to decreasing functions being estimated

for the unconstrained regression. The three monotonicity constraint procedures are looking to

calculate monotone increasing estimates. Clearly it was hard for the LDNP method to estimate

a monotone increasing function from an unconstrained estimate that was monotone decreasing.

This can be seen from the very poor square bias, variance and MSE scores.

I investigated this a little further. In the case where n = 10 and r = 5 I calculated the

number of samples for which the unconstrained regression was monotone decreasing. As a

note here, it should be said that in general the values in Table 5.1 and similar tables would

be the number of non monotone samples. Strictly speaking they are really the number of non

monotone increasing samples. In most cases this is the same as the number of non monotone

samples but in this case this is not true. In fact, when hT,MISE or hη,MISE was used for the
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unconstrained regression 3158 out of 3431 samples that are recorded as non monotone were in

fact monotone decreasing. This indicates that this is a frequent problem. When hT,ISE was

used, 1963 out of 5130 samples were monotone decreasing and when hT,cv was used 1973 out of

5491 samples were monotone decreasing.

Clearly this is an unexpected result. In some sense it does seem strange to try to force a

monotone decreasing sample to be monotone increasing. However, in a case where the true

function is close to being horizontal it is not surprising that some data samples produce regres-

sion estimates that are monotone decreasing. The problem in this case is not a problem with

the LDNP method as such, but rather a problem with the DNP method. I believe in principle

that it should still be able to estimate a monotone increasing curve that is reasonable for the

data. However, in my investigations I found that the DNP code does not work well in this

case. In fact, the larger the value of hd the more steep the monotone estimate becomes. This

is clearly not desirable

Work could be done to try to overcome this problem. I think it is a problem with the

method used for calculation in R rather than the method in theory, but have not conclusively

demonstrated this. Overcoming this problem is beyond the scope of these simulations. It would

need some modification of the method to allow it to deal with these more unusual cases.

The PAVA estimate can be seen to perform well for all the choices of bandwidth for T1(x).

This makes sense. The PAVA method essentially averages out ‘bad point’ and so if struggling

to find a monotone increasing function would simply plot a flat line roughly in the middle of

the scatter of points. Clearly, although not a true reflection of the real function a flat line is

not a terrible description of the samples in this case and results in square bias, variance and

MSE scores that are not very high compared to the other methods. This suggests that in the

case of estimating transducer functions that are close to being flat the PAVA method is the

best method to use. I omit the discussion of the function T1(x) from the rest of this section.

Figure 5.4 and Figure 5.8 show the results for function T2(x). It is clear from inspecting

these plots that there is little to choose between the three methods. The variances are almost

identical for each method whilst the bandwidth adjustment method has larger bias. As n
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increases the LDNP method and the PAVA method become more similar. It does seem that

as the number of stimulus levels increases, the bandwidth adjustment method performs less

well than the other two. As n increases, the bandwidth method perform worse for both the

cross-validation and ISE optimal bandwidths. This can be seen by the density estimates getting

flatter as n increases. In contrast the LDNP and PAVA estimates stay closely bound about 1,

which indicates better performance with little to choose between the two methods.

Figure 5.5 and Figure 5.9 show a similar pattern for the function T3(x). The bandwidth

adjustment method performs well at low values of n for MISE optimal bandwidths although as

the value of n increases the differences between the three methods become very small. At low

values of n the LDNP method and the PAVA method have high bias at low values of x which

contributes to their poor scores. It looks as if the LDNP method performs slightly better than

the other two methods when the ISE optimal bandwidths or cross-validation bandwidths are

used, although again there is not a lot to choose between the three methods.

The same kind of pattern is shown for the function T4(x) in Figure 5.6 and Figure 5.10. The

bandwidth adjustment method works well with small n but less well as n increases. Figure 5.10

shows that although there is little to choose between the PAVA method and the LDNP method

in terms of the mode of the density, the PAVA method has a far smaller range of ISE ratio

values which might be considered an advantage in that there are not many ‘bad’ estimates.

5.4.2 Changing the value of r

In this section I compare the effect of changing the value of r. This was a way of investigating

what effect the magnitude of the mean response has on the estimating procedure. I keep the

number of stimulus levels constant at n = 10. As when comparing the change in n I compare

only the T optimal bandwidths. I consider the values r = 5, 10, 20. The problems in estimation

of the function T1(x) were discussed in section 5.4.1 and it will not be further considered here.

Figures 5.12- 5.14 show the use of MISE optimal bandwidths on functions T2(x), T3(x) and

T4(x) respectively. It is clear from these three figures that the bandwidth adjustment method

performs progressively worse as the value of r increases. The LDNP method and the PAVA
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method appear far more resistant to changes in the value of r, and so could be considered

better methods to use for this reason. Although all three methods have similar variances for

the function T2(x), the larger bias of the bandwidth method means that its MSE performance

is worse than the other two methods. This is more evident as r increases. This is also the case

for T4(x).

This finding is repeated for ISE optimal bandwidths as can be seen from Figure 5.16- 5.18.

It is also true for cross-validation bandwidths although the decrease in performance of the

bandwidth adjustment method appears less obvious here. A clear picture from these figures is

that as the value of r increases the density estimate for the bandwidth method becomes flatter,

a fact that indicates poor performance due to increased variability. It is evident that when

a good bandwidth is chosen for the unconstrained regression the LDNP method performs as

well as or better than any other method. In fact the LDNP method and the PAVA method

have the ability to improve the performance of the unconstrained estimator with ISE optimal

bandwidth, as indicated by values of R < 1. That is, for some samples, the monotonised version

is better (in ISE sense) than the best possible unconstrained estimate.

5.5 Exponential response models

5.5.1 Changing the number of stimulus levels

Figures 5.19-5.22 show the comparisons of square bias, variance and MSE for each of the three

methods when the MISE optimal bandwidth was used for the unconstrained regression for each

of T1(x)-T4(x) respectively.

As with the Poisson response simulations, the LDNP method again is very bad at estimating

the function T1(x). This has been discussed in section 4.3.4 and is not repeated here. I omit

the discussion of the function T1(x) from the following analysis. The effect of changing the

value of r for T1(x) can be seen in Figure 5.27 and Figure 5.31, whilst the comparison of ISE

ratios for changing numbers of stimulus levels can be seen in Figure 5.23.

For the function T2(x), each of the three methods perform similarly. This is increasingly the
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case as the number of stimulus levels increases although the bandwidth method suffers from

high bias and variance at the boundaries. The LDNP method has higher bias at low values of x,

but lower bias at high values of x. The LDNP method is not very good at estimating function

T3(x). Although the biases are similar for each of the three methods the LDNP method has

a much higher variance causing a poor MSE performance. For the function T4(x), the three

methods perform similarly at small number of stimulus levels, although the LDNP method has

high bias at values close to x = 1. As the number of stimulus levels increases the bandwidth

method performs increasingly poorly, whilst the LDNP method and the PAVA method become

more similar. The PAVA method seems to perform better in this case.

Figures 5.24-5.26 show the comparisons of the ISE ratios for each method for functions

T2(x)-T4(x) respectively. In the first column of the plots the results shown are for when an ISE

optimal bandwidth is chosen for the unconstrained regression. For functions T3(x) and T4(x)

the LDNP method perform poorly at n = 5 stimulus levels. This is indicated by the almost

flat density estimates which suggest high variability. However, their performance improves for

higher values of n. As in the case of Poisson responses, the PAVA method and the LDNP

method often perform fairly similarly although the LDNP method is often slightly better. As

the number of stimulus levels increases then the bandwidth method performs worse and worse.

The density estimates become flatter. This suggests, as before that if a good bandwidth is

chosen for the unconstrained regression then the bandwidth method performs poorly whilst the

LDNP method is a little better than the PAVA method.

The second column of Figures 5.24-5.26 show the comparison of ISE ratios for each method

when a cross validation method is used for the unconstrained regression. Here the LDNP

method performs poorly for small numbers of stimulus levels in comparison to the other two

methods. The bandwidth method does well at small numbers of stimulus levels but performs

less well at higher values of n. This suggests that the cross-validation bandwidth is too low and

the monotonicity is best fixed by simply increasing the bandwidth. As the number of stimulus

levels increases then the bandwidth method is less good and the LDNP method and PAVA

method become more comparable.
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5.5.2 Changing the value of r

Figures 5.28-5.30 show the comparison of square bias, variance and MSE for each of the methods

for functions T2(x)-T4(x). I omit discussion of the function T1(x) for reasons explained in

section 5.4.1. It can be seen from these that for functions T2(x) and T4(x) the three methods

perform similarly when an MISE optimal bandwidth is used for the unconstrained regression.

As the values of r increase then the differences between the bias become less noticeable. AT

low values of r the bandwidth method performs poorly in terms of the bias, but on all other

measures the three methods perform very similarly.

By examining the first column of Figures 5.32-5.34 the ISE ratios of each method for func-

tions T2(x)-T4(x), when using an ISE optimal bandwidth for the unconstrained regression can

be compared. It is again clear here that the bandwidth method performs badly as the value

of r increases, shown by the increasingly flat density estimates. The LDNP method and the

PAVA method perform similarly to each other, although the LDNP method seems to show

more variability. However the majority of the density estimates for both of these methods are

close to the value 1 indicating reasonably good performance.

The second column of Figures 5.32-5.34 shows the same comparisons but with a cross-

validation bandwidth for the unconstrained regression. As has often been the case the band-

width method performs well at low values of r when the unconstrained regression bandwidth

is too small. As the value of r increases the advantage of the bandwidth method decreases. In

fact for high values of r the LDNP method performs at least as well, if not better than the

competitors. As in the case of Poisson responses, the LDNP method and the PAVA method

have the ability to improve the performance of the unconstrained estimator with ISE optimal

bandwidth, as indicated by values of R < 1. That is, for some samples, the monotonised version

is better (in ISE sense) than the best possible unconstrained estimate.

5.6 Figures and Tables
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Table 5.1: Number of samples requiring monotonisation for T1(x) with Poisson responses for

each of six different bandwidths. The number of unique samples is given in brackets.

Model hT,MISE hη,MISE hT,cv hη,cv hT,ISE hη,ISE

T1(x) {r=5 n=5} 3559 (3226) 3559 (3226) 5101 (4598) 5020 (4518) 4825 (4349) 4205 (3799)

T1(x) {r=5 n=10} 3431 (3431) 3431 (3431) 5491 (5491) 5495 (5945) 5130 (5130) 4255 (4255)

T1(x) {r=5 n=20} 2967 (2967) 2969 (2969) 5144 (5144) 5217 (5217) 4967 (4967) 3768 (3768)

T1(x) {r=5 n=50} 2122 (2122) 2122 (2122) 4305 (4305) 4520 (4520) 4243 (4243) 2785 (2785)

T1(x) {r=10 n=5} 3096 (3035) 3097 (3036) 4648 (4557) 4600 (4510) 4395 (4310) 3768 (3696)

T1(x) {r=10 n=10} 2835 (2835) 2837 (2837) 4987 (4987) 4960 (4960) 4552 (4552) 3615 (3615)

T1(x) {r=10 n=20} 2284 (2284) 2285 (2285) 4544 (4544) 4559 (4559) 4188 (4188) 2998 (2998)

T1(x) {r=10 n=50} 1251 (1251) 1252 (1252) 3427 (3427) 3477 (3477) 3127 (3127) 1702 (1702)

T1(x) {r=50 n=5} 1422 (1422) 1422 (1422) 2907 (2907) 2901 (2901) 2595 (2595) 1883 (1883)

T1(x) {r=50 n=10} 1000 (1000) 1001 (1001) 3156 (3156) 3139 (3139) 2263 (2263) 1414 (1414)

T1(x) {r=50 n=20} 453 (453) 454 (454) 2522 (2522) 2542 (2542) 1681 (1681) 708 (708)

T1(x) {r=50 n=50} 55 (55) 55 (55) 1758 (1758) 1757 (1757) 733 (733) 112 (112)
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Table 5.2: Number of samples requiring monotonisation for T2(x) with Poisson responses for

each of six different bandwidths. The number of unique samples is given in brackets.

Model hT,MISE hη,MISE hT,cv hη,cv hT,ISE hη,ISE

T2(x) {r=5 n=5} 6927 (6359) 6602 (6070) 3110 (2864) 2981 (2737) 5335 (4842) 2195 (2047)

T2(x) {r=5 n=10} 8456 (8456) 8052 (8052) 3923 (3923) 4062 (4062) 5819 (5819) 2076 (2076)

T2(x) {r=5 n=20} 8863 (8863) 8527 (8527) 4390 (4390) 4285 (4285) 6332 (6332) 1621 (1621)

T2(x) {r=5 n=50} 9174 (9174) 8837 (8837) 5463 (5463) 4686 (4686) 7355 (7355) 976 (976)

T2(x) {r=10 n=5} 6037 (5671) 5603 (5261) 2399 (2220) 2194 (2032) 5204 (4848) 936 (900)

T2(x) {r=10 n=10} 8118 (8118) 7586 (7586) 4172 (4172) 4245 (4245) 7100 (7100) 960 (960)

T2(x) {r=10 n=20} 8716 (8716) 8231 (8231) 5454 (5454) 5395 (5395) 7487 (7487) 723 (723)

T2(x) {r=10 n=50} 9121 (9121) 8703 (8703) 7071 (7071) 6863 (6863) 8237 (8237) 201 (201)

T2(x) {r=50 n=5} 3641 (3567) 3731 (3654) 2586 (2502) 2252 (2183) 3539 (3458) 4 (4)

T2(x) {r=50 n=10} 6544 (6544) 6752 (6752) 4416 (4416) 4906 (4906) 6713 (6713) 1 (1)

T2(x) {r=50 n=20} 7717 (7717) 7876 (7876) 5906 (5906) 6753 (6753) 7509 (7509) 0

T2(x) {r=50 n=50} 8285 (8285) 8476 (8476) 7406 (7406) 7917 (7917) 7894 (7894) 0

163



Table 5.3: Number of samples requiring monotonisation for T3(x) with Poisson responses for

each of six different bandwidths. The number of unique samples is given in brackets.

Model hT,MISE hη,MISE hT,cv hη,cv hT,ISE hη,ISE

T3(x) {r=5 n=5} 9096 (6653) 9096 (6653) 3400 (2597) 3462 (2638) 3180 (2377) 1522 (1281)

T3(x) {r=5 n=10} 9874 (9874) 9876 (9876) 3886 (3886) 4148 (4148) 3843 (3843) 1501 (1501)

T3(x) {r=5 n=20} 9993 (9993) 9993 (9993) 3868 (3868) 4518 (4518) 4537 (4537) 1241 (1241)

T3(x) {r=5 n=50} 10000 (10000) 10000 (10000) 3502 (3502) 4659 (4659) 4837 (4837) 524 (524)

T3(x) {r=10 n=5} 8612 (8027) 8612 (8027) 2820 (2634) 2918 (2726) 3008 (2797) 754 (730)

T3(x) {r=10 n=10} 9777 (9777) 9778 (9778) 3483 (3483) 3767 (3767) 4072 (4072) 797 (797)

T3(x) {r=10 n=20} 9961 (9961) 9961 (9961) 3606 (3606) 4163 (4163) 4664 (4664) 527 (527)

T3(x) {r=10 n=50} 10000 (10000) 10000 (10000) 3804 (3804) 4757 (4757) 5588 (5588) 178 (178)

T3(x) {r=50 n=5} 7029 (7026) 6939 (6936) 2318 (2316) 2461 (2460) 3265 (3264) 122 (122)

T3(x) {r=50 n=10} 9234 (9234) 9239 (9239) 3245 (3245) 3720 (3720) 5021 (5021) 82 (82)

T3(x) {r=50 n=20} 9887 (9887) 9887 (9887) 4354 (4354) 5206 (5206) 6172 (6172) 16 (16)

T3(x) {r=50 n=50} 10000 (10000) 10000 (10000) 5637 (5637) 6939 (6939) 7581 (7581) 1 (1)
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Table 5.4: Number of samples requiring monotonisation for T4(x) with Poisson responses for

each of six different bandwidths. The number of unique samples is given in brackets.

Model hT,MISE hη,MISE hT,cv hη,cv hT,ISE hη,ISE

T4(x) {r=5 n=5} 7332 (2724) 9136 (3076) 1467 (715) 1967 (843) 2464 (813) 351 (217)

T4(x) {r=5 n=10} 9649 (9637) 9894 (9882) 1775 (1775) 5338 (5331) 3676 (3670) 55 955)

T4(x) {r=5 n=20} 9709 (9709) 9954 (9954) 2176 (2176) 6883 (6883) 5325 (5325) 9 (9)

T4(x) {r=5 n=50} 9860 (9860) 9973 (9973) 4078 (4078) 8292 (8292) 7617 (7617) 0

T4(x) {r=10 n=5} 7007 (4569) 8555 (5287) 832 (663) 1460 (1082) 2998 (1686) 49 (48)

T4(x) {r=10 n=10} 9320 (9316) 9831 (9827) 1260 (1260) 6685 (6681) 5650 (5648) 7 (7)

T4(x) {r=10 n=20} 9549 (9549) 9967 (9967) 2637 (2637) 8217 (8217) 7478 (7478) 0

T4(x) {r=10 n=50} 9781 (9781) 9991 (9991) 6559 (6559) 9198 (9198) 9249 (9249) 0

T4(x) {r=50 n=5} 5089 (4978) 6483 (6306) 16 (16) 95 (95) 3274 (3170) 0

T4(x) {r=50 n=10} 7672 (7672) 9493 (9493) 859 (859) 8353 (8353) 9091 (9091) 0

T4(x) {r=50 n=20} 8616 (8616) 9935 (9935) 6265 (6265) 9400 (9400) 9877 (9877) 0

T4(x) {r=50 n=50} 9327 (9327) 9992 (9992) 9541 (9541) 9745 (9745) 9982 (9982) 0
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Table 5.5: Number of samples requiring monotonisation for T1(x) with exponential responses

for each of six different bandwidths. No number is given in brackets since all the samples were

unique.

Model hT,MISE hη,MISE hT,cv hη,cv hT,ISE hη,ISE

T1(x) {r=5 n=5} 3730 3736 4892 5325 5074 4464

T1(x) {r=5 n=10} 4204 4204 5905 6183 6019 5019

T1(x) {r=5 n=20} 4156 4156 6045 6112 5986 4851

T1(x) {r=5 n=50} 3890 3890 5829 5817 5578 4486

T1(x) {r=10 n=5} 3256 3258 4274 4703 4427 3903

T1(x) {r=10 n=10} 4010 4010 5693 5886 5821 4829

T1(x) {r=10 n=20} 4172 4172 5941 6092 5874 4843

T1(x) {r=10 n=50} 3847 3847 5823 5802 5527 4453

T1(x) {r=50 n=5} 2311 3037 3081 3210 3157 2778

T1(x) {r=50 n=10} 3133 3783 4433 4549 4495 3833

T1(x) {r=50 n=20} 3663 3956 5202 5315 5120 4327

T1(x) {r=50 n=50} 3677 3713 5526 5560 5313 4279
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Table 5.6: Number of samples requiring monotonisation for T2(x) with exponential responses

for each of six different bandwidths. No number is given in brackets since all the samples were

unique.

Model hT,MISE hη,MISE hT,cv hη,cv hT,ISE hη,ISE

T2(x) {r=5 n=5} 5986 5820 3946 4309 4141 3468

T2(x) {r=5 n=10} 7585 7336 4820 5080 4944 3824

T2(x) {r=5 n=20} 8067 7800 4597 5029 4659 3498

T2(x) {r=5 n=50} 8362 8054 3496 5002 3960 2593

T2(x) {r=10 n=5} 5252 5135 3153 3627 3378 2661

T2(x) {r=10 n=10} 6905 6707 3868 4462 3955 2739

T2(x) {r=10 n=20} 7579 7271 3691 4746 3678 2220

T2(x) {r=10 n=50} 7821 7514 2681 5357 3386 1339

T2(x) {r=50 n=5} 2355 2919 1194 1632 1329 762

T2(x) {r=50 n=10} 3385 4513 1880 2581 1744 415

T2(x) {r=50 n=20} 4069 5315 2822 3478 896 180

T2(x) {r=50 n=50} 4485 5867 4182 4259 2426 12
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Table 5.7: Number of samples requiring monotonisation for T3(x) with exponential responses

for each of six different bandwidths. No number is given in brackets since all the samples were

unique.

Model hT,MISE hη,MISE hT,cv hη,cv hT,ISE hη,ISE

T3(x) {r=5 n=5} 2590 2590 3664 4481 3959 2977

T3(x) {r=5 n=10} 2998 2998 4794 5318 5047 3356

T3(x) {r=5 n=20} 2632 2632 5027 5188 4880 2977

T3(x) {r=5 n=50} 1628 1628 4735 4809 4116 2022

T3(x) {r=10 n=5} 2342 2342 3298 4041 3501 2731

T3(x) {r=10 n=10} 2753 2753 4504 4898 4758 3111

T3(x) {r=10 n=20} 2422 2422 4715 4975 4603 2831

T3(x) {r=10 n=50} 1597 1597 4740 4777 4005 2034

T3(x) {r=50 n=5} 2070 2070 3026 3716 3150 2436

T3(x) {r=50 n=10} 2543 2543 4111 4665 4324 2908

T3(x) {r=50 n=20} 2295 2295 4468 4757 4338 2667

T3(x) {r=50 n=50} 1563 1563 4575 4636 3919 1950
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Table 5.8: Number of samples requiring monotonisation for T4(x) with exponential responses

for each of six different bandwidths. No number is given in brackets since all the samples were

unique.

Model hT,MISE hη,MISE hT,cv hη,cv hT,ISE hη,ISE

T4(x) {r=5 n=5} 4336 3726 1829 2196 2014 1075

T4(x) {r=5 n=10} 6254 5627 2754 2311 2570 541

T4(x) {r=5 n=20} 7654 7520 3777 2288 2586 184

T4(x) {r=5 n=50} 9050 9364 5028 3329 2252 18

T4(x) {r=10 n=5} 3211 2743 1347 1387 1445 691

T4(x) {r=10 n=10} 4320 4412 2209 1621 1902 395

T4(x) {r=10 n=20} 5619 6145 3229 1821 2023 135

T4(x) {r=10 n=50} 7877 8619 5173 2983 2154 6

T4(x) {r=50 n=5} 1372 1907 1043 803 1065 390

T4(x) {r=50 n=10} 1634 2454 1386 812 964 170

T4(x) {r=50 n=20} 2745 4232 2680 1249 1430 81

T4(x) {r=50 n=50} 4664 6952 4860 2441 1674 3
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Table 5.9: MISE values for model T1(x) with Poisson responses for various monotonicity con-

straints with the two MISE optimal unconstrained bandwidths.

T1(x) {r=5 n=5} T1(x) {r=5 n=10} T1(x) {r=5 n=20} T1(x) {r=5 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 1.206411 1.206411 0.626384 0.626383 0.35647 0.35629 0.190001 0.190001

Band 2.05323 2.05323 1.165437 1.165437 0.67364 0.673246 0.329491 0.329491

LDNP 17.66635 17.59149 13.63523 13.57669 11.02418 10.97589 8.343201 8.307534

LDNP1 85.16097 84.16308 50.38479 49.83885 31.76779 31.44505 17.82765 17.66087

LDNP2 28775.51 27171.85 3211.034 3074.543 608.095 587.8968 112.1732 109.3606

LDNP3 2.77E+11 2.17E+11 42799636 36483347 152750.1 137851.7 1643.616 1549.365

T1(x) {r=10 n=5} T1(x) {r=10 n=10} T1(x) {r=10 n=20} T1(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 2.577765 2.578257 1.419583 1.420268 0.852581 0.853886 0.531631 0.531733

Band 4.341961 4.34185 2.56498 2.564785 1.50825 1.509273 0.820333 0.820208

LDNP 54.51082 54.26876 43.78094 43.60565 35.526 35.36771 27.47294 27.35263

LDNP1 201.7044 199.4914 126.3257 125.0829 81.48793 80.698 47.62675 47.19503

LDNP2 12864.37 12316.16 2421.856 2342.003 647.7794 630.3817 162.7743 159.3117

LDNP3 1.72E+08 1.46E+08 608692.3 549452.2 15924.61 14889.78 755.2496 724.3631

T1(x) {r=50 n=5} T1(x) {r=50 n=10} T1(x) {r=50 n=20} T1(x) {r=50 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 18.36251 18.36244 13.33279 13.35061 10.41749 10.46004 8.472066 8.472075

Band 28.65409 28.65409 19.50347 19.51457 13.74418 13.77902 9.707814 9.707814

LDNP 826.0831 822.5418 681.8245 678.762 568.1157 566.1406 443.1205 441.2685

LDNP1 1768.038 1751.471 1182.595 1171.735 808.6293 802.2065 492.2162 488.0927

LDNP2 11146.96 10867.27 4045.299 3958.761 1701.052 1670.399 608.3651 598.0979

LDNP3 163510.1 154131.8 18783.69 18013.43 3877.988 3758.575 754.12 734.8277
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Table 5.10: MISE values for model T2(x) with Poisson responses for various monotonicity

constraints with the two MISE optimal unconstrained bandwidths.

T2(x) {r=5 n=5} T2(x) {r=5 n=10} T2(x) {r=5 n=20} T2(x) {r=5 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 2.115053 2.074763 1.266335 1.244463 0.747724 0.73426 0.364534 0.357338

Band 2.355762 2.348694 1.392216 1.388055 0.851371 0.850871 0.497746 0.500116

LDNP 2.673838 2.674258 1.76704 1.778532 1.158985 1.174282 0.712716 0.73328

LDNP1 2.190963 2.144987 1.368083 1.343605 0.839892 0.825263 0.445669 0.441563

LDNP2 2.124315 2.074154 1.307251 1.281469 0.787695 0.773479 0.395502 0.388701

LDNP3 2.083679 2.03775 1.269286 1.242654 0.764077 0.747666 0.38412 0.3755

T2(x) {r=10 n=5} T2(x) {r=10 n=10} T2(x) {r=10 n=20} T2(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 2.895256 2.837236 1.757153 1.741967 1.037114 1.017077 0.500344 0.491937

Band 3.624902 3.638497 2.311455 2.327426 1.553368 1.562219 1.063504 1.076907

LDNP 3.420544 3.457905 2.336718 2.386816 1.549699 1.577904 0.933506 0.966528

LDNP1 3.038697 2.995948 1.976196 1.97398 1.237059 1.218933 0.649211 0.645229

LDNP2 2.961017 2.92153 1.851204 1.848014 1.112388 1.097428 0.54302 0.535537

LDNP3 2.886461 2.835445 1.797154 1.781615 1.083577 1.061242 0.530224 0.519574

T2(x) {r=50 n=5} T2(x) {r=50 n=10} T2(x) {r=50 n=20} T2(x) {r=50 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 7.036718 7.096376 4.305567 4.311893 2.668929 2.680916 1.32898 1.333074

Band 12.30409 12.31983 8.724165 8.695157 6.794323 6.81605 5.15092 5.193997

LDNP 9.965838 9.935326 7.178789 7.097714 5.211081 5.16776 3.435725 3.394524

LDNP1 8.422395 8.448708 5.808818 5.778899 4.020659 4.034886 2.478837 2.460336

LDNP2 7.339798 7.381262 4.553907 4.545549 2.838711 2.845174 1.424363 1.425771

LDNP3 7.119906 7.177007 4.40776 4.412329 2.760696 2.77305 1.387863 1.392343
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Table 5.11: MISE values for model T3(x) with Poisson responses for various monotonicity

constraints with the two MISE optimal unconstrained bandwidths.

T3(x) {r=5 n=5} T3(x) {r=5 n=10} T3(x) {r=5 n=20} T3(x) {r=5 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 2.449804 2.614701 1.180026 1.313031 0.637445 0.681642 0.302017 0.318461

Band 1.555553 1.560598 0.874036 0.878631 0.492791 0.496074 0.235704 0.23841

LDNP 145499.2 3.05E+09 2.330467 2.76913 0.8794 1.001824 0.410444 0.448054

LDNP1 13267.72 5553218 1.431201 1.738821 0.737913 0.868728 0.326097 0.375013

LDNP2 3.729544 3.575433 1.36545 1.648215 0.70337 0.830285 0.309208 0.35647

LDNP3 2.538385 2.651451 1.354593 1.638638 0.698034 0.825972 0.307075 0.354768

T3(x) {r=10 r=5} T3(x) {r=10 n=10} T3(x) {r=10 n=20} T3(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 5.007685 5.092647 2.610904 2.805954 1.41602 1.497989 0.684621 0.718393

Band 3.723121 3.737933 1.960122 1.971644 1.096981 1.105571 0.562883 0.568852

LDNP 1974220 42892873 5.174386 4.397511 1.966941 2.148522 0.94659 0.997294

LDNP1 11872.62 118697.6 3.037612 3.502777 1.577845 1.827689 0.709919 0.800543

LDNP2 12.50601 11.58086 2.897868 3.339215 1.496826 1.737864 0.673001 0.760069

LDNP3 5.248758 5.326574 2.875779 3.321118 1.485826 1.729154 0.668942 0.75686

T3(x) {r=50 n=5} T3(x) {r=50 n=10} T3(x) {r=50 n=20} T3(x) {r=50 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 42.80082 42.7607 19.71545 19.97513 10.29325 10.69203 4.958319 5.143068

Band 39.04381 39.02389 17.45809 17.49808 9.49796 9.514766 5.696348 5.644891

LDNP 62.75915 58.46944 28.92103 27.01656 16.30897 15.60158 8.553355 7.977011

LDNP1 45.02502 44.18598 20.38231 20.53559 11.04977 12.03599 5.30505 5.817885

LDNP2 41.5039 41.39637 19.28416 19.52474 10.61101 11.51844 5.145942 5.611007

LDNP3 41.29056 41.2301 19.17046 19.4574 10.56092 11.47939 5.128955 5.597775
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Table 5.12: MISE values for model T4(x) with Poisson responses for various monotonicity

constraints with the two MISE optimal unconstrained bandwidths.

T4(x) {r=5 n=5} T4(x) {r=5 n=10} T4(x) {r=5 n=20} T2(x) {r=5 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 1.626561 1.718223 0.862309 0.912255 0.516904 0.536231 0.264304 0.271036

Band 1.183944 1.168333 0.804691 0.808556 0.558004 0.551471 0.378078 0.365249

LDNP 201.7526 57171.94 153.9757 59.31713 741.4429 56.13633 2.102522 3.929566

LDNP1 2.709927 16017.6 1.85512 1.36657 0.690521 0.741054 0.380671 0.416871

LDNP2 1.285867 357.051 0.824466 0.891243 0.509753 0.547782 0.279674 0.303776

LDNP3 1.270868 1.335036 0.808114 0.872183 0.505458 0.542472 0.277506 0.301059

T4(x) {r=10 n=5} T4(x) {r=10 n=10} T4(x) {r=10 n=20} T4(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 3.429342 3.366631 1.902225 2.016681 1.180199 1.221415 0.588223 0.592227

Band 3.072618 2.98911 2.14863 2.1026 1.663959 1.591379 1.248196 1.153543

LDNP 176.3891 31813.98 398.7778 192.0207 4.673763 159.5375 2.049661 7.599781

LDNP1 3.798321 3579.764 2.559814 3.916771 1.383835 1.90633 0.78436 1.130486

LDNP2 2.913804 5.131807 1.845988 2.105387 1.199079 1.338505 0.633958 0.724158

LDNP3 2.918413 2.943169 1.833934 2.044754 1.192453 1.324858 0.629585 0.715969

T4(x) {r=50 r=5} T4(x) {r=50 n=10} T4(x) {r=50 n=20} T4(x) {r=50 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 32.68697 30.07755 14.59551 13.66871 9.433486 8.050504 5.233598 3.946199

Band 40.31826 35.63224 33.70733 29.83211 29.72494 25.34182 26.13857 21.35084

LDNP 33.46748 483952.2 29.87509 379.5394 25.10338 180.3126 22.64933 179.461

LDNP1 29.32446 833.8559 17.42902 49.57347 12.27809 22.20455 8.117625 16.53098

LDNP2 31.01161 36.29861 14.98921 16.71305 9.912248 10.36583 5.699915 6.090306

LDNP3 31.66445 31.52732 14.96223 16.11201 9.862479 10.15483 5.647852 5.927534
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Table 5.13: MISE values for model T1(x) with exponential responses for various monotonicity

constraints with the two MISE optimal unconstrained bandwidths.

T1(x) {r=5 n=5} T1(x) {r=5 n=10} T1(x) {r=5 n=20} T1(x) {r=5 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 5.329285 5.32873 2.8617 2.861697 1.482165 1.482165 0.66731 0.66731

Band 9.817844 2.60E+278 5.615154 5.615154 2.956539 2.956539 1.315424 1.315424

LDNP 22.28008 22.27821 14.9662 14.96334 10.3993 10.39706 7.072708 7.07101

LDNP1 49.70956 49.69194 30.48744 30.47135 18.87275 18.86286 10.55481 10.54932

LDNP2 1202.134 1199.57 294.4178 293.8683 92.1707 92.03073 26.11485 26.08274

LDNP3 1407494 1396509 17459.73 17368.99 968.0017 964.6386 77.7003 77.52487

T1(x) {r=10 n=5} T1(x) {r=10 n=10} T1(x) {r=10 n=20} T1(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 22.20045 22.20041 11.52404 11.52403 6.190596 6.190594 2.777616 2.777616

Band 39.74895 3.37E+56 21.95228 21.95228 12.38399 12.38399 5.421234 5.421234

LDNP 91.14649 91.1322 59.60062 59.58915 42.86543 42.8562 28.63309 28.62622

LDNP1 203.6103 203.5021 122.1318 122.0669 77.3941 77.35368 42.64185 42.61978

LDNP2 4923.417 4911.721 1184.693 1182.482 375.3487 374.7802 105.2226 105.0935

LDNP3 5758901 5712526 70294.23 69928.84 3927.677 3914.042 312.5833 311.8783

T1(x) {r=10 n=5} T1(x) {r=10 n=10} T1(x) {r=10 n=20} T1(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 508.9205 508.9196 281.9647 281.9644 153.2467 153.2466 65.47362 65.45715

Band 553.4249 947.5864 364.2915 555.3476 241.4703 296.8803 127.4424 132.8614

LDNP 2254.516 2254.149 1520.424 1520.141 1036.754 1036.529 697.9252 697.7269

LDNP1 5132.071 5129.283 3106.572 3104.932 1881.174 1880.185 1041.114 1040.538

LDNP2 126017.7 125718.1 29986.43 29930.5 9186.591 9172.64 2576.529 2573.307

LDNP3 1.48E+08 1.46E+08 1776098 1766867 96499.14 96163.84 7672.85 7655.417
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Table 5.14: MISE values for model T2(x) with exponential responses for various monotonicity

constraints with the two MISE optimal unconstrained bandwidths.

T2(x) {r=5 n=5} T2(x) {r=5 n=10} T2(x) {r=5 n=20} T2(x) {r=5 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 7.599314 7.561595 5.389267 5.314188421 3.12343 3.053847 1.677073 1.635755

Band 9.837699 NA 6.140509 1.10E+93 3.369037 3.365788 1.667026 1.666949

LDNP 9.459028 5.56E+61 6.693869 6.580549907 3.764444 3.677251 2.058004 2.011134

LDNP1 8.231448 1.99E+44 5.842302 5.718803191 3.21453 3.109526 1.694651 1.62834

LDNP2 7.852137 1.13E+14 5.660414 5.522875075 3.1409 3.041074 1.646595 1.596338

LDNP3 7.758362 72628.38 5.52039 5.40947007 3.054872 2.96855 1.598009 1.550182

T2(x) {r=10 n=5} T2(x) {r=10 n=10} T2(x) {r=10 n=20} T2(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 12.25518 12.13594 8.974071 8.997412286 5.753322 5.698605 3.047764 2.999623

Band 14.25421 14.56566 9.226711 2.44736E+11 5.601124 5.625428 3.099679 3.115836

LDNP 11.67498 3.99E+49 8.959848 9.060396373 5.831735 5.732836 3.326704 3.261565

LDNP1 11.05059 2.60E+39 8.411053 8.474154803 5.492708 5.382667 3.101515 3.025898

LDNP2 11.09186 1.4E+14 8.416486 8.522657713 5.470036 5.413002 3.003717 2.961596

LDNP3 10.97176 337.5858 8.192042 8.305777992 5.319975 5.259514 2.930359 2.883629

T2(x) {r=10 n=5} T2(x) {r=10 n=10} T2(x) {r=10 n=20} T2(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 124.4101 120.6851 82.56617 85.87304171 51.56527 55.29811 25.2096 28.58422

Band 123.2987 115.5426 77.77952 1.60E+201 50.47763 48.20378 31.1964 29.36496

LDNP 99.66583 8.84E+16 79.91264 86.44035524 56.26182 61.46014 29.67179 34.31107

LDNP1 105.5905 2.18E+12 80.38865 86.13564254 54.6001 59.86164 27.99034 32.79755

LDNP2 111.4504 55158.31 81.94965 84.11697229 53.23315 55.76212 26.02261 29.20698

LDNP3 112.7385 113.0504 80.13862 82.47630935 51.53954 54.57897 25.42561 28.71242
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Table 5.15: MISE values for model T3(x) with exponential responses for various monotonicity

constraints with the two MISE optimal unconstrained bandwidths.

T3(x) {r=5 n=5} T3(x) {r=5 n=10} T3(x) {r=5 n=20} T3(x) {r=5 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 3.807761 3.807761 2.231334 2.231334 1.368351 1.368351 0.804958 0.804958

Band 5.613576 5.613576 3.459629 3.459629 2.127352 2.127352 1.158136 1.158136

LDNP 5.513265 5.513265 3.59273 3.59273 2.389482 2.389482 1.791031 1.791031

LDNP1 5.513265 5.513265 3.59273 3.59273 2.389482 2.389482 1.791031 1.791031

LDNP2 5.513265 5.513265 3.59273 3.59273 2.389482 2.389482 1.791031 1.791031

LDNP3 5.513265 5.513265 3.59273 3.59273 2.389482 2.389482 1.791031 1.791031

T3(x) {r=10 n=5} T3(x) {r=10 n=10} T3(x) {r=10 n=20} T3(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 15.7191 15.7191 8.403696 8.403696 5.326183 5.326183 3.258642 3.258642

Band 3.80E+129 3.80E+129 13.30897 13.30897 8.07122 8.07122 4.544695 4.544695

LDNP 21.88 21.88 13.72008 13.72008 9.314132 9.314132 6.879427 6.879427

LDNP1 21.88 21.88 13.72008 13.72008 9.314132 9.314132 6.879427 6.879427

LDNP2 21.88 21.88 13.72008 13.72008 9.314132 9.314132 6.879427 6.879427

LDNP3 21.88 21.88 13.72008 13.72008 9.314132 9.314132 6.879427 6.879427

T3(x) {r=50 n=5} T3(x) {r=50 n=10} T3(x) {r=50 n=20} T3(x) {r=50 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 336.2891 336.2891 208.0563 208.0563 128.5122 128.5122 81.25144 81.25144

Band 509.8155 509.8155 316.4733 316.4733 199.3579 199.3579 113.2871 113.2871

LDNP 528.9493 528.9493 322.4039 322.4039 224.9415 224.9415 163.8335 163.8335

LDNP1 528.9493 528.9493 322.4039 322.4039 224.9415 224.9415 163.8335 163.8335

LDNP2 528.9493 528.9493 322.4039 322.4039 224.9415 224.9415 163.8335 163.8335

LDNP3 528.9493 528.9493 322.4039 322.4039 224.9415 224.9415 163.8335 163.8335
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Table 5.16: MISE values for model T4(x) with exponential responses for various monotonicity

constraints with the two MISE optimal unconstrained bandwidths.

T4(x) {r=5 n=5} T4(x) {r=5 n=10} T4(x) {r=5 n=20} T4(x) {r=5 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 2.721742 3.337829 2.045096 2.35135 1.412733 1.496283 0.741693 0.793215

Band 3.034254 3.374943 2.092711 2.289296 1.24913 1.321143 0.700951 0.714303

LDNP 2.97E+67 2.43E+59 4.46E+15 644337.9 7.191092 7.370402 0.818358 2.917816

LDNP1 8.22E+43 1.77E+20 234949.6 12.31607 1.451285 1.661458 0.746483 0.80419

LDNP2 6.58E+11 8.425659 1.981404 2.650605 1.343072 1.576656 0.700063 0.771109

LDNP3 37.08737 7.881792 1.928373 2.629266 1.331154 1.568906 0.695494 0.768879

T4(x) {r=10 n=5} T4(x) {r=10 n=10} T4(x) {r=10 n=20} T4(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 11.21839 12.59281 7.910831 8.887194 5.41222 5.953719 3.01389 NA

Band 12.59236 13.29027 8.327243 8.809141 4.951781 5.361721 2.853848 NA

LDNP 1.27E+59 6.88E+27 1.16E+26 8120.781 153.3943 14.51135 3.494006 1.32E+48

LDNP1 1.49E+35 1.01E+22 78441328 14.37779 5.522481 6.487274 3.060612 NA

LDNP2 50849268 43.68008 7.497888 9.969634 5.091917 6.18919 2.862734 NA

LDNP3 37.34741 22.33016 7.380398 9.930146 5.043025 6.166765 2.840801 NA

T4(x) {r=10 n=5} T4(x) {r=10 n=10} T4(x) {r=10 n=20} T4(x) {r=10 n=50}

MISEP MISEETA MISEP MISEETA MISEP MISEETA MISEP MISEETA

PAVA 267.1016 279.1476 187.2884 230.0037 119.1169 140.6976 70.17869 78.84073

Band 380.3168 346.9927 208.3483 233.7563 116.9586 130.8722 68.47212 71.5403

LDNP 4.77E+56 1.17E+36 351.5953 226702.6 246.9653 223.9854 148.8023 94.45959

LDNP1 4.71E+44 4.52E+08 196.3658 294.3131 121.7635 148.119 73.00416 81.55932

LDNP2 3.33E+15 433.0218 172.2097 245.3691 107.7769 142.2195 66.69773 78.58842

LDNP3 1068.587 368.7103 170.1173 244.1748 107.2052 141.8118 66.22788 78.42494
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Figure 5.3: A comparison of the square bias, variance and MSE of the three monotone estimates of T1(x),

with Poisson responses, with r = 5 and hr set as hT,MISE and n = 5, 10, 20, 50 respectively for each row of the

plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.4: A comparison of the square bias, variance and MSE of the three monotone estimates of T2(x),

with Poisson responses, with r = 5 and hr set as hT,MISE and n = 5, 10, 20, 50 respectively for each row of the

plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.5: A comparison of the square bias, variance and MSE of the three monotone estimates of T3(x),

with Poisson responses, with r = 5 and hr set as hT,MISE and n = 5, 10, 20, 50 respectively for each row of the

plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.6: A comparison of the square bias, variance and MSE of the three monotone estimates of T4(x),

with Poisson responses, with r = 5 and hr set as hT,MISE and n = 5, 10, 20, 50 respectively for each row of the

plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.7: A comparison of the ISE ratio statistics for each of the three monotone estimates of T1(x), with

Poisson responses, with r = 5 and hr set as hT,ISE , hT,cv for each column respectively and n = 5, 10, 20, 50 for

each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.8: A comparison of the ISE ratio statistics for each of the three monotone estimates of T2(x), with

Poisson responses, with r = 5 and hr set as hT,ISE , hT,cv for each column respectively and n = 5, 10, 20, 50 for

each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.9: A comparison of the ISE ratio statistics for each of the three monotone estimates of T3(x), with

Poisson responses, with r = 5 and hr set as hT,ISE , hT,cv for each column respectively and n = 5, 10, 20, 50 for

each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.

184



0.0 0.5 1.0 1.5 2.0

0
5

10
15

20
25

30

hISEP

ISE Ratio

n=
5

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

hcvP

ISE Ratio

0.5 1.0 1.5 2.0

0
5

10
15

20
25

30
35

ISE Ratio

n=
10

0.0 0.5 1.0 1.5 2.0

0
1

2
3

ISE Ratio

0.5 1.0 1.5 2.0

0
5

10
15

20
25

30
35

ISE Ratio

n=
20

0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

3.
0

ISE Ratio

0.5 1.0 1.5 2.0

0
5

10
15

20

ISE Ratio

n=
50

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

ISE Ratio

Figure 5.10: A comparison of the ISE ratio statistics for each of the three monotone estimates of T4(x), with

Poisson responses, with r = 5 and hr set as hT,ISE , hT,cv for each column respectively and n = 5, 10, 20, 50 for

each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.11: A comparison of the square bias, variance and MSE of the three monotone estimates of T1(x),

with Poisson responses, with n = 10 and hr set as hT,MISE and r = 1, 5, 10, 20 respectively for each row of the

plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.12: A comparison of the square bias, variance and MSE of the three monotone estimates of T2(x),

with Poisson responses, with n = 10 and hr set as hT,MISE and r = 1, 5, 10, 20 respectively for each row of the

plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.13: A comparison of the square bias, variance and MSE of the three monotone estimates of T3(x),

with Poisson responses, with n = 10 and hr set as hT,MISE and r = 1, 5, 10, 20 respectively for each row of the

plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.14: A comparison of the square bias, variance and MSE of the three monotone estimates of T4(x),

with Poisson responses, with n = 10 and hr set as hT,MISE and r = 1, 5, 10, 20 respectively for each row of the

plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.15: A comparison of the ISE ratio statistics for each of the three monotone estimates of T1(x), with

Poisson responses, with n = 10 and hr set as hT,ISE , hT,cv for each column respectively and r = 1, 5, 10, 20 for

each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.16: A comparison of the ISE ratio statistics for each of the three monotone estimates of T2(x), with

Poisson responses, with n = 10 and hr set as hT,ISE , hT,cv for each column respectively and r = 1, 5, 10, 20 for

each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.17: A comparison of the ISE ratio statistics for each of the three monotone estimates of T3(x), with

Poisson responses, with n = 10 and hr set as hT,ISE , hT,cv for each column respectively and r = 1, 5, 10, 20 for

each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.18: A comparison of the ISE ratio statistics for each of the three monotone estimates of T4(x), with

Poisson responses, with n = 10 and hr set as hT,ISE , hT,cv for each column respectively and r = 1, 5, 10, 20 for

each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.19: A comparison of the square bias, variance and MSE of the three monotone estimates of T1(x),

with exponential responses, with r = 5 and hr set as hT,MISE and n = 5, 10, 20, 50 respectively for each row of

the plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.20: A comparison of the square bias, variance and MSE of the three monotone estimates of T2(x),

with exponential responses, with r = 5 and hr set as hT,MISE and n = 5, 10, 20, 50 respectively for each row of

the plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.21: A comparison of the square bias, variance and MSE of the three monotone estimates of T3(x),

with exponential responses, with r = 5 and hr set as hT,MISE and n = 5, 10, 20, 50 respectively for each row of

the plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.

196



0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Square Bias

x

n=
5

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00
35

00

Variance

x

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
15

00
25

00
35

00

MSE

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

x

n=
10

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

x

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

n=
20

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12
14

x

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

x

n=
50

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

x

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

x

Figure 5.22: A comparison of the square bias, variance and MSE of the three monotone estimates of T4(x),

with exponential responses, with r = 5 and hr set as hT,MISE and n = 5, 10, 20, 50 respectively for each row of

the plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.23: A comparison of the ISE ratio statistics for each of the three monotone estimates of T1(x), with

exponential responses, with r = 5 and hr set as hT,ISE , hT,cv for each column respectively and n = 5, 10, 20, 50

for each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.24: A comparison of the ISE ratio statistics for each of the three monotone estimates of T2(x), with

exponential responses, with r = 5 and hr set as hT,ISE , hT,cv for each column respectively and n = 5, 10, 20, 50

for each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.25: A comparison of the ISE ratio statistics for each of the three monotone estimates of T3(x), with

exponential responses, with r = 5 and hr set as hT,ISE , hT,cv for each column respectively and n = 5, 10, 20, 50

for each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.26: A comparison of the ISE ratio statistics for each of the three monotone estimates of T4(x), with

exponential responses, with r = 5 and hr set as hT,ISE , hT,cv for each column respectively and n = 5, 10, 20, 50

for each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.27: A comparison of the square bias, variance and MSE of the three monotone estimates of T1(x),

with exponential responses, with n = 10 and hr set as hT,MISE and r = 1, 5, 10, 20 respectively for each row of

the plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.28: A comparison of the square bias, variance and MSE of the three monotone estimates of T2(x),

with exponential responses, with n = 10 and hr set as hT,MISE and r = 1, 5, 10, 20 respectively for each row of

the plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.29: A comparison of the square bias, variance and MSE of the three monotone estimates of T3(x),

with exponential responses, with n = 10 and hr set as hT,MISE and r = 1, 5, 10, 20 respectively for each row of

the plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.30: A comparison of the square bias, variance and MSE of the three monotone estimates of T4(x),

with exponential responses, with n = 10 and hr set as hT,MISE and r = 1, 5, 10, 20 respectively for each row of

the plot. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP estimate in red.
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Figure 5.31: A comparison of the ISE ratio statistics for each of the three monotone estimates of T1(x), with

exponential responses, with n = 10 and hr set as hT,ISE , hT,cv for each column respectively and r = 1, 5, 10, 20

for each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.32: A comparison of the ISE ratio statistics for each of the three monotone estimates of T2(x), with

exponential responses, with n = 10 and hr set as hT,ISE , hT,cv for each column respectively and r = 1, 5, 10, 20

for each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.

207



0.0 0.5 1.0 1.5 2.0

0
1

2
3

hISEP

ISE Ratio

r=
5

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

hcvP

ISE Ratio

0.0 0.5 1.0 1.5 2.0

0
1

2
3

ISE Ratio

r=
10

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

ISE Ratio

0.0 0.5 1.0 1.5 2.0

0
1

2
3

ISE Ratio

r=
50

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

ISE Ratio

Figure 5.33: A comparison of the ISE ratio statistics for each of the three monotone estimates of T3(x), with

exponential responses, with n = 10 and hr set as hT,ISE , hT,cv for each column respectively and r = 1, 5, 10, 20

for each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Figure 5.34: A comparison of the ISE ratio statistics for each of the three monotone estimates of T4(x), with

exponential responses, with n = 10 and hr set as hT,ISE , hT,cv for each column respectively and r = 1, 5, 10, 20

for each row respectively. The PAVA estimate is shown in blue, the bandwidth estimate in green and the LDNP

estimate in red.
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Chapter 6

Conclusions and Further Work

In this thesis I have proposed a monotonicity constraint for use in nonparametric regression

when used to estimate monotone transducer functions where the response is a member of the

exponential family. This method, called here the LDNP method, is an adaptation of the DNP

method of Dette Neumeyer and Pilz [9].

One of the main advantages of the LDNP method is that it constrains the estimate to be

within the correct limits. It does so by incorporating the inverse link function into the estimation

procedure. So long as an appropriate link function for the response being considered is used

then the resulting estimate will lie within the correct limits. This is an immediate advantage

over the DNP method.

Another advantage of the LDNP method is that the resulting monotone estimate is contin-

uous. The PAVA method, one of the main competitors, often has ‘flat points’ that are a poor

reflection of reality. The LDNP method does not have these flat points and thus provides a

more appealing final estimate.

The LDNP method also incorporates the dependence of the variance of the response upon its

mean into the estimation procedure. The DNP method, used with local polynomial regression

does not do this, and so important information is not used.

I have shown that the LDNP method is first order asymptotically equivalent to the compet-

ing methods discussed in this thesis, namely the bandwidth adjustment method and the PAVA
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method. I have calculated its bias and shown that in the case where limn→∞ hr/hd =∞, then

the bias is of order O(h2
r). The variance of the LDNP estimate is O((nhr)−1) which is again

comparable with its competitors. In this case where limn→∞ hr/hd = c ∈ [0,∞), then the bias

is of order O(h2
r + h2

d)) and so so is still comparable to other methods as long as hd = o(hr). I

also show that the LDNP estimate is asymptotically normally distributed, with an MSE that

is comparable to other methods.

I have investigated the choice of bandwidth, hd, for the density estimation step. I have

shown that asymptotically it is preferable to choose a bandwidth for which hd = o(hr). A

small simulation study has shown that this is not necessarily true in small samples. In this case

the choice of hd seems to be less significant in terms of the effect it has on the final estimate.

However, the asymptotically optimal choice of hd did not perform worse than other options

in small sample simulations and so I suggest this is a good type of bandwidth to choose for

use in the LDNP method. A more detailed study of the choice of hd would be an area for

further work. It would be interesting to know if bandwidths for which hd = o(hr) are always

the optimal choice or whether some functions would produce different conclusions.

I have tested the performance of the LDNP method against other monotonicity constraints.

Firstly I have investigated its use in estimating monotone psychometric functions, since this

was the setting that motivated the LDNP method. I have found that the LDNP method

performs as well as the competing methods. It often improves with an increase in the number

of stimulus levels or the number of repeats at each stimulus level, in contrast to the bandwidth

adjustment method which got worse. I found that when ISE optimal bandwidths were used for

the unconstrained regression then the LDNP method was clearly the best performing method.

In other cases the LDNP method still performed roughly as well as its competitors.

I then tested the performance of the LDNP method when estimating transducer functions

with Poisson responses. Here I have found that for most functions the LDNP method performed

as well as its competitors. However, for functions that are almost flat, the LDNP method

struggled to give good estimates of the true function. In this case the PAVA method worked

much better. Further investigations into how the performance of LDNP method could be
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improved for such functions are a topic for further research.

I have also investigated the performance of the LDNP method when estimating transducer

functions with exponential respsonses. This allowed me to investigate how well the LDNP

method could estimate continuous responses. The LDNP method again performed as well as

its competitors in most cases.

In general, for any distribution, if non-monotonicity was caused by too small a bandwidth

chosen for the uncononstrained regression, then the best method is to increase the bandwidth.

However, if the lack of monotonicity was caused by something other than too small a bandwidth

then the LDNP method performs as well as, and often better than other competing methods.

An investigation of the LDNP method on other members of the exponential family would be

an interesting area for further work.

A useful byproduct of this research was R-code that calculates monotone nonparamteric

regression estimates of transducer functions for each of the methods discussed in this thesis.

This code will be made available for wider use by psychometricians etc., and will allow them

easily to calculate monotone psychometric functions using nonparametric regression.

In the introduction to this thesis I discuss a further monotonicity constraint method, namely

the tilting method. I have tried to adapt this method to the setting where responses come from

the exponential family but have had computational difficulties. In theory, this method is very

appealing since it relies only on changing the weights used in order to get a monotone regression

estimate. It is intuitively simple. However, the non linear constrained optimisation techniques

it requires caused some problems. An interesting area of future work would be to develop this

method as a tool for estimating monotone psychometric functions. I believe this should be

possible.
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