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Abstract 

The paraventricular nucleus (PVN) is a region of the hypothalamus considered the 
“master controller” of the autonomic nervous system. A subregion of the PVN, the 
parvocellular subnucleus, is believed to be involved in autonomic control, but its 
physiological importance is not fully understood. This thesis aimed to investigate 
the role of the parvocellular PVN in autonomic control and the underlying 
mechanisms responsible.  

In slice cell-attached patch action current recordings showed that putative 
parvocellular neurones are sensitive to osmolality and that a member of the 
mechanosensitive transient receptor potential ion channel (TRP) family TRPV4 plays 
a role in this osmosensing. TRPV4 agonists gave a similar reduction in action current 
frequency (ACf) to hypotonic challenge, which was reversed by selective TRPV4 
inhibitors. Single-channel recordings identified a TRP-like channel on parvocellular 
neurones, and the activity of this channel was increased by the TRPV4 agonist 
4αPDD. Intracellular calcium recordings showed increases in Ca2+ in response to 
either hypotonic challenge or 4αPDD. Furthermore, a role for TRPV4 was verified in 
central osmosensing at the whole animal level; central injections of hypotonic 
solution decreased blood pressure; an effect ablated by a TRPV4 inhibitor. 

Functional coupling between TRPV4 channels and Ca2+-activated K+ (KCa) channels 
was also explored. The effect of hypotonic challenge was reversed by inhibition of 
the small-conductance KCa (SK) channel. Since the effects of TRPV4 could also be 
blocked by an SK inhibitor, it is proposed that TRPV4 is coupled to SK to modulate 
neuronal activity. During calcium recordings Aaplication of a TRPV4 agonist in the 
presence of an SK inhibitor showed a reduced, but sustained Ca2+ rise compared to 
TRPV4 agonist application alone, suggesting feedback mechanisms are also in play. 
These mechanisms were also verified, quantitatively, with a mathematical model 
written in the NEURON simulation environment and incorporating experimentally 
derived parameters.  

A role for this area of the PVN in temperature sensing was also discovered, with ACf 
decreasing with an increase in temperature from 25oC to 37oC. Pharmacological 
investigation identified another TRP channel, TRPM2, to be central for the PVN 
response to temperature. 

ECG recordings from rats implanted with telemeters confirmed roles for neurokinin 
1 receptor (NK1) expressing neurones in the PVN in the cardiovascular response to 
psychological stress and in the setting of circadian heart rate. Heart rate variability 
analysis showed that increases in the sympathetic activity indicator, “LF/HF”, in 
response to handling stress were ablated by specific lesioning of the NK1 neurones 
in the PVN. In addition these animals had a significant shift in the daily variation of 
their average day/night heart rate.   

In conclusion this thesis identifies the mechanisms underlying several different 
functional roles for parvocellular PVN neurones and indicates the PVN may be a 
multifunctional homeostatic “detector”. 
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1 Introduction 

The paraventricular nucleus (PVN) is a region of the hypothalamus, located adjacent 

to the third ventricle.  Composed of several functionally distinct subnuclei, the PVN 

has a fundamental role in both the endocrine and autonomic systems, even being 

described as the “master controller” of the autonomic system (Liposits et al., 1986).  

The cytoarchitecture and projections of the PVN have been extensively studied, 

providing abundant support for this role (Sawchenko and Swanson, 1982; Swanson 

and Sawchenko, 1983; Swanson and Kuypers, 1980).  The PVN is able to exert 

influence over the autonomic nervous system via its projections to other sites of 

autonomic influence, such as the rostral ventrolateral medulla (RVLM) and the 

spinal cord (Sawchenko and Swanson, 1982).  Due to its vast number of projections 

the PVN is considered an important integrative centre involved in autonomic 

regulation, particularly during times of disturbed homeostasis (Cham and Badoer, 

2008; Lovick et al., 1993; Stocker et al., 2004).  In addition, the neurotransmitters 

produced by and acting on the neurones within the PVN have been extensively 

studied (Bains and Ferguson, 1995; Conn and Pin, 1997; Park and Stern., 2005; 

Sawchenko and Swanson, 1982; Zhang et al., 2001; (see reviews by Nunn et al., 

2011; Pyner, 2009)).  However, despite this combined knowledge the autonomic 

role of the PVN in a resting situation is currently disputed and the ionic mechanisms 

responsible for modulating neuronal activity remain unclear.  This is of particular 

importance as evidence suggests that a disruption in sympathetic nervous activity 

(SNA) is associated with cardiovascular complications such as heart failure (Floras, 

2009; Grassi et al., 2003).  This thesis aims to address some of the questions 
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regarding the mechanisms involved in the autonomic influence and normal 

functional role of this nucleus.  

1.1 Cytoarchitecture of the PVN 

The cytoarchitecture of the PVN has been studied extensively in several early 

immunohistochemical studies on rats, with two main divisions being identified; the 

magnocellular and parvocellular regions (Figure 1.1) (Swanson and Kuypers, 1980; 

Swanson and Sawchenko, 1980; Kiss et al., 1991).   

The magnocellular area contains neurosecretory neurones, known to secrete the 

neurotransmitters vasopressin and oxytocin.  Three magnocellular subdivisions 

have been identified:  1. anterior, 2. posterior and 3. medial (Figure 1.1).  These 

neurones project to the neurohypophysis to stimulate production of pituitary 

hormones and have been investigated more extensively than the parvocellular area. 

The parvocellular PVN contains neurosecretory neurones projecting to other areas 

in the hypothalamic-pituitary adrenal axis (HPA axis) and preautonomic neurones 

known to activate the sympathetic nervous system (SNS) (Koutcherov et al., 2000b; 

Loewy, 1991; Swanson and Kuypers, 1980).  In fact, approximately 2000 neurones 

from the PVN project directly to the intermediolateralis (IML) of the spinal cord 

(Lovick et al., 1993; Pyner and Coote, 2000; Shafton et al., 1998; Yamashita et al., 

1984). Neurones within the parvocellular area are compartmentalised into 

subdivisions; dorsal and lateral, where the preautonomic neurones are 

concentrated, and the medial, periventricular and anterior parvocellular subnuclei 

where neurosecretory neurones can be found (Figure 1.1) (Armstrong et al., 1980).   
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Figure 1.1 Diagram of the subdivisions of the paraventricular nucleus. 
The subdivisions of the PVN are adjacent to the third ventricle (3V). PaLM – lateral 
magnocellular part, PaMM – medial magnocellular part, PaMP – medial 
parvocellular part, PaLP – lateral parvocellular part, PaPV – periventricular 
subnucleus, PaVP – medial ventral parvocellular part and PaDC – dorsal cap. 
 
 
Neurogenic control of the autonomic nervous system is well established, with 

several main areas of the brain regulating sympathetic outflow; including the raphe 

pallidus (RPa), rostral ventrolateral medulla (RVLM), ventromedial medulla, A5 cell 

group and the PVN (Strack et al., 1989a, refer to review by Dampney et al., 2005). 

However, despite the important role of the PVN in autonomic function, the 

parvocellular region of the PVN has been much less studied than its magnocellular 

counterpart.    
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1.2 Projections of the parvocellular PVN 

A great level of attention has been paid to the efferent and afferent connections of 

the paraventricular nucleus in recent years.  This is due to a combination of factors; 

not only is it considered an important integratory area of the brain, but it also 

projects to the posterior lobe of the pituitary and other areas of autonomic 

influence.  Of particular interest is evidence suggesting that abnormal elevated 

sympathetic activation, potentially driven by the parvocellular PVN, can be 

associated with cardiovascular complications such as heart failure (Floras, 2009; 

Grassi et al., 2003).   

Presympathetic efferent projections from the PVN target other autonomic centres 

in the brain, such as the RVLM and the nucleus tractus solitarius (NTS).  Neurones 

within this area also project to the IML of the spinal cord itself and a further 

population branches to both the RVLM and IML (Coote et al., 1998; Hosoya et al., 

1991; Motawei et al., 1999; Pyner and Coote, 1999; Pyner and Coote, 2000; Shafton 

et al., 1998; Strack et al., 1989a).  These projections have been confirmed in rats 

using retrograde labelling and in viral tracing studies using the herpes simplex and 

pseudorabies viruses (Pyner et al., 2001; Pyner and Coote, 2000).   Evidence 

suggests these direct descending projections to the IML are involved in sympathetic 

influence as they terminate on or near the sympathetic preganglionic neurones in 

this area.  In further viral tracing studies on rats performed by multiple groups these 

neurones themselves are shown to project to various end organs and ganglia (such 

as the heart, kidneys, liver, BAT and lumbar muscles), where many of these 

projections can affect these various systems via their autonomic influence (Jansen 
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et al., 1995a; Pyner et al., 2001; Schramm et al., 1993; Strack et al., 1989a; Strack et 

al., 1989b; Weiss et al., 2001; Xiang et al., 2014) 

Tracing afferent projections to the PVN is also important for understanding the 

influence this nucleus has over the sympathetic nervous system.  In particular, the 

NTS is an important region of the brain involved in the integration of autonomic and 

HPA stress responses.  Cardiovascular vagal afferent projections terminate in the 

NTS; these neurones relay cardiovascular information such as blood pressure and 

volume from various cardiovascular receptors.  This information is in turn received 

by presympathetic neurones within the PVN via their afferent projections from the 

NTS (Affleck et al., 2012; Clement et al., 1972; Karim et al., 1972; Spyer, 1994).   
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Figure 1.2 Efferent and afferent projections of the paraventricular nucleus 
affecting the autonomic nervous system.   
A magnified schematic of the paraventricular nucleus of the hypothalamus showing 
some of the subregions and the chain of projections influencing the autonomic 
nervous system.  PaLM – lateral magnocellular part, PaMM – medial magnocellular 
part, PaMP – medial parvocellular part and PaDC – dorsal cap.     

 

Furthermore, the PVN is surrounded by both inhibitory GABAergic (γ-aminobutyric 

acid) and excitatory glutamatergic neurones innervating the area.  In several tracing 

studies in rats and mice discrete sets of GABAergic neurones from the dorsomedial 

hypothalamus (DMH), medial preoptic area (MPo) and bed nucleus of the stria 
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terminalis (BST) have been found to directly innervate the PVN (Herman et al., 

2002b; Roland and Sawchenko, 1993). The MPO receives thermal and osmotic 

inputs, projecting to the PVN directly and via the DMH to influence thermogenesis 

and osmoregulation (Stocker and Toney, 2005). Furthermore, projections from the 

DMH are also found to be involved in metabolism and feeding (for more detail of 

these roles see Section 1.5 Functional role of the PVN (ter Horst and Luiten, 1986; 

Thompson et al., 1996)). In addition projections from these areas and the BST are 

involved in the HPA stress axis, with efferent projections continuing from the PVN 

to the pituitary (Myers et al., 2013; Radley et al., 2009). Transynaptic labelling using 

the herpes virus injected into the adrenal medulla of rats identified a population of 

GABAergic neurones projecting to the lateral and dorsal cap regions of the 

parvocellular PVN (Watkins et al., 2009).  These neurones themselves are also 

surrounded by neuronal nitric oxide synthase (nNOS)-containing neurones, as well 

as a population of these neurones present within the PVN itself (Watkins et al., 

2009).  Affleck et al (2012) showed the afferent NTS-PVN projections terminate on 

or near (1) both the presympathetic and magnocellular neurones of the PVN, (2) the 

innervating GABAergic neurones surrounding the PVN and (3) the nNOS-containing 

neurones also found outside the PVN.   

In combination these studies show that the PVN plays an important role in 

autonomic regulation, and its efferent and afferent projections have been incredibly 

well studied.  The knowledge of the neural projections involved in maintaining 

normal sympathetic activity is vital.   
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1.3 Neurotransmitters and receptors 

The regulation of PVN neurones is dependent upon both inhibitory and excitatory 

innervations from several sources, such afferent projections and the wide variety of 

neurotransmitters acting on them.  Over 30 neurotransmitters have been identified 

within the PVN (Sawchenko and Swanson, 1982), these are a combination of those 

neurotransmitters released by the neurones within the PVN themselves and the 

neurotransmitters acting upon these neurones.   

Of particular importance to the activity of neurones within the PVN is the complex 

interaction between glutamate, GABA and NO which has been identified in a variety 

of extensive immunohistochemical, in vivo and electrophysiological studies 

summarised in Table 1 (Figure 1.3).  Briefly, GABA is responsible for the tonic 

inhibition of neuronal activity in the PVN; this action is enhanced by the release of 

nitric oxide (Watkins et al., 2009).  Neuronal firing can be modulated by excitatory 

glutamate; however this action remains driven by tonic inhibition via GABA. This 

interaction has been beautifully demonstrated in a study by Martins-Pinge et al., 

(2012).  In this study the heart rate and mean arterial pressure of rats were 

recorded whilst microinjections were performed directly in to the PVN.  It was 

shown that blockade of ionotropic receptors produced small decreases in HR and 

MAP.  In addition the GABAA receptor antagonist bicucullin and inhibition of NO-

synthase led to increases in HR and MAP.  Furthermore, an interaction between in 

GABA and NO was revealed when injection of the NO donor sodium nitroprusside 

produced depressor responses which were attenuated by bicucullin.  Inhibition of 

NO synthase also potentiated increased in HR and MAP seen with activation of 
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ionotropic receptors.  Those tonic excitatory effects of glutamate in the PVN were 

shown to be tonically attenuated by NO (Martins-Pinge et al., 2012).   

 

Figure 1.3 Interaction between glutamate, GABA and NO acting on parvocellular 
neurones of the PVN. 
Several important reviews have been written in recent years summarising the 
combination of neurotransmitters found within the PVN (Kenney et al., 2003; Nunn 
et al., 2011; Pyner, 2009).  Of particular interest in this work are the 
neurotransmitters released by and acting upon those preautonomic neurones of 
the PVN, which may have an important role in cardiovascular regulation due to their 
sympathetic innervation.  The main neurotransmitters and their receptors present 
within the PVN have seen summarised in Table 1. 

 

Although the interaction between glutamate, GABA and NO underlie the basic 

activity of the neurones of the PVN, this activity can be altered by various other 

neurotransmitters.  Some of the main neurotransmitters found in the PVN area and 

the studies associated with them are described in  Table 1. 
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 Table 1 Summary of the main neurotransmitters and receptors found in the PVN and their known roles 
Neurotransmitter Receptor(s) Function Method Relevance Reference 

GABA  GABAA 
GABAB 

Tonic inhibition 
Excitatory in 

immature 
Involved in 

development of 
PVN 

 

Patch-clamp 
electrophysiology 
 
 

50% synapses in the PVN GABAergic 
Tonic inhibition by GABAA 

Regulation of tonic inhibition by astroglial GABA 
transporters 

(Affleck et al., 2012; Li and Xu, 
2008; Park et al., 2009; Park et al., 
2007; Park and Stern, 2005) 

In vivo in healthy 
Targeted injections 

Bicucullin ↑ HR, BP and modulates SNA 
Activation both receptors ↓RSNA, HR and BP 
Blockade of GABAB ↑ cardiac sympathetic afferent reflex 

(Kenney et al., 2001; Martin et al., 
1991; Zhong et al., 2008b) 

In vivo in 
hypertensive/HF 

Loss of GABA 
Function switch between GABAA and GABAB 
GABAA attenuated, GABAB enhanced in SHR; ↑HR and BP 

(Carillo et al., 2012; Chen and Pan, 
2006; Davern et al., 2014; Li and 
Pan, 2006; Li and Pan, 2007b; Li et 
al., 2008a; Li et al., 2008b; Wang et 
al., 2009; Zhang et al., 2002b) 

Nitric oxide  
(NO) 

Synthesised by 
nNOS 

- Inhibitory 
modulator 

Enhances the 
action of GABA 

Transynaptic 
labelling, 
immunohistochemi
sty 
 
 

nNos projections from NTS to preautonomic cells 
nNos expressed in 6-10% PVN-IML, 12-25% PVN-RVLM 
Distinct from GABAergic neurones 
GABAergic neurones – target for NO, enhances release of 
GABA 
NO diffuses from magnocellular PVN 

(Affleck et al., 2012; Kantzides and 
Badoer, 2005; Li et al., 2002; Li et 
al., 2003b; Stern, 2004; Vincent and 
Kimura, 1992; Watkins et al., 2009; 
Weiss et al., 2001) 
 

Patch-clamp 
electrophysiology 

↓ mIPSCs in PVN-IML with inhibition of nNOS, bicucullin 
or scavenging NO, ↑ mIPSCs in PVN-IML with NO donor 

(Li et al., 2004a; Li et al., 2002) 

In vivo in healthy 
Targeted injections 
 

NO donor ↓ RSNA, HR and BP, blockade of nNOS 
prevents effects 
 

(Horn et al., 1994; Zhang et al., 
1997; Zhang and Patel, 1998) 
 

In vivo in 
hypertensive/HF 
Targeted injections 

↓ NO leads to ↑ SNA in HF, HF have blunted ↓RSNA in 
response to NO 
Exogenous NO ↓ cardiac SNA in HF 

(Zhang et al., 2001; Ramchandra et 
al., 2014) 

Glutamate 1. Ionotropic 
NMDA 
AMKP 

2. Metabotropic 
8 GPCRs in 3 

groups 

Excitatory 
Modulate 
neuronal 
activity  

Patch-clamp 
electrophysiology 

Ionotropic and group I metabotropic activation ↑ 
neuronal activity, group II ↓ neuronal activity and 
synaptic transmission 

(Conn and Pin, 1997) 

In vivo healthy Glutamate acts via NMDA ↑ neuronal activity, ↑ RSNA, 
HR and BP 
Stimulation of WAT induces adipose afferent reflex , ↑ 

(Busnardo et al., 2009; Kawabe et 
al., 2009; Li et al., 2006) 
(Cui et al., 2013; Shi et al., 2012) 
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RSNA, HR and BP 

Hypertensive/HF ↑ glutamatergic inputs driven by ↑glutamate release 
 
↑ NMDA function, ↑ group 1 metabotropic activity; 
supports ↑ SNA 
Group II metabotropic inhibit SNA by attenuation of ↑ 
glutamatergic input 

(Li and Pan, 2007a; Li and Pan, 
2006) 
(Li and Pan, 2010; Li et al., 2014; Li 
et al., 2003c; Li et al., 2001) 
(Ye et al., 2013) 

Dopamine 
Acts on and 
produced by 

neurones in the 
PVN 

D1 and D2 Influence SNA 
Influence penile 

erection and 
hyperphagia 

Immunohistochemi
stry, tracing studies 

TH staining identified large population 
Dopaminergic projections from medial, dorsal and 
periventricular PVN to RVLM and IML. Nerve terminals to 
sympathetic preganglionic neurons express receptors 

(Dietl et al., 1985; Gladwell and 
Coote, 1999; Jansen et al., 1995b; 
Strack et al., 1989b; Swanson et al., 
1981) 

Patch-clamp 
electrophysiology 

2 subpopulations – inhibitory (D1) and indirect excitatory 
(D2) effects 
Mediates inhibitory effects on RSNA from stimulating PVN 
via D1  

(Gladwell et al., 1999)  
 
(Yang et al., 2002) 

Vasopressin and 
Oxytocin 

Co-expressed 
(neurtotransmissi
on in sympathetic 

preganglionic 
neurones may be 

area specific) 

OT-Rs 
VTa-Rs 

Neuroendocrin
e 

Cardiovascular 
control 

Immunohistochemi
stry, RT-PCR, in situ 
hybridisation, 
tracing studies 
 

40% PVN-IML express oxytocin, up to 40% express 
vasopressin 

(Hallbeck et al., 2001; Hawthorn et 
al., 1985; Jansen et al., 1995b; Lee 
et al., 2013; Sawchenko and 
Swanson, 1982; Swanson and 
McKellar, 1979) 

Patch-clamp 
electrophysiology 

Oxytocin acts via both OT-Rs and VTa-Rs (Sermasi and Coote, 1994) 

In vivo, 
immunoassay 

PVN stimulation ↑vasopressin and oxytocin 
Mediate ↑RSNA and HR, effects ↓with V1a-R or OT-R 
antagonists 
 
OT-Rs involved in tonic neural control of baroreceptor 
reflex and cardiovascular variability 

(Pittman et al., 1984) 
(Malpas and Coote, 1994; Yang et 
al., 2009; Yang et al., 2004; Yang et 
al., 2002) 
(Lozic et al., 2014) 

Angiotensin II  
(Ang II) 

AT1 and AT2 Triggers 
adaptive 

homeostatic 
responses inc. 

SNA to 
modulate BP 

Immunohistochemi
stry 
 

Expressed by parvocellular PVN neurones, acting via AT1 
and AT2. 
 

(Alexander et al., 2011; Allen et al., 
1999; de Gasparo et al., 2000; 
Lenkei et al., 1997; Lind et al., 1985; 
Oldfield et al., 2001) 

In vivo in healthy,  
patch clamp 
electrophysiology 

Injection of Ang II leads to ↑ neuronal activity and BP, 
involving PVN-IML neurones 
Attenuated by AT1 antagonist losartan 
 

(Bains and Ferguson, 1995; Bains et 
al., 1992; Huang et al., 2014; Liu et 
al., 2014; Osborn et al., 2007; 
Zhang et al., 2002b) 
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Ang II directly modulates PVN-RVLM neurones, ↑ BP 
Action is indirect, AT1 receptors co-localise with 
synaptophysin. ↑ neuronal activity, mediated by 
attenuation of GABAergic inputs. 

(Cato and Toney, 2005) 
(Chen and Pan, 2007; Li et al., 
2003a; Li and Pan, 2005) 

Tachykinins 
Substance P (SP) 

Neurokinin A 
Neurokinin B 

(See Chapter 7) 

NK1, NK2 and 
NK3 

Central 
cardiovascular 

control 
Stress response 

Pain 

Immunohistochemi
stry 

SP abundant in the PVN, NK receptors present in 
parvocellular PVN 

(Ding et al., 1996; Jessop et al., 
1991; Koutcherov et al., 2000a; 
Nakayama et al., 1992; Shults et al., 
1985) 

Patch-clamp 
electrophysiology 

SP dependant pathway linking PVN to DMH and PVN-IML 
SP ↑ neuronal activity via disinhibition of GABAA currents 

(Womack and Barrett-Jolley, 2007; 
Womack et al., 2007) 

In vivo and c-fos Central tachykinins ↑ SNA 
↑ c-fos in response to noxious and psychological stress, 
blunted by NK antagonists and in NK KO mice 
Microinjection of SP ↑ RSNA, HR and BP 

(Culman et al., 2010; Ebner et al., 
2008; Santarelli et al., 2002; Unger 
et al., 1985; Womack et al., 2007) 

Corticotrophin 
releasing factor 

(CRF) 
 

CRF1 and CRF2 Stress response Immunohistochemi
stry, tracing studies 

High expression of CRF1 and CRF2 in parvocellular PVN 
 
CRFergic neurones project from DMH to PVN 

(Goncharuk et al., 2002; Makino et 
al., 2005; Yamada et al., 2009) 
(Champagne et al., 1998) 

In vivo, in situ 
hybridisation 
 

↑ mRNA of CRF1 with stress 
 
CRF release ↑ CRF1 receptors, enhancing ACTH release 

(Luo et al., 1994; Makino et al., 
2005) 
(Ono et al., 1985) 
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1.3.1 Others 

Numerous other neurotransmitters and receptors are expressed in the PVN.  

Steroid hormones may play a role in altering excitability of preautonomic neurones 

within this nucleus as, for example, immunohistochemical studies in rats have 

shown oestrogen-β receptors are expressed on ~50% of the RVLM projecting 

neurones of the PVN, and is expressed weakly within the magnocellular region of 

the PVN.  In this study the authors allude to these neurones influencing the 

autonomic and cardiovascular control (Stern and Zhang, 2003).  In addition, 

electrophysiological studies in rats have shown that the steroid hormone 

tetrahyrdeoxycorticosterone can modulate neuronal activity in preautonomic cells o 

of the PVN (Womack et al., 2006).  High levels of cortisol also activate these 

neurones via inhibition of potassium channels (Zaki and Barrett-Jolley, 2002). 

Purinergic receptors, classed as either P1 (adenosine receptors) or P2 receptors  

(ligand-gated ion channels) have also been identified in the brain using 

immunohistochemistry and electrophysiological studies in rodents (Collo et al., 

1996; Vulcanova et al., 1996; Kanjhan et al., 1999).  Although both are found on 

parvocellular PVN neurones (Cham et al., 2006b; Li et al., 2010), only P1 have been 

confirmed in spinally-projecting neurones.  Adenosine inhibits activity in rat PVN 

neurones via both adenosine (P1) receptors and the adenosine triphosphate (ATP)-

sensitive potassium channel (KATP) in this study (Li et al., 2010). 

The G-protein coupled receptors melanocortin 3/4 can also be found in the PVN, 

shown to be involved in heart rate and blood pressure modulation, and mediating 

sympathetic outflow in rats (Kawabe et al., 2012; Li et al., 2012; Ward et al., 2011).   
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Both neuropeptide FF and neuropeptide VF are expressed in the PVN and excite 

neurones within both parvocellular and magnocellular regions of the PVN via 

inhibition of GABAergic signals in electrophysiological studies in rats (Jhamandas 

and MacTavish, 2003; Jhamandas et al., 2007).  However, their actions on spinally-

projecting neurones within the parvocellular area are unknown. 

Although the presence of a variety of neurotransmitters and receptors on the PVN 

is known, many of these studies lack specific evidence of a direct action on the 

preautonomic neurones in this area.   

 

1.4 Electrophysiological properties of PVN neurones 

1.4.1 Electrophysiological characterisation of PVN neurones 

Neurones within the paraventricular nucleus have not only been characterised by 

their anatomical positions and expression of neurotransmitters, but although 

through several electrophysiological studies.  The first of these studies was 

performed by Tasker and Dudek  (1991) with the development of patch-clamp 

electrophysiology techniques.  In this study Tasker and Dudek (1991) identified 

three electrophysiologically distinct types of PVN neurones; type I, type II and type 

III (Tasker and Dudek, 1991).  They showed that neurosecretory magnocellular 

neurones of the PVN, also termed “type I” neurones, express a rapidly inactivated 

(or “A-type”) potassium conductance (Sonner and Stern, 2005; Tasker and Dudek, 

1991).  These cells are larger than type II and type III neurones, similar to those 
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magnocellular neurones found in the supraoptic nucleus and exhibit phasic bursting 

patterns. 

Parvocellular neurones on the other hand (termed “type II” neurones) were shown 

to express a slowly inactivating delayed rectifier potassium conductance.  These 

cells are distinguishable not only by their electrophysiological characteristics, but 

are also morphologically different from their magnocellular counterparts; smaller 

and with more complex process.  At the time of this study different populations of 

neurones based on morphology and firing patterns were observed within the 

parvocellular region itself (Tasker and Dudek, 1991).  Later these were shown to be 

neurosecretory (exhibiting electrophysiological properties similar to those cells 

found in the magnocellular area) and preautonomic neurones.  Luther and Tasker 

(2000) later showed that the differences observed between the ‘type II’ 

parvocellular and ‘type I’ magnocellular cells may be due to differential expression 

of voltage-gated potassium and calcium currents (Luther and Tasker, 2000).  Further 

studies have since shown that medulla-projecting neurones from the parvocellular 

area show strong inward rectification and “A-type” potassium conductance (Sonner 

and Stern, 2005; Stern, 2001) and spinally-projecting neurones show a slowly 

inactivating potassium conductance (Barrett-Jolley et al., 2000).  

Interestingly, due to the constant tonic influence of GABAergic innervations, 

neurones within the PVN are quiescent in vivo (Badoer et al., 2002; Martin and 

Haywood, 1993; Martin et al., 1991; Park and Stern, 2005).  During 

electrophysiological experiments in brain slice, however, this tonic inhibition is not 

seen, and spontaneous action potentials are regularly observed (Stern, 2001; 
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Womack et al., 2007).  This implies that tonic inhibition may be lost in vitro during 

the preparation of brain slices, potentially by cutting off GABAergic innervations 

responsible for inhibition.  Importantly, evidence suggests this inhibitory control is 

absent in times of stress and cardiovascular disease (Park et al., 2009).   

1.4.2 Ion channels 

Ion channels are membrane proteins found on the plasma membrane of cells, 

responsible for setting membrane potential and shaping action potentials.  They do 

so by allowing the flow of ions through a pore which is formed in the middle of an 

assembly of protein subunits.  Opening of ion channels can be triggered by a 

number of stimuli, i.e.; voltage changes across the membrane (voltage-gated ion 

channels), the binding of a ligand (ligand-gated ion channels) or by mechanical 

stress (mechanically gated ion channels).  Furthermore, many neurotransmitters 

can modulate ion channels within neurones, and the activation of ion channels can 

trigger the release of neurotransmitters.  Activating an ion channel typically leads to 

a conformational change, opening the channel and allowing the flow of ions (e.g. K+, 

Na+, Ca2+, Mg2+, Cl-).  Due to their ability to alter membrane potential and therefore 

cell excitability, it is important to know what ion channels are present and their role 

in the PVN.  Furthermore, evidence suggests that disruption of ion channel 

regulation can lead to increased neuronal excitability of presympathetic neurones, 

potentially contributing to sympathetic over activity (Sonner et al., 2011). 
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1.4.2.1 Potassium channels 

Potassium channels are the most abundant type of ion channel, and are considered 

the regulators of excitability; controlling action potential characteristics, hormone 

and neurotransmitter release and membrane potential.  Four major classes exist; 

voltage-activated potassium channels (KV), calcium-activated potassium channels 

(KCa), inwardly rectifying potassium channels and two-pore potassium channels 

(Alexander et al., 2011; Goldstein et al., 2005; Gutman et al., 2005; Kubo et al., 

2005; Wei et al., 2005). 

Evidence suggests the differing electrophysiological properties of PVN neurones 

discussed may be due to the differential expression of different Kv channels (Luther 

and Tasker, 2000).  Around 40 KV channels have been identified (Gutman et al., 

2005), with many known to modulate neuronal excitability in most neuronal 

populations (Rudy et al., 1999; Serodio and Rudy, 1998).  A variety of KV channels 

have been shown to be present in the PVN.  Patch-clamp recordings of retrogradely 

labelled PVN-RVLM neurones in rat brain slices identified an “A-type” potassium 

current, identified as an important mechanism for controlling neuronal excitability 

with these neurones.  Further immunohistochemical evidence suggested that this 

current is mediated by KV1.4 and/or KV4.3 channel subunits (Sonner et al., 2008; 

Sonner and Stern, 2007; Sonner and Stern, 2005).  In identified spinally-projecting 

neurones KV channel currents have been shown to be slowly inactivating (Barrett-

Jolley et al., 2000).  Immunoreactivity for KV1.2 has also been identified within rat 

PVN neurones (Chung et al., 2001).  Furthermore, KV1.1/1.2 channels have been 

shown to be downstream effectors of nitric oxide on synaptic GABA release to 
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identified spinally-projecting neurones of the rat PVN (Yang et al., 2007).  In a study 

using a combination of patch-clamp electrophysiology to record the type of 

neurone from the PVN and single cell reverse-transcriptase polymerase chain 

reaction (RT-PCR) in rats, expression profiles of KV channels were identified.  This 

study showed the expression of KV1.2, KV1.3, KV1.4, KV4.1, KV4.2 and KV4.3 in both 

types of neurones, with some co-expression seen.  KV4.2 and KV4.3 expression 

higher in type I neurones, identifying molecular mechanisms for the differences in 

cell types  (Lee et al., 2012).   

KCa channels are also abundantly found in the brain and are important regulators of 

neuronal excitability (Faber and Sah, 2003).  This family consists of 3 groups, large-

conductance (BK), intermediate-conductance (IK) and small conductance channels 

(SK) (further information regarding nomenclature and mechanism is provided in 

Chapter 3).  Both BK, which is voltage dependant as well as activated by Ca2+, and SK 

have been identified in the PVN and are known to modulate firing within this area 

(Kohler et al., 1996; Sausbier et al., 2006).  Patch-clamp electrophysiology 

recordings revealed that these channels modulate the firing frequency of PVN-

RVLM neurones in rats; inhibition of these channels leads to increased excitability  

(Chen and Toney, 2009).  Further in vivo investigation demonstrated a role for the 

SK channels in regulating sympathetic nerve activity (SSNA and RSNA) and blood 

pressure in rats.  By using targeted injections into the PVN of pharmacological 

inhibitors of SK they were able to induce increases in SNA, heart rate and blood 

pressure (Gui et al., 2012).  Although this investigation compliments the  in vitro 

findings of Chen et al  (2009), it is not possible to establish the neuronal population 

responsible for the responses observed.  Recent evidence does implicate a role for 
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spinally-projecting neurones however, as patch-clamp recordings show that SK 

channel activity is reduced in hypertension, modulated by casein kinase II 

upregulation.  This decreased functionality of SK contributes to the hyperactivity of 

these neurones (Pachuau et al., 2014).    Furthermore, to add complexity to the role 

of SK, several investigations have suggested functional couplings to non-selective 

cation channels such as the transient receptor potential (TRP) channels (Earley, 

2011; Gao and Wang, 2010).  A role for SK in the parvocellular PVN will be further 

discussed in Chapter 3. 

In a study by Li et al (2010) ATP-sensitive potassium (KATP) channels were identified 

in spinally-projecting neurones of the rat PVN.  Using patch-clamp electrophysiology 

this group demonstrated that adenosine results in the inhibition of excitability of 

this population of neurones (Li et al., 2010).  Furthermore, they found effect is 

mediated through adenosine receptors (discussed above), resulting in the opening 

of KATP and altered excitability.  These findings were supported by a computational 

model and patch-clamp recordings from my group (Lewis et al., 2010), 

Finally, the g-protein coupled inwardly rectifying potassium (GIRK) channels have 

also been shown to be widely distributed throughout the rodent brain.  These 

channels are activated by several neurotransmitters and are important in synaptic 

inhibition (Hille, 1994).  GIRK channels mediate regulation of neuronal excitability 

through activation of various g-protein coupled receptors. Three subunits of GIRK 

exist; GIRK1, GIRK2 and GIRK3; all of which have shown to be present in the PVN 

using immunohistochemistry and in situ hybridisation (Saenz del Burgo et al., 2008).  

In fact, GIRK1 has been shown to be expressed presynaptically in the PVN, 
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potentially having a role in presynaptic inhibition of neurotransmitter release in 

these neurones (Morishige et al., 1996).  

1.4.2.2 Sodium channels 

Sodium channels are generally much less diverse than potassium channels.  There 

are a few types of channel selective for sodium, the most common being voltage-

gated sodium channels (NaV), there are also epithelial sodium channels (EnaC) and 

finally sodium-leak channels, which are structurally part of the NaV family, however 

they are non-selective and voltage-insensitive.   

NaV channels are widely distributed in excitable cells such as neurones (Yu and 

Catterall, 2003).  Their primary function is to generate and propagate an action 

potentials (Catterall et al., 2005a).  Nine subtypes of NaV have been identified in 

mammals (NaV1.1-1.9) with four α subunits found in the central nervous system; 

type I, II, III and IV (IV is expressed in humans).   

NaV channels are expressed in the brain (Gordon et al., 1987), with several studies 

demonstrating expression patterns in the rodent CNS focussing on mRNA 

expression and immunohistochemical techniques (Black et al., 1994; Westenbroek 

et al., 1989; Whitaker et al., 2001).  mRNA expression of type I, II, III have been 

shown in the hypothalamus, including the PVN.  The spatial distribution pattern for 

each type of NaV were shown to be very different, with type I being very weak, and 

type II and type III much stronger (Black et al., 1994; Furuyama et al., 1993).  These 

results were similar to immunohistochemical patterns shown (Westenbroek et al., 

1989; Whitaker et al., 2001).  In addition, NaV1.2 was shown to be predominantly 



21 
 

expressed on unmyelinated fibres in the hypothalamus, preferentially localised to 

the cell bodies (Jarnot and Corbett, 2006). 

Very few studies have been performed investigating the presence of ENaC in the 

PVN (Teruyama et al., 2012; Wang et al., 2010).  In situ hybridisation shows 

incredibly weak immunoreactivity for ENaC subunits In the parvocellular region 

compared to the magnocellular region of the rat PVN (Wang et al., 2010). 

1.4.2.3 Calcium channels 

Calcium channels found on the plasma membrane are voltage-gated ion channels 

(CaV) and are considered ubiquitous.  There are 10 cloned α subunits (pore-

forming), which are divided into three categories; 1. High-voltage activated 

dihydropyridine-sensitive L-type (CaV1.x) channels, 2. High-voltage activated 

dihydropyridine-insensitive (CaV2.x) channels and 3. Low-voltage activated T-type 

(CaV3.x) channels, all expressing a variety of subunits (Catterall et al., 2005b). 

Although L-type CaV channels have been identified in the PVN using 

immunohistochemical techniques in rats (Chin et al., 1992; Hetzenauer et al., 2006), 

the predominant CaV current identified in parvocellular cells is the T-type Ca2+ 

current (Luther and Tasker, 2000; Tasker and Dudek, 1991).  T-type Ca2+ channels 

modulate neuronal function via regulating Ca2+ influx, this action then leads to 

depolarisation of the cell and a burst of action potentials.  Due to this action these 

channels are important in regulating action potential generation, influencing 

pacemaker and bursting behaviour (Perez-Reyes, 2003; Perez-Reyes, 1999).  In 

further studies patch-clamp recordings were made in retrogradely labelled 

neurosecretory and non-labelled non-secretory parvocellular cells of rat PVN, 
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confirming that the non-secretory parvocellular cells generate a low-threshold spike 

(LTS) via T-type Ca2+ channels (Luther et al., 2002; Sonner and Stern, 2007; Stern, 

2001).  These studies confirmed these different groups of cells in the parvocellular 

area exhibit different membrane electrical properties.  In addition, more recent 

studies involving a combination of RT-PCR, immunohistochemistry and patch-clamp 

recordings have indicated that CaV3.1 is the major subtype of channel expressed in 

preautonomic cells mediating the T-type Ca2+ dependant LTS (Lee et al., 2008).  

Moreover, it has been suggested in preautonomic PVN neurones that balance 

between the “A-type” K+ and T-type Ca2+ currents consistent with a shift in 

expression of KV4.3 and CaV3.1 results in enhanced neuronal excitability in 

hypertensive rats (Sonner and Stern, 2007).  These results provide clear evidence 

that modulation of these channels is vital for normal activity of preautonomic PVN 

neurones.  

1.4.2.4 Transient receptor potential channels 

The transient receptor potential (TRP) group of ion channels are a large superfamily, 

consisting of 28 homologs in mammals.  These are grouped roughly by common 

structure into seven subfamilies; TRPC (canonical; seven members), TRPV (vanilloid; 

six members), TRPA (ankyrin; 1 member), TRPM (melastatin; eight members), 

TRPML (mucolipin; 1 member), TRPP (polycystin; two members) and TRPN (NOMPC; 

only seen so far in non-mammals) (Nilius and Owsianik, 2011). TRPs are generally 

non-selective cation ion channels, permeable to both monovalent and divalent 

cations in different ratios.  In addition, some members of this superfamily can also 

be trafficked from internal membranes to the plasma membrane. TRPs usually 



23 
 

consist of six membrane spanning domains with intracellular N and C termini, and 

show a variety of gating properties, although non show particular voltage 

sensitivity.  The TRPC group act mainly as store operated channels, opening with a 

decrease in intracellular Ca2+.  TRPM’s are responsible for various 

sensor/homeostatic roles, including exhibiting temperature sensing properties.  

TRPVs are described as the mechanosensitive group, although they are activated by 

a number of physical and chemical stimuli (Clapham, 2003; Clapham et al., 2001; 

Nilius and Owsianik, 2011).   

Non-selective cation currents have been observed in the rodent PVN; implying that 

non-selection cation channels, such as one or more of the TRPs, may be present.  

For example, it is known that angiotensin II depolarizes parvocellular neurons in 

paraventricular nucleus through modulation of putative non-selective cationic and 

potassium conductances in rats (Latchford and Ferguson, 2005) and leptin has been 

shown to depolarise PVN neurones, also indicative of non-selective cation 

conductance (Powis et al., 1998).   

Using a variety of techniques several TRPs have been specifically identified in the 

PVN, although many of these studies do not include functional characterisation of 

the channels observed.  RT-PCR has shown both TRPC4 and TRPC5 mRNA is 

expressed within the PVN (Fowler et al., 2007).  Using a radiolabelled vanilloid 

agonist the presence of TRPV1 receptor protein was identified, although very 

weakly, in the PVN of mice (Roberts et al., 2004).  Patch clamp studies in rat brain 

slices have revealed TRPV1 receptor activation in the PVN induces glutamate 

release and postsynaptic firing (Li et al., 2004b).  Furthermore, 
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immunohistochemical studies show that TRPV1 is co-localised with liver-related 

PVN neurones (Zsombok et al., 2011).    Immunohistochemical techniques in the rat 

brain have identified the TRPV2 receptor in the magnocellular region of the PVN 

with some staining also observed in the posterior parvocellular region and dorsal 

horn (Nedungadi et al., 2012).  This study suggests that TRPV2 may have a role in 

regulating body fluid homeostasis, autonomic function and metabolism; although 

no functional studies have been carried out.  Both TRPM4 and TRPM5 have been 

identified in magnocellular but not parvocellular regions of the PVN by confocal 

immunofluorescence in the rat, with differential expression dependant on the area 

of the neurone (Teruyama et al., 2011).   

It is evident that TRPs are necessary for cell homeostasis; they are of particular 

importance due to their role in Ca2+ regulation (reviewed by (Clapham, 2003)).  As 

the PVN is involved in maintaining homeostasis itself, these channels may be of 

importance in sensing environmental changes and altering excitability of 

preautonomic neurones accordingly.  These channels with be discussed in further 

detail in Chapter 2 and 3). 

1.4.2.5 Others 

A variety of additional ion channels exist, which have varying functions in the cell 

and may be present within this area of the brain, each contributing to the resting 

membrane potential and with the ability to modulate firing activity. 

Surprisingly, although dogma states that anion channels, such as chloride channels, 

would be present in the plasma membrane of all cells, no studies have been 
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reported on their presence in the PVN.  Chloride channels are functionally and 

structurally diverse with a range of functions such as cell volume regulation, 

regulation of pH and cell membrane potential control.  As one of the main functions 

of these channels is to regulate excitability of neurones it is likely that chloride 

channels would be present with the PVN (Hille, 1986).  

Acid-sensing ion channels (ASICs) are proton-gated voltage-insensitive cation 

channels, responsible, as their names suggests, for sensing pH.  Immunoreactivity 

has been shown to be high in the rat PVN for ASIC3, suggesting an acid sensing role 

for neurones within this area (Meng et al., 2009).   

Pacemaker activity of PVN hypothalamic neurones is modulated by a 

hyperpolarisation activated current (Ih) (Shirasaka et al., 2007).  A family of 

channels, hyperpolarisation-activated, cyclic nucleotide-gated (HCN) channels, has 

been identified as responsible for this pacemaker activity in neuronal cells.  A study 

by Monteggia et al (2000) identified four members of this family HCN1-4; verifying 

expression patterns throughout the rat brain.  All members of this family were 

shown to be present within the PVN; with expression profiles for mRNA ranging 

from weak for HCN2 to extremely strong for HCN3. 

Although some excellent reviews have been published discussing receptors and 

neurotransmitters within the PVN (Nunn et al., 2011; Pyner, 2009; Pyner, 2014), 

nothing has been written summarising the ion channels and their functions in this 

area.  I have therefore summarised the findings of the existing literature in Table 2 

and will discuss some of these channels in more depth in this thesis.   
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Table 2 Summary of the ion channels identified in the PVN and their known roles 
Ion channel family General Role Subtype Identified Method Relevance Reference 

Potassium channels 

KV 

Voltage-activated 
 

Controlling action potential 
characteristics, modulate 

neuronal excitability 

KV1.1 and KV1.2 Immunohistochemistry, 
patch clamp 
electrophysiology 

Downstream effectors of NO 
on synaptic GABA release 

(Chung et al., 2001; Yang et al., 
2007)  

KV1.4 and KV4.3 Immunohistochemistry  “A”-type K
+
 current (Sonner et al., 2008; Sonner 

and Stern, 2007; Sonner and 
Stern, 2005) 

KV1.2, KV1.3, KV1.4, 
KV4.1, KV 4.2 and 
KV4.3 

Patch clamp 
electrophysiology and RT-PCR 

↑ expression of KV4.2 and 
KV4.3 in ”type I” neurones 

(Lee et al., 2012) 

KCa 

Calcium-activated 
 

Regulate neuronal 
excitability. 

Contribute to after-
hyperpolarisation 

 

BK Immunohistochemistry Voltage-dependant (Sausbier et al., 2006) 

SK1, SK2 and SK3 Immunohistochemistry, 
patch-clamp 
electrophysiology, targeted in 
vivo injections 

Inhibition leads to ↑ 
excitability, ↑RSNA, ↑SSNA 
↑HR, ↑BP 
Decreased functionality 
↑hyperexcitability 

(Chen and Toney, 2009; Gui et 
al., 2012; Kohler et al., 1996; 
Pachuau et al., 2014) 

KATP 
ATP-sensitive 

Modulate excitability - Patch-clamp 
electrophysiology, 
computational modelling 

Adenosine ↓excitability via 
adenosine receptors 

(Lewis et al., 2010; Li et al., 
2010) 

GIRK 
g-protein coupled 
inwardly rectifying 

Synaptic inhibition through 
activation of GPCRs 

GIRK1, GIRK2 and 
GIRK3 

Immunohistochemistry, in 
situ hybridisation 

Role in presynaptic inhibition of 
neurotransmitter release? 

(Morishige et al., 1996; Saenz 
del Burgo et al., 2008; Shirasaka 
et al., 2007) 

Sodium channels 

NaV 

Voltage-activated 
Generate and propagate 

action potentials 
Type I, type II and 
type III 

Immunohistochemistry, RT-
PCR 

Expression profiles: 
Type I weak  
Type II and III strong 

(Black et al., 1994; Furuyama et 
al., 1993; Jarnot and Corbett, 
2006; Westenbroek et al., 1989; 
Whitaker et al., 2001) 

ENaC 
Epithelial sodium 

channel 

Sodium homeostasis - In situ hybridisation Weak immunoreactivity (Teruyama et al., 2012; Wang et 
al., 2010) 

Calcium channels 

CaV 

Voltage-activated 
Involved in muscle 

contraction and excitation 
L-type (CaV1.x) Immunohistochemistry - (Chin et al., 1992; Hetzenauer 

et al., 2006) 
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of neurones 
 

T-type (CaV3.x) 
(CaV3.1) 

Patch clamp 
electrophysiology, RT-PCR, 
immunohistochemistry 

Activation leads to 
depolarisation, regulates action 
potential generation, bursting 
behaviour and pacemaker 
activity 
Generate low-threshold spike. 

(Lee et al., 2008; Luther et al., 
2002; Luther and Tasker, 2000; 
Perez-Reyes, 2003; Perez-
Reyes, 1999; Sonner and Stern, 
2007; Stern, 2001; Tasker and 
Dudek, 1991) 

Transient receptor potential channels 

TRPC 
Canonical  

Store-operated 

Calcium homeostasis, open 
with ↓ Ca

2+
 

TRPC4 and TRPC5 RT-PCR - (Fowler et al., 2007) 

TRPV 
Vanilloid 

(see Chapters 3 and 4) 

Mechanosensitive and 
homeostatic roles 

TRPV1 
 
 
 
TRPV2 
 
 
TRPV4 

Radiolabelling, patch clamp 
electrophysiology 
 
 
Immunohistochemistry 
 
 
Immunohistochemistry, 
Western blot 

Activation leads to glutamate 
release and postsynaptic firing 
Co-localised with liver-related 
neurones 
Regulates body fluid 
homeostasis, autonomic 
control and metabolism? 
↑ expression contributes to 
inappropriate vasopressin 
release in cirrhosis 

(Li et al., 2004b; Roberts et al., 
2004; Zsombok et al., 2011) 
 
 
(Nedungadi et al., 2012) 
 
 
(Carreno et al., 2009) 

TRPM 
Melastatin 

(see Chapter 3) 

Sensor/homeostatic roles, 
exhibit temperature 
sensing properties 

TRPM4 and 
TRPM5  

Confocal 
immunofluorescence 

Differential expression 
dependent upon area of 
neurone 

(Teruyama et al., 2011) 

Others 

ASICs 
Acid-sensing 

pH sensing ASIC3 RT-PCR, Western blot - (Meng et al., 2009) 

HCN 
Hyperpolarisation-
activated, cyclic-
nucleotide-gated 

Modulating pacemaker 
activity 

HCN1-4 RT-PCR Hyperpolarisation activated 
current responsible for 
pacemaker activity 

(Monteggia et al., 2000; 
Shirasaka et al., 2007) 
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1.5 Functional role of the PVN  

Extensive information has been acquired on the projections and influences on the 

autonomic nervous system of the presympathetic neurones of the PVN, with clear 

evidence suggesting altered function during cardiovascular disease (Floras, 2009; 

Patel, 2000).  Evidence also suggests that the PVN has multiple and diverse roles, 

including involvement in stress, circadian rhythm and thermoregulation (for review 

see (Nunn et al., 2011)). 

1.5.1 Role of the PVN in cardiovascular control 

Due to their influence on the SNS the neurones of the PVN have been implicated in 

the control of the cardiovascular system in various ways, such as; regulating the 

cardiac sympathetic afferent reflex (Zhong et al., 2008a), blood volume regulation 

(Lovick et al., 1993), circadian regulation of blood pressure (Cui et al., 2001) and the 

cardiovascular response to stress (Jansen et al., 1995a).  Stimulation of the PVN  in 

rodents (via electrical or pharmacological means) in a number of studies has 

resulted in rapid rises in heart rate, blood pressure and RSNA (Duan et al., 1997; 

Kannan et al., 1989; Kawabe et al., 2009; Martin et al., 1993; Martin et al., 1991; 

Schlenker et al., 2001; Zhang et al., 1997). These parameters appear to be 

fundamentally regulated by a careful balance of the neurotransmitters GABA, 

glutamate and NO in the PVN as discussed above (Kawabe et al., 2012; Martins-

Pinge et al., 2012).   

Importantly studies in humans, sheep and rodents suggest that an increase in 

sympathetic drive, combined with a dysregulation of the baroreceptor reflex is 
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linked to an increased incidence in cardiovascular disease and heart failure (Floras, 

2009; Grassi et al., 2003; Patel, 2000; Ramchandra et al., 2013;).  In these cases 

elevated SNA has been linked to a combination of loss of nNOS expression, reduced 

GABA sensitivity of PVN neurones and an increase in glutamate/glutamate 

sensitivity (Carillo et al., 2012; Li et al., 2003c; Zhang et al., 2002a; Zhang et al., 

1998).  In support of this, inhibition of the PVN ameliorates the elevated SNA of 

spontaneously hypertensive rats (Allen, 2002; Itoi et al., 1991).  Furthermore, in vivo 

studies in rats suggest a reduction in the inhibitory actions of GABA leads to the 

increase in RSNA and BP seen in heart failure.  Injections of the GABA agonist 

muscimol showed decreased effectiveness in reducing the RSNA and BP of rats with 

heart failure compared to control rats (Zhang et al., 2002a).  In another study, 

cardiac SNA and baroreceptor control of cardiac SNA were restored in sheep given a 

intracerebroventricular infusion of the NO donor sodium nitroprusside.  This study 

summised that a loss of inhibitory NO may be crucial to the increased sympathetic 

drive seen in heart failure (Ramchandra et al., 2014).   

Due to the location, integration, and cardiovascular role of parvocellular neurones 

of the PVN they could be considered a prime target for potential therapeutics 

(Ferguson et al., 2008).  However, there is currently a distinct lack of integration of 

in vitro studies detailing the pathways and ionic mechanisms responsible for the 

cardiovascular control they demonstrate in vivo.   

1.5.2 Role of the PVN in regulation of metabolism and thermogenesis 

Body temperature is tightly controlled, with small changes in core body 

temperature resulting in several serious physiological issues (recently reviewed by 
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(Gomez, 2014)).  In rats, body temperature is raised by the activation of 

interscapular brown adipose tissue (BAT) which increases thermogenesis, and tail 

artery vasoconstriction, which reduce heat loss, mediated by the SNS.  Efferent 

projections from the dorsal and medial parvocellular PVN to BAT have been 

identified using pseudorabies viral tracing in Siberian hamsters (Bamshad et al., 

1999). The median and medial preoptic nuclei are known to receive thermal inputs, 

sending projections directly to the RPa and via the DMH-PVN projections to 

influence BAT sympathetic activity (ter Horst and Luiten, 1986; Thompson et al, 

1996; Zaretskaia et al, 2008; Zhang et al 2011).  A role for PVN neurones in 

regulation of metabolism and thermogenesis can be inferred from these 

projections, and further studies show increased sympathetic drive to BAT via 

microinjection of excitatory glutamate into the PVN of rats (Amir, 1990; Yoshimatsu 

et al., 1993).  However, Inenaga et al (1987) were the first to show the presence of 

thermosensitive neurones in the PVN itself.  Using patch-clamp electrophysiology in 

rat brain slice both cold-sensitive and heat-sensitive neurones were identified in the 

PVN (Inenaga et al., 1987).  There have since been several studies demonstrating a 

role for the PVN in thermoregulation and thermogenesis (Cham and Badoer, 2008; 

Cham et al., 2006a; Chen et al., 2008; Leite et al., 2012). 

Poly-synaptic tracing using the pseudorabies virus in rats identified spinally-

projecting neurones of the PVN specifically as being directly involved in 

thermoregulation (Smith et al., 1998).  The function of this pathway remains 

unknown, although sympathetic outflow via the PVN is hypothesised to affect the 

tails vascularisation, resulting in heat loss.  Furthermore, exposure to heat has been 

shown to activate spinally-projecting neurones of the PVN, increasing c-fos 
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expression in these neurones (Bratincsak and Palkovits, 2004; Cham et al., 2006a). 

RVLM projecting preautonomic neurones from the PVN have also been shown to be 

activated upon heat exposure (Cham and Badoer, 2008).  In further studies, 

blockade of PVN neurones with lidocaine resulted in blunted RSNA, heart rate and 

blood pressure responses to heat stress, adding to evidence suggesting a 

thermosensing role within this region.  In addition, this group also show heat loss 

through skin dilation depends on an NO mechanism within the PVN (Leite et al., 

2012).  Furthermore, recent study showed a role for the PVN directly in 

thermogenesis (Cabral et al., 2012). Thyrotropin releasing hormone neurones (a 

neuropeptide necessary for cold-induced thermogenesis), located in the PVN, were 

were co-localised with c-fos under acute cold conditions, suggesting activation of 

these neurones (Cabral et al., 2012).  In addition, a study by Madden and Morrison 

(2009) showed an inhibitory role for preautonomic PVN neurones on BAT and slight 

decreases in SNA have been observed upon injection of the anoexigenic 

chlolecytokinin (Madden and Morrison, 2009; Yoshimatsu et al., 1992).   

Various studies using lesioning techniques and injections of various peptides into 

the nucleus results in either overeating and obesity, or reduced eating and anorexia 

(for review see (Leibowitz, 2007)).  These studies provide direct evidence that 

neurones within the PVN have a role in the control of food intake and metabolism.  

One such peptide is the adipocyte-derived hormone leptin, which is known to 

reduce body weight through an inhibition of food intake and an increase in energy 

expenditure.  ICV injection of leptin activates STAT3 phosphorylation in oxytocin 

neurones within the parvocellular PVN of rats.  This study concluded that oxytocin 

neurones within the PVN mediate the effects of leptin on body weight in diet 
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induced obese rats and may be important for body weight control in both obese 

and control animals (Perello and Raingo, 2013).  In a study by Jhanwar-Uniyal et al 

(1993), injections of neuropeptide-Y into the PVN stimulated feeding behaviour and 

specifically carbohydrate intake in rats (Jhanwar-Uniyal et al., 1993).  Furthermore, 

implants of steroid hormones such as corticosterone and aldosterone, into the PVN 

have stimulatory effects on carbohydrate and fat intake respectively (Tempel et al., 

1993).  

Increases in blood pressure, heart rate and SNA to metabolic tissues have been 

observed by several groups when using glucagon-like peptide-1 in rodents (GLP-1: a 

neuropeptide that is known to control feeding and drinking behaviour) agonists 

(Baraboi et al., 2011; Nunn et al., 2013; Yamamoto et al., 2002).  Independent of 

the route of administration in these studies, injection of the GLP-1 agonist, exendin-

4 produces increased c-fos response in the PVN and other brain regions in the 

rodent hypothalamus associated with sympathetic control, as well as in the medulla 

and spinal cord (Nunn et al., 2013; Yamamoto et al., 2002).   

Although evidence suggests a clear role of the preautonomic neurones in 

metabolism and thermoregulation, even linking thermosensing to cardiovascular 

control, little is known about how these processes occur.  The mechanisms 

responsible for thermosensation will therefore be explored in Chapter 3.   

1.5.3 Role of the PVN in glucose control 

Central glucose sensing is incredibly complex, involving different types of “glucose-

sensing” neurones, with glucose-excited and glucose-inhibited cells identified in the 
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hypothalamus.  In order to control glucose the brain receives input from various 

sensors such as the liver, carotid body and small intestine as well as glucose-sensing 

neurones within the brain itself (for review see (Levin, 2006)).  To further 

complicate this, glucose levels in the brain are vastly lower than circulating plasma 

levels, as a protective measure for neuronal cells (glucose concentration in the VMH 

has been reported to be ~20% of levels recorded in the blood (de Vries et al., 

2003)).  Due to these low levels found in the brain glucose-sensing neurones can be 

activated at low central glucose concentrations.  PVN spinally-projecting neurones, 

initially receiving signals from GABAergic neurones from the SCN, are able to control 

plasma glucose concentrations in the rat via sympathetic innervation of the liver 

(Kalsbeek et al., 2004).  The role of the PVN in glucose sensing has been 

controversial, with lesioning studie by Sakaguchi et al (1988) showing no differences 

in SNA to autonomic neurones innervating the brown adipose tissue when rats 

received microinjections of excitatory kainic acid (Sakaguchi et al., 1988).  A 

reduction in SNA in this study was, however, observed in VMH lesioned animals. In 

a further study following microinjection of glucose or insulin into PVN there was a 

brief, yet small response to both challenges.  Although the role of the PVN in 

glucose control was seemingly controversial at the time, later studies provide 

indirect evidence of this role by way of increased c-fos expression in the PVN in rats 

given intracarotid and peripheral injections of glucose (Carrasco et al., 2001; Dunn-

Meynell et al., 1997).  Further direct evidence by way of electrophysiology recording 

from brain slice show modulation of firing activity in preautonomic neurones of the 

PVN by hypoglycaemia, potentially in part driven by inhibition of KATP (Lewis et al., 

2010).  In addition, a recent study in rats confirmed the presence of both glucose-
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inhibited and glucose-excited neurones at low concentrations of glucose within the 

parvocellular PVN (Melnick et al., 2011).  Although, surprisingly, this study ruled out 

a role for KATP channels, the mechanisms for this glucose-sensing still remain a 

mystery.   

1.5.4 Role of the PVN in blood volume 

Changes in blood volume are regulated separately from blood pressure.  Atrial 

stretch receptors sense changes in blood volume, expanding to accommodate any 

increase in volume with small changes in blood pressure. Small decreases in volume 

are dealt with by replenishing volume from splanchnic capacitance vessels 

(Greenway and Lister, 1974).  A reflex (Bainbridge reflex) increase in heart rate 

leading to changes in the blood volume has been observed following activation of 

volume receptors, allowing the body to maintain fluid balance.  Spinally-projecting 

PVN neurones in the rat have been suggested to be involved in the response to 

changes in blood volume in addition to their role in the regulation of blood pressure 

(Lovick et al., 1993; Lovick and Coote, 1989; Lovick and Coote, 1988).  Furthermore, 

in the rat, atrial stretch receptors were stimulated mechanically via insertion and 

inflation of a balloon placed at the junction of the superior vena cava and the right 

atrium.  Inflation of the balloon resulted in inhibition of RSNA and repetitive 

inflation activated neurones located in the parvocellular area of the PVN, indicated 

by increased c-fos expression using immunohistochemistry (Pyner et al., 2002).  This 

has also been shown to result in a reflex increase in heart rate and leads to diuretic 

and natriuretic responses dependant on the afferent neural projections from 

cardiac receptors in conscious dogs, effects shown to be absent in cardiac 
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dennervated animals (see Figure 1.2) (Fater et al., 1982). Further evidence shows 

activation of PVN neurones by targeted injections led to an increased pressor 

response, decreasing RSNA, and increasing splanchnic, adrenal and cardiac SNA.  

Interestingly, stimulation of neurones within the PVN using targeted injections at 

different sites, mainly located in the dorsal parvocellular region, led to an increase 

in RSNA in rabbits, which was reversed to a decrease by reducing the volume of 

injection (Deering and Coote, 2000).  These differences observed in RSNA activity 

when stimulating the PVN is interesting, and could be as a result of species 

differences between rabbits and rodents.  As many of these observations have been 

made by inducing stretch using implanted balloons in the branch of the vena cava 

and atrium, it is interesting to note the effects of removal of blood in rats has the 

same effects (Badoer et al., 1993).  Further studies by the same group, also showed 

increased expression of c-fos within the PVN in response to volume load, 

accompanied by a pressure change (Badoer et al., 1997), a result which was not 

observed to the same extent in rabbits with heart failure (Akama et al., 1998).   

This body of evidence strongly suggests that neurones within the parvocellular PVN 

have a clear role in blood volume regulation, and it has been implicated that these 

are the same neuronal projections that affect blood pressure and heart rate during 

heart failure. 

1.5.5 Role of the PVN in osmosensing 

Body fluid osmolality is usually regulated within a narrow range (~290-300 mOsm).  

Although this is controlled largely through regulation of kidney function several 

areas within the central nervous system work to sense and maintain osmolality.  In 
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particular, the area surrounding the third ventricle within the hypothalamus is 

particularly important for osmoregulation. Key areas identified to date include the 

SFO, OVLT, circumventricular organs, MPo and the PVN itself (Stocker and Toney, 

2005; Stocker et al., 2007; Toney et al., 2003).   

Previous studies in rodents show that application of hypertonic saline to the 

hypothalamus increases blood pressure (Bourque, 2008; Chen and Toney, 2001; 

Chu et al., 2010) whereas hypotonic challenge decreases SNA, blood pressure and 

heart rate (Bourque and Oliet, 1997).  This suggests that changes in osmolality 

affect the neurones projecting to the autonomic centers controlling the 

cardiovascular system (Nunn et al., 2011; Toney et al., 2003).  As osmotically 

sensitive projections exist from both the SFO and MPo to the PVN, a role for the 

neurons within the PVN itself in osmosensing has been widely discussed. A clear 

role has been established for the neuroendocrine vasopressin neurones within the 

magnocellular region and a potential for this role in the parvocellular population 

has been discussed (Bourque, 2008; Bourque and Oliet, 1997).  In a study by 

Yamashita et al (1988) altered excitability in mouse neurones throughout both 

regions of the PVN exposed to either NaCl or mannitol was observed (Yamashita et 

al., 1988).  This is a particularly important experimental design due to its use of 

mannitol to alter osmolality rather than solely NaCl, which will effect ionic 

concentrations.  This study suggests both the magnocellular and parvocellular 

regions have osmosensing capabilities.  Several investigations have shown that 

water deprivation increases expression of c-fos in pre-autonomic parvocellular 

neurones of the PVN (Arnhold et al., 2007; Gottlieb et al., 2006; Stocker et al., 

2004).  Although an increase in osmolality could be responsible for the increase 
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seen in c-fos, it is equally as possible this is due to changes in blood volume (as 

discussed above) or the effects of altering ion concentrations (such as sodium).  

Further studies showing increases in action potential firing of spinally-projecting 

parvocellular neurones with hypertonic saline provide further evidence for a 

osmosensing role, although the authors suggest this is due to an NaCl sensitivity 

rather than the change in osmolality (Chu et al., 2010).  This is a recurring issue for 

some investigations into central osmosensing and as a result the mechanisms 

responsible for a potential role for osmosensing of parvocellular PVN neurones are 

not yet clear.  Furthermore, it is important to identify whether these neurones 

themselves “sense” osmolality, or merely receive projections from the 

circumventricular organs in response to osmolality changes. Therefore the subject 

of osmosensing is investigated within this body of work, with particular focus on the 

parvocellular area of the PVN and specifically exploring changes in osmolality rather 

than ion concentrations (see Chapters 3, 4 and 6). 

1.5.6 Role of the PVN in the stress response 

“Stress” is a widely used term for when an animal responds to a challenge, whether 

this stressor is chemical or environmental in nature.  As an initial response to stress 

the “fight-or-flight” response is activated via the SNS (Jansen et al., 1995a).  

Cardiovascular responses have been recorded in a variety of “stressful” situations; 

in humans even the anticipation of exercise leads to increases in heart rate and 

blood pressure (Everson et al., 1996) and performing mental arithmetic elicits 

similar responses (for review see (Herd, 1991)).  In addition to this it has been 

clearly shown that simple laboratory routines, such as moving an animal’s cage, 
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result in increases of hormonal markers of stress, including plasma corticosterone, 

as well as elevated heart rate and blood pressure (Balcombe et al., 2004).  Although 

these pressor responses are normal in reaction to stressful stimuli, if this response 

becomes excessive it has been shown to result in pathological increases in blood 

pressure and heart rate (Folkow, 2001; Rozanski et al., 1999).  It is therefore 

important to understand how this stress response occurs and how this mechanism 

can lead to pathogenesis.   

The second, delayed response to stressful stimuli involves activation of the HPA 

axis, mediating glucocorticoid hormones (cortisol in humans and corticosterone in 

rodents).  Circulation of these hormones determines the longer lasting behavioural, 

neural and hormonal response to stress; the PVN is central to the HPA component 

of stress (Flak et al., 2014; Herman and Cullinan, 1997; Herman et al., 2002a; 

Herman et al., 2002b; Lucassen et al., 2014; Maguire, 2014; Myers et al., 2012; 

Tavares et al., 2009).  Chronic stress, however, leads to HPA axis dysregulation and 

an elevated sympathetic response  (Cerqueira et al., 2008).  Research suggests that 

both neuroendocrine and preautonomic neurones in the PVN elicit physiological 

responses to stress and as the PVN has been shown to exert such a powerful 

influence on the cardiovascular system; it seems likely that preautonomic neurones 

would be involved.  Several studies in rats support a role for the PVN in this 

function, with trans-synaptic viral labelling studies showing a direct coupling 

between the PVN and the stellate ganglion (supplying sympathetic innervation to 

the heart); a link for this nucleus in the stress response has been established 

(Jansen et al., 1995a).  Later, Duan et al (1997) showed that cardiovascular 

responses to stress in rabbits can be mimicked by electrical stimulation of the PVN 
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(Duan et al., 1997).  In addition, cardiovascular responses to restraint stress can be 

abolished by microinjection of a non-specific blocker of synaptic transmission 

directly into the rat PVN (Busnardo et al., 2010).  Furthermore, glutamatergic 

innervation of parvocellular PVN neurones expressing corticotropic-releasing 

hormone has been shown to be activated with chronic stress in rats (Flak et al., 

2009).   

Although a role for the parvocellular preautonomic neurones of the PVN in this 

response is likely, the mechanisms which lead to this elevation in sympathetic drive 

are so far unknown.  Neurotransmitters such as the tachykinins have been linked to 

the stress response in several studies (Culman and Unger, 1995; Herman and 

Cullinan, 1997; Jansen et al., 1995a) (reviewed by (Aguilera, 1994)).  The pathway 

and central areas responsible for this response are not yet known, but tachykinin 

receptors are present within the parvocellular PVN (Koutcherov et al., 2000a; 

Nakayama et al., 1992).  Furthermore, in vivo studies have shown that tachykinins 

are important for sympathetic nervous activity, and therefore cardiovascular 

control as well as endocrine and behavioural responses to stress (Culman and 

Unger, 1995).  Substance P, a tachykinin found at high levels in the PVN (Jessop et 

al., 1991),  has been shown to activate spinally–projecting neurones within the 

parvocellular PVN in electrophysiology rat brain slice experiments (Womack et al., 

2007).   

However, controversy still remains in this field, with some groups arguing that it is 

the DMH which plays an integral part to the stress response (DiMicco et al., 1995; 

Fontes et al., 2001b; Stotz-Potter et al., 1996).  In a study performed by Stotz-Potter 
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et al (1996) cardiovascular response to air jet stress was alleviated by microinjection 

of the GABAA antagonist, bicuculline, into the DMH, but not the PVN (Stotz-Potter et 

al., 1996).  It has therefore been suggested that these observed differences may be 

due to the form of stress used, or the methodology used, as there is some 

discussion as to the role of GABA in this function (Womack et al., 2007). 

The topic of the function of the PVN in the stress response is obviously a 

complicated, yet interesting one.  I will therefore discuss this further in Chapters 7 

and 8.  

1.5.7 Role of the PVN in circadian rhythm 

Circadian rhythm is mainly controlled by the hypothalamus; of particular 

importance is the SCN.  The SCN is known to be the primary circadian pacemaker in 

mammals, and has been shown to express several clock gene products (Reppert and 

Weaver, 2002; Tei et al., 1997).  Using electrophysiological studies it has been 

shown that neurones in this area have cyclically changing membrane potentials 

which allow general changes in activity on a 24 hour rhythm (Belle et al., 2009; 

Brown and Piggins, 2007).  As described previously, the SCN has excitatory and 

inhibitory projections to both neuroendocrine and autonomic regions of the PVN.  

(Cui et al., 2001; Hermes et al., 1996; Kalsbeek et al., 2008).   

Several studies have shown that secretion of the stress hormone corticosterone 

involves preautonomic neurones within the PVN projecting to the IML, as well as 

the HPA axis.  These projections have been shown to determine daily changes in 

sensitivity of the adrenal gland to ACTH (Buijs et al., 1999; Kalsbeek et al., 1996; 



41 
 

Kaneko et al., 1980).  Furthermore, in a study performed by Kalsbeek et al (2000) 

bilateral injection of the GABA antagonist bicucullin into the rat PVN prevents light-

induced inhibition of the hormone melatonin.  In this study they concluded that the 

SCN regulated melatonin release via their GABAergic projections to the PVN 

(Kalsbeek et al., 2000).  It was also found that lesioning the PVN results in a lower 

night-time level of melatonin, whereas SCN lesion results in permanently high levels 

of melatonin.  This study is supported by the work of Cui et al (2001), who showed 

subsequent to SCN stimulation identified spinally-projecting neurones of the PVN 

were inhibited by GABA in an electrophysiological study in rat brain slices.  These 

results combined support a role for the PVN in setting circadian rhythm (reviewed 

by (Buijs et al., 2003)).  In addition, recent work by Kalsbeek et al (2008) showed 

activation of the PVN by glutamatergic agonists or GABAergic antagonists led to 

hyperglycaemia.  In this work it was shown that GABAergic and glutamatergic 

innervations of the preautonomic neurones in the PVN from the SCN impact on the 

circadian control of plasma glucose via sympathetic projections to the liver 

(Kalsbeek et al., 2008).   

Studies have also shown that the 24 hour cyclic changes observed in membrane 

potential and hormonal levels are paralleled by changes in rodent heart rate (Nunn 

et al., 2013).  Human blood pressure follows a circadian rhythm being lower at night 

and rising again in the morning, just before waking (Kawano, 2011; Millar-Craig et 

al., 1978).  Interestingly, in some cases of hypertension, as well as an elevation in 

blood pressure, disturbed circadian patterns of blood pressure have also been 

observed (Head and Lukoshkova, 2008).  In fact, in several studies blood pressure 
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has failed to decrease as is usual during night-time periods (Pickering, 1990; 

Pierdomenico et al., 2014; Verdecchia et al., 1995).   

With this combined knowledge it has therefore been speculated that preautonomic 

neurones within the PVN may play a role in setting the circadian control of 

cardiovascular parameters such as blood pressure and heart rate.  The role of the 

PVN in circadian rhythm is discussed further in Chapter 7.    

1.6 Aims 

There are several aims to this body of work studying the paraventricular nucleus.  

Firstly, to better understand the role of the parvocellular cells within this nucleus, it 

is important to characterise the ion channels present and their function using a 

combination of patch-clamp electrophysiology, calcium imaging, computer 

modelling and immunofluorescence techniques.  Once this has been achieved, this 

knowledge can be used to see how this translates in vivo by recording 

cardiovascular parameters.  Secondly, the role of the PVN in relation to stress is 

somewhat controversial, therefore this role will be further explored using lesioning 

and telemetry techniques in vivo.  
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2 Methods 

2.1 Animals 

CD1 mice and Wistar rats were purchased from Charles River (UK), and kept under 

standard 12hr/12hr light/dark conditions with unlimited access to water and normal 

chow diet.  All animals were sacrificed by Schedule 1 methods, unless otherwise 

stated. All experiments were approved by the Home Office, UK. 

2.2 Immunofluorescence 

2.2.1  Immunofluorescence preparation 

Animals were anaesthetised with an intraperitoneal (IP) injection of pentobarbitone 

sodium 20% (Pentoject, AnimalCare, UK).  Hind limb withdrawal reflex was then 

checked in order to determine if the animal was fully anaesthetised. An incision was 

made laterally down the body.  Using blunt dissection and cutting through the 

ribcage the heart was exposed and the right atrium was cut.  The animals were then 

perfused with PBS intracardially until the circulatory system was completely flushed 

through.  This was followed by perfusion of 4% paraformaldehyde (PFA) to fix the 

tissues.  Once fixed, the animals were decapitated and the brain was carefully 

removed.  The brains were subsequently postfixed using 4% PFA and stored in the 

fridge overnight at 4oC.  They were then transferred to a 30% sucrose solution to 

dehydrate the tissue until being sliced on a cryostat.  
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2.2.2 Sectioning 

Tissues were embedded in OCT mounting medium (Thermo Scientific, UK) and 

frozen on a chuck in a Leica cryostat at around -27oC. Sections were cut to 14μm 

thickness and then placed on a Superfrost slide (Thermo Scientific, UK).  Slides were 

kept at -80oC until use.  

2.2.3 Staining protocol 

14µm cryostat sections were removed from storage at -80oC left at room 

temperature for 10 minutes to air dry and warm up.  Slides were then washed for 5 

minutes with PBS and subsequently blocked for 1 hour at room temperature in 

blocking solution (PBS 0.25% Triton X-100 and 10% Donkey serum).  Sections were 

then incubated overnight at 4oC with the appropriate primary antibody diluted in 

blocking solution (details below). After incubation overnight the slides were then 

washed three times for 15 minutes in PBS.  They were then incubated in the dark 

for 1 hour at room temperature with secondary antibody diluted in blocking 

solution (details below).  Sections were then washed a further three times for 15 

minutes in the dark and mounted with VECTASHIELD mounting medium with DAPI 

(Vector laboratories, UK), left to air dry, sealed and stored at 4oC in the dark.   

2.2.4 Antibodies 

In order to show the presence of the TRPV4 channel within the PVN 

immunofluorescence was performed using the primary antibody for TRPV4 (1:300; 

Abcam, UK), and secondary antibody anti-rabbit CY3 raised in goat (1:300; Abcam, 
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UK) and blue DAPI nuclei staining using VECTASHIELD mounting medium with DAPI 

(Vector laboratories, UK).  Negative controls involved primary antibody omission, 

with the addition of the secondary antibody anti-rabbit CY3 raised in goat (1:300; Ex 

548 nm; Em 561 nm; Abcam, UK).  Low magnification images were collected with 

x10 Nikon plan Fluor dic L/N1 and x20 Nikon plan Fluor objectives limited through a 

DAPI filter set (Ex 365 nm with 30 nm bandpass; Em 440 nm with 40 nm bandpass) 

and TRITC filter set (Ex 535 nm with 36nm bandpass; Em 590 with 34 nm bandpass) 

mounted on a Nikon TE2000 microscope (Nikon, UK).   

For confirmation of loss of the neurokinin-1 (NK1) receptor within the PVN, 

immunofluorescence was performed using primary antibody anti-rabbit Neurokinin-

1 receptor (1:500; Abcam, UK) combined with the secondary antibody donkey anti-

rabbit Dylight 594 (1:2000; ; Ex 593 nm; Em 618 nm; Abcam, UK) and blue DAPI 

nuclei staining (as above). Negative controls involved primary antibody omission, 

with the addition of the secondary antibody donkey anti-rabbit Dylight 594 (1:200; 

Abcam, UK). Low magnification images were collected with x10 Nikon plan Fluor dic 

L/N1 and x20 Nikon plan Fluor objectives using a DAPI filter set (Ex 365 nm with 30 

nm bandpass; Em 440 nm with 40 nm bandpass) and Texas Red filter set (Ex 560 nm 

with 20 nm bandpass; Em 610 nm with 60 nm bandpass) mounted on a Nikon 

TE2000 microscope (Nikon, UK).   
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2.3 Tissue Dissection 

2.3.1 Brain slice preparation 

CD1 mice were euthanized by cervical dislocation followed by decapitation. The 

brain was swiftly removed and briefly placed in ice-cold low-Na+ high-sucrose 

artificial cerebrospinal fluid (Low Na+ ACSF (50mM sucrose); Table 3). The 

hypothalamus was then blocked and glued to a slicing stage. Coronal slices 200-300 

µm thick were sliced using a Campden Instruments Ltd 752 M Vibroslice/Leica 

VT1000S. Slices were stored in a multiwell dish containing physiological ACSF (Table 

3) and maintained at 35-37oC in a water bath. Physiological ACSF solution was 

continuously perfused with 95% O2/5% CO2 in order to oxygenate the slices and 

maintain pH 7.4. Slices were then left to recover for at least 1 hr before recording. 

When ready to record from slices were placed in a recording chamber superfused 

constantly with isotonic/physiological ACSF, gassed with 95% O2/5% CO2 and left for 

at least 5 minutes to equilibrate. 

2.3.2 Cell culture isolated cells 

Connective tissue and other cell types such as glial cells increase in number as 

animals become older and proliferation of neuronal cell types decreases with age 

(Kuhn et al., 1996).  For these reasons young animals are used for cell culture, as to 

gain a purer population of proliferative neurones and reduce the need for 

enzymatic digestion as much as possible.  Wistar rats aged 2-6 days were 

euthanized by cervical dislocation followed by decapitation.  The brain was swiftly 

removed and stored in sterile ice-cold phosphate-buffered saline (PBS) while the 
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hypothalamus was blocked and glued to a slicing stage (Barrett-Jolley et al., 2000).  

Hypothalamic brain slices were cut to 600 µm on a Campden Instruments Ltd 752 M 

Vibroslice/Leica VT1000S and a bilateral punch of the PVN area was made using a 

fire polished glass pipette (Figure 2.1).  The tissue was then transferred to 

NeurobasalTM medium supplemented with 0.5mM L-glutamine (Sigma-Aldrich, UK) 

to improve neuronal growth via cell signalling, 2% penicillin/streptomycin and 1% 

amphotericin (Sigma-Aldrich, UK) to prevent infection.  The suspension was 

triturated using a fire polished pipette until the cells were fully dispersed, 

centrifuged at 1400 RPM and the supernatant removed and the pellet was re-

suspended in fresh media.  This was repeated twice more to wash the cells before 

finally re-suspending in 2 ml NeurobasalTM medium supplemented as above plus 

10% Fetal calf serum (FCS) and 10% B27 supplement; specifically used for culturing 

neuronal cells and transferred to 6-well plates (typically 3 punches per well).  Cells 

were then incubated at 37oC for cells to grow in a monolayer culture.  Once cells 

reached sufficient confluence (70%-100%) they were used for electrophysiological 

or calcium ratiometic recording. 

 

Figure 2.1 Example of a PVN tissue punched out of coronal section of a rat brain.   

All cell culture reagents were from Invitrogen, UK, unless stated otherwise.  
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2.4 Electrophysiology 

Electrophysiological recordings were performed either using brain slices whereby 

the PVN was located based on location and specific markers i.e fornix, or on isolated 

neuronal cells dissected and prepared as stated above.   

All electrophysiological recordings were made using an Axopatch 200b amplifier 

(Molecular Devices Axon Instruments, USA).  Low-pass filtering was set to 1 kHz and 

data digitised at 5 kHz with a Digidata 1200B interface.  Neurons were visualised 

using a Hitachi KP-M3E/K CCD camera attached to a Nikon Eclipse microscope with 

an effective magnification of ~1000x.  

Thick-walled patch-pipettes were fabricated using fire-polished 1.5 mm o.d. 

borosilicate glass capillary tubes (Sutter Instrument, Novato CA, USA supplied by 

Intracel, UK).  They were pulled using a two-step electrode puller (Narishige, Japan) 

and filled with the appropriate pipette solution.  When filled pipettes had 

resistances of approximately 3-8 MΩ depending on the patch clamp method used 

(explained below).   All solutions used for electrophysiology experiments are shown 

in Table 3 and Table 4. Junction potentials were calculated using JpCalc (Barry and 

Lynch, 1991) and are stated in Table 4.  Osmolality for all solutions was measured 

using a freezing point Advanced Instruments 3MO Micro-osmometer (Advanced 

Instruments, Norwood, USA). 

All reagents used in the electrophysiology were from Sigma-Aldrich, UK, unless 

stated otherwise.  
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2.4.1 Action current recording 

Hypothalamic brain slices from CD1 mice were used for action current recordings 

from putative parvocellular neurones, identified based on their location and 

morphology.  Action currents were recorded using cell-attached patch clamp 

methods in voltage clamp using the equipment stated above.  Analogue data was 

further amplified with a Tektronix FM122 (Beaverton, Oregon) AC coupled 

amplifier.  To achieve cell-attached patch a small amount of positive pressure was 

applied to a glass pipette electrode before being lowered into the bath solution.  

Glass pipettes used for these experiments were higher in resistance to obtain lower 

noise recordings.  Neurones patched were chosen based on their size and 

morphology. Once neurones were visualised the pipette was moved to the surface 

of the brain slice and positive pressure was released.  A small amount of negative 

pressure could then be applied in order to form a gigaseal and record action 

currents.  Analysis of action current frequency was performed using WinEDR and a 

custom program designed to detect action currents based on adaptive upper and 

lower boundary thresholds.  All action current data was normalised by action 

current frequency/initial average action current frequency.    

2.4.2 Single channel recording  

Single channel recordings were made using the equipment stated above, without 

the use of the Tektronix FM122.  In order to obtain single channel recordings cell-

attached patch clamp was used, using the methods described above a gigaseal was 

formed and channel activity was recorded.  Single-channel all-points amplitude 
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histograms were created in WinEDR.  Amplitudes were taken at various holding 

potentials and used to create current-voltage (IV) curves. Reversal potential (Vrev) 

and slope conductance (g) were then calculated from the equation of the fitted line.  

Open probabilities were obtained using the QuB software (Qin et al, SUNY, Buffalo, 

NY) using a K-sequential means method (Qin, 2004; Qin et al., 1996).  

2.4.2.1 Equilibrium potentials 

Using the Nernst equation it is possible to calculate the equilibrium potential (E) 

that occurs due to the separation of charged ions as a result of the selectively 

permeable membrane of a cell.  Due to the differential distribution of ions in the 

intracellular and extracellular solutions it is known where the equilibrium potential 

for each ion lies. Using the Nernst equation (Equation 2.1) it is possible to calculate 

the E  for each ion within a solution.  

Equation 2.1                
     

      
  

Where;   is the equilibrium potential of the ion,   is the valency of the ion and [I]in 

and [I]out are the intracellular and extracellular concentrations of the ion, 

respectively.  

When an ion channel is selectively permeable to only one ion E equates to the 

reversal potential (Vrev) of the channel at which the channel current is zero.  Vrev can 

then be compared to the experimentally measured value taken from the IV curve.  
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2.4.3 Whole-cell current clamp 

Whole-cell current clamp recordings were made on isolated Wistar rat PVN cells, 

dissected and prepared as described above.  Once cells had reached appropriate 

confluence (70%-100%), cells were released from the culture flask after washing 

with NeurobasalTM media free from FCS using 1x trypsin. The enzymatic reaction 

was then quenched with NeurobasalTM media containing FCS, centrifuged at 1400 

RPM, the supernatant removed and the pellet re-suspended in media without FCS. 

The cells were plated out onto glass shards where they were incubated at 37oC for 1 

hour to lightly adhere ready for patch clamping. Cells were used when freshly 

isolated, after first expansion and up to their third passage to avoid de-

differentation. Cells were chosen to patch based on their size and morphology and 

resting membrane potential (RMP). Cells with depolarised (>-45 mV) or 

hyperpolarised (>75 mV) membrane potentials were excluded.  

RMP recordings were made in current clamp using the equipment stated above. 

The glass pipettes used had resistances of 3-5 MΩ, typically lower than those used 

in cell-attached patch clamp experiments as to break through the membrane of the 

cell.  In order to do this the methods are the same as stated above for cell-attached 

patch clamp, although a larger amount of negative pressure after forming a gigaseal 

can be used to rupture the membrane creating “whole-cell seal mode”.  Membrane 

potential was recorded to WinEDR as the cells environment is changed via perfusion 

of bath solutions.  
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2.5 Intracellular calcium recording 

2.5.1 Preparation of cells  

Isolated Wistar rat PVN neuronal cells were used for intracellular Ca2+ 

measurements; dissected and prepared as described above. Cells were plated out 

onto glass-bottomed dishes after releasing from culture flasks with trypsin and pre-

incubated with Fura-2AM (5 µM) (Invitrogen, UK) for a minimum of 30 minutes at 

37oC. Fura-2AM is a cell-permeable ratiometric dye, which binds to free Ca2+ once it 

has moved inside the cell and the acetoxymethyl groups are removed by cellular 

esterases (Grynkiewicz et al., 1985). After incubation with the dye the cells were 

then washed with HEPES ACSF for around 15 minutes to allow complete de-

esterization of the dye.   

2.5.2 Intracellular calcium measurements 

Fura 2-AM fluorescence was excited by 365 and 385 nm Opto-Light-Emitting Diodes 

(OptoLED; Cairn Research, UK) limited through a 355 nm filter with 10 nm bandpass 

and a long pass 380nm filter respectively.   Fluorescence images were captured and 

analysed using an image system consisting of an inverted phase contrast 

microscope (Nikon Diaphot 300) with a ×40 Fluor Nikon objective (Nikon, UK), a PC-

controlled digital charge-coupled device camera (Exi Aqua; QImaging, Surrey, 

Canada), and Micro-Manager 1.4 software (University of California, San Francisco, 

USA).  Regions of interest were highlighted and Fura-2AM was excited alternatively 

at 355 nm and 380 nm using a high-speed wavelength switcher (Dual OptoLED 

power supply; Cairn Research, UK). Fluorescence emission was limited through a 
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510 nm filter with 80 nm bandpass and was measured at intervals of 2 s and ratios 

are determined from the intensities emitted when the cells are excited at 355 

nm/380 nm.  Intracellular Ca2+ concentration was subsequently calculated using 

Equation 2.2 (below), after calibration using the calcium ionophore A23187 (1 μM) 

to release maximum Ca2+ (Rmax) and EGTA (5 mM) to quench Ca2+ (Rmin) (Sigma-

Aldrich, UK): 

Equation 2.2            
        

        
 

Where Kd is the dissociation constant (taken as 145nM at room temperature) for 

Fura-2AM calcium-binding; R is the ratio; and Rmax and Rmin are the ratio values 

measured under conditions of saturating calcium levels (A23187) and in the 

absence of calcium (EGTA) respectively.  
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Figure 2.2 Calcium calibration using A23187 and EGTA.  
(A) Raw trace of fluorescence intensities emitted upon excitation with (i) 355 nm 
and (ii) 380 nm with addition of the ionophore A23187 (1 µM) and Ca2+ chelator 
EGTA (5 mM). (B) Ratio of 355 nm/380 nm fluorescence intensities shown in (A).  
Ratios from the peak responses of A23187 and EGTA are used to obtain Rmax and 
Rmin respectively.  These values are then used to calculate intracellular Ca2+ using 
Equation 2.2. 

2.6 Drugs 

Calcium ionophore A23187 (1 μM), 4-α-phorbol 12,13-didecanoate (4αPDD) (1 μM), 

GSK1016790A (100nM), RN1734 (5 μM), HC067047 (300nM), UCL-1684 (30 nM), 

TRAM-34 (30 nM) and iberiotoxin (IbTX) (1 nM, 10 nM, 30 nM and 100 nM), were all 
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dissolved in DMSO and diluted to a final working concentration of no more than 

0.01% DMSO (0.01% DMSO had no effect alone). Calcium ionophore A23187, TRPV4 

agonist 4αPDD (Vincent et al., 2009), TRPV4 agonist GSK1016790A (Thorneloe et al., 

2008), and BK inhibitor IbTX (Candia et al., 1992), were sourced from Sigma-Aldrich, 

UK and TRPV4 antagonist RN1734 (Vincent et al., 2009), TRPV4 antagonist HC 

067047 (Everaerts et al., 2010), SK inhibitor UCL-1684 and IK inhibitor TRAM-34 

(Nehme et al., 2012), were sourced from Tocris, UK.  

2.7 Blood pressure recording 

2.7.1 Cannulation 

Adult CD1 wild-type mice (30-40g; n=11) were anaesthetised with a combination of 

urethane (1.4-2.2 mg/kg, Sigma-Aldrich, UK) and α-chloralose (7-11 µg/kg, Sigma-

Aldrich, UK), administered at an appropriate dose IP in saline. Urethane was used to 

minimise the effects on the cardiovascular system (Carruba et al., 1987). Following 

injection of the anaesthetic, the mice were returned to their cage for several 

minutes until they lost consciousness. Body temperature was recorded immediately 

and continuously by rectal probe and maintained at 37±0.5°C by use of a heat lamp. 

Once loss of paw-withdrawal and eye-blink reflexes was achieved the trachea was 

exposed and intubated in order to maintain respiration. The left carotid artery was 

exposed and carefully dissected away from the surrounding tissue and vagus nerve.  

A permanent ligature was tied towards the cranial segment of the carotid artery 

and a temporary ligature fixed around the proximal segment to prevent the flow of 

blood.  The artery was then cut and cannulated with stretched PE25 tubing filled 
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with heparinised saline and the cannula tied in place. Once the cannula was secure 

the temporary ligature was removed to direct blood flow to the pressure transducer 

attached. Blood pressure was recorded by the pressure transducer connected to a 

Neurolog (Digitimer Ltd, Herefordshire, UK) blood pressure amplifier. Raw BP signal 

was digitised to PC with a CED Micro1401 (Cambridge Electronic Design, Cambridge, 

UK) using WinEDR at 5 kHz.  

 

Figure 2.3 Cannulation of the carotid artery and blood pressure recording.  
The trachea is intubated to aide breathing whilst under anaesthetic and then the 
carotid artery is cannulated.  The cannula is attached to a pressure transducer 
which is then connected to an amplifier and blood pressure is recorded on a PC.  

2.7.2 Heart rate measurement 

Heartbeats were annotated to the amplified AC coupled blood pressure signal using 

Wabp from the PhysioNet suite of programs to give heart rate of the animals 

(Goldberger et al., 2000).  Briefly, the signal was analysed at 1/10th sampling 

frequency (ie. 500 Hz), and resampled to 125 Hz for optimal beat detection by 

Wabp. Annotated beats were then reverted to 10 times speed to give the actual 

heart rate. 
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2.7.3 Intracerebroventricular injections 

For intracerebroventricular (ICV) injections the mouse was placed in a stereotaxic 

frame adapted for mice (Kopf instruments, California, USA).  The head was clamped 

and held in a level position and the skull was exposed by making an incision down 

the midline of the head. Bregma was located at coordinates 3.8 ± 0.3 mm rostral 

and 5.8 ± 0.5mm dorsal to intraural line taken from the Paxinos and Franklin adult 

mouse stereotaxic atlas (Paxinos and Franklin, 2001); a hole was drilled 1 mm 

lateral and 0.2 mm caudal to Bregma.  

 

Figure 2.4 Mouse skull diagram 
Dorsal view of the skull with the positions of bregma, lambda, the sagittal suture 
and the lambdoid suture.  

 

All drugs were given in isotonic ACSF or hypotonic ACSF (Table 3) as the vehicle as 

stated below. Solutions were injected in a 1µl volume gradually over a 30 second 

period via a 10μL Hamilton syringe. All ICV injections were given into the lateral 

ventricle at the following coordinates through the previously drilled hole (0.2 mm 

caudal, 1 mm lateral, 3.2 mm vertical). The syringe was left at the injection site for 2 

minutes and elevated to just above the injection site after this time, where it was 

kept in place for the duration of the recording.  At the end of the procedure all 
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animals were injected with 1% pontamine blue dye (Sigma-Aldrich, UK) at the same 

injection site using the same volume over 30 seconds and left for 2 minutes before 

removing the syringe in order to confirm the correct location for the injection site.  

The mouse was then decapitated and the brain removed and sliced to 300 μm on a 

Campden Instruments Ltd 752 M Vibroslice to locate the injection site.  

2.7.4 Drug injections 

Drugs/vehicle controls used were; 1μL isotonic/isotonic+DMSO (0.01%) ACSF, 

hypotonic ACSF (~270 mosmol) and RN1734 (Tocris, UK) in vehicle (ACSF) 

(100nmol/kg). 

2.8 Lesioning 

Specific lesions of the PVN were performed by injection of the cytotoxic Substance 

P-saporin (SSP-SAP) (0.04 mg/ml; Advanced Targeting Systems, San Diego, USA); a 

conjugation of saporin and SSP, the Sar9, Met(O2)11 analog of Substance P.  This 

analog diffuses into the tissue it is injected into and is specifically cytotoxic to those 

cells expressing the Substance P receptor NK1.   

2.8.1 Lesioning surgery  

Prior to surgery adult male Wistar rats (n=8; 200-300g) were put under isoflurane 

gas anaesthesia (4% v/v induction; 2% v/v maintenance); surgery was performed 

under aseptic conditions.  Once anaesthesia was confirmed by loss of toe-pinch 

reflex pre-operative subcutaneous injections of the analgesic buprenorphine 
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(Temgesic, 1.5 mg/kg; Reckitt Benckiser, Slough, UK), the antibiotic enrofloxacin 

(Baytril, 0.2 ml/kg; Bayer AG, Leverkusen, Germany) and the anti-inflammatory 

meloxicam (Metacam, 100 μg/kg; Boehringer Ingelheim, Germany) were given.  

Once anaesthetised the skin on top of the head was shaved and the rat was placed 

in a stereotaxic frame (Kopf Instruments, California, USA). The head was clamped in 

a stable and level position, an incision made down the midline of the head and the 

skull exposed.  Bregma was located using the Paxinos and Watson adult rat brain 

atlas (Paxinos and Watson, 1986) and a hole was drilled at the approximate site of 

the PVN injection (1.8mm caudal, 1.8mm lateral).  50nl SSP-50 nl SSP-SAP (n=5) or 

50 nl phosphate buffered saline (PBS) (control; n=3) were injected unilaterally in the 

right hand side gradually over 2 minutes via a 5µl Hamilton syringe at the defined 

PVN coordinates (1.8mm caudal, 1.8mm lateral, 9.2mm vertical at 10o). These 

injections sites were based on the rat atlas and adjusted according to the size of the 

rat (Paxinos & Watson, 1986).  The Hamilton syringe was left in the injection site for 

5-10 minutes to avoid residual solution moving up the track from the syringe as 

much as possible.  Once the Hamilton syringe was carefully removed the incision 

was sutured closed using Polysorb 4/0 and a small amount of surgical glue 

(Vetbond; 3M, Bracknell, UK). Post-operatively the rats were isolated and kept in a 

heated incubator unit to be monitored until they recovered from anaesthesia.   

2.9 Telemetry 

Telemetry devices were implanted in Gnasxl mice and their wildtype counterparts 

(aged ~4 months; n=18) and NK-1 lesioned rats (200-300g; n=6) in order to record 

electrocardiogram (ECG) using ETA-F20 transmitters (Data Sciences International, 
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MN, USA). These devices provide a huge benefit over other methods of 

cardiovascular recording such as cannulation as the mice are conscious and freely 

moving throughout the entire experimental procedure.  

2.9.1 Telemetry surgery 

During surgery animals were put under isoflurane gas anaesthesia (4% v/v 

induction; 2% v/v maintenance); surgery was performed under aseptic conditions 

Pre-operative subcutaneous injections of the analgesic buprenorphine (Temgesic, 

1.5 mg/kg; Reckitt Benckiser, Slough, UK), the antibiotic enrofloxacin (Baytril, 0.2 

ml/kg; Bayer AG, Leverkusen, Germany) and the anti-inflammatory meloxicam 

(Metacam, 100 μg/kg; Boehringer Ingelheim, Germany) were given.  The skin was 

shaved to allow incisions to be made as shown in Figure 2.4 below.  A section on the 

dorsal side was shaved in order to make an incision along the midline to 

accommodate a subcutaneous “pocket” for insertion of the transmitter.  Once the 

initial incision was made the pocket was formed by blunt dissection.  Two further 

smaller areas were shaved on the caudal side of the animal to allow incisions to be 

made for placement of the electrodes of the transmitters as shown below in Figure 

2.4.  Subcutaneous tunnels were then blunt dissected from the pocket to the small 

incisions on the front of the animal to allow the electrode leads to pass through.  

Once incisions were made the transmitter body was placed subcutaneously within 

the subcutaneous pocket and the two electrodes of the transmitter passed through 

the tunnels formed and stitched into position in the muscle in order to record ECG 

activity.  
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Figure 2.5 Implantation site of telemetric transmitters.  
After incisions were made a subcutaneous pocket was made on the back of the 
animal.  The main body of the transmitter was placed here and subcutaneous 
tunnels were made where the two leads were to be sutured to the muscle. 

 

The incisions made during the surgery were then stitched closed using Polysorb 4/0 

and then glued with surgical glue (Vetbond; 3M, Bracknell, UK).  Post-operatively 

the animals were isolated and kept in a heated incubator unit to be monitored until 

they recovered from the anaesthesia.   

2.9.2 ECG recording 

After surgery was performed the animals were left to recover for a minimum of 5 

days before 24-hour continuous recording began.  Each animal was individually 

housed above a Data Sciences International (DSI) receiver pad (Data Sciences 

International, NL), kept at least one metre apart to prevent the cross-talk of signals.  

ECG signals were transmitted as a short range FM signal and received by the 

receiver pad where the signal was AC coupled.  The receiver pad was connected to a 

DSI data exchange matrix (DEM) (Data Sciences International, NL) and a signal 
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output adapter, which was subsequently connected to a CED micro1401 interface 

(Cambridge Electronic Design, Cambridge, UK), where the signal was digitised. The 

data was recorded using Spike2 (Cambridge Electronic Design, Cambridge, UK) on a 

PC at 5 kHz.  In the case of larger cages (i.e for telemetry on rats) two receiver pads 

were placed together and recorded from simultaneously.  

2.9.3 Beat detection 

Using a custom program developed in Java script (Netbeans IDE) heart beats from ECG 

were annotated. Raw ECG signal was cleaned up in Spike2 by DCremove using a time 

constant of 20 ms; this subtracts the average of 10 ms either side from each data point, 

having a similar effect as a high pass filter.  

For analysis of daily variation in heart rate beats of more than 1000 bpm or less 

than 400 bpm, which are assumed to be ectopic or misread beats, were excluded.  

Heart rate responses to stress and heart rate variability were analysed directly from 

the raw heart beat annotation files, which contain heart beats annotated to a high 

degree of accuracy (ie. to within the sampling rate of 0.2 ms). 

2.9.4 Heart rate variability 

Heart rate variability (HRV) analysis was performed using Kubios HRV program 

(Niskanen et al., 2004).  Heart rate traces were visually inspected for 3-minute clean 

sections of stable heart rate. Heart rate was then resampled to 20 Hz and FFTs were 

produced using Welch’s algorithm using 32-second windows with 50% overlap.  

Much can be learnt in particular from frequency domain analysis, where power 

spectra, such as FFTs are produced.  These spectra are a way of graphically 
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presenting the degree of heart rate variability across a range of frequencies.  These 

frequencies can be banded and represent different aspects of the autonomic 

nervous system; these bands have been previously confirmed by my group (Nunn et 

al., 2013).  The high frequency (HF) domain has been reported to reflect only 

parasympathetic nervous activity (PNS); at a range of 1 Hz to 5 Hz.  The low 

frequency (LF) domain has been confirmed to reflect both the SNS and PNS activity; 

this region extended from 0.15 Hz to 1 Hz.  As there is no direct indication of SNS 

activity specifically, the LF/HF ratio is used a reflection of this activity, previously 

confirmed by (Nunn et al., 2013).   
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Table 3 Bath solutions used during electrophysiological and Ca2+ measurements. All extracellular solutions were pH 7.4. 
Bath                      (mM) Na K Ca Cl Mg SO4 H2PO4 HCO3 Glucose HEPEs pH adjustment 

Physiological ACSF 127 3 2.4 133.6 1.3 1.3 1.2 26 5 0 95% O2/5% CO2 

Isotonic ACSF (30 mM sucrose) 117 3 2.4 123.6 1.3 1.3 1.2 26 0 0 95% O2/5% CO2 

Hypotonic ACSF 117 3 2.4 123.6 1.3 1.3 1.2 26 0 0 95% O2/5% CO2 

Low Na+ ACSF (50mM sucrose) 121 3 0.5 97.8 7 7 1.2 26 5 0 95% O2/5% CO2 

RMP and Ca2+ – HEPES ACSF 142 3 2.4 143.8 1.3 1.3 0 0 5 10 NaOH 

 
Table 4 Pipette solutions used during electrophysiological measurements. All pipette solutions were pH 7.4. 
Pipette                 (mM) Na K Ca Cl Mg SO4 MeSO4 Gluconate EGTA HEPEs pH adjustment 

TRP – Single channel 100 40 0 5 0 0 100 35 0 10 KOH 

TRP – Action current 100 40 0 105 0 0 0 35 5 10 KOH 

RMP – Physiological saline 0 150 0 28 1 0 0 115 5 10 KOH 

 
Table 5 Junction potentials (Vj) calculated for the combination of bath 
solutions and pipette solutions shown.  
Calculations were performed using JpCalc (Barry and Lynch, 1991). 
Bath solution Pipette solution Vj (mV) 

Physiological ACSF TRP – Single channel +10.6 

RMP and Ca2+ – HEPES ACSF RMP – Physiological saline -15.3 
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3 A Role for TRP Channels in Osmoregulation and 

Temperature Sensing 

3.1 Introduction 

Currently it is unknown exactly what the regulatory role of the parvocellular 

neurones within the paraventricular nucleus is and very little is known about the ion 

channels present or how they modulate activity.  As the TRP channels are so 

abundant in the brain and it is known they play a huge role in regulating cell 

function, it follows these channels could be important players in the regulation of 

activity in the parvocellular neurones of the PVN.   

The transient receptor potential (TRP) family of ion channels are a large 

superfamily, consisting of 28 homologs so far in mammals.  They are grouped 

roughly by common structure into seven subfamilies. TRPC (canonical; seven 

members), TRPV (vanilloid; six members), TRPA (ankyrin; 1 member), TRPM 

(melastatin; eight members), TRPML (mucolipin; 1 member), TRPP (polycystin; two 

members) and TRPN (NOMPC; only seen so far in non-mammals) (Nilius and 

Owsianik, 2011).  TRP channels are thought of as relatively non-selective cation ion 

channels, with differing permeablities to monovalent ions, Ca2+ and in some cases 

Mg2+.  TRP channels are usually found in the plasma membrane, capable of forming 

homo- or hetero-multimers.  Although they have been much studied recently, little 

is known about their gating properties or functions. They are extremely important 

in cell regulation; in particular in Ca2+ regulation (reviewed by (Clapham, 2003)).  As 
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the environment of neurones is so stringently regulated and expression of these ion 

channels is so widespread within the brain it follows that some TRP channels may 

have a role to play in regulation of neuronal activity in the paraventricular nucleus 

(PVN); a key area of the hypothalamus for maintaining homeostasis. 

3.1.1 TRPV4 and osmosensing 

The transient receptor potential vanilloid channel 4 (TRPV4) is an established 

mechanosensitive ion channel, known to be present in the PVN (Carreno et al., 

2009). This channel is activated by a number of factors such as; temperature 

(>27oC), phorbal esters and increased osmolality (Guler et al., 2002; Liedtke et al., 

2000; Strotmann et al., 2000).  It has been shown to be important for cell-volume 

regulation in a variety of cells (Becker et al., 2005; Benfenati et al., 2011; Guilak et 

al., 2010; Phan et al., 2009).  Selective for Na+, K+ and Ca2+ ions at a ratio of 1:1:6 

respectively, cellular responses to changes in osmolality involve TRPV4 channel 

mediated elevation of intracellular Ca2+ (Liedtke et al., 2003).   

The PVN has an established role in osmotic homeostasis (Bourque, 2008). 

Furthermore, an investigation by (Stocker et al., 2004) showed that water 

deprivation increases expression of the early response gene c-fos in parvocellular 

neurones of the PVN.  However, previously there have been no reports of 

osmolality effects on parvocellular neurones of the PVN.    
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3.1.2 TRPM2 and temperature sensing 

It has been shown in other neurones within the brain that changing temperature 

typically leads to altered neuronal activity (Sudbury and Bourque, 2013).  As well as 

showing sensitivity to changes in osmolality, TRPV4 channels are also activated by 

temperatures above 27oC (Guler et al., 2002).  However, various other TRP channels 

are also known to be affected by temperature, such as the transient receptor 

potential melastatin channel 2 (TRPM2) (also known at TRPC7).  TRPM2 is found 

both on the plasma membrane and intracellularly.  Recently reviewed by (Sumoza-

Toledo and Penner, 2011), TRPM2 is widely expressed in the brain (Nagamine et al., 

1998). Activated by various endogenous agents such as nicotinamide adenine 

dinucleotide, ADP-ribose (Sano et al., 2001) and H2O2 (Hara et al., 2002), the TRPM2 

channel also displays sensitivity to temperatures above 35oC (Sumoza-Toledo and 

Penner, 2011).  

Inegaga et al (Inenaga et al., 1987) first showed thermosensitivity of the neurones 

in the PVN.  These experiments showed both cold-sensitive and heat-sensitive 

neurones with no apparent preference for areas within the PVN.  However, (Smith 

et al., 1998) later showed that PVN spinally-projecting neurones are directly 

involved in thermoregulation using poly-synaptic viral tracing,  There have since 

been several studies to demonstrate that the PVN is important in thermoregulation 

(Cham and Badoer, 2008; Chen et al., 2008), and furthermore it has been shown 

that heat exposure activates spinally-projecting PVN neurones (Cham et al., 2006a).  

However, throughout these studies the mechanisms responsible for this 

thermosensitivity have not been explored. 
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3.1.3 Aims 

The aim of this chapter is to (i) identify potential TRP channels present within this 

area and (ii) investigate their function with respects to the effects of cellular 

environment on neuronal activity using a combination of cell-attached and whole-

cell patch clamp electrophysiology and intracellular calcium recordings.  

3.2 Methods 

3.2.1 Investigating a potential role for TRPs in osmosensing in the PVN 

3.2.1.1 Investigating the effects of osmolality on putative parvocellular PVN 

neurones 

Action current frequency analysis using cell-attached patch clamp electrophysiology 

in brain slice was used to initially identify how osmolality affects the activity of 

putative parvocellular neurones of the PVN.  Hypothalamic brain slices from CD1 

mice were prepared as described in Chapter 2.  The PVN area was located and cells 

were chosen based on location (Figure Error! Reference source not found.), size 

nd morphology.   
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Figure 3.1 Diagram of the parvocellular area patched during osmolality patch 
clamp experiments.   
Patched areas are indicated by the purple crosses, used in osmolality experiments.  
All further patches were obtained from the indicated areas.  PaLM – lateral 
magnocellular part, PaMM – medial magnocellular part, PaMP – medial 
parvocellular part and PaDC – dorsal cap.     

 

To obtain cell-attached patch, a glass pipette (of resistance ~8 MΩ) was lowered 

onto a visualised cell and a small amount of negative pressure was used to form a 

gigaseal.  Action currents were then recorded in voltage clamp (for full methods see 

Chapter 2), and were used as an indication of action potentials.  A seal was formed 

and the patched cell was left for a further 5 minutes before recording in order to 

establish equilibrium.  Once recording began the slice was left in isotonic ACSF for 5 

minutes to obtain a steady baseline and subsequently switched to the appropriate 

treatment.  Hypotonic solutions were left to superfuse the slices for a minimum of 

10 minutes to allow time for the solution to reach the recording chamber (timed at 

2-3 minutes) and for complete changeover of solutions before wash off with 

isotonic ACSF.  All cells were first checked for osmotic sensitivity by superfusing with 

hypotonic ACSF before addition of any drugs to the solutions. Only those which 

responded to the reduction in osmolality were then used for further analysis 
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(10/15) cells responded to osmolality). Drug treatments were left for 10 minutes 

before wash off with isotonic ACSF.   

3.2.1.2 Single channel investigation 

Single channel properties were investigated in cell-attached patch clamp mode 

(described fully in Chapter 2) in brain slices of CD1 mice.  Once patched, cells were 

left for 5 minutes before recording began and held at -20 mV.  Voltage steps were 

then ran in steps of 10 mV from -60 mV to +20 mV (holding potential).  From this 

current-voltage curves were produced and mean slope unitary conductance (g) and 

reversal potential (Vrev) of the channel was be obtained.  Once voltage steps were 

performed the cells were held at -20 mV and drugs were added.  Single channel 

activity was analyzed using the Qub software (Qin et al, SUNY, Buffalo, NY) using a 

K-sequential means method (Qin, 2004; Qin et al., 1996). 

3.2.1.3 Intracellular response to osmotic challenge 

Whole-cell current clamp recordings were made using isolated PVN neuronal cells 

(for full methods see Chapter 2). PVN cells were first released from well-plates using 

trypsin and plated on to glass shards and left in an incubator at 37oC for 30 minutes 

to stick down sufficiently before placing in the recording chamber.  Whole-cell 

mode was achieved by breaking through the plasma membrane with a glass pipette 

(~3 MΩ) using further negative pressure once a gigaseal was formed.  Cells were left 

for a minimum of 5 minutes before recording began and a baseline resting 

membrane potential was recorded for at least 5 minutes before any treatment was 

added. 
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In order to obtain intracellular calcium measurements, isolated PVN neurones were 

plated out on glass-bottomed dishes (for full methods see Chapter 2) and left for 30 

minutes in an incubator at 37oC in order to stick down.  Cells were incubated for a 

further 30 minutes with the ratiometric dye Fura-2AM (5 µM) and kept in the dark 

to avoid bleaching for the duration of the experiment.  Once incubated the cells 

were superfused with HEPES ACSF for a minimum of 15 minutes to wash the 

remainder of the Fura-2AM off and equilibrate the cells to the solutions. 

Fluorescence was measured by highlighting regions of interest and Fura-2AM was 

excited alternatively at 355 nm and 380 nm, with fluorescence measured at 

intervals of 2 s. The ratios of these intensities were converted into total calcium 

levels using Equation 2.1 in Chapter 2.  Once a steady baseline was achieved after a 

minimum of 5 minutes of recording the treatment was added. 

3.2.2 Investigating a role for TRP channels in temperature sensing in the PVN 

In cell-attached patch clamp mode temperature was regulated by use of a TC-10 npi 

temperature control system and a HPT-2A heated perfusion tube (Scientifica, East 

Sussex, UK). Temperature was kept stable at 22oC for the first 10 minutes of 

recording and subsequently increased upwards in steps of 5oC to 27oC, 32oC and 

finally to physiological temperatures of 37oC, each for a minimum of 5 minutes. 

During this protocol action current firing was recorded (see Chapter 2 for methods) 

and drug treatment was introduced after the first 5 minutes of stable baseline 

recordings at 22oC. 
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3.3 Results 

3.3.1 Investigating a potential role for TRPs in osmosensing in the PVN 

3.3.1.1 Confirmation of the presence of TRPV4 in the PVN 

Immunofluorescence images of the parvocellular area of the PVN shows staining for 

the TRPV4 channel in this area. 

 

Figure 3.2 Immunofluorescent identification of TRPV4 in the paraventricular 
nucleus.  
(A) Negative control showing DAPI blue, with the absence of red TRPV4 staining (B) 
Red staining is positive for the TRPV4 channel, blue is DAPI nuclei staining. Scale bar 
100µm and 3V indicates the 3rd ventricle. (C) High magnification images of a section 
seen in (B).  Red staining is TRPV4 and blue is DAPI nuclei staining; arrows indicate 
where overlap can be seen.  Scale bar is 25 µm. 
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3.3.1.2 The effects of osmolality on putative parvocellular PVN neurones 

Action current frequency was significantly decreased upon hypotonic challenge with 

a 79 ± 10 % reduction of action current frequency (Figure 3.3; n=10; p<0.001 by t-

test), confirming that the PVN has a capacity to detect and respond to changes in 

osmolality. 

 

Figure 3.3 The effect of osmolality changes on action current frequency.  
Cell-attached action current measurements in slice within the parvocellular area of 
the PVN (Figure 3.1). (A) Raw action current trace at 300 mosmol (control) and 270 
mosmol (hypotonic challenge). (B) Representative frequency histogram showing 
action current response to hypotonic challenge of a single parvocellular neurone. 
(C) Mean percentage normalized action current frequency for 10 experiments 
similar to those illustrated in (A) and (B) (normalized to action current frequency 
during control conditions) is significantly reduced (n=10; ***p<0.001 by Student’s t-
test; see text for details). Data expressed as a % of control (isotonic is 100%). 

 

3.3.1.3 Pharmacological identification of TRPV4 

Superfusion of putative parvocellular neurones with the TRPV4 channel agonist 

4αPDD (1 μM) reduced action current frequency by 36 ± 10 % (n=6; **p<0.01 by 

ANOVA with multiple comparison using Tukey’s post hoc test).  To provide further 

support the highly selective agonist GSK1016790A (100nM) was also used.  The 



74 
 

more selective GSK1016790A reduced action current frequency by 72 ± 8 %. (Figure 

3.4; n=6; p<0.05 by ANOVA with multiple comparison using Tukey’s post hoc test); a 

significantly greater effect (Figure 3.4; n=8; p<0.01 by ANOVA with multiple 

comparison using Tukey’s post hoc test).   

 

Figure 3.4 The effect of TRPV4 channel activators on action current frequency.  
Cell-attached action current measurements in slice within the medial and dorsal cap 
parvocellular area of the PVN (Figure 3.1).. (A) Raw action current trace at 300 
mosmol (control) with and without the selective agonist GSK1016790A (100nM). (B) 
Representative frequency histogram showing action current responses to 
GSK1016790A. (C) Mean action current frequency from 6 experiments similar to 
those illustrated in (A) and (B) is significantly reduced upon addition of 4αPDD (n=6; 
**p<0.01) and GSK1016790A (n=8; ***p<0.001). 

 

The response to hypotonic solution was significantly reduced by the TRPV4 

antagonists RN1734 (5 μM) and highly selective HC067047 (300 nM) (Figure 3.5) 

compared to hypotonic alone: 70 ± 14 % reduction vs. hypotonic with RN1734: 45 ± 

15 % reduction (n=6; p<0.05 by ANOVA with multiple comparison using Tukey’s post 

hoc test), and a 10 ± 13 % reduction with HC067047 in action current frequency 

(n=6; p<0.01 by ANOVA with multiple comparison using Tukey’s post hoc test). 

Antagonists had no significant effect on action potential frequency when applied 
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alone (n=6).  This data combined suggests a definite role for TRPV4 channels in 

osmosensing in the PVN. 

 

Figure 3.5 The effect of TRPV4 channel inhibitors on action current frequency.   
Cell-attached action current measurements in slice within the medial and dorsal cap 
parvocellular area of the PVN (Figure 3.1). (A) Raw action current trace at 300 
mosmol (control), 270 mosmol (hypotonic) and with the addition of the TRPV4 
antagonist HC067047 (300 nM) (B) Representative frequency histogram showing 
regain of action current frequency upon HC067047 addition after loss from 
hypotonic challenge. (C) Mean action current frequency from 6 experiments similar 
to those illustrated in (D) and (E) is significantly reduced upon hypotonic challenge 
(n=6; **p<0.01), but not in the presence of RN1734 or HC101679A, both of which 
showed a significant difference to hypotonic alone (n=6; #p<0.05 and n=6; 
###p<0.001 respectively).  

 

3.3.1.4 Single channel analysis of the TRPV4 channel 

Using the TRPV4 channel activator, 4αPDD (1 µM), in cell-attached patch it was 

possible to record single channel activity.  Figure 3.6 shows a representative raw 

trace of channel openings in real time.  This particular channel is seen in 50% of 

recordings (8/16).   
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Figure 3.6 Single channel activity of a TRPV4-like channel in cell-attached patch.  
Representative raw single channel recordings in cell-attached patch clamp within 
the parvocellular area of the PVN (dashed line represents open state) (voltages 
shown at holding potential). Channel activity was seen in 50% of patches (8/16).  

 

4αPDD caused a significant increase in Po of 48 ± 9% (n=4; p<0.001 by t-test) upon 

addition of 4αPDD; showing TRPV4 channels are present in these neurones.  

 

Figure 3.7 Representative amplitude histograms for TRPV4 channel activity.  
Cell-attached action current measurements in slice within the medial and dorsal cap 
parvocellular area of the PVN (Figure 3.1). (A) Representative amplitude histogram 
before and (B) after addition of 4αPDD at -40mV.  Po increased by 48±9% (n=4; 
p<0.001 by Student’s t-test) upon addition of 4αPDD. (C) Representative trace of 
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channel activity increasing with the addition 4αPDD (red line indicates before 
addition of 4αPDD and blue line indicates after addition of 4αPDD). 

 

From the IV curve (Figure 3.7) the channel seen in these experiments had a g of 57 ± 

7 pS and Vrev of -5±3 mV (n=6; adjusted for junction potential); this indicates the 

presence of a non-selective cation channel, believed to be the TRPV4 channel. 

 

Figure 3.8 Current-voltage (IV) curve for single-channel voltage steps for TRPV4.  
IV curve shows mean slope unitary conductance of 57±7 pS and reversal potential 
of -5±3mV (n=6); indicative of a non-selective cation channel. 

 

3.3.2 Intracellular response to osmotic challenge 

Membrane potential response to TRPV4 channel activation was confirmed using 

whole-cell patch clamp.  Neurones exhibited a resting membrane potential of -54 ± 

5 mV (n=4) and 4αPDD superfusion resulted in a transient depolarisation of 11 ± 2 

mV (Figure 3.9; n=4; p<0.05 by Students t-test).  
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Figure 3.9 Whole-cell recordings in isolated PVN neurones during activation of 
TRPV4 channels with 4αPDD.  
(A) Representative whole-cell current-clamp trace showing depolarization of the cell 
upon addition of 4αPDD. (B) Mean resting membrane potential of -54 ± 5 mV was 
recorded. A depolarisation of 11 ± 2 mV was observed with 4αPDD (n=4; p<0.05 by 
Student’s t-test). 

 

Again, the highly selective 4αPDD activator GSK1016790A (100nM) was also used. 

This caused a similar depolarisation of 12 ± 5 mV (Figure 3.10; n=5; p<0.05 by 

Student’s t-test), although this effect was more sustained; membrane potential only 

returning to a baseline after the GSK1016790A was washed off.   
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Figure 3.10: Whole-cell recordings in isolated PVN neurones during activation of 
TRPV4 with GSK1016790a.  
(A) Representative whole-cell current-clamp trace showing depolarization of the cell 
upon addition of GSK1016790a. (B) A depolarisation of 12 ± 5 mV was observed 
with GSK1016790a (n=5; p<0.05 by Student’s t-test). 

 

Using the ratiometric dye Fura-2AM intracellular calcium [Ca2+]I was measured; an 

average baseline [Ca2+]I of 77 ± 3 nM was recorded (n=13).  Addition of the TRPV4 

channel activator, 4αPDD, significantly increased [Ca2+]i (Figure 3.11; 75 ± 2 nM to 

121 ± 14 nM, n=6; p<0.005 by Kruskal-Wallis ANOVA).  Hypotonic challenge also 

caused a transient increase in [Ca2+]i (Figure 3.11; 77 ± 3 nM to 19 8± 28 nM, n=8; 

p<0.001 by Kruskal-Wallis ANOVA); significantly higher than the increase seen with 

4αPDD (p<0.001 by Kruskal-Wallis ANOVA). 
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Figure 3.11 Effects of TRPV4 channel agonist and hypotonic challenge on 
intracellular Ca2+ in isolated PVN neurones.  
(A) Representative Ca2+ trace showing a transient increase upon activation of TRPV4 
channels with 4αPDD. (B) Mean intracellular Ca2+ shows a significant transient 
increase of 45 ± 12nM (n=6; p<0.005) with 4αPDD. (C) Representative Ca2+ trace 
showing a transient increase upon hypotonic challenge.  (D) Mean intracellular Ca2+ 
shows a significant transient increase of 121 ± 28 nM (n=6; p<0.005) with hypotonic 
challenge. 

  

3.3.3 Investigating a role for TRP channels in temperature sensing in the PVN 

An increase in temperature resulted in a significant decrease in mean percentage 

normalized action current frequency.  Reductions of 49 ± 11% at 27oC, 88 ± 6% at 

32oC and 97 ± 2% at 37oC were observed (Figure 3.12; n=6, p<0.001 by ANOVA with 

comparison against control using Dunnet’s post hoc test).   
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Figure 3.12 Temperature decreases action current frequency of parvocellular PVN 
neurones.  
within the medial and dorsal cap parvocellular area of the PVN (Figure 3.1). (A) Raw 
trace of action currents at RT (22oC), increasing temperature to (B) 27oC, (C) 32oC 
and (D) physiological temperature (37oC) decreases action current frequency. (E) 
Representative frequency histogram showing action current response of a single 
parvocellular neurone to increasing temperature. (F) Mean percentage normalized 
action current frequency is significantly decreased with increasing temperature, 
showing reductions of 49 ± 11% at 27oC, 88 ± 6% at 32oC and 97 ± 2% at 37oC (n=6, 
p<0.001). 

 

Increasing the bath temperature to 27oC and 32oC in the presence of the broad 

spectrum TRP channel antagonist, gadolinium (Gd3+ 100 µM) did not significantly 

affect action current frequency (Figure 3.13); showing there may be, in part, a 

temperature sensing role for a gadolinium-sensitive TRP channel.  However, 

interestingly, at physiological temperatures the decrease in action current 
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frequency was not prevented by Gd3+ (100 µM).  A significant decrease of action 

current frequency was still seen at 37oC (Figure 3.13; reduction of 94 ± 2% n=4; 

p<0.005; by ANOVA with comparison against control using Dunnet’s post hoc test). 

This suggests that TRPV4 channels may not be involved at physiological 

temperatures, but another TRP channel; one which is insensitive to Gd3+ may be 

responsible. 

 

Figure 3.13 Temperature effect is largely insensitive to the broad spectrum TRP 
channel inhibitor gadolinium.  
Cell-attached action current measurements in slice within the medial and dorsal cap 
parvocellular area of the PVN (Figure 3.1). (A) Raw trace of action currents at RT 
(22oC), increasing temperature to (B) 27oC, (C) 32oC and (D) 37oC in the presence of 
Gd3+. (E) Representative frequency histogram showing AC response to increasing 
temperature of a single parvocellular neurone in the presence of Gd3+. (F) Mean 
percentage normalized action current frequency shows a significant decrease at 
37oC (reduction of 94 ± 2% n=4; p<0.005) in the presence of Gd3+, despite this effect 
being prevented at 27oC and 32oC. 
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Figure 3.14 Temperature effect is blocked by the narrow spectrum TRP channel 

inhibitor econazole.  

Cell-attached action current measurements in slice within the medial and dorsal cap 

parvocellular area of the PVN (Figure 3.1). (A) Raw trace of action currents at room 

temperature (22oC), increasing temperature to (B) 27oC, (C) 32oC and (D) 37oC in the 

presence of econazole. (E) Representative frequency histogram showing action 

current response to increasing temperature of a single parvocellular neurone in the 

presence of econazole. (F) Mean percentage normalized action current frequency 

shows the effect of temperature on action current frequency are prevented when in 

the presence of the TRPM2 inhibitor econazole (n=5; p>0.05). 

 

Perfusion of the relatively selective TRPM2 inhibitor, econazole (10 µM), prevented 

the decrease in action current frequency throughout increasing temperatures up to 

37oC (n=5; p>0.05 by ANOVA against control using Dunnet’s post hoc test).  This 
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shows a potential role for TRPM2 channels in temperature sensing within the 

paraventricular nucleus, however, the process appears complex.   

3.4 Discussion 

Under ordinary physiological circumstances, a number of nuclei in the 

hypothalamus contribute to both the maintenance of plasma osmolality within a 

narrow range (~290-300 mOsm) and maintaining body temperature at 37oC.  The 

paraventricular nucleus is one of these hypothalamic nuclei with established roles in 

both osmotic homeostasis (Bourque, 2008) and temperature regulation (Cham and 

Badoer, 2008; Cham et al., 2006a; Chen et al., 2008; Inenaga et al., 1987; Smith et 

al., 1998).  Although these actions have been widely reported, little is known about 

the mechanisms responsible for this regulation.    

The transient receptor potential channels are a group of non-selective cation 

channels highly involved in cell-regulation; particularly important for Ca2+ regulation 

(Clapham, 2003).  As it is such an extensive group they are activated by a large 

variety of endogenous agents as well as some channels showing osmosensing and 

temperature sensing capabilities.  TRP channels have been widely investigated 

recently, with knock-out animals becoming available, transcriptomics technology 

and pharmacological selectivity beginning to improve they have had much 

attention.  Several TRP channels are widely expressed in the brain; therefore it 

follows that these would be ideal candidates as “sensors” within the PVN.  With this 

is mind the aim of this chapter was therefore to explore what altering the 

osmolality and temperature did to neuronal activity in vitro and attempt to identify 
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the channels responsible for any sensing capabilities these neurons may express.  

This was carried out using a variety of methods.  

3.4.1 Osmolality 

Although the presence of TRPV4 channels has been shown in the PVN of the 

hypothalamus before (Carreno et al., 2009), I confirmed this presence within the 

parvocellular area using immunofluorescence. 

3.4.1.1 Action current recordings 

The effects of osmolality on neuronal activity were explored using cell-attached 

patch clamp electrophysiology.  By using this technique I was able to record action 

currents as an indication of action potentials and analyze the firing frequency of the 

neurone patched.  It should be noted that this is not a direct recording of the action 

potentials themselves, which is usually done using whole-cell methods or sharp 

electrodes. These can result in disturbance of the cells intracellular milieu.  

Therefore I used cell-attached patch (which does not disturb the cell interior) since 

the purpose of these experiments was to alter the external environment (in this 

case osmolality) of the cell by changing the bath solution, without directly 

interfering with the intracellular cellular environment.  

During osmolality experiments normal ACSF (300 mosmol) was perfused over the 

slice using a peristaltic pump system whilst recording action current frequency and 

the solution was then changed to one of a low osmolality (270 mosmol).  This may 

seem a large difference, as levels are usually highly regulated from 300-290 mosmol 

(Bourque, 2008), however, levels as low as 250 mosmol have been reported in 
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people who have taken substances such as MDMA (Brvar et al., 2004).  These levels 

were therefore set to ensure any response was not too subtle to detect, yet staying 

within the bounds of normal physiology.   

Whilst recording action currents it was observed that the majority of cells firing did 

so spontaneously and fairly rapidly.  This is somewhat against the consensus these 

neurones remain quiescent in vivo (Park and Stern, 2005). However, the these low 

levels of activity are lost in vitro, where these neurones are spontaneously active 

(Stern, 2001; Womack et al., 2007), perhaps due to a loss of tonic inhibition from 

GABAergic innervation during the slicing processes.  From these action current 

recordings it was observed that frequency was massively decreased with reducing 

osmolality, showing an osmosensing role for this population of neurones.  This was 

an observation which is supported by previous research showing altered neuronal 

activity as a result of changing osmolality in other areas of the brain (Bourque et al., 

2007).  In order to then discover the potential mechanism behind this osmosensing 

capability several specific pharmacological agents were used.  Both the TRPV4 

channel agonists 4αPDD and the more selective GSK1016790A resulted in reduction 

of action current frequency. Interestingly the difference in reduction of action 

current frequency between GSK1016790A and 4αPDD was significantly different; 

this could be due to the action of these agonists or a difference in specificity.  Upon 

this confirmation, the TRPV4 channel inhibitors RN1734 and HC067047 were used 

during perfusion of the hypotonic solution.  Osmolality was reduced before these 

inhibitors were added to ensure osmosensitivity of the neuronal cell patched.  The 

addition of both agonists resulted in a reversal of the effects of reduced osmolality 
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on action current frequency. These results show activation of TRPV4 channels using 

osmolality modulates neuronal activity within the parvocellular PVN. 

3.4.1.2 Single channel recordings 

As these experiments were performed in slice the neuronal network will still be 

somewhat intact.  This means that any effects seen during the above set of 

experiments could potentially be indirect (i.e. effects imposed from further 

upstream in the network).  This issue could potentially be resolved by using synaptic 

block by changing Ca2+ and Mg2+ levels of the solutions or using pharmacology 

However, as the nature of the recordings was to measure spontaneous action 

potentials, and these would be abolished in these circumstances, this was not done.  

Instead, cell-attached patch electrophysiology was used to record single channel 

events and the TRPV4 channel agonist 4αPDD was used to identify the channel in 

the neurones patched.  TRP-like channels were identified in 50% of cells by 

measuring the conductance (57±7 pS) and reversal potential (-5±3mV) of the 

channel; both of which are indicative of a TRPV channel as described by Alexander 

et al. (2011).  It possible to compare the reversal potential recorded in the single 

channel recordings to a calculated reversal potential based on the ionic 

concentrations used in these experiments.  In a general TRPV channel case an 

adapted constant field equation can be used (Lewis, 1979): 

Equation 3.1       
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Equation 3.2       
   

   
  

 

               
   

Lewis (Lewis, 1979) showed that with 2mM extracellular Ca2+ and zero assumed 

surface charge, this equation satisfactorily describes the Vrev of the K+, Na+ and Ca2+ 

permeant end-plate currents including those of TRPV4 (with permeability ratios of 

6:1:1 for Ca2+, Na+, and K+ respectively (Strotmann et al., 2010). Variants of this are 

widely used in calculations of non-specific cation permeabilities  (Kamouchi et al., 

1999; Vennekens et al., 2000; Owsianik et al., 2006).  Solving this equation gives a 

Vrev of +4.2 mV.  Both the calculated and recorded reversal potentials are close to 

the 0 mV reversal potential expected to see from a non-selective cation channel 

such as TRPV4.  Along with this evidence, the channel seen within these single 

channel recordings was ultimately identified by an increase in open probability 

upon addition of the TRPV4 selective activator, 4αPDD.     

3.4.1.3 Whole cell and calcium investigations in isolated PVN cells 

Furthermore, experiments investigating osmolality in this chapter were performed 

on isolated PVN neurones from the rat.  The isolated neurone preparation 

eliminates issues of innervating neurones from the network as any calcium changes 

occur in individual cells.  Rats were used instead of mice due to the size of the 

tissue; it is possible to punch out a PVN population from a rat, but this technique is 

inaccurate in the mouse. 

Opening TRPV4 channels will result in an influx of Ca2+, as this channel is more 

permeable to Ca2+ over other cations; this was verified using calcium recording with 

Fura-2AM.   Ca2+ increases were seen with both hypotonic challenge and activation 
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with 4αPDD.  In theory this increase in Ca2+ should result in a depolarization of the 

membrane potential as the cell becomes more positive.  Whole-cell patch clamp 

electrophysiology in current clamp mode confirmed this showing depolarization 

with TRPV4 channel agonists, 4αPDD and GSK1016790a.  The depolarisation of 

membrane potential due to activation of the TRPV4 channel is consistent with a 

model where TRPV4 channel activation results in an influx of Ca2+ into the neurone.  

Opening TRPV4 channels will move the membrane potential towards the 

equilibrium potential for Ca2+, resulting in depolarisation.  However, a 

depolarisation and increasing levels of Ca2+ would typically result in an increase in 

activity, not the decrease seen in these experiments.  This is further discussed in 

Chapter 5. 

This extensive set of experiments provides compelling evidence that neurones of 

the parvocellular PVN have osmosensing capabilities, and show for the first time the 

non-selective cation channel TRPV4 is at least in part responsible for this role in cell 

regulation.  Other major areas for central osmosensing in the brain, particularly the 

circumventricular organs such as the subfornical organ, have been investigated 

extensively and changes in osmolality are known to alter sympathetic drive via their 

projections (Stocker and Toney, 2005).  The current investigation has revealed that 

the putative parvocellular neurones of the PVN themselves directly “sense” 

osmolality, and therefore the afferent projections from the circumventricular 

organs that exist are not responsible for this process.  As the PVN is located close to 

the third ventricle, and so can receive inputs from the cerebrospinal fluid circulating 

the brain; including osmolality.  Questions remain, however, as to the function of 

this mechanism.  It is likely that although the circumventricular organs may sense 
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immediate changes in osmolality and adjust sympathetic drive accordingly, the PVN 

may be responsible to long term sympathetic adjustments to osmolality.  Further 

investigation is required to explore these possibilities. 

3.4.2 Temperature  

Having shown the presence of the TRPV4 channel within the parvocellular region of 

the PVN, it was thought that it may also have a temperature sensing role as it is 

activated at temperatures above 27oC. Altering temperature of the bath solution in 

rising steps of 5oC from 22oC to 37oC decreased action current frequency 

dramatically.  This range was chosen as a lot of electrophysiological research is 

performed at room temperature, and anything over 37oC in the brain can result in 

serious complications.  The decrease seen was gradual throughout the 

temperatures used; either suggesting activation of a temperature sensitive channel 

such as a TRP channel or a more general effect of the temperature such as is seen 

with enzymatic reactions.  The broad spectrum TRP channel blocker, gadolinium, 

was used to see if the effects of temperature were blocked.  At lower temperatures 

of 27oC and 32oC action currents persisted, suggesting a temperature and 

gadolinium-sensitive channel (perhaps a TRPV4 channel) was activated.  However, 

the effects of temperature remained when at physiological temperatures, 

suggesting another channel may be responsible for this reduction in action current 

frequency.  A process of elimination led to the TRPM2 channel being a candidate, as 

it is not gadolinium sensitive, but is activated at temperatures above 35oC.  The only 

relatively selective pharmacological agent for this channel is econazole, which is 

also used as a TRPV5 channel inhibitor (however, this channel is gadolinium 
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sensitive).  Treatment with econazole blocked the temperature effects altogether, 

providing some evidence that TRPM2 channels are responsible in part for 

temperature sensing in this area.  Furthermore, the TRPM2 channel C-terminal 

region is almost entirely made up of an enzymatic domain, which is perhaps why 

action current frequency decreases in such a way with increasing temperature.   

An interesting point to mention is that typically in neurones temperature elevation 

leads to an increase in activity (Sudbury and Bourque, 2013).  I therefore speculate 

that decreasing activity is an indirect effect whereby TRPM2 channel activation 

excites inhibitory GABAergic neurones innervating the patched putative 

parvocellular neurones.  This is a hypothesis that could be tested by further 

experiments or by mathematical model. 
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4 The Role of the TRPV4 Channel in Central 

Osmoregulation 

4.1 Introduction 

Body fluid osmolality is usually regulated within an extremely narrow range (~290-

300 mosmol) (Bourque, 2008). Several areas surrounding the third ventricle, such as 

the subfornical organ and lamina terminalis have been implicated in central 

osmosensing and osmoregulation (Bourque, 2008).  Both also project to the PVN 

(Sawchenko and Swanson, 1982), an area within close proximity that has been 

shown in Chapter 3 to have osmosensing capabilities itself in vitro via a mechanism 

involving the TRPV4 channel.  This study implicated a role for TRPV4 channels in 

osmosensing, showing the ability of these channels combined to modulate firing 

frequency of putative parvocellular neurones depending on the osmolality of the 

environment.  As the PVN is an area well known to modulate cardiovascular 

function and SNA (Coote et al., 1998; Pyner, 2009; Yang and Coote, 1998; Yang et 

al., 2009), reviewed by (Nunn et al., 2011; Pyner, 2009), it seems likely that changes 

in osmolality would therefore influence cardiovascular parameters.   

4.1.1 Physiological effects of osmolality 

Both magnocellular and parvocellular subsections of the PVN have been suggested 

to play a role in osmoregulation (Arnhold et al., 2007; Giovannelli et al., 1992; 

Yamashita et al., 1988).  The majority of research has so far focussed on the 
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magnocellular area of the PVN; well known for its osmosensing capabilities. 

Haselton et al (1994) showed that the parvocellular PVN was involved in a reduction 

of RSNA during isotonic volume expansion. It has since been postulated that the 

parvocellular PVN may respond to changes not only in blood volume (Lovick et al., 

1993), but also in osmolality (Deering and Coote, 2000).  Altering firing rates within 

the parvocellular PVN as a result of these environmental changes may therefore 

have an effect upon the cardiovascular system and SNA due to its projections to the 

IML and RVLM.  Studies carried out by Stocker (2004) and Arnhold (2007) showing 

increased early c-fos expression following water deprivation induced hypertonicity 

in rats provide further evidence for a role of these spinally-projecting neurones of 

the parvocellular PVN in osmoregulation (Arnhold et al., 2007; Stocker et al., 2004).  

Furthermore, decreases in RSNA and arterial blood pressure have been noted with 

inhibition of spinally-projecting parvocellular neurones (Stocker et al., 2004).  In 

rats, hypertonic challenge by injection via the internal carotid artery with both NaCl 

and mannitol increased heart rate, mean arterial pressure and RSNA (Chen and 

Toney, 2001).  Although the focus of these studies was the function of AT1 

receptors, they suggest that SNA is only in part modulated by activation of AT1 

receptors, leaving a gap in the knowledge of the potential mechanisms involved.  

Later studies by (Gao et al., 2009) showed TRPV4 channel activation by the activator 

4αPDD resulted in a decrease in mean arterial pressure, and although this study did 

not identify the mechanism by which this occurred the authors hypothesised 

several possibly routes; including central osmosensing within the PVN.  Despite later 

studies implicating part of this mechanism was due to TRPV channels present on 

endothelium tissue of the mesenteric artery, no further investigation has been 
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made into a role for osmosensing within the PVN itself (Gao and Wang, 2010).  This 

body of evidence, combined with the in vitro investigation presented in Chapter 3 

les to the hypothesis that not only does the PVN have a role in central 

osmoregulation, and therefore an influence over cardiovascular parameters, but 

that the non-selective cation channel TRPV4 may be central to this mechanism. 

4.1.2 Aims 

This chapter will explore central osmosensation, with an aim to (1) investigate the 

effects of central osmolality on cardiovascular parameters in vivo by measuring 

blood pressure using arterial cannulation, and (2) pharmacologically identify 

whether the TRPV4 channel is involved in this mechanism of central osmosensation. 

4.2 Methods 

Blood pressure was recorded by a pressure transducer from adult CD1 wild-type 

mice (30-40g) as described fully in Chapter 2. Mice were placed in a stereotaxic 

frame and ICV injections of 1μL of isotonic/isotonic+DMSO ACSF, hypotonic ACSF 

(~270mOsm) and RN1734 (Tocris, UK) in vehicle (isotonic ACSF) (100 nM/kg) were 

performed slowly over a minimum of 1 minute using a 10µl Hamilton syringe and 

withdrawn carefully to prevent the solution travelling back up the needle track. 

Heartbeats were annotated using PhysioNet to give heart rate and R-R interval and 

all parameters were analysed by averaging a stable section of heart rate for 5 

minutes before injection and during the peak response after the needle was 

removed.  Once the recording was over the injection site was confirmed by lowering 

the Hamilton syringe into the same coordinates loaded with 1% pontamine blue 
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dye.  1μL of pontamine blue dye was injected in the same procedure as described 

above.  Once sacrificed, the mouse was decapitated and the brain removed for 

slicing on the vibrotome to confirm the injection site (not shown). 

4.3 Results 

Average blood pressure and heart rate were not significantly changed in mice 

injected ICV with isotonic ACSF or isotonic ACSF plus DMSO 0.01% (~300 mosmol).  

A difference of -2 ± 1 mmHg in mean arterial pressure was observed after isotonic 

injection from 47 ± 4 mmHg to 44 ± 3 mmHg, and average heart rate remained 

statistically the same from  629 ± 19 bpm to 619 ± 21 bpm after isotonic injection 

(Figure 4.1 and Figure 4.4 n=6; p>0.05 by ANOVA using Tukey’s post hoc 

comparison).  
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Figure 4.1 Intracerebroventricular injection of isotonic ASCF has no effect on 
cardiovascular parameters.  
Adult male CD1 mice were anaesthetised with urethane-chloralose, and blood 
pressure was recorded by cannulation of the carotid artery.  (A) Raw unamplified 
representative blood pressure trace.  Arrow indicates ICV injection of isotonic (300 
mosmol) ACSF.  (B) Amplified blood pressure trace with annotated beats (purple 
lines), before (i) and after (ii) injection.  Annotated beats are used to derive R-R 
interval and heart rate. (C) Example R-R interval trace shows no difference before (i) 
and after (ii) ICV injection of isotonic ACSF. (D) Example heart rate trace shows no 
difference before (i) and after (ii) injection of isotonic ACSF.  (E) Average blood 
pressure and (F) heart rate do not change with injection of isotonic ACSF (n=6; 
p>0.05). 
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Hypotonic ACSF administered centrally resulted in a significant decrease in mean 

arterial pressure of -9 ± 2 mmHg from 45 ± 5 mmHg to 36 ± 4 mmHg (n=6; p<0.01 by 

ANOVA using Tukey’s post hoc comparison).  No change in heart rate was observed 

(Figure 4.1 and Figure 4.4; n=6; p>0.05 by ANOVA using Tukey’s post hoc 

comparison; representative trace shown in Figure 4.2).  Blood pressure change was 

significantly greater in mice injected ICV with hypotonic ACSF compared to those 

treated with the vehicle injection (isotonic/isotonic+ DMSO 0.01%) ACSF (Figure 4.4; 

-9 ± 2 mmHg vs -2 ± 1 mmHg; n=6; p<0.01 by ANOVA with Tukey’s post hoc 

comparison). This suggests that central osmolality changes result in altered blood 

pressure. 
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Figure 4.2 Intracerebroventricular injection of hypotonic ASCF decreases blood 
pressure but has no effect on heart rate.  
(A) Raw unamplified representative blood pressure trace.  Arrow indicates ICV 
injection of hypotonic (270 mosmol) ACSF.  Blood pressure significantly decreases 
after injection of hypotonic ACSF. (B) Amplified blood pressure trace with 
annotated beats (purple lines), before (i) and after (ii) injection.  Annotated beats 
are used to derive R-R interval and heart rate. (C) Example R-R interval trace shows 
no difference before (i) and after (ii) ICV injection of hypotonic ACSF. (D) Example 
heart rate trace shows no difference before (i) and after (ii) injection of hypotonic 
ACSF.  (E) Average blood pressure is significantly reduced with injection of 
hypotonic ASCF (n=6; *p<0.01), but heart rate (F) remains unchanged (p>0.05). 
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Addition of the TRPV4 channel inhibitor RN1734 (100 nM/kg) prevented the 

reduction in mean arterial pressure observed with injection of hypotonic ACSF alone 

(see representative trace Figure 4.3).  A non-significant change of -1 ± 1 mmHg was 

seen from 42 ± 4 mmHg to 41 ± 4 mmHg (Figure 4.3 and Figure 4.4; n=6; p>0.05 by 

ANOVA using Tukey’s post hoc comparison).  Again, no difference in heart rate was 

observed (Figure 4.3 and Figure 4.4; n=6; p>0.05 by ANOVA using Tukey’s post hoc 

comparison). 
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Figure 4.3 Intracerebroventricular injection of the TRPV4 channel inhibitor 
RN1734 prevents the effect of hypotonic ACSF on blood pressure.  
(A) Raw unamplified representative blood pressure trace.  Arrow indicates ICV 
injection of hypotonic (270 mosol) ACSF with the addition of RN1734 (100 nM/kg).  
Blood pressure does not change upon ICV injection of hypotonic ACSF in the 
presence of RN1734. (B) Amplified blood pressure trace with annotated beats 
(purple lines), before (i) and after (ii) injection.  Annotated beats are used to derive 
R-R interval and heart rate. (C) Example R-R interval trace shows no difference 
before (i) and after (ii) ICV injection. (D) Example heart rate trace shows no 
difference before (i) and after (ii) ICV injection. (E) Average blood pressure response 
to hypotonic ASCF is prevented by injection of RN1734 (n=6; p>0.05). (F) Average 
heart rate remains unchanged (n=6; p>0.05). 



101 
 

 

Figure 4.4 Summary average changes in cardiovascular parameters from ICV 
injections.   
(A) Average change in blood pressure compared to control of several ICV injection 
treatments.  No significant change was seen with vehicle (isotonic ACSF) or the 
TRPV4 channel inhibitor, RN1734 (100 nM/kg) alone vs control (n=6; p>0.05).  Blood 
pressure is significantly reduced in animals injected with hypotonic ACSF compared 
to those injected with vehicle (n=6; *p<0.01).  ICV injections with RN1743 + 
hypotonic ACSF did not produce a significant blood pressure change compared to 
vehicle injections (n=6; p>0.05), but blood pressure change was significantly 
reduced compared to hypotonic injections (n=6; #p<0.01).  (B)  Average heart rate 
did not change significantly between any of the conditions stated (n=6; p>0.05 by 
ANOVA). 

4.4 Discussion 

Previous studies have shown that changes in osmolality lead to changes in heart 

rate, RSNA and blood pressure (Chen and Toney, 2001; Stocker et al., 2004), 

although most of these studies have not altered osmolality directly in the brain.  
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Chapter 3 showed that putative parvocellular neurones of the PVN are able to sense 

osmolality changes.  Furthermore, these changes in osmolality resulted in 

modulated firing activity of these neurones via a TRPV4 channel-dependant 

mechanism.  Preautonomic neurones within the PVN are known to modulate 

cardiovascular parameters via the autonomic nervous system; therefore it seems 

that central osmolality may in turn have an effect on the cardiovascular system via 

these same mechanisms.  It has previously been shown that hypotonic infusion via 

the carotid artery resulted in a decrease In MAP, lumbar SNA and increased heart 

rate in water dehydrated rats, but not in water replete rats (Brooks et al., 2005; 

Scrogin et al., 1999); the authors hypothesise that one possible method of action is 

via the spinally-projecting neurones of the PVN.   Furthermore, Holbein et al (2014), 

have recently shown PVN inhibition results in a decrease in blood pressure and 

splenic SNA in dehydrated rats, proposing that the PVN drives tonic splenic SNA. 

This evidence led me to investigate central osmolality in mice using ICV injections, 

and its effects on the cardiovascular system.  In order to do this, mice were 

cannulated by the carotid artery whilst anaesthetised with a combination of 

urethane and α-chloralose.  Although this combination is seen as less suitable in 

recent years due to carcinogenic effects, these anaesthetics are known for having 

little effects themselves on the cardiovascular system.  It was felt it was most 

appropriate for this reason, and as cannulation is a terminal procedure any adverse 

effects to the welfare of the animal would not be an issue.  Blood pressure was 

recorded from cannulated mice and heart rate and R-R interval could then be 

derived.  Cannulation was chosen over tail cuff plethysmography for recording of 

blood pressure as it is a much more accurate method.   
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ICV injections of solutions were performed rather than direct PVN injections as the 

size of the PVN in adult mice is too small to accurately inject just the PVN area itself.  

As it has been hypothesised blood volume changes alone would have an effect on 

cardiovascular parameters it is important to check this first by injecting isotonic 

ACSF (~300 mosmol).  No changes to blood pressure or heart rate were observed 

with this or the combination of isotonic and DMSO (used as a vehicle for the TRPV4 

channel inhibitor RN1734).   

Investigation continued in order to study the effects of central hypotonic ACSF 

(~270 mosmol) on cardiovascular parameters.  The osmolality chosen for these 

experiments are the same values used in Chapter 3, however, compared to other in 

vivo studies such as those by Brooks et al (2005), where hypotonic solutions of 40 

mosmol were used, this is a far more subtle change, within the bounds of 

physiology (Bourque, 2008; Brvar et al., 2004).  ICV injection of hypotonic ACSF 

resulted in a decrease of blood pressure, showing central osmosensation and 

suggesting the area responsible would (a) also have a role for modulating the 

cardiovascular system (such as the PVN) or (b) innervate such a nucleus.  These data 

supports previous reports that changes in central osmolality results in the 

modulation of blood pressure (Brooks et al., 2005; Scrogin et al., 1999).  In previous 

studies changes in heart rate have also been recorded upon osmotic change (Chen 

and Toney, 2001); however, our results show no statistical significant differences. 

This is not completely unexpected due to the baroreceptor reflex, which would be 

working to counteract the reduction in blood pressure (Spyer, 1994).    
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Lack of insight of the ionic mechanisms responsible for changes in blood pressure in 

this investigation led me to explore further. The mechanosensitive TRPV4 channel is 

known to be activated by osmolality changes (Liedtke et al., 2000) and has a known 

role in volume control in other tissues (Becker et al., 2005; Benfenati et al., 2011; 

Guilak et al., 2010); it has been suggested TRPV4 channels may be responsible for 

volume control centrally (Bourque, 2008).  This theory was confirmed by performing 

ICV injection of RN1734, a selective TRPV4 channel inhibitor, with hypotonic 

challenge. RN1734 blocked the blood pressure response to hypotonic ACSF ICV 

injection. This strongly supports a role for central TRPV4 channels in sensing 

osmolality changes and initiating changes in blood pressure.  Although the exact 

position of these channels centrally is unknown, this investigation complements the 

work previously shown in Chapter 3.  In this study a putative parvocellular 

population of neurones has been shown to have a TRPV4 channel dependant 

osmosensing mechanism and it is well known that these neurones modulate the 

autonomic nervous system.  It is therefore easy to infer these are the neurones 

responsible for the changes in blood pressure observed due to altering central 

osmolality; however, further investigation is necessary to confirm this.   

Potentially, pharmacological modulation of blood pressure via TRPV4 channels 

could be useful in the treatment of cardiovascular disease; however, the 

widespread distribution of these ion channels could limit their practical usefulness.  

Therefore future studies will be aimed at identifying the receptor and 

neurotransmitter profile of PVN osmosensing neurones to determine if we can 

identify more specific therapeutic targets. 
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5 Small Conductance Calcium-Activated Potassium 

Channels Couple to TRPV4 to Sense Osmolality 

5.1 Introduction 

In Chapter 3 the process of osmosensation via the TRPV4 cation channel was 

investigated.  This chapter clearly showed TRPV4 channels were present in the 

parvocellular area of the PVN and that they responded to osmolality changes and 

this in turn affected firing rate.  Decreases in osmolality led to activation of TRPV4 

channels resulting in an increase in Ca2+ within the cell and subsequently 

depolarisation of the cell was seen due to this Ca2+ influx.  However, depolarisation 

of the cell would typically lead to an increase in firing rate, not the decrease shown, 

unless large amounts of Ca2+ flooded into the cell created a depolarising block. It 

was important to investigate this further to reveal the full mechanism responsible. 

There is a large body of evidence suggesting that there is coupling between the 

TRPV4 and calcium-activated potassium channels in other tissues; this therefore 

seemed a sensible set of channels to investigate. 

5.1.1 Calcium-activated potassium channels 

Calcium is a vital signalling molecule and a rise in intracellular Ca2+ has many 

consequences such as; a release of Ca2+ from intracellular stores (calcium-induced 

calcium release), activation of second messenger systems, regulation of gene 

expression and the activation of calcium dependent ion channels.  Perhaps the best 

studied of these ion channels are the KCa channels.  These channels consist of three 
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families identified based on their pharmacological and biophysical properties; 

notably the SK, IK and BK channels, with further subtypes identified within the SK 

channel family (SK1, SK2 and SK3)(Kohler et al., 1996).  The nomenclature of these 

channels is further complicated as they are often referred to as KCa2.1 (SK or SK1), 

KCa2.2 (SK or SK2), KCa2.3 (SK or SK3), KCa3.1 (SK4, or IK) and Slo (BK) (Alexander et 

al., 2011).  All are selectively permeable to potassium and are gated by a rise in 

intracellular calcium.  Both BK and the SK channel subtypes can be found in the 

rodent brain and both are found within the PVN (Salzmann et al., 2010; Sausbier et 

al., 2006). These KCa channels play a vital physiological role in the modulation of 

neuronal firing (reviewed by (Faber and Sah, 2003)). This is thought to be due to 

their involvement in the after-hyperpolarisation (AHP) that occurs following an 

action potential. AHP happens in three phases, slow, medium and fast AHP; these 

phases are responsible for limiting firing frequency and generating spike frequency 

adaptation.   

BK channels, with the largest single channel conductance ranging from 200-400 pS, 

are both dependent on calcium levels and membrane potential for activation 

(McManus, 1991).  As a result they are activated on the upstroke of an action 

potential and responsible for fast AHP and therefore repolarization of the 

membrane (Adams et al., 1982; Shao et al., 1999).  SK channels have a much smaller 

conductance of 2-20 pS and are activated by rises in intracellular Ca2+, but are 

voltage insensitive.  Ca2+ binds to calmodulin, leading to a conformational change 

and the opening of the channel to allow K+ efflux.  These channels mediate the 

medium AHP and can modulate firing frequency, as has been shown in the PVN 

(Chen and Toney, 2009; Gui et al., 2012).  They have also been suggested to be 
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involved in slow AHP and spike interval generation, although this is disputed (Faber 

and Sah, 2003). 

5.1.2 KCa channel coupling to TRPV4 channels and feedback mechanisms 

The KCa channels are both well placed and have the functional capabilities to exert 

the effects seen in Chapter 3.  This action has been proposed in several other 

studies in a variety of cells (Earley, 2011; Jin et al., 2012; Ma et al., 2013; Sonkusare 

et al., 2012).  One study by (Gao and Wang, 2010) suggests a link with hypotension 

by activation of TRPV4 and BK channels in endothelial tissue, contributing to the 

evidence suggesting KCa channels are likely candidates for coupling with TRPV4 

channels within the PVN.   

As shown in Figure 5.1, the hypothesis is that Ca2+entry upon activation of the 

TRPV4 channel would result in activation of one or more KCa channels.  This in turn 

would lead to an efflux of K+, hyperpolarization1 of the cell and a decrease in action 

potential firing (Nilius and Droogmans, 2001).  Furthermore, feedback mechanisms 

have been proposed within this system.  Firstly, a negative feedback loop whereby 

TRPV4 channels become inactivated by increasing levels of Ca2+ above a threshold 

point (Chun et al., 2012), presumably in order to prevent triggering cell-death 

signalling by elevated Ca2+. Additionally, membrane hyperpolarisation may increase 

the driving force for Ca2+ entry, leading to an increase in intracellular Ca2+, activating 

further KCa channels, in a positive feedback loop (Watanabe et al., 2002). Such 

hyperpolarisation of autonomic neurones would be expected to have widespread 

                                                      
1
 In Chapter 3 we see depolarisation of the cell with activation of TRPV4 channels in whole cell 

recordings, however this is inconsistent with the decrease in activity observed in cell attached 
recordings.  See Discussion for full explanation of these findings. 
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physiological consequences such as a decrease in blood pressure or sympathetic 

activity due to decreased firing rate.  

 

Figure 5.1 Positive feedback mechanism proposed by Nilius and Droogmans (Nilius 
and Droogmans, 2001).   
Influx of Ca2+ from the opening of TRPV4 channels increases KCa channel activity 
which hyperpolarises the cell and increases the inward flux of Ca2+ by increasing the 
driving force (G [Vm– ECa]) for Ca2+ entry. (Vm= membrane potential, ECa is the 
equilibrium potential for Ca2+ ions and G is the conductance of the Ca2+ entry 
pathway). 

 

5.1.3 Aims 

Chapter 3 showed that hypotonic challenge results in a decrease in action current 

frequency in the putative parvocellular population of the PVN via activation of the 

TRPV4 channel.  From the evidence presented it is possible that the calcium-

activated potassium channels may have a part to play in this complex process.  

Therefore the aim of this chapter is to (1) explore any potential coupling role with 

TRPV4 channels in osmosensation for one or more of these channels and (2) 

uncover any evidence for feedback systems within this increasingly complex process 

using patch clamp electrophysiology and calcium recordings. 
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5.2 Methods 

Hypothalamic brain slices from CD1 mice were used for action current recordings 

using cell-attached patch clamp as described fully in Chapters 2 and 3. 

Isolated PVN neurones were plated out on glass-bottomed dishes (for full methods 

see Chapter 2 and Chapter 3) for intracellular Ca2+ recording.  Cells were incubated 

for at least 30 minutes with the ratiometric dye Fura-2AM (5 µM) and kept in the 

dark to avoid bleaching.  Regions of interest were highlighted and measurements 

were made at intervals of 2 s by exciting Fura-2AM alternately at 355 nm and 380 

nm. The ratios of these intensities were converted into total calcium levels using 

Equation 2.1 in Chapter 2. 

5.3 Results 

5.3.1.1 Small-conductance calcium activated potassium channels 

The effects of hypotonic challenge on action current frequency were significantly 

reduced by the SK inhibitor UCL-1684 (30 nM) (Figure 5.2), with a 79 ± 10% 

reduction in action current frequency with hypotonic alone, compared to a 37 ± 7 % 

reduction with hypotonic and UCL-1684 (n=5; p<0.01 by General linear model with 

multiple comparison using Tukey’s post hoc test).  No significant changes in action 

current frequency were seen with UCL-1684 alone (Figure 5.2C; n=6; p>0.05).  
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Figure 5.2 Inhibition of the small-conductance KCa channel reverses the effect of 
osmotic sensitivity on putative parvocellular PVN neurones.  
Cell-attached action current measurements in slice within the medial and dorsal cap 
parvocellular area of the PVN (Figure 3.1). (A) Raw action current trace at 300 mosol 
(control), 270 mosmol (hypotonic), and with the addition of the SK inhibitor UCL-
1684 (30 nm) in hypotonic conditions.  (B) Representative frequency histogram 
showing the regain of action current frequency upon addition of UCL-1684, after 
loss from hypotonic challenge.  (C) Mean action current frequency is significantly 
reduced at 270 mosmol (n=5; **p<0.01 by General linear model with multiple 
comparison using Tukey’s post hoc test), but not in the presence of the SK inhibitor. 
Data expressed as a % of control (isotonic is 100%). Taken from 5 experiments 
similar to those illustrated in (A) and (B). 

 

5.3.1.2 Intermediate-conductance calcium activated potassium channels 

Again, hypotonic challenge resulted in a decrease in action current frequency, 

however, this was not significantly affected by the IK channel inhibitor TRAM-34 (30 

nM) (Figure 5.3; n=5; p>0.05 by General linear model with multiple comparison 

using Tukey’s post hoc test).  
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Figure 5.3 Inhibition of the intermediate-conductance KCa channel has no effect on 
osmotic sensitivity of putative parvocellular PVN neurones.   
Cell-attached action current measurements in slice within the medial and dorsal cap 
parvocellular area of the PVN (Figure 3.1). (A) Raw action current trace at 300 
mosmol, 270 mosmol and with the addition of the IK inhibitor TRAM-34 (30 nm).  
(B) Representative frequency histogram showing TRAM-34 has no effect on action 
current frequency. (C) Mean action current frequency from 5 experiments similar to 
those illustrated in (A) and (B) is significantly reduced upon hypotonic challenge 
(n=5; **p<0.01 by General linear model with multiple comparison using Tukey’s 
post hoc test); osmotic sensitivity is unchanged upon addition of TRAM-34. 

 

5.3.1.3 Large-conductance calcium activated potassium channels 

No effects on osmosensitivity were observed at concentrations of 1nM, 10nM, 

30nM or 100nM of the BK inhibitor iberiotoxin (Figure 5.4; n=6; p>0.05 by General 

linear model with multiple comparison using Tukey’s post hoc test).  
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Figure 5.4 Inhibition of the large-conductance KCa channel has no effect on 
osmotic sensitivity of PVN neurones.   
Cell-attached action current measurements in slice within the medial and dorsal cap 
parvocellular area of the PVN (Figure 3.1). (A) Raw action current trace at 300 
mosmol, 270 mosmol, and with the addition of the BK inhibitor iberiotoxin (IbTX) 
(10 nm).  (B) Representative frequency histogram showing IbTX has no effect on 
action current frequency.  (C) Mean action current frequency from 6 experiments 
similar to those illustrated in (A) and (B) is significantly reduced upon hypotonic 
challenge (n=6; **p<0.01 by General linear model with multiple comparison using 
Tukey’s post hoc test); osmotic sensitivity is unchanged upon addition of IbTX. 

 

5.3.1.4 Functional coupling of TRPV4 and KCa channels 

The selective TRPV4 activator, GSK1016790A (100 nM) was shown to reduce action 

current activity in Chapter 3. By using this activator in combination with the SK 

inhibitor, UCL-1684 (30nM), it is possible to explore if there is a coupling between 

these channels.  The combination of GSK1016790A and UCL-1684 led to no change 

in action current frequency (n=7; p>0.05 by Students paired t-test). 
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Figure 5.5 Activation of TRPV4 and inhibition of SK combined results in no change 
of action potential. 
Cell-attached action current measurements in slice within the medial and dorsal cap 
parvocellular area of the PVN (Figure 3.1). (A) Raw action current frequency at 300 
msomol and with the addition of both GSK1016790A (100 nM) and UCL-1684 (30 
nM). (B)  Representative histogram showing GSK1016790A and UCL-1684 together 
have no effect on action current frequency.  (C) Mean action current frequency 
from 7 experiments similar to those illustrated in (A) and (B) is not significantly 
changed with addition of GSK1016790A and UCL-1684 (n=7; p>0.05 by Students 
paired t-test). 

5.3.2 Calcium recording 

Upon hypotonic challenge with hypotonic ACSF (270 mosmol) a transient increase 

in [Ca2+]i was observed from the basal level of 77 ± 3 nM to 198 ± 28 nM (Figure 5.6; 

n=8; p<0.001).  When subjected to hypotonic challenge in the presence of the SK 

inhibitor, UCL-1684 (30 nM), an increase in [Ca2+]I was still observed (from 79 ± 3 

nM to 144 ± 8 nM). This increase however was significantly reduced compared to 

with hypotonic alone and in this case it was sustained until the treatment was 

washed off with isotonic ACSF.  An increase of 121 ± 28 nM with hypotonic alone vs 

65 ± 8 nM with hypotonic plus UCL-1684 was observed (Figure 5.6; n=13; p<0.05 by 
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General linear model with multiple comparison using Tukey’s post hoc test).  UCL-

1684 alone did not affect Ca2+ levels (n=13; p>0.05). 

 

Figure 5.6 Hypotonic challenge results in an increase in intracellular calcium which 
is dependent on feedback systems driven by KCa channels.  
(A) Representative Ca2+trace showing a transient increase at 270 mosmol 
(hypotonic challenge).  (B) Representative Ca2+trace showing a sustained increase in 
the presence of the SK channel inhibitor UCL-1684 at 270 mosmol.  (C) Mean 
intracellular Ca2+ from several experiments show Ca2+ levels are significantly 
increased at 270 mosmol with and without the presence of UCL-1684 compared to 
at 300 mosmol (n=10; *p<0.001 and n=13;*# p<0.001 respectively by General linear 
model with comparison against control using Dunnet’s post hoc test). Ca2+ rise with 
hypotonic challenge was significantly reduced and sustained when cells are 
superfused with UCL-1684 (p<0.05). 

  

5.4 Discussion 

Chapter 3 showed a role for the TRPV4 channel in osmosensation in putative 

parvocellular cells of the paraventricular nucleus. Upon activation by either low 
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levels of osmolality, or an activator of the channel, such as 4αPDD, (shown in 

Chapter 3) there is a decrease in cell excitability and an influx of Ca2+ into the cell.  It 

would then follow that this increase in intracellular Ca2+may then activate a Ca2+-

activated ion channel; a theory which has been investigated by many groups.  

Although several Ca2+-activated ion channels exist, the KCa channels have been 

extensively researched.  The BK and SK channels are known to be widely expressed 

in the brain, including in the PVN and as discussed have a role in modulating firing 

activity in neurones (Salzmann et al., 2010; Sausbier et al., 2006). There has been 

particular focus recently on their co-localisation with TRP channels and several 

studies in a variety of tissues have shown that KCa channels are activated by local 

increases in intracellular Ca2+ due to TRPV4 channel opening (Earley, 2011; Jin et al., 

2012; Ma et al., 2013; Sonkusare et al., 2012).  Activation of KCa channels will result 

in a K+ efflux and therefore hyperpolarisation of the cell and a decrease in 

excitability (see Figure 5.1); a hypothesis proposed by (Nilius and Droogmans, 

2001).  For these combined reasons the aim of this chapter was therefore to 

investigate a possible role for one or more of this family of KCa ion channels in the 

osmosensing process. 

Primarily it was important to explore which, if any, of the KCa channels may have 

been responsible for modulating firing frequency during hypotonic challenge.  To do 

this cell-attached patch clamp was used to record action current firing in brain slice.  

The appropriate KCa channel inhibitors were perfused in ACSF and the cells were 

then subjected to hypotonic challenge.  Firing frequency decreased with a reduction 

in tonicity as expected.  The IK channel inhibitor, TRAM-34, did not have an effect 

on the osmotic sensitivity of these cells.  Iberiotoxin, the BK channel inhibitor, also 
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showed no effect on osmotic sensitivity of PVN cells, or in fact a change in firing 

frequency on its own.  This remained true for increasing concentrations of the 

inhibitor.  This effect is somewhat surprising, as BK channels are present in the PVN, 

and their inhibition is known to effect action potential duration and frequency 

(Salzmann et al., 2010). There are at least two possibilities as to why there is no 

effect on firing frequency in this incidence: 1. Simply, BK channels in these cells are 

not in close enough proximity to TRPV4 channels to be affected by localized Ca2+ 

entry and therefore it is not involved in this process, or 2. as BK channel activation is 

highly dependent upon voltage the membrane potential of the neurone this may 

either mean BK channels remain active regardless of the introduction of iberiotoxin 

or is continuously inactive during this process (Contreras et al., 2012).  

Inhibition of the SK channel with the specific blocker, UCL-1684, did affect osmotic 

sensitivity of putative parvocellular PVN cells.  Use of this blocker prevented the 

reduction in firing rate caused by hypotonic challenge.  The effect seen in these 

experiments is backed up by studies performed by (Chen and Toney, 2009), where 

they have shown the presence of SK channels in neurones within the PVN projecting 

to the RVLM.  They use whole-cell patch clamp experiments to show that firing rate 

in these neurones is regulated by SK channel activity, concluding that SK channel 

activation results in a medium after-hyperpolarisation resulting in a decrease in 

excitability of these cells (Chen and Toney, 2009).  In Chapter 3, however, I recorded 

a depolarisation within the cells upon addition of both of the TRPV4 channel 

activators, 4αPDD and GSK1016790A.  If the hypothesis described is correct, one 

would also have expected to see a hyperpolarisation in these experiments.  

However, during these whole cell experiments described in Chapter 3 EGTA, a 
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Ca2+chelator, is used in the patch pipette. During these experiments EGTA would 

effectively “mop-up” any Ca2+ within the cell and therefore prevent the subsequent 

activation of SK channels via the Ca2+-calmodulin complex, resulting in a 

depolarisation.  This hypothesis would need to be further investigated by 

investigating membrane potential changes in cells which were Ca2+ is only weakly 

buffered.  

It is worth noting here that there are 3 SK channels; SK1, 2 and 3.  Although it is not 

possible to distinguish these using pharmacology, due to a lack of specificity of 

compounds available, some more specific antibodies are available for 

immunohistochemical studies.  It would therefore be interesting to explore this 

point further, potentially by investigating co-localisation of these SK channels with 

TRPV4 channels in the parvocellular area of the PVN.   

In addition, a functional coupling of TRPV4 and SK channels is supported by use of 

more complex pharmacology in cell-attached patch recordings of action currents.  

Using a combination of the TRPV4 channel activator GSK1016790A and SK channel 

inhibitor UCL-1684 no change in action current was seen.  This suggests that 

although the influx of Ca2+ entry through TRPV4 channels remains, the block of SK 

channels prevents K+ efflux and subsequent hyperpolarisation of the cell and 

therefore no change of action potential frequency occurs. 

 In order further to understand the role of SK channels in the osmosensing process, 

and explore and feedback systems that occur Ca2+ recordings were made using the 

ratiometric dye Fura-2AM in isolated PVN cells.  Hypotonic challenge, as expected, 

resulted in a similar rise in Ca2+ to what was seen in Chapter 3 with the activator of 
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the TRPV4 channel, 4αPDD.  A transient increase was seen with both, suggesting 

negative feedback is occurring.  Raising intracellular Ca2+ levels above a certain 

threshold will close the TRPV4 channel to prevent toxic levels occurring and 

subsequent cell death.  Interestingly, when the SK channel inhibitor UCL-1684 is 

perfused, the increase in Ca2+ observed is sustained until isotonic solution is run 

through and was significantly lower than with hypotonic alone.  Levels may be 

lower as a result of inhibition of SK channel-mediated K+ efflux.  This would mean no 

subsequent hyperpolarisation and no increase in the driving force for Ca2+ entry into 

the cell (see positive feedback mechanism Figure 5.1).  This in turn may prevent Ca2+ 

levels reaching threshold amounts to then trigger the negative feedback block of 

TRPV4 channels observed with hypotonic alone. 

Combined, these results suggest a functional coupling for the TRPV4 and SK ion 

channels in the complex process of osmosensing in the parvocellular PVN.  

Hypotonic challenge activates the mechanosensitive TRPV4 channel, increasing 

intracellular Ca2+. An accumulation of Ca2+ within the cell then appears to activate 

SK channels, hyperpolarising the neurones and therefore decreasing action 

potential firing frequency. Since these neurones are established to have an effect 

on the autonomic nervous system reduced firing could potentially lead to a 

decrease in blood pressure, a role which is discussed in Chapter 4. 
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6 Modelling TRPV4 and KCa Channel Coupling 

6.1 Introduction 

Bernstein (1902) originally proposed that potentials occurred across selectively 

permeable membranes, which separate ionic concentrations.  Furthermore, in 

order to achieve excitation it was suggested that there was an increase in 

permeability across the membrane.  It was much later that these theories were 

confirmed with experimental evidence.  Resting membrane potential was shown to 

occur due to local currents (Hodgkin, 1937a; Hodgkin, 1937b), and membrane 

permeability was shown to increase with excitability (Cole and Curtis, 1939).  

However, at that time, the theory of ion channels had not yet been discussed and it 

was believed that a linear electrical gradient existed across the whole membrane; 

the constant field theory (Goldman, 1943).  The concept of selective permeability to 

particular ions was discovered later, when Hodgkin and Katz showed that the 

resting membrane is permeable to K+, Cl- and Na+, but to a lesser extent  (Hodgkin 

and Katz, 1949).  They hypothesised that as the membrane became depolarised, it 

became more permeable to Na+ and therefore suggested that instead of crossing 

the membrane in an ionic form, Na+ was able to bind to a lipid soluble molecule in 

the membrane and cross when the membrane became depolarised.  With this the 

concept of the ion channel came into existence.  What followed this discovery was a 

series of pioneering voltage clamp experiments studying the kinetics of two 

individual permeability’s responsible for the generation of action potentials; Na+ 

and K+, and the propagation of this signal along a nerve fibre (Hodgkin and Huxley, 
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1952a; Hodgkin and Huxley, 1952b; Hodgkin and Huxley, 1952c; Hodgkin and 

Huxley, 1952d; Hodgkin and Huxley, 1952e; Hodgkin et al., 1952).    Combined with 

the theory presented by Goldman it was suggested that in order to maintain a 

steady state resting potential these cells contain ion channels, selective pores in the 

membrane which are able to control the flow of ions in and out of the cell.  The GHK 

equation was developed as a result of these findings: 

Equation 6.1       
  

 
   

 
   

          
  

               
    

       
          

            
     

  

Where Erev is the reversal potential, [X]out and [X]in are the extracellular and 

intracellular concentrations of the relevant ions, Px are the permeability coefficients 

of the ions and R, T and F have their standard definitions.  This equation can also be 

modified to include ions such as Ca2+. 

Combined with those observations of Hodgkin and Huxley in 1952, it was shown 

that the current moving across the membrane could be separated according to the 

currents carried by Na+, K+ and Cl- (deemed a leakage current).  These currents were 

defined by the equation below: 

Equation 6.2               

Where IX is the current of a particular ion, determined by (gX) the conductance of 

that ion channel, and the difference between the membrane potential (Vm) and the 

equilibrium potential (EX) of that ion. 

Using this knowledge it is possible to explore the electrophysiological properties of 

individual cells as well as networks of cells using computational modelling.  This is of 
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particular important as it does not require experimentation, and therefore adheres 

to the 3R’s (replacement, reduction and refinement).  Computational modelling is 

advantageous as it can be used as both a predictor of possible results as well as for 

verification of mechanisms which may otherwise prove difficult to show 

experimentally.  Within models it is possible to alter a multitude of properties 

including neuronal conduction, environmental conditions and ion channel 

populations.  One such system which has proven useful in developing a model of a 

neuronal network is the NEURON simulation environment (Hines and Carnevale, 

1997).  Using the NEURON simulation environment I have been able to develop a 

computational model of parvocellular neurones.  The development and outputs of 

the model I have constructed will be discussed in this chapter.  

6.1.1   NEURON model of spinally-projecting neurone 

This model is based on a previous model of spinally-projecting parvocellular 

autonomic neurones developed by my group (Feetham and Barrett-Jolley, 2012; 

Lewis et al., 2010).  Inputs to the spinally-projecting neurone arise from both 

excitatory ‘‘Netstim’’ neurones and inhibitory interneurons. The interneurons are 

also driven by excitatory ‘‘Netstim’’ neurons (see Figure 6.1).  As described 

previously excitatory neurones are glutamatergic in nature, and those inhibitory 

innervations are GABAergic.  These innervations of the PVN have been described in 

depth within this thesis and in the literature (Badoer et al., 2002).  
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Figure 6.1 Schematic of NEURON model.  

Showing a spinally-projecting neurone (SPAN) (in red) innervated by excitatory 

glutamatergic (in purple) and inhibitory GABAergic neurones (in green). GABAergic 

inputs are themselves innervated by excitatory “netstim” inputs. 

The model also includes the presence of Hodgkin and Huxley channels, which would 

account for the K+ and Na+ currents in the neurone responsible for action potential 

firing (Hodgkin and Huxley, 1952e).  KATP channels have also been added to the 

model (originally developed from (Courtemanche et al., 1998)).  These channels are 

known to be present within the PVN and can modulate neuronal firing of spinally-

projecting neurones (Lewis et al., 2010; Li et al., 2010).   

6.1.2 Addition of TRPV4 and KCa channels 

This model was further developed to include channels based on the experimental 

evidence taken from Chapter 3 and 5 (parameters added are shown in Table 6).  

TRPV4 and KCa channels are present within the parvocellular area of the PVN and 
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functionally couple to modulate neuronal excitability in response to changes in 

osmolality.  The KCa channel added has been modified from Benedetti et al (2008) 

and TRPV4 channel conductance taken from Deng et al (2010).  TRPV4 is a non-

selective ion channel and has a permeability ratio of 1:1:6 for Na+, K+, and Ca2+ 

respectively.  These ratios and a whole-cell conductance for the TRPV4 channel 

were also added using the algorithm of Strotmann et al (2010) as described in the 

equations below:  

Equation 6.3             
  

  
  

   

   
   

Equation 6.4       
 

 
          

Equation 6.5        
 

 
           

Equation 6.6                  

Where IX is the current provided by the relevant ion, g is the conductance of the 

channel, Cao is extracellular Ca2+ concentration, Cai is intracellular Ca2+ 

concentration, Vm is membrane potential and Ex is reversal potential.  

The model contains a subroutine to alter osmolality within the environment; these 

parameters were taken from results obtained in Chapter 3.  Hypo-osmolality is 

assumed to activate TRPV4 channels in a sigmoidal manner, resulting in an influx in 

Ca2+.  

Equation 6.7               
       

              
   

Equation 6.8                      
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Where (Δosmol) is the simulated change of osmolality, osmol is the current 

osmolality, basos is the base osmolality (the lowest used in experiments being 270 

mosmol) and h is the slope of activation by osmolality.  For model parameters see 

Table 6. 

The model simulates intracellular Ca2+ accumulation according to Carnevale et al 

(2006).  Ca2+ equilibrium is maintained by the incorporation of a simple Ca2+ pump 

(Carnevale and Hines, 2006) and by incorporating both positive and negative 

feedback for the TRPV4 channels, inclusive of forward and reverse rates.  These 

rates of activation and inactivation were taken from fitting influx and efflux of Ca2+ 

seen in calcium recordings upon activation of the TRPV4 channel with 4αPDD 

(Chapter 5) (see Table 6).  Elevated intracellular Ca2+ levels are known to increase 

open probability of TRPV4 channels via a Ca2+/calmodulin activation complex in a 

positive feedback system, and further increasing levels inhibit the channel in an 

negative feedback system, by a so far unknown mechanism (Watanabe et al., 2002).
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Figure 6.2 Representative figure of Ca2+ diffusion around a neuronal cell body 
within the NEURON model.   
Ca2+ pumps (solid black arrows) are present in the cell membrane in order to pump 
Ca2+ out when intracellular concentrations become too high within the cell (beige 
circle) as to avoid toxic concentrations.  Rings of diffusion (bidirectional arrows) are 
also included in the model to demonstrate what would occur in the extracellular 
environment as Ca2+ is pumped out. 

 

Table 6 Parameters included in the NEURON model. 
 

 

 

 

 

 

  

The model also includes a subroutine to simulate block of TRPV4 and/or KCa 

channels via altering the permeability of the selected channel. 

Parameter  Unit Meaning Source 

GmaxTRP 0.35x10-5 S/cm2 Maximum 
conductance for 
TRP channel 

(Deng et al., 
2010) 

k 1.5 mosmol Dissociation 
constant 

 

osmol 320 mosmol Current osmolality 
of solution 

(Dunn et al., 
1973) 

basos 280 mosmol  Base osmolality Value used in 
our 
experiments. 

k1 9.4 nM/s Forward rate Estimated from 
fit of Ca2+ data 
(Chapter 5). k2 0.05 nM/s Reverse rate 
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6.2 Results 

6.2.1 Altering osmolality  

The model simulates the activation of TRPV4 channels upon hypo-osmolality and 

closely matches experimental data.  Output from the model led to action potential 

frequency decreasing with decreases in osmolality (Figure 6.3A, B, C and D). The 

osmolality at which action potential frequency was half maximum was 297 ± 0.4 

mosmol (Figure 6.3). Furthermore, simulated block of either TRPV4 or KCa channels 

prevented this effect.  

 

Figure 6.3 Simulated action potential firing is modulated by altering osmolality.  
(A) Action potentials during hypertonic conditions (320 mosmol). (B) Decrease in 
action potential frequency when osmolality is reduced to 300 mosmol, and (C) 
further decreased action potential frequency at 270 mosmol.  (D) Dose response 
curve during changes in osmolality within the model. 
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6.2.2 Block of KCa channels 

I went on to test the positive feedback suggested, whereby KCa channel-induced 

hyperpolarisation leads to an increase in Ca+2 driving force and draws in further 

Ca2+.  TRPV4 channel activity was simulated by reducing osmolality to 270 mosmol 

and intracellular Ca2+ was calculated.  Intracellular Ca2+ concentrations with KCa 

channel conductance and with a reduced KCa channel conductance were then 

compared.  Breakage of this positive feedback loop resulted in significantly reduced 

TRPV4 channel Ca2+ current and intracellular decrease of Ca2+ (Figure 6.4; 12 nA 

cm2/s vs. 8 nA cm2/s; n=7; p<0.001). 

 

Figure 6.4 NEURON analysis of positive feedback between TRPV4 and KCa channels 
in PVN neurones.  
Running a number of simulations reveals a reduced mean Ca2+ current through the 
TRP channel (n=7; p<0.001) when KCa is effectively “blocked”, as predicted. 

 

These results support the hypothesis suggested in Chapter 3 and 5 for a functional 

coupling of the TRPV4 and KCa channels with the inclusion of both positive and 

negative feedback systems. 
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6.3 Discussion 

In this chapter I have described the development of a computational model using 

the NEURON simulation environment and demonstrated some of the abilities of this 

model.  It is evident that computational simulations such as this one are both 

effective and useful not only as tools for verification of experimental theory but also 

for predictive measures.  I have been able to show that by inputting those 

parameters from the existing literature and my own experimentally derived data 

(see Chapters 3 and 5) the model works as those parvocellular cells do in response 

to osmolality when patched in slice.  Upon hypotonic challenge, action potential 

frequency decreases in a sigmoidal fashion due to the activation of the TRPV4 

channel, creating an influx of Ca2+ into the cell.  This in turn activated KCa channels, 

leading to efflux of K+ out of the cell and hyperpolarisation occurs.  This functional 

coupling suggested, however, is difficult to fully explore in vitro, and so this is where 

the model becomes particularly useful.  Using NEURON it is possible to change any 

number of parameters, be it the channels added themselves, or the surrounding 

environment.  It is also possible to perform these simulations with the innervations 

still intact, something which cannot happen during in slice recordings as these 

connections may have been severed.  Furthermore, by blocking the TRPV4 channel 

by reducing its conductance to zero (which cannot necessarily be done using 

pharmacological inhibitors in vitro), the effects of osmolality are prevented and 

action potential firing continues.  To demonstrate the positive feedback mechanism 

suggested by (Nilius and Droogmans, 2001), it is possible to block the KCa channel in 

the same way, by reducing the conductance of the channel to zero.  Upon block of 
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this channel, combined with activation of the TRPV4 channel by hypotonic 

challenge, the TRPV4 channel Ca2+ current reduced significantly.  Ca2+ influx was 

also reduced.  These results are consistent with the Ca2+ recordings observed in 

Chapter 5, where a reduced but sustained increase in Ca2+ was observed with 

hypotonic solution and UCL-1684 combined.   

Despite its obvious benefits the NEURON simulation environment has some faults, 

which can be altered to perfect the model.  For example, it is important to highlight 

that by default, the Hodgkin-Huxley channels that NEURON uses to convey the 

kinetics of the potassium and sodium channels responsible for generation and 

propagation of action potentials are based on those observations of the giant squid 

axon (Hodgkin and Huxley, 1952b).  Within these channels NEURON uses a 

temperature coefficient (k) to adapt the kinetics of channel opening and closing 

rates of the channels (Equation 6.9): 

Equation 6.9        
           

Where Q10 is a measure of the increase in the opening and closing rates of the ion 

channels when the temperature (T) rises 10°C above the laboratory temperature 

(Carnevale and Hines, 2006).   

Although this system has been adapted for mammalian neurons within NEURON 

itself, KV channels were added which use experimentally derived parameters from 

my groups’ previous work in spinally-projecting PVN neurones (Lewis et al., 2010).  

With ion channel additions derived from experimental parameters such as these, 

the model becomes much more robust. 
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In addition, it would be good practice to include any further channels which have 

been found within the parvocellular PVN and their particular parameters to fully 

encapsulate this area of the hypothalamus.  Much could be done to develop this 

model, such as the inclusion of the temperature dependant TRPM2 channel, 

discussed in Chapter 3, onto the GABAergic innervations of the spinally-projecting 

neurone.  As this is a theory only suggested, addition to the model will be a good 

verification measure to support this theory before further experiments are planned.   

Although limitations to this model do exist, its development appears boundless, 

which adds to its appeal as both a tool for verifying and predicting in vitro 

experimental results. 
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7 The Role of the Neurokinin 1 Receptor in the 

Cardiovascular Response to Stress 

7.1 Introduction 

As discussed in Chapter 1, there are a number of neurotransmitters and modulators 

that are known to act on PVN neurones. These include GABA, glutamate, nitric 

oxide, adenosine and the tachykinin family of neuropeptides (Nunn et al., 2011; 

Pyner, 2009).  Tachykinins are particularly interesting to focus on as they have been 

shown to be important for the central control of the cardiovascular system (Culman 

and Unger, 1995) and the tachykinin receptors are present within the parvocellular 

PVN (Koutcherov et al., 2000a; Nakayama et al., 1992).  They have also been linked 

to the stress response in several studies (Herman and Cullinan, 1997; Jansen et al., 

1995a) (reviewed by (Aguilera, 1994), however an exact pathway has not yet been 

shown.  

7.1.1 Substance P in the PVN 

Substance P (SP) is an important endogenous neuropeptide which acts as a 

neurotransmitter and neuromodulator via the neurokinin 1 receptor (NK1).  SP has 

been shown to be widely expressed in the brain and is particularly abundant within 

the PVN (Jessop et al., 1991).  In work carried out by Womack and Barrett-Jolley 

(2007), an SP dependant pathway was characterised, linking the PVN to the 

dorsalmedial hypothalamus (DMH); another important cardiovascular control 

centre in the hypothalamus.  In a further study they also identified an SP activated 
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pathway projecting from the PVN to the IML (Womack et al., 2007). These 

projections are known to influence the sympathetic nervous system.   

Traditionally associated with pain perception (De Felipe et al., 1998), SP has also 

more recently been linked with the regulation of mood disorders, anxiety and stress 

(Ebner et al., 2008), with levels within the PVN increasing during inflammatory 

stress (Chowdrey et al., 1995).  Studies have also demonstrated that in vivo central 

tachyknins increase efferent sympathetic activity (Unger et al., 1985).  Furthermore, 

it has been shown in vitro that SP results in the disinhibition (i.e., activation) of 

spinally-projecting cardiovascular control neurones of the PVN via NK1 receptor 

inhibition of GABAA currents (Womack et al., 2007).   

7.1.2 Cardiovascular role for neurokinin 1 receptor in the stress response 

A number of studies have shown neurokinin receptors in the CNS to be important 

for the cardiovascular response to stress (Culman et al., 2010; Culman and Unger, 

1995).  In these studies it was shown that the noxious stress response 

(subcutaneous formalin) was sensitive to CSF application of selective NK1 and NK2 

receptor antagonists (Culman et al., 2010), despite the relative sparseness of NK1 

receptors in the PVN (Shults et al., 1985).  Additionally, ICV injection of these 

antagonists blunted the early gene c-fos expression by corticotrophin expressing 

PVN neurones in response to stress. Complementary data to this was more recently 

published by Culman et al (Culman et al., 2010). Culman et al used a psychological 

stress test (elevated plus maze test); the authors discovered that behavioural 

markers of stress and anxiety are reduced by ICV injection of a selective NK1 

receptor antagonist.  In the Culman study stress-induced c-fos expression within the 



133 
 

PVN was also lower in rats receiving pharmacological block of the NK1 receptor 

(Ebner et al., 2008).  Consistent with this data, it has also been observed that knock-

out of the NK1 receptor (NK1R-/-) reduces PVN c-fos expression and levels of stress 

hormone (cortisol) in response to the elevated plus maze test (Santarelli et al., 

2002; Santarelli et al., 2001). 

This combined evidence suggests that the pathway identified within the PVN by 

(Womack et al., 2007) may be important for increases in heart rate and blood 

pressure in response to stress.  However, despite the evidence presented, the 

theory the PVN is important for the cardiovascular response to stress remains 

controversial, with several studies disputing this role (DiMicco et al., 2002; Fontes et 

al., 2001a; Stotz-Potter et al., 1996). There could be a few reasons for this 

conflicting view.  As “stress” is a term which describes a wide range of physiological 

and psychological stimuli, certain forms of stress (such as subcutaneous formalin, a 

form of noxious stress (Culman et al., 2010)) may activate a tachykinin-mediated 

PVN response, whereas perhaps psychological stress does not.   Another possibility 

is that this pathway may mediate other facets of cardiovascular control, such as 

circadian control of the blood pressure as has been implicated by (Cui et al., 2001).  

Blood pressure acts on a diurnal rhythm, and neurones within the hypothalamus (in 

particular the PVN) play a role in setting this circadian rhythm (Belle et al., 2009; Cui 

et al., 2001).   

7.1.3 Aims 

Although the above studies strongly suggest that the NK1 receptors located within 

the PVN are involved in the cardiovascular response to stress, these investigations 
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have not been able to verify the pathways involved and are somewhat disputed.  

These studies also do not answer fundamental questions such as; (1) is there a role 

for NK1 receptor-expressing PVN neurones in the cardiovascular response to 

psychological stress, and (2) is there any further cardiovascular role for these NK1 

receptor-expressing neurones?  This chapter aims to address these caveats by 

performing specific NK1 receptor lesions.  By doing this it is possible to investigate 

the role of these NK1 receptor-expressing neurones in the cardiovascular response 

to mild psychological stress by investigating heart rate and heart rate variability 

(HRV) in both lesioned and control Wistar rats.  Due to the continuous nature of 

ECG recording by radiotelemetry, investigation into any other possible 

cardiovascular role of this population of neurones is possible; such as their 

involvement in circadian rhythm. 

7.2 Methods 

7.2.1 Verification of selective lesion of NK1 receptor neurones in the rat PVN 

Primarily, it was necessary to verify the loss of NK1 receptor expressing neurones 

and ensure survival of the animals after surgery. Therefore male Wistar rats (n=2) 

were given specific injections of 50nl of the highly selective SSP-SAP into the PVN 

under gaseous isoflurane anaesthesia as described in Chapter 2.  Coordinates for 

the PVN injection were calculated using the Paxinos and Watson (Paxinos and 

Watson, 1986) stereotaxic atlas according to the following distances from Bregma 

at a 10o angle; 1.8mm caudal, 1.8mm lateral, 9.2mm vertical.   The efficacy of the 

SSP-SAP lesion and the position of the injection site was confirmed with 
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immunofluorescence using the primary antibody anti-rabbit NK1 receptor (1:500; 

Abcam, UK) combined with the secondary antibody donkey anti-rabbit Dylight 594 

(1:2000; Abcam, UK) and blue DAPI nuclei staining using VECTASHIELD mounting 

medium with DAPI (Vector laboratories, UK).   

7.2.2 Lesioning 

Once the original pilot study had taken place and efficacy and coordinates had been 

confirmed a full cohort of male Wistar rats were injected in the PVN with either 

50nl of SSP-SAP (n=3) or ACSF as a control (n=3) and implanted with 

radiotelemeters (for full methods see Chapter 2).  Animals were individually housed 

and left to fully recover for a period of 7 days; allowing the lesion to fully develop.  

7.2.3 ECG recording 

 Once recovered rats were placed on the receivers to record ECG continuously; a 

method which is preferred as the animals remain conscious and are freely moving.  

ECG was recorded using Spike2 (Cambridge Electronic Design, Cambridge, UK) on a 

PC at 5 kHz.  

7.2.4 Heart rate and heart rate variability 

Heart rate was analysed using a custom beat annotation program, and heart rate 

variability data was analysed using Kubios (Niskanen et al., 2004), as described fully 

in Chapter 2.   
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Heart rate was averaged per 4 hours over a period of 68 hours in order to analyse 

daily variation in heart rate.  After 2 days of baseline recording rats were subjected 

to 1 minute of mild handling stress where the rats were picked up by the tails and 

restrained (Balcombe et al., 2004). Up until this point the animals were handled 

only when necessary in order to prevent habituation to handling.  Once handled the 

rats were returned to their home cages to recover.  To analyse the heart rate and 

HRV response to stress these parameters were looked at 15-20 minutes before and 

an hour after handling stress at the same time each day (around 12pm in order for 

the animals to be adjusted fully to daytime).  

7.3 Results 

7.3.1 Verification of selective lesion of NK1 receptor neurones in the rat PVN 

Using immunofluorescence it was possible to show clear loss of NK1 receptor 

antibody staining in the lesioned side of the PVN (efficacy of lesion was confirmed 

to be 100%; Figure 7.1). As unilateral injections were performed the intact side was 

used as a positive control for comparison, showing that the NK1 receptor is still 

present on this side. 
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Figure 7.1 Selective lesion of NK1 expressing neurones in rat PVN.   
(A) Unilateral injection with pontamine blue (1%). F=fornix. The dotted line 
indicates the approximate position of the PVN. Note that no dye crosses to the 
contralateral side. (B) Low magnification image of coronal section of PVN showing 
orientation using the 3rd ventricle. Intact side (left of the 3rd  ventricle) and lesioned 
side (right of the 3rd ventricle), showing clear red staining for the NK1 receptor using 
the primary antibody anti-rabbit Neurokinin-1 receptor (1:500; Abcam, UK) 
combined with the secondary antibody donkey anti-rabbit Dylight 594 (1:2000; 
Abcam, UK) and blue DAPI nuclei staining (white arrows indicate staining).  Scale bar 
is 100µm. (C) Intact side of the PVN used as a positive control. Scale bar is 50µm. (D) 
Lesioned side of the PVN from the same Wistar rat shows an absence of red NK1 
receptor staining; blue DAPI nuclei staining remains. Scale bar is 50µm.   

7.3.2 ECG recording 

From continuous ECG recording it was possible to obtain heart rate intervals (R-R 

interval), and subsequently heart rate and heart rate variability parameters (see 

Figure 7.2 for typical representative traces for control rats and Figure 7.3 for 

lesioned rats)  
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Figure 7.2 ECG responses to mild handling stress of control rats.  

Continuous recordings were made from conscious freely moving rats implanted 

with radiotelemeters.  Representative raw traces show differences (A) before stress 

and (B) after mild handling stress of control Wistar rats. These show (i) ECG trace 

over a period of 10 seconds at an appropriate time, (ii) a zoomed in region of the 

same time point as (i), each beat was annotated using a custom annotation 

program, (iii) typical heart beat (R-R) intervals, (iv) the raw heart rate trace to match 

the R-R intervals and finally a zoomed in trace (v) of heart rate to demonstrate heart 

rate variability changes over time. 
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Figure 7.3 ECG responses to mild handling stress of SSP-SAP lesioned rats.  
Continuous recordings were made from conscious freely moving rats implanted 
with radiotelemeters.  Representative raw traces show differences (A) before stress 
and (B) after mild handling stress of control Wistar rats. These show (i) ECG trace 
over a period of 10 seconds at an appropriate time, (ii) a zoomed in region of the 
same time point as (i), each beat was annotated using a custom annotation 
program, (iii) typical heart beat (R-R) intervals, (iv) the raw heart rate trace to match 
the R-R intervals and finally a zoomed in trace (v) of heart rate to demonstrate heart 
rate variability changes over time.  
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7.3.2.1 Daily variation of heart rate 

A significant increase in heart rate was observed during the night compared to day 

in both groups of rats (Figure 7.4).  In control rats heart rate increased from 387 ± 6 

bpm to 423 ± 5 bpm  (n=3 control; p<0.001 by one way ANOVA) and 399 ± 6 bpm to 

436 ± 5 bpm in lesioned rats (n=3 lesioned; p<0.001 by one way ANOVA). However, 

no differences between these two groups, either in average daytime or night time 

heart rates was seen (n=6; p<0.05 by one way ANOVA).  Despite this, a distinct shift 

in the daily variation of heart rate in the SSP-SAP lesioned animals was observed, 

and average heart rate was significantly different over two time points (Figure 7.4; 

at 17:00 on day 3; SSP-SAP rats 420 ± 26 bpm vs control rats 372 ±4 bpm, at 21:00 

on day 3; SSP-SAP rats 446 ± 35 bpm vs control rats 402 ± 9 bpm; n=6; *p<0.05 by 

repeated measures), suggesting NK1 receptor expressing neurones may have an 

influence over setting the daily variation of heart rate. 

 

Figure 7.4 Daily variation in 24 hour heart rate in SAP-SSP lesioned rats.  
(A) Daily variation in heart rate was plotted as average heart rate per 4 hours in 
both control and SSP-SAP lesioned rats.  Mean heart rate was significantly different 
over two time points (n=6; p<0.05). (B) Control and lesioned rats both show 
increased heart rate at night compared to during the day; from 387 ± 6 to 423 ± 5 
beats min-1 in control (n=3; p<0.001 by one way ANOVA) and 399 ± 6 to 436 ± 5 
beats min-1 in lesioned rats (n=3; p<0.001 by one way ANOVA). No differences 
between the two groups were observed. 
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7.3.2.2 Heart rate response to mild handling stress 

Mild handling stress increased heart rate significantly (Figure 7.5), as expected in 

the control animals from 345 ± 2 to 414 ± 5 bpm (n=3; p<0.001 by one way ANOVA).  

This same increase could also be seen in the lesioned rats from 354 ± 3 to 396 ± 11 

bpm (n=3; p<0.05 by one way ANOVA). No differences in heart rate response to 

stress between these two groups was observed. 

 

Figure 7.5 Mild stress increases average heart rate of SSP-SAP lesioned and 
control rats.  
(A) Average heart rate per 5 minutes in both groups of rats. Arrow indicates time of 
mild handling stress. (B) Heart rate significantly increases both in control rats from 
345 ± 2 to 414 ± 5 bpm (n=3 control; p<0.001 by one way ANOVA) and in lesioned 
rats  from 354 ± 3 to 396 ± 11 bpm (p<0.05 by one way ANOVA; n=3 lesioned).  No 
difference in heart rate response to stress between the two groups was observed. 

 

7.3.2.3 Heart rate variability response to mild handling stress 

Examples of FFTs produced by the Kubios program (Niskanen et al., 2004) with the 

bandings included can be seen in Figure 7.6.  These show representative traces 

produced from both control and lesioned rats before and after stress.  It can be 

seen in stressed control rats it is clear there is an increase in LF and a reduction in 
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HF activities.  This is reflected in a significant increase in average LF/HF ratio of 

these animals from 0.84 ± 0.14 to 2.02 ± 0.15 a.u (n=3 control; p<0.05 by one way 

ANOVA), indicating an increase in sympathetic activity.  In the representative traces 

from the lesioned rats, a decrease in both LF and HF activity can be seen, also 

reflected by LF/HF ratio not changing (n=3 lesioned; p>0.05 by one way ANOVA).  

These results indicate that lesion of the NK1 receptors abolishes the sympathetic 

response to mild psychological stress. 
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Figure 7.6 LF/HF response to stress in control and SAP-SSP lesioned rats.  
(A) Representative fast fourier transfor in control rats  (i) before and (ii) after stress. 
(B) Representative fast fourier transform of SAP-SSP lesioned rats (i) before and (ii) 
after stress. In control animals an increase in LF and decrease of HF power is seen as 
a result of stress.  Both LF and HF are reduced in lesioned rats after stress. (C) 
Average LF/HF ratio per 5 minutes in both groups of rats. Arrow indicates time of 
mild handling stress. (D) LF/HF ratio significantly increases in control animals 
subjected to stress from 0.84 ± 0.14 to 2.02 ± 0.15 a.u (n=3 control; p<0.05 by one 
way ANOVA).   This response was abolished in SSP-SAP lesioned rats (n=3 lesioned; 
p>0.05).   
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7.4 Discussion 

Koutcherov et al (Koutcherov et al., 2000a) showed the presence neurokinin 1 

receptor within the paraventricular nucleus and it has been shown by (Culman and 

Unger, 1995) that tachykinins are important for cardiovascular control. 

Furthermore, Culman et al (2010) have shown substance P is involved in the 

cardiovascular response to noxious stress. However, there has only been 

circumstantial evidence so far to support the theory that PVN neurones expressing 

NK1 receptors are involved in this process.  The aim of this study was to explore the 

pathway involved in the cardiovascular response to stress and marry up those in 

vivo and in vitro investigations which support this hypothesis, showing if this 

response is stressor dependant.  It was also important to explore any other possible 

cardiovascular role for these NK1 receptor expressing neurones, such as any 

involvement they may have in setting circadian rhythm of the cardiovascular 

system.  In order to do this NK1 receptor expressing neurones in the PVN were 

lesioned with SSP-SAP and continuous ECG was recorded from conscious, freely 

moving Wistar rats.  The rats were then subjected to mild handling stress and heart 

rate and heart rate variability were investigated throughout. 

SSP-SAP injections were given unilaterally into the PVN.  The cytotoxic SSP-SAP has 

been shown to be selective in many studies (Khasabov and Simone, 2013; Talman 

and Lin, 2013).  Despite this, it was important to confirm the efficacy of the specific 

lesion of NK1 expressing receptors within the PVN and the location of the injection.  

It was decided to perform unilateral injections as it was unknown how the lesion 

would affect the animals; it also meant that the rats injected could be used as their 
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own positive controls in immunofluorescence imaging of the expression of the NK1 

receptor.  No behavioural or physiological changes were observed within two weeks 

of the lesion.  Subsequently, immunofluorescence confirmed complete loss of the 

NK1 receptor in the lesioned side of the PVN; the intact side still showed expression 

of the receptor (Figure 7.4).  It is important to note that the injections of SSP-SAP 

were given slowly, over at least 1 minute and the Hamilton syringe was only 

removed after a few minutes, to prevent the solution travelling back up the needle 

track.  The localisation of the injection was also confirmed using the 

immunofluorescence images.  

Once efficacy and location had been confirmed 2 cohorts of Wistar rats were given 

direct unilateral injections into the right side of the PVN of either the SSP-SAP or 

PBS as a control, as to ensure there were no effects of performing the injection 

itself.  These rats were also implanted with radiotelemeters designed to record 

continuous ECG from conscious, freely moving rats.  From this data it is possible to 

derive heart rate and heart rate variability.   

As these recordings are continuous, it is possible to observe daily variation of the 

rats’ heart rate over the first few days of baseline recording.  The circadian 

involvement of PVN spinally projecting neurones was initially suggested by (Cui et 

al., 2001) who showed that spinally projecting neurones received input from the 

suprachiasmatic nucleus; a key centre of the hypothalamus involved with circadian 

rhythm.  Cyclically changing membrane potentials of neurones within this area have 

also been reported, allowing general changes in activity on a 24 hour rhythm (Belle 

et al., 2009).  A previous study performed by my group in mice shows this is 
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paralleled by changes in heart rate (Nunn et al., 2013).   I have been able to confirm 

in this study that changes in the daily variation of the heart rate can also be seen in 

rats and involves PVN NK1 neurones (Figure 7.4).  In both lesioned and control rats 

nighttime heart rate was significantly increased compared to daytime.  This is 

unsurprising, as rodents are nocturnal and so are awake and more active during the 

night.  No difference in day or nighttime heart rate could be observed between the 

two groups.  However, it is interesting to note that at several time points the heart 

rate of the SSP-SAP lesioned rats is significantly different from its control 

counterparts.  Furthermore, a distinct shift of the lesioned rats’ daily heart rate 

variation can be seen, whereby the increasing night time heart rate increases earlier 

in these animals, suggesting these neurones play a role in setting circadian rhythm 

of heart rate (Figure 7.4A).  Although many of these time points are not significant, 

it is an interesting trend, and it is important to note n=3 for each cohort of this 

study.  With increasing numbers of animals used, and a longer duration of baseline 

recording it would be interesting to see if there was more of a significant shift in 

rhythm, or if it became more pronounced further on in a longer study.  

Interestingly, substance P levels have been shown to oscillate throughout the day in 

other areas of the brain and spinal cord (Weber et al., 2004; Zhang et al., 2012), 

therefore this could be a potential explanation for the shift observed in the lesioned 

animals.  In future studies it would be of interest to investigate if the loss of the NK1 

receptors within the PVN affects circadian rhythm by altering the light cycles the 

animals are exposed to.  This role of the NK1 expressing neurones is potentially of 

huge relevance, since in humans, circadian variation in cardiovascular control is 
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strongly linked to a spate of heart attacks that occurs in first thing the morning 

(Muller et al., 1989; Spielberg et al., 1996). 

A number of studies have shown the PVN is important to cardiovascular control 

(Badoer et al., 2002; Coote, 2005; Ramchandra et al., 2013) and although others 

show the PVN to be central to the HPA component of the stress response (Herman 

and Cullinan, 1997; Herman et al., 2002a; Tavares et al., 2009) there are few studies 

showing direct involvement of the PVN in the sympathetic and cardiovascular stress 

response.  Spinally-projecting sympathetic PVN neurones have been shown to 

express neurokinin receptors and modulate the CVS (Womack et al., 2007).  

Although (Ebner et al., 2008) showed decreases in behavioural response, and a 

decrease in c-fos expression as a result psychological stress with ICV injection of 

NK1 receptor antagonist, no cardiovascular studies were undertaken.  Studies by 

(Culman et al., 2010) showed ICV injection of specific neurokinin receptor 

antagonists reduces the cardiovascular (and hormonal) response to noxious stress 

and decreased CRF c-fos expression.  These studies do show an obvious role for NK1 

receptors in the cardiovascular and behavioural responses to severe (noxious) and 

psychological stress respectively, however they both have caveats.  In this chapter 

we address these caveats, such as; does mild psychological stress affect the 

cardiovascular response, and specifically is it these NK1 receptor expressing 

neurones involved.  It was found that mild psychological stress by handling 

increased heart rate significantly in both sets of rats; there were no differences 

between the two groups (Figure 7.5).  This is perhaps surprising as these neurones 

are known to have a role in cardiovascular response to stress; therefore you may 

expect them to have a significant impact on this response if removed.  However, 
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this lack of difference could be explained in a number of ways; (i) perhaps this could 

mean that the type of stressor involved is important in the cardiovascular response, 

(ii) it could be that although heart rate remained unchanged, blood pressure may be 

altered (a parameter we were unable to measure using this equipment), and some 

sort of feedback mechanism (i.e the baroreceptor reflex) may be responsible for 

keeping the heart rate stable, (iii) as only unilateral injections were performed, the 

intact side “took over” the role for maintaining the heart rate response to stress or 

simply (iv) NK1 receptor expressing neurones are not directly responsible in this 

cardiovascular control.   

In future studies it would be interesting to do this set of investigations with various 

stressors and by altering the side of the unilateral injections or by using bilateral 

injections if the survival of animals could be ensured.   

As it is known that the cardiovascular control neurones project to the sympathetic 

pregangilonic neurones it follows that any alteration in their activity/loss of these 

neurones may in turn affect the sympathetic activity.  To investigate this further I 

used heart rate varability to look at the effects of stress on the sympathetic nervous 

system.  Heart rate variability analysis is used as a method for quantifying the 

autonomic influence on the cardiovascular system based on heart rate variation 

over time. These natural rhythms occur at different frequencies associated with the 

sympathetic and parasympathetic nervous system influences.  Heart rate variability 

is therefore widely used as an accurate indicator of autonomic balance (Baudrie et 

al., 2007; Malpas, 2002; Thireau et al., 2008) and autonomic response to stress 

(Farah et al., 2006).  Although there is no direct indicator of sympathetic activity, a 
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number of studies, including our own, have shown the LF/HR ratio is a valid 

measure of autonomic balance and therefore it is possible to determine changes in 

sympathetic activity using this parameter (Katoh et al., 2002; Nunn et al., 2013).  

Heart rate variability analysis of the ECG data obtained from control rats showed a 

significant increase in the LF/HF ratio (an indicator of sympathetic activity), resulting 

from a simultaneous decrease in HF and increase in LF.   Interestingly, this increase 

in LF/HF ratio is seen before the increase in heart rate itself.  This is an indication 

that it is in fact the sympathetic nervous system that is driving the change in heart 

rate.  This sympathetic response to psychological stress was abolished in SSP-SAP 

lesioned rats, where both LF and HF frequencies decreased simultaneously, leading 

to no significant change in LF/HF ratio (Figure 7.6).  This result confirms a role for 

the NK1 receptor expressing neurones in modulation of the sympathetic response 

to psychological stress.   

Together the results obtained in this chapter show, for the first time, that PVN NK1 

expressing neurones are involved with setting heart rate circadian rhythm and also 

the sympathetic component of the response to mild psychological stress.   
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8 Cardiovascular stress response in mice lacking XLαs 

8.1 Introduction 

The sympathetic nervous system plays a major role in the cardiovascular system 

and the control of energy balance (Hall et al., 2010).  An elevation of sympathetic 

activity influences the cardiovascular system, resulting in increases in blood 

pressure and heart rate; chronic elevations being identified as a characteristic of 

cardiovascular disease (for review see (Fisher et al., 2009)).  This is believed to be 

due to combined effects of a decrease in inhibitory GABA and an increase in 

excitatory glutamate in certain brain regions controlling the autonomic nervous 

system, such as the PVN.  Although there is evidence suggesting this occurs, the 

mechanisms behind this altered regulation are unknown.  One such method for 

exploring these possibilities is to use model animals such as the spontaneously 

hypertensive rat (SHR) or more commonly used mouse models (Doggrell and Brown 

, 1998).  The Schlager hypertensive mouse, for example, is hypertensive due to an 

increase in sympathetic activity and is reported to have an elevated stress response 

(Davern et al., 2009).  This could/may involve the PVN as well as other brain regions 

associated with cardiovascular control and stress.  One such mouse model has been 

used by my group previously, which I will look at in this chapter; the Gnasxl 

knockout mouse.  
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8.1.1 The Gnasxl knockout mouse 

Gnasxl knockout mice are deficient for XLαs, a stimulatory G-protein α-subunit 

found richly within the PVN (Krechowec et al., 2012).  Activation of adenylyl cyclases 

occurs via ligand binding to G protein-coupled receptors, leading to production of 

the second messenger cAMP (Plagge et al., 2008).  However, the specific receptors 

that signal through XLαs remain unknown. 

Adult mice lacking XLαs have elevated sympathetic stimulation of the brown and 

white adipose tissues, which results in increased metabolism (Xie et al., 2006).  My 

group has also recently confirmed a global increase in sympathetic activity in these 

mice, resulting in the hypermetabolism and hypertension observed (Nunn et al., 

2013).  Normal levels of parasympathetic tone were also confirmed in this 

investigation.  Knockout mice showed elevated blood pressure, heart rate and 

temperature; alterations which are not associated with increased levels of 

locomotion.  These effects are further supported by the strong levels of expression 

of XLαs in areas influencing the sympathetic nervous system and cardiovascular 

system (Plagge et al., 2008); most notably for this project, the PVN (Coote, 2007; 

Loewy, 1991; Nunn et al., 2011).  In addition to this evidence, heart rate and blood 

pressure are reduced in the specific PVN knockout for a shorter splice variant of the 

Gnasxl mouse (mPVNGsKO), which exhibits the opposite phenotype to the longer 

splice variant.  This suggests that the cardiovascular effects of loss of Gsα in the 

brain are caused specifically by loss of expression in the PVN (Chen et al., 2012).  As 

shown in Chapter 7 the PVN exerts an influence to the autonomic system response 

to stress.  Importantly for this work the Gnasxl KO phenotype is also consistent with 
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a permanently activated stress reaction (Farah et al., 2006; Grippo et al., 2003).  It 

was therefore interesting to investigate the stress response in these knockout mice 

compared to their wild type counterparts as it stands to reason this may be altered, 

as demonstrated in the Schlager mice (Davern et al., 2009). 

8.1.2 Aims 

The XLαs protein is abundant in the PVN, known to influence cardiovascular 

parameters and the stress response.  In fact, as discussed, the Gnasxl knockout is 

hypothesised to be in a permanent state of stress, with constantly elevated 

sympathetic activity.  The aim of this chapter, therefore, is to assess the effects of 

handling stress on heart rate and heart rate variability of Gnasxl knockout mice in 

comparison to their wild type counterparts using continuous ECG recording with 

radiotelemeter implants.  It will then be possible to confirm if XLαs is associated 

with the stress response and provide further insight into the role of the neurones 

associated with this protein.  

8.2 Methods 

To examine the effects of stress on the cardiovascular system young adult male (~4 

months) Gnasxl knockout mice and their wildtype siblings were implanted with 

radiotelemeters under isoflurane anaesthesia.  The placing of transmitters was 

done with the assistance of Dr. Nunn.  Mice were then individually housed and once 

recovered were placed on receiver pads and ECG was continuously recorded using 

Spike2 (Cambridge Electronic Design, Cambridge, UK) (for full details see Chapter 2).  
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Custom beat detection software was used to analyse heart rate and heart rate 

variability data was analysed using Kubios (Niskanen et al., 2004). 

After 2 days of baseline recording mice were subjected to 1 minute of mild handling 

stress whereby they were picked up by the tails and scruffed (Balcombe et al., 

2004). Up until this point the animals were handled only when necessary in order to 

prevent habituation to handling.  Once handled mice were returned to their home 

cages to recover.  To analyse the heart rate and HRV response to stress these 

parameters were looked at 15-20 minutes before and an hour after handling stress 

at the same time each day (around 2 pm in order for the animals to be adjusted 

fully to daytime).  

To examine the degree of sympathetic stimulation on the cardiovascular system 

during stress, mice were injected IP with the sympatholytic reserpine (Sigma-

Aldrich, UK) dissolved in 1% acetic acid solution and injected at 1 mg/kg at least 3 

hours before subjected to handling stress.   Reserpine inhibits catecholamine 

uptake into secretory vesicles and thereby release at sympathetic nerve terminals 

(Iversenet al. 1965), selectively diminishing sympathetic stimulation of peripheral 

tissues.   

8.3 Results 

Wildtype and knockout mice were shown to have comparable increases in heart 

rate upon mild stress, showing no significant difference between the two groups (67 

± 37 bpm in WT vs 58 ± 22 bpm in KO (Figure 8.1; n=18; p>0.05 by Student’s 

unpaired t-test).  WT heart rate significantly increased from 568 ± 13 bpm to 634 ± 
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17 bpm (Figure 8.1Error! Reference source not found.; n=9; p<0.05 by Student’s 

aired t-test) and a significant increase from 615 ± 12 bpm to 674 ± 19 bpm was 

observed in the KO mice (Figure 8.1; n=9; p<0.05 by Student’s paired t-test).  

Although baseline average heart rate was significantly elevated in KO mice, after 

stress there was no longer a difference observed in heart rate between the 2 

cohorts (n=18; p>0.05 by Student’s unpaired t-test). 

 

Figure 8.1 Heart rate increases in both Gnasxl knockout and wildtype mice upon 
mild psychological stress.  
(A) Average heart rate per 5 minutes before and after handling stress (open circles 
represents KO mice and black circles represent WT mice; arrow indicates time of 
handling).  (B) KO mice have a significantly increased heart rate before stress. Heart 
rate significantly increases in both cohorts when subjected to handling stress from 
568 ± 13 bpm to 634 ± 17 bpm in WT (n=9; p<0.05) and 615 ± 12 bpm to 674 ± 19 in 
KO mice (n=9; p<0.05).   (C) Stress induced comparative increases in the two 
cohorts; increases of 67 ± 37 bpm in WT vs 58 ± 22 bpm in KO were observed, and 
were not significantly different (n=18; p>0.05).  There was however, no longer a 
significant difference between the KO and WT heart rates after handling stress 
(n=18; p>0.05). 
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Subsequent to handling stress LF/HF ratio was significantly increased in wildtype 

mice from 1.24 ± 0.09 to 1.74 ± 0.11 (Figure 8.2; n=9; p<0.01 by Student’s paired t-

test).  No difference, however, was seen in KO mice (from 2.16 ± 0.09 to 1.81 ± 0.11; 

n=9; p>0.05 by Student’s t-test).  After handling stress there was no significant 

difference between LF/HF ratio in wildtype and knockout mice (n=18; p>0.05 by 

Student’s unpaired t-test).           

 

Figure 8.2  LF/HF ratio is increased in wildtype but not Gnasxl mice from heart rate 
variability analysis.   
(A)  Average LF/HF ratio per five minutes before and after handling stress (open 
circles represents KO mice and black circles represent WT mice; arrow indicates 
time of handling).  (B) LF/HF ratio is significantly increased in WT mice (from 1.24 ± 
0.09 to 1.74 ± 0.11; n=9; p<0.01) but not in the already elevated KO mice (n=9; 
p>0.05).  

 

To investigate the effects of suppressing the sympathetic response on autonomic 

stress response heart rate was again measured before and after handling stress in 

mice which had been injected IP with reserpine (1mg/kg).  Stress induced a 

significant increase of average heart rate from 454 ± 4 bpm to 499 ± 1 bpm in WT 

mice (Figure 8.3; n=5; p<0.01 by Student’s paired t-test).  In the KO cohort, 

however, no significant change in heart rate was observed (525 ± 6 bpm to 545 ± 2 

bpm; Figure 8.3; n=4; p>0.05 by Student’s paired t-test).  The difference in heart 
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rate change upon handling stress between these two cohorts, however, was not 

significant (46 ± 14 bpm in WT vs 20 ± 20 bpm in WT; Figure 8.3; n=9; p>0.05 by 

Student’s unpaired t-test).   

 

Figure 8.3 Heart rate response to stress in Gnasxl and wildtype mice after 
reserpine injection.  
(A) Average heart rate per 5 minutes before and after handling stress (open circles 
represents KO mice and black circles represent WT mice; arrow indicates time of 
handling).  (B)  Heart rate in WT significantly increases from 454 ± 35 bpm to 499 ± 
30 bpm (n=5; p<0.01) but not in KO mice (from 525 ± 28 bpm to 545 ± 12 bpm; n=4; 
p>0.05).  (C) A difference of 46 ± 14 bpm in WT compared to 20 ± 20 bpm was 
observed.  There were no significant differences between these (n=10; p>0.05). 

 

Furthermore, upon handling stress after injection of reserpine no significant change 

was observed in either the WT or KO mice, suggesting a blunted sympathetic 

response to stress.  In WT mice LF/HF ratio before stress was 0.79 ± 0.08 vs 0.87 ± 
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0.21 after (Figure 8.4; n=5; p>0.05 by Student’s t-test).  In KO LF/HF ratio was still 

significantly reduced by stress; from 0.49 ± 0.07 before stress to 0.43 ± 0.05 after 

stress (Figure 8.4; n=5; p>0.05 by Student’s t-test).  

 

Figure 8.4 LF/HF response to stress in Gnasxl and wildtype mice after reserpine 
injection.  
(A) Average LF/HF ratio per five minutes before and after handling stress. Open 
circles represents KO mice and black circles represent WT mice; arrow indicates 
time of handling.  (B) LF/HF ratio is not significantly changed in either WT (n=5; 
p>0.05) or KO mice (n=4; p>0.05).  

 

8.4 Discussion 

The Gnasxl knockout phenotype is known to be consistent with a permanently 

activated stress response (Farah et al., 2006; Grippo et al., 2003).  Xie et al first 

postulated that these mice had elevated sympathetic nervous activity (Xie et al., 

2006).  This was recently confirmed by my group, who have shown that this 

knockout mouse has elevated sympathetic nervous activity, increased heart rate, 

blood pressure and basal temperature (Nunn et al., 2009; Nunn et al., 2013).  

Although the mechanisms are unknown it has been postulated an seems likely that 

XLαs might, for example, mediate signal transduction from a G-protein-coupled 
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receptor(s) in a population of neurons that inhibit neighbouring sympathetic control 

neurons (i.e. spinally-projecting neurones of the PVN).  As the PVN is also 

hypothesised to be involved in the cardiovascular stress response it was therefore 

of interest to investigate the stress response in the knockout mouse in comparison 

to its wildtype counterpart.  Furthermore, an overactivity of the sympathetic 

nervous system is known to be linked to cardiovascular disease, with a particular 

prevalence of heart failure and ischemic attacks in those people who also suffer 

from chronic stress (Floras, 2009).  As the Gnasxl knockout mouse is considered to 

be in a permanently stressed state it is therefore interesting to look at this mouse as 

a possible model for the overactive sympathetic activity seen in individuals who are 

prone to cardiovascular disease (Drenjancevic et al., 2014). 

In order to investigate the effects of stress on the cardiovascular parameters of the 

Gnasxl knockout and wildtype mice, conscious, freely moving mice were implanted 

with radiotelemeters to record continuous ECG.  Mice were then subjected to mild 

psychological handling stress and heart rate and its variability were investigated.  

Using this method comparable heart rate increases were seen in both the wildtype 

and knockout mice in response to stress (Figure 8.1).  This is to be expected in 

animals with their sympathetic control mechanisms and baroreceptor reflex intact.  

An increase in the LF/HF ratio of heart rate variability was observed in wildtype 

mice but was absent in the knockout mice. This would be consistent with a model 

whereby the classic reduction in parasympathetic cardiac inhibition by stress still 

occurs (Farah et al. 2006), but the sympathetic excitation does not increase further 

in the Gnasxl knockout mice due to an already elevated basal cardiovascular 

sympathetic tone.   
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Further investigation into the sympathetic component to the stress response 

observed required the use of the sympatholytic reserpine.  Reserpine was injected 

IP into both cohorts of mice and heart rate and heart rate variability was recorded 

in a study by my group (Nunn et al., 2013).  The study by Nunn et al (2013) shows 

reserpine treatment results in significantly reduced LF/HF ratios in both knockout 

and wildtype mice.  No significant decrease in heart rate was detected in knockouts, 

but since variability was high this could represent a type II error (an effect may have 

been present, but missed).  Thus our previous study (Nunn et al 2013) showed 

reserpine to be useful tool to detect autonomic changes dependent upon 

modulation of sympathetic activity.  In the present study I therefore investigated 

the cardiovascular stress response of these mice after injection of reserpine.  

Although heart rate still significantly increased in the wildtype mice, the average 

LF/HF ratio increase was ablated, suggesting that the sympathetic response was 

blunted.   

Both heart rate increase and LF/HF increases in response to stress were abolished in 

the Gnasxl knockout mice by injection of reserpine.  This finding verifies the 

hypothesis that the stress response in these animals is driven by the sympathetic 

nervous system.  Interestingly, the heart rate changes in response to stress when 

compared between the knockout and wildtype mice are not significant, although 

the variation in these changes are so large it makes this may be due to a type II 

error. 

Whatever the mechanisms responsible for the overactive sympathetic nervous 

system of these knockout mice, these results are partly consistent with the 
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hypothesis that they are indeed in a permanently “stressed” state.  However, in this 

instance, although stress results in an increase in heart rate, it does not lead to any 

detectable effects on the resting LF/HF ratio (sympathetic activity) in the KO mouse.  

This result seems illogical, as you would expect increased sympathetic activity to 

drive an increase in heart rate; again, this could be due to a type II error, as the data 

obtained was variable in this instance.   

Further investigation would need to be done to ascertain whether this knockout 

mouse is an ideal model for those patients who have cardiovascular complications 

associated with chronic stress.  Also, further steps need to be taken to identify the 

receptor(s) and indeed the areas of the brain which are associated with the XLαs 

protein driving this sympathetic overactivity.  Of particular importance to follow of 

from this work would be to ascertain if the XLαs protein is present on those spinally-

projecting neurones responsible for cardiovascular control.  



161 
 

9 General Discussion 

This study has used a combination of techniques from mathematical modelling to 

whole-animal physiology to investigate the normal functional role of parvocellular 

PVN neurones and the mechanisms responsible.  The main novel findings are as 

follows: 

(1) Putative parvocellular PVN neurones play a role in osmosensing and 

temperature sensing. 

(2) Osmosensing and temperature sensing both involve the modulation of 

transient receptor potential (TRP) non-selective ion channels. 

(3) In the case of osmosensing, this involves coupling between small calcium-

activated potassium (SK) and TRPV4 channels. 

(4) A mathematical model in NEURON can be adapted to predict and validate a 

number of fine points of parvocellular neurone regulation.  

(5) Tachykinergic PVN neurones are important for controlling the daily of heart 

rate and are involved in the autonomic response to stress. 

9.1 Roles of the PVN  

The paraventricular nucleus of the hypothalamus is known to play a role in central 

cardiovascular control.  Extensive studies provide support for this role due to the 

location, cytoarchitecture and projections of this nucleus (Pyner, 2009; Pyner and 

Coote, 2000; Sawchenko and Swanson, 1982; Swanson and Kuypers, 1980).  Despite 

this wealth of information so far little is known about the influence the PVN has 
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over the autonomic system, how this fits with other levels of control and why it is 

important.  Furthermore, the mechanisms involved in this control are not fully 

understood.  This thesis has addressed some of these questions and has revealed 

several roles for the neurones within the parvocellular region of the PVN and, 

importantly, has identified some of the mechanisms behind them.  These findings 

point to the parvocellular region of the PVN as being a multifunctional nucleus of 

the hypothalamus and are summarised below (Figure 9.1). 

 

Figure 9.1 Summary of the main findings of this thesis. 
Parvocellular neurones of the PVN can modulate sympathetic nervous activity by 
altering neuronal activity in response to environmental stimuli.  They are innervated 
by both excitatory glutamatergic neurones and inhibitory GABAergic neurones.  This 
thesis has identified a potential pathway for temperature sensing on these 
GABAergic innervations in the form of the temperature sensitive TRPM2 channel.  In 
addition, a coupling between the TRPV4 and SK channels was revealed to be 
responsible for osmosensing in the parvocellular neurones themselves.  A role for 
NK1 receptor expressing neurones was also identified in the autonomic response to 
stress, a system also shown to be involved in the setting of the daily variation of 
heart rate. 



163 
 

9.1.1 Osmosensing in the PVN 

Blood osmolality is strictly regulated within a narrow range (290-300 mosmol) and is 

sensed centrally by osmosensitive neurones (Bourque, 2008; Bourque and Oliet, 

1997).  However, a role for those neurones within the parvocellular PVN has up 

until now been somewhat disputed (Yamashita et al., 1988).  In this thesis I have 

shown that neurones within the parvocellular PVN are sensitive to changes in 

osmolality and uncovered the mechanisms for this osmosensing role in a series of 

extensive experiments using a combination of in vitro and in silico methods 

(Chapters 3, 4, 5 and 6; for summary see Table 7).   

The osmosensitive TRPV4 channel has previously been identified using 

immunohistochemistry in the PVN (Carreno et al., 2009), which I have been able to 

confirm within putative parvocellular neurones using a variety of techniques 

(Chapter 3).  Although action current frequency recordings indicated that putative 

parvocellular cells of the PVN were involved in osmosensing via the TRPV4 channel, 

it is not possible to say for certain that this is a direct effect.  I was able to confirm 

this using a combination of single channel recordings in slice and whole-cell patch 

clamp and calcium recordings in isolated PVN cells.  It became clear that the 

mechanism responsible for osmosensing in these neurones was more complex than 

previously anticipated.  Activation of TRPV4 using either hypotonic challenge or a 

pharmacological activator, such as 4αPDD, resulted in a decrease in neuronal 

activity, an effect you would not expect to see with a depolarisation of the cells 

membrane potential (as seen in Chapter 3).  I went on to investigate an alternative 

explanation for this reduction in activity in Chapter 5 of a potential functional 
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coupling of the TRPV4 channel with a calcium activated channel, as has been shown 

in other cell types (Gao and Wang, 2010).  Upon further investigation, the KCa 

channels were considered for this coupling, as both BK and SK can be found in the 

parvocellular PVN and can alter neuronal activity (Salzmann et al., 2010; Sausbier et 

al., 2006).  The theory that developed is explained in Chapter 5.  Briefly, upon influx 

of Ca2+, a KCa channel is activated, resulting in hyperpolarisation of the cell and 

subsequent decrease in neuronal activity.  This hypothesis would answer the 

question of why a decrease in activity is seen in these cells with activation of TRPV4.   

Findings from Chapter 5 go on to support the hypothesis of a functional coupling of 

the TRPV4 and SK channels.  Using more complex pharmacology involving both a 

TRPV4 channel activator and an SK channel inhibitor, action current recordings 

show that despite the activation of TRPV4, no change in neuronal activity occurs as 

hyperpolarisation of the cell by efflux of K+ through SK was prevented.  This 

hypothesis is reinforced by further calcium recordings, as are positive and negative 

feedback mechanisms suggested by Watanabe et al (2002).  The reduced, yet 

sustained increase in intracellular Ca2+ observed in these experiments was an 

important finding for two reasons: 1. It provides further support for a coupling of 

TRPV4 and SK, and 2. it suggests that both negative feedback is not achieved as Ca2+ 

levels do not obtain a high enough level, and positive feedback is in play, 

maintaining the increased levels of Ca2+.  Furthermore, this entire mechanism has 

been able to be recreated in silico in Chapter 6 using the NEURON simulation 

environment, verifying that my proposed mechanism is plausible. 
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Although revealing an osmosensing role for these neurones and identifying the 

mechanism behind this is of great interest, it is imperative to see how this translates 

in the whole animal.  This is important, both as there are some concerns as to the 

effects of over-hydration post MDMA usage or during exercise, but also because it 

presents a potential pharmacological target for reducing blood pressure (Brvar et 

al., 2004; Haselton et al., 1994).  The question of whether central osmosensing has 

an impact on cardiovascular control is central to these findings and is addressed in 

Chapter 4 using blood pressure recordings from cannulated mice.  My results 

suggest that there is a central mechanism for osmosensing which affects the 

cardiovascular system involving TRPV4.  However, it is not clear which specific areas 

are involved as these injections are not specifically targeted, for example injected 

substances could have reached other areas such as the DMH or the VMH.  Although 

a clear mechanism for osmosensing in the parvocellular PVN has been identified in 

vitro there are other areas within the hypothalamus which have known 

osmosensing roles, such as the vasopressinergic neurones within the magnocellular 

area, and it would be interesting to explore how these systems interact (Bourque, 

2008).   

There are some further issues which would be interesting to address when 

considering the central osmosensing role revealed in this thesis.  Firstly, recording 

cardiovascular parameters whilst the baroreceptor reflex has been abolished 

through either denervation or pharmacologically to see if heart rate was changed as 

well as blood pressure could be beneficial.  Secondly, as the hypothesis for this 

mechanism includes a role for the SK channel, this should also be investigated in 

vivo, using similar cannulation and targeted injection techniques as described. 
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Table 7 Summary of experimental evidence for the osmosensing role of the parvocellular PVN and the mechanisms responsible 
Treatment Method Parameter Result Figure 

Osmolality 

Hypotonic  Cell-attached patch Action current ↓ frequency  3.2 

Calcium imaging [Ca2+] ↑[Ca2+]I transient 5.5 

Cannulation/ICV Blood pressure 
Heart rate 

↓blood pressure 
No change in heart rate 

4.2, 4.4 

TRPV4 

 
 
4αPDD 

 
Cell-attached patch 

Action current ↓ frequency  3.3 

Single channel activity ↑ Po  3.5, 3.6 

Current amplitude G and Vrev indicative of TRP 3.7 

Whole-cell patch Vm Depolarised cell 3.8 

Calcium imaging [Ca2+] ↑[Ca2+]i 3.10 

GSK1016790A Cell-attached patch Action current ↓ frequency  3.3 

Whole-cell patch Vm Depolarised cell 3.9 

RN1734 + Hypotonic Cell-attached patch Action current Restore frequency 3.4 

 Cannulation/ICV Blood pressure 
Heart rate 

No change in blood pressure 
No change in heart rate 

4.3, 4.4 

HC067047 + Hypotonic Cell-attached patch Action current Restore frequency 3.4 

KCa and TRPV4 coupling 

UCL-1684 + Hypotonic Cell-attached patch Action current Restore frequency  5.2 

Calcium imaging [Ca2+] ↑[Ca2+]I sustained 5.6 

TRAM-34 + Hypotonic Cell-attached patch Action current No change  5.3 

IbTX + Hypotonic Cell-attached patch Action current No change  5.4 

UCL-1684 + GSK1016790A Cell-attached patch Action current No change  5.7 
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9.1.2  Temperature sensing in the PVN 

In Chapter 3 a mechanism for temperature sensing within the parvocellular PVN 

was explored as TRPV4 is known to be activated at temperatures above 27oC (Guler 

et al., 2002).  An increase in bath temperature led to a decrease in activity of the 

parvocellular neurones patched, in keeping with the hypothesis of coupling 

between the TRPV4 and SK channels.  It was therefore important to identify the 

channel responsible for this change in activity.  There are 28 TRP channels, several 

of which show temperature sensitivity, however, experiments revealed a role for 

the TRPM2 channel in this mechanism in the PVN.  Interestingly, increasing 

temperature in other areas of the brain has typically been shown to result in 

increased neuronal activity (Sudbury and Bourque, 2013).  As there is no evidence 

to suggest TRPM2 will be coupled to a calcium-activated channel, activation of this 

channel should result in a depolarisation and increased activity, as seen in other 

areas.  I therefore hypothesised that the TRPM2 channel is not present in the 

neurone being patched, but in an upstream target such as an inhibitory GABAergic 

innervation (Myers et al., 2013; Roland and Sawchenko, 1993).  As this reduction in 

activity is seen at physiological temperatures, it is possible that there is some 

involvement in the tonic inhibition of the parvocellular PVN (Badoer et al., 2002; 

Martin and Haywood, 1993; Martin et al., 1991; Park and Stern, 2005).   

Interestingly, many groups patch at room temperature (~25oC).  In light of the 

evidence shown in this thesis this may potentially be one of the reasons that the 

quiescent nature of the parvocellular neurones is lost in slice recordings, combined 

with a loss of some of the GABAergic innervations in the slicing procedure (Stern, 
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2001; Womack et al., 2007).  Further whole-cell patch clamp investigation may be 

particularly beneficial in order to uncover the mechanism behind the changes seen 

in neuronal activity.  In addition, the NEURON model could be further developed to 

incorporate the TRPM2 channel into the GABAergic innervations of the SPAN to see 

if this is feasible before any further in vitro work is carried out.  

Furthermore, it is important to note that stress can increase core body temperature 

and increased heart rate and blood pressure has been shown in humans and other 

animals subjected to different forms of stress (Balcombe et al., 2004; Everson et al., 

1996; Herd, 1991).  It would be interesting to study these effects combined in vivo.          

9.1.3 Cardiovascular responses to stress – an involvement for the NK-1 receptor 

Substance P (SP) is abundant in the PVN and its receptor NK1 is expressed with the 

parvocellular PVN (Jessop et al., 1991; Shults et al., 1985).  My group has previously 

shown that SP increases neuronal activity potentially by disinhibition of spinally-

projecting neurones of the PVN (Womack and Barrett-Jolley, 2007; Womack et al., 

2007).  Furthermore, studies have shown that NK receptors within the CNS are 

involved in the cardiovascular response to noxious stress, implicating the PVN in 

this response (Culman et al., 2010).  Although evidence suggests that NK receptors 

in the PVN may be important for physiological responses to psychological stressors 

(Santarelli et al., 2002; Santarelli et al., 2001), no direct evidence has been 

previously shown.  In Chapter 7 I provide evidence which suggests that the NK1 

receptor is involved in cardiovascular response to mild psychological stress.  HRV 

analysis revealed that increased LF/HF (an indicator of sympathetic activity) in 

response to stress was ablated in NK1 receptor lesioned rats.  Furthermore, a 
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distinct shift in the circadian pattern of heart rate was also observed in the NK1 

lesioned animals, suggesting a role for these receptors in setting circadian variation 

of heart rate.   

Further work on NK1 expressing neurones within the PVN would also help shed light 

on the role this receptor plays on setting circadian rhythm and in the cardiovascular 

response to stress.  A simple addition to this study would be to lesion NK1 receptors 

bilaterally, as only unilateral lesions were performed.  It would be interesting to see 

if this would produce more severe changes in the cardiovascular response to stress. 

One can’t help but think that the pathways involved in this process are complex, as 

it is known the PVN has many afferent and efferent projections (Affleck et al., 2012; 

Coote et al., 1998; Pyner and Coote, 1999; Pyner and Coote, 2000).  The SCN, for 

example, is known to play a part in circadian rhythm and projects to the PVN 

(Reppert and Weaver, 2002; Tei et al., 1997).  The use of conditional knockouts 

would be an interesting step in this research, as there would be the potential to 

knock out the NK1 receptors on those neuronal populations of interest.  It would 

also be interesting to record additional parameters, such as blood pressure and 

temperature, as it is known that both of these parameters are altered during stress 

and the PVN has a role in modulating both.  As seen in this thesis, blood pressure 

changes occur when heart rate remains unaffected (Chapter 4).  It may therefore be 

that although heart rate remains increased in the lesioned rats with stress, blood 

pressure may be affected as well as SNA. 

The effects of stress on the cardiovascular system were also considered in Chapter 8 

when looking at the Gnasxl KO mouse.  My group has shown that these mice have 



170 
 

elevated sympathetic nervous activity, increased heart rate and blood pressure as 

well as basal temperature (Nunn et al., 2009; Nunn et al., 2013).  Interestingly, my 

group hypothesise that the effects of XLαs are indirect, whereby it provides tonic 

inhibitory input to downstream SNS control neurones, for example via GABA (Nunn 

et al., 2013).  If this hypothesis is correct it means the Gnasxl KO mouse would be a 

good tool to investigate the elevated SNA seen in cardiovascular disease due to this 

loss of tonic inhibitory input.  In my study I showed that the increase in LF/HF ratio 

(an indicator of sympathetic activity) seen in the wildtype mice subjected to stress 

was not present in the KO mice, indicating sympathetic activity is elevated with 

stress in the wildtype, but not in KO mice.  This is potentially due to its already 

elevated sympathetic activity at rest.  Although these results are interesting, the 

mechanisms responsible are still unknown and should be explored further. 

9.2 Conclusions 

This work has revealed the multifunctional nature of the parvocellular neurones of 

the PVN and the mechanisms responsible for these roles.  As dysregulation of 

neuronal activity in the PVN projecting to sites of autonomic influence has been 

linked to cardiovascular disease, understanding its normal functional role in the 

cardiovascular system is vital.  Investigation of the mechanisms involved may 

provide ion channel and receptor targets for pharmacological intervention of 

elevated sympathetic nervous activity.   

One of the main findings of this thesis is an osmosensing role for the parvocellular 

PVN, via a TRPV4 and SK channel coupling, which has the ability to affect the 
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cardiovascular system.  Central changes in osmolality can modulate blood pressure, 

an affect which would presumably be engaged as a homeostatic function to return 

plasma osmolality back to a normal level to prevent any damage which may occur 

from cell swelling or Ca2+ toxicity.   

I also demonstrated that there is an indirect role for the PVN in sensing 

temperature changes.  Again, this seems to be a homeostatic function, which would 

in turn lead to downstream effects on the autonomic nervous system via the PVN.  

Although these homeostatic roles are important and require further investigation, 

how the PVN influences the cardiovascular response to stress is of particular 

importance.  This is a role which may also affect those normal homeostatic 

functions if an individual was in a highly stressed state over an extended period of 

time.  This level of stress has been shown to lead to elevated sympathetic nervous 

activity, such as is seen in the Gnasxl KO mouse, via a loss of tonic inhibition by 

GABA and has been linked to increased risk of cardiovascular disease (Floras, 2009; 

Grassi et al., 2003; Nunn et al., 2013).  The findings of this thesis suggest that 

substance P and the NK1 receptor are involved in the cardiovascular response to 

stress and the circadian setting of heart rate.  This finding may be the key to 

beginning to understanding the elevated sympathetic nervous activity observed and 

also means that potentially, selective inhibition of preautonomic PVN neurones 

could be therapeutically useful for modulation of stress related heart disease.



172 
 

Appendix 

Publications from this work: 

1. Nunn, N., Feetham, C.H., Martin, J., Barrett-Jolley, R. and Plagge, A. (2013) 

Elevated blood pressure, heart rate and body temperature in mice lacking 

the XLαs protein of the Gnas locus is due to increased sympathetic tone. Exp 

Physiol. 98:1432-1445. 

2. Feetham C.H., Nunn N., Lewis R. and Barrett-Jolley R. (2014) TRPV4 and KCa 

functionally couple as osmosensors in the PVN. Currently submitted to Br J 

Pharmacol 2014 under revision 

3. Feetham C.H. and Barrett-Jolley R. (2014) NK1-receptor expressing 

paraventricular nucleus neurones modulate circadian rhythm and stress 

induced changes in heart rate variability.  Submitted to Physiol. Reports 2014 

under revision. 

Conference proceedings from this work: 

1. Nunn N., Feetham C., Plagge A. and Barrett-Jolley R. (2011) Investigation of 

cardiovascular parameters as indicators of sympathetic activity in lean and 

hypermetabolic Gnasxl knock-out mice. J. Physiol. Proc. Physiol. Soc. 23: 

PC27 

2. Feetham C.H. and Barrett-Jolley, R. (2012) Osmosensing in the PVN: A role 

for TRPV4. J. Physiol. Proc. Physiol. Soc. 27: PC76. 



173 
 

3. Nunn, N., Feetham C., Plagge, A. and Barrett-Jolley R. (2012) Hypermetabolic 

Gnasxl knock-out mice have increased sympathetic control of heart rate 

variability.  J. Physiol. Proc. Physiol. Soc. 27: PC226. 

4. Feetham C.H. and Barrett-Jolley R. (2012) Volume Control within the PVN: A 

role for TRPV4. Biophysical Society Meeting Abstracts. Biophysical Journal, 

Supplement, 546a, Abstract, 2780-Pos. 

5. Feetham C.H., Lewis, R. and Barrett-Jolley R. (2013) TRPV4 and KCa: 

Modelling the perfect couple? Biophysical Society Meeting Abstracts. 

Biophysical Journal, Supplement, 163a, Abstract. 

6. Feetham C.H. and Barrett-Jolley R. (2013) TRPV4 and KCa: The model 

couple? J Physiol. Proc 37th IUPS, PCD132. 

7. Feetham C.H and Barrett-Jolley R. (2014) Mechanistic insights into 

osmosensing in the PVN. FASEB J 28:1182.2. 

8. Feetham C.H and Barrett-Jolley R. (2014) Exploring thermosensitivity in the 

PVN. Proc. Physiol. Soc: PCB57.  

 

   



174 
 

References 

Adams PR, Constanti A, Brown DA, Clark RB (1982). Intracellular Ca2+ activates a 
fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature 
296(5859): 746-749. 
 
Affleck VS, Coote JH, Pyner S (2012). The projection and synaptic organisation of 
NTS afferent connections with presympathetic neurons, GABA and nNOS neurons in 
the paraventricular nucleus of the hypothalamus. Neuroscience 219: 48-61. 
 
Aguilera G (1994). Regulation of Pituitary Acth-Secretion During Chronic Stress. 
Frontiers in Neuroendocrinology 15(4): 321-350. 
 
Akama H, McGrath BP, Badoer E (1998). Volume expansion fails to normally activate 
neural pathways in the brain of conscious rabbits with heart failure. Journal of the 
autonomic nervous system 73(1): 54-62. 
 
Alexander SP, Mathie A, Peters JA (2011). Guide to Receptors and Channels (GRAC), 
5th edition. British Journal of Pharmacology 164 Suppl 1: S1-324. 
 
Allen AM (2002). Inhibition of the Hypothalamic Paraventricular Nucleus in 
Spontaneously Hypertensive Rats Dramatically Reduces Sympathetic Vasomotor 
Tone. Hypertension 39(2): 275-280. 
 
Allen AM, MacGregor DP, McKinley MJ, Mendelsohn FA (1999). Angiotensin II 
receptors in the human brain. Regulatory peptides 79(1): 1-7. 
 
Amir S (1990). Stimulation of the paraventricular nucleus with glutamate activates 
interscapular brown adipose tissue thermogenesis in rats. Brain Research 508(1): 
152-155. 
 
Armstrong WE, Warach S, Hatton GI, McNeill TH. (1980). Subnuclei in the rat 
hypothalamic paraventricular nucleus: a cytoarchitectural, horseradish peroxidase 
and immunocytochemical analysis. Neuroscience 5(11): 1931-1958.  
 
Arnhold MM, Wotus C, Engeland WC (2007). Differential regulation of parvocellular 
neuronal activity in the paraventricular nucleus of the hypothalamus following 
single vs. repeated episodes of water restriction-induced drinking. Experimental 
Neurology 206(1): 126-136. 
 
Badoer E, McKinlay D, Trigg L, McGrath BP (1997). Distribution of activated neurons 
in the rabbit brain following a volume load. Neuroscience 81(4): 1065-1077. 
 
Badoer E, McKinley MJ, Oldfield BJ, McAllen RM (1993). A comparison of 
hypotensive and non-hypotensive hemorrhage on Fos expression in spinally 



175 
 

projecting neurons of the paraventricular nucleus and rostral ventrolateral medulla. 
Brain Research 610(2): 216-223. 
 
Badoer E, Ng CW, De Matteo R (2002). Tonic sympathoinhibition arising from the 
hypothalamic PVN in the conscious rabbit. Brain Research 947(1): 17-24. 
 
Bains JS, Ferguson AV (1995). Paraventricular nucleus neurons projecting to the 
spinal-cord receive excitatory input from the subfornical organ. American Journal of 
Physiology-Regulatory Integrative and Comparative Physiology 268(3): R625-R633. 
 
Bains JS, Potyok A, Ferguson AV (1992). Angiotensin-ii actions in paraventricular 
nucleus - functional evidence for neurotransmitter role in efferents originating in 
subfornical organ. Brain Research 599(2): 223-229. 
 
Balcombe JP, Barnard ND, Sandusky C (2004). Laboratory routines cause animal 
stress. Contemporary topics in laboratory animal science / American Association for 
Laboratory Animal Science 43(6): 42-51. 
 
Bamshad M, Song CK, Bartness TJ (1999). CNS origins of the sympathetic nervous 
system outflow to brown adipose tissue. American Journal of Physiology 276(6 Pt 2): 
R1569-1578. 
 
Baraboi ED, St-Pierre DH, Shooner J, Timofeeva E, Richard D (2011). Brain activation 
following peripheral administration of the GLP-1 receptor agonist exendin-4. 
American journal of physiology. Regulatory, integrative and comparative physiology 
301(4): R1011-1024. 
 
Barrett-Jolley R, Pyner S, Coote JH (2000). Measurement of voltage-gated potassium 
currents in identified spinally-projecting sympathetic neurones of the 
paraventricular nucleus. Journal of Neuroscience Methods 102(1): 25-33. 
 
Barry PH, Lynch JW (1991). Liquid junction potentials and small cell effects in patch-
clamp analysis. Journal of Membrane Biology 121(2): 101-117. 
 
Baudrie V, Laude D, Elghozi JL (2007). Optimal frequency ranges for extracting 
information on cardiovascular autonomic control from the blood pressure and pulse 
interval spectrograms in mice. American journal of physiology. Regulatory, 
integrative and comparative physiology 292(2): R904-912. 
 
Becker D, Blase C, Bereiter-Hahn J, Jendrach M (2005). TRPV4 exhibits a functional 
role in cell-volume regulation. Journal of Cell Science 118(11): 2435-2440. 
 
Belle MD, Diekman CO, Forger DB, Piggins HD (2009). Daily electrical silencing in the 
mammalian circadian clock. Science (New York, N.Y.) 326(5950): 281-284. 
 
Benedetti M, Rorato R, Castro M, Machado BH, Antunes-Rodrigues J, Elias LLK 
(2008). Water deprivation increases Fos expression in hypothalamic corticotropin-



176 
 

releasing factor neurons induced by right atrial distension in awake rats. American 
Journal of Physiology-Regulatory Integrative and Comparative Physiology 295(5): 
R1706-R1712. 
 
Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, et al. 
(2011). An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) 
complex is essential for cell-volume control in astrocytes. Proceedings of the 
National Academy of Sciences of the United States of America 108(6): 2563-2568. 
 
Bernstein J (1902). Untersuchungen zur Thermodynamik der bioelektrischen 
Ströme. Pflügers Archives 92(10-12): 521-562. 
 
Black JA, Yokoyama S, Higashida H, Ransom BR, Waxman SG (1994). Sodium channel 
mRNAs I, II and III in the CNS: cell-specific expression. Brain Research Molelecular 
Brain Research 22(1-4): 275-289. 
 
Bourque CW (2008). Central mechanisms of osmosensation and systemic 
osmoregulation. Nature Reviews Neuroscience 9(7): 519-531. 
 
Bourque CW, Ciura S, Trudel E, Stachniak TJ, Sharif-Naeini R (2007). 
Neurophysiological characterization of mammalian osmosensitive neurones. 
Experimental physiology 92(3): 499-505. 
 
Bourque CW, Oliet SH (1997). Osmoreceptors in the central nervous system. Annual 
review of physiology 59: 601-619. 
 
Bratincsak A, Palkovits M (2004). Activation of brain areas in rat following warm and 
cold ambient exposure. Neuroscience 127(2): 385-397. 
 
Brooks VL, Qi Y, O'Donaughy TL (2005). Increased osmolality of conscious water-
deprived rats supports arterial pressure and sympathetic activity via a brain action. 
American journal of physiology. Regulatory, integrative and comparative physiology 
288(5): R1248-1255. 
 
Brown TM, Piggins HD (2007). Electrophysiology of the suprachiasmatic circadian 
clock. Progress in Neurobiology 82(5): 229-255. 
 
Brvar M, Kozelj G, Osredkar J, Mozina M, Gricar M, Bunc M (2004). Polydipsia as 
another mechanism of hyponatremia after 'ecstasy' (3,4 
methyldioxymethamphetamine) ingestion. European Journal of Emergency 
Medicine 11(5): 302-304. 
 
Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A (2003). The biological clock tunes 
the organs of the body: timing by hormones and the autonomic nervous system. 
The Journal of Endocrinology 177(1): 17-26. 
 



177 
 

Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ, 
Kalsbeek A (1999). Anatomical and functional demonstration of a multisynaptic 
suprachiasmatic nucleus adrenal (cortex) pathway. European Journal of 
Neuroscience 11(5): 1535-1544. 
 
Busnardo C, Tavares RF, Correa FMA (2009). Role of N-Methyl-D-Aspartate and non-
N-Methyl-D-Aspartate receptors in the cardiovascular effects of L-Glutamate 
microinjection Into the hypothalamic paraventricular nucleus of unanesthetized 
rats. Journal of Neuroscience Research 87(9): 2066-2077. 
 
Busnardo C, Tavares RF, Resstel LB, Elias LL, Correa FM (2010). Paraventricular 
nucleus modulates autonomic and neuroendocrine responses to acute restraint 
stress in rats. Autonomic neuroscience : basic & clinical 158(1-2): 51-57. 
 
Cabral A, Valdivia S, Reynaldo M, Cyr NE, Nillni EA, Perello M (2012). Short-term 
cold exposure activates TRH neurons exclusively in the hypothalamic 
paraventricular nucleus and raphe pallidus. Neuroscience Letters 518(2): 86-91. 
 
Candia S, Garcia ML, Latorre R (1992). Mode of action of iberiotoxin, a potent 
blocker of the large conductance Ca2+-activated K+ channel. Biophysical Journal 
63(2): 583-590. 
 
Carillo BA, Oliveira-Sales EB, Andersen M, Tufik S, Hipolide D, Santos AA, et al. 
(2012). Changes in GABAergic inputs in the paraventricular nucleus maintain 
sympathetic vasomotor tone in chronic heart failure. Autonomic neuroscience : 
basic & clinical 171(1-2): 41-48. 
 
Carnevale NT, Hines ML (2006). The NEURON book. edn. Cambridge University 
Press: Cambridge, UK. 
 
Carrasco M, Portillo F, Larsen PJ, Vallo JJ (2001). Insulin and glucose administration 
stimulates Fos expression in neurones of the paraventricular nucleus that project to 
autonomic preganglionic structures. Journal of Neuroendocrinology 13(4): 339-346. 
 
Carreno FR, Ji LL, Cunningham JT (2009). Altered central TRPV4 expression and lipid 
raft association related to inappropriate vasopressin secretion in cirrhotic rats. 
American Journal of Physiology. Regulatory, integrative and comparative physiology 
296(2): R454-466. 
 
Carruba MO, Bondiolotti G, Picotti GB, Catteruccia N, Da Prada M (1987). Effects of 
diethyl ether, halothane, ketamine and urethane on sympathetic activity in the rat. 
European Journal of Pharmacololgy 134(1): 15-24. 
 
Cato MJ, Toney GM (2005). Angiotensin II excites paraventricular nucleus neurons 
that innervate the rostral ventrolateral medulla: An in vitro patch-clamp study in 
brain slices. Journal of Neurophysiololgy 93(1): 403-413. 



178 
 

Catterall WA, Goldin AL, Waxman SG (2005a). International Union of Pharmacology. 
XLVII. Nomenclature and structure-function relationships of voltage-gated sodium 
channels. Pharmacological reviews 57(4): 397-409. 
 
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005b). International Union of 
Pharmacology. XLVIII. Nomenclature and structure-function relationships of 
voltage-gated calcium channels. Pharmacological Reviews 57(4): 411-425. 
 
Cerqueira JJ, Almeida OF, Sousa N (2008). The stressed prefrontal cortex. Left? 
Right! Brain, Behaviour and Immunity 22(5): 630-638. 
 
Cham JL, Badoer E (2008). Exposure to a hot environment can activate rostral 
ventrolateral medulla-projecting neurones in the hypothalamic paraventricular 
nucleus in conscious rats. Experimental physiology 93(1): 64-74. 
 
Cham JL, Klein R, Owens NC, Mathai M, McKinley M, Badoer E (2006a). Activation of 
spinally projecting and nitrergic neurons in the PVN following heat exposure. 
American Journal of Physiology. Regulatory, integrative and comparative physiology 
291(1): R91-101. 
 
Cham JL, Owens NC, Barden JA, Lawrence AJ, Badoer E (2006b). P2X purinoceptor 
subtypes on paraventricular nucleus neurones projecting to the rostral ventrolateral 
medulla in the rat. Experimental Physiology 91(2): 403-411. 
 
Champagne D, Beaulieu J, Drolet G (1998). CRFergic innervation of the 
paraventricular nucleus of the rat hypothalamus: a tract-tracing study. Journal of 
Neuroendocrinology 10(2): 119-131. 
 
Chen F, Dworak M, Wang Y, Cham JL, Badoer E (2008). Role of the hypothalamic 
PVN in the reflex reduction in mesenteric blood flow elicited by hyperthermia. 
American Journal of Physiology. Regulatory, integrative and comparative Physiology 
295(6): R1874-R1881. 
 
Chen M, Berger A, Kablan A, Zhang J, Gavrilova O, Weinstein LS (2012). Gsα 
deficiency in the paraventricular nucleus of the hypothalamus partially contributes 
to obesity associated with Gsα mutations. Endocrinology 153(9):4256-65. 
 
Chen Q, Pan HL (2006). Regulation of synaptic input to hypothalamic 
presympathetic neurons by GABA(B) receptors. Neuroscience 142(2): 595-606. 
 
Chen Q, Pan HL (2007). Signaling mechanisms of angiotensin II-induced attenuation 
of GABAergic input to hypothalamic presympathetic neurons. Journal of 
Neurophysiology 97(5): 3279-3287. 
 
Chen QH, Toney GM (2001). AT(1)-receptor blockade in the hypothalamic PVN 
reduces central hyperosmolality-induced renal sympathoexcitation. American 



179 
 

Journal of Physiology. Regulatory, integrative and comparative physiology 281(6): 
R1844-1853. 
 
Chen QH, Toney GM (2009). Excitability of paraventricular nucleus neurones that 
project to the rostral ventrolateral medulla is regulated by small-conductance Ca2+-
activated K+ channels. Journal of Physiology 587(17): 4235-4247. 
 
Chin H, Smith MA, Kim HL, Kim H (1992). Expression of dihydropyridine-sensitive 
brain calcium channels in the rat central nervous system. FEBS Letters 299(1): 69-74.  
 
Chowdrey HS, Larsen PJ, Harbuz MS, Lightman SL, Jessop DS (1995). Endogenous 
substance P inhibits the expression of corticotropin-releasing hormone during a 
chronic inflammatory stress. Life Sciences 57(22): 2021-2029. 
 
Chu CP, Kannan H, Qiu DL (2010). Effect of hypertonic saline on rat hypothalamic 
paraventricular nucleus parvocellular neurons in vitro. Neuroscience Letters 482(2): 
142-145. 
 
Chun J, Shin SH, Kang SS (2012). The negative feedback regulation of TRPV4 Ca2+ 
ion channel function by its C-terminal cytoplasmic domain. Cellular signalling 
24(10): 1918-1922. 
 
Chung YH, Kim HS, Shin CM, Kim MJ, Cha CI (2001). Immunohistochemical study on 
the distribution of voltage-gated K(+) channels in rat brain following transient focal 
ischemia. Neuroscience Letters 308(3): 157-160. 
 
Clapham DE (2003). TRP channels as cellular sensors. Nature 426(6966): 517-524. 
 
Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nature Reviews 
Neuroscience 2(6): 387-396. 
 
Clement DL, Pelletier CL, Shepherd JT (1972). Role of vagal afferents in the control 
of renal sympathetic nerve activity in the rabbit. Circulation Research 31(6): 824-
830. 
 
Cole KS, Curtis HJ (1939). Electric impedance of the squid giant axon during activity. 
The Journal of General Physiology 22(5): 649-670. 
 
Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart D, Surprenant A, Buell G 
(1996). Cloning of P2X5 and P2X6 receptors and the distribution and properties of 
an extended family of ATP-gated ion channels. Journal of Neuroscience 16(8): 2495-
2507. 
 
Conn PJ, Pin JP (1997). Pharmacology and functions of metabotropic glutamate 
receptors. Annual Review of Pharmacology and Toxicology 37: 205-237. 
 



180 
 

Contreras GF, Neely A, Alvarez O, Gonzalez C, Latorre R (2012). Modulation of BK 
channel voltage gating by different auxiliary beta subunits. Proceedings of the 
National Academy of Sciences of the United States of America 109(46): 18991-
18996. 
 
Coote JH (2007). Landmarks in understanding the central nervous control of the 
cardiovascular system. Experimental Physiology 92(1): 3-18. 
 
Coote JH (2005). A role for the paraventricular nucleus of the hypothalamus in the 
autonomic control of heart and kidney. Experimental Physiology 90(2): 169-173. 
 
Coote JH, Yang Z, Pyner S, Deering J (1998). Control of sympathetic outflows by the 
hypothalamic paraventricular nucleus. Clinical and Experimental Pharmacology and 
Physiology 25(6): 461-463. 
 
Courtemanche M, Ramirez RJ, Nattel S (1998). Ionic mechanisms underlying human 
atrial action potential properties: insights from a mathematical model. American 
Journal of Physiology 275(2): H301-321. 
 
Cui BP, Li P, Sun HJ, Ding L, Zhou YB, Wang JJ, et al. (2013). Ionotropic glutamate 
receptors in paraventricular nucleus mediate adipose afferent reflex and regulate 
sympathetic outflow in rats. Acta Physiologica (Oxford) 209(1): 45-54. 
 
Cui LN, Coderre E, Renaud LP (2001). Glutamate and GABA mediate suprachiasmatic 
nucleus inputs to spinal-projecting paraventricular neurons. American Journal of 
Physiology. Regulatory, integrative and comparative physiology 281(4): R1283-
1289. 
 
Culman J, Das G, Ohlendorf C, Haass M, Maser-Gluth C, Zuhayra M, Zhao Y, Itoi K 
(2010). Blockade of tachykinin NK1/NK2 receptors in the brain attenuates the 
activation of corticotrophin-releasing hormone neurones in the hypothalamic 
paraventricular nucleus and the sympathoadrenal and pituitary-adrenal responses 
to formalin-induced pain in the rat. Journal of Neuroendocrinology 22(5): 467-476. 
 
Culman J, Unger T (1995). Central tachykinins: mediators of defence reaction and 
stress reactions. Canadian Journal of Physiology and Pharmacology 73(7): 885-891. 
 
Dampney RA, Horiuchi J, Killinger S, Sheriff MJ, Tan PS, McDowall LM (2005). Long-
term regulation of arterial blood pressure by hypothalamic nuclei: some critical 
questions. Clinical and Experimental Pharmocology and Physiology 32(5-6): 419-
425. 
 
Davern PJ, Chowdhury S, Jackson KL, Nguyen-Huu TP, Head GA (2014). GABAA 
receptor dysfunction contributes to high blood pressure and exaggerated response 
to stress in Schlager genetically hypertensive mice. Journal of Hypertension 32(2): 
352-362. 
 



181 
 

Davern PJ, Nguyen-Huu TP, La Greca L, Abdelkader A, Head GA (2009). Role of the 
sympathetic nervous system in Schlager genetically hypertensive mice. 
Hypertension 54(4): 852-859. 
 
De Felipe C, Herrero JF, O'Brien JA, Palmer JA, Doyle CA, Smith AJ, et al. (1998). 
Altered nociception, analgesia and aggression in mice lacking the receptor for 
substance P. Nature 392(6674): 394-397. 
 
de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000). International union of 
pharmacology. XXIII. The angiotensin II receptors. Pharmacological Reviews 52(3): 
415-472. 
 
de Vries MG, Arseneau LM, Lawson ME, Beverly JL (2003). Extracellular glucose in 
rat ventromedial hypothalamus during acute and recurrent hypoglycemia. Diabetes 
52(11): 2767-2773. 
Deering J, Coote JH (2000). Paraventricular neurones elicit a volume expansion-like 
change of activity in sympathetic nerves to the heart and kidney in the rabbit. 
Experimental Physiology 85(2): 177-186. 
 
Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, et al. (2010). Scapuloperoneal spinal 
muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. 
Nature Genetics 42(2): 165-169. 
 
Dietl M, Arluison M, Mouchet P, Feuerstein C, Manier M, Thibault J (1985). 
Immunohistochemical demonstration of catecholaminergic cell bodies in the spinal 
cord of the rat. Preliminary note. Histochemistry 82(4): 385-389. 
 
DiMicco JA, Samuels BC, Zaretskaia MV, Zaretsky DV (2002). The dorsomedial 
hypothalamus and the response to stress: Part renaissance, part revolution. 
Pharmacology Biochemistry and Behavior 71(3): 469-480. 
 
DiMicco JA, Stotz-Potter EH, Monroe AJ, Morin SM (1996). Role of the dorsomedial 
hypothalamus in the cardiovascular response to stress. Clinical and Experimental 
Pharmocology and Physiology 23(2): 171-176. 
 
Ding YQ, Shigemoto R, Takada M, Ohishi H, Nakanishi S, Mizuno N (1996). 
Localization of the neuromedin K receptor (NK3) in the central nervous system of 
the rat. Journal of Comparative Neurololgy 364(2): 290-310. 
 
Doggrell SA, Brown L (1998). Rat models of hypertension, cardiac hypertrophy and 
failure. Cardiovascular Research 39(1): 89-105. 
 
Drenjancevic I, Grizelj I, Harsanji-Drenfjancevic I, Cavka A, Selthofer-Relatic K (2014). 
The interplay between sympathetic overactivity, hypertension and heart rate 
variability (review, invited). Acta Physiologica Hungarica 101(2): 129-142. 
 



182 
 

Duan YF, Winters R, McCabe PM, Green EJ, Huang Y, Schneiderman N (1997). 
Cardiorespiratory components of defense reaction elicited from paraventricular 
nucleus. Physiology and Behaviour 61(2): 325-330. 
 
Dunn-Meynell AA, Govek E, Levin BE (1997). Intracarotid glucose selectively 
increases Fos-like immunoreactivity in paraventricular, ventromedial and 
dorsomedial nuclei neurons. Brain Research 748(1-2): 100-106. 
 
Dunn FL, Brennan TJ, Nelson AE, Robertson GL (1973). The role of blood osmolality 
and volume in regulating vasopressin secretion in the rat. The Journal of Clinical 
Investigation 52(12): 3212-3219. 
 
Earley S (2011). Endothelium-dependent cerebral artery dilation mediated by 
transient receptor potential and Ca2+-activated K+ channels. Journal of 
Cardiovascular Pharmacology 57(2): 148-153. 
 
Ebner K, Muigg P, Singewald G, Singewald N (2008). Substance P in stress and 
anxiety: NK-1 receptor antagonism interacts with key brain areas of the stress 
circuitry. Annals of the New York Academy of Sciences 1144: 61-73. 
 
Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, et al. (2010). Inhibition 
of the cation channel TRPV4 improves bladder function in mice and rats with 
cyclophosphamide-induced cystitis. Proceedings of the National Academy of 
Sciences of the United States of America 107(44): 19084-19089. 
 
Everson SA, Kaplan GA, Goldberg DE, Salonen JT (1996). Anticipatory blood pressure 
response to exercise predicts future high blood pressure in middle-aged men. 
Hypertension 27(5): 1059-1064. 
 
Faber ES, Sah P (2003). Calcium-activated potassium channels: multiple 
contributions to neuronal function. The Neuroscientist: a review journal bringing 
neurobiology, neurology and psychiatry 9(3): 181-194. 
 
Farah VM, Joaquim LF, Morris M (2006). Stress cardiovascular/autonomic 
interactions in mice. Physiology and Behaviour 89(4): 569-575. 
 
Fater DC, Schultz HD, Sundet WD, Mapes JS, Goetz KL (1982). Effects of left atrial 
stretch in cardiac-denervated and intact conscious dogs. American Journal of 
Physiology 242(6): H1056-1064. 
 
Feetham CH, Barrett-Jolley R (2012). Volume control in the PVN: a role for TRPV4. 
Biophysical Journal 102(3): 546a. 
 
Ferguson AV, Latchford KJ, Samson WK (2008). The paraventricular nucleus of the 
hypothalamus - a potential target for integrative treatment of autonomic 
dysfunction. Expert Opinion on Therapeutic Targets 12(6): 717-727. 
 



183 
 

Fisher JP, Young CN, Fadel PJ (2009). Central sympathetic overactivity: maladies and 
mechanisms. Autonomic Neuroscience: basic & clinical 148(1-2): 5-15. 
 
Flak JN, Myers B, Solomon MB, McKlveen JM, Krause EG, Herman JP (2014). Role of 
paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute 
and chronic stress. European Journal of Neuroscience 39(11): 1903-1911. 
 
Flak JN, Ostrander MM, Tasker JG, Herman JP (2009). Chronic stress-induced 
neurotransmitter plasticity in the PVN. The Journal of Comparative Neurology 
517(2): 156-165. 
 
Floras JS (2009). Sympathetic nervous system activation in human heart failure: 
clinical implications of an updated model. Journal of the American College of 
Cardiology 54(5): 375-385. 
 
Folkow B (2001). Mental stress and its importance for cardiovascular disorders; 
physiological aspects, "from-mice-to-man". Scandinavian Cardiovascular Journal 
35(3): 163-172. 
 
Fontes MAP, Tagawa T, Polson JW, Cavanagh SJ, Dampney RAL (2001a). Descending 
pathways mediating cardiovascular response from dorsomedial hypothalamic 
nucleus. American Journal of Physiology. Heart and Circulatory Physiology 280(6): 
H2891-H2901. 
 
Fowler MA, Sidiropoulou K, Ozkan ED, Phillips CW, Cooper DC (2007). Corticolimbic 
expression of TRPC4 and TRPC5 channels in the rodent brain. PLoS One 2(6): e573. 
 
Furuyama T, Morita Y, Inagaki S, Takagi H (1993). Distribution of I, II and III subtypes 
of voltage-sensitive Na+ channel mRNA in the rat brain. Brain Research Molecular 
Brain Research 17(1-2): 169-173. 
 
Gao F, Sui D, Garavito RM, Worden RM, Wang DH (2009). Salt intake augments 
hypotensive effects of transient receptor potential vanilloid 4: functional 
significance and implication. Hypertension 53(2): 228-235. 
 
Gao F, Wang DH (2010). Hypotension induced by activation of the transient 
receptor potential vanilloid 4 channels: role of Ca2+-activated K+ channels and 
sensory nerves. Journal of Hypertension 28(1): 102-110. 
 
Giovannelli L, Shiromani PJ, Jirikowski GF, Bloom FE (1992). Expression of c-fos 
protein by immunohistochemically identified oxytocin neurons in the rat 
hypothalamus upon osmotic stimulation. Brain Research 588(1): 41-48. 
 
Gladwell SJ, Coote JH (1999). Inhibitory and indirect excitatory effects of dopamine 
on sympathetic preganglionic neurones in the neonatal rat spinal cord in vitro. Brain 
Research 818(2): 397-407. 
 



184 
 

Gladwell SJ, Pyner S, Barnes NM, Coote JH (1999). D-1-like dopamine receptors on 
retrogradely labelled sympathoadrenal neurones in the thoracic spinal cord of the 
rat. Experimental Brain Research 128(3): 377-382. 
 
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JM, 
Moody GB, Peng CK, Stanley HE (2000). PhysioBank, PhysioToolkit, and PhysioNet: 
Components of a New Research Resource for Complex Physiologic Signals. 
Circulation 101(23): e215-220. 
 
Goldman DE (1943). Potential, impedance, and rectification in membranes. The 
Journal of General Physiology 27(1): 37-60. 
Gomez CR (2014). Disorders of body temperature. Handbook of Clinical Neurology 
120: 947-957. 
 
Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S (2005). International 
Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P 
potassium channels. Pharmacological reviews 57(4): 527-540. 
 
Goncharuk VD, van Heerikhuize J, Swaab DF, Buijs RM (2002). Paraventricular 
nucleus of the human hypothalamus in primary hypertension: Activation of 
corticotropin-releasing hormone neurons. Journal of Comparative Neurology 
443(4): 321-331. 
 
Gottlieb HB, Ji LL, Jones H, Penny ML, Fleming T, Cunningham JT (2006). Differential 
effects of water and saline intake on water deprivation-induced c-Fos staining in the 
rat. American Journal of Physiology. Regulatory, integrative and comparative 
physiology 290(5): R1251-1261. 
 
Grassi G, Seravalle G, Quarti-Trevano F, Dell'Oro R, Bolla G, Mancia G (2003). Effects 
of hypertension and obesity on the sympathetic activation of heart failure patients. 
Hypertension 42(5): 873-877. 
 
Greenway CV, Lister GE (1974). Capacitance effects and blood reservoir function in 
the splanchnic vascular bed during non-hypotensive haemorrhage and blood 
volume expansion in anaesthetized cats. Journal of Physiology 237(2): 279-294. 
 
Grippo AJ, Beltz TG, Johnson AK (2003). Behavioral and cardiovascular changes in 
the chronic mild stress model of depression. Physiology and Behaviour 78(4-5): 703-
710. 
 
Grynkiewicz G, Poenie M, Tsien RY (1985). A new generation of Ca2+ indicators with 
greatly improved fluorescence properties. Journal of Biological Chemistry 260(6): 
3440-3450. 
 
Gui L, LaGrange LP, Larson RA, Gu M, Zhu J, Chen QH (2012). Role of small 
conductance calcium-activated potassium channels expressed in PVN in regulating 



185 
 

sympathetic nerve activity and arterial blood pressure in rats. American Journal of 
Physiology. Regulatory, integrative and comparative physiology 303(3): R301-310. 
 
Guilak F, Leddy HA, Liedtke W (2010). Transient receptor potential vanilloid 4: The 
sixth sense of the musculoskeletal system? Annals of the New York Academy of 
Sciences 1192: 404-409. 
 
Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002). Heat-evoked 
activation of the ion channel, TRPV4. Journal of Neuroscience 22(15): 6408-6414. 
 
Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, et al. 
(2005). International Union of Pharmacology. LIII. Nomenclature and molecular 
relationships of voltage-gated potassium channels. Pharmacological reviews 57(4): 
473-508. 
 
Hallbeck M, Larhammar D, Blomqvist A (2001). Neuropeptide expression in rat 
paraventricular hypothalamic neurons that project to the spinal cord. Journal of 
Compartive Neurology 433(2): 222-238. 
 
Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, 
Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002). LTRPC2 
Ca2+-permeable channel activated by changes in redox status confers susceptibility 
to cell death. Molecular cell 9(1): 163-173. 
 
Haselton JR, Goering J, Patel KP (1994). Parvocellular neurons of the paraventricular 
nucleus are involved in the reduction in renal nerve discharge during isotonic 
volume expansion. Journal of the Autonomic Nervous System 50(1): 1-11. 
 
Hawthorn J, Ang VT, Jenkins JS (1985). Effects of lesions in the hypothalamic 
paraventricular, supraoptic and suprachiasmatic nuclei on vasopressin and oxytocin 
in rat brain and spinal cord. Brain Research 346(1): 51-57. 
 
Head GA, Lukoshkova EV (2008). Understanding the morning rise in blood pressure. 
Clinical and Experimental Pharmacology and Physiology 35(4): 516-521. 
 
Herd JA (1991). Cardiovascular response to stress. Physiological Reviews 71(1): 305-
330. 
 
Herman JP, Cullinan WE (1997). Neurocircuitry of stress: Central control of the 
hypothalamo-pituitary-adrenocortical axis. Trends in Neurosciences 20(2): 78-84. 
 
Herman JP, Cullinan WE, Ziegler DR, Tasker JG (2002a). Role of the paraventricular 
nucleus microenvironment in stress integration. European Journal of Neuroscience 
16(3): 381-385. 
 



186 
 

Herman JP, Tasker JG, Ziegler DR, Cullinan WE (2002b). Local circuit regulation of 
paraventricular nucleus stress integration: glutamate-GABA connections. 
Pharmacology, Biochemistry and Behaviour 71(3): 457-468. 
 
Hermes ML, Coderre EM, Buijs RM, Renaud LP (1996). GABA and glutamate mediate 
rapid neurotransmission from suprachiasmatic nucleus to hypothalamic 
paraventricular nucleus in rat. Journal of Physiology 496(3): 749-757. 
 
Hetzenauer A, Sinnegger-Brauns MJ, Striessnig J, Singewald N (2006). Brain 
activation pattern induced by stimulation of L-type Ca2+-channels: contribution of 
Ca(V)1.3 and Ca(V)1.2 isoforms. Neuroscience 139(3): 1005-1015. 
 
Hille B (1986). Ionic channels: molecular pores of excitable membranes. Harvey 
Lectures 82: 47-69. 
 
Hille B (1994). Modulation of ion-channel function by G-protein-coupled receptors. 
Trends in Neurosciences 17(12): 531-536. 
 
Hines ML, Carnevale NT (1997). The NEURON simulation environment. Neural 
Computation 9(6): 1179-1209. 
 
Hodgkin AL (1937a). Evidence for electrical transmission in nerve: Part I. Journal of 
Physiology 90(2): 183-210. 
 
Hodgkin AL (1937b). Evidence for electrical transmission in nerve: Part II. Journal of 
Physiology 90(2): 211-232. 
 
Hodgkin AL, Huxley AF (1952a). The components of membrane conductance in the 
giant axon of Loligo. Journal of Physiology 116(4): 473-496. 
Hodgkin AL, Huxley AF (1952b). Currents carried by sodium and potassium ions 
through the membrane of the giant axon of Loligo. Journal of Physiology 116(4): 
449-472. 
 
Hodgkin AL, Huxley AF (1952c). The dual effect of membrane potential on sodium 
conductance in the giant axon of Loligo. Journal of Physiology 116(4): 497-506. 
 
Hodgkin AL, Huxley AF (1952d). Propagation of electrical signals along giant nerve 
fibers. Proceedings of the Royal Society of London. Series B, Containing papers of a 
Biological character. Royal Society (Great Britain) 140(899): 177-183. 
 
Hodgkin AL, Huxley AF (1952e). A quantitative description of membrane current and 
its application to conduction and excitation in nerve. Journal of Physiology 117(4): 
500-544. 
 
Hodgkin AL, Huxley AF, Katz B (1952). Measurement of current-voltage relations in 
the membrane of the giant axon of Loligo. Journal of Physiology 116(4): 424-448. 
 



187 
 

Hodgkin AL, Katz B (1949). The effect of sodium ions on the electrical activity of the 
giant axon of the squid. Journal of Physiology 108(1): 37-77. 
 
Holbein WW, Bardgett ME, Toney GM (2014). Blood pressure is maintained during 
dehydration by hypothalamic PVN driven tonic sympathetic nerve activity. Journal 
of Physiology 592(Pt 17): 3783-3799. 
 
Horn T, Smith PM, McLaughlin BE, Bauce L, Marks GS, Pittman QJ, et al. (1994). 
Nitric oxide actions in paraventricular nucleus: cardiovascular and neurochemical 
implications. American Journal of Physiology 266(1 Pt 2): R306-313. 
 
Hosoya Y, Sugiura Y, Okado N, Loewy A, Kohno K (1991). Descending input from the 
hypothalamic paraventricular nucleus to sympathetic preganglionic neurons in the 
rat. Experimental Brain Research 85(1): 10-20. 
 
Huang BS, Chen A, Ahmad M, Wang HW, Leenen FH (2014). Mineralocorticoid and 
AT1 receptors in the paraventricular nucleus contribute to sympathetic 
hyperactivity and cardiac dysfunction in rats post myocardial infarct. Journal of 
Physiology 592(Pt 15): 3273-3286. 
 
Inenaga K, Osaka T, Yamashita H (1987). Thermosensitivity of neurons in the 
paraventricular nucleus of the rat slice preparation. Brain Research 424(1): 126-132. 
 
Itoi K, Jost N, Badoer E, Tschope C, Culman J, Unger T (1991). Localization of the 
substance P-induced cardiovascular responses in the rat hypothalamus. Brain 
Research. 558(1): 123-126. 
 
Jansen AS, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD (1995a). Central 
command neurons of the sympathetic nervous system: basis of the fight-or-flight 
response. Science 270(5236): 644-646. 
 
Jansen ASP, Wessendorf MW, Loewy AD (1995b). Transneuronal Labeling of Cns 
Neuropeptide and Monoamine Neurons after Pseudorabies Virus Injections into the 
Stellate Ganglion. Brain Research 683(1): 1-24. 
 
Jarnot M, Corbett AM (2006). Immunolocalization of NaV1.2 channel subtypes in rat 
and cat brain and spinal cord with high affinity antibodies. Brain Research 1107(1): 
1-12. 
 
Jessop DS, Chowdrey HS, Biswas S, Lightman SL (1991). Substance-P and Substance-
K in the Rat Hypothalamus Following Monosodium Glutamate Lesions of the 
Arcuate Nucleus. Neuropeptides 18(3): 165-170. 
 
Jhamandas JH, MacTavish D (2003). Central administration of neuropeptide FF 
causes activation of oxytocin paraventricular hypothalamic neurones that project to 
the brainstem. Journal of Neuroendocrinology 15(1): 24-32. 
 



188 
 

Jhamandas JH, Simonin F, Bourguignon JJ, Harris KH (2007). Neuropeptide FF and 
neuropeptide VF inhibit GABAergic neurotransmission in parvocellular neurons of 
the rat hypothalamic paraventricular nucleus. American Journal of Physiology. 
Regulatory Integrative and Comparative Physiology 292(5): R1872-R1880. 
 
Jhanwar-Uniyal M, Beck B, Jhanwar YS, Burlet C, Leibowitz SF (1993). Neuropeptide 
Y projection from arcuate nucleus to parvocellular division of paraventricular 
nucleus: specific relation to the ingestion of carbohydrate. Brain Research 631(1): 
97-106. 
 
Jin M, Berrout J, Chen L, O'Neil RG (2012). Hypotonicity-induced TRPV4 function in 
renal collecting duct cells: modulation by progressive cross-talk with Ca2+-activated 
K+ channels. Cell Calcium 51(2): 131-139. 
 
Kalsbeek A, Foppen E, Schalij I, Van Heijningen C, van der Vliet J, Fliers E, et al. 
(2008). Circadian control of the daily plasma glucose rhythm: an interplay of GABA 
and glutamate. PLoS One 3(9): e3194. 
 
Kalsbeek A, Garidou ML, Palm IF, Van Der Vliet J, Simonneaux V, Pevet P, et al. 
(2000). Melatonin sees the light: blocking GABA-ergic transmission in the 
paraventricular nucleus induces daytime secretion of melatonin. European Journal 
of Neuroscience 12(9): 3146-3154. 
 
Kalsbeek A, La Fleur S, Van Heijningen C, Buijs RM (2004). Suprachiasmatic 
GABAergic inputs to the paraventricular nucleus control plasma glucose 
concentrations in the rat via sympathetic innervation of the liver. Journal of 
Neuroscience 24(35): 7604-7613. 
 
Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM (1996). A diurnal rhythm of 
stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed 
intrahypothalamic administration of the vasopressin V1 antagonist. Journal of 
Neuroscience 16(17): 5555-5565. 
 
Kamouchi M, Mamin A, Droogmans G, Nilius B (1999). Nonselective cation channels 
in endothelial cells derived from human umbilical vein. The Journal of Membrane 
Biology 169(1): 29-38. 
 
Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A, Thorne PR, Luo L, 
Ryan AF (1999). Distribution of the P2X2 receptor subunit of the ATP-gated ion 
channels in the rat central nervous system. Journal of Comparative Neurology 
407(1): 11-32.  
 
Kaneko M, Hiroshige T, Shinsako J, Dallman MF (1980). Diurnal changes in 
amplification of hormone rhythms in the adrenocortical system. American Journal 
of Physiolology 239(3): R309-316. 
 



189 
 

Kannan H, Hayashida Y, Yamashita H (1989). Increase in Sympathetic Outflow by 
Paraventricular Nucleus Stimulation in Awake Rats 1. American Journal of 
Physiology 256(6): R1325-R1330. 
 
Kantzides A, Badoer E (2005). nNOS-containing neurons in the hypothalamus and 
medulla project to the RVLM. Brain Research 1037(1-2): 25-34. 
 
Karim F, Kidd C, Malpus CM, Penna PE (1972). The effects of stimulation of the left 
atrial receptors on sympathetic efferent nerve activity. Journal of Physiology 227(1): 
243-260. 
 
Katoh K, Nomura M, Nakaya Y, Iga A, Nada T, Hiasa A, et al. (2002). Autonomic 
nervous activity before and after eradication of Helicobacter pylori in patients with 
chronic duodenal ulcer. Alimentary Pharmacology & Therapeutics 16 Suppl 2: 180-
186. 
 
Kawabe T, Chitrauanshi VC, Nakamura T, Kawabe K, Sapru HN (2009). Mechanism of 
heart rate responses elicited by chemical stimulation of the hypothalamic 
paraventricular nucleus in the rat. Brain Research 1248: 115-126. 
 
Kawabe T, Kawabe K, Sapru HN (2012). Cardiovascular responses to chemical 
stimulation of the hypothalamic arcuate nucleus in the rat: role of the hypothalamic 
paraventricular nucleus. PLoS One 7(9): e45180. 
 
Kawano Y (2011). Diurnal blood pressure variation and related behavioral factors. 
Hypertension Research 34(3): 281-285. 
 
Kenney MJ, Weiss ML, Haywood JR (2003). The paraventricular nucleus: an 
important component of the central neurocircuitry regulating sympathetic nerve 
outflow. Acta Physiologica Scandanavia 177(1): 7-15. 
 
Kenney MJ, Weiss ML, Patel KP, Wang Y, Fels RJ (2001). Paraventricular nucleus 
bicuculline alters frequency components of sympathetic nerve discharge bursts. 
American Journal of Physiology. Heart and Circulatory Physiology 281(3): H1233-
1241. 
 
Khasabov SG, Simone DA (2013). Loss of neurons in rostral ventromedial medulla 
that express neurokinin-1 receptors decreases the development of hyperalgesia. 
Neuroscience 250: 151-165. 
 
Kiss J, Martos J, Palkovits M (1991). Hypothalamic paraventricular nucleus: a 
quantitative analysis of cytoarchitectonic subdivisions in the rat. The Journal of 
Comparative Neurology 313(4): 563-573. 
 
Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, et al. (1996). 
Small-conductance, calcium-activated potassium channels from mammalian brain. 
Science (New York, N.Y.) 273(5282): 1709-1714. 



190 
 

 
Koutcherov Y, Ashwell KWS, Paxinos G (2000a). The distribution of the neurokinin B 
receptor in the human and rat hypothalamus. Neuroreport 11(3): 3127-3131. 
 
Koutcherov Y, Mai J, Ashwell K, Paxinos G (2000b). Organization of the human 
paraventricular hypothalamic nucleus. The Journal of Comparative Neurology 
423(2): 299-318. 
 
Krechowec SO, Burton KL, Newlaczyl AU, Nunn N, Vlatkovic N, Plagge A (2012). 
Postnatal changes in the expression pattern of the imprinted signalling protein 
XLalphas underlie the changing phenotype of deficient mice. PLoS One 7(1): e29753. 
 
Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, et al. (2005). 
International Union of Pharmacology. LIV. Nomenclature and molecular 
relationships of inwardly rectifying potassium channels. Pharmacological reviews 
57(4): 509-526. 
 
Kuhn HG, Dickinson-Anson H, Gage FH (1996). Neurogenesis in the dentate gyrus of 
the adult rat: age-related decrease of neuronal progenitor proliferation. Journal of 
Neuroscience 16(6): 2027-2033. 
 
Latchford KJ, Ferguson AV (2005). Angiotensin depolarizes parvocellular neurons in 
paraventricular nucleus through modulation of putative nonselective cationic and 
potassium conductances. American Journal of Physiology-Regulatory Integrative 
and Comparative Physiology 289(1): R52-R58. 
 
Lee S, Han TH, Sonner PM, Stern JE, Ryu PD, Lee SY (2008). Molecular 
characterization of T-type Ca(2+) channels responsible for low threshold spikes in 
hypothalamic paraventricular nucleus neurons. Neuroscience 155(4): 1195-1203.. 
 
Lee SK, Lee S, Shin SY, Ryu PD, Lee SY (2012). Single cell analysis of voltage-gated 
potassium channels that determines neuronal types of rat hypothalamic 
paraventricular nucleus neurons. Neuroscience 205: 49-62. 
 
Lee SK, Ryu PD, Lee SY (2013). Differential distributions of neuropeptides in 
hypothalamic paraventricular nucleus neurons projecting to the rostral 
ventrolateral medulla in the rat. Neuroscience Letters 556: 160-165. 
 
Leibowitz SF (2007). Overconsumption of dietary fat and alcohol: mechanisms 
involving lipids and hypothalamic peptides. Physiology and Behaviour 91(5): 513-
521. 
 
Leite LH, Zheng H, Coimbra CC, Patel KP (2012). Contribution of the paraventricular 
nucleus in autonomic adjustments to heat stress. Experimental Biology and 
Medicine 237(5): 570-577. 
 



191 
 

Lenkei Z, Palkovits M, Corvol P, LlorensCortes C (1997). Expression of angiotensin 
type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: A functional 
neuroanatomical review. Frontiers in Neuroendocrinology 18(4): 383-439. 
 
Levin BE (2006). Metabolic sensing neurons and the control of energy homeostasis. 
Physiology and Behaviour 89(4): 486-489. 
 
Lewis CA (1979). Ion-concentration dependence of the reversal potential and the 
single channel conductance of ion channels at the frog neuromuscular junction. 
Journal of Physiology 286: 417-445.  
 
Lewis R, Mills AF, Barrett-Jolley R (2010). Models Of Paraventricular Nucleus (PVN) 
Sympathetic Neurone Modulation by Glucose and Hypoglycaemia. Biophysical 
Journal 98(3, Suppl 1): 140a-140a. 
 
Li DP, Chen SR, Finnegan TF, Pan HL (2004a). Signalling pathway of nitric oxide in 
synaptic GABA release in the rat paraventricular nucleus. Journal of Physiology 
554(1): 100-110. 
 
Li DP, Chen SR, Pan HL (2010). Adenosine inhibits paraventricular pre-sympathetic 
neurons through ATP-dependent potassium channels. Journal of Neurochemistry 
113(2): 530-542. 
 
Li DP, Chen SR, Pan HL (2003a). Angiotensin II stimulates spinally projecting 
paraventricular neurons through presynaptic disinhibition. Journal of Neuroscience 
23(12): 5041-5049. 
 
Li DP, Chen SR, Pan HL (2002). Nitric oxide inhibits spinally projecting 
paraventricular neurons through potentiation of presynaptic GABA release. Journal 
of Neurophysiology 88(5): 2664-2674. 
 
Li DP, Chen SR, Pan HL (2004b). VR1 receptor activation induces glutamate release 
and postsynaptic firing in the paraventricular nucleus. Journal of Neurophysiology  
92(3): 1807-1816. 
 
Li DP, Pan HL (2005). Angiotensin II attenuates synaptic GABA release and excites 
paraventricular-rostral ventrolateral medulla output neurons. Journal of 
Pharmacology and Experimental Therapeutics 313(3): 1035-1045. 
 
Li DP, Pan HL (2007a). Glutamatergic inputs in the hypothalamic paraventricular 
nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension 49(4): 
916-925. 
 
Li DP, Pan HL (2010). Increased group I metabotropic glutamate receptor activity in 
paraventricular nucleus supports elevated sympathetic vasomotor tone in 
hypertension. American Journal of Physiology. Regulatory, integrative and 
comparative physiology 299(2): R552-561. 



192 
 

Li DP, Pan HL (2006). Plasticity of GABAergic control of hypothalamic 
presympathetic neurons in hypertension. American Journal of Physiology. Heart and 
Circulatory Physiology 290(3): H1110-1119. 
 
Li DP, Pan HL (2007b). Role of gamma-aminobutyric acid (GABA)(A) and GABA(B) 
receptors in Paraventricular nucleus in control of sympathetic vasomotor tone in 
hypertension. Journal of Pharmacology and Experimental Therapeutics 320(2): 615-
626. 
 
Li DP, Yang Q, Pan HM, Pan HL (2008a). Plasticity of pre- and postsynaptic GABA(B) 
receptor function in the paraventricular nucleus in spontaneously hypertensive rats. 
American Journal of Physiology. Heart and Circulatory Physiology 295(2): H807-
H815. 
 
Li DP, Yang Q, Pan HM, Pan HL (2008b). Pre- and postsynaptic plasticity underlying 
augmented glutamatergic inputs to hypothalamic presympathetic neurons in 
spontaneously hypertensive rats. Journal of Physiology 586(6): 1637-1647. 
 
Li DP, Zhu LH, Pachuau J, Lee HA, Pan HL (2014). mGluR5 Upregulation Increases 
Excitability of Hypothalamic Presympathetic Neurons through NMDA Receptor 
Trafficking in Spontaneously Hypertensive Rats. Journal of Neuroscience 34(12): 
4309-4317. 
 
Li K, Xu E (2008). The role and the mechanism of gamma-aminobutyric acid during 
central nervous system development. Neuroscience bulletin 24(3): 195-200. 
 
Li P, Cui BP, Zhang LL, Sun HJ, Liu TY, Zhu GQ (2012). Melanocortin 3/4 Receptors in 
Paraventricular Nucleus Modulates Sympathetic Outflow and Blood Pressure. 
Experimental Physiology 98(2): 435-443. 
 
Li Y, Zhang W, Stern JE (2003b). Nitric oxide inhibits the firing activity of 
hypothalamic paraventricular neurons that innervate the medulla oblongata: Role 
of GABA. Neuroscience 118(3): 585-601. 
 
Li YF, Cornish KG, Patel KP (2003c). Alteration of NMDA NR1 receptors within the 
paraventricular nucleus of hypothalamus in rats with heart failure. Circulation 
Research 93(10): 990-997. 
 
Li YF, Jackson KL, Stern JE, Rabeler B, Patel KP (2006). Interaction between 
glutamate and GABA systems in the integration of sympathetic outflow by the 
paraventricular nucleus of the hypothalamus. American Journal of Physiology. Heart 
and Circulatory Physiology 291(6): H2847-H2856. 
 
Li YF, Mayhan WG, Patel KP (2001). NMDA-mediated increase in renal sympathetic 
nerve discharge within the PVN: role of nitric oxide. American Journal of Physiology. 
Heart and Circulatory Physiology 281(6): H2328-H2336. 
 



193 
 

Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, 
Friedman JM, Heller S (2000). Vanilloid receptor-related osmotically activated 
channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3): 525-535. 
 
Liedtke W, Tobin DM, Bargmann CI, Friedman JM (2003). Mammalian TRPV4 (VR-
OAC) directs behavioral responses to osmotic and mechanical stimuli in 
Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the 
United States of America 100(Suppl 2): 14531-14536. 
 
Lind RW, Swanson LW, Bruhn TO, Ganten D (1985). The distribution of angiotensin-
II-immunoreactive cells and fibers in the paraventriculo-hypophysial system of the 
rat. Brain Research 338(1): 81-89. 
 
Liposits Z, Phelix C, Paull WK (1986). Electron microscopic analysis of tyrosine 
hydroxylase, dopamine-beta-hydroxylase and phenylethanolamine-N-
methyltransferase immunoreactive innervation of the hypothalamic paraventricular 
nucleus in the rat. Histochemistry 84(2): 105-120. 
 
Liu Q, Wang T, Yu H, Liu B, Jia R (2014). Interaction between interleukin-1 beta and 
angiotensin II receptor 1 in hypothalamic paraventricular nucleus contributes to 
progression of heart failure. Journal of Interferon and Cytokine Research 34(11): 
870-875. 
 
Loewy A (1991). Forebrain nuclei involved in autonomic control. Progress in Brain 
Research 87: 253. 
 
Lovick T, Malpas S, Mahony M (1993). Renal vasodilatation in response to acute 
volume load is attenuated following lesions of parvocellular neurones in the 
paraventricular nucleus in rats. Journal of the Autonomic Nervous System 43(3): 
247-255. 
 
Lovick TA, Coote JH (1989). Circulating atrial natriuretic factor activates vagal 
afferent inputs to paraventriculo-spinal neurones in the rat. Journal of the 
Autonomic Nervous System 26(2): 129-134. 
 
Lovick TA, Coote JH (1988). Effects of volume loading on paraventriculo-spinal 
neurones in the rat. Journal of the Autonomic Nervous System 25(2-3): 135-140. 
 
Lozic M, Greenwood M, Sarenac O, Martin A, Hindmarch C, Tasic T, Paton J, Murphy 
D, Japundzic-Zigon N (2014). Over-expression of oxytocin receptors 1 in the 
hypothalamic PVN increases BRS and buffers BP variability in conscious rats. British 
Journal of Pharmacology 171(19): 4385-4398. 
 
Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G, Swaab 
DF, Czeh B (2014). Neuropathology of stress. Acta Neuropathologica 127(1): 109-
135. 
 



194 
 

Luo X, Kiss A, Makara G, Lolait SJ, Aguilera G (1994). Stress-specific regulation of 
corticotropin releasing hormone receptor expression in the paraventricular and 
supraoptic nuclei of the hypothalamus in the rat. Journal of Neuroendocrinology 
6(6): 689-696. 
 
Luther JA, Daftary SS, Boudaba C, Gould GC, Halmos KC, Tasker JG (2002). 
Neurosecretory and non-neurosecretory parvocellular neurones of the 
hypothalamic paraventricular nucleus express distinct electrophysiological 
properties. Journal of Endocrinology 14(12): 929-932. 
Luther JA, Tasker JG (2000). Voltage-gated currents distinguish parvocellular from 
magnocellular neurones in the rat hypothalamic paraventricular nucleus. Journal of 
Physiology 523(1): 193-209. 
 
Ma X, Du J, Zhang P, Deng J, Liu J, Lam FF, Li RA, Huang Y, Jin J, Yao X (2013). 
Functional role of TRPV4-KCa2.3 signaling in vascular endothelial cells in normal and 
streptozotocin-induced diabetic rats. Hypertension 62(1): 134-139. 
 
Madden CJ, Morrison SF (2009). Neurons in the paraventricular nucleus of the 
hypothalamus inhibit sympathetic outflow to brown adipose tissue. American 
Journal of Physiology. Regulatory Integrative and Comparative Physiology 296(3): 
R831-R843. 
 
Maguire J (2014). Stress-induced plasticity of GABAergic inhibition. Frontiers in 
Cellular Neuroscience 8: 157. 
 
Makino S, Tanaka Y, Nazarloo HP, Noguchi T, Nishimura K, Hashimoto K (2005). 
Expression of type 1 corticotropin-releasing hormone (CRH) receptor mRNA in the 
hypothalamic paraventricular nucleus following restraint stress in CRH-deficient 
mice. Brain Research 1048(1-2): 131-137. 
 
Malpas SC (2002). Neural influences on cardiovascular variability: possibilities and 
pitfalls. American Journal of Physiology. Heart and Circulatory Physiology 282(1): 
H6-20. 
 
Malpas SC, Coote JH (1994). Role of vasopressin in sympathetic response to 
paraventricular nucleus stimulation in anesthetized rats. American Journal of 
Physiology 266(1): R228-R236. 
 
Martin DS, Haywood JR (1993). Hemodynamic responses to paraventricular nucleus 
disinhibition with bicuculline in conscious rats. American Journal of Physiology 
265(5 Pt 2): H1727-H1733. 
 
Martin DS, Haywood JR, Thornhill JA (1993). Stimulation of the hypothalamic 
paraventricular nucleus causes systemic venoconstriction. Brain Research 604(1-2): 
318-324. 
 



195 
 

Martin DS, Segura T, Haywood JR (1991). Cardiovascular responses to bicuculline in 
the paraventricular nucleus of the rat. Hypertension 18(1): 48-55. 
 
Martins-Pinge MC, Mueller PJ, Foley CM, Heesch CM, Hasser EM (2012). Regulation 
of arterial pressure by the paraventricular nucleus in conscious rats: interactions 
among glutamate, GABA, and nitric oxide. Frontiers in Physiology 3: 490. 
 
McManus OB (1991). Calcium-activated potassium channels: regulation by calcium. 
Journal of Bioenergetics and Biomembranes 23(4): 537-560. 
 
Melnick IV, Price CJ, Colmers WF (2011). Glucosensing in parvocellular neurons of 
the rat hypothalamic paraventricular nucleus. European Journal of Neuroscience 
34(2): 272-282. 
 
Meng QY, Wang W, Chen XN, Xu TL, Zhou JN (2009). Distribution of acid-sensing ion 
channel 3 in the rat hypothalamus. Neuroscience 159(3): 1126-1134. 
 
Millar-Craig MW, Bishop CN, Raftery EB (1978). Circadian variation of blood-
pressure. The Lancet 1(8068): 795-797. 
 
Mizuno A, Matsumoto N, Imai M, Suzuki M (2003). Impaired osmotic sensation in 
mice lacking TRPV4. American Journal of Physiology. Cell physiology 285(1): C96-
101. 
 
Monteggia LM, Eisch AJ, Tang MD, Kaczmarek LK, Nestler EJ (2000). Cloning and 
localization of the hyperpolarization-activated cyclic nucleotide-gated channel 
family in rat brain. Molecular Brain Research 81(1–2): 129-139. 
 
Morishige KI, Inanobe A, Takahashi N, Yoshimoto Y, Kurachi H, Miyake A, Tokunaga 
Y, Maeda T, Kurachi Y (1996). G protein-gated K+ channel (GIRK1) protein is 
expressed presynaptically in the paraventricular nucleus of the hypothalamus. 
Biochemical and Biophysical Research Communications 220(2): 300-305. 
 
Motawei K, Pyner S, Ranson RN, Kamel M, Coote JH (1999). Terminals of 
paraventricular spinal neurones are closely associated with adrenal medullary 
sympathetic preganglionic neurones: immunocytochemical evidence for 
vasopressin as a possible neurotransmitter in this pathway. Experimental Brain 
Research 126(1): 68-76. 
 
Muller JE, Tofler GH, Stone PH (1989). Circadian variation and triggers of onset of 
acute cardiovascular disease. Circulation 79(4): 733-743. 
 
Myers B, Mark Dolgas C, Kasckow J, Cullinan WE, Herman JP (2013). Central stress-
integrative circuits: forebrain glutamatergic and GABAergic projections to the 
dorsomedial hypothalamus, medial preoptic area, and bed nucleus of the stria 
terminalis. Brain Structure and Function 219(4): 1287-1303. 
 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Maeda%20T%5BAuthor%5D&cauthor=true&cauthor_uid=8645300
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kurachi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=8645300


196 
 

Myers B, McKlveen JM, Herman JP (2012). Neural regulation of the stress response: 
the many faces of feedback. Cellular and Molecular Neurobiology 32(5): 683-694. 
 
Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, Shimizu N (1998). 
Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly 
expressed in brain. Genomics 54(1): 124-131. 
 
Nakayama Y, Takano Y, Saito R, Kamiya H (1992). Central pressor actions of 
tachykinin NK-3 receptor in the paraventricular nucleus of the rat hypothalamus. 
Brain Research. 595(2): 339-342. 
Nedungadi TP, Dutta M, Bathina CS, Caterina MJ, Cunningham JT (2012). Expression 
and distribution of TRPV2 in rat brain. Experimental Neurology 237(1): 223-237. 
 
Nehme B, Henry M, Mouginot D, Drolet G (2012). The expression pattern of the 
Na(+) sensor, Na(X) in the hydromineral homeostatic network: a comparative study 
between the rat and rouse. Frontiers in Neuroanatomy 6: 26. 
 
Nilius B, Droogmans G (2001). Ion channels and their functional role in vascular 
endothelium. Physiological Reviews 81(4): 1415-1459. 
 
Nilius B, Owsianik G (2011). The transient receptor potential family of ion channels. 
Genome biology 12(3): 218. 
 
Niskanen JP, Tarvainen MP, Ranta-Aho PO, Karjalainen PA (2004). Software for 
advanced HRV analysis. Computer Methods and Programs in Biomedicine 76(1): 73-
81. 
 
Nunn N, Barrett-Jolley R, Plagge A (2009). Brown adipose tissue development and 
cardiovascular parameters in Gnasxl knock-out mice. PA2 online James Black 
Conference. 
 
Nunn N, Feetham CH, Martin J, Barrett-Jolley R, Plagge A (2013). Elevated blood 
pressure, heart rate and body temperature in mice lacking the XLalphas protein of 
the Gnas locus is due to increased sympathetic tone. Experimental physiology 
98(10): 1432-1445. 
 
Nunn N, Womack M, Dart C, Barrett-Jolley R (2011). Function and pharmacology of 
spinally-projecting sympathetic pre-autonomic neurones in the paraventricular 
nucleus of the hypothalamus. Current Neuropharmacology 9(2): 262-277. 
 
Oldfield BJ, Davern PJ, Giles ME, Allen AM, Badoer E, McKinley MJ (2001). Efferent 
neural projections of angiotensin receptor (AT1) expressing neurones in the 
hypothalamic paraventricular nucleus of the rat. Journal of Neuroendocrinology 
13(2): 139-146. 
 
Ono N, Bedran de Castro JC, McCann SM (1985). Ultrashort-loop positive feedback 
of corticotropin (ACTH)-releasing factor to enhance ACTH release in stress. 



197 
 

Proceedings of the National Academy of Sciences of the United States of America 
82(10): 3528-3531. 
 
Osborn JW, Fink GD, Sved AF, Toney GM, Raizada MK (2007). Circulating angiotensin 
II and dietary salt: converging signals for neurogenic hypertension. Current 
Hypertension Reports 9(3): 228-235. 
 
Owsianik G, Talavera K, Voets T, Nilius B (2006). Permeation and selectivity of TRP 
channels. Annual Review of Physiology 68: 685-717. 
 
Pachuau J, Li DP, Chen SR, Lee HA, Pan HL (2014). Protein kinase CK2 contributes to 
diminished small conductance Ca -activated K channel activity of hypothalamic pre-
sympathetic neurons in hypertension. Journal of Neurochemistry 130(5): 657-667. 
 
Park JB, Jo JY, Zheng H, Patel KP, Stern JE (2009). Regulation of tonic GABA 
inhibitory function, presympathetic neuronal activity and sympathetic outflow from 
the paraventricular nucleus by astroglial GABA transporters. Journal of Physiology 
587(19): 4645-4660. 
 
Park JB, Skalska S, Son S, Stern JE (2007). Dual GABAA receptor-mediated inhibition 
in rat presympathetic paraventricular nucleus neurons. Journal of Physiology 582(Pt 
2): 539-551. 
 
Park JB, Stern JE (2005). A tonic, GABAA receptor-mediated inhibitory postsynaptic 
current restrains firing activity in preautonomic and magnocellular neuroendocrine 
neurons of the paraventricular nucleus of the hypothalamus (PVN). Faseb Journal 
19(4): A599-A599. 
 
Patel KP (2000). Role of paraventricular nucleus in mediating sympathetic outflow in 
heart failure. Heart Failure Reviews 5(1): 73-86. 
 
Paxinos G, Franklin K (2001). The Mouse Brain in Stereotaxic Coordinates. edn. 
Academic Press. 
 
Paxinos G, Watson C (1986). The Rat Brain in Stereotaxic Coordinates. edn. 
Academic Press Inc: London. 
 
Perello M, Raingo J (2013). Leptin activates oxytocin neurones of the 
paraventricular nucleus in both control and diet-induced obses rodents.  PLoS  One 
8(3): e59625. doi:10.1371/journal.pone.0059625. 
 
Perez-Reyes E (2003). Molecular physiology of low-voltage-activated T-type calcium 
channels. Physiological Reviews 83(1): 117-161. 
 
Perez-Reyes E (1999). Three for T: Molecular analysis of the low voltage-activated 
calcium channel family. Cellular and Molecular Life Sciences 56(7-8): 660-669. 
 



198 
 

Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, et al. (2009). 
Functional characterization of TRPV4 as an osmotically sensitive ion channel in 
porcine articular chondrocytes. Arthritis and Rheumatology 60(10): 3028-3037. 
 
Pickering TG (1990). The clinical significance of diurnal blood pressure variations. 
Dippers and nondippers. Circulation 81(2): 700-702. 
 
Pierdomenico SD, Pierdomenico AM, Cuccurullo F (2014). Morning blood pressure 
surge, dipping, and risk of ischemic stroke in elderly patients treated for 
hypertension. American Journal of Hypertension 27(4): 564-570. 
 
Pittman Q, Riphagen C, Lederis K (1984). Release of immunoassayable 
neurohypophyseal peptides from rat spinal cord, in vivo. Brain Research 300(2): 
321-326. 
 
Plagge A, Kelsey G, Germain-Lee EL (2008). Physiological functions of the imprinted 
Gnas locus and its protein variants Galpha(s) and XLalpha(s) in human and mouse. 
The Journal of Endocrinology 196(2): 193-214. 
 
Powis JE, Bains JS, Ferguson AV (1998). Leptin depolarizes rat hypothalamic 
paraventricular nucleus neurons. American Journal of Physiology-Regulatory 
Integrative and Comparative Physiology 274(5): R1468-R1472. 
 
Pyner S (2009). Neurochemistry of the paraventricular nucleus of the 
hypothalamus: implications for cardiovascular regulation. J Chem Neuroanat 38(3): 
197-208. 
 
Pyner S (2014). The paraventricular nucleus and heart failure. Experimental 
Physiology 99(2): 332-339. 
 
Pyner S, Cleary J, Buchan PM, Coote JH (2001). Tracing functionally identified 
neurones in a multisynaptic pathway in the hamster and rat using herpes simplex 
virus expressing green fluorescent protein. Experimental physiology 86(6): 695-702. 
 
Pyner S, Coote JH (1999). Identification of an efferent projection from the 
paraventricular nucleus of the hypothalamus terminating close to spinally projecting 
rostral ventrolateral medullary neurons. Neuroscience 88(3): 949-957. 
 
Pyner S, Coote JH (2000). Identification of branching paraventricular neurons of the 
hypothalamus that project to the rostroventrolateral medulla and spinal cord. 
Neuroscience 100(3): 549-556. 
 
Pyner S, Deering J, Coote JH (2002). Right atrial stretch induces renal nerve 
inhibition and c-fos expression in parvocellular neurones of the paraventricular 
nucleus in rats. Experimental Physiology 87(1): 25-32. 
 



199 
 

Qin F (2004). Restoration of single-channel currents using the segmental k-means 
method based on hidden Markov modeling. Biophysical Journal 86(3): 1488-1501. 
 
Qin F, Auerbach A, Sachs F (2000). A direct optimization approach to hidden Markov 
modeling for single channel kinetics. Biophysical Journal 79(4): 1915-1927. 
 
Qin F, Auerbach A, Sachs F (1996). Estimating single-channel kinetic parameters 
from idealized patch-clamp data containing missed events. Biophysical Journal 
70(1): 264-280. 
 
Radley JJ, Gosselink KL, Sawchenko PE (2009). A discrete GABAergic relay mediates 
medial prefrontal cortical inhibition of the neuroendocrine stress response. Journal 
of Neuroscience 29(22): 7330-7340. 
 
Ramchandra R, Hood SG, Frithiof R, McKinley MJ, May CN (2013). The role of the 
paraventricular nucleus of the hypothalamus in the regulation of cardiac and renal 
sympathetic nerve activity in conscious normal and heart failure sheep. Journal of 
Physiology 591(Pt 1): 93-107. 
 
Ramchandra R, Hood SG, May CN (2014). Central exogenous nitric oxide decreases 
cardiac sympathetic drive and improves baroreflex control of heart rate in ovine 
heart failure. American Journal of Physiology. Regulatory, integrative and 
comparative physiology 307(3): R271-280. 
 
Reppert SM, Weaver DR (2002). Coordination of circadian timing in mammals. 
Nature 418(6901): 935-941. 
 
Roberts JC, Davis JB, Benham CD (2004). [3H]Resiniferatoxin autoradiography in the 
CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. 
Brain Research 995(2): 176-183. 
 
Roland BL, Sawchenko PE (1993). Local origins of some GABAergic projections to the 
paraventricular and supraoptic nuclei of the hypothalamus in the rat. The Journal of 
Comparative Neurology 332(1): 123-143. 
 
Rozanski A, Blumenthal JA, Kaplan J (1999). Impact of psychological factors on the 
pathogenesis of cardiovascular disease and implications for therapy. Circulation 
99(16): 2192-2217. 
 
Rudy B, Chow A, Lau D, Amarillo Y, Ozaita A, Saganich M, et al. (1999). Contributions 
of Kv3 channels to neuronal excitability. Annals of the New York Academy of 
Sciences 868: 304-343. 

Saenz del Burgo L, Cortes R, Mengod G, Zarate J, Echevarria E, Salles J (2008). 
Distribution and neurochemical characterization of neurons expressing GIRK 
channels in the rat brain. The Journal of Comparative Neurology 510(6): 581-606. 
 



200 
 

Sakaguchi T, Bray GA, Eddlestone G (1988). Sympathetic activity following 
paraventricular or ventromedial hypothalamic lesions in rats. Brain Research 
Bulletin 20(4): 461-465. 
 
Salzmann M, Seidel KN, Bernard R, Pruss H, Veh RW, Derst C (2010). BKbeta1 
subunits contribute to BK channel diversity in rat hypothalamic neurons. Cellular 
and Molecular Neurobiology 30(6): 967-976. 
 
Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K 
(2001). Immunocyte Ca2+ influx system mediated by LTRPC2. Science (New York, 
N.Y.) 293(5533): 1327-1330. 
 
Santarelli L, Gobbi G, Blier P, Hen R (2002). Behavioral and physiologic effects of 
genetic or pharmacologic inactivation of the substance P receptor (NK1). Journal of 
Clinical Psychiatry 63(Suppl 11): 11-17. 
 
Santarelli L, Gobbi G, Debs PC, Sibille ET, Blier P, Hen R, Heath MJ (2001). Genetic 
and pharmacological disruption of neurokinin 1 receptor function decreases 
anxiety-related behaviors and increases serotonergic function. Proceedings of the 
National Academy of Sciences of the United States of America 98(4): 1912-1917. 
 
Sausbier U, Sausbier M, Sailer CA, Arntz C, Knaus HG, Neuhuber W, et al. (2006). 
Ca2+ -activated K+ channels of the BK-type in the mouse brain. Histochemistry and 
Cell Biology 125(6): 725-741. 
 
Sawchenko PE, Swanson LW (1982). Immunohistochemical Identification of Neurons 
in the Paraventricular Nucleus of the Hypothalamus That Project to the Medulla or 
to the Spinal-Cord in the Rat. Journal of Comparative Neurology 205(3): 260-272. 
 
Serodio P, Rudy B (1998). Differential expression of Kv4 K+ channel subunits 
mediating subthreshold transient K+ (A-type) currents in rat brain. J Neurophysiol 
79(2): 1081-1091. 
 
Schlenker E, Barnes L, Hansen S, Martin D (2001). Cardiorespiratory and metabolic 
responses to injection of bicuculline into the hypothalamic paraventricular nucleus 
(PVN) of conscious rats. Brain Research 895(1-2): 33-40. 
 
Schramm LP, Strack AM, Platt KB, Loewy AD (1993). Peripheral and central 
pathways regulating the kidney: a study using pseudorabies virus. Brain Research 
616(1-2): 251-262. 
 
Scrogin KE, Grygielko ET, Brooks VL (1999). Osmolality: a physiological long-term 
regulator of lumbar sympathetic nerve activity and arterial pressure. American 
Journal of Physiology 276(6 Pt 2): R1579-1586. 
 
Sermasi E, Coote JH (1994). Oxytocin acts at V-1 receptors to excite sympathetic 
preganglionic neurones in neonatal rat spinal-cord in-vitro. Brain Research 647(2): 
323-332. 



201 
 

Shafton AD, Ryan A, Badoer E (1998). Neurons in the hypothalamic paraventricular 
nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla 
in the rat. Brain Research 801(1-2): 239-243. 
 
Shao LR, Halvorsrud R, Borg-Graham L, Storm JF (1999). The role of BK-type Ca2+-
dependent K+ channels in spike broadening during repetitive firing in rat 
hippocampal pyramidal cells. Journal of Physiology 521(Pt 1): 135-146. 
 
Shi Z, Chen WW, Xiong XQ, Han Y, Zhou YB, Zhang F, Gao XY, Zhu GQ (2012). 
Sympathetic activation by chemical stimulation of white adipose tissues in rats. 
Journal of Applied Physiology(1985) 112(6): 1008-1014. 
 
Shirasaka T, Kannan H, Takasaki M (2007). Activation of a G protein-coupled 
inwardly rectifying K+ current and suppression of Ih contribute to 
dexmedetomidine-induced inhibition of rat hypothalamic paraventricular nucleus 
neurons. Anesthesiology 107(4): 605-615. 
 
Shults CW, Buck SH, Burcher E, Chase TN, O'Donohue TL (1985). Distinct binding 
sites for substance P and neurokinin A (substance K): co-transmitters in rat brain. 
Peptides 6(2): 343-345. 
 
Smith JE, Jansen AS, Gilbey MP, Loewy AD (1998). CNS cell groups projecting to 
sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. 
Brain Research 786(1-2): 153-164. 
 
Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill-Eubanks 
DC, Nelson MT (2012). Elementary Ca2+ signals through endothelial TRPV4 channels 
regulate vascular function. Science 336(6081): 597-601. 
 
Sonner PM, Filosa JA, Stern JE (2008). Diminished A-type potassium current and 
altered firing properties in presympathetic PVN neurones in renovascular 
hypertensive rats. Journal of Physiology 586(6): 1605-1622. 
 
Sonner PM, Lee S, Ryu PD, Lee SY, Stern JE (2011). Imbalanced K+ and Ca2+ 
subthreshold interactions contribute to increased hypothalamic presympathetic 
neuronal excitability in hypertensive rats. Journal of Physiology 589(Pt 3): 667-683. 
 
Sonner PM, Stern JE (2007). Functional role of A-type potassium currents in rat 
presympathetic PVN neurones. Journal of Physiology 582(Pt 3): 1219-1238. 
 
Sonner PM, Stern JE (2005). Role of A-type potassium currents on the excitability 
and firing activity of RVLM-projecting PVN neurons. Faseb Journal 19(4): A599-
A599. 
 
Spielberg C, Falkenhahn D, Willich SN, Wegscheider K, Voller H (1996). Circadian, 
day-of-week, and seasonal variability in myocardial infarction: comparison between 
working and retired patients. American Heart Journal 132(3): 579-585. 



202 
 

Spyer KM (1994). Annual-Review Prize Lecture - Central Nervous Mechanisms 
Contributing to Cardiovascular Control. Journal of Physiology 474(1): 1-19. 
 
Stern JE (2001). Electrophysiological and morphological properties of pre-autonomic 
neurones in the rat hypothalamic paraventricular nucleus. Journal of Physiology 
537(1): 161-177. 
 
Stern JE (2004). Nitric oxide and homeostatic control: an intercellular signalling 
molecule contributing to autonomic and neuroendocrine integration? Progress in 
Biophysics and Molecular Biology 84(2-3): 197-215. 
 
Stern JE, Zhang W (2003). Preautonomic neurons in the paraventricular nucleus of 
the hypothalamus contain estrogen receptor beta. Brain Research 975(1-2): 99-109. 
 
Stocker SD, Cunningham JT, Toney GM (2004). Water deprivation increases Fos 
immunoreactivity in PVN autonomic neurons with projections to the spinal cord and 
rostral ventrolateral medulla. American Journal of Physiology-Regulatory Integrative 
and Comparative Physiology 287(5): R1172-R1183. 
strottmann 
Stocker SD, Osborn JL, Carmichael SP (2007). Forebrain osmotic regulation of the 
sympathetic nervous system. Clin Exp Pharmacol Physiol 35(5-6): 695-700. 

Stocker SD, Toney GA (2005). Median preoptic neurones projecting to the 
hypothalamic paraventricular nucleus respond to osmotic, circulating Ang II and 
baroreceptor input in the rat. J Physiol 568(2): 599-615. 
 
Stotz-Potter EH, Morin SM, DiMicco JA (1996). Effect of microinjection of muscimol 
into the dorsomedial or paraventricular hypothalamic nucleus on air stress-induced 
neuroendocrine and cardiovascular changes in rats. Brain Research 742(1-2): 219-
224. 
 
Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD (1989a). A general pattern of 
CNS innervation of the sympathetic outflow demonstrated by trans-neuronal 
pseudorabies viral-infections. Brain Research 491(1): 156-162. 
 
Strack AM, Sawyer WB, Platt KB, Loewy AD (1989b). CNS cell groups regulating the 
sympathetic outflow to adrenal-gland as revealed by trans-neuronal cell body 
labeling with pseudorabies virus. Brain Research 491(2): 274-296. 
 
Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000). OTRPC4, a 
nonselective cation channel that confers sensitivity to extracellular osmolarity. 
Nature Cell Biology 2(10): 695-702. 
 
Sudbury JR, Bourque CW (2013). Dynamic and permissive roles of TRPV1 and TRPV4 
channels for thermosensation in mouse supraoptic magnocellular neurosecretory 
neurons. Journal of Neuroscience 33(43): 17160-17165. 
 



203 
 

Sumoza-Toledo A, Penner R (2011). TRPM2: a multifunctional ion channel for 
calcium signalling. Journal of Physiology 589(Pt 7): 1515-1525. 
 
Swanson L, Kuypers H (1980). The paraventricular nucleus of the hypothalamus: 
cytoarchitectonic subdivisions and organization of projections to the pituitary, 
dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence 
double-labeling methods. The Journal of Comparative Neurology 194(3): 555-570. 
 
Swanson LW, McKellar S (1979). The distribution of oxytocin- and neurophysin-
stained fibers in the spinal cord of the rat and monkey. The Journal of Comparative 
Neurology 188(1): 87-106. 
 
Swanson LW, Sawchenko PE (1983). Hypothalamic Integration - Organization of the 
Paraventricular and Supraoptic Nuclei. Annual Reviews in Neuroscience 6: 269-324. 
 
Swanson LW, Sawchenko PE, Berod A, Hartman BK, Helle KB, Vanorden DE (1981). 
An immunohistochemical study of the organization of catecholaminergic cells and 
terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. 
The Journal of Comparative Neurology 196(2): 271-285. 
 
Talman WT, Lin LH (2013). Sudden death following selective neuronal lesions in the 
rat nucleus tractus solitarii. Autonomic Neuroscience: basic & clinical 175(1-2): 9-16. 
 
Tasker JG, Dudek FE (1991). Electrophysiological properties of neurones in the 
region of the paraventricular nucleus in slices of rat hypothalamus. Journal of 
Physiology 434: 271-293. 
 
Tavares RF, Pelosi GG, Correa FM (2009). The paraventricular nucleus of the 
hypothalamus is involved in cardiovascular responses to acute restraint stress in 
rats. Stress 12(2): 178-185. 
 
Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y (1997). 
Circadian oscillation of a mammalian homologue of the Drosophila period gene. 
Nature 389(6650): 512-516. 
 
Tempel DL, Kim T, Leibowitz SF (1993). The paraventricular nucleus is uniquely 
responsive to the feeding stimulatory effects of steroid hormones. Brain Research 
614(1-2): 197-204. 
 
Ter Horst GJ, Luiten PG (1986). The projections of the dorsomedial hypothalamic 
nucleus in the rat.  Brain Research Bulletins 16(2): 231-148). 
 
Teruyama R, Sakuraba M, Kurotaki H, Armstrong WE (2011). Transient receptor 
potential channel m4 and m5 in magnocellular cells in rat supraoptic and 
paraventricular nuclei. Journal of Neuroendocrinology 23(12): 1204-1213. 
 



204 
 

Teruyama R, Sakuraba M, Wilson LL, Wandrey NE, Armstrong WE (2012). Epithelial 
Na(+) sodium channels in magnocellular cells of the rat supraoptic and 
paraventricular nuclei. American Journal of Physiology. Endocrinology and 
metabolism 302(3): E273-285. 
 
Thireau J, Poisson D, Zhang BL, Gillet L, Le Pecheur M, Andres C, London J, Babuty D 
(2008). Increased heart rate variability in mice overexpressing the Cu/Zn superoxide 
dismutase. Free Radical Biology and Medicine 45(4): 396-403. 

Thompson RH, Canteras NS, Swanson LW (1996). Organization of projections from 
the foromedial nucleus of the hypothalamis: a PHA-L study in the rat. The Journal of 
Comparative Neurology 376(1): 142-173.  
 
Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, 
Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ,Nation 
JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping 
NJ, Westfall TD (2008). N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-
hydroxypropanoyl)-1 -piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-
carboxamide (GSK1016790A), a novel and potent transient receptor potential 
vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: 
Part I. Journal of Pharmacology and Experimental Therapeutics 326(2): 432-442. 
 
Toney GM, Chen QH, Cato MJ, Stocker SD (2003). Central osmotic regulation of 
sympathetic nerve activity. Acta Physiologia Scandanavia 177(1): 43-55. 
 
Unger T, Becker H, Petty M, Demmert G, Schneider B, Ganten D, Lang RE (1985). 
Differential effects of central angiotensin II and substance P on sympathetic nerve 
activity in conscious rats. Implications for cardiovascular adaptation to behavioral 
responses. Circulation Research 56(4): 563-575. 
 
Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius 
B, Bindels RJ (2000). Permeation and gating properties of the novel epithelial Ca(2+) 
channel. The Journal of Biological Chemistry 275(6): 3963-3969. 
 
Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Sacchi N, Battistelli M, Guerreri M, 
Comparato E, Porcellati C (1995). Gender, day-night blood pressure changes, and 
left ventricular mass in essential hypertension. Dippers and peakers. American 
Journal of Hypertension 8(2): 193-196. 
 
Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, Spiro P, 
Emerling DE, Kelly MG, Duncton MA (2009). Identification and characterization of 
novel TRPV4 modulators. Biochemical and Biophysical Research Communications 
389(3): 490-494. 
 
Vincent SR, Kimura H (1992). Histochemical mapping of nitric oxide synthase in the 
rat brain. Neuroscience 46(4): 755-784. 
 



205 
 

Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A, North RA, Elde R 
(1996). Differential distribution of two ATP-gated channels (P2X receptors) 
determined by immunocytochemistry. Proceedings of the National Academy of 
Sciences in the United States of America 93(15): 8063-8067. 
 
Wang HW, Amin MS, El Shahat E, Huang BS, Tuana BS, Leenen FH (2010). Effects of 
central sodium on epithelial sodium channels in rat brain. American Journal of 
Physiology. Regulatory, Integrative and Comparative Physiology 299(1): R222-233. 
 
Wang RJ, Zeng QH, Wang WZ, Wang W (2009). GABA(A) and GABA(B) receptor-
mediated inhibition of sympathetic outflow in the paraventricular nucleus is 
blunted in chronic heart failure. Clinical and Experimental Pharmacology and 
Physiology 36(5-6): 516-522. 
 
Ward KR, Bardgett JF, Wolfgang L, Stocker SD (2011). Sympathetic response to 
insulin is mediated by melanocortin 3/4 receptors in the hypothalamic 
paraventricular nucleus. Hypertension 57(3): 435-441. 
 
Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns 
W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002). 
Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. Journal of 
Biological Chemistry 277(16): 13569-13577. 
 
Watkins ND, Cork SC, Pyner S (2009). An immunohistochemical investigation of the 
relationship between neuronal nitric oxide synthase, GABA and presympathetic 
paraventricular neurons in the hypothalamus. Neuroscience 159(3): 1079-1088. 
 
Weber M, Lauterburg T, Tobler I, Burgunder JM (2004). Circadian patterns of 
neurotransmitter related gene expression in motor regions of the rat brain. 
Neuroscience Letters 358(1): 17-20. 
 
Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005). International 
Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-
activated potassium channels. Pharmacological reviews 57(4): 463-472. 
 
Weiss ML, Chowdhury SI, Patel KP, Kenney MJ, Huang J (2001). Neural circuitry of 
the kidney: NO-containing neurons. Brain Research 919(2): 269-282. 
 
Westenbroek RE, Merrick DK, Catterall WA (1989). Differential subcellular 
localization of the RI and RII Na+ channel subtypes in central neurons. Neuron 3(6): 
695-704. 
 
Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ (2001). 
Comparative distribution of voltage-gated sodium channel proteins in human brain. 
Brain Research Molecular Brain Research 88(1-2): 37-53. 
 



206 
 

Womack MD, Barrett-Jolley R (2007). Activation of paraventricular nucleus 
neurones by the dorsomedial hypothalamus via a tachykinin pathway in rats. 
Experimental Physiology 92(4): 671-676. 
 
Womack MD, Morris R, Gent TC, Barrett-Jolley R (2007). Substance P targets 
sympathetic control neurons in the paraventricular nucleus. Circulation research 
100(11): 1650-1658. 
 
Womack MD, Pyner S, Barrett-Jolley R (2006). Inhibition by alpha-
tetrahydrodeoxycorticosterone (THDOC) of pre-sympathetic parvocellular neurones 
in the paraventricular nucleus of rat hypothalamus. British Journal of Pharmacology 
149(5): 600-607. 
 
Xiang HB, Liu C, Liu TT, Xiong J (2014). Central circuits regulating the sympathetic 
outflow to lumbar muscles in spinally transected mice by retrograde transsynaptic 
transport. International Journal of Clinical and Experimental Pathology 7(6): 2987-
2997. 
 
Xie T, Plagge A, Gavrilova O, Pack S, Jou W, Lai EW, Frontera M, Kelsey G, Weinstein 
LS (2006). The alternative stimulatory G protein alpha-subunit XLalphas is a critical 
regulator of energy and glucose metabolism and sympathetic nerve activity in adult 
mice. Journal of Biological Chemistry 281(28): 18989-18999. 
 
Yamada T, Mochiduki A, Sugimoto Y, Suzuki Y, Itoi K, Inoue K (2009). Prolactin-
Releasing Peptide Regulates the Cardiovascular System Via Corticotrophin-Releasing 
Hormone. Journal of Neuroendocrinology 21(6): 586-593. 
 
Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, Lopez ME, Hollenberg 
AN,Baggio L, Saper CB, Drucker DJ, Elmquist JK (2002). Glucagon-like peptide-1 
receptor stimulation increases blood pressure and heart rate and activates 
autonomic regulatory neurons. The Journal of Clinical Investigation 110(1): 43-52. 
 
Yamashita H, Inenaga K, Dyball RE (1988). Thermal, osmotic and chemical 
modulation of neural activity in the paraventricular nucleus: in vitro studies. Brain 
Research Bulletin 20(6): 825-829. 
 
Yamashita H, Inenaga K, Koizumi K (1984). Possible projections from regions of 
paraventricular and supraoptic nuclei to the spinal-cord - Electrophysiological 
studies. Brain Research 296(2): 373-378. 
 
Yang Q, Chen SR, Li DP, Pan HL (2007). Kv1.1/1.2 channels are downstream effectors 
of nitric oxide on synaptic GABA release to preautonomic neurons in the 
paraventricular nucleus. Neuroscience 149(2): 315-327. 
 
Yang Z, Coote JH (1998). Influence of the hypothalamic paraventricular nucleus on 
cardiovascular neurones in the rostral ventrolateral medulla of the rat. Journal of 
Physiology 513(2): 521-530. 



207 
 

Yang Z, Han D, Coote JH (2009). Cardiac sympatho-excitatory action of PVN-spinal 
oxytocin neurones. Autonomic Neuroscience. Basic & Clinical 147(1-2): 80-85. 
 
Yang Z, Smith L, Coote JH (2004). Paraventricular nucleus activation of renal 
sympathetic neurones is synaptically depressed by nitric oxide and glycine acting at 
a spinal level. Neuroscience 124(2): 421-428. 
 
Yang Z, Wheatley M, Coote JH (2002). Neuropeptides, amines and amino acids as 
mediators of the sympathetic effects of paraventricular nucleus activation in the 
rat. Experimental Physiology 87(6): 663-674. 
 
Ye ZY, Li DP, Pan HL (2013). Regulation of hypothalamic presympathetic neurons 
and sympathetic outflow by group II metabotropic glutamate receptors in 
spontaneously hypertensive rats. Hypertension 62(2): 255-262. 
 
Yoshimatsu H, Egawa M, Bray GA (1992). Effects of Cholecystokinin on Sympathetic 
Activity to Interscapular Brown Adipose-Tissue. Brain Res 597(2): 298-303. 
 
Yoshimatsu H, Egawa M, Bray GA (1993). Sympathetic nerve activity after discrete 
hypothalamic injections of L-glutamate. Brain Research 601(1-2): 121-128. 
 
Yu FH, Catterall WA (2003). Overview of the voltage-gated sodium channel family. 
Genome Biology 4(3): 207. 

 
Zaki A, Barrett-Jolley R (2002). Rapid neuromodulation by cortisol in the rat 
paraventricular nucleus: an in vitro study. British Journal of Pharmacology 137(1): 
87-97. 
 
Zhang J, Li H, Teng H, Zhang T, Luo Y, Zhao M, Li YQ, Sun ZS (2012). Regulation of 
peripheral clock to oscillation of substance P contributes to circadian inflammatory 
pain. Anesthesiology 117(1): 149-160. 
 
Zhang K, Li YF, Patel KP (2001). Blunted nitric oxide-mediated inhibition of renal 
nerve discharge within PVN of rats with heart failure. American Journal of 
Physiology. Heart and Circulatory Physiology 281(3): H995-H1004. 
 
Zhang K, Li YF, Patel KP (2002). Reduced endogenous GABA-mediated inhibition in 
the PVN on renal nerve discharge in rats with heart failure. American Journal of 
Physiology. Regulatory Integrative and Comparative Physiology 282(4): R1006-
R1015. 
 
Zhang K, Mayhan WG, Patel KP (1997). Nitric oxide within the paraventricular 
nucleus mediates changes in renal sympathetic nerve activity. American Journal of 
Physiology. Regulatory Integrative and Comparative Physiology 273(3): R864-R872. 
 



208 
 

Zhang K, Patel KP (1998). Effect of nitric oxide within the paraventricular nucleus on 
renal sympathetic nerve discharge: role of GABA. American Journal of Physiology. 
Regulatory Integrative and Comparative Physiology 275(3): R728-R734. 
 
Zhang K, Zucker IH, Patel KP (1998). Altered number of diaphorase (NOS) positive 
neurons in the hypothalamus of rats with heart failure. Brain Research 786(1-2): 
219-225. 
 
Zhang WF, Stern JE (2002). Preautonomic neurons in the paraventricular nucleus 
(PVN) of the hypothalamus express estrogen receptor-B immunoreactivity. Faseb 
Journal 16(4): A501-A501. 
 
Zhang ZH, Francis J, Weiss RM, Felder RB (2002b). The renin-angiotensin-
aldosterone system excites hypothalamic paraventricular nucleus neurons in heart 
failure. American Journal of Physiology. Heart and Circulatory Physiology 283(1): 
H423-H433. 
 
Zhong MK, Duan YC, Chen AD, Xu B, Gao XY, De W, Zhu GQ (2008a). Paraventricular 
nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in 
rats. Experimental Physiology 93(6): 746-753. 
 
Zhong MK, Shi Z, Zhou LM, Gao J, Liao ZH, Wang W, Gao XY, Zhu GQ (2008b). 
Regulation of cardiac sympathetic afferent reflex by GABA(A) and GABA(B) 
receptors in paraventricular nucleus in rats. European Journal of Neuroscience 
27(12): 3226-3232. 
 
Zsombok A, Gao H, Miyata K, Issa A, Derbenev AV (2011). Immunohistochemical 
localization of transient receptor potential vanilloid type 1 and insulin receptor 
substrate 2 and their co-localization with liver-related neurons in the hypothalamus 
and brainstem. Brain Research 1398: 30-39. 
 
 
 


