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Abstract 

Hippocalcin is a Ca2+-binding protein that belongs to a family of neuronal Ca2+ sensors 

and is a key mediator of many cellular functions including synaptic plasticity and 

learning. However, the molecular mechanisms involved in hippocalcin signalling 



remain illusive. Here we studied whether glutamate receptor activation induced by 

locally applied or synaptically released glutamate can be decoded by hippocalcin 

translocation. Local AMPA receptor activation resulted in fast hippocalcin-YFP 

translocation to specific sites within a dendritic tree mainly due to AMPA receptor-

dependent depolarization and following Ca2+ influx via voltage-operated calcium 

channels. Short local NMDA receptor activation induced fast hippocalcin-YFP 

translocation in a dendritic shaft at the application site due to direct Ca2+ influx via 

NMDA receptor channels. Intrinsic network bursting produced hippocalcin-YFP 

translocation to a set of dendritic spines when they were subjected to several successive 

synaptic vesicle releases during a given burst whereas no translocation to spines was 

observed in response to a single synaptic vesicle release and to back-propagating action 

potentials. The translocation to spines required Ca2+ influx via synaptic NMDA 

receptors in which Mg2+ block is relieved by postsynaptic depolarization. This synaptic 

translocation was restricted to spine heads and even closely (within 1-2 µm) located 

spines on the same dendritic branch signalled independently. Thus, we have concluded 

that hippocalcin may differentially decode various spatio-temporal patterns of glutamate 

receptor activation into site and time specific translocation to its targets. Hippocalcin 

also possesses an ability to produce local signalling at the single synaptic level 

providing a molecular mechanism for homosynaptic plasticity. 

 



Introduction 

Complex spatio-temporal changes in free cytosolic calcium concentration ([Ca2+]i) are 

decoded into changed activity of effector molecules by various Ca2+ sensor proteins. A 

new emerging concept of cellular signal transduction suggests a dynamic model in 

which sensor proteins can translocate and undergo reversible binding interaction with 

the effector proteins rather than being solely activated by the rapid diffusion of Ca2+ 

(Teruel & Meyer, 2000). Local signalling events have been well studied for Ca2+ while 

studies of molecular and cellular mechanisms underlying the signalling of Ca2+ sensor 

proteins in living neurons have only began to emerge.  

The neuronal calcium sensor (NCS) proteins, to which hippocalcin studied in this work 

belongs, constitute a subfamily of EF-hand calcium binding proteins mainly expressed 

in neurons and neuroendocrine cells (Burgoyne et al., 2004). Recent works have 

established their involvement in a wide range of Ca2+-dependent signalling processes 

including modulation and trafficking of ion channels, neurotransmitter release, synaptic 

plasticity, control of apoptosis and gene expression (McFerran et al., 1998; Jinno et al., 

2004; Korhonen et al., 2005; Palmer et al., 2005; O'Callaghan et al., 2005; Zheng et al., 

2005; Jo et al., 2008). Information is also available regarding the involvement of NCS 

proteins in cancer, schizophrenia and several neurodegenerative disorders including 

Alzheimer’s disease (Braunewell, 2005).  

Hippocalcin possesses a Ca2+-myristoyl switch, a Ca2+-dependent conformation 

transition leading to protrusion of its myristoyl-containing hydrophobic N-terminal 

region out of a hydrophobic pocket (Ames et al., 1997). This allows hippocalcin to 

translocate to membranes upon Ca2+ binding that can be used in signal transduction 

processes (Kobayashi et al., 1993; O'Callaghan et al., 2003). Hippocalcin is highly 



expressed in the hippocampal neurons, in particular in their dendrites, suggesting that it 

might be involved in postsynaptic signalling. It has been shown that Ca2+-dependent 

hippocalcin activation in hippocampal neurons is one of the necessary steps involved in 

expression of NMDA receptor (NMDAR) dependent long-term depression (LTD) 

(Palmer et al., 2005) and in production of a slow afterhyperpolarization (sAHP) 

(Tzingounis et al., 2007). These and other hippocalcin-dependent signalling processes 

involve activation of postsynaptic glutamate receptors. However, it is still unknown if 

hippocalcin does translocate in living hippocampal neurons in response to glutamate 

receptor stimulation. We hypothesized that complex changes in Ca2+ concentration 

induced by glutamate receptor activation could result in hippocalcin signalling via its 

partitioning between a cytosol and specific sites at the plasma membrane in dendrites 

and spines of hippocampal neurons. In order to test this hypothesis we examined 

Yellow Fluorescent Protein-tagged hippocalcin (hippocalcin-YFP) translocation 

induced in transiently transfected hippocampal cultured neurons by iontophoretically 

applied and synaptically released glutamate.  

Materials and Methods 

Tissue cultures. All procedures used in this study were approved by the Animal Care 

Committee of Bogomoletz Institute of Physiology and conform to the Guidelines of the 

National Institutes of Health on the Care and Use of Animals. Neurones were obtained 

from newborn rats (age postnatal day 0–1; 56 animals of both sexes for the whole work) 

killed via rapid decapitation without anaesthesia. Hippocampi of the rats were 

enzymatically dissociated with trypsin. The cell suspension at an initial density of 3 - 5 x 

105 cells per cm3 was plated on glass coverslips coated with laminin and poly-L-

ornithine (Invitrogen, USA). Cells were maintained in feeding solution consisted of 



minimal essential medium, 10% horse serum and N2 supplement (Invitrogen, USA) in 

humidified atmosphere containing 5% CO2 at 37°C as earlier described (Melnick et al., 

1999).  

Plasmids. Hippocalcin-YFP, hippocalcin-CFP and enhanced yellow and cyan 

fluorescent protein (YFP, CFP) plasmids were prepared as described previously 

(O'Callaghan et al., 2002). 

Transient transfection. Hippocampal neurons were transfected after 13-17 days in 

culture using Lipofectamine 2000 transfection reagent essentially as described by a 

supplier (Invitrogen, USA). All cultures were used for the experiments on 2-3 days after 

transfection. A transfection success rate was from 0.2 to 1.0%. 

Electrophysiological recordings. Neurons growing in the cultures were visualized using 

inverted microscopes (IX70 or IX71, Olympus, Germany). Whole-cell patch-clamp 

recordings in either current- or voltage-clamp mode were obtained using an EPC-10/2 

amplifier controlled by PatchMaster software (HEKA, Germany).  

A composition of extracellular solution was as follows (mM): NaCl 150; KCl 2; CaCl2 

2; MgCl2 1; HEPES 10; glucose 10; glycine 0.01; pH 7.3; osmolarity 320 mOsm. Some 

experiments were carried out in presence of D-2-amino-5-phosphonopentanoic acid 

(APV, 40μM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM). If other is not 

indicated gabazine (1μM) or bicuculline (10μM) were always present in the 

extracellular solution to block GABAA receptors. An intracellular solution contained 

(mM): K-gluconate 118, KCl 30; NaCl 5; CaCl2 0.3; EGTA 1; MgATP 2; GTP 0.3; 

HEPES 10; pH 7.3; osmolarity 290 mOsm. In some experiments conducted in a voltage 

clamp mode K+ was replaced with Cs+ and 3-5 mM of QX-314, an intracellular sodium 

channel blocker, were added. Patch electrodes were pulled to obtain a resistance of 4-6 



MΩ. Membrane voltage or transmembrane current were low-pass filtered (3 kHz) and 

acquired at 10kHz. Recordings with a leak current >200pA or a series resistance of 

>30MΩ were discarded.  

Iontophoretic glutamate application was performed via electrodes using a second 

channel of EPC-10/2 amplifier. The iontophoretic electrodes were filled with a solution 

containing sodium glutamate (15-150 mM), HEPES (10mM) and NaCl to give final 

osmolarity of 310 mOsm; pH 7.3 with NaOH. The electrode resistance was in range 80-

120 MΩ when filled with a glutamate containing solution. Current pulses of 100 nA 

with duration of 0.1-2.0 s were produced in a current clamp mode in order to locally 

apply glutamate while a breaking current of 1-5 nA was engaged between the pulses to 

prevent leakage of glutamate. 

All experiments were conducted at room temperature. 

Hippocalcin-YFP translocation imaging. Time-lapse imaging of hippocampal neurons 

transiently transfected with fluorescent protein(s) was performed using TILL Photonics 

wide-field imaging system (TILL Photonics, Germany) controlled by TILLvision 

software. An acquisition rate of Imago CCD camera was varied to precisely record fast 

changes in hippocalcin-YFP fluorescence and typically was in a range of 0.5-2 Hz. A 

customized routine written in TILLvision software was used to calculate relative 

changes in hippocalcin-YFP fluorescence against initial baseline level in order to 

determine sites of hippocalcin-YFP fluorescence changes. A value of translocation, 

∆F/F, was expressed as relative changes in hippocalcin-YFP fluorescence.  

The following routine was used to determine translocation sites, over which regions of 

interest (ROIs) were placed and averaged values of hippocalcin-YFP fluorescence were 

calculated to demonstrate spatio-temporal patterns of hippocalcin-YFP translocation. 



Base and shifted movies were generated based on an initial movie recorded during 

imaging experiments. Each frame of base movie was generated by averaging 2 to 5 

frames of initial movie; each frame of shifted movie was generated by averaging the 

same number of frames (2 to 5 frames, respectively) of initial movie with 2-7 frame 

shift between base and shifted movies. The particular number of frames for averaging 

and shifting depended on kinetics of hippocalcin-YFP translocation transients and 

acquisition frame rate. The base movie was subtracted from the shifted movie. The 

resulting differential movie was spatially filtered by an averaging filter with 3x3 

kernels. Translocation sites were determined as simply connected regions with a level of 

hippocalcin-YFP fluorescence 3-4% higher than the baseline fluorescence.  

Total hippocalcin-YFP fluorescence in a field of view was calculated for each frame 

during prolonged experiments and values of fluorescence in regions of interest were 

normalized to the total fluorescence to compensate for protein photobleaching. In some 

experiments strong glutamate applications induced photobleaching-independent 

temporal decrease of hippocalcin-YFP fluorescence up to 5% of initial value. Most 

probably this decrease was due to intracellular acidification (Micheva et al., 2001) that 

resulted in a decrease of YFP fluorescence. When hippocalcin-CFP was used instead of 

hippocalcin-YFP this decrease in fluorescence was almost negligible confirming the 

relative independence of CFP fluorescence on pH compared to YFP. Since hippocalcin-

YFP was mainly used as the hippocalcin sensor in this study and acidification-

dependent decrease of YFP fluorescence is not related to the protein translocation we 

also normalized ROI values to the total value of hippocalcin-YFP fluorescence in a field 

of view to compensate for this decrease.  



In order to observe hippocalcin-YFP translocation without substantial disturbing of 

intrinsic [Ca2+]i regulation we mainly studied the translocation during first 10-15 min 

after establishing a patch clamp configuration or in distal parts of dendritic tree (100-

350 μm from soma).  

Statistics. Quantitative results are presented as mean ± S.E.M., and statistical 

significance between groups was tested using Student’s t-test, with a confidence level of 

0.05. The mean for each experiment was calculated as the average for all neurons tested 

with a given protocol with the exception of experiments with spines. In the latter case 

the mean was calculated as the average for all ROIs placed over spines. 

Chemicals. Glutamate and GABAA receptor antagonists were obtained from Tocris 

(Bristol, UK) or Ascent Scientific (Bristol, UK). All other chemicals were purchased 

from Sigma (USA) and Invitrogen (USA).  

 

Results 

Ionotropic glutamate receptor activation induces hippocalcin-YFP translocation 

Cultured rat hippocampal neurons were transfected to express hippocalcin-YFP. During 

time-lapse imaging, intact (not clamped) neurons expressing hippocalcin-YFP were 

stimulated locally with short (100-1000 ms, 100 nA) iontophoretic glutamate 

applications delivered from a glass microelectrode placed near an apical dendrite. The 

glutamate applications resulted in a fast (rise time of 1-2 s) hippocalcin-YFP 

translocation to a set of sites (sizes of 0.5-2.5 μm) on the dendritic tree (Fig 1A, B). 

These sites were often located at dendritic branching points or initial parts of dendritic 

protrusions. At the same time, no translocation to heads of dendritic spines was 



observed. The translocation sites did not remain confined to the stimulation area but 

instead synchronously covered the whole dendritic tree in the field of view. The initial 

hippocalcin-YFP distribution was restored within 5-15 s after local stimulation and 

reproducible translocation to the same set of sites on the dendritic tree could be 

sequentially observed (Fig 1A, B; n=6 neurons). An increase in hippocalcin-YFP 

concentration in translocation sites was accompanied by a decrease in neighbouring 

sites keeping the total value of hippocalcin-YFP fluorescence constant during a time 

course of translocation (Markova et al., 2008). In neurons co-transfected to express 

hippocalcin-YFP and CFP or hippocalcin-CFP and YFP no changes in free CFP or YFP 

concentration in translocation sites were observed during the glutamate applications and 

respective hippocalcin-FP translocation (data not shown; see (Markova et al., 2008)). 

The hippocalcin-YFP translocation was completely blocked by a cocktail of ionotropic 

glutamate receptor antagonists CNQX (10 μM) and APV (40 μM) (16.3±2.5% for 

control, -0.7±0.3% under the blockers and 18.0±3.3% in washout; 46 ROIs, 6 cells, p< 

0.01 for blockers vs. control and washout; Fig.1C). Thus, we conclude that the observed 

changes of hippocalcin-YFP fluorescence are ionotropic glutamate-receptor-dependent 

translocation of hippocalcin-YFP. 

In order to check whether both AMPA receptors (AMPARs) and NMDARs contribute 

to hippocalcin translocation we separately activated these types of receptors. The next 

series of experiments was conducted in a constant presence of APV (40 μM) to 

completely block NMDARs. A local iontophoretic glutamate application to an intact 

(not clamped) neuron induced fast, synchronous and reversible hippocalcin-YFP 

translocation to many sites in a soma and dendritic tree of stimulated neuron that 

occurred within the whole field of view. As in the previous series of experiments, 



hippocalcin-YFP translocation to dendritic spines was not observed (Fig.2 A,B,C). The 

translocation was completely blocked by the AMPAR antagonist CNQX (10 μM) 

(15±2% in control versus 1.2±0.5% in presence of the antagonist; 65 ROIs, 3 neurons, 

p<0.001, Fig. 2 C). Thus, AMPAR activation alone can induce hippocalcin 

translocation. The synchronous nature of this translocation in the very remote parts of 

dendritic tree suggests that action potential (AP)-induced voltage-operated Ca2+ channel 

(VOCC) activation may underlie the translocation. In line with this suggestion, 

AMPAR-dependent hippocalcin-YFP translocation was mainly abolished when the 

neuronal membrane potential was clamped at -70 mV (0.7±0.3% Fig. 2D, E; 38 ROIs, 5 

neurons). The subsequent glutamate application to the same neurons held in a current 

clamp mode induced neuronal depolarization and burst of APs riding on the top of 

depolarization transients and a robust translocation (13±3% n=5, p<0.001 compared to -

70 mV; Fig.2D, E; 38 ROIs, 5 neurons). Trains of back propagating APs (bpAPs) at 50 

Hz with duration comparable to one of glutamate-induced depolarization resulted in 

hippocalcin-YFP translocation to the same sites. However, pooled results showed that 

AMPAR-dependent translocation in the current clamp mode is significantly larger than 

bpAP-induced events (13±3% during AMPAR activation versus 7±1% during bpAP 

trains; p<0.01; Fig. 2D, E; 38 ROIs, 5 neurons). Most probably, this discrepancy was 

due to difference in patterns of VOCC activation induced by different stimulation 

protocols. Nevertheless, it is clear that the most part of AMPAR-dependent hippocalcin-

YFP translocation is due to indirect action of glutamate resulting in AMPAR-dependent 

depolarization and following VOCC activation.  

As the next step glutamate was iontophoretically applied to neurons in presence of 

AMPAR antagonist, CNQX (10 μM). Recordings were performed in Mg2+ free 



extracellular solution in order to relieve NMDARs from Mg2+ block. In neurons 

clamped at -60 mV glutamate application induced an inward current and spatially 

restricted hippocalcin-YFP translocation to many sites. Both the translocation and 

current were completely blocked by NMDAR antagonist, APV (40 μM; Fig. 3A-C; 

16.6±2.8% in control versus 2.8±1.1% under the antagonist, and 6.9±2.3 in washout and 

222±37 pA in control versus 27±7 pA under the antagonist and 195±42 pA in washout 

for the translocation and current, respectively, p<0.01 control versus antagonists for 

both translocation and currents; 53 ROIs, 5 neurones). Hippocalcin initially translocated 

to sites proximal to the iontophoretic electrode and afterwards translocation events 

spread along the dendrite with a rate of 20-30 μm/sec (Fig.3D; 5 neurons; at least 2 

applications to each neuron), which is close to the rate of glutamate diffusion in the 

extracellular solution. Thus, direct activation of synaptic and extrasynaptic NMDARs 

by a diffusion wave of glutamate and respective Ca2+ influx to the dendritic shaft is 

probably the only reason for observed hippocalcin-YFP translocation to certain sites of 

dendritic plasma membrane.  

As shown above no translocation in response to glutamate application was observed in a 

cocktail of AMPAR and NMDAR blockers. This suggests that metabotropic glutamate 

receptor activation alone, that may result in inositol 1,4,5-triphosphate (IP3)-dependent 

Ca2+ mobilization in hippocampal neurons, did not induce [Ca2+]i elevations that are 

high enough to produce hippocalcin signalling via its translocation. Nevertheless, 

metabotropic receptors might contribute to intracellular Ca2+ mobilization when Ca2+ 

influx is induced by ionotropic glutamate receptor activation since IP3 receptors are 

both Ca2+ and IP3-dependent (Bezprozvanny, 2005). Therefore, glutamate-induced 

hippocalcin-YFP translocation was compared in extracellular solutions lacking or 

http://www.ncbi.nlm.nih.gov/pubmed/19224921?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum


containing metabotropic glutamate receptor antagonists, α-methyl-4-

carboxyphenylglycine (MCPG) (300 μM). No significant changes in spatio-temporal 

patterns and amplitudes of translocation were observed in neuronal dendritic trees under 

study (12.0±4.4% without MCPG versus 11.4±4.4% during antagonist perfusion; 23 

ROIs, 4 neurons, p=0.22; data not shown), indicating that metabotropic glutamate 

receptor activation does not contribute to hippocalcin signalling at least in the case of 

local stimulation.  

The other mechanism that may take part in hippocalcin translocation during glutamate 

stimulation is Ca2+-dependent Ca2+ release from the endoplasmic reticulum (ER) (Bardo 

et al., 2006). However, no changes in hippocalcin-YFP translocation in the dendritic 

tree was observed when cultures were incubated with the ER Ca2+-ATPase blocker, 

CPA (10 μM) (8.3±2.3% in control versus 7.4±1.2% during CPA perfusion and 

8.5±0.9% in washout; 26 ROIs, 4 neurons, p=0.26).  

Thus, we have shown above that NMDARs are the only glutamate receptors whose 

local activation induces site-specific hippocalcin translocation. Taking into account that 

activity-dependent release of glutamate in glutamatergic synapses should lead to 

synaptic NMDAR activation we aimed to check if such activation might result in 

hippocalcin translocation.  

 

Synaptic NMDAR activation induces local spine-specific hippocalcin translocation 

Neurons in the hippocampal cultures under study revealed both miniature and activity-

dependent excitatory postsynaptic potentials (EPSPs) with one or few APs riding on the 

top of some EPSPs. Neither of these two types of spontaneous synaptic activity resulted 



in measurable hippocalcin-YFP translocation indicating that properties of this neuronal 

Ca2+ sensor are well positioned to filter low-frequency synaptic and AP activity. 

Reducing [Mg2+] below physiological levels induces enhanced excitability in both 

hippocampal slices (Walther et al., 1986) and cultures (Mangan & Kapur, 2004). It has 

been shown that this formulation of extracellular solution is also a means to selectively 

activate synaptic rather than extrasynaptic NMDARs (Lu et al., 2001). In our hands in a 

nominally zero external Mg2+ medium with a GABAA receptor blocker, gabazine (1 

μM), and AMPAR blocker, CNQX (10 μM), neurons demonstrated recurrent 

spontaneous action potential bursts superimposed on prolonged depolarization. In a 

voltage clamp mode (-70 mV) this spontaneous network activity resulted in bursts of 

inward postsynaptic currents completely blocked by APV (40 μM) (data not shown). It 

indicates that NMDARs are involved in generation of these postsynaptic currents. 

Having in mind that NMDARs are relieved of Mg2+ block in Mg2+ free solution, they 

are probably the only source of Ca2+ that could potentially induce hippocalcin 

translocation in pyramidal neurons clamped at -70 mV. During imaging of neuronal 

dendritic trees having numerous spines, we observed spontaneous hippocalcin-YFP 

translocation to a set of spines correlated with bursts of postsynaptic currents (Fig. 4, 

Movie S1; 18.9±1.0 %, 149 translocation events in 65 spines of 8 neurons). Each burst 

induced hippocalcin-YFP translocation to slightly or completely different set of spines 

that were active during the respective burst. Hippocalcin-YFP translocation to dendritic 

shaft locations was also rarely observed. The translocation and bursts of postsynaptic 

current were completely blocked by APV (40 μM; data not shown). The translocation 

into spines was tightly spatially restricted to a spine head with no significant changes in 

hippocalcin-YFP fluorescence in a dendrite at the beginning of the spine neck (16.2 ± 



2.1 % in spines versus 0.1 ± 0.7 % near the neck, p<0.01; 35 translocation events in 19 

spines, 3 neurons; Fig.4Bb) or adjacent dendritic membranes (data not shown). Spines 

that were separated by a few micrometers on the dendritic tree signalled independently 

(Fig. 4, Movie S1). Thus, strong activation of single synapses, which induces synaptic 

NMDAR-dependent Ca2+ influx, is sufficient to mediate homosynaptic hippocalcin 

signalling in conditions when the Mg2+ block of the channels is relieved.  

 

Other sources of [Ca2+]i mobilization do not result in hippocalcin translocation to 

spines  

Further we assessed whether [Ca2+]i increase induced by VOCC activation alone may 

result in hippocalcin-YFP translocation to dendritic spines. It has been previously 

shown that the proximal dendrites of hippocampal pyramidal neurons are different from 

spines in the expression of different types of VOCC (Yasuda et al., 2006) with 

substantial contribution to bpAPs of T-, L- and N-types of calcium channels whereas R-

type dominate in the latter structures (Bloodgood & Sabatini, 2007). Activation of 

VOCC channels as a result of bpAPs or membrane depolarization lead to an increase in 

[Ca2+]i in dendritic spines (Bloodgood & Sabatini, 2007) and in theory should result in 

hippocalcin translocation to these structures.  

Two different protocols to selectively activate VOCC were used in this series of 

experiments. First, we applied series of depolarizing stimuli from -70 to 0 mV (10-50 

ms at 7 to 20 Hz; 5 neurons) with a total duration of 1 s resembling duration of the 

bursts. These stimuli did not produce translocation to spines while spontaneous bursts 

occurring in the very same neurons did (Fig. 4Ca). We have earlier shown that short 



bpAP trains (10 APs at 20 Hz) do not induce substantial hippocalcin-YFP translocation 

in a dendritic tree of hippocampal neurons (Markova et al., 2008). Therefore, we 

suggested that the applied stimulation could be too mild to induce translocation to 

spines. Thus, in the next round of experiments neurones revealing spontaneous bursting 

were challenged with a train of bpAPs (100 APs at 20 Hz) and bpAP-induced 

hippocalcin-YFP translocation was quantified in spines, in which translocation was 

induced during the bursts. We found that no translocation was observed in such sites as 

a consequence of bpAP trains (18.5±2.1% during the bursts and 1.4±0.4% during APs; 

28 ROIs, 5 neurones, p<0.01; Fig.4Cb). At the same time, these bpAP trains induced 

robust hippocalcin-YFP translocation to neighbouring sites in a dendritic shaft. 

We also tested if simultaneous activation of synaptic and extrasynaptic NMDAR with a 

temporal profile analogous to one observed during bursting activity generated 

hippocalcin translocation to spines. To isolate NMDARs from VOCC, neurons were 

incubated in Mg2+-free media containing CNQX (10 μM) and voltage clamped at -70 

mV. We performed imaging of dendritic branches during spontaneous network bursts 

and during short iontophoretic glutamate applications to dendritic branches under study. 

Both types of stimulation induced analogous glutamate receptor-dependent postsynaptic 

currents (Fig. 5) that were completely blocked by APV (data not shown). At the same 

time hippocalcin-YFP translocation patterns were substantially different for these types 

of stimuli. Network bursting resulted in hippocalcin-YFP translocation to spines (2 

spines in an example shown in Fig. 5Ac) whereas glutamate iontophoresis mainly 

induced translocation to many neighbouring sites in the dendritic shaft rather than to 

spines (Fig. 5Ad). Translocation in the dendritic shaft looks obvious taking into account 

that extrasynaptic NMDAR activation should increase [Ca2+]i in the dendritic shaft 



thereby inducing hippocalcin-YFP translocation in this dendritic compartment. 

Nevertheless, it is interesting to note that hippocalcin-YFP translocation to spines was 

practically abolished in spite of synaptic NMDAR activation during glutamate 

application (20.2±4.7% during the bursts versus -2.4±1.3% during glutamate 

application, 33 spines, 4 neurons; p<0.01; Fig. 5) implying that only particular patterns 

of synaptic NMDAR activation may lead to hippocalcin signalling into spines. 

Thus, the specific spatio-temporal pattern of [Ca2+]i changes induced by the intrinsic 

pattern of synaptic NMDAR activation in the dendritic tree of hippocampal neurons is 

preferentially decoded by hippocalcin translocation to the dendritic spines and no other 

Ca2+ sources can trigger this type of hippocalcin signalling.  

 

Hippocalcin translocation to spines during bursting neuronal activity  

As shown above hippocalcin-YFP translocation to dendritic spines occurs when 

synaptic NMDARs are the only source of Ca2+ to trigger this process but it might not be 

the case during a normal pattern of activity when a neuron is depolarized and/or 

generates APs simultaneously with NMDAR activation as takes place during the bursts. 

VOCC Ca2+ influx occurring during the burst together with NMDAR-dependent Ca2+ 

influx and the ER Ca2+ stores produce another spatio-temporal profile of [Ca2+]i that in 

its turn may result in hippocalcin translocation to other membrane targets. Therefore, we 

tested whether hippocalcin-YFP translocation to spines are physiologically relevant and 

can occur during native patterns of neuronal activity (Ben Ari, 2001). Neurons were 

incubated in an extracellular solution with a higher Mg2+ concentration (1 mM), that is 

enough to engage Mg2+ block of NMDARs (Monyer et al., 1994), and GABAA receptor 



blockers. Although we observed some changes in bursting activity the bursts could still 

be reliably induced in a proportion of cultures (most probably due to block of inhibitory 

synaptic transmission by GABAA receptor blockers). Time-lapse imaging of transfected 

neurons showed that robust hippocalcin-YFP translocation to dendritic spines was still 

present during the bursts (Fig. 6A-D) but not during subthreshold and low-frequency 

spontaneous activity (data not shown). The translocation to the plasma membrane of 

dendritic shaft due to simultaneous NMDAR and VOCC activation during the bursts 

was more frequently observed in this case (red spots in Fig. 6A and C) compared to 

recordings in a voltage clamp mode when it was relatively rare (Fig. 4A, B). 

Hippocalcin-YFP fluorescence was simultaneously decreased in certain areas of 

dendritic tree (green areas in Fig. 6A, C) indicating sites from which hippocalcin-YFP 

was diffusionally translocated. 

The value of translocation was not equal within a given spine head with some pixels 

having several fold increase in hippocalcin-YFP fluorescence (Fig.6C, D), indicating 

that hippocalcin-YFP might be inserted in suboptical (in terms of size) areas of plasma 

membrane reaching an extremely high level of concentration there. An amplitude of 

translocation transients to spines was comparable with one observed in a voltage clamp 

mode in Mg2+ free extracellular solution (16.9±0.8%, 153 translocation events, 21 

spines, 5 neurons; compare Fig.4B and 6B). In line with previous results, the 

translocation was blocked by APV (75 translocation events in 19 spines during 14 

bursts in control and no translocation in the same set of spines during 44 bursts in 

APV).  

Although a block of hippocalcin-YFP translocation to spines by APV suggests 

involvement of NMDARs in the triggering of this type of synaptic signalling, it is 



possible that APV acted by generally changing the excitability of the neuronal network 

rather than specifically blocking a critical trigger for translocation. Therefore, we tested 

whether preventing postsynaptic NMDAR activation via Mg2+ block by voltage 

clamping cells at –70 mV during the bursts would decrease the translocation. This 

manipulation prevented the translocation to spines (-0.7 ± 1.1%, 4 neurones; Fig. 6 Eb, 

Fb, G). When the same cells were voltage clamped at -40 mV, the spontaneous bursting 

resulted in hippocalcin-YFP translocation to spines (9.8± 2.1%, p<0.01 compared to -70 

mV; 17 ROIs; 4 neurons; Fig.6 Ea, Fa, G).  

As in a case of Mg2+-free extracellular solution (Fig. 4C) trains of bpAPs (100 stimuli at 

20 Hz) led to hippocalcin-YFP translocation in the dendritic shaft rather than to the 

spines (Fig.6S). A significant difference was found when hippocalcin-YFP translocation 

in a response to bpAPs was quantified in the morphologically clearly defined spines that 

revealed hippocalcin-YFP translocation in a response to the bursts (13.3±1.3% during 

the bursts and -0.6±1.4% during bpAPs; 9 spines, 4 neurons, p<0.01; Fig.6S). Thus, 

activation of VOCCs themselves does not result in hippocalcin translocation to the 

dendritic spines. These results demonstrate that hippocalcin may signal to different 

locations of the dendritic tree depending on patterns of neuronal activity, thus decoding 

these patterns into site-specific activation of its plasma membrane targets. 

Different types of VOCC as well as nonlinear interaction between R-type VOCC and 

NMDARs (Bloodgood & Sabatini, 2007) may contribute to [Ca2+]i mobilization in 

dendritic spines initiated by synaptic NMDAR activation. We used L- and R/T type 

channel antagonists (nimodipine (10 μM) and mibefradil (10 μM), respectively), in the 

extracellular solution to block VOCC that may substantially contribute to Ca2+ influx to 

the spines during the bursts. We could not block P/Q- and N-types of VOCC since they 



secure glutamate release in presynaptic terminals; fortunately, they do not substantially 

contribute to [Ca2+]i transients in the spines (Bloodgood & Sabatini, 2007). The VOCC 

antagonists didn’t induce depression of hippocalcin-YFP translocation to spines during 

the bursts (16.9±0.8% in control and 18.3±1% in the antagonists, 48 spines 5 neurons, 

p=0.13), implying that synaptic NMDARs are probably the main source of Ca2+ influx 

to spines resulting in hippocalcin translocation. 

 



Discussion 

Previous studies have demonstrated that hippocalcin signalling is necessary for spatial 

and associative memory (Kobayashi et al., 2005) and plays an important role in synaptic 

plasticity (Palmer et al., 2005) and many other cellular functions (Lindholm et al., 2002; 

Tzingounis et al., 2007). However, the cellular mechanisms involved in hippocalcin 

signalling still remain illusive. This is in part because of the lack of temporal resolution 

of existing experimental approaches (mainly based on immunocytochemical assays) for 

studies of fast molecular movement and interaction in living cells. Here we used 

hippocalcin tagged with fluorescent proteins to study hippocalcin translocation induced 

by fast glutamate receptor activation. By combining electrophysiology with 

hippocalcin-FP imaging we showed that hippocalcin may differentially decode 

glutamate receptor activation and that network bursting discharges results in 

homosynaptic hippocalcin signalling in active dendritic spines. 

Dynamic range of hippocalcin concentration changes in the plasma membrane 

One of a major consideration for determining the intrinsic dynamics of hippocalcin 

translocation is that overexpression of recombinant protein should not substantially 

change its initial pool size and stoichiometry of interaction with target proteins. The 

endogenous hippocalcin concentration in hippocampal pyramidal cells was estimated to 

be more than 30 μM (Furuta et al., 1999). This concentration may be the highest among 

the EF-hand type calcium-binding proteins in these cells, and is comparable to 

calmodulin concentration (Kakiuchi et al., 1982). Although we did not take any 

precautions to limit the exogenous protein pool, expression levels comparable to 30 μM 

are normally not observed in mammalian cells and rarely exceed 10-20 μM (van der 



Wal J. et al., 2001). Thus, the exogenous hippocalcin pool was hardly above 50 % of 

endogenous one. Besides, qualitatively similar results in respect of hippocalcin 

translocation to spines were obtained in neurons with different (up to 5 times) levels of 

hippocalcin expression also indicating that overexpression was not crucial for its 

intrinsic dynamics. 

Amplitudes of hippocalcin-YFP translocation transients ranged from several up to 60 % 

of initial value of hippocalcin-YFP concentration with an averaged value of about 20 %. 

Thus, a dynamic range of hippocalcin concentration changes in spines looks narrow. 

However, actual changes of hippocalcin concentration at its site of action - the plasma 

membrane - might be very substantial allowing hippocalcin to be a fine tuning regulator 

of its membrane targets. In order to estimate a hippocalcin dynamic range we have to 

know a real hippocalcin concentration in the plasma membrane at rest and during the 

bursting. It has been suggested that hippocalcin is mainly cytosolic protein (Kobayashi 

et al., 1993; Markova et al., 2008). It implies that a tiny part of hippocalcin molecules 

(if any) is present in the plasma membrane at the resting level of [Ca2+]i. To estimate 

the amount of hippocalcin-YFP associated with the spine plasma membrane during the 

burst we took into account the following considerations. First, the spatial distribution of 

hippocalcin-YFP in the dendritic shaft adjacent to active spines and, consequently 

cytosolic hippocalcin-YFP concentration, was not changed when neurons were clamped 

at -70mV during the burst (Fig. 4 Bb). Second, hippocalcin-YFP translocation to spines 

lasted substantially longer (~5-10s; Fig. 4 Ba) than characteristic time necessary for 

molecules of hippocalcin size to diffusionally equilibrate via a spine neck (less than 1s) 

(Majewska et al., 2000; Sharma et al., 2006). Based on the observations above we may 

suggest that the cytosolic hippocalcin concentration in the spines and adjacent dendritic 



shaft is approximately equal at the peak of translocation transients and is the same as 

before the translocation. Thus, in the first approximation the whole amount of 

hippocalcin translocated to dendritic spines (up to 60 % of resting level) should be 

associated with the plasma membrane where just a few percent of total hippocalcin 

could be present at rest. In other words, hippocalcin concentration in the plasma 

membrane of spines can be increased dozens of times during robust hippocalcin 

translocation. Taking into account, that hippocalcin can translocate to diffractionally 

limited spots within the plasma membrane of spines rather than being randomly 

associated with the plasma membrane during the translocation (Fig.6 D) the dynamic 

range of hippocalcin concentration changes in the plasma membrane might be even 

wider allowing hippocalcin to be a fine-tuning regulator of intracellular signalling 

events.  

 

Biophysical mechanisms of hippocalcin translocation 

One of major findings from this study is that there is no obvious direct relationship 

between Ca2+ influx and hippocalcin translocation. E.g. translocation does not occur in 

response to both short trains of action potentials (Markova et. al. 2008) and short 

activation of synaptic NMDARs in spite of the fact that Ca2+ influx via VOCCs and 

NMDARs increases [Ca2+]i ((Sabatini et al., 2002) and our unpublished results). 

Translocation to spines is not also observed during vigorous AP stimulation in spite of 

robust Ca2+ influx via VOCCs. Even prolonged synaptic NMDAR activation during 

glutamate iontophoretic application does not result in hippocalcin translocation to 

spines. All in all a complex interplay between [Ca2+]i changes, Ca2+-dependent 



hippocalcin transitions between its different states, distribution of local plasma 

membrane affinities for hippocalcin, hippocalcin interaction with target proteins and 

particular morphology of dendritic segment determining hippocalcin and Ca2+ diffusion 

results in a specific pattern of hippocalcin translocation. Thus, it is hard to foresee how 

hippocalcin may locally translocate in response to a certain pattern of neuronal activity 

and experimental measurements are possibly the only way to figure it out. Nevertheless, 

some simple considerations might be taken into account to qualitatively describe 

biophysical mechanisms underlying hippocalcin translocation observed in this study. 

Here we show that Ca2+ influx via synaptic NMDARs is the main mechanism inducing 

robust hippocalcin translocation to dendritic spines whereas other sources of [Ca2+]i 

increase, e.g. VOCC activation by bpAPs, was ineffective in this role. A spatio-

temporal profile of [Ca2+]i in the spines should be considered in order to explain this 

apparent contradiction. Although each action potential can generate a large [Ca2+]i 

transient in the spines, a rapid clearance of Ca2+ (about 12 ms (Sabatini et al., 2002)) 

should prevent a large [Ca2+]i accumulation in the spines during AP trains used in this 

study (Fig.7C). Besides, an on-rate of Ca2+ binding for many EF-hand type Ca2+-

binding proteins are reported to be low (Holmes, 2000) and, therefore, these proteins 

can be too slow to follow fast [Ca2+]i transients induced by APs. Since AP-evoked 

[Ca2+]i transients in the spines remain at high levels for just several milliseconds they 

should be ineffective in activating the Ca2+-myristoyl switch of hippocalcin (Fig.7C). 

Therefore, hippocalcin translocation to the spines was not observed in these conditions.  

At the same time a single vesicle of glutamate released in a particular synapse (Fig.7A) 

resulted in a local [Ca2+]i increase in spines without substantial [Ca2+]i increase in the 

dendritic shaft (Sabatini et al., 2002). A precise compartmentalization of [Ca2+]i signals 



together with its relatively long duration and high amplitude (~100ms and ~10 μM 

(Sabatini et al., 2002)) could result in hippocalcin translocation. Nevertheless, this local 

[Ca2+]i transient did not induce translocation to spines indicating that either the [Ca2+]i 

increase was not high or long enough for hippocalcin to bind Ca2+ and to induce the 

Ca2+-myristoyl switch. It is possible that as in the case with calmodulin, the most 

studied EF-hand type protein, higher [Ca2+] (above 10 μM) is necessary for Ca2+ 

binding to all EF-hand domains (Park et al., 2008) and subsequent fast hippocalcin 

translocation. Whatever is the reason the translocation following a single synaptic 

stimulation was negligible, effectively filtering subthreshold synaptic activity. 

Threshold EPSPs with 1-2 APs riding on the top of these EPSPs (Fig.7A) also did not 

produce any visible hippocalcin translocation to spines. Thus, the biophysical properties 

of hippocalcin are ideally suited to skip a single quantum release at the spine level. At 

the same time bursting activity, that should result in a general increase of [Ca2+]i in both 

dendritic shaft and spines, produced strong hippocalcin translocation to spines. Higher 

affinity for hippocalcin binding to the plasma membrane and larger [Ca2+]i increase in a 

spine head compared to a dendritic shaft (Sabatini et al., 2002) might be suggested as 

potential biophysical mechanisms for the observed spine specificity of hippocalcin 

insertion in the spine plasma membrane during a strong synaptic input (Fig.7B). Thus 

far, hippocalcin depletion in the spine head cytosol after its insertion into the spine 

plasma membrane underlies its diffusion from a parent dendrite via a spine neck (the 

equilibration time constant of about 100 ms) and its additional insertion in the spine 

membrane observed as an increase in spine hippocalcin concentration (Fig.7B). Finally, 

iontophoretic glutamate application that activated the whole set of both synaptic and 

extrasynaptic glutamate receptors should induce large and prolonged [Ca2+]i increase in 



dendrites and strong hippocalcin translocation to the dendritic plasma membrane. This 

results in depletion of the cytosolic hippocalcin fraction in a dendritic shaft preventing 

hippocalcin translocation to the spines (Fig.7 D). Such competition for a limiting 

amount of hippocalcin among its targets can potentially produce a variety of complex 

effects including dependence of particular hippocalcin-related activity on the history of 

hippocalcin translocation to disparate targets. 

 

Possible mechanisms of hippocalcin signalling in neurons 

Based on the described biophysical properties hippocalcin may contribute to 

intracellular signalling in several ways. Its site-specific Ca2+-dependent translocation to 

the plasma membrane may result in regulation of membrane bound targets spatially 

segregated in the translocation sites. The higher hippocalcin affinity for membranes of 

certain composition (O'Callaghan et al., 2005) as well as some protein-protein 

interaction with possible membrane targets (Haynes et al., 2006; Tzingounis et al., 

2007; Tzingounis & Nicoll, 2008) may underlie this type of signalling. A direct 

interaction of hippocalcin with membranous targets realizing this scenario may be 

suggested when hippocalcin gates [Ca2+]i-dependent potassium channels responsible for 

slow (Tzingounis et al., 2007) and medium (Tzingounis & Nicoll, 2008) 

afterhyperpolarization to regulate neuronal membrane potential and bursting activity.  

At the same time, hippocalcin might signal as a ‘shuttle’ delivering specific molecules 

to their sites of action. At low [Ca2+]i, hippocalcin is likely folded with its N-terminal 

myristoyl group hidden in a hydrophobic pocket as described for the NCS protein 

recoverin (Ames et al., 1997). The binding of Ca2+ would result in a conformational 



switch and protrusion of the N-terminal region out of the pocket. The N-terminus or the 

exposed hydrophobic region of hippocalcin may interact with cytosolic target proteins 

in Ca2+-dependent manner (Palmer et al., 2005). Hippocalcin translocation to certain 

plasma membrane sites would bring the interacting proteins to their sites of action. Ca2+ 

unbinding from hippocalcin would result in hippocalcin dissociation from the 

interacting protein and its translocation back to the cytosol. If [Ca2+]i is still high the 

next round of shuttling would start. Fast and transient hippocalcin translocation to 

dendritic spines is a biophysical basis for this scenario. It has been also shown that 

hippocalcin can directly interact in Ca2+-dependent manner with several neuronal 

cytosolic proteins (Haynes et al., 2006) including ones contributing to NMDAR-

dependent AMPAR LTD (Palmer et al., 2005). Although there are Ca2+-independent 

mechanisms of AMPAR LTD (Dickinson et al., 2009), hippocalcin is specifically 

required for this Ca2+-dependent form of plasticity. Its N-terminal interaction with a 

cytosolic protein, β2-adaptin subunit of the AP2 adaptor complex, is necessary for the 

LTD expression (Palmer et al., 2005). The hippocalcin-AP2 complex interacts with 

AMPARs leading to AMPAR endocytosis via clathrin-coated vesicles. Moreover, 

hippocalcin is absent from these vesicles indicating that the interaction between 

hippocalcin and the AP2-AMPAR complex is transient and may only occur at the 

plasma membrane supporting the idea about ‘shuttling’ function of hippocalcin at least 

in this signalling pathway. Fast off-rates of Ca2+ binding to EF-hand type proteins are 

also in line with this suggestion (Bayley et al., 1984).  

Finally, after activation of the Ca2+-myristoyl switch, hippocalcin has a high affinity for 

a phospholipid of the plasma membrane, PIP2 (O'Callaghan et al., 2005), which is a 

messenger and precursor of other messenger molecules. Having in mind the high 



hippocalcin concentration in the hippocampus (about 30 μM (Furuta et al., 1999)) it 

could effectively buffer PIP2 in the plasma membrane locally regulating PIP2-

dependent intracellular signalling. 

In conclusion, our data reveal that synaptic AMPAR and NMDAR activation, action 

potential firing and extrasynaptic glutamate receptor activation produce different spatio-

temporal patterns of hippocalcin translocation. Thus, we propose that hippocalcin may 

differentially decode activation of glutamate receptors converting it to site and time 

specific modification of its targets. Hippocalcin may also process information in parallel 

in many sites within a neuron or produce local site-specific signalling at the level of 

single synapses. 
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Figure legends 

Figure 1. Local iontophoretic glutamate application induced hippocalcin-YFP 

translocation in cultured hippocampal neurons. A. A set of images demonstrating 

glutamate-induced changes in hippocalcin-YFP fluorescence in an apical dendrite of 

iontophoretically stimulated neuron. The fluorescent image (a) was taken using theYFP 

filter set. The position of the iontophoretic pipette is indicated by dashed lines. Ab. A 

higher magnification image of a dendritic branch shown in a boxed area in Aa. 

Differential pseudocolor images were taken at 2.5 sec after the onset of short 

iontophoretic glutamate stimulation in control (c), in APV and CNQX (d), and after 

blocker washout (e). In this and other figures a green colour represents a decrease and 

red represents an increase in hippocalcin-YFP fluorescence. Colour arrows in c indicate 

sites where regions of interest (ROIs) were placed. Time courses of fluorescence 

changes in these ROIs in control, APV and CNQX, and after blocker washout are 

shown in B. Colours of traces match arrow colours in Ab. Onsets of iontophoretic 

glutamate applications are shown by black arrows. C. Representative (taken from 7 

ROIs in the experiment shown in A)(a) and pooled (46 ROIs, 6 neurons) (b) graphs 

showing a complete suppression of hippocalcin-YFP translocation by ionotropic 

glutamate receptor blockers.  



Figure 2. AMPAR activation resulted in hippocalcin-YFP translocation due to Ca2+ 

influx via voltage-gated calcium channels. Experiments were conducted in a constant 

presence of APV (40 μM) in order to block NMDARs. A. A set of images 

demonstrating AMPAR-dependent hippocalcin-YFP translocation in a neuron 

stimulated by iontophoretically applied glutamate. A fluorescent image (a) was taken 

using YFP filter set. The position of the iontophoretic pipette is indicated by dashed 

lines. Ab. A higher magnification image of a dendritic branch shown in a boxed area in 

Aa. Differential pseudocolor images were taken at 3 sec after an onset of iontophoretic 

glutamate application (1.0s, 100nA) in control (c) and CNQX-containing (d) solutions, 

and after CNQX washout (e). An outline of dendritic tree is shown in each pseudocolor 

image for better visualization of translocation sites. Colour arrows in Ab indicate sites 

where ROIs were placed. Time courses of fluorescence changes in these ROIs in 

control, CNQX (10 μM), and after the blocker washout are shown in B. Colours of 

traces match arrow colours in Ab. Onsets of iontophoretic glutamate applications are 

shown by black arrows. C. Pooled results (3 neurons; 65 ROIs) demonstrating a 

complete suppression of hippocalcin-YFP translocation by CNQX. D. Hippocalcin-YFP 

translocation induced by different stimulation protocols: voltage (a) (-70 mV, (VC)) and 

current (b) clamp (CC) combined with iontophoretic glutamate application (1.0s, 

100nA); intracellular stimulation with 100 bpAPs at 20Hz (APs) with no glutamate 

application conducted (c). A red trace represents a ROI with an increase of hippocalcin-

YFP fluorescence whereas a green one represents a ROI with a fluorescence decrease; 

black traces represent changes in membrane currents (a) and potential (b, c), 

respectively. E. Pooled (5 neurons) results showing a significant suppression of 



hippocalcin-YFP translocations in VC mode and comparable translocations in CC and 

bpAPs.  



Figure 3. Hippocalcin-YFP translocated due to direct Ca2+ influx via NMDARs.  

A. Images demonstrating NMDAR-dependent hippocalcin-YFP translocation in a 

neuron stimulated by iontophoretically applied glutamate in Mg2+-free solution in a 

presence of CNQX (10μM), gabazine (5μM) and glycine (10μM). A fluorescent image 

(a) was taken using the YFP filter set. The position of the iontophoretic pipette is 

indicated by dashed lines. Ab. A higher magnification image of a dendritic branch 

shown in a boxed area in Aa. Differential pseudocolor images were taken at 2.5 sec 

after an onset of iontophoretic glutamate application (0.5s, 100nA) in control (c) and 

APV-containing (d) solutions, and after APV washout (e). Colour arrows in b indicate 

sites where ROIs were placed. Time courses of fluorescence changes in these ROIs in 

control, APV (40 μM), and after the blocker washout are shown in B. Colours of traces 

match arrow colours in Ab. Onsets of iontophoretic glutamate applications are shown 

by black arrows in B. The currents (black traces) were recorded in a voltage clamp 

mode at -60mV to abolish Ca2+ influx via VOCC and leave NMDARs as the only 

source of Ca2+ influx. C. Representative (taken from 5 ROIs in the experiment shown in 

A) (a) and pooled (b) (5 neurons, 34 ROIs) graphs showing a strong suppression of 

hippocalcin-YFP translocation by APV. D. Hippocalcin-YFP translocation due to local 

activation of NMDARs and site-specific association of hippocalcin-YFP with the 

plasma membrane. A diffusional wave of glutamate released from a pipette (shown by 

dashed lines in a) during an iontophoretic pulse (200 ms, 100 nA; an onset of 

application is indicated by a black arrow in b) initially induced hippocalcin-YFP 

translocation in a dendritic branch in a site proximal to the pipette (red arrow), after that 

in more distal site indicated by a green arrow and finally in the most distal sites (blue 

and cyan arrows). Colour coding of traces in (b) matches the colours of arrows in (a). 



The distance from the pipette tip to the most distal ROI is about 50μm and glutamate 

wave passed this distance for about 3s that is in an agreement with an estimated rate of 

glutamate diffusion in the extracellular solution. There was no translocation in more 

distal dendritic sites indicating that glutamate did not reach NMDARs in these sites.



Figure 4. Strong activation of synaptic NMDARs induced hippocalcin-YFP 

translocation to dendritic spines. 

A. An overlay of morphological (white) and hippocalcin-YFP translocation (red) 

images of neuron during a spontaneous burst of synaptic NMDAR-dependent currents 

at the time  indicated as d in Ba. All synapses that were active during the burst appear in 

red. b-e demonstrate overlays of morphological (white) and translocation images taken 

at the moments indicated by respective letters in Italic in Ba. Colour arrows indicate 

spines for which time courses of hippocalcin-YFP translocation are demonstrated in Ba. 

NMDAR-dependent currents were simultaneously recorded in a whole-cell voltage 

clamp (holding potential -70mV) and shown in Ba (a black trace). Bb. Values of 

hippocalcin-YFP translocation to spines compared to ones in dendritic tree at 1 μm from 

the respective spines. C. Hippocalcin-YFP translocation to spines in response to 

membrane depolarization and to NMDAR-dependent synaptic current. An example of 

hippocalcin-YFP fluorescence changes and simultaneously recorded transmembrane 

current is shown in Ca. In this example, a spontaneous NMDAR-dependent 

postsynaptic current developed due to a network burst right after the train of 

depolarizing pulses (7 pulses from -70 to 0 mV; 50 ms at 10Hz). It is clear that the 

current via synaptic NMDARs rather than the train induced hippocalcin-YFP 

translocation. In all neurons tested with this particular protocol (n=5; at least 2 trains for 

each neuron) no translocation was observed as a result of the trains. Cb. Pooled results 

showing that a vigorous bpAP train (100 APs at 20 Hz) did not lead to hippocalcin-YFP 

translocation to sites where bursting-induced translocation was observed. At the same 

time, the trains did induce hippocalcin-YFP translocation to neighbouring sites in the 

dendritic shaft. ROIs were only placed over sites where bursting-induced hippocalcin-



YFP translocation was observed. Experiments were conducted in CNQX, gabazine, 

glycine, and without Mg2+
. 



Figure 5. Activation of synaptic and total pools of NMDARs resulted in differential 

hippocalcin-YFP signalling in spines.  

A. Spatial patterns of hippocalcin-YFP translocation induced by activation of synaptic 

and total (synaptic and extrasynaptic) pools of NMDARs. The synaptic pool was 

activated during spontaneous network bursts whereas the total pool was stimulated by 

iontophoretic glutamate application to a neuronal dendritic branch. A fluorescent image 

(a) was taken using YFP filter set. The position of the iontophoretic pipette is indicated 

by dashed lines.  Ab. A higher magnification image of a dendritic branch shown in a 

boxed area in Aa. Ac and Ad demonstrate translocation images taken at the moments 

indicated by respective letters in Italic in B. These differential pseudocolor images were 

taken after an onset of network burst (c) and of iontophoretic glutamate application 

(0.5s, 100nA) (d). An outline of dendritic tree is shown in each pseudocolor image for 

better visualization of translocation sites. Colour arrows in Ab indicate sites where 

ROIs were placed. Time courses of fluorescence changes in these ROIs are shown in B. 

Colours of traces match arrow colours in Ab. An onset of iontophoretic glutamate 

application is shown by a black arrow in B. The postsynaptic current (black trace) was 

recorded in a voltage clamp mode at -70mV to abolish Ca2+ influx via VOCC and leave 

NMDARs as the only source of Ca2+ influx. C. Pooled results (33 spines in 4 neurons) 

demonstrating that hippocalcin-YFP translocates to dendritic spines during synaptic 

rather than both synaptic and extrasynaptic NMDAR activation.  

Experiments were conducted in CNQX, gabazine, glycine and without Mg2+ in an 

extracellular solution in order to isolate NMDAR-dependent currents and to relieve 

them from Mg2+ block. 



Figure 6. Intrinsic bursts of network activity induced hippocalcin-YFP translocation to 

dendritic spines.  

A. An overlay of hippocalcin-YFP fluorescent image and pseudocolor image 

demonstrating in red hippocalcin-YFP translocation sites at the moment indicated by a 

black arrow in B. Colour arrows in A indicate spines in which changes of fluorescence 

during bursting activity are demonstrated in B with the same colour coding. Changes in 

the neuronal membrane potential were simultaneously recorded and shown in B as a 

black trace. The translocation occurred in a normal extracellular solution (no glutamate 

receptor blockers and 1 mM of Mg2+) with 1 μM of gabazine to decrease inhibition in 

order to induce bursting network activity. Not all spines showed an increase in 

hippocalcin-YFP fluorescence in response to a particular spontaneous network burst 

(compare red and green traces in B). A part of dendritic tree indicated as a white square 

in A is shown in C with higher magnification. D. A time course of hippocalcin-YFP 

fluorescent changes along a yellow line in C (Distance ‘0’ represents a yellow line end 

opposite to a dendritic head). E, F. Hippocalcin-YFP translocation to spines was due to 

direct Ca2+ influx via NMDARs rather than due to other mechanisms related to the 

bursting network activity. Hippocalcin-YFP translocation induced by spontaneous 

bursting activity was recorded in a neuron voltage clamped at -40mV (Ea, Fa) and -

70mV (Eb, Fb) in order to relieve and engage Mg2+ block of NMDARs, respectively. 

E. An overlay of morphological (white) and hippocalcin-YFP translocation image of 

neuron taken at the moment indicated by black arrows in F. Colour arrows in Ea 

indicate spines in which fluorescent changes during bursting activity are demonstrated 

in F with the same colour coding. Changes in the neuronal membrane current were 



simultaneously recorded and shown in F as black traces. G. Comparison of hippocalcin-

YFP translocation amplitudes in spines at -40 and-70 mV (4 neurons, 17 ROIs).  



Figure 7. Hippocalcin translocation differentially decodes distinct patterns of [Ca2+]i 

changes induced by glutamate receptor activation. 

Schematic of [Ca2+]i changes and hippocalcin translocation in a part of dendritic tree. 

The respective neuronal electrical activity is shown in the right part of the figure. 

Deeper hues of red show higher [Ca2+]i levels. Circles with a dash inside and outside 

denote free and Ca2+-bound forms of hippocalcin, respectively. Thicker lines show high 

affinity  plasma membrane sites. 

A. Single subthreshold and threshold EPSPs induce [Ca2+]i transient limited to a 

specific spine with no visible hippocalcin translocation. B. Several glutamate vesicles 

successively released in the same active synapse during the burst induce a larger and 

longer [Ca2+]i transient leading to robust hippocalcin translocation only to such spines. 

C. A train of bpAPs can not form spatio-temporal pattern of [Ca2+]i necessary for 

hippocalcin translocation to the spines rather resulting in lower and slower (compared to 

burst-induced spine translocation) hippocalcin accumulation in high affinity (‘sticky’) 

plasma membrane sites of the dendritic tree. D. Glutamate spillover induces local 

activation of synaptic and extrasynaptic NMDARs. The respective local Ca2+ influx 

results in hippocalcin translocation to ‘sticky’ dendritic sites in this local dendritic area. 

A decreased cytosolic hippocalcin concentration in the dendritic tree prevents 

hippocalcin translocation to the spines in spite of synaptic NMDAR activation.  

 



Supporting Information 

1. Movie S1. Activation of synaptic NMDARs induces hippocalcin-YFP translocation 

to dendritic spines 

3. Figure 6S. VOCC activation did not result in hippocalcin-YFP translocation to 

dendritic spines.  

Spatial patterns of hippocalcin-YFP translocation induced by a spontaneous burst of 

presynaptic activity (Aa, Ba) and by a long train of bpAPs (20Hz, 5 s) (Ab, Bb). Spines 

to which hippocalcin-YFP was translocated are shown by red arrows in Aa while a site 

where translocation was observed in response to bpAPs is shown by a green arrow in 

Ab. Colour coding of traces in Ba and Bb matches the colours of the arrows. C. Pooled 

results (9 spines, 4 neurons) demonstrating absence of hippocalcin-YFP translocation to 

dendritic spines during bpAPs. Only clearly morphologically defined spines revealing 

hippocalcin-YFP translocation in a response to spontaneous bursts were included in 

statistics. 
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