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Abstract	  
Neutrophils are the major cellular constituent of blood leukocytes and play 
a central role in the inflammatory response, expressing an array of 
destructive molecules and antimicrobial processes that characterise the 
cells as front-line defenders of the innate immune system, thus neutrophils 
are crucial to host defence. It is now appreciated that neutrophils produce 
and respond to a variety of inflammatory signals and are able to regulate 
both the innate and adaptive immune response. The molecular changes 
that underlie this regulation are poorly defined, yet represent an attractive 
area of research to fully elucidate the role and regulatory capacity of 
neutrophils within the immune response. RNA-Seq provides an accurate 
and robust mechanism for global characterisation of cellular transcripts. 
 
Neutrophils were isolated from healthy donors and incubated with or 
without inflammatory cytokines for 1 h. RNA was extracted and analysed by 
RNA-Seq using the SOLiD or Illumina platforms. Raw data was quantified 
using a number of software packages which formed a bioinformatic 
pipeline for data analysis which was developed during the course of the 
research. Results were validated by a selection of traditional laboratory 
functional assays.  
 
Priming of neutrophils by GM-CSF and TNFα was found to induce 
differential gene expression and activation of transcription factors, which 
led to differential regulation of apoptotic pathways. Stimulation of 
neutrophils with inflammatory cytokines/chemokines (IL-1β, IL-8, G-CSF, 
IFNγ) resulted in expression of discrete gene sets and differential activation 
of signalling pathways. Stimulation of neutrophils with IL-6 did not induce 
any significant expression of genes but result in activation of STAT 
signalling. Comparison of gene expression of neutrophils isolated by 
density gradient and magnetic bead preparation revealed significant 
differences in gene expression and function, in part attributable to levels of 
contamination associated with each isolation method. Bead isolation was 
found to enrich a more heterogeneous neutrophil population including a 
subpopulation of neutrophils expressing transcripts previously associated 
with low density granulocytes. 
 
Thus, RNA-Seq and bioinformatic analysis has provided a full 
characterisation of neutrophil gene expression under inflammatory 
conditions and identified several new areas of research that could lead to 
targeted drug design for the treatment of inflammatory disease. 
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NK-cells  Natural killer cells 
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PAF   Platelet activating factor 

PAMP   Pathogen-associated molecular pattern 

PBMC   Peripheral blood mononucleated cell 

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction 

pDC   plasmacytoid dendritic cell 

PEST   Proline-glutamic acid-serine-threonine 

PFA   Paraformaldehyde 

PI   Propridium iodide 

piRNA   piwi-interacting RNA 

PMA   Phorbol 12-myristate 13-acetate 

PRR   Pattern recognition receptor 

PRSS33  Protease, serine, 33 

PSGL-1  P-selectin glycoprotein ligand-1 

PU.1 Spleen Focus Forming Virus Proviral Integration 

Oncogene 

PVDF Polyvinylidene fluoride 

qPCR quantitative polymerase chain reaction 

rRNA Ribosomal ribonucleic acid 

RA Rheumatoid arthritis 

RAM Random access memory 

RAMP Resolution associated molecular pattern 

RIN RNA intergrity number  

RNA Ribonucleic acid 

RNASE2 Ribonuclease 2 

RNASE3 Ribonuclease 3 

RNA-Seq Ribonucleic acid sequencing  

RPKM Reads per kilobase per million 

S1PR1 Sphingosine-1-phosphate receptor 1 

SAM Sequence alignment map 

SD Standard deviation 
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SDF-1 Stromal derived factor -1 

SDS Sodium dodecyl sulphate 

SEM Standard error of mean 

SIGLEC8 Sialic acid binding Ig-like lectin 8 

SLE Systemic lupus erythematosus 

SMPD3 Sphingomyelin Phosphodiesterase 3  

SNP Single nucleotide polymorphism 

snRNA Small nuclear RNA 

snoRNA Small nucleolar RNA 

SOCS3 Suppressor of cytokine signalling-3 

STAT Signal transducer and activator of transcription 

TB Terabyte  

TBC1D4 TBC1 domain family, member 4 

TCR T-cell receptor 

TEMED Tetramethylethylenediamine 

TGF� Tumor growth factor-beta 

THBS1 Thrombospondin 1 

Th-cells T-helper cells 

TLR Toll-like receptor 

TMEM170B Transmembrane protein 170B 

TNF-α Tumour necrosis factor-alpha 

TRAIL TNF-related apoptosis-inducing ligand 

TRAT1 T-cell receptor associated transmembrane adaptor 1 

tRNA transfer ribonucleic acid 

TSS Transcriptional start site 

TYK2 Tyrosine kinase 2 

UV Ultra violet 

VCF Variant calling file 

ZMW   Zero mode waveguide 
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Table	  Ab.1	  Bioinformatic	  file	  formats	  and	  file	  extension	  abbreviations	  
 

File	  format	   File	  
extension	  

Summary	  

Sam	  file	   .SAM	   Sequence	  Alignment	  Map	  –	  
output	  format	  from	  high-‐
throughput	  mappers	  such	  
as	  Bowtie,	  Tophat,	  or	  BWA	  	  

Bam	  file	   .BAM	   Binary	  format	  of	  a	  SAM	  file	  
–	  smaller	  file	  size	  and	  can	  
be	  processed	  faster	  than	  an	  
equivalent	  SAM	  file.	  

General	  feature	  format	  
/	  General	  transfer	  
format	  

.GFF/.GTF	   Reference	  file	  listing	  
various	  sequence	  features	  
and	  attributes	  such	  as	  gene	  
boundaries	  and	  coding	  
frame	  

FASTA	   .FASTA	  
Text	  based	  file	  for	  
nucleotide	  sequence	  data	  

Colorspace	  Fasta	   .CSFASTA	   Similar	  to	  FASTA	  but	  
nucleotide	  format	  is	  
encoded	  in	  colorspace	  

Fasta	  Quality	  file	  
	  

.QUAL	   List	  of	  quality	  values	  for	  
nucleotide	  sequence	  to	  
accompany	  a	  FASTA	  
format	  file	  

Fastq	   .FASTQ	   FASTA	  format	  file	  where	  
nucleotide	  sequence	  and	  
quality	  value	  are	  encoded	  
into	  a	  single	  ASCII	  
character	  to	  decrease	  
digital	  footprint	  

Variant	  calling	  file	   .VCF	   Text	  file	  containing	  data	  on	  
individual	  genomic	  
positions,	  used	  primarily	  
to	  list	  SNPs	  and	  indels	  

Binary	  variant	  calling	  
file	  

.BCF	   Binary	  format	  of	  a	  .vcf	  used	  
for	  faster	  processing	  
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Chapter	  1:	  Introduction	  	  

1.1 Project Overview 

Neutrophilic polymorphonuclear leukocytes (neutrophils) were first 

described by Paul Ehrlich in the late nineteenth century using cell-staining 

techniques to investigate the subpopulations of white blood cells 1. Ehrlich 

discovered three sub-types of cells each featuring polymorphous nuclei 

that could be distinguished from each other by their individual staining 

properties. Whilst eosinophils and basophils were named due to their 

cytoplasm staining positively with eosin and basic dyes respectively, the 

third subtype exhibited a tendency to retain neutral dyes and was so 

termed the neutrophil 2.  

Neutrophils are the most abundant leukocyte found in circulating blood, 

accounting for 40-60% of the total white blood cell population 3. They form 

the major cellular constituent of the innate immune system and are 

indispensable for defence against invading bacterial and fungal pathogens 

due to their ability to phagocytose cells and micro-organisms, release lytic 

enzymes from internal granules, and produce reactive oxygen metabolites 

with antimicrobial potential 4,5. Their highly-conserved mechanisms of anti-

microbial activity, coupled with a characteristic short life span, have 

historically defined the neutrophil as a one dimensional effector cell with 

little capacity to influence the more complex, adaptive arm of the immune 

system, predominantly regulated by T-cells and B-cells.  
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However, in recent years, this view of neutrophils has been profoundly 

altered. Neutrophils are now known to produce and release numerous 

cytokines, chemokines and angiogenic/fibrogenic factors 6. They have also 

been shown, following cytokine stimulation, to express MHC Class II 

molecules and present antigen-to and activate T-cells 7. 

The perceived role of neutrophils in inflammatory disease has also been 

altered in recent years. Neutrophil dysregulation has been associated with 

the pathogenesis of a variety of chronic inflammatory diseases such as 

rheumatoid arthritis (RA) 8, juvenile (and adult) systemic lupus 

erythematosus (SLE) 9, chronic obstructive pulmonary disease (COPD) 10, 

asthma 11 and alcoholic hepatitis 12. This current view of neutrophils places 

them central to the immune system with a significant capacity to regulate, 

influence and affect both the innate and adaptive response in health and 

disease. Despite a greater appreciation for neutrophil involvement in the 

immune response, relatively little work has focused on the underlying 

mechanisms of neutrophil activation and regulation in the context of 

inflammation, instead focusing more on the traditionally associated 

mechanisms of functions such as chemotaxis, phagocytosis and apoptosis.  

Quantifying the transcriptional output of a cell has often been used by 

researchers to unpick the mechanisms by which a cell behaves under 

normal conditions, or adapts and responds to a changing environment or 

signal. The sensitivity of quantification of transcriptomes has grown 

exponentially over the past 2 decades, firstly with the development of 
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array-based technologies and real-time quantification by polymerase chain 

reaction (PCR).  Subsequently, the successful development of micro-array 

technology provided the first means to quantify the entire population of 

transcripts within a cell or tissue population. However, the greatest 

technological advancement has come in the area of massively high-

throughput sequencing (HTS). Today, whole genome/exome/transcriptome 

sequencing can now be performed over the course of a few days/weeks 

within a research lab for a few thousand pounds. This represents a minute 

fraction of the cost and time expended on the first large scale genome 

project,  the Human Genome Project, which over the course of its 13 years 

was estimated to have cost over $3 billion 13. 

This thesis aims to define a set of modern tools and bioinformatic software 

packages that can consistently, accurately and robustly quantify the gene 

expression profile of neutrophils using RNA-Seq. This pipeline will then be 

utilised to investigate the changes in gene expression following stimulation 

of neutrophils with inflammatory cytokines. Finally, the differences in two 

commonly used neutrophil isolation methods and the influence of inherent 

cellular contamination will be analysed, including their effect on neutrophil 

function and gene expression of both in vitro stimulated and unstimulated 

neutrophils. 
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1.2 Neutrophils 

Examples of cells with phagocytic abilities are found in organisms as 

distantly related as the slime mould Dictyostelium discoideum  14 and the 

African clawed frog Xenopus laevis 15. Indeed, such is the level of 

evolutionary conservation between species, that both zebrafish and rodents 

are often used as model organisms for in vivo studies of neutrophil function 

despite their neutrophils comprising a much lower proportion of the 

leukocyte population (15-20%) than in higher mammals 2. In humans, 

neutrophils comprise up to 60% of all leukocytes and are produced at a 

rate of 5 x 1010 – 30 x 1010 cells /day  16. The vast majority are retained in the 

bone marrow, and only a small fraction is released into the circulating 

peripheral blood, such that the concentration of neutrophils in blood is 

approximately 3-5 x 106/mL. 

1.2.1 Neutrophil production and maturation 

Granulocyte-colony stimulating factor (G-CSF) is essential for regulating the 

production and release of neutrophils from the bone marrow, whilst the 

chemokine receptors 4 (CXCR4) and 2 (CXCR2) are central to regulating 

neutrophil retention and release from the bone marrow, respectively. 

CXCR4 acts with its ligand, stromal derived factor -1 (SDF-1), which is 

produced by bone marrow stromal cells, to retain neutrophils in the bone 

marrow. Conversely, growth regulated protein (Gro)α and Groβ released by 

stromal cells acts through CXCR2 to increase neutrophil release 17.  
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Levels of SDF-1 are tightly regulated by G-CSF, which in turn is regulated 

by levels of Interleukin (IL)-17A produced by neutrophil-regulatory T-Cells. 

IL-17A release is dependent on levels of IL-23 released by tissue 

macrophages and dendritic cells. Uptake of apoptotic neutrophils by 

macrophages and dendritic cells results in a decrease in IL-23 levels. Thus, 

a reciprocal negative feedback loop exists such that as levels of neutrophils 

in tissue increases, levels of G-CSF decrease, ultimately leading to a 

decrease in neutrophil release from the bone marrow 18 (Fig 1.1-inset). 

Neutrophil maturation is largely dependent on the transcription factors 

CCAAT/Enhancer binding protein alpha – zeta (C/EBPα-ζ) and PU.1. 

Terminal differentiation into either a monocyte or a granulocyte lineage is 

ultimately decided by the balance of expression between these two 

transcription factors 19.  

1.2.2 Neutrophil granules 

Neutrophil granules and granule proteins are produced sequentially during 

neutrophil maturation. Granule proteins serve mainly as antimicrobial 

proteins aiding pathogen killing during phagocytosis. Granules have 

historically been classified into 3 types based on their protein content: 

azurophilic (primary) granules, which contain myeloperoxidase (MPO); 

specific (secondary) granules, which contain lactoferrin; and gelatinase 

(tertiary) granules, which contain matrix metalloproteinase 9 (MMP9). 

However, more recently, neutrophil granules have been further classified 

into several sub-types. For example, azurophilic granules can be 
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differentiated into defensinhi and defensinlow 20, whilst specific granules can 

be sub-divided into at least 4 sub-types; lactoferrinhi, cysteine-rich secretory 

protein 3 (CRISP3)hi, gelatinasehi and ficolin-1hi 18,21–23. The mechanism 

underlying the existence of separate granules has been termed “targeting 

by timing of biosynthesis”24 whereby proteins expressed at similar stages of 

maturation are localised to similar granule subtypes. This allows for 

differences in the mobilization of proteases, with the granules formed last 

during maturation being most likely to be released first. It is also important 

that some of these granule proteins are localised to different 

compartments as they can antagonise the activities of each other: for 

example neutrophil elastase (found in azurophil granules) can digest 

neutrophil gelatinase-associated lipocalin (NGAL) (found in specific 

granules) 18,23. Neutrophils also contain secretory vesicles that contain 

proteins and receptors associated with neutrophil adhesion and migration. 

Upon neutrophil activation, vesicles containing adhesion molecules such as 

β2integrins are incorporated into the neutrophil surface membrane where 

they facilitate neutrophil migration into tissues. 

1.2.3 Activation, rol l ing, adhesion and extravasiation 

Neutrophil migration from peripheral blood is mediated by interactions 

with vascular endothelium, predominantly at postcapillary venules 18. 

Neutrophils move to the site of inflammation along a chemotactic gradient. 

Expression of L-selectin on neutrophils and both E-selectin and P-selectin 

on endothelial cells mediate tethering and lumal rolling of neutrophils by 
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binding of P-selectin glycoprotein ligand-1 (PSGL-1) and other glycosylated 

ligands 25. Neutrophils are further activated by chemokines and 

proinflammatory agents presented on the surface of endothelial cells, such 

as CXCL8 (IL-8) and CXCL2 (MIP-2). This in turn, activates integrins such as 

β2 integrin (CD18) leading to high-affinity binding with integrin ligands 

expressed on the surface of endothelial cells, such as intracellular adhesion 

molecules 1 and 2 (ICAM-1 and ICAM-2). The interaction of integrin alpha L 

(ITGAL) and integrin alpha M (ITGAM) with ICAM1 is important for 

neutrophil adhesion and intraluminal crawling, allowing neutrophils to 

move to endothelial borders in preparation for extravasation 26. Following 

firm adhesion to the endothelial layer, neutrophil movement into tissues 

can occur in one of two ways; paracellular migration, where neutrophils 

squeeze between endothelial cells, or less-commonly, transcellular 

migration, where neutrophils pass through an individual endothelial cell. 

Neutrophil transmigration is facilitated by several neutrophil surface 

molecules, including CD54 (ICAM-1) 27, CD31 (platelet/endothelial cell 

adhesion molecule 1 – PECAM-1) 28, CD44 29, and CD47 (integrin 

associated protein – IAP) 30. Once in the tissue, neutrophils continue to 

move along a chemotactic gradient towards the source of inflammation 

where they can carry out other immune processes, such as cytokine release, 

phagocytosis and NETosis (Fig 1.1). 
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Fig	   1.1	  Overview	  of	  neutrophil	  production	  and	   function.	  Peripheral	  blood	  neutrophils	  
migrate	  to	  site	  of	  inflammation	  via	  chemotactic	  signalling	  and	  transmigrate	  into	  tissue	  
following	   a	   number	   of	   sequential	   processes	   (rolling,	   adhesion	   and	   transmigration)	  
where	  they	  can	  carry	  out	  their	  key	  functions,	  such	  as	  cytokine	  release,	  phagocytosis	  or	  
NETosis.	  Neutrophils	  subsequently	  become	  apoptotic	  during	  inflammation	  resolution.	  
(Inset)	   Neutrophil	   release	   from	   the	   bone	   marrow	   is	   regulated	   by	   levels	   of	   G-‐CSF	  
expressed	  by	  stromal	  cells.	  As	  levels	  of	  apoptotic	  neutrophils	  increase	  in	  tissue,	  G-‐CSF	  
levels	   are	   decreased	   through	   the	   down-‐regulation	   of	   IL-‐23	   and	   IL-‐17	   release	   by	  
macrophages	  and	  Th17	  cells,	  respectively.	  	  
	  
	  

1.3 Neutrophil function 

1.3.1 Priming  

Neutrophils exist in one of three activation states; quiescent (also known as 

unprimed), primed or activated  31. Under normal conditions, neutrophils 

patrol the vascular system in large numbers in a dormant (or unprimed) 

state. In the absence of any stimulating factors, peripheral blood 

neutrophils rapidly undergo constitutive apoptosis resulting in a short 

lifespan, typically less than 24 h 32.  
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Upon exposure to a variety of inflammatory stimuli (such as chemokines, 

cytokines, bacterial peptides or by adhesion), neutrophils become primed. 

Priming involves several rapid molecular changes; intracellular granules 

containing pre-formed receptors are mobilised to the plasma membrane, 

receptor affinity is altered, and components of the Nicotinamide Adenine 

Dinucleotide Phosphate (NADPH) oxidase complex are assembled at the 

plasma membrane  33. Additionally, priming involves other, less rapid 

molecular changes, for example, increased gene expression resulting in the 

production of cytokines or chemokines, and stabilisation of proteins 

involved in apoptosis, ultimately extending the life of a primed neutrophil  

3. The overall consequence of priming is a neutrophil which is capable of a 

rapid and increased response to subsequent activation signals. A major 

advantage of priming is as a regulatory step to ensure peripheral blood 

neutrophils are not inappropriately or non-specifically activated, leading to 

unregulated release of the neutrophils toxic armoury and unnecessary 

localised tissue damage. Interestingly, studies using platelet activating 

factor (PAF) have revealed that neutrophil priming can be reversed  34, 

suggesting that in the absence of an activation stimulus a mechanism exists 

to allow neutrophils to be returned to a quiescent state for subsequent 

recycling at the inflammatory site 34. 

1.3.2 Pattern recognition receptors (PRR) 

The primary role of neutrophils is to identify and destroy pathogenic 

organisms from the body. In order to achieve this, neutrophils must first be 
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able to differentiate between foreign antigens (for example bacterial 

peptides), host antigens (for example immunoglobulins and complement 

factors) and host (self) proteins before initiating an appropriate immune 

response. Consequently, neutrophils express a variety of pattern 

recognition receptors (PRR) such as Toll-like receptors (TLRs), Nod-like 

receptors (NLRs) and C-type lectin receptors 5,35. PRRs can be activated by 

microbial structures, more commonly-known as pathogen associated 

molecular patterns (PAMPs) or endogenous signals produced by host cells 

in response to trauma, ischemia or tissue damage, more commonly known 

as damage-associated molecular (DAMPs) 35. More recently, a new class of 

pattern molecules has been proposed. Due to their anti-inflammatory 

actions, members of the heat shock protein (HSP) family (among others) 

have been termed resolution associated molecular patterns (RAMPs) 36. This 

highlights the importance of pattern recognition receptors in both the 

activation and resolution of neutrophil function. 

 

1.3.3 Phagocytosis 

Following neutrophil priming and chemotaxis towards a source of 

pathogenic insult, clearance of foreign microbes is achieved by 

phagocytosis. Phagocytosis is triggered by the interactions of opsonised 

particles with specific receptors on the surface of neutrophils. For example, 

complement receptors (CR) such as CR1 and CR3 bind to particles 

opsonised with complement, whereas particles opsonised with γ-
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immunoglobulin (IgG) are phagocytosed via interaction with Fcγ receptors 

(FcγR) (which bind the Fc portion of immunoglobulins). Ultimately, 

microorganisms are internalised by the neutrophil into a membrane-bound 

vacuole, known as a phagosome. 

Neutrophils express 3 classes of FcγR. The low-affinity binding receptors 

FcγRIIA (CD32) and FcγRIIIB (CD16) are both expressed on unprimed 

neutrophils. On the other hand, expression of the high-affinity receptor 

FcγRI (CD64), although present in synovial neutrophils from rheumatoid 

arthritis (RA) patients 37 is only expressed on healthy neutrophils following 

activation by IFNγ 38.  

The mechanism of pathogen internalisation is dependent on the specific 

interactions between the neutrophil and the microorganism, for example 

interactions may be direct through activation of PRR by PAMPs, or may be 

mediated by opsonins 2. Phagocytosis of opsonised particles is largely 

mediated by either the FcγRs or complement receptors (CR). Engulfment is 

initiated by the localised clustering of phagocytic receptors (for example 

FcγRs) following ligation with their cognate ligand. Subsequently, extended 

membrane structures, or pseudopodia, engulf the particle forming an 

intracellular phagosome. It can take less than 20 s to internalise a 

microorganism. Interestingly, CR-mediated phagocytosis does not result in 

the formation of pseudopodia, but instead, the opsonised particle appears 

to sink into the neutrophil 39. 
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Microbial killing within the phagosome is achieved via a two step process; 

firstly, internal granules fuse with the phagosome membrane, releasing 

their content into the phagosomal lumen. Simultaneously, reactive oxygen 

species (ROS) are produced via assembly of the NADPH oxidase complex 

on the phagosomal membrane 2. These processes produce a hostile intra-

phagosomal environment that leads to the destruction of the engulfed 

microorganism. 

In addition to an effective mechanism of pathogen clearance – since 

neutrophils can express MHCII molecules 40 -  phagocytosis also serves to 

provide antigens to the adaptive immune system. This highlights the 

important role that neutrophils play as both an innate effector, but also an 

immune-regulator of both the innate and adaptive immune system. 

1.3.4 NETosis 

In the last decade, evidence has emerged that neutrophils are capable of a 

specialised form of programmed cell death, mechanistically distinct from 

either necrosis or apoptosis. Under conditions of increased stimulation or 

overwhelming numbers of bacteria, neutrophils are able to extrude 

neutrophil extracellular traps (NETs) which act as an additional antimicrobial 

mechanism in the neutrophil armoury. NETosis is characterised by NADPH-

oxidase-dependent dissolution of the nucleus and intracellular membranes, 

followed by the rupture of the plasma membrane and expulsion of 

decondensed chromatin 41 (Fig 1.2). NETs are decorated with a variety of 

cellular proteins, such as granule proteins (which form the greatest 
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proportion of NET-associated proteins), nuclear proteins (such as histones) 

and cytoplasmic proteins (such as calcium-binding proteins).  The 

advantages of NET formation in host defence are numerous. Firstly, NETs 

provide a physical barrier, preventing microbial spread. Secondly, the 

concentration of anti-microbial proteins that decorate NETs increases their 

efficiency and promotes synergistic actions of proteases. Thirdly, the 

restricted dispersion of proteases limits the amount of localised tissue 

damage induced by localised NETosis 42.  

  

 

Fig	   1.2	   Neutrophil	   NETs.	   Neutrophils	   stimulated	   with	   PMA	   for	   2h	   to	   induce	   NET	  
formation.	   Cells	   stained	   for	   DNA	   using	   DAPI.	   Viewed	   under	   fluorescent	   microscope	  
(x40	  magnification)	  	  
 

Following the formation of NETs, it is generally assumed that the 

neutrophil will die, as this is considered a specialised form of cell death. 

However, evidence suggests that, under certain conditions, NETs can be 

formed from mitochondrial DNA alone, without decreasing the potential 

life-span of the neutrophils 43. 
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Importantly, NETs are also known to have a role in signalling, by activation 

of plasmacytoid dendritic cells (pDC) via their Toll-like receptor 9 (TLR9) 44, 

which is triggered by DNA. NETs have also been implicated in CD4+-cell 

priming via a TLR9 independent mechanism 42. Further evidence to support 

the notion that NETs are an evolutionary-conserved process is the 

discovery of several bacterial strategies for evading NETs, for example, 

Streptococcus pneumonia is capable of altering its capsule charge, thereby 

decreasing its binding-affinity to NETs 45. Bacteria are also capable of 

expressing nucleases on their surface 46 or releasing endonucleases 47 which 

can degrade NETs. 

Despite a clear host advantage for NETosis formation, numerous  studies 

have implicated NETs in the pathogenesis of several diseases 48, cystic 

fibrosis 49, periodontitis 50, preeclampsia 51 and autoimmune conditions 

such as systemic lupus erythematosus (SLE) 9,44,52–54 and rheumatoid arthritis 

55. The formation of NETs in autoimmune conditions can lead to the release 

of nuclear and protein neo-antigens as a potential mechanism for auto-

antibody production. 

 

1.3.5 Apoptosis 

In order to balance the high rate of neutrophil production and release into 

peripheral blood, neutrophils must also regulate the rate at which they 

undergo apoptosis and are removed from circulation. Apoptosis is an 

evolutionary-conserved mechanism of cell death that is tightly-regulated 
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and ensures that the destructive proteases and lytic enzymes contained in 

neutrophil granules are not released into the surrounding environment, 

thereby minimising their potential for localised tissue damage 56. In the 

absence of any stimulating factors, neutrophils can undergo constitutive 

apoptosis within 8 h 57. Apoptosis leads to several morphological changes 

that are characteristically distinct from changes that occur during necrosis. 

These include: condensation of nuclear chromatin; nuclear fragmentation, 

leading to the loss of the characteristic neutrophil multi-lobed nucleus; 

DNA and protein degradation; retention of organelles and plasma 

membrane disruption and blebbing 56,58,59. Apoptotic neutrophils also 

exhibit molecular alterations on their cell surface, either by down-regulation 

of cell-surface receptors such as FcγRs (CD16 and CD32), complement 

receptors  (CD35 and CD88), or TNF receptor (CD120b) 60  or by the 

exposure of new cell surface molecules such as phosphatidylserine (PS). 

Under normal conditions, PS is held on the inner leaflet of the plasma 

membrane by the actions of the enzyme flippase 61. However, during the 

early stages of apoptosis, PS translocates to the outer surface of the plasma 

membrane where it facilitates the recognition of apoptotic neutrophils by 

macrophages 62. This molecular switch is the basis of an apoptosis assay 

whereby fluorescently-labelled annexin V binds to exposed PS on the 

surface of apoptotic neutrophils and can be quantified by flow cytometry. 

Neutrophil apoptosis can be activated via two pathways, dependent on 

whether the activating signal originates internally or externally to the cell.  
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1.3.5.1 The intrinsic apoptosis pathway 

The intrinsic apoptosis pathway is regulated by members of the B-cell 

leukaemia-2 (Bcl-2) family of proteins, and in neutrophils is activated by an 

absence of anti-apoptotic factors, for example during constitutive 

apoptosis or in response to stress signals originating from within the cell, 

such as DNA damage. Interactions of the Bcl-2 family members (of which 

there are both pro- and anti-apoptotic members) ultimately leads to the 

de-polarisation and permeabilization of the mitochondrial membrane and 

the release of cytochrome-c into the cytosol 63. 

1.3.5.2 The extrinsic apoptosis pathway 

Exposure of neutrophils to pro-apoptotic signals results in apoptosis via the 

receptor-mediated extrinsic pathway. Molecules, including tumour necrosis 

factor-alpha (TNFα) Fas-ligand (FASLG) and TNF-related apoptosis-

inducing ligand (TRAIL) bind to one of several “death receptors” expressed 

on the surface of neutrophils. These include FAS-receptor (FASR), TNF-

receptor super-family member 10 (TNFRSF10) and nerve growth factor 

receptor (NGFR).  These receptors are members of the larger TNF receptor 

super-family and are characterised by a cytoplasmic region of 

approximately 80 amino acids, known as a “death domain” 64. Following 

activation of receptors via attachment with corresponding ligand, several 

cytoplasmic proteins are recruited to the death domain forming a death-

inducing signalling complex (DISC).  These proteins include Fas-associated 

via death domain (FADD), and pro- cysteine-aspartic proteases-8 (pro-
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caspase-8). Formation of the DISC initiates a signalling cascade leading to 

activation of caspase 8 and other downstream caspases 65,66.  

 

Fig	   1.3	   Schematic	   summary	   of	   the	   extrinsic	   apoptosis	   pathway	   in	   neutrophils.	  
Activation	  of	  death	  receptors	  for	  example	  Fas-‐receptor	  (FasR)	  by	  its	  ligand	  Fas-‐ligand	  
(FasL)	   induces	  formation	  of	  the	  death	   inducing	  signalling	  complex	  (DISC)	  comprising	  
of	  the	  receptor	  death	  domain	  (DD),	  Fas-‐associated	  via	  death	  domain	  (FADD)	  and	  pro-‐
caspase-‐8.	   Activation	   of	   caspase	   8	   leads	   to	   the	   initiation	   of	   a	   caspase	   cascade	  
ultimately	  leading	  to	  apoptosis.	  Adapted	  from	  64,67.	  
 
 
 Ultimately, activation of either apoptosis pathway leads to the activation of 

initiator caspases, which sequentially cleave their inactive pro-caspase 

targets into shorter, active forms during a caspase cascade. The action of 

the caspase cascade results in the cleavage and degradation of a number 

of target cellular proteins which culminates in the disassembly of the cell 

and the exposure of “eat me” signals (such as PS) on the neutrophil surface 

leading to their clearance by phagocytic cells, such as macrophages or 

activated neutrophils 68.  
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1.3.6 Inflammation resolution 

Appropriate activation of neutrophil apoptosis is crucial to limit any 

collateral damage by neutrophil granule proteins. Apoptotic neutrophils 

can also regulate the immune response, for example, by the secretion of 

annexin-1. The rapid release of annexin-1 from tertiary granules can induce 

increased uptake by macrophages 69. Furthermore, uptake of apoptotic 

neutrophils results in the release of several anti-inflammatory mediators 

from phagocytic cells, such as IL-10, tumour growth factor-β (TGF-β) and 

prostaglandin-E2 (PGE2) which are crucial for the resolution of inflammation  

70,71. 

 

1.4 Neutrophils and disease 

1.4.1 Neutrophil impairment 

Given the indispensable role of neutrophils in host defence, it is 

unsurprising that disorders relating to impaired neutrophil function share a 

common phenotype of increased incidence of infection and overall 

immune deficiency in the patient 72. For example, impairment of neutrophil 

adhesion and extravasation due to defective integrin or selectin expression 

is characteristic of leukocyte adhesion disorder (LAD) 73 , while an estimated 

1 in 200,000 people suffer from chronic granulomatous disease (CGD), a 

group of inherited diseases caused by a defect in any of 4 subunits of the 

phagocyte NADPH oxidase complex 75.  



41	  
	  

Neutrophil myeloperoxidase (MPO) deficiency, is a disorder affecting 

approximately 1 in 4000 individuals 76. Deficiency is often due to point 

mutations in the MPO gene, resulting in defective post-translational 

processing of the MPO precursor protein. Deficiency of MPO prevents the 

formation of hypochlorous acid (HOCl) from chloride and hydrogen 

peroxide (H2O2) 72. Interestingly, despite the fact that neutrophils may be 

deficient of MPO, they do not have impaired bacterial killing ability in vitro, 

patients are usually asymptomatic unless presenting with other clinical 

disorders such as diabetes, whereby patients exhibit increased fungal 

infections 72. This observation suggests a level of redundancy in neutrophil 

bacterial killing mechanisms. 

 

1.4.2 Neutrophils and inflammatory disease 

In contrast to diseases where neutrophil function is impaired, inappropriate 

or over-activation of neutrophils is associated with a number of 

inflammatory diseases. For example, neutrophils have been implicated in 

the pathogenesis of systemic lupus erythematosus (SLE) 77, Behçet’s 

Disease 78, COPD 10 and RA 3. Inappropriate release of neutrophil proteases 

and other anti-microbial proteins can lead to localised tissue damage, 

which characterises the pathology of each of the above diseases. 
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1.4.3 Low density granulocytes 

Heterogeneity in granulocyte density has been known for almost two 

decades. In 1986, Hacbarth and Kajdacsy-Balla first described a sub-set of 

granulocytes that they termed “low buoyant density granulocytes” in the 

peripheral blood of patients with systemic lupus erythromatosis (SLE), 

rheumatoid arthritis (RA) and acute rheumatic fever, which correlated with 

disease activity 79. More recently, low density granulocytes (LDGs) have 

been additionally associated with disease activity in a number of conditions 

such as HIV-1 80 and SLE 81,  whilst their function and phenotype have been 

further characterised. 

 

LDGs are a sub-population of granulocytes which, due to their lower 

density, sediment in the PBMC fraction following density-gradient 

centrifugation of whole blood. They have been shown to have increased 

capacity for type I interferon (IFN) production, increased secretion of pro-

inflammatory cytokines  81, decreased ability to phagocytose bacteria, but 

an increased tendency to form NETs compared to mature neutrophils 52. 

LDGs are CD15high and CD14low (compared to monocytes which are CD15low 

and CD14high), whilst also expressing the mature granulocyte markers 

CD10 and CD16 32. Conversely, the transcriptional profile of LDGs (in 

addition to their low density properties) suggests they are a sub-population 

of immature granulocytes 52. The precise function of LDGs remains unclear 
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but understanding their function and precise role in inflammatory 

conditions is currently of great interest and importance. 

 

1.4.4 Treatment of inf lammatory disease 

A hallmark of inflammatory disease is elevated cytokine levels at sites of 

inflammations. This is best demonstrated by the efficacy of anti-cytokine (or 

anti-cytokine receptor) therapies in treating a wide range of inflammatory 

diseases. Whilst multiple cytokines are elevated in these diseases, often, 

specific cytokine-blockade is highly successful at alleviating symptoms and 

decreasing disease activity. Indeed, therapies of this nature represent the 

front-line treatment for several debilitating inflammatory diseases 82. 

However, responses of patients to specific therapies are often 

heterogeneous, and will often need to switch therapies before disease 

activity is controlled. This suggests that inflammatory diseases have 

heterogeneous pathology and different cytokines are responsible for 

driving the inflammatory response in different patients. Table 1.1 lists 

several examples of cytokines (or their cognate receptors) targeted by anti-

inflammatory disease therapies, and the diseases they are administered for.  

Despite having a central role in several inflammatory diseases, direct 

targeting of neutrophils is unfeasible as a form of therapy due to the 

resulting neutropenia and increased risk of developing infections. However, 

modifying specific neutrophil functions by directly (or indirectly) targeting 
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cytokine signalling may lead to much more efficient regulation of 

neutrophils in inflammatory disease without compromising host-defence. 

 

Table	  1.1	  Current	  (or	  clinical	  trial	  phase)	  cytokine-‐targeting-‐therapies	  for	  inflammatory	  
diseases:	  Vasculitis	  (V);	   Inflammatory	  bowel	  disease	  (IBD);	  Rheumatoid	  arthritis	  (RA);	  
Cancer	   (C);	   Multiple	   sclerosis	   (MS);	   Acute	   gout	   (AG);	   Still’s	   disease	   (SD);	   juvenile	  
idiopathic	  arthritis	  (JIA);	  ulcerative	  colitis	  (UC);	  Crohn’s	  disease	  (CD);	  Psoriatic	  arthritis	  
(PA);	  psoriasis	  (P);	  Ankylosing	  spondylitis	  (AS);	  Behçet’s	  disease	  (BD).	  
 

Drug	  name	   Target	  cytokine	  (or	  
cytokine	  receptor)	   Disease	   Refs	  

Tocilizumab	   IL-‐6	  receptor	   V/IBD/RA/C	   83	  
MOR103	  (phase	  II)	  
Mavrilimumab	  

GM-‐CSF	  
GM-‐CSF	  receptor	   MS/RA	   	  

84,85	  

Anakinra	   IL-‐1	  receptor	   AG/SD/JIA/RA	  
3,86–

88	  
Infliximab	  

(Remicade®)	  
Golimumab	  
Adalimumab	  
(Humira®)	  

Etanercept	  (Enbrel®)	  
Certolizumab-‐pegol	  

(Cimzia®)	  

TNFα	   RA/UC/CD/IBD
/PA/P/AS/BD	  

89–94	  

	  Fontolizumab	   IFNγ	   CD	   95	  
Secukinumab	   IL-‐17A	   RA/P	   96	  
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1.5 Systems biology 

1.5.1 Implementation 

Systems biology is a relatively recent area of biological research. The 

development of high powered computing and analytical approaches which 

generate large amounts of data (such as proteomics, genomics and 

metabolomics) have necessitated a new approach to scientific research. 

The fundamental goal of systems biology is to integrate comprehensive 

biological data sets from diverse systems in an attempt to understand 

complex interactions at the molecular level, thus providing a mechanism of 

predicting phenotype changes in a biological system following a defined 

stimulus 97.  

This approach has been applied to several areas of biology, such as 

analysing the entire kinase population (also known as the kinome) of 

Drosophila melanogaster during cell-cycle 98 or temporal analysis of gene-

promoter activity of amino-acid biosynthesis genes in Escherichia coli 99. 

In addition to individual systems based projects studying specific cells or 

pathways, broader, multi-institutional research consortiums are attempting 

to integrate data from multiple bioinformatic projects in an attempt to 

tackle wider conceptual problems such as inflammatory disease or patient 

drug-response. For example, a recently funded consortium led by the 

Queen Mary hospital, London – in collaboration with the charity Arthritis 

Research UK – will attempt to apply a stratified approach to understanding 

patient heterogeneity and drug response in rheumatoid arthritis (RA) 100. 
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This example of a multi-faceted research approach highlights how systems 

biology (or more specifically bioinformatic data) can successfully be up-

scaled to undertake much broader scientific questions 101. 

   

1.5.1 Transcriptomics 

Genomic studies attempt to quantify the entire genome of an organism. 

This information is encoded by a cell’s DNA and is virtually identical in all 

somatic cells of an organism, for example the information encoding the 

insulin gene (INS) is present in cells as disparate as pancreatic beta-cells 

and dendritic cells. Whilst, there may be variations in the copy number or 

epigenetic features, the hard-coded DNA sequence will be identical in 

both cell types, yet only in pancreatic beta-cells will the information be 

translated to produce the insulin protein. 

In contrast, transcriptomics focuses solely on the information contained 

with the RNA population. The population of RNA transcripts is both cell 

specific and dynamically regulated and can be thought of as the functional 

intent of a cell. Furthermore, since an estimated 92-94% of eukaryotic 

genes are subject to alternative splicing 102 an RNA population may not 

only be different between two different populations of cells but also 

between similar cells stimulated differently. 

In simplistic terms, transcriptomics attempts to define a level of gene 

expression at a specific time or under specific conditions by quantifying the 
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abundance of mRNA transcripts pertaining to each gene in an organism’s 

genome 97.  

1.5.1.1 Sanger sequencing 

The first successful method of sequencing DNA fragments was developed 

in 1977 by Fred Sanger and colleagues using chain-terminating inhibitors 

103. Nucleotide-specific sequence fragments were created using terminating 

dideoxynucleotides for each of the 4 bases. Populations relating to each 

base-type were then placed in separate lanes of a gel and subject to 

electrophoresis. Since fragments were fluorescently labelled, and the 

terminating base-type was known, fragments could then be “read” by 

virtue of their migration distance through the gel 104. This method of 

sequencing became the gold-standard in genetic research for over 25 

years, until several technological advancements were made during the 

undertaking of the human genome project between 1990-2003 105. This 

technique is still employed for targeted-sequencing, but for larger projects 

and genome/transcriptome wide analysis it has been superseded by more 

high-throughput approaches 101. 

1.5.1.2 SAGE 

Early attempts to define an entire transcriptome utilised serial analysis of 

gene expression (SAGE) technology to sequence small unique fragments 

(15-20 bp) of cDNA transcripts (reverse transcribed from the RNA 

population) relating to each gene 106. SAGE uses traditional Sanger 

technology to sequence short sequence tags which can be uniquely 
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associated with the original mRNA fragment to which it relates. The 

abundance of tags relating to each gene can then be used to get a 

quantification of gene expression. However, this technology is relatively 

expensive and often the short fragments cannot be uniquely associated to 

a specific gene. In addition, since only a small fragment of the parent 

mRNA is analysed, any isoforms of the same gene are often 

indistinguishable from each other and cannot be quantified 107. 

Consequently, this technology is now more often used as a way of 

sequencing smaller, specific areas of a genome or transcriptome rather 

than a wider, global approach to gene expression. 

1.5.1.3 Microarrays 

Although initially developed as far back as the early 1980’s to screen a 

small subset of genes in tumour cells 108, microarray technology has been 

consistently developed and improved, such that it became the first 

technology to be thought of as a truly high-throughput transcriptomic 

technology. Until recently, microarrays were the most established and 

popular method for studying nucleotide sequences on a massive scale. 

Microarrays contain thousands of single-stranded sequences of DNA (or 

RNA), known as probes, which are attached to specific location of a glass- 

or polymer-slide. Typically the RNA (or DNA) sample being measured is 

converted into a population of complementary fragments (cRNA/cDNA) 

and is labelled with a fluorescent dye. The sample is subsequently washed 

over the microarray, enabling labelled sequences with high complementary 
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sequence-similarity to bind to the microarray probes. Relative abundance 

of sequences can then be estimated by optical fluorescent measurement of 

each specific probe location on the microarray 109.  

The hybridisation of labelled sequences to well characterised probes is a 

fundamental aspect of all microarray experiments. However, several 

different technological and conceptual variations of microarray technology 

exist providing huge versatility in the analysis of nucleotide sequences. For 

example, high-density oligonucleotide microarrays employ a dual probe 

system whereby one probe is designed to include a single “mismatched” 

nucleotide at the centre of the probe in comparison to the “perfect match” 

paired-probe. This serves as an internal control for hybridisation estimation 

and improves the accuracy of the system 110. Elsewhere, microarray 

technology has been adapted to investigate protein-binding DNA-

sequences by chromatin immunoprecipitation (ChIP) (a process more 

commonly known as ChIP-chip) 111, epigenetic studies 112, and 

quantification of non-coding RNA such as microRNA 113.  

Although microarrays are a well-established and relatively inexpensive 

technology, they do present several limitations. For example, a priori 

knowledge of probe sequences is required to quantify expression levels of 

known gene transcripts, such that quantification of novel transcripts is not 

possible. Additionally, non-specific hybridisation of sequences to partially 

complementary probes increases the inherent background noise of a 

microarray experiment affecting the quantification accuracy 114. 



50	  
	  

Furthermore since hybridisation efficiencies can differ between probes, 

comparison of hybridisation results of different probes within a single 

experiment may not be as accurate as comparison of results for a single 

probe across multiple experiments 115. Importantly, since quantification of 

probe hybridisation relies on an analogue measurement of fluorescence, 

the dynamic range of quantification is often limited to a few orders of 

magnitude, meaning that sequences present in low abundance are poorly 

defined whilst measurements of sequences with extremely high abundance 

can often become saturated 107. 

 

1.5.2 RNA-Seq 

Sequencing of RNA molecules using modern, so called “next generation” 

sequencing technology platforms (RNA-Seq) has, in recent years grown in 

popularity. Upwards of millions of fragments of DNA or RNA are 

sequenced in parallel using precise sequencing chemistry. Following 

sequencing, the use of powerful bioinformatic techniques enables the 

researcher to determine where each of the millions of reads originated 

from within the genome. This in turn builds up a density profile of mapped 

reads which, when cross-referenced with known gene locations can give a 

digital representation of the transcript abundance in the original sample for 

each gene.  The rapid increase in speed and capacity, coupled with a 

dramatic decrease in cost has led to RNA-Seq superseding microarrays as 

the principal technology in transcriptomics. RNA-Seq offers several 
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advantages over microarray technology. Firstly, unlike microarray-based 

technologies, RNA-Seq is not limited to detecting transcripts that 

correspond to previously known sequences, making it suitable for studies 

involving non-model organisms 107. Secondly, RNA-Seq has a much higher 

dynamic range of detection than microarrays, (shown to be approximately 5 

orders of magnitude) 116- meaning that low and highly expressed transcripts 

are equally well detected.  

However, the greatest advantage of RNA-Seq technology over microarrays 

is the variety of data available from a single experiment. For example, 

quantification of gene expression of both coding 117 and non-coding RNA 

populations 118, splice-variant usage 119, single nucleotide polymorphism 

(SNP) discovery and allele specific expression 120 can all be extracted from 

the raw data of a single RNA-Seq experiment. Conversely, to gather such 

information using microarrays would require multiple bespoke arrays 

independently analysed, resulting in much higher costs and the 

introduction of unwanted technical variance. 

 

1.5.3 Next generation sequencing 

Inasmuch as Sanger sequencing is regarded as the first generation of 

sequencing technology, the 3 sequencing platforms provided by Roche 

(454 sequencing), Applied Biosystems’ Sequencing by Oligonucleotide 

Ligation and Detection (SOLiD) and Illumina (Genome analyser I/II and 

HiSeq) represent the first iteration of the 2nd generation sequencers (also 
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known as next generation sequencing – NGS). Each were developed and 

released to market within months of each other but crucially, differed in 

their underlying mechanisms and sequencing chemistry. However, in the 

most simplistic terms, each of the technologies rely on the addition of 

deoxynucleotides (dNTPs) to a template DNA strand complementary to the 

DNA sequence fragment being sequenced, the platforms differ in their 

method of measurement and quantification of this addition. A short 

summary of the 3 platforms is detailed below. 

1.5.3.1 Library preparation 

Prior to sequencing by any of the sequencing platforms, sample DNA/RNA 

is subject to several preparation steps eventually producing a library of 

read fragments. Although, the specifics of each step are subtly different 

dependent on the eventual sequencing platform – for example read 

lengths differ greatly between sequencing platforms – the processes are 

largely similar.  

1.5.3.2 RNA enrichment 

The first step in processing an RNA sample is to enrich the population of 

RNA to be sequenced from a sample of total RNA, for example the mRNA 

transcripts or the microRNA population. This improves signal strength and 

avoids unnecessary sequencing of unwanted transcript populations. For 

standard RNA-Seq experiments enrichment can be achieved in a number of 

ways: 
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a) Terminator exonuclease treatment 

Treatment of total RNA with a terminator exonuclease results in the 

removal of sequences without a 5’-cap, a physical feature of mRNA 

transcripts but not non-coding RNA (ncRNA). Thus ribosomal RNA (rRNA), 

tRNA and microRNA populations are depleted. 

b) Ribosomal RNA depletion 

Ribosomal RNA accounts for approximately 80% of a total RNA sample 121, 

hence strategies to deplete ribosomal RNA can efficiently enrich the 

remaining populations. This method is particular popular in studies that 

wish to quantify the microRNA populations – such as piwi-interacting RNA 

(piRNA) or small nucleolar RNA (snoRNA) – in addition to mRNA transcripts. 

c) Duplex-specific-nuclease (DSN) 

Enrichment and normalisation of low abundant transcripts within a 

population can be achieved by DSN treatment. DSN is a nuclease originally 

found in the Kamchatka crab Paralithodes camtschaticus 122. The nuclease 

digests double-stranded DNA (dsDNA) with high specificity. During library 

preparation, following conversion of RNA to dsDNA (see later section for 

more details of library preparation) the sample is briefly denatured and 

then incompletely re-natured and DSN digested. Sequences which are 

highly abundant anneal more rapidly than less abundant sequences, thus 

digestion with DSN enriches low abundant transcripts and removes the 

most  highly abundant population such as rRNA and transferRNA (tRNA) 122. 
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d) Poly-adenylated (Poly-A) tail selection. 

In addition to a 5’-cap, mature mRNA transcripts feature a poly-A tail. This 

feature can be exploited by magnetic bead selection to positively select 

the mRNA population from a total-RNA sample. This method provides the 

most effective way of enriching mRNA transcripts and is the most widely 

used technique for sample enrichment. However, final yield of mRNA can 

be affected by this enrichment method, in particular if the RNA sample is 

degraded since Poly-A tail integrity is most likely to be affected during 

RNA degradation 123 

 

If the sample purity is of great importance and enough total RNA is 

available a combination of the above treatments can be carried out to 

increase purity – albeit at the cost of a lower yield of enriched sample 117. 

The effect of these different treatments on the eventual sensitivity of the 

sequencing experiment is non-trivial and in addition to affecting which 

transcripts are detected in a sample, can also influence the amount of reads 

that ultimately map to intronic regions of the genome, since the population 

of immature mRNA (which still contain intron sequences) can be more- or 

less-enriched by the above treatments 124. 

1.5.3.3 Fragmentation and cDNA conversion 

Enriched RNA is subsequently converted into complementary DNA (cDNA) 

by reverse transcriptase and fragmented, typically by DNAse I treatment or 



55	  
	  

sonication 107. Fragment lengths are dependent on the sequencing 

platform being used but can vary between 35 and 700 nucleotides long. 

1.5.3.4 Adapter ligation and amplification 

Single strands of cDNA are synthesised into double stranded cDNA, 

treated to generate blunt ends of sequences, and adapter sequences are 

ligated to both ends to aid in downstream sequencing protocols. Similar to 

read lengths, the size and sequence of the adapter sequences are both 

platform-specific. Finally sequences are amplified by PCR and fragments 

are size-selected by gel extraction. 

 

1.5.4 Roche 454 sequencing 

The 454 sequencing platform employs a “sequencing by synthesis” 

approach, quantifying the incorporation of dNTPs to a DNA template by 

the indirect measurement of pyrophosphate (PPi) release (Fig 1.3). Sample 

DNA is amplified, fragmented and hybridised with a sequencing primer in a 

reaction volume. Subsequently, each of the 4 dNTPs (adenine, guanine, 

cytosine or thymine) are added sequentially to the reaction mix. DNA 

polymerase catalyses the addition of a complementary dNTP to the 

template strand resulting in the release of PPi (which is proportional to the 

amount of nucleotide incorporation). The presence of ATP sulfurylase and 

adenosine 5´ phosphosulfate (APS) in the reaction volume results in the 

conversion of PPi to ATP. The ATP can then drive a luciferase-mediated 

conversion of luciferin to oxyluciferin, a reaction that generates visible light 
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proportionally to the amount of ATP generated – which can be measured in 

real-time. Finally the addition of a nucleotide-degrading enzyme - apyrase, 

removes any unincorporated dNTPs in preparation for a subsequent cycle 

of dNTP addition. Progressive iterations of nucleotide incorporation allows 

single-nucleotide resolution sequencing of reads by measurement of the 

signal peaks produced during addition 125.  

The 454 platform produces the largest sequence reads of any of the 3 

platforms discussed (200-700 nucleotides long). This is of great importance 

for downstream quantification of sequence reads, either when mapping 

reads to a reference genome or using reads for de novo assembly of a 

genome where a reference sequence is not available, for example in non-

model organisms. The larger reads make the assembly process much less 

computationally demanding and require much less sequencing depth than 

would be necessary with much shorter reads 126. However, since dNTPs are 

added sequentially, sequences with areas of successive nucleotides 

(homopolymers) are poorly quantified and subject to sequencing errors 125. 
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Fig	   1.3	  A	  schematic	   representation	  of	  Roche’s	  454	  sequencing	   technology.	  dNTPs	  are	  
sequentially	   added	   to	   a	   reaction	   volume	   containing	   millions	   of	   copies	   of	   target	  
sequence	   with	   annealed	   sequencing	   primer.	   (i)	   DNA	   polymerase	   catalyses	   the	  
elongation	  of	   the	  sequencing	  primer.	   (ii)	   incorporation	  of	  a	  nucleotide	   results	   in	   the	  
release	  of	  pyrophosphate	  (PPi).	  (iii)	  PPi	  and	  APS	  are	  converted	  to	  ATP	  by	  the	  actions	  
of	   Sulfurylase.	   (iv)	   Luciferase	   and	   ATP	   catalyse	   the	   conversion	   of	   luciferin	   to	  
oxyluciferin	   which	   produces	   light	   in	   the	   visible	   range.	   Detection	   of	   light	   produced	  
allows	  quantification	  of	  nucleotide	  addition.	  Adapted	  from	  127,128.	  
	  
 

1.5.5 I l lumina sequencing (Genome analyser I/ I I  and HiSeq)  

Illumina sequencing technology makes use of reversible dye terminators to 

sequentially measure each nucleotide position by measurement of 

fluorescent emission (Fig 1.4). As with pyrosequencing, sample RNA is 

enriched, fragmented and adapter sequences ligated. However, sequences 

are attached  to a glass slide by their adapter sequences and amplified in 

situ in a process called bridge amplification 129, this increases the platforms 

throughput capacity over other platforms 130. A primer sequence is 

annealed to fragment reads and sequencing proceeds in a single base 
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synthesis fashion. Unlike pyrosequencing, all four dNTP types are added 

together during sequencing cycles to ensure competitive binding of 

nucleotides –  this increases sequencing accuracy of homopolymers . Each 

of the 4 dNTPs are modified to include a terminating group which inhibits 

sequence extension and are labelled with a different dye for identification. 

During each cycle, (due to the terminating group) a single nucleotide is 

incorporated to the primer sequence. Following the incorporation of a 

dNTP the remaining unincorporated nucleotides are washed away and the 

newly incorporated nucleotide identity is determined by laser excitation of 

the dye. Both the terminating group and labelled dye are cleaved from 

incorporated nucleotide and the cycle is repeated for the addition of the 

next nucleotide. Extension of template sequence continues for the entire 

length of sequence read.  

The entire process is carried out on an 8-lane flow cell, which enables 

massively-parallel sequencing of millions of reads 131. 
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Fig	   1.4	   Schematic	   representation	   of	   Illumina	   sequencing	   technology.	   (A)	   Target	  
sequence	   is	   attached	   to	   flow-‐cell	   and	   sequencing	   primer	   is	   annealed.	   (B)	   DNA	  
polymerase	   catalyses	   the	   addition	   of	   1	   of	   4	   possible	   dNTPs.	   Incorporated	   dNTP	   is	  
identified	  by	  laser	  excitation.	  (C)	  Terminating	  group	  and	  dye	  portion	  is	  removed	  from	  
incorporated	  dNTP	  and	  the	  process	  is	  repeated	  for	  full	  length	  of	  target	  sequence.	  
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1.5.6 SOLiD™ sequencing by Applied Biosciences 

Similarly to the Illumina platform, the SOLiD™ sequencing platform 

sequences millions of fragmented reads in parallel on a flow cell following a 

standard set of read library preparation steps (enrichment, fragmentation, 

conversion to cDNA, adapter ligation and size selection). However, the 

SOLiD™ platform has several features which distinguish it from both the 

Illumina and 454 platforms. Firstly, unique read fragments are attached to a 

micro-bead (approximately 1 µm in diameter) and amplified by PCR (in a 

process known as emulsion-PCR) to produce a monoclonal bead with 

thousands of identical reads attached to it, this amplifies the signal when 

detecting nucleotide additions during sequencing. The beads are 

subsequently attached to the flow cell for sequencing 129. Secondly, rather 

than employing a polymerase for template extension, the SOLiD™ 

platform relies upon ligation of labelled probes for strand extension 132. 

Thirdly, raw sequencing data is encoded using a “colorspace” encoding 

system which increases accuracy of base calling by deciphering between 

sequencing errors and legitimate SNP events in the read fragments 133,134. 

 

1.5.6.1 Di-base probes 

Rather than the sequential addition of single dNTPs by a polymerase as 

seen in the 454 and Illumina platforms, the SOLiD™ platform uses a 

“sequencing by ligation” approach whereby fluorescently labelled di-base 
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probes are ligated to the primer strand by the enzyme ligase 131. Probes are 

8 nucleotides long and are labelled with one of 4 fluorescent dyes. The 

sequences of the probes differ in the first two bases of the 3’ end, thus 

each possible combination of two bases is represented by 16 different 

probes (4 probes of each colour). The remaining portion of the probe is 

made up of random hexamers. For each di-base, the reverse sequence (for 

example CA and AC), the complementary sequence (for example CA and 

GT) and the reverse complementary sequence (for example CA and TG) are 

always represented by the same colour (Fig 1.5).  

 

 

Fig	   1.5	   Representation	   of	   the	   2	   base	   colorspace	   encoding	   system	   employed	   by	   the	  
SOLiD™	  sequencing	  platform	  di-‐base	  probes.	  Each	  of	  the	  16	  different	  combinations	  of	  
2	   bases	   are	   represented	   by	   one	   of	   4	   colours.	   Pairs	   of	   the	   same	   colour	   are	   either	  
reversed,	  complementary	  or	  reversed-‐complementary	  of	  each	  other.	  Adapted	  from	  135.	  
 

1.5.6.2 SOLiD™ sequencing steps  

Sequencing begins with the ligation of di-base probes to the primer 

sequence under competitive conditions (all 16 possible probes are present) 

(Fig 1.6A). Following ligation, sequences are imaged and the fluorophore 

portion of probe is removed such that a 5 nucleotide portion is 
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incorporated into primer sequence. The process is repeated for the entire 

length of the sequence fragment (Fig 1.6B) (for example a 35 nucleotide 

sequence fragment requires 7 ligation cycles). Since only information on 2 

nucleotides of each probe is available, only 2 in every 5 nucleotides in a 

sequence-fragment are interrogated per ligation cycle (Fig 1.7). 

Furthermore, since each colour probe relates to one of 4 possible 

nucleotide pairings, it is not possible to determine the base sequence from 

a single interrogation. Thus, following ligation cycles, the newly extended 

primer sequence (and primer) are removed and a new primer sequence is 

added which is offset by 1 nucleototide (n-1) (Fig 1.6C). Ligation cycles are 

repeated for new primer round and a further 3 primer rounds (n-2,n-3 and 

n-4) (Fig 1.6D). Following a total of 5 primer rounds, each nucleotide will 

have been interrogated twice on two separate primer rounds (Fig 1.7), 

providing sufficient information to decode the sequencing information from 

colorspace into basespace (raw nucleotide information).  
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Fig	  1.6	  SOLiD	  sequencing	  methods.	  A)	  Read	  library-‐fragments	  are	  attached	  to	  a	  micro-‐
bead	   and	   annealed	  with	   a	   primer	   sequence	   in	   preparation	   for	   sequencing.	   B)	   16	   Di-‐
base	   probes	   labelled	   with	   one	   of	   4	   coloured	   dyes	   competitively	   bind	   to	   primer	  
sequence	   extending	   template	   strand,	   ligation	   catalysed	   by	   ligase	   enzyme.	   Di-‐base	  
probe	   incorporation	   is	   imaged	   by	   laser	   excitation.	   Fluorophore	   portion	   of	   probe	   is	  
removed	  and	  process	  of	  probe	  ligation	  is	  repeated	  for	  entire	  length	  of	  read-‐fragment.	  
C)	  Newly	  formed	  extended	  sequence	  is	  removed	  and	  primer	  sequence	  is	  reset	  using	  a	  1	  
nucleotide	   shorter	   primer	   (n-‐1).	   D)	   Probe	   incorporation	   steps	   are	   repeated	   for	   4	  
additional	  primer	  rounds.	  Adapted	  from	  135.	  
 
 

 
Fig	  1.7	  Representation	  of	  the	  dual	  interrogation	  of	  read	  positions	  by	  multiple	  ligation	  
cycles	  and	  primer	  rounds	   in	  SOLiD	  sequencing	  platform.	  Di-‐base	  probe	   incorporation	  
during	   SOLiD	   sequencing	   extends	   a	   primer	   sequence	   by	   5	   bases	   at	   a	   time,	  
interrogating	   the	   first	   two	  bases	  on	   each	   cycle.	  Multiple	   ligation	   and	  primer	   rounds	  
result	   in	   each	   read	   position	   being	   measured	   twice	   on	   separate	   primer	   rounds.	  
Colorspace	   encoded	   information	   can	   them	   be	   used	   to	   accurately	   determine	   the	  
original	  nucleotide	  sequence.	  	  	  Adapted	  from	  135.	  
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1.5.6.3 Colorspace 

The bioinformatic advantage of the colorspace encoding system is two-

fold. Firstly, having each read position interrogated twice improves the 

accuracy of base calling. Secondly, since each read position is represented 

by two colours, if an appropriate reference sequence is available, 

colorspace encoding system provides a means to distinguish between 

sequencing errors and true single nucleotide polymorphisms (SNPs) that 

may exist between the reference sequence and the sample sequence. For 

example, due to the structure of the encoding system, SNPs are identified 

by both colours of a particular read position differing from the reference 

sequence, whereas a sequencing error would result in a single change in 

colour to the reference (Fig 1.8) 136. 

 

Fig	   1.8	   Example	   of	   colorspace	   encoding	   in	   the	   SOLiD™	   platform.	   Encoding	   enables	  
downstream	   identification	   of	   valid	   single	   nucleotide	   polymorphisms	   (SNP)	   or	  
sequencing	  errors.	  There	  are	  3	  possible	  single	  nucleotide	  polymorphism	  of	  the	  central	  
nucleotide	   in	   a	   3	   nucleotide	   codon,	   each	   change	   results	   in	   a	   two	   colour	   change	   in	  
colorspace.	  Conversely,	  an	  error	  in	  sequencing	  would	  cause	  a	  single	  change	  in	  colour	  
and	   consequently	   a	   change	   in	   2	   nucleotides	   when	   converted	   back	   to	   basespace.	  
Adapted	  from	  135.	  
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1.5.7 Indexing/barcoding 

An added benefit of all of the above technologies is the ability to “index” 

read fragments (also known as barcoding). Since the adapter sequences 

can be modified to include an additional bespoke sequence (usually 6-10 

nucleotides long), read fragments from a common RNA sample can be 

indexed. This means that up to 96 RNA samples from separate 

experiments, time points or even organisms can be run in parallel on the 

same flow chip without losing information on which sample the reads 

originated from, the raw sequencing data is re-grouped into sample data 

sets following sequencing129,137. 

 

1.5.8 Paired-end sequencing  

An alternative approach to sequencing a read library which is available on 

each of the discussed platforms is paired-end sequencing. Rather than 

sequencing a read in a single direction as per single-end sequencing. 

Paired-end sequencing incorporates an additional sequencing step 

initiated at the opposite end of the read, thus two portions of the same 

fragment are sequenced in opposite directions. The benefit of this 

approach is not only the additional information that can be collected from 

a single sequencing run but that since both portions of sequencing data 

are known to originate from the same read fragment this information can 

be used to more accurately map both reads to the reference genome in 

the bioinformatic mapping stage. For example a short read containing an 
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area of nucleotide repetition may map to multiple areas of the genome 

due to its low sequence complexity. However, paired reads originating 

from the same area of the genome which are separated by an estimated 

distance are much less likely to map to multiple genome locations and are 

therefore much easier to assign a mapping location. Variations of paired 

end sequencing include mate-pair sequencing where two portions of a 

single read are sequenced in the same direction and the resulting distance 

between mate-pairs is much larger (2k-5k nucleotides) 104. 

 

1.5.9 Future generation sequencing 

The fundamental mechanics of each of the 3 platforms described above 

have not been altered in almost a decade. Constant development of the 

technology has meant that successive iterations of the hardware and 

software in each platform have seen improvements in sequencing speed, 

capacity and accuracy and a reduction in costs of both the sequencing 

machinery and biological reagents. However, future generations of 

sequencing technology are emerging and could provide a significant 

increase in speed and usability such that whole genome sequencers could 

become more commonplace in the laboratory or clinical environment. For 

example nanopore-technology is a method of sequencing a strand of DNA 

or RNA by passing it through a nanopore where an electrical current exists 

across the pore. As individual bases pass through the pore they can be 

identified by the amount to which they disrupt the current across the pore 
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101,138. Alternatively, Pacific Biosciences technology employs nucleotides 

which are fluorescently labelled on their phosphate group. Using nano-

visualisation chambers known as zero mode waveguides (ZMWs) which 

have a volume of 20 zeptolitres (10-21 litre), the incorporation of nucleotides 

can be detected against the high background signal of surrounding 

unincorporated nucleotides 128. The advantage of both these systems is 

that nucleotide incorporation or movement across a nano-pore can be 

measured without the need for interruption, thus sequencing can be 

measured in real time with the only limiting factor being the rate at which a 

DNA/RNA polymerase can operate 139. The successful development of a 3rd 

generation of sequencers will decrease the amount of time taken to 

sequence a human genome to a matter of minutes rather than days 140. 
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1.6 Bioinformatic software 

The primary function of any high-throughput sequencing technology is to 

turn a biological sample of DNA or RNA into digital data. A single 

sequencing run can produce upwards of 60GB of raw data 141 which, when 

typed equates to approximately 22x106 sheets of A4 paper (size 12 font, 

single line spacing). In addition to being computationally demanding due 

to its size, data from a next generation sequencing platform is also 

produced in a raw format. Following a sequencing run, data is filtered to 

remove incomplete reads and adapter sequences. Indexed data can be 

separated into sample-associated sets, finally, the raw data is then collated 

into a single file (or pair of files dependent on sequencing platform) 

containing only the read data and an accompanying quality value for each 

read position. Thus, a raw data file from a single sample in an RNA-Seq 

experiment may simply contain > 40x106 lines of data each 50 characters 

long (for a 50bp single-end experiment).  

For RNA-Seq data, several computational processes are required to extract 

meaningful data from the raw dataset produced by a next generation 

sequencer. These include: assembly of transcriptome, read mapping to 

reference sequence and expression quantification. Each process requires a 

specific set of software which often allows running parameters to be 

manually altered to improve performance depending on the type of input 

data provided and/or output data required.  
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1.6.1 Transcriptome assembly 

If an adequate reference sequence is not available (for example in 

transcriptome studies using non-model organisms), quantification of gene 

expression can be achieved by de novo assembly of a transcriptome using 

sequenced reads. Successful assembly relies on sufficient depth of 

coverage from sequence reads and is aided by larger read lengths such as 

those produced by the 454 platform. Software programs such as Trinity 142, 

Trans-ABySS 143 and Rnnotator 144 are able to de novo assemble 

transcriptomes using RNA-Seq data, whilst software such as Cufflinks 145, 

Scripture 146 and ERANGE 116  are able to use a reference sequence to  

build upon in a process known as ab initio assembly 147. The use of either 

de novo or ab initio assembled transcriptomes provides a way of 

identifying and quantifying novel transcripts that may be present in a cell 

specific manner. 

 

1.6.2 Read mapping 

Quantification of raw sequence data begins with the process of mapping 

reads back to a reference sequence (also known as read alignment). 

Mapping involves the determination of genomic origin for each read within 

a dataset 148. Reads can be mapped to a reference genome or 

transcriptome sequence. Mapping to a genome sequence provides a more 

comprehensive quantification of reads since reads which map (either 

partially or entirely) to non-coding areas (for example intronic regions) are 
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also quantified. Ideally, mapping of reads would result in the assignment of 

each raw read to a single location within the reference sequence producing 

a mapping profile which can be transformed into an expression profile for 

each location (based on the number of reads which are assigned to that 

location). However, in reality, several factors impact the level of mapping 

achievable. Firstly, the reference sequence is often not a perfect 

representation of the biological source of RNA that was sequenced. For 

example, sample (or cell-specific) SNPs and insertion-deletion events 

(indels) represent areas of variation between samples which cannot be 

represented by a ubiquitous reference sequence. De novo assembly of a 

reference sequence using raw reads can limit this level of inherent variation 

but often requires a much greater read-depth coverage, ultimately 

increasing the overall cost of a sequencing experiment for very little added 

accuracy 149. Secondly, the use of sequencing platforms which produce 

relatively short reads (35-50bp) such as SOLiD™ or Illumina increases the 

chances of reads mapping to multiple locations, in particular for areas of 

high repetition 107. Thirdly, high levels of sequencing errors (as might be 

expected from low integrity RNA samples) can heavily impact the mapping 

rates 150. Thus, the percentage of reads mapped during the mapping 

process can inform on both the success of the sequencing experiment and 

original quality of the RNA sample.  

Mapping software programs take a raw sequencing file (such as a .fastq or 

a .csfasta for colorspace reads) as input, and where necessary an 
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accompanying quality file (.qual). Often the reference sequence to be used 

for mapping against will be heavily indexed by the mapping software prior 

to a mapping run such that the large volume of data included in a 

reference genome (or transcriptome) can be computationally managed, 

ultimately this makes the mapping process much quicker and decreases the 

amount of random access memory (RAM) required by the software. Reads 

are aligned to the reference sequence based on their entire sequence but 

often, to increase mapping speed, a small portion of the read (known as 

the seed) is used to initially map the read to a number of locations, once 

the seed sequence is aligned, the remaining portion of the read is aligned 

and the number of possible mapping locations decreased. Mapping builds 

up a profile of alignments against the reference sequence that can 

subsequently be quantified by downstream software (Fig 1.9A-B). When 

mapping to a reference genome reads that align entirely within transcribed 

portions of the genome (that is, exons) will be mapped easily by any 

mapping software. However, reads that originate from transcripts that were 

subject to splicing events are much harder to align to a reference genome. 

Indeed, for several mapping programs – such as Bowtie 151, Burrows-

Wheeler alignment tool (BWA) 152 and short oligonucleotide alignment 

program (SOAP) 153 – reads  relating to spliced transcripts will fail to map to 

a reference genome, thereby reducing the overall percentage of reads 

mapped (Fig 1.9C). To avoid this, several mappers have been designed to 

be able to handle reads that span splice junctions (Fig 1.9D), these 
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programs include Blat 154, Tophat 155, GSNAP 156, SpliceMap 157 and 

MapSplice 147,158. 

 

 

	  
	  
Fig	  1.9.	  Schematic	  representation	  of	  read	  mapping	  of	  NGS	  data.	  A)	  Read	  fragments	  and	  
reference	   sequence	   are	   provided	   to	   mapping	   software.	   B)	   Reads	   are	   aligned	   to	  
reference	  sequence	  to	  produce	  a	  virtual	  alignment	  profile.	  C)	  Within	  a	  read	  library,	  a	  
proportion	   of	   the	   reads	   will	   originate	   from	   spliced	   transcripts,	   standard	   mapping	  
software	   will	   fail	   to	   align	   reads	   that	   span	   splice	   junctions.	   D)	   Specialized	   mapping	  
software	   such	   as	   Tophat	   155	   can	   align	   read	   portions	   independently	   thus	   allowing	  
mapping	  of	  reads	  that	  span	  splice	  junctions. 
 

 

Of the multiple different mapping software packages available, many 

employ different mathematical algorithms when aligning reads. This 

variation in software is highlighted by the vast difference in speed and 

accuracy achievable by each of the mappers. For example, a comparison in 

2011 of the most commonly used mappers available revealed that the 

percentage reads mapped ranged from 17.7% - 88.7% and time taken 

varied between 1.5 h – 145 h amongst 8 different mappers – despite each 
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software being provided with identical raw data 148.   A common feature of 

most mapping software is the ability to manually alter the mapping 

parameters and levels of confidence in aligning reads. For example, the 

number of allowed mismatched bases between reads and reference in a 

valid alignment or the number of multiple mapping locations permissible 

before excluding a read from alignment can both be altered to increase the 

number of reads mapped – often at the cost of accuracy 155. 

 

1.6.3 Expression quantif ication 

Following mapping, reads must be annotated and assigned to a 

biologically meaningful unit for example, exons, transcripts or genes. Since 

mapping of reads produces a set of genomic (or transcriptomic) 

coordinates for each read, annotation is reliant on a suitable set of 

reference coordinates relating to the genomic feature to which the reads 

are to be quantified. For example, the simplest approach is to quantify the 

number of reads that align to known genes within the genome, thereby 

arriving at an expression value for each gene. However, this approach 

makes no allowances for genes that overlap and also eliminates the 

possibility of quantifying novel transcripts. Alternatively, each exon can be 

quantified independently, allowing for quantification of: whole genes (by 

aggregation of exon expressions); exons, or individual splice variants of a 

specific gene. The choice of software for quantification and annotation is 

therefore crucial to the type of quantification required. 
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1.6.3.1 Sequence alignment map (SAM file) 

The output file produced from the previously described 

mapping/alignment software is predominantly a sequence alignment map 

(.sam file) or an equivalent binary version (.bam). Both of these file types 

are compatible with most annotation/quantification software. Sam/bam 

files contain information on: sequenced reads, including quality values for 

each base position; alignment information, such as the number of locations 

a read aligned to in the reference sequence; and number of mismatches 

and/or indels within read sequence (compared to reference sequence 

provided during mapping stage). 

1.6.3.2 Count-based quantification 

Broadly, there are two popular approaches to quantifying RNA-Seq data, 

the first of these is count based quantification. Software programs such as 

edgeR 159, DESeq 160 and DEGSeq 161 quantify the number of reads which 

align to any portion of a genes within a reference sequence (including 

intronic and untranslated regions). This number is then normalised to the 

size of the entire read library for that sample, such that values for a single 

gene can be compared between separate samples. This method of 

quantification is often used for broad analysis of differential expression of 

genes since no calculations of individual exons are made 162. However, 

since reads are only normalised to their library size, no allowance is made 

for the size of each gene. For example, given two hypothetical genes 

(Gene A and Gene B), assuming Gene B was twice as long as Gene A, and 
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both genes had equal expression within a sample, Gene B would have 

twice as many reads mapping to it due to its size alone. Consequently, 

count based quantification would incorrectly identify Gene B as having 

double the expression value of Gene A. Thus, direct comparison of 

expression values for two genes within the same sample set is not 

achievable using the count based approach.  

1.6.3.3 Fragment-based quantification  

Alternatively, the software program Cufflinks 145 is able to quantify 

expression values for individual exons of a transcripts, based on a set of 

splice locations provided to the software or by de novo discovery of 

alternative spice junctions during mapping stage. Consequently, due to 

individual quantification each exon of a gene, in addition to gene 

expression analysis, Cufflinks can be used to quantify expression of 

alternative isoforms of genes and novel transcripts. However, since 

alternative isoforms of a gene often share large portions of common 

sequence, quantification is achieved using a high degree of statistical 

assumption and modelling of the variation within a single transcript 149. 

1.6.3.4 Reads per kilobase of exon model per million mapped reads 

(RPKM) 

Importantly, Cufflinks employs an additional normalisation step and 

produces the expression metric, reads per kilobase of exon model per 

million mapped reads (RPKM) 116, which is defined as: 
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RPKM	  	  =	  	  	  	  	  	  	  	  	   	  	  No.	  of	  mapped	  reads	  x	  1	  kilobase	  x	  1	  million	  mapped	  reads	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Length	  of	  transcript	  x	  No.	  of	  total	  reads	  	  
	  

 

Therefore, in addition to normalising to the total number of reads in each 

sample, RPKM is also normalised to the size of the transcript. This means 

that expression values for two genes within the same sample can be 

compared. Equally, expression of a single gene in multiple separate 

experiments can be compared. 

1.6.4 Differential expression testing 

Following quantification of gene expression by either count-based or 

RPKM-based techniques, a variety of statistical tests can be performed 

between multiple data sets to determine if genes are differentially 

expressed (DE) between samples. Each of the software programs available 

for annotation and quantification of gene expressions provide a method of 

determining DE genes, but vary in the way the data is modelled. Cufflinks 

used a negative binomial distribution to model the data for differential 

analysis whereas several of the count based software programs use a 

Poisson distribution (for example edgeR, DEGSeq and DESeq). Whilst the 

distribution of read fragments across a genome in distinct locations (genes) 

can be thought of as a Poisson distribution a negative binomial modelling 

is considered more appropriate when modelling variation that arises from 

multiple biological replicates since Poisson-based analyses are prone to 
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high levels of false positives due to an underestimation of the biological 

variance 149,163. 

1.6.4.1 False discovery rate 

The traditional threshold for significance in a biological experiment is p< 

0.05 – that is, there is less than a 5% chance of the observed quanta 

occurring by chance alone. When dealing with a large number of variable 

such as during a global gene expression analysis, this threshold no longer 

provides a satisfactory measure of significance. For example, if comparing 

the expression values for every gene in the human genome (approximately 

23,000 genes) for genes that are DE between two samples, using a p< 0.05 

would result in > 1000 genes being false positives. Hence, it is more 

appropriate with transcriptome and genomic studies to use a transformed 

p-value (known as a q-value) which applies a false discovery rate (FDR) of 

5% to the data. Therefore, q< 0.05 implies that there is less than 5% 

chance the gene(s) in question are differentially expressed by chance alone 

allowing for a 5% false discovery rate. FDR is controlled by Benjamini-

Hochberg correction 164. 
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1.7 Summary 

Neutrophils play a key role in host defence via a number of evolutionarily 

conserved anti-microbial mechanisms2,23,165. Rather than acting merely as a 

front-line defensive cell, neutrophils are now recognised as central to the 

inflammatory response through the production of several inflammatory 

mediators regulating both the innate and adaptive immune systems 5. The 

global molecular changes that underlie neutrophil priming and immune 

regulation are poorly defined, yet represent an attractive area of research 

to fully elucidate the role and regulatory capacity of neutrophils during the 

immune response. The speed, accuracy, and robust nature of RNA-Seq as a 

quantification platform, and the ability to extract data relating to multiple 

genetic features from a single sequencing experiment have all contributed 

to RNA-Seq superseding micro-array analysis as the gold-standard method 

of transcriptome analysis. However, a global approach to analyse 

neutrophil gene expression using RNA-Seq has yet to be undertaken. A 

greater understanding of the molecular properties of both quiescent and 

primed neutrophils will not only expand our knowledge of neutrophil 

biology but will inform on how neutrophils contribute to many inflammatory 

diseases, ultimately providing new areas of research into neutrophil 

regulation in health and disease. 
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1.8 Hypothesis and aims 

The hypothesis that this project sought to test was:  

 

Different cytokines lead to changes in neutrophil phenotype, but do so via 

different signalling pathways that lead to the switching on or off of different 

sets of genes. 

 

The aims of this project were to: 

 

1. Develop and define a robust pipeline of bioinformatic software 

programs and protocols to accurately quantify and analyse the 

neutrophil transcriptome under conditions of simulated 

inflammation by in vitro stimulation. 

 

2. Quantify the changes in gene expression in neutrophils following 

priming with inflammatory cytokines. 

 

3. Identify changes in gene expression profiles between neutrophils 

stimulated with different inflammatory mediators. 

 

4 .  Analyse the effects of neutrophil isolation methods and neutrophil 

purity on gene expression and function. 	  
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Chapter	   2:	   Materials	   and	  
Methods	  

2.1 Materials 

	  

Table	  2.1	  Cell	  isolation	  and	  culture 

Cell	  isolation	  and	  culture	  

Materials	   Supplier	  

Lithium	  heparin	  vacuette	  	   Greiner	   Bio-‐one,	   Thermo	   Fisher	  
Scientific	  (Gloucestershire,	  UK)	  Safety	  butterfly	  needles	  

RPMI	  1640	  (+	  25mM	  HEPES	  with	  L-‐
glutamine)	   Gibco,	   Life	   technologies	   (Paisley,	  

UK)	  Dulbecco’s	   phosphate	   buffered	  
saline	  

Polymorphprep	  ™	   Axis-‐shield	  (Cambridge,	  UK)	  

Isoton	  diluent	   Beckman	  Coulter	  Inc.	  

Ammonium	  Chloride	  lysis	  buffer	  

- Ammonium	  Chloride	  (NH4Cl)	  
- Potassium	  hydrogen	  carbonate	  

(KHCO3)	  
- Ethylenediaminetraacetic	  acid	  

(EDTA)	  

Sigma	  (Poole,	  UK)	  

Foetal	  bovine	  serum	   Invitrogen,	   Life	   technologies	  
(Paisley,	  UK)	  

Lymphoprep	  ™	  

Stemcell	   technologies	   (Grenoble,	  
France)	  

EasySep®	   Human	   Neutrophil	  
enrichment	  kit	  

HetaSep®	  

Rapid	  Romanowsky	  stain	   HD	  Supplies	  (Aylesbury,	  UK)	  
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Human	  AB	  serum	  

Sigma	  (Poole,	  UK)	  Paraformaldehyde	  (PFA)	  

Dimethyl	  sulphoxide	  (DMSO)	  

	  

	  

Table	  2.2	  Cytokines/chemokines/stimulants/inhibitors	  	  

Cytokines/Chemokines/Stimulants/Inhibitors	  

Materials	   Supplier	  

Recombinant	  human	  G-‐CSF	  

Sigma	  (Poole,	  UK)	  Recombinant	  human	  IL-‐6	  

Recombinant	  human	  IL-‐1β	  

Recombinant	  human	  IL-‐8	   Invitrogen,	   Life	   technologies	  
(Paisley,	  UK)	  

Recombinant	  human	  IL-‐10	   	  

Recombinant	  human	  IFN-‐α	  	   	  

Recombinant	  human	  IFN-‐β	  	   	  

Recombinant	  human	  GM-‐CSF	   Roche	   diagnostics	   (East	   Sussex,	  
UK)	  Recombinant	  human	  IFN-‐γ	  

Recombinant	  human	  TNF-‐α	   Calbiochem	  (Nottingham,	  UK)	  

fMLP	  
Sigma	  (Poole,	  UK)	  

PMA	  

LPS	   Source	   BioScience	   (Nottingham,	  
UK)	  

MALP	   Enzo	  Life	  Sciences	  (Exeter,	  UK)	  

JAK-‐1	  inhibitor	  
Calbiochem	  (Nottingham,	  UK)	  

Wedelolactone	  
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Table	  2.3	  Primary	  and	  secondary	  antibodies	  

Primary	  and	  Secondary	  antibodies	  

Materials	   Supplier	  

anti-‐human	  STAT1	  	  (#9175)	  

Cell	  Signalling	  (Massachusetts,	  
USA)	  

anti-‐human-‐phosphorylated	  STAT1	  
(#9177)	  

anti-‐human	  STAT3	  (#9138S)	  

anti-‐human-‐phosphorylated	  STAT3	  
(4904P)	  

anti-‐human	  ERK	  (#9102)	  

anti-‐human-‐phosphorylated	  ERK	  
(#9106S)	  

anti-‐human	  p38	  (#9212)	  

anti-‐human-‐phosphorylated	  p38	  
(#9216S)	  

anti-‐human-‐AKT	  (#9272)	  

anti-‐phosphorylated-‐AKT	  (#4060S)	  

anti-‐human-‐IKβα	  (#9242)	  

anti-‐human-‐phosphorylated	  NFκβ	  
(#3033S)	  

Rabbit-‐anti-‐IL-‐1β	  (#12703)	  

Mouse	  anti-‐human	  β-‐actin	  (#8226)	   Abcam	  (Cambridge,	  UK)	  

Mouse	  anti-‐human	  GAPDH	  (G8795)	  

Sigma	  (Poole,	  UK)	  HRP-‐conjugated-‐sheep	  anti-‐mouse	  
(A5906)	  

HRP-‐conjugated	  donkey-‐anti-‐rabbit	  
(25005179)	  

GE	  healthcare	  Life	  Sciences	  
(Buckinghamshire,	  UK)	  

FITC-‐conjugated	  mouse	  anti-‐human	  
CD11b	  (FAB16991P)	  

R&D	  Biosystems	  (Oxfordshire,	  
UK)	  FITC-‐conjugated	  mouse	  anti-‐human	  

CD4	  (FAB3791F)	  
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FITC-‐conjugated	  mouse	  anti-‐human	  
CD15	  (F0830)	  

Dako	  UK	  (Cambridgeshire,	  UK)	  

FITC-‐conjugated	  mouse	  anti-‐human	  
CD64	  (FAB12571F)	  

R&D	  Biosystems	  (Oxfordshire,	  
UK)	  

FITC-‐conjugated	  mouse	  anti-‐human	  
CD16	  (555406)	  

BD	  Biosiences	  (Oxfordshire,	  UK)	  

FITC-‐conjugated	  mouse	  anti-‐human	  
L-‐Selectin	  (BBA33)	  

R&D	  Biosystems	  (Oxfordshire,	  
UK)	  

FITC-‐conjugated	  mouse	  anti-‐human	  
IgGI	  isotype	  (SC-‐2855)	  

Santa	  cruz	  biotechnology	  
(Heidleberg,	  Germany)	  

	  

	  

Table	  2.4	  Samples	  preparation	  and	  western	  blot 

Sample	  preparation	  and	  western	  blot	  

Materials	   Supplier	  

Laemmli	  buffer	  

	   -‐Glycerol	  

	   -‐Sodium	  dodecyl	  sulphate	  (SDS)	  

-‐Tris	  

Thermo	   Fisher	   Scientific	  
(Gloucestershire,	  UK)	  

	   -‐	  Dithiothreitol	  (DTT)	  

-‐Bromophenol	  blue	  
Sigma	  (Poole,	  UK)	  

Hydrochloric	  acid	  (HCl)	   VWR	   International	  
(Leicestershire,	  UK)	  

Glycine	  

Sigma	  (Poole,	  UK)	  

Sodium	  Chloride	  

Ammonium	  persulphate	  (APS)	  

Isopropanol	  

Methanol	  

Tween-‐20	  

Tetramethylethylenediamine	  (TEMED)	  
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Sodium	  azide	  

Hydrogen	  peroxide	  (H202)	  

Whatman	  filter	  paper	  

Polyacrylamide	   Geneflow	   (Staffordshire,	  
UK)	  (Kiddeminster,	  UK)	  

Biotinylated	   protein	   ladder	   detection	  
pack	  

Cell	   signalling	  
(Massachusetts,	  USA)	  

BLUeye	  prestained	  protein	  ladder	  	   Geneflow	   (Staffordshire,	  
UK)	  

Phosphatase	  inhibitor	  cocktail	  II	   Calbiochem	   (Nottingham,	  
UK)	  

Marvel	   non-‐fat	   (<	   1%)	   dried	   milk	  
powder	  

Home	   Bargains	   (Liverpool,	  
UK)	  

Ponceau	  S	  

	  

Millipore	   (Hertfordshire,	  
UK)	  

Bovine	  serum	  albumin	  

Kodak®	   photographic	   Fixer	   and	  
Developer	  

Immobilon	   Western	  
Chemiluminescent	  HRP	  Substrate	  

Polyvinylidene	   fluoride	   (PVDF)	  
membrane	   	  

GE	  Healthcare	  Life	  Sciences	  
(Buckinghamshire,	  UK)	  Enhanced	   chemiluminescence	  

hyperfilm	  
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Table	  2.5	  Neutrophil	  chemiluminescence	  and	  apoptosisaa 

Neutrophil	  chemiluminescence	  and	  apoptosis	  	  

Materials	   Supplier	  

Hank’s	   balanced	   salt	   solution	  
(HBSS)	  

Gibco,	   Life	   technologies	  
(Paisley,	  UK)	  

Luminol	  
Sigma	  (Poole,	  UK)	  

Propidium	  iodide	  

Alexa	   Fluor	   488-‐conjugated	  
Annexin-‐V	  (#A13201)	   Life	  technologies	  (Paisley,	  UK)	  

	  

	  

Table	  2.6	  RNA	  isolation	  cDNA	  synthesis	  and	  qPCR	  	  

RNA	  isolation,	  cDNA	  synthesis	  and	  qPCR	  materials	  

Materials	   Supplier	  

Trizol®	  	   Gibco,	   Life	   technologies	  
(Paisley,	  UK)	  

Chloroform	  

Sigma	  (Poole,	  UK)	  2-‐Propanol	  (molecular	  grade)	  

Ethanol	  (molecular	  grade)	  

RNase-‐free	  DNase	  set	  

Qiagen	  (Crawley,	  UK)	  RNeasy	  mini	  kit	  

Quantitech	  SYBR	  green	  PCR	  kit	  

Superscript	   III	   first	   strand	   cDNA	  
synthesis	  kit	   Invitrogen,	   Life	   technologies	  

(Paisley,	  UK)	  
RNase	  OUT	  

Random	  primers	   Promega	  (Southampton,	  UK)	  

Specific	  primers	   Eurofins	  (UK)	  
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2.2 Methods 

2.2.1 Ethical approval 

Ethical approval for the study of neutrophils from adult healthy controls was 

granted by the University of Liverpool Committee for Research Ethics 

(CORE). All participants gave written, informed consent. 

 

2.2.2 Leukocyte isolation 

Blood was collected from healthy volunteers by venupuncture into lithium 

heparin-coated vacuettes and processed immediately. Blood taken for 

RNA-Seq processing was taken from volunteers at a similar and consistent 

time of the day (9 am - 11 am) to mitigate variation from the innate 

immunity circadian rhythm as recently described 166.  

2.2.2.1 Magnetic bead isolation of neutrophils by negative selection 

The EasySep® Human Neutrophil enrichment kit was used, following the 

manufacturer’s instructions. Whole blood was gently mixed with HetaSep 

solution at a ratio of 1:5 (1 part HetaSep to 5 parts Blood) and incubated at 

37 °C for 20-30 min until plasma/erythrocyte interphase was at 

approximately 60% of the total volume. The leukocyte-rich plasma layer 

was carefully removed and washed in a 4-fold volume of recommended 

media (Mg2+ and Ca2+ -free PBS, + 2% FBS and 1 mM EDTA). Cells were 

centrifuged at 500 g for 5 min and resuspended in a 4-fold volume of 

recommended media. Cells were centrifuged at 120 g for 10 min to 
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remove platelet contamination and resuspended at 5 x 107 nucleated cells 

per mL. 

A volume of between 0.5 and 2 mL of nucleated cells at 5 x 107/mL was 

used in each neutrophil bead purification process, dependent on the 

number of purified cells required. 50 µL of EasySep® neutrophil enrichment 

cocktail, containing a mix of tetrameric antibody complexes produced from  

monoclonal antibodies directed against the cell surface antigens CD2, 

CD3, CD9, CD19, CD36, CD56 and glycophorin A – whilst being bi-specific 

for dextran – was added per 1 mL of nucleated cells and incubated for 10 

min at room temperature. 100 µL of EasySep® dextran-coated nanoparticle 

beads were added per 1 mL of nucleated cells and incubated for a further 

10 min at room temperature. The cell/antibody/bead solution was adjusted 

to a total volume of 2.5 mL with recommended media and placed into an 

EasySep® magnet for 5 min at room temperature. Unbound neutrophils 

were poured off and placed into EasySep® magnet for a further 5 min. 

Highly-pure, unbound neutrophils were briefly centrifuged and 

resuspended in RPMI 1640 media plus 25 mM HEPES to a concentration of 

5 x 106/mL. Following the erythrocyte sedimentation step, the neutrophil 

isolation procedure from whole blood was performed at room temperature 

and would typically take less than 100 min to complete. 

2.2.2.2 Polymorphprep™ isolation of neutrophils 

Neutrophils were isolated by single-step centrifugation of whole blood 

onto Polymorphprep™ density gradient as per the manufacturer’s 
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recommendation. Briefly whole blood was layered onto Polymorphprep™ 

at a ratio of 1:1 and centrifuged at 500 g for 35 min. Granulocytes were 

carefully removed and resuspended in RPMI 1640 media plus 25 mM 

HEPES and centrifuged at 500 g for 5 min to remove any remaining 

Polymorphprep™. Cells were resuspended in media and contaminating 

erythrocytes were removed by hypotonic lysis by the addition of 

ammonium chloride (13.4 mM KHCO3, 155 mM NH4Cl and 96.7 mM EDTA 

in 500 mL distilled water) at a ratio of 1:9 media:lysis buffer for 3 min. 

Platelet contamination was removed by further centrifugation of the cells at 

150 g for 3 min. Neutrophils were counted using a Beckman Coulter 

Multisizer 3 and the suspension volume adjusted to give a final 

concentration of 5 x 106/mL. Cells were incubated with gentle agitation at 

37 °C and supplemented with 10% (v/v) human AB serum for incubations 

>4 h. The entire neutrophil isolation procedure from whole blood was 

performed at room temperature and would typically take less than 90 min 

to complete. 

2.2.2.3 Lymphocyte isolation 

Lymphocytes were isolated by carefully removing the upper PBMC band 

following whole blood centrifugation over Polymorphprep™ (as described 

in previous section). Cells were layered onto Lymphoprep™ density 

gradient, centrifuged for 20 min at 600 g and resuspended in RPMI (+ 

HEPES) media at 1x106 /mL. 
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2.2.3 Cytospins  

Purity of neutrophil isolations was determined by cytospin and visual 

identification of stained cells. 20 µL of cells at 5 x 106 cells/mL was added 

to 180 µL of PBS plus 10 mM EDTA. The suspension was placed into a 

single cytology funnel (VWR) and centrifuged onto a glass slide (VWR) at 30 

g for 5 min using a Shannon 3 cytospin and immediately stained with Rapid 

Rowmanowsky stain. Neutrophil purity was typically >96% and >98% 

following Polymorphprep™ or magnetic bead isolation, respectively. 

 

2.2.4 Flow cytometric analysis of neutrophil cell  surface markers 

For the measurement of cell surface markers by flow cytometry, 20 µL of 

neutrophils at 5 x 106 cells/mL (equating to 1 x 105 neutrophils) were 

washed in 100 µL PBS plus 0.1% (w/v) BSA, centrifuged at 1000 g for 3 min, 

resuspended in 10 µL PBS plus 0.1% (w/v) BSA and incubated at 4 °C in the 

dark with 2-5 µL of fluorescently-conjugated antibody (as indicated in the 

text). Following 30 min incubation cells were fixed in 2% paraformaldyhyde 

(PFA) for no more than 15 min at room temperature in the dark. Cells were 

centrifuged at 1000 g for 3 min and resuspended in 200 µL of PBS plus 

0.1% (w/v) BSA and stored at 4 °C prior to analysis. A minimum of 5000 

gated events were analysed using a Guava Easycyte flow cytometer 

(Millipore). Where applicable a suitable isotype control was used to control 

against non-specific staining.  
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2.2.5 Flow cytometry measurement of neutrophil apoptosis 

For measurement of neutrophil apoptosis/necrosis by flow cytometry, 105 

cells were incubated in 100 µL HBSS with 10 µg/mL of FITC-conjugated 

annexin V in the dark, following 15 min, 1 µg/mL propidium iodide (PI) was 

added and samples were measured immediately on a Guava Easycyte flow 

cytometer. A minimum of 5000 gated events were collected per sample.  

 

2.2.6 Preparation of protein lysates 

Neutrophils were centrifuged at 1000 g for 3 min following culture under 

appropriate conditions (as indicated in the text), the supernatant carefully 

aspirated, and the pellet immediately lysed in boiling Laemmli buffer 

containing 10% (v/v) glycerol, 100mM DTT, 3% (w/v) SDS, 1 M Tris-HCL (pH 

6.8) and 0.001% (w/v) bromophenol blue to a final concentration of 5 x 104 

cells/µL. For incubations >4 h neutrophils were additionally washed with 

PBS to remove supplemented human AB serum prior to lysis. For 

measurement of protein phosphorylation, Laemmli buffer was additionally 

supplemented with phosphatase inhibitors (phosphatase inhibitor cocktail 

II, Calbiochem, Nottingham, UK). Samples were boiled for 5 min with 

occasional vortexing and stored at -20 °C. 
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2.2.7 Western blotting 

Whole cell extracts were briefly boiled and centrifuged. 10-25 µL of protein 

lysate (equivalent to 5-15 x 104 cells) was loaded per well of an 8-15% 

polyacrylamide gel (dependent on size of protein under investigation) using 

a 4.5% stacking gel. 10µL of biotinylated and/or pre-stained molecular 

weight ladders were also loaded to allow for molecular weight 

determinations. Samples were electrophoresed at a constant 180-200V for 

approximately 60 min using a BioRad Mini Protean III electrophoresis kit 

until proteins were suitably resolved. Proteins were transferred to a PVDF 

membrane by electrophoresis in a BioRad mini Protean III transfer kit at a 

constant 100V for 60-90 min, depending on thickness of gel. Successful 

transfer of proteins was confirmed by briefly staining the membrane in 

Ponceau S (0.01% (w/v) in 5% (v/v) acetic acid) stain.  

To decrease non-specific binding of antibodies, membranes were 

incubated at room temperature for at least 1h in blocking buffer. 

Membranes were subsequently incubated overnight with primary antibody 

in wash buffer containing either 5% (w/v) non-fat dried milk or 5% (w/v) 

bovine serum albumin (BSA) at 4 °C with gentle agitation. Following 

washing of membranes for 3 x 5 min in washing buffer, membranes were 

incubated at room temperature for at least 1h with an appropriate 

horseradish-peroxidase (HRP)-conjugated secondary antibody in wash 

buffer containing 5% (w/v) non-fat dried milk (for specific concentrations 

see Table 2.7). Following further washing of the membrane in wash buffer 
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(3 x 5 min), the bound antibodies were detected using enhanced 

chemiluminescence (ECL) reagents and careful exposure of the membrane 

to hyper-film in a dark-room. Quantification of western blots by 

densitometry was carried out using the AQM Advanced 6 Imaging 

Software (Windows) and a digital film scanner. 

 

2.2.8 Measurement of neutrophil respiratory burst 

Neutrophil respiratory burst was measured by luminol-enhanced 

chemiluminescence. Luminol is a membrane permeable molecule and is 

therefore suitable for quantification of both intra and extracellular reactive 

oxygen species (ROS). Luminol is oxidised by the enzymatic products of 

myeloperoxidase and NADPH oxidase during the respiratory burst, 

resulting in a release of energy in the form of light which can be quantified 

using a plate reader. 

Cells at 5 x 106/mL were incubated in RPMI 1640 media with (or without) a 

priming cytokine for 30 min at 37 °C with gentle agitation. 2 x 105 cells (40 

µL) were added to an opaque 96-well microtitre plate and volume adjusted 

to 100 µL with media. 100 µL of HBSS containing 100 µM luminol, and 

either 1 µM fMLP or 0.2 mg/mL PMA were added to cells and immediately 

measured on a FLUOstar Omega plate reader at 37 °C plus 5% CO2.  
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Table	  2.7	  Western	  blot	  antibody	  concentrations	  

Western	  blot	  antibody	  concentrations	  

Primary	  antibody	   Secondary	  antibody	  

STAT	  1	  	   Rabbit	  (1:20,000)	  

Phosphorylated	  STAT1	   Rabbit	  (1:20,000)	  

STAT	  3	   Rabbit	  (1:20,000)	  

Phosphorylated-‐STAT	  
3	   Rabbit	  (1:20,000)	  

ERK	   Rabbit	  (1:20,000)	  

Phospho-‐ERK	   Rabbit	  (1:20,000)	  

p38	   Mouse	  (1:10,000)	  

phosphophorylated-‐
p38	   Mouse	  (1:10,000)	  

AKT	   Rabbit	  (1:20,000)	  

Phosphorylated-‐AKT	   Rabbit	  (1:20,000)	  

IκBα	   Rabbit	  (1:20,000)	  

Phosphorylated-‐NFκB	   Rabbit	  (1:20,000)	  

Beta	  actin	   Mouse	  (1:10,000)	  

IL-‐1B	   Rabbit	  (1:20,000)	  

GAPDH	   Mouse	  (1:10,000)	  

 

2.2.9 Extraction and isolation of neutrophil RNA 

 Neutrophils at 5 x 106/mL were centrifuged at 1000 g for 3 min, the 

supernatant aspirated and the pellet lysed in 1mL of TRIzol® per 5x106 cells. 

Cells were further lysed by pipetting the solution several times through a 

20 gauge needle and syringe, to obtain a homogenized solution, which 

was incubated at room temperature for 5 min. 200 µl of chloroform was 
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added per 1mL of Trizol® and the solution was vigorously mixed for 15 

seconds, incubated at room temperature for 2-3 min, before being 

centrifuged at 10,000 g for 15 min at 4 °C. The upper aqueous layer, 

containing RNA, was carefully removed and added to an equal volume of 

molecular grade isopropanol.  This was stored for at least 24h at -20 °C to 

ensure complete precipitation of the RNA. Samples were then centrifuged 

at 10,000 g for 30 min at 4 °C, washed in 70% (v/v) ethanol, pelleted and 

re-suspended in 100 µL of RNase-free water. The RNA was further purified 

using a Qiagen RNeasy kit according to the manufacturers protocol, which 

included a 15 min DNase digestion step to eliminate any contaminating 

genomic DNA. RNA-Seq samples were prepared into a final elution of 30 µl 

of RNase-free water and stored at -150 °C.  All RNA samples were 

transported by courier on dry ice to either the Centre for Genomic 

Research (University of Liverpool) or BGI International, Hong Kong. In each 

case, transportation took less than 60 h and samples were quality-checked 

both after arrival, and following library construction. 

 

2.2.10 cDNA synthesis for PCR 

cDNA was synthesized from total RNA using the Superscript III First Strand 

cDNA synthesis kit (Qiagen), as per the manufacturers protocols. The total 

amount of RNA per sample within each experiment was adjusted to an 

equal amount prior to cDNA synthesis. RNA from each sample was added 

to 1 µL of random primers (250 ng), 1 μL dNTPs and the reaction volume 
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was adjusted to 13 µL by adding RNase-free water. Samples were heated 

to 65°C for 5 min in a heat-block and rapidly cooled on ice for at least 1 

min to allow primer annealing. A master-mix of 4 µL first-strand buffer, 1 µL 

RNaseOUT (RNase inhibitor), 1 µL (0.1M) DTT and 1 µL (200 units/µL) 

Superscript III reverse transcriptase, were added to each sample before 

incubation in a Thermo PX2 thermal cycler. cDNA synthesis was initiated at 

25 °C for 5 min, completed at 50 °C for 60 min and the reaction was 

terminated by a final 15 min at 70 °C. Samples were cooled to 4 °C before 

being stored at -20 °C until further use. 

 

2.2.11 Quantitative (real-t ime) PCR 

Transcript levels were quantified using the Quantitect SYBR Green qPCR 

detection kit (Qiagen), following the manufacturer’s protocol. Briefly, 1 µL 

of cDNA was added to 0.8 µL of each forward and reverse primer (10 pM) 

and 10 µL of QuantiTect, in a total reaction volume of 20 µL. Each sample 

was prepared in duplicate or triplicate and run on a Roche LightCycler 480 

qPCR machine in an opaque 96-well microtitre plate using the cycling 

protocol shown in (Table 2.8). Relative amounts of target transcripts were 

quantified by normalising their Ct values against those of a suitable 

housekeeping gene (as indicated in the text) using the Pfaffl method 167. 

Primer sequences shown in Table 2.9. 
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Table	  2.8	  qPCR	  cycling	  parameter 

Cycling	  
stage	   Step	   Temperature	  

(°C)	  
Time	  
(min)	  

No.	   of	  
cycles	  

1	   Taq	  Activation	   95	   15	   1	  

2	  

Denaturation	   95	   1	  

45	  Primer	  
Annealing	   55	   0.5	  

Elongation	   72	   0.5	  

3	   Melt	   Curve	  
Analysis	   60	   0.5	   1	  

	  

	  

Table	  2.9	  Primer	  sequences	  and	  PCR	  product	  size 

PCR	  primers	  

Gene	  of	  
Interest	  

Primer	  Sequence	  (5’	  to	  3’)	   Product	  
size	  (bp)	  

FADD-‐f	   CACAGACCACCTGCTTCTGA	   176	  

FADD-‐r	   CTGGACACGGTTCCAACTTT	   	  

FOS-‐f	   CTCCGGTGGTCACCTGTACT	   137	  

FOS-‐r	   GTCAGAGGAAGGCTCATTGC	   	  

ICAM1-‐f	   AGCTTCGTGTCCTGTATGGCCC	   128	  

ICAM1-‐r	   ACACTTGAGCTCGGGCAATGGG	   	  

IL1B-‐f	   CACTACAGCAAGGGCTTCAGGC	   98	  

IL1B-‐r	   TTCTCCTGGAAGGTCTGTGGGC	   	  

IL8-‐f	   AAAAGCCACCGGAGCACTCCAT	   143	  

IL8-‐r	   AGAGCCACGGCCAGCTTGGA	   	  

JUN-‐f	   TGGCAGAGTCCCGGAGCGAA	   121	  

JUN-‐r	   CGAAGCTGAGCGCACGTCCT	   	  

NAMPT-‐f	   GCCAGCAGGGAATTTTGTTA	   100	  

NAMPT-‐r	   TGTCACCTTGCCATTCTTGA	   	  

SOCS3-‐f	   CTGGTCCCCTCCCGGTTGGT	   112	  

SOCS3-‐r	   TGTTGGCGGCCGTGAAGTCC	   	  
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TNF-‐f	   CAGAGGGCCTGTACCTCATC	   219	  

TNF-‐r	   GGAAGACCCCTCCCAGATAG	   	  

ACTB-‐f	   CATCGAGCACGGCATCGTCA	   211	  

ACTB-‐r	   TAGCACAGCCTGGACAGCAAC	   	  

B2M-‐f	   ACTGAATTCACCCCCACTGA	   114	  

B2M-‐r	   CCTCCATGATGCTGCTTACA	   	  

GAPDH-‐f	   CTCAACGACCACTTTGTCAAGCTCA	   106	  

GAPDH-‐r	   GGTCTTACTCCTTGGAGGCCATGTG	   	  

PPIA-‐f	   GCTTTGGGTCCAGGAATGG	   60	  

PPIA-‐r	   GTTGTCCACAGTCAGCCATGGT	   	  

	  

	  

2.2.12 Statist ics 

Statistical analysis of RNA-Seq data was performed by Cufflinks 

bioinformatic software 145, incorporating a false discovery rate (FDR) of 5% 

using Benjamini-Hochberg correction for multiple testing 164,168. Unless 

otherwise stated, all other data was judged for significance using the 

Student’s t-test for either paired or independent samples, as necessary. 

Significance was calculated using GraphPad/Prism version 6.0. (GraphPad 

software, San Diego, CA. USA). Error bars represent SEM unless otherwise 

stated and differences were considered significant if p < 0.05.  
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2.2.13 Bioinformatic software 

Several bioinformatic software programs were used to analyse both raw 

and annotated RNA-Seq data, (Table 2.10) provides details on the release 

versions used for analysis of data presented. Further details of individual 

bioinformatic software used can be found in Chapter 3. 

 

Table	  2.10	  Release	  versions	  of	  bioinformatic	  software	   

Bioinformatic	  software	  versions	  
Bioinformatic	  
software	   Version	  

Bowtie	   2.0.07	  
Tophat	   1.4.1-‐2.0.4	  
Cufflinks	   2.02	  
Samtools	   0.1.18	  
IPA	   n/a	  
IGV	   2.2.7	  

Microsoft	  
Office	   2011	  edition	  

R	   2.15.2	  
EdgeR	   3.0.8	  
DESeq	   1.10.1	  

cummeRbund	   2.6.2	  
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Chapter	   3:	   Defining	   a	  
bioinformatic	   pipeline	   for	  
analysis	   of	   neutrophil	   gene	  
expression	  
Results presented within this chapter were included in a publication in 
which I was co-lead author: 
 
Wright	  HL†,	  Thomas	  HB†,	  Moots	  RJ,	  Edwards	  SW	  (2013)	  RNA-‐Seq	  Reveals	  
Activation	  of	  Both	  Common	  and	  Cytokine-‐Specific	  Pathways	  following	  
Neutrophil	  Priming.	  PLoS	  ONE	  8(3):	  e58598.	  doi:10.1371/journal.pone.0058598	  

3.1 Introduction 

Neutrophils are the most abundant white blood cell in the circulation, 

representing between 40-60% of the leukocyte population. On average, up 

to 1010 neutrophils are released from the bone marrow per day 169. These 

terminally-differentiated cells patrol the vascular system in search of 

inflammatory signals arising from pathological insult or localised cellular 

injury. Armed with a variety of anti-microbial enzymes and the ability to 

rapidly release reactive oxygen metabolites, neutrophils are the major 

cellular component of the innate immune system.  

Historically, neutrophils were regarded as one-dimensional innate cells, 

with little influence on surrounding immune cells owing to an incapacity for 

de novo gene expression and a short half-life of between 6-8 h. It is now 

well established that neutrophils play a central role in initiating and 
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propagating both the innate and adaptive immune responses by the 

production and release of numerous cytokines and chemokines 5.  

Despite the increased appreciation of neutrophil gene expression, few 

studies have focused on how neutrophil gene expression profiles change in 

response to external stimuli. Moreover, at the time of commencement of 

this project, the human neutrophil transcriptome had yet to be quantified 

by RNA-Seq despite similar studies on other cell types 117,170–172 There are 

several benefits offered by RNA-Seq over more established technologies 

such as micro-arrays and quantitative PCR as a method of quantifying the 

gene expression profile of a cell (as discussed in section 1.5.2). 

The past 20 years has seen an exponential increase in sequencing 

technologies. Both sequencing speed and accuracy have increased 

dramatically, whilst the financial cost of the instruments and reagents has 

decreased. These improvements can largely be attributed to the efforts of 

the human genome project, which brought about the collaboration of 

several research institutes in an attempt to comprehensively sequence the 

human genome using the best available technology at the time. The 

success of the 13 year project has led the way for further improvements 

and greater decreases in costs of sequencing. By way of example, Fig 3.1 

shows how the cost of sequencing a genome has decreased by over 4 

orders of magnitude in the space of a decade. These costs declined 

modestly over the first 5 years, but more rapidly post-2008, via the 

introduction of the then-called “next generation sequencing” (NGS) 
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technology, which consisted of Applied Biosystem’s SOLiD™ platform, 

Roche’s 454 pyrosequencer technology and Illumina’s Genome analyser 

system 173.  

 

 

Fig	  3.1	  The	  cost	  of	  sequencing	  a	  genome	  from	  2003-‐2013.	  The	  cost	  of	  sequencing	  has	  
decreased	  by	  more	  than	  4	  orders	  of	  magnitude	   in	   the	  space	  of	   10	  years.	  The	  current	  
cost	   (Jan	   2014)	   is	   approximately	   £2300.	   	   Adapted	   from,	   Wetterstrand	   KA.	   DNA	  
Sequencing	  Costs:	  Data	  from	  the	  NHGRI	  Genome	  Sequencing	  Program	  (GSP)	  Available	  
at:	  www.genome.gov/sequencingcosts.	  Accessed	  [23-‐5-‐14].	  
 
In addition to a decrease in sequencing costs, the digital output of a 

sequencing run has equally accelerated exponentially during the last 

decade. The rate of development (or fall in cost) of many technological 

platforms can often be shown to correlate well with Moore’s law, which 

states that on average, the number of transistors in an integrated circuit 

doubles every 24 months. One such area of technology that has fallen in 

line with Moore’s law is that of data storage. However, the increase seen in 

NGS capacity for data production far outstrips that predicted by Moore’s 

law 174. This disparity in cost between storage and production of NGS data 
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could ultimately lead to sequence data being more expensive to store than 

to produce 175. 

Whilst the relative improvements in sequencing technologies compared to 

other technological fields is of interest (and concern), perhaps of greater 

importance is the disproportionate improvements in sequencing 

technologies with sequencing data analysis software. As the cost of 

sequencing decreased to accessible levels, the data analysis software 

available to analyse the raw data remained largely either inadequate, too 

technical to operate, or unfeasibly expensive for small-scale studies by 

scientists.  

More recently, a large number of open-access software programs have 

been developed for biology- users who have basic informatics skills. These 

allow free distribution and adaptation of programs that are designed to be 

compatible with the major sequencing platforms and raw data formats, but 

require the user to be familiar with a basic command line interface and 

non-standard operating systems, such as Linux or Unix. Additionally, 

software development of this kind is often small-scale and with limited 

features. Consequently, there are now a large number of open-source 

bioinformatic analysis software packages offering a range of utilities, 

advantages and features over other software packages. While these may 

not have the breadth of features available or ease of use to appeal to a 

dedicated bioinformatics research lab, they are usable to researchers with 

modest bioinformatic skills.  
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Perhaps unsurprisingly, many of the more successful and popular software 

packages are those developed by large commercial companies such as the 

CLCbio Genomics Workbench by Qiagen, or ERGO™ by igenbio, which 

are software suites offering all the most popular features of other software 

packages (such as read-mapping, annotation and differential analysis) in 

one software suite, with the added benefit of offering full user support and 

guidance on how best to utilise the software and extensive troubleshooting 

documentation. Software suites of this kind are an attempt to standardise 

the process of quantifying large datasets but they do so at fairly high cost. 

Whilst the intuitive graphical interface, full support, and industry-wide 

recognition is of great importance for large research centres, the often high 

commercial-licence cost (and annual subscription costs) can price out the 

smaller laboratories. Consequently, there is little agreement within the NGS 

community as to what is considered to be ‘best practice’ when it comes to 

data annotation and analysis 176. 

In summary, It is clear that a global approach to studying neutrophil gene 

expression by RNA-Seq is both potentially achievable, and of great 

interest. It will allow the accurate measurement of transcriptional changes 

in neutrophils under tightly controlled conditions and could ultimately lead 

to the development of a predictive model to determine the functional 

consequences of these changes. Whilst the available high-throughput 

sequencing technology is both adequate and affordable to undergo a large 

scale study into gene expression, the necessary software and parameters 
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required are poorly defined. The data presented here aim to define a 

robust pipeline of software packages, protocols and methods that can be 

employed to quantify the neutrophil transcriptome under conditions of 

stimulated inflammation. 
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3.2 Aims 

The overall aims of this Chapter were to establish a pipeline for the analysis 

of transcriptome data obtained by RNA-Seq of neutrophils stimulated in 

vitro by inflammatory activators. The specific aims were: 

 

1. To define a pipeline of methods, software programs and settings for 

compilation and analysis of RNA-Seq data. 

 

2. To determine if changes in gene expression are consistently 

detectable and if they correlate with a change in phenotype, as 

measured by laboratory based functional assays. 

 

3. To define a set of downstream analysis techniques to further analyse 

RNA-Seq gene expression data. 

 

  



106	  
	  

3.3 Methods 

The data herein describe the optimisation of a bioinformatics pipeline (of 

protocols and software packages) to define the neutrophil transcriptome 

under stimulated conditions of inflammation (in vitro). The data is 

presented in such a way as to be informative and clear to an interested 

reader of the best methods to adopt in addition to various pit-falls to 

avoid. The pipeline described here will form the basis of bioinformatic 

analysis undertaken in later Chapters. For the sake of brevity, many of the 

comparative and optimisation analyses carried out could not be included, 

hence much of the results described represent the optimal settings for 

each software program under comparison. 

 

3.3.1 Sample preparation 

Neutrophils were isolated by Polymorphprep™ from healthy donors (as 

described in section 2.2.2.2). Neutrophil RNA was extracted by TRIzol®-

chloroform precipitation and analysed by RNA-Seq using paired-end 

sequencing on the SOLiD™ 4.0 platform or single-end sequencing using 

the Illumina HiSeq 2000 platform, as indicated in the text. 
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3.3.2 Computational processing 

All of the bioinformatic software discussed in this Chapter can be run on a 

stand-alone desktop computer using a Unix/Linux or Mac OS operating 

system providing there is adequate processing power and random access 

memory (RAM) available. Technical specifications of the processing unit 

used (analysis-Mac) in the bioinformatics analysis can be found in Appendix 

Table A.2. 

For bioinformatic analyses using multiple data sets, to allow multiple 

analyses to be run simultaneously and in a shorter time than using analysis-

Mac, it was necessary to utilise a high-powered multi-core processing 

cluster provided by the University of Liverpool Computer Services 

Department (CSD). Consequently all mapping, annotation and differential-

expression testing processing was carried out using a Gigabit Ethernet 

cluster (44-core, per core; 2.2 GHz AMD core, 8GB RAM, 72GB disk space, 

Linux 9.3 SuSE). This cluster was accessed via the analysis-Mac through the 

University intranet. Raw data was firstly uploaded to cluster servers and 

bioinformatic analysis software was run via a short command script (.txt file).  

Software commands listed in this Chapter only include the basic commands 

(and optimised parameters) needed to run the software, and file paths are 

summarised. An example of the additional scripting required for cluster-

based analyses is provided in Appendix Fig A.1. 

Raw data from cluster-run analyses was backed up both internally and 

manually using University of Liverpool CSD backup storage facility.  
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3.4 Results 

3.4.1 RNA quantity and quality 

3.4.1.1 Quantity 

RNA-Seq technology requires high integrity RNA, with minimal 

contamination by genomic DNA. Typically, sequencing service providers 

require a minimum of 5 μg total RNA (per sample) for library construction 

(which also provides enough material for a second attempt at library 

construction). The numbers of neutrophils isolated from peripheral blood is 

donor-dependent and can vary between 1x106-5x106/mL blood 177. 

Furthermore, neutrophils contain considerably less RNA than other 

leukocytes such as peripheral blood mononuclear cells (PBMCs) 178. 

Following extraction by TRIzol®-chloroform precipitation, total RNA from 

106 and 107 neutrophils (isolated by Polymorphprep™)  and 106 PBMCs 

(isolated by Lymphoprep™)  was measured from 4 separate donors using a 

nanodrop spectrophotometer (Thermo Fisher scientific, Gloucestershire, 

UK) (Fig 3.2). Mean level of RNA from 106 neutrophils = 139.5 ng/mL ± 

15.75, 107 neutrophils =1797.8 ng/mL ± 91.75 and 106 PBMCs = 807.0 

ng/mL ± 117.43. These data suggest that PBMCs have approximately 5-

times more RNA than neutrophils on a cell basis, and that a minimum of 

30x106 neutrophils is required to achieve the recommended 5 μg of total 

RNA necessary for sequencing. 

 



109	  
	  

 
Fig	   3.2	   Amounts	   of	   RNA	   extracted	   from	   106	   and	   107	   neutrophils	   (PMN)	   and	   106	  

peripheral	   blood	   mononuclear	   cells	   (PBMC).	   Bars	   represent	   mean	   of	   4	   separate	  
experiments.	  Error	  bars	  represent	  SEM.	  

 

3.4.1.2 Quality 

i) RNA integrity 

The lengthy isolation process required for purifying neutrophils from whole 

blood (60-90 min) can often affect the quality of the final purified RNA. 

While the contamination of neutrophil preparations by other leukocytes 

must be considered, the greater number of steps required to isolate highly-

pure neutrophils can lead to longer isolation times and opportunities to 

inadvertently activate neutrophils or compromise the quality of RNA that is 

recovered. 

The overall integrity of an RNA sample is such a crucial determinant of the 

eventual success of an RNA-Seq experiment that sequencing service-

providers often request that all samples be accompanied by an accurate 

0"

500"

1000"

1500"

2000"

PMN"(1"million)" PBMC"(1"million)" PMN"(10"million)"

RN
A$
(n
g)
$



110	  
	  

measurement of integrity. Furthermore, an additional measurement of 

integrity is often made just prior to the samples being sequenced. A 

common method of measuring RNA integrity (RIN) is using the Agilent 

BioAnalyser 179,180. RNA integrity is measured on a scale of 1-10 where 1 

refers to RNA with the lowest integrity and 10 indicating no degradation of 

RNA. By way of example, output from the Agilent Bioanalyser relating to a 

low, and high-integrity RNA sample is shown in appendix Fig A.2. 

RNA from 106 PBMCs and 107 neutrophils was extracted by TRIzol®-

chloroform precipitation and RNA integrity was measured by Agilent 2100 

BioAnalyser (Fig 3.3). Levels of integrity were consistently measured 

between 7.0 – 8.6 RIN. The mean values across 4 samples were identical in 

PBMCs and neutrophils (7.9 RIN). 

 

 
 

Fig	   3.3	   RNA	   integrity	   number	   (RIN)	   values	   for	   RNA	   samples	   from	   PBMCs	   and	  
neutrophils	   (PMN).	   Horizontal	   bars	   represent	   mean	   value	   from	   4	   separate	  
experiments/Donors.	  
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ii) RNA purity 

RNA purity is of upmost importance for RNA-Seq. Residual solvent from 

extraction protocols or contaminating genomic DNA can have a significant 

effect on the success and accuracy of the resulting RNA-Seq experiment. 

Neutrophil RNA extraction performed in the previous experiments was 

using TRIzol®-chloroform precipitation, followed by on-column cleanup by 

Qiagen RNeasy kit including a 15 min the DNase digest step. The 

efficiency of TRIzol®-chloroform extraction and DNase digestion step was 

compared to an on-column extraction method using a Qiagen column, with 

or without a DNase digestion step. RNA from TRIzol®-chloroform 

extraction and Qiagen on-column extraction was converted to cDNA using 

the Superscript III first strand cDNA synthesis kit. Primers for MCL-1 (full 

length) were used to amplify cDNA by PCR. Amplified cDNA from each 

extraction method was analysed on an agarose gel to assess levels of 

contamination by genomic DNA. Samples prepared by on-column 

extraction were found to contain higher levels of contaminating genomic 

DNA than samples extracted by TRIzol-cholorform precipitation. 

Additionally, where contaminating genomic DNA was present, a 15 min 

DNAse digest step was sufficient to eliminate any genomic DNA signal (see 

Appendix Fig A.3). 

These data suggest that neutrophil isolation by Polymorphprep™ and RNA 

extraction by TRIzol-chloroform precipitation, plus RNA cleanup and DNase 

digestion steps, provides an appropriate method for RNA sample 
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preparation with high integrity (> 8.0 RIN) and low contamination by 

genomic DNA, which are suitable for RNA-Seq experiments. 

 

3.4.2 Sample preparation 

Several stimuli are known to induce de novo gene expression in 

neutrophils, such as low oxygen tension (hypoxia), immune complexes and 

cytokine stimulation. Of these stimuli, the effects of cytokines on neutrophil 

gene expression are perhaps the most widely studied and established 

(often by micro-arrays and qPCR), and so these agonists were used to 

validate transcriptome analysis by RNA-Seq. 

 

3.4.3 Cytokine stimulation and time point selection 

Both GM-CSF and TNFα are commonly-used neutrophil priming agents 

that regulate neutrophil gene expression in vitro 181,182. Neutrophils 

incubated with previously established priming concentrations of GM-CSF (5 

ng/mL) and TNFα (10 ng/mL) 182–184 were prepared as previously described 

(Methods section 2.2.9) for RNA-Seq analysis.   

Priming of neutrophils with either GM-CSF or TNFα has previously been 

shown to rapidly increase transcription of several genes, such as IL-8 and 

IL-1β 10,185,186. First, it was necessary to determine the time course of 

activation of gene expression following addition of these cytokines. Fig 3.4 

shows the relative expression of IL-8, IL-1β, CCL3 and ICAM1 over 2 h 

following neutrophil incubation with (or without) GM-CSF measured by 
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qPCR. Time points beyond 2 h were not considered due to the likelihood 

of de novo cytokine production leading to autocrine signalling 186–189. 

 

 

 
Fig	   3.4	   Relative	   expression	   of	   mRNA	   following	   stimulation	   with	   GM-‐CSF	   (GM)	   (5	  
ng/mL)	   (black	   bars),	   or	   remaining	   untreated	   (UT)(white	   bars)	   over	   2	   h	  measured	   by	  
qPCR.	   Target	   gene	   expression	   was	   normalised	   to	   B2M	   housekeeping	   gene167	   and	   is	  
expressed	  as	  fold	  increase	  compared	  to	  levels	  of	  expression	  at	  0h.	  

 

Levels of expression were highest at 1 h for ICAM1 and IL-1β, levels of 

CCL3 were highest at 30 min whilst levels of IL-8 remained high for entire 2 

h time course. Whilst it is impossible to have a single time point for RNA-

Seq analysis which is optimal for all genes in the transcriptome, these data 

suggest that a 1 h time point is adequate to identify rapid changes in gene 

expression following neutrophil stimulation whilst also avoiding any risk of 
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measuring secondary activation of neutrophils by autocrine signalling 

following de novo synthesis of cytokines. 

3.4.4 RNA-Seq pipeline development 

3.4.4.1 Platform selection 

The most popular platforms for NGS share many similarities, such as 

sensitivity, capacity and accuracy, but differ in a number of parameters such 

as read length, output data format, speed and cost (described in more 

detail in sections 1.5.4-1.5.6) The choice of a suitable platform must 

consider each of these factors, in addition to availability and access.  

At the outset of this project, the Centre for Genomic Research (CGR) 

located in-house at the University of Liverpool provided next generation 

sequencing of RNA by both Roche’s 454, and Applied Biosystems SOLiD™ 

4.0 platforms. In addition, sequencing by the SOLiD™ platform could be 

carried out using single- (50 bp) or paired-end (50 + 35 bp) reads. The 

short reads and deep coverage of the SOLiD platform is better suited to 

gene expression studies of a well annotated genome (e.g. the human 

genome), than the 454 platform which utilises much larger read lengths 

and is more appropriate for de novo assembly of non-sequenced genomes 

(or transcriptomes) where a reference sequence is not available. 

Furthermore, the ability to carry out paired-end sequencing on the SOLiD 

platform can increase the amount of raw data produced from a single 

sequencing run by approximately 70% whilst also improving the accuracy 

of read mapping. Consequently, neutrophil RNA samples were initially 
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sequenced by paired-end technology on the SOLiD 4.0 platform at the 

CGR. 

3.4.4.2 SOLiD™ 4.0 paired-end sequencing 

Whole blood from a healthy donor was prepared by Polymorphprep™. 

Neutrophils (3x107/sample) were incubated at 37 °C for 1 h with (or 

without) GM-CSF (5 ng/mL) or TNFα (10 ng/mL). RNA was extracted as 

previously described. RNA integrity was analysed by Agilent bioanalyser 

2100 and measured at 8.5, 7.5 and 7.0 RIN for the untreated, GM-CSF and 

TNF samples respectively.  

Total RNA was enriched for mRNA transcripts by terminator exonuclease 

treatment at the CGR (as described in section 1.5.3.2.a). Enriched samples 

were processed for paired-end sequencing which produced upwards of  

6x107 50 bp 5’à3’ forward (F3) and  paired 35 bp 3’à5’ reverse (F5) 

transcripts per sample (see section 1.5.8 for details of paired end 

sequencing, and Appendix Table A.4 for number of raw reads per sample). 

 

3.4.4.3 Quality control analysis of paired end sequence data 

For each sample sequenced on the SOLiD™ 4.0 platform, 2 data files are 

produced; a raw data file (filtered to remove adapter sequences and 

fragment reads) in .csfasta file format (i.e. a fasta sequence file with the 

data in colorspace, rather than base space), and an accompanying quality 

file (.qual) which provides a Phred quality score for each base in each read. 

The Phred score refers to the likelihood that the base calling at each base 
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position is correct. For example, a Phred score of 40 indicates that there is 

a 99.99% chance that at that position the sequencing software has correctly 

called the base nucleotide whereas a score of 10 indicates that there is a 

90% chance that the base nucleotide has been called correctly 190. Quality 

scores can be used to assess the success of a sequencing run and can be 

included in the mapping software protocols to improve read mapping 

rates. 

Raw reads were analysed by the Java program Quality Assessment 191 to 

quantify the number of reads in each data set that had a mean Phred score 

of >20 (i.e < 1 incorrectly called base per 100 bases). In each sample, less 

than 50% of reads had a mean Phred quality score of >20, with the smaller 

F5 reverse-fragments consistently having a lower score than the F3 

forward-fragments (Fig 3.5). These values are lower than expected and 

could impact on successful mapping due to the low quality of the data. 
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Fig	  3.5	  Total	  number	  of	  reads	  (open	  bars)	  and	  number	  of	  reads	  with	  >20	  Phred	  quality	  
score	   (black	  bars)	   in	   untreated	   (UT),	  GM-‐CSF	   (GM)	   and	  TNFα	   (TNF)	   treated	   samples,	  
for	   forward	   (F3)	   and	   reverse	   (F5)	   fragments	   of	   paired-‐end	   raw	   SOLiD	   sequencing	  
reads.	  Reads	  quantified	  by	  Quality	  Assessment	  software	  191.	  
	  

3.4.4.4 High throughput mapping of paired-end sequence data by 

Bowtie/Tophat 

The high throughput mapper Bowtie is an ultra-fast, short sequence-read 

aligner that can operate on modest computational hardware utilising a 

heavily indexed (Burrows-Wheeler compression† 192) reference sequence 

and multi-core processing (where available) to map upwards of 25x106 

reads per hour 151. Bowtie can take single- or paired-end reads in either 

base space or colorspace as input, such that it can process raw data from 

any of the 3 major sequencing platforms (454, SOLiD or Illumina). However, 

Bowtie cannot map reads that span splice junctions. 

The closely-related software package Tophat 155 utilises the basic mapping 

features of Bowtie, while applying an additional mapping algorithm to 

unmapped reads to enable the accurate mapping of reads that span splice 
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junction sites that would otherwise be unmapped by Bowtie (covered in 

more detail in section 1.6.2). Initiation of Tophat first uses Bowtie to map 

reads not spanning splice junctions, subsequently, Tophat attempts to map 

remaining reads. Provision of a .gtf file (see Abreviations Table Ab.1 for 

details)  to Tophat can improve mapping rates by providing a list of known 

splice junctions within the reference sequence. 

Several different parameters and settings options exist for both software 

programs which affect how read-data are processed and handled, prior to, 

or during the mapping process. For example, reads may be trimmed to 

eliminate areas of low quality prior to mapping. Alternatively, if a read can 

be aligned to multiple locations in the reference sequence, settings within 

the Bowtie program determine if the read is eventually positioned at the 

highest-quality location, spread amongst all sites equally, or removed from 

the mapping process entirely since no definitive mapping location can be 

determined. These features exist to enable the user to improve rates of 

mapping, while also improving the quality of mapping by a decrease in the 

number of false positives, false negatives or sequencing/mapping artefacts. 

A summary of the most important parameters are found in Table 3.1, which 

also highlights the parameters that were altered from default settings 

during the mapping process to achieve optimal mapping rates. 
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Table	   3.1	   Summary	   of	   Bowtie	   options	   and	   parameters	   available.	   <int>	   refers	   to	  
additional	   parameter	   required	   as	   an	   integer.	   Settings	   shaded	   grey	  were	   assigned	   in	  
neutrophil	  sequencing	  pipeline.	  
 

Bowtie	  settings	   Function	  

Input	  options	   	  

-‐q	   Input	  file	  is	  in	  FASTQ	  format	  
-‐f	   Input	  file	  is	  in	  FASTA	  format	  
-‐r	   Input	  file	  is	  in	  RAW	  format	  
-‐c	   Input	  via	  command	  line	  
-‐C/-‐-‐color	   Input	  is	  interpreted	  in	  colorspace	  
-‐Q/-‐-‐qual	   Input	  file	  is	  a	  quality	  file	  	  
-‐s/-‐-‐skip	  <int>	   Skip	  <int>	  no.	  of	  reads	  from	  input	  
-‐-‐solexa1.3-‐quals	   Input	  quals	  are	  in	  ASCII	  format,	  appropriate	  for	  

Illumina	  pipeline	  version	  >	  1.3	  
Alignment	   	  

-‐v	  <int>	   Report	   alignments	  with	  no	  greater	   than	  <int>	  
mismatches	  

-‐e	  <int>	   Maximum	  permitted	   total	  of	  quality	  values	  of	  
all	   mismatched	   read	   positions	   throughout	  
entire	  read	  alignment	  

-‐l	  <int>	   Seed	  length,	  i.e	  the	  number	  of	  reads	  from	  the	  
high	  quality	  end	  used	  to	  begin	  alignment	  

-‐n	  <int>	   Number	   of	   mismatches	   permitted	   in	   the	  
“seed”	  (0-‐3,	  default:	  2)	  

-‐I/-‐-‐minins	  <int>	   Minimum	   length	   of	   reads+insert	   for	   paired	  
end	  reads	  

-‐X/-‐-‐maxins	  <int>	   Maximum	   length	   of	   reads+insert	   for	   paired	  
end	  reads	  

-‐-‐fr/-‐-‐rf/-‐-‐ff	   The	   upstream/downstream	   orientation	   of	  
paired-‐end	   reads	   relative	   to	   the	   forward	  
reference	  strand	  

-‐-‐chunkmbs	  <int>	   The	   amount	   of	  memory	   (in	  Mbs)	   assigned	   to	  
read	  alignment	  per	  thread	  (default:	  64)	  

Reporting	   	  
-‐k	   Report	  up	  to	  <int>	  no.	  of	  alignments	  per	  read	  

(or	  read	  pair)	  
-‐a/-‐-‐all	   Report	   all	   valid	   alignments	   per	   read	   (or	   read	  

pair)	  (default:	  off)	  
-‐m	  <int>	   Suppress	   all	   subsequent	   alignments	   if	   a	   read	  

has	   more	   than	   <int>	   possible	   alignment	  
locations	  

-‐M	  <int>	  	   As	  with	   –m	   ,	   supress	   alignments	  with	   greater	  
than	   <int>	   valid	   locations,	   but	   assign	   read	   to	  
one	  location	  at	  random	  
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-‐-‐best	   Where	   multiple	   alignments	   for	   a	   single	   read	  
occur,	  use	  number	  of	  mismatches	  and	  quality	  
of	   reads	   to	   assign	   to	   best	   alignment	   location,	  
or	   where	   multiple	   alignments	   are	   permitted,	  
list	  alignments	  in	  order	  of	  best	  to	  worst	  

-‐-‐strata	   As	   with	   –best,	   where	   multiple	   alignment	  
locations	  occur	  that	  fall	   into	  multiple	  stratum,	  
only	   use	   alignments	   from	   the	   best	   strata.	  
(Redundant	  in	  later	  versions	  of	  Bowtie)	  

Output	   	  
-‐t/-‐-‐time	   Print	   the	   amount	   of	   time	   taken	   to	   complete	  

each	  phase	  of	  mapping	  
-‐-‐quiet	   No	  update	  text	  whilst	  software	  is	  running,	  only	  

output	  alignments	  
-‐-‐al	  <filename>	   Output	  all	   reads	   that	   successfully	  aligned	   into	  

a	   new	   <filename>	   as	   they	   appear	   in	   the	   raw	  
input	  file	  

-‐-‐un	  <filename>	  	   Output	  all	  reads	  that	  failed	  to	  align	  into	  a	  new	  
<filename>	  as	  they	  appear	  in	  the	  raw	  input	  file	  

-‐-‐max	  <filename>	   Output	   all	   reads	   that	   failed	   to	   align	   due	   to	  
exceeding	   limit	   of	   alignment	   locations	   into	   a	  
new	   <filename>	   as	   they	   appear	   in	   the	   raw	  
input	  file	  

-‐-‐suppress	  <int>	   Suppress	  column	  no.	  <int>	  from	  the	  output	  file	  	  
-‐S/-‐-‐sam	   Output	  in	  SAM	  format	  

Performance	   	  
-‐p/-‐-‐threads	  <int>	  	   Run	   alignment	   in	   parallel	   on	   <int>	   no.	   of	  

processors/cores	  
	  
 

3.4.4.5 Optimisation of Bowtie/Tophat settings  

Settings such as seed length, number of alignment threshold and read 

trimming were optimised to increase rates of mapping without increasing 

the amount of non-specific alignments (see Table 3.1 for explanation of 

each parameter). Due to the low quality values for F5 paired fragments in 

each of the SOLiD sequenced samples, F5 reads were omitted from the 

mapping stage. Furthermore, low quality 3’ ends of the F3 fragments were 
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trimmed (by 8 bases) by Bowtie prior to alignment, as this improved overall 

rates of mapping. 

Due to a software design feature, several of the Bowtie parameters were 

not available when initiating mapping by Bowtie through running Tophat. 

Consequently, mapping was completed via a three-stage process. Firstly, 

reads were mapped to the genome using Bowtie and unaligned reads were 

outputted into a separate file, using the command:  

 

bowtie	  -‐p	  8	  -‐S	  -‐C	  -‐l	  20	  -‐-‐trim3	  8	  -‐e	  100	  -‐-‐un	  unaligned	  -‐-‐chunkmbs	  4000	  -‐k	  1	  -‐m	  1	  -‐-‐
best	  -‐-‐strata	  /path/to/Bowtie/reference/genome	  –f	  path/to/raw/reads_data	  –q	  
path/to/raw/quality/values	  >	  output.sam	  
 
 
 Secondly, unaligned reads were inputted into Tophat and realigned to the 

reference  sequence (human reference hg19), using the command: 

 

tophat	  -‐p	  8	  -‐-‐color	  -‐-‐quals	  -‐r	  200	  -‐-‐mate-‐std-‐dev	  30	  -‐a	  5	  -‐-‐library-‐type	  fr-‐
secondstrand	  -‐-‐segment-‐length	  20	  –bowtie-‐n	  -‐-‐max-‐multihits	  1	  -‐G	  
/path/to/reference/annotation_file.gtf	  /path/to/Bowtie/reference/genome	  	  
/path/to/unaligned_reads	  –q	  path/to/unaligned_reads/quality/values	  
 
 
Finally, all aligned reads were merged into a single output file (.Bam) and 

sorted by the java program Picard 193, using the commands: 

 

java	  -‐Xmx2g	  -‐jar/path/to/picard-‐
merge.jar	  INPUT=bowtie.bam	  INPUT=tophat.bam	  OUTPUT=merged.bam	  SORT
_ORDER=coordinate”	  	  	  
	  
“java	  -‐Xmx2g	  -‐jar	  /path/to/Picard-‐sort.jar	  INPUT=/path/to/merged.bam	  
OUTPUT=merged-‐sort.bam	  REFERENCE=/path/to/reference/hg19.fa	  
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Fig 3.6 summarises the mapping strategy used to map reads to human 

hg19 genome, using Bowtie and Tophat and output files merged with 

Picard. 

 

 
	  
Fig	  3.6	  Flow	  chart	  of	  mapping	  process	  using	  the	  high	  throughput	  aligners	  Bowtie	  and	  
Tophat.	  Output	  files	  were	  merged	  using	  Picard	  software	  193.	  
 
 

3.4.4.6 Mapping results of SOLiD data 

Table 3.2 list the maximal mapping percentages achieved using the 

optimised mapping pipeline shown in Fig 3.6. Mapping rates could not be 

increased above 35% in any samples. This was likely due to the low quality 

scores for reads across all samples, as seen in Fig 3.5. 
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Table	  3.2	  Percentage	  reads	  mapped	  for	  each	  dataset	  using	  optimal	  mapping	  strategy	  
summarised	  in	  Fig	  3.6	  
	  

Dataset	   Reads	  mapped	  
(%)	  

Untreated	   34.9	  

GM-‐CSF	   32.7	  

TNFα	   31.0	  

	  
	  
	  
To evaluate the quality of reads that were successfully mapped by 

Bowtie/Tophat the final .Sam file was analysed using the software program 

FastQC 194.  FastQC is a Java based program that takes .Bam/.Sam 

mapping files as input and performs a series of quality control tests on the 

raw data. Among the output is a mean quality score (Phred value) for each 

base position among all reads that were successfully mapped. Fig 3.7 

shows the FastQC output for the untreated neutrophil dataset. Mapped 

reads were found to have highest quality values at the 5’ end (base 

positions 1-10) but quality values consistently decreased towards the 3’ 

end, such that the mean values for position 49 was approximately half of 

the mean value for base position 1 (base position 1 – mean Phred score- 

60; base position 49 – mean Phred score – 31). The variability in quality 

scores (i.e. the inter quartile range 25-75 percentile) also increased towards 

the 3’ end of mapped reads. Similar results were obtained for GM-CSF and 

TNFα treated samples.  
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Fig	  3.7	  FastQC194	   analysis	  of	  Bowtie/Tophat	  mapped	  reads	   from	  neutrophil	  untreated	  
dataset.	   Graph	   shows	   the	  mean	   quality	   values	   (Phred	   score)	   (y-‐axis),	   for	   each	   base	  
position	  within	   the	  mapped	   reads	   (x-‐axis).	   Scores	   are	   represented	  by:	   inner	  quartile	  
range	   (25-‐75	   percentile)	   (Yellow	   boxes);	  median	   Phred	   score	   (Red	   line);	  mean	   value	  
(Blue	  line);	  and	  10-‐90	  percentile	  (whisker	  plots).	  
	  
	  
These data reveal that only the highest quality reads were able to be 

mapped (30-35%). Furthermore the quality of mapped-reads was poor at 

the 3’ end and reveals why removing the 8-bases from the 3’ end (by using 

the trimming command in bowtie) improved mapping rates. It is likely that 

the poor percentage of mapped reads and the average quality of reads 

which successfully mapped will impact on the quantification of data in 

downstream analyses. 

3.4.5 I l lumina HiSeq2000 – Single end sequencing 

Due to low quality scores for raw data and low mapping rates obtained 

from the SOLiD paired end sequencing run, further neutrophil samples 

(untreated, GM-CSF and TNFα, N=1) were subsequently sequenced using 
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single-end sequencing (50bp) on the Illumina HiSeq2000 platform, by BGI 

International (Hong Kong). RNA was extracted and prepared using identical 

methods and couriered on dry ice to BGI. Sample processing was subject 

to identical QC analysis and any variation in sequencing protocols were 

due to platform-specific requirements. Quality control analysis (as provided 

by BGI International) of sequenced reads revealed that > 98% of reads 

exhibited a Phred score of > 20 (data not shown), representing a marked 

improvement in read quality over SOLiD datasets. 

Downstream analysis of SOLiD platform data (annotation and 

quantification) was performed using the methods described below and 

results are later used in validation and comparison analysis vs Illumina 

platform and qPCR results included in this chapter, (as indicated in the 

text). 

3.4.5.1 Illumina mapping strategy 

Due to higher quality values in raw data from the Illumina platform, it was 

not necessary to trim the 3’ end of the reads prior to mapping. In addition, 

improvements to the Tophat software (release version 1.4), meant that the 

Illumina reads could be mapped in a single-step process by Tophat using 

the command: 

tophat	  -‐p	  8	  -‐-‐solexa1.3-‐quals	  -‐-‐max-‐multihits	  1	  -‐o	  ./_output_with_gtf	  \	  
-‐-‐transcriptome-‐index=/path/to/transcriptome/index	  \	  
/path/to/reference/genome	  path/to/raw.data	  
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Improved read quality and mapping strategy resulted in an increase in the 

percentage reads that mapped to reference sequence. Mapping 

percentages for Illumina sequenced datasets are listed in Table 3.3. 

Mapping rates were determined by TopHat version 1.4. 

 

Table	   3.3	   Percentage	   reads	   mapped	   for	   Illumina	   sequenced	   datasets,	   following	  
mapping	   with	   Tophat	   1.4.	   Percentage	   mapped	   reads	   calculated	   by	   Tophat	   during	  
processing.	  	  
	  

Dataset	   Reads	  mapped	  
(%)	  

Untreated	   94.5	  

GM-‐CSF	   94.7	  

TNFα	   94.9	  

	  
 

3.4.5.2 Illumina read quality of mapped reads	  

To assess the quality of the 94% mapped reads from Illumina sequenced 

datasets, output files from Tophat (.Bam files) were analysed by FastQC 

(Fig 3.8). Reads had a markedly higher Phred score than those assessed 

form the SOLiD platform. Values were > 30 throughout the entire length of 

reads with an increase at the 3’ end. The inner quartile range was also 

much lower than with previous SOLiD samples. These data verify the high 

percentage mapping achieved with Illumina sequenced data and confirm 

that Illumina sequencing-platform (and sequencing by BGI International) is 

sufficient to produce high quality datasets of neutrophil RNA when 

mapped using Tophat. 
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Fig	  3.8	  FastQC	   194	  analysis	  of	  Bowtie/Tophat	  mapped	  reads	  from	  neutrophil	  untreated	  
datasets	   sequenced	   on	   the	   Illumina	   platform.	   Graph	   shows	   the	  mean	   quality	   values	  
(Phred	  score)	  (y-‐axis),	  for	  each	  base	  position	  within	  the	  mapped	  reads	  (x-‐axis).	  Scores	  
are	   represented	   by:	   inner	   quartile	   range	   (25-‐75	   percentile)	   (Yellow	   boxes);	   median	  
Phred	  score	  (Red	  line);	  mean	  value	  (Blue	  line);	  and	  10-‐90	  percentile	  (whisker	  plots).	  
 

3.4.5.3 Mapping-annotation and quantification 

Several programs are available for annotating and quantifying NGS data 

against a reference sequence. Broadly speaking software packages differ in 

the way they quantify gene expression and model variation within the 

population, relying on either an absolute count of reads mapping to a 

specific loci (in the case of edgeR and DESeq) or using a normalised metric 

for gene expression RPKM (in the case of Cufflinks) (covered in more detail 

in section 1.6.4). To evaluate the relative effectiveness of  annotation 

software, 3 widely-used, open source software packages (Cuffdiff- a 

subroutine of the Cufflinks package; DESeq; and edgeR) were compared 
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for their ability to quantify genes that are significantly differentially 

expressed (DE) between neutrophil samples incubated with either GM-CSF,  

TNFα, or untreated (Fig 3.9). DESeq and edgeR were run through the R 

software environment using a bespoke runscript adapted from the standard 

operating vignette 159,160. Cuffdiff was run with default settings providing 

both a reference genome (.fa file) and reference transcriptome (.gft file) to 

improve annotation accuracy. A significance value of q< 0.05 (applying a 

5% FDR) was applied in all 3 software packages. 

Of the three software packages used, Cuffdiff was found to be the most 

conservative in calling significantly differentially-expressed (DE) genes 

(UT:GM-CSF=110, UT:TNFα=82, GM-CSF:TNFα=151), whereas DESeq 

identified a similar number of genes as significantly DE (UT:GM-CSF=167, 

UT:TNFα=74, GM-CSF:TNFα=201). However, edgeR was the least 

conservative when calculating significantly DE genes, consistently 

quantifying approximately 3 times as many genes as the other two software 

programs (UT:GM-CSF=407, UT:TNFα=234, GM-CSF:TNFα=538) (Fig 3.9). 

The increased number of significant genes following DESeq and edgeR 

analysis is likely due to the poisson distribution utilised by these software 

packages. Poisson distribution of gene expression data is known to 

increase the number of false positives discovered by virtue of the fact that 

biological variation is not sufficiently estimated within the population 149,163. 

Determination of gene expression by Cufflinks/Cuffdiff provides an added 

benefit of several downstream software packages which are compatible 
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with the output format of Cufflinks. For example, cummeRbund 168 – an R 

based program specifically designed to perform downstream analyses and 

produce graphical output using Cufflinks/Cuffdiff data. In summary, 

Cufflinks was determined as the most suitable annotation and 

quantification software of neutrophil RNA-Seq data and was utilised in all 

subsequent analyses of datasets. 

 

 

Fig	  3.9	  Venn	  diagrams	  showing	  the	  number	  of	  differentially-‐expressed	  genes	  between	  
neutrophil	   samples	   incubated	  with	  GM-‐CSF	   (5	  ng/mL),	   TNFα	   (10	  ng/mL)	  or	  untreated	  
(UT)	   for	   1	   h.	   Determination	   of	   significance	   calculated	   using	   quantification	   software;	  
DESeq	  (orange),	  Cuffdiff	  (green)	  or	  edgeR	  (blue),	  q<0.05	  (5%	  FDR)	  N=3.	  
  

3.4.6 Analysis of platform, Donor and experimental variation 

To assess the level of variation between platforms, donors and also within a 

single experiment, RPKM levels of a subset of genes were analysed for 

correlation (Fig 3.10). To measure the levels of variation seen between 
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sequencing platforms, biological donors and sample replicates, correlation 

of the top 1000 most expressed genes between untreated neutrophil 

samples from several different experiments were compared. Firstly, two 

datasets of RNA samples from the same donor but sequenced on either 

the SOLiD or Illumina platforms were compared: this analysis would identify 

any differences in gene expression due to the different technology 

platforms (Fig 3.10A). Secondly, samples from 2 different donors, both 

sequenced on the Illumina platform were compared with each other (Fig 

3.10B): this analysis will give insights into donor variability and patterns of 

neutrophil gene expression. Thirdly, two samples from a single donor 

(prepared on separate days) sequenced on Illumina platform were 

compared to each other (Fig 3.10C). This would inform on the intra-donor 

variability in gene expression. Finally, data from a single experiment on the 

Illumina platform (but sequenced on different lanes of the sequencing flow 

cell) were compared to each other to measure the level of intra-

experimental variation (Fig 3.10D). 

Samples from the same donor sequenced on different platforms (SOLiD 

and Illumina) (Fig 3.10A), showed a much lower correlation than samples 

from the same donor sequenced on the same platform (Fig 3.10C), 

rs=0.656 and rs=0.9188 respectively. Indeed, levels of correlation between 

donors on the Illumina platform were equally high rs=0.9204 (Fig 3.10B). 

Intra-experimental (technical variation) correlation was extremely high 

(rs=0.9993) (Fig 3.10D).  
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Fig	   3.10	   Correlation	   of	   gene	   expression	   values	   (RPKM)	   between	   RNA-‐Seq	   samples.	  
Gene	  expression	  values	  were	  compared	  between	  (A)	  SOLiD	  and	  Illumina	  platforms,	  (B)	  
2	  biological	  replicates	  (on	  Illumina	  platform)	  (C)	  2	  technical	  replicates	  (same	  Donor	  on	  
Illumina	   platform)	   and	   (D)	   2	   lanes	   from	   a	   single	   sequencing	   experiment	   on	   Illumina	  
platform.	   In	   each	   analysis	   1000	   genes	   with	   the	   highest	   expression	   were	   used	   in	  
correlation	  analysis	  (Spearman	  correlation	  	  metric	  (rs)	  p<0.0001).	  
	  

3.4.7 Validation of RNA-Seq data by comparison to qPCR  

RNA-Seq analysis methodologies are still regarded as a relatively new 

technique. As with any new assay or protocol, the most important measure 

of success, accuracy and applicability is how well the results correlate with 

the currently used “gold-standard” technique. In the case of gene 

expression studies the most established techniques remain either micro-

array or quantitative PCR (qPCR). RNA-Seq expression values for a selection 

of genes from 3 Donors measured by both SOLiD and Illumina platforms 

were compared with those obtained from qPCR for validation. A sample set 

of genes was selected that included genes that had high levels (>3000 
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RPKM) of expression: Interleukin-8 (IL-8), nicotinamide 

phosphoribosyltransferase (NAMPT), and suppressor of cytokine signalling-

3 (SOCS3); median levels (50-3000 RPKM) of expression: FBJ murine 

Osteosarcoma viral oncogene homolog (FOS), intercellular adhesion 

molecule-1 (ICAM1), and interleukin-1β (IL-1β); and low levels (<50 RPKM) 

of expression: Fas-associated via death domain (FADD), Jun proto-

oncogene (JUN), and TNFα. 

Firstly, absolute values of gene expression (RPKM) were compared 

between SOLiD samples and 3 biological replicates sequenced by Illumina 

(Fig 3.11A-C). As seen previously, gene expression levels were most similar 

in samples from the Illumina platform but values from SOLiD sequenced 

samples were also largely in line with the Illlumina sample replicates. 

Secondly, the fold change in gene expression for each gene was compared 

between the SOLiD samples, Illumina samples and qPCR data (Fig 3.12A-

B). Here, the fold change in gene expression for each gene was highly 

similar across all 3 platforms. This suggests that while the absolute values 

can vary between platforms (and replicates) the relative change in gene 

expression correlate well between independent platforms and validation 

methods.  
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Fig	   3.11	   Comparison	   of	   gene	   expression	   levels	   (RPKM)	   between	   RNA-‐Seq	   platforms.	  
Expression	   levels	   of	   9	   genes	   expressed	   in	   neutrophils	   following	   1h	   incubation	   in	   (A)	  
absence,	   or	   presence	   of	   (B)	   GM-‐CSF	   (5	   ng/mL)	   or	   (C)	   TNFα	   (10	   ng/mL).	   Expression	  
levels	   measured	   by	   SOLiD	   (¯)	   or	   by	   Illumina	   (p�¢)	   sequencing	   platform	   and	  
calculated	  by	  Cufflinks.	  (SOLiD	  n=1,	  Illumina	  n=3).	  
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Fig	   3.12	   Fold	   change	   in	   expression	   of	   genes	   in	   (A)	   GM-‐CSF	   and	   (B)	   TNF-‐α-‐treated	  
neutrophils	   compared	   to	   unstimulated	   cells,	   measured	   by	   qPCR	   (black	   bars,	   n	   =	   3),	  
SOLiD	  sequencing	   (grey	  bars,	  n	  =	   1)	  or	   Illumina	  sequencing	   (white	  bars,	  n	  =	  3).	  Error	  
bars	  represent	  SEM.	  
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Whilst it is important with any new technique to validate results with more 

established methods of measurement it is equally important to realise the 

limitations of the established technique. When comparing data from RNA-

Seq and qPCR experiments, there are several factors that need to be 

considered. Firstly, RNA sample preparation should be consistent between 

quantification techniques.  Secondly, PCR primers should be designed to 

amplify all variants of the gene under analysis and not miss out alternative 

splice variants, since RNA-Seq experiments can provide a quantification of 

all variants of a gene. Most importantly, the effect of normalisation method 

used for qPCR data must be appreciated. 

Quantification of transcript abundance from qPCR data is calculated using 

the number of PCR cycles required for transcripts to achieve exponential 

amplification (Ct value). This value can be transformed into a mean 

normalised expression (MNE) by normalising these values against a 

housekeeping gene 167,195. For neutrophil studies, a variety of housekeeping 

genes can be used, but Standford et al 196 have previously shown many of 

the commonly-used housekeeping genes used in other cell types vary in 

expression in neutrophils. This can lead to differences in the calculated 

relative expression values for a gene of interest, depending on which 

housekeeping gene is used to normalise the data. By comparison, RNA-

Seq data can be normalised to the entire size of the read library and the 

length of each gene independently (RPKM), and so does not necessitate 

normalisation to a pre-selected gene or set of genes 116. 
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3.4.9 Comparison of normalisation method in RNA-Seq and 

qPCR  

mRNA levels of TNFα are known to increase rapidly in neutrophils following 

stimulation with TNFα 183. RNA from untreated and TNFα treated 

neutrophils (10 ng/mL) was prepared and mRNA expression of TNFα was 

measured using qPCR. Threshold (Ct) values for TNFα mRNA were 

normalised against several different housekeeping genes that are often 

used in neutrophil gene expression; β-2microglobulin (B2M), 

glyceraldehyde-3-phosphate dehyrodgenase (GAPDH), β-actin (ACTB) and  

hypoxanthine phosphoribosyltransferase 1 (HPRT1) 196. In parallel, the fold 

change in TNFα expression for untreated neutrophils versus TNFα treated 

neutrophils was measured by RNA-Seq and RPKM values calculated by 

Cufflinks. RNA was prepared using identical RNA preparation methods and 

neutrophils from the same donor.  

The fold changes in expression levels in the TNFα stimulated cells versus 

the control varied from 10-fold to 22-fold, dependent on which 

housekeeping gene was selected for normalisation (Fig 3.13). The RNA-Seq 

value was found to correlate well with qPCR data normalised to GAPDH or 

B2M, but not to values normalised to ACTB or HPRT1. This highlights the 

care needed when analysing and interpreting qPCR data, and suggests that 

consideration should be given to the use of multiple housekeeping genes 

for normalisation of qPCR data, especially in cells such as neutrophils where 

the expression of genes used to normalise the data may be subject to 
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regulation during neutrophil activation. These data suggest that RPKM 

values are a more suitable and accurate metric for use in gene expression 

analysis and that this method of quantitation can be compared to 

appropriately controlled qPCR data.  

 

 

 

Fig	  3.13	  Fold	  change	  in	  expression	  of	  TNFα	  mRNA	  measured	  by	  qPCR	  (open	  bars)	  and	  
RNA-‐Seq	   (black	   bar).	   qPCR	   Ct	   values	   for	   TNFα	   expression	   normalised	   to	   values	   for	  
commonly-‐used	   housekeeping	   genes;	   β-‐microglobulin	   (B2M),	   glyceraldehyde-‐3-‐
phosphate	   dehydrogenase	   (GAPDH),	   β-‐actin	   (ACTB),	   	   hypoxanthine	  
phosphoribosyltransferase	   1	   (HPRT1).	   RNA-‐Seq	   value	   normalised	   to	   read-‐library	   size	  
and	  gene	  length	  (RPKM).	  
	  
 

3.4.10 Correlation of qPCR Ct values with RNA-Seq RPKM 

values 

Accurate detection of low-abundance transcripts in samples if often difficult 

to distinguish from experimental noise and DNA contamination. It is 

generally considered that a transcript requiring >30 cycles for detection in 
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care must be taken when setting a RPKM threshold for gene expression in 

order to balance the number of false positives with the number of false 

negatives.  A study by Ramskold et al 197, attempted to characterise 

transcriptomes across different tissue types in both humans and mice  and 

determined that an RPKM value of 0.3 was an appropriate threshold, above 

which it can be concluded that the transcript is genuinely expressed.   

To confirm these findings and ascertain whether 0.3 RPKM was an 

appropriate threshold for neutrophil studies, RNA was extracted (as 

previously described) from 1 h untreated neutrophils and assayed using 

qPCR to determine the Ct value of 84 genes which had a range of 

expression levels. Values were compared to RNA-Seq data from 1h 

untreated neutrophils from the same biological donor.  Ct and RPKM 

values were found to significantly negatively correlate (rS=-0.91, p<0.0001, 

Spearman correlation). Importantly, data convergence was observed at 30-

cycles in qPCR and 0.3 RPKM in RNA-Seq (Fig 3.14). These data confirm 

that the pre-defined threshold of 0.3 RPKM is entirely appropriate and 

adequate to determine whether a transcript is expressed in neutrophils. 
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Fig	  3.14	  Correlation	  of	  gene	  expression	  values	  measured	  by	  qPCR	  and	  RNA-‐Seq.	  RNA	  
from	  untreated	  neutrophils	   from	  the	  same	  biological	  donor	  was	  assayed	  using	  qPCR	  
and	   RNA-‐Seq.	   Cycle	   threshold	   (Ct)	   values	   for	   qPCR	   were	   found	   to	   correlate	  
significantly	   with	   RPKM	   gene	   expression	   values	   (r=-‐0.91,	   p<0.0001,	   Spearman	  
correlation).	  qPCR	  data	  collected	  by	  Dr	  C.	  Lam	  and	  analysed	  and	  reproduced	  here	  with	  
permission.	  
 

3.4.11 Downstream analysis of RNA-Seq data 

The above methods describe the software and protocols necessary to 

produce accurate gene expression data from a starting sample of total 

RNA. This pipeline can be utilised to produce normalised absolute-values 

(RPKM) of gene expression using Cufflinks, or a list of DE genes between 

multiple samples via Cuffdiff. These data are of great use and can be 

manually curated to extract information on genes of interest. However, to 

analyse larger portions of the data, (or compare entire datasets with each 

other) further downstream bioinformatic techniques are required. In 
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datasets/samples. This can be achieved in a variety of ways. A selection of 

software and bioinformatic analyses for downstream analysis of RNA-Seq 

data are described below. These methods complement the above 

bioinformatic RNA-Seq pipeline to form a comprehensive set of 

bioinformatic techniques which form the complete bioinformatic pipeline 

used in future results chapters (Chapters 4-6). Further details of specific 

downstream analysis are provided in the results sections of Chapters where 

they are employed. 

3.4.11.1 cummeRbund 

cummeRbund is a software package developed by the Cufflinks group 

(Trapnell et al) 168. It utilises the output files of Cufflinks and runs in the R 

software environment to produce several graphical representations of the 

gene expression data. These include: global visualisation of data in terms 

of quality, dispersion, or gene expression distribution; multi-dimensional 

scaling (MSA) for 2-dimensional representation of whole data sets; and 

gene clustering via heat maps 168. 

3.4.11.2 Ingenuity Pathway Analysis (IPA) 

The most powerful method of extracting meaningful data from large data 

sets is to model the data against large databases of canonical biological 

data. These are provided by a variety of online resources such as the Kyoto 

encyclopaedia of genes and genomes (KEGG) 198 or CLCbio by Qiagen. By 

far the most comprehensive database of biological pathways and 

interactions is held by Ingenuity systems 199. The Ingenuity pathway analysis 
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(IPA) software is a licensed online resource which allows the uploading of 

large datasets of NGS data, the data can then be modelled against their 

database of canonical pathways and referenced biological interactions. 

Subsequent analysis of the data can then be carried out to identify 

pathways or networks of genes which are significantly enriched with DE 

genes. Additionally, since the database of signalling pathways is so 

comprehensive, the software can be employed to identify upstream 

regulators and transcription factors based on the gene expression values 

provided. This is a powerful technique for predicting activation of signalling 

pathways and associated networks of genes from raw RNA-Seq gene 

expression values. 

3.4.11.3 Gene ontology 

An alternative method of summarising large gene lists is by Gene Ontology 

analysis. Genes are categorised by their universal gene ontology 

annotation (as defined by the Gene Ontology consortium 200). This provides 

a method of identifying sets of DE genes which share a common biological 

process, molecular function or cellular component, and identifying 

relationships between genes that would otherwise be impossible to 

achieve using a manual approach. 
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3.4.12 Final bioinformatic pipeline for neutrophil gene 

expression studies 

By way of summary, the components and work flow of the final 

bioinformatic pipeline developed for neutrophil gene expression analyses 

is shown in Fig 3.15. This represents a complete workflow for the 

production, quantification and analysis of neutrophil RNA-Seq data. 

 

Fig	  3.15	  Bioinformatic	  pipeline	  for	  production	  quantification	  and	  analysis	  of	  neutrophil	  
RNA-‐Seq	   data.	   Flow	   diagram	   of	   sample	   preparation	   processes	   and	   software	  
incorporated	   into	   complete	   bioinformatic	   pipeline.	   Processes	   in	   white	   box	   were	  
completed	  by	  3rd	  party	  (BGI	  International).	  	  
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3.5 Summary 

Modern sequencing technology provide a method of accurately 

sequencing millions of DNA or RNA fragments on a massively parallel scale 

producing huge amounts of raw data. Whilst the efficiency and usability of 

sequencing technology has improved in recent years, the same cannot be 

said of NGS analysis software (in particular software that is open source). 

The bioinformatic community is saturated with various kinds of analysis 

software, each offering specific benefits over each other with respect to 

different aspects of the analysis process. Furthermore, there is no 

community wide agreement on best practices when it comes to analysing 

NGS data. The eclectic nature of bioinformatic methods in the literature 

attests to this. Hence before undertaking a study into neutrophil gene 

expression, it was first necessary to compile a robust set of software and 

protocols to accurately analyse the raw data produced by RNA-Seq. This 

pipeline could then be implemented for further studies into neutrophil 

gene expression. 

Neutrophils naturally express less mRNA than other leukocytes 178, thus it 

was necessary to quantify the amount of total RNA that could be extracted 

from a whole blood sample, whilst also assessing the integrity and quality 

of RNA following neutrophil isolation, RNA extraction and cleanup. 

Standard isolation of 30x106 neutrophils by Polymorphprep™ and 

extraction using TRIzol® (including a DNA digest step) was found to be 
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sufficient to produce 5 µg of high integrity (>8 RIN) purified RNA, which is 

often a prerequisite of 3rd party sequencing service providers. 

Sequencing of neutrophil RNA was carried out on 2 of the most popular 

sequencing platforms, SOLiD and Illumina. The paired-end sequencing on 

the SOLiD platform suffered from poor read quality values such that the 

shorter paired fragment could not be used in the mapping stage, the 

remaining reads mapped poorly to a reference sequence (<35 %) . Whilst 

paired-end sequencing is a useful method of increasing the total amount of 

read data from a single experiment, the library preparation protocols are 

more complex than single-end protocols and thus more likely to suffer 

experimental error. Furthermore, the ability of paired-end sequencing to 

improve mapping rates by removing mapping-location ambiguity is less 

relevant when dealing with samples where a complete and comprehensive 

reference sequence is available (such as with human samples). In contrast, 

sequencing carried out on Illumina platform by single-end sequencing was 

of a much higher quality and consequently resulted in extremely high 

mapping rates (>94%). Annotation and quantification of mapped reads was 

carried out by count-based (edgeR and DESeq) and gene normalisation 

(Cufflinks) techniques. These two approaches are frequently used in RNA-

Seq studies. Indeed, rather than one technique becoming preferred or 

optimal, it is likely that studies in the future will start to incorporate a 

combination of both approaches 201, for example a count based 

quantification for absolute gene expression values and a normalised 



145	  
	  

expression (RPKM) approach for transcript-level quantification. An added 

advantage of RNA-Seq data is that once reads are mapped adequately, 

data can subsequently be re-analysed or re-quantified using a different 

approach without the need for producing new samples.  

Following quantification, data were validated against results gained by 

qPCR.  

Despite numerous publications using RNA-Seq as the primary method of 

gene expression analysis, it is still common for research articles to include 

comparative qPCR results as validation of the accuracy of the primary RNA-

Seq data 202,203. Neutrophil RNA-Seq data from both platforms (SOLiD and 

Illumina) showed good correlation with results from qPCR, in particular 

when comparing fold change in gene expression rather than absolute 

values. In addition, correlation between datasets from the Illumina platform 

(either from a single donor or two donors) was extremely high (r > 9.1). This 

highlights the robust and reproducible nature of RNA-Seq data as a 

method of analysing large amounts of data.  

Two aspects of gene expression analyses that hinder studies using micro-

arrays or PCR are signal to noise ratios and normalisation of data 107,196,204. 

During the development of this bioinformatic pipeline the normalisations 

techniques and threshold value for positive expression were assessed in 

RNA-Seq by comparison to traditional qPCR methods. It was found that the 

normalised metric of RPKM was comparable to results gained by qPCR and 

since it relies on a defined value of gene length, is less variable than results 
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gained using multiple reference genes by qPCR. Moreover, it was 

confirmed that a previously defined 197 value of 0.3 RPKM is an appropriate  

cut-off value for gene expression and correlates well with a Ct value of 30 in 

qPCR. 

Since analysis of RNA-Seq is often (by virtue of the different software 

programs required) a multi-step process, compatibility of data with 

downstream analysis software is of crucial importance. The work flow within 

the bioinformatic pipeline benefits from being fully compatible at all 

stages, such that the output files from the annotation steps using cufflinks 

can seamlessly be inputted into each of the downstream analysis programs, 

for example cummeRbund or IPA. The greatest benefit of this inter-

compatibility is the usability and lack of informatic experience needed to 

carry out a RNA-Seq experiment using the above described software and 

settings. Improvements in software during the course of this study (Tophat 

alone received 12 iterative upgrades between 2010 and 2012) led to both 

improved performance and streamlining of the pipeline, for example, the 

ability to map all reads in a single Tophat command was not possible until 

the release of version 1.4.  

In summary the processes described above form a robust and user-friendly 

pipeline of analyses that can accurately measure the gene expression 

profile of neutrophils under different conditions. This pipeline will be 

utilised in subsequent chapters to further define the transcriptional profile 

of neutrophils in conditions of simulated inflammation. 
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Chapter 4: RNA-Seq analysis 
of neutrophil priming by 
GM-CSF and TNFα 
Bioinformatic analyses presented within this chapter were included in a 
publication in which I was co-lead author. 
 
Wright	  HL†,	  Thomas	  HB†,	  Moots	  RJ,	  Edwards	  SW	  (2013)	  RNA-‐Seq	  Reveals	  
Activation	  of	  Both	  Common	  and	  Cytokine-‐Specific	  Pathways	  following	  
Neutrophil	  Priming.	  PLoS	  ONE	  8(3):	  e58598.	  doi:10.1371/journal.pone.0058598	  
 

4.1 Introduction 

Neutrophil function in vivo is regulated by “priming” by inflammatory 

signals generated during an inflammatory response. Priming induces 

several rapid (<1 h) functional changes such as the mobilisation of internal 

granules (containing pre-formed receptors) to the cell surface, 

phosphorylation of key signalling proteins, and assembly of the NADPH 

oxidase leading to increased respiratory burst in response to a secondary 

activating signal 3. 

Several agents are able to prime neutrophils, including: lipid mediators 

such as leukotriene B4 and platelet activating factor (PAF); hormones and 

growth factors, such as melatonin and substance P; bacterial products, such 

as lipopolysaccharide (LPS); and numerous cytokines and chemokines, such 

as IL-1, -3, -8, G-CSF, IFNγ, GM-CSF and TNFα	   205,206. Stimulation of 

neutrophils by these agents in vitro induces a similar, “primed” phenotype 
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resulting from the short-term, rapid molecular changes described above. 

Consequently, priming agents are sometimes used interchangeably in 

neutrophil studies on the assumption that priming occurs via common 

mechanisms 207,208. Furthermore, it is well established that cytokines and 

other priming agents are able to regulate gene expression in neutrophils 

11,181,183,209,210 but few studies have examined the global gene expression 

profile in neutrophils following priming, and none to date have directly 

compared the patterns of gene expression induced by different priming 

agents.  

Although regarded as a prerequisite for neutrophil activation, priming also 

serves an important role as a regulatory mechanism. By requiring a second 

stimulus for transition from a quiescent neutrophil (for example in 

peripheral blood), to an activated neutrophil (for example at the site of 

inflammation), neutrophils are able to regulate their activation state much 

more specifically. Ultimately, this decreases the possibility of inappropriate 

or excessive neutrophil activation leading to damage to host tissue from 

the release of ROS and proteases. Despite this, neutrophil dysfunction and 

inappropriate activation is often a hallmark of inflammatory and 

autoimmune diseases. In many cases, the mechanisms leading to initial 

inappropriate activation of the immune system are poorly understood, but 

it is clear that elevated levels of inflammatory cytokines are fundamental to 

the progression and exacerbation of these conditions 2,3,32,211.   
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The importance of inflammatory cytokines in inflammatory diseases is 

highlighted by the success of the successful application of anti-cytokine (or 

cytokine-receptor) drug therapy. Drugs such as Anakinra (IL-1R antagonist), 

Tocilizumab (anti-IL-6R), Milivimumab (anti-GM-CSFR), secukinumab (anti-

IL17) and Belimumab (anti-B-cell activating factor (BAFF)) are routinely used 

in a variety of inflammatory diseases such as gout, SLE, psoriasis, Crohn’s 

and RA 3,211,212 (See table 1.1 for a more complete list of cytokine-targeting 

therapies). However, the most successful target for treatment of 

inflammatory disease is TNFα. Several drugs, such as Infliximab, 

Adalimumab, Cerolizumab-pegol, Golimumab and Etanercept are 

considered the front line treatment for conditions such as RA, COPD, 

Ankylosing spondylitis and Crohn’s disease. However, an important feature 

of these drugs is the varying degree to which patients respond. For 

example, it is estimated that approximately 30% of patients with RA who 

are prescribed anti-TNF will not respond 213. These patients will often have 

to switch therapies a number of times to alternative anti-TNF drugs, or to 

drugs such as Rituximab (anti B-cell) or Abatacept (anti-T-cell), before 

adequate disease control is achieved and maintained.  This highlights the 

heterogeneity that exists in inflammatory diseases such as RA and suggests 

that different cytokines may be responsible for driving inflammation in 

different patients. Whilst treating inflammatory diseases using a single anti-

cytokine drug is of merit, a comprehensive understanding of the molecular 

changes induced by inflammatory cytokines in health and disease, and how 
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this regulation differs between cytokines and individuals, is important to 

understand immune regulation, but could also lead to a more rationale-

based approach to drug treatment. 

 

4.2 Aims 

The aims of this chapter were: 

 

1. To utilise the previously-described pipeline of methods and 

bioinformatic techniques (Chapter 3) to quantify the neutrophil 

transcriptome following priming with GM-CSF and TNFα 

 

2. To compare the molecular changes in neutrophils induced by 

priming and identify genes and signalling pathways that are either 

common or specific to each priming agent.  

 

3. To determine if predictions made by bioinformatic analyses can be 

validated by functional assays. 
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4.3 Results 

4.3.1 Effect of GM-CSF and TNFα on neutrophil function 

Several cytokines are commonly used as priming agents for in vitro studies 

of neutrophil function. To assess whether priming by different agents had 

any effect on neutrophil function, priming of respiratory burst and levels of 

apoptosis after overnight incubation were compared in neutrophils treated 

with either GM-CSF or TNFα.  

4.3.1.1 Ability of GM-CSF and TNFα to prime the respiratory burst 

Neutrophils were treated for 30 min in the presence or absence of priming 

concentrations of GM-CSF (5 ng/mL) or TNFα (10 ng/mL). Following 

incubation, neutrophils were stimulated with fMLP (1 µM) in the presence of 

luminol (10 µM) and immediately measured every 24 s over a 25 min time 

course using a plate reader (see Methods, section 2.2.8). Both GM-CSF and 

TNFα primed neutrophils for an enhanced respiratory burst, peaking at 

approximately 1 min.  This first peak represents extracellular release of ROS 

214. A second peak at 5 min was seen in both primed samples, which 

corresponds to a delayed intra-cellular activation of reactive oxygen 

species (ROS), as previously described 214.  

The primed response of ROS production was slightly higher in GM-CSF 

primed samples compared to TNFα primed samples (GM-CSF; 32,2316 

relative luminescence units (RLU) p=0.0022, TNFα; 28,5858 RLU p=0.0077, 

N=4). Unprimed neutrophils exhibited a modest increase in 
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chemiluminescence compared to unstimulated cells (negative control) (Fig 

4.1A-B). 

 

 

 

 

 

Fig	  4.1	  GM-‐CSF	   (GM)	  and	  TNFα	   (TNF)	  have	  similar	  effects	  on	  neutrophil	   function.	   (A)	  
Neutrophils	   were	   primed	   with	   either	   GM-‐CSF	   (5	   ng/mL)	   or	   TNFα	   (10	   ng/mL),	   or	  
untreated	  (UT)	  for	  30	  min.	  The	  respiratory	  burst	  was	  stimulated	  with	  fMLP	  (1	  µM)	   in	  
the	   presence	   of	   luminol	   (10	   µM).	   Primed:	   black	   line;	   	   unprimed:	   grey	   line;	  	  
unstimulated:	  dotted	  line.	  Graph	  shows	  representative	  trace	  of	  relative	  luminescence	  
units	  (RLU).	  (B)	  Results	  of	  4	  separate	  chemiluminescence	  experiments	  calculating	  the	  
RLU	  by	  quantifying	  area	  under	  curve	  in	  each	  condition.	  Error	  bars	  represent	  ±	  SEM.	  (**	  
p<0.01,	   Student’s	   t-‐test).	   (C)	   Neutrophils	   were	   incubated	   overnight	   (18	   h)	   in	   the	  
absence	   (UT)	   or	   presence	   of	   GM-‐CSF	   (5	   ng/mL)	   or	   TNFα	   (10	   ng/mL),	   and	   percentage	  
apoptosis	   was	   quantified	   by	   annexin-‐V/propidium	   iodide	   staining	   and	   measured	   by	  
flow	  cytometry.	  N=7.	  Error	  bars	  represent	  SEM.	  (***	  p<0.001,	  Student’s	  t-‐test).	  
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4.3.1.2 Effect of GM-CSF and TNFα on neutrophil apoptosis 

To assess the effect of priming  neutrophils with GM-CSF and TNFα on 

levels of apoptosis, neutrophils were incubated at 37 °C + 5% CO2 for 18 h 

in the absence or presence of GM-CSF (5 ng/mL) or TNFα (10 ng/mL). 

Apoptosis was quantified by Annexin V/propidium iodide staining and flow 

cytometry (see Methods section 2.2.5).  Levels of apoptosis were 

significantly lower in both GM-CSF and TNFα treated samples compared to 

controls (p<0.01, paired Student’s t-test: untreated 66.5 % ±2.08 %; GM-

CSF 38.6 % ±2.55 %; TNFα 56.9 % ±2.61 %).  

Taken together, these data indicate that both GM-CSF and TNFα are able 

to prime neutrophils leading to: elevated respiratory burst (upon 

stimulation); and delayed apoptosis. However, these effects are not 

identical between priming agents, suggesting that GM-CSF and TNFα may 

induce subtle differences in neutrophil signalling during the priming 

response. 

 

4.3.2 Whole transcriptome sequencing of primed neutrophils 

To investigate the molecular changes in neutrophils following priming with 

GM-CSF and TNFα, whole transcriptome sequencing by RNA-Seq was 

carried out on mRNA from neutrophils incubated for 1 h with either GM-

CSF (designated as GM), TNFα (designated as TNF) or without stimulation 

(designated as UT). 
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RNA was extracted by TRIzol®/chloroform precipitation (see Methods 

section 2.2.9) and sequenced on the Illumina HiSeq 2000 platform 

(summarised in 1.5.5) using upwards of 40x106 single end reads (see 

Appendix table A.5 for total no. of reads). Reads where mapped to the 

human genome (hg 19) by Tophat and annotated using Cufflinks (as 

previously described in Chapter 3). 

 

4.3.3 RNA-Seq analysis of primed neutrophils  

4.3.3.1 Analysis of gene expression by Cufflinks.  

Following mapping and annotation (as previously described in Chapter 3), 

Cufflinks analysis was carried out to determine the number of genes 

expressed in each of the 3 sample conditions (UT, GM and TNF). Fig 4.2A 

details the number of genes which are either treatment specific, expressed 

under multiple conditions, or not expressed in neutrophils in any of the 3 

conditions (using a cut-off RPKM of  0.3). In total, 11,201 out of a possible 

23,283 genes were expressed in neutrophils in any of the 3 conditions. Of 

these, 10,056 (89.8%) were expressed in all conditions. Interestingly, some 

genes were only expressed under certain conditions (condition-specific).  

GM treatment resulted in the expression of the most condition-specific 

genes (229), with marginally less in UT (220) and TNF (193). A total of 

12,082 genes were not expressed in any condition, suggesting that under 

the conditions studied, neutrophils express approximately half of the 

human transcriptome. This number broadly agrees with previous micro-
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array-based studies into neutrophil transcript expression of peripheral 

blood neutrophils 181,215,216 (Fig 4.2A). If a threshold of expression of RPKM 

of 10 is applied to the data, to remove genes with low abundance from 

quantification analysis, the total number of genes expressed (≥ RPKM 10) 

decreases from 11,201 to 3,574, with the vast majority of filtered genes 

being those expressed in all conditions (RPKM ≥0.3 – 10,056 genes, RPKM≥ 

10 – 2,829 genes). Conversely, filtering out low abundance genes has a 

lesser effect on the number of condition-specific gene changes. For 

example, the number of GM-CSF-specific genes decreases from 229 to 

187, while TNFα-specific genes decreases from 193 to 109 (Fig 4.2B). 

These data reveal that neutrophils express almost half of the human 

transcriptome and that 90% of these genes are expressed irrespective of 

GM-CSF or TNFα treatment. However, a large number of these 

constitutively-expressed genes (a total of 7225 genes) are present at low 

abundance (< RPKM 10) whereas the majority of condition-specific genes 

are expressed at a higher abundance (> RPKM 10). 
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Fig	   4.2	   (A)	   Venn	   diagram	   showing	   the	   number	   of	   genes	   expressed	   (RPKM	   ≥	   0.3)	   in	  
untreated	   (UT),	   GM-‐CSF	   primed	   (GM),	   TNFα	   primed	   (TNF)	   neutrophils,	   or	   not	  
expressed	  in	  any	  condition.	  (B)	  Increasing	  the	  expression	  threshold	  to	  an	  RPKM	  of	  10	  
to	   filter-‐out	   low-‐expression	   genes	   decreases	   the	   number	   of	   expressed	   genes	   in	   all	  
conditions.	  	  	  RPKM	  values	  of	  genes	  were	  calculated	  by	  Cuffdiff.	  
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4.3.3.2 Hierarchical clustering of highly expressed genes in UT, GM and 

TNF 

To better visualise and identify genes which are either common or specific 

to neutrophil priming conditions, hierarchical clustering of all genes with an 

RPKM ≥ 10 (in at least one of the 3 datasets) was performed using Multiple 

experiment Viewer (MeV)217(Fig 4.3). An expanded heatmap of the (150) 

highest expressed genes is also shown in Fig 4.3. These genes are 

associated with a number of functions and can be broadly categorised as: 

cell surface receptors; cytokines/chemokines; Interferon-induced genes; 

Major Histocompatibility Complex (MHC) proteins; calcium-binding 

proteins; adhesion molecules and apoptosis regulators. 
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Fig	  4.3	  Hierarchical	  clustering	  of	  genes	  expressed	  (≥	  RPKM	  10)	  in	  untreated	  neutrophils	  
(UNTR)	  or	   	  following	  priming	  by	  GM-‐CSF	  or	  TNFα.	  RPKM	  values	  are	  represented	  on	  a	  
log10	  scale	  where	  green	  represents	   low	  expression,	  black	  median	  expression	  and	  red	  
high	  expression.	  Right	  hand	  column	  shows	  expanded	  heatmap	  of	  the	  150	  most	  highly	  
expressed	  genes.	  Several	  of	  the	  most	  highly	  expressed	  genes	  can	  be	  categorised	  into	  
functional	   groups,	   such	   as:	   cell	   surface	   receptors;	   cytokines/chemokines;	   Interferon-‐
induced	   genes;	   Major	   Histocompatibility	   Complex	   (MHC)	   proteins;	   Calcium	   binding	  
proteins;	  adhesion	  molecules	  and	  apoptosis	  regulators.	  
	  
	  

4.3.3.3 Analysis of differentially expressed genes by Cuffdiff 

Following quantification of neutrophil genes expressed in each condition 

by Cufflinks, Cuffdiff analysis was applied to the data to quantify the 

number of genes which were significantly differentially expressed (DE) 

between sample conditions (q< 0.05, 5% FDR). This identifies the genes 

most affected during neutrophil priming and also identifies which genes 

were DE in neutrophils during priming by either GM-CSF or TNFα.  

 

	  	  

Fig	   4.4	   Number	   of	   significantly	   differentially	   expressed	   genes	   between	   neutrophils	  
treated	  with	  GM-‐CSF	   (GM),	  TNFα	   (TNF)	  or	  untreated	   (UT).	  Significance	   calculated	  by	  
Cuffdiff	  (q<0.05,	  FDR	  5%).	  
 

Cuffdiff analysis revealed that neutrophil priming by GM-CSF significantly 

regulated the expression of 505 genes compared to untreated control. 

Likewise, priming by TNFα resulted in 250 differentially expressed genes. 

Surprisingly, the greatest number of DE genes was found to be between 

TNF 

UT GM 
505 

580 250 
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GM-CSF and TNFα (580 genes) (Fig 4.4). It could be hypothesised that 

since GM-CSF and TNFα exert similar effects on neutrophils phenotypically 

(as seen in Fig 4.1) their gene expression profile would be similar. However, 

these RNA-Seq data suggest that there are a greater number of genes 

differentially expressed between GM-CSF and TNFα than between either 

GM-CSF or TNFα and untreated controls. These 580 genes are further 

analysed in a later section (see section 4.3.3.6). 

 

Of the 755 genes which were DE between either GM-CSF or TNFα and UT 

(UT vs GM, 505 genes; UT vs TNF, 250 genes), 40 genes were up-regulated 

by at least 10-fold by either GM-CSF or TNFα. These genes are listed in 

Table 4.1. Interestingly, several genes relating to cytokines/chemokines 

were differently expressed by the two treatments. For example: Chemokine 

(C-C motif) ligand 3 (CCL3), CCL4 and the TNFα-gene (TNF) were only 

significantly upregulated by TNFα treatment, whereas oncostatin M (OSM) 

was only significantly upregulated by GM-CSF treatment. CXCL1 (also 

known as Chemokine (C-X-C Motif) Ligand 1) was upregulated 

approximately 3-fold greater by GM-CSF compared to TNFα (GM, 10.4-

fold; TNF, 3.6-fold), whereas CXCL2 was upregulated 6-fold greater by 

TNF than by GM (TNF,29-fold; GM,4.7-fold). The cytokines interleukin-1A 

(IL1A), IL-1β and interleukin receptor agonist (IL1RN) were the only genes 

that were significantly upregulated by more than 10-fold by both 

treatments (Table 4.1). 
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Table	   4.1	   Genes	   significantly	   up-‐regulated	   at	   least	   10-‐fold	   in	   either	   GM-‐CSF	   or	   TNFα	  
treated	   neutrophil	   samples	   compared	   to	   untreated	   sample.	   Values	   represent	   fold	  
change	   in	   expression	   relative	   to	   control.	   	   All	   values	   are	   significant,	   as	   calculated	   by	  
Cuffdiff	  (q<0.05,	  5%	  FDR)	  unless	  stated	  (NS	  =	  not	  significant). 
 

Gene	   GM-‐CSF	   TNFα 	  
CCL3	   NS	   41.5	  
CCL4	   NS	   99.6	  
CD69	   57.5	   NS	  
CISH	   102.1	   NS	  
CXCL1	   10.4	   3.6	  
CXCL2	   4.7	   29.0	  
DUSP2	   NS	   12.1	  
EDN1	   16.5	   NS	  
EGR1	   57.9	   NS	  
EGR2	   21.5	   NS	  
GADD45B	   NS	   15.8	  
GPR84	   NS	   74.9	  
HBEGF	   33.2	   NS	  
HCAR2	   12.1	   NS	  
HCAR3	   12.2	   NS	  
HRH4	   32.3	   NS	  
ICAM1	   10.6	   7.7	  
IL1A	   35.3	   67.0	  
IL1B	   22.8	   13.8	  
IL1RN	   12.4	   31.4	  
KCNJ2	   NS	   16.6	  
MFSD2A	   -‐1.6	   11.9	  
NFKBIA	   NS	   11.9	  
NFKBIE	   NS	   15.8	  
OLR1	   NS	   3.2	  
OSM	   15.0	   NS	  
PDE4B	   11.8	   NS	  
PLAU	   5.8	   13.9	  
PNPLA1	   -‐2.1	   10.2	  
PPP1R15A	   3.6	   10.2	  
RHOH	   26.3	   NS	  
SLC35B2	   NS	   10.4	  
SOCS3	   90.2	   NS	  
TARP	   13.5	   NS	  
TIFA	   6.7	   17.7	  
TNF	   NS	   25.8	  
TNFAIP3	   2.7	   16.1	  
TNFAIP6	   NS	   10.6	  
TRAF1	   NS	   11.6	  
ZFP36	   11.4	   4.7	  
      	  

	  
	  



162	  
	  

4.3.3.4 Gene ontology analysis of genes with differential expression in 

either GM-CSF or TNFα  

Following identification of a subset of genes showing differential 

expression during neutrophil priming with GM-CSF or TNFα, further 

characterisation of these genes was performed by Gene Ontology (GO) 

analysis. GO analysis is a method of gene annotation used to collate and 

categorise large lists of genes (of the type often produced during large 

genetic studies such as RNA-Seq analyses) on the basis of known functional 

associations. Genes are assigned to GO terms based on their known 

function or functional association. GO terms are broadly categorised into 3 

hierarchical classes: biological process; molecular function or cellular 

component 200. Within each class, additional GO terms are structured in a 

hierarchical manner such that “high level” (or broadly descriptive) terms 

would include terms such as “signal transduction” or “cell growth and 

maintenance”. Whereas, more specific “low level” GO terms would include 

terms such as “pyrimidine metabolism” or “cAMP synthesis” 218. This allows 

the summarising of large sets of genes and the identification of common 

functional properties within groups of co-expressed genes. 

Gene Ontology analysis using the online software DAVID 219 revealed that 

genes DE by either GM-CSF or TNFα led to enrichment of GO terms that 

were cytokine-specific and common to both treatments (Table 4.2). High 

level GO categories, such as “inflammatory response” or “response to 

wounding” were represented in both GM-CSF and TNFα samples, whereas 
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more specific low level GO categories were represented in only one 

treatment sample. For example, “regulation of I-kappaB kinase/NF-kappaB 

cascade” and was only represented in TNFα samples, whilst “positive 

regulation of nitric oxide biosynthetic process” was only represented in 

GM-CSF samples (Table 4.2). 

4.3.3.5 Pathway analysis of genes with differential expression in either GM-

CSF or TNFα 

GO analysis is a useful bioinformatic approach to describe biological 

functions or cellular processes and to discover functional relationships 

within in a set of genes. However, the process is not sufficiently powerful to 

accurately predict activation of specific signalling pathways or identify 

upstream regulation of transcription factors. Therefore, further analyses 

were carried out on the genes DE by either GM-CSF or TNFα  using 

Ingenuity Pathway Analysis software (IPA) 220 to identify if the genes 

expressed during neutrophil priming by each priming agent activated 

common or different signalling pathways and transcription factors.  

IPA analysis identified that neutrophils primed with TNFα or GM-CSF 

significantly regulated a number of intracellular signalling pathways. For 

example, genes DE following TNFα treatment were found to regulate 

pathways associated with: TNF- and death-receptor activation; apoptosis; 

and APRIL (A Proliferation-Inducing Ligand) signalling (Fig 4.5A).  
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Table	   4.2	  Gene	  Ontology	   analysis	   of	   genes	  with	  DE	  during	  priming	  with	   TNFα	   (TNF)	  
and	  GM-‐CSF	  (GM).	  *	  represents	  which	  dataset	  GO-‐terms	  were	  found	  to	  be	  significantly	  
enriched	  	  (compared	  to	  untreated	  control	  dataset).	  
 
GO	  Term	   GO	  Category	   GM	   TNF	  

GO:0006954	   Inflammatory	  response	   *	   *	  
GO:0009611	   Response	  to	  wounding	   *	   *	  
GO:0006955	   Immune	  response	   *	   *	  
GO:0042981	   Regulation	  of	  apoptosis	   *	   *	  
GO:0006952	   Defense	  response	   	   *	  
GO:0006935	   Chemotaxis	   	   *	  
GO:0043122	   Regulation	  of	  I-‐kappaB	  kinase/NF-‐kappaB	  cascade	   	   *	  
GO:0007243	   Protein	  kinase	  cascade	   	   *	  
GO:0031328	   Positive	  regulation	  of	  cellular	  biosynthetic	  

process	  
*	   	  

GO:0010557	   Positive	  regulation	  of	  macromolecule	  
biosynthetic	  process	  

*	   	  

GO:0010628	   Positive	  regulation	  of	  gene	  expression	   *	   	  
GO:0045321	   Leukocyte	  activation	   *	   	  
GO:0010604	   Positive	  regulation	  of	  macromolecule	  metabolic	  

process	  
*	   	  

GO:0001775	   Cell	  activation	   *	   	  
GO:0045766	   Positive	  regulation	  of	  angiogenesis	   *	   	  
GO:0051789	   Response	  to	  protein	  stimulus	   *	   	  
GO:0008285	   Negative	  regulation	  of	  cell	  proliferation	   *	   	  
GO:0051174	   Regulation	  of	  phosphorus	  metabolic	  process	   *	   	  
GO:0019220	   Regulation	  of	  phosphate	  metabolic	  process	   *	   	  
GO:0032570	   Response	  to	  progesterone	  stimulus	   *	   	  
GO:0042325	   Regulation	  of	  phosphorylation	   *	   	  
GO:0045429	   Positive	  regulation	  of	  nitric	  oxide	  biosynthetic	  

process	  
*	   	  

GO:0006350	   Transcription	   *	   	  
GO:0045893	   Positive	  regulation	  of	  transcription,	  DNA-‐

dependent	  
*	   	  

GO:0051254	   Positive	  regulation	  of	  RNA	  metabolic	  process	   *	   	  
GO:0045859	   Regulation	  of	  protein	  kinase	  activity	   *	   	  
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However, genes DE by GM-CSF treatment were found to regulate: p38 

mitogen-activated protein kinase (MAPK) signalling; JAK/STAT signalling; 

and protein ubiquitination pathways (Fig 4.5B). The NF-κB pathway was 

found to be regulated by both GM-CSF and TNFα; however whereas TNFα 

positively regulated the NF-κB pathway, GM-CSF negatively regulated this 

(Fig 4.5C-D). IPA analysis reports signalling pathways whose components 

(genes) have been significantly up- or down-regulated by treatment. The 

software calculates the significance of pathway regulation based on the 

proportion of a canonical pathway which is enriched with DE genes. For 

example, if 18/24 genes in a signalling pathway are DE (versus control) then 

that pathway is more likely to be defined as significantly regulated than if 

only 2/24 genes are DE. However, the analysis does not distinguish if the 

signalling pathway has been (on the whole), up- or down-regulated. To 

further elucidate the specific regulation within a signalling pathway, the up- 

or down-regulation of each gene within a signalling pathway can be colour-

coded and visualised to identify which portions of the pathway are 

regulated, and in what way. For example, genes which have increased 

expression (compared to control) are coloured red, genes whose 

expression is lower than in control are coloured green), genes with no 

change are shaded grey and those genes with no data are unshaded 

(white) (Fig 4.5C-D). 

Having identified the NF-κB pathway as being significantly-regulated by 

both GM-CSF and TNFα, further analysis was carried out to determine if 
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similar genes within the pathway were regulated in a similar fashion.  Fig 

4.5C reveals that following TNFα priming, the majority of genes within the 

NF-κB pathway were upregulated (compared to untreated sample). 

Conversely, priming with GM-CSF led to a down-regulation of several 

genes within the NF-κB pathway (Fig 4.5D). This highlights an important 

difference between the molecular changes induced by both priming agents 

that would otherwise be overlooked if simply looking at signalling pathways 

that were significantly regulated.  

4.3.3.6 Analysis of genes that are differentially-expressed between GM-CSF 

and TNFα  

Cuffdiff analysis identified 580 genes that were DE between GM-CSF and 

TNFα treated neutrophils (Fig 4.4). These genes therefore represent those 

that reflect the greatest differences regulated by the two priming agents. 

Further analysis was carried out on these genes to identify their functional 

associations. 

GO analysis revealed that 44 GO-terms were significantly enriched (see 

Appendix Table A.6 for full list of enriched GO-terms). Of the 44 GO-terms, 

11 were directly related to cell death and/or apoptosis, including the most 

represented GO-term “Regulation of apoptosis” (containing 58 genes from 

the dataset). A similar result was obtained by IPA analysis of the 580 genes 

that identified “Apoptosis” as the cellular function with the greatest 

differential regulation between the two treatments (p= 6.78E-23). Table 4.3 

lists the RPKM values for each of the 58 genes found to be DE between 



167	  
	  

GM-CSF and TNFα. IPA analysis was carried out to identify upstream 

transcription factor activation. A total of 36/58 genes were more highly-

expressed in TNFα	   treated samples, and of these, IPA analysis predicted 

that 23 were regulated by the NF-κB system (p=5.77E-21) (Fig 4.5E). 

Conversely, a total of 22/58 genes had higher expression in GM-CSF 

samples, of which, 15 where predicted by IPA analysis to be regulated by 

the STAT family of transcription factors (p=2.73E-12), in particular STAT3 and 

STAT5 (Fig 4.5E). 
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Fig	  4.5	  Analysis	  of	  signalling	  pathways	  in	  TNFα	  and	  GM-‐CSF	  primed	  neutrophils.	  (A-‐B)	  	  
Bar	   graphs	   show	   the	   canonical	   pathways	  with	   the	  most	   significant	   regulation	   in	   (A)	  
TNFα-‐	   or	   (B)	   GM-‐CSF-‐	   treated	   neutrophils	   compared	   to	   untreated	   control.	   Bars	  
represent	  the	  probability	  (p-‐value)	  that	  the	  enrichment	  of	  significant	  genes	  within	  the	  
canonical	  pathway	  is	  due	  to	  chance	  alone.	  Orange	  line	  represents	  the	  ratio	  of	  number	  
of	   genes	   that	   are	   enriched	   in	   the	   pathway	   to	   the	   total	   number	   of	   genes	   in	   the	  
pathway.	  (C-‐D)	  NF-‐κB	  pathway	  was	  identified	  as	  being	  significantly	  regulated	  in	  both	  
(C)	  TNFα-‐	  or	  (D)	  GM-‐CSF-‐	  treated	  neutrophils	  compared	  to	  control;	  genes	  significantly	  
up-‐regulated	   are	   coloured	   in	   red,	   down-‐regulated	   in	   green	   and	   genes	   with	   no	  
significant	   change	   are	   shaded	   in	   grey.	   Genes	   where	   no	   data	   is	   available	   are	   have	  
orange	  boxes.	   (E-‐F)	   IPA	  analysis	  of	  58	  apoptosis-‐regulating	  genes	  with	  significant	  DE	  
between	  TNFα	  and	  GM-‐CSF	  treated	  neutrophils.	  (E)	  NF-‐κB	  activation	  was	  predicted	  in	  
TNFα-‐	   treated	  neutrophils	   (p=9.04E-‐11),	  whereas	  STAT	  activation	   (F)	  was	  predicted	   in	  
GM-‐CSF-‐treated	   neutrophils	   (p=2.26E-‐05).	   The	   RPKM	   values	   of	   individual	   genes	   are	  
represented	  by	  increasing	  intensity	  of	  red. 
 

 

Table	  4.3	  Gene	  expression	  value	  (RPKM)	  of	  58	  apoptosis-‐related	  genes	  significantly	  DE	  
in	  neutrophils	  treated	  with	  GM-‐CSF	  or	  TNFα.	  RPKM	  values	  calculated	  by	  Cufflinks	  and	  
significance	  of	  DE	  calculated	  by	  Cuffdiff	  (q<0.05	  5%FDR).	  
 

Gene	   GM-‐CSF	   TNFα 	  
ANXA1	   231.73	   82.28	  
APAF1	   20.50	   24.50	  
BBC3	   3.58	   15.43	  
BCL3	   323.05	   764.80	  
BID	   66.72	   192.62	  
BIRC3	   14.36	   107.60	  
CARD16	   68.22	   114.51	  
CARD6	   12.14	   2.73	  
CASP1	   65.68	   87.50	  
CDKN1A	   44.49	   16.55	  
CDKN2C	   0.37	   1.09	  
CHST11	   61.81	   79.18	  
CLCF1	   0.95	   6.73	  
CREB1	   8.22	   13.50	  
DDIT3	   240.01	   109.21	  
F3	   0.80	   2.98	  
FAS	   33.88	   62.78	  
GCH1	   12.90	   31.89	  
GHRL	   6.28	   12.84	  
HSPD1	   20.84	   8.29	  
ID3	   2.01	   <0.3	  
INPP5D	   68.32	   88.53	  
MAEA	   27.03	   57.98	  
NET1	   5.76	   0.60	  
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NFKB1	   21.19	   42.05	  
NFKBIA	   225.87	   3901.19	  
NLRP3	   16.81	   49.76	  
NR4A1	   2.02	   21.41	  
NR4A2	   18.14	   50.14	  
NUAK2	   5.25	   24.99	  
PIM1	   98.05	   11.26	  
PIM2	   36.66	   260.17	  
PIM3	   74.97	   246.79	  
PLAGL2	   4.81	   33.72	  
PPIF	   1352.77	   488.80	  
PRNP	   17.15	   4.24	  
PROK2	   582.65	   210.88	  
PSEN1	   39.99	   69.94	  
RIPK2	   92.35	   36.63	  
RRM2B	   7.70	   16.15	  
SERPINB9	   13.36	   37.09	  
SLC11A2	   0.78	   1.82	  
SMPD2	   2.04	   9.13	  
SOCS2	   23.61	   2.96	  
SOCS3	   4060.71	   36.45	  
SOD2	   2696.87	   4619.77	  
SQSTM1	   114.89	   280.27	  
TGM2	   4.84	   0.68	  
THBS1	   13.16	   52.91	  
TICAM1	   9.98	   47.41	  
TNFAIP3	   244.30	   1451.80	  
TNFRSF10D	   12.54	   1.09	  
TNFSF14	   41.61	   85.44	  
TNFSF15	   3.59	   0.77	  
TNFSF8	   19.93	   5.93	  
TPT1	   3025.26	   1310.06	  
UTP11L	   5.02	   1.39	  
ZAK	   1.40	   0.51	  
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4.3.4 Regulation of neutrophil apoptosis by GM-CSF and TNFα 

v ia activation of different transcription factors  

The above bioinformatic analyses revealed that whilst priming of 

neutrophils with either GM-CSF or TNFα	  results in expression of apoptosis-

regulating genes, they do so via different signalling pathways and by 

activation of different transcription factors. Further functional assays were 

employed to validate these findings, as detailed below. 

4.3.4.1 Levels of apoptosis in neutrophils following addition of inhibitors of 

signalling pathways 

Neutrophils were incubated overnight (18 h) with GM-CSF (5 ng/mL) or 

TNFα (10 ng/mL) in the presence of chemical inhibitors of NF-κB 

(wedeloactone, 50 µM) and JAK/STAT (JAK inhibitor-1, 10 µM). Levels of 

apoptosis were measured following annexin-V/PI staining by flow cytometry 

(see Methods section 2.2.5). Levels of apoptosis in GM-CSF and TNFα 

treated neutrophils were in-line with previously described experiments (see 

section 4.3.1.2) (untreated 60.35% ± 6.98%; GM-CSF 36.96% ± 6.56%; 

TNFα 50.07% ± 5.89%). Inhibition of NF-κB by wedeloactone abrogated 

the anti-apoptotic effect of TNFα (p<0.05, Student’s t-test), but had no 

effect on GM-CSF-delayed apoptosis. Conversely, inhibition of STAT using 

JAK inhibitor-1 abrogated GM-CSF-delayed apoptosis (P<0.05, Student’s t-

test), and only partially attenuated TNFα-delayed apoptosis (although this 

was not significant p>0.05) (Fig 4.6A). 
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4.3.4.2 Western blot analysis of neutrophils following addition of signalling 

inhibitors  

Next, activation-states of NF-κB and JAK/STAT pathways were determined 

by western blotting for phospho-STAT3, phospho-NF-κB and IκB-α. 

Neutrophils were pre-incubated for 1 h with wedeloactone or JAK inhibitor-

1 before addition of GM-CSF (5 ng/mL) or TNFα (10 ng/mL). Following 15 

min incubation, protein lysates were made using boiling Laemmli buffer 

containing a phosphatase inhibitor cocktail (see Methods section 2.2.6). 

Activation of NF-κB and degradation of IκB-α was seen in TNFα-‐ treated 

samples, which was abrogated by wedeloactone but not by JAK inhibitor-

1. Conversely, GM-CSF treatment did not activate NF-κB but was able to 

activate STAT3, which was inhibited by JAK inhibitor-1 (Fig 4.6B). These 

data confirm the predictions made by the bioinformatic analyses: 

regulation of neutrophil apoptosis by GM-CSF and TNFα is achieved via 

differential activation of transcription factors. 
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Fig	   4.6	   Delayed	   neutrophil	   apoptosis	   in	   GM-‐CSF-‐	   and	   TNFα-‐	   treated	   neutrophils	   is	  
regulated	   by	   different	   transcription	   factors.	   (A)	   Overnight	   (18	   h)	   incubation	   of	  
neutrophils	  with	  GM-‐CSF	  or	  TNFα	  significantly	  delayed	  apoptosis	  (†	  p<0.05,	  Student’s	  t-‐
test)	  compared	  to	  untreated	  (UNTR).	  Inhibition	  of	  STAT	  signalling	  with	  JAK	  inhibitor-‐1	  
(JAK1,	   10	  µM)	  abrogated	   the	  effect	  of	  GM-‐CSF	  on	  neutrophil	  apoptosis	   (*p<0.05)	  but	  
did	   not	   affect	   TNFα-‐delayed	   apoptosis.	   Inhibition	   of	   NF-‐κB	   with	   wedelolactone	  
(WEDEL,	   50	   µM)	   abrogated	   the	   effect	   of	   TNFα	   (*p<0.05),	   but	   not	   GM-‐CSF,	   on	  
neutrophil	  apoptosis.	  (B)	  Western	  blot	  of	  NF-‐κB	  and	  STAT3	  activation	  in	  GM-‐CSF-‐	  and	  
TNFα-‐	   treated	   neutrophils.	   TNFα	   induced	   rapid	   phosphorylation	   of	   NF-‐κB	   and	  
degradation	   of	   IκBα,	  which	  was	   inhibited	   by	  wedelolactone.	   GM-‐CSF	   did	   not	   induce	  
phosphorylation	   of	   NF-‐κB	   or	   degradation	   of	   IκBα,	   but	   did	   induce	   STAT3	  
phosphorylation	  which	  was	  inhibited	  by	  JAK	  inhibitor-‐1.	  TNFα	  did	  not	  activate	  STAT3	  in	  
neutrophils.	  	  

  



174	  
	  

4.4 Discussion 

Priming is an important process to regulate neutrophil activation. 

Appropriate priming ensures that neutrophils arrive at the site of 

inflammation suitably prepared for their anti-microbial roles. Priming also 

ensures that neutrophils do not become non-specifically activated at non-

inflammatory sites, such as in the bloodstream. The rapid changes induced 

by priming are well established, but the longer term molecular changes, 

such as de novo gene expression, are poorly defined. Moreover, the 

specific effects of individual priming agents on gene expression in 

neutrophils is limited to a few studies 181,182,221,222, and no studies have 

directly compared the effects of two cytokines using RNA-Seq. 

This chapter set out to characterise the molecular changes induced by two 

inflammatory cytokines, GM-CSF and TNFα. Although both cytokines are 

known neutrophil-priming agents, and are elevated during inflammation 

and in inflammatory disease, little was known of any differences that may 

exist during priming with these cytokines. 

Neutrophils were treated with priming concentrations of GM-CSF and 

TNFα and analysed by RNA-Seq to quantify the global changes in gene 

expression induced during neutrophil priming. Functional experiments 

using GM-CSF and TNFα revealed that both agents were able to rapidly 

prime the respiratory burst and delay apoptosis over the course of 18 h. 

While GM-CSF was a stronger inducer of these anti-apoptotic effects, the 
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effects of both priming agents were significantly different when compared 

to unprimed controls (p<0.01).  

RNA-Seq and bioinformatic analysis of primed and unprimed neutrophils 

revealed that approximately half of the human transcriptome was 

transcribed under the conditions analysed, with the majority of genes being 

transcribed in all 3 conditions. However, several hundred genes were found 

to be expressed uniquely in each of the 3 conditions. Analysis of the most 

highly expressed genes, identified transcripts associated with several 

functional categories such as cell surface receptors, adhesion molecules 

and cytokines/chemokines. This suggests that although a large proportion 

of the human transcriptome is actively transcribed in both primed and 

unprimed neutrophils, the levels of expression of the majority of these 

genes are very low and most likely do not play an important role in 

neutrophil function under the conditions analyses. The identification of 

specific genes that are only expressed under certain conditions, (the 

majority of which had expression levels (RPKM) >10), suggest that not only 

is the neutrophil transcriptome dynamically-regulated, but that the global 

gene expression profile of primed neutrophils is regulated by the initial 

priming agent. It is therefore likely that the subsequent phenotype of a 

primed neutrophil is governed by the priming agent. Importantly, among 

the most highly-expressed genes in both GM-CSF and TNFα-treated 

neutrophils were cytokine/chemokine genes. For example, TNFα treatment 

led to a more than 10-fold increase in expression of TNF, CCL3 CCL4 and 
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CXCL2. Whereas GM-CSF treatment resulted in a >10-fold expression of 

CXCL1 and OSM, both treatments upregulated expression of IL1A, IL1B, 

and IL1RN. Thus, cytokine/chemokine production appears to be 

differentially-expressed by these two inflammatory cytokines. These 

findings have important implications for inflammatory disease where high 

levels of inflammatory cytokines are common, such as TNFα in RA 223 or 

psoriasis 90. 

It is well established that both GM-CSF and TNFα delay neutrophil 

apoptosis 178,183,184,224,225. However, RNA-Seq analysis of neutrophils has 

revealed that the genes regulating apoptosis are DE during priming with 

these two cytokines. Pathway analysis of 58 apoptosis-related genes found 

to be DE between cytokine treatments predicted differential activation of 

two independent transcription factors families. NF-κB was predicted to be 

activated following TNFα treatment, whereas STAT activation was 

predicted following GM-CSF treatment.  

RNA-Seq followed by bioinformatic analysis is a powerful way to 

characterise the molecular changes induced by different stimuli or 

inflammatory conditions. The scale of data produced and the 

comprehensive databases of canonical biological processes allow accurate 

predictions of functional mechanisms from the expression profile of 

associated genes. Nevertheless, where possible, bioinformatic predictions 

should always be verified by functional assays.  
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Bioinformatic predictions of differential activation of transcription factors in 

neutrophils was verified using functional assays measuring neutrophil 

apoptosis and pathway activation in the presence and absence of specific 

inhibitors of signalling pathways. Inhibition of NF-κB abrogated the anti-

apoptotic effect of TNFα and inhibited TNFα-induced phosphorylation of 

NF-κB. Conversely, STAT inhibition abrogated the anti-apoptotic effect of 

GM-CSF and inhibited the GM-CSF-induced phosphorylation of STAT3. 

Neither wedeloactone nor JAK inhibitor-1 had any significant effects on 

GM-CSF or TNFα-induced function, respectively. Whilst activation of NF-κB 

by TNFα and STAT by GM-CSF has previously been shown in neutrophils, 

their involvement in cytokine-delayed apoptosis is less well studied. 

During inflammation, it is likely that neutrophils are exposed to a variety of 

cytokines at sites of inflammation (including both GM-CSF and TNFα). 

Therefore, for apoptotic pathways at least, there is a level of redundancy of 

processes capable of maintaining neutrophil survival. These discrete 

signalling pathways may allow the effects of each cytokine to act additively 

to increase the anti-apoptotic effect in situations where multiple cytokines 

are present.  

 

Among the genes with highest expression following treatment with either 

cytokine, were several genes associated with suppression or inhibition of 

signalling. For example, TNFα treatment induced expression of NFkBIA, 

NFKBIE and TNFAIP3 – inhibitors of NF-κB signalling. Similarly, GM-CSF 
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increased expression of gene associated with suppression of STAT 

signalling (CISH and SOCS3). This suggests that in addition to activating 

different transcription families, priming by GM-CSF and TNFα also induces 

expression of inhibitors of these transcription factors. This mechanism thus 

provides a way of controlling the signalling by provision of a negative 

feedback loop.	  	  

In summary, these data suggest that the nature of the initial priming agent 

during neutrophil priming is crucial in determining the subsequent 

phenotype and functional capacity of the primed and/or activated 

neutrophil. The molecular differences that exist between neutrophils 

primed by different agents have successfully been characterised using a 

systems-based approach of RNA-Seq technology and current bioinformatic 

software, and have successfully been validated post hoc by traditional 

laboratory functional assays. 
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Chapter	  5:	   	  Activation	  of	  gene	  
expression	   by	   pro-‐
inflammatory	  cytokines	  
Bioinformatic analyses presented within this chapter (section 5.4.2.5) were 
included in a publication in which I was second author. 
 

Wright,	  H.L.,	  Thomas,	  H.B.,	  Edwards,	  S.W.,	  Moots,	  R.J.	   (2015)	   Interferon	  gene	  
expression	   signature	   in	   RA	   neutrophils	   predicts	   response	   to	   anti-‐TNF	  
therapy.	  Rheumatology,	  Vol	  54	  (1):	  188-‐193	  

5.1 Introduction 

In the previous chapter, neutrophil gene expression was analysed by RNA-

Seq following stimulation with two inflammatory cytokines capable of 

priming neutrophils (GM-CSF and TNFα). Whilst these cytokines are often 

found at the site of inflammation at high concentrations, neutrophils are 

unlikely to be exposed to these cytokines alone during an inflammatory 

response. Epithelial cells and other surrounding activated leukocytes 

express and release a variety of inflammatory signals during inflammation, 

each playing a role in regulating and propagating the immune response 5.  

Details of how inflammatory signals affect neutrophil function, either 

individually or in combination are poorly-defined. Indeed, for studies using 

human neutrophils, there is still contention around whether neutrophils can 

respond directly to certain cytokines such as IL-6 206,226 and IL-17 227. Thus, a 

greater understanding of the molecular consequences of stimulation by 

different inflammatory mediators will provide a means to identify the genes 
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and proteins most commonly-associated with a particular stimulus (or 

group of stimuli). 

In this chapter, neutrophils were treated with cytokines/chemokines 

commonly-associated with either sterile or pathogen-driven inflammation, 

and changes in gene expression were analysed using the bioinformatic 

pipeline previously described (Chapter 3). Neutrophils were stimulated for 

1 h with one of 5 cytokine/chemokines (G-CSF, IFNγ, IL-1β, IL-8, IL-6). In 

addition, neutrophils were stimulated with GM-CSF and TNFα (dual-

treated) to analyse the effects of multiple cytokines compared to activation 

by these agents used singly. 
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5.2 Aims 

The aims of this chapter were: 

 

1. To utilise a previously-described pipeline of methods and 

bioinformatic techniques (Chapter 3) to quantify the neutrophil 

transcriptome following stimulation with a variety of inflammatory 

mediators (G-CSF, IFNγ, IL-1β, IL-8, IL-6, GM-CSF+TNFα). 

 

2. To identify treatment-specific changes in gene expression and 

activation of signalling pathways /transcription factors. 

 

3. To analyse whether dual stimulation of neutrophils by GM-CSF and 

TNFα induces expression of a discrete set of genes when compared 

to individually treated neutrophils (i.e. GM-CSF alone, TNFα-alone). 

 

4. To validate any treatment-specific findings by functional assays. 
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5.3 Methods 

Neutrophils were stimulated for 1 h in the absence or presence of one or 

more cytokine/chemokines (Table 5.1).  The optimal concentration of each 

cytokine was previously determined using a range of functional assays (data 

not shown). 

 

Table	   5.1	   List	   of	   cytokine/chemokine	   treatments	   and	   concentrations,	   and	   number	   of	  
biological	  repeats	  per	  sample.	  
	  

Inflammatory	  stimulus	   Concentration	   No.	  of	  biological	  
replicates	  

G-‐CSF	   10	  ng/mL	   3	  
IFNγ	   10	  ng/mL	   3	  
IL-‐1β	   10	  ng/mL	   3	  
IL-‐8	   100	  ng/mL	   3	  

GM-‐CSF+TNFα	   5	  ng/mL	  +	  10	  ng/mL	   3	  
IL-‐6	   10	  ng/mL	   1	  

 

Following 1 h incubation, RNA was extracted and purified as previously 

described (Section 2.2.9). RNA was sequenced on the Illumina platform 

(50bp, single-end reads) and analysed using the methods described in 

Chapter 3. For a list of RNA concentrations, integrity values and number of 

reads produced per sample library, see Appendix Table A.5. 
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5.4 Results 

5.4.1 Effects of cytokines on neutrophil apoptosis 

Activation or priming of neutrophils often results in a delay in neutrophil 

apoptosis. This mechanism allows neutrophils to carry out their anti-

microbial role in inflammatory situations. Consequently, several 

inflammatory mediators are known to extend the lifespan of neutrophils. 

Neutrophils were incubated overnight (21 h) in the presence or absence of 

several inflammatory stimuli (either alone or in combination). Levels of 

neutrophil apoptosis were analysed by annexin V/PI staining and 

measurement by flow cytometry (as described in section 2.2.5) (Fig 5.1).  

Levels of apoptosis varied considerably between stimuli compared to 

controls (UT, 69.04%). As previously reported in this thesis, GM-CSF (41.6% 

p<0.0001) and TNFα (56.4% p<0.05) significantly delayed neutrophil 

apoptosis. Similarly, stimulation with IFNγ (55.3% p<0.01), G-CSF (34.1% 

p<0.001), IL-8 (55.2% p<0.01) or dual stimulation with GM-CSF and TNFα 

(45.2% p<0.01), all significantly delayed neutrophil apoptosis. Conversely, 

stimulation by IL-1β (66.12% p>0.05) and IL-6 (66.81% p>0.05) had no 

effect on neutrophil apoptosis. This suggests that different 

cytokines/chemokines greatly affect neutrophil function in vitro and implies 

that this difference in phenotype may be explained by the de novo gene 

expression profile induced by each stimulus. 
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Fig	   5.1	   Neutrophil	   apoptosis	   following	   overnight	   (21	   h)	   incubation	   with	   several	  
inflammatory	   cytokines/chemokines.	   Apoptosis	   was	   quantified	   by	   annexin-‐V/PI	  
staining	  and	  measured	  by	  flow	  cytometry.	  N=4.	  Error	  bars	  represent	  SEM.	  Significance	  
(***	  p<0.001,	  **	  p<0.01,	  *	  p<0.05,	  NS=	  not	  significant,	  p>0.05)	  calculated	  by	  Student’s	  t-‐
test	   versus	   untreated	   neutrophils	   (UT,	   black	   bar).	   Dotted	   horizontal	   line	   represents	  
level	  of	  apoptosis	  in	  untreated	  samples.	  	  
 

 

5.4.2 Bioinformatic analysis of neutrophils fol lowing incubation 

with inflammatory st imuli  

Having identified that levels of neutrophil apoptosis vary depending on the 

specific inflammatory stimuli, neutrophils were next analysed by RNA-Seq 

and bioinformatic pipeline software to identify any changes in gene 

expression between stimuli.  
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5.4.2.1 Multidimensional scaling of cytokine-induced gene expression 

profiles. 

Following quantification of neutrophil transcriptomes by Cufflinks, the 

downstream R-based software cummeRbund 168 was utilised to produce 

multi-dimensional scaling (MDS) plots of each dataset in relation to each 

other (Fig 5.2). MDS is a method for visualising the relative differences and 

similarities between samples in a 2-dimensional form. Thus, similar datasets 

(in terms of their RPKM values across all genes) will be spatially close to 

each other, whereas datasets with the greatest dissimilarity will be further 

apart in both spatial dimensions. Nine neutrophil datasets were plotted in 

2-dimensional space following MDS (Fig 5.2). 
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Fig	   5.2	   Multi-‐dimensional	   scaling	   plot	   showing	   the	   2-‐dimensional	   association	   of	   9	  
neutrophil	   transcriptomes	   under	   different	   inflammatory	   conditions:	   untreated	   (UT);	  
IL-‐6	   (IL6);	   IL-‐1β	   (IL1B);	   TNFα	   (TNF);	   G-‐CSF	   (GCSF);	   IFNγ	   (IFNg);	   IL-‐8	   (IL8);	   GM-‐CSF	  
(GMCSF);	   and	   GM-‐CSF+TNFα	   dual	   treatment	   (GM+TNF).	   MDS	   carried	   out	   by	  
cummeRbund168.	   Colouring	   of	   datasets	   was	   arbitrarily	   applied	   post	   hoc	   to	   highlight	  
dataset	  groupings.	  	  
 

Datasets most similar were untreated and IL-6, with TNFα and IL-1β 

forming a closely related pair. G-CSF and IFNγ datasets grouped together 

whilst IL-8, GM-CSF and GM-CSF+TNFα dual treatment were the most 

dissimilar data sets. Interestingly, despite GM-CSF and dual treatment GM-

CSF+TNFα sharing a common stimulus, their respective datasets were 

among the two most dissimilar datasets. This suggests that dual stimulation 

induces expression of discrete gene sets or differential expression of genes 

that are not explained by a combination of GM-CSF and TNFα expression. 
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5.4.2.2 Analysis of neutrophil genes significantly DE genes following 

cytokine/chemokine treatment. 

Cuffdiff analysis was used to calculate the number of significantly (q<0.05, 

5% FDR) DE genes in each treatment compared to control (Table 5.2). 

 

Table	  5.2	  Number	  of	  significantly	  DE	  genes	   (vs	  untreated).	  Significance	  calculated	  by	  
Cuffdiff	  (q<0.05,	  FDR	  5%).	  
	  

Treatment	   No.	  of	  DE	  genes	  
GM-‐CSF	   110	  
TNFα	   81	  

GM+TNFα	   151	  
IFNγ	   110	  
G-‐CSF	   95	  
IL-‐1β	   6	  
IL-‐8	   5	  
IL-‐6	   0	  

	  
	  
	  
Similarly to the apoptosis results previously, analysis of DE genes identified 

a wide range in the number of DE genes following cytokine stimulation. IL-

1B, IL-8 and IL-6 treatment resulted in only 6, 5 and 0 genes DE, 

respectively. Interestingly, these 3 treatments also resulted in the lowest 

inhibition of neutrophil apoptosis. Moreover, the stimuli that induced the 

greatest delay in apoptosis also resulted in the greatest number of DE 

genes. This suggests a correlation between apoptosis levels and number of 

genes DE. This was confirmed by comparing the number of DE genes with 

the percentage delay in apoptosis induced by each treatment (r= 0.719, 

p<0.05, Pearson correlation coefficient) (Fig 5.2).  
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Fig	  5.3	  Linear	  regression	  of	  the	  number	  of	  DE	  genes	   in	  8	  conditions	  vs	  the	  %	  delay	   in	  
apoptosis.	  Line	  represents	  best	  fit.	  r=	  0.719,	  p<0.05,	  (Pearson	  correlation	  coefficient).	  
 

5.4.2.2 Analysis of gene and protein expression in dual stimulated 

neutrophils 

The greatest number of DE genes was seen following dual stimulation with 

GM-CSF and TNFα, as might be predicted since previous results (Chapter 

4) revealed that each cytokine activated independent transcription factors. 

Thus, the number of DE genes might represent a combination of both 

cytokines resulting in the expression of discrete sets of genes. However, 

further analysis of the genes DE following dual stimulation revealed that 

only 16 genes were DE in the dual treatment samples and both of the 

single treatments, with a further 79 genes expressed in dual treatment and 

one of the single treatments (Fig 5.4). Thus, 56 genes were uniquely DE 

after GM-CSF/TNFα dual stimulation. The top 30 genes (with the greatest 

difference in RPKM to untreated samples) of the 56 genes unique to dual 

treatment are listed in Table 5.3. Genes uniquely DE in dual-treated 
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neutrophils include several genes which are poorly characterised, for 

instance: Guanylate binding proteins (GBP) GBP1, GBP3, and GBP1P1; G-

protein coupled receptor 132 (GPR132); the heme-binding protein 

Cytochrome B5 Domain Containing 1 (CYB5D1) and transmembrane 

coupled receptor 170B (TMEM170B). The gene with the greatest difference 

in RPKM to untreated is immediate early response-3 (IER3) which is an 

“anti-death” protein that protects from FASL- or TNFα-induced apoptosis 

and inhibits ERK dephosphorylation 228. Conversely, dual treatment also 

induces expression of dual specificity phosphatase 5 (DUSP5), which is 

involved in negative regulation of the MAPK/ERK pathway 229.  

 

 

Fig	  5.4	  Venn	  diagram	  showing	  the	  number	  of	  DE	  genes	  in	  neutrophils	  following	  single,	  
or	  dual	   stimulation	  with	  GM-‐CSF	   (GM)	  and/or	  TNFα	   (TNF).	   Significance	   calculated	  by	  
Cuffdiff	  (q<0.05,	  5%FDR).	  
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Table	  5.3	  The	  30	  genes	  with	  the	  greatest	  difference	   in	  RPKM	  compared	  to	  untreated	  
(UT)	  samples	  from	  genes	  that	  are	  uniquely	  DE	  in	  GM+TNFα	  treated	  samples.7	  
 

Gene	  name	   UT	   GM+TNF	   ΔRPKM	  

IER3	   108.47	   1147.56	   1039.09	  

GBP1	   22.38	   183.91	   161.53	  

CYB5D1	   7.55	   106.26	   98.72	  

GPR132	   10.51	   50.44	   39.93	  

TMEM170B	   28.01	   3.51	   -‐24.50	  

DUSP5	   4.14	   24.20	   20.05	  

MRPS24	   1.16	   16.85	   15.69	  

LOC100506229	   0.72	   15.97	   15.25	  

GBP1P1	   1.73	   14.66	   12.93	  

GBP3	   2.65	   15.12	   12.47	  

LOC257358	   1.75	   14.17	   12.42	  

KLHDC8B	   15.07	   2.76	   -‐12.32	  

C5orf58	   2.27	   14.36	   12.09	  

HELB	   0.75	   9.80	   9.05	  

BATF2	   1.40	   10.36	   8.96	  

TMEM54	   0.39	   7.96	   7.58	  

PLEKHG2	   1.08	   8.29	   7.22	  

APLP1	   0.88	   7.85	   6.97	  

KIRREL2	   0.04	   6.63	   6.58	  

CCDC85B	   0.86	   7.33	   6.47	  

LINC00309	   0.21	   5.98	   5.76	  

LDLR	   0.77	   6.30	   5.53	  

SPHK1	   0.24	   5.29	   5.05	  

CAHM	   0.76	   5.21	   4.45	  

MTVR2	   0.61	   4.99	   4.38	  

TKTL1	   4.08	   0.48	   -‐3.61	  

ENO3	   0.14	   2.48	   2.34	  



191	  
	  

TGM2	   0.18	   2.48	   2.30	  

PRDM7	   0.12	   2.28	   2.16	  
	  
 

Expression of IL-1β was DE in all 3 treatment conditions. However, levels of 

expression following dual treatment were almost double the combined 

expression of both individual treatment (GM-CSF 6410 RPKM, TNF 3614 

RPKM, GM-CSF + TNFα 17,647) (Fig 5.5). To investigate whether this 

increased expression resulted in a corresponding high protein expression, 

expression of IL-1β was assessed by western blot over a 6h period (Fig 5.6). 

Levels of IL-1β were elevated in all 3 treatment conditions compared to 

control. Levels were highest in dual treated neutrophils, although the 

magnitude of the expression in dual treatment was approximately equal to 

the combined expression of each individual treatment, for example, at 2 h:  

GM-CSF = 106; TNF = 132; and GM-CSF + TNFα = 207 (arbitrary unit of 

band intensity, normalised to actin) (Fig 5.5). However, despite protein 

expression peaking at 2 h in all treatment conditions, individual treatment 

with either GM-CSF or TNFα resulted in a significant decrease in expression 

by 4 h which decreased further by 6 h. In contrast, dual treatment resulted 

in much lower decrease in protein expression, with levels of IL-1β protein 

being maintained over the 6 h time period. Differential protein expression 

dynamics were also seen when analysing expression of NFκBIA (also known 

as IκBA) in dual- and single-stimulated neutrophils (data not shown). 
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Fig	  5.5	  Neutrophil	  gene	  expression	  values	  (RPKM)	  for	  IL-‐1β	  following	  stimulation	  with	  
GM-‐CSF,	   TNFα	   or	   dual	   treatment	  with	   GM-‐CSF	   and	   TNFα	   and	  measurement	   by	   RNA-‐
Seq.	  
 

Taken together, these data suggest that dual treatment of neutrophils with 

GM-CSF and TNFα results in the differential expression of discrete genes 

not otherwise differentially expressed by individual treatments. However, 

these genes are poorly characterised and provide few clues to their effect 

on neutrophil phenotype. Additionally, dual stimulation of neutrophils 

results in different protein-expression dynamics over 6 h. 
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Fig	  5.6	  Western	  blot	  analysis	  of	  IL-‐1β	  in	  neutrophils	  following	  stimulation	  with:	  GM-‐CSF	  
(grey	   bars);	   TNFα,	   (black	   bars);	   GM-‐CSF	   and	   TNFα	   (striped-‐bars);	   or	   no	   stimulation	  
(white	  bars)	  and	  representative	  blot/housekeeping	  blot.	  Band	  intensity	  normalised	  to	  
housekeeping	  control	  (Actin)	  N=2.	  

 

5.4.2.3 Analysis of signal pathway activation in cytokine/chemokine 

stimulated neutrophils 

To assess whether the differential expression of genes by different 

cytokines/chemokines resulted from differential activation/regulation of 

signalling pathways, data was analysed by IPA to predict which upstream 
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regulators (transcription factors) regulated gene expression in neutrophils 

incubated under these different conditions.  

In order to validate the IPA predictions, neutrophils were stimulated with 

each of the 9 conditions for 15 min and analysed by western blot for 

activation of several key signalling pathways: STAT (STAT1/3); NFκB 

(NFκB); PI3K (Akt); MAPK (ERK1/p38) (Fig 5.7). Results were then compared 

to those predicted by IPA (Table 5.4). 

 
	  
Fig	   5.7	   Western	   blot	   analysis	   of	   phospho-‐proteins	   in	   neutrophils	   treated	   with	  
inflammatory	  cytokines/chemokines.	  Data	  representative	  of	  3	  separate	  experiments.	  	  
 

Western blot analysis identified differential activation of signalling pathways 

in each of the conditions analysed. For example, STAT activation was seen 

in GM-CSF, IFNγ and G-CSF stimulated samples, whereas ERK activation 

was only seen in GM-CSF stimulated samples (Fig 5.7). IPA analysis of 

upstream regulators confirmed the results of western blot analysis. Each of 

the signalling pathways identified by western blot were predicted to be 

active by IPA analysis (p<0.05) (Table 5.4). Interestingly, none of the 

signalling pathways analysed were activated by IL-1β, although IPA 

predicted several upstream regulators from the RNA-Seq data; these 
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include the zinc-finger proteins: CCCTC-binding factor (CTCF) (p=1.58 e-05) 

and GATA-binding protein (GATA4) (p=1.58 e-03). Taken together, these 

data highlight the predictive power of bioinformatic software and its ability 

to confirm and complement traditional western blot analysis of signalling 

pathway activation, which together have identified the differential 

activation of signalling pathways in neutrophils by different 

cytokines/chemokines. 

	  
Table	  5.4	  Signalling	  pathway	  activation	  states	   in	  neutrophils	  stimulated	  with	  a	  range	  
of	  cytokines/chemokines.	  Table	  shows	  results	  of	  western	  blotting	  and	  corresponding	  
p-‐value	  as	  calculated	  by	  IPA	  using	  RNA-‐Seq	  data	  to	  predict	  up-‐stream	  activation. 
 

Cytokine/chemokine	  
stimulus	  

Pathway	  
activation	  
(Western	  
blot)	  

IPA	  
prediction	  
p-‐value	  

GM-‐CSF	  

ERK	   6.52	  e-‐07	  
p38	   4.85	  e-‐05	  

STAT3	   2.31e-‐03	  
STAT1	   1.49	  e-‐02	  
AKT	   2.81	  e-‐02	  

TNFα	  
NFκB	   4.56	  e-‐09	  
AKT	   3.59	  e-‐03	  
P38	   7.75	  e-‐03	  

GM+TNF	  

NFκB	   9.29	  e-‐14	  
ERK	   2.89	  e-‐07	  
STAT3	   1.48	  e-‐05	  
P38	   5.56	  e-‐05	  
AKT	   9.66	  e-‐05	  
STAT1	   3.59	  e-‐03	  

IFNγ	   STAT3	   2.24	  e-‐04	  
STAT1	   8.65	  e-‐04	  

G-‐CSF	  
STAT3	   3.57	  e-‐04	  
STAT1	   4.07	  e-‐02	  
AKT	   4.65	  e-‐02	  

IL-‐1B	   n/a	   n/a	  
IL-‐8	   AKT	   1.42	  e-‐02	  
IL-‐6	   STAT3	   2.33	  e-‐02	  
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5.4.2.4 Analysis of cytokine/chemokine expression in cytokine/chemokine 

stimulated neutrophils  

In addition to differential activation of signalling pathways, neutrophils also 

exhibited differential expression of several cytokine/chemokines associated 

with the inflammatory response. 

A gene list was compiled which included all genes defined as a “cytokine” 

or “chemokine” by their inclusion in the Gene Ontology groups “cytokine 

activity” (GO-term accession GO:0005125) or “chemokine activity” (GO-

term accession GO:0008009). The RPKM values for each gene in all 

conditions were extracted from the Cufflinks output files and their fold 

change relative to untreated sample was calculated. The 25 genes with the 

highest expression were analysed by hierarchical clustering. A heatmap 

highlighting the differential expression of the cytokine/chemokine genes is 

shown in Fig 5.8. Samples treated with GM-CSF, TNFα, IL-1β or dual 

treatment with GM-CSF + TNFα showed the greatest expression of 

cytokines/chemokines and clustered together.  Conversely IFNγ, G-CSF, IL-

8 and IL-6 treatment had low expression of these genes, but had the 

highest expression of CXCL9. The only genes that showed high expression 

in all conditions (except IL-6) were IL-1B and IL-1RN. Interestingly, IL-1A 

was only upregulated by GM-CSF, TNFα and dual stimulation, whereas IL-

1B was upregulated by all conditions, except IL-6. A table showing the raw 

RPKM values for each gene is shown in Appendix Table A.7. 
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These data highlight the ability of neutrophils to express different sets of 

cytokines/chemokines in response to different stimuli. 

 

	  

	  
Fig	  5.8	  Heatmap	  showing	  hierarchical	  clustering	  of	  25	  cytokine/chemokine	  associated	  
genes	   in	   neutrophils	   following	   stimulation	   with	   a	   range	   of	   cytokines/chemokines.	  
Green=	  low,	  black	  =	  median,	  red	  high	  values	  (log2	  fold	  change	  vs	  untreated	  samples).	  	  
Raw	  values	  presented	  in	  Appendix	  Table	  A.7. 
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5.4.2.5 Modelling of in vitro gene expression data by comparison to ex vivo 

patient data 

[All	  data	  in	  this	  section	  relating	  to	  patients	  were	  collected	  and	  analysed	  by	  Dr	  
Helen	  Wright	  and	  reproduced	  here	  with	  permission]	  
 

An important benefit of producing large quantities of digital data such as 

those produced by an RNA-Seq experiment is the ability to easily compare 

and model the data against other datasets. This allows the identification of 

common features and gene sets within a large amount of data, which 

would otherwise be impractical and implausible by manual curation.  

RNA-Seq analysis of in vitro stimulated samples provides a robust set of 

data that are highly specific to the treatment conditions and exhibit low 

variance between samples. Thus, gene expression profiles from in vitro 

stimulated samples can be modelled against less well defined datasets, 

such as those from patients with inflammatory disease, in an attempt to 

extrapolate meaningful similarities and patterns of association. 

To this end in vitro stimulated neutrophil datasets were compared to 

neutrophil gene expression profiles of patients with RA (Fig 5.9). 

Neutrophils from 20 RA patients and 6 healthy controls were analysed by 

RNA-Seq and gene expression profiles produced using the bioinformatic 

techniques described in Chapter 3. Gene expression analysis of patient 

data identified high expression of IFN-genes which correlated with the 

degree of response of patients to anti-TNF (TNFi) treatment (r=0.51 

Pearson’s correlation, p=0.02) 230.  Data for 59 interferon-response genes 
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from patient and healthy control datasets were then modelled against in 

vitro stimulated neutrophil datasets (for IFNγ and IFNα) and visualised by 

heatmap (Fig 5.9). 

Hierarchical clustering of in vitro and ex vivo sample datasets identified that 

gene expression of the 59 interferon-response genes clustered into two 

main patient sub-groups: IFN-high (associated with INFγ signalling); and 

IFN-low (associated with IFNα signalling). Datasets relating to healthy 

controls clustered into a single group within the IFN-low cluster.  IFNα is a 

type-I interferon which signals via the IFNα receptor complex, whilst IFNγ is 

a type-II which acts through the IFNγ receptor.  These two IFN receptors 

activate different downstream Janus kinase (JAK)/STAT signalling 

pathways. For instance, IFN type-I signalling involves the activation of 

tyrosine kinase 2 (TYK2) and JAK1 leading to STAT1/STAT2 hetero-

dimerisation and activation of interferon-stimulated response element 

(ISRE) transcription factor. In contrast, IFN type-II signalling involves 

JAK1/JAK2 activation leading to STAT1 homo-dimerisation ultimately 

resulting in activation of the transcription factor interferon-γ-activated site 

(GAS) 231.  Thus, the patient cohort can be further sub divided into two 

groups based on their hierarchical association with type-I and type-II gene 

expression profiles.  
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Fig	   5.9	  Heatmap	   showing	   the	  expression	  of	   59	   IFN-‐regulated	  genes	   in	   20	  RA	   (purple	  
bars),	  6	  healthy	  control	  (yellow	  bar),	  IFNα-‐treated	  (orange	  bar)	  and	  IFNγ-‐treated	  (blue	  
bar)	  neutrophils.	  (Expression	  level:	  green=low,	  black=median,	  red=high.)	  Patient	  data	  
collected	  and	  analysed	  by	  Dr	  Helen	  Wright.	  Figure	  adapted	  from	  230.	  
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5.5 Discussion 

The aim of this chapter was to measure the global changes in gene 

expression profiles of neutrophils stimulated with a variety of inflammatory 

cytokines.  Neutrophils were stimulated for 1 h with a range of 

cytokines/chemokines commonly associated with inflammation and often 

found at sites of inflammation, those being: G-CSF; IFNγ; IL-1β; IL-8; and 

IL-6. In addition, neutrophils were dual stimulated with GM-CSF+TNFα to 

analyse the effects of multiple cytokine stimulation on neutrophils by 

comparison to data collected in the previous chapter on neutrophils 

stimulated by single cytokines. Neutrophil RNA was subsequently 

sequenced by RNA-Seq and analysed using the previously-described 

bioinformatic pipeline. 

 Analysis of the effects of cytokine/chemokine stimulation on neutrophil 

apoptosis revealed that these agents acted significantly differently to each 

other. G-CSF had the strongest anti-apoptotic effect, whereas IL-6 and IL-

1β had no effect on neutrophil apoptosis. Similarly, the number of DE 

genes induced by each cytokine correlated with the anti-apoptotic effect of 

each stimulus. Since neutrophils have a much shorter life span than other 

leukocytes, regulation of neutrophil apoptosis is an important biological 

process. This delay in neutrophil apoptosis may be critically linked to 

activation of gene expression. Cytokine activation of neutrophils leads to 

the enhanced expression of other chemokines and cytokines, as well as 

other key molecules such as adhesion molecules. Therefore, neutrophil 
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extended neutrophil lifespan is essential for these newly-expressed 

molecules to be expressed and affect the progress of an inflammatory 

response. These up-regulated genes may themselves be directly involved 

in apoptosis delay, although it must be  pointed out that some regulation 

of apoptosis is achieved by stabilisation of anti-apoptotic proteins such as 

Mcl-1, without the requirement of de novo gene expression 232.  

In the previous chapter, the effects of stimulation with either GM-CSF alone 

or TNFα alone on neutrophil gene expression profiles were evaluated. In 

this chapter, the effects of dual stimulation with both cytokines were 

investigated. Given that previous results showed independent activation of 

transcription factors and different gene sets by both GM-CSF and TNFα, it 

may have been predicted that dual stimulation would result in increased 

DE gene expression and that these genes would be representative of the 

gene lists seen from both single-stimulation conditions (i.e. additive 

effects). In addition, since the apoptosis pathway was found to be 

regulated differentially by both cytokines, it may also have been predicted 

that dual stimulation would further delay neutrophil apoptosis beyond that 

achieved by either single cytokine alone. However, neutrophil apoptosis 

following dual stimulation was lower than TNFα-stimulation levels but 

higher than GM-CSF-stimulation levels. Dual stimulation also affected the 

protein expression dynamics of IL-1β and NκFBIA, resulting in an increased 

magnitude and maintained expression over 6 h. interestingly, over one 

third of the DE genes following dual stimulation (56 genes from a total of 
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151 DE genes) were not DE after either individual treatment conditions. 

Although several of these genes are poorly characterised, in particular their 

role in neutrophil biology, this raises important questions as to the effects 

of multiple stimulants by inflammatory mediators on neutrophil function. 

This is of considerable importance when considering neutrophil function in 

disease, since elevation of multiple cytokines at inflammatory sites is a 

hallmark of several inflammatory or auto-immune conditions 3,77,78,211,233.	  

Analysis of signalling pathway activation revealed that neutrophil 

stimulation with different inflammatory cytokines/chemokines resulted in 

differential activation of a range of signalling pathways. Whilst the 

activation of these pathways by particular cytokines/chemokines is fairly 

well-documented 230,232,234,235, the ability to also predict such events using 

RNA-Seq data highlights the powerful predictive nature of RNA-Seq data.  

Additionally, it is a powerful way of revealing the expression level of each 

gene within a particular pathway, thus providing a way of estimating the 

contribution of each gene to the overall activation state of a specific 

pathway. For example, RNA-Seq data could identify if a particular signalling 

pathway is activated by up-regulation of cell surface receptors or through 

the increased actions of a transcription factor. 

Analysis of cytokine/chemokine expression by neutrophils is less well 

defined. The importance of neutrophil-derived molecules during 

inflammation has long been overlooked in favour of cells from the adaptive 

immune response (B-cells, and T-cells). Indeed, much of the current 
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knowledge on neutrophil-derived products is based on studies from non-

human species (often mice), such that their production by human 

neutrophils remains controversial 5,6. Bioinformatic analysis of 

cytokine/chemokine genes revealed both similarities and differences in the 

expression profiles of neutrophils stimulated with different 

cytokines/chemokines. Perhaps unsurprisingly, conditions which had 

exhibited greatest ability to delay apoptosis also showed a similar pattern 

of cytokine expression, especially GM-CSF-stimulation, TNFα-stimulation 

and dual stimulation. However, several genes showed decreased 

expression following IFNγ compared to control, for instance, CXCL1, CCL3, 

CCL4 and CXC12, while IL-6 stimulated neutrophils showed no DE of 

cytokine/chemokine genes compared to control. Furthermore, of the 6 

genes that were identified as having DE following IL-1β treatment, 3 relate 

to chemokines: CCL3; CCL4; and CCL4L1.  

Although, not directly confirmed by data presented here, it is likely that the 

differential expression of cytokine/chemokine related mRNA under 

different inflammatory conditions would lead to differential protein 

translation and cytokine release by neutrophils. This highlights not only the 

ability of neutrophils to propagate and maintain the immune response by 

direct activation/signalling with surrounding cells by release of de novo 

inflammatory mediators, but it also reveals the importance of the nature of 

the stimulating signal to define the phenotype of activated neutrophils. 
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Among the most unexpected findings during this analysis was the effect of 

IL-6 on neutrophil function and gene expression. IL-6 is a crucial mediator 

of inflammation that is produced by several immune cells and can influence 

numerous cell types with multiple biological actions, such that it is often 

regarded as a pleiotropic cytokine 83. It is often found at high 

concentrations at inflammatory sites such as synovial fluid 236. Indeed, the 

importance of IL-6 to the inflammatory response is best highlighted by the 

success of therapeutic inhibition of IL-6R by Tocilizumab, which is used to 

treat conditions such as vasculitis, inflammatory bowel disease, RA and 

cancer 83. Interestingly, IL-6 can behave as both a pro- and anti-

inflammatory regulator, dependent on whether signalling occurs via the 

membrane bound IL-6R, known as classical signalling, or via trans 

signalling, involving soluble IL-6R (sIL-6) and the ubiquitously expressed 

gp130 receptor, respectively 237.  The effect of IL-6 on neutrophils is less 

well-defined. For example, previous studies on the effect of IL-6 stimulation 

on neutrophil apoptosis are conflicting, with anti-apoptotic, pro-apoptotic 

and no effect on apoptosis all previously reported 238–241. Under the 

conditions studied here (10ng/ mL, for 21 h) IL-6 had no effect on 

neutrophil apoptosis. Moreover, IL-6 did not significantly differentially 

regulate the expression of any genes in neutrophils. However, the 

concentration of IL-6 used (10 ng/mL) was found to be biologically 

functional by the demonstration that it could induce the rapid 

phosphorylation of STAT3 (<15 min).  
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Several reasons could explain the lack of differential gene expression 

following IL-6 treatment, in spite of STAT3 activation. Firstly, the actions of 

IL-6 on immune cells may be limited to non-neutrophil cells, thus limiting 

the activation state of neutrophils at sites of inflammation where levels of 

IL-6 are elevated. Secondly, de novo gene expression may be delayed 

beyond 1 h, and any such changes would not have been measured by the 

current studies. Finally, full activation of neutrophils by IL-6 may require a 

secondary signal 242 or epigenetic changes 243 as has been demonstrated 

for IL-10 signalling in neutrophils. 

The modelling of RNA-Seq data against other sources of biological data 

enables the identification of patterns of expression in genes that would 

otherwise be difficult to identify. This systems biology approach using 

RNA-Seq data from in vitro stimulated neutrophils to model against data 

from RA neutrophils has revealed that sub-populations of patients exist 

within a cohort of RA patients, relating to either a type-I or type-II IFN 

phenotype. Whilst modern predictive bioinformatic software is capable of 

identifying these changes based on patient data alone, the comparison 

with well-defined in vitro samples provides an additional level of data 

validation, ultimately increasing confidence of results.  

In summary, analysis of neutrophils under different conditions of simulated 

inflammation (by cytokine stimulation) using RNA-Seq has revealed that 

neutrophils express discrete sets of genes in response to different stimuli. 

Additionally, stimulation by multiple cytokines induces expression of further 



207	  
	  

unique gene-sets. Analysis of the nature of the genes expressed reveals 

that several signalling pathways are differentially activated, which is 

confirmed by western blot analysis. Among the genes expressed are genes 

relating to cytokines/chemokines which show differential expression among 

treatment conditions. These data reveal the plasticity of neutrophils under 

conditions of inflammation and highlight the importance of surrounding 

signals on the developing phenotype of a neutrophil during different forms 

of activation. 
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Chapter	   6:	   The	   effects	   of	  
isolation	   method	   and	   purity	  
on	   neutrophil	   gene	  
expression	  and	  function	  

6.1 Introduction 

In recent times there has been a growing appreciation of the ability of 

neutrophils to respond to, and influence, immune signalling between 

several different cell types, acting as a signalling bridge between the innate 

and adaptive immune systems 5. Neutrophils are now known to activate 

monocytes, dendritic cells and T and B-cells, either through direct 

interactions or via secreted products 4. But perhaps more importantly, 

neutrophils can respond to a variety of signals that affect their function and 

behaviour at the site of inflammation. For example, neutrophils can be 

activated by a range of stimuli such as, chemokines, ROS, DAMPs and 

PAMPs. In response, they release a variety of molecules such as pro- and 

anti-inflammatory cytokines, angiogenic factors and colony-stimulating 

factors 5. Neutrophils can also modulate their function in response to 

different concentrations of apoptotic neutrophils. Contact with, or uptake 

of, apoptotic neutrophils, by neutrophils, can lead to inhibition of the 

respiratory burst and decreased release of the pro-inflammatory cytokines 
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TNFα and CXCL10, whilst also increasing their secretion of IL-8 and CXCL1 

68. 

It is therefore clear that activated neutrophils do not merely localise to the 

site of infection, clear any pathological insult, and then rapidly undergo 

apoptosis: they are capable of more sophisticated and complex immune 

regulation. Indeed, they are central to the progression of the immune 

response and can shape the outcome of inflammation or infection in 

response to the signals they receive from the local environment 3. 

Given the growing appreciation of intercellular signalling in neutrophil 

function and activity, it is perhaps somewhat paradoxical that the majority 

of research on human neutrophil activation and function has been achieved 

by in vitro studies, using purified blood neutrophil preparations. Although 

minimally-contaminated with other types of immune cells, the contribution 

of such contaminating cells to the overall assay output is often ignored. 

Moreover, whilst it is now appreciated that surrounding immune- and 

tissue-cells affect neutrophil function at the site of inflammation, in vitro 

studies of purified neutrophils attempt to remove the influence of such 

interacting cells.  

An extra consideration when isolating neutrophils is their relative sensitivity 

to physical stimuli that may promote apoptosis in the absence of 

stimulating factors.  Neutrophils are easily activated by shear forces or 

over-agitation, further complicating isolation methods. It is often of equal 

importance that the suspension of neutrophils resulting from a purification 
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protocol contains both high numbers of viable cells and low numbers of 

contaminating cells. 

A variety of neutrophil isolation techniques are in current use, which 

generally achieve a final neutrophil purity of >95% and viability of >97%. 

Until recently, all isolation methods exploited the differing size and density 

of different blood cells to separate cells into distinct populations. These 

methods require multiple centrifugation steps and overall isolation times of 

60-90 min. More recently, several new cell-sorting techniques, often 

offering higher sensitivity and specificity, have been developed. For 

example, Fluorescent Activated Cell Sorting (FACS) and Magnetic 

Activated Cell Sorting (MACS) techniques provide methods for sorting cells 

following attachment of a fluorescently-conjugated or magnetic particle-

tagged antibody respectively, that bind to particular immune cell-specific 

surface markers. The use of surface markers to immuno-select mixtures of 

cells is often less perturbing and a more specific method of cell purification. 

Both the FACS and MACS approaches dramatically decrease the number 

of centrifugation steps required and achieve a higher final purity of cells, 

often in a similar time frame to density-gradient techniques. However, the 

higher purity afforded by these techniques usually comes at a greater 

financial cost and often a lower yield 244,245.  

An additional concern when choosing an antibody-based isolation method 

is whether it utilises positive or negative selection. Neutrophils express 

high levels of receptors that bind immunoglobulins, and crosslinking of 
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these Ig-receptors can prime or even activate neutrophils 214. Isolation of 

neutrophils by positive selection requires binding of specific 

immunoglobulins to neutrophil-specific cell surface molecules, such as 

CD16b. The major disadvantage of this approach is the increased risk of 

priming or activating neutrophils during the isolation method, thus 

inadvertently changing their phenotype and most importantly, their 

functional capacity 246.  

Alternatively, negative selection approaches require a mixture of specific 

antibodies that recognise cell surface markers on other immune cell types, 

which can significantly increase the cost and efficiency of the methodology 

but leads to highly-pure, non-activated neutrophils. A summary of 3 

commonly-used neutrophil isolation methods is detailed below. 

 

6.1.1 Neutrophil Isolation methods 

6.1.1.1 Dextran ficoll-paque isolation  

Whole blood is mixed with dextran (average molecular mass 200-500 kDa), 

which causes the erythrocytes to aggregate and sediment more rapidly 

than other cell types (Fig 6.1A) 247. Following sedimentation under 1 g, the 

leukocyte-rich upper phase is removed and subsequently layered onto 

Ficoll-paque. The Ficoll-paque provides a discontinuous density gradient 

which facilitates the separation of the granulocytes (of which neutrophils 

are the most abundant) from the lymphocytes (B-cells, T-cells, NK cells) and 

monocytes, following high speed centrifugation (500-g for 30 min). The 
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monocytes and lymphocytes form a distinct band at the plasma/Ficoll-

paque interface, whereas the more dense granulocytes  (neutrophils, 

eosinophils and basophils, and any residual erythrocytes) form a pellet at 

the bottom of the tube (Fig 6.1B) 248. The remaining contaminating 

erythrocytes can subsequently be removed by hypotonic lysis. 

6.1.1.2 Polymorphprep™ isolation 

Polymorphprep™ is an endotoxin-free solution containing 13.8% (w/v) 

sodium diatrizoate and 8.0% (w/v) polysaccharide; it has a density of 1.113 

± 0.001 g/mL and an osmolality of 445 ± 15 mOsm 177. Polymorphprep™ 

solution incorporates a similar experimental approach to neutrophil 

isolation as the dextran/Ficoll-paque method (density separation of 

lymphocytes from granulocytes and the sedimentation of erythrocytes) but 

does so in a single, one-step centrifugation process (Fig 6.1C). Whole 

blood is layered onto Polymorphprep™ solution and centrifuged at 500-g 

for 35 min. As erythrocytes pass through Polymorphprep™ the higher 

osmotic pressure of Polymorphprep™ results in water being lost from the 

erythrocytes, this in turn dilutes the Polymorphprep™, thereby reducing its 

density. This produces a continuous density gradient and results in the 

formation of two distinct bands; an upper band containing lymphocytes 

and monocytes, and a lower band containing granulocytes. Non-nucleated 

platelets remain in the upper phase and erythrocytes sediment towards the 

bottom of the tube.  The PBMC band is carefully removed first to avoid 

cross-contamination with the neutrophil layer. The granulocyte layer is 
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subsequently carefully aspirated and washed. Any remaining erythrocytes 

in the granulocyte suspension are removed by hypotonic lysis. 

 

 
 
 
 
Fig	  6.1	  Treatment	  of	  whole	  blood	  prior	  to	  neutrophil	  isolation.	  A)	  Whole	  blood	  can	  be	  
depleted	   of	   erythrocytes	   prior	   to	   a	   density	   gradient	   separation	   by	   the	   addition	   of	  
dextran	   solution,	   causing	   erythrocytes	   to	   form	   aggregates	   and	   sediment.	   B)	   The	  
remaining	   nucleated	   cell	   fraction	   is	   layered	   over	   Ficoll-‐paque	   and	   centrifuged,	  
separating	  the	  granulocytes	  from	  the	  peripheral	  blood	  mononucleated	  cells	  (PBMCs).	  
C)	  Alternatively,	  neutrophil	   isolation	  can	  be	  achieved	  by	  single-‐step	  centrifugation	  of	  
whole	  blood	  over	  an	  equal	  volume	  of	  Polymorphprep™.	  
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 6.1.1.3 Neutrophil isolation by negative magnetic bead isolation 

Isolation of neutrophils using magnetic beads is usually carried out using 

smaller volumes of suspension (0.5 – 2 mL) and begins with a suspension of 

nucleated cells at a concentration of ≤ 5 x 107/mL. This is obtained by 

sedimentation of erythrocytes from whole blood at 1-g using a 

polysaccharide solution (HetaSep™) which has similar properties to 

dextran. Cells are then incubated with a cocktail mix of tetra-meric 

monoclonal antibodies (Fig 6.2). One portion of the antibody complex has 

specificity for dextran whilst the other portion is specific for one of seven 

cell-specific markers that are not expressed on neutrophils but are 

expressed on erythrocytes and other leukocytes (Table 3.1). 

 
Following incubation with this antibody cocktail, dextran-coated beads are 

incubated with cells before placing the cell suspension in a magnetic field.  

Antibody-bound cells are retained in the magnetic field whilst unbound 

neutrophils are decanted (Fig 6.3). 

 

 

Fig	   6.2	   Structure	   and	   specificity	   of	   tetrameric	   monoclonal	   antibody	   complexes.	  
Antibody	   complexes	   consist	   of	   two	   antibody	   molecules	   connected	   by	   a	   linker.	  
Antibody-‐complexes	   possess	   dual	   specificity	   for	   dextran,	   and	   one	   of	   7	   different	   cell	  
surface	  antigens	  not	  expressed	  on	  neutrophils.	  
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Table	  6.1	  Specificity	  of	  antibodies	  recognising	  antigens	  on	  specific	  cell	  types,	  present	  
in	  a	  neutrophil	  magnetic	  bead	  isolation	  kit	  (StemCell®	  Genoble,	  France).	  	  
 

Antibody	  antigen	   Specificity	  

CD2	   T-‐cells,	  NK	  cells	  

CD3	   T-‐cells	  

CD9	   Eosinophils,	  Basophils	  

CD19	   B-‐cells	  

CD36	   Monocytes	  

CD56	   NK-‐cells	  

Glycophorin	  A	   Erythrocytes	  

Dextran	   Magnetic	  beads	  
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Fig	   6.3	   Summary	   of	   neutrophil	   isolation	   using	   magnetic	   beads.	   A	   mixture	   of	   cell-‐
specific	   antibody	   complexes	   are	   added	   to	   a	   starting	   suspension	   of	   erythrocyte-‐
depleted	   whole	   blood.	   Following	   incubation,	   dextran-‐coated	   magnetic	   beads	   are	  
added	  and	  the	  suspension	  is	  placed	  in	  a	  magnetic	  field.	  Neutrophils	  are	  then	  decanted,	  
whilst	  other	  leukocytes	  are	  retained	  in	  the	  tube	  within	  the	  magnetic	  field	  
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6.1.2 Contaminating cells 

The small percentage (1-10%) of contaminating cells often found in 

neutrophil suspensions following density-gradient isolation methods, is 

often considered to be an acceptable level of contamination that has 

minimal effects on the behaviour of neutrophils in the preparations. 

However, more recently, the impact of contaminating leukocytes in 

neutrophil suspensions has been questioned. For example, Sabroe and 

colleagues demonstrated that ultra-pure neutrophils (>99%) behaved 

differently than those analysed with 5% PBMC contamination, namely that 

the anti-apoptotic effect of LPS on neutrophils was significantly decreased 

in the absence of contaminating PBMCs 249. Whilst it was suggested that 

monocytes in the PBMCs were responsible for these differences, it is often 

other granulocytes (in particular eosinophils) that constitute the largest 

proportion of non-neutrophil cells in most neutrophil preparations.  Since 

neutrophils, eosinophils and basophils have very similar size and density, it 

is not possible to separate them from each other using approaches based 

on density-gradient media. Consequently, the level of contamination by 

other granulocytes is usually donor-dependent, and the overall 

contamination is also reliant on the technical dexterity of the researcher. It 

was recently shown that the percentage of contaminating cells in a typical 

Polymorphprep™ neutrophil isolation can vary between 1-17% across 18 

individual blood isolations 177. This potential for contamination is of 

particular concern for high-sensitivity experiments such as qPCR, mass 



218	  
	  

spectrometry or RNA-Seq. Indeed, it has been suggested that eosinophils 

have a far greater transcriptional capacity than neutrophils, confounding 

experiments that quantify mRNA in neutrophil suspensions containing high 

and variable numbers of eosinophils 250.  

It is therefore clear that a greater understanding of the technical variations 

of different neutrophil isolation methods is required, both in terms of the 

effect of isolation methodologies on function and the contribution of 

contaminating cells on neutrophil function and gene expression. 
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6.2 Aims 

The aims of this chapter were: 

 

1. To compare the purity of neutrophils isolated by negative selection 

using antibody cocktails and magnetic beads (“ultra-pure 

neutrophils”) with those isolated by density gradient-centrifugation 

using Polymorphprep™. 

 

2. To quantify the differences in function and gene expression profiles 

of ultra-pure neutrophils compared to those of neutrophil 

preparations following Polymorphprep™ isolation, and evaluate 

the effects of contamination by non-neutrophil cells. 

 

3. To quantify the changes in function and gene expression profiles of 

ultra-pure neutrophils and Polymorphprep™ isolated neutrophils 

following stimulation with inflammatory cytokines. 
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6.3 Methods 

The RNA-Seq data in this chapter were collected using neutrophils from 2 

healthy donors of similar age. The donors were chosen on the basis of their 

consistently high or low levels of eosinophils in neutrophil suspensions 

following Polymorphprep™ isolation. Neutrophils from these two donors 

were isolated by both Polymorphprep™ and negative magnetic bead 

isolation (StemCell®).  For a full description of methods see section 2.2.2. 

Purified neutrophils (5 x 106/mL) were incubated at 37 °C in RPMI media (+ 

25 mM HEPES) and, where stated, treated with either 5 ng/mL of GM-CSF 

or 10 ng/mL of TNFα. Following 1h incubation, total RNA was extracted 

using Trizol/chloroform separation. RNA was further purified using a 

Qiagen on-column RNeasy cleanup-kit which included a DNAse digestion 

step (for more detailed methods see section 2.2.9). 

Total RNA was enriched for poly-A mRNA and sequenced using the 

Illumina Hi-Seq 2000 platform on a single lane producing upwards of 40 

million reads per sample (as previously described 251). For a list of raw reads 

produced per sample see Appendix Table A.5. All sequencing protocols 

were carried out by BGI International following shipment of purified total 

RNA on dry ice.  

Purity and integrity of RNA was determined prior to shipping and prior to 

sequencing using an Agilent bioanalyser (see Appendix, Table A.5 for full 

quality values and concentrations of all samples). All other methods were as 

previously described in Chapter 3.  
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6.4 Results 

For these studies, two healthy donors were selected, based on the levels of 

non-neutrophil leukocytes that consistently contaminated neutrophil 

preparations obtained following isolation on Polymorphprep™: Donor 1 

had consistently low levels of contaminating cells (~1-5%), whereas Donor 

2 had consistently high levels of contaminating cells (~10-18% by 

cytospins). Both donors were otherwise healthy and of similar age. 

Neutrophil preparations were obtained by Polymorphprep™ and negative 

selection, using the StemCell® negative selection technique. 

 

6.4.1 Quantif ication neutrophil purity by cytospin 

The levels of contamination of neutrophil preparations following 

Polymorphprep™ isolation or negative magnetic bead isolation of blood 

from Donors 1 and 2 were quantified by cytospins and flow cytometry. 

Cytospins were prepared and the mean number of neutrophils, monocytes, 

lymphocytes and eosinophils were quantified in 4 separate fields of view 

(x20 magnification). A minimum of 100 cells was counted in each field (Fig 

6.4).  

Quantification confirmed previous observations of different levels of 

contamination in these preparations between the two donors. Similar levels 

of lymphocyte and monocyte contamination were seen in both donors 

(Table3.2). However, the greatest differences between donors were 

detected in the number of eosinophils following Polymophprep™ isolation, 
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with Donor 1 having 1% eosinophils whereas Donor 2 had ~15% 

eosinophils (Table 6.2). The overall purity of neutrophils was higher 

following bead isolation than with Polymorphprep™ (Donor 1; 96% 

Polymorphprep™, 97.5% beads, Donor 2; 83% Polymorphprep™, 99% 

beads). Morphological analysis of levels of cell apoptosis immediately after 

isolation revealed that neither isolation method resulted in significant levels 

of apoptotic cells (<1%, data not shown).  

 

6.4.2 Quantif ication of neutrophil purity by f low cytometry 

Eosinophils are difficult to distinguish from neutrophils using a coulter 

counter 252 or by analysis of their forward-scatter and side-scatter profiles 

using flow cytometry 253 due to their similar sizes and granularity. However, 

they can be distinguished from neutrophils by flow cytometry based on 

their levels of auto-fluorescence or cell surface expression levels of CD16 

(FcγRIII). Eosinophils have a higher autofluorescence and express lower 

levels of CD16 on their cell surface then neutrophils.  

Following isolation of neutrophils by density-gradient or magnetic bead 

isolation, suspensions were stained with FITC-conjugated anti-CD16 

monoclonal antibody and analysed by flow cytometry. Cells were first 

gated on their forward- and side-scatter profiles so that subsequent 

measurements were made on granulocytic cells (see Appendix Fig A.6 for 

example of gating used). Gated cells were subsequently analysed by their 

forward-scatter and CD16 properties (Fig 6.5).  Two distinct populations 
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were detected: cells which were CD16bright ; and a lower population of cells 

of similar size that were CD16dim
. These populations represent neutrophils 

and eosinophils, respectively (Fig 3.5). Quantification of the eosinophil 

population revealed that neutrophils isolated by density-gradient 

separation contained a higher proportion of eosinophils than neutrophils 

isolated by magnetic bead depletion. This analysis revealed that Donor 1 

exhibited 3.5% contamination following density gradient isolation, 

compared to 2.42% by magnetic bead isolation, whereas Donor 2 had 12% 

eosinophil contamination following density gradient separation, compared 

to 2.5% following magnetic bead isolation. These levels of eosinophil 

contamination correlate well with the levels of purity as assessed by 

cytospins (Table 6.2). 
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Fig	   6.4	   Representative	   cytospins	   of	   neutrophil	   preparations	   following	  
Polymorphprep™	  (left	  panels)	  	  or	  magnetic	  bead	  isolation	  (right	  panels)	  from	  Donor	  1	  
(top)	  and	  Donor	  2	  (bottom).	  White	  arrows	  highlight	  non-‐neutrophil	  cells.	  All	  images	  at	  
x20	  magnification.	  Quantification	  of	  data	  is	  summarised	  in	  Table	  6.2.	  	  
	  
	  
	  
Table	   6.2	   Percentage	   of	   leukocytes	   in	   each	   preparation	   from	   each	   donor.	   Cells	  
quantified	   by	   cell	   morphology	   and	   staining	   properties	   using	   cytospins	   (calculated	  
from	  4	  separate	  fields	  of	  view,	  counting	  >	  100	  cells	  per	  field	  per	  donor).	  
 

Cell	  type	  

	  

Donor	  1	   Donor	  2	  

Isolation	  method	  

Poly	   Beads	   Poly	   Beads	  

Neutrophil	   96%	   97.5%	   83%	   99%	  

Eosinophil	  	   1%	   <1%	   15%	   <1%	  

Monocytes	  	  
/Lymphocytes	   3%	   2%	   2%	   <1%	  

 
	  

Do
no

r 1
 

Do
no

r 2
 

Poly Beads 
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Fig	   6.5	   Flow	   cytometry	   scatterplots	   of	   neutrophil	   preparations	   by	   Polymorphprep™	  
(top	  panels)	  or	  magnetic	  bead	   (bottom	  panels)	   isolation	  protocols.	  Plotted	  by	  green	  
fluorescence	  (CD16	  positive,	  X-‐axis)	  and	  forward-‐scatter	  (Y-‐axis).	  Donor	  1	  (left	  panels)	  
and	  Donor	  2	  (right	  panels).	  Numbers	  shown	  are	  percentage	  of	  cells	  in	  each	  of	  the	  two	  
quadrants	  shown.	  
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6.4.3 Effect of neutrophil isolation method and population 

purity on neutrophil apoptosis 

Contaminating cells in neutrophil preparations have been implicated in 

affecting the behaviour of neutrophils in response to stimulation 225,249,254. 

Neutrophils prepared by both isolation methods were therefore incubated 

overnight (18 h) with (or without) GM-CSF (5 ng/mL) or TNFα (10 ng/mL). 

Levels of neutrophil apoptosis were subsequently measured by flow 

cytometric analysis of annexin V/PI staining (Fig 6.6). Mean levels of 

neutrophil apoptosis in suspensions from Donor 1 following 

Polymorphprep™ isolation were: untreated 81.5% ± 0.25%; GM-CSF 

51.7% ± 1%; TNF 53.4% ± 2.8%, which are in line with previously published 

data 251. Neutrophils from Donor 1 isolated by magnetic beads showed 

lower levels of apoptosis after GM-CSF treatment than control neutrophils: 

untreated 44.3% ± 1.5%; GM-CSF 32.1% ± 0.2%. However, neutrophils 

treated with TNFα exhibited a higher level of apoptosis than control 

neutrophils (TNF 57%, ± 2.9%), suggesting that under these conditions, 

TNFα is pro-apoptotic to neutrophils. Neutrophils from Donor 2 showed a 

similar pattern of apoptosis to Donor 1 for both the Polymorphprep™ 

isolated preparations (untreated 72.6% ± 0.62%, GM-CSF 45.7% ± 0.53%, 

TNF 53.1% ± 0.61%) and in the bead-isolated preparations (untreated 

27.7% ±0.1%, GM-CSF 10.8% ± 0.5%, TNF 54.7% ± 0.5%), including an 

increase in apoptosis following TNFα treatment of bead-isolated 

neutrophils. Increasing the number of biological replicates to N=4 resulted 
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in values for treated samples reaching significance (p <0.05) when 

compared to their paired, untreated sample (Fig 6.6). These data suggest 

that firstly, magnetic bead isolated neutrophils have lower levels of 

constitutive apoptosis than Polymorphprep™ isolated neutrophils, and 

secondly, that treatment of neutrophils with TNFα has opposing effects on 

apoptosis levels, dependent on neutrophil isolation method and/or 

preparation purity.  
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Fig	   6.6	   Levels	   of	   neutrophil	   apoptosis	   following	   overnight	   incubation	   (18	   h)	   with	  
inflammatory	  cytokines.	  Neutrophils	   isolated	  by	  Polymorphprep™	  (Poly)	  or	  magnetic	  
beads	   (Beads)	  were	   incubated	  overnight	   (18	  h)	   in	   the	  presence	   (or	   absence	   (UT))	   of	  
inflammatory	   cytokines	  GM-‐CSF	   (GM)	   (5	  ng/mL)	  or	   TNFα	   (TNF)	   (10	  ng/mL).	   Levels	  of	  
apoptosis	  were	  measured	  by	  annexin	  V/PI	   staining.	  For	   (A)	  Donor	   1	  and	   (B)	  Donor	  2,	  
bars	   represent	  mean	   value	   of	   duplicate	  measurements	   (±	   SD),	   In	   (C)	   bars	   represent	  
mean	   value	   of	   4	   separate	   experiments	   from	   4	   donors,	   error-‐bars	   represent	   SEM.	   *	  
Represents	  significance	  (p<0.05)	  as	  measured	  by	  a	  paired	  student’s	  t-‐test.	  
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6.4.4 Cell surface markers of neutrophils prepared by different 

methods 

Appropriate cell surface markers can inform on the relative purity of cell 

preparations and the activation state of the cells. To assess levels of 

neutrophil purity and activation following Polymorphprep™ or bead 

isolation, freshly-isolated neutrophils were stained with FITC-conjugated-

monoclonal antibodies for CD16 (FcγIII), CD15, CD11b (ITGAM) and CD64 

(FcγRI) and relative fluorescence measured by flow-cytometry (Fig 6.7). 

Levels of CD16, CD15 and CD11b were slightly lower in neutrophils 

isolated by magnetic bead isolation whilst levels of CD64 were slightly 

lower in Polymorphprep™ isolated neutrophils. However, levels were not 

significantly different between neutrophils isolated using different methods 

(p>0.05 paired student’s t-test) suggesting that neutrophil isolation 

methods and preparation purity has only marginal effects on cell surface 

expression. 
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Fig	   6.7	   Levels	   of	   expression	   of	   cell	   surface	   markers	   in	   neutrophils	   isolated	   by	  
Polymorphprep™	  (Poly)	  or	  by	  magnetic	  beads	  (Beads).	  Geometric	  mean	  fluorescence	  
(GMF)	  of	  CD16	  (N=5),	  CD15	  (N=3),	  CD11b	  (N=3)	  and	  CD64	  (N=4)	  was	  measured	  by	  flow	  
cytometry	   and	   normalised	   to	   an	   appropriate	   isotype	   control.	   Error	   bars	   represent	  
SEM.	   No	   significant	   difference	   in	   expression	   found	   between	   isolation	   methods	  
(Student’s	  t-‐test	  p>0.2).	  
	  
	  

6.4.5 Neutrophil yield from whole blood 

In addition to purity levels, different isolation methods result in different 

final yields of neutrophils from whole blood 244,245. To quantify differences 

between Polymorphprep™- and magnetic bead- isolated neutrophils, a 

sample of whole blood from a healthy donor was divided into two and 

neutrophils were isolated by Polymorphprep™ and magnetic beads in 

parallel. Final preparations of neutrophils were counted using a coulter 

counter and the number of neutrophils recovered per mL of whole blood 

was calculated (Fig 6.8). This process was repeated for 5 different donors. 

Mean levels of neutrophils after magnetic bead isolation were 

approximately 40% of those recovered after Polymorphprep™ isolation 

CD16

G
M
F

Poly Beads
0

200

400

600

800

1000

CD15

G
M
F

Poly Beads
0

100

200

300

400

500

CD11b

G
M
F

Poly Beads
0

50

100

150

CD64

G
M
F

Poly Beads
0

2

4

6

8

10



231	  
	  

using blood from the same donor (Polymorphprep™ 2.81x106 /mL whole 

blood ± 1.02; Beads 1.14x106 /mL whole blood ± 0.76). This suggests that 

a large proportion of whole blood neutrophils are lost during a magnetic 

bead isolation, and that this proportion would otherwise be retained using 

a Polymorphprep™ preparation. 

 

 

Fig	   6.8	   Comparison	   of	   neutrophil	   yield	   from	   whole	   blood	   following	   isolation	   by	  
Polymorphprep™	  (Poly)	  or	  magnetic	  beads	  (Beads).	  **	  p<0.01	  (paired	  student’s	  t-‐test).	  
Paired	  data	  from	  5	  independent	  experiments.	  Error	  bars	  represent	  SEM.	   	  
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6.4.6 RNA-Seq analysis of neutrophils prepared by different 

methods 

Having shown that different donors and different neutrophil isolation 

procedures generate suspensions containing different numbers of 

contaminating cells, notably eosinophils, it was then necessary to 

determine how these contaminating cells and isolation techniques 

contribute to transcriptome studies. Neutrophil preparations isolated by 

two different methods  (Polymorphprep™ and Beads) from donors with 

high or low eosinophil contamination levels were incubated with (or 

without) inflammatory cytokines (GM-CSF or TNFα) for 1 h before total RNA 

was extracted and processed for high throughput sequencing by RNA-Seq 

(see Methods). For details of RNA integrity and number of raw reads per 

sample see Appendix Table A.5. 

 

6.4.7 Transcript levels of antigens targeted by antibodies in the 

bead kit protocol 

To quantify the efficiency of the magnetic bead isolation kit to deplete 

contaminating cells, transcripts for the cell-specific antigens utilised in the 

bead kit were analysed (transcripts for genes listed in Table 3.1). Of the 7 

antigens, only transcripts for CD9, CD36, CD2, and CD3 were detected in 

any samples, and these are expressed in eosinophils, monocytes, T-

cells/NK cells and T cells, respectively.  
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Transcripts for CD36, CD3 and CD2 were detected in all samples from both 

donors following Polymorphprep™ isolation, but were absent (or below the 

RPKM threshold of 0.3) from all samples isolated by magnetic beads (Fig 

6.9). CD9 transcripts (specific to eosinophils) showed the highest levels of 

expression of all 7 genes, with the highest levels seen in the untreated 

sample from Donor 2 following Polymorphprep™ isolation (RPKM=28.9). 

Samples processed by magnetic bead isolation showed much lower levels 

of CD9 expression than those isolated by Polymorphprep™.  However, 

unlike the other transcripts, levels of CD9 where not entirely absent in 

samples isolated by beads, and were at or around the 0.3 RPKM threshold 

(Fig 6.9). The high levels of CD9 in all samples from Donor 2 following 

Polymorphprep™ isolation confirmed the presence of significant levels of 

eosinophils, whilst the greatly decreased levels of CD9 transcripts in the 

samples isolated by magnetic beads confirmed the ability of the magnetic 

bead kit to effectively deplete eosinophils.  

Treatment of neutrophils from each preparation type and from both donors 

with GM-CSF or TNFα had no significant effect on any bead kit antigen 

transcripts compared with their corresponding untreated sample. However, 

it is noteworthy that the largest variation in values between treatments 

(untreated, GM-CSF and TNFα) was consistently seen in Donor 2 samples 

following Polymorphprep™ isolation (Fig 6.9), that is, the preparation with 

the highest levels of non-neutrophil leukocytes. 
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6.4.8 Expression of other non-neutrophil transcripts 

The levels of transcripts encoding each of the 7 bead kit antigen target 

antibodies correlate well with the overall levels of cellular contamination 

measured by cytospins and flow cytometry. However, whilst these gene 

products are known to be unique cell-surface markers on specific cell types, 

it is possible that they may also be transcribed in other leukocytes, but not 

translated and expressed. We therefore measured the expression levels of 

other transcripts, which, according to the literature, are only expressed in 

non-neutrophil leukocytes, in order to further elucidate the extent that 

contaminating cells contribute to the transcriptome profile of the 

neutrophil preparations. Figure 6.10 shows the RPKM levels for the T-and-

B-cell specific transcripts CD8a and CD5 (respectively), the monocyte-

specific transcripts Chemokine Ligand 2 (CCL2) and CD163, and the 

eosinophil transcripts, Interleukin 5 Receptor Alpha (IL5RA) and Charcot-

Leyden crystal galectin (CLC).  
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Fig	  6.9.	  RPKM	  values	  for	  non-‐neutrophil	  genes	  of	  the	  antigen	  targets	  in	  the	  magnetic	  
bead	   isolation	  kit.	  The	  antigens	  not	  shown	  (CD19,	  CD56	  and	  glycophorin	  A)	  were	  not	  
expressed	  above	  the	  cut	  off	  RPKM	  values	  (0.3)	  under	  any	  conditions.	  Neutrophils	  were	  
either	  isolated	  by	  magnetic	  beads	  isolation	  (Bead)	  or	  by	  Polymorphprep™	  (Poly)	  from	  
Donor	   1	   (1)	  and	  Donor	  2	   (2)	   .	  Neutrophils	  were	   treated	  with	  5	  ng/mL	  GM-‐CSF	   (� /¢),	  
10ng/mL	  of	  TNFα	  (¡ /¨)	  or	  untreated	  (� /¢)	  for	  1h.	  Horizontal	  dotted	  lines	  represent	  
RPKM	  expression	  threshold	  of	  0.3.	  Horizontal	  bars	  represent	  mean	  value.	  	  
	  
 

All 6 transcripts were present at very low levels in all samples (RPKM < 2), 

apart from the eosinophil specific transcript CLC in Polymorphprep™ 

prepared samples from Donor 2 (RPKM=249.5). As described previously for 

transcripts for cell-surface markers, the expression levels of transcripts for 

other cell-specific markers were higher in Polymorphprep™ preparations 

than in magnetic bead preparations from both donors. Furthermore, with 

the exception of CD163, all transcripts had highest expression levels in the 

CD36

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0.0

0.2

0.4

0.6

0.8

1.0

CD3

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0

1

2

3

4

5

CD2

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0.0

0.5

1.0

1.5

2.0

CD9

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0

10

20

30

40



236	  
	  

sample prepared by Polymorphprep™ from Donor 2. Importantly, where a 

transcript is expressed at a level >0.3 RPKM (that is, above the expression 

threshold) in the Polymorphprep™ preparations, the expression level in the 

paired bead isolation preparation was <0.3 RPKM (with the exception of 

CD163, RPKM = 0.36), suggesting that most contaminating cells have been 

removed.  The data in Fig 6.9 and 6.10 confirm that the major source of 

cellular contamination seen in the Polymorphprep™ preparations 

originates from eosinophils and that the magnetic bead isolation procedure 

is sufficient to remove this contamination. 

 

 

 

 

 

 

 

 

 

 



237	  
	  

 

 

 

Fig	  6.10	  RPKM	  values	   for	  non-‐neutrophil	   specific	  genes	  associated	  with	  T	  and	  B	  cells	  
(top)	  monocytes	  (middle)	  and	  eosinophils	  (bottom).	  Neutrophils	  were	  either	  isolated	  
by	  magnetic	  beads	  isolation	  (Bead)	  or	  by	  Polymorphprep™	  (Poly)	  from	  Donor	  1	  (1)	  and	  
Donor	  2	  (2)	  .	  Neutrophils	  were	  treated	  with	  5	  ng/mL	  GM-‐CSF	  (� /¢),	  10ng/mL	  of	  TNFα	  
(¡ /¨)	  or	  untreated	  (� /¢)	  for	  1h.	  Horizontal	  dotted	  lines	  represent	  RPKM	  expression	  
threshold	  of	  0.3.	  Horizontal	  bars	  represent	  mean	  value.	  	  
 

 

T"
Ce

ll&
/&
B"
Ce

ll&

CD8A

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0.0

0.5

1.0

1.5

2.0

2.5

CD5

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0.0

0.5

1.0

1.5

2.0

2.5

M
o
n
o
cy
te
s&

CCL2

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0

1

2

3

4

5

CD163

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0.0

0.5

1.0

1.5

Eo
si
no

ph
ils
&

IL5RA

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0

2

4

6

8

10

CLC

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0

100

200

300

400



238	  
	  

6.4.9 Comparison of differential ly-expressed genes between 

isolation methods. 

Having analysed the expression levels of transcripts expressed by non-

neutrophil cell types, the open-source high-throughput annotation software 

Cufflinks 145 was used to perform differential expression tests on the raw 

data to identify all transcripts within the transcriptome that were DE 

between isolation methods. All samples from both isolation methods were 

initially compared with each other (all 6 samples prepared using 

Polymorphprep™ compared with all 6 bead-isolated samples) and then 

subsequently, samples were compared with only their paired-treatment 

sample, for example, untreated samples isolated by Polymorphprep™ 

(from Donor 1 and Donor 2) were compared with untreated samples 

prepared by magnetic bead isolation (from Donor 1 and Donor 2). This 

would determine two things, firstly, the effect of neutrophil isolation 

method (and typical levels of eosinophil contamination) on gene expression 

profiles, and secondly, it would identify transcripts that were DE (between 

isolation methods) following stimulation with inflammatory cytokines. 

6.4.9.1 Polymorphprep™ vs Magnetic bead isolation (all samples) 

Samples from both donors were analysed by RNA-Seq to identify changes 

in neutrophil gene expression following either Polymorphprep™ or 

negative magnetic bead isolation. When comparing all Polymorphprep™ 

samples against all bead samples from both donors (i.e. 6 

Polymorphprep™ samples (two donors, 3 treatments) vs 6 bead samples 
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(two donors, 3 treatments)). Cuffdiff identified only 16 genes (from a 

possible 24,934) that were significantly differentially-expressed between 

isolation methods (Table 6.3). All 16 genes showed a low expression value 

in the Polymorphprep™ samples (ranging from 0.708-20.548 RPKM) and 

were not detected in the bead samples (with the exception of ADP-

Ribosylation Factor-Like 4C (ARL4C) RPKM=0.471). This suggests that their 

detection is due to increased cell contamination in the Polymorphprep™ 

samples since several of the genes can be attributed to non-neutrophil 

cells, for example HBB and CD3 to erythrocytes and T cells, respectively. 

However, the absolute expression values of all 16 genes were low (< 21 

RPKM) and so contribute little to the overall transcriptome profiles of 

neutrophil suspensions prepared by Polymorphprep™. 
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Table	   6.3	   List	   of	   genes	   with	   significantly	   different	   expression	   levels	   in	   neutrophil	  
suspensions	   prepared	   by	   different	   isolation	   methods.	   Table	   shows	   all	   significantly	  
differentially	   expressed	   genes	   in	   order	   of	   the	   greatest	   change	   in	   RPKM	   values	  
(ΔRPKM)	   between	   neutrophils	   isolated	   using	   either	   Polymorphprep	   (poly)	   or	  
magnetic	   beads.	   Significance	   (q-‐value)	   as	   calculated	   by	   Cuffdiff	   and	   adjusted	   for	   5%	  
false	   discovery	   rate	   by	   Benjamini-‐Hochberg	   correction	   for	   multiple-‐testing.	   Data	  
calculated	  from	  two	  biological	  replicate	  sets,	  as	  described	  in	  text.	  
 
Gene	  Name	   Poly	  

(RPKM)	  
Beads	  
(RPKM)	  

Fold	  
change	  
(log2)	  

q-‐value	   ΔRPKM	  

HBA2	   20.548	   0.093	   -‐7.786	   6.50E-‐04	   20.454	  
THBS1	   12.944	   0.205	   -‐5.981	   1.53E-‐03	   12.739	  
HBB	   11.680	   0.080	   -‐7.197	   3.83E-‐03	   11.600	  
ARL4C	   10.754	   0.471	   -‐4.513	   2.98E-‐02	   10.283	  
ALOX15	   10.068	   0.041	   -‐7.935	   3.12E-‐06	   10.027	  
PRSS33	   7.281	   0.008	   -‐9.806	   1.55E-‐02	   7.273	  
IL7R	   5.736	   0.295	   -‐4.282	   3.97E-‐03	   5.441	  
EMR4P	   5.570	   0.158	   -‐5.138	   6.64E-‐03	   5.412	  
S1PR1	   4.115	   0.216	   -‐4.250	   2.02E-‐02	   3.899	  
CD3E	   3.867	   0.058	   -‐6.054	   6.50E-‐04	   3.809	  
SMPD3	   3.232	   0.049	   -‐6.036	   8.79E-‐04	   3.183	  
CCR7	   2.958	   0.154	   -‐4.263	   1.71E-‐02	   2.804	  

SIGLEC8	   2.263	   0.036	   -‐5.983	   1.87E-‐03	   2.227	  
GPR114	   1.072	   0.020	   -‐5.778	   2.98E-‐02	   1.052	  
ITK	   1.021	   0.053	   -‐4.276	   9.06E-‐03	   0.968	  

BCL11B	   0.708	   0.018	   -‐5.268	   8.76E-‐03	   0.690	  
	  

 

6.4.9.2 Polymorphprep™ vs magnetic bead isolation (treatment specific 

comparison) 

The following analyses were performed to determine if the method of 

isolation had any impact on the patterns of gene expression. Samples of 

neutrophils treated under similar incubation conditions (N=2), but prepared 

by the two different methods were compared (for example, untreated 

Polymorphprep™ vs untreated bead-isolated). This analysis identified a 

total of 25 genes in all 3 treatment groups whose expression was 
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significantly different between the two preparation methods. Of these, 23 

genes were significantly differentially expressed in the untreated samples, 

and 9 genes were significantly altered in all 3 treatment pairings (Fig 6.11).  

As with the genes listed in Table 6.3, all expression levels for genes in Fig 

6.11 were higher in neutrophil samples prepared by Polymorphprep™ 

compared to samples prepared by magnetic beads. 

 

 

Fig	   6.11	   Venn	   diagram	   showing	   differentially	   expressed	   genes	   between	   neutrophil	  
samples	   prepared	   by	   either	   Polymorphprep™	   (poly)	   or	   magnetic	   beads	   (bead).	  
Comparisons	   performed	   by	   Cufflinks	   using	   treatment	   specific	   paired-‐samples	   from	  
two	   biological	   replicates.	   All	   genes	   displayed	   were	   significantly	   differentially	  
expressed	  due	  to	  a	  higher	  RPKM	  in	  Polymorphprep™	  prepared	  samples.	  Significance	  
(q	   <	   0.05)	   as	   calculated	   by	   Cuffdiff	   and	   adjusted	   for	   5%	   false	   discovery	   rate	   by	  
Benjamini-‐Hochberg	  correction	  for	  multiple-‐testing.	  See	  glossary	  for	  full	  gene	  names.	  
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express only low levels of transcripts that are attributable to contaminating 

cells. However, neutrophil suspensions isolated by magnetic beads do not 

express these transcripts. Furthermore, cytokine treatment had very little 

effect on the number of genes DE between isolation methods. This 

indicates that the contaminating cells did not respond to these cytokines 

by alterations in gene expression to these cytokines. Thus, in subsequent 

experiments, cytokine-regulated changes in gene expression can be 

attributed to altered activity of neutrophils. 

   

6.4.10 Comparison of gene expression profi les of two different 

donors fol lowing neutrophil isolation using two separate 

methods 

The previous section identified genes which showed significantly higher 

expression in samples prepared by Polymorphprep™. This section set out 

to answer a number of different questions: 

1) Does the isolation method affect gene expression in neutrophils? For 

example, can spending different lengths of time at 37°C and/or being 

subject to different centrifugal forces cause a significant change in gene 

expression? 

2) Are identical sub-populations of neutrophils isolated by different 

techniques? For example, LDGs (see section 1.4.3) which are present at 

variable levels in healthy controls or patients with inflammatory disorders, 

have different density properties and hence sediment at different rates in 
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density-gradient such as Polymorphprep™. It has been reported that LDGs 

express different genes compared to normal density granulocytes 52,81. 

Additionally, the bead isolation method only yielded 40% of the total 

number of neutrophils recovered by Polymorphprep™ (Fig.6.8), but the 

reason for this loss of cells are unknown. It is therefore possible that 

different sub-populations are isolated by the 2 techniques, and that these 

different sub-populations may have different gene expression profiles 

and/or respond differently to cytokines.  

Therefore, the analysis of the data in this section was designed to address 

these questions. This was achieved by comparing changes in gene 

expression in suspensions purified by either Polymorphprep™ (pooling 

data from each of the incubation conditions) or purified by magnetic 

beads. Data for each donor were analysed separately in order to detect 

changes in expression levels that may be donor-dependent (see appendix 

A.8 for datasets used in each comparison). Any gene whose expression is 

lower in the bead-isolated sample is likely to be due to contamination in 

Polymorphprep™ samples.  However, a gene whose expression is higher in 

the bead-isolated  samples could likely be due to either:  

 

a) The physical conditions employed of the isolation method; or 

b) A different sub-population of neutrophils. 
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6.4.11 Donor specif ic analysis of neutrophil samples prepared 

by either Polymorphprep™ or magnetic bead isolation 

For Donor 1 (low contamination donor), Cuffdiff identified 63 genes DE 

between isolation methods, whereas a higher number, 282 genes, were 

detected for Donor 2 (high contamination donor).  

Unlike previous analyses using pooled data-sets from both donors, where 

all significant genes were expressed at higher levels in Polymorphprep™ 

isolated samples, when analysing each donor independently, a proportion 

of differentially regulated genes had higher values in the bead-isolated 

samples. For example, for Donor 1, 10/63 genes showed higher expression 

in bead-isolated samples than in Polymorphprep™ samples, and in Donor 

2 92/282 showed higher expression in bead-isolated samples than in 

Polymorphprep™ samples. Interestingly, the percentage of significant 

genes expressed at higher levels in beads compared to Polymorphprep™ 

in Donor 2 is twice that seen in Donor 1 (32.7% and 15.9% respectively) 

(see Appendix Table A.9). 

6.4.11.1 Donor 1 

The 25 genes with the greatest change in RPKM between isolation 

methods for Donor 1 are listed in Table 6.4. The greatest change in RPKM 

seen in Donor 1 is for the gene FBJ Murine Osteosarcoma Viral Oncogene 

Homology (FOS) which has an RPKM of 169 in Polymorphprep™ samples 

and a significantly higher value of 1148 in magnetic bead isolated samples 

(q-value = 0.019). The next 3 genes with the greatest change in RPKM 
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between isolation methods are HBA1, HBA2 and HBB, which encode the 

alpha and beta subunits of the haemoglobin, an important protein in 

oxygen transportation in erythrocytes. Despite lacking a nucleus, 

erythrocytes and reticulocytes (immature erythrocytes) are capable of gene 

transcription and translation 255. The presence of these transcripts in 

Polymorphprep™ samples most likely represents contaminating 

erythrocytes which were not eliminated by the hypertonic lysis step. Since 

the bead isolation kit contains an antibody recognising an erythrocyte-

specific antigen (glycophorin A), this contamination is predictably absent 

from all bead-prepared samples. Although the expression values of the 

remaining genes are judged to be significant by Cuffdiff, the differences in 

RPKM values between samples are very low, with only 15/63 genes having 

a change in RPKM of >2 between isolation conditions Table 6.4. 
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Table.6.4	   List	   of	   genes	   significantly	   regulated	   between	   isolation	   methods	   in	  
neutrophils	  from	  Donor	  1	  (low	  contamination).	  Table	  shows	  the	  top	  25	  genes	  with	  the	  
greatest	   change	   in	  RPKM	  values	   (ΔRPKM)	  between	  neutrophils	   isolated	  using	  either	  
Polymorphprep™	  (Poly)	  or	  magnetic	  beads.	  Genes	  expressed	  at	  higher	  levels	  in	  bead-‐
isolated	   samples	   are	   shaded	   grey.	   Significance	   (q-‐value)	   as	   calculated	   by	   Cuffdiff,	  
adjusted	  for	  5%	  FDR	  by	  Benjamini-‐Hochberg	  correction	  for	  multiple-‐testing.	  Data	  from	  
3	  paired	  samples	  from	  Donor	  1.	  
 

Gene	  
Name	  

Poly	  
(RPKM)	  

Beads	  
(RPKM)	  

Fold	  
change	  
(log2)	  

q-‐value	   ΔRPKM	  

FOS	   169.379	   1148.700	   2.762	   1.90E-‐02	   -‐979.321	  
HBA1	   26.138	   0.016	   -‐10.642	   2.29E-‐02	   26.122	  
HBA2	   24.521	   0.015	   -‐10.656	   2.29E-‐02	   24.506	  
HBB	   16.238	   0.040	   -‐8.683	   2.95E-‐05	   16.198	  
CKS2	   1.285	   10.227	   2.993	   1.45E-‐05	   -‐8.943	  
KLF4	   2.642	   10.591	   2.003	   3.51E-‐02	   -‐7.948	  
LCN2	   1.292	   7.993	   2.629	   2.77E-‐05	   -‐6.701	  
LTF	   0.799	   6.060	   2.923	   2.10E-‐06	   -‐5.261	  
EREG	   5.489	   0.394	   -‐3.799	   1.15E-‐03	   5.094	  
RPL10A	   6.760	   1.817	   -‐1.896	   3.49E-‐02	   4.943	  
IL7R	   3.758	   0.328	   -‐3.517	   1.78E-‐07	   3.430	  
CD3E	   2.761	   0.029	   -‐6.564	   8.10E-‐07	   2.732	  
THBS1	   2.735	   0.051	   -‐5.749	   0.00E+00	   2.684	  

KIAA0090	   0.361	   2.880	   2.996	   8.10E-‐07	   -‐2.519	  
CCR7	   2.093	   0.066	   -‐4.981	   4.05E-‐10	   2.027	  

SERPINB2	   1.959	   0.286	   -‐2.775	   1.06E-‐02	   1.673	  
CCL5	   1.881	   0.338	   -‐2.474	   9.02E-‐04	   1.543	  
GIMAP7	   1.567	   0.263	   -‐2.576	   1.47E-‐03	   1.305	  
VCAN	   1.261	   0.021	   -‐5.907	   9.02E-‐04	   1.240	  
TCF7	   1.421	   0.209	   -‐2.768	   2.45E-‐02	   1.212	  
LDHB	   1.317	   0.137	   -‐3.264	   2.14E-‐04	   1.180	  
ARL4C	   1.378	   0.227	   -‐2.603	   2.50E-‐04	   1.151	  
S1PR1	   1.300	   0.150	   -‐3.118	   7.56E-‐06	   1.151	  
MMP8	   0.108	   1.024	   3.245	   1.33E-‐05	   -‐0.916	  
CD5	   1.102	   0.192	   -‐2.525	   4.52E-‐04	   0.911	  
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6.4.11.2 Donor 2 

By comparison, Table 6.5 lists the 25 genes with the greatest RPKM change 

between isolation methods in samples from Donor 2. Only 3 genes (LCN2, 

HBA1 and MMP8) feature on both lists. The number of significant genes for 

Donor 2 is much greater than for Donor 1 and the magnitude of the RPKM 

differences between isolation methods are also greater in Donor 2. 

Interestingly, despite the increased purity of neutrophils isolated by 

magnetic beads (as shown earlier by flow cytometry and cytospins), 15 of 

the top 25 significant genes exhibit higher expression in bead-isolated 

samples than in Polymorphprep™ isolated samples. These include the two 

genes with the greatest change in RPKM (neutrophil defensin – DEFA1 and 

neutrophil gelatinase-associated Lipocalin LCN2). The genes that have 

higher expression in Polymorphprep™ samples are those most-commonly 

associated with other, non-neutrophil cell types, such as CLC (eosinophils), 

CD52 (lymphocytes) and PLIN2 (epithelial cells). However, the genes with 

higher expression in bead-isolated neutrophils are known neutrophil genes,  

for example Carcinoembryonic antigen-related cell adhesion molecule 8 

(CEACAM8) and Bactericidal/Permeability-Increasing Protein (BPI): in some 

cases these are neutrophil-specific genes, for example neutrophil elastase 

(ELANE) 256 and lipocalin 2 (LCN2) 257. Consequently, these genes with 

significantly higher expression in bead isolated samples cannot be 

attributed to contaminating leukocytes. 
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Table.	   6.5	   List	   of	   genes	   significantly	   regulated	   between	   isolation	   methods	   in	  
neutrophils	  from	  Donor	  2	  (high	  contamination).	  Table	  shows	  the	  top	  25	  genes	  with	  the	  
greatest	   change	   in	  RPKM	  values	   (ΔRPKM)	  between	  neutrophils	   isolated	  using	  either	  
Polymorphprep™	  (Poly)	  or	  magnetic	  beads.	  Genes	  expressed	  at	  higher	  levels	  in	  bead-‐
isolated	   samples	   are	   shaded	   grey.	   Significance	   (q-‐value)	   as	   calculated	   by	   Cuffdiff	  
adjusted	   for	   5%	   false	   discovery	   rate	   by	   Benjamini-‐Hochberg	   correction	   for	   multiple-‐
testing.	  Data	  from	  3	  paired	  samples	  from	  Donor	  2.	  
 

Gene	  
Name	  

Poly	  
(RPKM)	  

Beads	  
(RPKM)	  

Fold	  
change	  
(log2)	  

q-‐value	   ΔRPKM	  

DEFA1	   239.933	   1082.690	   2.174	   4.75E-‐02	   -‐842.757	  
LCN2	   89.952	   447.161	   2.314	   2.45E-‐02	   -‐357.209	  
CLC	   264.289	   15.800	   -‐4.064	   6.14E-‐09	   248.489	  
CAMP	   32.519	   138.676	   2.092	   2.93E-‐02	   -‐106.157	  
BPI	   24.068	   117.488	   2.287	   2.05E-‐02	   -‐93.420	  

OLFM4	   16.438	   87.792	   2.417	   1.36E-‐02	   -‐71.354	  
CD52	   56.669	   2.804	   -‐4.337	   3.79E-‐04	   53.865	  

CEACAM8	   12.433	   65.236	   2.391	   9.63E-‐03	   -‐52.803	  
DEFA4	   9.968	   57.406	   2.526	   1.26E-‐03	   -‐47.438	  
PLIN2	   40.458	   1.758	   -‐4.524	   2.23E-‐08	   38.699	  
MS4A3	   8.837	   45.919	   2.377	   1.54E-‐02	   -‐37.081	  
MMP8	   9.436	   41.732	   2.145	   3.68E-‐02	   -‐32.297	  
AZU1	   7.485	   38.436	   2.360	   4.26E-‐03	   -‐30.951	  
ELANE	   5.851	   34.581	   2.563	   1.00E-‐03	   -‐28.731	  
RETN	   5.085	   28.648	   2.494	   5.32E-‐03	   -‐23.563	  

LGALS12	   23.813	   0.657	   -‐5.180	   7.78E-‐06	   23.157	  
RGS1	   25.601	   2.924	   -‐3.130	   4.85E-‐04	   22.677	  
THBS1	   22.995	   0.367	   -‐5.969	   0.00E+00	   22.628	  
ALOX15	   22.411	   0.047	   -‐8.894	   0.00E+00	   22.364	  
ARL4C	   22.673	   0.775	   -‐4.871	   0.00E+00	   21.898	  
HBA1	   19.632	   0.031	   -‐9.311	   4.39E-‐02	   19.601	  

CEACAM6	   5.968	   25.207	   2.079	   2.95E-‐02	   -‐19.239	  
H1F0	   3.009	   21.615	   2.845	   2.19E-‐04	   -‐18.605	  
HBA2	   18.605	   0.202	   -‐6.529	   1.92E-‐08	   18.403	  

C13orf15	   5.171	   23.425	   2.180	   1.16E-‐02	   -‐18.254	  
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6.4.12 Filtering of gene l ists from both donors to enrich for 

genes with highest expression changes between isolation 

methods 

When a filter is applied to the full list of significant genes to remove genes 

which have <2 RPKM difference between isolation methods, the number of 

genes decreases from 63 to 15 for Donor 1 and from 282 to 116 for Donor 

2 (Fig 6.12). This filtering also decreases the proportion of genes with a 

higher value in bead samples to a greater extent in Donor 1 than in Donor 

2. This reveals that of the genes DE in either donor, a greater proportion of 

those in Donor 2 have a considerable difference in RPKM (> 2), whereas the 

majority of DE genes in Donor 1 have a very small (< 2) difference in RPKM 

between isolation methods, and although deemed to be significant by 

Cuffdiff, are unlikely to have a considerable effect on overall gene 

expression profiles. 
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Fig	  6.12	  Number	  of	  genes	  significantly-‐regulated	  in	  neutrophils	  is	  dependent	  on	  Donor	  
and	  neutrophil	   isolation	  method.	  (A)	  The	  number	  of	  genes	  significantly	  differentially	  
expressed	   (DE)	   is	  higher	   in	  Donor	  2	   than	  Donor	   1,	  and	  a	  greater	  proportion	  of	   those	  
genes	   are	   higher	   following	   Polymorphprep™	   isolation	   (white	   bars)	   than	   magnetic	  
bead	  isolation	  (black	  bars).	  (B)	  Filtering	  significant	  DE	  genes	  for	  values	  that	  only	  show	  
>2	   RPKM	   difference	   between	   isolation	   method	   values,	   dramatically	   decreases	   the	  
number	   of	   genes	   in	   Donor	   1	   but	   only	   halves	   the	   number	   of	   genes	   in	   Donor	   2.	   The	  
proportion	  of	  genes	   that	  are	  higher	   in	  bead	   isolation	   is	  also	  much	  higher	   in	  Donor	  2	  
than	  Donor	  1,	  and	  is	  less	  affected	  by	  filtering	  gene	  list.	  
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6.4.13 Genes enriched in bead isolated samples 

A striking finding in the list of significant genes between Donor 1 and 2 is 

the proportion of genes that are enriched in the bead-isolated samples. It 

might be predicted that if any difference existed in gene expression values, 

this would likely result from the small percentage of contamination from 

other cell types in the Polymorphrep™ isolated cells. Consequently, these 

values would be highest in Polymorphrpep™ samples and greatly 

decreased (or absent) in the bead isolated samples. In fact, of the 

significantly differentially expressed genes in Donor 2, almost a third of 

these show higher expression in bead-isolated samples (92/282) (for full list 

of the 92 genes see Appendix, Table A.10) including 12 of the top 15 

genes with greatest changes in RPKM (Table 6.5, grey shading).  

Further analysis of these genes identified several encoding neutrophil 

granule proteins and anti-bacterial peptides. These include (but are not 

limited to) lactoferrin (LTF), defensin (DEFA1), myeloperoxidase (MPO), 

neutrophil elastase (ELANE), Bacterial Permeability-Increasing protein (BPI) 

and azurocidin (AZU1). Neutrophil granule proteins are expressed and 

compartmentalised prior to maturation and release of mature cells into the 

peripheral blood 258,259. Typically, granule protein genes are not transcribed 

in fully-mature neutrophils 18,   suggesting their presence in Donor 2 

samples is indicative of the presence of a sub-population of pre-mature 

neutrophils or progenitor cells, that is otherwise absent or below the 

threshold of detection in Donor 1 samples. 
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Recent work by Villanueva and colleagues 52 has sought to define the 

transcriptional profile of LDGs in SLE.  Micro-array studies showed that a 

total of 18 genes are significantly elevated in SLE LDGs when compared to 

levels detected in control or SLE normal density granulocytes. Among the 

18 genes include those relating to granule enzymes, and molecules 

associated with ROS production, NET formation and bactericidal activity 52 

(Table 6.6). 

Analysis of genes significantly expressed between isolation methods in 

Donor 2 revealed that several of the genes have previously been shown to 

be associated with immature neutrophils and/or LDGs. This was confirmed 

by IPA-software analysis (data not shown). 
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Table	  6.6	  List	  of	  functions	  of	  18	  LDG-‐associated	  genes	  as	  defined	  by	  Villanueva	  et	  al	  52.	  
 
Gene	  
symbol	  

Gene	  Name	   Function	  

MMP8	   Matrix	  metallopeptidase	  8	   Gelatinase	  and	  
collagenase	  activities	  MMP9	   Matrix	  metallopeptidase	  9	  

CEACAM1	   Carcinoembryonic	  Antigen-‐
Related	  Cell	  Adhesion	  Molecule	  1	  

(CD66a)	  

Adhesion	  molecule	  

CEACAM8	   Carcinoembryonic	  Antigen-‐
Related	  Cell	  Adhesion	  Molecule	  8	  

(CD66b)	  
RNASE2	   Ribonuclease	  2	   Non-‐secretory	  

ribonuclease	  
(pyrimidine	  specific)	  

RNASE3	   Ribonuclease	  3	  

CAMP	   Cathelicidin	  antimicrobial	  
peptide	  (LL37)	  

Antimicrobial	  peptide,	  
chemotaxis,	  

inflammatory	  response	  
regulation	  

CTSA	   Cathepsin	  A	   Lysosomal	  serine	  
proteases,	  antibacterial	  

activity	  	  
(anti-‐gram-‐negative)	  

CTSG	   Cathepsin	  G	  

ELANE	   Elastase	   Sereine	  protease,	  
elastin	  degredation,	  

phagocytosis,	  migration	  
MPO	   Myeloperoxidase	   Microbicidal	  activity,	  

catalyses	  production	  of	  
ROS.	  Granule	  protein	  

AZU1	   Azurocidin	  1	   Granule	  protein,	  
antibacterial,	  granule	  

protein	  
DEFA4	   Defensin,	  alpha	  4	   Microbicidal	  peptide,	  

granule	  protein	  
BPI	   Bactericidal/Permeability-‐

Increasing	  Protein	  
Bactericidal	  peptide,	  
LPS	  binding,	  granule	  

protein	  
CRISP3	   Cystein-‐rich	  secretory	  protein	   Immuno-‐regulation	  

LCN2	   Lipocalin	  2	   Iron-‐sequestering,	  
granule	  protein	  

LTF	   Lactotransferrin	   Iron-‐binding	  granule	  
protein,	  multi-‐
functional	  

CLU	   Clusterin	   Extracellular	  chaperone	  
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Analysis of the expression levels of the 18 LDG genes (defined by 

Villanueva et al) in both the Polymorphprep™ and bead-isolated samples 

from Donor 1 and Donor 2 show that all transcripts are elevated in Donor 2 

samples compared to Donor 1.  Furthermore, when comparing differences 

in gene expression of LDG genes between isolation methods, 14 of these 

18 genes are significantly elevated in bead-isolated samples from Donor 2 

compared to paired Polymorphprep™ isolated samples.  These findings 

are summarised and presented in Fig 6.13. Hierarchical clustering of 

expression values resulted in samples from the same donor grouping 

together. Taken together, these findings suggest that Donor 2 has elevated 

levels of LDGs and that bead-isolation of neutrophils enriches for this LDG 

sub population that could otherwise not be recovered by Polymorphprep™ 

isolation. 
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Fig	   6.13	   LDG	   genes	   are	   elevated	   in	   Donor	   2	   samples	   and	   enriched	   in	   bead-‐isolated	  
samples	   compared	   to	   Polymorphprep™	   isolated	   samples.	   Heatmap	   of	   log2	  
transformed	   expression	   values	   (RPKM)	   for	   18	   LDG	   associated	   genes	   in	   bead-‐	   or	  
Polymoprhprep™	  (Poly)-‐	  isolated	  samples	  from	  Donor	  1	  (low	  contamination)	  or	  Donor	  
2	  (high	  contamination).	  Lowest	  expression	  values	  are	  shown	  in	  green,	  median	  values	  
shown	   in	   black	   and	   highest	   expression	   values	   shown	   in	   red.	   Hierarchical	   clustering	  
shows	   greatest	   association	   between	   paired	   samples	   from	   the	   same	   donor	   and	  
greatest	   divergence	   between	   donor	   samples.	   Clustering	   achieved	   using	   Pearson	  
correlation	  and	  average	  linkage	  by	  Multiple	  experiment	  viewer	  (MeV).	  
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6.4.14 Comparison of variation between donor fol lowing 

different isolation methods 

The previous section identified that different genes are expressed in 

neutrophil samples isolated by different methods, and that the differences 

are donor-dependent. However, it is unclear whether the number of genes 

which are DE between donors is altered by different isolation methods. For 

example, whether the number of genes differentially expressed between 

donors following Polymorphprep™ isolation is similar to the number of 

genes differentially expressed between donors following bead isolation.  

To answer this question, Cuffdiff anlaysis was used to identify differentially 

expressed genes between Polymorphprep™ isolated samples from Donor 

1 with Polymorphprep™ isolated samples from Donor 2. Likewise, bead-

isolated samples from Donor 1 were compared to bead-isolated samples 

from Donor 2. This analysis would identify the number of genes that were 

differentially expressed between donors for each isolation method. Since 

the purity of neutrophil preparations from both donors was similar 

following bead isolation (Donor 1 - 97.5%, Donor 2 - 99%) it might have 

been expected that fewer genes would be significantly differentially 

expressed between donors after this purification method, than for 

Polymorphprep™ isolated samples. Likewise, as there is a much greater 

difference in neutrophil purity levels between the donors following 

Polymorphprep™ preparation (Donor 1 - 96%, Donor 2 - 83%) it might also 

be predicted that a greater number of genes were differentially expressed 
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after preparation by this method than would be in the bead-isolated 

samples.  

However, Cuffdiff identified almost 3 times as many differentially-expressed 

genes in the Polymorphprep™ samples as were detected in the bead-

isolated samples (Table 6.7). This suggests that there is greater 

heterogeneity in gene expression profiles between donor neutrophil 

samples if samples are prepared by magnetic bead isolation rather than by 

Polymorphprep™. Indeed, it is likely the increased number of significantly 

expressed genes between donors is a consequence of the more 

heterogeneous neutrophil population selected by magnetic bead isolation, 

and that the presence of a sub-population of LDGs can significantly 

contribute to the overall neutrophil gene expression profile. 

 

Table	   6.7	   Number	   of	   significantly	   differentially	   expressed	   (DE)	   genes	   between	  
neutrophil	   samples	  prepared	  by	   either	  Polymorphprep™	   (Poly)	  or	  by	  magnetic	  bead	  
isolation	  (Bead)	  from	  Donor	  1	  (1)	  and	  Donor	  2	  (2).	  Significance	  (q<0.05)	  as	  calculated	  by	  
Cuffdiff	   adjusted	   for	   5%	   false	   discovery	   rate	   by	   Benjamini-‐Hochberg	   correction	   for	  
multiple-‐testing.	  Data	  calculated	  from	  3	  sets	  of	  paired	  replicates.	  	  
 

Samples	  compared	  
Poly-‐1	  
vs	  

Poly-‐2	  

Bead-‐1	  
vs	  

Bead-‐2	  

Number	  of	  DE	  genes	   531	   1544	  
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6.5 Discussion 

Recent evidence suggests that the presence of contaminating leukocytes in 

a neutrophil preparation can alter the behaviour of neutrophils, or generate 

results that are difficult to interpret 249,254. Traditional techniques for 

isolating neutrophils from peripheral blood have relied on centrifugation of 

whole blood (or erythrocyte-depleted whole blood) over density-gradient 

media and these typically achieve neutrophil purities of >95%. In recent 

years, more sophisticated techniques have emerged which can achieve 

much higher purity levels (>99%), without the need for lengthy 

centrifugation steps and the ability to automate the whole isolation 

protocol.  The costs of these latter procedures are significantly higher than 

those based on density-gradient centrifugation, but such methods are 

reported to mitigate the potential effects of contaminating cells and 

improve consistency of data obtained from different donors.  

Despite recognition of the importance of neutrophil purity for in vitro 

studies, very few studies have focused on the impact of purity and or 

isolation method on neutrophil behaviour. Indeed, no studies yet have 

determined the molecular properties of neutrophils isolated by different 

purification protocols (neither under stimulated or untreated conditions). 

In this study, peripheral blood neutrophils from two healthy controls were 

isolated using two commonly employed methods of neutrophil isolation 

(density gradient by Polymorphprep™ and magnetic bead negative 

selection). The two donors were selected because previous work had 
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identified these as having low levels (Donor 1) or high levels (Donor 2) of 

contaminating cells, which were mainly eosinophils.   

Independent quantification of neutrophil purity by cytospin and flow 

cytometry confirmed the levels of inherent cellular contamination in 

neutrophil samples from each donor. Quantification also demonstrated that 

levels of neutrophil purity achievable by each isolation method were 

broadly in line with previously published data 227,246,251. However, and 

somewhat surprisingly, the often referenced neutrophil isolation purity 

value of >99% following bead isolation 182,227,260,261 was not achieved in any 

preparation. 

Levels of contamination in leukocyte preparation purity have previously 

been suggested to affect rates of apoptosis in both neutrophil preparations 

249, and eosinophil preparations 262. However, in both of these studies, 

contamination by CD14+ cells (monocytes) was shown to be crucial to 

delaying apoptosis following lipopolysaccharide (LPS) stimulation. Given 

that levels of PBMCs were equally low (≤3%) in both donors and isolation 

methods, it is perhaps surprising that (when compared to untreated 

samples), TNFα incubation was pro-apoptotic in bead-isolated neutrophils 

and anti-apoptotic in neutrophils isolated by Polymorphprep™. Several 

reasons could explain this, firstly, only low levels of contaminating cells may 

be required to alter the affect of TNFα. Secondly, the Polymorphprep™ 

method involves exposure of cells to greater centrifugal forces that may 

have an effect on neutrophils perhaps altering their responsiveness to 
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TNFα. Finally, the apparently pro-apoptotic effect of TNFα on bead-

isolated neutrophils could be due to the fact that there are great 

differences in rates of apoptosis in untreated neutrophils prepared by these 

two methods (Poly-Untreated 64.71% ± 7.34%, Beads-untreated 37.04% ± 

4.21%). Levels of apoptosis in TNFα-stimulated neutrophils are similar 

regardless of isolation method (Poly-TNF 47.82% ± 3.20%, Beads-TNF 

52.46% ± 2.04%). This would suggest that the neutrophils that are “lost” 

during bead isolation are those with normally high rates of constitutive 

apoptosis.  

TNFα has previously been shown to exhibit bi-modal effects on neutrophils 

183,225 and other cell types 263–265, that may be time-dependent 266,  or 

concentration-dependent 265. Given that the pro-apoptotic effect of TNFα is 

more pronounced in Donor 2 bead samples than Donor 1 bead samples 

(Donor 1: +12.68% apoptosis vs control, Donor 2; +27.03% vs control), it is 

possible that eosinophils may play a role in delaying neutrophil apoptosis. 

Indeed, eosinophils are capable of expression and release of TNFα under 

activated conditions 267 and as such may be providing a consistent source 

of anti-apoptotic paracrine signalling in the Polymorphprep™ isolated 

samples, thereby delaying apoptosis in these less pure preparations of 

neutrophils. Additionally, the higher rates of apoptosis seen in all 

Polymorphprep™ samples (compared to bead isolated samples) may be 

due to the higher centrifugation steps during the isolation protocol than 

those employed in a magnetic bead preparation. Indeed, additional 
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centrifugation of bead-isolated neutrophils on Polymorphprep™ for 30 min 

increased levels of neutrophil apoptosis to levels similar to those seen in 

Polymorphprep™ isolated samples (see Appendix Fig A.5).  

Analysis of neutrophil cell-surface expression levels revealed no significant 

changes after purification by different isolation methods (Student’s t-test 

p>0.2). Whilst CD15 and CD16 are expressed at high levels on neutrophils, 

they are also expressed on other leukocytes 268 (with the exception of 

CD16b which is neutrophil specific). This might explain why levels of 

expression of these receptors were not significantly different in neutrophils 

prepared by isolation methods.  Since CD11b is known to be upregulated 

following neutrophil activation 269, the small increase in expression seen in 

Polymorphprep™ isolated neutrophils may represent an increased level of 

activation – although levels were not significantly different (p= 0.27) – 

perhaps due to the additional centrifugation time of a Polymorphprep™ 

isolation method in comparison to a magnetic bead preparation. However, 

this does not explain the slight increased expression of CD64 in bead-

isolated neutrophils (although also not significant p= 0.33), which can also 

be upregulated in neutrophils following activation, albeit by enhanced 

gene expression in response to cytokines such as IFNγ and LPS 270. 

In contrast to the increased neutrophil purity following bead isolation, the 

absolute yield of neutrophils obtained from whole blood was much lower 

than can be achieved using Polymorphprep™. It is likely that several steps 

in the bead isolation protocol contribute to this decreased yield. Firstly, 
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erythrocyte depletion of whole blood using dextran relies on the 

aggregated erythrocytes sedimenting at a faster rate than leukocytes, such 

that an erythrocyte-free upper phase is produced which is removed and 

processed further. Although this process is effective for depletion of 

erythrocytes, leukocytes in the lower portion of the tube remain there and 

will not rise into the erythrocyte-free zone. Secondly, since the isolation 

method is by negative selection, neutrophils must avoid false-positive 

selection by each of the 7 specificities of antibodies included in the bead 

isolation kit. Finally, in the last steps of the bead isolation method, pure 

neutrophils are decanted into a fresh tube, while the contaminating cells 

are retained within a magnetic field. This must be performed in a single 

motion to avoid dislodging contaminating cells from the magnetic field.  

Consequently, a proportion of this neutrophil suspension is retained within 

the tube, further decreasing the final yield of pure neutrophils. 

Regardless of the factors contributing to a decreased neutrophil yield, this 

difference in yield between isolation methods, raises considerable concerns 

for neutrophil studies where large numbers of cells are required (for 

example RNA studies across a range of time points). Moreover, in 

situations where the available volume of whole blood is restricted, for 

example in neutropenic or paediatric  patients, this method of neutrophil 

purification may be unworkable. 

RNA-Seq analysis of neutrophil samples revealed that transcripts for 

contaminating cells (either relating to bead-kit antigens or known cell 



263	  
	  

specific transcripts) were broadly in line with expected contamination levels 

measured by flow cytometry of microscopic analysis. Eosinophil transcripts 

(CD9, IL5RA and CCL2) were at highest levels in Donor 2 Polymorphprep™ 

samples, with CD9 being the highest non-neutrophil transcript. 

Interestingly, despite its use as an eosinophil-specific cell surface antigen in 

the bead-isolation kit, neutrophils are known to express CD9 on their cell 

surface 271, albeit under disease conditions. However, this could 

compromise the efficacy of the bead isolation kit in experiments isolating 

neutrophils from patients with inflammatory diseases. 

It is clear from both the data presented here and previously published work 

that magnetic bead isolation of neutrophils is more efficient at removing 

contaminating leukocytes than Polymorphprep™. However, despite 

general acceptance that this method provides more highly-pure neutrophil 

suspensions, experiments using RNA-Seq have revealed that transcripts 

unique to contaminating cells are still detectable within the bead-isolated 

samples. Indeed, levels of the monocyte marker, CD163 are higher in 

bead-isolated samples from Donor 1 than in Polymorphprep™ isolated 

samples from Donor 2. This highlights the importance and effects of donor 

variation on the purity of the samples irrespective of the isolation method. 

When assessing the number of genes that were differentially-regulated 

between the two isolation methods using datasets for both donors, it was 

found that only a small number of genes were significantly regulated (16 

genes). Furthermore, when comparing treated samples from both isolation 
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methods (for example GM-poly vs GM-bead, N=2) there is only a single 

additional significant gene in each case (integrin beta 7 (ITGB7) and 

Indoleamine 2,3-dioxygenase 1 (IDO1) for GM-CSF and TNFα samples 

respectively), suggesting that differentially expressed genes between 

isolation methods are not influenced greatly by the presence of 

inflammatory stimuli. 

In contrast, when Polymorphprep™ and bead isolated samples were 

analysed in a donor specific manner, a greater number of genes were 

found to be significantly differentially expressed between the two isolation 

methods (in particular samples from Donor 2). Surprisingly, several genes 

are found to be elevated in the bead-isolated preparations. Detailed 

analysis revealed many of these genes are expressed in low density 

granulocytes, cells that are present in the circulation of patients with SLE 52.  

Whilst the exact properties and functions of LDGs remain largely 

undefined, they have increasingly been associated with abnormal immune 

responses and in particular, auto-immune disease 52,79–81,272. It is therefore 

somewhat surprising neutrophil samples from a healthy control (Donor 2) 

showed elevated levels of LDG-associated genes, implying high levels of 

LDGs in the blood of this healthy donor. This suggests that elevated 

transcription levels of LDG-genes alone are not sufficient to induce or 

reflect a diseased state.  Alternatively, elevated levels of LDGs in peripheral 

blood may indicate susceptibility to disease. Alternatively, heterogeneity in 

a leukocyte population may be normal but overlooked as many studies 
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would not normally use isolation methods that specifically enrich LDGs. It is 

clear from the experiments described in this thesis that LDGs are not 

normally isolated in the neutrophil band prepared by Polymorphprep. It is 

also unclear if the high levels of eosinophils present in Donor 2 blood are 

related to the increase in LDGs also seen in this donor.  

Whether LDGs represent a sub-class of mature, normal density neutrophils 

(NDGs) or a sub-population of immature neutrophils is still unclear. At 

present, the transcriptional regulation of neutrophil granule proteins during 

maturation is poorly understood, but the classical view is of 3 subsets of 

granules that develop due to temporal expression of granule genes during 

development. Proteins localised to each granule type are sequentially-

transcribed during maturation in the bone marrow, beginning with 

azurophilic granule proteins. However, more recently, other marker 

proteins have been discovered with a non-classical transcriptional pattern 

20,21,273 suggesting there is much greater granule heterogeneity than 

previously thought. This is highlighted by the LDG genes expressed in 

Donor 2 bead-isolated neutrophils, which show elevated levels of 

transcripts for several azurophilic granule proteins (MPO, DEFA4, BPI, 

ELANE, AZU1, CTSA, CTSG).  The presence of these transcripts is 

indicative of a transcriptional profile of a neutrophil progenitor cell such as 

a myelocyte or metamyelocyte 18.   

Regardless of the structure and function of LDGs, it is clear that bead-

isolation methods for purifying neutrophils provide a method of enriching 
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the LDG population that might exist. Conversely, since Polymorphprep™ 

relies on cell density for population separation, any LDGs are excluded 

from the neutrophil layer and most likely retained in the PBMC layer. 

Consequently, the level of neutrophil-heterogeneity following 

Polymorphprep™ isolation is decreased. Indeed, the number of 

significantly DE genes between datasets of two donors of 

Polymorphprep™ isolated samples is considerably less than the number of 

DE genes between 2 datasets of bead-isolated samples (Poly - 531 genes , 

beads – 1544 genes, q<0.05 - 5% FDR). This suggests that there is more 

heterogeneity between two samples of neutrophils, both with >97.5% 

purity prepared by bead-isolation than in the two Polymorphprep™ 

isolated samples, which had 96% and 83% neutrophil purity. This raises 

important questions for the use of magnetic beads to produce ultra-pure 

neutrophil samples, where levels of LDGs (or other sub-types of 

neutrophils) in the population may vary among donors. This is of particular 

relevance when analysing samples from patients with inflammatory 

diseases, such as SLE. Additionally, a comprehensive study of LDGs is 

unlikely using samples of neutrophils isolated by Polymorphprep™. 

In summary, whilst neutrophil purity is of significant importance for in vitro 

studies using high-sensitivity assays such as RNA-Seq or mass 

spectrometry, density-gradient based separation protocols such as 

Polymorphprep™ solution provide a suitable method of isolating 

unprimed, viable neutrophils, with an overall purity exceeding 96%. The 
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major contribution of contamination is from eosinophils. Magnetic bead 

isolation is effective for increasing neutrophil purity to approximately 98% 

but does so at the expense of overall yield and increased costs. 

Furthermore, despite having greater purity levels than Polymorphprep™ 

samples, bead-isolated neutrophil populations exhibited far greater 

heterogeneity due to the enrichment of an LDG-like sub-population. These 

data highlight the mechanistic differences between isolation methods and 

the inherent variation found between donors that plays an important role in 

the overall gene expression profile of neutrophils. It is therefore important 

that the success and reliability of a neutrophil assay be judged on more 

than the metric of purity, and should take into account several additional 

factors that ultimately can impact on neutrophil gene expression. 
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Chapter	   7:	   Future	   analyses	   of	  
the	  bioinformatic	  pipeline 

7.1 Introduction 

The pipeline of bioinformatic analyses described in Chapter 3 has enabled 

an accurate quantification of neutrophil gene expression following 

stimulation with several cytokines (Chapter 4 and 5), or in neutrophil 

suspensions of different levels of purity (Chapter 6). In each of these 

chapters, absolute gene expression values were calculated, and the RPKM 

metric was used to define relative values between (or within) samples. 

Subsequent bioinformatic analysis and predictions were made using the 

expression values and sets of significantly-associated gene lists (as 

calculated using the expression values). This approach has enabled 

accurate measurements of neutrophil gene expression under various 

conditions and has identified important consequences of different 

neutrophil isolation techniques. However, whilst RNA-Seq provides a 

suitable platform for measurement of absolute gene expression values, 

which is broadly comparable to similar analyses using microarrays, the 

greatest advantage of RNA-Seq over other methods of gene expression is 

the ability to quantify multiple genetic features from a single sequencing 

run. For instance, data collected during a single sequencing run can be 

post hoc analysed to quantify splice usage, SNP discovery and indels.  
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Whilst full analysis of the datasets to extract this genetic information was 

beyond the scope of this project, during the development of the 

bioinformatic pipeline, the software and methods necessary for quantifying 

these additional genetic features were incorporated into the final pipeline. 

The portions of this final bioinformatic pipeline, which were developed but 

not used in the analysis of neutrophil samples, are detailed below. In the 

time available for this project, it was not possible to fully extract all of this 

information from the datasets.  

7.2 Methods 

Neutrophil were isolated by Polymorphprep™ isolation from 3 healthy 

donors (Donors 1-3, see Appendix Table A.3 for further details). RNA 

samples were collected as previously described (see sections 2.2.2.2 and 

2.2.9) and samples were analysed by RNA-Seq using the bioinformatic 

pipeline described in Chapter 3. The following results demonstrate the 

downstream analyses available using raw data files obtained from the 

mapping stage of the bioinformatics pipeline (i.e. .Bam files from Tophat) 

or using the default output files relating to isoform expression, as provided 

by Cufflinks/Cuffdiff (isoforms.fpkm_tracking.txt). 

The software programmes and specific command options for each analysis 

are indicated in the text. 
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7.3 Results 

7.3.1 SNP discovery using RNA-Seq data 

Single nucleotide polymorphisms (SNPs) represent the most common form 

of genetic variation within a genome, occurring around once every 100-300 

bases 274. In recent years, genome-wide association studies (GWAS) have 

linked many SNPs with human diseases such as RA, diabetes and SLE 275–277. 

There are currently more than 62x106 identified SNPs in the human 

genome 278. While the vast majority of SNPs (~88%) are located in 

intergenic or intronic regions of the genome 279, RNA-Seq data provides a 

source of data for characterising SNPs located within human exomes. It was 

recently shown that RNA-Seq data with as little as x10 coverage was 

sufficient to identify 92% of expected SNPs within expressed exons 280. For 

comparison datasets analysed here have approximately x40 coverage. 

Analyses characterising SNPS in the neutrophil transcriptome before and 

after stimulation is of little value since the genetic sequence will be 

unchanged during the time course of an in vitro experiment.  However, it 

can be informative when comparing differences between donors or more 

importantly, patients with inflammatory disease where neutrophil 

dysregulation is implicated in disease progression, such as RA 3. For 

example, a SNP located in a functionally-important region, such as a 

receptor-binding pocket may represent a locus that confers an increased or 

decreased response to drug therapy. For instance, responses to the B-cell 

depleting anti-inflammatory drug Rituximab have been associated with 
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SNPs in the FcGR genes, the IL-6 gene and the B-Lymphocyte stimulator 

(BLyS) gene 281. Furthermore, SNPs in the tumour necrosis factor alpha 

induced protein 3 (TNFAIP3) gene,  which is expressed in neutrophils 181, 

have been associated with a number of inflammatory conditions, such as 

SLE 282, psoriasis 283, diabetes 276 and RA 277.  

7.3.1.1 SNP quantification in neutrophils using Samtools mpileup 

The software package Samtools 284 provides a means of quantifying all 

SNPs within a dataset by comparison of each nucleotide location with a 

reference sequence (either transcriptome or genome). The proportion of 

reads expressing the polymorphism at each location is used to determine if 

the SNP is significant, a product of sequencing error, or if coverage is too 

low to conclude either. 

RNA-Seq data (.Bam file) was used to quantify the total number of SNP 

identifiable in neutrophils from a single donor. The software Samtools was 

used to merge 3 .Bam files produced by Tophat during mapping into a 

single file using the command: 

 

samtools	  merge	  ./output/location	  path/to/file1	  path/to/file2	  path/to/file3	  

 

The Samtools commands “mpileup” and “bcftools” were applied to the 

merged .Bam file using the following command: 
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samtools	  mpileup	  –uf	  path/to/genome.fa	  path/to/merged.bam	  |	  bcftools	  view	  

–bvcg	   -‐	   >	   var.raw.merged.bcf	   bcftools	   view	   var.raw.marged.bcf	   |	   perl	  

vcfutils.pl	  varFilter	  –D100000	  >	  var.flt.merged.vcf	  

 

 

This command compares the mapping file (.Bam) with the reference 

genome (genome.fa) to identify SNPs. This command also uses a bespoke 

Perl script (vcfutils.pl) to filter SNP with extremely high coverage, which are 

less reliable since they may represent areas of high repetition. The data is 

then outputted as a .vcf (variant calling file). 

The .vcf file details all variants identified within the merged .Bam file, in 

addition to several other informative values on each SNP, such as quality 

(Phred score, see section 3.4.4.3 ), read depth, allele frequency and 

significance (p-value). Samtools identified 98,212 SNPs with an average 

read depth of 42.4 reads and Phred-score quality value of 44.5 (Table 7.1). 

This shows that that RNA-Seq can effectively identify a large number of 

polymorphisms that exists between healthy donors, with high fidelity. 

 

Table	   7.1	   Summary	   of	   SNP	   analysis	   of	   neutrophil	   RNA-‐Seq	   data	   from	   a	   single	   donor	  
using	  Samtools	  “mpileup”	  command	  and	  bcftools	  software	  284.	  
 

SNP	  attribute	   Value	  

No.	  of	  SNPs	   98,212	  

Average	  read	  depth	  per	  SNP	   42.4	  

Average	  quality	  value	  (Phred)	  per	  SNP	   44.5	  
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7.3.1.2 Identification and visualisation of specific SNPs 

In addition to the location of each SNP within a dataset, the deep read- 

coverage potential of RNA-Seq data provides a means of estimating the 

allele frequency usage of any heterozygous SNPs. The .vcf output file 

produced by the Samtools pipeline (detailed above) includes details of 

allele frequency for each SNP, but the large volume of data within the .vcf 

file is not suitable for manual curation of small, specific regions of interest. 

An alternative approach for SNP discovery and characterisation of allele 

frequency, is using the integrative genomics viewer (IGV) 285,286. This 

software package provides a graphical user interface (GUI) for browsing the 

read mapping data produced by a software mapper (for example, the .Bam 

file produced by Tophat or Bowtie). In addition to graphically representing 

the reads mapped to each location, single polymorphisms in the data 

sequence are highlighted. Given sufficient coverage of reads at the SNP 

location, the number of reads that correspond to each allele type will 

indicate the overall usage of each allele.  

As one example of this, analysis of neutrophil RNA-Seq data (from the 

Illumina platform) from two separate donors was analysed using IGV. 

Manual assessment identified a SNP located in the 3’-untranslated region 

of the β-actin gene (ACTB) that was present in both samples. The 

coordinates of the SNP corresponded to a known SNP with accession 

number rs7612 (dbSNP Build 141). This SNP is known to be quad-allelic, 

that is, example alleles with each of the four possible nucleotides at this 



274	  
	  

particular location have been identified in the human population. The RNA-

Seq data allows us to identify that the donor exhibits a heterozygous SNP 

at this location whereby 54% of reads are represented by cytosine (C) and 

the remaining 46% by thymine (T). In contrast, a second donor exhibits a 

homozygous SNP at this location as 100% of the 12,410 reads which map 

to that location are represented by thymine (T) (Fig 7.1). 

 The depth of coverage and sensitivity afforded by RNA-Seq allows 

accurate measurements of SNP discovery and allele usage that would 

otherwise be difficult to achieve in conjunction with transcriptome-wide 

characterisation of genes via other methodologies. 

 

 

 

 

 



275	  
	  

	  
	  
	  
	  
	  

Do
no

r 1

Do
no

r 2

Re
fe

re
nc

e 
se

qu
en

ce
 (h

g1
9)



276	  
	  

Fig	   7.1	   Visualisation	   of	   RNA-‐Seq	   50bp	   read	   fragments	   in	   the	   Integrative	   Genomics	  
Viewer	   (IGV)	   aligned	   to	  human	   reference	  genome	   (hg19).	   Two	   samples	  of	  untreated	  
neutrophil	   RNA	   from	   two	   healthy	   donors	   show	   the	   presence	   of	   a	   single	   nucleotide	  
polymorphism	   (SNP)	   at	   the	   same	   location	  within	   the	  β-‐actin	   beta	   gene.	   The	   human	  
reference	  genome	  sequence	  used	  as	  reference	  (hg19-‐RefSeq)	  contains	  a	  cytosine	  (C)	  at	  
this	  location	  (which	  can	  be	  seen	  in	  the	  lower	  frame	  of	  the	  screen	  shot).	  The	  first	  donor	  
has	  a	  heterozygous	  SNP,	  with	  54:46	  of	  reads	  containing	  either	  cytosine	  (C),	  or	  thymine	  
(T)	  respectively,	  at	  the	  SNP	  location.	  In	  contrast,	  the	  second	  donor	  has	  a	  homozygous	  
nucleotide	  whereby	  all	  reads	  contain	  thymine	  (T)	  at	  this	  location.	  	  
	  
 

7.3.2 Splice variant discovery  

An estimated 92-94% of multi-exonic genes within the human 

transcriptome are subject to alternate splicing, with ~86% having a minor 

isoform frequency of >15% 102. Alternate isoforms of genes not only 

influence the structure of the translated protein, but also have significant 

effect on function. For example, the gene myeloid cell leukaemia-1 (MCL-1) 

plays an important role in neutrophil survival through its actions as an anti-

apoptotic member of the B-cell like-2 (BCL-2) family of proteins 232,287. 

However, MCL-1 has been shown to undergo alternative splicing to yield 2 

possible minor isoforms, MCL-1S (short) and MCL-1ES (extra-short), both of 

which are translated into shorter proteins with pro-apoptotic function 288,289.   

7.3.2.1 Splice variant discovery in neutrophils using Cufflinks (Cuffdiff) 

Since annotation software, such as Cufflinks or DESeq, provide a 

normalised score for each exon within a gene, it is possible to estimate the 

relative isoform usage for any particular gene between two or more RNA-

Seq samples, provided a suitable reference sequence defining each 

isoform is inputted into the annotation software. Indeed, as part of its 

default output, Cuffdiff can quantify all splice variants within a sample 
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which can be used to estimate the splice variant usage between two or 

more samples 168.  

Following annotation and DE analysis of neutrophil samples (untreated, 

GM-CSF and TNFα) using Cuffdiff (as previously described), isoform usage 

was calculated for the gene MCL-1 which has 3 known alternatively spliced 

isoforms: long form (MCL-1L, NM0211960); short form (MCL-1S, 

NM182763); or extra short form (MCL-1ES, NM001197320). RPKM values for 

each isoform were extracted from the Cuffdiff output file 

“isoforms.fpkm_tracking.txt” and percentage usage calculated for each 

isoform in each treatment (Fig 7.2) 

Values for MCL-1L decreased in both GM-CSF and TNFα treated samples 

compared to control. Consequently, the relative levels of MCL-1S and MCL-

1ES were increased, with the greatest increase seen in MCL-1ES isoform in 

GM-CSF-treated neutrophils (untreated 4%, GM-CSF 8.3%). 
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Fig	  7.2	  MCL-‐1	   isoform	  usage	  in	  neutrophils	  following	  cytokine	  treatment.	  Neutrophils	  
were	  treated	  with	  (or	  without)	  GM-‐CSF	  (5	  ng/mL)	  or	  TNFα	  (10	  ng/mL)	  for	  1	  h.	  RNA	  was	  
sequenced	  on	  the	  Illumina	  platform	  and	  quantified	  by	  Tophat/Cufflinks.	  RPKM	  values	  
calculated	  by	  Cuffdiff	  for	  the	  3	  isoforms	  of	  MCL-‐1	  (long	  form,	  short	  form	  or	  extra	  short	  
form).	  Values	  represent	  mean	  of	  3	  biological	  replicates.	  
	  
 

7.3.2.2 Visualisation of isoform usage 

As described above,  RNA-Seq mapping data can be analysed by GUI 

based analysis programs, such as IGV 285,286, to provide a visual 

representation of the mapping results. In addition to SNPs, this method of 

analysis can also be employed to visualise the isoform usage or splice 

junction sites at a particular area of interest. Fig 7.3 demonstrates how the 

reads mapping to the MCL-1 gene can be visualised. Reads that originate 

from all three MCL-1 isoforms are evident and the depth of coverage at 

splice junctions can be assessed (Fig 7.3). This method of visualising 

mapped reads can also be used to identify other transcriptional features, 

GM

70.50%  Long
21.20%  Short
8.30%  Extra short

TNF

72.40%  Long
22.50%  Short
5.10%  Extra short

UT

75.00%  Long
21.00%  Short
4.00%  Extra short
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such as transcriptional start sites (TSS), by assessing the location of reads in 

relation to the predicted TSS as seen in the reference sequence. 

 

	  	  
	  
Fig	   7.3	   Alternative	   splicing	   of	   the	  MCL-‐1	   gene	   visualised	   in	   the	   Integrative	  Genomics	  
Viewer	   (IGV)	   and	   by	   standard	   gel	   PCR.	   (A)	  Mapped	   reads	   from	   neutrophil	   RNA-‐Seq	  
data	  (Illumina	  platform)	  are	  displayed	  using	  IGV.	  Reads	  are	  represented	  as	  grey	  blocks	  
whilst	  a	  blue	  line	  connects	  reads	  that	  span	  exon	  boundaries.	  Histogram	  at	  top	  of	  panel	  
represents	   the	   depth	  of	   coverage	   at	   each	  base	   location.	  Human	   reference	   sequence	  
(hg19-‐RefSeq)	   isoform	   structure	   represented	   by	   blue	   bars	   at	   base	   of	   panel.	   (B)	   PCR	  
analysis	  of	  neutrophil	  RNA	  using	  primers	  designed	  to	  detect	  all	  three	  isoforms	  of	  MCL-‐
1.	   PCR	   bands	   correspond	   to	   MCL-‐1L	   (1053bp)	   and	   MCL-‐1S	   (805bp).	   No	   product	  
corresponding	  to	  MCL-‐1ES	  (594bp)	  was	  detected.	  Gel	  data	  is	  representative	  of	  at	  least	  
4	  biological	  donors	  (collected	  and	  reproduced	  with	  permission	  by	  D.	  Chiewchengchol	  
2013).	  
	  
 

For comparison, gel PCR was used to determine levels of MCL-1L, MCL-1S 

and MCL-1ES in untreated neutrophils. Primers were designed to amplify full 

length transcripts of all three MCL-1 isoforms. Following cDNA 

amplification, samples were run on an agarose gel. Levels of MCL-1ES were 

undetectable in samples from at least 4 biological donors (Fig 7.3B) (data 

collected and reproduced with permission by D. Chiewchengchol) 
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The changes seen in isoform abundance in MCL-1 following neutrophil 

stimulation are small, but highlight the accuracy and sensitivity available by 

using a bioinformatics approach to detect isoform levels. 
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7.4 Discussion 

The above analyses demonstrate the capacity of raw RNA-Seq data to be 

re-analysed by different software packages to extract novel results 

regarding alternative genetic features that complement gene expression 

values.  

SNP discovery can inform on important structural changes in crucial 

protein-coding areas or even in non-coding areas which are increasingly 

recognised as important determinants of gene expression profiles, whilst 

also being implicated in several diseases 290–294. Indeed, a recent study 

identified several SNPs located within (or adjacent to) functional elements 

in human neutrophils from patients with juvenile idiopathic arthritis (JIA) 295.  

Whilst a fully comprehensive study of SNP and other polymorphisms in 

neutrophils would require a different methodology, specifically a genome-

wide sequencing approach, the ability to use RNA-Seq data to analyse SNP 

located in mRNA transcripts provides an additional benefit over array-

based analyses.  

Similarly, the accuracy of RNA-Seq to quantify absolute values of transcript 

levels allows gene expression values to be quantified in terms of all 

associated splice variants. When applied to neutrophil expression of MCL-

1, each of the 3 known splice variants were identified and changes to the 

ratios of expression were found following stimulation of neutrophils. 

Differential usage of splice variants in neutrophils has previously been 
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shown for several genes, including 5-lipoxygenase 296, glucocorticoid 

receptor297 and the pantetheinase family of genes 298 

However, whilst this approach using Cufflinks is informative and of great 

use for discovering changes in isoform abundance, it is important to 

appreciate that this form of analysis is semi-quantitative. Since most 

isoform sequences differ only in a small portion of their sequence, reads 

that map to common areas of the reference sequence cannot be 

definitively assigned to any one isoform, thus only reads that map to an 

isoform-unique portion of their sequence can be accurately quantified. 

Paired-end sequencing can decrease the number of reads un-assignable to 

a particular transcript by providing a pair of read fragments known to 

originate from the same transcript and lying a known distance from each 

other. However, ultimately, mapping software must apply some degree of 

estimation when assigning a level of significance to splicing events 145. 

In summary, the software-based analyses described in this Chapter 

demonstrate an extension to the bioinformatics pipeline presented in 

Chapter 3. They provide informative data that could complement a 

concurrent global gene expression analysis. In combination, these methods 

represent a set of robust analyses for a comprehensive study of the 

neutrophil transcriptome. 
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Chapter	  8:	  Conclusions	  

8.1 Overall conclusions and outcomes 

Neutrophils constitute the largest cellular component of the immune 

system. It is now widely appreciated that neutrophils are central to the 

immune response and are capable of regulating both the innate and 

adaptive immune systems through the expression and release of several 

immune regulators 4,5. Whilst the functional mechanisms of neutrophils in 

both health and disease are well characterised, the molecular changes that 

underlie neutrophil regulation were poorly defined. Transcriptomics 

represents an attractive, analytical approach to neutrophil gene expression 

by providing a mechanism of quantifying the entire population of 

transcripts at a particular time point or following stimulation. A limited 

number of studies have analysed the global transcriptional profile of 

neutrophils, with the majority looking at gene expression changes during 

neutrophil maturation, or over several time points following stimulation by 

a single cytokine 181,245,258,299. Moreover, at the outset of this research, the 

neutrophil transcriptome had yet to be characterised using modern RNA-

Seq technology. The benefits of RNA-Seq over established microarray 

technology are numerous, not least the ability to garner information on 

various genetic features from a single experimental run. Despite the 

improvements of RNA-Seq technology, the corresponding bioinformatic 

software remains eclectic in their functionality and ease of use. Such that, 
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published bioinformatic methods are often disparate and difficult to 

compare or judge equally. Indeed, the bioinformatic community has yet to 

decide on a set of software tools or quantification techniques that 

represent the best practices for analysis of NGS data.  

The aims of this research were to develop a robust, pipeline of methods 

and bioinformatic analyses using open-source or commercially available 

software that could accurately measure the gene expression profiles of 

neutrophils under different inflammatory conditions. This pipeline would 

then be used to fully quantify neutrophil gene expression following 

stimulation with a variety of inflammatory mediators, or following two 

commonly used neutrophil-isolation methods.  

Development of the bioinformatic pipeline in Chapter 3 explored the 

relative merits of both the SOLiD and Illumina sequencing platforms, in 

addition to paired-end and single-end sequencing techniques. Despite 

both platforms and sequencing techniques correlating well to qPCR data 

during validation experiments, the higher mapping rate and read quality 

achieved by Illumina sequencing platform determined it as the platform of 

choice for future experiments. Whether the lower quality values achieved 

with the SOLiD platform were due to: the added complexity associated 

with paired-end sequencing; technical or human error; or were attributable 

to the technology platform as a whole, is unclear. However, it is unlikely 

that a single-end sequencing experiment using SOLiD technology could 
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improve upon the read quality values and mapping rates achieved by the 

Illumina platform.  

Quantification of mapped reads is predominantly achieved in one of two 

ways, either using the raw number of reads assigned to each gene in a 

count-based approach, or by further transforming the raw counts into a 

value normalised to both the size of the read library, and the length of the 

gene being quantified (i.e. an RPKM value). The choice of quantification 

methods for neutrophil gene expression values had a significant effect on 

the number of DE genes between samples; this effect was even seen 

between two count-based approaches (DESeq and edgeR). The greater 

number of DE genes identified following count-based methods was likely 

due to the techniques used by the software to model the variation within 

the read population. Although this approach is known to estimate 

biological variance poorly, and suffer from over-sensitivity 163,300,301, it has 

been employed for several RNA-Seq studies and remains a popular choice 

for differential expression studies 302–305. However, the ability to directly 

compare two separate genes within the same dataset (or between 

datasets), and the compatibility with downstream software offered by the 

Cufflinks quantification route, led to the count-based quantification method 

being discounted from the final bioinformatic pipeline in favour of 

Cufflinks/Cuffdiff.  

Downstream analysis of gene expression data is an increasingly popular 

area of bioinformatic analysis 199, since many sequencing service providers 
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also offer basic gene expression quantification, non-bioinformatically 

trained research labs are increasingly reliant on downstream analytics to 

extract meaningful data from large amounts of raw gene-expression data. 

Many of the most popular software packages utilise large databases of 

canonical biological data to model the raw data against. Software of this 

kind are often designed for ease of use by non-bioinformaticians, but are 

only available via a commercial licence. Whilst this excludes some 

researchers from the best available software purely on financial grounds, 

the benefit of commercial analysis-software is two-fold. Firstly, the technical 

support and usability of software is often far superior to open-source 

equivalents. Secondly, the professional curation of the information 

databases is consistently maintained, meaning that the data resources are 

constantly up-to-date and comprehensive, whilst also providing validation 

of all canonical interactions with supporting publications. For these 

reasons, the commercially available pathway analysis software IPA 220 was 

employed as part of the bioinformatic pipeline. This provided invaluable 

capacity in downstream analysis that was not feasible using open-source or 

freely available software. However, other downstream analyses such as 

hierarchical clustering and heat-map generation were achieved using open-

source software. The pipeline described in Chapter 3 therefore represents 

a robust set of tools for analysing the gene expression profiles of 

neutrophils that is both comprehensive in capacity and modest in technical-

ability requirements. 
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In Chapters 4 and 5, the bioinformatic pipeline was employed to 

investigate the effect of inflammatory cytokine stimulation on neutrophil 

gene expression. The similar priming effects of GM-CSF and TNFα on 

neutrophils are well characterised, but a global comparison of the 

molecular changes following priming has not previously been studied. 

Analysis revealed that despite similar expression in common genes, each 

cytokine induced expression of discrete gene sets that were as a 

consequence of differential transcription factor activation. This led to the 

discovery that the delay in neutrophil apoptosis – seen following 

stimulation with either cytokine – was regulated by STAT activation in the 

case of GM-CSF and NFκB activation in TNFα stimulation. The discovery 

that cytokines regulate neutrophil function via differential expression of 

genes and activation of signalling pathways has important implications for 

the study of neutrophil-dysfunction in inflammatory disease. Not least for 

providing a novel set of biomarkers that can identify the predominant 

cytokines that may be driving inflammation in different patients.  

Analysis of cytokine-induced changes in neutrophils was expanded in 

Chapter 5 to cover other cytokines associated with inflammation. In 

addition, the effect of multiple cytokine stimulation was investigated. IL-1β, 

IL-6 and IL-8 are known inflammatory mediators; but their effect on 

neutrophils is less defined. IL-6 and IL-1β are crucial activator of many 

immune cell-types, while IL-8 is a strong chemo-attractant of neutrophils. 

However, all these cytokines were found to have very little effect on 
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neutrophil gene expression. Whilst it comes as no surprise that the chemo-

attractive capacity of IL-8 is independent of de novo gene expression – 

since localising to the site of inflammation requires rapid execution – the 

inability of IL-6 and IL-1β to induce gene expression by 1 h was less 

predicted. In contrast, IFNγ, G-CSF and dual treatment with GM-CSF and 

TNFα induced significant changes in gene expression, and differential 

activation of signalling pathways. These results highlight the specific 

functional and molecular changes induced in neutrophils by similar 

inflammatory mediators and reveals how stimulation by different cytokines 

can alter the neutrophil phenotype thus potentially altering how they 

respond to later stimulation and/or regulate other cells of the immune 

response.  

Fig 8.1 summarises the multiple genetic characteristics that have be 

quantified using the bioinformatics pipeline developed herein (Fig 8.1A) 

and the differences in neutrophil phenotypes resulting from different 

cytokine stimulation (Fig 8.1B). 
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Fig	   8.1	   Summary	   of	   neutrophil	   bioinformatics	   pipeline	   capacity	   and	   findings.	   (A)	  
Analysis	   of	   neutrophil	   RNA	   by	   RNA-‐Seq	   and	   neutrophil	   bioinformatics	   pipeline	   has	  
provided	   a	   mechanism	   to	   quantify	   several	   genetic	   characteristics	   such	   as	   raw	   gene	  
expression	   or	   transcription	   factor	   activation	   from	   a	   single	   RNA-‐Seq	   experiment.	  
Characteristics	  studied	  in	  greatest	  detail	  are	  shown	  in	  bold.	  (B)	  Schematic	  summary	  of	  
the	  phenotypic	   changes	   induced	   in	  neutrophils	   by	  different	   inflammatory	   cytokines,	  
including:	   specific	   signalling	   pathway	   activation;	   change	   in	   levels	   of	   overnight	  
apoptosis	  (%	  change	  compared	  to	  untreated);	  and	  number	  of	  genes	  with	  a	  significant	  
increase	   (red	   arrow)	   or	   decrease	   (green	   arrow)	   in	   gene	   expression	   compared	   to	  
control	  (q<0.05,	  FDR	  5%).	  
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With the advent of more sensitive techniques to isolate neutrophils from 

whole blood, greater emphasis has been placed on the appropriateness of 

established isolation methods for highly sensitive assays such as 

proteomics or transcriptomics. In Chapter 6, the impact of neutrophil 

isolation methods, and levels of non-neutrophil contamination on 

neutrophil gene expression were investigated. As predicted, magnetic 

bead isolation resulted in a greater purity of neutrophils, the lack of 

contaminating cells was confirmed by gene expression analysis for non-

neutrophil transcripts which were lower in bead isolations than in samples 

isolated by Polymorphprep™. The use of two healthy donors with disparate 

levels of non-neutrophil contamination provided a mechanism for 

highlighting the impact low and high contamination has on the overall 

gene expression profile of neutrophils (either untreated or following 

cytokine stimulation). However, despite a purer population of neutrophils 

following bead isolation, RNA-Seq analysis revealed that there was greater 

genetic heterogeneity between donors than when neutrophils were 

isolated by Polymorphprep™. This difference was largely due to a 

subpopulation of neutrophils which were enriched in Donor 2 but not 

Donor 1. These cells were likely the source of LDG-associated transcripts 

which were also elevated in Donor 2. These results were surprising since 

LDG associated genes have only previously been identified in the context 

of inflammatory disease 52,77,81,272. What is still unclear is if there is any 

association between the high levels of eosinophils and the high levels of 
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LDGs both seen in Donor 2. Importantly, this research has identified that 

bead isolation of neutrophils can exhibit greater heterogeneity between 

donors due to an enrichment of neutrophil sub-populations. Furthermore, a 

lower overall yield and greater cost per isolation for magnetic bead 

isolations suggests that the increased level of purity achievable must be 

weighed up against these factors when determining a suitable method of 

isolation. 

8.2 Future directions 

8.2.1 Future research 

Both the methods described here, and the results identified during the 

research would benefit from further development and analysis. Aspects of 

the bioinformatic pipeline that were developed but not applied to all 

datasets were summarised in Chapter 7, these include methods for 

determining differential splice usage and SNPs discover. Full 

characterisation of SNPs is likely only useful for situations where healthy 

neutrophils are being compared to those from inflammatory disease. But 

an analysis of differential splice usage in neutrophil genes following 

cytokine stimulation could be very informative. 

The benefit of developing a robust bioinformatic pipeline of analysis is that 

it can readily be applied to several different situations to efficiently analyse 

the neutrophil transcriptome under these different conditions.  
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Given the interesting results identified following dual stimulation of 

neutrophils it would also be of interest to extend this research to 

investigate the effect of multiple other cytokines on neutrophil gene 

expression. For example several cytokines have been shown to have 

synergistic effects when regulating the immune system in combination 306, 

including TNFα with IFNγ 307,308 or IL-12 309 but their effect on neutrophils is 

less known. 

Equally, whilst a 1 h time point was entirely adequate for studying initial 

gene expression in neutrophils following stimulation, results indicate that 

neutrophil phenotype may be differentially altered dependent on the initial 

stimulus. Hence, neutrophils ability to respond to a later, secondary signal 

may be significantly different and would represent an interesting area of 

research. Indeed a more comprehensive study investigating gene 

expression over several hours (looking at several time points) would also be 

of interest and would inform on the speed and magnitude of differential 

gene expression by different cytokine stimulation. 

However, perhaps the most informative of future research would be to 

investigate the gene expression changes in neutrophils following non-

sterile stimulation. Whilst directly incubating neutrophils with 

microorganisms would be unfeasible for RNA-Seq studies – due to the 

contamination of neutrophil RNA with microorganism RNA – non-sterile 

inflammatory conditions could be simulated by direct receptor agonists.  
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Activation of neutrophils by exogenous molecules is mediated by receptors 

such as TLRs, NLRs and C-lectin like receptors 5. Whilst many of the 

phenotypic changes in neutrophils following activation by bacterial 

products and inflammatory cytokines are similar, it would be of interest to 

investigate if the molecular changes induced by bacterial products are 

distinct from those seen following cytokine stimulation. Indeed, the 

discovery of specific signalling pathways or target molecules that could 

regulate neutrophil activation following endogenous stimulation without 

compromising neutrophils ability to respond to exogenous signals would 

be of great interest for studies into autoimmune disease where reducing 

the activation levels of the immune system yet maintaining host defence is 

of upmost importance. 

8.2.2 Future of RNA-Seq 

The future direction of RNA-Seq analysis in general is set to increase in 

magnitude and ubiquity. With the development of 4th generation 

sequencers reducing cost and increasing the speed at which samples can 

be sequenced, RNA-Seq analysis will undoubtedly become a standard 

practice in many research laboratories and clinical environments. Whilst this 

can only be of benefit to scientific research and modern day healthcare, 

storage of the vast amounts of data will undoubtedly move towards cloud 

based solutions. But this raises its own issues such as long term storage 

costs. All but the largest cloud-based companies are susceptible to 

commercial failure; whilst the financial ebb and flow nature of scientific 
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funding may mean that the indefinite, secure, storage of valuable biological 

data may be a luxury of the past. 

In summary this research has gone some way to reveal the molecular 

changes in neutrophils under different conditions by the development and 

employment of a robust set of bioinformatic tools. These tools have 

uncovered a greater regulation in gene expression by neutrophils than was 

perhaps appreciated. Whilst several avenues of further research have been 

directly highlighted by this research the methods described here can 

ultimately be employed for a variety of other studies involving RNA-Seq 

and continue to uncover important scientific discoveries. 	  
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Appendix	  
 

Table	  A.1	  List	  of	  bioinformatic	  software	  and	  versions.	  

Bioinformatic	  software	  versions	  
Bioinformatic	  
software	   Version	  

Bowtie	   2.0.07	  
Tophat	   1.2.1-‐1.4.1	  
Cufflinks	   2.02	  
Samtools	   0.1.18	  
IPA	   n/a	  
IGV	   2.2.7	  

Microsoft	  Office	   2011	  edition	  
R	   2.15.2	  

EdgeR	   3.0.8	  
DESeq	   1.10.1	  

cummeRbund	   2.6.2	  
 

	  
Table	  A.2	  Details	  of	  computer	  hardware	  used	  for	  analysis.	  
 
Computer	  system	  (analysis	  
Mac)	  

Mac	  Pro	   iMac	  

Operating	  system	   Mac	  OSX	  10.7-‐10.8	   Mac	  OSX	  10.85	  
Computer	   processing	   unit	  
(CPU)	  

8	  x	  2.4GHz	  Intel	  
Core	  i5	  

4	  x	  3.4GHz	  Inter	  
Core	  i7	  

Random	   access	   memory	  
(RAM)	  

16GB	  DDR	  RAM	   32GB	  DDR3	  RAM	  
(1600	  MHz)	  

Hard	  drive	  memory	  (HDD)	   4	  x	  1TB	  –	  7200	  
Serial	  ATA	  HDD	  

3TB-‐7200rpm	  Serial	  
ATA	  HDD	  

Graphical	  processing	  unit	   ATI	  Radeon	  HD	  
5770	  1GB	  

NVIDIA	  GeForce	  GTX	  
680MX	  2048	  MB	  
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#!/bin/sh	   
#$	  -‐cwd	  -‐V	  -‐pe	  smp	  4	  -‐l	  h_rt=4:0:00 
cufflinks	  	  
-‐b\	  
/home/hbt/volatile/iGenomes_bowtie2_indexes/Homo_sapiens/UCSC/hg19/Sequ
ence/Bowtie2Index/genome.fa	  \ 
-‐p	  4	  -‐-‐max-‐bundle-‐frags	  100000000	  -‐q	  -‐o	  ./path/to/folder	  -‐-‐no-‐update-‐check	  \ 
-‐G	  
/home/hlwright/volatile/Homo_sapiens/UCSC/hg19/Annotation/Genes/genes.gtf	  
\ 
$1	  \ 
	  
Fig	  A.1	  Example	  of	  command	  script	  for	  use	  on	  HPC.	  Script	  shows	  commands	  for	  
running	  cufflinks	  to	  annotate	  a	  .bam	  file	  using	  a	  reference	  genome	  (.fa)	  and	  
transcriptome	  (.gtf).	   	  
	  
	  
	  
	  
	  
	  

	  

	  
Fig	  A.2	  Example	  of	  Agilent	  Bioanalyser	  output	  data.	  Figure	  shows	  two	  examples	  of	  RIN	  
results.	  (Left)	  Example	  of	  RNA	  with	  poor	  integrity	  (RIN	  =	  2.9).	  (Right)	  example	  of	  RNA	  
with	  high	  integrity	  (RIN	  =	  8.3).	  Major	  peaks	  in	  high-‐integrity	  sample	  relate	  to	  16S	  and	  
28S	   ribosomal	   RNA	   population.	   Integrity	   is	   calculated	   based	   on	   the	   ration	   between	  
both	  peaks.	  
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Table	  A.3	  Table	  listing	  the	  details	  of	  blood	  donors	  and	  method	  of	  neutrophil	  isolation	  
Polymorphprep™	  (P),	  	  magnetic	  bead	  isolation	  (B).	  
 
Donor	  
No.	  

Age	  
(approx.)	  

Sex	   Date	  of	  
donation/sample	  
preparation	  

Neutrophil	  
isolation	  method	  

	  
1	   25-‐35	   M	   31-‐1-‐11	  

10-‐12-‐12	  
28-‐8-‐13	  

P	  
P	  
P/B	  

2	   55-‐65	   M	   30-‐4-‐12	   P	  
3	   25-‐35	   F	   22-‐1-‐13	   P/B	  
4	   25-‐35	   F	   28-‐1-‐13	   P	  
5	   45-‐55	   M	   21-‐8-‐13	   P	  
6	   25-‐35	   F	   17-‐9-‐13	   P	  

	  
	  
 

 

 

Table	  A.4	  Table	  details	   the	  RNA	   integrity	  and	  concentration	   for	   samples	  analysed	  by	  
RNA-‐Seq.	   Table	   also	   lists	   the	   number	   of	   raw	   reads	   produced	   per	   sample	   during	  
sequencing.	  All	  samples	  sequenced	  by	  SOLiD	  platform	  (50	  +	  35	  bp	  paired-‐end	  reads). 
	  

Donor	   Sample	  
name	  

No.	  of	  raw	  
reads	  

No.	  of	  raw	  
reads	  

(reverse)	  
RIN	   RNA	  

(ng/mL)	  

TBH	  
Untreated	   127885988	   127885989	   8.2	   95	  
TNFα	   69005645	   69005646	   7.0	   134	  
GM-‐CSF	   75544747	   75544748	   7.5	   164	  
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Table	   A.5	   Table	   details	   the	   RNA	   integrity	   and	   concentration	   for	   each	   RNA	   sample	  
analysed	  by	  RNA-‐Seq.	  Table	  also	  lists	  the	  number	  of	  reads	  produced	  per	  sample	  during	  
sequencing.	  All	  samples	  sequenced	  by	  Illumina	  platform	  (50	  bp	  single-‐end	  reads).	  
 

Donor	   Sample	  name	   No.	  of	  raw	  reads	   RNA	  Integrity	  
number	  (RIN)	  

RNA	  	  
(ng/mL)	  

TBH	  
UT	   66,552,453	   7.3	   218	  

GM-‐CSF	   64,445,900	   8.4	   188	  
TNFα	   65,625,666	   8.8	   196	  

EWS	  

UT	   50,794,935	   7.6	   64	  
GM	   48,015,235	   6.9	   82	  
TNFα	   47,326,637	   4.1	   37	  
IFNγ	   48,514,806	   6.6	   84	  
IL-‐1B	   50,565,105	   6.0	   86	  
0h	   48,110,305	   6.4	   76	  

G-‐CSF	   47,994,097	   7.3	   60	  

MB	  

GM-‐CSF+TNFα	   54,548,520	   7.5	   144	  
IL-‐8	   58,462,542	   8.0	   126	  

UT-‐Poly	   46,444,696	   8.1	   124	  
GM-‐Poly	   49,516,666	   8.0	   137	  
TNF-‐Poly	   56,689,600	   7.8	   140	  
UT-‐Bead	   59,067,617	   7.2	   84	  
GM-‐Bead	   61,595,651	   7.0	   117	  
TNF-‐Bead	   49,785,361	   6.4	   88	  

TBH	  

UT-‐Poly	   43,862,843	   7.7	   44	  
GM-‐Poly	   44,465,453	   8.6	   46	  
TNF-‐Poly	   44,391,372	   7.4	   36	  
UT-‐Bead	   42,044,643	   8.2	   40	  
GM-‐Bead	   43,095,188	   8.6	   27	  
TNF-‐Bead	   42,044,643	   8.2	   42	  

WN	   IFNα	   63,186,628	   8.1	   90	  

CA	  

UT	   69,311,246	   5.7	   59	  
IFNγ	   75,916,629	   6.6	   66	  
IL-‐1B	   79,791,533	   7.3	   74	  
G-‐CSF	   74,729,800	   6.9	   75	  
IL-‐8	   69,593,692	   6.9	   38	  

GM-‐CSF+TNFα	   72,530,839	   7.0	   58	  

TS	  

UT	   72,168,424	   7.5	   131	  
IFNγ	   65,554,973	   7.7	   121	  
IL-‐1B	   121,354,425	   7.4	   142	  
G-‐CSF	   72,434,747	   6.9	   98	  
IL-‐8	   98,504,872	   7.1	   135	  

GM-‐CSF+TNFα	   72,530,839	   7.1	   102	  



299	  
	  

	  
	  
Fig	  A.3	  PCR	  gel	  of	  neutrophil	  cDNA	  products	   following	  amplification	  with	  Mcl-‐1	  
primers,	   samples	   isolated	   using	   either	   TRIzol®	  method	   or	   RNeasy	   kit	   with	   or	  
without	   additional	   DNA	   digestion	   step.	   Mcl-‐1	   band	   highlighted	   by	   red	   arrows,	  
lane	  numbers	  highlighted	  in	  red.	  
	  
Loading	  legend:	  

1. 0h	  Trizol	  
2. 0h	  RNeasy	  
3. 2h	  UT	   	   	   RNeasy	  
4. 2h	  TNF	  
5. 2h	  GM-‐CSF	  
6. 0h	  Trizol	  -‐	  Undigested	  
7. 0h	  RNeasy	  
8. 2h	  UT	   	   	   RNeasy	  (undigested)	  
9. 2h	  TNF	  
10. 2h	  GM-‐CSF	  
11. Negative	  control	  (H2O)	  
12. Positive	  control	  (K562	  -‐	  CML	  cell	  line)	  
13. Genomic	  DNA	  control	  (HeLa	  cell	  line) 

	  
	  
Table	  A.6	  List	  of	  44	  GO-‐terms	  significantly	  enriched	  by	  genes	  which	  are	  DE	  between	  
GM-‐CSF	   and	   TNFα	   treated	   neutrophils.	   GO-‐terms	   relating	   to	   cell	   death	   and/or	  
apoptosis	   are	   shown	   in	   bold.	   Significance	   (q-‐value)	   calculated	   using	   a	   5%	   false	  
discovery	  rate	  (FDR)	  
	  
GO	  Term	   GO	  Category	   No	  of	  

Genes	  
FDR	  

(q-‐value)	  
GO:0042981	   regulation	  of	  apoptosis	   58	   3.17E-‐06	  
GO:0043067	   regulation	  of	  programmed	  cell	  death	   58	   4.61E-‐06	  
GO:0010941	   regulation	  of	  cell	  death	   58	   5.21E-‐06	  
GO:0006952	   defense	  response	   52	   2.81E-‐07	  
GO:0006955	   immune	  response	   52	   1.51E-‐05	  
GO:0016265	   death	   51	   1.84E-‐04	  
GO:0010604	   positive	   regulation	   of	   macromolecule	  

metabolic	  process	  
51	   2.49E-‐02	  

GO:0009611	   response	  to	  wounding	   50	   1.43E-‐08	  
GO:0008219	   cell	  death	   50	   3.72E-‐04	  

1   2   3   4  5   6   7  8   9  10 11 12 13 
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GO:0031328	   positive	   regulation	   of	   cellular	   biosynthetic	  
process	  

49	   2.23E-‐04	  

GO:0009891	   positive	  regulation	  of	  biosynthetic	  process	   49	   3.48E-‐04	  
GO:0012501	   programmed	  cell	  death	   48	   1.78E-‐05	  
GO:0006915	   apoptosis	   47	   3.16E-‐05	  
GO:0051173	   positive	   regulation	   of	   nitrogen	   compound	  

metabolic	  process	  
46	   6.20E-‐04	  

GO:0010557	   positive	   regulation	   of	   macromolecule	  
biosynthetic	  process	  

46	   9.51E-‐04	  

GO:0006357	   regulation	   of	   transcription	   from	   RNA	  
polymerase	  II	  promoter	  

46	   1.58E-‐02	  

GO:0045935	   positive	   regulation	   of	   nucleobase,	  
nucleoside,	   nucleotide	   and	   nucleic	   acid	  
metabolic	  process	  

42	   9.88E-‐03	  

GO:0010628	   positive	  regulation	  of	  gene	  expression	   41	   4.15E-‐03	  
GO:0045941	   positive	  regulation	  of	  transcription	   40	   5.06E-‐03	  
GO:0006954	   inflammatory	  response	   39	   3.60E-‐09	  
GO:0019220	   regulation	  of	  phosphate	  metabolic	  process	   36	   6.54E-‐03	  
GO:0051174	   regulation	  of	  phosphorus	  metabolic	  process	   36	   6.54E-‐03	  
GO:0007243	   protein	  kinase	  cascade	   35	   3.18E-‐05	  
GO:0042325	   regulation	  of	  phosphorylation	   35	   7.09E-‐03	  
GO:0045893	   positive	   regulation	   of	   transcription,	   DNA-‐

dependent	  
34	   2.99E-‐02	  

GO:0051254	   positive	   regulation	   of	   RNA	   metabolic	  
process	  

34	   3.63E-‐02	  

GO:0043066	   negative	  regulation	  of	  apoptosis	   32	   4.10E-‐04	  
GO:0043069	   negative	   regulation	   of	   programmed	   cell	  

death	  
32	   5.58E-‐04	  

GO:0060548	   negative	  regulation	  of	  cell	  death	   32	   5.94E-‐04	  
GO:0001775	   cell	  activation	   30	   4.67E-‐05	  
GO:0045321	   leukocyte	  activation	   29	   4.09E-‐06	  
GO:0001817	   regulation	  of	  cytokine	  production	   24	   1.92E-‐05	  
GO:0046649	   lymphocyte	  activation	   23	   4.93E-‐04	  
GO:0006916	   anti-‐apoptosis	   22	   3.49E-‐03	  
GO:0001819	   positive	  regulation	  of	  cytokine	  production	   15	   1.26E-‐03	  
GO:0050867	   positive	  regulation	  of	  cell	  activation	   15	   1.62E-‐02	  
GO:0032496	   response	  to	  lipopolysaccharide	   14	   1.20E-‐03	  
GO:0002237	   response	  to	  molecule	  of	  bacterial	  origin	   14	   4.41E-‐03	  
GO:0002696	   positive	  regulation	  of	  leukocyte	  activation	   14	   4.57E-‐02	  
GO:0031349	   positive	  regulation	  of	  defence	  response	   12	   2.70E-‐02	  
GO:0051100	   negative	  regulation	  of	  binding	   11	   2.27E-‐02	  
GO:0043433	   negative	   regulation	   of	   transcription	   factor	  

activity	  
10	   1.52E-‐02	  

GO:0043392	   negative	  regulation	  of	  DNA	  binding	   10	   4.41E-‐02	  
GO:0032675	   regulation	  of	  interleukin-‐6	  production	   9	   2.13E-‐02	  
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Table	   A.7	   Gene	   expression	   values	   (RPKM)	   for	   25	   cytokines/chemokines	   genes	  
differentially	   expressed	   by	   neutrophils	   following	   treatment	   with	   a	   range	   of	  
cytokines/chemokines,	  for	  heatmap	  of	  values	  see	  Fig	  5.8.	  
	  

Gene	  
name	  

UT	   GM-‐CSF	   TNFα	   GM+TNF	   IFNg	   G-‐CSF	   IL-‐1B	   IL-‐8	   IL-‐6	  

Bmp6	   2.76	   3.70	   3.08	   2.57	   2.07	   2.03	   1.99	   3.21	   2.55	  

Ccl20	   0.17	   0.27	   12.85	   28.68	   0.11	   0.33	   1.14	   0.32	   0.42	  

CcL3	   4.53	   13.98	   206.16	   113.53	   2.88	   4.04	   41.54	   2.25	   7.73	  

Ccl4	   33.23	   38.86	   1858.67	   980.83	   21.61	   22.41	   281.55	   17.10	   30.56	  

Ccl5	   14.30	   8.58	   8.50	   10.50	   19.06	   16.98	   18.56	   9.98	   17.11	  

Cxcl1	   243.48	   1869.48	   639.56	   2804.08	   130.20	   273.83	   660.67	   288.21	   289.16	  

Cxcl14	   1.86	   2.80	   1.92	   2.74	   1.85	   2.18	   2.15	   1.85	   3.26	  

Cxcl2	   9.92	   69.82	   52.27	   155.76	   6.19	   12.83	   40.53	   13.36	   13.88	  

Cxcl3	   0.73	   2.77	   4.71	   10.73	   0.31	   1.05	   2.30	   1.16	   0.51	  

Cxcl6	   3.97	   2.53	   2.86	   1.55	   2.07	   4.37	   4.74	   2.58	   4.96	  

Cxcl9	   0.00	   0.00	   0.00	   0.00	   2.84	   0.02	   0.00	   0.01	   0.00	  

Il1a	   0.83	   50.49	   56.14	   652.64	   1.57	   3.16	   4.18	   3.18	   0.30	  

Il1b	   369.34	   6410.42	   3614.27	   17674.90	   864.85	   1071.83	   890.18	   1103.73	   302.74	  

IL1RN	   81.50	   1106.43	   2599.95	   7499.70	   191.37	   716.42	   153.22	   82.04	   109.22	  

Il8	   2362.95	   12539.90	   6327.35	   17734.70	   840.31	   961.66	   4031.00	   3964.57	   1905.32	  

Lif	   0.98	   0.23	   1.02	   1.69	   0.41	   0.59	   1.27	   3.25	   1.76	  

Ltb	   108.54	   99.99	   136.69	   79.53	   118.20	   106.45	   141.29	   83.71	   155.54	  

Osm	   104.43	   1120.90	   135.06	   1612.75	   94.93	   163.21	   157.90	   238.22	   167.48	  

Pf4	   1.04	   2.24	   0.86	   0.80	   0.81	   0.91	   1.41	   0.68	   0.98	  

Prmt2	   14.85	   13.26	   13.20	   9.54	   16.11	   17.17	   15.41	   13.09	   14.34	  

Tnfsf10	   51.59	   73.52	   37.17	   34.56	   126.96	   80.16	   47.41	   47.40	   51.52	  

Tnfsf12	   12.76	   9.87	   9.91	   7.42	   16.60	   15.02	   16.13	   11.00	   17.30	  

Tnfsf14	   76.46	   33.72	   62.24	   14.49	   20.78	   22.77	   61.56	   81.74	   65.29	  

Tnfsf15	   0.96	   4.18	   0.74	   3.31	   0.38	   4.37	   1.54	   1.36	   0.55	  

Tnfsf8	   9.08	   20.46	   7.17	   10.85	   6.03	   7.01	   8.71	   12.48	   5.73	  
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Fig	  A.4	  Example	  of	  flow	  cytometry	  gating	  on	  forward-‐scatter	  (x-‐axis)	  	  and	  side-‐scatter	  
(y-‐axis)	   ,	   used	   to	   filter	   out	   non-‐granulocyte	   cells	   and	   cellular	   debris	   from	   further	  
analysis.	  
 

 

 
Fig	   A.5	   Neutrophils	   apoptosis	   following	   overnight	   	   (18	   h)	   incubations	   with	   either	   5	  
ng/mL	  GM-‐CSF	   (GM)	   (grey	  bars),	   10	  ng/mL	  TNFα	   (TNF)	   (checkered	  bars)	  or	   remained	  
untreated	   (UT)	   (white	   bars).	   Neutrophils	   were	   isolated	   by	   either	   Polymorphprep™	  
(Poly),	  magnetic	  bead	  preparation	  (Beads)	  or	  magnetic	  bead	  preparation	  followed	  by	  
a	  30	  min	  centrifuge	  on	  Polymorphprep™	  (Bead	  +	  Poly).	  Levels	  of	  neutrophil	  apoptosis	  
were	  measured	  by	  annexin	  V,	  propridium	  iodide	  staining.	  	  
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Table	  A.8	  List	  of	  data	  sets	  used	  in	  Cuffdiff	  comparisons	  in	  Chapter	  6.	  

Figure/table	  of	  
reference	  

Sample	  list	  1	   Sample	  list	  2	  

Table	  6.3	  

UT-‐poly-‐donor-‐1	  
GM-‐poly-‐donor-‐1	  
TNF-‐poly-‐donor-‐1	  
UT-‐poly-‐donor-‐2	  
GM-‐poly-‐donor-‐2	  
TNF-‐poly-‐donor-‐2	  

UT-‐beads-‐donor-‐1	  
GM-‐beads-‐donor-‐1	  
TNF-‐beads-‐donor-‐1	  
UT-‐beads-‐donor-‐2	  
GM-‐beads-‐donor-‐2	  
TNF-‐beads-‐donor-‐2	  

Fig	  6.11	  

UT-‐poly-‐donor-‐1	  
UT-‐poly-‐donor-‐2	  

	  
GM-‐poly-‐donor-‐1	  
GM-‐poly-‐donor-‐2	  

	  
TNF-‐poly-‐donor-‐1	  
TNF-‐poly-‐donor-‐2	  

UT-‐beads-‐donor-‐1	  
UT-‐beads-‐donor-‐2	  

	  
GM-‐beads-‐donor-‐1	  
GM-‐beads-‐donor-‐2	  

	  
TNF-‐beads-‐donor-‐1	  
TNF-‐beads-‐donor-‐2	  

Table	  6.4	  
UT-‐poly-‐donor-‐1	  
GM-‐poly-‐donor-‐1	  
TNF-‐poly-‐donor-‐1	  

UT-‐beads-‐donor-‐1	  
GM-‐beads-‐donor-‐1	  
TNF-‐beads-‐donor-‐1	  

Table	  6.5	  
UT-‐poly-‐donor-‐2	  
GM-‐poly-‐donor-‐2	  
TNF-‐poly-‐donor-‐2	  

UT-‐beads-‐donor-‐2	  
GM-‐beads-‐donor-‐2	  
TNF-‐beads-‐donor-‐2	  

Table	  6.6	  

UT-‐poly-‐donor-‐1	  
GM-‐poly-‐donor-‐1	  
TNF-‐poly-‐donor-‐1	  

UT-‐poly-‐donor-‐2	  
GM-‐poly-‐donor-‐2	  
TNF-‐poly-‐donor-‐2	  

UT-‐beads-‐donor-‐1	  
GM-‐beads-‐donor-‐1	  
TNF-‐beads-‐donor-‐1	  

UT-‐beads-‐donor-‐2	  
GM-‐beads-‐donor-‐2	  
TNF-‐beads-‐donor-‐2	  

	  

	  
Table	  A.9	  Poly	  vs	  beads	  in	  both	  donors.	  Number	  of	  significant	  genes	  in	  samples	  from	  
each	  isolation	  method.	  
 
	   Donor	  1	   Donor	  2	  

Number	  of	  gene	  significantly	  
differentially	  expressed	  

63	   282	  

Number	  of	  significant	  genes	  with	  
higher	  RPKM	  	  in	  Polymorphprep™	  
samples	  

53	  	  

(84.1%)	  

190	  

(67.3%)	  

Number	  of	  significant	  genes	  with	  
higher	  RPKM	  	  in	  Bead	  	  samples	  

10	  (15.9%)	   92	  (32.7%)	  
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Table	   A.10	   List	   of	   genes	   significantly	   regulated	   between	   isolation	   methods	   in	  
neutrophils	   from	   Donor	   2	   (high	   contamination).	   Table	   shows	   all	   92	   genes	   with	   a	  
significantly	  higher	  RPKM	  values	  in	  neutrophils	  isolated	  using	  magnetic	  bead	  (Beads)	  
than	   neutrophils	   isolated	   by	   Polymorphprep™	   (Poly)	   using	   sample	   from	   Donor	   2.	  
Significance	   (q-‐value)	   as	   calculated	   by	   Cuffdiff	   adjusted	   for	   5%	   false	   discovery	   rate	  
(FDR)	   by	   Benjamini-‐Hochberg	   correction	   for	   multiple-‐testing.	   N=3	   paired	   technical	  
replicates.	  
	  

Gene	  
Name	  

Poly	  
(RPKM)	  

Beads	  
(RPKM)	  

Fold	  
change	  
(log2)	   q-‐value	   ΔRPKM	  

DEFA1	   239.933	   1082.69	   2.174	   4.75E-‐02	   -‐842.757	  
LCN2	   89.952	   447.161	   2.314	   2.45E-‐02	   -‐357.209	  
CAMP	   32.519	   138.676	   2.092	   2.93E-‐02	   -‐106.157	  
BPI	   24.068	   117.488	   2.287	   2.05E-‐02	   -‐93.42	  

OLFM4	   16.438	   87.792	   2.417	   1.36E-‐02	   -‐71.354	  
CEACAM8	   12.433	   65.236	   2.391	   9.63E-‐03	   -‐52.803	  
DEFA4	   9.968	   57.406	   2.526	   1.26E-‐03	   -‐47.438	  
MS4A3	   8.837	   45.919	   2.377	   1.54E-‐02	   -‐37.081	  
MMP8	   9.436	   41.732	   2.145	   3.68E-‐02	   -‐32.297	  
AZU1	   7.485	   38.436	   2.36	   4.26E-‐03	   -‐30.951	  
ELANE	   5.851	   34.581	   2.563	   1.00E-‐03	   -‐28.731	  
RETN	   5.085	   28.648	   2.494	   5.32E-‐03	   -‐23.563	  

CEACAM6	   5.968	   25.207	   2.079	   2.95E-‐02	   -‐19.239	  
H1F0	   3.009	   21.615	   2.845	   2.19E-‐04	   -‐18.605	  

C13orf15	   5.171	   23.425	   2.18	   1.16E-‐02	   -‐18.254	  
CTSG	   2.296	   20.538	   3.161	   7.90E-‐06	   -‐18.242	  
PRTN3	   2.929	   19.16	   2.71	   2.88E-‐04	   -‐16.231	  
PNP	   2.584	   16.629	   2.686	   3.74E-‐02	   -‐14.045	  
GJB6	   1.717	   14.542	   3.082	   1.06E-‐03	   -‐12.825	  
MPO	   1.643	   12.589	   2.938	   7.69E-‐05	   -‐10.946	  
EHD4	   2.231	   11.691	   2.39	   5.17E-‐03	   -‐9.46	  
DEFA5	   1.824	   9.096	   2.318	   1.45E-‐02	   -‐7.271	  

HS3ST3B1	   0.901	   7.983	   3.148	   1.56E-‐03	   -‐7.082	  
SNAPC1	   2.382	   9.253	   1.958	   4.28E-‐02	   -‐6.871	  
RAB13	   2.113	   8.268	   1.968	   3.50E-‐02	   -‐6.155	  
PTGES	   0.828	   5.651	   2.772	   1.81E-‐02	   -‐4.824	  

C20orf27	   1.399	   6.109	   2.127	   1.45E-‐02	   -‐4.711	  
ZNF277	   1.57	   6.216	   1.985	   4.10E-‐02	   -‐4.646	  
BEX1	   0.947	   5.21	   2.459	   3.06E-‐03	   -‐4.262	  
RRM2	   1.113	   4.687	   2.074	   3.27E-‐02	   -‐3.573	  
CD177	   1.113	   4.621	   2.053	   3.12E-‐02	   -‐3.508	  
SEMA6B	   0.971	   4.275	   2.138	   3.33E-‐02	   -‐3.304	  

SERPINB10	   0.784	   4.077	   2.379	   4.53E-‐03	   -‐3.293	  
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CHIT1	   0.868	   4.034	   2.217	   2.93E-‐02	   -‐3.166	  
ABCA13	   0.776	   3.866	   2.317	   8.56E-‐03	   -‐3.09	  
PAPSS2	   0.647	   3.297	   2.349	   4.50E-‐03	   -‐2.65	  
SCD	   0.74	   3.174	   2.1	   1.63E-‐02	   -‐2.434	  
ETHE1	   0.563	   2.742	   2.284	   1.97E-‐02	   -‐2.179	  
PRRT4	   0.394	   2.567	   2.703	   1.60E-‐03	   -‐2.173	  

COL17A1	   0.485	   2.296	   2.242	   7.05E-‐03	   -‐1.81	  
MCM4	   0.351	   1.897	   2.434	   1.56E-‐03	   -‐1.546	  
CLEC11A	   0.299	   1.829	   2.613	   6.45E-‐03	   -‐1.53	  

LOC285758	   0.287	   1.738	   2.601	   4.85E-‐02	   -‐1.452	  
HS3ST3A1	   0.217	   1.639	   2.916	   1.21E-‐03	   -‐1.422	  
MKI67	   0.307	   1.661	   2.435	   3.81E-‐02	   -‐1.354	  
FSTL3	   0.301	   1.565	   2.376	   9.63E-‐03	   -‐1.264	  

C19orf77	   0.224	   1.356	   2.596	   1.71E-‐02	   -‐1.132	  
CDT1	   0.265	   1.394	   2.394	   5.20E-‐03	   -‐1.129	  
MTSS1	   0.24	   1.233	   2.363	   3.66E-‐03	   -‐0.993	  
MYBL2	   0.296	   1.288	   2.12	   1.68E-‐02	   -‐0.992	  

FAM108C1	   0.277	   1.202	   2.12	   2.93E-‐02	   -‐0.926	  
ZNF367	   0.257	   1.164	   2.178	   1.16E-‐02	   -‐0.907	  
ITGA9	   0.148	   1.052	   2.826	   5.75E-‐04	   -‐0.904	  
TPX2	   0.162	   0.992	   2.616	   1.28E-‐03	   -‐0.83	  
ANLN	   0.166	   0.992	   2.579	   1.90E-‐02	   -‐0.826	  

PCOLCE2	   0.16	   0.983	   2.622	   6.76E-‐03	   -‐0.823	  
TPSB2	   0.055	   0.878	   3.987	   1.43E-‐02	   -‐0.823	  

LOC200772	   0.023	   0.775	   5.055	   9.28E-‐04	   -‐0.752	  
STX1A	   0.07	   0.82	   3.548	   9.96E-‐04	   -‐0.75	  
KIF2C	   0.135	   0.846	   2.653	   2.84E-‐03	   -‐0.712	  
KIF11	   0.196	   0.872	   2.151	   1.26E-‐02	   -‐0.676	  
GJB2	   0.055	   0.713	   3.701	   5.65E-‐04	   -‐0.658	  
CDK1	   0.09	   0.749	   3.049	   1.45E-‐02	   -‐0.658	  

TCTEX1D1	   0.131	   0.776	   2.569	   1.09E-‐02	   -‐0.645	  
E2F8	   0.055	   0.672	   3.617	   8.91E-‐05	   -‐0.617	  
GLB1L	   0.15	   0.711	   2.246	   2.64E-‐02	   -‐0.561	  
SHB	   0.123	   0.678	   2.469	   4.17E-‐03	   -‐0.556	  
NEIL3	   0.085	   0.616	   2.85	   4.71E-‐03	   -‐0.53	  
CDC45	   0.093	   0.597	   2.677	   3.19E-‐02	   -‐0.503	  

LAPTM4B	   0.106	   0.608	   2.524	   2.33E-‐02	   -‐0.502	  
KCNH4	   0.021	   0.465	   4.489	   2.88E-‐03	   -‐0.445	  
BUB1B	   0.12	   0.54	   2.167	   4.50E-‐02	   -‐0.419	  
TRIM16	   0.063	   0.45	   2.831	   1.14E-‐02	   -‐0.387	  
NPR3	   0.022	   0.395	   4.189	   6.54E-‐05	   -‐0.373	  
CPXM1	   0.024	   0.372	   3.953	   2.86E-‐02	   -‐0.348	  
EXO1	   0.081	   0.426	   2.389	   3.50E-‐02	   -‐0.345	  
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C1orf106	   0.053	   0.373	   2.806	   3.29E-‐02	   -‐0.32	  
PROM1	   0.027	   0.318	   3.55	   1.97E-‐02	   -‐0.291	  
IQGAP3	   0.037	   0.319	   3.116	   7.68E-‐04	   -‐0.282	  
DEPTOR	   0.017	   0.275	   4.043	   2.48E-‐02	   -‐0.258	  
ASPM	   0.084	   0.332	   1.983	   2.93E-‐02	   -‐0.248	  
ZNF711	   0.024	   0.271	   3.496	   4.59E-‐03	   -‐0.247	  
CIT	   0.063	   0.282	   2.158	   2.37E-‐02	   -‐0.219	  

ZNF521	   0.015	   0.219	   3.902	   1.49E-‐03	   -‐0.204	  
MYOF	   0.047	   0.249	   2.413	   1.40E-‐02	   -‐0.202	  
DNAH10	   0.048	   0.248	   2.36	   5.32E-‐03	   -‐0.2	  
DIAPH3	   0.018	   0.217	   3.571	   2.60E-‐02	   -‐0.199	  
B4GALT6	   0.026	   0.212	   3.017	   1.53E-‐02	   -‐0.185	  
PRKG2	   0.011	   0.171	   3.967	   3.86E-‐02	   -‐0.16	  
KCNQ5	   0.03	   0.172	   2.505	   3.46E-‐02	   -‐0.142	  

KIAA1211	   0.011	   0.144	   3.689	   9.38E-‐03	   -‐0.133	  
HSPG2	   0.009	   0.12	   3.76	   8.21E-‐04	   -‐0.111	  

	  

 

 

 	  



307	  
	  

References	  
1.	   Ehrlich	  P,	  Lazarus	  A.	  Histology	  of	  the	  Blood.	  Normal	  and	  

Pathological.	  Cambridge,	  MA,	  Cambridge;	  1900.	  	  

2.	   Amulic	  B,	  Cazalet	  C,	  Hayes	  GL,	  Metzler	  KD,	  Zychlinsky	  A.	  Neutrophil	  
function:	  from	  mechanisms	  to	  disease.	  Annu.	  Rev.	  Immunol.	  
2012;30:459–89.	  	  

3.	   Wright	  HL,	  Moots	  RJ,	  Bucknall	  RC,	  Edwards	  SW.	  Neutrophil	  
function	  in	  inflammation	  and	  inflammatory	  diseases.	  Rheumatol.	  
2010;49(9):1618–1631.	  	  

4.	   Nathan	  C.	  Neutrophils	  and	  immunity:	  challenges	  and	  opportunities.	  
Nat.	  Rev.	  Immunol.	  2006;6(3):173–82.	  	  

5.	   Mantovani	  A,	  Cassatella	  M	  a,	  Costantini	  C,	  Jaillon	  S.	  Neutrophils	  in	  
the	  activation	  and	  regulation	  of	  innate	  and	  adaptive	  immunity.	  Nat	  
Rev	  Immunol.	  2011;11(8):519–531.	  	  

6.	   Cassatella	  MA.	  Neutrophil-‐derived	  proteins:	  selling	  cytokines	  by	  
the	  pound.	  Adv.	  Immunol.	  1999;73:369–509.	  	  

7.	   Fanger	  NA,	  Liu	  C,	  Guyre	  PM,	  Wardwell	  K,	  O’Neil	  J,	  Guo	  TL,	  Christian	  
TP,	  Mudzinski	  SP,	  Gosselin	  EJ.	  Activation	  of	  Human	  T	  Cells	  by	  Major	  
Histocompatability	  Complex	  Class	  II	  Expressing	  Neutrophils:	  
Proliferation	  in	  the	  Presence	  of	  Superantigen,	  But	  Not	  Tetanus	  
Toxoid.	  Blood.	  1997;89(11):4128–4135.	  	  

8.	   Cross	  A,	  Bakstad	  D,	  Allen	  JC,	  Thomas	  L,	  Moots	  RJ,	  Edwards	  SW.	  
Neutrophil	  gene	  expression	  in	  rheumatoid	  arthritis.	  
Pathophysiology.	  2005;12(3):191–202.	  	  

9.	   Hakkim	  A,	  Fürnrohr	  BG,	  Amann	  K,	  Laube	  B,	  Abed	  UA,	  Brinkmann	  V,	  
Herrmann	  M,	  Voll	  RE,	  Zychlinsky	  A.	  Impairment	  of	  neutrophil	  
extracellular	  trap	  degradation	  is	  associated	  with	  lupus	  nephritis.	  
Proc.	  Natl.	  Acad.	  Sci.	  U.	  S.	  A.	  2010;107:9813–9818.	  	  

10.	   Oudijk	  E-‐JD,	  Nijhuis	  EHJ,	  Zwank	  MD,	  van	  de	  Graaf	  E	  a,	  Mager	  HJ,	  
Coffer	  PJ,	  Lammers	  J-‐WJ,	  Koenderman	  L.	  Systemic	  inflammation	  in	  
COPD	  visualised	  by	  gene	  profiling	  in	  peripheral	  blood	  neutrophils.	  
Thorax.	  2005;60(7):538–44.	  	  

11.	   Baines	  KJ,	  Simpson	  JL,	  Bowden	  N	  a,	  Scott	  RJ,	  Gibson	  PG.	  
Differential	  gene	  expression	  and	  cytokine	  production	  from	  



308	  
	  

neutrophils	  in	  asthma	  phenotypes.	  Eur.	  Respir.	  J.	  	  Off.	  J.	  Eur.	  Soc.	  
Clin.	  Respir.	  Physiol.	  2010;35(3):522–31.	  	  

12.	   Bautista	  AP.	  Neutrophilic	  infiltration	  in	  alcoholic	  hepatitis.	  Alcohol.	  
2002;27(1):17–21.	  	  

13.	   Collins	  FS,	  Morgan	  M,	  Patrinos	  A.	  The	  Human	  Genome	  Project:	  
lessons	  from	  large-‐scale	  biology.	  Science.	  2003;300(5617):286–90.	  	  

14.	   Chen	  G,	  Zhuchenko	  O,	  Kuspa	  A.	  Immune-‐like	  phagocyte	  activity	  in	  
the	  social	  amoeba.	  Science.	  2007;317(5838):678–81.	  	  

15.	   Robert	  J,	  Ohta	  Y.	  Comparative	  and	  developmental	  study	  of	  the	  
immune	  system	  in	  Xenopus.	  Dev.	  Dyn.	  2009;238(6):1249–70.	  	  

16.	   ATHENS	  JW,	  HAAB	  OP,	  RAAB	  SO,	  MAUER	  AM,	  ASHENBRUCKER	  H,	  
CARTWRIGHT	  GE,	  WINTROBE	  MM.	  Leukokinetic	  studies.	  IV.	  The	  
total	  blood,	  circulating	  and	  marginal	  granulocyte	  pools	  and	  the	  
granulocyte	  turnover	  rate	  in	  normal	  subjects.	  J.	  Clin.	  Invest.	  
1961;40:989–95.	  	  

17.	   Martin	  C,	  Burdon	  PC.,	  Bridger	  G,	  Gutierrez-‐Ramos	  J-‐C,	  Williams	  TJ,	  
Rankin	  SM.	  Chemokines	  Acting	  via	  CXCR2	  and	  CXCR4	  Control	  the	  
Release	  of	  Neutrophils	  from	  the	  Bone	  Marrow	  and	  Their	  Return	  
following	  Senescence.	  Immunity.	  2003;19(4):583–593.	  	  

18.	   Borregaard	  N.	  Neutrophils,	  from	  marrow	  to	  microbes.	  Immunity.	  
2010;33(5):657–70.	  	  

19.	   Dahl	  R,	  Walsh	  JC,	  Lancki	  D,	  Laslo	  P,	  Iyer	  SR,	  Singh	  H,	  Simon	  MC.	  
Regulation	  of	  macrophage	  and	  neutrophil	  cell	  fates	  by	  the	  
PU.1:C/EBPalpha	  ratio	  and	  granulocyte	  colony-‐stimulating	  factor.	  
Nat.	  Immunol.	  2003;4(10):1029–36.	  	  

20.	   Faurschou	  M,	  S??rensen	  OE,	  Johnsen	  AH,	  Askaa	  J,	  Borregaard	  N.	  
Defensin-‐rich	  granules	  of	  human	  neutrophils:	  Characterization	  of	  
secretory	  properties.	  Biochim.	  Biophys.	  Acta	  -‐	  Mol.	  Cell	  Res.	  
2002;1591:29–35.	  	  

21.	   Rørvig	  S,	  Honore	  C,	  Larsson	  L-‐I,	  Ohlsson	  S,	  Pedersen	  CC,	  Jacobsen	  
LC,	  Cowland	  JB,	  Garred	  P,	  Borregaard	  N.	  Ficolin-‐1	  is	  present	  in	  a	  
highly	  mobilizable	  subset	  of	  human	  neutrophil	  granules	  and	  
associates	  with	  the	  cell	  surface	  after	  stimulation	  with	  fMLP.	  J.	  
Leukoc.	  Biol.	  2009;86:1439–1449.	  	  

22.	   Clemmensen	  SN,	  Udby	  L,	  Borregaard	  N.	  Subcellular	  fractionation	  
of	  human	  neutrophils	  and	  analysis	  of	  subcellular	  markers.	  Methods	  
Mol.	  Biol.	  2014;1124:53–76.	  	  



309	  
	  

23.	   Kolaczkowska	  E,	  Kubes	  P.	  Neutrophil	  recruitment	  and	  function	  in	  
health	  and	  inflammation.	  Nat.	  Rev.	  Immunol.	  2013;13(3):159–175.	  	  

24.	   Le	  Cabec	  V,	  Cowland	  JB,	  Calafat	  J,	  Borregaard	  N.	  Targeting	  of	  
proteins	  to	  granule	  subsets	  is	  determined	  by	  timing	  and	  not	  by	  
sorting:	  The	  specific	  granule	  protein	  NGAL	  is	  localized	  to	  azurophil	  
granules	  when	  expressed	  in	  HL-‐60	  cells.	  Proc.	  Natl.	  Acad.	  Sci.	  U.	  S.	  
A.	  1996;93(13):6454–7.	  	  

25.	   Ley	  K,	  Laudanna	  C,	  Cybulsky	  MI,	  Nourshargh	  S.	  Getting	  to	  the	  site	  
of	  inflammation:	  the	  leukocyte	  adhesion	  cascade	  updated.	  Nat.	  
Rev.	  Immunol.	  2007;7(9):678–89.	  	  

26.	   Muller	  W	  a.	  Getting	  leukocytes	  to	  the	  site	  of	  inflammation.	  Vet.	  
Pathol.	  2013;50(1):7–22.	  	  

27.	   Diamond	  MS,	  Staunton	  DE,	  de	  Fougerolles	  AR,	  Stacker	  SA,	  Garcia-‐
Aguilar	  J,	  Hibbs	  ML,	  Springer	  TA.	  ICAM-‐1	  (CD54):	  a	  counter-‐
receptor	  for	  Mac-‐1	  (CD11b/CD18).	  J.	  Cell	  Biol.	  1990;111:3129–3139.	  	  

28.	   Muller	  WA,	  Weigl	  SA,	  Deng	  X,	  Phillips	  DM.	  PECAM-‐1	  is	  required	  for	  
transendothelial	  migration	  of	  leukocytes.	  J.	  Exp.	  Med.	  
1993;178:449–460.	  	  

29.	   Khan	  AI,	  Kerfoot	  SM,	  Heit	  B,	  Liu	  L,	  Andonegui	  G,	  Ruffell	  B,	  Johnson	  
P,	  Kubes	  P.	  Role	  of	  CD44	  and	  hyaluronan	  in	  neutrophil	  recruitment.	  
J.	  Immunol.	  2004;173:7594–7601.	  	  

30.	   Cooper	  D,	  Lindberg	  FP,	  Gamble	  JR,	  Brown	  EJ,	  Vadas	  MA.	  
Transendothelial	  migration	  of	  neutrophils	  involves	  integrin-‐
associated	  protein	  (CD47).	  Proc.	  Natl.	  Acad.	  Sci.	  U.	  S.	  A.	  
1995;92:3978–3982.	  	  

31.	   Hallett	  MB,	  Lloyds	  D.	  Neutrophil	  priming:	  the	  cellular	  signals	  that	  
say	  “amber”	  but	  not	  “green”.	  Immunol.	  Today.	  1995;16(6):264–8.	  	  

32.	   Wright	  HL,	  Moots	  RJ,	  Edwards	  SW.	  The	  multifactorial	  role	  of	  
neutrophils	  in	  rheumatoid	  arthritis.	  Nat.	  Rev.	  Rheumatol.	  2014;	  	  

33.	   El-‐Benna	  J,	  Dang	  PM-‐C,	  Gougerot-‐Pocidalo	  M-‐A.	  Priming	  of	  the	  
neutrophil	  NADPH	  oxidase	  activation:	  role	  of	  p47phox	  
phosphorylation	  and	  NOX2	  mobilization	  to	  the	  plasma	  membrane.	  
Semin.	  Immunopathol.	  2008;30(3):279–89.	  	  

34.	   Kitchen	  E,	  Rossi	  a	  G,	  Condliffe	  a	  M,	  Haslett	  C,	  Chilvers	  ER.	  
Demonstration	  of	  reversible	  priming	  of	  human	  neutrophils	  using	  
platelet-‐activating	  factor.	  Blood.	  1996;88(11):4330–7.	  	  



310	  
	  

35.	   Tang	  D,	  Kang	  R,	  Coyne	  CB,	  Zeh	  HJ,	  Lotze	  MT.	  PAMPs	  and	  DAMPs:	  
signal	  0s	  that	  spur	  autophagy	  and	  immunity.	  Immunol.	  Rev.	  
2012;249(1):158–75.	  	  

36.	   Shields	  a	  M,	  Panayi	  GS,	  Corrigall	  VM.	  Resolution-‐associated	  
molecular	  patterns	  (RAMP):	  RAMParts	  defending	  immunological	  
homeostasis?	  Clin.	  Exp.	  Immunol.	  2011;165(3):292–300.	  	  

37.	   Quayle	  JA,	  Watson	  F,	  Bucknall	  RC,	  Edwards	  SW.	  Neutrophils	  from	  
the	  synovial	  fluid	  of	  patients	  with	  rheumatoid	  arthritis	  express	  the	  
high	  affinity	  immunoglobulin	  G	  receptor,	  Fc	  gamma	  RI	  (CD64):	  role	  
of	  immune	  complexes	  and	  cytokines	  in	  induction	  of	  receptor	  
expression.	  Immunology.	  1997;91(2):266–73.	  	  

38.	   García-‐García	  E,	  Rosales	  C.	  Signal	  transduction	  during	  Fc	  receptor-‐
mediated	  phagocytosis.	  J.	  Leukoc.	  Biol.	  2002;72(6):1092–108.	  	  

39.	   Nordenfelt	  P,	  Tapper	  H.	  Phagosome	  dynamics	  during	  phagocytosis	  
by	  neutrophils.	  J.	  Leukoc.	  Biol.	  2011;90(2):271–84.	  	  

40.	   Cross	  A,	  Bucknall	  RC,	  Cassatella	  MA,	  Edwards	  SW,	  Moots	  RJ.	  
Synovial	  fluid	  neutrophils	  transcribe	  and	  express	  class	  II	  major	  
histocompatibility	  complex	  molecules	  in	  rheumatoid	  arthritis.	  
Arthritis	  Rheum.	  2003;48(10):2796–2806.	  	  

41.	   Papayannopoulos	  V,	  Zychlinsky	  A.	  NETs:	  a	  new	  strategy	  for	  using	  
old	  weapons.	  Trends	  Immunol.	  2009;30(11):513–21.	  	  

42.	   Tillack	  K,	  Breiden	  P,	  Martin	  R,	  Sospedra	  M.	  T	  lymphocyte	  priming	  
by	  neutrophil	  extracellular	  traps	  links	  innate	  and	  adaptive	  immune	  
responses.	  J.	  Immunol.	  2012;188(7):3150–9.	  	  

43.	   Yousefi	  S,	  Mihalache	  C,	  Kozlowski	  E,	  Schmid	  I,	  Simon	  HU.	  Viable	  
neutrophils	  release	  mitochondrial	  DNA	  to	  form	  neutrophil	  
extracellular	  traps.	  Cell	  Death	  Differ.	  2009;16(11):1438–44.	  	  

44.	   Summary	  E.	  Neutrophils	  Activate	  Plasmacytoid	  Dendritic	  Cells	  by	  
Releasing	  Self-‐DNA	  −	  Peptide	  Complexes	  in	  Systemic	  Lupus	  
Erythematosus	  Roberto	  Lande	  et	  al	  .	  2011;19:	  	  

45.	   Wartha	  F,	  Beiter	  K,	  Albiger	  B,	  Fernebro	  J,	  Zychlinsky	  A,	  Normark	  S,	  
Henriques-‐Normark	  B.	  Capsule	  and	  D-‐alanylated	  lipoteichoic	  acids	  
protect	  Streptococcus	  pneumoniae	  against	  neutrophil	  
extracellular	  traps.	  Cell.	  Microbiol.	  2007;9(5):1162–71.	  	  

46.	   Sumby	  P,	  Barbian	  KD,	  Gardner	  DJ,	  Whitney	  AR,	  Welty	  DM,	  Long	  
RD,	  Bailey	  JR,	  Parnell	  MJ,	  Hoe	  NP,	  Adams	  GG,	  Deleo	  FR,	  Musser	  
JM.	  Extracellular	  deoxyribonuclease	  made	  by	  group	  A	  



311	  
	  

Streptococcus	  assists	  pathogenesis	  by	  enhancing	  evasion	  of	  the	  
innate	  immune	  response.	  Proc.	  Natl.	  Acad.	  Sci.	  U.	  S.	  A.	  
2005;102(5):1679–84.	  	  

47.	   Buchanan	  JT,	  Simpson	  AJ,	  Aziz	  RK,	  Liu	  GY,	  Kristian	  SA,	  Kotb	  M,	  
Feramisco	  J,	  Nizet	  V.	  DNase	  expression	  allows	  the	  pathogen	  group	  
A	  Streptococcus	  to	  escape	  killing	  in	  neutrophil	  extracellular	  traps.	  
Curr.	  Biol.	  2006;16(4):396–400.	  	  

48.	   Brinkmann	  V,	  Zychlinsky	  A.	  Neutrophil	  extracellular	  traps:	  is	  
immunity	  the	  second	  function	  of	  chromatin?	  J.	  Cell	  Biol.	  
2012;198(5):773–83.	  	  

49.	   Manzenreiter	  R,	  Kienberger	  F,	  Marcos	  V,	  Schilcher	  K,	  Krautgartner	  
WD,	  Obermayer	  A,	  Huml	  M,	  Stoiber	  W,	  Hector	  A,	  Griese	  M,	  Hannig	  
M,	  Studnicka	  M,	  Vitkov	  L,	  Hartl	  D.	  Ultrastructural	  characterization	  
of	  cystic	  fibrosis	  sputum	  using	  atomic	  force	  and	  scanning	  electron	  
microscopy.	  J.	  Cyst.	  Fibros.	  2012;11(2):84–92.	  	  

50.	   Vitkov	  L,	  Klappacher	  M,	  Hannig	  M,	  Krautgartner	  WD.	  Extracellular	  
neutrophil	  traps	  in	  periodontitis.	  J.	  Periodontal	  Res.	  
2009;44(5):664–72.	  	  

51.	   Gupta	  AK,	  Hasler	  P,	  Holzgreve	  W,	  Gebhardt	  S,	  Hahn	  S.	  Induction	  of	  
neutrophil	  extracellular	  DNA	  lattices	  by	  placental	  microparticles	  
and	  IL-‐8	  and	  their	  presence	  in	  preeclampsia.	  Hum.	  Immunol.	  
2005;66(11):1146–54.	  	  

52.	   Villanueva	  E,	  Yalavarthi	  S,	  Berthier	  CC,	  Hodgin	  JB,	  Khandpur	  R,	  Lin	  
AM,	  Rubin	  CJ,	  Zhao	  W,	  Olsen	  SH,	  Klinker	  M,	  Shealy	  D,	  Denny	  MF,	  
Plumas	  J,	  Chaperot	  L,	  Kretzler	  M,	  Bruce	  AT,	  Kaplan	  MJ.	  Netting	  
neutrophils	  induce	  endothelial	  damage,	  infiltrate	  tissues,	  and	  
expose	  immunostimulatory	  molecules	  in	  systemic	  lupus	  
erythematosus.	  J.	  Immunol.	  2011;187(1):538–52.	  	  

53.	   Garcia-‐Romo	  GS,	  Caielli	  S,	  Vega	  B,	  Connolly	  J,	  Allantaz	  F,	  Xu	  Z,	  
Punaro	  M,	  Baisch	  J,	  Guiducci	  C,	  Coffman	  RL,	  Barrat	  FJ,	  Banchereau	  
J,	  Pascual	  V.	  Netting	  neutrophils	  are	  major	  inducers	  of	  type	  I	  IFN	  
production	  in	  pediatric	  systemic	  lupus	  erythematosus.	  Sci.	  Transl.	  
Med.	  2011;3:73ra20.	  	  

54.	   Yu	  Y,	  Su	  K.	  Neutrophil	  Extracellular	  Traps	  and	  Systemic	  Lupus	  
Erythematosus.	  J.	  Clin.	  Cell.	  Immunol.	  2013;4:	  	  

55.	   Sur	  Chowdhury	  C,	  Giaglis	  S,	  Walker	  U	  a,	  Buser	  A,	  Hahn	  S,	  Hasler	  P.	  
Enhanced	  neutrophil	  extracellular	  trap	  generation	  in	  rheumatoid	  
arthritis:	  analysis	  of	  underlying	  signal	  transduction	  pathways	  and	  
potential	  diagnostic	  utility.	  Arthritis	  Res.	  Ther.	  2014;16(3):R122.	  	  



312	  
	  

56.	   Simon	  H-‐U.	  Neutrophil	  apoptosis	  pathways	  and	  their	  modifications	  
in	  inflammation.	  Immunol.	  Rev.	  2003;193:101–10.	  	  

57.	   Witko-‐Sarsat	  V,	  Pederzoli-‐Ribeil	  M,	  Hirsch	  E,	  Hirsh	  E,	  Sozzani	  S,	  
Cassatella	  M	  a.	  Regulating	  neutrophil	  apoptosis:	  new	  players	  enter	  
the	  game.	  Trends	  Immunol.	  2011;32(3):117–24.	  	  

58.	   Savill	  J,	  Dransfield	  I,	  Gregory	  C,	  Haslett	  C.	  A	  blast	  from	  the	  past:	  
clearance	  of	  apoptotic	  cells	  regulates	  immune	  responses.	  Nat.	  Rev.	  
Immunol.	  2002;2(12):965–75.	  	  

59.	   Kerr	  JF,	  Wyllie	  AH,	  Currie	  AR.	  Apoptosis:	  a	  basic	  biological	  
phenomenon	  with	  wide-‐ranging	  implications	  in	  tissue	  kinetics.	  Br	  J	  
Cancer.	  1972;26(4):239–257.	  	  

60.	   Akgul	  C,	  Moulding	  D	  a,	  Edwards	  SW.	  Molecular	  control	  of	  
neutrophil	  apoptosis.	  FEBS	  Lett.	  2001;487(3):318–22.	  	  

61.	   Takeda	  M,	  Yamagami	  K,	  Tanaka	  K.	  Role	  of	  Phosphatidylserine	  in	  
Phospholipid	  Flippase-‐Mediated	  Vesicle	  Transport	  in	  
Saccharomyces	  cerevisiae.	  Eukaryot.	  Cell.	  2014;13:363–75.	  	  

62.	   Verhoven	  B,	  Schlegel	  R	  a,	  Williamson	  P.	  Mechanisms	  of	  
phosphatidylserine	  exposure,	  a	  phagocyte	  recognition	  signal,	  on	  
apoptotic	  T	  lymphocytes.	  J.	  Exp.	  Med.	  1995;182(5):1597–601.	  	  

63.	   Fulda	  S,	  Debatin	  K-‐M.	  Extrinsic	  versus	  intrinsic	  apoptosis	  pathways	  
in	  anticancer	  chemotherapy.	  Oncogene.	  2006;25(34):4798–811.	  	  

64.	   Lavrik	  I,	  Golks	  A,	  Krammer	  PH.	  Death	  receptor	  signaling.	  J	  Cell	  Sci.	  
2005;118(Pt	  2):265–267.	  	  

65.	   Akgul	  C,	  Edwards	  SW.	  Regulation	  of	  neutrophil	  apoptosis	  via	  death	  
receptors.	  Cell.	  Mol.	  Life	  Sci.	  2003;60(11):2402–8.	  	  

66.	   Kischkel	  FC,	  Hellbardt	  S,	  Behrmann	  I,	  Germer	  M,	  Pawlita	  M,	  
Krammer	  PH,	  Peter	  ME.	  Cytotoxicity-‐dependent	  APO-‐1	  (Fas/CD95)-‐
associated	  proteins	  form	  a	  death-‐inducing	  signaling	  complex	  
(DISC)	  with	  the	  receptor.	  EMBO	  J.	  1995;14(22):5579–88.	  	  

67.	   Cairrao	  	  Domingos,	  Pedro	  M.,	  F.	  Apoptosis:	  Molecular	  Mechanisms.	  
Encycl.	  Life	  Sci.	  2010;	  	  

68.	   Esmann	  L,	  Idel	  C,	  Sarkar	  A,	  Hellberg	  L,	  Behnen	  M,	  Möller	  S,	  van	  
Zandbergen	  G,	  Klinger	  M,	  Köhl	  J,	  Bussmeyer	  U,	  Solbach	  W,	  Laskay	  
T.	  Phagocytosis	  of	  apoptotic	  cells	  by	  neutrophil	  granulocytes:	  
diminished	  proinflammatory	  neutrophil	  functions	  in	  the	  presence	  
of	  apoptotic	  cells.	  J.	  Immunol.	  2010;184(1):391–400.	  	  



313	  
	  

69.	   Perretti	  M,	  D’Acquisto	  F.	  Annexin	  A1	  and	  glucocorticoids	  as	  
effectors	  of	  the	  resolution	  of	  inflammation.	  Nat.	  Rev.	  Immunol.	  
2009;9(1):62–70.	  	  

70.	   Ravichandran	  KS.	  Find-‐me	  and	  eat-‐me	  signals	  in	  apoptotic	  cell	  
clearance:	  progress	  and	  conundrums.	  J.	  Exp.	  Med.	  
2010;207(9):1807–17.	  	  

71.	   Scannell	  M,	  Flanagan	  MB,	  deStefani	  A,	  Wynne	  KJ,	  Cagney	  G,	  
Godson	  C,	  Maderna	  P.	  Annexin-‐1	  and	  peptide	  derivatives	  are	  
released	  by	  apoptotic	  cells	  and	  stimulate	  phagocytosis	  of	  
apoptotic	  neutrophils	  by	  macrophages.	  J.	  Immunol.	  
2007;178(7):4595–605.	  	  

72.	   Dinauer	  MC.	  Disorders	  of	  neutrophil	  function:	  an	  overview.	  
Methods	  Mol.	  Biol.	  2007;412:489–504.	  	  

73.	   Bunting	  M,	  Harris	  ES,	  McIntyre	  TM,	  Prescott	  SM,	  Zimmerman	  GA.	  
Leukocyte	  adhesion	  deficiency	  syndromes:	  adhesion	  and	  tethering	  
defects	  involving	  beta	  2	  integrins	  and	  selectin	  ligands.	  Curr.	  Opin.	  
Hematol.	  2002;9:30–35.	  	  

74.	   Bogomolski-‐Yahalom	  V,	  Matzner	  Y.	  Disorders	  of	  neutrophil	  
function.	  Blood	  Rev.	  1995;412:	  	  

75.	   Condino-‐Neto	  A,	  Muscará	  MN,	  Grumach	  AS,	  Carneiro-‐Sampaio	  
MM,	  De	  Nucci	  G.	  Neutrophils	  and	  mononuclear	  cells	  from	  patients	  
with	  chronic	  granulomatous	  disease	  release	  nitric	  oxide.	  Br.	  J.	  Clin.	  
Pharmacol.	  1993;35(5):485–90.	  	  

76.	   Nauseef	  WM.	  Insights	  into	  myeloperoxidase	  biosynthesis	  from	  its	  
inherited	  deficiency.	  J.	  Mol.	  Med.	  1998;76:661–668.	  	  

77.	   Kaplan	  MJ.	  Neutrophils	  in	  the	  pathogenesis	  and	  manifestations	  of	  
SLE.	  Nat.	  Rev.	  Rheumatol.	  2011;7(12):691–9.	  	  

78.	   Neves	  FS,	  Carrasco	  S,	  Goldenstein-‐Schainberg	  C,	  Gonçalves	  CR,	  de	  
Mello	  SBV.	  Neutrophil	  hyperchemotaxis	  in	  Behçet’s	  disease:	  a	  
possible	  role	  for	  monocytes	  orchestrating	  bacterial-‐induced	  innate	  
immune	  responses.	  Clin.	  Rheumatol.	  2009;28(12):1403–10.	  	  

79.	   Hacbarth	  E,	  Kajdacsy-‐Balla	  a.	  Low	  density	  neutrophils	  in	  patients	  
with	  systemic	  lupus	  erythematosus,	  rheumatoid	  arthritis,	  and	  
acute	  rheumatic	  fever.	  Arthritis	  Rheum.	  1986;29(11):1334–42.	  	  

80.	   Cloke	  T,	  Munder	  M,	  Taylor	  G,	  Müller	  I,	  Kropf	  P.	  Characterization	  of	  
a	  novel	  population	  of	  low-‐density	  granulocytes	  associated	  with	  
disease	  severity	  in	  HIV-‐1	  infection.	  PLoS	  One.	  2012;7(11):e48939.	  	  



314	  
	  

81.	   Denny	  MF,	  Yalavarthi	  S,	  Zhao	  W,	  Thacker	  SG,	  Anderson	  M,	  Sandy	  
AR,	  McCune	  WJ,	  Kaplan	  MJ.	  A	  distinct	  subset	  of	  proinflammatory	  
neutrophils	  isolated	  from	  patients	  with	  systemic	  lupus	  
erythematosus	  induces	  vascular	  damage	  and	  synthesizes	  type	  I	  
IFNs.	  J.	  Immunol.	  2010;184(6):3284–97.	  	  

82.	   Maini	  RN,	  Taylor	  PC.	  Anti-‐cytokine	  therapy	  for	  rheumatoid	  arthritis.	  
Annu.	  Rev.	  Med.	  2000;51:207–29.	  	  

83.	   Calabrese	  LH,	  Rose-‐John	  S.	  IL-‐6	  biology:	  implications	  for	  clinical	  
targeting	  in	  rheumatic	  disease.	  Nat.	  Rev.	  Rheumatol.	  2014;2:	  	  

84.	   Nair	  JR,	  Edwards	  SW,	  Moots	  RJ.	  Mavrilimumab,	  a	  human	  
monoclonal	  GM-‐CSF	  receptor-‐α	  antibody	  for	  the	  management	  of	  
rheumatoid	  arthritis:	  a	  novel	  approach	  to	  therapy.	  Expert	  Opin.	  
Biol.	  Ther.	  2012;12(12):1661–8.	  	  

85.	   Deiß	  A,	  Brecht	  I,	  Haarmann	  A,	  Buttmann	  M.	  Treating	  multiple	  
sclerosis	  with	  monoclonal	  antibodies:	  a	  2013	  update.	  Expert	  Rev.	  
Neurother.	  2013;13(3):313–35.	  	  

86.	   So	  A,	  De	  Smedt	  T,	  Revaz	  S,	  Tschopp	  J.	  A	  pilot	  study	  of	  IL-‐1	  
inhibition	  by	  anakinra	  in	  acute	  gout.	  2007.	  	  

87.	   Zeft	  A,	  Hollister	  R,	  LaFleur	  B,	  Sampath	  P,	  Soep	  J,	  McNally	  B,	  Kunkel	  
G,	  Schlesinger	  M,	  Bohnsack	  J.	  Anakinra	  for	  systemic	  juvenile	  
arthritis:	  the	  Rocky	  Mountain	  experience.	  J.	  Clin.	  Rheumatol.	  
2009;15:161–164.	  	  

88.	   Fitzgerald	  AA,	  Leclercq	  SA,	  Yan	  A,	  Homik	  JE,	  Dinarello	  CA.	  Rapid	  
responses	  to	  anakinra	  in	  patients	  with	  refractory	  adult-‐onset	  Still’s	  
disease.	  Arthritis	  Rheum.	  2005;52(6):1794–803.	  	  

89.	   Perrier	  C,	  Rutgeerts	  P.	  Cytokine	  blockade	  in	  inflammatory	  bowel	  
diseases.	  Immunotherapy.	  2011;3(11):1341–52.	  	  

90.	   Tobin	  A-‐M,	  Kirby	  B.	  TNF	  alpha	  inhibitors	  in	  the	  treatment	  of	  
psoriasis	  and	  psoriatic	  arthritis.	  BioDrugs.	  2005;19(1):47–57.	  	  

91.	   Samaan	  MA,	  Bagi	  P,	  Vande	  Casteele	  N,	  D’Haens	  GR,	  Levesque	  BG.	  
An	  Update	  on	  Anti-‐TNF	  Agents	  in	  Ulcerative	  Colitis.	  Gastroenterol.	  
Clin.	  North	  Am.	  2014;43(3):479–494.	  	  

92.	   Nanau	  RM,	  Neuman	  MG.	  Safety	  of	  anti-‐tumor	  necrosis	  factor	  
therapies	  in	  arthritis	  patients.	  J.	  Pharm.	  Pharm.	  Sci.	  2014;17(3):324–
61.	  	  

93.	   Mazumdar	  S,	  Greenwald	  D.	  Golimumab.	  2009;1(5):422–431.	  	  



315	  
	  

94.	   Sfikakis	  PP,	  Theodossiadis	  PG,	  Katsiari	  CG,	  Kaklamanis	  P,	  
Markomichelakis	  NN.	  Effect	  of	  infliximab	  on	  sight-‐threatening	  
panuveitis	  in	  Behçet’s	  disease.	  Lancet.	  2001;358(9278):295–6.	  	  

95.	   Reinisch	  W,	  De	  Villiers	  W,	  Bene	  L,	  Simon	  L,	  Rácz	  I,	  Katz	  S,	  Altorjay	  I,	  
Feagan	  B,	  Riff	  D,	  Bernstein	  CN,	  Hommes	  D,	  Rutgeerts	  P,	  Cortot	  A,	  
Gaspari	  M,	  Cheng	  M,	  Pearce	  T,	  Sands	  BE.	  Fontolizumab	  in	  
moderate	  to	  severe	  Crohn’s	  disease:	  A	  phase	  2,	  randomized,	  
double-‐blind,	  placebo-‐controlled,	  multiple-‐dose	  study.	  Inflamm.	  
Bowel	  Dis.	  2010;16:233–242.	  	  

96.	   Hueber	  W,	  Patel	  DD,	  Dryja	  T,	  Wright	  AM,	  Koroleva	  I,	  Bruin	  G,	  
Antoni	  C,	  Draelos	  Z,	  Gold	  MH,	  Durez	  P,	  Tak	  PP,	  Gomez-‐Reino	  JJ,	  
Foster	  CS,	  Kim	  RY,	  Samson	  CM,	  Falk	  NS,	  Chu	  DS,	  Callanan	  D,	  
Nguyen	  QD,	  Rose	  K,	  Haider	  A,	  Di	  Padova	  F.	  Effects	  of	  AIN457,	  a	  
fully	  human	  antibody	  to	  interleukin-‐17A,	  on	  psoriasis,	  rheumatoid	  
arthritis,	  and	  uveitis.	  Sci.	  Transl.	  Med.	  2010;2(52):52ra72.	  	  

97.	   Kobayashi	  SD,	  Deleo	  FR.	  Role	  of	  neutrophils	  in	  innate	  immunity  :	  a	  
systems	  biology-‐level	  approach.	  2009;(December):309–333.	  	  

98.	   Bettencourt-‐Dias	  M,	  Giet	  R,	  Sinka	  R,	  Mazumdar	  A,	  Lock	  WG,	  
Balloux	  F,	  Zafiropoulos	  PJ,	  Yamaguchi	  S,	  Winter	  S,	  Carthew	  RW,	  
Cooper	  M,	  Jones	  D,	  Frenz	  L,	  Glover	  DM.	  Genome-‐wide	  survey	  of	  
protein	  kinases	  required	  for	  cell	  cycle	  progression.	  Nature.	  
2004;432(7020):980–7.	  	  

99.	   Zaslaver	  A,	  Mayo	  AE,	  Rosenberg	  R,	  Bashkin	  P,	  Sberro	  H,	  Tsalyuk	  M,	  
Surette	  MG,	  Alon	  U.	  Just-‐in-‐time	  transcription	  program	  in	  
metabolic	  pathways.	  Nat.	  Genet.	  2004;36(5):486–91.	  	  

100.	   QMUL.	  Matura	  consortium	  -‐	  Press	  release	  
http://www.qmul.ac.uk/media/news/items/smd/87799.html.	  2012;	  	  

101.	   Gut	  IG.	  New	  sequencing	  technologies.	  Clin.	  Transl.	  Oncol.	  
2013;15(11):879–81.	  	  

102.	   Wang	  ET,	  Sandberg	  R,	  Luo	  S,	  Khrebtukova	  I,	  Zhang	  L,	  Mayr	  C,	  
Kingsmore	  SF,	  Schroth	  GP,	  Burge	  CB.	  Alternative	  isoform	  
regulation	  in	  human	  tissue	  transcriptomes.	  Nature.	  
2008;456(7221):470–6.	  	  

103.	   Sanger	  F,	  Nicklen	  S.	  DNA	  sequencing	  with	  chain-‐terminating.	  
1977;74(12):5463–5467.	  	  

104.	   Mardis	  ER.	  Next-‐generation	  sequencing	  platforms.	  Annu.	  Rev.	  Anal.	  
Chem.	  (Palo	  Alto.	  Calif).	  2013;6:287–303.	  	  



316	  
	  

105.	   Finishing	  the	  euchromatic	  sequence	  of	  the	  human	  genome.	  
Nature.	  2004;431(7011):931–45.	  	  

106.	   Velculescu	  VE,	  Zhang	  L,	  Vogelstein	  B,	  Kinzler	  KW.	  Serial	  analysis	  of	  
gene	  expression.	  Science	  (80-‐.	  ).	  1995;270(5235):484–487.	  	  

107.	   Wang	  Z,	  Gerstein	  M,	  Snyder	  M.	  RNA-‐Seq:	  a	  revolutionary	  tool	  for	  
transcriptomics.	  Nat.	  Rev.	  Genet.	  2009;10(1):57–63.	  	  

108.	   Augenlicht	  LH,	  Kobrin	  D.	  Cloning	  and	  screening	  of	  sequences	  
expressed	  in	  a	  mouse	  colon	  tumor.	  Cancer	  Res.	  1982;42(3):1088–
1093.	  	  

109.	   Hoheisel	  JD.	  Microarray	  technology:	  beyond	  transcript	  profiling	  
and	  genotype	  analysis.	  Nat.	  Rev.	  Genet.	  2006;7(3):200–10.	  	  

110.	   Allison	  DB,	  Cui	  X,	  Page	  GP,	  Sabripour	  M.	  Microarray	  data	  analysis:	  
from	  disarray	  to	  consolidation	  and	  consensus.	  Nat.	  Rev.	  Genet.	  
2006;7(1):55–65.	  	  

111.	   Aparicio	  O,	  Geisberg	  J	  V,	  Struhl	  K.	  Chromatin	  immunoprecipitation	  
for	  determining	  the	  association	  of	  proteins	  with	  specific	  genomic	  
sequences	  in	  vivo.	  Curr.	  Protoc.	  Cell	  Biol.	  2004;Chapter	  17:Unit	  17.7.	  	  

112.	   Chernov	  A	  V,	  Baranovskaya	  S,	  Golubkov	  VS,	  Wakeman	  DR,	  Snyder	  
EY,	  Williams	  R,	  Strongin	  AY.	  Microarray-‐based	  transcriptional	  and	  
epigenetic	  profiling	  of	  matrix	  metalloproteinases,	  collagens,	  and	  
related	  genes	  in	  cancer.	  J.	  Biol.	  Chem.	  2010;285(25):19647–59.	  	  

113.	   Yin	  JQ,	  Zhao	  RC,	  Morris	  K	  V.	  Profiling	  microRNA	  expression	  with	  
microarrays.	  Trends	  Biotechnol.	  2008;26(2):70–6.	  	  

114.	   Marioni	  JC,	  Mason	  CE,	  Mane	  SM,	  Stephens	  M,	  Gilad	  Y.	  RNA-‐seq:	  an	  
assessment	  of	  technical	  reproducibility	  and	  comparison	  with	  gene	  
expression	  arrays.	  Genome	  Res.	  2008;18(9):1509–17.	  	  

115.	   Gautier	  L,	  Cope	  L,	  Bolstad	  BM,	  Irizarry	  RA.	  Affy	  -‐	  Analysis	  of	  
Affymetrix	  GeneChip	  data	  at	  the	  probe	  level.	  Bioinformatics.	  
2004;20:307–315.	  	  

116.	   Mortazavi	  A,	  Williams	  BA,	  McCue	  K,	  Schaeffer	  L,	  Wold	  B.	  Mapping	  
and	  quantifying	  mammalian	  transcriptomes	  by	  RNA-‐Seq.	  Nat	  
Methods.	  2008;5(7):621–628.	  	  

117.	   Tang	  F,	  Barbacioru	  C,	  Wang	  Y,	  Nordman	  E,	  Lee	  C,	  Xu	  N,	  Wang	  X,	  
Bodeau	  J,	  Tuch	  BB,	  Siddiqui	  A,	  Lao	  K,	  Surani	  MA.	  mRNA-‐Seq	  whole-‐
transcriptome	  analysis	  of	  a	  single	  cell.	  Nat.	  Methods.	  
2009;6(5):377–82.	  	  



317	  
	  

118.	   Huang	  R,	  Jaritz	  M,	  Guenzl	  P,	  Vlatkovic	  I,	  Sommer	  A,	  Tamir	  IM,	  
Marks	  H,	  Klampfl	  T,	  Kralovics	  R,	  Stunnenberg	  HG,	  Barlow	  DP,	  
Pauler	  FM.	  An	  RNA-‐Seq	  strategy	  to	  detect	  the	  complete	  coding	  
and	  non-‐coding	  transcriptome	  including	  full-‐length	  imprinted	  
macro	  ncRNAs.	  PLoS	  One.	  2011;6(11):e27288.	  	  

119.	   Pan	  Q,	  Shai	  O,	  Lee	  LJ,	  Frey	  BJ,	  Blencowe	  BJ.	  Deep	  surveying	  of	  
alternative	  splicing	  complexity	  in	  the	  human	  transcriptome	  by	  
high-‐throughput	  sequencing.	  Nat.	  Genet.	  2008;40:1413–1415.	  	  

120.	   Degner	  JF,	  Marioni	  JC,	  Pai	  AA,	  Pickrell	  JK,	  Nkadori	  E,	  Gilad	  Y,	  
Pritchard	  JK.	  Effect	  of	  read-‐mapping	  biases	  on	  detecting	  allele-‐
specific	  expression	  from	  RNA-‐sequencing	  data.	  Bioinformatics.	  
2009;25:3207–3212.	  	  

121.	   Lodish	  H,	  Berk	  A,	  Zipursky	  SL,	  Matsudaira	  P,	  Baltimore	  D,	  Darnell	  J.	  
Processing	  of	  rRNA	  and	  tRNA.	  2000;	  	  

122.	   Christodoulou	  DC,	  Gorham	  JM,	  Herman	  DS,	  Seidman	  JG.	  
Construction	  of	  normalized	  RNA-‐seq	  libraries	  for	  next-‐generation	  
sequencing	  using	  the	  crab	  duplex-‐specific	  nuclease.	  Curr.	  Protoc.	  
Mol.	  Biol.	  2011;Chapter	  4:Unit4.12.	  	  

123.	   Brewer	  G,	  Ross	  J.	  Poly(A)	  shortening	  and	  degradation	  of	  the	  3’	  
A+U-‐rich	  sequences	  of	  human	  c-‐myc	  mRNA	  in	  a	  cell-‐free	  system.	  
Mol.	  Cell.	  Biol.	  1988;8(4):1697–708.	  	  

124.	   Zhao	  W,	  He	  X,	  Hoadley	  KA,	  Parker	  JS,	  Hayes	  DN,	  Perou	  CM.	  
Comparison	  of	  RNA-‐Seq	  by	  poly	  (A)	  capture,	  ribosomal	  RNA	  
depletion,	  and	  DNA	  microarray	  for	  expression	  profiling.	  BMC	  
Genomics.	  2014;15(1):419.	  	  

125.	   Siqueira	  JF,	  Fouad	  AF,	  Rôças	  IN.	  Pyrosequencing	  as	  a	  tool	  for	  
better	  understanding	  of	  human	  microbiomes.	  J.	  Oral	  Microbiol.	  
2012;4:	  	  

126.	   Imelfort	  M,	  Edwards	  D.	  De	  novo	  sequencing	  of	  plant	  genomes	  
using	  second-‐generation	  technologies.	  Brief.	  Bioinform.	  
2009;10(6):609–18.	  	  

127.	   Ronaghi	  M.	  DNA	  SEQUENCING:A	  Sequencing	  Method	  Based	  on	  
Real-‐Time	  Pyrophosphate.	  Science	  (80-‐.	  ).	  1998;281(5375):363–365.	  	  

128.	   Kircher	  M,	  Kelso	  J.	  High-‐throughput	  DNA	  sequencing-‐-‐concepts	  
and	  limitations.	  Bioessays.	  2010;32(6):524–36.	  	  

129.	   Fuller	  CW,	  Middendorf	  LR,	  Benner	  S	  a,	  Church	  GM,	  Harris	  T,	  Huang	  
X,	  Jovanovich	  SB,	  Nelson	  JR,	  Schloss	  J	  a,	  Schwartz	  DC,	  Vezenov	  D	  



318	  
	  

V.	  The	  challenges	  of	  sequencing	  by	  synthesis.	  Nat.	  Biotechnol.	  
2009;27(11):1013–23.	  	  

130.	   Luo	  C,	  Tsementzi	  D,	  Kyrpides	  N,	  Read	  T,	  Konstantinidis	  KT.	  Direct	  
comparisons	  of	  Illumina	  vs.	  Roche	  454	  sequencing	  technologies	  on	  
the	  same	  microbial	  community	  DNA	  sample.	  PLoS	  One.	  
2012;7(2):e30087.	  	  

131.	   Metzker	  ML.	  Sequencing	  technologies	  -‐	  the	  next	  generation.	  Nat.	  
Rev.	  Genet.	  2010;11(1):31–46.	  	  

132.	   Sasson	  A,	  Michael	  TP.	  Filtering	  error	  from	  SOLiD	  Output.	  
Bioinformatics.	  2010;26(6):849–50.	  	  

133.	   Ratan	  A,	  Miller	  W,	  Guillory	  J,	  Stinson	  J,	  Seshagiri	  S,	  Schuster	  SC.	  
Comparison	  of	  Sequencing	  Platforms	  for	  Single	  Nucleotide	  Variant	  
Calls	  in	  a	  Human	  Sample.	  PLoS	  One.	  2013;8(2):e55089.	  	  

134.	   Valouev	  A,	  Ichikawa	  J,	  Tonthat	  T,	  Stuart	  J,	  Ranade	  S,	  Peckham	  H,	  
Zeng	  K,	  Malek	  JA,	  Costa	  G,	  McKernan	  K,	  Sidow	  A,	  Fire	  A,	  Johnson	  
SM.	  A	  high-‐resolution,	  nucleosome	  position	  map	  of	  C.	  elegans	  
reveals	  a	  lack	  of	  universal	  sequence-‐dictated	  positioning.	  Genome	  
Res.	  2008;18(7):1051–63.	  	  

135.	   Applied	  Biosystems.	  Principles	  of	  Di-‐Base	  Sequencing	  and	  the	  
Advantages	  of	  Color	  Space	  Analysis	  in	  the	  SOLiD	  System.	  2009;2–5.	  	  

136.	   Hormozdiari	  F,	  Hach	  F,	  Sahinalp	  SC,	  Eichler	  EE,	  Alkan	  C.	  Sensitive	  
and	  fast	  mapping	  of	  di-‐base	  encoded	  reads.	  Bioinformatics.	  
2011;27(14):1915–21.	  	  

137.	   Smith	  AM,	  Heisler	  LE,	  St.Onge	  RP,	  Farias-‐Hesson	  E,	  Wallace	  IM,	  
Bodeau	  J,	  Harris	  AN,	  Perry	  KM,	  Giaever	  G,	  Pourmand	  N,	  Nislow	  C.	  
Highly-‐multiplexed	  barcode	  sequencing:	  An	  efficient	  method	  for	  
parallel	  analysis	  of	  pooled	  samples.	  Nucleic	  Acids	  Res.	  2010;38:	  	  

138.	   Rhee	  M,	  Burns	  M	  a.	  Nanopore	  sequencing	  technology:	  research	  
trends	  and	  applications.	  Trends	  Biotechnol.	  2006;24(12):580–6.	  	  

139.	   Rank	  D,	  Baybayan	  P,	  Bettman	  B,	  Bibillo	  A,	  Bjornson	  K,	  Chaudhuri	  B,	  
Christians	  F,	  Cicero	  R,	  Clark	  S,	  Dalal	  R,	  Dixon	  J,	  Foquet	  M,	  Gaertner	  
A,	  Hardenbol	  P,	  Heiner	  C,	  Hester	  K,	  Holden	  D,	  Kearns	  G,	  Kong	  X,	  
Kuse	  R,	  Lacroix	  Y,	  Lin	  S,	  Lundquist	  P,	  Ma	  C,	  Marks	  P,	  Maxham	  M,	  
Murphy	  D,	  Park	  I,	  Pham	  T,	  Phillips	  M,	  Roy	  J,	  Sebra	  R,	  Shen	  G,	  
Sorenson	  J,	  Tomaney	  A,	  Travers	  K,	  Trulson	  M,	  Vieceli	  J,	  Wegener	  J,	  
Wu	  D,	  Yang	  A,	  Zaccarin	  D,	  Zhao	  P,	  Zhong	  F,	  Korlach	  J,	  Turner	  S.	  
Single	  Polymerase	  Molecules.	  2009;(January):133–138.	  	  



319	  
	  

140.	   Hayden	  EC.	  Human	  genomes	  in	  minutes?	  Nat.	  News.	  2008;	  	  

141.	   McGettigan	  P	  a.	  Transcriptomics	  in	  the	  RNA-‐seq	  era.	  Curr.	  Opin.	  
Chem.	  Biol.	  2013;17(1):4–11.	  	  

142.	   Grabherr	  MG,	  Haas	  BJ,	  Yassour	  M,	  Levin	  JZ,	  Thompson	  DA,	  Amit	  I,	  
Adiconis	  X,	  Fan	  L,	  Raychowdhury	  R,	  Zeng	  Q,	  Chen	  Z,	  Mauceli	  E,	  
Hacohen	  N,	  Gnirke	  A,	  Rhind	  N,	  di	  Palma	  F,	  Birren	  BW,	  Nusbaum	  C,	  
Lindblad-‐Toh	  K,	  Friedman	  N,	  Regev	  A.	  Full-‐length	  transcriptome	  
assembly	  from	  RNA-‐Seq	  data	  without	  a	  reference	  genome.	  Nat.	  
Biotechnol.	  2011;29(7):644–52.	  	  

143.	   Robertson	  G,	  Schein	  J,	  Chiu	  R,	  Corbett	  R,	  Field	  M,	  Jackman	  SD,	  
Mungall	  K,	  Lee	  S,	  Okada	  HM,	  Qian	  JQ,	  Griffith	  M,	  Raymond	  A,	  
Thiessen	  N,	  Cezard	  T,	  Butterfield	  YS,	  Newsome	  R,	  Chan	  SK,	  She	  R,	  
Varhol	  R,	  Kamoh	  B,	  Prabhu	  A-‐L,	  Tam	  A,	  Zhao	  Y,	  Moore	  RA,	  Hirst	  M,	  
Marra	  MA,	  Jones	  SJM,	  Hoodless	  PA,	  Birol	  I.	  De	  novo	  assembly	  and	  
analysis	  of	  RNA-‐seq	  data.	  Nat.	  Methods.	  2010;7(11):909–12.	  	  

144.	   Martin	  J,	  Bruno	  VM,	  Fang	  Z,	  Meng	  X,	  Blow	  M,	  Zhang	  T,	  Sherlock	  G,	  
Snyder	  M,	  Wang	  Z.	  Rnnotator:	  an	  automated	  de	  novo	  
transcriptome	  assembly	  pipeline	  from	  stranded	  RNA-‐Seq	  reads.	  
BMC	  Genomics.	  2010;11:663.	  	  

145.	   Trapnell	  C,	  Williams	  BA,	  Pertea	  G,	  Mortazavi	  A,	  Kwan	  G,	  van	  Baren	  
MJ,	  Salzberg	  SL,	  Wold	  BJ,	  Pachter	  L.	  Transcript	  assembly	  and	  
quantification	  by	  RNA-‐Seq	  reveals	  unannotated	  transcripts	  and	  
isoform	  switching	  during	  cell	  differentiation.	  Nat	  Biotechnol.	  
2010;28(5):511–515.	  	  

146.	   Guttman	  M,	  Garber	  M,	  Levin	  JZ,	  Donaghey	  J,	  Robinson	  J,	  Adiconis	  
X,	  Fan	  L,	  Koziol	  MJ,	  Gnirke	  A,	  Nusbaum	  C,	  Rinn	  JL,	  Lander	  ES,	  
Regev	  A.	  Ab	  initio	  reconstruction	  of	  cell	  type-‐specific	  
transcriptomes	  in	  mouse	  reveals	  the	  conserved	  multi-‐exonic	  
structure	  of	  lincRNAs.	  Nat.	  Biotechnol.	  2010;28(5):503–10.	  	  

147.	   Martin	  J	  a,	  Wang	  Z.	  Next-‐generation	  transcriptome	  assembly.	  Nat.	  
Rev.	  Genet.	  2011;12(10):671–82.	  	  

148.	   Bao	  S,	  Jiang	  R,	  Kwan	  W,	  Wang	  B,	  Ma	  X,	  Song	  YQ.	  Evaluation	  of	  
next-‐generation	  sequencing	  software	  in	  mapping	  and	  assembly.	  J	  
Hum	  Genet.	  2011;	  	  

149.	   Oshlack	  A,	  Robinson	  MD,	  Young	  MD.	  From	  RNA-‐seq	  reads	  to	  
differential	  expression	  results.	  Genome	  Biol.	  2010;11(12):220.	  	  

150.	   Fleige	  S,	  Pfaffl	  MW.	  RNA	  integrity	  and	  the	  effect	  on	  the	  real-‐time	  
qRT-‐PCR	  performance.	  Mol.	  Aspects	  Med.	  2006;27(2-‐3):126–39.	  	  



320	  
	  

151.	   Langmead	  B,	  Trapnell	  C,	  Pop	  M,	  Salzberg	  SL.	  Ultrafast	  and	  
memory-‐efficient	  alignment	  of	  short	  DNA	  sequences	  to	  the	  human	  
genome.	  Genome	  Biol.	  2009;10(3):R25.	  	  

152.	   Li	  H,	  Durbin	  R.	  Fast	  and	  accurate	  short	  read	  alignment	  with	  
Burrows-‐Wheeler	  transform.	  Bioinformatics.	  2009;25:1754–1760.	  	  

153.	   Li	  R,	  Li	  Y,	  Kristiansen	  K,	  Wang	  J.	  SOAP:	  Short	  oligonucleotide	  
alignment	  program.	  Bioinformatics.	  2008;24:713–714.	  	  

154.	   Kent	  WJ.	  BLAT-‐-‐the	  BLAST-‐like	  alignment	  tool.	  Genome	  Res.	  
2002;12(4):656–64.	  	  

155.	   Trapnell	  C,	  Pachter	  L,	  Salzberg	  SL.	  TopHat:	  discovering	  splice	  
junctions	  with	  RNA-‐Seq.	  Bioinformatics.	  2009;25(9):1105–1111.	  	  

156.	   Wu	  TD,	  Nacu	  S.	  Fast	  and	  SNP-‐tolerant	  detection	  of	  complex	  
variants	  and	  splicing	  in	  short	  reads.	  Bioinformatics.	  2010;26(7):873–
81.	  	  

157.	   Au	  KF,	  Jiang	  H,	  Lin	  L,	  Xing	  Y,	  Wong	  WH.	  Detection	  of	  splice	  
junctions	  from	  paired-‐end	  RNA-‐seq	  data	  by	  SpliceMap.	  Nucleic	  
Acids	  Res.	  2010;38(14):4570–8.	  	  

158.	   Wang	  K,	  Singh	  D,	  Zeng	  Z,	  Coleman	  SJ,	  Huang	  Y,	  Savich	  GL,	  He	  X,	  
Mieczkowski	  P,	  Grimm	  SA,	  Perou	  CM,	  MacLeod	  JN,	  Chiang	  DY,	  
Prins	  JF,	  Liu	  J.	  MapSplice:	  accurate	  mapping	  of	  RNA-‐seq	  reads	  for	  
splice	  junction	  discovery.	  Nucleic	  Acids	  Res.	  2010;38(18):e178.	  	  

159.	   Robinson	  MD,	  McCarthy	  DJ,	  Smyth	  GK.	  edgeR:	  a	  Bioconductor	  
package	  for	  differential	  expression	  analysis	  of	  digital	  gene	  
expression	  data.	  Bioinformatics.	  2010;26:139–140.	  	  

160.	   Anders	  S,	  Huber	  W.	  Differential	  expression	  analysis	  for	  sequence	  
count	  data.	  Genome	  Biol.	  2010;11:R106.	  	  

161.	   Wang	  L,	  Feng	  Z,	  Wang	  X,	  Wang	  X,	  Zhang	  X.	  DEGseq:	  an	  R	  package	  
for	  identifying	  differentially	  expressed	  genes	  from	  RNA-‐seq	  data.	  
Bioinformatics.	  2010;26(1):136–8.	  	  

162.	   Young	  MD,	  Mccarthy	  DJ,	  Wakefi	  MJ,	  Smyth	  GK,	  Oshlack	  A,	  
Robinson	  MD.	  Bioinformatics	  for	  High	  Throughput	  Sequencing.	  
2012;	  	  

163.	   Fang	  Z,	  Cui	  X.	  Design	  and	  validation	  issues	  in	  RNA-‐seq	  experiments.	  
Br.	  Bioinform.	  2011;12(3):280–287.	  	  



321	  
	  

164.	   Benjamini	  Y,	  Hochberg	  Y.	  Controlling	  the	  False	  Discovery	  Rate:	  A	  
Practical	  and	  Powerful	  Approach	  to	  Multiple	  Testing.	  J.	  R.	  Stat.	  Soc.	  
Ser.	  B.	  1995;57(1):289–300.	  	  

165.	   Segal	  AW.	  How	  neutrophils	  kill	  microbes.	  Annu.	  Rev.	  Immunol.	  
2005;23:197–223.	  	  

166.	   Curtis	  AM,	  Bellet	  MM,	  Sassone-‐Corsi	  P,	  O’Neill	  L	  a	  J.	  Circadian	  Clock	  
Proteins	  and	  Immunity.	  Immunity.	  2014;40(2):178–186.	  	  

167.	   Pfaffl	  MW.	  A	  new	  mathematical	  model	  for	  relative	  quantification	  in	  
real-‐time	  RT-‐PCR.	  Nucleic	  Acids	  Res.	  2001;29(9):e45.	  	  

168.	   Trapnell	  C,	  Roberts	  A,	  Goff	  L,	  Pertea	  G,	  Kim	  D,	  Kelley	  DR,	  Pimentel	  
H,	  Salzberg	  SL,	  Rinn	  JL,	  Pachter	  L.	  Differential	  gene	  and	  transcript	  
expression	  analysis	  of	  RNA-‐seq	  experiments	  with	  TopHat	  and	  
Cufflinks.	  Nat.	  Protoc.	  2012;7(3):562–578.	  	  

169.	   Summers	  C,	  Rankin	  SM,	  Condliffe	  AM,	  Singh	  N,	  Peters	  a	  M,	  Chilvers	  
ER.	  Neutrophil	  kinetics	  in	  health	  and	  disease.	  Trends	  Immunol.	  
2010;31(8):318–24.	  	  

170.	   Fehniger	  TA,	  Wylie	  T,	  Germino	  E,	  Leong	  JW,	  Magrini	  VJ,	  Koul	  S,	  
Keppel	  CR,	  Schneider	  SE,	  Koboldt	  DC,	  Sullivan	  RP,	  Heinz	  ME,	  
Crosby	  SD,	  Nagarajan	  R,	  Ramsingh	  G,	  Link	  DC,	  Ley	  TJ,	  Mardis	  ER.	  
Next-‐generation	  sequencing	  identifies	  the	  natural	  killer	  cell	  
microRNA	  transcriptome.	  Genome	  Res.	  2010;20(11):1590–1604.	  	  

171.	   Cloonan	  N,	  Forrest	  ARR,	  Kolle	  G,	  Gardiner	  BBA,	  Faulkner	  GJ,	  Brown	  
MK,	  Taylor	  DF,	  Steptoe	  AL,	  Wani	  S,	  Bethel	  G,	  Robertson	  AJ,	  Perkins	  
AC,	  Bruce	  SJ,	  Lee	  CC,	  Ranade	  SS,	  Peckham	  HE,	  Manning	  JM,	  
Mckernan	  KJ,	  Grimmond	  SM.	  Stem	  cell	  transcriptome	  profiling	  via	  
massive-‐scale	  mRNA	  sequencing.	  2008;5(7):613–619.	  	  

172.	   Nagalakshmi	  U,	  Wang	  Z,	  Waern	  K,	  Shou	  C,	  Raha	  D,	  Gerstein	  M,	  
Snyder	  M.	  The	  transcriptional	  landscape	  of	  the	  yeast	  genome	  
defined	  by	  RNA	  sequencing.	  Science.	  2008;320(5881):1344–9.	  	  

173.	   Mardis	  ER.	  The	  impact	  of	  next-‐generation	  sequencing	  technology	  
on	  genetics.	  Trends	  Genet.	  2008;24(3):133–41.	  	  

174.	   Sboner	  A,	  Mu	  XJ,	  Greenbaum	  D,	  Auerbach	  RK,	  Gerstein	  MB.	  The	  
real	  cost	  of	  sequencing:	  higher	  than	  you	  think!	  Genome	  Biol.	  
2011;12(8):125.	  	  

175.	   Batley	  J,	  Edwards	  D.	  Genome	  sequence	  data:	  management,	  
storage,	  and	  visualization.	  Biotechniques.	  2009;46(5):333–4,	  336.	  	  



322	  
	  

176.	   Nekrutenko	  A,	  Taylor	  J.	  Next-‐generation	  sequencing	  data	  
interpretation:	  enhancing	  reproducibility	  and	  accessibility.	  Nat.	  
Rev.	  Genet.	  2012;13(9):667–72.	  	  

177.	   Degel	  J,	  Shokrani	  M.	  Validation	  of	  the	  efficacy	  of	  a	  practical	  
method	  for	  neutrophils	  isolation	  from	  peripheral	  blood.	  Clin.	  Lab.	  
Sci.	  2010;23(2):94–8.	  	  

178.	   Moulding	  DA,	  Akgul	  C,	  Derouet	  M,	  White	  MR,	  Edwards	  SW.	  BCL-‐2	  
family	  expression	  in	  human	  neutrophils	  during	  delayed	  and	  
accelerated	  apoptosis.	  J.	  Leukoc.	  Biol.	  2001;70(5):783–92.	  	  

179.	   Imbeaud	  S,	  Graudens	  E,	  Boulanger	  V,	  Barlet	  X,	  Zaborski	  P,	  Eveno	  E,	  
Mueller	  O,	  Schroeder	  A,	  Auffray	  C.	  Towards	  standardization	  of	  
RNA	  quality	  assessment	  using	  user-‐independent	  classifiers	  of	  
microcapillary	  electrophoresis	  traces.	  Nucleic	  Acids	  Res.	  
2005;33(6):e56.	  	  

180.	   Schroeder	  A,	  Mueller	  O,	  Stocker	  S,	  Salowsky	  R,	  Leiber	  M,	  
Gassmann	  M,	  Lightfoot	  S,	  Menzel	  W,	  Granzow	  M,	  Ragg	  T.	  The	  RIN:	  
an	  RNA	  integrity	  number	  for	  assigning	  integrity	  values	  to	  RNA	  
measurements.	  BMC	  Mol.	  Biol.	  2006;7:3.	  	  

181.	   Kobayashi	  SD,	  Voyich	  JM,	  Whitney	  AR,	  Deleo	  FR.	  Spontaneous	  
neutrophil	  apoptosis	  and	  regulation	  of	  cell	  survival	  by	  granulocyte	  
macrophage-‐colony	  stimulating	  factor	  Abstract  :	  
Polymorphonuclear	  leukocytes	  (	  PMNs.	  2005;	  	  

182.	   Cowburn	  AS,	  Summers	  C,	  Dunmore	  BJ,	  Farahi	  N,	  Hayhoe	  RP,	  Print	  
CG,	  Cook	  SJ,	  Chilvers	  ER.	  Granulocyte/macrophage	  colony-‐
stimulating	  factor	  causes	  a	  paradoxical	  increase	  in	  the	  BH3-‐only	  
pro-‐apoptotic	  protein	  Bim	  in	  human	  neutrophils.	  Am.	  J.	  Respir.	  Cell	  
Mol.	  Biol.	  2011;44(6):879–87.	  	  

183.	   Cross	  A,	  Moots	  RJ,	  Edwards	  SW.	  The	  dual	  effects	  of	  TNFalpha	  on	  
neutrophil	  apoptosis	  are	  mediated	  via	  differential	  effects	  on	  
expression	  of	  Mcl-‐1	  and	  Bfl-‐1.	  Blood.	  2008;111(2):878–84.	  	  

184.	   Fossati	  G,	  Mazzucchelli	  I,	  Gritti	  D,	  Ricevuti	  G,	  Edwards	  SW,	  
Moulding	  DA,	  Rossi	  ML.	  In	  vitro	  effects	  of	  GM-‐CSF	  on	  mature	  
peripheral	  blood	  neutrophils.	  Int.	  J.	  Mol.	  Med.	  1998;1(6):943–994.	  	  

185.	   Fernandez	  MC,	  Walters	  J,	  Marucha	  P.	  Transcriptional	  and	  post-‐
transcriptional	  regulation	  of	  GM-‐CSF-‐induced	  IL-‐1	  beta	  gene	  
expression	  in	  PMN.	  J.	  Leukoc.	  Biol.	  1996;59(4):598–603.	  	  

186.	   Fujishima	  S,	  Hoffman	  AR,	  Vu	  T,	  Kim	  KJ,	  Zheng	  H,	  Daniel	  D,	  Kim	  Y,	  
Wallace	  EF,	  Larrick	  JW,	  Raffin	  TA.	  Regulation	  of	  neutrophil	  



323	  
	  

interleukin	  8	  gene	  expression	  and	  protein	  secretion	  by	  LPS,	  TNF-‐
alpha,	  and	  IL-‐1	  beta.	  J.	  Cell.	  Physiol.	  1993;154(3):478–85.	  	  

187.	   Strieter	  RM,	  Kasahara	  K,	  Allen	  RM,	  Standiford	  TJ,	  Rolfe	  MW,	  
Becker	  FS,	  Chensue	  SW,	  Kunkel	  SL.	  Cytokine-‐induced	  neutrophil-‐
derived	  interleukin-‐8.	  Am.	  J.	  Pathol.	  1992;141(2):397–407.	  	  

188.	   Atta-‐ur-‐Rahman,	  Harvey	  K,	  Siddiqui	  RA.	  Interleukin-‐8:	  An	  autocrine	  
inflammatory	  mediator.	  Curr.	  Pharm.	  Des.	  1999;5(4):241–53.	  	  

189.	   Monteseirín	  J,	  Chacón	  P,	  Vega	  A,	  El	  Bekay	  R,	  Alvarez	  M,	  Alba	  G,	  
Conde	  M,	  Jiménez	  J,	  Asturias	  J	  a,	  Martínez	  A,	  Conde	  J,	  Pintado	  E,	  
Bedoya	  FJ,	  Sobrino	  F.	  Human	  neutrophils	  synthesize	  IL-‐8	  in	  an	  IgE-‐
mediated	  activation.	  J.	  Leukoc.	  Biol.	  2004;76(3):692–700.	  	  

190.	   Ewing	  B,	  Hillier	  L,	  Wendl	  MC,	  Green	  P.	  Base-‐Calling	  of	  Automated	  
Sequencer	  Traces	  Using	  Phred	  .	  I	  .	  Accuracy	  Assessment.	  1998;175–
185.	  	  

191.	   Ramos	  R.	  Quality	  Assessment	  -‐	  
www.sourceforge.net/projects/qualevaluato/.	  2013;	  	  

192.	   Cox	  AJ,	  Bauer	  MJ,	  Jakobi	  T,	  Rosone	  G.	  Large-‐scale	  compression	  of	  
genomic	  sequence	  databases	  with	  the	  Burrows-‐Wheeler	  
transform.	  Bioinformatics.	  2012;28(11):1415–9.	  	  

193.	   Picard	  -‐	  http://picard.sourceforge.net/.	  2014;	  	  

194.	   Andrews	  S.	  FastQC:	  A	  quality	  control	  tool	  for	  high	  throughput	  
sequence	  data.	  babraham	  Bioinforma.	  2010;1.	  	  

195.	   Simon	  P.	  Q-‐Gene:	  processing	  quantitative	  real-‐time	  RT-‐PCR	  data.	  
Bioinformatics.	  2003;19(11):1439–1440.	  	  

196.	   Zhang	  X,	  Ding	  L,	  Sandford	  AJ.	  Selection	  of	  reference	  genes	  for	  
gene	  expression	  studies	  in	  human	  neutrophils	  by	  real-‐time	  PCR.	  
BMC	  Mol.	  Biol.	  2005;6(1):4.	  	  

197.	   Ramsköld	  D,	  Wang	  ET,	  Burge	  CB,	  Sandberg	  R,	  Ramsko	  D.	  An	  
abundance	  of	  ubiquitously	  expressed	  genes	  revealed	  by	  tissue	  
transcriptome	  sequence	  data.	  PLoS	  Comput.	  Biol.	  
2009;5(12):e1000598.	  	  

198.	   Ogata	  H,	  Goto	  S,	  Sato	  K,	  Fujibuchi	  W,	  Bono	  H,	  Kanehisa	  M.	  KEGG:	  
Kyoto	  encyclopedia	  of	  genes	  and	  genomes.	  Nucleic	  Acids	  Res.	  
1999;27:29–34.	  	  



324	  
	  

199.	   Jiménez-‐Marín	  A,	  Collado-‐Romero	  M,	  Ramirez-‐Boo	  M,	  Arce	  C,	  
Garrido	  JJ.	  Biological	  pathway	  analysis	  by	  ArrayUnlock	  and	  
Ingenuity	  Pathway	  Analysis.	  BMC	  Proc.	  2009;3	  Suppl	  4:S6.	  	  

200.	   Gene-‐ontology-‐consortium.	  Gene	  Ontology  :	  tool	  for	  the	  unifcation	  
of	  biology.	  2000;25(may):25–29.	  	  

201.	   Yendrek	  CR,	  Ainsworth	  EA,	  Thimmapuram	  J.	  The	  bench	  scientist’s	  
guide	  to	  statistical	  analysis	  of	  RNA-‐Seq	  data.	  BMC	  Res.	  Notes.	  
2012;5:506.	  	  

202.	   Shi	  Y,	  He	  M.	  Differential	  gene	  expression	  identified	  by	  RNA-‐Seq	  
and	  qPCR	  in	  two	  sizes	  of	  pearl	  oyster	  (Pinctada	  fucata).	  Gene.	  
2014;538(2):313–22.	  	  

203.	   Cristino	  AS,	  Tanaka	  ED,	  Rubio	  M,	  Piulachs	  M-‐D,	  Belles	  X.	  Deep	  
sequencing	  of	  organ-‐	  and	  stage-‐specific	  microRNAs	  in	  the	  
evolutionarily	  basal	  insect	  Blattella	  germanica	  (L.)	  (Dictyoptera,	  
Blattellidae).	  PLoS	  One.	  2011;6(4):e19350.	  	  

204.	   Bullard	  JH,	  Purdom	  E,	  Hansen	  KD,	  Dudoit	  S.	  Evaluation	  of	  statistical	  
methods	  for	  normalization	  and	  differential	  expression	  in	  mRNA-‐
Seq	  experiments.	  BMC	  Bioinformatics.	  2010;11:94.	  	  

205.	   Aida	  Y,	  Pabst	  MJ.	  Priming	  of	  neutrophils	  by	  lipopolysaccharide	  for	  
enhanced	  release	  of	  superoxide.	  Requirement	  for	  plasma	  but	  not	  
for	  tumor	  necrosis	  factor-‐alpha.	  J.	  Immunol.	  1990;145(9):3017–25.	  	  

206.	   Swain	  SD,	  Rohn	  TT,	  Quinn	  MT.	  Neutrophil	  Priming	  in	  Host	  Defense  :	  
2002;4(1):	  	  

207.	   Wittmann	  S,	  Rothe	  G,	  Schmitz	  G,	  Fröhlich	  D.	  Cytokine	  upregulation	  
of	  surface	  antigens	  correlates	  to	  the	  priming	  of	  the	  neutrophil	  
oxidative	  burst	  response.	  Cytometry.	  A.	  2004;57(1):53–62.	  	  

208.	   Dewas	  C,	  Dang	  PM-‐C,	  Gougerot-‐Pocidalo	  M-‐A,	  El-‐Benna	  J.	  TNF-‐α	  
Induces	  Phosphorylation	  of	  p47phox	  in	  Human	  Neutrophils:	  Partial	  
Phosphorylation	  of	  p47phox	  Is	  a	  Common	  Event	  of	  Priming	  of	  
Human	  Neutrophils	  by	  TNF-‐α	  and	  Granulocyte-‐Macrophage	  
Colony-‐Stimulating	  Factor	  	  .	  J.	  Immunol.	  .	  2003;171	  (8	  ):4392–4398.	  	  

209.	   Langereis	  JD,	  Franciosi	  L,	  Ulfman	  LH,	  Koenderman	  L.	  GM-‐CSF	  and	  
TNFα	  modulate	  protein	  expression	  of	  human	  neutrophils	  
visualized	  by	  fluorescence	  two-‐dimensional	  difference	  gel	  
electrophoresis.	  Cytokine.	  2011;56(2):422–9.	  	  

210.	   Dyugovskaya	  L,	  Polyakov	  A,	  Ginsberg	  D,	  Lavie	  P,	  Lavie	  L.	  Molecular	  
pathways	  of	  spontaneous	  and	  TNF-‐{alpha}-‐mediated	  neutrophil	  



325	  
	  

apoptosis	  under	  intermittent	  hypoxia.	  Am.	  J.	  Respir.	  Cell	  Mol.	  Biol.	  
2011;45(1):154–62.	  	  

211.	   Rock	  KL,	  Latz	  E,	  Ontiveros	  F,	  Kono	  H.	  The	  sterile	  inflammatory	  
response.	  Annu.	  Rev.	  Immunol.	  2010;28:321–42.	  	  

212.	   Goldblatt	  F,	  Isenberg	  DA.	  New	  therapies	  for	  systemic	  lupus	  
erythematosus.	  Clin.	  Exp.	  Immunol.	  2005;140(2):205–12.	  	  

213.	   Koczan	  D,	  Drynda	  S,	  Hecker	  M,	  Drynda	  A,	  Guthke	  R,	  Kekow	  J,	  
Thiesen	  H-‐J.	  Molecular	  discrimination	  of	  responders	  and	  
nonresponders	  to	  anti-‐TNF	  alpha	  therapy	  in	  rheumatoid	  arthritis	  by	  
etanercept.	  Arthritis	  Res.	  Ther.	  2008;10(3):R50.	  	  

214.	   Fossati	  G,	  Bucknall	  RC,	  Edwards	  SW.	  Insoluble	  and	  soluble	  immune	  
complexes	  activate	  neutrophils	  by	  distinct	  activation	  mechanisms:	  
changes	  in	  functional	  responses	  induced	  by	  priming	  with	  
cytokines.	  Ann.	  Rheum.	  Dis.	  2002;61(1):13–9.	  	  

215.	   Holland	  SM,	  DeLeo	  FR,	  Elloumi	  HZ,	  Hsu	  AP,	  Uzel	  G,	  Brodsky	  N,	  
Freeman	  AF,	  Demidowich	  A,	  Davis	  J,	  Turner	  ML,	  Anderson	  VL,	  
Darnell	  DN,	  Welch	  PA,	  Kuhns	  DB,	  Frucht	  DM,	  Malech	  HL,	  Gallin	  JI,	  
Kobayashi	  SD,	  Whitney	  AR,	  Voyich	  JM,	  Musser	  JM,	  Woellner	  C,	  
Schäffer	  AA,	  Puck	  JM,	  Grimbacher	  B.	  STAT3	  mutations	  in	  the	  
hyper-‐IgE	  syndrome.	  N.	  Engl.	  J.	  Med.	  2007;357(16):1608–19.	  	  

216.	   Kobayashi	  SD,	  Voyich	  JM,	  Buhl	  CL,	  Stahl	  RM,	  DeLeo	  FR.	  Global	  
changes	  in	  gene	  expression	  by	  human	  polymorphonuclear	  
leukocytes	  during	  receptor-‐mediated	  phagocytosis:	  cell	  fate	  is	  
regulated	  at	  the	  level	  of	  gene	  expression.	  Proc.	  Natl.	  Acad.	  Sci.	  U.	  S.	  
A.	  2002;99:6901–6906.	  	  

217.	   Saeed	  AI,	  Bhagabati	  NK,	  Braisted	  JC,	  Liang	  W,	  Sharov	  V,	  Howe	  EA,	  
Li	  J,	  Thiagarajan	  M,	  White	  JA,	  Quackenbush	  J.	  TM4	  microarray	  
software	  suite.	  Methods	  Enzymol.	  2006;411:134–93.	  	  

218.	   Blake	  JA,	  Harris	  MA.	  The	  Gene	  Ontology	  (GO)	  project:	  structured	  
vocabularies	  for	  molecular	  biology	  and	  their	  application	  to	  genome	  
and	  expression	  analysis.	  Curr.	  Protoc.	  Bioinformatics.	  2008;Chapter	  
7:Unit	  7.2.	  	  

219.	   Huang	  DW,	  Sherman	  BT,	  Lempicki	  RA.	  Systematic	  and	  integrative	  
analysis	  of	  large	  gene	  lists	  using	  DAVID	  bioinformatics	  resources.	  
Nat.	  Protoc.	  2009;4:44–57.	  	  

220.	   IPA.	  Data	  were	  analyzed	  through	  the	  use	  of	  IPA	  (Ingenuity®	  
Systems,	  www.ingenuity.com).	  2011;	  	  



326	  
	  

221.	   Zhang	  X,	  Kluger	  Y,	  Nakayama	  Y,	  Poddar	  R,	  Whitney	  C,	  Detora	  A,	  
Weissman	  SM,	  Newburger	  PE.	  Gene	  expression	  in	  mature	  
neutrophils  :	  early	  responses	  to	  inflammatory	  stimuli	  Abstract  :	  
Neutrophils	  provide	  an	  essential	  de-‐	  play	  a	  major	  role	  in	  tissue	  
damage	  during	  inflam-‐.	  2003;	  	  

222.	   Fessler	  MB,	  Malcolm	  KC,	  Duncan	  MW,	  Worthen	  GS.	  A	  genomic	  and	  
proteomic	  analysis	  of	  activation	  of	  the	  human	  neutrophil	  by	  
lipopolysaccharide	  and	  its	  mediation	  by	  p38	  mitogen-‐activated	  
protein	  kinase.	  J.	  Biol.	  Chem.	  2002;277:31291–31302.	  	  

223.	   Wright	  HL,	  Chikura	  B,	  Bucknall	  RC,	  Moots	  RJ,	  Edwards	  SW.	  
Changes	  in	  expression	  of	  membrane	  TNF,	  NF-‐{kappa}B	  activation	  
and	  neutrophil	  apoptosis	  during	  active	  and	  resolved	  inflammation.	  
Ann	  Rheum	  Dis.	  2010;	  	  

224.	   Klein	  JB,	  Rane	  MJ,	  Scherzer	  J	  a.,	  Coxon	  PY,	  Kettritz	  R,	  Mathiesen	  
JM,	  Buridi	  a.,	  McLeish	  KR.	  Granulocyte-‐Macrophage	  Colony-‐
Stimulating	  Factor	  Delays	  Neutrophil	  Constitutive	  Apoptosis	  
Through	  Phosphoinositide	  3-‐Kinase	  and	  Extracellular	  Signal-‐
Regulated	  Kinase	  Pathways.	  J.	  Immunol.	  2000;164(8):4286–4291.	  	  

225.	   Van	  den	  Berg	  JM,	  Weyer	  S,	  Weening	  JJ,	  Roos	  D,	  Kuijpers	  TW.	  
Divergent	  effects	  of	  tumor	  necrosis	  factor	  alpha	  on	  apoptosis	  of	  
human	  neutrophils.	  J.	  Leukoc.	  Biol.	  2001;69:467–473.	  	  

226.	   Wright	  HL,	  Cross	  AL,	  Edwards	  SW,	  Moots	  RJ.	  Effects	  of	  IL-‐6	  and	  IL-‐
6	  blockade	  on	  neutrophil	  function	  in	  vitro	  and	  in	  vivo.	  
Rheumatology	  (Oxford).	  2014;53(7):1321–31.	  	  

227.	   Pelletier	  M,	  Maggi	  L,	  Micheletti	  A,	  Lazzeri	  E,	  Tamassia	  N,	  Costantini	  
C,	  Cosmi	  L,	  Lunardi	  C,	  Annunziato	  F,	  Romagnani	  S,	  Cassatella	  M	  a.	  
Evidence	  for	  a	  cross-‐talk	  between	  human	  neutrophils	  and	  Th17	  
cells.	  Blood.	  2010;115(2):335–43.	  	  

228.	   Arlt	  A,	  Schäfer	  H.	  Role	  of	  the	  immediate	  early	  response	  3	  (IER3)	  
gene	  in	  cellular	  stress	  response,	  inflammation	  and	  tumorigenesis.	  
Eur.	  J.	  Cell	  Biol.	  2011;90(6-‐7):545–52.	  	  

229.	   Kucharska	  A,	  Rushworth	  LK,	  Staples	  C,	  Morrice	  NA,	  Keyse	  SM.	  
Regulation	  of	  the	  inducible	  nuclear	  dual-‐specificity	  phosphatase	  
DUSP5	  by	  ERK	  MAPK.	  Cell.	  Signal.	  2009;21(12):1794–805.	  	  

230.	   Wright	  HL,	  Thomas	  HB,	  Moots	  RJ,	  Edwards	  SW.	  Interferon	  gene	  
expression	  signature	  in	  rheumatoid	  arthritis	  neutrophils	  correlates	  
with	  a	  good	  response	  to	  TNFi	  therapy.	  Rheumatology	  (Oxford).	  
2014;1–6.	  	  



327	  
	  

231.	   Platanias	  LC.	  Mechanisms	  of	  type-‐I-‐	  and	  type-‐II-‐interferon-‐
mediated	  signalling.	  Nat.	  Rev.	  Immunol.	  2005;5(5):375–86.	  	  

232.	   Derouet	  M,	  Thomas	  L,	  Cross	  A,	  Moots	  RJ,	  Edwards	  SW.	  
Granulocyte	  macrophage	  colony-‐stimulating	  factor	  signaling	  and	  
proteasome	  inhibition	  delay	  neutrophil	  apoptosis	  by	  increasing	  the	  
stability	  of	  Mcl-‐1.	  J	  Biol	  Chem.	  2004;279(26):26915–26921.	  	  

233.	   Cross	  A,	  Edwards	  SW,	  Bucknall	  RC,	  Moots	  RJ.	  Secretion	  of	  
oncostatin	  M	  by	  neutrophils	  in	  rheumatoid	  arthritis.	  Arthritis	  
Rheum.	  2004;50(5):1430–6.	  	  

234.	   Ten	  Hove	  W,	  Houben	  LA,	  Raaijmakers	  JAM,	  Bracke	  M,	  
Koenderman	  L.	  Differential	  regulation	  of	  TNFalpha	  and	  GM-‐CSF	  
induced	  activation	  of	  P38	  MAPK	  in	  neutrophils	  and	  eosinophils.	  
Mol.	  Immunol.	  2007;44(9):2492–6.	  	  

235.	   Suzuki	  K,	  Hino	  M,	  Hato	  F,	  Tatsumi	  N,	  Kitagawa	  S.	  Cytokine-‐specific	  
activation	  of	  distinct	  mitogen-‐activated	  protein	  kinase	  subtype	  
cascades	  in	  human	  neutrophils	  stimulated	  by	  granulocyte	  colony-‐
stimulating	  factor,	  granulocyte-‐macrophage	  colony-‐stimulating	  
factor,	  and	  tumor	  necrosis	  factor-‐alpha.	  Blood.	  1999;93(1):341–9.	  	  

236.	   Wright	  HL,	  Bucknall	  RC,	  Moots	  RJ,	  Edwards	  SW.	  Analysis	  of	  SF	  and	  
plasma	  cytokines	  provides	  insights	  into	  the	  mechanisms	  of	  
inflammatory	  arthritis	  and	  may	  predict	  response	  to	  therapy.	  
Rheumatology	  (Oxford).	  2012;51(3):451–9.	  	  

237.	   Scheller	  J,	  Chalaris	  A,	  Schmidt-‐Arras	  D,	  Rose-‐John	  S.	  The	  pro-‐	  and	  
anti-‐inflammatory	  properties	  of	  the	  cytokine	  interleukin-‐6.	  Biochim.	  
Biophys.	  Acta.	  2011;1813(5):878–88.	  	  

238.	   Moore	  E,	  Biffl	  L,	  Moore	  A,	  Barnett	  C.	  Interleukin-‐6	  neutrophil	  
suppression	  concentration	  of	  neutrophil	  dependent	  of	  the.	  
1995;58:6–8.	  	  

239.	   McNamee	  JP,	  Bellier	  P	  V,	  Kutzner	  BC,	  Wilkins	  RC.	  Effect	  of	  pro-‐
inflammatory	  cytokines	  on	  spontaneous	  apoptosis	  in	  leukocyte	  
sub-‐sets	  within	  a	  whole	  blood	  culture.	  Cytokine.	  2005;31(2):161–7.	  	  

240.	   Afford	  SC,	  Pongracz	  J,	  Stockley	  R	  a,	  Crocker	  J,	  Burnett	  D.	  The	  
induction	  by	  human	  interleukin-‐6	  of	  apoptosis	  in	  the	  promonocytic	  
cell	  line	  U937	  and	  human	  neutrophils.	  J.	  Biol.	  Chem.	  
1992;267(30):21612–6.	  	  

241.	   Ottonello	  L,	  Frumento	  G,	  Arduino	  N,	  Bertolotto	  M,	  Dapino	  P,	  
Mancini	  M,	  Dallegri	  F.	  Differential	  regulation	  of	  spontaneous	  and	  
immune	  complex-‐	  induced	  neutrophil	  apoptosis	  by	  



328	  
	  

proinflammatory	  cytokines	  .	  Role	  of	  oxidants	  ,	  Bax	  and	  caspase-‐3	  
Abstract  :	  Neutrophil	  apoptosis	  represents	  a	  crucial.	  2002;72(July):	  	  

242.	   Elbim	  C,	  Reglier	  H,	  Fay	  M,	  Delarche	  C,	  Andrieu	  V,	  El	  Benna	  J,	  
Gougerot-‐Pocidalo	  MA.	  Intracellular	  pool	  of	  IL-‐10	  receptors	  in	  
specific	  granules	  of	  human	  neutrophils:	  differential	  mobilization	  by	  
proinflammatory	  mediators.	  J.	  Immunol.	  2001;166:5201–5207.	  	  

243.	   Castellucci	  M,	  Rossato	  M,	  Tamassia	  N,	  Gasperini	  S,	  Cassatella	  MA,	  
Bazzoni	  F.	  Inhibition	  of	  interleukin-‐8	  (CXCL8)	  and	  tumor	  necrosis	  
factor-‐alpha	  (TNF-‐alpha)	  gene	  transcription	  by	  interleukin-‐10-‐
induced	  epigenetic	  modifications.	  Eur.	  J.	  Clin.	  Invest.	  2014;44:31.	  	  

244.	   Hasenberg	  M,	  Köhler	  A,	  Bonifatius	  S,	  Borucki	  K,	  Riek-‐Burchardt	  M,	  
Achilles	  J,	  Männ	  L,	  Baumgart	  K,	  Schraven	  B,	  Gunzer	  M.	  Rapid	  
immunomagnetic	  negative	  enrichment	  of	  neutrophil	  granulocytes	  
from	  murine	  bone	  marrow	  for	  functional	  studies	  in	  vitro	  and	  in	  
vivo.	  PLoS	  One.	  2011;6(2):e17314.	  	  

245.	   Lakschevitz	  FS,	  Visser	  MB,	  Sun	  C,	  Glogauer	  M.	  Neutrophil	  
transcriptional	  profile	  changes	  during	  transit	  from	  bone	  marrow	  to	  
sites	  of	  inflammation.	  Cell.	  Mol.	  Immunol.	  2014;000(000):0.	  	  

246.	   Zhou	  L,	  Somasundaram	  R,	  Nederhof	  RF,	  Dijkstra	  G,	  Faber	  KN,	  
Peppelenbosch	  MP,	  Fuhler	  GM.	  Impact	  of	  human	  granulocyte	  and	  
monocyte	  isolation	  procedures	  on	  functional	  studies.	  Clin.	  Vaccine	  
Immunol.	  2012;19(7):1065–74.	  	  

247.	   Neu	  B,	  Wenby	  R,	  Meiselman	  HJ.	  Effects	  of	  dextran	  molecular	  
weight	  on	  red	  blood	  cell	  aggregation.	  Biophys.	  J.	  2008;95(6):3059–
65.	  	  

248.	   Nauseef	  WM.	  Isolation	  of	  human	  neutrophils	  from	  venous	  blood.	  
Methods	  Mol.	  Biol.	  2014;1124:13–8.	  	  

249.	   Sabroe	  I,	  Prince	  LR,	  Dower	  SK,	  Walmsley	  SR,	  Chilvers	  ER,	  Whyte	  
MKB.	  What	  can	  we	  learn	  from	  highly	  purified	  neutrophils?	  
Biochem.	  Soc.	  Trans.	  2004;32(Pt3):468–9.	  	  

250.	   Stejskal	  S.	  Original	  Article	  Isolation	  of	  Granulocytes  :	  Which	  
Transcriptome	  Do	  We	  Analyse	  –	  Neutrophils	  or	  Eosinophils  ?	  
2010;255:252–255.	  	  

251.	   Wright	  HL,	  Thomas	  HB,	  Moots	  RJ,	  Edwards	  SW.	  RNA-‐Seq	  Reveals	  
Activation	  of	  Both	  Common	  and	  Cytokine-‐Specific	  Pathways	  
following	  Neutrophil	  Priming.	  PLoS	  One.	  2013;8(3):e58598.	  	  



329	  
	  

252.	   Weil	  GJ,	  Chused	  TM.	  Eosinophil	  autofluorescence	  and	  its	  use	  in	  
isolation	  and	  analysis	  of	  human	  eosinophils	  using	  flow	  
microfluorometry.	  Blood.	  1981;57(6):1099–104.	  	  

253.	   Gopinath	  R,	  Nutman	  TB.	  Identification	  of	  eosinophils	  in	  lysed	  
whole	  blood	  using	  side	  scatter	  and	  CD16	  negativity.	  Cytometry.	  
1997;30(6):313–6.	  	  

254.	   Davey	  MS,	  Tamassia	  N,	  Rossato	  M,	  Bazzoni	  F,	  Calzetti	  F,	  Bruderek	  
K,	  Sironi	  M,	  Zimmer	  L,	  Bottazzi	  B,	  Mantovani	  A,	  Brandau	  S,	  Moser	  
B,	  Eberl	  M,	  Cassatella	  M	  a.	  Failure	  to	  detect	  production	  of	  IL-‐10	  by	  
activated	  human	  neutrophils.	  Nat.	  Immunol.	  2011;12(11):1017–8;	  
author	  reply	  1018–20.	  	  

255.	   Kabanova	  S,	  Kleinbongard	  P,	  Volkmer	  J,	  Andrée	  B,	  Kelm	  M,	  Jax	  
TW.	  Gene	  expression	  analysis	  of	  human	  red	  blood	  cells.	  Int.	  J.	  Med.	  
Sci.	  2009;6(4):156–9.	  	  

256.	   Wiedow	  O,	  Muhle	  K,	  Streit	  V,	  Kameyoshi	  Y.	  Human	  eosinophils	  lack	  
human	  leukocyte	  elastase.	  Biochim.	  Biophys.	  Acta.	  
1996;1315(3):185–7.	  	  

257.	   Metso	  T,	  Venge	  P,	  Haahtela	  T,	  Peterson	  CGB,	  Sevéus	  L.	  Cell	  specific	  
markers	  for	  eosinophils	  and	  neutrophils	  in	  sputum	  and	  
bronchoalveolar	  lavage	  fluid	  of	  patients	  with	  respiratory	  
conditions	  and	  healthy	  subjects.	  Thorax.	  2002;57(5):449–51.	  	  

258.	   Theilgaard-‐Mönch	  K,	  Jacobsen	  LC,	  Borup	  R,	  Rasmussen	  T,	  
Bjerregaard	  MD,	  Nielsen	  FC,	  Cowland	  JB,	  Borregaard	  N.	  The	  
transcriptional	  program	  of	  terminal	  granulocytic	  differentiation.	  
Blood.	  2005;105(4):1785–96.	  	  

259.	   Rørvig	  S,	  Østergaard	  O,	  Heegaard	  NHH,	  Borregaard	  N.	  Proteome	  
profiling	  of	  human	  neutrophil	  granule	  subsets,	  secretory	  vesicles,	  
and	  cell	  membrane:	  correlation	  with	  transcriptome	  profiling	  of	  
neutrophil	  precursors.	  J.	  Leukoc.	  Biol.	  2013;94(4):711–21.	  	  

260.	   Wardle	  DJ,	  Burgon	  J,	  Sabroe	  I,	  Bingle	  CD,	  Whyte	  MKB,	  Renshaw	  S	  
a.	  Effective	  caspase	  inhibition	  blocks	  neutrophil	  apoptosis	  and	  
reveals	  Mcl-‐1	  as	  both	  a	  regulator	  and	  a	  target	  of	  neutrophil	  caspase	  
activation.	  PLoS	  One.	  2011;6(1):e15768.	  	  

261.	   Tamassia	  N,	  Zimmermann	  M,	  Castellucci	  M,	  Ostuni	  R,	  Bruderek	  K,	  
Schilling	  B,	  Brandau	  S,	  Bazzoni	  F,	  Natoli	  G,	  Cassatella	  M	  a.	  Cutting	  
edge:	  an	  inactive	  chromatin	  configuration	  at	  the	  IL-‐10	  locus	  in	  
human	  neutrophils.	  J.	  Immunol.	  2013;190(5):1921–5.	  	  



330	  
	  

262.	   Meerschaert	  J,	  Busse	  WW,	  Bertics	  PJ,	  Mosher	  DF.	  CD14(+)	  cells	  are	  
necessary	  for	  increased	  survival	  of	  eosinophils	  in	  response	  to	  
lipopolysaccharide.	  Am.	  J.	  Respir.	  Cell	  Mol.	  Biol.	  2000;23(6):780–7.	  	  

263.	   Bertazza	  L,	  Mocellin	  S.	  The	  dual	  role	  of	  tumor	  necrosis	  factor	  (TNF)	  
in	  cancer	  biology.	  Curr.	  Med.	  Chem.	  2010;17(29):3337–3352.	  	  

264.	   Tang	  X,	  Wang	  Y,	  Zhou	  S,	  Qian	  T,	  Gu	  X.	  Signaling	  pathways	  
regulating	  dose-‐dependent	  dual	  effects	  of	  TNF-‐α	  on	  primary	  
cultured	  Schwann	  cells.	  Mol.	  Cell.	  Biochem.	  2013;378(1-‐2):237–46.	  	  

265.	   Amadou	  A,	  Nawrocki	  A,	  Best-‐Belpomme	  M,	  Pavoine	  C,	  Pecker	  F.	  
Arachidonic	  acid	  mediates	  dual	  effect	  of	  TNF-‐alpha	  on	  Ca2+	  
transients	  and	  contraction	  of	  adult	  rat	  cardiomyocytes.	  Am.	  J.	  
Physiol.	  Cell	  Physiol.	  2002;282(6):C1339–47.	  	  

266.	   Murray	  J,	  Barbara	  JAJ,	  Dunkley	  SA,	  Lopez	  AF,	  Van	  Ostade	  X,	  
Condliffe	  AM,	  Dransfield	  I,	  Haslett	  C,	  Chilvers	  ER.	  Regulation	  of	  
Neutrophil	  Apoptosis	  by	  Tumor	  Necrosis	  Factor-‐alpha  :	  
Requirement	  for	  TNFR55	  and	  TNFR75	  for	  Induction	  of	  Apoptosis	  In	  
Vitro.	  Blood.	  1997;90(7):2772–2783.	  	  

267.	   Costa	  JJ,	  Matossian	  K,	  Resnick	  MB,	  Beil	  WJ,	  Wong	  DTW,	  Gordon	  
JR,	  Dvorak	  AM,	  Weller	  PF,	  Galli	  SJ.	  Human	  Eosinophils	  Can	  Express	  
the	  Cytokines	  Tumor	  Necrosis	  Factor-‐a	  and	  Macrophage	  
Inflammatory	  Protein-‐la.	  1993;91(June):2673–2684.	  	  

268.	   Theilgaard-‐Monch	  K,	  Knudsen	  S,	  Follin	  P,	  Borregaard	  N.	  The	  
transcriptional	  activation	  program	  of	  human	  neutrophils	  in	  skin	  
lesions	  supports	  their	  important	  role	  in	  wound	  healing.	  J	  Immunol.	  
2004;172(12):7684–7693.	  	  

269.	   Anderson	  SI,	  Hotchin	  N	  a,	  Nash	  GB.	  Role	  of	  the	  cytoskeleton	  in	  
rapid	  activation	  of	  CD11b/CD18	  function	  and	  its	  subsequent	  
downregulation	  in	  neutrophils.	  J.	  Cell	  Sci.	  2000;113	  (	  Pt	  1:2737–45.	  	  

270.	   Tamassia	  N,	  Cassatella	  M	  a,	  Bazzoni	  F.	  Fast	  and	  accurate	  
quantitative	  analysis	  of	  cytokine	  gene	  expression	  in	  human	  
neutrophils	  by	  reverse	  transcription	  real-‐time	  PCR.	  Methods	  Mol	  
Biol.	  2007;412(1):455–471.	  	  

271.	   Bisson-‐Boutelliez	  C,	  Miller	  N,	  Demarch	  D,	  Bene	  MC.	  CD9	  and	  HLA-‐
DR	  expression	  by	  crevicular	  epithelial	  cells	  and	  polymorphonuclear	  
neutrophils	  in	  periodontal	  disease.	  J.	  Clin.	  Periodontol.	  
2001;28(7):650–6.	  	  



331	  
	  

272.	   Carmona-‐Rivera	  C,	  Kaplan	  MJ.	  Low-‐density	  granulocytes:	  a	  distinct	  
class	  of	  neutrophils	  in	  systemic	  autoimmunity.	  Semin.	  
Immunopathol.	  2013;35(4):455–63.	  	  

273.	   Udby	  L,	  Calafat	  J,	  Sørensen	  OE,	  Borregaard	  N,	  Kjeldsen	  L.	  
Identification	  of	  human	  cysteine-‐rich	  secretory	  protein	  3	  (CRISP-‐3)	  
as	  a	  matrix	  protein	  in	  a	  subset	  of	  peroxidase-‐negative	  granules	  of	  
neutrophils	  and	  in	  the	  granules	  of	  eosinophils.	  J.	  Leukoc.	  Biol.	  
2002;72:462–469.	  	  

274.	   General	  information	  about	  Single	  Nucleotide	  Polymorphisms.	  
2005;	  	  

275.	   Yang	  W,	  Shen	  N,	  Ye	  DQ,	  Liu	  Q,	  Zhang	  Y,	  Qian	  XX,	  Hirankarn	  N,	  Ying	  
D,	  Pan	  HF,	  Mok	  CC,	  Chan	  TM,	  Wong	  RW,	  Lee	  KW,	  Mok	  MY,	  Wong	  
SN,	  Leung	  AM,	  Li	  XP,	  Avihingsanon	  Y,	  Wong	  CM,	  Lee	  TL,	  Ho	  MH,	  
Lee	  PP,	  Chang	  YK,	  Li	  PH,	  Li	  RJ,	  Zhang	  L,	  Wong	  WH,	  Ng	  IO,	  Lau	  CS,	  
Sham	  PC,	  Lau	  YL.	  Genome-‐wide	  association	  study	  in	  Asian	  
populations	  identifies	  variants	  in	  ETS1	  and	  WDFY4	  associated	  with	  
systemic	  lupus	  erythematosus.	  PLoS	  Genet.	  2010;6(2):e1000841.	  	  

276.	   Fung	  EYMG,	  Smyth	  DJ,	  Howson	  JMM,	  Cooper	  JD,	  Walker	  NM,	  
Stevens	  H,	  Wicker	  LS,	  Todd	  JA.	  Analysis	  of	  17	  autoimmune	  disease-‐
associated	  variants	  in	  type	  1	  diabetes	  identifies	  6q23/TNFAIP3	  as	  a	  
susceptibility	  locus.	  Genes	  Immun.	  2009;10(2):188–91.	  	  

277.	   Plenge	  RM,	  Cotsapas	  C,	  Davies	  L,	  Price	  AL,	  de	  Bakker	  PIW,	  Maller	  J,	  
Pe’er	  I,	  Burtt	  NP,	  Blumenstiel	  B,	  DeFelice	  M,	  Parkin	  M,	  Barry	  R,	  
Winslow	  W,	  Healy	  C,	  Graham	  RR,	  Neale	  BM,	  Izmailova	  E,	  
Roubenoff	  R,	  Parker	  AN,	  Glass	  R,	  Karlson	  EW,	  Maher	  N,	  Hafler	  DA,	  
Lee	  DM,	  Seldin	  MF,	  Remmers	  EF,	  Lee	  AT,	  Padyukov	  L,	  Alfredsson	  L,	  
Coblyn	  J,	  Weinblatt	  ME,	  Gabriel	  SB,	  Purcell	  S,	  Klareskog	  L,	  
Gregersen	  PK,	  Shadick	  NA,	  Daly	  MJ,	  Altshuler	  D.	  Two	  independent	  
alleles	  at	  6q23	  associated	  with	  risk	  of	  rheumatoid	  arthritis.	  Nat.	  
Genet.	  2007;39(12):1477–82.	  	  

278.	   dbSNP	  build	  141	  summary.	  2014;	  	  

279.	   Hindorff	  LA,	  Sethupathy	  P,	  Junkins	  HA,	  Ramos	  EM,	  Mehta	  JP,	  
Collins	  FS,	  Manolio	  TA.	  Potential	  etiologic	  and	  functional	  
implications	  of	  genome-‐wide	  association	  loci	  for	  human	  diseases	  
and	  traits.	  Proc.	  Natl.	  Acad.	  Sci.	  U.	  S.	  A.	  2009;106(23):9362–7.	  	  

280.	   Quinn	  EM,	  Cormican	  P,	  Kenny	  EM,	  Hill	  M,	  Anney	  R,	  Gill	  M,	  Corvin	  
AP,	  Morris	  DW.	  Development	  of	  strategies	  for	  SNP	  detection	  in	  
RNA-‐seq	  data:	  application	  to	  lymphoblastoid	  cell	  lines	  and	  
evaluation	  using	  1000	  Genomes	  data.	  PLoS	  One.	  2013;8(3):e58815.	  	  



332	  
	  

281.	   Kurkó	  J,	  Besenyei	  T,	  Laki	  J,	  Glant	  TT,	  Mikecz	  K,	  Szekanecz	  Z.	  
Genetics	  of	  rheumatoid	  arthritis	  -‐	  a	  comprehensive	  review.	  Clin.	  
Rev.	  Allergy	  Immunol.	  2013;45(2):170–9.	  	  

282.	   Musone	  SL,	  Taylor	  KE,	  Lu	  TT,	  Nititham	  J,	  Ferreira	  RC,	  Ortmann	  W,	  
Shifrin	  N,	  Petri	  MA,	  Kamboh	  MI,	  Manzi	  S,	  Seldin	  MF,	  Gregersen	  PK,	  
Behrens	  TW,	  Ma	  A,	  Kwok	  P-‐Y,	  Criswell	  LA.	  Multiple	  polymorphisms	  
in	  the	  TNFAIP3	  region	  are	  independently	  associated	  with	  systemic	  
lupus	  erythematosus.	  Nat.	  Genet.	  2008;40(9):1062–4.	  	  

283.	   Nair	  RP,	  Duffin	  KC,	  Helms	  C,	  Ding	  J,	  Stuart	  PE,	  Goldgar	  D,	  
Gudjonsson	  JE,	  Li	  Y,	  Tejasvi	  T,	  Feng	  B-‐J,	  Ruether	  A,	  Schreiber	  S,	  
Weichenthal	  M,	  Gladman	  D,	  Rahman	  P,	  Schrodi	  SJ,	  Prahalad	  S,	  
Guthery	  SL,	  Fischer	  J,	  Liao	  W,	  Kwok	  P-‐Y,	  Menter	  A,	  Lathrop	  GM,	  
Wise	  CA,	  Begovich	  AB,	  Voorhees	  JJ,	  Elder	  JT,	  Krueger	  GG,	  Bowcock	  
AM,	  Abecasis	  GR.	  Genome-‐wide	  scan	  reveals	  association	  of	  
psoriasis	  with	  IL-‐23	  and	  NF-‐kappaB	  pathways.	  Nat.	  Genet.	  
2009;41(2):199–204.	  	  

284.	   Li	  H,	  Handsaker	  B,	  Wysoker	  A,	  Fennell	  T,	  Ruan	  J,	  Homer	  N,	  Marth	  
G,	  Abecasis	  G,	  Durbin	  R.	  The	  Sequence	  Alignment/Map	  format	  and	  
SAMtools.	  Bioinformatics.	  2009;25(16):2078–9.	  	  

285.	   Thorvaldsdóttir	  H,	  Robinson	  JT,	  Mesirov	  JP.	  Integrative	  Genomics	  
Viewer	  (IGV):	  high-‐performance	  genomics	  data	  visualization	  and	  
exploration.	  Brief.	  Bioinform.	  2013;14(2):178–92.	  	  

286.	   Robinson	  J,	  Thorvaldsdóttir	  H.	  Integrative	  genomics	  viewer.	  Nat.	  
….	  2011;29(1):24–26.	  	  

287.	   Thomas	  LW,	  Lam	  C,	  Edwards	  SW.	  Mcl-‐1;	  the	  molecular	  regulation	  
of	  protein	  function.	  FEBS	  Lett.	  2010;584(14):2981–2989.	  	  

288.	   Bae	  J,	  Leo	  CP,	  Hsu	  SY,	  Hsueh	  a	  J.	  MCL-‐1S,	  a	  splicing	  variant	  of	  the	  
antiapoptotic	  BCL-‐2	  family	  member	  MCL-‐1,	  encodes	  a	  proapoptotic	  
protein	  possessing	  only	  the	  BH3	  domain.	  J.	  Biol.	  Chem.	  
2000;275(33):25255–61.	  	  

289.	   Kim	  J-‐H,	  Bae	  J.	  MCL-‐1ES	  induces	  MCL-‐1L-‐dependent	  BAX-‐	  and	  BAK-‐
independent	  mitochondrial	  apoptosis.	  PLoS	  One.	  
2013;8(11):e79626.	  	  

290.	   Kellis	  M,	  Wold	  B,	  Snyder	  MP,	  Bernstein	  BE,	  Kundaje	  A,	  Marinov	  GK,	  
Ward	  LD,	  Birney	  E,	  Crawford	  GE,	  Dekker	  J,	  Dunham	  I,	  Elnitski	  LL,	  
Farnham	  PJ,	  Feingold	  EA,	  Gerstein	  M,	  Giddings	  MC,	  Gilbert	  DM,	  
Gingeras	  TR,	  Green	  ED,	  Guigo	  R,	  Hubbard	  T,	  Kent	  J,	  Lieb	  JD,	  Myers	  
RM,	  Pazin	  MJ,	  Ren	  B,	  Stamatoyannopoulos	  JA,	  Weng	  Z,	  White	  KP,	  



333	  
	  

Hardison	  RC.	  Defining	  functional	  DNA	  elements	  in	  the	  human	  
genome.	  Proc.	  Natl.	  Acad.	  Sci.	  U.	  S.	  A.	  2014;111(17):6131–8.	  	  

291.	   Faulkner	  GJ,	  Kimura	  Y,	  Daub	  CO,	  Wani	  S,	  Plessy	  C,	  Irvine	  KM,	  
Schroder	  K,	  Cloonan	  N,	  Steptoe	  AL,	  Lassmann	  T,	  Waki	  K,	  Hornig	  N,	  
Arakawa	  T,	  Takahashi	  H,	  Kawai	  J,	  Forrest	  ARR,	  Suzuki	  H,	  
Hayashizaki	  Y,	  Hume	  D	  a,	  Orlando	  V,	  Grimmond	  SM,	  Carninci	  P.	  The	  
regulated	  retrotransposon	  transcriptome	  of	  mammalian	  cells.	  Nat.	  
Genet.	  2009;41(5):563–71.	  	  

292.	   Esteller	  M.	  Non-‐coding	  RNAs	  in	  human	  disease.	  Nat.	  Rev.	  Genet.	  
2011;12(12):861–74.	  	  

293.	   Wapinski	  O,	  Chang	  HY.	  Long	  noncoding	  RNAs	  and	  human	  disease.	  
Trends	  Cell	  Biol.	  2011;21(6):354–61.	  	  

294.	   Chen	  G,	  Qiu	  C,	  Zhang	  Q,	  Liu	  B,	  Cui	  Q.	  Genome-‐wide	  analysis	  of	  
human	  SNPs	  at	  long	  intergenic	  noncoding	  RNAs.	  Hum.	  Mutat.	  
2013;34(2):338–44.	  	  

295.	   Jarvis	  JN,	  Jiang	  K,	  Liu	  T,	  Buck	  M,	  Carrier	  B,	  Chen	  Y.	  A174:	  JIA-‐
Associated	  SNPs	  From	  Non-‐Coding	  Regions	  Are	  Located	  Within	  or	  
Adjacent	  to	  Functional	  Genomic	  Elements	  of	  Human	  Neutrophils.	  
Arthritis	  Rheumatol.	  (Hoboken,	  N.J.).	  2014;66	  Suppl	  1:S227.	  	  

296.	   Boudreau	  LH,	  Bertin	  JO,	  Surette	  ME.	  Human	  Neutrophils	  produce	  
alternatively	  spliced	  variants	  of	  5-‐Lipoxygenase	  mRNA.	  FASEB	  J.	  
2007;21(6):A975–c–.	  	  

297.	   Van	  den	  Akker	  ELT,	  Koper	  JW,	  Joosten	  K,	  de	  Jong	  FH,	  Hazelzet	  J	  a,	  
Lamberts	  SWJ,	  Hokken-‐Koelega	  ACS.	  Glucocorticoid	  receptor	  
mRNA	  levels	  are	  selectively	  decreased	  in	  neutrophils	  of	  children	  
with	  sepsis.	  Intensive	  Care	  Med.	  2009;35(7):1247–54.	  	  

298.	   Nitto	  T,	  Inoue	  T,	  Node	  K.	  Alternative	  spliced	  variants	  in	  the	  
pantetheinase	  family	  of	  genes	  expressed	  in	  human	  neutrophils.	  
Gene.	  2008;426(1-‐2):57–64.	  	  

299.	   Güngör	  N,	  Pennings	  JL	  a,	  Knaapen	  AM,	  Chiu	  RK,	  Peluso	  M,	  
Godschalk	  RWL,	  Van	  Schooten	  FJ.	  Transcriptional	  profiling	  of	  the	  
acute	  pulmonary	  inflammatory	  response	  induced	  by	  LPS:	  role	  of	  
neutrophils.	  Respir.	  Res.	  2010;11:24.	  	  

300.	   Guo	  Y,	  Li	  C-‐I,	  Ye	  F,	  Shyr	  Y.	  Evaluation	  of	  read	  count	  based	  RNAseq	  
analysis	  methods.	  BMC	  Genomics.	  2013;14	  Suppl	  8:S2.	  	  



334	  
	  

301.	   Robinson	  MD,	  Oshlack	  A.	  A	  scaling	  normalization	  method	  for	  
differential	  expression	  analysis	  of	  RNA-‐seq	  data.	  Genome	  Biol.	  
2010;11(3):R25.	  	  

302.	   Wu	  Z,	  Fu	  Y,	  Cao	  J,	  Yu	  M,	  Tang	  X,	  Zhao	  S.	  Identification	  of	  
differentially	  expressed	  miRNAs	  between	  white	  and	  black	  hair	  
follicles	  by	  RNA-‐sequencing	  in	  the	  goat	  (Capra	  hircus).	  Int.	  J.	  Mol.	  
Sci.	  2014;15(6):9531–45.	  	  

303.	   La	  Paz	  JL,	  Pla	  M,	  Centeno	  E,	  Vicient	  CM,	  Puigdomènech	  P.	  The	  use	  
of	  massive	  sequencing	  to	  detect	  differences	  between	  immature	  
embryos	  of	  MON810	  and	  a	  comparable	  non-‐GM	  maize	  variety.	  
PLoS	  One.	  2014;9(6):e100895.	  	  

304.	   Soetaert	  SSA,	  Van	  Neste	  CMF,	  Vandewoestyne	  ML,	  Head	  SR,	  
Goossens	  A,	  Van	  Nieuwerburgh	  FCW,	  Deforce	  DLD.	  Differential	  
transcriptome	  analysis	  of	  glandular	  and	  filamentous	  trichomes	  in	  
Artemisia	  annua.	  BMC	  Plant	  Biol.	  2013;13:220.	  	  

305.	   Hamfjord	  J,	  Stangeland	  AM,	  Hughes	  T,	  Skrede	  ML,	  Tveit	  KM,	  Ikdahl	  
T,	  Kure	  EH.	  Differential	  expression	  of	  miRNAs	  in	  colorectal	  cancer:	  
comparison	  of	  paired	  tumor	  tissue	  and	  adjacent	  normal	  mucosa	  
using	  high-‐throughput	  sequencing.	  PLoS	  One.	  2012;7(4):e34150.	  	  

306.	   Bartee	  E,	  McFadden	  G.	  Cytokine	  synergy:	  an	  underappreciated	  
contributor	  to	  innate	  anti-‐viral	  immunity.	  Cytokine.	  2013;63(3):237–
40.	  	  

307.	   Ohmori	  Y,	  Schreiber	  RD,	  Hamilton	  TA.	  Synergy	  between	  interferon-‐
gamma	  and	  tumor	  necrosis	  factor-‐alpha	  in	  transcriptional	  
activation	  is	  mediated	  by	  cooperation	  between	  signal	  transducer	  
and	  activator	  of	  transcription	  1	  and	  nuclear	  factor	  kappaB.	  J.	  Biol.	  
Chem.	  1997;272(23):14899–907.	  	  

308.	   Suk	  K,	  Kim	  S,	  Kim	  YH,	  Kim	  KA,	  Chang	  I,	  Yagita	  H,	  Shong	  M,	  Lee	  MS.	  
IFN-‐gamma/TNF-‐alpha	  synergism	  as	  the	  final	  effector	  in	  
autoimmune	  diabetes:	  a	  key	  role	  for	  STAT1/IFN	  regulatory	  factor-‐1	  
pathway	  in	  pancreatic	  beta	  cell	  death.	  J.	  Immunol.	  
2001;166(7):4481–9.	  	  

309.	   Ahlers	  JD.	  Mechanisms	  of	  cytokine	  synergy	  essential	  for	  vaccine	  
protection	  against	  viral	  challenge.	  Int.	  Immunol.	  2001;13(7):897–
908.	  	  

 


