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Abstract	
  
Neutrophils are the major cellular constituent of blood leukocytes and play 
a central role in the inflammatory response, expressing an array of 
destructive molecules and antimicrobial processes that characterise the 
cells as front-line defenders of the innate immune system, thus neutrophils 
are crucial to host defence. It is now appreciated that neutrophils produce 
and respond to a variety of inflammatory signals and are able to regulate 
both the innate and adaptive immune response. The molecular changes 
that underlie this regulation are poorly defined, yet represent an attractive 
area of research to fully elucidate the role and regulatory capacity of 
neutrophils within the immune response. RNA-Seq provides an accurate 
and robust mechanism for global characterisation of cellular transcripts. 
 
Neutrophils were isolated from healthy donors and incubated with or 
without inflammatory cytokines for 1 h. RNA was extracted and analysed by 
RNA-Seq using the SOLiD or Illumina platforms. Raw data was quantified 
using a number of software packages which formed a bioinformatic 
pipeline for data analysis which was developed during the course of the 
research. Results were validated by a selection of traditional laboratory 
functional assays.  
 
Priming of neutrophils by GM-CSF and TNFα was found to induce 
differential gene expression and activation of transcription factors, which 
led to differential regulation of apoptotic pathways. Stimulation of 
neutrophils with inflammatory cytokines/chemokines (IL-1β, IL-8, G-CSF, 
IFNγ) resulted in expression of discrete gene sets and differential activation 
of signalling pathways. Stimulation of neutrophils with IL-6 did not induce 
any significant expression of genes but result in activation of STAT 
signalling. Comparison of gene expression of neutrophils isolated by 
density gradient and magnetic bead preparation revealed significant 
differences in gene expression and function, in part attributable to levels of 
contamination associated with each isolation method. Bead isolation was 
found to enrich a more heterogeneous neutrophil population including a 
subpopulation of neutrophils expressing transcripts previously associated 
with low density granulocytes. 
 
Thus, RNA-Seq and bioinformatic analysis has provided a full 
characterisation of neutrophil gene expression under inflammatory 
conditions and identified several new areas of research that could lead to 
targeted drug design for the treatment of inflammatory disease. 
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MPO   Myeloperoxidase 

mRNA   Messenger ribonucleic acid 

miR   micro-RNA 

NADPH Nicotinamide Adenine Dinucleotide Phosphate  

NAMPT  Nicotinamide Phosphoribosyltransferase 

ncRNA   non-coding RNA 

NDG   Normal density granulocytes 

NGAL   Neutrophil gelatinase-associated lipocalin 

NGFR   Nerve growth factor receptor 

NGS   Next generation sequencing 

NETs   Neutrophil extracellular traps 

NF-κβ   Nuclear factor kappa beta 

NK-cells  Natural killer cells 
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PAF   Platelet activating factor 

PAMP   Pathogen-associated molecular pattern 

PBMC   Peripheral blood mononucleated cell 

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction 

pDC   plasmacytoid dendritic cell 

PEST   Proline-glutamic acid-serine-threonine 

PFA   Paraformaldehyde 

PI   Propridium iodide 

piRNA   piwi-interacting RNA 

PMA   Phorbol 12-myristate 13-acetate 

PRR   Pattern recognition receptor 

PRSS33  Protease, serine, 33 

PSGL-1  P-selectin glycoprotein ligand-1 

PU.1 Spleen Focus Forming Virus Proviral Integration 

Oncogene 

PVDF Polyvinylidene fluoride 

qPCR quantitative polymerase chain reaction 

rRNA Ribosomal ribonucleic acid 

RA Rheumatoid arthritis 

RAM Random access memory 

RAMP Resolution associated molecular pattern 

RIN RNA intergrity number  

RNA Ribonucleic acid 

RNASE2 Ribonuclease 2 

RNASE3 Ribonuclease 3 

RNA-Seq Ribonucleic acid sequencing  

RPKM Reads per kilobase per million 

S1PR1 Sphingosine-1-phosphate receptor 1 

SAM Sequence alignment map 

SD Standard deviation 



21	
  
	
  

SDF-1 Stromal derived factor -1 

SDS Sodium dodecyl sulphate 

SEM Standard error of mean 

SIGLEC8 Sialic acid binding Ig-like lectin 8 

SLE Systemic lupus erythematosus 

SMPD3 Sphingomyelin Phosphodiesterase 3  

SNP Single nucleotide polymorphism 

snRNA Small nuclear RNA 

snoRNA Small nucleolar RNA 

SOCS3 Suppressor of cytokine signalling-3 

STAT Signal transducer and activator of transcription 

TB Terabyte  

TBC1D4 TBC1 domain family, member 4 

TCR T-cell receptor 

TEMED Tetramethylethylenediamine 

TGF� Tumor growth factor-beta 

THBS1 Thrombospondin 1 

Th-cells T-helper cells 

TLR Toll-like receptor 

TMEM170B Transmembrane protein 170B 

TNF-α Tumour necrosis factor-alpha 

TRAIL TNF-related apoptosis-inducing ligand 

TRAT1 T-cell receptor associated transmembrane adaptor 1 

tRNA transfer ribonucleic acid 

TSS Transcriptional start site 

TYK2 Tyrosine kinase 2 

UV Ultra violet 

VCF Variant calling file 

ZMW   Zero mode waveguide 

 



22	
  
	
  

Table	
  Ab.1	
  Bioinformatic	
  file	
  formats	
  and	
  file	
  extension	
  abbreviations	
  
 

File	
  format	
   File	
  
extension	
  

Summary	
  

Sam	
  file	
   .SAM	
   Sequence	
  Alignment	
  Map	
  –	
  
output	
  format	
  from	
  high-­‐
throughput	
  mappers	
  such	
  
as	
  Bowtie,	
  Tophat,	
  or	
  BWA	
  	
  

Bam	
  file	
   .BAM	
   Binary	
  format	
  of	
  a	
  SAM	
  file	
  
–	
  smaller	
  file	
  size	
  and	
  can	
  
be	
  processed	
  faster	
  than	
  an	
  
equivalent	
  SAM	
  file.	
  

General	
  feature	
  format	
  
/	
  General	
  transfer	
  
format	
  

.GFF/.GTF	
   Reference	
  file	
  listing	
  
various	
  sequence	
  features	
  
and	
  attributes	
  such	
  as	
  gene	
  
boundaries	
  and	
  coding	
  
frame	
  

FASTA	
   .FASTA	
  
Text	
  based	
  file	
  for	
  
nucleotide	
  sequence	
  data	
  

Colorspace	
  Fasta	
   .CSFASTA	
   Similar	
  to	
  FASTA	
  but	
  
nucleotide	
  format	
  is	
  
encoded	
  in	
  colorspace	
  

Fasta	
  Quality	
  file	
  
	
  

.QUAL	
   List	
  of	
  quality	
  values	
  for	
  
nucleotide	
  sequence	
  to	
  
accompany	
  a	
  FASTA	
  
format	
  file	
  

Fastq	
   .FASTQ	
   FASTA	
  format	
  file	
  where	
  
nucleotide	
  sequence	
  and	
  
quality	
  value	
  are	
  encoded	
  
into	
  a	
  single	
  ASCII	
  
character	
  to	
  decrease	
  
digital	
  footprint	
  

Variant	
  calling	
  file	
   .VCF	
   Text	
  file	
  containing	
  data	
  on	
  
individual	
  genomic	
  
positions,	
  used	
  primarily	
  
to	
  list	
  SNPs	
  and	
  indels	
  

Binary	
  variant	
  calling	
  
file	
  

.BCF	
   Binary	
  format	
  of	
  a	
  .vcf	
  used	
  
for	
  faster	
  processing	
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Chapter	
  1:	
  Introduction	
  	
  

1.1 Project Overview 

Neutrophilic polymorphonuclear leukocytes (neutrophils) were first 

described by Paul Ehrlich in the late nineteenth century using cell-staining 

techniques to investigate the subpopulations of white blood cells 1. Ehrlich 

discovered three sub-types of cells each featuring polymorphous nuclei 

that could be distinguished from each other by their individual staining 

properties. Whilst eosinophils and basophils were named due to their 

cytoplasm staining positively with eosin and basic dyes respectively, the 

third subtype exhibited a tendency to retain neutral dyes and was so 

termed the neutrophil 2.  

Neutrophils are the most abundant leukocyte found in circulating blood, 

accounting for 40-60% of the total white blood cell population 3. They form 

the major cellular constituent of the innate immune system and are 

indispensable for defence against invading bacterial and fungal pathogens 

due to their ability to phagocytose cells and micro-organisms, release lytic 

enzymes from internal granules, and produce reactive oxygen metabolites 

with antimicrobial potential 4,5. Their highly-conserved mechanisms of anti-

microbial activity, coupled with a characteristic short life span, have 

historically defined the neutrophil as a one dimensional effector cell with 

little capacity to influence the more complex, adaptive arm of the immune 

system, predominantly regulated by T-cells and B-cells.  
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However, in recent years, this view of neutrophils has been profoundly 

altered. Neutrophils are now known to produce and release numerous 

cytokines, chemokines and angiogenic/fibrogenic factors 6. They have also 

been shown, following cytokine stimulation, to express MHC Class II 

molecules and present antigen-to and activate T-cells 7. 

The perceived role of neutrophils in inflammatory disease has also been 

altered in recent years. Neutrophil dysregulation has been associated with 

the pathogenesis of a variety of chronic inflammatory diseases such as 

rheumatoid arthritis (RA) 8, juvenile (and adult) systemic lupus 

erythematosus (SLE) 9, chronic obstructive pulmonary disease (COPD) 10, 

asthma 11 and alcoholic hepatitis 12. This current view of neutrophils places 

them central to the immune system with a significant capacity to regulate, 

influence and affect both the innate and adaptive response in health and 

disease. Despite a greater appreciation for neutrophil involvement in the 

immune response, relatively little work has focused on the underlying 

mechanisms of neutrophil activation and regulation in the context of 

inflammation, instead focusing more on the traditionally associated 

mechanisms of functions such as chemotaxis, phagocytosis and apoptosis.  

Quantifying the transcriptional output of a cell has often been used by 

researchers to unpick the mechanisms by which a cell behaves under 

normal conditions, or adapts and responds to a changing environment or 

signal. The sensitivity of quantification of transcriptomes has grown 

exponentially over the past 2 decades, firstly with the development of 
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array-based technologies and real-time quantification by polymerase chain 

reaction (PCR).  Subsequently, the successful development of micro-array 

technology provided the first means to quantify the entire population of 

transcripts within a cell or tissue population. However, the greatest 

technological advancement has come in the area of massively high-

throughput sequencing (HTS). Today, whole genome/exome/transcriptome 

sequencing can now be performed over the course of a few days/weeks 

within a research lab for a few thousand pounds. This represents a minute 

fraction of the cost and time expended on the first large scale genome 

project,  the Human Genome Project, which over the course of its 13 years 

was estimated to have cost over $3 billion 13. 

This thesis aims to define a set of modern tools and bioinformatic software 

packages that can consistently, accurately and robustly quantify the gene 

expression profile of neutrophils using RNA-Seq. This pipeline will then be 

utilised to investigate the changes in gene expression following stimulation 

of neutrophils with inflammatory cytokines. Finally, the differences in two 

commonly used neutrophil isolation methods and the influence of inherent 

cellular contamination will be analysed, including their effect on neutrophil 

function and gene expression of both in vitro stimulated and unstimulated 

neutrophils. 
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1.2 Neutrophils 

Examples of cells with phagocytic abilities are found in organisms as 

distantly related as the slime mould Dictyostelium discoideum  14 and the 

African clawed frog Xenopus laevis 15. Indeed, such is the level of 

evolutionary conservation between species, that both zebrafish and rodents 

are often used as model organisms for in vivo studies of neutrophil function 

despite their neutrophils comprising a much lower proportion of the 

leukocyte population (15-20%) than in higher mammals 2. In humans, 

neutrophils comprise up to 60% of all leukocytes and are produced at a 

rate of 5 x 1010 – 30 x 1010 cells /day  16. The vast majority are retained in the 

bone marrow, and only a small fraction is released into the circulating 

peripheral blood, such that the concentration of neutrophils in blood is 

approximately 3-5 x 106/mL. 

1.2.1 Neutrophil production and maturation 

Granulocyte-colony stimulating factor (G-CSF) is essential for regulating the 

production and release of neutrophils from the bone marrow, whilst the 

chemokine receptors 4 (CXCR4) and 2 (CXCR2) are central to regulating 

neutrophil retention and release from the bone marrow, respectively. 

CXCR4 acts with its ligand, stromal derived factor -1 (SDF-1), which is 

produced by bone marrow stromal cells, to retain neutrophils in the bone 

marrow. Conversely, growth regulated protein (Gro)α and Groβ released by 

stromal cells acts through CXCR2 to increase neutrophil release 17.  
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Levels of SDF-1 are tightly regulated by G-CSF, which in turn is regulated 

by levels of Interleukin (IL)-17A produced by neutrophil-regulatory T-Cells. 

IL-17A release is dependent on levels of IL-23 released by tissue 

macrophages and dendritic cells. Uptake of apoptotic neutrophils by 

macrophages and dendritic cells results in a decrease in IL-23 levels. Thus, 

a reciprocal negative feedback loop exists such that as levels of neutrophils 

in tissue increases, levels of G-CSF decrease, ultimately leading to a 

decrease in neutrophil release from the bone marrow 18 (Fig 1.1-inset). 

Neutrophil maturation is largely dependent on the transcription factors 

CCAAT/Enhancer binding protein alpha – zeta (C/EBPα-ζ) and PU.1. 

Terminal differentiation into either a monocyte or a granulocyte lineage is 

ultimately decided by the balance of expression between these two 

transcription factors 19.  

1.2.2 Neutrophil granules 

Neutrophil granules and granule proteins are produced sequentially during 

neutrophil maturation. Granule proteins serve mainly as antimicrobial 

proteins aiding pathogen killing during phagocytosis. Granules have 

historically been classified into 3 types based on their protein content: 

azurophilic (primary) granules, which contain myeloperoxidase (MPO); 

specific (secondary) granules, which contain lactoferrin; and gelatinase 

(tertiary) granules, which contain matrix metalloproteinase 9 (MMP9). 

However, more recently, neutrophil granules have been further classified 

into several sub-types. For example, azurophilic granules can be 
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differentiated into defensinhi and defensinlow 20, whilst specific granules can 

be sub-divided into at least 4 sub-types; lactoferrinhi, cysteine-rich secretory 

protein 3 (CRISP3)hi, gelatinasehi and ficolin-1hi 18,21–23. The mechanism 

underlying the existence of separate granules has been termed “targeting 

by timing of biosynthesis”24 whereby proteins expressed at similar stages of 

maturation are localised to similar granule subtypes. This allows for 

differences in the mobilization of proteases, with the granules formed last 

during maturation being most likely to be released first. It is also important 

that some of these granule proteins are localised to different 

compartments as they can antagonise the activities of each other: for 

example neutrophil elastase (found in azurophil granules) can digest 

neutrophil gelatinase-associated lipocalin (NGAL) (found in specific 

granules) 18,23. Neutrophils also contain secretory vesicles that contain 

proteins and receptors associated with neutrophil adhesion and migration. 

Upon neutrophil activation, vesicles containing adhesion molecules such as 

β2integrins are incorporated into the neutrophil surface membrane where 

they facilitate neutrophil migration into tissues. 

1.2.3 Activation, rol l ing, adhesion and extravasiation 

Neutrophil migration from peripheral blood is mediated by interactions 

with vascular endothelium, predominantly at postcapillary venules 18. 

Neutrophils move to the site of inflammation along a chemotactic gradient. 

Expression of L-selectin on neutrophils and both E-selectin and P-selectin 

on endothelial cells mediate tethering and lumal rolling of neutrophils by 
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binding of P-selectin glycoprotein ligand-1 (PSGL-1) and other glycosylated 

ligands 25. Neutrophils are further activated by chemokines and 

proinflammatory agents presented on the surface of endothelial cells, such 

as CXCL8 (IL-8) and CXCL2 (MIP-2). This in turn, activates integrins such as 

β2 integrin (CD18) leading to high-affinity binding with integrin ligands 

expressed on the surface of endothelial cells, such as intracellular adhesion 

molecules 1 and 2 (ICAM-1 and ICAM-2). The interaction of integrin alpha L 

(ITGAL) and integrin alpha M (ITGAM) with ICAM1 is important for 

neutrophil adhesion and intraluminal crawling, allowing neutrophils to 

move to endothelial borders in preparation for extravasation 26. Following 

firm adhesion to the endothelial layer, neutrophil movement into tissues 

can occur in one of two ways; paracellular migration, where neutrophils 

squeeze between endothelial cells, or less-commonly, transcellular 

migration, where neutrophils pass through an individual endothelial cell. 

Neutrophil transmigration is facilitated by several neutrophil surface 

molecules, including CD54 (ICAM-1) 27, CD31 (platelet/endothelial cell 

adhesion molecule 1 – PECAM-1) 28, CD44 29, and CD47 (integrin 

associated protein – IAP) 30. Once in the tissue, neutrophils continue to 

move along a chemotactic gradient towards the source of inflammation 

where they can carry out other immune processes, such as cytokine release, 

phagocytosis and NETosis (Fig 1.1). 
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Fig	
   1.1	
  Overview	
  of	
  neutrophil	
  production	
  and	
   function.	
  Peripheral	
  blood	
  neutrophils	
  
migrate	
  to	
  site	
  of	
  inflammation	
  via	
  chemotactic	
  signalling	
  and	
  transmigrate	
  into	
  tissue	
  
following	
   a	
   number	
   of	
   sequential	
   processes	
   (rolling,	
   adhesion	
   and	
   transmigration)	
  
where	
  they	
  can	
  carry	
  out	
  their	
  key	
  functions,	
  such	
  as	
  cytokine	
  release,	
  phagocytosis	
  or	
  
NETosis.	
  Neutrophils	
  subsequently	
  become	
  apoptotic	
  during	
  inflammation	
  resolution.	
  
(Inset)	
   Neutrophil	
   release	
   from	
   the	
   bone	
   marrow	
   is	
   regulated	
   by	
   levels	
   of	
   G-­‐CSF	
  
expressed	
  by	
  stromal	
  cells.	
  As	
  levels	
  of	
  apoptotic	
  neutrophils	
  increase	
  in	
  tissue,	
  G-­‐CSF	
  
levels	
   are	
   decreased	
   through	
   the	
   down-­‐regulation	
   of	
   IL-­‐23	
   and	
   IL-­‐17	
   release	
   by	
  
macrophages	
  and	
  Th17	
  cells,	
  respectively.	
  	
  
	
  
	
  

1.3 Neutrophil function 

1.3.1 Priming  

Neutrophils exist in one of three activation states; quiescent (also known as 

unprimed), primed or activated  31. Under normal conditions, neutrophils 

patrol the vascular system in large numbers in a dormant (or unprimed) 

state. In the absence of any stimulating factors, peripheral blood 

neutrophils rapidly undergo constitutive apoptosis resulting in a short 

lifespan, typically less than 24 h 32.  

Apoptotic neutrophil 
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Rolling Adhesion 
Transmigration 
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Upon exposure to a variety of inflammatory stimuli (such as chemokines, 

cytokines, bacterial peptides or by adhesion), neutrophils become primed. 

Priming involves several rapid molecular changes; intracellular granules 

containing pre-formed receptors are mobilised to the plasma membrane, 

receptor affinity is altered, and components of the Nicotinamide Adenine 

Dinucleotide Phosphate (NADPH) oxidase complex are assembled at the 

plasma membrane  33. Additionally, priming involves other, less rapid 

molecular changes, for example, increased gene expression resulting in the 

production of cytokines or chemokines, and stabilisation of proteins 

involved in apoptosis, ultimately extending the life of a primed neutrophil  

3. The overall consequence of priming is a neutrophil which is capable of a 

rapid and increased response to subsequent activation signals. A major 

advantage of priming is as a regulatory step to ensure peripheral blood 

neutrophils are not inappropriately or non-specifically activated, leading to 

unregulated release of the neutrophils toxic armoury and unnecessary 

localised tissue damage. Interestingly, studies using platelet activating 

factor (PAF) have revealed that neutrophil priming can be reversed  34, 

suggesting that in the absence of an activation stimulus a mechanism exists 

to allow neutrophils to be returned to a quiescent state for subsequent 

recycling at the inflammatory site 34. 

1.3.2 Pattern recognition receptors (PRR) 

The primary role of neutrophils is to identify and destroy pathogenic 

organisms from the body. In order to achieve this, neutrophils must first be 
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able to differentiate between foreign antigens (for example bacterial 

peptides), host antigens (for example immunoglobulins and complement 

factors) and host (self) proteins before initiating an appropriate immune 

response. Consequently, neutrophils express a variety of pattern 

recognition receptors (PRR) such as Toll-like receptors (TLRs), Nod-like 

receptors (NLRs) and C-type lectin receptors 5,35. PRRs can be activated by 

microbial structures, more commonly-known as pathogen associated 

molecular patterns (PAMPs) or endogenous signals produced by host cells 

in response to trauma, ischemia or tissue damage, more commonly known 

as damage-associated molecular (DAMPs) 35. More recently, a new class of 

pattern molecules has been proposed. Due to their anti-inflammatory 

actions, members of the heat shock protein (HSP) family (among others) 

have been termed resolution associated molecular patterns (RAMPs) 36. This 

highlights the importance of pattern recognition receptors in both the 

activation and resolution of neutrophil function. 

 

1.3.3 Phagocytosis 

Following neutrophil priming and chemotaxis towards a source of 

pathogenic insult, clearance of foreign microbes is achieved by 

phagocytosis. Phagocytosis is triggered by the interactions of opsonised 

particles with specific receptors on the surface of neutrophils. For example, 

complement receptors (CR) such as CR1 and CR3 bind to particles 

opsonised with complement, whereas particles opsonised with γ-



33	
  
	
  

immunoglobulin (IgG) are phagocytosed via interaction with Fcγ receptors 

(FcγR) (which bind the Fc portion of immunoglobulins). Ultimately, 

microorganisms are internalised by the neutrophil into a membrane-bound 

vacuole, known as a phagosome. 

Neutrophils express 3 classes of FcγR. The low-affinity binding receptors 

FcγRIIA (CD32) and FcγRIIIB (CD16) are both expressed on unprimed 

neutrophils. On the other hand, expression of the high-affinity receptor 

FcγRI (CD64), although present in synovial neutrophils from rheumatoid 

arthritis (RA) patients 37 is only expressed on healthy neutrophils following 

activation by IFNγ 38.  

The mechanism of pathogen internalisation is dependent on the specific 

interactions between the neutrophil and the microorganism, for example 

interactions may be direct through activation of PRR by PAMPs, or may be 

mediated by opsonins 2. Phagocytosis of opsonised particles is largely 

mediated by either the FcγRs or complement receptors (CR). Engulfment is 

initiated by the localised clustering of phagocytic receptors (for example 

FcγRs) following ligation with their cognate ligand. Subsequently, extended 

membrane structures, or pseudopodia, engulf the particle forming an 

intracellular phagosome. It can take less than 20 s to internalise a 

microorganism. Interestingly, CR-mediated phagocytosis does not result in 

the formation of pseudopodia, but instead, the opsonised particle appears 

to sink into the neutrophil 39. 
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Microbial killing within the phagosome is achieved via a two step process; 

firstly, internal granules fuse with the phagosome membrane, releasing 

their content into the phagosomal lumen. Simultaneously, reactive oxygen 

species (ROS) are produced via assembly of the NADPH oxidase complex 

on the phagosomal membrane 2. These processes produce a hostile intra-

phagosomal environment that leads to the destruction of the engulfed 

microorganism. 

In addition to an effective mechanism of pathogen clearance – since 

neutrophils can express MHCII molecules 40 -  phagocytosis also serves to 

provide antigens to the adaptive immune system. This highlights the 

important role that neutrophils play as both an innate effector, but also an 

immune-regulator of both the innate and adaptive immune system. 

1.3.4 NETosis 

In the last decade, evidence has emerged that neutrophils are capable of a 

specialised form of programmed cell death, mechanistically distinct from 

either necrosis or apoptosis. Under conditions of increased stimulation or 

overwhelming numbers of bacteria, neutrophils are able to extrude 

neutrophil extracellular traps (NETs) which act as an additional antimicrobial 

mechanism in the neutrophil armoury. NETosis is characterised by NADPH-

oxidase-dependent dissolution of the nucleus and intracellular membranes, 

followed by the rupture of the plasma membrane and expulsion of 

decondensed chromatin 41 (Fig 1.2). NETs are decorated with a variety of 

cellular proteins, such as granule proteins (which form the greatest 



35	
  
	
  

proportion of NET-associated proteins), nuclear proteins (such as histones) 

and cytoplasmic proteins (such as calcium-binding proteins).  The 

advantages of NET formation in host defence are numerous. Firstly, NETs 

provide a physical barrier, preventing microbial spread. Secondly, the 

concentration of anti-microbial proteins that decorate NETs increases their 

efficiency and promotes synergistic actions of proteases. Thirdly, the 

restricted dispersion of proteases limits the amount of localised tissue 

damage induced by localised NETosis 42.  

  

 

Fig	
   1.2	
   Neutrophil	
   NETs.	
   Neutrophils	
   stimulated	
   with	
   PMA	
   for	
   2h	
   to	
   induce	
   NET	
  
formation.	
   Cells	
   stained	
   for	
   DNA	
   using	
   DAPI.	
   Viewed	
   under	
   fluorescent	
   microscope	
  
(x40	
  magnification)	
  	
  
 

Following the formation of NETs, it is generally assumed that the 

neutrophil will die, as this is considered a specialised form of cell death. 

However, evidence suggests that, under certain conditions, NETs can be 

formed from mitochondrial DNA alone, without decreasing the potential 

life-span of the neutrophils 43. 
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Importantly, NETs are also known to have a role in signalling, by activation 

of plasmacytoid dendritic cells (pDC) via their Toll-like receptor 9 (TLR9) 44, 

which is triggered by DNA. NETs have also been implicated in CD4+-cell 

priming via a TLR9 independent mechanism 42. Further evidence to support 

the notion that NETs are an evolutionary-conserved process is the 

discovery of several bacterial strategies for evading NETs, for example, 

Streptococcus pneumonia is capable of altering its capsule charge, thereby 

decreasing its binding-affinity to NETs 45. Bacteria are also capable of 

expressing nucleases on their surface 46 or releasing endonucleases 47 which 

can degrade NETs. 

Despite a clear host advantage for NETosis formation, numerous  studies 

have implicated NETs in the pathogenesis of several diseases 48, cystic 

fibrosis 49, periodontitis 50, preeclampsia 51 and autoimmune conditions 

such as systemic lupus erythematosus (SLE) 9,44,52–54 and rheumatoid arthritis 

55. The formation of NETs in autoimmune conditions can lead to the release 

of nuclear and protein neo-antigens as a potential mechanism for auto-

antibody production. 

 

1.3.5 Apoptosis 

In order to balance the high rate of neutrophil production and release into 

peripheral blood, neutrophils must also regulate the rate at which they 

undergo apoptosis and are removed from circulation. Apoptosis is an 

evolutionary-conserved mechanism of cell death that is tightly-regulated 
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and ensures that the destructive proteases and lytic enzymes contained in 

neutrophil granules are not released into the surrounding environment, 

thereby minimising their potential for localised tissue damage 56. In the 

absence of any stimulating factors, neutrophils can undergo constitutive 

apoptosis within 8 h 57. Apoptosis leads to several morphological changes 

that are characteristically distinct from changes that occur during necrosis. 

These include: condensation of nuclear chromatin; nuclear fragmentation, 

leading to the loss of the characteristic neutrophil multi-lobed nucleus; 

DNA and protein degradation; retention of organelles and plasma 

membrane disruption and blebbing 56,58,59. Apoptotic neutrophils also 

exhibit molecular alterations on their cell surface, either by down-regulation 

of cell-surface receptors such as FcγRs (CD16 and CD32), complement 

receptors  (CD35 and CD88), or TNF receptor (CD120b) 60  or by the 

exposure of new cell surface molecules such as phosphatidylserine (PS). 

Under normal conditions, PS is held on the inner leaflet of the plasma 

membrane by the actions of the enzyme flippase 61. However, during the 

early stages of apoptosis, PS translocates to the outer surface of the plasma 

membrane where it facilitates the recognition of apoptotic neutrophils by 

macrophages 62. This molecular switch is the basis of an apoptosis assay 

whereby fluorescently-labelled annexin V binds to exposed PS on the 

surface of apoptotic neutrophils and can be quantified by flow cytometry. 

Neutrophil apoptosis can be activated via two pathways, dependent on 

whether the activating signal originates internally or externally to the cell.  
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1.3.5.1 The intrinsic apoptosis pathway 

The intrinsic apoptosis pathway is regulated by members of the B-cell 

leukaemia-2 (Bcl-2) family of proteins, and in neutrophils is activated by an 

absence of anti-apoptotic factors, for example during constitutive 

apoptosis or in response to stress signals originating from within the cell, 

such as DNA damage. Interactions of the Bcl-2 family members (of which 

there are both pro- and anti-apoptotic members) ultimately leads to the 

de-polarisation and permeabilization of the mitochondrial membrane and 

the release of cytochrome-c into the cytosol 63. 

1.3.5.2 The extrinsic apoptosis pathway 

Exposure of neutrophils to pro-apoptotic signals results in apoptosis via the 

receptor-mediated extrinsic pathway. Molecules, including tumour necrosis 

factor-alpha (TNFα) Fas-ligand (FASLG) and TNF-related apoptosis-

inducing ligand (TRAIL) bind to one of several “death receptors” expressed 

on the surface of neutrophils. These include FAS-receptor (FASR), TNF-

receptor super-family member 10 (TNFRSF10) and nerve growth factor 

receptor (NGFR).  These receptors are members of the larger TNF receptor 

super-family and are characterised by a cytoplasmic region of 

approximately 80 amino acids, known as a “death domain” 64. Following 

activation of receptors via attachment with corresponding ligand, several 

cytoplasmic proteins are recruited to the death domain forming a death-

inducing signalling complex (DISC).  These proteins include Fas-associated 

via death domain (FADD), and pro- cysteine-aspartic proteases-8 (pro-
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caspase-8). Formation of the DISC initiates a signalling cascade leading to 

activation of caspase 8 and other downstream caspases 65,66.  

 

Fig	
   1.3	
   Schematic	
   summary	
   of	
   the	
   extrinsic	
   apoptosis	
   pathway	
   in	
   neutrophils.	
  
Activation	
  of	
  death	
  receptors	
  for	
  example	
  Fas-­‐receptor	
  (FasR)	
  by	
  its	
  ligand	
  Fas-­‐ligand	
  
(FasL)	
   induces	
  formation	
  of	
  the	
  death	
   inducing	
  signalling	
  complex	
  (DISC)	
  comprising	
  
of	
  the	
  receptor	
  death	
  domain	
  (DD),	
  Fas-­‐associated	
  via	
  death	
  domain	
  (FADD)	
  and	
  pro-­‐
caspase-­‐8.	
   Activation	
   of	
   caspase	
   8	
   leads	
   to	
   the	
   initiation	
   of	
   a	
   caspase	
   cascade	
  
ultimately	
  leading	
  to	
  apoptosis.	
  Adapted	
  from	
  64,67.	
  
 
 
 Ultimately, activation of either apoptosis pathway leads to the activation of 

initiator caspases, which sequentially cleave their inactive pro-caspase 

targets into shorter, active forms during a caspase cascade. The action of 

the caspase cascade results in the cleavage and degradation of a number 

of target cellular proteins which culminates in the disassembly of the cell 

and the exposure of “eat me” signals (such as PS) on the neutrophil surface 

leading to their clearance by phagocytic cells, such as macrophages or 

activated neutrophils 68.  
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1.3.6 Inflammation resolution 

Appropriate activation of neutrophil apoptosis is crucial to limit any 

collateral damage by neutrophil granule proteins. Apoptotic neutrophils 

can also regulate the immune response, for example, by the secretion of 

annexin-1. The rapid release of annexin-1 from tertiary granules can induce 

increased uptake by macrophages 69. Furthermore, uptake of apoptotic 

neutrophils results in the release of several anti-inflammatory mediators 

from phagocytic cells, such as IL-10, tumour growth factor-β (TGF-β) and 

prostaglandin-E2 (PGE2) which are crucial for the resolution of inflammation  

70,71. 

 

1.4 Neutrophils and disease 

1.4.1 Neutrophil impairment 

Given the indispensable role of neutrophils in host defence, it is 

unsurprising that disorders relating to impaired neutrophil function share a 

common phenotype of increased incidence of infection and overall 

immune deficiency in the patient 72. For example, impairment of neutrophil 

adhesion and extravasation due to defective integrin or selectin expression 

is characteristic of leukocyte adhesion disorder (LAD) 73 , while an estimated 

1 in 200,000 people suffer from chronic granulomatous disease (CGD), a 

group of inherited diseases caused by a defect in any of 4 subunits of the 

phagocyte NADPH oxidase complex 75.  
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Neutrophil myeloperoxidase (MPO) deficiency, is a disorder affecting 

approximately 1 in 4000 individuals 76. Deficiency is often due to point 

mutations in the MPO gene, resulting in defective post-translational 

processing of the MPO precursor protein. Deficiency of MPO prevents the 

formation of hypochlorous acid (HOCl) from chloride and hydrogen 

peroxide (H2O2) 72. Interestingly, despite the fact that neutrophils may be 

deficient of MPO, they do not have impaired bacterial killing ability in vitro, 

patients are usually asymptomatic unless presenting with other clinical 

disorders such as diabetes, whereby patients exhibit increased fungal 

infections 72. This observation suggests a level of redundancy in neutrophil 

bacterial killing mechanisms. 

 

1.4.2 Neutrophils and inflammatory disease 

In contrast to diseases where neutrophil function is impaired, inappropriate 

or over-activation of neutrophils is associated with a number of 

inflammatory diseases. For example, neutrophils have been implicated in 

the pathogenesis of systemic lupus erythematosus (SLE) 77, Behçet’s 

Disease 78, COPD 10 and RA 3. Inappropriate release of neutrophil proteases 

and other anti-microbial proteins can lead to localised tissue damage, 

which characterises the pathology of each of the above diseases. 
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1.4.3 Low density granulocytes 

Heterogeneity in granulocyte density has been known for almost two 

decades. In 1986, Hacbarth and Kajdacsy-Balla first described a sub-set of 

granulocytes that they termed “low buoyant density granulocytes” in the 

peripheral blood of patients with systemic lupus erythromatosis (SLE), 

rheumatoid arthritis (RA) and acute rheumatic fever, which correlated with 

disease activity 79. More recently, low density granulocytes (LDGs) have 

been additionally associated with disease activity in a number of conditions 

such as HIV-1 80 and SLE 81,  whilst their function and phenotype have been 

further characterised. 

 

LDGs are a sub-population of granulocytes which, due to their lower 

density, sediment in the PBMC fraction following density-gradient 

centrifugation of whole blood. They have been shown to have increased 

capacity for type I interferon (IFN) production, increased secretion of pro-

inflammatory cytokines  81, decreased ability to phagocytose bacteria, but 

an increased tendency to form NETs compared to mature neutrophils 52. 

LDGs are CD15high and CD14low (compared to monocytes which are CD15low 

and CD14high), whilst also expressing the mature granulocyte markers 

CD10 and CD16 32. Conversely, the transcriptional profile of LDGs (in 

addition to their low density properties) suggests they are a sub-population 

of immature granulocytes 52. The precise function of LDGs remains unclear 
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but understanding their function and precise role in inflammatory 

conditions is currently of great interest and importance. 

 

1.4.4 Treatment of inf lammatory disease 

A hallmark of inflammatory disease is elevated cytokine levels at sites of 

inflammations. This is best demonstrated by the efficacy of anti-cytokine (or 

anti-cytokine receptor) therapies in treating a wide range of inflammatory 

diseases. Whilst multiple cytokines are elevated in these diseases, often, 

specific cytokine-blockade is highly successful at alleviating symptoms and 

decreasing disease activity. Indeed, therapies of this nature represent the 

front-line treatment for several debilitating inflammatory diseases 82. 

However, responses of patients to specific therapies are often 

heterogeneous, and will often need to switch therapies before disease 

activity is controlled. This suggests that inflammatory diseases have 

heterogeneous pathology and different cytokines are responsible for 

driving the inflammatory response in different patients. Table 1.1 lists 

several examples of cytokines (or their cognate receptors) targeted by anti-

inflammatory disease therapies, and the diseases they are administered for.  

Despite having a central role in several inflammatory diseases, direct 

targeting of neutrophils is unfeasible as a form of therapy due to the 

resulting neutropenia and increased risk of developing infections. However, 

modifying specific neutrophil functions by directly (or indirectly) targeting 
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cytokine signalling may lead to much more efficient regulation of 

neutrophils in inflammatory disease without compromising host-defence. 

 

Table	
  1.1	
  Current	
  (or	
  clinical	
  trial	
  phase)	
  cytokine-­‐targeting-­‐therapies	
  for	
  inflammatory	
  
diseases:	
  Vasculitis	
  (V);	
   Inflammatory	
  bowel	
  disease	
  (IBD);	
  Rheumatoid	
  arthritis	
  (RA);	
  
Cancer	
   (C);	
   Multiple	
   sclerosis	
   (MS);	
   Acute	
   gout	
   (AG);	
   Still’s	
   disease	
   (SD);	
   juvenile	
  
idiopathic	
  arthritis	
  (JIA);	
  ulcerative	
  colitis	
  (UC);	
  Crohn’s	
  disease	
  (CD);	
  Psoriatic	
  arthritis	
  
(PA);	
  psoriasis	
  (P);	
  Ankylosing	
  spondylitis	
  (AS);	
  Behçet’s	
  disease	
  (BD).	
  
 

Drug	
  name	
   Target	
  cytokine	
  (or	
  
cytokine	
  receptor)	
   Disease	
   Refs	
  

Tocilizumab	
   IL-­‐6	
  receptor	
   V/IBD/RA/C	
   83	
  
MOR103	
  (phase	
  II)	
  
Mavrilimumab	
  

GM-­‐CSF	
  
GM-­‐CSF	
  receptor	
   MS/RA	
   	
  

84,85	
  

Anakinra	
   IL-­‐1	
  receptor	
   AG/SD/JIA/RA	
  
3,86–

88	
  
Infliximab	
  

(Remicade®)	
  
Golimumab	
  
Adalimumab	
  
(Humira®)	
  

Etanercept	
  (Enbrel®)	
  
Certolizumab-­‐pegol	
  

(Cimzia®)	
  

TNFα	
   RA/UC/CD/IBD
/PA/P/AS/BD	
  

89–94	
  

	
  Fontolizumab	
   IFNγ	
   CD	
   95	
  
Secukinumab	
   IL-­‐17A	
   RA/P	
   96	
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1.5 Systems biology 

1.5.1 Implementation 

Systems biology is a relatively recent area of biological research. The 

development of high powered computing and analytical approaches which 

generate large amounts of data (such as proteomics, genomics and 

metabolomics) have necessitated a new approach to scientific research. 

The fundamental goal of systems biology is to integrate comprehensive 

biological data sets from diverse systems in an attempt to understand 

complex interactions at the molecular level, thus providing a mechanism of 

predicting phenotype changes in a biological system following a defined 

stimulus 97.  

This approach has been applied to several areas of biology, such as 

analysing the entire kinase population (also known as the kinome) of 

Drosophila melanogaster during cell-cycle 98 or temporal analysis of gene-

promoter activity of amino-acid biosynthesis genes in Escherichia coli 99. 

In addition to individual systems based projects studying specific cells or 

pathways, broader, multi-institutional research consortiums are attempting 

to integrate data from multiple bioinformatic projects in an attempt to 

tackle wider conceptual problems such as inflammatory disease or patient 

drug-response. For example, a recently funded consortium led by the 

Queen Mary hospital, London – in collaboration with the charity Arthritis 

Research UK – will attempt to apply a stratified approach to understanding 

patient heterogeneity and drug response in rheumatoid arthritis (RA) 100. 
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This example of a multi-faceted research approach highlights how systems 

biology (or more specifically bioinformatic data) can successfully be up-

scaled to undertake much broader scientific questions 101. 

   

1.5.1 Transcriptomics 

Genomic studies attempt to quantify the entire genome of an organism. 

This information is encoded by a cell’s DNA and is virtually identical in all 

somatic cells of an organism, for example the information encoding the 

insulin gene (INS) is present in cells as disparate as pancreatic beta-cells 

and dendritic cells. Whilst, there may be variations in the copy number or 

epigenetic features, the hard-coded DNA sequence will be identical in 

both cell types, yet only in pancreatic beta-cells will the information be 

translated to produce the insulin protein. 

In contrast, transcriptomics focuses solely on the information contained 

with the RNA population. The population of RNA transcripts is both cell 

specific and dynamically regulated and can be thought of as the functional 

intent of a cell. Furthermore, since an estimated 92-94% of eukaryotic 

genes are subject to alternative splicing 102 an RNA population may not 

only be different between two different populations of cells but also 

between similar cells stimulated differently. 

In simplistic terms, transcriptomics attempts to define a level of gene 

expression at a specific time or under specific conditions by quantifying the 
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abundance of mRNA transcripts pertaining to each gene in an organism’s 

genome 97.  

1.5.1.1 Sanger sequencing 

The first successful method of sequencing DNA fragments was developed 

in 1977 by Fred Sanger and colleagues using chain-terminating inhibitors 

103. Nucleotide-specific sequence fragments were created using terminating 

dideoxynucleotides for each of the 4 bases. Populations relating to each 

base-type were then placed in separate lanes of a gel and subject to 

electrophoresis. Since fragments were fluorescently labelled, and the 

terminating base-type was known, fragments could then be “read” by 

virtue of their migration distance through the gel 104. This method of 

sequencing became the gold-standard in genetic research for over 25 

years, until several technological advancements were made during the 

undertaking of the human genome project between 1990-2003 105. This 

technique is still employed for targeted-sequencing, but for larger projects 

and genome/transcriptome wide analysis it has been superseded by more 

high-throughput approaches 101. 

1.5.1.2 SAGE 

Early attempts to define an entire transcriptome utilised serial analysis of 

gene expression (SAGE) technology to sequence small unique fragments 

(15-20 bp) of cDNA transcripts (reverse transcribed from the RNA 

population) relating to each gene 106. SAGE uses traditional Sanger 

technology to sequence short sequence tags which can be uniquely 
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associated with the original mRNA fragment to which it relates. The 

abundance of tags relating to each gene can then be used to get a 

quantification of gene expression. However, this technology is relatively 

expensive and often the short fragments cannot be uniquely associated to 

a specific gene. In addition, since only a small fragment of the parent 

mRNA is analysed, any isoforms of the same gene are often 

indistinguishable from each other and cannot be quantified 107. 

Consequently, this technology is now more often used as a way of 

sequencing smaller, specific areas of a genome or transcriptome rather 

than a wider, global approach to gene expression. 

1.5.1.3 Microarrays 

Although initially developed as far back as the early 1980’s to screen a 

small subset of genes in tumour cells 108, microarray technology has been 

consistently developed and improved, such that it became the first 

technology to be thought of as a truly high-throughput transcriptomic 

technology. Until recently, microarrays were the most established and 

popular method for studying nucleotide sequences on a massive scale. 

Microarrays contain thousands of single-stranded sequences of DNA (or 

RNA), known as probes, which are attached to specific location of a glass- 

or polymer-slide. Typically the RNA (or DNA) sample being measured is 

converted into a population of complementary fragments (cRNA/cDNA) 

and is labelled with a fluorescent dye. The sample is subsequently washed 

over the microarray, enabling labelled sequences with high complementary 
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sequence-similarity to bind to the microarray probes. Relative abundance 

of sequences can then be estimated by optical fluorescent measurement of 

each specific probe location on the microarray 109.  

The hybridisation of labelled sequences to well characterised probes is a 

fundamental aspect of all microarray experiments. However, several 

different technological and conceptual variations of microarray technology 

exist providing huge versatility in the analysis of nucleotide sequences. For 

example, high-density oligonucleotide microarrays employ a dual probe 

system whereby one probe is designed to include a single “mismatched” 

nucleotide at the centre of the probe in comparison to the “perfect match” 

paired-probe. This serves as an internal control for hybridisation estimation 

and improves the accuracy of the system 110. Elsewhere, microarray 

technology has been adapted to investigate protein-binding DNA-

sequences by chromatin immunoprecipitation (ChIP) (a process more 

commonly known as ChIP-chip) 111, epigenetic studies 112, and 

quantification of non-coding RNA such as microRNA 113.  

Although microarrays are a well-established and relatively inexpensive 

technology, they do present several limitations. For example, a priori 

knowledge of probe sequences is required to quantify expression levels of 

known gene transcripts, such that quantification of novel transcripts is not 

possible. Additionally, non-specific hybridisation of sequences to partially 

complementary probes increases the inherent background noise of a 

microarray experiment affecting the quantification accuracy 114. 
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Furthermore since hybridisation efficiencies can differ between probes, 

comparison of hybridisation results of different probes within a single 

experiment may not be as accurate as comparison of results for a single 

probe across multiple experiments 115. Importantly, since quantification of 

probe hybridisation relies on an analogue measurement of fluorescence, 

the dynamic range of quantification is often limited to a few orders of 

magnitude, meaning that sequences present in low abundance are poorly 

defined whilst measurements of sequences with extremely high abundance 

can often become saturated 107. 

 

1.5.2 RNA-Seq 

Sequencing of RNA molecules using modern, so called “next generation” 

sequencing technology platforms (RNA-Seq) has, in recent years grown in 

popularity. Upwards of millions of fragments of DNA or RNA are 

sequenced in parallel using precise sequencing chemistry. Following 

sequencing, the use of powerful bioinformatic techniques enables the 

researcher to determine where each of the millions of reads originated 

from within the genome. This in turn builds up a density profile of mapped 

reads which, when cross-referenced with known gene locations can give a 

digital representation of the transcript abundance in the original sample for 

each gene.  The rapid increase in speed and capacity, coupled with a 

dramatic decrease in cost has led to RNA-Seq superseding microarrays as 

the principal technology in transcriptomics. RNA-Seq offers several 
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advantages over microarray technology. Firstly, unlike microarray-based 

technologies, RNA-Seq is not limited to detecting transcripts that 

correspond to previously known sequences, making it suitable for studies 

involving non-model organisms 107. Secondly, RNA-Seq has a much higher 

dynamic range of detection than microarrays, (shown to be approximately 5 

orders of magnitude) 116- meaning that low and highly expressed transcripts 

are equally well detected.  

However, the greatest advantage of RNA-Seq technology over microarrays 

is the variety of data available from a single experiment. For example, 

quantification of gene expression of both coding 117 and non-coding RNA 

populations 118, splice-variant usage 119, single nucleotide polymorphism 

(SNP) discovery and allele specific expression 120 can all be extracted from 

the raw data of a single RNA-Seq experiment. Conversely, to gather such 

information using microarrays would require multiple bespoke arrays 

independently analysed, resulting in much higher costs and the 

introduction of unwanted technical variance. 

 

1.5.3 Next generation sequencing 

Inasmuch as Sanger sequencing is regarded as the first generation of 

sequencing technology, the 3 sequencing platforms provided by Roche 

(454 sequencing), Applied Biosystems’ Sequencing by Oligonucleotide 

Ligation and Detection (SOLiD) and Illumina (Genome analyser I/II and 

HiSeq) represent the first iteration of the 2nd generation sequencers (also 



52	
  
	
  

known as next generation sequencing – NGS). Each were developed and 

released to market within months of each other but crucially, differed in 

their underlying mechanisms and sequencing chemistry. However, in the 

most simplistic terms, each of the technologies rely on the addition of 

deoxynucleotides (dNTPs) to a template DNA strand complementary to the 

DNA sequence fragment being sequenced, the platforms differ in their 

method of measurement and quantification of this addition. A short 

summary of the 3 platforms is detailed below. 

1.5.3.1 Library preparation 

Prior to sequencing by any of the sequencing platforms, sample DNA/RNA 

is subject to several preparation steps eventually producing a library of 

read fragments. Although, the specifics of each step are subtly different 

dependent on the eventual sequencing platform – for example read 

lengths differ greatly between sequencing platforms – the processes are 

largely similar.  

1.5.3.2 RNA enrichment 

The first step in processing an RNA sample is to enrich the population of 

RNA to be sequenced from a sample of total RNA, for example the mRNA 

transcripts or the microRNA population. This improves signal strength and 

avoids unnecessary sequencing of unwanted transcript populations. For 

standard RNA-Seq experiments enrichment can be achieved in a number of 

ways: 
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a) Terminator exonuclease treatment 

Treatment of total RNA with a terminator exonuclease results in the 

removal of sequences without a 5’-cap, a physical feature of mRNA 

transcripts but not non-coding RNA (ncRNA). Thus ribosomal RNA (rRNA), 

tRNA and microRNA populations are depleted. 

b) Ribosomal RNA depletion 

Ribosomal RNA accounts for approximately 80% of a total RNA sample 121, 

hence strategies to deplete ribosomal RNA can efficiently enrich the 

remaining populations. This method is particular popular in studies that 

wish to quantify the microRNA populations – such as piwi-interacting RNA 

(piRNA) or small nucleolar RNA (snoRNA) – in addition to mRNA transcripts. 

c) Duplex-specific-nuclease (DSN) 

Enrichment and normalisation of low abundant transcripts within a 

population can be achieved by DSN treatment. DSN is a nuclease originally 

found in the Kamchatka crab Paralithodes camtschaticus 122. The nuclease 

digests double-stranded DNA (dsDNA) with high specificity. During library 

preparation, following conversion of RNA to dsDNA (see later section for 

more details of library preparation) the sample is briefly denatured and 

then incompletely re-natured and DSN digested. Sequences which are 

highly abundant anneal more rapidly than less abundant sequences, thus 

digestion with DSN enriches low abundant transcripts and removes the 

most  highly abundant population such as rRNA and transferRNA (tRNA) 122. 
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d) Poly-adenylated (Poly-A) tail selection. 

In addition to a 5’-cap, mature mRNA transcripts feature a poly-A tail. This 

feature can be exploited by magnetic bead selection to positively select 

the mRNA population from a total-RNA sample. This method provides the 

most effective way of enriching mRNA transcripts and is the most widely 

used technique for sample enrichment. However, final yield of mRNA can 

be affected by this enrichment method, in particular if the RNA sample is 

degraded since Poly-A tail integrity is most likely to be affected during 

RNA degradation 123 

 

If the sample purity is of great importance and enough total RNA is 

available a combination of the above treatments can be carried out to 

increase purity – albeit at the cost of a lower yield of enriched sample 117. 

The effect of these different treatments on the eventual sensitivity of the 

sequencing experiment is non-trivial and in addition to affecting which 

transcripts are detected in a sample, can also influence the amount of reads 

that ultimately map to intronic regions of the genome, since the population 

of immature mRNA (which still contain intron sequences) can be more- or 

less-enriched by the above treatments 124. 

1.5.3.3 Fragmentation and cDNA conversion 

Enriched RNA is subsequently converted into complementary DNA (cDNA) 

by reverse transcriptase and fragmented, typically by DNAse I treatment or 
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sonication 107. Fragment lengths are dependent on the sequencing 

platform being used but can vary between 35 and 700 nucleotides long. 

1.5.3.4 Adapter ligation and amplification 

Single strands of cDNA are synthesised into double stranded cDNA, 

treated to generate blunt ends of sequences, and adapter sequences are 

ligated to both ends to aid in downstream sequencing protocols. Similar to 

read lengths, the size and sequence of the adapter sequences are both 

platform-specific. Finally sequences are amplified by PCR and fragments 

are size-selected by gel extraction. 

 

1.5.4 Roche 454 sequencing 

The 454 sequencing platform employs a “sequencing by synthesis” 

approach, quantifying the incorporation of dNTPs to a DNA template by 

the indirect measurement of pyrophosphate (PPi) release (Fig 1.3). Sample 

DNA is amplified, fragmented and hybridised with a sequencing primer in a 

reaction volume. Subsequently, each of the 4 dNTPs (adenine, guanine, 

cytosine or thymine) are added sequentially to the reaction mix. DNA 

polymerase catalyses the addition of a complementary dNTP to the 

template strand resulting in the release of PPi (which is proportional to the 

amount of nucleotide incorporation). The presence of ATP sulfurylase and 

adenosine 5´ phosphosulfate (APS) in the reaction volume results in the 

conversion of PPi to ATP. The ATP can then drive a luciferase-mediated 

conversion of luciferin to oxyluciferin, a reaction that generates visible light 
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proportionally to the amount of ATP generated – which can be measured in 

real-time. Finally the addition of a nucleotide-degrading enzyme - apyrase, 

removes any unincorporated dNTPs in preparation for a subsequent cycle 

of dNTP addition. Progressive iterations of nucleotide incorporation allows 

single-nucleotide resolution sequencing of reads by measurement of the 

signal peaks produced during addition 125.  

The 454 platform produces the largest sequence reads of any of the 3 

platforms discussed (200-700 nucleotides long). This is of great importance 

for downstream quantification of sequence reads, either when mapping 

reads to a reference genome or using reads for de novo assembly of a 

genome where a reference sequence is not available, for example in non-

model organisms. The larger reads make the assembly process much less 

computationally demanding and require much less sequencing depth than 

would be necessary with much shorter reads 126. However, since dNTPs are 

added sequentially, sequences with areas of successive nucleotides 

(homopolymers) are poorly quantified and subject to sequencing errors 125. 
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Fig	
   1.3	
  A	
  schematic	
   representation	
  of	
  Roche’s	
  454	
  sequencing	
   technology.	
  dNTPs	
  are	
  
sequentially	
   added	
   to	
   a	
   reaction	
   volume	
   containing	
   millions	
   of	
   copies	
   of	
   target	
  
sequence	
   with	
   annealed	
   sequencing	
   primer.	
   (i)	
   DNA	
   polymerase	
   catalyses	
   the	
  
elongation	
  of	
   the	
  sequencing	
  primer.	
   (ii)	
   incorporation	
  of	
  a	
  nucleotide	
   results	
   in	
   the	
  
release	
  of	
  pyrophosphate	
  (PPi).	
  (iii)	
  PPi	
  and	
  APS	
  are	
  converted	
  to	
  ATP	
  by	
  the	
  actions	
  
of	
   Sulfurylase.	
   (iv)	
   Luciferase	
   and	
   ATP	
   catalyse	
   the	
   conversion	
   of	
   luciferin	
   to	
  
oxyluciferin	
   which	
   produces	
   light	
   in	
   the	
   visible	
   range.	
   Detection	
   of	
   light	
   produced	
  
allows	
  quantification	
  of	
  nucleotide	
  addition.	
  Adapted	
  from	
  127,128.	
  
	
  
 

1.5.5 I l lumina sequencing (Genome analyser I/ I I  and HiSeq)  

Illumina sequencing technology makes use of reversible dye terminators to 

sequentially measure each nucleotide position by measurement of 

fluorescent emission (Fig 1.4). As with pyrosequencing, sample RNA is 

enriched, fragmented and adapter sequences ligated. However, sequences 

are attached  to a glass slide by their adapter sequences and amplified in 

situ in a process called bridge amplification 129, this increases the platforms 

throughput capacity over other platforms 130. A primer sequence is 

annealed to fragment reads and sequencing proceeds in a single base 
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synthesis fashion. Unlike pyrosequencing, all four dNTP types are added 

together during sequencing cycles to ensure competitive binding of 

nucleotides –  this increases sequencing accuracy of homopolymers . Each 

of the 4 dNTPs are modified to include a terminating group which inhibits 

sequence extension and are labelled with a different dye for identification. 

During each cycle, (due to the terminating group) a single nucleotide is 

incorporated to the primer sequence. Following the incorporation of a 

dNTP the remaining unincorporated nucleotides are washed away and the 

newly incorporated nucleotide identity is determined by laser excitation of 

the dye. Both the terminating group and labelled dye are cleaved from 

incorporated nucleotide and the cycle is repeated for the addition of the 

next nucleotide. Extension of template sequence continues for the entire 

length of sequence read.  

The entire process is carried out on an 8-lane flow cell, which enables 

massively-parallel sequencing of millions of reads 131. 
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Fig	
   1.4	
   Schematic	
   representation	
   of	
   Illumina	
   sequencing	
   technology.	
   (A)	
   Target	
  
sequence	
   is	
   attached	
   to	
   flow-­‐cell	
   and	
   sequencing	
   primer	
   is	
   annealed.	
   (B)	
   DNA	
  
polymerase	
   catalyses	
   the	
   addition	
   of	
   1	
   of	
   4	
   possible	
   dNTPs.	
   Incorporated	
   dNTP	
   is	
  
identified	
  by	
  laser	
  excitation.	
  (C)	
  Terminating	
  group	
  and	
  dye	
  portion	
  is	
  removed	
  from	
  
incorporated	
  dNTP	
  and	
  the	
  process	
  is	
  repeated	
  for	
  full	
  length	
  of	
  target	
  sequence.	
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1.5.6 SOLiD™ sequencing by Applied Biosciences 

Similarly to the Illumina platform, the SOLiD™ sequencing platform 

sequences millions of fragmented reads in parallel on a flow cell following a 

standard set of read library preparation steps (enrichment, fragmentation, 

conversion to cDNA, adapter ligation and size selection). However, the 

SOLiD™ platform has several features which distinguish it from both the 

Illumina and 454 platforms. Firstly, unique read fragments are attached to a 

micro-bead (approximately 1 µm in diameter) and amplified by PCR (in a 

process known as emulsion-PCR) to produce a monoclonal bead with 

thousands of identical reads attached to it, this amplifies the signal when 

detecting nucleotide additions during sequencing. The beads are 

subsequently attached to the flow cell for sequencing 129. Secondly, rather 

than employing a polymerase for template extension, the SOLiD™ 

platform relies upon ligation of labelled probes for strand extension 132. 

Thirdly, raw sequencing data is encoded using a “colorspace” encoding 

system which increases accuracy of base calling by deciphering between 

sequencing errors and legitimate SNP events in the read fragments 133,134. 

 

1.5.6.1 Di-base probes 

Rather than the sequential addition of single dNTPs by a polymerase as 

seen in the 454 and Illumina platforms, the SOLiD™ platform uses a 

“sequencing by ligation” approach whereby fluorescently labelled di-base 
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probes are ligated to the primer strand by the enzyme ligase 131. Probes are 

8 nucleotides long and are labelled with one of 4 fluorescent dyes. The 

sequences of the probes differ in the first two bases of the 3’ end, thus 

each possible combination of two bases is represented by 16 different 

probes (4 probes of each colour). The remaining portion of the probe is 

made up of random hexamers. For each di-base, the reverse sequence (for 

example CA and AC), the complementary sequence (for example CA and 

GT) and the reverse complementary sequence (for example CA and TG) are 

always represented by the same colour (Fig 1.5).  

 

 

Fig	
   1.5	
   Representation	
   of	
   the	
   2	
   base	
   colorspace	
   encoding	
   system	
   employed	
   by	
   the	
  
SOLiD™	
  sequencing	
  platform	
  di-­‐base	
  probes.	
  Each	
  of	
  the	
  16	
  different	
  combinations	
  of	
  
2	
   bases	
   are	
   represented	
   by	
   one	
   of	
   4	
   colours.	
   Pairs	
   of	
   the	
   same	
   colour	
   are	
   either	
  
reversed,	
  complementary	
  or	
  reversed-­‐complementary	
  of	
  each	
  other.	
  Adapted	
  from	
  135.	
  
 

1.5.6.2 SOLiD™ sequencing steps  

Sequencing begins with the ligation of di-base probes to the primer 

sequence under competitive conditions (all 16 possible probes are present) 

(Fig 1.6A). Following ligation, sequences are imaged and the fluorophore 

portion of probe is removed such that a 5 nucleotide portion is 
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incorporated into primer sequence. The process is repeated for the entire 

length of the sequence fragment (Fig 1.6B) (for example a 35 nucleotide 

sequence fragment requires 7 ligation cycles). Since only information on 2 

nucleotides of each probe is available, only 2 in every 5 nucleotides in a 

sequence-fragment are interrogated per ligation cycle (Fig 1.7). 

Furthermore, since each colour probe relates to one of 4 possible 

nucleotide pairings, it is not possible to determine the base sequence from 

a single interrogation. Thus, following ligation cycles, the newly extended 

primer sequence (and primer) are removed and a new primer sequence is 

added which is offset by 1 nucleototide (n-1) (Fig 1.6C). Ligation cycles are 

repeated for new primer round and a further 3 primer rounds (n-2,n-3 and 

n-4) (Fig 1.6D). Following a total of 5 primer rounds, each nucleotide will 

have been interrogated twice on two separate primer rounds (Fig 1.7), 

providing sufficient information to decode the sequencing information from 

colorspace into basespace (raw nucleotide information).  
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Fig	
  1.6	
  SOLiD	
  sequencing	
  methods.	
  A)	
  Read	
  library-­‐fragments	
  are	
  attached	
  to	
  a	
  micro-­‐
bead	
   and	
   annealed	
  with	
   a	
   primer	
   sequence	
   in	
   preparation	
   for	
   sequencing.	
   B)	
   16	
   Di-­‐
base	
   probes	
   labelled	
   with	
   one	
   of	
   4	
   coloured	
   dyes	
   competitively	
   bind	
   to	
   primer	
  
sequence	
   extending	
   template	
   strand,	
   ligation	
   catalysed	
   by	
   ligase	
   enzyme.	
   Di-­‐base	
  
probe	
   incorporation	
   is	
   imaged	
   by	
   laser	
   excitation.	
   Fluorophore	
   portion	
   of	
   probe	
   is	
  
removed	
  and	
  process	
  of	
  probe	
  ligation	
  is	
  repeated	
  for	
  entire	
  length	
  of	
  read-­‐fragment.	
  
C)	
  Newly	
  formed	
  extended	
  sequence	
  is	
  removed	
  and	
  primer	
  sequence	
  is	
  reset	
  using	
  a	
  1	
  
nucleotide	
   shorter	
   primer	
   (n-­‐1).	
   D)	
   Probe	
   incorporation	
   steps	
   are	
   repeated	
   for	
   4	
  
additional	
  primer	
  rounds.	
  Adapted	
  from	
  135.	
  
 
 

 
Fig	
  1.7	
  Representation	
  of	
  the	
  dual	
  interrogation	
  of	
  read	
  positions	
  by	
  multiple	
  ligation	
  
cycles	
  and	
  primer	
  rounds	
   in	
  SOLiD	
  sequencing	
  platform.	
  Di-­‐base	
  probe	
   incorporation	
  
during	
   SOLiD	
   sequencing	
   extends	
   a	
   primer	
   sequence	
   by	
   5	
   bases	
   at	
   a	
   time,	
  
interrogating	
   the	
   first	
   two	
  bases	
  on	
   each	
   cycle.	
  Multiple	
   ligation	
   and	
  primer	
   rounds	
  
result	
   in	
   each	
   read	
   position	
   being	
   measured	
   twice	
   on	
   separate	
   primer	
   rounds.	
  
Colorspace	
   encoded	
   information	
   can	
   them	
   be	
   used	
   to	
   accurately	
   determine	
   the	
  
original	
  nucleotide	
  sequence.	
  	
  	
  Adapted	
  from	
  135.	
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1.5.6.3 Colorspace 

The bioinformatic advantage of the colorspace encoding system is two-

fold. Firstly, having each read position interrogated twice improves the 

accuracy of base calling. Secondly, since each read position is represented 

by two colours, if an appropriate reference sequence is available, 

colorspace encoding system provides a means to distinguish between 

sequencing errors and true single nucleotide polymorphisms (SNPs) that 

may exist between the reference sequence and the sample sequence. For 

example, due to the structure of the encoding system, SNPs are identified 

by both colours of a particular read position differing from the reference 

sequence, whereas a sequencing error would result in a single change in 

colour to the reference (Fig 1.8) 136. 

 

Fig	
   1.8	
   Example	
   of	
   colorspace	
   encoding	
   in	
   the	
   SOLiD™	
   platform.	
   Encoding	
   enables	
  
downstream	
   identification	
   of	
   valid	
   single	
   nucleotide	
   polymorphisms	
   (SNP)	
   or	
  
sequencing	
  errors.	
  There	
  are	
  3	
  possible	
  single	
  nucleotide	
  polymorphism	
  of	
  the	
  central	
  
nucleotide	
   in	
   a	
   3	
   nucleotide	
   codon,	
   each	
   change	
   results	
   in	
   a	
   two	
   colour	
   change	
   in	
  
colorspace.	
  Conversely,	
  an	
  error	
  in	
  sequencing	
  would	
  cause	
  a	
  single	
  change	
  in	
  colour	
  
and	
   consequently	
   a	
   change	
   in	
   2	
   nucleotides	
   when	
   converted	
   back	
   to	
   basespace.	
  
Adapted	
  from	
  135.	
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1.5.7 Indexing/barcoding 

An added benefit of all of the above technologies is the ability to “index” 

read fragments (also known as barcoding). Since the adapter sequences 

can be modified to include an additional bespoke sequence (usually 6-10 

nucleotides long), read fragments from a common RNA sample can be 

indexed. This means that up to 96 RNA samples from separate 

experiments, time points or even organisms can be run in parallel on the 

same flow chip without losing information on which sample the reads 

originated from, the raw sequencing data is re-grouped into sample data 

sets following sequencing129,137. 

 

1.5.8 Paired-end sequencing  

An alternative approach to sequencing a read library which is available on 

each of the discussed platforms is paired-end sequencing. Rather than 

sequencing a read in a single direction as per single-end sequencing. 

Paired-end sequencing incorporates an additional sequencing step 

initiated at the opposite end of the read, thus two portions of the same 

fragment are sequenced in opposite directions. The benefit of this 

approach is not only the additional information that can be collected from 

a single sequencing run but that since both portions of sequencing data 

are known to originate from the same read fragment this information can 

be used to more accurately map both reads to the reference genome in 

the bioinformatic mapping stage. For example a short read containing an 
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area of nucleotide repetition may map to multiple areas of the genome 

due to its low sequence complexity. However, paired reads originating 

from the same area of the genome which are separated by an estimated 

distance are much less likely to map to multiple genome locations and are 

therefore much easier to assign a mapping location. Variations of paired 

end sequencing include mate-pair sequencing where two portions of a 

single read are sequenced in the same direction and the resulting distance 

between mate-pairs is much larger (2k-5k nucleotides) 104. 

 

1.5.9 Future generation sequencing 

The fundamental mechanics of each of the 3 platforms described above 

have not been altered in almost a decade. Constant development of the 

technology has meant that successive iterations of the hardware and 

software in each platform have seen improvements in sequencing speed, 

capacity and accuracy and a reduction in costs of both the sequencing 

machinery and biological reagents. However, future generations of 

sequencing technology are emerging and could provide a significant 

increase in speed and usability such that whole genome sequencers could 

become more commonplace in the laboratory or clinical environment. For 

example nanopore-technology is a method of sequencing a strand of DNA 

or RNA by passing it through a nanopore where an electrical current exists 

across the pore. As individual bases pass through the pore they can be 

identified by the amount to which they disrupt the current across the pore 
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101,138. Alternatively, Pacific Biosciences technology employs nucleotides 

which are fluorescently labelled on their phosphate group. Using nano-

visualisation chambers known as zero mode waveguides (ZMWs) which 

have a volume of 20 zeptolitres (10-21 litre), the incorporation of nucleotides 

can be detected against the high background signal of surrounding 

unincorporated nucleotides 128. The advantage of both these systems is 

that nucleotide incorporation or movement across a nano-pore can be 

measured without the need for interruption, thus sequencing can be 

measured in real time with the only limiting factor being the rate at which a 

DNA/RNA polymerase can operate 139. The successful development of a 3rd 

generation of sequencers will decrease the amount of time taken to 

sequence a human genome to a matter of minutes rather than days 140. 
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1.6 Bioinformatic software 

The primary function of any high-throughput sequencing technology is to 

turn a biological sample of DNA or RNA into digital data. A single 

sequencing run can produce upwards of 60GB of raw data 141 which, when 

typed equates to approximately 22x106 sheets of A4 paper (size 12 font, 

single line spacing). In addition to being computationally demanding due 

to its size, data from a next generation sequencing platform is also 

produced in a raw format. Following a sequencing run, data is filtered to 

remove incomplete reads and adapter sequences. Indexed data can be 

separated into sample-associated sets, finally, the raw data is then collated 

into a single file (or pair of files dependent on sequencing platform) 

containing only the read data and an accompanying quality value for each 

read position. Thus, a raw data file from a single sample in an RNA-Seq 

experiment may simply contain > 40x106 lines of data each 50 characters 

long (for a 50bp single-end experiment).  

For RNA-Seq data, several computational processes are required to extract 

meaningful data from the raw dataset produced by a next generation 

sequencer. These include: assembly of transcriptome, read mapping to 

reference sequence and expression quantification. Each process requires a 

specific set of software which often allows running parameters to be 

manually altered to improve performance depending on the type of input 

data provided and/or output data required.  
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1.6.1 Transcriptome assembly 

If an adequate reference sequence is not available (for example in 

transcriptome studies using non-model organisms), quantification of gene 

expression can be achieved by de novo assembly of a transcriptome using 

sequenced reads. Successful assembly relies on sufficient depth of 

coverage from sequence reads and is aided by larger read lengths such as 

those produced by the 454 platform. Software programs such as Trinity 142, 

Trans-ABySS 143 and Rnnotator 144 are able to de novo assemble 

transcriptomes using RNA-Seq data, whilst software such as Cufflinks 145, 

Scripture 146 and ERANGE 116  are able to use a reference sequence to  

build upon in a process known as ab initio assembly 147. The use of either 

de novo or ab initio assembled transcriptomes provides a way of 

identifying and quantifying novel transcripts that may be present in a cell 

specific manner. 

 

1.6.2 Read mapping 

Quantification of raw sequence data begins with the process of mapping 

reads back to a reference sequence (also known as read alignment). 

Mapping involves the determination of genomic origin for each read within 

a dataset 148. Reads can be mapped to a reference genome or 

transcriptome sequence. Mapping to a genome sequence provides a more 

comprehensive quantification of reads since reads which map (either 

partially or entirely) to non-coding areas (for example intronic regions) are 
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also quantified. Ideally, mapping of reads would result in the assignment of 

each raw read to a single location within the reference sequence producing 

a mapping profile which can be transformed into an expression profile for 

each location (based on the number of reads which are assigned to that 

location). However, in reality, several factors impact the level of mapping 

achievable. Firstly, the reference sequence is often not a perfect 

representation of the biological source of RNA that was sequenced. For 

example, sample (or cell-specific) SNPs and insertion-deletion events 

(indels) represent areas of variation between samples which cannot be 

represented by a ubiquitous reference sequence. De novo assembly of a 

reference sequence using raw reads can limit this level of inherent variation 

but often requires a much greater read-depth coverage, ultimately 

increasing the overall cost of a sequencing experiment for very little added 

accuracy 149. Secondly, the use of sequencing platforms which produce 

relatively short reads (35-50bp) such as SOLiD™ or Illumina increases the 

chances of reads mapping to multiple locations, in particular for areas of 

high repetition 107. Thirdly, high levels of sequencing errors (as might be 

expected from low integrity RNA samples) can heavily impact the mapping 

rates 150. Thus, the percentage of reads mapped during the mapping 

process can inform on both the success of the sequencing experiment and 

original quality of the RNA sample.  

Mapping software programs take a raw sequencing file (such as a .fastq or 

a .csfasta for colorspace reads) as input, and where necessary an 
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accompanying quality file (.qual). Often the reference sequence to be used 

for mapping against will be heavily indexed by the mapping software prior 

to a mapping run such that the large volume of data included in a 

reference genome (or transcriptome) can be computationally managed, 

ultimately this makes the mapping process much quicker and decreases the 

amount of random access memory (RAM) required by the software. Reads 

are aligned to the reference sequence based on their entire sequence but 

often, to increase mapping speed, a small portion of the read (known as 

the seed) is used to initially map the read to a number of locations, once 

the seed sequence is aligned, the remaining portion of the read is aligned 

and the number of possible mapping locations decreased. Mapping builds 

up a profile of alignments against the reference sequence that can 

subsequently be quantified by downstream software (Fig 1.9A-B). When 

mapping to a reference genome reads that align entirely within transcribed 

portions of the genome (that is, exons) will be mapped easily by any 

mapping software. However, reads that originate from transcripts that were 

subject to splicing events are much harder to align to a reference genome. 

Indeed, for several mapping programs – such as Bowtie 151, Burrows-

Wheeler alignment tool (BWA) 152 and short oligonucleotide alignment 

program (SOAP) 153 – reads  relating to spliced transcripts will fail to map to 

a reference genome, thereby reducing the overall percentage of reads 

mapped (Fig 1.9C). To avoid this, several mappers have been designed to 

be able to handle reads that span splice junctions (Fig 1.9D), these 
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programs include Blat 154, Tophat 155, GSNAP 156, SpliceMap 157 and 

MapSplice 147,158. 

 

 

	
  
	
  
Fig	
  1.9.	
  Schematic	
  representation	
  of	
  read	
  mapping	
  of	
  NGS	
  data.	
  A)	
  Read	
  fragments	
  and	
  
reference	
   sequence	
   are	
   provided	
   to	
   mapping	
   software.	
   B)	
   Reads	
   are	
   aligned	
   to	
  
reference	
  sequence	
  to	
  produce	
  a	
  virtual	
  alignment	
  profile.	
  C)	
  Within	
  a	
  read	
  library,	
  a	
  
proportion	
   of	
   the	
   reads	
   will	
   originate	
   from	
   spliced	
   transcripts,	
   standard	
   mapping	
  
software	
   will	
   fail	
   to	
   align	
   reads	
   that	
   span	
   splice	
   junctions.	
   D)	
   Specialized	
   mapping	
  
software	
   such	
   as	
   Tophat	
   155	
   can	
   align	
   read	
   portions	
   independently	
   thus	
   allowing	
  
mapping	
  of	
  reads	
  that	
  span	
  splice	
  junctions. 
 

 

Of the multiple different mapping software packages available, many 

employ different mathematical algorithms when aligning reads. This 

variation in software is highlighted by the vast difference in speed and 

accuracy achievable by each of the mappers. For example, a comparison in 

2011 of the most commonly used mappers available revealed that the 

percentage reads mapped ranged from 17.7% - 88.7% and time taken 

varied between 1.5 h – 145 h amongst 8 different mappers – despite each 
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software being provided with identical raw data 148.   A common feature of 

most mapping software is the ability to manually alter the mapping 

parameters and levels of confidence in aligning reads. For example, the 

number of allowed mismatched bases between reads and reference in a 

valid alignment or the number of multiple mapping locations permissible 

before excluding a read from alignment can both be altered to increase the 

number of reads mapped – often at the cost of accuracy 155. 

 

1.6.3 Expression quantif ication 

Following mapping, reads must be annotated and assigned to a 

biologically meaningful unit for example, exons, transcripts or genes. Since 

mapping of reads produces a set of genomic (or transcriptomic) 

coordinates for each read, annotation is reliant on a suitable set of 

reference coordinates relating to the genomic feature to which the reads 

are to be quantified. For example, the simplest approach is to quantify the 

number of reads that align to known genes within the genome, thereby 

arriving at an expression value for each gene. However, this approach 

makes no allowances for genes that overlap and also eliminates the 

possibility of quantifying novel transcripts. Alternatively, each exon can be 

quantified independently, allowing for quantification of: whole genes (by 

aggregation of exon expressions); exons, or individual splice variants of a 

specific gene. The choice of software for quantification and annotation is 

therefore crucial to the type of quantification required. 
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1.6.3.1 Sequence alignment map (SAM file) 

The output file produced from the previously described 

mapping/alignment software is predominantly a sequence alignment map 

(.sam file) or an equivalent binary version (.bam). Both of these file types 

are compatible with most annotation/quantification software. Sam/bam 

files contain information on: sequenced reads, including quality values for 

each base position; alignment information, such as the number of locations 

a read aligned to in the reference sequence; and number of mismatches 

and/or indels within read sequence (compared to reference sequence 

provided during mapping stage). 

1.6.3.2 Count-based quantification 

Broadly, there are two popular approaches to quantifying RNA-Seq data, 

the first of these is count based quantification. Software programs such as 

edgeR 159, DESeq 160 and DEGSeq 161 quantify the number of reads which 

align to any portion of a genes within a reference sequence (including 

intronic and untranslated regions). This number is then normalised to the 

size of the entire read library for that sample, such that values for a single 

gene can be compared between separate samples. This method of 

quantification is often used for broad analysis of differential expression of 

genes since no calculations of individual exons are made 162. However, 

since reads are only normalised to their library size, no allowance is made 

for the size of each gene. For example, given two hypothetical genes 

(Gene A and Gene B), assuming Gene B was twice as long as Gene A, and 
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both genes had equal expression within a sample, Gene B would have 

twice as many reads mapping to it due to its size alone. Consequently, 

count based quantification would incorrectly identify Gene B as having 

double the expression value of Gene A. Thus, direct comparison of 

expression values for two genes within the same sample set is not 

achievable using the count based approach.  

1.6.3.3 Fragment-based quantification  

Alternatively, the software program Cufflinks 145 is able to quantify 

expression values for individual exons of a transcripts, based on a set of 

splice locations provided to the software or by de novo discovery of 

alternative spice junctions during mapping stage. Consequently, due to 

individual quantification each exon of a gene, in addition to gene 

expression analysis, Cufflinks can be used to quantify expression of 

alternative isoforms of genes and novel transcripts. However, since 

alternative isoforms of a gene often share large portions of common 

sequence, quantification is achieved using a high degree of statistical 

assumption and modelling of the variation within a single transcript 149. 

1.6.3.4 Reads per kilobase of exon model per million mapped reads 

(RPKM) 

Importantly, Cufflinks employs an additional normalisation step and 

produces the expression metric, reads per kilobase of exon model per 

million mapped reads (RPKM) 116, which is defined as: 
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Therefore, in addition to normalising to the total number of reads in each 

sample, RPKM is also normalised to the size of the transcript. This means 

that expression values for two genes within the same sample can be 

compared. Equally, expression of a single gene in multiple separate 

experiments can be compared. 

1.6.4 Differential expression testing 

Following quantification of gene expression by either count-based or 

RPKM-based techniques, a variety of statistical tests can be performed 

between multiple data sets to determine if genes are differentially 

expressed (DE) between samples. Each of the software programs available 

for annotation and quantification of gene expressions provide a method of 

determining DE genes, but vary in the way the data is modelled. Cufflinks 

used a negative binomial distribution to model the data for differential 

analysis whereas several of the count based software programs use a 

Poisson distribution (for example edgeR, DEGSeq and DESeq). Whilst the 

distribution of read fragments across a genome in distinct locations (genes) 

can be thought of as a Poisson distribution a negative binomial modelling 

is considered more appropriate when modelling variation that arises from 

multiple biological replicates since Poisson-based analyses are prone to 
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high levels of false positives due to an underestimation of the biological 

variance 149,163. 

1.6.4.1 False discovery rate 

The traditional threshold for significance in a biological experiment is p< 

0.05 – that is, there is less than a 5% chance of the observed quanta 

occurring by chance alone. When dealing with a large number of variable 

such as during a global gene expression analysis, this threshold no longer 

provides a satisfactory measure of significance. For example, if comparing 

the expression values for every gene in the human genome (approximately 

23,000 genes) for genes that are DE between two samples, using a p< 0.05 

would result in > 1000 genes being false positives. Hence, it is more 

appropriate with transcriptome and genomic studies to use a transformed 

p-value (known as a q-value) which applies a false discovery rate (FDR) of 

5% to the data. Therefore, q< 0.05 implies that there is less than 5% 

chance the gene(s) in question are differentially expressed by chance alone 

allowing for a 5% false discovery rate. FDR is controlled by Benjamini-

Hochberg correction 164. 
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1.7 Summary 

Neutrophils play a key role in host defence via a number of evolutionarily 

conserved anti-microbial mechanisms2,23,165. Rather than acting merely as a 

front-line defensive cell, neutrophils are now recognised as central to the 

inflammatory response through the production of several inflammatory 

mediators regulating both the innate and adaptive immune systems 5. The 

global molecular changes that underlie neutrophil priming and immune 

regulation are poorly defined, yet represent an attractive area of research 

to fully elucidate the role and regulatory capacity of neutrophils during the 

immune response. The speed, accuracy, and robust nature of RNA-Seq as a 

quantification platform, and the ability to extract data relating to multiple 

genetic features from a single sequencing experiment have all contributed 

to RNA-Seq superseding micro-array analysis as the gold-standard method 

of transcriptome analysis. However, a global approach to analyse 

neutrophil gene expression using RNA-Seq has yet to be undertaken. A 

greater understanding of the molecular properties of both quiescent and 

primed neutrophils will not only expand our knowledge of neutrophil 

biology but will inform on how neutrophils contribute to many inflammatory 

diseases, ultimately providing new areas of research into neutrophil 

regulation in health and disease. 
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1.8 Hypothesis and aims 

The hypothesis that this project sought to test was:  

 

Different cytokines lead to changes in neutrophil phenotype, but do so via 

different signalling pathways that lead to the switching on or off of different 

sets of genes. 

 

The aims of this project were to: 

 

1. Develop and define a robust pipeline of bioinformatic software 

programs and protocols to accurately quantify and analyse the 

neutrophil transcriptome under conditions of simulated 

inflammation by in vitro stimulation. 

 

2. Quantify the changes in gene expression in neutrophils following 

priming with inflammatory cytokines. 

 

3. Identify changes in gene expression profiles between neutrophils 

stimulated with different inflammatory mediators. 

 

4 .  Analyse the effects of neutrophil isolation methods and neutrophil 

purity on gene expression and function. 	
  



80	
  
	
  

Chapter	
   2:	
   Materials	
   and	
  
Methods	
  

2.1 Materials 

	
  

Table	
  2.1	
  Cell	
  isolation	
  and	
  culture 

Cell	
  isolation	
  and	
  culture	
  

Materials	
   Supplier	
  

Lithium	
  heparin	
  vacuette	
  	
   Greiner	
   Bio-­‐one,	
   Thermo	
   Fisher	
  
Scientific	
  (Gloucestershire,	
  UK)	
  Safety	
  butterfly	
  needles	
  

RPMI	
  1640	
  (+	
  25mM	
  HEPES	
  with	
  L-­‐
glutamine)	
   Gibco,	
   Life	
   technologies	
   (Paisley,	
  

UK)	
  Dulbecco’s	
   phosphate	
   buffered	
  
saline	
  

Polymorphprep	
  ™	
   Axis-­‐shield	
  (Cambridge,	
  UK)	
  

Isoton	
  diluent	
   Beckman	
  Coulter	
  Inc.	
  

Ammonium	
  Chloride	
  lysis	
  buffer	
  

- Ammonium	
  Chloride	
  (NH4Cl)	
  
- Potassium	
  hydrogen	
  carbonate	
  

(KHCO3)	
  
- Ethylenediaminetraacetic	
  acid	
  

(EDTA)	
  

Sigma	
  (Poole,	
  UK)	
  

Foetal	
  bovine	
  serum	
   Invitrogen,	
   Life	
   technologies	
  
(Paisley,	
  UK)	
  

Lymphoprep	
  ™	
  

Stemcell	
   technologies	
   (Grenoble,	
  
France)	
  

EasySep®	
   Human	
   Neutrophil	
  
enrichment	
  kit	
  

HetaSep®	
  

Rapid	
  Romanowsky	
  stain	
   HD	
  Supplies	
  (Aylesbury,	
  UK)	
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Human	
  AB	
  serum	
  

Sigma	
  (Poole,	
  UK)	
  Paraformaldehyde	
  (PFA)	
  

Dimethyl	
  sulphoxide	
  (DMSO)	
  

	
  

	
  

Table	
  2.2	
  Cytokines/chemokines/stimulants/inhibitors	
  	
  

Cytokines/Chemokines/Stimulants/Inhibitors	
  

Materials	
   Supplier	
  

Recombinant	
  human	
  G-­‐CSF	
  

Sigma	
  (Poole,	
  UK)	
  Recombinant	
  human	
  IL-­‐6	
  

Recombinant	
  human	
  IL-­‐1β	
  

Recombinant	
  human	
  IL-­‐8	
   Invitrogen,	
   Life	
   technologies	
  
(Paisley,	
  UK)	
  

Recombinant	
  human	
  IL-­‐10	
   	
  

Recombinant	
  human	
  IFN-­‐α	
  	
   	
  

Recombinant	
  human	
  IFN-­‐β	
  	
   	
  

Recombinant	
  human	
  GM-­‐CSF	
   Roche	
   diagnostics	
   (East	
   Sussex,	
  
UK)	
  Recombinant	
  human	
  IFN-­‐γ	
  

Recombinant	
  human	
  TNF-­‐α	
   Calbiochem	
  (Nottingham,	
  UK)	
  

fMLP	
  
Sigma	
  (Poole,	
  UK)	
  

PMA	
  

LPS	
   Source	
   BioScience	
   (Nottingham,	
  
UK)	
  

MALP	
   Enzo	
  Life	
  Sciences	
  (Exeter,	
  UK)	
  

JAK-­‐1	
  inhibitor	
  
Calbiochem	
  (Nottingham,	
  UK)	
  

Wedelolactone	
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Table	
  2.3	
  Primary	
  and	
  secondary	
  antibodies	
  

Primary	
  and	
  Secondary	
  antibodies	
  

Materials	
   Supplier	
  

anti-­‐human	
  STAT1	
  	
  (#9175)	
  

Cell	
  Signalling	
  (Massachusetts,	
  
USA)	
  

anti-­‐human-­‐phosphorylated	
  STAT1	
  
(#9177)	
  

anti-­‐human	
  STAT3	
  (#9138S)	
  

anti-­‐human-­‐phosphorylated	
  STAT3	
  
(4904P)	
  

anti-­‐human	
  ERK	
  (#9102)	
  

anti-­‐human-­‐phosphorylated	
  ERK	
  
(#9106S)	
  

anti-­‐human	
  p38	
  (#9212)	
  

anti-­‐human-­‐phosphorylated	
  p38	
  
(#9216S)	
  

anti-­‐human-­‐AKT	
  (#9272)	
  

anti-­‐phosphorylated-­‐AKT	
  (#4060S)	
  

anti-­‐human-­‐IKβα	
  (#9242)	
  

anti-­‐human-­‐phosphorylated	
  NFκβ	
  
(#3033S)	
  

Rabbit-­‐anti-­‐IL-­‐1β	
  (#12703)	
  

Mouse	
  anti-­‐human	
  β-­‐actin	
  (#8226)	
   Abcam	
  (Cambridge,	
  UK)	
  

Mouse	
  anti-­‐human	
  GAPDH	
  (G8795)	
  

Sigma	
  (Poole,	
  UK)	
  HRP-­‐conjugated-­‐sheep	
  anti-­‐mouse	
  
(A5906)	
  

HRP-­‐conjugated	
  donkey-­‐anti-­‐rabbit	
  
(25005179)	
  

GE	
  healthcare	
  Life	
  Sciences	
  
(Buckinghamshire,	
  UK)	
  

FITC-­‐conjugated	
  mouse	
  anti-­‐human	
  
CD11b	
  (FAB16991P)	
  

R&D	
  Biosystems	
  (Oxfordshire,	
  
UK)	
  FITC-­‐conjugated	
  mouse	
  anti-­‐human	
  

CD4	
  (FAB3791F)	
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FITC-­‐conjugated	
  mouse	
  anti-­‐human	
  
CD15	
  (F0830)	
  

Dako	
  UK	
  (Cambridgeshire,	
  UK)	
  

FITC-­‐conjugated	
  mouse	
  anti-­‐human	
  
CD64	
  (FAB12571F)	
  

R&D	
  Biosystems	
  (Oxfordshire,	
  
UK)	
  

FITC-­‐conjugated	
  mouse	
  anti-­‐human	
  
CD16	
  (555406)	
  

BD	
  Biosiences	
  (Oxfordshire,	
  UK)	
  

FITC-­‐conjugated	
  mouse	
  anti-­‐human	
  
L-­‐Selectin	
  (BBA33)	
  

R&D	
  Biosystems	
  (Oxfordshire,	
  
UK)	
  

FITC-­‐conjugated	
  mouse	
  anti-­‐human	
  
IgGI	
  isotype	
  (SC-­‐2855)	
  

Santa	
  cruz	
  biotechnology	
  
(Heidleberg,	
  Germany)	
  

	
  

	
  

Table	
  2.4	
  Samples	
  preparation	
  and	
  western	
  blot 

Sample	
  preparation	
  and	
  western	
  blot	
  

Materials	
   Supplier	
  

Laemmli	
  buffer	
  

	
   -­‐Glycerol	
  

	
   -­‐Sodium	
  dodecyl	
  sulphate	
  (SDS)	
  

-­‐Tris	
  

Thermo	
   Fisher	
   Scientific	
  
(Gloucestershire,	
  UK)	
  

	
   -­‐	
  Dithiothreitol	
  (DTT)	
  

-­‐Bromophenol	
  blue	
  
Sigma	
  (Poole,	
  UK)	
  

Hydrochloric	
  acid	
  (HCl)	
   VWR	
   International	
  
(Leicestershire,	
  UK)	
  

Glycine	
  

Sigma	
  (Poole,	
  UK)	
  

Sodium	
  Chloride	
  

Ammonium	
  persulphate	
  (APS)	
  

Isopropanol	
  

Methanol	
  

Tween-­‐20	
  

Tetramethylethylenediamine	
  (TEMED)	
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Sodium	
  azide	
  

Hydrogen	
  peroxide	
  (H202)	
  

Whatman	
  filter	
  paper	
  

Polyacrylamide	
   Geneflow	
   (Staffordshire,	
  
UK)	
  (Kiddeminster,	
  UK)	
  

Biotinylated	
   protein	
   ladder	
   detection	
  
pack	
  

Cell	
   signalling	
  
(Massachusetts,	
  USA)	
  

BLUeye	
  prestained	
  protein	
  ladder	
  	
   Geneflow	
   (Staffordshire,	
  
UK)	
  

Phosphatase	
  inhibitor	
  cocktail	
  II	
   Calbiochem	
   (Nottingham,	
  
UK)	
  

Marvel	
   non-­‐fat	
   (<	
   1%)	
   dried	
   milk	
  
powder	
  

Home	
   Bargains	
   (Liverpool,	
  
UK)	
  

Ponceau	
  S	
  

	
  

Millipore	
   (Hertfordshire,	
  
UK)	
  

Bovine	
  serum	
  albumin	
  

Kodak®	
   photographic	
   Fixer	
   and	
  
Developer	
  

Immobilon	
   Western	
  
Chemiluminescent	
  HRP	
  Substrate	
  

Polyvinylidene	
   fluoride	
   (PVDF)	
  
membrane	
   	
  

GE	
  Healthcare	
  Life	
  Sciences	
  
(Buckinghamshire,	
  UK)	
  Enhanced	
   chemiluminescence	
  

hyperfilm	
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Table	
  2.5	
  Neutrophil	
  chemiluminescence	
  and	
  apoptosisaa 

Neutrophil	
  chemiluminescence	
  and	
  apoptosis	
  	
  

Materials	
   Supplier	
  

Hank’s	
   balanced	
   salt	
   solution	
  
(HBSS)	
  

Gibco,	
   Life	
   technologies	
  
(Paisley,	
  UK)	
  

Luminol	
  
Sigma	
  (Poole,	
  UK)	
  

Propidium	
  iodide	
  

Alexa	
   Fluor	
   488-­‐conjugated	
  
Annexin-­‐V	
  (#A13201)	
   Life	
  technologies	
  (Paisley,	
  UK)	
  

	
  

	
  

Table	
  2.6	
  RNA	
  isolation	
  cDNA	
  synthesis	
  and	
  qPCR	
  	
  

RNA	
  isolation,	
  cDNA	
  synthesis	
  and	
  qPCR	
  materials	
  

Materials	
   Supplier	
  

Trizol®	
  	
   Gibco,	
   Life	
   technologies	
  
(Paisley,	
  UK)	
  

Chloroform	
  

Sigma	
  (Poole,	
  UK)	
  2-­‐Propanol	
  (molecular	
  grade)	
  

Ethanol	
  (molecular	
  grade)	
  

RNase-­‐free	
  DNase	
  set	
  

Qiagen	
  (Crawley,	
  UK)	
  RNeasy	
  mini	
  kit	
  

Quantitech	
  SYBR	
  green	
  PCR	
  kit	
  

Superscript	
   III	
   first	
   strand	
   cDNA	
  
synthesis	
  kit	
   Invitrogen,	
   Life	
   technologies	
  

(Paisley,	
  UK)	
  
RNase	
  OUT	
  

Random	
  primers	
   Promega	
  (Southampton,	
  UK)	
  

Specific	
  primers	
   Eurofins	
  (UK)	
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2.2 Methods 

2.2.1 Ethical approval 

Ethical approval for the study of neutrophils from adult healthy controls was 

granted by the University of Liverpool Committee for Research Ethics 

(CORE). All participants gave written, informed consent. 

 

2.2.2 Leukocyte isolation 

Blood was collected from healthy volunteers by venupuncture into lithium 

heparin-coated vacuettes and processed immediately. Blood taken for 

RNA-Seq processing was taken from volunteers at a similar and consistent 

time of the day (9 am - 11 am) to mitigate variation from the innate 

immunity circadian rhythm as recently described 166.  

2.2.2.1 Magnetic bead isolation of neutrophils by negative selection 

The EasySep® Human Neutrophil enrichment kit was used, following the 

manufacturer’s instructions. Whole blood was gently mixed with HetaSep 

solution at a ratio of 1:5 (1 part HetaSep to 5 parts Blood) and incubated at 

37 °C for 20-30 min until plasma/erythrocyte interphase was at 

approximately 60% of the total volume. The leukocyte-rich plasma layer 

was carefully removed and washed in a 4-fold volume of recommended 

media (Mg2+ and Ca2+ -free PBS, + 2% FBS and 1 mM EDTA). Cells were 

centrifuged at 500 g for 5 min and resuspended in a 4-fold volume of 

recommended media. Cells were centrifuged at 120 g for 10 min to 
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remove platelet contamination and resuspended at 5 x 107 nucleated cells 

per mL. 

A volume of between 0.5 and 2 mL of nucleated cells at 5 x 107/mL was 

used in each neutrophil bead purification process, dependent on the 

number of purified cells required. 50 µL of EasySep® neutrophil enrichment 

cocktail, containing a mix of tetrameric antibody complexes produced from  

monoclonal antibodies directed against the cell surface antigens CD2, 

CD3, CD9, CD19, CD36, CD56 and glycophorin A – whilst being bi-specific 

for dextran – was added per 1 mL of nucleated cells and incubated for 10 

min at room temperature. 100 µL of EasySep® dextran-coated nanoparticle 

beads were added per 1 mL of nucleated cells and incubated for a further 

10 min at room temperature. The cell/antibody/bead solution was adjusted 

to a total volume of 2.5 mL with recommended media and placed into an 

EasySep® magnet for 5 min at room temperature. Unbound neutrophils 

were poured off and placed into EasySep® magnet for a further 5 min. 

Highly-pure, unbound neutrophils were briefly centrifuged and 

resuspended in RPMI 1640 media plus 25 mM HEPES to a concentration of 

5 x 106/mL. Following the erythrocyte sedimentation step, the neutrophil 

isolation procedure from whole blood was performed at room temperature 

and would typically take less than 100 min to complete. 

2.2.2.2 Polymorphprep™ isolation of neutrophils 

Neutrophils were isolated by single-step centrifugation of whole blood 

onto Polymorphprep™ density gradient as per the manufacturer’s 
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recommendation. Briefly whole blood was layered onto Polymorphprep™ 

at a ratio of 1:1 and centrifuged at 500 g for 35 min. Granulocytes were 

carefully removed and resuspended in RPMI 1640 media plus 25 mM 

HEPES and centrifuged at 500 g for 5 min to remove any remaining 

Polymorphprep™. Cells were resuspended in media and contaminating 

erythrocytes were removed by hypotonic lysis by the addition of 

ammonium chloride (13.4 mM KHCO3, 155 mM NH4Cl and 96.7 mM EDTA 

in 500 mL distilled water) at a ratio of 1:9 media:lysis buffer for 3 min. 

Platelet contamination was removed by further centrifugation of the cells at 

150 g for 3 min. Neutrophils were counted using a Beckman Coulter 

Multisizer 3 and the suspension volume adjusted to give a final 

concentration of 5 x 106/mL. Cells were incubated with gentle agitation at 

37 °C and supplemented with 10% (v/v) human AB serum for incubations 

>4 h. The entire neutrophil isolation procedure from whole blood was 

performed at room temperature and would typically take less than 90 min 

to complete. 

2.2.2.3 Lymphocyte isolation 

Lymphocytes were isolated by carefully removing the upper PBMC band 

following whole blood centrifugation over Polymorphprep™ (as described 

in previous section). Cells were layered onto Lymphoprep™ density 

gradient, centrifuged for 20 min at 600 g and resuspended in RPMI (+ 

HEPES) media at 1x106 /mL. 
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2.2.3 Cytospins  

Purity of neutrophil isolations was determined by cytospin and visual 

identification of stained cells. 20 µL of cells at 5 x 106 cells/mL was added 

to 180 µL of PBS plus 10 mM EDTA. The suspension was placed into a 

single cytology funnel (VWR) and centrifuged onto a glass slide (VWR) at 30 

g for 5 min using a Shannon 3 cytospin and immediately stained with Rapid 

Rowmanowsky stain. Neutrophil purity was typically >96% and >98% 

following Polymorphprep™ or magnetic bead isolation, respectively. 

 

2.2.4 Flow cytometric analysis of neutrophil cell  surface markers 

For the measurement of cell surface markers by flow cytometry, 20 µL of 

neutrophils at 5 x 106 cells/mL (equating to 1 x 105 neutrophils) were 

washed in 100 µL PBS plus 0.1% (w/v) BSA, centrifuged at 1000 g for 3 min, 

resuspended in 10 µL PBS plus 0.1% (w/v) BSA and incubated at 4 °C in the 

dark with 2-5 µL of fluorescently-conjugated antibody (as indicated in the 

text). Following 30 min incubation cells were fixed in 2% paraformaldyhyde 

(PFA) for no more than 15 min at room temperature in the dark. Cells were 

centrifuged at 1000 g for 3 min and resuspended in 200 µL of PBS plus 

0.1% (w/v) BSA and stored at 4 °C prior to analysis. A minimum of 5000 

gated events were analysed using a Guava Easycyte flow cytometer 

(Millipore). Where applicable a suitable isotype control was used to control 

against non-specific staining.  
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2.2.5 Flow cytometry measurement of neutrophil apoptosis 

For measurement of neutrophil apoptosis/necrosis by flow cytometry, 105 

cells were incubated in 100 µL HBSS with 10 µg/mL of FITC-conjugated 

annexin V in the dark, following 15 min, 1 µg/mL propidium iodide (PI) was 

added and samples were measured immediately on a Guava Easycyte flow 

cytometer. A minimum of 5000 gated events were collected per sample.  

 

2.2.6 Preparation of protein lysates 

Neutrophils were centrifuged at 1000 g for 3 min following culture under 

appropriate conditions (as indicated in the text), the supernatant carefully 

aspirated, and the pellet immediately lysed in boiling Laemmli buffer 

containing 10% (v/v) glycerol, 100mM DTT, 3% (w/v) SDS, 1 M Tris-HCL (pH 

6.8) and 0.001% (w/v) bromophenol blue to a final concentration of 5 x 104 

cells/µL. For incubations >4 h neutrophils were additionally washed with 

PBS to remove supplemented human AB serum prior to lysis. For 

measurement of protein phosphorylation, Laemmli buffer was additionally 

supplemented with phosphatase inhibitors (phosphatase inhibitor cocktail 

II, Calbiochem, Nottingham, UK). Samples were boiled for 5 min with 

occasional vortexing and stored at -20 °C. 

 

 



91	
  
	
  

2.2.7 Western blotting 

Whole cell extracts were briefly boiled and centrifuged. 10-25 µL of protein 

lysate (equivalent to 5-15 x 104 cells) was loaded per well of an 8-15% 

polyacrylamide gel (dependent on size of protein under investigation) using 

a 4.5% stacking gel. 10µL of biotinylated and/or pre-stained molecular 

weight ladders were also loaded to allow for molecular weight 

determinations. Samples were electrophoresed at a constant 180-200V for 

approximately 60 min using a BioRad Mini Protean III electrophoresis kit 

until proteins were suitably resolved. Proteins were transferred to a PVDF 

membrane by electrophoresis in a BioRad mini Protean III transfer kit at a 

constant 100V for 60-90 min, depending on thickness of gel. Successful 

transfer of proteins was confirmed by briefly staining the membrane in 

Ponceau S (0.01% (w/v) in 5% (v/v) acetic acid) stain.  

To decrease non-specific binding of antibodies, membranes were 

incubated at room temperature for at least 1h in blocking buffer. 

Membranes were subsequently incubated overnight with primary antibody 

in wash buffer containing either 5% (w/v) non-fat dried milk or 5% (w/v) 

bovine serum albumin (BSA) at 4 °C with gentle agitation. Following 

washing of membranes for 3 x 5 min in washing buffer, membranes were 

incubated at room temperature for at least 1h with an appropriate 

horseradish-peroxidase (HRP)-conjugated secondary antibody in wash 

buffer containing 5% (w/v) non-fat dried milk (for specific concentrations 

see Table 2.7). Following further washing of the membrane in wash buffer 
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(3 x 5 min), the bound antibodies were detected using enhanced 

chemiluminescence (ECL) reagents and careful exposure of the membrane 

to hyper-film in a dark-room. Quantification of western blots by 

densitometry was carried out using the AQM Advanced 6 Imaging 

Software (Windows) and a digital film scanner. 

 

2.2.8 Measurement of neutrophil respiratory burst 

Neutrophil respiratory burst was measured by luminol-enhanced 

chemiluminescence. Luminol is a membrane permeable molecule and is 

therefore suitable for quantification of both intra and extracellular reactive 

oxygen species (ROS). Luminol is oxidised by the enzymatic products of 

myeloperoxidase and NADPH oxidase during the respiratory burst, 

resulting in a release of energy in the form of light which can be quantified 

using a plate reader. 

Cells at 5 x 106/mL were incubated in RPMI 1640 media with (or without) a 

priming cytokine for 30 min at 37 °C with gentle agitation. 2 x 105 cells (40 

µL) were added to an opaque 96-well microtitre plate and volume adjusted 

to 100 µL with media. 100 µL of HBSS containing 100 µM luminol, and 

either 1 µM fMLP or 0.2 mg/mL PMA were added to cells and immediately 

measured on a FLUOstar Omega plate reader at 37 °C plus 5% CO2.  
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Table	
  2.7	
  Western	
  blot	
  antibody	
  concentrations	
  

Western	
  blot	
  antibody	
  concentrations	
  

Primary	
  antibody	
   Secondary	
  antibody	
  

STAT	
  1	
  	
   Rabbit	
  (1:20,000)	
  

Phosphorylated	
  STAT1	
   Rabbit	
  (1:20,000)	
  

STAT	
  3	
   Rabbit	
  (1:20,000)	
  

Phosphorylated-­‐STAT	
  
3	
   Rabbit	
  (1:20,000)	
  

ERK	
   Rabbit	
  (1:20,000)	
  

Phospho-­‐ERK	
   Rabbit	
  (1:20,000)	
  

p38	
   Mouse	
  (1:10,000)	
  

phosphophorylated-­‐
p38	
   Mouse	
  (1:10,000)	
  

AKT	
   Rabbit	
  (1:20,000)	
  

Phosphorylated-­‐AKT	
   Rabbit	
  (1:20,000)	
  

IκBα	
   Rabbit	
  (1:20,000)	
  

Phosphorylated-­‐NFκB	
   Rabbit	
  (1:20,000)	
  

Beta	
  actin	
   Mouse	
  (1:10,000)	
  

IL-­‐1B	
   Rabbit	
  (1:20,000)	
  

GAPDH	
   Mouse	
  (1:10,000)	
  

 

2.2.9 Extraction and isolation of neutrophil RNA 

 Neutrophils at 5 x 106/mL were centrifuged at 1000 g for 3 min, the 

supernatant aspirated and the pellet lysed in 1mL of TRIzol® per 5x106 cells. 

Cells were further lysed by pipetting the solution several times through a 

20 gauge needle and syringe, to obtain a homogenized solution, which 

was incubated at room temperature for 5 min. 200 µl of chloroform was 
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added per 1mL of Trizol® and the solution was vigorously mixed for 15 

seconds, incubated at room temperature for 2-3 min, before being 

centrifuged at 10,000 g for 15 min at 4 °C. The upper aqueous layer, 

containing RNA, was carefully removed and added to an equal volume of 

molecular grade isopropanol.  This was stored for at least 24h at -20 °C to 

ensure complete precipitation of the RNA. Samples were then centrifuged 

at 10,000 g for 30 min at 4 °C, washed in 70% (v/v) ethanol, pelleted and 

re-suspended in 100 µL of RNase-free water. The RNA was further purified 

using a Qiagen RNeasy kit according to the manufacturers protocol, which 

included a 15 min DNase digestion step to eliminate any contaminating 

genomic DNA. RNA-Seq samples were prepared into a final elution of 30 µl 

of RNase-free water and stored at -150 °C.  All RNA samples were 

transported by courier on dry ice to either the Centre for Genomic 

Research (University of Liverpool) or BGI International, Hong Kong. In each 

case, transportation took less than 60 h and samples were quality-checked 

both after arrival, and following library construction. 

 

2.2.10 cDNA synthesis for PCR 

cDNA was synthesized from total RNA using the Superscript III First Strand 

cDNA synthesis kit (Qiagen), as per the manufacturers protocols. The total 

amount of RNA per sample within each experiment was adjusted to an 

equal amount prior to cDNA synthesis. RNA from each sample was added 

to 1 µL of random primers (250 ng), 1 μL dNTPs and the reaction volume 
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was adjusted to 13 µL by adding RNase-free water. Samples were heated 

to 65°C for 5 min in a heat-block and rapidly cooled on ice for at least 1 

min to allow primer annealing. A master-mix of 4 µL first-strand buffer, 1 µL 

RNaseOUT (RNase inhibitor), 1 µL (0.1M) DTT and 1 µL (200 units/µL) 

Superscript III reverse transcriptase, were added to each sample before 

incubation in a Thermo PX2 thermal cycler. cDNA synthesis was initiated at 

25 °C for 5 min, completed at 50 °C for 60 min and the reaction was 

terminated by a final 15 min at 70 °C. Samples were cooled to 4 °C before 

being stored at -20 °C until further use. 

 

2.2.11 Quantitative (real-t ime) PCR 

Transcript levels were quantified using the Quantitect SYBR Green qPCR 

detection kit (Qiagen), following the manufacturer’s protocol. Briefly, 1 µL 

of cDNA was added to 0.8 µL of each forward and reverse primer (10 pM) 

and 10 µL of QuantiTect, in a total reaction volume of 20 µL. Each sample 

was prepared in duplicate or triplicate and run on a Roche LightCycler 480 

qPCR machine in an opaque 96-well microtitre plate using the cycling 

protocol shown in (Table 2.8). Relative amounts of target transcripts were 

quantified by normalising their Ct values against those of a suitable 

housekeeping gene (as indicated in the text) using the Pfaffl method 167. 

Primer sequences shown in Table 2.9. 
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Table	
  2.8	
  qPCR	
  cycling	
  parameter 

Cycling	
  
stage	
   Step	
   Temperature	
  

(°C)	
  
Time	
  
(min)	
  

No.	
   of	
  
cycles	
  

1	
   Taq	
  Activation	
   95	
   15	
   1	
  

2	
  

Denaturation	
   95	
   1	
  

45	
  Primer	
  
Annealing	
   55	
   0.5	
  

Elongation	
   72	
   0.5	
  

3	
   Melt	
   Curve	
  
Analysis	
   60	
   0.5	
   1	
  

	
  

	
  

Table	
  2.9	
  Primer	
  sequences	
  and	
  PCR	
  product	
  size 

PCR	
  primers	
  

Gene	
  of	
  
Interest	
  

Primer	
  Sequence	
  (5’	
  to	
  3’)	
   Product	
  
size	
  (bp)	
  

FADD-­‐f	
   CACAGACCACCTGCTTCTGA	
   176	
  

FADD-­‐r	
   CTGGACACGGTTCCAACTTT	
   	
  

FOS-­‐f	
   CTCCGGTGGTCACCTGTACT	
   137	
  

FOS-­‐r	
   GTCAGAGGAAGGCTCATTGC	
   	
  

ICAM1-­‐f	
   AGCTTCGTGTCCTGTATGGCCC	
   128	
  

ICAM1-­‐r	
   ACACTTGAGCTCGGGCAATGGG	
   	
  

IL1B-­‐f	
   CACTACAGCAAGGGCTTCAGGC	
   98	
  

IL1B-­‐r	
   TTCTCCTGGAAGGTCTGTGGGC	
   	
  

IL8-­‐f	
   AAAAGCCACCGGAGCACTCCAT	
   143	
  

IL8-­‐r	
   AGAGCCACGGCCAGCTTGGA	
   	
  

JUN-­‐f	
   TGGCAGAGTCCCGGAGCGAA	
   121	
  

JUN-­‐r	
   CGAAGCTGAGCGCACGTCCT	
   	
  

NAMPT-­‐f	
   GCCAGCAGGGAATTTTGTTA	
   100	
  

NAMPT-­‐r	
   TGTCACCTTGCCATTCTTGA	
   	
  

SOCS3-­‐f	
   CTGGTCCCCTCCCGGTTGGT	
   112	
  

SOCS3-­‐r	
   TGTTGGCGGCCGTGAAGTCC	
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TNF-­‐f	
   CAGAGGGCCTGTACCTCATC	
   219	
  

TNF-­‐r	
   GGAAGACCCCTCCCAGATAG	
   	
  

ACTB-­‐f	
   CATCGAGCACGGCATCGTCA	
   211	
  

ACTB-­‐r	
   TAGCACAGCCTGGACAGCAAC	
   	
  

B2M-­‐f	
   ACTGAATTCACCCCCACTGA	
   114	
  

B2M-­‐r	
   CCTCCATGATGCTGCTTACA	
   	
  

GAPDH-­‐f	
   CTCAACGACCACTTTGTCAAGCTCA	
   106	
  

GAPDH-­‐r	
   GGTCTTACTCCTTGGAGGCCATGTG	
   	
  

PPIA-­‐f	
   GCTTTGGGTCCAGGAATGG	
   60	
  

PPIA-­‐r	
   GTTGTCCACAGTCAGCCATGGT	
   	
  

	
  

	
  

2.2.12 Statist ics 

Statistical analysis of RNA-Seq data was performed by Cufflinks 

bioinformatic software 145, incorporating a false discovery rate (FDR) of 5% 

using Benjamini-Hochberg correction for multiple testing 164,168. Unless 

otherwise stated, all other data was judged for significance using the 

Student’s t-test for either paired or independent samples, as necessary. 

Significance was calculated using GraphPad/Prism version 6.0. (GraphPad 

software, San Diego, CA. USA). Error bars represent SEM unless otherwise 

stated and differences were considered significant if p < 0.05.  
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2.2.13 Bioinformatic software 

Several bioinformatic software programs were used to analyse both raw 

and annotated RNA-Seq data, (Table 2.10) provides details on the release 

versions used for analysis of data presented. Further details of individual 

bioinformatic software used can be found in Chapter 3. 

 

Table	
  2.10	
  Release	
  versions	
  of	
  bioinformatic	
  software	
   

Bioinformatic	
  software	
  versions	
  
Bioinformatic	
  
software	
   Version	
  

Bowtie	
   2.0.07	
  
Tophat	
   1.4.1-­‐2.0.4	
  
Cufflinks	
   2.02	
  
Samtools	
   0.1.18	
  
IPA	
   n/a	
  
IGV	
   2.2.7	
  

Microsoft	
  
Office	
   2011	
  edition	
  

R	
   2.15.2	
  
EdgeR	
   3.0.8	
  
DESeq	
   1.10.1	
  

cummeRbund	
   2.6.2	
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Chapter	
   3:	
   Defining	
   a	
  
bioinformatic	
   pipeline	
   for	
  
analysis	
   of	
   neutrophil	
   gene	
  
expression	
  
Results presented within this chapter were included in a publication in 
which I was co-lead author: 
 
Wright	
  HL†,	
  Thomas	
  HB†,	
  Moots	
  RJ,	
  Edwards	
  SW	
  (2013)	
  RNA-­‐Seq	
  Reveals	
  
Activation	
  of	
  Both	
  Common	
  and	
  Cytokine-­‐Specific	
  Pathways	
  following	
  
Neutrophil	
  Priming.	
  PLoS	
  ONE	
  8(3):	
  e58598.	
  doi:10.1371/journal.pone.0058598	
  

3.1 Introduction 

Neutrophils are the most abundant white blood cell in the circulation, 

representing between 40-60% of the leukocyte population. On average, up 

to 1010 neutrophils are released from the bone marrow per day 169. These 

terminally-differentiated cells patrol the vascular system in search of 

inflammatory signals arising from pathological insult or localised cellular 

injury. Armed with a variety of anti-microbial enzymes and the ability to 

rapidly release reactive oxygen metabolites, neutrophils are the major 

cellular component of the innate immune system.  

Historically, neutrophils were regarded as one-dimensional innate cells, 

with little influence on surrounding immune cells owing to an incapacity for 

de novo gene expression and a short half-life of between 6-8 h. It is now 

well established that neutrophils play a central role in initiating and 
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propagating both the innate and adaptive immune responses by the 

production and release of numerous cytokines and chemokines 5.  

Despite the increased appreciation of neutrophil gene expression, few 

studies have focused on how neutrophil gene expression profiles change in 

response to external stimuli. Moreover, at the time of commencement of 

this project, the human neutrophil transcriptome had yet to be quantified 

by RNA-Seq despite similar studies on other cell types 117,170–172 There are 

several benefits offered by RNA-Seq over more established technologies 

such as micro-arrays and quantitative PCR as a method of quantifying the 

gene expression profile of a cell (as discussed in section 1.5.2). 

The past 20 years has seen an exponential increase in sequencing 

technologies. Both sequencing speed and accuracy have increased 

dramatically, whilst the financial cost of the instruments and reagents has 

decreased. These improvements can largely be attributed to the efforts of 

the human genome project, which brought about the collaboration of 

several research institutes in an attempt to comprehensively sequence the 

human genome using the best available technology at the time. The 

success of the 13 year project has led the way for further improvements 

and greater decreases in costs of sequencing. By way of example, Fig 3.1 

shows how the cost of sequencing a genome has decreased by over 4 

orders of magnitude in the space of a decade. These costs declined 

modestly over the first 5 years, but more rapidly post-2008, via the 

introduction of the then-called “next generation sequencing” (NGS) 
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technology, which consisted of Applied Biosystem’s SOLiD™ platform, 

Roche’s 454 pyrosequencer technology and Illumina’s Genome analyser 

system 173.  

 

 

Fig	
  3.1	
  The	
  cost	
  of	
  sequencing	
  a	
  genome	
  from	
  2003-­‐2013.	
  The	
  cost	
  of	
  sequencing	
  has	
  
decreased	
  by	
  more	
  than	
  4	
  orders	
  of	
  magnitude	
   in	
   the	
  space	
  of	
   10	
  years.	
  The	
  current	
  
cost	
   (Jan	
   2014)	
   is	
   approximately	
   £2300.	
   	
   Adapted	
   from,	
   Wetterstrand	
   KA.	
   DNA	
  
Sequencing	
  Costs:	
  Data	
  from	
  the	
  NHGRI	
  Genome	
  Sequencing	
  Program	
  (GSP)	
  Available	
  
at:	
  www.genome.gov/sequencingcosts.	
  Accessed	
  [23-­‐5-­‐14].	
  
 
In addition to a decrease in sequencing costs, the digital output of a 

sequencing run has equally accelerated exponentially during the last 

decade. The rate of development (or fall in cost) of many technological 

platforms can often be shown to correlate well with Moore’s law, which 

states that on average, the number of transistors in an integrated circuit 

doubles every 24 months. One such area of technology that has fallen in 

line with Moore’s law is that of data storage. However, the increase seen in 

NGS capacity for data production far outstrips that predicted by Moore’s 

law 174. This disparity in cost between storage and production of NGS data 
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could ultimately lead to sequence data being more expensive to store than 

to produce 175. 

Whilst the relative improvements in sequencing technologies compared to 

other technological fields is of interest (and concern), perhaps of greater 

importance is the disproportionate improvements in sequencing 

technologies with sequencing data analysis software. As the cost of 

sequencing decreased to accessible levels, the data analysis software 

available to analyse the raw data remained largely either inadequate, too 

technical to operate, or unfeasibly expensive for small-scale studies by 

scientists.  

More recently, a large number of open-access software programs have 

been developed for biology- users who have basic informatics skills. These 

allow free distribution and adaptation of programs that are designed to be 

compatible with the major sequencing platforms and raw data formats, but 

require the user to be familiar with a basic command line interface and 

non-standard operating systems, such as Linux or Unix. Additionally, 

software development of this kind is often small-scale and with limited 

features. Consequently, there are now a large number of open-source 

bioinformatic analysis software packages offering a range of utilities, 

advantages and features over other software packages. While these may 

not have the breadth of features available or ease of use to appeal to a 

dedicated bioinformatics research lab, they are usable to researchers with 

modest bioinformatic skills.  
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Perhaps unsurprisingly, many of the more successful and popular software 

packages are those developed by large commercial companies such as the 

CLCbio Genomics Workbench by Qiagen, or ERGO™ by igenbio, which 

are software suites offering all the most popular features of other software 

packages (such as read-mapping, annotation and differential analysis) in 

one software suite, with the added benefit of offering full user support and 

guidance on how best to utilise the software and extensive troubleshooting 

documentation. Software suites of this kind are an attempt to standardise 

the process of quantifying large datasets but they do so at fairly high cost. 

Whilst the intuitive graphical interface, full support, and industry-wide 

recognition is of great importance for large research centres, the often high 

commercial-licence cost (and annual subscription costs) can price out the 

smaller laboratories. Consequently, there is little agreement within the NGS 

community as to what is considered to be ‘best practice’ when it comes to 

data annotation and analysis 176. 

In summary, It is clear that a global approach to studying neutrophil gene 

expression by RNA-Seq is both potentially achievable, and of great 

interest. It will allow the accurate measurement of transcriptional changes 

in neutrophils under tightly controlled conditions and could ultimately lead 

to the development of a predictive model to determine the functional 

consequences of these changes. Whilst the available high-throughput 

sequencing technology is both adequate and affordable to undergo a large 

scale study into gene expression, the necessary software and parameters 
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required are poorly defined. The data presented here aim to define a 

robust pipeline of software packages, protocols and methods that can be 

employed to quantify the neutrophil transcriptome under conditions of 

stimulated inflammation. 
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3.2 Aims 

The overall aims of this Chapter were to establish a pipeline for the analysis 

of transcriptome data obtained by RNA-Seq of neutrophils stimulated in 

vitro by inflammatory activators. The specific aims were: 

 

1. To define a pipeline of methods, software programs and settings for 

compilation and analysis of RNA-Seq data. 

 

2. To determine if changes in gene expression are consistently 

detectable and if they correlate with a change in phenotype, as 

measured by laboratory based functional assays. 

 

3. To define a set of downstream analysis techniques to further analyse 

RNA-Seq gene expression data. 
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3.3 Methods 

The data herein describe the optimisation of a bioinformatics pipeline (of 

protocols and software packages) to define the neutrophil transcriptome 

under stimulated conditions of inflammation (in vitro). The data is 

presented in such a way as to be informative and clear to an interested 

reader of the best methods to adopt in addition to various pit-falls to 

avoid. The pipeline described here will form the basis of bioinformatic 

analysis undertaken in later Chapters. For the sake of brevity, many of the 

comparative and optimisation analyses carried out could not be included, 

hence much of the results described represent the optimal settings for 

each software program under comparison. 

 

3.3.1 Sample preparation 

Neutrophils were isolated by Polymorphprep™ from healthy donors (as 

described in section 2.2.2.2). Neutrophil RNA was extracted by TRIzol®-

chloroform precipitation and analysed by RNA-Seq using paired-end 

sequencing on the SOLiD™ 4.0 platform or single-end sequencing using 

the Illumina HiSeq 2000 platform, as indicated in the text. 
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3.3.2 Computational processing 

All of the bioinformatic software discussed in this Chapter can be run on a 

stand-alone desktop computer using a Unix/Linux or Mac OS operating 

system providing there is adequate processing power and random access 

memory (RAM) available. Technical specifications of the processing unit 

used (analysis-Mac) in the bioinformatics analysis can be found in Appendix 

Table A.2. 

For bioinformatic analyses using multiple data sets, to allow multiple 

analyses to be run simultaneously and in a shorter time than using analysis-

Mac, it was necessary to utilise a high-powered multi-core processing 

cluster provided by the University of Liverpool Computer Services 

Department (CSD). Consequently all mapping, annotation and differential-

expression testing processing was carried out using a Gigabit Ethernet 

cluster (44-core, per core; 2.2 GHz AMD core, 8GB RAM, 72GB disk space, 

Linux 9.3 SuSE). This cluster was accessed via the analysis-Mac through the 

University intranet. Raw data was firstly uploaded to cluster servers and 

bioinformatic analysis software was run via a short command script (.txt file).  

Software commands listed in this Chapter only include the basic commands 

(and optimised parameters) needed to run the software, and file paths are 

summarised. An example of the additional scripting required for cluster-

based analyses is provided in Appendix Fig A.1. 

Raw data from cluster-run analyses was backed up both internally and 

manually using University of Liverpool CSD backup storage facility.  
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3.4 Results 

3.4.1 RNA quantity and quality 

3.4.1.1 Quantity 

RNA-Seq technology requires high integrity RNA, with minimal 

contamination by genomic DNA. Typically, sequencing service providers 

require a minimum of 5 μg total RNA (per sample) for library construction 

(which also provides enough material for a second attempt at library 

construction). The numbers of neutrophils isolated from peripheral blood is 

donor-dependent and can vary between 1x106-5x106/mL blood 177. 

Furthermore, neutrophils contain considerably less RNA than other 

leukocytes such as peripheral blood mononuclear cells (PBMCs) 178. 

Following extraction by TRIzol®-chloroform precipitation, total RNA from 

106 and 107 neutrophils (isolated by Polymorphprep™)  and 106 PBMCs 

(isolated by Lymphoprep™)  was measured from 4 separate donors using a 

nanodrop spectrophotometer (Thermo Fisher scientific, Gloucestershire, 

UK) (Fig 3.2). Mean level of RNA from 106 neutrophils = 139.5 ng/mL ± 

15.75, 107 neutrophils =1797.8 ng/mL ± 91.75 and 106 PBMCs = 807.0 

ng/mL ± 117.43. These data suggest that PBMCs have approximately 5-

times more RNA than neutrophils on a cell basis, and that a minimum of 

30x106 neutrophils is required to achieve the recommended 5 μg of total 

RNA necessary for sequencing. 
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Fig	
   3.2	
   Amounts	
   of	
   RNA	
   extracted	
   from	
   106	
   and	
   107	
   neutrophils	
   (PMN)	
   and	
   106	
  

peripheral	
   blood	
   mononuclear	
   cells	
   (PBMC).	
   Bars	
   represent	
   mean	
   of	
   4	
   separate	
  
experiments.	
  Error	
  bars	
  represent	
  SEM.	
  

 

3.4.1.2 Quality 

i) RNA integrity 

The lengthy isolation process required for purifying neutrophils from whole 

blood (60-90 min) can often affect the quality of the final purified RNA. 

While the contamination of neutrophil preparations by other leukocytes 

must be considered, the greater number of steps required to isolate highly-

pure neutrophils can lead to longer isolation times and opportunities to 

inadvertently activate neutrophils or compromise the quality of RNA that is 

recovered. 

The overall integrity of an RNA sample is such a crucial determinant of the 

eventual success of an RNA-Seq experiment that sequencing service-

providers often request that all samples be accompanied by an accurate 
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measurement of integrity. Furthermore, an additional measurement of 

integrity is often made just prior to the samples being sequenced. A 

common method of measuring RNA integrity (RIN) is using the Agilent 

BioAnalyser 179,180. RNA integrity is measured on a scale of 1-10 where 1 

refers to RNA with the lowest integrity and 10 indicating no degradation of 

RNA. By way of example, output from the Agilent Bioanalyser relating to a 

low, and high-integrity RNA sample is shown in appendix Fig A.2. 

RNA from 106 PBMCs and 107 neutrophils was extracted by TRIzol®-

chloroform precipitation and RNA integrity was measured by Agilent 2100 

BioAnalyser (Fig 3.3). Levels of integrity were consistently measured 

between 7.0 – 8.6 RIN. The mean values across 4 samples were identical in 

PBMCs and neutrophils (7.9 RIN). 

 

 
 

Fig	
   3.3	
   RNA	
   integrity	
   number	
   (RIN)	
   values	
   for	
   RNA	
   samples	
   from	
   PBMCs	
   and	
  
neutrophils	
   (PMN).	
   Horizontal	
   bars	
   represent	
   mean	
   value	
   from	
   4	
   separate	
  
experiments/Donors.	
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ii) RNA purity 

RNA purity is of upmost importance for RNA-Seq. Residual solvent from 

extraction protocols or contaminating genomic DNA can have a significant 

effect on the success and accuracy of the resulting RNA-Seq experiment. 

Neutrophil RNA extraction performed in the previous experiments was 

using TRIzol®-chloroform precipitation, followed by on-column cleanup by 

Qiagen RNeasy kit including a 15 min the DNase digest step. The 

efficiency of TRIzol®-chloroform extraction and DNase digestion step was 

compared to an on-column extraction method using a Qiagen column, with 

or without a DNase digestion step. RNA from TRIzol®-chloroform 

extraction and Qiagen on-column extraction was converted to cDNA using 

the Superscript III first strand cDNA synthesis kit. Primers for MCL-1 (full 

length) were used to amplify cDNA by PCR. Amplified cDNA from each 

extraction method was analysed on an agarose gel to assess levels of 

contamination by genomic DNA. Samples prepared by on-column 

extraction were found to contain higher levels of contaminating genomic 

DNA than samples extracted by TRIzol-cholorform precipitation. 

Additionally, where contaminating genomic DNA was present, a 15 min 

DNAse digest step was sufficient to eliminate any genomic DNA signal (see 

Appendix Fig A.3). 

These data suggest that neutrophil isolation by Polymorphprep™ and RNA 

extraction by TRIzol-chloroform precipitation, plus RNA cleanup and DNase 

digestion steps, provides an appropriate method for RNA sample 
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preparation with high integrity (> 8.0 RIN) and low contamination by 

genomic DNA, which are suitable for RNA-Seq experiments. 

 

3.4.2 Sample preparation 

Several stimuli are known to induce de novo gene expression in 

neutrophils, such as low oxygen tension (hypoxia), immune complexes and 

cytokine stimulation. Of these stimuli, the effects of cytokines on neutrophil 

gene expression are perhaps the most widely studied and established 

(often by micro-arrays and qPCR), and so these agonists were used to 

validate transcriptome analysis by RNA-Seq. 

 

3.4.3 Cytokine stimulation and time point selection 

Both GM-CSF and TNFα are commonly-used neutrophil priming agents 

that regulate neutrophil gene expression in vitro 181,182. Neutrophils 

incubated with previously established priming concentrations of GM-CSF (5 

ng/mL) and TNFα (10 ng/mL) 182–184 were prepared as previously described 

(Methods section 2.2.9) for RNA-Seq analysis.   

Priming of neutrophils with either GM-CSF or TNFα has previously been 

shown to rapidly increase transcription of several genes, such as IL-8 and 

IL-1β 10,185,186. First, it was necessary to determine the time course of 

activation of gene expression following addition of these cytokines. Fig 3.4 

shows the relative expression of IL-8, IL-1β, CCL3 and ICAM1 over 2 h 

following neutrophil incubation with (or without) GM-CSF measured by 
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qPCR. Time points beyond 2 h were not considered due to the likelihood 

of de novo cytokine production leading to autocrine signalling 186–189. 

 

 

 
Fig	
   3.4	
   Relative	
   expression	
   of	
   mRNA	
   following	
   stimulation	
   with	
   GM-­‐CSF	
   (GM)	
   (5	
  
ng/mL)	
   (black	
   bars),	
   or	
   remaining	
   untreated	
   (UT)(white	
   bars)	
   over	
   2	
   h	
  measured	
   by	
  
qPCR.	
   Target	
   gene	
   expression	
   was	
   normalised	
   to	
   B2M	
   housekeeping	
   gene167	
   and	
   is	
  
expressed	
  as	
  fold	
  increase	
  compared	
  to	
  levels	
  of	
  expression	
  at	
  0h.	
  

 

Levels of expression were highest at 1 h for ICAM1 and IL-1β, levels of 

CCL3 were highest at 30 min whilst levels of IL-8 remained high for entire 2 

h time course. Whilst it is impossible to have a single time point for RNA-

Seq analysis which is optimal for all genes in the transcriptome, these data 

suggest that a 1 h time point is adequate to identify rapid changes in gene 

expression following neutrophil stimulation whilst also avoiding any risk of 
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measuring secondary activation of neutrophils by autocrine signalling 

following de novo synthesis of cytokines. 

3.4.4 RNA-Seq pipeline development 

3.4.4.1 Platform selection 

The most popular platforms for NGS share many similarities, such as 

sensitivity, capacity and accuracy, but differ in a number of parameters such 

as read length, output data format, speed and cost (described in more 

detail in sections 1.5.4-1.5.6) The choice of a suitable platform must 

consider each of these factors, in addition to availability and access.  

At the outset of this project, the Centre for Genomic Research (CGR) 

located in-house at the University of Liverpool provided next generation 

sequencing of RNA by both Roche’s 454, and Applied Biosystems SOLiD™ 

4.0 platforms. In addition, sequencing by the SOLiD™ platform could be 

carried out using single- (50 bp) or paired-end (50 + 35 bp) reads. The 

short reads and deep coverage of the SOLiD platform is better suited to 

gene expression studies of a well annotated genome (e.g. the human 

genome), than the 454 platform which utilises much larger read lengths 

and is more appropriate for de novo assembly of non-sequenced genomes 

(or transcriptomes) where a reference sequence is not available. 

Furthermore, the ability to carry out paired-end sequencing on the SOLiD 

platform can increase the amount of raw data produced from a single 

sequencing run by approximately 70% whilst also improving the accuracy 

of read mapping. Consequently, neutrophil RNA samples were initially 
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sequenced by paired-end technology on the SOLiD 4.0 platform at the 

CGR. 

3.4.4.2 SOLiD™ 4.0 paired-end sequencing 

Whole blood from a healthy donor was prepared by Polymorphprep™. 

Neutrophils (3x107/sample) were incubated at 37 °C for 1 h with (or 

without) GM-CSF (5 ng/mL) or TNFα (10 ng/mL). RNA was extracted as 

previously described. RNA integrity was analysed by Agilent bioanalyser 

2100 and measured at 8.5, 7.5 and 7.0 RIN for the untreated, GM-CSF and 

TNF samples respectively.  

Total RNA was enriched for mRNA transcripts by terminator exonuclease 

treatment at the CGR (as described in section 1.5.3.2.a). Enriched samples 

were processed for paired-end sequencing which produced upwards of  

6x107 50 bp 5’à3’ forward (F3) and  paired 35 bp 3’à5’ reverse (F5) 

transcripts per sample (see section 1.5.8 for details of paired end 

sequencing, and Appendix Table A.4 for number of raw reads per sample). 

 

3.4.4.3 Quality control analysis of paired end sequence data 

For each sample sequenced on the SOLiD™ 4.0 platform, 2 data files are 

produced; a raw data file (filtered to remove adapter sequences and 

fragment reads) in .csfasta file format (i.e. a fasta sequence file with the 

data in colorspace, rather than base space), and an accompanying quality 

file (.qual) which provides a Phred quality score for each base in each read. 

The Phred score refers to the likelihood that the base calling at each base 
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position is correct. For example, a Phred score of 40 indicates that there is 

a 99.99% chance that at that position the sequencing software has correctly 

called the base nucleotide whereas a score of 10 indicates that there is a 

90% chance that the base nucleotide has been called correctly 190. Quality 

scores can be used to assess the success of a sequencing run and can be 

included in the mapping software protocols to improve read mapping 

rates. 

Raw reads were analysed by the Java program Quality Assessment 191 to 

quantify the number of reads in each data set that had a mean Phred score 

of >20 (i.e < 1 incorrectly called base per 100 bases). In each sample, less 

than 50% of reads had a mean Phred quality score of >20, with the smaller 

F5 reverse-fragments consistently having a lower score than the F3 

forward-fragments (Fig 3.5). These values are lower than expected and 

could impact on successful mapping due to the low quality of the data. 
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Fig	
  3.5	
  Total	
  number	
  of	
  reads	
  (open	
  bars)	
  and	
  number	
  of	
  reads	
  with	
  >20	
  Phred	
  quality	
  
score	
   (black	
  bars)	
   in	
   untreated	
   (UT),	
  GM-­‐CSF	
   (GM)	
   and	
  TNFα	
   (TNF)	
   treated	
   samples,	
  
for	
   forward	
   (F3)	
   and	
   reverse	
   (F5)	
   fragments	
   of	
   paired-­‐end	
   raw	
   SOLiD	
   sequencing	
  
reads.	
  Reads	
  quantified	
  by	
  Quality	
  Assessment	
  software	
  191.	
  
	
  

3.4.4.4 High throughput mapping of paired-end sequence data by 

Bowtie/Tophat 

The high throughput mapper Bowtie is an ultra-fast, short sequence-read 

aligner that can operate on modest computational hardware utilising a 

heavily indexed (Burrows-Wheeler compression† 192) reference sequence 

and multi-core processing (where available) to map upwards of 25x106 

reads per hour 151. Bowtie can take single- or paired-end reads in either 

base space or colorspace as input, such that it can process raw data from 

any of the 3 major sequencing platforms (454, SOLiD or Illumina). However, 

Bowtie cannot map reads that span splice junctions. 

The closely-related software package Tophat 155 utilises the basic mapping 

features of Bowtie, while applying an additional mapping algorithm to 

unmapped reads to enable the accurate mapping of reads that span splice 
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†Burrows-Wheeler compression is a method of indexing large amounts of data.  It is 
particularly  useful  for data with large portions of repetition (such as genomic data), and is 
a lso a reversib le form of compression without the need for addit ional data.   
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junction sites that would otherwise be unmapped by Bowtie (covered in 

more detail in section 1.6.2). Initiation of Tophat first uses Bowtie to map 

reads not spanning splice junctions, subsequently, Tophat attempts to map 

remaining reads. Provision of a .gtf file (see Abreviations Table Ab.1 for 

details)  to Tophat can improve mapping rates by providing a list of known 

splice junctions within the reference sequence. 

Several different parameters and settings options exist for both software 

programs which affect how read-data are processed and handled, prior to, 

or during the mapping process. For example, reads may be trimmed to 

eliminate areas of low quality prior to mapping. Alternatively, if a read can 

be aligned to multiple locations in the reference sequence, settings within 

the Bowtie program determine if the read is eventually positioned at the 

highest-quality location, spread amongst all sites equally, or removed from 

the mapping process entirely since no definitive mapping location can be 

determined. These features exist to enable the user to improve rates of 

mapping, while also improving the quality of mapping by a decrease in the 

number of false positives, false negatives or sequencing/mapping artefacts. 

A summary of the most important parameters are found in Table 3.1, which 

also highlights the parameters that were altered from default settings 

during the mapping process to achieve optimal mapping rates. 
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Table	
   3.1	
   Summary	
   of	
   Bowtie	
   options	
   and	
   parameters	
   available.	
   <int>	
   refers	
   to	
  
additional	
   parameter	
   required	
   as	
   an	
   integer.	
   Settings	
   shaded	
   grey	
  were	
   assigned	
   in	
  
neutrophil	
  sequencing	
  pipeline.	
  
 

Bowtie	
  settings	
   Function	
  

Input	
  options	
   	
  

-­‐q	
   Input	
  file	
  is	
  in	
  FASTQ	
  format	
  
-­‐f	
   Input	
  file	
  is	
  in	
  FASTA	
  format	
  
-­‐r	
   Input	
  file	
  is	
  in	
  RAW	
  format	
  
-­‐c	
   Input	
  via	
  command	
  line	
  
-­‐C/-­‐-­‐color	
   Input	
  is	
  interpreted	
  in	
  colorspace	
  
-­‐Q/-­‐-­‐qual	
   Input	
  file	
  is	
  a	
  quality	
  file	
  	
  
-­‐s/-­‐-­‐skip	
  <int>	
   Skip	
  <int>	
  no.	
  of	
  reads	
  from	
  input	
  
-­‐-­‐solexa1.3-­‐quals	
   Input	
  quals	
  are	
  in	
  ASCII	
  format,	
  appropriate	
  for	
  

Illumina	
  pipeline	
  version	
  >	
  1.3	
  
Alignment	
   	
  

-­‐v	
  <int>	
   Report	
   alignments	
  with	
  no	
  greater	
   than	
  <int>	
  
mismatches	
  

-­‐e	
  <int>	
   Maximum	
  permitted	
   total	
  of	
  quality	
  values	
  of	
  
all	
   mismatched	
   read	
   positions	
   throughout	
  
entire	
  read	
  alignment	
  

-­‐l	
  <int>	
   Seed	
  length,	
  i.e	
  the	
  number	
  of	
  reads	
  from	
  the	
  
high	
  quality	
  end	
  used	
  to	
  begin	
  alignment	
  

-­‐n	
  <int>	
   Number	
   of	
   mismatches	
   permitted	
   in	
   the	
  
“seed”	
  (0-­‐3,	
  default:	
  2)	
  

-­‐I/-­‐-­‐minins	
  <int>	
   Minimum	
   length	
   of	
   reads+insert	
   for	
   paired	
  
end	
  reads	
  

-­‐X/-­‐-­‐maxins	
  <int>	
   Maximum	
   length	
   of	
   reads+insert	
   for	
   paired	
  
end	
  reads	
  

-­‐-­‐fr/-­‐-­‐rf/-­‐-­‐ff	
   The	
   upstream/downstream	
   orientation	
   of	
  
paired-­‐end	
   reads	
   relative	
   to	
   the	
   forward	
  
reference	
  strand	
  

-­‐-­‐chunkmbs	
  <int>	
   The	
   amount	
   of	
  memory	
   (in	
  Mbs)	
   assigned	
   to	
  
read	
  alignment	
  per	
  thread	
  (default:	
  64)	
  

Reporting	
   	
  
-­‐k	
   Report	
  up	
  to	
  <int>	
  no.	
  of	
  alignments	
  per	
  read	
  

(or	
  read	
  pair)	
  
-­‐a/-­‐-­‐all	
   Report	
   all	
   valid	
   alignments	
   per	
   read	
   (or	
   read	
  

pair)	
  (default:	
  off)	
  
-­‐m	
  <int>	
   Suppress	
   all	
   subsequent	
   alignments	
   if	
   a	
   read	
  

has	
   more	
   than	
   <int>	
   possible	
   alignment	
  
locations	
  

-­‐M	
  <int>	
  	
   As	
  with	
   –m	
   ,	
   supress	
   alignments	
  with	
   greater	
  
than	
   <int>	
   valid	
   locations,	
   but	
   assign	
   read	
   to	
  
one	
  location	
  at	
  random	
  



120	
  
	
  

-­‐-­‐best	
   Where	
   multiple	
   alignments	
   for	
   a	
   single	
   read	
  
occur,	
  use	
  number	
  of	
  mismatches	
  and	
  quality	
  
of	
   reads	
   to	
   assign	
   to	
   best	
   alignment	
   location,	
  
or	
   where	
   multiple	
   alignments	
   are	
   permitted,	
  
list	
  alignments	
  in	
  order	
  of	
  best	
  to	
  worst	
  

-­‐-­‐strata	
   As	
   with	
   –best,	
   where	
   multiple	
   alignment	
  
locations	
  occur	
  that	
  fall	
   into	
  multiple	
  stratum,	
  
only	
   use	
   alignments	
   from	
   the	
   best	
   strata.	
  
(Redundant	
  in	
  later	
  versions	
  of	
  Bowtie)	
  

Output	
   	
  
-­‐t/-­‐-­‐time	
   Print	
   the	
   amount	
   of	
   time	
   taken	
   to	
   complete	
  

each	
  phase	
  of	
  mapping	
  
-­‐-­‐quiet	
   No	
  update	
  text	
  whilst	
  software	
  is	
  running,	
  only	
  

output	
  alignments	
  
-­‐-­‐al	
  <filename>	
   Output	
  all	
   reads	
   that	
   successfully	
  aligned	
   into	
  

a	
   new	
   <filename>	
   as	
   they	
   appear	
   in	
   the	
   raw	
  
input	
  file	
  

-­‐-­‐un	
  <filename>	
  	
   Output	
  all	
  reads	
  that	
  failed	
  to	
  align	
  into	
  a	
  new	
  
<filename>	
  as	
  they	
  appear	
  in	
  the	
  raw	
  input	
  file	
  

-­‐-­‐max	
  <filename>	
   Output	
   all	
   reads	
   that	
   failed	
   to	
   align	
   due	
   to	
  
exceeding	
   limit	
   of	
   alignment	
   locations	
   into	
   a	
  
new	
   <filename>	
   as	
   they	
   appear	
   in	
   the	
   raw	
  
input	
  file	
  

-­‐-­‐suppress	
  <int>	
   Suppress	
  column	
  no.	
  <int>	
  from	
  the	
  output	
  file	
  	
  
-­‐S/-­‐-­‐sam	
   Output	
  in	
  SAM	
  format	
  

Performance	
   	
  
-­‐p/-­‐-­‐threads	
  <int>	
  	
   Run	
   alignment	
   in	
   parallel	
   on	
   <int>	
   no.	
   of	
  

processors/cores	
  
	
  
 

3.4.4.5 Optimisation of Bowtie/Tophat settings  

Settings such as seed length, number of alignment threshold and read 

trimming were optimised to increase rates of mapping without increasing 

the amount of non-specific alignments (see Table 3.1 for explanation of 

each parameter). Due to the low quality values for F5 paired fragments in 

each of the SOLiD sequenced samples, F5 reads were omitted from the 

mapping stage. Furthermore, low quality 3’ ends of the F3 fragments were 
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trimmed (by 8 bases) by Bowtie prior to alignment, as this improved overall 

rates of mapping. 

Due to a software design feature, several of the Bowtie parameters were 

not available when initiating mapping by Bowtie through running Tophat. 

Consequently, mapping was completed via a three-stage process. Firstly, 

reads were mapped to the genome using Bowtie and unaligned reads were 

outputted into a separate file, using the command:  

 

bowtie	
  -­‐p	
  8	
  -­‐S	
  -­‐C	
  -­‐l	
  20	
  -­‐-­‐trim3	
  8	
  -­‐e	
  100	
  -­‐-­‐un	
  unaligned	
  -­‐-­‐chunkmbs	
  4000	
  -­‐k	
  1	
  -­‐m	
  1	
  -­‐-­‐
best	
  -­‐-­‐strata	
  /path/to/Bowtie/reference/genome	
  –f	
  path/to/raw/reads_data	
  –q	
  
path/to/raw/quality/values	
  >	
  output.sam	
  
 
 
 Secondly, unaligned reads were inputted into Tophat and realigned to the 

reference  sequence (human reference hg19), using the command: 

 

tophat	
  -­‐p	
  8	
  -­‐-­‐color	
  -­‐-­‐quals	
  -­‐r	
  200	
  -­‐-­‐mate-­‐std-­‐dev	
  30	
  -­‐a	
  5	
  -­‐-­‐library-­‐type	
  fr-­‐
secondstrand	
  -­‐-­‐segment-­‐length	
  20	
  –bowtie-­‐n	
  -­‐-­‐max-­‐multihits	
  1	
  -­‐G	
  
/path/to/reference/annotation_file.gtf	
  /path/to/Bowtie/reference/genome	
  	
  
/path/to/unaligned_reads	
  –q	
  path/to/unaligned_reads/quality/values	
  
 
 
Finally, all aligned reads were merged into a single output file (.Bam) and 

sorted by the java program Picard 193, using the commands: 

 

java	
  -­‐Xmx2g	
  -­‐jar/path/to/picard-­‐
merge.jar	
  INPUT=bowtie.bam	
  INPUT=tophat.bam	
  OUTPUT=merged.bam	
  SORT
_ORDER=coordinate”	
  	
  	
  
	
  
“java	
  -­‐Xmx2g	
  -­‐jar	
  /path/to/Picard-­‐sort.jar	
  INPUT=/path/to/merged.bam	
  
OUTPUT=merged-­‐sort.bam	
  REFERENCE=/path/to/reference/hg19.fa	
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Fig 3.6 summarises the mapping strategy used to map reads to human 

hg19 genome, using Bowtie and Tophat and output files merged with 

Picard. 

 

 
	
  
Fig	
  3.6	
  Flow	
  chart	
  of	
  mapping	
  process	
  using	
  the	
  high	
  throughput	
  aligners	
  Bowtie	
  and	
  
Tophat.	
  Output	
  files	
  were	
  merged	
  using	
  Picard	
  software	
  193.	
  
 
 

3.4.4.6 Mapping results of SOLiD data 

Table 3.2 list the maximal mapping percentages achieved using the 

optimised mapping pipeline shown in Fig 3.6. Mapping rates could not be 

increased above 35% in any samples. This was likely due to the low quality 

scores for reads across all samples, as seen in Fig 3.5. 
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Aligned&reads&
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Unaligned&reads&
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Colour&space&reads&
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sequencing&
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outputed&in&raw&

format&

Aligned&reads&
oupu4ed&in&.SAM&file&

Aligned&reads&merged&
into&single&.SAM&file&
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Table	
  3.2	
  Percentage	
  reads	
  mapped	
  for	
  each	
  dataset	
  using	
  optimal	
  mapping	
  strategy	
  
summarised	
  in	
  Fig	
  3.6	
  
	
  

Dataset	
   Reads	
  mapped	
  
(%)	
  

Untreated	
   34.9	
  

GM-­‐CSF	
   32.7	
  

TNFα	
   31.0	
  

	
  
	
  
	
  
To evaluate the quality of reads that were successfully mapped by 

Bowtie/Tophat the final .Sam file was analysed using the software program 

FastQC 194.  FastQC is a Java based program that takes .Bam/.Sam 

mapping files as input and performs a series of quality control tests on the 

raw data. Among the output is a mean quality score (Phred value) for each 

base position among all reads that were successfully mapped. Fig 3.7 

shows the FastQC output for the untreated neutrophil dataset. Mapped 

reads were found to have highest quality values at the 5’ end (base 

positions 1-10) but quality values consistently decreased towards the 3’ 

end, such that the mean values for position 49 was approximately half of 

the mean value for base position 1 (base position 1 – mean Phred score- 

60; base position 49 – mean Phred score – 31). The variability in quality 

scores (i.e. the inter quartile range 25-75 percentile) also increased towards 

the 3’ end of mapped reads. Similar results were obtained for GM-CSF and 

TNFα treated samples.  
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Fig	
  3.7	
  FastQC194	
   analysis	
  of	
  Bowtie/Tophat	
  mapped	
  reads	
   from	
  neutrophil	
  untreated	
  
dataset.	
   Graph	
   shows	
   the	
  mean	
   quality	
   values	
   (Phred	
   score)	
   (y-­‐axis),	
   for	
   each	
   base	
  
position	
  within	
   the	
  mapped	
   reads	
   (x-­‐axis).	
   Scores	
   are	
   represented	
  by:	
   inner	
  quartile	
  
range	
   (25-­‐75	
   percentile)	
   (Yellow	
   boxes);	
  median	
   Phred	
   score	
   (Red	
   line);	
  mean	
   value	
  
(Blue	
  line);	
  and	
  10-­‐90	
  percentile	
  (whisker	
  plots).	
  
	
  
	
  
These data reveal that only the highest quality reads were able to be 

mapped (30-35%). Furthermore the quality of mapped-reads was poor at 

the 3’ end and reveals why removing the 8-bases from the 3’ end (by using 

the trimming command in bowtie) improved mapping rates. It is likely that 

the poor percentage of mapped reads and the average quality of reads 

which successfully mapped will impact on the quantification of data in 

downstream analyses. 

3.4.5 I l lumina HiSeq2000 – Single end sequencing 

Due to low quality scores for raw data and low mapping rates obtained 

from the SOLiD paired end sequencing run, further neutrophil samples 

(untreated, GM-CSF and TNFα, N=1) were subsequently sequenced using 
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single-end sequencing (50bp) on the Illumina HiSeq2000 platform, by BGI 

International (Hong Kong). RNA was extracted and prepared using identical 

methods and couriered on dry ice to BGI. Sample processing was subject 

to identical QC analysis and any variation in sequencing protocols were 

due to platform-specific requirements. Quality control analysis (as provided 

by BGI International) of sequenced reads revealed that > 98% of reads 

exhibited a Phred score of > 20 (data not shown), representing a marked 

improvement in read quality over SOLiD datasets. 

Downstream analysis of SOLiD platform data (annotation and 

quantification) was performed using the methods described below and 

results are later used in validation and comparison analysis vs Illumina 

platform and qPCR results included in this chapter, (as indicated in the 

text). 

3.4.5.1 Illumina mapping strategy 

Due to higher quality values in raw data from the Illumina platform, it was 

not necessary to trim the 3’ end of the reads prior to mapping. In addition, 

improvements to the Tophat software (release version 1.4), meant that the 

Illumina reads could be mapped in a single-step process by Tophat using 

the command: 

tophat	
  -­‐p	
  8	
  -­‐-­‐solexa1.3-­‐quals	
  -­‐-­‐max-­‐multihits	
  1	
  -­‐o	
  ./_output_with_gtf	
  \	
  
-­‐-­‐transcriptome-­‐index=/path/to/transcriptome/index	
  \	
  
/path/to/reference/genome	
  path/to/raw.data	
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Improved read quality and mapping strategy resulted in an increase in the 

percentage reads that mapped to reference sequence. Mapping 

percentages for Illumina sequenced datasets are listed in Table 3.3. 

Mapping rates were determined by TopHat version 1.4. 

 

Table	
   3.3	
   Percentage	
   reads	
   mapped	
   for	
   Illumina	
   sequenced	
   datasets,	
   following	
  
mapping	
   with	
   Tophat	
   1.4.	
   Percentage	
   mapped	
   reads	
   calculated	
   by	
   Tophat	
   during	
  
processing.	
  	
  
	
  

Dataset	
   Reads	
  mapped	
  
(%)	
  

Untreated	
   94.5	
  

GM-­‐CSF	
   94.7	
  

TNFα	
   94.9	
  

	
  
 

3.4.5.2 Illumina read quality of mapped reads	
  

To assess the quality of the 94% mapped reads from Illumina sequenced 

datasets, output files from Tophat (.Bam files) were analysed by FastQC 

(Fig 3.8). Reads had a markedly higher Phred score than those assessed 

form the SOLiD platform. Values were > 30 throughout the entire length of 

reads with an increase at the 3’ end. The inner quartile range was also 

much lower than with previous SOLiD samples. These data verify the high 

percentage mapping achieved with Illumina sequenced data and confirm 

that Illumina sequencing-platform (and sequencing by BGI International) is 

sufficient to produce high quality datasets of neutrophil RNA when 

mapped using Tophat. 
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Fig	
  3.8	
  FastQC	
   194	
  analysis	
  of	
  Bowtie/Tophat	
  mapped	
  reads	
  from	
  neutrophil	
  untreated	
  
datasets	
   sequenced	
   on	
   the	
   Illumina	
   platform.	
   Graph	
   shows	
   the	
  mean	
   quality	
   values	
  
(Phred	
  score)	
  (y-­‐axis),	
  for	
  each	
  base	
  position	
  within	
  the	
  mapped	
  reads	
  (x-­‐axis).	
  Scores	
  
are	
   represented	
   by:	
   inner	
   quartile	
   range	
   (25-­‐75	
   percentile)	
   (Yellow	
   boxes);	
   median	
  
Phred	
  score	
  (Red	
  line);	
  mean	
  value	
  (Blue	
  line);	
  and	
  10-­‐90	
  percentile	
  (whisker	
  plots).	
  
 

3.4.5.3 Mapping-annotation and quantification 

Several programs are available for annotating and quantifying NGS data 

against a reference sequence. Broadly speaking software packages differ in 

the way they quantify gene expression and model variation within the 

population, relying on either an absolute count of reads mapping to a 

specific loci (in the case of edgeR and DESeq) or using a normalised metric 

for gene expression RPKM (in the case of Cufflinks) (covered in more detail 

in section 1.6.4). To evaluate the relative effectiveness of  annotation 

software, 3 widely-used, open source software packages (Cuffdiff- a 

subroutine of the Cufflinks package; DESeq; and edgeR) were compared 
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for their ability to quantify genes that are significantly differentially 

expressed (DE) between neutrophil samples incubated with either GM-CSF,  

TNFα, or untreated (Fig 3.9). DESeq and edgeR were run through the R 

software environment using a bespoke runscript adapted from the standard 

operating vignette 159,160. Cuffdiff was run with default settings providing 

both a reference genome (.fa file) and reference transcriptome (.gft file) to 

improve annotation accuracy. A significance value of q< 0.05 (applying a 

5% FDR) was applied in all 3 software packages. 

Of the three software packages used, Cuffdiff was found to be the most 

conservative in calling significantly differentially-expressed (DE) genes 

(UT:GM-CSF=110, UT:TNFα=82, GM-CSF:TNFα=151), whereas DESeq 

identified a similar number of genes as significantly DE (UT:GM-CSF=167, 

UT:TNFα=74, GM-CSF:TNFα=201). However, edgeR was the least 

conservative when calculating significantly DE genes, consistently 

quantifying approximately 3 times as many genes as the other two software 

programs (UT:GM-CSF=407, UT:TNFα=234, GM-CSF:TNFα=538) (Fig 3.9). 

The increased number of significant genes following DESeq and edgeR 

analysis is likely due to the poisson distribution utilised by these software 

packages. Poisson distribution of gene expression data is known to 

increase the number of false positives discovered by virtue of the fact that 

biological variation is not sufficiently estimated within the population 149,163. 

Determination of gene expression by Cufflinks/Cuffdiff provides an added 

benefit of several downstream software packages which are compatible 
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with the output format of Cufflinks. For example, cummeRbund 168 – an R 

based program specifically designed to perform downstream analyses and 

produce graphical output using Cufflinks/Cuffdiff data. In summary, 

Cufflinks was determined as the most suitable annotation and 

quantification software of neutrophil RNA-Seq data and was utilised in all 

subsequent analyses of datasets. 

 

 

Fig	
  3.9	
  Venn	
  diagrams	
  showing	
  the	
  number	
  of	
  differentially-­‐expressed	
  genes	
  between	
  
neutrophil	
   samples	
   incubated	
  with	
  GM-­‐CSF	
   (5	
  ng/mL),	
   TNFα	
   (10	
  ng/mL)	
  or	
  untreated	
  
(UT)	
   for	
   1	
   h.	
   Determination	
   of	
   significance	
   calculated	
   using	
   quantification	
   software;	
  
DESeq	
  (orange),	
  Cuffdiff	
  (green)	
  or	
  edgeR	
  (blue),	
  q<0.05	
  (5%	
  FDR)	
  N=3.	
  
  

3.4.6 Analysis of platform, Donor and experimental variation 

To assess the level of variation between platforms, donors and also within a 

single experiment, RPKM levels of a subset of genes were analysed for 

correlation (Fig 3.10). To measure the levels of variation seen between 
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sequencing platforms, biological donors and sample replicates, correlation 

of the top 1000 most expressed genes between untreated neutrophil 

samples from several different experiments were compared. Firstly, two 

datasets of RNA samples from the same donor but sequenced on either 

the SOLiD or Illumina platforms were compared: this analysis would identify 

any differences in gene expression due to the different technology 

platforms (Fig 3.10A). Secondly, samples from 2 different donors, both 

sequenced on the Illumina platform were compared with each other (Fig 

3.10B): this analysis will give insights into donor variability and patterns of 

neutrophil gene expression. Thirdly, two samples from a single donor 

(prepared on separate days) sequenced on Illumina platform were 

compared to each other (Fig 3.10C). This would inform on the intra-donor 

variability in gene expression. Finally, data from a single experiment on the 

Illumina platform (but sequenced on different lanes of the sequencing flow 

cell) were compared to each other to measure the level of intra-

experimental variation (Fig 3.10D). 

Samples from the same donor sequenced on different platforms (SOLiD 

and Illumina) (Fig 3.10A), showed a much lower correlation than samples 

from the same donor sequenced on the same platform (Fig 3.10C), 

rs=0.656 and rs=0.9188 respectively. Indeed, levels of correlation between 

donors on the Illumina platform were equally high rs=0.9204 (Fig 3.10B). 

Intra-experimental (technical variation) correlation was extremely high 

(rs=0.9993) (Fig 3.10D).  
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Fig	
   3.10	
   Correlation	
   of	
   gene	
   expression	
   values	
   (RPKM)	
   between	
   RNA-­‐Seq	
   samples.	
  
Gene	
  expression	
  values	
  were	
  compared	
  between	
  (A)	
  SOLiD	
  and	
  Illumina	
  platforms,	
  (B)	
  
2	
  biological	
  replicates	
  (on	
  Illumina	
  platform)	
  (C)	
  2	
  technical	
  replicates	
  (same	
  Donor	
  on	
  
Illumina	
   platform)	
   and	
   (D)	
   2	
   lanes	
   from	
   a	
   single	
   sequencing	
   experiment	
   on	
   Illumina	
  
platform.	
   In	
   each	
   analysis	
   1000	
   genes	
   with	
   the	
   highest	
   expression	
   were	
   used	
   in	
  
correlation	
  analysis	
  (Spearman	
  correlation	
  	
  metric	
  (rs)	
  p<0.0001).	
  
	
  

3.4.7 Validation of RNA-Seq data by comparison to qPCR  

RNA-Seq analysis methodologies are still regarded as a relatively new 

technique. As with any new assay or protocol, the most important measure 

of success, accuracy and applicability is how well the results correlate with 

the currently used “gold-standard” technique. In the case of gene 

expression studies the most established techniques remain either micro-

array or quantitative PCR (qPCR). RNA-Seq expression values for a selection 

of genes from 3 Donors measured by both SOLiD and Illumina platforms 

were compared with those obtained from qPCR for validation. A sample set 

of genes was selected that included genes that had high levels (>3000 
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RPKM) of expression: Interleukin-8 (IL-8), nicotinamide 

phosphoribosyltransferase (NAMPT), and suppressor of cytokine signalling-

3 (SOCS3); median levels (50-3000 RPKM) of expression: FBJ murine 

Osteosarcoma viral oncogene homolog (FOS), intercellular adhesion 

molecule-1 (ICAM1), and interleukin-1β (IL-1β); and low levels (<50 RPKM) 

of expression: Fas-associated via death domain (FADD), Jun proto-

oncogene (JUN), and TNFα. 

Firstly, absolute values of gene expression (RPKM) were compared 

between SOLiD samples and 3 biological replicates sequenced by Illumina 

(Fig 3.11A-C). As seen previously, gene expression levels were most similar 

in samples from the Illumina platform but values from SOLiD sequenced 

samples were also largely in line with the Illlumina sample replicates. 

Secondly, the fold change in gene expression for each gene was compared 

between the SOLiD samples, Illumina samples and qPCR data (Fig 3.12A-

B). Here, the fold change in gene expression for each gene was highly 

similar across all 3 platforms. This suggests that while the absolute values 

can vary between platforms (and replicates) the relative change in gene 

expression correlate well between independent platforms and validation 

methods.  
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Fig	
   3.11	
   Comparison	
   of	
   gene	
   expression	
   levels	
   (RPKM)	
   between	
   RNA-­‐Seq	
   platforms.	
  
Expression	
   levels	
   of	
   9	
   genes	
   expressed	
   in	
   neutrophils	
   following	
   1h	
   incubation	
   in	
   (A)	
  
absence,	
   or	
   presence	
   of	
   (B)	
   GM-­‐CSF	
   (5	
   ng/mL)	
   or	
   (C)	
   TNFα	
   (10	
   ng/mL).	
   Expression	
  
levels	
   measured	
   by	
   SOLiD	
   (¯)	
   or	
   by	
   Illumina	
   (p�¢)	
   sequencing	
   platform	
   and	
  
calculated	
  by	
  Cufflinks.	
  (SOLiD	
  n=1,	
  Illumina	
  n=3).	
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Fig	
   3.12	
   Fold	
   change	
   in	
   expression	
   of	
   genes	
   in	
   (A)	
   GM-­‐CSF	
   and	
   (B)	
   TNF-­‐α-­‐treated	
  
neutrophils	
   compared	
   to	
   unstimulated	
   cells,	
   measured	
   by	
   qPCR	
   (black	
   bars,	
   n	
   =	
   3),	
  
SOLiD	
  sequencing	
   (grey	
  bars,	
  n	
  =	
   1)	
  or	
   Illumina	
  sequencing	
   (white	
  bars,	
  n	
  =	
  3).	
  Error	
  
bars	
  represent	
  SEM.	
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Whilst it is important with any new technique to validate results with more 

established methods of measurement it is equally important to realise the 

limitations of the established technique. When comparing data from RNA-

Seq and qPCR experiments, there are several factors that need to be 

considered. Firstly, RNA sample preparation should be consistent between 

quantification techniques.  Secondly, PCR primers should be designed to 

amplify all variants of the gene under analysis and not miss out alternative 

splice variants, since RNA-Seq experiments can provide a quantification of 

all variants of a gene. Most importantly, the effect of normalisation method 

used for qPCR data must be appreciated. 

Quantification of transcript abundance from qPCR data is calculated using 

the number of PCR cycles required for transcripts to achieve exponential 

amplification (Ct value). This value can be transformed into a mean 

normalised expression (MNE) by normalising these values against a 

housekeeping gene 167,195. For neutrophil studies, a variety of housekeeping 

genes can be used, but Standford et al 196 have previously shown many of 

the commonly-used housekeeping genes used in other cell types vary in 

expression in neutrophils. This can lead to differences in the calculated 

relative expression values for a gene of interest, depending on which 

housekeeping gene is used to normalise the data. By comparison, RNA-

Seq data can be normalised to the entire size of the read library and the 

length of each gene independently (RPKM), and so does not necessitate 

normalisation to a pre-selected gene or set of genes 116. 
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3.4.9 Comparison of normalisation method in RNA-Seq and 

qPCR  

mRNA levels of TNFα are known to increase rapidly in neutrophils following 

stimulation with TNFα 183. RNA from untreated and TNFα treated 

neutrophils (10 ng/mL) was prepared and mRNA expression of TNFα was 

measured using qPCR. Threshold (Ct) values for TNFα mRNA were 

normalised against several different housekeeping genes that are often 

used in neutrophil gene expression; β-2microglobulin (B2M), 

glyceraldehyde-3-phosphate dehyrodgenase (GAPDH), β-actin (ACTB) and  

hypoxanthine phosphoribosyltransferase 1 (HPRT1) 196. In parallel, the fold 

change in TNFα expression for untreated neutrophils versus TNFα treated 

neutrophils was measured by RNA-Seq and RPKM values calculated by 

Cufflinks. RNA was prepared using identical RNA preparation methods and 

neutrophils from the same donor.  

The fold changes in expression levels in the TNFα stimulated cells versus 

the control varied from 10-fold to 22-fold, dependent on which 

housekeeping gene was selected for normalisation (Fig 3.13). The RNA-Seq 

value was found to correlate well with qPCR data normalised to GAPDH or 

B2M, but not to values normalised to ACTB or HPRT1. This highlights the 

care needed when analysing and interpreting qPCR data, and suggests that 

consideration should be given to the use of multiple housekeeping genes 

for normalisation of qPCR data, especially in cells such as neutrophils where 

the expression of genes used to normalise the data may be subject to 



137	
  
	
  

regulation during neutrophil activation. These data suggest that RPKM 

values are a more suitable and accurate metric for use in gene expression 

analysis and that this method of quantitation can be compared to 

appropriately controlled qPCR data.  

 

 

 

Fig	
  3.13	
  Fold	
  change	
  in	
  expression	
  of	
  TNFα	
  mRNA	
  measured	
  by	
  qPCR	
  (open	
  bars)	
  and	
  
RNA-­‐Seq	
   (black	
   bar).	
   qPCR	
   Ct	
   values	
   for	
   TNFα	
   expression	
   normalised	
   to	
   values	
   for	
  
commonly-­‐used	
   housekeeping	
   genes;	
   β-­‐microglobulin	
   (B2M),	
   glyceraldehyde-­‐3-­‐
phosphate	
   dehydrogenase	
   (GAPDH),	
   β-­‐actin	
   (ACTB),	
   	
   hypoxanthine	
  
phosphoribosyltransferase	
   1	
   (HPRT1).	
   RNA-­‐Seq	
   value	
   normalised	
   to	
   read-­‐library	
   size	
  
and	
  gene	
  length	
  (RPKM).	
  
	
  
 

3.4.10 Correlation of qPCR Ct values with RNA-Seq RPKM 

values 

Accurate detection of low-abundance transcripts in samples if often difficult 

to distinguish from experimental noise and DNA contamination. It is 

generally considered that a transcript requiring >30 cycles for detection in 

a qPCR experiment (Ct value > 30,) is likely to be a false positive. Likewise, 
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care must be taken when setting a RPKM threshold for gene expression in 

order to balance the number of false positives with the number of false 

negatives.  A study by Ramskold et al 197, attempted to characterise 

transcriptomes across different tissue types in both humans and mice  and 

determined that an RPKM value of 0.3 was an appropriate threshold, above 

which it can be concluded that the transcript is genuinely expressed.   

To confirm these findings and ascertain whether 0.3 RPKM was an 

appropriate threshold for neutrophil studies, RNA was extracted (as 

previously described) from 1 h untreated neutrophils and assayed using 

qPCR to determine the Ct value of 84 genes which had a range of 

expression levels. Values were compared to RNA-Seq data from 1h 

untreated neutrophils from the same biological donor.  Ct and RPKM 

values were found to significantly negatively correlate (rS=-0.91, p<0.0001, 

Spearman correlation). Importantly, data convergence was observed at 30-

cycles in qPCR and 0.3 RPKM in RNA-Seq (Fig 3.14). These data confirm 

that the pre-defined threshold of 0.3 RPKM is entirely appropriate and 

adequate to determine whether a transcript is expressed in neutrophils. 
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Fig	
  3.14	
  Correlation	
  of	
  gene	
  expression	
  values	
  measured	
  by	
  qPCR	
  and	
  RNA-­‐Seq.	
  RNA	
  
from	
  untreated	
  neutrophils	
   from	
  the	
  same	
  biological	
  donor	
  was	
  assayed	
  using	
  qPCR	
  
and	
   RNA-­‐Seq.	
   Cycle	
   threshold	
   (Ct)	
   values	
   for	
   qPCR	
   were	
   found	
   to	
   correlate	
  
significantly	
   with	
   RPKM	
   gene	
   expression	
   values	
   (r=-­‐0.91,	
   p<0.0001,	
   Spearman	
  
correlation).	
  qPCR	
  data	
  collected	
  by	
  Dr	
  C.	
  Lam	
  and	
  analysed	
  and	
  reproduced	
  here	
  with	
  
permission.	
  
 

3.4.11 Downstream analysis of RNA-Seq data 

The above methods describe the software and protocols necessary to 

produce accurate gene expression data from a starting sample of total 

RNA. This pipeline can be utilised to produce normalised absolute-values 

(RPKM) of gene expression using Cufflinks, or a list of DE genes between 

multiple samples via Cuffdiff. These data are of great use and can be 

manually curated to extract information on genes of interest. However, to 

analyse larger portions of the data, (or compare entire datasets with each 

other) further downstream bioinformatic techniques are required. In 

general, bioinformatic analysis of gene expression data aims to simplify 

large amounts of data by identifying smaller gene-sets with similar 

expression patterns, or quantify levels of dissimilarity between whole 
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datasets/samples. This can be achieved in a variety of ways. A selection of 

software and bioinformatic analyses for downstream analysis of RNA-Seq 

data are described below. These methods complement the above 

bioinformatic RNA-Seq pipeline to form a comprehensive set of 

bioinformatic techniques which form the complete bioinformatic pipeline 

used in future results chapters (Chapters 4-6). Further details of specific 

downstream analysis are provided in the results sections of Chapters where 

they are employed. 

3.4.11.1 cummeRbund 

cummeRbund is a software package developed by the Cufflinks group 

(Trapnell et al) 168. It utilises the output files of Cufflinks and runs in the R 

software environment to produce several graphical representations of the 

gene expression data. These include: global visualisation of data in terms 

of quality, dispersion, or gene expression distribution; multi-dimensional 

scaling (MSA) for 2-dimensional representation of whole data sets; and 

gene clustering via heat maps 168. 

3.4.11.2 Ingenuity Pathway Analysis (IPA) 

The most powerful method of extracting meaningful data from large data 

sets is to model the data against large databases of canonical biological 

data. These are provided by a variety of online resources such as the Kyoto 

encyclopaedia of genes and genomes (KEGG) 198 or CLCbio by Qiagen. By 

far the most comprehensive database of biological pathways and 

interactions is held by Ingenuity systems 199. The Ingenuity pathway analysis 



141	
  
	
  

(IPA) software is a licensed online resource which allows the uploading of 

large datasets of NGS data, the data can then be modelled against their 

database of canonical pathways and referenced biological interactions. 

Subsequent analysis of the data can then be carried out to identify 

pathways or networks of genes which are significantly enriched with DE 

genes. Additionally, since the database of signalling pathways is so 

comprehensive, the software can be employed to identify upstream 

regulators and transcription factors based on the gene expression values 

provided. This is a powerful technique for predicting activation of signalling 

pathways and associated networks of genes from raw RNA-Seq gene 

expression values. 

3.4.11.3 Gene ontology 

An alternative method of summarising large gene lists is by Gene Ontology 

analysis. Genes are categorised by their universal gene ontology 

annotation (as defined by the Gene Ontology consortium 200). This provides 

a method of identifying sets of DE genes which share a common biological 

process, molecular function or cellular component, and identifying 

relationships between genes that would otherwise be impossible to 

achieve using a manual approach. 
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3.4.12 Final bioinformatic pipeline for neutrophil gene 

expression studies 

By way of summary, the components and work flow of the final 

bioinformatic pipeline developed for neutrophil gene expression analyses 

is shown in Fig 3.15. This represents a complete workflow for the 

production, quantification and analysis of neutrophil RNA-Seq data. 

 

Fig	
  3.15	
  Bioinformatic	
  pipeline	
  for	
  production	
  quantification	
  and	
  analysis	
  of	
  neutrophil	
  
RNA-­‐Seq	
   data.	
   Flow	
   diagram	
   of	
   sample	
   preparation	
   processes	
   and	
   software	
  
incorporated	
   into	
   complete	
   bioinformatic	
   pipeline.	
   Processes	
   in	
   white	
   box	
   were	
  
completed	
  by	
  3rd	
  party	
  (BGI	
  International).	
  	
  
	
  
	
   	
  

Neutrophils,

Tophat,

Cufflinks,Cuffdiff,

DE,genes, RPKM,,

Visualisa=on,G.O,IPA,

Pathway,
analysis,

Trans.,factor,
predic=ons,

Raw,data,TotalGRNA,

• Trizol®,/,chloroform,
extrac=on,

• Cleanup,+,DNAase,digest,
• Integrity,analysis,

,

• mRNA,enrichment,
• Adapter,liga=on,
• Amplifica=on,

• Illumina,sequencing,

,

Heat,maps, MDSGplot,



143	
  
	
  

3.5 Summary 

Modern sequencing technology provide a method of accurately 

sequencing millions of DNA or RNA fragments on a massively parallel scale 

producing huge amounts of raw data. Whilst the efficiency and usability of 

sequencing technology has improved in recent years, the same cannot be 

said of NGS analysis software (in particular software that is open source). 

The bioinformatic community is saturated with various kinds of analysis 

software, each offering specific benefits over each other with respect to 

different aspects of the analysis process. Furthermore, there is no 

community wide agreement on best practices when it comes to analysing 

NGS data. The eclectic nature of bioinformatic methods in the literature 

attests to this. Hence before undertaking a study into neutrophil gene 

expression, it was first necessary to compile a robust set of software and 

protocols to accurately analyse the raw data produced by RNA-Seq. This 

pipeline could then be implemented for further studies into neutrophil 

gene expression. 

Neutrophils naturally express less mRNA than other leukocytes 178, thus it 

was necessary to quantify the amount of total RNA that could be extracted 

from a whole blood sample, whilst also assessing the integrity and quality 

of RNA following neutrophil isolation, RNA extraction and cleanup. 

Standard isolation of 30x106 neutrophils by Polymorphprep™ and 

extraction using TRIzol® (including a DNA digest step) was found to be 
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sufficient to produce 5 µg of high integrity (>8 RIN) purified RNA, which is 

often a prerequisite of 3rd party sequencing service providers. 

Sequencing of neutrophil RNA was carried out on 2 of the most popular 

sequencing platforms, SOLiD and Illumina. The paired-end sequencing on 

the SOLiD platform suffered from poor read quality values such that the 

shorter paired fragment could not be used in the mapping stage, the 

remaining reads mapped poorly to a reference sequence (<35 %) . Whilst 

paired-end sequencing is a useful method of increasing the total amount of 

read data from a single experiment, the library preparation protocols are 

more complex than single-end protocols and thus more likely to suffer 

experimental error. Furthermore, the ability of paired-end sequencing to 

improve mapping rates by removing mapping-location ambiguity is less 

relevant when dealing with samples where a complete and comprehensive 

reference sequence is available (such as with human samples). In contrast, 

sequencing carried out on Illumina platform by single-end sequencing was 

of a much higher quality and consequently resulted in extremely high 

mapping rates (>94%). Annotation and quantification of mapped reads was 

carried out by count-based (edgeR and DESeq) and gene normalisation 

(Cufflinks) techniques. These two approaches are frequently used in RNA-

Seq studies. Indeed, rather than one technique becoming preferred or 

optimal, it is likely that studies in the future will start to incorporate a 

combination of both approaches 201, for example a count based 

quantification for absolute gene expression values and a normalised 
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expression (RPKM) approach for transcript-level quantification. An added 

advantage of RNA-Seq data is that once reads are mapped adequately, 

data can subsequently be re-analysed or re-quantified using a different 

approach without the need for producing new samples.  

Following quantification, data were validated against results gained by 

qPCR.  

Despite numerous publications using RNA-Seq as the primary method of 

gene expression analysis, it is still common for research articles to include 

comparative qPCR results as validation of the accuracy of the primary RNA-

Seq data 202,203. Neutrophil RNA-Seq data from both platforms (SOLiD and 

Illumina) showed good correlation with results from qPCR, in particular 

when comparing fold change in gene expression rather than absolute 

values. In addition, correlation between datasets from the Illumina platform 

(either from a single donor or two donors) was extremely high (r > 9.1). This 

highlights the robust and reproducible nature of RNA-Seq data as a 

method of analysing large amounts of data.  

Two aspects of gene expression analyses that hinder studies using micro-

arrays or PCR are signal to noise ratios and normalisation of data 107,196,204. 

During the development of this bioinformatic pipeline the normalisations 

techniques and threshold value for positive expression were assessed in 

RNA-Seq by comparison to traditional qPCR methods. It was found that the 

normalised metric of RPKM was comparable to results gained by qPCR and 

since it relies on a defined value of gene length, is less variable than results 
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gained using multiple reference genes by qPCR. Moreover, it was 

confirmed that a previously defined 197 value of 0.3 RPKM is an appropriate  

cut-off value for gene expression and correlates well with a Ct value of 30 in 

qPCR. 

Since analysis of RNA-Seq is often (by virtue of the different software 

programs required) a multi-step process, compatibility of data with 

downstream analysis software is of crucial importance. The work flow within 

the bioinformatic pipeline benefits from being fully compatible at all 

stages, such that the output files from the annotation steps using cufflinks 

can seamlessly be inputted into each of the downstream analysis programs, 

for example cummeRbund or IPA. The greatest benefit of this inter-

compatibility is the usability and lack of informatic experience needed to 

carry out a RNA-Seq experiment using the above described software and 

settings. Improvements in software during the course of this study (Tophat 

alone received 12 iterative upgrades between 2010 and 2012) led to both 

improved performance and streamlining of the pipeline, for example, the 

ability to map all reads in a single Tophat command was not possible until 

the release of version 1.4.  

In summary the processes described above form a robust and user-friendly 

pipeline of analyses that can accurately measure the gene expression 

profile of neutrophils under different conditions. This pipeline will be 

utilised in subsequent chapters to further define the transcriptional profile 

of neutrophils in conditions of simulated inflammation. 
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Chapter 4: RNA-Seq analysis 
of neutrophil priming by 
GM-CSF and TNFα 
Bioinformatic analyses presented within this chapter were included in a 
publication in which I was co-lead author. 
 
Wright	
  HL†,	
  Thomas	
  HB†,	
  Moots	
  RJ,	
  Edwards	
  SW	
  (2013)	
  RNA-­‐Seq	
  Reveals	
  
Activation	
  of	
  Both	
  Common	
  and	
  Cytokine-­‐Specific	
  Pathways	
  following	
  
Neutrophil	
  Priming.	
  PLoS	
  ONE	
  8(3):	
  e58598.	
  doi:10.1371/journal.pone.0058598	
  
 

4.1 Introduction 

Neutrophil function in vivo is regulated by “priming” by inflammatory 

signals generated during an inflammatory response. Priming induces 

several rapid (<1 h) functional changes such as the mobilisation of internal 

granules (containing pre-formed receptors) to the cell surface, 

phosphorylation of key signalling proteins, and assembly of the NADPH 

oxidase leading to increased respiratory burst in response to a secondary 

activating signal 3. 

Several agents are able to prime neutrophils, including: lipid mediators 

such as leukotriene B4 and platelet activating factor (PAF); hormones and 

growth factors, such as melatonin and substance P; bacterial products, such 

as lipopolysaccharide (LPS); and numerous cytokines and chemokines, such 

as IL-1, -3, -8, G-CSF, IFNγ, GM-CSF and TNFα	
   205,206. Stimulation of 

neutrophils by these agents in vitro induces a similar, “primed” phenotype 
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resulting from the short-term, rapid molecular changes described above. 

Consequently, priming agents are sometimes used interchangeably in 

neutrophil studies on the assumption that priming occurs via common 

mechanisms 207,208. Furthermore, it is well established that cytokines and 

other priming agents are able to regulate gene expression in neutrophils 

11,181,183,209,210 but few studies have examined the global gene expression 

profile in neutrophils following priming, and none to date have directly 

compared the patterns of gene expression induced by different priming 

agents.  

Although regarded as a prerequisite for neutrophil activation, priming also 

serves an important role as a regulatory mechanism. By requiring a second 

stimulus for transition from a quiescent neutrophil (for example in 

peripheral blood), to an activated neutrophil (for example at the site of 

inflammation), neutrophils are able to regulate their activation state much 

more specifically. Ultimately, this decreases the possibility of inappropriate 

or excessive neutrophil activation leading to damage to host tissue from 

the release of ROS and proteases. Despite this, neutrophil dysfunction and 

inappropriate activation is often a hallmark of inflammatory and 

autoimmune diseases. In many cases, the mechanisms leading to initial 

inappropriate activation of the immune system are poorly understood, but 

it is clear that elevated levels of inflammatory cytokines are fundamental to 

the progression and exacerbation of these conditions 2,3,32,211.   
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The importance of inflammatory cytokines in inflammatory diseases is 

highlighted by the success of the successful application of anti-cytokine (or 

cytokine-receptor) drug therapy. Drugs such as Anakinra (IL-1R antagonist), 

Tocilizumab (anti-IL-6R), Milivimumab (anti-GM-CSFR), secukinumab (anti-

IL17) and Belimumab (anti-B-cell activating factor (BAFF)) are routinely used 

in a variety of inflammatory diseases such as gout, SLE, psoriasis, Crohn’s 

and RA 3,211,212 (See table 1.1 for a more complete list of cytokine-targeting 

therapies). However, the most successful target for treatment of 

inflammatory disease is TNFα. Several drugs, such as Infliximab, 

Adalimumab, Cerolizumab-pegol, Golimumab and Etanercept are 

considered the front line treatment for conditions such as RA, COPD, 

Ankylosing spondylitis and Crohn’s disease. However, an important feature 

of these drugs is the varying degree to which patients respond. For 

example, it is estimated that approximately 30% of patients with RA who 

are prescribed anti-TNF will not respond 213. These patients will often have 

to switch therapies a number of times to alternative anti-TNF drugs, or to 

drugs such as Rituximab (anti B-cell) or Abatacept (anti-T-cell), before 

adequate disease control is achieved and maintained.  This highlights the 

heterogeneity that exists in inflammatory diseases such as RA and suggests 

that different cytokines may be responsible for driving inflammation in 

different patients. Whilst treating inflammatory diseases using a single anti-

cytokine drug is of merit, a comprehensive understanding of the molecular 

changes induced by inflammatory cytokines in health and disease, and how 
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this regulation differs between cytokines and individuals, is important to 

understand immune regulation, but could also lead to a more rationale-

based approach to drug treatment. 

 

4.2 Aims 

The aims of this chapter were: 

 

1. To utilise the previously-described pipeline of methods and 

bioinformatic techniques (Chapter 3) to quantify the neutrophil 

transcriptome following priming with GM-CSF and TNFα 

 

2. To compare the molecular changes in neutrophils induced by 

priming and identify genes and signalling pathways that are either 

common or specific to each priming agent.  

 

3. To determine if predictions made by bioinformatic analyses can be 

validated by functional assays. 
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4.3 Results 

4.3.1 Effect of GM-CSF and TNFα on neutrophil function 

Several cytokines are commonly used as priming agents for in vitro studies 

of neutrophil function. To assess whether priming by different agents had 

any effect on neutrophil function, priming of respiratory burst and levels of 

apoptosis after overnight incubation were compared in neutrophils treated 

with either GM-CSF or TNFα.  

4.3.1.1 Ability of GM-CSF and TNFα to prime the respiratory burst 

Neutrophils were treated for 30 min in the presence or absence of priming 

concentrations of GM-CSF (5 ng/mL) or TNFα (10 ng/mL). Following 

incubation, neutrophils were stimulated with fMLP (1 µM) in the presence of 

luminol (10 µM) and immediately measured every 24 s over a 25 min time 

course using a plate reader (see Methods, section 2.2.8). Both GM-CSF and 

TNFα primed neutrophils for an enhanced respiratory burst, peaking at 

approximately 1 min.  This first peak represents extracellular release of ROS 

214. A second peak at 5 min was seen in both primed samples, which 

corresponds to a delayed intra-cellular activation of reactive oxygen 

species (ROS), as previously described 214.  

The primed response of ROS production was slightly higher in GM-CSF 

primed samples compared to TNFα primed samples (GM-CSF; 32,2316 

relative luminescence units (RLU) p=0.0022, TNFα; 28,5858 RLU p=0.0077, 

N=4). Unprimed neutrophils exhibited a modest increase in 
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chemiluminescence compared to unstimulated cells (negative control) (Fig 

4.1A-B). 

 

 

 

 

 

Fig	
  4.1	
  GM-­‐CSF	
   (GM)	
  and	
  TNFα	
   (TNF)	
  have	
  similar	
  effects	
  on	
  neutrophil	
   function.	
   (A)	
  
Neutrophils	
   were	
   primed	
   with	
   either	
   GM-­‐CSF	
   (5	
   ng/mL)	
   or	
   TNFα	
   (10	
   ng/mL),	
   or	
  
untreated	
  (UT)	
  for	
  30	
  min.	
  The	
  respiratory	
  burst	
  was	
  stimulated	
  with	
  fMLP	
  (1	
  µM)	
   in	
  
the	
   presence	
   of	
   luminol	
   (10	
   µM).	
   Primed:	
   black	
   line;	
   	
   unprimed:	
   grey	
   line;	
  	
  
unstimulated:	
  dotted	
  line.	
  Graph	
  shows	
  representative	
  trace	
  of	
  relative	
  luminescence	
  
units	
  (RLU).	
  (B)	
  Results	
  of	
  4	
  separate	
  chemiluminescence	
  experiments	
  calculating	
  the	
  
RLU	
  by	
  quantifying	
  area	
  under	
  curve	
  in	
  each	
  condition.	
  Error	
  bars	
  represent	
  ±	
  SEM.	
  (**	
  
p<0.01,	
   Student’s	
   t-­‐test).	
   (C)	
   Neutrophils	
   were	
   incubated	
   overnight	
   (18	
   h)	
   in	
   the	
  
absence	
   (UT)	
   or	
   presence	
   of	
   GM-­‐CSF	
   (5	
   ng/mL)	
   or	
   TNFα	
   (10	
   ng/mL),	
   and	
   percentage	
  
apoptosis	
   was	
   quantified	
   by	
   annexin-­‐V/propidium	
   iodide	
   staining	
   and	
   measured	
   by	
  
flow	
  cytometry.	
  N=7.	
  Error	
  bars	
  represent	
  SEM.	
  (***	
  p<0.001,	
  Student’s	
  t-­‐test).	
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4.3.1.2 Effect of GM-CSF and TNFα on neutrophil apoptosis 

To assess the effect of priming  neutrophils with GM-CSF and TNFα on 

levels of apoptosis, neutrophils were incubated at 37 °C + 5% CO2 for 18 h 

in the absence or presence of GM-CSF (5 ng/mL) or TNFα (10 ng/mL). 

Apoptosis was quantified by Annexin V/propidium iodide staining and flow 

cytometry (see Methods section 2.2.5).  Levels of apoptosis were 

significantly lower in both GM-CSF and TNFα treated samples compared to 

controls (p<0.01, paired Student’s t-test: untreated 66.5 % ±2.08 %; GM-

CSF 38.6 % ±2.55 %; TNFα 56.9 % ±2.61 %).  

Taken together, these data indicate that both GM-CSF and TNFα are able 

to prime neutrophils leading to: elevated respiratory burst (upon 

stimulation); and delayed apoptosis. However, these effects are not 

identical between priming agents, suggesting that GM-CSF and TNFα may 

induce subtle differences in neutrophil signalling during the priming 

response. 

 

4.3.2 Whole transcriptome sequencing of primed neutrophils 

To investigate the molecular changes in neutrophils following priming with 

GM-CSF and TNFα, whole transcriptome sequencing by RNA-Seq was 

carried out on mRNA from neutrophils incubated for 1 h with either GM-

CSF (designated as GM), TNFα (designated as TNF) or without stimulation 

(designated as UT). 
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RNA was extracted by TRIzol®/chloroform precipitation (see Methods 

section 2.2.9) and sequenced on the Illumina HiSeq 2000 platform 

(summarised in 1.5.5) using upwards of 40x106 single end reads (see 

Appendix table A.5 for total no. of reads). Reads where mapped to the 

human genome (hg 19) by Tophat and annotated using Cufflinks (as 

previously described in Chapter 3). 

 

4.3.3 RNA-Seq analysis of primed neutrophils  

4.3.3.1 Analysis of gene expression by Cufflinks.  

Following mapping and annotation (as previously described in Chapter 3), 

Cufflinks analysis was carried out to determine the number of genes 

expressed in each of the 3 sample conditions (UT, GM and TNF). Fig 4.2A 

details the number of genes which are either treatment specific, expressed 

under multiple conditions, or not expressed in neutrophils in any of the 3 

conditions (using a cut-off RPKM of  0.3). In total, 11,201 out of a possible 

23,283 genes were expressed in neutrophils in any of the 3 conditions. Of 

these, 10,056 (89.8%) were expressed in all conditions. Interestingly, some 

genes were only expressed under certain conditions (condition-specific).  

GM treatment resulted in the expression of the most condition-specific 

genes (229), with marginally less in UT (220) and TNF (193). A total of 

12,082 genes were not expressed in any condition, suggesting that under 

the conditions studied, neutrophils express approximately half of the 

human transcriptome. This number broadly agrees with previous micro-
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array-based studies into neutrophil transcript expression of peripheral 

blood neutrophils 181,215,216 (Fig 4.2A). If a threshold of expression of RPKM 

of 10 is applied to the data, to remove genes with low abundance from 

quantification analysis, the total number of genes expressed (≥ RPKM 10) 

decreases from 11,201 to 3,574, with the vast majority of filtered genes 

being those expressed in all conditions (RPKM ≥0.3 – 10,056 genes, RPKM≥ 

10 – 2,829 genes). Conversely, filtering out low abundance genes has a 

lesser effect on the number of condition-specific gene changes. For 

example, the number of GM-CSF-specific genes decreases from 229 to 

187, while TNFα-specific genes decreases from 193 to 109 (Fig 4.2B). 

These data reveal that neutrophils express almost half of the human 

transcriptome and that 90% of these genes are expressed irrespective of 

GM-CSF or TNFα treatment. However, a large number of these 

constitutively-expressed genes (a total of 7225 genes) are present at low 

abundance (< RPKM 10) whereas the majority of condition-specific genes 

are expressed at a higher abundance (> RPKM 10). 
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Fig	
   4.2	
   (A)	
   Venn	
   diagram	
   showing	
   the	
   number	
   of	
   genes	
   expressed	
   (RPKM	
   ≥	
   0.3)	
   in	
  
untreated	
   (UT),	
   GM-­‐CSF	
   primed	
   (GM),	
   TNFα	
   primed	
   (TNF)	
   neutrophils,	
   or	
   not	
  
expressed	
  in	
  any	
  condition.	
  (B)	
  Increasing	
  the	
  expression	
  threshold	
  to	
  an	
  RPKM	
  of	
  10	
  
to	
   filter-­‐out	
   low-­‐expression	
   genes	
   decreases	
   the	
   number	
   of	
   expressed	
   genes	
   in	
   all	
  
conditions.	
  	
  	
  RPKM	
  values	
  of	
  genes	
  were	
  calculated	
  by	
  Cuffdiff.	
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4.3.3.2 Hierarchical clustering of highly expressed genes in UT, GM and 

TNF 

To better visualise and identify genes which are either common or specific 

to neutrophil priming conditions, hierarchical clustering of all genes with an 

RPKM ≥ 10 (in at least one of the 3 datasets) was performed using Multiple 

experiment Viewer (MeV)217(Fig 4.3). An expanded heatmap of the (150) 

highest expressed genes is also shown in Fig 4.3. These genes are 

associated with a number of functions and can be broadly categorised as: 

cell surface receptors; cytokines/chemokines; Interferon-induced genes; 

Major Histocompatibility Complex (MHC) proteins; calcium-binding 

proteins; adhesion molecules and apoptosis regulators. 
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Fig	
  4.3	
  Hierarchical	
  clustering	
  of	
  genes	
  expressed	
  (≥	
  RPKM	
  10)	
  in	
  untreated	
  neutrophils	
  
(UNTR)	
  or	
   	
  following	
  priming	
  by	
  GM-­‐CSF	
  or	
  TNFα.	
  RPKM	
  values	
  are	
  represented	
  on	
  a	
  
log10	
  scale	
  where	
  green	
  represents	
   low	
  expression,	
  black	
  median	
  expression	
  and	
  red	
  
high	
  expression.	
  Right	
  hand	
  column	
  shows	
  expanded	
  heatmap	
  of	
  the	
  150	
  most	
  highly	
  
expressed	
  genes.	
  Several	
  of	
  the	
  most	
  highly	
  expressed	
  genes	
  can	
  be	
  categorised	
  into	
  
functional	
   groups,	
   such	
   as:	
   cell	
   surface	
   receptors;	
   cytokines/chemokines;	
   Interferon-­‐
induced	
   genes;	
   Major	
   Histocompatibility	
   Complex	
   (MHC)	
   proteins;	
   Calcium	
   binding	
  
proteins;	
  adhesion	
  molecules	
  and	
  apoptosis	
  regulators.	
  
	
  
	
  

4.3.3.3 Analysis of differentially expressed genes by Cuffdiff 

Following quantification of neutrophil genes expressed in each condition 

by Cufflinks, Cuffdiff analysis was applied to the data to quantify the 

number of genes which were significantly differentially expressed (DE) 

between sample conditions (q< 0.05, 5% FDR). This identifies the genes 

most affected during neutrophil priming and also identifies which genes 

were DE in neutrophils during priming by either GM-CSF or TNFα.  

 

	
  	
  

Fig	
   4.4	
   Number	
   of	
   significantly	
   differentially	
   expressed	
   genes	
   between	
   neutrophils	
  
treated	
  with	
  GM-­‐CSF	
   (GM),	
  TNFα	
   (TNF)	
  or	
  untreated	
   (UT).	
  Significance	
   calculated	
  by	
  
Cuffdiff	
  (q<0.05,	
  FDR	
  5%).	
  
 

Cuffdiff analysis revealed that neutrophil priming by GM-CSF significantly 

regulated the expression of 505 genes compared to untreated control. 

Likewise, priming by TNFα resulted in 250 differentially expressed genes. 

Surprisingly, the greatest number of DE genes was found to be between 

TNF 

UT GM 
505 

580 250 
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GM-CSF and TNFα (580 genes) (Fig 4.4). It could be hypothesised that 

since GM-CSF and TNFα exert similar effects on neutrophils phenotypically 

(as seen in Fig 4.1) their gene expression profile would be similar. However, 

these RNA-Seq data suggest that there are a greater number of genes 

differentially expressed between GM-CSF and TNFα than between either 

GM-CSF or TNFα and untreated controls. These 580 genes are further 

analysed in a later section (see section 4.3.3.6). 

 

Of the 755 genes which were DE between either GM-CSF or TNFα and UT 

(UT vs GM, 505 genes; UT vs TNF, 250 genes), 40 genes were up-regulated 

by at least 10-fold by either GM-CSF or TNFα. These genes are listed in 

Table 4.1. Interestingly, several genes relating to cytokines/chemokines 

were differently expressed by the two treatments. For example: Chemokine 

(C-C motif) ligand 3 (CCL3), CCL4 and the TNFα-gene (TNF) were only 

significantly upregulated by TNFα treatment, whereas oncostatin M (OSM) 

was only significantly upregulated by GM-CSF treatment. CXCL1 (also 

known as Chemokine (C-X-C Motif) Ligand 1) was upregulated 

approximately 3-fold greater by GM-CSF compared to TNFα (GM, 10.4-

fold; TNF, 3.6-fold), whereas CXCL2 was upregulated 6-fold greater by 

TNF than by GM (TNF,29-fold; GM,4.7-fold). The cytokines interleukin-1A 

(IL1A), IL-1β and interleukin receptor agonist (IL1RN) were the only genes 

that were significantly upregulated by more than 10-fold by both 

treatments (Table 4.1). 
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Table	
   4.1	
   Genes	
   significantly	
   up-­‐regulated	
   at	
   least	
   10-­‐fold	
   in	
   either	
   GM-­‐CSF	
   or	
   TNFα	
  
treated	
   neutrophil	
   samples	
   compared	
   to	
   untreated	
   sample.	
   Values	
   represent	
   fold	
  
change	
   in	
   expression	
   relative	
   to	
   control.	
   	
   All	
   values	
   are	
   significant,	
   as	
   calculated	
   by	
  
Cuffdiff	
  (q<0.05,	
  5%	
  FDR)	
  unless	
  stated	
  (NS	
  =	
  not	
  significant). 
 

Gene	
   GM-­‐CSF	
   TNFα 	
  
CCL3	
   NS	
   41.5	
  
CCL4	
   NS	
   99.6	
  
CD69	
   57.5	
   NS	
  
CISH	
   102.1	
   NS	
  
CXCL1	
   10.4	
   3.6	
  
CXCL2	
   4.7	
   29.0	
  
DUSP2	
   NS	
   12.1	
  
EDN1	
   16.5	
   NS	
  
EGR1	
   57.9	
   NS	
  
EGR2	
   21.5	
   NS	
  
GADD45B	
   NS	
   15.8	
  
GPR84	
   NS	
   74.9	
  
HBEGF	
   33.2	
   NS	
  
HCAR2	
   12.1	
   NS	
  
HCAR3	
   12.2	
   NS	
  
HRH4	
   32.3	
   NS	
  
ICAM1	
   10.6	
   7.7	
  
IL1A	
   35.3	
   67.0	
  
IL1B	
   22.8	
   13.8	
  
IL1RN	
   12.4	
   31.4	
  
KCNJ2	
   NS	
   16.6	
  
MFSD2A	
   -­‐1.6	
   11.9	
  
NFKBIA	
   NS	
   11.9	
  
NFKBIE	
   NS	
   15.8	
  
OLR1	
   NS	
   3.2	
  
OSM	
   15.0	
   NS	
  
PDE4B	
   11.8	
   NS	
  
PLAU	
   5.8	
   13.9	
  
PNPLA1	
   -­‐2.1	
   10.2	
  
PPP1R15A	
   3.6	
   10.2	
  
RHOH	
   26.3	
   NS	
  
SLC35B2	
   NS	
   10.4	
  
SOCS3	
   90.2	
   NS	
  
TARP	
   13.5	
   NS	
  
TIFA	
   6.7	
   17.7	
  
TNF	
   NS	
   25.8	
  
TNFAIP3	
   2.7	
   16.1	
  
TNFAIP6	
   NS	
   10.6	
  
TRAF1	
   NS	
   11.6	
  
ZFP36	
   11.4	
   4.7	
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4.3.3.4 Gene ontology analysis of genes with differential expression in 

either GM-CSF or TNFα  

Following identification of a subset of genes showing differential 

expression during neutrophil priming with GM-CSF or TNFα, further 

characterisation of these genes was performed by Gene Ontology (GO) 

analysis. GO analysis is a method of gene annotation used to collate and 

categorise large lists of genes (of the type often produced during large 

genetic studies such as RNA-Seq analyses) on the basis of known functional 

associations. Genes are assigned to GO terms based on their known 

function or functional association. GO terms are broadly categorised into 3 

hierarchical classes: biological process; molecular function or cellular 

component 200. Within each class, additional GO terms are structured in a 

hierarchical manner such that “high level” (or broadly descriptive) terms 

would include terms such as “signal transduction” or “cell growth and 

maintenance”. Whereas, more specific “low level” GO terms would include 

terms such as “pyrimidine metabolism” or “cAMP synthesis” 218. This allows 

the summarising of large sets of genes and the identification of common 

functional properties within groups of co-expressed genes. 

Gene Ontology analysis using the online software DAVID 219 revealed that 

genes DE by either GM-CSF or TNFα led to enrichment of GO terms that 

were cytokine-specific and common to both treatments (Table 4.2). High 

level GO categories, such as “inflammatory response” or “response to 

wounding” were represented in both GM-CSF and TNFα samples, whereas 
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more specific low level GO categories were represented in only one 

treatment sample. For example, “regulation of I-kappaB kinase/NF-kappaB 

cascade” and was only represented in TNFα samples, whilst “positive 

regulation of nitric oxide biosynthetic process” was only represented in 

GM-CSF samples (Table 4.2). 

4.3.3.5 Pathway analysis of genes with differential expression in either GM-

CSF or TNFα 

GO analysis is a useful bioinformatic approach to describe biological 

functions or cellular processes and to discover functional relationships 

within in a set of genes. However, the process is not sufficiently powerful to 

accurately predict activation of specific signalling pathways or identify 

upstream regulation of transcription factors. Therefore, further analyses 

were carried out on the genes DE by either GM-CSF or TNFα  using 

Ingenuity Pathway Analysis software (IPA) 220 to identify if the genes 

expressed during neutrophil priming by each priming agent activated 

common or different signalling pathways and transcription factors.  

IPA analysis identified that neutrophils primed with TNFα or GM-CSF 

significantly regulated a number of intracellular signalling pathways. For 

example, genes DE following TNFα treatment were found to regulate 

pathways associated with: TNF- and death-receptor activation; apoptosis; 

and APRIL (A Proliferation-Inducing Ligand) signalling (Fig 4.5A).  
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Table	
   4.2	
  Gene	
  Ontology	
   analysis	
   of	
   genes	
  with	
  DE	
  during	
  priming	
  with	
   TNFα	
   (TNF)	
  
and	
  GM-­‐CSF	
  (GM).	
  *	
  represents	
  which	
  dataset	
  GO-­‐terms	
  were	
  found	
  to	
  be	
  significantly	
  
enriched	
  	
  (compared	
  to	
  untreated	
  control	
  dataset).	
  
 
GO	
  Term	
   GO	
  Category	
   GM	
   TNF	
  

GO:0006954	
   Inflammatory	
  response	
   *	
   *	
  
GO:0009611	
   Response	
  to	
  wounding	
   *	
   *	
  
GO:0006955	
   Immune	
  response	
   *	
   *	
  
GO:0042981	
   Regulation	
  of	
  apoptosis	
   *	
   *	
  
GO:0006952	
   Defense	
  response	
   	
   *	
  
GO:0006935	
   Chemotaxis	
   	
   *	
  
GO:0043122	
   Regulation	
  of	
  I-­‐kappaB	
  kinase/NF-­‐kappaB	
  cascade	
   	
   *	
  
GO:0007243	
   Protein	
  kinase	
  cascade	
   	
   *	
  
GO:0031328	
   Positive	
  regulation	
  of	
  cellular	
  biosynthetic	
  

process	
  
*	
   	
  

GO:0010557	
   Positive	
  regulation	
  of	
  macromolecule	
  
biosynthetic	
  process	
  

*	
   	
  

GO:0010628	
   Positive	
  regulation	
  of	
  gene	
  expression	
   *	
   	
  
GO:0045321	
   Leukocyte	
  activation	
   *	
   	
  
GO:0010604	
   Positive	
  regulation	
  of	
  macromolecule	
  metabolic	
  

process	
  
*	
   	
  

GO:0001775	
   Cell	
  activation	
   *	
   	
  
GO:0045766	
   Positive	
  regulation	
  of	
  angiogenesis	
   *	
   	
  
GO:0051789	
   Response	
  to	
  protein	
  stimulus	
   *	
   	
  
GO:0008285	
   Negative	
  regulation	
  of	
  cell	
  proliferation	
   *	
   	
  
GO:0051174	
   Regulation	
  of	
  phosphorus	
  metabolic	
  process	
   *	
   	
  
GO:0019220	
   Regulation	
  of	
  phosphate	
  metabolic	
  process	
   *	
   	
  
GO:0032570	
   Response	
  to	
  progesterone	
  stimulus	
   *	
   	
  
GO:0042325	
   Regulation	
  of	
  phosphorylation	
   *	
   	
  
GO:0045429	
   Positive	
  regulation	
  of	
  nitric	
  oxide	
  biosynthetic	
  

process	
  
*	
   	
  

GO:0006350	
   Transcription	
   *	
   	
  
GO:0045893	
   Positive	
  regulation	
  of	
  transcription,	
  DNA-­‐

dependent	
  
*	
   	
  

GO:0051254	
   Positive	
  regulation	
  of	
  RNA	
  metabolic	
  process	
   *	
   	
  
GO:0045859	
   Regulation	
  of	
  protein	
  kinase	
  activity	
   *	
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However, genes DE by GM-CSF treatment were found to regulate: p38 

mitogen-activated protein kinase (MAPK) signalling; JAK/STAT signalling; 

and protein ubiquitination pathways (Fig 4.5B). The NF-κB pathway was 

found to be regulated by both GM-CSF and TNFα; however whereas TNFα 

positively regulated the NF-κB pathway, GM-CSF negatively regulated this 

(Fig 4.5C-D). IPA analysis reports signalling pathways whose components 

(genes) have been significantly up- or down-regulated by treatment. The 

software calculates the significance of pathway regulation based on the 

proportion of a canonical pathway which is enriched with DE genes. For 

example, if 18/24 genes in a signalling pathway are DE (versus control) then 

that pathway is more likely to be defined as significantly regulated than if 

only 2/24 genes are DE. However, the analysis does not distinguish if the 

signalling pathway has been (on the whole), up- or down-regulated. To 

further elucidate the specific regulation within a signalling pathway, the up- 

or down-regulation of each gene within a signalling pathway can be colour-

coded and visualised to identify which portions of the pathway are 

regulated, and in what way. For example, genes which have increased 

expression (compared to control) are coloured red, genes whose 

expression is lower than in control are coloured green), genes with no 

change are shaded grey and those genes with no data are unshaded 

(white) (Fig 4.5C-D). 

Having identified the NF-κB pathway as being significantly-regulated by 

both GM-CSF and TNFα, further analysis was carried out to determine if 
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similar genes within the pathway were regulated in a similar fashion.  Fig 

4.5C reveals that following TNFα priming, the majority of genes within the 

NF-κB pathway were upregulated (compared to untreated sample). 

Conversely, priming with GM-CSF led to a down-regulation of several 

genes within the NF-κB pathway (Fig 4.5D). This highlights an important 

difference between the molecular changes induced by both priming agents 

that would otherwise be overlooked if simply looking at signalling pathways 

that were significantly regulated.  

4.3.3.6 Analysis of genes that are differentially-expressed between GM-CSF 

and TNFα  

Cuffdiff analysis identified 580 genes that were DE between GM-CSF and 

TNFα treated neutrophils (Fig 4.4). These genes therefore represent those 

that reflect the greatest differences regulated by the two priming agents. 

Further analysis was carried out on these genes to identify their functional 

associations. 

GO analysis revealed that 44 GO-terms were significantly enriched (see 

Appendix Table A.6 for full list of enriched GO-terms). Of the 44 GO-terms, 

11 were directly related to cell death and/or apoptosis, including the most 

represented GO-term “Regulation of apoptosis” (containing 58 genes from 

the dataset). A similar result was obtained by IPA analysis of the 580 genes 

that identified “Apoptosis” as the cellular function with the greatest 

differential regulation between the two treatments (p= 6.78E-23). Table 4.3 

lists the RPKM values for each of the 58 genes found to be DE between 
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GM-CSF and TNFα. IPA analysis was carried out to identify upstream 

transcription factor activation. A total of 36/58 genes were more highly-

expressed in TNFα	
   treated samples, and of these, IPA analysis predicted 

that 23 were regulated by the NF-κB system (p=5.77E-21) (Fig 4.5E). 

Conversely, a total of 22/58 genes had higher expression in GM-CSF 

samples, of which, 15 where predicted by IPA analysis to be regulated by 

the STAT family of transcription factors (p=2.73E-12), in particular STAT3 and 

STAT5 (Fig 4.5E). 
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Fig	
  4.5	
  Analysis	
  of	
  signalling	
  pathways	
  in	
  TNFα	
  and	
  GM-­‐CSF	
  primed	
  neutrophils.	
  (A-­‐B)	
  	
  
Bar	
   graphs	
   show	
   the	
   canonical	
   pathways	
  with	
   the	
  most	
   significant	
   regulation	
   in	
   (A)	
  
TNFα-­‐	
   or	
   (B)	
   GM-­‐CSF-­‐	
   treated	
   neutrophils	
   compared	
   to	
   untreated	
   control.	
   Bars	
  
represent	
  the	
  probability	
  (p-­‐value)	
  that	
  the	
  enrichment	
  of	
  significant	
  genes	
  within	
  the	
  
canonical	
  pathway	
  is	
  due	
  to	
  chance	
  alone.	
  Orange	
  line	
  represents	
  the	
  ratio	
  of	
  number	
  
of	
   genes	
   that	
   are	
   enriched	
   in	
   the	
   pathway	
   to	
   the	
   total	
   number	
   of	
   genes	
   in	
   the	
  
pathway.	
  (C-­‐D)	
  NF-­‐κB	
  pathway	
  was	
  identified	
  as	
  being	
  significantly	
  regulated	
  in	
  both	
  
(C)	
  TNFα-­‐	
  or	
  (D)	
  GM-­‐CSF-­‐	
  treated	
  neutrophils	
  compared	
  to	
  control;	
  genes	
  significantly	
  
up-­‐regulated	
   are	
   coloured	
   in	
   red,	
   down-­‐regulated	
   in	
   green	
   and	
   genes	
   with	
   no	
  
significant	
   change	
   are	
   shaded	
   in	
   grey.	
   Genes	
   where	
   no	
   data	
   is	
   available	
   are	
   have	
  
orange	
  boxes.	
   (E-­‐F)	
   IPA	
  analysis	
  of	
  58	
  apoptosis-­‐regulating	
  genes	
  with	
  significant	
  DE	
  
between	
  TNFα	
  and	
  GM-­‐CSF	
  treated	
  neutrophils.	
  (E)	
  NF-­‐κB	
  activation	
  was	
  predicted	
  in	
  
TNFα-­‐	
   treated	
  neutrophils	
   (p=9.04E-­‐11),	
  whereas	
  STAT	
  activation	
   (F)	
  was	
  predicted	
   in	
  
GM-­‐CSF-­‐treated	
   neutrophils	
   (p=2.26E-­‐05).	
   The	
   RPKM	
   values	
   of	
   individual	
   genes	
   are	
  
represented	
  by	
  increasing	
  intensity	
  of	
  red. 
 

 

Table	
  4.3	
  Gene	
  expression	
  value	
  (RPKM)	
  of	
  58	
  apoptosis-­‐related	
  genes	
  significantly	
  DE	
  
in	
  neutrophils	
  treated	
  with	
  GM-­‐CSF	
  or	
  TNFα.	
  RPKM	
  values	
  calculated	
  by	
  Cufflinks	
  and	
  
significance	
  of	
  DE	
  calculated	
  by	
  Cuffdiff	
  (q<0.05	
  5%FDR).	
  
 

Gene	
   GM-­‐CSF	
   TNFα 	
  
ANXA1	
   231.73	
   82.28	
  
APAF1	
   20.50	
   24.50	
  
BBC3	
   3.58	
   15.43	
  
BCL3	
   323.05	
   764.80	
  
BID	
   66.72	
   192.62	
  
BIRC3	
   14.36	
   107.60	
  
CARD16	
   68.22	
   114.51	
  
CARD6	
   12.14	
   2.73	
  
CASP1	
   65.68	
   87.50	
  
CDKN1A	
   44.49	
   16.55	
  
CDKN2C	
   0.37	
   1.09	
  
CHST11	
   61.81	
   79.18	
  
CLCF1	
   0.95	
   6.73	
  
CREB1	
   8.22	
   13.50	
  
DDIT3	
   240.01	
   109.21	
  
F3	
   0.80	
   2.98	
  
FAS	
   33.88	
   62.78	
  
GCH1	
   12.90	
   31.89	
  
GHRL	
   6.28	
   12.84	
  
HSPD1	
   20.84	
   8.29	
  
ID3	
   2.01	
   <0.3	
  
INPP5D	
   68.32	
   88.53	
  
MAEA	
   27.03	
   57.98	
  
NET1	
   5.76	
   0.60	
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NFKB1	
   21.19	
   42.05	
  
NFKBIA	
   225.87	
   3901.19	
  
NLRP3	
   16.81	
   49.76	
  
NR4A1	
   2.02	
   21.41	
  
NR4A2	
   18.14	
   50.14	
  
NUAK2	
   5.25	
   24.99	
  
PIM1	
   98.05	
   11.26	
  
PIM2	
   36.66	
   260.17	
  
PIM3	
   74.97	
   246.79	
  
PLAGL2	
   4.81	
   33.72	
  
PPIF	
   1352.77	
   488.80	
  
PRNP	
   17.15	
   4.24	
  
PROK2	
   582.65	
   210.88	
  
PSEN1	
   39.99	
   69.94	
  
RIPK2	
   92.35	
   36.63	
  
RRM2B	
   7.70	
   16.15	
  
SERPINB9	
   13.36	
   37.09	
  
SLC11A2	
   0.78	
   1.82	
  
SMPD2	
   2.04	
   9.13	
  
SOCS2	
   23.61	
   2.96	
  
SOCS3	
   4060.71	
   36.45	
  
SOD2	
   2696.87	
   4619.77	
  
SQSTM1	
   114.89	
   280.27	
  
TGM2	
   4.84	
   0.68	
  
THBS1	
   13.16	
   52.91	
  
TICAM1	
   9.98	
   47.41	
  
TNFAIP3	
   244.30	
   1451.80	
  
TNFRSF10D	
   12.54	
   1.09	
  
TNFSF14	
   41.61	
   85.44	
  
TNFSF15	
   3.59	
   0.77	
  
TNFSF8	
   19.93	
   5.93	
  
TPT1	
   3025.26	
   1310.06	
  
UTP11L	
   5.02	
   1.39	
  
ZAK	
   1.40	
   0.51	
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4.3.4 Regulation of neutrophil apoptosis by GM-CSF and TNFα 

v ia activation of different transcription factors  

The above bioinformatic analyses revealed that whilst priming of 

neutrophils with either GM-CSF or TNFα	
  results in expression of apoptosis-

regulating genes, they do so via different signalling pathways and by 

activation of different transcription factors. Further functional assays were 

employed to validate these findings, as detailed below. 

4.3.4.1 Levels of apoptosis in neutrophils following addition of inhibitors of 

signalling pathways 

Neutrophils were incubated overnight (18 h) with GM-CSF (5 ng/mL) or 

TNFα (10 ng/mL) in the presence of chemical inhibitors of NF-κB 

(wedeloactone, 50 µM) and JAK/STAT (JAK inhibitor-1, 10 µM). Levels of 

apoptosis were measured following annexin-V/PI staining by flow cytometry 

(see Methods section 2.2.5). Levels of apoptosis in GM-CSF and TNFα 

treated neutrophils were in-line with previously described experiments (see 

section 4.3.1.2) (untreated 60.35% ± 6.98%; GM-CSF 36.96% ± 6.56%; 

TNFα 50.07% ± 5.89%). Inhibition of NF-κB by wedeloactone abrogated 

the anti-apoptotic effect of TNFα (p<0.05, Student’s t-test), but had no 

effect on GM-CSF-delayed apoptosis. Conversely, inhibition of STAT using 

JAK inhibitor-1 abrogated GM-CSF-delayed apoptosis (P<0.05, Student’s t-

test), and only partially attenuated TNFα-delayed apoptosis (although this 

was not significant p>0.05) (Fig 4.6A). 
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4.3.4.2 Western blot analysis of neutrophils following addition of signalling 

inhibitors  

Next, activation-states of NF-κB and JAK/STAT pathways were determined 

by western blotting for phospho-STAT3, phospho-NF-κB and IκB-α. 

Neutrophils were pre-incubated for 1 h with wedeloactone or JAK inhibitor-

1 before addition of GM-CSF (5 ng/mL) or TNFα (10 ng/mL). Following 15 

min incubation, protein lysates were made using boiling Laemmli buffer 

containing a phosphatase inhibitor cocktail (see Methods section 2.2.6). 

Activation of NF-κB and degradation of IκB-α was seen in TNFα-­‐ treated 

samples, which was abrogated by wedeloactone but not by JAK inhibitor-

1. Conversely, GM-CSF treatment did not activate NF-κB but was able to 

activate STAT3, which was inhibited by JAK inhibitor-1 (Fig 4.6B). These 

data confirm the predictions made by the bioinformatic analyses: 

regulation of neutrophil apoptosis by GM-CSF and TNFα is achieved via 

differential activation of transcription factors. 
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Fig	
   4.6	
   Delayed	
   neutrophil	
   apoptosis	
   in	
   GM-­‐CSF-­‐	
   and	
   TNFα-­‐	
   treated	
   neutrophils	
   is	
  
regulated	
   by	
   different	
   transcription	
   factors.	
   (A)	
   Overnight	
   (18	
   h)	
   incubation	
   of	
  
neutrophils	
  with	
  GM-­‐CSF	
  or	
  TNFα	
  significantly	
  delayed	
  apoptosis	
  (†	
  p<0.05,	
  Student’s	
  t-­‐
test)	
  compared	
  to	
  untreated	
  (UNTR).	
  Inhibition	
  of	
  STAT	
  signalling	
  with	
  JAK	
  inhibitor-­‐1	
  
(JAK1,	
   10	
  µM)	
  abrogated	
   the	
  effect	
  of	
  GM-­‐CSF	
  on	
  neutrophil	
  apoptosis	
   (*p<0.05)	
  but	
  
did	
   not	
   affect	
   TNFα-­‐delayed	
   apoptosis.	
   Inhibition	
   of	
   NF-­‐κB	
   with	
   wedelolactone	
  
(WEDEL,	
   50	
   µM)	
   abrogated	
   the	
   effect	
   of	
   TNFα	
   (*p<0.05),	
   but	
   not	
   GM-­‐CSF,	
   on	
  
neutrophil	
  apoptosis.	
  (B)	
  Western	
  blot	
  of	
  NF-­‐κB	
  and	
  STAT3	
  activation	
  in	
  GM-­‐CSF-­‐	
  and	
  
TNFα-­‐	
   treated	
   neutrophils.	
   TNFα	
   induced	
   rapid	
   phosphorylation	
   of	
   NF-­‐κB	
   and	
  
degradation	
   of	
   IκBα,	
  which	
  was	
   inhibited	
   by	
  wedelolactone.	
   GM-­‐CSF	
   did	
   not	
   induce	
  
phosphorylation	
   of	
   NF-­‐κB	
   or	
   degradation	
   of	
   IκBα,	
   but	
   did	
   induce	
   STAT3	
  
phosphorylation	
  which	
  was	
  inhibited	
  by	
  JAK	
  inhibitor-­‐1.	
  TNFα	
  did	
  not	
  activate	
  STAT3	
  in	
  
neutrophils.	
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4.4 Discussion 

Priming is an important process to regulate neutrophil activation. 

Appropriate priming ensures that neutrophils arrive at the site of 

inflammation suitably prepared for their anti-microbial roles. Priming also 

ensures that neutrophils do not become non-specifically activated at non-

inflammatory sites, such as in the bloodstream. The rapid changes induced 

by priming are well established, but the longer term molecular changes, 

such as de novo gene expression, are poorly defined. Moreover, the 

specific effects of individual priming agents on gene expression in 

neutrophils is limited to a few studies 181,182,221,222, and no studies have 

directly compared the effects of two cytokines using RNA-Seq. 

This chapter set out to characterise the molecular changes induced by two 

inflammatory cytokines, GM-CSF and TNFα. Although both cytokines are 

known neutrophil-priming agents, and are elevated during inflammation 

and in inflammatory disease, little was known of any differences that may 

exist during priming with these cytokines. 

Neutrophils were treated with priming concentrations of GM-CSF and 

TNFα and analysed by RNA-Seq to quantify the global changes in gene 

expression induced during neutrophil priming. Functional experiments 

using GM-CSF and TNFα revealed that both agents were able to rapidly 

prime the respiratory burst and delay apoptosis over the course of 18 h. 

While GM-CSF was a stronger inducer of these anti-apoptotic effects, the 
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effects of both priming agents were significantly different when compared 

to unprimed controls (p<0.01).  

RNA-Seq and bioinformatic analysis of primed and unprimed neutrophils 

revealed that approximately half of the human transcriptome was 

transcribed under the conditions analysed, with the majority of genes being 

transcribed in all 3 conditions. However, several hundred genes were found 

to be expressed uniquely in each of the 3 conditions. Analysis of the most 

highly expressed genes, identified transcripts associated with several 

functional categories such as cell surface receptors, adhesion molecules 

and cytokines/chemokines. This suggests that although a large proportion 

of the human transcriptome is actively transcribed in both primed and 

unprimed neutrophils, the levels of expression of the majority of these 

genes are very low and most likely do not play an important role in 

neutrophil function under the conditions analyses. The identification of 

specific genes that are only expressed under certain conditions, (the 

majority of which had expression levels (RPKM) >10), suggest that not only 

is the neutrophil transcriptome dynamically-regulated, but that the global 

gene expression profile of primed neutrophils is regulated by the initial 

priming agent. It is therefore likely that the subsequent phenotype of a 

primed neutrophil is governed by the priming agent. Importantly, among 

the most highly-expressed genes in both GM-CSF and TNFα-treated 

neutrophils were cytokine/chemokine genes. For example, TNFα treatment 

led to a more than 10-fold increase in expression of TNF, CCL3 CCL4 and 
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CXCL2. Whereas GM-CSF treatment resulted in a >10-fold expression of 

CXCL1 and OSM, both treatments upregulated expression of IL1A, IL1B, 

and IL1RN. Thus, cytokine/chemokine production appears to be 

differentially-expressed by these two inflammatory cytokines. These 

findings have important implications for inflammatory disease where high 

levels of inflammatory cytokines are common, such as TNFα in RA 223 or 

psoriasis 90. 

It is well established that both GM-CSF and TNFα delay neutrophil 

apoptosis 178,183,184,224,225. However, RNA-Seq analysis of neutrophils has 

revealed that the genes regulating apoptosis are DE during priming with 

these two cytokines. Pathway analysis of 58 apoptosis-related genes found 

to be DE between cytokine treatments predicted differential activation of 

two independent transcription factors families. NF-κB was predicted to be 

activated following TNFα treatment, whereas STAT activation was 

predicted following GM-CSF treatment.  

RNA-Seq followed by bioinformatic analysis is a powerful way to 

characterise the molecular changes induced by different stimuli or 

inflammatory conditions. The scale of data produced and the 

comprehensive databases of canonical biological processes allow accurate 

predictions of functional mechanisms from the expression profile of 

associated genes. Nevertheless, where possible, bioinformatic predictions 

should always be verified by functional assays.  
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Bioinformatic predictions of differential activation of transcription factors in 

neutrophils was verified using functional assays measuring neutrophil 

apoptosis and pathway activation in the presence and absence of specific 

inhibitors of signalling pathways. Inhibition of NF-κB abrogated the anti-

apoptotic effect of TNFα and inhibited TNFα-induced phosphorylation of 

NF-κB. Conversely, STAT inhibition abrogated the anti-apoptotic effect of 

GM-CSF and inhibited the GM-CSF-induced phosphorylation of STAT3. 

Neither wedeloactone nor JAK inhibitor-1 had any significant effects on 

GM-CSF or TNFα-induced function, respectively. Whilst activation of NF-κB 

by TNFα and STAT by GM-CSF has previously been shown in neutrophils, 

their involvement in cytokine-delayed apoptosis is less well studied. 

During inflammation, it is likely that neutrophils are exposed to a variety of 

cytokines at sites of inflammation (including both GM-CSF and TNFα). 

Therefore, for apoptotic pathways at least, there is a level of redundancy of 

processes capable of maintaining neutrophil survival. These discrete 

signalling pathways may allow the effects of each cytokine to act additively 

to increase the anti-apoptotic effect in situations where multiple cytokines 

are present.  

 

Among the genes with highest expression following treatment with either 

cytokine, were several genes associated with suppression or inhibition of 

signalling. For example, TNFα treatment induced expression of NFkBIA, 

NFKBIE and TNFAIP3 – inhibitors of NF-κB signalling. Similarly, GM-CSF 
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increased expression of gene associated with suppression of STAT 

signalling (CISH and SOCS3). This suggests that in addition to activating 

different transcription families, priming by GM-CSF and TNFα also induces 

expression of inhibitors of these transcription factors. This mechanism thus 

provides a way of controlling the signalling by provision of a negative 

feedback loop.	
  	
  

In summary, these data suggest that the nature of the initial priming agent 

during neutrophil priming is crucial in determining the subsequent 

phenotype and functional capacity of the primed and/or activated 

neutrophil. The molecular differences that exist between neutrophils 

primed by different agents have successfully been characterised using a 

systems-based approach of RNA-Seq technology and current bioinformatic 

software, and have successfully been validated post hoc by traditional 

laboratory functional assays. 
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Chapter	
  5:	
   	
  Activation	
  of	
  gene	
  
expression	
   by	
   pro-­‐
inflammatory	
  cytokines	
  
Bioinformatic analyses presented within this chapter (section 5.4.2.5) were 
included in a publication in which I was second author. 
 

Wright,	
  H.L.,	
  Thomas,	
  H.B.,	
  Edwards,	
  S.W.,	
  Moots,	
  R.J.	
   (2015)	
   Interferon	
  gene	
  
expression	
   signature	
   in	
   RA	
   neutrophils	
   predicts	
   response	
   to	
   anti-­‐TNF	
  
therapy.	
  Rheumatology,	
  Vol	
  54	
  (1):	
  188-­‐193	
  

5.1 Introduction 

In the previous chapter, neutrophil gene expression was analysed by RNA-

Seq following stimulation with two inflammatory cytokines capable of 

priming neutrophils (GM-CSF and TNFα). Whilst these cytokines are often 

found at the site of inflammation at high concentrations, neutrophils are 

unlikely to be exposed to these cytokines alone during an inflammatory 

response. Epithelial cells and other surrounding activated leukocytes 

express and release a variety of inflammatory signals during inflammation, 

each playing a role in regulating and propagating the immune response 5.  

Details of how inflammatory signals affect neutrophil function, either 

individually or in combination are poorly-defined. Indeed, for studies using 

human neutrophils, there is still contention around whether neutrophils can 

respond directly to certain cytokines such as IL-6 206,226 and IL-17 227. Thus, a 

greater understanding of the molecular consequences of stimulation by 

different inflammatory mediators will provide a means to identify the genes 
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and proteins most commonly-associated with a particular stimulus (or 

group of stimuli). 

In this chapter, neutrophils were treated with cytokines/chemokines 

commonly-associated with either sterile or pathogen-driven inflammation, 

and changes in gene expression were analysed using the bioinformatic 

pipeline previously described (Chapter 3). Neutrophils were stimulated for 

1 h with one of 5 cytokine/chemokines (G-CSF, IFNγ, IL-1β, IL-8, IL-6). In 

addition, neutrophils were stimulated with GM-CSF and TNFα (dual-

treated) to analyse the effects of multiple cytokines compared to activation 

by these agents used singly. 
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5.2 Aims 

The aims of this chapter were: 

 

1. To utilise a previously-described pipeline of methods and 

bioinformatic techniques (Chapter 3) to quantify the neutrophil 

transcriptome following stimulation with a variety of inflammatory 

mediators (G-CSF, IFNγ, IL-1β, IL-8, IL-6, GM-CSF+TNFα). 

 

2. To identify treatment-specific changes in gene expression and 

activation of signalling pathways /transcription factors. 

 

3. To analyse whether dual stimulation of neutrophils by GM-CSF and 

TNFα induces expression of a discrete set of genes when compared 

to individually treated neutrophils (i.e. GM-CSF alone, TNFα-alone). 

 

4. To validate any treatment-specific findings by functional assays. 
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5.3 Methods 

Neutrophils were stimulated for 1 h in the absence or presence of one or 

more cytokine/chemokines (Table 5.1).  The optimal concentration of each 

cytokine was previously determined using a range of functional assays (data 

not shown). 

 

Table	
   5.1	
   List	
   of	
   cytokine/chemokine	
   treatments	
   and	
   concentrations,	
   and	
   number	
   of	
  
biological	
  repeats	
  per	
  sample.	
  
	
  

Inflammatory	
  stimulus	
   Concentration	
   No.	
  of	
  biological	
  
replicates	
  

G-­‐CSF	
   10	
  ng/mL	
   3	
  
IFNγ	
   10	
  ng/mL	
   3	
  
IL-­‐1β	
   10	
  ng/mL	
   3	
  
IL-­‐8	
   100	
  ng/mL	
   3	
  

GM-­‐CSF+TNFα	
   5	
  ng/mL	
  +	
  10	
  ng/mL	
   3	
  
IL-­‐6	
   10	
  ng/mL	
   1	
  

 

Following 1 h incubation, RNA was extracted and purified as previously 

described (Section 2.2.9). RNA was sequenced on the Illumina platform 

(50bp, single-end reads) and analysed using the methods described in 

Chapter 3. For a list of RNA concentrations, integrity values and number of 

reads produced per sample library, see Appendix Table A.5. 
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5.4 Results 

5.4.1 Effects of cytokines on neutrophil apoptosis 

Activation or priming of neutrophils often results in a delay in neutrophil 

apoptosis. This mechanism allows neutrophils to carry out their anti-

microbial role in inflammatory situations. Consequently, several 

inflammatory mediators are known to extend the lifespan of neutrophils. 

Neutrophils were incubated overnight (21 h) in the presence or absence of 

several inflammatory stimuli (either alone or in combination). Levels of 

neutrophil apoptosis were analysed by annexin V/PI staining and 

measurement by flow cytometry (as described in section 2.2.5) (Fig 5.1).  

Levels of apoptosis varied considerably between stimuli compared to 

controls (UT, 69.04%). As previously reported in this thesis, GM-CSF (41.6% 

p<0.0001) and TNFα (56.4% p<0.05) significantly delayed neutrophil 

apoptosis. Similarly, stimulation with IFNγ (55.3% p<0.01), G-CSF (34.1% 

p<0.001), IL-8 (55.2% p<0.01) or dual stimulation with GM-CSF and TNFα 

(45.2% p<0.01), all significantly delayed neutrophil apoptosis. Conversely, 

stimulation by IL-1β (66.12% p>0.05) and IL-6 (66.81% p>0.05) had no 

effect on neutrophil apoptosis. This suggests that different 

cytokines/chemokines greatly affect neutrophil function in vitro and implies 

that this difference in phenotype may be explained by the de novo gene 

expression profile induced by each stimulus. 
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Fig	
   5.1	
   Neutrophil	
   apoptosis	
   following	
   overnight	
   (21	
   h)	
   incubation	
   with	
   several	
  
inflammatory	
   cytokines/chemokines.	
   Apoptosis	
   was	
   quantified	
   by	
   annexin-­‐V/PI	
  
staining	
  and	
  measured	
  by	
  flow	
  cytometry.	
  N=4.	
  Error	
  bars	
  represent	
  SEM.	
  Significance	
  
(***	
  p<0.001,	
  **	
  p<0.01,	
  *	
  p<0.05,	
  NS=	
  not	
  significant,	
  p>0.05)	
  calculated	
  by	
  Student’s	
  t-­‐
test	
   versus	
   untreated	
   neutrophils	
   (UT,	
   black	
   bar).	
   Dotted	
   horizontal	
   line	
   represents	
  
level	
  of	
  apoptosis	
  in	
  untreated	
  samples.	
  	
  
 

 

5.4.2 Bioinformatic analysis of neutrophils fol lowing incubation 

with inflammatory st imuli  

Having identified that levels of neutrophil apoptosis vary depending on the 

specific inflammatory stimuli, neutrophils were next analysed by RNA-Seq 

and bioinformatic pipeline software to identify any changes in gene 

expression between stimuli.  
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5.4.2.1 Multidimensional scaling of cytokine-induced gene expression 

profiles. 

Following quantification of neutrophil transcriptomes by Cufflinks, the 

downstream R-based software cummeRbund 168 was utilised to produce 

multi-dimensional scaling (MDS) plots of each dataset in relation to each 

other (Fig 5.2). MDS is a method for visualising the relative differences and 

similarities between samples in a 2-dimensional form. Thus, similar datasets 

(in terms of their RPKM values across all genes) will be spatially close to 

each other, whereas datasets with the greatest dissimilarity will be further 

apart in both spatial dimensions. Nine neutrophil datasets were plotted in 

2-dimensional space following MDS (Fig 5.2). 

 

 



186	
  
	
  

 
 

Fig	
   5.2	
   Multi-­‐dimensional	
   scaling	
   plot	
   showing	
   the	
   2-­‐dimensional	
   association	
   of	
   9	
  
neutrophil	
   transcriptomes	
   under	
   different	
   inflammatory	
   conditions:	
   untreated	
   (UT);	
  
IL-­‐6	
   (IL6);	
   IL-­‐1β	
   (IL1B);	
   TNFα	
   (TNF);	
   G-­‐CSF	
   (GCSF);	
   IFNγ	
   (IFNg);	
   IL-­‐8	
   (IL8);	
   GM-­‐CSF	
  
(GMCSF);	
   and	
   GM-­‐CSF+TNFα	
   dual	
   treatment	
   (GM+TNF).	
   MDS	
   carried	
   out	
   by	
  
cummeRbund168.	
   Colouring	
   of	
   datasets	
   was	
   arbitrarily	
   applied	
   post	
   hoc	
   to	
   highlight	
  
dataset	
  groupings.	
  	
  
 

Datasets most similar were untreated and IL-6, with TNFα and IL-1β 

forming a closely related pair. G-CSF and IFNγ datasets grouped together 

whilst IL-8, GM-CSF and GM-CSF+TNFα dual treatment were the most 

dissimilar data sets. Interestingly, despite GM-CSF and dual treatment GM-

CSF+TNFα sharing a common stimulus, their respective datasets were 

among the two most dissimilar datasets. This suggests that dual stimulation 

induces expression of discrete gene sets or differential expression of genes 

that are not explained by a combination of GM-CSF and TNFα expression. 
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5.4.2.2 Analysis of neutrophil genes significantly DE genes following 

cytokine/chemokine treatment. 

Cuffdiff analysis was used to calculate the number of significantly (q<0.05, 

5% FDR) DE genes in each treatment compared to control (Table 5.2). 

 

Table	
  5.2	
  Number	
  of	
  significantly	
  DE	
  genes	
   (vs	
  untreated).	
  Significance	
  calculated	
  by	
  
Cuffdiff	
  (q<0.05,	
  FDR	
  5%).	
  
	
  

Treatment	
   No.	
  of	
  DE	
  genes	
  
GM-­‐CSF	
   110	
  
TNFα	
   81	
  

GM+TNFα	
   151	
  
IFNγ	
   110	
  
G-­‐CSF	
   95	
  
IL-­‐1β	
   6	
  
IL-­‐8	
   5	
  
IL-­‐6	
   0	
  

	
  
	
  
	
  
Similarly to the apoptosis results previously, analysis of DE genes identified 

a wide range in the number of DE genes following cytokine stimulation. IL-

1B, IL-8 and IL-6 treatment resulted in only 6, 5 and 0 genes DE, 

respectively. Interestingly, these 3 treatments also resulted in the lowest 

inhibition of neutrophil apoptosis. Moreover, the stimuli that induced the 

greatest delay in apoptosis also resulted in the greatest number of DE 

genes. This suggests a correlation between apoptosis levels and number of 

genes DE. This was confirmed by comparing the number of DE genes with 

the percentage delay in apoptosis induced by each treatment (r= 0.719, 

p<0.05, Pearson correlation coefficient) (Fig 5.2).  
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Fig	
  5.3	
  Linear	
  regression	
  of	
  the	
  number	
  of	
  DE	
  genes	
   in	
  8	
  conditions	
  vs	
  the	
  %	
  delay	
   in	
  
apoptosis.	
  Line	
  represents	
  best	
  fit.	
  r=	
  0.719,	
  p<0.05,	
  (Pearson	
  correlation	
  coefficient).	
  
 

5.4.2.2 Analysis of gene and protein expression in dual stimulated 

neutrophils 

The greatest number of DE genes was seen following dual stimulation with 

GM-CSF and TNFα, as might be predicted since previous results (Chapter 

4) revealed that each cytokine activated independent transcription factors. 

Thus, the number of DE genes might represent a combination of both 

cytokines resulting in the expression of discrete sets of genes. However, 

further analysis of the genes DE following dual stimulation revealed that 

only 16 genes were DE in the dual treatment samples and both of the 

single treatments, with a further 79 genes expressed in dual treatment and 

one of the single treatments (Fig 5.4). Thus, 56 genes were uniquely DE 

after GM-CSF/TNFα dual stimulation. The top 30 genes (with the greatest 

difference in RPKM to untreated samples) of the 56 genes unique to dual 

treatment are listed in Table 5.3. Genes uniquely DE in dual-treated 
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neutrophils include several genes which are poorly characterised, for 

instance: Guanylate binding proteins (GBP) GBP1, GBP3, and GBP1P1; G-

protein coupled receptor 132 (GPR132); the heme-binding protein 

Cytochrome B5 Domain Containing 1 (CYB5D1) and transmembrane 

coupled receptor 170B (TMEM170B). The gene with the greatest difference 

in RPKM to untreated is immediate early response-3 (IER3) which is an 

“anti-death” protein that protects from FASL- or TNFα-induced apoptosis 

and inhibits ERK dephosphorylation 228. Conversely, dual treatment also 

induces expression of dual specificity phosphatase 5 (DUSP5), which is 

involved in negative regulation of the MAPK/ERK pathway 229.  

 

 

Fig	
  5.4	
  Venn	
  diagram	
  showing	
  the	
  number	
  of	
  DE	
  genes	
  in	
  neutrophils	
  following	
  single,	
  
or	
  dual	
   stimulation	
  with	
  GM-­‐CSF	
   (GM)	
  and/or	
  TNFα	
   (TNF).	
   Significance	
   calculated	
  by	
  
Cuffdiff	
  (q<0.05,	
  5%FDR).	
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Table	
  5.3	
  The	
  30	
  genes	
  with	
  the	
  greatest	
  difference	
   in	
  RPKM	
  compared	
  to	
  untreated	
  
(UT)	
  samples	
  from	
  genes	
  that	
  are	
  uniquely	
  DE	
  in	
  GM+TNFα	
  treated	
  samples.7	
  
 

Gene	
  name	
   UT	
   GM+TNF	
   ΔRPKM	
  

IER3	
   108.47	
   1147.56	
   1039.09	
  

GBP1	
   22.38	
   183.91	
   161.53	
  

CYB5D1	
   7.55	
   106.26	
   98.72	
  

GPR132	
   10.51	
   50.44	
   39.93	
  

TMEM170B	
   28.01	
   3.51	
   -­‐24.50	
  

DUSP5	
   4.14	
   24.20	
   20.05	
  

MRPS24	
   1.16	
   16.85	
   15.69	
  

LOC100506229	
   0.72	
   15.97	
   15.25	
  

GBP1P1	
   1.73	
   14.66	
   12.93	
  

GBP3	
   2.65	
   15.12	
   12.47	
  

LOC257358	
   1.75	
   14.17	
   12.42	
  

KLHDC8B	
   15.07	
   2.76	
   -­‐12.32	
  

C5orf58	
   2.27	
   14.36	
   12.09	
  

HELB	
   0.75	
   9.80	
   9.05	
  

BATF2	
   1.40	
   10.36	
   8.96	
  

TMEM54	
   0.39	
   7.96	
   7.58	
  

PLEKHG2	
   1.08	
   8.29	
   7.22	
  

APLP1	
   0.88	
   7.85	
   6.97	
  

KIRREL2	
   0.04	
   6.63	
   6.58	
  

CCDC85B	
   0.86	
   7.33	
   6.47	
  

LINC00309	
   0.21	
   5.98	
   5.76	
  

LDLR	
   0.77	
   6.30	
   5.53	
  

SPHK1	
   0.24	
   5.29	
   5.05	
  

CAHM	
   0.76	
   5.21	
   4.45	
  

MTVR2	
   0.61	
   4.99	
   4.38	
  

TKTL1	
   4.08	
   0.48	
   -­‐3.61	
  

ENO3	
   0.14	
   2.48	
   2.34	
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TGM2	
   0.18	
   2.48	
   2.30	
  

PRDM7	
   0.12	
   2.28	
   2.16	
  
	
  
 

Expression of IL-1β was DE in all 3 treatment conditions. However, levels of 

expression following dual treatment were almost double the combined 

expression of both individual treatment (GM-CSF 6410 RPKM, TNF 3614 

RPKM, GM-CSF + TNFα 17,647) (Fig 5.5). To investigate whether this 

increased expression resulted in a corresponding high protein expression, 

expression of IL-1β was assessed by western blot over a 6h period (Fig 5.6). 

Levels of IL-1β were elevated in all 3 treatment conditions compared to 

control. Levels were highest in dual treated neutrophils, although the 

magnitude of the expression in dual treatment was approximately equal to 

the combined expression of each individual treatment, for example, at 2 h:  

GM-CSF = 106; TNF = 132; and GM-CSF + TNFα = 207 (arbitrary unit of 

band intensity, normalised to actin) (Fig 5.5). However, despite protein 

expression peaking at 2 h in all treatment conditions, individual treatment 

with either GM-CSF or TNFα resulted in a significant decrease in expression 

by 4 h which decreased further by 6 h. In contrast, dual treatment resulted 

in much lower decrease in protein expression, with levels of IL-1β protein 

being maintained over the 6 h time period. Differential protein expression 

dynamics were also seen when analysing expression of NFκBIA (also known 

as IκBA) in dual- and single-stimulated neutrophils (data not shown). 
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Fig	
  5.5	
  Neutrophil	
  gene	
  expression	
  values	
  (RPKM)	
  for	
  IL-­‐1β	
  following	
  stimulation	
  with	
  
GM-­‐CSF,	
   TNFα	
   or	
   dual	
   treatment	
  with	
   GM-­‐CSF	
   and	
   TNFα	
   and	
  measurement	
   by	
   RNA-­‐
Seq.	
  
 

Taken together, these data suggest that dual treatment of neutrophils with 

GM-CSF and TNFα results in the differential expression of discrete genes 

not otherwise differentially expressed by individual treatments. However, 

these genes are poorly characterised and provide few clues to their effect 

on neutrophil phenotype. Additionally, dual stimulation of neutrophils 

results in different protein-expression dynamics over 6 h. 
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Fig	
  5.6	
  Western	
  blot	
  analysis	
  of	
  IL-­‐1β	
  in	
  neutrophils	
  following	
  stimulation	
  with:	
  GM-­‐CSF	
  
(grey	
   bars);	
   TNFα,	
   (black	
   bars);	
   GM-­‐CSF	
   and	
   TNFα	
   (striped-­‐bars);	
   or	
   no	
   stimulation	
  
(white	
  bars)	
  and	
  representative	
  blot/housekeeping	
  blot.	
  Band	
  intensity	
  normalised	
  to	
  
housekeeping	
  control	
  (Actin)	
  N=2.	
  

 

5.4.2.3 Analysis of signal pathway activation in cytokine/chemokine 

stimulated neutrophils 

To assess whether the differential expression of genes by different 

cytokines/chemokines resulted from differential activation/regulation of 

signalling pathways, data was analysed by IPA to predict which upstream 
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regulators (transcription factors) regulated gene expression in neutrophils 

incubated under these different conditions.  

In order to validate the IPA predictions, neutrophils were stimulated with 

each of the 9 conditions for 15 min and analysed by western blot for 

activation of several key signalling pathways: STAT (STAT1/3); NFκB 

(NFκB); PI3K (Akt); MAPK (ERK1/p38) (Fig 5.7). Results were then compared 

to those predicted by IPA (Table 5.4). 

 
	
  
Fig	
   5.7	
   Western	
   blot	
   analysis	
   of	
   phospho-­‐proteins	
   in	
   neutrophils	
   treated	
   with	
  
inflammatory	
  cytokines/chemokines.	
  Data	
  representative	
  of	
  3	
  separate	
  experiments.	
  	
  
 

Western blot analysis identified differential activation of signalling pathways 

in each of the conditions analysed. For example, STAT activation was seen 

in GM-CSF, IFNγ and G-CSF stimulated samples, whereas ERK activation 

was only seen in GM-CSF stimulated samples (Fig 5.7). IPA analysis of 

upstream regulators confirmed the results of western blot analysis. Each of 

the signalling pathways identified by western blot were predicted to be 

active by IPA analysis (p<0.05) (Table 5.4). Interestingly, none of the 

signalling pathways analysed were activated by IL-1β, although IPA 

predicted several upstream regulators from the RNA-Seq data; these 
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include the zinc-finger proteins: CCCTC-binding factor (CTCF) (p=1.58 e-05) 

and GATA-binding protein (GATA4) (p=1.58 e-03). Taken together, these 

data highlight the predictive power of bioinformatic software and its ability 

to confirm and complement traditional western blot analysis of signalling 

pathway activation, which together have identified the differential 

activation of signalling pathways in neutrophils by different 

cytokines/chemokines. 

	
  
Table	
  5.4	
  Signalling	
  pathway	
  activation	
  states	
   in	
  neutrophils	
  stimulated	
  with	
  a	
  range	
  
of	
  cytokines/chemokines.	
  Table	
  shows	
  results	
  of	
  western	
  blotting	
  and	
  corresponding	
  
p-­‐value	
  as	
  calculated	
  by	
  IPA	
  using	
  RNA-­‐Seq	
  data	
  to	
  predict	
  up-­‐stream	
  activation. 
 

Cytokine/chemokine	
  
stimulus	
  

Pathway	
  
activation	
  
(Western	
  
blot)	
  

IPA	
  
prediction	
  
p-­‐value	
  

GM-­‐CSF	
  

ERK	
   6.52	
  e-­‐07	
  
p38	
   4.85	
  e-­‐05	
  

STAT3	
   2.31e-­‐03	
  
STAT1	
   1.49	
  e-­‐02	
  
AKT	
   2.81	
  e-­‐02	
  

TNFα	
  
NFκB	
   4.56	
  e-­‐09	
  
AKT	
   3.59	
  e-­‐03	
  
P38	
   7.75	
  e-­‐03	
  

GM+TNF	
  

NFκB	
   9.29	
  e-­‐14	
  
ERK	
   2.89	
  e-­‐07	
  
STAT3	
   1.48	
  e-­‐05	
  
P38	
   5.56	
  e-­‐05	
  
AKT	
   9.66	
  e-­‐05	
  
STAT1	
   3.59	
  e-­‐03	
  

IFNγ	
   STAT3	
   2.24	
  e-­‐04	
  
STAT1	
   8.65	
  e-­‐04	
  

G-­‐CSF	
  
STAT3	
   3.57	
  e-­‐04	
  
STAT1	
   4.07	
  e-­‐02	
  
AKT	
   4.65	
  e-­‐02	
  

IL-­‐1B	
   n/a	
   n/a	
  
IL-­‐8	
   AKT	
   1.42	
  e-­‐02	
  
IL-­‐6	
   STAT3	
   2.33	
  e-­‐02	
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5.4.2.4 Analysis of cytokine/chemokine expression in cytokine/chemokine 

stimulated neutrophils  

In addition to differential activation of signalling pathways, neutrophils also 

exhibited differential expression of several cytokine/chemokines associated 

with the inflammatory response. 

A gene list was compiled which included all genes defined as a “cytokine” 

or “chemokine” by their inclusion in the Gene Ontology groups “cytokine 

activity” (GO-term accession GO:0005125) or “chemokine activity” (GO-

term accession GO:0008009). The RPKM values for each gene in all 

conditions were extracted from the Cufflinks output files and their fold 

change relative to untreated sample was calculated. The 25 genes with the 

highest expression were analysed by hierarchical clustering. A heatmap 

highlighting the differential expression of the cytokine/chemokine genes is 

shown in Fig 5.8. Samples treated with GM-CSF, TNFα, IL-1β or dual 

treatment with GM-CSF + TNFα showed the greatest expression of 

cytokines/chemokines and clustered together.  Conversely IFNγ, G-CSF, IL-

8 and IL-6 treatment had low expression of these genes, but had the 

highest expression of CXCL9. The only genes that showed high expression 

in all conditions (except IL-6) were IL-1B and IL-1RN. Interestingly, IL-1A 

was only upregulated by GM-CSF, TNFα and dual stimulation, whereas IL-

1B was upregulated by all conditions, except IL-6. A table showing the raw 

RPKM values for each gene is shown in Appendix Table A.7. 
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These data highlight the ability of neutrophils to express different sets of 

cytokines/chemokines in response to different stimuli. 

 

	
  

	
  
Fig	
  5.8	
  Heatmap	
  showing	
  hierarchical	
  clustering	
  of	
  25	
  cytokine/chemokine	
  associated	
  
genes	
   in	
   neutrophils	
   following	
   stimulation	
   with	
   a	
   range	
   of	
   cytokines/chemokines.	
  
Green=	
  low,	
  black	
  =	
  median,	
  red	
  high	
  values	
  (log2	
  fold	
  change	
  vs	
  untreated	
  samples).	
  	
  
Raw	
  values	
  presented	
  in	
  Appendix	
  Table	
  A.7. 
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5.4.2.5 Modelling of in vitro gene expression data by comparison to ex vivo 

patient data 

[All	
  data	
  in	
  this	
  section	
  relating	
  to	
  patients	
  were	
  collected	
  and	
  analysed	
  by	
  Dr	
  
Helen	
  Wright	
  and	
  reproduced	
  here	
  with	
  permission]	
  
 

An important benefit of producing large quantities of digital data such as 

those produced by an RNA-Seq experiment is the ability to easily compare 

and model the data against other datasets. This allows the identification of 

common features and gene sets within a large amount of data, which 

would otherwise be impractical and implausible by manual curation.  

RNA-Seq analysis of in vitro stimulated samples provides a robust set of 

data that are highly specific to the treatment conditions and exhibit low 

variance between samples. Thus, gene expression profiles from in vitro 

stimulated samples can be modelled against less well defined datasets, 

such as those from patients with inflammatory disease, in an attempt to 

extrapolate meaningful similarities and patterns of association. 

To this end in vitro stimulated neutrophil datasets were compared to 

neutrophil gene expression profiles of patients with RA (Fig 5.9). 

Neutrophils from 20 RA patients and 6 healthy controls were analysed by 

RNA-Seq and gene expression profiles produced using the bioinformatic 

techniques described in Chapter 3. Gene expression analysis of patient 

data identified high expression of IFN-genes which correlated with the 

degree of response of patients to anti-TNF (TNFi) treatment (r=0.51 

Pearson’s correlation, p=0.02) 230.  Data for 59 interferon-response genes 
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from patient and healthy control datasets were then modelled against in 

vitro stimulated neutrophil datasets (for IFNγ and IFNα) and visualised by 

heatmap (Fig 5.9). 

Hierarchical clustering of in vitro and ex vivo sample datasets identified that 

gene expression of the 59 interferon-response genes clustered into two 

main patient sub-groups: IFN-high (associated with INFγ signalling); and 

IFN-low (associated with IFNα signalling). Datasets relating to healthy 

controls clustered into a single group within the IFN-low cluster.  IFNα is a 

type-I interferon which signals via the IFNα receptor complex, whilst IFNγ is 

a type-II which acts through the IFNγ receptor.  These two IFN receptors 

activate different downstream Janus kinase (JAK)/STAT signalling 

pathways. For instance, IFN type-I signalling involves the activation of 

tyrosine kinase 2 (TYK2) and JAK1 leading to STAT1/STAT2 hetero-

dimerisation and activation of interferon-stimulated response element 

(ISRE) transcription factor. In contrast, IFN type-II signalling involves 

JAK1/JAK2 activation leading to STAT1 homo-dimerisation ultimately 

resulting in activation of the transcription factor interferon-γ-activated site 

(GAS) 231.  Thus, the patient cohort can be further sub divided into two 

groups based on their hierarchical association with type-I and type-II gene 

expression profiles.  
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Fig	
   5.9	
  Heatmap	
   showing	
   the	
  expression	
  of	
   59	
   IFN-­‐regulated	
  genes	
   in	
   20	
  RA	
   (purple	
  
bars),	
  6	
  healthy	
  control	
  (yellow	
  bar),	
  IFNα-­‐treated	
  (orange	
  bar)	
  and	
  IFNγ-­‐treated	
  (blue	
  
bar)	
  neutrophils.	
  (Expression	
  level:	
  green=low,	
  black=median,	
  red=high.)	
  Patient	
  data	
  
collected	
  and	
  analysed	
  by	
  Dr	
  Helen	
  Wright.	
  Figure	
  adapted	
  from	
  230.	
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5.5 Discussion 

The aim of this chapter was to measure the global changes in gene 

expression profiles of neutrophils stimulated with a variety of inflammatory 

cytokines.  Neutrophils were stimulated for 1 h with a range of 

cytokines/chemokines commonly associated with inflammation and often 

found at sites of inflammation, those being: G-CSF; IFNγ; IL-1β; IL-8; and 

IL-6. In addition, neutrophils were dual stimulated with GM-CSF+TNFα to 

analyse the effects of multiple cytokine stimulation on neutrophils by 

comparison to data collected in the previous chapter on neutrophils 

stimulated by single cytokines. Neutrophil RNA was subsequently 

sequenced by RNA-Seq and analysed using the previously-described 

bioinformatic pipeline. 

 Analysis of the effects of cytokine/chemokine stimulation on neutrophil 

apoptosis revealed that these agents acted significantly differently to each 

other. G-CSF had the strongest anti-apoptotic effect, whereas IL-6 and IL-

1β had no effect on neutrophil apoptosis. Similarly, the number of DE 

genes induced by each cytokine correlated with the anti-apoptotic effect of 

each stimulus. Since neutrophils have a much shorter life span than other 

leukocytes, regulation of neutrophil apoptosis is an important biological 

process. This delay in neutrophil apoptosis may be critically linked to 

activation of gene expression. Cytokine activation of neutrophils leads to 

the enhanced expression of other chemokines and cytokines, as well as 

other key molecules such as adhesion molecules. Therefore, neutrophil 
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extended neutrophil lifespan is essential for these newly-expressed 

molecules to be expressed and affect the progress of an inflammatory 

response. These up-regulated genes may themselves be directly involved 

in apoptosis delay, although it must be  pointed out that some regulation 

of apoptosis is achieved by stabilisation of anti-apoptotic proteins such as 

Mcl-1, without the requirement of de novo gene expression 232.  

In the previous chapter, the effects of stimulation with either GM-CSF alone 

or TNFα alone on neutrophil gene expression profiles were evaluated. In 

this chapter, the effects of dual stimulation with both cytokines were 

investigated. Given that previous results showed independent activation of 

transcription factors and different gene sets by both GM-CSF and TNFα, it 

may have been predicted that dual stimulation would result in increased 

DE gene expression and that these genes would be representative of the 

gene lists seen from both single-stimulation conditions (i.e. additive 

effects). In addition, since the apoptosis pathway was found to be 

regulated differentially by both cytokines, it may also have been predicted 

that dual stimulation would further delay neutrophil apoptosis beyond that 

achieved by either single cytokine alone. However, neutrophil apoptosis 

following dual stimulation was lower than TNFα-stimulation levels but 

higher than GM-CSF-stimulation levels. Dual stimulation also affected the 

protein expression dynamics of IL-1β and NκFBIA, resulting in an increased 

magnitude and maintained expression over 6 h. interestingly, over one 

third of the DE genes following dual stimulation (56 genes from a total of 
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151 DE genes) were not DE after either individual treatment conditions. 

Although several of these genes are poorly characterised, in particular their 

role in neutrophil biology, this raises important questions as to the effects 

of multiple stimulants by inflammatory mediators on neutrophil function. 

This is of considerable importance when considering neutrophil function in 

disease, since elevation of multiple cytokines at inflammatory sites is a 

hallmark of several inflammatory or auto-immune conditions 3,77,78,211,233.	
  

Analysis of signalling pathway activation revealed that neutrophil 

stimulation with different inflammatory cytokines/chemokines resulted in 

differential activation of a range of signalling pathways. Whilst the 

activation of these pathways by particular cytokines/chemokines is fairly 

well-documented 230,232,234,235, the ability to also predict such events using 

RNA-Seq data highlights the powerful predictive nature of RNA-Seq data.  

Additionally, it is a powerful way of revealing the expression level of each 

gene within a particular pathway, thus providing a way of estimating the 

contribution of each gene to the overall activation state of a specific 

pathway. For example, RNA-Seq data could identify if a particular signalling 

pathway is activated by up-regulation of cell surface receptors or through 

the increased actions of a transcription factor. 

Analysis of cytokine/chemokine expression by neutrophils is less well 

defined. The importance of neutrophil-derived molecules during 

inflammation has long been overlooked in favour of cells from the adaptive 

immune response (B-cells, and T-cells). Indeed, much of the current 
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knowledge on neutrophil-derived products is based on studies from non-

human species (often mice), such that their production by human 

neutrophils remains controversial 5,6. Bioinformatic analysis of 

cytokine/chemokine genes revealed both similarities and differences in the 

expression profiles of neutrophils stimulated with different 

cytokines/chemokines. Perhaps unsurprisingly, conditions which had 

exhibited greatest ability to delay apoptosis also showed a similar pattern 

of cytokine expression, especially GM-CSF-stimulation, TNFα-stimulation 

and dual stimulation. However, several genes showed decreased 

expression following IFNγ compared to control, for instance, CXCL1, CCL3, 

CCL4 and CXC12, while IL-6 stimulated neutrophils showed no DE of 

cytokine/chemokine genes compared to control. Furthermore, of the 6 

genes that were identified as having DE following IL-1β treatment, 3 relate 

to chemokines: CCL3; CCL4; and CCL4L1.  

Although, not directly confirmed by data presented here, it is likely that the 

differential expression of cytokine/chemokine related mRNA under 

different inflammatory conditions would lead to differential protein 

translation and cytokine release by neutrophils. This highlights not only the 

ability of neutrophils to propagate and maintain the immune response by 

direct activation/signalling with surrounding cells by release of de novo 

inflammatory mediators, but it also reveals the importance of the nature of 

the stimulating signal to define the phenotype of activated neutrophils. 
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Among the most unexpected findings during this analysis was the effect of 

IL-6 on neutrophil function and gene expression. IL-6 is a crucial mediator 

of inflammation that is produced by several immune cells and can influence 

numerous cell types with multiple biological actions, such that it is often 

regarded as a pleiotropic cytokine 83. It is often found at high 

concentrations at inflammatory sites such as synovial fluid 236. Indeed, the 

importance of IL-6 to the inflammatory response is best highlighted by the 

success of therapeutic inhibition of IL-6R by Tocilizumab, which is used to 

treat conditions such as vasculitis, inflammatory bowel disease, RA and 

cancer 83. Interestingly, IL-6 can behave as both a pro- and anti-

inflammatory regulator, dependent on whether signalling occurs via the 

membrane bound IL-6R, known as classical signalling, or via trans 

signalling, involving soluble IL-6R (sIL-6) and the ubiquitously expressed 

gp130 receptor, respectively 237.  The effect of IL-6 on neutrophils is less 

well-defined. For example, previous studies on the effect of IL-6 stimulation 

on neutrophil apoptosis are conflicting, with anti-apoptotic, pro-apoptotic 

and no effect on apoptosis all previously reported 238–241. Under the 

conditions studied here (10ng/ mL, for 21 h) IL-6 had no effect on 

neutrophil apoptosis. Moreover, IL-6 did not significantly differentially 

regulate the expression of any genes in neutrophils. However, the 

concentration of IL-6 used (10 ng/mL) was found to be biologically 

functional by the demonstration that it could induce the rapid 

phosphorylation of STAT3 (<15 min).  
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Several reasons could explain the lack of differential gene expression 

following IL-6 treatment, in spite of STAT3 activation. Firstly, the actions of 

IL-6 on immune cells may be limited to non-neutrophil cells, thus limiting 

the activation state of neutrophils at sites of inflammation where levels of 

IL-6 are elevated. Secondly, de novo gene expression may be delayed 

beyond 1 h, and any such changes would not have been measured by the 

current studies. Finally, full activation of neutrophils by IL-6 may require a 

secondary signal 242 or epigenetic changes 243 as has been demonstrated 

for IL-10 signalling in neutrophils. 

The modelling of RNA-Seq data against other sources of biological data 

enables the identification of patterns of expression in genes that would 

otherwise be difficult to identify. This systems biology approach using 

RNA-Seq data from in vitro stimulated neutrophils to model against data 

from RA neutrophils has revealed that sub-populations of patients exist 

within a cohort of RA patients, relating to either a type-I or type-II IFN 

phenotype. Whilst modern predictive bioinformatic software is capable of 

identifying these changes based on patient data alone, the comparison 

with well-defined in vitro samples provides an additional level of data 

validation, ultimately increasing confidence of results.  

In summary, analysis of neutrophils under different conditions of simulated 

inflammation (by cytokine stimulation) using RNA-Seq has revealed that 

neutrophils express discrete sets of genes in response to different stimuli. 

Additionally, stimulation by multiple cytokines induces expression of further 
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unique gene-sets. Analysis of the nature of the genes expressed reveals 

that several signalling pathways are differentially activated, which is 

confirmed by western blot analysis. Among the genes expressed are genes 

relating to cytokines/chemokines which show differential expression among 

treatment conditions. These data reveal the plasticity of neutrophils under 

conditions of inflammation and highlight the importance of surrounding 

signals on the developing phenotype of a neutrophil during different forms 

of activation. 
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Chapter	
   6:	
   The	
   effects	
   of	
  
isolation	
   method	
   and	
   purity	
  
on	
   neutrophil	
   gene	
  
expression	
  and	
  function	
  

6.1 Introduction 

In recent times there has been a growing appreciation of the ability of 

neutrophils to respond to, and influence, immune signalling between 

several different cell types, acting as a signalling bridge between the innate 

and adaptive immune systems 5. Neutrophils are now known to activate 

monocytes, dendritic cells and T and B-cells, either through direct 

interactions or via secreted products 4. But perhaps more importantly, 

neutrophils can respond to a variety of signals that affect their function and 

behaviour at the site of inflammation. For example, neutrophils can be 

activated by a range of stimuli such as, chemokines, ROS, DAMPs and 

PAMPs. In response, they release a variety of molecules such as pro- and 

anti-inflammatory cytokines, angiogenic factors and colony-stimulating 

factors 5. Neutrophils can also modulate their function in response to 

different concentrations of apoptotic neutrophils. Contact with, or uptake 

of, apoptotic neutrophils, by neutrophils, can lead to inhibition of the 

respiratory burst and decreased release of the pro-inflammatory cytokines 
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TNFα and CXCL10, whilst also increasing their secretion of IL-8 and CXCL1 

68. 

It is therefore clear that activated neutrophils do not merely localise to the 

site of infection, clear any pathological insult, and then rapidly undergo 

apoptosis: they are capable of more sophisticated and complex immune 

regulation. Indeed, they are central to the progression of the immune 

response and can shape the outcome of inflammation or infection in 

response to the signals they receive from the local environment 3. 

Given the growing appreciation of intercellular signalling in neutrophil 

function and activity, it is perhaps somewhat paradoxical that the majority 

of research on human neutrophil activation and function has been achieved 

by in vitro studies, using purified blood neutrophil preparations. Although 

minimally-contaminated with other types of immune cells, the contribution 

of such contaminating cells to the overall assay output is often ignored. 

Moreover, whilst it is now appreciated that surrounding immune- and 

tissue-cells affect neutrophil function at the site of inflammation, in vitro 

studies of purified neutrophils attempt to remove the influence of such 

interacting cells.  

An extra consideration when isolating neutrophils is their relative sensitivity 

to physical stimuli that may promote apoptosis in the absence of 

stimulating factors.  Neutrophils are easily activated by shear forces or 

over-agitation, further complicating isolation methods. It is often of equal 

importance that the suspension of neutrophils resulting from a purification 
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protocol contains both high numbers of viable cells and low numbers of 

contaminating cells. 

A variety of neutrophil isolation techniques are in current use, which 

generally achieve a final neutrophil purity of >95% and viability of >97%. 

Until recently, all isolation methods exploited the differing size and density 

of different blood cells to separate cells into distinct populations. These 

methods require multiple centrifugation steps and overall isolation times of 

60-90 min. More recently, several new cell-sorting techniques, often 

offering higher sensitivity and specificity, have been developed. For 

example, Fluorescent Activated Cell Sorting (FACS) and Magnetic 

Activated Cell Sorting (MACS) techniques provide methods for sorting cells 

following attachment of a fluorescently-conjugated or magnetic particle-

tagged antibody respectively, that bind to particular immune cell-specific 

surface markers. The use of surface markers to immuno-select mixtures of 

cells is often less perturbing and a more specific method of cell purification. 

Both the FACS and MACS approaches dramatically decrease the number 

of centrifugation steps required and achieve a higher final purity of cells, 

often in a similar time frame to density-gradient techniques. However, the 

higher purity afforded by these techniques usually comes at a greater 

financial cost and often a lower yield 244,245.  

An additional concern when choosing an antibody-based isolation method 

is whether it utilises positive or negative selection. Neutrophils express 

high levels of receptors that bind immunoglobulins, and crosslinking of 
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these Ig-receptors can prime or even activate neutrophils 214. Isolation of 

neutrophils by positive selection requires binding of specific 

immunoglobulins to neutrophil-specific cell surface molecules, such as 

CD16b. The major disadvantage of this approach is the increased risk of 

priming or activating neutrophils during the isolation method, thus 

inadvertently changing their phenotype and most importantly, their 

functional capacity 246.  

Alternatively, negative selection approaches require a mixture of specific 

antibodies that recognise cell surface markers on other immune cell types, 

which can significantly increase the cost and efficiency of the methodology 

but leads to highly-pure, non-activated neutrophils. A summary of 3 

commonly-used neutrophil isolation methods is detailed below. 

 

6.1.1 Neutrophil Isolation methods 

6.1.1.1 Dextran ficoll-paque isolation  

Whole blood is mixed with dextran (average molecular mass 200-500 kDa), 

which causes the erythrocytes to aggregate and sediment more rapidly 

than other cell types (Fig 6.1A) 247. Following sedimentation under 1 g, the 

leukocyte-rich upper phase is removed and subsequently layered onto 

Ficoll-paque. The Ficoll-paque provides a discontinuous density gradient 

which facilitates the separation of the granulocytes (of which neutrophils 

are the most abundant) from the lymphocytes (B-cells, T-cells, NK cells) and 

monocytes, following high speed centrifugation (500-g for 30 min). The 
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monocytes and lymphocytes form a distinct band at the plasma/Ficoll-

paque interface, whereas the more dense granulocytes  (neutrophils, 

eosinophils and basophils, and any residual erythrocytes) form a pellet at 

the bottom of the tube (Fig 6.1B) 248. The remaining contaminating 

erythrocytes can subsequently be removed by hypotonic lysis. 

6.1.1.2 Polymorphprep™ isolation 

Polymorphprep™ is an endotoxin-free solution containing 13.8% (w/v) 

sodium diatrizoate and 8.0% (w/v) polysaccharide; it has a density of 1.113 

± 0.001 g/mL and an osmolality of 445 ± 15 mOsm 177. Polymorphprep™ 

solution incorporates a similar experimental approach to neutrophil 

isolation as the dextran/Ficoll-paque method (density separation of 

lymphocytes from granulocytes and the sedimentation of erythrocytes) but 

does so in a single, one-step centrifugation process (Fig 6.1C). Whole 

blood is layered onto Polymorphprep™ solution and centrifuged at 500-g 

for 35 min. As erythrocytes pass through Polymorphprep™ the higher 

osmotic pressure of Polymorphprep™ results in water being lost from the 

erythrocytes, this in turn dilutes the Polymorphprep™, thereby reducing its 

density. This produces a continuous density gradient and results in the 

formation of two distinct bands; an upper band containing lymphocytes 

and monocytes, and a lower band containing granulocytes. Non-nucleated 

platelets remain in the upper phase and erythrocytes sediment towards the 

bottom of the tube.  The PBMC band is carefully removed first to avoid 

cross-contamination with the neutrophil layer. The granulocyte layer is 
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subsequently carefully aspirated and washed. Any remaining erythrocytes 

in the granulocyte suspension are removed by hypotonic lysis. 

 

 
 
 
 
Fig	
  6.1	
  Treatment	
  of	
  whole	
  blood	
  prior	
  to	
  neutrophil	
  isolation.	
  A)	
  Whole	
  blood	
  can	
  be	
  
depleted	
   of	
   erythrocytes	
   prior	
   to	
   a	
   density	
   gradient	
   separation	
   by	
   the	
   addition	
   of	
  
dextran	
   solution,	
   causing	
   erythrocytes	
   to	
   form	
   aggregates	
   and	
   sediment.	
   B)	
   The	
  
remaining	
   nucleated	
   cell	
   fraction	
   is	
   layered	
   over	
   Ficoll-­‐paque	
   and	
   centrifuged,	
  
separating	
  the	
  granulocytes	
  from	
  the	
  peripheral	
  blood	
  mononucleated	
  cells	
  (PBMCs).	
  
C)	
  Alternatively,	
  neutrophil	
   isolation	
  can	
  be	
  achieved	
  by	
  single-­‐step	
  centrifugation	
  of	
  
whole	
  blood	
  over	
  an	
  equal	
  volume	
  of	
  Polymorphprep™.	
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 6.1.1.3 Neutrophil isolation by negative magnetic bead isolation 

Isolation of neutrophils using magnetic beads is usually carried out using 

smaller volumes of suspension (0.5 – 2 mL) and begins with a suspension of 

nucleated cells at a concentration of ≤ 5 x 107/mL. This is obtained by 

sedimentation of erythrocytes from whole blood at 1-g using a 

polysaccharide solution (HetaSep™) which has similar properties to 

dextran. Cells are then incubated with a cocktail mix of tetra-meric 

monoclonal antibodies (Fig 6.2). One portion of the antibody complex has 

specificity for dextran whilst the other portion is specific for one of seven 

cell-specific markers that are not expressed on neutrophils but are 

expressed on erythrocytes and other leukocytes (Table 3.1). 

 
Following incubation with this antibody cocktail, dextran-coated beads are 

incubated with cells before placing the cell suspension in a magnetic field.  

Antibody-bound cells are retained in the magnetic field whilst unbound 

neutrophils are decanted (Fig 6.3). 

 

 

Fig	
   6.2	
   Structure	
   and	
   specificity	
   of	
   tetrameric	
   monoclonal	
   antibody	
   complexes.	
  
Antibody	
   complexes	
   consist	
   of	
   two	
   antibody	
   molecules	
   connected	
   by	
   a	
   linker.	
  
Antibody-­‐complexes	
   possess	
   dual	
   specificity	
   for	
   dextran,	
   and	
   one	
   of	
   7	
   different	
   cell	
  
surface	
  antigens	
  not	
  expressed	
  on	
  neutrophils.	
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Table	
  6.1	
  Specificity	
  of	
  antibodies	
  recognising	
  antigens	
  on	
  specific	
  cell	
  types,	
  present	
  
in	
  a	
  neutrophil	
  magnetic	
  bead	
  isolation	
  kit	
  (StemCell®	
  Genoble,	
  France).	
  	
  
 

Antibody	
  antigen	
   Specificity	
  

CD2	
   T-­‐cells,	
  NK	
  cells	
  

CD3	
   T-­‐cells	
  

CD9	
   Eosinophils,	
  Basophils	
  

CD19	
   B-­‐cells	
  

CD36	
   Monocytes	
  

CD56	
   NK-­‐cells	
  

Glycophorin	
  A	
   Erythrocytes	
  

Dextran	
   Magnetic	
  beads	
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Fig	
   6.3	
   Summary	
   of	
   neutrophil	
   isolation	
   using	
   magnetic	
   beads.	
   A	
   mixture	
   of	
   cell-­‐
specific	
   antibody	
   complexes	
   are	
   added	
   to	
   a	
   starting	
   suspension	
   of	
   erythrocyte-­‐
depleted	
   whole	
   blood.	
   Following	
   incubation,	
   dextran-­‐coated	
   magnetic	
   beads	
   are	
  
added	
  and	
  the	
  suspension	
  is	
  placed	
  in	
  a	
  magnetic	
  field.	
  Neutrophils	
  are	
  then	
  decanted,	
  
whilst	
  other	
  leukocytes	
  are	
  retained	
  in	
  the	
  tube	
  within	
  the	
  magnetic	
  field	
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6.1.2 Contaminating cells 

The small percentage (1-10%) of contaminating cells often found in 

neutrophil suspensions following density-gradient isolation methods, is 

often considered to be an acceptable level of contamination that has 

minimal effects on the behaviour of neutrophils in the preparations. 

However, more recently, the impact of contaminating leukocytes in 

neutrophil suspensions has been questioned. For example, Sabroe and 

colleagues demonstrated that ultra-pure neutrophils (>99%) behaved 

differently than those analysed with 5% PBMC contamination, namely that 

the anti-apoptotic effect of LPS on neutrophils was significantly decreased 

in the absence of contaminating PBMCs 249. Whilst it was suggested that 

monocytes in the PBMCs were responsible for these differences, it is often 

other granulocytes (in particular eosinophils) that constitute the largest 

proportion of non-neutrophil cells in most neutrophil preparations.  Since 

neutrophils, eosinophils and basophils have very similar size and density, it 

is not possible to separate them from each other using approaches based 

on density-gradient media. Consequently, the level of contamination by 

other granulocytes is usually donor-dependent, and the overall 

contamination is also reliant on the technical dexterity of the researcher. It 

was recently shown that the percentage of contaminating cells in a typical 

Polymorphprep™ neutrophil isolation can vary between 1-17% across 18 

individual blood isolations 177. This potential for contamination is of 

particular concern for high-sensitivity experiments such as qPCR, mass 
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spectrometry or RNA-Seq. Indeed, it has been suggested that eosinophils 

have a far greater transcriptional capacity than neutrophils, confounding 

experiments that quantify mRNA in neutrophil suspensions containing high 

and variable numbers of eosinophils 250.  

It is therefore clear that a greater understanding of the technical variations 

of different neutrophil isolation methods is required, both in terms of the 

effect of isolation methodologies on function and the contribution of 

contaminating cells on neutrophil function and gene expression. 
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6.2 Aims 

The aims of this chapter were: 

 

1. To compare the purity of neutrophils isolated by negative selection 

using antibody cocktails and magnetic beads (“ultra-pure 

neutrophils”) with those isolated by density gradient-centrifugation 

using Polymorphprep™. 

 

2. To quantify the differences in function and gene expression profiles 

of ultra-pure neutrophils compared to those of neutrophil 

preparations following Polymorphprep™ isolation, and evaluate 

the effects of contamination by non-neutrophil cells. 

 

3. To quantify the changes in function and gene expression profiles of 

ultra-pure neutrophils and Polymorphprep™ isolated neutrophils 

following stimulation with inflammatory cytokines. 
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6.3 Methods 

The RNA-Seq data in this chapter were collected using neutrophils from 2 

healthy donors of similar age. The donors were chosen on the basis of their 

consistently high or low levels of eosinophils in neutrophil suspensions 

following Polymorphprep™ isolation. Neutrophils from these two donors 

were isolated by both Polymorphprep™ and negative magnetic bead 

isolation (StemCell®).  For a full description of methods see section 2.2.2. 

Purified neutrophils (5 x 106/mL) were incubated at 37 °C in RPMI media (+ 

25 mM HEPES) and, where stated, treated with either 5 ng/mL of GM-CSF 

or 10 ng/mL of TNFα. Following 1h incubation, total RNA was extracted 

using Trizol/chloroform separation. RNA was further purified using a 

Qiagen on-column RNeasy cleanup-kit which included a DNAse digestion 

step (for more detailed methods see section 2.2.9). 

Total RNA was enriched for poly-A mRNA and sequenced using the 

Illumina Hi-Seq 2000 platform on a single lane producing upwards of 40 

million reads per sample (as previously described 251). For a list of raw reads 

produced per sample see Appendix Table A.5. All sequencing protocols 

were carried out by BGI International following shipment of purified total 

RNA on dry ice.  

Purity and integrity of RNA was determined prior to shipping and prior to 

sequencing using an Agilent bioanalyser (see Appendix, Table A.5 for full 

quality values and concentrations of all samples). All other methods were as 

previously described in Chapter 3.  
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6.4 Results 

For these studies, two healthy donors were selected, based on the levels of 

non-neutrophil leukocytes that consistently contaminated neutrophil 

preparations obtained following isolation on Polymorphprep™: Donor 1 

had consistently low levels of contaminating cells (~1-5%), whereas Donor 

2 had consistently high levels of contaminating cells (~10-18% by 

cytospins). Both donors were otherwise healthy and of similar age. 

Neutrophil preparations were obtained by Polymorphprep™ and negative 

selection, using the StemCell® negative selection technique. 

 

6.4.1 Quantif ication neutrophil purity by cytospin 

The levels of contamination of neutrophil preparations following 

Polymorphprep™ isolation or negative magnetic bead isolation of blood 

from Donors 1 and 2 were quantified by cytospins and flow cytometry. 

Cytospins were prepared and the mean number of neutrophils, monocytes, 

lymphocytes and eosinophils were quantified in 4 separate fields of view 

(x20 magnification). A minimum of 100 cells was counted in each field (Fig 

6.4).  

Quantification confirmed previous observations of different levels of 

contamination in these preparations between the two donors. Similar levels 

of lymphocyte and monocyte contamination were seen in both donors 

(Table3.2). However, the greatest differences between donors were 

detected in the number of eosinophils following Polymophprep™ isolation, 
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with Donor 1 having 1% eosinophils whereas Donor 2 had ~15% 

eosinophils (Table 6.2). The overall purity of neutrophils was higher 

following bead isolation than with Polymorphprep™ (Donor 1; 96% 

Polymorphprep™, 97.5% beads, Donor 2; 83% Polymorphprep™, 99% 

beads). Morphological analysis of levels of cell apoptosis immediately after 

isolation revealed that neither isolation method resulted in significant levels 

of apoptotic cells (<1%, data not shown).  

 

6.4.2 Quantif ication of neutrophil purity by f low cytometry 

Eosinophils are difficult to distinguish from neutrophils using a coulter 

counter 252 or by analysis of their forward-scatter and side-scatter profiles 

using flow cytometry 253 due to their similar sizes and granularity. However, 

they can be distinguished from neutrophils by flow cytometry based on 

their levels of auto-fluorescence or cell surface expression levels of CD16 

(FcγRIII). Eosinophils have a higher autofluorescence and express lower 

levels of CD16 on their cell surface then neutrophils.  

Following isolation of neutrophils by density-gradient or magnetic bead 

isolation, suspensions were stained with FITC-conjugated anti-CD16 

monoclonal antibody and analysed by flow cytometry. Cells were first 

gated on their forward- and side-scatter profiles so that subsequent 

measurements were made on granulocytic cells (see Appendix Fig A.6 for 

example of gating used). Gated cells were subsequently analysed by their 

forward-scatter and CD16 properties (Fig 6.5).  Two distinct populations 
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were detected: cells which were CD16bright ; and a lower population of cells 

of similar size that were CD16dim
. These populations represent neutrophils 

and eosinophils, respectively (Fig 3.5). Quantification of the eosinophil 

population revealed that neutrophils isolated by density-gradient 

separation contained a higher proportion of eosinophils than neutrophils 

isolated by magnetic bead depletion. This analysis revealed that Donor 1 

exhibited 3.5% contamination following density gradient isolation, 

compared to 2.42% by magnetic bead isolation, whereas Donor 2 had 12% 

eosinophil contamination following density gradient separation, compared 

to 2.5% following magnetic bead isolation. These levels of eosinophil 

contamination correlate well with the levels of purity as assessed by 

cytospins (Table 6.2). 
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Fig	
   6.4	
   Representative	
   cytospins	
   of	
   neutrophil	
   preparations	
   following	
  
Polymorphprep™	
  (left	
  panels)	
  	
  or	
  magnetic	
  bead	
  isolation	
  (right	
  panels)	
  from	
  Donor	
  1	
  
(top)	
  and	
  Donor	
  2	
  (bottom).	
  White	
  arrows	
  highlight	
  non-­‐neutrophil	
  cells.	
  All	
  images	
  at	
  
x20	
  magnification.	
  Quantification	
  of	
  data	
  is	
  summarised	
  in	
  Table	
  6.2.	
  	
  
	
  
	
  
	
  
Table	
   6.2	
   Percentage	
   of	
   leukocytes	
   in	
   each	
   preparation	
   from	
   each	
   donor.	
   Cells	
  
quantified	
   by	
   cell	
   morphology	
   and	
   staining	
   properties	
   using	
   cytospins	
   (calculated	
  
from	
  4	
  separate	
  fields	
  of	
  view,	
  counting	
  >	
  100	
  cells	
  per	
  field	
  per	
  donor).	
  
 

Cell	
  type	
  

	
  

Donor	
  1	
   Donor	
  2	
  

Isolation	
  method	
  

Poly	
   Beads	
   Poly	
   Beads	
  

Neutrophil	
   96%	
   97.5%	
   83%	
   99%	
  

Eosinophil	
  	
   1%	
   <1%	
   15%	
   <1%	
  

Monocytes	
  	
  
/Lymphocytes	
   3%	
   2%	
   2%	
   <1%	
  

 
	
  

Do
no

r 1
 

Do
no

r 2
 

Poly Beads 
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Fig	
   6.5	
   Flow	
   cytometry	
   scatterplots	
   of	
   neutrophil	
   preparations	
   by	
   Polymorphprep™	
  
(top	
  panels)	
  or	
  magnetic	
  bead	
   (bottom	
  panels)	
   isolation	
  protocols.	
  Plotted	
  by	
  green	
  
fluorescence	
  (CD16	
  positive,	
  X-­‐axis)	
  and	
  forward-­‐scatter	
  (Y-­‐axis).	
  Donor	
  1	
  (left	
  panels)	
  
and	
  Donor	
  2	
  (right	
  panels).	
  Numbers	
  shown	
  are	
  percentage	
  of	
  cells	
  in	
  each	
  of	
  the	
  two	
  
quadrants	
  shown.	
  

2.5%% 97.5%%

12.04%% 87.96%%

2.42%% 97.58%%

3.5%% 96.5%%

Po
ly
%

Be
ad
s%

Donor%1% Donor%2%
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6.4.3 Effect of neutrophil isolation method and population 

purity on neutrophil apoptosis 

Contaminating cells in neutrophil preparations have been implicated in 

affecting the behaviour of neutrophils in response to stimulation 225,249,254. 

Neutrophils prepared by both isolation methods were therefore incubated 

overnight (18 h) with (or without) GM-CSF (5 ng/mL) or TNFα (10 ng/mL). 

Levels of neutrophil apoptosis were subsequently measured by flow 

cytometric analysis of annexin V/PI staining (Fig 6.6). Mean levels of 

neutrophil apoptosis in suspensions from Donor 1 following 

Polymorphprep™ isolation were: untreated 81.5% ± 0.25%; GM-CSF 

51.7% ± 1%; TNF 53.4% ± 2.8%, which are in line with previously published 

data 251. Neutrophils from Donor 1 isolated by magnetic beads showed 

lower levels of apoptosis after GM-CSF treatment than control neutrophils: 

untreated 44.3% ± 1.5%; GM-CSF 32.1% ± 0.2%. However, neutrophils 

treated with TNFα exhibited a higher level of apoptosis than control 

neutrophils (TNF 57%, ± 2.9%), suggesting that under these conditions, 

TNFα is pro-apoptotic to neutrophils. Neutrophils from Donor 2 showed a 

similar pattern of apoptosis to Donor 1 for both the Polymorphprep™ 

isolated preparations (untreated 72.6% ± 0.62%, GM-CSF 45.7% ± 0.53%, 

TNF 53.1% ± 0.61%) and in the bead-isolated preparations (untreated 

27.7% ±0.1%, GM-CSF 10.8% ± 0.5%, TNF 54.7% ± 0.5%), including an 

increase in apoptosis following TNFα treatment of bead-isolated 

neutrophils. Increasing the number of biological replicates to N=4 resulted 
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in values for treated samples reaching significance (p <0.05) when 

compared to their paired, untreated sample (Fig 6.6). These data suggest 

that firstly, magnetic bead isolated neutrophils have lower levels of 

constitutive apoptosis than Polymorphprep™ isolated neutrophils, and 

secondly, that treatment of neutrophils with TNFα has opposing effects on 

apoptosis levels, dependent on neutrophil isolation method and/or 

preparation purity.  
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Fig	
   6.6	
   Levels	
   of	
   neutrophil	
   apoptosis	
   following	
   overnight	
   incubation	
   (18	
   h)	
   with	
  
inflammatory	
  cytokines.	
  Neutrophils	
   isolated	
  by	
  Polymorphprep™	
  (Poly)	
  or	
  magnetic	
  
beads	
   (Beads)	
  were	
   incubated	
  overnight	
   (18	
  h)	
   in	
   the	
  presence	
   (or	
   absence	
   (UT))	
   of	
  
inflammatory	
   cytokines	
  GM-­‐CSF	
   (GM)	
   (5	
  ng/mL)	
  or	
   TNFα	
   (TNF)	
   (10	
  ng/mL).	
   Levels	
  of	
  
apoptosis	
  were	
  measured	
  by	
  annexin	
  V/PI	
   staining.	
  For	
   (A)	
  Donor	
   1	
  and	
   (B)	
  Donor	
  2,	
  
bars	
   represent	
  mean	
   value	
   of	
   duplicate	
  measurements	
   (±	
   SD),	
   In	
   (C)	
   bars	
   represent	
  
mean	
   value	
   of	
   4	
   separate	
   experiments	
   from	
   4	
   donors,	
   error-­‐bars	
   represent	
   SEM.	
   *	
  
Represents	
  significance	
  (p<0.05)	
  as	
  measured	
  by	
  a	
  paired	
  student’s	
  t-­‐test.	
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6.4.4 Cell surface markers of neutrophils prepared by different 

methods 

Appropriate cell surface markers can inform on the relative purity of cell 

preparations and the activation state of the cells. To assess levels of 

neutrophil purity and activation following Polymorphprep™ or bead 

isolation, freshly-isolated neutrophils were stained with FITC-conjugated-

monoclonal antibodies for CD16 (FcγIII), CD15, CD11b (ITGAM) and CD64 

(FcγRI) and relative fluorescence measured by flow-cytometry (Fig 6.7). 

Levels of CD16, CD15 and CD11b were slightly lower in neutrophils 

isolated by magnetic bead isolation whilst levels of CD64 were slightly 

lower in Polymorphprep™ isolated neutrophils. However, levels were not 

significantly different between neutrophils isolated using different methods 

(p>0.05 paired student’s t-test) suggesting that neutrophil isolation 

methods and preparation purity has only marginal effects on cell surface 

expression. 
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Fig	
   6.7	
   Levels	
   of	
   expression	
   of	
   cell	
   surface	
   markers	
   in	
   neutrophils	
   isolated	
   by	
  
Polymorphprep™	
  (Poly)	
  or	
  by	
  magnetic	
  beads	
  (Beads).	
  Geometric	
  mean	
  fluorescence	
  
(GMF)	
  of	
  CD16	
  (N=5),	
  CD15	
  (N=3),	
  CD11b	
  (N=3)	
  and	
  CD64	
  (N=4)	
  was	
  measured	
  by	
  flow	
  
cytometry	
   and	
   normalised	
   to	
   an	
   appropriate	
   isotype	
   control.	
   Error	
   bars	
   represent	
  
SEM.	
   No	
   significant	
   difference	
   in	
   expression	
   found	
   between	
   isolation	
   methods	
  
(Student’s	
  t-­‐test	
  p>0.2).	
  
	
  
	
  

6.4.5 Neutrophil yield from whole blood 

In addition to purity levels, different isolation methods result in different 

final yields of neutrophils from whole blood 244,245. To quantify differences 

between Polymorphprep™- and magnetic bead- isolated neutrophils, a 

sample of whole blood from a healthy donor was divided into two and 

neutrophils were isolated by Polymorphprep™ and magnetic beads in 

parallel. Final preparations of neutrophils were counted using a coulter 

counter and the number of neutrophils recovered per mL of whole blood 

was calculated (Fig 6.8). This process was repeated for 5 different donors. 

Mean levels of neutrophils after magnetic bead isolation were 

approximately 40% of those recovered after Polymorphprep™ isolation 
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using blood from the same donor (Polymorphprep™ 2.81x106 /mL whole 

blood ± 1.02; Beads 1.14x106 /mL whole blood ± 0.76). This suggests that 

a large proportion of whole blood neutrophils are lost during a magnetic 

bead isolation, and that this proportion would otherwise be retained using 

a Polymorphprep™ preparation. 

 

 

Fig	
   6.8	
   Comparison	
   of	
   neutrophil	
   yield	
   from	
   whole	
   blood	
   following	
   isolation	
   by	
  
Polymorphprep™	
  (Poly)	
  or	
  magnetic	
  beads	
  (Beads).	
  **	
  p<0.01	
  (paired	
  student’s	
  t-­‐test).	
  
Paired	
  data	
  from	
  5	
  independent	
  experiments.	
  Error	
  bars	
  represent	
  SEM.	
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6.4.6 RNA-Seq analysis of neutrophils prepared by different 

methods 

Having shown that different donors and different neutrophil isolation 

procedures generate suspensions containing different numbers of 

contaminating cells, notably eosinophils, it was then necessary to 

determine how these contaminating cells and isolation techniques 

contribute to transcriptome studies. Neutrophil preparations isolated by 

two different methods  (Polymorphprep™ and Beads) from donors with 

high or low eosinophil contamination levels were incubated with (or 

without) inflammatory cytokines (GM-CSF or TNFα) for 1 h before total RNA 

was extracted and processed for high throughput sequencing by RNA-Seq 

(see Methods). For details of RNA integrity and number of raw reads per 

sample see Appendix Table A.5. 

 

6.4.7 Transcript levels of antigens targeted by antibodies in the 

bead kit protocol 

To quantify the efficiency of the magnetic bead isolation kit to deplete 

contaminating cells, transcripts for the cell-specific antigens utilised in the 

bead kit were analysed (transcripts for genes listed in Table 3.1). Of the 7 

antigens, only transcripts for CD9, CD36, CD2, and CD3 were detected in 

any samples, and these are expressed in eosinophils, monocytes, T-

cells/NK cells and T cells, respectively.  
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Transcripts for CD36, CD3 and CD2 were detected in all samples from both 

donors following Polymorphprep™ isolation, but were absent (or below the 

RPKM threshold of 0.3) from all samples isolated by magnetic beads (Fig 

6.9). CD9 transcripts (specific to eosinophils) showed the highest levels of 

expression of all 7 genes, with the highest levels seen in the untreated 

sample from Donor 2 following Polymorphprep™ isolation (RPKM=28.9). 

Samples processed by magnetic bead isolation showed much lower levels 

of CD9 expression than those isolated by Polymorphprep™.  However, 

unlike the other transcripts, levels of CD9 where not entirely absent in 

samples isolated by beads, and were at or around the 0.3 RPKM threshold 

(Fig 6.9). The high levels of CD9 in all samples from Donor 2 following 

Polymorphprep™ isolation confirmed the presence of significant levels of 

eosinophils, whilst the greatly decreased levels of CD9 transcripts in the 

samples isolated by magnetic beads confirmed the ability of the magnetic 

bead kit to effectively deplete eosinophils.  

Treatment of neutrophils from each preparation type and from both donors 

with GM-CSF or TNFα had no significant effect on any bead kit antigen 

transcripts compared with their corresponding untreated sample. However, 

it is noteworthy that the largest variation in values between treatments 

(untreated, GM-CSF and TNFα) was consistently seen in Donor 2 samples 

following Polymorphprep™ isolation (Fig 6.9), that is, the preparation with 

the highest levels of non-neutrophil leukocytes. 
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6.4.8 Expression of other non-neutrophil transcripts 

The levels of transcripts encoding each of the 7 bead kit antigen target 

antibodies correlate well with the overall levels of cellular contamination 

measured by cytospins and flow cytometry. However, whilst these gene 

products are known to be unique cell-surface markers on specific cell types, 

it is possible that they may also be transcribed in other leukocytes, but not 

translated and expressed. We therefore measured the expression levels of 

other transcripts, which, according to the literature, are only expressed in 

non-neutrophil leukocytes, in order to further elucidate the extent that 

contaminating cells contribute to the transcriptome profile of the 

neutrophil preparations. Figure 6.10 shows the RPKM levels for the T-and-

B-cell specific transcripts CD8a and CD5 (respectively), the monocyte-

specific transcripts Chemokine Ligand 2 (CCL2) and CD163, and the 

eosinophil transcripts, Interleukin 5 Receptor Alpha (IL5RA) and Charcot-

Leyden crystal galectin (CLC).  
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Fig	
  6.9.	
  RPKM	
  values	
  for	
  non-­‐neutrophil	
  genes	
  of	
  the	
  antigen	
  targets	
  in	
  the	
  magnetic	
  
bead	
   isolation	
  kit.	
  The	
  antigens	
  not	
  shown	
  (CD19,	
  CD56	
  and	
  glycophorin	
  A)	
  were	
  not	
  
expressed	
  above	
  the	
  cut	
  off	
  RPKM	
  values	
  (0.3)	
  under	
  any	
  conditions.	
  Neutrophils	
  were	
  
either	
  isolated	
  by	
  magnetic	
  beads	
  isolation	
  (Bead)	
  or	
  by	
  Polymorphprep™	
  (Poly)	
  from	
  
Donor	
   1	
   (1)	
  and	
  Donor	
  2	
   (2)	
   .	
  Neutrophils	
  were	
   treated	
  with	
  5	
  ng/mL	
  GM-­‐CSF	
   (� /¢),	
  
10ng/mL	
  of	
  TNFα	
  (¡ /¨)	
  or	
  untreated	
  (� /¢)	
  for	
  1h.	
  Horizontal	
  dotted	
  lines	
  represent	
  
RPKM	
  expression	
  threshold	
  of	
  0.3.	
  Horizontal	
  bars	
  represent	
  mean	
  value.	
  	
  
	
  
 

All 6 transcripts were present at very low levels in all samples (RPKM < 2), 

apart from the eosinophil specific transcript CLC in Polymorphprep™ 

prepared samples from Donor 2 (RPKM=249.5). As described previously for 

transcripts for cell-surface markers, the expression levels of transcripts for 

other cell-specific markers were higher in Polymorphprep™ preparations 

than in magnetic bead preparations from both donors. Furthermore, with 

the exception of CD163, all transcripts had highest expression levels in the 

CD36

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0.0

0.2

0.4

0.6

0.8

1.0

CD3

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0

1

2

3

4

5

CD2

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0.0

0.5

1.0

1.5

2.0

CD9

R
P
K
M

Be
ad
s 1

Po
ly
1

Be
ad
s 2

Po
ly
2

0

10

20

30

40



236	
  
	
  

sample prepared by Polymorphprep™ from Donor 2. Importantly, where a 

transcript is expressed at a level >0.3 RPKM (that is, above the expression 

threshold) in the Polymorphprep™ preparations, the expression level in the 

paired bead isolation preparation was <0.3 RPKM (with the exception of 

CD163, RPKM = 0.36), suggesting that most contaminating cells have been 

removed.  The data in Fig 6.9 and 6.10 confirm that the major source of 

cellular contamination seen in the Polymorphprep™ preparations 

originates from eosinophils and that the magnetic bead isolation procedure 

is sufficient to remove this contamination. 
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Fig	
  6.10	
  RPKM	
  values	
   for	
  non-­‐neutrophil	
   specific	
  genes	
  associated	
  with	
  T	
  and	
  B	
  cells	
  
(top)	
  monocytes	
  (middle)	
  and	
  eosinophils	
  (bottom).	
  Neutrophils	
  were	
  either	
  isolated	
  
by	
  magnetic	
  beads	
  isolation	
  (Bead)	
  or	
  by	
  Polymorphprep™	
  (Poly)	
  from	
  Donor	
  1	
  (1)	
  and	
  
Donor	
  2	
  (2)	
  .	
  Neutrophils	
  were	
  treated	
  with	
  5	
  ng/mL	
  GM-­‐CSF	
  (� /¢),	
  10ng/mL	
  of	
  TNFα	
  
(¡ /¨)	
  or	
  untreated	
  (� /¢)	
  for	
  1h.	
  Horizontal	
  dotted	
  lines	
  represent	
  RPKM	
  expression	
  
threshold	
  of	
  0.3.	
  Horizontal	
  bars	
  represent	
  mean	
  value.	
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6.4.9 Comparison of differential ly-expressed genes between 

isolation methods. 

Having analysed the expression levels of transcripts expressed by non-

neutrophil cell types, the open-source high-throughput annotation software 

Cufflinks 145 was used to perform differential expression tests on the raw 

data to identify all transcripts within the transcriptome that were DE 

between isolation methods. All samples from both isolation methods were 

initially compared with each other (all 6 samples prepared using 

Polymorphprep™ compared with all 6 bead-isolated samples) and then 

subsequently, samples were compared with only their paired-treatment 

sample, for example, untreated samples isolated by Polymorphprep™ 

(from Donor 1 and Donor 2) were compared with untreated samples 

prepared by magnetic bead isolation (from Donor 1 and Donor 2). This 

would determine two things, firstly, the effect of neutrophil isolation 

method (and typical levels of eosinophil contamination) on gene expression 

profiles, and secondly, it would identify transcripts that were DE (between 

isolation methods) following stimulation with inflammatory cytokines. 

6.4.9.1 Polymorphprep™ vs Magnetic bead isolation (all samples) 

Samples from both donors were analysed by RNA-Seq to identify changes 

in neutrophil gene expression following either Polymorphprep™ or 

negative magnetic bead isolation. When comparing all Polymorphprep™ 

samples against all bead samples from both donors (i.e. 6 

Polymorphprep™ samples (two donors, 3 treatments) vs 6 bead samples 
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(two donors, 3 treatments)). Cuffdiff identified only 16 genes (from a 

possible 24,934) that were significantly differentially-expressed between 

isolation methods (Table 6.3). All 16 genes showed a low expression value 

in the Polymorphprep™ samples (ranging from 0.708-20.548 RPKM) and 

were not detected in the bead samples (with the exception of ADP-

Ribosylation Factor-Like 4C (ARL4C) RPKM=0.471). This suggests that their 

detection is due to increased cell contamination in the Polymorphprep™ 

samples since several of the genes can be attributed to non-neutrophil 

cells, for example HBB and CD3 to erythrocytes and T cells, respectively. 

However, the absolute expression values of all 16 genes were low (< 21 

RPKM) and so contribute little to the overall transcriptome profiles of 

neutrophil suspensions prepared by Polymorphprep™. 

 

 

 

 

 

 

 

 

 

 

	
  
	
  



240	
  
	
  

Table	
   6.3	
   List	
   of	
   genes	
   with	
   significantly	
   different	
   expression	
   levels	
   in	
   neutrophil	
  
suspensions	
   prepared	
   by	
   different	
   isolation	
   methods.	
   Table	
   shows	
   all	
   significantly	
  
differentially	
   expressed	
   genes	
   in	
   order	
   of	
   the	
   greatest	
   change	
   in	
   RPKM	
   values	
  
(ΔRPKM)	
   between	
   neutrophils	
   isolated	
   using	
   either	
   Polymorphprep	
   (poly)	
   or	
  
magnetic	
   beads.	
   Significance	
   (q-­‐value)	
   as	
   calculated	
   by	
   Cuffdiff	
   and	
   adjusted	
   for	
   5%	
  
false	
   discovery	
   rate	
   by	
   Benjamini-­‐Hochberg	
   correction	
   for	
   multiple-­‐testing.	
   Data	
  
calculated	
  from	
  two	
  biological	
  replicate	
  sets,	
  as	
  described	
  in	
  text.	
  
 
Gene	
  Name	
   Poly	
  

(RPKM)	
  
Beads	
  
(RPKM)	
  

Fold	
  
change	
  
(log2)	
  

q-­‐value	
   ΔRPKM	
  

HBA2	
   20.548	
   0.093	
   -­‐7.786	
   6.50E-­‐04	
   20.454	
  
THBS1	
   12.944	
   0.205	
   -­‐5.981	
   1.53E-­‐03	
   12.739	
  
HBB	
   11.680	
   0.080	
   -­‐7.197	
   3.83E-­‐03	
   11.600	
  
ARL4C	
   10.754	
   0.471	
   -­‐4.513	
   2.98E-­‐02	
   10.283	
  
ALOX15	
   10.068	
   0.041	
   -­‐7.935	
   3.12E-­‐06	
   10.027	
  
PRSS33	
   7.281	
   0.008	
   -­‐9.806	
   1.55E-­‐02	
   7.273	
  
IL7R	
   5.736	
   0.295	
   -­‐4.282	
   3.97E-­‐03	
   5.441	
  
EMR4P	
   5.570	
   0.158	
   -­‐5.138	
   6.64E-­‐03	
   5.412	
  
S1PR1	
   4.115	
   0.216	
   -­‐4.250	
   2.02E-­‐02	
   3.899	
  
CD3E	
   3.867	
   0.058	
   -­‐6.054	
   6.50E-­‐04	
   3.809	
  
SMPD3	
   3.232	
   0.049	
   -­‐6.036	
   8.79E-­‐04	
   3.183	
  
CCR7	
   2.958	
   0.154	
   -­‐4.263	
   1.71E-­‐02	
   2.804	
  

SIGLEC8	
   2.263	
   0.036	
   -­‐5.983	
   1.87E-­‐03	
   2.227	
  
GPR114	
   1.072	
   0.020	
   -­‐5.778	
   2.98E-­‐02	
   1.052	
  
ITK	
   1.021	
   0.053	
   -­‐4.276	
   9.06E-­‐03	
   0.968	
  

BCL11B	
   0.708	
   0.018	
   -­‐5.268	
   8.76E-­‐03	
   0.690	
  
	
  

 

6.4.9.2 Polymorphprep™ vs magnetic bead isolation (treatment specific 

comparison) 

The following analyses were performed to determine if the method of 

isolation had any impact on the patterns of gene expression. Samples of 

neutrophils treated under similar incubation conditions (N=2), but prepared 

by the two different methods were compared (for example, untreated 

Polymorphprep™ vs untreated bead-isolated). This analysis identified a 

total of 25 genes in all 3 treatment groups whose expression was 
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significantly different between the two preparation methods. Of these, 23 

genes were significantly differentially expressed in the untreated samples, 

and 9 genes were significantly altered in all 3 treatment pairings (Fig 6.11).  

As with the genes listed in Table 6.3, all expression levels for genes in Fig 

6.11 were higher in neutrophil samples prepared by Polymorphprep™ 

compared to samples prepared by magnetic beads. 

 

 

Fig	
   6.11	
   Venn	
   diagram	
   showing	
   differentially	
   expressed	
   genes	
   between	
   neutrophil	
  
samples	
   prepared	
   by	
   either	
   Polymorphprep™	
   (poly)	
   or	
   magnetic	
   beads	
   (bead).	
  
Comparisons	
   performed	
   by	
   Cufflinks	
   using	
   treatment	
   specific	
   paired-­‐samples	
   from	
  
two	
   biological	
   replicates.	
   All	
   genes	
   displayed	
   were	
   significantly	
   differentially	
  
expressed	
  due	
  to	
  a	
  higher	
  RPKM	
  in	
  Polymorphprep™	
  prepared	
  samples.	
  Significance	
  
(q	
   <	
   0.05)	
   as	
   calculated	
   by	
   Cuffdiff	
   and	
   adjusted	
   for	
   5%	
   false	
   discovery	
   rate	
   by	
  
Benjamini-­‐Hochberg	
  correction	
  for	
  multiple-­‐testing.	
  See	
  glossary	
  for	
  full	
  gene	
  names.	
  
 
 

This independent analytical approach has confirmed the data in sections 
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express only low levels of transcripts that are attributable to contaminating 

cells. However, neutrophil suspensions isolated by magnetic beads do not 

express these transcripts. Furthermore, cytokine treatment had very little 

effect on the number of genes DE between isolation methods. This 

indicates that the contaminating cells did not respond to these cytokines 

by alterations in gene expression to these cytokines. Thus, in subsequent 

experiments, cytokine-regulated changes in gene expression can be 

attributed to altered activity of neutrophils. 

   

6.4.10 Comparison of gene expression profi les of two different 

donors fol lowing neutrophil isolation using two separate 

methods 

The previous section identified genes which showed significantly higher 

expression in samples prepared by Polymorphprep™. This section set out 

to answer a number of different questions: 

1) Does the isolation method affect gene expression in neutrophils? For 

example, can spending different lengths of time at 37°C and/or being 

subject to different centrifugal forces cause a significant change in gene 

expression? 

2) Are identical sub-populations of neutrophils isolated by different 

techniques? For example, LDGs (see section 1.4.3) which are present at 

variable levels in healthy controls or patients with inflammatory disorders, 

have different density properties and hence sediment at different rates in 
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density-gradient such as Polymorphprep™. It has been reported that LDGs 

express different genes compared to normal density granulocytes 52,81. 

Additionally, the bead isolation method only yielded 40% of the total 

number of neutrophils recovered by Polymorphprep™ (Fig.6.8), but the 

reason for this loss of cells are unknown. It is therefore possible that 

different sub-populations are isolated by the 2 techniques, and that these 

different sub-populations may have different gene expression profiles 

and/or respond differently to cytokines.  

Therefore, the analysis of the data in this section was designed to address 

these questions. This was achieved by comparing changes in gene 

expression in suspensions purified by either Polymorphprep™ (pooling 

data from each of the incubation conditions) or purified by magnetic 

beads. Data for each donor were analysed separately in order to detect 

changes in expression levels that may be donor-dependent (see appendix 

A.8 for datasets used in each comparison). Any gene whose expression is 

lower in the bead-isolated sample is likely to be due to contamination in 

Polymorphprep™ samples.  However, a gene whose expression is higher in 

the bead-isolated  samples could likely be due to either:  

 

a) The physical conditions employed of the isolation method; or 

b) A different sub-population of neutrophils. 
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6.4.11 Donor specif ic analysis of neutrophil samples prepared 

by either Polymorphprep™ or magnetic bead isolation 

For Donor 1 (low contamination donor), Cuffdiff identified 63 genes DE 

between isolation methods, whereas a higher number, 282 genes, were 

detected for Donor 2 (high contamination donor).  

Unlike previous analyses using pooled data-sets from both donors, where 

all significant genes were expressed at higher levels in Polymorphprep™ 

isolated samples, when analysing each donor independently, a proportion 

of differentially regulated genes had higher values in the bead-isolated 

samples. For example, for Donor 1, 10/63 genes showed higher expression 

in bead-isolated samples than in Polymorphprep™ samples, and in Donor 

2 92/282 showed higher expression in bead-isolated samples than in 

Polymorphprep™ samples. Interestingly, the percentage of significant 

genes expressed at higher levels in beads compared to Polymorphprep™ 

in Donor 2 is twice that seen in Donor 1 (32.7% and 15.9% respectively) 

(see Appendix Table A.9). 

6.4.11.1 Donor 1 

The 25 genes with the greatest change in RPKM between isolation 

methods for Donor 1 are listed in Table 6.4. The greatest change in RPKM 

seen in Donor 1 is for the gene FBJ Murine Osteosarcoma Viral Oncogene 

Homology (FOS) which has an RPKM of 169 in Polymorphprep™ samples 

and a significantly higher value of 1148 in magnetic bead isolated samples 

(q-value = 0.019). The next 3 genes with the greatest change in RPKM 
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between isolation methods are HBA1, HBA2 and HBB, which encode the 

alpha and beta subunits of the haemoglobin, an important protein in 

oxygen transportation in erythrocytes. Despite lacking a nucleus, 

erythrocytes and reticulocytes (immature erythrocytes) are capable of gene 

transcription and translation 255. The presence of these transcripts in 

Polymorphprep™ samples most likely represents contaminating 

erythrocytes which were not eliminated by the hypertonic lysis step. Since 

the bead isolation kit contains an antibody recognising an erythrocyte-

specific antigen (glycophorin A), this contamination is predictably absent 

from all bead-prepared samples. Although the expression values of the 

remaining genes are judged to be significant by Cuffdiff, the differences in 

RPKM values between samples are very low, with only 15/63 genes having 

a change in RPKM of >2 between isolation conditions Table 6.4. 
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Table.6.4	
   List	
   of	
   genes	
   significantly	
   regulated	
   between	
   isolation	
   methods	
   in	
  
neutrophils	
  from	
  Donor	
  1	
  (low	
  contamination).	
  Table	
  shows	
  the	
  top	
  25	
  genes	
  with	
  the	
  
greatest	
   change	
   in	
  RPKM	
  values	
   (ΔRPKM)	
  between	
  neutrophils	
   isolated	
  using	
  either	
  
Polymorphprep™	
  (Poly)	
  or	
  magnetic	
  beads.	
  Genes	
  expressed	
  at	
  higher	
  levels	
  in	
  bead-­‐
isolated	
   samples	
   are	
   shaded	
   grey.	
   Significance	
   (q-­‐value)	
   as	
   calculated	
   by	
   Cuffdiff,	
  
adjusted	
  for	
  5%	
  FDR	
  by	
  Benjamini-­‐Hochberg	
  correction	
  for	
  multiple-­‐testing.	
  Data	
  from	
  
3	
  paired	
  samples	
  from	
  Donor	
  1.	
  
 

Gene	
  
Name	
  

Poly	
  
(RPKM)	
  

Beads	
  
(RPKM)	
  

Fold	
  
change	
  
(log2)	
  

q-­‐value	
   ΔRPKM	
  

FOS	
   169.379	
   1148.700	
   2.762	
   1.90E-­‐02	
   -­‐979.321	
  
HBA1	
   26.138	
   0.016	
   -­‐10.642	
   2.29E-­‐02	
   26.122	
  
HBA2	
   24.521	
   0.015	
   -­‐10.656	
   2.29E-­‐02	
   24.506	
  
HBB	
   16.238	
   0.040	
   -­‐8.683	
   2.95E-­‐05	
   16.198	
  
CKS2	
   1.285	
   10.227	
   2.993	
   1.45E-­‐05	
   -­‐8.943	
  
KLF4	
   2.642	
   10.591	
   2.003	
   3.51E-­‐02	
   -­‐7.948	
  
LCN2	
   1.292	
   7.993	
   2.629	
   2.77E-­‐05	
   -­‐6.701	
  
LTF	
   0.799	
   6.060	
   2.923	
   2.10E-­‐06	
   -­‐5.261	
  
EREG	
   5.489	
   0.394	
   -­‐3.799	
   1.15E-­‐03	
   5.094	
  
RPL10A	
   6.760	
   1.817	
   -­‐1.896	
   3.49E-­‐02	
   4.943	
  
IL7R	
   3.758	
   0.328	
   -­‐3.517	
   1.78E-­‐07	
   3.430	
  
CD3E	
   2.761	
   0.029	
   -­‐6.564	
   8.10E-­‐07	
   2.732	
  
THBS1	
   2.735	
   0.051	
   -­‐5.749	
   0.00E+00	
   2.684	
  

KIAA0090	
   0.361	
   2.880	
   2.996	
   8.10E-­‐07	
   -­‐2.519	
  
CCR7	
   2.093	
   0.066	
   -­‐4.981	
   4.05E-­‐10	
   2.027	
  

SERPINB2	
   1.959	
   0.286	
   -­‐2.775	
   1.06E-­‐02	
   1.673	
  
CCL5	
   1.881	
   0.338	
   -­‐2.474	
   9.02E-­‐04	
   1.543	
  
GIMAP7	
   1.567	
   0.263	
   -­‐2.576	
   1.47E-­‐03	
   1.305	
  
VCAN	
   1.261	
   0.021	
   -­‐5.907	
   9.02E-­‐04	
   1.240	
  
TCF7	
   1.421	
   0.209	
   -­‐2.768	
   2.45E-­‐02	
   1.212	
  
LDHB	
   1.317	
   0.137	
   -­‐3.264	
   2.14E-­‐04	
   1.180	
  
ARL4C	
   1.378	
   0.227	
   -­‐2.603	
   2.50E-­‐04	
   1.151	
  
S1PR1	
   1.300	
   0.150	
   -­‐3.118	
   7.56E-­‐06	
   1.151	
  
MMP8	
   0.108	
   1.024	
   3.245	
   1.33E-­‐05	
   -­‐0.916	
  
CD5	
   1.102	
   0.192	
   -­‐2.525	
   4.52E-­‐04	
   0.911	
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6.4.11.2 Donor 2 

By comparison, Table 6.5 lists the 25 genes with the greatest RPKM change 

between isolation methods in samples from Donor 2. Only 3 genes (LCN2, 

HBA1 and MMP8) feature on both lists. The number of significant genes for 

Donor 2 is much greater than for Donor 1 and the magnitude of the RPKM 

differences between isolation methods are also greater in Donor 2. 

Interestingly, despite the increased purity of neutrophils isolated by 

magnetic beads (as shown earlier by flow cytometry and cytospins), 15 of 

the top 25 significant genes exhibit higher expression in bead-isolated 

samples than in Polymorphprep™ isolated samples. These include the two 

genes with the greatest change in RPKM (neutrophil defensin – DEFA1 and 

neutrophil gelatinase-associated Lipocalin LCN2). The genes that have 

higher expression in Polymorphprep™ samples are those most-commonly 

associated with other, non-neutrophil cell types, such as CLC (eosinophils), 

CD52 (lymphocytes) and PLIN2 (epithelial cells). However, the genes with 

higher expression in bead-isolated neutrophils are known neutrophil genes,  

for example Carcinoembryonic antigen-related cell adhesion molecule 8 

(CEACAM8) and Bactericidal/Permeability-Increasing Protein (BPI): in some 

cases these are neutrophil-specific genes, for example neutrophil elastase 

(ELANE) 256 and lipocalin 2 (LCN2) 257. Consequently, these genes with 

significantly higher expression in bead isolated samples cannot be 

attributed to contaminating leukocytes. 
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Table.	
   6.5	
   List	
   of	
   genes	
   significantly	
   regulated	
   between	
   isolation	
   methods	
   in	
  
neutrophils	
  from	
  Donor	
  2	
  (high	
  contamination).	
  Table	
  shows	
  the	
  top	
  25	
  genes	
  with	
  the	
  
greatest	
   change	
   in	
  RPKM	
  values	
   (ΔRPKM)	
  between	
  neutrophils	
   isolated	
  using	
  either	
  
Polymorphprep™	
  (Poly)	
  or	
  magnetic	
  beads.	
  Genes	
  expressed	
  at	
  higher	
  levels	
  in	
  bead-­‐
isolated	
   samples	
   are	
   shaded	
   grey.	
   Significance	
   (q-­‐value)	
   as	
   calculated	
   by	
   Cuffdiff	
  
adjusted	
   for	
   5%	
   false	
   discovery	
   rate	
   by	
   Benjamini-­‐Hochberg	
   correction	
   for	
   multiple-­‐
testing.	
  Data	
  from	
  3	
  paired	
  samples	
  from	
  Donor	
  2.	
  
 

Gene	
  
Name	
  

Poly	
  
(RPKM)	
  

Beads	
  
(RPKM)	
  

Fold	
  
change	
  
(log2)	
  

q-­‐value	
   ΔRPKM	
  

DEFA1	
   239.933	
   1082.690	
   2.174	
   4.75E-­‐02	
   -­‐842.757	
  
LCN2	
   89.952	
   447.161	
   2.314	
   2.45E-­‐02	
   -­‐357.209	
  
CLC	
   264.289	
   15.800	
   -­‐4.064	
   6.14E-­‐09	
   248.489	
  
CAMP	
   32.519	
   138.676	
   2.092	
   2.93E-­‐02	
   -­‐106.157	
  
BPI	
   24.068	
   117.488	
   2.287	
   2.05E-­‐02	
   -­‐93.420	
  

OLFM4	
   16.438	
   87.792	
   2.417	
   1.36E-­‐02	
   -­‐71.354	
  
CD52	
   56.669	
   2.804	
   -­‐4.337	
   3.79E-­‐04	
   53.865	
  

CEACAM8	
   12.433	
   65.236	
   2.391	
   9.63E-­‐03	
   -­‐52.803	
  
DEFA4	
   9.968	
   57.406	
   2.526	
   1.26E-­‐03	
   -­‐47.438	
  
PLIN2	
   40.458	
   1.758	
   -­‐4.524	
   2.23E-­‐08	
   38.699	
  
MS4A3	
   8.837	
   45.919	
   2.377	
   1.54E-­‐02	
   -­‐37.081	
  
MMP8	
   9.436	
   41.732	
   2.145	
   3.68E-­‐02	
   -­‐32.297	
  
AZU1	
   7.485	
   38.436	
   2.360	
   4.26E-­‐03	
   -­‐30.951	
  
ELANE	
   5.851	
   34.581	
   2.563	
   1.00E-­‐03	
   -­‐28.731	
  
RETN	
   5.085	
   28.648	
   2.494	
   5.32E-­‐03	
   -­‐23.563	
  

LGALS12	
   23.813	
   0.657	
   -­‐5.180	
   7.78E-­‐06	
   23.157	
  
RGS1	
   25.601	
   2.924	
   -­‐3.130	
   4.85E-­‐04	
   22.677	
  
THBS1	
   22.995	
   0.367	
   -­‐5.969	
   0.00E+00	
   22.628	
  
ALOX15	
   22.411	
   0.047	
   -­‐8.894	
   0.00E+00	
   22.364	
  
ARL4C	
   22.673	
   0.775	
   -­‐4.871	
   0.00E+00	
   21.898	
  
HBA1	
   19.632	
   0.031	
   -­‐9.311	
   4.39E-­‐02	
   19.601	
  

CEACAM6	
   5.968	
   25.207	
   2.079	
   2.95E-­‐02	
   -­‐19.239	
  
H1F0	
   3.009	
   21.615	
   2.845	
   2.19E-­‐04	
   -­‐18.605	
  
HBA2	
   18.605	
   0.202	
   -­‐6.529	
   1.92E-­‐08	
   18.403	
  

C13orf15	
   5.171	
   23.425	
   2.180	
   1.16E-­‐02	
   -­‐18.254	
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6.4.12 Filtering of gene l ists from both donors to enrich for 

genes with highest expression changes between isolation 

methods 

When a filter is applied to the full list of significant genes to remove genes 

which have <2 RPKM difference between isolation methods, the number of 

genes decreases from 63 to 15 for Donor 1 and from 282 to 116 for Donor 

2 (Fig 6.12). This filtering also decreases the proportion of genes with a 

higher value in bead samples to a greater extent in Donor 1 than in Donor 

2. This reveals that of the genes DE in either donor, a greater proportion of 

those in Donor 2 have a considerable difference in RPKM (> 2), whereas the 

majority of DE genes in Donor 1 have a very small (< 2) difference in RPKM 

between isolation methods, and although deemed to be significant by 

Cuffdiff, are unlikely to have a considerable effect on overall gene 

expression profiles. 
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Fig	
  6.12	
  Number	
  of	
  genes	
  significantly-­‐regulated	
  in	
  neutrophils	
  is	
  dependent	
  on	
  Donor	
  
and	
  neutrophil	
   isolation	
  method.	
  (A)	
  The	
  number	
  of	
  genes	
  significantly	
  differentially	
  
expressed	
   (DE)	
   is	
  higher	
   in	
  Donor	
  2	
   than	
  Donor	
   1,	
  and	
  a	
  greater	
  proportion	
  of	
   those	
  
genes	
   are	
   higher	
   following	
   Polymorphprep™	
   isolation	
   (white	
   bars)	
   than	
   magnetic	
  
bead	
  isolation	
  (black	
  bars).	
  (B)	
  Filtering	
  significant	
  DE	
  genes	
  for	
  values	
  that	
  only	
  show	
  
>2	
   RPKM	
   difference	
   between	
   isolation	
   method	
   values,	
   dramatically	
   decreases	
   the	
  
number	
   of	
   genes	
   in	
   Donor	
   1	
   but	
   only	
   halves	
   the	
   number	
   of	
   genes	
   in	
   Donor	
   2.	
   The	
  
proportion	
  of	
  genes	
   that	
  are	
  higher	
   in	
  bead	
   isolation	
   is	
  also	
  much	
  higher	
   in	
  Donor	
  2	
  
than	
  Donor	
  1,	
  and	
  is	
  less	
  affected	
  by	
  filtering	
  gene	
  list.	
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6.4.13 Genes enriched in bead isolated samples 

A striking finding in the list of significant genes between Donor 1 and 2 is 

the proportion of genes that are enriched in the bead-isolated samples. It 

might be predicted that if any difference existed in gene expression values, 

this would likely result from the small percentage of contamination from 

other cell types in the Polymorphrep™ isolated cells. Consequently, these 

values would be highest in Polymorphrpep™ samples and greatly 

decreased (or absent) in the bead isolated samples. In fact, of the 

significantly differentially expressed genes in Donor 2, almost a third of 

these show higher expression in bead-isolated samples (92/282) (for full list 

of the 92 genes see Appendix, Table A.10) including 12 of the top 15 

genes with greatest changes in RPKM (Table 6.5, grey shading).  

Further analysis of these genes identified several encoding neutrophil 

granule proteins and anti-bacterial peptides. These include (but are not 

limited to) lactoferrin (LTF), defensin (DEFA1), myeloperoxidase (MPO), 

neutrophil elastase (ELANE), Bacterial Permeability-Increasing protein (BPI) 

and azurocidin (AZU1). Neutrophil granule proteins are expressed and 

compartmentalised prior to maturation and release of mature cells into the 

peripheral blood 258,259. Typically, granule protein genes are not transcribed 

in fully-mature neutrophils 18,   suggesting their presence in Donor 2 

samples is indicative of the presence of a sub-population of pre-mature 

neutrophils or progenitor cells, that is otherwise absent or below the 

threshold of detection in Donor 1 samples. 
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Recent work by Villanueva and colleagues 52 has sought to define the 

transcriptional profile of LDGs in SLE.  Micro-array studies showed that a 

total of 18 genes are significantly elevated in SLE LDGs when compared to 

levels detected in control or SLE normal density granulocytes. Among the 

18 genes include those relating to granule enzymes, and molecules 

associated with ROS production, NET formation and bactericidal activity 52 

(Table 6.6). 

Analysis of genes significantly expressed between isolation methods in 

Donor 2 revealed that several of the genes have previously been shown to 

be associated with immature neutrophils and/or LDGs. This was confirmed 

by IPA-software analysis (data not shown). 
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Table	
  6.6	
  List	
  of	
  functions	
  of	
  18	
  LDG-­‐associated	
  genes	
  as	
  defined	
  by	
  Villanueva	
  et	
  al	
  52.	
  
 
Gene	
  
symbol	
  

Gene	
  Name	
   Function	
  

MMP8	
   Matrix	
  metallopeptidase	
  8	
   Gelatinase	
  and	
  
collagenase	
  activities	
  MMP9	
   Matrix	
  metallopeptidase	
  9	
  

CEACAM1	
   Carcinoembryonic	
  Antigen-­‐
Related	
  Cell	
  Adhesion	
  Molecule	
  1	
  

(CD66a)	
  

Adhesion	
  molecule	
  

CEACAM8	
   Carcinoembryonic	
  Antigen-­‐
Related	
  Cell	
  Adhesion	
  Molecule	
  8	
  

(CD66b)	
  
RNASE2	
   Ribonuclease	
  2	
   Non-­‐secretory	
  

ribonuclease	
  
(pyrimidine	
  specific)	
  

RNASE3	
   Ribonuclease	
  3	
  

CAMP	
   Cathelicidin	
  antimicrobial	
  
peptide	
  (LL37)	
  

Antimicrobial	
  peptide,	
  
chemotaxis,	
  

inflammatory	
  response	
  
regulation	
  

CTSA	
   Cathepsin	
  A	
   Lysosomal	
  serine	
  
proteases,	
  antibacterial	
  

activity	
  	
  
(anti-­‐gram-­‐negative)	
  

CTSG	
   Cathepsin	
  G	
  

ELANE	
   Elastase	
   Sereine	
  protease,	
  
elastin	
  degredation,	
  

phagocytosis,	
  migration	
  
MPO	
   Myeloperoxidase	
   Microbicidal	
  activity,	
  

catalyses	
  production	
  of	
  
ROS.	
  Granule	
  protein	
  

AZU1	
   Azurocidin	
  1	
   Granule	
  protein,	
  
antibacterial,	
  granule	
  

protein	
  
DEFA4	
   Defensin,	
  alpha	
  4	
   Microbicidal	
  peptide,	
  

granule	
  protein	
  
BPI	
   Bactericidal/Permeability-­‐

Increasing	
  Protein	
  
Bactericidal	
  peptide,	
  
LPS	
  binding,	
  granule	
  

protein	
  
CRISP3	
   Cystein-­‐rich	
  secretory	
  protein	
   Immuno-­‐regulation	
  

LCN2	
   Lipocalin	
  2	
   Iron-­‐sequestering,	
  
granule	
  protein	
  

LTF	
   Lactotransferrin	
   Iron-­‐binding	
  granule	
  
protein,	
  multi-­‐
functional	
  

CLU	
   Clusterin	
   Extracellular	
  chaperone	
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Analysis of the expression levels of the 18 LDG genes (defined by 

Villanueva et al) in both the Polymorphprep™ and bead-isolated samples 

from Donor 1 and Donor 2 show that all transcripts are elevated in Donor 2 

samples compared to Donor 1.  Furthermore, when comparing differences 

in gene expression of LDG genes between isolation methods, 14 of these 

18 genes are significantly elevated in bead-isolated samples from Donor 2 

compared to paired Polymorphprep™ isolated samples.  These findings 

are summarised and presented in Fig 6.13. Hierarchical clustering of 

expression values resulted in samples from the same donor grouping 

together. Taken together, these findings suggest that Donor 2 has elevated 

levels of LDGs and that bead-isolation of neutrophils enriches for this LDG 

sub population that could otherwise not be recovered by Polymorphprep™ 

isolation. 
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Fig	
   6.13	
   LDG	
   genes	
   are	
   elevated	
   in	
   Donor	
   2	
   samples	
   and	
   enriched	
   in	
   bead-­‐isolated	
  
samples	
   compared	
   to	
   Polymorphprep™	
   isolated	
   samples.	
   Heatmap	
   of	
   log2	
  
transformed	
   expression	
   values	
   (RPKM)	
   for	
   18	
   LDG	
   associated	
   genes	
   in	
   bead-­‐	
   or	
  
Polymoprhprep™	
  (Poly)-­‐	
  isolated	
  samples	
  from	
  Donor	
  1	
  (low	
  contamination)	
  or	
  Donor	
  
2	
  (high	
  contamination).	
  Lowest	
  expression	
  values	
  are	
  shown	
  in	
  green,	
  median	
  values	
  
shown	
   in	
   black	
   and	
   highest	
   expression	
   values	
   shown	
   in	
   red.	
   Hierarchical	
   clustering	
  
shows	
   greatest	
   association	
   between	
   paired	
   samples	
   from	
   the	
   same	
   donor	
   and	
  
greatest	
   divergence	
   between	
   donor	
   samples.	
   Clustering	
   achieved	
   using	
   Pearson	
  
correlation	
  and	
  average	
  linkage	
  by	
  Multiple	
  experiment	
  viewer	
  (MeV).	
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6.4.14 Comparison of variation between donor fol lowing 

different isolation methods 

The previous section identified that different genes are expressed in 

neutrophil samples isolated by different methods, and that the differences 

are donor-dependent. However, it is unclear whether the number of genes 

which are DE between donors is altered by different isolation methods. For 

example, whether the number of genes differentially expressed between 

donors following Polymorphprep™ isolation is similar to the number of 

genes differentially expressed between donors following bead isolation.  

To answer this question, Cuffdiff anlaysis was used to identify differentially 

expressed genes between Polymorphprep™ isolated samples from Donor 

1 with Polymorphprep™ isolated samples from Donor 2. Likewise, bead-

isolated samples from Donor 1 were compared to bead-isolated samples 

from Donor 2. This analysis would identify the number of genes that were 

differentially expressed between donors for each isolation method. Since 

the purity of neutrophil preparations from both donors was similar 

following bead isolation (Donor 1 - 97.5%, Donor 2 - 99%) it might have 

been expected that fewer genes would be significantly differentially 

expressed between donors after this purification method, than for 

Polymorphprep™ isolated samples. Likewise, as there is a much greater 

difference in neutrophil purity levels between the donors following 

Polymorphprep™ preparation (Donor 1 - 96%, Donor 2 - 83%) it might also 

be predicted that a greater number of genes were differentially expressed 
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after preparation by this method than would be in the bead-isolated 

samples.  

However, Cuffdiff identified almost 3 times as many differentially-expressed 

genes in the Polymorphprep™ samples as were detected in the bead-

isolated samples (Table 6.7). This suggests that there is greater 

heterogeneity in gene expression profiles between donor neutrophil 

samples if samples are prepared by magnetic bead isolation rather than by 

Polymorphprep™. Indeed, it is likely the increased number of significantly 

expressed genes between donors is a consequence of the more 

heterogeneous neutrophil population selected by magnetic bead isolation, 

and that the presence of a sub-population of LDGs can significantly 

contribute to the overall neutrophil gene expression profile. 

 

Table	
   6.7	
   Number	
   of	
   significantly	
   differentially	
   expressed	
   (DE)	
   genes	
   between	
  
neutrophil	
   samples	
  prepared	
  by	
   either	
  Polymorphprep™	
   (Poly)	
  or	
  by	
  magnetic	
  bead	
  
isolation	
  (Bead)	
  from	
  Donor	
  1	
  (1)	
  and	
  Donor	
  2	
  (2).	
  Significance	
  (q<0.05)	
  as	
  calculated	
  by	
  
Cuffdiff	
   adjusted	
   for	
   5%	
   false	
   discovery	
   rate	
   by	
   Benjamini-­‐Hochberg	
   correction	
   for	
  
multiple-­‐testing.	
  Data	
  calculated	
  from	
  3	
  sets	
  of	
  paired	
  replicates.	
  	
  
 

Samples	
  compared	
  
Poly-­‐1	
  
vs	
  

Poly-­‐2	
  

Bead-­‐1	
  
vs	
  

Bead-­‐2	
  

Number	
  of	
  DE	
  genes	
   531	
   1544	
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6.5 Discussion 

Recent evidence suggests that the presence of contaminating leukocytes in 

a neutrophil preparation can alter the behaviour of neutrophils, or generate 

results that are difficult to interpret 249,254. Traditional techniques for 

isolating neutrophils from peripheral blood have relied on centrifugation of 

whole blood (or erythrocyte-depleted whole blood) over density-gradient 

media and these typically achieve neutrophil purities of >95%. In recent 

years, more sophisticated techniques have emerged which can achieve 

much higher purity levels (>99%), without the need for lengthy 

centrifugation steps and the ability to automate the whole isolation 

protocol.  The costs of these latter procedures are significantly higher than 

those based on density-gradient centrifugation, but such methods are 

reported to mitigate the potential effects of contaminating cells and 

improve consistency of data obtained from different donors.  

Despite recognition of the importance of neutrophil purity for in vitro 

studies, very few studies have focused on the impact of purity and or 

isolation method on neutrophil behaviour. Indeed, no studies yet have 

determined the molecular properties of neutrophils isolated by different 

purification protocols (neither under stimulated or untreated conditions). 

In this study, peripheral blood neutrophils from two healthy controls were 

isolated using two commonly employed methods of neutrophil isolation 

(density gradient by Polymorphprep™ and magnetic bead negative 

selection). The two donors were selected because previous work had 
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identified these as having low levels (Donor 1) or high levels (Donor 2) of 

contaminating cells, which were mainly eosinophils.   

Independent quantification of neutrophil purity by cytospin and flow 

cytometry confirmed the levels of inherent cellular contamination in 

neutrophil samples from each donor. Quantification also demonstrated that 

levels of neutrophil purity achievable by each isolation method were 

broadly in line with previously published data 227,246,251. However, and 

somewhat surprisingly, the often referenced neutrophil isolation purity 

value of >99% following bead isolation 182,227,260,261 was not achieved in any 

preparation. 

Levels of contamination in leukocyte preparation purity have previously 

been suggested to affect rates of apoptosis in both neutrophil preparations 

249, and eosinophil preparations 262. However, in both of these studies, 

contamination by CD14+ cells (monocytes) was shown to be crucial to 

delaying apoptosis following lipopolysaccharide (LPS) stimulation. Given 

that levels of PBMCs were equally low (≤3%) in both donors and isolation 

methods, it is perhaps surprising that (when compared to untreated 

samples), TNFα incubation was pro-apoptotic in bead-isolated neutrophils 

and anti-apoptotic in neutrophils isolated by Polymorphprep™. Several 

reasons could explain this, firstly, only low levels of contaminating cells may 

be required to alter the affect of TNFα. Secondly, the Polymorphprep™ 

method involves exposure of cells to greater centrifugal forces that may 

have an effect on neutrophils perhaps altering their responsiveness to 
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TNFα. Finally, the apparently pro-apoptotic effect of TNFα on bead-

isolated neutrophils could be due to the fact that there are great 

differences in rates of apoptosis in untreated neutrophils prepared by these 

two methods (Poly-Untreated 64.71% ± 7.34%, Beads-untreated 37.04% ± 

4.21%). Levels of apoptosis in TNFα-stimulated neutrophils are similar 

regardless of isolation method (Poly-TNF 47.82% ± 3.20%, Beads-TNF 

52.46% ± 2.04%). This would suggest that the neutrophils that are “lost” 

during bead isolation are those with normally high rates of constitutive 

apoptosis.  

TNFα has previously been shown to exhibit bi-modal effects on neutrophils 

183,225 and other cell types 263–265, that may be time-dependent 266,  or 

concentration-dependent 265. Given that the pro-apoptotic effect of TNFα is 

more pronounced in Donor 2 bead samples than Donor 1 bead samples 

(Donor 1: +12.68% apoptosis vs control, Donor 2; +27.03% vs control), it is 

possible that eosinophils may play a role in delaying neutrophil apoptosis. 

Indeed, eosinophils are capable of expression and release of TNFα under 

activated conditions 267 and as such may be providing a consistent source 

of anti-apoptotic paracrine signalling in the Polymorphprep™ isolated 

samples, thereby delaying apoptosis in these less pure preparations of 

neutrophils. Additionally, the higher rates of apoptosis seen in all 

Polymorphprep™ samples (compared to bead isolated samples) may be 

due to the higher centrifugation steps during the isolation protocol than 

those employed in a magnetic bead preparation. Indeed, additional 
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centrifugation of bead-isolated neutrophils on Polymorphprep™ for 30 min 

increased levels of neutrophil apoptosis to levels similar to those seen in 

Polymorphprep™ isolated samples (see Appendix Fig A.5).  

Analysis of neutrophil cell-surface expression levels revealed no significant 

changes after purification by different isolation methods (Student’s t-test 

p>0.2). Whilst CD15 and CD16 are expressed at high levels on neutrophils, 

they are also expressed on other leukocytes 268 (with the exception of 

CD16b which is neutrophil specific). This might explain why levels of 

expression of these receptors were not significantly different in neutrophils 

prepared by isolation methods.  Since CD11b is known to be upregulated 

following neutrophil activation 269, the small increase in expression seen in 

Polymorphprep™ isolated neutrophils may represent an increased level of 

activation – although levels were not significantly different (p= 0.27) – 

perhaps due to the additional centrifugation time of a Polymorphprep™ 

isolation method in comparison to a magnetic bead preparation. However, 

this does not explain the slight increased expression of CD64 in bead-

isolated neutrophils (although also not significant p= 0.33), which can also 

be upregulated in neutrophils following activation, albeit by enhanced 

gene expression in response to cytokines such as IFNγ and LPS 270. 

In contrast to the increased neutrophil purity following bead isolation, the 

absolute yield of neutrophils obtained from whole blood was much lower 

than can be achieved using Polymorphprep™. It is likely that several steps 

in the bead isolation protocol contribute to this decreased yield. Firstly, 
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erythrocyte depletion of whole blood using dextran relies on the 

aggregated erythrocytes sedimenting at a faster rate than leukocytes, such 

that an erythrocyte-free upper phase is produced which is removed and 

processed further. Although this process is effective for depletion of 

erythrocytes, leukocytes in the lower portion of the tube remain there and 

will not rise into the erythrocyte-free zone. Secondly, since the isolation 

method is by negative selection, neutrophils must avoid false-positive 

selection by each of the 7 specificities of antibodies included in the bead 

isolation kit. Finally, in the last steps of the bead isolation method, pure 

neutrophils are decanted into a fresh tube, while the contaminating cells 

are retained within a magnetic field. This must be performed in a single 

motion to avoid dislodging contaminating cells from the magnetic field.  

Consequently, a proportion of this neutrophil suspension is retained within 

the tube, further decreasing the final yield of pure neutrophils. 

Regardless of the factors contributing to a decreased neutrophil yield, this 

difference in yield between isolation methods, raises considerable concerns 

for neutrophil studies where large numbers of cells are required (for 

example RNA studies across a range of time points). Moreover, in 

situations where the available volume of whole blood is restricted, for 

example in neutropenic or paediatric  patients, this method of neutrophil 

purification may be unworkable. 

RNA-Seq analysis of neutrophil samples revealed that transcripts for 

contaminating cells (either relating to bead-kit antigens or known cell 
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specific transcripts) were broadly in line with expected contamination levels 

measured by flow cytometry of microscopic analysis. Eosinophil transcripts 

(CD9, IL5RA and CCL2) were at highest levels in Donor 2 Polymorphprep™ 

samples, with CD9 being the highest non-neutrophil transcript. 

Interestingly, despite its use as an eosinophil-specific cell surface antigen in 

the bead-isolation kit, neutrophils are known to express CD9 on their cell 

surface 271, albeit under disease conditions. However, this could 

compromise the efficacy of the bead isolation kit in experiments isolating 

neutrophils from patients with inflammatory diseases. 

It is clear from both the data presented here and previously published work 

that magnetic bead isolation of neutrophils is more efficient at removing 

contaminating leukocytes than Polymorphprep™. However, despite 

general acceptance that this method provides more highly-pure neutrophil 

suspensions, experiments using RNA-Seq have revealed that transcripts 

unique to contaminating cells are still detectable within the bead-isolated 

samples. Indeed, levels of the monocyte marker, CD163 are higher in 

bead-isolated samples from Donor 1 than in Polymorphprep™ isolated 

samples from Donor 2. This highlights the importance and effects of donor 

variation on the purity of the samples irrespective of the isolation method. 

When assessing the number of genes that were differentially-regulated 

between the two isolation methods using datasets for both donors, it was 

found that only a small number of genes were significantly regulated (16 

genes). Furthermore, when comparing treated samples from both isolation 
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methods (for example GM-poly vs GM-bead, N=2) there is only a single 

additional significant gene in each case (integrin beta 7 (ITGB7) and 

Indoleamine 2,3-dioxygenase 1 (IDO1) for GM-CSF and TNFα samples 

respectively), suggesting that differentially expressed genes between 

isolation methods are not influenced greatly by the presence of 

inflammatory stimuli. 

In contrast, when Polymorphprep™ and bead isolated samples were 

analysed in a donor specific manner, a greater number of genes were 

found to be significantly differentially expressed between the two isolation 

methods (in particular samples from Donor 2). Surprisingly, several genes 

are found to be elevated in the bead-isolated preparations. Detailed 

analysis revealed many of these genes are expressed in low density 

granulocytes, cells that are present in the circulation of patients with SLE 52.  

Whilst the exact properties and functions of LDGs remain largely 

undefined, they have increasingly been associated with abnormal immune 

responses and in particular, auto-immune disease 52,79–81,272. It is therefore 

somewhat surprising neutrophil samples from a healthy control (Donor 2) 

showed elevated levels of LDG-associated genes, implying high levels of 

LDGs in the blood of this healthy donor. This suggests that elevated 

transcription levels of LDG-genes alone are not sufficient to induce or 

reflect a diseased state.  Alternatively, elevated levels of LDGs in peripheral 

blood may indicate susceptibility to disease. Alternatively, heterogeneity in 

a leukocyte population may be normal but overlooked as many studies 
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would not normally use isolation methods that specifically enrich LDGs. It is 

clear from the experiments described in this thesis that LDGs are not 

normally isolated in the neutrophil band prepared by Polymorphprep. It is 

also unclear if the high levels of eosinophils present in Donor 2 blood are 

related to the increase in LDGs also seen in this donor.  

Whether LDGs represent a sub-class of mature, normal density neutrophils 

(NDGs) or a sub-population of immature neutrophils is still unclear. At 

present, the transcriptional regulation of neutrophil granule proteins during 

maturation is poorly understood, but the classical view is of 3 subsets of 

granules that develop due to temporal expression of granule genes during 

development. Proteins localised to each granule type are sequentially-

transcribed during maturation in the bone marrow, beginning with 

azurophilic granule proteins. However, more recently, other marker 

proteins have been discovered with a non-classical transcriptional pattern 

20,21,273 suggesting there is much greater granule heterogeneity than 

previously thought. This is highlighted by the LDG genes expressed in 

Donor 2 bead-isolated neutrophils, which show elevated levels of 

transcripts for several azurophilic granule proteins (MPO, DEFA4, BPI, 

ELANE, AZU1, CTSA, CTSG).  The presence of these transcripts is 

indicative of a transcriptional profile of a neutrophil progenitor cell such as 

a myelocyte or metamyelocyte 18.   

Regardless of the structure and function of LDGs, it is clear that bead-

isolation methods for purifying neutrophils provide a method of enriching 
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the LDG population that might exist. Conversely, since Polymorphprep™ 

relies on cell density for population separation, any LDGs are excluded 

from the neutrophil layer and most likely retained in the PBMC layer. 

Consequently, the level of neutrophil-heterogeneity following 

Polymorphprep™ isolation is decreased. Indeed, the number of 

significantly DE genes between datasets of two donors of 

Polymorphprep™ isolated samples is considerably less than the number of 

DE genes between 2 datasets of bead-isolated samples (Poly - 531 genes , 

beads – 1544 genes, q<0.05 - 5% FDR). This suggests that there is more 

heterogeneity between two samples of neutrophils, both with >97.5% 

purity prepared by bead-isolation than in the two Polymorphprep™ 

isolated samples, which had 96% and 83% neutrophil purity. This raises 

important questions for the use of magnetic beads to produce ultra-pure 

neutrophil samples, where levels of LDGs (or other sub-types of 

neutrophils) in the population may vary among donors. This is of particular 

relevance when analysing samples from patients with inflammatory 

diseases, such as SLE. Additionally, a comprehensive study of LDGs is 

unlikely using samples of neutrophils isolated by Polymorphprep™. 

In summary, whilst neutrophil purity is of significant importance for in vitro 

studies using high-sensitivity assays such as RNA-Seq or mass 

spectrometry, density-gradient based separation protocols such as 

Polymorphprep™ solution provide a suitable method of isolating 

unprimed, viable neutrophils, with an overall purity exceeding 96%. The 
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major contribution of contamination is from eosinophils. Magnetic bead 

isolation is effective for increasing neutrophil purity to approximately 98% 

but does so at the expense of overall yield and increased costs. 

Furthermore, despite having greater purity levels than Polymorphprep™ 

samples, bead-isolated neutrophil populations exhibited far greater 

heterogeneity due to the enrichment of an LDG-like sub-population. These 

data highlight the mechanistic differences between isolation methods and 

the inherent variation found between donors that plays an important role in 

the overall gene expression profile of neutrophils. It is therefore important 

that the success and reliability of a neutrophil assay be judged on more 

than the metric of purity, and should take into account several additional 

factors that ultimately can impact on neutrophil gene expression. 
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Chapter	
   7:	
   Future	
   analyses	
   of	
  
the	
  bioinformatic	
  pipeline 

7.1 Introduction 

The pipeline of bioinformatic analyses described in Chapter 3 has enabled 

an accurate quantification of neutrophil gene expression following 

stimulation with several cytokines (Chapter 4 and 5), or in neutrophil 

suspensions of different levels of purity (Chapter 6). In each of these 

chapters, absolute gene expression values were calculated, and the RPKM 

metric was used to define relative values between (or within) samples. 

Subsequent bioinformatic analysis and predictions were made using the 

expression values and sets of significantly-associated gene lists (as 

calculated using the expression values). This approach has enabled 

accurate measurements of neutrophil gene expression under various 

conditions and has identified important consequences of different 

neutrophil isolation techniques. However, whilst RNA-Seq provides a 

suitable platform for measurement of absolute gene expression values, 

which is broadly comparable to similar analyses using microarrays, the 

greatest advantage of RNA-Seq over other methods of gene expression is 

the ability to quantify multiple genetic features from a single sequencing 

run. For instance, data collected during a single sequencing run can be 

post hoc analysed to quantify splice usage, SNP discovery and indels.  
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Whilst full analysis of the datasets to extract this genetic information was 

beyond the scope of this project, during the development of the 

bioinformatic pipeline, the software and methods necessary for quantifying 

these additional genetic features were incorporated into the final pipeline. 

The portions of this final bioinformatic pipeline, which were developed but 

not used in the analysis of neutrophil samples, are detailed below. In the 

time available for this project, it was not possible to fully extract all of this 

information from the datasets.  

7.2 Methods 

Neutrophil were isolated by Polymorphprep™ isolation from 3 healthy 

donors (Donors 1-3, see Appendix Table A.3 for further details). RNA 

samples were collected as previously described (see sections 2.2.2.2 and 

2.2.9) and samples were analysed by RNA-Seq using the bioinformatic 

pipeline described in Chapter 3. The following results demonstrate the 

downstream analyses available using raw data files obtained from the 

mapping stage of the bioinformatics pipeline (i.e. .Bam files from Tophat) 

or using the default output files relating to isoform expression, as provided 

by Cufflinks/Cuffdiff (isoforms.fpkm_tracking.txt). 

The software programmes and specific command options for each analysis 

are indicated in the text. 
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7.3 Results 

7.3.1 SNP discovery using RNA-Seq data 

Single nucleotide polymorphisms (SNPs) represent the most common form 

of genetic variation within a genome, occurring around once every 100-300 

bases 274. In recent years, genome-wide association studies (GWAS) have 

linked many SNPs with human diseases such as RA, diabetes and SLE 275–277. 

There are currently more than 62x106 identified SNPs in the human 

genome 278. While the vast majority of SNPs (~88%) are located in 

intergenic or intronic regions of the genome 279, RNA-Seq data provides a 

source of data for characterising SNPs located within human exomes. It was 

recently shown that RNA-Seq data with as little as x10 coverage was 

sufficient to identify 92% of expected SNPs within expressed exons 280. For 

comparison datasets analysed here have approximately x40 coverage. 

Analyses characterising SNPS in the neutrophil transcriptome before and 

after stimulation is of little value since the genetic sequence will be 

unchanged during the time course of an in vitro experiment.  However, it 

can be informative when comparing differences between donors or more 

importantly, patients with inflammatory disease where neutrophil 

dysregulation is implicated in disease progression, such as RA 3. For 

example, a SNP located in a functionally-important region, such as a 

receptor-binding pocket may represent a locus that confers an increased or 

decreased response to drug therapy. For instance, responses to the B-cell 

depleting anti-inflammatory drug Rituximab have been associated with 
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SNPs in the FcGR genes, the IL-6 gene and the B-Lymphocyte stimulator 

(BLyS) gene 281. Furthermore, SNPs in the tumour necrosis factor alpha 

induced protein 3 (TNFAIP3) gene,  which is expressed in neutrophils 181, 

have been associated with a number of inflammatory conditions, such as 

SLE 282, psoriasis 283, diabetes 276 and RA 277.  

7.3.1.1 SNP quantification in neutrophils using Samtools mpileup 

The software package Samtools 284 provides a means of quantifying all 

SNPs within a dataset by comparison of each nucleotide location with a 

reference sequence (either transcriptome or genome). The proportion of 

reads expressing the polymorphism at each location is used to determine if 

the SNP is significant, a product of sequencing error, or if coverage is too 

low to conclude either. 

RNA-Seq data (.Bam file) was used to quantify the total number of SNP 

identifiable in neutrophils from a single donor. The software Samtools was 

used to merge 3 .Bam files produced by Tophat during mapping into a 

single file using the command: 

 

samtools	
  merge	
  ./output/location	
  path/to/file1	
  path/to/file2	
  path/to/file3	
  

 

The Samtools commands “mpileup” and “bcftools” were applied to the 

merged .Bam file using the following command: 
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samtools	
  mpileup	
  –uf	
  path/to/genome.fa	
  path/to/merged.bam	
  |	
  bcftools	
  view	
  

–bvcg	
   -­‐	
   >	
   var.raw.merged.bcf	
   bcftools	
   view	
   var.raw.marged.bcf	
   |	
   perl	
  

vcfutils.pl	
  varFilter	
  –D100000	
  >	
  var.flt.merged.vcf	
  

 

 

This command compares the mapping file (.Bam) with the reference 

genome (genome.fa) to identify SNPs. This command also uses a bespoke 

Perl script (vcfutils.pl) to filter SNP with extremely high coverage, which are 

less reliable since they may represent areas of high repetition. The data is 

then outputted as a .vcf (variant calling file). 

The .vcf file details all variants identified within the merged .Bam file, in 

addition to several other informative values on each SNP, such as quality 

(Phred score, see section 3.4.4.3 ), read depth, allele frequency and 

significance (p-value). Samtools identified 98,212 SNPs with an average 

read depth of 42.4 reads and Phred-score quality value of 44.5 (Table 7.1). 

This shows that that RNA-Seq can effectively identify a large number of 

polymorphisms that exists between healthy donors, with high fidelity. 

 

Table	
   7.1	
   Summary	
   of	
   SNP	
   analysis	
   of	
   neutrophil	
   RNA-­‐Seq	
   data	
   from	
   a	
   single	
   donor	
  
using	
  Samtools	
  “mpileup”	
  command	
  and	
  bcftools	
  software	
  284.	
  
 

SNP	
  attribute	
   Value	
  

No.	
  of	
  SNPs	
   98,212	
  

Average	
  read	
  depth	
  per	
  SNP	
   42.4	
  

Average	
  quality	
  value	
  (Phred)	
  per	
  SNP	
   44.5	
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7.3.1.2 Identification and visualisation of specific SNPs 

In addition to the location of each SNP within a dataset, the deep read- 

coverage potential of RNA-Seq data provides a means of estimating the 

allele frequency usage of any heterozygous SNPs. The .vcf output file 

produced by the Samtools pipeline (detailed above) includes details of 

allele frequency for each SNP, but the large volume of data within the .vcf 

file is not suitable for manual curation of small, specific regions of interest. 

An alternative approach for SNP discovery and characterisation of allele 

frequency, is using the integrative genomics viewer (IGV) 285,286. This 

software package provides a graphical user interface (GUI) for browsing the 

read mapping data produced by a software mapper (for example, the .Bam 

file produced by Tophat or Bowtie). In addition to graphically representing 

the reads mapped to each location, single polymorphisms in the data 

sequence are highlighted. Given sufficient coverage of reads at the SNP 

location, the number of reads that correspond to each allele type will 

indicate the overall usage of each allele.  

As one example of this, analysis of neutrophil RNA-Seq data (from the 

Illumina platform) from two separate donors was analysed using IGV. 

Manual assessment identified a SNP located in the 3’-untranslated region 

of the β-actin gene (ACTB) that was present in both samples. The 

coordinates of the SNP corresponded to a known SNP with accession 

number rs7612 (dbSNP Build 141). This SNP is known to be quad-allelic, 

that is, example alleles with each of the four possible nucleotides at this 
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particular location have been identified in the human population. The RNA-

Seq data allows us to identify that the donor exhibits a heterozygous SNP 

at this location whereby 54% of reads are represented by cytosine (C) and 

the remaining 46% by thymine (T). In contrast, a second donor exhibits a 

homozygous SNP at this location as 100% of the 12,410 reads which map 

to that location are represented by thymine (T) (Fig 7.1). 

 The depth of coverage and sensitivity afforded by RNA-Seq allows 

accurate measurements of SNP discovery and allele usage that would 

otherwise be difficult to achieve in conjunction with transcriptome-wide 

characterisation of genes via other methodologies. 
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Fig	
   7.1	
   Visualisation	
   of	
   RNA-­‐Seq	
   50bp	
   read	
   fragments	
   in	
   the	
   Integrative	
   Genomics	
  
Viewer	
   (IGV)	
   aligned	
   to	
  human	
   reference	
  genome	
   (hg19).	
   Two	
   samples	
  of	
  untreated	
  
neutrophil	
   RNA	
   from	
   two	
   healthy	
   donors	
   show	
   the	
   presence	
   of	
   a	
   single	
   nucleotide	
  
polymorphism	
   (SNP)	
   at	
   the	
   same	
   location	
  within	
   the	
  β-­‐actin	
   beta	
   gene.	
   The	
   human	
  
reference	
  genome	
  sequence	
  used	
  as	
  reference	
  (hg19-­‐RefSeq)	
  contains	
  a	
  cytosine	
  (C)	
  at	
  
this	
  location	
  (which	
  can	
  be	
  seen	
  in	
  the	
  lower	
  frame	
  of	
  the	
  screen	
  shot).	
  The	
  first	
  donor	
  
has	
  a	
  heterozygous	
  SNP,	
  with	
  54:46	
  of	
  reads	
  containing	
  either	
  cytosine	
  (C),	
  or	
  thymine	
  
(T)	
  respectively,	
  at	
  the	
  SNP	
  location.	
  In	
  contrast,	
  the	
  second	
  donor	
  has	
  a	
  homozygous	
  
nucleotide	
  whereby	
  all	
  reads	
  contain	
  thymine	
  (T)	
  at	
  this	
  location.	
  	
  
	
  
 

7.3.2 Splice variant discovery  

An estimated 92-94% of multi-exonic genes within the human 

transcriptome are subject to alternate splicing, with ~86% having a minor 

isoform frequency of >15% 102. Alternate isoforms of genes not only 

influence the structure of the translated protein, but also have significant 

effect on function. For example, the gene myeloid cell leukaemia-1 (MCL-1) 

plays an important role in neutrophil survival through its actions as an anti-

apoptotic member of the B-cell like-2 (BCL-2) family of proteins 232,287. 

However, MCL-1 has been shown to undergo alternative splicing to yield 2 

possible minor isoforms, MCL-1S (short) and MCL-1ES (extra-short), both of 

which are translated into shorter proteins with pro-apoptotic function 288,289.   

7.3.2.1 Splice variant discovery in neutrophils using Cufflinks (Cuffdiff) 

Since annotation software, such as Cufflinks or DESeq, provide a 

normalised score for each exon within a gene, it is possible to estimate the 

relative isoform usage for any particular gene between two or more RNA-

Seq samples, provided a suitable reference sequence defining each 

isoform is inputted into the annotation software. Indeed, as part of its 

default output, Cuffdiff can quantify all splice variants within a sample 
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which can be used to estimate the splice variant usage between two or 

more samples 168.  

Following annotation and DE analysis of neutrophil samples (untreated, 

GM-CSF and TNFα) using Cuffdiff (as previously described), isoform usage 

was calculated for the gene MCL-1 which has 3 known alternatively spliced 

isoforms: long form (MCL-1L, NM0211960); short form (MCL-1S, 

NM182763); or extra short form (MCL-1ES, NM001197320). RPKM values for 

each isoform were extracted from the Cuffdiff output file 

“isoforms.fpkm_tracking.txt” and percentage usage calculated for each 

isoform in each treatment (Fig 7.2) 

Values for MCL-1L decreased in both GM-CSF and TNFα treated samples 

compared to control. Consequently, the relative levels of MCL-1S and MCL-

1ES were increased, with the greatest increase seen in MCL-1ES isoform in 

GM-CSF-treated neutrophils (untreated 4%, GM-CSF 8.3%). 
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Fig	
  7.2	
  MCL-­‐1	
   isoform	
  usage	
  in	
  neutrophils	
  following	
  cytokine	
  treatment.	
  Neutrophils	
  
were	
  treated	
  with	
  (or	
  without)	
  GM-­‐CSF	
  (5	
  ng/mL)	
  or	
  TNFα	
  (10	
  ng/mL)	
  for	
  1	
  h.	
  RNA	
  was	
  
sequenced	
  on	
  the	
  Illumina	
  platform	
  and	
  quantified	
  by	
  Tophat/Cufflinks.	
  RPKM	
  values	
  
calculated	
  by	
  Cuffdiff	
  for	
  the	
  3	
  isoforms	
  of	
  MCL-­‐1	
  (long	
  form,	
  short	
  form	
  or	
  extra	
  short	
  
form).	
  Values	
  represent	
  mean	
  of	
  3	
  biological	
  replicates.	
  
	
  
 

7.3.2.2 Visualisation of isoform usage 

As described above,  RNA-Seq mapping data can be analysed by GUI 

based analysis programs, such as IGV 285,286, to provide a visual 

representation of the mapping results. In addition to SNPs, this method of 

analysis can also be employed to visualise the isoform usage or splice 

junction sites at a particular area of interest. Fig 7.3 demonstrates how the 

reads mapping to the MCL-1 gene can be visualised. Reads that originate 

from all three MCL-1 isoforms are evident and the depth of coverage at 

splice junctions can be assessed (Fig 7.3). This method of visualising 

mapped reads can also be used to identify other transcriptional features, 

GM

70.50%  Long
21.20%  Short
8.30%  Extra short

TNF

72.40%  Long
22.50%  Short
5.10%  Extra short

UT

75.00%  Long
21.00%  Short
4.00%  Extra short
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such as transcriptional start sites (TSS), by assessing the location of reads in 

relation to the predicted TSS as seen in the reference sequence. 

 

	
  	
  
	
  
Fig	
   7.3	
   Alternative	
   splicing	
   of	
   the	
  MCL-­‐1	
   gene	
   visualised	
   in	
   the	
   Integrative	
  Genomics	
  
Viewer	
   (IGV)	
   and	
   by	
   standard	
   gel	
   PCR.	
   (A)	
  Mapped	
   reads	
   from	
   neutrophil	
   RNA-­‐Seq	
  
data	
  (Illumina	
  platform)	
  are	
  displayed	
  using	
  IGV.	
  Reads	
  are	
  represented	
  as	
  grey	
  blocks	
  
whilst	
  a	
  blue	
  line	
  connects	
  reads	
  that	
  span	
  exon	
  boundaries.	
  Histogram	
  at	
  top	
  of	
  panel	
  
represents	
   the	
   depth	
  of	
   coverage	
   at	
   each	
  base	
   location.	
  Human	
   reference	
   sequence	
  
(hg19-­‐RefSeq)	
   isoform	
   structure	
   represented	
   by	
   blue	
   bars	
   at	
   base	
   of	
   panel.	
   (B)	
   PCR	
  
analysis	
  of	
  neutrophil	
  RNA	
  using	
  primers	
  designed	
  to	
  detect	
  all	
  three	
  isoforms	
  of	
  MCL-­‐
1.	
   PCR	
   bands	
   correspond	
   to	
   MCL-­‐1L	
   (1053bp)	
   and	
   MCL-­‐1S	
   (805bp).	
   No	
   product	
  
corresponding	
  to	
  MCL-­‐1ES	
  (594bp)	
  was	
  detected.	
  Gel	
  data	
  is	
  representative	
  of	
  at	
  least	
  
4	
  biological	
  donors	
  (collected	
  and	
  reproduced	
  with	
  permission	
  by	
  D.	
  Chiewchengchol	
  
2013).	
  
	
  
 

For comparison, gel PCR was used to determine levels of MCL-1L, MCL-1S 

and MCL-1ES in untreated neutrophils. Primers were designed to amplify full 

length transcripts of all three MCL-1 isoforms. Following cDNA 

amplification, samples were run on an agarose gel. Levels of MCL-1ES were 

undetectable in samples from at least 4 biological donors (Fig 7.3B) (data 

collected and reproduced with permission by D. Chiewchengchol) 

Reference Sequence (RefSeq)
NM_021960 MCL1 (long)
NM_001197320 MCL1 (extra short)
NM_1827630 MCL1 (short)

MCL1 
(long)

MCL1 
(short)
MCL1 
(extra-short)

1000bp

800bp

600bp

Hyper
Ladder I

MCL1 (long)

MCL1 (short)

A B
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The changes seen in isoform abundance in MCL-1 following neutrophil 

stimulation are small, but highlight the accuracy and sensitivity available by 

using a bioinformatics approach to detect isoform levels. 
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7.4 Discussion 

The above analyses demonstrate the capacity of raw RNA-Seq data to be 

re-analysed by different software packages to extract novel results 

regarding alternative genetic features that complement gene expression 

values.  

SNP discovery can inform on important structural changes in crucial 

protein-coding areas or even in non-coding areas which are increasingly 

recognised as important determinants of gene expression profiles, whilst 

also being implicated in several diseases 290–294. Indeed, a recent study 

identified several SNPs located within (or adjacent to) functional elements 

in human neutrophils from patients with juvenile idiopathic arthritis (JIA) 295.  

Whilst a fully comprehensive study of SNP and other polymorphisms in 

neutrophils would require a different methodology, specifically a genome-

wide sequencing approach, the ability to use RNA-Seq data to analyse SNP 

located in mRNA transcripts provides an additional benefit over array-

based analyses.  

Similarly, the accuracy of RNA-Seq to quantify absolute values of transcript 

levels allows gene expression values to be quantified in terms of all 

associated splice variants. When applied to neutrophil expression of MCL-

1, each of the 3 known splice variants were identified and changes to the 

ratios of expression were found following stimulation of neutrophils. 

Differential usage of splice variants in neutrophils has previously been 
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shown for several genes, including 5-lipoxygenase 296, glucocorticoid 

receptor297 and the pantetheinase family of genes 298 

However, whilst this approach using Cufflinks is informative and of great 

use for discovering changes in isoform abundance, it is important to 

appreciate that this form of analysis is semi-quantitative. Since most 

isoform sequences differ only in a small portion of their sequence, reads 

that map to common areas of the reference sequence cannot be 

definitively assigned to any one isoform, thus only reads that map to an 

isoform-unique portion of their sequence can be accurately quantified. 

Paired-end sequencing can decrease the number of reads un-assignable to 

a particular transcript by providing a pair of read fragments known to 

originate from the same transcript and lying a known distance from each 

other. However, ultimately, mapping software must apply some degree of 

estimation when assigning a level of significance to splicing events 145. 

In summary, the software-based analyses described in this Chapter 

demonstrate an extension to the bioinformatics pipeline presented in 

Chapter 3. They provide informative data that could complement a 

concurrent global gene expression analysis. In combination, these methods 

represent a set of robust analyses for a comprehensive study of the 

neutrophil transcriptome. 
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Chapter	
  8:	
  Conclusions	
  

8.1 Overall conclusions and outcomes 

Neutrophils constitute the largest cellular component of the immune 

system. It is now widely appreciated that neutrophils are central to the 

immune response and are capable of regulating both the innate and 

adaptive immune systems through the expression and release of several 

immune regulators 4,5. Whilst the functional mechanisms of neutrophils in 

both health and disease are well characterised, the molecular changes that 

underlie neutrophil regulation were poorly defined. Transcriptomics 

represents an attractive, analytical approach to neutrophil gene expression 

by providing a mechanism of quantifying the entire population of 

transcripts at a particular time point or following stimulation. A limited 

number of studies have analysed the global transcriptional profile of 

neutrophils, with the majority looking at gene expression changes during 

neutrophil maturation, or over several time points following stimulation by 

a single cytokine 181,245,258,299. Moreover, at the outset of this research, the 

neutrophil transcriptome had yet to be characterised using modern RNA-

Seq technology. The benefits of RNA-Seq over established microarray 

technology are numerous, not least the ability to garner information on 

various genetic features from a single experimental run. Despite the 

improvements of RNA-Seq technology, the corresponding bioinformatic 

software remains eclectic in their functionality and ease of use. Such that, 



284	
  
	
  

published bioinformatic methods are often disparate and difficult to 

compare or judge equally. Indeed, the bioinformatic community has yet to 

decide on a set of software tools or quantification techniques that 

represent the best practices for analysis of NGS data.  

The aims of this research were to develop a robust, pipeline of methods 

and bioinformatic analyses using open-source or commercially available 

software that could accurately measure the gene expression profiles of 

neutrophils under different inflammatory conditions. This pipeline would 

then be used to fully quantify neutrophil gene expression following 

stimulation with a variety of inflammatory mediators, or following two 

commonly used neutrophil-isolation methods.  

Development of the bioinformatic pipeline in Chapter 3 explored the 

relative merits of both the SOLiD and Illumina sequencing platforms, in 

addition to paired-end and single-end sequencing techniques. Despite 

both platforms and sequencing techniques correlating well to qPCR data 

during validation experiments, the higher mapping rate and read quality 

achieved by Illumina sequencing platform determined it as the platform of 

choice for future experiments. Whether the lower quality values achieved 

with the SOLiD platform were due to: the added complexity associated 

with paired-end sequencing; technical or human error; or were attributable 

to the technology platform as a whole, is unclear. However, it is unlikely 

that a single-end sequencing experiment using SOLiD technology could 
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improve upon the read quality values and mapping rates achieved by the 

Illumina platform.  

Quantification of mapped reads is predominantly achieved in one of two 

ways, either using the raw number of reads assigned to each gene in a 

count-based approach, or by further transforming the raw counts into a 

value normalised to both the size of the read library, and the length of the 

gene being quantified (i.e. an RPKM value). The choice of quantification 

methods for neutrophil gene expression values had a significant effect on 

the number of DE genes between samples; this effect was even seen 

between two count-based approaches (DESeq and edgeR). The greater 

number of DE genes identified following count-based methods was likely 

due to the techniques used by the software to model the variation within 

the read population. Although this approach is known to estimate 

biological variance poorly, and suffer from over-sensitivity 163,300,301, it has 

been employed for several RNA-Seq studies and remains a popular choice 

for differential expression studies 302–305. However, the ability to directly 

compare two separate genes within the same dataset (or between 

datasets), and the compatibility with downstream software offered by the 

Cufflinks quantification route, led to the count-based quantification method 

being discounted from the final bioinformatic pipeline in favour of 

Cufflinks/Cuffdiff.  

Downstream analysis of gene expression data is an increasingly popular 

area of bioinformatic analysis 199, since many sequencing service providers 
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also offer basic gene expression quantification, non-bioinformatically 

trained research labs are increasingly reliant on downstream analytics to 

extract meaningful data from large amounts of raw gene-expression data. 

Many of the most popular software packages utilise large databases of 

canonical biological data to model the raw data against. Software of this 

kind are often designed for ease of use by non-bioinformaticians, but are 

only available via a commercial licence. Whilst this excludes some 

researchers from the best available software purely on financial grounds, 

the benefit of commercial analysis-software is two-fold. Firstly, the technical 

support and usability of software is often far superior to open-source 

equivalents. Secondly, the professional curation of the information 

databases is consistently maintained, meaning that the data resources are 

constantly up-to-date and comprehensive, whilst also providing validation 

of all canonical interactions with supporting publications. For these 

reasons, the commercially available pathway analysis software IPA 220 was 

employed as part of the bioinformatic pipeline. This provided invaluable 

capacity in downstream analysis that was not feasible using open-source or 

freely available software. However, other downstream analyses such as 

hierarchical clustering and heat-map generation were achieved using open-

source software. The pipeline described in Chapter 3 therefore represents 

a robust set of tools for analysing the gene expression profiles of 

neutrophils that is both comprehensive in capacity and modest in technical-

ability requirements. 
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In Chapters 4 and 5, the bioinformatic pipeline was employed to 

investigate the effect of inflammatory cytokine stimulation on neutrophil 

gene expression. The similar priming effects of GM-CSF and TNFα on 

neutrophils are well characterised, but a global comparison of the 

molecular changes following priming has not previously been studied. 

Analysis revealed that despite similar expression in common genes, each 

cytokine induced expression of discrete gene sets that were as a 

consequence of differential transcription factor activation. This led to the 

discovery that the delay in neutrophil apoptosis – seen following 

stimulation with either cytokine – was regulated by STAT activation in the 

case of GM-CSF and NFκB activation in TNFα stimulation. The discovery 

that cytokines regulate neutrophil function via differential expression of 

genes and activation of signalling pathways has important implications for 

the study of neutrophil-dysfunction in inflammatory disease. Not least for 

providing a novel set of biomarkers that can identify the predominant 

cytokines that may be driving inflammation in different patients.  

Analysis of cytokine-induced changes in neutrophils was expanded in 

Chapter 5 to cover other cytokines associated with inflammation. In 

addition, the effect of multiple cytokine stimulation was investigated. IL-1β, 

IL-6 and IL-8 are known inflammatory mediators; but their effect on 

neutrophils is less defined. IL-6 and IL-1β are crucial activator of many 

immune cell-types, while IL-8 is a strong chemo-attractant of neutrophils. 

However, all these cytokines were found to have very little effect on 
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neutrophil gene expression. Whilst it comes as no surprise that the chemo-

attractive capacity of IL-8 is independent of de novo gene expression – 

since localising to the site of inflammation requires rapid execution – the 

inability of IL-6 and IL-1β to induce gene expression by 1 h was less 

predicted. In contrast, IFNγ, G-CSF and dual treatment with GM-CSF and 

TNFα induced significant changes in gene expression, and differential 

activation of signalling pathways. These results highlight the specific 

functional and molecular changes induced in neutrophils by similar 

inflammatory mediators and reveals how stimulation by different cytokines 

can alter the neutrophil phenotype thus potentially altering how they 

respond to later stimulation and/or regulate other cells of the immune 

response.  

Fig 8.1 summarises the multiple genetic characteristics that have be 

quantified using the bioinformatics pipeline developed herein (Fig 8.1A) 

and the differences in neutrophil phenotypes resulting from different 

cytokine stimulation (Fig 8.1B). 
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Fig	
   8.1	
   Summary	
   of	
   neutrophil	
   bioinformatics	
   pipeline	
   capacity	
   and	
   findings.	
   (A)	
  
Analysis	
   of	
   neutrophil	
   RNA	
   by	
   RNA-­‐Seq	
   and	
   neutrophil	
   bioinformatics	
   pipeline	
   has	
  
provided	
   a	
   mechanism	
   to	
   quantify	
   several	
   genetic	
   characteristics	
   such	
   as	
   raw	
   gene	
  
expression	
   or	
   transcription	
   factor	
   activation	
   from	
   a	
   single	
   RNA-­‐Seq	
   experiment.	
  
Characteristics	
  studied	
  in	
  greatest	
  detail	
  are	
  shown	
  in	
  bold.	
  (B)	
  Schematic	
  summary	
  of	
  
the	
  phenotypic	
   changes	
   induced	
   in	
  neutrophils	
   by	
  different	
   inflammatory	
   cytokines,	
  
including:	
   specific	
   signalling	
   pathway	
   activation;	
   change	
   in	
   levels	
   of	
   overnight	
  
apoptosis	
  (%	
  change	
  compared	
  to	
  untreated);	
  and	
  number	
  of	
  genes	
  with	
  a	
  significant	
  
increase	
   (red	
   arrow)	
   or	
   decrease	
   (green	
   arrow)	
   in	
   gene	
   expression	
   compared	
   to	
  
control	
  (q<0.05,	
  FDR	
  5%).	
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With the advent of more sensitive techniques to isolate neutrophils from 

whole blood, greater emphasis has been placed on the appropriateness of 

established isolation methods for highly sensitive assays such as 

proteomics or transcriptomics. In Chapter 6, the impact of neutrophil 

isolation methods, and levels of non-neutrophil contamination on 

neutrophil gene expression were investigated. As predicted, magnetic 

bead isolation resulted in a greater purity of neutrophils, the lack of 

contaminating cells was confirmed by gene expression analysis for non-

neutrophil transcripts which were lower in bead isolations than in samples 

isolated by Polymorphprep™. The use of two healthy donors with disparate 

levels of non-neutrophil contamination provided a mechanism for 

highlighting the impact low and high contamination has on the overall 

gene expression profile of neutrophils (either untreated or following 

cytokine stimulation). However, despite a purer population of neutrophils 

following bead isolation, RNA-Seq analysis revealed that there was greater 

genetic heterogeneity between donors than when neutrophils were 

isolated by Polymorphprep™. This difference was largely due to a 

subpopulation of neutrophils which were enriched in Donor 2 but not 

Donor 1. These cells were likely the source of LDG-associated transcripts 

which were also elevated in Donor 2. These results were surprising since 

LDG associated genes have only previously been identified in the context 

of inflammatory disease 52,77,81,272. What is still unclear is if there is any 

association between the high levels of eosinophils and the high levels of 
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LDGs both seen in Donor 2. Importantly, this research has identified that 

bead isolation of neutrophils can exhibit greater heterogeneity between 

donors due to an enrichment of neutrophil sub-populations. Furthermore, a 

lower overall yield and greater cost per isolation for magnetic bead 

isolations suggests that the increased level of purity achievable must be 

weighed up against these factors when determining a suitable method of 

isolation. 

8.2 Future directions 

8.2.1 Future research 

Both the methods described here, and the results identified during the 

research would benefit from further development and analysis. Aspects of 

the bioinformatic pipeline that were developed but not applied to all 

datasets were summarised in Chapter 7, these include methods for 

determining differential splice usage and SNPs discover. Full 

characterisation of SNPs is likely only useful for situations where healthy 

neutrophils are being compared to those from inflammatory disease. But 

an analysis of differential splice usage in neutrophil genes following 

cytokine stimulation could be very informative. 

The benefit of developing a robust bioinformatic pipeline of analysis is that 

it can readily be applied to several different situations to efficiently analyse 

the neutrophil transcriptome under these different conditions.  
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Given the interesting results identified following dual stimulation of 

neutrophils it would also be of interest to extend this research to 

investigate the effect of multiple other cytokines on neutrophil gene 

expression. For example several cytokines have been shown to have 

synergistic effects when regulating the immune system in combination 306, 

including TNFα with IFNγ 307,308 or IL-12 309 but their effect on neutrophils is 

less known. 

Equally, whilst a 1 h time point was entirely adequate for studying initial 

gene expression in neutrophils following stimulation, results indicate that 

neutrophil phenotype may be differentially altered dependent on the initial 

stimulus. Hence, neutrophils ability to respond to a later, secondary signal 

may be significantly different and would represent an interesting area of 

research. Indeed a more comprehensive study investigating gene 

expression over several hours (looking at several time points) would also be 

of interest and would inform on the speed and magnitude of differential 

gene expression by different cytokine stimulation. 

However, perhaps the most informative of future research would be to 

investigate the gene expression changes in neutrophils following non-

sterile stimulation. Whilst directly incubating neutrophils with 

microorganisms would be unfeasible for RNA-Seq studies – due to the 

contamination of neutrophil RNA with microorganism RNA – non-sterile 

inflammatory conditions could be simulated by direct receptor agonists.  
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Activation of neutrophils by exogenous molecules is mediated by receptors 

such as TLRs, NLRs and C-lectin like receptors 5. Whilst many of the 

phenotypic changes in neutrophils following activation by bacterial 

products and inflammatory cytokines are similar, it would be of interest to 

investigate if the molecular changes induced by bacterial products are 

distinct from those seen following cytokine stimulation. Indeed, the 

discovery of specific signalling pathways or target molecules that could 

regulate neutrophil activation following endogenous stimulation without 

compromising neutrophils ability to respond to exogenous signals would 

be of great interest for studies into autoimmune disease where reducing 

the activation levels of the immune system yet maintaining host defence is 

of upmost importance. 

8.2.2 Future of RNA-Seq 

The future direction of RNA-Seq analysis in general is set to increase in 

magnitude and ubiquity. With the development of 4th generation 

sequencers reducing cost and increasing the speed at which samples can 

be sequenced, RNA-Seq analysis will undoubtedly become a standard 

practice in many research laboratories and clinical environments. Whilst this 

can only be of benefit to scientific research and modern day healthcare, 

storage of the vast amounts of data will undoubtedly move towards cloud 

based solutions. But this raises its own issues such as long term storage 

costs. All but the largest cloud-based companies are susceptible to 

commercial failure; whilst the financial ebb and flow nature of scientific 
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funding may mean that the indefinite, secure, storage of valuable biological 

data may be a luxury of the past. 

In summary this research has gone some way to reveal the molecular 

changes in neutrophils under different conditions by the development and 

employment of a robust set of bioinformatic tools. These tools have 

uncovered a greater regulation in gene expression by neutrophils than was 

perhaps appreciated. Whilst several avenues of further research have been 

directly highlighted by this research the methods described here can 

ultimately be employed for a variety of other studies involving RNA-Seq 

and continue to uncover important scientific discoveries. 	
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Appendix	
  
 

Table	
  A.1	
  List	
  of	
  bioinformatic	
  software	
  and	
  versions.	
  

Bioinformatic	
  software	
  versions	
  
Bioinformatic	
  
software	
   Version	
  

Bowtie	
   2.0.07	
  
Tophat	
   1.2.1-­‐1.4.1	
  
Cufflinks	
   2.02	
  
Samtools	
   0.1.18	
  
IPA	
   n/a	
  
IGV	
   2.2.7	
  

Microsoft	
  Office	
   2011	
  edition	
  
R	
   2.15.2	
  

EdgeR	
   3.0.8	
  
DESeq	
   1.10.1	
  

cummeRbund	
   2.6.2	
  
 

	
  
Table	
  A.2	
  Details	
  of	
  computer	
  hardware	
  used	
  for	
  analysis.	
  
 
Computer	
  system	
  (analysis	
  
Mac)	
  

Mac	
  Pro	
   iMac	
  

Operating	
  system	
   Mac	
  OSX	
  10.7-­‐10.8	
   Mac	
  OSX	
  10.85	
  
Computer	
   processing	
   unit	
  
(CPU)	
  

8	
  x	
  2.4GHz	
  Intel	
  
Core	
  i5	
  

4	
  x	
  3.4GHz	
  Inter	
  
Core	
  i7	
  

Random	
   access	
   memory	
  
(RAM)	
  

16GB	
  DDR	
  RAM	
   32GB	
  DDR3	
  RAM	
  
(1600	
  MHz)	
  

Hard	
  drive	
  memory	
  (HDD)	
   4	
  x	
  1TB	
  –	
  7200	
  
Serial	
  ATA	
  HDD	
  

3TB-­‐7200rpm	
  Serial	
  
ATA	
  HDD	
  

Graphical	
  processing	
  unit	
   ATI	
  Radeon	
  HD	
  
5770	
  1GB	
  

NVIDIA	
  GeForce	
  GTX	
  
680MX	
  2048	
  MB	
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#!/bin/sh	
   
#$	
  -­‐cwd	
  -­‐V	
  -­‐pe	
  smp	
  4	
  -­‐l	
  h_rt=4:0:00 
cufflinks	
  	
  
-­‐b\	
  
/home/hbt/volatile/iGenomes_bowtie2_indexes/Homo_sapiens/UCSC/hg19/Sequ
ence/Bowtie2Index/genome.fa	
  \ 
-­‐p	
  4	
  -­‐-­‐max-­‐bundle-­‐frags	
  100000000	
  -­‐q	
  -­‐o	
  ./path/to/folder	
  -­‐-­‐no-­‐update-­‐check	
  \ 
-­‐G	
  
/home/hlwright/volatile/Homo_sapiens/UCSC/hg19/Annotation/Genes/genes.gtf	
  
\ 
$1	
  \ 
	
  
Fig	
  A.1	
  Example	
  of	
  command	
  script	
  for	
  use	
  on	
  HPC.	
  Script	
  shows	
  commands	
  for	
  
running	
  cufflinks	
  to	
  annotate	
  a	
  .bam	
  file	
  using	
  a	
  reference	
  genome	
  (.fa)	
  and	
  
transcriptome	
  (.gtf).	
   	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  

	
  
Fig	
  A.2	
  Example	
  of	
  Agilent	
  Bioanalyser	
  output	
  data.	
  Figure	
  shows	
  two	
  examples	
  of	
  RIN	
  
results.	
  (Left)	
  Example	
  of	
  RNA	
  with	
  poor	
  integrity	
  (RIN	
  =	
  2.9).	
  (Right)	
  example	
  of	
  RNA	
  
with	
  high	
  integrity	
  (RIN	
  =	
  8.3).	
  Major	
  peaks	
  in	
  high-­‐integrity	
  sample	
  relate	
  to	
  16S	
  and	
  
28S	
   ribosomal	
   RNA	
   population.	
   Integrity	
   is	
   calculated	
   based	
   on	
   the	
   ration	
   between	
  
both	
  peaks.	
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Table	
  A.3	
  Table	
  listing	
  the	
  details	
  of	
  blood	
  donors	
  and	
  method	
  of	
  neutrophil	
  isolation	
  
Polymorphprep™	
  (P),	
  	
  magnetic	
  bead	
  isolation	
  (B).	
  
 
Donor	
  
No.	
  

Age	
  
(approx.)	
  

Sex	
   Date	
  of	
  
donation/sample	
  
preparation	
  

Neutrophil	
  
isolation	
  method	
  

	
  
1	
   25-­‐35	
   M	
   31-­‐1-­‐11	
  

10-­‐12-­‐12	
  
28-­‐8-­‐13	
  

P	
  
P	
  
P/B	
  

2	
   55-­‐65	
   M	
   30-­‐4-­‐12	
   P	
  
3	
   25-­‐35	
   F	
   22-­‐1-­‐13	
   P/B	
  
4	
   25-­‐35	
   F	
   28-­‐1-­‐13	
   P	
  
5	
   45-­‐55	
   M	
   21-­‐8-­‐13	
   P	
  
6	
   25-­‐35	
   F	
   17-­‐9-­‐13	
   P	
  

	
  
	
  
 

 

 

Table	
  A.4	
  Table	
  details	
   the	
  RNA	
   integrity	
  and	
  concentration	
   for	
   samples	
  analysed	
  by	
  
RNA-­‐Seq.	
   Table	
   also	
   lists	
   the	
   number	
   of	
   raw	
   reads	
   produced	
   per	
   sample	
   during	
  
sequencing.	
  All	
  samples	
  sequenced	
  by	
  SOLiD	
  platform	
  (50	
  +	
  35	
  bp	
  paired-­‐end	
  reads). 
	
  

Donor	
   Sample	
  
name	
  

No.	
  of	
  raw	
  
reads	
  

No.	
  of	
  raw	
  
reads	
  

(reverse)	
  
RIN	
   RNA	
  

(ng/mL)	
  

TBH	
  
Untreated	
   127885988	
   127885989	
   8.2	
   95	
  
TNFα	
   69005645	
   69005646	
   7.0	
   134	
  
GM-­‐CSF	
   75544747	
   75544748	
   7.5	
   164	
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Table	
   A.5	
   Table	
   details	
   the	
   RNA	
   integrity	
   and	
   concentration	
   for	
   each	
   RNA	
   sample	
  
analysed	
  by	
  RNA-­‐Seq.	
  Table	
  also	
  lists	
  the	
  number	
  of	
  reads	
  produced	
  per	
  sample	
  during	
  
sequencing.	
  All	
  samples	
  sequenced	
  by	
  Illumina	
  platform	
  (50	
  bp	
  single-­‐end	
  reads).	
  
 

Donor	
   Sample	
  name	
   No.	
  of	
  raw	
  reads	
   RNA	
  Integrity	
  
number	
  (RIN)	
  

RNA	
  	
  
(ng/mL)	
  

TBH	
  
UT	
   66,552,453	
   7.3	
   218	
  

GM-­‐CSF	
   64,445,900	
   8.4	
   188	
  
TNFα	
   65,625,666	
   8.8	
   196	
  

EWS	
  

UT	
   50,794,935	
   7.6	
   64	
  
GM	
   48,015,235	
   6.9	
   82	
  
TNFα	
   47,326,637	
   4.1	
   37	
  
IFNγ	
   48,514,806	
   6.6	
   84	
  
IL-­‐1B	
   50,565,105	
   6.0	
   86	
  
0h	
   48,110,305	
   6.4	
   76	
  

G-­‐CSF	
   47,994,097	
   7.3	
   60	
  

MB	
  

GM-­‐CSF+TNFα	
   54,548,520	
   7.5	
   144	
  
IL-­‐8	
   58,462,542	
   8.0	
   126	
  

UT-­‐Poly	
   46,444,696	
   8.1	
   124	
  
GM-­‐Poly	
   49,516,666	
   8.0	
   137	
  
TNF-­‐Poly	
   56,689,600	
   7.8	
   140	
  
UT-­‐Bead	
   59,067,617	
   7.2	
   84	
  
GM-­‐Bead	
   61,595,651	
   7.0	
   117	
  
TNF-­‐Bead	
   49,785,361	
   6.4	
   88	
  

TBH	
  

UT-­‐Poly	
   43,862,843	
   7.7	
   44	
  
GM-­‐Poly	
   44,465,453	
   8.6	
   46	
  
TNF-­‐Poly	
   44,391,372	
   7.4	
   36	
  
UT-­‐Bead	
   42,044,643	
   8.2	
   40	
  
GM-­‐Bead	
   43,095,188	
   8.6	
   27	
  
TNF-­‐Bead	
   42,044,643	
   8.2	
   42	
  

WN	
   IFNα	
   63,186,628	
   8.1	
   90	
  

CA	
  

UT	
   69,311,246	
   5.7	
   59	
  
IFNγ	
   75,916,629	
   6.6	
   66	
  
IL-­‐1B	
   79,791,533	
   7.3	
   74	
  
G-­‐CSF	
   74,729,800	
   6.9	
   75	
  
IL-­‐8	
   69,593,692	
   6.9	
   38	
  

GM-­‐CSF+TNFα	
   72,530,839	
   7.0	
   58	
  

TS	
  

UT	
   72,168,424	
   7.5	
   131	
  
IFNγ	
   65,554,973	
   7.7	
   121	
  
IL-­‐1B	
   121,354,425	
   7.4	
   142	
  
G-­‐CSF	
   72,434,747	
   6.9	
   98	
  
IL-­‐8	
   98,504,872	
   7.1	
   135	
  

GM-­‐CSF+TNFα	
   72,530,839	
   7.1	
   102	
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Fig	
  A.3	
  PCR	
  gel	
  of	
  neutrophil	
  cDNA	
  products	
   following	
  amplification	
  with	
  Mcl-­‐1	
  
primers,	
   samples	
   isolated	
   using	
   either	
   TRIzol®	
  method	
   or	
   RNeasy	
   kit	
   with	
   or	
  
without	
   additional	
   DNA	
   digestion	
   step.	
   Mcl-­‐1	
   band	
   highlighted	
   by	
   red	
   arrows,	
  
lane	
  numbers	
  highlighted	
  in	
  red.	
  
	
  
Loading	
  legend:	
  

1. 0h	
  Trizol	
  
2. 0h	
  RNeasy	
  
3. 2h	
  UT	
   	
   	
   RNeasy	
  
4. 2h	
  TNF	
  
5. 2h	
  GM-­‐CSF	
  
6. 0h	
  Trizol	
  -­‐	
  Undigested	
  
7. 0h	
  RNeasy	
  
8. 2h	
  UT	
   	
   	
   RNeasy	
  (undigested)	
  
9. 2h	
  TNF	
  
10. 2h	
  GM-­‐CSF	
  
11. Negative	
  control	
  (H2O)	
  
12. Positive	
  control	
  (K562	
  -­‐	
  CML	
  cell	
  line)	
  
13. Genomic	
  DNA	
  control	
  (HeLa	
  cell	
  line) 

	
  
	
  
Table	
  A.6	
  List	
  of	
  44	
  GO-­‐terms	
  significantly	
  enriched	
  by	
  genes	
  which	
  are	
  DE	
  between	
  
GM-­‐CSF	
   and	
   TNFα	
   treated	
   neutrophils.	
   GO-­‐terms	
   relating	
   to	
   cell	
   death	
   and/or	
  
apoptosis	
   are	
   shown	
   in	
   bold.	
   Significance	
   (q-­‐value)	
   calculated	
   using	
   a	
   5%	
   false	
  
discovery	
  rate	
  (FDR)	
  
	
  
GO	
  Term	
   GO	
  Category	
   No	
  of	
  

Genes	
  
FDR	
  

(q-­‐value)	
  
GO:0042981	
   regulation	
  of	
  apoptosis	
   58	
   3.17E-­‐06	
  
GO:0043067	
   regulation	
  of	
  programmed	
  cell	
  death	
   58	
   4.61E-­‐06	
  
GO:0010941	
   regulation	
  of	
  cell	
  death	
   58	
   5.21E-­‐06	
  
GO:0006952	
   defense	
  response	
   52	
   2.81E-­‐07	
  
GO:0006955	
   immune	
  response	
   52	
   1.51E-­‐05	
  
GO:0016265	
   death	
   51	
   1.84E-­‐04	
  
GO:0010604	
   positive	
   regulation	
   of	
   macromolecule	
  

metabolic	
  process	
  
51	
   2.49E-­‐02	
  

GO:0009611	
   response	
  to	
  wounding	
   50	
   1.43E-­‐08	
  
GO:0008219	
   cell	
  death	
   50	
   3.72E-­‐04	
  

1   2   3   4  5   6   7  8   9  10 11 12 13 
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GO:0031328	
   positive	
   regulation	
   of	
   cellular	
   biosynthetic	
  
process	
  

49	
   2.23E-­‐04	
  

GO:0009891	
   positive	
  regulation	
  of	
  biosynthetic	
  process	
   49	
   3.48E-­‐04	
  
GO:0012501	
   programmed	
  cell	
  death	
   48	
   1.78E-­‐05	
  
GO:0006915	
   apoptosis	
   47	
   3.16E-­‐05	
  
GO:0051173	
   positive	
   regulation	
   of	
   nitrogen	
   compound	
  

metabolic	
  process	
  
46	
   6.20E-­‐04	
  

GO:0010557	
   positive	
   regulation	
   of	
   macromolecule	
  
biosynthetic	
  process	
  

46	
   9.51E-­‐04	
  

GO:0006357	
   regulation	
   of	
   transcription	
   from	
   RNA	
  
polymerase	
  II	
  promoter	
  

46	
   1.58E-­‐02	
  

GO:0045935	
   positive	
   regulation	
   of	
   nucleobase,	
  
nucleoside,	
   nucleotide	
   and	
   nucleic	
   acid	
  
metabolic	
  process	
  

42	
   9.88E-­‐03	
  

GO:0010628	
   positive	
  regulation	
  of	
  gene	
  expression	
   41	
   4.15E-­‐03	
  
GO:0045941	
   positive	
  regulation	
  of	
  transcription	
   40	
   5.06E-­‐03	
  
GO:0006954	
   inflammatory	
  response	
   39	
   3.60E-­‐09	
  
GO:0019220	
   regulation	
  of	
  phosphate	
  metabolic	
  process	
   36	
   6.54E-­‐03	
  
GO:0051174	
   regulation	
  of	
  phosphorus	
  metabolic	
  process	
   36	
   6.54E-­‐03	
  
GO:0007243	
   protein	
  kinase	
  cascade	
   35	
   3.18E-­‐05	
  
GO:0042325	
   regulation	
  of	
  phosphorylation	
   35	
   7.09E-­‐03	
  
GO:0045893	
   positive	
   regulation	
   of	
   transcription,	
   DNA-­‐

dependent	
  
34	
   2.99E-­‐02	
  

GO:0051254	
   positive	
   regulation	
   of	
   RNA	
   metabolic	
  
process	
  

34	
   3.63E-­‐02	
  

GO:0043066	
   negative	
  regulation	
  of	
  apoptosis	
   32	
   4.10E-­‐04	
  
GO:0043069	
   negative	
   regulation	
   of	
   programmed	
   cell	
  

death	
  
32	
   5.58E-­‐04	
  

GO:0060548	
   negative	
  regulation	
  of	
  cell	
  death	
   32	
   5.94E-­‐04	
  
GO:0001775	
   cell	
  activation	
   30	
   4.67E-­‐05	
  
GO:0045321	
   leukocyte	
  activation	
   29	
   4.09E-­‐06	
  
GO:0001817	
   regulation	
  of	
  cytokine	
  production	
   24	
   1.92E-­‐05	
  
GO:0046649	
   lymphocyte	
  activation	
   23	
   4.93E-­‐04	
  
GO:0006916	
   anti-­‐apoptosis	
   22	
   3.49E-­‐03	
  
GO:0001819	
   positive	
  regulation	
  of	
  cytokine	
  production	
   15	
   1.26E-­‐03	
  
GO:0050867	
   positive	
  regulation	
  of	
  cell	
  activation	
   15	
   1.62E-­‐02	
  
GO:0032496	
   response	
  to	
  lipopolysaccharide	
   14	
   1.20E-­‐03	
  
GO:0002237	
   response	
  to	
  molecule	
  of	
  bacterial	
  origin	
   14	
   4.41E-­‐03	
  
GO:0002696	
   positive	
  regulation	
  of	
  leukocyte	
  activation	
   14	
   4.57E-­‐02	
  
GO:0031349	
   positive	
  regulation	
  of	
  defence	
  response	
   12	
   2.70E-­‐02	
  
GO:0051100	
   negative	
  regulation	
  of	
  binding	
   11	
   2.27E-­‐02	
  
GO:0043433	
   negative	
   regulation	
   of	
   transcription	
   factor	
  

activity	
  
10	
   1.52E-­‐02	
  

GO:0043392	
   negative	
  regulation	
  of	
  DNA	
  binding	
   10	
   4.41E-­‐02	
  
GO:0032675	
   regulation	
  of	
  interleukin-­‐6	
  production	
   9	
   2.13E-­‐02	
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Table	
   A.7	
   Gene	
   expression	
   values	
   (RPKM)	
   for	
   25	
   cytokines/chemokines	
   genes	
  
differentially	
   expressed	
   by	
   neutrophils	
   following	
   treatment	
   with	
   a	
   range	
   of	
  
cytokines/chemokines,	
  for	
  heatmap	
  of	
  values	
  see	
  Fig	
  5.8.	
  
	
  

Gene	
  
name	
  

UT	
   GM-­‐CSF	
   TNFα	
   GM+TNF	
   IFNg	
   G-­‐CSF	
   IL-­‐1B	
   IL-­‐8	
   IL-­‐6	
  

Bmp6	
   2.76	
   3.70	
   3.08	
   2.57	
   2.07	
   2.03	
   1.99	
   3.21	
   2.55	
  

Ccl20	
   0.17	
   0.27	
   12.85	
   28.68	
   0.11	
   0.33	
   1.14	
   0.32	
   0.42	
  

CcL3	
   4.53	
   13.98	
   206.16	
   113.53	
   2.88	
   4.04	
   41.54	
   2.25	
   7.73	
  

Ccl4	
   33.23	
   38.86	
   1858.67	
   980.83	
   21.61	
   22.41	
   281.55	
   17.10	
   30.56	
  

Ccl5	
   14.30	
   8.58	
   8.50	
   10.50	
   19.06	
   16.98	
   18.56	
   9.98	
   17.11	
  

Cxcl1	
   243.48	
   1869.48	
   639.56	
   2804.08	
   130.20	
   273.83	
   660.67	
   288.21	
   289.16	
  

Cxcl14	
   1.86	
   2.80	
   1.92	
   2.74	
   1.85	
   2.18	
   2.15	
   1.85	
   3.26	
  

Cxcl2	
   9.92	
   69.82	
   52.27	
   155.76	
   6.19	
   12.83	
   40.53	
   13.36	
   13.88	
  

Cxcl3	
   0.73	
   2.77	
   4.71	
   10.73	
   0.31	
   1.05	
   2.30	
   1.16	
   0.51	
  

Cxcl6	
   3.97	
   2.53	
   2.86	
   1.55	
   2.07	
   4.37	
   4.74	
   2.58	
   4.96	
  

Cxcl9	
   0.00	
   0.00	
   0.00	
   0.00	
   2.84	
   0.02	
   0.00	
   0.01	
   0.00	
  

Il1a	
   0.83	
   50.49	
   56.14	
   652.64	
   1.57	
   3.16	
   4.18	
   3.18	
   0.30	
  

Il1b	
   369.34	
   6410.42	
   3614.27	
   17674.90	
   864.85	
   1071.83	
   890.18	
   1103.73	
   302.74	
  

IL1RN	
   81.50	
   1106.43	
   2599.95	
   7499.70	
   191.37	
   716.42	
   153.22	
   82.04	
   109.22	
  

Il8	
   2362.95	
   12539.90	
   6327.35	
   17734.70	
   840.31	
   961.66	
   4031.00	
   3964.57	
   1905.32	
  

Lif	
   0.98	
   0.23	
   1.02	
   1.69	
   0.41	
   0.59	
   1.27	
   3.25	
   1.76	
  

Ltb	
   108.54	
   99.99	
   136.69	
   79.53	
   118.20	
   106.45	
   141.29	
   83.71	
   155.54	
  

Osm	
   104.43	
   1120.90	
   135.06	
   1612.75	
   94.93	
   163.21	
   157.90	
   238.22	
   167.48	
  

Pf4	
   1.04	
   2.24	
   0.86	
   0.80	
   0.81	
   0.91	
   1.41	
   0.68	
   0.98	
  

Prmt2	
   14.85	
   13.26	
   13.20	
   9.54	
   16.11	
   17.17	
   15.41	
   13.09	
   14.34	
  

Tnfsf10	
   51.59	
   73.52	
   37.17	
   34.56	
   126.96	
   80.16	
   47.41	
   47.40	
   51.52	
  

Tnfsf12	
   12.76	
   9.87	
   9.91	
   7.42	
   16.60	
   15.02	
   16.13	
   11.00	
   17.30	
  

Tnfsf14	
   76.46	
   33.72	
   62.24	
   14.49	
   20.78	
   22.77	
   61.56	
   81.74	
   65.29	
  

Tnfsf15	
   0.96	
   4.18	
   0.74	
   3.31	
   0.38	
   4.37	
   1.54	
   1.36	
   0.55	
  

Tnfsf8	
   9.08	
   20.46	
   7.17	
   10.85	
   6.03	
   7.01	
   8.71	
   12.48	
   5.73	
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Fig	
  A.4	
  Example	
  of	
  flow	
  cytometry	
  gating	
  on	
  forward-­‐scatter	
  (x-­‐axis)	
  	
  and	
  side-­‐scatter	
  
(y-­‐axis)	
   ,	
   used	
   to	
   filter	
   out	
   non-­‐granulocyte	
   cells	
   and	
   cellular	
   debris	
   from	
   further	
  
analysis.	
  
 

 

 
Fig	
   A.5	
   Neutrophils	
   apoptosis	
   following	
   overnight	
   	
   (18	
   h)	
   incubations	
   with	
   either	
   5	
  
ng/mL	
  GM-­‐CSF	
   (GM)	
   (grey	
  bars),	
   10	
  ng/mL	
  TNFα	
   (TNF)	
   (checkered	
  bars)	
  or	
   remained	
  
untreated	
   (UT)	
   (white	
   bars).	
   Neutrophils	
   were	
   isolated	
   by	
   either	
   Polymorphprep™	
  
(Poly),	
  magnetic	
  bead	
  preparation	
  (Beads)	
  or	
  magnetic	
  bead	
  preparation	
  followed	
  by	
  
a	
  30	
  min	
  centrifuge	
  on	
  Polymorphprep™	
  (Bead	
  +	
  Poly).	
  Levels	
  of	
  neutrophil	
  apoptosis	
  
were	
  measured	
  by	
  annexin	
  V,	
  propridium	
  iodide	
  staining.	
  	
  
 

 

 

%
A
po
pt
os
is

Po
ly

Be
ad
s

Be
ad
s +
Po
ly

0

20

40

60

80

100
UT
GM
TNF



303	
  
	
  

Table	
  A.8	
  List	
  of	
  data	
  sets	
  used	
  in	
  Cuffdiff	
  comparisons	
  in	
  Chapter	
  6.	
  

Figure/table	
  of	
  
reference	
  

Sample	
  list	
  1	
   Sample	
  list	
  2	
  

Table	
  6.3	
  

UT-­‐poly-­‐donor-­‐1	
  
GM-­‐poly-­‐donor-­‐1	
  
TNF-­‐poly-­‐donor-­‐1	
  
UT-­‐poly-­‐donor-­‐2	
  
GM-­‐poly-­‐donor-­‐2	
  
TNF-­‐poly-­‐donor-­‐2	
  

UT-­‐beads-­‐donor-­‐1	
  
GM-­‐beads-­‐donor-­‐1	
  
TNF-­‐beads-­‐donor-­‐1	
  
UT-­‐beads-­‐donor-­‐2	
  
GM-­‐beads-­‐donor-­‐2	
  
TNF-­‐beads-­‐donor-­‐2	
  

Fig	
  6.11	
  

UT-­‐poly-­‐donor-­‐1	
  
UT-­‐poly-­‐donor-­‐2	
  

	
  
GM-­‐poly-­‐donor-­‐1	
  
GM-­‐poly-­‐donor-­‐2	
  

	
  
TNF-­‐poly-­‐donor-­‐1	
  
TNF-­‐poly-­‐donor-­‐2	
  

UT-­‐beads-­‐donor-­‐1	
  
UT-­‐beads-­‐donor-­‐2	
  

	
  
GM-­‐beads-­‐donor-­‐1	
  
GM-­‐beads-­‐donor-­‐2	
  

	
  
TNF-­‐beads-­‐donor-­‐1	
  
TNF-­‐beads-­‐donor-­‐2	
  

Table	
  6.4	
  
UT-­‐poly-­‐donor-­‐1	
  
GM-­‐poly-­‐donor-­‐1	
  
TNF-­‐poly-­‐donor-­‐1	
  

UT-­‐beads-­‐donor-­‐1	
  
GM-­‐beads-­‐donor-­‐1	
  
TNF-­‐beads-­‐donor-­‐1	
  

Table	
  6.5	
  
UT-­‐poly-­‐donor-­‐2	
  
GM-­‐poly-­‐donor-­‐2	
  
TNF-­‐poly-­‐donor-­‐2	
  

UT-­‐beads-­‐donor-­‐2	
  
GM-­‐beads-­‐donor-­‐2	
  
TNF-­‐beads-­‐donor-­‐2	
  

Table	
  6.6	
  

UT-­‐poly-­‐donor-­‐1	
  
GM-­‐poly-­‐donor-­‐1	
  
TNF-­‐poly-­‐donor-­‐1	
  

UT-­‐poly-­‐donor-­‐2	
  
GM-­‐poly-­‐donor-­‐2	
  
TNF-­‐poly-­‐donor-­‐2	
  

UT-­‐beads-­‐donor-­‐1	
  
GM-­‐beads-­‐donor-­‐1	
  
TNF-­‐beads-­‐donor-­‐1	
  

UT-­‐beads-­‐donor-­‐2	
  
GM-­‐beads-­‐donor-­‐2	
  
TNF-­‐beads-­‐donor-­‐2	
  

	
  

	
  
Table	
  A.9	
  Poly	
  vs	
  beads	
  in	
  both	
  donors.	
  Number	
  of	
  significant	
  genes	
  in	
  samples	
  from	
  
each	
  isolation	
  method.	
  
 
	
   Donor	
  1	
   Donor	
  2	
  

Number	
  of	
  gene	
  significantly	
  
differentially	
  expressed	
  

63	
   282	
  

Number	
  of	
  significant	
  genes	
  with	
  
higher	
  RPKM	
  	
  in	
  Polymorphprep™	
  
samples	
  

53	
  	
  

(84.1%)	
  

190	
  

(67.3%)	
  

Number	
  of	
  significant	
  genes	
  with	
  
higher	
  RPKM	
  	
  in	
  Bead	
  	
  samples	
  

10	
  (15.9%)	
   92	
  (32.7%)	
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Table	
   A.10	
   List	
   of	
   genes	
   significantly	
   regulated	
   between	
   isolation	
   methods	
   in	
  
neutrophils	
   from	
   Donor	
   2	
   (high	
   contamination).	
   Table	
   shows	
   all	
   92	
   genes	
   with	
   a	
  
significantly	
  higher	
  RPKM	
  values	
  in	
  neutrophils	
  isolated	
  using	
  magnetic	
  bead	
  (Beads)	
  
than	
   neutrophils	
   isolated	
   by	
   Polymorphprep™	
   (Poly)	
   using	
   sample	
   from	
   Donor	
   2.	
  
Significance	
   (q-­‐value)	
   as	
   calculated	
   by	
   Cuffdiff	
   adjusted	
   for	
   5%	
   false	
   discovery	
   rate	
  
(FDR)	
   by	
   Benjamini-­‐Hochberg	
   correction	
   for	
   multiple-­‐testing.	
   N=3	
   paired	
   technical	
  
replicates.	
  
	
  

Gene	
  
Name	
  

Poly	
  
(RPKM)	
  

Beads	
  
(RPKM)	
  

Fold	
  
change	
  
(log2)	
   q-­‐value	
   ΔRPKM	
  

DEFA1	
   239.933	
   1082.69	
   2.174	
   4.75E-­‐02	
   -­‐842.757	
  
LCN2	
   89.952	
   447.161	
   2.314	
   2.45E-­‐02	
   -­‐357.209	
  
CAMP	
   32.519	
   138.676	
   2.092	
   2.93E-­‐02	
   -­‐106.157	
  
BPI	
   24.068	
   117.488	
   2.287	
   2.05E-­‐02	
   -­‐93.42	
  

OLFM4	
   16.438	
   87.792	
   2.417	
   1.36E-­‐02	
   -­‐71.354	
  
CEACAM8	
   12.433	
   65.236	
   2.391	
   9.63E-­‐03	
   -­‐52.803	
  
DEFA4	
   9.968	
   57.406	
   2.526	
   1.26E-­‐03	
   -­‐47.438	
  
MS4A3	
   8.837	
   45.919	
   2.377	
   1.54E-­‐02	
   -­‐37.081	
  
MMP8	
   9.436	
   41.732	
   2.145	
   3.68E-­‐02	
   -­‐32.297	
  
AZU1	
   7.485	
   38.436	
   2.36	
   4.26E-­‐03	
   -­‐30.951	
  
ELANE	
   5.851	
   34.581	
   2.563	
   1.00E-­‐03	
   -­‐28.731	
  
RETN	
   5.085	
   28.648	
   2.494	
   5.32E-­‐03	
   -­‐23.563	
  

CEACAM6	
   5.968	
   25.207	
   2.079	
   2.95E-­‐02	
   -­‐19.239	
  
H1F0	
   3.009	
   21.615	
   2.845	
   2.19E-­‐04	
   -­‐18.605	
  

C13orf15	
   5.171	
   23.425	
   2.18	
   1.16E-­‐02	
   -­‐18.254	
  
CTSG	
   2.296	
   20.538	
   3.161	
   7.90E-­‐06	
   -­‐18.242	
  
PRTN3	
   2.929	
   19.16	
   2.71	
   2.88E-­‐04	
   -­‐16.231	
  
PNP	
   2.584	
   16.629	
   2.686	
   3.74E-­‐02	
   -­‐14.045	
  
GJB6	
   1.717	
   14.542	
   3.082	
   1.06E-­‐03	
   -­‐12.825	
  
MPO	
   1.643	
   12.589	
   2.938	
   7.69E-­‐05	
   -­‐10.946	
  
EHD4	
   2.231	
   11.691	
   2.39	
   5.17E-­‐03	
   -­‐9.46	
  
DEFA5	
   1.824	
   9.096	
   2.318	
   1.45E-­‐02	
   -­‐7.271	
  

HS3ST3B1	
   0.901	
   7.983	
   3.148	
   1.56E-­‐03	
   -­‐7.082	
  
SNAPC1	
   2.382	
   9.253	
   1.958	
   4.28E-­‐02	
   -­‐6.871	
  
RAB13	
   2.113	
   8.268	
   1.968	
   3.50E-­‐02	
   -­‐6.155	
  
PTGES	
   0.828	
   5.651	
   2.772	
   1.81E-­‐02	
   -­‐4.824	
  

C20orf27	
   1.399	
   6.109	
   2.127	
   1.45E-­‐02	
   -­‐4.711	
  
ZNF277	
   1.57	
   6.216	
   1.985	
   4.10E-­‐02	
   -­‐4.646	
  
BEX1	
   0.947	
   5.21	
   2.459	
   3.06E-­‐03	
   -­‐4.262	
  
RRM2	
   1.113	
   4.687	
   2.074	
   3.27E-­‐02	
   -­‐3.573	
  
CD177	
   1.113	
   4.621	
   2.053	
   3.12E-­‐02	
   -­‐3.508	
  
SEMA6B	
   0.971	
   4.275	
   2.138	
   3.33E-­‐02	
   -­‐3.304	
  

SERPINB10	
   0.784	
   4.077	
   2.379	
   4.53E-­‐03	
   -­‐3.293	
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CHIT1	
   0.868	
   4.034	
   2.217	
   2.93E-­‐02	
   -­‐3.166	
  
ABCA13	
   0.776	
   3.866	
   2.317	
   8.56E-­‐03	
   -­‐3.09	
  
PAPSS2	
   0.647	
   3.297	
   2.349	
   4.50E-­‐03	
   -­‐2.65	
  
SCD	
   0.74	
   3.174	
   2.1	
   1.63E-­‐02	
   -­‐2.434	
  
ETHE1	
   0.563	
   2.742	
   2.284	
   1.97E-­‐02	
   -­‐2.179	
  
PRRT4	
   0.394	
   2.567	
   2.703	
   1.60E-­‐03	
   -­‐2.173	
  

COL17A1	
   0.485	
   2.296	
   2.242	
   7.05E-­‐03	
   -­‐1.81	
  
MCM4	
   0.351	
   1.897	
   2.434	
   1.56E-­‐03	
   -­‐1.546	
  
CLEC11A	
   0.299	
   1.829	
   2.613	
   6.45E-­‐03	
   -­‐1.53	
  

LOC285758	
   0.287	
   1.738	
   2.601	
   4.85E-­‐02	
   -­‐1.452	
  
HS3ST3A1	
   0.217	
   1.639	
   2.916	
   1.21E-­‐03	
   -­‐1.422	
  
MKI67	
   0.307	
   1.661	
   2.435	
   3.81E-­‐02	
   -­‐1.354	
  
FSTL3	
   0.301	
   1.565	
   2.376	
   9.63E-­‐03	
   -­‐1.264	
  

C19orf77	
   0.224	
   1.356	
   2.596	
   1.71E-­‐02	
   -­‐1.132	
  
CDT1	
   0.265	
   1.394	
   2.394	
   5.20E-­‐03	
   -­‐1.129	
  
MTSS1	
   0.24	
   1.233	
   2.363	
   3.66E-­‐03	
   -­‐0.993	
  
MYBL2	
   0.296	
   1.288	
   2.12	
   1.68E-­‐02	
   -­‐0.992	
  

FAM108C1	
   0.277	
   1.202	
   2.12	
   2.93E-­‐02	
   -­‐0.926	
  
ZNF367	
   0.257	
   1.164	
   2.178	
   1.16E-­‐02	
   -­‐0.907	
  
ITGA9	
   0.148	
   1.052	
   2.826	
   5.75E-­‐04	
   -­‐0.904	
  
TPX2	
   0.162	
   0.992	
   2.616	
   1.28E-­‐03	
   -­‐0.83	
  
ANLN	
   0.166	
   0.992	
   2.579	
   1.90E-­‐02	
   -­‐0.826	
  

PCOLCE2	
   0.16	
   0.983	
   2.622	
   6.76E-­‐03	
   -­‐0.823	
  
TPSB2	
   0.055	
   0.878	
   3.987	
   1.43E-­‐02	
   -­‐0.823	
  

LOC200772	
   0.023	
   0.775	
   5.055	
   9.28E-­‐04	
   -­‐0.752	
  
STX1A	
   0.07	
   0.82	
   3.548	
   9.96E-­‐04	
   -­‐0.75	
  
KIF2C	
   0.135	
   0.846	
   2.653	
   2.84E-­‐03	
   -­‐0.712	
  
KIF11	
   0.196	
   0.872	
   2.151	
   1.26E-­‐02	
   -­‐0.676	
  
GJB2	
   0.055	
   0.713	
   3.701	
   5.65E-­‐04	
   -­‐0.658	
  
CDK1	
   0.09	
   0.749	
   3.049	
   1.45E-­‐02	
   -­‐0.658	
  

TCTEX1D1	
   0.131	
   0.776	
   2.569	
   1.09E-­‐02	
   -­‐0.645	
  
E2F8	
   0.055	
   0.672	
   3.617	
   8.91E-­‐05	
   -­‐0.617	
  
GLB1L	
   0.15	
   0.711	
   2.246	
   2.64E-­‐02	
   -­‐0.561	
  
SHB	
   0.123	
   0.678	
   2.469	
   4.17E-­‐03	
   -­‐0.556	
  
NEIL3	
   0.085	
   0.616	
   2.85	
   4.71E-­‐03	
   -­‐0.53	
  
CDC45	
   0.093	
   0.597	
   2.677	
   3.19E-­‐02	
   -­‐0.503	
  

LAPTM4B	
   0.106	
   0.608	
   2.524	
   2.33E-­‐02	
   -­‐0.502	
  
KCNH4	
   0.021	
   0.465	
   4.489	
   2.88E-­‐03	
   -­‐0.445	
  
BUB1B	
   0.12	
   0.54	
   2.167	
   4.50E-­‐02	
   -­‐0.419	
  
TRIM16	
   0.063	
   0.45	
   2.831	
   1.14E-­‐02	
   -­‐0.387	
  
NPR3	
   0.022	
   0.395	
   4.189	
   6.54E-­‐05	
   -­‐0.373	
  
CPXM1	
   0.024	
   0.372	
   3.953	
   2.86E-­‐02	
   -­‐0.348	
  
EXO1	
   0.081	
   0.426	
   2.389	
   3.50E-­‐02	
   -­‐0.345	
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C1orf106	
   0.053	
   0.373	
   2.806	
   3.29E-­‐02	
   -­‐0.32	
  
PROM1	
   0.027	
   0.318	
   3.55	
   1.97E-­‐02	
   -­‐0.291	
  
IQGAP3	
   0.037	
   0.319	
   3.116	
   7.68E-­‐04	
   -­‐0.282	
  
DEPTOR	
   0.017	
   0.275	
   4.043	
   2.48E-­‐02	
   -­‐0.258	
  
ASPM	
   0.084	
   0.332	
   1.983	
   2.93E-­‐02	
   -­‐0.248	
  
ZNF711	
   0.024	
   0.271	
   3.496	
   4.59E-­‐03	
   -­‐0.247	
  
CIT	
   0.063	
   0.282	
   2.158	
   2.37E-­‐02	
   -­‐0.219	
  

ZNF521	
   0.015	
   0.219	
   3.902	
   1.49E-­‐03	
   -­‐0.204	
  
MYOF	
   0.047	
   0.249	
   2.413	
   1.40E-­‐02	
   -­‐0.202	
  
DNAH10	
   0.048	
   0.248	
   2.36	
   5.32E-­‐03	
   -­‐0.2	
  
DIAPH3	
   0.018	
   0.217	
   3.571	
   2.60E-­‐02	
   -­‐0.199	
  
B4GALT6	
   0.026	
   0.212	
   3.017	
   1.53E-­‐02	
   -­‐0.185	
  
PRKG2	
   0.011	
   0.171	
   3.967	
   3.86E-­‐02	
   -­‐0.16	
  
KCNQ5	
   0.03	
   0.172	
   2.505	
   3.46E-­‐02	
   -­‐0.142	
  

KIAA1211	
   0.011	
   0.144	
   3.689	
   9.38E-­‐03	
   -­‐0.133	
  
HSPG2	
   0.009	
   0.12	
   3.76	
   8.21E-­‐04	
   -­‐0.111	
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