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Sperm competition, when sperm from more than one male compete to fertilise the 

same ova, has driven a diversity of adaptations. Increasingly, molecular techniques 

have been used to study the effect of post-copulatory sexual selection, including 

sperm competition, on proteins that are essential to reproduction. Genomic studies 

have revealed the rapid evolution of ejaculate proteins in polyandrous species. 

Additionally, there is evidence that gene expression can be altered plastically, in 

response to cues of sperm competition. Such studies are limited however, as the 

transcriptome does not always equal the proteome. Here, quantitative proteomics 

techniques are utilised to explore plasticity in reproduction, at a molecular level, in 

the house mouse (Mus musculus domesticus) (Chapters 2 – 4). In addition, 

adaptations to sperm competition are considered within mammalian testes and 

sperm proteins (Chapters 5 and 6).  

Contrary to predictions of sperm competition theory, within rodents, sperm 

production is suppressed in subordinate males. In addition, dominant males develop 

significantly larger seminal vesicles. Here, quantitative proteomic analysis reveals 

that the composition of the secretion within the major accessory sex gland in house 

mice differs according to social status. Subordinate males produce a more 

concentrated protein secretion, which contains a greater proportion of the protein 

SVS2. This protein is essential in copulatory plug formation, and increasing the 

proportion of SVS2 within their seminal fluid may allow subordinate males to 

produce copulatory plugs of an equivalent size to those produced by dominant. 

Within mammals, the oviduct is the site of fertilisation and can exert control over 

sperm storage and movement. As male house mice can plastically alter their 

ejaculate production and allocation according to local sperm competition risk, it is 

                                                    
Abstract 
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feasible that females may alter the environment within the oviduct in response to 

similar cues of multiple mating, to maintain control of paternity and reduce the risk 

of polyspermy. I found no evidence for plasticity in the oviduct proteins of female 

house mice following either a high or low level of interactions with male house mice. 

Indeed, the oviduct proteome was more similar within siblings, balanced across 

treatments, than within treatment groups. I did find evidence for plasticity in female 

behaviour, when interacting with a novel male, and in female ano-genital distance.  

Mothers in populations with high levels of sperm competition may benefit from 

producing more competitive male offspring. I analysed male offspring produced by 

female house mice that had encountered either a high or low level of male odour 

and interactions prior to pregnancy. Quantitative proteomic investigation revealed 

that ejaculate composition differed according to the level of male interaction their 

mother had encountered before pregnancy. In contrast, I found no evidence for 

variation in male mating behaviour, reproductive morphology or ejaculate size. This 

study reveals the potential for maternally driven, subtle alterations in ejaculate 

composition. 

Sperm competition has driven the evolution of testicular architecture. Comparative 

analyses reveal that relatively larger testes also produce sperm more efficiently. 

Improved spermatogenesis efficiency is primarily due to a faster rate of each 

seminiferous epithelial cycle, thereby increasing sperm production rate. This trait is 

linked to sperm competition, and so sperm competition is selecting for a greater 

sperm output, primarily by increasing the rate of production.  

Sexual conflict and post-copulatory sexual selection drive the rapid evolution of 

genes involved in reproduction. The reproductive proteomes of relatively closely 

related species may therefore be very different from each other. Comparative 

proteomic analysis of cauda epididymal samples from two groups of mammals, 

rodents and ungulates, reveals broad similarities in the sperm proteome. Closer 

analysis of proteins known to be involved in sperm – egg interactions suggests these 

proteins are very divergent, and exhibit a low level of sequence homology. 
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1.1 Chapter overview 

Within this chapter I discuss the theoretical framework underpinning the 

studies presented in Chapters 2 – 6. 

This thesis broadly investigates adaptations to sperm competition in mammals using 

modern proteomics methods. Within this chapter a review of relevant literature is 

presented to contextualise the theoretical background to the experiments I have 

undertaken. Sperm competition, sexual conflict and cryptic female choice are 

considered, highlighting evidence for adaptations and phenotypic plasticity in 

response to these selection pressures. Mammalian ejaculate production and 

composition is then discussed in some detail, as this is the focus of several chapters. 

Chapter 1 

General introduction 
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Finally, the use of proteomics to understand the reproductive proteome is discussed. 

Proteomics methods are a core technique within this thesis, used for Chapters 2, 3, 4 

and 6, and so a thorough introduction is provided.  

1.2 Sexual selection 

Darwin’s (1859) theory of natural selection describes how traits that confer an 

individual an advantage are more likely to be passed on to future generations: “This 

preservation of favourable variations and the rejection of injurious variations, I call 

Natural Selection” (Darwin 1859 pp 81). Sexual selection (Darwin 1871) differs from 

natural selection as it considers only those traits that act “in exclusive relation to 

reproduction” (Darwin 1871 pp 256). In general, sexual selection is expected to act 

more strongly on males than females (Darwin 1871; Bateman 1948; Trivers 1972). 

This is in part due to males experiencing a greater variance in fertilisation success 

than females, and the number of offspring a male produces correlating strongly with 

the number of mates he obtains (Bateman 1948). Furthermore, as females typically 

invest more than males in offspring production, they are expected to be more 

selective over their mates (Trivers 1972). These later ideas support Darwin’s original 

paradigm of ardent males and coy, selective females (Darwin 1871). More recently, 

flaws in the Darwin-Bateman paradigm have been under discussion (Dewsbury 

2005). The traditional interpretation of sexual selection regarding indiscriminate 

males and choosy females is considered too simplistic; however it holds that sexual 

selection is generally directional, and the sex encountering the higher cost through 

mating and offspring production will be the most choosy (Kokko and Monaghan 

2001; Clutton-Brock 2007). Indeed, there are many examples within which there is 

stronger intrasexual competition between females than males (Andersson 1994; 

Dongen, Matthysen et al. 1998; Wong and Jennions 2003; Bro-Jørgensen 2007b; 

Kraaijeveld, Kraaijeveld-Smit et al. 2007; Clutton-Brock 2009). 

Mechanisms of sexual selection broadly fall into two categories. Either intrasexual, 

competition between one sex for access to the other sex, or intersexual, attraction 



19 

 

by one sex to the other (Andersson 1994). As discussed above, this selection may act 

in either direction (Clutton-Brock 2007). Here, for simplicity, I will give examples 

whereby males are under greater selection. Male weaponry is a classic result of 

intrasexual competition, in addition to improving a males fighting ability these often 

serve as a reliable indicator of male quality and fitness (Clutton-Brock 1982; Kodric-

Brown and Brown 1984; Malo, Roldan et al. 2005).  There is a vast array of male 

traits that a female may use to select a high quality mate, including status, size, 

odour cues, vocal signals and visual displays (Searcy 1979; Andersson 1986; 

Andersson 1994; Clutton-Brock and McAuliffe 2009).  

Darwin’s discussion of sexual selection stopped firmly at the point of copulation. 

However, females are commonly polyandrous, mating with more than one male 

(Smith 1984; Birkhead and Møller 1998). This creates post-copulatory sexual 

selection, as the sperm from rival males compete to fertilise the same ova and 

females exert selection over which sperm are successful (Parker 1970; Eberhard and 

Cordero 1995; Birkhead and Pizzari 2002). This thesis primarily considers adaptations 

resulting from post-copulatory selection mechanisms (sperm competition, cryptic 

female choice, and sexual conflict) and so these will be discussed in greater detail.  

1.2.1 Post-copulatory sexual selection 

Parker’s (1970) investigation of sperm competition within insects marked the 

beginning of a revolution in the field of sexual selection (Parker and Birkhead 2013). 

Polyandry is now known to be widespread across all taxa. Females benefit from 

mating multiply; gaining access to territory, nuptial gifts, reducing the chance of 

genetic incompatibility and increasing offspring production (Zeh and Zeh 1996; 1997; 

Arnqvist and Nilsson 2000; Jennions and Petrie 2000; Hosken and Stockley 2003). 

Following multiple mating, the sperm of more than one male compete to fertilise an 

ovum; this is known as sperm competition (Parker 1970). Post-copulatory selection 

by the female, the counterpart to sperm competition, is termed cryptic female 

choice (Thornhill 1983). Females are expected to adapt in order to maintain control 

over the paternity of their offspring when mating multiply (Eberhard 1996). Sperm 
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competition and cryptic female choice select for traits that confer an advantage to 

the male or the female. Often, the two sexes will have divergent evolutionary 

interests, creating sexual conflict (Parker 1979; Chapman, Arnqvist et al. 2003; 

Arnqvist and Rowe 2005). Adaptations to post-copulatory sexual selection are 

shaped by a combination of sperm competition, cryptic female choice, and sexual 

conflict (see Figure 1.1). These are discussed in more detail, within the context of this 

thesis, below. 

1.3 Ejaculates and sperm competition 

Sperm competition is by far the most well studied mechanism of post-copulatory 

sexual selection. Diverse adaptations to male reproductive anatomy, physiology, and 

behaviour have evolved following selection via sperm competition (Smith 1984; 

Birkhead and Møller 1998; Dixson and Anderson 2004). These adaptations are 

generally either defensive, reducing the chance a female will mate multiply, or 

offensive, ensuring their ejaculate is more competitive (Parker 1970). A detailed 

discussion of all documented adaptations to sperm competition is beyond the scope 

of this thesis. Here, I focus on the ejaculate, particularly citing mammalian examples 

where possible.  

1.3.1 Sperm 

Since Leeuwenhoek’s 1677 discovery of “animalcules” within ejaculates (Gilbert 

2014), our understanding of the structure and function of sperm has changed 

drastically. Sperm can be roughly divided into two segments; a head and tail. Each 

sperm head contains a haploid nucleus and is capped by an acrosome. Prior to 

fertilisation, sperm shed the acrosome, revealing proteins that can bind to the zona 

pellucida (egg outer coat) and the oolemma (oocyte membrane) (Gilbert 2003). The 

sperm tail includes the mitochondria containing mid-piece and the flagellum, which 

propels the sperm. The sperm flagellum is a highly organised structure, consisting of 

tubulin, outer dense fibre proteins and A-kinase anchor proteins  
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Figure 1.1: The complex interplay between male adaptations to sperm competition 
and female counter-adaptations due to sexual conflict. Sperm competition selects 
for aggressive ejaculate traits. In response, females evolve barriers to avoid 
polyspermy and infertility (solid lines). Female barriers, in turn, alter the fitness 
effects of the male adaptations to sperm competition (dashed lines). Adapted from 
Arnqvist and Rowe 2005 (p123). 
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(Gilbert 2003; Gupta 2005). A comparative investigation of mammalian sperm 

proteins is presented within Chapter 6. 

Although the major components of sperm are broadly conserved, the specific 

morphology of sperm is known to vary adaptively according to sperm competition 

levels (see Birkhead, Hosken et al. 2009 for a review of sperm adaptations).  Muroid 

rodents in particular are known for the apical hooks present on their sperm heads 

(see Figure 5.2)(Breed 2005). These are more defined in species that have greater 

levels of polyandry (Immler, Moore et al. 2007; Šandera, Andrlíková et al. 2011). The 

hooks are predicted to increase swimming speed as the sperm can bind together to 

form sperm trains (Moore, Dvorakova et al. 2002). In the highly promiscuous species 

of deer mouse, Peromyscus maniculatus, sperm preferentially bind with other sperm 

from that male (Fisher and Hoekstra 2010). This even occurs when tested with 

sperm from a sibling male, highlighting how sophisticated preferential aggregation of 

sperm can be in highly polyandrous species (Fisher and Hoekstra 2010). 

As well as adaptations to sperm morphology, sperm competition has led to 

differences in sperm length. A classic example of extreme diversity within 

reproductive biology is the 6cm long sperm found within Drosophila bifurca (Pitnick, 

Spicer et al. 1995). Within this species females are unwilling to re-mate unless they 

have previously mated with a sperm depleted male (Luck and Joly 2005). D. bifurca is 

an extreme example but highlights a trade-off between sperm size and sperm 

number. In species with multiple mating and sperm competition, males can gain an 

advantage by ejaculating a greater number of sperm (the raffle principle described in 

Section 1.3.1). It is therefore predicted that males could minimise sperm size in order 

to maximise sperm numbers, and this may be important in the evolution and 

maintenance of anisogamy (Parker 1982).  

Empirical evidence for the influence of sperm competition on sperm size has been 

the subject of much dispute in recent years. Many studies have found no evidence 

for a link between sperm competition and sperm size (Briskie and Montgomerie 

1992; Gage and Freckleton 2003; Ramm and Stockley 2010; Vrech, Olivero et al. 
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2014), although some find that sperm competition promotes the production of 

larger sperm (Briskie, Montgomerie et al. 1997; LaMunyon and Ward 1999; 

Tourmente, Gomendio et al. 2011a; Tourmente, Gomendio et al. 2011b). Within 

mammals, it has been suggested that metabolic constraints limit the capacity for 

sperm to increase greatly. When taking the metabolic rate into account within the 

analysis, sperm size is found to be larger in polyandrous species (Gomendio, 

Tourmente et al. 2011; Tourmente, Gomendio et al. 2011b; delBarco-Trillo, 

Tourmente et al. 2013). Larger sperm have a greater swimming velocity (Tourmente, 

Gomendio et al. 2011a) and advantages gained by producing larger sperm may 

explain the disparity between this result and initial predictions which do not take this 

into account (Parker 1982; 1993). An analysis of mammalian sperm morphology is 

presented within Chapter 5. 

1.3.2 Sperm production 

As sperm are under such strong selection, it is unsurprising that the sperm producing 

organs, the testes, have also adapted due to polyandry. Under the theory of a fair 

raffle, whereby all sperm have equal chances of fertilising the ova (Parker 1990), 

males may be selected to increase the quantity of sperm within an ejaculate in order 

to have a greater chance of fertilisation success. Increased relative testis mass, 

presumably to produce greater quantities of sperm, is a well-documented 

adaptation to sperm competition (e.g. mammals; Kenagy & Trombulak 1986,  and 

fish; Stockley, Gage et al. 1997)  and is often used as an indicator of mating system 

(for example in comparative studies of rodents; Ramm, Parker et al. 2005).  

Intraspecific studies have provided further evidence for this as the frequency of 

multiple paternity correlates with testes mass in isolated wild populations of house 

mice (Firman and Simmons 2008).  

Further to sperm competition increasing testes mass, more recently there has been 

interest into the evolution of testis architecture (Ramm and Schärer 2014).  Sperm 

production is supported by the Sertoli cells within the basement membrane of the 

seminiferous tubules.  These specialised cells envelope the developing gametes, 
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providing essential nutrients, physical support and paracrine signals (Jégou 1992).  

The quantity of Sertoli cells is reasonably static after puberty (Kluin, Kramer et al. 

1984; Herrera-Alarcón, Villagómez-Amezcua et al. 2007).  This can therefore limit 

sperm production capacity as they can support the development of a limited number 

of germ cells (Johnson, Carter et al. 1994).  Studies in New World Blackbirds 

(Icteridae) have found the testes of males with more competitive mating systems 

contain less interstitial tissue (Lüpold, Linz et a. 2009; also in Mus species, Montono, 

Arregui et al. 2012)  and more efficient Sertoli cells (Lüpold, Wistuba et al. 2011), 

allowing for more efficient sperm production. Interestingly this has also been shown 

as an adaptive variation within a species, the marine flatworm Macrostomum 

lignano, with larger testes producing more sperm per unit area (Scharer and Vizoso 

2007).  

In addition to changes in testicular architecture, males of species with more 

competitive mating systems produce sperm at a faster rate, due to having a shorter 

spermatogenic cycle (Ramm and Stockley 2010; delBarco-Trillo, Tourmente et al. 

2013) (additional details on mammalian sperm production found within Chapter 5). 

Therefore, mammalian testes evolving under sperm competition are relatively larger 

and produce sperm at a greater rate (Ramm and Stockley 2010). Furthermore, they 

produce a greater proportion of normal, acrosome intact sperm with increased 

motility (Gómez Montoto, Magaña et al. 2011). Further investigation of testicular 

architecture and sperm production can be found within Chapter 5. 

1.3.3 Sperm competition games models 

Sperm competition games models offer extensive predictions for a male’s optimal 

sperm investment within differing roles and contexts (Parker 1990; Parker, Ball et al. 

1997; Parker and Pizzari 2010; Parker, Lessells et al. 2013). These models seek to 

predict the evolutionarily stable strategy (ESS) of reproductive investment using an 

evolutionary games theory approach (Maynard Smith 1982), hence sperm 

competition games (Parker 1998). Predictions have been provided for various 

scenarios, for example in relation to the risk or intensity of sperm competition 
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(Parker, Ball et al. 1996; 1997), female mating status (Ball and Parker 2007), and 

sperm selection by females (Ball and Parker 2003). A full consideration of the 

complexities of these models is beyond the scope of this thesis, however, the 

experimental work presented within Chapter 2 is based on the “raffles and roles” 

models, and so these are discussed here in more detail. 

The simplest model considers a fair raffle, in which the sperm of two competing 

males each have an equal chance of winning fertilisations. In this instance the male 

that ejaculates the most sperm has the greatest chance of siring offspring, similar to 

buying more tickets in a raffle (Parker 1990). However it is also possible that one 

male may have an advantage under sperm competition, in which case the situation is 

more similar to a loaded raffle. This may occur for example when the order of 

mating influences the outcome of sperm competition, or if one male is preferred by 

the female. Theory predicts that the number of sperm ejaculated by males mating in 

different roles will depend upon knowledge of their role within the loaded raffle, 

either favoured or disfavoured, and whether these roles can vary or are fixed. In a 

non-random raffle, whereby the roles are fixed, theory predicts that the male in the 

disfavoured role could increase sperm output to compensate for the lower value of 

his sperm (Parker 1990; Ball and Parker 2003). 

The non-random roles model of optimising investment in sperm production is 

particularly relevant for species with social dominance relationships.  In this system 

males should ‘know’ their role within a competitive mating: favoured (dominant) or 

disfavoured (subordinate). Empirical studies comparing dominant and subordinate 

males of non-mammalian species support these predictions, as subordinate males 

produce and ejaculate more sperm than dominant males (Liljedal and Folstad 2003; 

Pizzari, Cornwallis et al. 2003); however evidence from rodents suggests the contrary 

(Koyama and Kamimura 2000; Lemaitre, Ramm et al. 2012; Schradin, Eder et al. 

2012). This could be due to physiological constraints of the subordinate male being 

in a state of chronic stress (Blanchard, Sakai et al. 1993), or they may suppress sperm 

production to appear less competitive to the dominant male. As rodents have 
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prominent accessory sex glands, which are larger with increased sperm competition 

(Ramm, Parker et al. 2005; Lemaitre, Ramm et al. 2010), the importance of non-

sperm ejaculate components may be particularly relevant within these species.  

1.3.4 Seminal fluid 

As sperm cells are essential for fertilisation, it is understandable that they have 

garnered a lot of attention. However, ejaculates are a complex mixture and there is 

growing interest in ejaculate composition in relation to the outcomes of post-

copulatory sexual selection (Chapman 2001; Perry, Sirot et al. 2013). Components of 

the seminal fluid have diverse functions such as increasing sperm motility (Kawano 

and Yoshida 2007), altering female behaviour to reduce the chance she will remate 

(Mane, Tompkins et al. 1983) and forming a copulatory plug (Williams-Ashman 1984; 

Dewsbury 1988; Dixson and Anderson 2002).  In mammals, components of the 

seminal fluid can initiate ovulation (Waberski, Claassen et al. 1997) and assist the 

movement of sperm through the reproductive tract by increasing uterine 

contractions (Suarez and Pacey 2006).  

Copulatory plugs are a commonly found adaptation to sperm competition (Devine 

1975; Shine, Mason et al. 2000; Dixson and Anderson 2002; Timmermeyer, Gerlach 

et al. 2010). They increase the movement of sperm into the reproductive tract, act 

as a slow releasing sperm store, and provide a physical barrier reducing the chance 

of re-mating (Smith 1984; Carballada and Esponda 1992; Shine, Mason et al. 2000; 

Dean 2013). The plug can be formed through the coagulation of seminal fluid 

components (Voss 1979; Smith 1984; Simmons 2001), emasculation of male genitals 

(often found in spiders e.g. Fromhage and Schneider 2006)  or coagulation of kidney 

products (common in snakes e.g. Devine 1975 ). Interestingly, there is evidence for a 

female derived copulatory plug, which can prevent unwanted copulations (Kuntner, 

Gregoric et al. 2012). More commonly, copulatory plugs are male derived and 

predicted to limit the rate of female re-mating (Parker 1970). There is some 

empirical evidence for this (Cavia porcellus: Martan and Shepherd 1976,   Agelena 

limbata: Masumoto 1993,  Drosophila hibisci: Polak, Wolf et al. 2001).  
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Theory predicts the evolution of plug displacement will be common (Fromhage 

2012) and there are many examples whereby the copulatory plug is ineffective at 

reducing female re-mating (Mosig and Dewsbury 1970; Dewsbury and Baumgardner 

1981; Jia, Duan et al. 2002; Moreira and Birkhead 2003; Parga 2003; Timmermeyer, 

Gerlach et al. 2010). Plugs may be removed or displaced by males (Mosig and 

Dewsbury 1970; Hartung and Dewsbury 1978; Timmermeyer, Gerlach et al. 2010) or 

females (e.g. Sciurus carolinensis: (Koprowski 1992) and are often consumed by 

either sex (Mosig and Dewsbury 1970; Koprowski 1992). Therefore, chastity 

enforcement is unlikely to be a widespread function of the copulatory plug. Instead, 

there is increasing evidence that copulatory plugs commonly improve fertility 

through aiding sperm retention and transit within the female tract (Dewsbury 1988; 

Carballada and Esponda 1992; Jia, Duan et al. 2002; Ramm, Parker et al. 2005; Dean 

2013). 

Within primates and rodents, the seminal proteins forming the plug have been 

reasonably well studied. These proteins are known as the semenoclotins in primates. 

In rodents the major components of the seminal fluid are the seminal vesicle 

secretory (SVS) proteins I to VII, named in order of descending size. The 

semenoclotins I & II, and SVS proteins I, II & III, are known to be a rapidly evolving 

substrate of transglutaminase (REST) (Lin, Luo et al. 2002). Catalysis of these proteins 

to coagulate and form the copulatory plug is initiated by the ejaculate specific 

transglutaminase, protein-glutamine gamma-glutamyltransferase 4 (Tgm4), which is 

released by the anterior prostate or coagulating gland (Williams-Ashman, Beil et al. 

1980; Williams-Ashman 1984; Lin, Luo et al. 2002; Dean 2013). There is evidence for 

selection, driven by female promiscuity resulting in sperm competition, on the size 

of the seminal vesicle glands that produce these proteins, (Dixson 1998; Ramm, 

Parker et al. 2005), the proteins that form the copulatory plug (Jensen-Seaman and 

Li 2003; Dorus, Evans et al. 2004; Clark and Swanson 2005; Carnahan and Jensen-

Seaman 2008; Ramm, Oliver et al. 2008; Ramm, McDonald et al. 2009; Carnahan-

Craig and Jensen-Seaman 2014) and the size of the plug (Dixson and Anderson 2002; 
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Ramm, Parker et al. 2005). Thus, the copulatory plug is a widespread adaptation to 

sperm competition.  

1.3.5 Predictions for seminal fluid production 

A long-standing theoretical focus on male investment in sperm numbers in the 

sperm competition literature has shifted recently to include the importance of 

seminal fluid in predicting fertilisation outcomes (Cameron, Day et al. 2007; Perry, 

Sirot et al. 2013; Dhole and Servedio 2014). The model produced by Cameron et al. 

(2007) considers the energy a male will expend on sperm and seminal products 

respectively and finds this should be different for males in favoured and disfavoured 

roles, changing with the level at which seminal fluid can alter fertilisation success. 

This model agrees with previous predictions, suggesting that in all instances the 

disfavoured male should invest more in sperm than the favoured male (Parker 1990; 

Cameron, Day et al. 2007). As the level of bias created by seminal fluid products 

increases, by proffering a greater advantage in a competitive mating, it is predicted 

that the favoured male should invest more in seminal products compared to sperm 

(Cameron, Day et al. 2007). These predictions are tested within Chapter 2. 

1.4 Cryptic female choice 

As females typically invest more than males in offspring production, they are 

expected to exert greater control over the quality of their mates (Trivers 1972). 

When mating multiply, post-copulatory selection of which sperm gain successful 

fertilisations, or cryptic female choice, can increase a female’s control over the 

paternity of their offspring (Thornhill 1983; Birkhead and Møller 1993; Eberhard 

1996). There are diverse post-copulatory mechanisms by which females can exert 

preference for one male’s sperm over another. These include, but are not limited to, 

sperm ejection, controlling the timing of ovulation or oviposition, soliciting further 

matings and digesting sperm from previous ejaculations (reviewed in Eberhard 

1996).  
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Observing convincing evidence for cryptic female choice, particularly in relation to 

specific mechanisms of sperm selection, can be challenging due to the difficulties in 

disentangling male versus female mediated effects (Birkhead 1998; 2000; Eberhard 

2000; Kempenaers, Foerster et al. 2000; Pitnick and Brown 2000). Nonetheless, 

there are some striking examples of sperm selection by females. I will only highlight 

two here due to limited space. Firstly, although female feral fowl are coerced into 

copulations with subdominant males, they are able to selectively eject the sperm of 

subdominant males to increase the proportion of offspring sired by the dominant 

male (Pizzari and Birkhead 2000). Secondly, Comb jellys (Beroe ovata) have an 

exceptional level of choice over fertilisation within the egg (Carré and Sardet 1984). 

Polyspermy, when more than one sperm fuse with the egg, is common in this 

species. At fertilisation, the pronuclei of multiple sperm remain fixed within the egg 

surface. The pronuclei of the egg then travels around the egg to each of the sperm 

pronuclei, before choosing which to fuse with (Carré and Sardet 1984). Within 

rodents, sperm are able to discriminate between sperm from relatives (Fisher and 

Hoekstra 2010), suggesting there is a molecular mechanism by which sperm can be 

recognised as belonging to individuals. It is certainly feasible that mechanisms of 

sperm selection may occur within female reproductive tract of mammals. 

1.4.1 Cryptic female choice within mammals 

The initial, and most obvious, opportunity for sperm selection occurs promptly after 

mating as females can eject recently inseminated sperm (Ginsberg and Huck 1989; 

Manier, Belote et al. 2010). Within mammals, sperm that are not immediately 

ejected travel to the oviduct. This is the final stage of the female reproductive tract 

that sperm have to negotiate, and the site of fertilisation. Prior to ovulation, sperm 

can be stored in the sperm storage organs at the bottom of the oviduct before being 

slowly released as required (Suarez 2008b).  The oviduct may also mediate sperm 

selection (Holt and Fazeli 2010). Molecules within the oviduct cause differential 

motility in sperm sub-populations (Satake, Elliott et al. 2006). Selective proteolysis of 

zonadhesin, a sperm membrane bound protein that binds to the zona pellucida 

coating on the egg, creates fragments with differing binding activity levels within pigs 
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(Gupta 2005). Molecular mechanisms of control over sperm activity within the 

oviduct are likely to be widespread. At present, knowledge of this is only limited. 

More broadly, oviduct morphology has also adapted in response to sperm 

competition. In mammals, oviduct length correlates with sperm numbers (Gomendio 

and Roldan 1993) and relative testis size (Anderson, Dixson et al. 2006), both 

indicators of sperm competition. Similarly in birds, increased complexity of the 

female tract co-occurs with increased sperm length (Briskie and Montgomerie 1992) 

and penis length (Brennan, Prum et al. 2007). 

The final level of female control is at the gamete level.  IVF assays have shown that 

selection is as strong on ovum defensiveness as it is on sperm competitiveness 

within closely related Mus species (Martín-Coello, Benavent-Corai et al. 2009).  

Within the house mouse, increased ova defensiveness has been shown as both a 

plastic response to social interactions indicating high or low levels of multiple 

mating, and a product of coevolution, following experimental evolution of 

monogamous and polyandrous selection lines (Firman and Simmons 2013; Firman, 

Gomendio et al. 2014).  

1.5 Sexual conflict  

Sexual conflict occurs when adaptations that confer an advantage in one sex lead to 

fitness costs or constraints in the other (Parker 1979; Chapman, Arnqvist et al. 2003; 

Arnqvist and Rowe 2005; Parker 2006). Male ejaculates are continually selected by 

fertilisation success. These adaptations, although beneficial in males, may be 

detrimental to females (Chapman, Liddle et al. 1995; Rice and Holland 1997). As well 

as the need to counter-act harmful, indeed even toxic (Rice 1996), male adaptations, 

females will also aim to reduce the chances of embryolethal polyspermy and to 

ensure the best quality male fertilises her ova (Frank 2000; Gilbert 2000; Arnqvist 

and Rowe 2005). When coupled with sperm competition, accelerating the evolution 

of male reproductive traits, and cryptic female choice, driving adaptations within 

females, this accentuates the rate of antagonistic co-evolution between the sexes 
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(Rice and Holland 1997; Stockley 1997; Martín-Coello, Benavent-Corai et al. 2009) 

(see Figure 1.1).   

1.5.1 Sexual conflict and antagonistic co-evolution 

Sexually antagonistic coevolution is driven by divergent genomic optima of the sexes 

(Rice and Holland 1997). Studies of experimental evolution in insects are increasingly 

providing evidence for sexually antagonistic coevolution acting on genital 

morphology, mating behaviour, weaponry, and ejaculate mediated behaviour in 

females (Rice 1996; Holland and Rice 1999; Arnqvist and Rowe 2002; Hosken and 

Stockley 2004; Wigby, Chapman et al. 2004; Edward, Poissant et al. 2014). Long term 

studies of wild populations of mammals have also been a useful resource for testing 

sexually antagonistic coevolution. Horn size of soay sheep (Ovis aries) is associated 

with greater longevity in females, but a reduced lifespan for males (Robinson, 

Pilkington et al. 2006). Similarly within the red deer, males with relatively high fitness 

sire daughters with relatively low fitness (Foerster, Coulson et al. 2007). These 

examples highlight the maintenance of genetic variation in sexually selected traits 

within wild populations, as often genetic benefits accrued within one sex will be 

detrimental in the other. 

Substances within the seminal fluid are commonly implicit in sexual conflict 

(Chapman 2001). Within Drosophila, seminal fluid proteins (sfps) are known to 

influence the female after copulation (reviewed in Sirot, LaFlamme et al. 2009). 

Components of the seminal fluid increase egg laying rate, reduce remating rate and 

shorten the female’s lifespan (Chen, Stumm-Zollinger et al. 1988; Fowler and 

Partridge 1989; Chapman, Liddle et al. 1995). Evidence for the toxicity of seminal 

fluid is further provided using experimental evolution; females under monogamous 

selection lines become less resistant to the toxicity of seminal fluid (Rice 1996; 

Holland and Rice 1999). 
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1.5.2 Rapid evolution of reproductive proteins 

Molecular evolution is accelerated in situations of co-evolution, due to adaptations 

being continually counter adapted, for example in host infection selection lines 

(Paterson, Vogwill et al. 2010). Within the reproductive system this relationship is 

further accelerated as traits are not constrained by survivability as they may be 

under natural selection (Swanson, Yang et al. 2001; Swanson and Vacquier 2002; 

Turner and Hoekstra 2008). There is evidence for this effect in the proteins of sperm 

(Dorus, Wasbrough et al. 2010; Vicens, Lüke et al. 2014; Vicens, Tourmente et al. 

2014), seminal vesicle products (Dean, Clark et al. 2009), female reproductive tracts 

(Swanson, Wong et al. 2004) and oocytes (Swanson, Yang et al. 2001).  The evolution 

of reproductive proteins in response to sperm competition has been of growing 

interest, with comparative studies investigating rodents (SVS II and Protamine 2 

Ramm, McDonald et al. 2009; Martin-Coello, Dopazo et al. 2009) and primates 

(SEMG2 Dorus, Evans et al. 2004; Jenson-Seaman and Li 2003). 

The female reproductive proteins are less well studied with reference to molecular 

evolution; however it is an area that is receiving more interest.  Positive selection has 

been identified as acting on ZP2 and ZP3, proteins directly involved in sperm – egg 

binding (Swanson, Yang et al. 2001; Turner and Hoekstra 2006), and oviductal 

glycoprotein (OGP) (Swanson, Yang et al. 2001). These studies utilise genomic 

techniques to determine the rate of evolution and have found that glycosylation 

sites around the functional sperm binding regions of proteins are under the fastest 

selection. Proteomics techniques could also be used to clarify protein alterations, 

which may lead to functional differences, within the female reproductive tract.  This 

could give us insights into molecules essential to sperm selection. 

1.6 Phenotypic plasticity 

Phenotypic plasticity occurs when a genotype is capable of producing variation in the 

phenotype due to changes in the environment (Via and Lande 1985). This occurs due 
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to a range of environmental cues, but here I will limit my discussion to those relating 

to varying levels of sperm competition. I also discuss differences in offspring 

phenotype due to the maternal environment. Plasticity in ejaculate production and 

maternal effects are investigated in Chapter 2 and Chapter 4. 

1.6.1 Evidence for plasticity in mammalian ejaculate production 

In wild populations it is common that sex ratio and population density may fluctuate. 

In the house mouse this leads to varying levels of multiple paternity within litters 

(Dean, Ardlie et al. 2006).  This fluctuation automatically alters the extent of sexual 

selection due to variation in the numbers of mates, or competitors available. 

Experimentally changing the perceived number of competitors alters male 

investment in sperm production in the house mouse (Ramm and Stockley 2009a), 

and accessory gland size in the bank vole (Lemaitre, Ramm et al. 2010).  

Furthermore, protein turnover within the seminal vesicles of house mice is strikingly 

fast (Claydon, Ramm et al. 2012), showing the potential for plasticity in seminal 

vesicle protein production. Indeed, Drosophila are able to plastically alter the 

quantity of specific proteins within their ejaculates, according to the level of 

competition (Wigby, Sirot et al. 2009).  

Plasticity in reproductive traits may also be caused by variation in social status. In 

mammals, dominant bank voles ejaculate more sperm and possess larger seminal 

vesicles than subordinates (Lemaitre, Ramm et al. 2012).  In fish species that have 

distinct mating roles, males that sneak copulations increase the speed of ejaculated 

sperm when paired with a smaller male, possibly by a seminal fluid mediated effect 

(Smith and Ryan 2011).    There is further evidence for this in the cichlid 

Telmatochromis vittatus, which has sneaks, pirates (larger males with sneak 

behaviour) and territorial males. In this species, ejaculate tactics vary dependant on 

a male’s role at each fertilisation event and territorial males will ejaculate sperm 

with increased longevity in response to piracy risk (Ota, Heg et al. 2010). Similarly, 

sperm of male grass gobys (Zosterisessor ophiocephalus) of differing roles is known 

to be affected by the seminal fluid of other males  (Locatello, Poli et al. 2013), 
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suggesting that seminal fluid proteins are altered according to their social status; 

however this has not been tested. Plasticity in the production of seminal fluid 

proteins is investigated in Chapter 2. 

1.6.2 Maternal effects 

Whilst discussing phenotypic plasticity, I should briefly introduce maternal effects. 

Maternal effects, in response to environmental cues of the likely level of multiple 

mating experienced prior to pregnancy, are investigated within Chapter 4. 

Maternal effects occur when a mother alters the future characteristics of her 

offspring, in a manner that is unrelated to the offspring genotype (Bernardo 1996; 

Wolf and Wade 2009). Altering offspring phenotype to suit current environmental 

conditions, which are likely to fluctuate naturally, can ensure a greater chance of 

offspring success (Mousseau and Fox 1998b). There is widespread evidence for 

maternal effects within diverse taxa, including mammals (Mousseau and Fox 1998b; 

Ryan and Vandenbergh 2002; Simpson and Miller 2007; Henriksen, Rettenbacher et 

al. 2011; Dantzer, Newman et al. 2013).  

Rodents are commonly used as a model for maternal effects, particularly in response 

to nutrition and stress. Maternal nutrition can affect offspring development, 

metabolism and hormone production (Trombulak 1991; Liang and Zhang 2006; 

Gluckman, Lillycrop et al. 2007; Dantzer, Newman et al. 2013). Social and predator 

stressors during pregnancy causes variation in offspring growth, behaviour, 

anogenital distance and endocrine function (Pratt and Lisk 1989; Zielinski, 

Vandenbergh et al. 1991; Kaiser, Kruijver et al. 2003; Bian, Wu et al. 2005; Siegeler, 

Sachser et al. 2011). In addition to maternal effects during pregnancy, maternal 

grooming behaviour during lactation influences offspring phenotype through 

epigenetic alterations in the pups response to stress (Weaver, Cervoni et al. 2004). 

As well as influencing individual offspring, it is hypothesised that females will alter 

the sex ratio of their litters according to their current quality and nutritional state; 
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with high quality females gaining more from producing high quality sons (Trivers and 

Willard 1973). When the measure of female quality is taken at the time of 

conception, there is evidence for this phenomenon in mammals (Clutton-Brock and 

Iason 1986; Cameron 2004; Sheldon 2004). 

An ability to match offspring phenotype to local conditions may be particularly useful 

for females within populations that have fluctuations in their density, and so varying 

levels of competition for resources, territory and mates (Dantzer, Newman et al. 

2013). In species with multiple mating, variation in populations concurrently alters 

the incidence of sperm competition (Firman and Simmons 2008). As mothers can 

respond to social cues and alter their offspring, it is feasible that they may respond 

to cues of the likelihood of sperm competition to ensure their offspring are 

competitive. Within Chapter 4 I test for maternal effects on male traits that could 

influence the outcome of sperm competition. 

1.7 Proteomics 

Proteomics is the large scale study of the proteins within biological organisms. 

Technical advances and an increase in the availability of genomic information have 

resulted in an explosion in the use of proteomic techniques within biological studies. 

1.7.1 Common techniques 

Mass spectrometry (MS) is commonly used for proteomic analysis (Aebersold and 

Mann 2003). There are generally five steps required to analyse samples of proteins 

(briefly discussed here, but see Groß 2011). First, proteins are broken into peptides 

using a digestive enzyme, this is frequently trypsin. Separation of proteins can occur 

prior to digestion, using electrophoresis (SDS-PAGE or 2D-PAGE). Alternately, or in 

addition, peptides can be separated, according to their size and hydrophobicity, 

using high performance liquid chromatography (HPLC). The peptides are then 

ionised, this is normally done through electrospray ionisation (ESI) or matrix-assisted 

laser desorption/ionisation (MALDI). Charged peptides are then able to move within 
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the vacuum of the MS machine, attracted to the oppositely charged mass analyser. 

The mass/charge (m/z) ratio of each peptide is measured within the MS machine. 

Often, tandem MS (or MSMS) is performed. This method incorporates a 

fragmentation stage. After initial analysis of the precursor ion, this peptide is 

fragmented and the resulting ions are also analysed. The data obtained from the MS 

analysis can then be used to identify the proteins within the sample, by matching to 

a database of predicted peptide masses based on known protein sequences. 

Although there are various methods available to perform each stage of this 

procedure, the optimal technique will depend on the aims of the experiment.  

Proteomic methods of accurate protein quantification are rapidly improving 

(Bantscheff, Schirle et al. 2007).  There is a growing array of available techniques that 

fall into three categories; labelled, targeted and label-free. A brief comparison of 

these can be found in Table 1.1. Labelled protocols involve the incorporation of 

stable isotopes, often 15N or 13C, into a biological sample. This is commonly done 

within cell cultures, as it is relatively simple to alter the growth media to include only 

heavy versions of essential amino acids (such as heavy lysine). Stable isotope 

labelling by amino acids in cell culture (SILAC, Ong, Blagoev et al. 2002) is a useful 

tool for analysing relative differences in protein abundance between cell lines. 

Multiple amino acids can be used, creating predictable peptide mass shifts within 

different cultures, which can then be combined for MS analysis. Relative differences 

in the abundances of specific peptides can then be inferred based on the 

proportions of peptides at each mass. Similar techniques, based on the ratios of 

signal intensities between peptides of the same sequence with different masses, 

include iTRAQ (isobaric tag for relative and absolute quantification), iCAT (isotope 

coded affinity tag) and metabolic labelling of whole organisms. With respect to 

mammalian reproduction, metabolic labelling techniques have been useful for 

characterising the ejaculated proteins (Dean, Findlay et al. 2011) and their rates of 

turnover (Claydon, Ramm et al. 2012).  
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Targeted quantitative proteomics techniques can be used for absolute quantification 

of specific proteins within a sample. This technique aims to account for the 

variability in shotgun proteomics techniques by targeting specific peptides for 

further fragmentation and analysis, this method is commonly known as selected 

reaction monitoring (SRM, or multiple reaction monitoring, MRM, Lange, Picotti et 

al. 2008). This method requires some preliminary analysis. Firstly, candidate 

proteotypic peptides for the protein of interest are identified by initial shotgun 

analysis and computed predictions. These must be specific and unique to the target 

protein, and must behave consistently during MS analysis. Absolute quantification 

can then be achieved by adding isotopically labelled synthetic peptides and 

comparing the relative intensity of the heavy and light peptides (discussed within 

Lange, Picotti et al. 2008).    

 Within this thesis, label-free techniques are used. Methods of label-free 

quantitation generally use either spectral counting or peak ion intensity as a 

measure of protein abundance (Old, Meyer-Arendt et al. 2005; Bantscheff, Schirle et 

al. 2007; Patel, Thalassinos et al. 2009). Label-free techniques allow complex 

biological samples to be analysed relatively simply, as there is no need for the 

addition of labelled isotopes or preliminary analysis of targeted peptides. They have 

also been shown to be sensitive and accurate, particularly in calculating relative 

differences in the abundance of proteins within a sample (Old, Meyer-Arendt et al. 

2005). Label-free methods were chosen as I wanted to measure broad differences in 

the reproductive proteomes of house mice according to their environmental 

conditions.  

1.7.2 The use of proteomics to study reproductive proteomes 

Scientists studying molecular events leading to fertilisation are faced with a 

challenging environment to study. Transcriptome information is often, at best, a 

modest indicator of protein expression (Ghazalpour, Bennett et al. 2011). This is 

further complicated by the dynamic environment of the female reproductive tract  
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Table 1.1: Table comparing common approaches to quantitative proteomic. 

 

  

Method Pros Cons 

 

Stable isotope 

labelling 

(e.g. SILAC, iTRAQ, 

ICAT) 

 

 High-throughput 

 Relatively sensitive 

 Potential for relative 
comparisons of 
multiple samples 
 

 

 Labels can be 
expensive 

 Analysis can be 
complex 

 Better suited to cell 
cultures 
 

 

Targeted proteomics 

(e.g. SRM, MRM) 

 

 

 Can be absolute 

 Highly sensitive and 
reproducible 

 Suitable for low 
abundance proteins 
 

 

 A lot of preliminary 
work 

 Low throughput 
 

 

Label-free methods 

(e.g. spectral 

counting, peak 

intensity 

comparisons) 

 

 High-throughput 

 Relatively simple 

 Effective at finding 
large differences 
 

 

 Relative 

 Less 
refined/accurate 

 Less effective for 
low abundance 
proteins 
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throughout the oestrus cycle (Horvat, Vrčić et al. 1992; Weidong, Clement et al. 

1995; Mariani, Souto et al. 2000; Seytanoglu, Georgiou et al. 2008). In addition, post 

translational modifications of proteins can affect their activity (Sylvester, Morales et 

al. 1991). The recent advances in proteomics techniques, particularly with regard to 

quantitative proteomics, have made it an indispensable tool in biological research, 

including in the field of reproductive science (for a review of common proteomic 

techniques and their use in reproductive biology studies see Wright, Noirel et al. 

2012). 

Numerous discovery studies have qualified the proteins present in the gametes (for 

example in sperm: Stein, Go et al. 2006; Peddinti, Naduri et al. 2008; Asano, Nelson 

et al. 2010; Brewis and Gadella 2010 and(Belleannée, Labas et al. 2010)for a review 

including the maternal environment see Arnold and Frolich 2010). This has led to 

investigations that were not possible with previously available technology. For 

instance, changes occurring within the porcine oviduct throughout the oestrus cycle 

(Seytanoglu, Georgiou et al. 2008) and in response to gametes (Georgiou, Sostaric et 

al. 2005) have been documented. Further, a comparative approach has been used to 

describe the seminal plasma of domestic ungulate species (Druart, Rickard et al. 

2013) and has successfully shown adaptive evolution of ejaculate proteins within 

rodents (Ramm, McDonald et al. 2009).  

1.7.3 Proteomics within behavioural ecology 

Recently, there has been increasing interest in the application of proteomics within 

the field of behavioural ecology (Karr 2007; Diz, Martinez-Fernandez et al. 2012; 

Valcu and Kempenaers 2014). It is recognised that mRNA transcripts are not 

representative of protein abundance (Vogel and Marcotte 2012). Further, measures 

of the proteome are more likely to be representative of the phenotype than the 

genome (Diz, Martinez-Fernandez et al. 2012) and so, as natural selection occurs at a 

phenotypic level, protein level adaptations may be missed using other techniques.  
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The reproductive proteome is particularly exciting to study, due to the prevalence of 

sperm competition and sexual conflict, and the rapid co-evolution of male and 

female traits. Proteomics studies have allowed identification of seminal fluid 

proteins that interact with the female on a molecular level, mediating female 

behaviour and fertilisation (Wolfner 2007; Marshall, Huestis et al. 2009; Laflamme 

and Wolfner 2013). There is also evidence that males can alter the quantities of 

specific proteins within their ejaculate, according to the level of competition or 

female mating history (Wigby, Sirot et al. 2009; Sirot, Wolfner et al. 2011). Although 

proteomics methods are used increasingly within this field, there are areas that 

remain unexplored. This is particularly true within mammals. Phenotypic plasticity 

within the reproductive proteome of house mice is investigated here within Chapters 

2 – 4. 

1.8 Thesis overview 

This thesis can be broadly considered in two sections. The first, including Chapters 2, 

3, and 4, use the house mouse as a model to investigate phenotypic plasticity as an 

adaptive response to sperm competition risk, in various forms. Chapter 2 considers 

ejaculate investment according to social status, testing the prediction for the non-

random roles model of seminal fluid production. Female plasticity in response to 

environmental cues of the likelihood of multiple mating is tested in Chapter 3. Effects 

of the maternal environment prior to pregnancy, indicating high or low multiple 

mating, on male offspring is investigated in Chapter 4.  

The second section of this thesis considers evolutionary adaptations to sperm 

competition within two groups of mammals; rodents and ungulates. Testes and 

associated epididymides were collected for a comparison of testicular architecture 

(Chapter 5) and epididymal proteins (Chapter 6). 
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2.1 Chapter overview 

House mice live in a complex social environment. In this chapter I 

investigate how males of contrasting social status invest in their 

ejaculate production.  

Male social status has been linked to success in sperm competition, with dominant 

males typically having an advantage over subordinates. Theory predicts that 

subordinate males should invest more in ejaculates to compensate for this. 

However, it is currently unknown if both sperm and seminal fluid components of the 

ejaculate are tailored according to male social status. Here I present results of 

Chapter 2  
Social status and ejaculate 

investment in the house mouse. 
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quantitative proteomics analyses to compare the ejaculate components of dominant 

and subordinate male house mice (Mus musculus domesticus). The seminal vesicles 

are substantial accessory sex glands in rodents that secrete the majority of seminal 

fluid proteins, including those that coagulate inside the female to form the 

copulatory plug. My proteomic analysis of seminal vesicle fluid reveals that 

subordinate male mice produce proportionally more SVS2, a protein essential in 

copulatory plug formation. Despite having significantly smaller seminal vesicle 

glands, and so less total protein available, subordinate males also produce 

copulatory plugs of equivalent size to those of dominant males. Since dominant 

males produce and ejaculate more sperm than subordinates, increased investment 

in SVS2 production may help subordinate males to limit an otherwise strong 

disadvantage under sperm competition. My findings thus reveal that males invest 

differently in both sperm and seminal fluid components of the ejaculate according to 

their social status, with important implications for competitive outcomes. 

2.2 Introduction 

Ejaculates, a complex mixture of sperm and seminal fluid components, are costly to 

produce (Dewsbury 1982). Males are therefore expected to invest prudently in 

ejaculates according to their resources, opportunities and likely success in sperm 

competition (Tazzyman, Pizzari et al. 2009; Parker and Pizzari 2010). Optimal sperm 

investment strategies have been predicted extensively by sperm competition games 

models (Parker 1990; Parker, Ball et al. 1997; Parker and Pizzari 2010; Parker, 

Lessells et al. 2013) (also see Chapter 1). More recently, Cameron et al. (2007) have 

produced a total ejaculate model, offering predictions for investment in both sperm 

and seminal fluid. 

In species with a hierarchical social system, a male’s role within sperm competition is 

typically predictable. Dominant males are likely to have a competitive advantage, for 

example by mating at an optimal time relative to ovulation, placing them in a 

favoured role for achieving fertilisation success. In this case, the sperm competition 
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games model of non-random roles offers the most relevant predictions of optimal 

investment strategy (Parker 1990). The non-random roles model predicts that a male 

mating in a disfavoured role should increase sperm investment to partly compensate 

for their disadvantage in sperm competition (Parker 1990; Ball and Parker 2003). 

Unfortunately, the Cameron et al (2007) model does not offer predictions for non-

random roles. It does, however, agree with the sperm competition games model of a 

loaded raffle with regards to sperm investment; that males within the dis-favoured 

role should consistently invest more in sperm than those in the favoured role (Parker 

1990; Cameron, Day et al. 2007). The Cameron et al (2007) model of total ejaculate 

investment predicts the benefit a male can gain by investing more in their seminal 

fluid production. This could be particularly important for species that produce a 

copulatory plug from seminal fluid components. In this instance, increased 

investment in seminal fluid may lead to production of a larger plug, creating a 

competitive advantage. Plug forming seminal fluid proteins could therefore have an 

additional value of increased investment, particularly for the disfavoured male as the 

female is likely to mate again with a more dominant male.  Logically, the Cameron et 

al (2007) model predicts that males in the disfavoured role will increase energy 

expenditure on seminal products, compared to when only sperm will affect the 

degree of disadvantage, whilst maintaining a high investment in sperm. 

Empirical studies have tested some of these predictions within various species. 

Dominant males of non-mammalian species have been shown to produce or 

ejaculate fewer sperm than subordinates (Liljedal and Folstad 2003; Pizzari, 

Cornwallis et al. 2003). By contrast, studies of rodents have found subordinate males 

invest less in sperm production than dominant males (Koyama and Kamimura 2000; 

Lemaitre, Ramm et al. 2012; Schradin, Eder et al. 2012) . With regards to seminal 

fluid, the only empirical evidence to date suggests that subordinate males decrease 

their investment. The seminal vesicles, the major accessory sex glands in rodents, 

are smaller in subordinate bank voles, suggesting a lower investment in seminal fluid 

production (Lemaitre, Ramm et al. 2012). Bank voles plastically alter the size of their 

seminal vesicle glands according to the level of competition (Lemaitre, Ramm et al. 
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2010), which suggests that the seminal vesicle secretion has an important role in 

competitive mating, although there is no evidence for this within house mice (Ramm 

and Stockley 2009a). The ability of male Drosophila to plastically invest in seminal 

fluid protein production, according to the level of competition (Wigby, Sirot et al. 

2009), shows the potential for strategic investment in specific seminal proteins. 

House mice may strategically alter the proteins within their seminal vesicle 

secretion, regardless of no differences in organ mass. It is possible that males alter 

their seminal fluid proteins according to their social status. This is particularly likely 

in species that produce a copulatory plug from components of the seminal fluid. In 

these species the disfavoured males could gain a large advantage by investing more 

in the production of the copulatory plug. Here, the house mouse (Mus musculus 

domesticus) is used as a model to test this.  

The house mouse has a complex hierarchical social system in which females prefer 

dominant, territory holding males (Bronson 1979; Wolff 1985; Coopersmith and 

Lenington 1992; Mossman and Drickamer 1996; Rich and Hurst 1998). Accordingly, 

dominant males attain the most copulations (Wolff 1985) and sire the most litters 

(DeFries and McClearn 1970). However females often choose to mate with more 

than one male resulting in a moderate level of multiple paternity in natural 

populations (Dean, Ardlie et al. 2006). Subordinate males of laboratory strains 

produce fewer sperm, which are less motile, than dominant males (Koyama and 

Kamimura 1998: Koyama and Kamimura 2000, but see Bates, Maechler et al. 2014 

regarding the use of laboratory strains to study the effects of male social hierarchy). 

It is as yet unknown if house mice alter seminal fluid protein production according to 

their social status. The dominance hierarchy and moderate level of sperm 

competition of house mice make them an ideal model to test the current theory on 

overall ejaculate investment according to sperm competition roles. 

 The first part of this study measures physiological differences between dominant 

and subordinate males, as well as proteomic differences in their seminal vesicle 

secretions. The primary aim is to determine whether males will strategically alter the 
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production of specific proteins within their seminal vesicle secretion, testing the 

prediction that subordinate males may increase production of those that form the 

copulatory plug and could therefore offer a competitive advantage. Differences in 

overall investment in ejaculate production are also measured, specifically the size of 

the seminal vesicles and the number of sperm within the epididymis. The reduced 

sperm production of subordinate males may be due to physiological constraints from 

being in a state of chronic stress (Blanchard, Sakai et al. 1993). Therefore, within this 

study, faecal corticosterone is measured as a biomarker of chronic stress. 

The second part of this study aims to determine whether males have different 

ejaculate allocation strategies, according to their social status and associated level of 

expected mating success. It is predicted that males will allocate ejaculates according 

to their expected reproductive opportunities (Tazzyman, Pizzari et al. 2009). House 

mice are able to adapt their ejaculates in response to the social environment. In the 

presence of rivals, house mice strategically ejaculate fewer sperm, independent of 

differences in the size of the copulatory plug (Ramm and Stockley 2007). To test 

whether males will also ejaculate according to their social status, both the number of 

sperm within the female tract and the size of the copulatory plug are measured. 

Each male was mated with two females to test allocation across sequential 

ejaculates and sperm depletion. Male mating behaviour is also analysed, as it is 

known to vary according to competition (Preston and Stockley 2006). Combined, 

these studies test whether males will invest differently in ejaculate production 

according to their social status, and whether this corresponds with differences in 

ejaculate allocation. Quantitative proteomic analysis allows differences in individual 

ejaculate proteins to be investigated. 
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2.3 MethodsExperiment 1) Differences in the production of ejaculate components 

according to social status. 

2.3.1 Subject mice  

Male house mice (M. musculus domesticus) (N=24) were taken from third generation 

litters of an outbred colony, founded by wild mice captured from local populations in 

Cheshire. Pups from these litters were weaned at 26 days old. Subject males were 

taken when all pups had been housed in single sex sibling groups for at least 24 

hours (age: mean ± s.e. 27.63 ± 0.41 days).  

All animals were housed in wire lidded standard M3 cages with polypropylene bases 

(48cm x 15cm x 13cm: North Kent Plastics Cages ltd, Kent, UK) on Absorb 10/14 

substrate with shredded paper nest material and cardboard enrichment. Food (5002 

certified rodent diet, lab diet, St. Louis) and water were provided ad libitum. Lights 

were maintained on a reversed phase light:dark cycle of 12:12h (lights on at 20:00 

hours) so that all handling was performed during the dark phase under red lights. 

2.3.2 Forming dominance relationships 

From weaning, subject males (n=16) were housed in sibling pairs to establish 

dominance relationships. Sibling pairs were used in order to minimise the likelihood 

of aggression whilst also reflecting a natural situation, whereby littermates are yet to 

disperse. Furthermore, this creates a balanced, paired design for later statistical 

analysis. A control group (n=8) were singly housed but otherwise treated in the same 

manner as the subject males. To reduce the effect of genetic differences, males in 

the control group were taken from the same litters as the paired males. To stimulate 

normal sexual development, soiled bedding from unrelated females was added to 

each cage once per fortnight (Vandenbergh 1971). This was maintained for the 

duration of the study.  
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Figure 2.1: Brief overview of the experiment and methods for forming dominant 
subordinate pairs. 
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The study lasted for 5 weeks, at which point a dominance relationship had been 

established and all males were sexually mature. Within this time, some of the pairs 

had to be split due to signs of aggression. Small scuffles are common within group 

housed mice, after cage cleaning or temporary separation, as mice re-affirm their 

status. As male mice can become very aggressive when competing for dominance 

(DeFries and McClearn 1970), the behaviour of subject males was monitored closely. 

Pairs were split if they did not settle within the first 30 minutes of being re-

introduced to a clean cage, or if any physical marks appeared on either of the males. 

At no point during the experiment was fighting allowed to escalate and no males 

came to any physical harm, beyond small marks, before being split. Of the 8 pairs, 5 

were separated before the end of the study. To maintain the dominance 

relationship, after pairs had been split, the males’ cages were swapped around each 

day (i.e. the dominant male transferred into their subordinate sibling’s cage and vice 

versa). This ensured they would regularly encounter fresh scent marks of their 

partnered male, but did not allow the males to interact. 

2.3.3 Assessing the presence of a dominance relationship 

To assign social status, after 3 weeks of paired housing the scent marking behaviour 

of each male was tested.  Dominant males are known to deposit more scent marks 

than subordinates (Rich and Hurst 1998). Ultraviolet visualisations of scent marking 

patterns is commonly used to test social status in house mice (Desjardins, Maruniak 

et al. 1973; Drickamer 2001). Prior to testing, one male of each pair had a small 

patch of fur clipped from their hindquarters to allow individual identification. All 

other males were handled equivalently. To test scent marking behaviour, each male 

was placed individually in a cage lined with Benchkote. To stimulate scent marking, 

10µl of urine, from a pooled source of unrelated wild males, was streaked onto the 

Benchkote. After 45 minutes the mice were returned to their home cages. The 

Benchkote was scanned using a UV scanner (InGenuis EPI UV kit, Syngene, Synoptics 

Ltd, UK) coupled to a computer using GeneSys software (Syngene, Synoptics Ltd, 

UK). The number of individual marks, greater than 20 pixels in size, were counted 

using image J (Rasband 1997-2012). A consistent pattern was found within all pairs 
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throughout 3 consecutive scent mark tests, taken over 9 days (see Figure 2.2 and 

Figure 2.3). In all cases, the male that deposited the most scent marks was assumed 

to be dominant. This was consistent with my own opinions of each male’s behaviour.  

Preputial glands secrete olfactory cues into the urine of house mice and are known 

to be larger within dominant males than subordinates (Bronson and Marsden 1973; 

Barnett, Dickson et al. 1980). After dissection, differences in the weight of the 

preputial glands provided further confirmation of the established dominance 

relationships. Dominant males had significantly larger preputial glands than 

subordinates (t = 2.93, df = 7, P = 0.02). 

2.3.4 Faecal corticosterone concentration 

Corticosterone is a steroid hormone associated with the stress response in 

mammals. It is relatively easy and non-invasive to measure the levels of this 

hormone from faecal samples (Touma, Palme et al. 2004). To determine whether 

male social status lead to differences in corticosterone release, I collected faecal 

samples from each male prior to dissection and analysed their corticosterone 

concentration. I used an M3 cage base with lid and an upturned M3 cage base on 

top, to collect faeces. Subjects were placed onto the cage lid, under the upturned 

cage bottom. This allows the faecal matter to fall through the bars of the cage lid for 

collection within the lower cage. After 1 hour, each subject was removed and 

returned to their home cage. 

After collection, all droppings were frozen at -20°C prior to performing an enzyme-

linked immunosorbent assay (ELISA) to determine the concentration of 

corticosterone within the faecal matter, using a standard method (Dusek, Bartos et 

al. 2010). In order to analyse the faecal corticosterone concentration, faeces were 

defrosted and methanol was used to extract the soluble hormone from the faecal 

matter. After overnight agitation in 90% methanol, each sample was centrifuged (20 

minutes at 1800 rpm). The supernatant was removed, dried, re-suspended in 100% 

menthanol  
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Figure 2.2: Typical scent marking patterns from (a) dominant and (b) subordinate 
male house mice. To analyse scent marking behaviour, males were placed 
individually into empty cages lined with benchkote for 45 minutes. The benchkote 
was collected and scanned using a UV scanner to create these images, in which the 
deposited urine marks can be seen as dark patches or streaks. 

  

(a)  (b)  
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Figure 2.3: Boxplot of the scent mark counts following three scent mark assays for 
dominant, subordinate and singly housed control males within a) experiment 1 and 
b) experiment 2.  
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and frozen at -20°C before further analysis. For the ELISA, Nunc MaxiSorb 96 well 

plates were coated in corticosterone antibody overnight at 4°C. The following day, 

50µl of defrosted sample and 50µl of corticosterone horseradish peroxidase (CC-

HRP), was added to each well of the plate. The plate was left for 2 hours at room 

temperature in the dark before 100µl of substrate (H202, ABTS and substrate buffer) 

was added to each well. After 15 minutes a microplate reader with SkanIt software 

(Thermo) was used to read the plate at 405nm. Corticosterone concentrations were 

calculated based on the optical density of the standards values providing a 

concentration curve from which sample values could be compared. 

2.3.5 Measuring overall reproductive investment 

When the males were 2 months old they were sexually mature and a clear 

dominance relationship had been established within each pair. Reproductive organs 

were collected from each male, blind to the male’s social status, to measure 

differences in their investment in reproductive traits. Males were killed humanely 

using an overdose of halothane gas followed by cervical dislocation. Within 30 

minutes post-mortem, reproductive tissue was dissected from each male and 

epididymal sperm counts performed. The testes, preputial glands, coagulating glands 

and the right seminal vesicle glands were weighed individually and frozen whole at -

20°C. The left seminal vesicle glands were squeezed until empty and the contents 

frozen for further analysis. Epididymal sperm was isolated by macerating the right 

cauda epididymis on a plastic Petri dish in 100µl of 1% citrate solution. After 2 

minutes a further 900µl of 1% citrate was added and a pipette was used to mix the 

sperm suspension, before collection. An Improved Neubauer haemocytometer was 

then used to perform sperm counts according to standard protocols (Heineman 

2002). Briefly, 10µl of the sperm suspension was added to each side of a 

haemocytometer. This was left to settle for 15 minutes in a humid box, before 

counts were performed using a Leica DM1000 light microscope.   
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2.3.6 Tryptic digestion of seminal vesicle contents 

The seminal vesicle secretion is a highly viscous, protein rich substance. Prior to 

proteomic analysis, defrosted samples were diluted to approximately 50mg/ml with 

50mM ammonium bicarbonate solution, before using a pestle and vortexing until 

attaining a homogenous solution. A Coomassie plus protein assay was used to 

accurately measure the protein concentration of each sample. Following a standard 

protocol, 100µg of protein within a total final volume of 200µl was digested using 

trypsin. Briefly, proteins were denatured by RapiGest SF Surfactant (Waters) at 80°C 

for 5 minutes, to assist with enzymatic digestion. The disulphide bonds in the sample 

were reduced and then alkylated by incubation with Dithiothreitol (60°C 10min) 

followed by Iodoacetamide (RT 60 minutes in the dark). Trypsin (0.2mg/ml, Sigma-

Aldrich) was added and the sample incubated overnight at 37°C. After 12 hours, 1M 

hydrochloric acid and additional trypsin (0.1mg/ml) was added and left to incubate 

for a further 4 hours to ensure complete digestion. To precipitate any residual 

protein, each sample was incubated at 37°C with trifluoroacetic acid for 45min. 

These samples were centrifuged at 13500rpm and 4°C for 90 minutes and the 

supernatant decanted into low – bind Eppendorfs. The digests were centrifuged at 

13500rpm and 4°C for a further 90 minutes, and 10µl of each digest visualised using 

SDS-PAGE, to ensure complete removal of the protein.  

2.3.7 Tryptic digestion of coagulating glands 

The coagulating glands are far smaller than the seminal vesicle glands, and contain a 

small volume of fluid. To ensure a substantial quantity of protein was available for 

analysis, the glandular tissue including contents were digested and analysed. Prior to 

tryptic digest, each gland was homogenised using a minilyse (Bertin) bead disrupter. 

Briefly, individual coagulating glands were added to 2ml vials containing 0.5mm 

diameter glass beads and 50mM ammonium bicarbonate, to make an approximate 

200mg/ml dilution, according to the defrosted weight. Each sample was 

homogenised at 5000rpm for 30s, followed by 30s on ice, 10 times. Homogenised 

samples were transferred to an Eppendorf by creating a small hole in the bottom of 
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each vial, placing this over an Eppendorf and centrifuging at 5000rpm for 15 minutes 

at 4°C. To wash remaining proteins from the beads, enough 50mM ammonium 

bicarbonate to make the final dilution approximately 100mg/ml, according to the 

defrosted weight, was added to the sample vials before a second centrifuging. For 

each sample, all of the collected supernatant was vortexed and a Coomassie plus 

protein assay performed to accurately measure the protein concentration. Trypsin 

digests were then performed on 100µg of protein, within a final volume of 200µl, as 

described previously.  

2.3.8 Mass-spectrometric analysis 

Prior to HPLC-MSMS analysis, pH paper was used to ensure each sample was acidic, 

and so suitable for MS analysis. The seminal vesicle secretion samples were diluted 

300 fold with 97:3:0.1 HPLC grade water:MeOH:TFA. Such a dilution was used due to 

the low complexity and broad dynamic range of this sample, with only 8 proteins 

accounting for over 90% of the total. Investigative tests suggested 1 in 300 would be 

an optimal dilution. At this dilution the high abundance proteins do not appear to 

overload the detectors, which would result in underestimating the quantity of the 

highly abundant proteins, whilst inhibiting detection of the low abundance proteins. 

As the coagulating gland sample included tissue proteins, these samples only 

required a 1 in 2 dilution. 

The tryptic peptides were resolved, over a linear organic gradient of 3-40% buffer B 

(0.1% formic acid in acetonitrile), using a nanoACQUITY (Waters) ultra-performance 

liquid chromatography system. A 50 minute gradient was used for the relatively 

simple seminal vesicle secretion samples whereas the coagulating gland samples 

were resolved over a 90 minute gradient. The HPLC system was coupled to an 

electrospray ionisation source and an LTQ Orbitrap Velos (Thermo) mass 

spectrometer, acquiring high resolution mass data in a data-dependent manner 

(Makarov, Denisov et al. 2006). The top 20 most intense peptides in each MS scan 

were selected for fragmentation for MSMS analysis. 
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2.3.9 Label–free quantification 

Progenesis LC-MS software (NonLinear dynamics) was used to analyse the raw HPLC-

MSMS data and provide label–free relative protein abundances. This software aligns 

raw data from the HPLC-MSMS runs according to retention time and m/z values. The 

automatic alignment for each run was manually checked and re-aligned where 

necessary until confident that matching peptides had been correctly aligned. After 

all peptide ions were matched, those with charge states of +1 and >+9 were 

excluded before creating an aggregate file (.mgf) of the raw data for the peptides 

ranked 1-3 at each peak. This aggregate .mgf file was searched using a local Mascot 

server (v 2.3.01) against a protein database of reviewed UniProt Mus musculus 

entries with additional unreviewed ejaculate specific entries of proteins identified 

elsewhere (Ramm, McDonald et al. 2009). Mascot search parameters were set at 

10ppm peptide tolerance and 0.5Da MSMS tolerance, with one mis-cleave and a 

fixed cysteinyl carbamidomethylation and variable oxidation of methionine 

modification accounted for. The Mascot search results were imported back into 

Progenesis LC-MS as an .xml file and protein identifications assigned to each peptide 

peak. Proteins with at least 3 unique peptides were quantified by comparing relative 

ion intensities for each peptide within each individual sample. Data were then 

analysed as described in Section 2.3.16. 

Experiment 2) Differences in mating behaviour, copulatory plugs & ejaculates, over 2 

matings, according to social status 

2.3.10 Subject males & forming a dominance relationship 

Male house mice (M. musculus domesticus) (N=15) were taken from fifth generation 

litters of the same outbred colony as the males within experiment 1. Pups were 

weaned at 26 days old and subject males were taken when all pups had been housed 

in single sex sibling groups for at least 24 hours (age: mean ± s.e. 30.4 ± 0.21 days). 

Due to low numbers of males within the available litters it was only possible to pair 5 

sets of siblings, with a further 5 males taken from the same litters as singly housed 
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controls. Husbandry and housing were kept consistent with the previous experiment 

as this successfully resulted in the establishment of a dominance relationship within 

sibling pairs. Scent marking behaviour was tested, as in experiment 1, to ensure a 

dominance relationship had been established mature prior to beginning the mating 

trials.  

2.3.11 Subject females 

An outbred stock of 7-8 week old, sexually naïve, ICR females (N=80) was purchased 

from Harlan UK to test the mating behaviour of the subject males. ICR females were 

used as this placid strain is known to be good for breeding, making successful mating 

more likely. Further to this, using a laboratory strain reduces the genetic differences 

between the females and, being an albino strain, makes the behavioural 

observations easier. The females arrived 2 weeks before mating trials would begin, 

allowing time for them to habituate to the reversed light cycle and to ensure a 

normal oestrus cycle, stimulated by male bedding (Koyama 2004).  

One week prior to mating trials, vaginal swabs were taken from each female, over 5 

consecutive mornings, to check for normal oestrus cycling and to estimate on which 

days each female was likely to be receptive to mating (Hotchkiss and Vandenbergh 

2005). A 1µl sterile plastic swab was used to collect vaginal cells, which were 

smeared onto a glass slide with 10µl of 0.1% methylene blue and a coverslip added. 

Cells were viewed under a light microscope to determine oestrus stage (see Figure 

2.4). Oestrus testing was performed every 3 weeks during the mating trials to ensure 

females were cycling normally so that the females being paired were likely to be 

receptive.  

2.3.12 Mating trials 

After a dominance relationship had been established within the sibling pairs, mating 

behaviour was recorded to analyse differences according to social status. Each 

mating trial was performed within an enclosure (80cmx 60cmx60cm) containing a 

water bottle, food pellets and a tunnel for shelter. First, a male was released into the  
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Figure 2.4: Images of vaginal cytology, at 200x magnification, at each stage of 

oestrus. Taken from Byers et al. 2012 and used as a reference for oestrus testing. 

Cell types identified: - nucleated epithelial (white arrow), cornified epithelial (black 

arrow) and leukocytes (circle).  Stages:- a) pro-oestrus, b) oestrus, c) metoestrus and 

d) dioestrus. 

 

  

(a)  (b)  

(c)  (d)  
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enclosure to habituate for 10 minutes. A female was then placed within a perspex 

tube into the enclosure for a further 10 minutes, allowing the female to habituate 

and the mice to interact. The female was then released and the pair observed 

remotely for mating activity. Mice were observed remotely, via a CCTV feed to the 

next room, for mating activity. Each trial was also recorded to DVD using a Panasonic 

recorder (DMR-EX79) for later analysis, outlined below. 

If no mating behaviour had been observed within 30 minutes of pairing the mice, the 

female was removed and replaced with a second female. The second female was 

allowed to habituate within a handling tunnel for 10 minutes prior to being released 

with the male. A third female was tried in the same manner if no mating occurred 

within 30 minutes. If, after 30 minutes with the third female, there was no mating 

the male was placed back in his home cage to be trialled on a different day.  

House mouse mating behaviour is characterised by a series of intromissions, 

whereby a male will mount the female and perform a number of thrusts, but not 

ejaculate, before dismounting. On the final intromission a male will ejaculate, 

signified by the pair becoming immobile, often tipping over, for a prolonged period 

(between 8-20 seconds) (Estep, Lanier et al. 1975). This makes the end of the 

copulation relatively easy to determine. In this study, I watched each mating until 

ejaculation had occurred, noting the time of each intromission.  

To compare ejaculate depletion and remating rates, data was collected on two 

successive matings for each male. After a male had mated successfully the first time, 

he was paired with up to three oestrus females in the same manner, each day, until 

a second successful mating occurred.  

2.3.13 Analysis of mating behaviour 

The recorded successful mating attempts were analysed to quantify the number, 

duration and rate of thrusts and intromissions, as well as differences in each male’s 

ejaculation behaviour. A timer programme developed by a colleague (J Halstead) was 
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used to manually navigate the DVD file to each time point that an intromission had 

been recorded when watching the behaviour live. The counts and durations, for all 

mating behaviours, were measured for analysis. 

2.3.14 Collection of the ejaculate 

To compare the ejaculate allocation of each male, immediately after ejaculation the 

copulatory plugs and uterine contents were collected from the female. After 

ejaculation had occurred, the female was killed humanely, using halothane gas 

followed by cervical dislocation. Each female was weighed and measured before 

dissection of the reproductive organs. The copulatory plug was removed from the 

vagina and weighed, before storing at -20°C. The uterus, containing the rest of the 

ejaculate, was isolated from the cervix to the oviducts and placed in a plastic Petri 

dish. Incisions were made along the length of the uterine horns to assist with 

washing all of the sperm from the uterus. The uterus was placed in an Eppendorf 

and 200µl of phosphate buffered saline (PBS) solution used to rinse the Petri dish. 

The ejaculate solution was added to the Eppendorf, along with the uterus, which 

was vortexed on the lowest speed for 30 seconds to dislodge the sperm from the 

uterine horns. The supernatant was pipetted from the tissue and three further 

individual 100µl PBS washes were performed in the same manner, using low speed 

vortexing for 30 seconds to dislodge the sperm before collecting the fluid. The sperm 

washed from the uterus was therefore collected in a final volume of 500µl PBS. The 

number of sperm within the uterine wash was then counted using an improved 

neubauer haemocytometer as previously described (see Section 2.3.5). The uterine 

washes were then stored at -20°C prior to proteomic analysis. 

2.3.15 Proteomic analysis of the ejaculate 

To quantify differences in the proteins within the fluid section of the ejaculate, the 

sperm samples from the uterine washes of mated females were analysed using a 

similar methodology as described for the analysis of the seminal vesicle secretion. 

Briefly, the homogenous solution was assayed to determine the protein 
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concentration using the Coomassie plus protein assay before a trypsin digest was 

performed on 50µg protein in a final volume of 200µl. Due to a change of supplier, 

the Trypsin used here was purchased from Promega, but still used at the same 

concentration (0.2mg/ml with a 0.1mg/ml top up). The tryptic digests were diluted 

1:1 with 97:3:0.1  HPLC grade water:MeOH:TFA and then resolved over a 90 minute 

linear organic gradient using ultra performance liquid chromatography (Waters 

nanoAcquity) coupled with tandem mass spectrometry using the LTQ Orbitrap Velos 

(Thermo). 

2.3.16 Data analysis 

All data analysis was performed in R (v 3.1.0) (R-Development-Core-Team 2011). 

Data were transformed as appropriate. Alternatively, non-parametric analysis was 

used if normalisation of the data was not possible. Paired t-tests were deemed 

appropriate to compare values for the dominant and subordinate males as this 

allows for littermates being similar. When t-tests were unsuitable, GLMMs were 

used to model the data using the lmer and lm4 packages in R (Osadchuk, 

Salomacheva et al. 2010; Dean, Findlay et al. 2011). This allowed the data 

distributions to be fitted to binomial or Poisson error structures, as appropriate, as 

well as accounting for the random effect of genetic similarities between siblings. The 

influence.ME (Kolde 2013) and Outliers (Dusek and Bartos 2012) packages were also 

used to test for outliers or data values of particular influence where necessary. 

Proteomic analysis using Progenesis LC-MS provided identifications and relative 

quantifications of the proteins within the samples analysed here. As each data set 

produced was slightly different, each was processed in a slightly different manner 

prior to statistical analysis. For all data, only proteins that had been quantified based 

on 3 or more unique peptides were included for further analysis, as these provide 

the most reliable quantitative results. The proteomic analysis of coagulating glands 

quantified proteins from the whole gland, as a result a large amount of cellular 

proteins were included within the data set. To measure differences in only the 

secreted proteins, I limited analysis to only proteins that had been previously 
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identified within the coagulating gland secretion (Dean, Clark et al. 2009). 

Considering ejaculate proteins, small sample sizes limited the analysis according to 

social status, as there were too few individuals within each group, for either the first 

or second matings, to perform statistical tests. Data from matings 1 and 2 were 

therefore combined. To account for the variability of different mass spectrometry 

runs, the raw data from all runs were combined, and manually aligned, for 

Progenesis LC-MS analysis. Statistical analysis was performed on the whole data set 

and on a reduced set of proteins known to be male derived and within the ejaculate. 

The shortened set of male specific proteins included those identified by Dean et al. 

(1986; 2009) and others known to be sperm or seminal fluid specific. 

Preliminary investigations suggested that the level of technical variation would be 

lower than biological variation, and so technical replicates would not be required. 

This initial analysis was performed on seminal vesicle and epididymal protein 

samples collected from two wild male house mice. Tryptic digests and proteomic 

analysis using LC-MSMS was performed in a manner consistent with the data 

collected within this chapter. For each sample the LC-MSMS analysis was performed 

twice, in order to test technical repeatability of the mass spectrometry. Protein 

identifications were performed using MASCOT and the MASCOT scores used as an 

indicator of repeatability and abundance (Figure 2.5). Although MASCOT scores are 

based on the probability that such a protein match would have occurred by chance 

(given as -10logP of the probability, so that large scores relate to confident matches), 

and therefore do not technically relate to abundance, they generally offer a good 

indication during preliminary analyses.  Absolute quantification of proteins was not 

possible within Progenesis LC-MS, due to technological constraints. Therefore, 

analysis of the experimental data is considering relative abundances and differences 

in overall composition. To standardise across samples the label – free quantification 

data was transformed into the proportion of each protein within each sample prior 

to statistical analysis, according to Equation 2.1.  

 



62 

 

Figure 2.5: Plots of the MASCOT scores taken from preliminary analyses to 
determine technical reproducibility of LC-MSMS. Two biological samples were 
analysed using LC-MSMS twice. Each bar represents an individual replicate for one 
of the major (a) sperm or (b) seminal vesicle proteins.   
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Equation 2.1: Mathematical notation of the formula used to convert normalised 

protein abundance (Nab) to proportional protein abundance (Pab) for each protein 

(P) within each sample of n proteins. 
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Preliminary analysis of the data was performed using principle components analysis 

(PCA). PCA is a common statistical technique that simplifies data into principle 

components that explain decreasing amounts of the variance. This is an 

unsupervised approach and was not particularly effective at grouping the seminal 

vesicle protein data according to social status (Figure 2.6). However, differences in 

the protein composition of a sample are likely to be subtle and so a supervised 

approach may be more effective at finding differences according to social status. A 

supervised approach was also considered as it should mask some of the similarities 

which are due to relatedness of siblings within the treatment groups. Random forest 

(RF) analysis was tested to see how effectively this could classify the data, and 

therefore to see how well it could identify subtle differences in protein composition 

across the different groups. Initial tests showed that the RF approach was far more 

effective than PCA at grouping the data (Figure 2.6) and so, in addition to further 

reasons detailed below, was chosen as the preferred method of data analysis.  

RF, a classification tool which uses ensemble learning to analyse non-parametric, 

complex biological data sets, is becoming increasingly popular (reviewed in Qi 2012). 

RF has successfully been used to classify microarray data (DNA microarray: Statnikov, 

Wang et al. 2008, Díaz-Uriarte and Alvarez de Andres 2006, and tissue microarray: 

Shi, Seligson et al. 2005), to study single nucleotide polymorphisms (SNPs) for 

genome wide association studies (GWAS, Botta, Louppe et al. 2014, Lunetta, 

Hayward et al. 2004) and for classifying proteomics data (Izmirlian 2004).  

RF is a robust non-parametric method of data analysis suited to analysing high-

dimensional proteomics data, with a high number of predictor variables and low n 

number. It uses a random subset of data to create, and then train, an ensemble of 

classification trees. RF then uses the remaining samples, not used in the training 

stage, to test the ability of the trees to correctly classify the samples. Variable 

importance measures are then given to each predictor variable (protein abundance) 

indicating how accurately trees classify the sample when trained using that variable.  
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Figure 2.6: (a) Plot of the first three principle components from a Principle 
Components Analysis (PCA) of the Progenesis LC-MS abundance values, normalised 
within the software, for proteins within the seminal vesicle secretion. Plot (b) is a 
multi-dimensional scaling plot taken from a random forest (RF) analysis using the 
same data. 

  

Dominant 

Subordinate 

Control 

(a) 

Subordinate 

Dominant 

Single 

(b) 



66 

 

As well as being an efficient method of data classification, another benefit of using 

RF techniques is these variable importance scores that offer a reliable indication as 

to the importance of each protein for correctly classifying the data. This information 

can inform further analysis of specific proteins, which may show the greatest 

differences between samples. The Party and RandomForest packages in R were used 

to perform this analysis (Gilbert 2000; Breiman 2001; Good and Coon 2006; Strobl, 

Hothorn et al. 2009). 

When analysing compositional data, centred log ratio (CLR) transformation is 

generally recommended to account for the non-independence of data points 

(Aitchison 1986; Aitchison and J. Egozcue 2005). However, there is some debate over 

whether to transform data prior to using RF analysis (Ranganathan and Borges 

2011). Here, I performed the analysis on transformed and non-transformed data. 

There were very minor differences between these methods but the most optimal 

analyses, with the lowest classification errors, was generally for the CLR transformed 

data. Where this was not the case, results from both transformed and 

untransformed data are presented. The RF approach is, inherently, random. To 

account for this, each RF model was performed 1000 times. The classification 

accuracy and variable importance scores reported are the averages of the 1000 runs. 

To determine significance values for the classification scores of each model, a 

bootstrapping approach was used. To do this, the model was again replicated 1000 

times but for each run the classification was randomised. The results were then used 

to quantify the proportion of times the classification error was the same or better 

than that given by the original model, therefore predicting the likelihood of getting 

that classification error by chance. 
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2.4 Results 

Male physiology and ejaculate production 

2.4.1 Scent marking behaviour 

Dominant males are known to deposit more scent marks than subordinates (see 

Figure 2.2 for examples of scent mark patterns). Within each pair, scent marking 

behaviour was compared three times to confirm that a dominance relationship had 

been established. For the first study, one male within each pair consistently 

deposited significantly more scent marks in all 3 assays (dom vs. sub: test 1 v = 36, P 

= 0.008; test 2 v = 36, P = 0.008; test 3 v = 28, P = 0.022).  Within the second 

experiment, the scent marking behaviour was less consistent for one of the five pairs 

of males. By the third test a significant difference in the number of scent marks 

deposited was found within all pairs (v = 21, P = 0.031), confirming that a dominance 

relationship had been established. 

Control, singly housed males were also tested and there was no difference in the 

number of scent marks deposited between the dominant and control males. Control 

males also deposited significantly more than the subordinate within both batches of 

males (1st: v = 21, P =0.036, 2nd: v = 0, P = 0.031). See Figure 2.32 for scent mark 

counts from all males. 

2.4.2 Reproductive physiology 

There was no difference in body mass between dominant and subordinate males 

(dom vs. sub df = 7, t = 0.54, P = 0.603). Neither was there a difference in testes 

mass (dom vs. sub df = 7, t = -0.14, P = 0.90) (see Figure 2.7). Despite this, dominant 

males had significantly more sperm within their epididymides than both the 

subordinate and singly housed control males (dom vs. sub df = 7, t = 0.14, P = 0.004; 

dom vs. control df = 7, t = -2.80, P = 0.026; sub vs. control df = 7, t = 2.33, P = 0.05) 

(see Figure 2.8). This agrees with previous studies that have found clear differences 

in sperm counts between male mice, regardless of testes mass (Ramm and Stockley 
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2009a). Dominant males also had significantly larger seminal vesicles, both 

absolutely and when accounting for body mass (dom vs. sub df  = 7, t = 3.71, P = 

0.034). Differences in the total quantity of protein within the seminal vesicles could 

not be tested due to the difficulty in dissecting the entirety of the seminal vesicle  

contents. The protein concentration of the seminal vesicle secretion was measured 

and subordinate males had a higher protein concentration than dominant males 

(dom vs. sub df = 7, t = -3.96, P = 0.005).  All of the tryptic digests were performed 

on 100µg of protein, to control for these differences. See Table 2.1 for reproductive 

physiology data. 

2.4.3 Faecal corticosterone 

Overall, there was no difference between the faecal corticosterone concentrations 

of dominant and subordinate males. However, by the time the faeces had been 

collected most of the pairs (5 of 8) had been split and so these males were singly 

housed. Taking this into account within the analysis reveals a clear interaction effect. 

The subordinate males that were still housed within the same cage as their 

dominant sibling had significantly higher levels of corticosterone than their dominant 

brother (t = -2.20, P = 0.048) (see Figure 2.9).  
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Figure 2.7: Boxplots of male physiology according to social status: a) body mass, b) 
testes mass, c) epididymal mass.  
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Figure 2.8: Boxplots of male reproductive physiology in relation to male social 
status:  a) preputial gland mass, b) seminal vesicle mass and c) epididymal sperm 
count (* P < 0.05). 
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Table 2.1: Results from the analysis of male reproductive morphology according to social status. Analysis of differences between dominant and 
subordinate males was performed using a paired t-test. Comparisons of control and dominant or subordinate males were performed using a 
mixed model with “litter” included as a random factor. The results of analysis of the residual values for each organ are included, to show the 
relative differences between the size of these between males. 

 

 
      

Dominant v.  Control v. Control v.  

 
Dominant Subordinate Control Subordinate  Dominant Subordinate 

  Mean s.e. Mean s.e. Mean s.e. df t P df t P df t P 

Body mass (g) 21.81 0.98 21.24 1.09 20.74 0.77 7 0.54 0.603 15 -0.8 0.454 15 0.05 0.960 

Preputial glands (mg) 90 13 56 10 70.25 16.7 7 2.93 0.022 15 -1.9 0.085 15 1.64 0.122 

residuals ~ BM   
 

    
  

7 3.9 0.006 15 -1.7 0.114 15 2.07 0.056 

Testes (mg) 181.6 6.23 183.4 9.69 180 5.81 7 -0.1 0.896 15 -0 0.993 15 -0.3 0.754 

residuals ~ BM   
 

    
  

7 -0.5 0.652 15 0.55 0.589 15 -0.5 0.620 

Epididymides (mg) 62.75 1.64 60 2.66 58.88 1.91 7 0.87 0.415 15 -1.3 0.221 15 0.31 0.758 

residuals ~ BM   
 

    
  

7 0.84 0.430 15 -1.1 0.301 15 0.32 0.752 

Seminal vesicles (mg) 119.3 10.7 93 8.03 103 6.33 7 2.62 0.034 15 -2.4 0.003 15 1.78 0.095 

residuals ~ BM   
 

    
  

7 3.71 0.008 15 -2.9 0.011 15 2.27 0.038 

Epididymal sperm count 13.1 1.03 7.89 0.7 10 0.55 7 4.28 0.004 15 -4.6 0.000 15 3.92 0.001 
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Figure 2.9: Boxplot of faecal corticosterone concentrations for dominant and 
subordinate male pairs which were housed together or had been separated (* P < 
0.05). 
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Ejaculates and mating behaviour 

2.4.5 Copulatory plug size 

There was no effect of social status on copulatory plug size. There was also no 

difference in plug size between the first and second copulations. Copulatory plug 

size did correlate with the number of trials before mating occurred. For both the first 

and second copulations, males that took longer to mate produced larger plugs (1st 

mating: F1,9 = 21.17, P = 0.001; 2nd mating F1,9 = 6.95, P = 0.027). Further analysis of 

mating behaviour can be found in Chapter 4. 

2.4.6 Number of sperm within ejaculates 

The number of sperm within a first and second ejaculate from dominant, 

subordinate and control males was compared. Analysis of just the paired males 

showed that dominant males ejaculated significantly more sperm than subordinates 

in the first mating (t = -4.75, df = 3, P = 0.018). This was still true when data from 

both matings were combined, and mating included as a fixed effect within the model 

(t = -2.42, df = 10, P = 0.036) (see Table 2.2). As the aim of this experiment was to 

compare the number of sperm ejaculated by dominant and subordinate males, it is 

reasonable that this was analysed separately. When control males were also 

included in the model there was no effect of social status. This may be due to the 

much broader range of values within the control group masking the effect (see 

Figure 2.10). The broad range of values seen within the control males encompasses 

those of the dominant and subordinate males. This may therefore be a result of 

natural variation in the dominance of singly housed male mice. When considering all 

males, the number of ejaculated sperm correlated with the number of trials before 

the second, but not the first, copulation occurred (1st mating: F1,12 = 0.49, P = 0.498; 

2nd mating F1,9 = 6.71, P = 0.029). Further analysis of mating behaviour can be found 

in Chapter 4. 
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Figure 2.10: Boxplots of a) The number of ejaculated sperm and b) the copulatory 
plug mass from the first and second matings of dominant, subordinate and control 
males. 

 

  

Mating 1 Mating 2 

a)  

Mating 1 Mating 2 

b)  



75 

 

2.4.7 Mating behaviour 

The mating duration, measured as the time between the first intromission and 

ejaculation, was significantly longer for dominant males (t = -2.86, df = 18, P = 0.01). 

For all males, the duration of the second mating tended to be shorter than the first (t 

= -2.04, df = 17, P = 0.057) (see Figure 2.11). The range of mating durations observed 

was unexpected. One dominant male mated for 4.5 hours, whereas two of the 

subordinate males ejaculated during their first intromission. Prior to analysis, data 

was log transformed to account for this variation. Both dominant and control males 

performed more intromissions and more thrusts per copulation than subordinate 

males (see Table 2.2). However there was no difference in the number of thrusts per 

intromission, the proportion of the copulation spent intromitting or the duration of 

the ejaculation. 

Each male was trialled with up to three females per session, until a successful mating 

occurred (see Section 2.3.5). There was a significant interaction effect of social status 

and mating on how many trials it took before copulation. Dominant males took 

fewer trials to mate the first time, but a greater number of trials before the second 

mating, than the subordinate and control males (see Figure 2.12). 

2.4.8 Consecutive matings: Ejaculate allocation and mating behaviour 

Analysing the males of each status individually showed that dominant males took a 

greater number of trials before the second mating than the first (df = 3, t = -4.64, P = 

0.019).  For each male type, dominant, subordinate, and control, there was no 

difference in the copulatory plug mass, the number of ejaculated sperm, the number 

of intromissions or the mating duration between the first and second matings (see 

Table 2.3)  
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Figure 2.11: Boxplots of the a) mating duration, from first intromission to 
ejaculation, and b) number of intromissions performed within the first and second 
matings of dominant, subordinate and control males. 
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Figure 2.12: Boxplot of the number of females a male was tried with prior to a 
successful first or second mating of dominant, subordinate and control males. 
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Table 2.2: Results from the analysis of ejaculate size and mating behaviour within 
male house mice according to their social status. Results presented are from mixed 
effect models incorporating litter as a random effect. * modelled using a GLMM 
with family = Poisson to account for count data. 

 

 

 

  
Dominant v. Subordinate 

  
df t/z P 

Ejaculated sperm         

Mating 1 Status effect 3 -4.76 0.018 

Both matings 
Status effect 10 -2.42 0.036 

Mating effect 10 -1.38 0.2 

     Plug size 
    

Both matings 
Status effect 17 0.32 0.75 

Mating effect 17 -0.62 0.54 

     Mating duration 
    Mating 1 Status effect 7 -2.46 0.044 

Both matings 
Status effect 17 -3.06 0.007 

Mating effect 17 -2.04 0.057 

     Number of females tried* 
    Mating 1 Status effect 

 
1.77 0.076 

Both matings 

Status effect 
 

1.66 0.097 

Mating effect 
 

5.39 <0.001 

Interaction 
 

-3.06 0.002 

Number of intromissions* 
    Mating 1 Status effect 

 
-10.14 <0.001 

Both matings 

Status effect 
 

-4.23 <0.001 

Mating effect 
 

6.7 <0.001 

Interaction 
 

-4.16 <0.001 
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Table 2.3: Results from the analysis of ejaculate size and mating behaviour 
comparing the first and second matings of dominant, subordinate and control mice. 
The results presented are from paired t-tests, accounting for the repeated 
measures. 

 

 

 

 

 
Mating 1 vs Mating 2 

   df t/z P 

Ejaculated 
sperm 

Dominant 3 0.25 0.82 

Subordinate 3 0.084 0.94 
 Control 2 0.96 0.44 

Plug size 

     Dominant 3 -0.04 0.97 
 Subordinate 3 0.36 0.74 
 Control 2 1.84 0.21 

Mating 
duration     Dominant 3 1.38 0.26 

Subordinate 3 0.88 0.44 
 Control 2 1.47 0.28 

Number of 
Intromissions     Dominant 3 -0.01 0.99 

Subordinate 3 -0.02 0.99 
 Control 2 1.71 0.23 

Number of 
females tried     Dominant 3 -4.64 0.019 

Subordinate 3 -1.07 0.36 
 Control 2 -1.73 0.23 
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Figure 2.13: Relationship between the number of females a male was trialled with 
prior to successfully mating and the number of sperm ejaculated in the a) first and 
b) second mating. 
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Figure 2.14: Relationship between the number of females a male was trialled with 
prior to successfully mating and the size of the copulatory plug produced in the a) 
first and b) second mating. 
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Proteomic analysis of seminal protein production 

2.4.9 Seminal vesicle protein production 

Differences in the relative proportions of 58 proteins within the seminal vesicle 

secretion were analysed using random forest (RF) methods. RF analysis classified the 

untransformed data, according to social status, slightly better than the transformed 

data (untransformed: 83.32% correct, CLR transformed 78.63% correct). This 

prediction accuracy was unlikely to be achieved by chance (bootstrapping analysis of 

1000 replicates, untransformed: P < 0.001, CLR: P = 0.001). Although the overall 

accuracy was slightly better using the untransformed data, the CLR model more 

accurately classified dominant and subordinate males (see Table 2.5) and so variable 

importance results from both models are presented (see Table 2.6 and Table 2.7). 

RF analysis of untransformed proteomic data from the seminal vesicle secretions 

found a total of 12 proteins had significant variable importance scores and were 

therefore important for classifying the data correctly according to social status. 

Within the CLR transformed model, 16 proteins had significant variable importance 

scores. Of the proteins with significant variable importance scores, 7 were significant 

within both models. One of this 7 was the highly abundant protein SVS2. Further 

analysis revealed that SVS2 accounted for a significantly larger proportion of the 

subordinate males’ seminal vesicle contents than the dominants (t = -3.24, df = 7, P = 

0.014) (see Figure 2.15, Figure 2.16 and Figure 2.17).  

2.4.10 Coagulating glands 

A total of 868 proteins were identified within the coagulating gland samples, of 

which 77 were also found within the Dean et al. (2009) analysis of the coagulating 

gland secretion. The shortened list of 77 proteins known to be secreted was used for 

further analysis. RF analysis accurately classified the data with respect to social 

status 94% of the time (22 out of 24 correct, bootstrapping analysis of 1000 

replicates: P < 0.001). Five proteins had significant variable importance scores (see 

Table 2.8). The most abundant of these, SVS3, is a component of the copulatory plug 
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primarily secreted by the seminal vesicle gland. The coagulating gland secretions of 

subordinate males contained a significantly smaller proportion of SVS3 than found 

within the coagulating glands of dominant males (df = 7, t = -3.46, P = 0.002), or 

control males (df = 7, t = -3.83, P = 0.001) (see Figure 2.18). 
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Figure 2.15: (a) Progenesis LC-MS abundances (normalised within the software) and 
(b) Proportional abundances of the major seminal vesicle proteins within the 
seminal vesicle secretions of dominant, subordinate and control males. Bars 
represent mean ± sem. 

 

  
(a) 

(b) 
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Figure 2.16: Plots of the Progenesis LC-MS abundances of four major seminal 
vesicle secretory (SVS) proteins within dominant, subordinate and control male 
seminal vesicle secretions. Each grey point represents the value for one individual. 
The black circles and lines represent the mean values. 
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Table 2.4: Results of paired t.tests on the major seminal vesicle secretory (SVS) 
proteins comparing the normalised Progenesis LC-MS abundance data from 
dominant and subordinate male seminal vesicle secretion samples. 
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Table 2.5: Table of prediction accuracy scores from random forest analysis of 

proteomic data. Scores are based on the number of samples correctly classified 

following 1000 iterations of each random forest model. 

 

 

Sample Dom Sub Control Overall 

SV secretion - CLR 87.4% 97.3% 51.2% 78.6% 

SV secretion -not CLR 68.9% 100% 81.1% 83.3% 

Coagulating glands – all proteins 99.2% 87.5% 100% 95.6% 

Coagulating glands – 77 proteins 95.9% 87.5% 98.6% 94.0% 

Ejaculate  85.4% 99.9% 57.2% 97.7% 

 
    

According to mating 1st 2nd  
  

Ejaculate 96.0% 99.9% 
 

97.7% 
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Table 2.6: Table of variable importance scores (Vimp) for proteins significantly 
important, having a Vimp higher than the absolute lowest value, in classifying the 
samples correctly, according to social status, following random forest analysis of 
CLR transformed proteomic data from the seminal vesicle secretion. Each score is a 
mean of 1000 iterations of the random forest model. Accession numbers marked 
with an * indicate proteins important within this and the non-transformed model. 

 

 

Accession Protein name 
Mean 

abundance (%) 

Vimp 

(x100) 
95% CI 

Q06890* Clusterin 0.011 1.244 1.23 - 1.26 

Q8R2E9* ERO1-like protein beta 0.019 0.733 0.72 - 0.74 

Q9Z0J0* 
Epididymal secretory 

protein E1 
0.003 0.692 0.68 - 0.70 

Q62216* SVS2 25.86 0.459 0.45 - 0.47 

Q05186* Reticulocalbin-1 0.003 0.437 0.43 - 0.45 

P58252* Elongation factor 2 0.025 0.418 0.41 - 0.43 

Q920F6 
Structural maintenance of 

chromosomes protein 1B 
0.975 0.393 0.39 - 0.40 

P30933 SVS5 9.389 0.318 0.31 - 0.33 

P09411 Phosphoglycerate kinase 1 0.058 0.251 0.24 - 0.26 

P81117 Nucleobindin 0.213 0.190 0.18 - 0.20 

Q6WIZ7 SVS1 11.829 0.180 0.17 - 0.19 

Q8VI13 SVS3 5.523 0.163 0.16 - 0.17 

P10126 Elongation factor 1-alpha 1 0.003 0.156 0.15 - 0.16 

Q6ZWY9* Histone H2B type 1-C/E/G 0.002 0.151 0.15 - 0.17 

Q8C0D4 
Rho GTPase-activating 

protein 12 
0.018 0.107 0.10 - 0.11 

Q64356 SVS6 10.607 0.096 0.09 - 0.10 
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Table 2.7: Table of variable importance scores (Vimp) for proteins significantly 
important, having a Vimp higher than the absolute lowest value, in classifying the 
samples correctly, according to social status, following random forest analysis of 
relative quantitative proteomic data from the seminal vesicle secretion. Each score 
is a mean of 1000 iterations of the random forest model. Accession numbers 
marked with an * indicate proteins important within this and the CLR-transformed 
model. 

 

 

Accession Protein name 
Mean 

abundance (%) 

Vimp 

(x100) 
95% CI 

P58252* Elongation factor 2 0.025 0.853 0.84 - 0.86 

Q9Z0J0* 
Epididymal secretory 

protein E1 
0.003 0.639 0.63 - 0.65 

Q06890* Clusterin 0.011 0.515 0.51 - 0.52 

P24369 
Peptidyl-prolyl cis-trans 

isomerase B 
0.004 0.438 0.43 - 0.45 

P05213  Tubulin alpha-1B chain 0.724 0.307 0.30 - 0.31 

Q09098 
Prostate and testis 

expressed protein 4 
0.977 0.259 0.25 - 0.27 

Q62216* SVS2 25.86 0.180 0.17 - 0.19 

Q8R2E9* ERO1-like protein beta 0.019 0.160 0.15 - 0.17 

Q8BND5 Sulfhydryl oxidase 1 0.326 0.156 0.15 - 0.16 

Q8CEK3 
Serine protease inhibitor 

kazal-like protein 
2.06 0.148 0.14 - 0.15 

Q6ZWY9* Histone H2B type 1-C/E/G 0.002 0.144 0.14 - 0.15 

Q05186* Reticulocalbin-1 0.003 0.140 0.13 - 0.15 
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Figure 2.17: Boxplot of the centred log ratio (CLR) transformed proportional 
abundance of SVS2 within seminal vesicle protein secretions of dominant, 
subordinate and control males. 
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Table 2.8: Table of variable importance scores (Vimp) for proteins significantly 
important in classifying the samples correctly, according to social status, following 
random forest analysis of the reduced set of 77 proteins quantified using proteomic 
analysis of the coagulating glands. Each score is a mean of 1000 iterations of the 
random forest model. 

 

 

 

Accession Protein name 
Mean 

abundance (%) 

Vimp 

(x100) 
95% CI 

Q8VI13 SVS3 0.125 0.614 0.60 - 0.62 

P06151 L-lactate dehydrogenase A 0.887 0.477 0.47 - 0.49 

Q9CZS1 Aldehyde dehydrogenase X 0.0002 0.431 0.42 - 0.44 

P01887 Beta-2-Microglobulin 0.041 0.218 0.21 - 0.22 

P17156 Hspa2 0.014 0.218 0.21 - 0.23 
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Figure 2.18: Boxplot of the centered log ratio (CLR) transformed proportional 
abundance of SVS3 within coagulating gland protein secretions of dominant, 
subordinate and control males. 
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Proteomic analysis of ejaculates 

2.4.11 According to social status 

Analysis of ejaculate proteins according to social status was limited by the small 

number of individuals within each group. To account for this, the data from both the 

first and second matings were pooled as described within Section 2.3.16. Differences 

between the first and second ejaculates could therefore be masking some of the 

effect of social status. A total of 682 proteins were identified, 59 of which could be 

confidently considered male specific after cross referencing with other studies 

(Huck, Lisk et al. 1986; Dean, Clark et al. 2009) and previous work. RF analysis of just 

the 59 proteins only classified the data correctly, with respect to social status, 43.2% 

of the time (10 out of 25 correct, bootstrapping analysis of 1000 replicates: P = 0.36). 

Analysis of all 682 proteins had a prediction accuracy of 82.7% (20 out of 25 correct, 

bootstrapping analysis of 1000 replicates: P < 0.001). From the analysis of the full 

data set, there were 21 proteins that had significant variable importance scores (see 

Table 2.9 and Figure 2.20). Most of these were very low abundance proteins, limiting 

the confidence of further analysis as this could be due to slight differences in the 

mass spectrometry analysis of the samples from the first and second matings, as 

these were performed at different times. The proportions of the most abundant 

ejaculate proteins, grouped according to social status, are shown in Figure 2.19.  

2.4.12 According to first / second mating 

Following RF analysis, prediction accuracy for classifying the first compared to 

second ejaculates was better when using the reduced data set of 59 male specific 

proteins (97.7% correct for 682 proteins, compared to 100% correct when using 59 

proteins, bootstrapping analysis of 1000 replicates: P < 0.001 for both). As using the 

reduced data set also removes the proteins derived from the female, this is the 

analysis presented here. In total, 20 proteins had significant variable importance 

scores (see Table 2.10). Of these, SVS4 and PATE4 (also known as SVS7) were 

relatively abundant and found in significantly greater proportions within the second 
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mating (SVS4: t = 2.75, df = 21, P = 0.012, PATE4: t = 5.16, df = 21, P < 0.001) see 

Figure 2.20 and Table 2.11. Care should be taken when interpreting the results of 

data that has been pooled from separate mass spectrometry analyses. This is 

discussed within Section 2.5.3. 
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Figure 2.19: Proportions of the most abundant proteins within the ejaculate 

according to social status. Serum albumin, which accounts for approximately 30% of 

all ejaculate proteins identified, is excluded. Bars represent mean ± sem. 

 

Accession Protein name 

Q8CEK3 Serine Protease Inhibitor Kazel-like 

P70412 CUZD1 

Q8BZH1 TGM4 

P01027  Complement C3 

P09036 SPINK3 

P18419 SVS4 

Q8BND5 Sulfhydryl oxidase 1 

Q03401 CRISP1 

P00342 L-Lactate dehydrogenase C 

Q60662 A-Kinase Anchor Protein 4 

O08709 Peroxiredoxin-6 

Q61999 Outer dense fiber protein 1 

A3KGV1 Outer dense fiber protein 2 

Q09098 PATE4 
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Table 2.9: Table of variable importance scores (Vimp) for proteins significantly 
important in classifying the samples correctly, according to social status, following 
random forest analysis of relative quantitative proteomic data for the 682 ejaculate 
proteins identified. Each score is a mean of 1000 iterations of the random forest 
model. 

Accession Protein description 
Mean 

abundance% 

Vimp 

(x100) 
95 %CI 

P57780 Alpha-actinin-4 0.0062% 0.082 0.079 - 0.085 

O54782 
Epididymis-specific alpha-

mannosidase 
0.0038% 0.056 0.054 - 0.059 

Q62000 Mimecan 0.0083% 0.054 0.052 - 0.057 

Q9DBJ1  Phosphoglycerate mutase 1 0.0187% 0.049 0.046 - 0.052 

Q99JY9 Actin-related protein 3 0.0295% 0.047 0.044 - 0.050 

Q91XA2 Golgi membrane protein 1 0.0036% 0.045 0.042 - 0.047 

P09103 Protein disulfide-isomerase 0.0045% 0.042 0.040 - 0.045 

Q8BH61 Coagulation factor XIII A chain 0.0041% 0.040 0.037 - 0.042 

O70251 Elongation factor 1-beta 0.0086% 0.038 0.036 - 0.040 

P47753 
F-actin-capping protein 

subunit alpha-1 
0.0013% 0.033 0.031 - 0.035 

P10107 Annexin A1 0.0625% 0.033 0.030 - 0.035 

Q9Z183 
Protein-arginine deiminase 

type-4 
0.0032% 0.033 0.030 - 0.035 

Q9Z1Q5 
 Chloride intracellular channel 

protein 1 
0.0062% 0.030 0.028 - 0.031 

P06869 
Urokinase-type plasminogen 

activator 
0.0215% 0.029 0.027 - 0.032 

A2BE28 Protein LAS1 homolog 0.5373% 0.026 0.024 - 0.028 

Q6PDI5 
Proteasome-associated 

protein ECM29 homolog 
0.0103% 0.025 0.023 - 0.027 

Q08879 Fibulin-1 0.0085% 0.024 0.022 - 0.027 

P20918 Plasminogen 0.0153% 0.024 0.022 - 0.026 

Q63836  Selenium-binding protein 2 0.0100% 0.023 0.021 - 0.026 

Q99JI6 Ras-related protein Rap-1b 0.0424% 0.023 0.021 - 0.025 

Q8BG05 
Heterogeneous nuclear 

ribonucleoprotein A3  
0.0067% 0.023 0.021 - 0.025 
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Table 2.10: Table of variable importance scores (Vimp) for proteins significantly 
important in classifying the samples correctly, according to first or second mating, 
following random forest analysis of relative quantitative proteomic data for the 
reduced set of 59 ejaculate proteins. Each score is a mean of 1000 iterations of the 
random forest model. 

 

Accession Description 
Mean 

abundance (%) 

Vimp 

(x100) 
95% CI 

Q3UN54 
Secreted seminal-vesicle Ly-6 protein 

1 
0.15% 3.664 3.64 - 3.69 

Q6NY15 Testis-specific gene 10 protein 0.01% 2.559 2.54 - 2.58 

Q09098 PATE4 1.02% 2.419 2.40 - 2.44 

P15265 
Sperm mitochondrial-associated 

cysteine-rich protein 
0.22% 2.316 2.30 - 2.34 

P08228 Superoxide dismutase [Cu-Zn] 0.13% 2.182 2.16 - 2.20 

P45700 
Mannosyl-oligosaccharide 1,2-alpha-

mannosidase IA 
0.04% 1.606 1.59 - 1.62 

P06869 Urokinase-type plasminogen activator 0.04% 1.526 1.51 - 1.54 

Q60736 
Zona pellucida sperm-binding protein 

3 receptor 
0.13% 1.080 1.07 - 1.09 

Q62522 Zona pellucida-binding protein 1 0.06% 0.983 0.97 - 1.00 

P35487 

Pyruvate dehydrogenase E1 

component subunit alpha, testis-

specific form, mitochondrial 

0.19% 0.871 0.86 - 0.88 

C4P6S0 
Sperm head and tail associated 

protein 
0.03% 0.770 0.76 - 0.78 

Q03401 Cysteine-rich secretory protein 1 1.51% 0.713 0.70 - 0.72 

P18419 SVS4 3.82% 0.328 0.32 - 0.34 

Q62216 SVS2 0.07% 0.310 0.30 - 0.34 

P35700 Peroxiredoxin-1 0.14% 0.259 0.25 - 0.27 

P30933 SVS5 0.08% 0.255 0.25 - 0.26 

O08976 Probasin 0.03% 0.250 0.24 - 0.26 

Q9DA48 
Sperm acrosome membrane-

associated protein 1 
0.03% 0.172 0.17 - 0.17 

Q9Z0J0 Epididymal secretory protein E1 0.33% 0.165 0.16 - 0.17 

P00015 Cytochrome c, testis-specific 0.02% 0.076 0.07 - 0.08 
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Figure 2.20: Plot of CLR transformed abundances of proteins with significant 
variable importance scores following random forest analysis predicting 1st or 2nd 
mating. The data for dominant, subordinate and control males has been pooled 
here as there were no identifiable differences between these groups. Proteins are 
presented in order of the difference between 1st and 2nd mating (biggest increase 
– biggest decrease). Proteins to the left of the plot proportionally increased in 2nd 
mating, proteins to the right proportionally decreased. Circles represent mean ± 
sem. 
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Table 2.11: The proportional abundance of proteins deemed significantly important 
to classifying the data correctly, according to first or second mating, following 
random forest analysis. 

 

Accession Description M1 M2 M1-M2 

P18419 SVS4 2.98% 4.88% -1.90% 

Q09098 PATE4 0.74% 1.37% -0.63% 

P15265 
Sperm mitochondrial-associated cysteine-rich 

protein 
0.09% 0.38% -0.30% 

Q3UN54 Secreted seminal-vesicle Ly-6 protein 1 0.07% 0.25% -0.18% 

P35487 
Pyruvate dehydrogenase E1 component subunit 

alpha, testis-specific form, mitochondrial 
0.16% 0.23% -0.07% 

Q9Z0J0 Epididymal secretory protein E1 0.32% 0.35% -0.03% 

P30933 SVS5 0.07% 0.09% -0.02% 

O08976 Probasin 0.03% 0.03% -0.01% 

P00015 Cytochrome c, testis-specific 0.01% 0.02% -0.01% 

Q6NY15 Testis-specific gene 10 protein 0.01% 0.00% 0.01% 

Q9DA48 
Sperm acrosome membrane-associated protein 

1 
0.03% 0.02% 0.01% 

P45700 
Mannosyl-oligosaccharide 1,2-alpha-

mannosidase IA 
0.05% 0.03% 0.01% 

C4P6S0 Sperm head and tail associated protein 0.04% 0.02% 0.02% 

P06869 Urokinase-type plasminogen activator 0.05% 0.03% 0.02% 

Q62522 Zona pellucida-binding protein 1 0.07% 0.05% 0.02% 

Q62216 SVS2 0.08% 0.05% 0.03% 

Q60736 Zona pellucida sperm-binding protein 3 receptor 0.15% 0.09% 0.07% 

P35700 Peroxiredoxin-1 0.18% 0.10% 0.08% 

P08228 Superoxide dismutase [Cu-Zn] 0.16% 0.09% 0.08% 

Q03401 Cysteine-rich secretory protein 1 1.91% 1.00% 0.91% 
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2.5 Discussion 

This study shows that males alter their ejaculate investment decisions according to 

their social status. Previous studies have tended to focus on differential investment 

in sperm (Koyama and Kamimura 1998; 2000; Liljedal and Folstad 2003; Pizzari, 

Cornwallis et al. 2003; Montrose, Harris et al. 2008; Lemaitre, Ramm et al. 2012). 

Studies of rodent species, however, did not support predictions of sperm 

competition theory; that disadvantaged subordinate males should compensate by 

increasing investment in sperm production (Parker 1990). Here, investment in the 

entire ejaculate, as well as mating behaviour, was tested. Proteomics analysis 

uncovers that male house mice can plastically alter the composition of their seminal 

vesicle secretion. This supports more recent theory that considers the importance of 

seminal fluid components as well as sperm (Cameron, Day et al. 2007). This theory 

predicts that for species in which seminal fluid components can greatly affect 

fertility, such as those that produce a copulatory plug, males within a disfavoured 

role may gain a greater advantage through increasing their seminal fluid output. The 

results presented here support this, as subordinate males produce proportionally 

more SVS2, a major component of the copulatory plug. Subordinate males are 

disadvantaged by having significantly smaller seminal vesicle glands than the 

dominant males, yet despite this produce an equivalently sized copulatory plug. 

Combining analysis of ejaculate production with mating behaviour and ejaculates 

gives a comprehensive picture of male reproductive investment for a species in 

which seminal fluid can have a large impact on fertility. 

2.5.1 Ejaculate investment varies according to social status 

The major novel finding of this study is that male house mice can plastically alter the 

composition of their seminal fluid. Subordinate males are shown to produce 

proportionally more SVS2 within their seminal vesicle glands. SVS2 is a major 

component of the copulatory plug, being readily cross-linked by transglutaminase 

(Williams-Ashman 1984; Huck, Lisk et al. 1986; Clark and Galef 1998). Further, SVS2 

impacts fertilisation success by acting as a decapacitation factor and improving 
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sperm survival in the uterus (Kawano and Yoshida 2007; Montrose, Harris et al. 

2008). Previous studies have shown rapid divergence of SVS2 within rodents (Ramm, 

Oliver et al. 2008; Dean, Clark et al. 2009; Ramm, McDonald et al. 2009), and it’s 

homologue semenoclotin within primates (Gandelman, Vom Saal et al. 1977). This 

protein is therefore likely to be highly important for improving fertility, particularly 

within competitive matings. 

An additional finding from proteomic analysis of the accessory sex glands was the 

increased proportion of SVS3 found within the coagulating glands of dominant mice. 

SVS3 is another component of the copulatory plug, primarily produced by the 

seminal vesicle glands (Lin, Luo et al. 2002). As SVS3 only accounts for a small 

proportion of the coagulating gland secretion (≈0.1%), this is less likely to be 

functionally significant than the differences found for SVS2. Regardless, the 

classification accuracy given by the RF analysis supports that there are significant 

differences between the coagulating gland secretions of males depending on their 

social status. When also considering that the males within the dominant and 

subordinate pairs are siblings, these findings are not just due to genetic variation but 

instead are a response to differences in their social status.  

Experiment 1 also measured differences in the overall physiology of males of 

differing social status. Subordinate males had smaller seminal vesicle glands and 

produced fewer sperm, therefore showing a lowered overall reproductive 

investment in ejaculates. The decreased investment in sperm production agrees with 

previous studies in laboratory strains of house mice (Koyama and Kamimura 1998; 

2000). There is also evidence from a different rodent species, the bank vole, that 

dominant males have larger seminal vesicle glands (Lemaitre, Ramm et al. 2012). 

Here, considering the seminal vesicle secretion in addition to the overall gland size, I 

found that subordinate males’ seminal vesicle secretion has a higher protein 

concentration. This does not suggest that subordinate males produce an equivalent 

total amount of seminal proteins, however it is possible that differences in the 
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weight of the seminal vesicles may not entirely represent differential investment in 

seminal protein production.  

Despite the difference in seminal vesicle size of dominant and subordinate males, 

there was no difference in the size of the copulatory plugs they produce, in either 

the first or second matings. It is possible that the observed differences in the 

composition of the seminal vesicle secretion enable the subordinate males to 

produce a plug equivalent to the dominant males; unfortunately this could not be 

tested directly here. Although there were no differences in copulatory plug size, 

dominant males ejaculated more sperm than subordinate males. This was also found 

previously in the bank vole, as subordinate males ejaculated fewer sperm and there 

was no difference in the size of the copulatory plug (Lemaitre, Ramm et al. 2012). 

Dominant males needed fewer trials prior to their first successful copulation, but 

more trials in between ejaculations. The size of the copulatory plug correlated with 

the number of trials before a male would successfully mate, for both the first and 

second copulations. In contrast, the number of sperm within the ejaculate was only 

correlated with the number of trials prior to the second mating. Dominant males 

may have taken longer in between ejaculations in order to replenish their sperm 

reserves, as sperm take longer to produce than the seminal fluid proteins (Claydon, 

Ramm et al. 2012). The extended break between copulations may also be due to 

differences in the mating behaviour of dominant and subordinate males. 

Although there was no difference in the pattern of behaviour within each copulation, 

such as intromission rate and ejaculate duration, dominant males mated for 

significantly longer and performed more intromissions and thrusts. Male house mice 

are known to adapt their mating duration according to the level of local competition 

(Preston and Stockley 2006). Males mating in the presence of rivals ejaculate sooner 

than those with no competition. Subordinate males may be ejaculating more rapidly 

to avoid being cuckolded by a dominant male. Dominant male golden hamsters 

continue to copulate with long intromissions even after their sperm stores have 

depleted (Huck, Lisk et al. 1986). A long mating could act as a form of mate guarding. 
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Here, the dominant male could have been employing this approach. A longer mating 

duration and more thrusts correlates with a greater number of ejaculated sperm 

(see Chapter 4). An increased number of thrusts may function to stimulate males to 

release more sperm. However, it is also possible that males with higher status also 

have greater sperm reserves and are able to monopolise the female for longer. 

Regardless, it is clear that dominant males invest a greater amount in each mating 

than the subordinate males, which may account for their reluctance to remate. 

Combined, this analysis of mating behaviour, ejaculate production and allocation, 

supports current, relevant theory (Cameron, Day et al. 2007). There is an extreme 

bias in fertilisation success rates of dominant and subordinate house mice, with 

dominant males siring around 90% of offspring in a semi-natural environment 

(DeFries and McClearn 1970). Current theory predicts that in this instance, with a 

large level of bias, subordinate males should invest less overall in their ejaculate 

production (Cameron, Day et al. 2007). Of the energy invested in ejaculate 

production, sperm competition models predict subordinate males should allocate 

most of this towards sperm production, in order to compensate for their disfavoured 

role (Parker 1990; Cameron, Day et al. 2007). There is growing evidence, however, 

that this is not true within rodent systems (Koyama and Kamimura 1998; 2000; 

Lemaitre, Ramm et al. 2012). In house mice, components of the seminal fluid 

produce the copulatory plug. The presence of a plug can have a large impact on 

fertility (Dean 2013). Therefore, within this system, a male can gain a greater 

advantage in increasing investment in seminal fluid production than producing more 

sperm. Current theory also accounts for differential investment being predicted by 

the degree with which a male can gain from increased investment. The results here 

are both in agreement with theory (Cameron, Day et al. 2007), and previous 

empirical studies (Lemaitre, Ramm et al. 2012). Differences in the composition of the 

seminal vesicle secretion highlight that comparing gross production measures, such 

as gland size, may mask differences in the relative production of specific proteins 

that could have functional significance to a male’s fertilisation success.  
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Overall, these results show that dominant and subordinate males exhibit distinct 

reproductive phenotypes. Dominant males have a greater overall investment in 

ejaculates, producing more sperm, more seminal fluid and mating for a longer 

duration. However, subordinate males may gain a greater advantage through 

investing in copulatory plug formation than increasing sperm production. Producing 

a greater proportion of SVS2 may enable subordinate males to produce a large 

copulatory plug, despite differences in seminal vesicle mass.  

2.5.2 Potential for plasticity in social status 

Differences in sperm production were found, despite no difference in testes mass. 

This has been found previously when house mice plastically increase their sperm 

production due to an elevated risk of sperm competition (Ramm and Stockley 

2009a). Subordinate male house mice could have the opportunity to be a dominant, 

territory holding male in the future and maintaining testes mass may allow males to 

rapidly increase sperm production when required. 

It has been suggested that subordination stress physiologically inhibits sperm 

production in rodents (Blanchard, Sakai et al. 1993). This was not tested here, as 

understanding the physiological mechanisms of differential investment was not the 

primary aim of the study. However, corticosterone levels are commonly measured as 

a biomarker of stress as they can be tested non-invasively (Touma, Palme et al. 

2004). Corticosterone is a mammalian stress hormone, generally found to be 

increased in subordinate male house mice (Louch and Higginbotham 1967; Ely and 

Henry 1978; Keeney, Jessop et al. 2006) but see (Koyama and Kamimura 1998). 

Here, I found that subordinate males still housed with their dominant sibling had 

highly elevated faecal corticosterone levels. If stress is the main cause of supressed 

reproductive investment, the physiological indicator of chronic stress is rapidly 

reduced to normal levels after males are separated. Despite this, behaviour and 

reproductive investment of males varied according to social status. These results 

show that co-housing of male siblings is stressful for the subordinate male. 

Separation reduces this stress, however this does not lead to a rapid change in 
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reproductive investment of either dominant or subordinate males to a level akin to 

being a single male. 

2.5.3 The use of proteomics analysis 

Using emerging proteomics techniques has allowed novel questions to be answered 

within this study. As this was a new application of this technology there were 

inevitably some methodological challenges. Some caution should be taken when 

interpreting the results from the ejaculate data. There were too few samples 

available to look for differences according to social status within ejaculates from 

each males’ first or second mating. As a result, data from the first and second 

ejaculates had to be pooled. These samples had been digested and analysed using 

mass spectrometry separately. The acquisition of MS data is, to some extent, subject 

to random variation in the detection of peptide ions (Good and Coon 2006). 

Progenesis LC-MS software can account for this variation between samples that have 

been analysed within a close time frame. However, it is unknown how effective this 

method is at accounting for samples digested and analysed separately. Regardless, 

there were considerable differences between the first and second mating, which are 

unlikely to be accounted for by technical variation alone. Furthermore, the proteins 

that show the greatest difference are SVS4 and PATE4 (SVS7).  These proteins are 

produced within the seminal vesicle glands, which show a rapid rate of protein 

turnover (Claydon, Ramm et al. 2012). It could be expected that seminal vesicle 

derived proteins, which are produced rapidly, would be found in higher proportion 

within the second ejaculate. See Chapter 4 for further analysis of ejaculate protein 

composition. 

Additional testing gave me confidence in the difference in the proportion of SVS2 

found within the seminal vesicle secretions of dominant and subordinate male mice. 

Visualisation of the protein composition using SDS-PAGE suggests variation in the 

thickness of the SVS2 band according to social status, although this was not 

measured as it would not be accurate. The result was confirmed by performing 

proteomics analysis on whole seminal vesicle samples, tissue and secretion, from 
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each male. This data is not reported here as the results were far more variable due 

to technical difficulties. Seminal vesicle secretion in solution precipitates after 

freezing, which I was unaware of. After homogenising, samples were frozen prior to 

performing a tryptic digest for proteomics analysis. On defrosting, unfortunately the 

samples were no longer homogenous and an irreversible precipitate had formed. 

The proteomics analysis revealed large levels of variation in the relative abundance 

of proteins, which was far beyond that seen within the analysis of the seminal vesicle 

secretion. Despite this, SVS2 was still consistently found in higher proportions within 

the subordinate males. However, the results from the whole sample analysis are not 

reported here due to a lack of consistency.   

2.5.4 Control males 

Singly housed males were analysed as a reference throughout this study, to 

determine whether dominant and subordinate males increased or decreased their 

investment in reproductive traits relative to an individual male. The control male 

could be expected to behave similar to a dominant male, as they are dominant 

within their own territories. However, as the dominant and subordinate males are 

housed in a pair they may respond to cues of sperm competition, which are known 

to alter sperm production and ejaculate allocation in house mice (Ramm & Stockley 

2007, Ramm & Stockley 2009). Results of the initial study fitted with these 

predictions, as control males deposited more scent marks than the subordinate male 

(therefore acting as a dominant) but produced fewer sperm and smaller seminal 

vesicles than the dominant males (due to a lack of competition).  Considering the 

seminal fluid proteins, the pattern observed in the abundances of the major seminal 

vesicle proteins (Figure 2.15) is less predictable, with control males behaving like 

neither the subordinate or the dominant male. Although only speculative, it is of 

note that all of the copulatory plug forming proteins (SVSI – III, Lin, Luo et al. 2002) 

tend to be in lower abundances within the control males. It is possible that control 

males invest less in copulatory plug production as they have not been housed in a 

competitive environment. Based on very small sample sizes (n=4) there was no 

significant difference in the copulatory plug mass from the control males compared 
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to the paired males, although the plug from control males tended to have a lower 

mass (see Figure 2.10). 

2.6 Conclusions 

This study combines behavioural and proteomic techniques to show that dominant 

and subordinate male house mice exhibit distinct reproductive phenotypes. A novel 

application of emerging techniques has shown that subordinate male house mice 

may compensate for lowered overall investment in ejaculate production, by 

increasing the proportion of specific seminal fluid proteins that form the copulatory 

plug. This study also confirms the importance of considering the entire ejaculate, 

beyond sperm numbers, when studying investment strategies. In species that 

produce a copulatory plug from their seminal fluid this is particularly important, as 

differential investment in specific proteins can greatly affect fertilisation success. 
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3.1 Chapter overview 

The number of mates a female could encounter will vary according to the 

local population. Here, I test whether the likelihood of multiple mating 

causes female house mice to alter their behaviour or physiology.  

Males and females have conflicting interests over reproduction. This conflict is often 

intensified due to sperm competition, as males adapt to compete against rival males. 

A greater risk of sperm competition causes males to alter sperm production, sperm 

Chapter 3 
Plasticity in female behaviour and 

reproductive traits according to 
the social environment 
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quality and mating behaviour.  Females may therefore adapt to counteract the 

males’ increased fertilising ability, to reduce the incidence of embryolethal 

polyspermy and maintain control over paternity.  

Proteins within the oviduct act to mediate fertilisation and sperm selection. Here I 

test if females alter their production of these proteins according to social 

experience, as this could be an important mechanism mediating cryptic female 

choice. I used proteomics to analyse the oviduct secretion of female house mice in 

relation to their exposure to males. I created two treatment groups: high and low. In 

the “high” group females had regular interactions with three different males, 

whereas females in the “low” group had fewer interactions with only one male. The 

interactions were controlled to allow visual, olfactory and tactile stimulation, but no 

opportunities for mating. 

I found no difference in the oviduct protein secretion of female house mice 

according to their exposure to males, and no difference in their gross uterine 

morphology. Instead, the oviduct secretion of siblings was found to be more similar, 

showing a strong genetic influence. I also found that females from the high 

likelihood of multiple mating group spent more time investigating male odour and 

had a larger anogenital distance, although this did not translate into differences in 

mating success. 

 

 

3.2 Introduction 

Sexual conflict occurs due to the differing interests of the sexes with regards to 

reproduction (Parker 1979; Arnqvist and Rowe 2005; Parker 2006) (see Chapter 1, 

Section 1.5). Males aim to improve their reproductive success by increasing their 

number of mates (Bateman 1948). As mating is more costly for females, they are 
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expected to be more selective, aiming to mate with only the highest quality males 

(Trivers 1972). Further to this, mating is often harmful to females (Fowler and 

Partridge 1989; Johnstone and Keller 2000; Shi and Murphy 2014) and polyspermy, 

when more than one sperm attempts to fertilise one egg, is commonly embryolethal 

(Gilbert 2000). This creates a co-evolutionary arms race as males and females adapt 

to counter the conflicting interests of the other sex. 

Sperm competition and cryptic female choice heightens this conflict by increasing 

selection on reproductive traits. Sperm competition is the competition between 

males to fertilise a given set of ova (Parker 1970). Diverse male adaptations due to 

sperm competition are well documented across all taxa (see Chapter 1).   This places 

greater selection on females to adapt in order to maintain control over paternity and 

reduce the incidence of polyspermy (Birkhead, Møller et al. 1993). Cryptic female 

choice occurs when females selectively alter a male’s fertilisation success (Thornhill 

1983; Eberhard 1996). Cryptic female choice, combined with sperm competition 

between males, and sexual conflict between the sexes, drives rapid rates of co-

evolution (see Figure 1.1, adapted from Arnqvist and Rowe 2005). 

Within rodents, male adaptations to sperm competition are well documented (see 

Chapter 1). Experimental evolution studies, maintaining separate monogamous and 

polygamous selection lines, have shown that male house mice (Mus musculus) 

maintained with high levels of sperm competition produce more sperm, which have 

a greater motility and gain greater success in competitive matings (Firman and 

Simmons 2010; Firman and Simmons 2011). The same authors also tested females 

from the same selection lines. Females from the polygamous lines produced more 

defensive ova, that had lower fertilisation rates when using IVF techniques, than 

those from the monogamous lines (Firman, Gomendio et al. 2014). Increased ova 

defensiveness has also been found across species within the Mus genus that have 

differing levels of sperm competition (Martín-Coello, Benavent-Corai et al. 2009). 

Here, the effect of sperm competition on ova defensiveness was as strong as it was 
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on sperm competitiveness (Martín-Coello, Benavent-Corai et al. 2009).  Thus, sexual 

conflict causes adaptation of the female, as well as male, gametes.  

Along with evolutionary responses to selection pressures, individuals exhibit 

plasticity in reproductive traits according to the level of competition within their 

local population. Phenotypic plasticity occurs when an individual alters physiological 

or behavioural traits in response to social or environmental cues (Via and Lande 

1985). Plasticity in response to risk of sperm competition has been well described 

within male rodents. According to the level of competition, males can alter mating 

behaviour, sperm production, accessory gland size and ejaculate allocation 

(delBarco-Trillo and Ferkin 2004; delBarco-Trillo and Ferkin 2006; Preston and 

Stockley 2006; Ramm and Stockley 2007; Vaughn, delBarco-Trillo et al. 2008; Ramm 

and Stockley 2009a; Ramm and Stockley 2009b; Lemaitre, Ramm et al. 2010). This 

increased investment in male traits most likely leads to additional mating costs for 

the female, due to sexual conflict. There is evidence that female house mice can 

plastically alter their ova defensiveness according to the likelihood of multiple 

mating (Firman and Simmons 2013). Here, female house mice received olfactory 

cues and interactions, but not copulations, from either 1 or 10 males over 8 weeks, 

creating low and high risk of sperm competition environments. Using IVF assays, the 

authors found that ova collected from females in the high risk group were more 

defensive, resulting in a lower fertilisation rate than those from females in the low 

risk group (Firman and Simmons 2013). This is the first example of plasticity in 

female reproductive traits, in response to the social environment. 

Here, I use the house mouse to investigate plasticity in female behaviour, physiology 

and oviduct proteins in response to the likelihood of multiple mating. There is a 

moderate level of sperm competition within natural populations of house mice 

(Dean, Ardlie et al. 2006), which fluctuates according to population density and sex 

ratio (Firman and Simmons 2008). Males in a high risk of sperm competition 

population produce more sperm (Ramm and Stockley 2009a). When mating with 

cues from competitors, males perform faster and repeated ejaculations (Preston and 
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Stockley 2006) and also ejaculate fewer sperm (Ramm and Stockley 2007). Females 

in populations with high levels of sperm competition may receive more sperm from 

individual males, due to repeated ejaculations, as well as being more likely to mate 

multiply. Females are expected to respond to this to reduce the risk of polyspermy 

(Frank 2000). Previous studies have found females can alter ova defensiveness 

(Martín-Coello, Benavent-Corai et al. 2009; Firman and Simmons 2013; Firman, 

Gomendio et al. 2014). As well as variation in ova defensiveness, females could also 

alter their behaviour and reproductive physiology in order to maintain control over 

paternity. Here, I test this within the house mouse 

Within this study I also investigate changes within the oviduct. The mammalian 

oviduct is the site of fertilisation (Buhi, Alvarez et al. 1997). It also provides short 

term sperm storage and mediates sperm function and selection (Suarez and Pacey 

2006; Suarez 2008b; Holt and Fazeli 2010). This complex tube is known to secrete 

specific proteins that can alter sperm binding, penetration and fertilisation rates 

(Martus, Verhage et al. 1998; Buhi, Alvarez et al. 2000; Kouba, Abeydeera et al. 

2000; Buhi 2002; McCauley, Buhi et al. 2003; Killian 2004; Lyng and Shur 2009; 

Hanaue, Miwa et al. 2011). Oviduct-specific glycoprotein (OGP) is a protein secreted 

by the oviduct and commonly found across mammals (Martus, Verhage et al. 1998; 

McCauley, Buhi et al. 2003; Lyng and Shur 2009). Within the house mouse this 

protein is known to mediate sperm binding to the egg coat protein, ZP3 (Lyng and 

Shur 2009). Many other proteins within the oviduct are likely to be important for in 

sperm selection and binding, however OGP is the only well characterised protein to 

date. Females may alter their oviduct protein production in order to reduce the 

incidence of polyspermy and maintain control over paternity. Quantitative 

proteomics techniques are used here to compare the oviduct secretions of females 

that have been housed under differing levels of male interaction. Differences found 

within this study may help to highlight additional proteins that are functionally 

important for mechanisms of cryptic female choice. 
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3.3 Methods 

3.3.1 Subjects & housing 

Female house mice (M. musculus domesticus) (N=32) were housed in environments 

simulating a low or high likelihood of multiple mating. Subject females were from of 

an outbred colony founded by wild mice captured from local populations in 

Cheshire. Fourth generation litters were weaned at 28 days old. At around 5 weeks 

old (age: mean ± s.e. 35.13 ± 0.23 days) pairs of sibling females were placed into 

enclosures (1mx1mx90cm). There were enough litters containing four females to 

spread pairs of siblings evenly, so that each treatment group consisted of eight pairs 

of siblings from the same eight litters. Each enclosure contained three open M3 

cages with lids containing food and water placed to the side, loose bedding and two 

cardboard shelters. 

The males used to provide stimulus were 5 week old, virgin males (N=32). Adult 

males, which had previously bred successfully (N=16), were used later in the 

experiment, to analyse mating behaviour of the test females. 

3.3.2 Male stimulus 

For 12 weeks, a combination of male odour and controlled interactions was used to 

create environments representing either a high or low likelihood of multiple mating. 

Females in the high group encountered three different males each week, and those 

in the low group only one. On the Monday, Wednesday and Friday of each week high 

group females had one male placed within one of the cages in their enclosure for 4 

hours. A different male was used on each day, but the same three males were used 

each week. For females in the low group, on one day each week one male was 

placed into a cage in their enclosure for 4 hours. On the other two days a cage was 

closed for 4 hours, with no male inside. This protocol allowed males and females to 

fully interact, without allowing copulation to occur. The cages remained in the 

enclosures after the male had been removed, giving females a constant interaction 
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with the odour of the stimulus males. The cage that each male was placed in was 

rotated so that males would countermark the scent of the previous male and so 

each cage could be perceived as part of a mixed population, as opposed to an 

individual male’s territory. 

After 12 weeks of enclosure housing, females were placed individually into clean M3 

cages containing soiled male bedding. This was taken from the cage of the male the 

female would later be paired with. The females were then removed and enclosures 

cleaned to clear the scent of males that had previously been within the enclosure. 

Females were returned to their home enclosure, remaining within their individual 

cages so that they could be individually identified. All females were oestrus tested 

(as described in Chapter 2, Section 2.10). The first female to be found in oestrus was 

killed and reproductive tissue samples were dissected, to analyse reproductive 

morphology. The other female was used to test behavioural interactions and 

maternal effects. This experimental design allowed physiological and behavioural 

differences between the females of each treatment group to be tested, along with 

looking for evidence of maternal effects (see Chapter 4). 

3.3.3 Collecting reproductive tissue samples 

Oestrus testing occurred each morning until all females had been either killed or 

paired. The first female of each pair shown to be in oestrus, or either of the two if 

both were in oestrus, was killed humanely using an overdose of halothane followed 

by cervical dislocation. Samples were collected when females were in oestrus as the 

oviduct secretions can vary throughout the oestrus cycle (Buhi 1996; Abe and Hoshi 

2007; Seytanoglu, Georgiou et al. 2008).  On days in which multiple females were to 

be dissected, each was killed individually so that samples were consistently collected 

within half an hour after death. Each female was weighed and the ano-genital 

distance (AGD) measured using callipers. Two measurements were made, the first 

was the distance between the vagina and anus; this is the most common AGD. The 

second measurement was taken between the anus and the urethral orifice (see 

Figure 3.1). Prior to analysis, the AGD was divided by the body mass of the female to 
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give the anogenital distance index (AGDI) value. This approach is commonly used to 

account for allometry (Vandenbergh and Huggett 1995; Hotchkiss and Vandenbergh 

2005). 

After external measurements had been collected, the uterine tracts and ovaries 

were dissected from the female. These were placed on clean benchkote, next to a 

ruler and photographed using a digital camera in order to calculate further 

measurements later. The tissue below the cervix was removed and the rest of the 

tract weighed. The top of each uterine horn was isolated and placed onto a glass 

slide. Excess uterine tissue was trimmed and 10µl of PBS was added to the remaining 

oviduct and ovary, to prevent drying out. Using a dissecting microscope (Leica), the 

ovaries and oviducts were teased apart. Both the left and right oviducts, along with 

the PBS, were collected and frozen at -20°C prior to further analysis. The ovaries 

were collected and stored in the same manner. 

3.3.4 Measuring the uterine horn 

Image J was used to measure the length and width of the uterine horns. For each 

digital image, a 1cm length on the ruler was measured and used to scale further 

measurements of that image. Measurements were taken of the length of each 

uterine horn and the uterine body. To measure uterine horn width, two values were 

taken and averaged for each horn (see Figure 3.2). 

3.3.5 Proteomic analysis of oviduct samples 

Oviduct samples were defrosted and washed in ammonium bicarbonate to isolate 

the secreted proteins from tissue proteins. To do this, the paired oviduct samples 

were removed from the freezer and 50µl of 50mM ammonium bicarbonate was 

added to each Eppendorf. Samples were left at room temperature for 20 minutes 

before being vortexed at full speed for 30 seconds. The supernatant was removed 

from the tissue samples. A Coomassie plus protein assay was performed on the 

supernatant to determine the protein concentration. Tryptic digests of 50µg of 

protein, in a 200µl final volume, were then performed as described in Chapter 2 
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(Section 2.3.7) for each sample. The digested peptide samples were diluted 1:1 with 

97:3:0.1 HPLC grade water:MeOH:TFA and analysed using HPLC-MSMS, over a 90 

minute organic gradient, as described within Section 2.3.8. Protein identification and 

label-free relative quantification was performed using MASCOT and Progenesis LC-

MS as described in Section 2.3.9. 
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Figure 3.1: External genitalia of female house mice showing the ano-genital 

distance (AGD) measurements taken using a caliper (measurement error ±0.25mm). 

Adapted from Cook 1965(Cook 1965). 
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Figure 3.2: An image of a female reproductive tract from a house mouse, outlining 
the measurements taken. For every sample, two measurements were taken for 
each trait and an average used. The calculated measurement error, based on the 
repeatability of the measurements of these traits, was 4 ± 0.85%. 
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 3.3.6 Testing behavioural interactions with males 

One female from each enclosure pair was used to test for treatment group effects 

on the behaviour of females when interacting with males. After the first oestrus 

female had been removed from an enclosure, for the collection of reproductive 

tissue samples, the remaining female was oestrus tested each day. When this second 

female was in oestrus, she was weighed and released into the enclosure. As the 

behaviour was to be filmed, only a minimal amount of shelter was initially provided. 

Each enclosure contained an open nest box, separate nest box lid, the female’s open 

cage with lid, and some scattered shredded paper bedding. At 1500h a male was 

placed into the enclosure within his M3 cage. After 10 minutes the male was 

released into the enclosure, the cage and open lid were left in to provide extra 

shelter. Each enclosure was filmed for one day from the time the male was placed 

into the enclosure. The next day, a cardboard nest box and additional shredded 

paper bedding was added. After a further 5 days, when each female would have had 

an oestrus cycle, the male was removed from the enclosure.  

3.3.7 Video analysis 

Behavioural interactions were quantified within the first hour after the male was 

released. Each enclosure was filmed using a DVD recorder (Panasonic DMR-EX79) set 

up remotely. An in house timer programme was then used to measure both the 

frequency and duration of a number of behaviours within the first hour of the DVD 

recording. The behaviours measured were: time spent together, female approaching 

the male, male approaching the female, sniffing, male chasing female, female 

sniffing or investigating the male cage, and time spent apart. Mating behaviour was 

not measured here due to unforeseen limitations in the experimental set up. In 

addition, only six pairs successfully mated to produce litters (three from each 

treatment group). 
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3.3.8 Data analysis 

The behavioural and physiological data was analysed as described in Chapter 2. Here, 

using GLMMs to analyse the behavioural data tended to result in overdispersion. 

This occurs when the variance is greater than expected for a standardised 

distribution (Clark, Karpiuk et al. 1993). Ben Bolker’s overdisp_fun() function was 

used to test for overdispersion within each model. Including an individual-level 

random effect can account for this by fitting the data in a similar manner to a 

lognormal-Poisson distribution (Zielinski, Vandenbergh et al. 1991). For the data 

analysed here that approach was not effective. Instead the data were log 

transformed and LMMs used as this analysis appeared to model the data effectively. 

A total of 853 proteins were identified and quantified within the oviduct samples. 

Comparing all identified proteins with those known to be functional and present 

within the oviduct secretion (Buhi, Alvarez et al. 2000; Drickamer, Robinson et al. 

2001; Lyng and Shur 2009) allowed me to trim this list to 91 proteins. This data set, 

along with the simplified list of 91 proteins that are known to be secreted by the 

oviduct, was analysed using Random Forest (RF) analysis as described in Chapter 2 

(Section 2.16). Additionally, to test whether the protein complement of the oviduct 

samples was more similar within sibling pairs than treatment groups, I performed an 

unsupervised RF analysis on the CLR transformed data set of 91 proteins using the 

Random Forest package (Breiman 2001) in R (v.3.1.0) (R-Development-Core-Team 

2011).  With the unsupervised RF approach a grouping variable is not specified. Each 

RF model produces a matrix of proximity scores. These values range from 0-1 and 

correspond to how similar each sample is to the other samples; with a value of 1 

meaning the samples are identical. I performed 1-sample t-tests on the proximity 

scores provided by the unsupervised model, to determine whether the score 

between sibling samples was significantly higher than the scores proximity scores of 

that individual and non-sibling samples (the other 14 individuals). This would 

therefore indicate to what extent genetic differences affected the protein 

composition of the oviduct secretion. The proximity scores according to treatment 

group were also analysed using a t-test for comparison. 
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In order to visualise the variation within the data set I produced heat maps using the 

pheatmap package in R (Kolde 2013). Prior to producing the heatmaps, data was CLR 

transformed and then standardised, with a mean of 0 and standard deviation of 1, to 

make them more visually comparable.  
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3.4 Results  

3.4.1 Proteomic analysis of the oviducts 

A total of 853 proteins were identified within the oviduct samples, 91 proteins were 

known to be functional and present within the oviduct secretion (Buhi, Alvarez et al. 

2000; Drickamer, Robinson et al. 2001; Lyng and Shur 2009). Random forest (RF) 

analysis was not able to classify either the large, or reduced, data sets according to 

treatment group. In all analyses, of both CLR transformed and non-transformed 

data, the prediction accuracy was always 50% as each model gave all samples the 

same classification. Variable importance scores and bootstrapping analysis of this 

data is not presented here as it would not be informative. To visualise variation 

within the data sets I created heatmaps of the standardised values from the CLR 

transformed abundances (Figures 3.3 and 3.4). These suggest that the samples were 

grouping according to siblings as opposed to treatment groups.   

The experimental design was balanced so that each female had a sibling within the 

other experimental group. To test whether the oviduct secretions were more similar 

to siblings than non-siblings, regardless of treatment group, I analysed the proximity 

scores from an unsupervised RF model. Using one-sample t-tests I found that, for 7 

of the 8 sibling pairs, proximity scores were significantly larger between siblings than 

unrelated individuals (Table 3.1). A high proximity score indicates that the sibling 

samples were much more similar than the non-sibling samples. In contrast, the 

proximity scores were not different according to whether individuals were from the 

same or different treatment group (t = 0.20, df = 118, P = 0.84). 

3.4.2 Female reproductive morphology 

Females from the high and low likelihood of multiple mating environments did not 

differ in body mass by the end of the treatment (t = -0.39, df = 7, P = 0.71). There 

was also no difference in uterine measurements, the mass of the clitoral or adrenal 

glands, or the uterine mass according to treatment group (see Table 3.2). There was 
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a trend for the anogenital distance index (AGDI) to be larger in females from the high 

treatment group (t = 1.96, df = 7, P = 0.09). The AGDI measure including the external 

genitalia, was significantly larger in the “high” treatment group females (t = 2.73, df 

= 7, P = 0.030)(see Figure 3.1 and Section 3.3.3). 

3.4.3 Behaviour when interacting with a novel male 

There was no difference in the amount of time females spent with the male 

according to treatment group (t = 0.03, df = 7, P = 0.98). Females from the high 

treatment group spent significantly longer within the male’s home cage (t = -2.42, df 

= 7, P = 0.046) and significantly more time either sniffing, or being sniffed by, the 

male (t = -3.07, df = 7, P = 0.018). There were no other significant differences in 

behaviour. Considering the raw data, males tended to approach and chase females 

from the low treatment group more often than those in the high treatment group 

(see Table 3.3). 
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Figure 3.3: Heat map of the centred log ratio (CLR) transformed and then 
standardised protein abundances of all proteins identified within the oviduct 
following proteomic analysis. CLR transformed abundances were standardised to 
have a mean of 0 within each sample (black on the scale). Positive values (green) 
have a higher abundance than the mean, and negative values (red) are less 
abundant than the mean.
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Figure 3.4: Heat map of the CLR transformed and then standardised protein 
abundances of 91 proteins identified within the oviduct, known to be present in 
oviduct secretions, following proteomic analysis. CLR transformed abundances 
were standardised to have a mean of 0 within each sample (black on the scale). 
Positive values (green) have a higher abundance than the mean, and negative 
values (red) are less abundant than the mean. 
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Table 3.1: Table of proximity scores taken from an unsupervised random forest model. These were used to analyse how similar siblings are to 
each other, compared to non-sibling females, using a 1-sample t-test. 

 

 

  Proximity scores 
   

Female pair Between siblings Mean non-sib 95% CI non-sib t df P 

1/2 0.434 0.274 0.24-0.31 -10.79 13 <0.0001 

3/4 0.273 0.262 0.21-0.32 -0.42 13 0.34 

6/7 0.498 0.226 0.17-0.28 -9.83 13 <0.0001 

7/8 0.340 0.285 0.25-0.32 -3.65 13 0.0015 

9/10 0.420 0.281 0.24-0.32 -8.05 13 <0.0001 

11/12 0.355 0.288 0.26-0.32 -5.04 13 0.0001 

13/14 0.422 0.281 0.25-0.31 -8.48 13 <0.0001 

15/16 0.443 0.272 0.23-0.31 -9.77 13 <0.0001 
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Table 3.2: Female reproductive morphology measurements taken from females from high and low likelihood of multiple mating treatment 
group environments. Results presented were analysed using a linear mixed effects model, including litter as a random factor and body mass as 
a covariate to account for allometry. Where body mass was not required within the model, results from a paired t-test are instead presented 
as these are equivalent (indicated by *). 

 

Group effect from mixed model including: covariate = Body mass  

                                random effect = Litter 

 

 

High risk of 
multiple mating 

Low risk of multiple 
mating Group effect 

 
Mean s.e. Mean s.e. df t P 

Body Mass (g)  16.18 1.06 16.76 0.82 7 1.30 0.235* 

Clitoral glands (mg) 4.29 0.83 3.29 0.44 6 -1.38 0.218 

Adrenal glands (mg) 11.34 0.91 12.50 1.15 6 0.84 0.433 

AGDI (arcsine square root transformed) 0.32 0.02 0.29 0.02 7 1.96 0.090* 

AGD2I (arcsine square root transformed) 0.49 0.03 0.42 0.02 7 2.73 0.030* 

Uterine body width 0.33 0.04 0.41 0.04 6 2.35 0.263 

Uterine horn length 1.56 0.11 1.48 0.09 6 -0.63 0.551 

Uterine horn width 0.13 0.02 0.17 0.02 6 1.19 0.280 

Tract mass (mg) 134.88 27.24 172.45 18.46 6 1.16 0.291 
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Table 3.3: Behaviour when interacting with a novel male of females from high and low likelihood of multiple mating treatment group 
environments. Results presented were analysed using a linear mixed effects model, including litter as a random factor. Data were transformed 
where required. 

 

High risk of multiple 
mating 

Low risk of multiple 
mating 

Group effect 

  Mean s.e. Mean s.e. df t P 

Time together  
       

Total (s) 204.33 35.11 206.01 39.68 7 0.03 0.976 

Frequency 94.50 17.19 84.88 16.42 7 -0.45 0.666 

Female approach 
       

Total (s) 14.99 6.79 14.14 4.56 7 -0.10 0.919 

Frequency (log transformed) 18.38 9.13 15.75 3.51 7 0.77 0.467 

Sniffing 
       

Total (s) 196.24 35.81 110.90 37.91 7 -3.07 0.018 

Frequency (log transformed) 60.13 9.14 47.00 10.44 7 -1.54 0.165 

Female to male cage 
       

Total (s) (log transformed) 585.85 83.16 461.76 71.49 7 -2.42 0.046 

Frequency 71.00 8.99 64.88 9.04 7 -0.53 0.611 

Chasing 
       

Total (s) 34.39 13.69 51.55 16.74 7 0.85 0.425 

Frequency 13.38 3.57 22.13 4.02 NA 1.59 0.16 

Male approach 
       

Total (s) 33.45 10.03 53.18 15.58 7 2.08 0.076 

Frequency 40.25 10.34 54.63 11.23 7 1.36 0.217 

Nothing 
       

Total (s) 2527.87 90.13 2689.26 119.33 7 1.48 0.181 

Frequency 70.22 2.50 74.96 3.41 7 0.00 1.000 
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3.5 Discussion 

3.5.1 Proteomic analysis of the oviduct 

The oviduct is vital in moderating sperm behaviour and fertilisation (Suarez and 

Pacey 2006; Suarez 2008b; Holt and Fazeli 2010). It is feasible that females could 

plastically alter their oviduct environment according to social cues of high mating 

rates; however I found no evidence for this. The oviduct environment is known to 

alter in pigs due to reproductive cycle and nutrition (Novak, Treacy et al. 2002; 

Novak, Almeida et al. 2003; Seytanoglu, Georgiou et al. 2008). The potential for 

plasticity in the mouse oviduct remains relatively unknown. As the composition of 

the oviduct secretion can influence early embryo development (Leese, Hugentobler 

et al. 2008), functional limitations may reduce the potential for variation. 

Furthermore, as components of the seminal fluid can alter later maternal signalling 

to the embryo (Bromfield, Schjenken et al. 2014), females expecting to mate 

multiply may respond to this after mating. Overall, this study highlights the limited 

amount of knowledge of the variation in protein secretions of the oviduct. A greater 

fundamental understanding of the proteins within the female reproductive tract, 

and their interactions with seminal fluid and sperm, would greatly assist further 

studies of female plasticity. 

Although no treatment effect was found, there was a strong genetic influence on the 

oviduct secretion. Siblings had more similar oviduct protein secretions than non-

siblings. This may have implications for fertilisation outcomes based on genetic 

incompatibility of mating partners. Females may mate multiply to reduce the risk of 

their ova being fertilised by a genetically incompatible male (Zeh and Zeh 1996; 

1997; Jennions and Petrie 2000). Mating multiply may also reduce the likelihood of 

inbreeding effects (Stockley, Searle et al. 1993), particularly in species that do not 

have the capacity for kin recognition. In each case, mating multiply can potentially 

allow sperm selection of the most genetically compatible male to occur. Therefore, 
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the female may benefit from the molecular environment within the oviduct being 

strongly linked to genotype. 

It is certainly possible that other mechanisms could increase how selective the 

oviduct is, including subtle plasticity in the oviduct secretions. Oviductal-specific 

glycoprotein modulates sperm binding to the zona-pellucida (McCauley, Buhi et al. 

2003; Lyng and Shur 2009). This protein was identified within all samples here, 

however no quantitative difference was found. A more selective method of analysis, 

collecting only the oviduct secretion, may be more useful to quantify subtle 

differences in low abundance proteins of interest. This result also gives confidence 

that the RF analysis is not entirely random and only highlights genuine differences.  

3.5.2 Reproductive morphology 

No evidence was found for plasticity in gross uterine morphology according to 

anticipated multiple mating, suggesting that the size of the uterus may not have a 

significant role in sperm selection. Importantly though, although not measured here, 

there is still the potential for subtle differences in the folding of the endometrium to 

influence fertilisation outcomes. In species with sperm storage organs, evolutionary 

adaptations of female genital morphology are well documented (Presgraves, Baker 

et al. 1999; Miller and Pitnick 2002; Minder, Hosken et al. 2005; Brennan, Prum et al. 

2007; Simmons and Garcia-Gonzalez 2011). Plasticity in female sperm storage organs 

has been found in response to the larval environment of some invertebrate species 

(Amitin and Pitnick 2007; Schafer, Berger et al. 2013 but see Baminger and Haase 

1999). Within mammals, there is evidence that oviduct morphology has evolved in 

response to post-copulatory sexual selection (Gomendio and Roldan 1993; 

Anderson, Dixson et al. 2006), however the plasticity of the reproductive tract has 

not previously been tested. In muroid rodents, there is evidence that the vagina 

length, penile length and copulatory plug size are linked (Baumgardner, Hartung et 

al. 1982) and selection may therefore be acting on these traits to coevolve. The 

same study found that the upper reproductive tract correlated only with female 

body mass (Baumgardner, Hartung et al. 1982).  
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Differences were found in the anogenital distance of female house mice according to 

treatment group. Anogenital distance (AGD) in female house mice is generally 

determined by prenatal exposure to exogenous androgens, particularly in response 

to neighbouring male siblings in utero (Gandelman, Vom Saal et al. 1977; Clark and 

Galef 1998; Ryan and Vandenbergh 2002). Recent evidence shows that the AGD is 

not fixed at birth (Dusek, Bartos et al. 2010) and varies with oestrus stage (Dusek and 

Bartos 2012). Therefore the plasticity identified here is not unprecedented. 

Female house mice born within high density populations have a larger AGD (Zielinski, 

Vandenbergh et al. 1991). Within wild populations of house mice, a greater AGD 

correlates with more aggressive behaviour (Drickamer 1996), the mechanism linking 

the two is uncertain however. In populations with a greater level of competition, a 

larger AGD may indicate an advantageous adaptation. In contrast, a smaller AGD 

correlates with a greater rate of oestrus and greater chance of pregnancy, and so 

may be beneficial in females (Drickamer 1996). The result found within this study, 

that females from the high risk of multiple mating treatment group tended to have a 

larger AGD, suggests that the AGD of females in the high group may plastically alter 

through a mechanism that adapts their behaviour to be more competitive. Any 

reduction in fertility may be less detrimental for the high group females as they are 

within a population with a high potential mating frequency. 

The result shown here is only a trend, however it does add to previous suggestions 

that the AGD is not fixed at birth and entirely dependent on the in utero 

environment. This is also the first evidence that this could alter plastically, according 

to the social environment. 

3.5.3 Behavioural differences 

The results of the behavioural analyses were suggestive of some relatively weak 

treatment effects, with females from the low treatment group appearing less willing 

to interact with the males. As each treatment group produced the same number of 

litters, differences in this initial response did not lead to differences in mating 



135 

 

success. Further analysis of behaviour after the initial introduction, and at mating, 

would be needed to determine if the treatment effect remained when females had 

habituated to the novel male. 

3.6 Conclusions 

The internal female reproductive tract is a complex organ, and a better 

understanding of this environment would benefit our understanding of fertility and 

reproduction greatly. This study suggests genetics has a greater influence on the 

oviduct proteome than social environment. This may be important for mechanisms 

of sperm selection to counter the risk of genetic incompatibility. Social environment 

did influence those aspects of female physiology and behaviour tested here. A high 

likelihood of multiple mating led to females having a larger AGD. There is little 

previous evidence for plasticity in this measure. This could be an adaptive response, 

correlating with increased competitiveness. Females from the high likelihood of 

multiple mating group also showed more interest in a novel male. Behavioural 

differences when interacting with a novel male did not result in differential mating 

success, and so these relatively subtle differences in behaviour may be rapidly 

overcome. 
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4.1 Chapter overview 

The maternal environment can have a huge impact on offspring 

phenotype. In this chapter I investigate whether a mother’s social 

experience prior to pregnancy leads to differences in her offspring.  

Maternal effects can benefit offspring by ensuring they will be optimally adapted to 

the local environment.  For example, differences in population density can affect the 

intensity of local competition for resources and mates, and mothers in high density 

populations may therefore produce more competitive offspring. By extension of this 

Chapter 4 
Maternal effects due to social 

experience in the house mouse 
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idea, in species with sperm competition, females might also influence the 

reproductive phenotype of their male offspring according to local sperm competition 

risk. Here, I test this hypothesis for the first time in a model vertebrate, the house 

mouse. Maternal experience was manipulated under controlled experimental 

conditions to produce offspring sired under identical conditions with contrasting 

levels of sperm competition risk (high or low).  

Using proteomic analysis I found differences in the seminal fluid composition of male 

offspring according to the social experience of their mothers. In particular, CUB and 

zona pellucida-like domain-containing protein 1 (CUZD1) tended to be found in 

higher proportions within the male offspring of females that were exposed to 

conditions simulating high sperm competition risk. This protein is produced by the 

epididymis and assists with fertility. By contrast, maternal social environment did not 

influence litter size or sex ratio, or the mating behaviour or mass of the reproductive 

organs of male offspring.  

Within this chapter I also present analyses of general trends in mating behaviour and 

ejaculate composition. 

4.2 Introduction 

During pregnancy and lactation, mothers can alter the phenotype of their offspring. 

Any maternal influence on offspring phenotype, which is not a direct result of 

genetics, is known as a maternal effect (Bernardo 1996; Wolf and Wade 2009). Local 

environments and populations naturally vary. If mothers can alter the phenotype of 

their offspring to best suit current conditions, those offspring can gain a greater 

chance of future survival (Mousseau and Fox 1998a; Mousseau and Fox 1998b).  

There is evidence that maternal effects are widespread across diverse taxa, including 

mammals (Mousseau and Fox 1998b; Ryan and Vandenbergh 2002; Simpson and 

Miller 2007; Maestripieri and Mateo 2009; Henriksen, Rettenbacher et al. 2011). 

Rodents have been widely used as a model for maternal effects, particularly in 
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response to nutrition and stress (e.g. Pratt and Lisk 1989; Trombulak 1991; Zielinski, 

Vandenbergh et al. 1991; Kaiser, Kruijver et al. 2003; Liang and Zhang 2006, see 

Chapter 1, Section 1.6.2). Along with in utero effects, maternal behaviour during 

lactation also influences offspring phenotype. Increased grooming behaviour 

stimulates epigenetic changes in offspring that alter future response to stress 

(Weaver, Cervoni et al. 2004). To date, the influence of social interactions, 

representing variation in the level of sexual competition, has not been tested. This 

may be particularly important within mammals, whereby variation in offspring 

quality leads to different likelihood of reproductive success, depending on the 

gender.   

It is hypothesised mothers will influence the sex ratio of their litters (Trivers and 

Willard 1973). The Trivers-Willard hypothesis predicts that high quality females 

should produce more of the sex that has a greater variability in their reproductive 

success (Trivers and Willard 1973). Or, in polygamous species, high quality females 

should produce more sons as a low quality son is likely to produce fewer offspring 

than a low quality daughter. There is evidence for this within mammals, if the 

measure of female quality is taken at the time of conception (Clutton-Brock and 

Iason 1986; Cameron 2004; Sheldon 2004). It is suggested that there is a nutritional 

mechanism for this, with high levels of glucose at conception potentially causing a 

male bias (Cameron 2004). Additionally, low social status and high parity cause 

female rodents to produce fewer sons, (Huck, Pratt et al. 1988; Pratt and Lisk 1989), 

although this may also be a result of nutritional differences. 

Thus, mothers can alter their litters and the future success of their offspring by 

mechanisms in utero or during lactation. This could be particularly important during 

local fluctuations in population density, which would increase competition for 

resources, territory and mates (Dantzer, Newman et al. 2013). In species with 

multiple mating, increased competition for mates is also associated with an 

increased incidence of sperm competition. However, it is unknown if maternal 
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effects influence male reproductive traits associated with success in sperm 

competition. 

Here, I use the house mouse as a model to test whether male offspring from females 

that have been in an environment with a male biased sex ratio, and a high level of 

interaction with males, will differ from offspring of females with only low levels of 

male interaction. I use a balanced experimental design, such that female littermates 

are distributed across treatment groups, to limit the influence of genetic effects. I 

first consider the sex ratio and size of the litters females produced. After weaning, all 

male offspring are then treated equivalently to limit environmental differences, 

allowing variation due to maternal environment to be investigated. I examine male 

mating behaviour and ejaculate composition to determine if maternal environment 

prior to pregnancy can alter male offspring reproductive phenotype. Further to this, I 

combine the mating and ejaculate composition data to investigate general patterns 

of reproduction in the male house mouse. 
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4.3 Methods 

4.3.1  Subject females and litters 

In Chapter 3, sibling pairs of female house mice were housed in enclosures 

(1mx1mx90cm) from weaning until 4 months old. Each enclosure was assigned to be 

either a high or low competition environment. A combination of odour cues and 

social interactions was used to create this. At the end of this social experience, one 

female from each enclosure was paired with a stock male, which had previously bred 

successfully, to produce a litter. Once paired with a male, there were no further 

differences in the treatment of the females. Therefore, differences caused by the 

maternal environment prior to pregnancy, as opposed to experiences during 

pregnancy, are being tested here. This protocol also limited the chance of abortion 

due to the Bruce effect (Bruce 1959). After one week, males were removed from the 

enclosures. As females were paired when in oestrus, and the oestrus cycle of a 

house mouse averages 4-5 days long, this should have allowed two oestrus events 

before the male was removed. 

Of the 16 females paired immediately after the high or low competition 

environments, only six produced litters. This was not a treatment group effect; three 

litters were produced by high group females and three from low. It is possible that 

breeding was unsuccessful due to external building work causing noise and 

disruption within the enclosure room. Furthermore, the females that did not 

produce a litter also tended to have a smaller body mass than those that did (body 

mass, mean ± sem: produced a litter 18.17 ± 0.93 g; no litter 15.17 ± 0.87 g). 

In order to increase the sample size, females were paired again to the same male as 

before. Females that had not become pregnant within the first breeding attempt 

were removed from the enclosure. Each female was placed into a clean cage, 

containing soiled bedding from the male she was partnered with. For females within 

the high competition group, soiled bedding from the three males she had previously 

been exposed to was also added to the cage, to maintain a high competition 



142 

 

environment. After 5 days of caged housing, females were released into clean 

enclosures.  To counter the effects of noise, where possible the mice were paired 

into an enclosure in a different room (8 females, enclosures measured 60cm x 

120cm).  The other two females were paired in the quietest enclosures available 

within the first room. Each enclosure contained a clean cage with open lid, a nest 

box and cardboard enrichment. A thin layer of shredded paper bedding was spread 

around the enclosure floor, to encourage nesting and provide additional shelter. 

Each female had 30 minutes to habituate to the new enclosure, before a male was 

released. Males remained with the females for 2 weeks in order to maximise the 

chance of successful breeding. Of the 10 breeding pairs, 7 produced a litter in this 

second attempt. 

4.3.2 Measuring litters 

Although the litters were produced in two breeding events, all were treated 

identically. For both breeding groups, after the males were removed, females were 

monitored closely for signs of pregnancy or parturition. After a female had produced 

a litter, care was taken to cause minimal disturbance to the mother and pups. The 

pups were counted when each litter was 3 days old. At this point, the mother and 

pups were removed from their enclosure and housed in the cage that had been 

within their enclosure. Enrichment from the enclosure was placed into the cage to 

maintain the same olfactory environment. Litters remained with their mothers until 

they were 26 days old, at this point each pup was weighed, sexed and weaned into 

single sex sibling groups. 

4.3.3 Male offspring: mating, ejaculate collection and reproductive physiology 

After weaning at 26 days old, male house mice (N=45) were housed in single sex 

cages with siblings until all litters had been weaned. At this point, brothers were split 

and each male was housed singly. Soiled female bedding was added to each cage 

every 2 weeks to stimulate normal sexual development. To test differences in mating 

behaviour and ejaculate production, each male was mated to an ICR female using 
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the same method described in Chapter 2. In this instance, however, each male only 

performed one mating. As described in Chapter 2, ejaculates and copulatory plugs 

were collected from the female immediately after mating. After each male’s 

successful mating, he was rested for one week before reproductive organs were 

collected. Each male that mated successfully (N=30) was killed and dissected, blind 

to the male’s mother’s treatment, to measure differences in their investment in 

reproductive traits. Reproductive organs were collected and sperm counts 

performed as in Chapter 2. 

4.3.4 Analysing proteomic differences in the ejaculate 

Ejaculates (N=30) were digested using Trypsin before HPLC-MSMS analysis as 

described in Chapter 2.  

4.3.5 Data analysis 

Data was analysed as described in Chapters 2 and 3. RF analysis was performed on 

both the full set of ejaculate proteins identified, containing at least 3 unique 

peptides for quantification, and a shortened set of 59 proteins that were known to 

be male specific and found within the ejaculate (Dean, Clark et al. 2009; Dean, 

Findlay et al. 2011). I also extracted the proximity scores from an RF unbiased model, 

as described in Chapter 3. Random forest (RF) models produce a proximity table that 

gives a score for how similar each individual sample is to all other samples. Such 

that, each sample has a score of 1 when compared to itself. Scores closer to 0 

indicate little to no similarity between samples. Within the previous chapters, litter 

mates have been balanced across treatment groups. Here, males from 12 litters 

were available, 6 from each maternal treatment group. Littermates are therefore 

within the same treatment groups. This reduces the independence of data points, as 

siblings are likely to be similar, and so I wanted to evaluate whether this would have 

an impact on the analysis. To do this, I compared the proximity scores for related 

versus unrelated individuals with those that were within the same versus different 

treatment groups. Proximity scores were also compared according to litter group 
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and whether males were doubly or singly housed, as the litters were produced 

during two attempts (Section 4.3.1) and the data includes that from the dominant 

and subordinate males within Chapter 2. 

Additionally, RF regression analysis was used to test whether the protein 

composition of the ejaculate correlated with mating behaviour and ejaculate traits. 

To do this, an RF model with the continuous trait of interest as the dependent 

variable, and the CLR transformed relative protein abundances was run 1000 times. 

For each model iteration, variable importance scores of each protein were extracted. 

Further to this, for each of the 1000 iterations, a linear model of the raw data values 

of the dependent variable, against the prediction scores from the RF model. An 

average of the 1000 F values, taken from the 1000 linear models, was used to 

calculate a P value for the regression of the continuous variable against the RF model 

predictions. 
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4.4 Results 

4.4.1 Proteomic analysis of the ejaculate: Proximity scores 

Prior to performing the RF analysis according to maternal treatment group, I first 

compared the scores within a proximity matrix from an unsupervised RF model on 

the focused set of 59 male derived ejaculate proteins. This was done to determine 

whether littermates being within the same treatment group would affect the results 

due to being more similar to each other. Proximity scores according to relatedness, 

treatment group, litter group (first or second litters) and housing (double or single) 

are summarised in Table 4.1. The proximity scores quantify how similar each 

individual sample is to all of the other individual samples, ranging from 0 – 1, with a 

score of 1 meaning samples are identical.  

Proximity scores were not different according to relatedness, treatment group, 

batch, or housing when taken from the unsupervised model (Table 4.1). Therefore, 

these factors are not influencing the composition of the ejaculate in a way that 

would influence the outcome of analysis according to treatment group. When taken 

from a supervised RF model, with maternal treatment group given as a predictor, 

there was again no difference according to litter group or housing. Within this 

supervised model, there was a significant difference in the proximity scores between 

individuals in the same treatment group and those in a different treatment group (df 

= 431.9, t = -11.12, P < 0.001). There was also a significant difference between the 

scores for sibling males compared to non-sibling (df = 41.7, t = 5.77, P < 0.001). 

Although siblings have more similar ejaculate protein composition than non-siblings, 

the t-value for the difference in proximity scores according to treatment group is 

larger, suggesting this has a greater effect. Further, although littermates were found 

within the same treatment groups, males were taken from 12 different litters, 6 in 

each treatment group. Treatment group effects within further analyses can 

therefore be viewed as such. 
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Table 4.1: Proximity scores from supervised and unsupervised random forest (RF) 
analysis of ejaculate proteins. Supervised model included treatment as the grouping 
variable. 

 

 

Unsupervised RF model Supervised model 

 

Same Different Same Different 

Treatment group 0.221 0.219 0.563 0.425 

Litter 0.273 0.215 0.631 0.480 

Litter group (1st / 2nd) 0.222 0.220 0.493 0.497 

Housing (double / single) 0.218 0.216 0.482 0.500 
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4.4.2 Maternal effects on ejaculate protein composition 

RF analysis was performed on proteins identified and quantified from the uterine 

washes after mating. Initially, all 649 proteins that were quantified using a minimum 

of 3 unique peptides were included. Over 1000 runs the RF analysis prediction 

accuracy averaged 80.65%, according to maternal treatment group (24 out of 30 

correct, bootstrapping analysis of 1000 replicates: P < 0.001: Table 4.2). From this 

analysis, there were 59 proteins with significant variable importance scores. Many of 

these were low abundance and likely to have been derived from the female (Table 

4.3).  

A second RF analysis was also performed for 59 proteins known to be male derived 

and present in the ejaculate from previous studies (Dean, Clark et al. 2009; Dean, 

Findlay et al. 2011), was also performed. This analysis of 59 proteins had an overall 

prediction accuracy according to maternal treatment group of 77.60% (23 out of 30 

correct, bootstrapping analysis of 1000 replicates: P = 0.002). Here, 10 proteins were 

found to have significant variable importance scores (see Table 4.4 and Figure 4.1). 

Of these, 4 had also been significantly important within the analysis of 649 proteins. 

The most abundant protein of the 4 that were classified as important within both 

analyses, was the CUB and zona pellucida-like domain-containing protein 1 (CUZD1). 

This is known to be produced by the epididymis and has functional significance for 

fertility (Yamazaki, Adachi et al. 2006). There tended to be relatively more CUZD1 

within ejaculates from male offspring of the high competition maternal group, 

although this was not significant (df = 28, t = 1.87, P = 0.07, see Figure 4.2).  

4.4.3 Litters 

There was no difference in the size, or sex ratio, of the litters according to maternal 

treatment group. Further, no difference was found in the mean body mass of the 

weaned offspring (Table 4.5 and Figure 4.3).  
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4.4.4 Male reproductive physiology & mating behaviour 

In total, of 293 attempts there were 30 successful matings recorded; 16 by offspring 

of the high competition maternal group and 14 from the low. There was no 

difference in the mass of any sexual organs measured, according to prior maternal 

experience (Table 4.6). There was also no difference in the mating behaviour, such as 

the number of thrusts or intromissions, or the size of the ejaculates the males 

produced (Table 4.7).  As there were no differences between the groups, the data 

from all males was pooled and correlations within the data were analysed to further 

understand the relationship between mating behaviour and ejaculate allocation.  
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Table 4.2: Classification accuracy scores following 1000 iterations of a random 
forest (RF) model of either all identified proteins within the ejaculate, or a reduced 
set of 59 proteins known to be male derived. 

 

 

 

 

High Low Overall 

649 proteins 100.00% 58.53% 80.65% 

59 proteins 95.74% 56.86% 77.60% 
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Table 4.3: Proteins significantly important at classifying the samples according to 
the treatment group when all proteins identified within the ejaculate were 
modelled using random forest analysis. * indicates also significant in the model 
including only proteins known to be male derived. 

Accession Protein Description Mean Vimpx100 95% CI 

O08976* Probasin 0.013 0.100 0.10 - 0.10 

Q9D8W5 
26S proteasome non-ATPase regulatory 
subunit 12 

0.007 0.091 0.09 - 0.10 

Q61171 Peroxiredoxin-2 0.031 0.091 0.09 - 0.10 
Q8C0M9 L-asparaginase 0.013 0.083 0.08 - 0.09 

O54833 Casein kinase II subunit alpha 0.003 0.076 0.07 - 0.08 
Q6URW6 Myosin-14 0.015 0.076 0.07 - 0.08 
P62908 40S ribosomal protein S3 0.017 0.072 0.07 - 0.08 
P28665 Murinoglobulin-1 0.042 0.067 0.06 - 0.07 
P03987 Ig gamma-3 chain C region 0.022 0.066 0.06 - 0.07 
Q91VR2 ATP synthase subunit gamma, mitochondrial 0.003 0.062 0.06 - 0.06 
Q80YW5 B box and SPRY domain-containing protein 0.005 0.056 0.05 - 0.06 

P19783 
Cytochrome c oxidase subunit 4 isoform 1, 
mitochondrial 

0.024 0.055 0.05 - 0.06 

P97315 Cysteine and glycine-rich protein 1 0.175 0.054 0.05 - 0.06 

P47911 60S ribosomal protein L6 0.006 0.053 0.05 - 0.06 
Q61838 Alpha-2-macroglobulin 0.310 0.050 0.05 - 0.05 
P00489 Glycogen phosphorylase, muscle form 0.010 0.048 0.05 - 0.05 

Q6NS57 
Mitogen-activated protein kinase-binding 
protein 1 

0.004 0.048 0.04 - 0.05 

Q9DC69 
NADH dehydrogenase [ubiquinone] 1 alpha 
subcomplex subunit 9, mitochondrial 

0.019 0.046 0.04 - 0.05 

Q8C8R3 Ankyrin-2 0.029 0.045 0.04 - 0.05 
O08528 Hexokinase-2 0.008 0.044 0.04 - 0.05 
Q9WTI7 Myosin-Ic 0.003 0.042 0.04 - 0.04 

P15265* 
Sperm mitochondrial-associated cysteine-
rich protein 

0.082 0.042 0.04 - 0.04 

Q8BW94 Dynein heavy chain 3, axonemal 0.208 0.041 0.04 - 0.04 
P00405 Cytochrome c oxidase subunit 2 0.011 0.038 0.04 - 0.04 
Q62000 Mimecan 0.007 0.038 0.03 - 0.04 
Q791V5 Mitochondrial carrier homolog 2 0.014 0.037 0.03 - 0.04 
Q8CAQ8 Mitochondrial inner membrane protein 0.024 0.036 0.03 - 0.04 
Q5XJY5 Coatomer subunit delta 0.013 0.036 0.03 - 0.04 
Q91ZU6 Bullous pemphigoid antigen 1 0.067 0.036 0.03 - 0.04 
Q64727 Vinculin 0.209 0.035 0.03 - 0.04 

Q9D2G2 

Dihydrolipoyllysine-residue 
succinyltransferase component of 2-
oxoglutarate dehydrogenase complex, 
mitochondrial 

0.003 0.035 0.03 - 0.04 

Q8CGP1 Histone H2B type 1-K 0.022 0.035 0.03 - 0.04 
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Accession Protein Description Mean Vimpx100 95% CI 

P11859 Angiotensinogen 0.006 0.035 0.03 - 0.04 
Q9EQP2 EH domain-containing protein 4 0.015 0.035 0.03 - 0.04 
Q69Z23 Dynein heavy chain 17, axonemal 0.469 0.034 0.03 - 0.04 
Q7TMR0 Lysosomal Pro-X carboxypeptidase 0.007 0.033 0.03 - 0.04 
A2AN08 E3 ubiquitin-protein ligase UBR4 0.027 0.031 0.03 - 0.03 
O08529 Calpain-2 catalytic subunit 0.002 0.031 0.03 - 0.03 
P07759 Serine protease inhibitor A3K 0.925 0.030 0.03 - 0.03 
A2AKX3 Probable helicase senataxin 0.017 0.030 0.03 - 0.03 
O55234 Proteasome subunit beta type-5 0.006 0.028 0.03 - 0.03 

Q80ZN9 Cytochrome c oxidase subunit 6B2 0.023 0.027 0.03 - 0.03 

P70412* 
 CUB and zona pellucida-like domain-
containing protein 1 

1.943 0.026 0.02 - 0.03 

Q9CX56 
26S proteasome non-ATPase regulatory 
subunit 8 

0.058 0.026 0.02 - 0.03 

P01878 Ig alpha chain C region 0.080 0.025 0.02 - 0.03 

P32037 
Solute carrier family 2, facilitated glucose 
transporter member 3 

0.060 0.025 0.02 - 0.03 

Q8BFZ3 Beta-actin-like protein 2 0.011 0.025 0.02 - 0.03 

Q60930 
Voltage-dependent anion-selective channel 
protein 2 

0.077 0.024 0.02 - 0.03 

Q9EPX2 Papilin 0.374 0.024 0.02 - 0.03 
O08716 Fatty acid-binding protein 9 0.169 0.024 0.02 - 0.03 
Q06890 Clusterin 0.089 0.024 0.02 - 0.03 
Q9CYH2 UPF0765 protein C10orf58 homolog 0.025 0.023 0.02 - 0.03 
Q9D023 Brain protein 44 0.015 0.022 0.02 - 0.02 
Q9R111 Guanine deaminase 0.003 0.022 0.02 - 0.02 
P30416 Peptidyl-prolyl cis-trans isomerase FKBP4 0.004 0.022 0.02 - 0.02 
Q7TMY8 E3 ubiquitin-protein ligase HUWE1 0.021 0.021 0.02 - 0.02 
Q80YC5 Coagulation factor XII 0.026 0.021 0.02 - 0.02 
Q8K0T7 Protein unc-13 homolog 0.024 0.021 0.02 - 0.02 

Q9QY48* Deoxyribonuclease-2-beta 0.083 0.021 0.02 - 0.02 
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Table 4.4: Proteins significantly important at classifying the samples according to the treatment group when a reduced set of 59 
proteins known to be in the ejaculate were modelled using random forest analysis. * indicates significant in the model including all 
identified proteins. 

 

Accession Protein description Ave Prop Vimp(x100) 95% CI 

O08976* Probasin 0.03 0.802 0.79 - 0.81 

P15265* Sperm mitochondrial-associated cysteine-rich protein 0.16 0.444 0.44 - 0.45 

P30933 SVS5 0.06 0.374 0.37 - 0.38 

Q9QY48* Deoxyribonuclease-2-beta 0.16 0.372 0.36 - 0.38 

P70412* CUB and zona pellucida-like domain-containing protein 1 3.83 0.341 0.33 - 0.35 

A3KGV1 Outer dense fiber protein 2 0.79 0.333 0.33 - 0.34 

P09036 Serine protease inhibitor Kazal-type 3 2.96 0.273 0.27 - 0.28 

Q60662 A-kinase anchor protein 4 1.53 0.223 0.22 - 0.23 

P00683 Ribonuclease pancreatic 0.06 0.200 0.19 - 0.21 

P45700 Mannosyl-oligosaccharide 1,2-alpha-mannosidase IA 0.07 0.150 0.14 - 0.15 
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Figure 4.1: Plot of the mean proportional abundances of the 10 proteins 
significantly important for classifying the samples correctly, according to treatment 
group, within random forest analysis of a reduced set of 59 proteins identified 
within the ejaculate, known to be male derived. Bars represent mean ± sem. 
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Figure 4.2: Boxplot of the proportion of CUB and zona-pellucida like domain 
containing protein 1 within ejaculates from male offspring of high competition 
females and low competition females (df = 28, t = 1.87, P = 0.07). 
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Table 4. 5: Table showing the analysis for maternal treatment group effect on litter size and the mass of the offspring at weaning.

   
Group effect 

 
Variable Model t/z P 

 

Maternal body mass 
Maternal body mass ~ Group, random effect = female 
litter 

-1.10 0.33 

 

Number of offspring Male:Female~Group+Maternal body mass, random 
effect = female litter, family=binomial) 

-1.59 0.11 

 
 

  
 Offspring body mass at weaning:     
 

 

Average male Average male body mass ~Group, random=female litter -0.02 0.98 

 

Average female 
Average female body mass ~Group, random=female 
litter -0.79 0.48 

 

Total litter Total body mass ~Group, random=female litter -0.79 0.47 

 
 

    
 

 
Proportion male Proportion male (arcsine square root 

transformed)~Group, random=female litter 
-0.11 0.91 

 



156 

 

Figure 4.3: Boxplot showing the number of offspring produced by high competition 
group and low competition group mothers. 

 

Male Female Total 
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Table 4.6: Results of the analysis for the effect of maternal treatment group on the body mass and reproductive organs of the male 
offspring.         

 

Group effect from mixed model including: fixed effect = social status (& body mass for sexual organs) 

                                random effect = Maternal litter 

 

 

High Low Group effect 

 

Mean s.e. Mean s.e. df t P 

Body mass (g) 20.78 0.53 20.09 0.43 18 -0.25 0.802 

Preputial glands (mg) 80.48 9.56 66.93 7.16 16 -0.71 0.488 

Testes (mg) 191.54 5.01 193.74 9.32 16 -0.22 0.825 

Epididymides (mg) 65.09 1.83 60.77 2.09 16 -1.21 0.245 

Seminal vesicles (mg) 109.93 9.96 111.85 9.51 16 0.62 0.547 

Epididymal sperm count 1.87E+07 2.32E+06 1.91E+07 2.91E+06 17 -0.03 0.974 
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Table 4.7: Results from the analysis of the effects of maternal environment on mating behaviour. Results presented are the treatment 
group effects from a linear mixed effects model, including maternal line as a random effect and male social status as a fixed effect. 

 

Group effect from mixed model including: fixed effect = social status  

                                random effect = Maternal litter 

 

 
High Low 

    Mean s.e. Mean s.e. df t/z P Model specifics 

Trials to mating 5.50 0.98 4.56 1.04 
 

-0.92 0.36 glmer, family=binomial 
Plug (mg) 43.59 3.01 46.19 4.15 18 0.66 0.52   
# sperm in ejaculate 2.09E+07 2.55E+06 1.72E+07 2.01E+06 18 0.10 0.92   

1st Int - ejaculation (s) 3763.47 986.28 2412.63 466.85 20 -1.11 0.28   
Duration of ejaculation 
(s) 

14.90 1.15 14.91 0.81 17 0.04 0.97 
  

# intromissions 43.50 11.31 31.56 9.24 20 -0.67 0.51 Intromission (log transformed) 
Intromissions / minute 0.89 0.13 0.68 0.12 20 -1.55 0.14 Intromission rate (log transformed 
Proportion of mating 
spent intromitting 

16.92 5.73 10.47 1.18 20 -1.18 0.25 
Proportion of time intromitting (arcsine 
square root transformed) 

# Thrusts 669.38 157.92 537.63 125.22 20 -0.27 0.79 Thrusts (log transformed) 

# Thrusts / intromission 
18.50067 2.342049 21.16574 2.180587 20 0.83 0.41 

Thrusts per intromission (log 
transformed) 
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Correlations of mating behaviour and ejaculates 

4.4.5 Ejaculate proteins and other mating parameters 

As this was a comprehensive analysis of mating behaviour and ejaculate proteins of 

30 male house mice, I wanted to consider whether ejaculate composition was 

associated with other mating traits. I used regression RF analysis for this. When an 

RF model has a continuous dependant variable it will train the forest to predict the 

amount of the dependant variable according to the protein composition. You can 

then take the predictions and perform a linear model of these values against the 

actual values, to determine how accurate these predictions are. The F values 

displayed here are the averages of 1000 linear models performed using prediction 

values from 1000 RF models. For all mating behaviour traits, the protein composition 

did not predict the continuous traits well.  

The number of sperm within the ejaculate correlated well with the predicted values 

from the RF analysis based on protein composition. This was true when analysing all 

649 identified proteins and the shortened set of 59 proteins (649 protein analysis: F1, 

28 = 28.97, P < 0.001, 59 protein analysis: F1, 28 = 36.63, P < 0.001). A total of 58 

proteins were significantly important from the analysis of 649 proteins, and 26 were 

important in the analysis of 59 proteins. Of these proteins, 7 were important within 

both analyses (Table 4.8). This included SVS2 and zona pellucida sperm-binding 

protein 3 receptor, which are important with respect to fertility. Sperm numbers 

correlated positively with zona pellucida sperm-binding protein 3 receptor, L-lactate 

dehydrogenase C chain and Protein-glutamine gamma-glutamyltransferase 4 

(TGM4). In contrast, there was a negative correlation with SVS2 (Figures 4.4 – 4.).  

Regression of the large set of 649 proteins also predicted copulatory plug mass (F1, 28 

= 6.95, P = 0.01). From this analysis, 59 proteins were significantly important for 

predicting the plug mass. Most of these were low abundance general proteins, most 

likely derived from the female. I would be cautious in drawing conclusions from the 
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plug analysis with regard to differences in the ejaculate proteins as an effect was not 

found within the smaller set of ejaculate specific proteins. 
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Table 4.8: The ejaculate proteins which were significantly important within the 
random forest regression for predicting the number of sperm within the ejaculate 
when using the 59 proteins known to be male derived. * = proteins also significant 
within the model including all proteins. 

 

Accession Protein Description Ave Prop Vimp 95% CI 

P00342* L-lactate dehydrogenase C chain 0.031 41.16 41.12 - 41.20 

Q60736* 
Zona pellucida sperm-binding protein 3 
receptor 0.060 27.95 27.91 - 27.98 

P07724* Serum albumin 29.770 27.66 27.63 - 27.69 

Q9D9X8* 
Sperm acrosome membrane-
associated protein 3 0.026 23.49 23.45 - 23.53 

Q8BZH1* 
Protein-glutamine gamma-
glutamyltransferase 4 1.684 23.35 23.31 - 23.40 

Q62216* SVS2 0.019 19.84 19.80 - 19.87 
Q6NY15 Testis-specific gene 10 protein 0.028 12.38 12.33 - 12.42 

Q64467 
Glyceraldehyde-3-phosphate 
dehydrogenase, testis-specific 0.116 11.84 11.80 - 11.87 

Q9Z0J0* Epididymal secretory protein E1 0.175 10.85 10.80 - 10.89 
Q8CFG9 Complement C1r-B subcomponent 0.142 10.71 10.66 - 10.76 
C4P6S0 Sperm head and tail associated protein 0.004 10.13 10.08 - 10.17 
Q03401 Cysteine-rich secretory protein 1 0.862 10.12 10.08 - 10.15 
Q8BND5 Sulfhydryl oxidase 1 1.014 9.57 9.51 - 9.63 
A2AJB7 Epididymal-specific lipocalin-5 0.271 7.74 7.69 - 7.79 
P09036 Serine protease inhibitor Kazal-type 3 1.525 7.71 7.65 - 7.77 
P30933 SVS5 0.033 7.57 7.50 - 7.63 
P00683 Ribonuclease pancreatic 1.042 7.23 7.17 - 7.29 

Q9DAU7 
WAP four-disulfide core domain 
protein 2 0.002 7.11 7.07 - 7.16 

P35700 Peroxiredoxin-1 0.059 6.52 6.47 - 6.57 

P45700 
Mannosyl-oligosaccharide 1,2-alpha-
mannosidase IA 0.034 6.16 6.11 - 6.22 

P01027 Complement C3 1.920 6.16 6.11 - 6.22 

P70412 
CUB and zona pellucida-like domain-
containing protein 1 1.943 6.08 6.02 - 6.13 

O08976 Probasin 0.013 5.85 5.79 - 5.91 
Q3UN54 Secreted seminal-vesicle Ly-6 protein 1 0.031 5.83 5.76 - 5.89 
Q64442 Sorbitol dehydrogenase 0.135 5.65 5.61 - 5.70 

P21765 
Epididymal secretory glutathione 
peroxidase 0.026 4.69 4.62 - 4.75 
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Figure 4.4: Plots of the predicted values from random forest regression analysis of 
ejaculate protein composition with the number of ejaculated sperm or copulatory 
plug size as the response variable. 
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4.4.6 Male mating behaviour and ejaculate composition 

Males that ejaculated more sperm produced larger copulatory plugs (F1,28 = 4.03, P = 

0.05). Larger males produced a larger copulatory plug and ejaculated a greater 

number of sperm (plug mass: df = 14, t = 3.03, P = 0.005; number of sperm: df = 14, t 

= 2.58, P = 0.022).  Larger males also needed to be trialled with a smaller number of 

females before successfully mating (df = 16, t = 4.84, P < 0.001). As body size 

correlated with these traits, it was included as a covariate in further analysis. A 

greater number of females trialled also correlated with a lager copulatory plug (df = 

13, t = 3.70, P = 0.003), but not with the number of sperm ejaculated (df = 13, t = 

1.65, P = 0.12).  

There were also correlations between specific behaviours within the matings and the 

size of the ejaculates. Males that performed more thrusts and intromissions also 

ejaculated more sperm (thrusts: df = 17, t = 2.82, P = 0.012; intromissions: df = 17, t 

= 32.19, P = 0.043). There was no correlation between copulatory plug size and 

these mating behaviours (thrusts: df = 17, t = -0.17, P = 0.87; intromissions: df = 17, t 

= -0.08, P = 0.94). There was a strong correlation between the number of thrusts and 

intromissions performed (F1,30 = 155.5, P < 0.001). A longer mating duration strongly 

correlated with a greater number of thrusts and intromissions performed (thrusts: df 

= 19, t = 8.19, P < 0.001; intromissions: df = 19, t = 8.52, P < 0.001), and the number 

of sperm ejaculated (F1,22 = 7.53, P = 0.01), but not copulatory plug size (F1,22 = 0.001, 

P = 0.97). Mating duration did not correlate with other mating behaviour traits; 

mean intromission duration, number of thrusts per intromission or the proportion of 

the mating spent within an intromission. See Figures 4.5 and 4.6.  
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Figure 4.5: Plots showing the relationship between the number of ejaculated 
sperm, the copulatory plug mass and body mass. High and Low represent the 
maternal treatment group, either high or low likelihood of multiple mating. 
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Figure 4.6: Plots showing the relationship between mating traits and ejaculate 
composition: a) the number of trials before a male mated and body mass, b) the 
number of intromissions and the number of thrusts, c) the number of ejaculated 
sperm and the number of thrusts, and d) the size of the copulatory plug and the 
number of thrusts. High and low represents the maternal treatment group, either a 
high or low likelihood of multiple mating. 

  

  

 

a) b) 
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4.5 Discussion 

4.5.1 Maternal effects on ejaculate proteins 

RF analysis of the ejaculated proteins was effective at classifying the samples 

correctly, beyond what would be expected by chance. The classification accuracy of 

the RF models reveals that the overall protein composition of the ejaculates differs 

according to the maternal treatment group. RF analysis identified proteins that were 

significantly important for classifying the samples correctly. CUB and zona pellucida-

like domain-containing protein 1 (CUZD1) is a relatively abundant ejaculated protein, 

produced by the epididymis (Yamazaki, Adachi et al. 2006), which tended to be 

found in higher proportions within the high maternal group males. Further, sperm 

specific A-Kinase anchor protein 4 (AKAP4) tended to be found in higher proportions, 

and Serine protein inhibitor kazel type-3 (Spikl) in lower proportions, within the high 

maternal group males. I would be tentative to suggest that these trends correspond 

to significant differences in these proteins that were not seen with these sample 

sizes. Additionally, it is worth noting that the RF model is a supervised approach and 

so guided in its classification. Nonetheless, the overall composition of the ejaculates 

appears to be influenced by maternal group. 

The potential mechanism of this is uncertain. Recent studies of maternal effects are 

increasingly highlighting epigenetic changes within the female, which can be passed 

on to her offspring (Weaver, Cervoni et al. 2004). Furthermore, trans-generational 

effects on offspring ageing and mortality due to maternal sexual activity have been 

shown within Drosophila melanogaster (Dowling, Williams et al. 2014). It is possible 

that increased interactions with males cause minor differences in the female 

genome, which then lead to differences in the ejaculates of male offspring.  

Alternatively, the effect seen here may be due to a hormonal mechanism. Endocrine 

mechanisms of maternal effects have been documented within mammals. For 

example changes in maternal glucocorticoid levels, in response to population density 

or experimental manipulation, alter offspring growth rate in the red squirrel (Sciurus 
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vulgaris) (Dantzer, Newman et al. 2013).  Additionally, prenatal social stress results 

in masculinised behaviour of female offspring in guinea pigs (Cavia porcellus), via a 

neuro-endocrine mechanism (Kaiser, Kruijver et al. 2003).  

The effect found here is subtle and the mechanism cannot be concluded from this 

study. However, it is the first hint that the seminal fluid proteome may be influenced 

by maternal environment which is an interesting result worthy of further study. 

4.5.2 Maternal effects on litters and male offspring 

Offspring sex ratio, litter size and pup mass were not influenced by maternal 

environment prior to conception. Neither was the mass of male offspring or their 

reproductive organs. This study therefore highlights the importance of considering 

the molecular environment, as phenotypic differences in offspring may be more 

subtle than morphological adaptations. Anogenital distance was not measured 

within this study. In hindsight this may have been a useful measure as there is 

evidence for plasticity in this trait due to maternal influences (Allen and Haggett 

1977; Zielinski, Vandenbergh et al. 1991). 

Mating behaviour, the number of sperm ejaculated and the size of the copulatory 

plug were also not influenced by maternal environment prior to conception. Male 

offspring of females that have been selected through polyandry show increased 

competitive ability (Firman 2011), however, this is likely to be due to genetic 

selection rather than maternal effects on their offspring. If females were able to 

influence the reproductive phenotype of male offspring, in response to the level of 

local competition within their population, this could give a clear advantage over 

competitor males. As male house mice respond plastically to their local level of 

sperm competition by increasing sperm production (Ramm and Stockley 2009a) and 

altering mating behaviour and ejaculate allocation (Preston and Stockley 2006; 

Ramm and Stockley 2007) the adaptive benefit of a maternal effect on these traits 

may be counteracted by mechanisms of phenotypic plasticity. Particularly as mating 
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behaviour and ejaculate allocation are influenced by the local environment at the 

time of mating (Preston and Stockley 2006; Ramm and Stockley 2007). 

Correlations of mating behaviour and ejaculates 

As there were no differences found in the mating behaviour of males according to 

treatment group, data was combined to analyse the relationship between 

behavioural traits and ejaculate composition. 

4.5.3 Trends in ejaculate protein composition 

Predictably, the number of sperm within the ejaculate strongly correlated with the 

ejaculate protein composition. Specifically, proteins that were deemed significantly 

important in relation to the number of sperm tended to be sperm specific proteins. 

SVS2, a major component of the seminal vesicle secretion, was found to have a 

negative correlation with the number of sperm within the ejaculate. As this protein is 

primarily found within the copulatory plug, and males that ejaculated a greater 

number of sperm also produced a larger plug, it is possible that this difference was 

due to more of SVS2 being utilised within the plug in males that ejaculate more 

sperm.  

The protein composition of the ejaculate washed from the uterus only correlated 

with the size of the copulatory plug when all protein within this solution were 

analysed. This would include a large amount of tissue and female derived proteins. 

Further, the significance value was only marginally below the 0.05 threshold. I would 

therefore remain cautious with the interpretation of these results. Most of the 

proteins deemed significant predictors of plug size within the ejaculate were very 

low abundance, non-specific proteins. Two male derived serine protease inhibitor 

proteins (Serpin-1 and Spikl) were significant at predicting copulatory plug size. It 

could have been predicted that a greater plug size would correlate with a greater 

quantity of protease inhibitors, as these proteins act to reduce protein degradation 

and therefore may protect the plug. However, the relationship of each was 

contradictory and so no conclusions can be drawn from this.  
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4.5.4 Trends in male mating behaviour  

Smaller male house mice required more trials with females before a successful 

mating would occur. An increased number of trials lead to a larger copulatory plug, 

regardless of body size. The proteins that compose the copulatory plug have a 

particularly rapid turnover rate (Claydon, Ramm et al. 2012). It is feasible that the 

smaller males wait until they have produced additional seminal vesicle proteins 

before they will mate, allowing the production of an equivalent plug. The same 

relationship is not found with the number of sperm within the ejaculate, however 

sperm production in the house mouse takes around 30 days (Amann 1970; Claydon, 

Ramm et al. 2012). 

Males that performed a great number of thrusts and intromissions also ejaculated a 

greater number of sperm. From this study it cannot be determined if males invest a 

greater amount in mating behaviour if they have a larger store of sperm available, or 

whether males are stimulated to ejaculate a greater number of sperm if they 

perform more mating behaviours. It is also unknown whether it is the male or female 

that determines the duration of the mating and the frequency of the intromissions 

and thrusts. Regardless of these unknowns, these results show that males which 

invest more energy into their mating behaviour also invest more in their ejaculate, 

by increasing their sperm output. 

4.6 Conclusions 

The use of proteomics has shown that, within the house mouse, the protein 

composition of the ejaculate may be influenced by the environment their mother 

experienced prior to conception. The mechanism for this is uncertain. Litter size and 

broader measures of reproductive physiology were not influenced by the maternal 

environment. This result highlights the potential for subtle maternal effects that may 

affect future fertility. 
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5.1 Chapter overview 

Sperm competition has led to selection on males to evolve larger testes. 

Here, I find that males primarily increase sperm output by increasing the 

rate of sperm production.  

Sperm competition leads to an increased relative testis mass across a diversity of 

species. It is expected that this leads to greater sperm production, therefore giving 

males an advantage under competition. There is increasing evidence that functional 

adaptations within the testes also increase the rate of spermatogenesis within 

promiscuous species, and so differences in testes mass may be underestimating the 

Chapter 5 
Sperm competition and sperm 

production in mammals 
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increased sperm production capacity. Here, an analysis of data collected from the 

literature finds that relatively larger mammalian testes do produce more sperm. 

Further, relatively larger testes are more efficient at sperm production, producing 

more sperm per gram of testicular tissue. Combining data from the literature with 

new data collected from histological analyses, I show that increased sperm 

production is primarily due to a faster rate of spermatogenesis, or shorter 

seminiferous epithelium cycle length (SECL). The effects of sperm competition on 

other testicular traits are also analysed. Finally, broad morphological differences in 

the sperm collected from species within two distinct orders, rodents and ungulates, 

are presented. 

5.2 Introduction 

Sperm competition occurs when sperm from more than one male compete within 

the female reproductive tract to fertilise an ovum (Parker 1970).  Under the theory 

of a fair raffle, whereby all sperm have an equal chance of being successful (Parker 

1990), males that can produce and ejaculate more sperm will gain an advantage.  

Males under greater selection from sperm competition have evolved relatively larger 

testes (Harcourt, Harvey et al. 1981).  As larger testes produce more sperm (Amann 

1970; Moller 1989), an increased relative testis mass can improve a male’s chance of 

gaining fertilisations. Increasingly, there is evidence that selection via sperm 

competition may also be acting on traits that alter the efficiency and rate of 

spermatogenesis. Therefore differences in relative testis mass could be 

underestimating differences in sperm production (Lüpold, Linz et al. 2009; Ramm 

and Schärer 2014).   

Spermatogenesis is relatively conserved across mammals (Roosen-Runge 1977). The 

mitotic spermatogonia are recruited to mature within the semiferous epithlium. 

These spermatocytes, supported by the Sertoli cells (Jégou 1992), continue 

developing within the seminiferous tubules, moving towards the tubule lumen with 

each stage of development. After completing approximately four and a half cycles of 
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the seminiferous epithelium (Clermont 1972), the immature sperm (spermatids) are 

released from the seminiferous epithelium and travel to the epididymides for 

storage. Spermatogenesis is a continuous process and each cell transitions through 

histologically recognisable stages. Groups of maturing spermatocytes are associated 

with other groups of cells in defined stages, such that spermatagonia at a set 

developmental stage are always associated with the same type of spermatocytes 

and spermatids. The cycles of the seminiferous epithelium are based on these typical 

cellular associations. Each group of cellular associations follows in a continuous 

sequence and a full series of these associations is considered one cycle (Clermont 

1972).   

 There are three primary mechanisms by which sperm production could be 

increased:- 

1) Having a greater number of supportive Sertoli cells, or increasing their 

capacity to support a greater number of spermatogonia. 

2) Increasing the proportion of sperm producing tissue within the testes. 

3) Increasing the rate of production, by reducing the time each cycle of the 

seminiferous epithelium takes. 

 

Sertoli cells support a limited number of germ cells (Johnson, Carter et al. 1994) and 

after puberty the quantity of these is reasonably stable (Kluin, Kramer et al. 1984; 

Herrera-Alarcón, Villagómez-Amezcua et al. 2007). Selection may therefore favour 

more Sertoli cells, or for them to have a greater supportive capacity. Sertoli cells are 

more efficient and able to support more developing germ cells under a high level of 

sperm competition, in both birds (Lüpold, Wistuba et al. 2011) and mammals 

(delBarco-Trillo, Tourmente et al. 2013). 

The proportion of spermatogenic tissue within testes is highly variable. Within a 

study of testes from 12 mammalian species, the proportion of seminiferous tissue 

ranged from 33% to 93% (Russell, Ren et al. 1990). This wide range may in part be 

due to selection via sperm competition, as there is evidence in both avian (Lüpold, 
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Linz et al. 2009; Rowe and Pruett-Jones 2011) and mammalian (Montoto, Arregui et 

al. 2012) species that larger relative testes mass correlates with increased 

proportion of seminiferous tissue.  

The Seminiferous Epithelium Cycle Length (SECL), and therefore rate of sperm 

production, varies across species.  In mammals there is increasing evidence that the 

SECL correlates negatively with relative testis mass, indicating sperm competition 

increases the rate of sperm production (Peirce and Breed 2001; Parapanov, Nusslé 

et al. 2008; Ramm and Stockley 2010; delBarco-Trillo, Tourmente et al. 2013).  Taken 

together, these studies suggest sperm production should be more efficient in 

species with high levels of sperm competition, creating a greater sperm output per 

unit of testis. This study aims to test this in mammals, to determine whether 

functional adaptations of testes result in differences in sperm production efficiency, 

and which of these factors are most effective at increasing sperm output. 

As well as maximising sperm production, the testicular architecture may be 

optimised to the morphology of the sperm it is producing. The subject of sperm 

competition and sperm length is a contentious one. Various studies have found no 

evidence of a relationship (Briskie and Montgomerie 1992; Gage and Freckleton 

2003; Ramm and Stockley 2010), however there is an opposing argument that sperm 

competition promotes longer sperm (Briskie, Montgomerie et al. 1997; LaMunyon 

and Ward 1999; Tourmente, Gomendio et al. 2011a). Within mammals, it is possible 

that metabolic constraints limit the effects of sperm competition on sperm size, and 

accounting for this within the analysis reveals selection for larger sperm (Gomendio, 

Tourmente et al. 2011; Tourmente, Gomendio et al. 2011b; delBarco-Trillo, 

Tourmente et al. 2013). Within this study, broad morphological measurements of 

sperm are made in order to incorporate this in the analysis of testicular architecture, 

and to compare the general trends across the species with samples available. There 

is not scope to delve into the discussion of sperm length in relation to sperm 

competition with the limited data set here. 
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This study uses comparative analysis techniques to account for the non-

independence of data points due to shared ancestry (Freckleton, Harvey et al. 2002; 

Nunn 2011; Orme, Freckleton et al. 2012). Phylogenetic analysis methods have 

become more sophisticated, and more commonly used, in recent years. This is 

perhaps due to the increased availability, and accessibility, of these methods within 

open platforms, particularly R (R-Development-Core-Team 2011). Details of the 

analysis can be found within the methods section, but the importance of performing 

comparative analysis correctly, accounting for phylogenetic similarities, is worth 

noting here.  
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5.3 Methods 

5.3.1 Literature data collection 

Data on testicular traits and daily sperm production were sourced from the 

literature. Information was available for 35 mammalian species across six orders. 

Where possible, data were collected from the same source for each species. Data is 

presented within the Appendix (Table A1). 

5.3.2 Testes sample collection 

Samples of testicular tissue from captive bred large mammals were collected from 

local zoological collections, Chester Zoo and Knowsley safari park (n=11 species, 15 

samples). Samples from domestic mammals were collected from EM&T Jackson 

abattoir, Knutsford, and Ness Heath Farm, which is attached to the Leahurst campus, 

University of Liverpool (n=4 species, 6 samples). Red squirrels were collected from 

carcasses received by the National Trust, Formby (n=2). All other rodent samples 

were collected from wild caught or laboratory bred animals within the MBE group’s 

collection (n=5 species, 13 samples).  

Large mammal testicular and epidiymal samples were collected following castration 

or death. Males were castrated due to either already having produced sufficient 

numbers of offspring previously or, at becoming sexually mature, to reduce the 

likelihood of aggressive behaviour. Death was either due to illness or, in the case of 

the domestic mammals, being killed for food. Immediately on removal, samples 

were chilled prior to collection. The longest delay between removal and processing 

was three days, but most were collected on the same day.  

After collection, scrotal tissue and the tunica vaginalis were removed from both 

testes within the laboratory. Histological samples were collected from only one 

testis, allowing the other to remain whole for volumetric measurements to be taken 

at a later date. It was also expected that testes from each side would have the same 

architecture and epidiymal sperm. The left or right testis was stored at -20°C at 
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random. The second testis was washed twice in ddH2O and then once in 70% 

ethanol to remove residual dirt and blood. The epididymis was cleaved from the 

testis and approximately 1cm3 sections of testicular tissue were taken from three 

evenly distributed segments of each testis. These were fixed in Bouin’s fixative 

(Saturated picric acid 15: Formaldehyde 5: Glacial acetic acid 1) for two days, prior to 

storage in 70% ethanol. 

Sperm were collected from the caudal section of the epididymis. An approximately 

1cm3 section was dissected and placed in a Petri dish. This tissue was scored 

repeatedly and 400µl PBS added. This was left for 5 minutes before collecting the 

sperm suspension. The Petri dish was then washed with a further 400µl of PBS. The 

sperm suspension was frozen at -80°C prior to proteomic analysis. These results are 

presented within Chapter 6. Sperm remaining on the cauda epididymis were rinsed 

and collected with a further 50µl of PBS. Sperm within 10µl of this suspension were 

viewed under Leica DM 1000 light microscope. A camera and associated software 

(FlyCap; Point Grey) attached to the microscope were used to take images of 

multiple sperm, which could be clearly seen at 400x magnification for further 

measurements to be taken later. 

All rodent samples collected from within MBE were dissected immediately after 

death. Red squirrels were collected and dissected within a day of arrival at Formby. 

These carcasses had been found by members of the public or staff at Formby 

National Trust Centre and so I cannot be certain how fresh these were, however, 

from the quality of the samples I would assume dissection occurred within two days 

post mortem.  

One testis was placed whole, or sliced in half if larger than 2cm in length, into 

Bouin’s fixative for 2 days before being stored in 70% ethanol. The other testis was 

stored in the freezer. Both epididymides were dissected and the cauda section 

isolated. The paired cauda epididymides were placed onto a Petri dish with 200µl of 

PBS, before being macerated with a scalpel. After leaving for 5 minutes the sperm 
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suspension was collected to be stored at -80°C. The Petri dish was rinsed with PBS to 

collect remaining sperm to photograph, as described above. 

5.3.3 Testis histology and measurements 

Histological processing of the fixed testicular tissue was performed by the histology 

services department at the University of Liverpool. Briefly, each section of fixed 

tissue was trimmed to an appropriate size before being dehydrated in alcohol and 

embedded in paraffin wax. A microtome was used to create 5µm thick sections, 

which were then stained with Haematoxylin and Eosin (H&E). 

Testicular sections were viewed using a Leica DM 1000 light microscope. A digital 

camera, attached to the microscope, and associated software (FlyCap; Point Grey) 

were used to take multiple images of each slide at 200x magnification (Figure 5.1). 

Measurements of testicular architecture were taken from the digital images using 

ImageJ (Rasband 1997-2012). For each male, measurements were taken from 

images of three histological slides. Multiple tubules were measured from each slide, 

so that each male had a minimum of 23 measures of tubule diameter (mean±s.e.m. 

= 67±4.5) taken and the tubule area calculated from these. For each male, a 

minimum of 52 measurements of the epithelium height were made (mean±s.e.m. = 

128±9.3). From these measurements, the relative proportions of seminiferous 

epithelium, tubule lumen and interstitial tissue could be calculated.  

5.3.4 Sperm measurements 

Measurements of sperm morphology were made using ImageJ software (Rasband 

1997-2012). For each individual, measurements of tail length, head length and head 

width were taken for a minimum of 5 sperm that could be clearly seen. The head 

width measurements were taken at the widest point of the sperm head. For the 

rodent species, the head width measurement included the hooked section (see 

Figure 5.2). 
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5.3.5 Data analysis 

Data analysis was performed in R (R-Development-Core-Team 2011). Phylogenetic 

Generalised Least Squares (PGLS) analysis was used to control for the effects of 

phylogeny, and shared inheritance of traits (Felsenstein 1985; Freckleton, Harvey et 

al. 2002; Gage and Freckleton 2003). The supertree of Bininda-Emonds et al (2007) 

was used to construct the phylogeny (Figure A1). The R packages APE (Paradis, 

Claude et al. 2004), CAPER (Orme, Freckleton et al. 2012) and Geiger (Harmon, Weir 

et al. 2008) were then used to perform the PGLS analysis. Partial residual plots of the 

data were constructed using the package Faraway (Faraway 2014). All data were 

transformed as appropriate. 

PGLS analysis accounts for phylogenetic non-independence of data points by 

calculating a variance-covariance matrix, for how similar traits should be if they are 

following Brownian model of evolution, and applying this to a linear model 

(Freckleton, Harvey et al. 2002; Orme, Freckleton et al. 2012). Not all traits will 

directly follow a Brownian model. To account for this, the internal branch lengths are 

multiplied by a constant that improves the fit of the model. The PGLS method also 

incorporates a lambda (λ) transformation, and calculates a maximum likelihood 

value (Orme, Freckleton et al. 2012). A larger value of λ indicates a greater amount 

of covariance between closely related species, with λ = 1 corresponding to a 

Brownian model of inheritance (Freckleton, Harvey et al. 2002). When λ = 0, there is 

no evidence for shared inheritance of the traits. In this instance, assuming an 

ultimetric phylogeny, the model will give the same result as a standard linear model. 

Within the analysis presented here, when λ = 0 the results for the linear model are 

shown for simplicity, and to avoid accusations of statistical machismo (McGill 2012).  

Here, PGLS is used to determine the effect of sperm competition on the evolution of 

testicular traits. The level of sperm competition within a species is not a specific 

continuous trait that can be utilised within a regression analysis. Commonly, 

comparative studies use the effect of testes mass, when controlled within the model 

for body mass, as an indicator of the level of sperm competition (e.g. Gage and 
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Freckleton 2003; Ramm and Stockley 2009, but see Briskie and Montgomerie 1992)  

. Sperm competition leads to the evolution of larger testes in mammals (Moller 

1989; Harcourt, Purvis et al. 1995; Ramm, Parker et al. 2005). Within this analysis, 

testes mass was strongly predicted by body mass (λ = 0, n = 50, F1, 48 = 373, P < 

0.001). The species here were also classified according to mating system, either 

single or multi-male. Species with single male mating systems tend to only mate with 

one male per reproductive bout, and those classified as multi-male commonly mate 

multiply each oestrus. Mating system, either single or multi-male, was a significant 

predictor of testes mass when body mass was included in the model (λ = 0, n = 50, 

F2, 48 = 9.36, P = 0.004, Figure 5.3). Or, a multi-male mating system does lead to 

larger relative testes mass within the species here. Therefore here a significant 

testes mass effect, when body mass is included as a covariate, is considered to be a 

significant effect of selection via sperm competition. 
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Figure 5.1: Cross section of a seminiferous tubule from a histological section of a 

Mus spiceligus testis stained with hematoxylin and eosin (H&E) (200x 

magnification). Black double arrow indicates seminiferous epithelium height. 
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Figure 5.2: Images of sperm from a woodmouse and a ram taken at 400x 

magnification. Dotted lines indicate measurement taken for sperm head height, 

solid lines sperm head width. For rodents, sperm head height measurements 

included the hook. Tail length was measured by following the length of the tail using 

a freehand line on ImageJ.  
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Figure 5.3: Scatterplot of the relationship between body mass and testes mass 

within the mammalian species sampled. Dark circles indicate a multi-male mating 

system, whereby females commonly mate with more than one male each oestrus 

cycle, grey circles represent a single-male mating system, within which females 

tend to only mate with one male per reproductive bout.   
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5.4 Results 

5.4.1 Sperm competition and sperm production 

Testes are known to be relatively larger in species under selection via sperm 

competition (Kenagy and Trombulak 1986; Harcourt, Purvis et al. 1995; Stockley, 

Gage et al. 1997). Here, a significant testes mass effect when controlling for body 

mass is considered to indicate an adaptation to sperm competition, as has been 

suggested previously (Gage and Freckleton 2003; Ramm and Stockley 2010).  

Testes mass predicted daily sperm production (DSP) when accounting for body mass 

(λ = 0, n = 30, F2, 28 = 81.15, P < 0.001). DSP per gram of testicular tissue was also 

predicted by testes mass, when controlled for body mass (λ = 0, n = 31, F2, 29 = 4.12, 

P = 0.05). Therefore sperm competition, as indicated by larger relative testes mass, is 

associated with greater sperm production efficiency. 

5.4.2 Testicular architecture and sperm production 

To understand the likely mechanism of increased sperm production efficiency, the 

relationship between sperm production and testicular traits was analysed. The traits 

for which data was available from the literature were the seminiferous epithelium 

cycle length (SECL), the proportion of seminiferous tissue, and the number of Sertoli 

cells. These factors, along with body mass and testes mass, were incorporated in a 

PGLS model that had DSP per gram of testes as the dependent variable. In this full 

model, only SECL was a significant predictor of DSP per gram (λ = 0, n = 27, t = -3.18, 

P = 0.011). As body mass is included as a covariate of the model, the effects of 

overall size are accounted for and so a model with total DSP was performed with the 

same predictor variables. Here, again SECL was a significant predictor, as was testes 

mass (λ = 0, n = 27 SECL: t = -2.39, P = 0.04, testes mass: t = 2.74, P = 0.023; see 

Table 5.1). This effect became more pronounced in a reduced model. Although there 

was no effect of the proportion of seminiferous tissue on sperm production, it is 

worth noting that, without accounting for body mass, this is a strong predictor of 
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DSP (λ = 0.1, n = 40, t = 2.91, P = 0.008). However, although in theory this trait may 

not be linked to body mass, in reality males with a larger body mass have a smaller 

proportion of seminiferous tissue (λ = 0.55, n = 40, t = -2.74, P = 0.009). See Figure 

5.4 for the relationship between testicular architecture and sperm production. 

5.4.3 Sperm competition and testicular traits 

This analysis found that sperm competition appears to select for a faster rate of 

sperm production, as there was a significant effect of testes mass controlled for 

body mass, on the SECL (λ = 0, n = 31, TM effect: t = - 3.33, P = 0.024). The number 

of Sertoli cells was also significantly predicted by testes mass (λ = 0.74, n = 20, TM 

effect: t = 4.55, P < 0.001). The proportion of sperm producing seminiferous tissue 

was not predicted by testes mass, when controlled for body mass (λ = 0.49, n = 40, 

TM effect: t = 1.20, P = 0.24). Further details can be found in Table 5.2 and Figure 

5.5. 

5.4.4 Testis histology 

None of the histological measures of testicular architecture were predicted by sperm 

competition. Unfortunately, due to the species available, there were only a few 

species for which the data could be included in the analysis of sperm production 

efficiency. 

5.4.5 Sperm length 

Sperm competition, as indicated by a significant effect of testes mass when 

controlled for body mass, did not predict sperm length. There was also no 

relationship between sperm morphology and sperm production rates. Males with a 

smaller body mass did have a longer sperm length (λ = 0, n = 30, t = -4.67, P < 0.001). 

In accordance with this, ungulates had shorter sperm than rodents (n = 24, W = 125, 

P < 0.001). The broad differences in sperm length between rodents and ungulates 

were primarily due to differences in the length of the tail (Tail: λ = 0.0, n = 14 Family 

effect: t = -3.16, P = 0.008; Head: λ = 0.47, n = 14 Family effect: t = -2.29, P = 0.04). 
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When accounting for these broad differences by including body mass in the 

phylogenetically controlled model, mating behaviour, either multi or single male 

mating system, did predict sperm length (λ = 0.85, n = 30 mating effect: t = -2.62, P = 

0.014). There was very little variance in the length of sperm found within ungulate 

species. In contrast, the sperm of rodents were far more variable and those from 

species with multi-male mating systems were considerably longer (see Figure 5.6). 

The interesting hook morphology found within the rodent species here (see Figure 

5.2) is well documented in murine rodents and exaggerated due to sperm 

competition (Breed 2005; Immler, Moore et al. 2007). The pronounced hooks made 

the head width measurements not directly comparable. Here, rodents were found to 

have wider sperm heads, when measured including the hook, than ungulates (λ = 0, 

n = 14, t = -2.43, P = 0.032). It is clear that the sperm of large mammals is 

morphologically very different from rodents. 
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Figure 5.4: Partial residual plots to show the relationship between daily sperm 
production and body mass, testes mass, seminiferous epithelium cycle length, and 
proportion of seminiferous tissue. Partial residual plots show the relationship 
between the designated independent variable and daily sperm production, when 
accounting for the rest of the variables in the model. 
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Table 5.1: Table of values following analysis of the effect of testicular traits on daily 

sperm production. DSP/g = Daily sperm production / gram testicular tissue, BM= 

Body mass, TM = Testes mass, SECL = Seminiferous epithelium cycle length, %SE = 

proportion of seminiferous tissue, #Sertoli = the total number of Sertoli cells within 

the testes. When λ=0 there is no indication of phylogenetic signal and so the model 

is equivalent to a linear model. 

 

 

  Term Estimate ± s.e. t P-value r2
adj 

Model: DSP/g ~ BM + TM                                                             n=31, λ=0 

 
Intercept 4.57 ± 0.49 9.398 <0.001 0.23 

 
Body mass -0.24 ± 0.09 -2.81 0.009 

 

 
Testes mass 0.23 ± 0.11 2.03 0.05 

 

      Model: DSP ~ BM + TM+SECL+%SE+#Sertoli                         n=27, λ=0 

 
Intercept 7.74 ± 3.96 1.96 0.082 0.93 

 
Body mass -0.23 ± 0.20 -1.15 0.28 

 

 
Testes mass 1.27 ± 0.46 2.74 0.023 

 

 
SECL -1.97 ± 0.83 -2.39 0.04 

 

 
%SE 1.84 ± 1.67 1.10 0.3 

 

 
#Sertoli -0.07 ± 0.44 -0.17 0.87 

 

      Model: DSP ~ BM + TM+SECL+%SE                                          n=30, λ=0 

 
Intercept 5.32 ± 2.74 1.944 0.0739 0.94 

 
Body mass -0.08 ± 0.15 -0.51 0.6181 

 

 
Testes mass 1.06 ± 0.19 5.659 <0.001 

 

 
SECL -1.92 ± 0.74 -2.61 0.0214 

 

 
%SE 2.84 ± 1.40 2.022 0.0643 
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Figure 5.5: Partial residual plots from models investigating the relationship between 

testes mass, when accounting for body mass indicating an effect of sperm 

competition, on testicular traits. These plots show the relationship between the 

designated response variables and testes mass, given that body mass was a co-

variable in the models. 
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Table 5.2: The effect of testes mass, when controlling for body mass, on testicular 

traits. Values of λ are a maximum likelihood estimate, with a potential range 

between 0 – 1: larger values indicate a greater phylogenetic signal. SECL = 

Seminiferous epithelium cycle length, BM = Body mass, TM = Testes mass, %SE = 

Proportion seminiferous tissue, #Sertoli = the number of Sertoli cells within the 

testes. 

 

  Term Estimate ± s.e. t P-value r2
adj 

Model: SECL ~ BM + TM                                                             n=31, λ=0 

 
Intercept 1.81 ± 0.14 13.42 <0.001 0.37 

 
Body mass 0.11 ± 0.03 4.145 <0.001 

 

 
Testes mass -0.12 ± 0.04 -3.33 0.002 

 

 
 

    Model: %SE ~ BM + TM                                                             n=40, λ=0.49 

 
Intercept 1.37 ± 0.11 12.3 <0.001 0.15 

 
Body mass -0.04 ± 0.02 -2.44 0.019 

 

 
Testes mass 0.03 ± 0.02 1.2 0.238 

 

      Model: #Sertoli ~ BM + TM                                                      n=20, λ=0.74 

 
Intercept 4.65 ± 0.67 6.96 <0.001 0.94 

 
Body mass -0.17 ± 0.12 -1.41 0.18 

 

 
Testes mass 1.13 ± 0.14 7.87 <0.001 
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Figure 5.6: Boxplot of sperm length, according to mating system, within rodents 

and ungulates. A multi-male mating system refers to one whereby females 

commonly mate with more than one male each oestrus cycle. In contrast, in a 

single-male mating system females tend to only mate with one male per 

reproductive bout.   
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5.5 Discussion 

5.5.1 Sperm competition selects for more efficient sperm production 

This analysis shows that selection through sperm competition appears to increase 

sperm production efficiency, as males with relatively large testes for their body size 

also produce more sperm per gram of testicular tissue each day. This increased 

efficiency is primarily due to an increased rate of sperm production, through the 

shortening of the SECL. That sperm competition selects for a shortened SECL has 

been shown previously (Parapanov, Nusslé et al. 2008; Ramm and Stockley 2010; 

delBarco-Trillo, Tourmente et al. 2013). The association with SECL and daily sperm 

production (DSP) may be due, in part, to these two factors being autocorrelated. DSP 

is generally calculated by counting the number of spermatids within a testicular 

homogenate before dividing this figure by the SECL, as this is the number of days 

each sperm will remain in this stage of development (e.g. Amann 1970). Regardless, 

this analysis provides further evidence that sperm competition selects for a faster 

rate of sperm production, and that this leads to increased sperm production 

efficiency. 

There was no association between the number of Sertoli cells and DSP. Males with 

relatively larger testes had more Sertoli cells overall, but these were not found at a 

greater density.  This is in agreement with previous work in mammals (delBarco-

Trillo, Tourmente et al. 2013). It is likely that instead of gaining a greater density of 

Sertoli cells, sperm competition selects for Sertoli cells to support a greater number 

of developing germ cells (Lüpold, Wistuba et al. 2011; delBarco-Trillo, Tourmente et 

al. 2013).  

There was no significant relationship between the proportion of sperm producing 

seminiferous tissue within the testes and DSP, when accounting for body mass. 

Similarly, there was no evidence within this analysis that sperm competition selects 

for a greater proportion of sperm producing tissue. This is in contrast to previous 

analysis in avian species (Lüpold, Linz et al. 2009; Rowe and Pruett-Jones 2011), 
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however the range of values within the analysis here was far greater than within the 

earlier studies (32.7% – 92.7% here, compared to Lüpold et at: 87.7% – 95.7%; Rowe 

and Pruett-Jones: 99.74% - 98.99%).  

Studies of mammalian species have also found an effect of sperm competition on 

the proportion of seminiferous tissue (Montoto, Arregui et al. 2012; delBarco-Trillo, 

Tourmente et al. 2013).  The different result found here may be due to this study 

having a smaller proportion of small mammals (including Rodentia, Lagomorpha and 

Eulipotyphla). The earlier of the two previous studies was an analysis of four Mus 

species (Montoto, Arregui et al. 2012). The more recent analysis contained 56% 

small mammal species (delBarco-Trillo, Tourmente et al. 2013), compared to 42% 

within this study. As the proportion of seminiferous epithelium tissue is negatively 

correlated with body mass, it is possible that the large mammals within this analysis 

are masking the effect of sperm competition within the smaller mammals. Analysing 

only rodent species within the data available here does not give a significant result, 

however this is on a sample size of 12. The limited data here is due to the primary 

analysis focussing on the effects of testicular traits on DSP, and so only species with 

values for DSP are included.  

When considering the proportion of sperm producing tissue within the testes it is 

also worth bearing in mind the function of the interstitial tissue. Much of the space 

between the tubules is filled with androgen producing Leydig cells (Stocco and 

McPhaul 2006). In capybaras (Hydrochaeris hydrochaeris), a species with testes 

containing 72% interstitial tissue (Moreira, Clarke et al. 1997), increases in relative 

testes mass are more closely associated with larger androgen-dependant scent 

glands than greater sperm production (Moreira, Macdonald et al. 1997). In large 

ungulate species, high levels of testosterone often correlate to larger secondary 

sexual characteristics (i.e. horns or antlers) (Suttie, Lincoln et al. 1984; Martin, 

Presseault-Gauvin et al. 2013). These weapons are under strong sexual selection 

(Bro-Jørgensen 2007a), and so this may result in a trade-off between the proportion 

of testicular tissue devoted to sperm production, as opposed to androgen 
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production. Within smaller species of mammals, it may be harder for males to 

compete in pre-copulatory sexual selection. In this instance there may be a greater 

emphasis on increasing sperm production in order to remain competitive. 

5.5.2 Testicular histology 

This analysis found no evidence for sperm competition selection acting on any of the 

histological traits measured here. This is in agreement with a larger study of 

mammals, analysing data collected from literature sources (delBarco-Trillo, 

Tourmente et al. 2013). It is possible that functional constraints of spermatogenesis 

limit adaptations of the gross architecture of the testes. Instead, adaptations to the 

relative size of the testes, the rate of sperm production, supportive capacity of 

Sertoli cells and proportion of sperm producing tissue appear to be enough to 

sufficiently increase sperm production. Further, no relationship was found between 

histological measures and sperm length, suggesting testis architecture is not, at least 

in part, determined by sperm morphology. 

5.5.3 Sperm morphology 

Gross differences in sperm morphology may further highlight the differing priorities 

of males from these distinct mammalian orders. Sperm from murine rodents is well 

characterised by the impressive hooked head morphology (Breed 2005; Šandera, 

Andrlíková et al. 2011). This adaptation allows sperm to aggregate into trains, which 

move faster through the reproductive tract (Moore, Dvorakova et al. 2002; Immler, 

Moore et al. 2007). The analysis here found the sperm tails of rodents to be far 

longer than in larger mammals. When considering the huge difference in the size of 

the tracts the sperm will navigate, this represents a considerable difference in the 

relative investment in the sperm morphology of these species.  

The relationship between sperm length and sperm competition is somewhat 

contentious. There is evidence that sperm competition leads to longer sperm 

(Briskie, Montgomerie et al. 1997; LaMunyon and Ward 1999; Tourmente, 

Gomendio et al. 2011a; Tourmente, Gomendio et al. 2011b). However, many 
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studies, as within this analysis, find no relationship between competition and sperm 

size (Briskie and Montgomerie 1992; Gage and Freckleton 2003; Ramm and Stockley 

2010). It has been suggested that, within mammals at least, the differences in 

selection on sperm length are due to metabolic constraints (Gomendio, Tourmente 

et al. 2011; Tourmente, Gomendio et al. 2011b; delBarco-Trillo, Tourmente et al. 

2013).  

The intricacies of the relationship between sperm competition and selection on 

sperm morphology may be beyond the scope of this chapter; however it is of note 

how distinct the morphologies of rodent, compared to ungulate, sperm are (see 

Figure 5.2). This may be due to different investment strategies, with larger males 

instead requiring greater effort to secure mates. 

5.6 Conclusions 

Here, I show that sperm competition leads to an increase in the efficiency of sperm 

production within mammals. This is primarily driven by a decreased SECL, increasing 

the rate of spermatogenesis. In contrast to previous studies, I find no evidence for 

sperm competition selecting for an increased proportion of seminiferous tissue. This 

may be due to this study including a greater proportion of larger species, for which 

the androgen producing interstitial tissue of the testes may have greater 

importance. Differences in investment strategies, according to family groups, are 

further highlighted when considering gross sperm morphology. Rodents tend to 

have highly evolved sperm, adapted to a high level of post-copulatory sexual 

selection. In contrast, males from larger species may instead invest in being more 

successful at pre-copulatory sexual selection. 
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6.1 Chapter overview 

Proteins involved in reproduction are known to evolve rapidly. Here, 

proteomic analysis is performed on epididymal sperm samples from a 

broad range of mammalian species.  

Sexual conflict and post-copulatory sexual selection can lead to rapid evolution of 

the proteins involved in fertilisation processes. The reproductive proteomes of 

relatively closely related species may therefore be very different from each other. 

Here, I use proteomic analysis of cauda epididymal samples collected from a diverse 

range of mammals to study variation in the sperm proteome. I find that these 

samples are broadly similar, however proteins that are involved in sperm – egg 

Chapter 6 
Proteomic investigation of  

mammalian sperm 



198 

 

interactions show lower levels of sequence homology. This is in accordance with 

previous evidence for the rapid evolution of those proteins necessary for sperm – 

egg interactions. Further, this study provides the first analysis of proteins within the 

cauda epidiymal samples of many of the species sampled here. 

6.2 Introduction 

Proteins involved in reproduction evolve rapidly, despite being required for the 

crucial process of fertilisation (Swanson and Vacquier 2002; Clark, Aagaard et al. 

2006; Turner and Hoekstra 2008). The rapid evolution of reproductive proteins is of 

particular interest to evolutionary biologists, as it may lead to reproductive isolation 

and speciation (Gavrilets 2000). There is increasing evidence that post-copulatory 

sexual selection and sexual conflict drive both rapid evolution, and co-evolution, of 

male and female mammalian reproductive proteins (e.g. Swanson, Yang et al. 2001; 

Dorus, Evans et al. 2004; Turner and Hoekstra 2006; Ramm, Oliver et al. 2008; Dorus, 

Wasbrough et al. 2010). These studies utilise genomic techniques to compare the 

rate of genetic divergence, of genes specific to reproduction, within closely related 

species. More recently, proteomic techniques have been used to compare 

mammalian ejaculate proteins (Druart, Rickard et al. 2013), finding functional 

adaptations that have evolved according to the level of sperm competition (Ramm, 

McDonald et al. 2009). For wide scale analyses of rates of protein evolution genomic 

approaches offer the best results. Here I wanted to identify the major components 

of the epididymal secretion from a diverse set of mammals, as well as making 

inferences as to the evolution of these proteins, and so a proteomics approach was 

taken. 

In order to identify proteins using proteomic techniques, knowledge of the protein 

sequence is required. Databases, such as UniProtKB, offer a vast resource of protein 

sequence information that can be used to identify peptides (Consortium 2014). As 

98% of the protein sequences within UniProtKB have come from translating the 

coding sequences of known genes, most of the protein sequence information 
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available is reliant on the level of genomic information for that species. When 

analysing species which have no protein sequence information available, database 

searches will instead find proteins that share identical peptides. These are often 

homologous proteins from closely related species. De novo sequencing techniques 

enable the sequencing of peptides without protein sequence information (e.g. 

Dancik, Addona et al. 1999). Recent advances in proteomic analysis software utilise 

de novo sequencing to increase the accuracy of database searching when studying 

species for which protein sequence information is unavailable (Ma, Zhang et al. 

2003; Zhang, Xin et al. 2012).This provides a useful tool for comparing the 

proteomes of various, non-sequenced species. Here, I use proteomics techniques to 

compare the proteins present within samples obtained from the cauda epididymides 

of 19 mammalian species belonging to two broad groups: rodents and ungulates. 

When considering rapidly evolving proteins, such as those within the reproductive 

tract, techniques relying on the presence of orthologous proteins may appear 

unorthodox. However, although many reproductive proteins are evolving rapidly, 

there is evidence that a majority of functional proteins are relatively conserved 

(Dean, Clark et al. 2009; Carnahan-Craig and Jensen-Seaman 2014). Comparing the 

proportion of the protein also identified within other species, and therefore 

conserved, can imply rates of amino acid sequence divergence. Furthermore, 

proteomics methods provide an accurate depiction of the proteins present within 

the sample. Methods relying on mRNA transcripts are not representative of protein 

expression (Gygi, Rochon et al. 1999), which could be of particular importance to the 

reproductive proteins that limit mRNA expression to the testes, although the 

proteins are present within sperm (e.g. Zonadhesin, Gupta 2005).  

As well as a broad overview of those proteins found within epididymal samples 

obtained from a range of mammalian species, I consider sperm specific proteins 

known to either be structurally important or involved in sperm – egg interactions 

(see Gupta 2005 for a detailed introduction to proteins of spermatogenesis). For 

fertilisation to successfully occur, the sperm sheds its acrosomal layer, penetrates 
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the zona-pellucida, and aligns horizontally to the oolemma, allowing it to bind at the 

equatorial segment. The sperm membrane and oolemma are then able to fuse, 

before the oocyte engulfs the sperm in a phagocytic manner (Primakoff and Myles 

2002; Rubinstein, Ziyyat et al. 2006). Although the molecular interactions 

surrounding this process are yet to be entirely understood, various key proteins have 

been identified at each level of this process. Zonadhesin, sperm surface protein 17, 

spermadhesin and zona pellucida binding proteins are all known to assist with sperm 

binding to and penetration of the zona pellucida (Hardy and Garbers 1995; Kong, 

Richardson et al. 1995; Gao and Garbers 1998; Burkin and Miller 2000; Töpfer-

Petersen and Calvete 2005). Sperm equatorial segment protein 1 and izumo sperm – 

egg fusion protein allow the sperm to fuse to the oolemma, with the latter protein 

being required for this process to occur and so essential to fertilisation (Inoue, Ikawa 

et al. 2005; Fujihara, Murakami et al. 2010). There are various proteins essential to 

the structural integrity of sperm. Here, for simplicity, I present data on the outer 

dense fibre proteins (ODF), and a-kinase anchor proteins (AKAP), which make up 

much of the sperm fibrous sheath (Vera, Brito et al. 1984; Oko 1988; Brown, Miki et 

al. 2003). An overview of the chosen proteins and their functions can be found in 

Table 6.4.  
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6.3 Methods 

6.3.1 Samples 

Epididymal sperm samples were collected as described in Chapter 5. 

6.3.2 Proteomic analysis 

In order to identify the proteins present within the epididymal sperm of each 

species, samples collected from the cauda epididymis were analysed using 

proteomic methods similar to those described in Chapter 2. In total, 30 samples from 

19 species were analysed (see Table 6.1). Briefly, each sample was defrosted and 

vortexed for 1 minute. The homogenous solution was assayed to determine the 

protein concentration using the Coomassie plus protein assay before a trypsin digest 

was performed on 50 mg protein in a final volume of 200 µl. Tryptic digests were 

diluted 1:1 with 97:3:0.1  HPLC grade water:MeOH:TFA and then resolved over a 90 

minute linear organic gradient using ultra performance liquid chromatography 

(Waters nanoAcquity) coupled with tandem mass spectrometry using the LTQ 

Orbitrap Velos (Thermo). 

6.3.3 Protein identification 

In order to maximise the number of peptides that were successfully matched to 

protein sequences, PEAKS (Bioinformatics solutions inc.) software was used to 

perform protein identification. PEAKS is a preferred method for improving the 

accuracy of protein identifications for species that do not have protein sequence 

data available (Ma, Zhang et al. 2003; Zhang, Xin et al. 2012). This software performs 

de novo sequencing on all peptide hits from within the raw data files. Here, I then 

specified for PEAKS to compare the de novo peptide sequences with those within a 

Uniprot validated database for all mammalian species. Combining de novo 

sequencing with database searching, PEAKS analysis is more mutation tolerant and 

improves the accuracy of each protein identification (Ma, Zhang et al. 2003; Zhang, 

Xin et al. 2012).  
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6.3.4 Data analysis 

Due to the exploratory nature of this study, statistical analysis would be of limited 

value. Instead, information regarding the proteins identified within a cauda 

epididymal sample from each species available is presented here. As sequence data 

is not available for most of the species tested, the proteins are identified based on 

peptides that are present within sequenced species. Therefore, well characterised 

and evolutionary conserved proteins are more likely to be identified than those 

proteins that are highly species specific. As reproductive proteins are generally 

rapidly evolving (Swanson, Yang et al. 2001; Swanson and Vacquier 2002), many of 

the proteins identified may only have been matched to a few conserved peptides. 

Conversely, evolutionarily stable proteins will be identified with a greater number of 

peptides and are likely to have many species matches. 

To discover the most confidently identified proteins within the data a reduced set 

was produced, containing only proteins identified within the following parameters; 

coverage ≥ 20%, number of unique peptides ≥ 2, -10IgP ≥ 50. Coverage is the 

proportion of the protein sequence for which peptides are identified. Proteins do 

not digest into only easily identifiable peptides; instead many peptides are 

undiscoverable due to extremes of size or charge. Therefore, using HPLC-MSMS 

techniques, coverage values of 100% are uncommon. In contrast, coverage values 

below 20% suggest a less confident identification. Similarly, in order to increase 

confidence in the protein identification, a minimum of two unique peptides was 

specified. Peptides are considered unique in relation to that specific protein. 

Discovery of multiple unique peptides suggests it is likely the protein is present. The 

third measure used to increase the confidence of protein matches within the 

reduced data set is the -10lgP score. This value is calculated by PEAKS to represent 

the likelihood of the peptide being an accurate, as opposed to random match. It is 

equivalent to -10*log(P-value), whereby the P-value is the probability the peptide 

was matched to the database by chance, calculated according to the quality of the 

peptide spectrum match. As the -10lgP score is on a log scale, a cut off of 50 is 

equivalent to a 0.001% probability that the spectrum was matched by chance. PEAKS 
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recommends a threshold of 20 (equivalent to a 1% chance of a random match), and 

so within the full list of proteins each is identified with at least this level of 

confidence.  

Data is presented for both the reduced list and the entire complement of proteins. 

Information on the number of identified proteins, the most common species match, 

the number of species matches and correlated traits are investigated. Further, the 

proteins that were identified within all species are described. Specific proteins 

known to be present within the ejaculate were considered more closely. These were 

either structural sperm proteins, or those known to be involved in sperm egg 

interactions (see Section 6.2). For each of these proteins, for each species analysed, 

the coverage, number of unique peptides and most common species match is 

presented. 
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Table 6.1: Epididymal sperm samples collected for proteomic analysis.  

 

Common name Latin name #samples 
Rodent / 

Ungulate 

Mating 

system 

Alfreds Spotted Deer Cervus alfredi 1 U Multi-male 

Ankole Bos indicus 2 U Single-male 

Bank Vole Clethrionomys glareolus 2 R Multi-male 

Blackbuck Antilope cervicapra 1 U Multi-male 

Brown Norway Rat Rattus norvegicus 2 R Multi-male 

Boar Sus domesticus 2 U Multi-male 

Buffalo Syncerus caffer 1 U Single-male 

Bull Bos taurus 1 U Single-male 

Field Vole Microtus agrestis 2 R Multi-male 

Gemsbok Oryx Oryx gazella 1 U Single-male 

Lechwe Kobus leche 1 U Multi-male 

Ram Ovis aries 3 U Multi-male 

Red Squirrel Scuirus vulgaris 1 R Multi-male 

Scimitar Oryx Oryx dammah 1 U Multi-male 

Warthog Phacochoerus africanus 1 U Multi-male 

WildBoar cross Sus scrofa 1 U Multi-male 

Wildebeast Connochaetes gnou 1 U Multi-male 

Wistar rat Rattus norvegicus 2 R Multi-male 

Woodmouse Apodemus sylvaticus 3 R Multi-male 

Zebra Equus grevyi 1 U Multi-male 
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6.4 Results 

6.4.1 General protein composition of mammalian sperm 

Following proteomic analysis, an average of 873 proteins were identified within each 

cauda epididymal sample (range: 549 – 1103). The mean coverage values and most 

commonly matched species for each sample are presented within Table 6.2. Within 

each sample, proteins were matched to the sequence data available within a 

database containing all available mammalian sequence data. Identified proteins 

matched to an average of 98 species within each sample (range: 55 - 140). A 

mitochondrial protein, Cytochrome b, was the protein most commonly identified 

with the most species matches (mean ± s.e. 36.4 ± 2.2 species, n=11).   

Considering only the reduced data set, an average of 226 proteins were identified 

per sample (range: 131 – 341). Within each sample, protein sequences were 

matched to an average of 38 species (range: 26 – 60). The most commonly identified 

species remained the same for most samples. For the swine (domestic boar, wild 

boar, and warthog) the most common species identified changed from Homo 

sapiens within the full data set, to Sus scrofa within the reduced set.  Information for 

each sample can be found in Table 6.3. 

In total, 120 proteins were identified within all rodent samples, and 72 within all 

ungulate samples. Of these, 47 were identified within samples from all species. 

Within the reduced set of proteins, 7 proteins were identified in all rodent, and 10 

within all ungulate samples, see Figure 6.1. Only four were identified within all 

samples from the reduced data set, 14-3-3 protein epsilon, 14-3-3 protein 

zelta/delta, Calmodulin and Histone H4.  Many proteins were identified in most, but 

not all, samples. Within the rodent species, 191 proteins were identified in 10 out of 

12 samples. A total of 188 proteins were identified in 15 out of 18 ungulate samples. 
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6.4.2 Data on proteins of particular interest 

For simplicity, I choose 9 proteins to consider in more detail, see Table 6.4. Three of 

these, AKAP3, ODF1, and ODF2 are known structural components of sperm. The 

other six proteins were chosen due to their known involvement in sperm – egg 

binding. These results are presented within Table 6.5, Table 6.6 and Figure 6.2. 

Overall, the structural proteins were identified with a greater coverage than those 

involved with sperm – egg interactions (t = -9.53, df = 124.8, P < 0.001). Examples of 

protein sequence coverage and identified peptides can be found in Figure 6.3 and 

Figure 6.4. Dotplots comparing homologous protein sequences of ODF2 and 

zonadhesdin from two model species can be found within Figure 6.5. These were 

produced within R (v3.1.0) using the seqinr package (Charif, Lobry et al. 2012). 
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Figure 6.1: Number of proteins identified within cauda epididymal samples from 

all species of rodent, ungulate and those within all species a) using the total data 
set, and b) using only the reduced set. The reduced set was selected by using more 
stringent criteria to identify the most confident matches (coverage ≥ 20%, number 
of unique peptides ≥ 2, -10logP ≥ 50). 

 

  

(b) 

(a) 
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Table 6.2: Overview of the proteins identified within mammalian cauda epididymal sperm samples. 
 *Bos = Bos taurus, Homo = Homo sapiens, Mus = Mus musculus, Rattus = Rattus norvegicus, Sus = Sus scrofa 
 

Sample #Proteins Ave cov (%) #Species ID'd Most common species* Protein with most species hits #species 

Alfreds Spotted 

Deer 1054 18.63 124 Bos Cytochrome b  33 

Ankole1 983 17.28 102 Bos Cytochrome b, Actin  cytoplasmic 1  18 

Ankole2 549 16.76 98 Bos Haemoglobin subunit beta  30 

BankVole1 875 16.27 140 Mus Cytochrome b  42 

BankVole2 832 15.81 121 Mus Cytochrome b  44 

Blackbuck 897 14.16 88 Bos Caveolin-1  30 

BNRat1 914 17.27 123 Rattus Cytochrome b  36 

BNRat2 880 17.37 101 Rattus Cytochrome b  37 

Boar1 740 16.74 55 Homo Actin cytoplasmic 1  17 

Boar2 812 19.09 61 Homo Actin cytoplasmic 1  18 

Buffalo 898 15.6 102 Bos F-actin-capping protein subunit alpha-2  25 

Bull 910 20.15 84 Bos Haemoglobin subunit beta  28 

FieldVole1 979 16.48 80 Mus Caveolin-1  30 

FieldVole2 1026 16.96 89 Mus Actin cytoplasmic 1, Haemoglobin subunit alpha  17 

GemsbokOryx 1103 19.28 116 Bos Cytochrome b  32 

Lechwe 1044 17.38 100 Bos Caveolin-1  30 

Ram1 818 18.16 131 Bos Cytochrome b  41 
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Sample #Proteins Ave cov (%) #Species ID'd Most common species* Protein with most species hits #species 

Ram2 905 17.37 106 Bos Cytochrome b  39 

Ram3 990 20.1 79 Bos Actin cytoplasmic 1  19 

RedSquirrel 838 16.36 101 Homo Testin  31 

ScimitarOryx 718 15.81 86 Bos 

Actin cytoplasmic 1, Cytochrome c oxidase 

subunit 2  17 

Warthog 770 17.58 73 Homo Actin cytoplasmic 1  18 

WildBoarX 855 16.46 65 Homo Actin cytoplasmic 1  17 

Wildebeast 1004 14.91 96 Bos F-actin-capping protein subunit alpha-2  25 

Wistar1 840 17.18 64 Rattus Actin cytoplasmic 1  17 

Wistar2 791 16.37 93 Rattus Cytochrome b  37 

Woodmouse1 661 16.46 93 Mus Actin cytoplasmic 1  19 

Woodmouse2 643 16.27 107 Mus F-actin-capping protein subunit alpha-2  30 

Woodmouse3 1076 17.82 133 Mus F-actin-capping protein subunit alpha-2  31 

Zebra 791 16.04 125 Homo Cytochrome b  41 

  



210 

 

Table 6.3: Overview of the protein identifications within cauda epididymal samples 
using more stringent selection (coverage ≥ 20%, unique peptides ≥ 2, -10lgP ≥ 50).  

*Bos = Bos taurus, Homo = Homo sapiens, Mus = Mus musculus, Rattus = Rattus 
norvegicus, Sus = Sus scrofa 
 

Sample # Proteins Ave cov (%) #Species ID'd 
Most common 

species* 

Alfreds Spotted Deer 324 37.03 43 Bos 

Ankole1 254 36.83 40 Bos 

Ankole2 171 35.69 26 Bos 

BankVole1 188 37 41 Mus 

BankVole2 188 35.4 38 Mus 

Blackbuck2 161 35.75 32 Bos 

BNRat1 288 37.01 37 Rattus 

BNRat2 270 38.19 39 Rattus 

Boar1 189 34.05 34 Sus 

Boar2 218 39.23 32 Sus 

Buffalo 207 35.19 35 Bos 

Bull 320 41.4 41 Bos 

FieldVole1 204 36.12 51 Mus 

FieldVole2 233 36.53 42 Mus 

GemsbokOryx 341 39.38 43 Bos 

Lechwe 275 36.71 34 Bos 

Ram1 254 36.86 40 Bos 

Ram2 258 37.37 47 Bos 

Ram3 321 40.5 41 Bos 

RedSquirrel 142 34.62 60 Homo 

ScimitarOryx 156 35.81 41 Bos 

Warthog 194 36.75 33 Sus 

WildBoarX 211 36.63 34 Sus 

Wildebeast 208 31.45 41 Bos 

Wistar1 257 36.58 32 Rattus 

Wistar2 253 34.2 31 Rattus 

Woodmouse1 149 36.27 40 Mus 

Woodmouse2 131 36.56 32 Mus 

Woodmouse3 229 36.97 36 Mus 

Zebra 146 38.82 35 Homo 
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Table 6.4: The known functions of proteins which were selected for further investigation within this study.  
 

Protein name Short name Function Reference 

Outer-dense fiber protein 2 ODF2 Sperm fibrous sheath; sperm motility Vera et al. 1984; Oko 1987 

Outer-dense fiber protein 1 ODF1 Sperm fibrous sheath; sperm motility Vera et al. 1984; Oko 1988 

A-Kinase Anchor Protein 3 AKAP3 Sperm fibrous sheath; binds interacting proteins Brown 2003 

Sperm surface protein Sp17  SpS17 Binds zona pellucida O'Rand 1995 

Zona pellucida-binding protein 1  
ZP-binding 

protein 
Binds zona pellucida Burkin and Miller 2000 

Spermadhesin-1  Spermadhesin 
Ungulate specific, peripheral sperm proteins, initial sperm - ZP 

interactions 
Hasse et al. 2005;  

Izumo sperm-egg fusion protein 4  Izumo Required for sperm - egg fusion Inoue et al. 2005 

Sperm equatorial segment protein 

1  
Sp Equatorial Sperm - egg fusion Fujihara et al. 2010 

Zonadhesin  Zonadhesin Multiple adhesion domains, bind to ZP and oocyte ECM Hardy and Garbers 1995 
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Figure 6.2: Protein sequence coverage of peptides identified within cauda 

epididymal sperm samples from*19 mammal species. Proteins were structural 
components of sperm (black circles) or involved in sperm-egg interactions (grey 
circles) * P < 0.001. Circles represent mean ± sem. 
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Table 6.5: Sequence coverage, the number of unique peptides and the best species 
match for proteins which are structural components of sperm identified within 
cauda epididymal samples. 
         

  AKAP3 ODF1 ODF2 

Species 
Cov 

(%) 
#Unique 

Sp 

match 

Cov 

(%) 
#Unique 

Sp 

match 

Cov 

(%) 
#Unique 

Sp 

match 

Alfreds Spotted 

Deer 
34 27 Bos 64 32 Bos 63 51 Bos 

Ankole 23 17 Bos 47 11 Bos 55 40 Bos 

Bank Vole 22 9 Mus 41 10 Mus / Ratt 55 0 Maca 

Boar 18 5 Bos 67 68 Sus 57 0 Maca 

Buffalo 24 18 Bos 21 6 Bos 42 29 Bos 

Bull 59 60 Bos 66 51 Bos 63 69 Bos 

Field Vole 17 4 Mus 42 12 Mus / Ratt 52 0 Maca 

Gemsbok Oryx 38 37 Bos 51 33 Bos 60 73 Bos 

Lechwe 
         

Ram 42 28 Bos 50 14 Bos 64 59 Bos 

Rat (Brown 

Norway) 
22 18 Mus 48 12 Mus / Ratt 54 0 Maca 

Rat (Wistar) 23 18 Mus 48 12 Mus / Ratt 47 1 Bos 

RedSquirrel 8 7 Mus 45 10 Homo 35 0 Bos 

Scimitar Oryx 34 27 Bos 47 12 Bos 59 44 Bos 

Warthog 13 3 Bos 68 41 Sus 51 0 Maca 

Wild BoarX 14 3 Bos 43 11 Sus 50 0 Maca 

Wildebeast 24 11 Bos 34 7 Sus / Bos 47 5 Bos 

Woodmouse 24 20 Mus 44 10 Mus / Ratt 55 0 Maca 

Zebra 13 6 Bos 41 12 Sus / Bos 56 0 Maca 
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Table 6.6: Sequence coverage, the number of unique peptides and the best species match for proteins involved in sperm – egg interactions 
identified within cauda epididymal samples. 

 

  
Zonadhesin 

ZP-binding 
 protein 1  

Izumo sperm – egg 
 fusion protein 4 

Sperm surface  
protein 17 

Sperm equatorial  
segment protein 1  

Spermadhesin 

Species 
Cov 
(%) 

#Unique 
Sp  

match 
Cov 
(%) 

#Unique 
Sp  

match 
Cov 
(%) 

#Unique 
Sp  

match 
Cov 
(%) 

#Unique 
Sp 

 match 
Cov 
(%) 

#Unique 
Sp  

match 
Cov 
(%) 

#Uni
que 

Sp  
match 

Alfreds 
Spotted Deer 

1 2 Sus  28 3 Sus  23 6 Maca  30 1 Mus  5 3 Bos  7 1 Bos  

Ankole 0 1 Sus  19 3 Sus  26 6 Maca  23 2 Mus / Ory 5 3 Bos  22 2 Bos  

Bank Vole 0 2 Mus  11 1 Homo  23 6 Mus  22 3 Maca   
 

  
  

  

Boar 
33 81 Sus  54 35 Sus  26 6 Maca  23 3 Mus / Ory 3 1 

Homo / Maca /  
Mus / Ratt   

  

Buffalo 
  

 
  3 1 Sus  9 2 

Maca / 
Mus 

23 2 Mus / Ory 4 2 Bos  
  

  

Bull 3 5 Sus  33 11 Sus  21 6 Maca  23 3 Mus / Ory 35 14 Bos  76 8 Bos  

Field Vole 1 5 Mus  7 1 Homo  21 5 Mus  22 3 Macr  3 1 Mus  
  

  

GemsbokOryx 1 2 Sus  21 4 Sus  18 5 Maca  30 4 Mus  20 8 Bos  10 2 Bos  

Lechwe   
 

    
 

    
 

  
   

  
 

  10 1 Bos  

Ram 1 3 Sus  23 3 Sus  21 1 Maca  23 3 Mus / Ory 25 10 Bos  
  

  

Rat (Brown 
Norway) 

0 2 Mus  30 9 Mus  12 3 Mus  30 2 Mus    
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Zonadhesin 

ZP-binding 
 protein 1  

Izumo sperm – egg 
 fusion protein 4 

Sperm surface  
protein 17 

Sperm equatorial  
segment protein 1  

Spermadhesin 

Species 
Cov 
(%) 

#Unique 
Sp  

match 
Cov 
(%) 

#Unique 
Sp  

match 
Cov 
(%) 

#Unique 
Sp  

match 
Cov 
(%) 

#Unique 
Sp 

 match 
Cov 
(%) 

#Unique 
Sp  

match 
Cov 
(%) 

#Uni
que 

Sp  
match 

Rat (Wistar) 1 3 Mus  35 11 Mus  15 4 Mus  35 3 Mus    
 

  
  

  

RedSquirrel   
 

  7 1 Mus  20 5 Maca  17 2 Oryc   
 

  
  

  

ScimitarOryx 0 1 Sus  22 4 Sus  21 1 Maca  30 3 Mus  17 7 Bos  10 1 Bos  

Warthog 
24 57 Sus  50 25 Sus  23 5 Maca  23 2 Mus / Ory 3 1 

Homo / Maca / 
 Mus / Ratt   

  

WildBoarX 
23 46 Sus  45 15 Sus  26 6 Maca  23 2 Mus / Ory 3 1 

Homo / Maca /  
Mus / Ratt   

  

Wildebeast 0 1 Sus  11 3 Mus  12 2 Maca  14 1 Ory  9 3 Bos  7 1 Bos  

Woodmouse 0 2 Mus  17 4 Mus    
 

  34 3 Mus  2 1 Mus  
  

  

Zebra 1 1 Homo  14 2 Sus  10 2 Mus 18 1 Ory  5 2 Maca 
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Figure 6.3: Protein sequence of Izumo sperm – egg fusion protein 4 with matched peptides which were identified within the a) Gemsbok Oryx 
and b) Field Vole cauda epididymal samples. Blue line indicates matched peptide, grey line indicates de novo sequenced peptides with a high 
likelihood of being a mutated version of the peptide within the known sequence.  
 

 

 

 

 

 

 

 

 

 

a) Gemsbok Oryx 
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Figure 6.4: Protein sequence of Outer Dense Fibre Protein 2 with matched peptides which were identified within the a) Gemsbok Oryx and b) 
Field Vole cauda epididymal samples. Blue line indicates matched peptide, grey line indicates de novo sequenced peptides with a high 
likelihood of being a mutated version of the peptide within the known sequence.  

a) Gemsbok Oryx 

b) Field vole 
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Figure 6.5: Dotplots of the protein sequences of a) outer dense fiber protein 2, and 
b) zonadhesin, from the house mouse compared against the homologous protein 
sequence within a) the bull and b) the pig. A minimum match length of 3 amino 
acids was specified. The broken diagonal line within plot (a) demonstrations a large 
amount of sequence homology. 
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6.5 Discussion 

Proteomic analysis of cauda epididymal sperm identified a large number of proteins 

within a broad range of mammalian species. Neither this, nor the level of protein 

coverage, was related to the sequence availability of the species, suggesting that a 

large proportion of mammalian epididymal sperm proteins contain homologous 

peptides. This agrees with more recent studies showing that many of the proteins 

within the ejaculate are not evolving at an elevated rate (Dean, Clark et al. 2009; 

Carnahan-Craig and Jensen-Seaman 2014). The protein most commonly observed 

with the highest amount of species matches was cytochrome-b. This mitochondrial 

protein is commonly used to assess phylogenetic relationships (e.g. Farias, Ortí et al. 

2001) and so a vast amount of species will have sequence information available. As 

much of this protein is conserved, many species will share peptides from this 

protein.  

Limitations of sequence availability were apparent when considering the results for 

members of the suidae family. Analysing the entire list of proteins, the most 

commonly identified species match was Homo sapiens. After reducing the data set 

using more stringent selection criteria this altered to Sus scrofa. The higher rate of 

matching to human protein sequences within the full data set may reflect the 

greater availability of protein sequence information of humans, particularly for 

highly conserved cellular proteins. The two other species for which Homo sapiens 

was the most common match were Sciurus vulgaris (red squirrel) and Equus grevyi 

(Grévy’s zebra). Both pigs and these species are known to be polyandrous (Ginsberg 

and Rubenstein 1990; Wauters, Dhondt et al. 1990; Delgado-Acevedo, Zamorano et 

al. 2010). This may result in a greater rate of protein evolution for these species, and 

so less sequence homology with the more closely related model species. 

Broad differences observed in protein identifications are likely to be due to 

disparities in initial sample quality and technical variation. Regardless, the proteins 

known to be present in sperm were identified within most, if not all, species. Only 

four proteins were found within all samples after the stringent selection criteria 
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(coverage ≥ 20%, number of unique peptides ≥ 2, -10IgP ≥ 50) were applied. These 

were two 14-3-3 proteins, regulatory molecules (Fu, Subramanian et al. 2000), 

histone H4, present in the chromatin (Bhasin, Reinherz et al. 2006), and calmodulin, 

a calcium binding messenger protein (Cheung 1980). All four proteins are known to 

be present within all eukaryotic cells. Calcium signalling, which is regulated by 

calmodulin, impacts fertility in both males and females. It is required for normal 

sperm motility, hyperactivation, capacitation and sperm – egg interactions 

(Primakoff and Myles 2002; Schuh, Cartwright et al. 2004; Suarez 2008a; Lasko, 

Schlingmann et al. 2012; Xiang, Cui et al. 2012), as well as follicular development and 

ovulation in females (Wu, Gonzalez-Robayna et al. 2000). 

Known sperm proteins (Table 6.4) were identified in all species bar the Lechwe. This 

sample was obtained from a very young male following castration. No sperm were 

found during microscopic examination of the sample. It is therefore likely that sperm 

were yet to be produced and stored in the epididymis. In all other species sampled, 

AKAP and ODF proteins were well identified (three are described in Table 6.4). These 

are structural proteins that make up the sperm tail (Vera, Brito et al. 1984; Brown, 

Miki et al. 2003).  Compared to the proteins analysed that are involved in sperm – 

egg binding, more peptides from the structural proteins were identified. Proteins 

within the zona-pellucida are known to have an elevated rate of evolution (Swanson, 

Yang et al. 2001; Turner and Hoekstra 2006), therefore sperm proteins that bind to 

the zona-pellucida are likely to coevolve to maintain fertilisation ability. Reduced 

cross-species protein sequence homology is to be expected in rapidly evolving 

proteins. There is previous evidence that 22% of genes encoding for sperm 

membrane proteins exhibit accelerated evolution (Dorus, Wasbrough et al. 2010). 

Here, I find species differences in specific proteins that are involved in sperm – egg 

interactions. Some caution should be taken when considering this result as the 

structural proteins tend to be classified in a greater number of species. In four of the 

proteins involved in sperm-egg interactions there was no Bos taurus sequence 

available, which commonly give the best results for many of the ungulate species. 

However, the two proteins for which bovine sequences are available show 



221 

 

comparably low sequence coverage values, showing the pattern is likely to hold even 

if a greater number of sequences were available. Additionally, the identified 

ungulate proteins which have matches with the Sus scrofa ODF1 sequence give a 

mean coverage of 49% (± 7), which is in line with the values given when matching 

again the Bos taurus sequence. 

Spermadhesins are a set of ungulate-specific proteins that modulate the initial 

binding of sperm with the zona-pellucida (Tedeschi, Oungre et al. 2000; Caballero, 

Vazquez et al. 2004; Töpfer-Petersen and Calvete 2005). Within this study there was 

no evidence for similar proteins being present within rodent sperm, as there was no 

homologous peptide matching to the spermadhesin sequences. This protein was 

identified within most ungulates tested, including the lechwe sample that contained 

no sperm. This protein is therefore likely to be found within diverse ungulate species 

and is not specific to the domestic species. 

Further study of genomic or transcriptomic data for the genes encoding the most 

diverse proteins identified within this study would complement the data presented 

here. Analysing the evolutionary rate of specific genes, and whether this is related to 

sexual selection, can improve our understanding of the evolution of reproductive 

proteins and speciation. Coupling this data with information on which sections of the 

protein sequence are less conserved can give clues to the binding patterns of these 

proteins that are essential to fertility.  

6.6 Conclusions 

Here, I show that the proteins present within cauda epididymal samples of male 

mammals contain many homologous proteins, and are broadly similar across 

species. I describe additional evidence that proteins which interact with the egg are 

adapting the most rapidly. This study also provides the first proteomic analysis of 

many of the species sampled here, and could assist further investigation into the 
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evolution of reproductive proteins within ungulates, which has thus far received little 

attention.  
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7.1 Chapter overview 

In this chapter I discuss the results of the previous chapters within a broader 

context. I begin by considering a key novel finding from this thesis: the use of 

proteomics to reveal evidence of ejaculate plasticity in house mice. I then move onto 

discuss the diversity in mammalian testicular architecture and ejaculate proteins 

investigated in Chapters 5 and 6, and the mating behaviour of male house mice from 

Chapters 2 and 4. Finally, I consider the wider implications of this work and the 

potential for further research. 

Chapter 7 

General discussion 
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7.2 Plasticity in the production of seminal fluid proteins 

The results presented in Chapters 2 and 4 show that male house mice can plastically 

alter their ejaculate protein production. This is the first example of plasticity in the 

production of specific seminal fluid proteins in a mammalian system. These studies 

utilised recent advances in proteomic methodologies, HPLC-MSMS followed by label-

free quantitative analysis using Progenesis LC-MS, to provide new insights into the 

variation within mammalian ejaculates.  

Previous evidence of plasticity in seminal fluid proteins comes from studies of 

Drosophila. The seminal fluid proteins, and their functions, have been well 

characterised within Drosophila (e.g. Chapman 2001). Plasticity in the expression of 

selected genes has been found in response to the intensity of sperm competition 

(Fedorka, Winterhalter et al. 2011), although it is worth noting that transcription and 

protein expression are not entirely correlated (Ghazalpour, Bennett et al. 2011; 

Vogel and Marcotte 2012). Expression of specific proteins has been shown to vary in 

ejaculates according to the mating status of the female (Sirot, Wolfner et al. 2011), 

and as a result of experimental evolution within lines selected to have either large or 

small accessory sex glands (Wigby, Sirot et al. 2009). These studies used an ELISA 

method to determine the expression of specific proteins that are relevant in 

Drosophila: sex peptide and ovulin (Wigby, Sirot et al. 2009; Sirot, Wolfner et al. 

2011). In contrast, the proteomics analysis utilised in the studies here allow high 

throughput analysis of entire proteomes from specific accessory glands and the 

ejaculate. This allows subtle differences in the expression of all proteins to be 

explored, in addition to considering those known to be functionally important. 

In rodents, the seminal vesicles are relatively larger within polyandrous species 

(Ramm, Parker et al. 2005). These prominent accessory sex glands are larger in bank 

voles that have experienced a high risk of sperm competition during development 

(Lemaitre, Ramm et al. 2010) and are also larger in dominant male bank voles 

(Lemaitre, Ramm et al. 2012). In the house mouse, previous studies have not 

identified a difference in the size of the seminal vesicles due to sperm competition 
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risk (Ramm and Stockley 2009a). Here, I found that dominant males have larger 

seminal vesicles (Chapter 2). Using proteomics techniques allowed me to also 

explore more subtle differences that cannot be tested by considering morphology 

alone. I found that subordinate males produced a seminal vesicle secretion which 

had a higher protein concentration than dominant males, and contained 

proportionally more of the plug forming protein SVS2.  

Theory predicts that males should invest more in components of the seminal fluid 

that will influence the level of bias, by increasing the likelihood of success when 

mating competitively (Cameron, Day et al. 2007). Or, males should produce more of 

the ejaculate components that will give them a greater chance of gaining successful 

fertilisations when their ejaculates are likely to face competition. In the house 

mouse, the copulatory plug is substantial and can drastically improve fertility (Dean 

2013). As subordinate male house mice invest considerably less in ejaculate 

production, particularly of sperm, it is possible that they are instead opting to invest 

in copulatory plug formation by increasing the proportion of SVS2 produced. 

Although this is not tested directly here, subordinate males produced a copulatory 

plug that was of equivalent size to the dominant males, despite having significantly 

smaller seminal vesicle glands and so less total protein available for plug formation. 

As the seminal vesicle glands were essentially empty following copulation (personal 

observation), it is unlikely that this is due to differential allocation of seminal vesicle 

products by dominant males.   

In Chapter 4, the effect of maternal social experience prior to pregnancy (either 

many or few interactions with three males or one male) on the ejaculate 

composition of male offspring was tested in the house mouse. Random forest 

analysis found that overall the protein composition of the ejaculates differed 

according to the maternal environment. Although significant differences in the 

expression of major seminal proteins were not observed, CUZD1, a protein that is 

important for fertility (Yamazaki, Adachi et al. 2006), tended to be more abundant 

within the ejaculates of male offspring of the high competition maternal group. 
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There were no morphological or behavioural differences observed in these males. 

This study highlights the effectiveness of using proteomic analysis to search for more 

subtle differences in reproductive investment. To my knowledge, this is the first 

experiment testing the effect maternal social experience has on male offspring 

investment in reproduction.   

Female plasticity in the protein composition of the oviduct, in response to the 

likelihood of multiple mating, was tested in Chapter 3. Although this specific question 

has not been addressed previously, a recent study in the house mouse used a similar 

approach to investigate female plasticity, comparing the ova defensiveness of 

females according to the level of prior male interaction (Firman and Simmons 2013). 

The study presented in Chapter 3 found no evidence for differential protein 

expression in the oviduct according to the prior level of interaction with males. 

Instead, the protein composition was more closely linked to genetic similarities, as 

sibling females had more similar results despite being balanced across treatment 

groups. On these results alone I would not rule out the possibility of subtle changes 

in the oviduct secretion that were not seen due to analysing the entire oviduct 

proteome, which may have swamped the secreted proteins. In pigs, the oviduct 

secretion is known to alter according to the stage of the oestrus cycle (Seytanoglu, 

Georgiou et al. 2008) and in response to the presence of gametes (Georgiou, 

Sostaric et al. 2005). It is possible that more selective analysis of just the oviduct 

secretion may reveal subtle differences, following a different dissection and sample 

collection methodology. 

Overall, these studies are important as they reveal phenotypic adaptations that may 

not have otherwise been revealed without the use of proteomics techniques. Many 

ejaculate proteins of the house mouse, which are important for fertility and 

influencing the outcome of sperm competition, have a particularly high rate of 

production (Claydon, Ramm et al. 2012). Plastic investment in these proteins could 

therefore occur relatively easily in response to variation in the risk of sperm 
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competition, and could be a far faster way of improving fertility than increasing 

sperm output, due to the duration of spermatogenesis (Amann 1970).   

7.3 Evolution of mammalian ejaculates in response to sperm 

competition  

There is a wealth of literature regarding the evolution of ejaculates in response to 

sperm competition. The most well documented adaptation is increased relative 

testes mass in males from promiscuous species (Kenagy and Trombulak 1986; 

Harcourt, Purvis et al. 1995; Stockley, Gage et al. 1997). Relatively larger testes also 

exhibit greater sperm production efficiency (Chapter 5). It has been established that 

males with relatively larger testes also have a shorter SECL, leading to faster sperm 

production (Pierce and Breed 2001; Parapanov, Nusslé et al. 2008; Ramm and 

Stockley 2010; delBarco-Trillo, Tourmente et al. 2013 and Chapter 5). Of the 

measures tested here, a shortened SECL was most significantly correlated with an 

increased sperm production efficiency (Chapter 5). The mechanism for an increased 

rate of production is unknown. It could relate to a greater number of Sertoli cells or 

improved Sertoli cell efficiency, as is seen in blackbird species (Lüpold, Wistuba et al. 

2011). An investigation of cell activity levels within testicular tissue of a few species 

with contrasting mating systems could offer insights greater insights into this. 

Contrary to a previous study (Ramm and Stockley 2010), I found no correlation 

between sperm length and the rate of sperm production. I also found relative testes 

mass, indicating sperm competition, did not predict sperm length. The link between 

sperm length and sperm competition has been under much debate (e.g. Gage and 

Freckleton 2003; Tourmente, Gomendio et al. 2011; Tourmente, Gomendio et al. 

2011). The analysis in Chapter 5 compared two distinct mammalian groups: rodents 

and ungulates. The hooked sperm heads found within murine rodents have been 

well documented (Breed 2005). In contrast, sperm from ungulate species have a far 

simpler, spatula like morphology. I found that, despite their far larger size, ungulates 

have shorter sperm than rodents. Analysis taking into account the distinct groups 
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revealed a link between mating system and sperm length. Although it may be argued 

that phylogenetic control should be sufficient to account for species differences, 

perhaps such divergent sperm types proved too disparate for the model to clarify 

more subtle differences in closely related species.  

In Chapter 6 I go on to consider the evolution of reproductive proteins using a 

proteomic approach. Proteins that are structurally important in sperm were 

relatively homologous within the species tested here. In contrast, those known to be 

involved in sperm – egg interactions had far fewer matching peptides. This is in 

agreement with studies investigating the rates of molecular evolution of the 

reproductive genome (Turner and Hoekstra 2006; Vicens, Lüke et al. 2014). 

Discussion of potential for further work related to this is included in Section 7.6.   

7.5 Wider implications and impact 

Understanding the plasticity of reproductive proteomes could have important 

implications within the field. Proteomics analysis is being used increasingly in the 

field of ecology (Karr 2007; Diz, Martinez-Fernandez et al. 2012; Valcu and 

Kempenaers 2014). The studies presented here use a high throughput method of 

obtaining label-free relative quantitative data for complex biological samples. 

Previous studies of ejaculate protein plasticity have instead compared mRNA 

transcription levels or protein abundances using ELIZAs (Wigby, Sirot et al. 2009; 

Fedorka, Winterhalter et al. 2011; Sirot, Wolfner et al. 2011). All of these approaches 

are targeted to analyse specific proteins. Using high throughput techniques will 

increase our knowledge of ejaculate composition, as well as improving our 

understanding of subtle differences in protein abundance. Combined, the studies 

presented here highlight which samples these techniques work best with, for 

example secretions or ejaculates were more successfully analysed than whole tissues 

such as the oviduct. The more that these methods are utilised for reproductive 

tissue samples, the more useful these methods will become. 
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Finding evidence for ejaculate plasticity according to male status and maternal social 

experience could have important implications for the animal production industry. 

Seminal proteins can protect sperm during freezing and improve fertilisation rates in 

large mammals (Hernandez, Roca et al. 2007; Novak, Ruiz-Sanchez et al. 2010). 

Decreasing fertility has been particularly problematic within the dairy industry, as 

years of selection for increased milk yield has led to lower fertility in cows (Lucy 

2001). If housing can improve the fertility of bulls this could have important 

implications to animal husbandry.  

7.6 Further studies 

Following from this work, it would be useful to perform proteomic analysis of the 

copulatory plug of males of different social status. This would reveal if different 

proportions of SVS2 within the seminal vesicles resulted in differing plug 

composition. Due to the unusual chemical composition of the copulatory plug, 

attempts to analyse this were unsuccessful. Breaking the plug into its protein 

components is akin to un-baking a cake. Using methods similar to previous analyses 

that yielded protein identifications (Dean, Findlay et al. 2011), I was able to identify 

proteins; however the abundances observed were so far from what would be 

reasonably expected that they could not be trusted. More specifically, SVS2 was only 

identified in very low quantities. As this protein accounts for a major proportion of 

seminal vesicle fluid (20%-30%) and known to be a primary component of the 

copulatory plug (Williams-Ashman 1984), it is highly unlikely it would only be present 

in trace amounts. Instead, it is likely the bonds catalysed by trans-glutaminases when 

forming the plug are not broken when trying to dissolve the plug.  

To better understand the implications of plasticity in seminal fluid production, it 

would be interesting to analyse the outcomes of sperm competition for males with 

different seminal fluid protein profiles. To test this, you would require the following: 

two males mated to one female, the seminal fluid protein composition of each males 

ejaculate at the point they mated, and the paternity share of each male from the 
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litter produced. This may be particularly challenging due to the rapid turnover of 

seminal fluid proteins (Claydon, Ramm et al. 2012) as we do not know if mating 

would alter the composition of an ejaculate collected at different time point. It 

would be worthy of further investigation, however, and understanding how 

ejaculates alter as males age and in response to sexual experience would be 

worthwhile. 

It would also be useful to support the comparative proteomic approach used in 

Chapter 6 with some genomic and molecular evolution analyses. It would be 

particularly interesting to compare the rates of evolution of proteins involved in 

sperm – egg interactions from ungulate samples compared to rodent samples. Pre-

copulatory intrasexual mechanisms of sexual selection are common in large 

mammals, resulting in the vast array of weaponry seen in ungulates (Clutton-Brock 

and McAuliffe 2009). Males typically have to fight for access to females, and 

dominant males may restrict mating access during periods of female receptivity. It is 

therefore likely that sperm competition is less intense in many ungulates compared 

to some of the highly promiscuous rodent species. The proteins involved in sperm-

egg interactions are known to evolve rapidly (Turner and Hoekstra 2006; Vicens, 

Lüke et al. 2014). This is further driven by sexual conflict, which is accelerated due to 

sperm competition. This rapid evolution of fertilisation proteins driven by sexual 

conflict may be an important factor in speciation (Gavrilets 2000). Comparing the 

evolutionary rates of genes from such diverse mammalian groups may help improve 

our understanding of reproductive isolation in highly speciose rodents compared to 

less speciose ungulates. . 

Finally, I would be particularly interested in further proteomic study of female 

reproductive investment. Studies of sperm competition and sexual conflict tend to 

focus on male traits. This is most likely for some obvious reasons, such as they are 

easier to measure and theoretical predictions generally consider ejaculate 

investment. However, further understanding of the molecular environment within 

the female tract, in response to experimental evolution or variation in mating rate 
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for example, could provide important insights into mechanisms of cryptic female 

choice, coevolution of males and females, and general fertilisation processes. 

Furthermore, mating is often costly to females, either due to toxic components of 

the seminal fluid or more generally due to mating increasing contact with pathogens. 

I would be particularly interested in picking apart the drivers of adaptive change, for 

example the cost of being pursued, mating rate or seminal fluid, in the female 

reproductive tract. 

7.7 Concluding remarks 

The work presented within this thesis provides a broad study of sperm competition 

in mammals using proteomics. The novel approach used here provides exciting 

insights into the plasticity of reproduction at a molecular level. Increasingly, 

proteomics techniques are being used in the field of behavioural ecology. At the 

2014 ISBE meeting in New York, Marlene Zuk argued that it is important not to get 

bogged down in technical details when using genomics techniques, warning against 

“ooh shiny” syndrome. However, I think it is important not to consider molecular 

techniques as a black box, where samples go in and data comes out. With 

proteomics analysis it is particularly important to have at least a reasonable 

understanding of the validity of the method you are using. There are often various 

approaches that could be taken and thorough experimental design can make the use 

of proteomics incredibly valuable. As the use of proteomics increases within the field 

of ecology, we will gain a greater understanding of reproductive phenotypes at a 

molecular level.  
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The data collected from literature sources for the comparative analysis presented 

within Chapter 5 is given here, with sources.  Table A1 provides the data collected for 

the analysis of daily sperm production rates.  

A phylogeny for all species is also presented (Figure A1). 

  

Appendix  
Comparative data 
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Table A1: Data collected from literature sources for the analysis of sperm production 

efficiency presented in Chapter 5. BM = body mass, TM = paired testes mass, DSPG = 

daily sperm production per gram of testicular tissue, SertG = number of Sertoli cells 

per gram of testicular tissue, %SE = the proportion of seminiferous tissue within the 

testes, Sperm = length of sperm  (Sperm measures here are those taken from Gage 

et al. 19981, the analysis also included those measured by myself and Emily Logie). 

Species name BM (g) TM (g) DSPG SertG %SE SECL Sperm Sources 

Agouti paca 5400 11.8 39 43 84.7 11.5 
 

2  

Bos indicus 554000 447.2 12.2 
 

76.55 
 

64.1 3: 4 

Bos taurus 1866000 384 12 
 

67.11 13.5 
 

5-7 

Bubalus 
bubalis 

302000 277 14.4 
  

8.6 57 8-10 

Callithrix 
penicillata 

300 1.075 18.1 34.7 81.4 15.4 
 

11 

Canis lupus 15400 19.86 14.5 43.4 83.3 13.6 60.7 12-15 

Capra hircus 59000 202 30.3 21.4 87.7 10.6 59.4 16: 17 

Cavia 
porcellus 

813.3 4.1 
 

55.1 90.2 8.45 114.1 
14: 18: 

19 
Chinchilla 
lanigera 

500 5 61 44 
 

10.2 
 

2: 20 

Chrysocyon 
brachyurus 

28000 12.68 28.7 
  

13.6 
 

21: 22 

Clethrionomys 

glareolus 
21.8 0.646  

18: 

23 
 6.7  18: 44 

Dasyprocta 
leporina 

2500 8.2 52 57 80.5 9.5 
 

2  

Equus 
caballus 

473000 340 16 61.3 79.6 12.2 60.6 
6: 17: 

24 

Felis silvestris 3100 2.34 15.7 32 78 10.4 59.5 25 

Homo sapiens 63540 50.2 4.1 48.8 61.6 16 57.4 
6: 14: 

26 
Hydrochaeris 
hydrochaeris 

54100 63.4 10 19 
 

11.9 
 

2  

Leopardus 
pardalis 

13200 22 18.3 46 69.8 12.5 
 

27 

Macaca 
fascicularis 

4787 35.7 
 

101.9 83.6 10.5 77.1 
14: 18: 

26 
Macaca 
mulatta 

9200 49 23.3 
  

10.5 81.9 26: 28 

Macaca 
radiata 

7000 10.6 34.7 
    

29 

Marmota 
monax 

4165 7.4 
 

47.1 82.7 
  

14: 18 
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Species name BM (g) TM (g) DSPG SertG %SE SECL Sperm Sources 

Meriones 
unguiculatus 

77 1.08 33 28 85 10.55 
 

30 

Mesocricetus 
auratus 

100 3 24 34.8 85.4 8.74 186.7 
6: 14: 

31 
Microtus 

agrestis 
46.4 0.804  

18: 

23 
 7.8  18: 44 

Mus musculus 15.3 0.119 46.5 36.2 84.5 8.63 123.6 
2: 14: 
18: 32 

Notomys 
alexis 

32 0.052 9.8 
  

14 102.5 33 

Octodon 
degus 

268 2.16 15.63 80.3 92.7 
  

14: 34 

Oryctolagus 
cuniculus 

4100 6.4 25 24.9 73.2 10.7 56.5 
6: 14: 
35: 36 

Ovis aries 80000 500 21 
 

69.9 10.4 
 

6: 7 

Panthera 
onca 

77000 35.4 16.9 29 61.3 12.8 
 

37 

Pecari tajacu 22600 47.4 23.2 28 62.6 12.3 40 38 

Proechimys 
oris 

207 1.94 82 53 89.9 8.6 
 

39 

Pseudomys 
australis 

48.8 1.57 25.9 
  

11.2 122.5 33 

Rattus 
norvegicus 

560 3.8 23 28.5 81.1 12.4 
 

6: 14: 
40 

Sus 
domesticus 
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41: 42 

Sus scrofa 39700 128.2 28.6 42.4 73.8 9.05 
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Figure A.1: Phylogeny used for the comparative analysis of data collected from 

literature sources presented within Chapter 5. Adapted from the phylogeny of 

Bininda-Emonds et al. 200745. 
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