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Abstract 

i 

 

There is a common belief that mammalian cell gene mutation assays are prone to false 
positives, thus questioning the relevance of these tests in regulatory screening paradigms and 
the mechanisms responsible for these uninterruptable results.  False positives can lead to 
unnecessary animal testing and delays in the development of efficacious new medicines.  The 
initial aim of this thesis was to put into perspective the rate of positives and firstly to consider the 
extent off target aneugenicity (chromosome loss or gain) may contribute to this rate.  Secondly 
the contribution of topoisomerase II poisoning and its relationship to genotoxicity was 
considered.  Topoisomerase II maintains DNA topology by inducing transient breaks in one 
strand so a second strand can pass.  Chemicals that interact with the enzyme (topoisomerase II 
poisons; e.g. the antibiotic gemifloxacin and the chemotherapeutin etoposide), yield 
topoisomerase II bound DNA cleavage complexes, making breaks permanent, leading to 
mutation or cell death.  Structurally, topoisomerase II poisons are diverse, so their genotoxicity 
is difficult to predict.  
To estimate the incidence of positives seen in pharmaceutical research, a retrospective review 
of data from 10 years of mouse lymphoma assays (MLA) conducted at AstraZeneca was 
undertaken.  This showed that the rate of unexplainable positives was only 5%, vindicating the 
use of the test in screening paradigms.  Consideration was then made of what mechanisms 
might contribute to this 5%.  Aneugenicity was considered but it was shown that the MLA was a 
poor screen, failing to identify 7 known anuegens. 
To gain a better understanding of the relationship between topoisomerase II and genotoxicity, 
assays to assess enzyme poisoning were examined, including the ability of the cell free 
decatenation assay to predict the results of the in vitro micronucleus test.  However, even when 
combined with an estimate of cellular uptake the predictivity was low.   
Assays to investigate topoisomerase II poison / DNA cleavage complexes in vivo were then 
investigated.  The TARDIS and ICE assays both use antibodies to target topoisomerase II 
bound in the complex.  TARDIS was found to be insensitive, failing to identify cleavage complex 
formation with gemifloxacin.  Using the ICE assay, cleavage complex formation was seen for 
etoposide (0.1 µmol/L; FITC intensity 3.53 ± 0.79) and gemifloxacin (100 µmol/L; FITC intensity 
3.37 ± 0.86), but not at equivalent concentrations to those inducing micronuclei (MN) (0.03 
µmol/L etoposide; MN/1000 6 ± 2.6 and 10 µmol/L gemifloxacin; MN/1000 5 ± 3.4), thus 
questioning assay sensitivity, or suggesting a role for other mechanisms of genotoxicity e.g. 
reactive oxygen species (ROS). 
The hOGG Comet assay showed that neither etoposide nor gemifloxacin induced ROS related 
genotoxicity.   
Improvements to the sensitivity of the cleavage complex assays were made by preparation of 
mouse specific antibodies, but TARDIS was still unable to identify gemifloxacin.  This work also 
suggested that when developing antibodies for DNA bound topoisomerase II, the n-terminus of 
the enzyme should be targeted. 
Over the last 4 years, emerging data linked the topoisomerase IIβ isoform to genotoxicity.  As 
research within this thesis had investigated the activity of topoisomerase IIα, this may have 
explained the difficulty encountered equating topoisomerase II poisoning to genotoxicity.  
Following siRNA knockdown of topoisomerase IIα, the genotoxicity of etoposide and 
gemifloxacin was investigated.  It was shown that for 0.3 µmol/L etoposide, topoisomerase IIα 
knockdown of 42% (± 2%) was associated with a reduction in micronuclei of 49% (± 9.7%).  For 
30 µmol/L gemifloxacin, topoisomerase IIα knockdown of 37% (± 9.5%) was associated with a 
reduction in micronuclei of 48% (± 0.2%). This was the first time such direct relationships had 
been demonstrated between the alpha isoform and genotoxicity. 
In conclusion, the predictivity of the MLA was confirmed but it was clear the assay is not a 
suitable screen for aneugenicity.  The relative sensitivity of assays to measure topoisomerase II 
poisoning was shown and linked to genotoxicity.  Whilst it was not possible to demonstrate 
cleavage complex formation at concentrations below which genotoxicity was seen, this was 
likely due to the insensitivity of the assays used rather than topoisomerase II poisons having 
other genotoxic mechanisms.  For the first time the link between topoisomerase IIα and 
genotoxicity was confirmed and use of knockdown cells holds real promise as a tool for 
investigating off target topoisomerase II poisoning. 
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Assessment of drug induced genotoxicity in 
mammalian cells and the contribution of 

Topoisomerase II inhibition 
 

 
1 General Introduction 

The following introduction to my thesis on drug induced genotoxicity in mammalian 

cells and the contribution of topoisomerase II inhibition is based on literature available 

at the start of my research i.e. up to 2010, with two exceptions Wu et al., 2011 which 

was used to illustrate a recently resolved crystalline structure and Gilroy and Austin, 

2011 which was considered important to include as it illustrated a new insight into 

topoisomerase II isoform activity.   

 

1.1 Background to the research 

Genetic toxicology (or genotoxicology) is the study of agents that cause damage to 

DNA, with the potential for deleterious effects on human health, specifically cancer and 

possible heritable disease.  Since the early seventies, academics, industries and 

regulatory authorities have instigated a variety of in vitro and in vivo testing strategies 

to try to measure the genotoxicity of novel chemicals, hence ensuring appropriate risk 

assessment for man.  However, the perception of the ‘over sensitivity’ of mammalian 

cell in vitro genotoxicity tests (a core test in nearly all internationally accepted testing 

strategies) has raised concerns for over three decades.  This perception is based on 

the view that these tests are highly prone to generating ‘false positive’ results (Kirkland 

et al., 2005; Kirkland et al., 2007; Kirkland and Speit 2008; Matthews et al., 2006a; 

Matthews et al., 2006b).  Pharmaceutical regulatory authorities make decisions on the 

safety of new drugs not only based on whether they are positive genotoxicants, but 

also based on their genotoxic mode of action.  Accordingly the generation of ‘false’ 

positive results will inevitably lead to additional time and expense during 

pharmaceutical development as scientists attempt to elucidate the relevant 

mechanism.  This may delay the launch of important new medicines or even, if the 

genotoxic mechanisms cannot be identified, prevent their use in man.  The author has 

over 25 years of industrial experience working with in vitro mammalian cell genotoxicity 

assays.  This experience suggests that the published incidence of false positives 

greatly exaggerate the actual observed incidence seen during routine pharmaceutical 

screening.  As regulatory testing paradigms and decisions are made based on the 
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published literature, it is important to gain a more balanced understanding of the 

predictivity of mammalian cell in vitro genotoxicity tests. 

Whatever the real rate of unique positives seen during mammalian cell screening, there 

are some genotoxic positives that cannot be readily explained by their inherent DNA 

reactivity e.g. by any normal structural alert relationship for mutagenicity.  These 

compounds are unlikely to directly bind to DNA, hence it is far more likely that any 

observed genotoxicity is induced by indirect DNA targets such as mitotic spindle 

(aneugencity), reactive oxygen species (ROS) generation or topoisomerase II 

inhibition.  For pharmaceutical research, topoisomerase II inhibition is a particularly 

interesting genotoxic mechanism, as the enzyme is used as a target for both oncology 

and anti-infective drugs.  Furthermore, some topoisomerase II poisons, be they either 

cancer drugs or antibiotics, are known to be very potent in vitro mammalian cell 

mutagens (Boos and Stopper, 2000; Smart, 2008a).   Whilst there has been a great 

deal of research into topoisomerase II inhibition, it is surprising that the direct 

relationship between enzyme poisoning and genotoxicity has not been firmly 

established.  For example, with anti-infectives, there is a known correlation between 

compounds that target bacterial gyrase and positive responses in mammalian cell 

genotoxicity assays, but attempts to quantify topoisomerase II inhibition and related 

genotoxicity have shown that the methods to measure topoisomerase II are either 

insensitive or (possibly) other genotoxic mechanisms are in play (Lynch et al., 2003).  

To help with the discovery of safe and efficacious new medicines to tackle the unmet 

need in such serious conditions as tuberculosis and hospital acquired infections it 

would clearly be useful to gain a better understanding of the relationship between off-

target mammalian cell topoisomerase II inhibition and genotoxicity.  Accordingly, a 

robust method for determining topoisomerase II inhibition in mammalian cells would be 

a valuable adjunct to available tools and may also help to elucidate the mechanism of 

genotoxicity for at present unexplainable positive agents. 

However, if after using the most sensitive tools available to measure the topoisomerase 

II poisoning by model genotoxicants (e.g. the oncology drug etoposide and the anti-

infective gemifloxacin), the direct relationship between topoisomerase II inhibition and 

genotoxicity still cannot be established, it is important to determine whether these 

model compounds are also genotoxic by other mechanisms, for example, induction of 

ROS.  If compounds that are currently ‘assumed’ to be genotoxic via topoisomerase II 

inhibition also have other modes of action, this could significantly alter their risk 

assessment.   

To gain a better understanding of the real rate of unexplainable in vitro genotoxicity 

positives, this project will carry out an historical review of in vitro mammalian cell 
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genotoxicity data (specifically the mouse lymphoma assay) generated in an 

experienced laboratory using modern testing protocols.  Initial consideration will be 

given to whether aneugenicity could contribute to the rate of unexplainable positives.  

Following on from this the relationship between mammalian cell topoisomerase II 

inhibition and in vitro genotoxicity will be investigated, along with the potential of 

topoisomerase II poisons to induce mammalian cell genotoxicity by ROS generation.  

The overall aim will be to gain a clearer understanding of the contribution of 

topoisomerase II inhibition to mammalian cell in vitro genotoxicity. 

 

1.2 Genetic Toxicity Testing For Pharmaceuticals 

The science of genotoxicity testing is now some 4 decades old, with Bruce Ames’ 

seminal work on bacterial mutagens in the early 1970’s (Ames et al., 1973a) paving the 

way for the derivation of testing paradigms to be used to ensure new pharmaceuticals, 

food additives, pesticides and a whole range of other consumer products are not 

inherently genotoxic (MacGregor et al., 2000).  Much has changed over this period.  

Following the discovery of non-mutagenic and epigenetic carcinogens (Holliday, 1987; 

Ashby and Purchase, 1988a), Ames’ original view that ‘mutagens are carcinogens’ has 

long been understood to be a major over simplification.  However, the assessment of 

the genotoxic potential of new chemical entities is still a mainstay of pharmaceutical 

safety assessment and a regulatory requirement in all Organisation for Economic 

Cooperation and Development (OECD) territories (OECD 1997; ICHS(R1), 2011).  

In practice, the genotoxicological assessment of new pharmaceuticals is very clearly 

defined in internationally accepted guidelines.  The International Conference on 

Harmonization of Technical Requirements for Registration of Pharmaceuticals for 

Human Use (ICH) was organised in 1990 to ensure that the safety assessment of new 

medicines brought to a global market was conducted in a unified way.  To this day ICH 

is continuing to monitor new research and issue and update new guidance documents.  

The first ICH guidelines for genotoxicity assessment were published in the late 1990’s.  

These were; ICH Topic S2A Genotoxicity: Specific Aspects of Regulatory Genotoxicity 

Tests for Pharmaceuticals (1996) and ICH Topic S2B Genotoxicity: A Standard Battery 

for Genotoxicity Testing of Pharmaceuticals (1997), which detailed specific guidance 

on tests and the battery of tests to be performed, respectively.  The recommended 

testing in these documents was based on 20 plus years of genotoxicology research.  

Research that had identified the range of mutations that can lead to heritable change, 

from gene mutations (both base pair substitution and frame shift mutation), 

chromosomal aberrations (including mitotic recombination and large DNA deletions) up 
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to and including loss of whole chromosomes (non-disjunction and aneuploidy). Over 

this time it was clear that no single test could identify all of the possible chemical 

induced events involved in mutagenesis.  The bacterial reverse mutation test 

developed by Bruce Ames was effective at identifying DNA reactive compounds that 

induce base-pair substitution and frame-shift mutations (Ames et al., 1973b), but 

prokaryotic DNA is limited in its ability to detect damage at the chromosomal level.  

Mammalian cell gene mutation assays such as the NA+ K+ dependent ATPase enzyme 

assay will not identify large DNA change or deletions because of the small size of the 

target gene and the essential functionality of surrounding genes (Muriel et al., 1987).  

The mammalian cell chromosome aberration and micronuclei tests will only identify 

damage at the chromosome level.  Furthermore, no in vitro system can mimic the 

complexities of in vivo metabolism and exposure.  Accordingly, the concept developed 

that a battery of short term tests was the best way to identify the widest spectrum of 

genotoxic mechanisms.  It would be incorrect to believe that the current recommended 

battery is based entirely on good science.  Rather, the battery was developed from 

consensus opinion following a variety of expert group meetings.  Hence the current 

guidelines with their origins in the early 1990’s may not be perfect, but they are tried 

and tested and both their strengths and weaknesses are well understood (ICHS22A, 

1996; ICHS22B, 1997).  This does not mean that regulatory genotoxicity testing is not 

open to innovation.  Recently the guidelines have been reviewed and revised (Zieger, 

2010; ICHS2(R1), 2011).  However, the recommended battery of in vitro and in vivo 

tests remained broadly the same. 

 

1.2.1 The ICH S2 Recommended Tests 

The ICH recommended test battery is comprised of the following assays. 

 

1.2.1.1 The Bacterial Reverse Mutation (Ames) Test 
The bacterial strains used in the Ames Test are mutant in their ability to synthesize 

essential amino acids.  The basic study design is presented in Figure 1.1.  Mutagens 

are detected by reverse mutation of histidine-requiring mutants of Salmonella 

typhimurium strains and tryptophan-requiring mutants of Escherichia coli strains.  

Strictly speaking, the ubiquitously used term ‘Ames’ test only refers to the assay using 

salmonella strains, the E.coli strains were a later addition to Bruce Ames’ original 

protocol (Green et al., 1976; Venitt et al., 1984).   When the tester strains are grown on 

minimal media agar plates containing just a trace amount of histidine (S.typhimurium 

strains) or tryptophan (E.coli strains), only those bacteria that have reverted back to the 
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wild type ability for histidine (his+) or tryptophan (trp+) synthesis are able to form 

discernable colonies.   

Test compound, S9, top agar and 
bacteria mixed & poured onto agar 
plate (trace histidine/tryptophan).  
Three plates per concentration

INCUBATOR

Plates incubated at 
37oC for 3 daysMutated (revertant) colonies can 

grow without histidine. Number of 
colonies per plate counted

Bacteria (2/5 strains) removed  
from freezer and incubated 
shaking (37oC) overnight

Serial dilution of 
test compound

S9

Metabolic activation 
system (Rat liver S9 
fraction and co-factors)

&

+/-

 
 
Figure 1.1: The Bacterial Reverse Mutation Test 
Schematic of testing regime for a two or 5 strain Ames test 
 
A variety of bacterial strains are used in the test, these differ both in the type of 

mutation required to cause reverse mutation to histidine/tryptophan independence and 

with respect to their sensitivity in detecting different mutagens (Table 1.1).  The ability 

of tester strains to detect mutagens is enhanced by mutation, other than his or trp, and 

by plasmid insertion.  Most contain a uvrB mutation, decreasing their DNA excision 

repair capability and the rfa mutation that increases cell wall permeability thus allowing 

uptake of larger molecules.  Some strains (e.g. TA102 and E.coli uvrA) do not have the 

uvrB mutation, thus they are DNA excision repair proficient and are capable of 

detecting mutations by inefficient repair.  Some strains also contain the plasmids 

pKM101 and pAQ1, which encode the SOS-repair genes and enhance error prone 

repair (Maron and Ames, 1983). 
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Bacteria Strain    Plasmid Reversion event 

Salmonella typhimurium TA1535 None Base-pair substitution 

Salmonella typhimurium TA100 pKM101 Base-pair substitution 

Salmonella typhimurium TA98 pKM101 Frameshifts 

Salmonella typhimurium TA1537 None Frameshifts 

Escherichia coli WP2uvrA 

 

pKM101 Excision repair proficient, can 

detect cross-linking agents and 

small deletions 

Salmonella typhimurium TA102 pKM101, 

pAQ1 

Excision repair proficient, can 

detect cross-linking agents and 

small deletions.  Capable of 

identifying gyrase inhibitors 

Salmonella typhimurium TA104 None Excision repair proficient, can 

detect cross-linking agents and 

small deletions.  Capable of 

identifying oxidative stress 

induced mutation 

Table 1.1 The Reverse Bacterial Mutation Assay: Examples of Common Tester 
Strains 
 

1.2.1.2 The in vitro Chromosome Aberration Test (IVC) 
The principal of the IVC is to visualize structural chromosomal aberrations using light 

microscopy (Figure 1.2).  After treatment, cells are blocked in metaphase (usually by 

the addition of colchicine or colcemid).  Metaphase slide preparations are stained with 

a DNA stain (e.g. giemsa) and scored by skilled cytogeneticists who are able to identify 

chromosomal gaps, breaks and rearrangements (Evans and O’Riordan, 1975; Scott et 

al., 1990).  Structural aberrations may be of two types, chromosome or chromatid 

(single chromosome arm); the majority of chemical mutagens induce predominantly 

chromatid aberrations i.e. breaks in a single chromosome arm.  An increase in 

polyploidy can be used as a surrogate for a chemicals potential to induce changes in 

chromosome number (aneuploidy).  Several immortalized cell lines may be utilised for 

the IVC.  However, it also has the advantage that phtyohaemagglutinin stimulated 

dividing primary human lymphocytes can be used.  The disadvantage of the test lies in 

the difficulty and time consuming task of scoring multiple slides. 
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Figure 1.2: Metaphase Preparation of Human Lymphocytes for analysis of 
Chromosome Aberrations. 
The arrows indicate chromosome breaks  
 
 
1.2.1.3 The Mouse Lymphoma Assay (MLA) 
The MLA can be seen to have an advantage over the IVC, and the later to be 

discussed in vitro micronucleus test, as it is capable of detecting point mutations and 

large chromosome deletions (Moore et al., 1985).  The assay was initially designed and 

validated in the 1970’s by Don Clive and his co-workers  (Clive et al., 1972; Clive et al., 

1979).  Jane Cole later modified the original agar plate protocol and developed a 

microtitre technique (Cole et al., 1983, Cole et al., 1986).  See Figure 1.3 for the basic 

microtitre version test design.  The MLA uses the mouse lymphoma cell line L5178Y 

tk+/- clone 3.7.2C, which is heterozygous at the thymidine kinase (tk) locus on 

chromosome 11. Thymidine kinase is a nucleoside salvage enzyme.  Loss of functional 

tk+ expression on chromosome 11b, i.e. mutation to tk-/-, renders cells resistant to the 

toxic thymidine analogue trifluorothymidine (TFT).  Tk-/- cells are viable as they retain 

de novo thymidine and DNA synthesis.  Hence TFT is used to select tk-/- mutant clones 

in a background of tk+/- cells (Clive et al et al., 1987).  Theoretically, a wide variety of 

mutagenic events can lead to phenotypic TFT resistance, including; small mutations 

within the tk+ gene (genetic mutations), larger chromosomal events within and beyond 

the tk+ gene altering chromosome 11b structure (clastogenicity), mitotic recombinations 
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and, it has been proposed, loss of whole chromosome 11b via chromosomal non-

disjunction or aneuploidy (Clements, 2000).  However, there is still much debate 

regarding whether the MLA can reliably detect in vitro aneugens (O’Donovan et al.,  

1999).  As the above events can be induced by various classes of agents, the assay is 

capable of detecting a wide variety of genotoxic chemicals. Furthermore, tk-/- mutant 

clones can have slow or wild-type growth rate.  The difference in mutant clone growth 

has been attributed to different mechanisms of DNA damage: i.e. chromosomal 

mutations extending beyond the tk gene produce small slow growing mutant clones, 

whilst intragenic mutations produce large wild-type growing clones (Combes et al., 

1995). However, as it has been shown that small mutants can also result from other 

mechanisms (Blazak et al., 1986 and Blazak et al.,1989), mutant colony size should be 

used only as an indicator, not as a definitive measure of a chemicals mode of 

mutagenic action. 

 

Cells dispensed  at 
1x107/tube

Cultures washed,diluted to 
2x105/mL& incubated 24 hr. 
Cultures counted, subbed 
to 1.5x105/mL& incubated 
for another 24 hr

1.6 cells/well for cloning
efficiency determination

Mutant frequency 
calculated (number 
mutants per 10-6 viable 
cells)

CO2 INCUBATOR

Cultures incubated at 
37oC for 3 or 24 hours

Serial dilution of test 
compound prepared & 
cultures treated -/+ S9

TFT

Cultures counted and 
plated into selective 
(with TFT) & non-
selective medium

2000 cells/well for mutant
frequency determinationIncubated for 12 days.

Wells containing small &
large mutant clones scored

Incubated for 8 days.
Wells containing
viable clones scored 

S9
+/-

 
Figure 1.3:  The Microtitre Mouse Lymphoma Assay 
3 hour incubation use as standard, 24 hour incubation used to identify division 
dependent mutagens, cells cultured for 2 days post-treatment then plated in selective 
(TFT containing) or non-selective medium 
TFT = trifluorothymidine, selectively kills non-mutant (heterozygous tk+/- cells) 
 

1.2.1.4 The in vitro Micronuclei Test (MN(vit)) 

Analysis of micronuclei formation was originally proposed back in the 1970’s as an 

alternative to in vivo analysis of chromosome aberrations (Heddle, 1973; Schmid, 
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1975).  In vitro versions of the assay were later developed (see Fenech, 2000 for an 

example of a common Mn(vit) test design).  Micronuclei are fragments of DNA that fail 

to be integrated into nuclear material following segregation.  They may be formed from 

chromosome/chromatid breaks (clastogenicity) or loss of a whole chromosome 

(aneugenicity).  Accordingly, the MN(vit) is capable of detecting both types of damage 

and centromere staining of micronuclei can be used to identify the mechanism of their 

generation (Figure 1.4).  Similar to the IVC, the MN(vit) can be performed with a variety 

of cell lines.  The cytochalasin B cytokinesis block MN(vit) has also been developed to 

facilitate the use of phtyohaemaglutinin stimulated primary human lymphocytes.  In this 

version of the test only binucleated cells are scored, thus ensuring micronuclei are 

counted in dividing cells (Fenech, 2000). The basic study design of the MN(vit) is 

presented in Figure 1.5.   

Micronucleus Micronucleus containing a centromereA B

Figure 1.4:  L5178Y cell micronuclei stained for presence of an intact centromere 
A: micronucleus without a centromere indicating a clastogenic event 
B: micronucleus with a centromere indicating an aneugenic event   
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erythrocyte.  By using stains that can differentially image RNA and DNA (e.g. acridine 

orange; which under fluorescence RNA is red and DNA yellow/green), immature 

erythrocytes can be distinguished from mature erythrocytes and the frequency of 

micronucleated immature erythrocytes can be established.  Sampling the bone marrow 

at both 24 hours and 48 hours after treatment allows the detection of compounds with 

short term and delayed effects (Schmid, 1975).  The basic design of the in vivo 

micronucleus test is presented in Figure 1.6.  Similarly to the MN(vit), the in vivo 

micronuclei assay has the advantage of being able to detect both clastogenic and 

aneugenic events. 

 

Rats/mice dosed with compound, three 
concs, seven animals / group.  Animals 
sacrificed 24 or 48 hours later

Micronuclei  may be formed by loss of whole chromosome 
during division or by chromosome breakage.  The erythrocyte’s 
nucleus is extruded leaving any micronuclei behind

MicronucleusNucleus

Femurs removed 
and bone marrow 
aspirated 

Bone marrow cells spread onto 
slides.  Slides fixed and stained 
(acridine  orange)

2000 cells analysed per animal, number 
of micronucleated immature 
erythrocytes scored

Micronuclei

 

Figure 1.6:  The Rodent Haemopoietic Cell in vivo Micronucleus Test 
Rodents dosed daily twice then sacrifice 24 hours after final dose, bone marrow 
aspirated from femurs, resultant cells prepared on microscope slides, fixed and DNA 
stained with acridine orange prior to micronuclei determination 
 
1.2.1.6 The Rodent in vivo Comet Assay 

The single cell gel electrophoresis or comet assay was first introduced as an in vitro 

genotoxicity screen by Singh et al in the late 1980’s (Singh et al., 1988).  It was later 

realised that the assay also had potential as an in vivo test (Anderson et al., 1998).  

The major advantage of the in vivo comet assay being that DNA damage could be 

measured in cells from any tissue from which a single cell preparation could be made.  

This includes the ability to measure DNA damage in hepatocytes, the cells primarily 

involved in xenobiotic metabolism.  Rodents are dosed and sacrificed 3 hours later.  

Single cell preparations are then made from the relevant tissue samples and set in an 

agar matrix on a microscope slide (see Figure 1.7 for the basic assay design).  The 
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principal of the assay relies on migration of unwound DNA from the nucleus during 

electrophoresis.   The more DNA breaks there are, the greater the amount of DNA 

there will be in the comet tail and this can be measured by propidium iodide (PI) 

staining and image analysis.  The comet assay is recommended in ICH S2(R1) as a 

second/follow on in vivo genotoxicity test or as a single assay combined with an in vivo 

micronucleus end-point. 

Slides Lysis

Electrophoresis
(0.7 V/cm,  300 mA, pH  13)

Neutralisation

Stain (PI) & Score 
(200x) - TI

No damage

Damage

Cells

Alkali 
unwinding

(pH 13, 20 mins)

 

Figure 1.7:  The in vivo rodent comet assay 
Rodents dosed 24 and 3 hours hours prior to sacrifice, single cell suspensions 
prepared from relevant tissue, cell embedded in agar, lysed, then electrophoresed and 
staoned with propidium iodide (PI) prior to analysis of amount of DNA in comet tail 
 

1.2.1.7 The history of genotoxicity testing and guidance 

The following table (Table 1.2) shows a brief history of the milestones in mutation 

research and the development of the assays currently recommended in ICH guidance. 
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Year Milestone in mutation research and guidance 
Late 18th 
century 

Nasal cancer identified in snuff users. 
Soot wart’ reported in Chimney sweeps 

1900-1920 Mutation and carcinogen experiments in bacteria, drosophila and in 
vivo (coal tar on rabbit ears) 

1920-1940 Single chemical, co-chemical and radiation treatment shown to be 
carcinogenic in experimental animals 

1940-1960 DNA identified as heritable material and structure elucidated, cancer 
initiators and promoters identified, metabolites shown to be mutagens, 
concept developed that pharmaceuticals and foodstuffs may be 
carcinogenic 

1960-1970 DNA reactive mutagens shown to be electrophilic species. 
In vitro metabolism of pro-mutagens identified 

1971-1975 Development of many of the commonly used genotoxicity screens, 
including: 

• Bruce Ames’ bacterial reverse mutation (Ames) test 
• Don Clive’s mammalian cell gene mutation assay using 

L5178Y tk+/- mouse lymphoma cells (MLA) 
• The  in vitro chromosome aberration test using human 

lymphocytes 
• In vivo tests for chromosome damage and micronuclei 

formation in rodent haemopoietic material 
1975-1980 Concert of non-DNA reactive carcinogens developed e.g. epigenetic, 

hormonal 
1980-1985 Development of in vitro and in vivo Comet assays 
1985-1995 OECD publish first guidance on safety testing of chemical 
1996-2000 New international guidelines for genotoxicity testing published 

including: 
• OECD specific guidelines for chromosome aberration testes, 

bacterial and mammalian cell gene mutation assays and in 
vivo tests 

• ICH guidance on genotoxicity testing of pharmaceuticals 
including appropriate battery to use 

2010 OECD guideline on the in vitro micronucleus test published 
2010- 
onwards 

Ongoing discussions include: 
• Updating ICH guidance for genotoxicity testing 
• Review of OECD guidlines; including development of a 

guideline for the Comet assay 
• Institute of Life Sciences looking into use of genotoxicity 

benchmark dosing for risk assessment 
Table 1.2 A brief history of the development of genotoxicity testing 
OECD = Organisation for Economic Cooperation and Development 
ICH = International Conference on Harmonization 
 

1.2.2 The predictivity of the genotoxicity test battery 

Since the drafting of the original ICH guidance in the late 1990’s, there has been a 

great deal of debate over the relative sensitivity and specificity of the assays from the 

recommended genotoxicity test battery.  However, although it is clear that the objective 
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of genotoxicity assessment is to prevent harm to man, the only database available to 

judge the predictivity of genotoxicity assays is rodent carcinogenicity data.  Whilst such 

comparisons are inevitably flawed, they are all that is currently available and are hence 

routinely used by expert groups for design of new guidance.  The assessment of the 

predictivity of genotoxicity assays for rodent carcinogenicity has been extensively 

reviewed, with five key papers published in the latter half of the last decade (Kirkland et 

al., 2005; Kirkland et al., 2007; Kirkland and Speit 2008; Matthews et al., 2006a; 

Matthews et al., 2006b).  These researchers made use of data from the National 

Toxicology Program (NTP) evaluations of the late 1980’s and early 1990’s.  The NTP 

evaluations compared genotoxicity end-points with the available rodent carcinogenicity 

data.  Initially, 73 chemicals were reviewed.  Later over 400 chemicals were added, 

with evaluation of the predictivity of the Ames, MLA and the rodent bone marrow 

micronucleus (RBM) test (Zeiger et al., 1990; Zeiger, 1998).  Kirkland’s and Matthew’s 

reviews of these databases generally supported the value of the Ames test for 

identification of DNA adduct forming mutagens, and whilst there were some question 

regarding the sensitivity of the RBM (i.e. the correct prediction of a positive rodent 

bioassay result), it was considered to be an acceptable in vivo genotoxicity screen.  

However, the re-analyses of the NTP data did cast doubt on the value of other 

elements of the ICH test battery.  In particular, the specificity (the correct prediction of a 

negative rodent bioassay result) of the in vitro mammalian tests.  For example, the 

specificity of the MLA was as low as 39%, indicating that over 60% of non-carcinogenic 

chemicals are positive in one of the core tests from the ICH battery.  The specificity of 

the IVC and MN(vit) was not markedly better (Kirkland et al., 2005).  The NTP data was 

based on a variety of chemicals from different industries including; industrial chemicals, 

foodstuffs, agrochemicals and a few pharmaceuticals.  As pharmaceuticals were 

generally under-represented, it is possible that the over sensitivity seen for the 

mammalian cell tests would not be seen in pharmaceutical screening.  However, the 

reported over sensitivity of these tests was to some extent reflected in data from 

pharmaceutical submissions in the 1990’s, where 20% to 30% of pharmaceutical 

entities were shown to have a positive result in at least one mammalian cell 

genotoxicity assay (Muller and Kasper, 2000; Snyder, 2009).  Furthermore, from a 

review by Peter Kasper, the current head of the German pharmaceutical regulatory 

authority (BfArM), all of the routinely run versions of the ICH recommended mammalian 

cell tests gave a similar percentage of positive results (Figure 1.8).  It should also be 

noted that most of the pharmaceuticals from these submissions that gave positive 

responses in mammalian cell genotoxicity tests were considered to be safe to be given 

to man, hence the majority were not considered likely to be human carcinogens.   
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Figure 1.8: Incidence of positive results seen in mammalian cell genotoxicity 
tests from 104 compounds submitted to the German regulatory authority (BfArM) 
during the 1990’s 
huly = human lymphocyte chromosome aberration test, MLA = mouse lymphoma assay, CHO = 
Chinese hamster ovary cell chromosome aberration test, V79 = V79 cell human lymphocyte 
chromosome aberration test, CHL = Chinese hamster lung human lymphocyte chromosome 
aberration test 
Image courtesy of Peter Kasper BfArM 
 

These reviews all indicated that the ICH recommended in vitro mammalian cell 

genotoxity tests (including the MLA, IVC and MN(vit)) have a very high positive rate.  

Hence two fundamental questions need to be addressed: 

1. Do pharmaceuticals tested in mammalian cell genotoxicity tests really generate 

the number of irrelevant positive results that has been indicated by 

retrospective reviews? 

2. What are the likely mechanisms for the positive responses seen? 

With reference to point 2, several mechanisms can be responsible for such 

unexplainable positives; these include induction of reactive oxygen species (ROS), 

aneugenicity, novel intercalation and non-drug target related topoisomerase II 

inhibition.  Ronald Snyder formerly at Abbott Laboratories, Illinois, has published 

extensively on the contribution of topoisomerase II inhibitors to unexpected positives in 

in vitro genotoxicity assays (Snyder, 2000; Snyder and Gillies, 2002; Snyder and 

Hendry, 2005; Snyder et al., 2005, Snyder et al., 2006, Snyder, 2007; Snyder, 2009).  

Much of Snyder research used agents that block topoisomerase II DNA interactions to 

modulate the effect of potential novel topoisomerase inhibitors in the in vitro 

micronucleus assay.  However, this work could not directly establish induction of 

stabilised topoisomerase II/DNA cleavage complexes and relate their presence to 
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induction of genotoxicity.  It is perhaps surprising that this direct relationship is yet to be 

firmly established.   

 

1.2.3 DNA covalently binding and non-covalently binding mutagens and 
the concept of a biological threshold for mutation 

In terms of concentration and effect, a threshold may be considered to be the 

concentration below which no effect is seen. The traditional standpoint for genotoxic 

carcinogens has been that there is no safe dose.  This dogma reflects the work in 

radiation research, mainly based on follow-up studies on survivors after the 1945 

atomic bomb attacks on Japan, where there has been demonstrated to be a direct 

correlation with dose and the incidence of solid tumours, with no perceivable low dose 

threshold.  Studies as recently as the last decade confirmed that this relationship was 

still holding true (Preston et al., 2003).  Whether or not this relationship is really the 

same for chemical genotoxic carcinogens is a matter of much debate.  The concept of 

‘one hit’ carcinogenicity has proven to be experimentally very difficult to prove or 

disprove.  Until recently the sensitivity of DNA adduct measurement was not sufficient 

to delineate true low dose effects.  However, the introduction of techniques such as 

accelerated mass spectrometry have meant that it is now practical to measure very low 

adduct levels.  This has far from ended the debate.  There are still advocates of the 

traditional view, they can experimentally demonstrate DNA adduct formation after 

treatment with extremely low concentrations of genotoxic carcinogens, and believe that 

this demonstrates that cellular repair mechanisms alone cannot remove the potential 

risk from these adducts (Zito, 2001).  However, adducts do not directly cause mutation, 

there has to be some form of error prone repair.  More recently several groups have 

experimentally demonstrated a biological threshold for the genotoxic carcinogen ethyl 

methane sulphonate, in both in vitro and in vivo tests (Doak et al., 2007, Gocke and 

Muller, 2009, Johnson et al., 2009).  This threshold is based on the idea of a pragmatic 

threshold, a threshold below which any effect is considered biologically unimportant 

(Lutz, 1998) i.e. a concentration below which any induced adducts can be effectively 

repaired by normal cell mechanisms.  This research into thresholds for genotoxic 

carcinogens is still in its infancy, and whether the same pragmatic threshold will be 

generally accepted, or whether each genotoxin will require an individual research 

programme to define the pragmatic threshold, remains to be seen.   

Whilst researchers struggle with trying to demonstrate pragmatic thresholds for DNA 

adduct inducing mutagens, the concept of a threshold for mutagens that do not directly 

bind to DNA is now accepted for several mechanisms of genotoxic action.  For 
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example, the theory that chromosome loss induced by aneugens has a threshold 

concentration-response curve has been accepted since the late 1990’s (Elhajouji et al., 

1997).  Although aneugens may induce chromosome number change by a variety of 

mechanisms, the term aneugen can be considered to describe any agent that can 

interact and effect cell division apparatus such as microtubules, centrosomes, and 

centromere associated proteins.  Hence pure aneugens do not directly bind to DNA.    

Accordingly, low concentrations of aneugenic agents may not induce chromosome 

number changes because deactivation of multiple targets (e.g. microtubules, 

kinetochores, centrioles) are required to induce effect.  For example, spindle poisons 

such as colchicine or vinblastine inhibit tubulin polymerisation. The spindle consists of 

many tubulin monomers. Therefore multiple targets have to be damaged before a 

significant adverse effect occurs (Elhajouji et al., 1997; Aardema et al., 1998).  

Thresholds have also been demonstrated for other indirect non-DNA adduct forming 

mechanisms of genotoxicity including oxidative stress, where it has been shown that 

the levels of ROS induced by low concentration of oxidising agents can be effectively 

dealt with by normal cellular free radical scavengers.  It is only at concentrations above 

which these mechanisms are saturated that genotoxicity can be seen (Platel et al., 

2009).  Similarly, thresholds of genotoxicity have been experimentally determined for 

topoisomerase II poisons (Lynch et al., 2003).  However, there is a growing concern 

amongst pharmaceutical regulatory authorities that topoisomerase II targeting anti-

infectives that are shown to be very potent mammalian genotoxic agents are not safe.  

In 2009 the European Medicines Agency (EMA) withdrew the marketing authorisation 

application for the fluoroquinolone topoisomerase II targeting antibiotic Factive 

(gemifloxacin), quoting: 

‘The EMA was concerned that Factive may be more genotoxic (harmful to the DNA, the 

genetic material in cells) and that it may therefore cause more damage to the DNA than 

other fluoroquinolones.’ 

and 

‘Therefore, at the time of the withdrawal, the EMA was of the opinion that the benefits 

of Factive in the treatment of community-acquired pneumonia and acute exacerbation 

of chronic bronchitis caused by bacterial infection did not outweigh its risks.’ (EMA, 

2009). 

 

These divergent views demonstrate the importance of gaining a better understanding 

of the mechanisms of topoisomerase II induced genotoxicity.  The role that 

topoisomerases have in the maintenance of cellular homeostasis, and the reasons why 
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pharmaceuticals designed to target topoisomerase may have deleterious side-effects is 

reviewed in the following sections. 

 

1.3 Topoisomerases 

Topoisomerases are a range of enzymes that relieve the torsion in DNA by creating 

temporary strand breaks, thus allowing one DNA strand to pass through another.  In 

simplistic terms, topoisomerases are characterised into two groups.  Topoisomerase I 

enzymes cleave a single strand of DNA, thus allowing the complimentary strand to 

pass through the nick.  Topoisomerase II enzymes cleave both DNA strands, thus 

allowing duplex DNA to pass through the double strand break.  The overall effect of this 

action is to change the DNA linking number (i.e. the number of times that DNA 

molecules wind around each other) by -/+ 1 (topoisomerase I enzymes) or -/+ 2 

(topoisomerase II enzymes) thus allowing the removal of torsional stress, knots and/or 

catanes (Bates and Maxwell, 2005).  The inherent cytotoxicity of topoisomerase 

inhibitors has lead to their development as cancer chemotherapeutic agents.  

Furthermore, anti-infectives targeting bacterial topoisomerases (gyrase and 

topoisomerase IV) are important medicines in clinical use for the treatment of a range 

of infectious diseases, with new medicines being developed for the treatment of the 

unmet needs of hospital acquired infections and tuberculosis.  However, the 

mechanism of cytotoxic action of therapeutic topoisomerase inhibitors can cause 

permanent DNA strand breaks.  Additionally, the homology between bacterial and 

mammalian topoisomerases (Berger and Wang, 1996) means that many of the 

compounds that target the DNA binding site of bacterial topoisomerase enzymes also 

target mammalian cell topoisomerases, albeit to a lesser extent.  If inefficiently 

repaired, the DNA strand breaks formed following topoisomerase inhibition in 

mammalian cells, can lead to cell death or DNA mutation. 

 

There is a wealth of published data on the genotoxicity of topoisomerase II inhibitors 

(Anderson and Berger, 1994; Curry et al., 1996; Boos and Stopper, 2000).  Their 

genotoxic potency ranges from the highly potent cancer chemotherapeutic agents such 

as etoposide (Boos and Stopper, 2000), to the much weaker active fluoroquinolone 

antibiotics such as ciprofloxacin (Curry et al., 1996).  However, it has not proven to be 

easy to predict the genotoxicity of novel topoisomerase inhibitors based on their activity 

against the topoisomerase enzyme.  A better understanding of these relationships 

would help with risk assessment for known topoisomerase inhibitors, plus may help 
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with the elucidation of hitherto unexplained genotoxic mechanisms, e,g. 

pharmaceuticals that may be genotoxic via off-target topoisomerase inhibition. 

 

1.3.1 The role of topoisomerase in maintaining cell homeostasis 

To fully appreciate why and how topoisomerase inhibitors make efficacious 

pharmaceuticals, and why and how they often have the undesirable side effect of 

associated genotoxicity, it is important to understand the mechanism of action of these 

enzymes. 

As a group, topoisomerases are very well conserved enzymes.  No organism has yet 

been found that can function without a minimum of one form of both a topoisomerase I 

and II enzyme (Wang, 2002).  The main function of all topoisomerase enzymes is to 

maintain DNA topology.  During transcription, replication and packaging, the DNA 

double helix is prone to underwinding, overwinding and subsequent catenation and 

knotting.  If left unchecked these changes will lead to problems with transcription or 

replication and can induce chromosome breaks and subsequent cell death during 

packaging (Thanbichler et al., 2005).  Topoisomerase enzymes relieve these tensions. 

Several topoisomerase families have been discovered.   Table 1.3 details those that 

are most relevant for DNA topology maintenance in the majority of bacterial and 

mammalian cells.  This table is not exhaustive, there are other forms of specialised 

topoisomerase enzymes that have evolved for specific reasons (e.g. reverse gyrases in 

thermophiles), but these are not relevant in standard pharmaceutical research or for 

safety assessment in man. 
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Enzyme Type Mechanisms 

Bacterial 

topoisomerase I 

IA Cleaves single DNA strands, help to relax negative 

supercoils.  Cannot decatenate unless one DNA 

strand already nicked 

 

Eukaryotic 

topoisomerase I 

IB As bacterial, but found in eukaryotes 

Bacterial 

Topoisomerase III 

IA Potent decatanator if one DNA strand already nicked

Bacterial DNA gyrase IIA Cleaves double stranded DNA, can introduce 

negative supercoils into DNA 

Eukaryotic 

topoisomerase II 

IIA Cleaves double stranded DNA, can relax but not 

supercoil DNA 

Bacterial 

Topoisomerase IV 

IIA Cleaves double stranded DNA, can introduce 

negative supercoils into DNA, potent decatanator 

even without requirement for nicks in one DNA 

strand 

 

Plant Topoisomerase 

VI 

IIB Similar to topoisomerase IIA, found in some single 

cell organisms and plants  
 

Table 1.3: DNA Topoisomerases 
Table reproduced and amended from Bates and Maxwell, 2005 
 
There are several anti-cancer therapeutic agents that target topoisomerase I, perhaps 

the best known example being camptothecin and the more recently discovered 

Irinotecan.  Many topoisomerase I inhibitors are also known to be genotoxic (Cunha et 

al., 2002, Kontek et al., 2010) and the potential of targeting topoisomerase I for 

oncology research has been investigated for many years (Ferguson and Baguley, 

1996).  However, given the number of topoisomerase II inhibitors that are used as both 

anti-infectives and anti-cancer therapies, topoisomerase II is still a more common drug 

target and hence investigating the genotoxic activity of topoisomerase II inhibitors will 

be the main focus of the current research.  Accordingly, the mode of action of 

topoisomerase II and the potential genotoxicity of its inhibitors will be considered in 

greater detail.  
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1.3.2 The structure of topoisomerase II enzymes 

As detailed in Table 1.3, there are two subfamilies of topoisomerase II enzymes.  

However, in nature, topoisomerase IIB is fairly uncommon and is not found in bacteria 

or mammalian cells, hence only the structure and function of topoisomerase IIA will be 

considered and from here on when topoisomerase II is mentioned the reference will be 

to topoisomerase IIA.  These two subfamilies of topoisomerase II should not be 

confused with the two isoforms of mammalian topoisomerase IIA, these being alpha 

and beta.  Further detail of the structure and function of the two mammalian isoforms of 

the enzyme will be given later. 

Prokaryotic and eukaryotic topoisomerase II enzymes differ in their basic structure. 

 

1.3.2.1 Prokaryotic topoisomerase II 

There are two major forms of bacterial topoisomerase II, based on their structure and 

function; gyrase and topoisomerase IV.  Gyrases are unique in that they can induce 

negative supercoils.  The modes of action of these enzymes will be discussed later.  

Bacterial forms of the topoisomerase II enzyme are heterotetramers (A2B2).  Gyrases 

are made up of two GyrA subunits and two GyrB subunits, whereas topoisomerase IVs 

are made up of two ParE subunits and two ParC subunits which are analogous to GyrB 

and GyrA, respectively, see Figure 1.9.  The sequence homologogy between the two 

forms of prokaryotic topoisomerase II is similar, with the exception of a 170 amino acid 

insertion towards the C terminal domain of the GyrB subunit and the C terminal 

domains of the ‘A’ subunits where sequence homology is generally only conserved 

between very closely related species (Champoux, 2001).  The basic structure of the 

enzyme is such that two B subunits form the ‘top’ of the enzyme and these are linked to 

two A subunits which form the ‘bottom’ of the enzyme. 

 

1.3.2.2 Eukaryotic topoisomerase II 
Eukaryotic topoisomerase II enzymes are homodimers.  The N terminal half of the 

enzyme correspond with bacterial GyrB and ParE, whilst the C terminal half 

corresponds with GyrA and ParC (Figure 1.9).  The ‘middle’ of the eukaryotic 

topoisomerase enzyme which contains the DNA binding and cleavage site is often 

designated as B/ (N-terminal end) and A/ (C-terminal end) in consequence of the 

homology of this region with the C-terminal end of the prokaryotic B subunit and the N-

terminal end of the prokaryotic A subunit.  As previously mentioned, most mammals, 

including humans, have two topoisomerase II isoforms, α and β.  These were originally 

discovered due to their size difference, topoisomerase IIα is approximately 170 kDa 
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and topoisomerase IIβ is approximately 180 kDa (Drake et al., 1989).  It was later 

discovered that these two different isoforms were encoded by genes on different 

chromosomes; in human the α encoding gene is on chromosome 17 and the β gene on 

chromosome 3 (Tan et al., 1992).  In mouse the α encoding gene is on chromosome 11 

and the β gene on chromosome 14.   At the amino acid level, the two human isoforms 

share approximately 68% homology, with the majority of the variability seen in the C 

terminal domain, where homology is only 34% (Willmore et al., 1998). 

 

Figure 1.9: Sequence comparisons among type II topoisomerases. 
The three-domain structure of the type IIA subfamily of topoisomerases is shown based 
on amino acid sequence homologies with E. coli DNA gyrase. In each case, the region 
or subunit that is homologous to the GyrB subunit (excluding the insertion from 550–
719) is shown with sequence coordinates and a grey shaded box. The region 
homologous to the highly conserved first 505 amino acids of GyrA is depicted by a box 
with diagonal striping. For the S.cerevisiae enzyme, the C-terminal half of the GyrB-like 
region (residues 410–660) is referred to as B′ and the region homologous to GyrA as A′ 
(residues 661–1164); the combined B′-A′ regions constitute the DNA binding/cleavage 
domain containing the active site tyrosine site (Tyr782). The N-terminal half of GyrB 
and the corresponding regions in the other type IIA enzymes contain the ATPase 
domain (and the DNA capture domain, not indicated). The C-terminal tail domains of 
the enzymes are depicted as open boxes. The ParC and ParE subunits of E.coli 
topoisomerase IV are also referred to as the A and B subunits, respectively, to denote 
their relationship to the gyrase subunits. Reproduced from Champoux, 2001 
 

As detailed in Figure 1.9, both eukaryotic and prokaryotic topoisomerase II share a 

core set of a conserved ATPase domain and a DNA binding domain which contains the 

active tyrosine site required for DNA cleavage (Champoux, 2001; Schoeffler and 

Berger, 2005).  Most of the early work on eukaryotic topoisomerases used yeast 

(S.Cerevisiae).  However, comparisons of topoisomerase structures amongst 

eukaryotes show that whilst they do not always have completely conserved amino acid 

sequences they do retain similar overall 3D structural shape. This can be seen for the 

crystalline structures in Figure 1.10, where the N-terminal half of S.Cerevisiae 
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topoisomerase II is compared against human topoisomerase IIα. The amino acid 

sequence is not identical but the overall structure and function is conserved (PDP 

Protein Data Bank, 2011). 

 

 

 

Figure 1.10: ATPase region of Yeast topoisomerase II and human topoisomerase 
IIα demonstrating similarity in overall structure 
Regions are displayed in backbone and ribbon mode. The ligands are shown in 
spacefill mode. Image from PDP Protein Data Bank, 2011 
 

The structure of both the homodimic eukaryotic enzyme and the heterotetrameric 

prokaryotic enzyme is exquisitely designed to fulfill the same function.  Both the 

homodimer and the heterotetramer structure have a series of hinged regions between 

the two or four molecules whose altered conformity facilitates DNA capture, cleavage, 

reannealing and strand passage through the molecule.   

 

1.3.3 The mechanism of action of topoisomerase II enzymes 

The main function of topoisomerase enzymes was solved by the beginning of the last 

decade and was summarised in the reviews of James Champoux 2001 and Kevin 

Corbett and James Berger 2004 (Champoux, 2001; Corbett and Berger, 2004).   

As previously mentioned, the function of topoisomerase II enzymes is to alleviate DNA 

torsion stresses and untangle and unknot DNA prior to transcription or pre- and post-

replication modifications.  The mechanism is via the creation of a transient break in one 

DNA double strand, known as the gate segment (G-segment) thus allowing a second 

strand, known as the transport segment (T-segment), to pass through (see Figure 
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1.11b).  Hence changing the DNA linking by -/+ 2.  The core activity of the molecule is 

associated with the hinged dimer interfaces around the ATPase domain and DNA 

cleavage domain (see Figure 1.11a).   

 

1.3.3.1 Structure and activity of the ATPase domain 
The ATPase domain lies within approximately 400 amino acids from the N-terminal of 

the eukaryotic dimer or prokaryotic ParE or GyrB.  Within the ATPase domain there is 

the N-terminal positioned GHKL domain, so called because of its ubiquity in several 

ATPase containing enzymes i.e. Gryase, Hsp90, bacterial histidine Kinases and MutL.  

ATP binds to the GHKL domain and facilitates DNA capture by inducing dimerisation of 

the molecule.  The region of the ATPase domain towards the C-terminal contains the 

transducer domain, in which there is a lysine residue, which projects into the active 

GHKL domain and hydrogen bonds with bound ATP inducing hydrolysis.  ATP 

hydrolysis is not essential for DNA strand passage as studies with the non-

hydrolysable ATP analogue 5'-adenylyl-beta, gamma-imidodiphosphate (ADPNP) have 

shown.  However, hydrolysis of ATP greatly increases the speed of enzymic activity 

(Champoux, 2001; Corbett and Berger, 2004). 
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Figure 1.11: Topoisomerase II structure and mechanism 
(a) Structure of S.cerevisiae topoisomerase II.  GHKL domain yellow, transducer 
domain brown, toprim domain red, 5Y-CAP domain green, accessory domains blue.  
For clarity, one monomer is shown in grey. (b) Cartoon showing the sequence of 
events leading to strand passage. Domains are coloured as in (a), with the G-segment 
in magenta and the T-segment in cyan. (c) Three conformations of the type IIA topo 
DNA cleavage region.  From left to right, a closed DNA gyrase, a partially open and 
open S.cerevisiae topoisomerase II. The S.cerevisiae topoisomerase II structures 
contain the toprim domains light grey, 5Y-CAP green and accessory scaffolding 
elements blue.  Reproduced from Corbett 2004. 
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1.3.3.2 Structure and activity of the DNA cleavage domain 
The DNA cleavage domain lies within the B/ A/ region of the eukaryotic dimer and at the 

interface of the C-terminal of GyrB and ParE and the N-terminal of ParC and GyrA  

(see Figure 1.9).  The domain consists of two regions, the B/ region located 5Y-CAP, 

CAP being a structure similar to the E.coli Catabolite Activator Protein and which 

contains the active tyrosine residue site that binds to the 5/ end of DNA following 

nucleophilic attack.  The second region is the A/ located Toprim domain, which is 

conserved between both Topoisomerase enzymes and bacterial primases (enzymes 

that catalyse short RNA synthesis).  The domain contains conserved acidic residues 

that form a binding site for Mg2+ ions that are required for catalytic function.  The 

relative positions of 5Y-CAP and toprim in the topoisomerase II molecule provide the 

basis for interaction between these two active sites and allow the enzyme to open, hold 

and orientate the G-segment DNA before and after cleavage (Champoux, 2001; 

Corbett and Berger, 2004). 

 

1.3.3.3 DNA strand passage 
Opening and closing of the dimer hinged ATPase region (N-gate) is facilitated by ATP 

binding and release.  Dimer linkage of this region, along with further dimer linkage 

around 5Y-CAP and a final dimer linkage at the A/ C-terminal domain gives 

topoisomerase II enzymes two hollow areas within the enzyme which temporarily hold 

the DNA T-segment during transport.  In its inactive state the N-terminal gate is open.  

During this open conformation G-segment DNA enters the N-gate and binds to the 5Y-

CAP domains.  Binding of two ATP molecules within the GHKL region facilitates 

dimerisation around this site, capture of T-segment DNA and closing of the hinged N-

gate.  Hydrolysis of one of the ATPs induces a conformational change that helps T-

segment transport.  The change also forces movement between the dimers around the 

DNA cleavage domain thus eliciting a 4 base pair staggered break in the G-segment 

around the active tyrosine bound sites within the 5Y-CAP and toprim domains.  

Cleavage is achieved by the nucleophilic activity of the active tyrosines on phosphates 

of each held DNA strand backbone (Champoux, 2001; Corbett and Berger, 2004).  The 

free 4’-phenol of the active tyrosine binds to the phosphate and initiates a 

transesterification reaction thus cleaving the strand leaving a free 3/ hydroxyl (Meresse 

et al., 2004), as detailed in the following Figure 1.12.   
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Figure 1.12: Transesterification of phosphate and DNA cleavage by active 
tyrosine 
Reproduced from Meresse et al., 2004 
 

The active tyrosine sites both cleave and hold each single DNA strand by forming a 

covalent bond with the 5/ terminal phosphates, this helps to conserve DNA phosphate 

backbone bond energy thus facilitating later religation (Deweese et al., 2009).  This G-

segment tyrosine/Mg2+ held strand break is known as the cleavage complex, and it is 

xenobiotic stabilisation of this complex that is one of the main mechanisms of 

topoisomerase II mediated cytotoxicity and genotoxicity.  Following formation of the 

cleavage complex, the T-strand is then released and passes through the G-strand and 

out of the A/ C-terminal of the dimer (C-gate).  Further ATP hydrolysis ‘relaxes’ the 

DNA cleavage domain allowing for G-strand reannealing and release from the enzyme.  

The dimer is thus destabilised and re-set ready for further DNA strand capture (Figure 

1.11 b and c) (Champoux, 2001; Corbett and Berger, 2004).   

 

1.3.3.4 Gyrase ability to negatively supercoil 
All topoisomerase II enzymes are capable of relaxing supercoils (i.e. changing linking 

number by +2).  However, only gyrases have the capacity to generate negative 

supercoils (i.e. changing the linking number by -2 (from +1 to -1)).  This maintains 

genomic DNA in a slightly underwound state, which is helpful for bacterial DNA 

compaction and also replicative and transcriptive processes (Schoeffler and Berger, 

2005).  Gyrases are able to negatively supercoil due to a specialised DNA binding site 

within the DNA cleavage C-terminal domain, which facilitates a positive handed 

wrapping of 140 Kda of a DNA strand around the gyrase enzyme (Bates and Maxwell, 

2007).  This aids preferential capture and transport of a T-segment from the same DNA 

molecule as the wrapped G-segment (Corbett and Berger, 2004).  Efficient gyrase 

supercoiling requires significant energy (Ca 114 kJ/mol), which is approximately 

equivalent to the energy release from hydrolysis of two ATP molecules (Bates and 

Maxwell, 2007). 
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1.3.3.5 Specificity of function of human topoisomerase II α and β 
The two human topoisomerase II isoforms are not just genetically different, they are 

also functionally different.  Over the last two decades, researchers have begun to 

understand their diverse roles.  It was initially shown that levels of topoisomerase IIα 

are markedly increased during cell cycle G2 and M phases.  Topoisomerase IIα was 

also found to be located within the nucleus during S-phase, all indicating that it has a 

role in chromosome untangling and mitotic segregation during and following replication.  

Furthermore, the α isoform is predominantly expressed in proliferating cells and is 

found to be closely associated with chromosomes during metaphase, highlighting its 

crucial function in cell division (Wilmore et al., 1998; Christensen et al., 2002; Linka et 

al., 2007).  Topoisomerase IIβ is maintained at similar levels throughout the cell cycle, 

is not chromosomally associated during metaphase and is the major isoform found in 

some end-differentiated cells.  In the late 1990’s studies using topoisomerase II knock-

down yeast demonstrated that topoisomerase IIα and IIβ appeared to be functionally 

interchangeable, but at this time the specific function of topoisomerase IIβ remained a 

mystery (Austin et al., 1995; Austin and Marsh, 1998).  It was later shown that cells can 

function with only the α isoform but cannot survive with only the β (Christensen et al., 

2002).  With the help of more sophisticated techniques the differences in the specific 

activities of the isoforms were further elucidated.  It was found that topoisomerase IIα 

preferentially relaxes positively supercoiled DNA ahead of the replication fork, whereas 

topoisomerase IIβ relaxes both positive and negative supercoils with similar efficiency 

(Pommier et al., 2010).   Other work has shown that the β isoform plays a role in 

facilitating transcriptional activities (Ju et al., 2006) and in cellular maintenance within 

the central nervous system, with a function in the maintenance of cell differentiation 

and migration for cells committed to neuronal progression (Heng and Lee, 2010) and 

for general neuronal growth and brain development (Linka et al., 2007).  It has also 

been experimentally demonstrated that the α and β isoforms have different roles with 

respect to DNA damage progression and repair in neuroblastoma and astrocytoma 

cells, with topoisomerase IIα being shown to accelerate DNA damage and β having a 

role in promotion of DNA repair (Mandraju et al., 2008).  Whether β has a similar 

function in other end-differentiated cells is not clear, but it has been suggested that 

poisoning of topoisomerase IIβ in non-proliferating cells with a subsequent reduction in 

the cells ability to repair DNA damage (specifically knockdown of non homologous end-

joining) may be partly responsible for the secondary malignancies seen in cancer 

patients on topoisomerase II poison containing treatment regimes (Nitiss, 2009).  The 

diverse functions and exactly why two similar yet different forms of the topoisomerase II 



Chapter 1 
 

31 

enzyme have evolved remains to be fully elucidated.  With respect to the measurement 

of topoisomerase II inhibition and in vitro genotoxicity in mammalian cells, which are 

invariable rapidly dividing populations, it would seem probable that the α isoform is 

likely to be the main target.  

 

1.3.4 Recent developments in the understanding of topoisomerase II 
mechanism 

1.3.4.1 Function of the C-terminal domain 
Recent studies on the mechanism of action of human topoisomerase II have 

highlighted the importance of the C-terminal domain, both on the activity of the enzyme 

and on the enzymes ability to interact with DNA.  As previously mentioned, the C-

terminal domain of the eukaryotic homodimer and of prokaryotic A subunits are the 

least conserved regions of the enzymes.  It is also known that phosphorylation sites 

within the C-terminal domains play a role in topoisomerase activity during mitosis and 

chromosome condensation (Heck et al., 1989; Escargueil et al., 2000; Ishida et al., 

2001).  Furthermore, the C-terminal was known to have a role in the cellular 

localisation of topoisomerase II (Adachi et al., 1997).  More recent studies using 

chimeric forms of the human enzyme (C-terminal swaps between topoisomerase IIα 

and IIβ) and constructs of the enzyme without C-terminal domains have demonstrated 

how the C-terminal plays an as yet not fully understood role in both strand passage 

activity and cell viability.  There is mounting evidence to suggest that the C-terminal 

domain can be thought of as interacting with DNA strands like a magnet, with the 

traversed DNA as a metal thread, hence orientating movement and localization of the 

enzyme.  Furthermore, the function of the topoisomerase II C-terminal domain differs 

between the two isoforms of the enzyme, with topoisomerase IIα C-terminal domain 

being essential for cell growth, but not topoisomerase IIβ, and with the topoisomerase 

IIβ C-terminal domain acting as a negative regulator for stand passage (Meczes et al., 

2008, Gilroy and Austin, 2011).     

 

1.3.4.2 Cleavage and ligation of topoisomerase II mediated DNA breaks   
The continuing crystallisation of various forms of topoisomerase II molecules has lead 

to several breakthroughs in understanding the relationship between structure and 

function.  Crystallisation has shown how topoisomerase II molecules not only 

preferentially bind to DNA areas with significant curvature, but that the molecule itself 

can bend DNA by up to 150o, thus facilitating the correct orientation of tyrosine 

cleavage sites and acidic residue Mg2+ binding sites within the toprim domain (Dong 
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and Berger, 2007).   The requirement for divalent Mg2+ as a cofactor for DNA cleavage 

and tyrosine bonding to the 5/ terminal of each cleaved DNA strand has been known for 

over two decades.  However, the role that Mg2+ plays in enzymic function has not been 

fully elucidated.  The majority of recent studies have confirmed the enzymic 

requirement for two divalent cations, but studies have also shown that topoisomerase II 

uses these ions in an unusual way when compared to other cation DNA and RNA 

interactions.  Topoisomerase II activity requires the divalent cations to stabilise the 

active groups around cleavage sites.  It has been postulated that one Mg2+ promotes 

cleavage and interacts with the bridging 5/-oxygen of the cleaved bond, stabilises a 

leaving oxygen from the 3/-oxygen whilst also promoting ligation of the ribose 3/-

hydroxyl moiety.  The second ion would appear to bond in such a way as to hold and 

stabilise each DNA strand, but the exact mechanism is still unclear.  This model is 

unusual in that only one ion is required for cleavage.  The role of the second ion would 

appear to be primarily to prevent cleavage leading to permanent DNA double strand 

breaks (Deweese et al., 2008; Deweese et al., 2009; Schmidt et al., 2010).  The activity 

of these divalent cations and the stabilisation of the functional double strand break has 

direct relevance to both the activity of topoisomerase poisons, which will often interact 

with these processes, and the potential genotoxicity of chemicals that interfere with 

metal ion mediated cleavage and ligation.  However, there is still much to learn with 

respect to the cleavage and ligation activity of topoisomerase II enzymes.  A recent 

study suggested that at least for prokaryotic topoisomerase IV, the requirement for two 

divalent cations to catalyse cleavage activity and/or to stabilise cleaved DNA activity 

was at best inconclusive.  The researchers found no evidence even for a weakly bound 

second divalent ion, and hence concluded that the enzyme could operate with single 

‘dynamic’ ion coordination (Laponogov et al., 2010).  The process of religation has also 

not been fully elucidated.  However, the proposed model is for acidic attack of the 3/-

hydroxyl moiety leading to hydrogen removal and the formation of an oxyanion.  This in 

turn initiates breakdown of the phosphotyrosine bond with subsequent re-ligation of the 

5/ and 3/ ends (Deweese et al., 2009). 

 

1.3.5 Genotoxicity associated with drug induced topoisomerase II 
inhibition or poisoning 

Whilst the consequence of inhibition of topoisomerase II has been previously alluded 

to, it is important to have a clear understanding of what is meant by topoisomerase 

inhibition and how topoisomerase inhibitors may elicit genotoxicity.  There are often 

considered to be two categories of agents that inhibit topoisomerase II.  These are: 
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1. Topoisomerase poisons: being agents that either stabilise the 

DNA/topoisomerase II cleavage complex (see Figures 1.13 and 1.15) or 

enhance generation of cleavage complexes.  Both of these mechanisms 

increase the number of transient DNA strand breaks, hence turning the 

topoisomerase enzyme itself into a ‘poison’.  Furthermore, the increase in the 

number of bound enzyme DNA complexes results in a ‘road block’ on the 

double helix.  DNA replicative machinery, such as helicases, stall at this block 

initiating various DNA repair mechanisms and causing subsequent permanent 

DNA breaks.  Several anticancer agents such as etoposide and teniposide 

targeting eukaryotic topoisomerase II and the quinolone/fluoroquinolone 

antibiotics targeting prokaryotic topoisomerase II are topoisomerase II poisons.  

As chemically stabilised cleavage complexes lead to inefficiently repaired DNA 

breaks, topoisomerase poisons are genotoxic agents (Deweese et al., 2009). 

2. Catalytic inhibitors: being agents that prevent the activity of topoisomerase by 

interaction with the enzymes ATPase region.  Catalytic inhibition may be 

activated by several mechanisms, including:  

a. Competitive inhibition of the topoisomerase II ATP binding sites.  
The aminocoumarin antibiotics (e.g. novobiocin) act in this way.  As ATP 

competitive inhibitors effectively block the activity of the topoisomerase 

II enzyme before DNA cleavage, they are cytotoxic but generally not 

genotoxic (Gocke, 1991).   

b. DNA intercalation.  Intercalation can be considered a form of catalytic 

inhibition in so far as intercalation and the resultant change in DNA 

structure can prevent topoisomerase II enzymes from binding to DNA, 

e.g. doxorubicin (Pommier et al., 2010).  At different concentrations, 

some intercalators may act as topoisomerase poisons by intercalation 

within cleavage complexes, which can directly induce frame-shift 

mutations (Ferguson et al., 2007). 

c. Inhibition of ATPase activity preventing ATP hydrolysis after 
strand cleavage.  Prevention of ATP hydrolysis can fix the closed 

clamp form of the enzyme and hence stabilise the topoisomerase II DNA 

complex.  The cancer therapeutic bisdoxopiperazines (ICRF compounds 

154, 159, 187 and 193) act in this way.  Although these compounds are 

considered to be catalytic inhibitors, the closed clamp stabilised lesion is 

similar to that produced by topoisomerase poisons and can lead to DNA 

road blocks, double strand breaks and consequent genotoxicity (Austin 
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et al., 1995; Andoh and Ishida 1998; Cortés et al., 2003; Pommier et al., 

2010). 

Details of the modes of action of non-directly DNA intercalating genotoxic 

topoisomerase II inhibitors will be considered with reference to putative examples of 

different classes of drugs with varying targets; i.e. the cancer therapeutic agent 

etoposide (a mammalian topoisomerase II poison), the fluoroquinolone antibiotics 

(gyrase/topoisomerase IV poisons with some cross over to activity against eukaryotic 

topoisomerase II) and the ICRF cancer therapeutic agents (catalytic inhibitors).   

Figure 1.13 schematically represents the various targets for topoisomerase inhibition 

and at which point during the activity of the enzyme drugs may act.  

Quinolone/fluoroquinolone antibiotics bind with the DNA cleavage domain, interacting 

close to the ligated strands and enhancing cleavage complex formation.  Etoposide 

also binds within the DNA cleavage domain, but rather than enhancing cleavage 

complex formation, etoposide blocks religation hence increasing the number of 

stabilized cleavage complexes.  ICRF187 blocks ATP hydrolysis and inhibits gate 

opening hence trapping DNA (Pommier et al., 2010).   

 
Figure 1.13: Topoisomerase II catalytic cycle and targets of activity of 
topoisomerase II inhibitors.  Complexes of topoisomerase II, DNA and agents such 
as etoposide which bind within the nicked strand (as in 3 and 4) are stabilised, thus 
preventing release of the enzyme from DNA.  These arrangements are known as 
Stabilise Cleavage Complexes and are the initial lesions responsible for subsequent 
permanent strand breaks.   Reproduced from Pommier et al., 2010 
 

 



Chapter 1 
 

35 

1.3.5.1 Etoposide: activity and genotoxicity 

 

Figure 1.14: Anti-cancer agent etoposide molecule 
Molecular Mass 588.557 g/mol 
 

Etoposide (Figure 1.14) is a derivative of podophylotoxin, which is an extract from the 

mandrake plant that has been used in herbal remedies for millennium.  In the latter half 

of the 20th century podophylotoxin was found to have anti-cancer properties.  In the 

1960s the more potent etoposide was developed and purified, which following clinical 

testing received approval for the treatment of several cancers in the 1970’s and 1980’s.  

Etoposide and its analogue teniposide have become two of the most widely prescribed 

anti-cancer drugs.  Surprisingly, most of the early clinical trials and marketing was done 

before the exact mechanism of the anti-tumour activity of etoposide was discovered.  It 

wasn’t until the late 1970’s and early 1980’s that etoposide was shown to be a potent 

topoisomerase II poison (Hande, 1998). 

Within the DNA cleavage domain, two etoposide molecules bind to base pairs flanking 

either side of the cleaved DNA phosphates.  The effect is to displace the 3/ hydroxyl 

such that religation is not possible.   The topoisomerase/DNA cleavage complex is thus 

stabilised.  Etoposide is a weak DNA intercalator and binds preferentially to the pre-

existing topoisomerase II induced ligated DNA (Wu, 2011).  Figure 1.15 shows how the 

molecules interact.  
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Figure 1.15: Interaction of etoposide with a DNA bound topoisomerase II 
molecule DNA is blue, helical topoisomerase II monomers in grey and purple, 
etoposide stick molecule yellow and red.  Reproduced from Wu, 2011 

 

Given its ability to stabilise cleaved eukaryotic DNA and road block helicase activity, 

etoposide has unsurprisingly been reported to be a potent mammalian mutagen in a 

number of in vitro and in vivo assays.  See Tables 1.4 and 1.5 for data on the 

genotoxicity of etoposide in the ICH standard battery of tests and the in vitro Comet 

assay. 

 
1.3.5.2 Bisdoxopiperazines: activity and genotoxicity 

 
 

Figure 1.16: Anti-cancer bisdoxopiperazine ICRF193 
Molecular mass 282.30 g/mol 
 

Bisdoxopiperazines were initially synthesised as potential pharmaceuticals by the 

Geigy Corporation in the late 1950’s.  In the 1970’s, following indications of antitumor 
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activity, the structure was taken up by the Imperial Cancer Research Fund, after which 

the main compounds from the group were named.  ICRF154 was the first compound to 

be discovered, the more lipophilic and active derivative ICRF159 and the equally potent 

(+) enantiomer of ICRF159, ICRF187, followed.  ICRF193 (Figure 1.16) is a dimethyl 

derivative with even higher lipophilicity, but also associated excessive toxicity.  All of 

the ICRF compounds are potent ion chealating agents and this was initially thought to 

be the mechanism of their anti-tumour activity.  However, in the early 1990’s they were 

also shown to be potent topoisomerase II inhibitors (Andoh and Ishida, 1998).  

Unlike etoposide, the bisdoxopiperazines compounds bind within the ATPase domain 

not the DNA cleavage domain (See Figure 1.9).  Accordingly, bisdoxopiperazines do 

not act like classic topoisomerase II poisons.  A single molecule binds and forms a 

bridge across the topoisomerase II dimers (see Figure 1.17 for binding of ICRF187).  

This does not involve direct competitive binding to the ATP site, but the bridging and 

induced confirmatory change within the ATPase domain prevents hydrolysis of the 

second ATP molecule and blocks molecular gate opening (Classen et al., 2003, Nitiss, 

2009).  Hence, although DNA strand passage has occurred, DNA is trapped within the 

enzyme and a stabilised complex is formed that is similar to that seen with 

topoisomerase II poisons, accordingly the bisdoxopiperazines are positive in most 

standard genotoxicity assays (Tables 1.4 and 1.5)   



Chapter 1 
 

38 

 

 

Figure 1.17: ICRF187-binding pocket and protein/drug interactions.  
(a) ICRF187-binding pocket seen from the top of the dimer. An Fobs–Fcalc simulated-
anneal omit electron density map shown in green is contoured at 1.5σ around 
ICRF187. ADPNP, ICRF187, and residues within 5 Å of the drug are shown in stick 
representation. (b) Schematic diagram of protein/drug interactions. ICRF187 is blue. 
Residues contacting the drug from each of the two protomers are indicated by collared 
or black text. Hydrogen bonds are indicated by dotted red lines, stacking interactions 
are indicated by horizontally dashed red lines, and van der Waals interactions are 
indicated by solid red lines with a flat end. The γ-phosphates of bound ADPNPs are 
indicated by yellow circles.  Reproduced from Classen et al., 2003 
 

 





Chapter 1 
 

40 

require the more open structure of the cleaved strand to facilitate intercalation within 

the quinolone binding pocket (Piton et al., 2010; Wohlkonig et al., 2010).  The bound 

enzyme prevents DNA ligation and also increases the rate of cleavage complex 

formation hence increasing the number of cleavage complexes and DNA road-blocks 

(Pommier et al., 2010).     

 

 

Figure 1.19: Moxyfloxacin binding of M.tuberculosis gyrase. 
DNA is orange, helical topoisomerase II monomers in blue, moxyfloxacin stick 
molecule green.  Image showing intercalation of the two fluoroquinolone molecule 
between nucleotides of cleaved DNA.  The purple arrow highlights the rise of the 
intercalated base step that constitutes the DNA walls of the quinolone binding pocket.  
Reproduced from Piton et al., 2010 
 

The majority of the currently marketed fluoroquinolone antibiotics have a much higher 

affinity (approximately 100 to 1000-fold) for prokaryotic topoisomerase II than 

eukaryotic (Heisig, 2009).  However, at least some of these drugs do form stabilised 

cleavage complexes in mammalian cells and hence are capable of inducing 

mammalian cell genotoxicity (see Tables 1.4 and 1.5 for genotoxicity associated with 

ciprofloxacin and gemifloxacin and the earlier reference to the EU market withdrawal of 

gemifloxacin (Section 1.2.3)).  It is not known whether the mechanism of 

fluoroquinolone binding to eukaryotic topoisomerase II / DNA complexes is similar to 

that as described above for prokaryotic DNA.  The challenge for development of new, 

safe and efficacious topoisomerase II targeting antibiotics is to maintain or preferably 

improve levels of potency against the prokaryotic target without effects on eukaryotic 
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DNA.  Accordingly, a better understanding of the mechanism of action of these drugs in 

mammalian cells would be of great benefit for safe anti-infective development. 

  

1.3.5.4 The genotoxicity of etoposide, bisdoxopiperazines, ciprofloxacin and 
gemifloxacin 
The following tables show the genotoxicity and, where available, the lowest observable 

genotoxic effect levels (LOGEL) for reference compounds taken from published 

studies: 

 

 In vitro Assays LOGEL 

Compound Ames 
(µM/plate) 

MLA 
(µmol/L) 

MN(vit) 
(µmol/L) 

Comet(vit) 
(µmol/L) 

Etoposide +ve 160 µM1 +ve 0.15 µM3 +ve 0.15 µM4 +ve 0.026 µM6 

Bisdoxopiperazine ICRF159 -ve2 ICRF193+ve 
0.066 µM6 

ICRF187+ve 
1 µM7 

 

ICRF193+ve 
0.017 µM6 

ICRF193+ve 
4 µM6 

Ciprofloxacin +ve*0.0003 µM5 ND +ve 150 µM4 + ve 400 µM8 

Gemifloxacin +ve* LOGEL 
not available9 

+ve LOGEL not 
available9 

ND ND 

 
Table 1.4: In vitro genotoxicity of four topoisomerase II inhibitors 
LOGEL = Lowest observable genotoxic effect level 
MLA = mouse lymphoma assay, MN(vit) = in vitro micronucleus test, Comet(vit) = in 
vitro comet test, ICRF = Imperial Cancer Research Fund compounds 159 or 193 
1 Anderson and Berger, 1994; 2 Albanese and Watkins, 1985; 3 Ashby et al., 1994; 
4 Lynch et al., 2003; 5 Gocke, 1991; 6 Boos and Stopper 2000;  
7 Wang and Eastmond, 2002; 8 Itoh et al., 2006; 9 Rothfuss et al., 2010 
* Repair proficient strains only 
ND No data 
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 In vivo Assays LOGEL 

Compound MN(viv) Comet(viv) Carcinogenicity 

Etoposide +ve 0.1 mg/kg1 +ve 5 mg/kg5 Human carcinogen6 

Bisdoxopiperazine +ve 200 mg/kg2 ND Rodent +ve7 

Ciprofloxacin -ve3 ND (-ve UDS)3 Rodent -ve* 

Gemifloxacin +ve 1200 mg/kg4 +ve 600 mg/kg4 Rodent -ve* 

 
Table 1.5: In vivo genotoxicity of four topoisomerase II inhibitors 
LOGEL = Lowest observable genotoxic effect level 
MN(viv) = in vivo micronucleus test, Comet(viv) = in vivo comet test,  
1 Turner et al., 2001; 2 Albanese and Watkins, 1985; 
3 Herbold, 2001, UDS = in vivo unscheduled DNA synthesis assay  
4 Positive acute dosing only (Rothfuss et al., 2010) 
5 Godard et al.,1999; 6 Anderson and Berger, 1994;   
7 National Toxicology Program, 1978 
* No data for ciprofloxacin or gemifloxacin, but no reports of carcinogenicity for any 

other fluoroquinolones (Iatropoulos et al., 2001) 
ND No data 
 

These topoisomerase II inhibitors gave a wide spectrum of results in standard 

genotoxicity assays.  With the exception of the bisdoxopiperazines, they are positive in 

the Ames test.  However, they are generally negative in bacterial strains that identify 

frameshift mutagens, indicating that direct DNA intercalations is not a likely mechanism 

for bacterial mutagenicity.  The majority of the published data show that they are only 

positive in excision repair proficient bacterial strains, signifying that incompetent repair 

is responsible for the mutagenic lesion (Gocke, 1991).  Similarly for mammalian cells, it 

has been proposed that it is inefficient non-homologous end joining repair of 

topoisomerase II induced DNA breaks that causes DNA mutation (Heisig, 2009; de 

Campos-Nebel et al., 2010).  This explains why potent topoisomerase inhibitors such 

as etoposide are positive in the mammalian cell HPRT gene mutation assay.  The end 

point of the HPRT gene mutation assays is point mutation or small intragenic deletion 

rather than large chromosome deletions (Anderson and Berger 1994); hence it is 

probable that the etoposide induced positive response in this assay is due to inefficient 

repair rather than direct chromosome breakage.  Why mechanistically 

bisdoxopiperazines are not bacterial mutagens is unclear, but is likely to be due to the 

lack of complete homology between topoisomerase II ATPase sites in the prokaryotic 

heterotetramer compared to the eukaryotic dimer.  Binding heterology also probably 

explains why the gyrase/topoisomerase IV targeting fluoroquinolones are far more 



Chapter 1 
 

43 

potent bacterial mutagens than the mammalian topoisomerase II targeting etoposide, 

with the reverse seen with respect to mammalian cell mutagenicity.  As Ames assay 

concentrations are expressed as µM/plate and mammalian cell concentrations 

expressed as µmol/L, it is not possible to quote exact comparisons of relative genotoxic 

potency between the two assay types.  However, it is clear that ciprofloxacin is at least 

1000 x more active in bacterial cells than mammalian cells, which is in agreement with 

its relative prokaryotic / eukaryotic target enzyme potencies (Heisig, 2009).  It has been 

proposed that induction of hydroxy radicals via the Fenton reaction is at least partly 

responsible for the cytotoxicity of gyrase inhibitors in E coli (Dwyer et al., 2007).  It is 

also known that etoposide toxicity may be partly mediated by oxidation (Meresse et al., 

2004).  Oxidative stress is also a well known mechanism for in vitro genotoxicity.  It has 

yet to be elucidated as to whether this mechanism is of relevance to the cytotoxicity 

and genotoxicity of topoisomerase II poisons in mammalian cells, but it is intriguing to 

speculate that chromosome breaks as a consequence of replicative stalling at 

stabilised cleavage complexes may only partly contribute to the observed mammalian 

cell genotoxic potency. This concept will be investigated during the current programme 

of research. 

The relative potencies of the bisdoxopiperazines ICRF193 and ICRF187, can probably 

be explained by their respective lipophilicity, where the more highly lipophilic ICRF193 

is more readily taken up by mammalian cells and hence is the more potent mammalian 

cell mutagen (Andoh and Ishida, 1998).  It is less clear why these compounds have low 

mutagenic potency in the comet assay.  Boos speculated that the weak comet effect 

was due to the compounds mechanism of action, i.e. bisdoxopiperazines do not directly 

stabilise cleaved DNA by interactions within the DNA cleavage domain (Boos and 

Stopper, 2001), but why these compounds should induce micronuclei (i.e. fragments of 

broken chromosome) but not DNA breaks as identified by the comet assay is yet to be 

confirmed. 

The relative in vitro genotoxic potencies of ciprofloxacin and gemifloxacin (with 

gemifloxacin being significantly more potent in both bacterial and mammalian cells) 

may be due to the relative activity of the compounds against both prokaryotic and 

eukaryotic topoisomerase II.  This relative potency is also reflected in their in vivo 

activity, with gemifloxacin being one of the few fluoroquinolones reported to be positive 

in the rodent bone marrow micronucleus test and the in vivo comet assay (Rothfuss et 

al., 2010).  Although few fluoroquinolones have actually been tested in cancer 

bioassays, ciprofloxacin was negative in a short term liver cancer initiation study.  In 

the same study norfloxacin did induce liver foci (Itoh et al., 2006).  However, in a follow 

on initiation study norfloaxin did not induce liver tumours (Itoh et al., 2007).  The 
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original quinolone antibiotic nalidixic acid has been tested in rat and mouse 2 year 

cancer bioassays.  Whilst positives results were seen with an increase in preputial 

gland tumours in male rats and clitoral tumours in female rats, these are likely due to 

hormonal effects.  No significant cancer incidence was seen in dosed mice (Morrissey 

et al., 1991).  Accordingly, there is little evidence to suggest that antibiotics targeting 

bacterial topoisomerase II are carcinogenic.  Both etoposide and ICRF159 are rodent 

carcinogens.  Etoposide is also associated with human cancer.  Whilst it is not clear 

whether etoposide can induce human cancers if administered on its own (Anderson 

and Berger, 1994), the etoposide induced chromosome translocation in the MLL (mixed 

lineage leukaemia) gene has been identified as being involved in the development of 

secondary acute myeloid leukaemias, seen in 2% to 3% of patients on etoposide 

combination therapies (Deweese et al., 2009). 

Although the results presented in Tables 1.4 and 1.5 were from a very small data set, 

there is still an interesting relationship between the potency in the in vitro mammalian 

cell tests and in vivo effects.  Ciprofloxacin which is only weakly active in mammalian 

cells test is also negative in in vivo assays.  The more potent fluoroquinolone 

gemifloxacin is positive in at least two in vivo genotoxicity assays.  Finally the 

extremely potent mammalian cell mutagens bisdoxopiperazines and etoposide are not 

only positive in in vivo genotoxicity tests, but are also carcinogenic.  If such a 

relationship was to hold true for all topoisomerase II inhibitors it would prove the value 

of screening new drugs in both mammalian cell genotoxicity screens and tests to 

evaluate topoisomerase II inhibition. 

 

1.3.6 Techniques to measure topoisomerase II inhibition 

1.3.6.1 Cell free assays to measure topoisomerase II inhibition 
The activity of topoisomerase II inhibitors can be measured using kinetoplast linked or 

linear DNA.  These assays incubate DNA with topoisomerase II and ATP along with 

various concentrations of a suspected topoisomerase II inhibitor.  Activity against the 

enzyme is measured by a reduction in its ability to decatenate kinetoplast or by the 

promotion of double strand breaks in linear DNA (Fisher and Pan, 2008).  A 

comparison of the available data for etoposide cell free topoisomerase II inhibition and 

etoposide LOGEL demonstrates the low sensitivity of the end-point.  Etoposide was 

shown to induce weak DNA cleavage in the DNA cleavage assay at 15 µmol/L (Austin 

et al., 1995), which was at least two orders of magnitude greater than the LOGEL in in 

vitro mammalian cell genotoxicity assays (Table 1.4).  There can of course be good 

reasons why a cell free assay may not predict a cellular effect on a direct dose for dose 
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comparative level.  For example, the use of exogenous ATP and enzymes may be far 

less effective at DNA interaction than intracellular proteins.  Accordingly, whilst cell free 

assays may be flawed for dose estimation of topoisomerase II inhibition, they may still 

be useful to screen and rank new pharmaceuticals for their on or off target 

topoisomerase II inhibitory effect.  Whether such ranking can be used to predict the 

potential for in vitro mammalian cell genotoxicity of novel pharmaceuticals remains to 

be proven.  However, whilst the relative insensitivity of cell free assays may prove not 

to be an issue for target screening, it may not provide sufficient information for 

elucidation and confirmation of off-target genotoxic mechanisms, hence are cell based 

assays better? 

 

1.3.6.2 Cell assays to measure topoisomerase II inhibition 
Most of the cell assays that have been designed to determine the activity of 

topoisomerase II poisons measure the relative increase in the formation of stabilised 

cleavage complexes following treatment i.e. in the presence of a topoisomerase II 

poison at x time after treatment there will be more topoisomerase II bound to DNA than 

normal background levels.  These assays usually use antibodies to the topoisomerase 

II enzyme.  The most widely used cell assays are the Trapped in Agarose DNA 

immunostaining (TARDIS) assay developed at Newcastle University (Willmore et al., 

1998) and the In vivo Complexes of Enzyme (ICE) bioassay (Subramanian et al., 

2001).   

The TARDIS assay sets treated cells in an agar matrix on a microscope slide prior to 

cell lysis and subsequent topoisomerase II antibody labeling.  Stabilised cleavage 

complexes are measured by the use of a primary antibody to topoisomerase II and a 

fluorescent secondary antibody that can be scored by image analysis (Willmore et al., 

1998). 

The ICE assay analyses cleavage complexes in DNA isolated by caesium chloride 

density gradient centrifugation.  Following isolation, DNA is loaded onto a nitrocellulose 

membrane prior to antibody incubation.  In this technique radiolabelled or fluorescent 

secondary antibodies may be used (Subramanian et al., 2001).   

Published data from both the TARDIS assay (Wilmore et al., 1998) and ICE assay 

(Hawtin et al., 2010) indicate etoposide induces a significant increase in topoisomerase 

IIα stabilised cleavage complexes at 1 µM.  Interestingly, Wilmore et al 1998 showed 

that an even higher concentration of etoposide (10 µM) was required before a 

significant increase in the level of topoisomerase IIβ cleavage complexes could be 

seen.  Furthermore, in the TARDIS assay, etoposide induced topoisomerase IIα 

stabilised cleavage complexes dissociated significantly slower than etoposide induced 
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topoisomerase IIβ stabilised cleavage complexes (Errington et al., 2004).  Along with 

the previously mentioned prevalence of topoisomerase IIα in rapidly dividing cells, 

these observations further suggests that inhibition of topoisomerase IIα is more likely to 

be responsible for the in vitro genotoxicity seen following short term topoisomerase II 

poison treatment.   

From the available published data, concentrations of etoposide required to induce a 

measurable increase in stabilised cleavage complexes in the TARDIS and ICE cell 

bioassays were approximately 10-fold higher than the observed in vitro mammalian cell 

LOGEL (Table 1.4).  However, these data should be viewed with some caution.  

Wilmore et al 1998 and Hawtin et al 2010 did not specifically perform their studies with 

the intention of calculating lowest or no effect levels for etoposide in TARDIS and ICE, 

respectively.  Furthermore, the cell lines used for assessment of stabilised cleavage 

complexes were not the same as the cell lines used for assessment of LOGEL.  It is 

widely accepted that different cell lines will give different responses in a variety of 

genotoxicity assays.  Lynch et al 2003 did perform direct comparison of lowest effect 

levels in TARDIS and MN(vit) for etoposide and ciprofloxacin using L5178Y mouse 

lymphoma cells.  This group also found a large (approximately 10-fold) difference 

between TARDIS effect level and LOGEL (Lynch et al., 2003).  Interestingly, although 

this group detected formation of stabilised cleavage complexes with ciprofloxacin in the 

TARDIS assay, this response could not be repeated when ciprofloxacin was tested on 

human leukemic cells by the Newcastle University group who had originally worked-up 

the TARDIS assay (Rance 2011).  This may again indicate a difference in response 

between different cell lines.   

Given that the primary mechanism for topoisomerase II inhibitor induced DNA strand 

breakage is likely to be formation of stabilised cleavage complexes and their interaction 

with the cells replicative machinery, it would seem implausible that genotoxic 

concentrations would be lower than concentrations required to induce stabilised 

complexes.  Hence, if it could be further established that within the same cell line the 

LOGEL is several fold lower than concentrations of topoisomerase II inhibitors required 

to induce measurable stabilised cleavage complexes important questions are raised. 

1. Is it simply because the sensitivity of ICE and TARDIS is insufficient to detect 

low levels of stabilised cleavage complexes, levels that are sufficient to induce 

strand breakage and genotoxicity?  Lynch et al speculated that the background 

fluorescence seen with the TARDIS assay limited its sensitivity.  They also 

considered that the rapid reversibility of stabilised cleavage complexes could 

contribute to the noted insensitivity (Lynch et al., 2003). 
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2. Do other mechanisms of DNA damage other than a direct 1:1 stoichiometric 

relationship between stabilised cleavage complex and strand breakage play a 

part in the genotoxicity of topoisomerase inhibitors?  For example, whilst it is 

established that stabilisation of cleavage complexes is key to the bacterial 

toxicity of quinolones, the exact mechanism is less clear.  It has been 

postulated that a cascade of DNA breakage and subsequent induction of ROS 

may be partly or equally involved (Drlica et al., 2009).  Furthermore, etoposide 

has been reported to undergo redox cycling (Smart et al., 2008).  Could the 

additional ROS load explain the discrepancy between apparent measurable 

stabilised cleavage complex formation and genotoxicity?   The exact 

contribution of etoposide ROS induction to measured genotoxicity has not been 

established.  Accordingly, additional testing is required to confirm whether ROS 

induction contributes to the observed in vitro mammalian cell genotoxicity of 

topoisomerase II poisons.  

For the development of safe and efficacious new pharmaceuticals, it would clearly be 

of value to gain a better understanding of the mechanisms of topoisomerase II inhibitor 

induced mammalian cell genotoxicity.  This may also help to elucidate the mode of 

mutagenic action for some of the drugs that are currently considered to give ‘false’ 

positive results in mammalian cell in vitro genotoxicity tests. 
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1.4 Summary of Aims 

The preliminary aim of this project will be put into perspective the real rate of positive 

responses in in vitro mammalian cell genotoxicity test seen during routine 

pharmaceutical screening.  To this end Chapter 3 will include a comprehensive review 

of data generated at AstraZeneca UK, relating the incidence of positive results in the 

mouse lymphoma assay to the drugs primary therapeutic target.  It was expected that 

there would be a number of compounds that gave positive results unattributable to the 

compounds primary pharmacology.  If it can be proven that mechanisms other than 

covalent DNA binding are responsible for the positive response, the drugs may be 

considered safe for human use.  Genotoxicants that can be shown to be aneugens or 

topoisomerase II poisons are considered as having such a genotoxic threshold.  

Accordingly, the work detailed in Chapter 3 will also attempt to answer whether 

aneugenicity could be a contributory factor to the number of unexplained mouse 

lymphoma assay positive responses.   

Given that topoisomerase poisons are potent mutagens but which are considered to 

have a threshold below which therapeutic doses may be given safely to man, it is 

surprising that the exact relationship between topoisomerase II inhibition and in vitro 

mammalian cell genotoxicity has not been fully elucidated. 

Accordingly the further aims of this project will be: 

Chapter 4: to investigate the predictivity of the cell free decatenation assay for 

mammalian cell in vitro genotoxicity test results for AstraZeneca compounds that are 

thought to be mutagenic by inhibition of topoisomerase II.  Can such assays be used to 

help screen for the mammalian cell mutagenic potential of such drugs and can such 

assays be used to elucidate unknown genotoxic mechanisms? 

Chapter 5: to investigate the topoisomerase II inhibitory effect levels in cell assays (e.g. 

TARDIS and ICE) for model compounds and relate this to their genotoxic effect levels 

in in vitro mammalian cell tests.  Are cell assays for topoisomerase II inhibition more 

predictive of in vitro genotoxicity than cell free assays and similarly can they be better 

used to evaluate the potential for topoisomerase II induced genotoxicity of novel 

compounds? 

Chapter 6: to investigate whether the reference topoisomerase II poisons used are 

genotoxic by mechanisms other than inducing DNA breaks directly by initiation of 

topoisomerase II/DNA stabilised cleavage complexes.   The modified Comet assay will 

be used to investigate possible ROS contribution to genotoxicity. 

Chapter 7: following the preparation of a mouse specific antibody to topoisomerase II 

can the sensitivity of cleavage complex assays be improved?   
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Chapter 8: the majority of the work in early chapters investigated the relationship 

between genotoxicity and the activity of topoisomerase II inhibitors against the alpha 

isoform of the enzyme.  In view of recent publications linking the genotoxic activity of 

topoisomerase II poisons to the beta isoform, can it be demonstrated that at least for 

the cell line used in the current investigations (L5178Y mouse lymphoma cells) 

topoisomerase II poison genotoxicity is driven by the alpha isoform?   

Chapter 9: will summarise the outcomes of this research and consider the future 

prospects for elucidating the relationship between topoisomerase II inhibition and 

mammalian genotoxicity.   

Details of the standard methodologies used are detailed in Chapter 2, other specific 

methodologies are detailed at the beginning of each individual chapter.  Throughout 

this project the topoisomerase II poison reference agents used were etoposide and 

gemifloxacin.  Etoposide was selected due to its high potency against mammalian cell 

topoisomerase II and gemifloxacin as it is one of the most potent mammalian cell 

genotoxic fluoroquinolone anti-infectives. 
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2 The provenance of the cells used and general 

material and methods 

Etoposide was purchased from Sigma Aldrich, UK and gemifloxacin was purchased 

from YES Pharma Ltd, Israel.  Both were dissolved in dimethyl sulphoxide (DMSO) 

before use.  All other chemicals and reagents were purchased from Sigma Aldrich, UK 

or for proprietary compounds were synthesised by AstraZeneca R&D, unless otherwise 

stated. 

2.1 L5178Y mouse lymphoma tk+/- clone 3.7.2C cells 

Mouse lymphoma L5178Y tk+/- cells, clone 3.7.2c, were obtained from Dr Jane Cole, 

(Medical Research Council, Cell Mutation Unit, Brighton, UK) to whom they had been 

supplied by Dr Donald Clive (then at Burroughs Welcome, Research Triangle Park, 

USA) in 1978.  The provenance of the cells is such that it can be demonstrated that the 

cryopreserved master stock cultures in this laboratory have spent no more than 

3 weeks in continuous culture since they were supplied by Dr Clive and working cell 

cultures were cleansed of pre-existing trifluorothymidine (TFT) resistant mutants by 

growth in medium containing methotrexate on only one occasion (Figure 2.1) (Fellows 

et al.,  2011).  The average doubling time of the L5178Y cells in stationary culture was 

approximately 9 to 10 hours.   
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In the 1970’s Don Clive developed the Mouse Lymphoma Assay in his 
Laboratories at The National Institute of Environmental Health 
Sciences, Research Triangle Park, N.C. U.S.A (39,40) 

On 16 October 1978 L5178Y cells supplied by Don Clive were 
received at the MRC Cell Mutation Unit, Brighton, UK 

Cells were grown at the MRC for 8 days prior to being cryopreserved 
on 24 October 1978 

An ampoule of these cryopreserved cells was sent to Astra, 
Charnwood, Loughborough, UK.  Cells were recovered on 7 April 
1997 and grown for 4 days.  From this stock, on 11th April 1997, 36 
ampoules were cryopreserved to form Master Stock 1 

Ampoules were transferred to AstraZeneca, Alderley Park, UK on 
5 September 2001 

An ampoule from Master Stock 1 was recovered on 6 September 2004 
and grown for 3 days.  From this stock, on 9 September 2004, 36 
ampoules were cryopreserved to form Master Stock 2 

For working stocks, an ampoule of Master Stock 1 or 2 was recovered, 
grown for 3 days and cleansed for spontaneous tk-/- mutants with 
3 µg/mL methotrexate.  Cells were grown on and working stocks 
cryopreserved 3 days later 

An ampoule of working stock cells was grown for a maximum of 
7 days prior to use in any individual test at AstraZeneca, Alderley Park 

 

Figure 2.1: The provenance of the L5178Y mouse lymphoma tk+/- clone 3.7.2C 
cells used for this research (Reproduced from Fellows et al., 2011) 
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2.1.1  Metaphase preparation for modal chromosome number and 
spectral karyotype analysis 

To confirm the provenance of the cells, metaphase preparations were made and slides 

sent for analysis of spectral karyotype by The BioReliance Corporation, 14920 

Broschart Road, Rockville, MD 20850.  Dr Ann Doherty (AstraZeneca) assisted with 

preparation of the samples and arrangement of the spectral karyotype.   

Two hours prior to harvest, 0.125 µg/mL final concentration Colcemid™ was added to 

exponentially growing cultures to arrest the dividing cells in metaphase.  Cultures were 

centrifuged at 300 x g for 5 minutes and suspended in 0.075 mol/L potassium chloride 

hypotonic solution at 37°C for 12 minutes and then fixed in freshly prepared 

methanol/glacial acetic acid (3:1, v/v) at room temperature.  Cultures were re-

centrifuged at 300 x g for 7 minutes, re-suspended in approximately 10 mL fresh 

fixative and vortexed.  This step was repeated and the cells were then re-suspended in 

a third 10 mL volume of fixative, spun down and the majority of the supernatant 

removed leaving approximately 0.5 mL.  Metaphase preparations were made by 

dropping concentrated cell suspensions on to slides and then allowed to air dry.   

2.1.2 Solid stain karyology 

Slides for the analysis of modal chromosome number were stained in filtered 6% v/v 

solution Giemsa at pH 6.8 for 5 minutes, then air dried.  Slides were then cover-slipped 

using a permanent Distrene, Plasticiser, Xylene mounting medium, (DPX) (BDH Ltd).  

Nuclei metaphases were observed microscopically to ensure absence of gross 

chromosomal aberrations and also to confirm that the modal chromosome number was 

in agreement with previously reported observations.  At least 100 metaphases were 

scored to assess chromosome number (ploidy) for cultures grown for 3, 14 and 29 

days and 3 and 6 months. 

2.1.3 Spectral karyotyping  

Slides were sent to BioReliance for spectral karyotyping. 

The DNA in preparations of metaphases on slides was denatured by heating in 70% 

formamide at 72ºC prior to being quenched in ice-cold 70% ethanol.  Mouse genome 

specific probes for spectral karyotyping (Oxford Biosystems Cadama, UK) were 

denatured by heating at 80°C and then incubated at 37°C for 1 hour before application 

to slides containing denatured metaphases.  Each slide was coverslipped and 
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hybridisation of the mouse probes was allowed to proceed within a humidified chamber 

equilibrated at 37ºC ± 1°C for approximately 40 hours.  After hybridisation, the slides 

were washed prior to the application of concentrated secondary antibodies (Oxford 

Biosystems Cadama, UK) each conjugated with specific fluorescent stains.  Upon 

completion of the incubation with the secondary antibodies, test slides were washed 

and finally counterstained with 4 6 diamidino-2-phenylindole (DAPI) anti-fade solution 

to facilitate visualisation of chromosome morphology.   

Image acquisition was performed using a Charge Coupled Device (CCD) camera 

containing an interferogram cube mounted on an Olympus BX61 microscope.  

Metaphase cells stained with Caspase-Activated Deoxyribonuclease (CAD) antibodies 

were visualised using an optical filter that allows for simultaneous excitation of all dyes 

and concomitant measurement of their emission spectra.  Images of fluorescent 

stained metaphase cells were captured and examined for modality of chromosome 

number.  Representative spectral karyotypes of metaphase cells were arranged in 

accordance with the International System for Cytogenetic Nomenclature.  Results of 

analysis are shown in Figure 2.2. 
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Figure 2.2: AstraZeneca master stock L5178Y mouse lymphoma tk+/- clone 
3.7.2C karyotype 
A: Fluorescently Stained Metaphase. 
B: Arranged karyotype demonstrating pseudocolour resolution of spectrally 
labelled chromosomes. Arranged karyotype demonstrating cytogenetic 
aberrations at chromosome 4; Dp(4), chromosome 5; T(15:5), chromosome 6; 
T(18:6), chromosome 9; T(9:6), chromosome 14; del T(14:6), chromosome 15; 
T(5:15), and a derivative chromosome demonstrating a portion of chromosome 
15 at the proximal end, chromosome 18 at the intermediate section and 
chromosome 14 at the distal end; T(15:18:14) and Rb(Dp12:13)  

 

As expected a modal chromosome number of 40 was seen and there was no markedly 

increased variability in chromosome number following continual culturing from 3 days 

to six months. 
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Spectral karyology confirmed a composite karyotype 40 with the aberrations detailed in 

Fig. 2.2.  This result is essentially the same as the published karyotype by SKY®-FISH 

[Sawyer et al., 2006].  The three observed differences were considered to be due to 

improved resolution in karyology. Specifically: 

1. The previous spectral karyotype indicated as T(18;6) is now identified as 

T(6;18) 

2. Previously identified as chromosome 6 in origin 6 (T6;14) is now identified as 14 

(T14;6) 

3. Previously identified as chromosome 15 (T15;18;14) is now identified as 

chromosome derivative 18 (t15;18;14).  

We consider the karyotype presented here to be the most up to date karyology of 

L5178Y TK+/- clone 3.7.2C cells.   

This work has been published by the author (Appendix 1)  

2.1.3 Preparation of cells for each test 

Between approximately one to two weeks before each test was performed a single vial 

of working stock cells was removed from liquid nitrogen, quickly defrosted, centrifuged 

to remove the dimethyl sulphoxide (DMSO) used in the cryopreservation medium and 

resuspended in Roswell Park Memorial Institute (RPMI) 1640 medium (Invitrogen, 

Paisley, UK) containing 10% heat inactivated donor horse serum (DHS), 2 mmol/L L-

glutamine, 2 mmol/L sodium pyruvate, 1% Pluronic F68, 200 IU/mL penicillin, 

200 µg/mL streptomycin (RPMI10%+P).  Cells were maintained at 37oC in a humidified 

atmosphere of 5% CO2 in air, at concentrations of approximately 1 x 105 cells per mL 

and 1 x 106 cells/mL before being used in each individual test.   

2.2 Treatment of L5178Y mouse lymphoma cells with test 
chemicals 

The standard treatment regime used was as follows.  Variations required for individual 

assay types will be detailed in the relevant section:  

Treatment exposure was for 3 or 24 hours in the absence of an exogenous 

metabolising system.   Three hours exposure has previously been demonstrated to be 

adequate to assess the genotoxicity of topoisomerase II inhibitors in the author’s 
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laboratory (data not shown) and 24 hours exposure is suitable for detecting division 

dependent damage such as aneugenicity.  Between 5 x 106 and 1 x 107 L5178Y cells 

were suspended in between 5 or 20 mL RPMI medium containing 2.5% DHS (3 hours 

exposure) or 10% DHS (24 hours exposure).  Prior to treatment the relevant test 

compound or positive control was dissolved in DMSO and further dilution made with 

DMSO as required for each test.  Test compound, solvent or, where used, positive 

control solution was added to the cell cultures at 1% v/v.  Treatment cultures were 

either single culture or in duplicate or triplicate depending on test requirements. 

Following treatment, the cells were centrifuged at 200 x g, washed once with 

RPMI10%+P, re-centrifuged and re-suspended in fresh RPMI10%+P at a final cell 

concentration after washing of 2 x 105/mL.  When further post-treatment incubation was 

required, cultures were incubated for the appropriate time at 37oC in a humidified 

atmosphere of 5% CO2 in air and then counted for assessment of toxicity one day after 

treatment (relative suspension growth or relative population doubling) and when 

required microscope slides prepared for micronucleus assessment or cells lysed or 

prepared for additional investigative tests as detailed in the later section. 

2.3 Metabolic activation  

For bacterial reverse mutation and mouse lymphoma tests performed at AstraZeneca 

between 2001 and 2010 which were reviewed for analysis of the rate of positive 

responses, treatments were performed in the absence and presence of an exogenous 

metabolising system.  For treatments in the presence of exogenous metabolism, S9 

from the livers of Aroclor 1254 treated rats was purchased from Molecular Toxicology 

Inc. (Boone, NC, USA) and stored frozen at a temperature of  70°C or below until use.  

On the day of use, S9 mix was prepared by the addition of culture medium containing 

cofactors for NADPH generation to the S9 fraction.   For mouse lymphoma tests a final 

S9 concentration of 4% v/v was used for tests from 2001 to 2007, and 2% v/v 

subsequently.  For bacterial reverse mutation tests a final S9 concentration of 10% was 

used. 

 

2.4 Bacterial reverse mutation tests (Ames) 

For the Ames tests performed at AstraZeneca between 2001 and 2010 the basic assay 

study design was as detailed in Introduction Figure 1.1.  The majority of tests included 

Salmonella typhimurium strains TA1535, TA100, TA98 and TA1537, plus Escherichia 

coli WP2 uvrA/pKM101.  Compounds from AstraZeneca’s infection portfolio were 
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tested using the Salmonella typhimurium strain TA102 rather than the E.coli strain.  An 

increase in the number of revertant colonies was considered to be significant if it 

exceeded 2-fold the concurrent solvent control level for each strain. 

 

2.5 Microtitre method mouse lymphoma assay to determine 
mutant frequency at the tk locus (MLA) 

The MLA was performed essentially as described by Clements, 2000.  For basic assay 

design see Introduction Figure 1.3.  Brief method was as follows. 

2.5.1  Compound exposure 

See Section 2.2 Treatment of L5178Y mouse lymphoma cells with test chemicals.  

Duplicate or triplicate cultures were tested. 

2.5.2  Toxicity measurement and mutant selection 

Following treatment, cultures were incubated at 37ºC for 1 day then cells counted using 

a Coulter Counter and sub-cultured in RPMI10%+P medium to 1.5 x 105 cell per mL.  

Cultures were then incubated at 37ºC for a further day, cells were counted and diluted 

to 1 x 104 cells per mL (for triflurothymidine (TFT) resistance selection) or 8 cells per 

mL for assessment of viability using RPMI medium containing 20% DHS.   TFT was 

added to the appropriate cultures at a final concentration of 3 µg/mL.  To determine 

viability, 200 µL of cultures at 8 cells per mL were plated into two 96-well plates giving 

approximately 1.6 cells per well.  To determine TFT resistance, 200 µL of cultures at 

1 x 104 cells per mL containing 3 µg/mL TFT were plated into two 96-well plates at 

approximately 2000 cells per well.  Plates were incubated for up to 14 days, prior to 

scoring.  For TFT resistant colonies, mutant clones were designated as large (covering 

approximately one quarter or more of the area of the well) or small (covering less than 

one quarter of the area of the well) see Figure 2.3.  Cloning efficiency (mutant or viable 

cells), relative total growth (used to estimate toxicity) and mutant frequency were 

calculated using standard methods (Clements, 2000) as follows: 

Cloning efficiency (CE) in either selective or non-selective medium was based on the 

zero term of the Poisson distribution. P(0) was calculated from the proportion of wells in 

which a colony has not grown, P(0): 

CE = ______-ln P(0)________ 

Number of cells per well 
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Relative total growth (RTG) was used as the definitive measure of toxicity and was the 

product of relative suspension growth (RSG) and viability at the time of selection for 

TFT-resistant mutants.  The viability for each culture was expressed as the cloning 

efficiency in non-selective medium where the plates were seeded with 1.6 cells per 

well. 

Relative cloning efficiency (RCE) is: 

%RCE =  CE  x  100 
Mean control CE 

 

Relative total growth (RTG) is: 

%RTG = %RSG x %RCE 
100 
 

Mutant frequency (MF) for each culture was calculated as the cloning efficiency in 

selective (TFT) medium, where the plates were seeded with 2000 cells per well.  It was 

corrected for viability in non-selective medium from the same culture and expressed as 

mutants per 106 viable cells, i.e. 

MF (per 106 cells) = [CE (mutant) / CE (viable)] x 106 

 

  

Fig 2.3 L5178Y mouse lymphoma cell mutant clones after 12 days growth 
A: Large colony. B: Small colony 

 

2.5.3  Evaluation criteria for the MLA 

A positive result was determined using the Global Evaluation Factor (GEF), i.e. for any 

concentration an increase in mutant frequency above concurrent solvent control of 

greater or equal to 126 x 10-6 was considered significant.  Toxicity was measured by 

A B 
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RTG, this is the recommended method for toxicity assessment in the MLA (OECD, 

1997). 

2.5.4  MultiCase (MCASE) MC4PC Analysis 

For predictivity of MLA results the muliticase structural alert analysis programme 

(MCASE) module of MC4PC (MCASE, Inc.) was used.  MCASE is an analysis 

programme which is cable of learning from the addition of new structures and their 

results in genotoxicity assays to the internal database (Matthews and Contrera, 1998).  

The standard SMILES format was used as the entry and the ‘expert call’ produced by 

MCASE was used as the activity output.  SMILES formats being a standard way of 

defining chemical structures.  MC4PC does provide several qualifications for the 

activity calls and these ‘summary expert calls’ were all ‘equivocal’ so the simple ‘expert 

call’ was used.  No MLA result generated at AstraZeneca had previously been added to 

the MCASE learning set.  MCASE entry was performed by Scott Boyer, AstraZeneca, 

Computational Toxicology, and results provided to the author. 

 

2.6 The standard in vitro micronucleus test (MN(vit)) 

Methodology was essentially as described in Fellows et al., 2008.  For basic assay 

design see Introduction Figure 1.5. Brief method was as follows. 

2.6.1  Compound exposure 

See Section 2.2.  Unless otherwise stated, triplicate cultures were tested.   

2.6.2  Preparation and scoring of slides for micronuclei 
determination 

Following treatment, cultures were incubated at 37ºC for 1 day then cells counted using 

a Coulter Counter.  Microscope slides were prepared by centrifuging 1 x 105 cells in a 

Cytospin 3 (Shandon) centrifuge (100 x g for 8 minutes).  Slides were allowed to air dry 

and cells fixed with 100% methanol (10 minutes).  Prior to staining cells were re-

hydrated in phosphate buffered saline.  For tests where semi-automated scoring was 

used, slides were stained with DAPI (4', 6-diamido-2-phenylindole).  For tests where 

manual scoring by microscope was used, slides were stained with acridine orange.   
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2.6.3  Semi-automated scoring 

Slides were initially scanned to find micronucleated cells using MetaSystems’ 

Metafer 4, comprising of a Zeiss Axioplan Imager Z1.  Where possible, at least 2000 

cells per culture were scored.  All identified micronuclei were confirmed by eye to be 

separate and within the cytoplasm, to have intact cytoplasmic membrane and to be 

less than one third of the diameter of the main nucleus (See Figure 2.4).   

 

 

Figure 2.4: Micronucleated mononuclear L5178Y cells following 3 hour treatment 
with the potent mutagen 4-nitroquinolene oxide followed by 24 hour recovery.  
Identified and sorted by Metafer 4, where possible, at least 2000 cells per culture 
were scored and then confirmed by eye  Large amount of micronuclei indicate 
how effectively 4-nitroquinolene oxide breaks chromosomes 

2.6.4  Manual scoring  

Using the same criteria for identification of micronuclei, slides were scored manually at 

x 200 magnification using a Zeiss Axioplan microscope.  Where possible, at least 1000 

cells per culture were scored for the presence of micronucleaed mononuclear cells.   



Chapter 2 

 

64 

2.6.5  Mn(vit) determination of cytotoxicity 

For each treatment, cytotoxicity was determined by calculation of a reduction in relative 

population doubling (RPD) (Lorge et al., 2008).  RPD is one of the OECD 

recommended methods of cytotoxicity assessment in the MN(vit) (OECD, 2010): 

RPD was determined as: 

Number of Population doublings in treated cultures    x 100 
Number of Population doublings in control cultures 
 
where  

Population Doubling = [log (Post-treatment cell number/Initial cell number)] / log 2 

2.6.6  Mn(vit) evaluation criteria 

The significance of the comparison between treated cultures and negative controls was 

determined on pooled cultures (where appropriate) using a Chi-square test with Yates’ 

like correction, as recommended by Karen Oldman, AstraZeneca Alderley Park, Safety 

Assessment UK Statistics.  As only increases in micronucleated mononuclear cells 

above control were of interest, a one-sided test was used.  Increases in micronuclei 

were reported as statistically significant if the P-value was less than 0.05 (at the 5% 

level).  Levels of significance were also assessed at the 1% and 0.1% level. 

2.7 The MN(vit) test with chloroquine or novobiocin block 

For MN(vit) tests where topoisomerase II DNA interactions were blocked with 

chloroquine (a DNA intercalater) or novobiocin (a topoisomerase II catalytic inhibitor); 

prior to test compound treatment cells were pre-incubated for 1 hour with 40 µg/mL 

chloroquine or 240 µg/mL novobiocin.  Test compound dilutions were then added to the 

pre-treated cultures and the cultures incubated for a further 3 hours.  The assay was 

then performed as for a standard MN(vit).  All of these tests were scored manually.  

Duplicate cultures were used. 

2.7.1  Blocked Mn(vit) evaluation criteria 

The significance of the difference in response between concentrations tested in the 

absence and presence of the topoisomerase II block was determined on pooled 

cultures using a 2-sided Continuity-Adjusted Chi-Square Test, as recommended by 

Karen Oldman, AstraZeneca Alderley Park, Safety Assessment UK Statistics.  

Accordingly both significant increases and decreases in micronuclei formation in the 

presence and absence of the topoisomerase II block were assessed.  Effects were 



Chapter 2 

 

65 

reported as statistically significant if the P-value was less than 0.05 (at the 5% level).  

Levels of significance were also assessed at the 1% and 0.1% level.    

2.8 The in vitro alkali Comet Assay 

Methodology essentially as described in Smith et al., 2006.  The basic assay design of 

the in vitro comet assay was as illustrated for the in vivo comet assay in Introduction 

Figure 1.7.  However, rather than using single cell preparation from dosed animal 

tissue, the in vitro comet assay used chemically exposed L5178Y mouse lymphoma 

cells. 

2.8.1  Buffers and other reagents 

2.8.1.1  Preparation of agarose pre-coated slides 

0.5% w/v normal melting agarose in phosphate buffered saline (PBS) was melted in a 

microwave and kept molten at approximately 37ºC.  Microscope slides were dipped 

into agarose for approximately 1 second, the back of slides was wiped and slides were 

air dried.  Slides were stored in an airtight container for up to 1 month. 

2.8.1.2  Lysis solution 

Incomplete mix: NaCl 146.4 g, EDTA disodium salt 37.2 g, Tris 1.2 g, in 890 mL 

Purified water.  pH was adjusted to 10 using 10 mol/L NaOH. The solution was stored 

at room temperature for up to 1 month. 

Complete mix: Incomplete lysis solution 178 mL, Triton-X 2 mL, DMSO 20 mL 

The complete mix was prepared fresh on the day of use and pre-cooled in a 

refrigerator prior to use. 

2.8.1.3  Buffer F 

40 mM HEPES, 0.1 M KCl, 0.5 mM EDTA and 0.2 mg/ml bovine serum albumin (BSA).  

pH was adjusted to 8.0 using 10 mol/L NaOH. 

2.8.1.4 Electrophoressis solution 

1 mmol/l sodium EDTA, 0.3 mol/l NaOH (pH 13)]  

2.8.1.5 Neutralisation buffer 

0.4 mol/l Tris–HCl (pH 7.5). 
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2.8.2  Compound exposure 

See Section 2.2 Treatment of L5178Y mouse lymphoma cells with test chemicals.  

Duplicate cultures were used in the initial test and triplicate cultures were used in the 

two confirmatory assays.  The known inducer of reactive oxygen species potassium 

bromate was used as the positive control. 

2.8.3  Post-treatment slide preparation 

As ultraviolet light can cause DNA damage, slide preparation was conducted under 

minimal light.  After compound exposure, for each prepared gel, approximately 1.2 x 

105 cells were centrifuged at 200 x g and washed with 1 mL ice cold PBS. Tubes were 

re-centrifuged at 200 x g and resuspended in 0.18 mL 0.5% w/v low melting point agar 

(LMA). 30 µL of cell suspension in LMA (containing approximately 20000 cells) was 

add to pre-agar coated microscope slides on a chilled surface and covered with a dry 

coverslip to spread the agar (up to 3 gels per slide).  Once set, the coverslips were 

removed; the slides were immersed in freshly prepared pre-cooled complete lysis 

solution (2.5 mol/l NaCl, 100 mmol/l Na2EDTA, 10 mmol/l Tris buffer (pH 10), 10% 

DMSO, 1% Triton X-100 adjusted to pH 10 with 10 mmol/L NaOH) and stored 

refrigerated overnight. 

2.8.4  Addition of human 8-hydroxyguanine DNA-glycosylase 
(hOGG1) restriction enzymes 

Following lysis, the slides were immersed in two changes of buffer F for 5 minutes each 

time at room temperature.  For gels treated with hOGG1 restriction enzyme (New 

England Biolabs, Herts, UK), hOGG1 (1:1000 dilution), was added to the gel in 50 µl of 

buffer F, this was equivalent to 0.08 hU hOGG1 per gel (previously titrated by Smith et 

al (Smith et al., 2006)).  Gels were coversliped to spread enzyme and incubated in a 

humidified chamber for 10 minutes at 37°C. 

2.8.5  DNA Unwinding & Electrophoresis 

The following procedures were conducted in a refrigerator with minimal light.  The 

slides were removed from lysis solution and randomly placed horizontally on a 

electrophoresis platform.   The buffer reservoir of the unit was filled with freshly 

prepared electrophoresis buffer until the surfaces of the slides were covered.  Cells 

were left to unwind for 20 minutes, followed by electrophoresis at 0.7 V/cm (calculated 

between the electrodes), 300 mA, for 20 minutes.   Following electrophoresis slides 

were neutralised in three changes of neutralisation buffer. 
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2.8.6  Comet analysis 

The slides were assessed by staining with 60 μL propidium iodide per slide and 

visualised using an Olympus BX51 fluorescence microscope fitted with a Texas red 

excitation filter and a barrier filter. This was linked via a CCD camera to a computer 

running Perceptive Instruments Comet IV image analysis software. Fifty 

morphologically normal nuclei were scored per slide using the following criteria: 

a) only clearly defined non overlapping nuclei were scored 

b) nuclei with no defined head, ‘clouds’, were not scored 

c) cells with unusual staining artefacts were not scored 

The amount of DNA in the comet tail was assessed by measurement of tail intensity i.e. 

the intensity of the fluorescence detected by image analysis of the head and tail, and is 

proportional to the amount of DNA that has moved from the head region into the comet 

tail. 

2.8.7  Comet evaluation criteria 

Statistical significant increases in tail intensity were analysed.  Each plus and minus 

hOGG1 treatments were analysed separately.  The data was log transformed and the 

average of repeat values used in the analysis.  

As only increases in tail intensity above control were of interest, a one-sided test was 

used.  Differences from control are presented as percentage changes (geometric mean 

changes).  Effects are reported as statistically significant if the P-value was less than 

0.05 (at the 5% level).  Levels of significance were also assessed at the 1% and 0.1% 

level.  One-way analysis of variance (ANOVA) was performed with the dose of test 

compound fitted as categorical variable.  Contrasts were used to estimate the pair-wise 

differences between each compound dose and control.   The contrasts were equivalent 

to t-tests, but used the pooled estimate of the variability across all groups (not  the 

pooled variability from just the 2 groups being compared).  This was considered to give 

a more robust estimate of the standard error.  Methods were as recommended by 

Karen Oldman, AstraZeneca Alderley Park, Safety Assessment UK Statistics. 

2.9 Cell free decatenation assay for detection of 
topoisomerase II inhibition 

Method supplied and tests were kindly performed by Guo Chen AstraZeneca R&D, 

Boston USA.  Data were sent to author for subsequent comparison analysis. 
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2.9.1  Preparation of treatment plates 

1 µL of compound in DMSO solution was aliquoted into a V-bottom 96 well plate, filling 

columns 2 to 11 with 2-fold dilutions of compound concentration.  Where possible the 

maximum test compound concentration was 0.2 mM in the reaction mixture.  Column 1 

and Column 12 contained positive and negative controls.  The positive control was 1 µL 

of DMSO.  The negative control was 1 µL of DMSO plus 5 µL of 0.5 M EDTA / 0.005% 

Brij-35.  One plate was for the reaction (assay plate).  The other was a control plate. 

Assay plate: The assay reaction mixture was prepared by adding 25 µL of a premix 

into the wells of assay plate.  After 5 min of mixing, 24 µL of 20 mM MgCl2 was added 

to initiate the reaction.  The reaction was carried out at room temperature for 

30 minutes.  The premix was composed of 2 U/mL human topo II (USB 

(www.usbweb.com), Catalog number: 78303Y), 6.3 µg/mL circlet kinetoplastids DNA 

(kDNA) (TopoGEN (www.topogen.com/), Catalog number: 2013-3), 1 mM ATP, 50 mM 

Tris.HCl, pH 7.5, 125 mM NaCl, 5 mM DTT, 0.5 mM EDTA, 0.1 mg/mL BSA.  At the 

end of reaction 5 µL of EDTA / 0.005% Brij-35 was added into the wells of assay 

reaction and the wells of the positive control. 

Control plate: The control plate was prepared in the same way as the assay plate 

except that there was no enzyme included in the premix.  At the end of incubation time, 

5 µL of EDTA / 0.005% Brij-35 was added to each well. 

2.9.2  Plate filtration 

Set-up: The filtration system was set-up by placing a standard black flat-bottom 96-well 

plate as the receiver plate, a filter holder was placed on top of the receiver plate, and a 

filter plate (PN 5042) was placed on top of the plate holder.  The filter system was 

connected to a vacuum line. 

Filtration: 50 µL of the assay plate solution was transferred to each well of the filter 

plate prior to applying the vacuum.  Once filtration was complete, the filter was rinsed 

with 150 µL of 10 mM Tris-HCl, pH 7.5, 10 mM NaCl.  The same procedure was 

performed for the control plate using a new receiver plate and a new filter plate.  The 

procedure left undecatenated DNA retained on the filter and only decatenated DNA 

present in the receiver plates. 



Chapter 2 

 

69 

2.9.3  Decatenation detection 

50 µL of SYBR® Green II solution (prepared by 1000 fold dilution of the stock in water) 

was placed into each well of the receiver plates.  Fluorescence intensity was measured 

at 535 nm (excitation at 485 nm). 

2.9.4  Data processing 

A standard IC50 calculation tool (activity base) was used to calculate decatenation 

IC50s.   

2.10 Measurement of ClogP 

Method supplied and analysis kindly performed by Guo Chen AstraZeneca R&D, 

Boston USA.  Data were sent to author for subsequent comparison analysis. 

ClogP was the calculated log of the ratio of the compounds solubility in octanol 

compared to water, analysed by Daylight Chemical Information Systems Inc., Laguna 

Niguel, CA. 

2.11 Trapped in Agarose DNA ImmunoStaining (TARDIS) assay 
for detection of topoisomerase induced stabilised cleavage 
complexes 

Basic method kindly supplied by Dr Caroline Austin, Newcastle University. 

2.11.1 Buffers and other reagents 

2.11.1.1 Preparation of agarose pre-coated slides 

See as for in vitro comet assay Section 2.8.1.1. 

2.11.1.2 Preparation of lysis buffers 

See as for in vitro comet assay Section 2.8.1.1. 
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2.11.1.3 Protease inhibitors  

Reagent: Stock concentration 
in DMSO 

Volume of  stock Final concentration 
in buffer 

Benzamidine 100 mM 2ml 1% 
PMSF 100 mM 2ml 1% 
Leupeptin 2 mg/ml 200μl 0.1% 
Pepstatin 2 mg/ml 200μl 0.1% 
DTT 1 M 200μl 0.1% 
Table 2.1 Preparation of protease inhibitors (to be added to 200 mL of solution) 
PMSF = phenylmethylsulfonyl fluoride 
DTT = dithiothreitol 

 

2.11.1.4 Antibody buffers 

1% BSA+PBS-T: 1%BSA+ PBS+ 0.1% tween 20 (e.g. 100ml PBS + 1g BSA+ 100μl 

tween20). 

2.11.2  Compound exposure 

See Treatment of L5178Y mouse lymphoma cells with test chemicals, Section 2.2 

2.11.3  Post-Treatment slide preparation 

After compound exposure, 3 x 105 cells in 1.5 mL were centrifuged at 200 x g, washed 

with 1 mL ice cold PBS and transferred to eppendorf tubes. Tubes were re-centrifuged 

at 200 x g and resuspened in 0.3 mL 0.5% w/v LMA.  Two x 0.04 mL of cell mixture 

was placed onto pre-coated slides i.e. two gels containing 8000 cells from each 

concentration were prepared per slide.  A dry coverslip was placed over the gels to 

spread agar.  Slides were placed on cooling tray and coverslip removed once agar was 

set.  Slides were placed in complete lysis buffer and refrigerated overnight. 

2.11.4  Salt stage and antibody incubation 

Slides were removed from lysis buffer and incubated in 1 M NaCl + protease inhibitors 

for 30 minutes at room temperature to remove any unbound protein. 

Slides were washed 3 times in PBS + protease inhibitors for 5 minutes each. 

Slides were placed inside a humidified tray and a 1:100 dilution in 1% bovine serum 

albumin (BSA) + PBS-with tween (PBS-T) of primary anti-rabbit topoisomerase II α and 

/ or β antibody, was added (~50 μL per gel).  In initial tests the antibodies used were 

kindly supplied by Newcastle University and were raised against human 
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topoisomerase II.  Later tests used in house designed antibodies raised against mouse 

topoisomerase II (see Chapter 7). A flexible plastic coverslip was placed over gels to 

evenly distribute antibody.  Slides were incubated at room temperature for 2 hours.  

Slides were washed 3 times in PBS-T + protease inhibitors, first dipped in and out 

quickly, next two washes of 5 minutes each.  Slides were returned to humidified tray.  

From this point on slides were protected from light. 

Secondary antibody (anti-rabbit FITC, using 1:100 dilution in 1% BSA + PBS-T) was 

added as for the primary antibody and incubate for 2 hours. 

Sides were washed twice in PBS-T+ protease inhibitors, then washed one more time in 

PBS-T+ protease inhibitors and left for at least 20 minutes. 

2.11.5  Propidium Iodide (PI) staining and scoring 

Approximately 30 µL of 20 µg/mL PI was added to each gel, and slides coverslipped. 

Slides were visualised using an Olympus BX51 fluorescence microscope fitted with a 

Texas red excitation filter and a barrier filter and the amount of FITC fluorescents from 

each nucleus scored using Comet IV software (supplied by Perceptive Instruments). 

2.11.6 Evaluation criteria 

As the occasional cell from control and treated cultures can signal with very high 

intensity, thus biasing any mean score, for data analysis in the TARDIS assay median 

values for cellular relative antibody FITC signal intensity were used.  As only increases 

in FITC signal above control were of interest, a one-sided test was used.  Accordingly, 

a one-sided two sample paired mean t-Test on square root transformed data was 

performed as recommended by Karen Oldman, AstraZeneca Alderley Park, Safety 

Assessment UK Statistics.  Effects were reported as statistically significant if the P-

value was less than 0.05 (at the 5% level).  Levels of significance were also assessed 

at the 1% and 0.1% level.   

2.12 The Isolating in vivo Complexes of Enzyme to DNA (ICE) 
bioassay for detection of topoisomerase induced stabilised 
cleavage complexes 

Basic methodology adapted from TopoGEN Inc Manual for in vivo link kit Catalogue 

Number 1022. 
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2.12.1  Compound exposure 

See basic cell treatment methodology, with the exception that cells were washed in 

serum free RPMI media centrifuged and then lysed with 1.5 ml of 1% sarkosyl lysis 

buffer in Tris-EDTA (buffer pH 8.0). 

2.12.2  Caesium chloride density centrifugation and DNA preparation 

Initial tests used the following CsCl density preparations.  Later tests used a single 

preparation of 1.5 g/mL CsCl (see Chapter 5 results & discussion): 

 

Table 2.2 CsCl density solution used during initial assay set-up 

 

In preliminary tests 1 mL of each of the above solutions (Solution A up to Solution D) 

was carefully layered in an ultracentrifuge tube.  For later tests 4 mL of Solution C was 

used (see Chapter 5 results & discussion).  1 mL of cell lysate was carefully layered on 

top of the gradient.  Tubes were ultracentrifuged for 18 hours at 31000 rpm (1x105 x g).  

In preliminary experiments 200 μl fractions were then taken from the top of each tube 

using a 1 mL pipette with ~3 mm cut off pipette tips. This gave 25 fractions. In later 

tests where a single CsCl concentration was used, the caesium chloride layers were 

discarded.  The DNA pellet remaining at the bottom of the tube was resuspended in 

1 mL Tris-EDTA buffer pH 8.0.  Spectrophotometric analyses (using a Thermo 

Biomate 5) at absorbance 260 nm was performed on fractions to determine DNA 

content, assuming that one absorption unit at 260 nm equals 50 µg/mL DNA.  In 

preliminary tests, fractions containing DNA were all used to prepare slot blot 

membranes.  In later tests the resuspended DNA was normalised such that ~10 µg 

DNA was loaded onto each slot.  Prior to spectrophotometric analysis and slot blot 

membrane loading, samples were thoroughly vortexed, sonicated and for later tests 

Solution mL of 1.86 g/mL CsCl stock solution mL of Tris EDTA Density (g/mL)

A 13.013 0.98 1.82 

B 11.452 2.548 1.72 

C 7.756 6.244 1.5 

D 6.02 7.98 1.37 



Chapter 2 

 

73 

rotated on an haematological rotator overnight to ensure adequate DNA solutions were 

maintained (see Chapter 5 for further details of method development). 

2.12.3  Slot blot and membrane preparation 

Relevant fractions were loaded onto a nitrocellulose membrane using a slot blot 

(BioRad) as follows. 

Nitrocellulose membranes were pre-wetted by incubation in 28 mM sodium phosphate 

buffer for at least 30 minutes and then 10 minutes in Tris Buffered Saline with Tween20 

(TBST).  Membranes were then loaded onto the slot blot apparatus along with 

appropriate wetted filters.  The DNA containing fractions were added to each slot and 

diluted with 25 mM sodium phosphate.  Vacuum was applied for approximately 

10 minutes.  A minimum of three, and where possible six, slots were prepared for each 

sample. 

After membrane preparation was completed, membranes were removed, rinsed briefly 

with 25 mM sodium phosphate buffer and then incubated for at least 1 hour with casein 

based blocking buffer at room temperature.  Membranes were then incubated overnight 

at 4°C with the appropriate primary antibody.  The tests described in Chapter 5 used 

rabbit polyclonal primary antibodies against topoisomerase IIα and IIβ (TopoGEN inc) 

optimally diluted 1:1000 in casein based blocking buffer diluted in TBST.  The 

topoisomerase IIβ antibody was also used for the work described in Chapter 8.  For 

detail of work with in house prepared mouse antibodies to topoisomerase IIα see 

Chapter 7. 

After overnight incubation, membranes were washed 3 times in TBST and incubated 

for 1 hour with a secondary anti-rabbit antibody optimally diluted 1:5000 in TBST, either 

conjugated to horseradish peroxidase (Promega) in preliminary tests or an infra red 

(IR) chromophore (Li-Cor R680 secondary antibody) in later tests. For horseradish 

peroxidase conjugated secondary antibodies, reagents from ECLTM (enzyme-linked 

chemiluminescence) advance western blotting detection kit (GE-Healthcare) were 

added as per manufacturer instructions and then imaged with Syngene charged-

coupled device (CCD) and slots were quantified using Syngene software.  For 

membranes treated with the IR secondary antibody (R680), the membrane was imaged 

with Li-Cor Odyssey IR scanner and quantified signal using Li-Cor Odyssey software.  
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2.12.4  Preliminary antibody titration and dilution 

All antibody dilutions are in relation to the antibody’s supplied concentration. 

TopoGEN’s primary antibody was raised and extracted from rabbit serum. It was 

supplied in 2.5 units/ml (250 units in 100 µl) and their definition of a unit is as follows: 

“The antibody concentration is in the western blotting units; one unit corresponds to a 

1:1000 dilution of antibody required to make 1 ml of diluted probe for a routine western 

blot. Thus 10 units of antibody will make 10 ml of diluted probe”.   

For the ECL based approach, a secondary goat-antirabbit antibody conjugated to 

horseradish peroxidase was used. 300 µl of antibody was supplied by Promega at 

1 mg/ml. 

For the IR based imaging approach, a secondary antibody conjugated to an IR 

chromophore was used. The antibody was supplied by Li-Cor under the product 

description goat-antirabbit R680. It was provided as a powder that was resuspended in 

0.5 ml double distilled water and the final concentration was then 1 mg/mL. The 

fluorophore has a molecular weight of 950 g/mol. The excitation and emission 

wavelength is at 683 nm and 710 nm respectively. The ratio of the fluorophore to 

protein is 2.7 moles IR Dye 680: 1 mole IgG. 

For initial antibody titration experiments varying combinations of primary antibody anti-

topoisomerase IIα (TOPOGEN) concentration (1:250, 1:500 and 1:1000) were 

assessed against varying combinations of secondary antibody concentrations (1:2500, 

1:5000 and 1:10000). Samples were loaded onto a slot blot held nitrocellulose 

membrane and combinations of antibody concentrations were tested against the 

following: a negative control, crude cell lysate containing free TOPOII (positive control) 

and relevant fractions from a 100 µM etoposide treated sample that had been through 

CsCl density ultracentrifugation.  Dilutions of 1:100 primary antibody and 1:5000 

secondary antibody were found to be appropriate.  Data from the titration work is not 

presented. 

2.12.5  Statistical Analysis for the ICE bioassay 

Due to the limitation of ultracentrifugation it was only possible to run single cultures for 

each concentration tested in each test.  Accordingly analysis was performed to 

measure inter-experimental variance and increase in ICE signal across at least 

triplicate experiments. A one-sided two sample paired mean t-Test on square root 
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transformed data was performed as recommended by Karen Oldman, AstraZeneca 

Alderley Park, Safety Assessment UK Statistics.  

2.13 SDS-PAGE and Western Blot experiments 

For confirmation of reactivity of in house prepared antibodies SDS-PAGE followed by 

Western Blots was performed.  As mouse topoisomerase II enzyme was not 

commercially available initial Western Blots were performed looking at reactivity of 

each antibody with human topoisomerase II alpha (supplied by Inspiralis UK, HT205 

500U).  To confirm the response with mouse enzyme, cell extracts from L5178Y mouse 

lymphoma cells were prepared and also run through SDS-PAGE and Western Blot.  

2.13.1  SDS-PAGE Western blots 

2.13.1.1  Analysis of antibodies against commercially supplied human 
topoisomerase IIα 

Human Topoisomerase II alpha (Topogen inc) was prepared at a concentration 10 

U/µL.  Information from the supplier indicated that 1 U was 20-40 ng protein.  Samples 

were denatured at 95°C for 5 minutes and 0.2-0.4 ng was added to each SDS-PAGE 

gel lane (gel type was 4%-12% Criterion Bis-Tris 18 well gels).  10 ul Seeblue plus 2 

marker and magic marker to determine size and location of protein were loaded as 

required. 

2.13.1.2  Analysis of antibodies against L5178Y mouse lymphoma extracts 

Two different cell extracts were prepared.  Tubes containing 1 x 107 cells were 

extracted using 1% sarkosyl, this gave a general lysate of all cellular material hence 

total protein content.  Additional specific cytosol and nuclear extracts were prepared 

using BioVision nuclear/cytosol fractionation kit (BioVision, USA).  Briefly; cells were 

lysed with supplied lysis buffers, samples centrifuged at 16,000 x g for 5 minutes.  After 

which the supernatant contained the cytosol fraction and the pellet contained the 

nuclear fraction.  Lysates were prepared in the presence of protease inhibitors.  

Preparations were diluted with sample loading buffer and heated to 95°C for 5 minutes 

before being loaded on to SDS-PAGE gels as above. 

All gels were run in 1 x BioRad 3-(N-morpholino)propanesulfonic acid (MOPS) running 

buffer at 200 V for 55 minutes. 
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2.13.1.3 Western Blot 

Proteins were transferred onto Amersham Hybond nitrocellulose membranes in 1 x 

Tris-Glycine (TG) buffer using Criterion blotting module.  Transferred at 30 V overnight.   

2.13.1.4 Antibody staining and ECL imaging 

Following preparation, membranes were blocked with blocking buffer (4% Marvel 

powder in PBS+Tween) for 1 hour.  Membranes were cut such that single lanes 

containing loaded topoisomerase II alpha enzyme and markers were separated.  12 cut 

membranes were prepared in this way and each cut membranes was incubated with 

one of the 12 prepared mouse antibodies (see Chapter 7) at 1 ug protein/mL in 

blocking buffer.  Incubation was overnight at 4°C. 

The secondary antibodies (Anti-Rabbit IgG (whole molecule)–Peroxidase antibody 

produced in goat) was prepared as a 1:5000 in blocking buffer and membranes 

incubated for 1 hour at room temperature.  Membranes were than incubated in 

Amersham ECL Prime substrate for 5 minutes before imaging on the Fuji scanner for 

20 or 30 seconds, 1 minute and 5 minutes.  

2.13.1.5 Antibody staining and Odyssey imaging 

For later work to demonstrate SiRNA knockdown of topoisomerase α and β, 4 x 106 

L5178Y mouse lymphoma cells were lysed using 1% sarkosyl or using BioVision 

nuclear/cytosol fractionation kit (from which only the nuclear extract was used) and 

were assessed for protein content and up to 10 µg total protein loaded per required 

number of GEL lanes and run as above with a BioRad 161-0374 rainbow coloured 

marker which shows up in the 700 channel for Odyssey or magic marker for ECL.  This 

procedure was performed with control L5178Y mouse lymphoma cells and cells that 

had been had been pre-treated with SiRNA to topoisomerase II alpha and allowed to 

recover for two days after knockdown (See Chapter 8 for methodology employed for 

SiRNA knockdown).  After Western blotting membranes were split and treated 

separately with antibodies to topoisomerase II α or β (diluted 1:1000 in blocking buffer) 

at 4°C overnight, prior washing in TBST and 2 hour incubation  with (IR) chromophore 

(Li-Cor R680 secondary antibody) (diluted 1:5000 in blocking buffer) and imaged with 

Li-Cor Odyssey IR scanner and quantified signal using Li-Cor Odyssey software or 

Anti-Rabbit IgG (whole molecule)–Peroxidase antibody produced in goat produced in 

goat secondary antibody than incubated in Amersham ECL Prime substrate for 5 
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minutes and imaged with the Biorad Chemi Doc MP.  For further details of this method 

and method development See Chapter 8 Section 8.2.  

2.14  General statistical analysis evaluation criteria 

For all of the statistical analysis methods used for individual assay results were 

evaluated with confidence limits of 95% (P<0.05), 99% (P<0.01) and 99.9% (P<0.001) 

which are generally represented as *, ** and *** respectively. 

2.15  General calculation of error within data sets 

Where appropriate on graphical representations of data where 3 or more data points 

were available, the error within each mean data point is represented by the standard 

error of the mean which was calculated as: 

Standard error of mean =     Standard deviation of mean   
    Square root of number of replicates 
 
This error is represented on graphs as bars equal to -/+ standard error of mean. 

This method was recommended by Karen Oldman, AstraZeneca Alderley Park, Safety 

Assessment UK Statistics.  It was considered to be the most appropriate estimate of 

variance for three or more replicates. 

In preliminary experiments using only duplicate cultures standard error was calculated 

as half the difference between the two replicates. 
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3 The incidence of positive results in the mouse 
lymphoma tk assay (MLA) in pharmaceutical 
screeing and could aneugenicity be a plausible 
mechanism? 

3.1  Introduction 

The aim of the work described in this chapter was to put into perspective the number of 

positives responses seen in the MLA during pharmaceutical screening and to 

investigate whether aneugenicity could contribute to this number. 

Along with other in vitro mammalian cell genotoxicity assays, the predictivity of the MLA 

for identifying carcinogens has often been questioned.  As recently as 2005, David 

Kirkland et al’s retrospective review of genotoxicity data from the International 

Conference on Harmonisation (ICH) recommended tests indicated that out of 105 non-

carcinogens, the MLA unequivocally correctly identified only 41 as being negative 

(Kirkland et al., 2005).  This would suggest the ‘false positive’ rate for the MLA to be as 

high as 61%.  Whilst Kirkland et al’s review did not focus on pharmaceutical testing, 

there was a perception that the ‘over sensitivity’ of the MLA was a general 

phenomenon.  An assay with such a high ‘false positive’ rate would seem to be of little 

value in a pharmaceutical screening paradigm.  The paradox being that the MLA is still 

routinely used for screening in many pharmaceutical safety assessment laboratories.  

Accordingly, either the lack of specificity suggested by Kirkland et al is not seen during 

the genotoxicity testing of novel pharmaceuticals in a commercial environment (which 

is the perception gained by the author over the last 25 years) or even in these 

laboratories a surprisingly large number of novel pharmaceuticals are positive in in vitro 

mammalian cell genotoxicity tests.  There is anecdotal evidence for the latter, and 

some groups have suggested this as a reason for using Option 2 in the recently 

adopted update of ICH S2 (ICHS2(R1), 2011).  Option 2 includes the opportunity to test 

two in vivo genotoxicity tests (usually the rodent haematopoetic micronucleus assay 

and the rodent comet assay) instead of one in vivo test and an in vitro mammalian cell 

assay.  Those in favour of this option maintain that it would reduce the number of ‘false 

positives’ seen in genetic toxicity screening.  Furthermore, during the long discussion 

process surrounding the ICH S2 update, there was much debate on whether the 

highest concentration to be tested in in vitro mammalian cell genotoxicity tests should 



Chapter 3 

 

81 

be reduced from 10 mmol/L to 1 mmol/L.  Part of the reasoning behind this initiative 

was also to help reduce the number of ‘false positives’. 

Assuming there really is an issue with an excessive number of false positives seen in 

the MLA, one option available to pharmaceutical discovery chemists is to use in silico 

structural alert relationships (SAR) to predict the MLA result.  SAR models have also 

been validated by scientists within regulatory authorities to help predict mammalian cell 

genotoxicity with development pharmaceutical’s and their metabolites and impurities 

(Matthews et al., 2006, Contrera et al., 2008).  So can in silico analysis be of help in 

predicting the likelihood of a MLA positive result, and hence reduce the number of 

actual positive tests conducted? 

 Kirkland et al’s review on specificity in the MLA considered the inability of the MLA to 

correctly identify non-carcinogens as being non-genotoxic.  Unfortunately, oncogenicity 

data would not be available for the vast majority of compounds tested in the MLA for 

pharmaceutical screening.  However, it would be possible to consider a compound’s 

primary pharmacological target and mechanism and relate this to any positive result, 

with the possibility of deducing beyond reasonable doubt the mechanism of a ‘false 

positive’ finding, hence changing a ‘false positive’ into a mechanistically interpretable 

result. 

Furthermore, one mechanism that could be responsible for generation of 

uninterpretable positive responses in the MLA is aneugenicity.  Aneugenicity is the loss 

or gain of a whole chromosome.  In general, aneugens act via perturbation of mitotic 

spindle or associated proteins.  Aneugens structures do not usually contain easily 

recognisable toxiphores, such as the aromatic amines, nitrosamines or epoxides that 

are associated with many classic DNA reactive mutagens.  Accordingly, anuegens 

cannot be predicted by classic structural alert relationships, hence the first indication of 

a genotoxic effect may a perceived ‘false positive’ result obtained during routine 

pharmaceutical screening.  However, although the ICH guidance states that the MLA is 

able to detect compounds that induce numerical chromosomal damage and that the 

detection of aneuploidy inducers is enhanced if a 24 hour treatment regimen is used 

with the microtitre method (ICHS2(R1), 2011), over the last decade there has been 

some debate about whether, or not, the MLA responds to aneugens as a class.  

Theoretically, if an aneugen induces loss of the copy of the mouse lymphoma cell 

chromosome 11b containing the functional tk+ allele, this should be expressed as a 

trifluorothymidine (TFT)-resistant mutant.  Several studies have reported positive MLA 
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results with aneugens including colchicine (Honma et al., 2001), vinblastine (Honma 

2001 et al.,) carbendazim (O'Donovan et al.,1999) and taxol (Wang et al., 2009).  

However, with the exception of carbendazim, these positive results have not been easy 

to reproduce in different laboratories (O'Donovan et al., 1999).  Furthermore, although 

a strain of L5178Y cells with only one intact copy of chromosome 11 is known (Evans 

et al.,  1986), it has been suggested that L5178Y TK+/- clone 3.7.2c cells (the cell line 

used in the MLA) that are monosomic for chromosome 11 are not viable (Liechty et al.,  

1998; Fellows et al., 2005).  This would be a prerequisite if TFT-resistant mutants were 

to be induced by simple chromosome loss.  If aneugens do induce TFT-resistant 

mutant cells, it is possible that they are the result of more complex mechanisms, for 

example, chromosome loss and subsequent recombination and duplication (de Nooij-

van Dalen et al., 1998, Wijnhoven et al., 2003) or simply the induction of chromosome 

damage since it is known that most aneugens can also induce structural changes to 

some extent.   

To help answer some of these questions, a retrospective review was undertaken of the 

results of compounds tested in the MLA that the author study directed at AstraZeneca, 

Alderley Park, UK between 2001 and 2010.  During this time 355 pharmaceutical 

compounds were evaluated in the MLA.  The number of MLA positive conclusions from 

these tests was calculated, along with the in silico prediction using MultiCase (MCASE) 

MC4PC analysis, which has been reported to have ‘good specificity, sensitivity and 

coverage for prediction of genotoxicity test results’ (Contrera et al., 2008).  For 

compounds that were positive in the MLA at AstraZeneca during this period, 

consideration of the compounds primary pharmacological target and the response in 

other genetic toxicity assays was made to help elucidate the probable mechanism of 

the positive response.  Furthermore, to help put into context the number of positive 

responses seen in the MLA, a similar review was made of the Ames assay results from 

the same data set.  Finally, in order to investigate the response of the MLA to 

aneugens, and to see whether it was possible that aneugenicity could explain hitherto 

uninterruptable positive responses, seven compounds with differing modes of 

anuegenic action were tested in the MLA using conditions acceptable for 

pharmaceutical development (OECD, 1997) (Figure 3.1).   



Chapter 3 

 

83 

 

Carbendazim 

 

Uses:    Broad-spectrum benzimidazole fungicide. 

MOA:   Associated with the inhibition of tubulin                 
polymerisation (Kirsch-Volders et al., 2003). 

Taxol (paclitaxal) Uses:    Treatment of ovarian, breast and lung cancer. 

MOA:   Binds to the β-subunit of tubulin, hyper stabilizing the 
spindle microtubules. The resulting microtubule/taxol complex 
does not have the ability to disassemble (Schiff et al., 1979). 

Chloral Hydrate 

 

Uses:    As a hypnotic and sedative. 

MOA:   Interferes with tubulin (Faust et al., 2003) assembly and 
shortens microtubules (Lee et al., 1987). 

Noscapine 

 

Uses:    As an antitussive. 

MOA:   Disrupts the function of mitotic spindle (Schuler et al.,  
1999), binds to tubulin and alters the conformation and 
assembly properties (Aneja et al., 2007). 

Diazepam 

 

Uses:    As a sedative, muscle relaxant, anticonvulsant and 
anxiolytic. 

MOA:   Inhibits centriole (Andersson et al., 1981) and spindle 
pole separation. Prevents the separation of centrioles at 
prometaphase (Parry and Sors,1993). 

Colchicine 

 

Uses:    Treatment of inflammatory conditions, e.g. Gout. 

MOA:    Interacts with α tubulin at two sites (Wallin et al., 
1988), depolerising microtubules and stabilizing microtubule 
dynamics at high and low concentrations respectively (Jordan 
and Wilson, 2004). 

Econazole 

 

Uses:    As an antifungal. 

MOA:   Known to damage cell membranes (Gudi et al., 1992).  
Inhibits ergosterol synthesis, and therefore microsomal and 
mitochondrial cell membranes (Parry and Sors, 1993).  

Fig. 3.1.  The aneugens used in these investigations MOA = Mode of action 
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3.2  AstraZeneca mouse lymphoma assay review results 

3.2.1  MLA results 

Out of 355 compounds tested in the MLA at AstraZeneca, Alderley Park, UK, between 

2001 and 2010, 303 compounds were concluded to be negative (85% of the total 

number of compounds tested).  Only 52 compounds were concluded to be positive 

(15% of the total compounds tested) (Figure 3.2).  All of these 52 compounds were 

positive at concentrations of less than 1 mmol/L, the ICH limit concentration for in vitro 

genotoxicity testing of pharmaceuticals (ICHS2(R1), 2011).  Of the 52 compounds that 

were positive, 36 were positive in the presence and absence of exogenous metabolism 

(S9) (69% of total positive compounds), 12 were uniquely positive in the presence of 

S9 (23% of total positive compounds) and 4 were uniquely positive in the absence of 

S9, short term and/or 24 hours exposure (8% of total positive compounds).  
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Figure 3.2: Conclusions from 355 MLA studies tested at AstraZeneca Alderley 
Park between 2001 and 2010 

The mechanism of genotoxicity for the 12 compounds that were uniquely positive in the 

presence of S9 was considered to be unlikely to be due to the compounds primary 

pharmacological target (none of these compounds were pro-drugs).  Of the remaining 

40 positive compounds that were positive in the absence of metabolic activation, 

19 were cancer therapy drugs for which the primary pharmacological target was either 
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inhibition of a kinase or inhibition of DNA polymerase, both of which are known to be 

mechanisms for in vitro genotoxicity (Marzin, 2007, Olaharski et al.,2009).   A further 10 

of the 40 positive compounds were anti-infectives for which the primary 

pharmacological target was either inhibition of topoisomerase II (9 compounds) or 

protein synthesis (1 compound), both of which are again known to be mechanisms for 

in vitro genotoxicity (Smart et al., 2008, Tweats et al., 2007).  One further compound 

was a known genotoxic metabolite.  Hence, including those compounds uniquely 

positive in the presence of S9, incredibly only 22 compounds out of 355 tested (6%) 

were positive by a mechanism that was unlikely to be explainable by the compounds 

primary pharmacological target (Figure 3.3). 
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Figure 3.3: Pharmacological target of S9 independent MLA positive compounds 
out of the 355 compounds reviewed 

Furthermore, 3 of the 22 mechanistically unexplainable positive compounds were also 

positive in an Ames or an in vivo bone marrow micronucleus test, adding weight to the 

likely biological relevance of the MLA positive finding (Figure 3.4). 
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Figure 3.4: Response in Ames and in vivo micronucleus test of mechanistically 
unexplained MLA positives out of the 355 compounds reviewed 

Accordingly, out of 355 compounds tested over a 10 year period at AstraZeneca, 

Alderley Park, UK, there were only 19 unique MLA positives for which the genotoxic 

mechanism was unlikely to be related to the compounds primary pharmacology (i.e. 

5% of total compounds assessed). 

3.2.2  Ames results 

Of the 355 compounds tested in the MLA, only 10 were positive in the Ames test (3%).    

The vast majority of the Ames positives (7 out of 10) were from AstraZeneca’s infection 

portfolio for which the primary pharmacological target was inhibition of bacterial 

topoisomerase II (gyrase or topoisomerase IV).  As was expected for compounds 

targeting bacterial topoisomerase II, all of these anti-infective compounds were positive 

in the excision repair proficient Salmonella strain TA102 (Gocke, 1991).   The other 

positive compounds were two small aromatic amines, for which the positive Ames 

response was not unexpected (Ashby and Tennant, 1988) and one other compound of 

unknown genotoxic mechanism (Figure 3.5).  Seven of the 10 Ames positive 

compounds were also positive in the MLA.  The three exceptions were the two small 

aromatic amines and one anti-infective, which may have been positive in the MLA if 

tested to higher concentrations, but in view of the positive Ames result this additional 

testing was not deemed necessary. 
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Figure 3.5: Number of positive Ames assays out of 355 compounds and their 
probable mechanism 

 

3.2.3  MCASE MC4PC Analysis Results 

338 of the compounds tested in the MLA at AstraZeneca, Alderley Park, UK, were 

analysed for structural alert relationships using Multicase module 4PC (MC4PC), a 

structural activity relationship programme designed to predict positive results in the 

mosuse lymphoma assay from previous results on similar structures.  Results are 

shown in (Figure 3.6).  Of these 338 compounds, MC4PC predicted 209 to be positive 

(62%).  Surprisingly, there was no difference in the MC4PC positive prediction for those 

compounds negative in the MLA, for which MC4PC predicted 177 out of 286 to be 

positive (62%), or positive in the MLA, for which MC4PC predicted 32 out of 52 to be 

positive (62%).  Hence the predictivity of MC4PC for the AstraZeneca Alderley Park, 

UK, MLA results were: 

• Sensitivity (correct identification of an MLA positive response) 62% (n of 52) 

• Specificity (correct identification of a MLA negative response) 38% (n of 286) 

• Overall concordance 42% (n of 338) 
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Figure 3.6: MCASE MC4PC MLA predictions for 338 compounds 

 

3.3  The potential of an aneugenic mechanism for MLA positive 
responses 

3.3.1  Results 

The aneugens were all tested using 24 hours exposure, this exposure condition is 

considered to be the most suitable to identify division dependent mutagens and 

aneugens (Honma et al., 1999).  The following Table 3.1 shows the results for 

econozale, chloral hydrate, noscapine, diazepam and colchicine when tested in the 

MLA. In line with ICH recommendations for pharmaceutical development ICHS2(R1), 

2011), single experiments were performed with the exception of colchicine which had 

previously been reported to be positive in the MLA (Honma et al., 2001). 
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Econazole Chloral hydrate 

Conc 
(µmol/L) 

RTG MF % small 
clones 

Conc 
(µmol/L)

RTG MF % small 
clones 

0 100 66 43 0 100 88 40 

14 45 75 53 1700 40 92 44 

17 29 107 31 2100 27 127 59 

21 14 154 52 2700 14 116 76 

27 7 242* 63 3400 2 249* 84 

       

4-NQO 
0.33 

39 734* 43 4-NQO 
0.33 

29 877* 40 

Noscapine Diazepam 

Conc 
(µmol/L) 

RTG MF % small 
clones 

Conc 
(µmol/L)

RTG MF % small 
clones 

0 100 59 45 0 100 52 52 

34 62 95 21 330 61 98 63 

42 44 43 50 410 54 67 58 

52 20 88 29 510 52 74 36 

66 7 103 36 640 0 130 100 

       

4-NQO 
0.33 

29 636* 44 4-NQO 
0.33 

40 540* 34 

Colchicine Test 1 Colchicine Test 2 

Conc 
(µmol/L) 

RTG MF % small 
clones 

Conc 
(µmol/L)

RTG MF % small 
clones 

0 100 107 50 0 100 55 33 

0.0125 64 137 42 0.04 78 46 46 

0.025 60 118 47 0.06 52 49 51 

0.031 32 115 44 0.07 20 54 49 

0.038 13 128 35 0.08 5 38 21 

 

Table 3.1: MLA results for econozale, chloral hydrate, noscapine, diazepam and 
colchicine 
RTG = Relative Total Growth 
MF = Mutant Frequency x 10-6, mutant frequency is pooled data from two replicates 

* Significantly different from the control (Induced Mutant Frequency ≥ 126 x 10-6) 
 

The following Table 3.2 shows the results for carbendazim when tested in the MLA.  As 

carbendazim had previously been reported to be positive in the MLA (O'Donovan et al., 

1999) and as the results from the initial tests were inconclusive, triplicate tests were 

performed. 
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Carbendazim Test 1 CarbendazimTest 2 CarbendazimTest 3 

Conc 
(µmol/L) 

RTG MF % small 
clones 

Conc 
(µmol/L)

RTG MF % small 
clones 

Conc 
(µmol/L)

RTG MF % small 
clones 

0 100 65 44 0 100 120 48 0 100 74 61 

5 91 70 59 5 83 83 65 8 65 66 85 

8 32 107 39 8 53 139 43 10 27 188 36 

10 15 137 27 10 17 231 30 13 10 229* 74 

13 1 430* 43 13 8 318* 37 16 3 474* 77 

    16 2 568* 41 18 1 370* 88 

          

4-NQO 
0.33 

11 1594* 38 4-NQO 
0.33 

42 909* 42 4-NQO 
0.33 

32 835* 64 

 
Table 3.2: MLA results for carbendazim 
RTG = Relative Total Growth 
MF = Mutant Frequency x 10-6, mutant frequency is pooled data from two replicates 
* Significantly different from the control (Induced Mutant Frequency ≥ 126 x 10-6) 
 

The following Table 3.3 shows the results for taxol when tested in the MLA.  As taxol 

had previously been reported to be positive in the MLA (Wang et al., 2009) and as the 

results from the initial tests were inconclusive, quadruplicate tests were performed. 

Taxol Test 1 Taxol Test 2 Taxol Test 3 

Conc 
(µmol/L) 

RTG MF % small 
clones 

Conc 
(µmol/L)

RTG MF % small 
clones 

Conc 
(µmol/L)

RTG MF % small 
clones 

0 100 66 49 0 100 88 34 0 100 97 68 

0.017 62 80 53 0.028 39 104 58 0.018 63 75 41 

0.021 35 92 55 0.036 25 90 16 0.023 31 102 32 

0.026 14 178 34 0.045 7 310* 109 0.028 12 174 37 

0.033 2 521* 64 0.056 2 293* 126 0.036 2 652* 49 

          

4-NQO 
0.33 

39 734* 43 4-NQO 
0.33 

29 877 40 4-NQO 
0.33 

50 762* 40 

Taxol Test 4 

Conc 
(µmol/L) 

RTG MF % small 
clones 

0 100 74 61 

8 65 66 85 

10 27 188 36 

13 10 229* 74 

16 3 474* 77 

18 1 370* 88 

    

4-NQO 
0.33 

32 835* 64 

 
Table 3.3: MLA results for taxol 
RTG = Relative Total Growth 
MF = Mutant Frequency x 10-6, mutant frequency is pooled data from two replicates 

* Significantly different from the control (Induced Mutant Frequency ≥ 126 x 10-6) 
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Significant increases in mutant frequency as indicated by exceeding the global 

evaluation factor (increase ≥ 126 x 10-6 above concurrent control) were seen with taxol, 

carbendazim, econazole and chloral hydrate (Tables 3.1 to 3.3) but only at highly toxic 

concentrations (≤17% RTG).  Only taxol and carbendazim, at single concentrations in 

one of four and one of three tests, respectively, induced significant increases in mutant 

frequency at concentrations giving ≥ 10% survival as measured by reduction in relative 

total growth (RTG).  In the single tests performed with econazole and chloral hydrate, 

increases in mutant frequency were only seen at concentrations giving 7% and 2% 

survival, respectively, i.e. concentrations below 10% survival which is the lowest 

acceptable level of toxicity for analysis in the MLA (Moore et al., 2006).  Also, where 

there were significant increases in mutant frequency, there was no clear evidence of a 

preferential increase in either the number of small or large mutant clones.  Accordingly, 

the aneugens; taxol, carbendazim, econazole and chloral hydrate, did not give 

significant, concentration-related or reproducible increases in mutant frequency at 

concentrations of acceptable toxicity (> 10% survival).  Hence they would not be 

considered to be unequivocally positive using the accepted evaluation criteria for the 

MLA (Moore et al., 2006). 

No significant increase in mutant frequency was seen following exposure to noscapine, 

diazepam or colchicine, when tested up to highly toxic concentrations (Table 3.1). 

In all tests where it was used, the positive control 4-NQO induced a highly significant 

increase in mutant frequency.   

3.4  Discussion 

3.4.1  AstraZeneca mouse lymphoma assay review 

Although cancer bioassay data are not available for these compounds, because 97% 

are not bacterial mutagens and all were tested as potential drug substances, it must be 

assumed that the majority are probably not DNA-reactive carcinogens.  However, 

additional data are not available to assess any risk they might present.  Even if they 

were all non-carcinogens, the data generated in this laboratory contradict the 

conclusion from the literature review that shows the MLA has a false positive rate of up 

to 61%.  In fact, the incidence of positive results from this laboratory is lower than, but 

more consistent with, those for pharmaceuticals in general.  Of marketed drugs listed in 

the 2008 US Physicians’ Desk Reference, only 20% (32/163) are reported to be 
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positive in the MLA although these excluded most cytotoxic anticancer and antiviral 

drugs (all with known mechanistic genotoxicity), steroids with class-specific 

genotoxicity and biological or peptide drugs (Snyder, 2009).  A slightly higher incidence 

of MLA positives, 27% (28/104), was seen in all drugs submitted to the German 

regulatory authority (BfArM) during the 1990’s and no specific drug types were omitted 

from this analysis (Muller and Kasper, 2000).  It should be noted that in both the 

Physicians’ Desk Reference and BfArM datasets the incidences of positive results in in 

vitro cytogenetics assays is directly comparable with those in the MLA.  At least for 

pharmaceuticals, it appears that the MLA does not generate as many positive results 

as commonly believed.  This should be taken into consideration when comparing the 

performance of other in vitro genotoxicity tests, and perhaps more importantly, it is 

against this incidence that the performance and validation of novel in vitro genotoxicity 

tests should be judged. 

 

The reasons for the discrepancy seen between the incidence of positive results in the 

MLA at AstraZeneca and that in the literature are not clear but there appear to be 

several possibilities.  First, the quality of particularly some of the older studies included 

in retrospective reviews can be questioned.  A recent alternative review of the studies 

performed at the National Toxicology Programme (NTP) (Schisler et al., 2010), which 

includes a significant number of the results cited by Kirkland et al, in his review of 2005 

(Kirkland et al., 2005) has shown that 211 of 342 results (61%) were uninterpretable 

due to inappropriate concentration selection or control responses.  Hence in this re-

analysis, only 74 of the original 163 positive calls were considered likely to be 

appropriate.  This is not a censure of Kirkland’s review; he and his colleagues 

accurately and diligently assessed the available published data from a variety of 

sources and evaluated the results with respect to negative data from carcinogenicity 

tests.  However, it does highlight the difficulty with making conclusions from 

retrospective analyses.  Second, and possibly contributing to the poor quality of some 

of the published data, is the provenance of the mouse lymphoma L5178Y cells used in 

different laboratories.  Recent work has shown that the sensitivity of L5178Y cells to 

test agents as indicated by in vitro micronucleus induction can depend on the source.  

For example, the non-carcinogen anthranilic acid was found to be genotoxic when 

tested using L5178Y cells from an established commercial repository, but negative 

when tested using cells supplied by AstraZeneca (Pfuler et al., 2011).   The cells from 

AstraZeneca have been shown to have the appropriate karyotype and can be shown to 

have been grown for no more than 4 weeks in continuous culture from a sample 
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provided by Dr Don Clive over 30 years ago (see Chapter 2), but the provenance of 

cells used in many laboratories may not be so well known.  Finally, it is possible that 

the incidence of positives with compounds in the chemical space occupied by potential 

drug substances differs from that with the compounds in the literature that have been 

tested for other reasons. 

Even though the rate of positive responses in the MLA is somewhat lower than some 

published reviews suggest, it would still be advantageous to be able to predict MLA 

activity using in silico screening.  Furthermore, it appears that some regulatory 

authorities may have requested MLA testing on impurities in drug substances on the 

basis of alerts in unspecified SAR systems (noted by the author from experience with 

AstraZeneca drug submissions). Consequently, results for the compounds tested in 

this laboratory were analysed using MC4PC and it was disappointing that its predictivity 

was such that, in its current state of development it cannot be considered sufficiently 

accurate to be used to predict the MLA activity of pharmaceuticals, their metabolites or 

potential impurities.   The sensitivity of MC4PC was similar to that previously reported 

by Matthews and Contrera, approximately 60% to 70%, but the specificity (38%) and 

overall concordance (42%) were much lower than Matthews and Contrera’s reported 

approximately 70% for both specificity and concordance (Matthews et al., 2006; 

Contrera et al., 2008).  In fact, MC4PC predicted 62% of all compounds, whether 

actually positive or negative, to be positive.  It is perhaps not surprising that in silico 

screening is not very predictive of the actual MLA result.  It is likely that the SAR 

database used by MCASE to construct the MC4PC module contains the same 

seemingly flawed NTP dataset as reviewed by Kirkland et al.  It is probably 

coincidental, but at the same time intriguing, that Kirkland’s review suggested a positive 

rate of 61% in the MLA, and MCASE analysis of AstraZeneca compounds predicted a 

positive rate of 62%.  Regulatory requests for further mammalian cell genotoxicity 

evaluation based on SAR analysis could lead to delays in drug development.  It is 

clearly important to have proven that these analyses should at best be used with 

caution, and, in the author’s opinion, should not be used at all until their predictivity for 

in vitro mammalian cell genotoxicity can be greatly improved. 

 

The results of the analysis of the positive responses of AstraZeneca pharmaceuticals in 

the Ames assay were also very interesting.  Only 10 out of the 355 compounds 

assessed were positive in the Ames test.  This is in no small way a tribute to the 

success of genetic toxicology research over the last 3 decades.  Pharmaceutical 

discovery chemists are no longer developing chemicals that are potently DNA reactive.  
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Furthermore, AstraZeneca uses an in house in silico SAR system that very effectively 

predicts Ames positives; hence they can be eliminated in early drug discovery before 

the requirement for ‘wet testing’.  Unlike trying to predict mammalian cell genotoxicity 

based on flawed databases, Ames SAR systems can accurately predict compounds 

that are likely to bind to DNA, hence predict whether a compound will be positive in the 

Ames test.  It was also noteworthy that 9 out of 10 of the Ames positives could have 

been predicted as likely to be positive due to either their chemistry (2 out of the 10 

positives were small aromatic amines) or their primary pharmacology (7 out of 10 

positives were anti-infectives targeting bacterial topoisomerase II). 

 

3.4.2  Could aneugenicity be the mechanism responsible for some of 
the uninterpretable positive findings seen in the MLA? 

Whilst the review of the number of positive responses seen in the MLA during routine 

screening at AstraZeneca demonstrated that the assay generates far fewer 

unexplainable positives than may have been expected, there were still a significant 

number (5% of 355 compounds tested) for which the genotoxic mechanism of the 

positive response could not be readily explained.  There are of course several 

mechanisms that may be responsible for the non-pharmacologically related positives 

seen in the MLA that do not involve direct drug covalent DNA binding, for which 

aneugenicity is one plausible example.  However, the data generated clearly 

demonstrates that seven aneugens with different modes of aneugenic action cannot be 

routinely identified as positive in the MLA, with noscapine, diazepam and colchicine 

giving negative responses even when tested up to concentrations reducing survival to 

< 10%.  Although some evidence of mutagenicity was seen with taxol, carbendazim, 

econazole and chloral hydrate, the increases were generally at levels of survival < 10% 

and it is likely that, if tested as unknown compounds, the majority of these results 

would not be considered positive using currently accepted mouse lymphoma assay 

evaluation criteria (Moore et al., 2006)  . 

It should be noted that the results obtained with taxol, colchicine and chloral hydrate do 

not agree with the positive responses previously reported for these compounds 

(Harrington-Brock et al., 1998; Honma et al., 2001, Wang et al., 2009).  In the current 

study,  toxicity above and below 10% survival was seen at the same concentrations of 

taxol in different experiments and this may account for the apparent disagreement 

between laboratories i.e. results were called positive or negative depending on whether 
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the increases were seen just above or below 10% survival.  Furthermore, in the 

laboratory where taxol has been reported to be positive, consistent results were not 

obtained between experiments using different lots of test material (Dr Martha Moore, 

Division of Genetic and Molecular Toxicology, Federal Drug Administration, personal 

communication).  For colchicine, concentration-related increases in mutant frequency 

from 0.01 to 0.1 µmol/L have been reported (Honma et al., 2001) but, again, these 

were most apparent at concentrations giving < 20% survival.  It is possible that the 

karyotype of cells used may also have influenced the response.  The cells used by 

Honma’s group contained a population of 2.7% with three copies of chromosome 11 

(Honma et al., 2001), but no such cells were seen in 600 metaphases in AstraZeneca’s 

laboratory (data not shown).  There are data to indicate that cells monosomic for 

chromosome 11, which would obviously result from loss of a single chromosome from 

a disomic, are not viable (Liechty et al., 1998; Fellows et al., 2005).  However, it is 

theoretically possible that loss of a single chromosome 11b from a trisomic cell from 

Honma’s laboratory (i.e. 11a,11a,11b) could give rise to a viable disomic TFT-resistant 

clone (i.e. 11a,11a -11b).   

3.4.3  Could topoisomerase II inhibition be responsible for some of 
the uninterpretable positive findings seen in the MLA? 

The data from the selection of aneugens tested suggested that it was unlikely that 

anuegenicity was a mechanism that could readily explain some of the positive 

responses seen in routine MLA screening.  Given that 29 out of 40 (73%) of the S9 

independent MLA positives in the data set were from projects with compounds 

designed to target topoisomerase II, kinase or DNA repair enzyme inhibition, it would 

seem at least possible that some of the unexplainable unique MLA positives may be 

caused by off target effects on these enzymes.  As has previously been reviewed in the 

introduction to this thesis, inhibition of topoisomerase II enzymes in particular induces 

potent positive effects in in vitro mammalian cell gene mutation assays, and this 

mechanism was also likely to be responsible for 70% of the Ames positives seen out of 

the 355 compounds analysed.  This highlights the value of establishing and evaluating 

the performance of practical screening assays for off target mammalian cell 

topoisomerase II inhibition and associated genotoxic potential.  If better assays were 

available either to predict the potential of a novel compound to inhibit topoisomerase II 

or to help explain hitherto unknown mechanisms of in vitro mammalian cell 

genotoxicity, it may be possible to further reduce the number of unexplainable positives 

generated by in vitro mammalian cell gene mutation assays. 
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3.5  Conclusion 

In conclusion, of 355 compounds tested in the MLA in this laboratory, only 52 (15%) 

gave positive results; even if it is assumed that all of these are non-carcinogens, the 

incidence of “false positive” predictions of carcinogenicity must be much lower than the 

61% apparent from analysis of the literature. Furthermore, only 19 compounds (5% of 

total) were positive by a mechanism that could not be related to the compounds 

primary pharmacological activity or positive response in other genotoxicity assays.   

 

It was considered unlikely that direct DNA reactivity or off target aneugenicity was 

responsible for generation of the MLA positive responses.  Although not certain, it was 

considered likely that the positive results obtained with compounds known to inhibit 

topoisomerases, kinases or DNA repair was due to their pharmacology. Currently there 

are few practical screens for these activities and, if better tests were to be developed it 

is possible that the occurrence of inexplicable positive results in the MLA could be 

reduced further.  The conclusions from this work were published by the author in two 

peer reviewed papers in 2011 (Appendix I) 

 

Having put into perspective the prevalence of positive responses in in vitro mammalian 

cell gene mutation assays, the aim of the rest of this research project will focus on 

investigating methods to determine drug induced topoisomerase II inhibition and relate 

this to the drug’s potential for in vitro genotoxicity. 
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4 Use of the cell free decatenation assay to measure 
drug induced topoisomerase II inhibition and its 
potential as a screening and problem solving tool 
for AstraZeneca discovery pharmaceuticals  

 

4.1 Introduction 

The aim of the work described in this chapter was to see if a cell free assay could be 

used as a screen for topoisomerase II inhibitor induced genotoxicity. 

The simplest screening tools for analysis of topoisomerase II activity and it’s inhibition 

by chemical agents are cell free techniques.  These techniques are relatively high 

throughput, hence are ideal for early compound selection in pharmaceutical discovery.  

In light of this, AstraZeneca developed a modified version of the topoisomerase II 

decatenation assay.  Decatenation assays have been routinely used for many years for 

assessment of both the activity of topoisomerase II enzymes and evaluation of a drug’s 

potency to inhibit activity (Pan and Fisher, 1999).  The principal of the assay relies on 

the ability of purified topoisomerase II enzyme to bind with circular DNA and 

decatenate in the presence of ATP.  The substrate is a network of linked DNA circles 

(catanes) which are released after decatenation.  For measurement of a compounds 

ability to inhibit topoisomerase II, catenated DNA is treated with concentration ranges 

of topoisomerase II inhibitors and or poisons in the presence of topoisomerase II 

enzyme and ATP.  Products of this reaction are then run on electrophoresis gels, 

broken circlets migrate further though the gel than the original linked DNA.  The 

amount of migrated broken DNA can then be measured, giving an indication of 

decatenation efficiency.  Calculation of a compounds IC50 (i.e. the concentration of drug 

that induces a 50% inhibition in decatenation) is used as the comparator between the 

efficiency of individual drugs to inhibit topoisomerase II (Fisher and Pan, 2008).  In the 

modified version of the assay developed at AstraZeneca, rather than running 

decatenated DNA through gels, the product is loaded onto filter wells.  After filtering, 

catenated DNA is retained on the filter, only decatenated DNA will pass through (see 

Chapter 2 for further details).  The advantage of this microwell technology is an 

improvement in both the ease of sampling, measurement and assay throughput. 
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The principal use of the decatenation assay at AstraZeneca was to assess novel 

bactericidal drugs for their efficiency to inhibit bacterial topoisomerase IV and/or 

gyrase.  However, the assay is amenable to using mammalian topoisomerase II, hence 

has the potential to screen drugs for their cross activity against the mammalian 

enzyme.  The initial aim of the work for this research project was to demonstrate the 

effectiveness of the assay to measure the mammalian topoisomerase II inhibition of 

etoposide and gemifloxacin.  The work progressed to screen a range of AstraZeneca 

anti-infective drugs designed to target bacterial topoisomerase and measure their 

activity against the mammalian enzyme.  The inhibitory potency of each drug was then 

compared to their genotoxic potency as measured in the semi-automated in vitro 

micronucleus assay using L5178Y mouse lymphoma cells.  The ultimate aim of this 

work was to see if topoisomerase II induced genotoxicity could be predicted by a 

simple high throughput cell free test. 

The secondary aim of this work was to see if the decatenation assay could be used to 

elucidate the mechanism of unexpected positive results in in vitro mammalian cell 

genotoxicity tests.  To this end, the technique was used to measure the potential for 

topoisomerase II inhibition of compounds from a series of novel kinase inhibitors 

developed for an anti-inflammatory therapy.  In the early development of these kinase 

inhibitors, as part of the standard AstraZeneca genotoxicity screening paradigm, 

compounds from the lead chemical series were initially evaluated for genotoxicity using 

the in house AstraZeneca Genetox Warning SAR System to predict bacterial 

mutagenicity; there were no alerts (data not shown).  From this chemical series a lead 

candidate was discovered, AZ101 (Figure 4.6).  This compound had excellent drug-like 

properties and consequently was advanced to in vitro genotoxic screens in the course 

of normal screening progression at AstraZeneca.  AZ101 was found to be negative in 

the bacterial reverse mutation (Ames) test but unexpectedly positive in the mouse 

lymphoma assay (MLA) at all concentrations analysed (55 to 111 µmol/L) in the 

absence and presence of exogenous metabolism (Aroclor induced rat liver S9).   This 

potent response was considered to be a significant risk to the development of AZ101 

and consequently its progress was stopped. 

In order to assess whether genotoxicity was inherent to the chemical series and to 

attempt to understand the mechanism involved, a series of further investigations were 

initiated.   A number of additional compounds were selected for testing with varied 

substituents around the core isoquinolinone (Compounds AZ102-AZ107 Figure 4.7).  
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These investigations were to determine if minor structural changes could modulate the 

genotoxic activity or whether the core isoquinolinone was inherently linked to the 

positive MLA result.  The MN(vit) was used as a surrogate for the MLA for these 

investigations.  As the genotoxicity of AZ101 was independent of exogenous 

metabolism, the MN(vit) was performed only in the absence of S9.   

With regard to the potential mechanism of the genotoxicity seen with this chemical 

series, a number of possibilities were considered but, given the absence of in silico 

warning and the negative Ames test result, it was thought unlikely that AZ101 was 

directly DNA reactive.  Furthermore, although some kinase inhibitors are inherently 

genotoxic (e.g. compounds that target cell checkpoint kinases (Marzin, 2007)), 

AstraZeneca had previously developed molecules to target the same kinase as AZ101.  

Compounds with similar target potency but with different chemistry were not 

mammalian cell mutagens.  Accordingly, the genotoxicity of AZ101 was not considered 

likely to be linked to its target pharmacology.  A possible alternative mechanism was 

based on the slight structural similarity of parts of the chemistry to fluoroquinolone 

antibiotics which are known to target mammalian cell topoisomerase II (Smart et al., 

2008).  Accordingly, the decatenation assay was used to screen these compounds for 

potential topoisomerase II inhibition.   

4.2 Results and discussion 

4.2.1 Range-finding for the decatenation assay with reference 
compounds 

The results for IC50 decatenation determination for etoposide and gemifloxacin are 

presented in Figures 4.1 and 4. 2. 
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Concentration 
(µmol/L) 

Inhibition 
% 

IC50 
(µmol/L)

200 102.89 3.84 

100 98.52  

50 92.31 Slope 

25 86.50 0.878 

12.5 73.22  

6.25 59.60  

3.13 38.49   

1.56 29.86   

0.781 25.21   

0.391 17.83   

 
Figure 4.1.  Etoposide decatenation results 
Slope and graph derived from Activity Base calculation tool 

 

Concentration 
(µmol/L) 

Inhibition 
% 

IC50 
(µmol/L)

200 101.71 22 

100 86.35  

50 76.47 Slope 

25 52.42 1.302 

1.25 26.93  

6.25 22.05  

3.13 7.19   

1.56 2.48   

0.781 5.24   

0.391 19.91   

 
Figure 4.2.  Gemifloxacin decatenation results 
Slope and graph derived from Activity Base calculation tool 
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Prior to the commencement of this research project, etoposide had been tested in the 

decatenation assay during which an IC50 of 6 µmol/L was generated.  Furthermore, the 

decatenation assay with gemifloxacin was repeated and an IC50 of 19 was obtained.  

Accordingly the IC50s for etoposide and gemifloxacin were estimated to be 

approximately 4-6 and 19-22 µmol/L, respectively.  As expected, the decatenation IC50 

for etoposide was significantly higher than the LOGEL in a variety of in vitro 

mammalian cell genotoxicity assays (see Introduction Section 1.3.6.1 and Introduction 

Table 1.3).  LOGEL of gemifloxacin was not available from the literature, hence a 

similar preliminary comparison could not be made.  However, the basic drug induced 

genotoxic predictivity of the decatenation assay was correct in as much as the 

decatenation IC50 for the potent mutagen etoposide was four-fold lower than the 

decatenation IC50 for the less potent mutagen gemifloxacin.  Accordingly, whilst the 

decatenation assay did not seem to possess the potential for quantitatively predicting in 

vitro mammalian cell genotoxic potency, there was a suggestion that it may be useful 

for qualitatively ranking compounds i.e. the lowest decatenation IC50 equating to the 

highest genotoxic potency.   

4.2.2 The decatenation assay validation with AstraZeneca 
compounds design to target bacterial topoisomerase II 

To further investigate the genotoxic predictivity of the decatenation assay it was used 

to predict the genotoxic potential in the MN(vit) for a series of compounds from 

AstraZeneca’s infection portfolio.  The primary target for all of these compounds was 

bacterial topoisomerase II.  In all, 40 AstraZeneca early discovery compounds were 

tested.  Each of the compounds had a similar basic core chemical structure but with 

minor changes to the chemistry of their side chains.  Due to patent and intellectual 

property issues the structures of these compounds cannot be disclosed.  The results of 

the semi-automated MN(vit) ‘no observable genotoxic effect level’ (NOGEL) and 

decatenation assay IC50 for the 40 AstraZeneca infection discovery compounds plus 

etoposide and gemifloxacin are presented in Table 4.1.  In the MN(vit), these 

compounds were tested up to a maximum concentration of 400 µmol/L, or the 

compounds solubility limit in tissue culture media.  In the decatenation assay they were 

tested up to a maximum concentration of 200 µmol/L.  It was hoped that the 

relationship between decatenation IC50 and NOGEL was such that a low IC50 could be 

used to accurately predict a positive response in the MN(vit).  It should be noted that 
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for this analysis, NOGEL was used rather than LOGEL.  This was because some of the 

compounds tested were negative in the MN(vit), hence LOGEL could not be calculated. 
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Compound MN(vit) 
Result 

MN(vit) NOGEL 
(µmol/L) 

Decatenation 
IC50 (µmol/L) 

AZ1 Negative ≥400 >200 
AZ2 Negative ≥400 >200 
AZ3 Positive 100 >200 
AZ4 Positive 200 >200 
AZ5 Positive 100 >200 
AZ6 Negative 1001 >200 
AZ7 Negative ≥400 184 
AZ8 Positive 12 170 
AZ9 Negative ≥400 116 
AZ10 Negative ≥400 112 
AZ11 Negative ≥400 105 
AZ12 Positive <50 72.9 
AZ13 Positive <50 59.8 
AZ14 Positive 50 56.8 
AZ15 Negative ≥400 41.6 
AZ16 Positive <50 35.6 
AZ17 Positive 50 32.2 
AZ18 Positive 200 30.1 
AZ19 Positive < 100 26.9 
AZ20 Negative 2001 25.1 
AZ21 Negative 2001 23.2 
AZ22 Negative ≥400 23.0 
Gemifloxacin Positive 10 19.0-22.0 
AZ23 Positive <50 17.6 
AZ24 Positive <50 15.6 
AZ25 Positive 12.5 15.1 
AZ26 Positive 50 14.3 
AZ27 Positive 100 14.1 
AZ28 Positive 100 12.4 
AZ29 Positive 200 11.3 
AZ30 Positive 50 8.7 
AZ31 Positive <50 8.0 
AZ32 Negative 2001 7.8 
AZ33 Positive <50 6.4 
AZ34 Negative ≥400 6.3 
Etoposide Positive 0.01 4.0-6.0 
AZ35 Positive <50 5.7 
AZ36 Positive 6 3.5 
AZ37 Positive <50 3.3 
AZ38 Positive <100 3.0 
AZ39 Positive <50 2.0 
AZ40 Positive <50 1.4 

Table 4.1.  MN(vit) NOGEL and cell free decatenation IC50 results for AstraZeneca 
pharmaceuticals designed to target bacterial topoisomerase II. 
Compounds are ranked in order of descending IC50 
1 Highest concentration determined by solubility in tissue culture media 
Maximum 400 and 200 µmol/L tested in Mn(vit) and decatenation assay, respectively 
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Even without the use of statistical analysis Table 4.1 shows that there was clearly a 

relationship between low decatenation IC50 and a positive response in the MN(vit).  

This relationships is represented in the scatter plot in Figure 4.3, which shows a 

reasonable clustering of positive MN(vit) responses associated with low decatenation 

IC50. 

 

Figure 4.3.  Spotfire scatter plot of MN(vit) NOGEL against cell free decatenation 
IC50 results for AstraZeneca pharmaceuticals designed to target bacterial 
topoisomerase II.  Each square representing compounds AZ1-AZ40 
Red square negative MN(vit), blue square positive MN(vit)  

If the decatenation assay had potential for use as a predictive screen for genotoxicity, it 

would be important to establish an IC50 cut-off value below which with some assurance 

a compound could be considered positive and above which, with similar assurance, a 

compound could be considered to be negative.  With the acceptance that it was a fairly 

arbitrary cut-off, based on the generated data, if an IC50 for decatenation of 20 µmol/L 

or below was considered to be indicative of a positive response in the MN(vit), 18 out of 

20 compounds would have been correctly predicted as positive.  However, it should be 

noted that with this cut-off the potent genotoxicant gemifloxacin with an IC50 of 19-22 

would be a pretty borderline positive prediction.  Unfortunately the negative prediction 
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would have been less impressive, with only 13 out of 22 compounds with a 

decatenation IC50 of above 20 µmol/L being correctly predicted as negative in the 

MN(vit).  Furthermore, using this cut off the prediction of a negative MN(vit) included 

compounds AZ20, AZ21 and AZ22, which were all reasonably potent decatenation 

inhibitors (IC50 20 to 25 µmol/L) i.e. pretty similar to the IC50 of gemifloxacin.   Three 

compounds (AZ3, AZ4 and AZ5) were also positive in the MN(vit), albeit with a 

relatively high NOGEL (≥ 100 µmol/L), but did not demonstrate inhibition of 

decatenation at 200 µmol/L.  It was of course possible that these compounds did inhibit 

decatenation at higher concentrations. Furthermore, it was perhaps surprising that 

such a low IC50 (IC50 < 20 µmol/L) was needed to be achieved before there was 

anything like an acceptable correlation for a positive response in the MN(vit).  It is 

logical to assume that any reduction in decatenation IC50 is indicative of inhibition of 

topoisomerase II, but why was it that only the very potent decatenation inhibitors could 

be predicted with reasonable accuracy to be positive in the MN(vit)? 

Clearly, the major difference between the MN(vit) and decatenation assay was that the 

MN(vit) used whole cells and the decatenation assay used naked DNA circles.  It may 

have been that the lack of clear predictivity was due to differences in cellular uptake of 

the drugs tested.  It would seem plausible that potent decatenation inhibitors that are 

not readily taken up by cells would be negative in the MN(vit), similarly weak 

decatenation inhibitors that are very readily absorbed may be more potent mutagens 

than could be predicted from a cell free assay.  Accordingly, it was feasible that the 

predictivity of the decatenation assay could be improved if it was combined with an 

assessment of cellular uptake.  Using a similar cell free scenario, the simplest method 

to estimate cell membrane partitioning was by measuring a compound’s lipophilicity.  

Furthermore, there is precedence to suggest that lipophilicity may play a role in the 

potency of topoisomerase II inhibitors with respect to the genotoxicity of the 

bisdoxopiperazines ICRF187 and ICRF193.  These are both topoisomerase II inhibitors 

with similar potencies against the enzyme.  However, the more lipophilic ICRF193 is a 

far more potent mammalian cell mutagen (See Introduction Table 1.3; Andoh and 

Ishida, 1998).  Lipophilicity may be calculated by assessment of the partitioning 

coefficient ClogP, which is the log of the ratio of the compounds solubility in octanol 

compared to water.  The higher the ClogP the more lipophilic the compound and the 

more likely it will be absorbed by biological membranes.  Using the example of the 

bisdoxopiperazines; the ClogP of ICRF187 is -2.65 (Drug Bank, 2011), whereas the 
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ClogP of the more potently genotoxic ICRF193 is -0.56 (Chem Spider, 2011).  Whilst it 

was accepted that ClogP is an imperfect measure of cellular uptake (octanol : water 

partition coefficients cannot completely predict cell membrane : water partition 

coefficients) it’s calculation is still routinely used as a preliminary screening tool for cell 

partitioning (Bergstrom et al., 2013).  Accordingly, if cell permeability was a limiting 

factor for a compound’s inherent genotoxicity there would be expected to be a 

reasonable correlation between the lipophilicity of the positive decatenation inhibitors 

and a positive response in the MN(vit).  Hence, as a surrogate for uptake, the 

lipophilicity of the 40 AstraZeneca drugs was assessed by calculating ClogP.  The 

correlation between ClogP and decatenation is shown in Figure 4.4 and the correlation 

between ClogP and genotoxicity is shown in Figure 4.5. 
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Figure 4.4.  Spotfire scatter plot of cell free decatenation IC50 against ClogP 
(calculated ratio octanol to water solubility) results for  AstraZeneca 
pharmaceuticals designed to target bacterial topoisomerase II. Each square 
representing compounds AZ1-AZ40 Red square negative MN(vit), blue square 
positive MN(vit) 

 

Figure 4.5.  Spotfire scatter plot of MN(vit) NOGEL against ClogP (calculated ratio 
octanol to water solubility) results for AstraZeneca pharmaceuticals designed to 
target bacterial topoisomerase II. Each square representing compounds AZ1-
AZ40. Red square negative MN(vit), blue square positive MN(vit) 
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Unsurprisingly, there was no relationship between ClogP and a compounds ability to 

decatenate naked DNA circlets (Figure 4.4).  However, perhaps more surprisingly, 

there was no better correlation between ClogP and potency in the MN(vit) as 

determined by NOGEL (Figure 4.5).  Accordingly, these plots clearly show that there 

was no relationship between ClogP and genotoxicity.  For example AZ15 had high 

ClogP (> 1) hence would be considered likely to freely pass through cell membranes, 

AZ15 was also a reasonably potent decatenator with an IC50 of 42 µmol/L.  However, 

AZ15 was negative in the MN(vit) even when tested in a freely soluble state in tissue 

culture medium up to 400 µmol/L, indicating that the compounds lipophilicity and hence 

presumed intra-cellular availability may not be a determining factor for its in vitro 

mammalian cell genotoxic response.  It should not be considered that the ClogP work 

definitively confirms or refutes the contribution cellular uptake has to the genotoxicity of 

some of the compounds investigated.  However, it has shown that the predictivity of the 

decatenation assay could not be improved by including this simple estimate of 

partitioning as an additional determining factor. 

4.2.3 The decatenation assay used in an attempt to elucidate the 
mechanism of genotoxicity from a series of AstraZeneca 
kinase inhibitors 

During the initial genotoxicity screening at AstraZeneca, the lead compound (AZ101) 

from this series was shown to be a mammalian cell specific metabolic activation 

independent mutagen, in that it was negative in the Ames test but positive in the MLA 

in the presence and absence of S9.  These original data are shown in Tables 4.2 and 

4.3. 
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 AZ101  Ames  Test -S9 
Revertants/plate 

AZ101  Ames Test +S9 
Revertants/plate 

Conc 
(µg/plate) 

TA1535 TA1537 TA98 TA100 E.coli 
uvrA/pKM101

TA1535 TA1537 TA98 TA100 E.coli 
uvrA/pKM101 

0 17 4 21 112 151 17 13 34 112 151 
16 14 2 NT 125 149 14 11 NT 125 149 
50 18 1 NT 148 142 18 12 NT 148 142 

160 14to 4to 18 125to 130 14to 9to 20 125to 130 
300 NT NT 31 NT NT NT NT 24 NT NT 
500 14to 2to 20 133to 131to 14to 10to 36 133to 131to 
900 NT NT 25 NT NT NT NT 30 NT NT 

1600 12to 6to 25to 73to 104to 12to 4to 32to 73to 104to 
5000 0to 0to 0to 0to 32to 0to 0to 0to 0to 32to 

           
Pos Cnt1 385 12 284 496 901 385 232 932 496 901 

 
Table 4.2. AZ101 original Ames test results obtained as part of AstraZeneca 
standard genotoxicity screening strategy 
Pos Cnt1: Positive controls  in the absence of S9; TA1535 Sodium azide 0.5 µg/plate, TA1537 9-
Aminoacridine.HCl 50 µg/plate, TA98 2-Nitrofluorene 0.5 µg/plate, TA100 Sodium azide 0.5 µg/plate, 
E.coli uvrA/pKM101 Potassium dichromate 25 µg/plate                                                                                      
Positive controls in the presence of S9; TA1535, TA1537, TA98 and TA100 2-Aminoanthracene 2 µg/plate, 
E.coli uvrA/pKM101 2-Aminoanthracene 20 µg/plate.  
 NT =  Not Tested.  to = Toxicity seen as indicated by a reduction in background lawn 
No significant increase seen (doubling over background) 
 
 
AZ101  MLA -S9 AZ101  MLA  +S9 

Conc 
(µmol/L) 

RTG MF Small clone 
MF (%) 

Conc 
(µmol/L) 

RTG MF Small clone 
MF (%) 

0 100 92 40 (45) 0 100 74 44 (60) 

55 58 433+ 320 (79) 55 11 1313+ 772 (68) 

67 26 898+ 560 (72) 67 2 1658+ 1355 (84) 

86 9 1366+ 927 (77)    

110 2 1720+ 1432 (86)    

       

4-NQO 10 39 658+ 357 (63) CPA 1 37 835+ 328 (50) 

 
Table 4.3. AZ101 Test 1 original MLA results obtained as part of AstraZeneca 
standard genotoxicity screening strategy 
RTG = Relative Total Growth 
MF = Mutant Frequency x 10-6 

4-NQO = 4-nitroquinoline-N-oxide  
CPA= cyclophosphamide 
+ MF significantly different from the control (Induced MF ≥ 126 x 10-6) 

In view of this highly potent response in the MLA (up to 20-fold increase in mutant 

frequency), AZ101 was dropped as a candidate drug.  The search was then on to see if 

the chemistry of AZ101 could be modified to find a drug with similar drug target efficacy 

but without the genotoxic liability and to elucidate the mechanism of the observed 

genotoxic response.  As the MLA has a high compound requirement and takes up to 

4 weeks before results are available, the higher throughput semi-automated MN(vit) 

was proposed as the genotoxicity screening tool for this series.  Initially AZ101 was 
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tested in a comparative MLA/MN(vit) test to ensure the genotoxic response was similar 

in the two assays.  The data from this test are shown in Table 4.4. 

AZ101  MLA/MN(Vit) -S9 
Conc 

(µmol/L) 
RTG MF Small clone 

MF (%) 
MN per 

1000 cells 
0 100 91 64 (72) 1.9 

3.7 88 130 77 (62) 4.2 
5.8 100 96 60 (64) 4.2 
9.0 77 135 56 (44) 7.0 
14 79 159 98 (64) 7.3 
22 76 211 118 (60) 11.0* 
27 58 378+ 258 (74) 30.8*** 
34 26 1037+ 636 (72) 57.8*** 
43 9 2038+ 1271 (75) 99.8*** 
55 2 1507+ 672 (49) 78.5*** 
64 0 1427+ 689 (50) 55.6*** 

     
4-NQO 10 35 1153+ 476 (57) 71.8*** 

 
Table 4.4. AZ1 Test 2 MLA and MN(vit) results 
RTG = Relative Total Growth 
MF = Mutant Frequency x 10-6 

4-NQO = 4-nitroquinoline-N-oxide  
+ MF significantly different from the control (Induced MF ≥ 126 x 10-6) 
*,**,*** Increase in micronuclei outside historical control range and statistically significant (p<0.05, 0.01, 
0.001) 

These data confirmed that AZ101 was positive in the MLA and semi-automated MN(vit) 

over similar concentration ranges.  Accordingly, the semi-automated MN(vit) was used 

for the further screening of candidate drugs from this project.   As the positive MLA 

result with AZ101 was surprising in that the compound had no genotoxic alerts and the 

drug target was not considered likely to be responsible, all regions of the molecule 

were initially considered for substructure variation and subsequent testing for 

genotoxicity.  Regions of the molecule were delineated as regions 1-4 (Figure 4.6).   
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Figure. 4.6: AZ101 structural chemistry.  
Region 1 isoquinolinone core. Regions 2 and 3 provided kinase potency. Region 
4 di-amine side chain, focus of structural changes 

However, given the high value of the potent and novel core structure (region 1) and the 

difficulty of maintaining primary biological activity through such scaffold hopping (e.g. 

changes to region 1), the initial focus was to elucidate whether the genotoxicity could 

be modulated by small variation in the peripheral side chain structures (regions 2-4).  

Given additional constraints provided by the kinase potency structure activity 

relationships within regions 2 and 3 (data not shown), the di-amine side chain in region 

4 was viewed as the most profitable area for preliminary investigation, and the results 

of these changes are detailed herein.  Di-amine analogues of AZ101 were prepared 

with structural changes that retained the approximate distance between the two 

nitrogen atoms but modulated basicity, shape, size and the steric and chiral 

environment around either of the nitrogen atoms.  The molecular core (i.e. the 

isoquinolinone) was relatively flat, and the di-amine substructure provided an ideal 

opportunity to instil additional 3D substructural atoms perpendicular to this plane to 

disrupt potential intercalation into narrow grooves and at other biological targets.  The 

consideration being that genotoxicity may have been driven by DNA intercalation and 

related topoisomerase II inhibition.  Such changes to the structure could ameliorate this 

potential.  Although at this stage this approach was highly speculative it was 

considered useful because off-target mammalian cell topoisomerase II inhibition was 
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thought to be one of the potential effects that could have been responsible for such 

potent mammalian cell genotoxicity in the absence of a response in bacterial cells.  

Furthermore, preliminary molecular modelling performed by AstraZeneca R&D also 

indicated that AZ101 might bind to the minor groove of DNA.  The fluoroquinolone 

gyrase targeting antibiotic norfloxacin is known to bind to DNA in this way (Ma et al., 

2005).  Although the molecular modelling provided several orientations of the flat core 

entering the groove, a precise docking mode could not be found hence this work was 

used only as a potential insight into mechanism rather than providing definitive data on 

the genotoxic mode of action of the kinase inhibitor series (data are not shown). 

The chemistry changes around region 4 were suggested by and made in association 

with AstraZeneca Pharmaceutical Research and Development Chemists Tim Luker 

and Anne Cooper.  A new series of potential candidates was generated, each of which 

were screened in the semi-automated MN(vit).  Furthermore, confirmatory MLA tests 

were performed on the initial candidates and on candidates when a negative response 

was seen in the MN(vit).  The structures of the new candidate drugs and their response 

in the semi-automated MN(vit) and the MLA are shown in Figure 4.7. 
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AZ102: Mol Wt 535
Positive MLA and MN(vit)

AZ103: Mol Wt 549
Positive MLA and MN(vit)

AZ104: Mol Wt 535
Positive MN(vit). Not tested MLA

AZ105: Mol Wt 535
Positive MN(vit). Not tested MLA

AZ106: Mol Wt 535
Negative MLA and MN(vit)

AZ107: Mol Wt 535
Negative MLA and MN(vit)

AZ101: Mol Wt 551
Negative Ames Test. Positive MLA and MN(vit)
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Figure 4.7: Structures, molecular weights and genotoxicity test results of the 
kinase inhibitors tested 
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These results demonstrated that with relatively minor changes to the chemistry around 

region 4, the genotoxicity of this chemical series could be modified.  However, given 

that structural modelling work did not provide clear insight into potential DNA docking of 

these molecules the mechanism of genotoxicity was still not proven.  Hence the 

decatenation assay was used to assess the potential of both the positive and negative 

compounds from this series to inhibit mammalian cell topoisomerase II.  The results of 

the decatenation assay, along with the target kinase efficacy (kindly provided Tim 

Luker and Anne Cooper, AstraZeneca Pharmaceutical Research and Development)  

and the LOGEL for each of the kinase inhibitors investigated is shown in Table 4.5. 

AstraZeneca 
Compound 

Kinase IC50 
(nmol/L) 

Decatenation IC50 
µmmol/L 

MN(vit) LOGEL 
µmol/L 

AZ101 0.16 125  22 

AZ102 0.79 43  < 17 

AZ103 0.13 33  < 17 

AZ104 0.32 >200  < 26 

AZ105 0.79 >200  21 

AZ106 0.25 >200  Negative in MN(vit) 

AZ107 0.79 >200  Negative in MN(vit) 

Etoposide NT 6 <  0.01 

 
Table 4.5. IC50 for target kinase and DNA decatenation and LOGEL for a positive 
response in the MN(vit) of kinase inhibitors  
LOGEL = Lowest observable genotoxic effect level in the MN(vit) 
NT = Not Tested 
 

As expected, the genotoxicity was not related to the compounds target kinase activity.  

For example, AZ102 which was potently positive in the MN(vit) had the same kinase 

IC50 as AZ107 which was negative in the MN(vit).  The relationship between cell free 

decatenation and genotoxicity was more puzzling.  As may have been expected if 

topoisomerase II inhibition was the mechanism of genotoxicity, the two compounds that 

were negative in the MN(vit) (AZ106 and AZ107) demonstrated no ability to inhibit 

mammalian topoisomerase II in the cell free assay up to the maximum concentration 

analysed (200 µmol/L).  Furthermore, three of the MN(vit) positive compounds (AZ101, 

AZ102 and AZ103) did show some evidence of topoisomerase II inhibition with 
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decatenation seen at concentrations ranging between 33 and 125 µmol/L.  However, 

the IC50 for decatenation was at least two-fold higher than the LOGEL in the MN(vit).  

Furthermore, the other two equally potent MN(vit) positive compounds (AZ104 and 

AZ105) did not show any ability to decatenate when tested up to 200 µmol/L.  

Accordingly, use of this simple cell free system could not clearly establish whether 

inhibition of topoisomerase II was responsible for the genotoxicity of these kinase 

inhibitors. 

4.3 Conclusion 

The validation work with compounds from AstraZeneca infection portfolio did show that 

highly potent inhibitors of cell free DNA decatenation (IC50 < 20 µmol/L) were 

associated with positive responses in the MN(vit).  Accordingly, this simple cell free 

system did have some potential as an early screening tool for associated genotoxicity.  

However, the lack of correlation between reasonably potent decatenation inhibitors 

(IC50 20 to 100 µmol/L) and genotoxicity demonstrated that the cell free system was a 

far from perfect tool. 

Whilst there were MN(vit) positives from the screened infection compounds that did not 

decatenate (AZ3, AZ4 and AZ5), unlike the kinase inhibitors AZ104 and AZ105, these 

were all relatively weak mutagens (NOGEL ≥ 100 µmol/L).  Accordingly whilst the 

decatenation work with the kinase inhibitors gave a tantalising indication that 

topoisomerase II inhibition may have been at least partly responsible for the 

genotoxicity of some of the compounds tested, it was far from proven.  The conclusions 

from this work were published by the author in 2012 (Appendix 1).   

The decatenation assay has some potential as an early screen for genotoxicity 

associated with mammalian cell topoisomerase II inhibition and hinted at the likely 

genotoxic mechanism of the kinase inhibitors investigated.  However, because of the 

lack of correlation between relatively potent decatenation inhibitors from AstraZeneca 

infection portfolio compounds and positive responses in the MN(vit), because of the 

difference in dosimetry between decatenation inhibition and MN(vit) LOGEL/NOGEL 

and because two of the five positive kinase inhibitors did not inhibit decatenation, there 

is clearly a requirement for a more sensitive assay to be able to definitively screen for 

mammalian cell topoisomerase II inhibition and associated genotoxicity.  The following 

part of this research project investigated whether cellular assays held a better prospect 
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for accurate detection of topoisomerase II inhibition and whether these assays could be 

used either as screening tools and/or to elucidate genotoxic mechanisms. 
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5 Assessment of the genotoxicity of topoisomerase 
poisons and cellular methods to determine 
topoisomerase II inhibition in L5178Y mouse 
lymphoma cells 

5.1 Introduction 

The preliminary aims of the work described in this chapter were two-fold.  

1. To assess the lowest observed genotoxic level (LOGEL) for compounds whose 

primary mode of topoisomerase II poisoning was by stabilisation of the 

topoisomerase II/DNA cleavage complex.  Gemifloxacin and etoposide were 

selected for this assessment.  The drugs were tested in the in vitro 

micronucleus test (MN(vit)) and in the mouse lymphoma assay (MLA) using 

L5178Y mouse lymphoma cells, and the LOGEL was calculated for each assay.  

As a reference, the LOGEL for the DNA reactive mutagen 4-nitroquinolone-1-

oxide (4-NQO) was also evaluated.  4-NQO is metabolised to the carcinogenic 

and mutagenic metabolite 4-acetoxyaminoquinoline 1-oxide, which forms 

guanine adducts leading to base substitution mainly by guanine to adenine 

transitions (Galiègue-Zouitina et al., 1986, Fronza et al., 1992).  However, there 

is also data to suggest that when tested in vitro a proportion of the observed 

mammalian cell genotoxicity is by induction of reactive oxygen species (ROS), 

4-NQO is known to induce oxidative adducts (Bailleul et al., 1989).  There are 

no published data to indicate that 4-NQO directly poisons topoisomerase II. 

2. The second aim was to assess the performance of published methods for the 

detection of topoisomerase II poisoning in mammalian cells.  At present, the 

most sensitive assays available for estimation of drug induced stabilised 

cleavage complex are considered to be the TARDIS and ICE (Cowell et al., 

2011).  These both have advantages and disadvantages.  The TARDIS assay is 

relatively easy to perform so multiple concentrations can be tested.  However, 

sensitivity may be compromised by the unwound state of the analysed DNA and 

the background fluorescence on the agar slide (Lynch et al., 2003).  The ICE 

assay overcomes these issues by analysis of isolated DNA.  However, the 

methodology is quite complicated, requiring overnight caesium chloride gradient 
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ultra-centrifugation, hence only a limited number of samples can be analysed 

from any given test (Subramanian et al., 2001).  It would clearly be useful to be 

able to improve either or both the sensitivity and throughput of these assays.  

The overall intention of this work being to confirm whether these methods are 

capable of identifying chemically induced topoisomerase II inhibition at 

concentrations approximately equal to or below the calculated LOGEL in this 

laboratory for etoposide and gemifloxacin.  Hence demonstrating beyond 

reasonable doubt that topoisomerase II inhibition is the only mode of genotoxic 

action of these chemicals.  Where appropriate, as a comparator, the response 

of 4-NQO was also assessed in the relevant assays.   

L5178Y mouse lymphoma cells were selected for this work because this cell line is 

probably the most common mammalian cell line used in pharmaceutical in vitro 

genotoxicity safety assessment (OECD 1997; ICHS(R1), 2011) and was the cell line 

used for the in vitro mammalian cell genotoxicity work that was reviewed in Chapter 3 

and the MN(vit) decatenation assay comparative work detailed in Chapter 4.  Use of 

this cell line in the MN(vit) is common and studies using L5178Y cells in the MN(vit) 

have been widely published, including by the author (Fellows et al., 2008, Fellows et 

al., 2010).  The author and co-workers at AstraZeneca UK developed a semi-

automated version of the MN(vit) using MetaSystems’ Metafer 4, comprising of a Zeiss 

Axioplan Imager Z1, (Doherty et al., 2011).  This system identifies micronuclei, which 

were then confirmed by eye to be acceptable to score i.e. were separate from the 

nucleus and within the cytoplasm, to have intact cytoplasmic membrane and to be less 

than one third of the diameter of the nucleus (Fenech, 2000).  Furthermore, L5178Y 

mouse lymphoma clone 3.7.2C has been demonstrated to be mutant at both Typ53 

alleles hence either has no functional p53 or any p53 is mutant (Clark et al., 2004).  

Whilst L5178Y cells are known to be capable of apoptosis (Velasco et al., 2007) it is 

considered that because of the presence of the mutant Typ53 gene, p53 mediated 

programmed cell death would not be a principal response to DNA damage in this cell 

line.  Accordingly, the generation of mutation and specifically micronucleus induction 

should directly reflect the level of DNA damage hence making L5178Y mouse 

lymphoma cells particularly suitable for comparative investigations into LOGEL (Lynch 

et al., 2003). 
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5.2 Results and discussion 

In all tests triplicate cultures were scored. 

5.2.1 Assessment of LOGEL using the MN(vit) 

Initial experiments to assess LOGEL used the MN(vit) with Metafer semi-automated 

scoring.  The results of micronucleus induction and associated cytotoxicity as 

measured by relative population doubling (RPD) for etoposide and gemifloxacin are 

presented in Figures 5.1 and 5.2, respectively. 

 
Figure 5.1: Results from three Metafer scored MN(vit) tests with etoposide to 
determine LOGEL 
n per test = 3. Statistics: continuity adjusted Chi-squared test. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 
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Figure 5.2: Results from three Metafer scored MN(vit) tests with gemifloxacin to 
determine LOGEL 
n per test = 3. Statistics: continuity adjusted Chi-squared test. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 
 

Over the concentration ranges analysed using the Metafer MN(vit) semi-automated 

scoring system, a statistically significant LOGEL for etoposide was established to be 

0.03 µmol/L and a statistically significant LOGEL for gemifloxacin was established to 

be 10 µmol/L.  However, the increases in mutant frequency seen at these 

concentrations were small and were close to the limits of the observed historical 

solvent control range for the Metafer MN(vit) in this laboratory, which was 0 to 4 

micronuclei per 1000 mononucleated cells.  Accordingly, to confirm these LOGELs and 

to ensure the Metafer analysis system was providing an appropriate level of sensitivity, 

further experiments were performed with manual microscope analysis of micronucleus 

induction.  The results of duplicate confirmatory tests are presented in Figures 5.3 and 

5.4.  
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Figure 5.3: Results from two manually scored MN(vit) tests with etoposide to 
determine LOGEL 
n per test = 3. Statistics: continuity adjusted Chi-squared test. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 
 

 
Figure 5.4: Results from two manually scored MN(vit) tests with gemifloxacin to 
determine LOGEL 
n per test = 3. Statistics: continuity adjusted Chi-squared test. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 
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Scoring manually did identify more micronuclei per 1000 mononucleated cells than 

using the semi-automated scoring system.  However, between the two systems, the 

increase was generally proportional across the tested concentration ranges and 

controls.  Accordingly, the statistically significant LOGELs for etoposide and 

gemifloxacin were confirmed to be 0.03 µmol/L and 10 µmol/L, respectively.  For both 

drugs, statistically significant increases in micronuclei were seen at essentially non-

cytotoxic concentrations as determined by decrease in RPD.  Interestingly, the 

confirmed LOGEL for etoposide was some 5-fold lower than values from the published 

literature (Ashby et al., 1994, Lynch et al., 2003), and demonstrated what a potent in 

vitro mutagen etoposide is. 

Although no quantitative difference was seen between the LOGEL as determined by 

Metafer and manually, the fact that more micronuclei were identified by scoring by eye 

did suggest that the automated scoring system was less accurate at micronucleus 

detection.  Accordingly all subsequent MN(vit) tests used manual scoring.  The precise 

reason why Metafer underscored micronuclei was not clear.  However, during manual 

scoring it was observed that micronuclei often appear in clumps of cells, possibly 

because these cells are damaged hence become more ‘sticky’.  The Metafer system 

only scores cells that are clearly single, hence may miss the increased number of 

micronucleated cells in more clustered regions of the slide. 

The results of LOGEL assessment for the reference genotoxin 4-NQO are presented in 

Figure 5.5. 
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Figure 5.5: Results for two manually scored MN(vit) tests with 4-NQO to 
determine LOGEL 
n per test = 3. Statistics: continuity adjusted Chi-squared test. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 
 
The statistically significant LOGEL for 4-NQO was 0.1 µmol/L. 

5.2.2 Confirmation of the calculated LOGEL of etoposide and 
gemifloxacin using the MLA 

Whilst clastogenicity is the most likely mechanism of topoisomerase II poison induced 

genotoxicity, it is possible that inefficient repair by non-homologous end-joining of 

topoisomerase inhibitor induced DNA lesions may generate point mutations and small 

intragenic deletions that do not form micronuclei.  Hence the LOGEL of etoposide and 

gemifloxacin was also assessed in the MLA which detects a wider spectrum of DNA 

damage (Moore et al., 1985).  The results from a single confirmatory MLA experiments 

with etoposide and gemifloxacin are presented in Figures 5.6 and 5.7.  It should be 

noted that for the MLA relative total growth (RTG) rather than RPD was used as the 

measure of cytotoxicity. 
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Figure 5.6: Results from a single MLA test with etoposide to determine LOGEL 
n = 2. +ve Significant by global evaluation factor (GEF)  
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Figure 5.7: Results from a single MLA test with gemifloxacin to determine LOGEL 
n = 2. +ve Significant by global evaluation factor (GEF)  
 
Although the original intention of testing etoposide and gemifloxacin in the MLA was to 

see if the wider spectrum of mutation identified in this assay type gave a lower LOGEL 

than had been seen in the MN(vit), the LOGEL in the MLA was actually higher, with 
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etoposide and gemifloxacin giving MLA LOGELs of 0.1 µmol/L and 30 µmol/L, 

respectively.  However, it should be noted that at 0.03 µmol/L etoposide and 10 µmol/L 

gemifloxacin, increases in mutant frequency were seen in the MLA, but they were not 

sufficient to be considered positive when evaluated using the global evaluation factor 

(GEF).  The requirement of an increase in mutant frequency of at least 126 x 10-6 for a 

positive response by GEF is a high bar to achieve.  Smaller increases in mutant 

frequency are likely to be statistically significant.  It is also possible that the slight shift 

in LOGEL between the two assay types is because the MLA will only identify mutants 

in viable cells i.e. TFT resistant cells need to form viable clones before they can be 

scored in the MLA.  Chromosome breakage as identified by the MN(vit) may be a lethal 

event and hence dead or dying cells may be scored.  This hypothesis is supported by 

the observation that both etoposide and gemifloxacin have a delayed toxic effect, as 

demonstrated by the toxicity seen as measured by RPD (which only reflects growth for 

one day) compared to the toxicity seen as measured by RTG (which reflects two days 

growth and subsequent plating to determine cloning efficiency).  The top 

concentrations tested of both etoposide and gemifloxacin would appear to be 

essentially non-cytotoxic as measured by RPD (Figures 5.1 to 5.4), but reduce RTG to 

40% and 27% of concurrent control, respectively, indicating that these concentrations 

are highly cytotoxic (Figures 5.6 and 5.7). 

Whilst intuitively it would seem logical to use the MLA LOGEL in viable cells as the 

comparator for assessment of the contribution of topoisomerase II inhibition to the 

genotoxicity of etoposide and gemifloxacin, it should be realised that both TARDIS and 

ICE measure stabilised cleavage complex formation immediately after treatment.  

Hence both of these assays will measure stabilised cleavage complex formation in 

viable, dying and dead cells.  Accordingly, the LOGEL in the MN(vit) was considered to 

be the more appropriate comparator.     

5.2.3 The TARDIS assay to measure induction of 
topoisomerase II/DNA stabilised cleavage complexes 

Following the establishment of accurate LOGELs for etoposide and gemifloxacin, the 

next requirement was to estimate the contribution topoisomerase II/DNA stabilised 

cleavage complex formation makes to the observed genotoxicity of these drugs.  To 

this end, etoposide and gemifloxacin were tested in the TARDIS assay using L5178Y 

mouse lymphoma cells to establish lowest observable cleavage complex formation 

effect levels (LOCCEL).  Figure 5.8 shows the increase in FITC signal from antibody 
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labelled stabilised cleavable complexes following treatment with solvent control and 

100 µmol/L etoposide. 

 
Figure 5.8: Images of analysed TARDIS slides.  A: vehicle control. B: 100 µmol/L 
etoposide following 3 hours exposure 

 

The results from TARDIS assays with etoposide and gemifloxacin are shown in  

Figures 5.9 and 5.10.  Triplicate cultures were tested. 

  
Figure 5.9: Median results from three TARDIS tests with etoposide to determine 
LOCCEL 
Relative intensity = FITC signal from analysed nuclei 
n per test = 3. Statistics: T-test was used with square root transformation. Significance 
Level: *P<0.05 **P<0.01 ***P<0.001 
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Figure 5.10: Median results from two TARDIS tests with gemifloxacin to 
determine LOCCEL 
Relative intensity = FITC signal from analysed nuclei 
n per test = 3. Statistics: T-test was used with square root transformation. Significance 
Level: *P<0.05 **P<0.01 ***P<0.001 
 

A concentration-related increase in the amount of stabilised cleavage complex 

formation was seen with etoposide.  However, very high concentrations of the drug 

were required before a statistically significant increase in FITC signal was seen and all 

of the concentrations where a statistically significant increase was seen were highly 

cytotoxic.  An etoposide LOCCEL was established to be 1 µmol/L, which was in 

agreement with published data from the TARDIS assay with other cell lines (Wilmore et 

al., 1998).  RPD at this concentration was less than 20%, which would indicate this 

population is not viable (RPD of less than 45% is considered to be excessively 

cytotoxic (OECD, 2010).  The three higher concentrations where an increase in 

stabilised cleavage complex formation was seen gave no survival as measured by 

RPD.  Accordingly, whilst a LOCCEL of 1 µmol/L was seen following etoposide 

treatment in the TARDIS assay, stabilised cleavable complex formation could not be 

seen in cells considered likely to be viable. 

When gemifloxacin was tested in two TARDIS tests no significant increase in the 

formation of stabilised cleavage complexes was seen even though gemifloxacin was 

***
***
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tested up to concentrations giving zero survival.  In both of these tests a high 

concentration of etoposide (100 µmol/L) did give statistically significant increases in 

stabilised cleavage complexes.  The antibody used for the TARDIS work was a mixed 

topoisomerase IIα and β antibody, hence the lack of response of gemifloxacin could not 

be explained by any isoform specificity.  The gemifloxacin response was also in 

general agreement with work at Newcastle University, where only a small increase in 

stabilised cleavage complexes was seen following exposure to very high (over 

1 mmol/L) and probably lethal concentrations of gemifloxacin (Rance et al., 2010).  As 

there was clearly no response with gemifloxacin in duplicate tests, further testing using 

the same methodology was not considered to be warranted.  Additional TARDIS 

assays with gemifloxacin are discussed in Chapter 7. 

5.2.4 The ICE assay to measure induction of topoisomerase II/DNA 
stabilised cleavage complexes 

The TARDIS assay evaluates cleavage complex formation in nuclei held in agar.  It has 

previously been noted that the background fluorescence seen in this assay may 

compromise its sensitivity (Lynch et al., 2003).  It is also possible that the DNA 

organisation in nuclei held in agar is such that the available epitope for antibody 

binding to DNA bound topoisomerase II is limited; hence further compromising the 

sensitivity of the assay.  The fact that TARDIS utilises a high salt concentration wash 

(1 M NaCl) to remove unbound topoisomerase II shortly before antibody application 

may contribute to this.  Such high salt concentrations will mean DNA adopts a more 

compact and interwound state (Schlick et al., 1994).  The ICE assay does not have the 

same limitation as it uses isolated DNA to investigate topoisomerase II binding.   

5.2.4.1 ICE assay method development 

The initial ICE assay development work presented in this section (5.2.4.1) was 

validated and performed in collaboration with Martin Tran from the Karolinska Institute, 

Stockholm, Sweden.   

The preliminary ICE assays were performed using four caesium chloride densities for 

DNA separation (1.37, 1.50, 1.72 and 1.82 g/mL).  Cell lysate from a treated L5178Y 

culture was carefully placed on top of the gradients, which were then centrifuged for 18 

hours at 31000 rpm (1x105 g).  200 µL aliquots were removed from the top of each 

tube.  The first fraction was discarded and subsequent fractions were saved and 

analysed spectrophotometrically at 260 nm to assess content of DNA.  DNA was 
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generally found in fractions between approximately 13-24.  These fractions were used 

subsequently for measurement of topoisomerase II bound stabilised cleavage 

complexes. 

Preliminary work was performed to investigate the qualitative response of 

topoisomerase IIα and β primary antibodies to detect etoposide induced stabilised 

cleavage complexes after 3 hours exposure.  Figure 5.11 shows representative data. 

 

Figure 5.11:  Formation of topoisomerase II α and β stabilised cleavage 
complexes from L5178Y cells exposed to 100 µmol/L etoposide for 3 hours then 
lysed.  Each slot represents a fraction taken from caesium chloride gradient.  
Fractions 13 (top left) through to fraction 24 (bottom right) 

This work clearly showed that topoisomerase IIα stabilised cleavage complexes were 

more prevalent than topoisomerase IIβ complexes following etoposide treatment.  As 

this was in agreement with previously published data (Wilmore et al., 1998), only 

topoisomerase IIα antibody was used for later ICE assays. 

In initial tests, DNA was separated from etoposide treated cultures using the method 

described above.  Samples from the appropriate fractions were slot-blot loaded onto a 

nitrocellulose membrane, antibody exposed and imaged using ECLTM (enzyme-linked 

chemiluminescence).  Figure 5.12 shows representative data from an early tests. 
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Figure 5.12:  Image on left is topoisomerase II α ECL imaged caesium chloride 
fractions 13-24 of L5178Y cells exposure to 0, 0.3, 1 and 100 µmol/L etoposide for 
3 hours then lysed.  Bar chart on right is combined chemiluminescence signal 
for all 12 slots for each concentration 

The data represented in Figure 5.12 proved difficult to repeat.  Not least because of the 

technical difficulties with preparation of caesium chloride density gradients.  

Furthermore, preparation and analysis of 24 aliquots was time consuming and this 

technique did not allow for the improvement of inter-assay reproducibility by 

normalisation of DNA content between experiments.  Accordingly, later tests used a 

modified DNA separation technique in which a single 1.5 g/mL density of caesium 

chloride was used, as described in Hawtin et al., 2010.  This technique meant that 

unbound protein was retained in or above the caesium chloride layer and DNA and 

DNA bound protein pelleted to the bottom of the tube.  This could then be resuspended 

in Tris-EDTA buffer. Figure 5.15 shows an example of DNA and protein content of the 

subsequent DNA solution prepared using this modified method.  For all experiments 

using this technique where absorbance of the resuspended DNA pellet was measured 

at 260 nm and 280 nm, the ratio between A260/A280 was always between 1.7 and 2.0, 

indicating that the purity of the DNA extracted was of a high quality (Maciver, 2012).  

DNA was also normalised between tests such that ~10 µg DNA was loaded onto each 

slot-blot hence improving intra experimental comparability. 
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Figure 5.13:  Spectrophotometric analysis at 260 nm (DNA content) and 280 nm 
(protein content) from 1 mL fractions following ultra-centrifugation of cell lysate 
using 1.5 g/mL caesium chloride 
DNA shown to be in bottom fraction (ratio A260/A280 >1.8) 

 

In an additional attempt to improve the reproducibility and sensitivity of the ICE assay 

for detection of topoisomerase II bound stabilised cleavage complexes, later tests used 

a novel infra-red (IR) imaging technique (OdysseyTM).  The original ECL imaging 

technique relied on contrast and multiple exposure in a dark room to evaluate antibody 

content.  Hence, depending on the signal on any individual membrane, the contrast 

and measured level of topoisomerase II was highly reliant on both the background 

luminescence and luminescence from other samples on the same membrane.  

Accordingly, both intra- and inter- experiment membrane comparisons may have been 

unreliable.  The IR imaging technique did not rely on similar contrast imaging, hence 

weak and strong signals could be accurately measured on a single membrane.  The 

initial IR imaging experiment was very encouraging and is shown in Figure 5.14.  In this 

test topoisomerase II bound DNA was detected at etoposide concentrations as low as 

0.01 µmol/L.  Unfortunately, this preliminary experiment used only duplicate slots and 

in future experiments detection of etoposide induced stabilised cleavage complexes at 

this concentration proved to be impossible to repeat.  The reason for this was unclear, 

but it may have been due to control signal variability seen when only duplicate slots 

were analysed.  
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Figure 5.14:  Preliminary experiment showing levels of topoisomerase II α bound 
to DNA in L5178Y cells following 3 hour exposure to 0.01, 0.03, 0.1, 0.3 and 
1 µmol/L etoposide then lysed and ultra-centrifuged in 1.5 g/mL caesium 
chloride.  Image on left is example of OdysseyTM infra red imaged slots.  Bar 
chart on right is combined data from duplicate slots. 
IR = Infra red 
 

However, the single caesium chloride gradient/IR imaging method was easier to 

perform and gave the prospect for at least as good sensitivity with better inter 

experiment reproducibility than the earlier used ECL method, so this method was used 

for all later ICE assays.  Results of which are as follows. 

5.2.4.2 Results  of  etoposide,  gemifloxacin  and   4-NQO  
tested  in the  ICE  bioassay 

Using the modified ICE protocol with IR imaging, at least triplicate ICE tests were 

performed with etoposide, gemifloxacin and 4-NQO.  The results of these tests are 

presented in Figures 5.15 to 5.21.  In view of the limitation of the number of tubes that 

could be ultra-centrifuged at one time, only single cultures could be analysed for each 

experiment.  Accordingly, as well as presenting individual experimental data (Figures 

5.16, 5.18 and 5.20) mean data and the standard error of the mean is presented from 

all tests performed (Figures 5.17, 5.19 and 5.21). 
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Figure 5.15:  Example of ICE OdysseyTM IR imaged membrane. 
Following 3 hours exposure of L5178Y mouse lymphoma cells to etoposide  Above 
example is 6 slots prepared from single treatments 

Figures 5.16 and 5.17 show data obtained from four individual ICE experiments with 

etoposide and the combined mean data from these tests, with statistical significance 

(Figure 5.17). 

  

Figure 5.16: Results from four ICE tests with etoposide 
Relative Intensity = Mean Odyssey IR signal 
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Figure 5.17: Mean cytotoxicity and ICE assay data from four ICE tests with 
etoposide to determine LOCCEL 
Relative Intensity = Mean Odyssey IR signal  
n = 4. Statistics: T-test was used with square root transformation. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 

Figures 5.18 and 5.19 show data obtained from four individual ICE experiments with 

gemifloxacin and the combined mean data from these tests, with statistical significance 

(Figure 5.19). 
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Figure 5.18: Results from four ICE test with gemifloxacin 
Relative Intensity = Mean Odyssey IR signal 
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Figure 5.19: Mean cytotoxicity and ICE assay data from four ICE tests with 
gemifloxacin to determine LOCCEL 
Relative Intensity = Mean Odyssey IR signal 
n = 4. Statistics: T-test was used with square root transformation. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 

 

Figures 5.20 and 5.21 show data obtained from three individual ICE experiments with 

4-NQO and the combined mean data from these tests with statistical significance 

(Figure 5.21). 
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Figure 5.20: Results from three ICE test with 4-NQO 
Relative Intensity = Mean Odyssey IR signal 

 

Figure 5.21: Mean experimental cytotoxicity and ICE assay data from tests with 
4-NQO to determine LOCCEL 
Relative Intensity = Mean Odyssey IR signal 
n = 3. Statistics: T-test was used with square root transformation. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 

The two known topoisomerase II poisons etoposide and gemifloxacin both showed 

statistically significant increases in the number of stabilised cleavage complexes at the 
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highest concentrations analysed in the ICE bioassay.  Etoposide gave a LOCCEL of 

0.1 µmol/L.  This concentration was relatively non-cytotoxic, yielding a RPD of 92%.  

The LOCCEL for gemifloxacin was 100 µmol/L, and this concentration gave markedly 

more cytotoxicity, yielding a RPD of 41%.  The response of these chemicals in the ICE 

assay was in contrast to that seen in the TARDIS assay.  In TARDIS, etoposide gave 

statistically significant increases in stabilised cleavage complexes only at extremely 

cytotoxic concentrations at and above 1 µmol/L (which gave 20% RPD) and no 

increases were seen following gemifloxacin treatment even when tested up to lethal 

concentrations (0% RPD).  These data indicate that at least when using L5178Y mouse 

lymphoma cells at AstraZeneca UK, the ICE assay was more sensitive for detection of 

topoisomerase II / DNA stabilised cleavage complexes than the TARDIS assay.  

Furthermore, with the modifications made and the improved reproducibility of the IR 

imaging, the sensitivity of the ICE assay was improved 10-fold for detection of 

etoposide over the previously published data (etoposide induced stabilised cleavage 

complex detection reduced from the previously published concentration of 1 µmol/L 

(Hawtin et al., 2010) to 0.1 µmol/L at AstraZeneca).  However, over the concentrations 

ranges explored in these tests, even with this improved level of detection in the ICE 

assay, the LOCCEL for etoposide was still 3-fold higher than the LOGEL in the MN(vit) 

(0.03 µmol/L) and the LOCCEL for gemifloxacin was 10-fold higher than the LOGEL in 

the MN(vit) (10 µmol/L).  Of course it should be noted that the values of 3-fold and 10-

fold differences were very much dependent on the concentration ranges tested.  If 

closer spaced concentrations had been analysed, these fold increases may have been 

narrower.  However, the principal that cleavage complexes could not be detected at 

similar concentrations to genotoxcicity is clear and it was clear that there was a greater 

difference between LOGEL and LOCCEL for gemifloxacin than etoposide.  

Accordingly, it could not be definitively concluded from these data that the formation of 

stabilised cleavage complexes was the primary mechanism of in vitro genotoxicity for 

etoposide and gemifloxacin.   

4-NQO also showed statistically significant increases in detection of stabilised cleavage 

complexes at the highest concentrations tested, giving a LOCCEL of 10 µmol/L.  

Initially it may perhaps seem to be surprising that a mutagen with no known direct 

interaction with topoisomerase II gave a positive response in the ICE assay.  However, 

the concentrations where statistically significant increases in the formation of stabilised 

cleavage complexes were seen were all completely lethal (RPD 0%).  4-NQO is a 

potent inducer of reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine 
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(8OhDG) adducts in mammalian cells (Arima et al.,2006).  It has previously been 

shown that chemicals that induce ROS (e.g. hydrogen peroxide) recruit topoisomerase 

II and topoisomerase II is elevated at cytotoxic concentrations in cells undergoing 

apoptosis (Perillo et al.,2008, López-Lázaro et al.,2011).  Furthermore, oxidative 

lesions (e.g. 8OhDG) are themselves known to be weak topoisomerase II poisons 

(Sabourin and Osheroff, 2000).  Hence, it would seem to be plausible that at extremely 

cytotoxic concentrations of 4-NQO, recruitment of topoisomerase II is sufficient to be 

measurable in the ICE assay.  However, this observation in L5178Y cells is in contrast 

to that reported for REC-helicase deficient fibroblasts where following 1 hour exposure 

to 30 µmol/L 4-NQO, an increase of topoisomerase I but not topoisomerase II stabilised 

cleavage complexes was seen in the ICE assay (Miao et al.,2006).  It may be that this 

discrepancy was due to the shorter treatment duration, under which condition 

apoptosis would be less likely, and the specific response of the cell line used.   

Whatever the specific reason for this discrepancy, the detection of 4-NQO in the ICE 

assay with L5178Y mouse lymhoma cells does illustrate that methods to determine 

induction of stabilised cleavage complexes do have to be used with caution when 

attempting to elucidate genotoxic mechanisms.  These data show the importance of 

using concurrent estimates of cytotoxicity alongside analysis of stabilised cleavage 

complexes and ensuring that concentrations giving excessive cytotoxicity are reviewed 

with caution when attempting to attribute mechanisms of genotoxic action.  It should 

also be noted that the the LOCCEL of 4-NQO was some 100–fold higher than its 

LOGEL in the MN(vit), the difference between LOGEL to ICE LOCCEL for etoposide 

and gemifloxcin is only 3 to 10-fold.  This indicates that the ratio of LOCCEL to LOGEL 

may be of use when attempting to determine if a compounds primary mode of 

genotoxic action is via direct interaction with topoisomerase II / DNA or if recruitment of 

topoisomerase II is via an alternative mechanism only seen at concentrations of 

excessive toxicity.   

5.2.5 Results of etoposide, gemifloxacin and 4-NQO tested in the 
chloroquine and novobiocin topoisomerase II activity blocked 
MN(vit) 

To further evaluate the contribution formation of stabilised cleavage complexes made 

to the genotoxicity of etoposide and 4-NQO, MN(vit) assays were performed in the 

absence and presence of sub-lethal concentrations of chloroquine.  The chloroquine 

block micronucleus test has previously been used to investigate the genotoxic activity 

of topoisomerase II inhibitors using Chinese hamster V79 cells by Snyder et al.  
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Chloroquine blocks the activity of topoisomerase II poisons by DNA intercalation, which 

prevents subsequent topoisomerase II binding to DNA.  Hence in the presence of 

chloroquine the genotoxic effect of topoisomerase II poisons is mitigated (Snyder, 

2000).  The current experiments were performed to estimate the proportion of DNA 

damage that could be attributed directly to formation of stabilised cleavage complexes 

i.e. if etoposide was not genotoxic following chloroquine block it could be assumed that 

the only mechanism responsible for the observed genotoxicity in in vitro mammalian 

cell tests was due to the chemicals activity as a topoisomerase II poison.  The results 

of the chloroquine block MN(vit) using L5178Y cells with etoposide and 4-NQO are 

shown in Figures 5.22 and 5.23.  Whilst it is not shown on the below graphs it should 

be noted that all concentrations of etoposide and 4-NQO induced statistically significant 

(p<0.01) increases in micronucleus frequency above the concurrent control when 

tested both in the presence and absence of chloroquine. 

 

Figure 5.22: Etoposide cytotoxicity and MN(vit) with and without chloroquine 
block of toposisomerase II. Combined data from duplicate experiments. n = 2. 
Statistics: 2-sided Continuity-Adjusted Chi-Square Test to assess decrease in 
micronuclei in the presence of chloroquine. Significance decrease in micronuclei 
indicated on relevant bar: *p<0.05 **p<0.01 ***p<0.001 
 

***
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Figure 5.23: 4-NQO cytotoxicity and MN(vit) with and without chloroquine block 
of topoisomerase II. Combined data from duplicate experiments. n = 2. Statistics: 2-
sided Continuity-Adjusted Chi-Square Test to assess decrease in micronuclei in the 
presence of chloroquine. Significance decrease in micronuclei indicated on relevant 
bar: *p<0.05 **p<0.01 ***p<0.001 
 

Chloroquine did reduce etoposide induced micronucleus formation and this was 

statistically significant at the two highest concentrations analysed (p<0.001).  However, 

the reduction was far from complete.  A maximum decrease in micronucleus frequency 

was seen at the interim concentration of 0.1 µmol/L, but this was only a 48% reduction 

over non-chloroquine treated cultures.  The reduction at the higher concentration of 

0.32 µmol/L was only 29%.  Chloroquine had a variable effect on the genotoxicity of 4-

NQO.  At the two lowest concentrations tested a statistically significant increase in 

micronucleus formation was seen in the presence of chloroquine (p<0.01).  However, 

at the highest concentration tested (3 µmol/L) a statistically significant reduction in 

micronucleus formation was seen (p<0.001).  However, 3 µmol/L was considered to be 

an excessively cytotoxic concentration (RPD < 40%).  The response of 4-NQO in the 

chloroquine blocked MN(vit) was suggestive of its response in the ICE assay in as 

much as the reduction in micronucleus formation at a highly cytotoxic concentration 

could possibly be attributable to chloroquine blocking ROS induced topoisomerase II 

poisoning.  However, there may be other explanations.  As chloroquine inactivates 

topoisomerase II indirectly, i.e. by blocking enzyme DNA binding, it may be that the 
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lack of a more complete reduction of the effect of etoposide was because the 

concentration of chloroquine used did not reach saturation.  However, the chloroquine 

concentration was titrated to ensure the compound itself did not induce excessive 

cytotoxicity (data not shown).  Higher concentrations or longer exposure of chloroquine 

would have significantly slowed down cell division, which would have inevitably 

reduced micronucleus formation (micronuclei are only formed in dividing cells).  This 

may be a more likely explanation for the reduction in NQO genotoxicity at the highest 

concentration tested where RPD in the presence of chloroquine was 22%, indicating 

very few cells had divided during the 24 hours following treatment.  At the same 

concentration the RPD in the absence of chloroquine was 35%. 

In view of the non-specific nature of the chloroquine block and the lack of a complete 

block of etoposide induced micronucleus formation, an additional set of experiments 

were performed using the topoisomerase II ATP competitive inhibitor novobiocin as the 

blocking agent.  As novobiocin directly targets the topoisomerase II molecule it was 

hoped that it would be more effective than chloroquine.  Similar to chloroquine, 

novobiocin concentrations were titrated to ensure minimal cytotoxicity in the absence of 

the test agents (data not shown).  The results of the novobiocin block assays are 

presented in Figures 5.24, 5.25 and 5.26.  Similar to the chloroquine experiments, it 

should be noted that all concentrations of etoposide and 4-NQO and the highest two 

concentrations of gemifloxacin induced statistically significant (p<0.001) increases in 

micronucleus frequency above the concurrent control when tested both in the presence 

and absence of novobiocin.  The lowest concentration of gemifloxacin only induced a 

statistically significant increase in micronucleus frequency (p<0.01) in the absence of 

novobiocin. 
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Figure 5.24: Etoposide cytotoxicity and MN(vit) with and without novobiocin 
block of topoisomerase II. Combined data from duplicate experiments. n = 2. 
Statistics: 2-sided Continuity-Adjusted Chi-Square Test to assess decrease in 
micronuclei in the presence of novobiocin. Significance decrease in micronuclei 
indicated on relevant bar: *p<0.05 **p<0.01 ***p<0.001 
 

 
Figure 5.25: Gemifloxacin cytotoxicity and MN(vit) with and without novobiocin 
block of topoisomerase II.  Combined data from duplicate experiments. n = 2. 
Statistics: 2-sided Continuity-Adjusted Chi-Square Test to assess decrease in 
micronuclei in the presence of novobiocin. Significance decrease in micronuclei 
indicated on relevant bar: *p<0.05 **p<0.01 ***p<0.001 
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Figure 5.26: 4-NQO cytotoxicity and MN(vit) with and without novobiocin block of 
topoisomerase II. Combined data from duplicate experiment. n = 2. Statistics: 2-sided 
Continuity-Adjusted Chi-Square Test to assess decrease in micronuclei in the presence 
of novobiocin. Significance decrease in micronuclei indicated on relevant bar: *p<0.05 
**p<0.01 ***p<0.001 
 
At the lower concentrations tested, novobiocin blocked the genotoxic activity of 

etoposide more effectively than chloroquine.  The greatest reduction in micronucleus 

frequency was seen at 0.032 µmol/L, which gave a 74% decrease in the presence of 

novobiocin, compared to the greatest reduction seen in the presence of chloroquine at 

0.1 µmol/L, which gave a 48% decrease.  Although the reduction in micronuclei in the 

presence of novobiocin was statistically significant at all etoposide concentrations 

analysed, at the higher concentrations the block was less complete i.e. at 0.32 µmol/L 

the reduction in micronucleus frequency in the presence of novobiocin was only 30%.  

Novobiocin also effectively blocked the genotoxic activity of gemifloxacin.  The greatest 

reduction was seen at 32 µmol/L, which reduced micronucleus frequency by 76% in the 

presence of novobiocin and a similar reduction was seen (75%) at the highest 

concentration  tested (100 µmol/L). 

Similar to the response seen when testing low 4-NQO concentrations in the presence 

of chloroquine, 4-NQO in combination with novobiocin seemed to have a synergistic 

effect, where a statistically significant increase in the number of micronuclei was seen 
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at four of the five 4-NQO concentrations tested.  The reason for this has not been 

elucidated.  It should be noted that 4-NQO was not tested up to such high 

concentrations with novobiocin as had been tested with chloroquine.  This was due to 

the additional cytotoxicity seen with 4-NQO/novobiocin combined treatments.  

Accordingly, the apparent reduction in micronucleus formation following treatment with 

3 µmol/L 4-NQO in the presence of chloroquine could not be tested with novobiocin. 

The data generated from both the chloroquine and novobiocin experiments clearly 

demonstrate that these topoisomerase II inhibitors partly mitigate the genotoxicity of 

the topoisomerase II poisons etoposide and gemifloxacin.  Whereas, other than at a 

highly toxic concentration tested in combination with chloroquine, they do not mitigate 

the genotoxicity of 4-NQO.  However, as statistically significant increases in 

micronucleus frequency were seen for all etoposide concentrations and two out of 

three gemifloxacin concentrations when tested in both the presence and absence of 

the topoisomerase II inhibitors, it was clear that neither chloroquine nor novobiocin was 

capable of completely removing the genotoxicity of these topoisomerase poisons, even 

at relatively low concentrations i.e. concentrations that were at or below the LOCCEL in 

the ICE assay.  Novobiocin and chloroquine were amongst the most potent inhibitors of 

topoisomerase II activity used by Dr Ron Snyder in his original studies (Snyder, 2000).  

Snyder concluded from this work that: 

 ‘It is also shown that topo (topoisomerase II) poison dependent micronucleus 

production, presumably arising from cleavable complex formation, is strongly 

antagonized by a variety of catalytic topo II inhibitors of various structural and 

functional classes’.   

Whilst the current studies have demonstrated that catalytic inhibitors are antagonistic to 

the genotoxicity of etoposide and gemifloxacin, if the reduction in genotoxicity is due to 

blocking cleavage complex formation hence blocking subsequent DNA strand 

breakage and micronuclei formation, this still means a significant amount of genotoxic 

damage is not blocked. 

It is perhaps surprising that neither measurement of stabilised cleavage complex 

formation by TARDIS or ICE assays nor the MN(vit) using topoisomerase II blocking 

agents can definitively quantitatively link etoposide and gemifloxacin induced in vitro 

mammalian cell genotoxicity with their expected mechanism of action.  This is also 

partly in contradiction to the conclusions from Smart et al’s 2008 publication, in which 

they considered etoposide induced formation of stabilised cleavage complexes were 
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formed ‘at a similar time’ to double strand breaks as measured by the in vitro Comet 

assay and γH2AX foci using V79 Chinese hamster lung fibroblast cells (Smart et al., 

2008).  However, this conclusion was based on a virtually indiscernible increase in 

stabilised cleave complex formation at approximately 0.2 µmol/L etoposide as 

compared to a LOGEL of approximately 1 µmol/L, which was clearly a lot higher than 

the MN(vit) LOGEL of 0.03 µmol/L seen in the current investigations.  Statistical 

analysis was not applied to the stabilised cleavage complex data and the authors 

conceded that ‘clear detectable levels’ were only seen at above approximately 

2 µmol/L.  Furthermore, the increase in comet tail DNA at 0.2 µmol/L was virtually the 

same as that seen at 1 µmol/L.  Hence, at closer inspection, these data support rather 

than contradict the observations made in the current investigations. 

5.3 Conclusion and the potential use of the topoisomerase II 
inhibition assays investigated 

The intention of the work outlined in this chapter was to use cellular assays to attempt 

to establish whether the formation of stabilised cleavage complexes by topoisomerase 

II poisons could be directly related to their inherent genotoxicity.  The ultimate aims 

being to provide better screening tools for topoisomerase II genotoxicity and to help 

elucidate genotoxic mechanisms from hitherto unexplained positives in in vitro 

mammalian cell genotoxicity assays.  However, none of the methods used to 

investigate the genotoxicity of etoposide and gemifloxacin could definitively 

demonstrate that formation of stabilised cleavage complexes was their only mode of 

genotoxic action.  Furthermore, the reference genotoxin 4-NQO was also shown to 

induce stabilised cleavage complexes.   

Assays to directly measure formation of stabilised cleavage complexes and the 

TARDIS assay in particular were shown to be relatively insensitive when comparing 

LOCCEL with LOGEL.  Following methodology and imaging improvements, the ICE 

assay did show better sensitivity, and the novobiocin and chloroquine block MN(vit) 

assays both showed that the genotoxicity of topoisomerase II poisons could be partly 

mitigated in the presence of topoisomerase II inhibitors.  However, all of these assays 

could only link genotoxicity with formation of stabilised cleavage complexes.  It was still 

not possible to demonstrate that formation of stabilised cleavage complexes occurred 

at similar or lower concentrations than genotoxicity, as would seem to be intuitive, and 

neither of the topoisomerase blocking agents used completely negated the genotoxic 

activity of etoposide or gemifloxacin at the majority of the concentrations tested.  
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Furthermore, although the improved ICE assay was relatively more sensitive when 

compared to the TARDIS assay at AstraZeneca, the ICE assay was a very time-

consuming and technically quite difficult procedure.  Given the requirement in the 

current protocol for ultracentrifugation and hence the limited number of cultures that 

could be routinely tested (maximum of six per day at AstraZeneca) the assay has no 

place in any early pharmaceutical screening paradigm to assess topoisomerase II 

inhibition.    

The alternative potential use of the assays investigated would be to help 

mechanistically interpret unexpected positive responses in in vitro genotoxicity tests.  

However, the lack of sensitivity of both the TARDIS and ICE assays questions their 

value for the derivation of genotoxic mechanisms.  At best these assays can 

demonstrate an association between a compounds ability to form stabilised cleavage 

complexes and genotoxicity.  The question remains whether this is sufficient when 

trying to demonstrate that an unexplainable positive response in a genotoxicity screen 

is due to topoisomerase II poisoning.  The work with NQO shows that a DNA reactive 

and ROS inducing mutagen will also form stabilised cleavage complexes in the ICE 

assay, albeit at highly cytotoxic concentrations.  Accordingly, it should be accepted that 

when trying to attribute genotoxicity to formation of stabilised cleavage complexes it is 

important to take account of both the cytotoxicity seen and the ratio between LOGEL 

and LOCCEL.  What ratio would be considered to be appropriate to unequivocally 

confirm that observed genotoxicity was due to topoisomerase II inhibition?  In these 

investigations the MN(vit) LOGEL to ICE LOCCEL ratio was 1:3 for etoposide, 1:10 for 

gemifloxacin and 1:100 for 4-NQO.  If a compound gave a ratio of 1:20 could it be 

definitively claimed to be genotoxic via topoisomerase II inhibition without further 

investigation?  If further investigations included use of the topoisomerase II block 

MN(vit) in which genotoxicity was only partially moderated, this cannot be used as 

conclusive evidence that other genotoxic mechanisms are not at least partly 

responsible for the induced genotoxicity. This all demonstrates the need to gain further 

insight into why stabilised cleavage complexes cannot be seen before genotoxicity can 

be measured.  Hence the question remains, is this due to the insensitivity of the assays 

currently available or are other mechanisms responsible for some of the genotoxicity of 

topoisomerase II poisons. The aim of the rest of this research project will be to 

elucidate why the link between formation of stabilised cleavage complexes and the in 

vitro mammalian cell genotoxicity of etoposide and gemifloxacin cannot currently be 

experimentally quantitatively confirmed. 
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6 The potential of etoposide and gemifloxacin to 
induce reactive oxygen species (ROS) and 
associated genotoxicity 

6.1 Introduction 

The aim of the work described in this chapter was to see if potential ROS induction by 

etoposide and gemifloxacin could contribute to the in vitro genotoxicity seen with these 

agents and hence explain the discrepancy between concentrations where micronuclei 

are induced and concentrations where topoisomerase II poison stabilised cleavable 

complexes can be detected. 

Chapter 5 showed that when using methods designed to be sensitive for detection of 

stabilised cleavable complexes it was still not possible to measure etoposide or 

gemifloxacin induced complexes at directly comparable concentration to where 

genotoxicity was observed, as indicated by micronucleus formation in L5178Y mouse 

lymphoma cells.  The two most likely explanations are that the methods used for 

detection of stabilised cleavable complexes were not sufficiently sensitive, or one or 

more alternative mechanism of genotoxicity (i.e. other than strand breakage caused 

directly by topoisomerase II poisoning) was partly responsible for the clastogenicity 

seen.  As there are no reliable published data or obvious structural activity relationship 

to indicate that either gemifloxacin or etoposide could covalently bind to DNA, the most 

likely alternative mechanism that may contribute to their genotoxicity is induction of 

reactive oxygen species (ROS).   

Endogenous and exogenous chemical induced ROS is a well defined mechanism of 

both genotoxicity and carcinogenicity (Kurokawa et al., 1990; Dreher and Junod, 1996) 

including mutagenicity in L5178Y mouse lymphoma cells (Harrington-Brock et al., 

2003).  For example the hydroxyl radical generated by both gamma radiation and 

certain chemical species interacts with guanine, preferably at the nucleophilic sites C8 

and C4 giving characteristic oxidative lesions (Cadet et al., 2003).  Furthermore, the 

topoisomerase poison doxorubicin is known to induce secondary cardio toxicities via 

ROS induction (Sawyer et al., 2010).   

The mechanisms of exogenous chemical free-radical generation in biological systems 

are varied and may involve redox cycling with possible cytochrome p450 metabolism or 

mitochondrial interactions.  For example, both mitochondrial and redox activity is 
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thought to be involved in the formation of ROS by doxorubicin.  i.e. 1. Mitochondrial 

reductase mediated single electron reduction of doxorubicin is thought to generate 

semiquinone free radicals which are further reduced to the ROS superoxide anion.  2. 

Molecular oxygen may be reduced following doxorubicin and iron III interactions with 

subsequent redox generation of free radicals (Deavall et al., 2012).   

ROS induction has also been associated with the activity of fluoroquinolone antibiotics.  

The suggestion is that following formation of cleavable complexes in bacteria, the 

subsequent chromosome breakdown leads to a cascade of free radical generation 

which leads to further chromosome breakdown and cell death (Drlica et al., 2009).  

Could this mechanism contribute to the mammalian cell genotoxicity of topoisomerase 

II poisons and hence explain why there was a discrepancy between the lowest 

concentrations of etoposide and gemifloxacin capable of inducing cleavable complexes 

and mammalian cell genotoxicity? 

Oxidative DNA damage gives characteristic DNA lesions e.g. 8-oxoguanine, 8-

oxoadenine and abasic sites.  These may block replicative machinery or cause 

mutation following inefficient base excision repair.  The characteristic lesions can be 

used as markers of oxidative DNA damage; for example by use of the modified 

restriction endonuclease in vitro Comet assay (Smith et al., 2006) or by mass 

spectrometric technologies to measure the number of modified DNA bases (Farmer 

and Singh, 2008; Singh et al., 2010).  The restriction endonuclease modified Comet 

assay uses the principal that endonucleases, such as human 8-hydroxyguanine DNA-

glycosylase (hOGG1), will cleave DNA strands at recognised lesions, hOGG1 being 

particularly sensitive for recognition of oxidative lesions e.g. induced 8-oxo-7,8-

dihydroguanine (8-oxoGua) and methyl 2,6-diamino-4-hydroxy-5-formamidopyrimidine.  

Under standard Comet electrophoresis conditions, these cleaved strands will form 

Comet tails (Smith et al., 2006).  Accordingly, if the primary mechanism of DNA 

damage was by chemically induced oxidative stress it would be expected that a 

significant increase would be seen in comet tail DNA in post-treatment cells when 

measured following incubation with hOGG1 endonuclease.  Although hOGG1 is the 

commercially available human form of the endonuclease, the hOGG1 modified Comet 

assay has previously been used to measure gamma radiation and chemically induced 

oxidative damage in L5178Y mouse lymphoma cells (Smith et al., 2006).  Furthermore, 

preliminary work in this laboratory has demonstrated that when compared to concurrent 

solvent controls, clear increases in Comet tails were seen when L5178Y mouse 

lymphoma cells were treated with 1 µmol/L etoposide (Figure 6.1).  As this 

methodology had previously been successfully used for identification of oxidative DNA 
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lesions in the cell type of interest, it was selected as the tool to be used for 

determination of whether oxidative stress contributes to the genotoxicity of the 

topoisomerase II poisons etoposide and gemifloxacin.  The aim of the work described 

in the following chapter was to elucidate the potential of etoposide and gemifloxacin to 

cause genotoxicity by ROS induction. 

 

 

 

 

 

Figure 6.1.  L5178Y mouse lymphoma cell Comets after 3 hours treatment with: 
A. Solvent control (DMSO) 
B. 1 µmol/L etoposide, image also shows image analysis of Comet tail.  Red area 
indicates amount of DNA in tail = Tail Intensity 
 

6.2 Results  

The principal of the restriction endonuclease Comet assay relies on the ability of 

hOGG1 to cleave DNA at 8-oxoGua sites, hence yielding significantly larger amounts 

of DNA in the subsequently formed Comet tails as opposed to testing under standard 

Comet conditions.  Accordingly, the concentration selection for etoposide and 

gemifloxacin in the preliminary test was made to ensure only a limited amount of 

damage would be detected in the absence of hOGG1, i.e. the ability of etoposide and 

gemifloxacin to cleave DNA following cleavage complex formation would not mask any 

earlier or associated formation of oxidative adducts that could be subsequently cleaved 

by the restriction endonuclease.  The results of the preliminary test when duplicate 

cultures were tested with etoposide and gemifloxacin in the presence and absence of 

hOGG1 are shown in Figures 6.2 and 6.3, respectively. 

A B
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Figure 6.2: Preliminary restriction enzyme modified Comet assay with etoposide 
in the absence and presence of hOGG1. n = 2 

 

Figure 6.3 Preliminary restriction enzyme modified Comet test with gemifloxacin 
in the absence and presence of hOGG1. n = 2 
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In the preliminary test, at the majority of the concentrations tested of both etoposide 

and gemifloxacin, a small increase in Comet tail intensity in the presence of hOGG1 

was seen when compared to treatment in the absence of hOGG1.  Furthermore, a 

surprisingly large difference was seen at the intermediate concentration of 3 µmol/L 

gemifloxacin.  However, there was no indication of a concentration-related increase in 

the difference in Comet tail intensity between treatments in the absence and presence 

of hOGG1 for either of the test agents.  These tests used only duplicate cultures and 

there was a high degree of variability between most of the tested replicates.  

Accordingly, there was not considered to be a concentration-related or marked 

biologically significant increase in the difference in tail intensity following treatment with 

etoposide up to 0.1 µmol/L or genmifloxacin up to 30 µmol/L in the presence of hOGG1 

when compared to treatments in the absence of hOGG1.  All of the concentrations 

tested were essentially non-toxic (data not shown).  As previously mentioned, one of 

the aims of the concentration selection for the preliminary test was to avoid testing up 

to concentrations where an increase in 8-oxoGua cleavable sites could be masked by 

the general increase in Comet tail following mutagen treatment.  However, to ensure 

any potential effect was not being missed at low concentrations, higher concentrations 

of both etoposide and gemifloxacin were selected for the confirmatory tests.  

Furthermore, as no clear increase in cleaved oxidative lesions was seen with either 

etoposide or gemifloxacin, potassium bromate (KBrO3), a known inducer of DNA 

oxidative damage and an in vitro mutagen (Priestley et al., 2010) was included as a 

positive control for hOGG1 cleavage.   The results from cytotoxicity analysis of 

etoposide, gemifloxacin and potassium bromate from two confirmatory tests are shown 

in Table 6.1.   

Etoposide (µmol/L) 0 0.03 0.1 0.3 1 
Test 2 (Survival %RPD) 100 97 88 66 6 

Test 3 (Survival %RPD) 100 106 94 73 5 

Gemifloxacin (µmol/L) 0 8 24 80 240 

Test 2 (Survival %RPD) 100 98 86 46 23 

Test 3 (Survival %RPD) 100 103 97 64 9 

KBrO3 (2000 µmol/L) RPD 91% 

Table 6.1 Cytotoxicity as mesured by Relative Population Doublings (RPD) from  
restriction enzyme modified Comet tests 2 and 3 
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The results for Comet tail intensity, including statistical analysis of increases, from two 

confirmatory tests where triplicate concentrations of etoposide, gemifloxacin and 

potassium bromate were tested in the presence and absence of hOGG1 are shown in 

Figures 6.4 and 6.5. 

 

Figure 6.4 Restriction enzyme modified Comet tests 2 and 3 with etoposide in the 
absence and presence of hOGG1.  KBrO3 was used as a positive control 
n = 3. Statistics: One-way analysis of variance (ANOVA). **, *** Significant increase in 
tail intensity over concurrent control (p<0.01, p <0.001) 
 

***
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Figure 6.5 Restriction enzyme modified Comet tests 2 and 3 with gemifloxacin in 
the absence and presence of hOGG1.  KBrO3 was used as a positive control 
n = 3. Statistics: One-way analysis of variance (ANOVA). *** Significant increase in tail 
intensity over concurrent control (p <0.001) 

The results from Tests 2 and 3 were in general agreement with those from Test 1.   

For etoposide, at the highest concentration tested (0.3 and 1 µmol/L), there was a very 

small increase in tail intensity in the presence of hOGG1 when compared to the 

absence of hOGG1, but all increases above concurrent control gave a similar level of 

statistical significance (p<0.001).  Furthermore, 1 µmol/L, where the largest difference 

was seen between tail intesity in the absence and presenece of hOGG1, was an 

extremely cytotoxic concentration (giving only 5%-6% relative survival as measured by 

RPD) and hence any difference could not be considered to be biologically significant.  

At the lower concentration of 0.1 µmol/L, in Test 3, the increase in tail intensity was 

actually more statistically significant in the absence of hOGG1 (p<0.001) than in its 

presence (p<0.01), although it should be noted that this was mainly due to the 

increased level of intra-replicate variability seen in the presence of hOGG1. 

For gemifloxacin, at the only concentration where a statistically significant increase in 

tail intensity were seen (240 µmol/L, p<0.001) the increase was lower in the presence 

of hOGG1 than in its absence. 

The very small differences in tail intensity seen beween treatments in the absence and 

presence of hOGG1 were put into perspective when compared with the difference seen 

***

***
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with the known inducer of oxidative DNA damage, potassium bromate.  At an 

essentially non-toxic concentration (2000 µmol/L giving 91% relative survival) a 21-fold 

higher level of tail intensity was seen in the presence of hOGG1 than in its absence. 

6.3 Discussion 

The restriction endonuclease Comet work with etoposide and gemifloxacin 

unequivocally demonstrated that these topoisomerase II poisons did not induce 

hOGG1 cleavable 8-oxoGua sites on the DNA of L5178Y mouse lymphoma cells.  The 

restriction endonuclease Comet is recognised as being specific for identifying oxidative 

DNA damage (Smith et al., 2006) and has the advantages over alternative techniques 

such as high performance liquid chromatography (HPLC) with electrochemical 

detection and HPLC-tandem mass spectrometry in so much as it is less prone to false 

positives from detection of artefactual oxidative products.  This was confirmed by the 

European Standards Committee on Oxidative DNA Damage inter-laboratory trial, which 

to date is probably the most thorough international validation of methods to identify 

oxidative DNA damage (Gedik et al., 2005).  Accordingly, it seems highly unlikely that 

oxidative damage significantly contributed to the observed in vitro genotoxicity of 

etoposide and gemifloxacin in L5178Y mouse lymphoma cells. 

This result was surprising, especially for etoposide, where there is a significant amount 

of published literature indicating that its cellular toxicity is at least partly mediated by an 

oxidative stress response.  Dumay and his co-workers demonstrated that when using 

HeLa cells, etoposide ROS induction was initially a precursor of apoptosis and ROS 

levels were further increased following apoptotic cell signalling and mitochondrial 

membrane dysfunction, with subsequent mitochondrial ROS production accelerating 

programmed cell death.  It has also been shown that etoposide apoptotic activity could 

be increased by addition of an inhibitor of the free radical scavenger super oxide 

dismutase (Dumay et al., 2006), indicating that etoposide induced apoptosis is at least 

partly driven by ROS generation.  Furthermore, later work, again with HeLa cells, 

demonstrated that etoposide induced apoptosis was reduced by the addition of a 

variety of antioxidants (Rincheval et al., 2012). As these researchers have shown that 

antioxidants can ameliorate etoposide activity and free-radical scavengers can 

increase etoposide activity it is probable in mammalian cell culture etoposide induced 

ROS is at least partly responsible for etoposide cytotoxicity.  So why weren’t 8-oxoGua 

cleavable sites found in L5178Y mouse lymphoma cells?  The most likely explanation 

is the p53 status of HeLa and L5178Y mouse lymphoma cells.  HeLa cells are known 

to contain wild type and functional p53 (Hwang et al., 1996) whereas L5178Y mouse 
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lymphoma cells are known to have a dysfunctional mutant variant p53 (Storer et al., 

1997).  The exact mechanism of etoposide induced ROS is complex, but it is known 

that inhibition of caspase significantly reduces etoposide induced intracellular ROS 

levels (Rincheval et al., 2012).  Etoposide damaged DNA leads to p53 activation and 

subsequent mitochondrial dysfunction (Karpinich et al., 2002), p53 controls caspase 

activity and release in mitochondria (Schuler et al., 2000).  Accordingly, it is at least 

plausible that the mutant variant p53 in L5178Y mouse lymphoma cells means that 

caspase activity is low and hence there are lower levels of intracellular ROS.  Further 

work would be required to confirm the exact mechanism. 

6.4 Conclusion 

Whilst it was surprising that etoposide did not generate ROS induced 8-oxoGua sites 

on the DNA of L5178Y mouse lymphoma cells, it was clear that the associated 

genotoxicity of the topoisomerase II inhibitors investigated could not have been 

influenced by this mechanism.  Hence it seems probable that the potent genotoxicity of 

etoposide and gemifloxacin seen in vitro when using L5178Y mouse lymphoma cells, is 

due to the agent’s direct inhibition of topoisomerase II and the subsequent formation of 

stabilised cleavable complexes.  Accordingly the observed discrepancy between 

concentrations which induce micronuclei and concentrations at which stabilised 

cleavage complexes can be measured, cannot readily be explained by an additional 

genotoxic contribution from chemically induced ROS. 
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7 Preparation of antibodies to mouse topoisomerase II 
and assays to determine if use of these antibodies 
can improve detection of cleavable complexes in 
L5178Y mouse lymphoma cells  

7.1 Introduction 

The aim of the work described in this chapter was to design mouse specific antibodies 

and to see if use of these antibodies could improve the sensitivity of detection of 

topoisomerase II poison induced stabilised cleavable complexes in the TARDIS and 

ICE assays. 

The majority of the work in Chapter 5 focussed on trying to determine the relationship 

between topoisomerase II poison induced formation of cleavable complexes and 

mammalian cell genotoxicity in L5178Y mouse lymphoma cells and the work in 

Chapter 6 demonstrated that it was unlikely that ROS induction contributed to the 

genotoxicity of etoposide and gemifloxacin.  However, there was one potential flaw with 

the antibody methods that were used for cleavable complex detection.  As there are 

currently no commercially available antibodies to mouse topoisomerase II, the 

cleavable complex work used the commercially available antibodies to human 

topoisomerase II as a surrogate.  This may not be a significant an issue.  The 

topoisomerase II enzymes are very well conserved across most eukaryotes, with even 

greater conservation across mammalian species.  The homology between mouse and 

human is over 89%, with the vast majority of the sequence variability being towards the 

C-terminal domain, see Figure 7.1 (Uni Prot, 2012).  Furthermore, the human antibody 

previously used for TARDIS (kindly provided by Newcastle University) were derived 

from the N-terminal domain, hence would be expected to have at least 90% homology 

with mouse.  Unfortunately the coding of oligopeptides used for preparation of this 

antibody was not available; hence the exact sequence homology could not be 

determined.  Furthermore, the commercially available human topoisomerase II alpha 

antibody used for the ICE assay (supplied by TOPOGEN) was derived from a 16 

residue oligopeptide at the C-terminus.  From figure 7.1 we can estimate that this 

human antibody would have approximately 80% homology with mouse.  With such 

reasonably high homology, it would be expected that this antibody would probably 

react with mouse topoisomerase II.  Indeed, from the results seen in the ICE assay 

(see Chapter 5) the antibody used signalled well and demonstrated more sensitivity for 
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detection of topoisomerase II poisons than the antibody used in TARDIS.  However, 

with only 80% homology it was at least feasible that cleavable complex detection could 

be improved if a more specific antibody to mouse topoisomerase II was available.  

Accordingly the preparation of a series of specific antibodies for mouse topoisomerase 

II was undertaken.  Following preparation of these antibodies and following 

confirmation of their specificity, they were used to investigate whether the sensitivity of 

one or both of TARDIS and ICE could be improved for detection of stabilised cleavable 

complexes following treatment with etoposide and gemifloxacin. 
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1    MEVSPLQPVNENMQVNKIKKNEDAKKRLSVERIYQKKTQLEHILLRPDTYIGSVELVTQQ 60 TOP2A_HUMAN 
1    MELSPLQPVNENMLMNK KKNEDGKKRLSIERIYQKKTQLEHILLRPDTYIGSVELVTQQ 59 TOP2A_MOUSE  
     **-**********--**-*****-*****-****************************** 
61   MWVYDEDVGINYREVTFVPGLYKIFDEILVNAADNKQRDPKMSCIRVTIDPENNLISIWN 120 TOP2A_HUMAN 
60   MWVYDEDVGINYREVTFVPGLYKIFDEILVNAADNKQRDPKMSCIRVTIDPENNVISIWN 119 TOP2A_MOUSE  
     ******************************************************-***** 
121  NGKGIPVVEHKVEKMYVPALIFGQLLTSSNYDDDEKKVTGGRNGYGAKLCNIFSTKFTVE 180 TOP2A_HUMAN 
120  NGKGIPVVEHKVEKIYVPALIFGQLLTSSNYDDDEKKVTGGRNGYGAKLCNIFSTKFTVE 179 TOP2A_MOUSE  
     **************-********************************************* 
181  TASREYKKMFKQTWMDNMGRAGEMELKPFNGEDYTCITFQPDLSKFKMQSLDKDIVALMV 24  TOP2A_HUMAN 
180  TASREYKKMFKQTWMDNMGRAGDMELKPFSGEDYTCITFQPDLSKFKMQSLDKDIVALMV 239 TOP2A_MOUSE  
     **********************-******-****************************** 
241  RRAYDIAGSTKDVKVFLNGNKLPVKGFRSYVDMYLKDKLDETGNSLKVIHEQVNHRWEVC 300 TOP2A_HUMAN 
240  RRAYDIAGSTKDVKVFLNGNSLPVKGFRSYVDLYLKDKVDETGNSLKVIHEQVNPRWEVC 299 TOP2A_MOUSE  
     ********************-***********-*****-***************-***** 
301  LTMSEKGFQQISFVNSIATSKGGRHVDYVADQIVTKLVDVVKKKNKGGVAVKAHQVKNHM 360 TOP2A_HUMAN 
300  LTMSERGFQQISFVNSIATSKGGRHVDYVADQIVSKLVDVVKKKNKGGVAVKAHQVKNHM 359 TOP2A_MOUSE  
     *****-****************************-************************* 
361  WIFVNALIENPTFDSQTKENMTLQPKSFGSTCQLSEKFIKAAIGCGIVESILNWVKFKAQ 420 TOP2A_HUMAN 
360  WIFVNALIENPTFDSQTKENMTLQAKSFGSTCQLSEKFIKAAIGCGIVESILNWVKFKAQ 419 TOP2A_MOUSE  
     ************************-*********************************** 
421  VQLNKKCSAVKHNRIKGIPKLDDANDAGGRNSTECTLILTEGDSAKTLAVSGLGVVGRDK 480 TOP2A_HUMAN 
420  IQLNKKCSAVKHTKIKGIPKLDDANDAGSRNSTECTLILTEGDSAKTLAVSGLGVVGRDK 479 TOP2A_MOUSE  
     -***********-**************-******************************* 
481  YGVFPLRGKILNVREASHKQIMENAEINNIIKIVGLQYKKNYEDEDSLKTLRYGKIMIMT 540 TOP2A_HUMAN 
480  YGVFPLRGKILNVREASHKQIMENAEINNIIKIVGLQYKKNYEDEDSLKTLRYGKIMIMT 539 TOP2A_MOUSE  
     *********************************************************** 
541  DQDQDGSHIKGLLINFIHHNWPSLLRHRFLEEFITPIVKVSKNKQEMAFYSLPEFEEWKS 600 TOP2A_HUMAN 
540  DQDQDGSHIKGLLINFIHHNWPSLLRHRFLEEFITPIVKVSKNKQEIAFYSLPEFEEWKS 599 TOP2A_MOUSE  
     **********************************************-************* 
601  STPNHKKWKVKYYKGLGTSTSKEAKEYFADMKRHRIQFKYSGPEDDAAISLAFSKKQIDD 660 TOP2A_HUMAN 
600  STPNHKKWKVKYYKGLGTSTSKEAKEYFADMKRHRIQFKYSGPEDDAAISLAFSKKQVDD 659 TOP2A_MOUSE  
     *********************************************************-** 
661  RKEWLTNFMEDRRQRKLLGLPEDYLYGQTTTYLTYNDFINKELILFSNSDNERSIPSMVD 720 TOP2A_HUMAN 
660  RKEWLTNFMEDRRQRKLLGLPEDYLYGQSTSYLTYNDFINKELILFSNSDNERSIPSMVD 719 TOP2A_MOUSE  
     ****************************-*-***************************** 
721  GLKPGQRKVLFTCFKRNDKREVKVAQLAGSVAEMSSYHHGEMSLMMTIINLAQNFVGSNN 780 TOP2A_HUMAN 
720  GLKPGQRKVLFTCFKRNDKREVKVAQLAGSVAEMSSYHHGEMSLMMTIINLAQNFVGSNN 779 TOP2A_MOUSE  
     ************************************************************ 
781  LNLLQPIGQFGTRLHGGKDSASPRYIFTMLSSLARLLFPPKDDHTLKFLYDDNQRVEPEW 840 TOP2A_HUMAN 
780  LNLLQPIGQFGTRLHGGKDSASPRYIFTMLSPLARLLFPPKDDHTLRFLYDDNQRVEPEW 839 TOP2A_MOUSE  
     *******************************-**************-************* 
841  YIPIIPMVLINGAEGIGTGWSCKIPNFDVREIVNNIRRLMDGEEPLPMLPSYKNFKGTIE 900 TOP2A_HUMAN 
840  YIPIIPMVLINGAEGIGTGWSCKIPNFDVREVVNNIRRLLDGEEPLPMLPSYKNFKGTIE 899 TOP2A_MOUSE  
     *******************************-*******-******************** 
901  ELAPNQYVISGEVAILNSTTIEISELPVRTWTQTYKEQVLEPMLNGTEKTPPLITDYREY 960 TOP2A_HUMAN 
900  ELASNQYVINGEVAILDSTTIEISELPIRTWTQTYKEQVLEPMLNGTEKTPSLITDYREY 959 TOP2A_MOUSE  
     ***-*****-******-**********-******************************** 
961  HTDTTVKFVVKMTEEKLAEAERVGLHKVFKLQTSLTCNSMVLFDHVGCLKKYDTVLDILR 1020 TOP2A_HUMAN 
960  HTDTTVKFVIKMTEEKLAEAERVGLHKVFKLQSSLTCNSMVLFDHVGCLKKYDTVLDILR 1019 TOP2A_MOUSE  
     *********-**********************-*************************** 
1021 DFFELRLKYYGLRKEWLLGMLGAESAKLNNQARFILEKIDGKIIIENKPKKELIKVLIQR 1080 TOP2A_HUMAN 
1020 DFFELRLKYYGLRKEWLLGMLGAESSKLNNQARFILEKIDGKIVIENKPKKELIKVLIQR 1079 TOP2A_MOUSE  
     *************************-*****************-**************** 
1081 GYDSDPVKAWKEAQQKVPDEEENEESDNEKETEKSDSVTDSGPTFNYLLDMPLWYLTKEK 1140 TOP2A_HUMAN 
1080 GYDSDPVKAWKEAQQKVPDEEENEESDTE  TSTSDSAAEAGPTFNYLLDMPLWYLTKEK 1137 TOP2A_MOUSE  
     ***************************-*--*--***----******************* 
1141 KDELCRLRNEKEQELDTLKRKSPSDLWKEDLATFIEELEAVEAKEKQDEQVGLPGKGGKA 1200 TOP2A_HUMAN 
1138 KDELCKQRNEKEQELNTLKQKSPSDLWKEDLAVFIEELEVVEAKEKQDEQVGLPGKAGKA 1197 TOP2A_MOUSE  
     *****--********-***-************-******-****************-*** 
1201 KGKKTQM-AEVLPSPRGQRVIPRITIEMKAEAEKKNKKKIKNENTEGSPQEDGVELEGLK 1259 TOP2A_HUMAN 
1198 KGKKAQMCADVLPSPRGKRVIPQVTVEMKAEAEKKIRKKIKSENVEGTPAEDGAEPGSLR 1257 TOP2A_MOUSE  
     ****-**-*-*******-****--*-*********--****-**-**-*-***-*---*- 
1260 QRLEKKQKREPGTKTKKQTTLAFKPIKKGKKRNPWSDSESDRSSDESNFDVPPRETEPRR 1319 TOP2A_HUMAN 
1258 QRIEKKQKKEPGAK  KQTTLPFKPVKKGRKKNPWSDSESDVSSNESNVDVPPRQKEQRS 1315 TOP2A_MOUSE  
     **-*****-***-*--*****-***-***-*-*********-**-***-*****--*-* 
1320 AATKTKFTMDLDSDEDFSDFDEKTDDEDFVPSDASPPKTKTSPKLSNKELKPQKSVVSDL 1379 TOP2A_HUMAN 
1316 AAAKAKFTVDLDSDEDFSGLDEKDEDEDFLPLDATPPKAKIPPKNTKKALKTQGSSMSVV 1375 TOP2A_MOUSE  
     **-*-***-*********--***--****-*-**-***-*--**---*-**-*-*--*-- 
1380 E-ADDVKGSVPLSSSPPATHFPDETEITNPVPKKNVTVKKTAAKSQSSTSTTGAKKRAAP 1438 TOP2A_HUMAN 
1376 DLESDVKDSVPASPGVPAADFPAETEQSKPS KKTVGVKKTATKSQSSVSTAGTKKRAAP 1434 TOP2A_MOUSE  
     ----***-***-*---**--**-***---*--**-*-*****-*****-**-*-****** 
1439 KGTKRDPALNSGVSQKPDPAKTKNRRKRKPSTSDDSDSNFEKIVSKAVTSKKSKGESDDF 1498 TOP2A_HUMAN 
1435 KGTKSDSALSARVSEKPAPAKAKNSRKRKPSSSDSSDSDFERAISKGATSKKAKGEEQDF 1494 TOP2A_MOUSE 
     ****-*-**---**-**-***-**-******-**-***-**---**--****-***--** 
1499 HMDFDSAVAPRAKSVRAKKPIKYLEESDEDDLF- 1531 TOP2A_HUMAN 
1495 PVDLEDTIAPRAKSDRARKPIKYLEESDDDDDLF 1528 TOP2A_MOUSE 
     --*-----******-**-*************--- 

Figure 7.1 Alignment of human and mouse topoisomerase IIα peptides (Uni Prot, 
2012) 
* Asterisk indicated similarity in human and mouse peptide sequence 
- Blue shading shows differences in human and mouse peptide sequence 
A Red text are positions of peptides sequences used to develop mouse specific antibodies 
A Purple text is probable position of peptide sequence of TOPOGEN human antibody 
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7.2 Materials and methods 

7.2.1 Design of antibodies 

Figure 7.1 and Table 7.1 shows the sequence alignments of antigens designed for 

preparation of mouse specific topoisomerase II antibodies.  These sequences were 

selected with the help of Sonia Houghton, AstraZeneca antibody group with the 

intention of having hydrophobic residues below 50%, good epitope accessibility and 

good target specificity.  Table 7.1 and Figure 7.2 also show the specificity and 

homology between these sequences and topoisomerase II alpha and beta.  As it was 

considered possible that epitope availability may be compromised when the enzyme is 

bound to DNA in a stabilised cleavage complex, the antibodies were also designed to 

span the whole protein.  The intention being to see if antibody performance was 

relative to sequence position either at N-terminus, in the ATP or DNA binding regions 

or towards the C-terminus.  It was realised that it would have been ideal to have 

antibodies specific to both topoisomerase II alpha and beta and a combined antibody 

with dual reactivity.  However, antibody preparation is not a flawless procedure and 

given the time constraints of the project it was only possible to design and develop four 

antibodies.  Accordingly, for confirmation of the work already conducted with antibodies 

to topoisomerase II alpha, it was considered to be of primary importance to ensure at 

least one highly sensitive mouse specific alpha antibody was obtained.  Hence the 

sequences were not designed to obtain a specific beta antibody.  It was hoped that the 

homology between alpha and beta sequences from antigen codes 3008415 and 

3008424 would provide usable antibodies if there was a requirement to investigate 

topoisomerase II beta effects.  Antibodies prepared from antigen codes 3008416 and 

3008423 were designed to be topoisomerase II alpha specific (Table 7.1). 
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Antigen 
code 

Peptide sequence Specificity Approximate 
position 

3008415 ac-ADNKQRDPKMSC-nh2 Alpha 100% 
Beta 82% 

N-terminus 

3008416 ac-MELKPFSGEDYC-nh2 Alpha 100% 
Beta 55%* 

N-terminus 

3008423 ac-EWKSSTPNHKKWGC-nh2 Alpha 100% 
Beta 55%* 

ATP binding domain 

3008424 ac-IQRGYDSDPVKGC-nh2 Alpha 100% 
Beta 82% 

DNA binding domain 
C-terminus 

* Designed to be topoisomerase II alpha specific 
Table 7.1 Design of mouse topoisomerase II antigens 

The exact sequence specificity of these sequences for mouse and human 

topoisomerase alpha and beta is shown in Figure 7.2. 

Peptide  ADNKQRDPKMS 
Mouse 2a  ADNKQRDPKMS  
Mouse 2b  ADNKQRDKNMT 
Human 2a  ADNKQRDPKMS 
Human 2b  ADNKQRDKNMT 
 
Peptide  MELKPFSGEDY  
Mouse 2a  MELKPFSGEDY  
Mouse 2b  AKIKHFDGEDY 
Human 2a  MELKPFNGEDY 
Human 2b  AKIKHFNGEDY 
 
Peptide  EWKSSTPNHKKW  
Mouse 2a  EWKSSTPNHKKW   
Mouse 2b  EWKKHIENQKAW 
Human 2a  EWKSSTPNHKKW 
Human 2b  EWKKHIENQKAW 
 
 
Peptide  IQRGYDSDPVK  
Mouse 2a  IQRGYDSDPVK   
Mouse 2b  VQRGYESDPVK 
Human 2a  IQRGYDSDPVK 
Human 2b  VQRGYESDPVK 

 
Figure 7.2 Sequence specificity of designed peptides 
Yellow shading indicates peptide differences 
Mouse 2a: Mouse topoisomerase II alpha 
Mouse 2b: Mouse topoisomerase II beta 
Human 2a: Human topoisomerase II alpha 
Human 2b: Human topoisomerase II beta 
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7.2.2 Preparation of antibodies 

Oligopeptide constructs of the sequences shown in figure 7.1 were prepared by 

Bachem, St Helens, UK (a contract research group who specialise in peptide sequence 

construction).  These constructs contained an additional C-terminal cysteine to aid 

binding.  The prepared peptide sequences were sent to the contract research 

laboratory Harlan, UK, who were responsible for the in vivo antibody preparation.  For 

the initial immunisation, three New Zealand White rabbits received a sub-cutaneous 

injection of 100 µg of each antigen (i.e. 12 rabbits used) in the immunostimulant 

Freund’s complete adjuvant.  Four further boosts of 100 µg antigen in Freunds 

incomplete adjuvant (immunostimulant without mycobacteria) were administered sub-

cutaneously at the time points indicated in Table 7.2.  Over the course of dosing two 

test bleeds were performed and samples sent back to AstraZeneca, Antibody group for 

initial confirmation of antibody production (data not shown). 

Day Procedure 
0 Pre Bleed & Immunisation 
14 Boost 1 
28 Boost 2 
35 Test Bleed 1 
42 Boost 3 
56 Test Bleed 2 
77 Boost 4 
84 Terminal  Bleed 

Table 7.2 dosing schedule for antibody preparation 
 
On Day 84 the production bleed was taken and the serum harvested and antibodies 

prepared and purified by AstraZeneca, Antibody group, and the protein content of each 

antibody determined.  The given codes and protein concentration of each antibody is 

shown in Table 7.3.  Preliminary work by AstraZeneca, Antibody group, demonstrated 

that for most standard usage (e.g. Western Blots) a 1:1000 dilution of each antibody 

was appropriate and this dilution was used for the Western Blot and ICE bioassay work 

performed for this project.  As the sensitivity of TARDIS is known to be low, a dilution of 

1:100 (as previously used with the human antibody) was considered appropriate.  For 

TARDIS work where comparison of antibody performance was required antibodies 

were normailsed to a final concentration of 10 µg protein per mL.  For other work on 

antibody comparisons, antibodies were normalised to 1 µg protein per mL. 
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Rabbit ID Peptide sequence Antibody code Protein concentration 
(mg/mL) 

3661-3 ADNKQRDPKMS AGG-H3661 1.29 
3661-3 ADNKQRDPKMS AGG-H3662 0.9 
3661-3 ADNKQRDPKMS AGG-H3663 0.91 
3664-6 MELKPFSGEDY AGG-H3664 1.27 
3664-6 MELKPFSGEDY AGG-H3665 0.9 
3664-6 MELKPFSGEDY AGG-H3666 1.05 
3667-9 EWKSSTPNHKKW AGG-H3667 0.82 
3667-9 EWKSSTPNHKKW AGG-H3668 0.98 
3667-9 EWKSSTPNHKKW AGG-H3669 0.64 
3670-21 IQRGYDSDPVK AGG-H3670 1.17 
3670-21 IQRGYDSDPVK AGG-H3671 1.35 
3670-21 IQRGYDSDPVK AGG-H3672 1.03 

Table 7.3 Antibody coding and protein content 

7.2.3 SDS-PAGE and Western Blot experiments 

SDS-PAGE Western blots were performed as detailed in the Material and Methods 

section 2.13.1. 

7.3 Results and discussion 

7.3.1 Affinity of mouse antibody to human topoisomerase II alpha 

The results of a Fuji 1 minute scan of membranes prepared with each antibody against 

human topoisomerase II alpha (mouse topoisomerase II alpha was not commercially 

available) and the relevant Magic Marker ladder are shown in Figure 7.3.  This assay 

was repeated and qualitatively similar results were obtained. 
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Figure 7.3 Image of ECL (chemeluminescence) stained membranes of each 
prepared mouse antibody against human topoisomerase II alpha (1 minute 
exposure) 
Lane 1 Magic Marker ladder for peptide size 
Lane 2 Human topoisomerase II alpha  
Arrow indicates approximate position of 170 KDa human topoisomerase II alpha 

 

The results of the antibody affinity check showed that the majority of the antibodies 

were effectively binding to topoisomerase II alpha.  However, these data suggested 

there was both intra-peptide and inter-peptide sequence binding variability.  No 

discernable response was seen with antibodies 3667, 3668 and 3669 in either of the 

tests performed.  These antibodies were all prepared from rabbits dosed with peptide 

series EWKSSTPNHKKW. This sequence shared 100% homology between human 

and mouse; hence this cannot explain the lack of binding of these antibodies against 

human topoisomerase II alpha.  From each of the other three peptide sequences used, 

there appeared to be one antibody that bound with significantly higher affinity, these 

being 3661 for sequence ADNKQRDPKMS, 3665 for sequence MELKPFSGEDY and 

3672 for sequence IQRGYDSDPVK.  Although peptide sequence ADNKQRDPKMS  

did not share 100% homology between human and mouse this did not appear to affect 

its affinity.  Given the binding variability of these antibodies, all 12 were used to 
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investigate the response of 10 µmol/L etoposide to form cleavable complexes as 

detected by the TARDIS assay. 

7.3.2 Mouse antibodies used in the TARDIS assay 

As the TARDIS assay had previously showed low sensitivity, hence had ‘more room for 

improvement’, and as the assay was less time consuming and technically demanding 

than the ICE assay, it was used for the initial screening of the 12 mouse specific 

antibodies.  Figure 7.4 shows the results of the preliminary screen using solvent control 

and 10 µmol/L etoposide in the TARDIS assay. 
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Figure 7.4 Results from TARDIS assay with 12 mouse specific antibodies.  
Single cultures tested so error bars not applicable 
Relative intensity = FITC signal from analysed nuclei 

The TARDIS response with antibodies 3661-3666 generally agreed with the PAGE-

SDS Western work in as much as these antibodies all signalled well with the high 

concentration of etoposide used.  There were some not unexpected variance in the 

qualitative response between the Westerns and TARDIS, but this was considered to be 

within the realms of variability expected between two assay types when targeting 

proteins from two different species.  Similarly the response of antibodies 3667-3669 
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was in general agreement with the low/non-existent response in the Westerns, in as 

much as 3667 and 3668 did not really respond at all in TARDIS and 3669 appeared to 

have some non-specific binding with the signal being as high in the absence of 

etoposide as it was in the presence.  Perhaps the most interesting response in this 

preliminary TARDIS work was the response of antibodies 3670-3672.  These 

antibodies responded well in the Western work with human topoisomerase II, but did 

not signal in the TARDIS assay with mouse lymphoma L5178Y cells. 

To confirm the response in the initial test with all 12 antibodies, the antibody that 

responded best in TARDIS from each peptide sequence was selected to determine an 

etoposide concentration response.  For comparison, the human antibody used for the 

original TARDIS experiments as detailed in Chapter 5 was also included in this test.  

The results of the etoposide concentration response with mouse antibodies 3661, 

3666, 3667, 3672 and the topoisomerase II human antibody supplied by Newcastle 

University are shown in Figure 7.5. 
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Figure 7.5 Results from TARDIS assay using etoposide with mouse antibodies 
derived from each peptide sequence and the human antibody supplied by 
Newcastle University.  
Relative intensity = FITC signal from analysed nuclei 
n per test = 3. Statistics: T-test was used with square root transformation. Significance 
Level: *P<0.05 **P<0.01 ***P<0.001 
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of etoposide in this test confirmed that the antibody used was performing well.  

Accordingly, when tested up to highly cytotoxic concentrations, with a mouse specific 

antibody, gemifloxacin induced formation of stabilised cleavable complexes could not 

be detected by the TARDIS assay.  Although only a single confirmatory assay was 

performed, the generated data was in agreement with the earlier tests described in 

Chapter 5.  Accordingly, further repeat testing was not considered to be necessary. 

7.3.3 Mouse antibodies used in the ICE assay 

Whilst the mouse antibodies did not improve the overall sensitivity of the TARDIS 

assay, because of the high response of antibody 3666 it was considered to be 

worthwhile pursuing whether use of this antibody could improve the sensitivity of the 

ICE assay.  Furthermore, it was also considered worthwhile to investigate whether the 

lack of response of antibody 3670 for detection of cleavable complexes in nuclear 

preparations was mirrored by its activity in the ICE assay.  Accordingly, a preliminary 

ICE assay was performed with etoposide using antibodies 3666 and 3670, the results 

of which are presented in Figures 7.7 ad 7.8, respectively. 
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Figure 7.7 Results from preliminary ICE assay using etoposide with mouse 
antibody 3666 
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Figure 7.8 Results from preliminary ICE assay using etoposide with mouse 
antibody 3670 
Relative Intensity = Mean Odyssey IR signal 

The preliminary work in the ICE assay with antibodies 3666 and 3670 confirmed the 

TARDIS response with these enzymes, in so much as a clear etoposide concentration-

response in relative intensity was seen with antibody 3666 but no consistent 

concentration-related increase in relative intensity was seen with 3670.  The very low 

control response seen in this preliminary work also gave an indication that this antibody 

may improve the sensitivity of the ICE assay for detection of etoposide induced 

cleavable complexes.  Accordingly, further ICE tests were performed with antibody 

3666.  The complete data from triplicate ICE assays performed with etoposide using 

antibody 3666 are shown Figures 7.9 and 7.10. 
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Figure 7.9: Results from three ICE tests with etoposide using antibody 3666 
Relative Intensity = Mean Odyssey IR signal 
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Figure 7.10: Mean ICE assay data from three ICE tests with etoposide using 
antibody 3666 
Relative Intensity = Mean Odyssey IR signal  
n = 3. Statistics: T-test was used with square root transformation. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 

The lowest concentration of etoposide where a statistical significant increase in relative 

intensity was seen was 0.1 µmol/L, similar to the previous work with the human 

antibody (Chapter 5).  However, although 0.03 µmol/L etoposide did not quite achieve 

statistical significance at the 5% level, the p value of the increase was 0.07.  

Accordingly, the marked increase in response in three independent ICE assays with 
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etoposide at 0.03 µmol/L was considered to be biologically significant.  Hence using 

mouse antibody 3666 the LOCCEL for etoposide was considered to be at the same 

concentration as the LOGEL for etoposide.  This being the first time that a clear 

concentration equivalence could be proven for genotoxicity and cleavable complex 

formation with this agent.  Furthermore, the sensitivity of the ICE assay had been 

improved by use of the designed mouse specific antibody.  Further work was then 

performed to see if a similar improvement in the detection of cleavable complexes in 

the ICE assay could be seen following gemifloxacin treatment.  Figures 7.11 and 7.12 

show data from three ICE assays with gemifloxacin using antibody 3666. 
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Figure 7.11: Results from three ICE tests with gemifloxacin using antibody 3666 
Relative Intensity = Mean Odyssey IR signal 



Chapter 7 

181 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0 3 10 30 100 300

Re
la

tiv
e 

in
te

ns
ity

Concentration µmol/L
Relative intensity

**

**

  

Figure 7.12: Mean ICE assay data from three ICE tests with gemifloxacin using 
antibody 3666 
Relative Intensity = Mean Odyssey IR signal  
n = 3. Statistics: T-test was used with square root transformation. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 

The lowest concentration of gemifloxacin where a statistical significant increase in 

relative intensity was seen was 100 µmol/L, which once again was similar to the 

previous work with the human antibody (Chapter 5).  However, similar to the response 

of etoposide at 0.03 µmol/L, although 30 µmol/L gemifloxacin did not quite achieve 

statistical significance at the 5% level, the p value of the increase was only just above 

i.e. 0.053.  Accordingly, the marked increase in response in three independent ICE 

assays with gemifloxacin at 30 µmol/L was considered to be biologically significant.  

However, unlike etoposide this LOCCEL for gemifloxacin was still above the 

determined LOGEL (i.e. 10 µmol/L) and 10 µmol/L was clearly a non-responding 

concentration in the ICE assay even when the mouse antibody 3666 was used. 

To ensure that the improvement in the sensitivity of detection of topoisomerase II 

poisons in the ICE assay using the mouse antibody was not just due to confounding 

factors such as non-specific binding which may not be related to topoisomerase II 

cleavable complex recognition, three further independent tests were run with 4-NQO.  

The results of these tests are shown in Figures 7.13 and 7.14. 
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Figure 7.13: Results from three ICE tests with 4-NQO using antibody 3666 
Relative Intensity = Mean Odyssey IR signal 

 

Figure 7.14: Mean ICE assay data from three ICE tests with 4-NQO using 
antibody 3666 
n = 3. Statistics: T-test was used with square root transformation. Significance Level: 
*P<0.05 **P<0.01 ***P<0.001 

The ICE assay with 4-NQO using the designed mouse antibody 3666 confirmed the 

results previously seen with the human antibody (Chapter 5).  That is; a significant 

increase in topoisomerase II stabilised cleavable complexes was detected at the 

highest concentration tested (300 µmol/L), a concentration which had previously been 

shown to be highly cytotoxic.  However, no significant increase was seen at any of the 

lower concentrations.  Previously, with use of the human antibody, a significant 

increase in stabilised cleavable complexes had also been seen at 10 µmol/L 

(Chapter 5), no significant increase was seen at 10 µmol/L using mouse antibody 3666.  
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This may have been further evidence of the improved sensitivity for detection of 

specific topoisomerase II poison induced stabilised cleavable complexes.      

It was demonstrated that the improved ICE sensitivity with antibody 3666 for detection 

of stabilised cleavable complexes induced by topoisomerase II poisons (etoposide and 

gemifloxacin) was not seen with the reference mutagen 4-NQO.  Indicating that use of 

the specifically designed mouse antibodies gave a real improvement in the ICE assays 

ability to measure cleavable complex formation and to distinguish between induction of 

stabilised cleavable complexes by topoisomerase II poisons and other non-specific 

mechanisms such as those induced by the mutagen NQO. 

7.3.4 Affinity of each prepared mouse antibody to mouse 
topoisomerase II alpha from L5178Y Mouse Lymphoma cell 
lysates 

Whilst the TARDIS work with the mouse specific antibodies did not demonstrate 

improved sensitivity for detection of stabilised cleavable complexes, it had shown an 

intriguing discrepancy for the affinity of the antibodies to the DNA bound 

topoisomerase II in TARDIS as compared to the free human topoisomerase II used for 

the preliminary SDS-PAGE Western blot screening, particularly for the antibody derived 

from IQRGYDSDPVK.  Furthermore, this discrepancy was confirmed in the ICE assay 

for antibodies 3666 and 3670. There was of course one simple explanation for this, in 

as much as one target was mouse and the other human, although it should be noted 

that the particular peptide sequence used to derive the antigen (IQRGYDSDPVK) did 

share 100% homology between human and mouse (see Figure 7.2).  However, to 

confirm that it was not species specificity that was affecting the performance of the 

antibodies in TARDIS, cell extracts were prepared from L5178Y mouse lymphoma cells 

and SDS-PAGE Western blots were performed against all of the 12 antibodies.  See 

Material and Methods section 2.13.1.2 for details of lysate preparation.  The human 

topoisomerase IIα antibody that had previously been used for the Western work 

presented in Figure 7.3 was used for comparison.  The results of a Fuji 30 second scan 

of membranes prepared with each antibody against L5178Y mouse lymphoma cell 

lysates and the relevant Magic Marker ladder are shown in Figure 7.15.  This assay 

was repeated with similar results. 
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 Figure 7.15 Image of ECL stained membranes of each prepared mouse antibody 
(3661-3670) against L5187Y mouse lymphoma cell lysates (30 second exposure) 
Lane 1 Magic Marker ladder for peptide size 
Lane 2 Human topoisomerase IIα 
Lane 3 L5178Y cell sarkosyl lysate 
Lane 4 L5178Y cell cytosol preparation 
Lane 5 L5178Y cell nuclear preparation  
Lane 6 L5178Y cell residual pellet after nuclear and cytosol preparations  
Arrow indicates approximate position of 170 KDa human topoisomerase II alpha 
 

The work with cell lysates confirmed that, as expected, the majority of topoisomerase II 

is found in the nuclear fraction (Mirski et al., 2007).  It also demonstrated that two of the 

antibodies (3665 and 3672) responded very well and were very specific for mouse 

topoisomerase IIα, although as 3672 did not work well in the cleavable complex 

assays, 3665 was considered to be the better candidate for future work.  It should be 

noted that these data were not considered to have compromised any of the work that 

had already been performed in the cleavable complex assays with the seemingly 

slightly less specific antibody 3666, in so much as the sensitivity in the TARDIS assay 

was not improved by use of any of the mouse antibodies over the human enzyme 

indicating non-specific protein binding was not affecting the results.  Furthermore, the 

DNA fraction used for analysis in the ICE assay was confirmed to be of very high purity 

(Abs260/Abs280 ≈ 2), hence results would not likely to have been affected by protein 

contaminated DNA.  The very low background control level seen in the ICE work with 

the mouse antibodies used (3666 and 3670) also confirmed non-specific protein 

binding was not an issue. 

In general the work with the mouse lymphoma cell lysates confirmed the work 

performed with the commercially available human topoisomerase II, albeit that 

antibodies 3661-3663 performed a little worse than expected against the cell lysates.  
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The antibodies that did not perform well in TARDIS (3667-3672) and ICE (only 3670 

tested) generally demonstrated low affinity for mouse lysate topoisomerase II and at 

least for 3670-3672 performed better against human topoisomerase II enzyme.  

However, 3672 did perform well against both the human enzyme and mouse cell 

lysates, hence, its lack of response in TARDIS was unlikely to be due to species 

specificity in binding.  Whilst the data do not support definitive conclusions, in general 

those antibodies designed to target sequences towards the n-terminal of the enzyme 

performed better.  The lack of binding of 3672 seen in TARDIS and ICE could be due 

to the conformation of the protein during DNA binding.  The targeted sequence of 3372 

is just beyond the ATP binding domain and towards the C terminus where in its closed 

clamp form the enzyme would bind with the gate DNA strand, it is at least possible that 

this would directly affect availability of the epitope. 

7.4 Conclusion 

It was shown to be possible to prepare highly specific antibodies for mouse 

topoisomerase alpha and there was limited evidence to suggest that when preparing 

antibodies for detection of topoisomerase II induced stabilised cleavage complexes, 

sequence targets towards the n-terminus of the enzyme were preferable.  Some 

improvement of the sensitivity of the ICE assay was seen when using antibodies of 

high affinity for mouse topoisomerase II alpha and for the first time a direct dose 

relationship between formation of stabilised cleavage complexes and micronucleus 

induction was demonstrated for etoposide.  However, little improvement was seen with 

the sensitivity of the TARDIS assay and it was still not possible to detect gemifloxacin 

in this test.  Accordingly, for workers interested in elucidating the potential of unknown 

agents to induce genotoxicity via inhibition of topoisomerase II, the use of highly 

specific antibodies (possibly designed to target n-terminal sequences) in the ICE assay 

is recommended.   
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8 The relationship between the genotoxicity of the 
topoisomerase II poisons etoposide and 
gemifloxacin and their activity against the alpha 
isoform of the enzyme 

8.1 Introduction 

The aim of the work described in this chapter was to demonstrate that the in vitro 

mammalian cell genotoxicity of etoposide and gemifloxacin was driven by their activity 

against the alpha isoform of topoisomerase II.  

Since 2012 several papers have been published indicating a link between the 

genotoxicity of etoposide and its activity against the beta isoform of topoisomerase II 

(Cowell and Austin., 2012a; Cowell and Austin., 2012b; Cowell et al., 2012, Smith et 

al., 2014).  This seriously questioned much of the research undertaken in the current 

project.  The assumption had been made that due to the rapid division rate of L5178Y 

cells and the apparent significantly higher intracellular level of topoisomerase II alpha 

when compared to beta (Chapter 5 Figure 5.11), genotoxicity was driven by the alpha 

isoform of the enzyme.  Accordingly the vast majority of the comparative work between 

the genotoxicity of etoposide and gemifloxacin and their ability to poison topoisomerase 

II and induce stabilised cleavage complexes, used antibodies to topoisomerase II 

alpha.  This assumption appeared to be backed up by the Western, TARDIS and ICE 

work detailed in Chapter 7, where the most active antibodies (3664, 3665 and 3666) 

were highly topoisomerase II alpha specific.  For these antibodies sequence homology 

to topoisomerase II alpha was 100% but only 55% to topoisomerase II beta (Chapter 7 

Table 7.1).  However, if the mammalian cell in vitro genotoxicity of topoisomerase II 

poisons was actually driven by their activity against the beta isoform of the enzyme, 

this would go some way to explaining why it has proven to be difficult to observe 

stabilised cleavage formation (using antibodies specific to topoisomerase II alpha) at 

concentrations similar to or lower than those that are genotoxic. 

The recent publications linking topoisomerase II beta to genotoxicity have in the main 

involved investigating the activity of toposimerase II poisons in inducing the 

chromosome translocations that have been associated with secondary leukemias 

(Cowell and Austin., 2012a; Cowell and Austin., 2012b; Cowell et al., 2012, Smith et 

al., 2014).  Generally, this work has focussed on the in vitro activity of the enzyme 
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isoforms and has used human pre-B leukemia Nalm-6 cells including; wild type, 

topoisomerase II alpha heterozygous and topoisomerase II beta null.  For example 

Cowell et al demonstrated etoposide in vitro genotoxicity was significantly reduced in 

Nalm-6 cells without topoisomerase II beta activity (i.e. Nalm-6topo2β-/-) when compared 

to Nalm-6 wild type or Nalm-6 cells heterozygous at the topoisomerase II alpha locus 

(i.e. Nalm-6 topo2α+/-).  It was interesting to note that Cowell et al used cell lines with 

specific mutations in the coding genes for the topoisomerase II isoforms rather than 

using knockdown of the gene.  Accordingly, as topoisomerase IIα null cells would not 

be viable, Cowell et al were not able to, or did not, demonstrate directly comparable 

activity between the two topoisomerase II isoforms.  Nor did they actually report the 

relative intracellular enzyme levels of each isoform.  For the purpose of the current 

research it was clearly important to establish whether the data reported for the activity 

of topoisomerase II isoforms and genotoxicity in Nalm-6 cells was also relevant for 

topoisomerase II poison associated genotoxicity in L5178Y mouse lymphoma cells i.e. 

does topoisomerase II alpha really not play a significant role in driving the genotoxicity 

of etoposide and gemifloxacin in L5178Y cells?  To investigate the role of 

topoisomerase II alpha in the associated genotoxicity of topoisomerase II poisons, a 

topoisomerase II alpha specific small interfering RNA (siRNA) was custom made and 

the genotoxic activity of etoposide and gemifloxacin was investigated in cells following 

transfection of this siRNA or transfection of a negative control random scrambled 

siRNA. 

8.2 Topisomerase IIα knockdown by siRNA transfection: 
materials, methods and the results of method 
development  

8.2.1 Topoisomerase IIα specific siRNA knockdown 

To accomplish knockdown of topoisomerase IIα, a Silencer®Select siRNA was custom 

made by Ambion® Life Technologies (Thermo Fischer Scientific, UK) to specifically 

target this isoform of the protein.  SiRNA’s are double strand sequences which, in an 

ATP dependent process, can be incorporated into an interfering RNA / protein silencing 

complex (RISC).  This complex interacts with a complimentary target mRNA sequence 

(Nykanen et al., 2001).  Within this complex the siRNA duplex unwinds such that the 

antisense strand remains bound within the RISC and within the mRNA target.  This is 

recognised by a combination of endonucleases and exonucleases, thus instigating 

degradation of the complementary mRNA strand (Martinez et al., 2002).  Such targeted 
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destruction of a specific mRNA will of course lead to reduction in production of the 

specific translation protein product of interest e.g. for the current research, 

topoisomerase IIα. 

Ambion® claim that use of their enhanced off-target effect prediction algorithms they 

are able to make their Silencer®Select siRNA highly specific.  For the purpose of the 

current work this was extremely important as the requirement was to knockdown 

topoisomerase IIα but not effect topoisomerase IIβ.  Before the work commenced, a 

sequence check was made on the sense topoisomerase IIα target of the custom made 

sequence and any possible homology to topoisomerase IIβ mRNA.  Figure 8.1 shows 

the sense sequence of the custom made siRNA and the best match to sequences on 

the topoisomerase IIβ transcript. 

Mouse Topo II a
Mouse Topo II ß

 
Figure 8.1 Sequence homology between siRNA topoisomerase IIα mRNA 
transcript target and similar sequence on topoisomerase IIβ transcript 
 

With over 30% mismatched sequencing it was considered unlikely that the custom 

made silencing siRNA would target topoisomerase IIβ, hence it was considered to be 

suitable for use to establish L5178Y mouse lymphoma cells with effective and specific 

knockdown of topoisomerase IIα.   

In line with Ambion® recommended protocols for use of their siRNAs a Silencer® 

Negative Control No. 1 (Ambion®) random scrambled siRNA was used.  The specific 

sequence of this negative control has been identified by Ambion® algorithms to have 

minimal sequence similarity to any functional genes and to be proven by Ambion® to 

have minimal effects on cell viability. However, the sequence was not disclosed. 

8.2.2 Transfection of L5178Y cells with Silencer®Select siRNA 
targeting topoisomerase IIα, method development 

Transfection of L5178Y mouse lymphoma cells with topoisomerase IIα specific and 

negative control siRNA was accomplished by electroporation using a Lonza, UK, 

supplied Amaxa 96 well ShuttleTM Nucleofector.  Electroporation involves passing small 

electrical charges across cell membranes.  These have the effect of creating temporary 

conductive pores which allow for the cellular uptake of larger charged molecules (e.g. 
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plasmid or double stranded RNA) which would otherwise not be able to readily cross 

the cell lipid membrane (Ho and Mittal., 1996).  However, it is essential to ensure that 

whilst sufficient current is applied for an appropriate time to allow uptake of the 

oligonucleotide or plasmid of interest, cell viability is not compromised.  Furthermore, 

complete knockout of topoisomerase IIα would be likely to be a lethal event.  For the 

purposes of the current investigations, the aim was to knockdown topoisomerase IIα by 

approximately 50%.  This was considered not likely to be lethal but would be sufficient 

knockdown to investigate the activity of the enzyme in driving the genotoxicity of 

topoisomerase II poisons. Accordingly extensive method validation was undertaken to 

ensure an appropriate electroporation protocol was utilised and to ensure an 

appropriate concentration of topoisomerase II knockdown siRNA was titrated. 

8.2.2.1 Electroporation method and results of method 
development 

Following technical discussions with Lonza regarding their most appropriate proprietary 

Nucleofector™ Solution to use for suspension cells such as the L5178Y mouse 

lymphoma line, their SG Cell Line 96-well Nucleofector™ Solution kit was selected.  To 

prepare the nucleofector solution; to each 20 µL of SG solution, 4.44 µl SG supplement 

was added.  The ingredients of these solutions are proprietary to Lonza and were not 

disclosed.  For the initial validation tests, supplemented SG solution was made up 

containing 0.4 µg of a positive control plasmid containing green fluorescent protein 

(pmaxGFP™ Control Vector (Lonza)).  For later tests investigating topoisomerase IIα 

knockdown, supplemented SG solution was made up containing up to 2000 nmol/L 

negative control or topoisomerase IIα specific siRNA. 

L5178Y mouse lymphoma cells were grown in exponential phase as described in 

Chapter 2 Section 2.1.  Cells were centrifuged at 200 ‘g’, washed in PBS and 

resuspended in supplemented SG solution containing pmaxGFP™ Control Vector or, 

for later tests, the relevant control or knockdown siRNA.  6 x 105 cells in 20 µL SG 

solutions were plated into an appropriate number of wells of a 96-well Nucleocuvette™ 

Plate (Lonza).  Electroporation was carried out immediately after plating by placing the 

Nucleocuvette™ Plate onto the Amaxa 96 well ShuttleTM Nucleofector and exposing 

each well to a predetermined electrical pulse.  
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8.2.2.1.1 Results of method development for appropriate 

electroporation pulse 

As a specific electroporation protocol for L5178Y mouse lymphoma cells was not 

available from Lonza, a series of preliminary tests were conducted using a wide range 

of electrical pulses.  The exact voltage and duration of these pulses is coded by Lonza 

and was not disclosed. 

The positive control plasmid (pmaxGFP™ Control Vector (Lonza)) was used as a 

marker of transfection efficiency.  24 hours after transfection, microscope slides were 

prepared with cells and, where possible, 1000 cells scored for presence of green 

fluorescent using x 200 magnification on a Zeiss Axioplan microscope.  Furthermore, 

24 hour post-treatment relative population doubling (RPD) was assessed as a marker 

for any toxicity associated with each specific pulse (Table 8.1).   

Electroporation 
pulse (EP) code 

% RPD % cells positive 
for GFP 

Control (no EP) 100 0 
CA137 56 14 
CM138 88 26 
CM137 44 34 
CM150 81 19 
DN100 75 46 
DS138 56 50 
DS137 34 47 
DS130 63 40 
DS150 63 55 
DS120 78 32 
EH100 31 31 
EO100 78 15 
EN138 41 56 
EN150 44 68 
EW113 53 40 
Table 8.1 Preliminary titration work of electroporation pulse for transfection of 
pmaxGFP™ Control Vector, measuring cells with GFP and survival by %RPD 
Blue highlighted row indicates best transfection efficiency with 75% survival 
(75% survival considered to be acceptable as viable cells would be required for 
subsequent micronucleus analysis) 

The preliminary electroporation pulse work indicated that good transfection efficiency 

(46%) with reasonable survival could be achieved with pulse DN100.  It should be 

noted that whilst this pulse only gave 75% RPD, cells were recovering well 24 hours 

after treatment and Day 1 to Day 2 cell growth was good (approximately 2 divisions in 

24 hours).  Accordingly, DN100 was considered to be close to an appropriate pulse 
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level.  In line with Lonza reccommendations, additional pulses were investigated with 

energies slightly more or less than the DN100 pulse.  Lonza protocols indicated that 

pulses CY100, DA100, DH100 and DI100 should increase viability whilst DP100, 

EH100, ER100 and FA100 should increase transfection efficiency.  These pulses, 

along with DN100, were used in an additional electroporation titration experiment 

(Table 8.2). 

Electroporation 
pulse (EP) 
code 

% RPD % cells positive 
for GFP 

Control (no EP) 100 0 
CY100 59 50 
DA100 44 100 
DH100 71 50 
DI100 68 50 
DN100 38 100 
DP100 25 100 
EH100 6 01 

ER100 0 01 

FA100 0 01 

Table 8.2 Additional titration work of electroporation pulse for transfection of 
pmaxGFP™ Control Vector, measuring cells with GFP and survival by %RPD.  As 
GFP uptake was low, estimation of uptake either 0, 50% or 100% was made. 
1 Too toxic too score 

The additional electroporation titration work indicated that DN100 gave good 

transfection efficiency, but quite high toxicity (only 38% RPD).  However, pulses DH100 

and DI100 both gave 50% transfection efficiency with good viability (approximately 

70% RPD).  As the aim of the siRNA work was to knockdown topoisomerase II alpha 

by approximately 50%, this level of transfection efficiency and viability was considered 

to be acceptable.  Accordingly, DH100, DI100 and DN100 pulses were selected for 

titration of siRNA concentrations. 

8.2.2.1.2 Results of method development for appropriate siRNA 

concentration 

In an initial test, L5178Y mouse lymphoma cells were electroporated using pulses 

DH100 and DI100 with 0, 62.5, 125, 250 and 500 nmol/L topoisomerase II alpha 

specific siRNA.  Triplicate cultures were used.  One and two days after electroporation, 

from each treatment condition, 2 x 106 cells were lysed with sarkosyl and slot blot 

membranes prepared and incubated with topoisomerase II alpha specific antibody 

3665.  After incubation with Odyssey secondary antibody, membranes were analysed 

using the Odyssey IR and associated software (for methods see Chapter 2 section 
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2.12.3 and Chapter 7).   Toxicity was estimated by RPD.  In this preliminary test there 

was no clear concentration related decrease in the enzyme (data not shown).  

Accordingly a second test was performed using pulses DH100, DI100 and DN100 and 

concentrations of 0, 250, 500 and 1000 nmol/L topoisomerase II alpha siRNA (Figure 

8.2 and Table 8.3).  

 

Figure 8.2 Example of slot blot from Topisomerase II alpha knockdown one day 
after siRNA transfection.  DH, DI and DN are electroporation pulse codes.  
Triplicate slts prepaed per treatment. Numbers on slot blot are relative infra-red 
intensity of each slot. 

Electroporation 
pulse (EP) code 

Topo IIα siRNA 
(nmol/L) 

% RPD Day 1 Relative 
topo IIα level 

Day 2 Relative 
topo IIα level 

Control no EP 0 100   
DH100 0 89 100 100 
 250 99 86  80 
 500 99 76  75 
 1000 110 81  63 
DI100 0 99 100 100 
 250 111 85 59 
 500 111 65 45 
 1000 111 85 33 
DN100 0 82 100 100 
 250 93 65 62 
 500 104 62 64 
 1000 102 71 69 
Table 8.3 Survival and topoisomerase IIα knockdown one and two days after 
topoisomerase IIα specific siRNA trasfection with electroporation pulses DH100, 
DI100 and DN100 
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From the work with electroporation pulses DH100, DI100 and DN100 and 

concentrations of siRNA up to 1000 nmol/L, topoisomerase IIα levels were generally 

lower when analysed on the second day after electroporation.  There was limited 

evidence for topoisomerase IIα knockdown when using pulse DH100.  Pulse DI100 

appeared to be most effective at achieving approximately 50% topoisomerase IIα 

knockdown, whilst pulse DN100 also demonstrated evidence of knockdown for all 

concentrations of siRNA used.  To confirm these results a third siRNA titration 

experiment was performed analysing topoisomerase IIα knockdown two days after 

electroporation; using the two best performing pulses (DI100 and DN100), using a 

higher concentration of siRNA and including use of negative control scrambled siRNA.  

Accordingly, in the third test 0, 500, 1000 and 2000 nmol/L of both topoisomerase IIα 

specific and negative control siRNA were used (Table 8.4). 

 

Electroporation 
pulse (EP) code 

siRNA (nmol/L) % RPD Day 2 Relative 
topo IIα level 

Control no EP 0 100  
DI100 0  76 100 
 500 Control 106 82 
 1000 Control 77 92 
 2000 Control 97 126 
DI100 0  74 100 
 500 TopoIIα 83 45 
 1000 TopoIIα 86 37 
 2000 TopoIIα 79 38 
DN100 0 55 100 
 500 Control 51 123 
 1000 Control 57 123 
 2000 Control 51 112 
DN100 0 56 100 
 500 TopoIIα 62 83 
 1000 TopoIIα 53 54 
 2000 TopoIIα 52 86 
Table 8.4 Survival and topoisomerase IIα knockdown two days after siRNA 
trasfection with electroporation pulses DI100 and DN100 

The data from the third titration experiment confirmed that effective siRNA induced 

topoisomerase IIα knockdown could be achieved when electroporation pulse DI100 

was used.  When DN100 pulse was used, knockdown was inconsistent across the 

siRNA concentration range and cytotoxicity was higher than seen with pulse DI100 (for 

DN100 treatments, survival as measured by RPD was generally less than 60% of the 

survival of non-electroporated control cells).  Accordingly, pulse DI100 was considered 
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to be appropriate for future use.  Furthermore, following DI100 pulse, toposomerase IIα 

knockdown was effectively achieved with all concentrations of siRNA.  A slightly higher 

level of knockdown was seen with the two higher concentrations of siRNA, but as there 

was no clear advantage with using 2000 nmol/L, 1000 n/mol/L was selected to be used 

in follow on tests.  Following electroporation with control scrambled siRNA, 

topoisomerase IIα knockdown was not seen.  Furthermore, when DI100 pulse was 

used, the control siRNA was not cytotoxicity.  This confirmed that the control was 

suitable for use.  

In summary, the method validation work confirmed that the topoisomerase IIα specific 

siRNA was effective at achieving topoisomerase IIα knockdown in L5178Y mouse 

lymphoma cells.  Approximately 50% knockdown, with associated high cell viability, 

could be achieved by using electroporation pulse DI100 with 1000 nmol/L siRNA and 

allowing recovery of cells for two days post electroporation.  These conditions were 

used to prepare cells for the follow on work in which the genotoxicity of etoposide and 

gemifloxacin was investigated using L5178Y mouse lymphoma cells with and without 

knockdown of topoisomerase IIα. 

8.2.3 Confirmation of the specificity of the siRNA for topoisomerase 
II alpha 

Earlier work (see Chapter 6) had shown that antibody 3665 was highly specific for 

topoisomerase II alpha.  Hence, use of slot blotting rather than full Western blotting 

was considered to be a suitable quick and easy way to estimate the relative levels of 

topoisomerase IIα following siRNA knockdown. However, this did not give any 

indication of the potential cross reactivity of the siRNA to topoisomerase II beta.  Whilst 

cross reactivity was unlikely from the derived sequence specificity, given that the whole 

basis of this work was to demonstrate the causal link between topoisomerase II 

poisons genotoxicity and their specific activity against the alpha isoform of the enzyme, 

it was considered important to demonstrate, beyond reasonable doubt, that the siRNA 

used did not have any effect on the translation of topoisomerase II beta. 

As specific mouse topoisomerase II beta antibodies had not been prepared for this 

research, nor were any commercially available, an antibody raised against human 

topoisomerase II beta was purchased from Topogen.  A preliminary test using whole 

cell sarkosyl extraction followed by Western blotting and Odyssey analysis was 

performed to demonstrate whether this antibody was reactive with topoisomerase II 

beta extracted from L5178Y mouse lymphoma cells (Figure 8.3). 
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Topoisomerase II beta Topoisomerase II alpha

 
Figure 8.3 Topisomerase beta and alpha levels in L5178Y mouse lymphoma cells 
following sarkosyl whole cell lysis. 10 µg protein loaded (maximum available).  
Topoisomerase II beta membrane probed with Topogen human topoisomerase II 
beta antibody and topoisomerase II alpha membrane probed with mouse 
topoisomerase II alpha antibody 3665 

The preliminary work using sarkosyl lysis demonstrated that the Topogen human 

antibody was reacting with mouse topoisomerase II beta.  However, the detection 

levels were extremely low, only approximately 10% of that for topoisomerase II alpha.  

This level of detection was considered to be too low for any meaningful interpretation of 

topoisomerase II beta knockdown.  Accordingly, other whole cell extraction and lysis 

methods were used to see if recovery of topoisomerase II beta could be improved.  

Methods investigated included use of RIPA buffer rather than sarkosyl and use of UV 

rather than infra red sceondary antibodies.  However, none of these adaptations 

facilitated a significant improvement in the yield of topoisomerase II beta (data not 

shown).  In view of the previously noted observation that topoisomerase II is more 

prevalent in the nuclear fraction of lysed cells (See Chapter 7), it was considered 

possible that the topoisomerase II beta yield may be improved if nuclear extracts were 

prepared instead of whole cell extracts.  Accordingly, the BioVision nuclear/cytosol 

fractionation kit was used to prepare nuclear fractions of L5178Y mouse lymphoma 

cells pre-treated with scrambled or topoisomerase II alpha specific siRNA.  

Furthermore, at this point of the research, access to a higher resolution UV membrane 

scanner was made available, hence Anti-Rabbit IgG (whole molecule)–Peroxidase 

secondary antibody was used along with Amersham ECL Prime substrate.  Results 

from a preliminary experiment are shown in Figure 8.4 and Table 8.5. 

Scrambled Knockdown Scrambled Knockdown Scrambled Knockdown 
Topoisomerase  II alpha Topoisomerase  II beta (a) Topoisomerase  II beta (b)

 
Figure 8.4 Images of Western blots from nuclear lysates from L5178Y cells pre-
treated with scrambled or topoisomerase II alpha specific siRNA. 
Images Topoisomerase II alpha and Topoisomerase II beta (a) taken at same 
ressolution.  Image Topoisomerase II beta (b) taken at higher ressolution 
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Topoisomerase II alpha Topoisomerase II beta 

L5178Y cells Band intensity L5178Y cells Band intensity 

Scrambled 2633240 Scrambled 4538153 

Knockdown 1064728 Knockdown 5553718 

% Topo α in 
knockdown 
compared to 
scrambled 

40% % Topo α in 
knockdown 
compared to 
scrambled 

122% 

 
Table 8.5 Band intensity of Western blots from nuclear lysates from L5178Y cells 
pre-treated with scrambled or topoisomerase II alpha specific siRNA measured 
by Biorad Chemi Doc MP software 

Good signals were seen with both topoisomerase II alpha and beta antibodies.  In fact 

the signal from the alpha antibody was so strong imaging resolution had to be reduced 

to a very low level to allow analysis.  The preliminary work with Western blots from 

nuclear extracts of L5178Y mouse lymphoma cells electroporated with scrambled or 

topoisomerase II alpha specific siRNA indicated that the siRNA used did not cross 

react with topoisomerase II beta.  In this test the level of topoisomerase II beta was 

actually slightly higher in cells pre-treated with siRNA.  It should be noted that direct 

comparisons should not be made between band intensity of alpha compared to beta as 

these were measured using different resolution times.   

To confirm the response of the preliminary test a repeat experiment was tested 

including an increased number of replicates and (for increased assurance of 

appropriate loading and knockdown of topoisomerase II alpha) an antibody to the 

nuclear housekeeping gene lamin B1 (a nuclear membrane matrix protein).  Prior to 

antibody incubation, membranes were cut such that the top half was incubated with the 

relevant topoisomerase II antibody and the bottom half with lamin B1 antibody.  

Furthermore in the repeat test the amount of protein loaded for the topoisomerase II 

alpha knockdown extracts was reduced to 2.5 µg per lane (previously 10 µg per lane 

had been used).  This reduction was made to take account of the previous observation 

that much higher levels of topoisomerase II alpha were present in nuclear lysates.  

10 µg protein per lane was loaded for topoisomerase II beta analysis.  The results of 

the repeat test are shown in Figure 8.5 and Table 8.6. 
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Scrambled Knockdown Scrambled Knockdown 
Topoisomerase  II alpha Topoisomerase  II beta

Lamin B1 Lamin B1

 
 
Figure 8.5 Images of Western blots from nuclear lysates from L5178Y cells pre-
treated with scrambled or topoisomerase II alpha specific siRNA. 
 
 

Topoisomerase II alpha Topoisomerase II beta 

L5178Y cells Band intensity L5178Y cells Band intensity 

 Mean SD  Mean SD 

Scrambled 606843 34366 Scrambled 786520 129862 

Knockdown 259841 14851 Knockdown 1144377 344443 

% Topo α in 
knockdown 
compared to 
scrambled 

43% % Topo α in 
knockdown 
compared to 
scrambled 

145% 

Lamin B1 (Topoisomerase II alpha 
membrane) 

Lamin B1 (Topoisomerase II beta 
membrane) 

L5178Y cells Band intensity L5178Y cells Band intensity 

 Mean SD  Mean  SD 

Scrambled 417678 104874 Scrambled 1626665 265088 

Knockdown 830616 235750 Knockdown 1311962 394304 

% Lamin B1 in 
knockdown 
compared to 
scrambled 

199% % Lamin B1 in 
knockdown 
compared to 
scrambled 

81% 

 
Table 8.6 Band intensity of Western blots from nuclear lysates from L5178Y cells 
pre-treated with scrambled or topoisomerase II alpha specific siRNA measured 
by Biorad Chemi Doc MP software 
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The results of this confirmatory test clearly demonstrated that the siRNA used 

specifically targeted topoisomerase II alpha with no cross reactivity against 

topoisomerase II beta.  In both tests, siRNA treated cells demonstrated an approximate 

60% reduction in the level of topoisomerase alpha compared to cells treated with 

scrambled RNA.  As had previously been observed, the measured levels of beta 

actually appeared to be higher in the cells treated with siRNA.  The results of the 

analysis of levels of the house keeping gene clearly showed that loading was not 

responsible for the observed reductions or increases.  It should be noted that it proved 

difficult to achieve good signalling for lamin B1 on the topoisomerase II alpha 

membrane.  This was likely to be due to the low level of protein loaded (2.5 µg per 

lane).  This may be why a seemingly higher level of lamin B1 was recorded in the cells 

treated with scrambled siRNA.  This result was not considered to be biologically 

significant. 

In both tests where topoisomerase II alpha levels were reduced, topoisomerase II beta 

levels were seen to increase.  This may imply a compensatory mechanism but more 

work would be required to prove this. 

In summary, it was considered that any effect on the genotoxic response seen when 

etoposide and gemifloxacin were tested on cells previously electroporated with the 

topoisomerase II alpha specific siRNA as compared to cells treated with scrambled 

RNA could not be attributed to the activity of topoisomerase II beta.   

Given the time constraints of Western preparation and the need for simultaneous 

preparation of micronuclei, for the following experiments slot blotting was used to 

estimate topoisomerase II alpha levels at the time on treatment.  The earlier work with 

slot blotting had indicated that similar levels of knockdown (approximately 60%) were 

measured using this technology when compared to the results from Western blotting 

(Tables 8.4, 8.5 and 8.6). 

8.3 Determination of MN(vit) following exposure to 
topoisomerase II poisons using L5178Y mouse lymphoma 
cells with and without topoisomerase IIα knockdown 

For determination of micronuclei induction, L5178Y mouse lymphoma cells were 

electroporated using pulse code DI100 in the presence of topoisomerase IIα 

knockdown or negative control siRNA and allowed to recover for 2 days.  To assess 

comparative topoisomerase IIα knockdown, 2 x 106 cells from each condition were 
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lysed with sarkosyl and slot blot membranes prepared and exposed to topoisomerase 

IIα specific antibody 3665.  After washing and further incubation with Odyssey 

secondary antibody, membranes were analysed using the Odyssey IR image capture 

system and associated software (for methods see Chapter 2 section 2.12.3 and 

Chapter 7).  At the same time 2 x 106 cells (topoisomerase IIα knockdown or control) 

were treated with a range of concentrations of etoposide or gemifloxacin for 3 hours 

and determination of induced micronuclei and survival by RPD was made (for methods 

see Chapter 2, Section 2.6).  

8.3.1 Determination of micronuclei following topoisomerase II alpha 
knockdown, results and discussion 

The level of topoisomerase IIα knockdown as assessed by slot blot preparations using 

the topoisomerase II alpha specific antibody 3665 and Odyssey IR analysis is shown 

by representative data from Test 3 (Figure 8.6) and mean data from quadruplicate 

analysis in Table 8.7. 

 
Figure 8.6 Slot blot analysis of L5178Y cells from Test 3 electroporated with 
negative control (top) or topoisomerase II alpha knockdown (bottom) siRNA.  
Analysis was conducted with the use of topoisomerase II alpha specific antibody 
3665. Numbers on slot blot are relative infra-red intensity of each slot. 
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Test Compounds 
Tested 

n Negative control 
Mean IR Intensity 
(SD) 

Topo IIα Knockdown 
Mean IR Intensity (SD) 

Topo IIα 
Knockdown (%) 

1 Etoposide 
 

6 7.46 (2.3) 4.34 (0.6) 58 

2 Etoposide and 
gemifloxacin 

5 9.42 (1.9) 5.29 (0.9) 56 

3 Etoposide and 
gemifloxacin 

6 15.11 (1.6) 9.08 (0.63) 60 

4 Gemifloxacin 
 

6 6.33 (0.13) 4.69 (1.0) 74 

Table 8.7 Percent knockdown of topoisomerase II alpha in L5178Y mouse 
lymphoma cells electroporated with negative control (scrambled siRNA) or 
topoisomerase II alpha knockdown siRNA. 

In all four tests, topoisomerase II alpha levels in L5178Y mouse lymphoma cells were 

reduced following electroporation in the presence of the topoisomerase II alpha specific 

siRNA.  The overall mean knockdown across all 4 tests was approximately 38% (± 

8%).   

At the end of the 2 day recovery period following electroporation, a range of 

concentrations of etoposide and gemifloxacin were tested on cells that had not 

undergone electropration (untransfected), cells that had been electroporated with 

negative control siRNA and cells that had been electroporated with topoisomerase IIα 

knockdown siRNA (Topo IIα knockdown).  The mean survival data (as measured by 

24 hour post treatment relative population doubling (RPD)) for etoposide and 

gemifloxacin treatments in triplicate tests are detailed in Table 8.8.  
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Etoposide (µmol/L) 0 0.03 0.1 0.3 
Untransfected cells (Survival %RPD) 100 (3.9) 97 (7.8) 100 (9.5) 33 (17) 

Negative control (Survival %RPD) 100 (4.3) 98 (8.2) 86 (13) 52 (9.6) 

Topo IIα knockdown (Survival %RPD) 100 (11) 101 (9.9) 100 (8.3) 83 (11) 

Gemifloxacin (µmol/L) 0 3 10 30 

Negative control (Survival %RPD) 100 (9.7) 91 (15) 100 (12) 82 (20) 

Topo IIα knockdown (Survival %RPD) 100 (6.9) 97 (9.9) 96 (15) 92 (13) 

Table 8.8 Cytotoxicity as mesured by Relative Population Doublings (RPD) from 
in vitro micronucleus tests with untransfected L5178Y cells and cells either 
electroporated with negative control (scrambled siRNA) or Topo IIα knockdown 
siRNA.  Mean of triplicate replicates / experiments. Standard deviation in parenthesis    

The results of analysis for etoposide induced micronuclei following 3 hour treatment of 

control L5178Y mouse lymphoma cells and cells used after electroporation with 

negative control or topoisomerase II alpha knockdown are shown in Figure 8.7. 
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Figure 8.7 Mean data from triplicate experiments when etoposide was tested for 
induction of micronuclei (MN) using control L5178Y cells and cells 
electroporated with topoisomerase II alpha knockdown or negative control 
siRNA 
Combined data from triplicate experiments 
n = 3. Statistics: 2-sided Continuity-Adjusted Chi-Square Test. Significance decrease in 
micronuclei comparing scrambled with topoisomerase IIα knockdown: ***p<0.001 
There was no significant difference between untreated control and scrambled 

***

***

***
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The results of analysis for gemifloxacin induced micronuclei following 3 hour treatment 

of L5178Y mouse lymphoma cells used after electroporation with negative control or 

topoisomerase II alpha knockdown siRNA are shown in Figure 8.8. 
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Figure 8.8 Mean data from triplicate experiments when gemifloxacin was tested 
for induction of micronuclei (MN) using L5178Y cells electroporated with 
topoisomerase II alpha knockdown or negative control siRNA 
Combined data from triplicate experiments 
n = 3. Statistics: 2-sided Continuity-Adjusted Chi-Square Test. Significance decrease in 
micronuclei comparing scrambled with topoisomerase IIα knockdown: ***p<0.001 
 

The data presented in Figures 8.7 and 8.8 clearly show that the genotoxicity of 0.3 to 

3 µmol/L etoposide and 30 µmol/L gemifloxacin was reduced when tested on cells that 

have reduced levels of topoisomerase IIα activity.   

It should be noted that there was a degree of variability in the micronuclei induced at 

the highest concentration of gemifloxacin over the triplicate tests.  However, this was 

due to a high response in Test 1 compared to the other two tests.  There was little 

variability in the actual reduction of micronuclei when topoisomerase IIα knockdown 

cells were used (i.e. the relative number of micronuclei in 30 µmol/L gemifloxacin 

treated topoisomerase IIα knockdown siRNA transfected cells when compared to 

control siRNA transfected cells was 48%, 54% and 43% in Tests 1, 2 and 3, 

respectively).  Accordingly, the variability seen did not prejudice the observation that 

the genotoxic activity of 30 µmol/L gemifloxacin was clearly reduced when tested with 

cells that had reduced levels of topoisomerase IIα. 

***
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Whilst it would be wrong to read too much into the actual numbers, it was interesting to 

note that following a mean knockdown of approximately 40% over 3 tests, etoposide 

genotoxicity was reduced by approximately 50% to 60% over the range of 

concentrations tested and gemifloxacin genotoxicity was reduced by approximately 

50% at the highest concentration analysed.  For example It was shown that for 

0.3 µmol/L etoposide, topoisomerase IIα knockdown of 42% (± 2%) was associated 

with a reduction in micronuclei of 49% (± 9.7%).  For 30 µmol/L gemifloxacin, 

topoisomerase IIα knockdown of 37% (± 9.5%) was associated with a reduction in 

micronuclei of 48% (± 0.2%). Accordingly, there was a clear indication of a direct 

relationship between reduced topoisomerase IIα levels and the level of genotoxicity 

induced by etoposide and gemifloxacin.  This is believed to be the first time such a 

relationship has practically been established. 

There was also limited data to suggest that as well as reducing genotoxicity, 

knockdown of topoisomerase II alpha also reduced cytotoxicity (e.g. at 0.3 µmol/L 

etoposide, untransfected cells gave 33% RPD whereas topoisomerase II alpha siRNA 

transfected cells gave 83% RPD). 

8.4 Conclusion 

The data presented clearly demonstrate that the genotoxicity of etoposide and 

gemifloxacin was directly associated with the nuclear levels of topoisomerase II alpha.  

This confirms two major points: 

1. With some certainty we can relate the genotoxicity of these agents to their 

activity against the alpha isoform of topoisomerase II.  This is the first time such 

a direct link has been definitively established. 

2. These data contradict some of the earlier work from Cowell’s laboratory (Cowell 

and Austin., 2012a; Cowell and Austin., 2012b; Cowell et al., 2012) which 

suggested the genotoxicity of etoposide in Nalm-6 cells was driven by the beta 

isoform of the enzyme whereas its cytotoxicity was driven by the alpha isoform 

of the enzyme.  In L5178Y cells, both the genotoxicity and cytotoxicity of 

etoposide was linked to the activity of the alpha isoform. 
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9 General discussion and future possibilities 

9.1 Introduction 
The belief that mammalian cell gene mutation assays are prone to false positives is 

widespread and has been noted in several influential papers over the last decade (Kirkland 

et al., 2005; Kirkland et al., 2007; Kirkland and Speit, 2008; Matthews et al., 2006a; 

Matthews et al., 2006b).  However, from personal experience of nearly 3 decades in in vitro 

genotoxicology, this perception seems to be unfounded, at least in the environment of 

pharmaceutical research.  Preliminary work was performed to ascertain that the cells used 

for this research were of an appropriate provenance and karyotype (Chapter 2, Appendix 1).  

Once this was established, the initial aim of this thesis was to put into perspective the real 

incidence of positive findings in the mouse lymphoma assay (MLA) from a decade of 

screening at AstraZeneca UK (Chapter 3, Appendix 1).  This showed that the rate of 

unexplained positives was only 5%, vindicating the use of the test in screening paradigms.  

However, there were still 5% of positive results that could not be readily explained by 

primary pharmacology or by likely DNA reactivity.  The further aims of this thesis were to 

investigate the contribution that off target aneugenicity (chromosome loss or gain) or 

topoisomerase II poisoning might make to this.  It was shown that the MLA is not an 

appropriate screen for aneugenicity, so this mechanism cannot contribute to the number of 

unexplained positive results in this test system (Chapter 3, Appendix 1).  However, 

topoisomerase II poisoning is a known potent genotoxic mechanism and topoisomerase II 

poisons are readily identified in the MLA and other mammalian cell in vitro genotoxicity 

screens (Lynch et al., 2003).  There are several screens than can be used to identify 

topoisomerase II poisons (Fisher and Pan, 2008; Willmore et al., 1998; Subramanian et al., 

2001), but little work has been done to directly link the ability of these tests to predict 

mammalian cell genotoxicity. The ability of topoisomerase II poisons to prevent cell free DNA 

decatenation in the presence of the enzyme and whether this could be used as a screen for 

genotoxicity, along with the ability of this test to identify the genotoxic mechanism of a 

pharmaceutical research compound which had an unexpected positive finding in the MLA, 

was investigated (Chapter 4, Appendix 1).  This simple cell free test was not an ideal screen 

for genotoxicity.  Accordingly the potential value of cell assays for topoisomerases II 

poisoning were considered.  However, previous data from the TARDIS assay had shown 

that for reference compounds (e.g. etoposide) concentrations where topoisomerase II 

poisoning was seen were higher than concentrations inducing genotoxicity (Lynch et al., 

2003; Austin et al., 1995).  This seemed illogical, so work was undertaken to establish the 
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lowest observable genotoxicity level of the topoisomerase II poisons etoposide and 

gemifloxacin and equate this to the lowest observable concentration inducing a response in 

the TARDIS and ICE bioassays for measurement of topoisomerase II induced DNA 

stabilised cleavage complexes (Chapter 5).  Unfortunately, despite initial assay 

improvements, cleavage complex formations could still not be detected at concentrations 

equal to or below which genotoxicity was seen.  This suggested that either these assays 

were not sensitive or that etoposide and gemifloxacin were genotoxic by other mechanisms, 

the most likely of which was reactive oxygen species (ROS) induction.  Investigation of the 

potential of these compounds for ROS induced genotoxicity using a modified version of the 

Comet assay showed that this mechanism could not contribute to the measured genotoxicity 

(Chapter 6).  Hence the most likely explanation for the discrepancy between concentrations 

inducing measurable genotoxicity and measureable topoisomerase poisoning was the 

sensitivity of the cleavage complex assays.  Attempts were made to further improve this 

sensitivity by preparation of mouse specific antibodies targeting sites spanning the 

topoisomerase II enzyme.  Using these antibodies little improvement was seen in the 

response of the TARDIS assay, but for the first time the ability of etoposide to induce 

stabilised cleavage complexes and genotoxicity was seen at similar concentrations in the 

ICE assay.  Furthermore, it was shown that antibodies targeting sequences towards the n-

terminus of the topoisomerase II enzyme were generally the most efficient (Chapter 7).  

Finally, data emerging over the period of this research linked the genotoxicity of 

topoisomerase II poisons to their activity against the beta isoform of the enzyme (Cowell and 

Austin., 2012a; Cowell and Austin, 2012b; Cowell et al., 2012, Smith et al., 2014).  As this 

project had concentrated on the activity of the alpha isoform, these new data seriously 

questioned much of the research undertaken.  To demonstrate that etoposide and 

gemifloxacin poisoning of topoisomerase II alpha in mouse lymphoma cells could induce 

genotoxicity, a topoisomerase II alpha siRNA was used to specifically knock down the alpha 

isoform of the enzyme by approximately 50%.  This lead to a similar reduction in 

genotoxicity, for the first time indicating a direct relationship between the intra nuclear level 

of topoisomerase II alpha and the ability of topoisomerase II poisons to induce genotoxicity 

(Chapter 8). 

9.2 The importance of authentication of cell lines used in 
research 

At the beginning of the research within this thesis it was considered to be of primary 

importance to confirm the provenance of the cell line used.  There are all too many reported 

cases of research projects advancing to a late stage only to discover that the cell lines used 

were either contaminated, or worst still, not actually the correct cell line the researchers 
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believed they were investigating (MacLeod et al., 1999; Capes-Davis et al., 2010; Derxler, 

2010).  Plus by default there must be many research projects that have used contaminated 

cells without being aware of the problem.  For example, work at the German Collection of 

microorganisms and Cell Cultures showed that out of 598 leukaemia or lymphoma cell lines 

analysed, 31% were either contaminated with mycoplasma, with another cell line, with both 

or were not the cell line described by the supplier (MacLeod et al., 1999; Capes-Davis et al., 

2010; Derxler, 2010). Over passaging or culturing can also lead to genetic drift and instability 

of karyotype (Hughes et al., 2007).  The provenance of the mouse lymphoma L5178Y tk+/- 

cells, clone 3.7.2c, used for this research was very well established and could be traced 

back to the laboratory where the MLA was first developed, with minimal culturing since 

(Chapter 2, Table 2.1).  These cells had also been demonstrated to be mycoplasma free by 

PCR analysis (data not shown).  However, it was still considered to be prudent to confirm the 

cells karyotype.  The spectral karyotyping confirmed that the cell stock had the same 

spectral karyotype as had been previously published (Sawyer et al., 2006), with the caveat 

that the origin of some of the stable translocations was refined.  It was considered that the 

spectral karyotype defined in the current investigations should be used as the definitive 

karyotype for L5178Y TK+/- mouse lymphoma cells clone 3.7.2C.  Furthermore, as part of an 

International Life Sciences Institute / Health and Environmental Sciences Institute 

(ILSI/HESI) Genetic Toxicology Testing Committee (GTTC) project to provide well 

characterised cells as close to the original isolates as possible, these cells have now been 

expanded and deposited at the European Collection of Animal Cell Cultures (ECACC) and 

Japanese Collection of Research Bioresources Cell Bank (JCRB) and are internationally 

available for any group wishing to establish or re-establish the MLA. 

Continual culturing L5178Y cells for up to six months did not markedly affect the modal 

chromosome number of 40 nor did it induce marked increases in the percentage of cells with 

higher or lower chromosome numbers.  Accordingly, the karyotype of L5178Y mouse 

lymphoma cells in continuous culture was considered to be surprisingly stable for a 

transformed cell line.  This work was considered to be a gold standard for establishing that 

the cell lines used in a research project were of an appropriate provenance (Chapter 2, 

Appendix 1).   

9.3 The predictivity of the Mouse Lymphoma Assay (MLA) 

It was hoped that the work looking into the predictivity of the MLA in pharmaceutical 

research would significantly contribute to the debate on the over sensitivity of mammalian 

cell genotoxicity screens (Chapter 3, Appendix 1).  This work was the first in its kind where a 

thorough review of the pharmacology of over 400 research medicine compounds was 
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reviewed and related to the mammalian cell genotoxicity of the agents and their activity in 

bacterial cell and in vivo assays.  The ‘real’ MLA unexplainable positive rate of only 5% was 

perhaps surprising, but was also a reflection of how improved testing protocols for in vitro 

genotoxicity screens means uninterruptable positives from testing to excessively high 

concentration, high toxicity, high pH or high osmolality are now avoided (Moore., et al 2002; 

Moore., et al 2003; Moore., et al 2006; Moore., et al 2007; ICH, 2011).  However, this work 

has not prevented other groups still questioning the relevance of in vitro genotoxicity 

screens.  This is perhaps understandable in industries outside of pharmaceutical research 

where the pharmacology of research compounds is generally not so well understood, and it 

is clearly a high priority topic in the cosmetic industry where in vivo testing in Europe is no 

longer allowed.  Recent publications by Fowler et al have continued to work on the 

predictivity of in vitro genotoxicity screens for cosmetics (Fowler et al., 2012a;  Fowler et al., 

2012b; Fowler et al., 2014).  They focussed on a subset of compounds that have previously 

been reported to be ‘false’ positives and concluded that use of P53 competent cell lines were 

preferable for the MN(vit).  However, it is questionable whether focussing on a sub-set of 

difficult compounds is of real value when assessing the worth of screening assays.  No 

screen is perfect, hence the requirement in most genotoxicity testing paradigms to test a 

battery.  There is also some question regarding Fowler et al’s conclusions, a close 

inspection of his data suggests that there was as much difference in the predictivity of the 

MN(vit) between assays with or without cytokenisis block as there was between P53 

competent or non-competent cell lines.  It was considered that the ‘real life’ data reviewed in 

this thesis gives a broader analysis of the usefulness of the MLA as a screening tool.  There 

are also several other on-going initiatives looking into the predictive power of in vitro 

genotoxicity tests, including those run by ILSI/HESI, from which there are emerging data 

showing the predictivity of in vivo genotoxicity tests for carcinogenic potency and even the 

predictivity of in vitro tests for the same (Gollapudi et al 2013; ILSI/HESI, 2014).  This is a 

really valuable exercise for the future to genuinely put into perspective the worth of 

genotoxicity screening.  It is hoped that the work on the predictivity of the MLA described in 

this thesis has helped with some of these initiatives.   

Whatever the overall predictive power of the MLA, it was clear that the assay cannot 

routinely identify a range of aneugens with diverse mechanisms of action (Chapter 3, 

Appendix 1).  This work was the first time a convincing data set had been published showing 

the insensitivity of the MLA for this mechanism and demonstrated that monosomy at 

chromosome 11 is likely to be a lethal event.  This ended over two decades of debate as to 

whether the MLA could be used as a screen for aneugenicity.  Unfortunately, the work was 

not available in time to influence the most recent ICH guidance (ICHS2(R1), 2011).  
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However, it is hoped that it will be of use for determining future regulatory screening 

paradigms. 

It was clear that aneugenicity could not contribute to the 5% of mechanistically unexplainable 

positive responses seen in the retrospective review of MLA data, but topoisomerase II 

inhibition was a known target for 9 of the 40 MLA positives and 7 of the 10 Ames positives.  

Accordingly off-target topoisomerase II inhibition seemed to be a plausible mechanism to 

explain some of the hitherto unexplained responses.  From reviews of the available literature 

it was clear that few laboratories had convincingly dosimetrically linked topoisomerase II 

inhibition to genotoxicity (Lynch et al., 2003; Smart et al., 2008; Smart, 2008; Cowell and 

Austin, 2012a). The work in this thesis aimed to prove this link and devise methodologies for 

screening compounds for topoisomerase II potential and perhaps more importantly devise 

tools which could be used to determine if genotoxic compounds were targeting 

topoisomerase II. 

9.4 Methods used to detect topoisomerase II cleavable complexes 
and their relationship to in vitro genotoxicity 

Perhaps unsurprisingly, the work detailed in Chapter 4 confirmed that cell free assays are 

not very useful tools for stoichiometric comparisons between effects at the DNA/enzyme 

level and mammalian cell genotoxicity.  The complexities of biological systems compared to 

reactivity with naked DNA circlets were clearly very different.  However, it was perhaps 

difficult to understand why such high concentrations were required to inhibit the enzyme in 

the decatenation assay as compared to genotoxicity (e.g. for etoposide; LOGEL was 

0.03 µmol/L compared to decatenation IC50 of 4 to 6 µmol/L).  That being said the assay did 

have some potential for the bold ranking of compounds e.g. as an early screen of new 

chemistry and its possible effect on mammalian topoisomerase II.  The assay is quick and 

easy to run and could possibly have a role in identifying the real bad actors as far as drugs 

made to target bacterial topoisomerase II and their activity against the mammalian form of 

the enzyme i.e. compounds with a decatenation IC50 below 20 µmol/L did correlate well with 

mammalian cell genotoxicity (16 out of 18 AstraZeneca compounds correctly identified as 

potential mammalian cell mutagens).   This could be of value in the early development of 

antibiotics designed to target bacterial gyrase in is as much as chemistry that clearly has 

potent crossover activity with the mammalian form of the enzyme could be detected and 

avoided.  Unfortunately the assay performed poorly for less potent compounds and hence 

had little use as a definitive screen or as a tool for mechanistic investigations into 

compounds that may have off target effects on topoisomerase II e.g. the series of kinase 

inhibitors with an unexplained response in the MLA discussed in Chapter 4.   
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Accordingly, if there was a requirement to confirm beyond reasonable doubt that the 

mechanism of genotoxicity was not by direct DNA covalent binding (i.e. a mechanism for 

which there is considered to be no safe threshold dose that could be given to healthy 

volunteers in clinical trials) but was driven by inhibition of topoisomerase II (a mechanism 

which is considered to have a safety threshold (Tweats et al., 2007)), the cell free assay was 

not a very good screen.  The logic that any screen for activity against the enzyme should be 

able to detect lower effect concentrations than those inducing measurable genotoxicty drove 

much of the research for the later part of this thesis. 

Measurement of topoisomerase II cleavable complexes after treatment with topoisomerase II 

poisons in cells was likely to be of greater biological relevance than looking at interactions at 

the molecular level in a cell free system.  Whilst the TARDIS and ICE assays had previously 

been reported as being the most sensitive assays for measurement of cleavage complex 

formation (Cowell et al., 2011), the vast majority of the work in this thesis indicated that 

these assays generally identified cleavage complex formation at concentrations higher than 

those inducing micronuclei in L5178Y mouse lymphoma cells (Chapter 5).  The TARDIS 

assay appeared to be particularly insensitive, at least when run at AstraZeneca using the 

available image analysis software, where TARDIS failed to identify cleavage complex 

formation with gemifloxacin.  It is possible that using improved image analysis the sensitivity 

of the assay may be increased.  However, the data generated for this thesis were generally 

supported by TARDIS data from other laboratories (including Newcastle University where 

the assay was developed), which showed the requirement for testing etoposide and other 

fluoroquinolone antibiotics to very high (and most probably lethal) concentrations before any 

relevant signal could be detected (Lynch et al., 2003; Rance et al., 2010).  Following the 

preparation of mouse specific antibodies, a significant improvement was seen in the 

sensitivity of the ICE assay.  Measurement of cleavage complex for etoposide from 

concentrations as low as 0.03 µmol/L was achieved (giving a greater than 5-fold increase 

above background).  This lowest effect level was far lower than had previously been 

reported.  A recent review by Nitiss et al indicated an increase in cleavage complex 

formation of only approximately 2.5-fold above background at 10 µmol/L etoposide (Nitiss et 

al., 2012),  a concentration some 300-fold above the lowest effect level detected in the work 

for this thesis.  This indicated just how much the sensitivity of the ICE assay could be 

improved by using specifically designed antibodies and imaging techniques.  The 

observation that antibodies targeting areas of the enzyme towards the n-terminus were 

preferable, presumably because this area is more available once the closed clamp 

topoisomerase II / DNA cleavage complex is formed, will also provide guidance on future 

antibody design when investigating topoisomerase II DNA interactions. 
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Whilst the improvements in the sensitivity of the ICE assay were welcome, it should still be 

noted that the assay is very time consuming and low throughput.  The requirement for 

overnight ultra-centrifugations means generally no more than 6 cultures can be run at any 

one time.  This would not preclude its use as a screen for off target topoisomerase II effects, 

but would mean that it could only realistically be used for investigating a very limited number 

of compounds.  The assay also uses a relatively large amount of material.  To provide 

sufficient DNA for analysis, at least 10 mL of cell culture is required.  Hence, when testing up 

to a highest concentration of 500 µg/mL (common in pharmaceutical research), 

approximately 20 mg of compound would be required for a single test spanning 4 

concentrations.  In early pharmaceutical development this amount of compound is often not 

available; for example, it would have been useful to have used the ICE assay to investigate 

whether the off-target topoisomerase II poisoning of the kinase inhibitors discussed in 

Chapter 4 was responsible for the observed mammalian cell genotoxicity, unfortunately 

sufficient material was not available. 

Furthermore, even with the improvements in the sensitivity of the ICE assay, it was still not 

possible to detect cleavage complex formation at concentrations lower than those inducing 

micronuclei.  However, other than simple consideration of the sensitivity of the assays it 

should also be noted that the sensitivity of the various statistical analysis methods used 

could also have influenced the calculated LOGEL for micronucleus formation or the LOCCEL 

for cleavage complex formation.  The data generated for micronuclei are not continuous 

hence conform to a Poisson like distribution; accordingly a continuity adjusted Chi-squared 

test was used for analysis.  However, the fluorescence intensity data from ICE are 

continuous, hence more closely fitting normal distribution; as such a T-test was used with 

square root transformation to even out variance.  There was a concern that using such 

different analyses could influence the significance of the relevant increases.  Emerging 

methodologies for analysis of genotoxic data suggested that rather than using no effect 

levels based on significance from particular statistical models, a better approach was to use 

a benchmark dose (Gollapudi et al., 2013; Johnson et al., 2014; Cao et al., 2014).  In short, 

this benchmark dose (BMD) approach analyses the nature of dose-response curves and 

calculates a concentration which induces a modelled 10% increase above background 

(calculated by using the estimated lower limit of the one-sided 95% confidence interval of a 

concentration that induces a calculated 10% increase in effect above background (BMDL10)).  

This can be calculated for concentrations below those analysed and is considered to be a 

good estimate of a point of departure (POD), below which there is considered to be no 

observable effect (Gollapudi et al., 2013).  Software to calculate BMD (PROAST) has been 

developed by the Netherlands National Institute for Public Health and the Environment and 
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is publically available (PROAST, 2014).  With the help of AstraZeneca Discovery Sciences 

statistics department, using PROAST software, the BMDL10 was calculated for etoposide 

and gemifloxacin ICE and MN(vit) data.  The ICE BMDL10 was 0.0011 µmol/L for etoposide 

and 5.65 µmol/L for gemifloxacin.  The MN(vit) BMDL10 was 0.0017 µmol/L for etoposide and 

1.26 µmol/L for gemifloxacin.  It should be noted that the estimated etoposide MN(vit) 

BMDL10 was calculated on an exponential curve fitting model only, the Hill model also used 

by the software could not be calculated.  This was believed likely to be due to a lack of fit at 

the top of the curve.  The BMDL10 did estimate a slightly lower POD for ICE than MN(vit) for 

etoposide, whilst for gemifloxacin the POD for the MN(vit) was lower.  The calculated 

LOGEL and LOCCEL (from the work presented in Chapter 7) and BMDL10 for etoposide and 

gemifloxacin are summarised in Figures 9.1 and 9.2 and Table 9.1. 
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A

B C

Etoposide MN(vit) (Expn)

Etoposide ICE (Expn) Etoposide ICE (Hill)

 

Figure 9.1: PROAST curves for bench mark dose analysis of etoposide MN(vit) (graph 
A) and ICE data (graphs B and C) 
Expn = Exponential curve fitting model.  Hill = Hill curve fitting model 
CES = Critical Effect Size (or Benchmark Response) - set at a 10% increase above the 
background response  
CED = Critical Effect Dose (or Benchmark Dose)- is the concentration at which a 10% 
increase over background is estimated to occur 
The lowest Benchmark Dose from the 2 models was used as the calculated lowest 
Benchmark Dose (BMDL10).  For etoposide MN(vit), only the exponential model fitted 
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Gemi MN(vit) (Expn)D E Gemi MN(vit) (Hill)

F Gemi ICE (Expn) G Gemi ICE (Hill)

 

Figure 9.2: PROAST curves for bench mark dose analysis of gemifloxacin MN(vit) 
(graphs D and E) and ICE data (graphs F and G) 
Expn = Exponential curve fitting model.  Hill = Hill curve fitting model 
CES = Critical Effect Size (or Benchmark Response) - set at a 10% increase above the 
background response  
CED = Critical Effect Dose (or Benchmark Dose)- is the concentration at which a 10% 
increase over background is estimated to occur 
The lowest Benchmark Dose from the 2 models was used as the calculated lowest 
Benchmark Dose (BMDL10) 
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Compound LOGEL 
(µmol/L) 

LOCCEL 
(µmol/L) 

MN(vit) BMDL10 
(µmol/L) 

ICE BMDL10 
(µmol/L) 

Etoposide 0.03 0.03 0.0016 0.0011 

Gemifloxacin 10 30 1.26 5.56 

Table 9.1: Etoposide and gemifloxacin lowest observable effect levels genotoxicity 
(LOGEL) or cleavage complex (LOCCEL) and benchmark doses (BMDL10) 

As expected from the use of BMD modelling, the actual BMDL10 concentration was lower 

than the lowest observable effect levels.  However, it was reassuring that both methods were 

in agreement in so much that detection of etoposide induced cleavable complexes was at 

similar concentrations to induction of micronuclei, but there was a greater difference 

between these concentrations for gemifloxacin.  By whichever analysis method used, 

cleavable complex detection could not clearly be seen at concentrations markedly below 

those for which an increase in micronuclei was seen.  The improvements in the ICE assay 

and the use of BMDL10 have demonstrated for the first time that cleavage complex formation 

and genotoxicity can be seen at equivalent concentrations for etoposide.  However, during 

this research it was not possible to determine why cleavable complex formation could not be 

detected at concentrations similar to micronuclei induction for gemifloxacin.  Other 

mechanisms of genotoxicity did not seem to be relevant for gemifloxacin, there is nothing 

published to suggest that gemifloxacin can form DNA adducts and the observation that ROS 

(as measured by the modified COMET assay (Chapter 6)) did not contribute to the 

genotoxicity of either etoposide or gemifloxacin in L5178Y mouse lymphoma cells confirmed 

the specificity of the mechanism of action of both of these two topoisomerase II poisons.  A 

recent publication by Williams et al also investigated the LOCCEL of two other 

fluoroquinolone antibiotics (clinafloxacin and lomefloxacin).  Their data appeared to suggest 

that cleavage complex formation occurred at lower concentrations than genotoxicity 

(Williams et al., 2013).  This was surprising, especially as they reported a LOCCEL for 

etoposide of 0.17 µmol/L, some 6-fold higher than the LOCCEL achieved for this thesis.  

However, on closer examination the calculated NOGELs they used were from literature 

reviews, i.e. from experiments that were not specifically designed to calculate lowest effect 

levels using the most sensitive analysis methods available.  Accordingly, these data are not 

considered to contradict the data presented in this thesis. 
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9.5 The role of topoisomerase II alpha poisoning in causing 
mutation 

Whilst a direct dosimetric link between genotoxicity and topoisomerase II poisoning was 

established for etoposide, this link was in effect circumstantial and the emerging data 

suggesting etoposide induced mutation and carcinogenicity was driven by the beta isoform 

of topoisomerase II questioned a great deal of the work for this thesis which had 

concentrated on the poisoning of topoisomerase II alpha.  This may also have explained why 

there was a greater discrepancy between LOGEL and LOCCEL for gemifloxacin i.e. if 

gemifloxacin has a greater affinity for the beta isoform, it would not have been seen using 

cleavage complex assay with antibodies to topoisomerase II alpha.  The recently published 

work on the poisoning of topoisomerase II beta and mutation included review of an earlier 

proposed mechanism for proteolytic degradation of topoisomerase II beta specific cleavage 

complexes (Xiao et al., 2003).  This mechanism, along with the elucidated role for 

topoisomerase II beta in transcription, lead to the hypothesis that double strand DNA breaks 

form following proteolytic degradation of topoisomerase II beta cleavage complexes during 

transcription.  This being the suggested mechanism for the 11q23 translocation involving the 

MLL gene associated with etoposide therapy related secondary leukaemia (Cowell and 

Austin., 2012a; Cowell and Austin, 2012b).  This possible role of topoisomerase II beta in 

mutagenesis has far greater consequences than invalidating some of the research for this 

thesis.  It is driving the development of new cancer chemotherapeutic medicines to target 

topoisomerase II alpha with the hope that this will reduce the potential for secondary 

malignancies.  This is a difficult task as the homology between topoisomerase II alpha and 

beta generally means compounds target both isoforms of the enzyme with similar potencies 

(Shapiro and Austin, 2014), hence a lot of research time and resource is required to pursue 

this.  Accordingly, the work for this thesis in which it was clearly demonstrated that the 

mammalian cell genotoxicity of etoposide and gemifloxacin is driven by their activity against 

the alpha isoform of the enzyme was of particular significance (Chapter 8).  This activity has 

been hinted at before (Lynch et al.,  2003; Williams et al., 3013), but these data are the first 

to demonstrate a direct relationship between the knockdown of topoisomerase II alpha and a 

reduction in genotoxicity.  It would clearly be premature to suggest that this invalidates the 

previous work linking the activity of poisoning topoisomerase II beta and secondary 

malignancies.  All that has really been achieved is to demonstrate that in a particular cell line 

a particular genotoxic end-point (chromosome breakage as measured by formation of 

micronuclei) is linked to poisoning of topoisomerase II alpha.  A great deal more research in 

leukemic cell lines of relevance to secondary malignancies and in vivo models would be 

required before it could be considered that the current hypothesis (i.e. proteolytic activity 
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against topoisomerase II beta cleavage complexes leading to etoposide induced cancers) is 

incorrect. 

One other consequence of the work directly linking poisoning of topoisomerase II alpha and 

micronuclei induction is the potential for this to be used in a novel screening assay.  All of 

the screens used for the research in this thesis have either been unable to unequivocally link 

genotoxicity to topoisomerase II poisoning (e.g. the cell free decatenation assay, the 

chloroquine or novobiocin block MN(vit) and the TARDIS assay) or are excessively time 

consuming and of potential only for low throughput screening (e.g. the ICE assay).  The 

proposed new assay would involve the creation of a stabilised L5178Y mouse lymphoma cell 

line with approximately 50% knockdown of topoisomerase II alpha.  Short hairpin RNA 

(shRNA) and siRNA technologies are now available to achieve this (Salazar et al., 2014).  

Using these cells along with non-knockdown L5178Y mouse lymphoma cells in a side by 

side comparative MN(vit) assay could be used to determine whether genotoxicity associated 

with a compound was driven by its poisoning of topoisomerase II alpha i.e. if the compounds 

mode of action was by poisoning of topoisomerase II it would be expected that induction of 

micronuclei would be reduced by approximately 50% in the knockdown cell line.  Combining 

the assay with a 96 well plate flow cytometric format MN(vit) would have potential for a high 

throughput screen using minimal test compound (1-2 mg) (Bryce et al., 2013).  Clearly a lot 

more validation work would be required before this proposed assay could be practically used 

in pharmaceutical research and development, but the potential is there. 
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the response of the compounds in a MN(vit) with L5178Y mouse lymphoma cells with a 

stabilised approximate 50% knockdown of topoisomerase II alpha and in cells without 

knockdown would provide information on: 

a. Whether the compound is genotoxic by a mechanism not involving topoisomerase II 

poisoning (i.e. positive response similar in both cell lines).  If the mechanism was via 

direct DNA adduct formation, the medicine could not be safely used in man. 

b. Induces genotoxicity via interaction with mammalian call topoisomerase II (i.e. 

positive response reduced in knockdown cells).  Such compounds could still make 

safe and efficacious medicines if it could be demonstrated that the effect was not 

seen in vivo or if there was a suitable safety margin between the genotoxic dose and 

the likely plasma exposure in man. 

c. Is not genotoxic.  Which for compounds designed to target bacterial gyrase, and 

assuming the medicine has potent bactericidal activity, would show that the 

compound has much higher affinity for the bacterial enzyme, indicating its value as 

an antibiotic. 

9.7 Future investigations 
Given the constraints of this research project it has not been possible to fully elucidate all of 

the mechanistic interactions between the topoisomerase poisons investigated and 

genotoxicity nor to complete all the work required to confirm the value of the screening 

paradigm detailed in Section 9.6.  In particular, to bolster the data presented the following 

should be considered. 

1. Confirm that etoposide and gemifloxacin do not form DNA adducts.  There are no 

reliable literature reports that either of these compounds can form DNA adducts, and 

for gemifloxacin the response in the Ames assay (positive only with bacterial strains 

capable of DNA Repair (Gocke., 1991)), suggest direct DNA reactivity of these 

compounds is unlikely.  However, if time had allowed this would have been 

confirmed.  Unfortunately, radio-labelled drug was not available to perform direct 

DNA binding studies with these compounds, and facilities were not available to 

perform P32 post labelling for adduct detection.  A small amount of preliminary work 

was performed in association with Leicester University using mass spectrometer 

technologies for adduct detection (Farmer et al., 2008; Singh et al., 2010).  The initial 

data were promising and by using online column-switching liquid chromatography 

electrospray ionization tandem mass spectrometry, obvious etoposide or 

gemifloxacin adducts associated with naked DNA treatment were not observed (data 
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not shown).  However, as it was not clear exactly what adducts should be looked for, 

this process potentially lacked sensitivity.  In collaboration with Leicester, there is a 

project to improve the sensitivity of mass spectrometry for adduct detection by first 

removing endogenous nucleotides, hence analysing only modified bases.  If this 

proves successful, etoposide and gemifloxacin will be further analysed to confirm that 

they do not directly form DNA adducts. 

2. Confirm the predictivity of the topoisomerase II knockdown MN(vit) assay by running 

more compounds.  Clearly the potential screening ability of the use of topoisomerase 

II knockdown cells has far from been established.  Whilst the work with etoposide 

and gemifloxacin hints at its worth, several validation steps need to be completed.  

Including preparation of a stable knockdown cell line, confirmation that the assay 

correctly predicts other known mammalian cell topoisomerase II poisons including 

those with weak effects such as ciprofloxacin and confirmation that topoisomerase II 

knockdown does not also reduce the genotoxic effects of mutagens with different 

modes of action. 

3. Extrapolation of the predictivity of topoisomerase II poisoning from in vitro to in vivo.  

The work for this thesis concentrated on the ability of topoisomerase II poisons to 

induce mutation in vitro.  Clearly for risk assessment it is important to understand 

what the relationship is between in vitro and in vivo effects and ultimately the 

potential hazard to man.  Both etoposide and gemifloxacin are potent in vitro and in 

vivo mutagens (Ashby et al., 1994; Turner et al., 2001; Rothfuss et al., 2010), 

ciprofloxacin is a weak in vitro mutagen (Lynch et al., 2003) and is negative in vivo 

(Herbold, 2001).  Does this relationship between weak in vitro effects hold true for 

other topoisomerase II poisons and specifically for compounds that are positive for 

both topoisomerase II inhibition and genotoxicity in the screening assays detailed in 

Section 9.6?  This idea has been pursued further with topoisomerase II (gyrase) 

targeting compounds from the AstraZeneca infection portfolio, where it has been 

demonstrated that weak in vitro mutagens are negative in vivo, whereas potent in 

vitro mutagens whose mode of action is targeting topoisomerase II are positive in 

vivo (data not shown).  This work also hinted at a reduction in other in vivo toxicities 

(e.g. bone marrow toxicity) for compounds negative for in vitro genetic toxicity.  

Suggesting that mammalian cell genetic toxicity is a good biomarker for cross 

reactivity of compounds designed to target bacterial gyrase with the mammalian 

enzyme. This could potentially mean that the sort of screening cascade proposed in 

Section 9.6 may help to reduce the potential risk from other toxicity associated with 

topoisomerase II interactions as well as the potential for mutation and cancer.  
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Confirmation of this relationship would greatly aid the risk assessment of these 

compounds.  Whilst the work on this has been completed and drafted for publication, 

unfortunately as propriety AstraZeneca compounds were used, permission to publish 

was not received in time for the data to be included in this thesis. 

9.8 Final conclusions 

The majority of the aims set out for this thesis were achieved.  Data has been presented to 

provide reassurance that the mouse lymphoma assay is not prone to the generation of large 

numbers of false positive results when used in a pharmaceutical screening setting.  

However, it has been shown that the mouse lymphoma assay is not an appropriate screen 

for aneugenicity.  Using the model compounds; etoposide and gemifloxacin, an improvement 

in the understanding of the relationship between topoisomerase II poisoning and 

genotoxicity has been made.  The sensitivity of assays to measure topoisomerase II 

inhibition has been put into perspective and for the first time a thorough investigation into 

how the sensitivity of these assays relates to in vitro mammalian cell genotoxicity has been 

completed.  Also for the first time the contribution of poisoning of topoisomerase II alpha to in 

vitro mammalian cell genotoxicity has been elucidated, potentially having a significant impact 

on the general understanding of the relationship between chemical interactions with the two 

isoforms of topoisomerase II and cancer.  Finally, following on from the work investigating 

topoisomerase II alpha and associated genotoxicity, a novel screening paradigm has been 

proposed that could potentially de-risk chemical series designed to target bacterial 

topoisomerase II, thus significantly helping the development of important new medicines to 

tackle the unmet need of infectious disease. 
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