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General Abstract 

Enterococci are Gram-positive bacteria that inhabit the gastrointestinal tract 
of humans and animals as commensal flora. In recent years two species, 
Enterococcus faecalis and Enterococcus faecium, have become an 
increasing medical concern by virtue of their ability to gain and spread 
antibiotic resistance.  
 
In this study, genomes of vancomycin-resistant isolates of E. faecium from 
pig, chicken and calf were sequenced using 454 and PacBio platforms.  The 
assembled genomes were annotated and compared with human E. faecium 
isolates to identify their repertoire of genes potentially associated with 
colonising each host. Phylogenomics of E. faecium was used to investigate 
the relationship between animal and human strains. The genomes of the 
chicken, pig and calf isolates differed in size (2.5 Mb to 3.3 Mb) with the 
size difference due to horizontally-acquired elements (mostly phage, 
transposons and insertion sequences); the chicken isolate genome contained 
five prophages.  
 
A mega-plasmid present in each of the sequenced E. faecium was revealed 
to be integrated into the genome of the chicken isolate. Comparison of the 
three genomes identified putative niche adaptation genes with a variety of 
proposed functions, particularly carbohydrate utilisation.  Possible factors 
that explain E. faecium sub-populations, including clinical, commensal and 
animal isolate clades were examined. Use of the PhenoLink relationship 
tool to examine the E. faecium sub-populations identified that putative niche 
specific genes include carbohydrate utilisation genes and mobile genetic 
elements.  
 
Temperate bacteriophages are known to be important drivers of genome 
plasticity in E. faecium species. The diversity of prophages and their 
relationship between was investigated after locating 56 prophage elements 
containing integrase and lysin genes encoded in the 139 publicly available 
E. faecium genomes. Comparative analysis of these prophages identified 
eight sequence types, which differed in size and gene content.  The 
prophage genomes comprised between 17 to 72 ORFs and their size ranged 
from 13.9 to 55.1 kb with 35% to 37.9% average G+C content. Based on 
alignment analyses of the major functional proteins encoded in the prophage 
genomes (integrase, terminase large subunit, tail protein and holin) each was 
assigned a sequence type. All of the prophage integrases were identified to 
be tyrosine (XerC) recombinases and many of their respective attP/attR 
sequences were identified. The mosaic nature of E. faecium prophage 
genome sequence types supports previous hypotheses that extensive genetic 
recombination drives chimeric phage types. 
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1.1 History of the Genus Enterococcus 

Enterococcus was historically termed as a taxonomically diverse genus 

identified as being 'faecal streptococci', associated with the gastrointestinal 

tract of human (Giraffa 2002). Thiercelin in 1899 first coined the term 

'enterocoque' to describe a newly found Gram-positive diplococcus species. 

Andrews and Horder in 1906, isolated the same organism from an 

endocarditis patient and named it  'Streptococcus faecalis' (Murray 1990). 

 

Based on antigens identified as being group-specific, enterococci were 

placed in Streptococcus group D, while pyogenic streptococci belong to 

groups A, B, C, E, F or G using antisera. Enterococci were thus classified as 

group D streptococci because of their morphology and Lancefield 

antigenicity. The antigenicity of the carbohydrate moiety of the cell wall is 

distinguished according to a system devised by Lancefield in the 1930s 

(Smith, Niven et al. 1938). The established lancefield antigen of 

Streptococcus is a virulence determinant. For example, in group A 

streptococci it plays a significant role in resistance to platelet-derived 

antimicrobials in serum, neutrophil killing and the cathelicidin antimicrobial 

peptide LL-37 (van Sorge, Cole et al. 2014).  

 

Many efforts were made to classify these organisms into better taxonomic 

groups due to their great diversity. A new classification pattern was 

proposed by Sherman in 1937 that classified streptococci into four main 

groups namely pyogenic, viridans, lactic streptococci and enterococci. In 

1984 research carried out using nucleic acid hybridization revealed the latter 
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group showed only weak association to streptococci (Sherman, Mauer et al. 

1937). Subsequently based on nucleic acid techniques, DNA hybridisation, 

DNA: rRNA hybridisation and 16S rRNA sequencing revealed that S. 

faecalis and S. faecium were only distantly related to other streptococci.  

The new genus named Enterococcus was proposed and S. faecalis and S. 

faecium were removed from the genus Streptococcus and renamed as 

Enterococcus faecalis and Enterococcus faecium, respectively (Schleifer, 

Kilpper-Balz et al. 1984, Ludwig, Seewaldt et al. 1985). The classification 

of enterococci has always been challenging because it is a heterogeneous 

group of Gram-positive cocci which is more closely related to the genera 

Carnobacterium, Lactococcus and Vagococcus, yet has many characteristics 

of the genus Streptococcus (Leclerc, Devriese et al. 1996). 

 

The genus of Enterococcus is composed of more than forty species (The 

National Center for Biotechnology Information, NCBI), classified on the 

basis of pigment production, motility and ability to generate acids from a 

range of carbohydrates (Fischetti, Novick et al. 2006). Based on the 

chemotaxonomic and phylogenetic studies, the establishment of 16S rRNA 

sequences led to the description of seven clonal complexes within the genus 

namely (i) E. faecalis, E. haemoperoxidus and E. moraviensis; (ii) E. 

faecium, E. durans, E. hirae, E. mundtii, E. pocinus, and E. villorum; (iii) E. 

avium, E. pseudoavium, E. malodoratus, and E. raffinosus; (iv) E. 

casseliflavus, E. gallinarum and E. flavescens; (v) E. cecorum and E. 

columbae; (vi) E. dispar and E. asini; (vii) E. saccharolyticus and E. 

sulfureus. Other species are E. gilvus, E. pallens and E. ratti (Klein 2003). 



	   4	  

While there are multiple species in the genus Enterococcus, two are 

associated with the majority of human infections, E. faecalis and E. faecium 

(Magi, Capretti et al. 2003).  

 

1.2 General Characteristics 

Species of the genus Enterococcus are facultative anaerobic cocci which 

grow as short to medium length chains or as pairs in liquid culture. They are 

catalase negative and have a fermentative metabolism (Hollenbeck and Rice 

2012). The optimum growth temperature of enterococci is 37 ºC although 

they are capable of growing over a temperature range of 10 to 45 ºC. They 

have an ability to survive at 60 ºC for 30 minutes, survive at a high pH, 

hydrolyse bile-esculin and L-pyrrolidonyl-B-naphthylamide (PYR) and 

grow in the presence of 6.5% sodium chloride (Hollenbeck and Rice 2012). 

Since Entercoccus species are resistant to harsh environmental conditions 

they are sensitive indicators of faecal contamination (Franz, Stiles et al. 

2003). 

 

1.3 Habitat and Distribution 

Enterococci are generally considered to be commensal flora in the 

gastrointestinal tract of humans and warm-blooded animals (Kuhn, Iversen 

et al. 2005, Santagati, Campanile et al. 2012). However, they are not 

restricted to these niches and enterococci are resilient species of insects and 

reptiles. They can be isolated from many plants and it has been proposed 

that enterococci are spread between plants by insects (Mundt 1961). 
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Different species of enterococci exhibit some host specificity. Most 

frequently, E. faecalis and E. faecium are found in humans and farmed 

livestock. E. faecium is the predominant species isolated from chicken and 

pig. E. durans is found both in humans and poultry. E. avium and E. 

gallinarum are restricted to poultry (Nowlan and Deibel 1967), E. columbus 

is specific to pigeons (Devriese, Ceyssens et al. 1990) and E. asini is 

specific to donkeys (de Vaux, Laguerre et al. 1998). The distribution of 

enterococcal species varies across age groups. E. faecalis is principally 

present in the intestinal microflora of young poultry, while, E. faecium and 

E. caecorum dominate in chickens around 12 weeks (Devriese, Hommez et 

al. 1991). 

 

1.4 Enterococcus as a commensal 

Commensalism is the relationship between two organisms in which one or 

both organisms gets benefits and the other organism is not harmed. In the 

colon of nearly all humans and most animals enterococci are minor 

residents, present at ~108 colony forming units per g of faeces (Gilmore 

2002).  Enterococci have effectively evolved various genetic traits which 

helps maintain their stable colonisation. Commensal isolates of E. faecium 

and E. faecalis are genetically distinct compared to infection isolates. The 

differences may be unclear, however, since immunocompromised patients 

are more susceptible to infection even with commensal strains (Jett, Huycke 

et al. 1994, Huycke, Sahm et al. 1998). 
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1.5 Enterococcal infections  

Over recent decades enterococci have been identified as an important 

opportunist pathogen causing nosocomial infections such as bacteremia, 

infective endocarditis, urinary tract infections, intra-abdominal, pelvic and 

soft tissue infections as well as surgical wound infections. The identification 

of different species of enterococci causing these infections provided 

information for epidemiological surveillance (Huycke, Sahm et al. 1998, 

Lester, Sandvang et al. 2008). Fisher et al (2009) demonstrated that the 

majority of Enterococcus infection can	   be	   considered endogenous, by 

translocation of the bacteria within epithelial cells of the intestine, which 

later cause infection through lymph nodes and consequently extend to other 

cells inside the body. 

 

1.6.1 Pathogenesis of enterococcal disease and virulence factors 

To cause disease enterococci must colonise host tissues, defend against host 

immune mechanisms and express factors that enable persistence. Multiple 

factors are known that regulate the virulence of Enterococcus species, for 

example ability to colonise the gastrointestinal tract, ability to adhere to a 

variety of extracellular matrix components, including vitronectin, 

thrombospondin and lactoferrin, and ability to adhere to oral cavity 

epithelia, urinary tract epithelia and human embryo kidney cells (Fisher and 

Phillips 2009). Pathogenicity of enterococci has been related to several key 

virulence traits associated with adhesion, translocation and immune evasion 

(Johnson 1994).  
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1.5.2 Adhesins 

The first important step for the bacteria in infection is to adhere to the host 

tissues. The most significant adhesion factors are extracellular surface 

protein (Esp), aggregation substance (Asa), Enterococcus faecalis antigen A 

(EfaA), and endocarditis and biofilm-associated pili (Ebp) (Fisher and 

Phillips 2009). Surface proteins called adhesins play a crucial part in 

binding to their eukaryotic receptors on the surface of epithelial cells, 

endothelial cells, leukocytes and the extracellular matrix. Adhesins also 

have many different roles in enhancing phagocytosis, acting as toxins and 

initiating or decreasing host inflammatory responses (Jett, Huycke et al. 

1994). 

 

1.5.2.1 Enterococcal surface proteins (Esp) 

Extracellular surface protein (Esp) was described in Enterococcus species 

by Shankar et al (1999).  These proteins were first identified in E. faecalis 

and are highly conserved in E.faecium sub-populations (Willems, Homan et 

al. 2001). Esp encodes a cell-wall-associated protein frequently associated 

with clinical isolates. This protein has a significant role in promoting 

adhesion, colonisation, immune avoidance, and has a role in antibiotic 

resistance (Foulquie Moreno, Sarantinopoulos et al. 2006).  

 

Esp is associated with enterococcal biofilm formation, which might lead to 

adhesion to eukaryotic cells, such as those of the urinary tract, and increases 

resistance to environmental stresses (Borgmann, Niklas et al. 2004).  

Comparison of the incidence of virulence and antibiotic resistance between 
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E. faecium strains of dairy, animal and clinical origin was performed by 

Mannu et al (2003) and they suggested that the esp gene may correlate with 

pathogenicity, since esp was absent in dairy isolates, comparing with 21 of 

28 clinical strains that had the gene.  Conjugation rates and resistance to 

ampicillin, ciprofloxacin and imipenem were also higher in E. faecium 

strains with esp than strains without it.  

 

1.5.2.2 Aggregation Substances Agg 

Agg is a pheromone-inducible surface glycoprotein that facilitates aggregate 

formation through conjugation, enhances adhesion to a range of eukaryotic 

surfaces and plasmid to transfer (Koch, Hufnagel et al. 2004). The existence 

of Agg raises the hydrophobicity of the enterococcal cell surface promoting 

localisation of cholesterol to phagosomes and many interrupt or inhibit 

fusion with lysosomal vesicles (Eaton and Gasson 2002).  

 

Pulsed-field gel electrophoresis analysis performed by Billstrom et al 

(2008) indicated that the gene encoding Agg exists in clinical isolates of E. 

faecalis but not E. faecium. Adhesion to collagen of E. faecalis (Ace) or E. 

faecium (Acm) is another cell-surface protein belonging to the microbial 

surface components identifying adhesive matrix molecules (MSCRAMM) 

family (Fisher and Phillips 2009).  

 

Sex pheromones were recognised in E. faecalis by identifying a clumping 

reaction that occurs through conjugative transfer of plasmids (Wirth 1994). 

The pheromones are chromosomally encoded small peptides composed of 
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seven to eight amino acids encouraging a mating response in cells with 

corresponding conjugative plasmids. Sex pheromones trigger 

chemoattraction of neutrophils causing granule enzyme secretion and 

respiratory burst (Ember and Hugli 1989).  

 

1.5.3 Biofilm  

Singh et al (2007) suggested that the capability of enterococci to generate 

biofilms is essential in producing endodontic, endocarditis and urinary tract 

infections. The formation of pili is required for biofilm formation. The 

endocarditis- and biofilm-associated pili gene cluster  (ebp) contributes to 

the production of biofilm in enterococci. The ebp operon contains ebpA, 

ebpB ebpC and encoding pilus subunits srtC encoding sortase C that 

catalyses their covalent attachment to peptidoglycan and are found on the 

surface of E. faecalis and E. faecium (Nallapareddy, Singh et al. 2006, 

Sillanpaa, Prakash et al. 2009). Enterococcal pili are heterotrimeric and the 

pilus shaft contains two minor pilins 

 

1.5.4 Secreted virulence factors 

	  

1.5.4.1 Cytolysin 

Cytolysin (also called haemolysin) is a bacterial toxin that has β-haemolytic 

properties and is bactericidal against other Gram-positive bacteria (Koch, 

Hufnagel et al. 2004, Billstrom, Lund et al. 2008).  Cytolysin was found in 

several E. faecalis and E. faecium isolates and its haemolytic and 

bactericidal activity has higher occurrence in clinical isolates compared to 
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food isolates. It is regulated by a quorum-sensing mechanism via a two-

component system (Fisher and Phillips 2009). Clewell (1990) indicated that 

cytolysins are generally encoded by highly conserved conjugative plasmids 

like pAD1, although they can be encoded chromosomally. 

 

1.5.5  Hydrolytic enzymes 

	  

1.5.5 .1 Gelatinase and serine protease 

The fundamental role of both gelatinase and serine protease in enterococcal 

pathogenesis is assumed to be in generating nutrients for the bacteria by 

degrading host tissue; these proteases also have functions in biofilm 

formation (Mohamed and Huang 2007). Gelatinase (GelE) is an 

extracellular zinc metallo-endopeptidase that is able to hydrolyse 

haemoglobin, gelatin and casein, and other bioactive peptides. The gene 

(gelE) is chromosomally located and is expressed in a cell-density 

dependent manner. The gene sprE is located directly downstream it is co-

transcribed with gelE and encodes a serine protease. Gelatinase is secreted 

by E. faecalis strains (Koch, Hufnagel et al. 2004, Fisher and Phillips 2009).  

 

1.5.5.2 Hyaluronidase 

Hyaluronidase is a cell surface-associated enzyme. In Enterococcus, 

hyaluronidase may act as a virulence factor by hydrolysis of hyaluronic acid 

and is associated with tissue damage (Jett, Huycke et al. 1994). The 

mucopolysaccharide moiety of connective tissue is effectively 

depolymerised by hyaluronidase enabling the spread of enterococci as well 
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as their toxins across host tissue (Kayaoglu and Orstavik 2004). The gene 

encoding hyaluronidase (hyl) is located on the chromosome in both E. 

faecalis and E. faecium (Vankerckhoven, Van Autgaerden et al. 2004).  

 

1.5.6 Lipoteichoic acid 

Membrane-associated lipoteichoic acids are amphipathic polymers 

comprised of a hydrophilic polyglycerolphosphate backbone connected 

through an ester bond to a hydrophobic glycolipid tail. Lipoteichoic acids 

are common among prokaryotic organisms. For enterococci these surface 

molecules have been shown to be identical to the group D antigen (Wicken, 

Elliott et al. 1963, Jett, Huycke et al. 1994, Ginsburg 2002). Surface 

molecules like D-alanine lipoteichoic acid (LTA) present several roles in 

Gram-positive bacteria, for example modulation of autolysin and cation 

homeostasis. Alanine esters of enterococcal lipoteichoic acid play a 

significant role in biofilm formation and resistance to antimicrobial peptides 

(Fabretti, Theilacker et al. 2006). 

 

1.6 Enterococcal epidemiology 

Studies of ecology and epidemiology of Enterococcus have stated E. 

faecium and E. faecalis are commonly isolated from sausages, cheese, 

minced beef, fish and pork. Foods that originate from animals are often 

connected with infectivity by Enterococcus species, as they are capable of 

surviving in the heating process. Mainly it is the contamination with 

Enterococcus species that is the reason for the association of these species 
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with foods from animal origin (Klein 2003, Foulquie Moreno, 

Sarantinopoulos et al. 2006). 

 

Kuhn et al (2003) indicated that the prevalence of Enterococcus species 

differs across Europe. E. faecalis and E. faecium are the most commonly 

isolated species from environmental and clinical sources in UK and Spain. 

E. faecium  has lower a incidence in Sweden with  E. hirae having a higher 

isolation rate, while E. hirae in Denmark is the most common species and is 

isolated mostly from slaughtered animals. 

 

Resistance to glycopeptide antimicrobials, teicoplanin and vancomycin was 

first reported in 1986 in Europe, followed by related reports in the USA in 

1987 and in Singapore in 1994 (Leclercq, Dutka-Malen et al. 1992, 

Chlebicki and Kurup 2008). From 1989 to 1993, the proportion of 

vancomycin resistant isolates in the USA increased from 0.3 % to 7.9 % 

(Centers for Disease and Prevention 1993). About 28 % of enterococcal 

isolates were resistant to vancomycin in 2003 and the incidence of this 

resistance has been rising steadily over the years (National Nosocomial 

Infections Surveillance 2004).  

 

In the USA, vancomycin-resistant Enterococcus faecium (VRE) established 

mostly in patients exposed to healthcare settings and studies showed no link 

between VRE and farm animals in 1990. In Europe and Asia the situation 

was different because of the use of avoparcin glycopeptide as a growth 

promoter in animal husbandry which consequently directed a high rate of 
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VRE colonisation in animals. The VRE transfer to human subsequently 

occurred by direct contact with animals or by eating contaminated products 

(Leclercq, Dutka-Malen et al. 1992, Chlebicki and Kurup 2008). 

 

The epidemiology of VRE distribution has been diverse in US with VRE 

endemic in hospitals for many years or linked to foreign travel and 

consumption of imported food, but colonisation absent in healthy people. In 

contrast, in Europe outbreaks of VRE seldom arise in hospitals but have 

been isolated from healthy individuals and farm livestock and food (Coque, 

Tomayko et al. 1996, Wegener, Madsen et al. 1997, Bonten, Willems et al. 

2001). 

 

 Pulsed Field Gel Electrophoresis (PFGE) studies discovered similar PFGE-

patterns in humans and animal isolates, not only from the same geographic 

region but also from very distinct epidemiological environments 

(Stobberingh, van den Bogaard et al. 1999, Hammerum, Fussing et al. 2000, 

van den Bogaard, Willems et al. 2002). Amplified Fragment Length 

Polymorphism (AFLP) study of VRE populations performed by Willems et 

al. (2000) reported 11% of the human clinical isolates associated to clusters 

also present in poultry and pig and also found specificity in host 

colonisation.  Further analyses of gene clusters responsible for vancomycin 

resistance and Tn1546 in E. faecium, reported that humans and animal 

isolates have identical Tn1546 types, suggesting that horizontal gene 

transfer occurs between human and animal E. faecium (Stobberingh, van 

den Bogaard et al. 1999, van den Bogaard, Willems et al. 2002). 
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Using antimicrobials as growth promoters is an efficient approach of 

enhancing productivity and animal health in livestock production. 

Avoparcin, which is a glycopeptide, produces cross-resistance to 

vancomycin, is an example of a growth promoter that has been used in 

agricultural systems in Europe but not USA, particularly in the pig and 

poultry industries (van den Bogaard and Stobberingh 1999). Avoparcin has 

been proposed as a significant effect in the emergence and spread of 

resistance to vancomycin in enterococcal populations (Bager, Aarestrup et 

al. 1999) For this purpose, the use of avoparcin was excluded in Denmark in 

1995 followed by the rest of the EU in 1997. In addition, Virginomycin is 

used as an additive to animal food in agriculture industry and the overuse of 

virginamycin could have led to the acquired resistance to steptogramins. 

The use of virginamycin was excluded in Denmark in 1998 and through the 

EU in 1999 (Aarestrup 2000). 

 

VRE have been associated globally with hospital outbreaks and the 

vancomycin resistance gene (vanA) has transferred to methicillin- resistant 

Staphylococcus aureus. Evolutionary genetics, population structure, and 

geographic distribution of VRE isolated from nonhuman and human sources 

and community and hospital reservoirs recognised a genetic lineage of E. 

faecium (clonal complex-17) that has spread worldwide. The CC17 lineage 

is associated with ampicillin resistance, a pathogenicity island, and is linked 

with hospital outbreaks. CC17 is a model of accumulative evolutionary 

developments that enhanced the relative fitness of bacteria in hospital 

environments (Willems, Top et al. 2005).  
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1.7 Antimicrobial Resistance 

Enterococcus faecalis and E. faecium have succeeded as nosocomical 

pathogens because of their ability to gain and spread antibiotic resistance to 

commonly used antibiotics (Leclercq 1997). Two types of antimicrobial 

resistance are associated with Enterococcus species, namely intrinsic and 

acquired resistance. Intrinsic resistance is chromosomally encoded within 

the core genome of all members of the species and occurs naturally, whereas 

horizontal transfer of genetic material or sporadic mutations account for 

acquired resistance (Hollenbeck and Rice 2012, Gilmore MS, Clewell DB et 

al. 2014). 

  

1.7.1 Intrinsic resistance 

Enterococcus species are naturally resistant to the most commonly used 

antimicrobial classes, for example β-lactams and aminoglycosides, which 

are typically affective for the treatment of Gram-positive infections. Low-

level intrinsic resistance is found in Enterococcus species in respect of 

resistance to cephalosporins, trimethoprim-sulfamethoxazole and 

lincosamide (Leclercq, Dutka-Malen et al. 1992).  In addition, Enterococcus 

species are frequently resistant to tetracycline, rifampicin, quinolones, 

macrolides, chloramphenicol and fosfomycin, and these antibiotics are 

rarely used to treat enterococcal infections (Hollenbeck and Rice 2012). 

 

The typical treatment for enterococcal infections is a bactericidal and 

synergistic mixture of a cell wall synthesis inhibitor such as a β-lactam 

antibiotic (benzylpenicillin or ampicillin) or glycopeptide, with an 
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aminoglycoside (streptomycin or gentamicin). However, the efficacy of this 

combination has been compromised by the emergence of enterococci with 

high-level aminoglycoside resistance (Leclercq, Dutka-Malen et al. 1992).   

 

1.7.1.1 β-lactams 

The β-lactam ring is part of the main structure of numerous antibiotic 

families for example, cephalosporins, penicillins, carbapenems, and 

monobactams. Nearly all of these antibiotics work by inhibiting bacterial 

cell wall biosynthesis and they are extremely efficient versus Gram-positive 

and Gram-negative bacteria (Thomson and Bonomo 2005). 

 

The reason for the intrinsic resistance to β-lactam agents in Enterococcus is 

low affinity of penicillin binding proteins (PBPs) for β-lactams. β-lactams 

bind to the PBPs, enzymes associated with the cross linking of pentapeptide 

molecules in the peptidoglgcan layer of the bacterial cell wall. The 

association of a β-lactam with PBPs disrupts the growth of the bacteria by 

weakening the cell wall and resulting in programmed cell death (Klare, 

Badstubner et al. 1999, Hollenbeck and Rice 2012).  

 

1.7.1.2 Aminoglycoside 

Low-level intrinsic resistance to aminoglycosides is exhibited by all 

enterococci including to gentamicin, which is the most common 

aminoglycoside used with enterococcal infections. The aminoglycosides 

target enterococci by binding to the 16S rRNA of the 30S ribosomal subunit 

and thereby inhibit protein synthesis. Enterococci that possess the gene 
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aac(6')-Ie-aph(2')-Ia are resistant to almost all aminoglycosides including 

gentamycin, amikacin, tobramycin, kanamycin and  netilmycin, but remain 

sensitive to streptomycin (Chow 2000). The enzyme encoded by aac(6')-Ie-

aph(2')-Ia modifies the antibiotic by phosphorylating and simultaneously 

acetylating it at two different positions. This impairs the binding of the 

aminoglycoside to the 30S ribosomal subunit (Leclercq 1997, Chow 2000, 

Hollenbeck and Rice 2012).  

 

1.7.1.3 Streptogramins 

Streptogramins target ribosomes at the level of inhibition of translation 

through binding to the bacterial ribosome and interfere with protein 

synthesis. Resistance to streptogramins appears via a number of 

mechanisms involving target modification, efflux, and enzyme catalyzed 

antibiotic modification (Johnston, Mukhtar et al. 2002). 

 

Streptogramins show bactericidal activity when they act synergistically as 

two components, streptogramin A and B. these components alone show a 

weak bacteriostatic activity whereas the combination can act bactericidally 

(Kehoe, Snidwongse et al. 2003). Simjee et al (2002) stated that resistance 

to both A and B components of streptogramin was found in enterococcal 

species, including E. faecium, E. gallinarum and E. hirae. 

 

1.7.1.4 Glycopeptides 

Glycopeptides are rigid, large molecules that inhibit cell wall peptidoglycan 

synthesis in a late stage of bacterial growth (Reynolds 1989). Glycopeptides 
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disrupt enterococci by interfering with cell wall synthesis by attaching to the 

terminal acyl-D-alanyl-D-alanine (D-Ala-D-Ala) of the precursors used in 

peptidoglycan synthesis (see 1.5.9.2.5). Several motile species of 

enterococci such as E. flavescens, E. gallinarum and E. casseliflavus 

express low levels of intrinsic resistance to glycopeptides (Gholizadeh and 

Courvalin 2000). 

	  

1.7.2 Acquired resistance 

Enterococci acquire resistance to many antibiotics via the acquisition of 

genetic material or via sporadic mutations. Horizontal gene transfer among 

enterococci appears most frequently by the movement of transposons and 

the transfer of pheromone-sensitive broad host range plasmids (Hollenbeck 

and Rice 2012) and to an unknown extent by phage transduction (Yasmin, 

Kenny et al. 2010). 

 

1.7.2.1 β-lactams 

Enterococci can express high-level resistance to β-lactams or other 

penicillin drugs when there is overproduction of low affinity penicillin 

binding proteins (PBPs). Resistance also occurs through acquisition of β-

lactamases or mutations in PBP4/5 targets, which results in poor, or no 

binding to these targets (Fontana, Ligozzi et al. 1996). Synthesis of β-

lactamase of high levels may result in resistance to β-lactam antibiotics. 

This secreted enzyme is overproduced when the operon repressor protein is 

absent and this occurs most often in E. faecalis, rather than E faecium 

strains (Murray 1992). Recently, over 80% of clinical E. faecium isolated 
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from all over the world are ampicillin (Zhang, Paganelli et al. 2012).  

 

Plasmid-mediated genes encoding β-lactamases (bla) were first defined in 

E. faecalis in 1983. Since then the production β-lactamase in enterococci 

has been rare and described mainly in E. faecalis. Genes encoding β-

lactamases in Enterococcus and S. aureus are identical and are frequently 

encoded by staphylococcal β-lactamase transposon Tn552. Hollenbeck et al 

(2012) suggested that high-level penicillin resistance in E. faecium is 

generally related to accumulation of point mutations in the penicillin-

binding region of PBP5. While these point mutations are expected to 

originate de novo in single bacteria due to selective pressure from 

antibiotics, chromosome-to chromosome mobilisation of low affinity pbp5 

genes has been recognised in vitro and is expected to explain the 

distribution of high-level penicillin resistance in E. faecium (Rice, Carias et 

al. 2005).  

 

1.7.2.2 Aminoglycosides 

Most commonly, high-level resistance to aminoglycosides occurs due to the 

production of aminoglycoside modifying enzymes which are plasmid-

mediated. These enzymes also nullify the synergistic killing effect of 

aminoglycoside in combination with cell wall-active agents (Chow 2000, 

Kotra, Haddad et al. 2000). Aminoglycoside resistance due to mutation of 

the ribosomal target also occurs as does reduced antibiotic transport. These 

mechanisms are chromosome-mediated (Kotra, Haddad et al. 2000). 
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1.7.2.3 Macrolides, Lincosamides and Streptogramin B (MLSB) 

The term macrolide defines drugs with a macrocyclic lactone ring of 12 or 

more elements (Kanoh and Rubin 2010). Macrolide antibiotic include 

erythromycin, clarithromycin, and azithromycin (Alvarez-Elcoro and Enzler 

1999).  

 

Lincosamide antimicrobials including lincomycin and clindamycin act by 

inhibiting peptidyltransferase activity of the 50S ribosomal subunit. This 

ultimately interferes with protein synthesis. The gene Inu(B) (linB), 

responsible for resistance to lincosamide, encodes the enzyme 

nucleotidyltransferase which adenylates a hydroxyl group on the 

lincosamide (Tenson, Lovmar et al. 2003).   

 

Type B streptogramins and macrolides act on the 50S ribosomal subunit in a 

similar fashion and cause interference in the same binding site. Regularly, 

resistance to both classes of antibiotics occurs through a common 

mechanisms, for instance, resistance against macrolides, lincosamides and 

streptogramins B (MLSB) via enzymatic methylation or mutation of adenine 

2058 (Pernodet, Boccard et al. 1988, Vannuffel and Cocito 1996). The 

ermB gene borne on conjugative plasmids encodes for resistance to MLSB 

by methylating the adenosine residue in 23S rRNA of the 50S ribosomal 

subunit (Jensen, Frimodt-Moller et al. 1999).  
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1.7.2.4 Streptogramin A 

Three main mechanisms are involved in the acquired resistance for 

streptogramins (i) acetylation of the antibiotic, (ii) efflux of the antibiotic 

and (iii) dimethylation of the 23S rRNA target site. As of now 12 genes in 

Enterococcus species have been reported for streptogramin resistance 

(Hollenbeck and Rice 2012) . 

 

1.7.2.5 Glycopeptide  

For the past 25 years, the acquisition of glycopeptide resistance by 

enterococci has been an epidemiological and antimicrobial challenge. In 

1988, glycopeptide-resistant enterococci (GRE) were first described. E. 

faecium is the species that exhibits greatest resistance  to glycopeptides 

compared with  E. faecalis and other Enterococcus species (Farrell, Mendes 

et al. 2011).  

 

The cell wall of Enterococcus is composed mostly of peptidoglycan, with 

teichoic acid and polysaccharide. Teichoic acid is found only in Gram-

positive bacteria and not in Gram-negative bacteria (Cheng, McCleskey et 

al. 1997). The carbohydrate moiety is cross-linked with peptide side chains 

in the peptidoglycan layers. The glycans and the peptides are connected 

through amide linkages, which link the carboxyl group of the muramyl 

residues and the terminal amino group of the peptides. D-Ala:D-Ala ligase 

and MurF enzymes catalyse the addition of D-alanyl-D-alanine to UDP-

MurNAc pentapeptide precursor for peptidoglycan biosynthesis (Neuhaus 

and Struve 1965). Cell wall synthesis is inhibited by the antibiotic 
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vancomycin, which is a commonly prescribed glycopeptide. Unlike 

penicillins which bind to the enzyme, vancomycin binds to (acyl-D-alanyl-

D-alanine) via 5 hydogen bonds. Transglycosylation and transpeptidation is 

thereby inhibited and the peptide precursors lose the ability to cross-link. 

Therefore cell wall integrity is lost and cell death occurs (Figure1.1) 

(Arthur, Molinas et al. 1993, Walsh, Fisher et al. 1996). 

 

 

 

 

Figure1.1: Peptidoglycan biosynthesis and the mechanism of vancomycin. 

Association of the antibiotic to the C-terminal d-Ala–d-Ala of late 

peptidoglycan precursors stops catalysed reactions by transpeptidases, 

transglycosylases, and carboxypeptidases reproduced from Courvalin 2006. 
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1.7.2.5.1 Vancomycin resistance 

The first vancomycin-resistant enterococci were reported in 1988 in Europe. 

Since then vancomycin resistance has spread rapidly. There are six different 

types of vancomycin resistance in Enterococcus. VanA, B, D, E, and G 

types relate to acquired resistance; VanC is an intrinsic resistance of E. 

gallinarum, E. casseliflavus and E. flavescens (Arthur, Reynolds et al. 

1996). 

 

The MIC of vancomycin and teicoplanin due to different gene types 

overlaps, consequently differentiation of glycopeptide resistance is presently 

established by sequencing of the structural genes for the resistance ligases 

(Courvalin 2006). VanA type isolates show high levels of inducible 

resistance to both vancomycin and teicoplanin, while VanB type isolates 

show flexible levels of inducible resistance to vancomycin only (Arthur, 

Reynolds et al. 1996). VanD type isolates are considered by constitutive 

resistance to sensible levels of vancomycin and teicoplanin (Depardieu, 

Reynolds et al. 2003). VanC, VanE and VanG type isolates are resistant to 

low levels of vancomycin however stay susceptible to teicoplanin (Reynolds 

and Courvalin 2005).  

 

Though the six types of resistance include correlated enzymatic functions, 

they can be discriminated via the position of the corresponding genes and 

via the kind of regulation of gene expression. The vanA and vanB operons 

have been found on plasmids or in the chromosome, while the vanD, vanC, 

vanE and vanG operons have been found in the chromosome only 
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(Courvalin 2006). Willems et al. (1999) demonstrated that type A resistance 

is the most prevalent type in enterococci producing a high level of inducible 

resistance to vancomycin and teicoplanin.   

 

Resistance to vancomycin emerged as a result of the presence of operons 

that encode enzymes for synthesis of low-affinity precursors. 

Mechanistically in which the C-terminal d-Ala residue is replaced by d-

lactate (d-Lac) or d-serine (d-Ser), therefore adjusting the vancomyin-

binding target; removal of the high-affinity precursors that are typically 

formed by the host consequently eliminates the vancomycin-binding target 

(Arthur, Reynolds et al. 1996).  

 

The vanA operon responsible for the resistance phenotype is present on a 

mobile element, the non-conjugative Tn1546 transposon (Figure 1.2), as 

part of a self-transferable plasmid. Tn1546 can also be found integrated on 

the bacterial chromosome (Arthur, Molinas et al. 1993). VanR and VanS are 

involved with regulation and VanS recognises vancomycin whereby VanR 

controls induction of other Tn1546-encoded genes. The vanH encoded 

dehydrogenase produces D-lactate that is associated with D-alanine by the 

vanA encoded ligase. Van H, Van A and Van X are required for 

glycopeptide resistance by inhibiting vancomycin binding and restoring cell 

wall synthesis. Finally, the accessory proteins Van Y and Van Z are not 

necessary for resistance but are frequently colocalised (Courvalin 2006) 

(Figure 1.2).  
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Figure 1.2: Organisation of VanA-type glycopeptide resistance operon. The 

arrows show regulatory and resistance and the accessory coding sequences 

reproduced from Courvalin 2006.  

 

1.7.2.5.1.1 Target modification 

The VanH dehydrogenase encoded by the transposon (Tn1546) converts 

pyruvate to d-Lac and the ligase (VanA) catalyses an ester bond between d-

Ala and d-Lac. The subsequent d-Ala-d-Lac depsipeptide switches with the 

d-Ala-d-Ala dipeptide in peptidoglycan synthesis, a substitution that lowers 

affinity for glycopeptides significantly (Bugg, Wright et al. 1991, Arthur, 

Reynolds et al. 1996). 

 

1.7.2.5.1.2 Removal of the susceptible target 

Attachment of glycopeptides to peptidoglycan precursors that comprise d-

Ala-d-Ala prevents peptidoglycan synthesis. The association between 

vancomycin and its target is inhibited via the elimination of the susceptible 

precursors that terminate in d-Ala. The VanX D,D-dipeptidase and The 

VanY D,D-carboxypeptidase enzymes elaborate this outcome (Figure 1.3); 

VanX enhances the host d-Ala:d-Ala ligase (Ddl) to hydrolyse the d-Ala-d-

Ala dipeptide  that is synthesised and  when removal of d-Ala-d-Ala by 
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VanX is incomplete then VanY eliminates the C-terminal d-Ala residue of 

late peptidoglycan precursors.  

 

 

 

Figure 1.3: VanA-type glycopeptide resistance. Synthesis of peptidoglycan 

precursors in a VanA-type resistant strain reproduced from Courvalin 2006. 

 

1.7.2.6 Chloramphenicol 

Chloramphenicol inhibits protein synthesis by binding to a receptor site on 

the 50S subunit of the bacterial ribosome, inhibiting peptidyltransferase. 

Chloramphenicol acetyl transferase (CAT) is the enzyme responsible for 

chloamphenicol resistance in enterococcal species. The chloramphenicol 

resistance gene, cat, exists across the streptococci, staphylococci and 

enterococci from horizontal transfer of genetic material between these 

organisms. Resistance can be plasmid-encoded or present on the 

chromosome. Chloramphenicol resistance has been observed in E. faecalis 

and E. faecium isolates (Pepper, Le Bouguenec et al. 1986, Pepper, Horaud 

et al. 1987, Klare, Konstabel et al. 2003). 
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1.7.2.7 Tetracycline 

Protein synthesis is inhibited via tetracycline antibiotics by a reduction of 

the affinity within regions of bacterial 30S rRNA for aminoacyl-tRNA. 

Resistance to tetracycline occurs through two main mechanisms. (i) The 

genes tetK and tetL encode transporters for active efflux of the antibiotic 

across the cell membrane. The tetL gene, which is the most common of 

these two efflux genes in enterococci, is located on conjugative plasmids or 

the chromosome (Roberts and Hillier 1990, Bentorcha, De Cespedes et al. 

1991). (ii) The genes tetM, tetO and tetS encode for proteins which bind to 

the ribosome and prevent tetracycline binding. The tetM gene is the most 

frequent tetracycline resistance gene present in enterococci and is located on 

the chromosome.  This gene is commonly associated with a family of 

genetic elements, which drive their own transfer from donor to recipient 

bacteria through conjugative plasmids, such as Tn916 (Rudy, Taylor et al. 

1997, Rice 1998). 

 

1.8 Genome sequencing  

In the 1970s, the Lambda bacteriophage (50,000 nucleotides) was the first 

genome that was sequenced by Sanger et al. (Sanger, Nicklen et al. 1977). 

Since that the DNA sequencing was accomplished at that time for small 

genomes of organelles and viruses. Complete sequencing of a bacterial 

genome was not yet possible because of economic and technical restrictions. 

Subsequent development in sequencing technologies was required to enable 

whole genome sequencing of bacteria. Haemophilus influenzae was the first 

bacterial genome to be sequenced using a shotgun method developed by 
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Sanger et al. (Sanger, Nicklen et al. 1977, Fleischmann, Adams et al. 1995).  

 

The shotgun method of sequencing using cloned fragments has limitations. 

The technique uses randomly sampling and the generation of 500–700 

nucleotide reads, which are then assembling to reconstruct the DNA 

sequence. The assembly process is built by determining regions that 

overlap, whereby more than 1 million bases of sequence reads are essential 

to sequence a 1 Mb genome (Fraser and Fleischmann 1997).  

 

Since the mid-1990s, next generation sequencing technologies have arisen, 

which are high-throughput yet also relatively cheap.  Four next generations 

sequencing platforms, including 454 sequencing platform, Miseq, Hiseq 

2000 and GAIIx were used until recently. In Miseq, Hiseq 2000 and GAIIx 

methods, the construction of clonal DNA colonies (DNA clusters) is 

prepared by the attachment of DNA molecules and primers on a slide which 

are then amplified with DNA polymerase. Four types of fluorescently 

labeled reversible-terminator nucleotides are added to evaluate the DNA 

sequence, and the combined nucleotides are imaged. The next cycle is 

started when the fluorescent dye with the terminal 3' blocker is chemically 

removed from the DNA (Rothberg and Leamon 2008, Rothberg, Hinz et al. 

2011). Contrastingly, the first step in 454 method is preparation of the 

sample which involves the following; DNA fragmentation, end repair, 

capture of the fragments on beads, polymerase chain reaction (PCR), clonal 

amplification of the captured fragments in aqueous-oil emulsion 
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microreactors, breaking of the microreactors and enrichment of beads with 

amplified DNA (Rothberg and Leamon 2008). 

 

More recently in 2011, two major sequencing platforms were released, 

namely the Ion Torrent Personal Genome Machine (ITPGM) and the Pacific 

Biosciences (PacBio) RS. Single molecules are sequenced in real time 

without amplification by using PacBio. In this method, a conjugate of DNA 

template and DNA polymerase are attached to 50 nm-wide wells. Using 

nucleotide fluorescently labeled with γ-phosphate, second strand DNA 

synthesis is carried out by the DNA polymerase. Combinations of bases 

during DNA synthesis are identified by incomes of a different pulse of 

fluorescence. ITPGM differs from previous next generation sequencing 

methods since polymerisation events are distinguished by pH variations 

instead of light. A bead with DNA fragments carrying specific adapter 

sequences are connected together and then clonally amplified by emulsion 

PCR. A chip that contains the template beads has proton-sensing wells that 

are applied on a silicon wafer, and sequencing is primed from a prearranged 

location in the adapter sequence. As bases are combined during the 

sequencing progression, protons are discharged and a signal is revealed 

relative to the number of bases combined (Donkor 2013) . 

 

1.9 Enterococcal genomes and genome based studies 

The genome is the entire coding and non-coding genetic element present in 

an organism. Deciphering genome sequences has provided a wealth of 

information about different aspects of the virulence of microorganisms. E. 
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faecium and E. faecalis are the two species are responsible for most 

enterococcal infections and are frequently compared. Comparative genome 

hybridization (CGH) studies indicated that E. faecium and E. faecalis have a 

substantial amount of inter species genomic diversity. This is due to 

variation in their accessory genomes including wide variety of plasmids, 

phages, conjugative elements and pathogenicity islands (van Schaik, Top et 

al. 2010). Our understanding of E. faecium fundamental biology and 

virulence-associated traits has been limited due to fewer genome sequences, 

with E. faecalis strains being more widely sequenced and studied. 

 

The genome of E. faecalis V583 was determined in the late 1990s and 

completed in 2002 (Paulsen, Banerjei et al. 2003). The first partially 

assembled, draft genome sequence for E. faecium strain TX0016 (formerly 

E. faecium DO strain) isolated in 1992 from a case of endocarditis, was 

published in 2000. The VanB vancomycin-resistant E. faecium strain 

(Aus0004) was isolated from the bloodstream in 1998. Both of these 

genome sequences were completed in 2012 (van Schaik, Top et al. 2010, 

Lam, Seemann et al. 2012, Qin, Galloway-Pena et al. 2012). 

 

From 2002 until 2014 only four other E. faecalis genome sequences were 

published (OG1RF, EF62, D32 and Symbioflor1), and the publicly available 

genome sequence is not completely annotated. Furthermore, seven E. 

faecium strains, isolated from different ecological niches were reported by 

van Schaik et al (2010), using pyrosequencing technology. Their 

conclusions can be highlighted in three significant points: (i) hospital-
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associated isolates acquire genomic differences associated with colonisation 

genes and antibiotic resistance; (ii) strains related to the same clonal 

complex, such as CC17, are related in the core genome, nevertheless the 

gene content still has large difference; and (iii) the pan-genome of E. 

faecium specified that the gene pool in this species is open most likely as it 

is subject to multiple ecological niches that this species can colonize. The 

gain and /or loss of mobile genetic elements is the most significant driving 

force in enterococci.  

 

In addition to this study the draft genome sequences for 28 enterococcal 

strains of different origin, including the species E. faecalis, E. faecium, E. 

casseliflavus, and E. gallinarum, were also published in 2010 (Palmer and 

Gilmore 2010). 

 

More recently, a report of 51 strains of E. faecium isolated from various 

ecological environments including hospital-isolated, commensal-isolated 

and animal-isolated was published.  The study has contributed to our 

understanding of genomic diversity of E. faecium species. The conclusions 

of Lebreton et al (2013), have confirmed the significant points previously 

stated by van Schaik et al (2010) that (i) The epidemic hospital lineage of E. 

faecium is quickly developing and emerged approximately 75 years ago, 

associated with the presence of antibiotics, from a population that comprises 

the majority of animal strains, and not from human commensal lines. (ii) 

The lineage that comprised most animal strains separated from the human 

commensal line around 3,000 years ago, a time that matches the 
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urbanisation of humans, increase of hygienic practices, and domestication of 

animals, (iii) The acquisition of new metabolic capabilities, colonisation 

traits, and gain and or loss of mobile elements and function were playing an 

important role on each bifurcation.  

 

1.10 E. faecium genome 

Prokaryotic genome sizes differ over more than a twentyfold range. In the 

prokaryote group, distinct phyla cover approximately overlapping size 

ranges. Large-scale diversity is observed within species; more than 

1,000,000 bp variations have been shown in the genomes of Streptomyces 

coelicolor, Prochlorococcus marinus and Escherichia coli. Horizontal 

acquisition, gene duplication and lineage-specific gene loss are genetic 

events, which can affect bacterial genome size (Bentley and Parkhill 2004, 

van Schaik, Top et al. 2010). 

 

Palmer et al  (2012) suggested that the size of bacterial genomes correspond 

with the number of genes in the genome (coding capacity) and consequently 

the complexity of its encoded activities. The genome of E. faecium strains 

vary in size from 2.50 to 3.14 Mb while the number of ORFs range from 

2587 to 3118. The first strains with fully assembled genome sequences of E. 

faecium TX0016 (DO strain) and Aus0004 have genome sizes of 2.69 Mb 

and 2.95 Mb, respectively each has three circular plasmids (Lam, Seemann 

et al. 2012, Qin, Galloway-Pena et al. 2012).  
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1.10.1 E. faecium Sub-populations  

There are two subpopulations of E. faecium, commensal or community-

associated strains (CA clade) and hospital-associated strains (HA clade). 

Almost all hospital-associated strains encode pathogenicity islands, mobile 

genetic elements such as IS, plasmids, phage or genes coding for antibiotic 

resistance, colonisation and virulence (Top, Willems et al. 2008, Galloway-

Pena, Roh et al. 2012). 

 

Molecular epidemiology studies using MLST and eBURST analysis have 

shown that most of the HA clade of E. faecium are associated with a lineage 

called CC17 (clonal complex17) (Willems, Top et al. 2005, Top, Willems et 

al. 2008). The HA clade of E. faecium belonging to the lineage CC17 has 

particular characteristics such as ampicillin and quinolone resistance, in 

addition, CC17 strains contain the esp gene that carried by pathogenicity 

islands. These factors could be a reason for their improved survival in the 

hospital environment (Bonten, Willems et al. 2001, Willems, Homan et al. 

2001, Top, Willems et al. 2008).  

 

1.11 Mobile genetic elements 

Segments of DNA that encode enzymes and proteins that facilitate the 

movement of DNA inside genomes (intracellular mobility) or among 

bacterial cells (intercellular mobility) are called mobile genetic elements 

(MGEs). Intercellular movement of DNA proceeds by three forms in 

prokaryotes: transformation, conjugation and transduction (Frost, Leplae et 

al. 2005). MGEs play an important role in the evolution of a wide range of 
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bacteria and are involved in the distribution of variable genes, such as 

virulence and antibiotic resistance genes causing innovation of 'hospital 

superbugs', in addition to the formation of new metabolic pathways by 

catabolic genes (Juhas, van der Meer et al. 2009). 

 

1.11.1 Insertion sequences elements and transposons 

Intracellular DNA movement is facilitated by transposons and insertion 

sequences. Insertion sequences (IS) are the simplest transposable elements 

and are widely distributed in bacteria (Kusumoto, Ooka et al. 2011). IS 

elements are usually less than 2.5 kb in size and commonly defined as 

carrying only the genetic information associated with their transposition and 

its regulation. Transposons are larger and carry genes encoding other 

functions such as antibiotic resistance (Schneider and Lenski 2004). 

  

IS elements are found more often in clinical E. faecium strains than 

community-associated strains. Previously IS16 was considered to be 

molecular marker for the identification of pathogenicity in clinical E. 

faecium strains (Leavis, Willems et al. 2007, Werner, Fleige et al. 2011). 

However, these IS elements are not found in all clinical E. faecium strains. 

A total of 180 IS elements and transposase related genes were located in the 

complete genome of E. faecium TX0016 and almost half of these elements 

were present on plasmids. Some IS elements are present on the chromosome 

and plasmids in several copies at definite loci (Qin, Galloway-Pena et al. 

2012). 
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IS elements have a significant role in the exchange of the genetic material in 

E. faecium. The element EfaB5 is present at the 3' end of the virulence gene 

esp in E. faecium. EfaB5 belongs to the family of conjugative and 

integrative elements of Gram-positive bacteria, which gives evidence for the 

horizontal gene transfer in E. faecium (van Schaik, Top et al. 2010). Tn1545 

have been shown to transfer at a low frequency from E. faecium to Listeria 

monocytogenes in the intestinal tract of gnotobiotic mice. Tn916 is the well-

characterized conjugative transposon (Jett, Huycke et al. 1994). It was 

shown using an E. faecalis donor that when two distinguished derivatives of 

Tn916 are present the conjugative transfer of one transposon is 

accompanied by the other. The frequency rate of transfer was up to 50% 

(Hammerum, Flannagan et al. 2001). 

 

1.11.2 Plasmids 

A plasmid is a group of functional genetic segments that are structured into 

a steady, self-replicating replicon, which is smaller than the cellular 

chromosome and which typically does not comprise genes required for vital 

cellular functions. Plasmids can be circular double-stranded DNA molecules 

or linear double-stranded DNA (Hinnebusch and Tilly 1993).  

 

Several plasmids have been reported in Enterococcus that contain 

antimicrobial and heavy metal resistance genes and play a significant role in 

virulence and DNA repair mechanisms (Arias, Panesso et al. 2009, Garcia-

Migura, Hasman et al. 2009). Most of the antibiotic resistance genes are 

existent on the plasmids, which can be confirmed from the occurrence of 
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plasmid replicating genes and toxin/antitoxin genes in the same contig as 

that of antibiotic resistance genes (van Schaik, Top et al. 2010). Some genes 

present on plasmids and transposons encode for traits such as antibiotic 

resistance, virulence and bacteriocin activity and utilisation of unusual 

substrates. These traits help the organism to survive in challenging 

environments. In enterococci, the virulence genes are present on conjugative 

plasmids, which are horizontally transferred to other strains (Jett, Huycke et 

al. 1994). 

 

1.11.3 Bacteriophages 

The viruses that infect bacteria are named bacteriophages (phage). Phages 

must attach to the host to initiate their life cycle and it is not able to 

propagate in the absence of a host. Phages are associated with almost all 

identified bacteria and are consequently discovered in distinct environments 

ranging from oceans and soil to deserts.  Phages can be found as free virions 

in the environment or associated with their bacterial hosts. Phages are 

discovered in almost all places where their bacterial hosts occur (Wommack 

and Colwell 2000, Pedulla, Ford et al. 2003, Prigent, Leroy et al. 2005, 

Prestel, Salamitou et al. 2008, Srinivasiah, Bhavsar et al. 2008).  

 

In recent years, many phage genome sequences have become accessible.  It 

is noticeable from phage genome sequences that phage genomics are 

extremely different. This variety in genetic makeup results from the 

particular replication of phage particles through infection of their hosts. 

During these infections phages can exchange their DNA with host genomes 
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by recombination and this generates diversity in the phage genome 

(Hendrix, Smith et al. 1999). 

 

The order Caudovirales represent tailed phages with dsDNA and an 

isometric capsid and contains the vast majority of phages.  Caudovirales 

include three phylogenetically-related families distinguished by tail 

morphology: Myoviridae (long contractile tails), Siphoviridae (long non-

contractile tails), and Podoviridae (short tails) (Ackermann 2007, Krupovic, 

Prangishvili et al. 2011). Phages that infected Escherichia coli are the most 

well-studied tailed phages included T4 (Myoviridae), coliphages ʎ,  

(Siphoviridae), and T7 (Podoviridae) (Ptashne, Jeffrey et al. 1980, Johnson, 

Poteete et al. 1981, Tabor and Richardson 1985, Miller, Kutter et al. 2003). 

Non-tailed phages have many families with different morphologies, 

comprising polyhedral (vesicular and envelope like), filamentous (long 

filaments to short rods), and pleomorphic (including lemon, droplet and 

ampule shaped) (Ackermann 2007).  

 

Phages can enhance the environmental fitness and virulence of the 

bacterium by lysogenic conversion (van Schaik, Top et al. 2010). 

Temperate phages can carry genes coding for virulence factors which gets 

integrated into the bacterial genome and can be expressed by the pathogen 

(Bensing, Siboo et al. 2001, Chibani-Chennoufi, Dillmann et al. 2004). 

Once the genome of temperate phages becomes integrated into the host 

chromosome specific genes are expressed for maintenance of lysogeny and 

for repression of the lytic life cycle. Antibiotics like norfloxacin and 
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mitomycin C or physical stress such as, UV radiation can be used to induce 

the lytic cycle (Duerkop, Palmer et al. 2014).  

 

The family of phages that infect E. faecium and E. faecalis are Siphoviridae. 

These phages have an isometric head about 40nm and a non-contractile tail, 

which is long ranging from 70 nm to 220 nm (van Schaik, Top et al. 2010, 

Yasmin, Kenny et al. 2010). 

 

1.11.4 Genomic islands 

Genomic islands or GEIs mediate a considerable part of genetic 

recombination in bacteria. They play an important part in bacterial evolution 

by spreading of antibiotic resistance and virulence genes and by producing 

new clinical strains. GEIs are distinct DNA regions which are mobile or 

non-mobile and vary between strains. They have the ability integrate into 

the host and excise themselves and transfer to new bacteria by 

transformation, conjugation or transduction (Juhas, van der Meer et al. 

2009). Genomic islands are usually 10 to 200kb in size and carry not only 

virulence genes but also other genes for symbiosis, aromatic compound 

metabolism, resistance to mercury or siderophore synthesis (Hacker and 

Kaper 2000, Sullivan, Trzebiatowski et al. 2002, Juhas, van der Meer et al. 

2009). 

 

The esp gene located on genomic island in E. faecium and E. faecalis can 

transfer between the two species. The genomic island in E. faecalis consists 

of phage related integration, excision proteins, homologs of plasmid 
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conjugation functions and terminal direct repeat. This suggests that the 

genetic transfer of genomic island or associated genes may occur as an 

integrative conjugative element although this has not been proved (Manson, 

Hancock et al. 2010).  
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Aims of the study 

At the start of this PhD project in 2010 there were 72 sequenced genomes of 

Enterococcus sequenced including 23 of E. faecium and none of these 

genomes were closed.  None of the E. faecium genomes were from animal 

isolates. The lack of animal E. faecium isolate genomes inspired the 

research aims.  

Multi-drug resistant enterococci, particularly those that are vancomycin 

resistant, are a major cause of concern for the medical community; it has 

been shown that the genes responsible for this resistance have the potential 

to be transferred to other Gram-positive pathogens such as Staphylococcus 

aureus. Antimicrobials used as growth promoters to enhance productivity 

and animal health has produced cross-resistance and has led to the 

emergence and spread of resistance to vancomycin in enterococcal 

populations. A greater genome-based insight is needed to integrate the 

relationship between E. faecium from animals and humans and the study 

presented here has sought to achieve this. 

 

General aims 

The primary aim of this research is to answer two key questions that are: 

(i) Are strains from animals discrete from human isolates and have 

they acquired genes specific for colonising an animal host?  

 

(ii) Which mobile genetic determinants are carried by animal strains of 

E. faecium and are these common to or distinct from human 

isolates? 
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Specific aims  

(i) Complete and annotate the genome sequence of the vancomycin-

resistant isolates from animals; E429 (chicken), E172 (calf), and 

E142 (pig).   

 

(ii) These genomes sequences will be compared with each other and to 

the reported human and animal isolates.  

 

(iii) Analyse phylogenetic relationships within E. faecium strains by 

investigating the molecular evolutionary connections between 

animal strains that will be represented through phylogenomic trees. 

 

(iv) Compare E. faecium prophage genomes to identify the differences 

between the phage types resident in this species. 
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Chapter Two: Materials and methods. 
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2.1 Media, Strains and Antibiotics 

	  

2.1.1 Growth Media 

All broth media were prepared according to the manufacturer’s instructions 

unless specified.  Media was prepared in distilled water and sterilised by 

autoclaving for 15 min at 120°C at 15 psi, unless otherwise stated.  

 

Todd Hewitt Broth (THB) 

36.4 g l-1 of THB powder was prepared and sterilised by autoclaving. 1.5% 

(w/v) Agar –Agar (Merck) was added to the broth prior to sterilisation to 

obtain THB agar media. 

 

Luria Bertani (LB) Media 

25 g l-1 of LB broth powder was prepared and sterilised by autoclaving. 37 g 

l-1 of LB agar powder was prepared and sterilised by autoclaving. 

 

Bottom Agar 

A solution containing 18.2 g l-1 of THB powder and 7.5 g l-1 of High clarity 

agar was prepared in 500 ml of distilled water and sterilised by autoclaving. 

 

Top soft Agar  

7.28 g l-1 of THB powder and 0.8 g l-1 of High clarity agar were added to 

200 ml of distilled water and sterilised by autoclaving. 2 ml of 1 M CaCl2 

was then added prior to use. 
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2.1.2 Strains and culture conditions 

The bacteria used in this study are listed in Table 2.1. Cultures were stored 

at -80 °C in THB containing 15% (v/v) glycerol. Cultures were maintained 

on THB agar and stored at 4 °C. 

Standard culture conditions for E. faecium in this study were 10 ml THB in 

a universal tube with shaking at 250 rpm overnight at 37 °C. For larger scale 

cultures, a ratio of 1: 10 media to conical flask volume was maintained. 

Over growth, absorbance at 600 nm was monitored against sterile THB 

blank.  

 

2.1.3 Antibiotics 

Antibiotics used in this study are listed at selective concentrations in Table 

2.2. Stock solutions of antibiotics were prepared in ethanol or distilled water 

followed by filter sterilisation and stored at -20 °C.  

 

Table 2.1: List of bacterial strains used in this study for experimental and 

bioinformatics analyses 
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Strain Source Information 

EnGen0009-E1573 Bison Rumen, Belgium 

E172 Calf 
ST1, VanA resistance strain, 
Netherland 

EnGen0028-E1604 Cheese Norway 

E429 Chicken 
ST8, VanA resistance strain, 
Netherland 

EnGen0001-E1575 Chicken Belgium 

LIV294 Chicken Chicken faeces 

EnGen0005-E0045 Chicken Faeces, UK 

EnGen0048-E4215 Chicken Sweden 

EnGen0043- E2134 Chicken Netherland 

LIV302 Dog Dog faeces 

E4452 Dog Faeces, Netherland 

E4453 Dog Faeces, CC17, Netherland 

EnGen0020-E1574 Dog Belgium 

EnGen0057-E4389 Dog Faeces, Denmark 

EnGen0029-E1613 Fish burger Norway 

EnGen0042-E1861 Hospitalized patient Faeces, Spain 

EnGen0047-E3548 Hospitalized patient Blood, Netherland 

1_141_733 Hospitalized patient Wound, USA 

1_230_933 Hospitalized patient Blood, CC17, USA 

1_231_408 Hospitalized patient Blood, CC17, USA 

1_231_410 Hospitalized patient Skin and soft tissue, CC17, USA 

1_231_501 Hospitalized patient Blood, USA 

1_231_502 Hospitalized patient Blood, CC17, USA 

Aus0004 Hospitalized patient Blood, CC17, Australia 

DO Hospitalized patient Blood, CC17, USA 

E1071 Hospitalized patient Faeces, Netherland 

E1162 Hospitalized patient Blood, CC17, France 

E1636 Hospitalized patient Blood, Netherland 

E1679 Hospitalized patient Vascular catheter tip, Brazil 

EnGen0002-E1133 Hospitalized patient Faeces, CC17, USA 

EnGen0004- E1258 Hospitalized patient Blood, Spain 

EnGen0011-E1185 Hospitalized patient Blood, France 

EnGen0012_E0120 Hospitalized patient Ascites, Netherland 

EnGen0013-E0333 Hospitalized patient Blood, CC17, Israel 

EnGen0016-E1392 Hospitalized patient CC17,UK 

EnGen0021-E1552 Hospitalized patient Faeces, Netherland 

EnGen0024-E1904 Hospitalized patient Urine, Netherland 

EnGen0025-E1626 Hospitalized patient Stomach, Netherland 

EnGen0026-E2039 Hospitalized patient Germany 
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EnGen0030-E2883 Hospitalized patient Blood, Netherland 

EnGen0031-E1623 Hospitalized patient Pus, Netherland 

EnGen0033-E1972 Hospitalized patient Blood, Germany 

EnGen0034-E2297 Hospitalized patient Urine, CC17, USA 

EnGen0035-E1627 Hospitalized patient Gut, Netherland 

EnGen0036-E1731 Hospitalized patient Blood, CC17, Tanzania 

EnGen0038-E2620 Hospitalized patient Blood, Netherland 

EnGen0040-E1634 Hospitalized patient Netherland 

EnGen0045-E6012 Hospitalized patient CC17, Latvia 

EnGen0046-E2560 Hospitalized patient Blood, CC17, Netherland 

EnGen0049-E6045 Hospitalized patient CC17, Portugal 

EnGen0050-E2369 Hospitalized patient Wound, CC17, Hungary 

EnGen0051-E1644 Hospitalized patient CC17, Germany 

EnGen0052-E3346 Hospitalized patient Blood, Netherland 

EnGen0054-E1321 Hospitalized patient Catheter, CC17, Italy 

EnGen0056-E3083 Hospitalized patient Blood, Netherland 

TX0082 Hospitalized patient Blood, USA 

TX0133A Hospitalized patient Blood, USA 

TX0133B Hospitalized patient Blood, USA 

TX0133C Hospitalized patient Blood, USA 

TX0133a.01 Hospitalized patient Blood, USA 

TX0133a.04 Hospitalized patient Blood, USA 

U0317 Hospitalized patient Urine, CC17, Netherland 

LIV66 Human TX0016, Endocarditis isolate 

LIV153 Human VanA resistance strain 

ERV26 Human Airways 

P1139 Human Urinogenital tract 

V689 Human Skin 

C1904 Human Blood 

C309 Human China 

C497 Human Blood 

ERV161 Human Blood 

ERV165 Human Gastrointestinal tract 

ERV168 Human Skin 

LCT-EF128 Human Bronchoalveolar lavage, China 

P1123 Human Blood 

P1137 Human Skin 

P1986 Human Blood 

S447 Human Urinogenital tract 

ERV102 Human Oral cavity 

503 Human Unpublished 
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504 Human Unpublished 

505 Human Unpublished 

506 Human Unpublished 

509 Human Unpublished 

510 Human Unpublished 

511 Human Unpublished 
513 Human Unpublished 
515 Human Unpublished 
ERV38 Human Unpublished 

ERV69 Human Unpublished 

ERV99 Human Unpublished 

R446 Human Unpublished 

R494 Human Unpublished 

R496 Human Unpublished 

R497 Human Unpublished 

R499 Human Unpublished 

R501 Human Unpublished 

TC_6 Human 
Derived from the ampicillin 
resistant, Tn916-containing strain 
D344R 

ERV1 Human Airways 

LIV296 Jaguar Jaguar faeces- Chester zoo 

D344SRF Lab strain Lab strain, USA 

EnGen0032-E1622 Mouse Netherland 

Com12 
Non-hospitalized 
individual 

Faeces, USA 

Com15 
Non-hospitalized 
individual 

Faeces, USA 

E1039 
Non-hospitalized 
individual 

Faeces, Netherland 

E980 
Non-hospitalized 
individual 

Faeces, Netherland 

EnGen0015-E1007 
Non-hospitalized 
individual 

Faeces, Netherland 

EnGen0017-E1050 
Non-hospitalized 
individual 

Faeces, Netherland 

TX1330 
Non-hospitalized 
individual 

USA 

EnGen0018-E1576 Ostrich Caecum, South Africa 

LIV297 Otter Mouth swab 

LIV298 Otter Mouth swab 

LIV303 Otter Mouth swab 

EnGen0007- E1578 Pig Faeces, Germany 

E142 Pig 
ST6, VanA resistance strain, 
Netherland 

EnGen0008-E0688 Pig Spain 

EnGen0014-E0679 Pig Belgium 
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EnGen0019-E0680 Pig Germany 

EnGen0044-E2071 Poultry Denmark 

EnGen0039-E1630 River water Netherland 

LIV299 Rodent Irish rodent faeces 

EnGen0022-E0269 Turkey Faeces, Netherland 

EnGen0010-E0164 Turkey Faeces, Netherland 

LCT-EF20 Unpublished 
Culture of Enterococcus faecium 
that spent 17 days in space aboard 
the Shenzhou 8 spacecraft, China 

LCT-EF258 Unpublished 
Culture of Enterococcus faecium 
that spent 17 days in space aboard 
the Shenzhou 8 spacecraft, China 

LCT-EF90 Unpublished China 

TX1337RF Unpublished Gastrointestinal tract 

NRRL 
Milk and dairy 
utensils 

Unpublished 

Aus0085 Unpublished Unpublished 

C621 Unpublished Unpublished 

E1590 Unpublished Unpublished 

E1620 Unpublished Unpublished 

P1140 Unpublished Unpublished 

E417 Unpublished Unpublished 

 

 

Table 2.2: List of antibiotics used in this study. 

 

 

 

 

Antibiotics* Concentration (µg ml-1) 

Tetracycline 5 

Ampicillin 50 

Chloramphenicol 5 

Spectinomycin 50 

Erythromycin 10 

Gentamycin 500 

Vancomycin 10 
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2.2 Reagents 

 

2.2.1 General Reagents and Buffers 

Stocks solutions of buffers were prepared with the ingredients listed below. 

The components were dissolved in 1 L of water, sterilised by autoclaving 

and stored at RT. Diluting with water as required made a working solution 

of each buffer. The working solutions were also sterilised by autoclaving 

before use and stored at RT. 

 

Phosphate Buffered Saline (PBS) 

1 x PBS 

NaCl 8 g l-1 

KCl  0.2 g l-1 

Na2HPO4  1.4 g l-1 

KH2PO4  0.24 g l-1 

 

Tris-HCl Buffer 

Tris 2 M 

Tris-HCl buffer was prepared from stock by diluting in water, with pH 

adjusted using conc. HCl. Tris-HCl Buffer was then sterilised by 

autoclaving and stored at RT. 
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Phage buffer (SM), pH 7.8 

Tris/HCl  pH 7.8  50 mM 

NaCl 10 mM 

MgSO4 1 mM 

CaCL2    4mM 

Gelatin 1% (w/v) 

 

Enzymatic Lysisbuffer, pH 8.0 

Tris/HCl 20 mM 

EDTA 2 mM 

Triton X-100 1.2% (v/v) 

 

TAE 50X, pH 8.0 

Tris 2 M 

EDTA 50 mM 

Acetic acid 1 M 

 

TE buffer, pH 7.5 

Tris/HCl, pH 8.0 10 mM 

EDTA, pH 8.0 1 mM 

 

DNA loading buffer 

0.25% (w/v) bromophenol blue 

30% (v/v) glycerol in water 
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2.3 Enzymes 

 

Enzyme Enzyme Source 

Lysozyme Sigma 

Proteinase K Sigma 

Ribonuclease A Sigma 

ExoSAP-IT Usb.Affymetrix,Inc 

pfx polymerase Invitrogen 

BioMix Red Bio Line 

Taq polymerase Thermo 

 

2.4 Kits 

 
Kits Manufacturer 

ISOLATE PCR and Gel Kit BioLine 

QIAprep Miniprep kit Qiagen 

QIAGEN DNeasy Blood & Tissue kit Qiagen 

ISOLATE Plasmid DNA mini Kit BioLine 

 

2.5 Methods 

	  

2.5.1 DNA purification 

DNA was isolated and purified using a QIAGEN DNeasy Blood & Tissue 

kit according to the manufacturer’s instructions, as follows. Two colonies of 

strain E429 were used to inoculate 10 ml of THB and grown overnight at 

37°C. The cells were pelleted (7,500 g; 10 min) and resuspended in 180 µl 

of enzymatic lysis buffer. After careful vortexing, 20 µl of lysosyme was 

added and incubated for at least 30 min at 37°C. 
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After that, 25 µl of proteinase K and 200 µl of Buffer AL were added and 

incubated at 56°C for 30 min. 200 µl of 100% (v/v) ethanol was added to 

the sample and mixed by vortexing. Then, the mixture was transferred to a 

DNeasy Mini spin column and centrifuged (8000 rpm; 1 min). 500 µl Buffer 

AW1 was added and centrifuged (8000 rpm; 1 min) followed by 500 µl of 

Buffer AW2 and centrifuged (14,000 rpm; 3 min) to dry the membrane of 

the DNeasy Mini spin column. The genomic DNA was eluted by the 

addition of 200 µl Buffer AE and centrifuged (8000 rpm; 1 min).  

Finally, the genomic DNA was aliquotted and stored at -20 °C until use. 

DNA was quantified using NanoDrop and Qubit Fluorometer (Invitrogen). 

 

2.5.2 Plasmid purification 

 

Miniprep plasmid isolation  

Plasmids were isolated and purified using QIAprep® Miniprep kit and 

ISOLATE Plasmid DNA mini Kit according to the manufacturer’s 

instructions, as follows. Two colonies of strains were used to inoculate 10 

ml of THB and grown overnight at 37 °C. The overnight culture was 

centrifuged and bacterial pellet was resuspended tin 250 µl Buffer P1 and 

transferred to a microcentrifuge tube. 250 µl Buffer P2 was added and 

mixed gently by inverting the tube.  Then, 350 µl Buffer N3 was added and 

the tube was inverted immediately to mix the solution gently. The solution 

was centrifuged (13,000 rpm; 10 min).  
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The supernatant was applied to a QIAprep spin column and centrifuged for 

30–60 s and the flow-through was discarded. Finally, 0.75 ml Buffer PE 

was added to wash the QIAprep spin column and centrifuged for 30–60 s 

and the flow-through was discarded and QIAprep spin column was 

centrifuged for 1 min to remove residual wash buffer. Place the QIAprep 

column in a clean 1.5 ml microcentrifuge tube. The DNA was eluted by add 

50 µl Buffer EB (10 mM Tris·Cl, pH 8.5) or water to the center of each 

QIAprep spin column and the column was standed for 1 min, and 

centrifuged for 1 min. 

 

Chloramphenicol amplification  

A colony of each strain was inoculated into 10 ml of THB then incubated 

overnight with shaking at 37°C. 0.1 ml of the overnight culture was 

transferred to 50 ml of fresh THB and incubated with shaking at 37°C for 4 

h.  25 ml of cells were added to 500 ml of THB and incubated with shaking 

at 37°C for exactly 2 h. Chloramphenicol was added to the culture to a final 

concentration of 170 µg ml-1 and incubated contrived at 37°C overnight.  

Plasmids were purified using QIAGEN Plasmid Mini prep as per 

manufacturer guidelines but with several modifications. 100 ml of the 

overnight culture was used to extract the plasmid. Lysozyme was added to a 

final concentration of 100 µg ml-1 and the cells were incubated for 10 min at 

37°C prior to plasmid purification. For cell lysis, buffer P2 was added and 

cells were incubated for 5 min at 37°C. Finally, the resulting plasmid DNA 

extract was electrophoresed on 1% (w/v) agarose gel and electrophoresed 

for 2 h at 90V. 
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Whole cell mini lysate  

2 ml of overnight culture was resuspended in 5 ml of lysis buffer.  5 µg ml-1 

lysosyme was added and incubated for 45 min. The culture was pumped up 

and down using 1.5 ml syringe with 0.5 X 16mm needle.  25% glycerol was 

added and samples were separated on 5% (w/v) agarose gel and 

electrophoresed for 1 h at 80V. 

 

2.6 Genetic Manipulations by Polymerase Chain Reaction (PCR) 

	  

2.6.1 Primer design and synthesis 

Primers were designed using the online Primer3-plus software. The 

following guidelines were used for designing primers: 

a) Primers should be 18 - 27 bases in length 

b) 50% of GC content 

c) Melting temperature (Tm) ideally over 60°C 

d) Primers with a terminal T should be avoided 

e) Primers with 3’ complementary ends should be avoided, as they can 

result in primer dimerisation. 

Primers were synthesised by Eurofins genomic 

(http://www.eurofinsgenomics.eu/) or Sigma-Aldrich 

(http://www.sigmaaldrich.com) supplied at a concentration of 100 µMol.  

All primers used in this study are listed in Table 2.3. 
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Table 2.3: Genome coordinates and sequence of primers used for closing 

animal E. faecium gaps strain E429 isolated from chicken.       

    

Genome coordinates 
of primers 

Primer sequence Gap location 

Gap 1_F 
Gap 1_R 

5'-tgctttggcttcagttccta-3' 
5'-cgttgttagtggtccgttca-3' 

96941  - 97767 
 

Gap 2_F 
Gap 2_R 

5'-aatgaaacttccaacatggga-3' 
5'-tgcaaatgcaactattttcaataaa-3' 

474153 - 474812 
 

Gap 3_F 
Gap 3_R 

5'-ccaatcattaacagtgtttggaa-3' 
5'-tgaagcgcattttggatctg-3' 

693583 - 694463 
 

Gap 4_F 
Gap 4_R  

5'-ccaacgagtaaggagtcacca-3' 
5'-ggtttgaaaaaccaagttatggtc-3' 

747122 - 747857 
 

Gap 5_F 
Gap 5_R  

5'-tggatatgatcgaaaaatatcaagg-3' 
5'-ttcaaaaagaaaaataggctgaa-3' 

911130 - 911859 
 

Gap 6_F 
Gap 6_R  

5'-agtagggcaccgaagaaatg-3' 
5'-ccaagaatcgacttcttggatga-3' 

1221329 - 1222141 
 

Gap 7_F 
Gap 7_R  

5'-caagtagggcaccgaagaaa-3' 
5'-tcgctttagtcaattttggtca-3' 

1344280- 1345140 
 

Gap 8_F 
Gap 8_R  

5'-tgtgaatttcaactccttctaaattg-3' 
5'-tggtataattttcttatcggtaagtgg-3' 

1364480 -1365335 
 

Gap 9_F 
Gap 9_R 

5'-catgaacgtgcagggaagta-3' 
5'-gatgaaatattcacaaagctaacca-3' 

1400219 -1400897 
 

Gap 10_F 
Gap 10_R  

5'-ttttatgatgctccagaagtgaa-3' 
5'-tgattcgatcccctttgtta-3' 

1477585- 1478432 
 

Gap 11_F 
Gap 11_R  

5'-gatcgcgatcggtcaatttg-3' 
5'-acgttgtttcccaatgccta-3' 

1641260 – 1642088 

Gap 12_F 
Gap 12_R 

5'-tgccatgtcctgtcgttctc-3' 
5'-tatggacatggaccgttcac-3' 

1854861 -1855469 
 

Gap 13_F 
Gap 13_R  

5'-atcaagtaaaattgtctgcagga-3' 
5'-aagtggaaatggatgggaca-3' 

1977394- 1978118 
 

Gap 14_F 
Gap 14_R  

5'-aacggagttaacggctttcc-3' 
5'-gcggaatggaacggtattta-3' 

1985357 -1986083 
 

Gap 15_F 
Gap 15_R  

5'-tcgaaacgtttaggccatag-3' 
5'-tttgcggtacagggggtta-3' 

2019530- 2020164 
 

Gap 16_F 
Gap 16_R  

5'-tccaattgcttccttccatc-3' 
5'-cagttgagtcgtggaaaacg-3' 

2209198- 2209989 
 

Gap 17_F 
Gap 17_R  

5'-tcatcccctaactgcagaaga-3' 
5'-aagtgaattctgcaccagca-3' 

2302574 -2303221 

Gap 18_F 
Gap 18_R  

5'-tcataagcgccgtaccttcc-3' 
5'-acgaactcatgcagtccaca-3' 

2363691- 2364340 
 

Gap 19_F 
Gap 19_R  

5'-tcagcaacttttctattctcttttg-3' 
5'-gacgttaaccattgaaaacatcc-3' 

2562483- 2563373 
 

Gap 20_F 
Gap 20_R  

5'-aaattgagtggttttgaccttga-3' 
5'-tattcccaaaaatttcgtgac-3' 

2607921- 2608662 
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Genome coordinates 
of primers 

Primer sequence Gap location 

Gap 21_F 
Gap 21_R  

5'-tgcaaaattggagaacgaaa-3' 
5'-gcggtcaagtttgttttgaa-3' 

2674655- 2675490 
 

Gap 22_F 
Gap 22_R  

5'-gtttttttgaaagcataattgcaataa-3' 
5'-aggcccccaacattaaaatc-3' 

2678784- 2679615 
 

Gap 23_F 
Gap 23_R  

5'-attttggggagcgtcaataa-3' 
5'-caaaggaagtattgagctatgcg-3' 

2687147- 2688025 
 

Gap 24_F 
Gap 24_R  

5'-ccatttttggataactggttttcc-3' 
5'-ctacggactgaattaacggc-3' 

2829762- 2830574 
 

Gap 25_F 
Gap 25_R  

5'-ttcagaatgcaattgattaaacg-3' 
5'-ttggcaaaagatagcgaagg-3' 

2836122 -2836824 
 

Gap26_F 
Gap26_R 

5'-attggctgaccaagcaaaag-3' 
5'-tcgtcttgtagtatagttgaaaaatcc-3' 

392623-393893 

Gap28_F 
Gap28_R 

5'-gcaatttcctaatgaagaatctctg-3' 
5'-tcgtattcttccagcgaatg-3' 

413432-414602 

Gap29_F 
Gap29_R 

5'-accatagacgaactgacaatga-3' 
5'-acctaagccgaaagctccag-3' 

419900-421179 

Gap30_F 
Gap30_R 

5'-cagccatccacaagtaaacatta-3' 
5'-ttatgggtgcgagtcaaaga-3' 

2394372-2395598 

Gap31_F 
Gap31_R 

5'-atattgcaattcccgattcc-3' 
5'-gctgtacgctccaatcatca-3' 

631078-632119 

Gap32_F 
Gap32_R 

5'-catgtgtatgtctaaacccatga-3' 
5'-taaaagctgcgaaagccgta-3' 

693582-694464 

Gap33_F 
Gap33_R 

5'-gaaatcctcgacagatgaatac-3' 
5'-ggaaattgagttaaatcaccaaca-3' 

706741-707895 

Gap34_F 
Gap34_R 

5'-ttcgacgaaatcatgttctagaaag-3' 
5'-aagctctctagtaattgttgattaagg-3' 

730239-731380 

Gap35_F 
Gap35_R 

5'-cagctagtatttatggatggcagc-3' 
5'-cgaccgttccttatctaaacg-3' 

818407-819420 

Gap36_F 
Gap36_R 

5'-tgtttttccttccatcagca-3' 
5'-aaatggcattcaaaatggca-3' 

1096043-1097041 

Gap37_F 
Gap37_R 

5'-aatggcgaagaaaggagtga-3' 
5'-tttcattcgaagcttggctg-3' 

1123082-1124080 

Gap38_F 
Gap38_R 

5'-caaacaattttgtaagttcatcataag-3' 
5'-gatctcgtcctgcggtttg-3' 

1149869-1150900 

Gap39_F 
Gap39_R 

5'-atatcgaacagacggtaacc-3' 
5'-tgcaggattagaaggaagctg-3' 

1167768-1168737 

Gap40_F 
Gap40_R 

5'-tgcagaaatccaagaattatca-3' 
5'-gtgtttaacaaaggatcgattgac-3' 

1264364-1265676 

Gap41_F 
Gap41_R 

5'-gacctttgagggtgcagttg-3' 
5'-ttaacgctttgggcattttc-3' 

1377756-1378716 

Gap42_F 
Gap42_R 

5'-agtccatcactgttattcaaatca-3' 
5'-cctgttacgttgtagttggatctg-3' 

1433512-1434668 

Gap43_F 
Gap43_R 

5'-ttcggcttatttccgaagaa-3' 
5'-aagggctgtgacaaatgtacc-3' 

1509550-1510784 
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Genome coordinates 
of primers 

Primer sequence Gap location 

Gap45_F 
Gap45_R 

5'-atttcaggtggtttctggac-3' 
5'-cactagaaggcgcatgtgag-3' 

1752915-1753930 

Gap46_F 
Gap46_R 

5'-ttcttactagtccgaatgtatccaa-3' 
5'-ttaccttctgcttgctctaaactg-3' 

1951699-1952864 

Gap47_F 
Gap47_R 

5'-ctcacacaaagtgtaactaattttgac-3' 
5'-cttgtgagtggcttattgatcc-3' 

2089221-2090244 

Gap48_F 
Gap48_R 

5'-tcctgctcaaaacaaaaagatg-3' 
5'-tttgcggagttgtaataggttataatg-3' 

2160136-2161168
  

Gap49_F 
Gap49_R 

5'-aattgttccattgcggtttc-3' 
5'-tccgctttcataaatctcgaa-3' 

2221256-2222385 

Gap50_F 
Gap50_R 

5'-ggacgcttgtctatttcatgg-3' 
5'-acgtttttcagagccatttc-3' 

2227163-2228772 

Gap51_F 
Gap51_R 

5'-ggaagattttaactgtttgctatagat-3' 
5'-ttccataaaaatcccgaatcc-3' 

2689338-2692879 

Gap52_F 
Gap52_R 

5'-tcttggtctcggacaaactct-3' 
5'-ccagagattcttcattaggaaattg-3' 

2695011-2700691 

Gap53_F 
Gap53_R 

5'-ccactatcaccttttattcctggt-3' 
5'-cattaaaacgaaatatgtatgattctg-3' 

2702122-2705334 

Gap54_F 
Gap54_R 

5'-gaattgattctgtagtgacccc-3' 
5'-aagatagaaatgttgccccc-3' 

2707245-2708776 

Gap55_F 
Gap55_R 

5'-gggaaaacacacggacattc-3' 
5'-tgaccccgtaactcacacttc-3' 

2716482-2717794 

Gap56_F 
Gap56_R 

5'-ccctctacagaagaatcgctatc-3' 
5'-ttaaaaacttctaatggtgtttggt-3' 

2719389-2721404 

Gap57_F 
Gap57_R 

5'-cgtccatataaatagcggcata-3' 
5'-tcatgaacaatatgatgtgatcg-3' 

2722748-2725013 

Gap58_F 
Gap58_R 

5'-tttaccgaatgaacagatagc-3' 
5'-tgaatcattttaaaggcaaacaa-3' 

2731923-2732472 

Gap59_F 
Gap59_R 

5'-ttttctttaactagagcgctttttatg-3' 
5'-actcatgatacgcagctcca-3' 

2734766-2735707 

Gap60_F 
Gap60_R 

5'-ttgcttttgcaactctaagtgaa-3' 
5'-gggagcatttatacccacca-3' 

2762959-2764253 

Gap61_F 
Gap61_R 

5'-tgcggacattattgatctagc-3' 
5'-tcggaggaatattatgtgagtaca-3' 

2765573-2766660 

Gap62_F 
Gap62_R 

5'-cttttccaagccatactcca-3' 
5'-tcattggtctgctcgatgac-3' 

2776481-2779588 

Gap63_F 
Gap63_R 

5'-gaaacgctctgtaacgcttct-3' 
5'-tgctacagtacttgttgatgtggtt-3' 

2781077-2784542 

Gap64_F 
Gap64_R 

5'-ttggtcagaatgaagaataacagc-3' 
5'-aatcagataataacccctatacaacg-3' 

2786496-2790062 

Gap65_F 
Gap65_R 

5'-aggagacgatgagtttgaaca-3' 
5'-gccgtgggatactatcttcg-3' 

2894371-2810045 
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Genome coordinates 
of primers 

Primer sequence Gap location 

Gap66_F 
Gap66_R 

5'-ttgcaattcctaatgggagtg-3' 
5'-tggccttcgtattctcaaca-3' 

2812453-2816178 

Gap67_F 
Gap67_R 

5'-cttttgttgcacaccctgag-3' 
5'-tgaaaggtcggaaagaacaaa-3' 

2821217-2824460 

Gap68_F 
Gap68_R 

5'-gaggagtcgaacccctaacc-3' 
5'-aagcattttcttattgactttcaca-3' 

2829762-2830574 

Gap69_F 
Gap69_R 

5'-ctagaatggggagtggcaaa-3' 
5'-tttctatcaattattaaaacggtgga-3' 

2836122-2836824 

Gap70_F 
Gap70_R 

5'-tcgtggatatgctgcttttt-3' 
5'-tgcaacttgatgcaaacaca-3' 

2844043-2844142 

Gap71_F 
Gap71_R 

5'-aaaagcatcggtgcagtgtt-3' 
5'-acgacgactgctcccagtaa-3' 

2858252-2861585 

 

 

Table 2.4: Antibiotic resistance gene primers used in this study. 

 

Primer sequence Antibiotic gene primers 

5'-ttttgggcttttgaatggag-3' 
5'-tctatccgactatttggac-3' 

TetM_F 
TetM_R 

5'-gcaagaatggcaaatgaac-3' 
5'-cagcttggtacatgattt-3' 

pbp1_F 
pbp1_R 

5'-catccccgttttatttgg-3' 
5'-accagttacatacgtcggg-3' 

Van_F 
Van_R 

 

 

Table 2.5: Phage integrase primers used in this study. 

 

Primer sequence Phage integrase primers 

5'-ggcgaaaaatattggggatt-3' 
5'-cgaagcaccactttcaaaca-3' 

E429_phage_int_F 
E429_phage_int_R 

5'-caaagatgggcgattcaagt-3' 
5'-ttttgaaaatcggtcacctg-3' 

E429_DOphage_int_F 
E429_DOphage_int_R 
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Table 2.6:  Housekeeping gene primers used in this study. 

 

Primer sequence Housekeeping genes primers 

5'-tatgaacctcattttaatggg-3' 
5'-gttgactgccaaacgatttt-3' 

Adk F 
Adk R 

5'-gaacctcattttaatgggg-3' 
5'-tgatgttgatagccagacg-3' 

Adk2 F 
Adk2 R 

 

2.6.2 PCR conditions and reactions 

A 25-µl PCR mixture was used to generate PCR products for sequencing 

and contained 12.5 µl of BioMix Red (Bio Line), 0.75 µl of each (10 mM) 

primer, 0.5 µl of (10 ng) E. faecium DNA and 10.5 µl of autoclaved distilled 

water. The PCR mixtures were subjected to thermal cycling (2 min at 94°C 

and then 30 cycles of 30 s at 94°C, 30 s at 55°C and 90 s at 68°C with a 7-

min final extension at 68°C).  

 

Alternatively, PCRs were performed using pfx polymerase (Invitrogen) in 

the following standard protocol. A 50 µl PCR mixture contained 3 µl of 10 

mM primer mix (Table 2.3), 1 µl (10 ng) of E. faecium DNA, 1.5 µl of 10 

mM deoxyribonucleoside triphosphate mixture (Bio Line), 1 µl of 50 mM 

MgSO4, 5 µl of pfx Amplification Buffer, 38.1 µl of autoclaved distilled 

water. Finally, 0.4 µl platinum pfx DNA polymerase was added to the PCR 

mixtures. The PCR mixtures were subjected to the same thermal cycling 

condition as above.  

Alternatively PCR conditions were used as follows: 
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1- Temperature gradient PCR (10°C): this procedure was used for the 

primers that did not work with the first two reactions conditions:  

50 µl PCR mixtures were used to generate PCR products for sequencing 

using BioMix Red as above with temperature gradient 10°C for 30 s (50°C, 

55°C, 60°C). 

 

2- Magnesium chloride with two different thermal cycles: this step was 

used for the primers that had not previously worked:  

The 50 µl PCR mixtures were used as above except 5 µl of 50 mM MgCl2 

was added and the amount of the autoclaved distilled water was changed to 

be 16µl. The first thermal cycle condition was (5 min at 94°C and then 30 

cycles of 30 s at 94°C, 30 s at 55°C and 1.30 min at 68°C with a 7-min final 

extension at 68°C) and the second thermal cycle condition was (5 min at 

94°C and then 35 cycles of 30 s at 94°C, 30 s at 53°C and 2 min at 68°C 

with a 7-min final extension at 68°C). 

 

3- Taq polymerase enzyme: this step was used for the primers that had not 

previously worked. PCRs were performed using: PCR buffer (45 mM Tris-

HCL, pH 8.8; 11 mM (NH4)2 S04; 4.5 mM MgCl2; 6.7 mM 2-

mercaptoethanol; 4.4 µM EDTA; 113 µg/ml BSA; 1 mM of each of 4 

deoxyribonucleotide triphosphates), 1 µM of each primer and 0.5 µl of Taq 

polymerase (Thermo) per 10 µl reaction. The thermal cycling conditions 

were 5 min at 94°C and then 35 cycles of 30 s at 94°C, 30 s at 53°C and 2 

min at 68°C with a 7-min final extension at 68°C. 
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2.7 Agarose gel electrophoresis 

DNA was analysed by electrophoresis on 0.5-1% agarose gels depending on 

the size of the DNA being loaded at. Agarose was added to 1X TAE buffer 

and melted in a microwave. Once the agarose had cooled to about 50°C, 

ethidium bromide was added to a final volume of 1 µg ml-1 and the gel was 

poured.  The gel was allowed to set for at least 30 minutes, then transferred 

to a horizontal electrophoresis tank containing TAE buffer, with the gel 

submerged to a depth of 2-5 mm. The sample DNA was mixed with DNA 

loading buffer and then added onto the gel. DNA electrophoresis was 

usually performed at 110 V for 30 min. Positive PCR products resulted in a 

single clear band in the agarose gels under UV light with no band in the 

negative control that did not include the template DNA. 

 

2.8 PCR purification 

PCR products were purified directly using the ISOLATE PCR and Gel Kit 

(BIOLINE) for removal of the remaining enzyme and primers following the 

manufacturer’s instructions. Gel extraction was used where multiple bands 

were visualised by UV.  

The required DNA band was excised with a clean scalpel and purified from 

the gel using ISOLATE PCR and Gel Kit (BIOLINE) according to the 

manufacturer’s instructions, with excision of up to 300 mg agarose gel 

fragment. The gel slice was transferred to a 2 ml tube. The gel slice was 

dissolved by incubating it for 10 min at 50 °C with vortexing. 50 µl of 

Binding Optimize solution was added and vortexed. Then, 750 µl of the 

sample was transferred to a spin column and centrifuged at 10,000 g for 1 
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min and filtrate was discarded. This step was repeated by reusing the 

collection tube. 700 µl of Wash Buffer A was added and centrifuged at 

10,000 g for 1 min and filtrate was discarded. This step was repeated by 

reusing the collection tube, which was centrifuged at maximum speed for 2 

min. The column was placed in a 1.5 ml Elution tube and 50 µl of Elution 

buffer was added directly to the spin column membrane.  The column was 

incubated for 1 min at RT and then centrifuged at 6000 g for 1 min to elute 

the DNA.  For the isolation of PCR products, 100 µl of PCR mixture was 

added to spin column after addition of 500 µl of Binding buffer.  

The solution was mixed well by carefully pipetting and then centrifuged 

(10,000 g; 2 min). The collection tube was discarded and the column placed 

in a 1.5 ml Elution tube. 20 µl of Elution buffer was added directly to the 

spin column membrane and incubated at RT for 1 min, then centrifuged 

(6000 g;1 min) to elute the PCR product.  

 

2.9 Sequencing of PCR products  

PCR products were treated using ExoSAP-IT (Usb.Affymetrix, Inc). 

ExoSAP-IT mixture was prepared by mixing 0.5 µl of Exonuclease I, 5.0 µl 

of SAP and 194.5 µl of distilled water. To treat the PCR product, 25 µl of 

the product was mixed with 10 µl of ExoSAP-IT mixture. The reaction was 

then performed at 37°C for 30 min then at 95°C for 5 min to inactivate 

ExoSAP-IT. After treating the PCR products with ExoSAP-IT, the products 

were sent to GATC BIOTECH http://www.gatc-biotech.com for 

sequencing. 
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2.10 Bioinformatics analysis of PCR products.  

The PCR product sequences were analysed using Codon Code Aligner 

software http://www.codoncode.com/aligner/new.htm and the sequences 

were assembled using Geneious 5.0.4. 

 

2.11 Induction of bacteriophages 

To determine whether prophage could be induced to enter the lytic cycle, 

thereby releasing free virus, the strains were induced using chemical 

(norfloxacin, Mitomycin C) and physical (UV) agents. The host range of 

released phage was tested using 15 different indicator animal isolates of E. 

faecium.   

 

2.11.1 Norfloxacin induction 

Bacteria cultured on THB broth were diluted 10–fold in 10 ml of fresh broth 

and grown to an optical density of 0.6 to 0.7 at 600 nm. Norfloxacin was 

supplemented to broth at 1 µg ml-1 and incubated for 1 h at 37°C. 1 ml of 

the bacteria was then sub-cultured in 10 ml fresh broth supplemented with 

0.01 M CaCl2 and incubated for 2 h at 37°C. Finally, the phage lysate was 

filtered through 0.2-µm membrane. 

 

2.11.2 UV induction 

Bacteria cultured on THB were diluted 10–fold in 10 ml fresh broth, grown 

to an optical density of 0.4 to 0.5 at 600 nm.  The cultures were centrifuged 

at 10844 g for 10 min and resuspended in 1 mM CaCl2. The cultures then 
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were exposed to UV radiation (366 nm) for 40-60 s. 1 ml of the treated 

bacteria was then added to 10 ml of fresh broth supplemented with 1 mM 

CaCl2 and incubated for 2 h at 37°C. Supernatants were filtered through 0.2-

µm membrane. 100 µl of the host cells were mixed with 5 ml of top soft 

agar and poured on bottom agar. 10 µl of the filtrate was pipetted on the top 

agar and incubated overnight at 37°C proceeding to plaque observation.  

 

2.11.3 Mitomycin C induction  

Bacteria cultured on THB broth were diluted 10–fold in 25 -50 ml of fresh 

THB broth and incubated at 37°C with shaking for 3 h (OD 600 around 0.2-

0.4). Mitomycin C (Sigma) was supplemented to broth at 4 µg ml-1 and 

incubated for 4 h at 37°C. Finally, the phage lysate was filtered through 0.2-

µm membrane. 

 

2.12 Phage propagation 

Host bacteria were cultured overnight at 37°C in THB.  0.1 ml of phage 

stock solution and 0.1 ml of overnight bacterial culture were added into 3 ml 

of pre warmed soft agar and poured as overlay agar onto bottom agar plates. 

Agar was allowed to set then incubated at 37°C overnight. The plates were 

then observed for the plaques.  For the plating method, dilutions of phage 

stock solutions were added to 3 ml of molten soft agar inoculated with 100 

µl of log-phase culture. The mixture was poured onto bottom agar plates and 

incubated overnight at 30°C. 
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2.13 Phage lysate  

Strains that contained antibiotic markers were cultured in LB broth at 37°C 

overnight.  Lysates of the donor strain were generated by mixing 5 ml of 

cells (OD 600 ~ 0.5) with 5 ml of phage buffer and 50 µl  (109 pfu ml-1) of 

stock lysate. The mixture was incubated at 30°C until complete lysis was 

observed (2 - 4 hours), then it was filter sterilised and stored at 4°C.  

 

2.14 Phage counting Plaque forming unit (PFU) 

A sensitive strain was cultured in THB broth until log phase. Phage lysate 

was diluted in phage buffer to 10-7. 100 µl of diluted phage was mixed with 

200 µl of bacterial culture and 50 µl of 1 M CaCl2 was added. 5 ml of phage 

top agar was added to phage mixture and overlaid on phage bottom agar 

plate. Once the phage top agar was set plates were incubated at 37°C 

overnight. The number of plaques were counted and pfu ml-1 was calculated 

using the formula pfu ml-1 = number of plaques x 108.  

 

2.15 Phage Transduction 

0.5 ml of recipient cells culturing overnight in LB containing of 10 mM 

CaCl2 was added to 100 µl of phage lysate and 1 ml LB containing 10 mM 

CaCl2. The mixture was incubated stationary at 37°C for 25 min, followed 

by 15 min on an orbital shaker 250rpm at 37°C. The mixture was 

centrifuged (13,000 rpm; 10 min) and all of the supernatant was removed. 

The cells were resuspended in 1 ml of 0.02 M sodium citrate and incubated 

on ice for 20 min. 100 µl aliquots were spread on to LB plates containing 

0.05 % (w/v) sodium citrate and selective antibiotic. Plates were incubated 
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at 37°C for 90 min and overlaid with 5ml of LB Top agar containing 

selective antibiotics. Plates were incubated for 24-48 hours at 37°C.  PCR 

amplification for antibiotic genes was performed to confirm transduction 

(Table 2.5).  

 

2.16 Preparation of bacteriophage DNA; PEG precipitation/ 

purification 

Phage DNA was purified from the free phage after grow the bacteria in 50 

to 100 ml THB for overnight at 37°C and the free phage lysate was filtered 

through 0.2-µm membrane and stored at 4 °C. phage DNA was purified 

after 45 min of adding the induction agent and then the phage lysate was 

filtered through 0.2-µm membrane and stored at 4°C. Phage DNA was 

purified after 4 of adding induction agent and phage lysate was filtered and 

store at 4°C. PEG precipitation was carried out on the phage stock to isolate 

the phage DNA. 30 µl chloroform was added to each 10 ml of the phage 

stock to lyse any remaining bacteria. 5 µg ml-1 DNase and 1 µgml-1 RNase 

were added and incubated at 37°C for 4h. Bacteriophages were precipitated 

by incubation with 33 % (w/v) Polyethylene glycol (PEG) on ice for 30 min. 

Precipitated bacteriophage were then harvested by a 10 min centrifugation 

at 10000 rcf.  

Supernatant was discarded and the pellet was resuspended in 1 ml of SM 

buffer. 5 µg ml-1 DNase and 1 µg ml-1 RNase were added and incubated at 

37°C overnight. DNA was purified by the addition of an equal volume of 

equilibrated phenol:chloroform:isoamyl alcohol (25:24:1, pH 8).  The 

mixture was centrifuged at 14500 rcf for 5 min and the resulting aqueous 
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phase was transferred to a new tube, this step was repeated twice. The DNA 

was precipitated by the addition of 0.6 volume isopropanol. Finally, the 

mixture was centrifuged at 14500 rcf for 30 min.  The supernatant was 

discarded and the pellet was resuspended with 70 % (v/v) ethanol prior to 

resuspension in 100 µl distilled water. DNA was quantified using a Qubit 

fluorometer (Invitrogen). PCR amplification was used to identify the 

presence of the phage DNA by using phage integrase primers (Table 2.5) 

and the housekeeping gene adk and adk2 (Table 2.6) and to determine 

purity of the phage DNA relative to genomic DNA.  

 

2.17 Bacteriocin induction  

Bacteria were cultured in THB at 37 °C and harvested at four different time 

points 2, 4, 8 h and overnight. The cultures were filtered through a 0.2 µm 

membrane. Host bacteria were grown overnight at 37°C in THB. 0.1 ml of 

overnight bacterial culture was added into 3 ml of pre-warmed soft agar and 

poured as overlay agar onto agar plates and allowed to set. 10 µl of cell 

filtrates stocks were spotted on the plates and incubated at 37°C overnight. 

The plates were observed for zones of growth inhibition.  

For the plating method, dilutions of stock solutions were added to 3 ml of 

molten soft agar inoculated with 100 µl of log-phase culture. The mixture 

was poured onto bottom agar plates and incubated over night at 30°C.  Size 

excision columns (Centricon plus-20) were used to discriminate between 

phage and bacteriocins. The stock was centrifuged at 4000 rpm for 1 h. The 

solution that was passed through the occlusion membrane was spotted onto 
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plates containing host bacteria to assay growth inhibition zones or plaques, 

compared with unfiltered material.    

 

2.18 Bioinformatics tools 

The following section provides a description of bioinformatics tools and 

resources evaluated/used during this study. 

 

2.18.1 Sequence Analysis Tools 

 
Basic Local Alignment search tool BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

This tool was established to discover (local) homology between two 

sequences. Protein and nucleotide sequence databases can be used for a 

given sequence of interest. This program calculates the statistical 

significance of an alignment (Altschul, Gish et al. 1990). 

The BLAST algorithm has many variation; BLASTN, BLASTP, BLASTX, 

TBLASTN, mega BLAST and psi-BLAST. These different algorithms use 

are according to the query input (nucleotide, protein or translated sequences) 

with searches against a vast number of organism sequences. 

  

MUMmer (http://www.tigr.org/software/mummer)  

MUMmer 3.0 is open-source software that enables genome sequence 

comparison of large genomes. MUMmer can align incomplete genomes 

from a shotgun sequencing project using the NUCmer program included 
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with the system. The graphical viewing tools afford different ways to 

analyse genome alignments (Kurtz, Phillippy et al. 2004).  

 

Artemis (http://www.sanger.ac.uk/Software/Artemis/v8/) 

Artemis is a DNA sequence viewer and annotation tool that allows 

visualisation of sequence features and the results of analyses within the 

context of next generation data. 

 

CLUSTALW (http://www.ebi.ac.uk/Tools/msa/clustalw2/)  

CLUSTALW (1.83) is one of the most powerful programs used to achieve 

multiple sequence alignments. This program allows the presentation of 

multiple nucleotide and protein sequence alignments (Larkin, Blackshields 

et al. 2007).  

 

MUSCLE  (http://www.drive5.com/muscle/)  

MUSCLE (v3.6) is a computer program most widely used in biology to 

create multiple sequence alignments of proteins. MUSCLE uses different 

algorithms including fast distance estimation and progressive alignment. 

The accuracy and speed of the program is better than CLUSTALW, since 

hundreds of sequences can be aligned in seconds (Edgar 2004).  

 

FigTree (http://tree.bio.ed.ac.uk/software/figtree/)  

FigTree (v1.3.1) is a program for graphical viewing of phylogenetic trees. 

The program was designed to show summarized and annotated trees formed 

by BEAST. 
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FastTree (http://www.microbesonline.org/fasttree/) 

FastTree (v2.1.7) is an open-source software construct, which can infer 

maximum likelihood phylogenetic trees from alignments of nucleotide or 

protein sequences. Millions of alignments can be done in a reasonable 

amount of time and memory (Price, Dehal et al. 2010). 

 

Geneious (http://www.geneious.com/)   

By using Geneious (v7.1.3) software, one can analyse integrated protein and 

DNA sequences, perform BLAST and get access to public databases. The 

most powerful analysis that can be done using this software is the sequence 

alignments manageability for both pair-wise and multiple sequence 

alignments and visualization of the sequence alignments. The alignment 

results can be viewed as phylogenetic trees. 

 

OrthoMCL (http://www.orthomcl.org/orthomcl/?rm=orthomcl)  

OrthoMCL (v1.4) is one of the most commonly used programs to perform 

identification of orthologous groups. In addition, access to these groups is 

extremely important for study gene/protein evolution and comparative 

genomics and genome annotation.  

All against All BLASTP between species and within species with Markov 

Cluster algorithm methods can be performed to find all orthologous groups 

with any recent paralogs. Ortholog analysis by using OrthoMCL can be 

applied with two genomes or it can be extensive to cluster orthologs from 

multiple species in order to constructing orthologous groups (Li, Stoeckert 

et al. 2003). 
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Mauve (http://gel.ahabs.wisc.edu/mauve)  

Mauve (v2.3.1) software is a powerful package applied to determine the 

presence of rearrangements and horizontal transfer in a genome. It is used 

for the identification and alignment of conserved genomic DNA (Darling, 

Mau et al. 2004). Mauve alignments were used in this study to draw 

comparison between whole genomes as well as examine the reasons of 

rearrangements within genomes of E. faecium.  

 

BRIG (http://sourceforge.net/projects/brig/)  

The BLAST Ring Image Generator BRIG (v1.0) is a desktop application 

written in Java 1.6. This application was used in genome comparisons and 

generates a circular image for the genome. The comparison in this 

application depends on the Basic Local Alignment Search Tool (BLAST) 

and CGView for image rendering. For generating genomes maps in BRIG in 

this study DNA or protein files were used. 

 

MeV (http://www.tm4.org/mev.html)  

Multi experiment Viewer MeV (v10.2) is a beneficial microarray data 

analysis tool, including high-level algorithms for statistical analysis, 

classification, clustering, visualization, and biological argument discovery 

(Chu, Gottardo et al. 2008). MeV was used in this study for clustering 

orthologous groups and for cladogram analysis. 
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Unipro UGENE (http://ugene.unipro.ru)  

UGENE (v1.11.5) is open-source software that can be used as a 

multiplatform software. It offers visualization of annotated genome 

sequences, multiple sequence alignments and phylogenetic trees 

(Okonechnikov, Golosova et al. 2012). In this study UGENE software was 

used to identify and map the repetitive units in the genomes.    

 

Phenolink (http://bamics2.cmbi.ru.nl/websoftware/phenolink/)  

Phenolink is a web-tool to identify genetic links between phenotypes. It uses 

~omics technologies that connect phenotypes with high-throughput 

molecular biology information. The purpose is to see through cellular 

mechanisms underlying an organism's phenotype (Bayjanov, Molenaar et al. 

2012). A default parameter was used to identified E. faecium phenotypes.  

 

CRISPRs Finder (http://crispr.u-psud.fr/Server/CRISPRfinder.php)  

CRISPRFinder is a free access web service. CRISPRs stands for Clustered 

regularly interspaced short palindromic repeats. Five tools are available in 

CRISPRs Finder, which can be used for:  

1. Detecting very short CRISPRs that consist of one or two motifs. 

2. Identifying highly conserved regions (DR) and extracting similarly sized 

unique sequences, which lie between the DRs called spacers. 

3. Obtaining the AT-rich leader sequence, which flanks the CRISPR cluster 

on one side.  

4. To do BLAST searches to look for spacers in the Genbank database.  
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5. To identify the highly conserved regions (DR) are present in other 

prokaryotic sequenced genomes (Grissa, Vergnaud et al. 2007). 

 

Island Viewer (http://www.pathogenomics.sfu.ca/islandviewer) 

IslandViewer is a freely accessible web service that provides detection of 

gene clusters likely to be of horizontal origin, called Genomic islands (GIs). 

These clusters contain genes such as virulence, antibiotic resistance or other 

important adaptation genes. IslandViewer uses a graphical interface that 

allows easy viewing and the island data of both the chromosome and the 

gene level can be downloaded. The server uses three methods to identify the 

GI regions. IslandPick; comparative genomic GI prediction method to 

advance stringent data sets of GIs and non-GIs,  SIGI-HMM; This method 

measures codon usage to identify possible GIs by using Hidden Markov 

Model (HMM). Finally,  IslandPath-DIMOB; this method visualises several 

common characteristics of GIs such as abnormal sequence composition or 

the occurrence of genes that are functionally related to mobile elements  

(Langille and Brinkman 2009). 

 

PHAST (http://phast.wishartlab.com)  

PHAST is a fast web server used to distinguish, annotate and graphically 

present prophage sequences and prophage features within bacterial genomes 

or plasmids (Zhou, Liang et al. 2011). 
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IS Finder (https://www-is.biotoul.fr// ) 

IS Finder is a database provides a list of insertion sequences elements 

isolated from Eubacteria and Archaea. The IS elements in this database are 

defined in individual files which contains their general features such as 

name, size and family plus their DNA and protein sequences. In addition, 

for the comparison an on-line BLAST search is available. 

 

2.18.2 Databases and Genome Resources  

 

NCBI (http://www.ncbi.nlm.nih.gov/) 

The NCBI server provides a wide range of bioinformatics tools. Inside the 

molecular databases there are nucleotide, protein, structure, taxonomy, 

genome, expression and chemical databases. In addition, NCBI offers a 

literature database, which includes research articles (e.g. PubMed) and pools 

of reference overviews. BLAST, genome map viewer and ORF finder are 

the tools available in NCBI.  

 

EBI-EMBL (http://www.ebi.ac.uk/)   

The European Bioinformatics Institute (EBI) research centre and 

bioinformatics service provides and hosts literature, pathway, sequence, 

networks, microarray and ontology databases. In addition, it offers some of 

the most recognized EBI tools such as UniProt, Ensembl, ArrayExpress, 

Biomart and InterPro.  
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Antibiotics Resistance Database   

 

Resfinder (http://cge.cbs.dtu.dk/services/ResFinder/) 

ResFinder is a database used to identify the antimicrobial resistance genes. 

BLAST for identification of acquired antimicrobial resistance genes in 

whole genome data is the main method that is used in this database 

(Zankari, Hasman et al. 2012). 

 

CARD: (http://arpcard.mcmaster.ca)  

The comprehensive Antibiotics Resistance Database (CARD) is a tool used 

to analyse the genetics and genomics of antibiotic resistance and to identify 

antibiotic resistance genes in new unannotated genome sequences 

(McArthur, Waglechner et al. 2013). 

 

Virulence factors database 

 

VFDB (http://www.mgc.ac.cn/VFs/)  

The virulence factors database (VFDB) is an integrated and comprehensive 

resource of virulence factors for bacterial pathogens. Two different tools 

regular BLAST and PSI/PHI BLAST, can be used to identify: offensive 

virulence factors with roles for adherence, invasion and toxins; defensive 

virulence factors such as secretion systems type III, IV, VI and VII and 

autotransporter type V; nonspecific virulence factors such as iron uptake 

systems, magnesium transport and exoenzymes; and finally, the regulation 

of virulence-associated genes. 
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2.19 Genome sequencing  

The genome of three vancomycin-resistant animal E. faecium isolates has 

been sequenced by whole genome shotgun using 454 pyrosequencing.  The 

pyrosequencing were performed by generating standard fragment template 8 

Kb DNA libraries, which were multiplex identifier (MID) tagged to allow 

multiple samples to be run in a single plate region, using the GS-FLX 454 

Life Sciences through The Center for Genomic Research (CGR) in 

Liverpool University.  

The genome E. faecium isolated from calf has been sequenced by Pacific 

Biosciences PacBio RS.  A total of 56 µg µl-1 of DNA was sent The Center 

for Genomic Research (CGR) in Liverpool University, where a single 10 kb 

SMRT-bell sequencing library (Pacific Biosciences) was constructed.  The 

SMRT-bell library was sequenced using 2 SMRT cells (Pacific 

Biosciences). 

 

2.19 Structural and functional annotation  

Genome annotations were managed using RAST server 

(http://rast.nmpdr.org) and IMG/ER (Integrated Microbial genomics) 

(https://img.jgi.doe.gov). Gene structure was assigned by the automated 

gene-calling algorithm, Prokka (version1.8) 

(http://www.vicbioinformatics.com/software.prokka.shtml) using default 

parameters. To validate the prokka gene prediction, the open reading frames 

(ORF) were compared to published sequences using BLASTn. After the 

gene-finding progression, different types of investigation were made in 

order to predict the function of the encoded proteins.   
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BLAST search algorithm was used to examine the homology of the putative 

ORFs (DNA and protein).  Functional classification of ORFs was based on 

homology search against COGs. Protein function annotation was 

constructed based on the homology search against NCBI protein database.  

 

2.20 Genome map 
 
 The BLAST Ring Image Generator BRIG version 0.95  

(http://sourceforge.net/projects/brig/) was used to create circular plots for 

visualising E. faecium genomes.   

Gene bank file was used. The map had the information of gene name and 

the start and end positions within the genome.  The program was performed 

using BLASTp with an upper identity threshold of 70 % and lower identity 

threshold of 50 %.  

 

2.21 Ortholog analysis 
 
Orthogroups are genes that probably have the same function and possibly 

some paralogs.  Paralog is a duplication of gene that has acquired new 

functions. The occurrence of orthogroups across all of the genomes were 

determined using OrthoMCL, with a threshold BLAST e-value of 10-5.  

 

2.22 Phylogenetic construction 
 
A phylogenetic tree of all E. faecium genomes was calculated using a 

distance method based on pairwise protein sequence alignments using 
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Geneious software.  Rapid bootstrapping option for nucleotide sequences, 

using 1000 bootstrap replicates was used.  

In order to maximise resolution on the tree, we used all single-copy core 

orthogroups in our E. faecium genomes. Both protein and nucleotide 

sequence trees were established for both core genes and accessory genes to 

compare the relationship within the branches in the phylogenetic tree.  This 

was done to check and compare the two trees and make sure of the primary 

reason for that drive the clade.  The phylogenetic trees were inferred by both 

neighbor-Joining, and split decomposition analysis. Phylogenetic trees were 

edited with Fig Tree , which is a graphical viewer of the phylogenetic tree. 

Core genome phylogeny, firstly, OrthoMCL was performed. Then, core 

genes were defined by selecting genes, which were present only one gene in 

each strain. The sequence alignments of those genes were conducted using 

MUSCLE, and then they were trimmed and concatenated. A core 

phylogenetic tree was constructed using fasttree, with bootstrapping 

supports obtained from seqboot. 

 

2.23 Pan genome analysis  
 
Compute pan-genome and core-genome sizes and their evolutions for a 

genome set were determined using the R project for statistical computing 

using (gplots package). In addition, the common and variable genome 

proportion for each group of E. faecium genome was detected. The pan-

genome analysis is computed using the OrthMcl results. If an orthologue is 

associated with every compared genome, this orthologue is a part of the 

core-genome.  If an orthologue is associated with 1 > n of the compared 
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genomes, it is a part of the variable-genome. If an orthologue is not 

clustered with any compared genomes, it is a singleton and is a part of the 

variable-genome. The size of the core and pan-genomes was estimated by 

fitting an exponential curve through medians.  

 

2.24 Phage identification 

Prophage genomes were obtained from the sequence of their hosts that were 

available from the NCBI database and were predicted from these genomes 

using the PHAST algorithm. One complete prophage of E. faecium IME-

EFm1 was reported previously (Wang, Wang et al. 2014). To predict phage-

related genes in each genome, Artemis and BLAST were used to compare 

genes against the PHAST database.  

 

2.24.1 Sequence clustering and phylogenetics 

Mauve progressive alignments to determine conserved sequence segments 

most likely to be conserved in recombinational events were determined 

using the Mauve algorithm. Alignments of specific genes were done using 

Geneious. The phylogenetic trees of several selected genes were constructed 

with Geneious using the Neighbor-Joining algorithm. Trees were 

bootstrapped for 1000 times. Tree was visualized using FigTree.  

 

2.24.2 Putative prophage attachment sites 

In the lysogenic isolate the prophage is expected to be bordered by short 

directly repeated sequence (the attL, attR of the prophages). 
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Consequently, to detect the putative attachment sites, genomic sequences of 

the lysogenic E. faecium strains were analysed for the presence of directly 

repeated sequences flanking the prophages using Unipro UGENE. 
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Chapter Three: Genome sequencing of three 

animal isolates of Enterococcus faecium. 
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3.1 Introduction  

Bacterial diseases represent a major source of morbidity and mortality 

amongst humans and animals. Pathogenic bacteria comprise a diverse range 

of species, which have discrete virulence mechanisms. A good knowledge 

and understanding of these mechanisms is necessary to design successful 

new therapies against bacterial diseases and manage the emergence of novel 

isolates. The design of therapies is limited due to the extent of information 

about the pathogenesis of some diseases being limited or non-existent 

(Donkor 2013). 

 

Genome sequencing, combined with interpretation using bioinformatic 

analyses of genome data, has dramatically extended our understanding of 

bacterial pathogens, particularly with respect to their ecology, evolution, 

and pathogenesis (Tang and Holden 1999, Donkor 2013). Doolittle (1999) 

states that the ability to exploit complete genome sequences of microbes 

offers many opportunities for medicine and delivers an abundance of 

knowledge for interrogating evolutionary networks. Greater than 1,800 

bacterial genomes, including the majority of bacterial pathogens, have now 

been completely sequenced (Ribeiro, Przybylski et al . 2012). The resource 

of sequenced genomes and the direct access to genome data have advanced 

studies in biology and has given birth to a new science called genome-based 

biology (Garcia-Vallve, Romeu et al . 2000).   

 

The typical bacterial genome consists of a single circular chromosome, 

however there are exceptions, with several medically significant bacteria 
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having two or more chromosomes, including Burkholderia, Brucella, 

Vibrio, and Leptospira species; several species have linear chromosomes, 

for example Borrelia burgdorferi (Guzman, Romeu et al . 2008).  Allen et 

al  (2006) indicated that the majority of bacterial genomes are smaller than 5 

Mb in size, although species have been described with genomes up to 30 

Mb, for example Bacillus megaterium (Allen, Price et al . 2006).  

 

Guzman et al (2008) establish that the difference in bacterial genome size 

appears related to lifestyles, whereby obligate pathogen species have 

smaller genomes than parasitic species, which in turn have smaller genomes 

than free-living species. The nucleotide composition in bacterial genomes 

varies across bacteria. The GC (guanosine-cytosine) content may differ 

locally within a genome, but it is relatively constant within a bacterial genus 

and species, varying from ~25% GC in Mycoplasma spp to ~75% in 

Micrococcus species. The variation in GC content within a single genome 

was used to determine the acquisition of genomic portions by horizontal 

gene transfer, classically pathogenicity islands, since these frequently have a 

different GC ratio (Walk, Alm et al . 2007). 

 

On average, a bacterial genome comprises around 2,500 genes. The genome 

encodes all of the biochemical functions that are necessary for survival of an 

individual species, and additionally those functions necessary for virulence 

within the genome of pathogenic bacteria. Bacterial genomes contain few 

non-coding regions (Jacob and Monod 1961, Allen, Price et al . 2006).  
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Between closely related organisms (based on phylogenetic distances) the 

gene content and gene order are well-conserved, however, among more 

distantly related organisms it becomes less conserved (Guzman, Romeu et 

al . 2008). An evolutionary tree of microorganisms can be constructed from 

comparative analyses of the nucleotide sequences of genes encoding 

ribosomal RNAs or core genome proteins, such as, CTP synthetase and the 

cell adhesion protein FtsY(Pennisi 1998).  

Specific Aims 

The aims were to sequence the genomes of three vancomycin-resistant 

isolates of E. faecium from chicken, calf and pig using next generation 

pyrosequencing on the Roche 454 titanium platform. These genomes were 

selected specifically to investigate host adaptation in mammalian hosts. A 

further aim was to attempt closure of gaps in one of these genomes to 

produce a closed E. faecium from animals. This would enable comparative 

genomics.  

 

3.2 Results  

 

 3.2.1 Genome sequencing and assembly 

The genome sequences of E. faecium strain E429, isolated from chicken, 

strain E172, isolated from calf and strain E142, isolated from pig, were 

determined using the GS-FLX sequencing platform (454 Life Sciences), as 

described in section 2.19.2. The insert library representing each genome was 

sequenced extensively to provide reads for each E. faecium isolate of 

849,986, 366,122 and 335,440, respectively for E429 (chicken), E172 (calf) 
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and E142 (pig) (Table 3.1). For each respective strain, these reads were 

assembled into 922, 786 and 136 contigs respectively. The longest scaffold 

gives the best approximation for the size of the three genomes although the 

number of scaffolds obtained for strain E429 (chicken), E172 (calf) and 

E142 (pig) were 19, 18 and 3. The chromosome of the animal strains of E. 

faecium varies in size, therefore, from approximately 3.38 Mb in the 

chicken strain to 2.94 Mb in the calf strain and 2.52 Mb in the pig strain, 

with a GC-content of 38.75%, 38.67% and 38.13%, respectively (Table 3.1). 

Associated with each genome assembly are 62, 67 and 55 tRNAs 

respectively for strain E429 (chicken), E172 (calf) and E142 (pig) and 

markedly different numbers of ribosomal genes with 11 rRNAs (1 x 5S, 3 x 

16S and 7x 23S), 14 rRNAs (2 x 5S, 4 x 16S and 8 x 23S) and 3 rRNAs (1 

of 5S, 1 of 16S and 1 of 23S), respectively for chicken, pig and calf.  

 

3.2.2 Annotation of the E. faecium genome animal strains 

The genomes of the chicken, calf and pig strains were annotated using IMG-

ER (Integrated Microbial Genomes Expert Review).  The initial annotation 

analysis identified 3,574, 2,892 and 2,641 protein coding genes in chicken, 

calf and pig, respectively. Approximately 2%, 2.72% and 2.15% of the 

genes in the animal strain genomes, respectively, determine structural 

RNAs.  The remaining 98% of predicted ORFs in strain E429 (chicken), 

97.28% in strain E172 (calf) and 97.85% in strain E142 (pig) were studied 

using homology analyses with sequence databases, which identified that 

74% (2,708), 78% (2,325) and 79% (2,147) of the predicted ORFs, 



 
 

 86 

respectively, were likely to be functional proteins. Nearly 10% of the 

genomes are non-AGCT bases.   

 

Table 3.1: Structural features associated with the sequenced genomes of E. 

faecium strains E429, E172 and E142.  

 

Genomic features E429 
(Chicken) 

E172 
(Calf) 

E142 
(Pig) 

Estimated genome size 3.4 MB 2.9 MB 2.5 MB 

Number of scaffolds 19 18 3 

Shortest scaffold (bp) 2063 2053 3397 

Largest scaffold  (bp) 2868347 2291364 2454786 

N50 scaffold size 2868347 2291364 2454786 

Number of contigs scaffolded 179 204 85 

Number of contigs scaffold 
bases 

2984142 2678841 2500548 

Scaffold G + C content 38.1% 38.2% 38.1% 

Non-ACGT bases 321618 398256 106125 

Number of contigs 922 786 136 

Shortest contig (bp) 101 102 101 

Largest contig (bp) 96987 186193 190330 

Total number of assembled 
bases 

3383541 2948249 2525775 

N50 large contig size 33454 28565 47222 

 

3.2.3 General genome features of the three animal strains of E. faecium 

The general genome features of each animal strain from 454 sequence data 

analysis are described in the following table.    
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Table 3.2: Genome composition features of strains E429, E172 and E142. 

 

Feature E429 (chicken) 
Number         % 

E172 (calf) 
Number        % 

E142 (pig) 
Number       % 

DNA, total 
number of bases 

3383541 100 2948249 100 2525775 100 

DNA coding 
number of bases 

2700854 79.8 2310519 78.3 2156842 85.3 

DNA G+C 
number of bases 

1311102 38.7 1140083 38.6 963197 38.1 

Genes total 
number 

3647 100 2973 100 2699 100 

Protein coding 
genes 

3574 98 2892 97.2 2641 97.8 

Protein coding 
genes with 
function 
prediction 

2708 74.2 2325 78.2 2147 79.5 

Protein coding 
genes without 
function 
prediction 

866 23.7 567 19.0 494 18.3 

Protein encoding 
enzymes 

666 18.2 639 21.4 608 22.5 

Protein coding 
genes connected 
to KEGG 
pathways 

735 20.1 720 24.2 676 25.0 

Protein coding 
genes connected 
to KEGG 
Orthology (KO) 

1332 36.5 1280 43.0 1214 44.9 

Protein coding 
genes with COGs 

2437 66.8 2186 73.5 2056 76.1 

 

3.2.4 Ribosomal genes 

Within the genome isolated from a chicken (E429), two copies of 23S rRNA 

are identical and five copies differ by 6 to 11 nucleotide bases and the three 

copies of 16S rRNA differ by 4 to 5 nucleotide bases.   

Four genes of 23S rRNA are identical in the calf genome (E172) and three 

are different by 7 nucleotide bases while one copy differs by 440 nucleotide 

bases. The four copies of 16S rRNA range in size from 1332 to 
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1561bp.BLAST against RNA genes found in E. faecium genomes showed 

that most of the 23S rRNA found in animal E. faecium genomes are unique.  

One RNA operon was found in each animal genome of animal E. faecium, 

comprising 23S, 16S, 5S and at least one tRNA, while most of the rRNA 

genes were found at the end of the genome assemblies and surrounded by 

phage genes, transposase and insertion elements which suggested that the 

rRNA genes were not assembled correctly (Figure 3.1). 

 

Table 3.3 A: Comparative genome features of Entercoccus species retrieved 

from the Integrated Microbial Genomes database. The table displays the 

variation in copy number of rRNAs genes among a selection of Entercoccus 

species genomes.  

 

Genome Name Size  
(Mb) 

Protein coding 
genes 

rRNA 
Genes 

 
5S 

 
16S 

 
23S 
 

Enterococcus sp. 7L76 3.09 2348 3 1 1 1 
E. faecalis V583 3.35 3390 12 4 4 4 

E. faecalis Symbioflor 1 2.81 2808 12 4 4 4 
E. faecalis 62 3.10 3094 12 4 4 4 

E. casseliflavus EC20 3.42 3189 15 5 5 5 
E. hirae ATCC 9790 2.85 2845 18 6 6 6 

E. faecium DO 2.83 3148 16 4 6 6 
E. faecium Aus0004 2.96 2934 18 6 6 6 
E. faecium NRRL 2.84 2772 18 6 6 6 

 

 

Table 3.3 B: Comparative genome features of E. faecium strains retrieved 

from the Integrated Microbial Genomes database. *refers to closed 

genomes. The table displays the variation in copy number of rRNAs genes 

among a selection of E. faecium isolates from humans (clinical and 

commensal strains) compared with animal strains. 
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Genome 
Name 

Size 
(Mb) 

Protein 
coding 
genes 

GC% 
rRNA 
Genes 

 
5S 

rRNA 
16S 

 
23S 

tRNA 
Genes 

Source 

E429 3.38 3647 39 11 1 3 7 62 Chicken 

E172 2.9 2973 39 14 2 4 8 67 Calf 

E142 2.52 2699 38 3 1 1 1 55 Pig 

1,141,733 2.92 2829 38 3 1 1 1 43 
Human 
clinical 

Com15 2.80 2786 38 3 1 1 1 59 
Human 

commensal 

*DO 2.83 3148 38 16 4 6 6 31 
Human 
clinical 

*Aus0004 2.96 2934 38 18 6 6 6 47 
Human 
clinical 

*NRRL 23.4 2304 38 3 1 1 1 52 Milk 

 

 

Figure 3.1: Syntenic ribosomal rRNA gene organisation in the genomes of 

chicken (E429), calf (E172) and pig (E142) strains. 

 

3.2. 5 GC- content   

The GC-content of most sequenced isolates of E. faecium is 38%. The E. 

faecium genomes isolated from chicken (E429) and calf (E172) have a 

slightly higher G+C content of 39% (Table 3.3B). Across the genus the 

G+C content varies from 35-43% (Table 3.4). 
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Table 3.4: Genome features of Enterococcus species retrieved from 

Integrated Microbial Genomes database https://img.jgi.doe.gov/cgi-

bin/er/main.cgi?logout=1.  

 

Genome Name GC % 
E .durans ATCC 6056 38 
E .faecalis 02-MB-P-10 37 
E. faecium Aus0085 38 
E .flavescens ATCC 49996 42 
E .gilvus ATCC BAA-350 41 
E .haemoperoxidus ATCC BAA-382 36 
E .hirae ATCC 9790 37 
E .italicus DSM 15952 39 
E .malodoratus ATCC 43197 40 
E .moraviensis ATCC BAA-383 36 
E .pallens ATCC BAA-351 40 
E .phoeniculicola ATCC BAA-412 36 
E .raffinosus ATCC 49464 39 
E .saccharolyticus 30_1 41 
E .sulfureus ATCC 49903 38 
E .villorum ATCC 700913 35 
E. avium ATCC 14025 39 
E. caccae ATCC BAA-1240 36 
E. casseliflavus 14-MB-W-14 43 
E. cecorum DSM 20682 36 
E. gallinarum EG2 41 
E. mundtii ATCC 882 38 

 

3.2.6 Genome synteny   

The evolutionary relationships between organisms and a prediction of gene 

function can be examined by a comparison of gene order between genomes. 

Multi-gene regions with conserved DNA sequence and gene order are 

described as having genome synteny (Bentley and Parkhill 2004). A 

comparison of gross organisation of the genomes using the software 

package Mauve, which is a multiple-genome alignment program and 

visualiser, identifies locally collinear blocks of DNA (LCBs).  These blocks 

correspond to regions of the chromosome devoid from genome 

https://img.jgi.doe.gov/cgi-bin/er/main.cgi?logout=1
https://img.jgi.doe.gov/cgi-bin/er/main.cgi?logout=1
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rearrangements. The blocks reveal that the genome isolates from a chicken 

(E429) has gene clusters that are organised in the reverse complement in the 

calf (E172) and pig (E142) genomes (Figure 3.2). The majority of 

homologous genes in the calf genome (E172) and pig genome (E142) are 

located as collinear clusters.  One explanation for the extent of inversion 

present in the chicken strain could be that repetitive sequences in the 

genomes were a driver for recombination events.    

 

Species of Enterococcus show varying degrees of synteny based on their 

overall protein sequences and gene order comparing different species of 

Enterococcus with E. faecium this synteny varies from extensive (E. hirae, 

E. durans, E. mundtii and E. villorum) to minimal (E. caccae, E. 

haemoperoxidus, E. gallinarum, E. casseliflavus) (Figure 3.3). This 

comparison was performed using the complete Aus0004 E. faecium genome 

and some of the genomes used in these comparisons are fragmented and this 

may affect the apparent synteny of the compared genomes.  
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Figure 3.2: Locally Collinear Blocks (LCBs) identified in a comparison of E. faecium animal genomes. Each contiguously coloured region is a 

locally collinear block of homologous backbone sequence. LCBs below the centreline are in the reverse complement orientation relative to the 

reference genome (E429). The black arrows show the orientation in the LCBs compared to the reference genome.  
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A. 
 

 
 

B. 
 

 
 

C. 
 

Figure 3.3: Genome synteny between E. faecium Aus0004 and other 

Enterococcus species. A. Mummer plot identifies a high degree of 

relatedness based on the overall protein sequence homology and gene order 

between the complete genome of E. faecium Aus0004 and the genomes of 

E. hirae ATCC 8043, E. durans ATCC 6056 and E. mundtii ATCC 882.  
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B. Mummer plot identifies a lesser degree of relatedness based on their 

overall protein sequence homology and gene order between the complete 

genome of E. faecium Aus0004 and the genomes of E. italicus DSM 15952, 

E. avium ATCC 14025 and E. asini ATCC 700915. C.  Mummer plot 

identifies a low degree of relatedness based on their overall protein 

sequence homology and gene order between the complete genome of E. 

faecium Aus0004 and the genomes of E. faecalis V583, E. caccae ATCC 

BAA-1240 and E. haemoperoxidus ATCC BAA-382. The blue dashed line 

represents the homology between the two strains. The red dashed lines 

represent inverted regions between the two strains. X-axis shows Aus0004 

genome. Y-axis shows the Enterococcus species genomes. 

 

3.2.6 Genome inversion in E. faecium genomes 

Possible explanations for the large inversions in the human strains, Aus0004 

and DO, relative to the animal strains E429 (chicken), E172 (calf) and E142 

(pig) were examined. Using the software package Mauve, several IS 

elements were located at the boundary of each collinear block. There is an 

apparent inversion in the regions in both Aus0004 and DO genomes 

respectively, when the circular chromosome is taken into account.  

 

Blocks 1 and 3 are bordered by an integrase gene in the genome of 

Aus0004, to each side (positions 722300-723217 and 2211763-2212716) 

and these genes are 917 bp and 953 bp in size respectively (red arrows) 

these could explain the region 1 and 3 inversion in the genome. In addition, 

several integrase and IS elements were also spread adjacent to boundaries of 
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the blocks: ISEfa7 (position 604818-606263) and 1.4 kb in size; integrase 

(position 303078-304031) and 953 bp in size; ISEfm1 (positions 297341 - 

298102 and 286975 – 287883) and 761 bp and 908 bp in size, respectively, 

plus IS1251 in position 44706 - 45896 and 1.1 kb in size. The inversion of 

the chromosome in block 2 of the Aus0004 genome could have occurred 

due to adjacent prophages (presented as orange arrows) (Figure 3.4).  

 

An explanation for the inversion observed in the animal genomes E429 

(chicken), E172 (calf) and E142 (pig) compared with the DO strain could be 

recombination due to due to transposases at the boundaries of the inverted 

section of chromosome. Both transposases are identical in size, (953 bp) and 

are located immediately adjacent (719177 - 720130 and 2110894 – 

2111847) (blue arrows) (Figure 3.4). A further copy of this transposase is 

located at 291446 - 292399. 



 
 

 96 

 

 

Figure 3.4: Locally Collinear Blocks (LCBs) identified among the E. faecium genome isolates from a chicken and the complete genomes 

Aus0004 and DO. Each contiguously coloured region is a locally collinear block of homologous backbone sequence.  LCBs below a genome’s 

centreline are in the reverse complement orientation relative to the reference genome (E429).  The black arrows show the orientation of the LCBs 

compared to the reference genome. Red arrows show the location of the integrase in the genome of Aus0004. Orange arrows show the presence 

of prophages in the genome of Aus0004. Blue arrows show the transposons located in the genome of DO strain.  
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A.                                            B.                                         C. 

 

Figure 3.5: Genome synteny of E. faecium. Mummer plot shows the 

existence of a large inversion within E. faecium strains. A. Mummer plot 

shows the existence of the inversion within the two complete genomes 

Aus0004 and DO strain. X-axis shows DO genome. Y-axis shows the 

Aus0004 genome. B. Mummer plot shows the existence of inversion within 

the complete genome Aus0004 and chicken strain (E429). X-axis shows the 

Aus0004 genome. Y-axis shows E429 genome. C. Mummer plot shows 

inversion exists within the complete genome DO and the chicken strain 

(E429). X-axis shows DO genome. Y-axis shows the E429 genome. The 

plots present the homology between the two strains. 

 

3.2.7 Repetitive sequence elements in the sequenced E. faecium genomes  

Many bacterial genomes have been described to contain repetitive DNA. 

These repeat sequences are typically 400 bp in size (Delihas 2011). Analysis 

of the genomes of the animal E. faecium strains using the software package 

Unipor UGENE determined that there were 1885, 1758 and 1422 short 

tandemly repeated sequences (STRs) in the chicken, calf and pig strains, 
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respectively (Figure 3.6). These STRs have a repeat length of 3 bp and 

tandem size from 9-10 bp.  In addition, 750, 550 and 285 short sequence 

repeats (SSRs) were found in strains E429, E172 and E142, respectively; 

with a minimum repeat length of 15 bp and a distance between the repeats 

of 2 bp to 2000kb (Figure 3.7). 

 

UNIPOR-UGENE displays approximate repeat sequences found in the 

DNA sequence. The repetitive sequence elements in the animal E. faecium 

genome sequences have a high sequence identity and high copy number. 

The observed genome inversions could be derived from these repeats.  
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Figure 3.6: Short tandemly repeated sequence (STRs) in animal E. faecium strains. STRs covering almost the whole genome of chicken, calf and 

pig. STRs annotations are located side by side in green  (black arrows) and red verticals show rRNA operons.   
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Figure 3.7: Short sequence repeats (SSRs) in animal E. faecium strains. SSRs covering the animal E. faecium genomes. SSRs annotations are 

located side by side in green and red blocks show rRNA operons. 
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3.2.4 Genome gap closure 

 

3.2.4.1 Gap closure 

A major starting aim of the study was to sequence the genomes of E. 

faecium isolates from animals, and since there was not a closed animal E. 

faecium genome so generate one to enhance comparative studies. The 

genome closure stage consisted of PCR amplification that bridged gaps in 

the sequence assembly. PCR amplifications were performed using primers 

designed from sequence approximately 100 bp from the 5’ and 3’ edges.  

The purified amplicons were sequenced using the PCR primers. Seventy-

one pairs of PCR primers were designed to yield 1-6 kb amplicons spanning 

each gap (Table 3.5). The sequencing results obtained were assembled into 

the E429 genome. The gap sizes range between 400 bp to about 6 kb and the 

successfully amplified PCR products ranged between 200-2500 bp (Figure 

3.8). 

 

 

                                                         A.                                                         B.  
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Figure 3.8: PCR amplifications of the E.faecium E429 genome gaps. The 

size of the PCR products varied between 200-2500 bp. Positive PCR 

products resulted in a single clear band in the agarose gels, with no band in 

the negative result. (A) amplicons covering gaps 1, 2, 3, 4, 5, 10, 11, 13, 16, 

17, 18 and 23. (B) amplicons covering gaps 27, 29, 37, 38, 39, 40, 42, 47, 

48 and 49. (-) indicates the negative control. 

 

Table 3.5: PCR amplification result for E. faecium E429 gaps. +++ Indicates 

very strong band, ++ shows strong band, + weak band and - is negative 

result. 
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Gap closed 

 
Product 

 
Expected 

product size 

 
Primers name 

Yes +++ 1052 Gap 1F.Gap 1R 
Yes +++ 871 Gap 2F,Gap 2R 
Yes +++ 1041 Gap 3F,Gap 3R 
No +++ 942 Gap 4F,Gap 4R  
Yes ++ 871 Gap 5F,Gap 5R  
No - 1001 Gap 6F,Gap 6R  
No ++ 123998 Gap 7F,Gap 7R  
Yes ++ 1008 Gap 8F,Gap 8R 
No ++ 874 Gap 9F,Gap 9R 
Yes +++ 1045 Gap10F, Gap 10R  
No ++ 1037 Gap11F, Gap 11R  
No - 917 Gap 12F,Gap 12R 
Yes +++ 951 Gap 13F,Gap 13R  
No +++ 1095 Gap 14F,Gap 14R  
No ++ 817 Gap 15F,Gap 15R  
Yes +++ 1064 Gap 16F,Gap 16R  
Yes +++ 851 Gap 17F,Gap 17R  
No ++ 811 Gap 18F,Gap 18R  
No - 1057 Gap 19F,Gap 19R  
Yes ++ 968 Gap 20F,Gap20R  
No ++ 1048 Gap 21F,Gap 21R  
No - 1014 Gap 22F,Gap 22R  
Yes +++ 995 Gap 23F,Gap 23R  
Yes ++ 1052 Gap 24F,Gap 24R  
No ++ 1024 Gap 25F,Gap 25R  
No ++ 1672 Gap 26F,Gap 26R 
No - 1503 Gap 28F,Gap 28R 
Yes ++ 1602 Gap 29F,Gap 29R  
No +++ 1599 Gap 30F,Gap 30R  
No ++ 1408 Gap 31F,Gap 31R  
No - 1195 Gap 32F,Gap 32R  
No ++ 1569 Gap 33F,Gap 33R 
No - 1550 Gap 34F,Gap 34R 
No ++ 1367 Gap 35F,Gap 35R 
No ++ 34583 Gap 36F,Gap 36R 
No ++ 259820 Gap 37F,Gap 37R 
Yes +++ 1340 Gap 38F,Gap 38R 
Yes +++ 1320 Gap 39F,Gap 39R 
No +++ 1586 Gap 40F,Gap 40R 
Yes + 1276 Gap 41F,Gap 41R 
Yes +++ 1448 Gap 42F,Gap 42R 
No ++ 1562 Gap 43F,Gap 43R 
Yes +++ 1346 Gap 45F,Gap 45R 
No - 1487 Gap 46F,Gap 46R 
Yes +++ 1367 Gap 47F,Gap 47R 
No +++ 1344 Gap 48F,Gap 48R 
Yes +++ 1307 Gap 49F,Gap 49R 
Yes +++ 1913 Gap 50F,Gap 50R 
No - 3542 Gap 51F.Gap 51R 
No +++ 5681 Gap 52F,Gap 52R 
No - 3213 Gap 53F,Gap 53R 
No ++ 1532 Gap 54F,Gap 54R 
No - 1313 Gap55F, Gap 55R 
No +++ 2024 Gap 56F,Gap 56R 
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Fifty-three gap PCRs out of seventy-one were successfully amplified. 

Eighteen expected products were never successfully amplified despite 

extensively optimising PCR conditions, meaning that there were gaps that 

would not be closed.  

 

After sequencing, followed by attempts to incorporate the sequence data, 

twenty-five regions (7, 8, 9, 12, 15, 17, 18, 21, 25, 26, 31, 33, 35, 36, 41, 45, 

54, 56, 57, 58, 61, 62, 63, 66 and 67) remained as unassembled sequence 

gaps. Seven gaps (4, 11, 14, 30, 37, 40, 48) were not closed since the PCR 

product sequence did not close the gap between two contigs  (see Table 3.6).  

However, a small number of gaps that were sequenced closed the entire gap 

between two contigs, such as gaps number 10 and 13 (Figure 3.9). 

 

No +++ 2266 Gap 57F,Gap 57R 
No - 550 Gap 58F,Gap 58R 
No - 940 Gap 59F,Gap 59R 
Yes +++ 1295 Gap 60F,Gap 60R 
No +++ 1088 Gap 61F,Gap 61R 
No +++ 3108 Gap 62F,Gap 62R 
No - 3475 Gap 63F,Gap 63R 
No +++ 3567 Gap 64F,Gap 64R 
No ++ 5675 Gap 65F,Gap 65R 
No +++ 3726 Gap 66F,Gap 66R 
No - 3244 Gap 67F,Gap 67R 
No +++ 4868 Gap 68F,Gap 68R 
Yes ++ 410 Gap 69F,Gap 69R 
Yes +++ 1234 Gap 70F,Gap 70R 
Yes +++ 908 Gap 71F,Gap 71R 
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Figure 3.9: Gap closure of chicken E. faecium genome. Gap number 13 

located between contig00059 (blue) and contig00060 (yellow), which was 

successfully closed. The top genome represents the genome with gaps and 

the bottom genome represents the genome after gap closure.  

 

 

 

Figure 3.10: Gap closure of chicken E. faecium genome. Gap number 4 

located between contig00021 and contig00022, which was not closed 

completely. The red arrow shows the location of the remaining gap. The top 

genome represents the genome with gaps and the bottom genome represents 

the genome after gap closure.  
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Analysis of the coding potential of the sequenced gap regions using RAST 

identified three potential virulence or colonisation genes.  The first of these 

genes contains a potential adhesin gene encoding a protein annotated 

as ‘Streptococcus pyogenes recombinatorial zone‘, this gene subsystem has 

homology with a group A streptococcal genomic region that is highly 

recombinatorial among closely related strains, this adhesin has been 

proposed to play an important role in pilus-production and adhesion to 

human tissues (Bessen and Kalia 2002). A second identified gene encodes a 

protein with homology to cobalt-zinc-cadmium resistance protein CzcD. 

The third gene potentially encodes an iron scavenging mechanism, within 

whereby hemin uptake and utilisation systems in Gram positives bacteria its 

role is Sortase A that catalyses the covalent attachment of LPXTG proteins 

to peptidoglycan. The remainder of the gaps contain mostly mobile element 

genes encoding transposases, plasmid and phage proteins plus various 

metabolism and cell wall and capsule genes (Table 3.6).  

 

Table 3.6: Gap sequence information of E. faecium E429. Gap location and 

the BLAST results for the PCR reactions. *indicates the gap that is not 

completely closed. 
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Gap number Gap location (contig) Gap result 
1 contig00001 -contig00002 Zinc-containing alcohol dehydrogenase 
2 contig00012 -contig00013 Hydrolase NUDIX family 
3 contig00016-contig00017 Plasmid pVEF4 
*4 contig00021-contig00022 Response regulator 
5 contig00024-contig00025 Integral-membrane protein 
10 contig00049-contig00050 Lysis protein 
*11 contig00052-contig00053 Glucose uptake protein 
13 contig00060-contig00061 Hypothetical protein 
14 contig00061-contig00062 ISEf1, transposase 
16 contig00071-contig00072 Hypothetical protein 
20 contig00087-contig00088 Hypothetical protein 
23 contig00091-contig00092 Transposon IS elements IS905 
24 contig00109-contig00110 Transposon IS elements IS905 
*29 contig00010-contig00011 pVEF3 plasmid 
*30 contig00081-contig00082 Hypothetical protein 

*37 contig00033-contig00034 
Putative tail or base plate protein gp19 

[Bacteriophage A118] 

38 contig00034-contig00035 
4-carboxymuconolactone 

decarboxylase 
39 contig00036-contig00037 Hypothetical protein 
*40 contig00040-contig00041 Cell division trigger factor 

42 contig00047-contig00048 
Helix-turn-helix domain-containing 

protein hypothetic 

*43 contig00022-contig00023 
Transposon Tn1546 insertion sequence 

ISEfa10 transposase genes 
60 contig00101-contig00102 Hypothetical protein 
69 contig00003-contig00004 Hypothetical protein 
70 contig00004-contig00005 Extracellular protein 
71 contig00005-contig00006 Murein_hydrolase_LrgA 

 

In addition, the NCBI web server (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

was used to investigate gaps that use of the RAST server 

(http://rast.nmpdr.org/) failed to annotate. BLASTp was utilised to examine 

the coding potential of these gaps. This identified plasmid-derived regions 

pVEF4 and pVEF3 in gaps 3 and 29, respectively. BLASTp comparisons 

also identified insertion sequence and transposon sequences in several gaps, 

including ISEf1 in gap 14, IS905 in gap 23 and 24 and Tn1546 was found in 

gap 43 (Table 3.6). 
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3.2.4.2 A fully sequenced E. faecium genome 

The assembly of complex genomes using short sequence reads remains a 

challenge, mostly because of the occurrence of repeats, which cannot be 

assembled unambiguously. The repeat sequences in the strains studied here 

added additional complexity due to their high copy number and high 

sequence identity. These repeats also lead to extra complexity due to 

genomic rearrangements. Consequently, the 454 sequencing platform with 

de novo assembly approaches could not resolve to completion the assembly 

of the animal E. faecium genomes.  

 

To circumvent theses issues the Pacific Biosciences RS (PacBio) platform 

was applied to fully sequence E. faecium strain E172 isolated from calf. The 

PacBio long-read sequencing platform provides increased read length and 

equitable genome coverage making it possible to construct assembled 

genome sequence data comprising few or no gaps by generating longer 

contigs (Ferrarini, Moretto et al . 2013). 

 

A total of 65,958 PacBio RS reads were recovered with a mean read length 

of 7,505 bp totalling 495,063,288 nucleotides and representing an average 

depth of coverage of 115.87 of the E. faecium E172 genome. The dataset 

covered the entire E. faecium genome strain E172 in ten contigs (100% 

coverage). Genome annotation using Prokka identified 2,900 E. faecium 

genes most of which matched the 454 sequence data. Additional genes filled 

the gaps which matched those identified by 454 sequencing (Figure 3.11).              
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Figure 3.11: Genome map of the complete E. faecium strain E172. The 

black ring represents the complete genome of E172 (calf) using long reading 

platform (PacBio). The ring represents the draft genome of E172 using short 

read platform (454). 

 

The chromosome of E172 has a high gene density with 2,823 predicted 

ORFs with a coding area of 96.22%.  Annotation of the genome using IMG-

ER revealed 2,099 (72.5%) of the predicted ORFs were orthologous to 

clustered ORFs of published genomes and in total 2,071 (70.95%) and 2,428 

(82.75%) ORFs had homology with ORFs in COGs and Pfam databases, 

respectively (Table 3.7). The majority of genes (81.29%) could be assigned 

a function, however, only 684 (23.31%) of these genes were assigned to 

enzymes, and 770 (26.24%) were present in the KEGG database. Of the 

2,823 predicted ORFs, 78 encoded proteins contain signal peptides. Of these 
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secreted proteins 30 have unknown function, 18 are predicted to be cell 

wall-associated proteins and 30 are predicted to be carbohydrate-binding 

and associated with an ABC transporter. Associated with the E172 PacBio 

genome assembly there are 70 tRNAs and 18 rRNAs (6 x 5S, 6 x 16S and 

6x 23S). Nearly 10% of the genomes are non-AGCT bases in both 454 and 

PacBio, which may reflect the high number of the repetitive sequence in 

animal E. faecium genomes.   

 

Table 3.7: Structural features associated with the sequenced genomes of E. 

faecium strains E172 using the 454 sequencing and PacBio platforms.  

 

Genomic features E172 
(PacBio) 

E172 
(454) 

Estimated genome size 3.0 MB 2.9 MB 
Non-ACGT bases 321618 398256 
Number of contigs 10 786 
Shortest contig (bp) 100 102 
Largest contig (bp) 2505612 186193 
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Table 3.8: Genome composition features of strains E172 using 454 

sequencing and PacBio platforms. 

 

Feature E172 (PacBio) 
Number        % 

E172 (454) 
Number       % 

Genes total  2934 100 2973 100 
Protein coding genes 2823 96.22 2892 97.2 
Protein coding genes with 
function prediction 

2385 81.29 2325 78.2 

Protein coding genes 
without function 
prediction 

438 14.93 567 19.0 

Protein encoding enzymes 684 23.3 639 21.4 
Protein coding genes 
connected to KEGG 
pathways 

770 26.2 720 24.2 

Protein coding genes 
connected to KEGG 
Orthology (KO) 

1377 46.9 1280 43.0 

Protein coding genes with 
COGs 

2071 70.59 2186 73.5 

 

3.3 Discussion 

  

3.3.1 Genome analysis 

Qin et al (2012) demonstrate that the genome size of E. faecium isolated 

from humans ranges from 2.50 Mb (strain E1039) to 3.14 Mb (strain 

1,230,933). The numbers of protein-coding genes range from 2,587 (E1039) 

to 3,118 (strain TX0133A). By comparing the size of human E. faecium 

sequenced strains with animal E. faecium sequenced strains in this study, it 

is clear that the calf strain has the largest genome among all E. faecium 

strains in the database. 
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The large size of the genome could reflect a capacity of the bacterium to 

compete and survive in a nutritionally complex niche. The nutritional and 

physiochemical environment of the gastrointestinal tract might demand 

increased capability and versatility of this species relative to human isolates. 

When compared with other Enterococcus species including E. faecalis, E. 

gallinarum and E. casseliflavus, E. faecium isolates were found to have an 

intermediate genome size. E. gallinarum and E. casseliflavus have the 

largest genome size range from 3.4 to 3.6 kb (IMG- Integrated Microbial 

Genomes, Palmer, Godfrey et al . 2012, Qin, Galloway-Pena et al . 2012). 

van Schaik et al (2010) explained that this variation in genome size across 

Enterococcus species was proposed to occur due to expansion within 

species due to duplication and horizontal gene transfer. 

 

The mean genome size of the majority of human infection isolates and 

epidemic isolates, including the clonal complex 17 (CC17) genogroup, is 

significantly larger (2.84 to 2.98 Mb) than that of isolates from faeces of 

non-hospitalised humans (2.71 to 2.84 Mb) or animal isolates and sporadic 

human infection isolates (2.59 to 2.75 Mb). This difference could represent 

the effect of cycles of infection and survival in the hospital being correlated 

with the acquisition of new genes (Lebreton, van Schaik et al . 2013). 

 

3.3.2 Genome synteny   

Genetic maps of bacteria reveal that only certain gene clusters are syntenic 

and homologous genes are maintained at the same relative position 

(Tamames 2001).  
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High to very low synteny was found when comparing Enterococcus species.  

Some of the genomes used in this comparison are fragmented and this can 

have effects in the appearance synteny. The genome backbones of the 

Enterococcus species were clearly related but were distinct, and large 

inversions were revealed within E. faecium strains.  

Comparing the gene order within a selection of strains of Enterococcus 

species showed that E. faecium (Aus0004) and the genomes of E. hirae 

(ATCC 8043), E. durans (ATCC 6056) and E. mundtii (ATCC 882) shared 

a very conserved DNA sequence and gene order.  

An intermediate degree of relatedness was found between E. faecium 

(Aus0004) and the genomes of E. italicus (DSM 15952), E. avium (ATCC 

14025) and E. asini (ATCC 700915). At the other extreme the genomes of 

E. faecium (Aus0004) and E. faecalis (V583), E. caccae (ATCC BAA-

1240) and E. haemoperoxidus (ATCC BAA-382) possess very different 

gene orders (Figure 3.3).  A phylogenetic tree of Enterococcus species 

previously described by Carvalho Mda et al  (2004) using 16S rDNA 

seequnces identified that synteny correlated with the species evolution 

relationships (Figure 3.12).  The species that share high synteny with E. 

faecium are branched close to E. faecium in the phylogenetic tree, while the 

species that share low synteny are branched far from E. faecium  
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Figure 3.12: Phylogenetic tree of enterococci constructed by (Carvalho 

Mda, Steigerwalt et al . 2004) and based on comparative analysis of 16S 

rDNA sequences. 

 

3.3.2.1 Genome inversions in animal strains of E. faecium 

The complete genomes of E. faecium Aus0004 and DO reveal a large (683 

kb) inversion, relative to each other. Lam et al  (2012), stated that prophages 
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present at the boundary of the inversion could be the factor for facilitating 

the chromosomal inversion across the replication terminus. 

 Further reasons were found that might explain the chromosomal inversion 

across the replication terminus of Aus0004 and DO genomes relative to the 

animal E. faecium genomes (Figure 3.4). The genomes of E. faecium 

Aus0004 and animal E. faecium have three inversions. Prophages are 

present of the boundary of the inversion in block 2 and could have 

facilitated this chromosomal inversion given that these prophages exhibit a 

high degree of similarity. Blocks 2 and 3 of the animal genomes may have 

inverted by recombination due to the presence of integrases. Equally, the 

high numbers of IS elements may have played an important role in 

facilitating the chromosomal inversion since there are multiple IS elements 

at the boundary between the inverted regions. For example IS1251 and 

ISEfm1 are present at the boundary of the inverted regions in Aus0004, 

relative to the three animal E. faecium genomes.  

 

3.3.3 Gap closure 

Gap spanning PCR products were amplified by using a range of different 

reaction conditions. Sequences obtained from closure of genome gaps 

revealed that the majority were transposon and plasmid sequences, which 

are known to contain repetitive sequences. For example, transposons found 

in gaps matched Tn6085 and Tn1546 and identified Enterococcus plasmids 

matched pVEF4, pVEF3 and p5753.  
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Twenty-five gaps were successfully completed to leave around 215, and 

since the rate of closure slowed it made this aim of the research unfeasible. 

While some of this failure was clearly due to operator errors the assembly of 

the genome at junction regions, combined with the repetitive sequences in 

the sections being amplified and potentially sequence errors due to the 454 

technology all conspired against successfully completing the E. faecium 

E429 genome.      

 

Currently there are high numbers of bacterial genomes sequenced to high-

quality draft stand by using short read sequence data combined with whole 

genome assembly techniques. However, the high quality genome drafts 

almost always contain gaps. There are known limitations with the input data 

and the techniques used to construct draft assemblies. Factors such as 

repetitive genomic features, genomic polymorphism and sequencing biases 

complicate assembly of some regions (English, Richards et al . 2012).  

 

Recently, an automated approach using long-reads from the Pacific 

Biosciences RS (PacBio) platform has enabled the completion of entire 

bacterial genomes. The software tool (PBJelly) uses PacBio reads to close 

gaps and preserve annotations. The arrival of (PacBio) sequencing has 

brought further advances in genome sequencing by increasing throughput 

and decreasing cost and the time taken to complete a genome (English, 

Richards et al . 2012). 
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The PacBio RS sequencing data of E. faecium E172 generally improved 

scaffolding, gap filling and genome sequence finishing comparing with the 

454 sequencing platform. Assemblies using the 454 data include multiple 

gaps that leading to a large number of contigs and scaffolds even in a 

smaller sized genome such as animal E. faecium isolated from pig. The 

E172 genome data using 454 comprise 786 contigs with more than hundred 

gaps comparing with only 10 contigs using PacBio. In addition, large 

numbers of nucleotides of the genome for example the rRNA genes were 

not assembled in 454 sequence data and thus contigs must be recovered 

from the genome assembly.  
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Chapter Four: Comparative genomics of 

Enterococcus faecium, isolated from animals. 
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4.1 Introduction  

The genome data publicly available for bacterial species and their closely 

related isolates have greatly expanded our understanding of bacterial 

specialisation. Geographic separation or habitat specialisation can 

potentially account for the genetic diversity observed within a bacterial 

species (Ellegaard, Klasson et al. 2013). It remains unclear whether bacteria 

that are not isolated by geographic or physical barriers branch into distinct 

groups, however, studies of bacteria such as Bacillus, Vibrio and 

Synechococcus, which are free-living, identified clustering sequences that 

correlate with ecological specialisation. Moreover, recombination and 

horizontal gene transfer between species could effect speciation in bacteria 

(Gogarten, Doolittle et al. 2002, Connor, Sikorski et al. 2010, Ellegaard, 

Klasson et al. 2013). 

 

The origin of a DNA sequence, together with its phenotypic and ecological 

effects can determine whether individual bacteria belong to distinct clusters 

(Cohan 2001). For instance, on the basis of metabolic and other phenotypic 

characteristics, 315 isolates of Neisseriaceae, which is a family containing 

pathogens that cause the diseases gonorrhea and meningitis, were spread 

into 31 different clusters (Barrett and Sneath 1994). Phenotypic clustering 

(based mostly on metabolic characters) has long been proposed as a 

mechanism for bacterial speciation. Genotypic clustering has largely 

substituted phenotypic clustering as a primary principle for defining 

bacterial species. For many years, clustering was derived from whole-

genome DNA hybridisation between pairs of strains, which aided the 
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differentiation of species. Currently, 16S rRNA and protein-coding gene 

sequence clusters are used for species differentiation (Ellegaard, Klasson et 

al. 2013). 

 

The Enterococuus genus presently consists of 37 species that inhabit a wide 

range of niches that includes the gastrointestinal microbiota of almost every 

animal phylum. Intrinsic resistance to harsh conditions and metabolic 

versatility are proposed to explain the ability of this genus to colonise 

broadly (Ramsey, Hartke et al. 2014).  A comparative genome analysis 

performed by van Schaik et al (2010) indicated that there are differences in 

the carbohydrate metabolic pathways, oxidative stress defence mechanisms 

and particular protein families between Enterococcus species. For example, 

E. faecium has the ability to utilise carbon sources from plant 

polysaccharides (arabinose), while E. faecalis does not. E. faecalis  has the 

ability to use ethanolamine as a carbon source in the presence of cobalamin 

while this is absent from E. faecium (Del Papa and Perego 2008). Van 

Schaik et al (2010) indicated that a potential defence mechanism to 

oxidative stress is delivered by glutathione (g -GluCysGly; GSH), which 

can be synthesised by E. faecium and E. faecalis.  However, E. faecium has 

a glutathione peroxidase enzyme, which may play a more prominent role in 

the oxidative stress response while E. faecalis lacks this particular enzyme.   

 
Carbohydrate fermentation allows enterococci to succeed in distinct 

environments. Each Enterococcus species is known to utilise at least 13 

sugars and over 30 additional sugars are utilised by several species. The 

ability to utilise a broad range of carbohydrates appears to result from the 



 131 

capability of Enterococcus to share carbon utilisation mechanisms among 

strains and species, frequently on mobile elements (Ramsey, Hartke et al. 

2014).  

 

Population biology-based studies have indicated that there are specific 

lineages of human and animals.  Isolates of E. faecium from animal have 

also the ability to act as a reservoir of antibiotic resistance genes (Bonten, 

Willems et al. 2001, Willems, Top et al. 2005). Comparative analyses 

between Enterococcus species identified genes, such as esp, that are 

horizontally transferred by conjugation, transformation and transduction 

between animal and human isolates, as well as from E. faecium to E. 

faecalis (van Schaik, Top et al. 2010).   

 

Molecular epidemiological studies of E. faecium that were based on Multi-

Locus Sequence Typing (MLST) indicated that commensal strains of E. 

faecium are distinct from clinical infections strains. The clinical infections 

subpopulation commonly has IS16, pathogenicity island(s), and plasmids or 

genes associated with antibiotic resistance, colonisation, and/or virulence. 

3–10% sequence difference was found in four genes between clinical clade 

and commensal clade, including 5% difference between pbp5-R (ampicillin-

resistant) from clinical isolates and pbp5-S (ampicillin-sensitive) from 

commensal isolates (Galloway-Pena, Roh et al. 2012). Lam et al (2012) 

suggested that the genomic plasticity detected in E. faecium isolates is could 

be responsible for the diverse properties shown by commensal and clinical 

isolates.  
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A lack of information about animal strains of E. faecium means that the 

degree of variation among human commensal, hospital and animal isolates 

was not clear.  The original aim of this study was to genome sequence 

several animal strains of E. faecium to compare with human strains. While 

this study was ongoing, in 2013 Lebreton et al published the sequences of 

animal and human commensal and hospital isolates of E. faecium (Lebreton, 

van Schaik et al. 2013). In addition, the first complete human clinical isolate 

genomes of E. faecium Aus0004 and DO were published. 

 

Specific aims  

This chapter will expand genome comparisons to include animal, clinical 

and commensal E. faecium isolates from different niches to consider the 

reason for demarcation in the E. faecium species. The three animal strains 

were isolated from chicken, calf and pig will be compared with each other 

and with all other isolates from animals and humans.  The comparison will 

determine whether these strains differ from human and other animal isolates 

and whether they have acquired genes specific for colonising their animal 

host.  

 

4.2 Results  
 

4.2.1 Comparative genomics of Enterococcus faecium  

The numbers of E. faecium sequenced strains used in this study are 129; 

which include 42 clinical, 8 commensal and 21 animal isolates (Table 2.1).  
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4.2.1.1 Core and pan-genome of E. faecium   

In this study, an effort was made to define a conserved core genome of the 

129 E. faecium strains (Table 2.1), and suggest those genes likely to be 

essential for cell function, in contrast to the variable genes that are not 

conserved and are subject to horizontal gene transfer in the E. faecium 

genomes. The core and pan-genome of E. faecium were identified using 

OrthoMCL and were analysed using R statistical software (Section 2.23). 

As a result, 1,467 orthologous clusters that were found in the 129 strains of 

E. faecium were allocated as core genome and 11,669 orthologous clusters 

were allocated as pan- genome (Figure 4.1 and Figure 4.2). The pan-genome 

of the E. faecium confirmed that the genome of E. faecium is open. 

Moreover, the ratio of the horizontal gene transfer in the genome is high. A 

pan-genome can be considered to be essentially unlimited in size when each 

new genome is added the size of the pan-genome increases (“ open”) or in 

contrast to have a finite size genome (“ closed”).  
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Figure 4.1: Genome structure of E. faecium. The core genome of the 129 

strains of E. faecium. Circles represent the number of core genes when each 

genome is added. Black bars indicate median values.  
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Figure 4.2: Genome structure of E. faecium. Pan-genome determined from 

129 strains of E. faecium. The pan-genome is indicated for increasing 

numbers of sequenced E. faecium genomes. Circles represent the number of 

new genes when a genome is added. Black bars indicate median values.  

 

The core gene set identified in the 129 strains (Table 2.1) of E. faecium 
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classes of E. faecium are those involved in intracellular trafficking, secretion 

(18.4%), carbohydrate transport and metabolism (9.54%) translation (9.3%), 

transcription (7.8%), amino acid transport and metabolism (7.1%), 

replication, recombination and repair (6.4%), cell wall/membrane 

biogenesis (5.6%), energy production and conversion (4.2%) and nucleotide 

transport and metabolism (4.2%). In addition, 7% of the core orthologues do 

not match any functional categories in the COGs database (Table 4.1). 

Mobile genetic elements including phage, plasmid and IS elements genes 

appear at a low frequency in the core genome of E. faecium, compared with 

the pan-genome of E. faecium.   

 

About 43% of orthologues present in the pan-genome of E. faecium have no 

defined function in the COGs database and 21.8% are unknown function.  

The remaining functional ortholog classes in the pan-genome include 

replication, recombination and repair (14%), carbohydrate transport and 

metabolism (14.6%), transcription (8.7%), cell wall/membrane biogenesis 

(7.8%), defence mechanisms (4.3%) and amino acid transport and 

metabolism (3.8%). Within the pan-genome of E. faecium the frequency of 

replication, recombination and repair functions are twice that of the same 

function in the core genome (Table 4.2). 

 

E. faecium species appear capable of utilising multiple sugars, such as 

aldose, mannitol, ribulose, arabinose, lactose, xylose, maltose, glucitol, 

sorbitol and mannose, the genes for which are located in the core genome. 
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Fructose, galactitol, glucose, rhamnose, sorbose and sucrose utilisation 

genes are found in the pan genome of E. faecium (Supplemental File, S1). 

 

Table 4.1: Core clusters of Orthologous Groups (COGs) of E. faecium. 

Table shows the numbers of COGs in the core genome of E. faecium and 

the percentage of each functional category relative to total COGs in the 

core genome.  

 

COG COG Definition Total % 
Information storage and processing 

(J) Translation 126 9.32 
(K) Transcription 107 7.92 

(KL) Atp-Dependent DNA helicase 2 0.14 
(KT) hydrolase_RelA 1 0.07 
(L) Replication,_recombination,_repair 87 6.43 

(LU) Protein involved in DNA mediated transformation 1 0.07 
Cellular processes  

(D) Cell_cycle_control,_mitosis,_meiosis 17 1.25 
(M) Cell_wall/membrane_biogenesis 76 5.62 

(MNOU) 

Flagellum-specific muramidase which hydrolyses the 
peptidoglycan layer to assemble the rod structure in the 
periplasmic space 

1 0.07 

(NOT) 
Adaptor protein; enables recognition and targeting of proteins 
for proteolysis, involved in negative regulation of competence 

1 0.07 

(O) Posttranslational_modification,_protein_turnover,_chaperones 49 3.62 
(T) Signal_transduction_mechanisms 37 2.73 
(U) Intracellular_trafficking,_secretion 14 18.42 
(V) Defence _mechanisms 28 2.07 

Metabolism 

(C) Energy_production,_conversion 57 4.21 

(CP) ABC transporter (permease) 1 0.07 

(E) Amino_acid_transport,_metabolism 97 7.17 

(EGP) Major facilitator superfamily protein 1 0.07 

(EQ) Hydantoinase/Oxoprolinase 1 0.07 

(F) Nucleotide_transport,_metabolism 58 4.29 
(FG) Histidine triad (HIT) protein 1 0.07 
(FJ) Deaminase 1 0.07 
(G) Carbohydrate_transport,_metabolism 113 8.36 

(GK) ROK family protein 1 0.07 
(GM) NAD-dependent epimerase/dehydratase 29 2.14 
(H) Coenzyme_transport,_metabolism 34 2.51 
(I) Lipid_transport,_metabolism 3 0.22 

(IQ) Short-chain dehydrogenase/reductase 70 5.18 
(P) Inorganic_ion_transport,_metabolism 7 0.51 

Poorly characterised 
(R) General_function_prediction 129 9.54 
(S) Function_unknown 200 14.8 

Grand Total  1351 92.02 
Not in eggNOG db  117 7.97 
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Fructose uptake systems (PTS) (EIIABC-Fru) were mainly found in human 

E. faecium. However, two animal strains isolated from pig  (E0680) and 

chicken (E429) have two distinct fructose PTS systems a duplication found 

only in two clinical strains isolated from blood (E1636 and E1185) and a 

commensal strain (E1039) (ORTHOMCL4064 and ORTHOMCL4184). 

The pig strain E1578 has novel fructose PTS systems (ORTHOMCL4968) 

(Supplemental File, S1). Galactitol uptake systems (PTS) were found 

broadly across 115 strains of E. faecium including clinical, commensal and 

animal (ORTHOMCL2001). In contrast, glucose uptake systems (PTS) 

(ORTHOMCL2654) were exclusively found in the clinical strains and only 

one dog (E4389) strain. The other identifiable carbohydrate uptake systems 

were variably present across the strain groups (Supplemental File, S1).  
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Table 4.2: Clusters of Orthologous Groups (COGs) of E. faecium. Table 

shows the numbers of COGs in the pan-genome of E. faecium and the 

percentage of each functional category relative to total COGs in the core 

genome.  

 

COG COG Definition Total % 
Information storage and processing 

(J) Translation 27 1.05 
(K) Transcription 225 8.75 

(KL) Atp-Dependent DNA helicase 2 0.07 
(KT) hydrolase_RelA 1 0.03 

(KOT) Accessory gene regulator protein 1 0.03 
(L) Replication,_recombination,_repair 362 14.08 

Cellular processes  
(D) Cell_cycle_control,_mitosis,_meiosis 28 1.08 
(M) Cell_wall/membrane_biogenesis 201 7.82 
(N) Cell_motility 3 0.11 

(NOU) 
 

Cleaves type-4 fimbrial leader sequence and methylates the N-
terminal (generally Phe) residue protein 1 0.03 

(NU) 
Mannosyl-Glycoprotein endo-beta-N 
 1 0.03 

(O) Posttranslational_modification,_protein_turnover,_chaperones 45 1.75 
(T) Signal_transduction_mechanisms 66 2.56 
(U) Intracellular_trafficking,_secretion 16 0.62 
(V) Defence _mechanisms 112 4.35 

Metabolism 

(C) Energy_production,_conversion 61 2.37 

(CT) Adenylate/Guanylate 1 0.03 

(E) Amino_acid_transport,_metabolism 100 3.89 
(EH) D-Isomer specific 2-hydroxyacid dehydrogenase 2 0.07 
(EQ) Hydantoinase/Oxoprolinase 3 0.11 
(ET) - 1 0.03 
(F) Nucleotide_transport,_metabolism 23 0.89 

(FG) Histidine triad (HIT) protein 1 0.03 
(G) Carbohydrate_transport,_metabolism 376 14.6 

(GK) ROK family protein 3 0.11 
(GKT) Sugar:Hydrogen symporter protein 6 0.23 
(GM) NAD-dependent epimerase/dehydratase 14 0.54 
(H) Coenzyme_transport,_metabolism 36 1.40 
(HI) Citrate lyase 1 0.03 
(I) Lipid_transport,_metabolism 20 0.77 

(IQ) Short-chain dehydrogenase/reductase 70 5.18 
(P) Inorganic_ion_transport,_metabolism 82 3.19 
(Q) Secondary_metabolites 16 0.62 

Poorly characterised 
(R) General_function_prediction 161 6.26 

(RM) Phosphatase 1 0.03 
(S) Function_unknown 562 21.8 

Grand Total  2570 56.24 
Not in eggNOG db  1999 43.75 
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4.2.1.2 Phylogenetic tree 
 
As a means to further investigate the relationship between the panel of E. 

faecium genomes a phylogenetic study was approached. The phylogenetic 

analysis (Section 2.22) was performed based on the distinction of 1,467 

shared, single copy orthologous groups and delivers a complete vision of the 

evolutionary descent of the 129 sequenced E. faecium, comprising the 

human infection isolates, including clonal complex CC17, non-hospitalized 

human isolates and animal isolates. This phylogenetic tree of the complete 

set of E. faecium isolates in the database was expected to enhance our 

understanding of the evolution of E. faecium (Figure 4.3). The generated 

tree (neighbour-joining tree) from the core orthologues revealed clustering 

of strains in clades associated largely with their source. 

 

Based on the distinction of 1,467 shared, single-copy orthologous groups 

(core genome), E. faecium strains separate into three distinct clades A, B 

and C. Within the branch forming clade A, the majority of human infection 

contains sequence types (STs) from the clonal complex 17 (CC17) genotype  

(sequence type 17 [ST17], ST117, and ST78) are grouped together. 

Moreover, nearly all isolates belonging to the CC17 group cluster together 

forming clade A1. The remainder the sporadic human infection isolates are 

mixed together with the animal isolates to forming clade B. 

 

Unexpectedly, one of the strains in clade A1 has an animal origin (dog), 

which potentially reveals links between hospital strains and household pets. 

Strain 1231408, consisting of a background genome of clade A was 
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unexpectedly found as sister group with clade C, which contains most of the 

commensal isolates.   

 

Animal isolates form the major group within clade B. Most of E. faecium 

isolated from birds are grouped together in one branch in clade B, which 

also includes a calf strain (E172). A chicken strain (E429) is associated with 

a different subgroup of clade B, that contains most of the pig isolates.  
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Figure 4.3: Neighbour-joining tree of E. faecium. The tree is based on the 

concatenated alignments of 1,467 single-copy shared core genes in 129 E. 

faecium genomes. Bootstrapping was performed with 1,000 replicates. The 

origins of the strains are indicated. Green indicates animal origin, blue is 

commensal origin, red is CC17 origin and black indicates sporadic human 

infection strains. Clade C indicates most of commensal strains; clade B 

indicates a mix of animal strains and other hospital strains. Clade A 

indicates most of the hospital strain, with A1 representing strains that 

belong to CC17; clade A2 contains most of the sporadic human infection 

strains. 

 

4.2.1.1 Heat map analyses 
 
A heat map of the genetic correlations between the 129 E. faecium strains 

was generated using the R programme for statistical computing. The 

presence/absence of 11669 gene clusters (pan-genome) was used to 

construct a heat map. The number of clusters is related to the cluster 

variation between all strains.  The generated heat map is composed of three 

main groupings labelled A, B and C. Group A comprises clinical strains 

mainly related to clonal complex 17 (CC17); group B consists of animal 

strains and clinical strains that do not belong to CC17 and group C contains 

most of the commensal strains (Figure 4.4). 
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Figure 4.4: Heat map of the genetic correlations between the 129 E. faecium 

strains. Group A, B and C are of mixed strain origin.  Group A represents 

hospital-associated strains, mostly of CC17 origin; group B comprises 

animal-associated strains and group C consists of mixed sources including 

commensal strains. The identical set of trees is represented on the x-axis and 

y-axis, the correspondence between colour scale and genetic correlation 

levels are presented on the right-hand side of the heat map (Red shows 

absent clusters, yellow shows present clusters). Also, since the same set of 

trees is symbolised on the x and y axis the color values along the heatmap 

are bright red. This is because a tree matched to itself will not have any 

branching differences.  

 

The presence and absence of the 11669 accessory orthologous groups in the 

129 strains of E. faecium also revealed smaller subgroups. CC17 strains 

were grouped together in group A in the heat map and this group also 

contains the highly-related hospital-associated strains, from Texas 

TX0133a01, TX0133C, TX0133a04, TX0133B and P1123, P1139, X515, 

X513 and X510 (group A2) (Figure 4.4).  

 

The majority of the strains in group A are blood isolates.  Unexpectedly, 

strain Com 12, which is a commensal strain, and animal strains E0045 

(chicken), E0679 and E142 (pig) and E4389 (dog) are also located in this 

group. Most of the strains in clade (A1) are not associated with metadata to 

describe their source.  
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The majority of the animal E. faecium isolates are grouped in clade B 

(Figure 4.4), which comprises three small subgroups, B1, B2 and B3. The 

largest subgroup (B1) contains hospital isolates and three isolates belonging 

to CC17 group (E4453 (dog), E1133 and E1321). Most of the strains in this 

group are from the same geographic region (The Netherlands). Clade B2 

contains two pig strains (E0680 and E0688) a bison strain E1573, a chicken 

strain (E429), a strain isolated from river water (E1634) and one clinical 

isolate (E1552). Most of the strains in this subgroup including the river 

water strain were isolated from The Netherlands. Subgroup B3 includes 

most of the bird isolates, a calf strain and one CC17 strain (E0333), most of 

the strains in this subgroup are isolated from The Netherlands (Figure 4.4). 

The majority of commensal strains are located in group C, however, the 

group also includes clinical isolates. C1 contains strains isolated from the 

same geographic region (China); one CC17 genotype strain (1,230,933) and 

a food strain isolated from cheese (E1604) form C2 and clade C3 contains a 

mixture of clinical, commensal and a food strain isolated from fish burger 

(Figure 4.4).  

 

Both analyses, phylogenetic tree and presence/absence tree, indicate that 

clinically-isolated, commensal strains and animal strains are similarly 

clustered together in specific clades (Figure 4.3 and Figure 4.4). Commensal 

strains of E. faecium cluster together as a group in both analyses, however, 

the clinical strains are split into two distinct groups. In addition, the clinical 

strains of type CC17 are grouped together in a branch distant from other 

clinical strains. The general genetic background of animal strains of E. 
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faecium suggests that they are part of the pathogenic E. faecium groups, but 

from a different origin (Figure 4.3 and Figure 4.4). However, several strains; 

1230933; 506; E1039 and D344SRF, have different core genomes according 

to their placement in the phylogenetic tree (Figure 4.3) but they group 

together according to their pan genome to form clade C in the heat map in 

Figure 4.4.       

 

4.2.2 Comparative genomics of animal Enterococcus faecium  
 
At the start of this project, none of the E. faecium genomes that were 

sequenced were isolated from animals while at the time of writing this thesis 

18 E. faecium strains isolated from animals had been sequenced and 

partially assembled.  These animal strains include four isolated from 

chicken, four from dog, four from pig, two from turkey, one from bison, one 

from mouse, one from poultry and one from ostrich (Table 2.1). Despite 

these numbers of animal E. faecium genomes that have now been sequenced 

none has yet been closed.  

 

4.2.2.1 Core and pan-genome of animal E. faecium   
 
In this study, an attempt was made to define conserved core orthologues in 

animal E. faecium genomes. The aim was that it would identify those that 

are essential for colonisation of animal hosts and distinct from variable of 

genes that are not conserved and which are likely to be subject to horizontal 

gene transfer (HGT) in animal E. faecium. The core and pan-genomes of 

animal E. faecium were identified using OrthoMCL and were analysed 

using R statistical software (Section 2.23).  
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As a result, 1,824 orthologous clusters were revealed to be present in all 

animal genomes of E. faecium and were assigned as core genome (Figure 

4.5), with 6,686 orthologous clusters assigned as the pan-genomes of animal 

E. faecium isolates. The pan-genome of animal E. faecium is open, since the 

number of orthologous clusters in the pan-genomes increased with each 

additional animal genome (Figure 4.6). 

     

 

 

Figure 4.5: Core genome structure of animal E. faecium.  The core genome 

is indicated for increasing numbers of sequenced animal E. faecium 
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genomes. Circles represent the number of core genes that exist when a 

particular genome is added. Black bars indicate median values.  

 

      

 

 

Figure 4.6: Pan-genome structure of animal E. faecium. The pan-genome is 

indicated for increasing numbers of sequenced animal E. faecium genomes. 

Circles represent the number of new genes that exist when a particular 

genome is added. Black bars indicate median values.  
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Table 4.3: Clusters of Orthologous Groups (COGs) of animal E. faecium. 

The table shows the categories numbers of COGs in the core genome of 

animal E. faecium and the percentage of each functional category 

compared with total COGs in the core genome. (-) indicates the absence of a 

category. 

COG COG Definition Total % 
Information storage and processing 

(J) Translation 135 8.60 
(K) Transcription 129 8.22 

(KL) Atp-Dependent DNA helicase 1 0.06 
(KT) hydrolase_RelA 1 0.06 
(L) Replication,_recombination,_repair 97 6.18 

(LU) Protein involved in DNA mediated transformation 1 0.06 
Cellular processes  

(D) Cell_cycle_control,_mitosis,_meiosis 19 1.21 
(M) Cell_wall/membrane_biogenesis 57 3.63 

(MNOU) 
Flagellum-specific muramidase which hydrolyzes the peptidoglycan layer 
to assemble the rod structure in the periplasmic space 

1 0.06 

(NOT) 
daptor protein; enables recognition and targeting of proteins for 
proteolysis, involved in negative regulation of competence 

1 0.06 

(NOU) 
 

Cleaves type-4 fimbrial leader sequence and methylates the N-terminal 
(generally Phe) residue protein 1 0.06 

(O) Posttranslational_modification,_protein_turnover,_chaperones 53 3.37 
(T) Signal_transduction_mechanisms 49 3.12 
(U) Intracellular_trafficking,_secretion 14 0.89 
(V) Defence _mechanisms 38 2.42 

Metabolism 

(C) Energy_production,_conversion 63 4.01 

(CP) ABC transporter (permease) 1 0.06 

(E) Amino_acid_transport,_metabolism 122 7.77 

(EGP) Major facilitator superfamily protein 1 0.06 

(EH) D-Isomer specific 2-hydroxyacid dehydrogenase 1 0.06 

(EQ) Hydantoinase/Oxoprolinase 1 0.06 
(ET) - 1 0.06 
(F) Nucleotide_transport,_metabolism 66 4.20 

(FG) Histidine triad (HIT) protein 1 0.06 
(FJ) Deaminase 1 0.06 
(G) Carbohydrate_transport,_metabolism 161 10.26 

(GK) ROK family protein 1 0.06 
(GKT) Sugar:Hydrogen symporter protein 1 0.06 
(GM) NAD-dependent epimerase/dehydratase 3 0.19 
(H) Coenzyme_transport,_metabolism 39 2.48 
(I) Lipid_transport,_metabolism 40  2.54 

(IQ) Short-chain dehydrogenase/reductase 3 0.19 
(P) Inorganic_ion_transport,_metabolism 81 5.16 
(Q) Secondary_metabolites 13 0.82 

Poorly characterised 
(R) General_function_prediction 147 9.36 
(S) Function_unknown 225 14.34 

             Grand Total  1569 86.63 
Not in eggNOG db  216 11.92 

 

Many of the functional categories of the animal core genome are associated 

with fundamental housekeeping functions. Approximately 14% of the core 
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orthologues have no known function. The functional categories of the 

animal core genome include carbohydrate transport and metabolism 

(10.26%), translation (8.60%), transcription (8.22%), replication, 

recombination and repair (6.18%) and amino acid transport and metabolism 

(7.77%) (Table 4.3). 

Potentially, the presence of ill-defined orthologues in the sequenced animal 

E. faecium genomes are a marker of those genes acquired after the radiation 

of the genus and might be a strong indicator that these genes were not 

laterally-acquired.  Animal E. faecium variably encode the pathways to 

utilise particular sugars, such as aldose, mannose mannitol, xylose, lactose, 

maltose and glucitol. In contrast, the uptake systems for fructose, galactitol, 

glucose, mannitol and galactose were found as core carbohydrate utilisation 

genes in animal E. faecium. The ability to generate energy from this range 

of sugars could be a requirement for successful colonisation of an animal 

host. Mobile genetic elements such as phage, plasmid and IS elements are 

present at low frequency in the core genome of animal E. faecium compared 

with the pan-genome of animal E. faecium. Variation was observed with the 

size of the core genome of the bird, pig and dog E. faecium sub-populations, 

(1897, 1990 and 2165) but might reflect the small numbers of strains for 

each host. This core genome size is larger than that of all E. faecium and 

approximately, 4%, 9% and 18.5% of the core genome of the bird, pig and 

dog is unique to these animal hosts (Supplemental File, S2).  

 

Analysis of the pan-genome revealed that animal E. faecium contain 22.11% 

of genes with no known functional category. However, the two categories, 
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carbohydrate transport and metabolism, replication, recombination and 

repair comprise 14% and 15.35% of the pan-genome of the animal E. 

faecium, respectively (Table 4.4).  

 

Table 4.4: Clusters of Orthologous Groups (COGs) of animal E. faecium. 

Table indicates the numbers of COGs in the pan-genome of animal E. 

faecium and the percentage of each functional category compared with 

total COGs in the pan-genome. (-) indicates the absence of a category. 

 

COG COG Definition Total % 
Information storage and processing 

(J) Translation 19 0.82 
(K) Transcription 203 8.85 

(KL) Atp-Dependent DNA helicase 2 0.08 
(KT) hydrolase_RelA 1 0.04 

(KOT) Accessory gene regulator protein 1 0.04 
(L) Replication,_recombination,_repair 352 15.35 

Cellular processes  
(D) Cell_cycle_control,_mitosis,_meiosis 26 1.13 

(DJ) Plasmid stabilisation system protein 1 0.04 
(M) Cell_wall/membrane_biogenesis 193 8.41 
(N) Cell_motility 3 0.13 

(NU) Mannosyl-Glycoprotein endo-beta-N 3 0.13 
(O) Posttranslational_modification,_protein_turnover,_chaperones 41 1.78 
(T) Signal_transduction_mechanisms 54 2.35 
(U) Intracellular_trafficking,_secretion 16 0.69 
(V) Defence _mechanisms 102 4.44 

Metabolism 

(C) Energy_production,_conversion 55 2.39 

(CT) Adenylate/Guanylate 1 0.04 
(E) Amino_acid_transport,_metabolism 75 3.2 

(EH) D-Isomer specific 2-hydroxyacid dehydrogenase 1 0.04 

(EQ) Hydantoinase/Oxoprolinase 3 0.13 

(F) Nucleotide_transport,_metabolism 15 0.65 
(FG) Histidine triad (HIT) protein 1 0.04 
(G) Carbohydrate_transport,_metabolism 328 14.30 

(GK) ROK family protein 3 0.13 
(GKT) Sugar:Hydrogen symporter protein 5 0.21 
(GM) Nad-Dependent epimerase/dehydratase 13 0.56 
(H) Coenzyme_transport,_metabolism 26 1.13 
(HI) Citrate lyase 1 0.04 
(I) Lipid_transport,_metabolism 14 0.61 

(IQ) Short-chain dehydrogenase/reductase 6 0.26 
(P) Inorganic_ion_transport,_metabolism 71 3.09 
(Q) Secondary_metabolites 10 0.43 

Poorly characterised 
(R) General_function_prediction 143 6.23 

(RM) Phosphatase 1 0.04 
(S) Function_unknown 507 22.11 

             Grand Total  2293 54.14 
Not in eggNOG db  1942 45.85 
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Ascorbate, galactitol, rhamnose, ribulose, sucrose, sorbose, tagatose, and 

xylose carbohydrate utilisation genes were found in the pan-genome of 

animal E. faecium. Ascorbate uptake systems (PTS) were found variably in 

most (125/129) E. faecium. Two novel ascorbate PTS systems 

(ORTHOMCL2756 and ORTHOMCL329) were found in chicken and 

turkey E. faecium strains only (E0164 isolated from turkey, E1575 and 

E2134 isolated from chicken). The galactitol uptake systems (PTS) 

identified ORTHOMCL2056 and ORTHOMCL2309 are absent from bird 

strains, except for ostrich strain (E1576) and turkey strain (E0269) 

(Supplemental File, S2). Sorbose uptake systems (PTS) 

(ORTHOMCL4685) were absent in most (17/21) of animal E faecium.  

 

In the pan-genome of animal E. faecium the frequency of replication, 

recombination and repair function genes is twice that of the same function 

in the core genome (15.35%). This is likely to be accounted for by the high 

number of mobile genetic element sequences in the pan-genome of animal 

strains of E. faecium and highlights extensive horizontal gene transfer in E. 

faecium (Table 4.4).   

 

4.2.2.2 Relationships within animal E. faecium 
 
Genomic comparisons were performed to investigate the relationship 

between the various animal E. faecium genomes. A presence / absence tree 

was produced by comparing the orthologous groups based on 6,686 

accessory genes of animal E. faecium (Figure 4.7). The tree grouped most of 
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the animal strains from the same origin together in one clade, forming A, B, 

C and D. 

 

Dog strains were grouped together forming clade A, however strain E1574 

is very distinct from other dog strains and very similar to the poultry strain. 

Pig strains were grouped together forming clade C, but one strain is very 

different from the rest (E1578) and very similar to the bison strain (Figure 

4.7). Most of the bird strains were grouped together in one branch forming 

clade D, however, a chicken strain (E429) and the ostrich (E1576) strain are 

very different from other bird strains using this methodology.  Turkey 

strains (E0269 and E0164) are very similar to chicken strains (E0045 and 

E1575). The tree confirms species diversity between different animal hosts, 

whereby isolates have a set of genes that correlate with colonisation of their 

particular host.  

 

A second analysis was performed by generating a neighbour-joining tree 

based on the distinction of 1,824 shared single copy orthologous groups. 

The aim is to model the evolutionary descent of the 21 animal sequenced E. 

faecium (Figure 4.8). The phylogenetic tree of animal E. faecium confirmed 

the outcomes of the overall gene content tree, which indicated species 

diversity associated with different animal hosts, whereby each strain 

appeared to have core genes that correlated with colonisation of their host. 

The bird (D), pig (C) and dog isolates have a core genome that appears 

specific to these hosts (Figure 4.7 and Figure 4.8). 
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Figure 4.7: Overall gene content tree for animal E. faecium. The tree was 

generated from a comparison of the orthologous groups of publicly 

available animal E. faecium strains based on the overall gene content 

(presence/absence tree).  Bird strains are highlighted in red, dog strains in 

green and pig strains in blue.  

 

Figure 4.8: Neighbour-joining tree of E. faecium. The tree is based on the 

concatenated alignments of 1,824 shared single copy orthologous groups in 

20 animal E. faecium genomes. Bootstrapping was performed with 1,000 

replicates. The origins of the strains are indicated. Green indicates dog 
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origin, blue is pig origin and red is bird origin.  

 

4.2.2.3 PhenoLink analyses of animal E. faecium 
 
PhenoLink is a web-tool used to identify genetic links with phenotypes 

(section 2.18.1). PhenoLink analyses were performed using the E. faecium 

genomes to identify genes responsible for the clusters of different animal 

groups (chicken, pig and dog) and the CC17 group (Supplemental File, S3).  

The PhenoLink analyses were applied only to the 77 strains that were 

associated with source details in the NCBI database.  Approximately, 117, 

145 and 90 gene clades were identified as being responsible for the clade of 

chicken, pig, and dog strains of E. faecium, respectively. Separately, around 

450 gene clusters were found to define the CC17 genotype clade. 

PhenoLink analyses of chicken, pig and dog strains of E. faecium identified 

that approximately 32, 40 and 30 % of the gene clusters responsible for the 

clades were hypothetical proteins, respectively.  

 

The absence and presence of carbohydrate utilisation genes was associated 

with the generation of the animal group of E. faecium. Galactitol, mannose, 

L-rhamnose, lactose, galactose, xylulose, ascorbate, and fructose utilisation 

genes contributed to the clade of different animal group, bird, pig and dog.   

In addition, mobile genetic elements such as phage, plasmid and IS elements 

were also associated with animal clades. For example putative phage 

encoded protein, plasmid recombination enzyme, putative transposon Tn552 

andtransposase IS30 family also linked to different animal phenotypes 

(Supplemental File, S3). See also discussion of prophage clusters in chapter 
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6. Proteinaceous toxins including bacteriocin piscicolin-126-precursor, 

bacteriocin class II with double glycine leader peptide, enterocin, 

lactococcin G processing protien and lactococcin A secretion protein LcnD 

were also involved in the clade of  different animal E. faecium. 

 

 In addition, The presence and absence of several of hypothetical portions 

also contribute to the formation of the animal group of the animal E. 

faecium 39, 62 and 84 orthologues were found to be unique in bird, pig and 

dog, respectively. Approximately 49 % of the CC17 phenoLink genes are 

hypothetical proteins, with 12 % associated with mobile genetic elements. 

The distinction between CC17 and the other clinical strains of E. faecium 

was not clear suggesting that ac alternative relational tool might be required 

to dissect the precise drivers of clustering.  

 

4.2.2.4 The novelty of animal E. faecium genomes used in this study 

The genome assemblies from the animal E. faecium strains from calf, pig 

and chicken strain (E172, E142 and E429) were compared with those from 

61 E. faecium genomes that are publicly available with full information. 

Genome maps reveal that the backbone gene content of E. faecium has 

synteny, which is highlighted by the near continuously coloured region that 

spans most of the chromosome. The three animal strains of E. faecium were 

used separately as references in the genome map to identify animal-specific 

regions (Table 4.5. Appendix). 
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When the E172 (calf) strain resulting from PacBio sequencing was used as 

the reference genome several novel regions were identified (Figure 4.9.A). 

Part of region A1 (from 0 to 27 kb) was found in 7 clinical strains including 

the Texas isolates (Figure 4.9.A) (Table 4.5. Appendix). 

 

Region A2 (from 194 to 212 kb) appear to be a clinical-specific sequence 

because of the absence of these genes in the commensal isolates while 

present in most of the clinical strains plus two dog strains (E4453 and 

E4389) (Figure 4.9.A).  In addition, a lactose utilisation operon was found 

in most of clinical and animal E. faecium but was absent from commensal 

strains excluding strain E1050 (region A4).  

 

Region A6 and A7 seem to be an animal specific region by virtue of its 

absent from other E. faecium strains. A prophage is present in region A9 

which shares similarity with a prophage found in bird strains (Figure 4.9.A).  

 

Region A10 (from 2500 to 3000 kb) is likely to be not assembled so 

location of genes is unclear.  The region is composed of plasmid and several 

heavy metal resistance genes  (Figure 4.9.A) (Table 4.5. Appendix).
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   A.                                                                           B.                                                                            C.  

Figure 4.9: Animal E. faecium genome maps. A. Circular map of predicted genome sequence from the comparator genome 

E172 (calf), B. Circular map of predicted genome sequence from strain E142 (pig). C. Circular map of predicted genome 

sequence from E429 (chicken).  Genome comparisons are presented the predicted genome sequence from 61 human clinical 

strains, commensal and animal strains of E. faecium.   



 160 

Key for the circular identifiers, moving from the centre circle outwards: CG 

content, GC-skew (G-C/G+C), reference genome, animal strains indicated 

in gold; chicken 2 (E1575), chicken 3 (E0045), chicken 4 (E2134), chicken 

5 (E4215), Turkey 1 (E0269), Turkey 2 (E0164), Ostrich  (E1576), Poultry  

(E2071), Pig 2 (E1578), Pig 3 (E0688), Pig 4 (E0679), Pig 5 (E0679), Dog 

1 (E4452), Dog 2  (E4453), Dog 3  (E1574), Dog 4 (E4389), Bison  

(E1573), clinical isolates in red; DO, D344SRF, E1636, E1679, E1071, 

E1162, E1258, E1185, E1392, E1552, E0120, E1904 ,E1626, E2883, 

E2297, E1627, E1731, E1634, E6045, E1644, E6012, U0317, TX0133A, 

TX0133a01, TX0133a04, TX0133B, TX0133C, TX0082, 1231502, 

1232408, 1230933, 1231410 and 1231501. Commensal strains (green); 

E1039, Com12, Com15, TX0130, E980 and E1050. Food and river water 

(blue); Cheese (E1604), Fish burger (E1613) and River water (E1630). The 

dark colour inside rings indicates 100% identity, light colour inside rings 

indicated 70% identity and grey colour inside rings indicates 50% identity. 

The clear parts on the rings indicate unique regions in the reference.   

 

The genome of E142 (pig) is the smallest genome among the animal E. 

faecium (~2.5Mb) and the mega plasmid that is found in the chicken and 

calf genome is absent from this genome. These factors led to less 

interference in formation of the genome map (Figure 4.9. B) (Table 4.5. 

Appendix).  
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Region B2 (from 385 to 393 kb) exist in one pig strain E1578 and only 

strain 1, 231,410 of the clinical isolate. The prophage that is located in 

region B3 (from 452 to 468 kb), has homology with two pig strains (E0688 

and E0679) and a clinical isolate E1552 (Figure 4.9. B). 

A small plasmid is located in region B5 (from 1175 to 1192 kb) and parts of 

this plasmid have high similarity with sequences present in many clinical 

and animal isolates of E. faecium, but this plasmid is absent from 

commensal isolates (Table 4.5. Appendix). Region B6 from 1254 to 1262 

kb is encoded in multiple animal and clinical strains of E. faecium including 

dog (E4453), bison, turkey (E0164), poultry, pig (E1578), E1071, E1552, 

E1627, E1634 and one commensal strain E1050 and notably nearly all of 

these strains were isolated from faeces and from the same geographic region 

(The Netherlands) (Figure 4.9. B).  

Region B7 (from 1452 to 1461 kb) is present in all pig strains plus a clinical 

strain E1552. Region B8 (from 1586 to 1596 kb) presents in eight animal 

strains, nine clinical strains and the commensal strain E1050. Region C9 

(from 2175 to 2205 kb) presents in one pig strain (E0688) and the clinical 

strain (E1552) (Figure 4.9. B). Region B10 contains the mega plasmid that 

share similarity with plasmids found in calf strain (E172) region A10 

(Figure 4.9. A) (Table 4.5. Appendix). 

By switching to strain E429 (chicken) genome as the reference several novel 

regions and low identity regions with other strains were clearly identified. 

Within these regions parts of the sequence were shared with several E. 

faecium genomes (Figure 4.9.C). The mosaic structure in region C1, that is 
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located from 0 to 200 kb, due to the absence of many parts of this region in 

most other E. faecium strains. The encoded functions strongly suggest that a 

mega plasmid is located in this region in the chicken strain (Figure 4.9.A); 

see also chapter 5, section 5.2.1.2 and Figure 5.3. The chicken strain 

assembly suggesting that this plasmid is integrated to the chromosome due 

to its located in the backbone. 

 

A prophage in region C2 (from 415 to 455 kb) has similarity with a 

prophage found in another chicken strain (E1575), two dog strains (E4452, 

E4453), the bison and a poultry strain. Hypothetical proteins associated with 

this prophage have identity to proteins found in clinical isolates from 

bloodstream infection (TX0133A, TX0133a01, TX0133a04, TX0133B and 

TX0133C, 1232408, 1231410 and 1231501).  Three commensal strains 

(E980, E1050 and E1039) also contain a genomic region with similarity to 

the phage in region C2 (Figure 4.9.A).  

 

Region C3  (603 to 606 kb) absents from most E. faecium strains, being 

only in E1050 (commensal strain), plus the river water and 15 of the animal 

and clinical strains.  Region C4 (from 769 to 777 kb) presents in other 

animal E. faecium strains (ostrich, dog (E1574), plus clinical (E1636, 

E1679, E0120, E1904), commensal (E1039, Com15) and food isolates 

(cheese, fish burger).  

 

A prophage in region C6 (from 1340 to 1385 kb) is not present in most 

other E. faecium. However, it shares homology with only one animal-
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associated strain  (bison), commensal strains E1039, Com15 and E1050 and 

the clinical isolates (E1679 and E1904). In addition, the prophage in region 

C7 (from 1612 to 1619 kb) has homology with prophage that are found in 

the commensal strain E980 and the clinical strains  (E1904 and E1731) only.  

 

C11 contains numbers of poorly assembled region that contains 

unscaffolded contigs, so the location of genes in this region is unclear (See 

chapter 3). The region is about 670 kb in size and started from 2680 to 3350 

kb. This region shares similarity with regions A10 and B10 in both calf and 

pig strains of E. faecium (Figure 4.9.A and B) (Table 4.5. Appendix). 

 
 

4.3 Discussion   

 

 4.3.1 Core and pan-genome of E. faecium  

The core genome size of E. faecium was estimated by van Schaik et al 

(2010) using seven strains to be 2172 (+/-) 20 genes which is much higher 

than the size of the core genome in this study (1,467 genes). The difference 

between the two estimates is a result of the number of strains that used 

being seven E. faecium genomes against 129 genomes in this study (Figure 

4.1).  As expected, the number of shared genes was reduced with addition of 

each new sequence (Tettelin, Masignani et al. 2005).  

 

Lebreton et al  (2013) stated that there is a slight difference in the core 

genome size of human infection isolates, including the clonal complex 

CC17 strains, which have larger core genomes (1,945 genes) than strains of 
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non-hospitalized humans strains  (1,805 genes) or strains of a mixed group 

of animal and sporadic human infection (1,724 genes), which appears stable 

despite the claim that this is a very recent emergence of this CC17 group.  

 

Comparing the proportion of this functional category in the core genome of 

E. faecium, animal isolates possess more carbohydrate transport and 

metabolism functions (10.26%) than other strain groups (Table 4.3). 

Carbohydrate transport and metabolism functions in E. faecium is very high 

when compared with other Gram-positive bacteria such as Bacillus cereus 

and Bacillus subtilis (0.07%) and reflects the capacity of E. faecium to 

utilise an array of carbon sources from plant origin (Alcaraz, Moreno-

Hagelsieb et al. 2010).  This finding reflects a specialisation in the 

metabolism of carbohydrates in animal E. faecium when compared to 

human isolates. It is well documented that animal isolates have considerably 

more genes for the degradation of carbohydrates. Fructose, mannitol, 

galactose and glucose uptake systems genes are found in the core genome of 

animal E. faecium plus they have the metabolic potential for the uptake and 

assimilation of plant-derived carbohydrates that exists in foodstuffs of their 

host. 

 

Van Schaik et al (2010) estimated that almost 30% of the E. faecium 

genome seems to be accessory compared with an estimate here of 89%. It 

was confirmed that the E. faecium pan-genome is estimated to be broadly 

unlimited in size.  van Schaik et al (2010) and Qin et al (2012) suggested 

that the open pan genome of E. faecium could be described by its capability 
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to assimilate foreign DNA into the gene pool. Since, E. faecium has a wide 

variability of ecological niches that it colonises and survives, and this life 

cycle might require a high degree of phenotypic adaptability. The wide 

variety of ecological niches has resulted in there being interaction of E. 

faecium with many non-pathogenic and pathogenic bacteria for example 

Bacilli, staphylococci, and streptococci, and extensive horizontal gene 

transfer between E. faecium and these bacteria has been documented. de 

Been et al (2013) also suggested that the E. faecium genome is highly 

plastic and limited barriers occur for the acquisition of foreign genetic 

elements, confirming high levels of recombination in E. faecium, which 

distinguished the existence of hybrid E. faecium strains. The significance of 

the open pan-genome is that the species has a high diversity of genes that 

could raise the fitness of the species in different environmental conditions. 

The increase of antibiotic resistance genes documented in clinical isolates 

and the esp gene that is located on a genomics island are well-described 

examples of the E. faecium gene pool that has been positively selected in the 

farm and clinical environments (van Schaik, Top et al. 2010, Qin, 

Galloway-Pena et al. 2012, Lebreton, van Schaik et al. 2013).  

 

An open pan-genome was also shown in Streptococcus agalactiae, which is 

projected to contribute new genes when each new sequenced strain is added 

to the pool. In different species such as Bacillus anthracis the dynamics are 

distinctive and no predicted new genes were gained after when new 

sequenced strains added and its pan-genome can be fully described by four 
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genomes only, this is called a closed pan-genome (Tettelin, Masignani et al. 

2005, Alcaraz, Moreno-Hagelsieb et al. 2010).  

The presence of carbohydrate utilisation genes in the pan-genome of both E. 

faecium overall and in particular animal E. faecium is high. Some of these 

carbohydrate uptake system pathways appear to be novel for specific animal 

hosts. One possible scenario is that these carbohydrates could be present 

within feedstuffs thereby providing a direct selection for enteric bacteria 

that possess genes for their uptake and metabolism. The pan-genome of the 

animal E. faecium sub-populations (dog, pig and bird) have acquired genes 

that appear specific to each sub-population, including carbohydrate 

utilisation genes. These genes might be acquired to their genome from the 

food chain within a food promoter or from plant material.  

The existence of certain carbohydrate uptake systems, such as glucose, 

might be associated with virulence of E. faecium, since glucose utilisation 

genes were found only in the clinical strains of E. faecium except one for 

animal strain isolated from dog. New habitat adaptation and the occurrence 

of new lineages relate directly to the gain and loss of genes. The occurrence 

of lateral gene transfer alters completed ancestral genome size (Dagan and 

Martin 2007) .  

 

4.3.2 Phylogenetic and diversity of E. faecium genome 

Core genome phylogenomics was achieved by comparing all the shared 

(orthologous) genes amongst all E. feacium isolates plus animal E. faecium 

isolates. The in-depth study of the core genome might answer relevant 
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evolutionary questions, for example what are the conserved genes within a 

different E. faecium sub-population range? 

 

Phylogenetic analysis in this study, based upon core genes (Figure 4.3), 

gene content difference analysis (Figure 4.4) together with recent sequence 

studies of 16S rRNA and SNPs, indicates a clear and pronounced separation 

among community-associated, hospital-associated and animal-associated 

clades (Galloway-Pena, Roh et al. 2012, Qin, Galloway-Pena et al. 2012, 

Lebreton, van Schaik et al. 2013). In addition, there is a clear separation 

within E. faecium from different animal hosts (dog, chicken and pig) (Figure 

4.7 and Figure 4.8). 

 

The genomic data, in this study supports the recent studies that suggest the 

CC17 (clade A1) and commensal (clade C) appear to have formed a sub-

population within the E. faecium species (Figure 4.3). It is also clear that 

these infectious isolates are not clonally associated with each other and have 

spread noticeably. In addition, analyses in this study confirmed that CC17 

genotype cluster closely together and further away from the commensal 

isolates than the other infectious isolates, supporting the hypothesis that the 

CC17 genotype  might represent a recently evolved genotype  (van Schaik, 

Top et al. 2010, Lam, Seemann et al. 2012, Palmer, Godfrey et al. 2012, 

Qin, Galloway-Pena et al. 2012, de Been, van Schaik et al. 2013, Lebreton, 

van Schaik et al. 2013). In addition to the human strain evolution, animal 

isolates (clade B) also seem to have formed a sub-population (Lebreton, van 

Schaik et al. 2013). The timescales leading to this divergence is not clear.   
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Gene content analysis showed that strains designated as animal, clinical and 

commensal are different at the level of their genetic repertoire (Figure 4.4), 

however, each sub-population appears relatively closely related. Different 

sub-populations of animal E. faecium, including bird, pig and dog differ. 

For example, in terms of both their core genes and their overall gene 

content, E. faecium isolated from birds are grouped together in one clade 

(Figure 4.7 and Figure 4.8). Being grouped together as a specific sub-

population might indicate that this clade of strains contain genes for 

colonising their bird host or some other aspect of their lifecycle (Figure 4.8). 

Large differences in gene content within the sub-populations of E. faecium 

species detected here indicate that, at the level of their core genome even in 

relatively closely-related isolates, the gain and/ or loss of mobile genetic 

elements is a major influence in shaping strain-specific properties (van 

Schaik, Top et al. 2010). 

 

Two commensal strains E1050 and E1039 seem to represent hybrid 

genomes with clinical clade. Moreover, clinical strain 1,231,408 appears to 

be hybrid with the genome of commensal (Lebreton, van Schaik et al. 

2013). One of the animal isolates from a pet dog (E4453) was associated 

with clade A1, which contains CC17 strains, which identifies potential links 

between hospital strains and household pets (de Regt, van Schaik et al. 

2012).  This link might occur by this strain having been transmitted to the 

dog from a human and being a transient coloniser or it could be a genuine 

resident of the dog.  
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Xylose utilisation genes together with fructose, galactitol, glucose, mannitol 

and galactose utilisation genes were found in the core genome of every 

animal E. faecium. These genes therefore represent a suite of animal E. 

faecium sugar utilisation mechanisms that may be required to colonise their 

animal host. The presence of these genes is likely to be a contributing factor 

that explains the separation of animal and human clades of E. faecium. 

 

Two strains from this study isolated from calf (E172) and chicken (E429) 

appear to possess hybrid genomes. The calf strain (E172) contains a 

backbone genome must closely matching the bird clade. The chicken strain 

(E429) shows a very different backbone genome than other chicken strains 

in the bird clade, and a very similar backbone to the hybrid genome of the 

commensal strain E1093. Differences in the presence and absence of mobile 

genetic elements particularly phages and hypothetical proteins appear to 

explain the grouping of the chicken strain (E429) with E1039. This finding 

supports the hypothesis of van Schaik et al (2010) that even between 

relatively-closely related strains the repertoire of mobile genetic elements is 

a major influence in shaping strain-specific properties. 

 

The geographic and the infection origin of E. faecium strains appear to play 

an important role in determining the separation of clades A, B and C (Figure 

4.2 and Figure 4.4). As an example, strains isolated from Texas were 

grouped together in subgroup A2.  With most of the strains in group A 

being isolated from blood and from USA. Group B contains animal, clinical, 

CC17 and river water isolates, mostly from Netherlands.  
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4.3.3 E. faecium sub-populations 

Core and pan-genome analysis of E. faecium indicated that there are three 

main sub-populations of E. faecium species, including hospital-associated 

(clade A), animal-associated (clade B) and community-associated strains 

(clade C) and there are specific genes for these clades suggesting potentially 

unique gastrointestinal tract niches. In E. faecalis phylogenetic multiple 

analysis clades are not observed (Palmer, Godfrey et al. 2012, Kim and 

Marco 2014). Contrasting markedly with E. faecium where within sub-

populations clear different sub-groups are present and these are associated 

with different animal hosts (bird, dog and pig) and the CC17 genotype 

(Figure 4.3 and Figure 4.8). Differences between individual orthologous 

clusters were compared to obtain genes that contributed to the genetic 

separation between the E. faecium clinical, commensal and animal isolates.  

 

Several different functional categories were represented among the clinical 

isolates of E. faecium. Cell wall components that were found to be absent in 

the genome of the clinical E. faecium strains, such as capsular 

polysaccharide biosynthesis proteins, were positively correlated with the 

clinical group and these genes may play a role of increasing survival from 

innate defences such as opsonophagocytosis in the host thereby contributing 

to infection. The presence of particular lipoprotein may play a role in E. 

faecium virulence procedures. Study of lipoproteins in E. faecalis indicated 

that about 25% of the surface-associated proteins are lipoprotein with a 

potential involvement in E. faecalis virulence and producing candidates for 

vaccine production (Reffuveille, Leneveu et al. 2011).  
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The commensal group was found to have few mobile genetic elements and 

antibiotic resistance genes while enriched with genes encoding hypothetical 

(membrane) proteins and for capsule and vitamin biosynthesis, and sugar 

metabolism (Kim and Marco 2014). The absence of certain genes such as 

autolysin, which is a cell wall degrading protease that has the ability to alter 

host cell peptidoglycan plus a recombination protein, which might play a 

role in the acquisition of the antibiotic resistance (Qin, Singh et al. 1998, 

Boumghar-Bourtchai, Dhalluin et al. 2009) were found to drive the 

formation of the commensal group. However, how these genes might act to 

define strain group is unclear.   

 

4.3.4 The novelty of animal E. faecium genomes used in this study 

Comparison of the animal E. faecium with the other 58 E. faecium genomes 

with known source data revealed a mosaic-like structure, as previously 

described (Sillanpaa, Prakash et al. 2009, Qin, Galloway-Pena et al. 2012), 

revealing several highly variable regions. Some of these variable E. faecium 

regions are animal and clinical clade-specific (Figure 4.9). Notably, several 

regions on animal E. faecium genomes are absent or have low sequence 

identity in the commensal strains. Largely, mobile genetics element such as 

mega plasmid, phages and IS element are can fined to the variable regions 

of animal strains. Chapter 5 and 6 will examine these elements in details to 

characterise more fully these elements in animal and human E. faecium 

isolates.   
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The mosaic structure at the end of the three animal genomes was identified 

as a mega plasmid that encodes heavy metal resistance, antibiotic resistance 

and multible carbohydrate utilisation genes for mannose, trehalose, ribose, 

galactitol, mannose, L-rhamnose, lactose, galactose, xylulose, ascorbate, 

and sucrose. These sugar uptake genes were proposed previously as a 

potential reason for the separation of animal and clinical sub-groups of E. 

faecium. By analysis of the presence/absence of this novel region in the 

three animal E. faecium strains sequenced in this study it is clear that most 

of these carbohydrate utilisation genes were acquired via this mobile genetic 

elements. This confirms that horizontal gene transfer events have 

contributed significantly to the diversity of the E. faecium species, but in 

this case was not phylogenetic driver that distinguished clades.  

 

Unique capsular polysaccharide synthesis proteins and other surface-acting 

proteins, such as sortase A and an LPXTG motif proteins were found in the 

3 animal strains, which might have significant roles in virulence, such as 

adhesion immune defence and might be required to colonise their specific 

host (Qin, Galloway-Pena et al. 2012).  Siezen et al (2006) suggested that 

novel genes encoding cell-surface proteins in Gram-positive bacteria 

signifying a niche-specific distribution (Siezen, Boekhorst et al. 2006). 

 

Region C1 in the chicken strain (E429) (0 to 200 kb) which encodes the 

mega plasmid seems to be integrated into the chicken chromosome. This 

hypothesis will be tested in chapter 5 to identify integration of this plasmid.  

In addition, other mobile genetic elements present in the animal strains 
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together with antibiotic resistance will be compared with human E. faecium 

in chapter 5 to identify if these genes are similar or distinct to those carried 

by human isolates of E. faecium. Several novel regions in the three animal 

E. faecium are prophage and several could be animal specific. Comparative 

analysis of E. faecium prophages is explored in details in chapter 6.  
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Chapter Five: Mobile genetic elements in the 

genomes of E. faecium isolated from animals. 
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5.1 Introduction  

“Horizontal genomics” is a new area of prokaryotic biology that investigates 

DNA sequences present in the chromosome that appear to have originated 

from other prokaryotes or eukaryotes. Plasmids, bacteriophages and 

transposons encode the capability to mobilise from one host to another 

(Frost, Leplae et al. 2005). 

 

Galloway-Pena et al (2012) stated that the gain of mobile genetic elements 

carrying antibiotic resistance, virulence and/or fitness factors are the driving 

force behind the recent success of E. faecium as an opportunistic pathogen 

in hospitals. Investigations of gene clusters that are associated with 

vancomycin resistance and Tn1546 in E. faecium, reported that horizontal 

gene transfer occurs between human and animal E. faecium isolates 

(Stobberingh, van den Bogaard et al. 1999, van den Bogaard, Willems et al. 

2002).  

 

In addition, the esp virulence gene is located on a large pathogenicity-

associated island in E. faecium and this esp PAI can be transferred 

horizontally and inserts in a site-specific manner (Leavis, Top et al. 2004, 

van Schaik, Top et al. 2010). MGEs are transferred to human isolates and 

thereby add to the burden of the disease caused by E. faecium, for example, 

by transferring vancomycin resistance between bacteria. This capability is 

important to consider, since these genes were shown to be transferred to 

human isolates and to more virulent organisms such as Staphylococcus 

aureus (Qin, Galloway-Pena et al. 2012). 
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Specific aim 

In this chapter comparative analysis of mobile genetic elements among 

faecium isolates will be determined to identify if those carried by animal 

isolates of E. faecium are similar to, or distinct from human isolates.  

 

5.2 Results  

 

5.2.1 Mobile genetics elements 

 

5.2.1.1 Insertion sequence elements (IS)   

The accessory genome of E. faecium has an extensive suite of transposable 

elements.  The presence and the absence of insertion sequence elements and 

transposase orthologues in the pan-genome of E. faecium showed 

hierarchical clustering using a Pearson correlation algorithm (MeV-Section 

2.18.1). Comparative analysis of IS elements in the pan-genome of E. 

faecium, including animal and human isolates, shows differences in the 

presence of these elements between the E. faecium sub-populations 

representing commensal, clinical and animal isolates (Figure 5.1).   

 

IS elements were located in all E. faecium genomes including commensal 

isolates. However, there is a higher frequency of IS elements in the genomes 

of clinical isolates are absent in commensal isolates.  Different sub-

populations of E. faecium have particular IS elements the combination of 

which are unique to each, including the CC17 genotype and animal isolates 

(Figure 5.1).   
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From the comparative analysis of IS elements most of the CC17 isolates 

were grouped together (clade A1). The clinical blood strains isolated from 

Texas appear to share a unique set of IS elements (clade A2). Animal 

isolates of E. faecium were grouped into two distinct sets forming B1 and 

B2 and each group has a unique complement of IS elements (Figure 5.1).   

 

IS30 was present in most E. faecium strains, including clinical, commensal 

and animal isolates. IS66 and IS605 were also commonly found only in 

clinical and animal E. faecium strains, however, IS66 was found in 19 

isolates that mostly belong to the CC17 genotype, including two dog 

isolates, which suggests that IS66 could be a marker for this group 

genotype. IS605 is common to clinical and animal E. faecium (85 strains). 

IS2 was found only in four isolates of E. faecium; chicken (E429), calf 

(E172) pig (E0680) and a clinical strain (E1679) (Supplemental File, S1). A 

presence / absence tree of transposase orthologues in the pan genomes of E. 

faecium was generated and this groups together the chicken (E429) and calf 

(E172) strain, suggesting that they share a repertoire of IS that distinguishes 

these strains, which indicated that these sequences could either be novel to 

these strains or have been horizontally acquired (Figure 5.1).  Generally, 

animal strains shared specific IS elements, for example, the IS elements 

present in most turkey, dog and chicken strains were grouped in a clade 

specific for these hosts. 
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Figure 5.1: A presence and absence tree of transposase orthologues in E. 

faecium. The red clade indicates CC17 genotype isolates, blue indicates 

Texas strains, and green indicates animal isolates. 

 

Further analysis was performed to investigate the unique IS elements in 

animal E. faecium. Using IS finder (Section 2.18.1) the number of IS 

elements in each genome was estimated at 180 (chicken, E429), 129 (calf, 

E172) and 45 (pig, E142) (Table 5.1). These IS elements revealed 

substantial homology with Gram-negative species including Escherichia, 

Burkholderia, Pseudomonas and Xanthomonas species, and Gram-positive 
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species including Staphylococcus, Streptococcus, Bacillus and Lactobacillus 

species.  

 

Table 5.1: Insertion sequence elements in animal E. faecium. IS families in 

the three animal strains E429 (chicken), E172 (calf) and E142 (pig) 

according to the IS Finder database.  

 

 

 

In particular, the IS1 and IS5 families share homology with elements of E. 

coli and Pseudomonas aeruginosa, respectively, and the IS6 family has 

homology with Lactococcus lactis and Staphylococcus aureus. A very 

similar number of IS elements in chicken, calf and pig isolates, were found 

to have homology with E. faecium and with other Enterococcus species, 

including E. faecalis, E. hirae and E. casseliflavus.  

 

IS Family IS group Chicken 
(E429) 

Calf 
(E172) 

Pig 
(E142) 

IS1 - 13 13 0 
IS110 - 1 1 0 
IS1182 - 7 4 1 
IS1380 - 5 5 2 
IS1595 ISPna2 1 1 1 
IS1634 - 1 0 0 
IS200/IS605 - 2 1 1 
IS256 - 12 10 6 
IS3 IS2/ IS3/ IS150 32 20 10 
IS30 - 5 4 3 
IS4 1S10/ IS231 8 6 0 
IS5 IS5 47 26 0 
IS6 - 28 27 14 
IS607 - 1 1 1 
IS982 - 2 2 2 
ISAs1 - 2 2 0 
ISL3 - 11 6 3 
ISLre2 - 0 0 1 
Grand Total   180 129 45 
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5.2.1.2 Plasmids 

Many plasmids have been described in Enterococcus species that confer 

resistance to antimicrobials and heavy metals. To first investigate the extra-

chromosomal plasmid content of the three animal strains of E. faecium, 

plasmid DNA was purified and visualised by gel electrophoresis. Three 

similarly sized plasmids were observed in the three animal strains, estimated 

at ~ 4.7 kb in size (Figure 5.2).  The calf strain (E172) potentially contained 

at least one more plasmid of smaller size (~ 1.5 kb)  

 

 

 

Figure 5.2: Gel-electrophoresis of plasmid DNA. Lanes from left to right: 

Hyperladder1; E429 (chicken strain); E172 (calf strain); E142 (pig strain).  

 

To characterise the plasmid complement of the three animal strains in silico 

a comparative analysis was made with the 34 E. faecium plasmid sequences 

that were publicly available (Figure 5.3).  This analysis indicated that the 

animal strains of E. faecium isolated from chicken and pig, each contain 
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DNA corresponding to mega-plasmids present in the closed genomes of E. 

faecium Aus0004, DO and strain Aus00085 (Figure 5.3). Strains E429 

(chicken) and E142 (pig) appear to have the same mega plasmid, but located 

with a different synteny (scaffold 1 and 2, respectively). Strain E172 (calf) 

only possesses segments of this mega plasmid.  

 

The plasmid sequence identified in animal isolates were found to have 

homology with strain DO plasmids (DO1 (CP003584.1, 36.26 Kb), DO2 

(CP003585.1, 66.25 Kb), DO3 (CP003586.1, 251.93 Kb), strain Aus0004 

plasmid Aus0004_p1 (CP003352.1, 56.52Kb) and strain Aus0085 plasmids 

P1 (CP006621.1, 130.72 Kb), P2 (CP006622.1, 67.31 Kb) and P3 

(CP006623.1, 31 Kb).  

 

The annotation of the DO, Aus0004 and Aus0085 identified plasmids that 

found in the complete genomes of E. faecium,,which have homology with 

animal isolates plasmid, reveal a variety of encoded functions, including 

toxin–antitoxin, sortase A and an LPXTG cell wall anchor protein. In 

addition, the plasmids contain genes encoding tetracycline resistance and 

multiple bacteriocin genes. Some of these genes may be found on 

plasmids but they are not necessarily plasmid genes. 
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                                   A.                                                                         B.                                                                           C. 

Figure 5.3: Comparative analysis of E. faecium plasmid sequences. Mummerplot analysis reveals homology between animal 

strain genomes (E429, E172 and E142) and 34 complete plasmid sequences retrieved from the NCBI database. (A) Plot 

identifies a mega plasmid within the assembled chicken genome (E429.  (B) Plot revealing sequences homologous with plasmid 

in the calf strain (E172) and (C) the pig strain (E142), which appears to also have a mega plasmid.  
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Several of the novel animal genes (22 genes encoding hypothetical proteins) 

were located on a plasmid.  Carbohydrate utilisation operons were identified 

in chapter 4 as being located on plasmids and these operons were identified 

with specificities for citrate, and ascorbate, resistance to heavy metal 

including lead, cadmium, zinc and mercury. These genes form the novel 

region C1 in the chicken genome map (Chapter 4 _Figure 4.10.C). 

 

Analysis of plasmid genome content across all of the E. faecium genomes 

revealed relationships based on shared DNA sequences (Figure 5. 4). Genes 

carried by plasmids in animal E. faecium were found to be common across 

E. faecium strains, including the commensal isolates. The co-occurrence of 

the plasmid with animal and CC17 strains show strong association since 

most of the animal strains were located in a clade different from the CC17 

strains, which suggested that animal strains contains plasmid genes specific 

for animal host.     

 

Some of the plasmid genes, for example helix-destabilizing protein, helix-

turn-helix domain protein and a sortase (surface protein transpeptidase) 

were found as core genes in E. faecium isolates (Figure 5. 4). 
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Figure 5.4: A presence and absence tree of plasmid orthologues in E. 

faecium. The red clade indicates CC17 genotype isolates, blue indicates 

commensal strains, green indicates animal isolates and black indicates other 

clinical isolates. 

 

5.2.1.3 Bacteriophage  

Phages have been described that were resident in E. faecium strains or that 

were shown to infect the species (Mazaheri Nezhad Fard, Barton et al. 2010, 

van Schaik, Top et al. 2010, Yasmin, Kenny et al. 2010, Galloway-Pena, 

Roh et al. 2012). Van Schaik et al (2010) indicated that the prophages that 
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have been induced from E. faecium are Siphoviridae and morphologically 

identical to prophages induced from E. faecalis.  

 

The genome sequences of the E. faecium strains isolated from chicken 

(E429), calf (E172) and pig (E142) contain prophages. The genome size 

differences between the chicken strain and other two animal strains are 

mostly due to the acquisition of horizontally transferred of genetic material, 

and a major part of this derives from temperate bacteriophage. Six phage 

regions were found in chicken strain E429 compared with only one in calf 

and pig strains. E. faecium  prophage are discussed in detail in chapter 6. 

 

 

5.2.2 Investigating animal E. faecium genomes with regards to 

virulence, resistance and survival. 

 

 5.2.2.1 Virulence factors 

BLAST analysis of candidate virulence factor genes present in human 

strains of E. faecium confirmed the presence of multiple virulence genes. 

The enterococcal surface protein (encoded by esp), collagen adhesin 

precursor (encoded by acm), secreted antigen SagA, pilus (encoded by pilA 

and pilB) and hemolysin (Table 5.2) are variably present among the three 

sequenced strains revealing that known virulence determinants reside in 

their genomes.  
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Table 5.2: Virulence factors in animal E. faecium.  

 

Virulence gene product  E429 (chicken) E172 (calf) E142 (pig) 

LPXTG surface protein 10 5 10 
Collagen adhesin precursor 1 1 4 
Esp 1 1 1 
EspA 7 0 0 
PilA 2 1 1 
PilB 0 0 1 
SagA 1 1 1 
Hemolysin 3 3 3 

 

The virulence proteins in animal E. faeciun have 93 to 100% similarity with 

virulence genes in E. faecium as a whole, namely collagen adhesin precursor 

(AAN12397), PilB (ACI49665), PilA (ACI49671) and SagA  

(AF242196_3).  

Collagen adhesin precursor gene was found in the chicken strain (position 

520769-522466), calf strain (1474869-1477595) and with four copies 

(1504841-1506127, 1506662-1507090, 1507087-1507290 and 1507290-

1507571) in the pig strain. The PilA gene is located in positions 178302-

178679 and 180785-182434 in the chicken strain and 2429443-2431419 in 

the pig strain. Collagen adhesin precursor gene was found in most E. 

faecium isolates including clinical, commensal and animal. However, a 

novel collagen adhesin precursor homolog was found only in bird isolates 

and the calf strain (E172). PilB was found in the pig strain only (119904-

121781). The SagA gene is located at positions 2654224-2655801, 

1761135-1762700 and 1798805-1800376 in chicken, calf and pig, 

respectively. Hemolysin genes are located at 80020-801583, 971478-

972131, and 2349596-2350903 in the chicken strain, 1051269-1051922, 
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1201273-1202649 and 2072066-2073367 in the calf strain and 1070554-

1071207, 1229858-1231234 and 2099474-2100775 in the pig strain.  

 

LPXTG family cell-wall anchored proteins were found in the three animal 

E. faecium genomes as multiple copies. At least 5 of these genes are novel 

since no significant similarity was found in the NCBI database which 

includes those from Gram-positive species including Staphylococcus, and 

Lactobacillus species. LPXTG in positions 3145123-3145713 and 3169914-

3170672 in chicken strain share high level of similarity (89%) with LPTXG 

in Lactobacillus brevis and  (98%) to Cna protein B-type domain protein in 

Staphylococcus aureus, respectively.  

 

The gene encoding hyaluronidase was absent from the three animal E. 

faecium isolates, in contrast to its presence in all CC17 genotype isolates, 

confirming it represents a signature of this CC17 genotype. The gene 

encoding the enterococcal surface proteins Esp and EspA share low level of 

similarity (23 to 36%) with Esp (ZP_06678454) and cell wall surface anchor 

family protein EsbA (ZP_06702708) in E. faecium strains E1162 and 

U0317, respectively. The Esp gene is located at positions 1961868-

1965038, 104424-107594 and 133123-135006 in the genomes of chicken, 

calf and pig, respectively. 

 

5.2.2.2 Antibiotic resistance  

Comparative analyses of antibiotic resistance genes among E. faecium 

isolates were previously reported by Qin et al (2012) and Lebreton et al 
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(2013) and revealed the widespread occurrence of antibiotic genes in E. 

faecium species (Table 5.3). A comparative analysis of antibiotic resistance 

genes in the three sequenced animal E. faecium isolates in this study was 

done by performing BLAST searches against antibiotic resistance sequence 

databases. Multiple antibiotic resistance genes were identified in the chicken 

(E429), calf (E172) and pig (E142) strain genomes (Table 5.3).  

 

Table 5.3: Occurrence of antibiotic resistance genes in E. faecium isolates. 

Indicated genes encode resistance to antibiotics as follows:  ermA and ermB 

(erythromycin), lunB (lincomycin), aacA-aphD (gentamycin), aad6 

(spectinomycin) and aadE (streptomycin); cat (chloramphenicol), tetM and 

tetL(tetracycline), van A (vancomycin type A), van B (vancomycin type B), 

fos (fosfomycin), parC and g1rA (fluoroquinolone and ciprofloxacin), 

Pbp5-R (ampicillin), st (streptothricin); azlC (azaleucine) ,ble (bleomycin), 

fmtC (oxacillin) and vgb (streptogramin). Red strains indicate clinical 

isolates, green indicates animal isolates and orange indicates commensal 

isolates. Unknown indicates information is not presented in the two analysis 

previously reported by Qin et al (2012) and Lebreton et al (2013). 
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Strain 
ermA ermB lnuB 

aac(6')-
aph(2'') aad6 aadE cat tetL tetM 

vanA 
operon fos 

1_230_933 0 1 0 1 0 0 0 0 2 1 0 
1_231_408 0 1 0 1 0 0 0 0 0 0 0 
1_231_410 0 1 0 0 0 0 0 0 0 1 0 
1_231_501 0 0 0 0 0 0 0 0 0 0 0 
1_231_502 0 1 0 2 0 0 0 0 0 1 0 
AUS0004 0 0 0 0 0 0 0 0 3 0 0 
C68 0 1 0 1 0 0 0 0 0 0 0 
D344SRF 0 1 0 0 0 0 0 1 2 0 0 
E0120 0 2 2 0 0 0 0 1 0 1 0 
E0333 0 1 0 0 0 0 0 0 0 2 0 
E1039 0 0 0 0 0 0 0 0 0 0 0 
E1071 0 1 2 0 0 1 0 1 0 1 0 
E1133 0 1 0 0 0 0 0 1 0 0 0 
E1162 0 0 0 0 0 0 0 1 0 0 0 
E1185 0 1 0 0 0 0 1 0 2 0 0 
E1258 0 0 0 0 0 0 0 0 0 0 0 
E1321 0 1 0 0 0 0 0 1 0 0 0 
E1392 0 1 0 1 0 0 0 0 2 0 0 
E1552 0 1 0 0 0 0 0 0 2 1 0 
E1623 0 0 0 0 0 0 0 0 0 0 0 
E1626 0 1 0 0 0 0 0 0 2 0 0 
E1627 0 1 0 0 0 0 0 1 0 0 0 
E1634 0 0 0 0 0 0 0 0 0 0 0 
E1636 0 0 0 0 0 0 0 0 2 0 0 
E1644 0 1 0 1 0 0 0 0 0 1 0 
E1679 1 1 0 1 1 0 0 0 0 1 1 
E1731 0 1 0 1 0 0 0 1 0 0 0 
E1861 0 0 0 0 0 0 0 0 0 0 0 
E1904 1 2 0 1 1 0 0 0 0 0 0 
E2039 0 0 0 0 0 0 0 0 0 0 0 
E2297 0 1 0 1 0 0 0 0 0 1 0 
E2369 0 1 0 1 0 0 0 0 0 1 0 
E2620 0 0 0 0 0 0 0 0 0 0 0 
E2883 0 0 0 0 0 0 0 1 3 0 0 
E3083 0 0 0 0 0 0 0 0 0 0 0 
E3346 0 0 0 0 0 0 0 0 0 0 0 
E3548 0 0 0 0 0 0 0 0 0 0 0 
E3548 0 2 2 3 0 0 0 0 0 0 0 
E6012 0 1 2 1 0 0 0 1 0 2 0 
E6045 0 1 2 1 0 0 0 1 0 2 0 
LCTEF90 0 0 0 0 0 0 0 0 0 0 0 
TC6 0 2 0 0 1 0 0 1 2 0 0 
U0317 0 1 2 3 0 0 0 0 0 0 0 
E0164 0 0 0 0 0 1 0 0 4 1 0 
E4215 0 0 0 0 0 1 0 0 0 2 0 
E0045 0 0 0 0 0 0 0 0 1 0 0 
E0269 0 1 0 0 0 0 0 0 2 1 0 
E2134 0 1 0 0 0 0 0 1 1 0 0 
E1575 0 1 0 0 0 0 0 0 1 2 0 
E0680 0 1 0 0 0 1 0 1 0 1 0 
E0679 0 1 2 0 0 0 0 1 0 0 0 
E2071 0 0 0 0 0 0 0 0 0 0 0 
E0688 0 1 2 0 0 0 0 1 4 0 0 
E1574 0 1 2 0 0 0 0 1 0 1 0 
E1622 0 0 0 0 0 0 0 0 0 0 0 
E1573 0 0 0 0 0 0 0 0 0 0 0 
E1578 0 0 0 0 0 0 0 0 0 0 0 
E4389 0 0 0 0 0 0 0 0 2 0 0 
E1576 0 0 0 0 0 0 0 0 0 0 0 
E4453 0 1 0 0 0 0 0 0 2 0 0 
E4452 0 1 0 0 0 0 0 1 3 0 0 
E429 1 3 0 1 8 0 0 1 2 1 1 
E172 1 3 2 1 12 0 1 0 1 1 0 
E142 1 2 0 1 21 2 0 0 2 1 0 
E1050 0 0 0 0 0 0 0 0 0 0 0 
E1972 0 0 0 0 0 0 0 0 0 0 0 
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E1007 0 0 0 0 0 0 0 0 0 0 0 
Com15 0 0 0 0 0 0 0 0 0 0 0 
E980 0 0 0 0 0 0 0 0 0 0 0 
Com12 0 0 0 0 0 0 0 0 0 0 0 
1_141_733 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

Each of the sequenced animal E. faecium strains in this study is vancomycin 

resistant. To explore the nature of this resistance the van operons were 

identified by homology. In strain E429 (chicken) the van operon is about 7.6 

kb in size (2874238bp - 2881898pb), with vanZ located 398 kb distant to 

the operon (Figure 5.5). The operon is surrounded by mobile elements 

including transpoase TnA (Tn1546), a transcriptional regulator, Tn916, 

DNA topoisomerase and a tetracycline resistance gene is located 1.5kb 

upstream. Unexpectedly, a second copy of vanR, vanS and vanY are 

clustered together in an operon, 2.5 kb in size located about 2 Mb distant 

(647926- 650500).   

 

Strain parC g1rA Pbp5-R st azlC ble fmtC vgb 
1_230_933 1 1 1 0 0 1 0 0 
1_231_408 1 1 1 0 0 1 0 0 
1_231_410 1 0 1 0 0 1 0 0 
1_231_501 0 0 0 0 0 1 0 0 
1_231_502 1 1 1 0 0 1 0 0 
C68 1 1 1 0 0 1 0 0 
D344SRF 0 0 0 0 0 1 0 0 
E1039 0 0 1 0 0 1 0 0 
E1071 0 0 1 0 0 0 0 0 
E1162 0 0 1 0 0 0 0 0 
E1636 0 0 1 0 0 0 0 0 
E1679 0 0 1 1 0 0 0 0 
U0317 1 1 1 0 0 0 0 0 
E4453 2 6 3 0 2 unknown unknown unknown 

E4452 3 6 2 1 1 unknown unknown unknown 

E429 4 4 5 0 2 2 1 2 
E172 3 2 2 0 2 2 1 2 
E142 2 2 2 0 1 2 1 2 
Com15 0 0 0 0 0 1 0 0 
E980 0 0 0 0 0 1 0 0 
Com12 0 0 0 0 0 1 0 0 
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Figure 5.5: Vancomycin resistance genes in animal E. faecium. The arrows 

show a similar Tn1546 linked operon that is composed of 6 van genes 

(vanR, S, H, A, X, and Y).   

 

In the calf strain (E172), the Van operon is smaller 5.987 kb (2514921bp - 

2520908bp), with vanZ is located 573 kb distant. The operon in the pig 

strain is a similar size as the calf strain operon (located 24141042bp- 

2408056bp), however, vanZ is absent. 

 

Mutations in the gyrA or parC subunit genes that are responsible for 

fluoroquinolone and ciprifloxacin resistance were found in the three animal 

E. faecium strains. The described amino acid change E to K occurs in codon 

88 of the gyrA gene and amino acid change E to K in occurs in codon 86 of 

parC. Fluoroquinolone, streptothricin and azaleucine resistance were found 

only in the animal strains, which might reflect that these antibiotics are used 

in animal husbandry. Gentamicin resistance was also found in the three 

animal isolates (Table 5.3) 
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5.2.2.3 Genomics Island 

The IslandViewer server (Section 2.18.1) was used to identify Genomic 

Islands (GI) (Section 1.12.4) in the chromosome sequence of calf strain 

E172 derived from PacBio sequencing. The E172 genome harbours multiple 

genomic islands with 21 regions totalling 369 kb (Table 5.4). The GIs in the 

calf strain bunched at the end of the genome. This differs markedly from the 

GIs that are found in the clinical E. faecium strains DO and Aus0004 which 

are spread across their genome. Within the E172 genome the GI region 

corresponded with novel mega plasmid that also was also found in the 

chicken strain (E429) in this study (Region C11- Figure 4.7). Several of the 

GI regions in the calf strain are unique (Figure 4.7 A). 

 

The pathogenicity island carrying the esp gene is absent from the DO 

genome and from all the three animal E. faecium (Qin, Galloway-Pena et al. 

2012).  There are 13 other possible genomic island regions totalling 107 kb 

present in the (DO strain) genome. Which mainly encode carbohydrate 

utilisation genes and IS elements. For example, operons for the utilisation of 

mannose/fructose/sorbose, glucose and fructose/mannitol were found in five 

of the identified GI regions. 
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Table 5.4: GI associated with animal E. faecium isolated from calf using 

PacBio sequencing platform. GI regions, position, size of GI and the key 

genes presented in each region. 

 

GI         Position             Size   Key genes in GI region 

1 

7647-23306 15659 

Mobile element protein, sugar utilisation operon (beta-1,3-
glucosyltransferase, UDP-glucose dehydrogenase, dTDP-glucose 
4,6-dehydratase, glycosyltransferase) capsular polysaccharide 
biosynthesis proteins and Lipid carrier 

2 369360-375322 5962 Cell wall surface anchor family proteins, Cell wall surface anchor 
family proteins, LPXTG motif and mobile element protein 

3 768523-787902 19379 Ribosomal proteins and ribose 5-phosphate isomerase A 

4 

2492183-2505846 13663 

Transposase, IS204/IS1001/IS1096/IS1165, sugar utilisation 
operon (UDP-glucose dehydrogenase, PTS system, galactose-
inducible IIB component / PTS system, galactose-inducible IIC 
component, PTS system IIA component, dTDP-glucose 4,6-
dehydratase) and mobile element proteins 

5 
2516838-2533509 16671 

Integrases, mobile element proteins, PTS system, cellobiose-
specific IIC component, Putative hydrolase, haloacid 
dehalogenase family and Alcohol dehydrogenase 

6 2552058-2561564 9506 Mobile element proteins and hypothetical proteins, endonuclease 
and type I restriction-modification system, restriction subunit R  

7 

2572986-2583610 10624 

Heavy metals operon (Lead, cadmium, zinc and mercury 
transporting ATPase, Copper-translocating P-type ATPase, 
Copper chaperone) glucose 1-dehydrogenase, replication-
associated protein RepB, mobile element proteins and 
hypothetical proteins 

8 
2583977-2591668 7691 

Multicopper oxidase, Lead, cadmium, zinc and mercury 
transporting ATPase, Copper-translocating P-type ATPase, 
Transposase, IS4 and Phosphate regulon transcriptional regulatory 
protein PhoB (SphR) 

9 

2612029-2625907 13878 

Sucrose operon (Sucrose permease, major facilitator superfamily, 
Sucrose-6-phosphate hydrolase, Fructokinase, Sucrose operon 
repressor ScrR, LacI family) phage-related proteins, 
ntegrase/recombinase core domain family and choloylglycine 
hydrolase. 

10 
2641977-2650278 8301 

Cellobiose operon (PTS system, cellobiose-pecific IIA, IIB, IIC 
components) Beta-glucosidase, 6-phospho-beta-glucosidase, sugar 
kinase 

11 
2660624-2669004 

8380 

Transposase, IS204/IS1001/IS1096/IS1165, histidinol-
phosphatase, Two-component response regulator VncR, Ferric 
iron ABC transporter, iron-binding protein, Methionine ABC 
transporter ATP-binding protein 

12 

2683060-2769945 86885 

Phage integrase, integrase, integrase/recombinase, core domain 
family, mobile element proteins, chromosome (plasmid) 
partitioning protein ParA / Sporulation initiation inhibitor protein 
Soj, Putative peptidoglycan bound protein (LPXTG motif), 
Antiadhesin Pls, binding to squamous nasal epithelial cells, 
Clumping factor ClfB, fibrinogen binding protein, resolvase, Beta-
lactamase repressor BlaI, Beta-lactamase regulatory sensor-
transducer BlaR1, Phage protein, Cytosolic protein containing 
multiple CBS domains, replication initiator protein A 

13 
2781409-2797952 16543 

Zeta toxin genes, chloramphenicol acetyltransferase, glutamate 
synthase (NADPH), Type II restriction enzyme, methylase subunit 
YeeA. 

14 
2805558-2825811 20253 

Chromosome partitioning ATPase, Site-specific recombinase, 
DNA invertase Pin related protein, trehalose operon 
transcriptional repressor, trehalose-6-phosphate hydrolase, 
transporter. 

15 2856053-2866089 10036 Hypothetical proteins, Methionine synthase II (cobalamin-
independent), Transcriptional regulator PadR family 
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16 
2874325-2886841 12516 

Fumarate reductase flavoprotein subunit, mannose-6-phosphate 
isomerase, catalase, gamma-aminobutyrate:alpha-ketoglutarate 
aminotransferase 

17 
2910173-2926108 15935 

Activator of the mannose operon (transcriptional antiterminator), 
BglG family, D-alanyl-D-alanine carboxypeptidase, alcohol 
dehydrogenase, phage infection proteins, N-acetylmuramoyl-L-
alanine amidase, family 4 

18 

2926129-2934524 8395 

Glyoxylate reductase, L-lysine permease, Cobalt-zinc-cadmium 
resistance protein, two-component sensor histidine kinase, 
regulation of D-alanyl-lipoteichoic acid biosynthesis, DltR, 
Glycine betaine ABC transport system, ATP-binding protein 
OpuAA 

19 

2934660-2987933 
53273 

Vancomycin A resistance operon( TnpA transposase, resolvase, 
Vancomycin response regulator VanR, Sensor histidine kinase 
VanS, D-lactate dehydrogenase VanH , D-alanine--D-lactate 
ligase VanA), Glycine betaine ABC transport system, ATP-
binding protein OpuAA, OpuAB, OpuAC, Chromosomal 
replication initiator protein DnaA, Two-component response 
regulator SA14-24 

20 
2989525-3005194 15669 

Vancomycin B resistance operon, chromosome partitioning 
protein ParA, similar to plasmid replication protein, replication 
control protein PrgN 

 

In the genome of Aus0004, 15 genomic island regions totalling about 262 

kb were found. One genomic island of 60 kb was uniquely present in the 

Aus0004 strain when compared with 22 other strains by Lam et al. (2012). 

In this study the GIs in Aus0004 strain were identified to mainly encode 

tetracycline and van type B resistance, the esp gene plus mannose and 

sucrose utilisation operons. 

 

5.3 Discussion 

 

5.3.1 Insertion sequence elements 

Insertion sequence elements (IS) and transposases are the foremost mobile 

genetic elements in E. faecium (Qin, Galloway-Pena et al. 2012).  

Comparative genomics of entire E. faecium chromosomes has provided 

insights into the mobile genetic elements that are present in the E. faecium 

DNA pool. The IS correspond to the major MGEs in clinical enterococcal 

isolates, and commonly discovered IS-families represent IS3, IS6, IS30, 
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IS256, ISL3, IS4, IS66, IS110, IS200/IS605, IS982, IS1182 and IS1380. 

IS16 is widespread in clinical E. faecium, and has also been identified in 

clinical E. faecalis strains and as a fragment of pRUM-like plasmids 

(Hegstad, Mikalsen et al. 2010). IS elements are also the most noticeable 

group of genes enriched in all CC17 strains and the majority of hospital-

associated strains (van Schaik, Top et al. 2010, Qin, Galloway-Pena et al. 

2012). 

 

Transposable elements may provide genome plasticity by facilitating 

recombination between homologous transposable elements generating 

rearrangements in chromosomal and plasmid DNA (Heaton, Discotto et al. 

1996). Frost et al. (2005) suggested that chromosomal deletions and 

rearrangements can also result from activates co-localised with mobile 

genetics elements, such as transposases and site-specific recombinases as 

well as homologous recombination systems of the host. IS elements, for 

example, ISEfm1, IS1251, IS66, and ISEfa10 were proposed as a reason for 

the inversion in the genome of the complete genome of E. faecium 

(Aus0004) and also with three animal isolates described in chapter 3 (Figure 

3.4).  

 

CC17 genotype isolates appear to have unique transposase-related genes, 

which might contribute to the virulence of these strains (Figure 5.1). Leavis, 

et al. (2007) described that IS are proposed to contribute to the success of 

this genetic sub-population in its competition with other enterococci in 

hospital settings, generating a novel globally spread nosocomial subspecies. 
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Future work could explore whether IS element contribute animal host 

colonisation. 

 

The ISL3 and ISEf1 families were the most commonly observed IS types in 

the human strain (Aus0004), and ISEf1 is also common in E. faecalis (Lam, 

Seemann et al. 2012).  ISEf1 is absent in the three animal E. faecium 

genomes isolated from chicken (E429), calf (E172) and pig (E142). 

Contrastingly, IS3, IS6 and IS256 families were the most common of these 

elements observed in the animal strains, although the IS3 and IS256 

elements were also prominent among the hospital clade (Leavis, Willems et 

al. 2007).  Enrichment of specific IS elements in the genome of bacterial 

sub-species has been recognised previously. Yao et al. 2005 demonstrated 

that in the clinical strains of S. epidermidis, IS256 is existent in multiple 

copies, where it might improve genome flexibility of biofilm-forming and 

multiresistant strains. 

 

The variable presence of insertion elements distinguishes hospital-

associated from human commensal and animal E. faecium strains and could 

be used diagnostically. IS16 was exclusively spread only among the clonal 

complex of hospital-associated CC17 strains (Werner, Fleige et al. 2011).  

In addition, IS66 is mostly found in CC17 genotype strains from human and 

animal sources. Qin et al (2012) suggested that IS elements IS16, ISEnfa3, 

IS3, IS911, IS116/IS110/IS902 and IS66 have the potential to be used as a 

molecular screen to identify clinical E. faecium, although IS3 and IS110 

were found in the animal strains of E. faecium isolated from chicken (E429), 
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calf (E172) and pig (E142) (Table 5.1). The presence of these IS elements in 

the animal strains might reflect an association of the animal E. faecium with 

the clinical isolates.  

 

Most of the IS elements and transposons present in the three animal E. 

faecium are co-located with genomic islands (Tables 5.4). In addition, most 

of the IS elements in the animal strain are unique and found in novel regions 

(Figure 4.7).  The association of these elements with GI and novel region in 

the genome map might reflect horizontal transfer of these genes from 

different species, since several of these IS elements revealed substantial 

homology with both Gram-negative genera, including Escherichia, 

Burkholderia, Pseudomonas and Xanthomonas species, and Gram-positive 

genera, including Staphylococcus, Streptococcus, Bacillus and Lactobacillus 

species.  

 

5.3.1.2 Plasmid  

Enterococcus species harbour plasmids which often mediate resistance to 

antimicrobials and heavy metals, provide enhance virulence and/or encode 

DNA repair mechanisms (Arias, Panesso et al. 2009, Garcia-Migura, 

Hasman et al. 2009). The mega-plasmids identified in chicken (E429) and 

pig (E142) harbour genes encode potential adhesi with the presence of 

sortase A and an LPXTG cell wall anchor protein. It is known that LPXTG 

surface proteins may play a significant role in the pathogenesis of E. 

faecium in hospital-related infections (Hendrickx, van Wamel et al. 2007, 

Lam, Seemann et al. 2012).  
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The mega-plasmid was found in the genome of chicken, calf and pig, which 

is unique to these strains (Figure 4.7), and it encodes heavy metal resistance 

genes for resistance to lead, cadmium zinc and mercury.  

 

The mega-plasmid (56kb) is apparently integrated into the chromosome of 

the chicken E. faecium strain (E429). Due to the homology between 

plasmids and the genome an occurrence of a single homologous 

recombination event can integrate a complete plasmid into the chromosome 

(Heap, Ehsaan et al. 2012). Homologous recombination following 

transformation will potentially occur if plasmids are incapable of replication 

in a specific host. These insertion incidents have been widely detected in E. 

faecalis, E. coli, B. subtilis, S. pneumoniae, L. plantarum and L. lactis 

subsp. lactis (Casey, Daly et al. 1991). 

 

5.3.2 Distribution of genes encoding MSCRAMM-like proteins, putative 

virulence genes and antibiotic resistance determinants 

A previous study by Qin et al (2012) reported that 15 genes encoding 

LPXTG family cell wall-anchored proteins with MSCRAMM-like features 

were present in the complete genome of E. faecium (TX16). The LPXTG 

family cell wall-anchored proteins present in the three animal strains are 

novel or share homology with other Gram-positive species such as 

Staphylococcus and Lactobacillus species.  

 Qin et al (2012) identified that in 21 E. faecium draft genomes, all of the 

MSCRAMM-encoding genes were broadly dispersed, excluding (esbA), 

which was only present in HA-clade isolates. Multiple copies of esbA-like 
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genes were also found with low sequence identity (25-37%) in the three 

animal E. faecium genomes in this study, possibly indicating they are novel 

MSCRAMMs. Enterococcal surface protein (Esp) and collagen-binding 

adhesin (Acm) contribute to colonisation and infection, however recent 

studies have determined that Esp is not fundamental for infection in murine 

infection models (Heikens, Leendertse et al. 2009).  An esp-like gene was 

found in the three animal E. faecium genomes but the low percentage 

identity (24%), possibly indicating it is distinct. Collagen adhesin genes 

with percentage identity ranging from 61% to 100% were found in the three 

animal strains. This gene is present as a pseudogene in all of the E. faecium 

commensal isolates except 1,141,733 in Qin et al (2012) study and acm 

pseudogenes were also found in clinical E. faecium that do not belong to 

CC17 genotype.  

 

The presence and absence of 19 antibiotic resistance genes across 72 E. 

faecium isolates including clinical, animal and commensal was also 

searched. These data correspond to previously published frequency data for 

a smaller set of isolates (Qin, Galloway-Pena et al. 2012, Lebreton, van 

Schaik et al. 2013). Comparative analysis of antibiotic resistance revealed 

that commensal, animal and clinical isolates have clear differences in terms 

of their resistance profile. All of the clinical and animal isolates have 

multiple resistance determinants, excluding strains 1,231,501 and E1039. 

The clinical strain (1,231,501) lacks all antibiotic resistances including 

pbp5-R, may have lost genes through recombination and acquired pbp5-S. 

Certainly, 1,231,501 was shown to be a hybrid of clinical and commensal 
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genomes by Palmer, et al (2012) and the  (hybrid) region including pbp5-S, 

which could clarify the origin of pbp5-S in this strain. 

 

 In contrast, Qin et al (2012) stated that all of the commensal-associated 

isolates (1,141,733, Com12, Com15, E980 and TX1330) lacked genes for 

antibiotic resistance to chloramphenicol, erythromycin, streptomycin, 

spectinomycin, gentamycin, vancomycin, ciprofloxacin and ampicillin. 

Strain E1039, which is a commensal isolate, but genetically closer to the 

clinical strains, has an ampicillin resistance gene. In 2013, same analysis 

applied by Lebreton et al to two other commensal isolates (E1050 and 

E1007) showed their resistance to streptomycin and spectinomycin, while 

E1050 also encoded resistance to fosfomycin.  

 

Disease treatment and growth promotion could explain the multiple 

antimicrobial resistance of most E. faecium isolates, including animals 

strains. The delivery of low levels of antimicrobials has apparently resulted 

in considerable colonisation of animals with antibiotic resistant bacteria, 

such as E. coli strains and acquisition of resistance in E. coli in the intestinal 

flora of the farmers has been described (Marshall and Levy 2011, Lebreton, 

van Schaik et al. 2013).  Aarestrup (2000) reported that resistance to 

streptothricin antibiotics has been described in Gram-negative bacteria as a 

result of using nourseothricin as an antimicrobial feed promoter in industrial 

animal farms in Germany. In addition, resistance to streptogramins may be 

related to the use of virginamycin, as a feed promoter combined in 

agriculture for animal food production. Virginamycin use was prevented in 
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Denmark in 1998 followed by the rest of the EU in 1999. Virginamycin 

resistance was identified in this study in all three animal E. faecium and 

these strains were isolated from the same geographic region (The 

Netherlands) and resistance might also have arisen from the historic use of 

this antibiotic as a feed promoter in Dutch agriculture.  

 

5.3.3 Genomic Islands 

The GIs that were found in animal E. faecium confirmed the hypothesis of 

Juhas, et al (2009) that the GIs comprise a family of mobile elements 

including conjugative transposons and prophages. GIs with functions that 

improve the fitness of the bacteria such as carbohydrate utilisation genes 

were found in E. faecium and could have been directly or indirectly 

positively selected (Hacker and Carniel 2001). 

 

Genomic island analysis by codon usage bias and composition variation 

showed that E172 has 21 GIs, although animal E. faecium also possesses a 

large number of mobile elements in the region of the GIs, suggesting that 

most of the genomic variable loci in the three animal E. faecium isolated 

from chicken, calf and pig were acquired via lateral gene transfer, possibly 

through mobile elements such as transposons (Table5.4). In addition, the 

presence mobile elements in the GIs also give clues as to how these 

segments entered.  As previously stated, the Pathogenicity Island of E. 

faecalis is littered with sequences that are related to mobile genetic elements 

(McBride, Coburn et al. 2009). 
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Pyrosequencing constructed genome analyses of numbers of medical 

importance microorganisms have been shown presence of genomic islands 

for the improvement of pathogenicity and the diversity inside single 

bacterial species (van Schaik, Top et al. 2010). Numbers of virulence and 

antibiotic resistance genes were identify in the genomic islands of E. 

faecium. For example, esp gene, is carried on a large pathogenicity island 

between 13.8, 64, 68 and 104 kb in size. The pathogenicity island was found 

in four strains of E. faecium Aus0004, E1162, E1679 and U0317. However, 

this GI is absent in the three animal E. faecium isolated from chicken 

(E429), calf (E172) and pig (E142). 

 

 

GIs that present in the three animal E. faecium the complete genome DO 

and Aus0004 are encode a complete pathway for several carbohydrate 

utilisation, for example, cellobiose, galactose, fructose, sorbose, sucrose 

suggested that animal E. faecium are capable of using these carbohydrates 

as a carbon source. Carbohydrate utilisation pathways in GIs are traits 

supposed to contribute to pathogenicity or altering E. faecalis relationship 

with the host (McBride, Coburn et al. 2009). The presence of these 

carbohydrate utilisation genes in the pan genome of E. faecium and in GIs 

suggested these genes are acquired through lateral gene transfer.   

 

Two GIs were identified to encode the vancomycin resistance type A and B 

and several plasmid replication proteins in animal strains suggesting that 

these GIs are forming the mega plasmid in the animal E. faecium. In 
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addition, these explain the localisation of these GIs in the end of the animal 

genomes assembly.  This study defined groups of genes that have been 

combined into the GIs in animal E. faecium and provides indication for the 

acquisition of these parts of the genome as mobile functional elements. 

However, this study did not investigate the transfer of the GI genes between 

E. faecium isolates, the description of these regions may allow more 

targeted analysis of transfer focusing on movement of specific regions of the 

GI. Investigation of these regions as functional part might offer clues to 

their influences to fitness.  
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Chapter Six: Comparative genomics of E. 

faecium bacteriophages. 
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6.1 Introduction  
 
Bacteriophages that infected Enterococcus species were first identified 

around 70 years ago (Clark and Clark 1927, Evans 1934). Images of 

enterococcal phages were captured by Rogers and Sarles using electron 

microscopy and they stated that the enterococcal phages seemed to have 

icosahedral heads and long non-contractile tails (Rogers and Sarles 1963). 

Recently, phages that infect and lysogenise E. faecalis and E. faecium have 

been more extensively characterised (Duerkop, Palmer et al. 2014). 

 

So far, the induced prophages of Enterococcus were all Siphoviridae and 

temperate phages isolated from E. faecium are morphologically identical to 

prophages from E. faecalis. These phages have an isometric head about 40 

nm in size and a long non-contractile tail, ranging from 70 nm to 220 nm 

(van Schaik, Top et al. 2010). However, diverse phages are capable of 

infecting Enterococcus and comprise phages related to the Siphoviridae as 

well as non-tailed phages with icosahedral shaped capsids (Brede, Snipen et 

al. 2011). The first non-tailed enterococcal phages were isolated by 

Mazaheri Nezhad Fard et al (2010) and included polyhedral, filamentous, 

and pleomorphic (PFP) phages that are likely to be virulent (lytic).  

 

Within the Firmicute phylum of Gram-positive bacteria, temperate phages 

are important vectors for the horizontal transfer of virulence genes (Yasmin, 

Kenny et al. 2010). Phages play an important role in adding to the genome 

plasticity of E. faecium species (Lam, Seemann et al. 2012). The ability of 

enterococcal phages to mediate transduction can transfer antibiotic genes 
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between different Enterococcus species, including E. faecalis, E. faecium, 

E. gallinarum, E. hirae, and E. casseliflavus (Fard, Barton et al. 2010). 

 

The complete genomes of E. faecium TX16 (DO) and Aus0004 encoded 

two and three phage-like sequences, respectively. The phages found in DO 

strains have similarity with ORFs in hospital-associated strains but low 

similarity with ORFs of community-associated strains. The phages found in 

Aus0004 are present in all CC17 genotype genomes but they are variably 

present in other E. faecium isolates. These phages of DO and Aus0004 share 

high similarity with phage genes found in species of other genera, including 

Clostridium, Listeria, Lactobacillus and Staphylococcus (Lam, Seemann et 

al. 2012, Qin, Galloway-Pena et al. 2012).  

 

The presence of E. faecium phages in most clinical isolates potentially 

indicates an association of the phages with either virulence or the transfer of 

antibiotic resistance. Multiple, sequenced E. faecium genomes are available 

in public databases, however a rigorous bioinformatic analysis of the many 

prophage sequences using the multitude of available genomes remains to be 

performed. Moreover, the presence/absence of prophages across different E. 

faecium genomes has not been determined.  

 

Specific aims 
 
In this chapter prophage-related sequences will first be identified in the 

genomes of animal E. faecium isolated from chicken, calf and pig and 

characterised. Comparative genomics of E. faecium prophage from the 



 207 

publicly available genomes will be then performed to understand the 

relationships between different phages. In addition, the potential carriage of 

cargo genes that might be associated with virulence or fitness of this species 

will be determined.  

 

6.2 Results 

 

6.2.1 Bacteriophage induction and distribution 

Plaque assays were performed to investigate the presence of inducible phages 

in the sequenced genomes of the three animal E. faecium isolates. All three 

strains are expected to be lysogens since the individual E. faecium genome 

contain three functional prophage genome sequences for E429 (chicken) and 

one for both E142 (calf) and E172 (pig). Induction of prophage into the lytic 

cycle in the three strains resulted in released phages for strains E429 (chicken) 

and E172 (calf) as determined by mitomycin C (4 µg ml-1) treatment of the 

strains to produced cell lysates that were used to infect animal and human 

isolates as indicator strains (Table 6.1) in spot plaque tests. Lysis was 

confirmed as being phage-derived by plating for individual plaques on each 

indicator strain (data not shown). The absence of lysis with several indicator 

strains following infection with E429 and E142 lysate might result from the 

absence of a cognate receptor or homoimmunity.  
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Table 6.1: Phage lysis of E. faecium indicator strains. Phage lysis of a panel of 

isolates using filter-sterilised lysates produced after addition of mitomycin C to 

strains E429, E172 and E142. (-) indicates absence of plaques (+) indicates 

presence of plaques and not tested (X).   

 

Indicator strains 

 
           Lysates strains 
 
E429         E172           E142 

Indicator strain source 

E429 (LIV1072) X + - Chicken 
E172 (LIV1071) - X - Calf 
E142 (LIV1070) + + X Pig 
LIV66 + + - TX16, Endocarditis isolate 
LIV153 - + - VanA resistant strain 
LIV294 + + - Chicken faeces 
LIV296 + + - Jaguar faeces- Chester zoo 
LIV297 + + - Mouth swab 
LIV298 + + - Mouth swab 
LIV299 + + - Irish rodent faeces 
LIV302 + + - Dog faeces 
LIV303 - + - Mouth swab 

 

6.2.2 Phage and bacteriocin differentiation 

Both phage and bacteriocin production by the calf strain (E172) were 

evident after addition of mitomycin C (4 µg ml -1). However, spot tests also 

showed clear zones when supernatant of E172 was tested prior to addition 

of mitomycin C.  To investigate whether this cell lysis was free phage-

derived or due to bacteriocin, supernatant samples were tested from across a 

growth curve. Phage was differentiated from bacteriocin using the following 

procedures: (i) spot test, (ii) size exclusion centrifugation and (iii) individual 

plaque assay. The spot test showed a clear zone of cell lysis using filter-

sterilised supernatant of E172 strain. The clarity of the cell lysis was 

maximal after 4 hours, (Figure 6.1) equivalent to mid-exponential growth 

phase. Size exclusion filtration of pre-induction supernatant using a 
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Centricon plus-20 column followed by plaque assay of filtrate resulted in 

cell lysis. In contrast, plaque assay of filtrate showed no individual plaques, 

confirming bacteriocin production as the reason for cell lysis in the absence 

of mitomycin C. 

 

                   

 

Figure 6.1: Production of bacteriocin by E. faecium E172 (calf).  

Supernatant from E172 (calf) was tested for lysis of the indicator strain 

E142 (pig). Bacteriocin production peaks after 4 hours growth at 37C.    

 

Genome analysis of animal E. faecium strains identified that the strain E429 

(chicken) genome has four genes encoding enterocin A immunity 

(ORTHOMCL2886, ORTHOMCL1870, ORTHOMCL4691 and 

ORTHOMCL4113), two genes encoding lactococcin G processing and 
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transport ATP binding protein LagD (ORTHOMCL4805 and 

ORTHOMCL5192) and a class II sec-dependent bacteriocin gene 

(ORTHOMCL2657). The E142 (pig) genome encodes genes, encoding 

enterocin A immunity (ORTHOMCL2223), a lactococcin G processing and 

transport ATP binding protein LagD (ORTHOMCL2613) and a lactococcin 

A secretion protein LcnD (ORTHOMCL2614) and one gene encoding a 

Class II sec-dependent bacteriocin (ORTHOMCL2657), plus the bacteriocin 

piscicolin (ORTHOMCL2212). All these genes were absent from the calf 

genome, suggesting that a novel bacteriocin might be encoded by this strain 

given the demonstrated activity and the failure to identify bacteriocin 

homologues or that the matching region was not present in the sequence 

output.  

 

6.2.3 Transduction using identified phages 
 
Mitomycin C induction lysates produced from the chicken and calf strains 

were tested for their ability to package and transduce chromosomal and 

extra-chromosomal DNA. The E. faecium donor strain E142 (pig) contains 

both chromosome and plasmid-located antibiotic genes and it was infected 

with the cell-free phage lysates to screen for transductions. Two antibiotic 

resistance genes were tested for transduction into recipient indicator E. 

faecium cells of LIV299 and LIV303: tetracycline resistance encoded by 

pM7M2 (NC_016009); chromosomal ampicillin resistance gene E142-

SEPT09050 located at position 877649:880039.  
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Transduction successfully produced antibiotic resistant colonies for the two 

markers attempted. To identify whether successful transduction of the 

identified antibiotic genes had occurred, PCR amplification of each 

corresponding resistance gene was performed (Figure 6.2). PCR 

amplification identified that the 4 kb tetracycline resistance amplicon was 

present in both donor and recipient.  In contrast, the ampicillin resistance 

that was selected could only be confirmed to be due to the donor as the 1.5 

kb locus following transduction using the strain E429 phage lysate.    

 

 

                                   A.                                                        B. 

 

Figure 6.2: PCR amplification of antibiotic resistance genes after 

transduction using animal E. faecium phage. (A) Ampicillin (1.5 kb) 

resistance locus amplified from strain LIV299 transductants isolated from 

the chicken (E429) and calf (E172) strains. (B) Tetracycline (4kb) resistance 

locus amplified from strain LIV303 transductants isolated from the chicken 

(E429) and calf (E172) strain lysis of strain E142 bearing ampicillin and 

tetracycline resistance. (-) indicates strains prior to transduction with the 
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absence of antibiotic resistance, (+) indicates PCR amplicon after 

transduction of the antibiotic resistance.  

 

6.2.4 Animal E. faecium bacteriophages 
 
 
 

6.2.4.1 General genome features of animal E. faecium phages  
 
The sequenced genomes of the three vancomycin-resistant E. faecium 

strains isolated from chicken (E429), calf (E172) and pig (E142) harbour 

multiple phage-related sequences. Six phage regions were found in the 

chicken strain (E429) and one each in calf (E172) and pig (E142) (Table 

6.2).  

 

Table 6.2: Phage-related sequences of sequenced animal E. faecium.  

 

Strain Phage position Size (Kb) No. Of ORFs GC% 
 E429_ph1 412480-460595 48.1 70 36.7 
 E429_ph2 1347483-1395061 47.5 60 36.9 
 E429_ph3 1589043-1629766 40.7 55 37.6 
 E429_ph4 1992956-2009130 16.1 46 38 
E429_cp1 3023847-3041052 17.2 21 44.7 
E429_cp2 3009148-3080914 71.7 105 44 

 E172_ph1 486654-506555 19.9 27 37.5 
 E142_ph1 433557-468604 35 41 37.3 
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Figure 6.3: Genome alignment of animal E. faecium. The E429 (chicken) 

DNA sequence was used as a reference DNA sequence to which E172 (calf) 

and E142 (pig) were aligned and compared. White space within the locally 

collinear blocks in the chicken strain corresponds with phage regions and 

the coloured areas represent the similarity in the DNA sequences. Phage 1 in 

calf and pig share tail proteins with phage 3 in chicken genome.   

 

The identified animal E. faecium phage sequences are very diverse and 

range in size from 17 to 48 kb double-stranded DNA (dsDNA), with an 

average GC% content of 36 - 44 mol% and between 21 and 105 coding 

sequences (Table 6.2).  

 

6.2.4.2 Organisation of animal prophage genomes  

The number of predicted ORFs identified per phage genome correlates with 

the phage size. Phages from the chicken E. faecium have the largest genome 

size and they encode 105, 70, 60, 55 and 46 putative genes, whereas 41 

ORFs were predicted for the phage genomes of E142_ph1.  
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The chicken and calf E. faecium strains also have small regions of phage-

related sequence of 17.2 and 19.9 kb, which might represent cryptic phage. 

Protein sequences deduced from putative ORFs were screened for homology 

with proteins from sequence databases using BLASTP in the PHAge Search 

Tool (PHAST) (Section 2.18.1). Significant database matches and 

preliminary functional assignments are listed in supplemental file, S4. 

 

 In general, the majority of prophage genes encode proteins that have 

homology with phage proteins from the sequence databases. A summary of 

the most significant protein functions identified in the genomes are outlined 

below. The genomic structure of animal E. faecium phages is displayed in 

Figure 6.4 as direct output from the PHAST server.  
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Figure 6.4: Functional annotation comparison of E. faecium phage elements 

from the three animal strains according to PHAST database. Phages E429_ 

ph1, ph2, ph3, ph4, ph5 and ph6 are present in strain E429 (chicken); phage 

E172_ ph1 is present in strain E172 (calf) and phage and E142_ ph1 is 

present in strain E142 (pig). Modular organisation is highlighted with 

different colours and numbers to reveal grouped functions associated with 

the phage lifecycle, Brown (1) for phage-like protein; dark green (2) for 

attachment site; sky blue (3) for integrase; light green (4) for hypothetical 

protein; purple (5) for lysis proteins; magenta (6) for portal protein; mustard 

(7) for head proteins; medium purple (8) for tail proteins; turquoise (9) for 

non-phage-like proteins; deep violet (10) for terminase; orange (11) for 

protease ; marine blue (12) for transposase; and light pink (13) for plate 

proteins. 

 

In silico analysis of potential functionality indicates that chicken phages, 

have sufficient composition for integration/excision, DNA replication and 

capsid/tail morphogenesis to generate functional virions, either alone or 

synergistically with other phage. However, E142_ph1 was found in pig 

genome, does not have sufficient composition for integration/excision 

(Figure 6.4 and Supplemental File, S4.). Animal E. faecium phage-related 

genes have high similarity to phage found in species of other genera not 

only Enterococcus phage for example Lactococcus, Lactobacillus, 

Streptococcus, Listeria and Bacillus phage. The hypothetical proteins in the 

phage regions have high similarity with E. faecium strains Aus0004 and 

NRRL.   
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6.2.5 Comparative genomic analysis E. faecium bacteriophage  

 

6.2.5.1 General features of E. faecium phage genome 

Thirty-nine strains of E. faecium out of 139 available from the NCBI 

genome database revealed the presence of 56 prophage-like elements.  

These identified putative prophages were functionally investigated using in 

silico analyses. The phage genomes dataset comprises prophage-like 

elements from 12 animal strains, 15 clinical strains including two strains 

from the CC17 genotype, 4 commensal strains, 2 food strains, a strain 

isolated from river water and 3 strains of unknown source. 

 

The prophage genomes range in size from 13.9 to 55.1 kb, with an average 

G + C content of 35% to 37.9% and show considerable variation encoding 

between 17 to 72 ORFs (Table 6.3). These ORFs revealed substantial 

sequence similarity with sequences in the PHAST databases. The majority 

of the ORFs carried by the E. faecium prophages are organised to be 

transcribed in one direction, whereas the lysogeny module was typically 

transcribed in the opposite direction.  

 

6.2.5.2 Genome clustering: gene content analysis 

Based on gene content of whole-genome alignments, the 56 prophage 

sequences were classified into 8 different clusters. The main purpose of 

clustering the E. faecium phage genomes was to determine relationships 

among genes and modules that might have been exchanged between phage 

genomes by lateral gene transfer and which is likely to produce their mosaic 

architecture.  
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The phage cluster identifiers are presented in Table 6.3. Cluster A contains 

Aus0085_ph3, E1007-ph1, E1392-ph1, E2039_ph1, E2134_ph1, 

E4215_ph1, E142_ph1, E172_ph1 and E429_ph3. Cluster B contains 

1,231,501_ph1, E1622_ph2, E1623_ph1, E1630_ph1, and E1972_ph1. 

Cluster C contains Com15_ph1, E1050-ph1, E1573_ph1, E1590_ph1, 

E2620_ph1, E429_ph2, NRRL_ph1 and NRRL_ph2. Cluster D contains 

E1185-ph1, E0120_ph1, Com12-ph1, E2071_ph1, E1574_ph1, 

1,141,733_ph1 and E3346_ph1. Cluster E contains E1644_ph2, E4452_ph1, 

E429_ph1, E0045_ph1 and E1622_ph1. Most of the cluster A, B, D and E 

prophages are present in animal E. faecium isolated from chickens (E429 

and E0045), dog (E4452) and mouse (E1622) plus one clinical strain 

belonging to CC17 (E1644). Cluster F contains Aus0004_ph1, 

Aus0004_ph2, Aus0004_ph3, Aus0085_ph1, DO_ph1, E1578_ph1, 

E1613_ph1, E1623_ph2, E1644_ph1, E1861_ph1, E1972_ph2, E2039_ph2 

and E2883_ph1. Most of the cluster F prophages are present in clinical 

isolates including one strain belong to CC17 (E1644_ph1), Cluster G 

contains E429_ph4, DO_ph2, 1,231,501_ph2, and Aus0004_ph4, 

E1644_ph3 and E2883_ph2 and cluster H contains Aus0085_ph2 and 

E6012_ph1. Most of the prophages in clusters A and C are from commensal 

and animal isolates. Cluster B and D are mixed clusters that contain 

prophages isolated from clinical, commensal, animal and river water (Table 

6.3 and Figure 6.5). 
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Table 6.3: Genometrics of prophage-related sequences of E. faecium. The 

56 phage genomes were retrieved from 39 isolates of E. faecium. 

 

Prophage Phage location Size (Kb) No. of ORFs GC% Group Source 
Aus0085_ph3 2455417:2491948 36.5 54 37.9 A Unknown 
E1007-ph1 1299495:1344452 44.9 68 37.4 A Commensal 
E1392-ph1 694822:740020 45.1 70 37.1 A Unknown 
E2039_ph1 91409:136931 45.5 70 36.7 A Clinical 
E2134_ph1 425367:466596 41.2 65 37.5 A Chicken 
E4215_ph1 184650:226771 42.1 59 37.7 A Chicken 
E142_ph1 433557:468604 35 41 37.3 A Pig 
E172_ph1 486654:506555 19.9 27 37.5 A Calf 
E429_ph3 1589043:1629766 40.7 55 37.6 A Chicken 
1,231,501_ph1 536501:583886 47.3 71 36.3 B Clinical 
E1622_ph2 792009:835344 43.3 62 35.9 B Mouse 
E1623_ph1 337845:381585 43.7 61 36.2 B Clinical 
E1630_ph1 220718:265025 44.3 72 36.5 B River water 
E1972_ph1 460219:503311 43 69 36.7 B Clinical 
Com15_ph1 738612:773660 34.3 48 36 C Commensal 
E1050-ph1 1147537:1184635 37.1 51 36 C Commensal 
E1573_ph1 138216:175262 37 54 36.2 C Bison 
E1590_ph1 182184:225277 42.9 61 36.2 C Unknown 
E2620_ph1 1053933:1092651 38.7 53 35.8 C Clinical 
NRRL_ph1 1164025:1207440 43.4 61 35.9 C Food 
NRRL_ph2 1889100:1925416 36.3 54 36 C Food 
E429_ph2 1347483:1395061 47.5 60 36.9 C Chicken 
E1185-ph1 831195:867404 36 55 36.7 D Clinical 
E0120_ph1 573663:610140 36.4 54 36.4 D Clinical 
Com12-ph1 516386:553835 35.9 47 35.1 D Commensal 
E2071_ph1 715129:755872 40.7 57 36.3 D Poultry 
E1574_ph1 526208:565655 39.4 56 36.4 D Dog 
1,141,733_ph1 832928:871079 36.9 53 35.9 D Clinical 
E3346_ph1 469734:510315 40.4 57 36.9 D Clinical 
E1644_ph2 2184725:2220527 35.8 58 37.4 E Clinical CC17 
E4452_ph1 2586336:2630564 44.2 66 36.8 E Dog 
E429_ph1 412480:460595 48.1 70 36.7 E Chicken 
E0045_ph1 522912:567869 44.9 63 36.4 E Chicken 
E1622_ph1 549160:590470 41.3 52 36.2 E Mouse 
Aus0004_ph1 824093:864998 40.9 67 35.4 F Clinical 
Aus0004_ph2 1456511:1496444 39.9 65 35.6 F Clinical 
Aus0004_ph3 2397865:2437393 395 64 36.1 F Clinical 
Aus0085_ph1 785758:840919 55.1 85 36.2 F Clinical 
DO_ph1 821000:858000 37 59 35.9 F Clinical 
E1578_ph1 1158179:1199732 41.5 63 35.4 F Pig 
E1613_ph1 301205:339194 37.9 60 35.4 F Food 
E1623_ph2 621815:661019 39.2 59 35.4 F Clinical 
E1644_ph1 774244:815311 41 67 35.4 F Clinical CC17 
E1861_ph1 756909:796923 40 64 35 F Clinical 
E1972_ph2 524415:562485 38 55 35.1 F Clinical 
E2039_ph2 164944:203986 37.7 55 35.8 F Clinical 
E2883_ph1 524837:567202 42.3 66 35.5 F Clinical 
E2134_ph2 1274188:1322221 48 52 35.3 F Chicken 
Do_ph2 2072323-2089135 16.8 25 36.7 G Clinical 
E429_ph4 1992956:2009130 16.1 46 38 G Chicken 
Aus0004_ph4 2159576-2174179 14.6 19 36.5 G Clinical 
1,231,501_ph2 241734-255551 13.8 17 36.3 G Clinical 
E2883_ph2 1735348-1750156 14.8 19 36.4 G Clinical 
E1644_ph3 1961837-1976645 14.8 19 36.4 G Clinical CC17 
Aus0085_ph2 2215833:2252096 36.2 58 35.2 H Unknown 
E6012_ph1 357820:399130 41.3 68 35.5 H Clinical CC17 
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Figure 6.5: Cladogram tree of E. faecium prophages. The tree represents the 

cluster relationships for 56 E. faecium prophages present in the genomes of 

clinical, commensal, animal and food isolates.  

 

A cladogram tree (Figure 6.5) reveals there are clear relationships between 

the identified prophage genome clusters. Several pairs of clusters are 

observed to be derived from the same ancestor, for example, clusters A and 

B, C and D, plus E and F are sister clades. Clusters G, H include prophage 

genomes from different ancestors. While distantly related, most of the phage 
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genomes in clusters A and E are prophages present in animal E. faecium 

isolates. Cluster F mainly contains prophages present in clinical E. faecium 

isolates, however, two strains isolated from a pig (E1578_ph1) and from a 

food (E1613_ph1) were also grouped in this cluster (Figure 6.5). 

 

Several examples of phage genomes that were resident in the same host 

were also found to be grouped together and to share high similarity with 

each other. For example, Aus0004_ph1, Aus0004_ph2, and Aus0004_ph3 

are clustered together in group F and NRRL_ph1 and NRRL_ph2 are 

clustered together in group C. In contrast, high similarity in prophage 

genomes was not evident between prophages found in the chicken strain 

(E429), which contains six prophage sequences and they were each located 

in separate clusters formed from different ancestors. Prophages found in 

clinical strains that belong to the CC17 genotype were grouped into four 

different clusters, E, F, G and H that are formed from the same ancestor 

(Figure 6.5).  

 

6.2.5.3 Genome clustering: pairwise prophage genome analyses 

A progressive Mauve multiple alignment was used to identify locally 

collinear blocks (LCBs) (Section 2.18.1) of conserved sequence segments. 

Among the E. faecium prophage genomes, those in cluster C and D share a 

considerable number of LCBs (Figure 6.6). While the other prophages in 

clades A, B, E, F, G and H share fewer related blocks of sequences, they 

also differ in their overall sequence from each other. All prophages revealed 

a highly mosaic-like structure and the Mauve analysis proved useful for 
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displaying segments of similarity between more distantly related genomes, 

as well as revealing potentially newly-acquired genes among more closely-

related genomes. For example, the phage genomes in cluster F clearly 

illustrate high identity with each other and the locations of the LCBs are 

well-conserved. Potential newly acquired genes were identified as mobile 

elements portions and hypothetical proteins (Figure 6.6). 
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Figure 6.6: Mauve alignment of E. faecium phage genomes. Protein 

alignments of each of 56 E. faecium phage genome clusters displayed as 

segments of similarity between genomes. The strength of the relationship is 

represented by colour blocks. 

 

6.2.5.4 Lysogeny module of E. faecium prophages 

The overall organisation of the prophage lysogeny modules across the E. 

faecium phages is similar to temperate phages found in E. faecalis and other 

low G + C Gram-positive bacteria (Yasmin, Kenny et al. 2010, Tang, 

Bossers et al. 2013). The first transcriptional unit of the phage (i.e. as it 

appears on the host chromosome) is typically the integrase region. Genes 

encoding integrases, transcriptional regulators belonging to the Cro/cI and 
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SinR repressor family, were identified in the analysed lysogeny clusters. 

Phages have two repressor proteins. One is essential for maintenance of 

lysogenic and the other for the control of the lytic cycle of growth. The first 

repressor called cI silences transcription of the other phage genes and 

maintains lysogen immunity to superinfection by other phages. Cro is the 

second repressor and it functions midway in the lytic cycle to turn down 

expression of the early genes encoding Cro itself and the cI repressor gene 

(Johnson, Meyer et al. 1978). The SinR repressor belongs to the group of 

Sin (sporulation inhibition) proteins of Bacillus subtilis. The SinR protein 

structure contains two domains: a dimerisation domain stabilised by a 

hydrophobic core and a DNA-binding domain similar to domains of the 

bacteriophage 434 cI and Cro proteins that control prophage induction.  

Transcriptional regulators belonging to the SinR family are encoded in all 

the prophage genomes of cluster C and D. Transcriptional regulators 

belonging to the Cro/cI family of repressor are present in several phage 

genomes in clusters F, (3/14; E1613_p1, E1861_ph1 and E2039_ph2). Most 

of the prophages in cluster E (4/5) have transcriptional regulators belonging 

to the repressor (Cro/cI), while E1622_ph1 has a SinR-like transcriptional 

regulator. All the prophage in cluster G have a distinct repressor from a 

different family that shares very high similarity (E-value 1.00E-11) with the 

cI-like repressor present in Lactococcus phage bIL311. 

Antirepressors are small proteins which provide an alternative induction 

strategy for prophages by binding to lysogen maintenance repressors and 

they were identified in twenty-one E. faecium prophage genomes. 
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Antirepressors-like proteins were identified in cluster F (9/14), 5/9 in cluster 

A, 2/5 of prophages belonging to cluster E (E1644_ph2 and E4452_ph1) 

and 4/6 prophages belonging to cluster G. Antirepressors were absent from 

clusters C and D prophage genomes. 

Integrases in the studied E. faecium phage genomes all belong to the site-

specific tyrosine (XerC) family, which utilise a catalytic tyrosine to mediate 

strand cleavage (Groth and Calos 2004). A cladogram tree analysis 

generated using amino acid sequences of the integrases of the E. faecium 

prophage clusters (Figure 6.5 and Figure 6.6) identified multiple clades 

(Figure 6.7).   

While the prophage integrases present as seven different clades (labelled 

Integ1 to Integ7) they all belong to the tyrosine XerC family.  The 

differences between the clades represent minor (Supplemental File, S5).  

The pan-genome of E. faecium reveals 15 different sequence types of the 

tyrosine XerC family, however, only 7 are represented in the genomes of E. 

faecium used in the phage comparison (ORTHOMCL4499, 

ORTHOMCL2990, ORTHOMCL4377, ORTHOMCL2597, 

ORTHOMCL2459, ORTHOMCL2787 and ORTHOMCL2561,  

(Supplemental File, S1). The integrases clusters were spread non-uniformly 

between the 7 prophage clades shown in figure 6.5. For example cluster 

ORTHOMCL4499 and ORTHOMCL4377 were present in Integ2 and only 

ORTHOMCL2597 in Integ4.  
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The prophages represented by clusters (Figure 6.5) have a cluster specific 

integrase sequence types. In contrast to those from cluster F which 

comprises multiple integrase sequence type (Integ1, 2 and 6). These 

integrases of clade Integ6 differ from other E. faecium phage integrases and 

might represent recombinases enabling phage to infect widely across E. 

faeciun hosts. The remaining prophages in clusters F have similar integrase 

sequence types (XerC family) (Integ1, 2) (Supplemental File, S5).  Cluster 

C and D all have the same integrases sequence type (Integ2).  
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Figure 6.7: Cladogram tree of E. faecium prophage integrases. The 

cladogram is based on the alignment of integrases amino acid sequences and 

represents the relationship between E. faecium prophage integrases.  

 

6.2.5.5 Replication module 

The replication module of the identified prophages was typically bordered 

on one side by the lysogeny module and on the other side by the packaging 

module. ORFs with significant sequence similarity to proteins involved in 

DNA replication were identified in all 56 E. faecium prophage genomes 

(Supplemental File, S4).  

 

The majority of the replication modules contain a gene encoding a putative 

single-strand DNA binding protein (SSB). No significant sequence 

similarity was shown between the SSB across the phage clusters A to H. 

SSB was encoded in four out of five prophage genomes in cluster B, 5/8 

from cluster C and 2/7 from cluster D within cluster E SSB proteins shared 

high amino acid sequence similarity, excluding strain E0045. Most of the 

prophages in cluster F have a gene encoding an SSB excluding prophages 

E2314_ph2 and E1861_ph1, which both encode the same distinct SSB. 

 

It has previously been described that many bacteriophages code for their 

own SSB meaning they do not rely on those encoded by their host (Tang, 

Bossers et al. 2013). Multiple examples were identified here of E. faecium 

prophages that lacked a gene encoding a DNA binding protein, suggesting 

that they depend on SSB encoded by their hosts. Phage replication initiation 
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and membrane attachment functions together with phage-associated 

recombinase proteins are encoded in most of E. faecium prophages in the 

replication module. The absent of some of these genes in several prophages 

reveals a requirement for DNA replication functions for their lifecycle.  

 

6.2.5.6 Packaging module 

Most of the packaging modules in the E. faecium phage genomes identified 

here are principally comprised of three genes encoding the small and large 

subunits of the terminase and the portal protein. In 23 of the prophages the 

terminase is encoded by a single gene while in 31 the terminase gene 

appeared as two ORFs (small and large subunits).  No terminase gene was 

identified in two animal prophages E142_ph1, and E172_ph1. A cladogram 

tree based on the amino acid sequences of the terminases  (large subunits) 

revealed that the integrases of the E. faecium prophage clusters are 

discriminated into seven different clades (Figure 6.8).  

 

The terminase protein sequences of all prophages in clusters D and F share 

high similarity and were grouped in clades Term6 and Term2, respectively 

(Supplemental File, S6). All prophages in cluster C were grouped together 

as a clade sister group to three prophages present in chicken (E429), dog 

(E4452) and a clinical prophages CC17 genotype (E6012) (Term1) that 

contains two different clades derived from a common ancestor. The Term7 

clade contains highly diverse protein sequences.  Based on prophage 

intergrase sequence analyses (Figure 6.7), prophages belonging to cluster C 

and D are highly similar but their terminases show marked variation (Figure 
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6.8). The portal protein gene was identified in 37 phage genomes but was 

not evident in nineteen. 

   

 

 

Figure 6.8: Cladogram tree of the large terminase subunits of E. faecium 

prophages. The tree is based on an alignment of the amino acid sequence of 

54 terminases. 
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6.2.5.7 Morphology module 

In all of the E. faecium prophages analysed, the head morphogenesis and the 

tail structural genes are the largest modules. These major capsid and tail 

portions show high similarity to proteins of the same annotated functions of 

Listeria, Lactobacillus, Staphylococcus, Paenibacillus, Mycobacterium, 

Enterococcus and Lactococcus bacteriophages (Supplemental File, S7).  

The majority of the E. faecium prophages contained two or three putative 

tail proteins, including the major and the minor tail proteins. Tail proteins 

were not encoded in all of the prophage present in cluster G, however, head-

tail joining proteins and head-tail adaptor proteins were present in this 

cluster which will serve as functional replacements. These proteins share 

very high similarity (E-value 1.00 E-08) with head-tail joining proteins 

found in E. faecalis prophage EFRM31 (NC_015270).   

 

A cladogram tree based on the amino acid sequences of the phage tail length 

tape-measure protein, which is encoded by the largest ORF of this module, 

indicated that E. faecium prophages comprise different major tail proteins 

(Figure 6.9). These tail proteins were grouped into 7 different, that matched 

the clusters determined by supported the comparative genome analysis 

(Table 6.3 and Figure 6.5). 

 

Cluster B prophages encoded the longest phage tail tape-measure gene (6.44 

kb) while cluster A prophages possessed tail genes ranging from 2.50 to 

3.39 kb. The tail tape-measure gene in cluster E is ~ 3.11 kb, cluster F is 

~3.43 kb cluster C is ~ 4.71 kb and cluster D is ~ 3.48 kb in size, further 
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highlighting the heterogeneity of this major structural component of the 

virion.  

 

              

 

Figure 6.9: Cladogram tree of the tail protein of E. faecium prophages. The 

alignment of the amino acid sequence of 51 tail proteins reveals differences 

between E. faecium prophages producing distinct groupings.   
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6.2.5.8 Lysis module 

The lysis modules of the E. faecium prophages mainly consist of a holin. 

Four prophages: 1,141,733_ph1, E4452_ph1, E1578_ph1 and E172_ph1 

contain endolysin genes. Prophage E429_ph3 and Com12-ph1 contain 

Hydrolase genes.  

 

All prophages of cluster G do not encode lysis module genes, which suggest 

they encode different unidentified lysis systems or they are reliant on that 

produced by other resident phage or phage-like elements to complete their 

lytic cycle (Fard, Barton et al. 2010) .  

 

A cladogram was produced using the phage holin amino acid sequences 

which revealed that 27 prophages have the same holin (Holin3) and these 

genes have very high similarity with a holin described in E. faecalis 

temperate bacteriophages (Figure 6.10). Three clades of E. faecium 

prophages seem to have a different sequence type of holin (Holin 1, 2 and 4) 

(Figure 6.11). Seven prophages possess two genes encoding holins with 

both genes adjacent to each other. According to the PHAST database the  

Holin1 clade have very high sequence identity (E-value range from 2.00E-

26 to 8.00E-26) to E. faecalis phiFL4A and phiEf11 holins.  Most of the 

phage holins that form clade Holin2 have homology (E-value 6.00E-12) 

with the Lactococcus phage ul36 holin. The Holin4 sequences have high 

similarity with a holin found in E. faecalis EF62phi (E-value 8E-48). 
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Figure 6.10: Multiple alignments of E. faecium prophage holins.  The 

protein alignment indicates high sequence conservation within 4 main holin 

clusters.            
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Figure 6.11: Cladogram tree of E. faecium prophage holins. Based on the 

alignment of 52 amino acid sequence of the holin protein, E. faecium 

prophages have 4 different families of holin. The Holin 4 protein sequences 

are nearly identical. 

 

6.2.6 Cluster diversity and newly-acquired genes 

An alternative perspective on the cluster relationships was sought by 

investigating the conserved sequences in E. faecium prophages. The 

presence locally collinear blocks of sequence was identified using Mauve 

alignment of representative prophages of each sequence type. The genome 
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alignments identified common regions (blocks) across multiple phage 

sequence types and these regions show diversity.  However, there are many 

regions that are specific to each cluster (Figure 6.12).  

 

 

 

Figure 6.12: Mauve alignment of 9 E. faecium prophage type genomes. 

Pairwise alignment of one prophage genome of each of E. faecium pophage 

clusters A, B, C, D, E, F, G and H displays a low degree of similarity 

between the prophage genomes and highlighted diversity. The strength of 

the relationship is represented by coloured region.  

 

A benefit of the genome clustering described above is that it potentially 

enables the identification and classification of those genes that are most 

expected to have been exchanged horizontally. Since each cluster contains 

common genes that exist in all cluster members, genes are revealed that are 
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present in only a subset of the genomes. The lack of conservation could be a 

consequence of gene loss from genomes or the recent acquisition by 

horizontal genetic exchange. Although both possibilities could account for 

genes that exist in only one genome, these genes are more likely to be 

recently acquired. When genes exist in a single prophage genome of one 

cluster and are presented in one or more prophage belonging to other 

clusters these genes need to be studied carefully to explore the origins of 

these genes.  

 

Looking at shared genes between prophage types also identifies colocalised 

genes that are equally present, which might further supports horizontal 

transfer between phage types. For example, a hypothetical protein that is 

located in rightmost genomic segments was found in all prophage clusters 

excluding cluster G. Another hypothetical protein from the leftmost genome 

region is associated with cluster E and F only.  Most of the unique genes of 

individual prophage genomes within the clusters represent small 

hypothetical proteins, which might be host specific or arise from 

geographical or environmental influences. 

 

6.2.7 Identification of putative phage attachment sites 

To identify both the phage and the bacterial attachment sites, genomic 

sequences flanking the putative prophages were analysed for the existence 

of short directly repeated sequences using Unipro UGENE (Section 2.18.1). 

Phage attachment sites (attP) are commonly located in the proximity of the 

phage integrase gene (5′ end) and of the lysin (3′ end).  The corresponding 
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genomic regions of the E. faecium prophage were searched and putative 

phage attachment sites for the majority of the prophages were identified 

(Table 6.4).  

 

Twenty-eight of the 56 prophage genome insertion sites revealed defined 

genome ends ranging from 15 to 93 bp in size. The attachment sites for the 

remaining phage could not be determined using this approach. The attP sites 

of E1007_ph1, E1630_ph1 and E1622_ph2 share an identical 17 bp 

although there are potentially an extra two base pairs in the E1622_ph2 site. 

The phage integrase proteins for both of these prophages share homology 

and are grouped together (Integ3 clade) in the integrase tree (Figure 6.7). In 

addition, three prophages belonging to G sequence type share an identical 

27 bp attP site and share the same integrase sequence group (Iinteg7) (Table 

6.4). This identifies that as is expected specific integrases use equivalent 

core attachment sites for their insertion.  In silico analysis of the cluster G 

prophages revealed that they are inserted at the same relative location in the 

genome of the host E. faecium with each being bordered by genes encoding 

a sulfite exporter TauE/SafE, a putative acytyltransferase, a citrate 

transporter (citS) adjacent to the 3′ lysis module and a holliday junction 

resolvase adjacent to the 5′ integrase.  
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Table 6.4: Putative attachment sites attP of E. faecium prophages.  

 
Prophage Group Ends Putative phage attachment site 

(5′–3′) 
Attachment site position 

E1007-ph1 A 17-base 3′ ACTCCCGCCGTCTCCAT (1301608..1301624,1343909..1343925) 

Aus0085_ph3 A 61-base 3′ ACTCTTAATCAGCGGGTCGCGGG 

TTCGAGCCCCTCACGGCCCATTG 

GGTGCCAAACCCACG 

(2447984..2448044,2491648..2491708) 

E2039_ph1 A 22-base 3′ TTGAATGCCATTTTGAATGCCA (92227..92248,135581..135602) 

E1630_ph1 B 15-base 3′ ACTCCCGCCGTCTCCAT (220657..220673,263743..263759) 

E1622_ph2 B 19-base 3′ CGACTCCCGCCGTCTCCAT (792457..792475,834546..834564) 

E1972_ph1 B 81-base 3′ GTTTTTAACAAAAAA (457389..457403,500357..500371) 

E1623_ph1 B 36-base 3′ TTTTTTTGTTATCTGTTTTTTTA 

TATTAACGATTTC 

(338198..338233,380462..380497) 

E1573_ph1 C 15-base 3′ CCTTGCTACTTCTTACTTTCTTC (134740..134762,175329..175351) 

Com15_ph1 C 21-base 3′ GAAGAAGAAAGTAAGAAGTAG (734115..734135,774551..774571) 

E1050-ph1 C 15-base 3′ TGGCTCTTTTTTTAT (1139566..1139580,1181591..1181605) 

E1185-ph1 D 17-base 3′ AAGAAGTAGCAAGGTTT (831187..831203,874769..874785) 

Com12-ph1 D 15-base 3′ GATGAACTTCCTTTA (512345..512359,553082..553096) 

E1574_ph1 D 15-base 3′ TACTAATACTTCTAC (516241..516255,560853..560867) 

E0045_ph1 E 22-base 3′ AAATCCTGTACCTTCCTTATAT (523576..523597,563714..563735) 

E1622_ph1 E 15-base 3′ GATATCATGGAGAAT (546639..546653,588124..588138) 

E1644_ph2 E 19-base 3′ TACATCATACCGCCCATCA (2184823..2184841,2220814..2220832) 

E429_ph1 E 15-base 3′ TTTTTGAAAAAAATA (411434..411448,452588..452602) 

E2883_ph1 E 32-base 3′ AAATAACCCCTGTATCCTTTGCG 

GTACAGGGG 

(525152..525183,566117..566148) 

E1623_ph2 F 16-base 3′ AAGAAGCCTTCATGGC (622172..622187,660867..660882) 

E1644_ph1 F 93-base 3′ ATAAGTAGACATTGTAGTTTCTA 

AACTGCTATGTCCTAAACGTTTC 

GATACGCTAAGTATATTTACTCC 

TTGATAAAGTAAAATAGATGCATG 

(775389..775481,815621..815713) 

E1578_ph1 F 15-base 3′ ATTCTCCATGATATC (1158831..1158845,1199033..1199047) 

Aus0004_ph2 F 93-base 3′ CATGCATCTATTTTACTTTATCAAG 

GAGTAAATATACTTAGCGTATCGAA 

ACGTTTAGGACATAGCAGTTTAGAA 

ACTACAATGTCTACTTAT 

(1454034..1454126,1494228..1494320) 

DO_ph2 
 

G 27-base 3′ TCTATTCTTCTTCTTCCGCCATGAAT

G 

(2072323..2072349,2087130..2087156) 

Aus0004_ph4 
 

G 22-base 3′   ATGGCATACAATATGGCATACA (2159576..2159597,2174179..2174200) 

1231501_ph2 
 

G 22-base 3′   ATTGTATGCCAT (241734..241745, 255551..255562) 

E2883_ph2 
 

G 27-base 3′ TCTATTCTTCTTCTTCCGCCATGAAT

G 

(1735348..1735374,1750156..1750182) 

E1644_ph3 G 27-base 3′ TCTATTCTTCTTCTTCCGCCATGAAT

G 

(1961837..1961863,1976645..1976671) 
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6.2.8 Identification of E. faecium phage cargo genes 

Previous reports of Siphoviridae from low G+C Gram-positive bacteria 

have revealed that there is frequent carriage of cargo genes in converting 

phages. These genes are commonly located at the distal 3′-end of the phage 

genomes of staphylococci, lactococci and listeria (Canchaya, Proux et al. 

2003, Brussow, Canchaya et al. 2004). To identify potential cargo genes of 

E. faecium phages, BLASTP was used to identify genes located distal to the 

holing gene and prior to the 3′ attachment site sequence repeat (attR).  

 

With seven prophages there were identifiable no genes located beyond the 

holin gene to influence host fitness or virulence (Table 6.5).  Phage cargo 

genes were identified in the remaining 27 E. faecium phages encoded 

multiple distinct hypothetical proteins, tRNA, transposase, cold shock 

protein (CspC) and an integrase core domain protein (Figure 6.13). Cluster 

G prophages encode a VirE (virulence-associated protein E) domain protein 

that is also encoded in E. faecalis temperate phages. This gene is located in 

centrally in these prophage genomes indicate a role in replication and might 

have no association with E. faecium virulence. 
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Table 6.5: Cargo genes in converting prophages of E. faecium.  

 

Prophage Cargo genes encode 
E0045_ph1 

E1050-ph1 

Com12-ph1 

DO_ph2 

Aus0004_ph4 

1,231,501 

E2883_ph2 

E1644_ph3 

 

 

 

No lysogenic conversion 

E1007-ph1 

E1622_ph1 

E1185-ph1 

E1630_ph1 

E2039_ph1 

 

Hypothetical proteins and cold shock protein (cspC) 

E1644_ph2 

E1972_ph1 

E1623_ph1 

E1623_ph2 

E1578_ph1 

Com15_ph1 

E1573_ph1 

 

 

tRNA _met and hypothetical protein 

E429_ph1 

E1622_ph2 

Hypothetical proteins 

E2883_ph1 

E1644_ph1 

Aus0004_ph2 

tRNA _met, transposase, integrase core domain protein  and 

hypothetical protein 

 

 

 

E1574_ph1 

Hypothetical proteins, tRNA _met, transposase, cold shock protein 

(cspC), transcriptional regulator ygaV, molecular chaperone Hsp31 

and glyoxalase 3, NAD dependent epimerase/dehydratase family 

protein 3-demethyl ubiquinone-9-3 methyltransferase and TraX 

protein. 

Aus0085_ph3 N-acetylmuramoly_L_alanine amidase , tRNA _met, transposase, 

and hypothetical proteins 
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Figure 6.13: Cargo genes in converting prophages of E. faecium. Model 1 

indicates no lysogenic conversion. The arrow numbers indicate (1) 

hypothetical protein; (2) cold shocked protein cspc  (3) tRNA-met; (4) 

transposase; (5) integrase core domain protein; (6) transcriptional regulator 

ygaV; (7) molecular chaperone Hsp31 and glyoxalase 3; (8) NAD 

dependent epimerase/dehydratase family protein; (9) 3-demethyl 

ubiquinone-9-3 methyltransferase; (10) TraX protein; (11) N-

acetylmuramolyL-alanine amidase. 

 

Hsp31 encoded in E1574_ph1 by hchA is known as a heat-inducible 

molecular chaperone in E. coli (Subedi, Choi et al. 2011).  Sastry et al 

(2002)  indicated that Hsp31 is a homodimeric molecular chaperone that is 

conserved in pathogenic eubacteria and fungi. The translin-associated factor 

X (TRAX) protein plays roles in key cellular processes, such as DNA 

recombination and spatial and temporal expression of mRNA, and in siRNA 

processing (Gupta and Kumar 2012). Five E. faecium prophages contained 
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insertion sequence elements such as ISEfa8, ISEnfa3 and IS30 family plus a 

transposases, which might influence host fitness or virulence by altering 

gene expression or directing recombination or contribute to mobilisation.  

 

6.2.9 E. faecium cryptic phage  

Eleven of the 39 E. faecium host genomes that contain prophage used in the 

comparison are polylysogens, which harbour multiple prophages and phage-

like elements (cryptic phage). For example the described chicken E. faecium 

genome harbours six prophage regions including three intact prophages and 

2 cryptic phages (Figure 5.14). Five of the eleven phage are small in 

comparison with the other E. faecium phages (17.2 kb to 33.3 kb) with an 

average G + C content of 34.21% to 43.07%. The genomes of all the cryptic 

phages encoded a total of 12 to 105 ORFs (Table 6.6).  These cryptic phages 

have significant sequence similarity to E. faecalis, Lactobacillus, 

Lactococcus and Listeria phages.  

 

The cryptic phages encode between 2 to 5 functional phage proteins. The 

presence of lysogeny, packaging, morphology and lysis modules vary 

considerably. All cryptic prophages lack replication genes (Table 6.7).  For 

example, head and tail morphogenesis modules essential for capsid 

formation as well as genes involved in packaging and lysis exist in the 

genome of E1574_cp1, for example. However, it lacks an integrase which 

suggests that this might represent a remnant phage. In addition, as further 

examples only head morphogenesis and portal genes are present in 

E429_cp1 and E429_cp2, while head and tail morphogenesis modules are 
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present in E0120_cp1. Phage E0120_cp2 and E1573_cp1 encode integrase, 

Cro repressor, head and lysis proteins. Functional incomplete life cycle gene 

sets suggest that these phage are either defective or belong to phage-related 

chromosomal islands (PRCIs) predicted previously in Gram-positive 

bacteria and recently reported in E. faecalis by Matos et al (2013).   

 

Phage-like element associated genes (found within cryptic phage regions) 

could play a role for improve the fitness or the virulence of the bacteria. N-

acetylmuramoyl-L-alanine amidase, which is an enzyme from the family of 

cell wall hydrolases was encoded by E0120_cp1 phage and E1972_cp1; a 

choloylglycine hydrolase family gene was present in E1972_cp1; an ATP-

binding cassette transporter was encoded by E1573_cp1 and E1972_cp1; a 

transposase and cold shock protein were encoded by E0120_cp2; envelope 

glycoprotein, copper chaperone, serine protease, IS5 transposase were found 

in chicken cryptic phages E429_cp1 and E429_cp2 and CRISPR-associated 

protein Csn1 family gene was present in E429_cp2 (Supplemental File, S8). 
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Figure 6.14: Genome of E. faecium isolated from chicken (E429). The 

presence of prophage and cryptic phages are indicated in the genome with 

red blocks indicating the genome of prophages and grey indicating the 

genomes of cryptic phage. 

 

Table 6.6: Genometrics of cryptic phage related sequences of E. faecium.   

Seven cryptic phage genomes were identified in 5 strains of E. faecium. 

 

Cryptic phage Size (kb) CDS Region position GC% 
E1020_cp1 26 30 217194-243199 43.07 
E1020_cp2 18.5 15 846146-864738 34.21 
E1573_cp1 30.6 19 345381-376039 37.64 
E1574_cp1 18.7 12 801318-820051 35.41 
E1972_cp1 33.3 41 602973-636351 38.13 
E429_cp1 17.2 21 3023847-3041052 44.7 
E429_cp2 71.7 105 3009148-3080914 44 
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Table 6.7: Predicted phage life-cycle functions present in E. faecium cryptic 

phages. 

 

Cryptic phage Repressor Intergrase Terminases Portal Head Tail lysis 
E1020_cp1 - - + - + + - 
E1020_cp2 + + - - - + + 
E1573_cp1 + + - - - + + 
E1574_cp1 - - + + + + + 
E1972_cp1 - + - - - + + 
E429_cp1 - - - + + - - 
E429_cp2 - - - + + - - 

 

6.3 Discussion 

 

6.3.1 Bacteriophage of animal E. faecium strains  

Bacteriophages are capable of transferring virulence and antimicrobial 

resistance genes to new hosts through generalised transduction (Yasmin, 

Kenny et al. 2010, Mazaheri Nezhad Fard, Barton et al. 2011). Temperate 

phages that infect E. faecium and E. faecium prophages have been described 

in several of studies but there has been no intensive characterisation using 

comparative genomics approaches (Mazaheri Nezhad Fard, Barton et al. 

2010, van Schaik, Top et al. 2010, Galloway-Pena, Roh et al. 2012).  

 

The presence of inducible temperate bacteriophages in the genomes of three 

animal strains of E. faecium isolates (chicken (E429), calf (E172) and pig 

(E142)) were first examined by subjecting them to physical and chemical 

inducing agents. Plaque assays were performed using the induced culture 

supernatants and determined that the chicken (E429) and calf (E172) 

isolates could be induced into lytic cycle. The failure to identify released 

bacteriophage from strain E142 (pig) could be due to the indicator strains 
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being lysogens and thus immune or they might not have the receptors for 

prophage binding. In silico analysis of the E142 prophage genome 

suggested that the failure to identify released bacteriophage from strain 

E142 was more likely due to the absence of a packaging module.  

 

Genomic diversity in E. faecium was reported to be related to the phage and 

phage-like sequences present in the accessory genome of E. faecium strains 

(van Schaik, Top et al. 2010). This previous study reported the CDS of 

expected phage origins contribute between 2.3% (E1071) and 5.2% (E980) 

of the total number of CDS of a genome. In the study of the three animal 

isolates presented here CDS of predicted phage origins makeup between 

2.5% (E429), 0.7% (E172) and 0.68% (E142) of the total number of CDS of 

the genome of the three animal strains, which is lower for strain E172 and 

E142 then the previous report.  In addition to the three potential prophage 

regions in the chicken strain it was found that > 88.9 kb of phage-related 

genes were also identified in the chromosome, mostly at the end of the 

genome, assembly indicating that the genome may not be ordered correctly 

(Figure 6.14). 

 

Two and three phages have been described in the closed genomes of E. 

faecium TX16 (DO) and Aus0004, respectively.  Both phages resident in the 

DO strain have similarity with likely prophage regions within most clinical 

strains as well as some commensal E. faecium strains. The prophages 

present in strain Aus0004 share high similarity with phages presented not 

only in many other enterococci, but also other low G+C Firmicutes such as 
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Clostridium, Listeria, Lactobacillus and Staphylococcus (Lam, Seemann et 

al. 2012, Qin, Galloway-Pena et al. 2012). Similarly phage and phage-

related regions of the three sequenced animal strains share high similarity 

with prophage of Enterococcus, Lactococcus, Staphylococcus and Listeria 

species.   

 

The prophages isolated from the sequenced chicken and calf strains were 

tested for their ability to package and transduce chromosomal and extra-

chromosomal DNA. Transduction was effectively achieved for a plasmid 

encoded tetracycline gene with several phages. Yasmin et al (2010) 

demonstrated that E. faecalis bacteriophage could mobilise plasmid and 

chromosomal antibiotic resistance genes. The study here supports that this 

role could also apply to E. faecium phages and further studies will be 

needed to determine the extent that transduction contributes to lateral gene 

transfer relative to well-described roles of plasmid-encoded conjugation 

mechanisms.  

 

6.3.2 Comparative genomic analysis E. faecium prophage 

 

6.3.2.1 General features of E. faecium prophage genomes 

In silico analysis was applied to identify 56 E. faecium prophage from 39 

strains on the basis that their sequences contained both integrase and lysin 

genes.  These E. faecium prophage genomes comprised between 17 to 72 

ORFs and their size ranged from 13.9 to 55.1 kb with 35% to 37.9% 

average G + C content (Table 6.3).  
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The organisation of E. faecium prophage is very comparable and the protein 

coding sequences form equivalent functional clusters similar to temperate 

bacteriophages of E. faecalis (Yasmin, Kenny et al. 2010). The majority of 

ORFs presented in the E. faecium prophage genomes were transcribed in 

one direction, whereas the lysogeny module was generally transcribed in the 

opposite direction.  

 

Phage classification is more complicated since there is no single gene that 

exists in all phages upon which a general scheme could be based. As a 

result, several research groups have suggested different classification 

schemes for the taxonomy of these viruses (Adriaenssens, Edwards et al. 

2014). One approach established by Rohwer and Edwards (2002) using a 

grouping of completely sequenced phages is to draw a phage proteomic tree 

based on protein distances. Another approach is produced by the 

documentation of mechanisms leading to the connection between groups of 

phages.  This scheme was used for classification based on shared genes in 

which each phage is characterised by its membership to a set of clusters 

(Lima-Mendez, Van Helden et al. 2008).  

 

Using protein sequence of the overall gene content of E. faecium prophage 

genomes and comparative genomics to identify clusters, the prophage 

genome were assigned to 8 different clusters which share a very low degree 

of DNA identity (Figure 6.12). However, the protein sequences within 

clusters are highly conserved (Figure 6.6). Comparative analysis of 8 

induced E. faecalis temperate phage identified by Yasmin et al (2010) 
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revealed four different phage groups (ΦFL1, ΦFL2, ΦFL3, and ΦFL4) and 

more than 97% sequence identity within three phage groups (ΦFL1A to C, 

ΦFL2A and B, and ΦFL3A and B). Two groups, ΦFL1 and ΦFL2 share a 

high degree of DNA identity (87 to 88%), which is spread throughout their 

genome. The major difference between these groups exists in in the region 

between the transcribed clusters of genes with putative functions in DNA 

replication and packaging.  This region contains different genes encoding 

proteins with high levels of sequence identity to those encoded by the 

EF_1417-EF1489 (phage03) and EF_2084-EF_2145 (phage05) regions of 

the E. faecalis V583 genome sequence (Lepage, Brinster et al. 2006). The 

V583 phage03 and phage05 regions seem to be complete prophages, 

suggesting that hybrid phage genomes in E. faecalis were generated by 

recombination. The chromosome of V583 has seven prophage-like elements 

(V583-pp1 to V583-pp7). In addition, one prophage (pp2) is found as a part 

of the core genome of E. faecalis isolates (Matos, Lapaque et al. 2013). 

Remarkably, E. faecalis polylysogeny has been described in a collection of 

clinical isolates, which carried up to 5 different inducible phages (Yasmin, 

Kenny et al. 2010). 

 

Protein similarities between the temperate E. faecium prophages suggested a 

low degree of similarity between the genomes at the nucleotide level (Figure 

6.12). The results of pairwise DNA alignments revealed only very small 

regions of nucleotide identity. This indicates that each E. faecium phage 

type represents possibly novel DNA, consequently lysogeny is driving the 

genomic diversity of their host strains (van Schaik, Top et al. 2010).  
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In contrast, within clusters that define the E. faecium prophage types there is 

very high similarity, and yet the H cluster prophage, is clearly a distant 

relative (Figure 6.6). A possible explanation is this cluster has recently 

acquired the ability to infect E. faecium. It remains to be seen if other 

prophage genomes that are distinct from the E. faecium prophage types 

revealed here are isolated in the future, which will allow grater analysis of 

phage diversity and evolution.    

 

The major similarity between the 8 prophage clusters is within hypothetical 

phage proteins that are located in the rightmost (3') region of the genomes. 

Juhala et al (2000) indicated that Siphoviridae show strong conservation of 

the order of virion structure and assembly genes and highlighted a lack of 

horizontal exchange between the groups of structural genes. Comparative 

genome analysis of the E. faecium prophages using the PHAST database 

identified that the E. faecium  prophages share high similarity with segments 

of Listeria, Lactobacillus, Enterococcus and Lactococcus prophages. This 

sequence identity is confined mostly to the morphogenesis and lysis 

modules (Supplemental File, S4). Analyses performed by Villion et al 

(2009) revealed that the virulent lactococcal phage encodes a 

morphogenesis module that is similar to the E. faecalis V583 prophage and 

considered that recombination could happen between phages infecting these 

low G+C bacteria. This observation was supported by Yasmin et al (2010) 

when they reported identities between prophages of lactococci and E. 

faecalis. The comparative analysis of E. faecium prophage lends further 

support to this hypothesis of intergeneric exchange and shows that this has 
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occurred between multiple different phage types and bacterial species plus 

there is likely to be a flux of genes also between enterococcal species.  

 

6.3.2.2 Functional module of E. faecium prophages 

The identified E. faecium prophages show genetic functionality necessary 

for integration/excision, DNA replication and capsid/tail morphogenesis to 

produce functional virions. The first unit of the phage (i.e. as it appears on 

the host chromosome) is the integrase region, which is typically leftward 

transcribed and it is necessary for phage genome integration and excision 

from the bacterial chromosome during its temperate life cycle. Site-specific 

recombination between DNA sequences corresponding to the phage 

attachment site (attP) and the bacterial attachment site (attB) are mediated 

by phage integrase enzymes (Groth and Calos 2004). Enterococcal 

bacteriophage integrase was previously indicated to present a site-specific 

recombination amongst a phage attachment site (attP) and a host attachment 

site (attB) in its host, following two new hybrid sites, attL and attR. The att 

sites typically contain a core sequence, which is short between 2 bp to >10 

bp and it is same between all the att sites in the identical phage system. The 

core sequence identifies and bind regions that integrases or accessory 

factors (Groth and Calos 2004, Park, Lim et al. 2007). 

 

The putative integrases of the 56 prophages within the 8 phage types belong 

to the tyrosine integrase recombinase family and possess near identical 

amino acid sequences (Figure 6.7). The tyrosine recombinase family is 

common in Streptococcus suis prophages (Tang, Bossers et al. 2013), 
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Mycobacteriophage (Hatfull, Jacobs-Sera et al. 2010) Listeria prophages 

(Groth and Calos 2004) and Staphylococcus aureus (Goerke, Pantucek et al. 

2009). However, the integrases of E. faecalis were reported to be serine 

recombinase family members (Yasmin, Kenny et al. 2010). Hirano et al 

(2011) indicated that integrases could use other accessory proteins such as 

recombination directionality factors and mediate prophage integration and 

excision. Based upon a cladogram tree of E. faecium prophage integrases, 

the clusters corresponding to phage types A-J clearly have distinct 

integrases sequences (Figure 6.7).  

 

Terminase is an enzyme necessary for the packaging of dsDNA into the 

progeny phages (Kutter and Sulakvelidze 2005). The packaging modules 

identified in most of the E. faecium phage genomes here are principally 

comprised of three genes, encoding the small and large subunits of 

terminase and the portal protein. Terminases are responsible for the 

identification of their phage DNAs, ATP-dependent cleavage of the DNA 

concatemer and packaging of the DNA molecules into the blank capsid 

shells over the portal protein (Fujisawa and Minagawa 1986).  Amino acid 

sequences alignments of the terminases large subunit, showed that the 

terminases of most of E. faecium prophages appeared to be highly 

conserved across prophage types clusters. The large terminase subunits of 

animal E. faecium phage including chicken E429 and E0045, a dog E4452 

and mouse genome E1622 are share similarity with each other (Figure 6.8).   

Most of the animal E. faecium prophages appear to possess unique lysogeny 

and packaging modules, suggesting that their lifecycle in their animal host 
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strain needs a specific phage functional module. The portal gene was absent 

in nineteen E. faecium prophages and the reason for this is unclear. If these 

phages are capable of entering the lytic lifecycle they would need functional 

complementation by another portal protein. The eight temperate phages 

identified in E. faecalis as being inducible into the lytic lifecycle each 

contain putative terminase and portal protein functions, consistent with 

capsid packaging of DNA being achieved using the head-full mechanism 

(Yasmin, Kenny et al. 2010) and a similar packaging mechanism can be 

inferred for most of the phage sequence types A-F, H. 

 

Major and minor head proteins and the scaffold protein are significant 

structural factors absolutely required for morphogenesis of the icosahedral 

capsid. Base plate and tail fibers are variable components of the tail tip that 

facilitate adhesion to the bacterial host surface and enzymatic degradation of 

the peptidoglycan (Kutter and Sulakvelidze 2005).  In all E. faecium 

prophages identified here the head morphogenesis and tail structure proteins 

were identified and the tail represents the largest module. The major capsid 

and tail proteins of the E. faecium prophage shared high level sequence 

identity with proteins of Listeria, Lactobacillus, Staphylococcus, 

Paenibacillus, Mycobacterium, Enterococcus and Lactococcus 

bacteriophages (Supplemental File, S4).  

 

E. faecium  prophage tail proteins indicate clear differences between the 

prophage clusters (Figure 6.9) and the tail gene size in ranges from 2.5 kb to 

6.4 kb. The bacteriophage tail is used to identify a suitable host and ensure 
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effective genome delivery to the cell cytoplasm. Tail morphology has been 

used previously as the basis for the classification of Caudovirales phages. 

Three different families of Caudovirales were identified according to their 

tail morphology, Myoviridae have a complex contractile tail (e.g., T4 and 

Mu); the Podoviridae have a short noncontractile tail (e.g., P22 and T7); and 

the Siphoviridae, characterized by their long noncontractile tail (e.g., 

lactococcal phages) (Veesler and Cambillau 2011, Fokine and Rossmann 

2014).  Genome sequences are not sufficient to definitively classify E. 

faecium prophage as Siphoviridae using electron microscopy will be 

required for confirmation.  

 

The activity of endolysin and holin are significant factors for progeny 

phages to disrupt the host cell at the end of the lytic cycle (Bernhardt, Wang 

et al. 2002). The products of the holin and endolysin genes typically 

perform the fundamental functions of the lysis module of temperate 

bacteriophages. The small holins accumulate in the membrane and at the 

end of the lytic cycle from pores that permeabilise the membrane, while the 

endolysin molecules accumulate at the cytosol until the pores are produced 

to reach the cell wall, where they hydrolyse peptidoglycan (Wang, Smith et 

al. 2000). Three classes of holin can be defined according to their number of 

potential transmembrane domains. Class I, II and III members can form 

three, two and one transmembrane domains, respectively (Wang, Smith et 

al. 2000). Holin-endolysin system are typically used by bacteriophages with 

large genomes, while a single lysis protein is commonly used by 

bacteriophages with small genomes (Bernhardt, Wang et al. 2002).  
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The majority of the lysis modules in the identified E. faecium prophages 

comprise one holin. However, prophages 1,141,733_ph1, E4425_ph1 and 

E172_ph1 also contain endolysin genes and lysis gene is absent in the 

prophages that forming cluster G. Most of these holins have homology with 

holin found in E. faecalis temperate bacteriophages (Supplemental File, S4). 

Phage holins that form clade Holin1 (Figure 6.10) have homology with 

holins of Lactococcus phage ul36 and E. faecalis phiFL4A and phiEf11. 

The high level of conservation indicates recombination might occur between 

E. faecium prophage and these species or they share a common ancestor.  

The location of the holin gene is within a region that is known to be 

influenced extensively by horizontal gene transfer.  Fokine et al (2014) 

stated that the mosaic boundaries of prophage that are seen in pairwise 

comparisons of genomes are taken to be the locations of illegitimate (non-

homologous) recombination in their ancestry.  

 

The Cladogram trees of the functional module of E. faecium prophages has 

great genome rearrangement. Prophage form cluster G share similarity in 

most of the structural genes with Enterococcus faecalis phage (EFRM31). 

Aus0004_ph2 share similarity in DNA packaging/ head and tail 

morphogenesis module with Listeria phage 2389. While Aus0004_ph3 

share similarity in DNA packaging/ head and tail morphogenesis module 

with Listeria phage 2389 and the lysis with E. faecalis (EF62phi). This 

suggested that prophage genomics analysis might present recombinant 

phages combining structural genes from different phage families as seen. 
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Recombination in phage genomes is not rare; it was also presented in Gram- 

negative bacteria Salmonella, Shigella Flexneri and Pseudomonas 

aeruginosa phage and plant pathogen Xylella fastidiosa phage that used in 

Canchaya et al (2003) study. Pseudomonas aeruginosa phage contains of a 

P2-like tail gene of Myoviridae cluster separated by a lysis cassette from a 

lambda-like tail gene cassette.  However, Shinomiya (1984) stated that 

superinfecting Pseudomonas phage PS17 presented phenotypic mixing with 

pyocin R2, consequentially stretched the host range for PS17, but genetic 

recombination was not detected and this might be due to natural or 

engineered phage resistance mechanisms. In addition, Durmaz et al (2000) 

identified that several lactococcal phages can be escaped from regulate by 

swapping part of their genome with DNA from prophages or prophage 

remnants, which they encountered in the infected cell. These explanations 

obviously establish that prophage DNA is the raw material for both phage 

and bacterial evolution. 

 

6.3.2.3 E. faecium prophage genome diversity 

E. faecium prophage genomics supported the hypotheses of the modular 

theory of phage evolution. According to Botstein (1980) phage genomes are 

groups of functionally related genes (mosaics of modules) that are able to 

recombine in genetic exchanges among distinct phages infecting the same 

cell. Juhala et al  (2000) declared that recombination basically happens 

everywhere and the evident modular structure is instead the result of 

selection eliminating all genetic recombinations that do not lead to viable 

phage arrangements. Selection would also limit all recombinations that are 



 260 

less competitive than the present phage types.  

 

In silico analysis of the E. faecium prophage genomes suggested many of 

the prophages could be defective and apparently in a dynamic process of 

gradual decay. Genetic recombination between E. faecium phages can lead 

to new chimeric phage types. The leftmost regions that contain the structure 

and assembly genes show grater conservation than the rightmost genomic 

segments in E. faecium prophages (Figure 6.6). It is important to notice that 

the degree of E. faecium prophages type diversity does not only reflect the 

number of genomes present. Based on the protein alignment analysis of the 

main structural genes in the prophage genomes (integrases, terminase large 

subunit, tail protein and holin), high diversity in the protein sequence of 

these structure genes was found among the E. faecium prophages. 

 

Multiple unique genes were also found in E. faecium prophages. Unique 

genes in each cluster, including genes that belong to phage structure, were 

identified when one prophage of each cluster was aligned (Figure 6.12). 

Each of the clusters comprises a minimum of 20% of cluster-specific genes; 

prophage genome-specific genes cluster H shows no obvious relationship 

with any of the other clusters.  

 

6.3.4 E. faecium prophage cargo 

Many temperate phages integrated into the genome of bacterial pathogens 

encode genes associated with virulence phenotypes such as intracellular 

survival, invasion and toxin production, which are not essential for phage 
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viability (Perkins, Kingsley et al. 2009). Cargo regions in low G+C 

Firmcutes phages are characteristically located at the end of the phage 

opposite from integrase (Bobay, Touchon et al. 2013).  Investigation of E. 

faecium prophage cargo regions indicate that 19 0f the 26 prophages regions 

contain potential lysogenic conversion genes. However, the analysis of E. 

faecium phage cargo was based on draft sequence assembly, which may or 

may not be correct as missasemblies could cause cargo genes to associated 

with the wrong phage genes.  

 

 Notably, cold shock protein (CspC), tRNA, transposase and integrase core 

domain. These genes might influence host fitness or virulence, or contribute 

in the mobilisation of converting activities found in this terminal phage 

genome region (Yasmin, Kenny et al. 2010). Cold shock protein genes were 

also described as being encoded on prophages of E. faecalis. Their 

maintenance in several phage elements in both E. faecium and E. faecalis 

might indicated there is selection for their function in the life-cycle of their 

hosts and/or there is frequent recombination between phages of both 

species.  

 

The role of IS elements and transposase in E. faecium virulence were 

described in several studies which suggested that these phage encoded 

elements could influence their host. Temperate phages can modulate 

bacterial fitness or virulence in at least three ways: introduction of fitness 

factors, gene disruption, and lysis-mediated competitiveness. The import of 

fitness factors (lysogenic conversion) presents new traits to the host by 
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offering genes that are not essential for the phage life cycle (Brussow, 

Canchaya et al. 2004). 

 

Bailly-Bechet et al (2007) indicated that the main difference among phages 

with tRNAs and those without any tRNAs is the genome length: phages 

holding tRNAs are considerably longer (average lengths ~70 and ~30 kb, 

respectively). The first report that phages carry tRNA genes was made over 

40 years ago in T4 phage (Weiss, Hsu et al. 1968).  Extensive study of their 

role by Wilson (1973) identified that the deletion of these genes caused 

lower burst sizes and reduced protein synthesis. tRNAs also afford 

integration points for phages, plasmids, and pathogenicity islands. It was 

proposed that phage-encoded tRNAs could also be important for 

understanding the role of phages in bacterial evolution given that large 

eukaryotic viruses comprise other elements of the translation machinery, 

such as tRNA synthetases (Raoult, Audic et al. 2004). 

 

Examination of the E. faecium phage genomes reveals a potential virulence 

gene present in a prophage from cluster G. Virulence-associated protein E 

(vapE) contributes to the type IV secretion pathway (Zhao, Sagulenko et al. 

2001). VapE was first recognized in Dichelobacter nodosus and part of this 

protein was reported to be associated with virulence in D. nodosus 

(Bloomfield, Whittle et al. 1997).  Recently, the mechanism by which VapE 

affects virulence has not yet been determined (Ma, Geng et al. 2013). The 

presence of an integrase gene (XerC) closely upstream of vapE, might link 

bacteriophages in the evolution and transfer of these bacterial virulence 
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elements in swine streptococcosis. Moreover, a vapE-like gene has also 

been identified in a pathogenicity island of Staphylococcus aureus, and in 

phages of Vibrio parahaemolyticus and Streptococcus pneumoniae and 

Enterococcus faecalis (Romero, Croucher et al. 2009, Yasmin, Kenny et al. 

2010). The contribution of the vapE gene to the virulence of Enterococcus 

remains to be clarified.  

 

The study of phage-encoded virulence factors among E. faecium strains is 

more limited compared with their description in several other low-GC 

Gram-positive pathogenic bacteria e.g. staphylococci. Nevertheless, the 

transducing abilities of the animal E. faecium prophages in chicken E429 

and calf E172 genome together with the shared sequence homology with 

those infecting low-GC Gram-positive bacteria, hints at a potential role in 

the transfer of genetic information between different genera. This study also 

demonstrated that animal E. faecium prophages can transfer antibiotic 

resistance genes in enterococci such as tetracycline (tetM). Given that the E. 

faecium isolates used in this study were resistant to many antibiotics (Table 

4.8) in observance with earlier reports (e.g. Klare, Konstabel et al. 2003), a 

large number of antibiotic resistance genes could potentially be mobilised 

by transduction. 

 

6.3.5 Cryptic phage  

Genome analysis of the E. faecium isolates identifies polylysogenic hosts. 

The phage-like elements are not likely to all be functional for the production 

of progeny without the existence of helper elements. Nevertheless, they do 
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contain multiple functional genes. Polylysogeny frequently leads to 

phenomena whereby prophage impact bacterial host behaviour (Wang, Kim 

et al. 2010, Matos, Lapaque et al. 2013).  For example, Phage Related 

Chromosomal Islands (PRCIs) of several Gram-positive bacteria are mobile 

genetic elements, primarily defined as S. aureus pathogenicity islands 

(SaPIs) (Matos, Lapaque et al. 2013). Infection by a helper phage or by 

induction of an endogenous prophage drives excision of SaPIs from the 

bacterial chromosome (Ubeda, Maiques et al. 2008).  

 

The cryptic phages in the genomes of the animal E. faecium strains might 

also function as helper phage and thereby contribute to fitness or pathogenic 

traits. For example, genes located on cryptic phage (E429_cp2) encode 

function such as hydrolase, transposase, IS5 and copper chaperone. 

Interestingly, genes that are known as an immune mechanism against phage 

(CRISPR-associated protein Csn1 family) are also encoded by this cryptic 

phage for example.  

 

Complex interactions between V583 E. faecalis phages were described by 

Matos et al (2013). Three levels of phage interactions were identified:  

phage-related chromosomal island can hijacks other phage capsids and 

interferes with infectivity; phages can utilise a temperature-dependent 

inhibition of other phage excisions; finally, phage can block excision of 

others phages. Further studies will be needed to determine the extent of 

interactions between E. faecium prophages and cryptic phages.  
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7.1 Conclusions 

This study aimed to generate, collate and interpret information from the 

genome sequencing of E. faecium to answer several key questions.  Firstly, 

are strains from animals very different from human isolates and have they 

acquired genes specific for colonising an animal host? Secondly, which 

mobile genetic determinants are present in animal strains of E. faecium and 

are these common to or distinct from those in human isolates?  

 

The data presented here from phylogenomics analyses reveals 

discrimination of isolates into clades, which broadly grouped strains of 

animal and human origin. Identification of genes specific for host 

colonisation remains unresolved although genes pertaining to particular 

clades were identified and these could be further characterised to examine 

their role in colonisation.   

 

This study has described sequencing, assembly, annotation and homology of 

three animal strains of E. faecium isolated from chicken, calf and pig. Two 

types of sequencing methods were used to complete the genomes of the 

animal isolates; 454 sequencing platform with PCR amplification attempt 

gap closure in the genome of chicken E. faecium; and PacBio sequencing 

which generated a near complete genome of E. faecium isolated from calf.  

 

Comparative analysis of animal and human isolates of E. faecium 

demonstrated that E. faecium species share the same core genome. 

However, in strains that are relatively closely related the presence and 
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absence of mobile genetic elements is the major influence in shaping strain-

specific properties. Relationship analysis using all the publicly available 

genomes indicates a pronounced separation of isolates into community, 

hospital and animal-associated clades, supporting previous studies. In 

addition, it was evident that strains of E. faecium isolated from different 

sub-populations including the Clonal Complex 17, clinical, commensal and 

animals, including bird, pig and dog sub-groups were related to each other 

and mostly grouped in same clade in the phylogenetic tree, but with some 

exceptions. Notably, most E. faecium strains isolated from the same 

geographic region or infection source were grouped together.  

 

Plasmids, IS, transposons and prophages are abundant in most E. faecium 

isolates. IS elements are the most noticeable group of genes enriched in all 

CC17 strains and the majority of hospital-associated strains.  Animal and 

clinical E. faecium isolates share multiple IS elements, for example the IS3 

and IS256 families were most frequent in animal strains, although these 

elements were also present within the hospital clade. In this study, a mega 

plasmid was identified in the genomes of the sequenced chicken, calf and 

pig E. faecium isolates, which is specific to these strains.  A second mega 

plasmid identified in the sequenced chicken and pig genomes was also 

present in the humans isolate genomes. Comparative genomic analyses were 

applied to 56 prophage identified from 39 E. faecium strains retrieved on the 

basis that their sequences contained both integrase and lysin genes.  The 

prophages were discriminated into eight different sequence types A to H. 

The majority of the prophages in clusters A and C are from commensal and 
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animal isolates. Cluster B and D sequences are mixed clusters that contain 

prophages isolated from clinical, commensal, animal and river water 

sources while most of those from cluster F are present in clinical isolates 

including. 

 

The association of IS and prophages with genomic islands (GIs) and novel 

regions in the genome maps likely reflects horizontal transfer of these genes 

between different species, since these elements had considerable homology 

with both Gram-negative genera, including Escherichia, Burkholderia, 

Pseudomonas and Xanthomonas species, and Gram-positive genera, 

including Staphylococcus, Streptococcus, Bacillus, Listeria, Lactococcus, 

Lactobacillus and Paenibacillus species.  Several of these mobile elements 

were unique to the animal strains sequenced as the main body of this study.  

 

7.2 Future work 

Short sequence reads and the assembly of complex genomes such as those 

of E. faecium remains a challenge.  Most commonly, the high frequency of 

repeat sequences add additional complexity and as observed with strains 

studied here they confounded assembly.  Repeated sequences of DNA bring 

difficulties when attempting to infer relative locations in the genome 

corresponding to reads, and it is suggested they happen far more often in 

real genomes than they would in a sequence of independently randomly 

produced bases (Henson, Tischler et al. 2012). These well-described 

problems are additional to correcting read errors and considering 

heterozygosity, while staying within the limits of practical computability, 
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thereby making assembly more difficult and complex (Henson, Tischler et 

al. 2012). Genomic rearrangements due to repeat sequences increase the 

complexity of the E. faecium genome (Ferrarini, Moretto et al. 2013). 

Accordingly, the 454 sequencing platform combined with de novo assembly 

approaches fail to completely resolve assembly of the animal E. faecium 

genomes.  

 

Network assembly processes will be required for future study of animal E. 

faecium and the species more broadly. Mismatches between the in vitro and 

in silico analysis of mobile genetic elements and the integration of the mega 

plasmid into the precise assembly of the multiple bacteriophages present in 

the chicken E. feacium genome require further study to be fully explained. 

The basis for the mega plasmid integration into the chicken E. feacium 

chromosome needs to be explored to rule out potential errors in genome 

assembly.   

 

Many assembly issues would be resolved with further use of the Pacific 

Biosciences RS (PacBio) platform, which was successfully applied here to 

sequence the E. faecium calf strain E172. The PacBio long-read sequencing 

platform provides advantages for assembly of this species, due to increased 

read length and equitable genome coverage making it possible to assemble 

genome sequence data with few or no gaps by generating longer contigs 

(Ferrarini, Moretto et al. 2013).   
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Several reported phylogenomic studies using limited number of E. faecium 

genomes, supported an initial report of a primary phylogenetic split in the E. 

faecium population, which separates human commensal isolates as a clade 

distinct from animal and human clinical isolates in a separate clade 

(Galloway-Pena, Roh et al. 2012, Palmer, Godfrey et al. 2012).  In the study 

presented here, it was found that nosocomial E. faecium strains are clustered 

into two subgroups instead of one. Animal E. faecium isolates were 

discriminated into one subgroup that contain a small number of nosocomial 

E. faecium strains, suggesting different evolutionary traits for emergent 

clinical and animal isolates, and these findings support those reported by 

Willems (2012) and Lebreton et al (2013).   

 

The study of MGE is challenging since there are many complications with 

annotating MGE sequences and therefore as a whole they are poorly 

annotated, particularly as part of bacterial-genome sequencing projects. For 

example, few phages have previously been well characterised in E. faecium 

and only recently one complete phage genome (IME-EFm1) was reported 

(Wang, Wang et al. 2014). The narrow sequence homology among 

functionally equivalent phage-encoded proteins complicates the study of 

their function (Pedulla, Ford et al. 2003). There is a requirement for 

developments in bioinformatics of MGEs to identify their unique features.  

 

Pathway analysis to generate effective metabolism reconstructions remains 

incomplete due to a lack of knowledge. These gaps include carbohydrate 

utilisation. A genome scale construction of animal, clinical and commensal 
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E. faecium metabolism would allow examination of several challenging 

research questions about niche specialisation.  Moreover, properties such as 

pathway redundancy and growth burden of pathways contributing to 

colonisation and virulence. Study of carbohydrate utilisation in animal and 

human E. faecium will help to determine the carbohydrates required for host 

colonisation, their relative utilisation and contribution to host adaptation.  
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Appendix 

Table 4.5: The novel regions in animal E. faecium genomes used in this 

study. 

 

Region	  	  	   Calf	  (E172)	   Pig	  (E142)	   Chicken	  (E429)	  
1	   Tagatose and 

glucose utilisation 
operons and lipid 
carrier	  

Type I restriction-
modification system 
restriction subunits R and 
M, site-specific 
recombination, two cell 
wall surface anchor family 
proteins and sortase A 
(LPXTG specific)	  

Copper uptake genes, heavy metal genes 
(lead, cadmium, zinc, and mercury 
transporting ATPase, IS elements 
(ISSdy1, Tn916 and ISEc9), citrate 
fermentation, maltose utilisation operon, 
sucrose utilisation operon , several phage 
integrases, sortase A LPXTG specific, 
tetracycline resistance gene (tetM) and 
replication proteins (repA)	  

2	   Mobile element 
proteins, site-
specific 
recombinase (phage 
integrase family) 
and replication 
initiation factor	  

Polysaccharide 
biosynthesis proteins CpsF 
and CpsM and membrane 
protein involved in the 
export of O-antigen 
teichoic acid lipoteichoic 
acids	  

Prophage	  

3	   Mobile element 
proteins, site-
specific 
recombinase, 
integrase/recombuna
se core domain 
family, probable 
cadmium 
transporting ATPase 
(EC 3.6.3.3), 
transcriptional 
regulators (TetR and 
lclR family) and L- 
rhamonose 
utilisation operon 	  

Prophage	   Cluster for agmatine (decarboxylated 
arginine) catabolis	  

4	    Lactose utilisation 
operon	  

Hypothetical membrane 
proteins, a sorbitol 
utilisation operon, 
hydrolase and a protease	  

Sugar transferase genes  and genes 
encoding a membrane protein involved in 
the export of O-antigen teichoic acid, 
lipoteichoic acids and transposases 
IS204/IS1001/IS1096/IS1165	  

5	   rRNA operon, 
cluster for agmatine 
(decarboxylated 
arginine) catabolism  	  

Tetracycline resistance and 
Tn916	  

unique hypothetical proteins (11 genes) 
phage related integrases, ATP/GTP-
binding proteins and DNA or RNA 
helicase of superfamily II	  

6	   Membrane protein 
involved in the 
export of O-antigen 
teichoic acid 
lipoteichoic acids, 
capsular 
polysaccharide 
biosynthesis protein 
and beta lactamase	  

Membrane protein O-
antigen, beta-lactamases 
and glycosyl transferase	  

Prophage	  

7	   ascorbate utilisation 
operon and several 
transposases	  

Transcriptional regulators 
of the TetR and MerR 
family proteins, a putative 
hydrolase and six 
hypothetical proteins	  

Prophage	  

8	   Several prophage 
genes, 
superinfection 
immunity protein, 
mobile element 
proteins and a 
several transposases	  

Protease IV (EC 3.4.21), a 
bacteriocin export 
accessory protein and an 
ABC transporter	  

A unique transposase, hydrolase, set-
specific recombinases, integrase and 
membrane protein involved in the export 
of O-antigen teichoic acid, lipoteichoic 
acids	  
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9	   Prophage	   Two sucrose utilisation 
operons	  

Tagatose and lactose utilisation operons, 
plasmid proteins, phage integrases and 
transposase IS204/IS1001/IS1096/IS1165	  

10	   Cobalt-zinc- 
cadmium resistance 
proteins and lead, 
cadmium, zinc, 
mercury and copper 
translocating 
ATPase and 
multicopper oxidase. 
hypothetical 
proteins, plasmid 
genes (repA, repB) 
and carbohydrate 
(mannose, trehalose, 
ribose and sucrose) 
utilisation operon, 
IS elements, 
(LPXTG) cell wall 
surface anchor 
protein, sortase A, 
surface protein 
transpeptidase, 
extracellular 
proteins and 
antibiotic resistance 
genes such as 
vancomycin type A 
and B resistance 
operon, tetracycline 
resistance, beta 
lactamase and 
restriction-
modification system 	  

Cobalt-zinc- cadmium 
resistance proteins and 
lead, cadmium, zinc, 
mercury and copper 
translocating , plasmid 
genes (repA, repB), 
carbohydrate (mannose, 
trehalose, ribose and 
sucrose) utilisation operon, 
IS elements, (LPXTG) cell 
wall surface anchor 
protein, sortase A, surface 
protein transpeptidase, 
extracellular proteins and 
antibiotic resistance genes 
such as vancomycin type A 
and B resistance operon, 
tetracycline resistance, beta 
lactamase and restriction-
modification system	  

Glutamate decarboxylase (EC4.1.1.15), 
glutamate/gamma- aminobutyrate 
antiporter	  

11	   -‐	   -‐	   blue copper oxidase CueO precursor, 
iron-sulfur cluster assembly protein SufB, 
cadmium resistance proteins and lead, 
cadmium, zinc, mercury and copper 
translocating ATPase , hypothetical 
proteins, plasmid genes (repA), IS 
element, Tn916, cell wall surface anchor 
protein, sortase (surface protein 
transpeptidase), vancomycin type A and B 
resistance operon, tetracycline resistance 
genes, and extracellular proteins	  

 

	  
 


