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Abstract 

Acute pancreatitis (AP) is a leading cause for hospitalisation and has significant 

quality of life implications for the patient and cost implications for the National 

Health Service. Although most episodes of AP are mild and self-limiting, the 

severe form of the disease is associated with a high mortality. In the absence of 

definitive treatment, management is mainly supportive. There is an urgent need 

to develop more effective biomarkers and drugs to manage AP. Genome-wide 

studies have demonstrated that proteins that bind to heparin (HBPs) form highly 

interconnected networks which are functionally important in health and disease. 

It was hypothesized that this is true in the pancreas and in AP. 

Testing this hypothesis, using mRNA as a proxy for protein, it was shown that 

HBPs constitute an important extracellular sub-proteome within the normal 

pancreas and in major pancreatic diseases that is likely to provide a rich 

repository of potential biomarkers and drug targets. Building upon this work, a 

proteomic analysis of HBPs in normal pancreas (NP) and in caerulein-induced 

mouse AP was undertaken. This has more than doubled the number of HBPs to 

883, with 460 new HBPs identified. These may represent the most interconnected 

set of extracellular proteins and therefore with the greatest regulatory potential. 

Non canonical HBPs such as NDUFS4, NDUFS6, NDUFS7, NDUFS8, NDUFA9, 

NDUFA10, NDUFA9 and NDUFA10 were identified and found to be 

underexpressed in AP as compared to NP. These may have potential moonlighting 

roles, not previously known. By virtue of being extracellular and binding to 
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heparin, HBPs are accessible and are potential biomarkers and drug targets in AP. 

In addition to identifying existing biomarkers in AP such as pancreatic amylase, a 

number of HBPs with biomarkers potential such as HRG, CD14 and FN1 were 

identified and need further investigation. HBPs such as SERPINC1, VEGFA and 

PIP5K1C need further evaluation in drug development. These along with 

modified heparins, heparin mimetics and matrix therapy in AP provide exciting 

areas for future research. 
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Chapter 1 – INTRODUCTION 

 

1.1 The pancreas 

The pancreas is a retroperitoneal organ located in the upper abdomen. It 

develops from endodermal cells in the embryonic foregut and has important 

exocrine and endocrine functions (Zaret and Grompe, 2008). The exocrine 

pancreas consists of acinar and ductal cells, which are important for nutrient 

digestion (Hegyi and Petersen, 2013). The endocrine pancreas is made up of five 

types of islets cells and regulates glucose homeostasis (Shih et al., 2013). 

 

1.2 Major pancreatic diseases 

The major pancreatic diseases are acute pancreatitis, chronic pancreatitis and 

pancreatic cancer. While the in silico work described in Chapter 2 investigates 

the major pancreatic diseases, the main and further focus of this thesis is acute 

pancreatitis. 

 

1.2.1 Acute pancreatitis 

Acute pancreatitis (AP) is acute inflammation of the pancreas and is mainly 

caused by gallstones and alcohol (Pandol et al., 2007). The diagnosis of acute 

pancreatitis requires the fulfillment of ‘2 out of 3’ of the following criteria: 

clinical (upper abdominal pain), laboratory (serum amylase or lipase >3 times 

the upper limit of normal) and/or imaging (computed tomography, magnetic 
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resonance imaging, ultrasonography) criteria (2013). Its incidence is 

approximately 30 per 100,000 per year in the United Kingdom (Roberts et al., 

2013). Although most episodes are mild and self-limiting, the severe form of the 

disease is associated with mortality of the order of 5% (Schneider et al., 2010, 

Banks and Freeman, 2006). It is the most frequent gastrointestinal cause of 

hospitalisation in the United States and has major socio-economic impacts on a 

health system (Peery et al., 2012). In the absence of specific treatments for AP, 

therapy is mainly supportive (Tenner et al., 2013). 

 

1.2.2 Chronic pancreatitis 

Chronic pancreatitis (CP) is a progressive inflammatory disease associated with 

exocrine and endocrine insufficiency, abdominal pain, significant quality of life 

and nutritional implications. Environmental factors together with numerous 

genetic mutations and polymorphisms predispose to the disease cause CP 

(Gupte and Forsmark, 2014). The pain in CP is multifactorial with inflammatory 

and neuropathic components and its management poses significant challenges. 

Exocrine and endocrine insufficiency occurs as a result of destruction of 

pancreatic tissue. CP is a known risk factor for pancreatic cancer (Lowenfels et 

al., 1993) and its diagnosis often poses a diagnostic dilemma being difficult to 

distinguish it from pancreatic ductal adenocarcinoma (PDAC) clinically and 

radiologically (Johnson and Outwater, 1999).  

 

1.2.3 Pancreatic adenocarcinoma 

Pancreatic ductal adenocarcinoma is the fifth most common cancer worldwide 
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(Parkin, 2008).  Most patients are diagnosed with advanced disease, which rules 

out potentially curative surgery (Vincent et al., 2011). Even after surgery, the 

prognosis remains poor with a 5-year survival of around 10% (Cress et al., 

2006). There is a need to develop more reliable biomarkers and drugs, with a 

view to improving outcome in PDAC. Novel therapeutic strategies targeting the 

pancreatic cancer microenvironment as well as PDAC cells are evolving 

(Costello et al., 2012).  

 

1.3 Pathogenic mechanisms underlying acute pancreatitis 

Pathological processes underlying acute pancreatitis include intra-acinar 

activation of digestive enzymes, the induction of pro-inflammatory mediators, 

such as the transcription factor nuclear factor kappa-B (NF-kB), resulting in 

inflammatory cell infiltration in the pancreas, systemic inflammatory response 

and acinar cell death through apoptosis and necrosis (Gukovskaya and Pandol, 

2004, Pandol et al., 2007, Saluja et al., 2007). Recent advances have provided 

new insights into the pathogenic mechanisms underlying acute pancreatitis 

(Criddle et al., 2007, Booth et al., 2011, Voronina et al., 2014, Gukovsky et al., 

2011) and have primarily focussed on signalling pathways involved in these 

processes (Gukovsky et al., 2011, Sah et al., 2012).  

 

1.3.1 Abnormal Calcium signalling 

Disruption of normal Ca2+ signaling has been suggested as a trigger for acute 

pancreatitis over a decade ago. Major precipitants of acute pancreatitis such as 

bile salts and non-oxidative metabolites of ethanol generate toxic elevations of 
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Ca2+ that result in cellular necrosis. A sustained rise in cytosolic Ca2+ is 

pathologic and results in a sustained increase in mitochondrial Ca2+. This in turn 

causes a decreased ATP production, which impedes the clearance of Ca2+ from 

the cell, resulting in trypsinogen activation, vacuolisation, and necrosis (Booth 

et al., 2011). Aberrant Ca2+ influx via store operated Ca2+ channels (SOCs) has 

been implicated in many diseases including AP (Lee et al., 2010). The entry of 

Ca2+ through SOCs involves the interaction of the stromal interaction molecule 

(STIM) and Orai at the ER-PM (endoplasmic reticulum-plasma membrane) 

junction and phosphoinositides contribute to the accumulation of STIM1 at this 

location (Walsh et al., 2010). 

 

1.3.2 Mitochondrial dysfunction 

ER–mitochondria membrane microdomains meet the Ca2+ demand for ATP 

generation and oxidative phosphorylation in the mitochondria, regulate 

apoptosis and mediate ATP and redox signaling from mitochondria to 

endoplasmic reticulum (Cardenas et al., 2010, Pinton et al., 2008). The ER–

mitochondria interactions may be crucial in containing/propagating pathologic 

Ca2+. Mitochondrial permeability transition pore (PTP) opening and loss of 

mitochondrial membrane potential are recognized events during pancreatitis, 

leading to release of mitochondrial contents into the cytosol, ATP depletion and 

oxidative stress (Mukherjee et al., 2008). 

 

1.3.3 Endoplasmic reticulum stress response 

Endoplasmic reticulum (ER) stress and oxidative stress are known to occur 
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early in pancreatitis (Sah and Saluja, 2011). Mitochondrial dysfunction results 

in oxidative stress, which in turn results in the generation of reactive oxygen 

species (ROS). This modulates ATP generation, which when inhibited results in 

acinar necrosis (Section 1.3.1, 1.3.2) (Booth et al., 2011). Neutrophil generated 

ROS and mitochondrial ROS result in the activation of inflammatory pathways in 

acute pancreatitis. 

 

1.3.4 Impaired autophagy due to lysosomal dysfunction 

Mitochondrial dysfunction and ER stress induce autophagy (Gukovsky et al., 

2012, Lugea et al., 2011). Autophagy protects the acinar cell from the 

deleterious effect of released activated enzymes in acute pancreatitis (Grasso et 

al., 2011).  Impaired lysosomal digestion of autophagic contents in turn results 

in impaired autophagy and so a loss of protection of the cell by this mechanism 

(Gukovsky et al., 2012). 

 

1.3.5 Impaired cellular trafficking 

As a result of a loss of acinar cellular and cytoskeletal reorganization, apical 

secretion is impaired in acute pancreatitis (Gorelick and Thrower, 2009). 

Consequently, basolateral exocytosis occurs, which exposes the basolateral 

soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) 

complex. This in turn results in zymogen granules attaching to the basolateral 

membrane causing subsequent acinar injury (Gaisano and Gorelick, 2009). 

VAMP8 (vesicle-associated membrane protein 8) has been shown to be the 

SNARE that mediates basolateral exocytosis in a mouse model of acute 
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pancreatitis (Cosen-Binker et al., 2008). 

 

1.4 Experimental murine models of acute pancreatitis 

 Various animal models have been created over the years with a view to 

investigate the pathogenic mechanisms underlying acute pancreatitis. While 

many species have been used for these models, most investigators use rodent 

models, either mice or rats, as they are better standardised, less expensive to 

maintain and, in the case of mice, can be easily manipulated genetically for 

studies. 

 

1.4.1 Secretagogue hyperstimulation model 

This has been the most widely used murine model of acute pancreatitis (Lerch 

and Gorelick, 2013) and supramaximal cholinergic stimulation of the pancreas 

with  caerulein, which is an ortholog of the intestinal hormone cholecystokinin, 

is physiologically relevant. The most widely used protocol for the induction of 

acute pancreatitis in mice today involves 7 intraperitoneal injections, 1 hour 

apart, of 50 µg/kg body weight of synthetic caerulein. The advantages of the 

secretagogue model of acute pancreatitis include its lack of requirement for 

surgery or complicated manipulations and its suitability for studying the whole 

spectrum of the disease from mild to severe acute pancreatitis (Lerch and 

Gorelick, 2013). 
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1.4.2 Duct obstruction and bile acid infusion model 

This model seeks to mimic gall stone pancreatitis and is based on the hypothesis 

that if a gallstone at the papilla obstructs the common channel that connects the 

common bile duct to the pancreatic duct, bile could enter the pancreas and thus 

would induce pancreatitis. Common channel ligation models of acute 

pancreatitis are relevant to human disease (Kamisawa et al., 2009, Kamisawa et 

al., 2007). While duct ligation in opossum results in pancreatic necrosis (Lerch 

et al., 1993), rodent models are poorly suited for investigations, as they lack 

severity (Samuel et al., 1994) . Infusion of bile acids into the pancreatic duct 

results in acute pancreatitis of varying severity depending on the concentration 

of the infused bile acid (Perides et al., 2010). 

 

1.4.3 Basic amino acid induced model 

This non-invasive model induces severe acute pancreatitis in rats by the 

intraperitoneal injection of high concentrations of L-arginine (Mizunuma et al., 

1984). The advantage of this model is its severity, while a major disadvantage is 

that its mechanistic relevance to human acute pancreatitis is uncertain (Lerch 

and Gorelick, 2013). 

 

1.4.4 Diet induced model 

In this model, mice are fed a choline-deficient diet enriched with ethionine, a 

derivative of methionine and develop severe necrotizing pancreatitis (Lombardi 

et al., 1975), with up to 100% dying within 5 days. This model shares many 

common features with the secretagogue hyperstimulation model, though with a 
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higher severity of the disease (Gilliland and Steer, 1980). 

 

1.5 The need for more accurate prognostic biomarkers and for drug 

development in acute pancreatitis 

Most patients with acute pancreatitis have a mild course, which settles within 3-

5 days (Raraty et al., 2004). However, about 20 percent of patients have a severe 

course, which is associated with a high mortality (Whitcomb, 2006). These 

patients require specialist intervention and multi-organ support (Raraty et al., 

2004) and also have major cost implications for a health system (Peery et al., 

2012). The early identification of patients with the severe form of the disease is 

key to effective management and allocation of resources (Raraty et al., 2004, 

Gomatos et al., 2014). A number of clinical features and laboratory markers 

have been used over the years, alone or in combination with scoring systems, to 

determine prognosis. However, no single laboratory marker or score can 

accurately predict the outcome in acute pancreatitis (Mounzer et al., 2012).  

 

1.5.1 Scoring Systems in acute pancreatitis 

The Ranson score is the earliest multifactorial scoring system to be proposed in 

the management of acute pancreatitis and is based on eleven factors calculated 

at admission and at 48 hours (Ranson et al., 1974).  This system is not accurate 

until 48 hours into the course of the disease and the sensitivity of the score 

decreases with incomplete data collection (Ranson et al., 1974). The modified 

Glasgow score includes eight factors, namely, serum albumin, blood urea 

nitrogen, calcium, white cell count, lactate dehydrogenase, age and glucose  
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Scoring 
System 

Time Parameters Sensitivity 
(%) 

Specificity 
(%) 

Ranson 
Score 

At admission 
and at 48 
hours 

 At admission: 
Age (>55 years), WBC 
(>16,000/mL), glucose 
(>200 mg/dL), LDH 
(>350 IU/mL), AST 
(>250 IU/mL)  
At 48 hours: haematocrit 
decrease (>10%), BUN 
increase (>5 mg/dL), 
calcium (<8 mg/dL), 
PaO2 <60 mm of Hg, base 
deficit >4 mEq/L, fluid 
sequestration (>6L) 

46 80 

Modified 
Glasgow 
Score 

At admission 
and at 48 
hours 

Age (>55 years), WBC 
(>15,000/mL, glucose 
(>180 mg/dL), BUN (>45 
mg/dL), PaO2 (<60 mm 
Hg), calcium (<8 g/dL), 
albumin (<3.2 g/dL), 
LDH (>600 IU/L) 

65 82 

APACHE II At admission 
and at 48 
hors 

At admission and at 48 
hours: 
Temperature, MAP, 
heart rate, respiratory 
rate, PaO2, arterial pH, 
HCO3, sodium, 
potassium, creatinine, 
haematocrit, WBC, 
Glasgow Coma Score, 
age, chronic health 
points 

97 44 

BISAP At admission 
and at 48 
hours 

At admission and at 48 
hours: 
BUN (>25 mg/dL, 
impaired mental status 
(Glasgow Coma Score 
<15), SIRS (>/= 2), age 
(>60 years), pleural 
effusion 

62 76 

 
 
Table 1.1: Comparing the clinical scoring systems in acute pancreatitis. WBC White 

blood count, LDH Lactate dehydrogenase, AST Aspartate aminotransferase, BUN 

Blood urea nitrogen, MAP Mean arterial pressure, SIRS Systemic Inflammatory 

Response Syndrome 

The Glasgow score has been shown to be the best predictor of organ failure at 

admission. 
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levels. The APACHE (Acute Physiology and Chronic Health Evaluation) II system, 

which was initially developed for patients admitted to critical care units, was 

similar in predictive accuracy as the Ranson and Glasgow scores (Larvin and 

McMahon, 1989). Also, the Glasgow score requires the collection of a large 

number of parameters that can be tedious (Mounzer et al., 2012). The ‘Bedside 

Index of severity in acute pancreatitis’ (BISAP) scoring system was developed 

using data collected within the first 24 hours of hospitalisation for acute 

pancreatitis and includes five parameters: blood urea nitrogen levels of greater 

or equal to 25 mg/dL, impaired Glasgow coma scale of <15, a systemic 

inflammatory response syndrome (SIRS) score of greater or equal to 2 (heart 

rate >90 beats/min, core temperature <36 or >38ºC, white cell count <4 or >12 

109/L, respirations >20/min or PaCO2 <32 mmHg), age greater than 60 years 

and pleural effusion (Wu et al., 2008).  The Glasgow score was found to be the 

best classifier for predicting persistent organ failure at admission in a study 

(Table 1.5.1) comparing the Ranson’s, Glasgow, APACHE II and BISAP scoring 

systems (Mounzer et al., 2012). The Atlanta Symposium in 1992 attempted to 

establish a global consensus on a classification system for acute pancreatitis 

(Bradley, 1993). This was recently revised in keeping with advances in the 

understanding of the pathophysiology of acute pancreatitis, as well as the 

advances in diagnostics (Banks et al., 2013).  This revised system uses the 

modified Marshall score for organ dysfunction (Marshall et al., 1995). A 

determinant-based classification of acute pancreatitis, based on local and 

systemic determinants of severity of the disease, has also been recently 

proposed (Dellinger et al., 2012). This classification system uses the sepsis-

related organ failure assessment scoring system for organ dysfunction (Vincent 
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et al., 1996). A consensus on the same has yet to be reached (Talukdar and Rau, 

2014). A study to comparing it with the Revised Atlanta Classification showed 

that the Determinant Classification predicted the length of hospital stay better, 

whereas the Revised Atlanta Classification predicted interventions in acute 

pancreatitis better (Acevedo-Piedra et al., 2014). 

 

1.5.2 Molecular markers of acute pancreatitis 

1.5.2.1 Biomarker definitions 

A biomarker is defined as “a characteristic that is objectively measured and 

evaluated as an indicator of normal biological or pathogenic processes, or 

pharmacologic responses to therapeutic intervention” 

(Biomarkers_Definitions_Working_Group, 2001). Biomarkers may be classified 

as prognostic, predictive or pharmacodynamics and ideal biomarkers are highly 

sensitive and specific (Amur et al., 2008). Prognostic biomarkers indicate the 

likely course of a disease irrespective of treatment, whereas predictive markers 

suggest the population of responders to a particular treatment (Drucker and 

Krapfenbauer, 2013). Pharmacodynamic biomarkers indicate the therapeutic 

and adverse outcome of interactions between a drug and its targets. Clinical 

biomarkers may be stratification markers, efficacy markers, toxicity markers or 

surrogate endpoint markers (Lassere et al., 2007). Guidelines such as 

“STAndards for Reporting of Diagnostic accuracy (STARD)” have been 

introduced to help in the description of key elements of biomarker study design 

and execution (Bossuyt et al., 2003). The STARD initiative included key 

elements of biomarker study design, execution, patient recruitment, diagnostic 
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tests and statistical analyses to guide researchers. 

 

1.5.2.2 Biomarkers in acute pancreatitis 

C-reactive protein (CRP) is a non-specific marker, which is probably the most 

widely used predictor of severity in AP (Schutte and Malfertheiner, 2008). 

Serum amyloid A is an acute phase reactant that reaches significantly high levels 

in patients with pancreatic necrosis and is more accurate than CRP in predicting 

severity (Pezzilli et al., 2000). Procalcitonin is the biologically inactive form of 

calcitonin and is an acute phase reactant is useful in predicting severity as well 

as infected pancreatic necrosis and sepsis (Rau et al., 1997). Cytokines are 

inflammatory mediators and inducers of synthesis of acute phase reactants. 

Interleukin-6 significantly increases in severe acute pancreatitis, however, its 

levels decrease rapidly during the course of the disease and it is unreliable in 

predicting mortality (Ikei et al., 1998). Interleukin-8, on the other hand, may 

predict multi-organ failure and maybe be used as a marker of progression 

(Mayer et al., 2000, Dugernier et al., 2003). Trypsinogen is cleaved by trypsin 

itself or by duodenal enterokinase into its active form trypsin and trypsinogen 

activation peptide (TAP). The kidneys excrete TAP in urine. Urinary TAP has 

been shown to be superior to CRP at 24 hours after admission in predicting the 

severity of acute pancreatitis (Johnson et al., 2004). However, as its levels 

decrease rapidly it cannot be used to monitor disease progression. 

Polymorphonuclear (PMN) elastase is released by PMN granulocytes and is a 

good predictor of severity of acute pancreatitis, peaking 24 hours after disease 

onset (Dominguez-Munoz et al., 1991). Studies show that a combination of 
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markers, such as interleukin-10 and serum calcium (Mentula et al., 2005), PMN 

elastase and CRP (Viedma et al., 1994), CRP and urinary TAP (Lempinen et al., 

2001), hold promise. 

 

1.5.3 Drug development in acute pancreatitis 

Various therapeutic agents have been investigated to treat acute pancreatitis. 

Inhibition of pancreatic secretion used to be thought to be protective in acute 

pancreatitis.  However, while several randomized controlled trials with anti-

pancreatic secretion therapy using somatostatin have failed to show any 

significant clinical benefit in acute pancreatitis (Choi et al., 1989, D'Amico et al., 

1990, Luengo et al., 1994, Gjorup et al., 1992), a meta-analysis of 7 studies 

showed an overall mortality advantage benefit with somatostatin in the severe 

form of the disease (Andriulli et al., 1998). Similarly, the clinical benefit of the 

somatostatin analogue, octreotide, is yet to be demonstrated convincingly (Uhl 

et al., 1999, Heinrich et al., 2006). Both somatostatin and octreotide need 

further investigation with respect to the dosage, timing of administration, the 

target population and their cost-effectiveness (Li et al., 2011). There is no 

concrete evidence to support the use of antiprotease therapy in treating acute 

pancreatitis (Kitagawa and Hayakawa, 2007). While the use of the protease 

inhibitor gabexate mesilate has shown no clinical benefit in acute pancreatitis 

(Valderrama et al., 1992, Buchler et al., 1993), continuous regional arterial 

infusion with Nafomostat in combination with antibiotics warrants further 

investigation (Imaizumi et al., 2004, Piascik et al., 2010). Lexipafant, a platelet 

activating factor receptor antagonist and anti-inflammatory drug, failed to show 
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a reduction in multiple organ dysfunction syndrome (MODS) and mortality in 

patients with severe acute pancreatitis (SAP) compared to placebo treatment in 

a double-blinded randomised clinical trial (RCT) (Johnson et al., 2001). The 

prophylactic use of antibiotics has not been shown to significantly reduce 

mortality, or the requirement for surgical intervention (Hackert and Werner, 

2011), while antioxidant therapy has not shown to have a protective effect, but 

on the contrary seemed to augment the severity of acute pancreatitis 

(Siriwardena et al., 2007). In a large multicentre RCT antibiotic prophylaxis in 

combination with probiotic strains did not reduce the risk of infectious 

complications severe acute pancreatitis and was associated with an increased 

risk of mortality (Besselink et al., 2008). Despite an increased understanding of 

the pathophysiology of acute pancreatitis in the last two decades, a specific 

therapy for AP is lacking and treatment remains largely supportive (Tenner et 

al., 2013).  

 

1.6 Systems biology and systems medicine 

 ‘Reductionism’, in principle, is useful in investigating diseases, particularly in 

conditions where one or a few components are responsible for the overall 

outcome. It is useful and effective when an isolatable problem exists and where 

a quick and effective solution is available e.g. diseases such as acute appendicitis 

and urinary tract infections. However, this approach is less effective in 

investigating systems in which interactions between components dominate the 

systems themselves, thereby influencing behaviour and outcomes. This is the 

case in complex organs such as the pancreas and complex diseases such as acute 
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pancreatitis (Ahn et al., 2006). This has had an impact on drug design and the 

number of successful novel, single-target drugs developed over the past decades 

(Butcher, 2005). Previously, the reductionist approach to drug development has 

resulted in many successful single-target drugs. Single target drugs, however, 

are less able to combat the complex pathologies of inflammatory diseases and 

cancer, which are regulated by multiple and often partly redundant molecular 

inputs (Leung et al., 2012). Hence, single target drugs are sometimes used in 

combination which each other. 

The last decade has seen enormous advances in the ‘omics’ technologies and the 

explosion of public databases for molecular interaction data (Kwoh and Ng, 

2007). These data pose challenges of representation and analysis. This period 

has also seen the emergence of the concept of ‘Systems Biology’. Systems 

biology adopts a holistic approach integrating experimental and computational 

research to investigate biological systems and this is particularly useful in 

understanding complex diseases such as acute pancreatitis, where a number of 

biological processes and pathways are involved. Spatial and temporal variability 

provide useful information regarding a system and are particularly important in 

a systems biology approach (Ahn et al., 2006). The analyses of the genetic 

profiles of various complex diseases such as lymphoma (Rosenwald et al., 

2002), breast cancer (Zhang et al., 2003) and lung cancer (Au et al., 2004) have 

shown us that seemingly single phenotypes can have multiple etiologic and 

pathologic processes underlying them, which in turn can impact prognosis and 

response to therapeutic strategies (McCarthy et al., 2013, Gustafsson et al., 

2014, Hagg et al., 2009). The ‘MammaPrint’ is a commercially available 

diagnostic biomarker product to stratify breast cancer based on gene 
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expression profiling (Kittaneh et al., 2013). A disease module-based approach to 

drug discovery in rheumatoid arthritis (Okada et al., 2014) and a combinatorial 

approach integrating mathematical models and high-throughput data have been 

used to generate disease-specific models for the identification of drug targets in 

tuberculosis (Rienksma et al., 2014). ‘Systems medicine’ uses spatial and 

temporal information with a view to achieving a holistic approach to an 

individual. In future, optimal treatment of diseases is likely to be based on 

‘personalised medicine’ (Ahn et al., 2006) as evidenced by the optimisation of 

warfarin-based anticoagulant therapy using genotyping (Pirmohamed et al., 

2013). Adopting a ‘Systems’ approach is likely to increase the possibility of 

developing more effective drugs with an improved safety profile, as well as 

developing multi-target drugs (Schrattenholz et al., 2010).  

 

1.7 The extracellular matrix 

The extracellular matrix (ECM) is a three-dimensional component of the 

microenvironment containing cells and bioactive molecules and lies between 

the plasma membranes of cells. The ECM is a dynamic space and plays an 

important role in homeostasis. It acts as a reservoir for bioactive molecules such 

as growth factors, cytokines and so on. Its biophysical and biochemical 

properties vary in health and disease (Hynes, 2009). There is an abnormal 

accumulation of ECM in inflammation and cancer that increases the stiffness of 

the tissue and leads to increased tissue hypoxia (Kong and Mooney, 2007). The 

altered ECM may also affect the transmission of bioactive molecules in the 



 17 

microenvironment and may thereby influence cell signalling (Duchesne et al., 

2012).  

Extracellular proteins, including those of the ECM, are suggested to have played 

a central role in vertebrate evolution (Huxley-Jones et al., 2009). A genome-

wide analysis by Vogel and Chothia has shown that these proteins expanded 

significantly with a concomitant expansion in their contribution to function as 

the biological complexity of organisms increased (Vogel and Chothia, 2006).  

Subsequently, Ori et al. demonstrated that within the extracellular proteins 

those that bind to heparin, form an important integrated functional network 

(Ori et al., 2011). Thus, the ECM could constitute an important repository for 

biomarker discovery and drug development. In AP, the regenerative response to 

the damaged pancreas is determined by a balance between the synthesis and 

degradation of ECM. Various constituents of the ECM play important roles in 

maintaining this balance. Transforming growth factor beta 1 (TGF1) promotes 

angiogenesis, stimulating the production of fibronectin and collagen (Border 

and Noble, 1994, Nakamura et al., 2007). It also reduces the synthesis of 

proteases and increases the production of protease inhibitors (Sporn and 

Roberts, 1992)  and can induce fibrosis. Matrix metalloproteinase-2 (MMP-2) 

has been shown to promote healing following an attack of AP (Kihara et al., 

2001). 

 

1.8 Heparan sulfate and heparin 

1.8.1 Structure 

Heparan sulfate (HS) is a linear sulfated polysaccharide expressed by most 
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animal cells (Xu and Esko, 2014). Structurally, HS contains a characteristic 

disaccharide-repeating unit (Fig. 1.1) and belongs to the family of 

glycosaminoglycans (GAG). The basic building block consists of β1–4-linked D-

glucuronic acid (GlcA) and α1–4-linked N-acetyl-D-glucosamine (GlcNAc). HS 

chains have a molecular weight between 20 to 100 kDa and typically consist of 

50 to 250 disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine.  

Figure 1.1 The disaccharide units of heparan sulfate and heparin (A) the GlycA β 1-

4 GlcNAc unit, which is the initial product of polymerisation.  (B) N-

deacetylation/N-sulfation of the glucosamine marks the disaccharide unit for further 

modification, including epimerisation of GlcA to IdoA and O-sulfation at C2 of the 

IdoA, C6 of GlcNS.  The trisulfated disaccharide makes up ~75% of heparin, 

whereas it is less frequent in the S-domains of heparan sulfate, which are less 

sulfated. 
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The formation of HS chains is initiated by the formation of a tetrasaccharide 

linkage region, synthesized by stepwise addition of xylose, followed by two 

galactose units and a glucuronic acid residue to a serine residue in the core 

protein. The first N-acetyl-glucosamine residue is then transferred to the 

linkage region, followed by extensive addition of glucuronic acid and N-acetyl-

glucosamine units in alternating sequence. The nascent GAG chain is modified 

by sulfotransferases and an epimerase. First, some of the N-acetylglucosamine 

residues are N-deacetylated and N-sulphated by a dual-activity N-deacetylase/ 

N-sulphotransferase enzyme, using 3′-phosphoadenosine-5′-phosphosulphate 

as sulphate donor. The partially N-sulfated polysaccharide is then acted upon by 

glucuronyl C5-epimerase. This converts glucuronic into iduronic acid residues. 

The modification process is completed through 6-O- and 3-O-sulfation of 

glucosamine units.  At each step only a fraction of substrates are modified which 

is responsible for considerable sequence diversity in HS chains. 

These modification reactions all depend on the presence of N-sulfated 

glucosamine; that is they occur on the N-sulfated disaccharide unit or on the 

adjacent unit.  There are four N-deacetylase/ N-sulfotransferase enzymes 

encoded in the human genome, but they all have in common the property of 

modifying blocks of N-sulfated glucosamine, with N-deacetylase/ N-

sulfotransferase modifying very long blocks and the others leaving substantial 

tracts of unmodified disaccharides.  The consequence is that heparan sulfate has 

a domain structure.  From the tetrasaccharide linker there is an unmodified 

domain, termed NA (N-acetylated).  This is followed by a transition domain, 

where between one in two and one in three disaccharides is N-sulfated (termed 

NAS domain) and an S-domain (sulfated), where each glucosamine is N-sulfated. 
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The S-domain is flanked on the non-reducing end by another NAS domain, 

which is followed by an NA domain and so on.  The S domains are the most 

heavily sulfated. 

 After secretion to the cell exterior, the HS chains may be edited through SULF-

catalysed 6-O-desulphation. HS chains are structurally dynamic and change with 

time and cellular physiology (Lindahl and Lindahl, 1997, Feyzi et al., 1998, 

Jayson et al., 1998). Characteristic differences in the structure of HS have been 

demonstrated with certain diseases, age and transition to malignancy (Lindahl 

and Lindahl, 1997, Lindahl et al., 1995). The factors that control the biosynthetic 

machinery in the Golgi and so determine the size and composition of HS chains 

in different cells and at different times are yet to be unraveled.  

Heparin is used as an experimental proxy for cellular heparan sulfate, because it 

resembles a very large S-domain, but is somewhat more sulfated even than 

these, due to its synthesis being uniquely driven by N-deacetylase/ N-

sulphotransferase-1. Heparin is the largest drug in production worldwide (Xu 

and Esko, 2014).   

 

1.8.2 Heparan sulfate proteoglycans 

Heparan sulfate proteoglycans (HSPGs) consist of a core protein with one or 

more covalently linked HS chains. There are 17 HSPGs that have been identified, 

which reside either in the plasma membrane or in the extracellular matrix. It is 

not yet clear whether the core protein influences the structure of HS (Xu and 

Esko, 2014).  
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1.8.3 Heparin-binding proteins 

Proteins that bind to heparin at physiologically relevant ionic strength and pH, 

are called heparin-binding proteins (HBPs). Approximately 435 HBPs are 

known (Ori et al., 2011). HBPs belong to a wide range of functional categories 

ranging from cytokines and chemokines to enzymes and matrix proteins. They 

can bind to more than one sequence in HS and may also bind to other 

glycosaminoglycans (GAGs) such as chondroitin sulfate, dermatan sulfate and 

hyaluronic acid (Xu et al., 2012).  

 

1.8.4 Interaction between HS and HBPs 

1.8.4.1 Molecular basis of binding 

 
At the molecular level, ionic bonding is an important feature of the interaction 

of HBPs with HS and other sulfated glycosaminoglycans. Thus, the negatively 

charged sulfate and carboxyl groups of HS interact with positively charged 

lysine and arginine residues in the heparin-binding proteins (HBPs). Polar 

residues and the amide of the peptide backbone also interact with these charged 

groups on the sugar, as well as participating in hydrogen bonds with the various 

oxygen and hydrogen atoms of HS (Ori et al., 2008). Although the kinetics of 

HBP binding to HS are dominated by the ionic interactions, energetically these 

are not necessarily dominant, evidenced by the lack of correlation between the 

concentration of electrolytes required to abrogate binding and binding affinity 

(Ori et al., 2008, Xu et al., 2012). One reason is that HBP binding to HS often 

causes substantial conformational change in the protein, as seem, for example, 
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by differential scanning fluorimetry and circular dichroism (Uniewicz et al., 

2010, Xu et al., 2012, Uniewicz et al., 2014, Xu et al., 2013) and classically seem 

in the interaction of Antithrombin-III (AT-III) with anti coagulant heparin 

(Evans et al., 1992, Huntington, 2003). 

The specificity and selectivity of the interactions between HBPs and HS is the 

matter of some debate.  The high specificity of AT-III for a pentasaccharide 

sequence with a 3-O sulfate (the basis of heparin's anticoagulant activity) has 

led to the argument that many HBPs will possess a similar "high affinity" site in 

HS, but the sequence complexity of HS means that these have yet to be 

discovered. At the other extreme is the view that the interaction of HBPs is 

simply due to charge and that there is little selectivity or specificity, as found 

with thrombin, and so the interaction of AT-III is an exception. A more 

pragmatic view is that all HBPs can bind a range of structures, even AT-III, with 

varying affinity and it is possible to generate on, for example, an unrelated plant 

polysaccharide, functional, high affinity binding structures for HBPs (Rudd et al., 

2010). Analysis of a group of evolutionarily related HBPs, the fibroblast growth 

factors (FGFs), has suggested that there is indeed specificity in the structures 

recognised by FGFs in HS, and though this is not absolute (so 1;1), it has arisen 

through natural selection and so likely to be of functional significance (Xu et al., 

2012).  

 

1.8.4.2 Functions of interaction with HS  

The binding of HBPs to HS has many functions, which include protein 

stabilisation, scaffolding two proteins so they may interact more effectively, 
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including formation of ligand-receptor complexes, and localisation and 

transport.  

The conformational change often observed upon HS binding increases protein 

stability (the basis of the above differential scanning fluorimetry assay) 

(Uniewicz et al., 2010, Xu et al., 2012). This improves the life span of some HBPs 

by preventing their degradation by proteases in the extracellular environment 

and is likely also important in the highly reactive environments seen for 

example, in inflammation.  

The scaffold provided by HS can also act as a catalyst of encounters to promote 

more effective interactions of HBPs with one another. The combination of 

conformational change and catalysis of encounters is illustrated by the 

consequences of the binding of AT-III to heparin. This induces a structural 

rearrangement in AT-III that results in the expulsion of a loop containing a 

protease-reactive site; since the AT-III targets also bind heparin, the degrees of 

freedom of the collision between AT-III and its targets are reduced.  Together, 

these two effects dramatically increases the inhibitor activity of AT-III against 

coagulation factors thrombin by 9000-fold and Factor X by 17000-fold, 

respectively (Whisstock et al., 2000). Different crystal structures of AT-III 

complexed with different saccharides and in a ternary complex with its 

substrates have been demonstrated to elucidate this mechanism (Imberty et al., 

2007, Whisstock et al., 2000). HS may also be considered an allosteric 

modulator of HBPs, as evidenced by the crystallization studies of HS-dependent 

conformational change of AT-III (Langdown et al., 2009).  

A further example of a scaffolding function is provided by the HS-dependent 

ligands (growth factors, morphogens, chemokines and cytokines).  To generate 
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signals through their cognate membrane receptor, these have to form a ternary 

complex that also includes HS.  The FGFs provide the paradigm for what is 

termed the “co-receptor” function of HS. Thus, the stimulation of biological 

processes such as cell proliferation requires the formation of a ternary complex 

of FGF, FGF receptor (FGFR) and HS (Yayon et al., 1991, Rapraeger et al., 1991). 

In this complex, HS binds both the FGF ligand and the FGF receptor 

(Schlessinger et al., 2000).  In the absence of HS, though the FGF ligand still 

binds its cognate receptor, signalling kinetics are very different and in this 

instance, cell proliferation is not stimulated (Zhu et al., 2010) 

HS will act as a tether, and so immobilise HBPs and concentrating them at a 

specific location in the extracellular space, which is likely important for 

regulating and directing the activity of HBPs that are enzymes. Such binding is 

also critical for the formation of gradients of HBPs that are signalling molecules, 

so cytokines, chemokines, growth factors and morphogens. For example, recent 

work has demonstrated that the transport of FGF-2 in pericellular matrix is 

controlled by its binding to HS (Duchesne et al., 2012). Indeed, disruption of the 

interactions of such HBPs with HS has been found to have a profound effect on 

cell communication in development, homeostasis and disease, in part due to the 

disruption of the transport of these effectors from source to target cell. 

 

1.8.5 Roles of HS, HSPGs and HBPs in health and disease 

HS and HSPGs play critical roles in embryogenesis and the development of 

various organs (Maeda et al., 2011, Miner, 2011, Thompson et al., 2010). The 

absence of HS is not compatible with life (Lin et al., 2000, Habuchi et al., 2007). 
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The targeted deletion of genes involved in the biosynthesis of HS results in 

embryonic and perinatal lethality in mice. The homozygous deletion of Ext1 or 

Ext2 genes, which encode HS polymerase enzymes, causes failure of 

gastrulation, while the heterozygous condition (Ext2) is associated with the 

development of exostoses and multiple cartilage deformities (Wang et al., 2005, 

Fuster et al., 2007). Loss of glucuronyl C5-epimerase is lethal for neonates and 

its targeted disruption caused synthesis of HS chains devoid of IdoA with a 

resultant loss of kidneys, poorly inflated, immature lungs and skeletal 

abnormalities (Li et al., 2003). The unique structure of HS affords it the ability to 

bind to variety of proteins thereby influencing their activity (Ori et al., 2008). 

HSPGs create preferential diffusive paths for their ligands by altering the shape 

of morphogen gradient residues thereby influencing diffusivity through the ECM 

(Lander, 2007), as evidenced directly in fibroblast pericellular matrix 

(Duchesne et al., 2012). The elucidation of the mechanism of activation of AT-III 

was the first example of how heparin influences protein function by inducing 

conformational change (Langdown et al., 2009). Many HBPs are important 

signalling molecules in the microenvironment and regulate fundamental 

biological processes such as cell adhesion, differentiation, proliferation and 

migration, organogenesis, lipid metabolism, inflammation and cancer (Ori et al., 

2011). On a genome-wide basis, HBPs have been shown collectively to play a 

pivotal role in driving biological complexity and influence fundamental 

processes underlying complex diseases (Ori et al., 2011).  Thus, the 

identification of HBPs and the understanding of HS-HBP interactions would be 

useful in developing heparin-based and HBP targeted therapeutic interventions.  

This has already been initiated in the field of regenerative medicine, in the 
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treatment of non-healing ulcers (Barbier-Chassefiere et al., 2009).  

 

1.8.6 Therapeutic potential of HS-HBP interactions 

Heparin is the largest drug by weight in production today and has been in 

clinical use for decades (Xu and Esko, 2014). There is great potential for drug 

development based on HS-HBP interactions in cancer and inflammation 

(Coombe and Kett, 2005). The phosphosulfomannan PI-88, which is based on a 

heparin-like structure, was designed with a view to targeting a number of HBPs 

in cancer and was tested as such in clinical trials in cancer patients (Yu et al., 

2002). More recently, its heparanase inhibitory activity, which will be anti-

metastatic and anti-angiogenic, has provided the basis for Phase III trials in 

post-resection hepatocellular carcinoma (Kudchadkar et al., 2008, Liu et al., 

2009).  Some drugs have been developed to specifically target single HBPs. A 

drug that has been developed using this approach is Fondaparinux, which is the 

first synthetic heparin (Bauer, 2003). This drug does not bind to platelet factor 

4 and does not cross react with antibodies generated as a result of heparin-

induced thrombocytopenia, thereby eliminating many of the side effects of 

heparin therapy (115). SST0001 is a modified heparin derivative that has 

shown anti-angiogenic activity in the preclinical setting and has recently 

entered Phase I clinical trials in multiple myeloma (Ramani et al., 2013). PG545 

is a synthetic HS mimetic has been shown to have antitumour and 

antimetastatic properties in a breast carcinoma model (Hammond et al., 2012). 
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1.9 Proteomics as a tool to investigate the extracellular matrix in acute 

pancreatitis 

Global strategies such as proteomics, along with genomics and transcriptomics 

present a novel methodological approach to investigating disease and have been 

used in AP (Anderson and Anderson, 1998, Pociot and Karlsen, 2002, Buchholz 

et al., 2001). However, mRNA levels often do not correlate to those of the 

corresponding proteins (Schwanhausser et al., 2011). Extensive protein 

analyses are, therefore, necessary to gain comprehensive information of cellular 

transactions and correlate them with disease (Lohr and Faissner, 2004). Protein 

analyses carry the advantage of representing the actual metabolic state of the 

cell, however, they are challenging (Lohr and Faissner, 2004). While serum 

proteomic analysis of ECM proteins in AP has been undertaken (Lohr et al., 

1999), tissue proteomics remains largely underexplored due to the technical 

challenges associated with it (Wilson, 2010).  

 

1.10 Hypothesis and outline of thesis 

It is hypothesized that the high level of connectivity of HBPs demonstrated in 

previous genome-wide studies would also be true in the normal pancreas and in 

some of its disease states. If this hypothesis is true, by virtue of their binding to 

heparin, HBPs would provide an easily accessible sub-proteome, which could be 

mined for biomarkers and drug targets in pancreatic diseases. The first 

objective of this thesis is to undertake a comprehensive meta-analysis of mRNA 

datasets in the major pancreatic diseases. Chapter 2 describes this in silico study 

(Nunes et al., 2013). While this work provides strong support for the 
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hypothesis, it assumes mRNA to be representative of translation and that the 

existing list of HBPs (Ori et al., 2011) to be reasonably representative of those 

expressed in the pancreas.  Both these assumptions could undermine the 

validity of the conclusions drawn from the meta-analysis of mRNA. 

 

Consequently, the second objective of this thesis is to implement an affinity 

proteomic strategy that would tackle in a systematic way the identification of 

new HBPs in the normal pancreas (NP) and in AP. Biases often derive from 

experimental compromises necessary to ensure the high throughput of the 

procedures (Mackay et al., 2007). Further biases can arise from the disruption 

of cellular anatomical structures, typically in pull-down or affinity experiments 

that are performed on cell extracts. Also in this case, the information on the 

original sub-cellular localisation of interacting partners is lost, increasing, 

therefore, the probability of observing spurious interactions not likely to occur 

in vivo. Bearing this in mind, in Chapter 3, an affinity proteomic strategy for the 

identification of HBPs in murine normal pancreas and experimental acute 

pancreatitis was implemented. The strategy was focused on the cell surface and 

extracellular proteome derived from mouse pancreas extracts, the rationale 

being that targeting the compartment where HSPGs are expressed increases the 

probability of identifying more relevant binding partners, likely to co-localise 

with HS in vivo. Despite the need for validation of the newly described 

interactions, the identification of new heparin/HS binding partners can help to 

unravel new molecular circuits involving HSPGs. This chapter also describes the 

construction and network-level analysis of the heparin interactome, i.e. the 

protein-protein interactions of the HBPs. The heparin interactome was built 
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using the HBPs from the heparin affinity proteomics experimental data. This 

dataset was then used to investigate the network properties, and functional and 

structural features that characterise the heparin interactome. Network level 

approaches have been widely used in the last decade for the analysis of protein-

protein interactions (PPIs) (Jeong et al., 2001), transcription factor binding 

specifities (Grove et al., 2009), metabolic pathways (Ideker et al., 2001), and 

signalling pathways (Linding et al., 2007), revolutionising the representation 

and interpretation of biological processes. The network-level analysis provides 

important general functional insights on HBPs that could be extremely valuable 

in the design of future experiments, and also exemplifies a new way of 

investigating protein-GAG interactions that has the potential for widespread 

application in the field of glycobiology. 

Chapter 4 discusses the findings of this thesis and compares the in silico and 

experimental work. It focuses on some of the key pathways relevant to 

pancreatic homeostasis in health and in acute pancreatitis and explores the 

potential role of candidate HBPs as biomarkers and drug targets.  

The main body of this thesis has been presented in the form of 2 manuscripts. 

The in silico work has been published (Nunes et al., 2013) and has been included 

in Chapter 2. The proteomics work is a manuscript in preparation and has been 

included in Chapter 3. The papers included are in the journal-specific submitted 

format with modifications for the purpose of convenience. The font style and 

size are identical to rest of the thesis text. Sections, tables and figures have been 

numbered and included in the table of contents. As the supplemental data for 

the manuscript included in Chapter 3 are large, these have been copied to the 

attached CD. The proteomics data has been uploaded into PRIDE database 
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(http://www.ebi.ac.uk/pride/archive/)(Vizcaino et al., 2013). 

http://www.ebi.ac.uk/pride/archive/
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Chapter 2 – In silico analyses 

 

2.1 Introduction 

Extracellular proteins have played a central role in vertebrate evolution 

(Huxley-Jones et al., 2009). A genome-wide study has shown that these proteins 

showed a significant expansion with a concomitant expansion in function as the 

complexity of organisms increased (Vogel and Chothia, 2006). It was 

subsequently shown that among the extracellular proteins, HBPs form 

important functional modules within the extracellular space (Ori et al., 2011).  

This in silico analysis was undertaken to test the first hypothesis (Chapter 1; 

1.9) that HBPs would form important functional modules in the extracellular 

space when investigating the normal pancreas (NP) and major pancreatic 

diseases namely acute pancreatitis, chronic pancreatitis and pancreatic ductal 

adenocarcinoma. If this is true, HBPs, by virtue of their binding to heparin, 

would provide an easily accessible repository within the extracellular space for 

biomarker discovery and drug development. In this study, we used mRNA 

expression as a proxy for protein and identified putative HBPs in NP, AP, CP and 

PDAC. Network analysis of the putative HBP interacting networks showed that 

HBPs form important, well-connected modules within the extracellular space in 

the normal pancreas, AP, CP and PDAC. The analysis also identified HBP 

candidates as potential biomarkers and drug targets in these diseases (Nunes et 

al., 2013). These candidates were further investigated using a literature-mining 

tool, Pubmatrix (Becker et al., 2003), to assign functional relevance to HBPs in 

the major pancreatic diseases. While this work provides strong support for the 
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hypothesis, it assumes mRNA to be representative of translation and that the 

existing list of HBPs to be reasonably representative of those expressed in the 

pancreas.  Building on the results from the in silico analysis, it was necessary to 

implement an affinity proteomic strategy that would tackle in a systematic way 

the identification of new HBPs in the normal pancreas (NP) and in the major 

pancreatic diseases. In the first instance, it was decided to perform the 

proteomics experiments in NP and an experimental model of one of the major 

pancreatic diseases. As AP affords the benefit of several time-tested 

experimental models (Chapter 1; 1.4), it was decided to undertake the affinity 

proteomics experiments in NP and experimental murine AP (Chapter 3). 

 

2.2 Various terms explained 

 

2.2.1 Node  

A node is a gene, mRNA or protein. In this study it refers to an HBP. 

 

2.2.2 Edge  

An edge is an interaction between 2 nodes. 

 

2.2.3 Degree 

The most elementary characteristic of a node is its degree or connectivity. This 

is denoted by ‘k’ and informs about the number of links a node has to other 

nodes, e.g., in an undirected network (Fig. 2.1A), node A has degree k = 4. In 
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directed networks in which each edge has a selected direction (Fig 2.1B) there is 

an incoming degree, kin, which represents the number of edges that point to a 

node. Similarly, an outgoing degree kout, denotes the number of edges that start 

from it. Node A has kin = 4 and kout = 1 (Fig 2.1B). An undirected network with N 

nodes and L links or edges is characterized by an average degree <k> = 2L/N 

(where <> denotes the average). 

 

2.2.4 Interactome  

An interactome is an interacting network. 

 

2.2.5 Plugin 

A plugin is a tool used to analyse a network. 

 

2.2.6 Number of connected components 

In undirected networks, two nodes are connected if there is a path of edges 

between them. Within a network, all nodes that are pairwise connected form a 

connected component. The number of connected components indicates the 

connectivity of a network – a lower number of connected components suggests 

a stronger connectivity (Fig. 2.2). 

 

2.2.7 Clustering coefficient 

If ‘n’ is the number of nodes, the clustering coefficient is a ratio N / M, where ‘N’ 

is the number of edges between the neighbours of n, and ‘M’ is the maximum 
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number of edges that could possibly exist between the neighbors of n. The 

clustering coefficient of a node is always a number between 0 and 1. 

 

 

Figure 2.1: Network connectivity A) in an undirected network, node A has degree k = 

4. B) in a directed network Node A has an incoming degree, kin = 4 and an outgoing 

degree, kout = 1. 

 

The network clustering coefficient is the average of the clustering coefficients 

for all nodes in the network (Barabasi and Oltvai, 2004, Watts and Strogatz, 

1998). Nodes with less than two neighbors are assumed to have a clustering 

coefficient of 0.  

 

 
Node 

Node 

Edge / link 

Edge / link 

 

  

 

  

  

 

  

 A 

E 

D 

C 

F 

B 

A 

B C 

D E 

F 

A B 



 35 

In undirected networks, the clustering coefficient Cn of a node n is defined by 

the equation Cn = 2en/(kn (kn-1)), where kn is the number of neighbors of n and en 

is the number of connected pairs between all. 

In directed networks, the equation is Cn = en/(kn (kn-1)) neighbors of n. 

 

 

Figure 2.2: Number of connected components A) Node A, which is connected to 

Node B via 2 edges, is less well connected as compared to B) Node E, which is 

connected to Node B via a single edge 

 

2.2.8 Gene ontology 

Gene ontology (GO) is a major bioinformatics initiative to standardize gene and 

gene product attributes across species and covers three major domains namely 

biological process (BP), cellular component (CC) and molecular function (MF).  

 

 
Node 

Node 

Edge / link 

Edge / link 

 

 

  
A C 

D 

B 

2 

1 

 

  
E C 

B 

1 

A B 



 36 

2.2.9 Canonical pathway 

Canonical pathways are well characterized metabolic and cell signalling 

pathways that have been curated from original publications. These do not 

change according to data input. 

 

2.3 Bioinformatics pipeline 

A number of bioinformatics resources were used for network construction and 

data analysis (Fig. 2.3) 

 

 
 
 

Figure 2.3: Bioinformatics pipeline used to analyse the role of HBPs in the NP, AP, 

CP and PDAC. Networks of HBPs were constructed using interactions from the 

STRING database. Canonical pathways analyses (Ingenuity Pathways Analysis), 

Gene ontology enrichment and top clusters using AllegroMCODE (Cytoscape 2.8.1) 

were some of the bioinformatics tools used to identify potential biomarkers and drug 

targets. 
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2.4 Manuscript: The heparin-binding protein interactome in pancreatic 

diseases 

Nunes QM, Mournetas V, Lane B, Sutton R, Fernig DG, Vasieva O. 
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2.4.1 Abstract 

 

Background: The cellular microenvironment plays an important role in the 

regulation of homeostasis and is a source of potential biomarkers and drug 

targets. In a genome-wide analysis the extracellular proteins that bind to 

heparin (HBPs) have been shown to form highly modular and interconnected 

extracellular protein regulatory networks. Using a systems biology approach, 

we have investigated the role of HBP networks in the normal pancreas and 

pancreatic digestive diseases. 

 

Methods: Lists of mRNAs encoding for HBPs associated with the normal 

pancreas (NP), acute pancreatitis (AP), chronic pancreatitis (CP) and pancreatic 

ductal adenocarcinoma (PDAC) were obtained using public databases and 

publications. Networks of the putative protein interactomes derived from 

mRNA expression data of HBPs were built and analysed using cluster analysis, 

gene ontology term enrichment and canonical pathways analysis. 

 

Results: The extracellular heparin-binding putative protein interactomes in the 

pancreas were better connected than their non heparin-binding counterparts, 

having higher clustering coefficients in the normal pancreas (0.273), acute 

pancreatitis (0.457), chronic pancreatitis (0.329) and pancreatic ductal 

adenocarcinoma (0.269). ‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ 

appears to be a significant canonical pathway in pancreatic homeostasis in 

health and disease with a large number of important HBPs. 
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Conclusions: Our analyses clearly demonstrate that HBPs form disease-specific 

and highly connected networks that can be explored for potential biomarkers 

and as collective drug targets via the modification of heparin binding properties.  
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2.4.2 Introduction: 

The microenvironment of tissue matrix, cells and bioactive molecules 

plays an important role in the regulation of biological homeostasis. The 

extracellular matrix (ECM) is a dynamic three-dimensional medium and its 

biophysical and biochemical properties vary in health and disease (Hynes, 

2009). There is an abnormal accumulation of ECM in inflammation and cancer 

that increases the stiffness of the tissue and leads to increased tissue hypoxia 

(Kong and Mooney, 2007). The altered ECM may also affect the transmission of 

bioactive molecules in the microenvironment and may thereby influence cell 

signalling (Duchesne et al., 2012). Within the microenvironment of the 

pancreas, the pancreatic stellate cell (PSC) is a specialised cell, which plays an 

important role in maintaining the architecture of the pancreas and the 

composition of the ECM. The PSC secretes excessive amounts of ECM proteins in 

pancreatic diseases, which increase fibrosis within the tissue and contribute to 

ECM stiffness (Apte et al., 2012). 

Extracellular proteins, including those of the ECM, are suggested to have played 

a central role in vertebrate evolution (Huxley-Jones et al., 2009). Moreover, a 

genome-wide analysis by Vogel and Chothia has shown that these proteins 

expanded significantly with a concomitant expansion in their contribution to 

function as the biological complexity of organisms increased (Vogel and Chothia, 

2006). Subsequently, Ori et al. demonstrated that within the extracellular 

proteins those that bind to heparin, form an important integrated functional 

network (Ori et al., 2011). Heparin is used as an experimental proxy for the 

related cellular heparan sulfate (HS) for practical reasons of convenience and 
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cost and heparin affinity chromatography affords a tool to analyse HBPs. HS is a 

linear polysaccharide in the ECM containing a characteristic disaccharide-

repeating unit and belongs to the family of glycosaminoglycans. HS chains 

attach to core proteins to form HS proteoglycans and are major components of 

the pericellular matrix/glycocalyx and of the ECM (Ori et al., 2008). Many HBPs 

are important signalling molecules in the microenvironment and regulate 

fundamental biological processes such as cell adhesion, differentiation, 

proliferation and migration (Ori et al., 2011).  

The pancreas has important exocrine and endocrine functions that 

develop from endodermal cells in the embryonic foregut (Zaret and Grompe, 

2008). AP, CP and PDAC are major diseases of the pancreas that pose diagnostic 

and therapeutic challenges. AP is acute inflammation of the pancreas and is 

mainly caused by gallstones and alcohol (Pandol et al., 2007). Although most 

episodes are mild and self-limiting, the severe form of the disease is associated 

with a high mortality (Schneider et al., 2010). In the absence of specific 

treatments for AP, therapy is mainly supportive. CP is a progressive 

inflammatory disease of the pancreas and a known risk factor for pancreatic 

cancer (Lowenfels et al., 1993). PDAC and CP present with similar signs and 

symptoms and are associated with an intense fibrosis. These pose a diagnostic 

dilemma, as they are difficult to distinguish clinically and radiologically 

(Johnson and Outwater, 1999). PDAC is a major cause of cancer death and is one 

of the most difficult cancers to treat (Thomas et al., 2010). Surgical resection 

continues to form the mainstay of treatment in about 15-20% of patients, the 

rest presenting with unresectable disease (Alexakis et al., 2004). There is a need 
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to develop reliable biomarkers for early detection and more effective drugs in 

the management of PDAC 

On a genome-wide basis, HBPs have been shown collectively to play a 

pivotal role in driving biological complexity and influence fundamental 

processes underlying complex diseases (Ori et al., 2011). We hypothesized that 

HBPs would form well-connected modules, which play important regulatory 

roles in the extracellular space in the normal pancreas and in some of its disease 

states. If this hypothesis were true, by virtue of their binding to heparin, HBPs 

would provide an easily accessible sub-proteome, which could be mined for 

biomarkers and drug targets in pancreatic diseases. 

Using mRNA expression as a proxy for protein, we have identified the 

putative HBPs in normal pancreas (NP) and in three pancreatic diseases (AP, CP 

and PDAC).  Analyses of the putative interactomes of the HBPs demonstrate that 

they indeed form an important integrated functional network. Many of the 

putative HBPs are recognised as regulating fundamental biological processes 

underlying pancreatic physiology and pathology. The analyses also identify 

potential biomarkers and drug targets in pancreatic diseases, such as fibroblast 

growth factor receptor -2 (FGFR2), which may be explored in pancreatic stellate 

cell (PSC) targeted therapy in PDAC. 
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2.4.3 Materials and methods: 

2.4.3.1 Building putative protein interactomes for the pancreas 

Lists of genes and gene products associated with NP, AP, CP and PDAC 

Lists of mRNAs and proteins associated with NP, CP and PDAC were 

obtained using the Pancreatic Expression Database. This database is a 

comprehensive open-access mining tool for large-scale genomic, transcriptomic 

and proteomic datasets (Chelala et al., 2007, Cutts et al., 2011). The lists were 

generated using the filters ‘Normal Pancreas’, ‘Chronic Pancreatitis’, and 

‘Pancreatic Ductal Adenocarcinoma’. A list of genes associated with AP was 

obtained from the NCBI ‘Gene’ database using the search term “Acute 

Pancreatitis”.  

  

2.4.3.2 Lists of HBPs associated with NP, AP, CP and PDAC 

A list of 435 HBPs was obtained from supplementary information in Ori 

et al, 2011 (Ori et al., 2011). This list was built using a combination of literature 

curation, data retrieval from public databases and experimental data using an 

affinity proteomic approach. The ‘compare’ tool of Ingenuity Pathways Analysis 

(IPA, Ingenuity Systems, www.ingenuity.com) was used to generate lists of 

HBPs associated with NP, AP, CP and PDAC, derived from the IPA Knowledge 

Base, a repository of biological interactions and functional annotations that are 

reviewed regularly for accuracy. 
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2.4.3.3 Interactions and construction of networks of HBPs 

Lists of interactions between HBPs were obtained using the online 

database resource ‘Search Tool for the Retrieval of Interacting Genes’ (STRING). 

STRING 9.0 is a database of known and predicted functional interactions and 

served as a ‘one-stop’ comprehensive resource that could be easily used with 

Cytoscape (Szklarczyk et al., 2011). The interactions in STRING are provided 

with a probabilistic confidence score that is an estimate of how likely an 

interaction describes a functional linkage between two proteins. A higher score 

indicating a higher confidence is given when more than one type of information 

supports a given association. Only interactions with the highest confidence 

score (0.900 and above) were used to build networks using Cytoscape 2.8.1, 

which is an open source, Java based bioinformatics package for biological 

network visualization (Smoot et al., 2011). The resulting networks were termed 

‘putative protein interactomes’, because the HBP lists were derived from mRNA 

expression data and the interactions between the listed entities were retrieved 

from STRING. As for nearly any expression dataset used for in silico network 

analysis, there was uncertainty with respect to the actual presence of the 

expressed proteins and the potential interactions in a cultured cell or in a tissue. 

However, correspondence between the major protein and mRNA expression 

pools and the resistance of general network properties to slight variations in the 

connectivity of each component support the legitimacy of this widely used 

approach (Cirillo, 2012). In the putative protein interactomes, HBPs or ‘nodes’ 

that are unique to a dataset are coloured red, while the rest of the HBPs are 

coloured grey. Black lines connecting the HBPs denote the interactions or 

‘edges’. 
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2.4.3.4 Network Analysis 

2.4.3.4.1 Network parameters 

Additional ‘plugins’ or tools to analyse networks are available in Cytoscape. The 

networks were treated as undirected and the following parameters were 

computed using the ‘NetworkAnalyzer’ plugin (Assenov et al., 2008): diameter, 

average number of neighbours, number of connected pairs of nodes, node 

degree, average clustering coefficient, topological coefficient, and shortest path 

length. We used the ‘clustering coefficient’ and ‘number of connected 

components’ as measures of network connectivity. Clustering coefficient is a 

ratio of the number of edges between neighboring nodes and the maximum 

number of edges that could possibly exist between them. The clustering 

coefficient of a node is always a number between 0 and 1. The clustering 

coefficient of a network is the average of the clustering coefficients for all nodes 

in the network. In undirected networks, two nodes are connected if there is a 

path of edges between them. Within a network, all nodes that are connected 

pairwise form connected components. A high clustering coefficient and a low 

number of connected components are present in well-connected 

networks(Barzel and Biham, 2009). Clusters, or highly interconnected hubs of 

nodes within the networks, were identified with the ‘AllegroMCODE’ plugin. 

 

2.4.3.4.2 Comparing the connectivity of the heparin-binding putative protein 

interactomes with other pancreatic putative protein interactomes 
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Clustering coefficients of extracellular putative protein interactomes in the 

normal and diseased pancreas were compared in order to ascertain if the 

heparin-binding putative protein interactomes formed important modules 

within the extracellular space in the pancreas. The lists of all extracellular 

proteins were extracted by applying filters based on Gene Ontology (GO) 

cellular component terms to the lists. This was performed using the ‘Database 

for annotation, visualization and integrated discovery’ (DAVID) and the GO FAT 

annotation. DAVID 6.7 is a bioinformatics resource that extracts biological 

meaning from gene / protein lists (Huang da et al., 2009). GO FAT is a subset of 

the GO term set that is created by filtering out the broadest ontology terms, so 

as not to overshadow more specific ones. The terms used were: GO:0005576 

(extracellular region), GO:0005615 (extracellular space), GO:003102 

(extracellular matrix- ECM) and GO:0005604 (basement membrane).  The non-

HBP lists were generated by subtraction of HBP names from the datasets of all 

extracellular proteins. The extracellular non heparin-binding putative protein 

interactome (Ec_not hepint) and the extracellular heparin-binding putative 

protein interactome (Ec_hepint) for NP, AP, CP and PDAC, were built using the 

interaction data retrieved from the STRING database and their clustering 

coefficients were compared. 

 

2.4.3.4.3 Comparison with random networks 

The heparin-binding putative protein interactomes (Ec_hepint) in NP, 

AP, CP and PDAC were each compared with 10 of their corresponding degree-

preserving randomised versions in order to determine whether the network 
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parameters arising from the interactions of the putative HBPs were random. 

This is a quality assurance exercise. The randomised networks 

(Ec_hepint_random) were generated, by shuffling the edges of the respective 

heparin-binding putative protein interactomes, using the ‘Random Networks’ 

plugin with Cytoscape. The average clustering coefficient of Ec_hepint was 

compared with the average clustering coefficient of the corresponding random 

network in NP, AP, CP and PDAC. A network is deemed to be well connected if 

its average clustering coefficient is significantly higher than that of its 

corresponding random networks.  

A Shapiro-Wilk test was performed to test if the clustering coefficients 

were normally distributed (data are considered to be normally distributed if 

p>0.05)(Henderson, 2006). The clustering coefficients of the various networks 

were then compared using the independent t-test; p<0.05 was considered to be 

significant. The statistical analyses were performed using SPSS version 20. 

 

2.4.3.5 Identification of potential biomarkers and therapeutic targets  

2.4.3.5.1 Canonical pathways analysis 

 Canonical pathways are well characterized metabolic and cell signalling 

pathways that have been curated from original publications and do not change 

according to data input. Canonical pathways analysis used the IPA library of 

canonical pathways to identify those that were most significant to each of the 

datasets of HBPs associated with NP, AP, CP and PDAC. The significance of the 

association between the datasets and the canonical pathway was measured by 

calculating the p-value using Fisher’s exact test to determine the probability of 
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the association between the HBPs in the dataset and the canonical pathway. 

Canonical pathways analysis is a useful tool, when used on its own or in 

conjunction with other tools such as the Cytoscape plugin AllegroMCODE, to 

identify potential biomarkers and drug targets. It also helps identify biological 

pathways that play important roles in homeostasis and complex diseases. 

 

2.4.3.5.2 Functional Analysis of HBPs 

Functional analyses of the datasets were performed using tools for GO 

term enrichment. GO is a major bioinformatics initiative to standardize gene 

and gene product attributes across species and covers three major domains 

namely biological process (BP), cellular component (CC) and molecular function 

(MF). GO term enrichment for the lists of HBPs associated with NP, AP, CP and 

PDAC was performed using DAVID and the GO FAT annotation. GO term 

enrichment provides biological context to the HBP datasets and so helps to 

identify potential biomarkers and drug targets. 
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2.4.4 Results:  

2.4.4.1 Building putative protein interactomes for the pancreas 

The HBPs were identified using the Pancreatic Expression Database, the 

NCBI ‘Gene’ database and a list of HBPs from Ori et al, 2011 (Ori et al., 2011). 

The lists of HBPs associated with NP (n= 115), AP (n= 31), CP (n=112) and 

PDAC (n=141) are in Supplementary Tables 1-4. A number of HBPs were 

uniquely associated with the NP (n=1), AP (n=16), CP (n=12) and PDAC (n=23) 

datasets in our study (Table 2.3.1). The lists of HBPs were used to obtain 

interactions from STRING, which were then imported into Cytoscape to build 

heparin-binding putative protein interactomes. As a result of the stringent 

criteria adopted, for interaction selection, some HBPs from the datasets in our 

study are notably absent from the interacting networks. The key features of the 

putative protein interactomes are illustrated with the HBPs identified in the 

PDAC-associated expression data (Figure 2.3.1).  HBPs or ‘nodes’ that are 

unique to the PDAC dataset in the study are coloured red, while the rest of the 

HBPs are coloured grey. Black lines connecting the HBPs denote the interactions 

or ‘edges’. The regulatory importance of these interactomes was quantified by 

network analysis. 

 

2.4.4.2 Network analysis 

The topological parameters of the heparin-binding putative protein 

interactomes associated with NP, AP, CP and PDAC were obtained using the 

‘NetworkAnalyzer’ plugin in Cytoscape. A high clustering coefficient compared 

with those of its corresponding random networks and a lower number of 
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connected components indicate a strong interconnectivity of a network (Dong 

and Horvath, 2007, Barzel and Biham, 2009).  HBPs form highly interconnected 

networks in the normal pancreas with four connected components and a high 

clustering coefficient of 0.273. The heparin-binding putative protein 

interactome (Ec_hepint) of the normal pancreas was better interconnected than 

its corresponding random network (Ec_hepint_random) and importantly, of the 

extracellular proteins minus the HBPs (Ec_not_hepint) (Figure. 2.3.2). This 

indicates that the HBPs indeed form a densely interconnected network module 

in the extracellular space in the normal pancreas. 

 

The heparin-binding putative protein interactomes in AP, CP and PDAC were 

also found to be highly interconnected with one, three and five connected 

components. They also have high clustering coefficients of 0.457, 0.329 and 

0.269 (Figure 2.3.2). Comparing the topological parameters of the HBP 

networks with the other protein networks in the pancreas, Ec_hepint in AP, CP 

and PDAC were also better interconnected than their corresponding random 

networks (Ec_hepint_random) and the extracellular non heparin-binding 

putative protein interactomes (Figure 2.3.2). Thus, as for NP, the heparin-

binding putative protein interactomes of AP, CP and PDAC also formed highly 

interconnected modules of extracellular proteins. 

 

To determine if the network parameters between HBPs arose randomly, 

the‘Random Networks’ plugin was used to perform shuffles on the heparin-

binding putative protein interactomes to generate degree-preserving random 

networks of HBPs (Ec_hepint_random) (Materials and Methods). The clustering 



 52 

coefficients of the various networks were normally distributed (Shapiro-Wilk 

test, Supplementary Table 5). In NP, AP, CP and PDAC the respective Ec_hepint 

had a higher clustering coefficient than the corresponding Ec_hepint_random 

(Figure 2.3.2).  Therefore, these analyses demonstrated that the interactions 

and network parameters for the NP, AP, CP and PDAC heparin-binding putative 

protein interactomes did not arise randomly. The dense networks of HBPs in 

normal and in pancreatic disease exhibit properties similar to highly connected 

networks, sometimes termed ‘small world’ networks, and indeed represent real 

and probably important functional modules (Watts and Strogatz, 1998).  

 

2.4.4.3 Identification of potential biomarkers and therapeutic targets 

Canonical pathways analysis, cluster analysis and GO enrichment were used to 

identify potential biomarkers and therapeutic targets. 

 

2.4.4.3.1 Canonical Pathways 

Canonical pathways analysis provides insights into well-defined biological 

regulatory processes and signalling cascades underlying normal organ 

physiology and diseases. HBPs are enriched in a number of important biological 

pathways (Figure 2.3.3). ‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ is 

the top canonical pathway linked to HBPs associated with NP (p=7.98E-16, 

16/147 molecules), AP (p=3.32E-18, 12/147 molecules) and PDAC (p=2.57E-18, 

19/147 molecules).  Six HBPs, which are unique to the AP dataset, namely CCl2, 

IFNG, Il6, TNF, TGFβ1 and VEGFA and 2 HBPs that are unique to the PDAC 

dataset in our study, FGFR2 and VEGFB, are linked to this canonical pathway. 
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‘Coagulation System’ (p=3.09E-17, 12/38 molecules) and ‘Intrinsic Prothrombin 

Activation Pathway’ (p=3.03E-14, 10/34 molecules) are other significant 

pathways associated with the PDAC dataset. The top canonical pathway 

associated with CP dataset is the ‘Coagulation System’ pathway (p=1.74E-18, 

12/38 molecules). Other important canonical pathways associated with the CP 

dataset are ‘Intrinsic Prothrombin Activation Pathway’ (p=3.12E-17, 11/34 

molecules) and ‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ (p=2.52E-13, 

14/147 molecules). Canonical pathways analysis indicates that stellate cells 

play important roles in the pancreas and may be explored further to develop 

cell specific therapies. 

 

2.4.4.3.2 Cluster analysis 

Clusters are groups of highly interconnected nodes. Clusters are scored 

depending on the number of constituent nodes and the edges (interactions) 

between them. Top clusters associated with the HBP networks (Table 2.3.2) 

were generated using the AllegroMCODE plugin in Cytoscape. These top clusters 

were analysed further to explore their potential as biomarkers and drug targets, 

using IPA. Each of the top clusters in NP, AP, CP and PDAC contained HBPs that 

had similar biological functions notably inflammatory response, cell-cell 

signalling and cellular movement, indicating that they were biologically relevant 

(Barabasi and Oltvai, 2004). The top cluster in the AP heparin-binding putative 

protein interactome consists of 6 HBPs unique to the AP HBP dataset, namely 

CCl2, IFNG, Il6, TNF, TGFβ1 and VEGFA (Figure 2.3.4). This cluster also enriches 

to the ‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ canonical pathway, 
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which as shown above is also the top pathway associated with the AP HBP 

dataset. Thus, the canonical pathways and cluster analyses identify key 

molecules that may lead to biomarkers and drug targets. 

 

2.4.4.3.3 GO term enrichment 

 GO term enrichment provides a means to identify key processes that can be 

attributed to a gene or protein set. The GO terms ‘Response to wounding’ 

(p=3.52E-23), ‘Wound healing’ (p=5.92E-16) and ‘Regulation of body fluids’ 

(p=8.88E-16) are the top terms of the ‘Biological Process sub-ontology' enriched 

by HBPs associated with the normal pancreas. ‘Response to wounding’ 

(p=1.32E-17), ‘Defence response’ (p=1.34E-13) and ‘Leucocyte migration’ 

(p=1.73E-13) are the top terms enriched by HBPs associated with AP. ‘Response 

to wounding’ (p=8.31E-24), ‘Extracellular matrix organisation’ (p=1.90E-15) 

and ‘Wound healing’ (p=5.14E-15) are the top ‘Biological Process’ terms 

enriched by HBPs associated with CP. ‘Response to wounding’ (p=6.15E-25), 

‘Wound healing’ (p=2.52E-15) and ‘Cell adhesion’ (p=3.60E-15) are the top 

‘Biological Process’ terms enriched by HBPs associated with PDAC.   

 

2.4.5 Discussion 

The in silico analyses of putative interactomes of HBPs demonstrate that 

these form highly connected networks in the normal pancreas and in three 

major pancreatic digestive diseases that may define important extracellular 

protein regulatory modules.  This is strongly supported by the high clustering 

coefficients associated with the heparin-binding putative protein interactomes 
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of the normal pancreas, AP, CP and PDAC, compared to their corresponding 

random networks. Moreover, the heparin-binding putative protein interactomes 

have higher clustering coefficients, as compared to the extracellular non 

heparin-binding putative protein interactomes in NP, CP and PDAC (Figure 

2.3.2).  

 Previously, the reductionist approach to drug development has resulted 

in many successful single-target drugs over the past decades, although 

systematic analysis of interactomes has not featured prominently in drug 

design. Single target drugs, however, are less able to combat the complex 

pathologies of inflammatory diseases and cancer, which are regulated by 

multiple and often partly redundant molecular inputs (Leung et al., 2012). This 

difficulty is particularly evident in pancreatic diseases, where there are very few 

specific therapies. In contrast, a holistic ‘Systems Biology’ approach based on 

the heparin interactome may provide small groups of biomarkers and drug 

targets in pancreatic digestive diseases and is complementary to the 

reductionist approach to drug development. Even though the meta-analytical 

approach adopted here assumes mRNA to be representative of translation and 

our knowledge of the nature and functions of specific proteins is incomplete and 

variably informative, there is a plethora of original findings that it behoves us to 

inter-relate. 

These conclusions are also supported by GO term enrichment and 

canonical pathways analysis, since these identified cell-signalling cascades and 

molecular functions that are coherent with NP, AP, CP and PDAC.  For example, 

the top GO term of the sub-ontology Biological Process enriched to HBPs 

associated with AP, CP and PDAC was ‘response to wounding’. Other Biological 
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Process sub-ontology terms significantly enriched to the AP dataset included 

defence response, leukocyte migration, inflammatory response and leukocyte 

migration, which one would associate with an acute inflammatory disease such 

as AP. Leukocytes and neutrophils in particular are known to play an important 

role in AP (Abdulla et al., 2011, Nakamura et al., 2010). The desmoplastic 

reaction associated with CP and PDAC is reflected by the enrichment of GO term 

‘extracellular matrix organization’ to the HBP datasets associated with these 

diseases (Johnson and Outwater, 1999). GO terms such as cell adhesion, blood 

vessel development, vasculature development and regulation of cell migration 

enriched to the PDAC dataset are clearly key processes in cancer.  

Canonical pathways represent well-characterized metabolic and cell-

signalling cascades that have been curated from original literature and do not 

change according to data input. They are important in informing our 

understanding of cell function and predicting cell behaviour (Melas et al., 2011). 

The canonical pathways that are enriched by the HBP datasets in pancreatic 

digestive diseases provide useful insights into important pathways influencing 

these diseases. ‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ is the top 

canonical pathway linked to the AP and PDAC datasets and is a significant 

pathway in CP. Stellate cells play an important role in inflammatory diseases 

and cancer of the liver as in the pancreas (Xu et al., 2010b, Friedman, 2008, 

Masamune et al., 2009). The presence of a well-defined fibrosis and activation 

pathway associated with the hepatic stellate cell rather than its pancreatic 

counterpart is probably due to the fact that the former was discovered earlier 

and has been studied more extensively (Geerts, 2001). As information relating 

to PSCs evolves, pathways relating to PSC activity may become better defined. 
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Hepatic and pancreatic stellate cells exhibit great similarities, are activated by 

common cytokines and growth factors, and may share a common origin 

(Buchholz et al., 2005, Omary et al., 2007). Experiments relating to PSCs indicate 

that they play an important role in the normal and diseased pancreas 

(Vonlaufen et al., 2007, Algul et al., 2007). These cells maintain normal 

pancreatic architecture, as well as contribute to the increased stiffness of the 

ECM in CP and PDAC by inducing fibrosis (Apte et al., 2012). The increased 

stiffness of the ECM in turn may affect the transmission of signals between cells 

in the pancreatic microenvironment. Thus, HBPs unique to the AP and PDAC 

datasets and also enriched to the ‘Hepatic Fibrosis / Hepatic Stellate Cell 

Activation’ pathway may be explored as potential PSC specific biomarkers and 

drug targets. FGFR2 is a target, which may enable the development of PSC-

directed drug therapy in PDAC. In pancreatic cancer, FGFR2 is over-expressed in 

both cancer cells and the adjacent pancreatic parenchyma (Ishiwata et al., 

1998). Stromal FGF10 (fibroblast growth factor 10) – FGFR2 signalling induces 

migration and invasion in pancreatic cancer cells, and is associated with a poor 

prognosis (Nomura et al., 2008). FGFR2 is uniquely associated with the PDAC 

dataset in our study and this is in the context of a common expression in NP, CP 

and PDAC of two ligands, FGF-3 and FGF-5 (Table 2.3.1 and Supplementary 

Tables 1, 3 and 4). This ligand pair is able to activate both the FGFR2b and 

FGFR2c splice variants (Ornitz et al., 1996). Thus, these data suggest that FGFR2 

inhibitors may be of use in the treatment of PDAC, and these are readily 

available because FGFR2 is already been being explored as a drug target in 

other solid organ tumours (Byron and Pollock, 2009). 
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The top cluster in the AP heparin-binding putative protein interactome is 

also linked with the ‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ 

canonical pathway. Within this cluster, 6 HBPs namely CCl2, IFNG, IL-6, TNF, 

TGFβ1 and VEGFA are in the AP HBP dataset. Interleukin-6 (IL-6), which is a 

cytokine produced by macrophages and a mediator in the synthesis of acute-

phase proteins, forms the hub of this top cluster. IL-6 has been suggested as a 

therapeutic target in acute pancreatitis and is a well-established drug target in 

other diseases such as rheumatoid arthritis(Nishimoto and Kishimoto, 2006). 

PSCs are stimulated by TGFβ1 and PDGFβ (Apte et al., 2000). The various HBPs 

in the top cluster in AP might be thus used to develop PSC-specific or PSC-

related therapy in AP.  

The property of heparin binding, which defines the regulatory 

importance of HBPs through their physiological interactions with HS, can be 

elegantly exploited in a direct proteomic approach, since heparin affinity 

chromatography is a simple and effective means to extract HBPs from a tissue 

or body fluid (Xiong et al., 2008, Ori et al., 2011).  Therefore, given the clear 

importance of HBPs, a direct analysis of HBPs by proteomics of healthy and 

diseased pancreas is likely to yield substantial insights. 

 

2.4.6 Conclusions 

HBPs are shown to constitute a highly regulatory extracellular sub-

proteome in the normal and diseased pancreas and thus are a likely source of 

targets for therapy and biomarkers.  The present analyses have identified HBPs 

already established as having a role in pancreatic disease, e.g., FGFR2, VEGFA.  
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Importantly, these analyses identify clusters of HBPs working together to 

execute a common function, e.g., Hepatic Stellate Cell activation in AP and PDAC. 

The present work demonstrates the power of systems analysis on meta-

expression data where admitted uncertainty in protein presence and 

interactivity do not limit the ability to produce useful predictions and 

recommendations.  
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Condition Unique HBPs 

 

Common HBPs 

NP AMBP  

 

 

APOE, IL8, IL10, MMP9, 

PRSS1, PRSS3, SOD1 

AP APOA5, CCL2, CXCL10, 

IFNγ, IL6, LIPC, LPL, MBL2, 

MPO, PDGFβ, PON1, PROC, 

SELP, TGFβ1, TNF, VEGFA 

CP AIBG, AKR1B1, COL14A1, 

HP, HRG, HSD17B12, PLG, 

SERPINC1, SOD3, TPSAB1, 

TPSB2, TXN 

PDAC APP, ATP1B3, ATP5A1, C3, 

C6, CCL24, CD47, CTSG, 

CXCL2, CYCS, FGFR2, 

FSTL1, HBEGF, NAV2, 

PCSK6, SEMA5A, SERPINA6, 

SERPINE2, SLC2A2, SLC3A2, 

STEAP4, SYNGR1, VEGFB 

 

Table 2.4.1: Unique and common HBPs associated with NP, CP and PDAC datasets. These were 

obtained using IPA’s comparison tool. 
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 NP AP CP PDAC 

Nodes 10 8 4 16 

Edges 33 24 6 52 

Score 3.3 3 1.5 3.25 

Node IDs ITGB1, COL1A1, 

VTN, ITGA5, 

FN1, ITGB3, 

COL1A2, 

ITGAV, ITGA1, 

TNC 

MMP9, IL8, 

IL10, TNF, 

IFNγ, VEGFA, 

CCL2, IL6, 

TGFβ1 

 

ITGB1, COL1A1, 

COL1A2, ITGA1 

 

ITGB1, COL1A1, 

VTN, SERPINE1, 

ITGA5, FN1, 

ITGB3, COL1A2, 

ITGAV, ITGA1, 

TNC, CLU, 

SERPINA1, 

SERPING1, 

A2M, APP 

 

Table 2.4.2: Top clusters in networks of HBPs associated with NP, AP, CP and PDAC. These 

were identified using ‘AllegroMCODE’ with Cytoscape 2.8.1. HBPs unique to each dataset are 

highlighted in bold. The HBPs within the clusters have similar biological functions. 
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Figure 2.4.1: The heparin-binding putative protein interactome in PDAC constructed using Cytoscape 2.8.1. ‘Nodes’ coloured red are HBPs unique to the 

PDAC dataset in the study. Black lines connecting the HBPs denote ‘edges’ or interactions. As a result of the stringent criteria for selecting interactions, some 

HBPs from the datasets in our study are notably absent from the interacting networks. 
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Figure 2.4.2: Comparison of the clustering coefficients. Clustering coefficients were calculated for 

the pancreatic extracellular heparin binding putative protein interactome (Ec_hepint), the 

corresponding random network (Ec_hepint_random) and the pancreatic extracellular non heparin-

binding putative protein interactome (Ec_not hepint) in NP, AP, CP and PDAC. The Ec_hepint 

describes a densely interconnected network module in the extracellular space in the pancreas with a 

significantly higher clustering coefficient (p<0.05, independent t-test, SPSS) as compared to those of 

the random networks and Ec_not hepint in NP, AP, CP and PDAC.  
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Figure 2.4.3: Comparison of canonical pathways involving HBPs associated with NP, AP, CP 

and PDAC using IPA. The ‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ pathway is an 

important pathway enriched to the HBP datasets in the normal and diseased pancreas. The ratio of the 

number of HBPs from a particular dataset to the total number of molecules in a canonical pathway is 

indicated beside the corresponding bar. 
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Figure 2.4.4: Top cluster in the AP heparin binding putative protein interactome. The nodes 

coloured orange are uniquely associated with the AP HBP dataset. IL-8 is not unique to the AP HBP 

dataset. IL-6, which is a cytokine produced by macrophages and a mediator in the synthesis of acute-

phase proteins, forms the hub of this cluster. The top cluster in AP enriched to the ‘Hepatic Fibrosis / 

Hepatic Stellate Cell Activation’ canonical pathway (CP). 
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Supplementary Table 1: List of HBPs associated with NP 

 

Symbol Entrez Gene Name 

  

 ABP1  amiloride binding protein 1 (amine oxidase (copper-containing)) 

 AGT  angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 

 AMBP  alpha-1-microglobulin/bikunin precursor 

 ANXA1  annexin A1 

 ANXA2  annexin A2 

 ANXA5  annexin A5 

 APOE  apolipoprotein E 

 APOH  apolipoprotein H (beta-2-glycoprotein I) 

 AQP1  aquaporin 1 (Colton blood group) 

 ARG1  arginase, liver 

 ATP2B1  ATPase, Ca++ transporting, plasma membrane 1 

 B2M  beta-2-microglobulin 

 BACE1  beta-site APP-cleaving enzyme 1 

 BGN  biglycan 

 C4BPA  complement component 4 binding protein, alpha 

 CCL19  chemokine (C-C motif) ligand 19 

 CCL21  chemokine (C-C motif) ligand 21 

 CD36  CD36 molecule (thrombospondin receptor) 

 CEL  carboxyl ester lipase (bile salt-stimulated lipase) 

 CFH  complement factor H 

 CLU  clusterin 

 COL11A1  collagen, type XI, alpha 1 

 COL12A1  collagen, type XII, alpha 1 

 COL1A1  collagen, type I, alpha 1 

 COL1A2  collagen, type I, alpha 2 

 COL2A1  collagen, type II, alpha 1 

 COL3A1  collagen, type III, alpha 1 

 COL4A1  collagen, type IV, alpha 1 

 COL4A2  collagen, type IV, alpha 2 

 COL5A1  collagen, type V, alpha 1 

 COL6A3  collagen, type VI, alpha 3 

 COMP  cartilage oligomeric matrix protein 

 CP  ceruloplasmin (ferroxidase) 

 CTSB  cathepsin B 

 CXCL12  chemokine (C-X-C motif) ligand 12 

 DCC  deleted in colorectal carcinoma 

 ECE1  endothelin converting enzyme 1 

 EFNA1  ephrin-A1 

 ENO1  enolase 1, (alpha) 

 ENPP1  ectonucleotide pyrophosphatase/phosphodiesterase 1 

 F2  coagulation factor II (thrombin) 

 F10  coagulation factor X 

 F11  coagulation factor XI 

 FBN1  fibrillin 1 

 FGA  fibrinogen alpha chain 

 FGB  fibrinogen beta chain 

 FGF3  fibroblast growth factor 3 

 FGF5  fibroblast growth factor 5 

 FGG  fibrinogen gamma chain 

 FLT1  fms-related tyrosine kinase 1  

 FN1  fibronectin 1 

 FST  follistatin 

 GJB1  gap junction protein, beta 1, 32kDa 
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 GPNMB  glycoprotein (transmembrane) nmb 

 GSN  gelsolin 

 HDGF  hepatoma-derived growth factor 

 HSPG2  heparan sulfate proteoglycan 2 

 IGFBP2  insulin-like growth factor binding protein 2, 36kDa 

 IGFBP3  insulin-like growth factor binding protein 3 

 IGFBP5  insulin-like growth factor binding protein 5 

 IHH  Indian hedgehog 

 IL3  interleukin 3 (colony-stimulating factor, multiple) 

 IL8  interleukin 8 

 IL10  interleukin 10 

 INHBA  inhibin, beta A 

 ITGA1  integrin, alpha 1 

 ITGA5  integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 

 ITGAV  integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51) 

 ITGB1  integrin, beta 1  

 ITGB3  integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 

 KAL1  Kallmann syndrome 1 sequence 

 LAMA2  laminin, alpha 2 

 LAMA3  laminin, alpha 3 

 LAMC2  laminin, gamma 2 

 LTBP1  latent transforming growth factor beta binding protein 1 

 LTF  lactotransferrin 

 MDK  midkine (neurite growth-promoting factor 2) 

 MET  met proto-oncogene (hepatocyte growth factor receptor) 

 MMP2  matrix metallopeptidase 2  

 MMP7  matrix metallopeptidase 7 (matrilysin, uterine) 

 MMP9  matrix metallopeptidase 9  

 MMP14  matrix metallopeptidase 14 (membrane-inserted) 

 MYL9  myosin, light chain 9, regulatory 

 NT5E  5'-nucleotidase, ecto (CD73) 

 OCLN   occludin 

 P4HB  prolyl 4-hydroxylase, beta polypeptide 

 PEBP1  phosphatidylethanolamine binding protein 1 

 PLAT  plasminogen activator, tissue 

 PLAU  plasminogen activator, urokinase 

 POSTN  periostin, osteoblast specific factor 

 PRDX4  peroxiredoxin 4 

 PRELP  proline/arginine-rich end leucine-rich repeat protein 

 PRSS1  protease, serine, 1 (trypsin 1) 

 PRSS3  protease, serine, 1 (trypsin 1) 

 PTPRC  protein tyrosine phosphatase, receptor type, C 

 RPL22  ribosomal protein L22 

 SERPINA1  serpin peptidase inhibitor, clade A, member 1 

 SERPINA3  serpin peptidase inhibitor, clade A, member 3 

 SERPINA5  serpin peptidase inhibitor, clade A, member 5 

 SERPINE1  serpin peptidase inhibitor, clade E, member 1 

 SERPING1  serpin peptidase inhibitor, clade G, member 1 

 SLC39A4  solute carrier family 39, member 4 

 SLC4A4  solute carrier family 4, sodium bicarbonate cotransporter, member 4 

 SLPI  secretory leukocyte peptidase inhibitor 

 SNCA  synuclein, alpha (non A4 component of amyloid precursor) 

 SOD1  superoxide dismutase 1, soluble 

 TGM2  transglutaminase 2  

 THBS1  thrombospondin 1 

 THBS2  thrombospondin 2 

 THBS4  thrombospondin 4 

 TNC  tenascin C 
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 TNFAIP6  tumor necrosis factor, alpha-induced protein 6 

 TNXB  tenascin XB 

 TTR  transthyretin 

 VTN  vitronectin 
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Supplementary Table 2: List of HBPs associated with AP 

Symbol Entrez Gene Name 

  

 A2M  alpha-2-macroglobulin 

 APOA5  apolipoprotein A-V 

 APOE  apolipoprotein E 

 CCL2  chemokine (C-C motif) ligand 2 

 CTSB  cathepsin B 

 CX3CL1  chemokine (C-X3-C motif) ligand 1 

 CXCL10  chemokine (C-X-C motif) ligand 10 

 HMGB1  high-mobility group box 1 

 IFNG  interferon, gamma 

 IL6  interleukin 6 (interferon, beta 2) 

 IL8  interleukin 8 

 IL10  interleukin 10 

 LIPC  lipase, hepatic 

 LPL  lipoprotein lipase 

 MBL2  mannose-binding lectin (protein C) 2, soluble 

 MET  met proto-oncogene (hepatocyte growth factor receptor) 

 MIF  macrophage migration inhibitory factor (glycosylation-inhibiting factor) 

 MMP9  matrix metallopeptidase 9  

 MPO  myeloperoxidase 

 PDGFB  platelet-derived growth factor beta polypeptide  

 PON1  paraoxonase 1 

 PROC  protein C (inactivator of coagulation factors Va and VIIIa) 

 PRSS1  protease, serine, 1 (trypsin 1) 

 PRSS3  protease, serine, 1 (trypsin 1) 

 SELP  selectin P (granule membrane protein 140kDa, antigen CD62) 

 SERPINA1  serpin peptidase inhibitor, clade A, member 1 

 SOD1  superoxide dismutase 1, soluble 

 TF  transferrin 

 TGFβ1  transforming growth factor, beta 1 

 TNF  tumor necrosis factor 

 VEGFA  vascular endothelial growth factor A 
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Supplementary Table 3: List of HBPs associated with CP 

 

Symbol Entrez Gene Name 

  A1BG  alpha-1-B glycoprotein 

 A2M  alpha-2-macroglobulin 

 ABP1  amiloride binding protein 1 (amine oxidase (copper-containing)) 

 ADAMTS1  ADAM metallopeptidase with thrombospondin type 1 motif, 1 

 AGT  angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 

 AKR1B1  aldo-keto reductase family 1, member B1 (aldose reductase) 

 ANXA1  annexin A1 

 ANXA2  annexin A2 

 ANXA5  annexin A5 

 APOE  apolipoprotein E 

 APOH  apolipoprotein H (beta-2-glycoprotein I) 

 AQP1  aquaporin 1 (Colton blood group) 

 ARG1  arginase, liver 

 ATP2B1  ATPase, Ca++ transporting, plasma membrane 1 

 B2M  beta-2-microglobulin 

 BGN  biglycan 

 C9  complement component 9 

 C4BPA  complement component 4 binding protein, alpha 

 CCL19  chemokine (C-C motif) ligand 19 

 CCL21  chemokine (C-C motif) ligand 21 

 CD36  CD36 molecule (thrombospondin receptor) 

 CEL  carboxyl ester lipase (bile salt-stimulated lipase) 

 CFH  complement factor H 

 CLU  clusterin 

 COL11A1  collagen, type XI, alpha 1 

 COL14A1  collagen, type XIV, alpha 1 

 COL1A1  collagen, type I, alpha 1 

 COL1A2  collagen, type I, alpha 2 

 COL2A1  collagen, type II, alpha 1 

 COL3A1  collagen, type III, alpha 1 

 COL4A1  collagen, type IV, alpha 1 

 COL4A2  collagen, type IV, alpha 2 

 COL5A1  collagen, type V, alpha 1 

 COL6A3  collagen, type VI, alpha 3 

 COMP  cartilage oligomeric matrix protein 

 CP  ceruloplasmin (ferroxidase) 

 CXCL12  chemokine (C-X-C motif) ligand 12 

 ECE1  endothelin converting enzyme 1 

 ENO1  enolase 1, (alpha) 

 ENPP1  ectonucleotide pyrophosphatase/phosphodiesterase 1 

 F2  coagulation factor II (thrombin) 

 F10  coagulation factor X 

 F11  coagulation factor XI 

 FBN1  fibrillin 1 

 FGA  fibrinogen alpha chain 

 FGB  fibrinogen beta chain 

 FGF3  fibroblast growth factor 3 

 FGF5  fibroblast growth factor 5 

 FGG  fibrinogen gamma chain 

 FN1  fibronectin 1 

 FST  follistatin 

 GJB1  gap junction protein, beta 1, 32kDa 

 GPNMB  glycoprotein (transmembrane) nmb 

 GSN  gelsolin 

 HP  haptoglobin 
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 HRG  histidine-rich glycoprotein 

 HSD17B12  hydroxysteroid (17-beta) dehydrogenase 12 

 HSPG2  heparan sulfate proteoglycan 2 

 IGFBP2  insulin-like growth factor binding protein 2, 36kDa 

 IGFBP3  insulin-like growth factor binding protein 3 

 IGFBP5  insulin-like growth factor binding protein 5 

 IGFBP6  insulin-like growth factor binding protein 6 

 IHH  Indian hedgehog 

 IL3  interleukin 3 (colony-stimulating factor, multiple) 

 IL8  interleukin 8 

 IL10  interleukin 10 

 INHBA  inhibin, beta A 

 ITGA1  integrin, alpha 1 

 ITGA5  integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 

 ITGB1  integrin, beta 1 (fibronectin receptor, beta polypeptide) 

 LAMA2  laminin, alpha 2 

 LAMA3  laminin, alpha 3 

 LAMC2  laminin, gamma 2 

 LTBP1  latent transforming growth factor beta binding protein 1 

 LTF  lactotransferrin 

 MDK  midkine (neurite growth-promoting factor 2) 

 MIF  macrophage migration inhibitory factor (glycosylation-inhibiting factor) 

 MMP9  matrix metallopeptidase 9  

 MYL9  myosin, light chain 9, regulatory 

 NT5E  5'-nucleotidase, ecto (CD73) 

 OCLN  occludin 

 P4HB  prolyl 4-hydroxylase, beta polypeptide 

 PEBP1  phosphatidylethanolamine binding protein 1 

 PLAT  plasminogen activator, tissue 

 PLG  plasminogen 

 POSTN  periostin, osteoblast specific factor 

 PRDX4  peroxiredoxin 4 

 PRELP  proline/arginine-rich end leucine-rich repeat protein 

 PRSS1  protease, serine, 1 (trypsin 1) 

 PRSS3  protease, serine, 1 (trypsin 1) 

 PTPRC  protein tyrosine phosphatase, receptor type, C 

 RPL22  ribosomal protein L22 

 SERPINA3  serpin peptidase inhibitor, clade A, member 3 

 SERPINA5  serpin peptidase inhibitor, clade A, member 5 

 SERPINC1  serpin peptidase inhibitor, clade C (antithrombin), member 1 

 SERPINE1  serpin peptidase inhibitor, clade E, member 1 

 SFRP1  secreted frizzled-related protein 1 

 SLC39A4  solute carrier family 39 (zinc transporter), member 4 

 SLPI  secretory leukocyte peptidase inhibitor 

 SNCA  synuclein, alpha (non A4 component of amyloid precursor) 

 SOD1  superoxide dismutase 1, soluble 

 SOD3  superoxide dismutase 3, extracellular 

 TF  transferrin 

 THBS1  thrombospondin 1 

 THBS2  thrombospondin 2 

 THBS4  thrombospondin 4 

 TNC  tenascin C 

 TNXB  tenascin XB 

 TPSAB1/TPSB2  tryptase alpha/beta 1 

 TTR  transthyretin 

 TXN  thioredoxin 

 VTN 

 Vitronectin 
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Supplementary Table 4: List of HBPs associated with PDAC 

 

Symbol Entrez Gene Name 

  

 A2M  alpha-2-macroglobulin 

 ABP1  amiloride binding protein 1 (amine oxidase (copper-containing)) 

 ADAMTS1  ADAM metallopeptidase with thrombospondin type 1 motif, 1 

 AGT  angiotensinogen (serpin peptidase inhibitor, clade A, member 8) 

 ANXA1  annexin A1 

 ANXA2  annexin A2 

 ANXA5  annexin A5 

 APOE  apolipoprotein E 

 APP  amyloid beta (A4) precursor protein 

 AQP1  aquaporin 1 (Colton blood group) 

 ARG1  arginase, liver 

 ATP1B3  ATPase, Na+/K+ transporting, beta 3 polypeptide 

 ATP2B1  ATPase, Ca++ transporting, plasma membrane 1 

 ATP5A1  ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 

 B2M  beta-2-microglobulin 

 BACE1  beta-site APP-cleaving enzyme 1 

 BGN  biglycan 

 C3  complement component 3 

 C6  complement component 6 

 C9  complement component 9 

 CCL19  chemokine (C-C motif) ligand 19 

 CCL21  chemokine (C-C motif) ligand 21 

 CCL24  chemokine (C-C motif) ligand 24 

 CD36  CD36 molecule (thrombospondin receptor) 

 CD47  CD47 molecule 

 CEL  carboxyl ester lipase (bile salt-stimulated lipase) 

 CFH  complement factor H 

 CLU  clusterin 

 COL11A1  collagen, type XI, alpha 1 

 COL12A1  collagen, type XII, alpha 1 

 COL1A1  collagen, type I, alpha 1 

 COL1A2  collagen, type I, alpha 2 

 COL2A1  collagen, type II, alpha 1 

 COL3A1  collagen, type III, alpha 1 

 COL4A1  collagen, type IV, alpha 1 

 COL4A2  collagen, type IV, alpha 2 

 COL5A1  collagen, type V, alpha 1 

 COL6A3  collagen, type VI, alpha 3 

 COMP  cartilage oligomeric matrix protein 

 CP  ceruloplasmin (ferroxidase) 

 CTSG  cathepsin G 

 CX3CL1  chemokine (C-X3-C motif) ligand 1 

 CXCL2  chemokine (C-X-C motif) ligand 2 

 CXCL12  chemokine (C-X-C motif) ligand 12 

 CYCS  cytochrome c, somatic 

 DCC  deleted in colorectal carcinoma 

 ECE1  endothelin converting enzyme 1 

 EFNA1  ephrin-A1 

 ENO1  enolase 1, (alpha) 

 ENPP1  ectonucleotide pyrophosphatase/phosphodiesterase 1 

 F2  coagulation factor II (thrombin) 

 F10  coagulation factor X 

 F11  coagulation factor XI 

 FBN1  fibrillin 1 



 75 

 FGA  fibrinogen alpha chain 

 FGB  fibrinogen beta chain 

 FGF3  fibroblast growth factor 3 

 FGF5  fibroblast growth factor 5 

 FGFR2  fibroblast growth factor receptor 2 

 FGG  fibrinogen gamma chain 

 FLT1  fms-related tyrosine kinase 1  

 FN1  fibronectin 1 

 FST  follistatin 

 FSTL1  follistatin-like 1 

 GJB1  gap junction protein, beta 1, 32kDa 

 GPNMB  glycoprotein (transmembrane) nmb 

 GSN  gelsolin 

 HBEGF  heparin-binding EGF-like growth factor 

 HDGF  hepatoma-derived growth factor 

 HMGB1  high-mobility group box 1 

 HSPG2  heparan sulfate proteoglycan 2 

 IGFBP2  insulin-like growth factor binding protein 2, 36kDa 

 IGFBP3  insulin-like growth factor binding protein 3 

 IGFBP5  insulin-like growth factor binding protein 5 

 IGFBP6  insulin-like growth factor binding protein 6 

 IHH  Indian hedgehog 

 IL3  interleukin 3 (colony-stimulating factor, multiple) 

 IL8  interleukin 8 

 IL10  interleukin 10 

 INHBA  inhibin, beta A 

 ITGA1  integrin, alpha 1 

 ITGA5  integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 

 ITGAV  integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51) 

 ITGB1  integrin, beta 1  

 ITGB3  integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 

 KAL1  Kallmann syndrome 1 sequence 

 LAMA2  laminin, alpha 2 

 LAMA3  laminin, alpha 3 

 LAMC2  laminin, gamma 2 

 LTBP1  latent transforming growth factor beta binding protein 1 

 MDK  midkine (neurite growth-promoting factor 2) 

 MET  met proto-oncogene (hepatocyte growth factor receptor) 

 MMP2  matrix metallopeptidase 2  

 MMP7  matrix metallopeptidase 7 (matrilysin, uterine) 

 MMP9  matrix metallopeptidase 9  

 MMP14  matrix metallopeptidase 14 (membrane-inserted) 

 MYL9  myosin, light chain 9, regulatory 

 NAV2  neuron navigator 2 

 NT5E  5'-nucleotidase, ecto (CD73) 

 OCLN  occludin 

 P4HB  prolyl 4-hydroxylase, beta polypeptide 

 PCSK6  proprotein convertase subtilisin/kexin type 6 

 PEBP1  phosphatidylethanolamine binding protein 1 

 PLAT  plasminogen activator, tissue 

 PLAU  plasminogen activator, urokinase 

 POSTN  periostin, osteoblast specific factor 

 PRDX4  peroxiredoxin 4 

 PRELP  proline/arginine-rich end leucine-rich repeat protein 

 PRSS1  protease, serine, 1 (trypsin 1) 

 PRSS3  protease, serine, 1 (trypsin 1) 

 PTPRC  protein tyrosine phosphatase, receptor type, C 

 RPL22  ribosomal protein L22 
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 SEMA5A  semaphorin 5A 

 SERPINA1  serpin peptidase inhibitor, clade A, member 1 

 SERPINA3  serpin peptidase inhibitor, clade A, member 3 

 SERPINA5  serpin peptidase inhibitor, clade A, member 5 

 SERPINA6  serpin peptidase inhibitor, clade A, member 6 

 SERPINE1  serpin peptidase inhibitor, clade E, member 1 

 SERPINE2  serpin peptidase inhibitor, clade E, member 2 

 SERPING1  serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 

 SFRP1  secreted frizzled-related protein 1 

 SLC2A2  solute carrier family 2 (facilitated glucose transporter), member 2 

 SLC39A4  solute carrier family 39 (zinc transporter), member 4 

 SLC3A2  solute carrier family 3, member 2 

 SLC4A4  solute carrier family 4, sodium bicarbonate cotransporter, member 4 

 SLPI  secretory leukocyte peptidase inhibitor 

 SNCA  synuclein, alpha (non A4 component of amyloid precursor) 

 SOD1  superoxide dismutase 1, soluble 

 STEAP4  STEAP family member 4 

 SYNGR1  synaptogyrin 1 

 TF  transferrin 

 TGM2 transglutaminase 2  

 THBS1  thrombospondin 1 

 THBS2  thrombospondin 2 

 THBS4  thrombospondin 4 

 TNC  tenascin C 

 TNFAIP6  tumor necrosis factor, alpha-induced protein 6 

 TNXB  tenascin XB 

 TTR  transthyretin 

 VEGFB  vascular endothelial growth factor B 

 VTN  vitronectin 

 

 

 
 
 
 

 

 

 

 

 

 
 



 77 

2.5 Drug targets in pancreatic diseases 

Pubmatrix, which is a literature-mining tool (Becker et al., 2003), was used 

to assign functional relevance to HBPs in the major pancreatic diseases. Lists 

of HBPs, identified for further investigation, along with MeSH (Medical 

Subject Headings) such as “drugs” and “drugs in acute pancreatitis” were 

searched in Pubmatrix (Table 2.5.1). The search revealed that a number of 

the HBPs have been investigated in drug development in AP, some of which 

have been listed (Table 2.5.2). Similar searches were carried out in CP and 

PDAC, using Pubmatrix. FGFR2, which was identified as a potential PSC-

specific drug target in PDAC in the in silico study described Section 2.3 of 

this chapter, is being investigated in the treatment of other cancers (Byron 

and Pollock, 2009).  

 

HBPs Drugs Drugs in acute pancreatitis 

APOA5 14 0 
CCL2 517 0 

CXCL10 122 0 
IFNγ 254 0 

IL6 288 1 

IL10 1040 16 
LIPC 10 0 

LPL 231 2 
MBL 84 0 

MPO 689 10 
PDGFβ 2 0 

PON1 92 0 

PROC 9396 1 
SELP 25 0 

TGFβ1 119 1 
TNF 9601 37 

VEGFA 537 0 
 

Table 2.5.1: HBPs as potential drug targets in acute pancreatitis. The literature-

mining tool “Pubmatrix” was searched using HBPs shortlisted as potential drug 

targets and MeSH terms “drugs” and “drugs in acute pancreatitis”. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+APOA5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+APOA5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+CCL2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+CCL2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+CXCL10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+CXCL10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+IFN%CE%B3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+IFN%CE%B3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+IL6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+IL6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+IL10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+IL10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+LIPC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+LIPC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+LPL
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+LPL
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+MBL
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+MBL
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+MPO
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+MPO
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+PDGF%CE%B2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+PDGF%CE%B2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+PON1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+PON1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+PROC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+PROC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+SELP
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+SELP
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+TGF%CE%B21
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+TGF%CE%B21
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+TNF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+TNF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=Drugs+AND+VEGFA
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&term=drugs+in+acute+pancreatitis+AND+VEGFA
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A number of drugs against FGFR2 (Table 2.5.3) are in various stages of 

investigation. The top canonical pathways (Fig. 2.5) were also used to 

identify potential pathway-specific drug targets.  

 

HBPs Drugs in acute pancreatitis 

IL10 FTY720, Emblica offiinalis 
LPL Alipogene tiparvovec 

MPO Ethyl pyruvate, Ligustrazine 
TGFβ1 Emodin and Sandostatin 

TNF ND-07, Flavocoxid 
 

Table 2.5.2: Drugs against HBPs in acute pancreatitis. A number of drugs 

against HBPs have been investigated in acute pancreatitis. 
 

Drugs against FGFR2 Cancers 

TKI-258 
Gastrointestinal Stromal 
tumour 

AZD2171 
Renal cell carcinoma, 
breast cancer 

BIFB-1120 
Non-small cell lung 
cancer 

Brivanib Metastatic solid tumours 
 

Table 2.5.3: Drugs against FGFR2 in the treatment of cancer. A number of 

drugs against FGFR2 are being investigated in clinical trials in various cancers. 

FGFR2 has been identified as potential drug target against pancreatic stellate 

cells in the treatment of pancreatic ductal adenocarcinoma. 
 

2.6 Discussion 

This work addressed the hypothesis that the high level of connectivity of 

HBPs discovered on a genome-wide basis would also be true at the level of 

an organ (Chapter 1; 1.9).  It showed that HBPs constitute an important 

extracellular sub-proteome within the pancreas and is likely to provide a 

rich repository of potential biomarkers and drug targets. However, it is 

based on two assumptions.  The first is that the current list of HBPs (Ori et 

al., 2011) is reasonably comprehensive.  The latter study used a combination  



 

Figure 2.5: Top canonical pathway in AP. ‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ canonical pathway (CP) was the top canonical pathway 

enriched to the AP HBP dataset, using Ingenuity Pathways Analysis. The nodes outlined in magenta are HBPs from the AP dataset. The top cluster in the AP 

HBP dataset enriches to this pathway.  



of literature curation and affinity mass spectrometry of HBPs derived from 

rat liver.  There is no indication of the depth of the affinity proteomics, that 

is how sensitive the measurements were and so how comprehensive they 

might be.  Moreover, one might expect differences between liver and 

pancreas, since they have different endocrine and exocrine functions. In 

addition, there has, as yet, been no follow up investigations in rat liver (the 

tissue used as a source of HBPs) or other tissues to determine how 

comprehensive the list actually is.  The second assumption is that mRNA is 

reasonably representative of protein.  It is established that the correlation is 

not that strong. For example, translation efficiency can vary considerably 

between mRNAs (Schwanhausser et al., 2011), and the methods used to 

measure mRNA levels can reduce the correlation further (Mournetas et al., 

2014).  The need to perform a meta analysis across different experimental 

measurements of mRNA, discussed in Section 2.3, may reduce further such 

correlation,   

Thus, while the analysis of HBPs in pancreatic diseases supports the 

hypothesis that HBPs may provide the key to understanding how cell 

communication is altered in disease, the evidence is indirect. Heparin 

binding, which defines the regulatory importance of HBPs, may be exploited 

by a direct proteomic approach using heparin-affinity chromatography on 

tissue or a body fluid. This approach, first used in (Ori et al., 2011), will be 

used in Chapter 3 to identify HBPs in the normal mouse pancreas and in a 

mouse model of AP.  This approach will test directly the hypothesis that 

HBPs are central to one pancreatic disease.  It will also determine the extent 

to which the above assumptions hold.  The systems biology approach 
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outlined in Section 2.2 and applied in Section 2.3 will provide the means to 

analyse the data. 
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Chapter 3 – Heparin binding proteins in NP and AP 

 

3.1 Introduction 

Individual studies have demonstrated a variety of mechanisms whereby 

binding to HS regulates the function of extracellular proteins. However, only 

recently has it been demonstrated on a global scale that, of the extracellular 

proteins, HBPs form a highly interconnected network that is functionally 

linked to physiological and pathological process in more complex 

multicellular organisms (Ori et al., 2011). Importantly from the perspective 

of pancreatic diseases, HBPs, because they bind to heparin and are 

extracellular, represent easily accessible new targets for the development of 

biomarkers and drugs. We have shown that HBPs are indeed a key subclass 

of extracellular proteins, whose pattern of expression differs in the healthy 

and diseased pancreas (Chapter 3 and (Nunes et al., 2013)). However, this 

work has important weaknesses. mRNA expression was by necessity used as 

a proxy for that of protein, but this is known to not always be the case 

(Schwanhausser et al., 2013, Li et al., 2014). Therefore, a proteomic analysis 

of HBPs in normal mouse pancreas and in the caerulein-induced mouse 

model of acute pancreatitis was undertaken, with the aim of identifying 

HBPs.  This would, therefore, allow the hypothesis elaborated in Section 1.9, 

that HBPs form highly connected regulatory modules in the cell 

microenvironment and are an important source of potential new 

biomarkers and drug targets in pancreatic diseases to be tested directly. 
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The proteomics analysis will be submitted as a manuscript to the Journal of 

Biological Chemistry (3.5), which describes the bulk of the data.  The mass 

spectrometry proteomics data has been uploaded into PRIDE database 

(http://www.ebi.ac.uk/pride/archive/)(Vizcaino et al., 2013), via its 

partner repository, the ProteomeXchange Consortium (Vizcaino et al., 

2014), with the dataset identifier PXD001950. Additional information 

relating to methods are provided in Sections 3.2-3.4) and further discussion 

in Section 3.6). 

 

3.2 Methodology 

Studies were conducted in compliance with UK Home Office regulations, and 

with the Institutional ethical review processes of the University of Liverpool. 

The isolation of plasma membrane was performed as in Ori et al., 2011 (Ori 

et al., 2011) The workflow to isolate and detect the plasma membrane 

fraction is depicted below (Fig. 3.1). Pancreases were obtained from 6-8 

week old male adult CD1 mice (weight range, 24-30 g) with normal 

pancreas (NP) or experimental acute pancreatitis (AP). The pancreatic 

tissue was homogenized and then subjected to sequential steps of 

centrifugation to obtain the various subcellular fractions. The supernatant 

obtained after removal of the nuclear, mitochondrial and cytosolic fractions 

was subjected to ultracentrifugation to obtain a microsomal pellet, which 

contained ER membranes and plasma membranes. This was then subjected 

to differential ultracentrifugation on a sucrose gradient. The fractions with 

the highest caveolin-1 signal intensity on Western Blot, using a polyclonal 

http://www.ebi.ac.uk/pride/archive/
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antibody against caveolin-1, were pooled together to obtain the plasma 

membrane fraction. This was then subjected to heparin chromatography to 

obtain the heparin-bound fraction, which was prepared for mass 

spectrometry (MS). Detailed description of isolation of the plasma 

membrane fraction, the sample preparation for MS and the MS analysis are 

outlined in the manuscript attached later in this chapter (3.5). 

 

                          

 

Figure 3.1: A schematic representation of the various steps involved in extracting 

HBPs from mouse pancreases 

 

TISSUE HOMOGENISATION 

SUB-CELLULAR FRACTIONATION 

MICROSOMAL FRACTIONATION 

PLASMA MEMBRANE 
FRACTION 

SUCROSE GRADIENT SEPARATION 

HEPARIN CHROMATOGRAPHY 

PREPARATION OF MS SAMPLES 

HPLC/MASS SPECTROMETRY 
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3.2.1 Method modifications  

Some of the modifications to the methods described by Ori et al., 2011 

(reference) are described in the sections that follow. 

3.2.1.1 Measurement of protein concentration 

The BCA (bicinhoninic acid) assay (Pierce™ BCA Protein Assay Kit, Thermo 

Fisher Scientific, U.K.) was used instead of the Bradford assay to measure 

protein concentration at all steps, as it was compatible with most detergents 

including Triton-X-100. 

3.2.1.2 Heparin affinity chromatography 

Isolation of HBPs using heparin affinity chromatography and their 

separation into 3 fractions depending on their affinity was attempted using 

a reverse step gradient on a heparin column, as described by Ori et al., 2011 

(reference). In order to preserve precious samples of pancreas, lung tissue 

from mice with caerulein induce acute pancreatitis was used. The high 

affinity fraction (H) was obtained by adjusting the resuspended pellets to 

0.6 M NaCl and 1 % (v/v) Triton X-100 and centrifuged for 5 min at 4,000 x 

g to remove any insoluble material. The supernatant was applied to a 1 ml 

Hi-Trap heparin column (GE Healthcare Life Sciences) equilibrated with 

buffer WH (0.6 M NaCl, 13.7 mM Na2HPO4, 6.3 mM NaH2PO4, 0.1 % (v/v) 

Triton X-100, pH 7.2). After loading, the column was extensively washed 

with buffer WH until the absorbance at 280 nm reached the baseline. Bound 

proteins (fraction H) were then eluted with a one column volume of buffer E 

(2 M NaCl, 13.7 mM Na2HPO4, 6.3 mM NaH2PO4, 0.1 % (v/v) Triton X-100, 

pH 7.2). The unbound fraction from the 0.6 M NaCl load and wash was then 
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diluted to 0.4 M NaCl using phosphate buffer (13.7 mM Na2HPO4, 6.3 mM 

NaH2PO4, pH 7.2) and reapplied to the heparin column equilibrated in buffer 

WM (0.4 M NaCl, 13.7 mM Na2HPO4, 6.3 mM NaH2PO4, 0.1 % (v/v) Triton X-

100, pH 7.2). After extensive washing with buffer WM, the medium affinity 

fraction (M) was eluted with 2 M NaCl, as described above.  

 
 

 

Figure 3.2.1: Silver stained SDS-PAGE gels of the high affinity (H), medium 

affinity (M) and low affinity (L) heparin-bound plasma membrane fractions. 

Lung tissue from mice with caerulein-induce acute pancreatitis was used in the 

above experiments. 

 

The unbound fraction following elution of M was diluted to 0.15 M NaCl in 

the same phosphate buffer, reapplied to the heparin column equilibrated in 

buffer WL (0.15 M NaCl, 13.7 mM Na2HPO4, 6.3 mM NaH2PO4, 0.1 % (v/v) 

Triton X-100, pH 7.2) and eluted (fraction L) after extensive washing, as 

above. The SDS-PAGE gels stained with silver nitrate (Fig. 3.2.1) showed that 

the low affinity fraction using buffer WL included bands present in the other 
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fractions.  Though the identity of these polypeptides was not established, 

this is consistent with what was observed previously, that is the three 

fractions contain very substantially overlapping proteins (Ori et al 2011). 

Thus, little information is gained by producing fractions eluted with  

 

A       B 

Figure 3.2.2: Coomassie stained SDS-PAGE gels of various fractions (Str1, Str2, 

Str3) of cytosolic proteins from pancreatic tissue post-adsorption using 

StrataClean Resin
TM

 with  (A) and without 0.1% (v/v) Triton X-100 (B). The 

experiment showed that Triton X-100 was affecting the adsorption of protein 

onto the StrataClean Resin. 
 

different concentrations of NaCl, while such a procedure will reduce the 

amount of protein in each fraction. Hence a single buffer (WL) was used to 

isolate the heparin bound fraction from the pancreas, so as to increase the 

amount of protein for analysis. 
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3.2.1.3 Processing of the heparin-bound plasma membrane fraction 

Triton-X-100 is a very effective detergent for solubilising membranes, but it 

is polydisperse and not compatible with mass spectrometry. StrataClean 

Resin (Stratagene, Hycor Biomedical Ltd., Edinburgh, U.K.) was investigated 

as a means to process the heparin-bound plasma membrane fraction and 

remove Triton-X-100. The maximum binding capacity of 10 μL of 

StrataClean resin is reported to be 100 μg of protein by the manufacturer. 

Ten μL of premixed StrataClean resin was added to 1 ml of protein solution.  

This was then vortexed for 1 minute. The protein-bound StrataClean resin 

(Str1) was collected by centrifugation at 2000 rpm for 1 minute. The 

supernatant (S1) was removed and stored. To the pelleted protein-resin 

mixture, 10 µL of 2X SDS-PAGE  

  

Figure 3.2.3: Coomassie stained SDS-PAGE gels of various fractions (Str1, Str2, 

Str3) of whole cell lysate from pancreatic tissue post-adsorption using 

StrataClean Resin
TM

 with 0.1% (v/v) Triton X-100. The experiment showed that 

Triton X-100 was affecting the adsorption of protein onto the StrataClean Resin. 
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protein-loading buffer was added and this was applied onto an SDS-PAGE 

gel. The supernatant (S1) was processed as above to obtain Str2. Similarly 

the supernatant from processing Str2 was processed to obtain Str3. 

Adsorption using samples of protein with and without 0.1% (v/v) Triton X-

100 was investigated (Fig. 3.2.2). Whole cell lysate (Fig.3.2.3) and heparin-

bound plasma membrane fractions (Fig.3.2.4) were also used to investigate 

the use of StrataClean. 

 

Figure 3.2.4: Silver nitrate stained SDS-PAGE gels of various fractions (Str1, 

Str2, Str3) of heparin-bound plasma membrane fraction from pancreatic tissue 

post-adsorption using StrataClean Resin
TM

 with 0.1% (/v) Triton X-100. The 

experiment showed that Triton X-100 was affecting the adsorption of protein 

onto the StrataClean Resin. 

 

Since Triton-X-100 was found to interfere with protein binding to 

Strataclean resin and so causing loss of sample, TCA precipitation was 
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investigated as an alternative. This was found to be satisfactory for 

processing the samples post-heparin affinity chromatography (Fig. 3.2.5).  

To avoid wasting experimental samples the correlation of pellet size post-

TCA precipitation was done using BSA (Bovine Serum Albumin, Sigma 

Aldrich UK). Varying concentrations of BSA were precipitated using TCA as 

described earlier. The pellets were then washed 5 times with 5% (w/v) TCA 

and freeze-dried overnight. They were then washed with diethyl ether to 

remove the excess TCA and centrifuged at 5000 rpm. The supernatant was 

removed and the diethyl ether wash was repeated 2 more times. The final 

pellets were then left to dry in the fume hood.  

 

Figure 3.2.5: Silver nitrate stained SDS-PAGE gels of the heparin-bound plasma 

membrane fraction from pancreas in 0.1% (v/v) Triton X-100 post-TCA 

precipitation and post-adsorption using StrataClean Resin
TM

. The experiment 

showed that TCA precipitation was more effective in processing the samples as 

compared to StrataClean Resin
 
(Str1 and Str2). 
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The pellets were then stained with Coomasie Blue (Fig. 3.2.6) to obtain a 

visual correlation between pellet size and protein concentration. 

             

Figure 3.2.6: Coomasie Blue stained pellets of BSA post-TCA precipitation. This 

experiment provides an approximate correlation between protein concentration 

and size of the pellet. 

 

3.3 Bioinformatics pipeline 

Extracellular proteins were identified using a combination of bioinformatics 

tools, in order to achieve the widest and most accurate coverage. SignalP 4.1, 

which predicts the presence of a secretory signal peptide, was used to 

identify extracellular proteins (Petersen et al., 2011) with Phobius, which is 

a combined transmembrane topology and signal peptide prediction tool, to 

obtain a wider coverage for extracellular protein identification (Kall et al., 

2007).  

A third tool, namely, SecretomeP 2.0, which produces ab initio predictions of 

protein secretion not based on a secretory signal peptide (Bendtsen et al., 

2004) and a fourth tool based on ontology, Ingenuity Pathways Analysis 

(IPA), was used to identify extracellular and plasma membrane proteins. 

The HBPs that were not identified using SignalP, Phobius, or SecretomeP, 

but which were identified using IPA were further investigated using a 

manual approach. Each candidate HBP was examined using UniProtKB for 

0.5μg 1 μg 20 μg 10 μg 
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the presence of an extracellular signature. A search in Pubmed, using the 

terms “extracellular” or “secreted” was performed to investigate those 

proteins that still had an ambiguous subcellular location to identify at least 

one publication demonstrating an unequivocal plasma membrane and or 

extracellular localisation. Finally, the outputs of the various approaches 

were merged to obtain the final list of HBPs in NP and AP. 

 

 

Figure 3.3: Bioinformatics pipeline used to identify HBPs (Ec =extracellular). A 

combination of various bioinformatics tools and manual curation was used to 

identify HBPs. 

SignalP Phobius SecretomeP 

Ec HBPs 

Ingenuity 
Ontology 

Ec signature 
(UniProt KB) 

PubMed Ambigious location 

Ingenuity Ec 

+ 
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3.4 Identification of potential biomarkers and drug targets in AP 

Label-free quantification was performed following the “Top3” methodology 

(Silva et al., 2006) by spiking the sample prior to analysis with an internal 

standard of 50 fmol yeast alcohol dehydrogenase digest (Uniprot P00330, 

Waters). Proteins were annotated as differentially expressed if they 

achieved a FDR corrected q value of 1%. The Bonferroni correction was 

used to increase the stringency and further reduce the number of false 

positives for the purpose of biomarker identification (Ting et al., 2009). 

Canonical pathways and cluster analysis were used in conjunction with 

differential expression as tools to identify potential functional biomarkers 

and drug targets. 
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3.5.1 Capsule  

Background: Extracellular heparin-binding proteins (HBPs) are key 

regulators of cell communication.  

Results: HBPs in normal mouse pancreas (NP) and in a mouse model of 

acute pancreatitis (AP), including 460 new ones, were identified.  

Conclusion: The HBPs form highly interconnected protein-protein 

interaction networks describing cell communication pathways in NP and in 

AP. 

Significance: HBPs are a source of potential biomarkers and of drug targets 

in AP and are accessible by virtue of their extracellular location and 

heparin binding property.  

 

3.5.2 Abstract  

Acute pancreatitis (AP) is an acute inflammation of the pancreas, 

mainly caused by gallstones and alcohol, and driven by changes in 

communication between cells. Heparin-binding proteins (HBPs) of the 

plasma membrane and extracellular matrix play a central role in cell 

communication. Therefore, we used heparin affinity proteomics to 

identify the extracellular HBPs in mouse normal pancreas (NP) and in 

a caerulein mouse model of AP. Many new HBPs (460) were 

discovered more than doubling their total number to 883. A number 

of the new HBPs are proteins with well-characterised intracellular 

functions, e.g. NDUFS4, NDUFS6, but which also have a documented 

extracellular presence with potential ‘moonlighting’ roles. The HBPs 
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form highly interconnected protein-protein interaction networks in 

both NP and AP, as well as globally. Thus, HBPs may represent the 

most interconnected set of extracellular proteins and so those with 

the greatest regulatory potential. HBPs in NP are associated with 

biological functions such as molecular transport, cellular movement 

and tissue architecture that underlie pancreatic homeostasis.  

However, in AP HBPs are additionally associated with processes such 

as acute phase response signalling, complement system and 

mitochondrial dysfunction. By virtue of their extracellular location 

and heparin binding property, HBPs are easily accessible and are 

potential biomarkers and drug targets in AP.  

 

3.5.3 Introduction 

The pancreas develops from endodermal cells in the foregut and has 

important exocrine and endocrine functions (Zaret and Grompe, 2008). 

Acute pancreatitis (AP) is acute inflammation of the pancreas and is mainly 

caused by gallstones and alcohol (Pandol et al., 2007). It is the leading 

cause for hospitalization in the United States and has significant quality of 

life implications for the patient and cost implications health systems (Wu 

and Banks, 2013). Although most episodes of AP are mild and self-limiting, 

the severe form of the disease, accompanied by a systemic inflammatory 

response syndrome and multi-organ failure, is associated with a high 

mortality. At a cellular level disruption in calcium homeostasis and 

signaling, and mitochondrial dysfunction have been implicated in the 
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pathogenesis of AP (Gerasimenko et al., 2014, Mukherjee et al., 2008). The 

clinical characteristics of AP suggest that an important molecular 

component is change in cell communication within the pancreas and, in 

severe AP, systemically between the pancreas and other organs.  Cell 

communication occurs through the medium of the extracellular matrix, 

with cell receptors responsible for generating the cellular response. 

The importance of extracellular proteins in mediating communication 

between cells in multicellular organisms is underscored by the 

demonstration that the increase in complexity of multicellular organisms is 

accompanied by an expansion and increase in complexity of extracellular 

proteins and their complexity (Vogel and Chothia, 2006). A key non-protein 

component of the extracellular space is the glycosaminoglycan heparan 

sulfate (HS), because it binds and regulates the activity of a large number of 

extracellular proteins involved in cell communication (Xu and Esko, 2014, 

Ori et al., 2008). HS is formed of linear repeats of a characteristic 

disaccharide of 1,4 linked uronic acid (-L-iduronate, IdoA, or -D-

glucuronate, GlcA) and -D-glucosamine  (GlcN), with variable O-sulfation 

of C2 on the uronic acid, of C3 and C6 on the glucosamine; the glucosamine 

being either N-acetylated or N-sulfated (Xu and Esko, 2014, Ori et al., 

2008). These modifications are hierarchical (Xu and Esko, 2014), resulting 

in chains with a distinct domain structure (Murphy et al., 2004); HBPs bind 

to the sulfated domains and their flanking transition domains. HS chains 

are attached to proteins to form proteoglycans (HSPGs), with the core 

proteins serving in part to direct chains to particular extracellular locations 

(Uniewicz et al., 2012, Xu and Esko, 2014) Heparin is often used as a proxy 
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for the sulfated domains of HS, though it is more homogenous and sulfated 

than these (Ori et al., 2008, Xu and Esko, 2014).  

Many individual studies have demonstrated a variety of mechanisms 

whereby binding to HS regulates the function of extracellular proteins, but 

only recently has this been analysed on a global scale (Ori et al., 2011). This 

work demonstrated that of the extracellular proteins, the HBPs form a 

highly interconnected functional network through protein-protein 

interactions that are functionally linked to physiological and pathological 

process in more complex multicellular organisms.  This and other work 

identify HBPs as important signalling molecules in the cellular 

microenvironment that influence fundamental biological processes in 

development, homeostasis and disease (Ori et al., 2011, Malavaki et al., 

2011, Xu and Esko, 2014).  

We previously used mRNA expression data as a proxy for protein, to test 

the hypothesis that HBPs, which are demonstrably functionally important 

at a genome-wide level (Ori et al., 2011), are equally important in the 

context of a single organ, the pancreas, and its associated digestive diseases 

(Nunes et al., 2013). This work showed that HBPs are indeed a key subclass 

of extracellular proteins, whose pattern of expression differs in the healthy 

and diseased pancreas. Importantly from the perspective of pancreatic 

diseases, HBPs, because they bind to heparin and are extracellular, 

represent easily accessible new targets for the development of biomarkers 

and drugs.  However, this work has important weaknesses.  mRNA 

expression was by necessity used as a proxy for that of protein, but this is 

known to not always be the case (Schwanhausser et al., 2013, Li et al., 
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2014).  Moreover, the use of mRNA assumes that the existing set of 435 

HBPs (Ori et al., 2011) is reasonably representative of those expressed in 

pancreas and that this organ does not express substantial, novel HBPs. 

We have, therefore, undertaken a proteomic analysis of HBPs in normal 

mouse pancreas and in the caerulein-induced mouse model of acute 

pancreatitis. A large number of HBPs were identified, more than doubling 

their number to 883. These HBPs are highly interconnected in NP, AP and 

globally. They may represent the most interconnected set of extracellular 

proteins, and, therefore, those with the greatest regulatory potential. Non-

canonical extracellular HBPs such as NDUFS4, NDUFS6, NDUFS7, NDUFS8, 

NDUFA9 and NDUFA10 were found to be under-expressed in AP compared 

to NP, using label-free quantification. These may have potential 

moonlighting roles not previously known. HBPs are functionally important 

in NP and AP and being accessible, by virtue of their extracellular location 

and heparin binding property, are potential biomarkers and drug targets in 

AP.  

  

3.5.4 Experimental procedures 

3.5.4.1 Pancreatic murine models  

CD1 mice were used in all experiments as they are genetically 

heterogeneous and more likely to represent the human population 

(Festing, 2010). Pancreases were obtained from 6-8 week old male adult 

CD1 mice (weight range, 24-30 g) with normal pancreas (NP) or 

experimental acute pancreatitis (AP). In order to induce experimental acute 
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pancreatitis, CD1 mice were fasted for 12 hours before each experiment, 

following which they were administered seven hourly intraperitoneal 

injections of caerulein (50 µg /kg; Sigma Chemical Co., St. Louis, MO) 

dissolved in 0.9% (w/v) saline (Braun Medical Ltd., Aylesbury, England). 

Pancreatitis was confirmed in the experimental mice 24 hours after the 

first intraperitoneal injection. All mice (NP and AP) were euthanized by 

cervical dislocation. Studies were conducted in compliance with UK Home 

Office regulations, and with the Institutional ethical review processes of the 

University of Liverpool.  

A blood sample was collected for serum amylase determination. Serum 

amylase was tested in the Clinical Biochemistry Department in Royal 

Liverpool University Hospital using a kinetic method. A sliver of pancreatic 

tissue from each of the pancreases was fixed in formalin for H&E staining 

and histological examination. The pancreases were removed, weighed, 

pooled together and stored in buffer H (10 mM HEPES pH 7.5, 5 mM MgCl2, 

25 mM KCl, 0.25 M sucrose supplemented with CompleteTM protease 

inhibitors cocktail, Roche Products Ltd, Welwyn Garden City, UK) at 4°C. 

CompleteTM protease inhibitor was used in all experiments as it has been 

shown to be particularly effective in experiments involving pancreatic 

tissue (Wandschneider et al., 2001). Sixteen CD1 mice were used for each 

HBP isolation experiment. Each experiment was performed thrice for NP 

and AP. 
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3.5.4.2 Isolation of a plasma membrane enriched fraction  

The isolation of the plasma membrane from murine pancreases was 

performed as in Ori et al., 2011, with a few minor modifications (Ori et al., 

2011). All the steps were performed on ice or at 4°C. Briefly, mouse 

pancreases were minced and homogenised with buffer H using a 30 mL 

Potter-Elvehjem homogeniser (30-40 strokes). Subcellular fractionation 

was performed using sequential steps of centrifugation. The homogenate 

was centrifuged for 20 min at 1,000 g in a Sorvall centrifuge (SS-34 rotor) 

(DuPont UK, Stevenage, UK). The pellet was resuspended with buffer H, 

homogenised and centrifuged at the same speed. The two supernatants 

were then combined (S1) and centrifuged for 20 min at 25,000 g. This 

supernatant was transferred to a fresh tube and the centrifugation 

repeated. The final supernatant (S2) was centrifuged for 45 min at 135,000 

g in a Sorvall Ultra Pro 80 ultracentrifuge (T.865.1 rotor) to produce a 

microsomal pellet, which was washed with 8 ml of buffer H (W) by 

resuspension and centrifuged as above. 

The final microsomal pellet was resuspended by homogenisation in a 

Dounce homogeniser (5 mL) with 4 mL of 1.55 M sucrose in buffer H and 

placed on a 2 mL 2 M sucrose cushion in a swing-bucket ultracentrifuge 

tube.  It was then overlaid with 2.5 mL 1.33 M, 2 mL 1.2 M, 2 mL 1.1 M, 1 

mL 0.77 M and 1 mL 0.25 M sucrose all in buffer H. The sucrose gradient 

was centrifuged for 16 h at 116,000 g in a Sorvall Ultra Pro 80 

ultracentrifuge (AH-629 rotor). Purdenz™ (GENTAUR Belgium BVBA) was 

pumped into the bottom of the tube using a 20 mL syringe to collect 1 mL 

fractions (F1-F12) from the top of the sucrose gradient. The first eleven 
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fractions  (F1-F11) were diluted eight times with buffer H and centrifuged 

for 45 min at 135,000 g. The last fraction was discarded. The pellets thus 

obtained (P2-P11) were resuspended with 400 μL 2 % (v/v) Triton X-100 

(Sigma Aldrich) in phosphate-buffered saline (PBS; 10 mM Na2HPO4, 1.8 

mM KH2PO4, 137 mM NaCl and 2.7 mM KCL, pH 7.4) using a Dounce 

homogeniser (1 mL). Protein concentration was measured by the 

bicinchoninic acid (BCA) protein assay (Pierce, Thermo Fisher Scientific, 

Northumberland, UK) in 1:20 dilutions of the resuspended pellets (final 

Triton X-100 concentration: 0.1 % (v/v)). Equal amounts of the 

resuspended pellets P1-P11 were analysed by SDS-PAGE and by western 

blot, using a polyclonal antibody to caveolin1 (sc-890, Santa Cruz 

Biotechnology Inc., Insight Biotechnology, Wembley, UK). After gel 

electrophoresis, samples were transferred to HybondTM nitrocellulose 

membrane (GE Healthcare Life Sciences) using a wet system (Mini Trans-

Blot Cell, Bio-Rad Laboratories Ltd) for 1 h at 100 V. Membranes were 

blocked with TBS (20 mM Tris-HCl, 150 mM NaCl, pH 7.5) supplemented 

with 10 % (w/v) skimmed milk powder for 1 h at room temperature. The 

membranes were then incubated in TBST-1% (w/v) milk (TBS 

supplemented with 0.1 % (v/v) Tween 20 (TBST) and 1 % (w/v) skimmed 

milk powder) with anti-caveolin1 (1:200) overnight at 4 °C. After three 5 

min washes with TBST, the membranes were incubated in TBST-5 % milk 

(TBST supplemented with 5 % (w/v) skimmed milk powder) with anti-

rabbit-HRP secondary antibody (A0545, Sigma Aldrich Ltd) (1:5,000) for 1 

h at room temperature. After at least three 5 min washes with TBST, the 

membranes were developed using the SuperSignal West Pico 
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chemiluminescent substrate (Pierce, Thermo Fisher Scientific, 

Northumberland, UK). 

3.5.4.3 Heparin affinity chromatography   

Membrane pellets P2-P5 were selected according to their sedimentation 

profile and caveolin-1 signal intensity. The resuspended pellets were 

pooled, adjusted to 0.15 M NaCl and 1 % (v/v) Triton X-100 and were 

applied to a 1 ml Hi-Trap heparin column (GE Healthcare Life Sciences) 

equilibrated with a modified phosphate-buffered saline (PBS), buffer WL 

(0.15 M NaCl, 13.7 mM Na2HPO4, 6.3 mM NaH2PO4, 0.1 % (v/v) Triton X- 

100, pH 7.2). After loading, the column was extensively washed with buffer 

WL until the absorbance at 280 nm reached the baseline. Bound proteins 

were then eluted with a 1-column volume of buffer E (2 M NaCl, 13.7 mM 

Na2HPO4, 6.3 mM Na2HPO4, 0.1 % (v/v) Triton X-100, pH 7.2). Protein 

concentration was measured by the BCA protein assay. 

3.5.4.4 Sample preparation for mass spectrometry  

Seventy percent (w/v) trichloroacetic acid (TCA) was added to an equal 

volume of the heparin-bound fraction to obtain a final concentration of 

35% (w/v) TCA. This was placed at -20°C for 1 hour, followed by 

centrifugation at 14,000 rpm for 10 minutes. After removing the 

supernatant carefully with a glass pipette, the pellet was washed 5 times 

with 5% (w/v) TCA. The pellet was freeze-dried overnight, washed 

subsequently with 0.5 mL of diethyl ether to remove the excess TCA and 

centrifuged at 5000 rpm. The supernatant was removed and the diethyl 

ether wash was repeated 2 more times. The final pellet was left to dry in 
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the fume hood. The ether-washed, TCA-precipitated pellets were 

resolublised in either 200 µL (normal pancreas (NP)) or 600 µL (acute 

pancreas (AP)) of 50 mM ammonium bicarbonate, 0.05% (v/v) Rapigest 

(Waters, Manchester, UK) and shaken at 550 rpm for 10 min at 80°C. The 

sample was then reduced (addition of 10 µL (NP) or 30 µL (AP) of 60 mM 

DTT and incubation at 60 °C for 10 minutes) and alkylated (addition of 10 

µL (NP) or 30 µL (AP) of 180 mM iodoacetamide and incubation at room 

temperature for 30 minutes in the dark). Trypsin (Sigma, Poole, UK, 

proteomics grade) was reconstituted in 50 mM acetic acid to a 

concentration of 0.2 µg/µl and 10 µL (NP) or 30 µl (AP) added to the 

sample followed by overnight incubation at 37°C. The digestion was 

terminated and RapiGest™ removed by acidification (3 µL (NP) or 9 µL (AP) 

of TFA and incubation at 37°C for 45 min) and centrifugation (15,000 x g 

for 15 min). To check for complete digestion each sample was analysed 

pre- and post-acidification by SDS-PAGE. 

3.5.4.5 Mass spectrometry data acquisition and analysis   

For LC-MS/MS analysis each digest was diluted to 250 ng/µL with 97/3/0.1 

% (v/v) water/acetonitrile/formic acid and mixed 2:1 with a protein digest 

standard (50 fmol/µL yeast alcohol dehydrogenase, Mass PREP™ Digestion 

Standard, Waters). A 3 µL injection of this mixture, corresponding to 500 

ng of sample and 50 fmol of standard was analysed using an Ultimate 3000 

RSLC™ nano system (Thermo Scientific, Hemel Hempstead, UK) coupled to 

a QExactive™ mass spectrometer (Thermo Scientific). The sample was 

loaded onto the trapping column (Thermo Scientific, PepMap100, C18, 300 
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μm X 5 mm), using partial loop injection, for 7 minutes at a flow rate of 4 

μL/min with 0.1% (v/v) TFA. The sample was resolved on the analytical 

column (Easy-Spray C18 75 µm x 500 mm 2 µm column) using a gradient of 

97% A (0.1% formic acid) 3% B (99.9% acetonitrile, 0.1% formic acid) to 

60% A 40% B (all v/v) over 90 minutes at a flow rate of 300 nL/min. The 

data-dependent program used for data acquisition consisted of a 70,000 

resolution full-scan MS scan (automatic gain control (AGC) set to 1e6 ions 

with a maximum fill time of 250 ms) the 10 most abundant peaks were 

selected for MS/MS using a 17,000 resolution scan (AGC set to 5e4 ions 

with a maximum fill time of 250 ms) with an ion selection window of 3 m/z 

and a normalised collision energy of 30. To avoid repeated selection of 

peptides for MS/MS, the program used a 30 second dynamic exclusion 

window. 

The data were processed with Progenesis QI (version 2 Nonlinear 

Dynamics, Newcastle upon Tyne, UK). Samples were aligned according to 

retention time using a combination of manual and automatic alignment. 

Default peak picking parameters were applied and features with charges 

from 1+ to 4+ featuring three or more isotope peaks were retained. 

Database searching was performed using Mascot (Matrix Science, London, 

UK). A Mascot Generic File, created by Progenesis QI, was searched against 

the reviewed entries of the reference proteome set of M. musculus from 

Uniprot (19/02/2014, 43238 sequences) with the sequence of yeast 

alcohol dehydrogenase (UniProt: P00330) added. A fixed carbamidomethyl 

modification for cysteine and variable oxidation modification for 

methionine were specified. A precursor mass tolerance of 10 ppm and a 
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fragment ion mass tolerance of 0.01 Da were applied. The results were then 

filtered to obtain a peptide false discovery rate of 1% and a requirement of 

two peptides per protein was applied. Label-free quantification was 

performed following the “Top3” methodology (Silva et al., 2006) by spiking 

the sample prior to analysis with an internal standard of 50 fmol yeast 

alcohol dehydrogenase digest (Uniprot P00330, Waters). Proteins were 

annotated as differentially expressed if they achieved a false discovery rate 

(FDR) corrected q value of 1%. Additionally, an adjusted threshold p value 

of less than 0.001 following the Bonferroni correction was used to identify 

the HBPs as potential biomarkers in the first instance (Ting et al., 2009). 

3.5.4.6 Identification of the extracellular HBPs in NP and AP 

 Extracellular proteins were identified using a combination of 

bioinformatics tools. SignalP 4.1, which predicts the presence of a secretory 

signal peptide, was used to identify extracellular proteins (Petersen et al., 

2011) with Phobius, which is a combined transmembrane topology and 

signal peptide prediction tool, to obtain a wider coverage for extracellular 

protein identification (Kall et al., 2007). A third tool was SecretomeP 2.0, 

which produces ab initio predictions of protein secretions not based on    a 

secretory signal peptide (Bendtsen et al., 2004). A fourth tool based on 

ontology, Ingenuity Pathways Analysis (IPA), was used to identify 

extracellular and plasma membrane proteins. The HBPs that were not 

identified using SignalP, Phobius, or SecretomeP but which were identified 

using IPA were further investigated using a manual approach. Each 

candidate HBP was examined using UniProtKB for the presence of an 



 108 

extracellular signature. A search in Pubmed, using the terms “extracellular” 

or “secreted” was performed to investigate those proteins that still had an 

ambiguous subcellular location to identify at least one publication 

demonstrating an unequivocal plasma membrane and or extracellular 

localisation.   Finally, the outputs of the various approaches were merged to 

obtain the final list of HBPs in NP and AP.  

 

3.5.4.7 Interactions and construction of networks of HBPs  

Interactions between HBPs were obtained from the online database 

resource ‘Search Tool for the Retrieval of Interacting Genes’ (STRING). 

STRING 9.1 is a database of known and predicted functional interactions 

and served as a ‘one-stop’ comprehensive resource that could be easily 

used with Cytoscape (Franceschini et al., 2013). The interactions in STRING 

are provided with a probabilistic confidence score that is an estimate of 

how likely an interaction describes a functional linkage between two 

proteins. A higher score indicating a higher confidence is given when more 

than one type of information supports a given association. Only 

interactions with a high confidence score (0.70 and above) were used to 

build networks using Cytoscape 2.8.1, which is an open source, Java based 

bioinformatics package for biological network visualization (Smoot et al., 

2011). The resulting networks were termed ‘protein interactomes’. In the 

protein interactomes, HBPs or ‘nodes’ are coloured blue, while the black 

lines connecting the HBPs denote the interactions or ‘edges’. 
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3.5.4.8 Network Analysis 

3.5.4.8.1 Network parameters 

Additional ‘plugins’ or tools in Cytoscape were used for analysis. The 

networks were treated as undirected and the following parameters were 

computed using the ‘NetworkAnalyzer’ plugin (Assenov et al., 2008): 

diameter, average number of neighbours, number of connected pairs of 

nodes, node degree, average clustering coefficient, topological coefficient, 

and shortest path length. We used the ‘clustering coefficient’ and ‘number 

of connected components’ as measures of network connectivity. A high 

clustering coefficient and a low number of connected components are 

present in well-connected networks (Barzel and Biham, 2009).  

3.5.4.8.2 Identification of potential biomarkers and therapeutic targets  

Canonical pathways and cluster analysis were used in conjunction with 

differential expression as tools to identify potential functional biomarkers 

and drug targets. 

 

Canonical pathways and bio-functions analyses  

Canonical pathways are well-characterized signalling pathways that have 

been curated from original data. Bio-functions are molecular and cellular 

functions that play important roles in homeostasis in health and disease. 

The significance of the association between the datasets and the canonical 

pathway/bio-function was measured by calculating the p-value using 

Fisher’s exact test to determine the probability of the association between 

the HBPs in the dataset and the canonical pathway/bio-function. Canonical 
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pathways and bio-function analyses are useful tools for the identification of 

potential biomarkers and drug targets. They also help identify biological 

pathways that play important roles in homeostasis and complex diseases. 

 

Cluster Analysis  

Clusters, which are highly interconnected hubs of nodes (HBPs) within the 

networks, were identified using the ‘AllegroMCODE’ plugin in Cytoscape. 

Clusters are scored depending on the number of constituent nodes and the 

edges (interactions) between them. 

3.5.4.8.3 Comparing the connectivity of the heparin-binding protein 

interactome with other extracellular protein interactomes  

An updated list of HBPs was obtained combining the list of HBPs from Ori 

et al. 2011 (Ori et al., 2011) and the HBPs from the experiments described 

here. The complete human proteome was obtained from the protein 

knowledgebase in UniProtKB, using the following search “Homo sapiens 

(Human) [9606]" AND keyword: "Complete proteome [KW-0181]". The 

extracellular proteome was extracted using the following Gene Ontology 

(GO) terms: GO:0005576 (extracellular region), GO:0005615 (extracellular 

space), GO:003102 (extracellular matrix- ECM) and GO:0005604 (basement 

membrane).   Clustering coefficients of extracellular protein interactomes 

were compared in order to ascertain if the heparin-binding protein 

interactomes formed important modules within the extracellular space. 

The extracellular non-HBP protein list was generated by subtraction of the 

HBP list from the whole extracellular protein list. The extracellular protein 
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interactome (Ec), the extracellular non heparin-binding protein 

interactome (Ec_not hepint) and the extracellular heparin-binding protein 

interactome (Ec_hepint) were built in Cytoscape using the respective lists 

obtained, as described above, and the interaction data retrieved from the 

STRING database. The heparin-binding protein interactomes (Ec_hepint) 

were also compared with their corresponding degree-preserving 

randomised versions in order to determine whether the network 

parameters arising from the interactions of the HBPs were random. The 

randomised networks (Ec_hepint_random) were generated, by shuffling the 

edges of the respective heparin-binding putative protein interactomes, 

using the ‘Random Networks’ plugin in Cytoscape Cytoscape.  A network is 

deemed to be well connected if its average clustering coefficient is 

significantly higher than that of its corresponding random networks.  

 

3.5.5 Results  

Identification of HBPs from plasma membrane enriched fractions from 

normal and a murine model of acute pancreatitis - Each HBP isolation 

experiment was performed three times using sixteen pancreases from 

control (NP) and AP mice. Acute pancreatitis was induced in animals by 

injection of caerulein. Histological analysis of samples of these pancreases 

demonstrated the classic features of normal pancreas with preserved 

acinar pattern (Fig 3.5.1A) and those associated with AP namely marked 

oedema, vacuolisation, neutrophil infiltration in the ductal margins and 

parenchyma of the pancreas, with focal acinar cell necrosis (Figs 3.5.1B).  
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Serum amylase was observed to increase ~8- to 10-fold in AP compared to 

NP (Figs 3.5.1A, B).  These data are consistent with successful induction of 

AP (Carvalho et al., 2014). 

Differential centrifugation (De Duve, 1971, Ray, 1970) of pancreas 

homogenates produced a series of cellular sub-fractions, including the final 

microsomal pellet (lane Mc, Figs 3.5.2A.A, 35.2B.A), which was floated on a 

sucrose gradient (0.77-1.55 M) to separate its individual constituents (Figs 

3.5.2A.B, 3.5.2B.B). The gradient was harvested into 12 fractions, with the 

final fraction being discarded. Eleven fractions were assessed by Western 

blot for the plasma membrane marker (caveolin-1) (Figs 3.5.2A.B, 

3.5.2B.B). The caveolin-1 content was inversely correlated with the 

equilibrium density of the sucrose fractions, consistent with plasma 

membranes, which possess lower density than other microsomal 

membranes. Fractions 2 to 4, which had the strongest caveolin-1 

immunoreactivity, were pooled and selected as the plasma membrane 

enriched fraction (PM). This was solubilised in Triton-X-100 and subjected 

to heparin affinity chromatography. After extensive washing the heparin 

column with PBS, proteins that remained bound were deemed to have a 

sufficiently strong interaction with the polysaccharide to be considered as 

HBPs.  These were eluted with 2 M NaCl and precipitated with TCA to 

remove Triton-X-100, followed by digestion with with trypsin. After 

ascertaining the optimal loading concentration, the sample order was 

randomised across biological (three each NP and AP) and technical repeats 

prior to LC-MS. The LC-MS runs were then individually searched using 

MASCOT protein search engine (www.matrixscience.com) (Perkins et al., 

http://www.matrixscience.com/


 113 

1999).  There was little variation between the technical replicates for the 

samples, which can be attributed to the high quality of the sample 

preparation and MS analysis (Fig 3.5.3). Each technical replicate produced 

between 1500-1900 protein hits at a peptide false discovery rate (FDR) of 

1%. To obtain a fuller coverage, the data were run through Progenesis 

label-free software. The merged file yielded over 1900 hits at a peptide 

false discovery rate of 1%. Using a 2-peptide stringency, these were 

reduced to 1602 proteins in NP and 1866 proteins in AP (Supplementary 

Tables 1 and 2).  

The 1602 proteins in NP and 1866 proteins in AP were then filtered by the 

bioinformatics pipeline described in "Experimental Procedures" to identify 

those possessing extracellular (partially or wholly) amino acid sequence. A 

total of 396 proteins in NP (Supplementary Table 3) and 419 proteins in AP 

(Supplementary Table 4) were identified as heparin binding and 

extracellular. Combining these two sets of proteins yielded 559 HBPs, of 

which 460 HBPs had not been identified previously as heparin binding. 

With such a substantial number of new HBPs, it was important to analyse 

their functions and relationships to gain insight into the significance of the 

pancreas and AP associated HBPs.  This was achieved by an analysis of 

their protein-protein interactions. 

 

Label-free quantification 

Using the “Top3” methodology, proteins were annotated as differentially 

expressed if they achieved a FDR corrected q value of 1% (Supplementary 

Tables 5 and 6). Introduction of a p value cut off of 0.001, following the 
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Bonferroni correction, resulted in the identification of 103 HBPs that were 

overexpressed and 116 HBPs that were under expressed in AP as 

compared to NP. Known biomarkers of AP, such as carboxypeptidase (CPB1 

and CPB2) and pancreatic amylase (AMY2A) (Gomatos et al., 2014) were 

found to be overexpressed in the AP group. TAP-binding protein (TABP or 

Tapasin) that binds to TAP (trypsinogen activation peptide) was also found 

to be overexpressed. The top 20 HBPs with the highest fold change in each 

group (Tables 3.5.1 & 3.5.2) may provide potential biomarkers for AP.  

 

Network construction and analysis of HBPs in the pancreas - The lists of 

HBPs in NP and AP were used to obtain protein-protein interactions from 

STRING.  Only interactions with a high confidence score (0.70 and above) 

were used. These were imported into Cytoscape to build heparin-binding 

protein interactomes in NP and AP. The nodes, corresponding to each HBP, 

are coloured grey and are connected to each other by black lines, which are 

also termed edges and represent the known interactions of the HBPs in NP 

(Fig 3.5.4). ‘Nodes’ or HBPs are coloured depending on their fold change 

value, based on label-free quantification, in the AP interactome (Fig 3.5.5). 

The HBPs that are under expressed in AP relative to NP appear green and 

those that are over expressed appear red. Grey lines connecting the HBPs 

denote ‘edges’ or interactions. The topological parameters of the HBP 

interactomes were obtained using ‘NetworkAnalyser’, which is a plugin in 

Cytoscape. The HBP interactomes of NP and AP have high clustering 

coefficients (NP = 0.375 and AP = 0.390). The clustering coefficients of the 

HBP interactomes were also significantly higher than those of their 
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corresponding random networks (Ec_hepint_random) in NP (p=0.001) and 

AP (p<0.001). These suggest that the HBP interactomes form highly 

interconnected modules in the extracellular space of the pancreas (Barzel 

and Biham, 2009, Dong and Horvath, 2007). This would mean that the HBP 

interactomes are likely to be central to the homeostasis of the normal 

pancreas and the HBPs identified in AP may have key roles in mediating the 

altered cell communication that is associated with AP.  To identify which 

HBPs are most likely to be disease biomarkers or targets for the 

development of therapy, specific tools in Cytoscape were used, such as 

canonical pathways, bio-functions and cluster analysis. These allow the 

HBPs in NP and AP to be associated with biological pathways and functions 

that play important roles in health and disease.  

 

Analysis of Canonical Pathways, Bio-functions of HBPs in NP and AP - The 

context of a particular HBP, that is the other HBPs, will be important, 

particularly since these proteins are clearly highly interconnected.  

Therefore, a first analysis was performed of the HBPs in NP and of AP.  A 

subsequent analysis was done on the HBPs unique to either NP or AP. 

HBPs in NP and AP clearly have functions important in cell communication 

(Fig 3.5.6) and they enrich to a number of canonical pathways (Tables 3.5.3 

and 3.5.4, Supplementary Tables 7 and 8) underlying homeostasis and 

complex diseases both at a systemic and an organ / disease level (NP and 

AP).  For example, the top canonical pathway associated with the NP 

dataset, signalling by ‘Rho family GTPases’ plays an important role in cell 

adhesion, as do a number of the other highly ranked pathways, 'RhoGDI 
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Signaling', 'Ephrin B Signaling', 'Tec Kinase Signaling', 'Actin Cytoskeleton 

Signaling' and 'Ephrin Receptor Signaling'. Cell adhesion is essential to the 

maintenance of tissue architecture and so a type of cell communication 

appropriate for homeostasis (Maitre and Heisenberg, 2013). In contrast, 

the top pathways associated with the HBPs in AP are associated with 

inflammatory responses.  Thus, the top four pathways in AP are ‘Intrinsic 

Prothrombin Activation Pathway’, ‘Coagulation System’, ‘Acute Phase 

Response Signalling’ and ‘LXR/RXR Activation’. Most of the HBPs enriching 

to these pathways were found to be overexpressed in AP relative to NP 

(Supplementary Table 5).    The presence of pathways linked to cell 

adhesion further down the list ('Actin Cytoskeleton Signaling', 'RhoGDI 

Signaling',  'Signaling by Rho Family GTPases', 'Ephrin Receptor Signaling', 

'Ephrin B Signaling' and 'Integrin Signaling'), would then reflect the 

predominance of cell motility and a change in tissue architecture, driven by 

the inflammatory pathways. 

 

Analysis of the bio-functions associated with the HBPs in NP and AP 

support the conclusions reached from the analysis of canonical pathways.  

Thus, the highest ranked bio-functions of HBPs in NP is transport of 

molecules and more specific related bio-functions are also highly ranked, 

e.g., amino acid metabolism, transport of ions, and these relate to the 

numerous anabolic functions of the pancreas (Supplementary Table 7).  

The various bio-functions relating to "Cellular Movement", "Cell 

Morphology" and "Cellular Assembly and Organization' will similarly 

reflect the architecture of homeostasis of the pancreas (Supplementary 
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Table 9).  In AP, there is a marked change in bio-functions associated with 

the HBPs, with a loss of all those associated with anabolism from the most 

highly ranked positions.  Instead, bio-functions linked to inflammation, cell 

death and disruption of tissue architecture feature (Supplementary Table 

10). 

 

The analysis of the HBPs that were unique to NP or to AP (Supplementary 

Tables 11 & 12) shows that these subsets of HBPs are also associated with 

canonical pathways and biofunctions characteristic of homeostasis and 

inflammation.  Thus, top canonical pathways enriching to the HBPs unique 

to the NP dataset (Supplementary table 13) also relate to anabolism, but 

specifically to mitochondrial function, whereas the unique HBPs of AP are 

again associated with inflammation (Supplementary Table 14 and Fig. 

3.5.7). In terms of bio-functions, the HBPs unique to the NP dataset 

similarly enrich to anabolic bio-functions (Supplementary Table 15) and 

those of AP to ones associated with inflammation (Supplementary Table 

16). 

 

Cluster analysis 

The top clusters in AP include HBPs that are mainly over expressed 

compared to NP using label-free quantification (Supplementary Table 17). 

These clusters enrich to a number of canonical pathways that are linked to 

the AP dataset.  

 



 118 

The global heparin interactome - A total of 559 extracellular HBPs were 

identified in the present work, of which 460 proteins have not been 

previously identified previously as being heparin binding (Ori et al., 2011). 

This takes the number of extracellular HBPs from 435 previously known to 

883 (Supplementary Table 18), which is a significant increase. It was, 

therefore, important to determine whether the enlarged HBP interactome 

retained functional relevance in the extracellular space. This was 

accomplished by a comparison of clustering coefficients of various 

extracellular protein-protein interaction networks. The clustering 

coefficient of the extracellular HBP interactome (Ec_hepint) was 

significantly higher than that of the whole extracellular interactome (Ec) 

and the extracellular non-HBP interactome, as well that of the 

corresponding randomised version of Ec-hepint (Ec-hepint_random) (Fig. 

3.5.8). This indicates that even with 460 additional members the HBPs 

remain highly interconnected and form an important regulatory module in 

the extracellular space. The global heparin interactome enriches to 

important canonical pathways (Supplementary Table 19); some have a 

clear pancreas bias, due to the fact that the new HBPs have been discovered 

in this organ. For example, ‘Hepatic Fibrosis / Hepatic Stellate Cell 

Activation’ (-log (p-value) = 3.78E01), which is the top pathway associated 

with the global HBP interactome is of particular relevance in pancreatic 

homeostasis, since the pancreatic stellate cell is known to play an 

important role in this tissue (Vonlaufen et al., 2007). 
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3.5.6 Discussion 

Extracellular HBPs have been shown previously to be functionally 

associated to physiological and pathological processes.  The aim of the 

present work was to determine if this was true for a single organ, the 

pancreas and one of its diseases, AP.  The focus was on extracellular HBPs, 

because these could readily be distinguished from intracellular 

contaminants.  However, it is important to note that there is clear evidence 

for intracellular HS (Courvalin et al., 1982, Bornens, 1973) However, there 

is no means at present to distinguish in the output from a proteomic 

experiment intracellular proteins that interact with intracellular HS from 

those that interact solely with another intracellular polyanion, such as 

phosphorylated lipids and nucleic acids.   For this reason intracellular 

proteins are excluded from the analysis, though there are substantial 

numbers present in the analysis. 

Differential centrifugation followed by density gradient centrifugation was 

used to isolate a plasma membrane enriched subcellular fraction, which 

was subsequently used as a source of extracellular HBPs (Ray, 1970).  In 

addition to membrane proteins, which are often underrepresented in 

proteomic analyses, this fraction would also encompass intra- and 

extracellular associated membrane proteins, as well as proteins associated 

with the pericellular matrix.  The plasma membrane enriched fraction was 

solubilized using a non-ionic detergent and subjected to heparin-affinity 

chromatography. In contrast to previous work (Ori et al., 2011), here a 

single elution at 2M NaCl was used to recover heparin-binding proteins. 

The rationale was that the concentration of NaCl required for elution from 
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heparin does not necessarily correlate with affinity for HS (Xu et al., 2012).  

A number of tools were used to identify proteins with significant sequences 

in the extracellular space, including SignalP, Phobius, SecretomeP, IPA and 

manual curation for the presence of an extracellular signature using 

Uniprot-KB and PubMed. In a previous analysis of rat liver a bioinformatics 

pipeline based on ontology (gene ontology and ingenuity ontology, IPA) 

was combined with manual curation to identify 62 HBPs, of which 12 were 

previously known to bind to heparin (Ori et al., 2011). Middaugh et al., 

employing an antibody array on total cell lysate before and after depletion 

of HBPs by heparin agarose beads, identified 29 proteins whose signal was 

significantly reduced after incubation of the cell lysate with heparin beads, 

though only three were extracellular (Jones et al., 2004). Our present 

approach identified 460 new extracellular HBPs and has more than 

doubled the number of proteins that may be HBPs (Ori et al., 2011). This 

increase is likely due to the new source of tissue and an associated disease 

state, the purification of a plasma membrane enriched sub-proteome, the 

depth of the mass spectrometry analysis and the use of parallel approaches 

to identify proteins that possess significant extracellular sequence.  

An important question is how representative are the HBPs identified here 

of the proteins in NP and AP whose function depends on, or is modified by, 

interaction with HS.  The mass spectrometry is limited by the depth of the 

analysis is limited by only accepting identifications based on at least two 

peptides and a maximum false discovery rate of 1%. This in itself leads to 

false positives and false negatives. The Bonferroni correction was used to 

increase the stringency and further reduce the number of false positives for 
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the purpose of biomarker identification, (Ting et al., 2009). 

There are additional factors that are likely to contribute to the false 

positives and false negatives. Some higher abundance HBPs may escape 

detection, because they are part of large macromoleuclar assemblies that 

are not solubilised by Triton-X-100, associated with, for example, matrix 

fibrils, membrane microdomains or cytoskeleton.  Moreover, not all HS-

binding proteins will necessarily bind the heparin column and may, instead 

remain bound to HSPGs during affinity chromatography.  Indeed, the 

transition and S-domains of HS have far more diverse structures than 

heparin (Ori et al., 2008, Xu and Esko, 2014).  Thus, the present analysis 

will have a bias towards HBPs that bind structures present in the 

trisulfated disaccharide repeat of heparin, which makes up 75% of the 

polysaccharide and contains 2-O sulfated iduronate, N-, 6-O sulfated 

glucosamine.  A source of false positives would be proteins that are bound 

to an HBP with a sufficiently slow dissociation rate constant that they 

would be carried though the affinity chromatography, an interaction, which 

would be consistent with biological function.  

A recurrent question is how specific or selective is a protein-HS interaction 

(Xu and Esko, 2014, Ori et al., 2008, Xu et al., 2012).  This will be important 

in terms of understanding the mechanism whereby HS regulates the 

activity of a protein.  HS has been shown directly to control the movement 

of a protein, fibroblast growth factor-2 in the pericellular matrix (Duchesne 

et al., 2012).  Thus, even an unselective charge-dependent interaction of a 

protein with HS will restrict the movement of the protein in the 

extracellular space and so affect its function in terms of location and local 
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concentration.  Therefore, proteins that bind heparin in PBS and that 

remain so during the extensive washing of the affinity column have a 

relatively slow dissociation rate constant and would be expected to have at 

least their movement and extracellular location regulated by HS. Taking 

into account the caveats described above regarding false positives, the 

HBPs identified here are thus likely have at least this aspect of their 

function regulated in this way by HS in the extracellular space of NP and 

AP. Any changes in the structure of HS that might accompany AP may, 

therefore, alter the movement/location of the HBP and so its contribution 

to cell physiology.  

Apart from the limits imposed on the mass spectrometry analysis, the other 

sources of false positives and negatives are not currently quantifiable, until 

such time as the interaction of each HBP with the polysaccharide is 

measured directly. 

Given the above caveats, the heparin interactome is now substantially 

larger that previously described (Ori et al., 2011).  Importantly, the protein-

protein interaction network of the HBPs retains the key properties of the 

earlier, smaller interactome and hence its functional relevance to the 

regulation of cell communication by extracellular proteins (Ori et al., 2011). 

Thus, the HBP interactome is highly interconnected and HBPs form 

numerous regulatory modules in the extracellular space. Importantly, this 

is true for the subset of HBPs expressed by a single organ, the pancreas, one 

of its associated diseases, AP, and for the global interactome. Thus, it may 

be that for most, if not all organs, HBPs represent the most interconnected 

set of extracellular proteins, and, therefore, those with the greatest 
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regulatory potential. 

Intriguingly, the present work identified some non-canonical extracellular 

HBPs such as NDUFS4, NDUFS6, NDUFS7, NDUFS8, NDUFA9, NDUFA10 in 

NP, and NDUFA9 and NDUFA10 in NP and AP. These are mitochondrial 

proteins that are nuclear-encoded and were identified by SignalP, Phobius 

or SecretomeP as having a secretory signal.  It seems unlikely that they are 

simply contaminants with polyanion binding properties that allow 

interaction with heparin. Direct evidence of extracellular localisation has 

been obtained for multiple subunits of the ATP synthase complex, including 

the OSCP (Oligomycin sensitivity-conferring protein) and D subunits, which 

have been observed at the plasma membrane (Moser et al., 1999, 

Vantourout et al., 2008, Yonally and Capaldi, 2006). Such proteins with a 

clearly established classic subcellular localisation, which are subsequently 

found, associated with other organelles or extracellularly, have been 

termed to be 'moonlighting'. We, therefore, included the NDUF proteins as 

extracellular HBPs. Though their plasma membrane/extracellular 

localisation remains to be confirmed by orthogonal measurements, the 

observation that these are all present in NP, but are under-expressed in AP 

is consistent with the contribution of mitochondrial dysfunction to AP 

(Cardenas et al., 2010, Pinton et al., 2008, Koopman et al., 2010). 

A number of biomarkers that have been previously investigated in AP, such 

as carboxypeptidase B and pancreatic amylase,were identified in the AP 

dataset (Table 1 and Supplementary Table 5). LBP, an acute phase reactant, 

with a rise and fall in serum that is similar to CRP (Rau et al., 2003) and 

which is protective in AP, was identified to be over expressed in the AP 
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dataset. HRG (Table 1) has been shown to recruit IgG to facilitate clearance 

of necrotic cells by pahagocytes (Poon et al., 2010). Thus, the HBPs 

exhibiting the greatest fold change (Table 1) alone or in combination with 

existing biomarkers may provide an early stratification of AP, identifying 

the severe form of the disease earlier and improving outcomes. The top 

canonical pathways and clusters, to which the HBPs in the AP dataset 

enrich, provide a repository for functional biomarker and drug discovery in 

AP. Neutrophils have been shown to play an important role in AP, 

activating the complement system and promoting lung injury (Awla et al., 

2012, Shrivastava and Bhatia, 2010). They release platelet activating factor, 

which has been implicated as a key mediator in the progression of AP and 

is associated with increased complication rates and mortality (Xia et al., 

2007). HBPs such as PIP5K1C that participate in these canonical pathways 

regulate neutrophil adhesion by facilitating RhoA GTPase and integrin 

activation through chemoattractants (Xu et al., 2010a). Small molecule 

inhibitors of PIP5K1C have been investigated in the treatment of other 

diseases (Wright et al., 2014) and it may, useful to explore these in the 

treatment of AP. SERPINC1, has anti-inflammatory properties and has been 

shown to improve acute pancreatitis in the rat model (Hagiwara et al., 

2009). Thus, its presence among the HBPs whose expression is increased to 

the greatest extent may reflect a normal physiological reaction to the insult 

of AP.  

“Hepatic Fibrosis / Hepatic Stellate Cell Activation”, which is the top 

canonical pathway associated with the global HBP interactome and one of 

the top pathways enriching to the AP dataset is particularly relevant in 
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pancreatic homeostasis.  Stellate cells play an important role in 

inflammatory diseases and cancer of the liver, as in the pancreas 

(Vonlaufen et al., 2007, Algul et al., 2007, Masamune et al., 2009). The 

enrichment of a well-defined fibrosis and activation pathway associated 

with the hepatic stellate cell, rather than its pancreatic counterpart is 

probably due to the fact that the former was discovered earlier and has 

been studied more extensively (Geerts, 2001). Hepatic and pancreatic 

stellate cells exhibit similarities of morphology and function and are 

activated by common cytokines and growth factors, and may share a 

common origin (Buchholz et al., 2005). FN1 and CD14, which are unique to 

the AP dataset (so highly increased relative to NP) and also enriched to the 

‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ pathway may thus have 

potential as a PSC specific biomarker and drug target in the progression of 

AP to chronic pancreatitis. Indeed, Rhein, which is a natural anthraquinone 

targeting the SHH/GLI1 signalling pathway in pancreatic fibrosis, is 

presently being investigated as an anti- fibrotic drug in the pancreas (Tsang 

et al., 2013). HBPs such as vascular endothelial growth factor A (VEGFA) 

and fibroblast growth factor2 (FGF2) enrich to this pathway. Thus, 

although they are not amongst the most highly expressed in AP because 

they enrich to this pathway and because there are already drugs targeting 

their receptors undergoing clinical trials, particularly for the treatment of 

various cancers, they may have application in the treatment of AP.  

‘CXCR4 Signalling’ regulates cell differentiation, cell chemotaxis cell 

survival and apoptosis, and has important roles in the embryonic 

development of the pancreas (Katsumoto and Kume, 2013). Its importance 
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as a key canonical pathway in AP is supported by the identification of its 

protective role in AP, which may be mediated by facilitating the migration 

of bone marrow derived stem cells towards the pancreas (Gong et al., 

2014). Early ‘Complement system’ activation occurs in pancreatic necrosis 

and suggests this pathway may enable the development of treatment of 

leukocyte-associated injury in AP (Hartwig et al., 2006).  In this respect, 

heparin-based compounds (Coombe and Kett, 2005) might be particularly 

interesting as potential therapeutics for AP.  They may be tuneable to 

modulate a gamut of HBPs important in the cell communication underlying 

the progression of AP, which could include complement system activation, 

growth factors and cytokines, and, because heparin can modulate the 

activity of some transporters, metabolism (Chen et al., 2014). 

The HBPs define a group of proteins that have a clear functional 

importance in cell communication in homeostasis and in at least one 

disease, AP.  HBPs are experimentally accessible, because they bind to 

heparin and are extracellular, and in at least some instances they will be 

present in serum.  Therefore, the HBPs of pancreas and AP are likely to 

yield much-needed biomarkers and targets for therapy, a conclusion 

reinforced by the observation that some of the HBPs identified are involved 

known mechanisms of AP and some are current targets for therapy in AP 

and other diseases.  
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HBP            Max fold change 

ERP27 412 

CPB2 90 

Ngp 79 

HRG 77 

Try4 58 

SERPINC1 44 

ITIH2 43 

PLG 43 

COL6A3 41 

SERPIND1 37 

CTRC 36 

FN1 35 

AHSG 30 

Pzp 30 

SERPINA1 28 

COL1A2 26 

PRG2 23 

SERPINA3 21 

F2 20 

Ear3 

 

20 

 

Table 3.5.1. Top 20 HBPs upregulated in AP. The upregulated HBPs were filtered 

depending on the maximum fold change values. An adjusted threshold p value of less 

than 0.001 following the Bonferroni correction was used to identify the top HBPs to be 

validated as potential biomarkers. 

 

 

HBP       Max fold change 

KLB -46 

SOSTDC1 -20 

CRIP2 -18 

SLC4A7 -13 

COMTD1 -13  

MRGPRF -12 

RNASE1 -12 

GPR39 -11 

SLC35A2 -11 

SLC4A2 -11 

PDHA1 -10 

KCNQ1 -10. 

ARCN1 -10 

COMMD10 -10 

TMEM115 -9 

INSR -9 

TFRC -8 

CLPS -8 

ADCY6 -7 

CLTB -7 

 

Table 3.5.2. Top 20 HBPs downregulated in AP. The downregulated HBPs were 

filtered depending on the maximum fold change values. An adjusted threshold p value 

of less than 0.001 following the Bonferroni correction was used to identify the top 

HBPs to be validated as potential biomarkers. 
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Canonical Pathways 

 -log (p-

value) 

Signaling by Rho Family GTPases 8.45 

G Beta Gamma Signaling 8.44 

RhoGDI Signaling 8.16 

CXCR4 Signaling 7.28 

Caveolar-mediated Endocytosis Signaling 6.94 

IL-1 Signaling 6.77 

Thrombin Signaling 6.76 

Clathrin-mediated Endocytosis Signaling 6.32 

Ephrin B Signaling 5.91 

Tec Kinase Signaling 5.71 

Role of NFAT in Regulation of the Immune 

Response 5.23 

CREB Signaling in Neurons 5.17 

Cardiac Hypertrophy Signaling 5.12 

Role of Tissue Factor in Cancer 5.11 

Relaxin Signaling 4.76 

Actin Cytoskeleton Signaling 4.75 

Gαi Signaling 4.73 

Triacylglycerol Degradation 4.71 

Ephrin Receptor Signaling 4.55 

Sertoli Cell-Sertoli Cell Junction Signaling 4.30 

 

Table 3.5.3. Top 20 canonical pathways in normal pancreas using Ingenuity 

Pathways Analysis. The significance of the association between the datasets and the 

canonical pathway was measured by calculating the p-value using Fisher’s exact test to 

determine the probability of the association between the HBPs in the dataset and the 

canonical pathway. 

 

 

 

Canonical Pathways 

 -log (p-

value) 

Intrinsic Prothrombin Activation Pathway 14.3 

Coagulation System 13.2 

Acute Phase Response Signaling 11.4 

LXR/RXR Activation 11.0 

Clathrin-mediated Endocytosis Signaling 10.6 

FXR/RXR Activation 10.4 

Extrinsic Prothrombin Activation Pathway 9.08 

G Beta Gamma Signaling 9.02 

Complement System 7.82 

Actin Cytoskeleton Signaling 7.70 

RhoGDI Signaling 7.70 

Role of Tissue Factor in Cancer 7.30 

Signaling by Rho Family GTPases 7.23 

Ephrin Receptor Signaling 7.01 

CXCR4 Signaling 6.88 

Caveolar-mediated Endocytosis Signaling 6.64 

Ephrin B Signaling 6.58 

Virus Entry via Endocytic Pathways 6.40 

Thrombin Signaling 6.34 

Integrin Signaling 6.19 

 



 130 

Table 3.5.4. Top 20 canonical pathways in experimental acute pancreatitis using 

Ingenuity Pathways Analysis. The significance of the association between the 

datasets and the canonical pathway was measured by calculating the p-value using 

Fisher’s exact test to determine the probability of the association between the HBPs in 

the dataset and the canonical pathway. 

 

 



                                         

                                         
Figure 3.5.1: Normal pancreas (NP) and caerulein-induced acute pancreatitis (AP). Representative images of H&E stained histology slides of A) NP 

and B) AP. Mean serum amylase levels in (C) NP and (D) AP in each experiment consisting of 16 individuals. 
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Figure 3.5.2: Preparation of a plasma membrane enriched fraction. Coomassie-stained SDS-PAGE gel of (A) NP and (B) AP samples obtained during 

homogenisation and fractionation by sequential steps of centrifugation. Nu = nuclear pellet; S1 = post-nuclear supernatant; Mt = mitochondrial pellet; S2 = 

post-mitochondrial supernatant; C = cytosol (post-microsomal supernatant); W = wash of the microsomal pellet; Mc = microsomal pellet. Coomassie-stained 

SDS-PAGE and western blot analysis of 10 fractions (F1-F11) from the microsomal pellet after flotation on a sucrose gradient (0.25 - 2 M) in (C) NP and (D) 

AP. Fractions are ordered depending on their equilibrium density from light (left) to heavy (right). The enrichment of plasma membrane was assessed by 

western blot using an antibody against caveolin-1, which is a specific plasma membrane marker. 
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Figure 3.5.3: Heat map depicting the variation across the biological and technical replicates. The rows represent the various biological replicates in 

normal pancreas (NP) and acute pancreatitis (AP), while the columns represent proteins. Red represents over expression and green represents under 

expression. 
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Figure 3.5.4: The heparin-binding putative protein interactome in normal pancreas (NP) constructed using Cytoscape 2.8.1. ‘Nodes’ or HBPs are 

coloured grey. Grey lines connecting the HBPs denote ‘edges’ or interactions.   

 



 135 

 
 

Figure 3.5.5: The heparin-binding putative protein interactome in acute pancreatitis (AP) constructed using Cytoscape 2.8.1. ‘Nodes’ or HBPs are 

depending on their fold change value, based on label-free quantification. The HBPs that are under expressed in AP appear in green and those that are over 

expressed appear in red. Grey lines connecting the HBPs denote ‘edges’ or interactions.  
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A                   B  

 

 

Figure 3.5.6: Functional groups of HBPs in (A) Normal pancreas (NP) and (B) Acute pancreatitis (AP). HBPs constitute important functional groups in 

NP and AP. A number of HBPs not previously known to bind to heparin have been identified in this study. 



 
 

Figure 3.5.7: Canonical pathway analysis in AP. ‘Acute phase Reaction’ is one of the top 

canonical pathways enriched to the AP HBP dataset, using Ingenuity Pathways Analysis. 

The nodes outlined in magenta are HBPs from the AP dataset. 
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Figure 3.5.8: The relevance of the global heparin-binding protein interactome in the 

extracellular space. Comparison of the clustering coefficients of the global extracellular 

heparin binding protein interactome (Ec_hepint), corresponding random networks 

(Ec_hepint_random), the extracellular non heparin-binding protein interactome (Ec_not 

hepint) and the whole extracellular protein interactome (Ec). The Ec_hepint is a densely 

interconnected module in the extracellular space with a significantly higher clustering 

coefficient as compared to that of the Ec_hepint_random, Ec_not hepint and Ec.
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3.6 Comparison between transcriptomics and proteomics studies 

A comparison of the whole mRNA and proteomic datasets from the 2 studies 

showed that there were only 193 candidates common in NP and 17 common in 

AP respectively (Fig. 3.6A). When comparing the HBP datasets from the 

proteomics and mRNA studies in NP and AP, there were 17 common in NP and 3 

in AP respectively (Fig. 3.6B). This demonstrated that mRNA was not 

representative of protein in most cases as has been shown previously 

(Schwanhausser et al., 2011).  

 Proteomics mRNA Common 
NP 1602 1258 193 
AP 1866 103 17 
Table 3.6. Comparison between whole mRNA and proteomics datasets in NP and AP. The 

table outlines the common candidates in NP and AP from the 2 studies. 

 

 Proteomics mRNA Common 
NP 396 115 17 
AP 419 31 3 
Table 3.6B. Comparison between HBP mRNA and proteomics datasets in NP and AP. The 

table outlines the common candidates in NP and AP from the 2 studies. 

 

3.7 Discussion 

The aim of the present work was to determine if extracellular HBPs were 

functionally associated with physiological and pathological processes in the 

pancreas and in acute pancreatitis. As the focus of this work was on 

extracellular HBPs, intracellular proteins were excluded from the analysis. 

However, further to the bioinformatics pipeline that was used, a number of 

intracellular proteins that bind to HS, but which have a documented 

extracellular presence were included. These proteins may have possible 

‘moonlighting’ roles. In contrast to recent work (Ori et al., 2011), a single elution 
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at 2 M NaCl was used to recover HBPs, the rationale being that the 

concentration of NaCl required for elution does not necessarily correlate with 

affinity for HS (Xu et al., 2012). The present work has more than doubled the 

number of HBPs (Ori et al., 2011). This may be due to the new source of tissue 

used with its associated disease state, the purification of a plasma membrane 

enriched sub-proteome and the depth of mass spectrometry analysis used. Even 

though the resultant heparin-binding proteome is much larger, the protein-

protein interacting network retains the properties of the earlier, smaller 

interactome. It is highly interconnected, with HBPs forming important 

regulatory modules in the extracellular space. A number of biomarkers that 

have been previously investigated in AP, such as carboxypeptidase B and 

pancreatic amylase, were identified in AP dataset. LBP, an acute phase reactant, 

with a rise and fall in serum that is similar to CRP (Rau et al., 2003) and which is 

protective in AP, was identified to be over expressed in the AP dataset. FN1 and 

CD14, which are highly increased in AP relative to NP and also enriched to the 

‘Hepatic Fibrosis / Hepatic Stellate Cell Activation’ pathway may thus have 

potential as a pancreatic stellate cell-specific biomarker and drug target in the 

progression of AP to chronic pancreatitis. HRG has been shown to recruit IgG to 

facilitate clearance of necrotic cells by phagocytes (Poon et al., 2010). 

Neutrophils have been shown to play an important role in AP, activating the 

complement system and promoting lung injury (Awla et al., 2012, Shrivastava 

and Bhatia, 2010). HBPs such as PIP5K1C that participate in these canonical 

pathways regulate neutrophil adhesion by facilitating RhoA GTPase and integrin 

activation through chemoattractants (Xu et al., 2010a). Small molecule 

inhibitors of PIP5K1C have been investigated in the treatment of other diseases 
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(Wright et al., 2014) and may be explored in the treatment of AP. SERPINC1, has 

anti-inflammatory properties and has been shown to improve acute pancreatitis 

in the rat model (Hagiwara et al., 2009). Thus, its presence among the HBPs 

whose expression is increased to the greatest extent may reflect a normal 

physiological reaction to the insult of AP. 

The HBPs define a group of proteins that have a clear functional importance in 

cell communication in homeostasis and in AP.  By virtue of binding to heparin 

and being extracellular, the HBPs of pancreas and AP are likely to yield much-

needed biomarkers and targets for therapy.  

 

 

 

 

 



 
 

146 

Chapter 4 – Discussion and future perspectives 

 

4.1 Cell communication and HBPs 

A genome-wide analysis by Vogel and Chothia investigated the correlation 

between the expansion of superfamilies with the expansion in biological 

complexity in 38 unicellular and multicellular organisms (Vogel and Chothia, 

2006) . They used a database of 1219 hidden Markov models, based on the 

structural classification of proteins (SCOP) classification of domains, called 

Superfamily, to map the occurrence of the different superfamilies (Gough et al., 

2001). For each genome, they annotated one-domain proteins and the 

individual domains of multi-domain proteins to their respective superfamily. 

They calculated the abundance of each superfamily, as the number of proteins 

that contain at least one domain belonging to that particular superfamily. 

Normalised abundance profiles were then used to calculate a Pearson 

Correlation coefficient ‘R’, which described the correlation between superfamily 

abundance and the estimated number of cell types per genome. In order to 

establish a link between domain functions and organismal complexity, 

functional categories were assigned to each superfamily. They observed that 

194 superfamilies have a strong positive correlation (R ≥ 0.8) with organism 

complexity. However among these, 2 functional categories were responsible for 

a disproportionately high contribution, which amounted to nearly half of the 

positively correlated superfamilies. The 2 functional categories are 

superfamilies associated with extracellular processes (20 %) and regulation 

(29%) (Vogel and Chothia, 2006). Similarly, Ori et al. showed that the 
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correlation is even stronger for superfamilies that are associated with the 

heparin interactome and that HBPs form important regulatory modules in the 

extracellular space (Ori et al., 2011). Subsequently, it has been shown that HBPs 

form important regulatory modules in the pancreas and in major pancreatic 

diseases (Nunes et al., 2013). This was supported by the meta analysis of mRNA 

expression data, though such an approach rests on several assumptions (Section 

2.4).  For this reason, HBPs were analysed directly by affinity proteomics. The 

structure of this section is wrong. In general, it is better to put key findings first 

and then discuss their validity and reliability, limitations and implications. 

 

4.2 Advance in HBP identification 

Although nearly 30% of naturally occurring proteins are predicted to be 

embedded in biological membranes, membrane proteins have been traditionally 

understudied due to difficulties in solubilisation and separation (Tan et al., 

2008). The work carried out as part of this thesis has more than doubled the 

number of proteins identified as binding to heparin. This is a significant advance 

in HBP proteomics and may be due to a number of factors.  One is the new 

source of tissue and an associated disease state. Another is the streamlining of 

the HBPs purification.  Previously (Ori et al., 2011), these were split into three 

elution groups: low (0.15 M to 0.4 M NaCl), medium (0.4 M NaCl to 0.6 M NaCl) 

and high (0.6 M NaCl to 2 M NaCl).  However, it was noted that many proteins 

were found in two or more of these fractions and so this would dilute the 

sample.  This would increase the possibility of loss during subsequent sample 

processing.  In addition, the samples necessarily contained Triton-X-100 to 
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solubilise membrane proteins and the detergent had to be removed before mass 

spectrometry, as it is polydisperse and generates a lot of artefactual signal in the 

spectrum.  Originally this was achieved with a C18 Zip-tip, which is likely to 

result in considerable losses (Stewart et al., 2001).  This step was replaced by 

trichloroacetic acid (TCA) precipitation, which was validated by analysis of 

Coomassie stained gels in terms of efficacy.  While not perfect this is likely to be 

an improvement (Polson et al., 2003, Jiang et al., 2004).  Whereas the mass 

spectrometer used by Ori et al. (Ori et al., 2011) was an Orbitrap Velos, the 

instrument used for the present work was a QExactive which is housed in the 

University's Protein Function Group and is carefully maintained and calibrated. 

This would increase the depth of the analysis.  Finally, a more sophisticated 

bioinformatics pipeline was used in the present work (Section 3.1), which 

would increase the number of HBPs. 

 

However, there are caveats associated with this dataset.  One is that in some 

instances, a protein that has been identified as an HBP may in fact be bound to 

another HBP rather than directly to heparin.  If such an interaction had a 

sufficiently slow dissociation rate, the protein would be carried through the 

purification.  Such an interaction would be consistent with biological 

functionality, because of its long lifetime and would consequently produce a 

false positive. Direct heparin binding will need to be demonstrated in the newly 

discovered HBPs, but given the size of the dataset, this information will only be 

produced slowly by current biophysical methods, e.g., which require a one 

protein at a time analysis (West et al., 2005).  Sample preparation assumes that 

Triton-X-100 will efficiently solubilise all HBPs.  However, those HBPs in large 
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macromolecular assemblies, associated with matrix, membrane domains or 

cytoskeleton may not be solubilised, and so would not figure in the analysis. It is 

also assume that all HBPs will bind the heparin column.  This seems reasonable, 

but there are no data.  For example, if a HBP binds a structure found in HS, but 

not in heparin, then it could not be identified.  There is a precedent for this, 

proteins that bind to sequences containing a free amino group such a 

cyclophilin-B (Vanpouille et al., 2007).  Heparin affinity columns are usually 

made by reacting these free amines with an activated column matrix, and so 

such proteins will not be retained on the heparin affinity column.  In addition, 

the plasma membrane/matrix fraction contains both HBPs and the resident HS 

proteoglycans, so during the affinity chromatography there is likely to be 

competition between the heparin on the column and the HS of the 

proteoglycans.  Some HBPs may exchange repeatedly between the immobilised 

heparin and the HS in the mobile phase and only those that bind preferentially 

to heparin will be retained.  Thus, the affinity chromatography selects for 

proteins that engage efficiently with structures present in the classic trisulfated 

disaccharide (IdoA, 2S, GlcNS, 6S) repeat of heparin (75% of is disaccharides).  

These technical issues clearly need addressing, alongside a further question: 

does binding to heparin have any physiological significance without further 

evidence?  This is the focus of Section 4.5.   

 

4.3 HBPs and the pancreas 

The roles of HBPs in pancreas homeostasis and AP are discussed in Sections 3.2 

and 3.3.  The pancreas has important endocrine and exocrine functions and 
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plays an important role in in glucose homeostasis (Shih et al., 2013). HBPs play 

important roles in biological pathways and functions such as ion transport, 

cellular movement, adhesion, and mitochondrial function etc. underlying 

pancreatic homeostasis. Acute pancreatitis is a leading cause of hospital 

admissions and the severe form of the disease is associated with a high 

mortality (Wu and Banks, 2013, Schneider et al., 2010). In the absence of 

definitive treatment, the management remains mainly supportive. Also, no 

single laboratory marker or score can accurately predict outcome in AP 

(Mounzer et al., 2012). A number of HBPs have been identified, such as HRP, 

CD14 and FN1, that may be explored alone or in combination with existing 

biomarkers and scoring systems. These need to be validated using high quality 

samples with the associated clinical data from patients with acute pancreatitis. 

By virtue of binding to heparin, the HBP sub-proteome is easily accessible in 

tissue and body fluids, which is particularly important in biomarker and drug 

development. Interestingly, the top canonical pathway that the new global HBP 

interactome enriches to is the “Hepatic Fibrosis / Hepatic Stellate Cell 

Activation”. Hepatic and pancreatic stellate cells exhibit similarities of 

morphology and function and are activated by common cytokines and growth 

factors, and may share a common origin (Buchholz et al., 2005). Experiments 

relating to pancreatic stellate cells indicate that they play an important role in 

AP (Vonlaufen et al., 2007). HBPs such as VEGFA and FGF2 that enrich to this 

canonical pathway may be used in developing pancreatic stellate cell-specific 

therapies. Other HBPs that may be explored in drug development in AP include 

SERPINC1 (Hagiwara et al., 2009), which has potent anti-inflammatory 
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properties and PIP5K1C that has been investigated in other diseases (Wright et 

al., 2014). 

 

4.4 Moonlighting roles of HBPs 

The heparin affinity proteomics approach identified a number of non-canonical 

extracellular HBPs such as NDUFS4, NDUFS6, NDUFS7, NDUFS8, NDUFA9, 

NDUFA10 in NP, and NDUFA9 and NDUFA10 in NP and AP. These are nuclear-

encoded mitochondrial proteins. Sub-cellular fractionation using differential 

centrifugation removes mitochondria efficiently and it seems unlikely that these 

HBPs are simply contaminants with polyanion binding properties that allow 

them to interact with heparin.  In support of this argument is the fact that 

nuclear encoded mitochondrial nucleic acid binding proteins were not 

identified. Glycosylated isoforms of a number of nuclear encoded mitochondrial 

proteins have been identified at the plasma membrane (Burnham-Marusich and 

Berninsone, 2012, Moser et al., 1999, Vantourout et al., 2008, Yonally and 

Capaldi, 2006). Nuclear proteins such as histones and HMGB1 (high-mobility 

group box 1), as well as cytosolic proteins, which are found extracellularly, 

under conditions of cell stress, are termed DAMPS (damage associated pattern 

molecules) (Agalave and Svensson, 2014, Krysko et al., 2012). HBPs with a 

clearly established classic subcellular localization and which are subsequently 

found associated with other organelles or extracellularly, have been termed to 

be 'moonlighting'. ‘Moonlighting proteins’ are being increasingly identified and 

studied with a view to unraveling their roles in biological processes as well as in 

drug development. The enzyme adenosine deaminase has been shown to act as 



 
 

152 

a catalyst for intracellular and extracellular purine metabolism, as well as a 

costimulator for the proliferation of T-cells (Cortes et al., 2015). G protein 

coupled-receptors (GPCRs) heteroreceptor protomers act as moonlighting 

proteins and are being investigated as targets in neurotherapeutics (Fuxe et al., 

2014). Computational methods are also being used to characterize moonlighting 

proteins (Khan and Kihara, 2014, Khan et al., 2012, Gomez et al., 2003, Gomez et 

al., 2011). The NDUF proteins have therefore been included as extracellular 

HBPs, though their extracellular localisation needs documentation by 

orthogonal means.  

 

4.5 The non-extracellular HBPs 

In both NP and AP, approximately 75% of proteins identified by mass 

spectrometry were deemed not to be extracellular. In due course, evidence may 

accrue to suggest that some of these may turn out to be moonlighting proteins.  

However, this is likely to only explain the presence of some of these proteins in 

the heparin-bound fraction.  Polyanion-binding proteins from cell lysate have 

been analysed previously (Jones et al., 2004). In this work no subcellular 

fractionation was performed and only 3 proteins were extracellular.  The large 

numbers of intracellular polyanion binding proteins derive this property from 

interactions with nucleic acids and phospholipids, including phosphoinositols, 

and anionic surfaces on proteins e.g. transcriptional enhancer factor TEF-1.  In 

the present work, a plasma membrane fraction was applied to the heparin 

affinity column; intracellular proteins binding to the membrane would be 

expected to be contaminants.   
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However, classing these proteins as simple contaminants may miss important 

functional associations and is not necessarily the best explanation for the 

presence of other intracellular proteins.  For example, a considerable number of 

cytoskeletal and intracellular signalling-associated proteins were identified 

Some of these may be present due to physical association with plasma 

membrane receptor systems, which are themselves engaged with extracellular 

heparin-binding proteins.  That there are differences in these proteins between 

NP and AP may be reporting of fundamental differences in cell adhesion and cell 

signalling, though this would require a fully quantitative measurement of 

proteins to establish the biological significance of such differences.  Other 

proteins may simply relocate during tissue homogenisation, from one polyanion 

to another.  However, this would require that they are relatively weakly bound, 

able to exchange and bind more strongly to either plasma membrane 

phospholipids or extracellular HS.  

There is also an intriguing possibility that some of the of intracellular proteins 

identified in the present work may in fact be HBPs.  This is because of the 

growing evidence for the translocation of HS from the extracellular space to the 

nucleo-cytoplasmic compartment.  Early papers used heparin in procedures to 

stain nuclear proteins without having to hydrolyse DNA or to purifiy nuclear 

components (Labelle and Briere, 1971, Courvalin et al., 1982, Bornens, 1973).  

Possibly building on the idea that nuclear proteins bind heparin, pioneering 

work indicated that HS was present in the nucleus of cultured hepatocytes and 

involved in the regulation of their growth (Ishihara et al., 1986, Fedarko and 

Conrad, 1986, Fedarko et al., 1989). This remained a curiosity, until 

proteoglycan core proteins were characterised and new tools were developed. 
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There has since been a steady growth of papers relating to the presence of 

intracellular HS and HSPGs in a variety of contexts, such as translocation 

mechanisms from the extracellular space to the nucleus, sperm nuclei 

decondensation, esophageal keratinocyte differentiation and cancer 

(Richardson et al., 2001, Cheng et al., 2014, Romanato et al., 2008, Kobayashi et 

al., 2006, Purushothaman et al., 2011, Cheng et al., 2001). Allied to this work, is 

the growing body of evidence for the translocation of extracellular HBPs to the 

nucleus from the extracellular space, for example FGFs and their tyrosine kinase 

receptors, FGFRs (Coleman et al., 2014a), which may be particularly relevant to 

pancreatic stellate cell function and pancreatic cancer (Coleman et al., 2014b). 

Thus, at least some of the intracellular proteins identified here may be genuine 

HBPs, in that binding to intracellular HS affects their function and so cell 

signalling.  However, it is not possible at present to distinguish adventitious 

binding to heparin of intracellular proteins during the affinity chromatography 

step from physiologically relevant binding. 

 

4.6 Future perspectives 

The present work has identified a number of areas for further investigation. 

4.6.1 Biomarker development  

4.6.1.1 Development of high through put measurement of HBPs 

 
Immunoassays are the gold standard to measure protein/peptide targets due to 

their high sensitivity, high throughput and cost-effectiveness (Lequin, 2005). 

However, the development of these for new targets is expensive and would be 
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an unattractive proposition for candidate evaluation in which a high attrition 

rate may be anticipated. Multiple reaction monitoring (MRM) is an emerging MS 

high throughput approach and uses specific peptides as surrogates of proteins 

(Huttenhain et al., 2009). The ability of multiplexing with MS enables the rapid 

and cost-effective evaluation of a large list of candidate biomarkers and may 

facilitate the development of personalized medicine strategies in treating 

disease (Percy et al., 2014).  

 

4.6.1.2 Serum biomarker development 

Identification of putative candidates in clinical samples is an important first step 

in biomarker development. Serum or plasma is routinely analyzed in the clinical 

laboratory for biomarkers. However, these are the most challenging samples to 

analyze by proteomic techniques, as serum has a wide dynamic range of protein 

concentrations (Anderson and Anderson, 2002). This wide dynamic range 

allows for identification of high and medium abundance proteins, while low 

abundance proteins are often overlooked. Modification of sample preparation 

with enrichment techniques such as affinity chromatography to isolate the 

heparin-bound fraction may help reduce the sample complexity and obviate this 

problem in the case of HBPs. 

 

4.6.1.3 Validation of potential biomarkers  

Validation has to be done to make sure the putative biomarkers are specifically 

associated with AP. Before these biomarkers can be developed into useful 

clinical assays, they have to be validated and their sensitivity and specificity 
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needs to be established. Samples should be obtained not only from AP patients 

and healthy donors, but also from patients who have similar diseases and a 

broad range of individuals within the population. This requires a very large 

number of appropriately collected and documented clinical samples. The NIHR 

Liverpool Pancreas Biomedical Unit AP biobank stores high quality samples 

from patients with AP and healthy volunteers. It is ethically approved and 

functions within HTA, GCP (Good Clinical Practice) and GCLP (Good Clinical 

Laboratory Guidelines) and so would provide the source of material for such 

further studies.  

The data presented in this thesis indicated that the proteins in Table 3.5.1 are 

the most likely candidates for the identification of biomarkers. This is based on 

their relative expression in AP versus NP and on the knowledge that these are 

secreted proteins, rather than membrane- or matrix-associated. 

 

 

4.6.2 Drug development 

As noted in Section 3.5.6, the protoemics analysis has identified a number of 

HBPs that are more highly expressed in AP for which there are existing drugs, 

either approved or undergoing clinical trials for other diseases.  Thus, 

repurposing trials in AP may lead to improved patient outcome.  

There is the possibility of a very different approach, which draws inspiration 

from regenerative medicine strategies of some Glycotech companies. These 

have targeted HBPs using chemically modified heparins and heparin mimetic 

polymers. For example, Regenerative agent (RGTA) is a carboxymethylated 
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dextran that is statistically sulfated, which is used for ocular and dermal wound 

healing (the latter includes lower limb ulcers of diabetics) to treat lower limb 

ulcers of diabetics with some success. These polymers do not have a mechanism 

mode of action, and this may underlie their efficacy: they target multiple HBPs 

and so may be able to reduce, for example, the activity of DAMPs while 

promoting the activity of HBPs that drive tissue regeneration.  The definition of 

the statistical substitution that is clinically effective has hitherto been empirical; 

their application in a trial in AP similarly has to determine which range of 

sulfation is effective.  However, the further development of the systems analysis 

of HBPs in this thesis alongside a structural analysis of the heparin binding 

motifs using high throughput methods such as differential scanning fluorimetry 

(Uniewicz et al., 2010, Xu et al., 2012) may provide a means to define prior to 

embarking on a trail the likely sulfation substitution of these polymers that will 

be effective.  
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