
Backward Stochastic Differential Equations

with Unbounded Coefficients and Their

Applications

Thesis

submitted in accordance with the requirements of the

University of Liverpool

for the degree of

Doctor of Philosophy

by

Jiajie Li

Department of Mathematical Sciences

October 2014



Contents

Acknowledgments iv

Declarations v

Abstract vi

Chapter 1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Backward Stochastic Differential Equations . . . . . . . . . . . . . . 2

1.3 Linear Backward Stochastic Differential Equations . . . . . . . . . . 4

1.4 Application to Finance . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Pricing and Hedging . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Stochastic Differential Utility . . . . . . . . . . . . . . . . . . 8

1.5 Application to Stochastic Control . . . . . . . . . . . . . . . . . . . . 9

1.6 Nonlinear Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Motivations and Contributions . . . . . . . . . . . . . . . . . . . . . 12

1.8 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 Some Mathematical Preliminaries 15

2.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Convergence of Functions . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Convergence of Random Variables . . . . . . . . . . . . . . . 17
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Abstract

In this thesis, we focus on problems on the theory of Backward Stochastic
Differential Equations (BSDEs). In particular, BSDEs with an unbounded generator
are considered, under various conditions (on the generator). Using more general (or
weaker) conditions, the classical results on BSDEs are improved and some associated
problems on mathematical finance are resolved. Chapter 1 introduces some of the
literature, general setting and ideas in this field and emphasises the motivations
which has led to the study of these equations. In addition, some mathematical
preliminaries we used throughout this thesis are included in Chapter 2.

In Chapter 3, we consider nonlinear BSDEs with an unbounded generator.
Under a Lipschitz-type condition, we show sufficient conditions for the existence and
uniqueness of solutions to nonlinear BSDEs, which are weaker than the existing ones.
We also give a comparison theorem as a generalisation of Peng’s result.

Chapter 4 studies a class of backward stochastic differential equations whose
generator satisfies linear growth and continuity conditions, which can also be un-
bounded. We prove the existence of the solution pair for this class of equations which
is more general than the existing ones.

In Chapter 5, we consider the problem of solvability for linear backward
stochastic differential equations with unbounded coefficients. New and weaker
sufficient conditions for the existence of a unique solution pair are given. It is
shown that certain exponential processes have stronger integrability in this case.
As applications, we solve the problems of completeness in a market with a possibly
unbounded coefficients and optimal investment with power utility in a market with
unbounded coefficients.

Chapter 6 studies the classical Stochastic Differential Equations where the
drift and diffusion coefficients satisfy Lipschitz-type and linear growth conditions,
which can also be unbounded. We give sufficient conditions for the existence of a
unique solution to unbounded SDEs. The method of proof is that of Picard iterations
and the resulting conditions are new. We also prove a comparison theorem.

Chapter 7 summaries the results in this thesis and outlines possible directions
for future works based on current results.
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Chapter 1

Introduction

1.1 Overview

Backward stochastic differential equation (BSDE) is known as a special type of

stochastic differential equations (SDEs) because its value of solution is prescribed at

the final point (rather than initial point) of the time interval. A linear backward

stochastic differential equation was firstly studied by Bismut [8] who attempted

to solve a stochastic optimal control problem by stochastic version of Pontryagin

maximum principle. There are some other works on maximum principle which are

also studied using linear BSDEs, e.g. Arkin and Saksonov [2], Kabanov [34] and

more recently, Cadenillas and Karatzas [11]. The general theory of nonlinear BSDEs

with Lipschitz condition was first introduced by Pardoux and Peng [61], and, later

independently, by Duffie and Epstein [20] in a more financial context (theory of

recursive utilities).

The theory of backward stochastic differential equations has been extensively

studied in so many different research areas, such as stochastic control, mathematical

finance and partial differential equations (PDEs) etc., in last 25 years. To be

more specific, BSDEs can be applied to solve stochastic optimal problem, establish

probabilistic representations of solutions to PDEs and define nonlinear expectations

and so on. In mathematical finance, the theory of hedging and pricing strategy

of a contingent claim can be formulated in terms of a linear BSDE or nonlinear

BSDE when portfolio constraints are taken into account. As many financial problems

are relevant to optimal control problems, BSDEs become a useful mathematical

tool to study mathematical finance and hence many new financial and actuarial

applications are found and developed. See [41] for fundamental study on applications

to finance and [19] for more practical ingredients to finance and insurance. In
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the book edited by El Karoui and Mazliak [40], the relationship between BSDEs

and stochastic control are discussed, especially presenting a link between BSDEs

and martingale methods in stochastic control. Peng [64] introduces a notion of

g-expectation (nonlinear expectation) by BSDEs. This notion provides us a way to

establish a nonlinear g-martingale theory which later is shown to be as importance

as the classical martingale theory in probability. A systematic study on recent

development of theory of nonlinear expectation can be found in [67].

Another direction connected with applications in this area is how to improve

the conditions of existence and uniqueness of a solution for BSDEs, which is also

the main subject of this thesis. Many articles focus on weakening the existence

conditions of a solution for BSDEs. In general, they assume that the drift coefficient

is continuous and satisfies a linear or a quadratic growth condition. See [50] and [46]

for instance. In addition, those works are all based on the comparison theorem of

solutions of BSDEs, which is also discussed in this thesis. Note that, however, in

general we do not have uniqueness of the solution.

1.2 Backward Stochastic Differential Equations

In this section, we briefly introduce the theory of general BSDEs (see Yong and Zhou

[77] in detail). Under the usual Lipschitz condition, both initial and terminal value

problem for ordinary differential equations (ODEs) are well-posed. Accordingly, the

terminal value problem of ODEs on time interval [0, T ] is equivalent to its initial

value problem on the same time interval but reversing time backwardly

t 7→ T −t. Nevertheless, as we need its solution is adapted to a given filtration, BSDE

encounters a completely different situation. For the case of stochastic differential

equations (SDEs), it is not allowed to simply reverse the time to obtain a solution

for its terminal value problem because it would ruin the adaptiveness of a solution.

Therefore, it is necessary to reformulate a terminal value problem for SDEs.

The solution of a BSDE is regarded as a pair of adapted (stochastic) processes,

which the second part of the solution rectifies the non-adaptiveness generated by the

”backward” essence of the equations. Also the second part of the solution reveals

uncertainty of the dynamics happened between now and terminal time, while the

first part of the solution indicates the mean evolution of the dynamics. The following

simple example (also see Yong and Zhou [77] in detail) describes how the uncertainty

be involved as a part of the adapted solution.

Let us consider an investor is going to invest two assets, a bond and a stock,

in a financial market. Assume that the bond’s annual return rate is 8% and the stock
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has the following expected annual return rate: 16% (resp. −16%) if it will be a bull

(resp. bear) market in next year. The corresponding financial goal of the investment

is to achieve amount m £ (resp. n £) if it will be bull (reps. bear) market in next

year (m ≥ n). Now we are going to figure out how to achieve these financial goals.

Assume that (y − z) £ is invested in the bond and z £ is invested in the stock.

Hence one has the following system of equations:1.08(y − z) + 1.16z = m,

1.08(y − z) + 0.84z = n,

which has a unique solution y = 75m+25n
108 ,

z = 25(m−n)
8 .

From above setting, it is worth noting that the financial goal (future wealth) is given

by a random variable which takes two values m and n, depending on following year’s

market performance. In addition, the investment is divided into two parts: y − z
and z, where z controls the uncertainty of the investment from now to the end of

next year (z is also be seen as the amount invested into the risky asset, i.e. a stock).

In particular, when m is equivalent to n, s/he is intent to have a certain amount of

wealth in the next year, and hence the second part of the investment (solution) z

becomes zero. In other words, all the investment will put into the riskless asset, a

bond.

Now we introduce the setting of general BSDEs. Let (Ω,F , (Ft, t ≥ 0),P)

be a given complete filtered probability space on which a k-dimensional standard

Brownian motion (W (t), t ≥ 0) is defined. We assume that Ft is the augmentation

of σ{W (s) : 0 ≤ s ≤ t} by all the P-null sets of F . Consider the backward stochastic

differential equation:

y(t) = ξ +

∫ T

t
f(s, y(s), z(s))ds−

∫ T

t
z(s)dW (s), t ∈ [0, T ], (1.2.1)

where

• terminal condition ξ ∈ M2(Ω,FT ,P;Rd) (the space of all FT -measurable Rd-

valued random variables ζ such that E[|ζ|2] <∞) is a given FT -measurableRd-valued

random variable;

• generator (coefficient) f : Ω×(0, T )×Rd×Rd×k → Rd is a progressively measurable

3



function and there exists a real constant c > 0 such that

f(·, 0, 0) ∈M2(0, T ;Rd),

|f(t, y1, z1)− f(t, y2, z2)| ≤ c(|y1 − y2|+ |z1 − z2|),

for all y1, y2 ∈ Rd and z1, z2 ∈ Rd×k, (t, ω) a.e. and M2(0, T ;Rd) is the space of

Ft-progressively measurable Rd-valued processes ϕ(·) such that E
∫ T
0 |ϕ(t)|2dt <∞.

Then a pair of adapted processes (y(·), z(·)) ∈ M2(0, T ;Rd) ×M2(0, T ;Rd×k) is

called s solution of BSDE (1.2.1).

Let us make some comments on the solution of a backward stochastic dif-

ferential equation (see [53] and [60] in detail). As we mentioned before, unlike

deterministic equations (ODEs) where forward and backward problems are similar,

in general, a stochastic differential equation with given terminal value does not admit

a non-anticipating solution. For instance, a constant solution V (t) = ξ is anticipating.

A possible adapted approximation is the martingale y with terminal value ξ. Hence

we could formulate it by introducing a process z as a martingale representation of y:

−dy(t) = −z(t)dW (t), y(T ) = ξ.

In a more general setting, a coefficient f (linear or nonlinear) will be considered.

In addition, it is not natural to have a constraint that requires the solution

of a backward equation to be adapted to the past of W (·) for every time t. That is

why it is essential to have some freedom to select z independently (of y).

Moreover, the randomness of solution comes from the randomness of ξ and f .

In order to ensure y is progressively measurable, the stochastic integral is introduced,

which, in other words, reduces the randomness of y. In particular, for some stopping

time τ , if ξ and f are Fτ -measurable, then z = 0 on time interval [τ, T ] and hence

y is the solution of a ODE:

dy(t) = −f(t, y(t), 0)dt, y(T ) = ξ.

1.3 Linear Backward Stochastic Differential Equations

In this section, we introduce a special and important form of BSDEs, linear backward

stochastic differential equations (LBSDEs), which have many interesting applications

on mathematical finance, stochastic control and so on. Let us start with the following

simple example (see e.g. [53] and [77]):
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Consider the following terminal value problemdy(t) = 0, t ∈ [0, T ],

y(T ) = ξ,
(1.3.1)

where ξ ∈M2(Ω,FT ,P;Rd).

Our goal is to find an {Ft}t≥0-adapted solution y(·). However, as there is

only one solution

y(t) = ξ, ∀ t ∈ [0, T ], (1.3.2)

which is not necessarily {Ft}t≥0-adapted (unless ξ is a constant, i.e. F0-measurable).

Therefore, we need to reformulate equation (1.3.1) in order to obtain a {Ft}t≥0-
adapted solution.

Now let us reformulate equation (1.3.1) by redefining y(·) in the following

way:

y(t) = E[ ξ |Ft] t ∈ [0, T ]. (1.3.3)

Then y(·) is {Ft}t≥0-adapted and (as ξ is FT -measurable) it satisfies the terminal

condition y(T ) = ξ. Nevertheless, y(·) (given by (1.3.3)) does not satisfy (1.3.1).

Hence our next goal is to reformulate the equation such that y(·) is indeed one of

{Ft}t≥0-adapted solutions to (1.3.1).

Note that y(·) (given by (1.3.3)) is a square integrable {Ft}t≥0 martingale.

By (Brownian) martingale representation theorem (see Theorem 2.4.2), one has

y(t) = y(0) +

∫ t

0
z(s)dW (s), t ∈ [0, T ], (1.3.4)

and also

ξ = y(T ) = y(0) +

∫ T

0
z(s)dW (s), t ∈ [0, T ].

Hence

y(t) = ξ −
∫ T

0
z(s)dW (s), t ∈ [0, T ],

which its differential form isdy(t) = z(t)dW (t), t ∈ [0, T ],

y(T ) = ξ.
(1.3.5)

From above reformulation, an extra term z(t)dW (t) is introduced and it is the

difference between equations (1.3.5) and (1.3.1). Its appearance repairs the non-
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adaptiveness of the y(·) given by (1.3.2). Accordingly, an adapted solution of (1.3.5)

is a pair of {Ft}t≥0-adapted processes (y(·), z(·)) satisfying (1.3.5), where y(·) is given

by (1.3.3) and z(·) is introduced in (1.3.4) by (Brownian) martingale representation

theorem.

Since a BSDE is an equation with two unknowns, it is nature to ask if the

adapted solution is unique. In fact, the adaptiveness provides another condition that

guarantees the uniqueness of the solution of a BSDE. Applying the Itô formula to

|y(t)|2, we have

E |ξ|2 = E |y(t)|2 +

∫ T

t
E |z(s)|2ds, t ∈ [0, T ].

Due to the linearity of equation (1.3.5), together with the above addition relation,

the uniqueness of the solution of equation (1.3.5) is obtained.

Now let us introduce the general linear backward stochastic differential

equations:dy(t) = [A(t)y(t) +
∑n

i=1Bi(t)zi(t) + f(t)] dt+ z(t)dW (t), t ∈ [0, T ],

y(T ) = ξ,

(1.3.6)

where A(·), Bi(·) (i = 1, · · · , n) are bounded and Rd×d-valued {Ft}t≥0-adapted

processes, f(·) ∈M2(0, T ;Rd) and ξ ∈M2(Ω,FT ,P;Rd). Similar to above simplest

case (equation (1.3.5)), the pair of processes (y(·), z(·)) is required to be forward (i.e.

{Ft}t≥0) adapted, while the process y(·) is given at the terminal time T . Therefore

we say the equation is solved backwardly.

See El Karoui [38], Yong and Zhou [77] etc. for further results, e.g. well-

posedness of solutions, comparison theorem, on LBSDEs in detail.

1.4 Application to Finance

In finance, one of the most fundamental and important problems is to consider how

to price an option. The simplest example is that of the well known Black-Scholes

model and an European call option, which is also an example of linear backward

stochastic differential equations. Let us first see the following example (see [65] for a

more general version in detail):

6



1.4.1 Pricing and Hedging

Consider a stock price in a financial market is given by the following SDE:

dS(t) = S(t)[µdt+ σdW (t)],

where µ ∈ R and σ > 0, volatility of the stock. Solving the above SDE, for any t ≥ 0,

we have

S(t) = S(0) e

(
µ−σ

2

2

)
t+σW (t)

.

In addition, let us consider the price of a risk-free asset:

dR(t) = rR(t)dt,

which gives

R(t) = R(0) ert.

The strategy is given by a pair of adapted processes (m(t), n(t)), where m(t) is the

number of stock, and n(t) is the number of risk-free asset. Assume that the strategy

is self-financing, then the value of the portfolio is given by

dY (t) = m(t)dS(t) + n(t)dR(t) = m(t)S(t)[µdt+ σdW (t)] + rn(t)R(t)dt.

Let us denote the amount of money invested in risky assets by π(t) = m(t)S(t).

Substituting it into above equation and using equality Y (t) = m(t)S(t) + n(t)R(t),

we obtain

dY (t) = rY (t)dt+
µ− r
σ

σπ(t)dt+ σπ(t)dW (t).

Setting Z(t) = σπ(t) and θ = µ−r
σ (the risk premium),

dY (t) = [rY (t) + θZ(t)]dt+ Z(t)dW (t).

Now let us see how to price a European call option. Recall that a European

call option with maturity T and exercise price K is a contract which gives the right

but no obligation to its holder to buy one share of the stock at the exercise price K.

On the other hand, the seller of the option has to pay (S(T ) −K)+ to its holder,

which equals the profit that permits the exercise of the option. Let us consider a

claim which profit is given by a non-negative random variable depending on S(·). Is

it natural to ask at which price y should one sell the option?

In order to find price y, the replication is one fundamental idea. The seller

sells the option at the price y and invests this amount in the financial market following

7



the strategy Z (to be found). The value of his portfolio is given by the following

SDE:

dY (t) = [rY (t) + θZ(t)]dt+ Z(t)dW (t), Y (0) = y.

The problem is then to find y and Z such that the solution of above SDE verifies

Y (T ) = ξ, (We say that in this case y is the fair price) i.e. can we find adapted

(Y, Z) such that

dY (t) = [rY (t) + θZ(t)]dt+ Z(t)dW (t), Y (T ) = ξ.

In this case it suffices to sell the option at the price y = Y (0). Hence the pricing

problem is to solve the linear BSDE.

Let see an example for nonlinear BSDE. Assume that the regulator of the

market imposes to avoid short-selling of the stock. Hence this kind of transactions is

discouraged by penalizing investors by a proportional cost βπ(t)− = γZ(t)−(γ > 0).

In this case, replicating a claim is to solve the following BSDE

dY (t) =
[
rY (t) + θZ(t)− γZ(t)−

]
dt+ Z(t)dW (t), Y (T ) = ξ,

which is nonlinear BSDE but it still verifies the conditions f and ξ in (1.2.1). Another

example of nonlinear BSDEs appeared in finance is as follows:

dY (t) = [rY (t) + θZ(t)]dt+ Z(t)dW (t)− (R− r)
[
Y (t)− Z(t)

σ

]−
dt, Y (T ) = ξ,

where [ · ]− = min{[ · ], 0}. In this case, we are going to solve this BSDE, replicating

a claim when the borrowing rate R is bigger than the lending rate r.

Note that the strategies here are admissible (Y (t) ≥ 0), which follows from

the comparison theorem (see Theorem 3.5) as ξ ≥ 0 and f(t, 0, 0) ≥ 0.

1.4.2 Stochastic Differential Utility

Duffie and Epstein [20] introduce a stochastic differential formulation of recursive

utility where the information is generated by Brownian motion. Recursive utility is

an extension of the standard additive utility with the instantaneous utility not only

depending on the instantaneous consumption rate c(t) but also depending on the

future utility. In fact it is related to the solution of a special type of BSDE which its

drift coefficient does not depend on z:

−dY (t) =

[
f(c(t), Y (t)−A(Y (t))

1

2
Z∗Z(t)

]
dt− Z∗(t)dW (t), Y (T ) = Y,

8



where c(·) is a positive consumption rate and A(Y (·)) is the “variance multiplier”.

Hence the utility at time t of the future consumption c(s), t ≤ s ≤ T :

Y (t) = E

[
Y +

∫ T

t

[
f(c(s), Y (s))−A(Y (s))

1

2
Z∗Z(s)

]
ds

∣∣∣∣Ft

]
.

Also Duffie and Epstein [20] show that if coefficient f is Lipschitz with respect to y,

then there exists a unique solution of equation

−dY (t) = f(t, c(t), Y (t))dt− Z∗dW (t), Y (T ) = Y.

Moreover, El Karoui, Peng and Quenez [41] study a more general class of recursive

utilities where f also depends on z:

−dY (t) = f(t, c(t), Y (t), Z(t))dt− Z∗dW (t), Y (T ) = Y.

Here we state some examples of recursive utilities provided in [20]:

(i) Standard Additive Utility. The coefficient f of the standard additive utility

is given by: f(c, y) = u(c) − βy, where β ≥ 0 is a discounting rate. The recursive

utility is

Y (t) = E

[
Y e−β(T−t) +

∫ T

t
u(c(s))e−β(s−t)ds

∣∣∣∣Ft

]
.

(ii) Uzawa Utility. In this case, the discounting rate β depends on the

consumption rate c(t). So the coefficient f becomes f(c, y) = u(c) − β(c)y. The

recursive utility remains the same.

(iii) Kreps-Porteus Utility. The coefficient f is give by

f(c, y) =
β

ρ

cρ − yρ

yρ−1
.

Although the closed-form expression for resulting utility function is not available,

this example still provide more flexibility and nice features. See [20] for details.

1.5 Application to Stochastic Control

Many stochastic control problems are considered in the following criteria (see [17]

etc). Consider the following stochastic control problem that the law of the controlled

process belong to a family of equivalent measures whose densities are given by a
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(forward) SDE

Γut = 1 +

∫ t

0
Γus [β(s, u(s))ds+ γ(s, u(s))∗dW (s)], t ∈ [0, T ],

where a feasible control u(t) ∈ U is a predictable process and β(t, u(t)) and γ(t, u(t))

are uniformly bounded predictable processes. The problem is to minimise the

following cost function over U :

J(u) = E

[∫ T

0
Γut F (t, u(t))dt+ ΓuTF (u(T ))

]
,

where F (·, u(·)) is the running cost function and F (u(T )) is the terminal condition.

By the Proposition 2.2 in [41], J(u) = Y u
0 , where (Y u, Zu) is the solution of the

linear BSDE with standard data (fu, ξu), where

fu(t, Y, Z) = F (t, u(t)) + β(t, u(t)) · Y + γ(t, u(t))∗ · Z, ξu = F (u(T )).

Let (Y u(t), Zu(t)) be the unique solution of a BSDE with with standard data (fu, ξu).

Then for each t ∈ [0, T ], Y u(t) is the cost function of the stochastic control problem

in the sense that

Y u(t) = inf
u(·)∈U

E

[∫ T

t
ΓusF (s, u(s))ds+ ΓuT ξ

u

∣∣∣∣Ft

]
.

1.6 Nonlinear Expectation

Apart from applications to finance and stochastic control theory, backward stochastic

differential equations are also used to define nonlinear expectations, so called g-

expectations. A nonlinear expectation is regarded as an operator which preserves most

of essential properties of the standard mathematical expectations except the linearity

property. The original motivation to introduce and study nonlinear expectations

goes back to the theory of decision making. In fact, it was proved that there

exist contradictions between decisions made in our real life and theory of optimal

decisions based on additive probabilities and the expected utility theory. Accordingly,

economists and mathematicians started to seek a new notion of expectation. The

g-expectation, which is defined by a BSDE with a nonlinear coefficient g, is the

fundamental example of a nonlinear expectation. The g-expectation gradually

becomes an important concept in probability theory and stochastic analysis because

it generates g-martingales, g-supermartingales, g-submartingales etc. and nonlinear

versions of some classical results, such as nonlinear Feynman-Kac formula, Doob-
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Meyer decomposition, etc. Now we briefly introduce the g-expectation which is

induced by BSDE (see [64] for more details).

For any given X ∈ L2
0(Ω,F ,P;R) =

⋃
0≤n<∞ L

2(Ω,Fn,P;R) and t ≥ 0. Let

T ∈ [0,∞) be such that X is FT -adapted. Then the following BSDE−dyt = g(t, y(t), z(t))dt− z(t)dW (t), t ∈ [0, T ],

y(T ) = X,

is well-defined:

(y(t), z(t))0≤t≤T ∈ L2
F (0, T ;R)× L2

F (0, T ;Rd).

Note that y(0) is a deterministic number that depends on X. Then we define the

g-expectation of X.

Definition 1.6.1. For each X ∈ L2
0(Ω,F ,P;R), we say

Eg[X] := y(0),

the g-expectation of X related to g.

Since X is FT -adapted, then for any T1 > T , X is also FT1-measurable, i.e

X ∈ L2(Ω,FT1 ,P;R), which indicates that Eg[X] could be also defined by

Eg[X] := y1(0),

where (y1(t))0≤t≤T1 solves the following BSDE−dy1(t) = g(t, y1(t), z1(t))dt− z1(t)dW (t), t ∈ [0, T1],

y1(T1) = X,

Due to assumption that g(y, 0, ·) ≡ 0, ∀y ∈ R, it is easy to check that y(0) = y1(0).

Indeed, since X is FT -measurable, we obtain

(y1(t), z1(t)) =

(y(t), z(t)), 0 ≤ t ≤ T,

(X, 0), T ≤ t ≤ T1,

which means (y(t), z(t)) and (y1(t), z1(t)) are identical to each other in [0, T ]. More-

over, it is natural to ask if every nonlinear expectation can be derived as the solution

of a BSDE. Coquet et al. [14] provides a positive answer for all nonlinear expectations
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which satisfy a certain boundedness condition.

In financial and insurance applications, g-expectations are used to define

dynamic risk measures. Static risk measures, such as Value-at-Risk (VaR), are

well-understood. Nevertheless, it is still difficult to model dynamic risk measures

which continuously quantify the riskiness of financial positions during a specified

period of time. It is clear that financial positions should be consistently valued over

time until they are liquidated. Properties of BSDEs implies that g-expectations can

be a useful tool for modelling dynamic risk measures. Delong [19] illustrates some

good examples of modelling dynamic risk measures.

1.7 Motivations and Contributions

In general, this thesis focuses on theory of Backward Stochastic Differential Equa-

tions with unbounded generators (coefficients), which is motivated by the following

example:

The classical pricing problem is equivalent to solve a one dimension linear

BSDE:

− dY (t) = (r(t)Y (t) + Z(t)θ(t))dt− Z(t)dW (t), Y (T ) = ξ, (1.7.1)

where ξ is the contingent claim to price and to hedge, r(·) is the short rate of

interest and θ(·) is the risk premium vector. The classical results on the existence

and uniqueness of BSDE assume that the coefficients are uniformly Lipchitz with

bounded constants. However, in the above model, the assumption that r(·) and

θ(·) are uniformly bounded is rarely satisfied in a financial market. Hence we are

interested in studying the wellposed-ness of solution of BSDEs with an unbounded

generator.

In addition, consider some short term structure SDEs as follows:dr(t) = [α(t)− β(t)r(t)]dt+ r(t)λ〈ν(t), dW (t)〉, t ≥ 0,

r(0) = r0,
(1.7.2)

where α, β : [0,∞)→ (0,∞), ν : [0,∞)→ Rd are given deterministic functions, and

λ ∈ [0, 1], r0 > 0. It is known that for case that d = 1 and λ = 0, above SDE is

called the (generalised) Vasicek’s model; for the case that d = 1 and λ = 1
2 , it is

called the Cox-Ingersoll-Ross (CIR) model. If the interest rate follows some short

term structure SDEs as above, it might be unbounded (any strong solution to (1.7.2)

could be unbounded in general). Hence it is nature to ask under what conditions,
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linear BSDE (1.7.1) are solvable, i.e. in what sense, the financial market is complete.

Finally, we gives a summary of contributions of our results in this thesis.

In Chapter 3, we show the unique solvability of nonlinear BSDEs that satisfies

Lipschitz condition, but under weaker assumptions on the processes c1(·) and c2(·) as

compared to El Karoui and Huang [39]. Moreover, the unique solvability is shown

under novel conditions on c1(·) and c2(·), which in general are not comparable to

those in [39], by different approaches. A comparison theorem more general than that

of Peng [62], [66], is also given.

In Chapter 4, we consider a generator which is continuous in y and z, but with

a weaker linear growth condition than existing ones. Note that in this case , we also

relax the Lipschitz condition proposed in Chapter 3. By using the results of Chapter

3 (existence theorem and comparison theorem), and appropriately modifying the

approach of [4], [50], we prove the existence of a solution pair for nonlinear BSDEs.

Chapter 5 studies the problem of solvability for linear backward stochastic

differential equations with unbounded coefficients under various assumptions. New

and weaker sufficient conditions for the existence of a unique solution pair are given.

Comparing to the existing results (i.e. Yong [78]), we obtain the solvability of a

bigger class of linear backward stochastic differential equations. We also obtain

stronger integrability of certain exponential processes under various assumptions.

As applications, we solve the problems of completeness in a market with a possibly

unbounded coefficients and optimal investment with power utility in a market with

unbounded coefficients.

Chapter 6 discusses the problem of existence and uniqueness of a solution to

nonlinear SDE under certain new conditions on the coefficients c1(·), c2(·), which

have a similarity of those of Delbaen and Tang [18]. Moreover, our method of proof

is different, since it is a modification of the Picard iteration procedure rather than

being based on a fixed point theorem in [18]. In addition, we consider a comparison

theorem for this class of equations with same diffusion coefficients. This generalises

the classical comparison result of SDEs to the case of possibly unbounded coefficients.

We expect the results on this class of SDE will play an essential role on further study

of fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with

unbounded coefficients.
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1.8 Notations

The following is the list of the main notations used throughout this thesis.

• | · | is the Euclidian norm.

• Rd is d-dimensional real Euclidean space.

• Lp(Ω;Rd) is the space of Rd-valued random variables ζ with E[|ζ|p] < ∞, for

p ∈ [0,∞).

• Mp(0, T ;Rd) is the space of Ft-progressively measurable Rd-valued processes

ϕ(·) such that E
∫ T
0 |ϕ(t)|pdt <∞, for p ∈ [0,∞).

• M2(Ω,FT ,P;Rd) is the space of all FT -measurable Rd-valued random variables

ζ such that E[|ζ|2] <∞.

• M2(0, T ;Rd) is the space of Ft-progressively measurable Rd-valued processes

ϕ(·) such that ‖ϕ‖ ≡ E
∫ T
0 |ϕ(t)|2dt <∞.

• M̂2
i (Ω,FT ,P;Rd) is the space of all FT -measurable Rd-valued random variables

ζ such that E[p(T )|ζ|2] <∞, i = 1, 2.

• M̂2
i (0, T ;Rd) is the space of Ft-progressively measurable Rd-valued processes

ϕ(·) such that E
∫ T
0 p(t)|ϕ(t)|2dt <∞, i = 1, 2.

• Ĥ2
i (0, T ;Rd) is the space of càdlàg Ft-adapted Rd-valued processes ϕ(·) such

that E
[
supt∈[0,T ] p(t)|ϕ(t)|2

]
<∞, i = 1, 2.
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Chapter 2

Some Mathematical

Preliminaries

In this chapter, we describe fundamental concepts of probability theory and stochastic

calculus that appears throughout this thesis. This is only a brief description, and

more systematic and detailed introductions are given in some classic textbooks on

stochastic calculus and stochastic control, e.g. Karatzas and Shreve [36], Mao [54]

and Yong and Zhou [77] etc.

2.1 Stochastic Processes

Let (Ω,F ,P) be a probability space. A filtration is a collection of {Ft}t≥0 of

increasing sub σ-algebras of F , i.e. Ft ⊂ Fs ⊂ · · · ⊂ F , ∀ 0 ≤ t ≤ s ≤ ∞. A

probability space is said to be complete if for any P-null set A (i.e. P(A) = 0 for a set

A ∈ F ), one has another P-null set B ⊆ F whenever B ⊆ A. A filtered probability

space (Ω,F , {Ft}t≥0,P) is a probability space equipped with the filtration {Ft}t≥0
of its σ-algebra F , which consists of: a sample space of elementary events, a field of

events, a probability defined on that field, and a filtration of increasing subfields.

A stochastic process with state space Rd is a collection (X(t), t ≥ 0) of

Rd-valued random variables. The stochastic process can be regarded as a function

of two variables (t, ω) from I ×Ω to Rd, where I is a index set. From now on, unless

otherwise specified, we write a stochastic process (X(t), t ≥ 0) as X(t).

A stochastic process is said to be continuous if for almost all ω ∈ Ω, function

X(t, ω) is continuous on t ≥ 0. A stochastic process is said to be measurable if it

is regarded as a function of two variables (t, ω) from R+ × Ω to Rd is B(R+)×F -

measurable, where B(R+) is a collection of all Borel subsets of R+ (R+ = [0,∞)). It
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is said to be progressively measurable if for each T ≥ 0, (X(t), 0 ≤ t ≤ T ) is regarded

as a function of two variables (t, ω) from [0, T ]×Ω to Rd is B([0, T ])×FT -measurable,

where B([0, T ]) is a collection of all Borel subsets of [0, T ]. It is said to adapted to

the filtration {Ft}t≥0 if for all t, X(t) is Ft-measurable. Note that if X(t) is said to

be {Ft}t≥0-progressively measurable , it has to be measurable and {Ft}t≥0-adapted.

A process is called predictable if it is measurable with respect to predictable σ-field,

i.e. a σ-field generated by adapted left-continuous processes.

Remark 2.1.1. If we need the (Itô) integrals have desired properties, e.g. interchange

of the expectation and integral, X is only adapted is not enough, and hence a stronger

assumption, that of progressively measurable process is required.

2.2 Convergence

We describe the definitions of some main convergence of a sequence of functions and

random variables and some results on their relations. Convergence of Expectations

are also discussed.

2.2.1 Convergence of Functions

Definition 2.2.1 (Pointwise Convergence). fn(x) converge pointwisely to f(x) if

for any x > 0 and ε > 0, there exists a natural number N = N(ε, x) such that for all

n > N , |fn(x)− f(x)| < ε.

It is worth noting that in above definition, N depends on x. In other words,

for a given positive ε, a value of N that makes above statement hold for some x but

might not work for some other x.

Definition 2.2.2 (Uniform Convergence). fn(x) converge uniformly to f(x) if for

any ε > 0, there exists a natural number N = N(ε) such that for all n > N and for

all x, |fn(x)− f(x)| < ε.

An equivalent definition of uniform convergence is given as follows:

Theorem 2.2.1. fn(x) converge uniformly to f(x) if and only if

sup
x
|fn(x)− f(x)| −→ 0.

Note that the idea of uniform convergence is that one can choose N without

regard to the value of x. An important result about uniform convergence is as

follows:
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Theorem 2.2.2 (Uniform Convergence Theorem). If fn is a sequence of continuous

functions which converges uniformly to the function f on an interval S, then f is

continuous on S as well.

Note that pointwise convergence of continuous functions is not enough to

guarantee continuity of the limit function. This theorem shows that the uniform

limit of uniformly continuous functions is uniformly continuous.

Theorem 2.2.3 (Monotone Convergence Theorem). If a sequence fn is monotone

and bounded, then it converges.

Theorem 2.2.4 (Dominated Convergence Theorem). Assume that fn : R →
[−∞,∞] are (Lebesgue) measurable functions such that the pointwise limit f(x) =

limn→∞ fn(x) exists and there is an integrable g : R → [0,∞] with |fn(x)| ≤ g(x)

for each x ∈ R. Then f is integrable as is fn for each n, and

lim
n→∞

∫
R

fndµ =

∫
R

lim
n→∞

fndµ =

∫
R

fdµ.

Theorem 2.2.5 (Dini’s Theorem). Let K be a compact metric space. Let f : K → R

be a continuous function and fn : K → R, n ∈ N, be a sequence of continuous

functions. If {fn}n∈N converges pointwisely to f and if fn(x) ≥ fn+1(x) for all

x ∈ K and all n ∈ N, then {fn}n∈N converges uniformly to f

This is one of the few situations in mathematics where pointwise convergence

implies uniform convergence.

2.2.2 Convergence of Random Variables

Definition 2.2.3 (Convergence in probability). {Xn} converge in probability to X

if for any ε > 0, P|Xn −X| > ε→ 0 as n→∞.

Definition 2.2.4 (Convergence almost surely). {Xn} converge almost surely (a.s.)

to X if for any ω outside a set of zero probability, Xn(ω)→ X(ω) as n→∞.

Almost sure convergence implies convergence in probability. Convergence in

probability implies almost sure convergence on a subsequence, i.e. if {Xn} converge

to X in probability, then there is a subsequence nk that converges almost surely to

the same limit.
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2.3 Itô Calculus

In this section, we introduce the stochastic integrals, also called Itô integrals, with

respect to Brownian motion and their properties. The corresponding calculus is

called Itô calculus.

2.3.1 Itô Integral

Assume that X(t) is a regular adapted process such that
∫ t
0 X

2(s)ds < ∞ holds

with probability one and
∫ t
0 E[X2(s)]ds <∞. Then the Itô integral

∫ t
0 X(s)dW (s)

is defined and has the following properties:

(i) Zero mean property.

E

[∫ t

0
X(s)dW (s)

]
= 0.

(ii) Isômetry property.

E

[∫ t

0
X(s)dW (s)

]2
=

∫ t

0
E[X2(s)]ds. (2.3.1)

Remark 2.3.1. If
∫ t
0 E[X2(s)]ds =∞, then the Itô integral may fail to be a mar-

tingale but it is always a local martingale.

The Itô integral M(t) =
∫ t
0 X(s)dW (s), 0 ≤ t ≤ T is a random function of t.

The quadratic variation of M is defined by

[M,M ](t) = lim
P

n∑
i=1

[M(tni )−M(tni−1)]
2,

where the limit is taken over all partitions P : 0 = t0 < t1 < · · · < tn = t with mesh

size max0≤i≤n(tni − tni−1)→ 0 as n→∞.

2.3.2 Itô Formula for Itô Process

Theorem 2.3.1. Assume that X(t) have a stochastic differential for 0 ≤ t ≤ T :

dX(t) = µ(t)dt+ σ(t)dW (t).

Let f : [0, T ] × R → R be a smooth function for which the partial deriva-

tives ft(t,X(t)), fx(t,X(t)) and fxx(t,X(t)) are defined and continuous, then the
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stochastic differential of the process f(t,X(t)) exists and is given by

df(t,X(t)) =

[
ft(t,X(t))µ(t) +

1

2
fxx(t,X(t))σ2(t)

]
dt+ fx(t,X(t))σ(t)dW (t).

The formula for integration by parts (Itô product rule) in differential notation

is given by

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d[X,Y ](t).

If

dX(t) = µ1(t)dt+ σ1(t)dW (t),

dY (t) = µ2(t)dt+ σ2(t)dW (t),

then their quadratic covariation becomes

d[X,Y ](t) = dX(t)dY (t) = σ1(t)σ2(t)(dW (t))2 = σ1(t)σ2(t)dt.

which makes the formula

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + σ1(t)σ2(t)dt.

2.3.3 Change of Measure

We illustrate that what will happen to processes if the original probability measure

is replaced by an equivalent probability measure. In general, changer of measure for

a process is undertook by using the Girsanov’s theorem.

Let P and Q are two probability measures on the same space.

Definition 2.3.1. Q is called absolutely continuous with respect to P, denoted by

Q� P, if Q(A) = 0 whenever P(A) = 0. P and Q are called equivalent if Q� P

and P� Q.

Theorem 2.3.2 (Radon-Nikodym Theorem). If Q� P, then there exists a random

variable Λ such that Λ ≥ 0, EPΛ = 1, and

Q(A) = EP[Λ1(A)] =

∫
A

ΛdP,

for any measurable set A. Λ = dQ
dP is P-almost surely unique. Conversely, if there

exists a random variable Λ with the above properties and Q is defined as above, then

it is a probability measure and Q� P.
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The Λ is called the Radon-Nikodym derivative. It follows from above theorem

that if Q� P, then the relation between expectations under P and Q is given by

EQ[X] = EP [ΛX],

for any random variable X integrable with respect to Q.

So if P and Q are equivalent, i.e. they have the same null sets, then there exists

a random variable Λ such that the probabilities under Q are given by Q(A) =
∫
A ΛdP.

The Girsanov’s theorem gives the form of Λ:

Theorem 2.3.3 (Girsanov’s Theorem). Let W (t), t ∈ [0, T ] be a Brownian motion

under probability P and H(t), t ∈ [0, T ] be an adapted process such that an equivalent

measure Q is given by

Λ(t) =
dQ

dP
= e−

1
2

∫ t
0 H

2(s)ds−
∫ t
0 H(s)dW (s),

and

E

[∫ T

0
H2(s)Λ2(s)ds

]
<∞.

Then the process

W̃ (t) = W (t) +

∫ t

0
H(s)ds,

is a Brownian motion, and E[Λ(T )] = 1 under the probability measure Q.

2.4 Martingales

Martingales play a significant role in modern theory of stochastic processes and

stochastic calculus. In this thesis, we consider the martingales are constructed from

a Brownian motion.

Definition 2.4.1 (Martingales, Supermartingales, Submartingales). A stochastic

process X(t) adapted to a filtration {Ft}t≥0 is a supermartingale (resp. submartin-

gale) if for any t, it is integrable, E[|X(t)|] <∞, and for any s < t,

E[X(t)|Fs] ≤ X(s), (resp.E[X(t)|Fs] ≥ X(s)), a.s..

If E[X(t)|Fs] = X(s), a.s., the process X(t) is said to be a martingale.

Square integrable martingales play a important role in theory of integration.

20



Definition 2.4.2. A random variable X is square integrable if E[X2] < ∞. A

process X(t) on a time interval [0, T ] (where T can be infinite) is square integrable

if supt∈[0,T ]E[X2(t)] <∞.

In order to introduce the concepts of localization and local martingale, we

recall the definition of stopping times:

Definition 2.4.3 (Stopping Times). A non-negative random variable τ (which is

allowed to take values at ∞) is said to be a stopping times (w.r.t a filtration {Ft}t≥0)

if for any t, the event {τ ≤ t} ∈ Ft holds.

In other words, a random time τ is called a stopping time if for any t it

is possible to determine if τ has occurred or not by observing the process X(s),

0 ≤ s ≤ t.

2.4.1 Local Martingales

In general, stochastic integrals with respect to martingales are local martingales,

not true martingales, which makes it necessary to introduce the concept of local

martingales.

Definition 2.4.4. An adapted process M(t) is said to be a local martingale if there

exists an increasing sequence of stopping times τn and for each n the stopped process

M(t ∧ τn) is a martingale.

Any martingale is a local martingale. However, since its expectation can be

distorted by large values of small probability, in general, a local martingale is not

a martingale. The following corollary shows that under certain condition, a local

martingale becomes a true martingale.

Corollary 2.4.1. Let M(t), 0 ≤ t < ∞ be a local martingale such that for all t,

E[sups≤t |M(s)|] <∞. Then it is a martingale.

Positive local martingales are studied especially in application to finance.

Theorem 2.4.1. A non-negative local martingale M(t), 0 ≤ t ≤ T , is a super-

martingale, i.e. E[M(t)] <∞ and for any s < t, E[M(t)|Fs] ≤M(s).

Now we state the representation of martingales by stochastic integrals of

predictable processes. Let M(t), t ∈ [0, T ] be a martingale adapted to filtration

{Ft}0≤t≤T , and H(t) be a predictable process satisfying
∫ T
0 H2(s)d〈M,M〉(s) <∞

with probability one. Then
∫ t
0 H(s)dM(s) is a local martingale.
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Theorem 2.4.2 (Brownian Martingale Representation). Let X(t), t ∈ [0, T ] be

a local martingale adapted to filtration {Ft}0≤t≤T . Then there exists a predicable

process H(t) such that
∫ T
0 H2(s)ds <∞ with probability one and

X(t) = X(0) +

∫ t

0
H(s)dB(s).

Moreover, if Y is an integrable FT -measurable random variable and E|Y | <∞, then

Y = E[Y ] +

∫ T

0
H(t)dB(t).

The martingale representation theorem shows that if the filtration is generated

by a Brownian motion, then every martingale with respect to this filtration is an

initial condition (of the martingale) plus an Itô integral with respect to the Brownian

motion. Hence Brownian motion is the only source of uncertainty to be removed by

hedging in the model.

2.4.2 Semimartingales

Semimartingales are considered as the most general processes for which stochastic

calculus is developed. It is a process including a sum of a local martingale and finite

variation process, i.e.

lim
Pn

n∑
i=1

|g(tni )− g(tni−1)| <∞,

where Pn = max0≤i≤n(tni − tni−1). More precisely,

Definition 2.4.5 (Semimartingales). A càdlàg (i.e. right continuous with left limits)

adapted process S(t) is a semimartingale if it can expressed as a sum of two processes:

a local martingale M(t) and a process of finite variation A(t) with M(0) = A(0) = 0,

and

S(t) = S(0) +M(t) +A(t).

Definition 2.4.6 (Local Time). Assume that (W (t), t ≥ 0) is a diffusion process

(e.g. a Brownian motion). A local time of W (t) at point a is a stochastic process

La(t) = lim
ε↓0

1

2ε

∫ t

0
1{|W (s)−a|<ε}ds,

Note that local time can be regarded as a measure of time W (t) spent at

point a up to time t.
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With concepts of semimartingale and local time, we introduce an application

of Itô’s formula to the function sign(x), which is called the Tanaka’s formula.

Theorem 2.4.3 (Tanaka’s Formula). Assume that X(t) is a continuous semimartin-

gale. Then for any a ∈ R, there exists a continuous non-decreasing adapted process

La(t), called the local time at a of X, such that

|X(t)− a| = |X(0)− a|+
∫ t

0
sign((X(s)− a)dX(s) + La(t).

As a function in a, La(t) is right continuous with left limits. For any fixed a as a

function in t, La(t) increases only when X(t) = a, i.e.

La(t) =

∫ t

0
1(X(s) = a)dLa(s).

It is common to associate a random measure dLa(t) on R+ with the increasing

La(t). Roughly speaking, it measures the time spent at point a by the semimartingale

X:

Proposition 2.4.1. The measure dLa(t) is a.s. carried by the set {t : X(t) = a},
i.e.

∫ t
0 |X(s)− a|dLa(s) = 0, a.s..

2.4.3 Stochastic Exponential

The stochastic exponential, which also known as the semimartingale, is a stochastic

version of exponential function. For a semimartingale M , its stochastic exponential

E(M)(t) = U(t) is the unique solution to

U(t) = 1 +

∫ t

0
U(s−)dM(s),

where U(s−) ≡ lims↑t U(s) denotes the left continuous process.

Theorem 2.4.4. Let M be a continuous semimartingale. Then its stochastic expo-

nential is given by

E(M)(t) = eM(t)−M(0)− 1
2
[M,M ](t).

M(t) is a stochastic integral with respect to M(t). E(M) is a local martingale

because stochastic integrals with respect to martingales or local martingales are

local martingales. In applications, it is important to have conditions for stochastic

exponential E(M) to be a true martingale.
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Theorem 2.4.5 (Kazamaki’s Condition). Let M be a continuous local martingale

with M(0) = 0. If E
[
e

1
2
M(t)

]
<∞, then E(M) is a martingale on [0, T ].

Moreover, we have the following stronger condition for E(M) to be a true

martingale.

Theorem 2.4.6 (Novikov’s Condition). Let M be a continuous local martingale

with M(0) = 0. If E
[
e

1
2
[M,M ](t)

]
< ∞, then E(M) is a martingale with mean one

on [0, T ].

2.4.4 Martingales Inequalities

Theorem 2.4.7 (Doob’s martingale Inequalities). Let X(t) be an Rd-valued mar-

tingale, and [s, T ] be a bounded interval in R+. If p > 1 and X(t) ∈ Lp(Ω;Rd),

then

E

[
sup
s≤t≤T

|X(t)|p
]
≤
(

p

p− 1

)p
E[|X(T )|p].

Theorem 2.4.8 (Burkholder-Gundy Inequality). There are positive constants cp

and Cp depending only on p > 0 such that for any local martingale M(t), null at

zero,

cpE
(

[M,M ](T )p/2
)
≤ E

[
sup
t≤T
|M(t)|p

]
≤ CpE

(
[M,M ](T )p/2

)
,

for 1 ≤ p <∞. Moreover, if M(t) is continuous, the it holds for 0 < p < 1 as well.

In addition, if M(t) =
∫ t
0 σ(s)dW (s), where W (t) be a standard Brownian

motion, then it is a Itô integral and its quadratic variation is given by
∫ t
0 σ

2(s)ds. In

this case for any p > 0 and any stopping time τ , the Burkholder-Gundy inequality

gives:

1

Kp
E

[∫ τ

0
|σ(s)|2ds

]p
≤ E

[
sup

0≤t≤τ

∣∣∣∣∫ t

0
σ(s)dW (s)

∣∣∣∣2p
]
≤ KpE

[∫ τ

0
|σ(s)|2ds

]p
,

where Kp is a positive constant.

2.5 Other Results

Theorem 2.5.1 (Gronwall’s Inequality). Assume that g(t) and h(t) be regular non-

negative functions on [0, T ], then for any regular f(t) ≥ 0 satisfying the inequality
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for all t ∈ [0, T ],

f(t) ≤ g(t) +

∫ t

0
h(s)f(s)ds,

we have

f(t) ≤ g(t) +

∫ t

0
h(s)g(s)e

∫ t
s h(u)duds.

In particular, if g(t) is a non-decreasing function, the integral above simplifies to

f(t) ≤ g(t)e
∫ t
0 h(s)ds.

Theorem 2.5.2 (Fubini’s Theorem). Assume that X(t) is a stochastic process with

regular sample paths (i.e. for all ω at any point t, X(t) has left and right limits).

Then

E

[∫ t

0
|X(s)|ds

]
=

∫ t

0
E[|X(s)|]ds.

Moreover, if the quantity is finite, then

E

[∫ t

0
X(s)ds

]
=

∫ t

0
E[X(s)]ds.

Fubini’s Theorem permits to interchange integrals (summations) and expec-

tations.

The following inequalities are frequently used throughout later analysis.

(i) Hölder’s inequality. If p > 1, 1
p + 1

q = 1 and X ∈ Lp(Ω;Rd), Y ∈ Lq(Ω;Rd),

then

|E(XY )| ≤ (E|X|p)
1
p · (E|Y |q)

1
q .

An integral version of this is∣∣∣∣∫ t

0
f(s)g(s)ds

∣∣∣∣ ≤ [∫ t

0
fp(s)ds

]1/p
·
[∫ t

0
gq(s)ds

]1/q
.

In addition, a simple generalization of Hölder’s inequality is

(E|X|p)
1
p ≤ (E|X|q)

1
q ,

if 0 < p < q <∞ and X ∈ Lp(Ω;Rd).

(ii) Markov’s inequality. Let X be a non-negative random variable and assume
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that E(X) exists. For any t > 0,

P({ω : X(ω) ≥ t}) ≤ E(X)

t
.

(iii) Cauchy-Schwartz inequality. If X ∈ L2(Ω;Rd) and Y ∈ L2(Ω;Rd) have

finite variances, then

E|XY | ≤
√
E(X2)E(Y 2).

An integral version of this is∣∣∣∣∫ t

0
f(s)g(s)ds

∣∣∣∣2 ≤ [∫ t

0
f2(s)ds

]
·
[∫ t

0
g2(s)ds

]
.

(iv) Minkowskis inequality. If f, g : Rn → R are Lebesgue measurable. Then

for p <∞,

[∫ t

0
|f(s) + g(s)|pds

] 1
p

≤
[∫ t

0
|f(s)|pds

] 1
p

+

[∫ t

0
|g(s)|pds

] 1
p

.
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Chapter 3

Backward Stochastic

Differential Equations with an

Unbounded Generator

3.1 Abstract

We consider a class of backward stochastic differential equations with a possibly

unbounded generator. Under a Lipschitz-type condition, we give sufficient conditions

for the existence of a unique solution pair, which are weaker than the existing ones.

We also give a comparison theorem as a generalisation of Peng’s result. This work is

based on a submitted paper [24].

3.2 Introduction

Let (Ω,F , (Ft, t ≥ 0),P) be a given complete filtered probability space on which a

k-dimensional standard Brownian motion (W (t), t ≥ 0) is defined. We assume that

(Ft, t ≥ 0) is the augmentation of σ{W (s) : 0 ≤ s ≤ t} by all the P-null sets of F .

Consider the backward stochastic differential equation (BSDE):

y(t) = ξ +

∫ T

t
f(s, y(s), z(s))ds−

∫ T

t
z(s)dW (s), t ∈ [0, T ], (3.2.1)

where ξ is a given FT -measurable Rd-valued random variable, and the generator

f : Ω× [0, T ]×Rd ×Rd×k → Rd is a progressively measurable function.

Linear equations of the type (3.2.1) were introduced by Bismut [9] in the

context of stochastic linear quadratic control. The nonlinear equations (3.2.1) were
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introduced by Pardoux and Peng [61]. Under the global Lipschitz condition on f , i.e.

under the assumption that there exists a real constant c > 0 such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ c(|y1 − y2|+ |z1 − z2|), (3.2.2)

for all y1, y2 ∈ Rd, z1, z2 ∈ Rd×k, (t, ω) a.e., they prove the existence of a unique

solution pair (y(·), z(·)). BSDEs have been studied extensively since then, and have

found wide applicability in areas such as mathematical finance, stochastic control, and

stochastic controllability; see, for example, [10], [23], [41], [53], [55], [77], [63], [73],

and the references therein. The global Lipschitz condition (3.2.2) has been weakened

to local Lipschitz condition in [3], and to non-Lipschitz condition of a particular type

in [54], [71].

The BSDEs with a possibly unbounded generator f are particulary important

in mathematical finance. Several important interest rate models are solutions to

stochastic differential equations. Such solutions are unbounded in general (see, for

example, [7], [16], [79]). The problem of market completeness in that case gives rise

to BSDEs with unbounded coefficients (see [78] for details). This has motivated [39]

(see also [18]) to weaken the Lipschitz condition (3.2.2) to

|f(t, y1, z1)− f(t, y2, z2)| ≤ c1(t)|y1 − y2|+ c2(t)|z1 − z2|, (3.2.3)

for all y1, y2 ∈ Rd, z1, z2 ∈ Rd×k, (t, ω) a.e., for some non-negative processes c1(·)
and c2(·). Here the processes c1(·) and c2(·) can be unbounded. In [39], under certain

conditions on the processes c1(·) and c2(·), the solvability of (3.2.1) is shown. The

linear BSDEs with possibly unbounded coefficients are considered in [78], where only

scalar equations are considered by exploiting their explicit solvability.

In this chapter we also show the unique solvability of (3.2.1) that satisfies

Lipschitz condition (3.2.3), but under weaker assumptions on the processes c1(·) and

c2(·) as compared to [39]. Moreover, the unique solvability of (3.2.1) is shown under

novel conditions on c1(·) and c2(·), which in general are not comparable to those

in [39]. A comparison theorem more general than that of Peng [62], [66], is also

given.
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3.3 Notations and Assumptions

The following is the list of the additional notations used in this chapter.

• c1(·), c2(·), γ(·), γ(·), are given positive R-valued progressively measurable pro-

cesses.

• 1 < β1 ∈ R, 1 < β2 ∈ R, are given constants.

• 4 < β1 ∈ R, 1 < 90β1
2
/(β1

2 − 16) < β2 ∈ R, are given constants.

• α1(t) ≡ γ(t) + β1c
2
1(t) + β2c

2
2(t), α2(t) ≡ γ(t) + β1c1(t) + β2c

2
2(t), are assumed

positive.

• p1(t) ≡ exp
[∫ t

0 α1(s)ds
]
, p2(t) ≡ exp

[∫ t
0 α2(s)ds

]
.

We say that the progressively measurable function f and the random variable

ξ, or the pair (f, ξ), satisfies conditions A1 (resp. conditions A2) if:

(i) ξ ∈ M̂2
1 (Ω,FT ,P;Rd) (resp. ξ ∈ M̂2

2 (Ω,FT ,P;Rd));

(ii) |f(t, y1, z1) − f(t, y2, z2)| ≤ c1(t)|y1 − y2| + c2(t)|z1 − z2|, for all y1, y2 ∈ Rd,
z1, z2 ∈ Rd×k, (t, ω) a.e.;

(iii)
[
f(·, 0, 0)α1(·)−

1
2

]
∈ M̂2

1 (0, T ;Rd) (resp.
[
f(·, 0, 0)α2(·)−

1
2

]
∈ M̂2

2 (0, T ;Rd)).

The sufficient conditions for the solvability of (3.2.1), as given in [39], are

similar to our conditions A2. Indeed, if we choose γ(t) = 0, β1 = β2 ≡ β, where β

is large enough, then conditions A2 are those of [39]. Clearly, due to the process

γ(t) our conditions A2 are more general then those of [39]. The importance of this

process is that assumption (iii) above can be suitable weakened by choosing large

values for this process, which is not an option in [39]. Moreover, even if we take

γ(t) = 0, our assumption (i) is weaker than that of [39]. Indeed, the parameter β

of [39] should be bigger than 446.05 (in [39] it is only claimed that this coefficient

should be large enough, but a straightforward calculation included in our Appendix,

gives this numerical lower bound). This is clearly not the case in conditions A2

where the coefficient β1 is only required to be greater than 4.
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The conditions A1 are new. In general, these are not comparable with con-

ditions A2. However, in certain special cases we can compare them. For example,

if c1(t) = 0, 1 < β2 < β2, γ(t) = γ(t), then M̂2
1 (Ω,FT ,P;Rd) ⊂ M̂2

2 (Ω,FT ,P;Rd),

and thus the above assumption (i) on the random variable ξ is weaker in the case

of conditions A1. Similarly, if c2(t) = 0, γ(t) = γ(t), β1 = 2β1, then the above

assumption (i) on the random variable ξ is weaker in the case of conditions A2.

3.4 Solvability

In this section we give sufficient conditions for the existence and uniqueness of a

solution pair for (3.2.1). Our method of proof is different from [39] being based on

Picard iterations, and similarly to [61], we begin with a simpler form of (3.2.1) and

progress towards the general case. The proofs of the results under conditions A1

and A2 are different and are thus given separately in most cases, but there are also

similarities between them.

Lemma 3.4.1. Let φ(·) ∈ Ĥ2
1 (0, T ;Rd), ψ(·) ∈ M̂2

1 (0, T ;Rd×k) be given, and assume

that
√
α1(·)φ(·) ∈ M̂2

1 (0, T ;Rd). If the pair (f, ξ) satisfies the conditions A1, then:

(i) there exists a unique solution pair (y(·), z(·)) ∈ Ĥ2
1 (0, T ;Rd)× M̂2

1 (0, T ;Rd×k) of

equation

y(t) = ξ +

∫ T

t
f(s, φ(s), ψ(s))ds−

∫ T

t
z(s)dW (s), t ∈ [0, T ], (3.4.1)

and
√
α1(·)y(·) ∈ M̂2

1 (0, T ;Rd).

(ii) if y+(t) ≡ 1[y(t)>0]y(t), the processes

∫ T

t
p1(s)y(s)z(s)dW (s) and

∫ T

t
p1(s)y

+(s)z(s)dW (s),

are martingales.

Proof. (i) By making use of the Cauchy-Schwartz inequality, we first show that
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∫ T
0 f(s, φ(s), ψ(s))ds belongs to M2(Ω,FT ,P;Rd):

E

∣∣∣∣ ∫ T

0
f(s, φ(s), ψ(s))ds

∣∣∣∣2 = E

∣∣∣∣ ∫ T

0

√
p−11 (s)α1(s)

√
p1(s)f(s, φ(s), ψ(s))√

α1(s)
ds

∣∣∣∣2

=E

{[∫ T

0
p−11 (s)α1(s)ds

] [∫ T

0

p1(s)|f(s, φ(s), ψ(s))|2

α1(s)
ds

]}

≤E
∫ T

0

p1(s)|f(s, φ(s), ψ(s))|2

α1(s)
ds

=E

∫ T

0

p1(s)

α1(s)
|f(s, φ(s), ψ(s)− f(s, 0, 0) + f(s, 0, 0)|2ds

≤E
∫ T

0

p1(s)

α1(s)
[|f(s, φ(s), ψ(s)− f(s, 0, 0)|+ |f(s, 0, 0)|]2ds

≤E
∫ T

0

p1(s)

α1(s)
[c1(s)|φ(s)|+ c2(s)|ψ(s)|+ |f(s, 0, 0)|]2ds

≤E
∫ T

0

p1(s)

α1(s)
[3c21(s)|φ(s)|2 + 3c22(s)|ψ(s)|2 + 3|f(s, 0, 0)|2]ds

=E

∫ T

0

3p1(s)

β1

β1c
2
1(s)

γ(s) + β1c21(s) + β2c22(s)
|φ(s)|2ds

+
3p1(s)

β2

β2c
2
2(s)

γ(s) + β1c21(s) + β2c22(s)
|ψ(s)|2ds+ 3E

∫ T

0

p1(s)|f(s, 0, 0)|2

α1(s)
ds

≤ 3

β1
E

∫ T

0
p1(s)|φ(s)|2ds+

3

β2
E

∫ T

0
p1(s)|ψ(s)|2ds+ 3E

∫ T

0

p1(s)|f(s, 0, 0)|2

α1(s)
ds

<∞.

Since ξ ∈ M̂2
1 (Ω,FT ,P;Rd) implies that ξ ∈ M2(Ω,FT ,P;Rd), it follows from
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Lemma 2.1 of [61] that (3.4.2) has a unique solution pair (y(·), z(·)) ∈M2(0, T ;Rd)×
M2(0, T ;Rd×k). Moreover, since we proved that

E

∫ T

0

p1(s)|f(s, φ(s), ψ(s))|2

α1(s)
ds,

is finite, it follows from Lemma 6.2 1 of [39] that in fact (y(·), z(·)) ∈ Ĥ2
1 (0, T ;Rd)×

M̂2
1 (0, T ;Rd×k) and [

√
α1(·)y(·)] ∈ M̂2

1 (0, T ;Rd).

(ii) The proof follows closely that in [12] (pp. 307), and since it is short, we

include it here for completeness. From the Burkholder-Davis-Gundy inequality (see,

for example, Theorem 2.4.8), there exists a constant K such that

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
p1(s)y(s)z(s)dW (s)

∣∣∣∣
]

≤K E
[∫ T

0
|
√
p1(s)y(s)|2|

√
p1(s)z(s)|2ds

] 1
2

≤K E

[
sup
t∈[0,T ]

|
√
p1(t)y(t)|2

∫ T

0

√
p1(s)z(s)|2ds

] 1
2

≤K
2
E

[
sup
t∈[0,T ]

|
√
p1(t)y(t)|2 +

∫ T

0
|
√
p1(s)z(s)|2ds

]
<∞,

where the last step follows from the fact that y(·) ∈ Ĥ2
1 (0, T ;Rd) and

z(·) ∈ M̂2
1 (0, T ;Rd×k), proved in part (i). The conclusion then follows from Corol-

lary 2.4.1. Since supt∈[0,T ] |
√
p1(t)y

+(t)|2 ≤ supt∈[0,T ] |
√
p1(t)y(t)|2, the conclusion

follows even for
∫ t
0 p1(s)y

+(s)z(s)dW (s).

Lemma 3.4.2. Let φ(·) ∈ Ĥ2
2 (0, T ;Rd), ψ(·) ∈ M̂2

2 (0, T ;Rd×k) be given, and assume

that
√
α2(·)φ(·) ∈ M̂2

2 (0, T ;Rd). If the pair (f, ξ) satisfies the conditions A2, then:

(i) there exists a unique solution pair (y(·), z(·)) ∈ Ĥ2
2 (0, T ;Rd)× M̂2

2 (0, T ;Rd×k) of

equation

y(t) = ξ +

∫ T

t
f(s, φ(s), ψ(s))ds−

∫ T

t
z(s)dW (s), t ∈ [0, T ], (3.4.2)

and
√
α2(·)y(·) ∈ M̂2

2 (0, T ;Rd).

1Note that the results in Lemma 6.2 of [39] is valid for any α(t) (in the sense of [39]).
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(ii) if y+(t) ≡ 1[y(t)>0]y(t), the processes

∫ T

t
p2(s)y(s)z(s)dW (s) and

∫ T

t
p2(s)y

+(s)z(s)dW (s),

are martingales.

Proof. The proof of part (ii) is the same as the proof of part (ii) of the previous

lemma. We thus focus on part (i). We have

E

∣∣∣∣ ∫ T

0
f(s, φ(s), ψ(s))ds

∣∣∣∣2

≤E
∫ T

0

p2(s)

α2(s)
[3c21(s)|φ(s)|2 + 3c22(s)|ψ(s)|2 + 3|f(s, 0, 0)|2]ds

≤E
∫ T

0

3p2(s)

β1
2

β1c1(s)

γ(s) + β1c1(s) + β2c22(s)
(γ(s) + β1c1(s) + β2c

2
2(s))|φ(s)|2ds

+ E

∫ T

0

3p2(s)

β2

β2c
2
2(s)

γ(s) + β1c1(s) + β2c22(s)
|ψ(s)|2ds+ 3E

∫ T

0

p2(s)|f(s, 0, 0)|2

α2(s)
ds

≤ 3

β1
2E

∫ T

0
p2(s)α2(s)|φ(s)|2ds+

3

β2
E

∫ T

0
p2(s)|ψ(s)|2ds

+ 3E

∫ T

0

p2(s)|f(s, 0, 0)|2

α2(s)
ds <∞.

The rest of the proof is the same as in the proof of part (i) of the previous lemma.

Lemma 3.4.3. (i) Let φ(·) ∈ Ĥ2
1 (0, T ;Rd) be given. If the pair (f, ξ) satisfies

conditions A1, then there exists a unique solution pair (y(·), z(·)) ∈ Ĥ2
1 (0, T ;Rd)×

M̂2
1 (0, T ;Rd×k) of equation

y(t) = ξ +

∫ T

t
f(s, φ(s), z(s))ds−

∫ T

t
z(s)dW (s), t ∈ [0, T ], (3.4.3)
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and
√
α1(·)y(·) ∈ M̂2

1 (0, T ;Rd).

(ii) Let φ(·) ∈ Ĥ2
2 (0, T ;Rd) be given. If the pair (f, ξ) satisfies conditions A2,

then there exists a unique solution pair (y(·), z(·)) ∈ Ĥ2
2 (0, T ;Rd)× M̂2

2 (0, T ;Rd×k)

of equation

y(t) = ξ +

∫ T

t
f(s, φ(s), z(s))ds−

∫ T

t
z(s)dW (s), t ∈ [0, T ],

and
√
α2(·)y(·) ∈ M̂2

2 (0, T ;Rd).

Proof. (i) (Uniqueness) Let (y1(·), z1(·)) and (y2(·), z2(·)) be two solution pairs of

(3.4.3) with the claimed properties. Then

− d p1(t)|y1(t)− y2(t)|2

={−α1(t)p1(t) |y1(t)− y2(t)|2

+ 2p1(t)(y1(t)− y2(t))′ [f(t, φ(t), z1(t))− f(t, φ(t), z2(t))]

− p1(t)|z1(t)− z2(t)|2}dt− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)

≤[−α1(t)p1(t) |y1(t)− y2(t)|2 − p1(t)|z1(t)− z2(t)|2]dt

− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)

+ 2p1(t)|y1(t)− y2(t)||f(t, φ(t), z1(t))− f(t, φ(t), z2(t))|dt

≤[−α1(t)p1(t) |y1(t)− y2(t)|2 − p1(t)|z1(t)− z2(t)|2]dt

− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)
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+ 2p1(t)c2(t)|y1(t)− y2(t)||z1(t)− z2(t)|dt

≤[−α1(t)p1(t) |y1(t)− y2(t)|2 − p1(t)|z1(t)− z2(t)|2]dt

− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)

+ β2c
2
2(t)p1(t)|y1(t)− y2(t)|2dt+ β−12 p1(t)|z1(t)− z2(t)|2dt

≤− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t),

which in integral form becomes

p1(t)|y1(t)− y2(t)|2 ≤
∫ T

t
−2p1(s)(y1(s)− y2(s))′(z1(s)− z2(s))dW (s). (3.4.4)

The stochastic integral in (3.4.4) is a local martingale that is clearly lower bounded

by zero, and is thus a supermartingale (see, for example, Theorem 2.4.1). Taking

the expectation of both sides of (3.4.4) results in

E
[
p1(t)|y1(t)− y2(t)|2

]
≤− E

[∫ T

t
2p1(s)(y1(s)− y2(s))′(z1(s)− z2(s))dW (s)

]
≤ 0.

Since p1(t) > 0, it follows that y1(t) = y2(t), ∀ t ∈ [0, T ], a.s., which proves the

uniqueness of y(·). Due to this fact, the integral form of (3.4.4) becomes

0 =

∫ T

t
p1(s)|z1(s)− z2(s)|2ds,

which implies that z1(t) = z2(t) for a.e. t ∈ [0, T ], and thus proves the uniqueness of

z(·).

(Existence) Let z0(t) ≡ 0, ∀t ∈ [0, T ], and for n ≥ 1 consider the following

sequence of equations:

yn(t) = ξ +

∫ T

t
f(s, φ(s), zn−1(s))ds−

∫ T

t
zn(s)dW (s), t ∈ [0, T ]. (3.4.5)

From Lemma 3.4.1 we know that these equations have unique solution pairs

{(yn(·), zn(·)) ∈ Ĥ2
1 (0, T ;Rd) × M̂2

1 (0, T ;Rd×k)}n≥1, for which it also holds that
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{
√
α1(·)yn(·) ∈ M̂2

1 (0, T ;Rd)}n≥1. Similarly to the proof of uniqueness, we have

− d p1(t)|yn+1(t)− yn(t)|2

={−α1(t)p1(t)|yn+1(t)− yn(t)|2

+ 2p1(t)(yn+1(t)− yn(t))′ [f(t, φ(t), zn(t))− f(t, φ(t), zn−1(t))]

− p1(t)|zn+1(t)− zn(t)|2}dt− 2p1(t)(yn+1(t)− yn(t))′(zn+1(t)− zn(t))dW (t)

≤[−α1(t)p1(t)|yn+1(t)−yn(t)|2−p1(t)|zn+1(t)−zn(t)|2]dt

− 2p1(t)(yn+1(t)−yn(t))′(zn+1(t)−zn(t))dW (t)

+ 2p1(t)|yn+1(t)− yn(t)| |f(t, φ(t), zn(t))− f(t, φ(t), zn−1(t))| dt

≤[−α1(t)p1(t)|yn+1(t)−yn(t)|2−p1(t)|zn+1(t)−zn(t)|2]dt

− 2p1(t)(yn+1(t)−yn(t))′(zn+1(t)−zn(t))dW (t)

+ 2p1(t)c2(t)|yn+1(t)− yn(t)||zn(t)− zn−1(t)|dt

≤[−α1(t)p1(t)|yn+1(t)−yn(t)|2−p1(t)|zn+1(t)−zn(t)|2]dt

− 2p1(t)(yn+1(t)−yn(t))′(zn+1(t)−zn(t))dW (t)

+ β2c
2
2(t)p1(t)|yn+1(t)− yn(t)|2dt+ β−12 p1(t)|zn(t)− zn−1(t)|2dt

≤[−p1(t)|zn+1(t)−zn(t)|2 + β−12 p1(t)|zn(t)−zn−1(t)|2]dt

−2p1(t)(yn+1(t)−yn(t))′(zn+1(t)−zn(t))dW (t),
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which in integral form becomes

p1(t)|yn+1(t)− yn(t)|2 +

∫ T

t
p1(s)|zn+1(s)− zn(s)|2ds

≤−
∫ T

t
2p1(s)(yn+1(s)−yn(s))′(zn+1(s)−zn(s))dW (s)

+ β−12

∫ T

t
p1(s)|zn(s)−zn−1(s)|2]ds.

From Lemma 3.4.1 (ii), it is clear that the stochastic integral on the right hand side

is a martingale. Taking the expected values of both sides gives

E
[
p1(t)|yn+1(t)− yn(t)|2

]
+ E

∫ T

t
p1(s)|zn+1(s)− zn(s)|2ds

≤β−12 E

∫ T

t
p1(s)|zn(s)−zn−1(s)|2]ds.

Let us define

ηn(t) ≡ E
∫ T

t
p1(s)|yn(s)− yn−1(s)|2ds,

and

µn(t) ≡ E
∫ T

t
p1(s)|zn(s)− zn−1(s)|2ds.

Using the same argument as in the last part of the proof of Proposition 2.2

in [61], we obtain ηn+1(0) ≤ β−n2 E
∫ T
0 p1(s)|z1(s)|2ds and µn(0) ≤ β−n2 µ1(0). Since

the right-hand sides of these two inequalities decrease with n, it follows that

{yn}n≥1 is a Cauchy sequence in M̂2
1 (0, T ;Rd), and {zn}n≥1 is a Cauchy sequence in

M̂2
1 (0, T ;Rd×k). Moreover, this also implies that {√α1yn}n≥1 is a Cauchy sequence

in M̂2
1 (0, T ;Rd). Hence, the limiting processes y∗ = limn→∞ yn and z∗ = limn→∞ zn

are the solution pair of (3.4.3). In addition, when such a pair of processes is sub-

stituted in (3.4.3), then (3.4.3) becomes an example of (3.4.2) with ψ(·) = z∗(·).
Therefore, Lemma 3.4.1 applies, and we have that y∗(·) ∈ Ĥ2

1 (0, T ;Rd×k).

(ii) Due to Lemma 3.4.2, the proof in this case is identical to the proof of part

(i) (with an obvious change of notation), and is thus omitted.

Theorem 3.4.1. (i) If the pair (f, ξ) satisfies conditions A1, then the BSDE (3.2.1)

has a unique solution pair (y(·), z(·)) ∈ Ĥ2
1 (0, T ;Rd)× M̂2

1 (0, T ;Rd×k), and√
α1(·)y(·) ∈ M̂2

1 (0, T ;Rd).

37



(ii) If the pair (f, ξ) satisfies conditions A2, then the BSDE (3.2.1) has a unique solu-

tion pair (y(·), z(·)) ∈ Ĥ2
2 (0, T ;Rd)×M̂2

2 (0, T ;Rd×k), and
√
α2(·)y(·) ∈ M̂2

2 (0, T ;Rd).

Proof. (i) (Uniqueness) Let (y1(·), z1(·)) and (y2(·), z2(·)) be two solution pairs of

(3.2.1) with the claimed properties. Then we have

− d p1(t)|y1(t)− y2(t)|2

≤[−α1(t)p1(t) |y1(t)− y2(t)|2 − p1(t)|z1(t)− z2(t)|2]dt

− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)

+ 2p1(t)|y1(t)− y2(t)| |f(t, y1(t), z1(t))− f(t, y2(t), z2(t))| dt

≤[−α1(t)p1(t) |y1(t)− y2(t)|2 − p1(t)|z1(t)− z2(t)|2]dt

− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)

+ 2p1(t)|y1(t)− y2(t)| [c1(t)|y1(t)− y2(t)|+ c2(t)|z1(t)− z2(t)|] dt

≤[−α1(t)p1(t) |y1(t)− y2(t)|2 − p1(t)|z1(t)− z2(t)|2]dt

− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)

+ β1c
2
1p1(t)|y1(t)− y2(t)|2dt+ β−11 p1(t)|y1(t)− y2(t)|2dt

+ β2c
2
2p1(t)|y1(t)− y2(t)|2dt+ β−12 p1(t)|z1(t)− z2(t)|2dt

≤
[
β−11 p1(t)|y1(t)− y2(t)|2 + (β−12 − 1)p1(t)|z1(t)− z2(t)|2

]
dt

− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)

≤β−11 p1(t)|y1(t)− y2(t)|2dt− 2p1(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t),
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and, with the help of Lemma 3.4.1 (ii), the conclusion follows similarly to the proof

of uniqueness in Lemma 3.4.3 by the use of Gronwall’s lemma.

(Existence) Let y0(t) ≡ 0, ∀t ∈ [0, T ], and for n ≥ 1 consider the sequence of

equations:

yn(t) = ξ +

∫ T

t
f(s, yn−1(s), zn(s))ds−

∫ T

t
zn(s)dW (s), t ∈ [0, T ]. (3.4.6)

From Lemma 3.4.3 we know that these equations have unique solution pairs

{(yn(·), zn(·)) ∈ Ĥ2
1 (0, T ;Rd)× M̂2

1 (0, T ;Rd×k)}n≥1. Then

− d p1(t)|yn+1(t)− yn(t)|2

={−α1(t)p1(t)|yn+1(t)− yn(t)|2

+ 2p1(t)(yn+1(t)− yn(t))′ [f(t, yn(t), zn+1(t))− f(t, yn−1(t), zn(t))]

− p1(t)|zn+1(t)− zn(t)|2}dt− 2p1(t)(yn+1(t)− yn(t))′(zn+1(t)− zn(t))dW (t).

≤[−α1(t)p1(t)|yn+1(t)−yn(t)|2−p1(t)|zn+1(t)−zn(t)|2]dt

− 2p1(t)(yn+1(t)−yn(t))′(zn+1(t)−zn(t))dW (t)

+ 2p1(t)|yn+1(t)− yn(t)| |f(t, yn(t), zn+1(t))− f(t, yn−1(t), zn(t))| dt

≤[−α1(t)p1(t)|yn+1(t)−yn(t)|2−p1(t)|zn+1(t)−zn(t)|2]dt

− 2p1(t)(yn+1(t)−yn(t))′(zn+1(t)−zn(t))dW (t)

+ 2p1(t)|yn+1(t)− yn(t)| [c1(t)|yn(t)− yn−1(t)|+ c2(t)|zn+1(t)− zn(t)|] dt
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≤[−α1(t)p1(t)|yn+1(t)−yn(t)|2−p1(t)|zn+1(t)−zn(t)|2]dt

− 2p1(t)(yn+1(t)−yn(t))′(zn+1(t)−zn(t))dW (t)

+ β1c
2
1(t)p1(t)|yn+1(t)− yn(t)|2dt+ β−11 p1(t)|yn(t)− yn−1(t)|2dt

+ β2c
2
2(t)p1(t)|yn+1(t)− yn(t)|2dt+ β−12 p1(t)|zn+1(t)− zn(t)|2dt

≤β−11 p1(t)|yn(t)− yn−1(t)|2dt+ (β−12 − 1)p1(t)|zn+1(t)− zn(t)|2dt

− 2p1(t)(yn+1(t)− yn(t))′(zn+1(t)− zn(t))dW (t).

Then the expectation of the integral-form of this inequity becomes

E
[
p1(t)|yn+1(t)− yn(t)|2

]

≤E
∫ T

t
β−11 p1(s)|yn(s)− yn−1(s)|2ds+ E

∫ T

t
(β−12 −1)p1(s)|zn+1(s)−zn(s)|2ds,

(3.4.7)

due to Lemma 3.4.1 (ii). Using the notation νn+1(t) = E
∫ T
t p1(t)|yn+1(s)−yn(s)|2ds,

and similarly to the last part of the proof of Theorem 3.1 of [61], we obtain

νn+1(0) ≤ β−n1
1
n!ν1(0). Since the sum of the right-hand sides of these inequalities

converges, we conclude, together with (3.4.7), that {yn} is a Cauchy sequence in

M̂2
1 (0, T ;Rd), and {zn} is a Cauchy sequence in M̂2

1 (0, T ;Rd×k). Moreover, this also

implies that {
√
αyn}n≥1 is a Cauchy sequence in M̂2

1 (0, T ;Rd). Thus the limiting

processes y∗ = limn→∞ yn and z∗ = limn→∞ zn are the solution pair to (3.2.1). In

addition, when such a pair of processes is substituted in (3.2.1), then (3.2.1) becomes

an example of (3.4.2) with φ(·) = y∗(·) and ψ(·) = z∗(·). Therefore, Lemma 3.4.1

applies, and we have that y∗(·) ∈ Ĥ2
1 (0, T ;Rd×k).

(ii) (Uniqueness) Let (y1(·), z1(·)) and (y2(·), z2(·)) be two solution pairs of

(3.2.1) with the claimed properties. Similarly to the proof of uniqueness for part (i),
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we have

− d p2(t)|y1(t)− y2(t)|2

≤[−α2(t)p2(t) |y1(t)− y2(t)|2 − p2(t)|z1(t)− z2(t)|2]dt

− 2p2(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)

+ 2p2(t)|y1(t)− y2(t)| [c1(t)|y1(t)− y2(t)|+ c2(t)|z1(t)− z2(t)|] dt

≤[−α2(t)p2(t) |y1(t)− y2(t)|2 − p2(t)|z1(t)− z2(t)|2]dt

− 2p2(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t) + 2c1p2(t)|y1(t)− y2(t)|2dt

+ β2c
2
2p2(t)|y1(t)− y2(t)|2dt+ β2

−1
p2(t)|z1(t)− z2(t)|2dt

≤(β−12 − 1)p2(t)|z1(t)− z2(t)|2dt− 2p2(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t)

≤− 2p2(t)(y1(t)− y2(t))′(z1(t)− z2(t))dW (t).

Then with the help of Lemma 3.4.1 (ii), the conclusion follows similarly to the proof

of uniqueness in Lemma 3.4.3.

(Existence) Let y0(t) ≡ 0, ∀t ∈ [0, T ], and for n ≥ 1 consider the sequence of

equations:

yn(t) = ξ +

∫ T

t
f(s, yn−1(s), zn(s))ds−

∫ T

t
zn(s)dW (s), t ∈ [0, T ]. (3.4.8)

From Lemma 3.4.3 we know that these equations have unique solution pairs

{(yn(·), zn(·)) ∈ Ĥ2
2 (0, T ;Rd)× M̂2

2 (0, T ;Rd×k)}n≥1. By Lemma 6.2 of [39], we have

following estimates:

E

[∫ T

0
p2(t)|yn+1(t)− yn(t)|2α2(t)dt

]
≤ 8E

[∫ T

0
p2(t)

|f(t, yn(t), zn+1(t))− f(t, yn−1(t), zn(t))|2

α2(t)
dt

]
,

(3.4.9)
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and

E

[∫ T

0
p2(t)|zn+1(t)− zn(t)|2dt

]
≤ 45E

[∫ T

0
p2(t)

|f(t, yn(t), zn+1(t))− f(t, yn−1(t), zn(t))|2

α2(t)
dt

]
.

(3.4.10)

By the Lipschitz condition, we have

E

[∫ T

0
p2(t)

|f(t, yn(t), zn+1(t))− f(t, yn−1(t), zn(t))|2

α2(t)
dt

]

≤E
∫ T

0

p2(t)

α2(t)
[c1(t)|yn(t)− yn−1(t)|+ c2(t)|zn+1(t)− zn(t)|]2dt

≤ 2E

∫ T

0

p2(t)

α2(t)

[
c21(t)|yn(t)− yn−1(t)|2 + c22(t)|zn+1(t)− zn(t)|2

]
dt

≤ 2E

∫ T

0

p2(t)

β1
2

β1c1(t)

γ(t) + β1c1(t) + β2c22(t)
(γ(t) + β1c1(t) + β2c

2
2(t))|yn(t)− yn−1(t)|2dt

+ 2E

∫ T

0

p2(t)

β2

β2c
2
2(t)

γ(t) + β1c1(t) + β2c22(t)
|zn+1(t)− zn(t)|]2ds

≤ 2

β1
2E

∫ T

0
p2(t)α2(t)|yn(t)− yn−1(t)|2dt+

2

β2
E

∫ T

0
p2(t)|zn+1(t)− zn(t)|]2dt.

Substituting it into (3.4.10), we have

E

[∫ T

0
p2(t)|zn+1(t)− zn(t)|2dt

]

≤ 90

β1
2E

∫ T

0
p2(t)α2(t)|yn(t)− yn−1(t)|2dt+

90

β2
E

∫ T

0
p2(t)|zn+1(t)− zn(t)|]2dt.
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Let β2 > 90. Then we have

E

[∫ T

0
p2(t)|zn+1(t)− zn(t)|2dt

]
≤

90

β1
2(

1− 90
β2

)E∫ T

0
p2(t)α2(t)|yn(t)− yn−1(t)|2dt.

Substituting it into (3.4.10), we obtain

E

[∫ T

0
p2(t)|yn+1(t)− yn(t)|2α2(t)dt

]

≤ 16

β1
2E

∫ T

0
p2(t)α2(t)|yn(t)− yn−1(t)|2dt+

16

β2
E

∫ T

0
p2(t)|zn+1(t)− zn(t)|]2dt

≤ 16

β1
2E

∫ T

0
p2(t)α2(t)|yn(t)− yn−1(t)|2dt

+
16

β2

90

β1
2(

1− 90
β2

)E ∫ T

0
p2(t)α2(t)|yn(t)− yn−1(t)|2dt

=

 16

β1
2 +

16

β2

90

β1
2(

1− 90
β2

)
E ∫ T

0
p2(t)α2(t)|yn(t)− yn−1(t)|2dt.

Let κ =

[
16

β1
2 + 16

β2

90

β1
2(

1− 90
β2

)
]
< 1, i.e. β1 > 4 and β2 >

90β
2
1

β
2
1−16

. Then the

conclusion follows similarly to the proof of existence in Lemma 3.4.3.

3.5 Comparison theorem

The following results generalise Peng’s comparison theorem ([62],[66]) to equations

with a possibly unbounded generator. Similarly to [62], [66], we assume that d = 1.
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In addition to equation (3.2.1), let us consider two further equations

ŷ1(t) = ξ̂1 +

∫ T

t
[f̂1(s, ŷ1(s), ẑ1(s))]ds−

∫ T

t
ẑ1(s)dW (s), t ∈ [0, T ],

ŷ2(t) = ξ̂2 +

∫ T

t
[f̂2(s, ŷ2(s), ẑ2(s))]ds−

∫ T

t
ẑ2(s)dW (s), t ∈ [0, T ].

We assume that the pair (f̂1, ξ̂1) satisfies conditions A1, whereas the pair (f̂2, ξ̂2)

satisfies conditions A2. Based on Theorem 3.4.1, this means that there exist

unique solution pairs (ŷ1(·), ẑ1(·)) ∈ Ĥ2
1 (0, T ;R)×M̂2

1 (0, T ;R1×k) and (ŷ2(·), ẑ2(·)) ∈
Ĥ2

2 (0, T ;R)× M̂2
2 (0, T ;R1×k). The following differences will appear in the proof:

Y1(t) ≡ y(t)− ŷ1(t), Z1(t) ≡ z(t)− ẑ1(t),

Y2(t) ≡ y(t)− ŷ2(t), Z2(t) ≡ z(t)− ẑ2(t).

Theorem 3.5.1. (Comparison theorem) (i) If ξ̂1 ≥ ξ and f̂1(t, y, z) ≥ f(t, y, z), a.s.

∀ (t, y, z) ∈ ([0, T ]×R×R1×k), then ŷ1(t) ≥ y(t), ∀ t ∈ [0, T ], a.s..

(ii) If ξ̂2 ≥ ξ and f̂2(t, y, z) ≥ f(t, y, z), a.s. ∀ (t, y, z) ∈ ([0, T ] × R × R1×k),

then ŷ2(t) ≥ y(t), ∀ t ∈ [0, T ], a.s..

Proof. (i) The equation of the difference Y1(t) is

−dY1(t) = [f(t, y(t), z(t))− f̂1(t, ŷ1(t), ẑ1(t))]dt− Z1(t)dW (t).

Denoting by Y +
1 (t) ≡ 1[Y1(t)>0]Y1(t), and using Tanaka-Meyer formula (see Theorem

2.4.3), we obtain

−dY +
1 (t) = −1[Y1(t)>0]dY1(t)−

1

2
dL(t),

where L(t) is the local time of Y1(·) at 0. Since
∫ T
0 |Y1(t)|dL(t) = 0, a.s. (see

Proposition 2.4.1), we have

−d[Y +
1 (t)]2 = 2Y +

1 (t)1[Y1(t)>0][f(t, y(t), z(t))− f̂1(t, ŷ1(t), ẑ1(t))]dt

− 1[Y1(t)>0]Z
2
1 (t)dt− 1[Y1(t)>0]2Y

+
1 (t)Z1(t)dW (t).
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Using Itô formula, we obtain

− d p1(t)[Y +
1 (t)]2

=− α1(t)p1(t)[Y
+
1 (t)]2dt− 1[Y1(t)>0]p1(t)Z

2
1 (t)dt− 2p1(t)Y

+
1 (t)Z1(t)dW (t)

+ 2p1(t)Y
+
1 (t)1[Y1(t)>0][f(t, y(t), z(t))− f̂1(t, ŷ1(t), ẑ1(t))]dt

≤−α1(t)p1(t)[Y
+
1 (t)]2dt+ 2p1(t)Y

+
1 (t)1[Y1(t)>0][f(t, y(t), z(t))− f̂1(t, y(t), z(t))

+ f̂1(t, y(t), z(t))− f̂1(t, ŷ1(t), ẑ1(t))]dt

− 1[Y1(t)>0]p1(t)Z
2
1 (t)dt− 2p1(t)Y

+
1 (t)Z1(t)dW (t)

≤[−α1(t)p1(t)[Y
+
1 (t)]2+2p1(t)Y

+
1 (t)1[Y1(t)>0][f(t, y(t), z(t))− f̂1(t, y(t), z(t))]

−1[Y1(t)>0]p1(t)Z
2
1 (t)]dt−1[Y1(t)>0]2p1(t)Y

+
1 (t)Z1(t)dW (t)

+ β1p1(t)c
2
1(t)[Y

+
1 (t)]2dt+ β−11 p1(t)[Y

+
1 (t)]2dt+ β2c

2
2(t)p1(t)[Y

+
1 (t)]2dt

+ β−12 1[Y1(t)>0]p1(t)Z
2
1 (t)dt

≤β−11 p1(t)[Y
+
1 (t)]2dt− 2p1(t)Y

+
1 (t)Z1(t)dW (t),

which in integral form becomes

p1(t)[Y
+
1 (t)]2 ≤

∫ T

t
β−11 p1(s)[Y

+
1 (s)]2ds−

∫ T

t
2p1(s)Y

+
1 (s)Z1(s)dW (s).

The stochastic integral on the right-hand side is a martingale due to Lemma 3.4.1

(ii). Therefore,

E[p1(t)[Y
+
1 (t)]2] ≤ E

∫ T

t
β−11 p1(s)[Y

+
1 (s)]2ds,

and the conclusion follows from Gronwall’s lemma.
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(ii) In a similar way to the proof of part (i), we have

− d p2(t)[Y +
2 (t)]2

=− α2(t)p2(t)[Y
+
2 (t)]2dt+ 2p2(t)Y

+
2 (t)1[Y2(t)>0][f(t, y(t), z(t))− f̂2(t, ŷ2(t), ẑ2(t))]dt

− 1[Y2(t)>0]p2(t)Z
2
2 (t)dt− 2p2(t)Y

+
2 (t)Z2(t)dW (t)

≤−α2(t)p2(t)[Y
+
2 (t)]2dt+ 2p2(t)Y

+
2 (t)1[Y2(t)>0][f(t, y(t), z(t))− f̂2(t, y(t), z(t))

+ f̂2(t, y(t), z(t))− f̂2(t, ŷ2(t), ẑ2(t))]dt

− 1[Y2(t)>0]p2(t)Z
2
2 (t)dt− 2p2(t)Y

+
2 (t)Z2(t)dW (t)

≤[−α2(t)p2(t)[Y
+
2 (t)]2+2p2(t)Y

+
2 (t)1[Y2(t)>0][f(t, y(t), z(t))− f̂2(t, y(t), z(t))]

−1[Y2(t)>0]p2(t)Z
2
2 (t)]dt−1[Y2(t)>0]2p2(t)Y

+
2 (t)Z2(t)dW (t) + 2p2(t)c1(t)[Y

+
2 (t)]2dt

+ β2c
2
2(t)p2(t)[Y

+
2 (t)]2dt+ β

−1
2 1[Y2(t)>0]p2(t)Z

2
2 (t)dt

≤− 21[Y2(t)>0]p1(t)Y
+
2 (t)Z2(t)dW (t),

which in integral form becomes

p2(t)[Y
+
2 (t)]2 ≤ −

∫ T

t
21[Y2(s)>0]p2(s)Y

+
2 (s)Z2(s)dW (s).

Since the stochastic integral on the right-hand side is a martingale due to Lemma

3.4.1 (ii), we have

E[p2(t)[Y
+
2 (t)]2] ≤ 0,

which concludes the proof.
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3.6 Conclusion

We have considered BSDEs with a possibly unbounded generator. Under two cases

of Lipschitz-type generator, we give sufficient conditions for the existence of unique

solution pairs. These are novel conditions as compared to existing ones, and are either

weaker or not comparable (in general) with the existing ones. A comparison theorem

is also given. It is to be expected that these results will be useful in tackling more

difficult problems with unbounded generator, such as the BSDEs with a quadratic

growth and the Riccati BSDE, which play a fundamental role in stochastic control.

Appendix

Here we include the derivation of the lower bound for the parameter β that appears

in [39]. We do so for the completeness of the chapter. Since in Theorem 6.1 of [39]

no explicit lower bound is given, it is only assumed that parameter β should be large

enough. The notation of [39] will be used.

Equation (6.5) of [39] states that for some constants k and k′ the following

holds

‖(y, η)‖2β = k‖ξ‖2β +
k′

β

∥∥∥∥fα
∥∥∥∥2
β

, (3.6.1)

where the definitions of these norms are given in [39], and are just weighted Euclidian

norms. From equation (5.5) of [39], which gives the definition of the norm ‖(y, η)‖2β ,

and the conclusions of Lemma 6.2 of [39], we obtain

‖(y, η)‖2β = ‖αy‖2β + ‖η‖2β

≤ 2

β
‖ξ‖2β +

8

β2

∥∥∥∥fα
∥∥∥∥2
β

+ 18‖ξ‖2β +
45

β

∥∥∥∥fα
∥∥∥∥2
β

=

(
18 +

2

β

)
‖ξ‖2β +

(
45

β
+

8

β2

)∥∥∥∥fα
∥∥∥∥2
β

. (3.6.2)

Comparing (3.6.1) and (3.6.2) gives k′ = 45 + 8
β .

Equation (6.16) of [39] states that for some constants k̃ and k̃′ the following

holds

‖(δY, δZ, δN)‖2β ≤ k̃‖δξ‖2β + k̃′

β

∥∥∥ δ2fα ∥∥∥2β . (3.6.3)
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Here, different from [39], we have used the tilde notation for the constants k and

k′ in order to avoid the clash of notation with these constants introduced in the

previous paragraph. By inequality (6.5) of [39], we obtain that

‖(δY, δZ, δN)‖2β ≤ k‖δξ‖2β +
k′

β

∥∥∥∥ϕtα2
t

∥∥∥∥2
β

≤ k‖δξ‖2β +
3k′

β

(
‖αδY ‖2β + ‖m∗δZ‖2β +

∥∥∥∥δ2fα
∥∥∥∥2
β

)

≤ k‖δξ‖2β +
3k′

β

(
k ‖δξ‖2β +

k′

β

∥∥∥∥δ2fα
∥∥∥∥2
β

+

∥∥∥∥δ2fα
∥∥∥∥2
β

)

=

(
k +

3kk′

β

)
‖δξ‖2β +

3k′

β

(
k′

β
+ 1

)∥∥∥∥δ2fα
∥∥∥∥2
β

. (3.6.4)

Comparing (3.6.3) and (3.6.4) gives k̃′ = 3k′
(
k′

β + 1
)

.

The inequality at the end of page 35 of [39] is

‖αδY ‖2β + ‖m∗δZ‖2β ≤
k̂′

β
‖αδy‖2β + ‖m∗δz‖2β, (3.6.5)

where we have used the hat notation for the constant k′ in order to avoid the clash of

notation with this constant introduced earlier. Similarly to the previous paragraph

we obtain

‖(δY, δZ)‖2β = ‖αδY ‖2β + ‖m∗δZ‖2β ≤
k̃′

β

∥∥∥ϕ
α

∥∥∥2
β

≤ 3k̃′

β
‖αδy‖2β + ‖m∗δz‖2β. (3.6.6)

Comparing (3.6.5) and (3.6.6) gives k̂′ = 3k̃′ = 9k′
(
k′

β + 1
)

. In order to apply the

contraction mapping principle, it is necessary to have k̂′

β < 1, i.e.

9

(
45

β
+

8

β2

)(
45

β
+

8

β2
+ 1

)
< 1.

By solving above inequality for β > 0, we obtain that by large enough in [39] it is

meant that β > 446.05.
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Chapter 4

Backward Stochastic

Differential Equations with a

Continuous and Unbounded

Generator

4.1 Abstract

In this chapter, we consider a class of backward stochastic differential equations

whose generator are continuous and satisfies the linear growth condition, which can

also be unbounded. We prove the existence of the solution pair (also a maximal

solution) for this class of equations, which is more general than the existing ones.

This work is based on a preprint paper [25].

4.2 Introduction

Similar to Chapter 3, we consider the backward stochastic differential equation (i.e.

(3.2.1)):

y(t) = ξ +

∫ T

t
f(s, y(s), z(s))ds−

∫ T

t
z(s)dW (s), t ∈ [0, T ], (4.2.1)

under the same mathematical setting with a weaker assumption.

An important weakening of the assumptions on the generator, as compared

to [61], was given in [50] (see also [29]). There it is assumed that the generator is
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continuous with respect to y and z, and it satisfies the linear growth condition

|f(t, y, z)| ≤ c (1 + |y|+ |z|), (4.2.2)

for all y ∈ R, z ∈ Rk, (t, ω) a.e.. Under such conditions, it was shown that equation

(4.2.1) admits a solution pair but a non-unique one in general. In a more recent

papers [71], [72], the linear growth condition (4.2.2) has been generalised to

|f(t, y, z)| ≤ c [q(t) + |y|+ |z|], (4.2.3)

for all y ∈ R, z ∈ Rk, (t, ω) a.e.. Here, different from (4.2.2), the process q(·) is not

assumed to be bounded. BSDEs with continuous quadratic generator have been

considered in [4], where the unbounded generators are also considered.

In this chapter, we consider a generator which is continuous in y and z, but

with a weaker linear growth condition than (4.2.3). We assume that

|f(t, y, z)| ≤ c0(t) + c1(t)|y|+ c2(t)|z|, (4.2.4)

for all y ∈ R, z ∈ Rk, (t, ω) a.e.. Here the processes c0(·), c1(·), c2(·) are not assumed

to be bounded. By using the results in Chapter 3, and appropriately modifying the

approach of [4], [50], we prove the existence of a solution pair for (4.2.1).

4.3 Notations and Assumptions

The following is the list of the main notations used in this chapter.

• c1(·), c2(·), γ(·) are given R-valued progressively measurable processes.

• 1 < β1 ∈ R, 1 < β2 ∈ R, are given constants.

• α(t) ≡ γ(t) + 2β1c
2
1(t) + 2β2c

2
2(t) is assumed to be positive.

• p(t) ≡ exp
[∫ t

0 α(s)ds
]
.

We say that the progressively measurable function f and the random variable

ξ, or the pair (f, ξ), satisfies conditions A if:
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(i) d = 1 and f(t, y, z) is a continuous function of y and z;

(ii) |f(t, y, z)| ≤ c0(t) + c1(t)|y|+ c2(t)|z|, for all y ∈ R, z ∈ Rk, (t, ω) a.e.;

(iii) ξ ∈M2(Ω,FT ,P;R);

(iv) c0(·) ∈M2(0, T ;R) and
[
c0(·)α̃(·)−

1
2

]
∈M2(0, T ;R).

4.4 Unbounded Continuous Generator

In this section, we consider the one-dimensional version of equation (4.2.1) with a

continuous f with respect to y and z, which satisfies a linear growth condition rather

than the Lipschitz-type condition. The equation that we consider is more general

than the existing ones, and the derivations rely on the main results from the Chapter

3. The main idea here, as in [50], is to approximate the generator f by an infinite

sequence of Lipschitz-type approximating functions. Each such a function generates

a BSDE, and we show that the solutions to such a sequence of BSDEs converge to

the solution of (4.2.1). As we already mentioned in introduction, our assumption (ii)

permits for random and possibly unbounded coefficients c0(·), c1(·) and c2(·), which

is not the case in [71] and [72].

We introduce the sequence of functions

fn(t, y, z) ≡ sup
(u,v)∈R1+k

{f(t, u, v)− [c1(t) + n]|u− y| − [c2(t) + n]|v − z|}, n ≥ 1,

which are clearly well-defined. Their main properties are summarized in the following

Lemma:

Lemma 4.4.1. (i) Linear growth: for any y ∈ R, z ∈ Rk, |fn(t, y, z)| ≤ c0(t) +

c1(t)|y|+ c2(t)|z|;

(ii) Monotonicity: fn is a decreasing function of n;

(iii) Lipschitz condition: for any y1, y2 ∈ R, z1, z2 ∈ Rk,

|fn(t, y1, z1)− fn(t, y2, z2)| ≤ [c1(t) + n]|y1 − y2|+ [c2(t) + n]|z1 − z2|;
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(iv) Convergence: for any y ∈ R, z ∈ Rk, limn→∞ fn(t, y, z) = f(t, y, z).

Proof. (i) By the linear growth of f , for all y ∈ R, z ∈ Rk, we have

fn(t, y, z) ≤ sup
(u,v)∈R1+k

{|f(t, u, v)| − [c1(t) + n]|u− y| − [c2(t) + n]|v − z|}

≤ c0(t) + sup
(u,v)∈R1+k

{c1(t)|u|+ c2(t)|v| − [c1(t) + n]|u− y| − [c2(t) + n]|v − z|}

≤ c0(t) + sup
(u,v)∈R1+k

{c1(t)|u|+ c2(t)|v| − c1(t)(|u| − |y|)− c2(t)(|v| − |z|)}

≤ c0(t) + c1(t)|y|+ c2(t)|z|.

The inequality fn(t, y, z) ≥ −c0(t)− c1(t)|y| − c2(t)|z| can be proved similarly.

(ii) This follows from the definition of fn itself.

(iii) By inequality | supi∈I ai − supi∈I bi| ≤ supi∈I |ai − bi|, with I being

an arbitrary index set, we have

|fn(t, y1, z1)− fn(t, y2, z2)|

=

∣∣∣∣ sup
(u,v)∈R1+k

{f(t, u, v)− [c1(t) + n]|u− y1| − [c2(t) + n]|v − z1|}

− sup
(u,v)∈R1+k

{f(t, u, v)− [c1(t) + n]|u− y2| − [c2(t) + n]|v − z2|}
∣∣∣∣

≤ sup
(u,v)∈R1+k

∣∣[c1(t) + n](|u− y2| − |u− y1|) + [c2(t) + n](|v − z2| − |v − z1|)
∣∣

≤ sup
(u,v)∈R1+k

∣∣[c1(t) + n]|u− y2 − u+ y1|+ [c2(t) + n]|v − z2 − v + z1|
∣∣

= [c1(t) + n]|y1 − y2|+ [c2(t) + n]|z1 − z2|.
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(iv) For any n ≥ 1, there exists (un, vn) ∈ R1+k such that

fn(t, y, z) ≤ f(t, un, vn)− [c1(t) + n]|un − y| − [c2(t) + n]|vn − z|+ n−1.

In other words,

fn(t, y, z) + [c1(t) + n]|un − y|+ [c2(t) + n]|vn − z| ≤ f(t, un, vn) + n−1.

Note that in order to make the left-hand side of above inequality finite as n→∞, it

is necessary to have limn→∞(un, vn) = (y, z). And then

lim
n→∞

fn(t, y, z) ≤ f(t, y, z).

On the other hand, by the definition of fn, we have fn(t, y, z) ≥ f(t, y, z). Hence

lim
n→∞

fn(t, y, z) = f(t, y, z).

Hence the results follow.

Using functions {fn}n≥1 as generators, we introduce the following sequence

of equations

yn(t) = ξ +

∫ T

t
fn(s, yn(s), zn(s))ds−

∫ T

t
zn(s)dW (s), t ∈ [0, T ]. (4.4.1)

Lemma 4.4.2. For any n ≥ 1, assume that conditions A hold, the BSDEs (4.4.1)

have unique solution pairs (yn(·), zn(·)) ∈ H2(0, T ;R)×M2(0, T ;Rk).

Proof. We only need to show that the assumptions of the previous section, which

ensures the applicability of Theorem 3.4.1, hold. Thus,

E
[
e
∫ T
0 {γ(t)+β1[c1(t)+n]

2+β2[c2(t)+n]2}dt|ξ|2
]
≤ e2Tn2(β1+β2)E[p(T )|ξ|2] <∞,

and

E

∫ T

0
e
∫ t
0 {γ(s)+β1[c1(s)+n]

2+β2[c2(s)+n]2}ds |fn(t, 0, 0)|2

γ(t) + β1[c1(t) + n]2 + β2[c2(t) + n]2
dt

≤E
∫ T

0
e2tn

2(β1+β2) p(t)
|c0(t)|2

γ(t) + β1c21(t) + β2c22(t)
dt
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≤ 2E

∫ T

0
e2tn

2(β1+β2) p(t)
|c0(t)|2

γ(t) + 2β1c21(t) + 2β2c22(t)
dt

≤ 2 e2Tn
2(β1+β2)E

∫ T

0
p(t)
|c0(t)|2

α(t)
dt <∞.

Our main task now is to prove that the sequence of solutions {yn(·), zn(·)}n≥1,

converges to the solution (y(·), z(·)) of (4.2.1). We first present two useful lemmas.

Lemma 4.4.3. Assume that conditions A hold. There exists a constant κ, indepen-

dent of n, such that ‖yn‖ ≤ κ and ‖zn‖ ≤ κ, for all n ≥ 1.

Proof. From the fact that the sequence fn is decreasing, and Theorem 3.5.1, we

know that y1(t) ≥ y2(t) ≥ ..., ∀t ∈ [0, T ] a.s.. Hence, there exists a constant κ1 such

that

κ1 ≥ ‖y1‖ ≥ ‖y2‖ ≥ ....

By making use the linear growth property of fn, we obtain

− dp(t)|yn(t)|2

=− α(t)p(t)|yn(t)|2dt− p(t)|zn(t)|2dt− 2p(t)yn(t)zn(t)dW (t)

+ 2p(t)yn(t)fn(t, yn(t), zn(t))dt

≤− α(t)p(t)|yn(t)|2dt− p(t)|zn(t)|2dt− 2p(t)yn(t)zn(t)dW (t)

+ 2p(t)|yn(t)||fn(t, yn(t), zn(t))|dt

≤− α(t)p(t)|yn(t)|2dt− p(t)|zn(t)|2dt− 2p(t)yn(t)zn(t)dW (t)

+ 2p(t)|yn(t)|[c0(t) + c1(t)|yn(t)|+ c2(t)|zn(t)|]dt

≤− α(t)p(t)|yn(t)|2dt− p(t)|zn(t)|2dt− 2p(t)yn(t)zn(t)dW (t)
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+ p(t)|yn(t)|2dt+ p(t)c20(t)dt+ 2β1c
2
1(t)p(t)|yn(t)|2dt+ (2β1)

−1p(t)|yn(t)|2dt

+ 2β2c
2
2(t)p(t)|yn(t)|2 + (2β2)

−1p(t)|zn(t)|2dt

≤−
[
1− (2β2)

−1] p(t)|zn(t)|2dt+ p(t)c20(t)dt

+
[
1 + (2β1)

−1] p(t)|yn(t)|2dt− 2p(t)yn(t)zn(t)dW (t),

which in integral form becomes

∫ T

t
p(s)|zn(s)|2ds ≤ p(T )ξ2

[1− (2β2)−1]
+

∫ T
t p(s)c20(s)ds

[1− (2β2)−1]

+

[
1 + (2β1)

−1]
[1− (2β2)−1]

∫ T

t
p(s)|yn(s)|2ds

−
2
∫ T
t p(s)yn(s)zn(s)dW (s)

[1− (2β2)−1]
.

From Lemma 3.4.1, we know that the stochastic integral on the right-hand side is a

martingale. Taking the expectation of both sides gives

‖zn‖ ≤
E[p(T )ξ2]

[1− (2β2)−1]
+
E
∫ T
0 p(s)c20(s)ds

[1− (2β2)−1]
+

[
1 + (2β1)

−1]
[1− (2β2)−1]

‖yn‖ (4.4.2)

≤ E[p(T )ξ2]

[1− (2β2)−1]
+
E
∫ T
0 p(s)c20(s)ds

[1− (2β2)−1]
+

[
1 + (2β1)

−1]
[1− (2β2)−1]

κ1 = κ2.

Finally, κ = max(κ1, κ2).

Lemma 4.4.4. Assume that conditions A hold. Then the pair of processes

(yn(·), zn(·))n≥1 converges to (y(·), z(·)) in M2(0, T ;R)×M2(0, T ;Rk).

Proof. Let us consider a progressively measurable and Lipchitz function

g(t, y, z) = −[c0(t) + c1(t)|y|+ c2(t)|z|].

From Lemma 4.4.1 (iii) and Theorem 3.4.1, we know the following BSDEs have a

unique adapted solution on M2(0, T ;R)×M2(0, T ;Rk):

yn(t) = ξ +

∫ T

t
fn(s, yn(s), zn(s))ds−

∫ T

t
zn(s)dW (s), t ∈ [0, T ],
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and

K(t) = ξ +

∫ T

t
g(s,K(s), L(s))ds−

∫ T

t
L(s)dW (s), t ∈ [0, T ].

By Theorem 3.5.1, we have

K(t) ≤ yn(t) ≤ yn−1(t) ≤ y1(t), ∀n ≥ 1.

Hence {yn(t)}n≥1 is decreasing and bounded in M2(0, T ;R). Then by dominated con-

vergence theorem (see Theorem 2.2.4), we know that {yn(t)}n≥1 converges pointwisely

to y(t)∗ in M2(0, T ;R).

Applying the Itô’s formula to p(t)|yn(t)− ym(t)|2, we obtain

p(t)|yn(t)− ym(t)|2 +

∫ T

t
p(s)|zn(s)− zm(s)|2ds

=

∫ T

t
2p(s)(yn(s)− ym(s))[fn(s, yn(s), zn(s))− fm(s, ym(s), zm(s))]ds

−
∫ T

t
2p(s)(yn(s)− ym(s))(zn(s)− zm(s))dW (s).

(4.4.3)

Taking expectations on both sides, by Lemma 3.4.1 (ii) and using the linear growth

property of fn and fm, we obtain

E

[∫ T

t
p(s)|zn(s)− zm(s)|2ds

]

≤ 2E

[∫ T

t
p(s)(yn(s)− ym(s))[fn(s, yn(s), zn(s))− fm(s, ym(s), zm(s))]ds

]

≤ 2E

[ ∫ T

t

√
α(s)p(s)(yn(s)− ym(s))

√
p(s)√
α(s)
×

[fn(s, yn(s), zn(s))− fm(s, ym(s), zm(s))]ds

]
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≤ 2

(
E

[∫ T

t
α(s)p(s)|yn(s)− ym(s)|2ds

]) 1
2

×
(
E

[∫ T

t

p(s)

α(s)
|fn(s, yn(s), zn(s))− fm(s, ym(s), zm(s))|2ds

]) 1
2

≤ 2
√

2

(
E

[∫ T

t
α(s)p(s)|yn(s)− ym(s)|2ds

]) 1
2
(
E

[ ∫ T

t

p(s)

α(s)

[
|c0(s) + c1(s)|yn(s)|

+ c2(s)|zn(s)||2 + |c0(s) + c1(s)|ym(s)|+ c2(s)|zm(s)||2
]
ds

]) 1
2

≤ 2
√

6

(
E

[∫ T

t
α(s)p(s)|yn(s)− ym(s)|2ds

]) 1
2
(
E

[ ∫ T

t

p(s)

α(s)

[
2c20(s) + c21(s)|yn(s)|2

+ c22(s)|zn(s)|2 + c21(s)|ym(s)|2 + c22(s)|zm(s)|2
]
ds

]) 1
2

≤ 2
√

6

(
E

[∫ T

t
α(s)p(s)|yn(s)− ym(s)|2ds

]) 1
2
(
E

[ ∫ T

t
p(s)

[
2c20(s)

α(s)
+ |yn(s)|2

+ |zn(s)|2 + |ym(s)|2 + |zm(s)|2
]
ds

]) 1
2

≤ 2
√

6 κ̃

(
E

[∫ T

t
α(s)p(s)|yn(s)− ym(s)|2ds

]) 1
2

,

where κ̃ ≡
(

4κ+
∥∥∥c0(·)α(·)−

1
2

∥∥∥) 1
2
. Therefore, this, together with the fact that

{yn(t)}n≥1 pointwisely converges in M2(0, T ;R), implies that {zn(t)}n≥1 is a Cauchy

sequence in M2(0, T ;Rk) and then converges to z(t)∗ in the same space.

Now we present the main result in this chapter.
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Theorem 4.4.1. (Existence) The BSDE (4.2.1) has an adapted solution (y(·), z(·)) ∈
H2(0, T ;R) ×M2(0, T ;Rk), which is also a maximal solution, i.e. for any other

solution (ȳ(·), z̄(·)) of equation (4.2.1), we have y(·) ≥ ȳ(·).

Proof. Similar to previous deviations in Lemma 4.4.4, taking supremum over t for

equation (4.4.3) and using the Burkholder-Davis-Gundy’s inequality, we have

E

[
sup
t∈[0,T ]

p(t)|yn(t)− ym(t)|2
]

≤E

[
sup
t∈[0,T ]

∫ T

t
2p(s)(yn(s)− ym(s))[fn(s, yn(s), zn(s))− fm(s, ym(s), zm(s))]ds

]

+ E

[
sup
t∈[0,T ]

∫ T

t
−2p(s)(yn(s)− ym(s))(zn(s)− zm(s))dW (s)

]

≤ 2E

[∫ T

t
p(s)|yn(s)− ym(s)||fn(s, yn(s), zn(s))− fm(s, ym(s), zm(s))|ds

]

+ K E

[∫ T

0
|
√
p(s)(yn(s)− ym(s))|2|

√
p(s)(zn(s)− zm(s))|2ds

] 1
2

≤ 2

(
E

[∫ T

t
α(s)p(s)|yn(s)− ym(s)|2ds

]) 1
2

×
(
E

[∫ T

t

p(s)

α(s)
|fn(s, yn(s), zn(s))− fm(s, ym(s), zm(s))|2ds

]) 1
2

+
K

2
E

[
sup
t∈[0,T ]

|
√
p(s)(yn(s)− ym(s))|2 +

∫ T

t
|
√
p(s)(zn(s)− zm(s))|2ds

]

≤ 2
√

6 κ̃

(
E

[∫ T

t
α(s)p(s)|yn(s)− ym(s)|2ds

]) 1
2
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+
K

2
E

[
sup
t∈[0,T ]

p(s)|yn(s)− ym(s)|2 +

∫ T

t
p(s)|zn(s)− zm(s)|2ds

]
.

Hence, together with Lemma 4.4.4, for any t ∈ [0, T ], {yn(t)}n≥1 converges uniformly

in H2(0, T ;R) to y(t) in the same space. Since {yn(t)}n≥1 is continuous, by the

uniform convergence theorem (see Theorem 2.2.2), y(t) is a continuous process.

Now we show that the sequence of processes {fn(t, yn(t), zn(t))}n≥1 converges

to {f(t, y(t), z(t))} in M1(0, T ;R). Note that for any δ ≥ 1,

E

[∫ T

t
|fn(s, yn(s), zn(s))− f(s, y(s), z(s))|ds

]

= E

[∫ T

t
|fn(s, yn(s), zn(s))− f(s, y(s), z(s))|1{

c1(s)|yn(s)|+c2(s)|zn(s)|
c20(s)+c

2
1(s)+c

2
2(s)

≤δ
}ds

]

+ E

[∫ T

t
|fn(s, yn(s), zn(s))− f(s, y(s), z(s))|1{

c1(s)|yn(s)|+c2(s)|zn(s)|
c20(s)+c

2
1(s)+c

2
2(s)

>δ

}ds
]

≤ E

[∫ T

t
|fn(s, yn(s), zn(s))− f(s, yn(s), zn(s))|1{

c1(s)|yn(s)|+c2(s)|zn(s)|
c20(s)+c

2
1(s)+c

2
2(s)

≤δ
}ds

]

+E

[∫ T

t
|f(s, yn(s), zn(s))− f(s, y(s), z(s))|1{

c1(s)|yn(s)|+c2(s)|zn(s)|
c20(s)+c

2
1(s)+c

2
2(s)

≤δ
}ds

]

+E

[∫ T

t
|fn(s, yn(s), zn(s))− f(s, y(s), z(s))|1{

c1(s)|yn(s)|+c2(s)|zn(s)|
c20(s)+c

2
1(s)+c

2
2(s)

>δ

}ds
]
.

(4.4.4)

By (ii), (iii) and (iv) in Lemma 4.4.1, assumption (i), and then by the Dini’s Theorem

(see Theorem 2.2.5), as n→∞, we have

sup{
c1(s)|yn(s)|+c2(s)|zn(s)|

c20(s)+c
2
1(s)+c

2
2(s)

≤δ
} |fn(s, y(s), z(s))− f(s, y(s), z(s))| −→ 0.

Therefore by the dominated convergence theorem, the first term in right hand side

uniformly converges to 0. Due to assumption (i), at least along a subsequence, the

second term in the right hand side converges to 0. For the final term in the right

hand side, by Lemma 4.4.1 (iii), assumption (ii) and Lemma 4.4.3, together with the

59



fact that a1{X>a} < X for any nonnegative random variable X and a > 0, we obtain

E

[∫ T

t
|fn(s, yn(s), zn(s))− f(s, y(s), z(s))|1{

c1(s)|yn(s)|+c2(s)|zn(s)|
c20(s)+c

2
1(s)+c

2
2(s)

>δ

}ds
]

≤E

[∫ T

t
[2c0(s) + c1(s)|yn(s)|+ c2(s)|zn(s)|+ c1(s)|y(s)|+ c2(s)|z(s)]

× 1{
c1(s)|yn(s)|+c2(s)|zn(s)|

c20(s)+c
2
1(s)+c

2
2(s)

>δ

}ds
]

≤E
[ ∫ T

t
[2c0(s) + c1(s)|yn(s)|+ c2(s)|zn(s)|+ c1(s)|y(s)|+ c2(s)|z(s)]

× c1(s)|yn(s)|+ c2(s)|zn(s)|
δ[c20(s) + c21(s) + c22(s)]

ds

]

=
1

δ
E

[ ∫ T

t

1

c20(s) + c21(s) + c22(s)

[
2c0(s)c1(s)|yn(s)|+ c21(s)|yn(s)|2

+ c1(s)c2(s)|yn(s)||zn(s)|+ c21(s)|yn(s)||y(s)|+ c1(s)c2(s)|yn(s)||z(s)|

+ 2c0(s)c2(s)|zn(s)|+ c1(s)c2(s)|yn(s)||zn(s)|+ c22(s)|zn(s)|2

+ c1(s)c2(s)|y(s)||zn(s)|+ c22(s)|zn(s)||z(s)|
]
ds

]

≤ 1

δ
E

[ ∫ T

t

1

c20(s) + c21(s) + c22(s)

[
2c20(s) + 4c21(s)|yn(s)|2 + 4c22(s)|zn(s)|2

+ c21(s)|y(s)|2 + c22(s)|z(s)|2
]
ds

]

≤ 1

δ
E

[ ∫ T

t
[2 + 4|yn(s)|2 + 4|zn(s)|2 + |y(s)|2 + |z(s)|2]ds

]
≤ κ̄

δ
,
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where κ̄ is a constant independent of n. Hence taking limits in the following equation

yn(t) = ξ +

∫ T

t
fn(s, yn(s), zn(s))ds−

∫ T

t
zn(s)dW (s), t ∈ [0, T ], .

we deduce that (y(t), z(t)) ∈ H2(0, T ;R)×M2(0, T ;Rk) is an adapted solution of

equation (4.2.1).

Furthermore, suppose that (ȳ(t), z̄(t)) ∈ H2(0, T ;R) ×M2(0, T ;Rk) is any

solution of equation (4.2.1). By Theorem 3.5.1, we have yn(t) ≥ ȳ(t) for any n ≥ 1,

and then y(t) ≥ ȳ(t). Hence y(t) is a maximal solution of equation (4.2.1).

4.5 Conclusion

Based on the results on nonlinear BSDEs in Chapter 3, we have considered BSDEs

with a possibly unbounded and continuous generator. Under linear growth condition,

we give sufficient conditions for the existence of a solution pair (which is also a

maximal solution) to this class of BSDEs. These are novel conditions as compared

to existing ones. In addition, as Chapter 3 shown, we could also consider the case

with p2 (see page 29) for this class of BSDEs, which is expected to be solved in the

final version of preprint paper [25].
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Chapter 5

Linear Backward Stochastic

Differential Equations with

Unbounded Coefficients

5.1 Abstract

We consider the problem of solvability for linear backward stochastic differential

equations with unbounded coefficients. New and weaker sufficient conditions for the

existence of a unique solution pair are given. It is shown that certain exponential

processes have stronger integrability in this case. As applications, we solve the

problems of completeness in a market with a possibly unbounded coefficients and

optimal investment with power utility in a market with unbounded coefficients. This

work is based on a printed paper [26].

5.2 Introduction

We consider the following linear backward stochastic differential equation (LBSDE):
dY (t) = [r(t)Y (t) + θ′(t)Z(t)]dt+ Z ′(t)dW (t), t ∈ [0, T ],

Y (T ) = ξ, a.s.,

(5.2.1)

under the same mathematical setting as those in Chapter 3 and 4, whereas r(·)
and θ(·) ≡ [θ1(·), ..., θd(·)]′ are given Ft-adapted processes. The problem solvability

for (5.2.1) is the problem of existence of the pair of adapted processes Y (·) and

Z(·) ≡ [Z1(·), ..., Zd(·)]′ such that (5.2.1) holds. The pair of processes (Y (·), Z(·)) in
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then called the solution pair.

The BSDEs with a possibly unbounded generator are important in mathemati-

cal finance. When the interest rate is modeled as a solution to a stochastic differential

equation (e.g. [7], [16], [79]), which in general are unbounded processes, it gives rise

to various problems in a market with unbounded coefficients. One such a problem is

the market completeness (see, e.g. [7]). This has motivated [18], [24], [39], [78], to con-

sider the problem of solvability of BSDEs with unbounded coefficients. In [24], [39],

general BSDEs are considered, and solution pairs are shown to exist in certain

weighted spaces. Different from these papers, Yong [78] considers linear BSDEs with

unbounded coefficients, under different assumptions on the terminal value ξ. His

approach is based on establishing the integrability of exponential processes and the

reduction of the linear BSDE to a more basic form. The solution pairs in this case

belong to non-weighted spaces. As an application, he resolves the basic problem of

market completeness under various assumptions on ξ.

In this chapter, we show the existence of a unique solution pair of (5.2.1)

under weaker assumptions on ξ as compared to Yong [78]. Moreover, we obtain

stronger integrability of the exponential process under weaker assumptions than

that of [78]. As applications, we extend the results of [78] on market completeness

and solve the optimal investment with power utility in a market with unbounded

coefficients.

In order to easily compare our results with those in [78], we keep the structure

of this chapter similar to that of [78].

5.3 Preliminaries

5.3.1 Notations for Some Spaces

• H is any finite dimensional Euclidian space with norm | · |.

• L0FT (Ω;H) is the set of all FT -measurable H-valued random variables.

• LpFT (Ω;H) is the set of all random variables ξ ∈ L0FT (Ω;H) which for some

p ∈ (0,∞) satisfy the condition E|ξ|p <∞.

• L0F (0, T ;H) is the set of all {Ft}t≥0-adapted processes ψ : [0, T ]→ H.

• LpF(Ω;Lq(0, T ;H)) is the set of all processes ψ(·) ∈ L0F(0, T ;H) which for some
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p, q ∈ (0,∞) satisfy the condition

E

[∫ T

0
|ψ(t)|qdt

]p/q
<∞.

• Lp(0, T ;H) ≡ LpF (Ω;Lp(0, T ;H)), for some p ∈ (0,∞).

• L0F(Ω;C([0, T ];H)) is the set of all processes ψ(·) ∈ L0F(0, T ;H) with almost

all paths continuous.

• LpF (Ω;C([0, T ];H)) is the set of all processes ψ(·) ∈ L0F (Ω;C([0, T ];H)) which for

some p > 0 satisfy the condition

E

[
sup
t∈[0,T ]

|ψ(t)|p
]
<∞.

• LqF(0, T ;Lp(Ω;H)) is the set of all processes ψ(·) ∈ L0F(0, T ;H) which for some

p, q ∈ (0,∞) satisfy the condition∫ T

0
[E|ψ(t)|p]q/p dt <∞.

• Lq+FT (Ω;H) =
⋃
p∈(q,∞] L

p
FT (Ω;H) for some q > 0.

• Lq−FT (Ω;H) =
⋂
p∈(0,q) L

p
FT (Ω;H) for some q > 0.

• Lp±F (Ω;Lq±(0, T ;H)) and Lp±F (Ω;C([0, T ];H)) are defined in a similar way to

the above.

5.3.2 BSDE Reduction

Here we describe the approach of Yong [78] to solving the BSDE (5.2.1), which is

based on reducing such an equation to a more basic BSDE.

Suppose that (Y (·), Z(·)) is an adapted solution of (5.2.1). Let M(·) be the
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solution of following:
dM(t) = −r(t)M(t)dt− θ(t)M(t)dW (t), t ∈ [0, T ],

M(0) = 1,

(5.3.1)

which is given by

M(t) ≡M(t ; r(·), θ(·)) = e−
∫ t
0 [r(s)+ 1

2
θ2(s)]ds+

∫ t
0 θ(s)dW (s), t ∈ [0, T ]. (5.3.2)

The process M(·) is called the exponential process in [78], and it is a generalisation

of the so-called exponential supermartingale (see [36]):

M(t ; 0, θ(·)) = e−
1
2

∫ t
0 θ

2(s)ds+
∫ t
0 θ(s)dW (s),

for which it holds that

sup
t∈[0,T ]

E[M(t ; 0, θ(·))] ≤ 1. (5.3.3)

Applying Itô’s formula to M(·)Y (·), we have

d[M(t)Y (t)] = M(t)[Z(t)− Y (t)θ(t)]dW (t), t ∈ [0, T ].

If we denote {
Ỹ (t) = M(t)Y (t), t ∈ [0, T ],

Z̃(t) = M(t)[Z(t)− Y (t)θ(t)],
(5.3.4)

then {
dỸ (t) = Z̃(t)dW (t), t ∈ [0, T ],

Ỹ (T ) = M(T )ξ ≡ ξ̃.
(5.3.5)

Note that (5.3.5) admits a unique adapted solution (Ỹ (·), Z̃(·)) if ξ̃ has some inte-

grability. Then we define{
Y (t) = M(t)−1Ỹ (t), t ∈ [0, T ],

Z(t) = M(t)−1[Z̃(t) + Ỹ (t)θ(t)].
(5.3.6)

Accordingly, we expect that (Y (·), Z(·)) given by (5.3.6) is an adapted solution to

(5.2.1). In the following sections, we will investigate some estimate of exponential

processes M(T ) and M(·)−1 and the solvability of (5.3.5), i.e. (5.2.1) under various

conditions on processes r(·), θ(·) and ξ.
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5.3.3 Assumptions

In Yong [78], the integrability of the exponential process is considered. Based on

that and the above reduction method, the solvability of the linear BSDE (5.2.1) is

also addressed in [78]. In this chapter we develop analogs of all results in Yong [78]

under weaker assumptions. We compare our results with those of [78] throughout

the paper. Here we make a comparison of the main assumptions.

One of the main results in [78] is Theorem 4.1 which gives sufficient conditions

for the solvability of (5.2.1). It makes the following assumptions on the given data,

i.e. ξ, r(·) and θ(·).

(Y1) ξ is any random variable of Lp(Y )
FT (Ω;R), for some constant p(Y ) > 1.

(Y2) The process r(·) ∈ L1F (Ω;L1(0, T ;R)) is such that

sup
t∈[0,T ]

E
[
e−α

∫ t
0 r(s)ds

]
<∞, (5.3.7)

E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]
<∞, (5.3.8)

E

[
sup
t∈[0,T ]

eα0

∫ t
0 r(s)ds

]
<∞, (5.3.9)

for some constants α > 0 and α0 > 0.

(Y3) The process θ(·) ∈ L1F (Ω;L2(0, T ;Rd)) is such that

E
[
e
β
2

∫ T
0 |θ(s)|

2ds
]
<∞, (5.3.10)

for some constant β > 1.

The value of p(Y ) is determined by α, α0, and β. There is a slip in the

statement of Theorem 4.1 of [78] where assumption (5.3.8) does not appear. However,

this theorem makes use of the conclusions of Theorem 3.5 of [78], which in turn is

based on Theorem 3.4 (i) of [78], which does make assumption (5.3.8).

Our analog to Theorem 4.1 of [78] is Theorem 5.5.1, which makes the following

assumptions.

(A1) ξ is any random variable of LpFT (Ω;R), for some constant p > 1.
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(A2) The process r(·) ∈ L1F (Ω;L1(0, T ;R)) is such that

sup
t∈[0,T ]

E
[
e−α0

∫ t
0 r(s)ds

]
<∞, (5.3.11)

E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]
<∞, (5.3.12)

E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]
<∞, (5.3.13)

for some constants α > 0 and α0 > 0.

(A3) The process θ(·) ∈ L1F (Ω;L2(0, T ;Rd)) is such that

sup
t∈[0,T ]

E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]
<∞, (5.3.14)

sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]
<∞, (5.3.15)

θ(·) ∈ L2+F (Ω;L2([0, T ];Rd), (5.3.16)

for some constants β > 1 and β0 > 1.

Let us compare these two sets of assumptions. The value of the coefficient p

is determined by the values of α, α0, β, β0, and it is shown in the proof of Theorem

5.5.1 that it is smaller than p(Y ), i.e. our results apply to a wider class of BSDEs

than those of Yong [78]. Next, the assumption (5.3.10), which is a ‘Novikov’ type

condition, is always stronger than our assumptions (5.3.14), (5.3.15), which are

‘Kazamaki’ type conditions. In fact, this particular weakening of the assumptions

of Yong was the main motivation for the current chapter. It remains to compare

assumptions on the process r(·). Assumptions (5.3.7) and (5.3.8) are the same

as assumptions (5.3.11) and (5.3.12). The assumption (5.3.9) is more difficult to

compare with (5.3.13), but this can be done in special cases. For example, if r(t) < 0,

then (5.3.13) is implied (5.3.10).
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5.4 Integrability of Exponential Processes

Now we discuss some estimates of exponential process M(t ; r(·), θ(·)), under various

integrability conditions on r(·) and θ(·). This will lead to the solvability of linear

BSDEs with possibly unbounded coefficients. Before studying the integrability

of exponential process, we first present the following lemmas which are essential

to obtain the integrability of exponential process. Their proofs are given in the

Appendix.

Lemma 5.4.1. Suppose that α0, β, p, q and γ are positive constants satisfying the

following system of equations and inequalities:

α0 = pqγ
(γ−1)(q−1) ,

β = 2qγ
γ−1(

√
pγ
γ + p),

p > 0, q > 1, γ > 1.

(5.4.1)

Then p∗(γ) = α0β
β+2α0

is the global maximum of p(γ).

Lemma 5.4.2. Suppose that β , p and γ are positive constants satisfying the following

system of equations and inequalities:
β
2 = γ

γ−1(
√
pγ
γ + p),

p > 0, γ > 1.

(5.4.2)

Then when γ = 2β − 1, p∗(γ) = β2

2β−1 is the global maximum of p(γ).

Now we present the first result on the integrability of exponential process

M(t ; r(·), θ(·)).

Theorem 5.4.1 (Upper bound of supt∈[0,T ]E (M(t ; r(·), θ(·))p)). Suppose that

r(·) ∈ L1F (Ω;L1(0, T ;R)) and θ(·) ∈ L1F (Ω;L2(0, T ;Rd)).
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(i) Suppose that conditions (5.3.11) and (5.3.14) hold. Then

sup
t∈[0,T ]

E

[
M(t ; r(·), θ(·))

α0β
β+2α0

]

≤

(
sup
t∈[0,T ]

E
[
e−α0

∫ t
0 r(s)ds

]) β
β+2α0

(
sup
t∈[0,T ]

E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]) 2α0
β+2α0

.

(ii) Let

inf
t∈[0,T ]

∫ t

0
r(s)ds ≥ −κ, a.s., (5.4.3)

for some κ ∈ R and (5.3.14) holds for some β > 1, then

sup
t∈[0,T ]

E

[
M(t ; r(·), θ(·))

β2

2β−1

]
≤ e

κβ2

2β−1

{
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} 2β−2
2β−1

. (5.4.4)

Proof. (i) Let p > 0, q > 1, γ > 1. By the Hölder’s inequality (see Section 2.5) and

(5.3.3), we obtain

E[M(t ; r(·), θ(·))p]

=E
[
e−p

∫ t
0 [r(s)+ 1

2
θ2(s)]ds−p

∫ t
0 θ
′(s)dW (s)

]

=E

[
e
−p
∫ t
0 r(s)ds−(

√
pγ

γ
+p)

∫ t
0 θ
′(s)dW (s) · e

1
γ

∫ t
0

1
2
(
√
pγθ(s))2ds− 1

γ

∫ t
0

√
pγ(−θ′(s))dW (s)

]

=E

[
e
−p
∫ t
0 r(s)ds−(

√
pγ

γ
+p)

∫ t
0 θ
′(s)dW (s) ·M(t ; 0,−√pγθ(·))

1
γ

]

≤
{
E

[
e
− pγ
γ−1

∫ t
0 r(s)ds−

γ
γ−1

(
√
pγ

γ
+p)

∫ t
0 θ
′(s)dW (s)

]} γ−1
γ {

E
[
M(t ; 0,−√pγθ(·))

1
γ
·γ
]} 1

γ

≤
{
E
[
e
− pγ
γ−1

q
q−1

∫ t
0 r(s)ds

]} (q−1)(γ−1)
qγ

{
E

[
e
− qγ
γ−1

(
√
pγ

γ
+p)

∫ t
0 θ
′(s)dW (s)

]} γ−1
qγ

=
{
E
[
e−α0

∫ t
0 r(s)ds

]} (q−1)(γ−1)
qγ ·

{
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} γ−1
qγ

,
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where α0 = pqγ
(γ−1)(q−1) and β = 2qγ

γ−1(
√
pγ
γ + p).

Therefore by Lemma 5.4.1, when γ →∞, p = α0β
β+2α0

is the global maximum

of p(γ). Furthermore we have (q−1)(γ−1)
qγ = β

β+2α0
and γ−1

qγ = 2α0
β+2α0

. Thus the result

follows.

(ii) From (i) and (5.4.3), we obtain

E[M(t ; r(·), θ(·))p]

≤
{
E

[
e
− pγ
γ−1

∫ t
0 r(s)ds−

γ
γ−1

(
√
pγ

γ
+p)

∫ t
0 θ
′(s)dW (s)

]} γ−1
γ

≤eκp
{
E

[
e
− γ
γ−1

(
√
pγ

γ
+p)

∫ t
0 θ
′(s)dW (s)

]} γ−1
γ

.

By Lemma 5.4.2, we know when γ = 2β− 1, p = β2

2β−1 is the global maximum

of p(γ) and thus (5.4.4) follows.

Now let us compare our result with Theorem 3.2 of [78]. From now on

we denote p in this chapter and in [78] respectively by p and p(Y ). Recall that

p(Y ) = α0β
β+α0(2

√
β−1) in Theorem 3.2 (ii) of [78] (here we assume α = α0). Then it is

easy to see when β ∈ (1, 94), p < p(Y ); when β = 9
4 , p = p(Y ); when β > 9

4 , p > p(Y ).

Hence we conclude that under weaker condition, stronger integrability is obtained

for any β > 9
4 . Similarly, note that p(Y ) = β

2
√
β−1 in Theorem 3.2 (iii) of [78]. When

β > 1, we always have p > p(Y ).

Now we combine the result in [78] with ours as follows.

Theorem 5.4.2. Let r(·) ∈ L1F (Ω;L1(0, T ;R)) and θ(·) ∈ L1F (Ω;L2(0, T ;Rd)).

(i) Suppose that conditions (5.3.10) and (5.3.11) hold for some α0 > 0 and β > 1.

Then for β ∈
(
1, 94
)
, we have

sup
t∈[0,T ]

E

[
M(t ; r(·), θ(·))

α0β

β+α0(2
√
β−1)

]

≤

(
sup
t∈[0,T ]

E
[
e−α0

∫ t
0 r(s)ds

]) β
β+α0(2

√
β−1) (

E
[
e
β
2

∫ t
0 |θ(s)|

2ds
]) α0(

√
β−1)

β+α0(2
√
β−1)

,
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and for β ∈
[
9
4 ,∞

)
, we have

sup
t∈[0,T ]

E

[
M(t ; r(·), θ(·))

α0β
β+2α0

]

≤

(
sup
t∈[0,T ]

E
[
e−α0

∫ t
0 r(s)ds

]) β
β+2α0 (

E
[
e
β
2

∫ t
0 |θ(s)|

2ds
]) 2α0

β+2α0 .

(ii) Let

inf
t∈[0,T ]

∫ t

0
r(s)ds ≥ −κ, a.s.,

for some κ ∈ R and (5.3.10) holds for some β > 1, then

sup
t∈[0,T ]

E

[
M(t ; r(·), θ(·))

β2

2β−1

]
≤ e

κβ2

2β−1

{
E
[
e
β
2

∫ t
0 |θ(s)|

2ds
]} 2β−2

2β−1
.

Proof. By [42], we know (5.3.10) implies (5.3.14). Thus the result follows.

Theorem 5.4.3 (Upper bound of E(supt∈[0,T ]M(t ; r(·), θ(·))p)). Suppose that

r(·) ∈ L1F (Ω;L1(0, T ;R)) and θ(·) ∈ L1F (Ω;L2(0, T ;Rd)).

(i) Suppose that condition (5.3.12) holds for some α > 0 and (5.3.14) holds for

some β > 1. Then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))
αβ2

β2+2αβ−α

]

≤C

(
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]) β2

β2+2αβ−α
(

sup
t∈[0,T ]

E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]) 2α(β−1)

β2+2αβ−α

,

where C =
(

αβ2

αβ2−2β2−2αβ+α

) αβ2

β2+2αβ−α .

(ii) Suppose that (5.3.12) holds for some α > p > 0 and (5.3.14) holds for some

β ∈ (0, 1]. Then for any p ∈
(

αβ
2α+β ,

αβ
α+β

)
,

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]

≤C

(
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]) p
α
(

sup
t∈[0,T ]

E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]) 2αβ−2p(α+β)
αβ

,
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where C =
(

α2p2

α2p2−β(α−p)[(β+2α)p−αβ]

) αp2

β[(2α+β)p−αβ]
.

(iii) (a) Suppose that (5.3.14) holds for some β > 1 and (5.4.3) holds for some

κ ∈ R , then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))
β2

2β−1

]
≤ C

{
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} 2β−2
2β−1

,

where C = e
κβ2

2β−1

[
β2

(β−1)2

] β2

2β−1
.

(b) In addition, if (5.3.14) holds for some β ∈ (0, 1], then for any p ∈ (β2 , β)

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]
≤ C

{
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} 2(β−p)
β

,

where C = eκp
[

p2

p2−β(2p−β)

] p2

β(2p−β)
.

Proof. (i) Note that M(t ; 0, θ(·)) is a martingale when (5.3.14) holds for β > 1. Let

α > p. By the Hölder’s inequality and the Doob’s martingale inequality (see, for

example, Theorem 2.4.7), we obtain

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]

=E

[
sup
t∈[0,T ]

M(t ; 0, θ(·))p · e−p
∫ t
0 r(s)ds

]

≤

{
E

[
sup
t∈[0,T ]

M(t ; 0, θ(·))
pα
α−p

]}α−p
α
{
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]} p
α

≤

(
pα
α−p

pα
α−p − 1

) pα
α−p ·

α−p
α {

E
[
M(T ; 0, θ(·))

pα
α−p
]}α−p

α

·

{
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]} p
α

From (5.4.4), when r(·) = 0, we obtain

sup
t∈[0,T ]

E

[
M(t ; 0, θ(·))

β2

2β−1

]
≤ sup

t∈[0,T ]

{
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} 2β−2
2β−1

. (5.4.5)
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Then

pα

α− p
=

β2

2β − 1
=⇒ p =

αβ2

β2 + 2αβ − α
and

p

α
=

β2

β2 + 2αβ − α
.

and
2β − 2

2β − 1
· α− p

α
=

2β − 2

2β − 1
· (2β − 1)p

β2
=

2α(β − 1)

β2 + 2αβ − α
.

Thus the result follows.

(ii) Let us denote β′ = β
pγ > 1. By (5.4.5), we have

α

γ(α− p)
=

β′2

2β′ − 1
=⇒ γ =

β[(2α+ β)p− αβ]

αp2
> 0.

So it is necessary to have (2α + β)p − αβ > 0, i.e. p > αβ
2α+β . On the other hand,

again by (5.4.5), we have

2β′ − 2

2β′ − 1
· α− p

α
=

2αβ − 2p(α+ β)

α+ β
> 0, =⇒ p <

αβ

α+ β
.

Hence we have p ∈ ( αβ
2α+β ,

αβ
α+β ) and

0 < pγ =
β[(2α+ β)p− αβ]

αp
< β ≤ 1. (5.4.6)

Note that

sup
t∈[0,T ]

E

[
e−

β′
2

∫ t
0 pγθ

′(s)dW (s)

]
= sup

t∈[0,T ]
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]
<∞.

By [42], we know M(t ; 0, pγθ(·)) is a martingale if β′ > 1. By (5.4.5) and (5.4.6),

the Hölder’s inequality and the Doob’s martingale inequality, we obtain

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]

=E

[
sup
t∈[0,T ]

(
e−
∫ t
0

1
2
p2γ2|θ(s)|2ds

) 1
pγ

1
γ · e−p

∫ t
0 r(s)ds ·

(
e−
∫ t
0 pγθ

′(s)dW (s)
) 1
γ

]

≤E

[
sup
t∈[0,T ]

(
e−
∫ t
0

1
2
p2γ2|θ(s)|2ds

) 1
γ · e−p

∫ t
0 r(s)ds ·

(
e−
∫ t
0 pγθ

′(s)dW (s)
) 1
γ

]
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=E

[
sup
t∈[0,T ]

M(t ; 0, pγθ(·))
1
γ · e−p

∫ t
0 r(s)ds

]

≤

{
E

[
sup
t∈[0,T ]

M(t ; 0, pγθ(·))
α

γ(α−p)

]}α−p
α
{
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]} p
α

≤

[
α

γ(α−p)
α

γ(α−p) − 1

] α
γ(α−p) ·

α−p
α {

E
[
M(T ; 0, pγθ(·))

α
γ(α−p)

]}α−p
α

{
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]} p
α

≤C

(
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]) p
α
(

sup
t∈[0,T ]

E

[
e−

β′
2

∫ t
0 pγθ

′(s)dW (s)

]) 2αβ−2p(α+β)
αβ

=C

(
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]) p
α
(

sup
t∈[0,T ]

E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]) 2αβ−2p(α+β)
αβ

.

Thus the result follows.

(iii) (a) Note that M(t ; 0, θ(·)) is a martingale if β > 1. By (5.4.4) and (5.4.5)

and the Doob’s martingale inequality, we obtain

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]

=E

[
sup
t∈[0,T ]

M(t ; 0, θ(·))p · e−p
∫ t
0 r(s)ds

]

≤ eκpE

[
sup
t∈[0,T ]

M(t ; 0, θ(·))p
]

≤ eκp
(

p

p− 1

)p
E[M(T ; 0, θ(·))p]

≤ e
κβ2

2β−1

[
β2

(β − 1)2

] β2

2β−1 {
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} 2β−2
2β−1

.

Thus the result follows.

(b) Let us denote β′ = β
pγ > 1. By (5.4.5), we have

1

γ
=

β′2

2β′ − 1
=⇒ γ =

β(2p− β)

p2
> 0.
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So it is necessary to have 2p−β > 0, i.e. p > β
2 . On the other hand, again by (5.4.5),

we have
2β′ − 2

2β′ − 1
=

2(β − p)
β

> 0, =⇒ p < β.

Hence we have p ∈
(
β
2 , β

)
and

0 < γ =
β(2p− β)

p2
< 1.

So

0 < pγ =
β(2p− β)

p
< β ≤ 1.

Again M(t ; 0, pγθ(·)) is a martingale if β′ > 1. By the Doob’s martingale inequality,

we have

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]

=E

[
sup
t∈[0,T ]

M(t ; 0, pγθ(·))p · e−p
∫ t
0 r(s)ds

]

≤ eκpE

[
sup
t∈[0,T ]

M(t ; 0, pγθ(·))p
]

≤ eκp
(

1
γ

1
γ − 1

) 1
γ

E
[
M(T ; 0, pγθ(·))

1
γ

]

≤eκp
[

p2

p2 − β(2p− β)

] p2

β(2p−β) {
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} 2(β−p)
β

.

Thus the result follows.

Now let us compare our result with Theorem 3.4 of [78]. Recall that

p(Y ) = αβ
β+α(2

√
β−1) in Theorem 3.4 (i) of [78]. It is easy to see that, in (i), for

any β > 1, p = αβ2

β2+2αβ−α > p(Y ) = αβ
β+α(2

√
β−1) ; Similarly, in (iii)(a), for any β > 1,

p = β2

2β−1 > p(Y ) = β
2
√
β−1 . In addition, in the case of (ii), we can compare the range

of value p and p(Y ) as follows:

When β ∈ (0, 14),

p p(Y)

0 αβ
2α+β

αβ
α+β

α
√
β

2α+
√
β

α
√
β

α+
√
β

p
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When β = 1
4 ,

p p(Y)

0 αβ
2α+β

αβ
α+β = α

√
β

2α+
√
β

α
√
β

α+
√
β

p

When β ∈ (14 , 1),

p p(Y)

0 αβ
2α+β

α
√
β

2α+
√
β

αβ
α+β

α
√
β

α+
√
β

p

When β = 1,

p=p(Y)

0 αβ
2α+β =
α
√
β

2α+
√
β

αβ
α+β = α

√
β

α+
√
β

p

For (iii) (b), we have similar relations as above.

Now we combine the result in [78] with ours as follows:

Theorem 5.4.4. Let r(·) ∈ L1F (Ω;L1(0, T ;R)) and θ(·) ∈ L1F (Ω;L2(0, T ;Rd)).

(i) Suppose that (5.3.10) holds for some β > 1 and (5.3.12) holds for some α > 0.

Then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))
αβ2

β2+2αβ−α

]

≤C

(
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]) β2

β2+2αβ−α (
E
[
e
β
2

∫ t
0 |θ(s)|

2ds
]) 2α(β−1)

β2+2αβ−α ,

where C =
(

αβ2

αβ2−2β2−2αβ+α

) αβ2

β2+2αβ−α .

(ii) Suppose that (5.3.10) holds for some β ∈ (0, 1] and (5.3.12) holds for some

α > 0. Then for any p ∈
(

α
√
β

2α+
√
β
, α
√
β

α+
√
β

)
,
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E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]

≤C

(
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]) p
α (
E
[
e
β
2

∫ T
0 |θ(s)|

2ds
])1− αp

(α−p)
√
β
,

where C =
(

α2p2

[α
√
β−p(α+

√
β)]2

) αp2√
β[(2α+

√
β)p−α

√
β]

and then for any p ∈
(

αβ
2α+β ,

αβ
α+β

)
,

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]

≤C

(
E

[
sup
t∈[0,T ]

e−α
∫ t
0 r(s)ds

]) p
α (
E
[
e
β
2

∫ T
0 |θ(s)|

2ds
]) 2αβ−2p(α+β)

αβ
,

where C =
(

α2p2

α2p2−β(α−p)[(β+2α)p−αβ]

) αp2

β[(2α+β)p−αβ]
.

(iii) (a) Suppose that (5.3.10) holds for some β > 1 and (5.4.3) holds for some

κ ∈ R , then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))
β2

2β−1

]
≤ C

{
E
[
e
β
2

∫ t
0 |θ(s)|

2ds
]} 2β−2

2β−1
,

where C = e
κβ2

2β−1

[
β2

(β−1)2

] β2

2β−1
.

(b) Suppose that (5.3.10) holds for β ∈ (0, 1] and (5.4.3) holds for some κ ∈ R,

then for any p ∈ (
√
β
2 ,
√
β),

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]
≤ C

{
E
[
e
β
2

∫ T
0 |θ(s)|

2ds
]} (

√
β−p)√
β

,

where C = eκp
[

p2

(
√
β−1)2

] p2√
β(2p−

√
β)

and then for any p ∈ (β2 , β)

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p
]
≤ C

{
E
[
e
β
2

∫ T
0 |θ(s)|

2ds
]} 2(β−p)

β
,

where C = eκp
[

p2

p2−β(2p−β)

] p2

β(2p−β)
.
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Proof. By [42], we know (5.3.10) implies (5.3.14). Thus the result follows.

Theorem 5.4.5 (Upper bound of E(supt∈[0,T ]M(t ; r(·), θ(·))−p)). Suppose that

r(·) ∈ L1F (Ω;L1(0, T ;R)) and θ(·) ∈ L1F (Ω;L2(0, T ;Rd)).

(i) Suppose that condition (5.3.13) holds for some α > 0 and (5.3.15) holds for

some β0 > 1. Then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))
− αβ20
β20+2αβ0−α

]

≤C

(
E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]) β20
β20+2αβ0−α

(
sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2α(β0−1)

β20+2αβ0−α

,

where C =
(

αβ2
0

αβ2
0−2β2

0−2αβ0+α

) αβ20
β20+2αβ0−α .

(ii) Suppose that (5.3.15) holds for some β0 ∈ (0, 1] and (5.3.13) holds for some

α > 0. Then for any p ∈
(

αβ0
2α+β0

, αβ0
α+β0

)
,

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p
]

≤C

(
E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]) p
α
(

sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2αβ0−2p(α+β0)
αβ0

,

where C =
(

α2p2

α2p2−β0(α−p)[(β0+2α)p−αβ0]

) αp2

β0[(2α+β0)p−αβ0] .

(iii) (a) Suppose that

sup
t∈[0,T ]

∫ t

0
[r(s) + |θ(s)|2]ds ≤ κ1, a.s., (5.4.7)

holds for some κ1 ∈ R and (5.3.15) holds for some β0 > 1, then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−
β20

2β0−1

]
≤ C

(
sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2α(β0−1)

β20+2αβ0−α

,
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where C = e
κ1αβ

2
0

β20+2αβ0−α
(

αβ2
0

αβ2
0−2β2

0−2αβ0+α

) αβ20
β20+2αβ0−α .

(b) In addition, if (5.3.15) holds for some β0 ∈ (0, 1], then for any

p ∈
(

αβ0
2α+β0

, αβ0
α+β0

)

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p
]
≤ C

(
E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2αβ0−2p(α+β0)
αβ0 ,

where C = eκ1p
(

α2p2

α2p2−β0(α−p)[(β0+2α)p−αβ0]

) αp2

β0[(2α+β0)p−αβ0] .

Proof. (i) By Theorem 5.4.3 (i), when β0 > 1 we have

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p
]

=E

[
sup
t∈[0,T ]

M(t ;−r(·)− |θ(·)|2,−θ(·))p
]

≤C

(
E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]) β20
β20+2αβ0−α

(
sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2α(β0−1)

β20+2αβ0−α

,

where C =
(

αβ2
0

αβ2
0−2β2

0−2αβ0+α

) αβ20
β20+2αβ0−α .

(ii) By Theorem 5.4.3 (ii), for any p ∈
(

αβ0
2α+β0

, αβ0
α+β0

)
when β0 ∈ (0, 1] we

have

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p
]

=E

[
sup
t∈[0,T ]

M(t ;−r(·)− |θ(·)|2,−θ(·))p
]

≤C

(
E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]) p
α
(

sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2αβ0−2p(α+β0)
αβ0

,

where C =
(

α2p2

α2p2−β0(α−p)[(β0+2α)p−αβ0]

) αp2

β0[(2α+β0)p−αβ0] .
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(iii) (a) By (5.4.7), we have

E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]
≤ eακ1 . (5.4.8)

By Theorem 5.4.3 (i), when β0 > 1 we have

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p
]

=E

[
sup
t∈[0,T ]

M(t ;−r(·)− |θ(·)|2,−θ(·))p
]

≤C

(
E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]) β20
β20+2αβ0−α

(
sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2α(β0−1)

β20+2αβ0−α

≤C e
κ1αβ

2
0

β20+2αβ0−α

(
sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2α(β0−1)

β20+2αβ0−α

,

where C =
(

αβ2
0

αβ2
0−2β2

0−2αβ0+α

) αβ20
β2+2αβ0−α .

(b) In the case that β0 ∈ (0, 1], by Theorem 5.4.3 (ii), for any p ∈
(

αβ0
2α+β0

, αβ0
α+β0

)
we have

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p
]

=E

[
sup
t∈[0,T ]

M(t ;−r(·)− |θ(·)|2,−θ(·))p
]

≤C

(
E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]) p
α
(

sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2αβ0−2p(α+β0)
αβ0
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≤C eκ1p
(

sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2αβ0−2p(α+β0)
αβ0

,

where C =
(

α2p2

α2p2−β0(α−p)[(β0+2α)p−αβ0]

) αp2

β0[(2α+β0)p−αβ0] . Thus the result follows.

Remark 5.4.1. Suppose that β0 = β and α0 = α. Then same comparison results

can be obtained by similar analysis after Theorem 5.4.3.

Now we combine the result in [78] with ours as follows.

Theorem 5.4.6. Let r(·) ∈ L1F (Ω;L1(0, T ;R)) and θ(·) ∈ L1F (Ω;L2(0, T ;Rd)).

(i) Suppose that (5.3.9) holds for some α0 > 0 and (5.3.10) holds for some β > 1.

Then for some α > 0 given by (5.3.13),

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−
αβ2

β2+2αβ−α

]

≤C

(
E

[
sup
t∈[0,T ]

eα0

∫ t
0 r(s)ds

]) αβ2

α0[β
2+2αβ−α] (

E
[
e
β
2

∫ t
0 |θ(s)|

2ds
]) 2αβ

β2+2αβ−α
+

2α(β−1)

β2+2αβ−α ,

where C =
(

αβ2

αβ2−2β2−2αβ+α

) αβ2

β2+2αβ−α .

(ii) Suppose that (5.3.9) holds for some α0 > 0 and (5.3.10) holds for some

β ∈ (0, 1]. Then for any p ∈
(

α0β
β+2α0(

√
β+1)

, α0β
β+α0(

√
β+2)

)
,

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p
]

≤C

(
E

[
sup
t∈[0,T ]

eα0

∫ t
0 r(s)ds

]) p
α0 (

E
[
e
β
2

∫ T
0 |θ(s)|

2ds
])1+ 2p

β
− α0

√
βp2

α0β−p(2α0+β) ,

where C =
(

α2
0β

2p2

α0β(
√
β−p−2

√
βp)(2α0+β)−pβ(2α0+β)2

) α0βp√
β{[2α0β+

√
β(2α0+β)]p−α0

√
ββ}

and
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then for some α > 0 given by (5.3.13) and for any p ∈
(

αβ
2α+β ,

αβ
α+β

)
,

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p
]

≤C

(
E

[
sup
t∈[0,T ]

eα0

∫ t
0 r(s)ds

]) p
α0 (

E
[
e
β
2

∫ T
0 |θ(s)|

2ds
])2− 2p(2α+β)

αβ
+ 2αp
α0β ,

where C =
(

α2
0p

2

α2
0p

2−(2α0+β)2[α0β−p(α0+β)][(4α0+β)p−2α0β]

) α0p
2

βp(4α0+β)−α0β .

Proof. Let α0 > α and β = β0 > 2α. By the Hölder’s inequality, we know that

(5.3.10) and (5.3.9) imply (5.3.13). Thus the results follow.

5.5 Solvability of Linear BSDEs

We first recall the following result for a generalization of the Hölder’s inequality.

Lemma 5.5.1. Assume that r ∈ (0,∞) and p1, p2, · · · , pn ∈ (0,∞) such that

n∑
i=1

1

pi
=

1

r
.

Then for all measurable real valued functions f1, f2, · · · , fn define on measurable

space S, if fi ∈ Lpi(µ), for all k = 1, 2, · · · , n, we have

n∏
i=1

fi ∈ Lr(µ),

where Lpi(µ) is the space of pi-th power integrable functions together with norm ‖·‖pi ,
i.e. ‖f‖pi =

(∫
S |f |

pidµ
) 1
pi <∞.

Based on the estimate of exponential processes in Section 5.4, we now present

the results on solvability of linear backward stochastic differential equations under

various assumptions on the parameters.

Theorem 5.5.1. Suppose that θ(·) ∈ L2+F (Ω;L2([0, T ];Rd) and (5.3.11), (5.3.12),
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(5.3.13), (5.3.14) and (5.3.15) hold with positive constants α0, α, β and β0 satisfying:

α0 >
αββ2

0

αββ2
0+αβ−2αββ0−2αβ2

0−ββ2
0
,

α >
β2
0

(β0−1)2 ,

β0 ≥ 1, β > 2.

(5.5.1)

Then for any ξ ∈ Lp+FT (Ω;R) with

p =
α0αββ

2
0

α0αββ20 + α0αβ − α0ββ20 − 2α0αββ0 − 2α0αβ20 − αββ20
> 1, (5.5.2)

BSDE (5.2.1) admits a unique adapted solution (Y (·), Z(·)) with

Y (·) ∈ L1+F (Ω;C([0, T ];R)), Z(·) ∈ L1+F (Ω;L2([0, T ];Rd)).

Proof. For simplicity, from now on we denote M(t) = M(t ; r(·), θ(·)). By Theorem

5.4.1 (i), we know that if

α0 >
β

β − 2
, (5.5.3)

and β > 2, then

M(·) ∈ Lp1F (Ω;C([0, T ];R)), (5.5.4)

where

p1 =
α0β

2α0 + β
> 1. (5.5.5)

By Lemma 5.5.1, for any ξ ∈ Lp2FT (Ω), we have

ξ̃ = M(T )ξ ∈ Lp3FT (Ω;R),

where

p3 =
p1p2
p1 + p2

=
α0βp2

α0β + (2α0 + β)p2
. (5.5.6)

Suppose p3 > 1, β > 2 and (5.5.3), then we have

p2 >
α0β

α0β − 2α0 − β
> 1. (5.5.7)

By Theorem 5.4.5, if

α >
β20

(β0 − 1)2
, (5.5.8)
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and β0 > 1, we have

M(·)−1 ∈ Lp4F (Ω;C([0, T ];R)), (5.5.9)

where

p4 =
αβ20

β20 + 2αβ0 − α
> 1.

By BSDE (5.3.5), Theorem 5.4.1, Theorem 5.4.5, the Hölder’s inequality and

the Doob’s martingale inequality with p1, p2, p3, p4, q1, q2 > 1, we obtain

E

[
sup
t∈[0,T ]

|Y (t)|p5
]

= E

[
sup
t∈[0,T ]

∣∣∣M(t)−1Ỹ (t)
∣∣∣p5]

≤

{
E

[
sup
t∈[0,T ]

|M(t)|−q1·p5
]} 1

q1

·

{
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣ q1
q1−1

p5

]} q1−1
q1

≤

{
E

[
sup
t∈[0,T ]

|M(t)|−p4
]} p5

p4

·

{
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣p3]}

p5
p3

≤ Cp3,p5

{
E

[
sup
t∈[0,T ]

|M(t)|−p4
]} p5

p4

· {E |M(T )|q2·p3}
1
q2

p5
p3 ·

{
E |ξ|

q2
q2−1

p3
} q2−1

q2

p5
p3

≤ Cp3,p5

{
E

[
sup
t∈[0,T ]

|M(t)|−p4
]} p5

p4

· {E |M(T )|p1}
p5
p1 · {E |ξ|p2}

p5
p2 <∞,

where

p5 =
p3p4
p3 + p4

=

α0βp2
α0β+(2α0+β)p2

· αβ2
0

β2
0+2αβ0−α

α0βp2
α0β+(2α0+β)p2

+
αβ2

0

β2
0+2αβ0−α

=
α0αββ

2
0p2

α0βp2(β20 + 2αβ0 − α) + αβ20 [α0β + (2α0 + β)p2]
.

So in order to ensure p5 > 1, it is necessary to have

(α0αββ
2
0 + α0αβ − α0ββ

2
0 − 2α0αββ0 − 2α0αβ

2
0 − αββ20)p2 > α0αββ

2
0 .
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Since p2 > 1, in other words it is necessary to have

α0αββ
2
0 + α0αβ − α0ββ

2
0 − 2α0αββ0 − 2α0αβ

2
0 − αββ20 > 0,

i.e. if α >
β2
0

(β0−1)2 holds, then

α0 >
αββ20

(αββ20 + αβ − 2αββ0 − 2αβ20 − ββ20)
, (5.5.10)

and thus

p2 >
α0αββ

2
0

α0αββ20 + α0αβ − α0ββ20 − 2α0αββ0 − 2α0αβ20 − αββ20
. (5.5.11)

It is easy to see that if β0 > 1, then (5.5.10) is bigger than (5.5.3) and (5.5.11) is

also bigger than (5.5.7). Hence when (5.5.8) and (5.5.10) are satisfied, we always

have (5.5.11). Substituting (5.5.11) into (5.5.6), if β0 > 1 and (5.5.8) hold, then

p3 =
α0βp2

α0β + (2α0 + β)p2

>
α0αββ

2
0

α0αββ20 + α0αβ − α0ββ20 − 2α0αββ0
> 1.

Accordingly, by Theorem 5.1 in [41], we know that BSDE (5.3.5) admits a unique

solution

Ỹ (·) ∈ Lp3F (Ω;C([0, T ];R)), Z̃(·) ∈ Lp3F (Ω;L2([0, T ];Rd)),

and the following estimate holds

E

[
sup
t∈[0,T ]

|Ỹ (t)|p3 +

[∫ T

0
|Z̃(t)|2dt

] p3
2

]
=Cp3 E

∣∣∣ξ̃∣∣∣p3 = Cp3 E |M(T )ξ|p3

≤Cp3 {E |M(T )|q3·p3}
1
q3 ·
{
E |ξ|

q3
q3−1

p3
} q3−1

q3

≤Cp3 {E |M(T )|p1}
p3
p1 · {E |ξ|p2}

p3
p2 <∞,

where p1, p2, p3, q3 > 1 and Cp3 is some constant. Note that

p5 =
p3p4
p3 + p4

>
α2
0α

2β2β
4
0

α2
0αβ

2β20(β20 + 2αβ0 − α) + α2
0αβ

2β20(αβ20 + α− β20 − 2αβ0)
= 1.
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Finally, taking a constant ε ∈ (0, p5), using the Hölder’s inequality and

Minkowski’s inequality, we obtain

E

[∫ T

0
|Z(t)|2

] p5−ε
2

=E

[∫ T

0

∣∣∣M(t)−1
[
Z̃(t) + Ỹ (t)θ(t)

]∣∣∣2 dt] p5−ε2

≤E

[
sup
t∈0,T

∣∣M(t)−1
∣∣2 ∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] p5−ε
2

=E

 sup
t∈0,T

∣∣M(t)−1
∣∣p5−ε(∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

) p5−ε
2



≤

(
E

[
sup
t∈0,T

∣∣M(t)−1
∣∣(p5−ε) p4

p5−ε

]) p5−ε
p4

·

E [∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] p5−ε
2

p4
p4−p5+ε


p4−p5+ε

p4

≤

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

·

E [∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] p4(p5−ε)
2(p4−p5+ε)

p4−p5+ε
p4(p5−ε)


p4−p5+ε

p4

p4(p5−ε)
p4−p5+ε

=

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

E [∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] 1
2

p5−ε
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≤

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

·


E [∫ T

0

[
Z̃(t)

]2
dt

] 1
2

+

E [∫ T

0

[
Ỹ (t)θ(t)

]2
dt

] 1
2


p5−ε

≤

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

{(
E

[∫ T

0

[
Z̃(t)

]2
dt

] p3
2

) 1
p3

+

E
 sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣ (∫ T

0
[θ(t)]2 dt

) 1
2

}p5−ε

≤

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

{(
E

[∫ T

0

[
Z̃(t)

]2
dt

] p3
2

) 1
p3

+

(
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣p3]) 1

p3

(
E

[∫ T

0
[θ(t)]2 dt

] p3
p3−1

) p3−1
p3
}p5−ε

<∞

where the last step follows from the assumption that θ(·) ∈ L2+F (Ω;L2([0, T ];Rd).

In order to compare our result to Theorem 4.1 of [78], let us denote parameters

α and β in [78] by α(Y ) and β(Y ) respectively. We need to make both parameters

identical, i.e. α0 = α = α(Y ) and β0 = β = β(Y ). Hence our p = αβ2

αβ2+α−2β2−4αβ

and p(Y ) = αβ2

αβ2−2β2−4αβ
√
β

. Now it is easy to see that when condition (5.5.1) and

condition (4.1) in [78] are satisfied, our p is always less than p(Y ), which implies our

space of terminal value is always bigger than that of [78].

Now we present a similar result to the above theorem but only assuming

θ(·) ∈ L2F (Ω;L2([0, T ];Rd).

Theorem 5.5.2. Suppose that θ(·) ∈ L2F(Ω;L2([0, T ];Rd) and (5.3.11), (5.3.12),
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(5.3.13), (5.3.14) and (5.3.15) hold with positive constants α0, α, β and β0 satisfying:

α0 > max
{

2β
β−4 ,

αββ2
0

αββ2
0+αβ−2αββ0−2αβ2

0−ββ2
0

}
,

α >
β2
0

(β0−1)2 ,

β0 ≥ 1, β > 4.

(5.5.12)

Then for any ξ ∈ Lp+FT (Ω;R) with

p = max

{
2α0β

α0β − 4α0 − 2β
,

α0αββ
2
0

α0αββ20 + α0αβ − α0ββ20 − 2α0αββ0 − 2α0αβ20 − αββ20

}
>1,

(5.5.13)

BSDE (5.2.1) admits a unique adapted solution (Y (·), Z(·)) with

Y (·) ∈ L0+F (Ω;C([0, T ];R)), Z(·) ∈ L0+F (Ω;L2([0, T ];Rd)).

Proof. For simplicity, from now on we denote M(·) = M(· ; r(·), θ(·)). By Theorem

5.4.1 (i), we know that if β > 4 and

α0 >
2β

β − 4
, (5.5.14)

then

M(·) ∈ Lp1F (Ω;C([0, T ];R)), (5.5.15)

where

p1 =
α0β

2α0 + β
> 1. (5.5.16)

By Lemma 5.5.1, for any ξ ∈ Lp2FT (Ω), we have

ξ̃ = M(T )ξ ∈ Lp3FT (Ω;R),

where

p3 =
p1p2
p1 + p2

=
α0βp2

α0β + (2α0 + β)p2
. (5.5.17)
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Suppose p3 ≥ 2, β > 4 and (5.5.14), then we have

p2 >
2α0β

α0β − 4α0 − 2β
> 1. (5.5.18)

By Theorem 5.4.5, if

α >
β20

(β0 − 1)2
, (5.5.19)

and β0 > 1, we have

M(·)−1 ∈ Lp4F (Ω;C([0, T ];R)), (5.5.20)

where

p4 =
αβ20

β20 + 2αβ0 − α
> 1.

By BSDE (5.3.5), Theorem 5.4.1, Theorem 5.4.5 and the Hölder’s inequality

with p1, p2, p3, p4, q1, q2 > 1, we have

E

[
sup
t∈[0,T ]

|Y (t)|p5
]

= E

[
sup
t∈[0,T ]

|M(t)−1Ỹ (t)|p5
]

≤

{
E

[
sup
t∈[0,T ]

|M(t)|−q1·p5
]} 1

q1

·

{
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣ q1
q1−1

p5

]} q1−1
q1

≤

{
E

[
sup
t∈[0,T ]

|M(t)|−p4
]} p5

p4

·

{
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣p3]}

p5
p3

≤

{
E

[
sup
t∈[0,T ]

|M(t)|−p4
]} p5

p4

· {E |M(T )|q2·p3}
1
q2

p5
p3 ·

{
E |ξ|

q2
q2−1

p3
} q2−1

q2

p5
p3

≤

{
E

[
sup
t∈[0,T ]

|M(t)|−p4
]} p5

p4

· {E |M(T )|p1}
p5
p1 · {E |ξ|p2}

p5
p2 <∞,

where

p5 =
p3p4
p3 + p4

=

α0βp2
α0β+(2α0+β)p2

· αβ2
0

β2
0+2αβ0−α

α0βp2
α0β+(2α0+β)p2

+
αβ2

0

β2
0+2αβ0−α

=
α0αββ

2
0p2

α0βp2(β20 + 2αβ0 − α) + αβ20 [α0β + (2α0 + β)p2]
.
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So in order to ensure p5 > 1, it is necessary to have

(α0αββ
2
0 + α0αβ − α0ββ

2
0 − 2α0αββ0 − 2α0αβ

2
0 − αββ20)p2 > α0αββ

2
0 .

Since p2 > 1, in other words it is necessary to have

α0αββ
2
0 + α0αβ − α0ββ

2
0 − 2α0αββ0 − 2α0αβ

2
0 − αββ20 > 0,

i.e. if (5.5.19) holds, then

α0 >
αββ20

(αββ20 + αβ − 2αββ20 − 2αβ20 − ββ20)
, (5.5.21)

and thus

p2 >
α0αββ

2
0

α0αββ20 + α0αβ − α0ββ20 − 2α0αββ0 − 2α0αβ20 − αββ20
. (5.5.22)

Therefore we obtain that

α0 > max

{
2β

β − 4
,

αββ20
αββ20 + αβ − 2αββ0 − 2αβ20 − ββ20

}
,

and

p = max

{
2α0β

α0β − 4α0 − 2β
,

α0αββ
2
0

α0αββ20 + α0αβ − α0ββ20 − 2α0αββ0 − 2α0αβ20 − αββ20

}
Substituting (5.5.18) and (5.5.22) into (5.5.17), if β0 > 1 and (5.5.19) hold, then

p3 =
α0βp2

α0β + (2α0 + β)p2

>max

{
2,

α0αββ
2
0

α0αββ20 + α0αβ − α0ββ20 − 2α0αββ0

}
> 1.

Accordingly, by Theorem 5.1 in [41], we know that BSDE (5.3.5) admits a unique

solution

Ỹ (·) ∈ Lp3F (Ω;C([0, T ];R)), Z̃(·) ∈ Lp3F (Ω;L2([0, T ];Rd)),
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and the following estimate holds

E

[
sup
t∈[0,T ]

|Ỹ (t)|p3 +

[∫ T

0
|Z̃(t)|2dt

] p3
2

]
=Cp3E

∣∣∣ξ̃∣∣∣p3 = Cp3E |M(T )ξ|p3

≤Cp3 {E |M(T )|q3·p3}
1
q3 ·
{
E |ξ|

q3
q3−1

p3
} q3−1

q3

≤Cp3 {E |M(T )|p1}
p3
p1 · {E |ξ|p2}

p3
p2 <∞,

where p1, p2, p3, q3 > 1 and Cp3 is some constant. Note that

p5 =
p3p4
p3 + p4

>
2αβ20

2(β20 + 2αβ0 − α) + αβ20
,

which is not necessary bigger or equal to 1.

Finally, taking a constant ε ∈ (0, p5), using the Hölder’s inequality and

Minkowski’s inequality, we obtain

E

[∫ T

0
|Z(t)|2

] p5−ε
2

=E

[∫ T

0

∣∣∣M(t)−1
[
Z̃(t) + Ỹ (t)θ(t)

]∣∣∣2 dt] p5−ε2

≤E

[
sup
t∈0,T

∣∣M(t)−1
∣∣2 ∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] p5−ε
2

=E

 sup
t∈0,T

∣∣M(t)−1
∣∣p5−ε(∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

) p5−ε
2



≤

(
E

[
sup
t∈0,T

∣∣M(t)−1
∣∣(p5−ε) p4

p5−ε

]) p5−ε
p4

·

E [∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] p5−ε
2

p4
p4−p5+ε


p4−p5+ε

p4
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≤

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

·

E [∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] p4(p5−ε)
2(p4−p5+ε)

p4−p5+ε
p4(p5−ε)


p4−p5+ε

p4

p4(p5−ε)
p4−p5+ε

=

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

E [∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] 1
2

p5−ε

≤

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

·


E [∫ T

0

[
Z̃(t)

]2
dt

] 1
2

+

E [∫ T

0

[
Ỹ (t)θ(t)

]2
dt

] 1
2


p5−ε

≤

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

{(
E

[∫ T

0

[
Z̃(t)

]2
dt

] p3
2

) 1
p3

+

E
 sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣ (∫ T

0
[θ(t)]2 dt

) 1
2

}p5−ε

≤

(
E

[
sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

{(
E

[∫ T

0

[
Z̃(t)

]2
dt

] p3
2

) 1
p3

+
1

2

(
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣2]+ E

∫ T

0
[θ(t)]2 dt

)}p5−ε
< ∞,

where the last step follows from the assumption that θ(·) ∈ L2F (Ω;L2([0, T ];Rd) and

p3 ≥ 2.

Similar to last theorem, in this case we have p = 2αβ2

αβ2−4αβ−2β2 and p(Y ) =
2αβ2

2αβ2−4β2−8αβ
√
β

. When condition (5.5.1) and condition (4.1) in [78] are satisfied, our

p is always less than p(Y ), which also implies our space of terminal value is always

bigger than that of [78].

Now we study the case that (5.5.1) does not hold, which might lead to
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no adapted solution (Y (·), Z(·)) in L1+F (Ω;C([0, T ];R)) × L1+F (Ω;L2([0, T ];Rd)).

However, adapted solutions with less integrability can be obtained as follows.

Theorem 5.5.3. Suppose that θ(·) ∈ L2+F (Ω;L2([0, T ];Rd) and (5.3.11), (5.3.12),

(5.3.13), (5.3.14) and (5.3.15) hold with positive constants α0, α, β and β0 satisfying:

α0 >
β

β − 2
, β0 ≥ 1, β > 2. (5.5.23)

Then for any ξ ∈ Lp+FT (Ω;R) with

p =
α0β

α0β − 2α0 − β
> 1, (5.5.24)

BSDE (5.2.1) admits a unique adapted solution (Y (·), Z(·)) with

Y (·) ∈ Lq+F (Ω;C([0, T ];R)), Z(·) ∈ Lq+F (Ω;L2([0, T ];Rd)),

with

q =
αβ20

(α+ 1)β20 + 2αβ0 − α
∈ (0, 1). (5.5.25)

Proof. By Theorem 5.5.1, we have (5.5.4) and (5.5.5). Then for any ξ ∈ Lp2FT (Ω;R)

with p2 > p = α0β
α0β−2α0−β > 1 given by (5.5.24), we have ξ̃ = M(T )ξ ∈ Lp3FT (Ω;R),

where

p3 =
p1p2
p1 + p2

=
α0βp2

α0β + (2α0 + β)p2
>

α0β
α0β

α0β−2α0−β

α0β + (2α0 + β) α0β
α0β−2α0−β

=
α0β

α0β − 2α0 − β + 2α0 + β
= 1.

Hence (5.5.12) holds. Furthermore,

p5 =
p3p4
p3 + p4

>
p4

1 + p4
=

αβ20
(α+ 1)β20 + 2αβ0 − α

= q,

where p4 =
αβ2

0

β2
0+2αβ2

0−α
> 0 given by Theorem (5.4.5). Note that here p4 is not

necessary bigger than 1.

The rest of proof is similar to that of Theorem 5.5.1.

Let us compare out result with Theorem 4.2 of [78]. We know that p =
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αβ
αβ−2α−β and p(Y ) = αβ

αβ+α−β−2α
√
β

. It is easy to see that when β > 2, we always

have p < p(Y ) which implies our space of terminal condition is bigger than that

of [78]. Similarly, regarding to the comparison of q, we conclude that when β > 2,

q > q(Y ) which implies our space of solution guarantees stronger integrability than

that of [78].

Note that if (5.5.23) are not satisfied, thenM(T ) is not necessary in L1FT (Ω;R).

The following results deals with this case.

Theorem 5.5.4. Suppose that θ(·) ∈ L2+F (Ω;L2([0, T ];Rd) and (5.3.11), (5.3.12),

(5.3.13), (5.3.14) and (5.3.15) hold with positive constants α0, α, β and β0 ≥ 1
2 .

Then for any ξ ∈ LpFT (Ω;R) with p > 0, BSDE (5.2.1) admits a unique adapted

solution (Y (·), Z(·)) with

Y (·) ∈ LqF (Ω;C([0, T ];R)), Z(·) ∈ Lq−F (Ω;L2([0, T ];Rd)),

with

q =
α0αβ

2
0p

α0β20p+ 2α0αβ0p− α0αp+ α0αβ20 + α0αβ20p+ αβ20p
∈ (0, 1). (5.5.26)

Proof. By Theorem 3.2 (i) in [78], we have M(·) ∈ Lp1F (Ω;C([0, T ];R)) with p1 =
α0
α0+1 . Then for any ξ ∈ LpFT (Ω;R) with p2 = p, we have ξ̃ ≡ M(T )ξ ∈ Lp3FT (Ω;R),

where

p3 =
p1p2
p1 + p2

=
α0
α0+1p
α0
α0+1 + p

=
α0p

α0 + p(α0 + 1)
∈ (0, 1).

By Lemma 4.3 in [78], BSDE (5.3.5) admits a unique adapted solution

Ỹ (·) ∈ Lp3F (Ω;C([0, T ];R)), Z̃(·) ∈ Lp3F (Ω;L2([0, T ];Rd)).

By Theorem 5.4.5 (i), we have (5.5.9) with p4 =
αβ2

0

β2
0+2αβ0−α

∈ (0, 1).

Moreover,

p5 =
p3p4
p3 + p4

=
α0αβ

2
0p

α0β20p+ 2α0αβ0p− α0αp+ α0αβ20 + α0αβ20p+ αβ20p
= q ∈ (0, 1),

The rest of proof is similar to that of Theorem (5.5.1).
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Let us compare out result with Theorem 4.4 of [78]. Note that our

q =
αβ2p

αβ2 + αβ2p+ 2αβp+ 2β2p− αp
,

and

q(Y ) =
αβ2p

αβ2 + αβ2p+ 2αβ
√
βp+ 2β2p+ αβp

.

Hence we always have q > q(Y ), which implies our space of solution guarantees

stronger integrability than that of [78].

5.6 Applications to Mathematical Finance

Here we give two applications of our results to mathematical finance. Let us consider

a market with one bond and n stocks, the prices of which are, respectively,
dP0(t) = r(t)P0(t)dt,

dPi(t) = Pi(t)[bi(t)dt+ σ′i(t)dW (t)], i = 1, ..., n,

Pi(0) > 0, i = 0, 1, ..., n.

(5.6.1)

The process r(·) is the interest rate, the processes bi(·), i = 1, ..., n, are called the

appreciation rates, and the processes σ′i(t) = [σi1(t), ..., σ1d(t)], i = 1, ..., n, are the

volatilities of the stocks. If we denote by πi(t) the value of the holdings in asset i,

then it can be shown (see, e.g. [7], [77]) that the value of a self-financing portfolio is{
dY (t) = [r(t)Y (t) + π′(t)(b(t)− r(t)1)]dt+ π′(t)σ(t)dW (t), t ∈ [0, T ],

Y (0) = Y0
(5.6.2)

Here π(t) ≡ [π1(t), ..., πn]′, b(t) ≡ [b1(t), ..., bn(t)]′, σ(t) ≡ [σ1(t), ..., σn(t)]′, and Y0

is the investors initial wealth. We assume that rank σ(t) = d, a.e. t ∈ [0, T ] a.s.,

which ensures that n ≥ d and [σ′(t)σ(t)]−1 exists. If we define the processes θ(·) and

Z(·) as

θ(t) ≡ [σ′(t)σ(t)]−1σ′(t)[b(t)− r(t)1],

Z(t) ≡ σ′(t)π(t), (5.6.3)

we can rewrite (5.6.2) as{
dY (t) = [r(t)Y (t) + θ′(t)Z(t)]dt+ Z ′(t)dW (t), t ∈ [0, T ],

Y (0) = Y0.
(5.6.4)
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5.6.1 Market Completeness

The problem of pricing and hedging contingent claims is the most fundamental in

mathematical finance. For a given terminal payoff ξ ∈ L0
FT (Ω,R), it is required to

find the initial wealth Y0 and the trading strategy π(·) such that Y (T ) = ξ. In this

case, the initial value Y0 is the price of the contingent claim at time zero, whereas

the treading strategy π(·) represents the hedging strategy. In this case we say that

the portfolio (5.6.2) replicates the contingent claim. The replicating portfolio does

not always exist. If the market is such that for all ξ from a certain set there exist

a replicating portfolio, we say that the market is complete. The completeness of

the markets with bounded coefficients is well studied. However, in many important

cases, some of the market coefficients can be unbounded. A typical example is when

the interest rate r(·) is modeled by a stochastic differential equation. In this case

much less in known about market completeness, and thus of pricing and hedging.

Here we apply the results of the previous section to give alterative conditions for

market completeness as compared to those of Yong [78]. We first need the following

two definitions adapted from [78]

Πp[0, T ] ≡
{
π(·) ∈ L0F (0, T ;Rn) : π′(·)(b(·)− r(·)1) ∈ LpF (Ω;L1(0, T ;R))

and σ′(·)π(·) ∈ LpF (Ω;L1(0, T ;Rd)
}
.

Definition 5.6.1. Let H ⊂ L0
FT (Ω,R) and Π ⊂ Π0[0, T ]. The market (5.6.1) is

(H,Π)-complete if for any ξ ∈ H there exists a solution pair (Y (·), Z(·)) to the linear

BSDE {
dY (t) = [r(t)Y (t) + θ′(t)Z(t)]dt+ Z ′(t)dW (t), t ∈ [0, T ],

Y (T ) = ξ a.s.,
(5.6.5)

where the process Z(·) is such that π(·) as given by (5.6.3) belongs to the set Π.

Since the BSDE (5.6.5) is the same as the one considered in the previous

section, the proof of the next theorem is immediate from the results of that section.

Theorem 5.6.1. Let the market coefficients be such that the processes r(·) and

θ(·) satisfy the conditions (5.3.11), (5.3.12), (5.3.13), (5.3.14) and (5.3.15) for some

positive constants α0, α, β and β0.

(i) If θ(·) ∈ L2F(Ω;L2([0, T ];Rd) and (5.5.12) holds, then the market (5.6.1) is

(Lp
+

FT (Ω,R),Π0+)-complete, with p given by (5.5.5).
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(ii) If θ(·) ∈ L2+F (Ω;L2([0, T ];Rd) and (5.5.1) holds, then the market (5.6.1) is

(Lp
+

FT (Ω,R),Π1+)-complete, with p given by (5.5.2).

(iii) If θ(·) ∈ L2+F (Ω;L2([0, T ];Rd) and (5.5.23) holds, then the market (5.6.1)

is (Lp
+

FT (Ω,R),Πq+)-complete, with p given by (5.5.24) and q given by (5.5.25).

(iv) If θ(·) ∈ L2+F (Ω;L2([0, T ];Rd) and β0 ≥ 1/2, then for any p > 0 the mar-

ket (5.6.1) is (LpFT (Ω,R),Πq−)-complete, where q is given by (5.5.26).

5.6.2 Optimal investment

The problem of optimal investment is also fundamental in mathematical finance.

Here we have an investor endowed with an initial wealth Y (0) that aims to invest in

a certain optimal way. For a market with deterministic coefficients, this problem has

been initiated and solved by Merton [56], [57], [58], [59], whereas in a market with

random coefficients and under a rather general setting, the problem has been solved

in [68], [15], [35] (see also [37] and [47] for a textbook account). Explicit solutions

are known only in special cases, such as for the mean-variance (quadratic) [52], expo-

nential and power utility [22]. In all of these cases the coefficients are assumed to be

bounded. The problem of optimal investment with a possibly unbounded coefficients

has been studied to a much lesser extent (see, for example, [5], [6], [48], [49]). The

unboundedness of the coefficients is due to the modeling of the interest rate (or

the volatility) as solutions to stochastic differential equations with deterministic

coefficients. Due to this Markovian nature of the model, explicit solutions are found

in some cases under a further assumption that the coefficient θ(·) is bounded, which

enforces a special structure for the appreciation rates bi(·).
Here we give the solution to the optimal investment problem with power

utility in a market with unbounded coefficients and without the assumption of a

Markovian nature of the coefficients or of a bounded coefficient θ(·). We find an

explicit solution to this problem using the results of the previous sections, a Riccati

BSDE with unbounded coefficients, and a combination of ideas from [52] and [22].

Thus, consider an investor with an initial wealth Y (0) and the power utility

J(Z(·)) ≡ −E[Y λ(T )], λ ∈ (0, 1).
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The optimal investment problem is the following optimal control problem: min
Z(·)∈A

J(Z(·)),

s.t. (5.6.4),
(5.6.6)

where A is the admissible set of processes to be defined precisely after the following

two results.

Lemma 5.6.1. Let η ≡ 2λ(1− λ)−1 + 1 and the processes r̂(·), θ̂(·), be defined as

r̂(t) ≡ −ληr(t)− ληθ′(t)θ(t)

1− λ
,

θ̂(t) ≡ − 2λ

1− λ
θ(t).

Let θ̂(·) ∈ L2+F (Ω;L2([0, T ];Rd) and the processes r̂(·), θ̂(·), satisfy the conditions

(5.3.11), (5.3.12), (5.3.13), (5.3.14) and (5.3.15), for some positive constants α0, α,

β and β0 satisfying (5.5.1). Then the equation


dR(t) = R1(t)dt+R′2(t)dW (t), t ∈ [0, T ],

R1(t) ≡ r̂(t)R(t) + θ̂′(t)R2(t),

R(T ) = 1.

(5.6.7)

has a unique solution pair R(·) ∈ L1+F (Ω;C([0, T ];R)), R2(·) ∈ L1+F (Ω;L2([0, T ];Rd)),

and R(t) > 0 ∀t ∈ [0, T ] a.s.. If r̂(t) < 0 a.e. t ∈ [0, t] a.s., then R(t) ≥ 1 ∀t ∈ [0, T ]

a.s..

Proof. Theorem 5.5.1 ensures the existence of a unique solution pair

R(·) ∈ L1+F (Ω;C([0, T ];R)), R2(·) ∈ L1+F (Ω;L2([0, T ];Rd)). Let M̂(·) denote the

solution to the equation{
dM̂(t) = −r̂(t)M̂(t)dt− θ̂′(t)M̂(t)dW (t), t ∈ [0, T ],

M̂(0) = 1,
(5.6.8)

and (R̂(·), R̂2(·)) be the unique solution pair of the equation{
dR̂(t) = R̂′2(t)dW (t), t ∈ [0, T ],

R̂(T ) = M̂(T ).
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Due to R̂(t) = E
[
M̂(T )|Ft

]
and (5.3.6), we have

R(t) = M̂(t)−1R̂(t) = M̂(t)−1E
[
M̂(T )|Ft

]
= E

[
e−
∫ T
t [r̂(s)+ 1

2
θ̂′(s)θ̂(s)]ds−

∫ T
t θ̂′(s)dW (s)

∣∣∣∣Ft

]
. (5.6.9)

Since the process θ̂(·) is assumed to satisfy the Kazamaki condition (5.3.14), the

following is a probability measure

P̂(A) =

∫
A
N(T )dP(ω), ∀A ∈ F ,

where

N(t) ≡ e
−1
2

∫ t
0 θ̂
′(s)θ̂(s)ds−

∫ t
0 θ̂(s)

′
dW (s).

We can now write (5.6.9) as

R(t) = Ê

[
e−
∫ T
t [r̂(s)]ds

∣∣∣∣Ft

]
> 0, (5.6.10)

where Ê[ · ] is the expectation under the new probability measure P̂. It is clear that

R(t) > 0, ∀t ∈ [0, T ] a.s., and if r̂(t) ≤ 0, a.e. t ∈ [0, t] a.s., then R(t) ≥ 1, ∀t ∈ [0, T ]

a.s..

Remark 5.6.1. The condition r̂(t) ≤ 0 a.e. t ∈ [0, T ] a.s., is very reasonable from

the applications point of view (e.g. the interest rate r(t) ≥ 0 a.e. t ∈ [0, T ] a.s.),

and thus we assume it for the remainder of this section to ensure that R(t) ≥ 1,

∀t ∈ [0, T ] a.s..

Lemma 5.6.2. Let the conditions of Lemma 5.6.1 hold. The processes Q(t) ≡ R1/η(t)

and Q2(t) ≡ η−1Q1−η(t)R2(t) are a solution pair to the Riccati equation

dQ(t) = Q1(t)dt+Q′2(t)dW (t), t ∈ [0, T ],

Q1(t) ≡ −λr(t)Q(t)− λ(Q2(t) + θ(t)Q(t))′(Q2(t) + θ(t)Q(t))

2(1− λ)Q(t)
,

Q(T ) = 1,

Q(t) > 0, ∀t ∈ [0, T ] a.s..

(5.6.11)
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Proof. The differential of R(·) is

dR(t) =dQ(t)η

=

{
ηQ(t)η−1

[
−λr(t)Q(t)− λ(Q2(t) + θ(t)Q(t))′(Q2(t) + θ(t)Q(t))

2(1− λ)Q(t)

]

+
η(η − 1)

2
Q(t)η−2Q′2(t)Q2(t)

}
dt+ ηQ(t)η−1Q′2(t)dW (t)

=

{
− ληr(t)Q(t)η − λη

1− λ
Q(t)η−2

[
Q′2(t)Q2(t) + 2Q′2(t)Q(t)θ(t)

+ θ′(t)θ(t)Q(t)2
]

+
η(η − 1)

2
Q(t)η−2Q′2(t)Q2(t)

}
dt+ ηQ(t)η−1Q′2(t)dW (t)

=

[
−
(
ληr(t) +

ληθ′(t)θ(t)

1− λ

)
R(t)− 2λ

1− λ
θ′(t)R2(t)

]
dt+R′2(t)dW (t),

=R1(t)dt+R′2(t)dW (t),

which has a solution for R(T ) = 1, as shown in the previous lemma.

The admissible set A is defined as:

A = {Z(·) ∈ L0+F (Ω;L2([0, T ];Rd))| Y (t) > 0 ∀t ∈ [0, T ] a.s., and

[λQ(·)Z(·)Y −1(·) +Q2(·)]Y (·)λ ∈ L2F (0, T ;Rd)}.

The requirement of Y (·) being positive prevents bankruptcy, whereas the second

requirement on the admissible set is a technical one implied by the method we use

to solve the optimal investment problem.

Lemma 5.6.3. Let the processes r(·) and θ(·), defined as

r(t) ≡ 1

1− λ
r(t) +

2 + 3λ

2(1− λ)2
θ′(t)θ(t),

θ(t) ≡ 1

1− λ
θ(t),
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be such that r(·) ∈ L1F (Ω;L1([0, T ];R)), θ(·) ∈ L2F (Ω;L2([0, T ];Rd)). Let r(·) satisfy

(5.3.12) and θ(·) satisfy (5.3.14) for some constants α > 0 and β > 1, respectively,

such that αβ
2

= 4(β
2

+ 2αβ − α). If the assumptions of Lemma 5.6.1 hold, then

[(Q2(·) + θ(·)Q(·))](1− λ)−1Q−1(·)Y (·) ∈ A.

Proof. If we choose Z(t) = [(Q2(t) + θ(t)Q(t))](1 − λ)−1Q−1(t)Y (t), then (5.6.4)

becomesdY (t) =
[
r(t) + θ′(t) (Q2(t)+θ(t)Q(t))

(1−λ)Q(t)

]
Y (t)dt+

(Q′2(t)+θ
′(t)Q(t))

(1−λ)Q(t) Y (t)dW (t), t ∈ [0, T ],

Y (0) = Y0.

(5.6.12)

We first show that this linear equation, the coefficients of which depend on the

solution pair (Q(·), Q2(·)), has a solution such that Y (t) > 0, ∀t ∈ [0, T ] a.s.. Let

µ ∈ (0, 1), and consider the equation

{
dX(t) = r(t)X(t)dt+ θ

′
(t)X(t)dW (t), t ∈ [0, T ]

X(0) = Y (0)Q(0)−µ.
(5.6.13)

The process

X(t) ≡ e
∫ t
0 [r(s)−

1
2
θ
′
(s)θ(s)]ds+

∫ t
0 θ
′
(s)dW (s), t ∈ [0, T ]. (5.6.14)

is a solution to (6.2.1) if it has enough integrability. It is sufficient for this purpose

to show that θ
′
(·)X(·) is a square integrable process. Thus, from Theorem 5.4.3 (i),

it follows that

E

[∫ T

0
X(t)2θ

′
(t)θ(t)dt

]
≤ E

[
sup
t∈[0,T ]

X(t)2
∫ T

0
θ
′
(t)θ(t)dt

]

≤ 1

2

(
E

[
sup
t∈[0,T ]

X(t)4

]
+ E

[∫ T

0
θ
′
(t)θ(t)dt

]2)
<∞.

In order to show that (5.6.14) is the unique solution to (6.2.1), let us assume that

X(·) is another solution to (6.2.1). By Itô’s formula we obtain

dX(t)−1X(t) = [−r(t) + θ′(t)θ(t)]M(t)−1M(t)dt− θ′(t)M(t)−1M(t)dW (t)

+M(t)−1[r(t)M(t)dt+ θ′(t)M(t)dW (t)]

−θ′(t)θ(t)M(t)−1M(t)dt = 0. (5.6.15)
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Hence we have dM(t)−1M(t) = 0, t ∈ [0, T ],

M(0)−1M(0) = 1,

which gives M(t)−1M(t) = 1, i.e. M(t) = M(t), for all t ∈ [0, T ], a.s..

By an application of Itô’s formula to the process Y (t) ≡ X(t)Q(t)µ, it can be

shown that it satisfies (5.6.17). Moreover, since both X(·) and Q(·) are positive, so

is Y (·). The proof of the uniqueness of Y (·) can be shown in a similar way to the

uniqueness of X(·).

To conclude the proof, we now show that the process

[(Q2(·) + θ(·)Q(·))](1− λ)−1Q−1(·)Y (·)

is square integrable:

E

[∫ T

0
[λQ(t)U(t) +Q2(t)]

′[λQ(t)U(t) +Q2(t)]Y (t)2λdt

]

≤E

[∫ T

0
sup
t∈[0,T ]

Y (t)2λ[λQ(t)U(t) +Q2(t)]
′[λQ(t)U(t) +Q2(t)]dt

]

=E

[
sup
t∈[0,T ]

Y (t)2λ
∫ T

0
[λQ(t)U(t) +Q2(t)]

′[λQ(t)U(t) +Q2(t)]dt

]

≤ 1

2
E

[
sup
t∈[0,T ]

Y (t)4λ

]
+

1

2
E

{∫ T

0
[λQ(t)U(t) +Q2(t)]

′[λQ(t)U(t) +Q2(t)]dt

}2

.

For the first term on the right hand side, let Y (t) = X(t)Q(t)µ for any

µ = 1
1−λ ∈ (0, 1), we obtain

E

[
sup
t∈[0,T ]

Y (t)4λ

]
=E

[
sup
t∈[0,T ]

X(t)4λQ(t)4µλ

]

=E

[
sup
t∈[0,T ]

X(t)4λR(t)
4µλ
η

]
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≤E

[
sup
t∈[0,T ]

X(t)4λ · sup
t∈[0,T ]

R(t)
4λ
1+λ

]

≤ 1

2
E

[
sup
t∈[0,T ]

X(t)8 + sup
t∈[0,T ]

R(t)8

]
<∞,

where the last inequality holds due to the fact that X(t) is the solution ofdX(t) = −r(t)X(t)dt− θ′(t)X(t)dW (t),

X(0) = Y (0)Q(0)−µ,

where r(t) = −
(

1 + λ
1−λ

)
r(t)−

(
λ

2(1−λ)2 + 1
1−λ

)
θ(t)2 and θ′(t) = − 1

1−λθ
′(t),

and hence Theorem 5.4.3 (i) is applied with αβ2

β2+2αβ−α = 4. For the second term on

the right hand side,

E

{∫ T

0
[λQ(t)U(t) +Q2(t)]

′[λQ(t)U(t) +Q2(t)]dt

}2

=E

{∫ T

0

[
1 +

2λ

1− λ
+

λ2

(1− λ)2

]
Q′2(t)Q2(t)

+

[
2λ

1− λ
+

2λ2

(1− λ)2

]
Q′2(t)θ(t)Q(t) +

λ2

(1− λ)2
θ′(t)θ(t)Q(t)2dt

}2

≤ 3k21 E

[∫ T

0
Q′2(t)Q2(t)dt

]2
+ 3k22 E

[∫ T

0
Q′2(t)Q(t)θ(t)dt

]2
+ 3k23 E

[∫ T

0
θ′(t)θ(t)Q(t)2dt

]2

≤ 3k21
η4

E

[∫ T

0
R′2(t)R2(t)dt

]2
+

3k23
4
E

[∫ T

0

[
(θ′(t)θ(t))2 +R(t)

4
η

]
dt

]2
+

3k22
4η2

E

[∫ T

0

[
R′2(t)R(t) +

1

2
(θ′(t)θ(t))2 +

1

2
R(t)

4
η

]
dt

]2

≤ c1E
[∫ T

0
R′2(t)R2(t)dt

]2
+ c2E

[∫ T

0

1

2
(θ′(t)θ(t))2dt

]2
+ c3E

[∫ T

0
R(t)

4
η dt

]2
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≤ c1E
[∫ T

0
R′2(t)R2(t)dt

]2
+ c2E

[∫ T

0

1

2
(θ′(t)θ(t))2dt

]2
+ c3T

2E

[
sup
t∈[0,T ]

R(t)8dt

]
<∞,

where k1 = 1 + 2λ
1−λ + λ2

(1−λ)2 , k2 = 2λ
1−λ + 2λ2

(1−λ)2 k3 = λ2

(1−λ)2 and c1 =
3k21
η4

+
9k22
4η2

,

c2 =
9k22
4η2

+ 6k23, c3 =
3k23
2 +

9k22
16η2

. Therefore the process [λQ(t)U(t) +Q2(t)]Y (t)λ is

square integrable.

Theorem 5.6.2. Let the conditions of Lemma 5.6.3 hold. The optimal investment

problem (5.6.6) has a unique solution given by

Z∗(t) =
(Q2(t) + θ(t)Q(t))

(1− λ)Q(t)
Y (t). (5.6.16)

The corresponding optimal cost is J(Z∗(·)) = −Q(0)Y λ(0).

Proof. We first show that Z∗(·) ∈ A. Substituting (5.6.16) into (5.6.4) gives

dY (t) =

[
r(t) + θ′(t)

(Q2(t) + θ(t)Q(t))

(1− λ)Q(t)

]
Y (t)dt

+
(Q′2(t) + θ′(t)Q(t))

(1− λ)Q(t)
Y (t)dW (t), t ∈ [0, T ],

Y (0) = Y0.

(5.6.17)

This is a linear stochastic differential equation with a possibly unbounded coefficients.

Moreover, the coefficients depend on the solution pair (Q(·), Q2(·)) of the Riccati

equation (5.6.11), and thus the known results on the existence of solutions to the

linear stochastic differential equations, do not apply (see, for example, [77] for the

equations with bounded coefficients). However, due to the estimates, one can apply

Itô’s formula to the process Y ∗(·) ≡ X(·)Q(·)1/1−λ to show that it is a solution

to (5.6.17) (we omit the details for brevity). In order to show that Y ∗(·) is the

unique solution of (5.6.17), let Y (·) be another solution of (5.6.17). The differential

of the process Y (·)(Y ∗(·))−1 is dY (t)(Y ∗(t))−1 = 0, and since Y (0)(Y ∗(0))−1 = 1,

we conclude that Y (t) = Y ∗(t), ∀t ∈ [0, T ], a.s.. We have thus shown that (5.6.17)

has a unique positive solution. Due to the estimate, we conclude that Z∗(·) ∈ A.

We now show that Z∗(·) is the unique minimizer of J(Z(·)). Thus for any
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Z(·) ∈ A, the differential of Q(·)Y λ(·) is

dQ(t)Y (t)λ =Q1(t)Y (t)λdt+Q′2(t)Y (t)λdW (t) + λY (t)λ−1Q′2(t)Z(t)dt

+Q(t)[λr(t)Y (t)λ + λY (t)λ−1θ′(t)Z(t)

+
1

2
λ(λ− 1)Y (t)λ−2Z ′(t)Z(t)]dt+ λQ(t)Y (t)λ−1Z ′(t)dW (t)

=

{
Q1(t)Y (t)λ + λr(t)Q(t)Y (t)λ + Y (t)λ

[
λQ′2(t)U(t)

+ λQ(t)θ′(t)U(t) +
λ(λ− 1)

2
Q(t)U ′(t)U(t)

]}
dt

+
[
Q′2(t)Y (t)λ + λQ(t)Y (t)λU ′(t)

]
dW (t),

where U(t) ≡ Z(t)/Y (t). After integration and taking the expectation, this becomes

− E
[
Y (T )λ

]
=−Q(0)Y (0)− E

∫ T

0
[Q1(t)Y (t)λ + λr(t)Q(t)Y (t)λ]dt

− E
∫ T

0
Y (t)λ

[
(λQ′2(t) + λθ′(t)Q(t))U(t) +

λ(λ− 1)

2
Q(t)U ′(t)U(t)

]
dt.

By the completion of squares method, we obtain

−E
[
Y (T )λ

]
= −Q(0)Y (0)

− E
∫ T

0
Y (t)λ

[
Q1(t) + λr(t)Q(t) +

λ(Q2(t) + θ(t)Q(t))′(Q2(t) + θ(t)Q(t))

2(1− λ)Q(t)

]
dt

+
λ(1− λ)

2
E

∫ T

0
Y (t)λQ(t)

[
U(t)− Q(t)−1(Q2(t) + θ(t)Q(t))

1− λ

]′
×
[
U(t)− Q(t)−1(Q2(t) + θ(t)Q(t))

1− λ

]
dt
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=−Q(0)Y (0)

+
λ(1− λ)

2
E

∫ T

0
Y (t)λQ(t)

[
U(t)− (Q2(t) + θ(t)Q(t))

(1− λ)Q(t)

]′

×
[
U(t)− (Q2(t) + θ(t)Q(t))

(1− λ)Q(t)

]
dt

≥−Q(0)Y (0),

with equality if and only if U(t) = Q2(t)+θ(t)Q(t)
(1−λ)Q(t) , a.e. t ∈ [0, T ] a.s..

5.7 Conclusion

In this chapter, we have given new sufficient conditions for the integrability of

an exponential process, and have applied such results to the solvability of linear

backward stochastic differential equations with a possibly unbounded coefficients.

The solvability is proved under various conditions on the terminal value and on

the coefficients of the equation. Applications to market completeness, pricing, and

optimal investment are also given. In these applications we have used only some of

our results, and similar applications can be obtained by applying our other solvability

results.

Appendix

Proof of Lemma 5.4.1

Firstly let check if q > 1 is always satisfied. From the second equation in

(5.4.1), we have

q =
β(γ − 1)

2(pγ +
√
pγ)

> 1⇒ β(γ − 1)

2
> pγ +

√
pγ.

Let
√
pγ = z > 0, we have

z2 + z − β(γ − 1)

2
< 0
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and

z1,2 =
−1±

√
1 + 2β(γ − 1)

2
.

In order to have (z − z1)(z − z2) < 0, it is necessary to have

z2 < z < z1 =
−1 +

√
1 + 2β(γ − 1)

2
,

i.e.

z =
√
pγ <

−1 +
√

1 + 2β(γ − 1)

2
. (5.7.1)

Thus, in order to have q > 1, (5.7.1) should be satisfied.

Substituting z into (5.4.1) together with z > 0, we have,

z =
−1 +

√
1 + 2β(γ − 1) + β2

α0
(γ − 1)

2 + β
α0

. (5.7.2)

Note that clearly ∆ = 1 + 2β(γ− 1) + β2

α0
(γ− 1) > 0 holds. So (5.7.1) can be written

as

−1 +
√

1 + 2β(γ − 1) + β2

α0
(γ − 1)

2 + β
α0

<
−1 +

√
1 + 2β(γ − 1)

2
. (5.7.3)

Denote that A = 2β(γ − 1) > 0, B = β
2α0

+ 1 > 1. Then (5.7.3) becomes

−1 +
√

1 +AB

2B
<
−1 +

√
1 +A

2

⇒
√

1 +AB < − β

2α0
+

√
β2

4α2
0

+
β

α0
+ 1 +AB2.

Clearly, the above inequality always holds for any γ > 1. Hence q > 1 is always

satisfied.

Now let us analyse the range of value of p. By (5.7.2), we have

p =

[
−1 +

√
1 + 2β(γ − 1) + β2

α0
(γ − 1)

]2
(

2 + β
α0

)2
γ

. (5.7.4)

Therefore for γ ∈ (1,∞), we have

p(1) = lim
γ→1+

p(γ) =
−1 + 1

(2 + β
α0

)2
= 0.
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p(∞) = lim
γ→∞

p(γ) =
α0β

β + 2α0
.

Setting dp
dγ = 0, we have

γ∗ =
−α0 + 2βα0 + β2

α0
. (5.7.5)

Note that when β > 1, then γ∗ > 1 always holds. Therefore,

p(γ∗) =
(−2α0 + 2βα0 + β2)2α0

(−α0 + 2βα0 + β2)(2α0 + β)2
<

(−2α0 + 2βα0 + β2)2α0

(−2α0 + 2βα0 + β2)(2α0 + β)2

=
(−2α0 + 2βα0 + β2)α0

(2α0 + β)2
=

β2

α0
+ 2β − 2(
β
α0

+ 2
)2

<

β2

α0
+ 2β(

β
α0

+ 2
)2 = p(∞).

Therefore when γ →∞, p = α0β
β+2α0

is the global maximum of p(γ). Thus the result

follows.

Proof of Lemma 5.4.2

From system (5.4.2) we have

p1,2 =
β(γ − 1) + 1±

√
2β(γ − 1) + 1

2γ
(5.7.6)

Therefore for γ ∈ (1,∞), we have

p1(1) = lim
γ→1+

p1(γ) =
1 + 1

2
= 1.

p1(∞) = lim
γ→∞

p1(γ) =
β

2
.

p2(1) = lim
γ→1+

p2(γ) =
1− 1

2
= 0.

p2(∞) = lim
γ→∞

p2(γ) =
β

2
.

Setting dp1
dγ = 0, we have γ∗ = 2β − 1. So if β > 1, then

p1(γ
∗) =

β2

2β − 1
.
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Hence we have p1(γ
∗) > p1(∞) = β2

2β . Similarly, we obtain p2(γ
∗) = (β−1)2

2β−1 < p1(γ
∗).

Hence the result follows.
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Chapter 6

Stochastic Differential

Equations with Unbounded

Coefficients

6.1 Abstract

In this chapter, we consider a type of nonlinear stochastic differential equations

(SDEs) where the drift and diffusion coefficients are under Lipschitz-type and linear

growth condition, which can also be unbounded. We give sufficient conditions for the

existence of a unique solution to this type of SDE. The method of proof is that of

Picard iterations and the resulting conditions are new. A new comparison theorem

is also given. Note that this is a preliminary result so far. Also this work is based on

a preprint paper [27].

6.2 Introduction

We consider the following stochastic differential equation (SDE):

x(t) = x(0) +

∫ t

0
f(s, x(s))ds+

∫ t

0
g(s, x(s))dW (s), t ∈ [0, T ], (6.2.1)

under similar mathematical setting assumed in previous chapters.

In mathematics, the theory of stochastic differential equations (SDEs) has

systematically formulated by Itô in 1940s. By using Picard’s method of successive

approximations, Itô [33] establishes the existence and uniqueness of solutions to

SDEs under a sufficient condition, Lipschitz condition, i.e. under the assumption
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that there exists positive real constants c1 and c2 such that

|f(t, x1)− f(t, x2)| ≤ c1|x1 − x2|, |g(t, x1)− g(t, x2)| ≤ c2|x1 − x2|, (6.2.2)

for all x1, x2 ∈ Rd, (t, ω) a.e.. Since then, the SDEs have been studied extensively,

and have been widely accepted as an important mathematical tool in areas such as

mathematical finance, stochastic control, engineering etc. See textbooks, for example,

[45] , [55] and [69].

One direction of research has been to weaken the assumption of global

Lipschitz condition (6.2.2) by assuming only local Lipschitz condition, or non-

Lipschitz condition of a particular form (see [13], [74]), which generalise Itô criterion.

In particular, in [74], they assume that f and g satisfy moduli of continuity conditions

in the second variable, x, i.e.

|f(t, x1)− f(t, x2)| ≤ κ(|x1 − x2|), ∀x1, x2 ∈ Rd,

|g(t, x1)− g(t, x2)| ≤ ρ(|x1 − x2|), ∀x1, x2 ∈ Rd,

where κ(u), u ∈ (0,∞) is a positive increasing concave function such that∫
0+ κ

−1(u)du = +∞ and ρ(u), u ∈ (0,∞) is a positive increasing function such

that
∫
0+ ρ

−2(u)du = +∞. The above conditions are known as Yamada-Watanabe’s

condition, which is weaker than the Lipschitz condition.

However very few effort has been put in studying the SDEs with possible

unbounded coefficients. The interest in these equations is not only theoretical,

but is also motivated by applications in mathematical finance. Indeed, some very

important interest rate models are given by stochastic differential equations (see,

for example, [7], [16], [79]). Moreover, solutions to these SDEs can be unbounded.

Gyöngy and Martńez [28] present the existence and uniqueness theorem for SDE

with locally unbounded drift coefficient but bounded diffusion coefficient. In [18],

by the BMO martingale theory, Delbaen and Tang study nonlinear SDEs with the

unbounded coefficients f and g. To be more specific, they assume the following

global Lipschitz-type condition: there exist non-negative adapted processes c1(·) and

c2(·) such that

|f(t, x1)− f(t, x2)| ≤ c1(t)|x1 − x2|, |g(t, x1)− g(t, x2)| ≤ c2(t)|x1 − x2|, (6.2.3)

for all x1, x2 ∈ Rd, (t, ω) a.e.. Clearly, these conditions have great similarity with

(6.2.2). However, different from (6.2.2), here the processes c1(·) and c2(·) are not

assumed to be bounded. The main idea in [18] is using the contraction mapping
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principle to look for a fix point.

The first contribution of the present chapter, which is contained in Section

6.3, is to consider the problem of existence and uniqueness of a solution to (6.2.1)

under the condition (6.2.3). We do so under certain new conditions on the coefficients

c1(·), c2(·), which have a similarity of those of [18]. Moreover, our method of proof

is different, since it is a modification of the Picard iteration procedure rather than

being based on a fixed point theorem in [18].

In addition, the second contribution of the present chapter, which is con-

tained in Section 6.4, is to consider a comparison theorem for this class of equations

with same diffusion coefficients. This generalises the classical comparison result

of SDEs (see, for example, [1], [32], [75]) to the case of possibly unbounded coefficients.

We conclude this introductory section with some notations:

• 0 < κ,C ∈ R are given constant.

• ci(·) ∈M2(0, T ;Rd), i = 1, 3, 4 are given positive R-valued progressively measur-

able processes and c2(·) ≤ C is a given positive R-valued measurable process;

• α(t) = c21(t) + 2c1(t) + c22(t);

• p(t) ≡ exp
[
−
∫ t
0 α(s)ds

]
.

6.3 Unbounded Lipschitz-type Drift and Diffusion Co-

efficients

In this section, we give sufficient conditions for the existence and uniqueness of a

solution to

x(t) = x(0) +

∫ t

0
f(s, x(s))ds+

∫ t

0
g(s, x(s))dW (s), t ∈ [0, T ], (6.3.1)

under the following assumptions A on f and g:

(i) x(0) ∈M2(Ω,F0,P;Rd);

(ii) g(t, x) ≡ g(t) + h(t, x), where g(t) ∈ M2(0, T ;Rd) is a possibly unbounded
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process and h(t, x) ∈M2(0, T ;Rd) is an adapted process satisfies the following the

Lipschitz condition;

(iii) Lipschitz condition:

|f(t, x1)− f(t, x2)| ≤ c1(t)|x1 − x2|,

|h(t, x1)− h(t, x2)| ≤ c2(t)|x1 − x2|,

for all x1, x2 ∈ Rd, (t, ω) a.e.;

(iv) Linear growth bound:

|f(t, x)|2 ≤ c23(t) + κ|x|2,

|g(t, x)|2 ≤ c24(t) + κ|x|2,

for all x ∈ Rd, (t, ω) a.e.;

(v) f(·, 0) ∈M2(0, T ;Rd);

An interesting example of an SDE that satisfies the above conditions is the self-

financing portfolio. In this case, for some constants r, b, σ, and some suitable process

u(t), we have

dx(t) = [rx(t) + bu(t)]dt+ σu(t)dW (t), (6.3.2)

which clearly satisfies the above conditions. Thus, the equations considered in this

chapter can be seen as generalisations of (6.3.2).

Now we begin with a simpler form of (6.2.1) and then progress towards a

more general case.

Lemma 6.3.1. Let φ(·) ∈ M2(0, T ;Rd) be given and assume that f and g satisfy

the assumptions A. Then

(i) There exists a unique solution x(·) ∈M2(0, T ;Rd) of equation

x(t) = x(0) +

∫ t

0
f(s, φ(s))ds+

∫ t

0
g(s, φ(s))dW (s), t ∈ [0, T ]. (6.3.3)
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(ii) The process ∫ t

0
p(s)x(s)g(s, x(s))dW (s)

is a martingale.

Proof. (i) We first show that
∫ t
0 f(s, φ(s))ds is well-defined. Note that

E

∫ t

0
|f(s, φ(s))|ds ≤ E

∫ t

0
[|f(s, φ(s))|] ds

≤E
∫ t

0
[|f(s, φ(s))− f(s, 0)|+ |f(s, 0)|] ds+

1

2
E

∫ t

0
|g(s, φ(s))|2ds

≤ 1

2
E

∫ t

0
c21(s)ds+

1

2
E

∫ t

0
c24(s)ds+

[
1 + κ

2

]
E

∫ t

0
|φ(s)|2ds

+ E

∫ t

0
|f(s, 0)|ds <∞.

Therefore
∫ t
0 f(s, φ(s))ds is well-defined.

Secondly, we show that if φ(·) ∈ M2(0, T ;Rd), then x(·) ∈ M2(0, T ;Rd)

as well. Using the elementary inequality |a + b + c|2 ≤ 3|a|2 + 3|b|2 + 3|c|2, the

Cauchy-Schwartz inequality, Itô isometry (see, for example, (2.3.1)) and condition

(iv), we obtain

E|x(t)|2 ≤ 3E|x(0)|2 + 3E

∣∣∣∣∫ t

0
f(s, φ(s))ds

∣∣∣∣2 + 3E

∣∣∣∣∫ t

0
g(s, φ(s))dW (s)

∣∣∣∣2

≤ 3E|x(0)|2 + 6E

[∣∣∣∣∫ t

0
f(s, φ(s))ds

∣∣∣∣2
]

+ 3E

∫ t

0
|g(s, φ(s))|2ds

≤ 3E|x(0)|2 + 6E

[∣∣∣∣∫ t

0
|f(s, φ(s))|2ds

∣∣∣∣ ∣∣∣∣∫ t

0
12ds

∣∣∣∣]

+ 3E

∫ t

0
|g(s, φ(s))|2ds
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≤ 3E|x(0)|2 + 6T E

[∫ t

0
[c23(s) + κ|φ(s)|2]ds

]

+ 3E

[∫ t

0
[c24(s) + κ|φ(s)|2]ds

]
<∞

(6.3.4)

which implies that x(·) ∈M2(0, T ;Rd). Therefore equation (6.3.3) admits a unique

solution x(·) ∈M2(0, T ;Rd).

(ii) From the Burkholder-Davis-Gundy inequality (see, for example, Theorem

2.4.8) and the elementary inequality |ab| ≤ 1
2 |a|

2 + 1
2 |b|

2, there exists a constant K

such that

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
p(s)x(s)g(s, x(s))dW (s)

∣∣∣∣
]

≤K E
[∫ T

0
|
√
p(s)x(s)|2|

√
p(s)g(s, x(s))|2ds

] 1
2

=K E

[
sup
t∈[0,T ]

|
√
p(t)x(t)|2

∫ T

0

√
p(s)g(s, x(s))|2ds

] 1
2

≤K
2
E

[
sup
t∈[0,T ]

|
√
p(t)x(t)|2 +

∫ T

0
|
√
p(s)g(s, x(s))|2ds

]

≤K
2
E

[
sup
t∈[0,T ]

|x(t)|2 +

∫ T

0
|g(s, x(s))|2ds

]
<∞,

where the last step follows from the fact (similar to part (i) above) that

E

[
sup
t∈[0,T ]

|x(t)|2
]

≤ 3E

[
sup
t∈[0,T ]

|x(0)|2
]

+ 3E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
f(s, φ(s))ds

∣∣∣∣2
]
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+ 3E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
g(s, φ(s))dW (s)

∣∣∣∣2
]

≤ 3E|x(0)|2 + 6E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
f(s, φ(s))ds

∣∣∣∣2
]

+ 3
8

2(2− 1)
E

∫ T

0
|g(s, φ(s))|2ds

≤ 3E|x(0)|2 + 6E

[∣∣∣∣∫ T

0
|f(s, φ(s))|2ds

∣∣∣∣ ∣∣∣∣∫ T

0
12ds

∣∣∣∣]

+ 12E

∫ T

0
|g(s, φ(s))|2ds

≤ 3E|x(0)|2 + 6T E

[∫ T

0
[c23(s) + κ|φ(s)|2]ds

]
+ 12E

[∫ T

0
[c24(s) + κ|φ(s)|2]ds

]
<∞,

and

E

∫ t

0
|g(s, x(s))|2ds ≤ E

[∫ t

0
[c24(s) + κ|x(s)|2]ds

]
<∞.

The conclusion then follows from Corollary 2.4.1.

Now we present our main result in this chapter.

Theorem 6.3.1. The SDE (6.2.1) has a unique solution x(·) ∈ M̂2(0, T ;Rd).

Proof. (Uniqueness) Let x1(·) and x2(·) be two solutions of (6.2.1) with the claimed

properties. Then by Itô product rule and the Lipschitz property of f and g, we

obtain

d p(t)|x1(t)− x2(t)|2

=− α(t)p(t) |x1(t)− x2(t)|2dt+ 2p(t)(x1(t)− x2(t))′ [f(t, x1(t))− f(t, x2(t))] dt

+ p(t) |g(t, x1(t))− g(t, x2(t))|2 dt

+ 2p(t)(x1(t)− x2(t))′ [g(t, x1(t))− g(t, x2(t))] dW (t)

≤− α(t)p(t) |x1(t)− x2(t)|2dt+ 2c1(t)p(t) |x1(t)− x2(t)|2dt
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+ c22(t)p(t) |x1(t)− x2(t)|2dt

+ 2p(t)(x1(t)− x2(t))′ [g(t, x1(t))− g(t, x2(t))] dW (t)

≤ 2p(t)(x1(t)− x2(t))′ [g(t, x1(t))− g(t, x2(t))] dW (t)

which in integral form becomes

p(t)|x1(t)− x2(t)|2 ≤
∫ t

0
2p(s)(x1(s)− x2(s))′ [g(t, x1(s))− g(t, x2(s))] dW (s).

(6.3.5)

From Lemma 3.4.1 (ii), it is clear that the stochastic integral on the right hand side

is a martingale. Taking the expectation of both sides of (6.3.5) results in

E
[
p(t)|x1(t)− x2(t)|2

]
≤E

[∫ t

0
2p(s)(x1(s)− x2(s))′ [g(t, x1(s))− g(t, x2(s))] dW (s)

]
= 0.

Since p(t) > 0, it follows that x1(t) = x2(t), ∀ t ∈ [0, T ], a.s., which proves the

uniqueness of x(·).

(Existence) Let x0(t) = 0, for n ≥ 1, consider the following sequence of

equations:

xn(t) = x(0) +

∫ t

0
f(s, xn−1(s))ds+

∫ t

0
g(s, xn−1(s))d(s), t ∈ [0, T ]. (6.3.6)

From Lemma 6.3.1 we know that these equations have unique solutions

{xn(·) ∈ M̂2(0, T ;Rd)}n≥1. Similarly to the proof of uniqueness, we obtain

d p(t)|xn+1(t)− xn(t)|2

=− α(t)p(t)|xn+1(t)− xn(t)|2dt

+ 2p(t)(xn+1(t)− xn(t))′ [f(t, xn(t))− f(t, xn−1(t))] dt

+ p(t) |g(t, xn(t))− g(t, xn−1(t))|2 dt

+ 2p(t)(xn+1(t)− xn(t))′ [g(t, xn(t))− g(t, xn−1(t))] dW (t)

117



≤− α(t)p(t)|xn+1(t)−xn(t)|2dt+ 2c1(t)p(t)|xn+1(t)− xn(t)||xn(t)− xn−1(t)|dt

+ c22(t)p(t)|xn(t)−xn−1(t)|2dt

+ 2p(t)(xn+1(t)− xn(t))′ [g(t, xn(t))− g(t, xn−1(t))] dW (t)

≤− α(t)p(t)|xn+1(t)−xn(t)|2dt+ c21(t)p(t)|xn+1(t)− xn(t)|2dt

+ p(t)|xn(t)− xn−1(t)|2dt+ c22(t)α
2
2(t)p(t)|xn+1(t)− xn(t)|2dt

+ p(t)|xn(t)− xn−1(t)|2dt+ c22(t)p(t)|xn+1(t)−xn(t)|2dt

+ 2p(t)(xn+1(t)− xn(t))′ [g(t, xn+1(t))− g(t, xn(t))] dW (t)

≤
[
2 + C2

]
p(t)|xn(t)− xn−1(t)|2dt

+ 2p(t)(xn+1(t)− xn(t))′ [g(t, xn(t))− g(t, xn−1(t))] dW (t)

which in integral form becomes

p(t)|xn+1(t)− xn(t)|2

≤
[
2 + C2

] ∫ t

0
p(s)|xn(s)− xn−1(s)|2]ds

+

∫ t

0
2 p(s)(xn+1(s)− xn(s))′ [g(s, xn(s))− g(s, xn−1(s))] dW (s).

(6.3.7)

From Lemma 6.3.1 (ii), it is clear that the stochastic integral on the right hand side

is a martingale. Taking the expected values of both sides gives

E
[
p(t)|xn+1(t)− xn(t)|2

]
≤C E

∫ t

0
p(s)|xn(s)− xn−1(s)|2ds

=C

∫ t

0
E
[
p(s)|xn(s)− xn−1(s)|2

]
ds,

(6.3.8)

where C ≡ [2 + C2] and the equality follows from the Fubini’s Theorem (see, for

example, Theorem 2.5.2). Let us define ηn(t) ≡ E
∫ t
0 p(s)|xn(s)− xn−1(s)|2ds. Using
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the Cauchy formula∫ t

0

∫ tn−1

0
· · ·
∫ t1

0
h(s)dsdt1 · · · dtn−1 =

1

(n− 1)!

∫ t

0
(t− s)n−1h(s)ds

in repeated iterations of (6.3.8), we obtain

ηn+1(0) ≤ (Ct)n

(n)!

∫ t

0
η1(0)ds.

Since the right-hand sides of above inequality decreases with n → ∞, it follows

that {xn}n≥1 is a Cauchy sequence in M̂2(0, T ;Rd). Hence, the limiting processes

x∗ = limn→∞ xn is the solution of (6.2.1).

6.4 A Comparison Theorem

The following result generalises a classical comparison theorem for solution of stochas-

tic differential equations with possibly unbounded coefficients.

Theorem 6.4.1. (Comparison theorem) Let d = 1 and x(0) ≤ x̂(0) ∈M2(Ω,F0,P;R)

be given. Also let f̂(t, x) : Ω× (0, T )×R→ R and ĝ(t, x) : Ω× (0, T )×R→ R1×k

be progressively measurable functions such that:

|f̂(t, x1)− f̂(t, x2))| ≤ c1(t)|x1 − x2|,

|ĝ(t, x1))− ĝ(t, x2)| ≤ c2(t)|x1 − x2|,

for all x1, x2 ∈ R and

|f̂(t, x)|2 ≤ c23(t) + κ|x|2,

|ĝ(t, x)|2 ≤ c24(t) + κ|x|2,

for all x ∈ R and

f(t, x) ≤ f̂(t, x), g(t, x) = ĝ(t, x), a.s. ∀ t ∈ [0, T ],

for any x ∈ R. Then x(t) ≤ x̂(t), ∀t ∈ [0, T ], a.s., where x̂(·) is the solution of

equation

x̂(t) = x̂(0) +

∫ t

0
f̂(s, x̂(s))ds+

∫ t

0
ĝ(s, x̂(s))dW (s), t ∈ [0, T ]. (6.4.1)

Proof. From Theorem 6.3.1, it is clear that there exists a unique solution
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x̂(·) ∈ M̂2(0, T ;R) to (6.4.1). Denoting the difference by X(t) ≡ x(t) − x̂(t), we

obtain

dX(t) =
[
f(t, x(t))− f̂(t, x̂(t))

]
dt+ [g(t, x(t))− ĝ(t, x̂(t))]dW (t).

Denoting by X+(t) ≡ 1[X(t)>0]X(t), and using Tanaka-Meyer formula (see Theorem

2.4.3), we obtain

dX+(t) = 1[X(t)>0]dX(t) +
1

2
dL0(t),

where L0(t) is the local time of X(t) at point 0. Since
∫ T
0 |X(t)|dL0(t) = 0, a.s. (see

Proposition 2.4.1), we have

d[X+(t)]2 = 2X+(t)1[X(t)>0][f(t, x(t))− f̂(t, x̂(t))]dt

+ 1[X(t)>0]|g(t, x(t))− ĝ(t, x̂(t))|2dt

+ 2X+(t)1[X(t)>0][g(t, x(t))− ĝ(t, x̂(t))]dW (t).

Using Itô formula, we obtain

d p(t)[X+(t)]2 = −α(t)p(t)[X+(t)]2dt

+ 2p(t)X+(t)1[X(t)>0][f(t, x(t))− f̂(t, x̂(t))]dt

+ 1[X(t)>0]p(t)|g(t, x(t))− ĝ(t, x̂(t))|2dt

+ 21[X(t)>0]p(t)X
+(t)[g(t, x(t))− ĝ(t, x̂(t))]dW (t)

≤−α(t)p(t)[X+(t)]2dt+ 2p(t)X+(t)1[X(t)>0][f(t, x(t))− f̂(t, x(t))

+ f̂(t, x(t))− f̂(t, x̂(t))]dt

+ 1[X(t)>0]p(t)|g(t, x(t))− ĝ(t, x(t)) + ĝ(t, x(t))− ĝ(t, x̂(t))|2dt
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+ 21[X(t)>0]p(t)X
+(t)[g(t, x(t))− ĝ(t, x̂(t))]dW (t)

≤−α(t)p(t)[X+(t)]2dt+ 2p(t)X+(t)1[X(t)>0][c1(t)|X(t)|]dt

+ 1[X(t)>0]p(t)c
2
2(t)|X(t)|2dt

+ 21[X(t)>0]p(t)X
+(t)[g(t, x(t))− ĝ(t, x̂(t))]dW (t)

≤ 2 p(t)X+(t)[g(t, x(t))− ĝ(t, x̂(t))]dW (t),

which in integral form becomes

p(t)[X+(t)]2 ≤
∫ t

0
2p(s)X+(s)[g(s, x(s))− ĝ(s, x̂(s))]dW (s). (6.4.2)

Similar to Lemma 6.3.1 (ii), we now show that the stochastic integral on the right-

hand side is a martingale. In fact by the Burkholder-Davis-Gundy inequality (see

Theorem 2.4.8), the elementary inequality |ab| ≤ 1
2 |a|

2 + 1
2 |b|

2 and

|a−b|2 ≤ 2|a|2+2|b|2, and linear growth condition on g and ĝ, there exists a constant

K such that

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
2p(s)X+(s)[g(s, x(s))− ĝ(s, x̂(s))]dW (s)

∣∣∣∣
]

≤K E
[∫ T

0

∣∣∣√p(s)X+(s)
∣∣∣2 ∣∣∣√p(s)[g(s, x(s))− ĝ(s, x̂(s))]

∣∣∣2 ds] 1
2

≤K E

[
sup
t∈[0,T ]

∣∣∣√p(t)X+(t)
∣∣∣2 ∫ T

0

∣∣∣√p(s)[g(s, x(s))− ĝ(s, x̂(s))]
∣∣∣2 ds] 1

2

≤ K
2
E

[
sup
t∈[0,T ]

√
p(t)

∣∣X+(t)
∣∣2 +

∫ T

0

√
p(s)[g(s, x(s))− ĝ(s, x̂(s))]2ds

]

≤ K
2
E

[
sup
t∈[0,T ]

∣∣X+(t)
∣∣2]+K E

[∫ T

0

[
|g(s, x(s))|2 + |ĝ(s, x̂(s))|2

]
ds

]
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≤K E

[
sup
t∈[0,T ]

|x(t)|2
]

+K E

[
sup
t∈[0,T ]

|x̂(t)|2
]

+K E

[∫ T

0

[
c24(s) + κ|x(s)|2

]
ds

]

+K E

[∫ T

0

[
c24(s) + κ|x̂(s)|2

]
ds

]
<∞,

(6.4.3)

where the last step follows from the fact that

E

[
sup
t∈[0,T ]

|x(t)|2
]
<∞ and E

[
sup
t∈[0,T ]

|x̂(t)|2
]
<∞,

which are shown in Lemma 6.3.1 (ii) (simply replace φ(·) by x(·) and x̂(·) respectively).

Hence the stochastic integral on the right-hand side is a martingale due to Corollary

2.4.1. Taking the expected values of both sides gives,

E[p(t)[X+(t)]2] ≤ 0.

Hence the conclusion follows from the definition of X+(·).

6.5 Conclusion

In this chapter, we consider a type of nonlinear stochastic differential equations

(SDEs) where the drift and diffusion coefficients are under Lipschitz-type and linear

growth condition, which can also be unbounded. We give sufficient conditions for the

existence of a unique solution to this type of SDEs. We propose different approach

from the existing one and the resulting conditions are also new. Finally, we prove a

comparison theorem for SDEs with unbounded coefficients. These results, together

with results on BSDEs in Chapter 3, are expected to play an essential role in solving

similar problems on forward-backward stochastic differential equations with possibly

unbounded coefficients.
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Chapter 7

Conclusion and Future Work

Through the various sections of this thesis, we mainly study the theory of Backward

Stochastic Differential Equations with unbounded generators (coefficients) in a variety

of contexts. We discuss these equations, where the generators are possibly unbounded,

under different type of conditions which are shown to be more general or weaker.

Moreover, classical (forward) Stochastic Differential Equations with unbounded drift

and diffusion generators are also considered. Finally, based on above results, we

describe some possible future works.

In each of these situations, we develop fundamental results for the existence

(and/or uniqueness) of solutions, and prove an appropriate version of the comparison

theorem. We show that under appropriate assumptions, versions of these results

exist, even in more general situations. We obtain the sufficient conditions for the

existence and uniqueness of solutions to unbounded BSDEs under Lipschitz condition

on the generator; we derive the existence of solutions to unbounded BSDEs under

linear growth and continuity conditions on the generator; we also give new sufficient

conditions for existence of a unique solution pair to linear BSDEs which are weaker

than previously known. Stronger integrability of solution is also ensured under such

conditions. In addition, we consider the (forward) Stochastic Differential Equations

in similar fashion and generalise a revelent comparison theorem.

Furthermore, using these results, we consider some fundamental problems in

mathematical finance, which are also our motivations to study the theory of BSDEs

with possibly unbounded generators. As applications, two problems of mathematical

finance are considered. Namely, we resolve the question of completeness in a market

with possibly unbounded coefficients in such a market and the optimal investment

problem with power utility using Riccati BSDE with unbounded coefficients.

Various possible extensions to this scenario remain open. In particular, we
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have tried but not completely solved the well-posedness of solutions to BSDEs

under non-Lipshcitz conditions (see, for instance, [54]) with unbounded generators.

Such equations have shown of importance interest in various problems. Other

extensions apart from the classical theory of BSDEs are also possible. Forward-

Backward Stochastic Differential Equations (FBSDEs) are of significant interest in

many practical problems. We expect that the our results on existence and uniqueness

of solutions to nonlinear BSDEs and SDEs, i.e. in Chapter 3 and Chapter 6 will

contribute to tackle the similar problems on fully-coupled FBSDEs. Another specially

important model of symmetric matrix valued BSDEs with a quadratic growth in

(y, z) is called the Backward Stochastic Riccati Equation. In fact, the comparison

theorem of BSDE plays essential role in studying existence and uniqueness theorem

in which the drift coefficient satisfies quadratic growth in z and some local Lipschitz

conditions, which was studied by [46]. Hence our comparison theorem obtained

in Chapter 3 will also expected to contribute to study the Backward Stochastic

Riccati Equation with possibly unbounded generators. We did not consider the

computational problems which arise from the general theory of BSDEs and requires

further study on the convergence of solutions that is not addressed in this thesis.

The theory of BSDEs is still developing. This thesis presents results on the

theory of BSDEs from the classical situation but under more weaker conditions. This

provides groundwork for the extension of many existing results, both theoretical and

practical, to more general situations.
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