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This paper introduces a new learning algorithm for human activity recogni-
tion capable of simultaneous regression and classification. Building upon
Conditional Restricted Boltzmann Machines (CRBMs), Factored Four Way
Conditional Restricted Boltzmann Machines (FFW-CRBMs) incorporate
a new label layer and four-way interactions among the neurons from the
different layers. The additional layer gives the classification nodes a similar
strong multiplicative effect compared to the other layers, and avoids that the
classification neurons are overwhelmed by the (much larger set of) other
neurons. This makes FFW-CRBMs capable of performing activity recogni-
tion, prediction and self auto evaluation of classification within one unified
framework. As a second contribution, Sequential Markov chain Contrastive
Divergence (SMcCD) is introduced. SMcCD modifies Contrastive Divergence
to compensate for the extra complexity of FFW-CRBMs during training. Two
sets of experiments one on benchmark datasets and one a robotic platform for
smart companions show the effectiveness of FFW-CRBMs.

1. Introduction

Robotic support for elderly people requires (possibly
amongst others) capabilities such as monitoring and coach-
ing (Lowet et al., 2012; Manzanares et al., 2012), e.g., emer-
gency detection and medication reminders, and accurate activ-
ity detection is vital for such services. On the monitoring side, a
system that recognises human activity patterns allows for auto-
mated health guidance, as well as providing an objective mea-
sure for medical staff. Specifically, the fashion in which these
daily activities are executed (e.g., speed, fluency) can serve as
an important early indicator of possible problems. Accurate ac-
tivity recognition is made difficult by the continuous nature of
typical activity scenarios, which makes the task highly similar
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to time series prediction.
Much research has been aimed at detecting human activities

based on the output of a variety of low-power, low-bandwidth
sensors, such as Passive InfraRed (PIR) sensors, and power and
pressure meters placed either around the home, or on-body (e.g.
accelerometers (Zhang et al.; Chen et al., 2012)). The drawback
of such an approach lies in the inability to capture sufficiently
reliable data that allows to differentiate between subtly different
activities. In principle, the most accurate and suited sensors
for activity recognition would be video-cameras in combination
with advanced computer vision algorithms to interpret the data,
but this approach leads to significant privacy issues.

As an alternative, we make use of motion capture data. More
exactly, we use a Kinect R© sensor1 to generate a 3D point cloud
and to extract the human skeleton joints from it. This approach

1http://en.wikipedia.org/wiki/Kinect, Last visit June 8th, 2014
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yields relatively easy data to process and, as we will show, suf-
ficient information to accurately recognise human activities.

Literature provides other techniques that can do both classi-
fication (i.e. from a set of possible time series categories de-
termine to which category a new observation belongs or, in
our case, recognise the activity performed by a person during
a specific moment of time) and time series prediction (i.e. start-
ing from the near history observations forecast the next values
for a specific time series or, in our case, forecast the human
body’s movements or poses in the near future), each of them
with their advantages and disadvantages. Among them, Linear
Dynamic Systems such as Autoregression and Kalman filters
are well suited to model linear time series. Although extensions
for non-linear systems exist, they still have difficulties with high
non-linearity. Another successful class of time series models
are Hidden Markov Models (HMMs). HMM have reached a lot
of success in speech recognition. However, HMM models are
also less suited for highly non-linear data and become unwieldy
when the state space is large.

Recent research has profiled Deep Learning (DL) meth-
ods (Bengio, 2009) as a promising alternative for pattern recog-
nition problems. DL makes small steps towards mimick-
ing the behaviour of the human brain (Jones, 2014; Laserson,
2011). It has been successfully applied to, for example, multi-
class classification (Larochelle and Bengio, 2008), collabora-
tive filtering (Salakhutdinov et al., 2007) and information re-
trieval (Gehler et al., 2006). Due to the success of DL based
on Restricted Boltzman Machines (RBMs) (Smolensky, 1987)
in modelling static data, a number of extensions for modelling
time series have been developed. A straightforward extension
of Restricted Boltzmann Machines to model time series are
Temporal RBMs (TRBM) as described in (Sutskever and Hin-
ton, 2007). Conceptually, a TRBM consists of a succession
of RBMs (one for each time frame) with directed connections
between the nodes representing consecutive timeframes. How-
ever, a lack of an efficient training method limits their appli-
cation to real-world problems. Conditional RBMs (CRBM)
propose a different extension of RBMs for modelling time se-
quences where two separate visible layers represent (i) the val-
ues from N previous time frames and (ii) those of the current
time frame (Taylor and Hinton, 2009). A CRBM can be viewed
as adding AutoRegression to RBMs and hence are especially
suited for modelling linear time variations. They have been
successfully applied to motion capture data. To enable also the
modeling of non-linear time variations, the CRBM concept has
been further extended by incorporating three-way neural nodes
interactions that are connected by a 3-way weight tensor (Taylor
and Hinton, 2009). To overcome the computational complexity
induced by the 3-way weight tensor, the tensor can be factored
resulting in a Factored Conditional RBM (FCRBM) (Taylor
et al., 2011). These FCRBMs have been shown to give excellent
results in modelling and predicting motion capture data. They
are able to predict different human motion styles and combine
two different styles into a new one.

To our knowledge, FCRBMs represent the current state of the
art for capturing and predicting human motion, and therefore,
we chose them as a basis for our work on activity recognition.

However, the FCRBM is still not optimally suited to classify
human motion or activities. The reason for this is that the hid-
den neurons in the FCRBM are used to model how the next
frame of coordinates depends on the historic frames. The most
natural way to extend the FCRBM to include classification ca-
pabilities is by letting the hidden neurons gate the interactions
between the label and the prediction neurons. This results in a
model with 4-way neuron interactions2.

Hence, in this paper we propose a novel model, namely
Factored Four Way Conditional Restricted Boltzmann Machine
(FFW-CRBM) capable of both classification and prediction of
human activity in one unified framework. An emergent feature
of FFW-CRBM, so called Self Auto Evaluation of the classifi-
cation performance, may be very useful in the context of smart
companions. It allows the machine to autonomously recognise
that an activity is undetected and to trigger a retraining pro-
cedure. Due to the complexity of the proposed machine, the
standard training method for DL models is unsuited. As a sec-
ond contribution, we introduce Sequential Markov chain Con-
trastive Divergence (SMcCD), an adaptation of Contrastive Di-
vergence (CD) (Hinton, 2002). To illustrate the efficacy and
effectiveness of the model, we present results from two sets of
experiments using real world data originating from (i) our pre-
vious developed smart companion robotic platform (Lowet and
van Heesch, 2012) and (ii) a benchmark database for activity
recognition (Ofli et al., 2013).

The remaining of this paper is organized as follows. Sec-
tion 2 presents the mathematical definition of the problem tack-
led in this article. Section 3 presents background knowledge
on Deep Learning for the benefit of the non-specialist reader.
Section 4 details the mathematical model for the unfactorized
version of the proposed method. Section 5 describes the FFW-
CRBM model including the mathematical modelling. Section 6
describes the experiments performed and depict the achieved
results. Finally, Section 7 concludes and presents directions of
future research.

2. Problem Definition

In essence, in this paper, we aim at solving time series clas-
sification and prediction simultaneously in one unified frame-
work. Let i ∈ N represent the index of available instances, t ∈ N
to denote time, Rd a d-dimensional feature space, t−N : t−1 the
temporal window of observations recorded in the N time steps
before t, C = {0, 1, . . . , k} the set of possible classes, and Θ
the parameters of a generic mathematical model. The targeted
problem can then be written as:

Given a data setD = {X(i), y(i)} for all instances i, where:
• X(i) ∈ Rd×(t−N:t−1), is a real-valued input matrix consisting

of d rows of features, and N − 1 columns corresponding to
the associated temporal window t − N : t − 1,

• y(i)
t ∈ Rd × C is the corresponding multidimensional out-

put vector consisting of the d-dimensional real-valued fea-

24-way (and higher) interactions are also biologically plausible since they
appear to be necessary to explain the workings of the human brain (Yu et al.,
2011).
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tures at time t and an associated class label (e.g. a robotic
companion that recognizes an activity and predict the cor-
responding human poses to avoid collision).

Determine p(Y|Γ;Θ), with Y = {y(i)} ∀i and Γ = {X(i)} ∀i
representing the concatenation of all outputs and inputs re-
spectively, such that: KL(pmodel(Y|Γ;Θ)||pempirical(Y|Γ)) is min-
imised. KL represents the Kullback Leibler divergence between
the empirical and approximated (i.e., model) distributions. This
is signified by pmodel(Y|Γ;Θ), which defines a joint distribution
over Rd × C space.

3. Background

This section provides background knowledge needed for the
remainder of the paper. Firstly, Restricted Boltzmann Machines
(RBMs), being at the basis of the proposed technique, are de-
tailed. Secondly, Contrastive Divergence, the algorithm used to
fit the RBM’s hyper-parameters is detailed. Finally, Factored
Conditional Restricted Boltzmann Machines, constituting the
main motivation behind this work, are explained.

3.1. Restricted Boltzmann Machine

Restricted Boltzmann Machines (RBM) (Smolensky, 1987)
are energy-based models for unsupervised learning. These
models are stochastic with stochastic nodes and layers, making
them less vulnerable to local minima (Taylor et al., 2011). Fur-
ther, due to their neural configurations, RBMs posses excellent
generalization capabilities (Bengio, 2009).

Formally, an RBM consists of visible and hidden binary lay-
ers. The visible layer represents the data, while the hidden in-
creases the learning capacity by enlarging the class of distribu-
tions that can be represented to an arbitrary complexity. This
paper uses the following notation: i represents the indices of
the visible layer, j those of the hidden layer, and wi j denotes
the weight connection between the ith visible and jth hidden
unit. Further, vi and h j denote the state of the ith visible and
jth hidden unit, respectively. Using to the above notation, the
energy function of an RBM is given by:

E(v, h) = −

nv∑
i=1

nh∑
j=1

vih jwi j −

nv∑
i=1

viai −

nh∑
j=1

h jb j (1)

where, ai and b j represent the biases of the visible and hid-
den layers, respectively; nv and nh are the number of neurons
in the visible and hidden layer, respectively. The joint proba-
bility of a state of the hidden and visible layers is defined as:
P(v, h) =

exp(−E(v,h))
Z with Z =

∑
x,y exp (−E(x, y)). To deter-

mine the probability of a data point represented by a state v,
the marginal probability is used. This is determined by sum-
ming out the state of the hidden layer as: p(v) =

∑
h P(v, h) =∑

h(exp(−∑
i, j vih jwi j−

∑
i viai−

∑
j h jb j))

Z . In order to maximise the like-
lihood of the model, the gradients of the energy function with
respect to the weights have to be calculated. Unfortunately, in
RBMs maximum likelihood can not be straightforwardly ap-
plied due to intractability problems. To circumvent these prob-
lems, Contrastive Divergence was introduced.

3.2. Contrastive Divergence
In Contrastive Divergence (CD) (Hinton, 2002), learning fol-

lows the gradient of:

CDn ∝ DKL(p0(x)||p∞(x)) − DKL(pn(x)||p∞(x)) (2)

where, pn(.) is the resulting distribution of a Markov chain run-
ning for n steps. To derive the update rules for wi j, the en-
ergy function is re-written in a matrix form as: E(v,h; W) =

−hT Wv−vT a−hT b. v = [v1, . . . , vnv ] is a binary vector collect-
ing all visible units vi, with nv the index of the last visible neu-
ron. h = [h1, . . . , hnh ] is a binary vector collecting all the hidden
units h j, with nh the index of the last hidden neuron. W ∈ Rnh×nv

represents the matrix of all weights wi j, a ∈ Rnv ,b ∈ Rnh are
vectors containing the biases of v and h, respectively. Since
the visible units are conditionally independent given the hidden
units and vice versa, learning can be performed using one step
Gibbs sampling, which is carried in two half-steps: (1) update
all the hidden units, and (2) update all the visible units. Thus,
in CDn the weight updates are done as follows: wτ+1

i j = wτ
i j +

α
(〈
〈h jvi〉p(h|v;W)

〉
0
− 〈h jvi〉n

)
where τ is the iteration, α is the

learning rate,
〈
〈h jvi〉p(h|v;W)

〉
0

= 1
NI

∑NI
k=1 v(k)

i P(h(k)
j = 1|v(k); W)

and 〈h jvi〉n = 1
NI

∑NI
k=1 v(k)(n)

i P(h(k)(n)
j = 1|v(k)(n); W) where NI is

the total number of input instances, the superscript (k) shows the
kth input instance. The superscript (n) indicates that the states are
obtained after n iterations of Gibbs sampling from the Markov
chain starting at p0(·).

3.3. Factored Conditional Restricted Boltzmann Machine
Conditional Restricted Boltzmann Machines (CRBM) (Tay-

lor and Hinton, 2009) are an extension over RBMs used to
model time series data and human activities. They use an undi-
rected model with binary hidden variables h, connected to real-
valued (i.e. Gaussian) visible ones v. At each time step t, the
hidden and visible nodes receive a connection from the visible
variables of the last N time-steps. The history of the values up
to time t is collected in the real-valued history vector v<t. It is
constructed by starting with the observations recorded at time
step t−N, and after that, by adding sequentially after its last el-
ement, the observations recorded until time step t − 1, where N
represents the size of the temporal window considered. Thus,
v<t = [v1,t−N , ..., vnv,t−N , ..., v1,t−1, ..., vnv,t−1]. We mention that
in any formula in the paper, we note with the subscript ,t the
present time step, and with the subscript ,<t the previous N time
steps, for any vector. The total energy of CRBM is given by:

E =

nv∑
i=1

(âi,t − vi,t)2

2σ2
i

−

nh∑
j=1

b̂ j,th j,t −

nv∑
i=1

nh∑
j=1

Wi j
vi,t

σi
h j,t (3)

where âi,t = ai +
∑nv<t

k=1 Akivk,<t and b̂ j,t = b j +
∑nv<t

k=1 Bk jvk,<t rep-
resent the “dynamic biases”, which include the static bias and
the contribution from the past, nv<t = nv(N − 1) is the number
of elements in v<t, and σi represents the standard deviation.

To predict different types of time series within the same
model, Taylor added three-way interactions between neu-
rons. To reduce the computational complexity these three-
way interactions are factored, resulting in Factored CRBM
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(FCRBMs) (Taylor and Hinton, 2009). Their energy is:

E =
1
2

nv∑
i=1

(âi,t − vi,t)2 −

nh∑
j=1

b̂ j,th j,t (4)

−

nF∑
f =1

nv∑
i=1

nh∑
j=1

nz∑
p=1

Wv
i f W

h
j f W

z
p f vi,th j,tzp,t

where, Wv, Wh, and Wz, represent the factored visible, factored
hidden, and factored features weights, respectively. nF is the
number of factors, zt is a vector for the deterministic features
layer, and nz the number of deterministic features. FCRBMs
have been successfully used to model different styles of human
motion and time series predictions. Interested readers are re-
ferred to (Taylor et al., 2011) for a more comprehensive discus-
sion.

Although successful, FCRBMs are not capable of perform-
ing classification and predictions in one unified framework. The
proposed methods, explained next, solve this problem by intro-
ducing: (1) an additional label layer, and (2) four-way multi-
plicative interactions between neurons.

4. Four Way Conditional Restricted Boltzmann Machines

FFW-CRBMs are derived by factorizing the weight tensor of
the original Four-Way Conditional Restricted Boltzmann Ma-
chine (FW-CRBM). For ease of presentation, this section intro-
duces the full FW-CRBM, which is then factorized leading to
the FFW-CRBM in Section 5.

To classify and regenerate human motion, FW-CRBMs make
use of a four layer configuration, shown in Figure 1. The his-
tory layer v<t describes past frames of an activity, the present
layer vt describes the current time step (prediction), the hidden
layer ht assures that the machine is complex enough to model
the intended activities, and the label layer lt guarantees that
the machine is capable of classifying different types of activ-
ities. These layers are connected using a fourth order tensor
Wi jko ∈ Rnv×nh×nv<t×nl , where nv, nh, nv<t , nl represent the num-
ber of neurons from the present, hidden, history and label lay-
ers, respectively. Furthermore, each of the present, hidden and
label layers include a, b, and c biases, respectively.

Formally, an FW-CRBM defines a joint probability over vt,
ht, and lt. This distribution is conditioned by v<t, and the
model parameters Θ. Therefore, the probability distribution
is defined as follows: P(vt,ht, lt |v<t,Θ) =

exp(−E(vt ,ht ,lt |v<t ,Θ))
Z ,

where, E(vt,ht, lt |v<t,Θ) represents the total energy of the
model detailed in Equation 5, and Z is the normalization term,
called the partition function, and calculated according to: Z =∑
vt ,ht ,lt

exp (−E(vt,ht, lt |v<t,Θ)).

4.1. The energy of FW-CRBMs
FW-CRBMs’ energy function is defined as:

E(vt,ht, lt |v<t,Θ) = −

nv∑
i=1

(vi,t − ai)2

σi
2 −

nh∑
j=1

h j,tb j (5)

−

nl∑
o=1

lo,tco −

nv∑
i=1

nh∑
j=1

nv<t∑
k=1

nl∑
o=1

Wi jko
vi,t

σi
h j,t

vk,<t

σk
lo,t

Fig. 1. Overall schematic of the proposed FW-CRBM showing the four
layer configuration of the machine.

where, σi and σk represent the standard deviation for the cor-
responding neurons from the present and history layer respec-

tively.
nv∑

i=1

(vi,t−ai)2

σi
2 ,

nh∑
j=1

h j,tb j,
nl∑

o=1
lo,tco represent the energy con-

tributions of each of the visible, hidden, and label neurons re-

spectively and
nv∑

i=1

nh∑
j=1

nv<t∑
k=1

nl∑
o=1

Wi jko
vi,t

σi
h j,t

vk,<t

σk
lo,t describes the con-

tribution of the weight tensor to the overall energy function.

4.2. Probabilistic Inference in FW-CRBMs

Since there are no connections between the neurons in the
same layer, inference can be performed in parallel. The overall
input of each of the hidden unit sh

j,t, visible unit sv
i,t, and labelled

unit, sl
o,t is calculated according to:

sh
j,t =

nv∑
i=1

nv<t∑
k=1

nl∑
o=1

Wi jko
vi,t

σi

vk,<t

σk
lo,t (for jth hidden unit) (6)

sv
i,t =

nh∑
j=1

nv<t∑
k=1

nl∑
o=1

Wi jkoh j,t
vk,<t

σk
lo,t (for ith visible unit) (7)

sl
o,t =

nv∑
i=1

nh∑
j=1

nv<t∑
k=1

Wi jko
vi,t

σi
h j,t

vk,<t

σk
(for oth labelled unit) (8)

For each of the jth hidden ith visible and oth labelled unit, infer-
ence is performed according to:

p(h j,t = 1|vt, v<t, lt) = sigmoid
(
−b j − sh

j,t

)
(9)

p(vi,t = x|ht, v<t, lt) = N
(
ai + sv

i,t, σ
2
i

)
(10)

p(lo,t = 1|vt, v<t,ht) = sigmoid
(
−co − sl

o,t

)
(11)

where, sigmoid(·) is the sigmoidal function, andN is the Gaus-
sian distribution.
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4.3. Learning in FW-CRBMs
The update rules are attained by deriving the energy function

with respect to the free parameters (i.e., the weights tensor, and
the biases of each of the layers) leading to:

∆Wi jko ∝ vk,<t〈vi,th j,tlo,t〉0 − vk,<t〈vi,th j,tlo,t〉K (12)
∆ai ∝ 〈vi,t〉0 − 〈vi,t〉K (13)
∆b j ∝ 〈h j,t〉0 − 〈h j,t〉K (14)
∆co ∝ 〈lo,t〉0 − 〈lo,t〉K (15)

with K being the number of steps of a Markov Chain, Wi jko

representing the weights connecting the four layers and ai, b j,
and co denoting the ith bias of the present, the jth bias of the
hidden, and the oth bias of the label layers, respectively.

Although successful, FW-CRBMs incur a computational
complexity of O(n4) making them unsuitable for real-world ap-
plications. Next, the more efficient counter-part, the Factored
FW-CRBM (i.e., FFW-CRBM) is introduced.

5. Factored Four Way Conditional Restricted Boltzmann
Machine

To reduce the computational complexity of FW-CRBM from
O(n4) to O(n2), FFW-CRBM factors the 4th order weight tensor
(i.e., Wi jko) to a sum of products of second order tensors (Memi-
sevic and Hinton, 2010). A high level schematic depicting such
a factorization is shown in Figure 2. Factoring of the four-way

Fig. 2. Overall schematic of the proposed FFW-CRBM showing the four
layer configuration of the machine as well as the factored weight tensor.

weight tensor is achieved according to:

Wi jko =

nF∑
f =1

Wv
i f W

h
j f W

v<t
k f W l

o f (16)

where nF is number of factors and i, j, k, and o represent the
indices of the visible layer neurons vt, the hidden layer neurons

ht, the history layer neurons v<t and the labelled layer neurons
lt respectively. Furthermore, Wv, Wh, Wl represent the bidirec-
tional and symmetric weights from the visible, hidden and label
layers to the factors, respectively. Moreover, Wv<t denotes the
directed weights from the history layer to the factors.

Although, FFW-CRBMs behave similarly to FW-CRBMs
(i.e., having two informational flows, one for classification and
one for prediction), the mathematical formalization needs to be
re-derived using the factored weights of Equation 16.

5.1. Energy for the Factored Model

In the case of FFW-CRBMs’ energy, the first three terms of
Equation 5 remain unchanged. However, the fourth term makes
use of the factoring in Equation 16, yielding:

E(vt,ht, lt |v<t,Θ) =

−

nv∑
i=1

(vi,t − ai)2

σi
2 −

nh∑
j=1

h j,tb j −

nl∑
o=1

lo,tco

−

nF∑
f =1

nv∑
i=1

Wv
i f

vi,t

σi

nh∑
j=1

Wh
j f h j,t

nv<t∑
k=1

Wv<t
k f

vk,<t

σk

nl∑
o=1

W l
o f lo,t (17)

5.2. Probabilistic Inference in the Factored Model

Inference in FFW-CRBMs is conducted in parallel as in the
FW-CRBM case. Nonetheless, the inputs, for each of the hid-
den, visible and label nodes are given respectively, by:

sh
j,t =

nF∑
f =1

Wh
j f

nv∑
i=1

Wv
i f

vi,t

σi

nnv<t∑
k=1

Wv<t
k f

vk,<t

σk

nl∑
o=1

W l
o f lo,t (18)

sv
i,t =

nF∑
f =1

Wv
i f

nh∑
j=1

Wh
j f h j,t

nnv<t∑
k=1

Wv<t
k f

vk,<t

σk

nl∑
o=1

W l
o f lo,t (19)

sl
o,t =

nF∑
f =1

W l
o f

nv∑
i=1

Wv
i f

vi,t

σi

nh∑
j=1

Wh
j f h j,t

nnv<t∑
k=1

Wv<t
k f

vk,<t

σk
(20)

These are then substituted in Equations 9, 10, 11 for determin-
ing the probability distributions for each of the visible, hidden
and label layers.

5.3. Learning in the Factored Model

This section is devoted to the learning procedure of FFW-
CRBMs. First, the update rules are derived, then an explanation
of SMcCD is detailed.

5.3.1. Update rules
The general update rule for the hyper-parameters Θ is given

by:
Θτ+1 = Θτ + ρ∆Θτ + α(∆Θτ+1 − γΘτ) (21)

where τ, ρ, α, and γ represent the update number, momentum,
learning rate, and weights decay, respectively. The interested
reader is referred to (Hinton, 2010) for a more thorough dis-
cussion on the choice of such parameters. The delta rule for
each of the hyper-parameters can be computed by deriving the
energy function from Equation 17, yielding:
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∆Wv
i f ∝

〈
vi,t

nh∑
j=1

Wh
j f h j,t

nv<t∑
k=1

Wv<t
k f vk,<t

nl∑
o=1

W l
o f lo,t

〉
0

(22)

−

〈
vi,t

nh∑
j=1

Wh
j f h j,t

nv<t∑
k=1

Wv<t
k f vk,<t

nl∑
o=1

W l
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∆ai ∝ 〈vi,t〉0 − 〈vi,t〉λ (26)
∆b j ∝ 〈h j,t〉0 − 〈h j,t〉λ (27)
∆co ∝ 〈lo,t〉0 − 〈lo,t〉λ (28)

with λ being a Markov chain step running for a total number of
K steps and starting at the original data distribution.

5.3.2. Sequential Markov Chain Contrastive Divergence
Due to the fact that in the negative phase of the parame-

ters update, the present and label layers have to be modified
abide their common dependency, common Contrastive Diver-
gence can not be directly applied. To remedy this problem,
Sequential Markov Chain Contrastive Divergence (SMcCD) is
introduced. SMcCD extends CD by running two sequential
Markov chains as shown in Algorithm 1. The first reconstructs
vt, after the initialization of all neurons from vt with 0, using
the current machine’s configuration, while fixing the values at
the label and past layers (lt and v<t) to the current training in-
stance. The second tries to reconstruct the label layer lt from the
vt and v<t. The weights updates are performed at each step of
the Markov chain. After a number of iterations over the training
data, the weights (and thus the FFW-CRBM), representing the
minimised energy level, can then be used for classification as
well as prediction.

5.3.3. Self Auto Evaluation (SAE) of the classification perfor-
mance

Given that FFW-CRBMs are capable of performing classifi-
cation and prediction using the same free parameters, a three
steps procedure, can be used in real time applications to eval-
uate classification performance. Firstly, the machine classifies
the current observation (i.e., finding the label lt at time t, based
on history, v<t, and present frames, vt). Secondly, a prediction

Sequential Markov Chain Contrastive Divergence:
Inputs: TD - set of training data;
K - number of Markov Chain steps;
Initialization: Θ←N(0, σ2);
set α, ρ, γ;
for all epochs do

for each Sample ∈ TD do
%%First Markov Chain to reconstruct vt;
vt ← initialization with 0;
lt = Sample.Label;
v<t = Sample.History;
ht = InferHiddenLayer(vt,lt,v<t,Θ);
for λ = 0;λ < K;λ + + do

%%Positive phase;
pSt=GetPosStats(ht,Sample.Present,lt,v<t,Θ);
%%Negative phase;
vt=InferPresentLayer(ht,lt,v<t,Θ);
ht = InferHiddenLayer(vt,lt,v<t,Θ);
nSt=GetNegStats(ht,vt,lt,v<t,Θ);
Θ=UpdateWeights(pSt,nSt,Θ,α,ρ,γ);

end
%%Second Markov Chain to reconstruct lt;
lt ← initialization with 0;
vt = Sample.Present;
v<t = Sample.History;
ht = InferHiddenLayer(vt,lt,v<t,Θ);
for λ = 0;λ < K;λ + + do

%%Positive phase;
pSt=GetPosStats(ht,Sample.Label,vt,v<t,Θ);
%%Negative phase;
lt=InferLabelLayer(ht,vt,v<t,Θ);
ht = InferHiddenLayer(vt,lt,v<t,Θ);
nSt=GetNegStats(ht,vt,lt,v<t,Θ);
Θ=UpdateWeights(pSt,nSt,Θ,α,ρ,γ);

end
end

end
Algorithm 1: Sequential Markov Chain Contrastive Diver-
gence

of the next values on the visible neurons vt+1 at time t + 1, us-
ing the previously obtained label lt, and history frames, is per-
formed. Finally, the Root Mean Square Error (RMSE) can be
used to compare the prediction vt+1 with the actual observation
acquired from sensory data.

6. Experiments and Results

Two sets of experiments were performed to test the proposed
models. In the first, FFW-CRBMs were used to classify and
predict on skeleton data gathered using a Microsoft Kinect

TM

sensor, as shown in Fig 3. In the second experiment (i.e., Sec-
tion 6.2) FFW-CRBM was tested on the Berkeley multimodal
human dataset (Ofli et al., 2013). Results in each of the above
experiments demonstrate that FFW-CRBMs outperform state-
of-the-art techniques, such as SVMs (Cortes and Vapnik, 1995),
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CRBMs, and FCRBMs.

Fig. 3. The overall setup of detecting human activities. On the left a person
performs a certain activity in front of a robot equipped with the Microsoft
KinectTM sensor. This is then encoded using the coordinates of the 15 joints
shown on the right.

6.1. Human Activity Recognition
In this set of experiments, FFW-CRBMs were tested on real-

world data acquired through a Microsoft Kinect
TM

sensor op-
erating under the Robotic Operating System3 (ROS) frame-
work4 installed on our robot (Lowet and van Heesch, 2012).
Two classes of experiments were conducted. In the first, Ex-
ercise Activities (EA) were performed in front of the Kinect
sensor and the positions of the joints of the exercising subjects
were collected. These exercises involved: “body squats”(EA1),

Fig. 4. Screen-shots with the human skeleton joints for the exercise activi-
ties experiment.

“vertical to horizontal hand movements”(EA2), “opening and
closing of arms while moving”(EA3), “jumping”(EA4), “leg

3http://wiki.ros.org/, Last visit June 8th, 2014
4Please note, the FW-CRBM is too computationally expensive to apply in

real-world experiments. It is for this reason, that FFW-CRBM was used.

lunges”(EA5), and “walking”(EA6), as depicted in Fig 4. In
the second set, a more difficult scenario was considered. Here,
users performed Table Activities (TA), which included: “phon-
ing” (TA1), “typing” (TA2), “eating a sandwich” (TA3), “eating
using a knife and a fork” (TA4), “reading” (TA5), and “writing”
(TA6). The goals in each of the two experiments were to: (1)
classify the activity, (2) predict the human poses for each of the
activities, and (3) assess the SAE procedure. To determine the
performance of the model we used 5-fold cross-validation, by
splitting the data in 5 folds. Within each fold, to avoid altering
the time series, we kept the data in their chronological order
(i.e. keep the continuity of the human poses when an activity is
performed). This splitting was helpful to have a ground truth for
assessing the multi-step prediction performance. Results show
that FFW-CRBM outperforms each of: (1) SVMs (in classifi-
cation) and (2) CRBMs and FCRBMs (in prediction).

The inputs were frames of 45 dimensions, corresponding to
15 joints, at a certain time instance t. Each joint is represented
in the three dimensional space, by the (x, y, z) absolute coordi-
nates. The origin of the coordinates system is situated in the
RGB camera of the Kinect sensor. The layers of the FFW-
CRBM were set to 45 neurons in the visible layer (one for each
of the dimensions), 6 neurons in the label layer (one for each
of the activities), and 1080 history neurons in the history layer
corresponding to 24 frames. Different values for the number
of hidden neurons and number of factors were tried, by per-
forming cross-validation on a small amount of instances picked
randomly from the datasets. As a result, the number of hid-
den neurons was set to 40 with 40 factors. In this configura-
tion the FFW-CRBM had 46 931 weight parameters. The ini-
tial learning rate was 10−4 to guarantee a bounded reconstruc-
tion error. The initial number of the Markov Chain steps in the
training phase was set to 10. The initialisation of the weights
was N(0, 0.3). In this model, the four way tensor is written as
a product of four two way tensors and 0.34 = 0.0081, which
represents the usual value for the variance of the weight initial-
isations in standard RBMs. Further particularities, such as the
momentum and the weight decay were set to 0.9 and 0.0002
respectively (Hinton, 2010). After a given initial number of
iterations, the learning rate was decreased to 10−5 and the SM-
cCD steps were increased to 50 and a new set of iterations was
started.

Table 1. Confusion matrix in percentages (with mean ± standard deviation)
for FFW-CRBM v.s. SVM on classifying Human Exercise activities. In the
top of the table are the FFW-CRBM results, while the bottom represents
the SVM results.

Method Activities EA1 EA2 EA3 EA4 EA5 EA6

FFW-CRBM

EA1 98 ± 1.5 1.3 ± 0.8 0 0 0 0.7 ± 0.6
EA2 1.3 ± 1.2 98.7 ± 1.2 0 0 0 0
EA3 0.6 ± 0.9 0 94 ± 2.6 1.2 ± 1.1 4.2 ± 0.7 0
EA4 6 ± 1.2 0 0 94 ± 1.2 0 0
EA5 0 0 0 0 98.9 ± 1.1 1.1 ± 1.1
EA6 0 0 7.4 ± 2.1 0 3.6 ± 1.6 89 ± 2.3

SVM

EA1 94 ± 2.1 0 0 0 0.7 ± 0.8 5.3 ± 1.9
EA2 8.5 ± 3.1 91.5 ± 3.1 0 0 0 0
EA3 15 ± 2.3 2.3 ± 1.4 82.1 ± 3.4 0 0.6 ± 0.8 0
EA4 47 ± 5.3 1 ± 1.2 0 52 ± 4.7 0 0
EA5 6 ± 1.6 0 0 0 94 ± 1.6 0
EA6 28 ± 2.3 3.1 ± 1.6 0 1.9 ± 1.4 2 ± 1.8 65 ± 2.7



8

6.1.1. Classification on EA
In the case of exercise activities, the data set initially con-

sisted of 3876 instances covering all six activities (i.e. EA1,
EA2, EA3, EA4, EA5, EA6). Table 1 reports the classification
results and the comparison between FFW-CRBM and SVMs
using a Radial Basis Function (RBF) kernel and the default pa-
rameters from LIBSVM (Chang and Lin, 2011). It is clear that
FFW-CRBM outperforms SVMs. For instance, FFW-CRBM
achieved about 89% accuracy, compared to 65% for SVMs clas-
sifying EA6 (i.e., walking).

6.1.2. Predictions on EA
In the second phase of this experiment, one-step and multi-

step predictions of human skeleton joint coordinates was con-
sidered. Here, a class label was fixed and the machine re-
generates the joints values. In other words, given a class label,
the task was to determine the 45-dimensional real valued out-
put on the visible layer. Due to the properties of FFW-CRBMs,
there is no need to re-train the inverse of the learned classi-
fier which is nearly impossible with existing techniques such as
SVMs. Using the FFW-CRBM, the task was performed by run-
ning a time step in the network to determine the visible unit val-
ues (i.e., the inverse problem). The results of this re-generation
are shown in Table 2 and Table 3, where the errors between the
true values and the predicted values of FFW-CRBMs, CRBMs,
and FCRBMs are presented with mean and standard deviation,
over all testing instances. The metric used to measure these er-
rors was RMSE.
One-Step Prediction: From the results shown in Table 2, it
is clear that FFW-CRBM outperforms current state-of-the-art
techniques in one-step predictions, where it attains the lowest
reconstruction error of 0.018 compared to 0.036 for FCRBM
and 0.106 for normal CRBMs.

Table 2. One step prediction, RMSE values (with mean ± standard devia-
tion) of human skeleton joints averaged over all test instances for Human
Exercise activities using FFW-CRBM, CRBM and FCRBM.

Activities CRBM FCRBM FFW-CRBM
EA1 0.110±0.005 0.054±0.002 0.028±0.008
EA2 0.138±0.003 0.036±0.006 0.018±0.012
EA3 0.106±0.012 0.044±0.021 0.023±0.011
EA4 0.126±0.011 0.094±0.008 0.027±0.014
EA5 0.125±0.004 0.068±0.011 0.026±0.009
EA6 0.123±0.026 0.093±0.007 0.048±0.019

Multi-Step Prediction: In this experiment the machine was al-
lowed to progress for a number of steps. Prediction errors for
each of the activities were monitored. In Table 3 the minimum,
mean, and maximum incurred errors over all the activities at
10, 20, . . . , 50 steps, are shown for CRBM, FCRBM, and FFW-
CRBM. FFW-CRBM outperforms the other techniques, having
a maximum averaged prediction error of 0.094 after 50 predic-
tion steps.

6.1.3. Self Auto Evaluation on EA
In Figure 5, the results of the SAE procedure are averaged for

all joint-coordinates, over all correctly or incorrectly classified

instances for exercise activities. For any activity, the predic-
tion error of incorrectly classified instances is at least 2.5 times
higher than the prediction error for correct classified instances,
with a maximum of 7 times bigger for EA6. These demonstrate
that as the classification is wrong the prediction error increases
dramatically. In such a scenario, even a very simple technique,
e.g., thresholding, can be adopted to decide whether to retrain
the model, on novel unknown activities.
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Fig. 5. Self Auto Evaluation results of FFW-CRBM in the case of Hu-
man Exercise activities. For any activity classified correctly, the black
histograms show the mean of the prediction error, and the top red lines
represent the standard deviations. The red histograms show the same, but
in the case of wrong classified instances.

6.1.4. Classification on TA
The same experiments were repeated in a more difficult sce-

nario. In table activities there are a lot of similarities between
the joint movements making it harder to differentiate among
them. The set-up of the FFW-CRBM was identical to the pre-
vious case. The dataset however, consisted of 12483 instances.
Classification results shown in Table 4 demonstrate that FFW-
CRBM is again capable of outperforming SVMs with RBF ker-
nels where, for instance, FFW-CRBM achieved 81% accuracy
compared to 66.5% on TA1 (i.e., phoning).

Table 4. Confusion matrix in percentages (with mean ± standard deviation)
for FFW-CRBM versus SVM on classifying Human Table activities, clearly
manifesting that the former outperforms the latter.

Method Activities TA1 TA2 TA3 TA4 TA5 TA6

FFW-CRBM

TA1 81 ± 4.7 4 ± 2.3 9.7 ± 2.6 0 3.6 ± 2.1 1.7 ± 1.2
TA2 2.1 ± 0.8 91.3 ± 3.2 0 2.5 ± 2.9 0 4.1 ± 2.8
TA3 1.4 ± 1.8 2.3 ± 1.9 86.3 ± 4.2 0 4 ± 0.9 6 ± 3.1
TA4 0 0 0 93 ± 4.2 7 ± 4.2 0
TA5 0 0 0 8.5 ± 1.3 91.5 ± 1.3 0
TA6 0.6 ± 0.9 0 0 1.5 ± 1.2 1.8 ± 0.6 96.1 ± 1.6

SVM

TA1 66.5 ± 4.2 7 ± 1.6 21 ± 4.3 5.5 ± 3.2 0 0
TA2 7 ± 3.2 78.1 ± 2.6 0 13.7 ± 2.9 0 1.2 ± 1.4
TA3 19.4 ± 3.8 6 ± 2.4 70.2 ± 5.7 3 ± 2.8 1.4 ± 0.6 0
TA4 1.4 ± 1.8 0 3 ± 1.3 82.5 ± 2.6 7.1 ± 1.8 6 ± 3.7
TA5 0 14.1 ± 2.1 3.9 ± 1.2 5 ± 2.7 65 ± 4.2 12 ± 3.1
TA6 0 5 ± 2.1 0 0 7.7 ± 0.9 87.3 ± 1.7
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Table 3. Multi-step prediction results of CRBM, FCRBM and FFW-CRBM on exercise activities. The table represents the minimum, mean and maximum
incurred errors over all activities at different numbers of prediction steps with mean (µ) and standard deviation (σ).

Prediction Minimum Mean Maximum
CRBM FCRBM FFW-CRBM CRBM FCRBM FFW-CRBM CRBM FCRBM FFW-CRBM

10 steps µ 0.102 0.039 0.022 0.116 0.048 0.038 0.128 0.076 0.071
σ 0.002 0.003 0.004 0.007 0.016 0.021 0.011 0.007 0.021

20 steps µ 0.112 0.037 0.028 0.121 0.046 0.043 0.132 0.083 0.093
σ 0.004 0.002 0.003 0.008 0.019 0.026 0.011 0.006 0.014

30 steps µ 0.109 0.038 0.037 0.121 0.049 0.047 0.124 0.088 0.077
σ 0.004 0.002 0.009 0.011 0.021 0.017 0.014 0.005 0.012

40 steps µ 0.110 0.037 0.035 0.118 0.059 0.056 0.131 0.139 0.078
σ 0.003 0.003 0.012 0.011 0.035 0.028 0.004 0.017 0.016

50 steps µ 0.110 0.037 0.037 0.119 0.086 0.059 0.126 0.332 0.094
σ 0.006 0.003 0.004 0.012 0.102 0.027 0.006 0.082 0.031

Table 6. Multi-step prediction results of CRBM, FCRBM and FFW-CRBM on table activities. The table represents the minimum, mean and maximum
incurred errors over all activities at different numbers of prediction steps with mean (µ) and standard deviation (σ).

Prediction Minimum Mean Maximum
CRBM FCRBM FFW-CRBM CRBM FCRBM FFW-CRBM CRBM FCRBM FFW-CRBM

10 steps µ 0.041 0.036 0.029 0.045 0.028 0.027 0.055 0.045 0.038
σ 0.004 0.005 0.003 0.004 0.007 0.004 0.002 0.006 0.003

20 steps µ 0.045 0.032 0.028 0.047 0.032 0.029 0.051 0.047 0.039
σ 0.002 0.015 0.006 0.008 0.007 0.004 0.005 0.007 0.003

30 steps µ 0.041 0.036 0.028 0.043 0.039 0.034 0.052 0.045 0.041
σ 0.003 0.006 0.003 0.004 0.005 0.008 0.003 0.004 0.004

40 steps µ 0.042 0.038 0.027 0.046 0.041 0.033 0.049 0.047 0.041
σ 0.003 0.009 0.004 0.004 0.006 0.003 0.004 0.005 0.004

50 steps µ 0.044 0.036 0.030 0.048 0.039 0.034 0.051 0.048 0.042
σ 0.004 0.009 0.003 0.003 0.005 0.006 0.003 0.009 0.006

6.1.5. Predictions on TA
Here again, the task was to regenerate joint movements from

class labels. Results are summarised in Table 5 for one step
predictions and in Table 6 for multi-step predictions.
One-Step Prediction: Results of Table 5 show that FFW-
CRBM outperforms FCRBMs and CRBMs where, for exam-
ple, FFW-CRBM achieves a minimum reconstruction error of
0.018 compared to 0.070 and 0.082 on TA4.

Table 5. One step prediction, RMSE values (with mean ± standard devia-
tion) of human skeleton joints averaged over all test instances for Human
Table activities. FFW-CRBM is compared against CRBM and FCRBM
and it outperforms them in almost all cases.

Activities CRBM FCRBM FFW-CRBM
TA1 0.050±0.002 0.032±0.006 0.043±0.005
TA2 0.042±0.006 0.046±0.003 0.022±0.003
TA3 0.070±0.003 0.048±0.001 0.041±0.002
TA4 0.058±0.001 0.051±0.003 0.032±0.006
TA5 0.082±0.004 0.070±0.004 0.018±0.005
TA6 0.063±0.002 0.044±0.003 0.031±0.002

Multi-Step Prediction: The same experiments were performed
for multi-step predictions as in the exercise activities case. Pre-
diction error results are summarised in Table 6. Also here the
proposed method outperforms the state-of-the-art techniques in
multi-step predictions.

6.1.6. Self Auto Evaluation on TA
The SAE procedure was again applied but using TA dataset.

In this case, Figure 6 confirms the previous results in which,
when the classification is wrong, the prediction error increases
substantially, most clearly illustrated for TA5.
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Fig. 6. Self Auto Evaluation results of FFW-CRBM in the case of Human
Table activities. For any activity classified incorrectly, the red histogram
show the mean of the prediction error, and the top black lines represent
the standard deviations. The black histograms show the same, but in the
case of correct classified instances.
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6.2. Berkeley Multimodal Human Action Database
In order to benchmark the classification accuracy of FFW-

CRBM method, it was tested on the Berkeley Multimodal Hu-
man Action Database (MHAD) (Ofli et al., 2013) benchmark.
Given the complex nature of this dataset, such an experiment
can better judge the classification robustness of the proposed
method. This dataset contains 11 activities performed by 12
persons. The difficulty in this experiment is that the training
and test data come from different distributions.

Data from the optical mocap containing 93 dimensions was
used. The original data contained around 400 frames per sec-
ond. To speed up the learning process the data was split in
temporal windows, each represented by the mean of 20 original
frames. The layers of the FFW-CRBM were set to 93 neurons
in the visible layer, 11 neurons in the labelled layer, and 1860
neurons in the history layer. The number of hidden neurons
was set to 10 with 10 factors. The initial number of the Markov
chain steps in the training phase was set to 10. The initialisation
of the weights was set to N(0, 0.3). The model was trained for
13 iterations.

The same classification scenario was followed as in (Ofli
et al., 2013), in which the first 7 users were used to train the
model and the last 5 users were used for testing. To assess
the stochastic nature of FFW-CRBM and to compensate the ab-
sence of k-fold cross-validation technique in the original classi-
fication scenario, the training/testing procedures were repeated
10 times. As depicted in Table 7, the accuracy of FFW-CRBM
is higher than the accuracies reported in the original paper.

Table 7. Classification accuracy on MHAD database.
Model Accuracy

1-NN classifier (Ofli et al., 2013) 74.82%
3-NN classifier (Ofli et al., 2013) 75.55%

K-SVM (Ofli et al., 2013) 79.93%
FFW-CRBM 81.12 ± 1.3%

7. Conclusions and Future Work

In this paper, a new machine learning technique for activ-
ity recognition and prediction is proposed. Factored Four Way
Conditional Restricted Boltzmann Machines, together with an
adapted training algorithm SMcCD are capable of: (1) clas-
sification, (2) prediction, and (3) self auto evaluation of their
classification performance within one unified framework. The
efficacy and performance of FFW-CRBM has been demon-
strated on real-world data acquired from our previously devel-
oped robotic platform for smart companions and on benchmark
datasets. Results showed that FFW-CRBMs are capable of out-
performing current state-of-the-art machine learning algorithms
in both classification and regression.

Even though FFW-CRBMs are successful, the choice of their
parameters such as the number of hidden units, the learning rate
or the number of factors might be troublesome, as is the case
for other machine learning algorithms. Furthermore, compu-
tational complexity in case of a very large number of the past
frames might be potentially a problem. Both drawbacks present
opportunities for future explorations.
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Higher-order interactions characterized in cortical activity. The Journal of
Neuroscience 31, 17514–17526.

Zhang, S., Ang, M.H., Xiao, W., Tham, C.K., . in: HealthCom 2008 - 10th In-
ternational Conference on e-health Networking, Applications and Services.


